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to Dorothy 



Preface 

This book is a development of lectures given by the author numerous times at 
the University of Colorado, and once at the University of California, Berkeley. A 
large portion was written while the author worked at the Forschungsinstitut fUr 
Mathematik, Eidgennossische Technische Hochschule, Zurich. 

A detailed description of the contents of the book, notational conventions, etc., 
is found at the end of the introduction. 

The author's main professional debt is to Alfred Tarski, from whom he learned 
logic. Several former students have urged the author to publish such a book as this; 
for such encouragement I am especially indebted to Ralph McKenzie. 

I wish to thank James Fickett and Stephen Comer for invaluable help in finding 
(some of the) errors in the manuscript. Comer also suggested several of the 
exercises. 

J. Donald Monk 
October, 1975 
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Introduction 

Leafing through almost any eXposItIOn of modern mathematical logic, 
including this book, one will note the highly technical and purely mathe
matical nature of most of the material. Generally speaking this may seem 
strange to the novice, who pictures logic as forming the foundation of mathe
matics and expects to find many difficult discussions concerning the philos
ophy of mathematics. Even more puzzling to such a person is the fact that 
most works on logic presuppose a substantial amount of mathematical back
ground, in fact, usually more set theory than is required for other mathe
matical subjects at a comparable level. To the novice it would seem more 
appropriate to begin by assuming nothing more than a general cultural 
background. In this introduction we want to try to justify the approach used 
in this book and similar ones. Inevitably this will require a discussion of the 
philosophy of mathematics. We cannot do full justice to this topic here, and 
the interested reader will have to study further, for example in the references 
given at the end of this introduction. We should emphasize at the outset 
that the various possible philosophical viewpoints concerning the nature or 
purpose of mathematics do not effect one way or the other the correctness 
of mathematical reasoning (including the technical results of this book). They 
do effect how mathematical results are to be intuitively interpreted, and which 
mathematical problems are considered as more significant. 

We shall discuss first a possible definition of mathematics, and then turn 
to a deeper discussion of the meaning of mathematics. After this we can in 
part justify the methods of modern logic described in this book. The intro
duction closes with an outline of the contents of the book and some comments 
on notation. 

As a tentative definition of mathematics, we may say it is an a priori, exact, 
abstract, absolute, applicable, and symbolic scientific discipline. We now 



Introduction 

consider these defining characteristics one by one. To say that mathematics 
is a priori is to say that it is independent of experience. Unlike physics or 
chemistry, the laws of mathematics are not laws of nature or dependent upon 
laws of nature. Theorems would remain valid in other possible worlds, where 
the laws of physics might be entirely different. If we take mathematical 
knowledge to mean a body of theorems and their formal proofs, then we can 
say that such knowledge is independent of all experience except the very 
rudimentary process of mechanically checking that the proofs are really 
proofs in the logical sense-lists of formulas subject to rules of inference. 
Of course this is a very limited conception of mathematical knowledge, but 
there can be little doubt that, so conceived, it is a priori knowledge. Depending 
on one's attitude towards mathematical truth, one might wish to broaden 
this view of mathematical knowledge; we shall discuss this later. Under 
broadened views, it is certainly possible to challenge the a priori nature of 
mathematics; see, e.g., Kalmar [6] (bibliography at the end of this intro
duction). 

Mathematics is exact in the sense that all its terms, definitions, rules of 
proof, etc. have a precise meaning. This is especially true when mathematics 
is based upon logic and set theory, as it is customary to do these days. This 
aspect of mathematics is perhaps the main thing that distinguishes it from 
other scientific disciplines. The possibility of being exact stems partially from 
its a priori nature. It is of course difficult to be very precise in discussing 
empirical evidence, because nature is so complex, difficult to classify, obser
vations are subject to experimental error, etc. But in the realm of ideas 
divorced from experience it is possible to be precise, and in mathematics one 
is precise. Of course some parts of philosophical speculation are concerned 
with a priori matters also, but such speculation differs from mathematics in 
not being exact. 

Another distinguishing feature of mathematical discourse is that it is 
generally much more abstract than ordinary language. One of the hallmarks 
of modern mathematics is its abstractness, but even classical mathematics is 
very abstract compared to other disciplines. Number, line, plane, etc. are not 
concrete concepts compared to chairs, cars, or planets. There are different 
levels of abstractness in mathematics, too; one may contemplate a progression 
like numbers, groups, universal algebras, categories. This characteristic of 
mathematics is shared by many other disciplines. In physics, for example, 
discussion may range from very concrete engineering problems to possible 
models for atomic nuclei. But in mathematics the concepts are a priori, 
already implying some degree of abstractness, and the tendency toward 
abstractness is very rampant. 

Next, mathematical results are absolute, not revisable on the basis of 
experience. Again, viewing mathematics just as a collection of theorems and 
formal proofs, there is little to quarrel with in this statement. Thus we see 
once more a difference between mathematics and experimental evidence; the 
latter is certainly subject to revision as measurements become more exact. 

2 
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Of course the appropriateness of a mathematical discipline for a given 
empirical study is highly subject to revision. Experimental evidence and a 
posteriori reasoning hence play a role in motivation for studying parts of 
mathematics and in the directions for mathematical research. One's attitude 
toward the absoluteness of mathematics is also colored by differing commit
ments to the nature of mathematical truth (see below). 

A feature of mathematics which is probably not inherent in its nature is 
its applicability. A very great portion of mathematics arises by trying to give 
a precise mathematical theory for some concrete, perhaps even nonmathe
matical, situation. Of course geometry and much of classical mathematics 
arose in this way from special intuition derived from actual sense evidence. 
Also, logic owes much to this means of development; formal languages arose 
from less formal mathematical discourse, the notion of Turing machine from 
the intuitive notion of computability, etc. Many very abstract mathematical 
disciplines arose from an analysis of less abstract parts of mathematics, and 
may hence be subsumed under this facet of the discipline; group theory and 
algebraic topology may be mentioned as examples. This aspect of mathematics 
is emphasized in Rogers [12], for example. 

Finally, the use of symbolic notation is a main characteristic of mathe
matics. This is connected with its exact nature, but even more connected 
with the development of mathematics as a kind of language. In fact, mathe
matics is often said just to be a language of a special kind. Most linguists 
would reject this claim, for mathematics fails to satisfy many of their criteria 
for a language, e.g., that of universality (capability of expressing usual events, 
emotions, ideas, etc. which occur in ordinary life). But mathematics does 
have many features in common with ordinary languages. It has proper 
names, such as 7T and e, and many mathematical statements have a subject
predicate form. In fact, almost all mathematical statements can be given an 
entirely nonsymbolic rendering, although this may be awkward in many cases. 
Thus mathematics can be considered as embedded in the particular natural 
language-English, Russian, etc.-in which it is partially expressed. But 
also mathematics can, in principle, be expressed purely symbolically; in
deed, a large portion of mathematics was so expressed in Russell and 
Whitehead's Principia Mathematica. 

Now we turn to a discussion of the nature of mathematical truth. We shall 
briefly mention three opposed views here: platonism, formalism, and in
tuitionism. The views of most mathematicians as to what their subject is all 
about are combinations of these three. On a subjective evaluation, we would 
estimate the mathematical world as populated with 65% platonists, 30% 
formalists, and 5% intuitionists. We describe here the three extremes. There 
are (perhaps) more palatable versions of all three. 

According to extreme platonism, mathematical objects are real, as real as 
any things in the world we live in. For example, infinite sets exist, not just 
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as a mental construct, but in a real sense, perhaps in a "hyperworld." Simi
larly, nondenumerable sets, real numbers, choice functions, Lebesgue measure, 
and the category of all categories have a real existence. Since all of the mathe
matical objects are real, the job of a mathematician is as empirical as that 
of a geologist or physicist; the mathematician looks at a special aspect of 
nature and tries to discover some of the facts. The various mathematical 
statements, like the Riemann hypothesis or the continuum hypothesis, are 
either true or false in the real world. The axioms of set theory are axioms in 
the Greek sense-self-evident statements which form a partial basis to deduc
tively arrive at other truths. Hence such results as the independence of the 
continuum hypothesis relative to the usual set-theoretical axioms force the 
platonist into a search for new insights and intuitions into the nature of sets 
so as to decide the truth or falsity of those statements which cannot be 
decided upon the basis of already accepted facts. Thus for him the inde
pendence results are not results about mathematics, but just about the 
formalization of mathematics. This view of mathematics leads to some 
revisions of the "definition" of mathematics we gave earlier. Thus it no 
longer is independent of empirical facts, but is as empirical as physics or 
chemistry. But since a platonist will still insist upon the absolute, immutable 
nature of mathematics, it still has an a priori aspect. For more detailed 
accounts of platonism see Mostowski [10] or GOdel [3]. 

In giving the definition of mathematics we have implicitly followed the 
view of formalists. A formalist does not believe that any mathematical 
objects have a real existence. For him, mathematics is just a collection of 
axioms, theorems, and formal proofs. Of course, the activity of mathematics 
is not just randomly writing down formal proofs for random theorems. The 
choices of axioms, of problems, of research directions, are influenced by a 
variety of considerations-practical, artistic, mystical-but all really non
mathematical. A revised version of platonism is to think of mathematical 
concepts not as actually existing but as mental constructs. A very extensive un
derstructure for much of formalism is very close to this version of platonism
the formal development of a mathematical theory to correspond to certain 
mental constructions. Good examples are geometry and set theory, both of 
which have developed in this way. And all concept analysis (e.g., analyzing 
the intuitive notion of computability) can be viewed as philosophical bases for 
much formal mathematics. Another motivating principle behind much 
formalism is the desire to inter-relate different parts of mathematics; for 
example, one may cite the ties among sentential logic, Boolean algebra, 
and topology. Thus while mathematics itself is precise and formal, a mathe
matician is more of an artist than an experimental scientist. For more on 
formalism, see Hilbert [5], A. Robinson [11], and P. Cohen [2]. For another 
discussion of platonism and formalism see Monk [9]. 

Intuitionism is connected with the constructivist trend in mathematics: 
a mathematical object exists only if there is a (mental) construction for it. 
This philosophy implies that much ordinary mathematics must be thrown 
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out, while platonism and formalism can both be used to justify present day 
mathematics. Even logical principles themselves must be modified on the 
basis of intuitionism. Thus the law of excluded middle-for any statement A, 
either A holds or (not A) holds-is rejected. The reasoning here goes as 
follows. Let A, for example, be the statement that there are infinitely many 
primes p such that p + 2 is also a prime. Then A does not presently hold, 
for we do not possess a construction which can go from any integer m given 
to us and produce primes p and p + 2 with m < p. But (not A) also does not 
hold, since we do not possess a construction which can go from any hypo
thetical construction proving A and produce a contradiction. One may say 
that intuitionism is the only branch of mathematics dealing directly with real, 
constructible objects. Other parts of mathematics introduce idealized con
cepts which have no constructive counterpart. For most mathematicians this 
idealism is fully justified, since one can make contact with verifiable, applicable 
mathematics as an offshoot of idealistic mathematics. See Heyting [4] and 
Bishop [1]. 

Now from the point of view of these brief comments on the nature of 
mathematics let us return to the problem of justifying our purely technical 
approach to logic. First of all, we do want to consider logic as a branch of 
mathematics, and subject this branch to as severe and searching an analysis 
as other branches. It is natural, from this point of view, to take a no-holds
barred attitude. For this reason, we shall base our discussion on a set
theoretical foundation like that used in developing analysis, or algebra, or 
topology. We may consider our task as that of giving a mathematical analysis 
of the basic concepts of logic and mathematics themselves. Thus we treat 
mathematical and logical practice as given empirical data and attempt to 
develop a purely mathematical theory of logic abstracted from these data. 
Our degree of success, that is, the extent to which this abstraction corresponds 
to the reality of mathematical practice, is a matter for philosophers to discuss. 
It will be evident also that many of our technical results have important 
implications in the philosophy of mathematics, but we shall not discuss these. 
We shall make some comments concerning an application of technical logic 
within mathematics, namely to the precise development of mathematics. 
Indeed, mathematics, formally developed, starts with logic, proceeds to set 
theory, and then branches into its several disciplines. We are not in the main 
concerned with this development, but a proper procedure for such a develop
ment will be easy to infer from the easier portions of our discussion in this 
book. 

Inherent in our treatment of logic, then, is the fact that our whole discus
sion takes place within ordinary intuitive mathematics. Naturally, we do not 
develop this intuitive mathematics formally here. Essentially all that we pre
suppose is elementary set theory, such as it is developed in Monk [8] for 
example. (See the end of this introduction for a description of set-theoretic 
notation we use that is not standard.) Since our main concern in the book is 
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certain formal languages, we thus are confronted with two levels of language 
in the book: the informal metalanguage, in which the whole discussion takes 
place, and the object languages which we discuss. The latter will be defined, 
in due course, as certain sets (!), in keeping with the foundation of all mathe
matics upon set theory. It is important to keep sharply in mind this distinction 
between language and metalanguage. But it should also be emphasized that 
many times we take ordinary metalanguage arguments and" translate" them 
into a given formal language ; see Chapter 17, for example. 

Briefly speaking, the book is divided up as follows. Part I is devoted to 
the elements of recursive function theory-the mathematical theory of 
effective, machine-like processes. The m·ost important things in Part I are 
the various equivalent definitions of recursive functions. In Part II we give a 
short course in elementary logic, covering topics frequently found in under
graduate courses in mathematical logic. The main results are the completeness 
and compactness theorems. The heart of the book is in the remaining three 
parts. Part III treats one of the two basic questions of mathematical logic: 
given a theory T, is there an automatic method for determining the validity of 
sentences in T? Aside from general results, the chapter treats this question 
for many ordinary theories, with both positive and negative results. For 
example, there is no such method for set theory, but there is for ordinary 
addition of integers. As corollaries we present celebrated results of G6del 
concerning the incompleteness of strong theories and the virtual impossibility 
of giving convincing consistency proofs for strong theories. The second basic 
question of logic is treated in Part IV: what is the relationship between 
semantic properties of languages (truth of sentences, denotations of words, 
etc.) and formal characteristics of them (form of sentences, etc.)? Some im
portant results of this chapter are Beth's completeness theorem for definitions, 
Lindstrom's abstract characterization of languages, and the Keisler-Shelah 
mathematical characterization of the formal definability of classes of struc
tures. In both of these chapters the languages studied are of a comprehensive 
type known as first-order languages. Other popular languages are studied in 
Part V, e.g., the type theory first extensively developed by Russell and 
Whitehead and the languages with infinitely long expressions. 

Optional chapters in the book are marked with an asterisk *. For the 
interdependence of the chapters, see the graph following this introduction. 
The book is provided with approximately 320 exercises. Difficult or. lengthy 
ones are marked with an asterisk *. Most of the exercises are not necessary 
for further work in the book; those that are are marked with a prime '. The 
end of a proof is signaled by the symbol O. 

As already mentioned, we will be following the set-theoretical notation 
found in [8]. For the convenience of the reader we set out here the nota~ion 
from [8] that is not in general use. For informal logic we use" =>" for "im
plies," "-¢>" or "iff" for "if and only if," "--," for "not," "V" for "for 
all," and "3" for "there exists." We distinguish between classes and sets in 
the usual fashion. The notation {x : <p(x)} denotes the class of all sets x such 
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that tp(x). Inclusion and proper inclusion are denoted by sand c respec
tively. The empty set is denoted by 0, and is the same as the ordinal number 
o. We let A ,..., B = {x : x E A, x i B}. The ordered pair (a, b) is defined by 
(a, b) = {{a}, {a, b}}; and (a, b, c) = ((a, b), c), (a, b, c, d) = ((a, b, c), d), etc. 
A binary relation is a set of ordered pairs; ternary, quaternary relations are 
defined similarly. The domain and range of a binary relation R are denoted 
by Dmn Rand Rng R respectively. The value of a function f at an argument a 
is denoted variously by aJ, aJ, r, fa, fa, f(a); and we may change notation 
frequently, especially for typographical reasons. The symbol < T(i) : i E I) de
notes a functionfwith domain I such thatfi = T(i) for all i E I. The sequence 
<xo, ... , Xm -1) is the function with domain m and value Xi for each i E m. 
The set A B is the set of all functions mapping A into B. An m-ary relation is a 
subset of m A, for some A. Thus a 2-ary relation is a set of ordered pairs, 
<x, y). By abuse of notation we shall sometimes identify the two kinds of 
ordered pairs, of binary relations, ternary relations, etc. We write f* A for 
{fa: a E A}. The notationsf: A --+ B,J: A""* B,J: A >+ B, andf: A>-,» B mean 
thatfis a function mapping A into (onto, one-one into, one-one onto respec
tively) B. The identity function (on the class of all sets) is denoted by I. The 
restriction of a function F to a set A is denoted by F t A. The class of all 
subsets of A is denoted by SA. Given an equivalence relation R on a set A, 
the equivalence class of a E A is denoted by [alB or [a], while the set of all 
equivalence classes is denoted by AIR. Ordinals are denoted by small Greek 
letters a, fl, y, ... , while cardinals are denoted by small German letters 
m, n, .... The cardinality of a set A is denoted by IA I. The least cardinal 
greater than a cardinal m is denoted by m +. For typographical reasons we 
sometimes write (exp (m, n)for mn and exp mfor 2m. 

One final remark on our notation throughout the book: in various sym
bolisms introduced with superscripts or subscripts, we will omit the latter when 
no confusion is likely (e.g., [alB and [a] above). 
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PART I 

Recursive Function Theory 

This first part is of a purely mathematical nature, not involving notions of 
formal logic. We wish to give precise versions of such intuitive notions as 
effective procedure, calculable junction, algorithm, effective list, etc. Thus our 
topic is in the field of computer science; but it has many applications in logic, 
and much of its deeper theory uses concepts from logic. We find it convenient 
to have these notions available when we begin the study of logic itself. Much 
of logic, particularly the more classical portions, is concerned with problems 
of effectiveness, e.g., to try to have an effective method for recognizing theo
rems in a given mathematical theory. This justifies treating effectiveness before 
logic. 

We shall briefly talk about these intuitive notions of effectiveness now, 
and in the course of this part we shall try to give intuitive versions for some 
of our main theorems and proofs. In fact, such intuitive versions are frequently 
enlightening and can be translated inW rigorous proofs so easily that, with 
practice, they can take the place of some of the usual rigorous proofs. Under
lying all of the notions we shall discuss is the main notion of an effective 
procedure. By an effective procedure we understand a purely mechanical, step 
by step process which begins with a finite amount of data and proceeds to an 
end result, or perhaps proceeds forever, producing output as it goes. An 
effective procedure must be specified in advance, in all details, in a cookbook 
fashion: first do this, then do that, etc. The specifications must be given in a 
finite amount of space and must be completely unambiguous. All the data 
are given in a discrete, finite form, and the operating procedure is also to 
occupy just a finite amount of physical space. To avoid complications, how
ever, we put no limit on the (finite) sizes of the data, operating specifications, 
or the procedure itself. Many examples of effective procedures are familiar to 
us all. There are the usual algorithms for adding and multiplying decimal 
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numbers; for finding the roots of quadratic equations; for approximating 7T 

to any desired degree of accuracy, etc. It is quite clear that each of these 
algorithms can be specified in enough detail to qualify as an effective pro
cedure in our sense. For most purposes it is not necessary to be any more 
explicit or precise than this about what an effective procedure really is. 
Mathematics abounds in algorithms, and usually they are easily recognizable 
as such. With the advent of large scale computers, a great number of mathe
matical algorithms have been worked out explicitly as effective procedures in 
the hardware or software of computers. However, once we start considering 
the possibility of negative results-showing that some procedure is not 
effective-it becomes essential to have a precise mathematical notion of 
effective procedure. 

Using the notion of effective procedure, one can subject common mathe
matical notions to a process of effectivization. Thus a function J: A -+ B is 
effective if there is an effective procedure which, given any element a E A, 
mechanically produces Ja in a finite amount of time. A set A is effective if 
there is an effective procedure which, given any object a, will decide in a 
finite amount of time whether a E A or a ¢ A. A set A is effectively enumerable 
if there is an effective function Jmapping w onto A, or, equivalently, if there 
is an effective procedure which generates all of the members of A, one after 
another. A real number is effective if the function giving its decimal expansion 
is effective. We shall see several concrete and detailed examples of the 
effectivization of mathematical notions in this part. 

To give a rigorous definition of effective procedure requires considerable 
abstraction from the intuitive notion. We can, however, simplify the problem 
of giving such a definition in several ways. First, because all such procedures 
act upon finite and discrete (not continuous) data, one can restrict attention 
to the natural numbers as input and output. Indeed, the natural numbers 
can be used to code any finite and discrete data, simply by effectively assigning 
numbers to the data; this idea is called Godel numbering, or arithmetization, 
and we shall see many applications of it. Second, among the various mathe
matical notions applicable to natural numbers, it is reasonable to concentrate 
our efforts on effectivizing just one of them, that of a function. Most of the 
other effectiveness notions can be easily expressed using the notion of an 
effective function, as we shall see. 

These two restrictions then enable us to pose a well-defined problem of 
applied mathematics: single out rigorously a class of number-theoretic func
tions which coincides with the intuitive class of effective number-theoretic 
functions. This part is devoted to this problem and to the exposition of some 
deeper aspects of the theory of effective procedures. There are many rigorous 
versions of the notion of effective function. For each of these versions one 
can give persuasive arguments that the intuitive notion has been faithfully 
captured. All of the versions turn out to be equivalent, which again makes it 
plausible that they form adequate rigorous versions of the intuitive notion. 
In this part we base our exposition on the version involving Turing machines. 

12 
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Roughly speaking, with them effectivity is identified with calculability by a ma
chine. We also discuss definitions of effectivity involving closure conditions
explicitly defining the class of effective functions. Another verson is that of 
Markov algorithms, corresponding closely to the intuitive notion of (written) 
algorithm. In the exercises we also discuss a version involving generalized 
digital computers, and the Herbrand-Godel-Kleene calculus offunctions. In 
Part III another important version-syntactic definability in number theory
is discussed. Thus there will be available to the reader a variety of equivalent 
rigorous versions of effectiveness. Different ones of these versions appeal to 
different mathematicians. Each one seems a little arbitrary, and additions to 
each are natural to suggest. It turns out, though, that almost all of these 
additions are superfluous in the sense that they can be effected in some way 
by the original notion. We shall give a few remarks on this topic as we proceed. 

13 



1 Turing Machines 

In this chapter we shall present a popular mathematical version of 
effectiveness, Turing computability, which will form our main rigorous basis 
for the mathematical discussion of effectivity. Actually in this section we 
present only some of the basic definitions concerning Turing machines and 
some elementary results which both illuminate these definitions and form a 
basis for later work. The definition of Turing computability itself is found 
in Chapter 3. Mter giving the formal definition of a Turing machine we 
discuss briefly the motivation behind the definition. 

In our exposition of Turing machines we follow Hermes [2] rather closely. 
A Turing machine (intuitively) consists of a mass of machinery, a reading 
head, and a tape infinite in both directions. The machine may be in any of 
finitely many internal states. The tape is divided up into squares called fields 
of the tape (see figure). 

r--L----":-------, reading head 
Mass of 

machinery 

The machine proceeds step by step. At a given step it takes an action depend
ing on what state it is in and upon what it finds on the field that the reading 
head is on. We allow only two symbols, 0 and 1, to be on a given field, and all 
but finitely many of the fields have 0 on them. These are the actions the 
machine can take: 

(1) Write 0 on the given field (first erasing what is there). 
(2) Write I on the given field (first erasing what is there). 

14 
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(3) Move tape one square to the right. 
(4) Move tape one square to the left. 
(5) Stop. 

We now want to make this rigorous. 

Definition 1.1. A Turing machine is a matrix of the form 

Cl 0 Vl d1 

Cl 1 V2 d2 

C2 0 V3 d3 

C2 1 V4 d4 

Cn 0 V2n-l d2n - 1 

Cn 1 V2n d2n 

Cm 0 V2m-l d2m - 1 

Cm 1 V2m d2m 

where: C1, .•• , Cm are distinct members of w, V1, ..• , V2m E {O, 1, 2, 3, 4} 
and d1 , •.. , d2m E {c1, ... , cm}. C1, ... ,Cm are called states. Cl is called the 
initial state of the machine. 

We think of a row Cj e Vj dj of this matrix as giving the following informa
tion: when the machine is in state Cj and scans the symbol e on the tape, it 
takes action Vi and then moves into state di • Here the action given by Vi is 
as follows: 

Vi = 0: write 0 on scanned square; 
Vi = 1: write 1 on scanned square; 
Vi = 2: move tape one square to the right; 
Vi = 3: move tape one square to the left; 
Vi = 4: stop. 

To make this precise, we proceed as follows: 

Definition 1.2. Let Z be the set of all (negative and nonnegative) integers. 
A tape description is a function F mapping Z into {O, I} which is 0 except 
for finitely many values. A configuration of a given Turing machine T 
is a triple (F, d, e) such that F is a tape description, d is a state, and e is 
an integer (which tells us, intuitively, where the reading head is). A com
putation step of T is a pair «F, d, e), (F', d', e')) of configurations such 

15 
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that: if the line of the Turing machine beginning with (d; Fe) is (d, Fe, w,J), 
then: 

ifw = 0 then F' = F~, d' =f, e' = e; 
ifw = 1 then F' = Fi, d' =f, e' = e; 
ifw = 2 then F' =F, d' =f, e' = e- 1 . , 
if w = 3 then F' = F, d' =f, e' = e + 1. 

Here F~ is the function (F ~ {(e, Fe)}) U {(e, e)}. Thus F: is the tape 
description acting like F except possibly at e, and F:e = e. A computation 
of T is a finite sequence «Fo, do, eo), ... , (Fm' dm, em) of configurations 
such that do = Cl> «Flo dl> e;), (Fi+1' di+ 1, ei+ 1)) is a computation step for 
each i < m, and the row of the Turing machine beginning (dm, Fem) has 
4 as its third entry. 

The way a Turing machine runs has now been described. To compute a 
functionf, roughly speaking we hand the machine a number x and it produces 
Ix as an output. Since only zeros and ones appear on a tape, we cannot literally 
hand x to the machine; it must be coded by zeros and ones. The mathematically 
most obvious way of coding x is to use its binary representation as a "deci
mal" with base 2. However, this is inconvenient, in view of the very primitive 
operations which a Turing machine can perform. We elect instead to represent 
x by a sequence of x + lone's. (This is sometimes called the tally notation.) 
The extra "one" is added in order to be able to recognize the code of the 
number zero as different from a zero entry on the tape whose purpose is just 
as a blank. The precise way in which functions are computed by a Turing 
machine will be defined in Chapter 3. In this chapter we want to see how 
these rather primitive looking machines can nevertheless perform some 
intricate operations on strings of zeros and ones. These results will be useful 
in Chapter 3 and later work. 

Using the intuitive notion of coding we can argue as follows that Turing 
machines are really quite powerful: We have seen informally how to represent 
any number on a tape. A sequence of numbers can be represented by putting 
blanks (zeros) between the strings of ones representing the numbers. By using 
two blanks one can code several blocks of numbers, or one can use the two 
blanks to recognize a portion of the tape set aside for a special purpose. By 
repeated adjoining of a one, it is possible to add with a Turing machine; and 
by repeated addition, one can multiply. Since a new state depends on the 
currently scanned symbol, it is possible to set up different actions depending 
upon what is on the tape. And we are not really restricted to just one square 
in this decision making, since by using several states we can examine any 
restricted portion of the tape. 

In the general theory of Turing machines, one allows several symbols 
instead of just 0 and 1 (see, e.g., [2]). However, it is clearly possible to code 
these different symbols by different strings of l's. Several tapes may also be 
allowed. Again such a modification can be coded within our machines; in 

16 
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the case of two tapes, for example, one may instead use odd and even 
numbered squares on a single tape. 

These intuitive comments on the strength of Turing machines of course 
would require proof. Some of them will be proyed later, and we hope that 
they will all seem plausible after we have worked with Turing machines a 
while. For a more detailed argument on the strength of Turing machines see 
the introduction to [2]. 

Definition 1.3. Tright is the following machine: 

002 1 

o 1 2 1 

104 1 

1 1 4 1 

Proposition 1.4. For any tape description F and any e E 7L, «F, 0, e), 
(F, 1, e - 1» is a computation of Tright. 

Thus Tright merely moves the tape one square to the right, and then stops. 

Definition 1.5. T1ert is the following machine: 

o 0 3 1 

o 1 3 1 

104 1 

1 1 4 1 

Proposition 1.6. For any tape description F and any e E 7L, «F, 0, e), 
(F, 1, e + 1» is a computation of1iert. 

Thus 1iert moves the tape one square to the left and then stops. 

Definition 1.7. To is the following machine: 

o 040 

o 100 

Proposition 1.S. For any tape description F and any e E 7L, (i) if Fe = 0, then 
«F, 0, e» is a computation of To; (ii) if Fe = 1, then «F, 0, e), (Fg, 0, e» 
is a computation of To· Thus To writes a 0 if a zero is not here, but does not 
move the tape. 

17 
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Definition 1.9. Tl is the following machine: 

000 

040 

Proposition 1.10. For any tape description F and any e E 7L, (i) if Fe = 0, then 
«F, 0, e), (Fi, 0, e) is a computation ofTl ; (ii) if Fe = 1, then «F, 0, e) 
is a computation of Tl . Tl writes a 1 if a 1 is not there, but does not move 
the tape. 

Definition 1.11. If a is any set and mEW, let d m) be the unique element of 
m{a}. Thus d m) is an m-termed sequence of a's, d m) = <a, a, ... , a) (m 
times). If x and yare finite sequences, say x = <xo, ... , xm - 1 ) and y = 

<Yo, ... , Yn-l), we let xy = <xo, ... , Xm-l> Yo, ... , Yn-l). Frequently we 
write a for <a). 

Definition 1.12. T z seek ° is the following machine: 

002 

o 1 2 1 

o 4 1 

o 

A computation with Tzseeko can be indicated as follows, where we use an 
obvious notation: 

-0 l(m) a 
A 

-0 l(m-l) 1 a 
A 

-0 l(m-2) 1 1 a 
A 

----- 0 1 l(m-l) a-
A 

----- 0 l(m) a --
A 

t 
Reading head 

Thus Tz seek ° finds the first 0 to the left of the square it first looks at and 
stops at that O. In this and future cases we shall not formulate an exact 
theorem describing such a fact; we now feel the reader can in principle 
translate such informal statements as the above into a rigorous form. 
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Definition 1.13. TrseekO is the following machine: 

o 0 3 1 

o 1 3 1 

1 0 4 1 

1 1 1 0 

Tr seek 0 finds the first 0 to the right of the square it first looks at and stops 
at that o. 

Definition 1.14. T'seekO is the following machine: 

002 1 

012 

1 000 

4 

lIseekl finds the first 1 to the left of the square it first looks at and stops 
at that 1. It may be that no such 1 exists; then the machine continues forever, 
and no computation exists. 

Definition 1.15. Tr seek 1 is the following machine: 

o 0 3 1 

o 1 3 

000 

1 1 4 1 

Tr seek 1 finds the first 1 to the right of the square it first looks at and stops 
at that 1. But again, it may be that no such 1 exists. 

Definition 1.16. Suppose M, N, and P are Turing machines with pairwise 
disjoint sets of states. By M --+ N we mean the machine obtained by 
writing down N after M, after first replacing all rows of M of the forms 
(c 0 4 d) or (c' 1 4 d') by the rows (c, 0 0 e) or (c' lIe) respectively, 
where e is the initial state of N. By 

M~N 

we mean the machine obtained by writing down M, then N, then P, after 
first replacing all rows of M of the forms (c 0 4 d) or (c' 1 4 d') by the 
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rows (e 0 0 e) or (e' I I e') respectively, where e is the initial state of 
Nand e' is the initial state of P. 

Obviously we can change the states of a Turing machine by a one-one 
mapping without effecting what it does to a tape description. Hence we can 
apply the notation just introduced to machines even if they do not have 
pairwise disjoint sets of states. Furthermore, the above notation can be 
combined into large" flow charts" in an obvious way. 

Definition 1.17. Tseekl is the following machine: 

Start 

1. ~. . I 
Tright ~ Tl -+ T1eft A Tl -7 TI seek 1 -+ To -+ Tright ~ Tl ~ Tr seek 1 -+ To 

1 if 1 1 if 1 1 if 1 

Stop TI seek 1 Tr seek 1 

1 1 
To To 

1 1 
Trseekl Tlseekl 

if 1 
(Here by Tright ~ Stop we mean that the row (1 I 4 1) of Trlgbt is not to 
be changed.) 
This machine just finds a I and stops there. It must look both left and 

right to find such a 1; 1 's are written (but later erased) to keep track of how 
far the search has gone, so that the final tape description is the same as the 
initial one. If the tape is blank initially the computation continues forever. 

Since this is a rather complicated procedure we again indicate in detail a 
computation using Tseekl' First we have two trivial cases: 

20 

Starting with I a Starting with 0 1 

1 a 
A 

1 a 
A 

A A 

o 1 
A 

o 1 
A 

1 1 
A 

1 1 
A 

1 1 
A 

o 1 
A 

o 1 
A 
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In the nontrivial case we start with - o(m) 0 o(n) -; m > 0: 
A 

Start 
o(m) o O(n) 

A 

0(m-1) 0 0(n+1) 

A 

0(m-1) 1 0(n+1) 

A 

0(m-1) 0 o(n) 

A 

o(m-I) 0(2i-2) 0 0(n-l+1) 

A 

o(m-i) 0(21-2) 1 0(n-l+1) 

A 

o(m-I) 0(2i-2) 0(n-i+1) 

A 

o(m-I) 0 0(21-2) 0(n-i+1) 

A 

0(m-i-1) 0 0(2i-1) 0(n-i+1) 

A 

0(m-i-1) 0(2i-1) 0(n-i+1) 

A 

0(m-i-1) 0(2i-1) 1 0(n-l+1) 

A 

0(m-I-1) 1 0(21-1) 0 0(n-i+1) 

A 

0(m-I-1) 1 0(21) 0 o(n-I) 

A 

Here i = 1 initially, and the portion beyond 0(m-1) 1 0(2i-2) 0 0(n-i+1) takes 
A 

place only if i < m and i :::;; n. Thus, if we start with - 1 o(m) 0 o(n) -, and 
A 

n + 1 ;::: m, we end as follows (setting i = m): 

1 0(2m-2) 
0 0(n-m+1) 

A 

1 1 0(2m-2) 0(n-m+1) 

A 

1 1 0(2m-2) 1 0(n-m+1) 

A 

1 0 0(2m-2) 1 o(n-m+ 1) 

A 

1 0(2m-1) 0(n-m+1) 

A 

1 0(2m-1) 1 0(n-m+1) 

A 

1 0(2m-1) 0 0(n-m+1) 

A 

0(n+m+1) 

A 
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On the other hand, if we start with - o(m) 0 o(n) 1 -, and n + 1 < m we end 
1\ 

as follows (setting i = n + 1): 

o(m-n-l) O(2n) 0 1 
1\ 

o(m-n-l) 1 O(2n) 1 1 

" 
o(m-n-l) 1 O(2n) 

" 
o(m-n-l) 0 O(2n) 

" o(m-n-2) 0 O(2n+l) 

" o(m-n-2) 1 O(2n+l) 

" o(m-n-2) 1 O(2n+l) 1 1 
1\ 

o(m-n-2) 1 O(2n+l) o 1 

" o(m-n-2) 1 O(2n+2) 1 

" o(m-n-2) 1 O(2n+2) 

" o(m-n-2) 0 O(2n+2) 

" o(m+n+l) 1 

" 

1 1 

1 1 

1 1 

1 1 

1 

1 

Definition 1.lS. TI end is the following machine: 

! lift 

Start -+ TI seek 0 -+ Trlght ~ Tieft 

TI end moves the tape to the right until finding 00, and stops on the right
most of these two zeros. TI end does not start counting zeros until moving 
the tape. 

Definition 1.19. Trend is the following machine: 

22 

J I if! ·ro 
Start --+ TT seek 0 -+ Tieft ~ Trlght 

Trend moves the tape to the left until finding 00, and stops on the left-most 
of these two zeros. Trend does not start counting zeros until moving the 
tape. 
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Definition 1.20. Tz trans is the following machine: 

J I 
Start --+ T1eft ---->- T1eft ~ To --+ Trlght --+ Tl 

1 if 0 

Trlght 

The action of T z trans is indicated thus, in the case of interest to us: 

------ a 0 l(b+l) 0 -
/I 

-- a l(b+l) 00----
/I 

The tape is otherwise unchanged. 

Definition 1.21. Tz shift is the following machine: 

I Of 1 
Start --+ T/ seek a --+ Trlght ~ Ta ---+ T/ trans 

1 if 0 

1'z trans 

Tz shift acts as follows in the case of interest to US: 

-- 0 l(x+l) 0 l(y+l) 0 -----
/I 

o 1 (y + 1) 0 O(x + 2) 

/I 

The tape to the left and right of this portion of x + y + 5 symbols is 
unchanged. 

Definition 1.22. Tfln is the following machine: 

t ·f 1 
Start --+ T z seek a --+ Trlght ~ T1eft --+ TT seek a --+ T z shirt 

1 if 0 

Tztrans 

1 
TZseeka 

1 
1 
Tz trans 
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Tfin acts as follows in the case of interest to us: 

--- 0(2) l(xO+l) 0 l(Xl+l) 0 ... 0 l(x(m-l)+l) 0 l(y+l) 0 ----
/\ 

l(y+l) 0 o(P) --

/\ 

wherep = Xo + Xl + ... + X m - l + 2m + 2. In case m = 0, it works like 
this: 

0(2) l(y+l) 0 
/\ 

l(y+l) 0 0(2) 

/\ 

In each case the tape is otherwise unchanged. Here "fin" abbreviates 
"finish." 

This machine will be used at the end of computations to erase scratchwork. 

Definition 1.23. Tcopy is the following machine: 

Tcopy acts as follows: 

o l(x+l) 0 0(x+2) --

/\ 

-- 0 l(x+l) 0 j(x+l) 0 -----
/\ 

The tape is otherwise unchanged. 

A machine M repeated m > 0 times will be indicated by Mm III our 
diagrams. 

Definition 1.24. For n > 0, Tncopy is the following machine: 

Start -+ 

24 

T:;seekO 

lifO 
Tn T if I T Tn + 1 

l seek 0 ---+ ~ left -----+ L 0 -+ r seek 0 

t 
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Tncopy acts as follows: 

o l(xo+l) 0 l(xl+l) 0 ... l(x(n-l)+l) 0 O(xO+2) 

1\ 

o l(xO+l) 0 l(xl+l) 0 ... 0 l(x(n-ll+l) 0 ... l(xO+l) 0 
1\ 

The tape is otherwise unchanged. This machine copies the nth block to the 
left. 
These are all the basic machines needed to compute functions. We shall 

return to Turing machines after discussing some classes of number-theoretic 
functions. 
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EXERCISES 

1.25. Give an example of a Turing machine which gets in a loop-repeats some 
configurations over and over. 

1.26. Give an example of a Turing machine which never stops, but doesn't get 
in a loop. 

1.27'. Prove rigorously that T'trans does what is said in the text. 

1.28'. Prove rigorously that 71shltt does what is said in the text. 

1.29'. Prove rigorously that Tnn does what is said in the text. 

1.30'. Prove rigorously that Tcopy does what'is said in the text. 

1.31'. Prove rigorously that Tncopy does what is said in the text. 

1.32. Show that there is no Turing machine which, started at an arbitrary 
position, will find the left-most 1 on the tape. 

1.33. Construct a Turing machine which will print the sequence 11001100 .... 

1.34. Construct a Turing machine that stops iff there are at least two one's on 
the tape. 
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2 Elementary recursive and 
primitive recursive functions 

To show that many number-theoretic functions are Turing computable, 
it is convenient to distinguish some functions by closure conditions. 

The class of elementary recursive functions which we shall now define in 
this way is a class of intuitively effective functions which contains most of 
the effective functions actually encountered in practice. However, not every 
effective function is elementary recursive. Toward the end of the chapter we 
introduce the wider class of primitive recursive functions, which still does not 
cover all kinds of intuitively effective functions. In the next chapter we go 
from primitive recursive functions to a class of functions, the recursive func
tions, intuitively corresponding to the entire class of effective functions. An 
elementary recursive function is just a function obtainable from the usual 
arithmetic operations of addition, subtraction, multiplication, and division 
by composition, summation, and mUltiplication. Most of this chapter is 
concerned with listing out some elementary functions and with giving oper
ations which lead from elementary functions to elementary functions. This is 
necessary in order to be able to easily recognize that some of the rather 
complicated intuitively effective functions are, in fact, elementary recursive. 
A more detailed treatment of the topics of this section can be found in 
Peter [2]. 

Definition 2.1. A number-theoretic junction is a function which is, for some 
positive integer m, an m-ary operation on w. The class of elementary 
recursive, or for brevity elementary junctions, is the intersection of all 
classes A of number-theoretic functions such that, first of all, the following 
specific functions are in A: 

( I) +, the usual 2-ary operation of addition; 
(2) " the usual 2-ary operation of multiplication; 

26 



Chapter 2: Elementary recursive and primitive recursive functions 

(3) the 2-ary operation/such that/em, n) = 1m - nl for all m, nEw; 
(4) the 2-ary operation / such that /(m, n) is the greatest nonnegative 

integer 5,mln (if n i= 0),0 if n = 0; we denote/em, n) by [min]; 
(5) for each positive integer n and each i < n, the n-ary operation / on w 

such that for all Xc, ... , Xn -1 E w,f(Xo, ... , Xn -1) = Xi ;fis denoted by 
Ur; it is called an identity or projection function. 

Second, and last, A is required to be closed under the following operations 
upon number-theoretic functions: 

(a) The operation of composition. If/is an m-ary function, and go, ... , 
gm-1 are n-ary functions, then the composition of/with go,···, gm-1 
is denoted by K;:' (/; go, ... , gm -1); it is defined to be the n-ary function 
h such that for all Xc, ... , Xn -1 E w, 

h(xo, ... , Xn - 1) = /(go(Xo, ... , Xn - 1), ... , gm-1(Xo, ... , Xn -1». 

(b) The operation of summation. If/is an m-ary function, then g (m-ary) 
is obtained from/by summation, in symbols g = J.,J, if for all Xo, ... , 
Xm-l E W, 

g(Xo,···, Xm-l) = 2: {f(xo,···, Xm -2, y): Y < xm- 1} 

[note that if m = I the definition reads 

gx = 2: /y; 
y<x 

for any m, we have g(xo, ... , Xm - 2 , 0) = 0 by convention]. 
(c) The operation of multiplication. If / is an m-ary function, then g 

(m-ary) is obtained from / by multiplication, in symbols g = TIJ, if 
for all Xc, ... , Xm-l E W, 

g(xo,···,Xm-l) = I1 {/(xo,· .. ,xm- 2 ,y):y < Xm-l} 

[if X m - 1 = 0, the right hand side is 1 by convention]. 

It should be evident that each elementary function is effectively calculable 
in the intuitive sense. To convince oneself of this, it is enough to argue that 
each of the functions (1 )-(5) above is effectively calculable, and that the class 
of effectively calculable functions is closed under the operations (a)-(c). For 
(1)-(5), the ordinary school algorithms suffice for this argument. As to (a)-(c), 
suppose, for example, that J, an m-ary function, is effectively calculable, and 
we wish to show that J.,/also is. Given Xo, ... , Xm- 1 E w, we merely calculate 
/(xo, ... , Xm -2, O),/(xo, ... , Xm -2, I), .. . ,/(xo, ... , Xm- 2 , Xm- 1 - 1), which 
we can do since/is effectively calculable, and then we add them all up by the 
school process, giving us (J.,/)(xo, ... , xm- 1). 

Proposition 2.2. Suppose/is m-ary, go, ... , gm-l are n-ary, and ho, ... , hn - 1 

are p-ary. Then 

K~(K;:' (f; go,··· ,gm-l); ho,···, hn- 1) = K;;' (f; K~ (go; ho, ... , hn - 1), ••• , 

K~ (gm-l; ho,· .. , hn - 1»· 
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PROOF. If x o, ... , Xv -1 E w, then, with I = left hand side and r = right hand 
side, 

I(xo, ... , XV-I) = (K:;' (f; go, ... ,gm-l»(ho(xo, ... , XV-I), ... , hn- 1(xo, ... , XV-I» 
=f(go(ho{xo, .. ·, XV-I), ... , hn- 1(xo,···, X p - 1»"", 

gm -1(ho{xo, ... , Xv -1), ... , hn -1(XO, ... , XV-I») 
=f«K~ (go; ho,· .. , hn- 1»(xO,"" XV-I),···, 

(K~ (gm-l; ho,···, hn-l»{xo,···, XV- l» 
= r{xo,···, X V - l ). 0 

The following theorem is the usual set-theoretical consequence of a 
definition like 2.1. 

Proposition 2.3. A number-theoretic function f is elementary iff there is a 
finite sequence <go,"" gh; -I) of number-theoretic functions such that 
gk -1 = J, and for each i < k one of the following conditiollS holds: 

(i) gi = +, 
(ii) gi = " 

(iii) gi = subtraction (in the sense of 2.1 (3», 
(iv) gi = division (in the sense of2.1(4», 
(v) gi = Uj for some n > 0, some j < n, 

(vi) gi isn-ary, amlforsomem > Othereexistj < iandko, ... ,km- l < i 
such that gj is m-ary, gh;O,"" gh;(m-l) arc n-ary, and gi = K:;' (gj; 
gh;O, ... , gh;(m-U) (g, is obtainedfrom earlierfimctions by composition), 

(vii) there is aj < i such that gi = 2: (gj), 
(viii) there is a j < i such that gi = TI (gj). 

PROOF. Let A be the set of all f such that there is a finite sequence of the 
kind described in the theorem. By considering I-termed sequences it is easy 
to see that +, " subtraction, division, and Uj are all in A (for any 11 > 0 
andj < n). SupposefEA,fis m-ary, ho, ... ,hm-1EA, all of ho, ... ,hm - l 

are n-ary. Choose a finite sequence <go, ... ,gh;-l> such that gk-l =fand 
or each i < k one of the conditions (i)-(viii) holds for gi' For each j < m 
choose a finite sequence (lj.o, ... , Ij.aj - l ) such that Ij.aj -1 = hj and for each 
i < aj one of the conditions (i)-(viii) holds for Iji' Then consideration of the 
sequence 

<go,"" gk-l, 10 ,0,"" lo,ao-l,"" Im-l,o, ... , 
Im-l,a(m-ll' K:;' (f; ho,· .. , hm - l » 

shows that K:;' (j; ho, ... , hm - 1 ) E A. Thus A is closed under composition. 
If fE A, so that a sequence <go,"" gh'-I) exists as in the theorem, then 
consideration of <go, ... , gh:-l, "Lf> and <go,"" gk-l, TIf> show that 2:J, 
TIfE A. Hence every elementary function appears in A. This proves =>. If 
fE A, with <go,"" gh:-l) given as in the theorem, then it is easily shown by 
induction on i that gi is elementary for each i < k. In particular, f = gk-l 
is elementary; this proves <=. 0 

28 



Chapter 2: Elementary recursive and primitive recursive functions 

We now proceed to show that many garden-variety number-theoretic 
functions are elementary and that simple operations on elementary functions 
again give elementary functions. 

For later purposes it is convenient to formulate results of the second kind 
in a more general way. A class A of number-theoretic functions is said to be 
closed under elementary recursive operations provided A contains all the 
elementary functions 2.1(1)-(5) and is closed under composition, summation, 
and multiplication. Obviously the class of all elementary functions is closed 
under eleme.ntary recursive operations. So will be all of the wider classes of 
effective functions which we discuss later. 

Proposition 2.4. Let A be closed under elementary recursive operations. If f 
is m-ary andfE A, and'Tf is a permutation of{O, ... , m - I}, then the m-ary 
function g such that g(xo, ... , Xm -1) = f(x"o, ... , X,,(m -11) for all XC, ••• , 

X m-1 E w is also in A. 

PROOF. g = K::: (f; U::'o, ... , U::'m-11)' 0 

Proposition 2.5 (Identification of variables). Let A be closed under ele
mentary recursive operations. Iff is m-ary, m > I, and fE A, then the 
(m - I )-ary function g such that g(xo, ... , Xm _ 2) = f(xo, ... , Xm - 2, xc) for 
all XO, •.• , X m -2 E w is in A. 

PROOF. g = K:::- 1 (f; U:;'-l, ... , U::::~, U:;'-l). o 

By means of 2.4 and 2.5 variables can be identified in an arbitrary number 
of places. Thus iff is 3-ary elementary, so is the function g with g(x, y) = 
f(x, y, y), for if hex, y, z) = f(y, x, z), h is elementary by 2.4; letting k(x, y) = 
hex, y, x) for all x, yEw, k is elementary by 2.5, and g(x, y) = k(y, x) for all 
x, yEw, so g is elementary by 2.4. Usually it is just as easy in cases like this 
to use the method of proof of 2.4 and 2.5. 

Proposition 2.6 (Adjoining apparent variables). Let A be closed under ele
mentary recursive operations. Iff is m-ary and f E A, then the (m + I)-ary 
function g such that g(xo, ... , x m) = f(xo, ... , Xm -1) for all xc, ... , Xm E w, 
is in A. 

PROOF. g = K:::+1 (f; U:;'+1, ... , U:::~D. o 

Definition 2.7 

(i) For n > 0, mEw, C~ is the n-ary function such that C~ (xo, ... , X"-l) 
= m for all XO, •.• , X n -1 E w. 

(ii) sg and sg are unary functions; for x E w, 

{o if x = 0, 
sg x = I if x =I 0, 

_ {I 
sgx = ° if x = 0, 

if x =I 0. 

29 



Part 1: Recursive Function Theory 

(iii) ft is a unary function: 

ftx = {O 
x-I 

if x = O} 
if x =I 0 for all x E w. 

(iv) By convention, 0° = 1, Ox = 0 for x =I 0; O! = l. 
(v) 0 is a unary function: oX = x + 1 for all x E w. 

Thus e;;, is the n-ary constant function with value m. The functions sg and 
sg are of a technical usefulness. ft is the predecessor function and 0 the suc
cessor function. 

Proposition 2.8. The following functions are elementary: 

(i) e;;, (for n =I 0) 
(ii) 0 

(iii) sg 
(iv) sg 
(v) exponentiation 

(vi) factorial 
(vii) ft 

PROOF 

(1) C6 is elementary: C6 x = Ix - xl for all x E w. 

(2) sg is elementary: sg x = Ily < x eli y, for all x E w. 

(3) sg is elementary: sg x = sg sg x for all x E w. 

(4) et is elementary: et x = sg C6 x for all x E w. 

(5) e~ is elementary: (by induction on m) e~+l x = e~ x + q x for all 
XEw. 

(6) e;;, is elementary: e;;, (xo, ... , Xn -1) = e~ ug (xo, ... , Xn -1) for all 
XO,···,Xn _ 1 Ew. 

(7) 0 : oX = x + q x. 
(8) exponentiation: xY = Ilz < Y U5 (x, z). 
(9) factorial: x! = Ilz<x oz. 

(10) ft: ftx = Ix - qxl·sg x. o 

Definition 2.9 
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(i) By an m-ary number-theoretic relation (m > 0) we mean a set of 
m-tuples of natural numbers. mw is the set of all m-tuples of natural 
numbers. As usual, we identify 1W and w, in an informal way. 

(ii) If R is an m-ary number-theoretic relation, its characteristic function 
XR, is the m-ary number-theoretic function such that for all X o, ... , 

x m - 1 E w, 

if <xo, . .. , Xm -1) ¢ R, 
if <xo, ... , Xm -I) E R. 

(iii) An m-ary number-theoretic relation R is elementary if XR is elementary. 
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The definition 2.9(iii) is motivated by our intuitive feeling that a relation 
R is effective iff Xa is an effective function. In fact, if we have an effective 
procedure for determining membership in R, then we can effectively calculate 
Xa as follows. Given any object a, determine whether a E R or a rt R. In the 
first case, xaa = 1, and in the second case, xRa = O. Conversely, suppose we 
have an effective procedure for calculating values of Xa. Given any object a, 
calculate xRa. If xRa = I, then a E R. If xRa = 0, then a rt R. 

Given any class A of number-theoretic functions, an m-ary number
theoretic relation R is said to be an A-relation if XR E A. 

Proposition 2.10. 0 and ware elementary; if x E w then {x} is elementary. 

PROOF. Xo = Cti and XOl = C~. If x E w, then for any yEw, X(x}y = 
sg (Ix - yl); hence X(x}y = sg (Ie; y - Uti YD· 0 

By 2.10, {x} is always on effectively decidable set. Intuitively speaking, 
to check whether y E {x} we simply check if y = x (surely an effective matter). 
As an example, let B = {O} if Fermat's last theorem is true, while B = 0 if it 
is false. B is an effectively decidable set, although we do not know now 
whether 0 E B or not. Thus there is a decision procedure for membership in 
B, but we don't know what it is (it is either the obvious one for {O} or the 
obvious one for 0). 

Proposition 2.11. Let A be closed under elementary recursive operations. If R 
and S are A-relations, then so are R n S, R uS, and mw ,.., R. 

PROOF. For all Xo,·.·, xm- 1, XR()S(XO,"" Xm-l) = Xa(xo,· .. , xm-1)'xs(xo, 
... , Xm-l), XT(XO,' .. , Xm-l) = sg XR(XO,"" xm- 1), with T = mw ,.., R, R u 
S = mw ,.., [(mw ,.., R) n (mw ,.., S)]. 0 

Corollary 2.12. Every finite subset of w is elementary, and so is every cofinite 
set. 

Proposition 2.13. The binary relations ~, <, ;:::, 

PROOF. For any x, yEw, 

=f. are elementary. 

xAx, y) = sg [<1x/<1Y] = sg [<1 U~ (x, Y)/<1 U~ (x, y)]. 

Thus < is elementary. Further 

X .. (X, y) = sg (Ix - yl), 

so =f. is elementary. Finally, ~ = « u =), ;::: = (2w ,.., <), > = (2w ,..., ~), 
= = ew ,.., =f.). 0 

Proposition 2.14 (Bounded existential quantifier). Let A be closed under 
elementary recursive operations. Suppose R is an m-ary A-relation. Let 
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S = {<xo, ... , Xm -1): there is a y < xm -1 such that <xo, ... , Xm _ 2, y) E R}. 
Then S is an A-relation. 

PROOF. Xs(xo, ... ,xm- 1) = sg2hR(XO,· .. ,Xm-2,y):y < Xm-1}' 0 

Proposition 2.15 (Bounded universal quantifier): Let A be closed under 
elementary recursive operations. Suppose R is an m-ary A-relation. Let 
T = {<xo, ... , Xm -1): for every Y < Xm -1 we have <xo, ... , Xm _ 2, y) E R}. 
Then T is an A-relation. 

PROOF. Let S be as in 2.14, with R replaced by mw ~ R. Then T = 
~~S 0 

Definition 2.16 (Bounded minimum). Let R be an m-ary relation. For all 
Xo, ... , Xm - 1 E w, let 

_ {th~ least;: < Xm -1 such that <xo, ... , Xm _ 2, y) E R, 
f(xo, ... , Xm-1) - If there IS such a y, 

o otherwise. 

f(xo, ... , xm- 1) is denoted by /LY < Xm-1R (Xo,·.·, Xm-2, y). 

Proposition 2.17. Let A be closed under elementary recursive operations. If R 
is an m-ary A-relation, then the function f of 2.16 is a member of A. 

PROOF. Note that 

(1) sg L XR(XO,"" Xm-2,y) = {I 
Y<i 0 

if <xo, ... , Xm - 1, y) rt R for all y < i, 

otherwise. 

Let g(xo, ... , Xm -2, i) = sg 2Y<i XR(XO,"" Xm -2, y) for all Xo, ... , Xm -2, 
i E w. Thus g E A. From (1) we see that 

L {g(xo, ... , Xm -2, 4i); i < Xm-1} = Xm_1suchthat<xo,·· .,Xm_2,y)ER, {
f(Xo, ... , Xm -1) if there is a y < 

X m - 1 otherwise. 
Hence 

f(xo,· .. , Xm-1) = sgg(xo,···, xm- 1)'L {g(xo,···, xm- 2, 4i): i < x m- 1}, 

sofEA. 0 

The rather technical proof of 2.17 may be compared with a proof of the 
intuitive version of the proposition, which goes: if R is an m-ary effective 
relation, then the function f of 2.16 is effective. In fact, to calculate 
f(xo, ... , Xm -1), we test successively whether <xo, ... , Xm _ 2, 0) E R, <xo, ... , 
Xm-2, I) E R, . .. , <xo, . .. , Xm-2, x m- 1) E R. If at some point we reach an i 
such that <xo, . .. , x m- 2 , i) E R, we setf(xo, . .. , Xm-1) = i and stop testing. 
Ifwe complete our testing without finding such an iwe setf(xo, ... , xm- 1) = O. 

Proposition 2.18 (Definition by cases). Let A be closed under elementary 
recursive operations. Suppose go, . .. , gm-1 are n-ary members of A, 
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Ro, ... , Rm -1 are pairwise disjoint n-ary A-relations with Ui < m Ri = nw, 

and f is the n-ary function such that, for all xc, ... , Xn -1 E w, 

{

go(xo, ... , Xn-1) if <Xo, . .. , Xn-1) E Ro, 
g1(XO,···,Xn-1) if<Xo, ... ,xn-1)ER1, 

f(xo,· .. , Xn-1) = . 
~~~~(~o·,·.·. :: ~~~~; ... ·if·<~o·,·.·. :: ~~~~> ~'~~~'1: 

ThenfE A. 

PROOF. For any Xo, .. . , Xn-1 E w, 

f(xo,···, Xn-1) = XRO(XO,"·' Xn-1)·gO(Xo,.·., Xn-1) + ... 
+ XR(m-1)(Xo, . .. , Xn-1)·gm-1(XO,· .. , Xn- 1). 0 

Definition 2.19 

(i) for x, yEw, let 

(ii) 

. _ {X - y if X ~ y, 
x - y - 0 if x < y. 

min (x, y) = {~ if x :s; y, 
if x> y. 

(iii) (by induction). For m > 2, minm (xo, ... , x m- 1) = min (minm_1 (xo, 
... , Xm-2), x m- 1), with min2 (x, y) = min (x, y). 

(iv) max (x, y), maxm (xo, ... , Xm-1) similarly. 
(v) rm (x, y) = remainder upon dividing x by y, if y "# 0; rm (x, 0) = O. 

(vi) I = {(x, y) : x divides y} = {(x, y) : there is a z such that y = x·z}. 
(vii) PM = {x : x is a positive prime}. 

Proposition 2.20. All of the functions and relations of2.19 are elementary. 

PROOF. Obvious, as concerns (i)-(iv). For (v), 

rm (x y) = {X - (t [x/y)) 
, 0 If Y = O. 

if Y"# 0, 

For (vi), note that xl y iff there is a z such that y = X· z iff there is a z < y 
such that y = x·z; now see 2.14. Finally, p E PM iff for every x < p, either 
not xlp or x = 1, andp"# O,p"# 1; cf. 2.15. 0 

Definition 2.21. For every k let Pk be the (k + l)st prime; thus Po = 2, 
P1 = 3, P2 = 5, .... 

Proposition 2.22 (Number-theoretic). For every k, Pk :s; exp (2, 2k). 

PROOF. By induction on k. Trivial for k = 0, 1. Induction step, k > 0: 

Pk+ 1 :s; Po' .... Pk - 1 (Euclid) 
:s; exp (2, 2°)· ... ·exp (2, 2k) - 1 (induction hypothesis) 
= 2X{exp (2,O:iSk} - 1 

= exp (2k + 1 - 1) - 1 :s; exp (2k + 1). o 
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Proposition 2.23. p is elementary. 

PROOF. Let N = {(x, y) : x, y E PM, x < y, and y is the next prime after x}. 
Thus N = {(x, y) : x, y E PM and x < y and for all z < y, either z :;;; x or 
not z rf: PM}, so N is elementary. Let Pr = {(x, k) : x is the (k + l)st prime}. 
Thus (x, k) E Pr if x E PM and Ly<x XPMY = k, so Pr is elementary. Finally, 
Pk = /LX < exp (2, 2k) + 1«x, k) EPr), so p is elementary. D 

Definition 2.24. If a = 0 or a = 1, let (a); = O. If a > 1 let (a)1 be the 
exponent of PI in the prime decomposition of a. Sometimes we write (a)i 
instead of (a);. 

Proposition 2.25. () is elementary. 

PROOF. (a); = /Lx < a(pfla and not pf+lla). D 

Definition 2.26. la = greatest i such that p;lx (=0 if x = 0 or 1). 

Proposition 2.27. 1 is elementary. 

PROOF. la = /Li < a[p;lx and 't/j :;;; a(i < j => Pita)]. D 

We now proceed to study a larger class offunctions, the class of primitive 
recursive functions. Most of the effective functions encountered in the litera
ture were actually shown to be primitive recursive. Actually most of them are 
even elementary, and usually this can easily be shown. We feel· that it is only 
an historical accident that elementary functions are not more widely discussed 
than primitive recursive functions. 

Definition 2.28. The class of primitive recursive functions is the intersection 
of all classes A of functions such that 0, Uf E A for all n > 0 and i < n, 
and such that A is closed under composition and under the following two 
operations: 
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(i) The parameterized operation of primitive recursion: iff is m-ary and h 
(m + 2)-ary, m > 0, then define g recursively as follows: 

g(xo,·.·, Xm-l, 0) = f(xo, ... , Xm-l), 
g(xo, ... , xm- 1 , oy) = h(xo, ... , Xm-l> y, g(xo, ... , Xm-l> y», 

for all xc, ... , Xm-l> yEw. Then g is obtainedfromf and h by primitive 
recursion, in symbols g = Rm(f, h). 

(ii) The no-parameter operation of primitive recursion: if a E wand h is 
2-ary, define g: 

gO = a, 
goy = h(y, gy), 

for all yEw. In symbols g = RO(a, h). 
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A relation R is primitive recursive iff XB is a primitive recursion function. 

Note that the operations of primitive recursion are rather special kinds 
of recursive or inductive definitions. Many recursive definitions can be 
reduced to primitive recursive ones; see, e.g., the important course-of-values 
recursion, 2.33. But there are recursive definitions which cannot be reduced 
to primitive recursion. See, e.g., Theorem 3.6. The class of general recursive 
functions introduced in the next section encompasses all of the natural 
notions of recursive definitions. 

Clearly the primitive recursive schema affords an effective procedure for 
calculating values of Rm(f, h), iff and h are effectively calculable. Similarly 
for RO(a, h). Thus every primitive recursive function is effectively calculable 
in the intuitive sense. 

Analogously to 2.3 we have: 

Proposition 2.29. A number-theoretic function f is primitive recursive iff there 
is afinite sequence <go, ... , gk-l) offunctions such that gk-l = f, andfor 
each i < k one of the following conditions holds: 

(i) gj = d, 

(ii) gj = U~for some n > O,j < n, 
(iii) as in 2.3 (vi) (composition), 
(iv) there exist j, h < i and mEw, m #- 0, such that gj is m-ary, gIl is 

(m + 2)-ary, and gi = Rm(gj, gIl), 
(v) there exist j < i and a E w such that gj is 2-ary and gj = R O( a, gj). 

A class A of number-theoretic functions is said to be closed under primitive 
recursive operations provided A contains all the primitive recursive functions 
4, Uf and is closed under the primitive recursive operations given in 2.28, 
including composition. 

Theorem 2.30. If A is closed under primitive recursive operations, then A is 
closed under elementary recursive operations. In particular, every elementary 
function is primitive recursive. 

PROOF 

(1) /t is primitive recursive. For, 

/to = 0, 
/tdY = U~(y, /ty). 

(2) ...!.. is primitive recursive. For, 

x..:.. ° = Ulix, 
x ..:.. dy = /t U~ (x, y, X ..:.. y). 

(3) eli is primitive recursive: 

eli x = Uli x ..:.. Uli x. 
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(4) + is primitive recursive: 

x + 0 = U1ix, 
x + <iy = <i U~ (x, y, x + y). 

(5) . is primitive recursive: 

x·o = qx, 
X'<iY = x·y + x = +(U~ (x, y, x·Y), U~ (x, y, x·y». 

(6) Ix - yl = (x -'- y) + (y -'- x). 
(7) sg is primitive recursive: sg x = 1 -'- x. 
(8) sg (x) = sg sg x. 
(9) rm is primitive recursive. Define 

f(x,O) = 0, 
f(x, <iY) = <if(x, y)·sg Ix - of (x, Y)I. 

Then rm (x, y) = fey, x). 

(10) Division is primitive recursive. Define 

f(x,O) = 0, 
f(x, <iY) = f(x, y) + sg Ix - <i rm (x, Y)I. 

Then [xjy] = fey, x). 
Now assume that A is closed under primitive recursive operations. In 
particular, A is closed under composition. 

(11) A is closed under summation. For, supposefE A,fm-ary, and g = ''If 
Then 

g(xo, .... Xm -2, 0) = 0, 

g(xo,···, Xm -2, <iz) = L f(xo,···, Xm -2, y) 
Y<-<72 

= L f(xo, ... ,xm- 2,y) +f(xo,··.,Xm -2,Z) 
y<z 

= g(xo, ... , Xm -2, z) + f(xo, ... , Xm -2, z). 

Hence gEA. 
(12) A is closed under multiplication. 
This is proved similarly. The proof of 2.30 is complete. o 

The converse of 2.30 fails; see 2.45. 
To express another important property of primitive recursion, we need a 

new coding device. Given a finite sequence (xo, ... , Xm -1) of natural numbers, 
it is natural to code it by the single integer ni<m pfi+1. The added one in the 
exponents is essential for uncoding, to distinguish between the codes for 
(2, 3, 0) and (2, 3), for example. The mapping that assigns to each finite 
sequence of natural numbers its code as above is a one-one function into w. 

From the code y the original sequence x is easily extracted: 

x = «y)o -'- 1, ... , (y)IY -'- I). 

The following definition gives a special instance of this coding device: 
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Definition 2.31. Iff is an m-ary number-theoretic function, we define J, the 
course-ol-values function for J, as follows: / is again m-ary, and for any 
XO, ... , Xm-1 E w, 

~(x x) = n {p!(Xo ..... X(m-2).!)+1. " < x } J I 0,··· , m -1 i • m -1 . 

Thus J(xo, ... , x m- 1) codes the whole sequence <f(xo, ... , x m- 2, 0), ... , 
f(xo, ... ,Xm-2,Xm- 1 - I). NotethatJ(xo, ... ,xm_2,0) = 1. 

Proposition 2.32. Let A be closed under primitive recursive operations. Then 
fEA iff/EA. 

PROOF. Assume first thatfE A. Then 

/(xo, ... , X m -2, 0) = 1, 
f-(x x oy) = n pf(Xo ..... x(m-2).t)+1 0, ... , m-2, t 

t<oy 

=/(xo, ... , Xm-2, y).p~(Xo ..... X(m-2).Y)+1 

= h(xo, ... , Xm-2, y, /(xo, ... , xm- 2, y)), 

where h(zo, ... , zm) = Zm' p~~;;.a':'ii'z(m -1» + 1 for all zo, ... , Zm E w. Conversely, 
if/E A, then 

SOfEA. o 

The next proposition shows that recursion in which the successor step 
depends on several preceding values can still be reduced to primitive recursion. 

Proposition 2.33 (Course-of-values recursion). Let A be closed under primitive 
recursive operations. Suppose f is an m-ary function and h is an (m + 1)-ary 
member of A such that, for all xc, ... , Xm -1 E w, 

f(xo,···, Xm-1) = h(xo, ... , Xm-1,/(XO,"" Xm- 1)). 

ThenfE A. 

PROOF 

/(Xo, ... , Xm-2, 0) = 1, 

f-(x x oy) = n pf(xo ..... X(m-2).!)+1 0,· .. , m-2, t 
i<oy 

= ~(x X y) . p!(xo ..... x(m - 2).y) + 1 J I 0,···, m - 2, Y 

= ~(X X y).ph(XO ..... X(m-2).Y.!(Xo ..... X(m-2).Y»+1 
)1 0,···, m-2, y 

Thus/E A. By 2.32,fE A. o 

Next we show how close elementary functions are to primitive recursive 
functions-the class of elementary functions is closed under a restricted kind 
of primitive recursion. 
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Proposition 2.34 (Bounded primitive recursion) 
(i) Suppose m > 0, f and h are elementary, m-ary and (m + 2)-ary 

respectively, g = R m(j; h), k is elementary, and g(xo, ... , xm) :::; 
k(xo, ... , Xm) for all xo, ... , Xm E w. Then g is elementary. 

(ii) Suppose h is a binary elementary function, g = RO(a, h) (with a E w), 
and gx :::; kx for all x E w, with k elementary. Then g is elementary. 

PROOF. (i) For any Xo, ... , Xm, Z E w let 

s(xo, ... ,xm) = (xm + 1)· L k(xo, ... ,Xm_b Z), 
z<xm 

Let R consist of all (m + 2)-tuples (xo, ... , X m , y) such that there is a q :::; 
p~;o, .... xm) so that 

(1) 

and, for all Z < X m , 

(2) 

and, finally, y = (q)xm. Obviously R is elementary. Now (i) follows from 

(3) g(xo, ... , xm) = /l-y :::; k(xo, ... , xm)[(xo, ... , Xm, y) E R]. 

To prove (3), assume that Xo, ... , Xm E w, let t be the sequence (g(xo, . .. , 
Xm-l, 0), ... , g(xo, . .. , Xm- 1, x m), and let 

Then for each i :::; Xm we have 

t l :::; k(xo, ... ,xm_1,i):::; L k(xo,···,Xm_l,Z) 
z:s;xm 

and so 

Furthermore, q satisfies the conditions (1), (2). Thus (xo, ... , Xm, g(xo, ... , 
xm) E R.ltis alsoc1earthat (xo, ... , Xm, y) E Rimplies thaty = g(xo, ... , x m), 
so (3) holds. 

Condition (ii) is proved similarly. 0 

As our final result of this chapter we shall give an example of a primitive 
recursive function which is not elementary. 

Definition 2.35. a is the binary operation on w given by the following 
conditions: for any m, nEw, 
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a(m, 0) = m, 
a(m, n + 1) = mfZ(m,n). 
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Thus a,(m, n) is the iterated exponential, m raised to the m power n times. 
Although exponentiation is elementary by 2.8(v), we shall see that iterated 
exponentiation is not. The reason is that it grows faster than any elementary 
function; see 2.44. Obviously, we have: 

Lemma 2.36. a, is primitive recursive. 

Lemma 2.37. m::; a,(m, n)for all m, n. 

PROOF. We may assume that m f= O. Now we prove 2.37 by induction on n: 
a,(m, 0) = m. Assuming m ::; a,(m, n), 

a,(m, n + 1) = ma(m,n) ;:::: mm ;:::: m. 

Lemma 2.38. a,(m, n) < a,(m, n + 1) for all m > 1 and all nEw. 

PROOF. a,(m, n + 1) = ma(m,n) > a,(m, n). 

Lemma 2.39. a,(m, n) < a,(m + 1, n)for all m f= 0 and all nEw. 

D 

D 

PROOF. We proceed by induction on n: a,(m, 0) = m < m + 1 = a,(m + 1,0). 
Assuming our result for n, 

a,(m, n + 1) = ma(m,n) ::; (m + 1)a(m,n) 
< (m + l)a(m+l,n) = a,(m + 1, n + 1). D 

Lemma 2.40. a,(m, n) + a,(m, p) ::; a,(m, max (n, p) + 1) for all m > 1 and 
all n, pEw. 

PROOF. a,(m, n) + a,(m, p) ::; 2a,(m, max (n, p» by 2.38 
::; 2a(m,max (n,p)) ::; ma(m,max (n,p)) 

= a,(m, max (n, p) + 1). D 

Lemma 2.41. a,(m, n)· a,(m, p) ::; a,(m, max (n, p) + 1) for all m > 1 and all 
n,pEw. 

PROOF. If n = p = 0 then the inequality is obvious. Hence assume that 
n f= 0 or p f= O. Then 

a,(m, n)·a,(m, p) ::; a,(m, max (n, p»2 by 2.38 
= (ma(m, max (n,p) -1»2 = m2a(m, max (n,p) -1) 

::; mexp (2, a(m,max (n,p) -1)) ::; ma(m,max (n,p)) 

= a,(m, max (n, p) + 1). D 

Lemma 2.42. a,(m, n),,,(m,p) ::; a,(m, max (p + 2, n + 1» for all m > 1 and 
all n, pEW. 

PROOF. For n = 0 we have 

a,(m, n)a(m,v) = ma(m,v) = a,(m,p + 1) ::; a,(m, max (p + 2, n + 1» 

(using 2.38). If n f= 0 we have 

a,(m, n)a(m,p) = ma(m,n-ll,a(m,p) ::; ma (m,maX(n-l,p)+I) by 2.41 

= a,(m, max (p + 2, n + 1». D 
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Lemma 2.43. a(a(m, n), p) :s; a(m, n + 2p) for all m > 1 and all n, pEw. 

PROOF. We proceed by induction on p: 

a(a(m, n), 0) = a(m, n) = a(m, n + 2·0). 

Assuming our result for p, we then have 

a(a(m, n), p + 1) = a(m, n)"Cacm.n).v) :s; a(m, n)acm.n+2P) 

:s; a(m,max(n + 2p + 2,n + 1» 
= a(m, n + 2(p + 1». 

by 2.42 

D 

Lemma 2.44. If g is a k-ary elementary function then there is an mEw such 

that for all Xo, ... , X,,-l E w, if max (Xo, ... , X"-l) > 1 then g(xo, ... , 

Xk - 1) < a(max(xo,···,Xk_1},m). 

PROOF. Let A be the set of all functions g (of any rank) for which there is 
such an m. To prove the lemma it suffices to show that A is closed under 
elementary recursive operations. 

(1) +EA. 

In fact, let m = 2: for any x o, Xl E w with max (Xo, Xl) > 1, 

Xo + Xl :s; max (Xo, Xl) + max (Xo, Xl) 

= a(max (Xo, Xl), 0) + a(max (Xo, Xl), 0) 
< a(max (Xo, Xl), I) + a(max (Xo, Xl), I) 
:s; a(max (Xo, Xl), 2) 

by 2.38 
by 2.40 

Thus (1) holds, Analogously, 

(2) 

(3) fEA, 

·EA. 

where f(m, n) = 1m - nl for all m, nEw. 

For ifmax (xo, Xl) > 1, then Ixo - xli :s; max (xo, Xl) = a(max (Xo, Xl), 0) < 
a(max (Xo, Xl), 1). Similarly, the next two statements hold: 

(4) 
(5) 
(6) 

fE A, wheref(m, n) = [min] for all m, 11 E w. 

Uf E A, for any positive nEw and any i < n. 

A is closed under composition. 

For, supposefis m-ary, go, ... ,gm-1 are n-ary, and/, go, ... ,gm-1EA. 

Choose p, qo, ... ,qm-1Ew such that max(xo, ... ,Xm _1) > I implies that 
f(xo, ... ,Xm-1) < a(max(xo, ... ,Xm_1),P), and such that for each i<m, 

max (xo, .. . ,xn- 1) > 1 impliesthatgi(xo, .. . ,Xn-1) < a(max(xo,·· .,xn- 1),Qi). 

Let h = K~ (/; go, ... , gm-1). Let 

.I' = max{qi:i < m} + 2p + max{f(xo, ... ,Xm-1):XO, ... ,Xm -1:S; I} + I. 

Now suppose that max(xo, ... ,xn- 1) > I. Then if go(xo, ... ,Xn-l), ... , 

gn-l(XO, ... ' x n- 1) :s; 1, we obviously have 

h(xo,···, Xn-l) = f(go(xo,···, x n- 1), ... , gn-l(Xo, ... , x n- 1» 
< s :s; a(max (xo, ... , x n - 1 ), .1') by 2.38 

40 



Chapter 2: Elementary recursive and primitive recursive functions 

Assume now that max {gj(xo, . .. , xn - 1) : i < m} > 1. Then 

h(xo, ... , xn - 1) = f(go(xo, .. ·, Xn -1),.··, gn-l(Xo, ... , xn- 1» 
< a(max {gj(xo, ... , Xn -1) : i < m}, p) 
< a(max {a(max {xo, . .. , Xn-l}, qj) : i < m}, p) by 2.39 
= a(a(max {xo, ... , xn - 1}, max {qo, ... , qm-l}), p) by 2.38 
:::; a(max{xo, ... ,xn_1},max{qo, ... ,qm_l} + 2p)by2.43 
< a(max {xo, . .. , x n - 1}, s) by 2.38 

(7) A is closed under I. 
In fact, suppose fE A, say f is m-ary, and let g = If Since fE A, choose 
pEw such that max (Xo, ... , Xm-1) > 1 implies that f(xo,···, Xm-l) < 
a(max (XO, ..• , Xm- 1), p). Let 

q =p + 1 + max{f(xo, ... ,xm_1).:xo, ... ,Xm_l:::; I}. 

Then for any Xo, ... , Xm -1 E w,f(xo, ... , Xm -1) < a(max (XO, ... , Xm -b 2), q), 
using 2.38. Thus if max (xo, ... , Xm -1) > 1 we have 

g(XO,·· .,Xm-1) = L f(xo, ... , Xm -2, y) 
y<x(m-l) 

< L a(max (XO, ... , X m -2, y, 2), q) 
y<x(m-1) 

:::; L a(max(xo, ... ,Xm-l),q) 
y<x(m-l) 

= a(max (Xo, ... , xm - 1), q)·Xm-1 

by 2.39 

:::; a(max(xo, .. . ,xm_1),q)·a(max(xo, ... ,Xm-l),q) by 2.37 
:::; a(max (Xo, ... , xm- 1), q + 1) by 2.41 

Similarly, using 2.42, 

(8) A is closed under n. 
This completes the proof of 2.44. o 

Theorem 2.45. There are primitive recursive functions which are not elementary 
in fact, a is such a function. 

PROOF. By 2.36, a is primitive recursive. Suppose a is elementary. Let 
fm = a(m, m) for all mEw. Thusfis elementary. By 2.44 choose mEw such 
that x > 1 implies that fx < a(x, m). Then 

contradiction. 

a(m + 2, m + 2) = f(m + 2) < a(m + 2, m) 
< a(m + 2, m + 2) 
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EXERCISES 

2.46. Show that the following functions are elementary: 

(1) [( ) = {max y ~ z«xo, ... , X m -2, y) E R), 
xc, ... , Xm - 2, Z O'f h' h 

= 1 t ere 1S no suc y, 

where R is elementary. 

(2) g(xo, ... , Xm - 2, y) = max {[(xc, ... , Xm - 2, Z) : z ::;; y}, with [ element
ary. 

(3) g(xo, ... , X m -2, y) = min {[(xc, ... , X m -2, z) : z ::;; y}, with [ element
ary. 

2.47. Show that the following functions and relations are elementary: 

(1) (a, b) = gcd (greatest common divisor) of a and b, =0 if a = 0 or b = O. 
(2) sa = sum of positive divisors of a. 
(3) the set of perfect numbers, i.e., numbers a with sa = 2a. 
(4) the Euler rp function: cpa = the number of elements of {x: 1 ~ x ~ a} 

with (x, a) = 1. 

2.48. Let[n = [e·n] = greatest integer ~e'n, for every nEW, where e is the base 
of the natural system of logarithms. Show that [is elementary. Hint: 
write 

1 1 1 1 
e = 1 + -1' + 2' + ... + , + ( 1)' + .. ', .. n. n + . 

= - n' + - + ... + - + + ... 1 (n! n!) 1 
n! . 1! n! (n + I)! . 

Let Sn = n! + n!/l! + ... + n!/n!. Define S primitive recursively, but 
show that is bounded by an elementary function. Let Rn = l/(n + I)! + ... 
(Note: R is not a number-theoretic function, since its values are actually 
transcendental.) Show that for n > 1, Rn < l/n!. Hence conclude that 
[e·n] = [Sn/(n -l)!]forn > 1,asdesired. 

2.49. Show that (~) (combinatorial symbol) is elementary. 

The purpose of the following two exercises is to show how one can be 
rigorous in applying the results of this section in showing that functions or 
relations are elementary. However, later we shall not use these exercises, since 
the application of results of this section are obvious anyway. Both exercises 
have to do with certain formal languages which are special cases of languages 
which will be discussed in detail later. 

2.50 (EXPLICIT DEFINITION). Let A be a class of number-theoretic functions closed 
under composition, and such that Uf E A whenever n > 0 and i < n. For 
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each /E A introduce a symbol R,. Allow, in addition, variables va, Vh 

V2, • ••• We define term: any variable standing alone is a term. If /E A, 
/ m-ary (m > 0), and ao, ... , am-l are terms, then so is R,ao, ... , am-I. 
These are all the terms. 

Let i be such that all the variables appearing in a certain term T are in 
the list va, ... , v,. Define g!: 

for all va, ... , v, E w, where each R, occurring in T is interpreted as /. Show 
that g, E A. [Try induction on how T is built up.] 

2.51 (CoMPLEX EXPLICIT DEFINITION) .. For each elementary function/introduce a 
symbol F" and for each elementary relation R a symbol ~R. Also let No, 
Nh •.. be some more symbols, and va, Vh ... variables. For logical symbols 
we take 3, V,fL," v, 1\ ,-+, --, =. Special symbols: (,), <. We define terms 
and formulas simultaneously and recursively: 

(1) v, is a term; 
(2) if/is an m-ary elementary function and ao, ... , am -1 are terms, then 

F,(ao, ... , am-I) is a term; 
(3) N, is a term; 
(4) if R is an m-ary elementary relation and ao, ... , am-l are terms, then 

~R(aO, ... , am-I) is a formula; 
(5) if a, T are terms then a = T is a formula; 
(6) if cp and rp are formulas then so are .cp, cp v rp, cp 1\ rp, cp -+ rp, cp -- rp; 
(7) if v, does not occur in a term a, and if cp is a formula, then 3v, < a, cp 

and Vv, < a, cp are formulas; 
(8) under the assumptions of (7), fLv, < a, cp is a term. 

These are all the terms and formulas. Now show: 

(9) i/a isa term whose variables are in thelistvo, ... , vhandi//~(vo, .. . ,v,) = 
a for all va, ... , v, E w, then /~ is elementary; 

(10) i/ cp is a formula whose variables are in the list va, ... , v, and i/ R~ = 
{<va, ... , v,> : va, ... , v, E wand cp}, then R~ is elementary. 

In (9) and (10), the symbol F, is to be interpreted as /; ~R as R; N, as i, 
and the other symbols are to have their natural meanings. 
Suggestion: prove (9), (10) simultaneously by induction on how a and cp 
are built up. 

2.52. Suppose g and g' are l-ary primitive recursive and hand h' are 3-ary 
primitive recursive. Define / and f' simultaneously: 

f(x, 0) = g(x), 
f'(x, 0) = g'(x), 

f(x, y + 1) = h(f(x, y), f'(x, y), x) 
f'(x, y + 1) = h'(f(x, y), f'(x, y), x). 

Show that f and f' are primitive recursive. Hint: define r(x, y) = 2'(X,y). 

3"(X,y). 
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2.53. Suppose that g is l-ary primitive recursive, h is 4-ary primitive recursive and 
I is defined as follows: 

1(0, n) = l(l, n) = gn 
I(rn + 1, n) = h(f(rn - 1, n), I(rn, n), rn, n) 

Show that I is primitive recursive. 

for rn > O. 

2.54. Show that there are exactly No primitive recursive functions. Show that 
there is a number-theoretic function which is not primitive recursive. 
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Recursive Functions; 
Turing Computability 3 

In this chapter we shall give three versions of the notion of effectively 
calculable function: recursive functions (defined explicitly by means of closure 
conditions), an analogous but less redundant version due to Julia Robinson, 
and the notion of Turing computable function, based upon Turing machines. 
These three notions will be shown to be equivalent; here the results of Chapters 
1 and 2 serve as essential lemmas. In the exercises, three further equivalent 
notions are outlined: a variant of our official definition of recursiveness, the 
Godel-Herbrand-Kleene calculus, and a generalized computer version which 
is even closer to actual computers than Turing machines. As stated in the 
introduction to this part, none of these different versions stands out as over
whelmingly superior to the others in any reasonable way. The versions 
involving closure conditions are mathematically the simplest. The ones using 
generalized machines seem the most intuitively appealing. The Kleene calculus 
and the Markov algorithms of the next section are closest to the kinds of 
symbol manipulations and algorithmic procedures that one works out on 
paper or within natural languages. Take your pick. 

Definition 3.1. Let m > 1. An m-ary number-theoretic function f is called 
specialiffor all xo, ... , X m-2 E w there is ay such thatf(xo, ... , X m -2, y) = 

O. Iff is a special function, we let 

k(xo, ... , X m-2) = the least y such thatf(xo, ... , Xm-2, y) = o. 
We write "p.y(f(xo, ... , Xm-2, y) = 0)" for "k(xo, ... , X m-2)". The 
operation of passing from fto k is called the operation of (unbounded) 
minimalization. 

The class of general recursive functions is the intersection of all classes 
A of functions such that J, Uf E A for all n > 0 and i < n, and such that 
A is closed under composition, primitive recursion, and minimalization 
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(applied to special functions). A relation R is general recursive iff XR is 
general recursive. Frequently, both for functions and relations, we shall 
say merely recursive instead of general recursive. A class A of number
theoretic functions is said to be closed under general recursive operations 
provided that A contains all the functions 0, Ur and is closed under com
position, primitive recursion, and minimalization (applied to special 
functions). 

Several comments on Definition 3.1 should be made before we proceed. 
First, the minimalization operator used in 3.1 is somewhat different from the 
one in 2.16, and the difference in their notations reflects this. We shall see 
later that this difference is essential (see, e.g., 3.6). To see that all general 
recursive functions are effectively calculable it suffices to assume that f is 
an m-ary special effectively calculable function with m > 1 and that k is 
obtained from f by minimalization and argue that k is effectively calculable. 
In fact, given xc, ... , Xm _ 2 E w, start computingf(xo, ... , Xm _ 2, 0), f(xo, ... , 
X m -2, 1), .... Since f is special, 0 eventually appears in this sequence. The 
first y for whichf(xo, ... , Xm-2, y) = 0 is the desired value of kat <xo, ... , 
Xm -2), and the calculation can then terminate. Thus the assumption that f 
is special is very crucial. Otherwise, for some arguments this procedure would 
continue forever without yielding an output. 

We can argue as follows, intuitively, that every effectively calculable 
function is general recursive. Letf, m-ary, be effectively calculable. We then 
have a finitary procedure P to calculate it. Given an argument <xc, ... , Xm -1), 
from P we make a calculation c; the last step of the calculation has the value 
f(xo, . .. , Xm-1) coded in it. Let Tconsist of all sequences <P, Xo, . .. , Xm-l> c) 
of this sort. Presumably T itself is effectively calculable and probably more 
easily calculable than f By a coding device we may assume that PEw and 
c E w. Let V be the function that finds the output f(xo, ... , Xm-1) within c. 
Now it is reasonable to suppose that both T and V are simple enough that 
they are recursive, for no matter how complicated f is, T and V must be 
very routinely calculable. Also, it is reasonable to assume that c is uniquely 
determined by P and X o, ... , xm - 1 • Hence 

f(xo,.··, x m - 1) = Vf'c(Sg XT(P, Xo,···, xm- 1 , c) = 0), 

so f is recursive. We shall see that this intuitive argument is very close to the 
rigorous argument that every Turing computable function is recursive. 

Church's thesis is the philosophical principle that every effectively calculable 
function is recursive. This principle is important in supplying motivation for 
our notion of recursiveness. We shall not use it, however, in our formal 
development. Later, especially in Part III, we shall use what we will call the 
weak Church's thesis, which is just that certain definite arguments and con
structions which we shall make are to be seen to be recursive (or even 
elementary) without a detailed proof. The weak Church's thesis rests on the 
same foot as the common feeling that most mathematics can be formalized 
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within set theory. Of course we can take extensive practice with checking the 
weak Church's thesis as strong evidence for Church's thesis itself. 

Theorem 3.2. If A is closed under recursive operations, then A is closed under 
primitive recursive operations. In particular, every primitive recursive 
function is recursive. 

Now we want to see that there is a recursive function which is not primitive 
recursive. The argument which we shall use for this purpose is of some 
independent interest, so we shall first formulate it somewhat abstractly. 

Definition 3.3. Let A be a collection of number-theoretic functions. A binary 
number-theoretic function f is said to be universal for unary members of 
A provided that for every unary g E A there is an mEw such that for every 
n E w,f(m, n) = gn. 

Theorem 3.4. Let A be a set of number-theoretic functions closed under 
elementary recursive operations. Iff is universal for unary members of A, 
thenf¢; A. 

PROOF. Assume thatf EA. Let gm = f(m, m) + I for all mEw. Thus g E A. 
Sincefis universal for unary members of A, choose mEw such thatf(m, n) = 

gn for all nEw. Then gm = f(m, m) = f(m, m) + 1, contradiction. D 

The proof just given is an instance of the Cantor diagonal argument. Other 
instances will play an important role in this part as well as in Part III; see, 
e.g., 15.18 and 15.20. 

Lemma 3.5. There is a general recursive function which is universal for unary 
primitive recursive functions. 

PROOF. We first define an auxiliary binary function h by a kind of recursion 
which is not primitive recursion, and afterwards we will show that h is 
actually general recursive. We accompany the recursive definition with in
formal comments. We think of a number x as coding information about an 
associated primitive recursive function/: (x)o is the number of arguments 
off, and the next prime factor of x indicates in which case of the construction 
of 2.29 we are in. The definition of hex, y) for arbitrary x, yEw breaks into 
the following cases depending upon x: 

Case 1 (Successor). x = 2. Let hex, y) = (Y)o + 1 for all y. 
Case 2 (Identity functions). x = 2n·3i+1, where i < n. Let hex, y) = (Y)i 

for all y. 
Case 3 (Composition). x = 2n·5m·p~·p4°· ... 'P~"?31), with n, m > O. 

For any y, let 

hex, y) = h(q, p~(ro.y) .... ·p!:}~T-l).Y»). 

Note here that q < x and rO, ... , rem - 1) < x, so the recursion is legal. 
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Case 4 (Primitive recursion without parameters). x = 2· 7q • 11 a with 
q > O. We define h(x, y) by recursion on y: 

h(x, 1) = a, 
h(x, 2Y + 1 ) = h(q,2Y ·3h(x.eXP(2.y))), 

h(x, z) = 0 for z not of the form 2u • 

Case 5 (Primitive recursion with parameters). x = 2m + 1. II q ·13' with 
m > 0 and q > O. We define h(x, y) by recursion on y. First let y be given 
with (Y)m = O. We set 

h(x, y) = h(q, y) 
h(x, y.p;;'+l) = h(r, y·p;;'·p::.(~'rexp(pm,z))). 

Case 6. For x not of one of the above forms, let h(x, y) = 0 for all y. 

This completes the recursive definition of h. We first claim: 

(1) for every mEOw - 1 and for every m-ary primitive recursive function / 
there is an x EO w - 1 such that, for all Yo, ... , Ym -1 EO w, 

Indeed, let r be the set of all / such that an x exists. Then, for all y, 

h(2, 2Y ) = y + 1, 

so" EO r. Next, suppose i < n. Then for any Yo, ... , Yn-1 EO w, 

so Uf EO r. To show that r is closed under composition, suppose that/EO r, 
go,"" gm-1 EO r, / m-ary, and go, ... , gm-1 each n-ary. Choose u EO w for / 
and Vo, . .. , Vm -1 EO w for go, ... , gm -1 respectively so that (1) holds for J, 
u; go, Vo; ... ; gm-1, Vm-1' Let x = 2n·5m.p~.p~0 .... ·P:;;~31). Then for any 
Yo, ... , Yn-1 EO w we have, with z = P60 ..... P~~11l, gi(YO, ... , Yn-1) = ti for 
each i < m, 

h(x, z) = h(u, p~(VO,z) . .... P::'(~(l" -l),Z)) 

= h(u, plr ... 'P~~ll)) 
= !(go(Yo, ... , Yn-1),"" gm-1(Yo, ... , Yn-1))' 

Thus r is closed under composition. To show that r is closed under primitive 
recursion without parameters, suppose/EO r,fbinary, with associated number 
q so that (1) works, and suppose that x = 21. 7q • 11 a. Let kO = a, k(n + 1) = 
/(n, kn) for all n EO w. Then we show that ky = h(x, 2Y ) for all y EO w by induc
tion on y: 

h(x, 2°) = a = kO, 
h(x, 2Y + 1) = h(q,2Y ·3h (x,exp(2,y))) 

= h(q, 2Y • 3kY) 

= /(y, ky) = k(y + 1). 
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It is similarly show that r is closed under primitive recursion with parameters. 
Thus (I) holds. 

Now letj(x, y) = hex, 2Y) for all x, yEw. Then by (I),jis universal for 
unary primitive recursive functions. Hence it only remains to show that h 
(and hencej) is general recursive. This proof can easily be modified to show 
that almost any legal kind of recursion leads to a general recursive function. 
This kind of proof is, however, very laborious. There is a much easier way of 
proving this kind of thing; see the comments following the recursion theorem 
in Chapter 5. 

The computation of hex, y) can be done in finitely many steps, in which 
we compute successively certain other values of h: h(ao, bo), ... , h(arn -1, brn - 1). 

We identify this sequence of computations with the number pgo ..... p~~ Ill, 
where, for each i < m, ci = 2ai . 3b;. 5h (ai.bil. This intuitive idea should be kept 
in mind in checking the following statement, which clearly shows that h is 
general recursive. For brevity, we write (aL (or (a);,j or (a)(i, i»~ in place of 
«a)i)j; similar abbreviations hold for «(a);)J;.;, etc. 

Statement, For any x, yEW, hex, y) = (Z)lo,2, where z is the least U such 
that U ~ 2, (U)IU.O = X, (U)!u,l = y, and for each i ~ Iu one of the following 
holds: 

(2) (u)iQ = 2 and (ub = (u)i10 + I; 
(3) I(u)io = I and (U)iQl - I < (u)iQO and (U)i2 = (u)(i, 1, (U)'Ol - 1); 
(4) (u)iQO i= 0, (U)iQl = 0, (U)i02 i= 0, I(u)io ~ (U)iQ2 + 3, and there is a) < i 

such that (u)jO = (U)iQ3, I(u)jl ~ (U)i02 - I, for all k < (U)iQ2 there is a 
q < i such that (u)qO = (U)i.O.k+4, (U)ql = (U)ib and (U)q2 = (U)j1k' and, 
finally, (U)j2 = (ub; 

(5) (u)iQO = 1, (U)iQl = (U)iQ2 = 0, (U)i03 i= 0, l(u)iQ ~ 4, and one of the 
following three cases holds: 
(5') (u)i1 = I and (U)i2 = (U)i04; 
(5/1) there is a W < (U)i such that (u)i1 = 2W + t, and there is a) < i such 

that (u)jO = (U)i03 and for some k < i, (uho = (u)iQ' (Uhl = 2w , 

(U)jl = 2w , 3(Ulk2, and (U)j2 = (ub; 
(5"') there is no W < (U)i such that (u)i1 = 2w , and (U)i2 = 0; 

(6) (u)iQO > I, (U)iOl = (U)iQ2 = (U)iQ3 = 0, (U)iQ4 i= 0, l(u)iO ~ 5, and one of 
the following conditions holds (with (U)iOO - 1 = m for brevity): 
(6') (u)i1m = ° and there is a) < i such that (u)jO = (U)i04' (U)jl = (u);J, 

and (U)j2 = (U)i2; 
(6/1) (u)i1m i= 0, say (uh = I'Pm, and there exist), k < i such that (u)jO = 

(U)i05, (U)jl = (·exp (Pm+J, (u)d, (U)kO = (u)iQ, (Uh1 = (, and (U)j2 = 
(U)i2; 

(7) none of the above, and (ub = 0. 

To check this statement carefully, let A be the set of all U ~ 2 satisfying the 
condition above beginning "for each i ~ lu". Then the following condition 
is clear: 
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(8) if u, v E A, then U· Di"'IV pl~)~i+l EA. 
(9) for all x, yEw, there is a u E A with (U)lu,O = x and (U)lu,1 = y; for any 

such u, (U)lu,2 = h(x, y). 
Condition (9) is established by induction on x. 

This completes the proof of 3.5. 0 

Theorem 3.6. There is a recursive function which is not primitive recursive. 

Theorem 3.7. There are exactly ~o recursive functions. 

PROOF. Let Ao consist of all of the functions ", Uf with i < n. Thus IAol 
~o. Having defined Ano let An+ 1 consist of all members of An together with 
all functions obtainable from members of An by one application of com
position, primitive recursion, or mlnimalization (applied to special functions). 
Thus if IAnl = ~o, then IAnHI = ~o. Clearly, then, IUnew Ani = ~o. 
Obviously UnEw An is exactly the set of all recursive functions. 0 

Theorem 3.8. There is a number-theoretic function which is not recursive. 

Although Theorem 3,8 follows from 3.7 purely on grounds of cardinality, 
we can also explicitly exhibit a nonrecursive function. Let fo, flo . " be an 
enumeration of all unary recursive functions (by 3.7). Define gm = fmm + 1 
for all mEw. Then g is obviously not in our enumeration, so g is not recur
sive. We are really just repeating the proof of Theorem 3.4 here in a special 
case. 

We now turn to the notion of a Turing computable function. 

Definition 3.9 
(i) If g = <go, ... , gm -I) is a finite sequence of D's and 1 's and F is a 

tape description (recall Definition 1.2), then we say that g lies on F begin
ning at q and ending at n (where q, n E l), provided that Fq = gO, F( q + 1) = 
glo" ., Fn = gm-l (thus n = q + m - 1). 

(ii) An m-ary number-theoretic functionfis Turing computable iff there 
is a Turing machine M, with notation as in Definition 1.1, such that for 
every tape description F, all q, n E l, and all Xo,' •• , X m -l E w, if O1(Xo+l) 

o· . ·01 (x(m -1) + 1) lies on F beginning at q and ending at n, and if Fi = 0 for 
all i > n, then there is a computation «F, Clo n + 1), (Glo ai' b1), ••. , 

(Gp - lo ap - lo bp - 1 ) of M having the following properties: 

(1) Gp _ 1 i = Fifor all i ~ n + 1; 
(2) l(f(xo, ... ,x(m-l))+I) lies on Gp - 1 beginning at n + 2 and ending at 

bp _ 1 - 1; 
(3) Gp _ 1i = 0 for all i ~ bp - 1 • 

We then say thatfis computed by M. 

There are, of course, several arbitrary aspects in this definition of com
putable function. Many details could be changed without modifying in an 
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essential way the power of the notion. We have simply specified in a detailed 
way how an input for the machine is to be presented and how the output is 
to be located. The condition (1) is particularly useful in combining several 
computations. Now we show that every recursiveJunction is Turing computable. 

Lemma 3.10. {) is Turing computable. 

PROOF. A machine for {) is: 

Lemma 3.11. Uf is Turing computable. 

PROOF. The machine is T(n-i)coPY. 

o 

D 

Lemma 3.12. The class oj Turing computable Junctions is closed under 
composition. 

PROOF. Suppose J m-ary, go, ... , gm-l n-ary. Suppose f, go,···, gm-l are 
computed by M, No, ... , N m - l respectively. Then the following machine 
computes K~ (f; go,···, gm-l): 

T1eft -+ Tl -+ I;.eft -+ Tt:, + l)copy -+ Tr seek ° -+ Tright -+ To -+ Trend -+ 

No -+ T/:'+l)cOPY -+ Nl -+ ... -+ T,':t+l)cOPY -+ Nm - l -+ T(m+<m-l)n)ooPY-+ 

T<m+<m-2)n)coPY-+ ... -+ Tmcopy -+ M -+ T fin • 0 

Lemma 3.13. The class oj Turing computable Junctions is closed under primi
tive recursion without a parameter. 

PROOF. Suppose thatJis a binary operation on w, computed by a machine 
M, and a E w. Let gO = a, g(n + 1) = J(n, gn) for all nEw. Then the 
following machine computes g: 

Lemma 3.14. The class oJ Turing computable Junctions is closed under primi
tive recursion with parameters. 

PROOF. Suppose that J is m-ary, m > 0, g is (m + 2)-ary and that they are 
computed by M and Nrespectively. Let h(xo, ... , x m - l , 0) = J(xo, ... , x m - l ), 
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h(xo, .. ·, X m - b Y + I) = g(xo,···, X m - b Y, g(xo,.··, x m - 1 , y». Then the 
following machine computes h: 

1Ieft -+ Tl -+ Tleft -+ T2COPY -+ T/~+3)COPY -+ Ti';:e~o -+ Tright-+ 

if 1 
To -+ Trend -+ M -+ T(m+ 2) copy -+ Tright -+ To -+ Trlght ----+ T left -+ 

lifo 
Tno 

T/::, + 2 )COPY -+ 1Ieft -+ Tl -+ Tleft -+ T(m+ 3) copy -+ N -+ T(m+4)coPY -+ Trlght ~ 

r----If 1 if 0 

1Ieft -+ T/~"t~) copy o 

Lemma 3.15. The class oj Turing computable junctions is closed under 
minimalizatiol1 (applied to .special jUllctions). 

PROOF. Let j be an m-ary special function, 111 > I, and suppose that j is 
computed by a machine M. Let g(xo, ... , x m - 2 ) = fLy[j(Xo,··., x m - 2 , y) = 
0] for all X O, ••. , X m - 2 E w. Then the following machine computes g: 

t 
110ft -+ Tl -+ Tleft -+ M -+ Trlght -+ To -+ Trigh t 

1 iro 

Stop 

Summarizing Lemmas 3.10-3.15, we have: 

lifO 
if 1 
--+ To -+ Trlght 

~ifl 

D 

Lemma 3.16. Every general recursive junction is Turing computable. 

We now want to get the converse of 3.16. This requires Godel numbering. 
This process, whose name is just a catch-word for the process of number
theoretically effectivizing nonnumber-theoretic concepts (already hinted at in 
the introduction to this part), has already been used twice in less crucial 
contexts. In discussing course-of-values recursion, we numbered finite se
quences of numbers; see 2.31. And in constructing a function universal for 
unary primitive recursive functions essentially we numbered construction 
sequences for primitive recursive functions; see 3.5. Now we want to effectively 
number various of the concepts surrounding the notion of Turing machine. 
Besides our immediate purpose of proving the equivalence of Turing com
putability and recursiveness, this effectivization will be important for our 
later discussion of general recursion theory. 

The script letter If will be used for Godel numbering functions throughout 
this book; we will usually just depend on the context to distinguish the various 
particular uses of .. ~." 
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Definition 3.17. Let IE be the set of even numbers. Let T be the class of all 
Turing machines. If M is a Turing machine, with notation as in 1.1, we let 
the Godel number of M, ffM, be the number 

TI pI!, 
!<2m 

where, for each i < 2m, ti = 2c[i+2/2J·3(xB)(!+1)·5v(i+1)·7 d(1+1). 

Lemma 3.18. ff*T is elementary. 

PROOF. For any x E w, X E ff*T if Ix is odd, x > 1, for every i :::; Ix we have 
«X);)2 < 5, for every i :::; Ix there is a j :::; Ix such that «X)i)3 = «x)j)o, for 
every i :::; lx, if i is even then «x);)o = «X)j+ 1)0, and for all i, j :::; lx, if 
i + 2 :::; j, then «x);)o =I- «x)j)o, and if i is even then «X)t)l = 0, while if i is 
odd, «X);)l = l. 0 

Definition 3.19. If F is a tape description, then the Godel number of F, ffF, 
is the number 

where 

k. = {F(i12) if i is even, 
• F(-(i+ 1)/2) ifiisodd. 

Note that a natural number m is the Godel number of some tape descrip
tion iff Vx < Im«m)x < 2) and m =I- 0. 

Definition 3.20. A complete configuration is a quadruple (M, F, d, e) such 
that (F, d, e) is a configuration in the Turing machine M. C is the set of 
all complete configurations. The Godel number ff(M, F, d, e) of such a 
complete configuration is the number 

2?M. 3?F. 5d .7n, 

where 

n= {
2e if e ~ 0, 
- 2e - 1 if e < 0. 

Lemma 3.21. ff*C is elementary. 

PROOF. For any x E w, X E ff*C iff Vi :::; l(xM«x)l); < 2), (X)l =I- 0, (x)o E 

ff*T, and there is an i :::; I(x)o such that (xh = «(x)o);)o, and Ix :::; 3. 0 

Definition 3.22. (i) For any e E 71., let 

{ 2e if e ~ 0, 
ffe = _ 2e - 1 if e < 0. 
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For any x E w, let 

{

X + 2 if x is even, 
fox = 0 if x = 1, 

x - 2 if x is odd and x > 1, 

{

X - 2. if x is even and x > 0, 
flX = 1 If x = 0, 

x + 2 if x is odd. 

Lemma 3.23. fo andfl are elementary. For any e E 71. we havefoffe = rAe + 1) 
andflffe = ff(e - 1). 

PROOF 

_{f02e e~O 
Joffe - fo( -2e - 1) 

} {
2(e + 1) e ~ 0 } 

e < 0 = 0 e = -1 = ff(e + 1); 
-2e - 3 e < -1 

} {
2( e - 1) e > 0 } 

e < 0 = 1 e = 0 = ff(e - 1). 0 
-2e + 1 e < 0 

Lemma 3.24. Let Ro = {(x, n, e, y) : x = ffF for some tape description F, 
n = ffe for some e E 71., e = 0 or e = 1, and y = ff(Fm. Then Ro is 
elementary. 

PROOF. (x, n, e, y) E Ro iff Vi:$ lx«x)i < 2), x"# 0, e < 2, and y = 
[x/p~xln] .p~. 0 

Lemma 3.25. Let Rl = {(x, y) : x is the Godel number of a complete con
figuration (M, F, d, e), y is the Godel number of a complete configuration 
(M, F', d', e') (same M), and «F, d, e), (F', d', e'» is a computation step}. 
Then Rl is elementary. 

PROOF. For any x, y, (x, y) E Rl iff x E ff*lC, y E ff*lC, (x)o = (y)o, and there 
is an i :$ l«x)o) such that (xh = «(X)O)i)O, «(X)O)i)l = «Xh)(Xl3' and one of 
the following conditions holds: 

(a) «(X)0)i)2 = 0, «x)l> (X)3' 0, (y)l) E Ro, (Y)2 = «(X)0)i)3, and (yh = (xh; 
(b) «(X)0)i)2 = 1, «X)l' (xh, 1, (yh) E R.o, (yh = «(X)0)i)3, and (y)3 = (xh; 
(c) «(x)o);h = 2, (Y)l = (X)l' (yh = «(x)o);h. and (y)3 = fl«X)3); 
(d) «(x)o)ih = 3, (yh = (X)l' (yh = «(x)o)ih, and (yh = fo«xh)· 0 

Definition 3.26. A complete computation is a sequence 2R = «M, Fo, do, eo), 
... , (M, Fm, dm, em» such that «Fo, do, eo), ... , (Fm, dm, em» is a com
putation in M. The Godel number of such a complete computation is the 
number 
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Lemma 3.27. R2 is elementary. 

PROOF. For any x, x E R2 iff for every i ~ lx, (x)j E ,?*C, and ««x)o)o)o)o = 
«x)oh, and for every i < lx, «x)j, (X)i+l) E R 1 , and there is an i ~ l«x)o)o 
such that ««x)o)o)j)o = «x)!xb ««x)O)O)t)1 = «(X)!X)I)«X)lX)3, and 

««x)o)o)th = 4. D 

Definition 3.28. If h is a finite sequence of O's and 1 's, we let 

,?h = n ptt+1. 
t<Dmnh. 

For any x E w, letf2x = flt:>x Pt. 

Lemma 3.29. f2 is elementary, andf2x = ,?1(x+l) for any x. 

Definition 3.30. For any x, yEw, Cat (x, y) = X· TIj:>!y p!~)tt+l' 

Lemma 3.31. If hand k are finite sequences of O's and 1 's, then ,?(hk) = 
Cat (,?h, ,?k). (Recall the definition of hk from 1.11.) 

Definition 3.32. f5X = Cat (2, f2X), For m > 1, 

ffi(xo,·.·, x m- 1) = Cat (ffi- 1(xo, ... , x m- 2), Cat (2,J2Xm-l))' 

Lemma 3.33. ffi is elementary for each m, and f';(xo, . .. , Xm-l) = 
,1(0 l(xO+l) 0 ... 0 I(X(m-l)+I»). 

Lemma 3.34. Let R3 = {(x, y, m, n): x is the Godel number of a tape 
description F, y is the Godel number of a finite sequence h of O's and 1 's, 
m = ,?e and n = ,?e' for certain e, e' E 7L, and h lies on F beginning at e and 
ending at e'}. Then R3 is elementary. 

PROOF. For any x, y, m, n (x, y, m, n) E R3 iff Y =1= 0, Vi ~ lx«x)j < 2), 
x =1= 0, either y = 1 and m = n, or else y > 1, for every i ~ IY[(Y)t = 1 or 
(Y)j = 2], and there is a Z ~ (m + 2y)Y such that (z)o = m,JO«z)i) = (Z)i+l 
for each i < lz, lz = ly, (z)!Z = n, and for each i ~ lz, (x)(Z)j = (Y)j ..:.. I. D 

The notations fo'/1> f2, f';, R o, R1> R 2, R3 will not be used beyond the 
present section. The relations T m introduced next, however, are fundamental 
for the aspects of recursion theory dealt with in Chapters 5 and 6. 

Definition 3.35. For m > 0 let Tm = {(e, Xo,"" Xm-1> u): e is the Godel 
number of a Turing machine M, and u is the Godel number of a complete 
computation <eM, Fo, do, Do), ... , (M, Fn, dn> Dn) such that Ol(xo+l) 0··· 
o 1 (x(m - 1) + 1) lies on Fo ending at - 1, Fo is zero otherwise, Do = 0, and 
Fn1 = I.} 
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Note that for any e, xo, ... , xm - 1 E w there is at most one u such that 
(e, XO, ••• , x m - 1 , u) ETm. 

Lemma 3.36. T m is elementary. 

PROOF. For any e, Xo, ... ,Xm-l,U, (e,xo, ... ,xm_l,u)ETm iff eE?*lr, 

U E R 2, ((u)o)o = e, (((U)O)l,Jg'(XO,' .. , xm - 1), S, 1) E R3 and Vt ~ ((u)oh (t odd 
and t > s ~ (((u)oh)t = 0) and Vt ~ ((U)O)l (t even => (((u)oh)t = 0) for some 
s ~ ((U)O)l, ((u)oh = 0, and (((u)!u)lh = 1. D 

Definition 3.37. For any x E w let 

Vx = jLY ~ x[(((X)!X)b Cat (f2Y, 2),2, 2y + 4) E R3 ] 

Obviously V is elementary. 

Lemma 3.38. Every Turing computable function is recursive. 

PROOF. Let M be a Turing machine which computes f as described In 

Definition 3.9(ii), and let e = ?M. Then for any Xo, . .. , Xm-l E w, 

f(xo,· .. , xm- 1 ) = VjLu[(e, Xo, ... , Xm-b u) ETm], 

as desired. 0 

Theorem 3.39. A function is Turing computable iff it is recursive. 

We close this chapter with a variant of the notion of recursiveness due to 
Julia Robinson [3]. It will be useful to us later on. The idea is to simplify the 
definition of recursive function by using rather complicated initial functions 
but very simple recursive operations. 

Definition 3.40. [V] is the function such that [V x] = greatest integer ~ V x 
for each x E w. Also, for any x E w we let Exc x = x - [Vx]2; this is the 
excess of x over a square. 

Lemma 3.41. [,/] and Exc are elementary. 

PROOF. [Vx] ~ x for all x E w. Further, 

h/O] = 0 

[V(n + 1)] = {[Vn] if n + 1 #- ~h/n] + 1)2, 
[Vn] + 1 otherwIse 

= [Vn] + sg In + 1 - (h/n] + 1)21 

Thus we may use 2.34. Finally, Exc n = n ~ h/n]2. D 

The next definition and theorem introduce special cases of the important 
device of pairing functions, extensively used in recursive function theory. 
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Definition 3.42. (i) J(a, b) = «a + b)2 + b)2 + a for all a, bE w. (ii) Lx = 
Exc [vx] for all x E w. 

Theorem 3.43 
(i) J and L are elementary; 

(ii) Exc 0 = 0 and LO = 0; 
(iii) if Exc (a + I) ¥- 0, then Exc (a + I) = Exc a + 1 and L(a + l) = 

La; 
(iv) Exc J(a, b) = a; 
(v) LJ(a, b) = b; 

(vi) J is 1 - 1. 

PROOF. (i) and (ii) are obvious. As to (iii), choose x such that a = x 2 + 
Exc a < (x + 1)2. Since Exc (a + 1) ¥- 0, it is then clear that Exc (a + l) = 
Exc a + 1. Furthermore, clearly x 2 ~ a < (x + 1)2 and x 2 ~ a + 1 < 
(x + 1)2, so X = [va] = [yea + 1)] and hence La = L(a + 1). 

To prove (iv), note that 

«a + b)2 + b)2 ~ J(a, b) 
< «a + b)2 + b)2 + 2(a + b)2 + 2b + 1 
= «a + b)2 + b + 1)2. 

Hence Exc J(a, b) = a, and (iv) holds. Furthermore, clearly from the above 
[vJ(a, b)] = (a + b)2 + b; since 

(a + b)2 ~ [vJ(a, b)] 
< (a + b)2 + 2a + 2b + 1 
= (a + b + 1)2, 

we infer that LJ(a, b) = Exc [vJ(a, b)] = b, as desired in (v). Finally, (vi) is a 
purely set-theoretical consequence of (iv) and (v). 0 

For the next results we assume a very modest acquaintance with number 
theory; see any number theory textbook. 

Theorem 3.44 (Number-theoretic: The Chinese remainder theorem). Let 
mo, ... , mT -1 be natural numbers> 1, with r > 1, the m/s pairwise relatively 
prime. Let ao, ... , aT -1 be any r natural numbers. Then there is an x E w 

such that x == at(mod mi) for all i < r. 

PROOF. By induction on r; we first take the case r = 2. Since mo and m1 
are relatively prime, there exist integers (positive, negative, or zero) sand t 
such that 1 = mos + m1t. Then ao - a1 = mos(ao - a1) + m1t(aO - a1)· 
Choose u E w such that ao - mos(ao - a1) + umOm1 > 0, and let x = ao -
mos(ao - a1) + umOm1· Then x == ao(mod mo),andx = a1 + m1t(aO - a1) + 
umOm1 == a1(mod m 1), as desired. 

Now we assume the theorem true for r and prove it with" r" replaced by 
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"r + 1". Withs, t,uasabove,choosexEwsuchthatx == ao - mos(ao - a1) + 
umom1(mod mOm1), x == a2(mod m2), ... , x == ar(mod mr). Then x == ao 

(mod mo) and, since ao - mos(ao - a1) = a1 + mlt(aO - a1), x == a1(mod m1) 
as desired. D 

Definition 3.45. For all x, i E w let [3(x, i) = rm (Exc x, 1 + (i + l)Lx). 

Theorem 3.46 (Number-theoretic: Godel's [3-function lemma). For any 
finite sequence Yo, ... , Yn-l oj natural numbers there is an x E w such that 
[3(x, i) = YI Jor each i < n. 

PROOF. Let s be the maximum of Yo, ... , Yn-l> n. For each i < n let ml = 
1 + (i + I)·s! Then for i < j < n the integers ml and mj are relatively prime. 
For, if a prime p divides both mi and mj> it also divides mj - mi = (j + 1)· 
s! - (i + 1)·s! = (j - i)·s! Now pts!, since pll + (i + I)s1. Hence plj
i. Butj - i < n :::; s, and hence this would imply that pis!, which we know 
is impossible. Thus indeed mi and mj are relatively prime. 

Hence by the Chinese remainder theorem choose v such that 

v == Yl(mod mt) for each i < n. 

Let x = J(v, s !). Then Exc x = v by 3.43(iv), and Lx = s! by 3.43(v). Hence 
if i < n we have 

[3(x, i) = rm (Exc x, 1 + (i + I)Lx) 
= rm (v,mt) 

= YI· D 

Definition 3.47. IfJis a I-place function with range w, letj<-1)y = !-,x(fx = y) 
for all yEw. We say thatj<-1) is obtained fromJby inversion. 

Theorem 3.48 (Julia Robinson). The class oj recursive Junctions is the inter
section oj all classes A oj Junctions such that +, <1, Exc, Uf E A (Jor 0 :::; i < 
n), and such that A is closed under the operations oj composition, and oj 
inversion (applied to Junctions with range w). 

PROOF. Clearly the indicated intersection is a subset of the class of recursive 
functions (j<-1)y = !-,x(IJx - yl = 0), so we have here a special case of 
minimalization). Now suppose that A is a class with the properties indicated 
in the statement of the theorem. We want to show that every recursive func
tion is in A. This will take several steps. 

The general idea of the proof is this: Inversion is a special case of minimal
ization, and the general case is obtained from inversion by using pairing 
functions. Primitive recursion is obtained by representing the computation 
of a function J as a finite sequence of the successive values of J, coding the 
sequence into one number using the [3 function, and selecting that number 
out by minimalization. 

Our proof will begin with some preliminaries, giving a stock of members 
of A, which leads to the fact that the pairing functions are in A. First note 
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that for any x E w, x 2 ~ x 2 + X < (x + 1)2, and hence Exc (x2 + x) = x. 
Thus 

(1) Exc has range w. 

Next, 

(2) Exc( -1) (2x) = x 2 + 2x for all x E w. 

For, obviously Exc (X2 + 2x) = 2x. If Exc (y) = 2x with y < x 2 + 2x, we 
may write y = Z2 + 2x < (z + 1)2 and so z < x and hence (z + 1)2 = Z2 + 
2z + 1 ~ Z2 + 2x < (z + 1)2, a contradiction. Thus (2) holds. 

Again, 

(3) EXC(-l) (2x + I) = x 2 + 4x + 2 for all x E w. 

For, (x + 1)2 = x 2 + 2x + 1 < x 2 + 4x + 2 < x 2 + 4x + 4 = (x + 2)2, 
and hence Exc (x2 + 4x + 2) = 2x + I. Now suppose Exc (y) = 2x + I, 
with y < x 2 + 4x + 2. Choose z such that y = Z2 + 2x + 1 < (z + 1)2. 
Then Z2 + 2x + 1 = y < x 2 + 4x + 2 = (x + 1)2 + 2x + I, and hence 
z ~ x. Hence (z + 1)2 = Z2 + 2z + 1 ~ Z2 + 2x + 1 = y < (z + 1)2, a 
contradiction. Thus (3) holds. 

From (2) we see that C~ x = 0 = Exc v EXC(-l) (x + x) for all x E w; 
hence 

(4) qEA. 

Hence by composition with .J, 

(5) for all n > 0 and all mEw. 

Now let x 8 y = Exc (EXC(-l) (2x + 2y) + 3x + y + 4) for all x, yEw. 
Thus 

(6) 

Now if x ~ y, then 

(x + y + 2)2 = (x + y)2 + 4x + 4y + 4 
~ (x + y)2 + 2(x + y) + 3x + y + 4 
= EXC(-l) (2x + 2y) + 3x + y + 4 by (2) 
< (x + y)2 + 6x + 6y + 9 
= (x + y + 3)2. 

Hence 

(7) x 8 y = x - y if y ~ x. 

Let Ix = x 2 for all x E w. Then by (2), (7), Ix = EXC(-l) (2x) - 2x for all 
x E w, so 

(8) lEA. 

Next note that sg x = Exc AX2) and sg x = 1 8 sg x for all x E w. Thus 

(9) sg, sg E A. 
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Furthermore, 

(10) Exc 0 () has range w. 

For, Exc (}o = 0, and if x i= 0, then Exc (}(X2 + x-I) = x. 
Now using 3.43(iii) we see that jtx = Exc (Exc 0 o)(-l)(X) for all x E w. 

Hence 

OJ) /tEA. 

Recall that IE is the set of even numbers. Next we show 

(12) xlE(x) = Exc (}() EXC(-l)X for all x E w. 

For, if x = 2y, then 

Exc (}() EXC<-l) X = Exc (}() (y2 + 2y) 

if x = 2y + 1, then 

= Exc (y2 + 2y + 2) 
= 1; 

Exc ()(} EXC(-l) X = Exc (}() (y2 + 4y + 2) 
= Exc (y2 + 4y + 4) 

From (12) we have: 

(13) 

= o. 

xlE E A. 

Now let gx = 2 Exc x + sg XlEx for all x E w. Thus 

(14) gEA. 

We claim: 

(15) g has range w. 

by (2) 

by (3) 

For, if x = 2y then, since y2 + y is even, g(y2 + y) = 2 Exc (y2 + y) = 
2y = x. If x = 2y + 1 then, since (y + 1)2 + y is odd, g«y + 1)2 + y) = 
2y + 1 = x. 

Let hx = [xj2] = greatest integer y ~ xj2 for all x E w. Then 

(16) hx = Exc g(-l)X for all x E w, and hence hE A. 

For, 2 Exc g(-l)X + sg XlEg(-l)X = x for any x; thus if x is even, then 
2 Exc g(-l)X = x; while if x is odd, 2 Exc g(-l)X + 1 = x, as desired. 

For any x E w, let kx = [(Exc jtx)j2] + sg x. Thus 

(17) kEA. 

Furthermore, 

(18) for all x. 

For, if x = 0 the result is obvious. If x i= 0, then jtx2 = x 2 - 1 = (x - 1)2 + 
2x - 2, Exc jtX2 = 2x - 2, and hence k(x2 ) = x, as desired. 
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Let Ix = hlx] for all x E w. Then by (18), Ix = k(x 8 Exc x), so 

(19) lEA. 

Hence by (8) and (19) 

(20) J, LEA. 

(21) 

For, 

if x < y, then x 8 y = 3x + y + 3. 

(x + y + 1)2 = (x + y)2 + 2x + 2y + 1 
< (x + y)2 + 5x + 3y + 4 
< (x + y)2 + 4x + 4y + 4 
= (x + y + 2)2. 

Since x 8 y = Exc «x + y)2 + 2(x + y) + 3x + y + 4), (21) now follows. 

(22) X.,(x, y) = sg [(x 8 y) 8 (3x + y + 3)] for all x, yEw, and 
hence x., EA. 

For, if x ~ y then 

sg [(x 8 y) 8 (3x + y + 3)] = sg [(x - y) 8 (3x + y + 3)] by (7) 
= sg (3x - 3y + 3x + y + 3 + 3) by (21) 
= sg (6x - 2y + 6) 
= 1 

If x < y, then 

sg [(x 8 y) 8 (3x + y + 3)] = (3x + y + 3) 8 (3x + y + 3) by (21) 
= 0 (by (7) 

(23) ·EA. 

For, x·y = [«(x + y)2 8 x2) 8 y2)j2] for all x, yEw. Let m(x, y) = 

Ix - yl for all x, yEw. Then 

(24) mEA, 

for m(x, y) = x., (x, y)·(x 8 y) + X.,(y, x)·(y 8 x). 
With the aid of the auxiliary functions which we have shown to be in A, 

we can now show how minimalization can be reduced to inversion. 

(25) 

Suppose I is a 2-ary special function,f EA. Let gx = {Ly(f(x, y) = 

0), for all x E w. Then for all x E w, gx = L{Lz(f(Exc z, Lz) = 0, 
Exc z + Lz = h/h/z]] , and Exc z = x) (and for each x there 
always is a z satisfying the conditions in parentheses). 

To prove this, let x E w be given. Let z = J(x, gx). Then I(Exc z, Lz) = 

I(x, gx) = 0 by 3.43; Exc z + Lz = x + gx = h/[v'z]] by direct computa
tion, and Exc z = x. Clearly also Lz = gx. It remains to show that our choice 
of z gives the least integer s satisfying the conditions of the {L - operator. 
Assume that I(Exc s, Ls) = 0, Exc s + Ls = [v'[ v's ]], and Exc s = x. Say 
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s = p2 + X < (p + 1)2. Then his] = p, and Ls = Excp. Say p = q2 + 
Ls < (q + 1)2. Then h/h/s]] = q. Thus x + Ls = q. Since/(Exc s, Ls) = 
0, we have gx ~ Ls. Hence x + gx ~ q, (x + gX)2 ~ q2, (x + gX)2 + gx ~ 

p, [(x + gX)2 + gx]2 ~ p2, and z = J(x, gx) ~ p2 + X = s, as desired. Thus 
(25) is established. 

(26) Under the hypothesis of (25) we have g E A. 

For, let nz = sg/(Excz, Lz)·sg(IExcz + Lz - h/h/z]]l)·Excz. By (25), 
n has range w, and clearly n E A. Clearly for any x E w we have gx = sg X· 
gO + Ln(-l)x, so g E A. 

Next, 

(27) if/is special, / E A, and g is obtained from / by minimalization, 
then g E A. 

For suppose / is m-ary, m > I. We proceed by induction on m; the case 
m = 2 is given by (26). Inductively assume that m > 2. Define j' by 

/'(xo,.·., Xm-2) = /(Exc x o, Lxo, Xl>"" x m- 2), 

for all xo, ... , X m -2 E w. Clearly j' is special, since / is. Let g' be obtained 
from j' by minimalization. By the induction hypothesis, g' EA. Now if 
xo, . .. , X m -2 E w, then 

g(xo,···, x m- 2 ) = fJ-y(j(xo, .. , Xm-2, y) = 0) 
= fJ-y(j(Exc J(xo, Xl), LJ(Xo, Xl), X2 , .•. , Xm- 2, y) = 0) 
= fJ-y(j'(J(XO, Xl), X2 ,· .. , Xm-2, y) = 0) 
= g'(J(Xo, Xl), X2,···, Xm- 2 ); 

hence g E A by (20). 
For all x, yEw let g(x, y) = [xly]. 

(28) gEA. 

For, if x, yEw then 

[xly] = fJ-Z(Y'uZ > Z or y = 0) 
= fJ-z(x",.(x, Y·Jz)·y = 0), 

so g E A by (27) and (22). 
Now since rm (x, y) = x e ([xly]·y), we have 

(29) 

Hence by (20), 

(30) 

rm EA. 

(3 E A. 

Now we can take care of primitive recursion. 

Suppose g is obtained from/and h by primitive recursion,fm-ary 
and II (m + 2)-ary, m > O. Then for any xo, ... , x m- l , yEw, 

(31) g(xo,."'xm-l,y) = (3(fJ-z[(3(z,O) =/(xo, ... ,xm- l ) and 
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To prove (31), let xo, ... , Xm -1> yEw be given. By Theorem 3.46 choose z 
such that (3(z, i) = g(xo, ... , Xm _ h i) for each i ~ y. Thus if 4W ~ Y we have 

Hence 

(3(Z,4W) = g(xo, ... , xm - 1 , 4W) 
= h(xo, .. ·, Xm-h W, g(xo, ... , xm - 1, w» 
= h(xo, ... , Xm - h w, (3(z, w». 

p.W({3(Z,4W) =I h(xo,··., Xm-h W, (3(z, w» or W = y) = y. 

Furthermore, (3(z, 0) = g(xo, ... , xm - 1 , 0) =/(xo, ... , xm - 1). Hence there is 
a z of the sort mentioned in (31). Let t be the least such z. By induction on i 
it is easily seen that for any i ~ Y we have (3(t, i) = g(xo, ... , xm - 1 , i). Hence 
(3(t, y) = g(xo,···, xm - 1 , y), as desired. 

(32) Under the hypothesis of (31), if in addition I and h are in A, 
then g E A. 

For, first let 

k'(xo, ... ,xm - 1,y,z, w) = sg 1{3(Z,4W) - h(xo, ... ,xm - 1 , w,{3(z, w»I·sg(iw - yl) 

for all xo, ... , xm - 1 , y, Z, WE w. Then k' E A by (9), (24), and (30). Further
more, obviously k' is special and 

g(xo, .. . , xm - 1 , y) = (3(p.z[f3(z, O) = I(xo,· .. , xm - 1) and 
p.w(k'(xo, ... , xm- 1 , y, Z, w) = 0) = y],y) 

Let k"(xo, ... , xm- 1, y, z) = p.w(k'(xo, ... , X m-l' y, Z, w) = 0) for all X o, ... , 
Xm -1, y, Z E w. Then kIf E A by (27). Let k"'(xo, ... , Xm -1, y, Z) = sg (1{3(z, 0) -
I(xo, ... , xm- 1)D + sg (Ik"(xo, ... , X m- 1 , y, Z) - yD. Then k'" E A, and by 
(31) kIlt is special; moreover, 

g(xo, .. ·, Xm-h y) = (3(p.z(k"'(xo,···, xm - 1, y, z) = 0), y). 

Hence g E A, as desired. 

(33) If g is obtained from a and h by primitive recursion, a E wand h 
binary and hE A, then g E A. 

The proof is similar to that of (32). 
Thus 4, Uf E A, and A is closed under composition, primitive recursion, 

and minimalization (applied to special functions). Hence, every recursive 
function is in A, and the proof of 3.48 is complete. 0 

Definition 3.49. Let P be the two-place operation on one place functions 
such that 

P(J, g )(x) = Ix + gx 

for all one place functions J, g and all x E w. 

63 



Part 1: Recursive Function Theory 

Theorem 3.50. The class oj I-place recursive Junctions is the intersection oj 
all sets A oj I-place Junctions such that 6, Exc E A and A is closed under 
KL P, and inversion (applied to Junctions with range w). 

PROOF. Clearly the intersection indicated is included in the class of I-place 
recursive functions. Now suppose that A satisfies the conditions of the 
theorem. Note that Uli E A, since Ul> = Ki (Exc, EXC<-l). If J is a I-place 
recursive function, then J = Ki (f, UIi). Hence in order to show that all 
I-place recursive functions are in A (which is all that remains for the proof), 
it suffices to prove the statement 

(*) 
if J is an m-ary general recursive function and go, ... , gm -1 E A, 
then KT (f; go,···, gm-1) E A. 

To prove (*), let B be the set of allJsuch that ifJis m-ary and go, ... , gm-1 E A 
then KT (f; go,· .. , gm-1) EA. Note that for Junary we haveJE A iffJE B. 
Hence +, J, Exc, Ur E B (for 0 :s: i < n < w) and B is closed under inversion, 
applied to functions with range w. To show that B is closed under composi
tion, assume thatJ(m-ary) is in B, that ho, ... , hm - 1 (all n-ary) are in B, and 
that go, ... , gn-1 EA. Then by 2.2, 

K~ (K';; (f; ho,···, hm- 1); go,···, gn-1) 
= K'1 (f; K1 (ho ; go, ... , gn-1), ... , K~ (hm- 1 ; go, ... , gn -1». 

K1 (K;:' (f; ho, ... , hm- 1); go, ... , gn-1) E A. 

Thus, go, ... , gn-1 being arbitrary, K;:' (J; ho, ... , hm - 1) E 8.. Hence by 3.48 
the proof is complete. 0 
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EXERCISES 

3.51. Show that the set r in the proof of 3.5 is closed under primitive recursion 
with parameters. 

3.52*. Let f(O, y) = y + 1, f(x + 1,0) = f(x, 1), and f(x + 1, y + 1) = 
f(x,/(x + 1, y». Show that f is recursive. 

3.53*. (continuing 3.52*). Show thatfis not primitive recursive. Hint: prove the 
following in succession (for any x, yEW): 

(1) y < f(x, y); 
(2) f(x, y) < f(x, y + 1); 
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(3) I(x, y + 1) :5 I(x + 1, y); 
(4)/(x,y) </(x + l,y); 
(5) l(l, y) = y + 2; 
(6) 1(2, y) = 2y + 3; 
(7) for any C1, ..• , Cr there is a d such that for all x. "'i:- 1 ,;.j,;.r I(c" x) :5 

I(d, x) (prove first for r = 2, taking d = max (Cl, C2) + 4); 
(8) for every primitive recursive function g (say with n places) there is a c 

such that for all Xl, ... , Xn • g(X1' ... , x 71 ) < I(c, Xl + ... + x 71 ); 

(9) I is not primitive recursive. 

3.54. What difficulty would arise in deleting "primitive" from Lemma 3.5 [show 
that 3.5 would then be false, but also indicate how a proof roughly similar 
to that given for 3.5 would break down]. 

3.55. Express a Turing machine to compute + directly in terms of the machines 
of Chapter \, i.e., don't use results of this section. 

3.56. The set {9M : M is a Turing machine with exactly five states} is elementary. 

3.57'. Prove (33) in the proof of 3.48 in detail. 

3.58. The class of recursive functions is the intersection of all classes A of 
functions such that J, Ur E A (each n > 0, each i with i < n), + E A, 
-'-E A, ·E A, and A is closed under composition and under minimalization 
(applied to special functions). Thus we have here another equivalent 
definition of the notion of recursive function; this version, or slight 
variations of it, are frequently found in the literature. 

3.59. Let J1(x, y) = 2x. (2y + 1) - 1 for all x, YEW, let K1x = (x + 1)0, and 
let L1x = ([(x + 1)/exp (2, K1X)] - 1)/2. Then show: 

(1) J1, Klo L1 are elementary 
(2) J1(K1x, L1X) = x 
(3) K 1J1(X, y) = x 
(4) L 1J 1(X, y) = y 
(5) J 1 maps W x W 1 - \ onto w 

3.60. For any x, yEW, let J2(x, y) = [(x + y)2 + 3x + y]/2, Q1X = 

[(h/(8x + I)] + 1)/2] -'- 1, Q2X = 2x - (Q1X)2, K2x = (Q2X - Qlx)/2, 
and L2x = Q1X - K 2 x. Prove analogs of 3.59(1)-(5). Hint: Define 
I:w x w-~w x w by putting 

I( ) = {(X + 1, y - 1) if y ¥- 0, 
x, y (0, x + 1) if y = 0. 

(The function I describes a certain easily visualized procedure of going 
through all pairs (x, y).) 

Prove that Jd(x, y) = J2(x, y) + 1 for all x, yEw. Thus J2 is the 
natural mapping w x W··)o w associated with f Then show successively 
that J2 maps w x w onto wand that for all x, yEw, Q1J2(X, y) = x + y, 
Q2J 2 (X, y) = 3x + y, K 2J2(X, y) = x, L2J2(X, y) = y. Then J2(K2x, L2X) = 

x follows easily since J 2 is onto. 
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3.61*. If f is a I-place number-theoretic function, we define r (temporary 
notation) by induction: 

fOx = X 
fn+1 x = ffnx 

for all x E w, 

for all x E w. 

The function g such that gn = rO for all nEw is said to be obtained from 
f by iteration. 

Prove the following theorem: 

Theorem (R. M. Robinson). The class of primitive recursive functions is the 
intersection of all classes A of functions such that 11, Exc, +, Ur E A whenever 
i < nEw and A is closed under composition and iteration. 

Hint: As in the proof of 3.48 the essential thing is to show that each primitive 
recursive function is in A, where A satisfies the conditions of the theorem. Proceed 
stepwise: 

(1) q, sg, Sg E A. 
(2) Letfx = x + 2 Sg Exc (x + 4) + 1. ThenfE A. 
(3) Let gx = x + 2hlx]. Then g E A. 
(4) Let hx = x 2. Then hE A. 
(5) Let x 8 y = Exc [(x + y)2 + 3x + y + 1]. Then 8E A. 
(6) Let ax = Sg x + 2 Sg (x 8 1). Then a E A. 
(7) Let f3 be obtained from a by iteration, yx = x + 1 + f3x, e obtained from 

y by iteration, kx = [x/2] for all x; then 3 > f3x == x (mod 3), and kx = 

ex - x, and k E A. 
(8) Let ix = [vx]. Then i EA. 
(9) ., J, LEA. 

(10) Suppose j E A, and k is defined from j as follows: 

kO = 0, 
ken + 1) = j(n, kn). 

Then k E A. Hint: define k'n = J(n, kn) for all nEw. 
(11) Suppose f1 E A, and f2 is defined from f1 as follows: 

f2(a,0) = a, 
Ua, n + 1) = f1(n, f2(a, n». 

Thenf2 E A. Hint: define to = O,l(n + 1) = f2(Ln, Excn). 
(12) Suppose f1, f2 E A, and f3 is defined as follows: 

f3(a, 0) = f1a, 
f3(a, n + 1) = f2(n, f3(a, n». 

Then f3 E A. Hint: define lea, 0) = a, lea, n + 1) = J(a, f3(a, n» 
(13) If f4,/5 E A, and fe is defined by: 

f6(a, 0) = f4a, 
fe(a, n + 1) = f5(a, n, fe(a, n», 

thenfe E A. 
(14) A is closed under primitive recursion. 
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3.62. Using 3.61, show that the class of all l-ary primitive recursive functions 
is the intersection of all classes A such that 0, Exc E A and A is closed 
under iteration, KI, and P. 

3.63* (HERBRAND-GODEL-KLEENE CALCULUS). We outline another equivalent 
version of recursiveness. We need a small formal system: 
Variables: Vo, VI, V2, ... ; 
Individual constant: 0; 
Operation symbols: fm (m-ary), gmn (m-ary) for all mEw ~ 1, nEw; 0 

(unary). 
By induction we define .6.0 = 0, .6.(m + 1) = <1 .6.m for all mEW; 

we denote .6.m sometimes by m. Now we define terms: 

(1) <VI>; 
(2) <0>; 
(3) if a is a term, so is <1a; 

(4) if mEw ~ 1 and ao, ... ,am-l are terms, so are fmao· ··am-l and 
gmnao·· ·am-l for each nEW; 

(5) terms are formed only in these ways. 

An equation is an expression a = T with a, T terms. 
A system of equations is a finite sequence of equations. If E is a system 

of equations, say E = <fPo, ... , fPm - 1), then an E-derivation is a finite 
sequence <.po, ... , .pn -1> of equations such that for each i < none 
of the following holds: 

(6) 3j < m.pi = fPj; 
(7) 3j < i3 variable a 3 mEw (.pI is obtained from .pj by replacing each 

occurrence of a in .pj by m); 
(8) 3j, k < i.pk has the form a = T, .pj has the form fpxo·· ·Xp-l = Y or 

gpqYo· .. Xp -1 = y, and .pk is obtained from .pk by replacing one occur
rence of fpxo· .. Xp _ 1 (or gpqXo· .. Xp _ 1) in T by x. 

We write E f- X to mean that there is an E-derivation with last member x. 
Now an m-place number-theoretic function k is called Herbrand

Godel-Kleene recursive if there is a system E of equations such that 
Vxo·· ·Vxm- 1Vy(E f- fmxo·· ·Xm-l = Y iff k(xo, ... , Xm-l) = y). 

Show that k is Herbrand-Godel-Kleene recursive iff it is recursive. 
Hint: To show that every recursive function is HGK recursive, let A 

be the collection of all functions k (say k is m-ary) such that there is a set 
E of equations and an assignment of n-ary operations to the n-ary opera
tion symbols occurring in members of E (for all nEw), k assigned to fm, 
under which all members of E become intuitively true for any values 
assigned to the variables and such that Vxo·· ·'v'Xm_13y (Ef-fmxo·· ·Xm-l 

y). Show that A satisfies the conditions of Exercise 3.58 and hence that 
every recursive function is Herbrand-Godel-Kleene recursive. 

To show the converse, do a Godel numbering. Let T:" = {(e, Xu, ... , 

Xm - h u): e is the Godel number of a system E of equations and u is the 
Godel number of an E-derivation with last term of the form fmxo· .. Xm - 1 = 

y}. Given such a u, V'u is the y mentioned. Then see the proof of 3.38. 

3.64* (INFINITE DIGITAL COMPUTER). Yet another equivalent form of recursive
ness is obtained by generalizing a first-generation digital computer. We 
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visualize our computer as an infinite array of storage boxes, labeled 
0, 1, 2, .... Each storage box is allowed to hold any natural number. By 
convention we assume that all but finitely many of the boxes have 0 in 
them. Box 0 is the instruction counter. Box 1 is the accumulator. All other 
boxes are just fast memory cells. We supply only six instructions: 

(1) add one to the contents of Box 1; 
(2) subtract one from the contents of Box 1, or leave zero if already 0; 
(3) replace the contents of storage n by the contents of storage 1 (for 

any n); 
(4) replace the contents of storage 1 by the contents of storage n (for any n); 
(5) (for each nEw) if storage 1 has a zero in it, take the next instruction 

from storage n otherwise proceed as usual; 
(6) stop. 

For technical reasons there is no start instruction. 
The machine works as follows. We set the storages initially to certain 

values (programming). Then the machine starts. It looks at box 0 and 
takes its instruction from the box specified there (each instruction will be 
assigned a number). After performing the instruction, the instruction 
counter advances one step (except possibly for instructions (5) and (6)), 
and then the next instruction is executed, etc. The machine continues until 
hitting the stop instruction, and then stops. It is possible that the machine 
will get in a "loop", and never stop. 

An initial state of the machine is called a program. A program computes 
a I-place function / as follows. We put x in storage 2 and press the start 
button. The machine grinds away, and finally stops; /x is then in the 
accumulator. 

Now we express all of this rigorously. A storage description or program 
is a function F mapping w into w such that for some mEw we have 
Fn = 0 for all n ;;::: m. 

An instruction is a number of the form 2°3°, 21 .3°, 22 .3\ 23 • 3n, 24 • 3n, 

0, where nEw. These instructions correspond to (1)-(6) above, respectively. 
A computation step is a pair (F, G) such that F and G are storage 

descriptions and one of the following conditions holds: 

(1) FFO = 2°·3° and G = (F30+1)h+1 
(2) FFO = 21 .3° and G = (F30+1)h~1 
(3) FFO = 22 ·3n (for some n), and G = (F30+1)'J.l 
(4) FFO = 23 ·3n (for some n), and G = (FFO+l)}n 
(5) FFO = 24 • 3n (for some n), and 

G = F30+1 
G = F~ 

if FI -=I- 0, 
if FI = o. 

A computation is a finite sequence <Fo, ... , Fm -1> of storage descrip
tions, with m > 0, such that (Fh F j + 1) is a computation step for each 
i < m - I and Fm- 1Fm- 10 = o. We say that <Fo, ... , Fm- 1> is a computa
tion beginning with Fo and ending with Fm - 1 • Now an m-ary function/is 
said to be infinite-digital computed by a program F provided that for all 
xo, ... , Xm - 1 there is a computation beginning with F;o:."!xi.rIi -1) and ending 
with a program G such that GI = /(xo, ... , X m-1). 

Show that a function is infinite-digital computable iff it is recursive. 



Markov Algorithms 4* 

The present chapter is optional; it is devoted to another important and 
widely used version of effectiveness, Markov algorithms. 

The theory of Markov algorithms is described carefully and in detail in 
Markov [3]. Here we shall only give enough of its development to prove 
equivalence with Turing computability and recursiveness. The equivalence 
was first proved in Detlovs [2]. For a brief outline of the theory see Curry [1]. 

Definition 4.1. Throughout this chapter, by a word we shall understand a 
finite sequence ofO's, l's, and 2's. The empty word is admitted. A Markov 
algorithm is a matrix A of the form 

ao bo Co 

al bI CI 

such that ao, ... , am, bo, ... , bm are words and Co, ... , Cm E {O, I}. A word 
a occurs in a word b if there are words c and d such that b = cad. Of 
course a may occur in b several times. An occurrence of a in b is a triple 
(c, a, d) such that b = cad. It is called the first occurrence of a in b if c 
has shortest length among all occurrences of a in b. 

An algorithmic step under A is a pair (d, e) of words with the following 
properties: 

(i) there is an i :::; m such that ai occurs in d; 
(ii) if i :::; m is minimum such that ai occurs in d, and if (J, a;, g) is the 

first occurrence of ai in d, then e = fbig. 

Such an algorithmic step is said to be nonterminating, if with i as in (ii), 
Ci = 0; otherwise (i.e., with Ci = I), it is called terminating. A computation 
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under A is a finite sequence (do, ... , dm> of words such that for each i < 
m - 1, (di> di+l) is a nonterminating algorithmic step, while (dm-l> dm) 
is a terminating algorithmic step. 

Now an m-ary function f is algorithmic if there is a Markov algorithm 
A as above such that for any Xo, . .. , Xm -1 E w there is a computation 
(do, ... , dn> under A such that the following conditions hold: 

(iii) do = ° l(xO+l) ° ... ° l(x(m-l)+I) ° 2; 
(iv) (2) occurs only once in dn ; 

(v) ° l(f(xO •...• x(m-l))+l) ° 2 occurs in dn • 

We then say that A computes f 

A row ai bi ° in a Markov algorithm will be indicated ai --+ bi> while a 
row ai bi 1 will be indicated ai --+ . bi. A Markov algorithm lists out finitely 
many substitutions of one word for another, and an algorithmic computation 
consists in just mechanically applying these substitutions until reaching a 
substitution of the form ai --+ ·bi. Clearly, then, an algorithmic function is 
effective in the intuitive sense. Markov algorithms are related to Post systems 
and to formal grammars. Now we shall give some examples of algorithms, 
which we shaH not numerate since they are not needed later. The algorithm 
A o: 

(0) --+ ·(0) 

works as follows: any computation under A is of length 2 and simply repeats 
the word: (a, a), where (0) occurs in a. Consider the algorithm AI: 

(0) --+ ·<01). 

Some examples of computations under Al are: 

(1) «0), <01» 
(2) «00),(010» 
(3) «11010), (110110». 

Let A2 be the following algorithm: 

(0) --+ (I) 
(I) --+. <I). 

The algorithm A2 takes any word and replaces all O's by 1 's, then stops. Let 
Aa be 

(I) --+ (11). 

Clearly no computation under Aa exists. Starting with a word in which (I) 
occurs, Aa manufactures more and more one's. 

Lemma 4.2. Every Turing computable function is algorithmic. 
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PROOF. Let f (n-ary) be computed by a Turing machine M, with notation 
as in 1.1 and 3.9. With each row ti = (Cj(j), ei, vi, di) of M (1 :5: i :5: 2m) we 
shall associate one or more rows t'(i, 0), ... , t'(i,pi) ofa Markov algorithm, 
depending on vi. 

Case 1. vi = 0 or 1. We associate the row 

(e; 2 1 (cI1+1) 2) ---+ (VI 2 1 (dI+1) 2). 

Case 2. vi = 2. We associate the rows (in order) 

(0 el 2 1 (c/l+ 1) 2) ---+ (0 2 1 (di+1) 2 
(I ei 2 1 (c/1+1) 2) ---+ (I 2 I(d;+l) 2 

(e; 2 1 (c/1+1) 2) ---+ (0 2 I(d;+l) 2 

Case 3. vi = 3. We associate the rows (in order) 

(el 2 1 (cji + 1) 2 0) ---+ (ei 0 2 1 (dI+1) 

(el 2 1 (ejI+1) 2 I) ---+ (e; 1 2 I(di+1) 

(el 2 1 (eji +1) 2) ---+ (e; 0 2 1 (di+1) 

Case 4. vi = 4. We associate the row 

(el 2 1 (ejl+ 1) 2)---+·(ei 2). 

Now let A be the following Markov algorithm: 

t'(I,O) 

t'(1, pI) 
t'(2,0) 

t'(2m, jJ(2m» 
(2) ---+ (2 1 (e1 +1) 2). 

el) 

el) 

ei) 

2) 
2) 
2). 

We claim that A computes! To see this, let Xo, ••• , X ll - 1 E w. Since M com
putes/, by 3.9 there is a computation «F, C1, 0), (Gh aI, b1), ... , (Gq - 1, aq - h 
bq - 1» of M with the following properties: 

(1) 0 I(xO+1) 0 ... 0 I(x(m-1)+1) lies on Fending at -1, and Fis 0 else
where; 

(2) I(x(m-1)+1) 0 I(f(xO •...• x(m-1)+1) 0 lies on Gq - 1 ending at bq - 1. 

Now let Go = F, ao = Ch bo = O. Let Q-1 be the word 
o I(xo+1) 0 o I(X(m-1)+1) 0 2. 

Now we define Nb Ph QI for i < q by induction. Let No be 0 I(xo+1) 0 .. , 
o I(x(m-1)+1) 0, Po = 0 (the empty sequence), and Qo = 0 I(xo+1) 0 ... 
o I(x(m-1)+1) 0 2 I(e1+1) 2. Suppose now that i + 1 < q and that Nh Ph Qi 

have been defined so that the following conditions hold: 

(3) Ni ¥- 0; 
(4) NI lies on G I ending at b;; 
(5) Pi lies on G; beginning at bi + 1; 
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(6) GI is ° except for NIPi; 
(7) exactly two 2's occur in QI; 
(8) NI 2 l(ai+1) 2 Pi = Qi; 
(9) if i ¥- 0, then (Qi-1, Qi) is a nonterminating algorithmic step under A. 

Clearly (3)-(9) hold for i = 0. We now define Ni+1, PH1 , Qi+1' Let the row 
of M beginning with al Glbl be 

We now distinguish cases depending on v. Note that, since i < q - 1, v ¥- 4. 
In each case we define NI+l, PH1 , Qi+1, and it will then be evident that (3)
(9) hold for i + 1 in that case. In each case, let QH 1 be defined by (8) for 
i + 1. 

Case 1. v = 0. Let Ni+l be Ni with its last entry replaced by 0, and let 
PH1 = Pi' 

Case 2. v = 1. Similarly. 
Case 3. v = 2. Here we take two subcases: 

Subcase 1. Ni has length at least 2. Write Ni = Ni+le, where e = ° or 1, and 
set PH 1 = ePi • 

Subcase 2. Ni has length 1. Let Ni+l = <0), PH1 = NIPI. 
Case 4. v = 3. Again we take two subcases: 

Subcase 1. Pi ¥- 0. Write PI = ePi+l with e = ° or 1, and set Ni+l = Nie. 
Sub case 2. Pi = 0. Let PH1 = 0, NI+l = NiO. 
This completes the definition of Nh Ph Qf for all i < q, so that (3)-(9) hold. 
Let Qq be the word Nq -1 2. Then by (9) it follows that < Q -1, Qo, ... , Qq) 
is a computation under A. Now by (2), (6), and (4), we can write 

Nq- 1 = N~_l ° 1(f(xo ..... x(m-1)+1) 0; 

hence ° l(f(xO ..... x(m-1)+1) ° 2 occurs in Qq and 2 occurs only once in Qq. 
It follows that A computes f D 

We now turn to the problem of showing that every algorithmic function 
is recursive. This is done by the now familiar device of Godel numbering. 

Definition 4.3. If a = <ao, ... , am -1) is a word, its Godel number, {la, is 

Thus the empty word has GOdel number 1. 

Lemma 4.4. The set of Godel numbers of words is elementary. 

PROOF. m is the Godel number of a word iff m = 1 or m > 1 and Vi ~ 1m 
[(m)1 ::; 3 and 1 ::; (m)f]. D 
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Definition 4.5. If A is a Markov algorithm as in 4.1, its Godel number, gA, 
is the number 

where ti = 2?al·3?bl.yl for each i :::;; m. 

Lemma 4.6. The set of G6del numbers of Markov algorithms is elementary. 

PROOF. n is the G6del number of a Markov algorithm iff n ~ 2 and 'Vi :::;; In 
[«n)i)O and «n)ih are G6del numbers of words, «n);)2 :::;; 1, and l«n)i) :::;; 2]. 0 

Definition 4.7. Let Ro = {em, n): m and n are G6del numbers of words a and 
b respectively, and a occurs in b}. 

Lemma 4.8. Ro is elementary. 

PROOF (m, n) E Ro iff m is the G6del number of a word, n is the GOdel 
number of a word, and 3x :::;; n 3y :::;; n[Cat (Cat (x, m), y) = nJ. (Recall from 
3.30 the definition of Cat.) 0 

Definition 4.9. Rl = {em, n, p, q): m, n, p, q are G6del numbers of words a, 
b, c, d respectively, and (a, b, c) is the first occurrence of b in d}. 

Lemma 4.10. Rl is elementary. 

PROOF. (m, n, p, q) E Rl if m, n, p, q are G6del numbers of words and 
Cat (Cat (m, n), p) = q and 'Vx :::;; q'Vy :::;; q[lx < 1m & x and yare GOdel 
numbers of words =:> Cat (Cat (x, n), y) oF q]. 0 

Definition 4.11. R2 = {(p, m, n) : p is the G6del number of a Markov algo
rithm A, m, n are G6del numbers of words a, b respectively, and (a, b) is a 
nonterminating computation step under A}. 

Lemma 4.12. R2 is elementary. 

PROOF. (p, m, n) E R2 iff P is the G6del number of a Markov algorithm, m 
and n are G6del numbers of words, 3i :::;; lp such that «(P)I)O, m) E R o, and 
'Vi :::;; Ip'Vx :::;; m'Vy :::;; m[«(p)I)O, m) E Ro & 'Vj < i[«(p)j)o, m) rf: RoJ & (x, 
«P)i)O, y, m) E Rl =:> Cat (Cat (x, «P)I)l, y) = n & «P)I)2 = 0]. 0 

Definition 4.13. Ra is like R2 except with "terminating" instead of "non
terminating" . 

Lemma 4.14. Ra is elementary. 
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Definition 4.15. If <do, . .. , dm) is a finite sequence of words, its G6del 
number is 

Also let R4 = {(m, n) : m is the G6del number of a Markov algorithm A, 
and n is the G6del number of a computation under A}. 

Lemma 4.16. R4 is elementary. 

PROOF. (m, n) E R4 iff m is a G6del number of a Markov algorithm, In ~ 1, 
and Vi < In ...:... 1 [(m, (n);, (n)i+ 1) E R2 J and (m, (n)ln~ 1, (n)ln) E R3 • 0 

Lemma 4.18. f1 is elementary. 

Definition 4.19. f~x = Cat (2,J1X)·f'fl+1(XO' ... , xm) = Cat (f"J.(xo, ... , xm- 1,) 
f~xm)' 

Lemma 4.20. f'fl is elementary, for each mEw'" {O}. 

Lemma 4.21. f':(xo, ... , xm- 1) is the Godel number of 

o 1(xo+1) 0 

The notations R1, R2 , R 3 , R4 , f1' f'.£ will not be used beyond the present 
section. 

Definition 4.22. T:" = {(e, Xo, ... , x m - 1 , c): e is the G6del number of a 
Markov algorithm A, and c is the G6del number of a computation 
<do, ... , dn> under A, (c)o = Cat (f'fl(xo, ... , xm- 1), 2.33), and 2 occurs 
only once in dn}. 

Lemma 4.23. T:" is elementary. 

Definition 4.24. V'y = /LX :5; y[(Cat (f~x, 2· 33), (y)IY) E RoJ. 

Lemma 4.25. V' is elementary. 

Lemma 4.26. Every algorithmic function is recursive. 

PROOF. Say f is m-ary and is computed by a Markov algorithm A. Let e 
be the G6del number of A. Then for any Xo, ... , Xm-1 E w we have 

f(xo, ... , Xm-1) = V'/Lz«e, Xo, ... , Xm-1, z) E T:"). 

Thusfis recursive, as desired. o 
Theorem 4.27. Turing computable = recursive = algorithmic. 
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EXERCISES 

4.28. Let A be the algorithm 

2 0-+0 2 
2 1-+1 2 

2 -+. 1(3) 

-+2 

Show that A converts any word a on 0, 1 (i.e., involving only 0 and 1) 
into a 1(3). 

4.29. Construct an algorithm which converts every word into a fixed word a. 

4.30. Construct an algorithm which converts every word a into l(n+1), where n 
is the length of a. 

4.31. Let a be a fixed word. Construct an algorithm which converts any word 
¥- a into the empty word, but leaves a alone. 

4.32. There is no algorithm which converts any word a into aa. 

4.33. Construct an algorithm which converts any word a on 0, 1 into aa. 

4.34*. Show directly that any algorithmic function is Turing computable. 
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5 Recursion Theory 

We have been concerned so far with just the definitions of mathematical 
notions of effectiveness. We now want to give an introduction to the theory 
of effectiveness based on these definitions. Most of the technical details of the 
proofs of the results of this chapter are implicit in our earlier work. We wish 
to look at the proofs and results so far stated and try to see their significance. 

In order to formulate some of the results in their proper degree of generality 
we need to discuss the notion of partial/unctions. An m-ary partial function 
on w is a function/mapping some subset of mw into w. The domain of/may 
be empty-then / itself is the empty set. The domain of / may be finite; it 
may also be infinite but not consist of all of mw. Finally, it may be all of mw , 

in which case/is an ordinary m-ary function on w. When talking about partial 
functions, we shall sometimes refer to those/with Dmn/ = mw as total. 

Intuitively speaking, a partial function/(say m-ary) is effective if there is 
an automatic procedure P such that for any xo, ... , Xm -1 E w, if P is presented 
with the m-tuple (xo, ... , Xm -I) then it proceeds to calculate, and if 
(Xo, ... , Xm -I) E Dmn J, then after finitely many steps P produces the answer 
/(xo, ... , Xm -l) and stops. In case (xo, ... , Xm-l) ¢ Dmn/the procedure P 
never stops. We do not require that there be an automatic method for recog
nizing memb.ership in Dmn f Clearly if/ is total then this notion of effective
ness coincides with our original intuitive notion (see p. 12). Now we want 
to give mathematical equivalents for the notion of an effective partial function. 

Definition 5.1. Let / be an m-ary partial function. We say that / is partial 
Turing computable iff there is a Turing machine M as in 1.1 such that for 
every tape description E, all q, n E 71.., and all xo, ... , Xm -1 E w, if 0 I (xO + 1) 0 
. .. 0 1 (x(m -1) + 1) lies on E beginning at q and ending at n, and if Pi = 0 
for all i > n, then the two conditions 
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(i) (xo,···, x m - I ) E Dmn F, 
(ii) there is a computation of M beginning with (F, cl , n + I) 

are equivalent; and if one of them holds, and <F, CI, n + 1), (GI , a1> b l ), . .. , 

(Gp - I , ap _1> bp - I » is a computation of M, then (1)-(3) of 3.9(ii) hold. 

Clearly any partial Turing computable function is effectively calculable. 

Corollary 5.2. Every Turing computable Junction is partial Turing computable. 
Every total partial Turing computable Junction is Turing computable. 

Next, we want to generalize our Definition 3.1 of recursive functions. To 
shorten some of our following exposition we shall use the informal notation 

... ~ - --

to mean that ... is defined iff - - - is defined, and if . .. is defined, then 
... = - - -. For example, if J is the function with domain {2,3} then when 
we say 

gx + hx -:::. J(x + 2) for all x E w, 

we mean that Dmn g n Dmn h = {O,I} and for any x E {O,I}, gx + hx = 
J(x + 2). 

Definition 5.3 
(i) Composition. We extend the operator K::' of 2.1 to act upon partial 

functions. Let J be an m-ary partial function, and go, .. . , gm-I n-ary 
partial functions. Then K::' is the n-ary partial function h such that for any 
xo,···,Xn-IEw, 

(ii) Primitive recursion with parameters. If Jis an m-ary partial function 
and h is an (m + 2)-ary partial function, then Rm(j; h) is the (m + I)-ary 
partial function defined recursively by: 

g(xo,···,xm-1>0) -:::.J(xo, ... ,Xm-l) 
g(xo,···, Xm-1> .;y) -:::. h(xo, ... , Xm -1> y, g(xo,··., Xm -1> y» 

for all Xo, ... , Xm -1> yEw. 
(iii) Primitive recursion without parameters. If a E wand h is a 2-ary 

partial function, then RO(a, h) is the unary partial function g defined 
recursively by 

gO = a 
gay -:::. hey, gy) 

for all yEw. 
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(iv) Minimalization. Letjbe an (m + I)-ary partial function. An m-ary 
partial function g is obtained fromjby minimalization provided that for all 
xo, . .. , Xm-l E w, 

g(XO"",Xm-l):::: leastysuch that Vz:s; y«xo"",xm_l,z)EDmnj) 
andj(xo"",xm-hY) = O. 

We then write g(xo, ... , x m- 1) :::: p-y(f(xo, ... , Xm-l> y) = 0). 
(v) The class of partial recursive junctions is the intersection of all 

classes C of partial functions such that <J E C, Uf E C whenever i < nEW, 
and C is closed under composition, primitive recursion, and minimalization. 

Clearly every partial recursive function is effectively calculable. Note that 
it is not appropriate to simplify the definition of minimalization to 

g(xo, ... , Xm-l) :::: least y such that (xo, ... , Xm-l> y) E Dmnjand 
j(xo, ... , Xm-h y) = 0, 

for all Xc, ... , Xm-l E w. For, even ifjis calculable there may be no clear way 
to calculate g. For example, suppose that (xo, ... , Xm- 1 , 0) ¢ DmnJ, while 
(xo,,,,,Xm-l, I)EDmnjandj(xo, ... ,xm_1 , I) = O. Without knowing that 
(xo, ... , Xm-l, 0) ¢ Dmnj it is unclear at what point in a computation of 
g(xo, ... , Xm-l) one would be justified in setting g(xo, ... , Xm-l) = 1. The 
above definition of minimalization clearly avoids this difficulty. One can give 
explicit examples wherejis partial recursive but g, defined in this new way, 
is not. (See Exercise 5.38.) 

Note that there are nontotal partial recursive functions. For example, 
clearly q is partial recursive, and hence by 5.3(iv) so is the function g such 
that gx :::: p-y(q(x, y) = 0). Obviously, however, g is the empty function. 

Corollary 5.4. Every general recursive junction is partial recursive. 

In contrast to the situation for Turing computability, it is not at all 
immediately clear that every total partial recursive function is general recur
sive; this is, however, true, as our next theorem shows. The proof of this 
theorem is rather long when carried out from the beginning. 

Theorem 5.5. Partial Turing computable = partial recursive. 

PROOF. PARTIAL RECURSIVE => PARTIAL TURING COMPUTABLE. Here it is 
only necessary to read again the proofs of Lemmas 3.10-3.16 and check that 
they adapt to the situation of partial functions and the new Definitions 5.1 and 
5.3. 

PARTIAL TURING COMPUTABLE => PARTIAL RECURSIVE. Again one needs only 
to reread 3.17-3.38. 0 

Corollary 5.6. Any total partial recursive junction is recursive. 
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A natural question occurs as to whether every partial recursive function 
can be extended to a recursive function; the answer is no: 

Theorem 5.7. There is a partial recursive function / such that / cannot be 
extended to a recursive function. 

PROOF. The rule for computing/is as follows. For a given x E w, determine 
whether or not x is the Godel number of a Turing machine. If it is not, set 
/x = O. If it is, test in succession whether or not (x, x, 0) E T1> (x, x, 1) E T1 , 

(x, x, 2)'E Tb etc. The first time we find a u such that (x, x, u) E T1 , set/x = 
Vu + I. If we never find such a u, the computation never ends. Clearly / is 
intuitively a calculable partial function, and it has the following property: 
for any x E w, 

(1) 

/x = 0 if x is not the GOdel number of a Turing machine, 
Vp.u«x, x, u) E T1) + 1 if x is the Godel number 
of a Turing machine and there is such a u, 

/x is undefined, otherwise. 

It is routine to show that / is partial recursive; we will prove this formally in 
this case, but usually not in the future. We can define/by (1). Clearly then, 
for any XEw 

/x ~ [VP.U(;~Tl(X, x, u) = 1 or XTX = 0) + 1]'XTx, 

so / is partial recursive. 
Now / cannot be extended to a general recursive function. For, suppose 

/ £; h with h general recursive. By the proof of 3.38 there is an e E w such 
that, for all x E w, 

hx = Vp.u(e, x, u) E T1). 

In particular, he = Vp.u«e, e, u) E T1) and (by the definition of T1> 3.35) e is 
the GOdel number of a Turing machine. Thus /e is defined, and 

/e = Vp.u«e, e, u) E T1) + 1 = he + 1 = /e + 1, 

contradiction. o 
We now turn to the formulation of some basic results called the normal 

form, iteration, and recursion theorems. 

Definition 5.8. For any e E wand mEw let cp~ be the m-ary partial recursive 
function such that for all xc, ... , Xm -1 E W, 

cp~(Xo,·," Xm- 1) ~ Vp.u«e, XO,"" Xm-l> U) E Tm). 

Note also that the (m + 1)-ary partial function q/ defined by 

cp'(xo"", Xm-1> e) ~ Vp.u«e, Xo"." Xm-1> u) E Tm) 

for all Xo" .. , Xm -1> e E w, is also partial recursive. This remark will be 
frequently useful in what follows. 
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Theorem 5.9 (Normal form theorem). For any partial recursive function f 
(say m-ary) there is an e E w such that f = cp:;'. 

PROOF. By the proof of 5.5, second part. o 

This theorem, which was implicitly used already in the proof of 5.7, has 
many important corollaries, which we shall now explore. First of all, its 
normal form nature is made a little more explicit in the following corollary. 

Corollary 5.10. For each mEw - I there exist a I -place elementary function 
f and an (m + 2)-place elementary function g such that for any m-ary partial 
recursive function h there is an e E w such that for all Xo, ... , Xm -1 E w, 

h(xo,· .. ,xm-1) :::::/l.LU[g(e,Xo, ... ,Xm-1'U) = 0]. 

PROOF. Let f = V and g = Sg 0 XTm. o 

This formulation suggests the possibility of improving the result by drop
ping f (Another possibility, dropping /1-, is impossible since there are recursive 
functions which are not primitive recursive.) As to this possibility, see 
Exercise 5.43; the answer is no. 

Theorem 5.9 and its proof give rise to a certain universal phenomenon as 
follows. 

Corollary 5.11 (Universal Turing machines). There is a Turing machine M 
with the following property. If f is any unary partial Turing computable 
function and a Turing machine N computes it, and if e is the Godel number 
of N, then if 0 I (e + 1) 0 1 (x + 1) 0 is placed upon an otherwise blank tape 
ending at - I and if M is started at 0, then M will stop iff x E Dmn f, and 
if x E Dmn f, then after the machine stops I (Ix + 1) 0 will lie on the tape 
beginning at 1. 

PROOF. Let g be the partial recursive function defined by 

g(e, x) ::::: V/1-u[(e, x, u) E Td 

for all e, x E w. Let M compute g. Clearly M is as desired. o 

In more intuitive terms we can describe the way M is to act as follows: 
M is presented with two numbers e and x. First M checks if e is the G6del 
number of some Turing machine. If it is, say e = yN, then M begins checking 
one after the other whether 0 or I or ... is the G6del number of a computa
tion under N with input x. If there is such a number, M takes the first such 
and reads off the .result of the computation. It may be that e is not the G6del 
number of a Turing machine or that there is no computation with input x; 
then M does not give an answer. 
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Corollary 5.12 (Universal partial recursive function). There is a partial re
cursive function g of two variables such that for any partial recursive function 
f of one variable there is an e E w such that for all x E w, g( e, x) c:: fx. 

PROOF. Let g be as in the proof of 5.11. D 

In view of the proof of 3.4, the reader might view 5.12 with some suspicion. 
Let us see what happens if we try the diagonal method on the g of 5.12. For 
any x E w, let fx c:: g(x, x) + 1. Then f is partial recursive, so by 5.12 there 
is an e E w such that for all x E w, gee, x) c:: fx. Now if gee, e) is defined, then 
gee, e) = fe = gee, e) + 1. Conclusion: gee, e) is not defined. We are saved 
by g being a partial function. No contradiction arises. 

We now turn to the iteration theorem. This basic result, although of a 
rather technical nature, is basic for most of the deeper results in recursion 
theory. See, e.g., the proofs of 5.15, 6.19, al)d 6.25. 

Theorem 5.13 (Iteration theorem). For any m, nEw ~ 1 there is an (m + 1)
ary recursive function s;;' such that for all e, Yl> ... , Ym, Xl, ... , Xn E w, 

q>~+n(Xl"'" x n, Yl>"" Ym) c:: (q>n(s;;'(e, Yl,···, Ym)))(Xl>"" Xn). 

PROOF. If M is any Turing machine and Yl' ... , Ym E w, let M:l ..... ym be the 
following Turing machine: 

Start ~ (TJeft ~ Tl)Yl ~ (TJeft ~ Tl)Yl ~ ... 
~ (TJeft ~ Tl)ym ~ T Jeft ~ M ~ T'{'Shift ~ Stop 

Clearly there is an (m + l)-ary recursive function s;;' such that for any 
e, Yl> ... , Ym E w, if e is the G6del number of a Turing machine M, then 
s;;'(e, Yl, ... , Ym) is the G6del number of Mtl ..... Ym. Obviously s;;' is as desired 
in the theorem. D 

Actually a more detailed analysis would show that s;;' in 5.13 can be taken 
to be elementary recursive, but we shall not use this fact. As a first application 
of the iteration theorem we give 

Corollary 5.14. There is no binary function f such that for all x, Y E ~, 

f(x, y) = 1 
f(x, y) = 0 

if Y E Dmn tp1, 
if Y i Dmn tp1. 

PROOF. Suppose there is such anf; say f = q>~. Now for any x, yEW let 

g(x, y) c:: !-'z[V!-'u((y, x, x, u) E T2) = 0]. 

Hence for any x, yEw, 

g(x, y) = 0 if Y is the G6del number of a Turing machine, 
(x, x) E Dmn q>~, and q>~(x, x) = 0; 

g(x, y) is undefined, otherwise. 
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Say g = cp~. Then by the iteration theorem, 

sHr, e) E Dmn p'(si(r, e)) 

a contradiction. 

iff (sHr, e), e) E Dmn cp~ 
ifff(sHr, e), si(r, e)) = 0 

iff si(r, e) ¢ Dmn cp'(sHr, e)), 

D 

Thus there is no automatic method for determining of a pair (x, y) whether 
y E Dmn cpi. Otherwise stated, there is no automatic method of determining 
of a Turing machine M and a number y whether M will eventually stop with 
an output when presented with input y. Thus Corollary 5.14 shows the 
recursive unsolvability of the Halting problem for Turing machines. We can 
give a more intuitive, informal proof of this result. Suppose we have an 
automatic method telling us whether a Turing machine M will stop with 
input y. Then we can construct a machine N such that for any yEw the 
following conditions are equivalent: 

(1) N stops when given input y; 
(2) y is not the Godel number of a Turing machine, or it is the number of a 

machine T such that T does not stop when given input y. 

Let Nhave Godel number e. By (1) and (2) we reach a contradiction in trying 
to decide whether N stops, given input e. 

Theorem 5.15 (Recursion theorem). If m > 1 and f is an m-ary partial 
recursive function, then there is an e E w such that for all xo, ... , Xm _ 2 E w, 

f(xo, ... , Xm-2, e) ~ cp:;,-l(XO, ... , Xm-2). 

PROOF. For any xo, ... , Xm-l E w let 

g(xo,···, Xm-l) ~ f(xo,···, Xm -2, S~-l(Xm-l> Xm-l)). 

Thus g is partial recursive; say g = pr;'. Let e = s;'_l(r, r). Then by the 
iteration theorem, for all Xo, ... , Xm _ 2 E w, 

cp:;,-l(XO, ... , Xm -2) ~ cpr;'(Xo, ... , Xm-2, r) 
~ g(Xo,.· ., Xm-2, r) 
~ f(xo, ... , Xm-2, e). D 

The recursion theorem is extremely useful in checking that functions 
defined by rather complicated recursive conditions are, in fact, general recur
sive. We shall illustrate its use by verifying again that the functions of 3.5 and 
3.52 are recursive. 

In the case of 3.5, we first define an auxiliary three-place function h' that 
is obviously partial recursive from the form of its definition, which goes by 
cases as in the definition of h, as follows. Let x, y, e E w. 
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Case 1. x = 2. Let h'(x, y, e) = (y)o + 1 for all y. 
Case 2. x = 2n ·3 i +I, where i < n. Let h'(x, y, e) = (Y)i for all y. 
Case 3. x = 2n ·5n ·pg·P40 .... ·P:;\":.31l, with n, m > O. 

Let 

h'(x, y, e) ~ cp;(q, p~r ... ;p~":lll), 

where ti ~ cp;(ri, y) for each i < m. 
Case 4. x = 2· 7q • 11 a with q > O. Let 

h'(x, 1, e) = a, 
h'(x, 2Y +1, e) ~ cp;(q,2Y ·3V), 

where v ~ cp~(x, 2Y ), 

h'(x, z, e) = 0 

for z not of the form 2U • 

Case 5. x = 2m + 1 ·ll q ·13" with m > 0 and q > O. Let y be given with 
(Y)m = O. We set 

h'(x, y, e) ~ cp~(q, y), 
h'(x, y·P;;'+l, e) ~ cp~(r, y'P;;"P:;'+l), 

where v ~ cp;(x, y·P;;'). 
Case 6. For x not of one of the above forms, let h'(x, y, e) = 0 for all y, e. 
Now we apply the recursion theorem and obtain an e E w such that for all 
X,YEw, 

h'(x, y, e) ~ cp~(x, y). 

Now it is straightforward to check by complete induction on x that for all 
x, yEw, hex, y) ~ cp;(x, y). Thus h = cp; is recursive. 

It is similarly shown that the function in 3.52 is recursive. Namely, we 
define a partial recursive function I' as follows: 

1'(0, y, e) = y + 1, 
f'(x + 1,0, e) ~ cp;(x, 1), 

f'(x + 1, y + 1, e) ~ cp~(x, cp;(x + 1, y». 

Let e E w be such thatf'(x, y, e) ~ cp;(x, y) for all x, yEW. Then it is easily 
proved by induction on x, with induction on y in the induction step, that 
j(x, y) ~ cp~(x, y) for all x, YEW. Thusj = cp~. 

Theorem 5.16 (Fixed point theorem). If j is a unary recursive junction then 
there is an e E w such that cp~ = CPt •. 

PROOF. For any x, yEw let 

g(x, y) ~ Vp.u«jy, x, u) E T1). 

Thus g is partial recursive, and g(x, y) ~ CPtyX for all x, YEw. Now we apply 
the recursion theorem to obtain on e E w such that g(x, e) ~ cp~x for all 
x E w. Thus cp! = CPt., as desired. 0 
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An important consequence of the fixed-point theorem is given in 

Theorem 5.17 (Rice). Let F be a set of one-place partial recursive functions 
such that 0 -# F and F does not consist of all one-place partial recursive 
functions. Then A = {e : cp~ E F} is not recursive. 

PROOF. Suppose it is. Let a E A and b if: A. Now define 

gx = a 
gx = b 

xif:A, 
xEA. 

Then g is recursive. By 5.16 choose e such that cp~ = CP~e. Then if e E A we 
see that cP~ E F (by the definition of A), hence CP~e E F, so ge E A; but e E A 
implies also ge = b if: A, contradiction. Also, e if: A implies on the one hand 
cp! if: F, CP~e if: F, ge if: A, and on the other hand implies ge = a E A, contradic
tion. 0 

Rice's theorem has many important corollaries; we shall mention a few. 

Corollary 5.18. For any unary partial recursivefunctionf, {e : cp! = f} is not 
recursive. 

Corollary 5.19. {x: cP~ is a constant function} is not recursive. 

Corollary 5.20. {(x, y) : y is in the range of cp~} is not recursive. 

PROOF. If the given set is recursive, then clearly so is 

{x : 0 is in the range of cp~}, 

contradicting 5.17. 

Corollary 5.21. {(x, y) : cP~ = cp~;} is not recursive. 

PROOF. If the given set is recursive, and e E w, then 

{x: cp1 = cpn 

is recursive, contradicting 5.17. 

o 

o 

Thus there is no automatic procedure for determining whether or not cp! 
is a given unary partial recursive function; or whether or not cP; is a constant 
function; or whether or not y is in the range of cp1; or whether or not cP~ = cp~. 
Clearly 5.14 is also a consequence of Rice's theorem. 

We can use 5.14 to establish the following result concerning the length of 
computations. 

Theorem 5.22. There is no binary recursive function f such that for all e, 
x E w, 3u((e, x, u) E T 1) iff 3u ~ fee, x)((e, x, u) E T 1)' 
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PROOF. Suppose there is such anf. Let 

gee, x) = 1 if 3u ~ fee, x)«e, x, u) E T1), 

gee, x) = 0 otherwise. 

Thus g is recursive and 

contradicting 5.14. 

gee, x) = 1 
gee, x) = 0 

if x E Dmn cp!, 
if xi Dmn cp!, 

o 
Thus there is no automatic procedure P such that, given a Turing machine 

M and a number x, P determines the maximum number of steps in an M
computation starting with x. 

Our final topic of this section is the arithmetical hierarchy. The recursive 
relations, as we have argued, coincide with the effective number-theoretic 
relations .. Certain other relations, namely those obtained by using the quanti
fiers 3 or V on the recursive relations, are also very natural relations to 
consider in many contexts. They can be arranged in the so-called arithmetical 
hierarchy, according to the depth of quantifiers used in defining them. We 
shall describe this hierarchy and its most important properties. 

Our main result, 5.36, depends on the following normal form theorem. 

Theorem 5.23. Let m > 1. If R is an m-ary recursive relation, then there exist 
e, e' E w such that for all xo, ... , Xm-2 E w, 

(i) 3y«xo,.··, Xm-2, y) E R) iff3y«e, Xo, .. . , Xm-2, y) E T m - 1). 

(ii) Vy«xo, ... , Xm-2, y) E R) iffVy«e', XO, ... , Xm-2, y) i Tm- 1). 

PROOF. For any xo, . , " X m-2 E w let 

f(xo"", Xm-2) ~ p.y«xo,"', Xm-2, y) E R), 

Thusfis partial recursive, so by 5.9 there is an e E w such that for all xo, . , " 
Xm -2 E w, 

f(xo",., Xm-2) ~ Vp.u«e, XO,.", Xm-2, u) E Tm - 1), 

Thus 

3y«xo"", Xm-2, y) E R) iff (xo"", Xm-2) E Dmnf, 
iff 3y«e, xo, ' , " Xm-2, y) E T m-l)' 

Thus (i) holds, Condition (ii) is easily obtained from (i), 0 

Definition 5.24. Let ~o = TIo = set of all recursive relations, If n, m > 0, 
then an n-ary relation R is in ~m (respectively TIm) provided there is an 
(m + n)-ary recursive relation S such that, if m is odd, 

R = {(xo",., Xn-l) E nw: 3yo E W VYl E W 3Y2 E W'" 

VYm-2 E w 3Ym-l E w[(xo, . , ., Xn-l, Yo, ' . " Ym-l) E S]} 
(respectively 

R = {(xo,.,., Xn-l) E nw: VYo E w 3Yl E w VY2 E w'" 

3Ym-2 E w VYm-l E w[(xo",., Xn-l> Yo"", Ym-l) E Sm, 

85 



Part 1: Recursive Function Theory 

while, if m is even, 

R = {(xo, ... , Xm- l ) E nw : 3yo E w 'rIYl E W 3Y2 E W· .. 
3Ym-2 E W 'rIYm-l E w[(Xo, . .. , Xn-h Yo, . .. , Ym-l) E S]} 

(respectively 

R = {(xo, ... , x n- l ) E nw : 'rIyo E w 3Yl E w 'rIY2 E W· .. 
'rIYm-2 E w 3Ym-l E w[(xo,·.·, Xn-l, Yo, ... , Ym-l) E Sm. 

Members of Lm (respectively IIm) are called Lm-relations (respectively IIm

relations). Also let Llm = Lm n IIm. Any member of UmEw-l (Lm U IIm) is 
said to be arithmetical. 

Note that there are only ~o arithmetic relations, and hence most number
theoretic relations are not arithmetical. Now we want to describe the relation
ships between the various classes L m, II m, and indicate some operations under 
which these classes are closed. The following obvious proposition indicates 
how these classes can be inductively defined, and furnishes a basis for induc
tive proofs of our further results. 

Proposition 5.25 
(i) An n-ary relation R is in Lm+ 1 iff there is an (n + 1)-ary relation S 

in IIm such that for all Xo,···,Xn_lEw, (xo, ... ,Xn_l)ER iff 3YEW 
«xo, . .. , Xn-l, y) E S). 

(ii) An n-ary relation R is in IIm+ 1 iff there is an (n + l)-ary relation S 
in Lm such that for all Xo, ... , Xn-l E w, (xo, ... , Xn-l) E R iff 'rIy E w 
«xo, ... , Xn-h y) E S). 

The following three propositions are now easily.established by induction, 
using 5.25: 

Proposition 5.26. If R is an n-ary Lm-relation, fo, ... , fn -1 are n-ary recursive 
functions, and 

S = {(xo, ... , x n- l ) : (fo(xo, ... , x n- l ), ... , fn-l(xo, ... , x n- l )) E R}, 

then S ELm. Similarly for IIm and Llm. 

Proposition 5.27 (Adjunction of apparent variables). If R is an n-ary Lm
relation and S = {(xo, ... , xn) : (Xl' ... , xn) E R}, then S ELm. Similarly for 
IIm and Llm. 

Proposition 5.28 (Identification of variables). If R is an n-ary Lm-relation, 
n > 1, and S = {(xo, ... , Xn-2): (xo, Xo, Xl, X2, . .. , Xn-2) E R}, then R E 

Lm. Similarly for IIm and Llm. 

Proposition 5.29. If Rand S are n-ary Lm-relations, then so are R U Sand 
R n S. Similarly for IIm and Llm. 
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PROOF. The assertions for Llm follow from those for ~m and TIm. The asser
tions for ~m and TIm are proved simultaneously by induction on m. The case 
m = 0 is trivial. Now assume the assertions for m. We take just one typical 
assertion for m + 1: 

Assume R, S E~m+1; we show that R ('\ S E~m+1' By 5.25, choose (n + 1)
ary TIm-relations R', S' such that for all xo, ... , Xn -1 E w, 

(Xo, .. . , Xn -1) E R 
(Xo, .•. , Xn -1) E S 

Then for any Xo, ... , Xn-I E w, 

(Xo, . .. , Xn-I) E R ('\ S 

iff 3y E w[(Xo, .. . , Xn- 1, y) E R'], 
iff 3y E w[(Xo, . .. , Xn- I, y) E S']. 

iff 3y E w 3z E w[(Xo, ... , Xn- I, y) E R' 
and (xo, . .. , Xn-I> z) E S']. 

Now let R" = {(xo, ... , Xn +1) : (Xo, ... , Xn) E R'} and S" = {(xo, ... , Xn+ 1) : 
(Xo, ... , Xn -1' Xn+l) E S'}. Using 5.26 and 5.27 it is easy to see that R", 
S" E TIm. Now, continuing from above, for any xo, ... , Xn -1 E w, 

(Xo, ... , xn- 1) E R ('\ S iff 3y E w 3z E w[(Xo, ... , Xn- I, y, z) E R" ('\ S"] 
iff 3y E w[(Xo, ... , Xn -1' (Y)o, (Y)I) E R" ('\ S"]. 

Since R" ('\ S" E TIm by the induction hypothesis, we get R ('\ S E ~m+ 1 by 
5.25. D 

For m > 0, neither ~m nor nm nor Llm is closed under complementation; 
see 5.36. The following proposition is evident. 

Proposition 5.30. If R is an n-ary ~m-relation with n > 1 and m > 0, and if 
S = {(xo, ... , Xn-2) : 3y E w(xo, ... , Xn-2, y) E R}, then S E ~m' Similarly 
with TIm and V. 

Proposition 5.31. If R is an n-ary ~m-relation, then so are the two relations 

S = {(xo, ... , Xn-I): 3y < Xn-I[(Xo"", Xn-2, y) E R], 
T = {(xo, ... , Xn-1): Vy < x n- 1[(xo, ... , Xn-2, y) E R]. 

Similarly for TIm and Llm. 

PROOF. Again we prove all cases simultaneously by induction on m. The 
case m = 0 is trivial. Assume that all of the statements are true for m. We 
take one typical case for m + 1: 

Let R be an n-ary ~m+ I-relation, and let T be as above. By 5.25, let R' be 
a TIm-relation such that for all Xo, ... , Xn -1 E w, 

iff 3z E w[(Xo, ... , Xn -I> z) E R']. 

Clearly, then, it suffices to show that for all Xo • ... , Xn- I E W, 

(1) Vy < Xn-I 3z E w[(xo, ... , Xn-2, y, z) E R'] 
iff 3z E w Vy < Xn-1[(Xo, ... , Xn-2, y, (z)y) E R']. 
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Clearly the right side of (I) implies the left side. If the left side holds, choose 
for each y < X n -1 an integer Wy E w such that (xo, ... , X n -2, y, wy ) E R', and 
let z = IT y<x<n-1JP;;'y; clearly then z is as desired in the right side of(1). 0 

The following proposition is obvious: 

Proposition 5.32. If R is an n-ary relation, then R E ~m iff nw ~ R E ITm. 

Proposition 5.33. ~m U ITm <:; Llm+ 1 • 

PROOF. Let R E ~m' say R is n-ary. Let S = {(xc, ... , xn) : (xo, ... , Xn-1) E R}. 
Then S E ~m by 5.26 and 5.27. Clearly R = {(xc, ... , Xn -1) : Vy E w[(Xo, ... , 
Xn_bY)ESj}, so RETIm + 1 . Thus ~m<:; IT m+1, and similarly ITm<:;~m+1' 
An easy inductive argument shows that ~m <:; ~m+ 1 and ITm <:; ITm+ l' 0 

We will return to the following important result several times later on: 

Theorem 5.34. Ll1 = Llo. 

PROOF. We know that Llo <:; Ll1 • Suppose R E Lll> say R is n-ary. Then there 
are recursive S, T«n + l)-ary) such that for all XO, ••• , Xn-l E w, 

Hence, as is easily seen, 

XR(Xo, ... , Xn -1) 

iff 3y[(xo, ... , Xn _ b y) E S] 
iff Vy[(xo, ... , Xn -1' y) E T]. 

= Xs(Xo, .. ·, Xn- 1, ILY[(Xo,··., Xn- 1, y) E S or (XO,"" Xn-l, y) rf= T]), 

so R is recursive. o 

Intuitively, to determine whether or not (xo, ... , Xn -1) E R we check in 
succession (Xo, ... , Xn- 1, 0), (Xo, ... , Xn- b 1), ... for membership in Sand 
T. Eventually one of these is in S (hence (xo, ... , Xn -1) E R), or else one of 
them fails to be in T (hence (xo, ... , Xn -1) rf= R). 

Now we extend our normal form results up into the arithmetical hierarchy: 

Theorem 5.35. For m, n > 0 there is an (n + l)-ary ~m-relation R;;' with the 
following properties: 

(i) for every n-ary ~m-relation S there is an eEw such that S= 
{(xo,· .. , xn- 1): (e, Xo,· .. , xn- 1) E R;;'}; 

(ii) for every n-ary ITm-relation S there is an e E w such that S= 
{(xo,···, x n- 1): (e, Xo, ... , x n- 1) f/= R;;'}. 

PROOF. We construct R;;' by recursion on m. Let 

R~ = {(xo, ... , xn) : 3y E w[(xo, ... , Xn, y) E Tn]}. 
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If R;:' has been defined for all n, let 

R;:'+l = {(xo,"" xn): 3y E w[(xo, ... , Xn, y) i R;:'+l]}. 

It is easily seen by induction on m, using 5.23, that the desired conditions 
h~. 0 

Theorem 5.36 (Hierarchy theorem). For any m, n > 0 there exists an n-ary 
relation TEL:m ~ IIm. Hence nw ~ T E IIm ~ L:m. Furthermore, there is an 
n-ary relation WE Llm+ 1 ~ (L: m U IIm). 

PROOF. Let R:;' be as in 5.35. Let 

T = {(xo, .. . , Xn-1) : (xo, Xo, Xl, X2,"" Xn-1) E R:;'}. 

Thus TEL:m. If T E IIm, by 5.35 choose e E w so that T = {(xo, ... , Xn -1) : 

(e, X O, ... , X n -1) i R:;'}. Then 
e(n+1)ER:;' iff e(n) E T iff (e)n+1 i R:;', 

a contradiction. Thus T i IIm· 
For the second part of the theorem, let T be as in the first part. Set 

W = {(xo, ... , x n- 1): «xo)o, (X1)0,"" (xn- 1)0) i T and 
«xoh, (x1h,···, (xn-1h) E T}. 

Now T, nw ~ TELlm+1 by 5.33, so WELlm+1. Suppose WEL:m. Choose 
(to, ... , tn- 1) E T (T is obviously nonempty since 0 E IIm). For any Xo, ... , 
X n - 1 E w we have 

(xo, ... , Xn -1) i T iff (2xo . 3tO , ••• , 2x(n -1). 3t (n -1)) E W, 

so nw ~ TEL:m , contradiction. Similarly, WE IIm leads to a contradiction. 0 

Thus the arithmetical hierarchy appears as in the following diagram, 
where the lines indicate proper inclusions: 
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EXERCISES 

5.37. If / is a finite function (Le., it is a finite set and is a function), then / is 
partial recursive. 

5.38. Give an example of a binary partial recursive function / such that if g is 
defined by 

gx = least y such that /(x, y) is defined and /(x, y) = 0, 
gx = undefined if no such y, 

then g is not partial recursive (cf. 5.3 and following remarks). 

5.39. Give an example of a binary recursive function/such that if g is defined by 

gx = least y such that /(x, y) = 0, 
gx = 0 if no such y, 

then g is not recursive. 

5.40'. The class of partial recursive functions is the intersection of all classes C 
of partial functions such that a E C, Uf E C whenever i < n, and C is 
closed under composition, primitive recursion, and minimalization, all 
except composition applied only to total functions. 

5.41. If / is an m-ary partial recursive function and Dmn f is recursive, then / 
can be extended to a general recursive function. 

5.42. Give an example of an m-ary partial recursive function / which can be 
extended to a general recursive function, but has the property that Dmn / 
is not recursive. 

5.43. There is a unary partial recursive function / such that for no binary 
recursive function g is it true that for all x, /x ~ /Ly[g(x, y) = 0]. Hint: 
let /x ~ cpix,O + x for all x. If g works as above, let hx = cpix + 1 if 
g(x, x) = 0, hx = 0 otherwise. Show h is recursive and obtain a contradic
tion. 

5.44. For any total function / of one variable the following conditions are 
equivalent: 
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(1) there is a recursive function g of two variables such that for all x E w, 
/x = /Ly[g(x, y) = 0]. 

(2) {(x, Ix) : x E w} is a recursive relation. 

The conditions remain equivalent if in both (1) and (2) "recursive" is 
replaced by "primitive recursive" or by "elementary." 
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5.45. Iflis a unary recursive function, then {(x, Ix) : x E w} is a recursive relation. 
Similarly if we replace both words "recursive" by .. primitive recursive" 
or by "elementary." 

5.46. Give an example of a unary partial recursive function I such that 
{(x, Ix) : x E Dmn f} is not recursive. 

5.47. There is a recursive set which is not elementary. 

5.48. There is a unary recursive functionlfor which there is no binary elementary 
function g such that for all x E w,/x = ILy(g(x, y) = 0]. Hint: takel = XA, 
where A is as in 5.47. 

5.49. There is a total unary function I such that {(x, Ix) : x E w} is elementary 
but I is not elementary. 

5.50. There is no recursive procedure for deciding for an arbitrary e whether 
or not cp~ has infinite range. 

5.51. Assume m > 1. Let A = {e : cp~ is a special recursive function}. Show that 
A is not recursive. 

5.52. Show that the function I defined as follows is recursive. 
1(0, y) = y + 1, 
1(1, y) = y + 2, 

I(x + 2, 0) = I(x + 1, 1), 
I(x + 2, y + 1) = l(x,/(x + 1,/(x + 2, y))). 

5.53. Show that there is no recursive function I satisfying the following condi
tions: 

1(0, y) = y + 2, 
I(x + 1,0) = I(x, 1), 

I(x + 1, y + 1) = I(x + 1,/(x, y)) + 1. 
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6 Recursively 
Enumerable Sets 

In this chapter we shall deal in some detail with the set ~l of relations 
(see 5.24). Such relations are called recursively enumerable for reasons which 
will shortly become clear. The study of recursively enumerable relations is 
one of the main branches of recursive function theory. They playa large role 
in logic. In fact, for most theories the set of Godel numbers of theorems is 
recursively enumerable. Thus many of the concepts introduced in this section 
will have applications in our discussion of decidable and undecidable theories 
in Part III. Unless otherwise stated, the functions in this chapter are unary. 

A nonempty set is effectively enumerable provided there is an automatic 
method for listing out its members, one after the other. This does not imply 
that there is a decision method for determining membership in the set. The 
formal version of this notion is given in 

Definition 6.1. A set A S; w is recursively enumerable (for brevity r.e.) if 
A = 0 or A is the range of a recursive function. 

This definition can be given several equivalent forms, each having its own 
intuitive appeal: 

Theorem 6.2. For A S; w the following are equivalent; 
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(i) A = 0 or A is the range of an elementary function; 
(ii) A = 0 or A is the range of a primitive recursive function; 
(iii) A is recursively enumerable; 
(iv) A is the range of a partial recursive function; 
(v) A is the domain of a partial recursive function; 

(vi) A E~l' 
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PROOF. Obviously (i) ~ (ii) ~ (iii). To show that (iii) ~ (iv) we just need 
to show that ° (the empty set) is the range of some partial recursive function; 
and obviously the only possibility for such a function is ° (which is also the 
empty function). ° is partial recursive by the argument following 5.3. 

(iv) ~ (v). Let A = Rng cp!. For any x E w let 

fx ~ /Ly«e, (y)o, (Y)l) E Tl and V(Y)l = x). 

Clearly then Dmnf = Rng cp! = A, andfis partial recursive. 
(v) ~ (vi). Suppose A = Dmn cp;. Then for all x E w, X E A iff3y«e, x, Y) E 

T1), so A E ~l. 

(vi) ~ (i). Suppose A E ~l. By 5.23 choose e E w such that A = 
{x: 3y«e, x, y) E T1)}. We may assume that A -# 0; say a E A. Now for any 
x E w let 

fx = (x)o if (e, (x)o, (X)l) E Tb 

fx = a otherwise. 

Clearly fis an elementary function and Rngf = A, as desired. D 

An intuitive proof of the equivalence of 6.2(iii) and 6.2(v) is instructive. 
First assume that A is recursively enumerable, A -# 0. Say A = Rng J, 
recursive. We define a function g with domain A as follows. To calculate 
gx, we look along the listf0,jl, ... for x. If we find it, we set gx = 0. If x 
is never found, gx is never computed. Clearly g is effectively calculable (see 
introduction to Chapter 5), and Dmn g = A. 

Conversely, suppose A = Dmn g, g partial recursive, and assume that 
A -# 0. Now we make the following calculations: 

two steps in the calculation of gO 
one step in the calculation of g 1 

three steps in the calculation of gO 
two steps in the calculation of g 1 
one step in the calculation of g2 

four steps in the calculation of gO 
three steps in the calculation of g I 

two steps in the calculation of g2 
one step in the calculation of g3 · . .. . · . .. . · . .. . 

During this process we will occasionally obtain answers. At regular intervals 
we list out all the x for which we have so far calculated gx. Since A -# 0, 
eventually we will list at least one x, and then at regular intervals we put 
more on our list (with many repetitions). Calling the listf0,jl, ... , clearly 
fis an effectively calculable total function with range A. 

Now we want to investigate the relationship between recursive and recur
sively enumerable sets. By 5.33 and 5.36 we have 

Theorem 6.3. Every recursive set is recursively enumerable. There is a recur
sively enumerable set which is not recursive. 
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The second part of 6.3 is one of the most important results of recursion 
theory, so we give its proof here in a more direct form: 

Definition 6.4. K = {x: 3y((x, x, y) E Tl)}. 

Theorem 6.5. K is recursively enumerable but not recursive. 

PROOF. Obviously K E ~l so K is recursively enumerable. Suppose K is 
recursive. Then so is w '" K, so by 6.2(v) there is an e E w such that w '" K = 
Dmn cp!. Then 

contradiction. 

eEK 
e¢K 

iff e E Dmn cp! by the definition of K, 
iff e E Dmn cp! by the choice of e, 

D 

The set K will be discussed further later on. Another important relation
ship between recursive and recursively enumerable sets is given in 5.34, which 
can be reformulated as follows: 

Theorem 6.6. Let A s w. Thefollowing conditions are equivalent: 

(i) A is recursive; 
(ii) A and w '" A are recursively enumerable. 

This theorem can be seen in the following fashion, working directly from 
Definition 6.1: Of course (ii) => (i) is the main part of 6.6. Assume (ii). We 
may suppose 0 -# A -# w. Then let f and g be recursive functions with 
Rngf = A, Rng g = w '" A. To determine whether x E A or not, list out 
fO, gO,! 1 , gl, .... Eventually x will appear in the list; if x = fn for some n, 
then x E A, while if x = gn for some n, then x E A. Formally, for any x E W, 

XAX = 1 if fp.y(fy = x or gy = x) = x, 
XAX = 0 otherwise. 

Theorem 6.7. Let A s w. Thefollowing are equivalent: 

(i) A is infinite and recursive: 
(ii) there is a recursivefunctionfwith Rngf = A andVx E w(fx < f(x + 1». 

PROOF. (i) => (ii). Let a be the least member of A. Define 

10 = a 
I(x + 1) = p.Y(YEA andy> Ix). 

Clearly I is as desired. 
(ii) => (i). Assume I as in (ii). Then by induction on x, 

(1) 

Thus 

(2) 
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VXEW (x ;:S; fx). 

Vy E Rng/3x ;:S; y (Ix = y). 
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Hence for all YEW, 

as desired. 

XAY = 1 
XAY = 0 

if 3x ::;; y(fx = y) 
otherwise, 

o 

Theorem 6.8. Any infinite recursively enumerable set has an infinite recursive 
subset. 

PROOF. Let A be infinite r.e., say A = Rng J, f recursive. We define g by 
induction: 

gO =fO 
g(x + 1) = fp.y(fy > gx). 

Thus gx < g(x + 1) for all x E w, and hence, by 6.7, Rng g is infinite and 
recursive. Obviously Rng g ~ A. 0 

Next, we want to investigate closure properties of the class of r.e. sets. 
Which operations on sets lead out of the class, and under which operation is 
the class closed? By 5.29, the class of r.e. sets is closed under union and 
intersection. We can give intuitive proofs of these facts directly from the 
definition. Let A and B be r.e. sets, and ignore the case when one of them 
is empty. Letfand g be recursive functions enumerating A and B respectively. 
One enumerates Au B by:fO, gO,fl, gl, .. .. One can enumerate A (') B by 
looking along this list and putting a number on a separate list as soon as it 
appears at both an odd and even step. Both of these procedures can be given 
a rigorous formulation. 

By 6.3 and 6.6, the class of r.e. sets is not closed under complementation. 
Some further closure properties: 

Theorem 6.9. If A is r.e. andfis partial recursive, thenf*A is r.e. 

PROOF. We may assume that A # O. Say A = Rng g, g recursive. Clearly 
f* A = Rng (f 0 g) and fog is partial recursive. 0 

Theorem 6.10. If A is r.e. andfis partial recursive, thenf-a A is r.e. 

PROOF. Say A = Dmn cp!. Thenf-aA = Dmn (cp! of) as desired. 0 

Theorem 6.11. If A is r.e., then UxeA Rng cp; is r.e. 

PROOF. For any yEw, 

yE U Rngcp1 
IxeA 

iff 3x E A(y E Rng cp1). 

Since both A and each Rng 911 are in l::b it follows easily that UxeA Rng 911 
is in l::l' 0 
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Before carrying the theory of r.e. sets further we wish to back up and 
extend our results obtained so far to relations. 

Definition 6.12. A relation R £ mw is recursively enumerable (for brevity 
r.e.) if A = 0 or there exist m recursive functionsfo, .. . ,fm-1 such that 

R = {(fox, ... , fm-1X) : x E w}. 

Theorem 6.13. For R £ mw the following are equivalent: 

(i) R = 0 or there exist elementary functions fo, ... , fm -1 with R = 
{(fox, . .. , fm-IX) : x E w}; 

(ii) like (i) with" elementary" replaced by "primitive recursive"; 
(iii) R is recursively enumerable; 
(iv) there exist partial recursive functions fo, ... , fm -1 with R = 

{(fox, . .. , fm-1X) : x E Dmnfo n· .. n Dmn fm-1}; 
(v) R = 0 or there is an elementary function f with R = {«(fx)o, ... , 

(fX)m-1) : x E w}; 
(vi) like (v), with "elementary" replaced by "primitive recursive"; 

(vii) like (v), with" elementary" replaced by "recursive"; 
(viii) there is a partial recursive function f such that R = {«fx)o, ... , 

(fX)m-1) : x E Dmn!}; 
(ix) there is an m-ary partial recursive function f such that R = Dmn f; 
(x) R E~1. 

PROOF. Clearly (i) ~ (ii) ~ (iii) ~ (iv). 
(iv) ~ (v). Assume (iv), with fo, ... , fm-1 partial recursive and R = 

{(fox, ... ,fm-1x):xEDmnfon ... nDmnfm-1}. We may assume that 
R"# 0, say (ao, ... ,am_1)ER. Sayfo = cp!0,··.,fm-1 = CP!(m-1). For any 
x E w, let 

gx = f1 p[«x)(t+ 1)) 

I<m 

gx = f1 pfl 
I<m 

otherwise. 

Clearly g is elementary and R = {«gx)o, ... , (gX)m-1) : x E w}. 
Obviously (v) ~ (vi) ~ (vii) ~ (viii). 
(viii) ~ (ix). Supposefis as in (viii). Sayf= cp!. For any Xo, ... , Xm- 1 E w 

let 

g(xo, ... , Xm-1) = f'y«e, (y)o, (y)1) E T1 and V(y)1 = n pfl). 
I<m 

Clearly g is partial recursive and R = Dmn g. 
(ix) ~ (x). Suppose R = Dmn cp~. Then 

R = {(xc, ... , xm- 1) : 3y«e, xc, ... , Xm-l> y) E Tm)}, 

so RE~1. 
(x) =;> (i). Suppose R E ~1. By 5.23, choose e E w such that 

R = {(xo, ... , Xm-1): 3y«e, Xo, ... , xm- 1 , y) E Tm)}. 
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We may assume that R "# 0; say (ao, ... , am-I) E R. Now for i < m and any 
XEw let 

j;x = (x)j 
j;x = aj 

if (e, (x)o, ... , (x)m) E T m 

otherwise. 

Clearly eachj; is elementary and R = {(fox, ... , fm-lX) : x E w}. 0 

Theorem 6.14. Every recursive relation is recursively enumerable. For each 
positive m there is a recursively enumerable m-ary relation which is not 
recursive. 

PROOF. The first part is true by 6.13(x) and 5.33; for the second part, 
use 5.36. 0 

The following result is proved just as for sets. 

Theorem 6.15. Let R c:; mw. The following conditions are equivalent: 

(i) R is recursive; 
(ii) Rand mw '" R are recursively enumerable. 

The following important theorem shows that the notion of a partial recur
sive function can be defined without resorting to the rather complicated 
notions discussed at the beginning of Chapter 5. 

Theorem 6.16. Let f be a unary partial function. Then the following conditions 
are equivalent: 

(i) fis partial recursive; 
(ii) {(x, fx) : x E Dmn!} is r.e. 

PROOF. (i) => (ii). Assume (i). For any x, yEW let 

g(x, y) ~ p.z(l y - fxl = 0). 

Clearly g is partial recursive and Dmn g = {(x,fx) : x E Dmn!}. 
(ii) => (i). Assume (ii), and by 6.12 let g and h be recursive functions such 

that 

{(x,fx): x E Dmn!} = {(gx, hx): x E w}. 

Then for any x E w, 

fx ~ hp.y(gy = x), 

so f is partial recursive. o 
We now turn to the study of some special r.e. sets. 

Definition 6.17 
(i) A set A c:; w is productive if there is a recursive function f (called a 

productive function for A) such that for all e E w, if Dmn cp! c:; A then 
fe E A '" Dmn cp!. 

(ii) A set A c:; w is creative if A is r.e. and w '" A is productive. 
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Thus a productive set A is strongly not recursively enumerable: there is 
an effective procedure for finding members of A ~ B for any r.e. subset B 
of A. A creative set, while r.e., is strongly nonrecursive. The sets of Godel 
numbers of theorems of many theories studied in Part III are creative, as we 
shall see. 

Recall Definition 6.4. 

Theorem 6.18. K is creative. 

PROOF. By 6.5, K is r.e. Now U6 is a productive function for w ~ K. For 
if e E wand Dmn cp! s; w ~ K, then e E (w ~ K) ,..., Dmn cP;; for 

e E K => e E Dmn cP; 
=>eEw~K 

by definition of K, 6.4 
by assumption Dmn cp; s; w ~ K 

so e E w ~ K, and hence by definition of K, e if: Dmn cp;. D 

The next theorem shows that, in a sense, any r.e. set can be obtained from 
a creative set; cf. 6.10 and the initial section of Chapter 7. 

Theorem 6.19. If A is r.e. and C is creative, then there is a recursive function 
f such that A = f-aC. 

PROOF. Say A = Dmn cpa, and let g be a productive function for w ~ C. 
For any x, y, Z E w let 

/(Z, y, x) ~ !-,u[z = gsHx, y)] + cpity. 

Thus / is partial recursive. By the recursion theorem (5.15) choose e E w such 
that for all y, Z E w, 

/(Z, y, e) ~ cp~(z, y). 

Letfy = gsHe, y) for ally E w. We claim that A = f-aC. Sincefis obviously 
recursive, this will complete the proof. 

First suppose that YEA. Then 

(1) Dmn cpl(si(e, y» = {gsHe, y)}. 

In fact, by 5.13 we have 

Z E Dmn cpl(sHe, y» iff (z, y) E Dmn cp~ 
iff (z, y, e) E Dmn / (by choice of e) 
iff Z = gsHe, y) and y E Dmn CPa 
iff z = gsHe, y). 

Thus (1) holds. Now if fy if: C, this means that gsHe, y) if: C and so by (1) 
Dmn cpl(si(e, y» s; w ~ C. Since g is a productive function for w ~ C we 
would get 

gsi(e, y) E (w ~ C) ~ Dmn cpl(si(e, y», 

contradicting (1). Thusfy E C. 
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Second, suppose that y rf. A. Then y rf. Dmn cp~, so Vz (z, y, e) rf. Dmn I, 
hence Vz«z, y) rf. Dmn cp~), so by 5.13 Dmn cpl(sl(e, y» = o. Thus, since g is 
productive, 

Iy = gsl(e, y) E (w ,..., C) ,..., Dmn cpl(sl{e, y», 

in particular Iy rf. C, as desired. o 

The following result will not play a role in our logical discussion, but is 
important in the general theory of r.e. sets. See also the definition and results 
concerning simple sets below. 

Theorem 6.20. If A is productive, then A has an infinite recursive subset. 

PROOF. By 6.8 it suffices to show that A has an infinite r.e. subset. Letfbe 
a productive function for A. For any x, y, let 

k(y, x) ~ lLi(i :::; Ix and y = (x)j ..:.. 1). 

Clearly k is partial recursive; say k = cp~. Now for any x E w, 

(1) Dmn cpl(sl(e, x» = {(x)j ..:.. 1 : i :::; Ix}. 

In fact, for any yEw, 

Y E Dmn cpl(sHe, x» iff (y, x) E Dmn cp~ iff (y, x) E Dmn k 
iff 3i :::; lx(y = (x)j ..:.. 1). 

Now let r be such that cp: = O,and define 

g(x, y) = Ir if y = 0 or 1, 
g(x, y) = fsHe, y) if y :F 0 and y :F 1. 

Thus g is recursive. Now define t: w --+ w by setting, for any x E w, Ix = 
g(x, Ix). Here ix is defined in 2.31, and by 2.33, t is recursive. Now we claim 
for all x E w, 

(2) Ix E A ,..., {IY : y < x}. 

We establish (2) by induction on x. For x = 0, 

10 = g(O, 10) = g(O, 1) = Ir E A 

(since cp: = 0 £: A andlis a productive function for A). Thus (2) holds for 
x = O. Suppose (2) holds for all x' < x, where x :F O. Then tx = g(x, Ix), 
and ix :F 0, 1, so Ix = IsI(e, Ix). Also 

Dmn cpl(sHe, ix» = {ty : y < x} £: A 

by (1) and the induction hypothesis. Since I is a productive function for A, 
tx = IsHe, Ix) E A ,..., {ty: y < x}, as desired. Thus (2) holds. Hence Rng I is 
an infinite r.e. subset of A, and the proof is complete. 0 
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We now give a method to arrive at creative sets. 

Definition 6.21 
(i) Two sets A and B are recursively separable if there is a recursive set 

C such that A S; C and B S; w ~ C. 
(ii) A and B are recursively inseparable if they are disjoint but not 

recursively separable. 
(iii) A and B are effectively inseparable if they are disjoint and there is a 

2-ary recursive function f such that for all e and r, if A S; Dmn c.p!, 
E S; Dmn c.p;, and Dmn c.p! n Dmn c.p; = 0, then fee, r) E W ~ (Dmn 
c.p! u Dmn c.p;). 

Effectively inseparable sets will be constructed in abundance in Part III; 
most undecidability results actually yield such sets. 

Obviously we have: 

Theorem 6.22. If A and B are effectively inseparable then they are recursively 
inseparable. 

The converse of 6.22 fails; see Exercises 6.47, 6.48. 

Theorem 6.23. If A and B are recursively enumerable and effectively insepar-
able, then both A and B are creative. 

PROOF. By symmetry it suffices to show that A is creative, i.e. that w ~ A 
is productive. Letfbe as in 6.21{iii). Say A = Dmn c.pt and B = Dmn c.p~. 
For any e, x E w let 

g(x, e) ~ /Ly«e, x, y) E Tl or (s, x, y) E Tl). 

Thus Dmn g = {(x, e) : x E Dmn c.p~ U B}. Clearly g is partial recursive; say 
g = c.p~. Now for any e E w we have, by 5.13, 

(I) Dmn c.pl(ster, e)) = {x: (x, e) E Dmn c.p;} = Dmn c.p! U B. 

Let for any e E w he = feu, ster, e)). Thus h is recursive; we claim It IS a 
productive function for w ~ A. In fact, suppose Dmn c.p~ S; w ~ A. Then, 
using (I), A = Dmn c.pt, B S; Dmn c.pl(siCr, e», and Dmn c.p~ n 
Dmn c.pl(si(r, e» = 0. Hence, by 6.21 (iii), he = feu, siCr, e» E w ~ 

(Dmn c.p~ U Dmn c.pl(si(r, e»), i.e., he E w ~ (A u Dmn c.p! U B), so he E 

(w ~ A) ~ Dmn c.p!, as desired. 0 

Theorem 6.24. There exist two recursively enumerable effectively inseparable 
sets. 

PROOF. Let 
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KI = {x: 3y[«x)o, x, y) TI and Vz ~ y«(xh, x, z) tic T 1)]}, 

K2 = {x: 3Y[«X)I' x, y) E TI and Vz ~ y«(x)o, x, z) tic TI)]}. 
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Clearly K1 and K2 are r.e. and K1 n K2 = O. For any e, r E w let/(e, r) = 
2T ·3e• To verify 6.21(iii), assume that K1 s;: Dmn c:p~ and K2 s;: Dmn c:p; with 
Dmn c:p~ n Dmn c:p; = O. Suppose I(e, r) E Dmn c:p! u Dmn c:p;. By sym
metry, say I(e, r) E Dmn c:p~. Thus 3y«e, 2T • 3e, y) E T1), and since Dmn c:p; n 
Dmnc:p; = 0, obviously 'rfz«r, 2r ·3e, z) ¢=T1)' Thus 2T ·3e EK2 , so 2r ·3e E 

Dmn c:p;, contradiction. 0 

The next theorem gives an important method of producing new effectively 
inseparable sets from old ones: 

Theorem 6.25. Suppose that A and B are effectively inseparable, I is a unary 
recursive lunction, C, D s;: w, C n D = 0, A s;: 1-1*C, and B s;: 1-1* D. 
Then C and D are effectively inseparable. 

PROOF. Let h be a function given by 6.21 (iii) because A and B are effectively 
inseparable. For any e, x E w, let g(x, e) ~ f.Ly«e,lx, y) E T1)' Thus g is 
partial recursive; say g = c:p;. Now we can define a function k intended to 
satisfy 6.21(iii) for C and D: for any e, u E w, let k(e, u) = Ih(s}{r, e), sHr, u». 
Thus k is recursive. In order to verify 6.21(iii), assume that C s;: Dmn c:p~ 
and D s;: Dmn c:p~, where Dmn c:pi n Dmn c:p~ = O. It follows that A s;: 

1-1* Dmn c:p~, B s;: 1-1* Dmn c:p~, and I-a Dmn c:p~ n I-a Dmn c:p~ = O. 
Now for any x E w, 

iff Ix E Dmn c:p~ 
iff 3y«e,Jx, y) E T1) 
iff (x, e) E Dmn g = Dmn c:p; 
iff x E Dmn c:p1sHr, e). 

Similarly,J-a Dmn c:p~ = Dmn c:p1sHr, u). Thus A s;: Dmn c:p1(s~(r, e), B s;: 

Dmn c:p1sHr, u), and Dmn c:p1sHr, e) n Dmn c:p1s~(r, u) = O. Hence by choice 
of h, h(s~(r, e), s~(r, u» E w ~ (Dmn c:p1sHr, e) U Dmn c:p1s~(r, u»), and hence 
k(e, u) E w ~ (Dmn c:p~ U Dmn c:pD, as desired. 0 

As our final topic in this chapter we briefly consider a kind of r.e. set much 
different from creative sets. We introduce them partly to give a class of sets 
which are not creative, and partly because there is a big literature concerning 
them. 

Definition 6.26. A set A s;: w is simple if A is r.e., w ~ A is infinite, and 
B n A # 0 whenever B is an infinite r.e. set. 

Theorem 6.27. A simple set is neither recursive nor creative. 

PROOF. If A is simple and recursive, then w ~ A is an infinite r.e. set and 
A n (w ~ A) = 0, contradiction. If A is simple and creative, by 6.20 choose 
B infinite recursive such that B s;: w ~ A. Contradiction. 0 
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Theorem 6.28. Simple sets exist. 

PROOF. Let g be a recursive function universal for unary primitive recursive 
functions (see Lemma 3.5). For any e E w let 

Thus f is partial recursive. For each e E w let o/ex = gee, x) for all x E w. 

Clearly for any e E w, 

(1) 
(2) 

if e E DmnJ, thenfe E Rng o/e andfe > 2e; 
if Rng o/e is infinite then e E Dmn f 

Now Rngfis simple. For, it is obviously r.e. Suppose B is any infinite r.e. 
set. By choice of g, choose e E w so that Rng o/e = B. By (2) and (l),fe E Rng o/e. 
Thus B (') Rngf i= O. Finally, to show that w ~ Rngfis infinite, note 

(3) if nEw, then 2n (') Rng f s f*n. 

For, let i E 2n (') Rngf Say i = fj. By (1), 2j < fj, so 2j < i < 2n. Thus 
j < n, so i E f*n. 

Since (3) holds, 12n (') Rngfl ::::; n, hence 12n ~ Rngfl ;::: n, for any 
nEw. Thus w ~ Rng f is infinite. 0 
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EXERCISES 

6.29. Let f: w -->- w. Then the following conditions are equivalent: 

(1) f is recursive; 
(2) {(x, fx) : x E w} is an r.e. relation; 
(3) {(x, fx) : x E w} is a recursive relation. 

6.30. Prove that the class of r.e. sets is closed under union and intersection using 
the argument following 6.8, but rigorously. 

6.31. Show that if A is a Ln-set, n > 0, and f is partial recursive, then f* A is Ln. 

6.32. If A and Bare r.e. sets, then there exist r.e. sets C, D such that C s; A, 
D s; B, CuD = A u B, and C II D = O. 

6.33. Suppose that f and g are unary recursive functions, g is one-one, Rng g is 
recursive, and Vx(fx ~ gx). Show that Rngfis recursive. 
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6.34. For each of the following determine if the set in question is recursive, r.e., 
or has an r.e. complement: 

(1) {x: there are at least x consecutive 7's in the decimal representation of 7T}; 
(2) {x: there is a run of exactly x consecutive 7's in the decimal representa-

tion of 7T}; 
(3) {x: cpi is total}; 
(4) {x: Dmn cpi is recursive}. 

6.35. There are No r.e. sets which are not recursive. 

6.36. There is a recursive set A such that nxeA Dmn cp; is not r.e. 

6.37. If A is productive, then so is {e: Dmn cpi sA}. 

6.38. There are 2Ko productive sets. Hint: Let A = {e: Dmn cpi s w ~ K}. 
Show that A s w ~ K, (w ~ K) ~ A is infinite, and any set P with 
AsP s w ~ K is productive. 

6.39. Any infinite r.e. set is the disjoint union of a creative set and a productive 
set. Hint: say Rng / = A. Let gn = /fJ-i(fi of- gj for all j < n). Show that 
g*K is creative and A ~ g*K is productive. 

6.40. If B is r.e. and A n B is productive, then A is productive. 

6.41. There is an r.e. set which is neither recursive, simple, nor creative. Hint: 
let A be simple and set B = {x : (x)o E A}. 

6.42. For A s w the following are equivalent: 

(1) A is recursive and A of- 0; 
(2) there is a recursive function/with Rngj = A and '<Ix Ew(fx ~ /(x + 1». 

6.43. For A s w the following are equivalent: 

(1) A is productive; 
(2) there is a partial recursive function j such that '<Ie E w (if Dmn cp~ s A 

then /e is defined and /e E A ~ Dmn cpD. 

6.44. If A is creative, B is r.e., and A n B = 0, then A u B is creative. 

6.45. There is a set A such that both A and w ~ A are productive. 

6.46. If A is productive and B is simple, then A n B is productive. 

6.47. Two sets A and B are strongly recursively inseparable if A n B = 0, w ~ 

(A u B) is infinite, and for every r.e. set C, C ~ A infinite",," en B of- 0, 
C ~ B infinite",," en A of- O. Show that if A and Bare r.e. but strongly 
recursively inseparable, then: 

(I) A and B are recursively inseparable. 
(2) A u B is simple. 
(3) neither A nor B is creative. 
(4) A and B are not effectively inseparable. 

6.48. Show that there exist two r.e. strongly recursively inseparable sets. Hint: 
let E = ({e, x) : 3y«e, x, y) E T I)}. Show that there exist recursive functions 
f, g such that 

E = {(fi,gi): i < w}. 
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Show that there exist recursive functions h, k such that 

hO = fLi(gi > 3fi); 
kO = fLi(gi > 3fi and gi 0/ ghO); 

h(n + 1) = fLi(gi > 3fi & Vj :s; n(gi 0/ gkj) & 
Vj :s; n(fi 0/ fhj) & Vj :s; n(gi 0/ ghj); 

k(n + 1) = fLi(gi > 3fi & Vj :s; n + l(gi 0/ ghj) & 
Vj :s; n(fi 0/ fkj) & Vj :s; n(gi 0/ gkj». 

Let A = Rng (g 0 h), B = Rng (g 0 k). 



Survey of 
Recursion Theory 7 

We have developed recursion theory as much as we need for our later 
purposes in logic. But in this chapter we want to survey, without proofs, some 
further topics. Most of these topics are also frequently useful in logical 
investigations. 

Turing Degrees 
Let g be a function mapping w into w. Imagine a Turing machine equipped 

with an oracle-an in penetrable black box-which gives the answer gx when 
presented with x. The function g may be nonrecursive, so that the oracle is 
not an effective device. Rigorously, one defines a g-Turing machine just like 
Turing machines were defined in 1.1, except that Vb ... , V2m are arbitrary 
members of {O, 1,2,3,4, 5}. And one adds one more stipUlation in 1.2: 

If w = 5, and F(e - 1) = 0 or Fe = 1, then F' = F, d' = f, 
e' = e, while ifw = 5 and 0 l(x+l) 0 lies on Fending at e, then 
o l(x+l) 0 l(gx+l) 0 lies on F' ending at e', e' = e + gx + 2, 
F' is otherwise like F and d' = f 

Then the notion of g-Turing computable function is easily defined. 
One can also define g-recursive function: in 3.1, each class A is required 

to have g as a member. These two notions, g-Turing computable and g
recursive function, are shown equivalent just as in Chapter 3. In fact, most 
considerations of Chapters 1 through 6 carryover to this situation. If h is 
g-recursive, we also say that h is recursive in g. One can extend the notion in 
an obvious way to a set of F of functions, arriving at the notion of a function 
being recursive in F. At present we restrict ourselves to the simpler notion. 
We say that hand g are Turing equivalent if each is recursive in the other. 
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This establishes an equivalence relation on the set of all functions mapping 
w into w. The equivalence classes are called Turing degrees of unsolvability. 
Each equivalence class has at most No members (actually exactly No, as is 
easily seen), since there are only No possible Turing machines with oracles. 
Clearly then there are exp No degrees. Let D be the set of degrees. For a, 

f1 E D we write a =:;; f1 provided there exist f E a and g E f1 with f recursive 
in g. This relation =:;; makes D into a partially ordered set. Clearly the degree 
of recursive functions, denoted by 0, is the least element of D. 

Many of the important results about D are concerned with trying to 
describe the partial ordering =:;;. A complete description is far from being 
known. The rather scattered results which we now want to mention are 
among the strongest facts known. Some of their proofs are quite complicated, 
involving priority arguments, a kind of argument seemingly unique to this 
area. 

Proposition 7.1. Any two elements of D have a least upper bound. 

Theorem 7.2. There exist two elements of D without a greatest lower bound. 

Theorem 7.3. In D, no ascending sequence ao < al < ... has a least upper 
bound. 

Proposition 7.4. Every element of D has only countably many predecessors. 

An element a of D is minimal, if 0 < a and there is no f1 with 0 < f1 < a. 

Theorem 7.5. There are exp No minimal degrees. 

A subset E of D is an initial segment of D provided that for all a, f1 E D, 
if a < f1 E E, then a E E. 

Theorem 7.6. Any finite distributive lattice can be embedded as an initial 
segment of D; likewise any countable Boolean algebra and any countable 
ordinal. 

One of the main open problems in the theory of degrees is the conjecture 
that every finite lattice can be embedded as an initial segment in D. 

There are some special degrees of particular importance for applications 
to logic. A degree a is recursively enumerable (r.e.) provided that XA E a for 
some r.e. set A. Note that there are only No r.e. degrees. We let 0' be the 
degree ofXK' We know from Theorem 6.19, p. 98 that XB E 0' for any creative 
set B; and 0' is the largest r.e. degree. 

Theorem 7.7. No r.e. degree is minimal. 

Theorem 7.S. There are two minimal degrees with join 0'. 
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Corollary 7.9. There are degrees :::;0' which are not r.e. 

Theorem 7.10. For every nonzero r.e. degree Ct. there is a minimal degree:::; Ct.. 

Partial Recursive Functionals 
A partial functional is a function F such that for some m, nEw, the domain 

of F is a subset of m("'w) x nw, while the range of F is a subset of w; addi
tionally we assume m + n > O. In case m = 0 we are dealing with the partial 
functions of Chapter 5. In case the domain of F is all of m("'w) X nw, we call 
F total. An (m, n)-relation R is any subset of m("'w) x nw. We now wish to 
give a reasonable meaning to F and R being recursive, and to R being recur
sively enumerable. Since a function cannot be presented in its entirety to a 
machine it is natural to seek a definition of these notions in which only initial 
segments of functions are given. If Ql = (fo, ... , fm -10 Xo, ... , Xn -1) E 

m("'w) X nw, we let for any yEw 

~Y = (loy,·· .,In-1Y, XO,···, Xn- l ) Em+nw. 

Now we say that an (m, n)-relation R is recursively enumerable (r.e.) provided 
that there is an (m + n + 1 )-ary recursive relation ssm + n + lw such that 
for all Ql E m("'w) X nw, 

QlER iff 3x E w[(~x, x) E S]. 

Obviously this definition coincides with the definition of r .e. relation if m = O. 
The definition is motivated as follows. We generate the members of S one 
after the other. Having generated a member (Yo, ... , Ym-l, zo, ... , Zn-1o x) 
of S, we have implicitly generated each member Ql of R such that ~x = 
(Yo, ... , Ym-l, zo,···, Zn-l). Eventually each member of R is generated in 
this fashion. A partial functional F is partial recursive provided that its graph 

R = {(Qt, x) : Ql E Omn F, FQl = x} 

is r.e. Again this notion coincides with the old definition for m = O. Given 
~l E Omn F, clearly the above generation of R constitutes an effective calcu
lation of FQt (provided there is some way to recognize effectively that ~x = 

(Yo, ... ,Ym-lo Zo, ... , Zn-l) for given (Yo, ... , Ym-l, Zo, ... , Zn-l». An (m, n)
relation R is recursive provided XR is recursive. These definitions form the 
basis for a generalized recursion theory. This generalization, expounded at 
length in Shoenfield [9], has many of the properties of ordinary recursion 
theory; the enumeration, iteration, and recursion theorems carryover, as 
well as the considerations concerning the arithmetical hierarchy. As is sug
gested above, there is a strong connection between generalized recursion 
theory and relative recursiveness: 

Theorem 7.11. A function f: w -+ w is recursive in a function g: w -+ w iff 
there is a total recursive functional F: "'w x w -+ w such that for all XE w, 

fx = F(g, x). 
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The notion of a functional also enables one to clarify the role of the sets 
~n in the arithmetical hierarchy: 

Theorem 7.12. A relation is ~n+ 1 iff it is recursive in {xA: A is IIn} iff it is 
recursive in {xA: A is ~n}. 

The notion of recursive functionals also makes possible the construction 
of a new hierarchy. An (m, n)-relation R is ~~ (resp. rr~) where m ~ 1 pro
vided there is a recursive relation S so that for all mE m(ww) X nw we have 

where Ql> ... , Qm are quantifiers V or 3 on functions (members of "'w), 
alternately V and 3 (with Ql = 3 (resp. Ql = V), while Qm+ 1 is a quantifier 
Vx or 3x on numbers. By collapsing quantifiers, it is easy to see that any 
second-order prefix can be put in this form (see Chapter 30). The classification 
of relations in the sets ~~ and rr~ forms the analytical hierarchy. Again we 
set ~~ = ~~ (\ rr~. The theory of this hierarchy shows considerable simi
larity, in results and proofs, to the classical topological theory of analytic 
sets. For example, we have 

Theorem 7.13 If P and Q are disjoint ~i relations, then there is a ~i relation 
R such that P s Rand Q S ~ R. 

Isols 
Two sets A, B s ware said to be recursively equivalent if there is a one-one 

partial recursive function f such that A S Dmn f and f* A = B. This estab
lishes an equivalence relation on the set of all subsets of w; the equivalence 
classes are called recursive equivalence types (RET's). They are the effective 
version of cardinal numbers. 

Proposition 7.14. If IX and {3 are RET's, then there exist A E IX and B E {3 such 
that A and B are recursively separable. 

Proposition 7.15. If IX and {3 are RET's, A, A' E IX, B, B' E {3, A and Bare 
recursively separable, and A' and B' are recursively separable, then ~ u B 
is recursively equivalent to A' u B'. 

By 7.14 and 7.15, we can define a binary operation + on RET by setting 
IX + {3 = recursive equivalence type of A u B, where A E IX, B E {3, and A and 
B are recursively separable. 

Recall the function J2 from 3.60. It is a one-one function mapping w x w 

onto w. 

Proposition 7.16. If IX, {3 E RET, A, A' E IX, and B, B' E {3, then J~(A x B) 
is recursively equivalent to J~(A' x B'). 
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It follows that we can define . on RET by setting a· [:3 = recursive equiv
alence type of J~(A x B), where A E a and BE [:3. 

Proposition 7.17. Addition and multiplication of RET's are commutative and 
associative. Multiplication is distributive over addition. 

The structure (RET, +, .) is not, however, a ring, and it cannot be em
bedded in a ring. This can be seen for example, from the fact that a + [:3 = a 

where a and [:3 are respectively the recursive equivalence types of wand of 1. 
Since [:3 + [:3 =I [:3, [:3 is not the additive zero of (RET, +, .), so this structure 
cannot even be embedded in a ring. 

For each nEw, let ii be the recursive equivalence type of n. Then - is an 
isomorphic embedding of (w, +, .) into (RET, +, .). 

The structure (RET, +, .) has a simple substructure which is much more 
closely related to (w, +, .). To define it, let us call a set A S w isolated if it 
is not recursively equivalent to any proper subset B cA. An RET a is an isol 
if it has an isolated member. We denote by ISOL the collection of all isol's. 

Theorem 7.18. ISOL is closed under + and '. For any a, [:3, y E ISOL we 
have: 

(i) a + [:3 = a + y implies [:3 = y; 
(ii) a·[:3 = a·yanda =I o imply [:3 = y; 

(iii) (w, +, .) is a substructure of (ISOL, +, .). 

The structure (ISOL, +, .) can be embedded in a ring ISOL *, which has 
the ordinary ring of integers as a substructure. It has many interesting 
properties. Since it has zero divisors, it cannot be embedded in a field. 

Recursive Real Numbers 

It is natural to try to effectivize common notions of mathematics, such as 
the notion of a real number. We give here a few of the relevant definitions 
and results. 

Let Q be the set of rational numbers. A sequence r E wQ is recursive iff 
there exist unary recursive functions/, g, h such that for all nEw, 

rn = (fn - gn)/(l + hn). 

Thus if en = 1/2n for all nEW, then e is recursive. In fact we may take fn = 
for all n, gn = 0 for all n, and hn = 2n - 1 for all n. Now a recursive sequence 
r E wQ recursively converges to a real number a provided there is a unary 
recursive function k such that for all nEw and all n ~ km we have Irn - al < 
em. A real number a is recursive if there is a recursive sequence of rationals 
which recursively converges to a. 
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Theorem 7.19. The set of recursive real numbers forms a sub field F of the 
field of real numbers. Every rational number is recursive. F is countable. 

There is a Cauchy recursive sequence of rationals which does not converge 
recursively. 

Theorem 7.20. If r E wI!) is recursive, strictly monotone, converges to a recur
sive real number a, then r recursively converges to a. 

A sequence r E OJ Fis recursive provided there are binary recursive functions 
f, g, h, k such that for all m, nEw and all p ;::.: k(m, n) we have 

Jrn - {[f(p, n) - g(p, n)]/[l + h(p, n)]}i < em. 

Many other concepts of ordinary mathematics can be given effective formula
tions in a similar way. 

Word Problem for Groups 

There is a classical problem in group theory which has been given a 
negative solution using notions of recursive function theory. We shall give a 
precise formulation of it. Let X be a nonempty set. We form the free group 
generated by X as follows. For each x E X let x' = (X, x). Note that' is a 
one-one function whose range is disjoint from X. A finite sequence (perhaps 
0) of elements of X u Rng' is called a word on X; we let Wx be the set of all 
words on X. Let == be the smallest equivalence relation on Wx containing 
all pairs (0, aa') and (0, a'a) with a EX. It is easily seen that if a, b, c, dE Wx, 
a == b, and c == d, then ac == bd. Hence there is a binary operation . on the 
set Fx of equivalence classes under == such that [a]· [b] = [ab] for all a, 
bE Wx. Under this operation Fx becomes a group, called the free group 
generated by X. A defining relation over X is a pair (a, b) of words over X. 
If R is a set of defining relations over X, we let R* be the normal subgroup 
of Fx generated by all elements [a]· [b ]-1 with (a, b) E R. Let FX,R = FxIR*. 
A group G is determined by generators X and defining relations R if it is 
isomorphic to FX,R; then (X, R) is a presentation of G. It is easily seen that 
every group has a presentation. If X and R are finite, then (X, R) is ajinite 
presentation and G is finitely presentable. If f is a one-one map of X u X' 
into w, then any word x of Wx can be given a G6del number fffX by 

fffX = n p{Xi+1 
i<m 

where x is oflength m. We say that the word problem for (X, R) is recursively 
solvable provided that for some such f, 

is recursive, where h is the natural homomorphism of Fx onto FX.R' For X 
and R finite, this definition does not depend on the choice off 
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Theorem 7.21 (Novikov). There is a group G with ajinite presentation (X, R) 
which is recursively unsolvable. Thus there is no automatic procedure for 
determining of a pair of words (a, b) whether they become equal upon 
applying the relations in R. 

Solvability of Diophantine Equations. 

A diophantine equation is an equation of the form P(xo, ... , Xm -1) = 0, 
where P(xo, ... , Xm -1) is a polynomial in indeterminants x o, ... , Xm -1 with 
integer coefficients. A classical problem of number theory, called Hilbert's 
tenth problem (see Davis [2]) is whether there is an automatic method for 
determining whether an arbitrary diophantine equation has an integral solu
tion. By means of Godel numbering this question can be given a rigorous 
form. The answer (Theorem 7.24) is negative, and follows from an even 
stronger result which we now want to formulate. An n-ary relation R c::; nw 
is called diophantine if there is a polynomial P(xo,···, Xn-1, Yo,···, Ym-1) 
with integral coefficients such that 

R = {x E nw : there exist Yo, ... , Ym-1 E w such that 
P(xo,···, Xn -1, Yo,···, Ym-1) = O}. 

Theorem 7.22 (J. Robinson, M. Davis, Y. Matiyasevic). A relation is r.e. iff 
it is diophantine. 

As an interesting corollary we have 

Theorem 7.23. There is a polynomial with integral coefficients such that its 
positive values, when members of ware substituted, are exactly all positive 
primes. 

It is also easy to derive the solution to Hilbert's tenth problem from 7.22: 

Theorem 7.24. There is no automatic method which, presented with a dio
phantine equation e, will decide whether e has a solution. 
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PART II 

Elements of Logic 



We now begin the study oflogic proper. In this part we shall introduce the 
basic notions of a first-order language and the structures appropriate for it. 
We shall only present here the most basic definitions and results, up to and 
including the completeness theorem-which expresses the most important 
relationship between the syntactical and semantic notions. In Parts III and 
IV many deeper results in these two domains will be found. The emphasis 
throughout this book, as well as in the mathematical world, is on first-order 
languages. There are many other languages, some of which will be briefly 
discussed in Part V. First-order languages are, roughly speaking, the simplest 
languages with which one can conveniently formulate any mathematical 
theory. Moreover, one can prove about these languages and their structures 
many interesting and useful results which cannot be extended to more 
involved languages. 



Sentential Logic 8 

Before considering first-order languages we consider some simpler lan
guages, whose study will be a simplified model of the more involved study 
of first-order languages themselves. These sentential languages enable one to 
express only such primitive logical notions as not, implication, and, or, etc. 
These connectives between sentences are such that the truth of a complicated 
sentence can be inferred just from the truth or falsity of its components. 

We shall choose two of these connectives, negation and implication, as 
primitive, and show at a later stage that all other connectives can be ex
pressed in terms of them. We show how the notion of a sentence can be 
rigorously defined, how axioms for valid sentences can be given, and the 
connection between the axioms and the notion of truth. In the exercises we 
outline the theories of some nonclassical versions of logic, such as three
valued and intuitionistic logic. 

Definition 8.1. A sentential language is a triple (n, c, P) such that n =F c, 
{n, c} n P = ~, and P =F O. 

We think of nand c as a negation symbol and implication symbol respec
tively, while P is a set of atomic, indivisible sentences. With these intuitive 
meanings it is possible to define in a rigorous way additional intuitive 
notions, such as an expression-any sequence of symbols-and a sentence
an expression which has a meaningful form: 

Definition 8.2. Let f?l' = (n, c, P) be a sentential language. The set {n, c} uP 
is the set of symbols of f?l'. An expression of f?l' is any finite sequence of 
symbols of f?l'; the empty set (=empty sequence) is admitted. We define 
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one-place and two-place operations ..., and ~ on the set of expressions 
by setting 

""rp = (n)rp, 
rp ~,p = (c)rp,p, 

for all expressions rp and ,po Recall from 1.11 that rp,p is just the juxta
position of the two finite sequences rp and ,po Sent&" the set of sentences of 
fYjJ, is the intersection of all classes r of expressions of fYjJ such that <s) E r 
for each s E P and r is closed under ..., and ~. 

Note that we have not used parentheses in our language; the notation used 
here and later on is parenthesis-free, or Polish notation. Of course we shall 
use parentheses freely in our informal language (metalanguage). For example, 
rp ~ (,p ~ x) has a clear meaning for expressions rp, ,p, x; in fact, it is the 
same as the expression <c)rp<c),pX. The most important feature of the paren
thesis-free notation, as well as the more usual notation with parentheses, is 
the unique readability of sentences (Theorem 8.5). 

Throughout this section, unless otherwise indicated, fYjJ = (n, c, P) will be 
a fixed but arbitrary sentential language; also, we shall use small Greek letters 
to denote sentences, and large ones to denote sets of sentences. The following 
two obvious results will be used frequently: 

Proposition 8.3 (Induction principle for sentences). If <s) E r for each s E P 
and r is closed under..., and~, then Sent&, s; r. 

Proposition 8.4 (Construction sequence for sentences). rp E Sent&, ifJ'there 
is a finite sequence <,po, ... , ,pn -I) of expressions of fYjJ such that n > 0, 
,pn -1 = rp, and for each i < n one of the following condition holds: 

(i) ,pi = <s) for some s E P; 
(ii) ,pi = "",pdor some j < i; 

(iii) ,pi = ,pj ~ ,pkfor some j, k < i. 

With regard to 8.4, cf. Proposition 2.3. 

Theorem 8.5 (Unique readability) 
(i) Every sentence is of positive length. 

(ii) If rp is a sentence, then either rp = (s) for some s E P, rp = ...,I/J for some 
sentence ,p, or rp = ,p ~ X for some sentences ,p, x. 

(iii) Ifrp = <rpo,···, rpm-I) is a sentence and i < m - 1, then <rpo,···, rpi) 
is not a sentence. 

(iv) In (ii), the three possibilities are mutually exclusive, and the sentences 
,p and X are uniquely determined by rp. 

PROOF. Conditions (i) and (ii) are easily established using 8.3; for example, 
to prove (i) we let r be the set of all expressions of positive length. We estab
lish (iii) by induction on m. If m = 1, then by (ii) and (i), rp = <s) for some 
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S E P. Then (iii) holds, by (i). Now assume, inductively, that m > 1. By (ii) 
we have two cases. First suppose 'P = .ifJ for some sentence ifJ· Thus 'Po = n, 
and ifJ = <'P1> ... , 'Pm-I). If <'PO, ... , 'Pi) is a sentence, then by (ii) we easily 
infer that <'P1> ... , 'Pi) is a sentence, contradicting the induction hypothesis, 
since ifJ is a sentence. Second, suppose 'P = ifJ - X for sentences ifJ and X, 
and suppose the hypothesis of (iii) holds. Then 'Po = c, and there is a j with 
1 < j < m - 1 and ifJ = <'P1> ... , 'Pi), X = <'Pi+l, ... , 'Pm-I)· Suppose that 
<'Po, ... , 'Pi) is a sentence. Then by (ii) there are sentences e, a such that 
<'Po, ... , 'Pi) = e - a; hence there is a k with 1 < k < i such that e = 

<'P1> ... , 'Pic) and a = ('Pic + 1, ... , 'Pi). Since k, j < m - 1 and ifJ and e are 
sentences, the induction hypothesis gives k = j. But then a is a proper initial 
segment of X, contradicting the induction hypothesis. 

Part (iv) is easily established using (iii). 0 

From 8.5 the following result of a purely set-theoretical nature follows. 

Theorem 8.6 (Recursion principle for sentences). Let A be any set, f a 
function mapping P into A, g afunction mapping A x Sent&, into A, and h a 
function mapping A x A x Sent&, x Sent&, into A. Then there is a unique 
function k mapping Sent&, into A such that the following conditions hold: 

(i) k<s) = fsfor all s E P, 
(ii) k • 'P = g(k'P, 'P) for every sentence 'P, 

(iii) k('P - ifJ) = h(k'P, kifJ, 'P, ifJ) for all sentences 'P, ifJ· 

We shall now define the syntactical notion of theorem in a sentential logic. 
Here we meet in its most primitive form the very important process of 
axiomatization in mathematics. In this case we wish to axiomatize the notion 
of logical truth appropriate for the primitive logic we are now dealing with. 

Definition 8.7. A sentence is a logical axiom of g> iff it has one of the 
following forms (where 'P, ifJ, X are arbitrary sentences): 

(Al) 'P - (ifJ - 'P), 
(A2) ['P - (ifJ - x)] - [('P - ifJ) - ('P - X)], 
(A3) (''P - ·ifJ) - (ifJ - 'P). 

Now let r be a set of sentences. The set of r-theorems&, is the intersection 
of all sets II of sentences such that r c:::::: ll, each logical axiom is in ll, and 
ifJ Ell whenever 'P Ell and 'P - ifJ Ell. We say that ifJ is obtained from 'P 
and 'P - ifJ by detachment or modus ponens. We write r I-&, 'P to abbreviate 
"'P is a r-theorem&,," and we write I-&,'P for 0 I-&, 'P. The subscript g> is 
frequently omitted. 

We give one of the usual consequences of a definition like 8.7: 

Theorem 8.8. r I- 'P iff there is a finite sequence < ifJo, ... , ifJm _ 1), m > 0, of 
sentences of g> such that ifJm -1 = 'P and for each i < m one of the following 
holds: 
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(i) .pi is a logical axiom of ~ 
(ii) .pi E r, 

(iii) .pic = .pi -7 .pi for some j, k < i. 

A sequence (.po, ... , .pm -1) as in 8.8 is called a formal proof of q; from the 
hypotheses r. 

Some simple but frequently useful properties of I- are given in the following 
theorem. 

Theorem 8.9. Let r, ~ S Sent&, and q;, .p E Sent&,. Then: 

(i) if ~ s r and ~ I- q;, then r I- q;; 
(ii) if r I- q;, then 0 I- q; for some finite subset 0 of r; 

(iii) if r I- X for each X E ~ and ~ I- q;, then r I- q;; 
(iv) if r I- q; and r I- q; -7.p, then r I- .p. 

Lemma 8.10. I-q; -7 q;. 

PROOF. Just this once we give a formal proof, with justifications listed in 
the column to the right. 

(1) {q; -7 [(q; -7 q;) -7 q;]} -7 {[q; -7 (q; -7 q;)] -7 (q; -7 q;)} A2 
Al (2) q;-7[(q;-7q;)-7q;] 

(3) [q; -7 (q; -7 q;)] -7 (q; -7 q;) 
(4) q;-7(q;-7q;) 
(5) q; -7 q; 

(1), (2), detachment 
Al 

(3), (4), detachment D 

Theorem 8.11 (Deduction theorem). If r u {q;} I- .p, then r I- q; -7 .p. 

PROOF. By induction on m we show that for every nonzero mEw, if 
(Xo, ... , Xm -1) is a formal proof of.p from r u {q;}, then r I- q; -7 .p. Suppose 
this is true for all n < m, and suppose (Xo, ... , Xm -1) is a formal proof of 
.p from r U {q;}. By 8.8 we have four cases: 

Case 1. .p is a logical axiom. Now I-.p -7 (q; -7.p) by AI, and obviously 
I-.p, so I-q; -7 .p and hence r I- q; -7 .p. 

Case 2. .p E r. This is treated similarly to Case 1. 
Case 3. .p = q;. By 8.10 we have I-q; -7.p; hence r I- q; -7.p. 
Case 4. 3j, k < m - I such that XIc = Xi -7.p. Now by the induction 

assumption r I- q; -7 XIc and r I- q; -7 Xi. The following r-proof shows that 
rl-q;-7.p: 
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The deduction theorem is a formalization of a common method of proof 
in mathematics. Frequently when one wants to establish an implication 
rp -+ rP in common mathematical reasoning, one first adjoins rp to the mathe
matical assumptions r. After arguing that rP holds, one concludes that rp -+ rP 
follows from the original assumptions. 

Now we show 1-0 for various sentences O. These facts will serve as lemmas 
for the completeness theorem, which enables us to check for 1-0 in a routine, 
mechanical way. 

Lemma 8.12. I-(rp -+ rP) -+ [(rP -+ X) -+ (rp -+ X)]. 

PROOF 
{rp -+ rP, rP -+ X, rp} I- rp 
{rp -+ rP, rP -+ X, rp} I- rp -+ rP 
{rp -+ rP, rP -+ X, rp} I- rP 
{rp -+ rP, rP -+ X, rp} I- rP -+ X 
{rp -+ rP, rP -+ X, rp} I- X 

{rp -+ rP, rP -+ X} I- rp -+ X 
{rp -+ rP} I- (rP -+ X) -+ (rp -+ X) 

I- (rp -+ rP) -+ [(rP -+ X) -+ (rp -+ X)] 0 

Easy applications of the deduction theorem give: 

Lemma 8.13. I-[rp -+ (rP -+ X)] -+ [rP -+ (rp -+ X)]· 

Lemma 8.14. I-rp -+ ('rp -+ rP). 
PROOF 

{!p, ,rp} I- 'rp -+ ('rP -+ ,rp) 
{!p, ,rp} I- 'rp 
{rp, ,rp} I- 'rP -+ 'rp 
{!p, ,rp} I- ('rP -+ ,rp) -+ (rp -+ rP) 
{!p, ,rp} I- rp -+ rP 
{rp, ,rp} I- rp 
{!p, ,rp} I- rP 

Two applications of the deduction theorem finish the proof. 

By a similar proof. or using 8.13, we get: 

Lemma 8.15. I-,rp -+ (rp -+ rP). 

Lemma 8.16. I-,,!p -+ rp. 

PROOF 
{ , ,rp} I- ""rp -+ "rp 
{ , ,rp} I- 'rp -+ "'rp 
{ , ,rp} I- "rp -+ rp 
{ , ,rp} I- rp 

I- "rp -+ rp 

Al 

A3 

using Al 
A3 
A3 

o 

o 
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Lemma 8.17. /-('P ~ !f) ~ ("'!f ~ "''P). 

PROOF 

{'P ~!f, "'!f, .., "''P} /- 'P 
{'P ~!f, "'!f, .., "''P} /- !f 
{'P ~!f, "'!f, .., "''P} /- "'!f 
{'P ~!f, "'!f, .., "''P} /- "''''!f 

{'P ~!f, "'!f} /- "'''''P ~ "''''!f 
{'P ~!f, "'!f} /- "'!f ~ "''P 
{'P ~!f, "'!f} /- "''P 

Lemma 8.18. /-'P ~ .., "''P' 

PROOF 

/- ('P ~!f) ~ ("'!f ~ "''P) 

{'P, ..,.., "''P} /- "''P 
{'P} /- "''''''''P ~ "''P 
{'P} /- 'P ~ "'''''P 
{'P} /- "'''''P 

Lemma 8.19. /-('P ~ "''P) ~ "''P. 

PROOF 

/- 'P ~ "'''''P 

{'P ~ "''P, .., "''P} /- 'P 
{'P ~ "''P, .., "''P} /- "''P 
{'P ~ "''P, .., "''P} /- "'('P ~ 'P) 

{'P ~ "''P} /- "'''''P ~ "'('P ~ 'P) 
{'P ~ "''P} /- ('P ~ 'P) ~ "''P 
{'P ~ "''P} /- "''P 

/- ('P ~ "''P) ~ "''P 

8.16 

8.15 

A3 

D 

8.16 

A3 

D 

8.16 

8.14 

8.10 
D 

Our last two lemmas are easily obtained using the methods in the proofs 
above. 

Lemma 8.20. /-( "''P ~ 'P) ~ 'P. 

Lemma 8.21. /-'P ~ ("'!f ~ "'('P ~ !f». 

Now we introduce a semantical consequence relation r 1= 'P. Roughly 
speaking, the difference between syntactical notions like /- and seman tical 
ones like 1= is this: Syntactical notions are defined purely in terms of the 
formal symbols, with only the mathematical notions being used which are 
essential for the definition. In semantical notions, however, mathematical 
ideas of a very different sort from formal notions play an essential role; 
almost always some version of the idea of a model, or mathematical realization, 
of the formal notions plays a role, along with a rigorous notion of truth. 
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Definition 8.22. Let f!JJ = (n, c, P) be a sentential language. Members of P2 
are called models of f!JJ. (Intuitively, 0 meansJalsity, I means truth, and a 
function J E P2 is just an assignment of a truth value to each sentence of 
P.) Using the recursion principle for sentences, we can associate with each 
J E P2 a functionJ+ : Sent&> -+ 2 such that for any s E P and any rp, 0/ E Sent&> 

J+<s) = Js, 
J+ • rp = 1 
J+ • rp = 0 

J+(rp -+ 0/) = 0 

ifJ+rp = 0, 
ifJ+rp = 1, 
iff J+rp = 1 andJ+rp = O. 

(f+ intuitively tells us about the truth or falsity of any sentence of f!JJ, 
given the truth or falsity of members of P.) We say that J is a model of 
rp ifJ+rp = 1 ;Jis a model of a set r of sentences iffJ+rp = 1 for all rp E r. 
We write r F&> rp iff every model of r is a model of rp, and we write F&>rp 
instead of 0 F&> rp. Sentences rp with F&>rp are called tautologies. 

Whether or not a sentence rp is a tautology can be decided by the familiar 
truth table method: one writes in rows all possible J E P2 and for each such 
J calculates J+ rp from inside out. Of course instead of all J E P2 it suffices to 
list only theJE Q2, where Q is the set of s E P which occur in rp. For example, 
the following table shows that <S1) -+ «S2) -+ <S1») is a tautology: 

S1 S2 <S2) -+ <S1) <S1) -+ «S2) -+ <S1») 

1 1 1 
1 0 1 1 
0 1 0 1 
0 0 1 1 

The following table shows that '<S1) -+ ('<S1) -+ <S1») is not a tautology: 

1 
o 

o 1 
o 

1 
o 

Clearly this truth table procedure provides an effective procedure for deter
mining whether or not a sentence is a tautology. This statement could be 
made precise for sentential languages f!JJ = (n, c, P) with P countable by the 
usual procedure of Godel numbering. (See 10.19-10.22, where this is done in 
detail for first-order languages.) In practice, to check that a statement is or 
is not a tautology it is frequently better to argue informally, assuming the 
given sentence is not true and trying to infer a contradiction from this. For 
example, if <S1) -+ «S2) - <S1») is false, then S1 is true and <S2) - <S1) is 
false; but this is impossible; <S2) - <S1) is true since S1 is true. Thus <S1)
«S2) -+ <S1») is a tautology. 
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We are going to show shortly that the relations I- and F are identical. 
To do this we need some preliminary statements. 

Lemma 8.23. If r I- gy, then r 1= gy. 

PROOF. Let ~ = {gy: every model of r is a model of gy}. It is easy to check, 
using truth tables for the logical axioms, that r s ~, every logical axiom is 
in ~, and ~ is closed under detachment. Hence all r-theorems are in ~. The 
lemma follows. 0 

Definition 8.24. r is consistent iff r If gy for some gy. 

Theorem 8.25. The following conditions are equivalent: 

(i) r is inconsistent. 
(ii) r I- .( gy ~ gy) for every sentence gy. 

(iii) r I- .( gy ~ gy) for some sentence gy. 

PROOF. Obviously (i) => (ii) => (iii). Now suppose r I- .(gy ~ gy) for a 
certain sentence gy. Let ifi be any sentence. By AI, r I- (gy ~ gy) ~ 
[.ifi ~ (gy ~ gy)]; from 8.10 we infer that r I- .ifi ~ (gy ~ gy), and then 8.17 
yields r I- .(gy ~ gy) ~ • • ifi. Hence r I- • • ifi. So by 8.16, r I- ifi: ifi being 
any sentence, r is inconsistent. 0 

Theorem 8.26. r u {gy} is inconsistent iff r I- 'gy. 

PROOF. =>: Since r u {gy} I- ifi for any sentence ifi, we have r u {gy} I- .gy, so 
by the deduction theorem r I- gy ~ 'gy. By 8.19, r I- 'gy. -<=: r u {gy} I- .gy 
and r u {gy} I- gy, so by 8.14, r u {gy} I- ifi for any sentence ifi· 0 

Theorem 8.27. 0 is consistent. 

PROOF. Since .(gy ~ gy) always receives the value 0 under any model, for 
any sentence gy, by 8.23 we have not (I- .(gy ~ gy». 0 

Theorem 8.28 (Extended completeness theorem). Every consistent set of 
sentences has a model. 

PROOF. Let r be a consistent set of sentences. Let d = {~ : r s ~, ~ is 
consistent}. Since rEd, d is nonempty. Suppose fJl is a subset of d simply 
ordered by inclusion, fJl # O. Then r s U fJl. Also, U fJl is consistent, for, 
if not, there would be, by 8.25, a sentence gy such that U fJll- .(gy ~ gy). 
Then by 8.9, No, ... , ifim -I} I- .(gy ~ gy) for some finite subset {ifio, ... , ifim -I} 
of U fJl. Say ifio E ~o E fJl, ... , ifim -1 E ~m -1 E fJl. Since fJl is simply ordered, 
there is an i < m such that ~j s ~i for allj < m. Thus ifio E ~i> ••. , ifim-1 E ~i> 
so ~i I- .(gy ~ gy). Thus ~i is inconsistent by 8.25, contradicting ~i E fJl. Thus 
U fJl is consistent. 
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Hence we may apply Zorn's lemma to obtain a member L1 of.!# maximal 
under inclusion. Now we establish some important properties of L1. 

(1) L1 I- f{! implies that f{! E L1. 

For, if L1 I- f{! and f{! 1= L1, then L1 U {f{!} is inconsistent, so by 8.26, L1 I- 'f{!. 
Then by 8.14, L1 is inconsistent, contradiction. 

(2) if f{! E Sent, then f{! E L1 or 'f{! E L1. 

For, suppose f{! 1= L1. Then L1 U {f{!} is inconsistent, so by 8.26 L1 I- 'f{!, and (1) 
yields 'f{! E L1. 

(3) f{! ~ !f E L1 iff 'f{! E L1 or !f E L1. 

To prove this, first suppose 'f{! E L1. By 8.15 and (I), f{! ~ !f E L1. If !f E L1, 
then f{!~!fEL1 by Al and (1). Thus <= in (3) holds. Now suppose 'f{!1=L1 
and!f 1= L1. By (2) we havef{! EL1 and '!f E L1. Hence by 8.21 and (I), '(f{!~!f) E 
L1, so f{! ~ !f 1= L1 since L1 is consistent. Thus (3) holds. 

We now define the desired model f For any S E P let 

We claim: 

fs = 1 
fs = 0 

if <s) E L1, 
otherwise. 

(4) for any sentence f{!,f+f{! = 1 iff f{! E L1. 

For, let 0 = {f{! :f+f{! = I iff f{! E ~}. By the definition of J, <s) E 0 for each 
s E P. Now suppose f{! E 0. Then 

ifff+f{! = 0 
ifff+f{! #- 1 
iff f{! 1= L1 
iff 'f{! E L1 

Thus 'f{! E 0. FinaIly, suppose f{!, !f E 0. Then 

ifff+f{! = 0 or f+!f = 

ifff+f{! #- 1 or f+!f = 1 
iff f{! 1= L1 or !f E L1 
iff 'f{! EL1 or!f EL1 
iff f{! ~!f E L1 

definition of + 

since f{! E 0 
(2), consistency of L1 

definition of + 

since f{!, !f E 0 
(2), consistency of L1 

(3) 

Thus f{! ~!f E 0. Hence Sent&!' S; 0, and (4) holds. If f{! E r, then f{! E L1 and 
hencef+f{! = I by (4). Thusfis a model of r, as desired. 0 

Theorem 8.29 (Completeness theorem). r I- f{! iff I' 1= f{!. 

PROOF. =>: by 8.23. <=: Suppose not (I'I- f{!). Then not (I' I- "f{!) by 8.16, 
so I' U { 'f{!} is consistent, by 8.26. By 8.28, let f be a model of r U { 'f{!}. 
Thusf is a model of r but not of f{!, so not (I' 1= f{!). 0 
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This completeness theorem is our first result of a modern model-theoretical 
character. It shows the complete equivalence of the syntactical notion ~ and 
the semantical notion F. Hence in considering various problems in sentential 
logic we can use syntactical or semantical methods with equal right. Another 
interesting consequence of the equivalence, hp iff Fcp, is that there is an 
automatic method for determining whether ~cp or not (the truth-table method 
above). From just the definition of ~cp it is difficult to infer that such a 
decision method exists. This does not mean that for any r there is an effective 
procedure to determine whether r ~ cp or not. For example, P may be infinite, 
we may have r s; P, and under a natural Godel numbering r may be non
recursive; in this case there is no such decision method. 

We have now seen that our axioms for sentential logic formulated for 
negation and implication are sound and complete. Next, we indicate how 
various other notions of sentential logic can be expressed in terms of negation 
and implication. Some important results, like duality and normal form 
theorems, can be formulated using the new notions. 

Definition 8.30. For any sentences cp and", let 

cp v '" = 'cp ~ '" (disjunction of cp and "'); 
cp A '" = ,(cp ~ ,"') (conjunction of cp and "'); 
cp +-+ '" = (cp ~ "') A ('" ~ cp) (biimplication between cp and ",). 

The following obvious proposition enables one to tell easily whether a 
sentence formulated using these defined symbols is a tautology or not: 

Proposition 8.31. Iff is a model of f!IJ and cp and f are sentences of f!IJ, then 

(i) f+(cp v "') = 1 
(ii) f+(cp A "') = 1 

(iii) f+(cp +-+ "') = 1 

iff f+cp = lor f+", = 1; 
iff f+cp = 1 andf+", = 1; 
iff f+cp = f+",· 

Having all of these sentential notions available, we can discuss the notion 
of the dual of a sentence: 

Definition 8.32. For any sentence cp we define the dual of cp, denoted by 
cpd, as follows (using 8.6): 

(i) <S)d = <s) for each s E P; 
(ii) (,cp)d = ,cpd; 
(iii) (cp ~ ",)d = ,cpd A ",d. 

The following proposition shows that A and v are dual notions. The 
most useful part of the proposition is probably (viii), by which one can 
conclude that cpd +-+ ",d is a tautology after proving that cp +-+ '" is. 
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Proposition 8.33 
(i) f-(tp A if;)d_tpd V if;d; 
(ii) f-(tp v if;)d _ tpd A if;d; 
(iii) f-tp _ tpdd; 

(iv) iff and g are models of fY and fs = g+ • <s) for all s E P, then 
f+tp = g+( .tpd) for every sentence tp; 

(v) r f- tp iff { .if;d : if; E r} f- .tpd; 
(vi) f-tp iff f- • tpd; 

(vii) f-tp ~ if; iff f-if;d ~ tpd; 
(viii) f-tp _ if; iff f-tpd _ if;d. 

PROOF. In the case of (i) and (ii) it is just necessary to apply Definition 8.32 
to the sentences (tp A if;)d and (tp v if;)d in order to see what combination of 
tpd and if;d they are and then check that then (i) and (ii) are tautologies. For 
example, 

(tp A if;)d = (.(tp ~ .if;»d = .(tp ~ .if;)d 
= .( .tpd A (.if;)d) = .( .tpd A .if;d) , 

and .( .tpd A .if;d) _ tpd V if;d is a tautology (by, say, the truth-table 
method). 

We prove (iii) by induction on tp. For tp of the form <s) with s E P, we 
have tpdd = tp, and (iii) is clear. Now we assume (iii) for tp and prove it for 
'tp. Now (.tp)dd = .tpdd, and (tp _ tpdd) ~ (.tp _ .tpdd) is a tautology, so 

(iii) for tp clearly implies (iii) for 'tp. Finally, assume (iii) for tp and if;; we 
establish it for tp ~ if;. We have 

(tp ~ if;)dd = (.tpd A if;d)d = (.( .tpd ~ .if;d»d 
= .( .tpd ~ .if;d)d = .(.( .tpd)d A (.if;d)d) 
= .( •• tpdd A .if;dd) = •• ( •• tpdd ~ •• if;dd); 

thus (tp _ tpdd) ~ ((if; _ if;dd) ~ [(tp ~ if;) _ (tp ~ if;)dd]) is a tautology, so (iii) 
follows for tp ~ if;. Therefore (iii) holds in general. 

Assume the hypothesis of (iv). We prove its conclusion also by induction 
on tp. The case tp = <s) with s E P is trivial from the hypothesis of (iv). 
Assumingf+tp = g+ • tpd, we have 

f+ • tp = 0 iff f+tp = 1 
iff g+ • tpd = 
iff g+ •• tpd = 0 
iff g+ .( .tp)d = O. 

Thus if the conclusion of (iv) holds for tp, then it also holds for 'tp. Finally, 
assume thatf+tp = g+( .tpd) andf+if; = g+( .if;d). Then 

f+(tp ~ if;) = 0 iff f+tp = 1 andf+if; = 0 
iff g + • tpd = 1 and g + • if;d = 0 
iff g+ • tpd = 1 and g+if;d = 1 
iffg+(.tpd /\ if;d) = 1 
iff g+(tp ~ if;)d = 1 
iff g+ • (tp ~ if;)d = O. 
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Hence the conclusion of (iv) holds for cP -+ ifJ if it holds for cP and for ifJ. 
Hence (iv) holds. 

We can derive (v) from (iv) easily using the completeness theorem. First 
assume r f- cp. Thus by the completeness theorem r 1= cp. We shall now estab
lish that {-,ifJd: ifJ E r} 1= -,cpd. To this end, let g be any model such that 
g+ -, ifJd = 1 for all ifJ E r. Define fs = g+ -, <s) for all s E P. By (iv), 
f+ifJ = g+ -, ifJdforeverysentenceifJ. Hencefisamodelofr, and sof+cp = 1. 
Therefore g+ -, cpd = 1. Since g is arbitrary, {-,ifJd: ifJ E r} 1= -,cpd. By the 
completeness theorem, {-,ifJd: ifJ E r} f- .cpd. The converse is proved in 
exactly the same way; (v) follows. 

The condition (vi) is a special case of (v). Concerning (vii), recall that 
(cp -+ ifJ)d = -,cpd A ifJd. Hence f- -, (cp -+ ifJ)d +-+ (ifJd -+ cpd), so (vii) follows 
from (vi). Finally, (viii) follows from (vii) since f-x +-+ fJ is equivalent to the 
conjunction of f-X -+ fJ and f-fJ -+ x, for any sentences X and fJ. D 

Some other important sentential connectives are the finite generalizations 
of conjunction and disjunction: 

Definition 8.34. Let <CPo, ... , CPm -1) be a finite sequence of sentences, with 
m > O. We define the general conjunction /\iSj CPi and the general disjunc
tion ViSj CPi for j < m by recursion: 

/\ CPi = V CPi = CPo; 
1,,;0 I,,; 0 

We sometimes write CPo A ... A cpj instead of /\is; CPt. and CPo v ... v cpj 
instead of Vi";j CPl' 

The following proposition shows how to calculate truth values with these 
new connectives; it is easily established by induction onj. 

Proposition 8.35. Under the assumptions of Definition 8.34, for any j < m 
and any model f we have 

(i) f+ /\ISj rpl = 1 iff Vi ::;; j (f+CPi = 1); 
(ii) f+ Vi";j CPI = 1 iff3i ::;; j (f+CPI = 1). 

With the aid of generalized conjunction we can formulate a generalized 
form of the deduction theorem 8.11 which is frequently useful in the further 
study of sentential logic : 

Theorem 8.36. /fr u ,:l f-ifJ and,:l # 0, then there is an mEw and a cP E m + 1,:l 

such that r f- CPo A ••• A CPm -+ ifJ. 
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PROOF. By 8.9(ii) we may assume that !1 is finite. Hence it is enough to 
prove by induction on m that for all mEw and all ffJ E m+lSentao, if r u 
{ffJl: i ::;; m} I-.p then r I- /\I,"m ffJl--+.p. This statement for m = 1 is just the 
deduction theorem. Now we assume our statement for m (and for all sen
tences .p), and we assume that ffJ E m+2Sentao and r u {ffJl : i ::;; m + I} I- .p. 
By the deduction theorem, r u {ffJl: i ::;; m} I- ffJm+1 --+.p. Hence by the induc
tion assumption, r I- /\i,"m ffJl --+ (ffJm+l --+ .p). Now using Proposition 8.35 it 
is easily checked that the following sentence is a tautology, and hence is a 
r-thtlorem: 

[/\ ffJl --+ (ffJm+1 --+ .p)] --+ ( /\ ffJl --+ .p). 
I,"m I,"m+l 

It follows that r I- /\I,"m+l ffJl--+.p, as desired. o 
We can also give a useful criterion for inconsistency: 

Theorem 8.37. For any set r of sentences the following conditions are 
equivalent: 

(i) r is inconsistent; 
(ii) there is an mEw and a ffJ E m+lr such that I- Vism 'ffJl' 

PROOF. (i) => (ii). Assuming (i), we have r I-.p A ,.p for any sentence .p; 
we fix .p. From 8.27 we know that r :f. O. Hence by Theorem 8.36 there is an 
mEw and a ffJ E m+lr such that 

I- /\ ffJl -+.p A ,.p. 
',"m 

It remains only to notice that the sentence 

(6 ffJ, --+.p A ,.p) -+ ,y". 'ffJl 

is a tautology. 
(ii) => (i). Assume (ii). Then for any sentence .p we have r I=.p. In fact, 

let f be a model of r. Then in particular f+ffJi = 1 for all i ::;; m. But, by 
virtue of Proposition 8.35, this contradicts the fact that VI,"m 'ffJl is a 
tautology. Conclusion: r has no models. Thus, vacuously, every model of r 
is a model of.p. Hence, indeed, r 1= .p, so r I- .p by the completeness theorem. 
Thus r is inconsistent. 0 

The following theorem is perhaps the most important result in the classic 
theory of sentential logic : 

Theorem 8.38 (Distinguished disjunctive normal form). Let pjJ = <n, c, 
{so, ... , sm}) be a sentential language, with mEw. Let ffJ be a sentence which 
has at least one model. Then there is afunction .p such that: 

(i) the domain of.p is (p + 1) x (m + I) for some pEw; 
(ii) for each i ::;; p and j ::;; m, .pjj = <Sf) or.p1J = '<Sf); 

(iii) I-ffJ ++ VI,"P /\',"m .pI" 
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PROOF. Let M be the set of all models of rp; M =1= 0 by assumption. Let K 

be a one-one function mapping some integer p + I onto M. For each i :<:: fi 

and} :<:: m let 

if giSj = 1, 
if giSj = O. 

Thusgt /\j-;;m.pij = I,whilef+ /\j-;;m.pjj = o if! =1= g;,foreachi:<:: p. From 
this it follows easily that f+<p = f+ Vi-;;P /\j-;;m.pij for every model f as 
desired. 

By duality we obtain 

Theorem 8.39 (Distinguished conjunctive normal form). Let.;I' =/1, C, 

{so, ... , .1m -1 t, be a sentential logic, with mEw. Let <p be a sentcnce \\'hich 
is not a tautology. Then there is a function .p such that: 

(i) the domain of.p is (p + I) x (m + I)for some p to w; 
Ui) for each i :<:: p and each} :<:: 111, .pij = or .pi) = -"'\f 

(iii) I-<p+-+ !\i:>P Vj:>m .pi). 

PROOF. Assume the hypothesis. Thus not( I-<p), so by 8.33( ri), <pd has a 
model. Hence by 8.38 we can choose .p so that (i) and (ii) hold and 

I-<pd +-+ V /\ .pij. 
iSP j5.m 

Now an application of 8.33(viii) gives the desired result (8.33(i) and 8.33(ii) 
must first be generalized in the obvious way). 

As the final topic of th is chapter we want to systematically consider pos
sible variants of our choice of connectives negation and implication, and show 
that all other connectives can be defined from these two. The full meaning 
of our sentential logic is given by a sentential language (n, c, P) together with 
the definition of f+ for f to P2, which amounts to assigning the usual truth 
tables for the meanings of nand c. We shall see that any connective, with its 
meaning given by some truth table, can be expressed in terms of nand c. 
There are also other connectives which can serve, like nand c, to express 
any connective. To prove all of this rigorously, we need a notion of gcneral 
sentential logic: 

Definition 8.40. For each set P, a P-truth function is any function mapping 
P2 into 2. [Thus, for example, the 2-truth function f corresponding to (' is 
given by the stipulations 
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f<l, ') = 1, 
f<I,O) = 0, 
1<0, I) = 1, 
1<0,0) = 1.] 
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A general sentential logic is a quadruple 9 = (K, P, J, g) such that P =I 0, 
K ('\ P = 0, f is a function mapping K into w '" 1, and g is a function 
assigning to each k E K an he-truth function gk. Symbols of 9 are the 
members of K U P; expressions of 9 are finite sequences of symbols. With 
each k E K we associate an fk-ary operation k on expressions: 

k(cpo, ... , CPm-l) = (k)cpo·· ·CPm-l 

where m = fk' for any expressions CPo, ... , CPm -1. The set of sentences of 
9 is the intersection of all classes r of expressions of 9 such that 
{(s) : s E P} ~ rand r is closed under all the operations k for k E K. On 
the basis of these definitions, analogs of 8.3-8.6 are easily established. This 
enables us to extend the notion + of 8.22. A model of 9 is again any 
mapping of Pinto 2. Given a model h, a mapping h + of the set of sentences 
of 9 into 2 is defined by recursion as follows: 

h+(s) = hs for s EP, 
h+kcpo·· ·CPm-l = gk(h+cpo, ... , h+CPm-l), 

where m = fk and CPo, ... , CPm -1 are sentences of 9. Then with any sentence 
cP we can associate a P-truth function ~ such that ~f = f+cp for any 
f E P2. The logic 9 is functionally complete provided that {~ : cP a sentence 
of 9} is the set of all P-truth functions. 

We can identify sentential logics in our earlier sense (language together 
with semantic notions) with certain general sentential logics, namely those 
of the form ({n, c}, P,J, g), where n =I c, {n, c} ('\ P = O,fn = l,fc = 2, gn is 
the function given by g(l) = 0, g(O) = 1, and gc is the function mentioned 
above in 8.40. Then we have 

Theorem 8.41. Let 9 = ({n, c}, P,J, g) be a sentential logic in the original 
sense, with P finite. Then 9 isfunctionally complete. 

PROOF. Note that there are exp exp IP I P-truth functions. Hence it suffices 
to show that there are at least that many truth functions of the form ~. 
Let IPI = m + 1, say P = {Sj: i ~ m}. For each hE P2 we define Xh, an 
(m + i)-termed sequence of sentences of 9: for j ~ m, Xhj = (Sj) if hSj = 1, 
Xhi = -'(Sj) if hSj = O. Now for any nonempty subset r of P2, let 

Cf'r = V /\ Xhi· 
her j:$m 

Then it is easily verified that r is the set of all models of CPr (cf. the proof of 
8.38). Hence ~r =I ~!J. if r =I d. Furthermore, clearly ~r =I ff.v for all 
nonempty r ~ P2, where if is a sentence with no models. Thus we have 
exhibited exp exp IP I different functions 9;, as desired. 0 

This theorem is a rigorous expression of the above mentioned fact that 
any connective can be defined in terms of nand c. As also stated, other 
choices of connectives can be used for this purpose. To show this, the follow
ing lemma is useful. 
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Lemma 8.42. Let neg be the truthfunction corresponding to n in any sentential 
logic, and imp that corresponding to c. Let ~ = (K, P, I, g) be a general 
sentential logic such that K n 2 = 0, P finite, neg E {~ : cp a sentence of 
(K, 1,1, g)}, and imp E {~: cp a sentence of(K, 2,1, g}. Then ~ isfunction
ally complete. 

PROOF. Let~' = (K, 1,1, g), ~" = (K, 2,1, g), and let ~", = ({n', c'}, P, 
/', g') be a sentential logic. For cp a sentence of ~' and .p a sentence of~, let 
cp[.p] be the sentence of ~ obtained from cp by substituting.p for <0) throughout 
cpo If h. is a model of ~ and .p is a sentence of ~, then h~ is the model of ~' 
such that h~O = h+.p. Now 

(1) 
if cp is a sentence of ~', .p a sentence of~, and h is a model of ~, 
then h+cp[.p] = h~+cp. 

This is easily proved by induction on cpo We work similarly with ~". For cp 
a sentence of ~" and .p, X sentences of ~, let cp[.p, X] be the sentence of ~ 
obtained from cp by substituting .p for <0) and X for <I) throughout cpo If h 
is a model of ~ and .p and X are sentences of ~, then h;x is the model of ~" 
such that h;xO = h+.p and h;xl = h+x. By induction, one easily establishes 

if cp is a sentence of ~", .p and X sentences of~, and h a model of~, 
then h+cp[.p, X] = h~+cp. 

(2) 

Now by hypothesis choose a sentence cp of~' and a sentence.p of~" so that 
neg = ~ and imp = 3""",. With each sentence X of ~'" we now associate a 
sentence X* of ~, defined by recursion: 

<s)* = <s>; 
(.,X)* = cp[x*]; 

(Xo -+ XI)* = .p[x~, X!]; 

for any sentences x, Xo, Xl of ~", and any s E P. Now we prove the following 
statement by induction on X: 

(3) for any sentence X of ~'" and any model h of ~"', h+x* = h+x. 

The statement is clear for X = <s>, s E P. Now assume it true for x. Then 

h+( .,X)* = h+cp[x*] = h~tcp 
= ~h~. = neg h~. 

by (1) 

and neg h~. = 0 iff h~.<O> = I iff h+x* = 1 iff h+x = 1 iff h+( .,X) = 0, i.e., 
neg h~. = h+ .,x. Similarly, h+(Xo -+ XI)* = imp h;~xr, and imp h;~xr = 0 iff 
h;~xrO = 1 and h;~xrl = 0, i.e., iff h+x~ = 1 and h+xt = 0, i.e., iff h+Xo = 1 
and h+XI = 0, that is, iff h+(Xo -+ Xl) = O. Hence imp h;M = h+(Xo -+ Xl). 

Thus (3) holds. It follows directly from (3) that, since ~", is functionally com
plete, so is ~: for, if I is any truth function, write I = ~ with X a sentence of 
~"'. By (3), ~ = ~., as desired. D 
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Theorem 8.43. Negation and conjunction give rise to a functionally complete 
sentential logic. That is, iffIJ = <{n, k}, P,/, g) is a general sentential logic 
withfn = l,Jk = 2, and g given by: 

gn<O) = 1, gnO) = 0; 
g,,<I, I) = 1, g,,<I,O) = g,,<O, I) = g,,<O, O) = 0; 

and if P is finite, then fIJ is functionally complete. 

PROOF. We may assume that P n 2 = 0. Let -'Cp = <n)cp and cp A ,p = 

<k)cp,p for all sentences cp, ,po Clearly neg = 9(0) in <{n, k}, I,/, g), and 
imp = .'T", in <{n, k}, 2,/, g), where cp is the sentence 

-,«0) A -'0»). 

Thus the theorem follows from Lemma 8.42. D 

Similarly: 

Theorem 8.44. Negation and disjunction give rise to a functionally complete 
sentential logic. 

It is of some interest that a single connective can be used in sentential 
logic: 

Theorem 8.45. Let fIJ = <{s}, P,/, g) be a general sentential logic such that 
fs = 1 and g is given by 

g.<I, I) = 0, . 
g.<O, I) = g.<I, 0) = gs<O, 0) = 1, 

and with P finite. Then fIJ is functionally complete. 

PROOF. cpl,p = <s )cp,p for any sentences cp, ,po (The connective here is called 
the Sheffer stroke.) Then neg = .r., and imp = .'T", where cp is <0)1<0) and 
,p is <0)1(0)1<1»). Thus Lemma 8.43 implies. D 
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EXERCISES 

8.46. Let PI' = (n, c, {s, t}) be a sentential language, with s #- t. Determine which 
of the following expressions are sentences: <s>, <c, c, n, s, n, t, c, t, s>, 
(c, s, c, s, t, s>, <n, n, n, s, s>, <c, n, p, c, p, q>. 
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8.47. By a sentential language with parentheses we mean a system f!jJ = (n, c, I, r, P) 
such that n, c, I, r are all distinct, P # 0, and {n, c, I, r} (\ P = 00 We 
introduce operations ..." - on expressions as follows: 

""cp = <n)cp 
cp _,p = <l)cp<c),p<r), 

for all expressions cp, ,po Sentao is the intersection of all sets r of expressions 
such that <s) E r for each s E P and ""cp, cp - ,p for all cp, ,p E r 0 Prove an 
analog of 8.5. 

8.48. Modify 8.2 by changing the definition of-: 

cp -,p = cp<c),p 

for all expressions cp, ,po Show then that parts (iii) and (iv) of 80S fail. 

8.49. Show that the following schemas, due to Lukasiewicz, can replace (Al)
(A3) of 8.7: 

(a) (,p - X) - [(X - 8) - (,p - 8)], 
(b) ("",p -,p) -,p 
(c) ,p - ("",p - X) 

Hint: prove the following schemas in succession from the above schemas: 

(1) [(""X -,p) - ("",p -,p)] - [X- ("",p- ,p)] 
(2) ("",p - ""X) - [x - ("",p - ,p)] 
(3) ("",p - ""X) - (["",p -,p) -,p] - (X - ,p» 
(4) ,p - (["",p -,p) -,p] - (X - ,p» 
(5) X- [(...,,p-,p)-,p] 
(6) ([("",p -,p) -,p] - (X - ,p» - [""(X -,p) - (X - ,p)] 
(7) ([("",p -,p) -,p] - (X - ,p» - (X -,p) 
(8) ,p - (X - ,p) 
(9) ("",p - ""X) - (X -,p) 

(10) ""X - (X -,p) 
(11) [(X-,p)-X]-X 

(12) [X - <x - ,p)] - ([(X - ,p) - X] - (X - ,p» 
(13) [X - (X - ,p)] - (X -,p) 
(14) X - «X -,p) - [(X -,p) -,p)) 
(15) X - [(X -,p) -,p] 
(16) ([(,p - 8) - 8] - (X - 8» - [,p - (X - 8)] 
(17) [x - (,p - 8)) - [,p- (X - 8)] 
(18) (,p - 8) - [(X - ,p) - (X - 8)] 
(19) «,p - X) - [,p - (,p - 8)]) - [(,p - X) - (,p - 8)] 
(20) [,p - (X - 8)] - [(,p - X) - (,p - 8)] 

8.50. Show that the following single schema, due to Meredith, can replace the 
schemas (Al)-(A3): 
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(a) ({[(cp -,p) - (""X - ...,8)] - X} - T) - [(T - cp) - (8 - cp)] 
Hint: prove the following formulas from this schema: 
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(1) {[(T - cp) - (0 - cp)] - (cp - ifJ)} - [X - (cp - ifJ)] 
(2) {[X - (""cp - ifJ)] - T} - (cp - T) 
(3) [(cp-cp) - X] - (O-X) 
(4) ifJ - [0 - (cp-cp)] 
(5) {[O_(cp-cp)]-X}-(ifJ-X) 
(6) [(ifJ-X)-cp]-(X-CP) 
(7) T_[(T_cp)_(O_cp)] 

(8) [({£X - (""cp - ifJ)] - T} - (cp - T)] -IL) - (0 -IL) 
(9) {(O -cp) - £X - (""""cp - ifJ)]} - {T - £X - (""""cp - ifJ)]} 

(10) (cp-ifJ)-(""""cp-ifJ) 

(11) X - {[(ifJ - X) - cp] - (0 - cp)} 
(12) ({([T-{[(cp-ifJ)-(""X- ...,O)]-X}]-IL)-(V-IL)}-CP)-(O - cp) 

(13) «0 - cp) - [T - {[(cp - ifJ) - (...,X - ...,0)] - X}]) 
- (IL - [T - {[(cp - ifJ) - (...,X - ...,0)] - X}]) 

(14) [(0 - cp) - X] - {[(cp - ifJ) - (...,X - ...,0)] - X} 
(15) [(cp - ifJ) - {""[{[T - (0 - cp)] - X} - (IL - X)] - ...,O}] 

- H[T - (0 - cp)] - X} - (p. - X)] 
(16) {[([T - {O - [0 - ifJ]}] - X) - (p. - X)] - cp} - (v - cp) 
(17) [(v_cp) - {T - [0 - (cp - ifJ)])] - [X - {T - [0 - (cp-ifJ)])] 
(18) [cp - (cp - ifJ)] - [0 - (cp - ifJ)] 
(19) [cp - (cp - ifJ)] - (cp - ifJ) 
(20) cp - (""cp - ifJ) 
(21) {[(cp- ifJ) - (""""cp - ifJ)] - X} - (0 - X) 
(22) {[(cp- ifJ) - (""""cp - ifJ)] - X} - X 
(23) (""cp _ cp) _ (0 _ cp) 

(24) (""cp - cp) - cp 
(25) 0 - ( ..., ...,x - X) 
(26) {[O_(""""X-X)]-cp}-(ifJ-cp) 
(27) {[O - (...,...,X - X)] -cp}-cp 
(28) ..., ...,{[O - (...,...,X - X)] -cp}-cp 
(29) [(ifJ - [..., ...,{[O - (..., ""X- X)] -cp} - cp]) - T] - (IL - T) 
(30) ([p. - ...,{[O - (..., ...,X - X)] - ""cp}] - ifJ) - (cp - ifJ) 
(31) cp - ...,{[O - (...,...,X - X)] - ""cp} 
(32) {[ifJ - (cp - ...,{[O - (...,...,X - X)] - ""cpm - T} - (IL - T) 
(33) [(ifJ - [cp - ...,{[O - (...,...,X - X)] - ""cp}]) - T] - T 
(34) (cp-ifJ)-[{[O_(...,...,X-X)]- ...,...,cp}-ifJ] 
(35) ([T_(..., ""IL-IL)]- """"(cp-ifJ)}-[{[O_(...,...,X-X)]- ...,...,cp}-ifJ] 

(36) ([{[O - (...,...,X - X)] - ..., ""cp} - ifJ] - T) - [(cp - ifJ) - T] 
(37) (cp - ifJ) - [(ifJ - X) - (cp - X)] 

8.51. Let @J = (n, c, P) and @J' = (n', c', P') be two sentential languages. We 
write @J ~ @J' iff n = n', c = c', and P S; P'. Assume that @J ~ @J' and 
prove the following: 

(1) Sent9" S; Sent9"'; 
(2) if I: P' ->- 2, then r t Sent9" = (I t P) + ; 

(3) if r u {cp} S; Sent9", then r ~9" cp iff r ~9'" cpo 

8.52. Let ISent be the set of all sentences (of a fixed but arbitrary sentential 
language) in which the negation symbol does not occur. Our aim is to 
outline an independent development of sentential languages without 
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negation. Let IAxm be the set of all sentences of the following kinds 
(where gJ, if;, X E ISent): 

gJ~ (if;~gJ) 

[gJ ~ (if; ~ X)] ~ [(gJ ~ if;) ~ (gJ ~ X)] 
[(gJ ~ if;) ~ gJ] ~ gJ. 

Let l' - IThm be the intersection of all sets of I-sentences including 
r u IAxm and closed under detachment. We write l' ~I gJ for gJ E l' - IThm. 
Establish the following, where all sentences and sets of sentences are taken 
from ISent: 

(a) 0 ~I gJ -+ gJ. 
(b) the deduction theorem for ~I' 

(c) 0 ~I (gJ ~ if;) ~ [(if; ~ X) ~ (gJ ~ X)]· 
(d) If l' ~I <s> for each s E P, then l' ~I gJ Jor each gJ E ISent. 
(e) 0 ~I (gJ ~ if;) ~ ([(gJ ~ X) ~ if;] ~ if;). 
(0 Call a set l' ofl-Sentences I-consistent if not (1' ~I gJ) for some I-sentence 

gJ. If l' is I-consistent, then l' has a model which is not identically 1. 

Hint: use these steps: 

(1) there is an s E P such that not (1' ~I <s»; 
(2) there is a maximal ~ :2 l' such that not (~ ~I <s»; 
(3) ~ ~I gJ implies that gJ E ~; 
(4) gJ-+if;E~ iffgJ9"~ orif;E~; 
(5) continue as in the proof of 8.28. 
(g) l' ~I gJ iff l' F gJ iff l' ~ gJ. Hint: for the hard direction, assume not 

(1' ~I gJ). Then not (1' U {gJ ~ if; : if; E ISent} ~ gJ), so by (0 let f be a 
model of l' U {gJ ~ if; : if; E ISent} which is not identically 1. Show that 
f+gJ = O. 

8.53. We work in a sentential logic in which negation and disjunction are taken 
as primitive. For any sentences gJ and if; let gJ ~ if; = ""gJ v if;. Take as 
axioms all sentences of the following forms: 
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(a) (gJ v gJ) ~ gJ; 
(b) cp ~ (gJ v if;); 
(c) (gJ v if;) ~ (if; v gJ); 
(d) (cp ~ if;) ~ [(X v gJ) ~ (X v if;)]. 
Prove analogs of 8.28 and 8.29. Hint: apply the result of 8.49. In order to 
do this it suffices (proof!) to derive the following: 

(e) (gJ ~ if;) ~ [(X ~ gJ) - (X - if;)]; 
(f) CP-gJ; 
(g) cP - ..., ""gJ; 
(h) """"gJ - cP; 
(i) ~gJ - if; and ~cp' ~ if;' imply ~""""cP v gJ' ~ if; v if;'; 
(j) ~cP - if; and ~cp' - if;' imply ~gJ v cP' - """"if; v if;'; 
(k) ~(gJ - if;) - (""if; - ""gJ); 
(I) ~(""cP- ""if;)~(if;~cp); 
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(m) ~(<p - ifo) - [(ifo - X) - (<p - X)]; 
(n) ~(.<p _ <p) _ <p; 

(0) ~<p-(.<p-ifo); 

(p) ~ifo - (<p - <p); 
(q) ~ '(<p - <p) - ifo· 

S.54. Again we work with a sentential logic in which negation and disjunction 
are taken as primitive. 

We want to describe now a definition of" ~<p" in which rules of inference 
rather than axioms take precedence. We define four rules of inference. 

(1) Association. This rule is a relation Ro ~ Sent x Sent. If <p is a 
sentence, (ifo v X) v 8 is a consecutive part of <p, with ifo, X' 8 E Sent (i.e., 
<p = ()'«ifo v X) v 8){}H for some expressions 8', 8H), and if a is obtained 
from <p by replacing a consecutive part of <p of this sort by ifo v (X v 8) 
(i.e., if a = 8'(ifo v (X v 8»){}H with notation as before), then (<p, a) E Ro. 

(2) Commutation. We define RI ~ Sent x Sent. If <p is a sentence, ifo v X 
is a consecutive part of <p, with ifo, X Sent, and a is obtained from <p by 
replacing a consecutive part of <p of this sort by X v ifo, then (<p, a) E R I . 

(3) Double negation. R2 is to consist of all pairs of the following sort, 
where ifo, X, 8 E Sent: «ifo v X) v 8, (ifo v • 'X) v 8); (X v 8, "X v 8); 
(ifo v x, ifo v • 'X), (X, • 'X)· 

(4) Conjunction. R3 consists of all triples of the following sort, where 
ifo, X, 8, a E Sent: 

«ifo v 'X) v 8, (ifo v .a) V 8, (ifo v .(X va» V 8); 
('X v 8, .a V 8, .(X v a) V 8); 
(ifo v 'X, ifo v 'a, ifo V .(X va»; ('X, 'a, .(X va». 

A set r ~ Sent is closed under R o, ... , R3 provided that <p E r whenever 
ifo and X E Ro and (ifo, <p) E R o, (ifo, <p) E Rl, (ifo, <p) E R 2 , or (ifo, X, <p) E R 3. We 
call a sentence <p basic if it has one of the following forms: 

<s> v .<s> with s E P, 
ifo v X with X basic, 
X v ifo with X basic, 

(8 v X) v ifo with X basic, 

(formulate this as a recursive definition). Thm is the intersection of all 
classes of sentences including all the basic sentences and closed under 
Ro, Rl, R 2 , and R 3. We write ~<p for <p E Thm. Prove that ~<p iff F<p. Hint: 
the following facts lead to an easy solution: 

(1) If F[ifo v .(X v 8)] v a, then F(ifo v 'X) v a and F(ifo v .8) v a. 
(2) If F(ifo v • 'X) v 8, then F(ifo v X) v B. 
(3) If F<P and <p cannot be obtained from some other sentence by /2 or 13 

(after applying association and commutation), then <p is basic. 

S.55. Show that a logic with negation alone is not functionally complete. Similarly 
for implication, disjunction, conjunction. 

S.56 (Three-valued logic). It is natural to consider sentential logics in which 
three or more truth values are allowed. We describe here a version of 
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three-valued logic. The truth values are 0 (falsity), 1 (truth), and 2 (indeter
minate). The truth tables for -, and - are as follows: 

cp "P cp !/J cp-!/J 

0 1 1 1 
1 0 1 0 0 
2 2 1 2 2 

0 1 1 
0 0 1 
0 2 1 
2 1 1 
2 0 2 
2 2 1 

(a) Show that the following sentence is not always true in three-valued 
logic, but is never false: 

[cp - (!/J - X)] - [(cp -!/J) - (cp - X)]· 

Now we shall describe an axiom system for three-valued logic. The axioms 
are all sentences of the following forms: 

(AI) cp - (!/J - cp) 
(A2) (cp -!/J) - [(!/J - X) - (cp - X)] 
(A3) (-,cp - -'!/J) - (!/J - cp) 
(A4) «cp - -'cp) - cp) - cp 
(A5) {cp - [cp - (!/J - X)]} - {[cp - (cp -!/J)] - [cp - (cp - X)]} 
(A6) [cp - (cp - -'cp)] - {[ -'!/J - (-'!/J -!/J)] - (cp -!/J)} 
(A7) cp-[(cp-!/J)-!/J] 

(A8) {[cp - (cp - -'cp)] - -'[cp - (cp - -'cp)]} - cp 

Let detachment be the only rule of inference. This gives a new notion ~. 

Let F be the semantic notion for three-valued logic. 
(b) Show that r ~ cp implies r F cpo 
(c) For further purposes, prove the following: 

(1) ~-'cp-(cp-!/J); 

(2) ~!/J - [cp - (cp -!/J)]; 
(3) ~ -, "P - cp; 
(4) ~cp - -, -'cp; 
(5) ~ -'(cp -!/J) - -'!/J; 
(6) a ~ cp -!/J and a ~ -'!/J imply a ~ -'cp. 

(d) Prove analogs of the completeness theorems 8.28 and 8.29. 
Hint: to prove the analog of 8.28, begin as in the proof of 8.28, obtaining 
the set a. Show: 

a u {cp} ~ !/J implies a ~ cp - (cp -!/J), 
cp f/: a implies a ~ cp - (cp - -'cp), 

-'Cp f/: a implies a ~ "P - ( "P - cp), 
a ~ cp implies cp E a. 
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Now define for each basic sentential symbol s 

fs = 1 
fs = 0 
fs = 2 

Prove by induction on rp that 

if <s> E.1, 
if ..,<s> E .1, 
otherwise. 

f+rp = 1 
f+rp = 0 
f+rp = 2 

implies rp E A 
implies "'rp E .1, 
implies rp rf= .1 and "'rp rf= .1. 

To prove the analog of 8.29, note that if r ~ rp then r u {rp _ (rp _ ..,rp)} 

is consistent. 
(e) Define the appropriate notion of functional completeness for three

valued logic. Show that our connectives are not functionally complete. 

8.57 (Intuitionistic logic). We outline here a short introduction to intuitionistic 
sentential logic (see the introduction to the book). According to intuitionism, 
every mathematical assertion, to be called mathematical and not theological, 
should be expressible in the form "I have effected a certain construction A 
in my mind." If rp and ifo are assertions, then: 

(1) We can assert rp /\ ifo iff both rp and ifo can be asserted. 
(2) We can assert rp V ifo iff at least one of the sentences rp and ifo can be 

asserted. 
(3) We can assert ,rp iff we possess a construction which leads from the 

supposition of rp to a contradiction. 
(4) We can assert rp ->- ifo iff we possess a construction which, when joined 

to the construction mentioned in rp (which is not, however assumed to 
exist), leads to a construction of the sort mentioned in ifo). 

Examples: 
(a) rp V ,rp cannot be asserted for every assertion rp, for this would 

imply the existence of a general method such that, given a construction A, 
the method tells us how to carry out A, or else how to infer a contradiction 
from the assumption that A has been carried out. For example, let rp be: 
"I have constructed integers x, y, Z, m such that m > 2, and xm + ym = 
zm." I cannot assert rp. But also I cannot obtain a contradiction from the 
assumption that the construction mentioned in rp has been carried out, 
i.e., I cannot assert ,rp. Thus I cannot assert rp V ,rp. 

(b) "rp ->- rp cannot be asserted for every assertion rp. Indeed, take the 
following example of Brouwer. Write the decimal expansion of 7T: 

7T = 3.14159 .. . 
p = .33333 .. . 

Underneath write .3333 ... , breaking this off as soon as the sequence of 
digits 0123456789 has occurred in the expansion of 7T (classically it is un 
known whether this will ever occur). Let rp be the assertion: p is rational. 
Classically rp is obviously true. Intuitionistically rp is to be interpreted as 
"I possess a construction of integers m, n such that p = min." Suppose 
,rp; then p cannot have the form .33 ... 300 ... , so p = t, i.e., rp holds, con
tradiction. Assuming ,rp we get a contradiction. Hence (intuitionistically) 
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"q;. But we cannot assert q; intuitionistically, and hence we cannot assert 
, ,q; -+ q;. 

Now we seek to axiomatize those assertions which are intuitionistically 
valid. We take negation, conjunction and implication as primitive. As 
axioms we take all sentences of the following kinds: 

(11) q;_("'_q;); 

(12) [q; - ('" - X)] - [(q; - "') - (q; - X)]; 
(13) (q; - ...,q;) - ""q;; 
(14) ""q; - (q; _ "'); 
(15) q;-("'-q; A"'); 
(16) q; A "'_q;; 

(17) q; A '" - "'. 

Detachment is the only rule of inference. "Cj'P" is defined analogously to 
the classical case. 

(ex) Check that the axioms are intuitionistically valid in the intuitive 
sense. 

(f3) Check that the deduction theorem goes through. 
Our notion of intuitionistic validity is informal, and hence we cannot 

hope to prove a completeness theorem until we find a mathematical version 
of this validity. Without trying to justify it, we introduce the following 
mathematical version of intuitionistic validity: 

Given a sentential language 9, an intuitionistic model for 9 is a function 
f mapping P into the collection of open sets in some topological space X. 
Given such a function f, we define 

f+<s> = fs for all s E P; 
f+ ..., q; = interior of (X ~ f+q;); 

f+(q; A "') = f+q; ("\f+"'; 
f+(q; - "') = interior of [(X ~ f+q;) v f+"']. 

This gives rise to a notion r Fj q;. 
(y) Prove that r I- j q; implies r Fj q;. 
(8) Show that if r is consistent, then there is a model f with associated 

topological space X such that for any sentence q;, r I- q; iff f+q; = X. Hint: 
let X = {Il : r S; Il, Il consistent}. For each sentence q;, let 

U", = {Il EX: Ill- q;}. 

Show that the U",'s form a base for a topology on X. Let fs = U<.> for 
each s E P, and show that f+q; = U", for each sentence q;. 

(~) An interesting connection between intuitionistic and ordinary logic is 
given by the following result: r C q; iff { ..., ...,'" : '" E r} Cj """"q;; in particular, 
I-q; iff Cj ..., ""q;. Hint: pick a suitable set of axioms Il for classical logic and 
show that 

and that the latter set is closed under detachment. Then use (e). 
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8.58 (Modal logic). We now briefly discuss the addition of new connectives to 
sentential logic which express such intuitive notions as possibility or neces
sity. A modal language is a quadruple f!IJ = (n, c, d, P) such that I{n, c, d}1 = 
3, P f:. 0, and {n, c, d} n P = O. The symbol d is the necessity symbol. For 
any expression cp we write Ocp = <d>cp. Other notation is carried over from 
the sentential case. If cp is a sentence, then Ocp expresses, intuitively speaking, 
that cp is not only true, but is true in all possible worlds. Thus if cp is the 
sentence "It is sunny now," then cp may be true at a given place and time, 
but it is not necessarily true. On the other hand, if cp is "A rose is a rose," 
then cp is necessarily true. The notion of necessity is, however, somewhat 
unclear and indefinite in its intuitive meaning, much more indefinite than 
the notions in three-valued logic or intuitionism. For example, is the 
sentence Ocp -->- OOcp to be accepted, or not? Debate over these matters 
has led to a large number of systems of modal logic, of which we present 
only one. 

Our axioms are as follows: 

(M!) cp -+ (ifJ -+ cp), 
(M2) [cp -+ (ifJ -+ X)] -+ [(cp -+ ifJ) -+ (cp -+ X)], 
(M3) (""cp -+ ...,ifJ) -+ (ifJ -+ cp), 
(M4) Ocp -+ cp, 
(M5) Ocp -+ OOcp, 
(M6) O(cp -+ ifJ) -+ (Dcp -+ oifJ) 

For rules of inference we allow detachment, and the inference of Ocp from 
cp. This gives a notion r ~m cp. If X is a topological space and J: P -->- SX, 
we defineJ+: Sent&, -->- SX as follows: 

[+<s> = Js 
[+(""cp) = x,.., [+cp 

[+(cp -+ ifJ) = (X,.., [+cp) u [+cp 
J+Ocp = interior of J+cp. 

Of course this gives a notion of r Fm cp. 
(a) Show that r ~m cp implies r Fm cp. 
(fJ) If r is consistent, then r has a model J such that for every sentence 

cp, r ~m cp iffJ+cp = X. Hint: let X = {~ : ~ is maximal consistent in ordinary 
sentential logic and for every sentence cp, r ~m cp implies cp E ~}. For each 
sentence cp, let 

u", = {~E X: ~ ~ Ocp}. 

Show that these sets form a base for a topology on X. Let Js = 
{~ EX: ~ ~ <s>}. Show that J+cp = {~ EX: ~ ~ cp} for every sentence cp. 

(y) r ~m cp iff r Fm cp, and in particular ~m cp iff Fm cp. 
Now for any sentence cp not including 0 we associate a new sentence cpm: 

<s>m = O<s>, 
(""cp)m = 0 ..., cpm, 

(cp -+ ifJ)m = O(cpm -+ ~). 

(0) ~1 cp iff ~m cpm. Hint: Assume that ~1 cp, and let J: P -->- SX, X a topo
logical space. For each s E P let gs = interior ofJs. Show that g +lifJ = J+m~ 
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for any sentence if; (g + 1 is the extension of g defined in Exercise 8.57, while 
f+ m is the extension of f defined in this exercise). This easily leads to Fm cpm, 
hence F cpm. A similar argument works for the converse. 

8.59. We have considered several different systems of sentential logic : two-valued, 
three-valued, and intuitionistic logic. How many different systems are there 
altogether? Here is a "best possible" answer: Let [lJ' = (n, c, {s}) be a 
sentential language. Given any set r s; Sent&>, let Sr be the intersection of 
all classes including r and closed under detachment. Let .'7 = {Sr : r s; 
Sent&>}. Show that [.'7[ = exp ~o. Hint: define cpn recursively: 
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cpo = <s> - <s>; 
cpn+l = cpn - (s>. 

For each subset M of w let rM = {CP3n: n E M} U {CP3n+l : n rt M}. Show 
that M #- N => SrM #- SrN. 



Boolean Algebra 9* 

In this chapter we give a brief introduction to the theory of Boolean alge
bras. As we shall see, these are algebraic structures which stand in an intimate 
relationship to sentential logics. They will also form a source for some of the 
applications of logic which we shall give later. Boolean algebras are actually 
most simply motivated by a reference to elementary set theory, however, as 
follows: 

Definition 9.1. Afield of sets is a set d such that U d E d, U d '" XEd 
whenever XEd, and Xu Y Ed whenever X, Y Ed. We also say that d 
is a field of subsets of U d. 

Proposition 9.2. Let d be a field of sets. Then 

(i) OEd; 
(ii) if X, Y Ed then X n Y E d. 

We now want to consider an abstraction from the concrete notion of a 
field of sets. We consider algebraic structures <A, +, " -,0, I) where A is 
intended to correspond to a field of sets d, + to U, . to n, - to '" (relative 
to U.9I), ° to the empty set 0, and 1 to U d. We write down axioms on 
+, " -, 0, 1 intended to axiomatize the concrete notions fully; later we show 
that in fact our axiomatization captures all the true identities among the 
concrete notions. Note that we treat +, " -, 0, 1 as variables ranging over 
the corresponding notions in all Boolean algebras. Of course ° and 1 are 
also used in an entirely different sense for the integers ° and 1. 

Definition 9.3. A Boolean algebra (BA) is a system Q.( = <A, +, " -, 0, I) 
such that + and· are binary operations on A, - is a unary operation on 
A, 0, 1 E A, and the following conditions hold for all x, y, Z E A: 
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(i) x + y = y + x and x·y = y·x; 
(ii) x + (y + z) = (x + y) + z and x·(y·z) = (x·y)·z; 

(iii) x·y + y = y and (x + y).y = y; 
(iv) x·(y + z) = x·y + x·z and x + y·z = (x + y)·(x + z); 
(v) x·-x = 0 and x + -x = 1. 

We define x ::; y iff x + y = y. A is called the universe, or underlying set, 
of~. 

By routine checking we have 

Corollary 9.4. If d is afield of sets, then <d, u, n, ",,0, U d) is aBA, 
called a Boolean set algebra of subsets of U d. 

Throughout this chapter, unless otherwise indicated, we deal with an 
arbitrary BA ~ as above, and with arbitrary elements x, y, z, etc. of A. Note 
the following proposition, which is obvious from the form of the axioms in 
9.3: 

Proposition 9.5. If~ = <A, +, " -,0, I) isaBA, then so is <A, " +, -,1,0). 

A duality principle follows from 9.5: if we have proved a statement about 
all BA's, then a second dual statement, obtained from the first one by inter
changing + and· and also 0 and 1, is true. We shall not bother to make this 
principle more precise, since our applications of it can be justified by 9.5 
directly. 

The following proposition summarizes the elementary arithmetic of BA's. 
It will be used later without specific reference to it. 

Proposition 9.6 
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(i) x + x = x; 
(ii) x·x = x; 

(iii) x ::; x; 
(iv) if x ::; y and y ::; x, then x = y; 
(v) if x ::; y and y ::; z, then x ::; z; 

(vi) x ::; y iff X· Y = x; 
(vii) x·O = 0; 

(viii) x·l = x; 
(ix) x + 0 = x; 
(x) x + 1 = 1; 

(xi) x::; y iffx·-y = 0; 
(xii) x = - y iff x + y = 1 and X· Y = 0; 

(xiii) - -x = x; 
(xiv) -(x + y) = -x·_y; 
(xv) -(x·y) = -x + -y; 

(xvi) 0 ::; x ::; 1; 
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(xvii) if x ~ z and y ~ z, then x + y ~ z; 
(xviii) ifx ~ y and x ~ z, then x ~ y·z. 

PROOF. For (i), we calculate: 

x = x·x + x 
= x + x·x 
= (x + x)·(x + x) 
= x·(x + x) + x·(x + x) 
= (x + x)·x + (x + x)·x 
=x+x 

9.3(i;;) 
9.3(i) 

9.3(iv) 
9.3(iv) 
9.3(i) 

9.3(iii) 

By duality we have (ii), and (iii) is immediate from (i) and the definition of 
::;. To prove (iv), assume that x ::; y and y ::; x. Then, using the definition 
of::; and 9.3(i), y = x + y = y + x = x. Condition (v) is proved similarly: 
assume that x ::; y and y ::; z. Thus x + y = y and y + z = z, so 

x + z = x + (y + z) = (x + y) + z 9.3(;;) 
= Y + z = z. 

For (vi), assume first that x ~ y. Thus x + y = y, so x·y = x·(x + y) = x 
by 9.3(iii). Thus x + y = y implies x·y = x. By duality the converse holds, 
and this establishes (vi). Condition (vii) is proved as follows: 

x·O = x·(x·-x) 
= (x·x)·-x 
=x·-x=O 

Condition (viii) is easy, using 9.3(v), 9.3(i), 9.3(iii): 

9.3(v) 
9.3(;;) 

(ii), 9.3(v) 

x·l = x·(x + -x) = (-x + x)·x = x. 

By duality, we obtain (ix) and (x) from (viii) and (vii) respectively. To prove 
(xi), first assume x::; y. Then by (vi), x·_y = (x·y)·_y = x·(y·_y) = 
x·O = 0 (using also 9.3(ii), 9.3(v), and (vii». Now assume x·_y = O. Then 

x·y = x·y + 0 = x·y + x·_y (ix) 
= x·(y + -y) = x·l = x 9.3(iv),9.3(v),(viii) 

Hence x ::; y by (vi). The direction => in (xii) is clear from 9.3(i) and 9.3(v). 
Now assume x + y = 1 and x·y = O. Then 

x = x·l = x·(y + -y) = x·y + x·_y 
= 0 + x·_y = x·_y + 0 = x·_y + y._y 
= (x + y)._y = 1·-y =-y 

(viii), 9.3(v), 9.3(iv) 
9.3(i),9.3(v) 

9.3(iv), 9.3(i), (viii) 

Now (xiii) is immediate from (xii). To prove (xiv) we also use (xii): 

x + y + -x·-y = x + (x + -x)·y + -x·_y 
= x + x·y + -x·y + -x·_y 
= x + -x·(y + -y) = x + -x = 1; 

(x + y)·-x·_y = x·-x·_y + y·-x·_y = O. 
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Thus -(x + y) = -x·-yby(xii). By duality we have (xv). (xvi) is immediate 
from (vii), (viii), (vi). To prove (xvii), assume x :$ z and y :$ z. Thus x + 
z = z and y + z = z. Hence x + y + z = x + z = z. (xviii) follows by du
ality (note that the dual of x :$ y is y :$ x). 0 

Now we shall consider several common algebraic notions in their special 
form for Boolean algebras. Many of these notions and the theorems we prove 
about them apply to much more general situations; see for example Part IV. 

Definition 9.7. Let Q{ = <A, +, " -,0, I) and m = <B, +', ,', -',0',1') 
be BA's. We say that Q{ is a subalgebra ofm if A s; B,O = 0', 1 = I', and 
for all x, yEA, x + y = X +' y, x·y = x·'y, and -x = -'x. For any 
X s; B, Xis a subuniverse ofm if 0', I' E X and Xis closed under +', .', -'. 

Thus if Q{ is a subalgebra of m, then A is a subuniverse of m. Any sub
universe of m is the underlying set of some subalgebra of m. A subuniverse 
is just a subalgebra with the structure ignored. Some useful equivalent 
definitions of subuniverse are given in 

Proposition 9.8. Let m be a BA, X S; A. Then the following conditions are 
equivalent,' 

(i) X is a subuniverse ofQ{; 
(ii) X -# 0, and X is closed under + and - ; 

(iii) X -# 0, and X is closed under . and -. 

PROOF. Obviously (i) => (ii). Now assume (ii). Then X is closed under 
since x·y = -(-x + -y); hence (iii) holds. Assume (iii). Then Xis closed 
under + by the dual of the argument just given. Choose Xo E X. Then 0 = 
Xo' - Xo E X, and 1 = Xo + - Xo E X. Thus X is a subuniverse of m. 0 

Proposition 9.9. If d is a nonempty collection of subuniverses of a BA m, 
then n d is a subuniverse of m. 

The proof is trivial. Proposition 9.9 justifies the following definition 
(observe that A is always a sub universe of Q{): 

Definition 9.10. If X S; A, m a BA, then the set n {Y: X S; Y, Y a sub
universe of m} is called the subuniverse of m generated by X. 

The following theorem expresses this notion in a simpler fashion. Note 
the similarity to 8.38. 

Theorem 9.11. If X is a subset of A, then the subuniverse ofm generated by 
X consists of 0, 1, and all elements of A of the form 

(1) 2: flYij, 
t<m j<nt 

where for each i, j, either Yo E X or - Yij E X. 
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PROOF. Clearly each such element is in the subuniverse of Qt generated by 
X. Thus it suffices to show that the set S of all such elements is a subuniverse 
of Qt containing X. Obviously X s Sand S is closed under +. By 9.8(;) it 
remains only to show that S is closed under -. Let z be any element of S, 
as in (1). Then 

-z = n L: -Yij = L:n -Yi,fi> 
j<m j<nj f€F j<m 

where F = Pi < m ni. Here we have used a generalization of the distributive law 
9.3(iv) which is easy to establish by induction on m. Thus -z E S, as 
desired. 0 

The next general algebraic notions we shall consider for Boolean algebras 
are homomorphisms and isomorphisms: 

Definition 9.12. LetQt = <A, +,., -,0, I)andQt' = <A', +', .', -',0',1') 
be BA's. A functionfmapping A into A' is a homomorphism of Qt into Qt' 
provided thatfO = 0',/1 = 1', and for all x, Y E A,/(x + y) = fx +' fy, 
f(x·y) =fx·'fy, andf(-x) =-'fx. Iffmaps onto A' we say thatfis a 
homomorphism of Qt onto Qt'. An isomorphism into is a one-one homo
morphism. The BA's Qt and Qt' are isomorphic provided there is an iso
morphism from Qt onto Qt'. A homomorphism of Qt into itself is called an 
endomorphism of Qt. 

As is usual in algebra, one is only interested in the properties of BA's up to 
isomorphism. 

Proposition 9.13. Let Qt and Qt' be BA's, as in 9.12, and let f be a map of A 
into A'. Then the following conditions are equivalent; 

(i) fis a homomorphism; 
(ii) f( -x) = -'Ix andf(x + y) = fx +' fy for all x, YEA; 

(iii) f( -x) = -'Ix andf(x·y) = fx·'fy for all x, YEA; 
(iv) fO = 0',/1 = I',/(x + y) = fx +' fyfor all x, YEA, andfx·'fy = 0' 

whenever X· Y = 0. 

PROOF. Obviously (i) => (ii). Now assume (ii), and let x, yEA. Then 

f(x·y) =f(-(-x + -y» =-'(-'fx+'-'fy) =fx·'fy, 

so (iii) holds. Analogously, (iii) => (ii). If (ii) holds, then f preserves ., as 
already proved. Furthermore, fO =f(0·-0) =fO·'-'f0 = 0' and fl = 
f(1 + -1) = fl +' -'11 = 1'. Hence (i) holds. Thus (i)-(iii) are equivalent. 
Obviously (i) => (iv). Now assume Uv); to show (ii) it suffices to show thatf 
preserves -. We have for any x E A 

1 =f(x + -x) =fx+'f(-x); 
fx·'f( -x) = 0' by hypothesis of (iv). 

Thus f( - x) = - 'Ix, as desired. 0 
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Proposition 9.14. Let Q1 and Q1' be BA's, as in 9.12, and let f be a map of A 
into A'. Then the following conditions are equivalent: 

(i) f is an isomorphism of Q1 onto Q1'; 

(ii) fmaps A onto A', andfor all x, yEA, x :0; y ifffx :0;' fy. 

PROOF. Obviously (i) => (U). Now assume (ii). Now if fx = fy, then 
fx :0;' fy and fy :0;' fx, so x :0; y and y :0; x, hence x = y. Thus f is one-one. 
Now we shall apply 9.13(iv). For any x, yEA we have fx :0;' f(x + y) and 
fy ~'f(x + y), since x:o; x + y and y:o; x + y. Thusfx +'fy :o;'f(x + y). 
Let fx +' fy = fz (since f is onto A'). Then fx :0;' fz, so x :0; z. Similarly 
y :0; z, so x + Y :0; z. Butfz :0;' f(x + y) implies z :0; x + y. Thus z = x + y, 
and hence fx +' fy = fz = f(x + y). Next, choose x so that fx = 0'. Then 
0:0; x, sofO :O;'fx = 0' and hencefO = 0'. Similarlyfl = 1'. Now assume 
x·y = O. Writefx·'fy =fz. Thenfz :O;'fxandfz:O;'fy, soz:o; xandz:o; y, 
hence z :0; X· Y = 0, and z = O. Thus fx· 'fy = fO = 0', as desired. 0 

Now we introduce the important notions of ideals and filters, which as 
we shall see, enable one to study homomorphisms within a given BA rather 
than between two BA's. 

Definition 9.15. A subset I of Q1 is an ideal of Q1 if I i= 0, a + bEl whenever 
a, bEl, and a E I whenever a :0; bEl. A subset F of Q1 is a filter of Q1 iff 
F i= 0, a·b E F whenever a, bE F, and a E F whenever a ;::: bE F. 

Note that 0 is a member of any ideal I. In fact, since I i= 0 choose bEl. 
Then 0 :0; bEl, so 0 E I. Similarly, 1 is a member of any filter. The notions 
of ideal and filter are dual. Later we give a more exact description of the 
relationship of the notions. 

Proposition 9.16. LetI be an ideal ofQ1. Let R = {(x, y) : X· - Y + y·-x E I}. 
Then R is an equivalence relation on A. Moreover, 

(i) if xRy, then - xR - y; 
(ii) ifxRy and x'Ry', then (x + x')R(y + y'); 

(iii) if xRy and x' Ry', then (x· x')R(y· y'). 

PROOF. R is reflexive on A: if x E A, then x·-x + -x· x = 0 E I. Obviously 
R is symmetric. R is transitive: assume that xRyRz. Thus x·_y + y·-x E I 
and y. - z + z· - Y E l. Now 

x·-z = x·(y + -y)·-z = x·y·-z + x·-y·-z. 

But X· y. - z ~ y. - z :0; y. - z + z· - Y E I, so X· y. - Z E I. And X· - y. - z :0; 
X· - Y :0; X· - Y + y. - X E I, so X· - y. - Z E I. Hence X· - Z = X· y. - z + 
x·_y·-z E I. Similarly, Z'-x E I, so x·-z + z·-x E I, i.e., xRz. Thus R is 
an equivalence relation on A. 
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Now we turn to (i). Assume that xRy. Thus X· - Y + y. -x E I. Hence 

-x·_-y + -y·_-x = -x·y + -y,xEI, 

so -xR - y. To prove (ii), assume that xRy and x'Ry'. Thus x·_y + 
y·-x E I and x' ._y' + y' ·-x' E I. Hence 

(x + x')·_(y + y') = (x + x')·_y·_y' = x·-y·_y' + x'·_y·_y' 

=s; X· - Y + x'· - y' E I 

and hence (x + x')· - (y + y') E I. Similarly (y + y'). - (x + x') E I, so 
(x + x')R(y + y'). Finally, (iii) clearly follows from (i) and (ii). 0 

Proposition 9.16 justifies the following definition. 

Definition 9.17. Let I be an ideal of a BA ~ = <A, +, " -,0, I). Let A/I 
be the set of all equivalence classes under the equivalence relation R of 
9.16; the equivalence class of an element a E I is denoted by [aJr, or simply 
[a]. Operations +', .', and _, on A/I are uniquely determined by the 
stipulation that, for all a, b E A, 

[a] +' [b] = [a + b]; 
[a]·/[b] = [a·b]; 

-'ra] = [-a]. 

We let ~/I = <A/I, +', .', _', [0], [1]). Let 1* be the function mapping A 
onto A/I defined by I*a = [a]I for all a E A. ~/I is called a quotient algebra 
of~. 

The following proposition is easily established: 

Proposition 9.18. If I is an ideal of a BA ~, then ~/ I is a BA, and 1* is a 
homomorphism from ~ onto ~/ I. 

The most important facts about the relationship between ideals and 
homomorphisms are expressed in the following theorem: 

Theorem 9.19 (The homomorphism theorem). Letfbe a homomorphismfrom 
a BA ~ onto a BA sa. Let I = {x: x E A andfx = O}. Then I is an ideal of 
~, and ~/I is isomorphic to sa. I is called the kernel off. Furthermore, f is 
one-one iff 1= to}. 

PROOF. Since fO = 0, we have 0 E I and hence I #- O. Suppose x, y E I. 
Thenf(x + y) = fx + fy = 0 + 0 = O. Thus x + y E I. Suppose x =s; Y E I. 
Then fx =s; fy = 0, so fx = 0 and hence x E I. Thus I is an ideal. Now let 
g = {([a],fa): a E A}. Then g is a function: if [a] = [b], then a·-b + b·-a E 

I, hencef(a·-b + b·-a) = 0; sincefis a homomorphism, it follows that 
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fa·-fb + fb·-fa = 0, sofa·-fb = ° = fb·-fa, hencefa :::; fb :::; fa, hence 
fa = fb. Thus g is a function mapping A/I onto B. g preserves - : 

g(-[aD = g[-a] =f(-a) = -fa = -g[a]. 

And g preserves +: 

g([a] + [bD = g[a + b] = f(a + b) = fa + fb = g[a] + g[b]. 

This completes the proof that g is an isomorphism of QJ./ I onto g3. Iff is one
one, obviously 1= {a}. Conversely, if 1= {a} and x -:f y, then x·_y + 
- X· Y -:f 0, so 

° -:f f(x·- y + -x·y) = fx·-fy + -fxfy 

and fx -:f fy· D 

It is time to tie up the notions of ideal and filter; the following proposition 
is easily proved: 

Proposition 9.20. There is a one-one correspondence between ideals andjilters 
on a given BA QJ.. In more detail, if I is an ideal of QJ. and F is a jilter of QJ., 

then: 

(i) It = {x: -x E I} is ajilter ofQJ.; 
(ii) FI = {x: -x E F} is an idealofQJ.; 

(iii) Itl = I; 
(iv) Fit = F. 

The following proposition is also clear: 

Proposition 9.21. The intersection of any nonempty family of ideals (jilters) 
is an ideal (jilter). 

This justifies the following definition: 

Definition 9.22. For any X s; A, the ideal (filter) generated by X is the ideal 
(filter) 

n {Y: X s; Y, Y is an ideal (filter) of QJ.}. 

Corollary 9.23. For any X s; A, the ideal generated by X is the set 

{y : for some jinite sequence xo, ... , Xm -1 E X, Y :::; Xo + ... + Xm -1}, 

while the jilter generated by X is the set 

{y : for somejinite sequence Xo,"" Xm- 1 E X, xo··.· 'Xm- 1 :::; y}. 

Now we turn to the study of some special ideals and filters. 
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Definition 9.24. An ideal I of QI is maximal if I =I- A and there is no ideal 
J such that Ie J c A. Maximal filters, usually called ultrafilters, are 
similarly defined. 

We let 2 = (2, +,', -,0, I), where 0,1, 2-EW, and +, " - are 
operations on 2 given by the following table: 

x 

° 
° 

y 

1 

° 
° 

x+y 

° 

x·y 

° ° 
° 

-x 

° ° 1 
1 

The algebra 2 is a BA, as is easily checked. Maximal ideals are sometimes 
called prime ideals. It is also easy to check that maximal ideals and ultrafilters 
correspond to each other under the correspondence described in 9.20. The 
following proposition gives some useful equivalent definitions for maximal 
ideals. 

Proposition 9.25. For any ideal I in a BA QI the following conditions are 
equivalent: 

(i) I is maximal; 
(ii) I =I- A, and for any x, YEA, if X· Y E I then x E I or y E I; 
(iii) I =I- A, and for any x E A, either x E I or - x E I; 
(iv) the algebra QI/I is isomorphic to 2. 

PROOF 
(i) => (ii). Assume that I is maximal, but that there are elements x, YEA 

with X· y E I while x rf= I and y rf= I. Then the ideal generated by I U {x} is A, 
so by 9.23 there is a U E I such that 1 = U + x. Similarly, there is a v E I such 
that 1 = v + y. Hence 

1 = (u + x)·(v + y) = U·V + u·y + X·V + x·y 
S;u+v+x'YEI, 

so 1 E I. But then, since y S; 1 for any YEA, A = I. This contradicts I being 
maximal. 

(ii) => (iii). Assume (ii). Now ° = x·-x E I, so by (ii), x E I or -x E I. 
(iii) => (iv). Assume (iii). Then [0] -# [1] since I =I- A. For any x E I, [x] = 

[0] and [- x] = [1], so [0] and [1] are the only elements of QI/ I, by (iii). 
Clearly the tables for +, " - are just like in 9.24, so QI/Iis isomorphic to 2. 

(iv) => (i). Since lA/II > 1, I is proper. If J is an ideal such that Ie J c A, 
choose x E J '" I. Then [OlI =I- [Xli since 1-# J, and [xlI -# [1][ since J -# A. 
Thus lA/II> 2, contradiction. 0 

There is a theorem dual to 9.25 concerning filters; we will apply it when 
needed. The same applies to our next theorem. Of course the dual of 9.25(iv) 
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requires a careful formulation of the notion 2ljF, F a filter. This is straight
forward using 9.20. For example, the associated equivalence relation is 
{(x, y): x·y + -x·_y E F}. 

Now we prove a fundamental existence theorem for maximal ideals. 

Theorem 9.26 (Boolean prime ideal theorem). If / is a proper ideal of 2l 
(i.e., / is an ideal of 2l, and / i: A), then there is a maximal ideal J of 2l 
such that / £; J. 

PROOF. Let d = {J: / £; J, J is a proper ideal of 2l}. Then d i: 0, since 
obviously / Ed. Let B1J be a nonempty subset of d simply ordered by inclu
sion. We now show that U B1J Ed. Since B1J is a nonempty collection of ideals 
'2./, clearly U B1J i: 0, and / £; U B1J. Let x, Y E U B1J. Say x E J E B1J and 
y EKE B1J. By symmetry we may assume that J £; K. Then x, y E K, and since 
K is an ideal it follows that x + y E K and hence x + Y E U B1J. If x ~ 
Y E U B1J, say Y E J E B1J. Then x E J since J is an ideal; thus x E U B1J. If 
1 E U B1J, then 1 E J E B1J for some J, contradicting J proper. Thus U B1J is 
proper, and we have established that U B1J Ed. 

We can now apply Zorn's lemma to obtain a member J of d maximal 
under inclusion. Clearly J is as desired. 0 

The Boolean prime ideal theorem has been studied extensively from the 
point of view of axiomatic set theory. It is weaker than the axiom of choice 
(which is equivalent to Zorn's lemma), but it cannot be established on the 
basis of the usual axioms of set theory without choice, both statements 
assuming those axioms are consistent. 

The prime ideal theorem can be used to establish the following important 
result. In its proof we make a switch from working with ideals to working 
with filters. Ideals seem more appropriate in. purely algebraic contexts, as 
above, while filters are natural when considering matters, like here, which 
verge on topology; see Exercise 9.69. 

Theorem 9.27 (Qoolean representation theorem). Every BA is isomorphic to 
a Boolean set algebra. 

PROOF. Let 2l be a BA. Let X = {F: F is an ultrafilter of 2l}. It suffices to 
find an isomorphism f of 2l into the BA <SX, u, n, "",,0, X). For each 
a E A, letfa = {F: a E FE X}. Then for any FE X and any a, bE A, 

FEI(-a) iff - a E F iff a rf: F 

sol( -a) = X...., fa; 

FEf(a + b) 
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thusf(a + b) = fa V fb. It remains to show thatfis one-one. Suppose x E A, 
x f= O. Let F = {z: Z E A, x :s; z}. Clearly F is a proper filter. By 9.26, let G 
be an ultrafilter such that F S; G. Now x E G, so G Efx, as desired. 0 

The Boolean representation theorem shows that our axioms for BA's are 
complete, in the sense that the only models of these axioms are the Boolean 
set algebras, up to isomorphism. By this theorem, we can establish properties 
of arbitrary BA's by establishing them for the more special Boolean set 
algebras. On the other hand, we can apply ordinary algebraic constructions, 
some of which, like homomorphisms and quotient algebras, lead out of the 
class of Boolean set algebras, to establish properties of Boolean set algebras 
themselves. 

We now turn to some important notions special for Boolean algebras. 

Definition 9.28. An element x E A is an atom of QI if x f= 0, while for all y, 
o :s; y :s; x implies 0 = y or y = x. QI is atomic if for every nonzero x E A 
there is an atom a :s; x. QI is atom less if QI has no atoms. 

In the BA of all subsets of a set X, the singletons {x} for x E X are the 
atoms, and this BA is atomic. An easy example of an atomless BA is the BA 
of subsets of the set of rational numbers generated by all half-open intervals 
[r, s). There are BA's which are neither atomic nor atomless. A fundamental 
property of atomless BA's is given in 9.48 below. With the aid of the notion 
of an atom we can determine all finite BA's; see 9.30. 

Proposition 9.29. Every finite BA is atomic. 

PROOF. Suppose QI is nonatomic. Choose a nonzero ao E A such that there 
is no atom :s; ao. Having found ao, ... , an E A with ao > a1 > ... > an > 0, 
since there is no atom :s; an choose an+ 1 E A with an > an+ 1 > O. The so 
constructed sequence a E "'A is one-one, so IAI ;:::: No. 0 

Proposition 9.30. If '?l is a finite BA with m atoms, then QI is isomorphic to 
the Boolean set algebra of all subsets of m. 

PROOF. Let a E rnA enumerate all atoms of QI. For each x E A, let 

fx = {i: aj :s; x}. 

Thus f maps A into the Boolean set algebra m of all subsets of m. Suppose 
i E f(x + y), while i ¢= fx. Thus ai :s; x + y but ai ::j;; x. Hence ai' x < at. so 
ai·x = 0 since ai is an atom. Therefore ai = ai'(x + y) = ai'y :s; y, i.e., 
i Efy. This proves thatf(x + y) S fx V fy; the converse inclusion is obvious, 
so f(x + y) = fx V fy. Clearly fx n f - x = O. For any i E m we have ai = 
ai·(x + -x) = ai'x + ai'-x, so ai'x f= 0 or ai'-x f= 0; these two alterna
tives imply (since aj is an atom) ai :s; x or aj :s; -x respectively. Thus i Efx 
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or i Ef( -x). Hencefx U f( -x) = m, so m ~ fx = f( -x). Thusfis a homo
morphism of 21 into >23. If x #- 0, then, since 21 is atomic by 9.29, there is an 
i E m with aj ~ x; thusfx #- O. It follows by 9.19 thatfis one-one. Finally, 
suppose T s; m. Let x = LjET aj; we claim that fx = T. If i E T, obviously 
aj ~ x and i Efx. Now suppose i Efx. Thus aj ~ x, so aj = LiET aj·aj. Hence 
there is a JET with aj· aj #- O. Since aj and aj are both atoms, aj = aj' aj = aj 
and so i = JET, as desired. 0 

Corollary 9.31. For any nEw the following conditions are equivalent: 

(0 there is a BA of power n; 
(ii) n = 2m for some m. 

Corollary 9.32. If 21 and >23 are finite BA's, then 21 ~ >23 ijflAI = IBI. 

Definition 9.33. Let Q{ be a BA, X s; A. The least upper bound of X, if it 
exists, is the unique element LX such that "Ix E X (x ~ LX) (i.e., LX is 
an upper bound of X) and Vy E A ["Ix E X (x ~ y) =:> LX ~ y]. Dually, the 
greatest lower bound of X, if it exists, is the unique element IIX such that 
"Ix EX (IIX ~ x) (i.e., IIX is a lower bound of X) and Vy E A ["Ix E X 
(y ~ x) =:> y ~ IIX]. 

Proposition 9.34. The following conditions are equivalent: 

(0 21 is atomic; 
(ii) for every a E A, L{x: x ~ a, x is an atom of21} exists and equals a. 

PROOF 

(0 =:> (ii). Assume (i), and let a E A. Obviously a is an upper bound for 
X = {x: x ~ a, x is an atom of 2l}. Suppose that b is another upper bound 
for X. If a :$ b, then a· - b #- 0, and there is an atom x with x ~ a· - b. Thus 
x ~ a, so x E X and x ~ b. Thus x ~ b· - b = 0, contradiction. Thus a ~ b, 
as desired. 

(ii) =:> (i): obvious. D 

Corollary 9.35. If 21 is atomic and has only finitely many atoms, then 21 is 
finite. 

Proposition 9.36. If '2:. X exists, then II{ -x: x E X} exists and equals -LX. 

PROOF. If x E X, then x ~ LX and hence -LX ~ -x. Thus -LX is a 
lower bound for Y = {-x: x E X}. Let a be any lower bound for Y. Thus 
"Ix E X (a ~ -x), so "Ix E X (x ~ -a). Hence LX ~ -a and a ~ -LX. 

Proposition 9.37. If '2:.X exists and a E A, then L{x·a: x E X} exists and 
equals a·'2:.X. 
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PROOF. For any x E X, X ~ LX and hence a·x ~ a·Lx. Now suppose that 
b is any upper bound of {x·a: x E X}. Then for any x EX, x·a ~ b and so 
x ~ -a + b. Thus LX ~ -a + b, so a'LX ~ b. D 

The next general algebraic notion we shall consider for BA's is that of 
direct or Cartesian products. 

Definition 9.38. Let (~(i : i E I) be a system of BA's, 

for each i E I. By the product of the system (~(i: i E I) we mean the 
structure 

PiEI~!i = (B, +,', -,0, I), 

where B = PiEI Ai = {f:fis a function with domain 1 and}; E Ai for all 
i E I} and +, " - are defined as follows (for arbitrary J, gEE, i E I): 

(f+ g)i =}; +igi; 
(f·g)i = };'ig;; 
(-f)i = -i};; 

The members 0, I of B are of course given by hypothesis. If each ~(i = cr:, 
we denote PiEI ~i by lcr:. If 1 = 2, we denote PiE! ~(i by ~(o X ~!1' Thus 
~o x ~(1 consists of all pairs (x, y) with x E Ao, y E AI, with the operations 
given by 

(xo, Yo) + (Xl> Y1) = <Xo +0 Xl, Yo +1 Yl), 
<Xo, YO)'(X1, Yl) = (xo'oXl> YO'lY1), 

-<XO, Yo) = <-oXo, -lYO), 

° = <0o, °1), 

1 = (10, II)' 

The following proposition is straightforward: 

Proposition 9.39. If <~(i : i E I) is a system of BA's, then PiE! ~(i is a BA. 

Proposition 9.40. The BA (SX, U, (I, ~, 0, X) is isomorphic to x2. 

PROOF. For each Y c X, let Xy be the characteristic function Y, i.e., for all 
x E X let 

if XE Y, 
if x E Y. 

It is easily verified that X is the desired isomorphism. D 

If we combine this proposition with the representation theorem, we obtain 

Corollary 9.41. Any BA can be isomorphically embedded in x2for some set X. 
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This corollary shows another completeness property of our axioms for 
BA's. Namely, if we wish to check that an equation holds in all BA's, it is 
enough to check that it holds in the two-element BA 2. For, then it will also 
clearly hold in x2, and any subalgebra of x2, and hence by 9.41 in any BA. 
This gives a decision procedure for checking when equations hold in all 
BA's; in fact, under a natural Godel numbering the set of Godel numbers of 
equations holding in all BA's is recursive, indeed even elementary recursive. 
The decision procedure really coincides with the truth table method described 
for sentential logic. 

Another important fact about products of BA's can be expressed using the 
notion of relativized BA: 

Definition 9.42. For any BA ~1 = <A, +, " -, 0, I) and any a E A we let 
m I a = <A I a, +', .', -',0, a), where 

A I a = {x E A : x ::<:;; a}, 
x +' y = x + y, 

x.'y = x'y, 
-'x = a·-x, 

for any x, yEA. m I a is the relativization of ~1 to a. 

It is easy to check the following proposition: 

Proposition 9.43. Q{ t a is a BA. 

Proposition 9.44. For any a E A, Ql is isomorphic to (Q{ I a) x (Ql t -a). 

PROOF. For any x E A, letfx = <x'a, x·-a). It is easily checked thatfis 
the desired isomorphism. 0 

Definition 9.45. Given a product PiEI Q{i of BA's, and any i E I, pri is the 
function mapping PiEI AI into Ai given by prix = Xi for all x E PiEI AI' 

Corollary 9.46. pri is a homomorphism from PiEI Q{I onto Q{i' 

The following lemma expresses an important property of the notion of 
relativization. 

Lemma 9.47 (Vaught). Let R be a binary relation between countable BA's 
such that the following conditions hold: 

(i) if Q{Rm, then ~RQ{; 
(ii) ifQ{R~, then IAI = IBI; 

(iii) ifQ{R~ and a E A, then there is abE B such that (Q{ I a)R(~ I b) and 
(Q{ I -a)R(~ I -b). 

Then Q{ ~ ~ whenever Q{R~. 
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PROOF. Assume ~R!<l3. If A is finite, then ~ ~ ~ by (ii) and Corollary 9.32. 
Hence assume A is infinite. By (ii), B is also infinite. Let a: w~ A and 
b: w>-* B. We now define two sequences (Xl: i E w) E "'A and (Yl: i E w) E "'B 
by recursion so that for every mEw and every t S m, 

(1) ~ t (0 Xl" I1 - XI)R ~ t (0 Yt" 0 -Yi). 
iet lem-t let lem-t 

Let Xo = ao, and by (iii) choose Yo E B so that (~ t xo)R(~ t Yo) and 
(~ t -xo)R(!<l3 t - Yo). Thus (1) holds for m = 1. Now suppose Xi and Yt 
defined for all i < n, where (1) holds for all m :::; n, and n ~ 1. For each 
t s n let 

Ut = 0 Xl' 0 - Xi> 
let len-t 

Vt = 0 Yl" 0 - Yt· 
let len-t 

For n odd we proceed as follows. Letj be minimum such that bi f/: {Yl : i < n}, 
and set Yn = bi. Now let t S n. We have (~ t ut)R(!<l3 t Vt) by (1), so by (i) 
and (iii) choose Wt EAt Ut so that [(~ t Ut) t wt]R[(!<l3 t Vt) t (Vt' Yn)] and 
[(~ t Ut) t -' wt]R[(!<l3 t Vt) t -"(Vt'Yn)]' where -' and -" are the minus 
operations in ~ t Ut and !<l3 t Vt respectively. Thus 

(2) [~ t wtlR[!<l3 t (vt'Yn)] and [~ t (ut ·-wt)]R[!<l3 t (Vt'-Yn)], 

where Wt :::; Ut. Set Xn = 2t5n Wt. We now check (1) for m = n + 1. Given 
any subset s of n + 1, we take two cases. 

Case 1. n E s. Then we write s = t u {n}, where t S n. Thus TIles Xl' 

TIte<n+l)-S - Xl = Ut'Xn and TIles Yt' TIle<n+l)-S - Yi = Vt·Yn. Now if t' s n 
and t -:F t', clearly Ut'Ut' = O. Hence Ut'Xn = Wt. Hence the desired result is 
immediate from (2). 

Case 2. n f/: s. Thus s S n, and TItes Xl' TIle<n+1) -s - XI = Us' - Xn, while 
TIlesYt·TIle<n+l)-S - Yt = Vs·-Yn. Clearly Us'-Xn = Us·-W., so again the 
desired conclusion follows from (2). 

If n is even, we proceed as above except with the roles of ~ and !<l3, a and b, 
X and Y interchanged. Thus our sequences are defined, and (1) holds for every 
mEw and t S m. In particular, for any mEw and t S m, using (ii), 

(3) o XI' 0 - XI = 0 iff 0 Yt' n - Yt = O. 
iet lem-t let lem-t 

Now we claim 

(4) if i,j < w, then Xi :::; Xj iff Yt :::; Yi' 

For, let m = max{i, j} + 1. By induction on n one easily shows that for every 
nEw, 

1 = L (0 Xi' 0 - Xl) 
t5n jet len-t 
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and hence 

X"-Xi=2:{TIXk'TI -Xk:ts;m,iEt,jrj;t}, 
ket kem-t 

and, similarly, 

y,'-Yi = 2: ~ TI Yk' TI - Yk: t s; m, i E t,j E t}. 
~ ket kem-t 

Thus (4) follows from (3). By induction, the following statement is easily 
established: 

(5) for all i E w, at E {xo, ... , X2t} and b, E {Yo, ... , Y21+ l}' 

Combining (4) and (5), we see from 9.14 that {(XI> YI) : i E w} is the desired 
isomorphism. 0 

Theorem 9.48. Any two denumerable atomless BA's are isomorphic. 

PROOF. Let R = {(m, Q3) : IAI = IBI = I or m and Q3 are denumerable and 
atomless}. The hypothesis of 9.47 is easily verified. D 

The final algebraic notion which we shall consider for BA's is that of a 
free algebra: 

Definition 9.49. m is freely generated by X provided: 

(i) X generates m; 
(ii) if Q3 is any BA and f is any function mapping X into B, then f can be 

extended to a homomorphism of minto Q3. 

If m is freely generated by X, we say that m is a free BA with free 
generators X. 

We first note that free BA's are determined up to isomorphism by their 
sets of free generators: 

Proposition 9.50. If m and Q3 are each freely generated by X, then they are 
isomorphic. 

PROOF. Letfbe a homomorphism from minto Q3 extending Id t X (identity 
on X), and let g be a homomorphism from Q3 into m extending Id t X. Then 
{a E A: gfa = a} is a sub universe of m including X; since ~l is generated by 
X, this set is equal to A. Thus go f = Id t A. Similarly,! 0 g = Id t B. Hence 
f is the desired isomorphism. D 

To prove the existence of free algebras we need a couple of lemmas. 

Lemma 9.51. If X generates m, then IAI ~ IXI + No. 
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PROOF. Let Yo = X and, for mEw, 

Ym+ 1 = Ym u {-X: x E Ym} U {x + y: x, y E Ym} U {O, I}. 

It is easily checked that UmEw Ym = A. Furthermore, by induction on m one 
easily shows that I Yml s IXI + ~o for each mEw. Hence 

IAI = Ik! Yml S ~ IYml s m~ (IXI + ~o) 
o 

Lemma 9.52. If Q{ is a BA and f is a one-one function from A onto B, then 
there is a BA m with universe B such thatfis an isomorphismfrom Q{ onto m. 

PROOF. Let Q{ = <A, +, " -, 0, I). We define the operations of m as 
follows. For any b, C E B, 

b +' c = f(f-Ib + f-IC), 
b.'c = f(f-Ib-j-Ic), 
-'b = f( -f-Ib), 

0' =fO, 
l' = f1. 

Then we set m = <B, +', .',0', 1'). The conclusions of the lemma are then 
routine. D 

Theorem 9.53. For any nonempty set X there is a BAfreely generated by X. 

PROOF. Let A be any set such that IAI = IXI + ~o. Let 1= {(m,f) : m is a 
BA, B s A, andfis a function mapping X into B}. Let G: = P(\l3,f)EI m. We 
define a function g mapping X into C by setting (gX)\l3f = fx for all x E X 
and (m,f) E I. Then 

(1) g is a one-one function. 

For, assume that x, y E X and x oF y. Now there is a BA m with IBI > 1 
and B sA; to see this, consider the BA 2, note that I A I ~ 2, and apply 
9.52. Let f be any function mapping X into B such that fx oF fy. Thus 
(m, f) E I, and 

(gX)\l3f = fx oF fy = (gy)\l3f' 

Thus (1) holds. Now let'S) be the sub algebra of G: generated by g* X. Let h 
be anyone-one function with domain D such that g-I S h. Finally, by 9.52 
let ~ be a BA such that h is an isomorphism from'S) onto ~. We claim that 
~ is the desired algebra freely generated by X. Since g* X generates 'S) and 
the isomorphism h maps g* X onto X, clearly X generates ~. Now let k be 
any function mapping X into some BA (f. Let .f> be the subalgebra of (f 

generated by k* X. Then 9.51, IHI s IXI + ~o = IAI. Let I be anyone-one 
function mapping H into A, and by 9.52 let ~ be a BA such that I is an 

157 



Part 2: Elements of Logic 

isomorphism of ~ onto ~. Note that (~, 10 k) E I. Now set k+ = 1- 1 0 

pr(l't,lok) 0 h- 1 ; we claim that k+ is the desired extension of k. Obviously k+ is 
a homomorphism of 5' into (1:. If x E X, then 

k + x = 1-1 pr(l't,lok)h -1 x = I-l(h -1 X)(l't,lok) = l-l(gx)(l't,lok) 
= 1- 11kx = kx, 

as desired. o 

We shall give another proof of 9.53 below; see Theorem 9.58 and the 
remark after it. This new proof will be based on the correspondence between 
Boolean algebras and sentential logics, to which we now turn. We shall see 
that there is a full correspondence between these two kinds of mathematical 
objects. 

Definition 9.54. Let [?Jl be a sentential language and r S; Senta-. We let 
== F = {(cp, ifJ) : cp, ifJ E Senta- and r I-a- cp ++ ifJ}. 

We shall sometimes write ==r, or even ==, when no ambiguity is likely. 
The following proposition can be routinely checked. 

Proposition 9.55. Let [?Jl be a sentential language and r S; Senta-. Then for 
any cp, ifJ, cp', ifJ' E Senta-, 

(i) == is an equivalent relation on Senta-; 
(ii) if cp == ifJ, then ""cp == ""ifJ; 

(iii) if cp == ifJ, and cp' == ifJ', then (cp v cp') == (ifJ v ifJ') and (cp A cp') == 
(ifJ A ifJ'); 

(iv) (cp A ...,cp) == (ifJ A ...,ifJ); 
(v) (cp v ...,cp) == (ifJ v ...,ifJ). 

This proposition justifies the following definition: 

Definition 9.56. Let [?Jl be a sentential language and r S; Senta-. We let 
'm~ be the algebra (Senta-/ ==~, +, " -, 0, 1) with the operations deter
mined by the following stipulations, where cp, ifJ E Senta-: 

[cp] + [ifJ] = [cp v ifJ], 
[cp]. [ifJ] = [cp A ifJ], 

- [cp] = [""cp], 
o = [ep A ""cp], 
1 = [cp v ...,cp]. 

The following proposition is easy to check: 

Proposition 9.57. If [?Jl is a sentential language and r S; Senta-, then 'mf is 
aBA. 
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Theorem 9.58. If & = (n, c, P) is a sentential language, then WIg" is freely 
generated by {[<s)l: s EP}, and <[<s)l: s EP) is a one-one function. 

PROOF. We check the second statement first. If s, t E P and s =F t, clearly 
lI<s)_<t) and hence If<s)_<t), so [<s)l =F [<t)]. By induction on 
sentences it is easily seen that [!p 1 is in the subalgebra generated by X = 
([ <s) 1 : s E P}, for each sentence !p. Thus X generates Wlg'. Now let f be any 
function mapping X into a BA 2(. By recursion (8.6), we define a function g 
mapping Sent" into A: 

g<s) =f[<s)l, 
g '!p = -g!p, 

g(!p -+ r/s) = -g!p + gr/s, 

for any s E P and any !p, r/s E Sent". We now claim 

(1) if f-!p, then g!p = 1. 

To prove (1), let r = {!p: !p E Sent", g!p = I}. It is easily seen that each 
logical axiom is in r. For example, to check (A3) we note 

g«.!p -+ .r/s) -+ (r/s -+ !p» = - g(.!p -+ .r/s) + g(r/s -+!p) 
= -(-g(.!p) + g(.r/s» + -gr/s + g!p 
= -(--g!p + -gr/s) + -gr/s + g!p 
= -g!p'grfs + -gr/s + g!p 
~ -g!p'grfs + -g!p'_grfs + g!p 
= - g!p + g!p = 1. 

Also, clearly r is closed under detachment. Thus each logical theorem is in 
r, and (1) follows. 

Now if f-!p - r/s, then g(!p - r/s) = I, and hence it follows easily that g!p = 
gr/s. Thus there is a functionf+ mapping M' into A such thatf+[!pl = g!p 
for any sentence !p.1t is easily checked thatf+ is the desired extension off 0 

From 9.58 one easily obtains a new proof of the existence offree algebras. 
In fact, given any set X, there is a sentential language & of the form (n, c, X). 
By 9.58, Wlg' is freely generated by {[<s)l : SEX}, and I{[<s)l: s E X}I = IXI. 
Thus by 9.52 we can easily infer that there is a BA freely generated by X. 

There is a natural correspondence between notions in sentential logic and 
notions in Boolean algebra. We give one instance of this correspondence 
next, and state some others in the exercises. 

Proposition 9.59. Let F be a filter in a BA Wl~, and set d = U F. Then 
r £: d, andWl~/F is isomorphic to Wlr. 

PROOF. Note first that r is a subset of the unit element 1 ofWl~; since 1 E F, 
clearly r £: d. We write below [!PlI" [XlF' [!pl~ for the equivalence classes under 
the equivalence relations associated with r, F, d respectively. Assume that 
[[!PlI'lF = [[r/slI'lF' Then [!PlI" [r/slI' + - [!PlI"- [r/slI' E F. Recalling the defini
tions of the operations in Wl~, we see that [(!p A r/s) v (.!p A .r/s)lI' E F and 
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hence, using an easy tautology, [cp ++ ifs]r E F. Thus cp ++ ifs E ~ and so [cp l~ = 
[ifs]a. Similarly [CP]a = [ifs]a implies that [[CP]r]F = [[ifs]r]F' Hence there is a 
one-one function I mapping mtr/F onto mt{ such that 1[[CP]r]F = [CP]a for 
every sentence cpo Clearly I is the desired isomorphism. D 

The preceding two results lead to the following theorem, which is another 
kind of completeness theorem for Boolean algebras. It shows that any BA 
is one of the algebras mtr, up to isomorphism. Hence we may say that the 
theories of Boolean algebras and of sentential logics are equivalent, in some 
sense. 

Theorem 9.60. Any BA is isomorphic to mtr lor some sentential language fjJ 

and some r s Senta-. 

PROOF. Let m be any BA. Let fjJ = (n, c, A) be a sentential language, and let 
I be the function such that I[<a>] = a for a E A. By 9.58, we can extend I 
to a homomorphism 1+ of mtij onto m. Let F be the filter-kernel of 1+, i.e., 
F= {x:xEM!',I+x = I}. By the homomorphism theorem we have m 
isomorphic to mtij/F. Let r = U F. Then by 9.59, mtij/F is isomorphic to 
mtr. Thus m is isomorphic to mtr, as desired. 
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EXERCISES 

9.61. Show that in any BA we have 

-( -x + -y + z) + -( -x + y) + -x + z = 1. 

9.62. Show that there is a natural one-one correspondence between Boolean 
algebras and rings with identity such that X·X = x for all X. (Only the most 
elementary facts about rings are needed to solve this problem. Given a 
BAm = (A, +, " -,0, I), let x +' y = x . -y + y·-xforany x,yeA, 
and show that under +' and ., A forms a ring of the above sort. Given a 
ring of this sort, expand (x + y)·(x + y) to show that the ring is com
mutative and x + x = 0 for all x in the ring; then let -'x = 1 + x, 
x +' Y = x + y + X· Y and show that A with these operations, ., and the 
o and 1 of the ring is a BA.) 

9.63. There is a BA m and a nonempty subset X of A such that 0, 1 e X, and X 
is closed under + and ., but X is not a subuniverse of m. 

9.64. For each infinite cardinal m, there is a BA with exactly m elements. 

9.65. Ifm is a finitely generated BA, say generated by X, X finite, then m is finite, 
in fact has at most exp exp IXI elements. This bound can be attained. 

9.66. There is an infinite BA with exactly 3 atoms. 
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9.67. Every infinite BA has an infinite subset X such that if x, y E X, and x "# y 
then x· y = 0, and an infinite subset Y such that if x, y E Y, then x ~ y 
or y ~ x. 

9.68. Without using any principle beyond ZF (set theory without the axiom of 
choice) show that the following two statements are equivalent: 
(1) the Boolean prime ideal theorem, 
(2) every BA with at least two elements has a maximal ideal. 

9.69. For any BA 2!, let F2! be the set X = {F: F is an ultrafilter on 2!}, with the 
topology on X given by the base {{F: x E FE X} : x E A}. Then F2! is a 
compact Hausdorff space in which the simultaneously closed and open sets 
form a base. F2! is called the Stone space of2!. In fact, {{F: x E F E X} : x E A} 
is the set of all closed and open sets in F2!. The space F2! is homomorphic 
to the closed subspace of A2 consisting of all homomorphisms from 2! into 
2, with the discrete topology. 

9.70. A Stone space is a compact Hausdorff space in which the closed-open sets 
form a base. For any topological space X, the set of closed-open sets forms 
a field of sets; (VX is the associated BA. Then for X a Stone space, (VX is 
isomorphic to the BA, a subalgebra of the direct power x2, whose universe 
consists of all continuous functions mapping X into 2 (latter with discrete 
topology). Furthermore, F(VX is homeomorphic to X. Finally, if2! is any BA, 
then (vF2! is isomorphic to 2!. 

9.71. There is a BA 2! such that 2Q! is isomorphic to 2!. 

9.72. For any set X, the BA associated with the product space x2 (2 discrete) is 
freely generated by {{f: jj = I}: i EX}. 

9.73. If X generates 2!, then X freely generates 2! iff for every mEw ~ 1, every 
one-one x E m X, and every e E m2, TIl < m Xfl "# 0, where for any yEA, 
yO = _ y and yl = y. 

9.74. Without using any principle beyond ZF, show that the following statements 
are equivalent: 
(1) extended completeness theorem for sentential logic, 
(2) Boolean representation theorem. 
Hint: For (1) =0> (2) it suffices by 9.68 and the proof of the Boolean repre
sentation theorem, along with 9.60 and its proof, to show that (1) =0> (in 
any BA vii' with at least two elements there is an ultrafilter). Let ~ = 
{p: p a sentence of £!I, [p] = I}. Assuming IM'I > 1, show that ~ is con
sistent, and apply (1) to get a model/. Show that F = {[p] :/+p = I} is an 
ultrafilter in vii'. For (2) =0> (1), assume that r is a consistent set of sentences 
in a sentential language £!I. Let h be an isomorphism from vii' onto a 
Boolean set algebra of subsets of a set X. Since r is consistent, X "# o. 
Choose Xo E X, and let/be the model of £!I such that/s = 1 iff Xo E h[<s>]. 
Show that / is a model of r. 

9.75 (Tarski). Let 2! be the Boolean set algebra of recursive subsets of w. Show 
that a BA S!3 is isomorphic to 2! iffS!3 is denumerable, atomic, and for every 
bE B, ifS!3 t b is infinite then there are c, d ~ b with c·d = 0, c + d = b, 
and both S!3 t c and S!3 t d infinite. Hint: use Vaught's Lemma 9.47. 
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10 Syntactics of 
First-order Languages 

In this chapter we give the basic definitions and results concerning the 
syntax of first-order languages: terms, formulas, proofs, etc. As we proceed 
we shall also check the effectiveness of many of the notions, although at a 
later stage we shall just appeal to the weak Church's thesis (see the comments 
preceding 3.3). This long section contains only very elementary facts, which 
will be used later mainly without citation. The basic definitions of syntactical 
notions occupy 10.1-10.18. The remainder of the chapter is concerned with 
elements of proof theory; this plays an important role in our discussion of 
decidable and undecidable theories in Part III, but will not be used in the 
discussion of model theory (Part IV). The basic notion of a first-order 
language, with which we shall be working for most of the remainder of this 
book, is as follows: 

Definition 10.1. A first-order language is a quadruple 2 = (L, v, (!), &1!) with 
the following properties: 

(i) L, v, {() and flt are functions such that Rng L, Rng v, Dmn (!), and 
Dmn flt are pairwise disjoint. 

(ii) Dmn L = 5, and L is one-one. Lo is the negation symbol of 2, Ll 
the disjunction symbol of 2, L2 the conjunction symbol of 2, L3 the universal 
quantifier of 2, and L4 the equality symbol of 2. 

(iii) Dmn v = w, and v is one-one. Vi is called the ith individual variable. 
(iv) Rng (!) s; w. For 0 E Dmn (!), 0 is called an operation symbol of 

rank (!)O; in case (!)O = 0, we also refer to 0 as an individual constant. 
(v) Rng flt s; w ~ 1. For R E Dmn flt, R is called a relation symbol of 

rank 9i'R. 

In an intended interpretation (model) of a first-order language, a certain 
set A is chosen as the domain or universe over which the variables Vi are to 
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range. Also, corresponding to each 0 E Dmn (!) an (!)O-ary operation on A 
is selected as the" meaning" of O. Finally, corresponding to each R E Dmn fIJ 
an flJR-ary relation on A is chosen as the meaning of R. The logical symbols, 
i.e., members of Rng L, are interpreted in their intuitive senses. We shall make 
all of this precise in the next chapter. 

We will shortly define precisely the notions of term, formula (grammatical 
expression), etc. First let us give some examples of first-order languages. 

Language of equality. We let L = <w + i: i E 5>, v = <m: mEw>, (!) = 
fIJ = o. This language is suitable just for expressing statements about equality 
alone. For example, the statement that equality is a symmetric relation is 
expressed by the formula 

"Iva Vv1(VO = V1 ~ V1 = va) 

and the statement that the universe has at least three elements is expressed 
by the formula 

(For the meaning of some of the symbols here, see below.) Note that there 
are other languages which are clearly equivalent in all respects to this lan
guage. For example, we might let L = <i: i E 5>, v = <m + 5: mEw>, (!) = 
fIJ = O. In general, if we have two languages 2 = (L, v, (!), fIJ) and 2' = 
(L', v', (!)', fIJ') and there is a one-one function f from Rng L u Rng v u 
Dmn (!) u Dmn fIJ onto Rng L' u Rng v' U Dmn (!)' U Dmn fIJ' such that 
foL = L', fo v = v', (!)' of= (!), and fIJ' of= fIJ, then 2 and 2' are 
equivalent in all senses of interest to us. For this reason, we usually do not 
specify a language in full detail; any exact specification the reader imagines 
should be all right for our purposes. In particular, there is no need to specify 
L or v. It is enough just to indicate the number and rank of the operation and 
relation symbols. 

Language of set theory. There are no operation symbols and only one 
relation symbol, e, which is to be binary. The statement that the union of 
two sets exists is: 

"Iva VV1 3v2 VV3(V3 e V2 ++ V3 e va V V3 e v 1). 

Language of rings. There are no relation symbols. The operation symbols 
are: +, . (binary); - (unary); 0, 1 (O-ary). In this language, specific poly
nomials with integer coefficients can be expressed. For example, the poly
nomial x 3 + 3x - 1 is expressed by 

Language of ordered fields. This is like the language of rings, except that 
we add a binary relation symbol <. 

Full language of a nonempty set A. Here we have for each operation (say 
m-ary)fon A an m-ary operation symbol 0" and for each relation (say n-ary) 
R on A an m-ary relation symbol RR on A. More precisely, let Band C be 
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two disjoint sets with a : UmEw mA A >* Band f3 : UmEW -1 scm A) ~ C. Then 
2 is a language (L, v, @, [J4!) such that Dmn @ = B, Dmn [J4! = C, @aj = arity 
ofjfor each finitary operationj on A, and [J4!f3R = arity of R for each finitary 
relation R on A. 

As we see from the last example, some of the languages we consider can 
have uncountably many symbols. For many of the countable languages it is 
of interest to consider the effectiveness of various notions to be introduced. 
For this purpose we make the following definition: 

Definition 10.2. If 2 = (L, v, @, [J4!) is a first-order language, then members 
of Dmn @ U Dmn [J4! are called nonlogical constants. The set Sym,!l' = 
Rng L u Rng v u Dmn @ u Dmn [% is the set of symbols of 2. 

An eJfectivized first-order language is a quintuple 2 = (L, v, @,[J4!,?) 
such that (L, v, @, [J4!) is a first-order language and in addition the following 
conditions hold: 

(i) ? is a one-one function mapping Sym,!l' into w; 
(ii) ? 0 v is recursive, Rng (? 0 v) is recursive, and v -1 0 ? -1 IS partial 

recursive; 
(iii) ?* Dmn @ is recursive and @ 0 ?-1 is partial recursive; 
(iv) ?* Dmn [J4! is recursive and [J4! 0 ? -1 is partial recursive. 

Most of the languages appropriate for ordinary mathematical theories can 
be effectivized. For example, the language of equality above which was 
explicitly described as a certain quadruple 2 = (L, v, @, [J4!) can be effectivized 
as 2' = (L, v, @, [J4!, ?), where ?(w + i) = i for each i E 5 and ?m' = m + 5 
for each mEw. 

The Godel-numbering function ? of 10.2 will be extended to various 
concepts introduced later, and the extension will always be denoted by ?+. 
Unless otherwise indicated, the statements which follow refer to an arbitrary 
first-order language 2; when appropriate, to an arbitrary effectivized first
order language 2. The following proposition is obvious. 

Proposition 10.3. ?* Sym,!l' is recursive. 

Intuitively, of course, 10.3 says that there is an automatic method for 
recognizing a symbol of a given effectivized first-order language. 

Definition 10.4. Expr,!l', the set of expressions of 2, is the set of all finite 
sequences of symbols of 2. The empty sequence is admitted. If a = 
< ao, ... , am -1) is an expression of 2, we define 

?+a = f1 pyul+1. 
i<m 

Proposition 10.5. ?+* Expr,!l' is recursive. 

PROOF. For any x E w, we have x E?+* Expr,!l' iff x = I or else x > 1 and 
'Vi .:;:; Ix((x)1 - 1 E?* Sym,!l'). 0 
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Thus there is an effective method for recognizing expressions in a given 
effective language. 

Definition 10.6. We introduce some operations on expressions fP, «/I: 

(i) 'fP = (Lo)fP, 
(ii) fP v «/I = (L1 )fP«/I, 

(iii) fP A «/I = (L2 )fP«/I, 
(iv) VafP = (L3 )<a)fP, where a is any individual variable, 
(v) fP = «/I = (L4)~' 

(vi) fP -+ «/I = 'fP v «/I, 
(vii) fP - «/I = (fP -+ «/I) A (<</I -+ fP), 

(viii) 3afP = ,Va 'fP, where a is any individual variable. 

Now we introduce analogous operations on w. For the definition of Cat, 
see 3.30. For m, nEw, let 

(i)' ,'m = Cat (2.9LO +t, m), 
(ii)' m v'n = Cat (Cat (2.9Ll + 1, m),n), 
(iii)' m A' n = Cat (Cat (2.9 L2 +t, m), n), 
(iv)' V'mn = Cat (Cat (2.9L3 +t, m), n), 
(v)' m =' n = Cat (Cat (2.9LH1, m), n), 

(vi)' m -+' n = ,'m v' n, 
(vii)' m _' n = (m -+' n) A' (n -+' m), 

(viii)' 3'mn = ,'V'm " n. 

In addition we use VI<n fPl and I\I<n fPl for the finite iterations of v and 
A: 

V fPl = fPo, 
1<1 

/\ fPl = fPo, 
1<1 

V fPl = V fPl V fPm for m > 0; 
l<m+1 I<m 

/\ fPl = /\ fPl A fPm for m > o. 
i<m+1 I<m 

Strictly speaking, all of the operations in 10.6 are relative to 2. We might 
indicate this sometimes with a subscript, e.g., '2, -+~. Note that, as for 
sentential languages, our languages do not have parentheses but yet we can 
use ordinary notation as in 10.6. The actual expressions of a language will 
rarely be written. That is, we will usually prefer to write an expression in the 
form Vvo(vo = V1 -+ V1 = vo) for example rather than in the equal form 

We use the boldface symbols for operations -+, =, etc. on expressions to 
distinguish from the intuitive symbols. Note that the operations on w given 
in 10.6 act on Godel numbers of expressions just like the corresponding 
operations act on expressions. Thus, for example,? + 'fP = ,'?+fP,g+VafP = 
V'2f1a+1?+fP, etc. The following proposition is obvious. 

Proposition 10.7. The operations ,', v', A', V', =', -+',-', 3' are recursive. 
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Definition 10.8 
(i) For mEw ~ I we define an m-ary operation Conm on w by induc

tion on m. For any x, Yo, ... , Ym E w, 

ConI x = x, 
Conm +1 (Yo,···, Ym) = Cat (Conm (Yo,···, Ym-1), Ym)· 

Also, we define Con' by primitive recursion. For any x, yEw, 

Con' (x, 0) = (X)o, 
Con' (x, Y + 1) = Cat (Con' (x, y), (X)y+ 1)' 

Finally, we set Con" Y = Con' (x, Ix) for any x E w. 

(if) Trmz, the collection of terms of fe, is the intersection of all classes 
r of expressions such that the following conditions hold: 
(1) <vm) E r for each mEw; 

(2) if ° E Omn (I), say with CiO = m, and if <Po, ... , <Pm-1 E r, then 
<O)<Po" '<Pm-1 E r. 

Note, with regard to 1O.8(if), that if CiO = 0, then the condition merely 
says that <0) E r. The number-theoretic functions in (i) are introduced so 
that the following properties of Godel numbers will hold. If 'Po, ... , 'Pm-1 
are expressions, m > 0, then 

Conm (,9'+ 'Po, ... ,,9'+ 'Pm-I) = .9 + ('Po' .. 'Pm -1); 

and if x = [1i<m p~+"'i, then 

Con" x = ,9'+('Po" ''Pm-1)' 

The notion of term in 10.8 is the generalization to arbitrary first-order 
languages of the common mathematical notion of a polynomial. In case the 
first-order language is a language for rings (see above after 10.1), then we 
obtain exactly the ordinary notion of a polynomial with integer coefficients. 

The following construction property of terms is easily established. 

Proposition 10.9. An expression a is a term iff there is a finite sequence 
<TO"'" Tn-I) of expressions with Tn-1 = a such that for each i < none 
of the following conditions holds: 

(i) Ti = <Vm ) for some mEw, 
(ii) there is an ° E Omn (I), say with (1)0 = m, and there are jo, ... , jp -1 < i 

such that Ti = <O)TjO" • Tj(p-l)' 

There is an effective procedure for recognizing when an expression is a· 
term: 

Proposition 10.10. The functions Conm, Con', and Con" are recursive. The 
set ,9'+* Trm is recursive. 
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PROOF. The first statement is obvious. To prove the second, the reader 
should check the following statement, using 10.9. For any x E w, X E Y +* Trm 
iff x > I and there is a Y :s; pj";JX such that (Y)Jy = x and for each i :s; Iy 
one of the following conditions holds: 

(I) there is an m < (Y)i such that (Y)i = 2?vm+1; 

(2) there is a k :s; x such that k Ey* Omn 0, Oy- 1k = 0, and (Y)i = 2k + 1; 
(3) there exist k :s; x and z :s; pr,:JX such that k E y* Omn (G, (!y-1k > 0, 

Iz = Oy-1k - I, for each j :s; Iz there is an s < i such that (z)j = (Y)" 
and (Y)i = Cat (2 k +1, Con" z). D 

The following proposition follows directly from the definition of terms 
and is frequently of use. 

Proposition 10.11 (Induction on terms). If <vm ) E r for all mEw, and 
<O)ao·· ·am-1 E r whenever ° E Omn 0, 00 = m, and ao, ... , am-l E r, 
then Trm <:::: r. 

Proposition 10.12 (Unique readability) 
(i) Every term is nonempty. 

(ii) If a is a term, then either a = <vm) for some mEw, or else there exist ° E Omn (!), say with 00 = m, and 70, ... , 7m - 1 E Trm such that a = 

<0)70·· ·7m - 1 . 

(iii) If a is a term and i < Omn a, then <ao, ... , ai -1) is not a term. 
(iv) IjO, P E Dmn (!), say {!)O = m, (f'P = n, and a E mTrm, 7 E nTrm, and 

<O)ao·· ·am -1 = <P)70·· ·7n -1> then m = n, 0= P, and a = 7. 

PROOF. In each of the cases (i) and (ii), let r be the collection of terms a 

for which the desired condition holds, and apply 10.11. We prove (iii) by 
induction on Omn a. The case Omn a = 1 is clear by (i). Now assume that 
Dmn a > I and that (iii) is true for all terms 7 such that Omn 7 < Omn a. 

By (ii) we may write a = <0)70· . ·7 m-1> where ° E Omn I!i, (!)O = m, and 
7 E mTrm. If i = 0, then ° = <ao, ... , ai-1) is not a term, by (i). If i = I, 
then <ao, ... , ai-1) = <0), which fails to be a term because (I) i < Omn a 
implies m > ° and (2) by (ii), for (0) to be a term we would have to have 
(!)O = 0. So, assume that i > 1. Then <ao, ... , ai-1) = (0)70 .. ·7"j_1P for 
some} < m and some expression P which is an initial segment of 7J" Assume 
that <ao, ... , ai-1) is a term. By (ii) there exist terms to, ... , tm-1 such that 
<ao, ... , ai-1) = <O)to·· ·tm-1. By the induction hypothesis we easily infer 
that to = 70,···' t j -1 = 7j-1. Hence p = t j ·· ·tm-1. Hence t j is an initial 
segment of 7j, so by the induction hypothesis t j = 7j and j = m - 1. But 
then <ao, ... , ai-1) = a, contradiction. 

Condition (iv) follows from (iii) in an obvious fashion. 0 

The following useful proposition follows from 10.12 purely set theoretic
ally: 
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Proposition 10.13 (Recursion on terms). Let f map Rng v into a set A, and 
for each ° E Omn (!) (say with @o = m), let go map rnA x mTrm into A. 
Then there is an h: Trm -3>- A such that: 
(i) h<vn) = fvnfor all nEw; 

(ii) h<O)ao" ·am- l = go(hao,·.·, ham-l, ao,···, am-l) whenever ° E 

Omn (!), {!)O = m, and a E mTrm. 

Now we can define the most important syntactical notion, that of a formula 
(grammatically built expression). 

Definition 10.14. An expression of the form a = T, where a and T are terms, 
is called an atomic equality formula. If R E Omn fll, say fllR = m, and 
Go, ... , am -1 are terms, then (R)ao'" am -1 is an atomic nonequality 
formula. These two kinds of expressions together constitute the atomic 
formulas. The set of formulas, Fmla, is the intersection of all sets r of 
expressions such that each atomic formula is in rand r is closed under all 
the operations " v, 1\, Va (for each individual variable a). 

There is an automatic method for recognizing when an expression is a 
formula: 

Proposition 10.15. j'H Fmla is recursive. 

PROOF. The proposition becomes obvious after checking the following state
ment whose proof is based on a proposition for formulas which is entirely 
similar to 10.9. For any x E w, X E j' H Fmla iff there is a y :::; p!",:lX such that 
(y)lY = x and for each i :::; ly one of the following conditions holds: 

(I) There are u, v E j'H Trm such that (Y)i = u =' v. 
(2) There exist a k :::; x and z :::; p!",;lX such that k E j'* Dmn fll, Iz = {!)j' -lk - I, 

(z)j E Trm for each j :::; Iz, and (Y)i = Cat (2h + \ Con" z). 
(3) There is aj < i such that (Y)i = ./(Y)j. 
(4) There exist j, k < i such that (Y)t = (Y)j v I (Y)k' 
(5) There existj, k < i such that (Y)t = (Y)j 1\ I (Yh. 
(6) There exist m < (Y)i and j < i such that (Y)i = V /2ffvm + l(Y)j· 0 

The following results are established in a fashion analogous to the corre
sponding results for terms: 

Proposition 10.16 (Induction on formulas). If r is a set of formulas con
taining each atomic formula and closed under all operations " V, 1\, Va 
(for each individual variable a), then Fmla s; r. 

Proposition 10.17 (Unique readability) 

(i) Every formula is nonempty. 
(ii) If f{J is a formula, then one of the following holds: 
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(1) q> is an atomic equality formula, i.e., there are terms a and 'T with q> = 

a = 'T; 

(2) q> is an atomic nonequality formula, i.e., there is an R E Dmn flA, say 
with flAR = m, and there are ao, ... , am-I E Trm such that q> = 

(R)ao" 'am-I; 
(3) q> = ""1", for some formula",; 
(4) q> = '" v X for some formulas "', x; 
(5) q> = '" A xfor some formulas "', X; 
(6) q> = Va'" for some individual variable a and some formula "'. 

(iii) If q> is a formula and i < Dmn q>, then < q>o, ... , q>j -1) is not a 
formula. 

(iv) for each formula q>, exactly one of(1)-(6) above holds, and the terms, 
formulas, etc. a, 'T, "', ••• asserted to exist are uniquely determined by q>. 

Proposition 10.18 (Recursion on formulas). Let f map the set of atomic 
formulas into a set A, let g map A x Fmla into A, hand k map 2 A x 2Fmla 
into A, and let I map A x Rng v x Fmla into A. Then there is an s: Fmla -+ 
A such that for any formulas q>, '" and any variable a, 
(i) Sq> = h if q> is atomic; 

(ii) s( ""1q» = g(sq>, q»; 
(iii) s(q> v "') = h(sq>,s""q>,,,,); 
(iv) S(q> A "') = k(Sq>, s"', q>, "'); 
(v) s(Vaq» = I(sq>, a, q». 

This takes care of the basic facts about grammar in first-order languages. 
Now we want to formulate precisely the basic proof-theoretic notions of 
logical axioms and theorems. Essentially we want to give a mathematical 
analysis of the intuitive notion of a proof. To begin with, we need to define 
the notion of tautology in a first-order language. Intuitively speaking, a 
tautology is a formula which is logically valid purely on the basis of the 
intended meanings of ""1, v, A alone. They were discussed in detail in 
Chapter 8, but our treatment here is self-contained. 

Definition 10.19 
(i) A truth valuation is a function f mapping Fmla into 2 with the 

following properties, for any formulas q>, "': 

(1) f( ""1q» = 1 iffh = 0; 
(2) f(q> v "') = 1 iffh = 1 or f'" = 1; 
(3) f(q> A "') = 1 iffh = 1 andfx = 1. 

(ii) A formula q> is a tautology iffh = 1 for every truth valuation! 
(iii) An expression '" occurs in an expression q> iff q> = x",O for some 

expressions X, O. 
(iv) '" is a subformula of q> iff both", and q> are formulas and", occurs 

in q>. 
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The following lemma gives a simplified definition for the notion of a 
tautology: 

Lemma 10.20. For any formula 'P the following conditions are equivalent: 

(i) 'P is a tautology; 
(ii) for any J, iff maps the set S of subformulas of'P into 2 and satisfies 

the following conditions; 
(a) for anytP, iftPES and 'tP E S, thenf( 'tP) = 1 iffftP = 0; 
(b) for any tP, x, if tP, x, tP v XES, then f(tP v x) = 1 iff UtP = 1 or 

fx = 1); 
(c) for any tP, x, if tP, x, tP 1\ XES, then f(tP 1\ x) = 1 iff UtP = 1 and 

fx = 1); 
thenfp = 1. 

PROOF 

(i) => (ii). Assume that 'P is a tautology, and letfsatisfy the hypothesis of 
(ii). By recursion on formulas we define a function h: Fmla -+ 2 as follows: 

htP = ftP if tP is an atomic formula E S, 
htP = 0 if tP is an atomic formula rt S, 

h( 'tP) = 1 - htP for any formula tP, 
h( tP v x) = 1 if htP = 1 or hx = 1, 
h( tP v X) = 0 if htP = hx = 0, 
h(tP 1\ x) = htP·hx, 

h VatP = fVatP if VatP E S, 
h VatP = 0 if VatP rt S. 

Clearly h is a truth valuation, so h'P = 1. Now it is easily shown by induction 
on formulas that 

VtP E Fmla (tP E S => htP = ftP). 

Hence f'P = 1, as desired. 
(ii) => (i). Assume (ii), and, in order to show that 'P is a tautology, let h 

be any truth valuation. Letf = h ~ S. Clearly fsatisfies the hypothesis of (ii), 
so h'P = fp = 1. D 

Clearly 10.20 gives an automatic method for checking whether a given 
formula 'P·is a tautology. We simply list out all me~bers of S, then check for 
each of the finitely many f: S -+ 2 whether the condition (ii) holds. Now we 
want to make this argument rigorous. 

Proposition 10.21. {(/I + tP, /I+'P) : tP is a subformula of 'P} is recursive. 

PROOF. Let R be the set in question. Then for any m, nEw, (m, n) E Riff 
m, n E /1+* Fmla and 3x, y :::; n(n = Cat (Cat (x, m), y)). D 

Proposition 10.22. The set of Godel numbers of tautologies is recursive. 
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PROOF. Let R be the relation of 10.21. Using 10.20, it is easy to check that 
for any mEw, m is the Godel number of a tautology iff: 

3n :s; pl':,;lm {n > I & Vp :s; m[(p, m) E R => 3i :s; In(p = (n);)] & 
Vi :s; 1n[«n);, m) E R] & (n)ln = m & Vf:S; p~ [If = In & Vi :s; If 
[(f); = lor (I); = 2] & Vi :s; IfVj:s; If[..,/(n)j = (n); => ((I); = 

2 -¢> (I)j = I)] & Vi :s; IfVj :s; IfVk :s; If [(n)j v I (n)k = (n); => 

((1)1 = 2 -¢> (I)j = 2 or (f)k = 2)] & Vi :s; IfVj :s; IfVk :s; If 
[en), A I (nh = (n)i => ((f)i = 2 iff (f)j = 2 and (I)k = 2)] => 

(f)1f = 2]). 

Note here that n is used to code the set S of all subformulas of rp, if m = 

g+rp, whilefis used to code any function as in 1O.20(ii). Of course, the form 
of the above displayed expression shows that {m : m is the Godel number of 
a tautology} is recursive. 0 

Tautologies are by no means the only logically valid formulas in a first 
order language. Some additional ones are, for example, the formulas Vo = Vo, 
VVo(vo = Vl) ~ V2 = VS, Vvofvo = Vl V "'(vo = Vl)]' We now want to for
mulate the notion of a logically valid formula, or theorem, in a general way, 
but still syntactically. We defer to the next section the proof of the complete
ness theorem, which states that the theorems are exactly the logically valid 
formulas. See also the next section for the rigorous definition of a logically 
valid formula. 

Definition 10.23 
(i) Axm,2', the set of logical axioms of 2, is the set of all formulas of 

the following forms (where rp and tfo are formulas, i < w, and a and Tare 
terms): 

(1) rp, rp any tautology; 
(2) VvtCrp ~ tfo) ~ (Vvirp ~ VVitfo); 
(3) rp ~ VV;rp, if VI does not occur in rp; 
(4) 3vl(vl = a), if Vi does not occur in a; 
(5) a = T ~ (rp ~ tfo), if rp and tfo are atomic formulas and tfo is obtained 

from rp by replacing an occurrence of a in rp by T. 
(ii) Let r be a set of formulas. Then r-Thm,2', the set of all r-theorems 

of 2, is the intersection of all subsets Ll of Fmla,2' such that 

(1) r u Axm,2' ~ Ll; 
(2) tfo E Ll whenever rp, rp ~ tfo E Ll (closure under detachment or modus 

ponens); 
(3) Vvirp E Ll whenever rp E Ll and i < w (closure under generalization). 
We write Thm,2' instead of O-Thm,2', r 1-,2' rp instead of rp E r-Thm,2', and 
l-,2'rp instead of 01-,2' rp. Formulas rp with I-rp are called logical theorems. If 
r 1-,2' rp, we call rp a (syntactical) consequence of r. Of course when no 
confusion is likely we shall omit the subscript 2 in all these cases. 
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As usual, we give an equivalent version of this closure definition of 
theorems: 

Proposition 10.24. For r u {'P} <;; Fmla, r f- 'P iff there is a finite sequence 
< !fa, ... , !fm -I) of formulas such that !fm -1 = 'P and for each i < m one of 
the following conditions holds: 

(i) !fj E Axm, 
(ii) !fj E r, 
(iii) 3j, k < i such that !fj = !fk ~ !fl> 
(iv) 3j < i 3k E W (!fj = VVk!fj). 

A sequence of the sort described in 10.24 is called a formal proof of 'P from 
r, or a r-formal proof of 'P. We denote by r-Prf the set of all r-proofs. This 
is our rigorous formulation of the intuitive notion of a proof. In fact, as 
stated in the introduction, we consider mathematics itself to be formalized 
on the basis of set theory. More precisely, mathematical language can be 
identified with a certain definitional expansion of the language of set theory 
describing following 10.1. The axioms r of mathematics are just the usual 
axioms for set theory together with definitions of all the defined symbols. It 
is our conviction that any mathematical proof can be expanded, somewhat 
routinely, to eventually reach the form of a formal proof from r in the above 
sense. Of course, this conviction is another instance, like the weak Church's 
thesis (see the comments following 3.1), of a judgement of applied mathe
matics that is not subject to a rigorous proof. We are just stating that our 
rigorous notion of proof is a fully adequate mathematical version of the 
mathematical proofs actually found in articles and books. 

It is clear that there is an effective method for recognizing when an 
expression is a logical axiom. More rigorously, we have the following theorem: 

Proposition 10.25. {lH Axm is recursive. 

PROOF. For any x E w, X E {I + * Axm iff one of the following conditions 
holds: 

(1) x is the Godel number of a tautology; 
(2) 3y, z, w :s; x[y, Z E {lH Fmla and WE Rng ({I 0 v) and 

x = V'2w+1(y~' z)~' (V'2W+1y~' V'2W+1z)]; 
(3) 3y, z :s; x[y E {lH Fmla and Z E Rng ({I 0 v) and -,3u, w :s; y 

y = Cat (Cat (u, 22+1), w) and x = y~' V'22+1y ]; 
(4) 3y, Z :s; x[y E {lH Trm and Z E Rng ({I 0 v) and -,3u, w :s; y 

y = Cat (Cat (u, 22+1), w) and x = 3'22+1(22+1 =' y)]; 

(5) 3s, t, y, Z :s; x[s, t E {lH Trm and y and Z are Godel numbers of atomic 
formulas and 3m, n :s; y[y = Cat (Cat (m, s), n) and z = Cat (Cat (m, t), n)] 
and x = (s =' t) ~' (y~' z)]. 0 

Since there is an automatic method for recognizing logical axioms, it is 
clear from 10.24 that if there is an automatic method for recognizing members 
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of r, then there is an automatic method for checking when a sequence of 
formulas is a r-formal proof. We now proceed to prove this rigorously. 

Definition 10.26. We extend? and?+ further to finite sequences of expres
sions. If <P = <<Po, ••• , <Pm -1) is a finite sequence of expressions, let 

?+ +<P = n p~+IJl. 
i<m 

Proposition 10.27. Let r be a set of formulas such that ?+*r is recursive. 
Then?+ + (r-Prf) is recursive. 

PROOF. For any x E w we have: x E? + + *(r -Prf) iff x > 1 and for every 
i ~ Ix one of the following conditions holds: 

(1) (x)t E?+* Axm, 
(2) (x)t E ?+*r, 
(3) 3j, k < i (x)j = (X)k -+' (x);, 
(4) 3j < i 3k ~ x[k E Rng (? 0 v) and (X)i = 'If'2k+ 1(X)j]. o 

From this proof we also obviously obtain: 

Proposition 10.2S. If r is a set of formulas such that ?+*r is recursively 
enumerable, then?+ +*(r-Prf) is recursively enumerable. 

The following easy consequence of this proposition is one of the most 
important results of elementary logic. 

Theorem 10.29. Let r be a set of formulas such that ?+*r is recursively 
enumerable. Then ?+*(r-Thm) is recursively enumerable. 

PROOF. For any x E w, we have x E?+*(r-Thm) iff3y[y E?+ +*(r-Prf) and 
(y)lY = x]. 0 

An intuitive proof of Theorem 10.29 runs as follows. We assume that r 
can be listed by some effective procedure A. Let B be an effective procedure 
which lists all formulas. Now we describe an effective procedure C listing all 
r-theorems. We start the procedures A and B going simultaneously. At the 
kth stage of the procedure C, having accomplished the kth stage of both A 
and B, we list out all sequences of length ~ k of formulas already produced 
by B. For each such sequence <p, we check whether it is a r-proof using for 
members of r only the formulas already produced by A. For each sequence 
<P for which the answer is affirmative, procedure C produces as an output 
the last term of cpo Clearly the procedure C so described generates precisely 
the r-theorems. 

It is quite possible in 10.29 to have ?+*(r-Thm) nonrecursive; this is in 
fact the defining characteristic of the undecidable theories which will be 
discussed extensively in Part III. 
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Most of the remainder of this chapter is devoted to establishing elementary 
results about the relation I- defined in 10.23. Some high points of this develop
ment, which is rather tedious because of our economical system of axioms, 
are as follows: a formal expression of the principle of substitution of equals 
for equals, 10.49; the principle for changing bound variables, 10.59; universal 
specification-dropping a universal quantifier, 10.61; substitutivity of equiv
alent formulas, 10.71; prenex normal form theorem, 10.81; provability for 
sentences alone, 10.85; and the notion of consistency, 10.89-10.93. 

Proposition 10.30. For any mEw, if a E mRng V and rp and if; are formulas, 
then 

I-Vao·· ·Vam-l(rp ~ if;) ~ (Vao·· ·Vam-Irp ~ Vao·· ·Vam-lif;). 

PROOF. We proceed by induction on m. The case m = 0 is trivial, since 
(rp ~ if;) ~ (rp ~ if;) is a tautology. Now assume the result for m, and suppose 
that rp E m+l Rng v. Then 

I-Val· .. Vam(rp ~ if;) ~ (Val· .. Vamrp ~ Val· .. Vamif;) 

by the induction hypothesis. Generalizing on ao, noticing an instance of the 
axioms 10.23(2), and applying detachment, we get 

I-Vao· .. Vam(rp ~ if;) ~ VaO(Val ... Vamrp ~ Val· .. Vamif;)· 

Now by another instance of 10.23(2), a tautology, and detachment, we get 
our desired result for m + 1. D 

Related to 10.30 is the following important theorem, to the effect that there 
is a version of I- not involving the rule of generalization: 

Definition 10.31. Let r s; Fmla2'. We let r-Thm' be the intersection of all 
sets ~ s; Fmla2' satisfying the following conditions: 
(i) if rp E Axm2' u r, mEw, and a E mRng V, then Vao· .. Vam-Irp E~; 

(ii) if; E ~ whenever rp, rp ~ if; E ~. 

We write Thm.£. instead of O-Thm.£., r I-.£. rp instead of rp E r-Thm.£., and 
I-.£.rp instead of 0 I-.£. rp. 

Theorem 10.32. r I- rp iff r 1-' rp. 

PROOF. r-Thm clearly satisfies the conditions 10.31(i) and 1O.31(ii). Hence 
r-Thm' s; r-Thm, i.e., r 1-' rp =;. r I- g;. To prove the converse, let 

~ = {rp E Fmla : for all mEw and all a E mRng V, r 1-' Vao· .. Vam-Irp}. 

Obviously Axm u r s; ~ and ~ is closed under generalization. To show that 
~ is closed under detachment it is clearly sufficient to establish 

(1) 
if nEw, a E nRng V, r 1-' Vao· .. Van-Irp, and 

r I-'Vao·· ·Van-l(rp~if;), then r I-'Vao·· ·Van-lif;. 
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We prove (1) by induction on n. The case n = 0 is trivial. Suppose true for 
n, r 1-' Vao' •• VanfP, r 1-' Vao' •. Van(fP -+ 1/1). Now 

r 1-' Vao' .• Van_l(Van(fP -+ 1/1) -+ (VanfP -+ Vanl/l» 

and r I-'Vao' .. Van-l Van(fP -+ rp), so by the induction hypothesis, r I-'Vao' .. 
Van-l(VanfP -+ Vanrp). By the induction hypothesis again, r 1-' Vao' .. Vanrp, as 
desired, hence r-Thm ~ ~. In particular (taking m = 0 in the definition of 
~), r I- fP =:> r 1-' fP. 0 

In the following proposition we summarize some simple properties of I
which will be used frequently without citation. 

Proposition 10.33. Let r, ~ ~ Fmla and fP, rp E Fmla. Then 
(i) if r ~ ~ and r I- fP, then ~ I- fP; 
(ii) if r I- fP, then e I- fP for some finite subset e of r; 

(iii) if r I- xfor each X E ~ and ~ I- fP, then r I- fP; 
(iv) if r I- fP and r I- fP -+ rp, then r 1-1/1. 

In what follows, a, fJ will denote arbitrary variables, CT, 7, P will denote 
arbitrary terms, and fP, rp, X arbitrary formulas. 

Proposition 10.34. I-CT = CT. 

PROOF. Let a be a variable not occurring in CT. Then 

I-a = CT -+ (a = CT -+ CT = CT) 
I- '(CT = CT) -+ .(a = CT) 
I-Va[ '(CT = CT) -+ '(0: = CT)] 
I-Va • (CT = CT) -+Va • (a = CT) 
I- '(CT = CT) -+ Va • (CT = CT) 
I- '(CT = CT) -+ Va • (a = CT) 
1-3a(a = CT) -+ CT = CT 
I-CT = CT 

Proposition 10.35. I-CT = 7 -+ 7 = CT. 

PROOF. 

by 10.23(5) 
by a tautology, detachment 

generalization 
10.23(2), detachment 

10.23(3) 
tautology, etc. 
tautology, etc. 
using 10.23(4) 0 

I-CT = 7 -+ (CT = CT -+ 7 = CT) 
I-CT = 7 -+ 7 = CT 

10.23(5) 
using a tautology 0 

Proposition 10.36. I-CT = 7 -+ (7 = P -+ CT = p). 

PROOF. 

1-7 = CT -+ (7 = P -+ CT = p) 
I-CT = 7 -+ (7 = P -+ CT = p) 

10.23(5) 
using 10.35 and a tautology 0 
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Lemma 10.37. If 0 is an operation symbol of rank m, i < m, Uo, ... , Um-1 
are terms, and T is a term, then 

~Ui = T ~ Ouo" 'Um-1 = Ouo" 'Ui-1 TUi+1" 'Um-1' 

PROOF. The following formula is an instance of 10.23: 

Uj=T~ 

(Ouo" 'Um-1 = Ouo" 'Um-1 ~ Ouo" 'Um-1 = Ouo" 'Ui-1 TUi+1" 'Um-1)' 

Hence 10.34 and a suitable tautology give the desired result. D 

Using this lemma, we give our first form of the principle of substitution of 
equals for equals: 

Theorem 10.38. If 0 is an operation symbol of rank m, and Uo, ... , Um-l> 
TO"'" Tm-1 are terms, then 

PROOF. By 10.37 we have, for each i < m, 

Hence 10.36 and an easy but long tautology give the desired result. D 

Lemma 10.39. If~u = T ~ (<p ~.jJ) and a E Rng V does not occur in U or in T, 
then ~U = T ~ (Va<p ~ Va.jJ). 

PROOF. 

~U=T~(<p~.jJ) 

~Va(u = T) -+ Va(<p ~.jJ) 
~u = T ~ V a( U = T) 

~u = T ~ (Va<p ~ Va.jJ) 

hypothesis 
general ization, 10.23(2) 

10.23(3) 
using 10.23(2) and a tautology 0 

To proceed further, we must introduce the basic notions of free and bound 
occurrences of variables in formulas. The definitions are based on the follow
ing Proposition, which is easily proved by induction on <p, using 10.17. 

Proposition 10.40. Let <P = <<Po, ... , <Pm -1) be a formula, and suppose that 
i < m. If <Pi E Rng L, then there is a unique j such that i < j ::; m - 1 and 
<<Ph"', <pj) is aformula. 

Definition 10.41. Let <P = <<Po, ... , <Pm-1) be a formula, and let i < m. We 
say that V is a quantifier on a at the ith place in <P with scope .jJ if <Pi = L 3 , 

<Pi+ 1 = a, and .jJ = <<Ph' .. , <pj) is the unique formula given by 10.40. A 
variable U occurs bound at the kth place of <P if <Pk = a and there exist i, 
j < m such that V is a quantifier on a at the ith place in <P with scope 
<<Ph' .. , <pj) and i < k ::; j. If <Pk = a but a does not occur bound at the 
kth place of <p, we say that a occurs free at the kth place of <po 
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Before returning to proof-theoretic matters concerning these notions, we 
as usual want to briefly discuss the effectivity of the notions. It is, in fact, ob
vious that there is an effective procedure for recognizing if a certain variable 
occurs bound or free at a given place in a formula. The following three 
propositions give a rigorous formulation of this fact. 

Proposition 10.42. Let R = {em, i, x, y) : m = !Ja for some variable a, X = 
!J + cP and y = !J + I{l for some formulas cP, I{l, i < Dmn cp, and V is a quantifier 
on a at the ith place in cp with scope I{l}. Then R is recursive. 

PROOF. (m, i, X, y) E R iff m E Rng (!J 0 v) and X, y E!J+* Fmla and i ~ Ix 
and (X)I = !JL3 + 1 and (X)1+1 = m + 1 and i + Iy ~ Ix and Vj ~ 
IY[(Y)i = (X)l+i]· 0 

Proposition 10.43. Let S = {em, k, x) : m = !Ja for some variable a, X = 
!J + cp for some formula cp, k < Dmn cp, and a occurs bound at the kth place 
of cp}. Then S is recursive. 

PROOF. (m, k, x) E S iff m E Rng (!J 0 v), x E!J+ * Fmla, k ~ lx, (xh = m + 
1 and 3i ~ Ix 3y ~ x[y E!J+* Fmla, i < k ~ i + ly, and (m, i, x, y) E R], 
where R is as in 10.42. 0 

Proposition 10.44. Let T = {em, k, x): m = !Jafor some variable a, X = !J+Cp 
for some formula cp, k < Dmn cp, and a occurs free at the kth place of cp}. 
Then T is recursive. 

PROOF. (m, k, x) E Tiff m E Rng (!J 0 v), x E g+ * Fmla, k ~ lx, {X)k = m + 1, 
and (m, k, x) ¢ S, where S is as in 10.43. 0 

The following proposition is analogous to 10.40, and is proved similarly: 

Proposition 10.45. Let cp = (CPo, ... , CPm -1) be a formula, and suppose that 
i < m. If CPI E Dmn (!) u Rng v, then there is a unique j such that i ~ j ~ 
m - 1 and (CPh ••• , CPi) is a term. 

We now extend the notion of free variable to terms: 

Definition 10.46. A term a occurs free at the ith place in cP provided there is 
a j with i ~ j < Dmn cP such that a = (CPh ..• , CPi) and for any k, if i ~ 
k ~ j and a variable a occurs at the kth place in cP, then a occurs free at 
that place in cpo 

This notion, too, is effective: 

Proposition 10.47. Let U = {(x, i, y) : x = !J+a for some term a, y = !J+CP 
for some formula cP, i < Dmn cP, and a occurs free at the ith place in cp}. 
Then U is recursive. 
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PROOF. (x, i, y) E U iff x E?+* Trm, y E?+* Fmla, i ~ ly, 
ly[i ~ j and Vk ~ j[i ~ k ~ (yh = (x)k-d and Vk ~ j(i ::; k 
Rng (? 0 v) ~ «X)k, k, y) E T»), where T is as in 10.44. 

and 3j ~ 
and (xh E 

o 
Now we return to proof-theoretic matters, still aiming toward our main 

theorem on substitution of equals for equals. 

Lemma 10.48. If cp and I{I are formulas, and I{I is obtained from cp by replacing 
one free occurrence of a in cp by a free occurrence of T in I{I, then ra = T ~ 

(cp +-+ I{I). 

PROOF. We proceed by induction on cpo For cp atomic, 

Hence by 10.35 we have 

ra = T~(cp~I{I) 
f-T=a~(I{I~cp) 

ra = T _ (cp+-+ I{I). 

10.23(5) 
10.23(5) 

The induction steps from cp to -'cp, cp and I{I to cp v I{I, and cp and I{I to cp 1\ I{I 
are all trivial, using suitable tautologies. Now suppose that our result holds 
for cp, a is a variable, and Val{l is obtained from Vacp by replacing one free 
occurrence of a in Vacp by a free occurrence of T in Val{l. Then a does not 
occur in a or in T, and I{I is obtained from cp by replacing one free occurrence 
of a in cp by a free occurrence of T in I{I. Hence 

ra = T ~ (cp +-+ I{I) induction hypothesis 
ra = T ~ (Vacp +-+ Val{l) 10.39, suitable tautologies 

This completes the proof. o 
Theorem 10.49 (Substitution of equals for equals). If cp and I{I are formulas, 

and I{I is obtained from cp by replacing zero or more free occurrences of a in 
cp by free occurrences of Tin I{I, then ra = T ~ (cp +-+ I{I). 

This theorem is obtained from 10.48 by induction on the number of free 
occurrences of a in cp which are replaced to obtain I{I. 

Corollary 10.50. If p and g are terms, and g is obtained from p by replacing 
zero or more occurrences of a in p by T, then ra = T ~ P = g. 

PROOF. By 10.49, ra = T ~ (p = p +-+ p = g). Hence the desired result 
follows by 10.34. 0 

We now introduce another important notion connected with the notion 
of free occurrence of a variable. 

Definition 10.51. For any variable a, term a, and formula cp, let Subf~cp be 
the formula obtained from cp by replacing every free occurrence of a in 
cp by a. 
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This definition contains a hidden assumption, easily established, that the 
indicated substitutions always convert a formula into another formula. Note 
that we do not insist that the substitutions be what is sometimes called proper: 
it may be that some of the substituted occurrences of a in Subf~cp do not 
occur free in Subf~'P. For example, Subf~ Vf3(a = f3) = Vf3(f3 = f3). Clearly 
the formation of Subf~cp is an effective procedure starting from a, a, and cpo 
Formally: 

Proposition 10.52. If m is the Godel number of a variable a, X is the Godel 
number of a term a, and y is the Godei number of a formula cp, let f(m, X, y) 
be the Godel number of Subf~cp; otherwise, let f(m, X, y) = O. Then f is 
recursive. 

PROOF. We will indicate a simple procedure for obtaining Subf~cp which 
makes the effectiveness very clear. First, it is clearly an effective matter to 
take the first free occurrence of a in cp (if any) and replace it by a. Formally, 
for any m, X, yEw we define a functionf' by considering two cases: 

Case 1: m = {la for some variable a, X = {I+a for some term a, y = {I+Cp 
for some formula cp, and a occurs freely in cpo Let if be obtained from cp by 
replacing the first free occurrence of a in cp by a, and setf'(m, X, y) = {I+if. 

Case 2: Case 1 does not hold. Letf'(m, X, y) = y. 
This functionf' is recursive, since for any m, X, yEW we have 

f'(m, X, y) = jLz{(m E Rng({I 0 v) & X E{lH Trm & y E{lH Fmla 
& 3i :::; Iy{(m, i, y) E T & Vj < i[(m,j, y) rf= T] & 
3u, w :::; y[lu = i-I & y = Cat (Cat (u, 2m), w) & z = 

Cat (Cat (u, x), w]}) or [em rf= Rng ({I 0 v) or X rf= {lH Trm 
or y rf= {lH Fmla or Vi :::; Iy[(m, i, y) rf= TD and z = y]}. 

where Tis as in 10.44. Thusf' is recursive. Second, we obtainffromf' in a 
certain way. Unfortunately, we cannot obtainfjust by iteratingf', in general. 
The reason is that a may occur in a; then iteratingf' would not only not give 
the desired result but would give longer and longer formulas. We can circum
vent this difficulty by first replacing all free occurrences of a by a new variable 
f3, and then replacing each free occurrence of f3 by a; both of these procedures 
can be obtained by iteratingf'. We obtain a suitable f3 by a functionJ": 

J"(m, x, y) = jLz{z E Rng ({I 0 v) & Z # m & Vi :::; Ix 
[z # (x)d & Vi :::; Iy[z # (y);]}. 

Now we iteratef' to replace a by f3: 

fll/(m, x, y, 0) = y, 
f"'(m, x, y, n + 1) = f'(m,J"(m, x, y),f"'(m, x, y, n»; 

and set pV(m, x, y) = f'"(m, x, y, Iy + 1). Finally, we again iterate f' to 
replace f3 by a: 

fV(m, x, y, 0) = pV(m, x, y), 
fV(m, x, y, n + 1) = f'(J"(m, x, y), x,JV(m, x, y, n». 

Clearly thenf(m, x, y) = fV(m, x, y, IpV(m, x, y) + 1). o 
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Important properties of Subf~rp will be given shortly. At the moment we 
need this notion only to establish an important theorem allowing change of 
bound variables, for which we need several lemmas. The first two are special 
cases of important results which will be established later. 

Lemma 10.53. If a is a variable which does not occur bOllnd in rp and does 
not occur in a, and if 110 free occurrence of a in rp is Irithin the scope of a 
quantifier on a variable occurring in a, then rVarp -3> Subf~rp. 

PROOF 

ra = a ~ (rp ~ Subf~rp) 
rrp ~ ( ,Subf~rp ~ ,a = a) 

rVarp ~ (Va , Subf~rp ~ Va ,IX = a) 
r ,Va, a = a ~ (Varp ~ ,Va ,Subf~rp) 
r ,Va. ,a. = a 

rVarp ~ ,Va ,Subf~rp 
r ,Subf"rp ~ Va. ,Subf~rp 
rVa.rp ~ Subf~rp 

10.49 
suitable tautology 

Llsing 10.23(2) 
suitable tautology 

10.23(4) 

10.23(3) 
suitable tautology L 

Lemma 10.54. If.p is obtained from rp by replacing an occurrence of X in rp 

bye, and if rx - e, then rrp - .p. 
PROOF. Induction on rp. o 
Lemma 10.55. If a. and fJ are distinct variables, a. does not occur bound in rp, 

and fJ does not occur in rp at all, thell rVa.rp - VfJ Subf;;rp. 

PROOF 

rVa.rp ~ Subf~rp 
rVfJ Va.rp ~ VfJ Subf~rp 
rVa.rp ~ Va Va.rp 
rVa.rp ~ VfJ Subf~rp 

10.53 
using 10.23(2) 

10.23(3) 

Now we can apply the result just obtained to fJ, a., Subf~rp instead of a, fJ, rp 
and obtain rVfJ Subf~rp ~ Va. Subfe Subf~rp. Since Subf~ Subf/lrp = rp, the 
desired theorem follows. D 

Definition 10.56. By SUbbflrp we mean the formula obtained from rp by 
replacing each bound occurrence of a. in rp by fJ. 

Again one should check that Subb/lrp is really always again a formula. 
The formation of Subbllrp from rp is clearly effective. The following proposi
tion is established analogously to 10.52. 

Proposition 10.57. If m is the Godel number of a variable a., x is the Godei 
number of a variable fJ, and y is the Godel number of a formula rp, let 
h(m, x, y) be the Godel number of Subb/lrp; otherwise, let h(m, x, y) = o. 
Then h is recursive. 
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Lemma 10.58. If a occurs bound in q>, then there is aformula Vat/J which occurs 
in q> such that a does not occur bound in t/J. 

PROOF. Induction on q>. D 

Theorem 10.59 (Change of bound variables). If f3 does not occur in q>, then 
I-q> +-+ Subb/iq>. 

PROOF. We proceed by induction on the number m of bound occurrences 
of a in q>. If nz = 0, the desired conclusion is trivial. We now assume that 
nz > 0, and that our result is known for all formulas with fewer than nz bound 
occurrences of a. By Lemma] 0.58, let Vat/J be a formula occurring in q> such 
that u does not occur bound in t/J. Let y be a variable not occurring in q> 

(hence not in t/J) with y i= a, f3. Then by 10.55 we have 

(1) I-Vat/J+-+ Vy Subf~t/J. 

Now let X be obtained from q> by replacing an occurrence of Vat/J in q> by 
Vy Subf~t/J. Then by (I) and] 0.54 we have 

(2) I-q>+-+ x. 

Now f3 does not occur in X, and X has fewer than m bound occurrences of a. 

Hence by the induction assumption, 

(3) I-x +-+ Subb/ix· 

Now clearly Subb)lq> can be obtained from Subb/ix by replacing an 
occurrence ofVy Subf~t/J in Subb/ix by Vf3 Subf/it/J. Thus by ]0.54 it suffices to 
show 

(4) I-Vy Subf~t/J +-+ Vf3 Subf/it/J 

In fact, y i= f3, y does not occur bound in Subf~t/J, and f3 does not occur in 
Subf~t/J at all; furthermore, Subq Subf~t/J = Subf/it/J. Thus 10.55 yields (4), 
and the proof is complete. D 

The restriction on f3 in 10.59 is necessary, as one sees intuitively by the 
example q> = 3a --, a = f3 with a i= f3. Here Subbjiq> = 3f3 --, f3 = f3, and 
q> ~ Subb/iq> is obviously not a valid formula, so 'tfq> ~ Subbjiq>. This can be 
rigorously established after we have introduced the notion of truth (see 
11.50). 

We now turn to properties of Subf~q>. The main result, 10.61, removes 
unnecessary hypotheses from 10.53. 

Lemma 10.60. If the variable a does not occur in a, alld ([ no free occurrence 
of a in q> is witizin tize scope of a quantifier on a variable occurring in a, tizen 
I-Vuq> ~ Subf~q>. 

PROOF. Let f3 be a variable not occurring in q>, not occurring in a, and 
different from u. Then by change of bound variables, 

I-q> +-+ Subb8q>. 
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Hence using 10.23(2) we infer that 

(1) I-Vacp +-+ Va Subb~cp. 

Now a does not occur bound in Subb~cp, so by 10.53 we see that 

(2) I-Va Subb~cp _ Subf~ Subb~rp. 

Now a does not occur at all in Subf~ Subb~cp, and clearly 

Subb~ Subf~ Subb~cp = Subf~rp, 

so by change of bound variable, 

(3) I-Subf~ Subb~cp +-+ Subf~rp. 

Conditions (1), (2), (3) immediately yield the desired result. o 

Theorem 10.61 (Universal specification). If no free occurrence in cp of the 
variable a is within the scope of a quantifier on a variable occurring in a, 

then I-Vacp _ Subf~cp. 

PROOF. Let {3 be a variable not occurring in cp or in a, and distinct from a. 

Then 

(1) 
(2) 

I-Vacp _ Subf/lcp 

I-V{3Vacp - V{3 Subf/lcp 
I-Vacp _ V{3 Vacp 

10.60 
using 10.23(2) 

10.23(3) 

Now no free occurrence of {3 in Subf/lcp is within the scope of a quantifier 
on a variable occurring in a. Clearly also Subf~ Subfgcp = Subf~cp. Hence by 
10.60 

(3) I-V{3 Subf/lcp - Subf~cp. 

Conditions (1), (2), (3) immediately yield the desired result. o 

Theorem 10.61 gives the most important property of Subf~cp. This prop
erty is frequently taken as one of the axiom schemas for derivability. Again, 
the hypothesis on a is necessary, as is seen by the example cp = 3f3 ..., (a = f3); 
Vacp _ Subf/lcp is not logically valid. We say here that a clash of bound 
variables has occurred. 

We now give some important corollaries of 10.61. 

Corollary 10.62. I-Vacp _ rp. 

Corollary 10.63. If the variable a does not occur free in cp, then I-cp +-+ Vacp. 

PROOF. By 10.62, 

(1) I-Vacp - cpo 
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For the other direction, let {3 be a variable not occurring in cpo Then by change 
of bound variable, 

(2) rep ++ Subb~cp. 

Hence using 10.23(2) we obtain 

(3) f-Va Subb~cp ~ Vacp, 

and by 10.23(3) we obtain 

(4) f-Subb~cp ~ Va Subb~cp. 

From (1)-(4) the desired conclusion easily follows. o 

Proposition 10.64. If the variable a does not occur free in cp, then f-Va(cp ~ if;) ~ 
(cp ~ Vaif;). 

PROOF. f-cp ++ Vacp by 10.63; hence use 10.23(2). 

Proposition 10.65. f-VaV{3cp ~ V{3Vacp. 

PROOF 

f-VaV{3cp ~ cp 
f-VaVaV{3cp ~ Vacp 
f-VaV{3cp ~ VaVaV{3cp 
f-VaV{3cp ~ Vacp 
f-VaV{3cp ~ V{3Vacp 

10.62 (twice) 
10.23(2) 

10.63 

similarly 

o 

The desired result now follows easily by symmetry. o 

The following proposition is easily established. 

Proposition 10.66 
(i) f- -,Vacp ++ 3a -, cp 
(ii) f-Va -, cp ++ -,3acp 

(iii) f-Vacp ++ -,3a -, cp 

Corollary 10.67. If no free occurrence of a in cp is within the scope of a 
quantifier on a variable occurring in a, then f-Subf~cp ~ 3acp. 

PROOF 

f-Va -, cp ~ Subf~ -, cp 
f-Subf~cp ~ 3acp 

Corollary 10.68. f-cp ~ 3acp. 

Corollary 10.69. f-Vacp ~ 3acp. 

Proposition 10.70. f-3aV{3cp ~ V{33acp. 

universal specification 
suitable tautology 0 
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PROOF 

hp -+ 3a'P 
I-Vf3'P -+ Vf33a'P 
I- ...,Vf33a'P -+ ""Vf3'P 
I- ...,Vf33a'P -+ Va ..., Vf3'P 
1-3aVf3'P -+ Vf33a'P 

The formula Vf33a'P -+ 3aVf3'P is not, in general, valid. 

10.68 
10.23(2) 

tautology 
10.23(2), 10.64 

tautology 0 

The following important syntactical theorem is a version for formulas of 
the principle of substitution of equals for equals: 

Theorem 10.71 (Substitutivity of equivalence). Let 'P, "', X be formulas and 
a E mRng v. Suppose that if f3 occurs free in 'P or in '" but bound in X then 
f3 E {at: i < m}. Let {} be obtained from X by replacing zero or more occur
rences of'P in X by",. Then 

I-Vao· . ·Vam -1('P +-+ "') -+ (X +-+ (}). 

PROOF. We proceed by induction on X. We may assume that {} ¥- X. If X 
is atomic, then X = 'P and", = {}; this case is trivial. Suppose X is -,X'. Then 
{} is of the form -,{}', and the induction hypothesis easily gives the desired 
result. The induction steps involving v and A are similar. Now suppose 
X = Vf3x'· Then by the induction hypothesis, 

I-Vao·· ·Vam -1('P+-+ rp) -+ (X' +-+ (}'). 

Note that f3 does not occur free in 'lao· . ·Vam -1(rp +-+ rp). Hence, using 10.61, 
we easily obtain 

as desired .. o 

Again note that implicit in 10.71 is the assertion that the expression {} formed 
from X is again a formula; this is easily established. 

Now we introduce a notation which will be frequently used in the remainder 
of this book. 

Definition 10.72. Let'P be a formula, mEw, a E mTrm. Choose k maximum 
such that Vk occurs in 'P or in a; for somej < m, k = 0 ifno variable occurs 
in 'P or in any af. Let ao, ... , an -1 be a list of all variables which occur 
bound in 'P but also occur in some a;, with ao < ... < an -1 in the natural 
order Vo, Vb ... of the variables. Let rp be the formula 

Subb~8c+1) Subb~(~+2)·· ·Subb~~;+~l 'P, 

and let 'P( ao, ... , am -1) be the formula obtained from rp by simultaneously 
replacing all free occurrences of Vo, ... , Vm-1 by ao, ... , am-1 respectively. 
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The purpose of first forming ap is to eliminate any possible clash of bound 
variables. The following two corollaries give the essential properties of this 
notation. 

Corollary 10.74. I-<p(uo, ... , U m-l) -+ 3vo' . ·3Vm-lCP. 

Both of these corollaries are immediate consequences of earlier results, 
upon noticing that simultaneous substitution can be obtained by iterated 
ordinary substitution; in the notation of 10.72, 

cp(uo, ... , Um -l) = Subf~bk+n+l) Subf~bk+n+2) ... Subf~~~~1tm) 
Subf~fk+n+l) Subf~tk+n+2)'" Subf~i~+i~m) ap. 

This fact is also useful in checking formally that this substitution notion is 
effective: 

Proposition 10.75. If x is the Godel number of a formula cP, mEw, Yo, ... , 
Ym -1 are Godel numbers of terms uo, ... , U m -1 respectively, let sex, Yo, ... , 
Ym-l) = ff+CP(uo, ... , U m-l); if x and Yo,.··, Ym-l do not satisfy these 
conditions, let sex, Yo, ... , Ym -1) = O. Then s is recursive. 

PROOF. First we need a function picking out the integer k described in 
10.72. For any x, Yo, ... , Ym -1 E w, let 

g(x, Yo, ... , Ym-l) = /Lk[(3i:5: lx{((x)j = ffvk + 1) or 
Vi<m 3i :5: lYi[(Y,)j = ffvk + In and Vi :5: lx[(x)j ..:.. 
1 E Rng (ff 0 v) => v- 1ff-l((X)j - 1) :5: k] and 
!\i<m Vi :5: lYi[(Yi)j ..:.. 1 E Rng (ff 0 v) => v- 1ff-l((Y;)j - 1) :5: k]) 
or (Vi :5: lx[(x)j ..:.. 1 ¢ Rng (ff 0 v) and !\i<m Vi :5: 
lYi[(Yi)j ..:.. 1 ¢ Rng (ff 0 v)])]. 

Now letfbe the function of 10.52, let/' be the function of 10.57, and let S 
be the relation of 10.43. We now define a function/" which codes the set of 
variables which occur bound in cP but also occur in some u,: 

/"(x, zo, ... , Zm-l) = /LY((Y)11/ = 1 and Vi :5: ly(3j :5: 
IX[((Y)hj, x) E S] 1\ Vi<m 3u :5: Zi 3w :5: Zj[Z, = Cat (u, Cat 
(2(11)1+1 .. w»)]) and Vj :5: Ix Vk :5: x{(k,j, x) E S and 
V n<m 3u :5: Zn 3w :5: zn[zn = Cat (u, Cat (2k +1, w»] =>3i < 
lY[(Y)j = kn and Vi, j < ly[i < j => v- 1ff-l(Y)j < v-lff-l(Y)i])' 

Next we define a functionpv yielding the formula ap of 10.72, via an auxiliary 
function fill: 

f"'(x, Yo,·.·, Ym-l> 0) = x, 
flll(x, Yo, ... , Ym-l, i + 1) = /,((f"(x, Yo,···, Ym-l»h 

ffv(h(x, Yo, ... , Ym-l) + i + 1), 
f"(x, Yo,···, Ym-l, i» 
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and 

PV(x, Yo, ... , Ym-1) = f"'(xo, Yo,···, Ym-b /f"(X, Yo,···, Ym-1»' 

We then define a function s' using the fact stated after 10.74: 

s'(x,yo,·· ·,Ym-1) =f({lv(h(x, Yo, .. ·,Ym-1) + 1f"(x,Yo, ... ,Ym-1) + 1), 
Yo, f({lv(h(x, Yo, ... , Ym -1) + If"(x, Yo, ... , Ym -1) + 2), YI, ... 
f({lv(h(x, Yo,···, Ym-1) + If"(x, Yo,···, Ym-1) + m, Ym-1'/({lVO, 
{lv(h(x, Yo,···, Ym-1) + If"(x, Yo,···, Ym-1) + 1)'/(1vl, 
{lv(h(x, Yo, ... , Ym-1) + If"(x, Yo, ... , Ym-1) + 2), ... ,j({lv(m - 1), 
{lv(h(x, Yo,···, Ym-1) + If"(x, Yo,···, Ym-1) + m),pV(x, Yo,···, 
Ym-1»' .. ). 

The desired function s is obtained from s' by a simple and obvious definition 
by cases. 0 

Our next main result 10.81 concerns prenex normal form. 

Lemma 10.76. If a does not occur free in .p, then 'rVag; v .p +-+ Va(g; V .p). 

PROOF 

(1) 

(2) 

'rVag; ~ g; 
'rVag; v .p ~ g; v .p 
'rVa(Vag; v .p ~ g; v .p) 
'rVag; v .p ~ Va(g; V .p) 
'rVa(g; v .p) ~ g; v .p 
'rVa(g; v .p) A ,.p ~ g; 
'rVa[Va(g; v .p) A ,.p ~ g;] 
'rVa(g; v .p) A ,.p ~ Vag; 
'rVa(g; v .p) ~ Vag; V .p 

Now (1) and (2) give the desired conclusion. 

10.62 

using 10.64 
10.62 

10.64 

The proof of the following lemma is just like that for 10.76. 

o 

Lemma 10.77. If a does not occur free in .p, then 'rVag; A .p +-+ Va(g; A .p). 

Lemma 10.78. If a does not occur free in .p, then 'r3ag; v .p +-+ 3a(g; v .p). 

PROOF 

Similarly: 

'r3a(g; v .p) +-+ ,Va, (g; V .p) 
'r ,Va, (g; V .p) +-+ ,Va( 'g; A ,.p) 
'r ,Va( 'g; A ,.p) +-+ """I(Va 'g; A ,.p) 
'r ,(Va, g; A ,.p) +-+ 3ag; V .p. 

10.77 

Lemma 10.79. If a does not occur free in .p, then 'r3ag; A .p +-+ 3a(g; A .p). 
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Definition 10.80. A formula rp is quantifier-free if L3 does not occur in it. 
A formula ,p is in prenex normal form provided there is an mEw, a Q E 

m{v, 3}, an a E mRng v, and a quantifier-free formula rp such that 

,p = Qoao·· ·Qm-1am-1rp· 

The formula rp is called the matrix of,p; Qoao· . ·Qm-1am-1 is the prefix 
of ,po 

Theorem 10.81 (Prenex normal form theorem). For any formula rp there is a 
formula ,p in prenex normal form such that I-rp +-+ ,p, and such that a variable 
occurs free in rp iff it occurs free in ,po 

PROOF. By induction on rp. The only difficult step is the passage from rp1 
and rp2 to rp1 V rp2 (or to rp1 A rp2). Since these cases are symmetric, we deal 
only with the first. Thus assume, with obvious notation, 

I-rp1 +-+ Qoao· . ·Qm-1am-1,p1 
I-rp2 +-+ Q~f3o· .. Q~ -lf3n -1 ,p2. 

By change of bound variable we may assume that none of ao, ... , am -1 occur 
in Q~f3o·· ·Q~-1f3n-1,p2' and that none of f3o, ... , f3n-1 occur in Qoao··· 
Qm-1am-1,p1. Thus by 10.76 and 10.78, 

I-rp1 v rp2 +-+ Qoao·· ·Qm-1am-1Q~f3o·· ·Q~-1f3n-1(,p1 V,p2)' 

as desired. D 

Definition 10.82. rp is a sentence, in symbols rp E Sent,2', if no variable occurs 
free in rp. 

Intuitively speaking, only sentences express complete statements. A formula 
with free variables has no definite meaning until values are assigned to the 
free variables. Obviously the notion of sentence is effective: 

Proposition 10.83. ?+* Sent is recursive. 

Because one is generally only interested in sentences, and not formulas 
in general, it is convenient to have notions of theorem and proof where only 
sentences are mentioned: 

Definition 10.84. Let r s; Sent,2'. We let r-Thm" be the intersection of all 
sets Ll s; Sent,2' satisfying the following conditions: 

(i) if rp E Axm,2' u r, mEw, a E mRng v, and Vao·· ·Vam-1rp is a sen
tence, then Vao· .. Yam -1 rp Ell; also, Varp -+ rp E Ll for any a E Rng v and 
any sentence rp; 

(ii) ,p E Ll whenever rp, rp -+ ,p E Ll. 
We write Thm90 instead of O-Thm9o, r 1-90 rp instead of rp E r-Thm9-' 

and l-9-rp instead of 0 1-90 rp. 
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Theorem 10.85. For f U {<p} ~ Sentz, f I- <P iff f 1-" <po 

PROOF. (f-Thm) n Sent in place of ~ clearly satisfies 10.84 (i)-(ii). Hence 
f-Thm" ~ (r-Thm) n Sent, so f 1-" <p ~ f I- <po 

To prove the converse, let 

~ = {<p E Fmla: for all mEw and all a E mRng v, if Veto· .. Vam-l<P 
is a sentence then l' 1-" Vao·· ·Vam-1<P}. 

Clearly Axm U l' ~ ~ and ~ is closed under generalization. To show that ~ 
is closed under detachment it clearly suffices to show 

(1) 
if nEW, et E nRng v, Veto· .. Vetn-l(<P _.p) is a sentence, l' 1-" Vao· .. 
Van-l<P, and l' I-"Vao·· ·Van-l(<p-.p), then l' I-"Vao·· ·Van-l.p. 

This is established just like (1) in the proof of 10.32. 
Hence r-Thm ~ ~, so l' I- <P =:> l' 1-" <po o 

Theorem 10.86 (Deduction theorem). If <P is a sentence and r U {<p} I- .p, 
then l' I- <P _ .p. 

PROOF. Let ~ = {X : r I- <P _ .p}. If X is an axiom or a member of 1', then 

X 
X-(<p-X) 

<P-X 

is a f -formal proof of <P - X, so X E ~. Obviously <P E ~. It is easily seen that 
~ is closed under detachment. Now suppose that X E ~ and a E Rng v. Then 

1'1-<p-X 
r I-Va(<p-X) 
r I-<p-Vax 

Thus Vax E~. Hence (1' U {<p})-Thm ~ ~, as desired. 

since X E~ 

using 10.64 

o 
The deduction theorem formalizes an important procedure in intuitive 

proof theory. Frequently when one wishes to prove an implication <p_.p one 
will add <p to the standing assumptions l' and then derive .p. The deduction 
theorem then says that <p _ .p is derivable from l' alone. 

The deduction theorem does not hold if <p is merely assumed to be a 
formula. For example, {vo = VI} I- Vo = V2 (as is easily seen), but IIvo = VI
vo = V2 (see Exercise 11.52). This comes about because the free variables in 
formulas of r, where r I- <p, are treated as though they were universally 
quantified for most practical purposes. 

Corollary 10.87. Assume r ~ Sent, In E w, and <p E mSent. Then the following 
conditions are equivalent: 

(i) 1'U{<po, ... ,<Pm-l}I-.p; 
(ii) r I- <Po A ... A <Pm-l -.p. 
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PROOF. (i) ~ (ii). We proceed by induction on m, the case m = 0 being 
trivial (condition (ii) is then to be interpreted as r I- ,p, just like (i». Assume 
that the implication holds for m, and suppose that r u {9'0, ... , 9'm} I- ,p. Then 
by 10.86, r u {9'0, ... , 9'm-l} I- 9'm ~,p, so by the induction assumption, 
r I- 9'0 1\ ••• 1\ 9'm-l ~ (9'm ~ ,p). A suitable tautology then gives r I- 9'0 1\ ••• 

1\ 9'm ~ ,p, as desired. 
The implication (ii) => (i) is trivial. 0 

Recalling 10.33(ii), we easily obtain 

Corollary 10.88. Assume r u Ll u {9'} s Sent. Then the following conditions 
are equivalent: 

(i) r u Ll I- 9'; 
(ii) r I-,po 1\ ••• 1\ ,pm-l ~ 9'for some mEw and some,p E mLl. 

The notion of a consistent set of formulas is one of the most important 
notions of elementary logic: 

Definition 10.89. A set r s Fmla is consistent if r If 9' for some 9'. 

Some obvious equivalents of this notion are as follows: 

Proposition 10.90. For any r s Fmla thefollowing conditions are equivalent: 

(i) r is inconsistent; 
(ii) r I- 9' and r I- '9' for some formula 9'; 
(iii) r I- 9' 1\ '9' for some formula 9'. 

Theorem 10.91. 0 is consistent. 

PROOF. For any formula 9', let 9" be obtained from 9' by first simultaneously 
replacing all atomic formulas in 9' by Vo = Vo ~ Vo = Vo and then deleting all 
quantifiers. Let Ll = {9' : 9" is a tautology}. It is easily checked that Axm s Ll 
and Ll is closed under detachment and generalization. Hence Thm S Ll by 
Definition 10.23. Since, for example, ,(vo = vo) ¢ Ll, it follows that 0 is 
consistent. 0 

Of course 10.91 is an important result, showing that all of our work concern
ing the notion I- is not completely trivial. It is obvious on intuitive grounds, 
since 1-9' implies that 9' is intuitively true, while there are certainly formulas 
that are not intuitively true. This can be made precise using the model
theoretic notions of the next chapter. 

The following two facts concerning consistency are frequently useful: 

Proposition 10.92. Assume r u Ll s Sent and Ll =I O. Then the following 
conditions are equivalent: 
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(i) f u 11 is inconsistent; 
(ii) there exist an mEw'" 1 and a g; E ml1 such that f f- .g;o v ... 

v • g;m-1' 

PROOF 
(i) => (ii). By 10.88 we obtain mEw and g; E ml1 such that 

f f- g;o A .•. A g;m-1 ~ .Vvo(vo = Vo). 

We may assume m =f. O. Since f f- VVo(vo = vo), we easily obtain using a 
suitable tautology f f- .g;o v ... V 'g;m-1' 

(ii) => (i). Since f f- .(g;o A ... A g;m-1) and f u 11 f- g;o A ... A g;m-1, 
f U 11 is inconsistent. D 

Proposition 10.93. If r c:; Sent, then the following conditions are equivalent: 

(i) f is inconsistent; 
(ii) there exist mEw'" 1 and g; E mr so that f- .g;o v ... V 'g;m-1' 

To derive 10.93 from 10.92 it is necessary to use 10.91. 
Since, as mentioned earlier, we are mainly interested in sentences, as 

opposed to formulas in general, it is useful to have a standard method for 
forming a sentence from a formula: 

Definition 10.94. Let g; be a formula. Then there is a unique mEw and 
a E mRng V such that {ao, ... , am -1} is the collection of all variables occur
ring free in g; and v-lao < ... < v- 1am_1' We let [[g;]], the closure of g;, 
be the sentence Vao" ·Vam-1g;. 

The following proposition summarizes some usual facts about this notion: 

Proposition 10.95 
(i) f-[[g;]] -+ g;; 

(ii) iff f- g;, then f f- [[g;]]; 
(iii) iff c:; Fmla and f' = {[[g;]] : g; E f}, then f-Thm = f'-Thm. 

In conclusion of this section, we wish to indicate a modified notion of 
effectiveness for first-order languages which is frequently useful. An ele
mentary efJectivized first-order language is a quintuple as in 10.2, except with 
(ii), (iii), (iv) replaced by the following conditions: 

(ii ') /I 0 v is elementary, Rng (/I 0 v) is elementary, and (v - 1 0/1 -1) U 

<0 : mEw '" Rng (/I 0 v» is elementary; 
(iii ') /1* Omn (!) is elementary and ((!) 0 /I - 1) U <0 : mEw '" /1* Omn (!) is 

elementary; 
(iv') /1* Omn fJ1t is elementary and (fJ1t 0 /I -1) U <0 : mEw '" /1* Dmn fJ1t) is 

elementary. 
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Most of the languages naturally occurring in mathematics can be con
sidered as elementary in this sense. Furthermore, the various effectiveness 
results of this chapter extend with minor modifications of proofs to prove 
elementariness of the various notions. Some exercises below indicate where 
some of these modifications must occur. 
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EXERCISES 

10.96. Show that in 10.2(i0 the requirement that v -1 0 ~ -1 is partial recursive 
can be replaced by the requirement that (v- 1 0 ~-1) U <0: m ¢ Rng (~ 0 v) 
is recursive. 

10.97. Let!l' be a first-order language, as in 10.1. Let P = {tp : tp is a formula of 
!l' whose first symbol is either in Dmn~, or is La or L4}. Let n, c be 
distinct sets not in P. Then ~ = (n, c, P) is a sentential language. With 
each sentence tp of ~ we associate an expression tp' of !l': 

<"')' = '" for'" E P; 
(""tp)' = ""tp'; 

(tp - "'), = tp' - "". 

Also, with each formula tp of.;e we associate an expression tpt of ~; 

tpt = <tp) 
(...,tp)t = ...,tpf, 
(Vatp)t = <Vatp). 

if tp is atomic; 
(tp v ",)t = tpt V ",f, 

Show that' maps Sent&, into Fmla~ (but is not onto), and t maps Fmla~ 
into Sent&, (but is not onto). For any sentence tp of ~, F&'tp_ tp't. For 
any formula tp of !l', tp_ tpt' is a tautology. For any sentence tp of .;e, 
tp is a tautology iff tp' is a tautology. And for any formula tp of !if, tp is a 
tautology iff tpt is a tautology. 

10.98. Prove a version of 10.52 for elementary effective languages. 

10.99. Prove a version of 10.75 for elementary effective languages. 

10.100. Let a be a variable not occurring in a and such that no free occurrence 
of a in tp is within the scope of a quantifier on a variable occurring in a. 
Prove: 

(a) ~Subf~tp_ Va(a = a _ tp); 
(b) ~Subf~tp _ 3a(a = a A tp). 
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10.101. Let a, f3, y be distinct variables. Prove: 

(a) b3a( -'a = f3 1\ -'a = y) +-+ [f3 = y 1\ 3a3f3( -'a = f3)] 
V [-,f3 = Y 1\ 3a3f33y( -'a = f3 1\ -,f3 = Y 1\ -'a = y)]; 

(b) b3a[cp 1\ .p 1\ 3f3(cp 1\ -,.p)] - 3f3(3acp 1\ -'a = f3); 
( c) b3y{3a[3y(3acp 1\ 3f3.p) 1\ a = y] 1\ 3f3X} +-+ 

3y[3f3(3y{3a[3y(3f3.p 1\ f3 = y) 1\ a = y] 1\ 3f3X} 1\ f3 = y) 1\3acp]; 
(d) b3acp 1\ 3f3.p 1\ 3yX - 3a3f33y[3a(3f3x 1\ 3y.p) 

1\ 3f3(3ycp 1\ 3ax) 1\ 3y(3a.p 1\ 3f3cp)]. 

10.102. Prove the following generalization of the deduction theorem: if cp is a 
formula and r u {cp} b.p, then r b [[cp]] _.p. 

10.103. For any r s Fmla, let r-Thm'" be the intersection of all sets ~ S Fmla 
such that: 

(1) r u Thm s ~; 
(2) ~ is closed under detachment. 
We write r b'" cp for cp E r-Thm"'. Prove: 
(3) if r s Sent, then r b cp iff r bm cp; 
(4) if r u {cp} b'''.p, then r b'" cp _.p; 
(5) if r b'" cp and a is a variable which does not occur free in any formula 

of r, then r b'''Vacp. 

Exercise 10.103 gives a common definition of r-theorem, which differs 
from ours in the case of r having formulas with free variables. 

The next exercise gives the most common selection of logical axioms: 

10.104. Let Axm!v consist of all formulas of the forms in 10.23(1), 10.34, 10.48, 
10.61, and 10.64. Let r-Thmiv be the intersection of all ~ S Fmla such 
that r u Axmiv S ~ and ~ is closed under detachment and generalization. 
Show r-Thm = r-Thm!v. 

Axioms and rules widely used by Hilbert and his followers are given in the 
next exercise. 

10.105. Let Axmv consist of all formulas of the forms in 10.23(1), 10.34, 10.48. 
10.61, and 10.67. Let r-ThmV be the intersection of all ~ S Fmla such 
that r u Axmv S ~ and: 

(1) ~ is closed under detachment; 
(2) if cp _ .p E ~ and a does not occur free in cp, then cp - Va.p E ~; 
(3) if cp _ .p E ~ and a does not occur free in .p, then 3acp _ .p E ~. 

Show that r-Thm = r-Thmv. 

The following axiom system is due to Quine: 

10.106. Let Axmv! consist of all sentences of the following forms: 
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(e) [[«p-+Va«p]] if a does not occur free in «p; 
(f) [[«p]], «p as in 10.23(4); 
(g) [[ «p]], «p as in 10.23(5). 

For r s; Sent, let r-ThmV! be the intersection of all sets II s; Sent such 
that r v Axmvi s; II and II is closed under detachment. Show that r
Thmvi = Sent n r -Thm. 

10.107. Let se be a first-order language in which (1) = 0. An atomic formula 
RviO"· ·Vi(m-l) is standard if iO = 0, ... , i(m - 1) = m - 1; any atomic 
equality formula is standard. A formula is standard if all of its atomic 
parts are standard. Let Fmlas be the collection of all standard formulas. 
Prove that for any formula «p there is a standard formula .p with the same 
free variables as «p such that f-«p+-+.p. 

10.108. (Continuing 10.107.) Let Axms consist of all standard formulas of the 
following kinds: 

(a) «p, «p a tautology; 
(b) Va(<<p -+.p) -+ (Va«p -+ Va.p); 
(c) «p -+ Va«p, if a does not occur in «p; 
(d) .Va«p-+Va .Va«p; 
(e) VaV(3«p-+V(3Va«p; 
(f) 3a(a = (3); 
(g) a = (3 -+ (a = y -+ (3 = y); 
(h) a = (3 -+ (<<p -+Va(a = (3 -+ «p» if a*" (3. 

For r s; Fmlas , let r-Thms be the intersection of all sets II S; Fmlas such 
that r v Axms S; II and II is closed under detachment and generalization. 
Prove that if r S; Fmlas , then r-Thms = r-Thm n Fmlas • 
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11 Some Basic Results of 
First-order Logic 

We now introduce the basic notions of model and truth for first-order 
languages. Then we prove the completeness theorem, which shows the 
equivalence between the proof-theoretic notion I- and the corresponding 
semantic notion. Following this we give a series of simple but basic results 
concerning first-order logic. Namely, we will discuss compactness, the 
elimination of operation symbols, extensions by definitions, Skolem functions, 
Herbrand's theorem, and interpretations from one language to another. These 
results will be useful in discussing decidable and undecidable theories as well 
as in the model-theoretic portion of the book. 

Definition 11.1. Let Y = (L, v, (!},~) be a first-order language. An Y
structure is a triple Q{ = (A, J, R) such that: 

(i) A #- 0; 
(ii) Dmn! = Dmn (!), and for each 0 E Dmn (!}'/o is an @O-ary operation 

on A (with simply fo E A if @O = 0); 
(iii) Dmn R = Dmn~, and for each R E Dmn fJ£, RR is an ~R-ary relation 

onA. 

Thus an Y-structure gives a domain A over which the variables of Y can 
range, and assigns a meaning to each nonlogical symbol of Y. Frequently 
Y-structures will be written in other forms, e.g. Q{ = (A, j;, Rj)fEI. jEJ, where 
1= Dmn (!), J = Dmn~, Q{ = (A,J) if ~ = 0, etc. Or we may write Q{ = 
(A, R2I, 02l)REDmn91. OEDmn e>. For R E Dmn fJ£, RR is called the denotation of 
R in Q{; and fo is the denotation of 0 in Q{, for 0 E Dmn @. Note that if 
Q{ = (A, J, R) is any mathematical object with A #- 0, ! a function with 
range a collection of (finitary) operations on A, and R a function with range 
a set of (finitary) relations on A, and if Dmn! n Dmn R = 0, then there is a 
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first-order language ff such that m is an ff-structure. In this case we call ff 
an m-language. Let us now consider ff-structures for the languages ff 
described following 10.1. 

Language of equality. The ff-structures are (essentially) just the nonempty 
sets. 

Language of set theory. The ff-structures are the pairs (A, R), where A 
is a nonempty set and R is a binary relation on A. If R = {(x, y) : x, yEA and 
x E y}, then we obtain a particularly natural ff-structure. 

Language of rings. Any ff-structure has the form m = (A, +, ., -,0, 1) 
where A is a nonempty set, + and· are binary operations on A, - is a unary 
operation on A, and 0, 1 EA. In particular, every ring is an ff-structure. Of 
course, there are also many ff-structures which are not rings. 

Full language of a nonempty set A. An ff-structure has the form !?2 = 

(D, J, R) of the general sort; D in general has no relationship to A, and may 
even have smaller or larger cardinality than A. One particular ff-structure 
is m = (A, J, R), where f and R list all of the operations and relations on A; 
thus iffE UmEw mAA thenfaf = fand if R E UmEw-1 SernA) then Rf3R = R. 

Our next objective is to describe precisely how an ff-structure determines 
the meaning of terms and formulas. 

Definition 11.2. For any term a of ff and any ff-structure m we define 
am: WA --+ A: for any x E wA, 

v'fx = Xi; 
(Oao·· .arn _1)mX = Om(a:fx, ... , a~_1X), 

where (90 = m. We say that a term-defines the function am in m. 

Note that if 0 is O-ary, then Omx = Om for any x E W A. 

Proposition 11.3. If every variable occurring in a is in the set {Vi: i E r}, where 
r ~ w, then amx = amy whenever x I r = y I r. 

This proposition is easily established by induction on a. It justifies the 
foIIowing definition: 

Definition 11.4. If a is a term with variables among va' ... , Vn -1' let nam be 
the n-ary operation on A such that namx = amy whenever x E nA, yEW A, 
and x ~ y. We say that a term-defines nam in m. 

Note that n = 0 is possible in 11.4, this being the case if a is built up from 
individual constants alone, with no variables occurring in it. Then °am is just 
a certain element of m. Now we turn to the meaning of formulas; naturaIIy 
this also depends on the values assigned to the variables, as foIIows: 
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Definition 11.5. For any formula rp of !R and any !R-structure 21 we define 
rp<l ~ "'A: for any x E "'A, 

x E (a = 'T)21 iff a2lx = 'T2Iy; 
X E (Rao' .. am_l)21 iff (a§\x, ... , a;t -lX) E R2I, 
where 9t'R = m; (....,rp)~1 = "'A '" rp2l; 
(rp V ifJ)21 = rp21 V ifJ2I; 
(rp A ifJ)21 = rp2l n ifJ2I; 
x E (VVirp)21 iff for all a E A, x~ E rp2l. 

We say that rp elementarily defines rp<l in 21. If x E rp21 we say that x satisfies 
rp in 21, and write 21 F rp[x]. 

It is easy to give rules for the effect of our defined connectives on the truth 
of x E rp2l. For example, 

x E (rp ~ ifJ)21 iff (x E rp21 implies x E ifJ2I); 
X E (3Virp)21 iff there is an a E A with x~ E rp2l. 

Proposition 11.6. If every variable occurring free in a formula rp is in the set 
{Vi: i E r}, where r ~ w, and if x r r = y r r, then x E rp21 iff Y E rp2l. In 
particular, if rp is a sentence, then rp21 = "'A or rp21 = O. 

This proposition is easily established by induction on rp, and justifies the 
following definition. 

Definition 11.7. If rp is a formula with free variables among Vo,"" Vn-l> 

we let 

nrp21 = {x E n A : 3y E co A(x ~ Y E rp2l)}. 

We say that rp elementarily defines nrp21 in 21. 
If x E nrp21 we say that x satisfies rp in 21, and again write 21 F rp[x]. In 

general, a formula rp holds or is true in 21 if rp21 = co A; we also say that 21 
satisfies rp or is a model of rp and we write 21 F rp. We write 21 F ~ if each 
rp E ~ holds in 21; K F rp if each 21 E K is a model of rp, and K F ~ if K F rp 
for each rp E ~. Furthermore, we write r F rp if each model of r is a model 
of rp, and r F ~ if r F rp for each rp E~. We say that rp is universally valid 
if rp holds in every !R-structure, and we then write Frp. 

In this definition we have given the main semantic notions that we will 
work with in the model-theoretic portion of the book. We now turn to the 
discussion of the relationships of these notions with the proof-theoretic 
notions. The main result we want to establish is that r I- rp iff r F rp. This will 
enable us in the second part ofthis section to establish some important proof
theoretic results by model-theoretic means. One half of this important 
equivalence is rather easy to establish: 
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Lemma 11.8. r I- ffJ implies r 1= ffJ. 

PROOF. Using a simple inductive argument based on 10.24, it obviously 
suffices to show that each logical axiom is universally valid. We consider the 
five kinds of logical axioms given in 10.23: 

(I) ffJ is a tautology. Let x E W A; we wish to show that x E ffJQ1 . For any 
formula .p, let 

f.p = 1 
f.p = 0 

if x E .pQl, 
if x ¢ .p'U. 

Clearly fis a truth valuation in the sense of 10.19. HencefffJ = I, i.e., x E ffJQ1, 

as desired. 
(2) ffJ is the formula Vvi(.p ~ x) ~ (Vvi.p ~ Vvix). Again let x E W A. To 

establish that x E ffJ Q1 , we use the remark following 11.5: we assume that x E 

(Vvi(.p ~ X))?l, x E (Vvi.pf1, and prove that x E (VViX)'ll. Let a E A be arbitrary. 
Then x~ E (.p ~ X)Ql and x~ E .p'U, so x~ E xQ(, as desired. 

(3) ffJ is .p ~ Vvi.p, where Vi does not occur in .p. Obviously ffJQ( = W A, by 
Proposition 11.6. 

(4) ffJ is 3V;(Vi = a), where Vi does not occur in a. Let x E W A, and set a = 

aQ(x. Then by 11.3, aQ(x = aQ(x~. Hence 

so Q( 1= (Vi = a)[x~]. Hence Q( 1= :JVi(Vi = a)[x], as desired. 

(5) ffJ is a = T ~ (.p ~ x), where .p and X are atomic formulas and X is 
obtained from .p by replacing an occurrence of a in .p by T. The desired result 
clearly follows from the following lemma: 

(5') if ~ is obtained from the term p by replacing one occurrence of a in 
p by T, and if x E WA and aQ(x = TQ1X, then pQ1X = ~Q(x. 

The lemma is easily proved by induction on p. o 
Lemma 11.8 is already of some interest. In particular, using it we can 

establish that a formula ffJ is not derivable by exhibiting a model of ''P. 
Thus if ffJ has the form .p A ,.p, clearly any 2'-structure is a model of 'ffJ, 

and so 'rfffJ by 11.8. This provides another proof that the empty set is consistent 
(cf. 10.91). 

We can now establish rigorously that various restrictions on axioms and 
theorems in Chapter 10 are essential in order to preserve the property given 
in 11.8. For example, consider the restrictions in 10.23(3) and 10.23(4). 
Formulas of the form ffJ ~ VViffJ are not universally valid, in general, if Vi 
occurs in ffJ. For example, let i = 0 and consider the formula 'P = (vo = VI)' 

Let Q( be any 2'-structure with at least two elements, and let x E W A be such 
that Xo = Xl' Clearly then Q( 1= ffJ[x], while if a E A ~ {xo}, then Q( 1= 'ffJ[x~] 
and hence Q( 1= ,VViffJ[x]; thus x does not satisfy ffJ ~ VViffJ in QI. For an 
example concerning 10.23(4), let 2' be a language with a unary operation 

197 



Part 2: Elements of Logic 

symbolfand let rp be the formula Vo = fv o. Let ~ be an .P-structure in which 
A = wand f is interpreted by s. Clearly then ~ 1= .3vorp. Thus the restriction 
in 10.23(4) is also necessary. 

To prove the converse of 11.8, it is enough to restrict attention to a 
sentence rp and a set r of sentences. The contrapositive of the converse of 11.8 
then says that if r If rp, then r 1;1 rp; by 10.89, this means that: if r u {.rp} is 
consistent, then r u { .rp} has a model. Thus our task is really to show that 
any consistent set of sentences has a model. We shall first show this for 
special sets of sentences where, in a sense, quantifiers can be eliminated: 

Definition 11.9. Let.P be a first-order language. A set r of sentences of .P 
is rich if for every sentence of .P of the form 3arp there is an individual 
constant c of .P such that r I- 3arp ~ Subf~rp. A set r of sentences of .P 
is complete provided that for any sentence rp of .P, r I- rp or r I- 'rp. 

Note that I-Subf~rp ~ 3arp; hence the requirement in 11.9 essentially 
ensures that any existential quantifier can be eliminated. In fact, the following 
proposition is easily established by induction on rp: 

Proposition 11.10. Let r be a rich set of sentences. Then for any sentence rp 
there is a sentence !f in which no quantifier occurs such that r I- rp +-+ !f. 

The following proposition expresses some simple but useful properties of 
complete sets of sentences: 

Proposition 11.11. For any r S; Sentz thefollowing conditions are equivalent: 

(i) r is complete and consistent; 
(ii) {rp: rp E Sentz, r I- rp} is a maximal consistent set of sentences; 

(iii) for any sentences rp, !f, if r I- rp v !f, then r I- rp or r I-!f' and r is 
consistent. 

PROOF 
(i) ~ (ii). Obviously ~ = {rp: rp E Sentz, r I- rp} is consistent. Suppose 

~ c 0; say rp E 0 '" ~. Thus r If rp, so by (i) r I- 'rp. Hence 'rp E ~ c 0, 
so both rp and 'rp are in 0. Hence 0 is inconsistent. 

(ii) ~ (iii). Assume that r If rp and r If!f, and let ~ be as above. Then 
~ c ~ U {rp}, so ~ u {rp} is inconsistent. Hence by 10.92, ~ I- 'rp, so r I- 'rp. 
Similarly r I- .!f and so by a suitable tautology, r I- .(rp v !f). Thus 
r If rp v !f since r is consistent. 

(iii) ~ (i). Given a sentence rp, we have r I- rp v 'rp, so by (iii), r I- rp or 
r I- 'rp. Thus r is complete. 0 

We now show, by a direct construction, that any complete, rich, consistent 
set of sentences has a model: 
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Theorem 11.12. If r is a complete, rich, consistent set of sentences in a 
language 2, then r has a model Q! such that the cardinality of A is at most 

I{ 0' : 0' is a term of 2 in which no variable occurs} ,. 

PROOF. Let B = {a: 0' is a term of 2, and no variable occurs in a}. We 
define == to be the set 

{(a, 7) : 0', 7 E Band r f- 0' = 7}. 

By 10.34-10.36, == is an equivalence relation on B. Recall that [] is the 
function assigning to each 0' E B its equivalence class under ==. Let A = 

B/==. By 10.38, for each 0 E Dmn (!), say of rank m, there is an m-ary operation 
0 21 on A such that for any 0'0, ... , am -1 E B, 

0 21([0'0], ... , [am-d) = [00'0" ·am-d. 

For any R E Dmn Bl, say R m-ary, we let R2I be the collection of all m-tuples 
of the form ([0'0], ... , [am-d) such that r f- Rao" ·am -1' This defines Q!. 

We claim that Q! is the desired model of r. The proof of this is based on the 
following auxiliary considerations. First, the following statement is easily 
established by induction on 7: 

(1) for any 7 E B, °721 = [7]. 

Next, let 0' E W B. If 7 is any term, we let S,,7 be the term obtained from 7 

by simultaneously replacing each variable Vi in 7 by ai' Then by induction 
on 7 it is easily shown that 

(2) 

Similarly, for any formula ep, let S"ep be obtained from ep by simultaneously 
replacing each free occurrence of VI in ep by ai for each i < w. Then: 

(3) For any formula ep, Q! 1= ep[[ ] 0 0'] iff Q! 1= S"ep. 

Of course (3) is also established by induction on ep; we consider two steps as 
illustration. If ep is 7 = p, then 

Q! 1= ep[[ ] 0 0'] iff 7 21([ ]) 0 0') = p2l([ ] 0 0') 
iff 0(S,,7)21 = O(S"p)21 by (1), (2) 
iff Q! 1= S"ep. 

Now, suppose ep is VVi,p. Assume first Q! 1= ep[[ ] 0 0']. Then S"ep has the form 
Vvi¢" where ,p' is obtained from ,p by simultaneously replacing each free 
occurrence of Vj in ,p by aj, for each jEw ~ {i}. To show that S"ep holds in 
Q!, let a = H be arbitrary. Then Q! 1= ,p[([ ] 0 a)~], i.e., Q! 1= ,p[[ ] 0 a!]. By the 
induction hypothesis, Q! 1= S(aD,p. Clearly S(aD,p = S(aD,p/, so again by the 
induction assumption, Q! 1= ,p/[[ ] 0 an, i.e., Q! 1= ,p/[([ ] 0 a)~]. Thus S"ep holds 
in Q!, as desired. The converse is similar. 
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Now we return to the proof that ~l is a model of r. This is immediate 
from the following stronger statement: 

(4) for any sentence rp, I' ~ rp iff rp holds in ~1. 

We prove (4) by induction on the sentence rp. If rp is a = T, then 

iff [a] = H 
iff °a~ = °T2I by (1) 
iff ~ Fa = T. 

Next, let rp be Rao" 'am-l' First suppose r ~ rp. Then by the definition ofR"l, 
([ao], ... , [am-I]) E R"l. By (I) it follows that ~l F Rao" ·am-l' Conversely, 
suppose ~l F Rao' .. am-I' Thus (OaEl, ... , °a~ -1) E R"l, i.e., by (1), ([ao], ... , 

[am -1]) E R "l. Hence by the definition of R2l , there exist TO, ... , T m -1 E B with 
lao] = [TO]"'" [am-I] = [Tm- 1 ], and I' ~ RTo" ·Tm- 1 • By an easy argument 
using I O.23( 5), r ~ rp. 

For rp = 'f we have 

r~rp iff r ~ f 
iff ~l ~ f 
iff ~l F rp. 

(by consistency and completeness) 
(induction hypothesis) 

The cases rp = f v X and rp = fAX are similar. Finally, suppose rp is VVif. 
First suppose I' ~ rp. To show that rp holds in Sll, let a = [T] be arbitrary. 
Since ~rp ---->- Subf~if by universal specification, we have r ~ Subf;if. Hence 
Slt F Subf~if, by the induction assumption. By (3) we have ~{ F f[[ ] 0 a], where 
a E W B is any sequence with a i = T. Thus rp holds in ~!. Conversely, suppose 
rp holds in Sll. Since r is rich, let c be an individual constant of 2 such that 
I' ~ 3vi 'f ---->- Subf~i ,f. Thus I' ~ Subf~if ---->- VVif. Let a E W B be any 
sequence such that ai = c. Since rp holds in Sl{, Q{ F f[[] 0 a]. By (3), Subf~if 
holds in ~{, so I' ~ Subf~if by the induction assumption. Hence I' ~ rp, as 
desired. o 

To obtain the completeness theorem, we still need to see how any con
sistent set I' of sentences can be extended to a complete, rich, consistent set. 
First we deal with the case of extension to a complete consistent set. The 
theorem in question has many applications in addition to our immediate 
concern with the completeness theorem: 

Theorem 11.13 (Lindenbaum). Ifr is a consistent set of sentences of 2, then 
there is a complete consistent set ~ of sentences in 2 such that r s; ~. 

PROOF. Let.r'/ = {~ : I' s; ~ s; Senty, ~ consistent}. If fJ8 is a nonempty 
subset of .# simply ordered by s;, then r S; UfJ8 S; Senty. Also, UfJ8 is 
consistent. For, otherwise, by 10.93 there is an mEw - I and a rp E mUfJ8 
such that ~ 'rpo v ... V -rpm _ l' Since fJ8 is simply ordered, rp E m~ for some 
~ E fJ8. Thus by 10.93, ~ is inconsistent, contradicting our assumption that 
fJ8 S; .#. Now we can conclude by Zorn's lemma that d has a maximal 
member ~. By 11.11, ~ is complete. 0 
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To extend a consistent set r to a rich consistent set r is technically some
what difficult. If 2 has no individual constants, then it is obviously impossible 
to do this extension within 2 itself. In general we must expand the language. 
We now briefly discuss the idea of expansion of languages. 

Definition 11.14. A language 2' = (L', v', (!J', B£') is an expansion of a 
language 2 = (L, v, (!J, B£) provided that L = L', v = v', (!J s: (!J' and 
B£ s: B£'; we also say then that 2 is a reduct of 2'. In case 2' = 

(L', v', (!J', B£', !/) and 2 = (L, v, (!J, B£, ff) are effectivized first-order lan
guages, then we insist additionally that ff s: ff', and we call 2' an ejfective 
expansion of 2. Assume that 2' is an expansion of 2. If m = (A, J, R) 
is an 2-structure and ~ = (B,/" R') is an 2'-structure, we say that m is 
the 2-reduct of~, or that ~ is an 2'-expansion ofm provided that A = B, 
f s: /" and R s: R'. We then write m = ~ t !l'. 

In discussing expansions we will usually not be as rigorous as in 11.14. 
Thus we might say" let 2' be obtained from 2 by adjoining a new binary 
relation symbol" or "let 2' be obtained from 2 by adjoining m individual 
constants." Note that the ways of making such statements precise are all 
equivalent, in some sense; see the comments following 10.1. 

In the following proposition we summarize the most important elementary 
facts about expansions. 

Proposition 11.15. Let 2,2', m, ~ be as in 11.14. Then: 
(i) Trm2 s: Trm2', Fmla2 s: Fmla2', Axm2 s: Axm2', and Sent2 s: 

Sent2'; 
(ii) if a E Trm2, then a~ = a'i8; 

(iii) if rp E Fmla2, then rp~ = rp'i8; 
(iv) if r s: Fmla2, then m is a model of r iff~ is a model of r; 
(v) ifr u{rp} s: Fmla2, then r F2rpijfr F2'rp. 

This proposition is easy to prove; (i)-Ciii) are proved by induction, and 
(iv) and (v) follow from (i)-(iii). By the completeness theorem which we will 
shortly prove, 11.15(v) also holds for the notion 1-. This statement is needed 
in our proof of the completeness theorem, however, so we will give a proof
theoretic proof of it : 

Proposition 11.16. Let 2' be an expansion of 2, and assume that r u {rp} s: 
Fmla2. Then r 1-2 rp iff r 1-2 , rp. 

PROOF. Obviously r 1-2 rp =? r 1-2 , rp. Now assume that r 1-2 , rp. Say that 
tPo, ... , tPm-l is a r-formal proof in 2' with tPm-l = rp. Nonlogical constants 
of 2' which do not appear in 2 will be called new constants. Let a be a 
variable not occurring in any of the formulas tPo, ... , tPm-l' We now associate 
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with any formula or term X of 2' a formula or term X- of 2, defined by 
recursion: 

(Vi)- = Vi; 
(Oao· . ·am - 1)- = Oao·· ·a';;_l 
(Oao· . ·am - 1)- = ex 
(a = 7)- = (a- = 7-); 
(Rao· . . am - 1)- = Rao· . ·a';;_l 
(Rao· .. am -1)- = (ex = ex) 
( ...,cp) - = ""cP - ; 
(cp V !f)- = cP- V !f-; 
(cp A !f)- = cp- A !f-; 
(VviCP)- = Vv,cp-. 

if 0 is an old operation symbol; 
if 0 is a new operation symbol; 

if R is an old relation symbol; 
if R is a new relation symbol; 

We claim: 

(1) if i < m and !fi is a logical axiom, then !fi- is a logical theorem in 2. 

To prove (1) we take up the five possibilities for !fi according to 10.23. First 
suppose that !fi is a tautology. Then !fi- is a tautology. For, letfbe any truth 
valuation in 2. Definef+ cP = fcp - for any formula cP of 2'. It is clear thatf+ 
is a truth valuation, SOf+!fi = 1. Thusf!fi = 1, as desired. Second, suppose 
!fi has the form VVi(CP ~ X) ~ (VviCP ~ VViX). Then !fi- is 

Vvi(cp- ~ X-) ~ (VviCP- ~ VViX-), 

so !fi- is still a logical axiom. Third, suppose !fi is the formula cP ~ VViCP, 
where Vi does not occur in cpo Then !fi- is the formula cP- ~ Vvicp-, and, by 
choice of ex, Vi does not occur in cp-. Thus !fi- is a logical axiom. For !fi of 
the form 3vi(Vi = a) where Vi does not occur in a, a similar argument works. 
Finally, suppOSe!fi has the form a = 7 ~ (cp ~ X), as in 10.23(5). If cP has 
the form Rpo· .. Pm -1 where R is a new relation symbol, then !fi is a - = 
7- ~ (ex = ex ~ ex = ex), which is a logical theorem. If cP does not have this 
form, then the desired result follows easily from the following statement: 

if p = /Lav and p' = /L7V are terms, then either p - = p'- or else p-

and p'- have the respective forms /L'a-v', /L'7-V'. 
(2) 

This statement is easily established by induction on p. Thus (1) holds. Clearly: 

(3) for a a term of 2, a- = a; for cP a formula of 2, cP- = cpo 

Now using (1) and (3) it is easily checked that !fi- is a r-theorem in 2 for 
each i < m. Hence r I-z cP, as desired. 0 

The same method of proof gives the following proposition which is also 
needed in our construction of rich extensions: 

Proposition 11.17 Let c be an individual constant not occurring in any 
formula of r U {cp}. Assume that r I- Subf~cp. Then r I- cpo 
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PROOF. Let <,po,"" ,pm-I) be a r-formal proof with ,pm-l = Subf~9'. Let 
{3 be a variable not occurring in any of the formulas ,po, ... , ,pm-I' For any 
i < m let ,pj- be obtained from ,pj by replacing c throughout ,pj by {3. As in 
the proof of 11.16 it is seen that <,pr;, ... , ,p;;, -I) is a r -formal proof. Since 
(Subf~'P)- = Subf~'P, we have r f- Subf~'P' Hence r f-V{3 Subf~'P and r f- 'P 
by universal specification. 0 

Finally we are in a position to construct rich extensions: 

Lemma 11.18. Let.5£' be any first-order language and let r be a consistent set 
of sentences in.5£'. Let.5£" be an expansion of.5£' obtained by adjoining/Fmla..r/ 
new individual constants. Then there is a consistent rich set ~ of sentences 
of .5£" such that r ~ ~. 

PROOF. Let <'Pa : a < m) be a list of all sentences of .5£" of the form 3{3,p, 
where m is an infinite cardinal number. Note that m = /Fmla..r/. We now 
define a sequence <da : a < m) of new individual constants. Suppose we have 
already defined d{3 for all {3 < a, where a < m. Then 

{d{3 : {3 < a} U {c : c is a new individual constant 
occurring in some 'PfJ with {3 ::;; a} 

has cardinality < m, so we can let da be some new individual constant not in 
this set, say the first one under some given well-ordering of all the new 
individual constants. This completes the definition of the sequence <da : a < m). 

Now for each a < m let 'Pa be the sentence 3{3a,pa. For each a· ::;; m let 

0 a = r U {3{31,p1 ~ Subf~~ : y < .a}. 

We claim that each set 0 a is consistent in .5£", and we shall establish this by 
induction on a. We have 0 0 = r, so 0 0 is consistent in .5£" by 11.16. The 
induction step to a limit ordinal is clear from 10.92. So now assume that 0 a 

is consistent; we prove that 0 a + 1 is consistent. If 0 a +1 is inconsistent, then 
by 10.92 we have 

Hence 

(1) 

and also 

0 a f- .Subf~~,pa' 

We may apply 11.17 to this, by choice of da. Thus 0 a f- .,pa, and hence 

(2) 

By (1) and (2), 0 a is inconsistent, contradicting the induction assumption. 
Thus each set 0 a is consistent. Clearly 0 m is rich and contains r, as 

desired. 0 
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Now we can prove the completeness theorem. 

Theorem 11.19 (Completeness theorem, first form). Any consistent set of 
sentences has a model. The model can be taken to have power ::; I Fmla2-J. 

PROOF. Let r be a consistent set of sentences in the language 2. Let 2' be 
obtained from 2 by adjoining I Fmla:el new individual constants. By 11.18, 
let ~ be a consistent rich set of sentences in 2' with r <;:: ~. By 11.13, let 
o be a complete consistent set of sentences in 2' such that ~ <;:: 0. Obviously 
o is still rich. By 1l.l2, 0 has a model Qt. Clearly (by 11.15(iv», Qt I 2 is a 
model of r. From all of these results it also follows that IAI ::; IFmla:el. D 

As already observed informally, 11.19 leads to the equivalence of I- and F: 

Theorem 11.20 (Completeness theorem, second form). r I- rp iff r F rp. 

PROOF. =>: by 11.8. <=: Assume r If rp. Thus by 1O.95(iii), {[[.jI]] : .jI E r} If 
[[rp]] so by 10.92, ~ = {[[.jI]]:.jI E r} U {,[[rp]]} is consistent. Hence ~ has 
a model Qt, by 11.20. Clearly Qt is a model of r but not of rp, as desired. D 

Because of this theorem, we can formulate results from now on using 
either I- or F. Since we shall use model-theoretic methods almost exclusively, 
it seems more appropriate to formulate them using F, as we shall do. In the 
future our only use for the notion I- will be in proofs of model-theoretic 
results where we use the completeness theorem. The following theorem ex
presses one of the main model-theoretic results, proved very essentially 
using 1-: 

Theorem 11.21 (Weak completeness theorem). If 2 is an efJectivized first
order language, then t?+rp: F rp} is recursively enumerable. 

PROOF. By the completeness theorem, the given set is identical with 
(?+rp: I- rp}. This set is r.e. by Theorem 10.29. D 

The following important theorem follows immediately from the first form 
of the completeness theorem. 

Theorem 11.22 (Compactness theorem). If r is a set of sentences such that 
every finite subset of r has a model, then r has a model. 

PROOF. By 11.19 it suffices to show that r is consistent. Suppose not: say 
r I- rp 1\ 'rp. By 10.33, ~ I- rp 1\ 'rp for some finite subset ~ of r. By 11.20 
(in fact, the easy part of 11.20 given in 11.8), ~ F rp 1\ 'rp. By hypothesis, 
~ has a model Qt. Hence rp 1\ -,rp holds in Qt, which is impossible. D 

The compactness theorem lies at the start of model theory, and it will 
playa very important role in Part IV. For some motivation for the name 
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compactness theorem, see Exercise 11.59. We give here just a few corollaries 
to indicate the flavor of applications of the compactness theorem (see also 
the exercises). 

Corollary 11.23. Let.f£' be any first-order language. Then there is no set r 
of sentences of.f£' such that for any .f£'-structure ~, ~ is a model of r iff 
~ isfinite. 

PROOF. Assume the contrary. Expand .f£' to .f£" by adjoining new individual 
constants Cm for mEw. Let Ll be r together with all sentences ,(Cj = cj ) for 
i ¥- j. Every finite subset /j.' of /j. has a model. For, choose T ~ w finite so 
that /j.' ~ r u { ,( Cj = Cj) : i, JET, i ¥- j}. Let ~ be any finite .f£" -structure 
in which cr ¥- c~ for all distinct i, JET, where cr is the denotation of Cj in 
~ for each i E T. Thus ~ t .f£' is a finite .f£'-structure, so by assumption on r, 
~ t .f£' is a model of r. Thus ~ is a model of /j.'. 

Hence by the compactness theorem, /j. has a model ~. Since C,,! ¥- c~ for 
all distinct i, JEW (where, now, c"t is the denotation of Cj in ~ for all i E w), 
~ is infinite. But ~ t .f£' is a model of r, contradiction. 0 

Corollary 11.24. Let.f£' be a first-order language with just one nonlogical 
constant, a binary relation symbol S. Let K be the class of all .f£'-structures 
~ = (A, :::;) such that:::; is a well-ordering of A. Then there is no set r of 
sentences of.f£' such that K = {~ : ~ is a model of r}. 

PROOF. Assume the contrary. Again adjoin new individual constants Cm for 
mEw. Let Ll be r together with all sentences Cm+ 1 < Cm, for mEw. Every 
finite subset of Ll clearly has a model. Hence by the compactness theorem, Ll 
has a model ~. The .f£'-reduct(A, :::;) of ~ is such that:::; is not a well-ordering, 
but (A, :::;) is a model of r, contradiction. 0 

Corollary 11.25. If a sentence qJ holds in every infinite .f£'-structure, then there 
is an mEw such that qJ holds in every finite .f£' -structure of power > m. 

PROOF. Suppose the conclusion fails. Thus for every mEw there is a finite 
.f£'-structure of power >m in which qJ fails to hold. Adjoin new individual 
constants Cm for mEw. Let 

r = {'qJ}u{'(Cj=cj):i,jEw,i¥-j}. 

Then every finite subset of r has a model, so r has a model ~. Thus ~ t .f£' 
is an infinite model of 'qJ, so the hypothesis of 11.25 fails. 0 

We now turn to some basic results about first-order languages which we 
prove in a model-theoretic way. These results have to do with introducing 
new symbols or eliminating symbols. First we prove a theorem which shows, 
roughly speaking, that any first-order language is equivalent to a language in 
which there are no operation symbols. 

205 



Part 2: Elements of Logic 

Definition 11.26 
(0 Let!l' = (L, v, (!), f!l) be a first-order language. A relational version 

of !l' is a first-order language of the form !l" = (L, v, (!)', f!l') such that 
(!)' = 0, f!l s; f!l', and such that there is a one-one function T (called a 
translation of !l' into !l") mapping Dmn (!) onto Dmn f!l' '" Dmn f!l such 
that f!l'To = (!}O + 1 for all 0 E Dmn (!). 

(i0 Let!l', !l", T be as in (i). With each formula q> of !l' we associate 
its !l", T-translate q>' as follows. First we define q>' for formulas q> of the 
form U = VI> U a term: 

(Vj = Vt)' = Vj = Vt; 
(0 = Vt)' = Tovt for 0 an individual constant. 

If 0 is an operation symbol of rank m > 1 and q> is Ouo' .. U m -1 = vi> let 
ao, ... , am -1 be the first m variables not occurring in q>, and set 

q>' = 3ao" ·3am-1[(uO = ao)' 1\ "'1\ (Um-1 = am-1)' 
1\ Toao" ·am-1vtl. 

Next we define q>' for q> of the form U = T, T not a variable. Let a be the 
first variable not occurring in q>, and let 

q>' = 3a«u = a)' 1\ (T = a)'). 

If q> = Ruo' .. U m -1 with each Ut a variable, let q>' = q>. If at least one Ut 

is not a variable, let ao, ... , am -1 be the first m variables not occurring in 
q>, and set 

q>' = 3ao" ·3am_1[Rao·· ·am-1 1\ (uo = ao)' 1\'" 

1\ (Um -1 = a m-1)']' 

Finally we set (""1q>)' = ""1q>', (q> V 1/1)' = q>' v 1/1', (q> 1\ 1/1)' = q>' 1\ 1/1', and 
(Vaq>)' = Vaq>'. 

(iii) Let!l', !l", T be as in (i). For 0 E Dmn (!), the existence condition 
for 0 is the following sentence of !l" (where 0 is m-ary): 

Vvo' .. VVm_13vm(Tovo' . ·vrn); 

the uniqueness condition for 0 is the sentence 

VVo" ·Vvm+1(Tovo" 'Vm 1\ Tovo" 'Vm-1Vm+1 ~ Vm = vm+1). 

The set of translation conditions is the set of all existence and uniqueness 
conditions for all 0 E Dmn (!). 

(iv) If ~ is any !l'-structure, the relational version ~' of ~ is obtained 
from ~ by replacing each operation of ~ by the associated relation. That 
is, if ~ = (A, f, R), then ~' = (A, R'), where ~' is the !l" -structure such 
that R S; R', while if 0 E Dmn (!), with 0 m-ary, then 

R'To = {(xo,"" xm) :/oxo" 'Xm-1 = x m}. 

(v) If!l' = (L, v, (!), f!l,?) is an effectivized first-order language, then an 
efJectivized relational version of !l' is an effectivized first-order language 
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,fR' = (L, V, (!)', Bl', ?') such that (L, v, (!)', Bl') is a relational version of ,fR, 
? t (Rng L u Rng v u Dmn Bl) = ?' t (Rng L u Rng v u Dmn Bl), and 
there is a translation T of (L, v, (!), Bl) into (L, v, (!)', Bl') such that?' 0 To 
?-l t ?* Dmn (!) is partial recursive. 

The following proposition is easily (weak Church's thesis!) established. 

Proposition 11.27. Let,fR, ,fR', T be as in 11.26(v). For any mEW, define 

fm = ?'+fP' ifm = ?+fPfor some fP E Fmlaz·, where 
fP' is the ,fR', T-translate of fP, 

fm = 0 otherwise. 

Then f is a recursive function. 

In the next theorem we give the main properties of relational versions of 
languages. 

Theorem 11.28. Let,fR' be a relational version of ,fR with translation, T, 
notation as in 11.26(i). 

(i) If fP is a formula of ,fR in which no operation symbol occurs, then 
fP' = fP; 

(ii) Let m be an ,fR-structure and m' the relational version of m, with 
notation as in 11.26(iv). Then m' is a model of the translation conditions. 
Furthermore, if fP is any formula of ,fR, and x E "'A, then m 1= fP[x] iffm' 1= 

fP'[x]. For any formula fP of ,fR' there is a formula fP* of,fR such that for all 
XE "'A, m 1= fP*[x] iffm' 1= fP[x].If<;J3 is an ,fR'-structure which is a model of 
the translation conditions, then <;J3 = m' for some ,fR-structure m. 

(iii) Let r u {fP} be a set of formulas of ,fR. Then r 1= fP iff {rp' : rp E r} U 

{rp : rp is a translational condition} 1= fP'. 

PROOF. (i) and the first part of (ii) are obvious. We prove the second part 
of (ii) by induction on fP, following 11.26(ii). If fP is Vj = VI> obviously m 1= 

fP[x] iff~' 1= fP'[x]. Suppose fP is 0 = VI> where 0 is an individual constant. If' 
m 1= fP[x], then XI = O~, and hence XI E Tit; thus m' 1= fP'[x]. The converse is 
similar. Now suppose, inductively as in 11.26(ii), that fP is OUo' .. Um-l = VI' 

Assume that m 1= fP[x]. Thus O~a~x·· 'U;t_lX = XI' Lety be like X except that 
yao = u~x, ... , yam-l = U~_lX, Thus by 11.3, m 1= Uo = ao[y], ... , m 1= 

Um-l = am-l[y]. So, by the induction hypothesis,~' 1= (uo = aony], ... , m' 1= 

(Um-l = am-l)'[y]. It follows easily that m' 1= fP'[x]. The converse is similar. 
The remaining steps in this inductive proof are similar. Next, given a formula 
fP of ,fR' we construct fP* by replacing all atomic sub formulas of fP of the form 
Toao' .. am by Oao' .. am _ 1 = am' The desired property of fP* is easily estab
lished by induction on fP. The final condition of (ii) is clear. 

To prove (iii), first assume r 1= fP. Let <;J3 be any model (an ,fR'-structure) 
of {rp' : rp E r} u {rp : rp is a translation condition}. By (ii) we may write 
<;J3 = m' with m an ,fR-structure. Since m' 1= rp' for each rp E r it follows by 
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(ii) that Q{ is a model of f. Hence Q{ F rp, so by (ii), Q{' F rp' as desired. Second, 
assume {r// : .p E f} U {.p : .p is a translation condition} F .p'. Let Q{ be a model 
of f. By (ii), Q{' is a model of {.p' : .p E f} u {.p : .p is a translation condition}. 
So Q{' F rp', and by (ii) again, Q{ F rp, as desired. 0 

We now want to give the main facts concerning the role of definitions in 
first-order languages. 

Definition 11.29. A theory is a pair (f, !l!) such that f is a set of sentences 
of!l! and rp E f whenever f F rp, for each sentence rp in !l!. We call f itself 
a theory when !l! is implicitly understood, or we say that f is a theory 
over or in !l!. If Q{ is an !l!-structure, the !l!-theory of Q{ is the pair (f, !l!), 
where f = {rp E Sent.w: Q{ F rp}; clearly (f, !l!) is a theory. A theory (f', !l!') 
is an extension of a theory (f, !l!) provided that !l!' is an expansion of !l! 
and f ~ f'. We say that (f', !l!') is a conservative extension of (f, !l!) 
provided that, in addition, f = f' n Sentz. If f is a theory in !l!, a set 
Ll ~ Sentz is a set of axioms for f provided that f = {rp E Sentz: Ll F rp}. 
Now let !l!' be an expansion of !l! and let f and f' be theories over !l! 
and !l!' respectively. 

(i) If R is a relation symbol of !l!' but not of !l!, then a possible definition 
ofR over f is any formula rp of!l! with free variables among {va' ... , vm- 1}, 

where m is the rank of R. 
(ii) If 0 is an operation symbol of !l!' but not of !l!, then a possible 

definition of 0 over f is a formula rp of !l! with free variables among 
{va' ... , vm}, where m is the rank of 0, such that the following existence 
and uniqueness conditions are in f: 

"Iva· .. Vvm- 13vmrp; 

"Iva·· ·Vvm+1[rp(VO,'·" vm) 1\ rp(vo, ... , Vm-lo vm+1) -+ Vm = vm+d. 

(iii) We say that (f', !l!') is a definitional extension of(f,!l!) provided 
that for every nonlogical constant C of !l!' but not of!l! there is a possible 
definition rpc of Cover f such that 

f' = {rp: rp E Sentz, and f u {rp~ : C a nonlogical 
constant of !l!' but not of !l!} F rp}, 

where rp~ is the sentence 

"Iva· .. Vvm(Cvo' .. Vm-l ++ rpc) 

if C is a relation symbol of rank m, while rp~ is 

"Iva·· ·Vvm(Cvo·· 'Vm-l = Vm ++ rpc> 

if C is an operation symbol of rank m. 
(iv) If!l! = (L, v, ('), at,?) and!l!' = (L', v', (')', gil', ?') are effectivized 

first-order languages, the above notation applies to them also. We assume 
that !l!' is an effective expansion of !l!. We say that (f', !l!') is an effective 
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definitional extension of (r, !l') if (r', !l") is a definitional expansion of 
(r, !l') for which there is a function ({J as in (iii) such that ff + 0 ({J 0 ff' -1 t 
{lC : C is a nonlogical constant of !l" but not of !l'} is partial recursive. 

There are two central results concerning definitions. The first is that 
defined symbols can always be eliminated in favor of old symbols: 

Theorem 11.30. Let (r', !l") be a definitional extension of (r, !l'), with 
notation as in 11.29. Then for any formula rjJ of !l" there is a formula rjJ' 
of !l' with the same free variables as rjJ such that r' 1= rjJ +-+ rjJ'. If r' is an 
effective definitional extension ofr, then such aformula rjJ' can be effectively 
obtained from rjJ. 

PROOF. We construct rjJ' by induction on rjJ. In each step the desired properties 
of rjJ' are easy to prove, and we prove the desired result in only one step as 
an illustration. To begin with, we construct rjJ' for rjJ of the form a = Vi by 
induction on a. If a is a variable, we set rjJ' = rjJ. Now suppose inductively 
that a is OTO" 'Tn-l' Let ao, ... , an- l be the first m variables not occurring 
in rjJ. If 0 is a symbol of !l', then we let rjJ' be the formula 

3ao" ·3an_l[OaO·· ·an-l = Vi A /\ (Tj = aj)'. 
j<n 

If 0 is a symbol of !l" but not of !l', we let rjJ' be the formula 

3ao" ·3an-l[({JO(aO,"" an-l. Vi) A /\ (Tj = aj)']. 
j<n 

In this case we check explicitly that r' 1= rjJ +-+ rjJ'. Let ~ be any model of r'. 
First suppose that ~ 1= rjJ[x] with x E "'A. Thus a~x = Xi> so O~(T~X, ... , 
T~_lX) = XI' Hence ~ 1= (Ovo" 'Vm- l = Vm)[T~X, ... , T~_lX, x;J. Since r'l= 
({J~, it follows that ~ 1= ({Jo[ T~X, ... , T~_lX, x;J. Now let y be like X except that 
yaj = T~X for each j < n. Clearly then ~ 1= ({Jo( ao, ... , an -10 vi)[y] and ~ 1= 

(Tj = aj)[Y] for each j < n. By the induction assumption, ~ 1= (Tj = aj)'[y] 
for eachj < n. Thus ~ 1= rjJ'[x]. The converse is similar. 

Now we continue the inductive definition of rjJ'; it is complete for rjJ of 
the form a = Vi' 

If rjJ is a = T, where T is not a variable, let a be the first variable not 
occurring in rjJ, and set rjJ' = 3a«a = a)' A (T = an. Next, suppose rjJ is 
Rao" 'an-l' Let ao, ... , an-l be the first n variables not occurring in rjJ. IfR 
is a symbol of ~ set 

rjJ' = 3ao" .3an _ l [Rao" ·an- l A /\ (aj = aj)']. 
j<n 

If R is a symbol of !l" but not of ~ set 

rjJ' = 3ao" .3an - l [({JR(ao, ... , an-l) A /\ (aj = aj)']. 
l<n 
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Finally, let (..,"')' = ..,"", ('" v X)' = "" v X', ('" A X)' = "" A X', and 
(VVltP)' = Vvl"". 

The final assertion of the theorem concerning effectiveness is clear from 
~~~ 0 

The second important fact concerning definitions is that nothing new can 
be proved: 

Theorem 11.31. Let (r', 'p') be a definitional expansion of (r, .P). Then 
(r', 'p') is a conservative extension of(r, .P). 

PROOF. Again we take all notation as in 11.29. Suppose'" is a formula of 
.P and r' 1= tP; we must show that r 1= "'. Let ~ be any model of r (~ is an 
.P-structure). For e a nonlogical constant of .P, let e2l' = e2l. Let R be a 
relation symbol of .P' but not of 2, say R is m-ary. We define R2I' = m<p~. 
Now suppose that 0 is an operation symbol of 2' but not of 2; say 0 is 
m-ary. Since <Po is a possible definition of 0 over r and ~ is a model of r, 
we may define 0 21' as follows. For any xc, ... , X m -1 E A, let 02l'(xo, . .. , xm- 1) 
be the unique yEA such that ~ 1= <p2l[xo, ... , xm -1, y]. This defines the 2'-
structure ~'. Clearly ~' is a model of r', so ~' is a model of "'. Hence ~ is 
also a model of "', since", is a formula of !t'. Thus r 1= tP, as desired. 0 

Closely related to this fact about definitions is the following result. 

Theorem 11.32. Let r be a theory in a language !t', and fP a formula of .P 
with free variables among Vo, ... ,Vm • Assume that r I=Vvo" ·Vvm- 13vmfP. 
Let .P' be an expansion of 2 by adding a new m-ary operation symbol O. 
Let r' be a theory in .P' with axioms r together with the sentence VVC}' .. 
VVm -1fP(Vo, ... , Vm -1, Ova· .. vm - 1). Then r' is a conservative extension ofr. 

PROOF. Assume that r' 1= "', where tP is a formula of 2. To prove r 1= "', 

let ~ be any model of r. By the axiom of choice, there is an m-ary function 
g on A such that for all xc, ... , X m -1 E A, ~ 1= fP[xo, ... , x m - 1 , g(xo, ... , x m - 1)]. 

Let ~' be the expansion of ~ to an 'p'-structure in which 0 is interpreted as 
g. Then ~' is a model of r', so ~' is a model of "'. Since", is a formula of !t', 
~ is a model of "'. 0 

Theorem 11.32 justifies the common intuitive practice in mathematics of 
introducing notation for objects proved to exist. For example, after proving 
that an algebraic equation of a specified type has a solution, one introduces 
a name c for such a solution. By 11.32, nothing new not involving c can be 
proved after this that was not provable before. The procedure can be used 
even if one cannot pick out a unique such c. 

We now want to generalize the process described in Theorem 11.32. The 
construction we give is essential for our present purpose of proving the 
Skolem normal form theorem and Herbrand's theorem, and also plays an 
important role in model theory. 

210 



Chapter 11: Some Basic Results of First-order Logic 

Definition 11.33. For any formula cp, let Fv cp be the set of all variables 
occurring freely in cpo For any first-order language !l', aprimitive Skolem 
expansion of if is an expansion if' of if such that there is a function S 
mapping {3vjcp : cp E Fmlaz} one-one onto the set of all nonlogical con
stants of if' which are not constants of !l', such that for each cp E Fmlaz 
and each variable a, S3aIP is an operation symbol of rank 1 Fv 3acpl. In case 
if and if' are effectivized with Godel numbering functions /I, /I', we call 
if' an effective primitive Skolem expansion provided that if' is an 
effective expansion of if and the function 

Ii 0 So /1+ -1 ~ /I+*{3Vjcp: cp E Fmlaz} 

is partial recursive. 
Given first-order languages if = (L, v, (!), f!l), and if' = (L, v, (!)', f!l), 

we say that if' is a Skolem expansion of if provided there is a sequence 
<ifi : i E w> of first-order languages ifi = (L, v, (!);, f!l) such that if ° = !l', 
for each i E w 2;+ 1 is a primitive Skolem expansion of 2; with associated 
function S i, and (r;' = UiEW (r;i' If all of these languages are effectivized, 
if' is an effective Skolem expansion of if provided that each ifi+ 1 is an 
effective primitive Skolem expansion of 2;, and if' is an effective expansion 
of each 2;. 

Assuming that if' is a Skolem expansion of if, with notation as above, 
the Skolem set of if' over if is the set of all sentences 

[[3ViCP( Vo, ... , Vi) ~ cp( Vo, ... , Vi -1, a)]] 

where a = S~ViIPaO' .. am -1' m = 1 Fv 3viCPI, Fv 3vjcp = {ao, ... , am -1} with 
V -lao < ... < v-lam -1' and j is minimal such that 3Vi9' is a formula of ifj • 

(Recall that [[x]] denotes the universal closure of X; see 10.94.) 

The following two propositions are obvious. 

Proposition 11.34. Any first-order language has a Skolem expansion. 

Proposition 11.35. If if' is a Skolem expansion of !l', then 1 Fmlazl 
1 Fmlaz' I· 

The following lemma is fundamental for our main results. 

Lemma 11.36. If if' is a Skolem expansion of!l', then any if-structure can 
be expanded to a model of the Skolem set of if' over !f. 

PROOF. From the definition of Skolem expansions, we see that it is enough 
to prove the following statement: 

Statement. Let if' be a primitive Skolem expansion of !l', and Q( an 
if-structure. Then Q( can be expanded to an if'-structure which is a model 
of all sentences [[3Vi9'( Vo, ... , Vi) ~ 9'( Vo, ... , Vi _ b a)]], where 9' is a formula 
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of 2, a = SlIIv;<paO···am-1om = IFv3vicpl,andFv3vicp = {ao, ... , am_l}with 
v-lao < ... < v-lam_l' 

To prove this statement, let C be a choice function for nonempty subsets of 
A. Let I/J = 3ViCP be a formula of 2, with Fv 3v;cp = {VjO,' .. , Vj(m-ll}' where 
jO < ... < j(m - 1). We define an m-ary operation t", on A as follows. For 
any Xo, .. . , Xm-l E A, set 

t",(Xo, ... , Xm-l) = C{a: there is ayE cP~ such that y; = a 
and Yjk = X k for each k < m}, 

t~(xo, ... , xm- l ) = CA if the above set is empty. 

Let 21' be the expansion of 21 to an 2' -structure in which each symbol S", 
is interpreted as t",. To show that 21' is as desired, consider any formula 
I/J = 3viCP of 2 with notation as above. Suppose x E W A and 21' F 3vicp[x]. 
Then 21 F 3v;cp[x] since 3viCP is a formula of .Ie. Thus there is an a E A such 
that 21 F cp[x~]. Hence the first clause in the definition of t",(XjO, ... , Xj(m -ll) 
gives an element bE A such that 21 F CP[Xh]. Let a be the term SlIIVi<pVjO' .. 
Vj(m-ll' Recall that the formula cp(vo, . .. , v;_la) has the form Subf~icp', where 
cP' is obtained from cP by replacing bound variables suitably. Clearly 21 F 
CP'[Xh], where b = t",(XjO,"" Xj(m-ll)' Hence we easily infer that 21 F 
Subf~icp'[x]. Thus 21' is a model of [[3v;cp(vo"",Vi)-CP(VO"",vi_l,a)]], 
as desired. 0 

The functions introduced in the expansion of 21 to 21' in the proof of 11.36 
are called Skolem functions. The entire method associated with Skolem 
expansions is sometimes called the method of Skolem functions. 

One of the main properties of Skolem expansions is that every formula 
becomes equivalent, in a certain sense, to a prenex formula having only 
universal quantifiers: 

Definition 11.37. A formula is universal if it is in prenex normal form with 
only universal quantifiers. Let 2' be a Skolem expansion of 2, with 
notation as in 11.33. With each prenex formula cP of 2' we associate a 
formula cps: 

cpS = cP if cP is quantifier free; 
(Va,cp)S = Vacps; 
(3v;cp}S = cpS(vo, ... , Vi-l, a), 

where a = S~v;<PPo" ·Pm-1o Fv 3v;cp = {Po, ... , Pm-l} with v-lpo < ... 
< V -lPm -10 and j is chosen minimal so that 3ViCP is a formula of ~. 

Theorem 11.38 (Skolem normal form theorem). Let 2' be a Skolem expan
sion of .fR. For every prenex formula cP of 2', the formula cps is universal 
and the same variables occur free in cP as do in cps. Furthermore, for any 
prenex formula cp of 2' we have: 

212 



Chapter 11: Some Basic Results of First-order Logic 

(i) I=cps -+ cp; 
(ii) if ~ is a model of the Skolem set of ~' over!&', then ~ 1= cp -+ cps; 

(iii) if r is a theory in ~ and r' = {cps: cp E r}-Thm2'" then the following 
conditions hold: 
(a) if ~ is a model of r and ~' is an expansion of ~ to a model of the 

Skolem set of ~' over!&', then ~' is a model of r' ; 
(b) if~' is a model ofr', then ~' t ~ is a model ofr; 
(c) (r', ~') is a conservative extension of(r, ~); 

(iv) cp has a model iff cps has a model. 

PROOF. Clearly cps is universal and Fv cp = Fv cps. Condition (i) is easily 
proved by induction on cp, as is (ii). To prove (iii)(a), assume its hypothesis 
and let cp E r. Then ~ 1= cp by hypothesis, so by (ii), ~' 1= cps. Thus~' is a model 
of r', as desired. Condition (iii)(b) foIIows from (i). To prove (iii)(c), assume 
first that r 1= cp, cp a sentence of.fe. If ~' is any model of r', then by (iii)(b), 
~' t ~ is a model of r and so ~' t ~ 1= cp and ~' 1= cpo Thus r' 1= cpo Now 
assume that r' 1= cpo Let ~ be any model of r. By Lemma 11.36, let ~' be an 
expansion of ~ to a model of the Skolem set of ~' over .fe. Then by (iii)(a), 
~' is a model of r', so ~' 1= cp by assumption. Thus ~ 1= cpo Hence r 1= cp, as 
desired. Condition (iv) is immediate from 11.36, (iii)(a), and (iii)(b) (with r 
axiomatized by {cp}). 0 

The starting point of our considerations concerning Herbrand's theorem 
is 11.38(iv). From it one can easily obtain an equivalent condition for a 
prenex sentence cp to be universaIIy valid. Indeed, this is true iff ""cp has no 
model, and the sentence ""cp is equivalent in a natural way to a prenex 
sentence "'. Thus I=cp iff '" has no model iff "'S has no model (by 11.38(iv» iff 
1= ...,,,,s. The sentence ...,"'s is equivalent to a certain prenex sentence with only 
existential quantifiers. We define it explicitly as follows. 

Definition 11.39. A formula cp is existential if it is in prenex normal form 
with only existential quantifiers. Let ~' be a Skolem expansion of!&', with 
notation as in 11.33. With each prenex formula cp of ~' we associate the 
prenex formula cpD obtained from cp by interchanging 3 and V and replacing 
the matrix", of cp by"""" Now with each prenex formula cp of 1&" we 
associate a formula cpH: 

cpH = cp if cp is quantifier free; 
(3acp)H = 3acpH; 

(VV;cp)H = cpH(VO,"" VI-I> a), 

where a = S~Po·· ·Pm-l> '" = 3V;cpD, Fv", = {Po, ... , Pm-I} with v- lpo < 
... < V -IPm -1' and j is chosen minimal so that", is a formula of !&j. 

Theorem 11.40. Let~' be a Skolem expansion of !&', and let cp be a prenex 
formula of ~'. Then: 

(i) cpH is an existential formula; 
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(ij) FtpH +-+ .tpns; 
(iii) if tp is a sentence, then Ftp iff FtpH. 

PROOF. (i) is obvious from the definitions. To prove (ii), first note that 
I- 'tp +-+ tpn. Next we prove (ii) by induction on the length of tp; it is clear if 
tp is quantifier free. Now (3atp)H = 3atpH, and we assume inductively that 
FtpH -¢> .tpns. Thus F(3atp)H +-+ 3a • tpns. Also F3a • tpns +-+ .Vatpns, and 
(Vatpn)s = Vatpns. Since (3atp)n = Vatpn, it follows that F(3atp)H +-+ .(3atp)ns, 
as desired. Next, let (VVitp)H = tpH(VO" .. , Vn-I> a), with notation as in 
11.39. By the induction hypothesis, FtpH +-+ .tpns, so FtpH(VO,"" Vi -1, a) 
+-+ 'tpns(vo, ... , Vi-I> a). Recalling 11.37, we see that tpns(vo, ... , Vi-I. a) = 
(3Vitpn)s. Note that (VVitp)n = 3Vitpn. Thus I-(VVitp)H +-+ .(Vvitp)nS, as desired. 

Finally, we prove (iii): 

iff 'tp does not have a model 
iff tpn does not have a model 
iff tpns does not have a model (by 11.38(iv)) 
iff F .tpns iff FtpH (by (ii)). D 

Herbrand's theorem in a sense reduces provability to checking tautologies. 
The following result, interesting in itself, is one of the main lemmas for the 
theorem. 

Theorem 11.41. If tp is a quantifier-free formula not involving equality and 
Ftp, then tp is a tautology. 

PROOF. Assume that tp is not a tautology; letfbe a truth valuation (10.19) 
such thatftp = 0. Let A = Trm,.2'. For any relation symbol R, say R of rank 
m, let 

RiU = {(TO"'" Tm -1) :fRTo" 'Tm -1'= I}. 

Also, for any operation symbol 0, say of rank m, let 

With these denotations for operation symbols and relation symbols we obtain 
an 2"-structure m. Note that aiUx = a for every term a where Xi = <Vi> for 
each i E w. Hence by induction on tP we easily obtain: 

for any quantifier-free formula tP not involving equality, m F tP[x] 
iffftP = 1. 

Since ftp = 0, it follows that m II tp[x], so IItp, as desired. D 

Now we can give our version of Herbrand's theorem. Several versions of 
this theorem can be found in the literature. It has found considerable use, 
especially in finitary proofs of the consistency of theories. 

Theorem 11.42 (Herbrand). Let 2'" be a Skolem expansion of .f£', and let tp 
be a prenex sentence of 2'" not involving equality. Say tpH = 3ao" ·3am - 1tP 
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with .p quantifier-free. Then F9J iff some disjunction of instances Subf~g· .. 
Subf~~:::: B.p of.p is a tautology, where ao, ... , am -1 are variable-free terms. 

PROOF. =>. Assume F9J. Thus by 11.40, F9JH. Now let r be the set of all 
sentences 

-.Subf~g· .. Subf~~:::: B.p 

where ao, ... , am-l are variable-free terms of ,!l>'. We claim that r is incon
sistent. For, if it is consistent, then it has a model Qt. Let B be the set of all 
elements °aQl of A (see 11.4), where a is a variable-free term. If R is a relation 
symbol of rank n, denoted by RQI in Qt, let 

R'B = {(xo, ... , Xn -1): Xo, ... , Xn - 1 E Band (xo, ... , x n - 1) E RQI}. 

If 0 is an operation symbol of rank n, denoted by OQl in Qt, let for variable 
free terms ao, ... , an-1 

This definition is easily justified. Thus we obtain a structure !B. Since each 
member of r is quantifier-free, !B is a model of r. Since F9JH, choose Xo, ... , 
Xm_1EB so that!B F.p[Xo, ... ,xm - 1]. Say Xi = °a'f for each i < m. Thus 
Subf~g· .. Subf~~:::: B.p holds in !B, which is a contradiction since !B is a 
model of r. 

Thus r is inconsistent. Hence by 10.92, some disjunction of negations of 
members of r is valid, so by 11.41 it is a tautology, as desired. 

-¢:. Obvious. D 

We give one simple application of Herbrand's theorem: Consider the 
formula .p = 3aVf39J - Vf33a9J, where a and f3 are distinct variables and 9J is 
any formula (possibly involving equality). We want to prove that F.p by using 
Herbrand's theorem. It is of course easy to prove F.p by a direct semantic 
argument, but as we shall see, an application of Herbrand's theorem is more 
routine. Let ,!l> be our original language. Choose n > ° so that Fv 9J S; 

{vo, ... , vn - 1 }. Expand the language to ,!l>' by adding a new n-ary relation 
symbol R. Now let 9J' = Rvo" 'Vn-b .p' = 3aVf39J' -Vf33arp'. We first show 
that F.p'. Let y and 0 be new variables. Then a prenex formula equivalent to 
.p' is 

x = VyVf3303a( -.Subf~ Subf~rp' v rp'), 

and XH has the form 

303a( -.Subf~ Subf~rp' v Subf~rp'), 

where c and d are new individual constants, in a Skolem expansion ,!l>" of 
,!l>'. An instance of the matrix of this prenex formula is the tautology 

-.Subf~ Subf!rp' v Subf~ Subf!rp'. 
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Thus 'Fif/ by Herbrand's theorem. Now let f be the theory consisting of all 
consequences of the sentence 

VVo" ,Vvn_1(Rvo" 'Vn- 1 +-+ cp). 

Clearly (r, 2') is a definitional expansion of ({cp E Sentz: 'Fcp}, 2). 
It is also easy to see that r 'F .p +-+ if/. Hence r 'F .p since we know that 

'F.p'. By Theorem 11.31, (r, 2') is a conservative extension of ({cp E Sentz: 
'Fcp}, 2), so 'F.p, as desired. 

The final topic of this chapter is the notion of an interpretation of one 
theory in another. This can be viewed as a syntactical counterpart of the 
notion of a model. All of the definitions relevant to this new notion are given 
in the following 

Definition 11.43. Let 2 = (L, v, (!), &£) and 2' = (L', v', (!)', ~') be two 
first-order languages. A syntactical 2-structure in !E' is a quadruple QI = 
(x'!, R, r') such that X is a formula of !E' with Fv X S {vo},!: Dmn (!)---'>
Dmn (!)' and (!)'fO = (!)O for each 0 E Dmn (!), R : Dmn ~ ---'>- Fmlaz, and 
Fv RR S {vo, . .. , Vm -1}, with m = ~R, for each R E Dmn~, while r' is 
a set of sentences of 2' satisfying the following conditions: 
(i) r' 'F 3voX; 

Cii) r' 'F Vvo' .. VVm- 1(!\i<m XCVi) ~ x(foVo" 'Vm-1)) 
for each operation symbol 0 of !E (say of rank m). 

Given a syntactical !E-structure QI with the notation above, with each 
term a and formula cp of 2 we associate a term d~( and formula cp'U of !E' 
as follows (this is the syntactical counterpart of Definitions 11.2 and 11.5): 

v'f = v;; 
(Oao" 'am_1)'U = foa'ff· .. a~-1; 
(a = r)'U = a'U = r'U; 
(Rao" 'am_1)'U = RR(a'tf·· ·a~_1); 
(cp V .p)'U = cp'U V .p'U; 
(cp A .p)'U = ~ A ~; 
( ..,cp)'U = ..,cp'U ; 
(Vacp)'U = Va(x(a) ~ cp'U). 

If f is a theory in !£', we say that QI is an interpretation of r in r' provided 
that r' 'F cp'U for each cp E f. 

With each model SB of f' we associate an !E-structure SBr''U = SB(r', QI) 

as follows: Br''U = 1X~; for 0 an operation symbol of !£', say m-ary, and 
for any bo, ... , bm -1 E Br''U, let O~(I" ''U)(bo, ... , bm -1) = f~(bo, ... , bm -1) 
«ii) assures that Br''U is closed under o~(r'.'U)); for R a relation symbol of 
!£', say R m-ary, let R~(I"·'U) = mRii n 1XZ . 

In case, to start with, 2 and 2' are effectivized first-order languages 
with corresponding Godel numbering functions ff and ff', a syntactical 
!E-structure QI in !E', with notation as above, is effective provided that the 
functions ff'ofoff-1 tff*Dmn(!) and ff'+oRoff-1 tff*Dmn~ are 
partial recursive (no further restrictions on f'). 
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We give a few simple facts about these notions. First, concerning effective 
interpretations, the following proposition is clear. 

Proposition 11.44. Let Ql be an effective syntactical 2-structure in 2'. Then 
the formation of am and pm is effective. That is, ?'+ of o?+ -1 t ?+* Trm,Z" 
and ?'+ of 0 ?+ -1 t ?+ * Fmla,Z" are partial recursive, wherefis the function 
assigning am to a and pm to p. 

The fundamental model-theoretic relationships concerning interpretations 
are expressed in the following proposition, which is easily proved by induction 
on the formula p. 

Proposition 11.45. Let Ql = (X,!, R, r') be a syntactical 2-structure in 'p', 

and let SB .be a model of r'. Then for any formula p of 2 and any x E OJ Br'm 
we have SBr'm 1= p[x] iffSB 1= pm[x]. 

Corollary 11.46. Let r be a theory in !£, and let Ql = (X, f, R, r') be an 
interpretation ofr in 'p'. Thenfor any formula p of!£, the condition r 1= p 
implies that r' 1= pm. 

PROOF. Assume that r 1= p, and let SB be any model of r' (thus SB is an 
.p'-structure). Since r' l=!fJm for each !fJ E r, it follows that SB l=!fJm for each 
!fJ E r, and hence by 11.45 SBr'm is a model of r. Thus SBr'm 1= p by assumption, 
so by 11.45 again, SB 1= pm. Thus r' 1= pm, as desired. 0 
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EXERCISES 

11.47. Show that the restriction that a not occur in a or in T is essential in Lemma 
10.39. 

11.48. Show that the restrictions in 10.49, that only free occurrences of a are 
replaced and that the new occurrences of T are free, are essential. 

11.49. Show that in 10.59 it is essential that f3 not occur in p. 

11.50. Show that the restriction of 10.61 is essential. 

11.51. Show that in 10.71 the string of quantifiers Vao' .. Vam -1 cannot be deleted. 

11.52. Show that IIvo = VI -+ Vo = V2 (cf. the remarks after 10.86). 

11.53. Carry out a modification of the proof of 11.12 in which B is the set of all 
individual constants of st'. 
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11.54. Show that any consistent set of formulas in a language !£ can be extended 
to a maximal consistent set of formulas of !£. 

11.55. Let K be the class of all groups in which every element is of finite order, 
and let !£ be an appropriate first-order language. Show that there is no 
set r of sentences of!£ such that K = {Q! : Q! is a model of r}. 

11.56. Let K be the class of all fields of prime characteristic, and let !£ be an 
appropriate first-order language. Show that there is no set r of sentences 
of !£ such that K = {Q! : Q! is a model of r}. 

11.57. If a sentence ffJ holds in all non-Archimedean ordered fields, then ffJ holds 
in all ordered fields. 

11.58. Let r be a theory in a language!£. Suppose that for every finite subset ~ 
of r there is a model of ~ which is not a model of r. Then there is no 
finite set !£ of sentences which has exactly the same models as r. 

11.59. Let K be a nonempty set of !£-structures. For each L s K let CL = 
{Q! E K : Q! is a model of every sentence which holds in all members of L}. 
Show that with respect to C as a closure operator, K is a compact topo
logical space. 

11.60. Establish using Herbrand's theorem that any formula of the last type in 
10.101 is universally valid. 
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Cylindric Algebras 12* 

Cylindric algebras stand in the same relationship to first-order logic as 
Boolean algebras stand to sentential logic. We present in this chapter an 
introduction to the theory of these algebras paralleling our treatment of 
Boolean algebras. Again, the simplest motivation for the study of these 
algebras is from elementary set theory: 

Definition 12.1. Let U be a nonempty set and a an ordinal. For each K < a 

we define a one place operation C" on subsets of au by setting, for any 
X s; au, 

C"X = {x E au: x t a '" {K} = y t a '" {K} for some y EX}. 

For K, A < a we set 

D,,}o. = {XEaU: x" = x}o.}. 

Thus C"X is the generalized cylinder obtained by moving X parallel to 
the K-axis in a-space, while D,,}o. is a diagonal hyperplane. An a-dimensional 
cylindric field of sets is a set d of subsets of a U (for some U) which is a 
field of sets in the Boolean sense and which is closed under all operations 
C" and contains all sets D,,}o. as elements. A cylindric set algebra of dimension 
a is a structure <d. u, n, ",,0, au, C", D"}o.),,,}o.<a in which d is an a

dimensional cylindric field of sets and all of the operations are natural. 

The general notion of a cylindric algebra is obtained by abstraction from 
this notion: 

Definition 12.2. By a cylindric algebra of dimension a (where a is an ordinal 
number), for brevity a CAa , we mean a structure 

~ = <A, +, " -,0,1, c", d"}o.),,,}o.<a 
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such that <A, +, " -,0, I) is aBA, c'" is a unary operation on A for each 
K < ex, d"'A E A for all K, ,\ < ex, and the following axioms hold (for all K, 

'\, 11- < ex and all x E A): 

(C l ) 

(C2) 

(C3) 

(C4) 

(C5) 

(Cil) 
(C7) 

c",o = 0; 
x:s; c/Cx; 

c/C(x·c/Cy) = c/Cx·c/Cy; 
c/CcAx = CAC",x; 

d",,,, = 1; 
if K #- '\, 11-, then d All = c/C( dA",' d","); 

if K #- '\, then C",(d/cA'X),c",(d"'A'-X) = 0. 

By routine checking one obtains 

Corollary 12.3. Every cylindric set algebra is a cylindric algebra. 

The following proposition summarizes elementary properties of CA,,'s 
which will be used later without specific reference. In what follows results are 
implicitly relative to an arbitrary CA" m, arbitrary K, ,\, 11- < ex, and arbitrary 
x, y, Z E A, unless otherwise stated. 

Proposition 12.4 
(i) If C/CX = 0, then x = 0. 

(ii) c/Cl = 1. 
(iii) C",C/CX = C/CX. 
(iv) x E Rng C/C iff C/CX = X. 
(v) x·c/Cy = 0iffc",x·y = 0. 

(vi) c",(x + y) = c/Cx + c",y. 
(vii) If x :s; y, then c/cx :s; c",y. 

(viii) c'" - c/Cx = -c/Cx. 
(ix) d/cA = dAle
(x) C",d"'A = 1. 

(xi) If K #- '\, 11-, then C",dAll = d All . 
(xii) IfK #- '\, then cid/CA'-X) = -C/C(d",A·X). 

(xiii) /fK #- '\, then d/cA'C/C(d"'A'X) = d/CA·X. 

PROOF. (i), (ii): immediate by (C2). (iii): Putting x = 1 in (C3 ) we obtain 
c/Cc/Cy = c",l· c/Cy, so (iii) follows from (ii). (iv): if x E Rng c," say x = c/Cy. 
Then C",X = C",C",y = c/Cy = x by (iii). The converse is trivial. (v): if X· c/Cy = 
0, then 

° = c/C(x,c",y) 
= C",x·c/Cy 
= cic/Cx·y) 

by (Cl ) 

by (C3) 

by (C3) 

so C",X'y = ° by (i). The converse is the same statement. (vi): Since c",(x + y). 
-c",(x + y) = 0, by (v) we have (x + y)·c", - c",(x + y) = 0, so x·c", -
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C/e(X + y) = 0 and (v) yields c/ex· - c/e(x + y) = O. Thus C/eX ::; c/e(x + y), and 
similarly C/eY ::; c/e(x + y). Next, c/ex·( -c/ex·-c/eY) = 0, so x·c/e( -c/ex·-c/eY) 
= Oby(v).Similarly,y·c",(-c"x·-c/eY) = O,so(x + y)·c/e(-c/ex·-c/eY) = 0, 
and an application of (v) yields c/e(x + y)·-c/ex·-c/eY = 0, i.e., c/C(x + y) ::; 
C/eX + C/eY. Thus (vi) holds. (vii): if x ::; y, then x + Y = y, so C/CX ::; C/eX + 
C/eY = c/e(x + y) = C/eY, using (vi). (viii): The inequality -C",X ::; C/e - C/eX 
is an instance of (C2). By (iii), -C/eX·C/eC/eX = 0, so by (v), C/e-C/CX·C/eX = 0, 
i.e., C/e-C/CX ::; -C/CX, as desired. (ix): by (Cs) we may assume that K"# '\. 
Then, since c/e( d/e'" . d",/C) = d",,,, = 1 by (Cs) and (Cs), we have 

o = c/C( d"", . d",/C)· c/C( d/C", . - d"'/e) 
= c/e(d/e'" ·-d"'/e), 

so d/e"'· - d",/C = 0 by (i). Thus d/C", ::; d",/C, so (ix) follows by symmetry. (x): 
by (Cs) and (ii) we may assume that K "# '\. Then 

c/ed/e'" = ci d/C", . d",/C) 
= d""" = 1 

(xi): Assuming K "# '\, /-" we have 

c/ed",u = c/ec/e(d"'/e·d/eu) 
= c/C( d",/C· d/Cu) = d",u 

by (ix) 
by (Cs), (Cs) 

by (Cs) 
by (iii), (Cs) 

(xii): by (C7), c/C(d/e",·-x)·c",(d",,,,·x) = O. On the other hand, 

clC(d/C",·-x) + c/e(d/C",·x) = c",(d/e"'·-x + d/C",·x) 
= c",d/e'" = 1 

by (vi) 
by (x) 

Hence c/C(d/e"'·-x) = -c/C(d/e"'·x) by 9.6(xii). (xiii): we have 

dlC'" . - X ::; clC( d/C", . - x) = - c/C( d/C", . x) 

so d/e",·-x·c/C(d/e"'·x) = 0 and hence d/e",·c/e(d/C",·x) ::; x, from which (xiii) 
easily follows. 0 

An elementary operation which will play an important role In later 
considerations is as follows. 

Definition 12.5. For K, ,\ < ex and x E A we set 

s~X = x if K = '\, 
s~x = c/C(dlC",·x) if K"# ,\. 

For later use we give some properties of this operation; they are easily 
established on the basis of 12.4: 

Proposition 12.6 
(i) s~ is an endomorphism of <A, +, ., -,0, I). 

(ii) If K "# /-" then s~d/Cu = d",U" 
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(iii) If K =F fL, v, then sNllv = dllv' 

(iv) d"" ·s~x = d"" ·x. 
(v) IffL =F K, A, then d",,·s~x = d",,·s~x. 
(vi) s~c"x = c"x. 

(vii) If fL =F K, A, then S~CIlX = CIlS~X. 

(viii) If K =F fL, then s~s~x = s~x. 
(ix) s~s~x = s~s~x. 
(x) If A =F fL =F K =F v, then s~s~x = s~s~x. 

(xi) s~s~x = s~s~x. 

(xii) s~s~c"x = s~c"x. 
(xiii) s~s~c "cvx = sXs~c"cvx. 

For later purposes it is convenient to introduce the notion of the dimension 
set flx of an element x, giving the coordinates in which x is not a cylinder: 

Definition 12.7. flx = {K : c"x =F x}. 

The following proposition gives some easily established properties of this 
notion: 

Proposition 12.8 
(i) flO = fl1 = O. 

(ii) Ifd"" =F 1, then fld"" = {K, A}. 
(iii) fl(x + y) ~ flx U fly. 
(iv) flx = fl - x. 
(v) flex· y) ~ flx u fly. 

(vi) flc"x ~ flx ~ {K}. 
(vii) fls~x ~ (flx ~ {K}) U {A}. 

Now we consider some algebraic notions as applied to cylindric algebras. 

Definition 12.9. Let m = <A, +, " -,0,1, C/C, d/C")/C,,,<a and ~ = <B, +', 
.', -',0', 1', c~, d~,,)/C,"<a be CAa's. We say that m is a subalgebra of ~ if 
A ~ B, 0 = 0',1 = 1', d/C" = d~" for all K, A < a, and for all x, yEA, 
x + y = x +' y, x·y = x·'y, -x = -'x, and C/CX = c~x for all K < a. 
For any X ~ B, X is a subuniverse of ~ if 0', l' E X, d~" E X for all K, 

A < a, and X is closed under +', .', -' and c~ for each K < a. 

Proposition 12.10. If d is a nonempty collection of subuniverses of a CAa m, 
then nd is a subuniverse ofm. 

Definition 12.11. If X ~ A, m a CAa, then the set n{ Y: X ~ Y, Ya sub
universe of m} is called the subuniverse ofm generated by X. 
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In general there is no simple expression for the elements of the subuniverse 
generated by X, unlike the situation for BA's (cf. 9.11). 

Definition 12.12. Let ~ and ~ be CAa's, with notation as in 12.9. A homo
morphism from ~ into ~ is a function/mapping A into B such that for all 
x, YEA and K, A < a, 

(i) /(x + y) = /x +' /y; 
(ii) /(x·y) =/x·'fy; 
(iii) /( -x) = -'Ix; 
(iv) /0 = 0'; 
(v) /1 = 1'; 
(vi) /c",x = c~/x; 

(vii) /d"'h = d~h' 

The terms homomorphism onto, isomorphism into, and isomorphism onto 
have the obvious meaning. We write ~ ~ ~ if there is an isomorphism of 
~ into~. 

Proposition 12.13. If / is a homomorphism from ~ into ~ and x E A, then 
!l/x £; !lx. 

Definition 12.14. Let ~ = (A, +, " -,0,1, c"" d",h)""h<a be a CAa• An 
ideal of ~ is an ideal of (A, +, " -,0, I) such that for all K < a, if 
X E I then c"'x E l. 

Proposition 12.15. Let I be an ideal in a CAa ~,and let R = {(x, y) : X· - Y + 
-x·y E I} (el 9.16). Then/or any K < a and x, YEA, ifxRy then c",xRc",y. 

PROOF. Assume that xRyand K < a. Thus x·_y + -x·y E l. Now 

c"'x = c",(x·_y + x·y) = c",(x·_y) + c",(x·Y) ::;; cix,-y) + c",y; 

hence 

Thus C",X"-C",y E I, and by symmetry, c",Y'-c",x E I, so C",x·-c",y + -C",X' 
C",y E I and c",xRc",y. 0 

Along with 9.16 and 9.17, Proposition 12.15 justifies the following 
definition: 

Definition 12.16. Let Ibe an ideal in a CAa~ = (A, +,', -,0, I,c"" dlCh)""h<a' 
We define ~/I = (A/I, +', .', -',0', 1', c;, d~h)IC,h<a, where 

(A, +, " -,0,1)/1 = (A/I, +', .', -',0',1') 
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in accordance with 9.17, c~[a] = [c"a] for all a E A and K < a, and d~A = 
[d"A] for all K, ,\ < a. 

Proposition 12.17. If I is an ideal in a CAa m, then mjI is a CAa, and 1* is a 
homomorphism from m onto mjI. 

Proposition 12.18. Iff is a homomorphism from a CAa m onto a CAa S13 and 
I = {x E A: fx = O}, then I is an ideal ofm, and S13 ~ mjI. 

Proposition 12.19. The intersection of any nonempty family of ideals in a CAa 
is an ideal. 

Definition 12.20. If m is a CAa and x s; A, then the ideal generated by X 
is the set 

n {I: X s; I, I an ideal of m}. 

We can directly generalize 9.23 to give a simple expression for the members 
of the ideal generated by a set: 

Proposition 12.21. If X s; A, m a CAa, then the ideal generated by X is the 
collection of all yEA such that there exist m, nEw and x E m X, K E na with 
y :s; C"o" 'C,,(n-1)(Xo+'" +xm - 1). 

PROOF. Let I be the collection of all YEA such that such m, n, x, K exist. 
Clearly I is contained in the ideal generated by X. Thus it is enough to show 
that X s; I and I is an ideal. Taking m = I and n = 0 we easily see that 
X s; I. Taking m = n = 0, we see that 0 E I and hence I =f. O. If z :s; y E I, 
obviously also Z E I. If y E I, with m, n, x, K as above, and if ,\ < a, then 

CAY :s; cAc"o' .. CIC(n -l)(XO + ... + Xm -1), 

so cAY E I. Finally, suppose y, y' E I, with m, n, x, K and m', n', x', K' satisfying 
the corresponding conditions. Then 

y + y' :s; c"o· .. c,,(n -llx o + ... + Xm -1) + CIC'O' .. C"'(n' -l)(X~ + ... + x;", -1) 

:s; C"O" 'C"(n-1)C,,,O" 'C"'(n'-l)(XO + ... + X m - 1 + X~ + ... + X;"'-l), 

so y + y' E I also. D 

We shall not develop the algebraic theory of CAa's any further. Instead, 
we now turn to the relationships between first-order logic and cylindric 
algebras. In this regard the following definition is fundamental. 

Definition 12.22. For ft' a first-order language and r a set of sentences in 
ft' we set 

=r = {(f/J, if) : f/J and if are formulas of ft' and r F f/J - if}· 

224 



Chapter 12: Cylindric Algebras 

Furthermore, we let 'J!l, = <Fmlaz/=', +, " -,0,1, CIC ' dICA)IC.A<OH 
where for any q;, I/J E Fmlaz and any K, A E w, 

[q;] + [I/J] = [q; v I/J]; 
[q;]. [I/J] = [q; 1\ I/J]; 

- [q;] = ['q;]; ° = [,vo = vo]; 
1 = [vo=vo]; 

cIC[q;] = [3vICq;]; 
dlCA = [VIC = VA]' 

This definition is easily justified (see 9.54-9.56). Routine checking gives: 

Proposition 12.23. 'J!l, is a CAw. 

As in the case of sentential logic and Boolean algebras, there is a natural 
correspondence between notions of first-order logic and notions of cylindric 
algebras. We give two instances of this correspondence. The first one indicates 
the close relationship between set algebras and models of a theory: 

Proposition 12.24. Let r be a set of sentences in a first-order language 2, and 
let m be a model of r. Then {q;2!: q; E Fmlaz} is an w-dimensionalfield of 
sets. Let m be the associated cylindric set algebra. Then the function f such 
that f[ q;] = q;2! for each q; E Fmlaz is a homomorphism of 'J!lif onto m (f is 
easily seen to be well defined). 

This proposition can be routinely checked. The following proposition is 
established just like 9.59. 

Proposition 12.25. Let I be an ideal in a CAw 'J!lif, and set ~ = {q; E Sentz: 
- [q;] E I}. Then r s ~, and 'J!lF/I is isomorphic to 'J!l[. 

The algebras 'J!lr possess a special property not possessed by other CAw's; 
the definition of this property is given in 

Definition 12.26. Let m be a CAa • We say that m is locally finite dimensional 
provided that for all a E A, Ila is finite. 

In the case of an algebra 'J!lr, if q; is any formula and VIC is a variable not 
occurring in q;, then 1=3vICq; +-+ q;, and hence cIC[q;] = [3vICCP] = [q;]. Thus 
Il[q;] S {K: VIC occurs in q;}, and hence Mcp] is finite. Hence: 

Proposition 12.27. 'J!lif is locally finite dimensional. 

The following result is an analog of 9.58; it shows that the algebras 'J!l( 
have a certain freeness property. 
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Proposition 12.28. Let!Z' = (L, v, m, Bf) be a first-order language with no 
operation symbols. Suppose m is a CAw, andf: Dmn Bf -+ A is afunction 
such that IlfR S; BfR for all R E Dmn Bf. Then there is a homomorphism g 
from 'J1t! into m such that g[Rvo' .. Vm _ d = fR for each R E Dmn Bf (with, 
say, BfR = m). 

PROOF. The proof is similar to that of 9.58, but is much more tedious. We 
first define a function h: Fmlaz -+ A; hrp is defined by induction on rp. The 
most complicated part of the definition is the case in which rp is an atomic 
formula of the form RviO ' •• vi(m-1)' In this case, let jo, ... , jm-1 be the first 
m integers in w '" {iO, ... , i(m - 1),0, ... , m - I}, and set 

hRvjQ' .. vl(m - 1) = s{8· .. s{g;:: fMo' .. s7l;;;': 1>iR ; 

for motivation, cf. the comments following 10.74. The inductive definition of 
hrpproceedsverysimply:h(v", = v,,) = d",,,,h(rp v "') = hrp + h"',h(rp 1\ "') = 
hrp·h"" h( 'rp) = -hrp, hVv",rp = -c",-hrp. Analogously to the sentential case, 
we now claim 

(1) if I-rp, then hrp = 1. 

To prove (1), let r = {rp: rp E Fmlaz, hrp = I}. Now each logical axiom is in 
r. We prove this in detail for each kind of axiom. First suppose hrp"# 1; 
we show that rp is not a tautology. Let I be a maximal ideal of the BA ~ = 
<r:m{f, +, " -, 0, 1> such that hrp E I, and let 7T be the natural homomorphism 
of ~ onto ~/I. Then BII is a two-element BA, and 7T 0 h can be considered 
as a truth valuation. Since 7Thrp = 0, rp is not a tautology. Next, suppose rp 
has the form Vv",(", - x) - (Vv",,,, - Vv",x). Then 

hrp = --c",-( -h'" + hx) + --c",-h", + -c",-hx 
= c",(h",·-hX) + c",-h", + -c",-hx 
;::: c",(h",·-hx) + c"'( -h"'·-hx) + -c",-hX 
= c",-hx + -c",-hx = 1. 

For the next kind of axiom we need a lemma: 

(2) if VIC does not occur in "', then K rt Ilh"'. 

To prove (2) we proceed by induction on "'. First suppose'" is RVjQ' .. VI(m -1)' 

Then with notation as in the definition of h"" by 12.8(vii) we have Ilh", S; 

{iO, ... , ;(m - l)}. Thus (2) holds in this case. All other steps in the inductive 
proof of (2) are easy using appropriate parts of 12.8. Thus (2) holds. Hence 
if rp is '" _ Vv",,,, where VIC does not occur in "', then 

hrp = -h'" + -c",-h", = -h'" + --h'" = 1 (using 12.8(iv». 

The desired conclusion for rp of the form 3vIC(v", = VA) is clear. Finally, suppose 
rp is VIC = V" - ('" - x), where X and", are atomic and X is obtained from '" 
by replacing an occurrence of VIC in '" by V". We may suppose that K "# ..\, 
since if K = ..\ then '" = X and obviously hrp = 1. If '" is v'" = VIC' then X is 
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VIC = VA or VA = VIC' and again obviously hrp = 1. If '" is VIC = VI' or VI' = V", 

with K =F fL, then X is VA = VI' or VI' = VA, and 

hence 

So we may assume that", has the form RViO·· ·Vi(t-1)V ICVl(t+1)·· ·VI(m-1) and 
X is RviO • . :vi(t -1)VAVi(t+ 1)· •. Vi(m -1). In this case we need several lemmas. 

Let jo, •.. , jm -1 E w, and let k o, ... , k m -1, l be distinct integers 
in w ~ {jo, ... ,jm-1, 0, ... , m - I}, and assume that u < m. 

(3) Then 

sJg· .. sJS:::: tis20· .. s~(;;;: 1JR = s~g· :. sJN::: l1s~usJ<'~ t l1 . .. sJ/::: :: l1 
s20· .. s~(; : 1)srs~it ~ 1)· .. s~(;;; : 1JR . 

The proof is straightforward: 

sJg· .. sJS:::: Ns20· .. s~(;;; : l)fR = sJg· .. sJi::::: 1/s20· .. s~(;;;: 1)CkUC1fR 
= sJg· .. sJ<'~:: IMi~ tN· .. sJ<'::::: IM~s~uckucls20· .. s~(;: 1) 

s~("t~ 1)· .. s~;;;: 1JR (using 12.6(x) and 12.6(vii) 
= sJg· .. sJ«~ :: tM(';: tN· .. sJ(<::; :: l1S~uSrCkUC1S20· .. s~(; : 1) 

S~("t~1)·· ·S~;;;:1JR (by 12.6(xiii) 
= sJg· .. sJ)';::: fMusJ(';: tN· .. sJ(<::;:: 1/s20· .. s~(;: 1)SrS~("t ~ 1)· .. 

s~;;;:1)fR (by reversing above steps) 

Thus (3) holds. By induction from (3) we obtain 

(4) 

LetjO, . .. ,j(m - 1) E w, and let kO, . .. , k(m - 1),10, ... , 
l(m - 1) be distinct integers in w ~ {j0, .. . ,j(m - 1),0, ... , 
m - I}. 

Then 

We can also prove the following slightly stronger statement: 

LetjO, . . . ,j(m - 1) E w, let kO, ... , k(m - 1) be distinct integers 
in w ~ {j0, ... ,j(m - 1),0, ... , m - I}, and let 10, ... , l(m - 1) 
also be distinct integers in w ~ {j0, ... ,j(m - 1),0, ... , m - I}. 

(5) 

Then the conclusion of (4) still holds. 

In fact, let pO, ... , p(m - 1) be distinct integers in w ~ {j0, ... , j(m - 1), 
O, ... ,m - l,kO, ... ,k(m - 1),I0, ... ,l(m - I)}. Then, using (4) twice, 

sJg· .. sJ/::::: tis20· .. s~(;;;: 1JR = syg· .. sy(<::;:: l1sgo· .. s~(;;;: 1)fR 
= s}g· .. s}g:: : Bs?o· .. sl('; .\JR. 
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Now we return to checking that hrp = 1 (see above prior to (3)). Choose 
jO, ... ,j(m - 1) E w ~ {iO, ... , i(t - 1), i(t + 1), ... , i(m - 1),0, ... , m - 1, 
K, .\}, and set 

Then by (5) and 12.6(x), h.jJ = s~tx and hX = s~tx. Now 

by 12.6(v), so hrp = -d"", + -s~tx + s~tx = 1, as desired. 
We have now shown that hrp = 1 for each logical axiom rp, i.e., each 

logical axiom is in the set r defined following (l). Obviously r is closed 
under detachment and generalization. Thus each logical theorem is in r, 
and (1) follows. 

Now if f-rp +-+ .jJ, then h(rp +-+.jJ) = 1, and hence it follows easily that hrp = 
h.jJ. Hence (since f- = 1=) there is a function g mapping Mif' into A such that 
g[rp] = hrp for any rp E Fmla.r. It is easily checked that g is the desired 
homomorphism. o 

The following kind of logical representation theorem is an obvious 
consequence of 12.18, 12.25, and 12.28. 

Theorem 12.29. If ~ is a locally finite dimensional CAw, then ~ ~ <:mf for 
some!l', r. 

As an easy consequence of 12.29 we obtain the following analog of the 
Boolean representation theorem. 

Theorem 12.30. If~ is a locally finite dimensional CAw, IAI > 1, then there 
is a homomorphism of ~ onto a cylindric set algebra. 

PROOF. By 12.29 we may assume that ~ = <:mr for some !l', r. Then r is 
consistent, since I A I > 1. Let .P be a model of r. The desired conclusion 
now follows from 12.24. 
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EXERCISES 

12.31. Prove c"-c,,,X·C"'-CJC-X = O. 

12.32. Prove COCl - dOl = Co - dOl (even if a = 2). 
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12.33.* Provecocl(-dol·-do2·-dl2) = coclc2(-dol·-do2·-dl2)(evenifa = 3). 

12.34. If a > 1 and Co is the identity mapping, then each CIC is the identity 
mapping, and dlCh = 1 for alII(, " < a. 

12.35. Every finitely generated CAl is finite. 

12.36. For any a ;:: 2 there is an infinite CAa generated by one element. Hint: 
consider the cylindric set algebra of subsets of IXw generated by 
{x E aw : Xo < Xl}. 

12.37. If 21 is a locally finite dimensional CAw and 0 '" x E A, then there is a 
homomorphism I of Q( onto a cylindric set algebra such that Ix '" O. 

12.38. If21 is a CAlX, a < w, and IAI > 1, then 21 x 21 (understood in the natural 
sense) is not isomorphic to a cylindric set algebra. Hint: in a cylindric set 
algebra sa of dimension a, if X '" 0 then CO· .. Ca _ lX = 1. 
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PART III 

Decidable and Undecidable Theories 



The main topic of this part is the application of the definitions and results 
of recursive function theory to logic. The question that is central to our 
endeavors here is to determine for various particular mathematically inter
esting theories r whether or not there is an effective procedure to determine 
of any sentence cp the truth or falsity of r 1= cp. 



Some Decidable Theories 13 

First we give the basic definitions with which we shall be working in this 
part. 

Definition 13.1. Let r be a theory in an effectivized first-order language 
!l' = (L, v, 19, Bl, ff). We say that r is decidable if ffHr is recursive, and 
undecidable if ffHr is not recursive. 

In this chapter we give a few examples of decidable theories. The methods 
for proving theories decidable are numerous. Some of the easiest methods 
are model-theoretic, so we shall give more examples of decidable theories in 
Part IV. For proving theories decidable, the extensive mechanism of recursive 
function theory is not really needed. Almost all of the work can be done on 
the intuitive level of recognizing that certain procedures are effective. Every
thing is made rigorous by applying the weak Church's thesis (see p. 46). 

Many of the theories which have been proved to be decidable are rather 
simple. The table below may help the reader to get an idea of the complexity 
decidable theories can have, especially when compared with our list of 
undecidable theories on p. 279. We also list in each case a convenient method 
of proof for the decidability of the theory. 

We shall give a detailed treatment in this chapter for the theories 1, 5, 7 
in this table. The method we will use is that of elimination of quantifiers. This 
method can be described in rough terms as follows. In our given lang\lage 
we single out effectively certain formulas as basic formulas. These will usually 
not be quantifier free. Then we show (eliminating quantifiers) that any formula 
is effectively equivalent within our given theory to a sentential combination 
of basic formulas, i.e., a combination using only v, A, -'. Finally, we give 
an effective procedure for determining whether or not such a combination is 
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Some decidable theories 

In this 
Theory of Proved by A method of proof book 

1. Equality (no nonlogical Lowenheim 1915 Elimination of p.241 
constants, no axioms) quantifiers 

2. Finitely many sets Elimination of p. 243 
(m unary relation quantifiers 
symbols, no axioms) 

3. One equivalence Janiczak 1953 m-elementary p. 354 
relation equivalence 

4. One unary function Ehrenfeucht 1959 Tree automata 
5. (w, s) Elimination of p.236 

quantifiers 
6. Two successor Rabin 1968 Tree automata 

functions· 
7. G~, +) Presburger 1929 Elimination of p.240 

quantifiers 
8. Simple ordering Ehrenfeucht 1959 Tree automata 
9. (S/, u, n, ~,O, I) Skolem 1917 

10. Boolean algebras Tarski 1949 Model completeness 
II. Free groups MaJcev 1961 
12. Absolutely free MaJcev 1961 

algebras 
13. Abelian groups Szmielew 1949 Model completeness 
14. Ordered abelian groups Gurevich 1964 
15. Algebraically closed Tarski 1949 Vaught's test p.351 

fields 
16. Real-closed fields Tarski 1949 Model completeness p. 362 
17. p-adic fields Ax, Kochen; 

Ershov 1965 
18. Euclidean geometry Tarski 1949 Reduction to 16 
19. Hyperbolic geometry Schwabhauser 1959 Reduction to 16 

• This is the theory of 21 = (A, 00, 01), where A = Urn.", m2, "OW = w<O), "1 w = w<1), for 
all weA. 

a consequence of the theory. This method yields much more information 
than just the decidability of the theory, as we shall see. 

The Theory of (w, 0) 

For technical reasons, instead of this theory we first consider the theory of 
(w, <J, 0). First we need some notions from sentential logic. 

Definition 13.2. Let r S Fmlaz (where !l' is an arbitrary first-order lan
guage). The set Qfr of quantifier-free combinations of members of r is 
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the intersection of all sets ~ s:; Fmla.z such that r s:; ~ and ~ is closed 
under v, 1\, and ...,. 

Theorem 13.3 (Disjunctive normal form theorem). Let r s:; Fmla.z. Then 
for any cp E Qfr such that ""cp is not a tautology there exist p, mEw and 
a function .p such that: 

(i) the domain of.p is (p + 1) x (m + I); 
(ii) for each i :::; p andj :::; m, .pii E r or .pii = ...,x with X E r; 

(iii) I=cp +-+ ViSP !\ism .pii· 

For the proof, see 8.38. 
We now turn to the decidability proof for the theory of (w, 6, 0). We work 

in an effectivized language with a unary operation symbol s and an individual 
constant O. By induction we set 

LlO = 0; Ll(m + I) = sLlm; m = Llm. 

The terms of this language are just of two kinds: sma for some variable a, 
and m for some mEw, where sOa is just a. A formula will be called basic if it 
has one of the following forms: 

SmVi = u, U a term not involving Vi; 
0=0. 

Clearly there is an effective method for recognizing when a formula is basic. 
Let r 1 be the set of all sentences which hold in (w, 6, 0). Obviously r 1 is a 
complete and consistent theory. Two formulas cp and .p are equivalent (under 
r 1) provided that cp +-+ .p holds in (w, 6, 0). 

Lemma 13.4. For any formula cp one can effectively find aformula.p equivalent 
under r 1 to cp such that .p is a quantifier-free combination of basic formulas 
and Fv.p s:; Fvcp. 

PROOF. We proceed by induction on cpo First suppose cp is atomic; thus cp 
has the form U = T. If no variable occurs in cp, then cp has the form m = D. 

This is equivalent to 0 = 0 or to -,(0 = 0) according as m = nor m #- n, 
Suppose a variable occurs in cpo If cp has the form sma = sna for some variable 
a, then cp is equivalent to 0 = 0 or to ,(0 = 0) according as m = n or 
m #- n. The only forms left are sma = u or u = sma (for some variable a), 
where u does not involve a. Both are equivalent to sma = u. This takes care 
of the atomic case. 

The induction steps using ..." v, 1\ are trivial. To make the induction 
step using 'Va it suffices to show that if cp is a quantifier free combination of 
basic formulas then 3acp is equivalent to a quantifier free combination of 
basic formulas determined effectively from 3acp. Since 

3a(.p v X) +-+ 3a.p v 3ax 
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is logically valid, we may by 13.3 assume that q; is a conjunction of basic 
formulas and their negations. Now in general if a does not occur in I/J then 

3a(I/J A X) +-+ I/J A 3ax 

is logically valid. Hence we may assume that each conjunct of q; actually 
involves a. Thus we may assume that 3aq; is the formula 

3a[slc°a = ao A ... A Slc(m-l)a = am-l 
A ...,(slcma = am) A ..• A ...,(slc(n-l) = an-i)] 

where ° ::; m ::; n > 0, and ao, ... , an -1 do not involve a. Noting that a = 'T 
is equivalent under r 1 to Sa = S'T, if we let I be the maximum of ko, ... , kn- 1 

we easily see that 3aq; is equivalent to a formula of the form 

3a[sla = 'To A ... ASia = 'Tm-l A ""(sla = 'Tm) A ... A ""(Sla = 'Tn-i)] 

where 'To, ... , 'Tn -1 do not involve a. In turn, this formula is obviously 
equivalent to 

3a[ ...,(a = 0) A ... A ...,(a = t:.(l - 1» A a = 'To A ... A a = 'Tm-l A ...,(a = 'Tm) A ... A ...,(a = 'Tn -l)]. 

Thus 3aq; is equivalent to a formula of the form 

3a[a = Po A .•. A a = Pm-l A ...,(a = Pm) A'" A ...,(a = pp)] 

where Po, .. . , pp do not involve a. Now if m = 0, then 3aq; is obviously 
equivalent to 0 = O. If m =1= 0, then 3vj q; is clearly equivalent to 

/\ (Pi = Pic) A ...,(po = Pm) A ... A ...,(po = pp), 
i<lc<m 

as desired. 0 

Theorem 13.5. r 1 is decidable. 

PROOF. Let q; be any sentence in our language. Let I/J be found from q; by 
13.4: I/J is a quantifier-free combination of basic formulas and FvI/J s Fvq;, 
therefore I/J is a sentence. Now by 13.3, whose proof is obviously effective, 
there exist m and n and sentences Xii such that 

'rI/J+-+ V /\ Xii 
i<m i<n 

where each Xii is a basic sentence or the negation of one. But the only basic 
sentence is 0 = 0, which is obviously a member of r l' Therefore we have 

iff I/J E r 1 

iff 3i < m Vj < n (Xii is 0 = 0). o 
Corollary 13.6. The theory o/(w, d) is decidable. 

PROOF. There is an effective method for recognizing when a sentence does 
not involve O. Such a sentence holds in (w, d) iff it holds in (w, d, 0). 0 
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It is clearly possible to choose our original language .Pl to be elementarily 
effective (see p. 190). By examining the above proofs it is clear that in 13.5 
and 13.6 the decision method then is elementary, i.e., the set jl'ur is elemen
tary for the r's of 13.5 and 13.6. Similar remarks apply to our other two 
decidability results of this chapter. 

The proof of 13.4 gives the following important corollary: 

Corollary 13.7. A set A s; w is elementarily definable in (w, 0) or in (w, 0, 0), 
iff it is finite or cofinite. 

PROOF. First we treat (w, 0, 0). =>. Suppose cp elementarily defines A. Thus 
Fvcp s; {vo} and lcp'ilX = A, where m = (w, 0, 0). By 13.4 let rp be a quantifier
free combination of basic formulas equivalent under r l to cp with Fvrp s; {vo}. 
Thus rp also elementarily defines A. Now rp is built up from formulas 0 = 0, 
smvo = n using ..." A, v. Note that smvo = n elementarily defines 0 if m > n, 
and {n - m} if m :::; n. Thus A is built up from sets w, 0, {p} using "', n, U. 

Hence A is finite or cofinite. The converse is trivial. 0 

To treat the structure Cw,o) it is enough to note that if cp elementarily 
defines A in (w,o), then it also does in (w, 0, 0) and hence A is finite or 
cofinite. Conversely, any finite or cofinite subset of w is clearly definable in 
(w,o). 

No really nice characterizations of the elementarily definable n-ary 
relations are known to the author for n > 1. 

The Theory of (Z, +) 

We shall instead consider the theory of m = (Z, +, <, 0, 1, -); this will 
clearly give the desired result for (Z, +) as in the proof of 13.6. We work now 
in a language with binary operation symbols + and -, individual constants 
o and 1, and a binary relation symbol <. r 2 is the set of all sentences of this 
language holding in m. We shall write a + T instead of < + )aT. The expressions 
a - T and a < T are to be similarly understood. Now we let 

ao = 0, a(m + 1) = am + 1 
am = O-a(-m) formEZ, 

m = am for m E Z, 
Oa = 0, (m + l)a = ma + a 

ma = 0 - (-m)a for m < O. 

for mEw, 
m < 0, 

for mEw, 

For m > 1 and a, T terms we let a =m T be the formula 

3a(a - T = ma) 

where a is the first variable (in the natural order vo, VI, •.• ) not appearing 
in a or T. 
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A formula fP is basic if it has one of the following three forms: 

a=T 

Note that the third kind of basic formulas involves quantifiers. As indicated 
in the introduction to this section, this is typical of the elimination of quanti
fiers method when it is applied to theories of any complexity at all. 

Lemma 13.8. For any formula fP one can effectively find aformula.p equivalent 
under r 2 to fP such that .p is a quantifier-free combination of basic formulas 
and Fv.p S FvfP. 

PROOF. The assertion is obvious for atomic formulas, and the induction 
steps involving " V, A are trivial. As in the proof of 13.4 it is hence sufficient 
to prove the lemma for fP of the form 3a.p, .p a conjunction of basic formulas 
and their negations. Now the following formulas hold in 21: 

,(a = T)"" a < T V T < a 
,(a < T)"" T = a V T < a 

,(a =m T)"" a + 1 =m TV· .. V a + !l(m - 1) =m T. 

Therefore we may actually assume that .p is a conjunction of basic formulas. 
As in the proof of 13.4, we may assume that each conjunct actually involves 
a. Now if a is a term involving a, then there is a term T not involving a and 
an m E 7l.. such that 

a=ma+T 

holds in 21. It follows that formulas of the forms 

are respectively equivalent to formulas of the forms 

na= P 
na < P 
na =m P 

or P < na 

where n ~ 0 and P does not involve a; and we may clearly assume n > O. 
Hence we may assume that fP is equivalent to a formula of the form 

3a[noa = Po A ... A ni-la = Pi-l A nia < Pi A··· A nj_la 
(1) < Pj-l A pj < nja A··· A Pk-l < nk_la A nka =mk Pk A ... 

A nl-la =m(l-l) Pl-d 

where 0:-:; i:-:;j:-:; k:-:; I> 0, no, ... ,nl-l > 0, mk,···,ml-l > 1, and Po, 
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... , PI-1 do not involve a. Now for p > 0 the following pairs of formulas are 
equivalent: 

andpa =PT; 
andpa < pT; 
and pa ==mp pT. 

It follows that in (1) we may assume that no = ... = nl-1 > 1. Thus (1) 
becomes of the form 

3a(pa = go A ... A pa = gi-1 A pa < gi A ... A pa < gj-1 A 

gj < pa A .•. A gk-1 < pa A pa ==qk gk A ... A pa ==q(I-1ll-1) 

where 0 ::; i ::; j ::; k ::; I> 0, p > 1, qo, ... , ql-1 > 1, and go,"" gl-l do 
not involve a. This in turn is clearly equivalent to 

(2) 3a(a=go A"'A ex=gi-1 A a < ~i A"'A a < gj-1 A gj < a 
A ... A gk-1 < a A ex ==p 0 A a ==qk gmk A •.• A a ==q(I-1) gl-l)' 

In case i > 0, (2) is equivalent to 

go = gl A ... A go = gi-1 A go < gi A •.. A go < gj-1 A gj < go 

A ..• A gk-1 < go A go ==p 0 A go ==qk gk A •.• A ~o ==q(I-1) gl-l' 

Thus we may assume that i = 0; so (2) is equivalent to a formula of the form 

(3) 
3a(a < 7]0 A ... A a < 7]8-1 A 7]8 < a A •.• A 7]t-1 < a 

A a ==rt 7]t A .•. A, a ==r(u-1) 7]U-1) 

where 0 ::; s ::; t < u, rt, ... , ru - 1 > 1, and 7]0"", 7]u-1 do not involve ex. 
Next, we claim that we may assume that u = t + 1. This clearly follows from 
the following number-theoretic fact: 

(4) 

Let a, b, m, n be integers with m, n > 1. Letp = 1cm (m, n); then 
gcd (p/m, pin) = 1, so there exist integers c, d such that c(p/m) + 
d(p/n) = 1. It follows that for any integer y the following two 
conditions are equivalent: 
(i) y == a (mod m) and y == b (mod n); 
(ii) a == b (mod gcd (m, n)) and y == c(p/m)a + d(p/n)b (modp). 

To prove (4), assume its hypothesis. Suppose (i) holds. Then y - a = em 
and y - b = In for some e, f, so a - b = In - em, which is divisible by 
gcd (m" n). Thus a == b (mod gcd (m, n)). Also, 

y - c(p/m)a - d(p/n)b = c(p/m)y + d(p/n)y - c(p/m)a - d(p/n)b 
= c(p/m)(y - a) + d(p/n)(y - b) 
= c(p/m)em + d(p/n)ln 
== 0 (modp). 

Thus (ii) holds. Conversely, suppose that (ii) holds. Write a - b = 
v gcd (m, n). Then 

y - a = y - c(p/m)a - d(p/n)a 
= y - c(p/m)a - d(p/n)b - d(p/n) v gcd (m, n) 
== o (mod m) 
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since y - c(pJm)a - d(pJn)b == 0 (mod p) and d(pJn) gcd (m, n) == 0 (mod m). 
Similarly, y == b (mod n). Hence (4) has been checked, and hence in (3) we 
may assume that u = t + 1. 

If s = 0 or t = s, it is clear that (3) is equivalent to 0 = O. So, assume 
that 0 < s < t. Then (3) is equivalent to the following formula: 

V /\ [TJd < TJj + 1 
Osi<s. sSaj<t osc<s. sSd<t 

A TJi < TJc + 1 A /\ (TJj + e + 1 < TJi A 'TJj + e + 1 ==rt 'TJi)] 0 
e<Tt 

Theorem 13.9. r 2 is decidable. 

PROOF. By the method of proof of 13.5 we see that it suffices to describe a 
method for determining the truth in ~ of basic sentences. The basic sentences 
are easily seen to be effectively equivalent to sentences of the forms 

m=n, 
m < n, 
m==nP, 

which are true in ~ iff, respectively, m = n, m < n, or m ==n p. Obviously 
there is a decision method for determining these latter three questions. 

Theorem 13.10. The theory ofel, +) is decidable. 

The Pure Theory of Equality 

Our language here has no nonlogical constants. r 3 consists of all sentences 
f{J such that 1-f{J. Thus in this case, unlike the preceding two cases, the theory 
we investigate is not complete. For example, 'VVO'Vv1(VO = v1) holds in one
element structures but not in any others. The general procedure is still the 
same, however. First we distinguish some basic formulas, which again are not 
special atomic formulas but some of which are rather complicated sentences. 
We let 

and, for m > 1, 

8 m = 3vo·· ·3vm - 1 /\ ""(Vi = Vi). 
i<J<m 

By a basic formula we mean a formula Vi = Vj or a formula 8 m• 

Note that the .!l'-structures here are just sets. The basic lemma, as usual 
in this chapter, is: 

Lemma 13.11. For any formula f{J one can effectively find aformula ifs equivalent 
under r 3 to f{J such that ifs is a quantifier-free combination of basic formulas 
and Fvifs 5; FVf{J. 
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PROOF. The atomic case is trivial, and the induction steps using ..." V, A 

are trivial. As in previous proofs it now suffices to assume that ffJ has the 
form 3a"', '" a quantifier-free combination of basic formulas. Since the 
formulas Em are sentences, and since a = a is equivalent to E1, we may assume 
that ffJ has the form 

3a[a=,80 A"'A a=,8m-1 A .(a=,8m) A"'A .(a=,8n-1)] 

where ,80' ... , ,8n -1 are distinct variables -# a. If m > 0, ffJ is clearly equivalent 
to 

Aj<j<m,8j =,8j A .(,80 = ,8m) A ••. A ·(,80 = ,8n-1) 

(or to E1 if m = 1 and n = m). Hence assume that m = 0. Let 1= 
(i: m ::;; i < n}. We claim 

(1) 

To prove (1), first let A be any set and let x E co A. Suppose x satisfies ffJ in ~, 
J s I, and x satisfies Aj,jE/,in • (,8i = ,8j) in A. Say ,8; = vk j for all i E I, 
and a = V" Thus xki -# xkj whenever i, j E J and i -# j. Since x satisfies ffJ 

in ~, choose a E A so that x~ satisfies AiEl' (a = ,8i)' Thus a -# xk j for each 
i E I, in particular for each i E J, so I A I ;::: I J I + 1. Thus Ell I + 1 holds in A. 

Conversely, suppose x satisfies the right side of (1) in A. Define i == j iff 
i, j E I and xk j = xkj • Clearly == is an equivalence relation on I. Let J be a 
subset of I which has exactly one element in common with each == equivalence 
class. If i, j E J and i -# j, then xk j -# xk j • Thus x satisfies Aj,jE/,j¢! • 
(,8j = ,8j) in A. Since x satisfies the right side of (1) in A, it follows that 
81/1+1 holds in A, i.e., A has at least IJI + 1 elements. Hence we may choose 

a E A '" {xk j : i E J}. 

Clearly then x~ satisfies AiEl • (a = ,8j), so x satisfies ffJ. Thus (1) holds, and 
this completes the proof of 13.11. 0 

Theorem 13.12. ra is decidable. 

PROOF. The only basic sentences are Em, mEw'" 1. Clearly E1 Era while 
8 m f/: r a if m -# 1. Let a be the set of all sentential combinations of basic 
sentences. Note: 

(1) m ::;; IAI iff Em holds in the set A. 

For any ffJ E a let m", be the maximum m such that Em is a part of ffJ. Using 
(1) it is easy to check that 

(2) if ffJ E a and m", ::;; IAI, IBI, then ffJ holds in A iff ffJ holds 
inB. 

Now by (2) we have 

(3) 
if ffJ E a, then ffJ holds in every A with m", ::;; IAI iff ffJ holds 
in the set m",. 
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Thus 

(4) 
if cp E Ll, then I=cp iff cp holds in the set n for every nonzero 
n :s; m",. 

Condition (4) clearly provides an effective procedure for determining whether 
cp E r3 for cp E Ll. Namely, for each n :s; m"" n l' 0 one checks whether cp holds 
in n, this being essentially just a matter of checking tautologies by virtue of 
(1). [] 

Corollary 13.13. If A is any nonempty set, then a subset B of A is elementarily 
definable iff B = 0 or B = A. 

As a further consequence of our decision method for r 3 we can find all 
complete extensions of r 3; i.e., all theories Ll ;2 r 3 which are complete. For 
each mEw '" 1 let rrr be the set of all sentences cp such that 

{em' ...,em+1} 1= cp 

and let r; be the set of all sentences cp such that 

{em:mEW'" I} I=cp. 

Theorem 13.14 
(i) The theories rrr and r; are each complete, consistent, and decidable. 

(ii) The theories rrr and r; constitute all the complete and consistent 
extensions of r 3. 

PROOF 

(i) By (1) in the proof of 13.12, em A ""em+l holds in a set A iff it holds 
in the set m. Hence rrr = {cp : cp holds in m}, so rrr is complete and consistent. 
Similarly, r; = {cp: cpholds in w}, so r; is complete and consistent. Obviously 
then each theory rrr is decidable. r; is easily seen to be decidable using (1) 
in the proof of 13.12, and 13.11. 

(ii) Obviously r 3 is a subset of r; and of each set rW. Now suppose that 
Ll is any complete and consistent extension of r 3. By the completeness theorem, 
let A be a model for Ll. If I A I = m < w, clearly then rrr = Ll. If I A I ~ w, by 
(2) in the proof of 13.12 we easily see that r; s Ll, so r; = Ll. [] 
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EXERCISES 

13.15. Determine all elementarily definable subsets of lL with respect to the 
structure (lL, +, <). 

13.16. Show that the theory of (w, +) is decidable. 

13.17. Show that the theory of one set is decidable. 

13.18. Using the method of elimination of quantifiers, show that the theory of 
(0, <) is decidable. 

13.19. Determine the elementarily definable binary relations in any infinite set 
(i.e., using the language with no nonlogical symbols and the theory r3'). 
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14 Implicit Definability In 
Number Theories 

In this chapter we consider several ways in which number-theoretic func
tions and relations can be implicitly defined in number theories. We do not 
mean elementarily definable as in Chapter 11; the present notions of defina
bility are expressed in terms of theories and not of structures. As we shall 
see, the notions lead to new equivalents of the notion of recursiveness; see 
14.12, 14.20, and 14.26. They also form the basis for diagonalization pro
cedures which produce many undecidable theories (see the next chapter). 
We shall be concerned with two types of implicit definability. The first, syn
tactic definability, follows; the second, spectral represent ability, is given in 
14.22. 

Definition 14.1. !l' nos is a fixed effective first-order language with the follow
ing nonlogical constants: 

o an individual constant, 
s a unary operation symbol, 

+, . binary operation symbols. 

For each iz E W we let Il.(n + 1) = sll.n (inductively), with LlO = 0; fre
quently we shall write n in place of Il.n. For terms a, 'T, the expression 
a S 'T is used as an abbreviation for the formula 3vi(Vi + a = 'T), where i 
is the least integer such that Vi does not occur in a or in 'T. 

Now let r be a theory in !l'nos- We say that an m-ary functionf: mw -+ W 

is syntactically defined in r by a formula cp iff Fvcp s; {vo, ... , vm} and for 
all Xo, ... , Xm-l E w, the following sentences are in r, where y = 
f(xo,· .. , x m - 1): 
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On the other hand, an m-ary relation R s; mw is syntactically defined in 
r by rp iff Fvrp S; {vo, ... , vm- 1} and for all Xo, ..• , Xm-l E w, 

<xo, ... , Xm-l) ER => rp(xo, ... , Xm-1) E r; 
<xo, ... , Xm-1) ¢ R => ""rp(xo, ... , Xm-l) E r. 

Finally, an m-ary relation R s; mw is weakly syntactically defined in r by 
rp iff Fvrp S; {vo, ... , vm - 1} and for all Xo, ... , Xm-1 E w, 

<xc, ... , Xm-l) E R <0> rp(xo, ... , Xm-l) E r. 

We first want to indicate some relationships between these notions and 
the notion of recursiveness. Then we shall turn starting with 14.9 to specific 
theories r in which many functions and relations are syntactically definable. 

Proposition 14.2. Let R S; mw. Let r be a theory in .!l'nos, and assume that 
...,(0 = 1) E r. Then the following conditions are equivalent: 

(i) R is syntactically definable in r; 
(ii) XR is syntactically definable in r. 

PROOF. (i) => (ii). Let rp syntactically define R in r. Let'" be the formula 

(rp A Vm = 1) v (""rp A Vm = 0). 

Thus for any Xc, ... , Xm-l E w, 

<Xc, ... , Xm-l) E R => rp(Xo, ... , Xm-l) E r 
=> "'(Xo, ... , Xm-l> 1) E r. 

and similarly <xo, ... , x m- 1 ) ¢ R => "'(xo, ... , Xm- 1, 0) E r. Thus "'(xo, ... , 
Xm-l, Y) E r, where y = XR(XO, ... , x m- 1). On the other hand, if <xo, ... , 
Xm-l) E R, then rp(xo, ... , Xm-l) E r and hence by a suitable tautology 

r 1= "'(xo, ... , Xm-l> vm) -+ Vm = 1. 

Similarly if <xo, ... , Xm -1) ¢ R then 

r 1= "'(xo, ... , Xm-l, vm) -+ Vm = O. 

Hence XR is syntactically defined by",. 
(ii) => (i). Let '" syntactically define XR in r. Let rp be the formula 

"'(vo, ... , Vm- 1, 1). Suppose that <xo, ... , Xm-l) E R. Thus XR(XO, ... , Xm-l) 
= 1, so "'(xo, ... , Xm - 1 , 1) E r, i.e., rp(xo, ... , xm- 1) E r. On the other hand, 
suppose that <xo, ... ,xm-1)¢R. Thus XR(XO, ... ,xm- 1) = 0, so by the 
second requirement on syntactic definability for functions, 

r 1= "'(xo, ... , Xm - 1, 1) -+ 1 = O. 

Hence, since ...,(O=I)Er,wehave ",,"'(xo, ... ,xm- 1, I)Er,i.e., ""rp(xo, ... , 
xm- 1) E r. 0 

The following proposition is obvious: 
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Proposition 14.3. Let R S;; nw and let r be a consistent theory in .It' nos' If R 
is syntactically definable in r then R is weakly syntactically definable in r. 

Recall from 11.29 the notion of a set of axioms for a theory. We effectivize 
this notion: 

Definition 14.4. If.It' is an effectivized first-order language, a theory r in 
.It' is recursively axiomatizable if there is a set Ll of sentences of .It' with 
!/+*Ll recursive such that Ll axiomatizes r. 

If r is finitely axiomatizable, i.e., it is axiomatized by a finite set, then 
r is recursively axiomatizable. The connections of the notion of 14.4 with 
the notions of decidability and undecidability will be explored in the next 
chapter. For now we relate the notion to our notions of syntactic defina
bility. 

Theorem 14.5. Let f: mw -+ wand let r be a consistent recursively axiomatiz
able theory in .It' nos such that .(n = p) E r whenever n # p. Iff is syntac
tically definable in r then f is recursive. A similar statement holds for 
relations R S;; mw. 

PROOF. Say r is recursively axiomatized by Ll. Let 

T~ = {(e, XO, ••• , X m-l, Z, y): e is the G6del number of a formula rp 
with free variables among Vo, .•• , vm, and y is the G6del number of a 
Ll-formal proof of rp(xo, ... , Xm -1, z)}. 

Clearly T~ is recursive. Now letfbe syntactically defined in r by rp. Clearly 
then for any XO, ••• , X m-l E w we have, with e = !/+rp, 

f(xo, ... , x m- 1) = (lLy((e, Xo,···, Xm-l> (y)o, (y)l) E T~))o. 

Thusfis recursive. The proof for relations follows from 14.2. o 

An intuitive account of 14.5 may be helpful. Suppose that f (unary for 
simplicity) is syntactically defined by rp in r, where r has a recursive set Ll 
of axioms. We compute fx as follows. Start generating all Ll-theorems, one 
after the other (see the remarks following 10.29). As the theorems are gener
ated, we look for one of the form rp(x, y). As soon as one such appears, we 
can say that y = fx. That eventually a formula rp(x, y) will appear in our 
list of r-theorems is assured by the stipulation in 14.1 that rp(x, y) E r; the 
uniqueness of y follows from the fact that VVl(rp(X, VI) -+ VI = z) E r, where 
z =fx. 

Theorem 14.6. Let R S;; mw and let r be a recursively axiomatizable theory 
in .It' nos' If R is weakly syntactically definable in r, then R is recursively 
enumerable. 
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PROOF. Say r is recursively axiomatized by ~. Let T~ be as in the above 
proof. Let R be weakly syntactically defined in r by g;, and let e = ?+g;. 
Clearly for all xo, ... , Xm -1 E w we have 

<xo, ... , X m - 1 ) E R 

so R is r.e. 

iff 3y((e, xo, ... , x m - 1 , y) E T~), 

o 
The intuitive basis of 14.6 is like that for 14.5. Given R, unary, weakly 

syntactically defined by g; in r, where r is axiomatized by an effective set ~, 
first start listing out all ~ theorems. Whenever g;(x) appears on the list, give 
output x. In this way R will be effectively enumerated. 

The preceding two theorems give a method for exhibiting logical equivalents 
of recursiveness. Thus if we can find a consistent recursively axiomatizable 
theory r in .P nos in which every recursive function is syntactically definable 
and with ,(m = n) E r whenever m =f. n, then by 14.5, a function will be 
recursive iff it is syntactically definable in r. By 14.2, the same will be true 
of relations. Shortly we shall, indeed, produce such theories. 

Definition 14.7. A theory r in .Pnos is w-consistent iff for every formula 
g; with free variables among {vo}, if g;(x) E r for each x E w, then 3vo .., 
g;(vo) rt r. 

Proposition 14.8. If r is an w-consistent theory in .P nos' ,(m = n) E r 
whenever m =f. n, and every unary recursive function is syntactically defin
able in r, then every r.e. set is weakly syntactically definable in r. 

PROOF. First note that every w-consistent theory is also consistent. Hence 
the formula ,(vo = vo) clearly weakly syntactically defines the empty set. 
Now let A be any nonempty r.e. set, say A = Rngf where f is recursive. 
By hypothesis, there is a formula g; which syntactically defines f in r. Let 
'" be the formula 3v1g;(v1 , vo); we claim that", weakly defines A. To prove 
this, first suppose x E A. Say fy = x. Then g;(y, x) E r, so "'(x) E r. Second, 
suppose that x rt A. Thus for each yEw we have fy =f. x. Now g;(y, x) -+ 
x = z is a member of r, where z = fy, and ,(x = z) is a member of r, so 
'g;(y, x) is a member of r, for each yEw. By w-consistency "'(x) rt r, as 

desired. D 

Now we are ready to discuss our weakest form of number theory: 

Definition 14.9. The theory R in .P nos is the collection of all sentences g; 
of .Pnos such that ~ F g;, where ~ consists of the following sentences (for 
all m, nEw): 

(i) m + n = p, where m + n = p; 
(ii) m·n = p, where m·n = p; 

(iii) ,(m = n) for m =f. n; 
(iv) VVo(vo ~ n -+ Vo = 0 v v Vo = n); 
(v) VVo(vo ~ n v n ~ Vo). 
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Proposition 14.10 
(i) R is recursively axiomatizable. 

(ii) R is w-consistent. 

PROOF. Condition (i) is obvious. To prove (ii), first note that ?l = 

(w, +, ·,4,0/ is a model of R. Now if Fvrp S; {va} and rp(x) E R for each 
x E w, then ?l F rp[x] for each x E wand hence ?l F Vvorp(vo). Since ?l lS a 
model of R it follows that 3vo -, rp(vo) ¢ r. 0 

The next theorem constitutes one of the two main theorems of this sec
tion. It forms the main underpinning of all of our results which use the 
notion of syntactic definability. 

Theorem 14.11. Every recursive junction is syntactically definable in R. 

PROOF. Let A = {f:j is syntactically definable in R}. We shall use Julia 
Robinson's theorem 3.48 to show that every recursive function is in A. 

I. + is in A. For, let rp be the formula va + V1 = v2 ; obviously the desired 
conditions of 14.1 hold. 

II. {i is in A. In this case let rp be sVo = v1 . 

III. Ur E A (0 :S i < n). Let rp be Vi = Vn' 

IV. Exc E A. Let rp be the following formula: 

3v2 [v2 :::; va A v1 :::; v2 + v2 A va = (V 2 ·V2 ) + 1\]. 

We show that rp syntactically defines Exc in R. To check the first require
ment of 14.1, assume that x E w. By the definition of Exc, choose yEw 
such that x = y2 + Exc x < (y + 1)2. Since (y + 1)2 = y2 + 2y + I, it 
follows that Exc x :S 2y; and clearly y :S x. Thus by 14.9(i), R F Z + y = x, 
where z = x - y, so 

(I) R F y:::; x. 

Similarly, R F ~(2y - Exc x) + ~ Exc x = ~2y by 14.9(i) and R F Y + 
Y = ~(2y), so 

(2) R F ~ Exc x :::; y + y. 

Next, by 14.9(ii) R F y.y = My 2) and by 14.9(i) R F ~(y2) + ~ Exc x = x, 
so 

(3) RFX=y·y+~Excx. 

From (I )-(3) it follows that R F rp(x, ~ Exc x), which is the first of the two 
desired conditions for Exc x. To check the second condition, let .p be the 
formula 

v2 :::; X A V1 :::; V2 + V2 A X = (V2· V2) + V1· 

Thus rp(x, V1) is the same formula as 3V2.p. We shall prove that 

(4) R F .p ~ V1 = ~ Exc x, 
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which obviously implies that R 1= tp(x, v1) ~ V 1 = f1 Exc x, as desired. First 
note by 14.9(iv) that 

(5) R I=.p ~ V2 = 0 V ... V V2 = X. 

Now let i :;:; x. Using 14.9(i) and 14.9(iv) we easily obtain 

(6) R I=.p A V2 = i ~ V1 = 0 V ... V V1 = f1(2i). 

Let j :;:; 2i. We now note the following little number-theoretic fact: 

(7) if i =1= Y or j =1= Exc x, then x =1= i 2 + j. 
In fact, if i < y, then i 2 + j :;:; i 2 + 2i < i 2 + 2i + 1 = (i + 1)2 :;:; y2 :;:; x, 
so i 2 + j =1= x, while if y < i, then x < (y + 1)2 :;:; i 2 :;:; i 2 + j; thus 
x =1= i 2 + j. If i = Y butj =1= Exc x, obviously x =1= i 2 + j. Hence (7) holds. 

Now we clearly have, using 14.9(i) and 14.9(ii), 

(8) 

while from (7) and l4.9(iii) we get 

(9) if i =1= y or j =1= Exc x, then R ~ .(x = f1(i2 + j». 
Thus if i =1= y but j :;:; 2i is arbitrary, (8) and (9) give 

R 1= .p A V2 = i ~ '(V1 = j). 

Thus, since j :;:; 2i is arbitrary, (6) gives us 

R 1= .p ~ '(V2 = i). 
Hence by (5) we infer that 

(10) 

Now if i = y butj =1= Exc x, (8) and (9) give 

R I=.p A V2 = i ~ '(V1 = j). 

Combining this with (10) and (6) we obtain the desired conclusion (4). 
V. A is closed under composition. To prove this, assume that j, go, ... , 

gm-1 E A, where f is m-ary and each gi is n-ary; let h = Kr;:(j, go, ... , gm -1)' 
Say j, go, ... , gm-1 are syntactically defined by tp, .po, ... , .pm -1 in R, respec
tively. Let X be the formula 

3vn+1·· .3Vn+m[/\ .pi(VO,·· ., Vn-1, Vn+i+1) A tp(Vn+b · .. , Vn+m' Vn)] . 
• <m 

We show that X syntactically defines h in R. For the first condition of 14.1, 
assume that xo, ... , Xn -1 E w. Then for any i < m, since .pi syntactically 
defines gi in R, 

(11) 

where Yi = gi(XO, ... , Xn -1)' Since tp syntactically defines f in R, 

(12) R 1= tp(Yo, .. " Ym-b z), 

249 



Part 3: Decidable and Undecidable Theories 

where z = I(yo, ... , Ym -1) = h(xo, ... , xn -1). By (11) and (12) we obviously 
obtain R F x(xo, ... , xn - 1, z), as desired in the first part of 14.1. 

Now let 8 be the formula 

Then for any i < m, since .pt syntactically defines gt in R, 

RF8~vn+t+1=Yt. 

It follows that R F 8 ~ cp(Yo, ... , Ym-l> vn) and hence, since cp syntactically 
defines f in R, R F 8 ~ Vn = z, as desired in the second part of 14.1. 

VI. A is closed under inversion (applied to functions with range w). 

In fact, let f E A, with f having range w. Say cp syntactically defines f in R. 
Let.p be the formula 

CP(V1' Vo) A VV2[CP(V2, Vo) ~ V1 :S V2]· 

We show that.p syntactically definesp-1) in R. Let x E w, and setp-1)x = y. 
Therefore, since cp syntactically defines fin Rand fy = x, 

(13) R F cp(Y, x). 

Before continuing to check the two conditions of 14.1, we need a small 
lemma expressed in (14) below. Note by 14.9(iv) we have 

R F V2 :S Y ~ V (V2 = i). 
tsy 

If i < y, thenfi #- x and hence by 14.9(iii), 

R F ...,(d(li) = x) for i < y. 

On the other hand, since cp syntactically defines I in R we have 

R F cp(i, x) ~ x = d(fi) for any i E w. 

Putting these three statements together, we have 

(14) 

Now we return to checking the conditions of 14.1. By 14.9(v) we have 
R F V2 :S Y v Y :S V2, so (14) yields 

(15) 

But R F 0 + Y = Y by 14.9(i), so R F Y :S Y and hence (15) gives R F CP(V2' x) 
~ Y :S V2· Therefore by (13) we have R F .p(x, y), as desired in the first part 
of 14.1. Now by (13) and the definition of.p we easily obtain R F .p(x, V1) ~ 

V1 :S Y A CP(V1' x), so by (14) we have R F .p(x, V1) ~ V1 = y, as desired in 
the second part of 14.1. D 

From 14.5 and 14.11 we obtain the following syntactical equivalent of 
recursiveness. 
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Corollary 14.12. A function is recursive iff it is syntactically definable 
in R. 

By 14.3, 14.6, 14.8, 14.10, and 14.11, we have: 

Corollary 14.13. A relation is r.e. iff it is weakly syntactically definable 
in R. 

Another consequence of 14.11 is a result concerning elementary defina
bility; it depends on the following simple lemma: 

Lemma 14.14. Let Q{ = (w, +, ·,0,0), and let r be a theory in 2nos with Q{ 

as a model. Then if a function or relation is syntactically definable in r it 
is also elementarily definable in Q{. 

PROOF. First suppose J, an m-ary function, is syntactically defined by a 
formula rp in r. Then m+Irp21 = J, i.e., f is elementarily defined by rp (see 
1l.7). In fact, first supposefxo' . 'Xm-I = xm. Then by 14.1, r 1= rp(xo, ... , xm). 
Since Q{ is a model of r, Q{ 1= rp(xo, ... , xm) and so Q{ 1= rp[xo, ... , xmJ. Second, 
suppose fxo" 'Xm- 1 # Xm, say fxo' . 'Xm- I = Y # Xm. Then by the second 
requirement on syntactic definability, r 1= rp(xo, ... , xm) ~ Y = Xm so, since 
Q{ is a model of rand Q{ 1= ..,y = Xm, also Q{ 1= ..,rp(xo, ... , xm) and so it is 
not the case that Q{ 1= rp[xo, ... , xmJ. 

The case of relations is even easier. 0 

From 14.11 we then obtain 

Corollary 14.15. Every recursive function and relation is elementarily 
definable in the structure (w, +, ., 0, 0). 

Recalling the definition of the arithmetical hierarchy from Chapter 5, 
we then have: 

Corollary 14.16. For any number-theoretic relation R the following condi
tions are equivalent. 

(i) R appears in the arithmetical hierarchy; 
(ii) R is elementarily definable in (w, +, " 0, 0). 

There are three other number theories which we shall consider in the 
future: 

Definition 14.17 
(i) The theory Q in 2nos is the collection of all sentences rp such that 

~ I- rp, where ~ consists of the following sentences: 

(a) VVOVvI(SVO = sVI ~ Vo = VI); 
(b) Vvo .., (svo = 0); 
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(c) VVo[ .(vo = 0) ~ 3~'I(Sl\ = va)]; 
(d) VVo(vo + 0 = va); 
(e) VVoVvdvo + SV I = s(vo + VI)]; 

(f) Vvo(vo·O = 0); 
(g) VVOVvI(VO·SVI = VO·V I + vo). 

(ii) The theory P in 2nos of Peano arithmetic is the collection of all 
sentences cp such that ~ I- cp, where ~ consists of the sentences (a), (b), 
(d)-(g) above and also, for each formula 1/;, the following sentence: 

[[1/;(0) A Vvo[l/;(vo) ~ I/;(svo)] ~ Vvol/;(vo)]]· 

(Recall from 10.94 that for any formula x' [[x]] is the universal closure of 
x; also recall the notation 1/;(0), I/;(Sl'o), etc., from 10.72 (note that I/; may 
have free variables other than vo).) 

(iii) The theory N in 2nos is the collection of all sentences cp which 
hold in (w, +, " J, 0).) 

The following proposition is obvious (cf. the proof of 14.10). 

Proposition 14.18 
(i) Q is finitely axiomatizable. 

(ii) P is recursively axiomatizable. 
(iii) Q, P, and N are w-consistent. 

We shall see later that N is not recursively axiomatizable. The connec
tion between our number theories is given in 

Theorem 14.19. R ~ Q ~ P ~ N. 

PROOF. Obviously P ~ N. To prove Q ~ P it is obviously enough to show 
that the sentence Vvo[ .(vo = 0) ~ 3vI (sVI = vo)] is in P. To this end, let 
cp be the formula .(vo = 0) ~ 3VI(SVI = vo). Since 100 = 0, we obviously 
have P 10 cp(O). It is equally obvious that Fcp(svo), so P 10 Vvo[cp(vo) ~ cp(svo)]. 
Hence P 10 Vvocp(vo) by the special axiom for P, as desired. 

Now to show that R ~ Q it suffices to check that the sentences of 14.9 
are in Q. 

14.9(i) We show this by ordinary mathematical induction on n. The 
case n = ° is clear by 14.17(i)(d). Now assume that Q 10 m + n = ll.(m + n). 
By 14.17(i)(e), Q 10 m + Ll(.m) = sCm + n), and hence Q 10 m + ll.on = 
ll.o(m + n). 

14.9(ii) This is similarly checked. 
14.9(iii) It clearly suffices to show that Q 10 .(m = n) whenever n < m. 

This we do by induction on n. For n = 0, we have by 14.17(i)(b) that 
Q 10 .[ll.(.1(m - I» = 0], as desired. Now assume that Q 10 .(m = n) for 
alI m > n, for a certain n. Now assume Of} < m. Now Q 10 ll.on = m ~ 
D = ll.(m - I), and n < m - I implies Q 10 .(n = ll.(m - I» by the induc
tion hypothesis, so Q I- .(ll.on = m). 
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14.9(iv). Again we proceed by ordinary induction on n. Now Vo ~ 0 is 
the formula 3v1(Vl + Vo = 0). Note that 

Q F V1 + Vo = 0 A ""(Vo = 0) ~ 3V2(SV2 = Vo) 

so, making use of 14.l7(i)(e), 

by 14.17(i)(c), 

Q F Vl + Vo = 0 A ""(Vo = 0) ~ 3V2[S(Vl + V2) = 0]. 

Hence 14.17(i)(b) yields Q I- Vo S 0 ~ Vo = 0, as desired. Now we assume 
that 

(1) Q F Vo ~ n ~ Vo = 0 v ... v Vo = n. 

Now 

Q F V1 + Vo = l1(n + 1) A ...,(vo = 0) ~ 3V2(SV2 = vo) 
Q F V1 + SV2 = l1(n + 1) ~ S(Vl + V2) = l1(n + 1) 
Q F S(Vl + V2) = l1(n + 1) ~ V1 + V2 = n 

14. 17(i)(c) 
14. 17(i)(e) 
14. 17(i)(a) 

Thus Q F Vo S l1(n + 1) ~ Vo = 0 V 3V2(SV2 = Vo A V2 S n), and Q F SV2 = 
Vo A V2 S n ~ V2 = 0 V ... V V2 = n by (1), so Q F Vo S l1(n + 1) ~ 
Vo = 0 v ... v Vo = l1(n + 1), as desired. 

14.9(v). Again we proceed by induction on n. Note that Q F Vo + 0 = Vo 
by 14. 17(i)(d), so Q F 0 S Vo and Q F Vo S 0 v 0 S Vo. Now assume 
that Q F Vo S n v n S Vo. Now Q F Vo S n ~ Vo = 0 v··· v Vo = n by 
14.9(iv), which has already been established, and for each i ::; n we have 
Q F l1(n - i + 1) + i = l1(n + 1) by 14.9(i), so Q F i ~ l1(n + 1). It fol
lows that 

(2) Q F Vo S n ~ Vo ~ l1(n + 1). 

Now 

(3) Q F SVo + m = Vo + .I1(am) for every mEw. 

In fact, Q F SVo + 0 = SVo, Q F SVo = s(vo + 0), and Q F s(vo + 0) = Vo + sO 
using 14.17(i)(d) and 14.l7(i)(e). Thus Q F SVo + 0 = Vo + 1. Assume that 
Q F SVo + m = Vo + l1(am). Then Q F SVo + l1(m + 1) = s(svo + m) by 
14.l7(i)(e), Q F s(svo + m) = s(vo + l1(am» by our assumption, and Q F 
s(vo + l1(am» = Vo + l1(aam) by 14. 17(i)(e). Thus Q F SVo + l1(m + 1) = 
Vo + l1(m + 2), and (3) has been established by induction. Now 

Q F V1 + n = Vo A ""(V1 = 0) ~ 3V2(SV2 = V1 ) 14. 14(i)(c) 
Q F SV2 + n = V2 + l1(an) by (3) 

and hence Q F n S Vo ~ n = Vo v l1(n + 1) ~ Vo. We easily infer from this, 
the inductive hypothesis and (2) that Q F Vo S l1(n + 1) v l1(n + 1) S Vo· 0 

Corollary 14.20. The following conditions are equivalent: 

(i) f is recursive; 
(ii) f is syntactically definable in R, Q, or P. 
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Corollary 14.21. The following conditions are equivalent: 

(i) R is r.e.; 
(ii) R is weakly syntactically definable in R, Q, or P. 

Now we turn to our second notion of implicit definability in number 
theory. 

Definition 14.22. !f'un (the universal language) is an effective first-order 
language with no operation symbols but such that for each mEw'" 1 
and each nEw there is an m-ary relation symbol R:;' (with R:;' f= R:;': 
if m f= m' or n f= n'). 

An n-ary number-theoretic function f is spectrally represented by a 
sentence rp of !f'un provided that for all XQ, .•. , Xn-l E w the following 
two conditions hold: 

(i) there is a finite model Ql of rp such that JRt21J = Xi for each i < n; 
(ii) if Ql is any model of rp such that JRr~IJ = Xi for each i < n, then 

JR~21J = f(xQ, ... , Xn-l)· 

Lemma 14.23. Any spectrally representable function is recursive. 

PROOF. We give an intuitive proof for this, thus appealing to the weak 
Church"s thesis (see p. 46). Let/, n-ary, be spectrally represented by rp. Let 
r = {R:" : mEw'" 1, i E w, R:" occurs in rp or m = I and i ~ n}. Thus r is 
finite. Let !f" be the reduct of !f'un to the symbols of r. We know that the 
truth of rp in an !f'un-structure Ql is completely determined by the truth of rp 
in the !f" -reduct of Ql. Clearly we can effectively construct all !f" -structures 
with universe a fixed mEw'" 1, and any !f"-structure Ql with JAJ = m is 
isomorphic to one of them. Our decision method for f is as follows. Given 
X Q, ••• , Xn-l E w, we begin constructing all !f"-structures Ql with A = 1, 
all with A = 2, etc. For each structure Ql, as soon as it has been constructed, 
we check if rp holds in Ql (surely an effective question) and if JRt'1IJ = Xi for 
each i < n. As soon as we get an affirmative answer to all of these questions, 
which must eventually happen by 14.22(;), we set f(xQ, ••• , Xn-l) = JR~2IJ 
(by 14.22(ii». D 

We shall shortly prove that every recursive function is spectrally repre
sentable. For this theorem and one in Chapter 16 we need the following 
rather technical lemma. It essentially shows how to spectrally represent 
not only X andfx but also X and all valuesfO,fI, .. . ,fx simultaneously. 

Lemma 14.24. Let f be a unary function spectrally represented by a sentence 
rp. Then there is a sentence", which also spectrally represents f such that 
for any model Q{ of'" the following conditions hold: 

(i) JR~21J = JR~'1IJ + I; 
(ii) R~'11 is a simple ordering ofR~21 in the <-sense, with respect to which 
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R~~ has a smallest and a largest element and under which each element 
ofR~~ different from the greatest element has an immediate successor; 

(iii) for any x E R~~, If{y : (y, x) E R~~} isjinite, then I{y : (y, x) E R~}I = 
fl{y: (y, x) E Rgm}l. 

PROOF. We first divide the symbols of .!l'un different from Rl;, RL R~, R~, 
and R~ into two disjoint classes, consisting of distinct symbols °R~ and 
1R~ for q E w '" 1, r E w, where jR~ is q-ary. The symbols °R~ will be used 
for a translation of p, while the other symbols 1R~ will be used for auxiliary 
purposes. To define the translation of p, first let VI be a variable not occur
ring in p, fixed for the rest of the proof. Let 8 be the set of all formulas of 
.!l' un whose relation symbols and variables occur in p. For each formula 
X E 8 we associate a formula X': 

(Vs = Vt)' = Vs = Vt; 

(R~vso· .. vs(q -1»' = °R~ + 1vsO · .. vs(q -l)VI; 
(-'X') = -'X'; (X v 8)' = X' v 8'; (X A 8)' = X' A 8'; 

(VvsX)' = Vvs(lR8vsvi -+ X'). 

Now we can describe our desired sentence ifJ. Namely, there clearly is a 
sentence ifJ such that for any.!l' un-structure~, ~ 1= ifJ iff the following conditions 
hold: 

(1) 1R~ is a one-one function mapping Rl;~ into R~~, there being only 
one element of R~~ not in the range of 1 R~~; 

(2) condition (ii) of 14.24; 
(3) if x E (fJA and XI E R~~, then: 

(a) ~ 1= p'[x]; 
(b) there is an a E A with (a, XI) E 1R~; 

(c) {(a, b): (a, b, XI) E 1Rg~} is a one-one function mapping {a: (a, XI) E R~} 

onto {a: (a, XI) E °R~}, and {a: (a, XI) E °R~} £ {a: (a, XI) E 1R~}; 
(d) {(a, b) : (a, b, XI) E 1R~~} is a one-one function mapping {a : (a, XI) E °R~} 

onto {a : (a, XI) E R~~}, and {a : (a, XI) E °R~} £ {a: (a, XI) E 1R~}; 

(4) if y is the greatest element of R~~ under R8~, then 1R~ is a one-one 
function mapping RI~ onto {a: (a, y) E R~}. 

Thus conditions (i) and (ii) of the lemma are now trivial. We now check 
condition (iii), and then come back to the proof that ifJ still spectrally repre
sents f So, let ~ be a model of ifJ. We now associate with each y such that 
{a: (a, y) E 1R~} ¥- 0 a new.!l' un-structure my. Namely we set 

(5) 

while for each symbol R'J: we let 

(6) R~!8y = {(xo, ... , Xm-1) : Xo, ... , Xm'- l E By 
( ) OD(m+1~} Xo, ... , Xm-l, Y E ... '" • 

and 
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Now we claim: 

(7) if By # 0, X E CJBy, and X is any member of tl, then 
my F x[x] iff ~( F x'[xL]. 

This condition is easily checked by induction on x; it explains to some 
extent why x' was constructed in the above fashion. From it our condition 
(iii) easily follows. In fact, let x E R~21, and assume that {y: (y, x) E Ril21} is 
finite. We know by (3)(b) that {a: (a, x) E lR6?1} # 0, so mx is defined. Take 
any Z E '''Bx ' Then by (3)(a) we have ~( Fe 91'[z~], so (7) yields 

(8) mx Fe 91. 

Now by (3)(c), (5) and (6) we have 

(9) IRIi:Bxl = I{a: (a, x) E R621} I , 

and by (3)(d), (5) and (6) we have 

(10) 

But since 91 spectrally represents J, it follows from (8), (9), (10) that 
II{a: (a, x) E Ril?l} I = I{a: (a, x) E Ri~l}i, as desired in (iii). 

Now we turn to showing that 0/ still spectrally represents f To this end, 
let x E w, fixed for the rest of this proof. To check 14.22Ui), suppose that 
~ is a model of.p and IRb<!1 = x. Then, by what we have shown above, con
ditions (i)-Uii) of our lemma 14.24 hold. By (ii), let y be the greatest number 
of RFI under R6<l; then by (i), 

(II) I{a: (a, y) E R~<l}1 = x. 

By (4) and (iii) it follows from (10) and (II) that I Ri<ll = Ix, as desired in 
14.22(ii). 

It remains to check 14.22(i), i.e., to construct a finite model Q! of 0/ such 
that /R5Q1 1 = x. To do this, we first apply 14.22(i) for 91 to produce for each 
y ~ x a finite model my of 91 with /RA:By/ = y. For the universe of our model 
~ we take 

(12) A = U By U (x + 1). 

Now we define the relations of Q! as follows: 

(13) 
(14) 
(15) 
(16) 
(17) 
(I 8) 
(19) 

(20) 
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R5~ = x and R~21 = x + 1; 
Ra21 = fey, z) : y < Z ~ x}; 
Rl<l = Ri'Bx; 
Rr<l = {(a, y): y ~ x and a E Ri:By}; 
°R~q+l)21 = {(zo,"" Zq-l>Y): y ~ x and (ZO, ... , Zq-l) E R~:By}; 
lR~21 = {(y,y) :Y ERa21}; 
lR5~j = {(a,y):y ~ x and aEBy}; 
1 R~~ is any relation such that for each y ~ x, {( a, b) : (a, b, y) E 1 R&21} 
is a one-one function mapping y onto RA:By; 
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(21) lRr21 = {(a, a, y) : y :<s; x and a E Rt'By }; 

(22) lRiQI = {(a, a) : a E Rt'BX}; 
(23) Ri'ill = 0 otherwise. 

Clearly 2! is finite and IR6211 = x, so to finish the proof of 14.22(i) and hence 
of our lemma it remains only to check that 2! I=.p, i.e., that (1)-(4) hold. Of 
these, all but (3)(a) are routinely checked. But this condition is also clear, 
for (7) again is easily established by induction on x' so since ~y 1= rp for each 
y :<s; x, (3)(a) follows. 0 

Now we prove the converse of 14.23: 

Theorem 14.25 (Trachtenbrot). Every recursive function is spectrally repre
sentable. 

PROOF. Let A = {f:f is spectrally representable}. We shall again apply 
Julia Robinson's theorem 3.48 in order to show that every recursive function 
is in A. 

I. + is in A. We can clearly write down an 2 un-sentence rp whose models 
are exactly those 2 un-structures 2! for which R621 n Rt21 = 0 and R~QI = 

R621 U Ri2l. Thus rp spectrally represents +. 
II. j is in A. This time take a sentence rp such that 2! is a model of rp iff 

Ri'il' is a superset of R621 with exactly one more element than R621 . 
III. Uf is in A. Let rp express that R;<l = RtQI. 
IV. Exc EA. To motivate the construction of the desired sentence rp, 

suppose that Exc x = z. Then we can write x = y2 + z for a certain y, 
where x < (y + 1)2. In our sentence rp, R6 is to be thought of as a set with 
x elements, Rt one with z elements, and R~ one with y elements. We can 
express that x = y2 + z by using functions (see below). Also, R~ is to have 
y + 1 elements. We can express that x < (y + 1)2 by means of a one-one 
function that is not onto. 

Getting down to details, let rp be a sentence such that 2! is a model of rp 
iff the following conditions hold: 

(1) R~2I: Rt21 >+ R521 ; 
Rg21 : R~QI x R~2I >+ R5Q1 ; Rng R~2I n Rng Rg21 = 0 and Rng R~2I U 

(2) Rng Rg21 = R521; 

(3) R~2I s R~QI, and R~2I has exactly one more element than R~QI; 
(4) RrQl: R5Q1 >+ R~QI X R~QI; but RiQl does not map onto R5Q1 x R5Q1. 

To check the conditions of 14.22, let x E w. Say x = y2 + Exc x < (y + 1)2. 
Choose a finite 2 un-structure 2! such that I R5'il1 I = x, IRiQlI = Exc x, 
IR~QII = y, R~QI S R5Q1, and R!QI has exactly one more element than R~QI. 
Clearly then we can choose R~QI, RgQl, RiQl so that (1)-(4) hold. Thus 14.22(i) 
holds. Similarly, 14.22(ii) holds. 

V. A is closed under composition. For, suppose f, go, ... , gm-l E A, where 
f is m-ary and each gi is n-ary; let h = Kr;:(f; go, ... , gm-l)' Say go, ... , 
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gm_1,jare spectrally represented by .po, ... , .pm, respectively. The idea of the 
construction of a sentence fP spectrally representing h is this. We modify 
the sentences .pi so that pairwise they talk about entirely different symbols. 
Then we can introduce relationships between them in order to represent h. 

Formally, the first step takes place via m + 1 different syntactical .!fun-
structures in .!fun. We can clearly divide the symbols of .!fun up into m + 2 
pairwise disjoint parts such that each part contains infinitely many relation 
symbols of each rank and such that R6, ... , R~ all are in the last part. The 
j-ary relation symbols of the ith part (0 .::; i .::; m + 1) will be denoted by 
tRb, tRL ... , and we assume that m+1R~ = R~ for each k .::; n. For each 
i .::; m let Q!! = (m+1R~+i+1VO' ti> St, f t) be the syntactical .!fun-structure in 
.!fun such that: 

(5) 
(6) 
(7) 

ti = 0 (since .!fun has no operation symbols); 
StR{ = tR{vo" ·v j - 1; 

f t = {3vom+1R~+i+1VO}' 

By means of these syntactical structures, our sentences .po, ... , .pm receive 
translations .p?fo, ... , .p;;.m. The relationships between these translations that 
we need to express are: (1) our standard argument places R6, ... , R~-1 
correspond to the argument places in the translations .p?fo ... .p;;'(r!.\- 1); 
(2) the results obtained in .p?fo, ... , .p;;'(r!\-1) correspond to the argument 
places in .p;;'m; (3) the result obtained in .p;;'m corresponds to the standard 
result place R~. Thus we want a sentence fP (which clearly exists) such that 
for any .!fun-structure Q3, Q3 1= fP iff the following conditions hold: 

(8) 

(9) 

for each i .::; m; 

Q3 1= /\ (iR}vo _ m+lR~+t+lvo) A /\ (mR}vo _ m+1R~+m+1VO) 
i<m.iSn ism 

(10) m+1R;~k: R~'B>-* tRJe'B 
(II) m+1R;~+t: t~'B >-* mRl'B 
(12) m+1R;~+m: mR~'B>-* R~'B. 

for each i < m and k < n; 
for each i < m; 

We check 14.22(ii) and leave 14.22(i) to the reader. Assume that Xo, ... , 

X n - 1 E wand that Q3 is a model of fP such that IR1'B1 = Xk for each i < n. 
Then by (10), 

(13) ItRJe'B1 = Xk for each i < m and k < n. 

Now Q3 is a model of f t by (8), so we can form the structure Q3ri.~t for each 
i .::; m. Note from 11.43 that 

for each i .::; m. 

Hence by (9) and (13) we have IR1'B(r!·~j)1 = Xk for each i < m and k < n. 
Furthermore, from 11.45 and (8) we know that Q3r!.~! 1= .pt for each i < m. 
Hence by 14.19(ii) for .p! and gt we obtain 

(15) 
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Using (15), (14), (9), (13) we see that 

(16) IR11!3(rm.~m)1 - (x x) 
j - gl 0,···, n-1 for each i < m. 

Since ~rm.~m 1= I/Im, it follows that 

IR~I!3(rm.~m)1 = h(xo,"" X n -1)' 

Hence by (14), (9), (12) we obtain IR~I = h(xo, ... , xn - 1), as desired. 
VI. A is closed under inversion, applied to functions with range w. For, 

letfE A, wherefis a unary function with range w. By Lemma 14.24, we know 
that f is spectrally represented by a sentence 1/1 satisfying the conditions of 
14.24. We translate 1/1 so as to make room for some auxiliary symbols. 
Namely, we divide the symbols of .f1'un into equal parts denoted by °R~ 
and 1R~, where 1RA = RA and 1Rt = Rt. Let ~ = eR~vo, t, S. r) be the syn
tactical .f1' un-structure in .f1' un such that: 

(17) 
(18) 
(19) 

t = 0; 
SR~ = °R~vo .. . vg - 1 ; 

r = {3V01R~vo}. 

Now there clearly is a sentence X of .f1'un (which we shall show spectrally 
represents I' -1» such that for any .f1' un-structure ~, ~ 1= X iff the following 
conditions hold: 

(20) 
(21) 

(22) 

~I=~; 
1R~1!3 is a one-one function mapping oRAI!3 onto 1Rtl!3, 
and 1R~1!3 is a one-one function mapping ORtl!3 onto 1RAI!3; 
1R~1!3 =F 0; 
if b E Band b is not the greatest element of °R~1!3 under °R~I!3, 
then either {(a, c) : (a, c, b) E 1Rgl!3} maps 1RA1!3 one-one into 
{a: (a, b) E °R~I!3} but is not an onto map, or it maps 
{a: (a, b) E °R~I!3} one-one into 1RA1!3 but is not an onto map. 

Now we check that the conditions of 14.22 work for 1'-1) and X. Suppose 
x E w. To check 14.22(0, we first apply 14.22(i) for f and 1/1 to obtain a 
finite model <t of 1/1 such that IRA([I = 1'-1)X. From <t we construct a finite 
model ~ of X as follows. We set B = C, while for relation symbols we let 
~ be such that 

(23) °R~1!3 = R~([; 1R~1!3 = B; 
(24) 1RA1!3 = Rl([ and 1Rl1!3 = RA([; 
(25) 1R~I!3, 1R~I!3, and 1Rg1!3 are arbitrary as long as (21) and (22) hold. 

Clearly (25) is possible, in view of 14.24(;;0. Clearly from the definition of 
~ we have ~ a model of r and ~~ = <t. Since <t is a model of 1/1, it follows 
from 11.45 that ~ 1= I/I~, i.e., condition (20) holds. Thus by (24) we see that 
~ is a model of X, as desired, since I RAI!3 I = 11RAI!31 = IRt([1 = x. 

To check 14.22(iO, let ~ be any model of X such that I RAI!3 I = x. Let 
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(£ = ~rm. Then by 11.45 and (20), (£ is a model of if. Note that IR~~I 
IOR~'l31 = IlR~'l31 = IR~'l31 = x. Now we claim 

(26) R~~ is finite. 

For, suppose it is infinite. Since (£ is a model of if, it follows by 14.24(;i) 
that there is ayE R~~ such that I{a: (a, y) E R~~}I = P-l)x. Then by 
14.24(iii) we infer that I{a: (a, y) E R~~}I = x. But R~~ = °R~'l3 and IlR~'l31 = 
IR~'l31 = x, so this stands in contradiction to (22), since y cannot be the 
greatest element of °R~'l3 under °R~'l3. Thus (26) holds. 

Now by (26), since if spectrally represents J, fIR~~1 = x. Note that 
IR~'l31 = IlR~'l31 = IOR~'l31 = IR~~I. Thus to finish the proof of 14.25 it 
remains only to show that fy "# x whenever y < IR~'l3I. But if y < IR~'l3I, 
then y < IR~~I, and from 14.24(;i), since (£ is a model of if, there is abE C 
different from the greatest element of R~~ under R~~ such that 
I{a : (a, or) E R~~}I = y. Then by 14.24(iii) and (22) we have 

fy = fl{a : (a, b) E R~~}I 
= I{a: (a, b) E R~~}I 
= I{a: (a, b) E °R~'l3}1 
"# IlR~'l31 = IR~'l31 = x. 

Corollary 14.26. A function is recursive iff it is spectrally representable. 
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EXERCISES 

14.27. Let r be the theory of !R nos with the single axiom VVOVVl(VO = Vl). Show 
that every function is syntactically definable in r, but only countably 
many relations are syntactically definable in r. Thus the assumption 
.(0 = 1) Erin 14.2 is necessary; and the assumption in 14.5 that .(m = 
n) E r whenever m #:- n is necessary. 

14.28. Describe a theory in !R nos which is consistent but not w-consistent. 

14.29. Show that R is not finitely axiomatizable. Hint: it is enough to show 
that for any finite set r of the axioms in 14.9 for R, there is a model of 
r which is not a model of R. 

14.30. Prove, without using 14.29, that R is a proper subset of Q. 

14.31. Show that the sentence Vvo • SVo = Vo is in P but not in Q. 
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14.32. Let T be the theory in .!Enos with the following axioms: 

VVOVV1(SVO = SV1 ~ Vo = V1); 
Vvo .., (svo = 0); 
[[¢S(O) /\ Vvo[¢S(vo) ~ ¢S(svo)] ~ Vvo¢S(vo)]]; 
VVOVV1(VO + V1 = 0); 
VVOVV1(VO'V1 = 0). 

Show that not every recursive function is syntactically definable in T. 
Hint: eliminate quantifiers and show that not every recursive set is syn
tactically definable in T. 

14.33. Give an example of a consistent theory in .!Enos in which a nonrecursive 
set is syntactically definable. 

14.34. An m-ary function f is strongly syntactically definable in a theory r 
formulated in .!Enos provided that there is a formula cp of .!Enos with 
Fv cp ~ {Vo, ... , Vm} such that the foIl owing two conditions hold: 

(1) for all Xo, ... , Xm -1 E w, the sentence cp(xo, ... , Xm - h !1f(xo, ... , Xm - 1)) 

is in r; 
(2) the sentence VVo",Vvm-13vm+1VVm(CP-Vm=Vm+1) is in r. 

Show that if f is syntactically definable in r, then it is also strongly 
syntactically definable in r. Hint: Say f is syntactically defined by cpo 
Let .p be the formula 

cp A VVm+1[CP(VO,"" Vm-h Vm+1) ~ Vm = vm+d, 

and let X be the formula 

¢S v [Vvm .., ¢S(vo, ... , Vm) A Vm = 0]: 

Show that X strongly ~yntactically defines f 
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15 General Theory of 
Undecidability 

In previous chapters we have introduced several concepts related to the 
notion of undecidable theories (complete theories, 11.9; theories, 11.29; 
decidable and undecidable theories, 13.1; syntactical and weak syntactical 
definability, 14.1; recursive axiomatizability, 14.4; spectral representability, 
14.22). Our purpose in this chapter is to establish various relationships known 
to exist between these notions and related ones. These general theorems 
will be applied in the next chapter, in which numerous examples of undecid
able theories are given. We proceed in this chapter from the simpler concepts 
to the more complicated ones. 

Theorem 15.1 (Craig). For any theory r in an elementary efJectivized first
order language the following conditions are equivalent: 

(i) r is axiomatizable by a set Ll such that ffuLl is elementary; 
(ii) r is recursively axiomatizable; 

(iii) ffur is r.e. 

PROOF. Obviously (i) =? (ii), while (ii) =? (iii) by 10.29. Now assume that 
(iii) holds. Letfbe an elementary function with range ffur. Set 

Ll = {cp : cp is a sentence, and there is an x ::;; ff + cp such that 
fx = ff+ifJ for some sentence ifJ such that cp = ifJ A ifJ A ••. A ifJ}. 

Obviously ff u Ll is elementary, and Ll s; r. Now suppose that ifJ E r. Choose 
x so thatfx = ff+ifJ. Clearly we can find a sentence cp of the form ifJ A ifJ A 

••• A ifJ such that ff+CP ;?: x. This follows from the simple observation that 
ff+(80 A 81) > ff+80 for any formulas 80 , 81 • Thus cP Ell, and hence ifJ E 
Ll-Thm, as desired. 0 
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Theorem 15.1 has considerable theoretical importance. According to 
it, as soon as we know that a theory can be effectively enumerated we can 
conclude that a very effective (i.e., elementary) axiom system can be given 
for it. Theorem 15.1 is a kind of logical version of the equivalence of (i) 
and (iii) in 6.2 (equivalent definitions of r.e. sets). The following important 
theorem gives a logical version of the fact that a set is recursive iff both it 
and its complement are r.e. 

Theorem 15.2. For any complete theory r the following conditions are 
equivalent; 

(i) r is decidable: 
(ii) r is recursively axiomatizable. 

PROOF. (i) => (ii). This is obvious, since r axiomatizes r. (ii) => (i). Assume 
(ii), say ~ axiomatizes f, where y+*~ is recursive. A decision procedure for 
r can be described as follows. Assume that r is consistent. (It is obvious, 
and trivial, that an inconsistent theory is both decidable and recursively 
axiomatizable.) Given any sentence cp, start listing all sentences derivable 
from ~ (recall from 10.29 thaty+*(n- Thm) is r.e.). Since r is complete, 
either cp or 'cp will eventually appear on the list. If cp appears, we of course 
give the output cp E f. If .cp appears, by the consistency of r we give the 
output cp ¢ r. 

More formally, writey+*(~-Thm) = RngJ, wherefis recursive. Then 

x E j'+*r iff x E j'+*Sent andfp.y(fy = x or fy = .'x) = x. D 

Because of their importance, we list here two corollaries of 15.2 which 
are simple logical transformations of it: 

Corollary 15.3. If r is recursively axiomatizable and undecidable, then r is 
incomplete.' 

Corollary 15.4. If r is complete and undecidable, then r is not recursively 
axiomatizable. 

In Corollary 15.3 we encounter a justification for our emphasis on un
decidability in this book. Even if our main concern were proving various 
theories incomplete, we see by 15.3 that more general results are obtained 
by proving undecidability (since we are mainly concerned with recursively 
axiomatizable theories). In 16.1 we shall see that N is an example of a theory 
which is complete but undecidable; thus by 15.4, N is not recursively axiomat
izable. 

Another important connection between our basic notions is given in 

Theorem 15.5. If r is consistent and decidable, then r ~ ~ for some con
sistent, decidable complete theory ~. 
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PROOF. Intuitively we proceed as follows, merely effectivizing a proof of 
Lindenbaum's Theorem 11.13. Effectively list out all sentences. Now extend 
r by an effective, recursive procedure: at the mth step, add the mth sequence 
if it is consistent to do so, otherwise add nothing. In this way we extend r 
to a complete theory ~ with j' +* ~ r.e.; by 15.2, ~ is decidable. 

More formally, we proceed as follows. Let h be a recursive function with 
range j'+*Sent and with hO E j'+*r. Now we define a functionfby recursion. 
Let 

fO = hO 

f(m + I) = hm 

f(m+I)=fm 

if r 1;1 /\ j'+ -lfi ~ 0j'+ -lhm, 
i<m 

otherwise. 

Let ~ = j'+ -URngf Now ~ is consistent. For, by induction it is clear 
(see the proof of the next theorem) that r v {?+ -lfi: i < m} is consistent 
for each mEw; so it follows, of course, that r v ~ is consistent. A fortiori, 
~ is consistent. Furthermore, r s ~. For, assume that q; E r, say hm = q;. 

Clearly then, since we have already established that r v {j' + -lfi : i < m} 
is consistent, it follows thatf(m + I) = hm, so q; E ~. Note that ~ is a theory, 
since if ~ 1= q;, with, say, hm = q;, then obviously f(m + I) = hm. Next, ~ 
is complete, for let q; be a sentence with q; rt~, say q; = hm. Then 
f(m + 1) i= hm, so r 1= !\i<m j'+ -lfi ~ 0q;, hence ~ 1= 0q;, hence 0q; E~. 

Finally, since ~ is complete andj'+*~ = Rngfis r.e., by 15.1 ~ is recursively 
axiomatizable and hence by 15.2 it is decidable. D 

As a generalization of 15.5 we have the following result. It shows that 
the decidability of a theory r is equivalent to the existence of complete 
decidable extensions of r with certain restrictions. This result is practically 
useful in proving decidability of theories. The proof is just an extension of 
the proof of 15.5. 

Theorem 15.6 (Ershov). Let r be consistent and recursively axiomatizable. 
Then r is decidable iff there is a sequence 0 0 , 0 1 , ••• of complete con
sistent extensions of r and a binary recursive function f such that the 
following conditions hold: 

(i) r = ni<co 0 i ; 

(ii) For every mEw, {f(m, i) : i E w} = j' + * ~mfor some set ~m of sentences 
which axiomatizes 0 m • 

PROOF. First suppose that r is decidable. Let 

Q = {q; E Sent: r v {q;} is consistent}. 

Since (r v {q;} consistent iff 0q; rt r), j'+*Q is recursive. Say j'+*Q = 

264 



Chapter 15: General Theory of Undecidability 

Rng h, h recursive. Let k be a recursive function such that Rng k = ffHSent. 
We now define our binary recursive function! For any m, nEw, 

f(m, 0) = hm 

f(m, n + 1) = kn if /\ ff+ -1j(m, i) -+ 'ff+ -lkn rj; r, 
Isn 

f(m, n + 1) = f(m, n) otherwise. 

Now let Llm = (?+ -1j(m, i) : i E w} and 0 m = {cp E Sent: Llm F cp}. Thus (ii) 
automatically holds. Now 

(1) r u {?+ -If(m, i) : i < n} is consistent, for each m, nEw. 

We prove (1) by induction on n, with m fixed. Since r is given to be consistent, 
the case n = 0 is trivial. The definition of Q and h immediately gives the 
desired result for n = 1. Assume inductively that n > l. If (1) fails for n, 
then 

/\ ?+ -1j(m, i) -+ '?+ -If(m, n - 1) E r 
I<n-l 

Hence f(m, n - 1) ¥- ken - 2) by the way f was defined, so f(m, n - 1) = 
f(m, n - 2). But then (1) fails for n - 1, contradiction. Thus (1) holds. 
Next, 

(2) for each mEw. 

For, let cp E r. Say cp =?+ -lkn. Then !\isn?+ -1j(m, i) -+ '?+ -lkn rj; r; 
for otherwise, since alsO?+ -lkn E r we would have r u {?+ -If(rn, i) : i :::;; n} 
inconsistent, contradicting (1). Hence fern, n + 1) = kn, and cp E Llm• Also 
note the following consequence of (1): 

(3) 0 m is consistent, for each mEw. 

Next, 

(4) 0 m is complete, for each mEw. 

For, let cp be any sentence; say cp =?+ -lkn. If !\isn?+ -If(m, i)-+ 
'ff+-lknrj;r,thenf(m,n + 1) = knandhencecpE0m·If !\lsn?+-1j(m,i) 
-+ 'ff+ -lkn E r, then by (2) we see that Llm r 'cp, so 'cp E 0 m • Thus (4) 
holds. 

It remains only to establish (i). By (2), r s; ni<W 0 i . Suppose cp is any 
sentence not in r. Then r u {'cp} is consistent, so 'cp E Q. Say ff+ -lhm = 
'cp. Thus f(m, 0) = hm implies that 'cp E Llm S; 0 m , so by (3), cp rj; 0 m • 

Hence cp rj; nj < W 0 j. Thus (i) holds. 
Conversely, suppose that 0 0 , 010 ... are complete consistent extensions 

of r such that (i) and (ii) hold. Since r is recursively axiomatizable, by 15.1 
it follows that ?+*r is r.e. Hence it suffices to show that w ~ ?Hr is r.e. 
First we give an informal proof for this. Begin listing members of 0 0 (note 
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that #+* Elm is r.e. for all m). After listing a few of them, list a few members of 
Ell. Then list more members of Elo, then of Ell' then of El2 • Then list more 
members of Elo, etc. In this listing process, if 'cp appears, then on a separate 
list put cpo Since r s;: Elm and Elm is consistent, each such cp fails to be in r. 
Since each Elm is complete and (i) holds, each sentence not in r eventually 
appears on the list. 

More formally, define a partial recursive function h as follows. For any 
XEw, 

hx = ILY(X ¢,#+*Sent, or x E#+*Sent and for all 
(5) i ~ I(Y)o[«Y)o)i = f«Y)1> i)] and (Yh is the Godel number of a 

O-proof of Ai-5.1(Y)0 #+ -l«Y)O)i _ '#+ -IX). 

We claim that Omn h = w ~ #+*r (as desired). For, first let x E Omn h. 
If x ¢,#+*Sent, obviously x E w ~ #+*r. Assume that x = #+cp, where cp 
is a sentence. Since x E Omn h, we get a Y as indicated in (5). Let m = (Y)l. 
Then by (ii), 'cp E Elm' so cp ¢' Elm since Elm is consistent. Thus cp ¢' r by (i), 
so XEw ~ #+*r. Second, let XEw ~ #+*r. If x¢,#+*Sent, obviously 
x E Omn h. Suppose x = #+cp, where cp is a sentence. Thus since x¢' #+*r 
we have cp ¢' r. By (i) choose m such that cp ¢' Elm; hence 'cp E Elm by the 
completeness of Elm. By (ii) and the deduction theorem there are 0/1, ... , o/n E 

11m such that r-0/1 1\ .. . 1\ o/n - 'cp. By (ii), choose p such that #+0/1> ... , 
# + o/m E {f(m, i) : i ~ p}. Clearly then we still have r- Ai -5. p # + -If(m, i) -
'cp. Now we let q = TIi -5. P pf<m.n, let r be the Godel number of a O-proof of 
Ai -5. p # + -IJ(m, i) - 'cp, and let Y = 2q • 3m • Y. Clearly Y satisfies the con
ditions in (5), so x E Omn h. D 

Some Generalizations of the Concept of Undecidability 
and their Relationships to Each Other and to Some 
Logical Notions 

Definition 15.7. Let r be a theory in a language.!f. We say that r is essen
tially undecidable if r is consistent and whenever 11 is a consistent theory 
in .!f with r s;: 11, it follows that 11 is undecidable. The theory r is in
separable if #+*r and #+*{cp: cp is a sentence and 'cp E r} are effectively 
inseparable (see Chapter 6). And we say that r is finitely inseparable 
provided that # +*Thm,!l' and # +*{cp : cp is a sentence whose negation holds 
in some finite model of r} are effectively inseparable. 

Some remarks on the origin and intuitions underlying these notions are 
in order. There are some theories which are undecidable but which can be 
easily extended to consistent decidable theories. An example is the theory r 
of one binary relation, which is proved undecidable in the next chapter. If 
we adjoin to this theory the axiom VVOVvl(VO = VI), we obviously get a con
sistent decidable theory. (See Exercise 15.24.) Thus r is not essentially un
decidable. Most theories with this property of being undecidable but not 
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essentially undecidable can be shown to actually be finitely inseparable. To 
see the logical significance of the latter notion, first note: 

(*) 
if r is a finitely axiomatizable theory, then M = ,?+*{cp : cp is a 
sentence whose negation holds in some finite model of n is r.e. 

In fact, we can assume that the language has only finitely many nonlogical 
constants, and we list all members of M as follows. Begin listing all finite 
2'-structures with universe mEw"" 1 (any finite 2'-structure will be iso
morphic to one of this form). Simultaneously start listing all sentences. For 
each finite 2'-structure ~, check if ~ is a model of r; since r is finitely 
axiomatizable, this can be done in finitely many steps. If ~ is determined to 
be a model of r, check each sentence already listed for truth in ~. For those 
sentences of the form ""cp determined to hold in ~ we put ,?+cp on our out
put list. Clearly this gives an effective enumeration of M. Thus (*) holds. 
A rigorous proof of (*) would be rather lengthy, but is clearly possible (weak 
Church's thesis). 

Thus we see that if r is finitely inseparable, then the following is true: 

There is an automatic procedure P such that, given any 
consistent finitely axiomatizable theory Ll with the property that 

(t) every finite model of r is a model of Ll, the procedure P 
produces after finitely many steps a sentence cp such that cp 1= Ll but 
cp holds in all finite models of Ll. 

In fact, let I be a recursive function satisfying the definition 6.21 for the 
effectively inseparable pair ,?+*Thmz and M = ,?+*{cp : cp is a sentence 
whose negation holds in some finite model of n. Let Ll be as in (t), and set 
A = ,?+*Ll U {x: x is not the G6del number of a sentence} and B = ,?+*{cp: 
cp is a sentence whose negation holds in some finite model of Ll}. Thus 
,?+*Thmz £ A, M £ B, An B = 0, and A and Bare r.e. (using (*». Say 
A = Dmn cp! and B = Dmn cp~. Then I(e, r) = ,?+cp for some cp satisfying 
the conclusion of (t). 

On the other hand, it is clear from Definition 15.7 that any finitely in
separable theory r is undecidable. The property (t) exhibits another property 
of r: no finitely axiomatizable extension of r is determined by its finite 
models. 

Roughly speaking, a finitely inseparable theory is a weak theory which 
is undecidable. However, there are consistent theories which are intrinsic
ally undecidable, in the sense that all their consistent extensions are undecid
able. Most such essentially undecidable theories can be shown to be in
separable, a stronger property. An important property of inseparable theories 
is that they are effectively incompletable, in the following sense: 

(#) 

if r is an inseparable theory, then there is an automatic 
procedure P such that if Ll is any consistent recursively 
axiomatizable extension of r then P yields a sentence cp such 
that cp 1= Ll and ""cp 1= Ll. 

267 



Part 3: Decidable and Undecidable Theories 

In fact, let f be a recursive function satisfying Definition 6.21 for the effec
tively inseparable pair ?Hr and M = ?H{'P: 'P is a sentence and "''P E r}. 
Given ~ as in (#), set A = ?H~ U {x: x is not the Godel number of a 
sentence} and B = ?H{'P: 'P is a sentence and "''P E ~}. Then ?Hr ~ A, 
M ~ B, A n B = 0, both A and Bare r.e., say A = Dmn 'P! and B = 
Omn cp;. Thenf(e, r) = ?+'P for some 'P as desired in (#). 

The following theorem gives a rigorous version of (#): 

Theorem 15.8. Let r be an inseparable theory. Then there is a recursive 
function h such that if ~ is any consistent extension of r in f.t' and if? + * ~ = 
Omn cp;, then he = ? + 'P for some sentence 'P such that 'P if; ~ and "''P if; ~. 

PROOF. Let f be as above. We define a partial recursive function k' by 
setting 

k'(x,e) ~ ILy[(e,x,Y)ET1 or x if;?HSent2], 

for all x, e E w. Say k' = cp~. Note that 

Dmn k' = {(x, e) : x E Dmn cp; or x if;? HSent2}. 

Let ke = sHr, e) for all e E w. Then for any x E w, 

cp~.x ~ cp~(x, e), 

and hence 

(1) 

Next, we define a partial recursive function I' by setting 

l'(x, e) = cp'( ..,'x, e) 

for all x, e E w (recall the definitions of ..,' and cp' from 5.8 and 10.6). Say 
I' = cp:. Let Ie = sl(s, e) for all e E w. Then for any x E w, 

cpf. ~ cp:(x, e) 

and hence 

(2) Omn cpf. = {x: ..,'x E Dmn cp!}. 

For any e E w, let he = f(ke, Ie). Now suppose that ~ is a consistent exten
sion of rand ? H ~ = Omn cp;. By (1) and (2), Dmn CP~. = A and 
Omn cp~ = B, with A and B as in the discussion preceding this theorem. 
Hence he = f(ke, Ie) E w '" (A U B), so he = ?+'P for some sentence 'P with 
'P if; ~ and "''P if; ~, as desired. 0 

Next we list some simple properties of the notions in 15.7. 

Proposition 15.9. Every inseparable theory is essentially undecidable, and 
every essentially undecidable theory is undecidable. Every finitely inseparable 
theory is undecidable. Ifr is finitely inseparable, then {?+'P: 'P is a sentence 
which holds in every finite model of r} is not recursive. 
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PROOF. Let r be an inseparable theory in 2. Thus ,?+*r and A = 

,?+*{cp: cp is a sentence and "'cp E r} are disjoint, by 6.21, so r is consistent. 
Suppose that Ll is a consistent theory in 2 with r S Ll. Let B = ,?+*{cp: 
cp is a sentence and "'cp Ell}. Thus ,?+*r S ,?+*Ll, A S B, and ,?+*Ll n 
B = O. Clearly B is recursive if,? +* Ll is recursive, so the recursive insepara
bility of,? + *r and A implies that,? + * Ll is not recursive, i.e., Ll is undecidable. 
Hence r is essentially undecidable. Trivially, every essentially undecidable 
theory is undecidable. 

Now suppose that r is a finitely inseparable theory in 2, and let C = 

{,?+cp: cp is a sentence which holds in every finite model of r}. By 15.7, 
,?+*Thm,.r and ,?+*Sent,.r '" C are effectively inseparable. If r is decidable, 
then,? + * r is a recursive set containing,? + * Thm,.r and disjoint from,? + *Sent,.r 
'" C, which is impossible. Thus r is undecidable. If C is recursive, C is a 
recursive set containing ,?+*Thm,.r and disjoint from ,?+*Sent,.r '" C, which 
is again impossible. 0 

There are examples of undecidable theories which are not essentially 
undecidable (see the comments following 15.7); essentially undecidable 
theories which are not inseparable; finitely inseparable theories which are 
not essentially undecidable and hence not inseparable (again see the com
ments following 15.7); inseparable (hence essentially undecidable and 
undecidable) theories which are not finitely inseparable (see the comment 
following 16.2); and decidable theories r with ,?+*{cp: cp holds in all finite 
models of r} nonrecursive (15.25). 

Now we want to consider the effect of extending theories on the above 
notions. Recall the definition of extensions of theories from 11.29. The 
following result generalizes the definition of essentially undecidable theories. 

Proposition 15.10 Let r be a theory in 2, Ll a consistent theory in an effective 
expansion 2' of 2, and assume that r S Ll. Then r essentially undecidable 
implies Ll essentially undecidable, and r inseparable implies Ll inseparable. 

PROOF. Assume the first sentence of 15.10. Let r be essentially undecidable. 
Suppose that e is a consistent decidable extension of Ll in 2'. Then 
e n Sent,.r is a consistent decidable extension of r in 2, contradiction. 
Next, suppose r is inseparable. Since ,?+*r S ,?+*Ll and ,?+*{cp: cp is a 
sentence of 2 and "'cp E r} S ,?+*{cp: cp is a sentence of 2' and "'cp Ell}, 
while the two sets on the right of these inclusions are disjoint, it is clear 
that Ll is inseparable. 0 

There is an example of theories r, Ll in a language 2 such that r S Ll, 
Ll is inseparable, but r is decidable (see 15.27). On the other hand, we have: 

Proposition 15.11. If rand Ll are theories in a language 2, and Ll is an ex
tension of r, then Llfinitely inseparable implies r finitely inseparable. 
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Definition 15.12. Let I' and ~ be theories in languages .fR and .fR', ~ an 
extension of I' (hence .fR' an expansion of .fR). We say that ~ is a finite 
extension of I' provided that there is a finite set 0 of sentences of .fR' 
such that I' U 0 axiomatizes ~. 

Proposition 15.13. If I' and ~ are theories in .fR and ~ is a finite extension 
of 1', then ~ undecidable implies I' undecidable. 

PROOF. Let 0 be a finite set of sentences such that I' U 0 axiomatizes ~. 
Then for any sentence rp, we have rp E ~ iff 1\ 0 -+ rp E 1', so I' is undecid
able. [] 

The following result enables one to prove that some rather weak theories 
are undecidable. 

Proposition 15.14. Let .fR' be an effective expansion of a language.fR. Suppose 
I' is a theory in .fR, ~ is a theory in .fR', and I' U ~ is consistent. If I' is 
finitely axiomatizable and essentially undecidable, then ~ is undecidable. 

PROOF. Let 0 = {rp : rp is a sentence of .fR' and I' U ~ F rp}. Clearly 0 is a 
theory in .fR' which is an extension of r and a finite extension of ~. By 
15.10, 0 is essentially undecidable, so by 15.13, ~ is undecidable. 0 

In case we deal with definitional expansions, it is to be expected that we 
obtain complete equivalences between our notions for a theory and its 
expansion: 

Proposition 15.15. Let (1", .fR') be an effective definitional expansion of 
(I', .fR). Then: 

(;) I' is decidable iff 1" is decidable,' 
(ii) r is essentially undecidable iff 1" is essentially undecidable; 
(iii) r is inseparable iff 1" is inseparable; 
(iv) I' is finitely inseparable iff 1" is finitely inseparable. 

PROOF. Let the notation be as in 11.29 and 11.30. For any sentence rp of 
.P, by 11.31 we know that rp E I' iff rp E 1". Hence 1" decidable ~ I' decidable. 
By 11.30 we know that for any sentence", of .fR', we have'" E 1" iff "" E 1'; 
because the formation of "" is effective, I' decidable ~ 1" decidable. Thus 
(i) holds. 

The implication from left to right in (ii) is a special case of 15.10. Now 
assume that 1" is essentially undecidable, and I' ~ ~, where ~ is a consistent 
theory in .IL'. Let ~' be the theory in .fR' with axioms ~ U r'. Then ~' is a 
definitional expansion of ~; furthermore, since 1" ~ ~', it follows that ~' 
is undecidable. Hence by (i) of our present theorem, proved above, ~ is 
undecidable. 
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The implication from left to right in (iii) is immediate from the definitions 
involved. Now suppose r' is inseparable. Let B = ,?+*{tp : tp E Sent9", 
'tp E r'}, D = ,?+*{tp: tp E Sent9', .tp E r}. Thus we are given that ,?+*r' 
and B are effectively inseparable sets. Now by 11.30 and 11.31 we know that 
for any sentence tp of .fl/', tp E r' iff tp' E r, and ,?+tp E B iff ,?+tp' E D. Hence 
from 6.25 it follows that ,?+*r and D are effectively inseparable. Hence r 
is inseparable. 

For (iv), suppose r is finitely inseparable; thus ,?+*Thm9' and B = 
{tp: tp E Sent9', 'tp holds in some finite model of r} are effectively inseparable. 
As in the proof of 11.31 we see that any model of r can be expanded to a 
model of r'. Hence,? + *Thm9' £ ,? + *Thm9", and B £ {tp E Sent9": .tp holds 
in some finite model of r'}; it follows that r' is finitely inseparable. Finally, 
assume that r' is finitely inseparable. For each sentence tp of .fl/', let fl", 
be the set of all existence and uniqueness conditions 11.29(ii) for the new 
operation symbols occurring in tp. Let tp* = tp' (defined in the proof of 
11.30) if fl", = 0, and let it be /\ fl", -+ tp' if fl", -:f O. Furthermore, let 0'" 
be the set consisting of all definitions for the new symbols in tp. Note that 
by the proof of 11.30, 0'" 1= tp +-+ tp'. Now it suffices to prove 

(1) if tp E Sent9" and I=tp, then I=tp*; 

(2) if tp E Sent9" and 'tp holds in some finite model of r', then 
.tp* holds in some finite model of r. 

To prove (1), assume that tp E Sent9" and I=tp. To check that I=tp*, let ~ be 
any .fl/-structure which is a model of fl",. Obviously ~ can be expanded to 
an .fl/'-structure ~ which is a model of O",. Since I=tp and 0'" 1= tp +-+ tp', it 
follows that ~ 1= tp' and hence ~ 1= tp', as desired. To prove '(2), assume that 
tp E Sent9", and ~ 1= 'tp, where ~ is a finite model of r'. Then ~ t .fl/ is a 
model of fl", u r and of .tp', since r' 1= 'tp +-+ :"'tp', so ~ t .fl/ 1= .tp*. 0 

Next we consider the general notion of interpretation of one theory into 
another (11.43-11.46). 

Proposition 15.16. Let.fl/ and .fl/' be two languages, rand fl consistent 
theories in .fl/ and .fl/' respectively, and suppose that ~ is an effective inter
pretation of r in fl. Then: 

(i) r essentially undecidable ~ fl essentially undecidable. 
(ii) r inseparable ~ fl inseparable. 

(iii) Suppose also that for every model ([ of r there is a model ~ of fl 
such that ([ = ~.!~. Then r undecidable ~ fl undecidable. 

(iv) Suppose that for each finite model ([ of r there is a finite model ~ of 
fl such that ([ = ~.!~. Then fl finitely inseparable ~ fl finitely in
separable. 

PROOF. 

(i) Let fl' be any consistent theory in .fl/' which extends fl. Set r' = 
{tp E Sent9' : fl' 1= tp~}. Thus r £ r' since ~ is an interpretation of r in fl. 
Now r' is a theory in !f', for if r' 1= tp, then ° 1= tp for some finite subset e 
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of r', hence F/\ 0 ~ tp, F/\{if/a:.p E 0} ~ tp~ by 11.46, so Ll' F tp21 and 
tp E r'. r' is consistent because Ll' is. Therefore, r' is undecidable (since we 
assume that r is essentially undecidable). The formation of tp~ is recursive 
by 11.44, so Ll' is undecidable, as desired. 

(ii) The implication here is essentially a trivial consequence of 6.25. Let 
A = jl'Hr and B = jl'H{tp : tp E Sentz, ,tp E r}. Thus A and B are effec
tively inseparable. Correspondingly, let C = jl'HLl and D = jl'H{tp: 
tp E Sentz, ,tp ELl}. Note that enD = 0 since Ll is consistent. Now we 
define a function f: w ~ w: for any x E w, 

fx = 0 if x rf: jI'+*Sentz, 
fx =jI'+(jI'+-lX)~ if x EjI'HSentz. 

It is easily checked that A <;; f-uC and B <;; f- 1* D. Since f is recursive 
by 11.44, it follows that C and D are effectively inseparable, by 6.25. Thus 
Ll is inseparable. 

(iii) The added hypothesis implies, as we shall see, that for any sentence 
tp of .P, tp E r iff tp~ ELl; hence clearly Ll decidable implies r decidable. 
In fact, tp E r => tp~ E Ll even without the added hypothesis, by 11.46. Now 
assume that tp~ E Ll. Let (t be any model of r. By our added hypothesis, 
(t = ~.1~ for some model ~ of Ll. Thus ~ F tp~, so by 11.45, (t F tp. Hence 
r F tp and tp E r, as desired. 

(iv) We can prove this similarity to (ii); we just need to establish the 
following two results: 

(1) 

(2) 

for any sentence tp of .P, Ftp implies Ftp~; 

for any sentence tp of.p, if ,tp holds in some finite model of r, then 
(,tp)~ holds in some finite model of Ll. 

Now (1) is immediate from 11.46, since any syntactical 2-structure in 2' 
is an interpretation of Thmz in Thmz' (obviously). Condition (2) follows 
from our extra hypothesis for (iv) along with 11.45. 0 

The following variant of 15.16(iv) will be useful in Chapter 16. 

Proposition 15.17. Let 2 and 2' be two languages, and let rand Ll be 
consistent theories in 2 and 2' respectively. Assume that 2 has only 
finitely many operation symbols (with no restriction on the number of rela
tion symbols). Let ~ = (X,/, R, r') be an effective syntactical !Z'-structure 
in 2' such that r' is finite. Finally, suppose that for each finite model (t 
of r there is a finite model ~ of Ll u r' such that (t = ~r'~. Then r finitely 
inseparable => Llfinitely inseparable. 

PROOF. By virtue of 6.25 it suffices to establish the following: 

(1) 

(2) 
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To prove (1), assume that I=q:> and that ~ is an 2"-structure which is a model 
of 1\ r'. Then ~r'2l 1= q:>, so by 11.45, ~ 1= q:>2l, as desired in (1). 

To prove (2) let It be a finite model of r such that It 1= -'q:>. By hypoth
esis of our proposition let ~ be a finite model of Ll V r' such that It = ~r'2l. 
Thus by 11.45, ~ 1= -'q:>2l, as desired in (2). 0 

Connecting the Notions of Implicit Definability in 
Chapter 14 with the Undecidability Notions 

Theorem 15.18. Ifr is a theory in 2'n08 in which every recursive set is weakly 
syntactically definable, then r is undecidable. 

PROOF. Suppose r is decidable. Let 

A = {e: e is the G6del number of a formula,p having at most Vo 

free, and ,pee) rf: f}. 

Clearly A is recursive, by the hypothesis that r is decidable. Let q:> weakly 
syntactically define A in r, and set e = ?+q:>. Then 

q:>(e) E r iff e E A (since q:> weakly syntactically defines A) 
iff q:>(e) rf: r (by definition of A) 

This is a contradiction. o 
The above proof constitutes a typical application of the diagonal method 

in the theory of undecidable theories. To see the idea more clearly, suppose 
r is a theory which has ~ = <w, +, ·,0,0) as a model. Then if q:> syntac
tically defines A, it follows by 14.14 that the formula q:> actually elementarily 
defines A in ~, in the sense of 11.7. Hence q:>(e) holds in ~ iff e E A, i.e., iff 
q:>(e) rf: r. Thus, in a sense, q:>(e) asserts of itself that it is not in r. (Holding 
in ~ can be loosely identified with intuitive truth.) 

Theorem 15.8 of course yields, along with our results of Chapter 14, 
that the theories R, Q, P and N are undecidable. We shall save a formal 
statement of this and various consequences and generalizations until the 
next section. 

Theorem 15.19. Let r be a consistent theory in 2'n08 with R ~ r. Then r 
is inseparable. 

PROOF. By 6.24, let A and B be r.e. but effectively inseparable sets of inte
gers. Since A and Bare nonrecursive, they are nonempty. Hence we can write 
A = Rngf and B = Rng g for suitable recursive functions f and g. Note 
that every recursive function is syntactically definable in r, since this is 
true of R by 14.11. Say f and g are syntactically defined by formulas q:>, ,p 
respectively in r. Let X be the following formula having at most Vo free: 

3v1{q:>(v1 , Vo) A VV2[V2 :S VI -+ -',p(V2' Vo)]}. 
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Let hx = #+X(x) for each x E w. Clearly h is a recursive function. To show 
that r is inseparable, it suffices by 6.25 to show that A s;: h -1*# +* rand 
B s;: h-1*y+{g> E Sent: 'g> En. That is, it suffices to prove the following 
two statements: 

(1) 

(2) 

if x E A, then r 1= X(x); 

if x E B, then r 1= 'X(x). 

First let x E A, and choose y so that Iy = x. Then, since g> syntactically 
defines I in r, 

(3) r 1= g>(y, x). 

Also, since R s;: r we have 

(4) 

Since A and B are disjoint, x rf: B. Hence Vi E w (gi =f. x), so, again since 
R s;: r, 

(5) r 1= .f1(gi) = x for all i E w. 

On the other hand, by the second condition of 14.1 for .p syntactically defin
ing g we have 

r 1= .p(i, x) ~ x = f1(gi) for all i E w. 

Putting this together with (4) and (5) we easily obtain 

r 1= V2 ~ Y ~ • .p(V2' x). 

Hence using (3) we easily obtain r 1= X(x), as desired. 

Now let x E B, and choose y so that gy = x. Since .p syntactically defines 
gin r, 

(6) r 1= .p(y, x). 

Also note that x 1= A, since A (\ B = O. Hence Ii =f. x for all i E w, and we 
easily infer from the second condition of g> syntactically defining I in 14.1 
that 

(7) r 1= 'g>(i, x) for all i E w. 

Now let (J be the formula 

g>(Vl • x) A V'V2[V2 ~ Vl ~ • .p(V2' x)]. 

Clearly it suffices now to show that r 1= .(J. First note since R s;: r that 

r 1= Vl :S Y ~ VI = 0 v··· V Vl = y. 
Hence we clearly have 

r 1= (J A VI :S Y ~ g>(O, x) v ... v g>(y, x). 
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Because of (7) we then infer that 

(8) 

On the other hand, we have 

so by (6), 

(9) 

r 1= y S; Vl A 0 -+ -..p(y, x), 

r 1= Y S Vl -+ -.0. 

Now R s r implies that r 1= Vl :S Y v Y S; V1 • Hence by (8) and (9) we 
have r 1= -.0, as desired. 0 

The notion of spectral representability will be related with our undecida
bility notions in the next chapter. We conclude this chapter with our first 
important results concerning incompleteness. The following fixed-point, or 
self-reference theorem is basic for the remaining results in this chapter. 

Theorem 15.20. Let r be a theory in .fR nos in which every unary recursive 
function is syntactically definable, and let cp be a formula of .fRnos with 
Fvcp S {vol. Then there is a sentence .p of .fRnos such that r 1= cp(A#+.p) +-+.p. 

PROOF. For any x E w, let 

fx = #+.p(x) if x = #+.p for some formula .p, 
fx = 0 otherwise. 

Thus f is recursive. By hypothesis, let X be a formula of .fR nos with Fvx S 

{Vo, V1} such that X syntactically defines f Let 8 be the formula 
3Vl[CP(Vl) A X(VO,Vl)], and let .p be the sentence 8(A#+8). Thus f#+8 = 
# + 8(A# + 8) = # +.p. Hence by choice of X we have 

r 1= x(A#+ 8, A#+.p). 

Hence it obviously follows that r 1= cp(A#+.p) -+ 8(A#+ 8), i.e., r 1= cp(A#+.p) 
-+.p. On the other hand, by the second condition in 14.1 we have 

r 1= x(A#+8, Vl) -+ Vl = A#+.p, 

and hence 

r 1= cp(V1) A x(A#+ 8, Vl) -+ cp(A#+.p), 

so r 1= .p -+ cp(A#+.p). o 
As a simple application of 15.20 let us show that Peano arithmetic, theory 

P of Chapter 14, is incomplete. This result is considerably generalized in 
Chapter 16, so we shall not state it formally. On the other hand, it is per
haps the most interesting result so far proved in this book, and its proof is 
quite direct compared to our more general results. Within P it is possible to 
formalize essentially all of the elementary arguments found in number 
theory books; no exceptions are known to this author, so it is surprising 
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that there do exist sentences of 2 nos which are neither provable nor dis
provable in P. From the viewpoint of the philosophy of mathematics the 
incompleteness of P is a very major fact, because the proof clearly works 
for almost any mathematical discipline. The argument that P is incomplete 
is based just on these previously established facts in addition to 15.20: 

(1) 
All recursive functions and relations are syntactically definable 
in P. 

This was proved in 14.11, 14.2 and 14.19. 

(2) All sentences of P are true in <w, +, ., <i, 0). 

(3) P is axiomatizable by a recursive set ~ of axioms. 

The conditions (2) and (3) are obvious from the definition of P. Now we 
prove that P is incomplete. Let R = {(x, y) : x is the G6del number of a 
~-proof of a formula with G6del number y}. By 10.27, R is recursive. 
Hence by (1) let X be a formula with Fvx S; {VO, VI} which syntactically 
defines R in P. Let cp be the formula -,3vIx(VI, vo). Thus Fvcp S; {Vo}. We 
now apply 15.20 to obtain a sentence", such that P 1= cp(Il.?+"') _ "'. We 
claim that P If '" and P If -,,,,. First suppose that P I- "'. Let (J be a ~-proof 
of "'. Then (?+ + (J, ?+"') E R, so P I- x(Il.?+ + (J, Il.?+",), so P 1= 3vIX(VI, Il.?+",) 
and P 1= -'cp(Il.?+",). This contradicts the fact that P 1= cp(Il.?+"') _ "'. Second, 
suppose that PI- -,,,,. Then P 1= -'cp(Il.?+",), i.e., P 1= 3VIX(VI, Il.? + "'). By (2), 
3VIX(VI, Il.?+",) is true in ~ = <w, +, ., <i, 0), so X(x, Il.?+",) is true in ~ 
for some x E w. It follows that (x, ?+"') E R, since otherwise P 1= -'x(x, Il.?+",) 
and -'X(x, Il.?+",) would be true in ~ by (2). Thus, by the definition of R, 
P I- "', contradicting the first part of this proof. 

Note that'" holds in <w, +, ., <i, 0) iff cp(Il.?+"') holds there, i.e., as is 
easily seen, iff cp(Il.?+"') is not provable in P, i.e., iff P If "'. (Thus", does 
hold in <w, +, ., <i, 0), and hence is intuitively true.) Thus this proof is 
related to the informal paradox of the man who says "I am now lying"; 
it is impossible that he is lying or that he is telling the truth. Of course the 
proof can also be considered as another instance of Cantor's diagonal 
method. 

As another application of 15.20 we give the following important result 
which shows the undefinability o/the true statements o/number theory. 

Theorem 15.21. (Tarski). Let ~ = <w, +, ., <i, 0) and let X = {?+'" : '" is a 
sentence 0/2nos and ~ 1= "'}. Then X is not elementarily definable in ~. 

PROOF. Suppose X is elementarily definable by a formula'cp in ~. Thus 
Fvcp S; {vo} and X = Icp'U. By 15.20 choose a sentence '" such that R 1= 

-,cp(Il.?+"') _ "'. Since ~ is a model of R, it follows that ~ 1= -'cp(Il.?+",) _ "'. 
But then we reach a contradiction in trying to decide whether ~ 1= '" or not: 
if ~ 1= "', i.e., ff+'" E X, then ~ 1= -'cp(Il.?+",) and hence ~ 1= -'cp[?+"'], so 
?+'" rf: X, contradiction. Also, ~ II '" implies ?+'" rf: X, hence ~ 1= -'cp[,+",], 
~ 1= -,cp(Il.?+"') and ~ 1= "', which is absurd, as shown above. 0 
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Note by 14.16 and 14.17 that 15.21 really says that.? +*N is not in the 
arithmetical hierarchy. In particular, it is not recursive, not r.e., not the 
complement of an r.e. set, etc. 
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EXERCISES 

15.22. Give an example of a decidable theory with denumerably many decid
able extensions. Every theory has at most countably many decidable 
extensions. 

15.23. Let 2 be a language with unary relation symbols Rm, mEW, but no 
other nonlogical constants. Show that r = {<p E Sent2 : F<p} is decidable 
but has exp N:o complete undecidable extensions. Hint: use elimination 
of quantifiers, as with the pure theory of equality. 

15.24. (See the comments following 5.7.) Let 2 be a language with a single 
binary relation symbol R, and let r be the theory in 2 with the axiom 
{VVOVVI(VO = VI)}' Show that r is decidable. 

15.25. (See the comments following 5.9.) Let 2 be a language with two unary 
relation symbols P and Q. Let A be an r.e. set which is not recursive, 
say A = Rng I with I recursive. Let r be the theory in 2 such that 
Q( F r iff the following conditions hold: 

(a) P~ (') Q~ = 0; 
(b) P~uQ~=A; 

(c) if IP~I = m < w, then IQ~I = 1m. 
Show that r is decidable but that #,+*{<p E Sent2 : <p holds in all finite 
models of Q(} is nonrecursive. 

15.26. Let 2' be an effective expansion of a language 2 obtained by adding 
only new individual constants, and let rand r' be theories in 2 and 
2' respectively such that r' = {<p E Sent2 : r F <p}. Show: 

(1) r undecidable ~ r' undecidable; 
(2) r essentially undecidable ~ r' essentially undecidable; 
(3) r inseparable ~ r' inseparable; 
(4) r finitely inseparable ~ r' finitely inseparable. 
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15.27. There are theories r, ~ with r £ ~, ~ inseparable, r decidable. Hint: 
take 2 and r as in 15.23. Let ~ have the following axioms: 

{3voRmvo: mEA} u {...,3voRmvo : mE B}, 

where A and B are effectively inseparable. 

15.28'. Show in detail that the sentence", constructed following 15.20, such 
that P fI '" and P fI ...,'" is true in (A, +, ., <I, 0). 

15.29. Suppose that r is an w-consistent recursively axiomatizable theory in 
2 nos in which every recursive function and relation is syntactically 
definable. Show that r is incomplete. 

15.30. If r is finitely axiomatizable and has a finite model, then r is not essen
tially undecidable. 

15.31. Any theory with only finitely many complete and decidable extensions 
is decidable. 

15.32'. If r is finitely inseparable and finitely axiomatizable, then {? + cp : cp is a 
sentence which holds in every finite model of r} is not r.e. 
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Corresponding to our list in Chapter 13 of decidable theories we begin this 
section with a list of undecidable theories. As we have previously indicated, 
most undecidable theories satisfy one of the two stronger properties of 
inseparability or finite inseparability, and we shall indicate these properties 
in the table below. 

Some undecidable theories 

Theory Insepar- Finitely Proved by In this 
able? insepar- book 

able? 

1. Th,!l', where No Yes Trachtenbrot, 1953 pp. 293-
(a) !£ has at least 296 
one relation sym-
bol of rank> 1, or 
(b) !£ has at least 
two unary opera-
tion symbols or 
(c) !£ has at least 
one operation sym-
bol of rank> 1. 

2. Theories R, Q, P, Yes No Tarski, Mostowski, p.280 
N Robinson, 1949 

3. Theory of (1:, +, .) Yes No Tarski, Mostowski, p.282 
1949 

4. Theory of (0, +, .) Yes No J. Robinson, 1949 
5. Theory of groups No Yes Mal'cev, 1961 
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Theory Insepar- Finitely Proved by In the 
able? insepar- book 

able? 

6. Theory of semi- No Yes Mal'cev, 1961 
groups 

7. Theory of rings No Yes Mal'cev, 1961 
8. Theory of fields No No Undecidable: 

J. Robinson, 1949 
9. Theory of ordered No No Undecidable: 

fields J. Robinson, 1949 
10. Theory of lattices No Yes Taitslin, 1961 p.297 
11. Theory of distribu- No Yes Ershov, Taitslin, 

tive lattices 1963 
12. Theory of partial No Yes Taitslin, 1962 p.297 

orderings 
13. Theory of two No Yes Lavrov, 1963 p.295 

equivalence rela-
tions 

14. Theory of two No Yes Lavrov, 1963 
linear orders 

15. Set theory ZF Yes No Tarski, 1949 p.290 

In the first section of this chapter we shall be concerned with proving 
various theories inseparable, while in the second section we deal with finitely 
inseparable theories. 

Immediately from 15.19 we have 

Theorem 16.1. Theories R, Q, P, and N are inseparable, and hence essentially 
undecidable and undecidable. 

By 15.3 we then obtain: 

Theorem 16.2. The theories R, Q, and P, as well as any of their recursively 
axiomatizable consistent extensions, are incomplete. 

Note that, trivially, R, Q, P and N are not finitely inseparable, since they 
do not have finite models. Less trivial examples of inseparable but not 
finitely inseparable theories can be found in the paper of Dyson mentioned 
at the end of Chapter 15. 

Now we shall show how Proposition 15.16 of the last chapter can be 
used to take care of #3 and #15 in the above table. Intuitively speaking it is 
a matter of finding definitions for w, +, ., <1 and 0 in the theory of (Z, +, .) 
(for #3), and in set theory (for #15). Proceeding to the first task, we first 
need the following four purely number-theoretic facts, which are well known 
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and essentially give a definition of w in (2, +, .). The first is purely com
putational and easily checked: 

Lemma 16.3. For any integers Xl> X2, X3, X4, Yl, Y2, Y3, Y4 we have 

(X! + x~ + x5 + xD' (Y! + y~ + Y5 + yD 
= (XIYI + X2Y2 + X3Y3 + X4Y4)2 

+ (XIY2 - X2Yl + X3Y4 - X4Y3)2 
+ (X1 Y3 - X3Yl + X4Y2 - X2Y4)2 
+ (XIY4 - X4Yl + X2Y3 - X3Y2)2. 

Lemma 16.4. For each prime p > 2 there is an m with 1 :-:::; m < p such that 
mp is a sum of four squares. 

PROOF. The members of {X2: 0 :-:::; X :-:::; (p - 1)/2} are pairwise incon
gruent mod p, as are the members of {-I - y2 : 0 :-:::; Y :-:::; (p - 1)/2}. 
There are p + 1 numbers in the union of these two sets, so there are x and 
Y such that 0 :-:::; x, Y :-:::; (p - 1)/2 and X2 == -1 - y2 (modp). Say 

X2 + 1 + y2 = mp. 

Thus 1 :-:::; m. Since x, Y :-:::; (p - 1 )/2, we have 

so m < p, 

as desired. o 
Lemma 16.5. For any positive prime p, p is a sum of four squares. 

PROOF. Obvious for p = 2 (2 = 1 + 1 + 0 + 0). Suppose p > 2. Let m 
be the smallest positive integer such that mp is a sum of four squares. Thus 
1 :-:::; m < p by 16.4. Say mp = X! + x~ + x5 + x~. Suppose m > 1; we 
shall get a contradiction. 

Now 

(1) m is odd. 

For, suppose m is even. Then xr + x~ + x~ + x~ is even, so either (1) all 
four of Xl, X2, X3, X4 are even, (2) two are even, two are odd, or (3) all four 
are odd. In case (2) we may assume that Xl and X2 are even. Then in any 
of the cases (1 )-(3), 

(m/2)p = [(Xl + x2)/2]2 + [(Xl - x2)/2]2 
+ [(X3 + x4)/2]2 + [(X3 - x4)/2]2, 

and all the entries [ ] on the right are integers. This contradicts the 
minimality of m. Thus (1) holds. 

Now the members of T = {y: -em - 1)/2 :-:::; Y :-:::; (m - 1)/2} are pair
wise incongruent mod m, and ITI = m. Hence there exist Yi E T such that 
Xi == Yi (mod m), i = 1, ... ,4. Thus 

(mod m), 
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say 

(2) Yt + y~ + Y5 + y~ = mn. 

Then n =1= 0, since otherwise Yi = 0 for each i = 1, ... ,4 and mJxi each 
i = 1, ... ,4, so m 2JxI + ... + x~ = mp hence mJp, contradiction. Also, 
mn < 4(m/2)2 = m 2, so n < m. Now (mn)(mp) is a sum of four squares by 
Lemma 16.3 and as is easily seen, each expression ( ) on the right 
in 16.3 is divisible by m. Hence np is a sum of four squares. But 0 < n < m, 
contradiction. 0 

Theorem 16.6 (LaGrange). Let a be an integer. The following are equivalent: 

(i) a E w, 

(ii) a is a sum of four squares. 

Using this celebrated theorem of LaGrange we can take care of the theory 
of (Z, +, .): 

Theorem 16.7. Let.P be a language appropriate for Q! = (Z, +, .), and let 
r be the set of all sentences of.P which hold in Q!. Then r is inseparable. 

PROOF. As mentioned above, we apply 15.16 to prove this theorem; in 
fact, we shall define a certain effective interpretation of N into a theory 
which is a definitional expansion of .P. Let 'p' be a definitional expansion 
of .P obtained by adjoining two operation symbols s (unary) and 0 (nul
lary). Let ~ be the definitional expansion of r in 'p' with the following 
definitions: 

V'Va(O = Va ..... Va + Va = va), 

V'VV'VI{SVa = VI ..... 3V2[ '(V2 + V2 = V2) A V2·V2 = V:,. A Va + V2 = VI]}' 

Now we define a syntactical .Pnos-structure <;B = (f{J,f, R, ~) in 'p'. Let f{J 

be the formula 

(see 11.43). Setf+ = +,f· = ·,fs = s,fO = 0, and let R = 0 (empty set). 
Clearly this does define a syntactical .Pnos-structure in 'p'. Let ~ be the 
natural expansion of Q! to an 'p' -structure (see the proof of 11.31; the new 
symbols receive the denotions indicated in their definitions), and let ~ = 

(w, +, " <1, 0). Clearly ~t.iB = ~ (see 11.43), and ~ = {f{J E Sentz : ~ 1= f{J}, 
so by 11.45, ~ 1= f{JiB for each f{J E N. Hence <;B is an interpretation of N in 
~. By 15.16, ~ is inseparable, so by 15.15, r is inseparable. 0 

Now we want to accomplish a similar thing for set theory. Actually we 
shall show that the very simple set theory of the following definition is in
separable: 
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Definition 16.8. Let !l'set be a fixed first-order language with a single non
logical constant, a binary relation symbol e. Let S be the theory in ~et 
with the following axioms: 

(1) 
(2) 
(3) 

3VOVVI ..., (VI e Vo), 
VVOVVI[VV2(V2 e Vo ++ V2 e VI) -+ Vo = vd, 

VVoVvI3v2VV3(V3 e V2 ++ V3 e Vo v V3 = VI). 

We shall show that the theory Q is interpretable in a definitional extension 
of S. To this end we must come up with definitions for w, +, ., 0 and ". 
We do this by a series of definitional expansions of S. In each case it will 
be evident that we do have a definitional expansion. The notations intro
duced here will not be used beyond our treatment of set theory. 

Definition 16.9. ~ is a definitional expansion of ~et with the following 
new symbols and axioms: 

(i) 0, an individual constant. New axiom: 

Vvo ..., (vo eO). 

(ii) Op, a binary operation symbol. New axiom: 

VVOVVIVV2[V2 e Op(vo, VI) ++ V2 e Vo v V2 = vd. 

(iii) { }, a unary operation symbol. New axiom: 

Vvo[ {vol = Op(O, VO)]. 

(iv) {, }, a binary operation symbol. New axiom: 

VVOVvl [ {Vo, VI} = Ope {Vol, VI)]. 

(V) U, a unary operation symbol. New axiom: 

Vvo[Uvo = Op(vo, Vo)]. 

(vi) ~,a binary relation symbol. New axiom: 

VVoVvdvo ~ VI ++ VV2(V2 e Vo -+ V2 e VI)]. 

(vii) Trans, a unary relation symbol. New axiom: 

VVo[Trans Vo ++ VVI(VI e Vo -+ VI ~ VO)]. 

(viii) J, a unary relation symbol. New axiom: 

Vvo{Jvo ++ VVI[VI ~ Vo --+ VV23v3VV4(V4 e V3 ++ V4 e VI A V4 e V2)]}. 

(ix) n, a ternary operation symbol. New axiom: 

VVOVVIVV2VV3{V3 = Vo n v.VI 
++ [JV2 A Vo ~ V2 A VViV4 e V3 ++ v4 e Vo A V4 e VI)] 

v [( ...,Jv2 V ""Vo ~ V2) A V3 = On. 
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There are more definitions to come, but first a few remarks on those al
ready made. Intuitively 0 is the empty set; Op(x, y) = xU {y}; Ux = 
x U {x}. Trans x means that the transitive law for E holds with x on the 
right side: Z EyE X implies Z E x. The statement Jx means that the inter
section y (\ Z can be formed whenever y s; x. Finally y "x Z is the inter
section of y and z if Jx and y S; x, otherwise it is O. Note that already several 
complications arise because we cannot in general form the union and inter
section of sets. Elementary facts such as those already mentioned will be 
used without proof. We formulate explicitly only the properties which are 
harder to prove. It is convenient in the proofs to argue informally within 
the given languages, and to mix logical and informal notation. 

Lemma 16.11. 2'1 F Jvo ~ JOp(vo, v1). 

PROOF. Assume that Jx, y is arbitrary, Z = Op(x, y), w s; z, and v is 
arbitrary; we want to show that w "z v has its usual meaning, i.e., that 
3uVs(s E U +-+ SEW and S E v). Since Jx, both x "x wand (x "x w) "x v 
have their usual meanings. If y 1: w or y 1: v, then (x "x w) "x v is the 
desired set u. If yEw and y E v, then Op«x "'x w) "x v, y) can be taken 
for u. 0 

Definition 16.12. 2'2 is a definitional expansion of 2'1 with the following 
new symbols and axioms: 

(i) C, a unary relation symbol. New axiom: 

VVo[Cvo +-+ VL\3v2VV3(V3 e V2 +-+ V3 e Vo A. '(V3 e v1»]. 
(ii) ~,a binary operation symbol. New axiom: 

VVOVV1VV2{V2 = Vo ~ V1 +-+ [Cvo A VV3(V3 e V2 
+-+ V3 e Vo A '(V3 e V1»] v [.Cvo A V2 = OJ}. 

(iii) B, a unary relation symbol. New axiom: 

VVo(Bvo +-+ Jvo A CVo). 

Of course Cx means that the operation x ~ y can always be performed 
in its usual sense. If Cx, we let x ~ y have its usual sense, while x ~ y = 0 
if Cx fails to hold. The statement Bx means that x admits both of the Boolean 
operations " and ~. 

Lemma 16.13. 2'2 F Bvo A v1 S;; Vo ~ Bv1. 

PROOF. Assume that Bx and y S; x. Thus Jx and Cx. Hence by 16.10, Jy. 
To check that Cy, let z be given; we want to show that y ~ z has its usual 
sense. But clearly Vw(w E y "x (x ~ z) iff WE Y and W 1: z), since Jx, Cx, 
and y S; x. 0 
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Lemma 16.14. .9"2 F CVO --+ COp(VO' VI)' 

PROOF. Assume that Cx, y is arbitrary, z = Op(x, y), and w is arbitrary; 
we want to show that z - w has its usual sense. If yEW, then Vu(u E x - W 

iff U E Z and u rf: w), since Cx. If y rf: w, then Vu(u E Op(x - W, y) iff U E Z 

and u rf: w). D 

Definition 16.16. .9"3 is a definitional expansion of .9"2 with the following 
new symbols and axioms: 

(i) W, a unary relation symbol. New axiom: 

'v'vo(Wvo _ 'v'VI[VI e Vo --+ ..,3V2(VI e V2 A V2 e VI)] 

A 'v'VI{VI S;; Vo A "'(VI = 0) --+ 3V2[V2 e VI A 'v'V3(V3 e VI 

--+ V2 e V3 v V2 = V3)]} A 'v'VI{VI S;; Vo A "'(VI = 0) 
--+ 3v2[v2 e VI A 'v'V3(V3 e VI --+ V3 e V2 v V3 = V2)]})' 

(ii) n, a unary relation symbol. New axiom: 

The statement W x encodes several properties of x: each element y of x 
is regular, in that y E Z E Y is ruled out; each nonempty subset of x has a 
least element under the relation E, and each nonempty subset of x has a 
greatest element under E. The statement nx is a conventional set-theoretical 
definition for x being a natural number, with a few redundancies because of 
our very weak axioms. It is routine to check the following two lemmas. 

Lemma 16.17. .9"3 F no. 

Lemma 16.19. .9"3 F Jvo A Wvo --+ WUvo. 

PROOF. Assume that Jx and Wx. To check WUx, we consider separately 
the three conjuncts in the definition of W. If y E Ux, then y E X or y = x. 
In the first case, -,3z(y E Z E y) since Wx. In the second case, simply note 
that x E Z E x would still contradict Wx. Thus the first conjunct for WUx 
holds. For both of the other conjuncts we assume that y S Ux., If x rf: y, 
then y s x and the desired result follows in both cases because Wx. 

Now assume that x E y. To check the second conjunct, note that it is 
obvious if y = {x}, while if y ¥- {x}, then x "x Y has its usual meaning 
(since Jx), and 0 ¥- x "x Y S x, so since Wx, we may choose Z E x "x Y 
so that Vw E x "x Y (z E W V Z = w). Thus Z E y, and if WE Y then WE x 
or W = x, hence WE x "x Y or W = x, and in either case Z E W V Z = W. 
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Thus the second conjunct holds. For the third conjunct, since y ~ Ux we 
have Z E x or Z = x for any element Z of y. 0 

Lemma 16.20. .!l'3 F nvo ++ nUvo. 

PROOF. First assume nx; thus Bx, Trans x, Vy E x(Trans y), and W x. 
Hence BUx and WUx by 16.15 and 16.19. Suppose Z EyE Ux. Then Z EyE X 

or Z E Y = x, so Z E x since Trans x. Thus Trans Ux. If y E Ux, then y E X 

or y = x, so Trans y is clear. Thus nux. 
Now assume nux, which means that BUx, Trans Ux, Vy E Ux(Trans y), 

and WUx. The condition Vy E Ux(Trans y) means that Trans x and Vy E 
x(Transy). And we have Bx and Wx by 16.13 and 16.18. 0 

Lemma 16.21. .!l'3 F Trans Vo A "'(Vo e Vo) A UVo = UVI ~ Vo = VI' 

PROOF. Assume that Trans x, x 1= x, and Ux = Uy. Take any Z E x. Then 
Z E Ux = Uy, so Z E Y or Z = y; we shall show that Z = Y is impossible. 
Assume Z = y; thus y E x. Since x E Ux, we have x E Uy and hence x E y 
or x = y. Since Trans x, it follows that x E x, contradiction. Thus Z = Y is 
impossible, so by the arbitrariness of z, x ~ y. The converse, y ~ x, is 
similar, so x = y by 16.8(2). 0 

Lemma 16.22. ~ F nvo A VI e Vo ~ nv l • 

PROOF. Assume nx and y e x. Since Trans x, it follows that y ~ x. Thus 
Wy by 16.18, and By by 16.13. Clearly Trans y. Ifz E y, then Z E x since Trans 
x, and hence Trans z. Thus ny. 0 

Lemma 16.23. .!l'3 F Trans Vo A Jvo A Wvo A ..,(vo = 0) ~ 3VI(VO = Uvl ). 

PROOF. Assume Trans x, Jx, Wx and x =f. O. Since Wx, choose y E x so 
that Vw E x(w E y or W = y). We shall show that x = Uy; the inclusion 
x ~ Uy has just been mentioned. If WE y, then WE x since Trans x. Also, 
y E x, so Uy ~ x. 0 

Definition 16.24. .!l'4 is a definitional expansion of .!l' 3 with s as a new unary 
operation symbol and the following new axiom: 

VVOVVI[VI = SVo ++ (nvo A VI = UVo) v (..,nvo A VI = vo)]. 

For technical reasons we shall interpret s of .!l' nos by s in .!l' 4 rather than 
by the more natural symbol U. This is really important only when we get 
to the axioms involving + and • 

Lemma 16.25. ~ F SVo = SVI ~ Vo = VI' 

PROOF. Assume that sx = sy. If nx or ny, then nx and ny by 16.24 and 
16.20, and hence x = y by 16.21. If neither nx nor ny, then x = y by 
16.24. 0 
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Lemma 16.26. ~ 1= ...,0 = SVo. 

PROOF. If nx, then sx = Ux i= 0 by 16.24, since x E Ux. If (not nx), then 
sx = x, and x i= 0 since no by 16.17. 0 

Lemma 16.27. ~ 1= ""Vo = 0 -7 3vl(vO = Svl). 

PROOF. Assume that x i= O. If nx, the desired conclusion is clear by 16.23 
and 16.20. If (not nx), then x = SX. 0 

Definition 16.28. 2'5 is a definitional expansion of 2'4 with the following 
new symbols and axioms: 

(i) (, ), a binary operation symbol. New axiom: 

'v'VO'v'vl[(VO, Vl) = {{Vo}, {Vo, vd}]' 

(ii) Rln, a unary relation symbol. New axiom: 

'v'vo(Rln Vo +-+ 'v'Vl{Vl E Vo -7 3V23va[Vl = (V2' va)]}). 

(iii) Fen, a unary relation symbol. New axiom: 

'v'vo{Fenvo +-+ RInvo A 'v'Vl'v'V2'v'Va[(Vl, V2) E Vo 
A (Vu Va) E Vo -7 V2 = Va]}. 

(iv) Dmn, a binary relation symbol. New axiom: 

'v'vo'v'vl(Dmn(vo, Vl) +-+ 'v'V2{V2 E Vl +-+ 3Va[(V2, va) E Vo]}). 

(v) D, a unary relation symbol. New axiom: 

'v'vo{Dvo +-+ 'v'Vl[Vl S;; Vo -7 3v2Dmn(vH V2)]}' 

The following lemma has its usual proof: 

Lemma 16.30. 2'5 1= Bvo A Dvo +-+ BOp(vo, Vl) A DOp(vo, Vl)' 

PROOF. Assume that Bx and Dx, while y is arbitrary. Thus BOp(x, y) by 
16.15. To check DOp(x,y), let z~ Op(x,y). Choose w so that Dmn(x "xZ, w); 
this is possible since Dx; recall that x "x z has its usual meaning since Bx. 
If y 1= z; then x "x z = z and we are through. If y E z but y is not an ordered 
pair, then clearly Dmn(z, w). Finally, if y E Z and y = (u, v), then 
Dmn(z, Op(w, u». The converse is clear. 0 

Definition 16.31. 2'6 is a definitional expansion of 2'5 with a new ternary 
relation symbol a and the following new axiom: 

'v'vO'v'vl'v'v2(a(vO, Vl, V2) +-+ nvo A nVl A nV2 
A 3va{Fenva A Dmn(va, UVl) A (0, Vo) E Va 

A 'v'V4'v'V5[(V4, V5) E Va A V4 E Vl -7 (UV4' Uv5) EVa] 
A (Vu V2) E Va A BVa A DVa})· 
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Lemma 16.32. £'6 F QVO ~ a(VO, 0, VO). 

PROOF. Assume that Qx. Then {CO, x)} is easily seen to satisfy the neces
sary conditions on V3 in 16.31. D 

Lemma 16.33. £'6 F a(vo, VI, V2) A a(vo, VI, v3) ~ V2 = V3. 

PROOF. Assume that a(x, y, z) and a(x, y, w). Let f and g be the functions 
mentioned in a(x, y, z) and a(x, y, w) respectively. Now we aim to prove 

(1) 

Note that f ()f g has its usual meaning, since Jf follows from our choice 
of f. To prove (1) choose t so that Dmn(f ()f g, t); this is possible because 
Dfandf()rg sf. Since Dmn(J, Uy) andf()rg sJ, it is clear that t S Uy. 
Note that Uy ~ t has its usual meaning, since QUy by 16.20. It now suffices 
to show that Uy ~ t = o. Assume that Uy ~ t -# O. We may choose U E 
Uy ~ t so that U E v or U = v for any V E Uy ~ t. From 16.22 we infer that 
Qu. Clearly 0 E t, so U -# O. Hence by 16.23 there is an r with u = Ur. Note 
that Qr by 16.20. Now we claim 

(2) r Ey. 

For, r E U E Uy, so (2) is clear since Qy. Now r cannot be in Uy '" t, since 
otherwise U E r or U = r, which along with r E U contradicts Qu. Hence from 
(2) we infer that rEt. By our choice of t we may then pick q so that (r, q) E 
f ()f g. Since r E y by (2), it follows from the definition of a that also 
(Ur, Uq) Ef ()f q. Thus u = Ur E t, contradiction. Thus Uy ~ t = 0 after 
all, and (1) is established. 

Since Dmn(J, Uy) and Dmn(g, Uy) also, it follows easily from (1) that 
f=f()fg = g. Hence z =fy = gy = w, as desired. D 

Lemma 16.34. ~ F a(vo, VI, V2) ~ a(vo, Uvl , Uv2). 

PROOF. Assume a(x, y, z), and letfbe the function mentioned in a(x, y, z). 
Then g = Op(J, (Uy, Uz)) shows that a(x, Uy, Uz), making use of 16.20 
and 16.30. D 

Lemma 16.35. £'6 F a(vo, Uvl , V2) ~ 3V3[V2 = UV3 A a(vo, VI, V3 )]. 

PROOF. Assume that a(x, Uy, z), and let f be the function mentioned in 
a(x, Uy, z). Since y E UUy and Dmn(J, UUy), we can choose w so that 
(y, w) Ef. Then (Uy, Uw) Ef also. But also (Uy, z) EJ, so from Fenf we 
infer that z = Uw. Let g = f ~ {(Uy, z)}; here ~ has its usual meaning 
since Bf. Thus f = Op(g, (Uy, z)), so Bg and Dg by 16.30. 

It is easily seen, then, that g establishes a(x, y, w). 0 

Definition 16.36. £'7 is a definitional expansion of £'6 with the following 
new symbols and axioms: 
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(0 1, an individual constant. New axiom: 

1 = UO. 

(ii) +, a binary operation symbol. New axiom: 

VVOVVlVV2{VO + Vl = V2 +-+ a(vo, Vl, V2) 
v [.3v2a(vO, Vb V2) A nvo A V2 = {I}] 

v [.3V2a(Vo, Vb V2) A .nvo A V2 = Vo]}. 

Lemma 16.37. .It'7 F .n{l}. 

PROOF. We have OE 1 E{I} but 0rt{I}, so Trans{1} is false. Hence n{l} 
does not hold. D 

Now we can take care of two further axioms of Q. 

Lemma 16.38. .It'7 F Vo + 0 = Vo. 

PROOF. Let x be given. If nx, then a(x, 0, x) by 16.32, so x + ° = x. If 
nx fails, then there is no z with a(x, 0, z), and hence x + ° = x is clear 
from 16.36(ii). D 

Lemma 16.39. !l'.r F Vo + SVl = s(vo + Vl)' 

PROOF. Let x and y be given. If not nx, then x + sy = x and 
sex + y) = x. So assume that nx. If not ny, then sy = y and for no z 
do we have a(x, y, z), so x + sy = {I}, x + y = {I}, sex + y) = {I} (using 
16.37), as desired. So assume that ny. If not 3za(x, y, z), then by 16.35 not 
3za(x, Uy, z), so x + sy = {I} = sex + y). Finally, assume that a(x, y, z). 
Thus a(x, Uy, Uz) by 16.34 and hence x + sy = x + Uy = Uz = U(x + y) 
= sex + y). D 

Definition 16.40. .It's is a definitional expansion of .It'7 with a new ternary 
relation symbol 7t and the following new axiom: 

VVOVVlVV2[7t(VO, Vl, V2) +-+ nvo A nVl A 3va{Fcnva A BVa 
A DVa A Dmn(va, Uvl) A (0,0) e Va A Vv4VVS [(V4, VS) e Va 

A V4 e Vl ~ (UV4' Vs + Vo) e Va] A (VB V2) eVa}]. 

The following four lemmas are easily established, imitating the proofs 
for similar facts about u. 

Lemma 16.41. Zs F nvo ~ 7t(vo, 0, 0). 
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Definition 16.45. 2'9 is a definitional expansion of 2'8 with a new binary 
operation symbol • and the following new axiom: 

VVOVV;VV2{VO·VI = V2 +-+1t(Vo, Vb V2) 

V [.3V31t( Vo, Vb V3) A nvo 1\ V2 = {I}] 
v [.3V31t( Vo, VI, V3) A .nvo A 'V I = 0 A V2 = {I}] 

v [.3V31t(VO' VI, V3) A .nvo A VI = 0 A V2 = OJ}. 

From 16.41 we obtain 

Lemma 16.46. 2'9 F Vo' 0 = O. 

Now we can take care of the last axiom of Q. 

Lemma 16.47. 2'9 F Vo·SV I = VO·VI + Vo. 

PROOF. Let x and y be given. We consider four cases. 

Case 1. .nx. Clearly sy # 0, so x·sy = {l}. Also, x·y = ° or x·y = {I}. 
Sub case 1. x·y = 0. Then by 16.36, x·y + x = {I}, as desired. 
Sub case 2. x·y = {l}. Then by 16.36, x·y + x = x·y = x·sy. 

Case 2. nx, but .ny. Then x·sy = x·y = {I} = x·y + x. 
Case 3. nx, ny, but .3z1t(x,y,z). Then x·sy = x·Uy = {I} = x·y = 

x·y + x, using 16.44 to infer .3z1t(x, Uy, z). 
Case 4. nx, ny, and 1t(x,y,z). Then x·sy = x·Uy = x·y+x since 

1t(x, Uy, Z + x) by 16.43. 0 

From our lemmas we obtain our main undecidability result on set theory 
by the same general argument as that used to establish 16.7: 

Theorem 16.48. The theory S is inseparable. 

Now we turn to the consideration of finitely inseparable theories. We 
do not yet have any examples at all of such theories, so our first task is to 
produce such an example. Then we use the method of interpretations to 
show that various interesting mathematical theories are finitely inseparable. 
Our first example will be considerably generalized later. Recall our universal 
language from 14.22. 

Lemma 16.49. {<p: <p E SentZ(Unl> F<p} is afinitely inseparable theory. 

PROOF. By Theorem 6.24, let A and B be r.e. effectively inseparable sets. 
By virtue of Theorem 6.25 it now suffices for the proof of our lemma to 
effectively associate with each t E w a sentence Xt of 2'un such that the follow
ing two conditions hold: 

(1) if tEA, then FXt; 
(2) if t E B, then 'Xt holds in some finite 2'un-structure. 
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Letfand g be recursive functions with ranges A and B respectively. By 14.24 
and 14.25, let fP and", be sentences which spectrally representfand g respec
tively and satisfy the additional conditions of 14.24. Divide the symbols of 
~n into three isomorphic parts, denoted by oR:, lR: and 2R: respectively. 
We define two translations of Zun into ~n' Let 2( = (2R~vo, 0, M, r), where 
MR: = °R:vo" ·V.-l for all s, rand r = {3V02R~vo}, and let ~ = 
(2R~vo, 0, N, Ll), where NR: = lR:vo" ·V.- 1 for all s, rand Ll = {3vo2Rfvo}. 
Then for any t E w we can define a sentence Xt such that for any Zun-structure 
(t, (t F Xt iff the following condition holds: 

if (t F fPm, (t F ,,,'is, 2R~<i: #- ° #- 2Rf<i:, lRf<i: S; 2Rf<i:, 
°R~<i: S; 2R5<i:, (t F VVoVvl(OR~vOVl -+ 2Rfvo A 2R~Vl)' IIRf<i:1 = t, 

(3) and 2R~<i: is a one-one function mapping lR~<i: onto °R~<i: then 
there is an x E °R~<i: such that I{y : (y, x) E °R~<i:}1 = t. 

Now we check (1) and (2). For (1), Let (t be any Zun-structure, let tEA, 
and assume the hypothesis of (3). Then by 11.45, (tPm F fP and (tLl'iS F "'. 
Thus I RI<i:(Ll.'iS) I = t, so, since '" spectrally represents g but t ~ Rng g, it 
follows that R~<i:(Ll.'iS) is infinite. Thus lR5<i: is infinite, so °R~<i: = R~<i:(r.m) 
is infinite. Choose m so thatfm = t, and then by 14.24(ii) choose x E R~<i:(r.m) 
so that I{y : (y, x) E R~<i:(r.m)}1 = m. By 14.24(iii), I{y : (y, x) E R~<i:(r.m)}1 = t. 
Thus the conclusion of (3) holds. Hence we have shown FXt> as desired in (1). 

Now let t E B. Say gm = t. Let (t be a finite model of fP such that IR~<i:1 = m, 
and let'S) be a finite model of", such that I R5!$) I = m; this is possible by 
14.22(i). Clearly there is a finite Zun-structure (f such that .(fPm = (t, 
(fLl'iS = 'S), and lRf'f S; 2Rf'f, °R~'f S; 2R~'f, (f F VVoVvl(OR~vOVl -+ 2R~vo A 

2R~Vl)' and 2R~(!;: lR~'f >-* °R~(!;. Note that IIRf(!;1 = IRf!$)1 = t by 14.22(ii). 
Thus the hypothesis of (3) holds. The conclusion of (3) fails, however, by 
14.24, since t ~ Rngf 0 

Note that the formulas Xt in the above proof all have the same relation 
symbols. Hence from (1) and (2) in that proof we obtain at once: 

Lemma 16.50. There is a reduct Z of Zum having only finitely many relation 
symbols, such that {fP : fP E Sent,S!', FfP} is finitely inseparable. 

This is our basic lemma, from which we shall derive the finite insepara
bility of several other theories. The method we shall use for this purpose is 
expressed in 15.17. In many cases the application of 15.17 can be indicated 
by simple diagrams, from which a more rigorous proof can be written out 
in a routine way. This is illustrated in many examples below. 

Theorem 16.51. The theory of one binary relation is finitely inseparable. 

PROOF. The theorem is to be interpreted as saying that the theory r' in 
the language Z' is finitely inseparable, where Z' is a language with just one 

291 



Part 3: Decidable and Undecidable Theories 

nonlogical constant, namely a binary relation symbol S, and r ' = {tp : 
tp E Sent.,2", Ftp}, 

To prove this, let .p be the language mentioned in 16.50. Let the relation 
symbols of.P be R::'8, ... , R::': where SEw. Set r = {tp E Sent.,2': Ftp}. To 
define our syntactical .P-structure we need some notation: we define for
mulas O"k(VO, VI) in 'p' for each k E w '" I, expressing that there is a path 
with k edges between the" points" Vo and VI: 

0"1 = SVOVI 
O"k+ I = 3V2[SVOV2 A O"k(V2, VI)]. 

Now let m = (X, 0, R, Ll), where X is the formula 

(I) 

while for each i :::;; s, RR::'f is the formula 

(2) 3vmi [0"f+ 2(Vmi , Vmi) A /\ O"H I(L'mi, Vj)] 
;<mi 

and Ll = {3vo -. 3vISvOVI}. Clearly then m is a syntactical .P-structure in 
'p'. By Theorem 15.17 it remains to show that for each finite model cr: of r 
there is a finite model <;23 of r ' U Ll such that cr: = <;23ll21. Note that cr: is just 
an arbitrary .P-structure, and we do not have to worry about finding <;23 to 
be a model of r /, this being true for any 'p'-structure. An example to illus
trate our construction of <;23 is given in Figure 16.51.1. This is just a small 
part of <;23 and is intended to illustrate what we do in case i = 4, mi = 3, 
and (xo, Xl> X2) E R::'f<S:: all points except Xo, Xl, X2 are new, we describe a 
circuit with six edges to identify i = 4, and leading off from a vertex we have 
paths with I, 2, and 3 edges out to Xl, X2, X3 respectively to identify the 
( I dered triple (xo, Xl. X2) as a member of R::'f<S:. From this diagram it should 
h: evident how we construct <;23; we do this in detail here, but not in similar 
proofs below. Let D = {(i, x) : i :::;; S and X E R::'/<S:}. Since cr: is finite, so is D. 
With each (i, x) E D we want to associate i + 2 + mj(mj - 1)/2 new points 

a?x, ... , ali" 1, 
bPXi> ... , b{;/ for each j < mi, j =f 0, 

entirely new points for different members of D. To do this we can, for 
example, let 
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ai'x = (i,x,k,O,O,C) 
b~xj = (i, x, k,j, 1, C) 

/ 

" 
0--0 

-+---

for each k < i + 2, 
for eachj < mi, j =f 0, and k < j. 

Xo 

~/ -----X! 
/~ 

.~. --+·X2 

Figure 16.51.1 
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(The term C ( = universe of <l) is added to make sure all these elements are 
different from the members of C, a fact which follows from the definition 
of ordered sextuples in terms of ordered pairs, via the regularity axiom of 
set theory.) Let B be C together with all the new elements a~x, b~xj. Now let 
S'l3 express each of the following diagrams, for each (i, x) ED: 

That is, let 

S'l3 = {(a{x, a{:l): (i, x) E D,j ::s; i} 
u {(al;- \ apJ : (i, x) ED} U {(apx, Xa) : (i, x) E D} 

U {(apx, bPxj) : (i, x) E D, 1 ::s; j < mi} 
u{(bt,j,b~/jl):(i,X)ED, l::s;j < mi,k <j- I} 

u {(b{;/, x j ): (i, x) E D, 1 ::s; j < mi}. 

This defines Q). Obviously Q) F x[b] iff bE C, so Bt:.?l = C. Now let i ::s; s; 
we show that R;:'l·'l3(t:.·\1j) = R;:'l(\':. First let x E R;:'l(\':. Then (i, x) E D, and the 
above definition of S'l3 yields immediately by (2) that Q) 1= RR;:'/[x]; and 
obviously x E mic. Now suppose that x E miRR;:'f'l3 n miC. By construction 
of Q), clearly there is a (j, y) E D such that x s y and i ::s; j. The circuit in 
the construction assures that i = j and hence x = y. Thus by definition of 
D we obtain x E R;:'/(\':. 0 

From 16.51 we can easily see that a large variety of languages have un
decidable theories (a generalized form of Church's theorem; see 16.54, 
16.58 for further forms). 

Theorem 16.52. If.!l" is a language with at least one relation symbol which 
is at least binary, then {cp E Sentz: I=cp} is finitely inseparable. 

PROOF. We interpret the theory of one binary relation into .!l", i.e., we 
apply 15.17 as in the proof of 16.51. The following list gives the required 
definitions. The hypotheses of I 5.17 are then clearly satisfied . 

.!l': language with a single binary relation symbol R. 

.!l": given language; S is a relation symbol of rank :?: 2. 
m = (x, 0, R, r'): here X is Va = Va, with RR = SVaV1V1 " ·V1, 

r' = {3viva = va)}. 0 

Theorem 16.53. The theory of a binary operation is finitely inseparable. 
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PROOF. Again we interpret the theory of a binary relation. The following 
list and construction outline the procedure (cf. the proofs of 16.51 and 
16.52) . 

.P: language with a single binary relation symbol R. 
'p': language with a single binary operation symbol O. 
IE = (x, 0, R, r'): here X is -,Ovovo = Vo; 
RR = 3v23v3(OV2V2 = V2 A OV2V3 = V2 

A OV3V2 = V2 A OV3V3 = V3 A OVOVI = V3); 
r' = 3vo -, OVoVo = va. 

Given any finite .P-structure m = (A, R), set B = A U {(A, 0), (A, I)} and 
define a binary operation f on B by setting 

f(a, b) = (A, 0) 
f(a, b) = (A, 1) 

f((A, 0), (A, 0)) = (A, 0), 
f((A, 0), (A, 1)) = (A,O), 
f((A, 1), (A, 0)) = (A,O), 
f((A, 1), (A, 1)) = (A, 1), 

f(a, b) = (A, 0) 

if (a, b) rf= R, 
if (a, b) E R, for any a, b E A, 

otherwise, for other pairs (a, b) E B x B. 

We make B into an 'p'-structure by setting 0'23 = f Clearly ~rOC = m. 0 

Another large group of first order languages is taken care of in the fol
lowing corollary of 16.53: 

Theorem 16.54. If.P' is a language with at least one operation symbol 
which is at least binary, then {cp : cp E Sentz, I=cp} is finitely inseparable. 

The proof is similar to the proof of 16.52. To take care of the remaining 
class of undecidable languages we need some auxiliary results which are 
interesting in themselves. 

Theorem 16.55. The theory of a symmetric binary relation is finitely in
separable. 

PROOF. The following list and diagram outline the proof: 
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.P: language with a single binary relation symbol R; 
r = {cp E Sentz: I=cp}. 
r' = {cp E Sentz: 8 1= cp}, where 8 = {VVOVVl(RvOVl ~ RVIVO)}' 
m = (X, 0, R, ~), where X is the formula 3vSVv2(Rv2Vs +-+ V2 = Vo), 
RR = 3V23v33v4[RvoV2 /\ RV2V3 /\ RV3VO /\ RV2V4 /\ Rv4vd, 
~ = {3voRvo}. 
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Diagram (for representing in ~ a single pair (x, y) in an arbitrary binary 
relation) : 

y\ 
Vs for x Vs for y 

Theorem 16.56. The theory of two equivalence relations over the universe is 
finitely inseparable. 

PROOF. We interpret a symmetric binary relation into this theory: 

2: language with a single binary relation symbol R; 
r = {<p E Sen(p : 0 1= <p}, where 0 = {VVoVVI(RvOVI ~ RVIVO)}. 
2': language with two binary relation symbols Land M; 
r' = {<p E Sent.p : Q 1= <p}, where Q consists of the natural axioms 
for two equivalence relations: 

VVILvOVO; 
VVOVVI(LvOVI ~ LVIVO); 
VVOVVIVV2(Lvov l A LVIV2 ~ LVOV2); 
VVoMvoVo; 
VvoVvl(Mvovl ~ MvIvO); 
VVOVVI VV2(Mvovl A MVIV2 ~ MVOV2). 

cr = (X, 0, R, ~), where X = VVI(MvIVO .... VI = Vo), 
RR = 3V23v3(LvoV2 A MV2V3 A LV3VI), ~ = {3vox}. 

Diagram (for representing in ~ a single pair (x, y) in an arbitrary symmetric 
binary relation, with curves for M-c1asses and squares for L-c1asses): 

[L---) --....::(:T--·I ~I·) ---"CJ) 
x y 

Theorem 16.57. The theory of two total functions is finitely inseparable. 

PROOF. We interpret the theory of 16.56 into this theory: 

(2', r'): as in the proof of 16.56. 
2": language with two unary operation symbols 0 and P; 
r" = {<p E Sent.p" : I=<p}. 
cr = (x, 0, R, ~), where X = Vo = Vo, RL = Ovo = Ov l , 

RM = Pvo = PVb ~ = {3vox}. 
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Given a finite model ~! of r', we construct a finite model ~ of r" as follows. 
Let B = A. To define o~\ and p<3, first let f be a choice function for non
empty subsets of A. Thusf,Ex whenever 0 =1= x S; A. Now define O'Bx = 
f[X]L:>! and p'Bx = f[xhl<3 for any x E A (where Q! = (A, VI, M"I)); clearly 
~ is the desired interpretation of QL 0 

Theorem 16.58. If if is a language with at least two unary operation symbols, 
then .se is finitely inseparable. 

In Theorems 16.52, 16.54 and 16.58 we have shown that if .se satisfies 
anyone of the following three conditions, then {cp E Sent,2' : i=cp} is finitely 
inseparable and hence undecidable: 

(I) .se has at least one relation symbol of rank at least 2; 
(2) if has at least one operation symbol of rank at least 2; 
(3) .se has at least two unary operation symbols. 

Now it is known that if if fails to satisfy (I), (2) or (3), which means that 
.se satisfies the following condition (4), then {cp E Sent,2': Fcp} is decidable. 

(4) .P has only relation symbols of rank I, no operation symbols of rank 
> I, and at most one unary operation symbol. (See Exercise 15.23 and 
Rabin [4].) 
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EXERCISES 

16.59. Show that P has exp No complete extensions. 

16.60. Find a finitely axiomatizable inseparable theory with (J:, +, .) as a 
model. 

16.61. Let .P be a language with two nonlogical constants E (binary relation 
symbol) and S (unary relation symbol). Let r be the theory in .P with 
the following axioms: 
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'v'vo[Svo ++ 3VI(VO E VI)], 
3vo[Svo A 'v'VI .., (VI E Vo)], 
'v'VO'v'VI['v'V2(V2 E vo++ V2 E VI) - Vo = vd, 
'v'VO'v'VI{SVO A SVI - 3V2[SV2 A 'v'V3(L·3 E V2 ++ V3 E Vo V V3 = VI)]}. 

Show that r is inseparable. Hint: use 15.16(ii). 
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16.62. The theory of an infinite binary relation is undecidable. 

16.63. The theory of an equivalence relation on the universe and a total func
tion is finitely inseparable. 

16.64. The theory of two supplementary equivalence relations is finitely in
separable. (Two equivalence relations E and F are supplementary if for 
any x, y in the universe of the structure there is a z such that xEzFy). 

16.65. The theory of a partial ordering is finitely inseparable. 

16.66. The theory of lattices is finitely inseparable. 
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17 Unprovabilityof 
Consistency 

We shall prove in this chapter that in a strong theory r, some statements 
which naturally assert the consistency of r cannot be proved within r. This 
famous result of Godel shows that our ordinary first-order languages have a 
severe limitation as far as any project for a thorough-going check on the 
consistency of mathematics is concerned. Historically, the theorem caused a 
major change of emphasis in foundational research away from a pre
occupation with consistency proofs. 

It is convenient to formulate the results only for languages and theories 
in which a fair amount of number theory is directly expressible (without 
interpretations or definitions). The results carryover to other languages and 
theories, as long as they are sufficiently strong, in an obvious way. 

Definition 17.1. Let 2 be an expansion of 2 nos . A theory r in 2 is a strong 
theory provided that for every m-ary elementary function f there is an 
m-ary operation symbol 0 of 2 such that for any X o, .. . , X m- 1, yEw 

the following conditions hold: 

(i) if f(xo, ... , Xm-l) = y, then r F O(xo, ... , xm - 1) = Y; 
(ii) iff(xo,.··, Xm-l) i= y, then r F ...,O(xo, ... , Xm-l) = y. 

Thus we can find strong theories among definitional expansions of the 
theory R of 2no", or the set theory S (cf. 14. I I and 16.48). We shall now 
formulate a general theorem giving conditions on a formula Prevo) so that 
unprovability of consistency follows. Intuitively we think of Prevo) as saying 
that Vo is provable. After the statement and proof of the general theorem we 
shall indicate how the conditions on Prevo) can be satisfied. For simplicity 
we write Pra in place of Pr(a). 
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Theorem 17.2 (Lob). Let r be a strong theory in a language 2. Assume that 
Pr is a formula of .ff such that Fv Pr s {vo} and the following conditions 

hold for all sentences ifi, X of.ff: 

(i) if r F ifi, then r F Prf1!J+ifi; 
(ii) r F Prf1!J+ifi -+ Prf1!J+ Prf1!J+ifi; 

(iii) r F Prf1!J+(X -+ ifi) -+ (Prf1!J+X -+ Prf1!J+ifi). 

Furthermore, let cp be a sentence of.ff such that r F Prf1!J+cp -+ cpo Then 
r F cpo 

PROOF. There clearly is an elementary functionfsuch that for any formula 
ifi and any m E w,J(!J + ifi, m) = !J+ifi(m). Let 0 be a binary operation symbol 
of.ff which represents/, in the sense of 17.1. Let a = !J+(PrO(vo, vo) -+ cp), 
and let ifi be the sentence PrO(a, a) -+ cpo Thus if X is the formula PrO(vo, vo) 

-+ cp, then f(!J +X, !J+X) = !J+ifi. Hence 

(1) r F O(a, a) = f1!J+ifi; 
(2) r F ifi -+ (Prf1!J+ifi -+ cp) by (1), definition of ifi 
(3) r F Prf1!J + (ifi -+ (Prf1!J+ifi -+ cp» by (2), (i) 
(4) r FPrf1!J+ifi-+Prf1!J+(Prf1!J+ifi-+cp) by (3), (iii) 
(5) r F Prf1!J + (Prf1!J+ifi -+ cp) -+ (Prf1!J+ Prf1!J+ifi -+ Prf1!J+cp) by (iii) 
(6) r FPrf1!J+ifi-+Prf1!J+Prf1!J+ifi by (ii) 
(7) r F Prf1!J + cp -+ cp by hypothesis 
(8) r F Prf1!J+ifi -+ cp by (4), (5), (6), (7), and a tautology 
(9) r F PrO(a, a) -+ cp by (8), (1) 

(10) r F ifi by (9), definition of ifi 
(11) r F Prf1!J+ifi by (10), (i) 
(12) r F cp by (8), (11) 0 

Corollary 17.3. Assume the hypothesis of 17.2, up to "Furthermore." Let 

cp be the sentence ""Vvo(vo = vo). Ifr is consistent, then r 1;1 ""Prf1!J+cp. 

PROOF. If r F ""Prf1!J+cp, then of course r F Prf1!J+cp -+ cp, so by 17.2, 
r F cp, contradicting the consistency of r by (i). 0 

The formula ""Prf1!J + cp in 17.3 of course intuitively expresses that r is 
consistent, if Prvo expresses that Vo is provable in r. The content of 17.3 can 
be expressed in an intuitive form as follows. If r is a consistent theory in .ff 
and we have a consistency proof for r, then there is no formula Pr which 
represents our consistency proof in r, in the sense of the hypotheses of 17.2 
and 17.3. 

What has become of attempts to prove important theories consistent in a 
convincing way? Finitary consistency proofs for the theory P have been 
given. Although finitary, such proofs cannot be internalized in P. It can be 
seen, in fact, that the proofs involve induction exceeding induction over 
natural numbers, and in fact going up the first e-number. No finitary con
sistency proofs for ZF (full set theory) have been given, and indeed it is hard 
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to imagine any proof which could be called finitary which could not be 
formulated in ZF, in the sense of 17.2. 

Now we turn to the proof of 17.2(i)-(iii) for certain natural formulas Pro 
For this purpose we shall make some further assumptions on the theories 
we deal with. These additional assumptions, as is easily seen, do not really 
restrict the generality of the final result. The assumptions amount to an 
extension of our assumptions in 17.1 so as to formalize within a theory the 
full syntax of first-order logic. 

Definition 17.4. We describe an expansion 2'el of 2'nos and, simultaneously, 
a theory [7j! in 2;,1' The following are the first axioms of [7j!: 

(i) ¥vo( -'SVo = 0); 
(ii) ¥VO¥Vl(SVO = SV1 -+ Vo = VI)' 

(iii) ¥vo(vo + 0 = Vo); 
(iV) ¥VO¥Vl[VO + SV1 = S(VO + VI)]; 
(V) ¥l'O(Vo'O = 0); 

(vi) ¥Vo¥V1(VO'SVl = VO'V1 + Vo). 

We introduce a binary operation symbol I-I and a new axiom 

(vii) ¥VO¥V1[(VO ~ VI -+ Vo + Ivo - VII = VI) 1\ 

(VI ~ Vo -+ VI + Ivo - VII = Vo)], 

We introduce a binary operation symbol [/] and a new axiom 

(viii) ¥vo([vo/OJ = 0) 1\ ¥vo¥V1(-'V1 = 0 

-+ fvo/vd' VI ~ Vo 1\ Vo + sO ~ ([vo/vd + sO)· VI)' 

Next we introduce new n-ary operation symbols U7 and axioms 

(ix) ¥vo' . ,¥vn-1(UYVo .. , Vn- 1 = Vi), 

where i < n, Having introduced an m-ary operation symbol 0 and 
m n-ary operation symbols Po, ' .. , Pm -1, we introduce an n-ary operation 
symbol C;::(O ; Po, ... , P n -1) and an axiom 

(x) ¥vo ·· ·¥vn_1[C;::(0; Po,· .. , Pn-1)(Vo,··., Vn-l) 
= O(Po(Vo,.·" Vn-l),"" Pn-1(vo"", vn- 1))], 

Having introduced an m-ary operation symbol 0, we introduce an m-ary 
operation symbol E(O) and axioms 

(xi) ¥vo ' , ,¥vm- 2[E(0)(vo, ' , ., Vm-2, 0) = 0]; 

( ") ¥vo '" ¥vm-1[E(0)(vo" ." Vm-2, SVm-l) = xu 
E(O)(vo"", Vm-l) + O(vo"", vm- 1)], 

Having introduced an m-ary operation symbol 0, we introduce an m-ary 
operation symbol 11(0) and axioms 

(xiii) ¥VO·, '¥vm-dll(O)(vo"", Vm-2, 0) = sO]; 

( .) ¥vo" '¥vn-l[II(O)(vo"", Vm - 2, svm - 1) = 
XlV 

II(O)(vo,"', vm-1)·0(vo"", vm- 1)], 
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For any m-ary operation symbol 0 already introduced we introduce an 
m-ary relation symbol Ro and the axiom 

(xv) Vvo" ·Vvm-I(Rovo ··· Vm- I +-+ Ovo'" Vm- I = L11). 

This describes all of the symbols of the language. We also introduce the 
induction axiom schema: 

(xvi) 'P(O) A VVo['P ~ 'P(svo)] ~ VVo'P, 

where 'P is any formula of 2 el . 

Finally, we associate with each nonlogical constant F of ~I a number, 
a number-theoretic operation or relation IfF: 

#0 = 0, 
#s = 0, 

#+=+, 
#.= . , 
#(1-1) = I-I, 
#[/1 = [j], 
#U~ = vr, 
#[C;;'(O; Po,··., Pm-I)] = K::'(#O; #Po, ... , #Pn- I), 
#[:E(O)] = ~#O, 

#[11(0)] = IT#O, 

f(RO) = {(Xo, ... ,Xm-l):#OXo···Xm-l = I}. 

Proposition 17.5. (i~ 2';,1) is a definitional expansion of(P, 2nos). 

PROOF. It is clear that (JP, 2';,1) can be obtained as the union, in an obvious 
sense, of a sequence (P, 2 nos) = (So, 20), (SI, ~), . .. of successive ex
pansions, where at each step we adjoin one new symbol, its appropriate 
axioms from (vii)-(xv), and all new instances of (xvi). Thus it is enough to 
show that each (Sa h 2;+ 1) is a definitional expansion of (S;, 2;). Note also 
that the new instances of (xvi) do not constitute a problem, since once we 
show that the new symbol has a definition in terms of old ones, the new 
instances of (xvi) clearly become provable in Si+ l' 

If the new symbol in 2;+1 is covered by one of the axioms (vii)-(x), or 
(xv), then (Si+1,2;+1) is clearly a definitional expansion of (Si, 2;). The 
arguments for :E and II are similar, so we shall only give the argument for :E. 
Thus we assume that :E(O) is the new symbol of 2;+ h where 0 is a symbol 
of 2;, say of rank m. We can eliminate this symbol because we can formalize 
a natural argument using Godel's ,B-function (see 3.40-3.46). In fact, let 
'Po, 'Ph 'P2, 'P3, 'P4 be the following formulas (intuitively representing the 
functions hi], exc, L, rm, and ,B respectively): 

(I) 
(2) 
(3) 

(4) 

(5) 

'Po : VI' VI ;5; Vo A sVo ;5; sV1 • sV1 ; 

'PI: 3V2['PO(Vo, V2) A VI = Ivo - V2'V21]; 
'P2 : 3v2['Po(VO, V2) A 'Pl(V2, VI)]; 
'P3 : (VI = 0 A v2 = 0) V [-,v I = 0 A 3V3 
(vo = V1'V3 + v2 A SV2 ;5; VI)]; 
'P4 : 3v33v4['Pl(VO, v3) A 'Pivo, v4) A 'P3(V3, s(sv1 'V4), v2]. 
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With the aid of these formulas we can give the definition of :E(O): 

(6) 

VVo ... VVm{:E(O)(vo, ... , Vm -1) = Vm +-+ 3vm+ 1 ['P4(Vm + 1, 0, 0) 1\ 

VVm+2{SVm+2 :S Vm-1 ~3Vm+3['Pivm+b Vm+2, Vm+3) 1\ 

'Pivm+b SVm+2, Vm+3 + O(VO,.··, Vm- 2, Vm+2»]} 
'Pivm+1 , Vm- 1 , Vm)]}. 

To show that this is, in fact, a definition of :E(O) amounts to proving in 
Si+1 the existence and uniqueness conditions, as well as showing from the 
axioms Sf that (xi) and (xii) together are equivalent to (6). Two unformalized 
statements each equivalent to (xi) and (xii) are as follows: 

(7) 

(8) 

"L(f)(xo, ... , Xm-b 0) = 0, while "L(f)(xo, ... , x m- 1 ,y + I) 
= "L(f)(xo,···,Xm-1,Y) +!(xo, ... ,Xm-bY); 

"L(f)(xo, ... , Xm -1) = Y iff there is a z such that {3(z, 0) = 0 
while for all w with oW :<::; x m - 1 , {3(z, ow) = {3(z, w) + 
!(xo, ... , Xm -1), and {3(z, Xm -1) = y. 

The equivalence of (7) and (8) is proved as follows. First assume (7). To 
prove direction ~ of (8), assume that "L(n(xo, ... , Xm -1) = y. By Theorem 
3.46 choose z so that {3(z, i) = "L(n(xo, ... , Xm-2, i) for each i ::::; x m- 1. Then 
the right side of (8) holds. Conversely, assume the right side of (8). Then by 
induction on i it is clear that {3(z, i) = "L(n(xo, ... , Xm _ 2, i) for each i :<::; Xm -1. 

In particular, "L(n(xo, . .. , Xm-1) = y. Second, assuming (8), condition (7) is 
clear. 

The existence and uniqueness conditions for the condition following" iff" 
in (8) is clear by 3.46 (for existence) and by using induction (for uniqueness). 

Now to establish the existence and uniqueness conditions in Si for the 
formula following" iff" in (6), and to prove the equivalence of (xi) and (xii) 
with (6) in Si+ 1, it is a matter of formalizing in f/jJ the arguments in the pre
ceding two paragraphs. In particular, the applications of 3.46 must be 
formalized. We leave it to the reader to look over this proof to see that it 
can be formalized. The formal versions of 3.44 and 3.46 are as follows. For 
each r > I the following sentence is an instance of 3.44: 

VVo ·· .VV2r - 1[/\ (ssO:S Vi) 1\ /\ 'PS(Vh Vi) 
i<r i<i<r 

~ 3v2r (\ 'P6(V2T> Vr+h Vi)]' 
.<r 

where 'Ps(Vo, VI) naturally expresses that Vo and VI are relatively prime, and 
'P6(VO, Vb V2) naturally expresses Vo == v1(mod V2). 

Similarly, for each nEw the following sentence is an instance of 3.46: 

VVo ·· ·Vvn - 13vn /\ 'P4(Vn, i, Vi). 
i=n 

This completes the proof of 17.5. 
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Lemma 17.6. For each operation symbol 0 of!e"h either #0 E w if 0 is O-ary, 
or #0 is an m-ary operation on w if 0 is m-ary. In either case, for any 
x o, . .. , Xm-1, yEW we have: #OXo' .. Xm-1 = Y implies 

The proof of this lemma is a straight-forward induction on 0, following 
Definition 17.4. As a corollary we have: 

Lemma 17.7. If 0 is an m-ary operation symbol of!e"h then #Ro is an m-ary 
relation on wand for any Xc, •.. , Xm -1 E W, 

(Xo, . .. , Xm- 1) E #Ro implies g; 1= Ro(LlXo, ... , LlXm-1), 
(xo, ... , Xm -1) rt #Ro implies g; 1=- ,Ro( LlXo, ... , LlXm -1)' 

In the rest of this section we work in a fixed but arbitrary expansion 2' 
of !e"h and with any theory r in 2' which extends ,9, such that r has a set 
Ll of axioms with gUll elementary. Our goal, of course, is to define a formula 
Pr satisfying 17.2(i)-(iii) for (r, 2'). And we want Pr to intuitively express 
provability in (r,2'). To this end, we want to look back at our work in 
Chapters 2 and 10. That work was done, naturally, in our usual metalanguage 
for mathematics. We now want to see that most of it can be done within the 
context of (r,2'). Our language !e"l was designed to facilitate this task. 
We shall not carry through the task in full detail, but we shall sketch the 
high points. Much of the work in those Chapters was the definition of ele
mentary functions and relations, or the proof that certain functions or 
relations were elementary. To systematize the notation, for each elementary 
operation F and relation R we denote by of and oR the operation and 
relation symbols of !e"l which naturally correspond to F and R. By "naturally 
correspond" we mean that the original definitions in Chapters 2 and 10 are 
to be formalized. For example: 

(1) 
(2) 
(3) 
(4) 

°C1 = C2(1_1 . U1 U1). o 1 ,0, 0, 

O! = lIes). 

One useful property of this convention is 

(5) #0 F = F and #0 R = R. 

It is completely routine to see what the symbols of and oR are, as symbols 
of !e"h for all of the functions and relations F and R explicitly shown to be 
elementary in Chapters 2 and 10: the proof of their elementariness is used to 
work out the definition of of and oR. As another example, Proposition 2.15, 
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concerning bounded universal quantification, goes over into the following 
formalization: 

(6) 

if R is an m-ary relation symbol of 2';,1> then there is an m-ary 
relation symbol T of 2';,1 such that 

fIJ F VVo·· ·Vvm-l{T(vo, ... , vm - l ) 

-Vvm[vm < Vm-l ~R(vo,···, Vm-2, vm)]}. 

When we consider the formalization of logic, starting in Chapter 10, several 
remarks must be made. First, we shall of course assume that 2' is an ele
mentary effectivized language. As mentioned in Chapter 10, the various 
functions and relations shown there to be recursive can then be shown to be 
elementary. Hence they have corresponding formalized versions in (2', r). 
For example: 

0,' is a unary operation symbol of 2';,1 such that r F ° ,'Vo = 
(7) °Cat (.d(29LO + I ), vo); for any expression cP of 2', r F ° ,'.d(/J+cp) 

= .d(/J + 'cp); 

0=' is a binary operation symbol of 2';,1 such that r F (vo 0=' VI) 
(8) = °Cat COCat (.d29L 4+t, Vo), VI); for any expressions a and T of 2', 

r F [(.d/J+a) 0=' (.d/J+T)] = .d/J+(a = T). 

Since we are assuming that /J+*Ll is elementary, we have in 2';,1 a unary 
relation symbol O(/J+*Ll) corresponding to some construction of /J+*Ll. We 
let Prfbe the collection of all ordered pairs (m, n) such that n is the GodeI 
number of all-proof cP and m is the Godel number of the last member of cpo 
Thus °Prfis a binary relation symbol of 2el built up in a rather complicated 
way, using the symbol O(/J+*Ll). Our desired formula Pr is the formula 
3vlOPrf(vo, VI). 

Property 17.2(i) is easy to establish: 

Lemma 17.8. Ifr F tfo, then r FPr.d/J+tfo. 

PROOF. Assume that r F tfo. Thus there is all-proof cp with last member tfo. 
Hence (/J+tfo,/J++CP) EPrJ, andPrf= #oPrJ, so by 17.7 

Since f!jJ s; r, it follows that r F Pr.d/J + tfo. 

Condition 17.2(iii) is also rather easy: 
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PROOF. From the choice of cPr/, which is supposed to mimic the definition 
of Prf(see Proposition 10.27), we have 

r 'F Prf(vo, VI) +-+ VV2{V2 S °IVI --+ nff H Axm)C(vI)v2) 
(9) v 0(?H~)(0(VI)V2) v 3V33v4[V3 < V2 1\ V4 < .V2 1\ 0(VI)V3 

=0(VI )V4 0--+' 0(VI )V2] V 3V33v4[V3 < V2 1\ V4 S VI 1\ 0(Rng(ffov»(v4) 
1\ 0(VI )V2 = °V'COexp (a2, sv4), 0(VI)V3)]} 1\ O(VlnVI = Vo. 

From (9) it is easy to establish the following: 

r 'F Prf(aff+X 0--+' aff+.p, vo) 1\ Prf(aff+X, VI) 
(10) --+ Prf(aff+.p, °Cat (vo, °Cat (VI' a Exp (2, ~ff+.p»». 
Since r 'F (aff+X 0--+' aff+.p) = aff+(X --+ .p), easy logic yields the desired 
resuh. 0 

The proof of the remaining condition, 17.2(ii), is based on the following 
lemma, for which we need a new notion. We can find in ~l a unary relation 
symbol Nm (for" numeral "), with the following sentence provable in (!j!: 

(11) NmO = a2.?o 1\ Vvo[Nmsvo = °Cat (a2.?s, Nmvo)]. 

Thus we easily obtain: 

(12) (!j! 'F Nmam = aff+ am for each mEw. 

Lemma 17.10. Let F be an n-ary operation symbol of ~l' Then 

r 'FPrCOConn+1 (a2.?F, Nmvo, ... , Nmvn - l ) 0=' NmF(vo, ... , vn - l». 
PROOF. We proceed by induction on the complexity of F as described in 
definition 17.4. The proof is fully illustrated by considering only the following 
three cases. 

Case 1. F = O. Thus we must prove 

(13) r 'F PreConl (a2.?O) 0=' NmO). 

Now r 'F °Conl(a2.?O) = a2.?o and r 'F Nm 0= a2.?o; and by (8), 

r 'F (a2.?o 0=' a2.?O) = aff+(O = 0). 

Furthermore, r 'F 0 = 0, so by 17.8 r 'FPraff+(O = 0). Hence (13) follows. 

Case 2. F = s. Then we must prove 

(14) 

Now by (11), r 'F Nmsvo = °Cat (a2.?s, Nmvo). By induction within (!j! we 
easily see that 

(15) 

Now in carrying through Chapter 10 within &, the formalization of 10.34 is 

(16) 

Hence (14) follows. 
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Case 3. F = +. In this case we need to show 

(17) r 1= PreCon3 (Ln~+, Nmvo, Nmvl ) 0=' Nm(vo + VI»' 

Here we proceed by induction on VI within r. We have 

(18) r 1= Vo + 0 = Vo. 

Now consider the following little argument: the sentence 'v'vo(Vo + 0 = vo) is 
an axiom of ~ and hence for any term a, ~ 1= a + 0 = a by universal specifi
cation. The formalization of this argument gives 

(19) r 1= 0(9'+* Trm)(vo) --+PreCon3 (L123+, Vo, .1123°) 0=' vo). 

Now (15), (18), (19) give 

(20) r 1= PreCOn3 (.1123+, Nmvo, NmO) 0=' Nm(vo + 0), 

which is the step VI = O. Next, 

(21) 

(22) 

r 1= Vo + SVI = s(vo + VI), 

r 1= Nmsvo = °Cat (.1123', Nmvo). 

Now for any terms a, T, r 1= a + ST = Sea + T). Formalizing, 

r 1= O(j'+* Trm)(vo) A O(j'+* Trm)vI --+ PreCon3 (.I123+vo, 
°Cat (.1123', VI» 0=' °Con4 (.11238, .112~+, Vo, VI»' 

Since by (15), r 1= O(j'+* Trm)(Nmvo) A O(j'+* Trm)(Nmvl ), it follows using 
(22) that 

(23) r 1= PreCon3 (.1129'+, Nmvo, Nmsvl ) 

0=' °Con4 (.11238, .1123+, Nmvo, NmvI)' 

Also, r 1= °Con4 (.1129'S, .1123+, Nmvo, Nmv l ) 0=' °Cat (.I12~s, °Con3 (.1123+, Nmvo, 
NmvI», so we easily obtain from (23) and (21) that 

r I=PreCon3 (.1129'+, Nmvo, Nmvl ) 0=' Nm(vo + VI» 
--+ PreCona (.1123+, Nmvo, Nmsvl ) 0=' Nm(vo + SVI)' 

This is the induction step, so (17) follows by induction. o 

From Lemma 17.10 our final condition 17.2(ii) easily follows: 

Lemma 17.11. r I=Pr.l1ff+ifs--+Pr.l1j'+Pr.l1ff+ifs. 

PROOF. Let °Prl = RF , where F is a binary operation symbol of ~l' By 
axiom (xv) of ~ 

(24) 

while by Lemma 17.10, 

(25) r 1= PreCon3 (.I123F , Nm.l1j'+ifs, NmlJI) 0=' NmF(.I1j'+ifs, VI»' 
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Now from axiom (xv) of ~ for any terms a, T of .fR' we have r 1= °Pr/(a, T)_ 
F(a, T) = dl. The formalization of this fact is 

(26) r 1= oe,,+* Trm)(va) A O(jJ+* Trm)(vl ) 

~PrCCona (d290PTf, Va, VI) 0_' °Cona (d29F, Va, VI) 0=' NmLU). 

Now r 1= (jJ+* Trm)(NmdjJ+ifi) A O(jJ+* Trm)(NmVI), SO (26) yields 

(27) r 1= PrCCona (d290PTf, NmdjJ+ifi, Nmv l ) 

0_' °Cona (d29F, NmdjJ+ifi, NmvI) 0=' Nmdl). 

But (24) and (25) imply 

r 1= °Prf(djJ+ifi, VI) ~PrCCona (d29F, NmdjJ+ifi, NmvI) 0=' Nmdl), 

so by (27) we have 

(28) r 1= °Prf(djJ+ifi, VI) ~PrCCona (d290PTf, NmdjJ+ifi, NmvI»' 

Clearly 

r 1= PrCCona (d290PTf, NmdjJ+ifi, NmvI» 
~PrC3'(djJvl, °Cona (d290PTf, NmdjJ+ifi, d29V1»), 

and 

r 1= °3'(djJvl, °Cona (d290PTf, NmdjJ+ifi, d29V1» 0=' djJ+ PrdjJ+ ifi, 

so by (28) we have 

r 1= °Prf(djJ+ifi, VI) ~ PrdjJ+ PrjJ+ifi. 

Now an easy logical transformation gives the desire'd result. 
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EXERCISES 

17.12. Apply 15.20 in ~ to get a sentence ifi such that ~ F Pr(l1g+ifi)- ifi. Show 
that ifi holds in the natural model. [Note that ifi "says" of itself that it is 
provable, and sure enough it is. The corresponding nonlogical statement 
would be "I am telling the truth," a nonparadoxical statement which 
could be true or false.] 

17.13. Let cp be any sentence of 2.1. Apply 15.20 to gJ to get a sentence ifi such 
that 
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Show that g; F rp iff g; F .p. [The informal paradox behind this construction 
is as follows. Given any sentence rp, let .p be the sentence 

If this sentence is true, then rp is true. 

Clearly .p is true. Hence rp is true. Thus every sentence is true.] 

17.14. Apply 15.20 to obtain a sentence .p such that 

g; F Pr(O,' fl.fl +.p) +-+ .p. 

Show that .neither f!i' F .p nor f!i' F ,.p. This is another way of interpreting 
the Liar paradox different from that given following 15.20. 

17.15. Show that there is a sentence .p such that 

f!i' FPr(!::'fl+Pr(O"!::'fl+.p»+-+.p. 

Show that neither f!i' F .p nor f!i' F ,.p. [The intuitive paradox is as follows. 
Let rp be the sentence 

It is true that it is true that this sentence is false. 

Since rp is just a slight reformulation of the liar, a paradox arises as usual.] 

17.16. Construct a sentence .p such that neither f!i' F.p nor f!i' F ,.p by working 
from the following paradox. Let rp be the sentence 

It is true that it is false that this sentence is true. 

Again a paradox arises. 
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PART IV 

Model Theory 



We now turn to the detailed study of the relationships between syntactical 
and semantic properties of structures. We consider various ways of construct
ing structures: the usual algebraic ones of products, homomorphic images 
and substructures, and some new ones especially designed for their logical 
applications. In much of this part we shall be concerned with questions 
about the relationship between syntactical properties of sentences and 
algebraic properties of structures; for example, we show in Chapter 24 that 
a class K is the class of all models of a set of equations iff K is closed under 
the algebraic operations of formation of products, homomorphic images, 
and subalgebras. Using model-theoretic methods, we can prove various 
concrete theories to be complete and decidable. Finally, the model theory of 
formulas with free variables is treated in Chapter 27. For this entire part 
there now is in print a comprehensive treatise, to which we refer the reader 
for further information: 

Chang, C. C., and Keisler, H. J. Model Theory. Amsterdam: North-Holland 
(1973). 



Construction of Models 18 

In this chapter we shall give two methods of constructing models which 
form the main tools for all of our later work. The first method, the con
sistency family method, is an abstraction from the proof of the completeness 
theorem given in Chapter 11, and is due to Henkin, Smullyan, Makkai, and 
Keisler. The second method, of ultra products, is an algebraic kind of con
struction of a model from old models, and is mainly due to Los. 

The consistency family method will be of use mainly for countable lan
guages, for which the main definitions and results are simpler. We begin with 
a preliminary definition. 

Definition 18.1. Let!£' be a first-order language. With any formula fP of 
!£' we associate a new formula fP-+ as follows. If fP is atomic, let fP-+ = -'fP. 

Further, let 

( -'fP)-+ = fP 
(fP V ifs)-+ = -'fP A -,ifs 
(fP A ifs)-+ = -'fP V -,ifs 

(VafP)-+ = 3a-,fP 

We may say that fP-+ is obtained from -'fP by shoving the negation sign 
one step inside, if possible, and eliminating an initial double negation. The 
purpose of this procedure is to enable us to do a special kind of induction on 
formulas (see the proof of 18.9). Clearly we have: 

Proposition 18.2. 1= -'fP +-+ fP-+. 

Definition 18.3. Let!£' be a first-order language. An expansion !£" of !£' is 
rich by C if !£" is obtained from !£' by adjoining a set C of individual 
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constants with Ie! = I Fmla.2'l. We shall denote ,P'-structures frequently 
by (~, aC)CEC, where ~ is an ,P-structure. A primitive term of 'p' is a term 
of the form Oeo' .. em -1 where 0 is an operation symbol of rank m and 
e E me. In particular (m = 0), any individual constant is a primitive term. 

In this definition we have made a little more definite part of our procedure 
in Chapter 11. Now we come to the main concept: 

Definition 18.4. Let,P' be a rich expansion of ,P bye. Let S be a family 
of sets of sentences of 'p'. Then S is a consistency family (for .P, 'p') iff 
for each rES all of the following hold, for all sentences cp, .p of 'p': 

(CO) If ~ s r, then ~ E S. 
(Cl) cp ¢: r or -, cp ¢: r. 
(C2) If -'Cp E r, then r u {cp-+} E S. 
(C3) If cp 1\ .p E r, then r u {cp} E Sand r u {.p} E S. 
(C4) If cp v .p E r, then r u {cp} E S or r u {.p} E S. 
(C5) If Vacp E r, then for all e E e, r u {Subfgcp} E S. 
(C6) If 3acp E r, then for some C E e, r u {Subf~cp} E S. 
(C7) If e, dEe, and (e = d) E r, then r u {d = e} E S. 
(C8) If e E e, T is a primitive term, e = T E rand Subf:cp E r, then 

r u {Subf~cp) E S. 
(C9) For any primitive term T there is aCE e such that r u {e = T} E S. 

(ClO) If a is a limit ordinal < I Fmla.2' I , r E as, rp s ry whenever 
f3 < 'Y < a, and I{e E e: e occurs in cp for some cp E Up<a rp}1 < 
Ie!, then Up<a rp E S. 

(Cll) I{e: e occurs in some cp E r}1 < Ie!. 

We may think of the members of a consistency family as being consistent 
sets of sentences in 'p'. They are so related in the family that they can be 
extended using the properties (Cl)-(Cll) just as we extended our consistent 
set in in Chapter 11 to a complete rich consistent set. As we shall see, analyzing 
that construction in this way enables us to get" inside" the construction and 
make modifications which will assure special desirable properties of the 
resulting model; see the later proofs of 22.1, 27.4, and 28.6, for example. 
Note that if I Fmla.2' I = No, then condition (ClO) drops away. Under the 
assumption I Fmla.2' I = No, assumption (Cll) can also be dropped and the 
main theorem 18.9 remains valid; and by this assumption (CO) can also be 
dropped (see 18.7). 

Now we shall give a couple of examples of consistency families. More will 
be found in the exercises and in later chapters. 

Proposition 18.5. Let,P' be a rich expansion of,P by C. Let S be the set of 
all formally consistent sets r of sentences of 'p' such that I{c E e: e occurs 
in some cp E r}1 < Ie!. Then S is a consistency family. 
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PROOF. We need to check conditions (CO)-(Cll) for an arbitrary rES. 
(CO) and (CI) are clear since r is consistent. (C2) follows from 18.2. Since 
cp A ifs E r implies that r F cp and r F ifs, (C3) is clear. For (C4), assume that 
r u {cp} ¢' Sand r u {ifs} ¢' S. Then r F -'cp and r F -'ifs, so r F -,(cp v ifs) and 
hence cp v ifs ¢' r since r is consistent. (C5) is clear since r F Subf~cp. For 
(C6), assume that r u {Subf~cp} ¢' S for all C E C. Choose C E C so that C 

does not occur in cp or in any sentence of r. Then r F -,Subf~cp. In a proof 
of -,Subf~cp from r, replace C be a new variable fl. Thus r F -,Subfpcp, 
hence r F Vfl -, Subfpcp, hence r F Va -, cpo Thus 3acp ¢' r. (C7) and (C8) are 
clear. For (C9), choose C E C not occurring in T or in any sentence of r. If 
r u {c = T} ¢' S, then r F -,(c = T). In a proof of -,(c = T) from r, replace 
C by a new variable a. Thus r F -,(a = T), hence r FVa -, (a = T), hence 
r F -'(T = T), hence r is inconsistent, contradiction. (CIO) is clear, as is 
(Cll). 0 

Proposition 18.6. Let 2' be a rich expansion of 2 by C, where I Fmlazl = 
No. Let S be the set of all sets r of sentences such that r has a model 
(m, aC)CEC with A = {ac : C E C} and (Cll) holds. Then S is a consistency 
family. 

This proposition is clear. Another lemma which will be used in applying 
our main theorem is as follows. 

Lemma 18.7. If S satisfies conditions (Cl)-(C9), then S' = {r : r S Ll for 
some Ll E S} satisfies (CO)-(C9). 

PROOF. Assume that rES', say r S Ll E S. Both (CO) and (Cl) are clear 
for r. To check (C2), suppose -'Cp E r. Thus -'Cp Ell, so by (C2) for S, 
Ll u {cp~} E S. Now r u {cp~} S Ll u {cp~}, so r u {cp~} E S'. (C3)-(C9) are 
established similarly. 0 

The concept that really enables us to "get inside" the construction is as 
follows: 

Definition 18.8. Let 2' be a rich expansion of 2 by C, and let S be a 
consistency family. A function f: S ~ S is admissible over S provided 
that for any rES the following two conditions hold: 
(i) r sfr ; 
(ii) I{c E C: C occurs in some cp Efr}1 = I{c E C: C occurs In some 

cp E r}1 + m for some mEw. 

Theorem 18.9. (Model existence theorem). Let 2' be a rich expansion of 2 
by C, let S be a consistency family, and let <fa: a < IFmlazl> be afamily 
of admissible functions over S. Then for any rES there is a model 
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(~, aC)CEC of r satisfying the following two conditions: 

(i) A = {ac : C E C} and so IAI ::;; I Fmlazl ; 
(ii) for each a < I Fmlazl there is a ~ E S such that 

r s f",~ S {'P : (~, aC)CEC 1= 'P}. 

PROOF. Set m = I Fmlazl for brevity. Let 'P: m ~ Sentz" let 'T map m 
one-one onto the set of primitive terms of ,!l>', and let a well-ordering of C be 
fixed. Let rES. We now define a sequence < 0", : a ::;; m). Let 0 0 = r. 
Suppose 0", E S has been defined, where a < m, and the following condition 
holds: 

(0) I{c: c occurs in some 'P E 0",}1 ::;; I{c: c occurs in some 'P E r}1 + 
lal + No. 

We now define 0",+ 1. Let 

0~ = 0", if 0", U {'P",H s, 
0~ = 0", U {'P",} otherwise. 

0; = 0~ U {'Ps} if 0", U {'P",} E s, 'P", = 'Ps v 'Pto and 0~ U {'Ps} E S, 
e; = 0~ U {cpt} if err; U {CPa} E S, CPa = 'Ps V <Ph and e~ U {CPs} Et s, 
0; = 0~ otherwise. 

0; = 0; U {Subf~t/s} 

0; = 0; otherwise. 

0~V = 0; U {c = 'T",} 

0"'+1 = 1a0~v. 

if 0", U {'P",} E s, 'P", = 3at/s, and c is the ::;;-least 
member of C such that 0", U {'P"" Sub f~t/s} E s, 

where C is ::;; -least such that 0; U {c. = 'T "'} E S. 

Clearly 0"'+1 E S again, and (0) holds for a + 1. Now suppose that A is a 
limit ordinal ::;;m. We set 0 11 = U"'<II 0",. For A < m we have 0 11 E S by 
(CIO), using (0), and clearly (0) still holds for A. This completes the definition 
of < 0", : a ::;; m). Clearly 0", E S for each a < m. Furthermore, all of the 
following hold, for all sentences 'P, t/s of ,!l>': 

(1) 'P ¢ 0 m or ""'P ¢ 0 m• 

(2) If ""'P E 0 m, then 'P-+ E 0 m• 

(3) If 'P 1\ t/s E 0 m, then 'P, t/s E 0 m· 

(4) If 'P v t/s E 0 m, then 'P E 0 m or t/s E 0 m. 
(5) IfVa'P E 0 m, then for all c E C, Subfg'P E 0 m. 

(6) If 3a'P E 0 m, then for some c E C, Subf~'P E 0 m• 

(7) If c, dEC and c = d E 0 m, then d = c E 0 m• 

(8) If c E C, 'T is a primitive term, C = 'T E 0 m, and Subf~'P E 0 m, then 
Subf~'P E 0 m • 

(9) For any primitive term 'T there is aCE C such that C = 'T E 0 m. 

(10) For each a < m there is a ~ E S such that r s f",~ s 0 m. 

All of these conditions are easily established; we check (1), (5), (6), and (10) 
as examples. Suppose 'P, ""'P E 0 m • Then there is an a < m such that 'P, ""'P E 
0"" contradicting 0", E S. Thus (1) holds. Assume Va'P E 0 m and C E C. Let 
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Subfg'cp = CPn. Choose y ~ f3 with Vacp E 8 y • Now by (CS), 8 y U {Subf~ cp} 
E S, so by (CO), 8 n U {Subfg'cp} E S. Hence Subfg'cp E 88+1 £ 8 m, as de
sired for (S). Next, assume that 3acp E 8 m• Say 3acp = CPn. Choose y ~ f3 so 
that 3acp E 8 y • Thus 8 n U {CPn} £ 8 y , so by (CO), 8 n U {CPn} E S. Hence by 
construction there is aCE e such that Subfg'cp E 8 n+ 1 £ 8 m. Hence (6) 
holds. Finally, suppose a < m. Then r £ 8 a £ 8~v £ fa8~v = 8 a+l £ 8 m• 

Thus (10) holds. 
Now let == be the binary relation on e such that for any c, dEe, C == d iff 

C = d E 8 in. Then 

(11) == is an equivalence relation on e. 

In fact, - is symmetric by (7). If C == d and d == e, let cP be the formula 
Vo = e. Then C = d, Subf~ocp E 8 m, so by (8), Subf~ocp E 8 m, i.e., C = e E 8 m. 

Thus == is transitive. By (9), given any dEe there is aCE e with C == d. 
Thus == is an equivalence relation on e. 

If cP is a formula of .ff" with Fvcp £ {vo, ... , Vm -1}, if C Erne, 
(12) d E me with CI == dl for all i < m, and if cp( Co, ... , Cm -1) E 8 m, 

then cp( do, ... , dj -loCi> ... , Cm -1) E 8 m for each j :s; m. 

We prove (12) by induction on j. The case j = 0 is trivial. Assume (12) for 
j, with j + 1 :s; m, and suppose that cp( Co, ... , Cm -1) E 8 m. By the induction 
hypothesis, cp( do, ... , dj -1, Cj, ••• , Cm -1) E 8 m. Let t/J be the formula cp( do, ... , 
d j - lo Vo, Ci+1,"" Cm-1)' Thus d j = Cj E 8 m (by (7» and Subfg7t/J E 8 m• By 
(8), cp(do, ... , dj , Ci+1,"" Cm-1) E 8 m, as desired. By (12) withj = m, 

if cp is a formula of .!£l' with Fvcp £ {vo, ... , Vm -1}, if C Erne, d E me 
(13) with '1 == ~ for all i < m, and if cp(co, ... , Cm-1) E 8 m, then 

cp(do, ... , dm- 1) E 8 m• 

Now let A = C/==. We define an .!£l-structure Ql with universe A. In what 
follows, [c] denotes the equivalence class of C under ==. 

If 0 is an m-ary operation symbol of ~ then O~ = {(a, b) : 
(14) a E rnA, bE A, and there exist C E me and dEb with CI E al for all 

i < m and d = Oco ... em -1 E 8 m}; 

(IS) if R is an m-ary relation symbol of ~ then R~ = {a E rnA: there 
exists C E me with Ci E al for all i < m such that Rco ... Cm -1 E 8 m}. 

Then 

(16) if 0 i~ an m-ary operation symbol of ~ then O~ is an m-ary 
operatIon on A. 

For, let a E rnA; say C E me with Ci E aj for all i < m. Then by (9) there is a 
dEe with d = Oco ' .. Cm-1 E 8 m • Thus (a, [d]) E O~. Next, suppose (s, t) E 
O~ and (s, u) E O~. Say WE me, X E t, Wi E Si for all i < m, and x = Owo ... 
Wm-1 E 8 m ; also say Y Erne, Z E U, Yi E Sf for all i < m, and Z = Oyo ... Ym-1 
E 8 m• Thus WI == YI for each i < m, so by (13), x = 0Yo'" Ym-1 E 8 m• Let 

31S 



Part 4: Model Theory 

.p be x = Vo. Then z = Oyo' ., Ym-l E 8 m and Subf6~o' . ·y(m-l).p E 8 m .Thus 
by (8) we infer that x = Z E 8 m. Thus x == Z, so t = u, as desired. Thus (16) 
holds. Next, 

(17) OQ!([co], ... , [cm-d) = [d] iff (d = Oco ' .. cm- 1) E 8 m. 

In fact, <= is obvious by the definition of OQ!. For =?, there exist e E mc, 
§ E [d] with ei == Ci for all i < m and s = OeD··· em- 1 E 8 m. Thus d == s, and 
by (13) s = Oco ' .. Cm- 1 E 8 m. Let .p be Vo = Oco " . cm - 1 • Then d = s, 
Subf~°.p E 8 m, so using (8) we infer that d = Oco ... Cm -1 E 8 m, as desired. 

Using (13), 

(18) <[CO], ... , [Cm - d) E RQ! iff Rco ... Cm -1 E 8 m. 

Now let Qi' = (Qi. [C])CEC' 

(19) If rp is an atomic sentence and rp E 8 m, then rp holds in Qi'. 

We prove (19) by induction on the number p of operation symbols ¢ C which 
occur in rp. If p = 0, then (19) follows from (18) and the definition of ==. 
Now assume (19) true for p. Let rp be an atomic sentence withp + 1 operation 
symbols ¢ C occurring in rp. Then some primitive term Oco ... Cm -1 occurs in 
rp where it is not the case that m = 0 and 0 E C; let .p be obtained from rp 
by replacing an occurrence ofOco '" Cm - 1 by Vo. Say OQ!([co], .... [cm-d) = 

[d]. Then by (17), d=Oco···Cm_lE8m. Also, SubfJ'?co"'c(m-l)).pE8m 
since Subf;';?co ... c(m -1)).p = rp. Hence using (8), Subf~°.p E 8 m. The induction 
hypothesis applies to Subf~°.p, which hence holds in Qi'. Since OQ!([co], ... 
[cm-d) = [d], it follows that rp holds in Qi'. This completes the inductive proof 
of (19). 

(20) If rp is an atomic sentence and 'rp E en" then 'rp holds in Qi'. 

This statement is proved almost verbatim like (19). Now we come to our 
final statement: 

(21) for any sentence rp of £", if rp E 8 m then rp holds in Qi', and if 'rp 
E 8 m then 'rp holds in Ql'. 

We prove (21) by induction on the number of logical connectives-., v, 
A, V-occurring in rp. If rp is atomic, (21) is given by (19) and (20). Now 
suppose rp satisfies (21). To show that 'rp satisfies (21) it obviously suffices 
to show that if "rp E 8 m then rp holds in Qi'. By (2), (.rp)-+ E 8 m, i.e., rp E 
8 m, so rp holds in Ql' by the induction assumption. Now suppose rp and .p 
satisfy (21). First suppose rp A .p E 8 m. By (3), rp, .p E 8 m and hence by the 
induction assumption rp and .p hold in Ql', hence rp A .p holds in Ql'. Second 
suppose .(rp A .p) E 8 m. Then by (2), (rp A .p)-+ E 8 m, i.e., 'rp v • .p E 8 m. 
Hence by (3), 'rp E 8 m or • .p E 8 m, so by the induction assumption 'rp 
holds in Ql' or • .p holds in Ql', so .(rp A .p) holds in Ql'. Similarly, rp v .p 
satisfies (21) if rp and.p do. Finally, suppose Varp E 8 m. Then by (5), Subf~rp E 
8 m for all c E C, so by the induction assumption Subf~rp holds in Ql' for all 
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C E C, hence \;farp holds in Q!'. On the other hand, suppose ,\;farp E 8 m . By 
(2), ('</arp)-"" E 8 m, i.e., 3a 'rp E 8 m . By (6) choose C E C so that Subfg 'rp E 

8 m . By the induction assumption, Subfg 'rp holds in Qi', so ,\;farp holds in 
Qt'. This completes the proof of (21). 

Since r <;: G\n, it follows from (21) that Qt' is a model of r. Clearly Qi' 

has the form (QI, [e])CEC with A = {[e] : e E C}. Finally, if a < m then by 
(10) and (21) there is a ~ E S such that r s; fa~ <;: G)m <;: {rp: Qt' 1= rp}. 0 

Taking all of the admissible functions in 18.9 to be the identity we obtain 

Corollary 18.10. Let £l' be a rich expansion of 2' by C, and let S be a 
consistency family. Then each member of S has a model of power:::; I Fmlazl. 

Note that if I Fmlazl = ~o, then condition (C I I) is not needed in the 
proof of 18.9 (in its proof, (0) can then be omitted). Hence we obtain 

Corollary 18.11. Let £l' be a rich expansion of £l by C, assume that 
IFmlazl = ~o, and let S satisfy (CO)-(C9). Let <fa: a < w> be a family 
of admissible functions over S. Then each rES has a model (QI, a'.)CEC with 
A = {a(. : e E C} and hence I A I :::; ~o, such that for each a < w there is 
some ~ E S with r <;: fa~ <;: {rp : (QI, aJcEc 1= rp}. 

Finally, using 18.7 we obtain the simplest form of the model existence 
theorem: 

Corollary 18.12. Let £l' be a rich expansion of 2' by C, assume that I Fmlazl 
= ~o, and let S satisfy (C I )-(C9). Then each rES has a model (QI, aC)CEC 
with A = {ac : eEOC} and hence IA I :::; ~o. 

Applying 18.9 to the consistency family given in 18.5, we obtain the 
completeness theorem I 1.19. Theorem 18.9 will be used for many of our later 
results, as we have mentioned. 

The construction method given in the model existence theorem is of a 
somewhat syntactical nature, and yields a model internally, so to speak, with 
no models given to start with. The method of constructing models to which 
we now turn, the ultraproduct method, does not involve syntactical notions 
at all, but proceeds from" partial" models directly to a "full" model. The 
ultraproduct of structures is an operation of a general algebraic nature, and 
it also plays a significant role in the general theory of algebras. In this 
chapter we shall only give the basic definitions and results concerning ultra
products. More detailed connections with logic will be indicated as we 
proceed in this part. As the name suggests, ultraproducts are formed from 
products of structures by use of ultra filters over certain sets. We first give the 
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definition of products. A more detailed investigation of products and their 
relationships to logic will come later. 

Definition 18.13. Let <2li : i E I) be a system of 2'-structures, where 2' is 
any first-order language. By the product PiEI Q!i of the system <Q!i : i E I) 
we mean the 2'-structure 2' with universe B = PiEI Ai = {f:f is a func
tion, Dmnf = I, and for each i E I, /; E Ai}, and with relations and opera
tions as follows: 
(i) if 0 is an m-ary operation symbol and xo, ... , Xm -1 E B, then for 

any i E I, 

(ii) if R is an m-ary relation symbol, then 

R'B = {(xo, ... , X m-1) E mB: Vi E 1 (XOi> ... , X m- 1,i) E RQli}. 

If 2li = <r for all i E I we write l<r instead of PiEI Q!i; I<r is the Jlh direct 
power of <r. In case I has exactly two elements i, j, we write Q!i x Q!j 

instead of PiEI 2li. Thus the product of two structures <r and 'Sl has been 
defined and is denoted by <r x ~; we think of it as PiE2 Q!i' where Q!o = <r 
and Q{l = 'Sl. One final bit of notation for the general product P iEI 2li: 
for each i E I we denote by prrl, or simply pri when Q! is understood from 
the context, the projection function whose domain is PiEI Ai such that for 
any x E PiEI A;, 

prix = Xi' 

The following useful proposition is easily established by induction on a: 

Proposition 18.14. Let"B = PiEI 2li. For any term a, any X E WPiEI Ai> and any 
i E I, (aQ1x)i = aQli(pri 0 x). 

Now we give the basic definitions and a few basic facts concerning ultra
filters. Filters and ultrafilters are used in various parts of mathematics, 
especially in general topology. Their usefulness in logic is mainly connected 
with the ultraproduct construction and with certain large cardinals that arise 
in the study of infinitary languages and the metamathematics of set theory. 

Definition 18.15. Let I be any set and F a collection of subsets of 1. 

(i) F has the finite intersection property if ao n· .. n am -1 =1= 0 whenever 
mEw and a EmF. 

(ii) F is a filter over I provided F =1= 0 and: 
(a) b 2 a E F implies b E F; 
(b) a, b E F implies a n bE F. 

(iii) F is an ultrafilter over 1 provided F is a filter over I, 0 r! F, and for 
any J s; I, either J E I or I ~ J E F. 
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The following proposition is obvious. 

Proposition 18.16. If F is a filter and 0 ¢: F, then F has the finite intersection 
property. For any filter F over I we have IE F. For any filter F on I, 0 E F 
ifJ F is the set of all subsets of I. 

Proposition 18.17. Let F be a filter over I with 0 ¢: F. Then the following 
conditions are equivalent: 

(i) F is an ultrafilter. 
(ii) for all a, b ~ I, if a U b E F, then a E F or b E F. 

(iii) for any filter G on I, ifF c G, then 0 E G. 

PROOF. (i) => (ii). Assume that a u b E F while a ¢: F. Then by (i), I '" 
a E F. Now (I'" a) n (a U b) ~ b, so b E F. (ii) => (iii). Say a E G '" F. Then 
a u (I'" a) = IE F, so by (ii) I", a E F ~ G. Hence 0 = a n (I,..., a) E G. 
(iii) => (i). Assume that a ~ I and a¢: F. Let G = {b ~ I: there is an x E F 
with x n a ~ b}. Clearly F ~ G, a E G, and G is a filter. In particular F c G, 
so 0 E G by (iii). Hence x n a = 0 for some x E F; hence x ~ I ,..., a, so 
I,...,aER 0 

The following is the basic existence principle for ultrafilters. 

Proposition 18.18. If F is a collection of subsets of I =F 0 with the finite 
intersection property, then there is an ultrafilter G such that F ~ G. 

PROOF. Let.91 be the collection of all filters G such that F ~ G and 0 ¢: G. 
Then d is nonempty; for, let H = {x ~ I: there exist mEw and y E mF 
with Yo n· .. n Ym-l ~ x}. Clearly HE d. If 0 =F ffl ~ .91 is simply ordered 
by inclusion, clearly Uffl E .91. By Zorn's lemma, let G be a maximal ele
ment of d. By 18.17, G is an ultrafilter. 0 

Definition 18.19. Let ~ = <~i : i E I) be a system of .P-structures, and let 
F be an ultrafilter on l. We define 

ji"U = {(x, y) E 2PiEI Ai : {i : Xi = ya E F}. 

We write F if ~ is understood. Obviously F depends only on the system 
<Ai: i E I) and not at all on the language !£'. 

Proposition 18.20. Under the assumptions of 18.19, F is an equivalence 
relation on PiEI Ai' Let!:B = PiEI~' Then 

(i) if 0 is an m-ary operation symbol, and if XtFYt for all t < m, then 
O'8xFOy'8; 

(ii) ifR is an m-ary relation symbol, and if xtFydor all t < m, then 
{i E I: (XOh ... , Xm-l,l) ER2Ii} E FifJ{i E I: <YOh ••• , Ym-l,i) ER2II} E F. 
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PROOF. The proof is routine, and we just check (i) and the transitivity of 
F as examples. Assume that xFyFz. Thus {i E [: Xi = Yi} E Fand {i E [: Yi=Zt} 

EF. But 

{i E [: Xi = Yi} (l {i E [: YI = ZI} S {i E [; Xi = z;}, 

so also {i E [: XI = Zt} E F, and so xFz. To check (i), note that 

{i E [: VI < m(xti = Yti)} = n {i E [: Xli = Yti} E F, 
t<m 

and hence 

{i E [: VI < m(xti = Yti)} S {i E [: (O'l3X)i = (O'l3Y)i} E F, 

so O'l3xFO'l3y . o 

We may think of the members of an ultrafilter F as "big" subsets of [. 
Thus the passage from a member X E Piel Ai to its equivalence class under F 
amounts to identifying all functions which are equal to x on a "big" subset 
of [. As usual, [xli', or simply [x] if F is understood, denotes the equivalence 
class of X under F. Proposition 18.20 justifies the definition of ultraproducts: 

Definition 18.21. Let Ql = <Qli: i E [) be a system of .P-structures, set 
~ = P iel Qli' and let F be an ultrafilter on I. The ullraproducl of Ql over F, 
denoted by QlI For P tel Qld F, is the structure <r with universe C = P ielA;/ F 
(the collection of all equivalence classes under F) and with operations and 
relations given as follows: 

(i) if 0 is an m-ary operation symbol and X E mB, then oet([xo], ... , [xm - d) 
= [O'l3(xo, .. ·, Xm-l)]; 

(ii) if R is an m-ary relation symbol, then we let Ret consist of all m-tuples 
of the form <[xc], ... , [Xm-l]) such that {i : <XOi> ... , Xm-l,i) E R~(i} E F. 

Of particular importance later will be the case when all factors Qlt of an 
ultraproduct are equal to some structure <r. Then the ultraproduct PteIQl;/F 
is denoted of course by I<rIF, and is called an ultra power of <r. Sometimes 
we omit the bar on F. 

We shall give only a few basic properties of ultraproducts here. Our first 
very simple property uses the notion of an isomorphism, which we shall now 
briefly discuss. 

Definition 18.22. Let Ql and ~ be .P-structures. An isomorphism from Ql 
into ~, or an embedding of Ql into ~ is a one-one function f mapping A 
into B such that 

fO~(ao, ... , am -1) = O'l3(fao, ... ,jam -1) 

whenever 0 is an m-ary operation symbol and ao, ... , am - 1 E A, while 

<ao,"" am-I) E R~ iff <fao, ... ,fam-l) E R'l3 
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whenever R is an m-ary relation symbol and ao, . .. , am - 1 EA. We say 
that f is an isomorphism from ~ onto !iB if the function f maps onto B. 
Finally, we write ~ ~ !iB if there is an isomorphism from!iB onto!iB. 

The following proposition, easily established by induction on (J' and cp, is 
the basic fact about isomorphism as far as first-order languages are con
cerned. Actually a similar theorem holds for any of the languages which 
have been considered by logicians. The result says roughly that isomorphic 
structures are indistinguishable in first-order logic. For this reason, most of 
our definitions and results extend automatically to isomorphic structures. 

Proposition 18.23. Iff is an isomorphism from ~ onto~, x E co A, (J' is a term, 
and cp is a formula, then: 

fa~x = a"l3(fo x); 
~ 1= cp[x] iff!iB 1= cp[f 0 x]. 

Thus for any sentence cp, cp holds in ~ iff cp holds in!iB. 

Definition 18.24. An ultrafilter over I is principal (or fixed) if there is an 
iEIsuch that F = {a £: I: iEa}. 

It is trivial to check that for any set I and any i E I, {a £: I: i E a} is an 
ultrafilter. Nonprincipal ultrafilters are sometimes called free. As we shall 
shortly see, ultraproducts with principal ultrafilters are not interesting. 

Proposition 18.25. If I is afinite set, then every ultrafilter over I is principal. 

PROOF. Let F be an ultrafilter over l. Then UiEdi} = IE F, so by 18.13(ii), 
since I is finite, there is an i E I such that {i} E F. Then, in fact, F = 
{a £: I: i E a}. For, if i E a £: I, then a 2 {i} E F, so a E F. Conversely, if 
a E F, then a n {i} E F and so, since 0 ¢ F, we have i E a. 0 

Proposition 18.26. If I is an infinite set, then there is a non-principal ultra-
filter over l. 

PROOF. Let F = {I,..., {i} : i E I}. Since I is infinite, it is clear that F has the 
finite intersection property. Let G be an ultrafilter containing F, by 18.18. 
Clearly G is nonprincipal. 0 

Proposition 18.27. If <~I : i E I) is a system of .!l'-structures and F is a 
principal ultrafilter over I, say F = {a £: I: j E a}, then ~j ~ PIE! ~;/F. 

PROOF. Fix x E PiE! Ai. We define fa = [x~] for each a E A j • Thus f maps 
A, into PiE! AI. Now fis one-one; for if a, b E Aj and a ¥- b, then (x~) = a¥-
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b = (Xb)j and hence j r$ {i: (X~)I = (xbM, so not (x~Fxb) and fa = [x~]# 
[x~] = fb. Also, f maps onto PIEI AdF; for, if Y E PIEI Ai, then (X~i)i = Yi 
and hence {j} S {i: (X~i)1 = Yi} E F and so fYi = [X~i] = [y]. Next, f pre
serves operations, for if 0 is an m-ary operation symbol, ao, ... , am -1 E Ai, 
and b = O!W(ao,.'" am-1), then with ~ = PIEI~' 

(O'8(X~o, ... , X~(m-1»))j = b = (x~)j, 

and hence [O'8(x~o,"" X~(m-1»)] = [xt]. Thus with <r = PIEI ~dF, 

fOml(ao, ... ,am_1) =fb = [x~] = [0'8(x~o"",X~(m_1»)] 
= Olt([x~o], ... , [x~(m-1)D 
= Olt(fao, ... ,jam -1)' 

Finally, f preserves relations. For, if R is an m-ary relation symbol, ao, ... , 
am -1 E Ai' and <r is as above, then 

iff {i : <x~oi, ... , x~(m-1)i> E Rm,} E F 
iff <[x~o], ... , [X~(m-1)]> E RIt (by 18.20(ii)) 
iff <fao, ... ,jam-I> E RIt. 0 

By 18.27, ultraproducts are interesting only with respect to nonprincipal 
ultrafilters, and hence by 18.25, only over infinite sets. In fact, an ultraproduct 
can be considered as a kind of limit of its factors (see 18.29 below). The 
following useful proposition follows immediately from the definitions of the 
notions involved. 

Proposition 18.28. Let.It" be an expansion of .!£', and let <~I : i E I> be a 
system of .fl/'-structures. Then (PiEI ~ljF) r.fl/ = PiEI (~i r .fl/)jF. 

Now we shall prove a result showing the logical nature of ultraproducts. 
In almost all of our applications of ultraproducts this is the theorem which is 
actually applied. 

Theorem 18.29. (Basic theorem on ultraproducts). Let <~I: i E I> be a 
system of .fl/-structures, and F an ultrafilter over l. Let [ ] be the function 
assigning to each x E PiEI Ai the equivalence class [x] of x relative to F. 
Then for any formula f[J of.fl/ and any x E "'P iEI Ai the following conditions 
are equivalent: 

(i) PiEI ~;/F l= f[J[[ ] 0 x]; 
(ii) {i E I: ~i l= f[J[prl 0 x]} E F. 

PROOF. Set ~ = PiEI ~i and <r = PiEI ~;/F. By induction on a one easily 
shows 

(1) for any term a and any x E "'PIEI AI> a lt([ ] 0 x) = [a'8x ]. 
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We now prove the theorem itself by induction on f{J. First suppose that f{J is 
a = T. Then 

iff a'l:([ ] 0 x) = T'l:([ ] 0 x) 
iff [a~x] = [T~X] 
iff {i: (a~x). = (T~X).} E F 
iff {i : a<U'(pr. 0 x) = T<u,(pr. 0 x)} E F 
iff {i : QI. l= tp[pr. 0 x]} E F. 

by (1) 

by 18.14 

The other atomic case is entirely analogous. We now check the result for 
tp = I/J v x; the proof is similar for -, and A. 

iff <r l= I/J[[ ] 0 x] or <r l= x[[ ] 0 x] 
iff {i E I: QI. l= I/J[pr. 0 x]} E F 

or {i E I: QI. l= X[pr. 0 x]} E F by induction hypothesis 
iff {i E I: QI. l= I/J[pr. 0 x]} U {i E I: QI. l= X[prj 0 x]} E F 

by 18.17 
iff {i E I: QI. l= f{J[pr. 0 x]} E F. 

Finally, suppose tp is Vvjl/J. Let M = {i E I: QI. l= tp[pr. 0 x]}. First suppose that 
ME F; then we want to show that <r l= f{J[[ ] 0 x]. So, let a E P.E! A.; we want 
to show that <r l= I/J[([ ] 0 x){al]' Now for each i EM, QI. l= I/J[(pr. 0 x)~.]. Note 
that (pr. 0 x)~. = prj 0 x~, so 

{i E I: QI. l= tp[pr. 0 xm 2 ME F, 

and hence {i E I: QI. l= I/J[pr. 0 x]D E F. By the induction hypothesis, <r l= 

I/J[[ ] 0 x~]. Clearly [ ] 0 x~ = ([ ] 0 X){al, so <r l= I/J[([ ] 0 x){al]' 
Second, suppose M 1= F. Then I ~ ME F, i.e., I ~ M = {i E I: QI. l= 3v j -, 

I/J[pr. 0 x]} E F. For each i E I ~ M choose ai E Ai so that Qli l= -,I/J[(pr. 0 x)~;], 

and for i E M choose aj E Aj arbitrarily. Again (pr. 0 x)~j = prj 0 x~, so 

{i E I: QI. l= -,I/J[prj 0 xm 2 I ~ ME F, 

and hence {i E I: Qli l= -,I/J[pr. 0 xm E F. By the induction hypothesis, <r l= 

-,I/J[[ ] 0 xn Again we have [ ] 0 x~ = ([ ] 0 X){al' Hence <r 1# tp[[ ] 0 x]. 0 

Corollary 18.30. If f{J is a sentence, then tp holds in P'E! QI;/Fiff{i : f{J holds in QI.} 

EF. 

Corollary 18.31. If a sentence f{J holds in Qli for each i E I, then f{J holds in 
PjE! QI;/F. 

These two corollaries are used more frequently than the fundamental 
theorem itself. As an illustration of the use of ultraproducts we now give 
another proof of the compactness theorem. In this proof the final model is 
obtained rather clearly as a limit of the models of finite subsets, so this proof 
appears much more constructive than the proof using the completeness 
theorem. 
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Assume that each finite subset L\ of r has a model ~,j. Let I = {Ll : Ll is a 
finite subset of r}. For each Ll E I let G,j = {0 : Ll s:; 0 E I}. If Llo, ... , 
Llm - 1 E I, then Gao ("\ ... ("\ G .Mm-l) = G /lOu' .. u6(m-l) =I 0. Thus {G 6: Ll E I} 
has the finite intersection property, so by Proposition 18.18 let F be an ultra
filter over I such that G 6 E F for each Ll E I. Then P 6EI ~6/F is a model of r. 
In fact, let pEr. Then G{(f)l s:; {Ll E I: p holds in ~6}' and G{(f)l E F, so 
{Ll E I: p holds in ~6} E F. Hence by Corollary 18.30, p holds in P 6EI ~6/F, 
as desired. 

In the remainder of this section we shall discuss briefly the cardinality of 
ultraproducts. Our main purpose is to show that given any infinite structure, 
we can find arbitrarily large ultra powers of it. 

Proposition 18.32. Ifn E wand {i E I: IAil = n} E F, then IPiEI At/FI = n. 

PROOF. Let p be a sentence (involving equality only) which holds in a 
structure <;S iff I B I = n. Thus {i E I : p holds in ~i} E F, so by 18.30, p holds 
in PiEI ~t/F. Thus IPiEI At/FI = n. 0 

The converse of 18.32 is established similarly: 

Proposition 18.33. If I PiEI At/FI < No, then {i E I: IAil = n} E F for some 
nEw. 

Actually it is rarely the case that I PIEI Ai/FI = No, but we shall not go 
into that. Now we define a special class of ultrafilters with respect to which 
ultrapowers of infinite structures are "big." 

Definition 18.34. An ultrafilter F over I is regular if there is an E s:; F such 
that IEI= III and n G = ° whenever G s:; E and G is infinite. 

To show that regular ultrafilters exist on infinite sets we need the following 
well-known set-theoretical fact: 

Proposition 18.35. If I is infinite, then I{J: J s:; I, J finite} I = III. 

PROOF. For each mEw and fE mI let Ff = Rngf Thus F maps UmEw mI 
onto {J s:; I: J finite}, so 

I{J s:; I: J finite} I :::; I U mIl :::; L ImII 
mew mew 

= L III = III·No = III· o 
mew 

Proposition 18.36. If I is an infinite set, then there is a regular ultrafilter 
over l. 
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PROOF. Let J = {X s; I: X is finite}. It clearly suffices to prove the prop
osition for J in place of I, since III = IJI by 18.35. For each XEJ let 
Gx = {YEJ: X s; Y}. If X o,"" X m - 1 EJ, then 

Gxo n···n GX(m-l) = G xou •• 'uX(m-l) =f 0, 

so E = {Gx : X E J} has the finite intersection property and hence is included 
in an ultrafilter F over J. Note that Gx =f Gy if X, Y E J and X =f Y, so I E I = 
IJI. If H s; E and H is infinite, clearly n H = 0. 0 

The above proof is of course similar to a part of our proof of the compact
ness theorem using ultraproducts; the ultrafilter constructed there is regular. 

Theorem 18.37. If A and I are infinite sets and F is a regular ultrafilter over 
I, then IIA/EI ~ 2111. 

PROOF. By Definition 18.34 choose E s; F so that lEI = III and n G = ° 
whenever G S; E and G is infinite. For each i E Ilet Hi = {a E E: i E a}. Thus 
by our choice of E, Hi cannot be infinite; hence we can choose a one-one 
function j; mapping SHi (= {z: z S; Hi}) into A. Now for each X S; Ewe 
define a function gx: I ~ A by setting 

(gX)i = j;(X n H t) 

for all i E I. Since lEI = III and hence ISEI = 21/1 , it suffices now to show 
that if X, Y S; E and X =f Y then not (gxEgy). Say a EX", Y. Then 

(1) 

In fact, if i E a, then a E Hi and hence a E (X n Hi) '" (Y n Hi) and so 
(gX)i =f (gy)i' Hence (1) holds. Since a E F, it follows that not (gxEgy). 0 

Note with regard to 18.37 that IIAI = 2111 if No :s; IAI :s; III- The following 
corollary of 18.37 gives an important fact about ultraproducts. 

Corollary 18.38. If A is infinite and m ~ No, then there is a set I and an 
ultrafilter F over I such that IIA/EI ~ m. 

EXERCISES 

18.39. Let 2' be a rich expansion of 2 by C. Let S consist of all r s Sentz 
such that every finite subset of r has a model and IU",ef' {c E C: c occurs 
in IP}I < Ic!. Show that S is a consistency family. Hence derive the 
compactness theorem directly from 18.9. 

18.40. Let F be an ultrafilter over I, let J E F, and set G = {X E F: X s J}. 
Show that G = {X n J: X E F} and that G is an ultrafilter over J. 

18.41. Let F, J, G be as in 18.40. Show that 

Ptel~dF ~ PJeJ~J/G. 
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18.42. Let <11< : k E K> be a partition of I into nonempty sets. For each k E K 
let FI< be an ultrafilter over 11<, and let G be an ultrafilter over K. Define 

H = {T s I: {k E K: Til 11< E FI<} E G}. 

Show that H is an ultrafilter over I. 

18.43. Under the assumptions of 18.42 show that 

PI<EK (PfEIl< mfjFI<)jG ~ PiEl mdil. 

18.44. Let P be the set of all positive prime numbers, and let F be a nonprincipal 
ultrafilter over P. For each PEP, let m" be the group if" of residues of 
integers mod p. Show that PEP m"j F is a group all elements of which have 
infinite order. 

18.45. Let P and F be as in 18.44. For each pEP let ~" be the prime field of 
characteristic p. Show that P"EP ~pjF is a field of characteristic O. 

18.46. Let m be the ring of integers and F a non principal ultrafilter over w. 
Show that wm.jF is an integral domain which is not a unique factorization 
domain. 

18.47. Let m be a field and I a non-empty set. For any ultrafilter F over I let 
MF = {x E 1 A : xFO}, where 0 E 1 A is the zero function, Oi = 0 for all 
i E 1. Show that M is a one-one function from the set of all ultrafilters over 
I onto the set of all maximal ideals in the ring 1m. 
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Elementary Equivalence 19 

We now introduce and study the basic logical relation between structures 
-elementary equivalence, as well as some related notions. 

Definition 19.1. Two 9'-structures ~ and ~ are elementary equivalent, in 
symbols ~ =ee ~, if (~ 1= rp ~ ~ 1= rp) for every sentence rp. 

Thus two elementarily equivalent structures are indistinguishable by 
first-order means. Note from 18.19 that isomorphic structures are auto
matically elementarily equivalent. We shall see that the converse is far from 
true. The following useful theorem is easy to establish: 

Proposition 19.2. For any theory r the following conditions are equivalent: 

(i) r is complete; 
(ii) any two models of r are elementarily equivalent. 

Proposition 19.3. If ~ =ee ~I for each i E I, and F is an ultrafilter over I, 
then Pier ~/F =ee Pier ~t!F. 

PROOF. Let rp be a sentence which holds in Pier ~t!F. Then by the basic 
theorem on ultraproducts,{iEI: ~ 1= rp} EF. But{iEI: ~i I=rp} = {iEI: ~I I=rp} 
by hypothesis, so by the basic theorem on ultraproducts, Pier ~t!F 1= rp. 
Taking -,rp for rp, we see that the converse holds also. 0 

In Chapter 26 we shall make a deeper study of elementary equivalence; in 
particular, we provide there mathematical equivalents of this logical notion. 
We shall be concerned for most of this section with a stronger form of 
elementary equivalence which can hold between two structures when one is 
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a substructure of the other. So we now turn to a brief discussion of the 
general algebraic notion of a substructure. 

Definition 19.4. Let Q! and m be two .P-structures. We say that Qj is a 
substructure of m, and m is an extension of Qj, Qj s::: m or m ~ Qj, provided 
that the following conditions hold: 

(i) A s::: B; 
(ii) for each operation symbol 0 (say m-ary), OQ! = 0'13 ~ m A; 

(iii) for each relation symbol R (say m-ary), RQ! = R'B n m A. 

Note that if m is an .P-structure, 0 =F A s::: B, and A is closed under all of 
the operations of m, then there is a unique .P-structure Qj with universe A 
such that Qj s::: m. In case .P has no operation symbols, each nonempty 
subset of B is the universe of some substructure of m. This is no longer true 
in general when there are operation symbols. For example, m = (w, {), 0) 
has no proper subalgebras, and in particular no finite substructures. 

The following simple proposition will be useful later. 

Proposition 19.5. Suppose Qj s::: m, x EO W A, and a is a term. Then IJ"Q!x = a'Bx. 

Proposition 19.6. If Qj and mare .P-structures, a function f is an embedding 
of Qj into m iff f is an isomorphism of Q! onto a substructure of m. 

The following is a basic result on embeddings which is usually implicit 
in basic courses in algebra. 

Proposition 19.7. Iffis an embedding ofQj into m, then there is an .P-structure 
<r and an isomorphism g of <r onto m such that Qj s::: <r and f s::: g. This is 
indicated by the following diagram, where ~ is the image off· 

<r ~ !:8 
UI UI 
Q!~~ 

f 

PROOF. Let C = A u {(A, x) : x EO B ~ D}. Note that A n {(A, x) : x EO B ~ D} 
= 0; for if (A, x) EO A, then A EO {A} EO (A, x) EO A, contradicting the regularity 
axiom of set theory. Define g: C --+ B by: ga = fa for all a EO A, and g(A, x) 
= x for all x EO B ~ D. Clearly g is a one-one function mapping C onto B. 
We define an .P-structure <r with universe C so that g is automatically on 
isomorphism from <r onto m: for 0 an m-ary operation symbol and for 
co, ... , Cm - 1 EO C, 

O(!:(co, ... , Cm -1) = g-10'B(gco, ... , gCm -1) 

while for R an m-ary relation symbol, 

R(!: = {(co, ... , Cm -1) : (gco, . .. , gCm -1) EO R'B}. 
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Since j s; g, it remains only to check that Qt S; G:. For an m-ary operation 
symbol 0 of 2 and for any ao, ... , an -1 E A, 

O<r(ao, ... , am-I) = g-IO'B(gao, ... , gam-I) = g-IO'B(fao, ... ,jam-I) 
= g-IO"'(jao, ... ,jam- I) = g-Y021(ao,··., am-I) 
= 021(ao, ... , am-I)' 

The case of relation symbols is similar. o 
We now introduce the technique of diagrams, due to Henkin and A. 

Robinson, which gives a method for dealing with substructures in a logical 
context. There are many variations on this important technique, and we will 
meet with some of them later. 

Definition 19.8. (Diagrams). Let X be any set. An X-expansion of 2 is an 
expansion 2' of 2 obtained from 2 by adding new distinct individual 
constants Cx for all x E X. We sometimes denote 2' by (2, CJXEX, and 
2' structures are denoted by (Qt, IJxEx, where Qt is an 2-structure and 
Ix is a member of A for each x E X; Ix is the denotation in the structure of 
Cx' 

Let Qt be an 2-structure, and let 2' be an A-expansion of 2. The 2'-
diagram of Qt is the set of all sentences of 2' of the following forms: 

'Ca = Cb for a, b E A and a =1= b; 
OCao ... calm -1) = Cb if 0 is an operation symbol of 2 of rank m, 
a E mA, and 021ao ' .. am-I = b; 
Rcao ... Calm -1) if R is an m-ary relation symbol of 2, and 
<ao, ... , am-I) ER2l; 
,Rcao ... Calm -1) if R is an m-ary relation symbol of 2', and 

<ao, ... , am-I) ¢R2l. 

Diagrams are essentially a logical expression of the notion of substructure, 
or embedding. The basic properties of diagrams are given in the next two 
theorems, which essentially show that the models of the diagram of Qt are 
exactly the structures in which Qt can be embedded. 

Proposition 19.9. Let Qt and S8 be 2-structures with j an embedding oj Qt 

into S8. Let 2' be an A-expansion oj 2. Then (S8,ja)aeA is a model oj the 
2' -diagram oj Qt. 

PROOF. The proof is essentially trivial, and we only illustrate it by verifying 
that a member q; = ,Rcao '" calm-I) of the diagram holds in (S8,ja)aeA' 
where R is an m-ary relation symbol of 2 and <ao, .. . , am-I) ¢ R21. 

iff not (S8,ja)aeA F Rcao· .. Calm-I) 

iff <jao, ... , jam -I) ¢ R'B 
iff <ao, ... , am -I) ¢ R21, 

so (S8,ja)aeA F q;. o 
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Note that 19.9 applies in particular if 21 S;; !:!3, wherefis just the identity 
on A. Then (!:!3, a)aeA is a model of the diagram of 21. More particularly, 
(21, a)aeA is a model of the diagram of 21. 

Proposition 19.10. Let 21 be an .f£'-structure, .f£" an A-expansion of .!£', and 
(!:!3, la)aeA a model of the .f£" -diagram of 21. Then I is an embedding of 21 
into !:!3. 

PROOF. Again the proof is almost trivial, and we will just check that I is 
one-one and that it preserves operations. If a, b E A and a of. b, then -'Ca = Cb 

is in the diagram of 21, so (!:!3, la)aeA 1= -'Ca = Cb and hence la of. lb. Now let 
o be an m-ary operation symbol, suppose that ao, ... , am- I E A, and set 
O~(ao, ... , am-I) = b. Then O(cao , •.. , Ca<m-I» = Cb is in the diagram of 21, 
and hence 

(!:!3, la)aeA 1= O(cao, ... , Ca<m-I» = Cb' 

It follows that 093(1ao, ... , lam -1) = lb. o 
The method of diagrams enables us to prove a mathematically useful 

embedding theorem. To formulate it we need a definition. 

Definition 19.11. Let 21 be an .f£'-structure and 0 of. X s;; A. The sub
universe of 21 generated by X is the closure of X under all of the operations 
O~ of 21; clearly it is the universe of a uniquely determined substructure 
of 21. A substructure !:!3 of 21 is finitely generated if B is generated by a 
finite non-empty subset of A. 

Note that if the language contains no operation symbols then any non
empty subset X of A coincides with the sub universe of 21 generated by X, 
and every finitely generated substructure of 21 is finite. The following simple 
cardinality result will be useful later. 

Proposition 19.12. Let 21 be an .f£'-structure, 0 of. X s;; A, and let B be the 
subuniverse of 21 generated by X. Then IBI ::; IXI + IFmla..2'l. 

PROOF. Let Co = X, and for each mEw let 

Cm+ I = Cm U {O~x: 0 is an n-ary operation symbol of.f£' and x E ncm}. 

Clearly B = Umeco Cm, ICml ::; IXI + I Fmla..2' I for each mEW, and hence 
IBI ::; IXI + I Fmla..2' I (recall that No ::; I Fmla..2' i). D 

Theorem 19.13 (Henkin's embedding theorem). Let K be the class of all 
models of a set r of sentences and let 21 be an .f£'-structure. Suppose that 
every finitely generated substructure of 21 can be embedded in a member of 
K. Then 21 can be embedded in a member of K. 

PROOF. Let.f£" be an A -expansion of .!£', and let A be the 'p'-diagram of 21. 
Then every finite subset 0 of r U A has a model. In fact, let CbO, .•. , Cb(m-I) 
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be all of the new individual constants that occur in sentences of 0. Let SB 
be the substructure of Q{ generated by {bo, ... , bm - I }, or let SB be any finitely 
generated substructure of Q{ if m = O. Set <r = (SB, la)aEA' where la = a for a 
of the form bi , la any element of B otherwise. Since (Q{, a)aEA is a model of 
Ll, it follows that <r is a model of Ll n 0. Now by the hypothesis of the theorem 
let f be an embedding of SB into a member <r of K. It is easily verified that 
(<r,fla)aEA is a model of 0. 

Thus by the compactness theorem, r U Ll has a model (D, ka)aEA = ~. 
From Proposition 19.10 we see that k is an embedding of Q{ into ~. 0 

Theorem 19.13 can also be established using ultraproducts; see Exercise 
19.42. As an example of an application of Henkin's embedding theorem we 
show that any simple ordering can be embedded in a discrete ordering. 
Recall that a discrete ordering is an ordering (A, ::;) such that every element 
of A has an immediate successor if it is not the last element of A, and an 
immediate predecessor if it is not the first element of A. The hypothesis of 
19.13 is trivially satisfied, since for the logic implicit here there are no 
operation symbols, and so finite generation just means finite, and every finite 
simple ordering is discrete. Thus 19.13 immediately gives the desired result. 
Of course this result can be proved directly, rather easily. See Exercises 
19.43 and 19.44 for further applications. 

Now we define the stronger form of elementary equivalence alluded to 
at the beginning of this chapter. 

Definition 19.14. Let Q{ and SB be 2'-structures. We say that Q{ is an 
elementary substructure of SB and that SB is an elementary extension of Q{, 

in symbols Q{ ~ SB or SB ~ Q{, if the following two conditions hold: 

(i) A c::::: B; 
(ii) for any formula p and any x E co A, Q{ 1= p[x] iff SB 1= p[x]. 

It is obvious that Q{ ~ SB implies Q{ =ee SB (take p to be a sentence in Cii)). 
A useful general observation is that in checking (ii) one only needs to prove 
one direction of the indicated equivalence, since if it holds in one direction, 
passage from p to 0p gives the other direction. We have formulated 19.14 
without insisting that Q{ c::::: SB, but this is a consequence of the definition: 

Corollary 19.15. IfQ{ ~ SB, then Q{ c::::: SB. 

PROOF. Let 0 be an m-ary operation symbol, and let ao, ... , am EA. Then 

iff Q{ 1= OVo· .. Vm- I = vm[ao, . .. , am] 
iff SB 1= Ova ... Vm- I = vm[ao, ... , am] 
iff O\!3(ao, ... , am-I) = am. 

Relations are treated analogously. o 
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The following proposition gives a useful criterion for Q( ~ Q3, In which 
one only has to talk about satisfaction in the larger structure. 

Proposition 19.16. Let 2! and Q3 be !e-structures, and assume that Q! s; 'B. 

Then the following two conditions are equivalent: 

(i) Q! ~ 'B; 
(ii) for every formula rp, every k E w, and every x E OJ A, if'B 1= 3Vkrp[X], then 

there is an a E A such that 'B 1= rp[xn 

PROOF. (i) =? (ii). By the hypothesis of (ii) and the meaning of (i), 2! 1= 

3 v/erp [x ]. Hence by the definition of satisfaction there is an a E A such that 
2! 1= rp[x~]. Hence by (i) again, Q3 1= rp[x~]. 

(ii) =? (i). Assume (ii). By induction on rp we show 

(I) for every formula rp and every x E W A, 2! 1= rp[x] iff 'B 1= rp[x]. 

If rp is an atomic formula Rao ... am _ b then 

iff < ag1x, ... , a~ -IX) E R21 
iff <aa'x, ... , a;;?_lx) E R'2~ since 2! s; '13, using 19.5 
iff 'B 1= rp[x], 

and atomic equality formulas are similar. The induction steps for -', V, I\. 

are obvious. Now suppose (I) is true for rp, and let k E w, X E W A. First 
suppose that not (2! 1= 'v'v"rp[x D. Thus there must be an a E A so that 
not(2( 1= rp[xm. Then by (1) for rp, not (Q3 1= rp[xm, so not ('B 1= 'v'v"rp[x D. 
Second suppose that not ('B 1= 'v'Vlcrp[X D. Thus Q3 1= 3v" -, rp[x], so by (ii) 
choose a E A so that 'B 1= -'rp[x~]. Thus by (I) for rp, not (2! 1= rp[x~], so 
not (21 1= 'v'vkrp[x]). 0 

Now we come to another of the fundamental results of model theory. 
We already know from our general form of the completeness theorem 11.19 
that a consistent set of sentences in a language !e has a model of cardinality 
:::; I Fmla2'l· The following result is a kind of generalization of this cardinality 
condition. 

Theorem 19.17 (Downward L6wenheim-Skolem theorem). Let 'B be an 
!f'-structure, let m be a cardinal such that I Fmla2'1 :::; m :::; I B I, and let C be a 
subset of B such that I C I :::; m. Then there is an elementary substructure 2! 
of'B such that C s; A and IAI = m. 

PROOF. Let '{;' be a choice function for nonempty subsets of B. We now 
define a sequence Do, ... , Dm , •.• , mEw, by recursion. Let Do be any subset 
of B such that C s; Do and I Dol = m. Fix dE Do. 

Now suppose Dm has been defined. Let Jm be the set of all quadruples 
(F, rp, k, x) satisfying the following conditions: 
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(1) F is a finite subset of Dm; 
(2) ffJ is a formula of !l'; 
(3) k < w; 
(4) x E wF, Xi = d whenever Vj does not occur in ffJ, and Q3 F 3Vk[X]. 

Note that for (F, ffJ, k) satisfying (1)-(3) there are only finitely many x satisfy
ing (4). Hence 

(5) I Jml ::;; I{F: F is a finite subset of Dm}I·IFmla2'l· No. 

Now let Dm+ 1 = Dm U {~{a : Q3 F ffJ[xm : (F, ffJ, k, x) E Jm}. This completes 
the definition of the sequence Do, D1, .... Let A = UmEw Dm. Thus C ~ A 
since C ~ Do. By induction an m, using (5), we see that I DI = m for each 
mEW, and hence IA I = m. Next, 

(6) A is closed under each operation O!B. 

For, suppose that 0 has rank m, and let bo, .•• , bm- 1 EA. Then there is an 
nEw with bo, ... , bm - 1 E Dn. Let 

F = {bo, ... , bm-l> d} 
ffJ = OVo· .. Vm -1 = Vm, 
k=m, 
XEOlFwith Xo = bo,·.·, Xm-1 = bm- 1, Xi = dforj ~ m. 

Since F3vmOvo ·· . Vm- 1 = Vm, it follows that Q3 F 3vmffJ[x]. Hence (F, ffJ, k, x) 
E I n. Now {a E B : Q3 F ffJ[xo, ... , Xm-l> aJ} has exactly one element, namely 
O!Bxo· .. Xm- 1. It thus follows that O!Bbo··· bm- 1 E Dn+1 ~ A. Hence (6) 
holds. 

By (6), A is the universe of a uniquely determined substructure ~ of Q3. It 
remains only to show that ~ ~ Q3, and to do this we shall apply 19.16. Let 
ffJ be a formula, and let k E w, X E Ol A, and assume that Q3 F 3VkffJ[X]. Define 
F = {d} U {Xi: Vi occurs in ffJ}, and choosey E wFwithYi = Xi for Vj occurring 
in ffJ, with Yi = d otherwise. Choose m so that F ~ Dm. Thus (F, ffJ, k, y) E Jm 
so, letting b = ~{a: Q3 F ffJ[ym, we see that Q3 F ffJ[n] and bE Dm+l ~ A. 
Thus Q3 F ffJ[~]· 0 

It can be shown by easy examples (see Exercise 19.48) that 19.17 cannot be 
strengthened by dropping the assumption that I Fmla2' I ::;; m. The proof 
given above works with minor modifications for many other languages 
besides first-order languages; see Part v. 

Theorem 19.17 has the following two obvious corollaries. They also are 
obvious on the basis of the completeness theorem 11.19, but it should be 
noted that the proof above of 19.17 was direct and much simpler than the 
proof of 11.19. 

Corollary 19.18. If a set r of sentences has a model, then r has a model of 
power::;; IFmla2'l. 
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Corollary 19.19. Let 2 be any first-order language (with no restriction on 
IFmlazl). For a sentence cp of!£', cp is universally valid iff cp holds in every 
countable 2-structure. 

Applying 19.18 to a theory r of sets, for example to r = ZF, we obtain the 
so-called Skolem paradox: if ZF has a model (which clearly must be infinite), 
then it has a denumerable model. This is true even though in ZF one can 
prove the existence of nondenumerable sets. 

Theorem 19.17 can be proved quickly using Skolem functions (see 11.33-
11.38). But of course this new proof is not as elementary as the one above, 
since it is based on the somewhat complicated apparatus of Skolem ex
pansions. The two proofs should be compared to one another; each helps 
explain the other. The new proof is based upon the following proposition. 

Proposition 19.20. Let 2' be a Skolem expansion of !£', and let ~ be an 2' 
structure which is a model of the Skolem set of 2' over 2. Then for any 
2' -structure ~, the following conditions are equivalent: 

(i) ~ S; ~; 

(ii) ~ ~~. 

PROOF. The implication (ii) => (i) is trivial. Now assume (i). We shall 
apply 19.16 in order to prove (ii). To this end, assume that x E OJ A and 
~ F 3vjcp[x]. Then, since ~ is a model of the Skolem set of 2' over 2 we have 
~ F cp(vo, . .. , Vj-l, o)[x], where a is the term 

with m = IFv 3viCPI, Fv 3vj cp = {aD, ... , am-l}, v-lao < ... < v-lam_h and 
j is minimal such that 3vjcp is a formula of !lj (see Definition 11.33). Since 
~ S; ~, we have 

Thus ~ F cp[xn o 

Now we can give the new proof of 19.17. Assume the hypothesis of 19.17. 
Let 2' be a Skolem expansion of !£', and let ~' be an 2' -expansion of ~ 
which is a model of the Skolem set of 2' over 2 (using 11.34 and 11.36). 
Let A' be the subuniverse of~' generated by some subset D of B such that 
C s; D and I DI = m (recall 19.11). Thus A' is the universe of a substructure 
~' of ~', and by 19.12, IA'I = m. By 19.20, ~' ~ ~', so ~' t 2 ~ ~, as 
desired. 

Now we want to prove an "upward" version of 19.17. To this end we need 
the notion of elementary embedding, defined analogously to ordinary 
embeddings: 

Definition 19.21. If ~ and~ are 2-structures, an elementary embedding of 
~ into ~ is an isomorphism of ~ onto an elementary substructure of~. 
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The following proposition is proved analogously to 19.7. 

Proposition 19.22. Iff is an elementary embedding of Q{ into ~, then there is 
an .fll-structure <r and an isomorphism g of <r onto ~ such that Q{ ~ <r and 
fe;;. g. Pictorially (where <:$) is the image off): 

<r ~~ 
y( y( 
Q{~<:$) 

f 

Another very important property of ultra products is given in the following 
proposition: 

Proposition 19.23. Let Q{ be an .fll-structure, I a non-empty set, and F an 
ultrafilter over I. For each a E A set fa = [<a: i E I) ]F'. Then f is an ele
mentary embedding of Q{ into Imiff. 

PROOF. First,Jis one-one. For, supposefa = fb. Thus <a : i E I)F<b : i E I), 
i.e., {i E I: a = b} E F. But {i : a = b} is either empty or all of I depending 
upon whether a i= b or a = b respectively. Since 0 i F, it follows that a = b. 

Sincefis one-one, we can use the procedure of the proof of 19.7 to make 
the image C off into an .fll-structure, and f into an isomorphism of Q{ onto 
~. Thus for any c E mc, 

O<rco ' .. Cm - l = fOmf-lco" ·f-lcm_l, and R<r = {c E mc :f-l 0 c E Rm}, 

for m-ary operation and relation symbols 0 and R. Now we prove <r ~ 
IQ{jP by checking 19.14(ii). Let rp be a formula and x E wC. Choose y E WA 
with x = f 0 y. Set Zm = <Ym : i E I) for each mEw. Then x = [ ] 0 z, so 

IQ{/F 1= rp[x] iff {i : Q{ 1= rp[pri 0 z]} E F 
iff {i: Q{ 1= rp[y]} E F 
iff Q{ 1= rp[y] 
iff <r 1= rp[x] 

by 18.29 

by 18.23 0 

With the help of 19.23 we can now prove the upward analog of 19.17, 
which, too, is a major result in model theory. 

Theorem 19.24 (Upward Lowenheim-Skolem theorem). Let m be an 
infinite cardinal ~ I Fmla2' I , and let Q{ be an infinite .fll-structure with 
IAI :::; m. Then Q{ has an elementary extension ~ such that IBI = m. 

PROOF. By 18.36 find 18.37 let Ibe a set and F an ultrafilter over I such that 
IIA/FI ~ m. By 19.23 we obtain an elementary embedding of Q{ into IQ{/F, 
and by 19.22 we obtain an elementary extension <r of Q{ isomorphic to IQ{/F. 
By the downward Lowenheim-Skolem theorem there is an elementary 
substructure ~ of <r with A e;;. Band IBI = m. Clearly Q{ ~ ~. 0 

Regarding the possibility of improving 19.24 by dropping the assumption 
that m ~ I Fmla2'1, the situation is somewhat complex. The theorem in 
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general can no longer be proved then, but some strengthenings of 19.24 are 
known; see Exercise 19.49 for example. 

The following two corollaries follow immediately from 19.24. 

Corollary 19.25. If a set r of sentences has an infinite model, then r has a 
model of each cardinality ~ I Fmla.srl. 

From the compactness theorem it is easy to see that if r has models of 
arbitrarily large finite cardinalities, then r has an infinite model, and hence 
by 19.25 has models of each cardinality ~ IFmla.srl. 

Corollary 19.26. For any sentence fP (in any language 2), fP either has no 
infinite models or else has a model of each infinite cardinality. 

The situation is unknown concerning the cardinalities of finite models of 
a sentence fP. For each sentence fP, let Sp fP = {m : mEw ~ 1, and fP has a 
model of power m}; we call Sp fP the spectrum of fP. It is known that each set 
Sp fP is elementary, but the collection of all sets Sp fP is not the collection of 
all elementary sets. It is not known whether this collection is closed under 
complementation. 

For later purposes we want to put the upward Lowenheim-Skolem 
theorem in a more general context. In fact, a weakened form of this theorem 
holds for many languages besides first-order languages, and is even applicable 
in nonlinguistic contexts. The following definition gives a very general setting 
for this phenomenon. It is based on the set-class distinction in set theory. 

Definition 19.27. A Hanf system is a ternary relation R with the following 
properties: 

(i) prti R is a set (not a proper class). Recall that prti R = {x: 3y, z 
(x, y, z) E R}. 

(ii) pr~ R is a class of cardinals. 
(iii) For any r, ~, there is at most one m such that (r, ~,m) E R. 

If 2 is a first-order language, then the Hanf system H.sr of 2 is the 
relation 

(Cr, ~,m): r is a set of sentences of .P, ~ is a model of r, and m = IAI}. 

Just as for first-order languages, one can introduce in a natural way a Hanf 
system for any of the more general languages considered in Part V. Here are 
two examples of nonlinguistic Hanf systems: 

Example 1. R = {(i, Nh Nt): i E w} U {w, m, m): m ~ NOl}. 

Example 2. R = {CO, ~, IAI): ~ is an Archimedean-ordered field} U 

{(t, ~, IAI) : ~ is a non-Archimedean-ordered field}. 
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The basic theorem on Hanf systems is as follows. 

Theorem 19.28. Let R be a Hanf system. Then there is a cardinal m such 
that for all r E prt R, condition (i) implies condition (ii): 

(i) there exist m, n with (r, m, n) E Rand n ~ m; 
(ii) for every cardinal p there is an n ~ p and an m such that (r, m, n) E R 

andn ~ m. 

PROOF. For each r E prt R, let 

fr = 0 if 'v'p3m3n[(r, m, n) E Rand n ~ p]. 
fr = least p such that'v'm'v'n[Cr, m, n) E R => n < p) otherwise. 

Let m = (U {fr : r E prt R}) +. Then m satisfies the condition of the theorem. 
In fact, suppose r E prt R and (i) holds, say cr, m, n) E R with n ~ m. If the 
second condition in the definition offr holds, we would have n < fr < m :::; n, 
contradiction. Thus the first condition holds. D 

Theorem 19.28 justifies the following definition. 

Definition 19.29. If R is a Hanf system, the Hanf number of R is the least 
cardinal m satisfying the condition of 19.28. 

Corollary 19.30. For any first-order language .!f, the Hanf number of Hz is 
No. 

This corollary is just a restatement of the upward Lowenheim-Skolem 
theorem in a general framework. The Hanf numbers of the systems in 
Examples I and 2 above are N", and (exp No)+ respectively (for Example 2, 
we use the fact that any Archimedean-ordered field is an ordered sub field 
of the reals). For each cardinal m there is a Hanf system with Hanf number 
m (see Exercise 19.50). 

We proved the upward Lowenheim-Skolem theorem above by using ultra
products. Now we want to reprove it using the compactness theorem, or 
more specifically, by extending the notion of diagram. 

Definition 19.31. Let m be an .P-structure, and 'p' an A-expansion of .!£'. 
The elementary 'p' -diagram of m is the set of all sentences of it" which 
hold in (m, a)aeA. If.P" is an expansion of 'p', the elementary 'p'-diagram 
of m is also called the elementary .P" -diagram of m. 

We then obtain analogs of our two theorems on diagrams; models of the 
elementary diagram of m essentially are just those structures in which m can 
be elementarily embedded. 

Proposition 19.32. Let m be an .P-structure, '8 an elementary extension ofm, 
and 'p' an A-expansion of.!£'. Then ('8, a)aeA is a model of the elementary 
'p' -diagram of m. 
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PROOF. Let the new constants of 2' be Ca for a E A. The following is easily 
proved from the definition of satisfaction: 

(1) 
for any x E co A, any mEw, and any formula rp of 2 such that 
Fv rp S {va' ... , vm1}, ~ 1= rp[x] iff (~, a)aeA 1= rp(cxo, ... , Cx(m-1»' 

An analogous statement holds with ~ replaced by !<8 (but no other changes). 
Now any sentence of 2' can be written in the form rp( Cxo, ... , Cx(m -1», 

where mEw, rp is a formula of .!£', x E mA, and Fv rp S {vo, . .. , vm- 1}. If 
rp( Cxo, ... , Cx(m -1» is a member of the elementary 2' -diagram of ~, then 
~ 1= rp[x] by (1), hence!<8 1= rp[x] since ~ ~ !<8, and finally!<8 1= rp( Cxo, ... , Cx(m -1» 

by the !<8-analog of (1). 0 

Proposition 19.33. Let ~ be an 2-structure, 2' an A-expansion of.!£', and 
(!<8, la)aeA a model of the elementary 2' -diagram r of~. Then I is an 
elementary embedding of ~ into !<8. 

PROOF. Again, let the new constants of 2' be Ca for a E A. By Proposition 
19.10, I is an embedding of ~ into !<8. Now for any 2-formula rp, say with 
Fv rp S {va' ... , Vm-1}, and for any x E OJ A, 

m 1= rp[x] => (~, a)aeA 1= rp(cxo,· .. , Cx (m-1» 

=> rp( Cxo, ... , Cx(m -1) E r 
=> (!<8, la)aeA 1= rp( CxQ, ... , Cx(m -1» 

=> !<8 1= rp[1 0 x]. o 
Now we give the new proof of the upward Lowenheim-Skolem theorem 
19.24. Assume the hypothesis of 19.24: m is an infinite cardinal ~ [Fmla2'l, 
and ~ is an infinite 2-structurewith [AI ~m. Let ii" be an A-expansion of 
.!£', and expand 2' further to 2" by adding new individual constants k~ for 
g < m. Let r be the elementary 2' -diagram of ~ together with all sentences 

(*) for g < TJ < m. 

Every finite subset of r has as a model a suitable expansion of ~. By the 
compactness theorem, r has a model (!<8', la, g)aeA.~<m. By the proof of the 
compactness theorem, or by applying the downward Lowenheim-Skolem 
theorem, we may assume that IB'I ~ m. Then since the sentences (*) are in 
r, [B'I = m. By 19.33, I is an elementary embedding of ~ into !<8. An appli
cation of 19.22 completes the proof. 

The last topic we take up in this chapter is the notion of the union of a 
set of structures. 

Definition 19.34. Let K be a set of 2 -structures directed by s, i.e., such that 
if ~, !<8 E K then there is a <r E K with ~ S <r and !<8 S <r. Then U K, the 
union of the members of K, is the following 2-structure. Its universe is 
U~eK A. If 0 is an m-ary operation symbol and a E mU~eK A, then 
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OUKao ··· am-l = 02lao··· am-I> where ~ is any member of K such that 
ao, ... , am-l EA.IfR is an m-ary relation symbol, then RUK = U2IeK R21. 

This definition, as well as the following basic proposition, are easily 
justified. 

Proposition 19.35. IfK is a set of ~-structures directed by s, then ~ s U K 
for each ~ E K. 

The basic logical result concerning unions is the following analog of 
19.35 for~: 

Theorem 19.36 (Tarski). If K is a set of ~-structures directed by ~, then 
~ ~ U Kfor each ~EK. 

PROOF. We proceed by induction on formulas to show that for every for
mula fP, every ~ E K, and every x E Q) A, ~ 1= fP[x] iff U K 1= fP[x]. The case fP 
atomic is trivial, since ~ s U K, and the induction steps for -', V, A are 
obvious. Now suppose ~ E K, x E Q) A, and ~ 1= VVlfP[X]. To show that U K 1= 

VVlfP[X], let bE U K be arbitrary, say bE!;!3 E K. Since K is directed by ~, 
choose <r E K with ~ ~ <r, !;!3 ~ <r. Thus ~ ~ <r yields <r I=VVlfP[X], so <r 1= 

fP[xt]. By the induction assumption, UK 1= fP[xt], as desired. Conversely, 
assume that UK I=VVjfP[x]. For any a E A, UK 1= fP[x~], and hence by the 
induction assumption, ~ 1= fP[x~]. 0 

EXERCISES 

19.37. Let.IR have finitely many non-logical constants. Suppose that ~ and !;!3 

are .IR-structures, ~ =ee!;!3, and ~ is finite. Show that ~ ;;; !;!3. 

19.38.* Prove the result of 19.37 with.IR arbitrary. 

19.39. For any language .IR there are .IR-structures ~, !;!3 with ~ =ee!;!3 but not 
(~ ;;; !;!3). 

19.40. * Give an example of systems <~I : i E I) and <!;!31 : i E I) of .IR -structures 
and an ultrafilter F over I such that Pie! ~I/F;;; Pie! !;!3dF but 'Vi E I not 
(~ =ee!;!3I). 

19.41. If ~ is finite and .IR has finitely many non-logical constants, then there 
is a sentence fP of .IR such that 

{!;!3 :!;!3 F fP} = {!;!3 : ~ is not embeddable in !;!3}. 

19.42. Let ~ be an infinite .IR-structure. Let 1= {F: 0'# F s A and IFI < No}. 
For each FE I let !;!3F be the substructure of ~ generated by F. For each 
FE I let MF = {G E I: F s G}. Show that there is an ultrafilter:F over 
I such that MF E:F for each FE l. Show that for any such :F, ~ can be 

embedded in PFe! !;!3F/fff. From this give a new proof of Henkin's em
bedding theorem 19.13. 

339 



Part 4: Model Theory 

19.43. Using Henkin's embedding theorem, prove that any partial ordering 
can be embedded in a simple ordering. 

19.44. Using Henkin's embedding theorem, prove that any Abelian group can 
be embedded in a divisible Abelian group. 

19.45. Prove that if Qt ~ <r, ~ ~ <r and A £; B, then Qt ~ ~. 

19.46. Give an example of structures Qt, ~, <r with Qt ~ ~, Qt ~ <r, ~ £; <r, but 
not ~ ~ <r. 

19.47. Give an example of structures Qt, ~ with Ql ~ ~, Q! ;::; '13, but not Qt ~ ~. 

19.48. For any language .P, give an example of a set r of sentences of.P such 
that r has a model Qt of power I Fmla.!l' I but r has no model of power 
< I Fmla£"l· 

19.49. Using ultraproducts and unions, and assuming the generalized continuum 
hypothesis, show that in any language .P, any infinite .P -structure Qt has 
an elementary extension of each cardinality> IAI. 

19.50. For each cardinal m (finite or infinite) there is a Hanf system with Hanf 
number m. 
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We shall describe in this chapter the beginnings of nonstandard number 
theory and nonstandard analysis. Essentially we deal here with logically 
very simple applications of model theory. No big logical theorems will be 
applied, just the simplest notions of satisfaction, elementary extensions, 
and ultraproducts. Nonstandard mathematics was extensively developed by 
A. Robinson, who used a system of type theory in most of his work in this 
area. We shall restrict ourselves to a much simpler framework. 

Let IR be the set of real number and F any nonprincipal ultrafilter over w. 

Then we can form the ultrapower "'IRI F independent of any logical con
siderations. We know from 19.23 that the map u such that ur = [<r: i E w)] 
for all r E IR is a one-one map of IR into "'IRIF. Hence there is a set *IR ~ IR 
and a bijection t : "'IRIF ~ *IR such that t 0 u is the identity on IR. Throughout 
this chapter we shall work with fixed F, u, *IR, t satisfying these conditions. 
Given any relation S on IR, say m-ary, we can take a suitable first-order 
language for the structure <IR, S) and again form the ultrapower "'<IR, S)IF. 
There is then an m-ary relation *S on *IR such that t is an isomorphism from 
"'<IR, S)IF onto <*IR, *8). Thus u is then an elementary embedding of 
<IR, 8) into "'<IR, 8)/F, and <IR, S) ~ <*IR, *8). In a completely analogous 
way operations on IR can be extended to operations on *IR. Combining any 
number of such extensions we obtain structures on *IR which are elementary 
extensions of the original structures on IR, and we can then carryover first 
order facts from IR to *IR or vice-versa. In the literature the presuperscript * 
is frequently omitted in various contexts. For complete clarity we shall not 
follow this custom here. Members of *IR are called nonstandard real numbers. 

We begin with a discussion of nonstandard number theory. Members of 
*w will be called nonstandard natural numbers. Note that if we extend the 
ordinary ordering :;;; on IR to *:;;; on *IR, then *IR is linearly ordered by 
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*:s;;, since there is a sentence ffJ true in any structure <A, S) iff S linearly orders 
A. An element r of *IR is infinite if *Irl *> m for each mEw; otherwise it 
is finite. 

Proposition 20.1. There is an infinite nonstandard natural number. 

PROOF. Define x E row by xi = i for all i E w. For each mEW, {i : m < xi} = 
w ,.., mE F. Hence [<m : i E w) 1 < [xl in ro<lR, < )/F, so m *< t[xl in *<IR, <). 
Since m is arbitrary, this shows that t[xl is infinite. Also, {i : xi E w} = wE F, 
so t[xl E *w. D 

For the next result, and only for it, we need a special kind of construction. 
If S densely orders A (in the :s;; sense) with no first or last element, let 

A' = {(i, 0, 0) : i E w} U {em, a, 1) : m E lL, a E A}, 
S' = {((i, 0, 0), (j, 0, 0)) : i :s;; j and i,j E w} 

U {«i, 0, 0), (m, a, 1)) : i E w, mE lL, a E A} 
V {(em, a, 1), (n, a, 1)) : m :s;; n, m, nElL, a E A} 
U {(em, a, 1), (n, b, 1)) : m, nElL, a, b E A, aSb, a =I- b}. 

It is easily seen that S' linearly orders A'. Intuitively the ordering consists 
of a copy of w on the left, and on the right a copy of the original ordering 
<A, S) with each element of A replaced by a copy of lL in its natural ordering. 
In the general theory of order types discussed in set theory, the ordering of 
<A', S') has order type 

w + (w* + w).8, 

where 8 is the order type of <A, S). 

Proposition 20.2. The structure <*w, *:s;;) is order-isomorphic to <A', S') for 
some structure <A, S) densely ordered with no first or last element. 

PROOF. The following two facts about <*w, *:s;;) are basic to the proof. 
They are true since they are true in <w, :s;;). 

(1) Every element of *w has an immediate successor. 
(2) Every element of *w except 0 has an immediate predecessor. 

Now let I be the set of all infinite elements of *w. For m, n E I we define 
m == n iff (m *:s;; nand {p : m *< p *< n} is finite) or (n *:s;; m and {p : n *< 
p *< m} is finite). Clearly:: is an equivalence relation on I. Let A = 1/::. 
Let S = {(a, b) : a, bE A and there exist mEa and nEb with m *:s;; n}. 
Now 

(3) if aSb and a =I- b, then m *< n for all mEa and nEb. 

For, assume aSb and a =I- b. Choose pEa and q E b so that p *< q. Since 
a =I- b, it follows that {s : p *< s *< q} is infinite. Hence for all mEa and 
nEb, not only m *< n but also {s : m *< s *< n} is infinite. 

(4) For each mEl, *:s;; orders [m] .. similarly to lL. 
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To prove (4), for each n E [m]" let 

fn = J{p: m *< p *< n}J 
fn = -J{p: n *< p *< m}J 

if m *< n, 
if n *< m. 

By induction using (1) and (2) one easily shows: 

(5) for each nEw there is a unique p E [m]" such thatfp = n. 
(6) for each nEw there is a unique p E [m]" such thatfp = -no 

Thus (4) follows. By (4), choose for each a E A an order isomorphism ta of 
a under *:::; onto 71.. Now we are ready to define the isomorphism demanded 
in the proposition. Take any m E *w. If m is finite, it is in w since for each 
nEw the sentence 

VVo[vo :S Cn -+ 1\ Vo = Cl] 
isn 

holds in <w, :::;,0,1, ... ) and hence in <*w, *:::;, 0,1, ... ). In this case we 
let gm = (m, 0, 0). If m is infinite, we let gm = (t[mlm, [m], 1). Clearly g is an 
order isomorphism of <*w, *:::;) onto <A', S'). It remains to show that 
<A, S) is densely ordered with no first or last element. To show that <A, S) 
has no first element, take any a E A. Say mEa. Choose n *< m such that 
n *+ n = m or n *+ n *+ 1 = m. Thus n is infinite since m is. For each 
i E w '" 1 we have 0 *< i *< n and hence n *< n *+ i *< n *+ n. [For the 
last results we have used certain obvious first order properties carrying over 
from w to *w.] Hence <n *+ i: i E w '" I) is a one-one function from w '" 1 
onto {p : n *< p *< m}, so the latter is infinite. Thus [n]S[m] and [n] #- [m]. 
Hence A has no first element. It is similarly seen that A has no last element. 
Finally, suppose that a, b E A, aSb, and a#- b. Choose mEa and nEb. 
Thus m *< nand {p: m *< p*< n} is infinite {see above, proof of (3)]. 
Suppose that m *+ n is even; the case m *+ n odd is treated similarly. 
Choose p so that p *+ p = m *+ n. If p *:::; m, then 

p *+ p *:::; m *+ m *< m *+ n = p *+ p, 

contradiction. Thus m *< p, and similarly p *< n. Suppose m == p. Then 
p = m *+ i for some i E w, so m *+ n = p *+ p = m *+ m *+ 2i and hence 
n = m *+ 2i. But then n == m, contradiction. Thus not (m == p), and similarly 
not (p == n). Hence [p] is strictly inbetween [m] and [n], in the S-sense. 0 

An element p of *w is a prime if 1 *< p and no element of *w strictly 
between 1 and p divides p. Thus the finite primes are exactly the usual primes. 
The following result illustrates the way in which number-theoretic statements 
can be given a nonstandard formulation. 

Proposition 20.3. The following conditions are equivalent: 

(i) there are infinitely many pairs of (ordinary) primes p, q such that 
q = p + 2; 

(U) there is at least one pair (p, q) of infinite primes p, q such that q = 

p*+ 2. 
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At this time the statement 20.3(i) is an open problem, usually called the 
twin-prime conjecture. Examples of twin primes are (5,7), (29, 31), (137, 139). 

PROOF. (i) ~ (ii). Assume (i). Let IE Ww be such that for each i,}; is a 
prime such that}; + 2 is a prime, and}; + 2 <};+ l' Clearly t[f] is an 
infinite prime such that t[f] *+ 2 is also a prime. (ii) ~ (i). Say t[g] is an 
infinite prime such that t[g] *+ 2 is also a prime. We show that for any 
mEw there is a prime p > m such that p + 2 is also a prime. Since [g] is 
infinite, /0 = {i: m < gi} E F. Since [g] is a prime, /1 = {i : gj is a prime} E F. 
Since [g] *+ 2 is a prime, /2 = {i : gj + 2 is a prime} E F. Thus /0 () /1 () 
/2 E F. For any i E /0 () /1 () /2, gj is a prime > m such that gj + 2 is a 
prime. 0 

We now discuss briefly the properties of primes in *w. Clearly there are 
infinite primes. If a nonstandard natural number can be written as a (finite) 
product of primes, it can be so written in a unique way, up to order. But there 
are nonstandard numbers which cannot be written as a finite product of 
primes. An interesting example is [on: nEw>], which is divisible only by 
the prime 2, but is not a (finite) power of 2. There is no smallest infinite 
prime, since if [f] is infinite we may find an infinite prime [g] < [f] as 
follows. Set 

gi = greatest prime <}; if}; > 2, 
gi = 0 if}; ::::; 2. 

Now {i:}; > 2} E F since [f] is infinite, and 

{i :/i > 2} s {i: gj is a prime < };}, 

so [g] is a prime < [fl. For any prime p, {i:fi > p} E F, and {i :/i > p} S 

{i : p ::::; gi}, so [g] is infinite. There are numbers divisible by infinitely many 
primes; an example is [<n! : nEw>]. 

Now we turn to nonstandard analysis. A nonstandard real number r is 
infinitesimal if *Irl *< t for every standard positive real number t. The re
ciprocal of an infinite real number is obviously infinitesimal; thus by 20.1 
infinitesimals exist. 

Proposition 20.4. For any finite nonstandard real number r there is a unique 
standard real number s such that r *- s is infinitesimal. 

PROOF. We may assume that r * ~ O. Since r is finite, there is a natural 
number m such that r *::::; m. Let s be the inf of {t: t is a real number and 
r *::::; t}. Thus s is a standard real number. If r *- s is not infinitesimal, 
choose a standard e > Owithe*::::; *Ir*-sl. Thens- e/2*< r,so*lr*-sl 
*< e/2, contradiction. Thus r *- s is infinitesimal. Suppose that t is a standard 
real <s.Lete = (s - t)/2. Thent + e < S,sot + e*< rand*lr*- tl *> e, 
so r *- t is not infinitesimal. Similarly, if t > s, t standard, then r *- t is not 
infinitesimal. So s is unique. 0 
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For any finite nonstandard real number r, the unique standard real s 
such that r *- s is infinitesimal is called the standard part of r and is denoted 
by st r. Two nonstandard reals a and b are said to be infinitely close, in 
symbols a ::: b, if a *- b is infinitesimal. Clearly the difference and product 
of finite nonstandard reals are again finite. Hence the finite nonstandard 
reals form a subring fIR of *R Every infinitesimal is finite. A sum or difference 
of infinitesimals is infinitesimal, and the product of an infinitesimal and a 
finite nonstandard real is again infinitesimal. The relation ::: is an equivalence 
relation on *IR, and each equivalence class contains at most one standard 
real. 

An infinite sequence x = <xn : nEw) of real numbers can be given two 
nonstandard interpretations. First, it is an element of W R, and hence t[x] is 
an element of *IR. But also x can be considered as the set of all ordered pairs 
(n, xn) with nEw, and hence as a binary relation on IR. As such it receives an 
interpretation *x as a binary relation on *IR. Clearly *x maps *w into *R 

Proposition 20.5. For any x E WIR and s E IR the following conditions are 
equivalent: 

(i) limn _ oo Xn = s; 
(ii) *xn ::: s for every infinite natural number n. 

PROOF. (i) => (ii). Let e > 0, e standard. Then by (i) there is an mEw 
such that IXn - s I .::;; e for all n ~ m. Thus the following formula fP is satisfied 
in m = <IR, .::;;, I-I, w, x) by m, sand e assigned to vo, Vl and V2, where S 
and T are interpreted by wand x respectively. 

VV3VV4[VO S V3 1\ SV3 1\ T(v3' v4) -+-lv4 - Vll s v2 ]· 

Since m ~ <*IR, *.::;;, * I-I, *w, *x) = *m, it is still satisfied in *m by the 
same elements. Thus *I*xn *- sl *.::;; e for any infinite natural number n. 
Since e is arbitrary, (ii) holds. 

(ii) => (i). Assume (ii). Thus for any standard e > 0 the formula 

3vo(Svo 1\ fP) 

is satisfied in *m by sand e assigned to V l and v2 , so it is satisfied in m by the 
same assignment. Thus there is an mEw such that IXn - s I .::;; e whenever 
n ~ m. Since E is arbitrary, (i) holds. 0 

Corollary 20.6. Assume that limn _ oo Xn = sand limn _ oo Yn = t. Then 

(i) limn _ oo (xn + Yn) = s + t; 
(ii) limn _ oo (xn'Yn) = s·t. 

PROOF. Let n be an infinite natural number. Then by 20.5, *xn *- sand 
*Yn *- t are infinitesimal. Hence *(x + Y)n *- (s + t) = *xn *+ *Yn *
s *- t is also infinitesimal. So (i) holds by 20.5. Also, 

*(x'Y)n *- s·t = *xn *'*Yn *- *xn *. t *+ *xn *. t *- s *. t 
= *xn(*Yn *- t) *+ (*xn *- s) *. t 
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is infinitesimal since finite· infinitesimal + infinitesimal· finite = infinitesimal. 
Hence (ii) is true by 20.5. 0 

Corollary 20.6 is our first example of a standard theorem proved by non
standard means. Note that no E, I)-methods were involved in this proof, 
although of course they were essential to connect standard and nonstandard 
notions, in 20.5. Another example of such a proof is as follows. 

Proposition 20.7 (Bolzano-Weierstrauss). A bounded infinite sequence has 
at least one limit point. 

PROOF. Let x E WIR be bounded. Thus there is an ME IR such that IXnl ::; M 
for all nEw. Hence *It[xli *::; M also, since w = {n : IXnl ::; M} E F. Let 
y = st t[xl; we claim that y is a limit point of x. Given E > 0 and any positive 
integer m, we must find n ;:c: m such that IXn - yl ::; e. Now *It[xl *- yl *::; e 

since t[xl *- y is infinitesimal, so {n : IXn - yl ::; e} E F. In particular, there 
are infinitely many n so that IXn - yl ::; e, as desired. 0 

The notion of a bounded sequence can be given a nonstandard formulation 
as follows. 

Proposition 20.S. Let x E w!R. Then the following conditions are equivalent: 

(i) x is a bounded sequence; 
(ii) * Xn is finite for every infinite natural number n. 

PROOF. (i) ~ (ii). Choose a positive real number M such that IXnl ::; M 
for all n. Since *IR is an elementary extension of IR for any structures over IR, 
* I * xnl *::; M for all infinite natural numbers n also. Thus (ii) holds. 

(ii) ~ (i). Suppose (i) fails. Thus for every positive real number M 
there is an mEw such that IXml ;:c: M. The nonstandard version of this holds 
in * IR; taking a positive infinite M we obtain an m E * w such that * I * Xm I *;:c: M. 
Thus * Xm is infinite. 0 

Next we shall deal with functions mapping IR into IR. We start with a non
standard formulation of continuity: 

Proposition 20.9. For any f: IR ~ IR the following conditions are equivalent: 

(i) f is continuous at a; 
(ii) for all x ~ a we have *fx ~ fa. 

PROOF. First assume (i). Thus, in IR, 

(I) for every E > 0 there is a I) > 0 such that for all x, if Ix - al < I) 
then If X - fal < E. 

Now assume that x ~ a. Let e be any positive standard real number. By (1), 
still in IR, choose a standard I) > 0 such that, in IR, 

(2) for all y, if Iy - al < I) then Ify - fal < E. 
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Since x *- a is infinitesimal, of course *Ix *- al *< a. Hence by (2) in *IR, 
* I *fx * - fal * < e. Since e is arbitrary, *fx ~ fa. 

Now assume (ii), and let e be any positive standard real. Let ~ be a positive 
infinitesimal. Then for any x E *IR, *Ix *- al *< ~ implies that *Ix *- al 
itself is infinitesimal, or 0, so x ~ a and hence by (ii) *fx ~ fa. Thus, in *IR 

(3) 3~ * > 0 Vx E *1R(*lx *- al *< ~ => *I*fx *- fal *< e) 

Since the same statement holds in IR, f is continuous at a. D 

We shall give a mixed, standard and nonstandard, proof for the inter
mediate value theorem for continuous functions: 

Proposition 20.10. Let f be a real-valued continuous function defined on a 
closed interval [a, b], such thatfa < 0 andfb > O. Then there is aCE [a, b] 
such that fc = O. 

PROOF. Let c = inf {x E [a, b] :fx ~ O}. Thus 

(1) Vx(x < c => fx < 0), 
(2) Vx[c < x => 3y(c :5: Y < x andfy ~ 0)]. 

Let i be a positive infinitesimal. By (1), *f(c *- i) *< O. By (2), choose y so 
that c *:5: y *< c *+ i and *fy *~ O. Now c *- i ~ c ~ y, so by 20.9 
*f(c *- i) ~ fc ~ *fy· Since *f(c *- i) < 0 :5: *fy, it follows that fc ~ 0; 
hence fc = O. D 

Lemma 20.11. Let f be a real-valued continuous function defined on a closed 
interval [a, b]. Then f is bounded. Hence *fc is finite for each non-standard 
c E [a, b]. 

PROOF. Suppose f is not bounded. Then it is easy to define a sequence 
XQ, Xl, . .. of members of [a, b] such that If Xi I ~ i for all i E w. Let n be an 
infinite natural number. Since the sentence Vi(lfx;j ~ i) holds in IR, it holds 
in *IR. It follows that *f*xn is infinite. By 20.8, *xn is finite. Let y = st *xn . 

Then y ~ *xn , so by 20.9 fy ~ *f*xm which is impossible since *f*xn is 
infinite. Thusfis bounded, i.e., Vc E [a, b] Ifcl :5: M for a suitable M. Since 
this holds in *IR, it follows that *I*fcl *:5: M for all c E *[a, b], standard or 
~. D 

Proposition 20.12. Let f be a real-valued continuous function defined on a 
closed interval [a, b]. Thenf attains a maximum value on this interval. 

PROOF. For any two integers i,j E w with j # 0, let Xii = a + (i/j)(b - a). 
Let m be an infinite natural number. Now 

(1) for any standard c E [a, b] there is an i *:5: m such that c ~ *Xim' 

For, the following statement holds in IR: 

Vj E w '" IVc E [a, b]3i S j(XiJ S c S Xl+l,f)' 
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This holds in * IR also, so there is an i *:5, m such that * Xlm *:5, c *:5, *(i * + I, m). 
Now clearly e*- *Xlm *:5, I*/m, and I*/m is infinitesimal, so e ~ *x;m. 

Next, note that the following statement holds in R: 

Vj E w '" 13i :S jVk :S j(fXkf :S fXjj). 

The statement holds in *IR also, so we can choose i *:5, m such that Vk *:5, m 
(*f*Xkm *:5, *f*Xim). Let e = st *Xi; note that *Xi E [a, b] since Vj E w '" I 
Vi :5, j Xij E [a, b]. Hence e E [a, b]. Since e ~ *Xj, by 20.9 we havefe ~ *f*Xi. 
Now for any y E [a, b], choose by (1) k *:5, m such that y ~ *xkm. Then by 
20.9, fy ~ *f*xkm , while by the above *f*Xkm *:5, *f*Xim ~ fe. Hence 
h:5,fr 0 

The above results indicate something of the flavor of nonstandard mathe
matics. The subject has now been rather extensively developed; one can do 
nonstandard algebra, complex analysis, functional analysis, topology, and 
even nonstandard logic. 

BIBLIOGRAPHY 

1. Robinson, A. Non-standard Analysis. Amsterdam: North-Holland (1966). 

EXERCISES 

20.13. Let m be any model of the set of all sentences holding in <w, ::5). Show 
that the order type of m has the form w + (w * + w)· T for some type T. 

Also prove the converse. 

20.14. If a nonstandard natural number is divisible by all finite primes, then it 
is divisible by some infinite prime. 

20.15. *Z is an integral domain which fails to satisfy the ascending chain 
condition or the descending chain condition. It is not a principal ideal 
domain. 

20.16. * *0 is isomorphic to the quotient field of *Z. Every element of *0 is 
transcendental over O. *0 is not a pure transcendental extension of O. 

20.17. Let S be the ring of finite elements of *0, and let] be the ideal of in
finitesimal elements of S. Show that Sf] ~ !R. 

20.1S. Let x E "'!R be bounded. Then st *xn is a limit point of x for every 
infinite natural number n. 

20.19. Using 20.9, show that the sum and product of continuous functions are 
continuous. 

20.20. A sequence x E "'!R converges iff *xm ~ *xn for all infinite m and n. 
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Complete Theories 21 

Our main purpose in this chapter is to give concrete examples of complete 
theories. As a byproduct we obtain several new examples of decidable 
theories. We shall discuss some general model-theoretical methods for 
proving theories complete, mainly m-elementary extensions, the Los-Vaught 
test, and model completeness. In our examples of complete theories we 
shall need to assume some familiarity with several standard algebraic notions 
and results. No single example is crucial for succeeding chapters. The notion 
of a complete theory is closely connected historically and philosophically 
with the notion of categoricity. As we shall see, the latter notion is trivial for 
first-order languages, but a cardinality version of it is quite interesting. 

Definition 21.1. A theory r is categorical if any two models of r are iso
morphic. Let m be a nonzero cardinal. A theory r is m-categorical if any 
two models of r of power m are isomorphic. 

Since isomorphism implies elementary equivalence, 21.1 combined with 
19.2 yields 

Corollary 21.2. Any categorical theory is complete. 

Now we show that categorical theories are trivial: 

Theorem 21.3. For any consistent theory r, the following conditions are 
equivalent: 

(i) r is categorical; 
(ii) there is a positive integer m such that r is m-categorical and every 

model of r has power m. 
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PROOF. Obviously (ii) => (i). Now assume (i). Since any two models of r 
are isomorphic, they all have the same cardinality m, and r is m-categorical. 
Suppose m ~ No. Let Qt be a model of r, and by the upward Lowenheim
Skolem theorem let <;8 be an elementary extension of Qt of power > m. Then 
Qt =ee <;8, so <;8 is also a model of r, contradiction. Hence m < No. D 

Much of the importance of the notion of m-categoricity stems from the 
following result. 

Theorem 21.4 (Los-Vaught test for completeness). If r is a theory with 
only infinite models and r is categorical in some power m ~ IFmla~l, 
then r is complete. 

PROOF. We need to show that any two models Qt, <;8 of r are elementarily 
equivalent. By the Lowenheim-Skolem theorems there are 2-structures 
Qt', <;8' of power m with Qt =ee Qt' and <;8 =ee <;8'. Thus Qt' and <;8' are models 
of r, so Qt' ~ <;8' by assumption. Hence Qt =ee <;8. D 

There are many theories which satisfy the hypothesis of 21.4, which 
hence gives a practical method for showing many theories complete. The 
assumption of categoricity in power ~ I Fmla.2" I is necessary in 21.4; see 
Exercise 21.38. As we shall see later, there are many complete theories which 
are not categorical in any power. We now give a few applications of 21.4. 
More are found in Exercises 21.39 and 21.40. 

A linearly ordered set A is densely linearly ordered if for any x, YEA 
with x < y, 3a(x < a < y). The argument proving the following set
theoretical result is frequently used in some form in model-theoretic argu
ments (see also 9.47). 

Theorem 21.5 (Cantor). Let A and B be two denumerable densely linearly 
ordered sets, each without first or last elements. Then A ~ B. 

PROOF. Let < and <' be the dense linear orderings of A and B respec
tively. Say A = {an: nEw} and B = {bn : nEw}, with a and b one-one. We 
define a sequence «xno Yn) : nEw) by induction. Let (xo, Yo) = (ao, bo). 
Suppose (xo, Yo), ... , (xn' Yn) have already been defined so that Xo, ... , Xn 
are all distinct and Yo, ... , Yn are all distinct. We distinguish two cases. 

Case 1. n is odd. Let Xn + 1 = am, m the least element of {p : ap i {xo, ... , 
xn}}. 

We define Yn+l by considering several subcases. 
Subcase 1. am < Xi for all i ::; n. Since B does not have a first element, the 

set M = {bp : bp <' Yi for all i ::; n} is nonempty; let Yn+l be any element 
of it. 

Subcase 2. Xi < am for all i ::; n. This case is similar. 
Sub case 3. Xi < am < Xj for certain i,j ::; n. There are unique s, t such that 

Xs is the greatest element of {Xi: i ::; n, Xi < am} and Xt is the least element 
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of{Xj:j::5: n,am < Xj}' Ify. ;;::'YhletYn+l = boo Ify. <' Yt> choose Yn+l 
such that Ys < Yn+l < Ye· 
Case 2. n even. Interchange A and B in Case 1. 
By an easy induction on n it is established that 

for every n < CJJ, {(xo, Yo), ... , (xm Yn)} is a one-one function such 
(1) that XI < Xj iff YI < Yj; {ao, ... , an} S {xo, ... , X2n}; {bo, ... , bn} 

S {Yo, ... , Y2n+l} 

Letf = {(XI> YI) : i < w}.fis the desired isomorphism. o 
Since we can obviously write down finitely many axioms expressing that 

< is a dense linear ordering on A without first element or last element, 
the theory of such structures is recursively axiomatizable. Hence by the 
Los-Vaught test and 21.5 we have: 

Corollary 21.6. The theory of dense linear order without first or last elements 
is complete and decidable. 

By Theorem 9.48 we know that any two denumerable atomless Boolean 
algebras are isomorphic. Hence: 

Theorem 21.7. The theory of nontrivial atomless Boolean algebras is com
plete and decidable. 

It is well known that for any m > No, any two divisible torsion-free 
Abelian groups of power m are isomorphic. Hence: 

Theorem 21.S. The theory of nontrivial divisible torsion-free Abelian groups 
is complete and decidable. 

Any field can be obtained by a pure transcendental extension of its prime 
field followed by a pure algebraic extension. Hence for any m > No, any two 
algebraically closed fields of power m that have the same characteristic are 
isomorphic. Hence: 

Theorem 21.9. For any p (p a prime or p = 0), the theory of algebraically 
closed fields of characteristic p is complete and decidable. 

Theorem 21.9 forms a partial justification for the heuristic Lefschetz 
principle in algebraic geometry, according to which results over the complex 
field generalize to results over any algebraically closed field of characteristic 
O. Note that, by 21.9, to establish a first-order statement for all algebraically 
closed fields of characteristic 0 it suffices to prove it for the complex field, 
where one has available all the tools of classical analysis. 

Next, let F be any field. We can describe a first-order language .!l' appro
priate for discussing vector spaces over F. Namely, .!l' is to have the binary 
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operation symbol +, the individual constant 0, and for each a E F a unary 
operation symbol Sa' Then the theory of vector spaces over F is the set of 
all consequences of the axioms for Abelian groups (A, +, 0) together with 
all sentences of the following forms: 

V'VOV'vI[sa(VO + VI) = SaVO + savd for each a E F; 
V'VO(sa + bVO = SaVO + SbVO) for all a, b E F; 
V'Vo(SabVo = SaSbVo) for all a, b E F; 
V'VO(SIVO = vo). 

Now any two vector spaces over F of the same dimension are isomorphic. 
Hence the theory of vector spaces over F is (IFI + u ~o)-categorical, and 
hence: 

Theorem 21.10. For any field F, the theory of infinite vector spaces over 
F is complete. 

All of the above theories r have the following property: if r is m-cate
gorical in some power m > IFmlazl, then r is m-categorical in every such 
power. One of the deepest results in model theory, due to Morley and Shelah, 
is that this implication holds for all theories r. 

We shall next present a modified notion of elementary equivalence which 
has been used by Dana Scott to show that certain theories are decidable or 
complete. 

Definition 21.11. QI is called an m-elementary extension of S!3, and S!3 an 
m-elementary substructure of QI, where mEw, in symbols QI ~mS!3 or 
S!3 ~mQI, if S!3 S QI and if for every formula rp containing at most m distinct 
variables, rp>B = rpm n W B. 

The following sufficient condition for m-elementary extensions will play 
a central role in our applications of Scott's method. It is formulated in terms 
of automorphisms. An automorphism of a structure QI is simply an iso
morphism of QI onto QI. There are many connections between logical proper
ties and properties of automorphisms. The following proposition give's a 
typical connection. 

Proposition 21.12. Assume that mEw, S!3 S QI, and that for any X S B 
with I X I < m and any a E A ~ B there is an automorphism f of QI such 
thatf t X = I t X andfa E B. Then S!3 ~m QI. 

PROOF. We proceed by induction on rp to show that rp>B = rpm n OJ B for 
any formula rp with at most m distinct variables. The only nontrivial step is 
the induction step to rp = V'Vio/' Obviously rpm n W B S rp>B by the induction 
assumption. Now suppose that x E OJ B but x ¢= rpm. Say a E A and x~ ¢= o/m. 
Let X = {Xj : Vj occurs in o/,j '# i}. Obviously we may assume that Vi actually 
occurs in 0/, so I X I < m by our assumption on rp. Hence by hypothesis let 
f be an automorphism of QI such that f t X = I t X and fa E B. By the basic 
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theorem on isomorphisms it follows that x}a rt ifJ~. Since x}a E W B, the in
duction hypothesis yields Xla rt ifJ~. Thus x rt fP~, as desired. 0 

Corollary 21.13. Assume that m 5; ~,and that for any X 5; B with IXI < w, 
and any a E A, there is an automorphism f of ~ such that f r X = I r X 
andfa E B. Then m ~ ~. 

We shall apply 21.12 to show that the theory of one equivalence relation 
is decidable. This is of course to be contrasted with 16.56, according to which 
the theory of two equivalence relations is undecidable. 

Definition 21.14 
(i) r equlv is the set of all logical consequences of the following sentences, 

in a language with a single binary relation symbol R: 

VVaRvava 
VVa VV1(RvaVl -+ RVIVa) 
VVa VVl VV2(RvaVl A RVIV2 -+ RVaV2) 

(ii) For mEw'" I, a model ~ = <A, R) of reqUIV is called an m-basic 
model of reqUIV provided that for every n :s; m A has at most m equiva
lence classes with exactly n elements, and A has no equivalence classes 
with m + I or more elements. 

Lemma 21.15 
(i) For any mEw '" I, r equlv has exactly (m + l)m - I nonisomorphic 

m-basic models. 
(ii) For any mEw'" I, any m-basic model of r equlV has at most 

[m2(m + 1)]/2 elements. 

PROOF 

(i) For each n with I :s; n :s; m we allow any number < m + I of equiva
lence classes with exactly n elements. There must be at least one equivalence 
class. Hence (i) follows. 

(ii) The largest m-basic model has for each n :s; m, n ~ 0, exactly m 
equivalence classes with exactly n elements. Thus the number of elements 
together is 

m· L i = [m2(m + 1)]/2. o 
l:Si:sm 

Lemma 21.16. Let ~ be a model of r equlv, and let mEw '" I. Then there is 
a model m of r equlv such that m ~ m ~ and each m-equivalence class contains 
at most m elements. 

PROOF. Let f be a choice function for nonempty sets of subsets of A. For 
each X E A/R we define 

gX = X if IXI :s; m, 
gX=f{Y: Y5; X,IYI =m} iflXI > m. 
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Then let B = UXEAIR gX, S = 2B 11 R, '13 = (B, S). Thus '13 is a model of 
r equ!v, '13 S QI, and each OS-equivalence class contains at most m elements. 
We now prepare to apply 21.12. Assume that X S Band IXI < m, and 
also that a E A ~ B. Since a E A ~ B, it follows from our construction that 
I[ahl > m. Choose bE g[a] ~ X, and let h be the transposition (a, b). 
Clearly h is an automorphism of QI and ha E B. Hence by 21.12, '13 ~m QI. 0 

Lemma 21.17. Let QI be a model of r equ!v, mEw ~ 1, and suppose that each 
QI-equivalence class has at most m elements. Then there is an m-basic model 
'13 of r equ!v such that '13 ~ m QI. 

PROOF. LetQl = (A,R).ForiE{I, .. . ,m}letC = {X: XEA(R, IXI = i}. 
Let f be a choice function for nonempty sets of subsets of SA. For each 
iE{I, ... ,m}let 

gi = C i if Iq ~ m 
gi = f{:!l' : :!l' S c, 1:!l'1 = m} otherwise. 

Then let B = Ul,,;i,,;m UXEgi X, S = 2B 11 R, '13 = (B, S). Thus '13 is an 
m-basic model of reqUiV and '13 S QI. Again we prepare to apply 2l.12. 
Assume that X S Band IXI < m, and also that a E A ~ B. Let I [ahl = i. 
Thus 1 ~ i ~ m by our assumption on QI. Since a E A ~ B, it follows by 
our construction that I Cd > m. Thus I gi I = m, and hence, since I X I < m, 
there is aYE gi such that Y 11 X = O. Let h map Y one-one onto [ah, 
h- 1 = h, h the identity outside Y u [ah. Then h is an automorphism of 
QI and ha E B, as desired. 0 

Lemma 21.18. If QI is any model of r equiv and mEw ~ 1, then there is an 
m-basic model '13 of requ!V such that '13 ~m QI. 

Theorem 21.19. requ!V is decidable. 

PROOF. We first claim 

(1) 
If rp is a formula with at most m distinct variables, then rp E requ!V 

iff rp holds in every m-basic model of r equ!v' 

In fact, => is trivial, while <= is an obvious consequence of 2l.18. 
Now the decision method runs as follows. Given a sentence rp, determine 

the number m of distinct variables occurring in rp. Check through all .P
structures with universe S [m2(m + 1)](2; there are only finitely many. For 
each such .P-structure, check whether it is a model of requ!v' This is possible 
since r equ!v is finitely axiomatizable. For each such model of r equiv check 
whether rp holds. If it fails, then rp ¢ requ!v' If it holds for all of them, then 
rp E requlv by (1) and 21.15. 0 

We now turn to the notion of model-completeness, a widely used notion 
due to A. Robinson. First we give some general facts about this notion and 
then we give two applications to proving theories complete. 
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Definition 21.20. A set r of sentences is model-complete if r is consistent 
and for any two models m and Q3 of r, m s Q3 iff m ~ Q3 (cf. 19.20). 

We want to give some equivalent forms of this definition, and to this end 
we need to discuss further universal and existential formulas, defined in 
11.37 and 11.39. 

Proposition 21.21. Let Ll be the smallest set of formulas containing all atomic 
formulas and their negations and closed under the operations v, 1\ and 
'VVt for each i < w. Then for each cp E Ll there is a universal formula!/; with 
Fv cp = Fv!/; and I=cp +-+ !/;. 

PROOF. Let 0 be the set of cp for which there is such a !/;. Obviously Ll s 0 
since 0 is trivially seen to satisfy the above conditions on Ll. 0 

The following proposition is proved similarly: 

Proposition 21.22. Let Ll be the smallest set of formulas containing all atomic 
formulas and their negations and closed under the operations v, 1\ and 
3vt for each i < w. Then for each cp E ~ there is an existential formula !/; 
with Fv cp = Fv!/; and I=cp +-+ !/;. 

Some trivial but useful properties of universal and existential formulas 
are given in the next proposition: 

Proposition 21.23. Assume that m s Q3, cp is a formula, and x E W A. 

(i) if cp is universal and Q3 1= cp[x], then m 1= cp[x]; 
(ii) if cp is a universal sentence and cp holds in Q3, then cp holds in m; 

(iii) if cp is existential and m 1= cp[x], then Q3 1= cp[x]; 
(iv) if cp is an existential sentence and cp holds in m, then cp holds in Q3. 

The following lemma on diagrams will be useful below. 

Lemma 21.24. Let m be an 2-structure, 2' an A-expansion of 2, Ll the 
2 '-diagram of m, and r u {cp} S Sentz. Assume that r U Lll= cpo Then 
there is an existential sentence!/; of 2 such that m 1= !/; and r 1= !/; -+ cpo 

PROOF. By the deduction theorem for sentences, r 1= X -+ cp for X a con
junction of certain members of Ll. Let X' be obtained from X by replacing 
all of the new individual constants CaQ, ... , Ca(m -1) occurring in X by new 
variables ViO, ... , Vi(m -1). Since no new constants appear in r, it is clear by 
a simple semantic argument that r 1= X' -+ cpo Hence r 1= 3viO · .. 3Vi(m -1)X' -+ cpo 
Obviously 3ViO· .. 3vHm -1)X' is existential and holds in Q1. 0 

Lemma 21.25. Let r be a model-complete set in a language 2, and let 2' 
be an expansion of 2 by adjoining new individual constants. Then r is 
model-complete in 2'. 
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PROOF. Let m' = (m, Ik)kEK and Q3' = (Q3, Sk)kEK be if" -structures which are 
models of r such that m' s '.13', where m and '.13 are the underlying .P-struc
tures. Thus by the definition of substructure, m s '.13 and lk = Sk for each 
k E K. Let rp by any formula of 'p' and x E W A. Let c/o, ... , Ct(m -1) be the 
new individual constants occurring in rp, let ViO, ... , Vi(m -1) be new individual 
variables, and let rp' be the formula of .P which is the result of substituting 
for C/o, ... , ct(m-l) in rp respectively ViQ, ..• , Vi(m-l). Let Yij = Iii for each 
j < m and Yh = Xh if hEw'" {io, . .. , im - 1}. Then 

m' 1= rp[x] iff m' 1= rp[y] iff m 1= rp'[y] 
iff '.13 1= rp'[y] (since r is model-complete in .P) 
iff '13' 1= rp'[y] iff Q3' 1= rp[x]. [l 

The following kind of formula plays a special role in the theory of model
completeness. 

Definition 21.26. A formula rp is primitive if it has the form 3ViO· .. 3vi (m -1).p, 
where .p is a conjunction of formulas of the form RVjQ· .. V)(n -1), Vi = Vj, 

QVjo· •• Vj(n -1) = Vjn, or their negations. 

Thus a primitive formula is a special kind of existential formula. Note 
that the formula given by the proof of 21.24 is primitive. 

Now we are ready to give our equivalent versions of the notion of model 
completeness. 

Theorem 21.27. Let r be a consistent set of sentences in a language .P. 
Then the following conditions are equivalent: 

(i) r is model-complete; 
(ii) for every model m of r and every A-expansion 'p' of .P, r u (.P'

diagram of m) is complete (hence the name model-complete); 
(iii) if m and'p are models of r, m s '13, rp is a universal formula, x E W A, 

and m 1= rp[x], then Q3 1= rp[x]; 
(iv) for any formula rp of .P there is a universal formula .p of .P with 

Fv rp = Fv.p and r 1= rp +-+ .p; 
(v) if m and '.13 are models of r, m s '.13, rp is a primitive formula, x E W A, 

and Q3 1= rp[x], then m 1= rp[x]. 

PROOF 

(i) ~ (ii). Assume (i), let m be a model of r, let.P' be an A-expansion 
of .P, and let ~ be r U (.P'-diagram of m). We shall show that any model 
Q3' = (Q3, la)aEA of ~ is elementarily equivalent to m' = (m, a)aEA' which by 
19.2 shows that ~ is complete. By 19.10, I is an embedding of minto '13. 
Hence by the definition of model completeness I is an elementary embedding, 
so by 19.32, '.13' is a model of the elementary 'p'-diagram of m. In particular, 
m' == Q3'. 

(ii) ~ (iii). Assume (ii), and let m, Q3, rp, and x be as in (iii), in particular, 
assume that m 1= rp[x]. Choose m so that Fv rp s {vo, . .. , Vm -l}. Let 'p' be 
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an A-expansion of .!R, and let L\ be r u (.!R' -diagram of ~). Then (~, a)"EA 1= 
!p{cxo, ... , Cx<m-1», and (~, a)"EA is a model of L\, so by (ii), L\ 1= 'P(cxo, ... , 
Cx<m-1»' But by 19.9 (Q3, a)"EA is also a model of L\, so (Q3, a)"eA 1= 'P(cxo, .. . , 
Cx<m-1»' Thus Q3 1= 'P[x]. 

(1) 

(iii) ~ (iv). Assume (iii). First we establish 

for any existential formula 'P there is a universal formula ifs such 
that Fv 'P = Fv ifs and r 1= 'P - ifs. 

Indeed, let Fv'P = {ViO' ... , V!(m-1)} with io < ... < im- 1• Expand .!R to !£" 
by adjoining distinct new indiyidual constants Co, ... , Cm -1> and let 'P' = 

Subf~tP' .. Subf~l~--N'P' Finally, let L\ = {ifs : ifs is a universal sentence in 
!£" and r 1= 'P' - 'P}. The following statement will be used to prove (I): 

(2) r u L\ u { "''P'} is inconsistent. 

To establish (2), assume the contrary; then r u L\ u {"''P'} has a model 
~' = (~, llj)i<m' Let .!R" be an A-expansion of .!R', and let 0 be the .!R"
diagram of ~'. To establish a contradiction yielding (2) we need in turn 

(3) r u 01= "''P'' 

To prove this, let Q3' = (Q3, Sl> t")i<m,,,eA be any model of r u 0. Thus by 
19.10, t is an embedding of~' into (Q3, Si)i<m' Choose any x E "'A such that 
Xii = aj for each j < m. Since ~' 1= "''P', it follows that ~ 1= "''P[x]. Now 'P 
is existential, so I=..,'P - ifs for some universal formula ifs with Fv'P = Fv ifs. 
Thus ~ 1= ifs[x]. Hence by (iii), Q3 1= ifs[t 0 x] hence Q3 1= "''P[t 0 x], hence 
Q3' 1= "''P'' Thus we have established (3). 

From (3), a contradiction easily follows. Namely, by (3) and Lemma 
21.24 there is an existential sentence 0 of .!R' such that ~' 1= 0 and r 1= 0 _ 
"''P'' Hence r.1= 'P' - ..,0. But 1= .., 0_ g for some universal sentence g of 

.!R', so r 1= 'P' _ g. Thus g is a member of our set L\. Since ~' is a model of 
L\, it follows that ~' 1= g and hence ~' 1= ..,0, in contradiction to the choice 
of O. Thus (2) holds after all. 

From (2) and the deduction theorem we obtain r 1= ifso A ... A ifsm -1 - 'P' 
for certain ifso, ... , ifsm-1 E L\. But there clearly is a universal sentence ft of 
.!R' such that I=ifso 1\ ... A ifsm -1 - ft. Also, the presence of ifso, ... , ifsm -1 in 
L\ means that r 1= 'P' - ifsi for each i < m. Hence r 1= ft - 'P" Replacing 
Co, ... , Cm -1 by VjQ, ... , V!(m -1) (after perhaps changing bound variables in ft), 
an easy semantic argument then yields (1) for our formula 'P. 

To prove the full result (iv) involves a simple induction on 'P; the atomic 
case and the passages using v, A, and VVi are trivial, while for the passage 
using.., one uses (I). 

(iv) ~ (i). Assume (iv). Let ~ and Q3 be models of r such that ~ S Q3, 

let x E "'A, and let 'P be any formula. By (iv), let ifs be a universal formula 
such that Fv 'P = Fv ifs and r 1= 'P - ifs. Then 

Q3 1= 'P[x] implies Q3 1= "'[x] (since Q3 1= I') implies ~ 1= ifs[x] (by 
21.23(i» implies ~ 1= 'P[x). 
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(iii) => (v). Trivial. 
(v) => (iii). To prove this implication, it suffices to establish the following 

quite general logical fact: for any existential formula cp there is a system 
<o/i: i < m) of primitive formulas such that I:;cp +-+ VI<m 0/1' The procedure 
for showing this is similar to our method for eliminating operation symbols 
in Chapter 11; see 11.26. Namely, cp has the form 3viO ' .. 3vI(m -l)cp', where 
cp' is quantifier-free. Now we may assume that cp' is in disjunctive normal 
form, and 

(4) 
the atomic parts of cp' have the forms RVjo' .• Vj(n -1) or 

This is easily seen from the following logical validities, where ao, ... , an -1> f3 
are new variables: 

I=Ruo' . 'Un-1 +-+ 3ao' . ·3an_1(Rao·· ·an-1 A Uo = ao A ... A un-1 = an-1); 
1= ..,Ruo· .. un-1 +-+ 3ao' . ·3an_1( ..,Rao· .. an-1 A Uo 

= aO A ... A Un-1 = an-1); 
I=u = T +-+ 3f3(u = f3 A T = fJ); 
1= "'(U = T) +-+ 3f3(u = f3 A "'(T = (3)); 
1=0uo' .. un-1 = f3 +-+ 3ao' . ·3an_1(OaO· . 'an-1 = f3 

A Uo = aO A •.. A Un-1 = an-1); 
1= ..,(Ouo· .. un- 1 = (3) +-+ 3ao' . ·3an-1( ..,Oao· . 'an-1 = fJ 

A uo=aO 11."'11. Un-1=an-1)' 

From (4), making use of the validity 1=3a(cp v 0/) +-+ 3acp v 3ao/, our logical 
fact above follows. 0 

By 21.27(iv) we see that model completeness is related to elimination of 
quantifiers: quantifiers can "almost" be eliminated. In the exercises it is 
shown that a theory can be model complete without being complete, and 
complete without being model complete. We now turn, however, to con
ditions which, when added to model completeness, give completeness. These 
conditions are important in their own right. 

Definition 21.28. ~ is a prime model of r if ~ is a model of r and ~ can be 
embedded in any model of r. 

Proposition 21.29. II r is model complete and has a prime model, then r is 
complete. 

PROOF. Let ~ and !;8 be any two models of r; we show that ~ == !;8. Let cr 
be a prime model of r. Thus there are embeddings I and g of cr into ~ and 
!;8 respectively. Since r is model complete, I and g are actually elementary 
embeddings. Hence ~ == cr == !;8. 0 

Definition 21.30. A theory r has the joint extension property if any two 
models of r can be embedded in a model of r. 
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The following proposition is proved just like 21.29: 

Proposition 21.31. Ifr is model complete and has the joint extension property, 
then r is complete. 

As our final theoretical result concerning model completeness, we shall 
use the concept to give a highly useful purely mathematical condition for 
completeness. 

Theorem 21.32. Let r be a theory satisfying the following two conditions: 

(i) ifm and SB are any two models of r, then every finitely generated sub
structure of m is embeddable in SB; 

(ii) ifm andSB are any two models ofr, m s SB, andSB' is afinitely generated 
substructure of SB, then there is an embedding f of SB' into m such that 
f ~ An B' = I ~ A n B'. 

Then r is complete. 

PROOF. First we show that r is model-complete; to prove this we shall 
apply 21.27(iii). Assume, then, that m and SB are models of r, m s SB, x E OJ A, 
f(! is a universal formula, and not (SB 1= f(![x)); we want to show that not 
(m 1= f(![x)). Say f(! = VviO • •• VVHm-1>'" with", quantifier free. Then there is a 
YEOJB with not (SBI=",[y)) and Yj = Xj for all JEW ~ {iQ, ••• , im - 1}. Let 
M = {yj : Vj occurs in f(!}, and let SB' be the substructure of SB generated 
by M. Choose Z E OJ B' with Zj = Yj whenever Vj occurs in f(!. By our assump
tion (U), there is an embedding f of SB' into m such that f ~ A n B' = I ~ 

A n B'. Since '" is quantifier-free, SB' 1= .",[z] and so m 1= ''''[f a z] and 
m 1= 'f(![fa z]. Since (fa Z)j = Xj for Vj occurring free in f(!, m 1= 'f(![x], as 
desired. 

Now to show that r is complete it suffices by 21.27(iv) to show that if 
a universal sentence holds in one model of r then it holds in any model of r. 
Let f(! = VViG' .. VVHm -1>'" be a universal sentence, with '" quantifier-free; 
suppose that m and SB are models of rand m 1= 'f(!. Choose x E OJ A such that 
m 1= .",[x], and let m/ be the substructure of m generated by {Xj: Vj occurs 
in "'}. We may assume that x E OJ A'. By our condition (i), letfbe an embed
ding of m/ into SB. Then m' 1= .",[x], hence SB 1= ''''[fax], hence SB 1= 'f(!. D 

We finish this chapter with two important examples of complete theories 
proved via model completeness: the theory of infinite atomic Boolean 
algebras, and the theory of real-closed fields. 

To fix the notation for the logical theory of Boolean algebras we intro
duce the following definitions. 

Definition 21.33 
(i) 2'BA is a first-order language for Boolean algebras; the only non

logical constants are +, ., -, 0, 1, operation symbols of ranks 2, 2, 1, 
0,0 respectively. 
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(ii) r BA, the theory of Boolean algebras, has as axioms the formal 
sentences corresponding to the axioms given in 9.3. 

(iii) CPAt is the following formula of .PBA : 

...,(vo = 0) A VV1(V1·VO = Vi -+ V1 = 0 V V1 = vo). 

Thus Fv CPAt = {vo} and for any BA ~, 1cp~ is the set of all atoms of~. 
(iv) rAt is the extension of r BA with the additional axiom 

Vv1{ ...,(v1 = 0) -+ 3VO[CPAt(VO) A VO·V 1 = vo]}. 

Thus ~ is a model of r At iff ~ is an atomic BA. 
(v) rAt is the extension of rAt with the following additional axioms 

(for each mEw ~ 1): 

3vo· . ·3vm _ 1 /\ ""(Vi = Vj). 
i<j<m 

Thus ~ is a model of rAt iff ~ is an infinite atomic BA. 
(vi) .PAt is an expansion of .PBA obtained by adjoining a new unary 

relation symbol P. 
(vii) or At (resp. orft) is obtained from rAt (resp. rft) by adjoining 

the following sentence as an axiom: 

Vvo[Pvo +-+ CPAt(VO)]. 

It is obvious that (.PAt' or At) is a definitional expansion of (.PBA' rAt), 
and (.PAt' orft) is a definitional expansion of (.PBA' rft). We shall actually 
show that orft is complete, from which the completeness of rAt is clear. 
To prove orft complete we apply 21.32, which shows that orft is also model
complete (see the proof of 21.32). It is easy to see that rft itself is not 
model-complete (see Exercise 21.47). The trick of adding a defined symbol 
to convert a theory into a model-complete theory is rather common. 

Theorem 21.34. The theory of infinite atomic Boolean algebras is complete. 

PROOF. As indicated above, it suffices to use 21.32 to show that or At is 
complete. First we verify 21.32(i). To this end, let (~, P) and (~, Q) be 
two models of or ft, and let (~', P') be a finitely generated substructure of 
(~, P). By exercise 9.65 we know that A' is finite, so by 9.29 ~' is atomic. 
Let ao, ... , am -1 be all of the atoms of ~'; say ao, ... , a" -1 are also atoms 
of ~, while a", ... , am -1 are not atoms of ~. Thus n = 0 is possible, but 
n < m, since otherwise ao, ... , am -1 would be all of the atoms of ~ and 
hence, as is easily seen, ~ would be finite. Let Ro, ... , Rm -1 be a partition 
of Q into nonempty sets such that IRol = ... = IR"-ll = 1, IR"I = ... = 
IRm-21 = 2, and hence IRm-11 = I QI ~ No. For each j < m - 1, let 
bj = !:XERj x, and let bm - 1 = -(bo + ... + bm - 2 ). Then 

(1) 
(2) 
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Now for any x E A' we setfx = ~ {bj : aj :;:; x}.lt is easily seen thatfembeds 
m' into ~. We have to also check thatfpreserves P. For any x E A', 

x E P' iff x E P iff x is an atom of ~ 
iff 3j < n (x = aj) iff fx is an atom of ~ 
ifffx E Q. 

Thus 21.32(i) holds. 
To verify 21.32(i;), assume that (m, P) and (~, Q) are models of orAt, 

that (m, P) s; (~, Q), and that (~', Q') is a finitely generated substructure 
of (~, Q). Thus, again, ~' is a finite BA. Now A' = A n B' is the universe 
of a sub algebra m' of m. Let ao, .. . , am-1 be a list of all of the atoms of m'. 
Then by 9.34 we have ~i<m ai = 1. Hence by 9.44 we have: 

(3) m ~ Pi<m ~ r at; ~' ~ Pt<m m' r ai; ~ ~ Pi<m ~ r a" and 
~' = Pt<m~' r ai· 

Now 

(4) for each i < m, either m r at ~ ~ r at or else both ~ r at and 
~ r ai are infinite atomic BA's. 

For, let i < m; there are then two cases which present themselves. 
Case 1. m r at is finite. Then m r ai is atomic; let eo, ... , en -1 be all of 

the atoms of m rei. Thus m 1= 'PAt[ej] for eachj < n, so ej E P £ Q and hence 
ej is an atom of~. Also, ~j<n ej = al. Hence ~ r at is also an atomic BA 
with exactly n atoms. Therefore m r al ~ ~ r bl. 

Case 2. m r al is infinite. Then ~ r ai is also infinite; and both ~ r ai 
and ~ r ai are atomic. 

Hence (4) holds. By (4), for each i < m the BA ~' r llt can be embedded 
in m r at. Hence by (3) ~' can be embedded in m so that elements of B' n A 
are fixed. 0 

Now we turn to the theory of real-closed ordered fields. We shall estab
lish the famous result of Tarski that this theory, too, is complete. We assume 
only a knowledge of real-closed ordered fields such as is found in van der 
Waerden. The language !C' which we deal with has operation symbols +, 
., -, 0, 1 of ranks 2, 2, 1, 0, 0 respectively, and a binary relation symbol :S. 
We begin with a purely algebraic lemma not found in van der Waerden. 

Lemma 21.35. Let ~ be a real-closed ordered field and let m(b) be a simple 
transcendental ordered extension of m; denote the order of m(b) by <. 
If < is any order on m(b) which makes it into an orderedfield, and if Va E A 
(a < b __ a < b), then < = <. 

PROOF. It suffices to show that m(b) has the same positive elements under 
< and <, since a < c iff 0 < c - a and similarly for <. Note that for 
anyaEA, 

b < a iff not(a < b), since a # b; 
iff not(a < b), by assumption; 
iff b < a. 
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Now consider any nonzero element c of A(b). We may write 

c = a[f(b)/g(b)], 

where a E A and f(x) and g(x) are monic polynomials over ~. Since ~ is 
real-closed, f(x) and g(x) split over ~ into linear 'and quadratic factors; say 

f(x) = 11 (x - dj)'11 hlx), 
I<m i<" 

g(x) = 11 (x - et)·11 klx), 
I<p i<q 

where di, ei E A and hix), klx) are monic irreducible quadratic polynomials 
over ~. Now we claim 

(1) hlb) > 0 for each j < n. 

For, write hlx) = x 2 + ux + v. If SEA and s > lui + Ivl + 1, then 

S2 + us + v = s(s + u) + v > s + v > O. 

Thus his) > O. Since hi has no roots in ~, it follows by the Weier strauss 
Nullstellensatz that his) > 0 for all SEA. Now write hlx) = (x + tU)2 + 
V - tu2 • Then 

0< hl-tu) = v - tu2 • 

From this it follows that hib) = (b + tU)2 + V - tu2 ~ V - tu2 > 0, as 
desired in (1). 

Similarly to (1) we have 

(2) hi(b) >- 0 for eachj < n; kib) > 0 and klb) >- 0 for eachj < q. 

But from (1) and (2) it follows that the positiveness of f(b) in the < sense 
is determined by the order of b among the dj in the < sense, and similarly 
for -< and for g(b). The order in ~ is unique, so the lemma follows. 0 

Recall that the ordered field of real algebraic numbers can be embedded 
in any real-closed field. Thus by Proposition 21.29 we only need to show 
model-completeness: 

Theorem 21.36. The theory of real-closed ordered fields is model complete 
and hence complete and decidable. 

PROOF. We shall apply 21.27(v). To this end, let ~ and ~ be real-closed 
ordered fields with ~ £ ~; assume that x E "'A, cp is a primitive formula, 
and ~ 1= cp[x]; we want to show that ~ 1= cp[x]. Say cp is the formula 
3ViO' •• 3vl(m -1)ifJ, with ifJ quantifier free, as in 21.26. Say ~ 1= ifJ[y], where 
Xi = Yi for all j 1= {io, ... , im - 1}. Let ~' be the subfield of ~ generated by 
Au {YtO," ·,Yl(m-l)}' Then, <t course, ~' has finite transcendence degree 
over ~. Let bo, ... , b"-1 be algebraically independent over ~ in ~', with 
~' an algebraic extension of 2l(bo, ... , b"-I)' Now we define a sequence 
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<ro, ... , <rn of subfields of~. Let <ro = Qt. Having defined <rio let <r1+ 1 be the 
real-closure in ~ of <ri(hi). Thus <ro,' .. , <rn are real-closed ordered fields, 
<ro = Qt, <ro s; ... s; <rno <ri + 1 has transcendence degree one over <rio and 
<rn 1= ifs[y]. We show by (downward) induction that <ri 1= 'P[x] for each i :::; n. 
This is true for i = n; now assume it true for i > 0, and we prove it for 
i - l. 

Let !f' be a Ci _ 1-expansion of .fl', and !f" a {ht _ 1}-expansion of !f'. 
Let X = Ci -1 U {hi -I}' Let r be a set of axioms for real-closed ordered 
fields (in ~), let Il be the !f'-diagram of <rt -10 and let 0 be the set of all 
sentences 

C" < Cb(i-l) 

Cb(i-l) < C" 

for Z E Ci- 1, Z < hi-I, 
for Z E Ci - 1 , hl - 1 < Z. 

Let 'P' be 'P with each free variable Vi replaced by CXI' We now claim 

(1) r u Il u 0 1= 'P'. 

In fact, let (~, I")"EX be any model of r u Il u 0. Then by 19.10, I ~ 0 1- 1 is 
an isomorphism of Qt onto a subfield (f of ~. Clearly Ib(l-l) f/= E, and both (f 

and ~ are real-closed, so Ib(l-l) is transcendental over (f. Now I ~ CI - 1 

extends to a field isomorphism t of Ci - 1(hi - 1) onto (f(lb(i-l», and, since 
(~, I")"EX is a model of 0 it follows that t is also an order isomorphism. 
Therefore, t extends on up to an (order-) isomorphism between Ci and the 
real-closure ~ of (f(lb(i-l) in ~. Thus (~, 1"),,eX 1= 'P' and hence, since 'P' is 
existential, (~, I")"EX 1= 'P' also. Thus (1) holds. 

From (1) we obtain 

(2) r u Il 1= X -+ 'P', 

where X is a conjunction of members of 0. Say X is the sentence 

/\ (ca < Cb(l-l» A /\ (Cb(i-l» < Ca). 
aey aez 

Since Cb(l-1) does not occur in formulas of r u Il u {'P'}, it follows from (2) 
that 

(3) 
aEy aE" 

But (<rio Z)"EX 1= ifs for each ifs E 0, so (<ri' Z)"EX 1= /\aEY /\bEZ (ca < Cb)' Further
more, the ordering of <ri -1 is dense, so there is a dE Ci -1 such that 
Va E YVh EZ(a < d < h). Hence from (3), r u Ill= 'P" It follows that 
<r1_ 1 1= 'P[x]. D 

Since the reals are the most important example of a real-closed field, it 
follows from 2l.36 that the theory of the ordered field of real numbers is 
decidable. This has many practical consequences, since many practical prob
lems in mathematics can be so formulated as to apply this decision procedure 
or some of its consequences. 
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EXERCISES 

21.37. Give an example of a theory which has infinite models, is categorical in 
some power 2: IFmlazl, but is incomplete. 

21.38. Construct an incomplete theory r in a language with ~l symbols such 
that r has only infinite models, r has denumerable models, and r is 
~o-categorical. 

21.39. Using the Los-Vaught test, show that the theory of dense linear order 
with first and last elements is complete and decidable. 

21.40. Let !E be the language with nonlogical constants sand 0, unary and 
O-ary operation symbols respectively. Let r be the theory with the follow
ing axioms: 

VVo ,(svo = 0) 
VVOVV1(SVO = SVl ~ VA = Vl) 

Vvo ' snvo = va for each nEw ~ 1, 
Vvo[ 'va = 0 ~ 3Vl(SVl = va)]. 

Using the Los-Vaught test, show that r is complete and decidable (cf. 
Chapter 13). 

21.41. Show that the theory of one equivalence relation is not m-categorical 
for any m > 1. 

21.42. The theory of algebraically closed fields is model complete but not com
plete. 

21.43. The theory of dense linear order is decidable. 

21.44. The theory of discrete linear order with first but no last element is com
plete and decidable. Hint: the axioms are: 

Linear order 
First element 
No last element 
VVOVV1[VO < Vl ~ 3V2(V2 immediately follows va) A 3V2(Vl immediately 
follows V2)] 

Take a definitional expansion (!E, r) with 0 and s. Show that r is model
complete and has a prime model. 

21.45. The theory of infinite atomic BA's is not m-categorical for any infinite m. 

21.46. The theory in 21.44 is not m-categorical for any m. 

21.47. The theory of infinite atomic BA's is not model-complete. 

21.48. If r is complete, then r has the joint extension property. 
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The Interpolation Theorem 22 

In this chapter we shall prove several theorems which involve, loosely 
speaking, elimination of superfluous notions. These results are considerably 
deeper than the similar sounding facts exposed in Chapter 11, and the 
reader would be well advised to review that chapter before beginning this 
one. The theorems of this chapter are based on the following fundamental 
theorem. 

Theorem 22.1 (Craig's interpolation theorem). Let cp and '" be sentences 
such that I=cp -+ "'. Then there is a sentence X such that: 

(i) I=cp -+ X and I=X -+ ",,' 

(ii) every nonlogical constant occurring in X occurs in both cp and "'. 

PROOF. Clearly we may assume that the underlying language .It' is countable 
(i.e., that I Fmla2' I = No). We shall use the model existence theorem (Corol
lary 18.12). To this end, let .It" be an expansion of.It' rich by C. Now for 
each sentence X of .It' let 

r x = {8 : 8 is a sentence of .It", and the nonlogical constants of .It' 
which occur in 8 also occur in X}. 

Let S be the collection of all fl s Sent2" for which there exist finite subsets 
0 0 s r(f) and 0 1 S r", such that fl = 0 0 U 0 1 and for all Xo, Xl E r(f) () r"" 
if 1= /\ 0 0 -+ Xo and 1= /\ E\ -+ Xl> then Xo A Xl has a model. We shall now 
establish (Cl)-(C9) of 18.4. So, assume that fl E S, with 0 0 and 0 1 as 
above. 

(Cl). Suppose 8 is a sentence of .It" such that 8, ...,8 E fl. If 8, ...,8 E 0 0 , 

let Xo be the sentence ...,3vo(vo = vo) and let Xl be the sentence 3vo(vo = vo). 
Our assumptions above imply that Xo A Xl has a model, contradiction. The 
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assumption (J, ..,(J E 0 1 similarly gives a contradiction. Now assume that 
(J E 0 0 and ..,(J E 0 1, It follows then that (J, ..,(J E r (p n r ./" and our assump
tion on 0 0 , 0 1 then implies that (J A ..,(J has a model, contradiction. Simi
larly, fJ E 0 1 and ..,fJ E 0 0 gives a contradiction. Thus there is no such 
sentence fJ that fJ, ..,fJ E Ll. 

(C2), (C3). These conditions are obvious. 
(C4). Suppose that fJo v fJ1 E Ll; say, without loss of generality that 

(Jo v fJ1 E 00' Let 0~ = 00 U {fJo} and 0~ = 0 0 U {fJ1}. Assume that 
0~ U 0 1 rt S and 0~ U 0 1 rt S. Then there exist X~' x~, X~, X~ E r (p n r '" 
such that 1= /\ 0~ ~ x~, 1= /\ 0 1 ~ X~, 1= /\ 0~ ~ X~, 1= /\ 0 1 ~ X~' while 
X~ A X~ has no model and X~ A X~ has no model. Thus 1= /\ 00 A fJo ~ X~ 
and 1= /\ 00 A (J1 ~ X~, so, since fJo v (J1 E 00, 

(1) 

We also have 

1= /\ 0 1 ~ X~ A X~' 

so by (1) and our choice of 0 0, 0 1 we infer that (X~ v X~) A (X~ A X~) has 
a model. This contradicts the fact that neither X~ A X~ nor X~ A X~ has a 
model. 

(C5) This is obvious. 
(C6). Assume that 3afJ E Ll. Choose C E C so that C does not occur in 

/\ 00 A /\ 0 1, Say without loss of generality that 3a(J E 0 0, Let 0~ = 

00 U {Subf~ fJ}. We claim that 0~ U 0 1 E S (as desired). To prove this, 
assume that we have Xo, Xl E r (p n r", 1= /\ 00 ~ {Subf~fJ ~ Xo} and 1= 1\ 
0 1 ~ Xl' We may assume that a does not occur in Xo A Xl' Let X~ A X~ 
be obtained from Xo, Xl respectively by replacing c by a. Then we easily 
obtain 

Hence 3ax~ A Vax~ has a model. Such a model obviously yields a model of 
Xo A Xl, as desired. 

(C7). This is obvious. 
(C8). Suppose that C E C, T is a primitive term, and C = T, Subf~(J E Ll. 

If both C = T and Subf~fJ E 00' or both E 0 1, the desired conclusion is 
obvious. So suppose, say, that C = T E 0 0 while Subf~(J E 0 1, Let 0~ = 
0 1 U {Subf~fJ}. We claim that 0 0 U 0~ E S. To show this, assume that 
Xo, Xl E r (p n r", and 1= /\ 00 ~ xo, 1= /\ 0~ ~ Xl' Thus 1= /\ 0 1 ~ (Subf~fJ 
~X1)' Hence 

(2) 
(3) 

1= /\ 00 ~ C = T A Xo, 

1=/\ 01~(C=T~X1)' 

Since we may assume that a occurs free in fJ, it follows that T occurs in 
Subf~(J. Thus since C = T E 00 and Subf~(J E 0 1 it follows that C = T E 
r (p n r ",. Hence from (2) and (3) we infer from our choice of 00 and 0 1 
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that (c = 'T 1\ Xo) 1\ (c = T -+ Xl) has a model. It is clearly also a model of 
Xo 1\ Xl· 

(C9). Let 'T be a primitive term. Let C E C be such that C does not occur 
in T or in /\ 0 0 1\ /\ 0 1 • Let 0~ = 0 0 u {c = T}. Suppose Xo, Xl E r", n r '" 
and 1= /\ 0~ -+ Xo, 1= /\ 0 1 -+ Xl. Then 1= /\ 0 0 -+ (c = T -+ Xo) and hence 
we easily obtain 1= /\ 0 0 -+ (3a(a = T) -+ 3ax~) and 1= /\ 0 1 -+ Vax~, where 
a is a new variable and X~, x~ are obtained from Xo, Xl by replacing c by a. 

Since 1=3a(a = T), it follows that 1= /\ 0 0 -+ 3ax~. Hence 3ax~ 1\ Vax~ has 
a model, which easily yields a model of Xo 1\ Xl. 

Thus we have checked (Cl)-(C9) of 18.4. Now our assumption, that 
I=!p -+ if, implies that {!p, ,if} does not have a model. Hence by 18.12, 
{!p, ,if} rt S. Thus there exist Xo, Xl E r", n r", such that I=!p -+ Xo, 1= ,if -+ Xl> 
while Xo 1\ Xl does not have a model. Thus 1= 'Xl -+ if and I=xo -+ 'Xl> so 
I=!p -+ Xo and I=xo -+ if. Let Co, ... , Cm -1 be all of the members of C occurring 
in Xo. Then clearly there exist new variables ao, ... , am -1 such that 

r!p -+ Vao· .. Vam - 1X~ 
rVao· .. Vam-1X~ -+ if 

where X~ is obtained from Xo by replacing co, ... , Cm -1 by ao, ... , am -1 

respectively. 0 

The next theorem is of an entirely different character from the interpola
tion theorem. According to this theorem, if one conservatively extends a 
given theory in two different ways, the two ways are consistent with each 
other. 

Theorem 22.2 (A. Robinson's consistency theorem). Assume that .Po, .Pl> 
.P2 , ~, r 0, r 1, r 2 are given satisfying the following conditions: 

(i) ~,.P1, .P2 ,.P3 are first-order languages; ~ and.P2 are expansions of 
.Po, and .P3 is an expansion of both ~ and .P2 ; 

(ii) any nonlogical symbol common to ~ and .P2 is a symbol of .Po. 
(iii) r 0, r 1, r 2 are consistent theories in .Po, ~, .P2 respectively; 
(iv) r 1 and r 2 are conservative extensions of r o. 

Then r 1 u r 2 is consistent. 

The various assumptions 10 the hypothesis of 22.2 are indicated 10 the 
following diagram: 

/(r1 u f2' -Pa)~ 

(r 1 • .2i) (r 2. ~) 

~ ~ 
(fo, ~) 

PROOF. Suppose that r 1 u r 2 is not consistent. Then, by the compactness 
theorem, there are finite subsets Ll1 and Ll2 of r 1 and r 2 respectively such 
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that 111 U 112 has no model; and we may assume that 111 # 0 7" 112. Thus 
we have 

1= /\ 111 - V { '<p : <p E 112}, 

and hence by (ii) and the interpolation theorem there IS a X E Sent .Po 
such that 

1= /\ 111 - X and I=x - V { '<p : <p E 112}. 

Hence X E r 1 and 1= /\ 112 - 'X, so 'X E r 2. But then by (iu), x, 'X E r 0, 

contradicting the consistency of r ° (condition (iii)). 0 

Note that if r ° is complete, then condition (iu) in 22.2 follows from (iii). 
It is of some interest that we can easily derive Craig's theorem from Robin
son's theorem. In fact, assume that I=<p _.p. Let .Po, .Pl , .P2 , .P3 be respec
tively the logics with nonlogical constants those occurring in (1) both <p 
and .p, (2) <p, (3) .p, (4) <p _.p. Let r = {8 E Sent'po : I=<p _ 8}. Now we 
claim 

(1) r U { • .p} does not have a model. 

For suppose, on the contrary, that r U { • .p} has a model Q! (an .P2-struc
ture). Let 11 = {8 E Sent 2'0: 8 holds in Q!}. Then 11 is a complete theory 
in .Po, and 11 U { • .p} has a model (namely Q!). If 11 U {<p} had a model, 
A. Robinson's consistency theorem would yield a model of 11 U {<p, ,.p}, 
contradicting I=<p _.p. Thus 11 U {<p} has no model, so by the compactness 
theorem I=<p _ Vi<m 'Xi for some mEw and some X E ml1. Hence 
Vi<m 'Xi E r, so Vi<m 'Xi holds in Q!, which is impossible. 

Thus (1) holds. By the compactness theorem, 1= !\i<n Xi -.p for some 
nEw and some X E nr. Clearly also I=<p - /\i<n Xi' as desired. 

Another application of Craig's theorem is in the theory of definition. 
This application is in proving a converse of the following easy and classical 
result, which is frequently applied to show that certain notions cannot be 
defined in terms of others. 

Theorem 22.3 (Padoa's method). Let r be a theory in a language !£', and 
let n be a nonlogical constant of .P. Suppose that Q! and >B are two models 
of r such that A = B, a 21 = a'i3 for any nonlogical constant a # 7t, while 
n21 # n'i3. 

Then n is not definable, with respect to r, in terms of the other non
logical constants of f£'. That is, there is no theory 11, in the reduct .P' of .P 
obtained by deleting 7t, such that r is a definitional expansion of 11. 

PROOF. We take the case of a relation symbol n; operation symbols are 
treated similarly. Suppose there is such a theory 11, and let <p be a possible 
definition of n, with r 1= Vvo· .. VVm -1 (nuo· .. Um -1 +-+ <p). (See Definition 
11.29.) Then for any x E m A, x E n21 iff Q! 1= <p[x] iff >B 1= <p[x] (since 7t does 
not occur in <p) iff x E n'i3, so n21 = n'i3, contradiction. 0 
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Here is an application of Padoa's method. Let r be the theory of the 
structure <7L, +), i.e., r = {cp: cp is a sentence and cp holds in (lL, + )}. Then 
< is not definable in r. To prove this, let r' be the theory of <7L, +, <). 
Then <7L, +, » is also a model of r', since < - x : x E 7L) is an isomorphism 
from <7L, +, <) onto (lL, +, ». It follows by Padoa's method that < is 
not definable in r'. 

Beth's theorem is the converse of Padoa's method. It is a kind of com
pleteness theorem in the theory of definition. 

Theorem 22.4 (Beth's theorem). Let r be a theory in :e, and assume that 1t 

is a nonlogical constant of 2 such that 

(i) if m and S!3 are two models of r such that A = Band 0"21 = 0"'13 for any 
nonlogical constant 0" =f. 1t, then 1t21 = 1t'13. 

Then 1t can be defined in terms of the other nonlogical constants, i.e., 

(ii) if 2' is the reduct of 2 obtained by deleting 1t, then there is a theory ~ 
in 2' such that (r, 2) is a definitional expansion of(~, 2'). 

PROOF. First we treat the case in which 1t is a relation symbol, say of rank 
m. Expand 2 to 2* by adjoining a new m-ary relation symbol S and indi
vidual constants Co, ... , Cm - 1 • Let 0 be obtained from r by replacing 1t 

by S in each sentence of r . We then claim 

(1) 

Indeed, let S!3 = (m, R, S, ai)i<m be any model of r u 0, with m the under
lying 2'-structure, 1t'13 = R, S'13 = S, and c'f3 = ai for each i < m. Clearly 
then (m, R) and (m, S) both are models of r. Hence by (i) R = S, so 
1tCo ' .. Cm -1 ~ SCo ' .. Cm -1 holds in Q3. Thus (1) holds. 

By (1) there are finite subsets r' and 0' of rand 0 respectively such that 

Let y and (1 be the conjunctions of all members of r' and 0' respectively. 
Thus {y, 8} F 1tCo ' .. Cm -1 ~ SCo ' .. Cm -1' and hence we easily obtain 

Fy A 1tCO" 'Cm - 1 ~(8~Sco" 'Cm-l)' 

Note that the sentence y A 1tCo ' .. Cm -1 does not involve S, and the sentence 
(1 ~ Sco ' .. Cm -1 does not involve 1t. Hence by the interpolation theorem 
there is a sentence g not involving 1t or S that the following two conditions 
hold: 

(2) 
(3) 

Next we claim 

(4) 

Fy A 1tCo " 'Cm -l ~ g; 
Fg ~ (8 ~ Sco ' . ·cm - I ). 
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I n fact, I' 1= 7tCo ' .. Cm _ 1 ~ f by (2), since y is a conjunction of members 
of I'. To prove the converse, suppose l~ = PI, R, aJi<m is any model of 
I' u [fL where ~l is an 2'" -structure, 7t"-' = R, and c~' = a; for all i < In. 

Let (£ be the expansion of 13 to an 2'*-structure with S<£ = R also. Clearly (£ 

is a model of r u (-) u {fl. Since e is a conjunction of members of (-), it 
follows that (£ 1= e. Hence by (3), (£ 1= Sco· .. Cm _ b and hence (£ 1= 7tCo ' .. Cm -1' 

Thus 13 1= 7tCO ' .. Cm -1, as desired: (4) holds. 
From (4) we infer that 

(5) 

where f is obtained from f by replacing Co, ... , Cm _ 1 by 1'0, ... , I'm -1 respec
tively, after changing bound variables to avoid clashes. Now let \" = 

[e EO Senty , : f' 1= e}, and let ep be the sentence of (5). It remains only to 
show that r' u {ep} axiomatizes r. Obviously r' u rep} S; l'. Recalling the 
proof of 11.30, we easily show 

(6) 
for any formula ,p of 2' there is a formula ,p' of 2-" with the same 
free variables as,p such that {ep} I=,p+-+ ,p'. 

Now if,p EO 1', choose by (6) a sentence ,p' of 2" such that {ep} 1= ,p +-+ ,p'. By 
(5), r 1= ,p', so ,p' EO r' by the definition of {". Hence r' u {ep} I=,p, as desired. 
This completes the proof in case 7t is a relation symbol. 

The case of an operation symbol 7t is similar: we begin by adjoining 
an m-ary operation symbol 0 and m + I individual constants Co, ... , Cm, 

obtaining !£*. Let (..j be obtained from r by replacing 7t by 0 in each sentence 
of r. Then we obtain formulas y, e, f analogous to the above: 

(1) 
(2) 
(3) 
(4) 
(5) 

r u 8 1= 7tCo ' •• Cm _ 1 = Cm ~ Oco ' •• Cm - 1 = Cm ; 

I=y A 7tCo ' .. Cm - 1 = Cm ~ f; 
I=f ~ (6 ~ Oco" 'Cm - 1 = cm); 

r 1= 7tCo ' . 'Cm - 1 = Cm +-+ g; 
r 1= Vvo' . ,Vvm(7tVo' .. Vm-l = Vm +-+ g). 

It remains only to check the existence and uniqueness conditions for r 
But both conditions are clear by (5). 0 

As our final application of the interpolation theorem we shall discuss 
the problem of independently axiomatizing theories. 

Definition 22.5. A set of r of sentences is independent if for every ep EO r 
we have not (r ~ {ep} 1= ep). A theory r is independently axiomatizable if 
there is an independent set which axiomatizes r. 

Our goal is to show that every theory is independently axiomatizable. 
The case of countable languages is rather obvious, and will be useful in 
the general case: 

Lemma 22.6. Ifr is a theory in a countable language, then r is independently 
axiomatizable. 
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PROOF. Write r = {'Pi: i E w}. For each i E w let <Pi be the sentence 
/\1<i 'P1 --')0 'Pi' where by convention <Po is 'Po· Let ~ = {<Pi: not(F<pi)}. We 
claim that ~ independently axiomatizes 1'. Obviously r F <Pi for each i, and 
hence r F X for each X E ~. By induction on i it is clear that F A1:>i <Pi --')0 'Pi 
for each i E w. Hence ~ F 'Pi for each i E w. Hence l' = {if; : ~ F <p}, i.e., ~ 
axiomatizes l'. It remains to show that ~ is independent. First note: 

(1) 

I n fact, suppose i < j. Clearly F ..., <P1 --')0 /\k < j 'Pk, and hence F ..., V1j --')0 'Pi 
and F ..., <P1 --')0 <Pi. Thus (I) holds. 

Now assume that X E ~ and ~ ~ {x} F X. Thus ~ /\ (-) --')0 X for some 
finite subset H of ~ ~ {x}. But for each e E (-) we have Fe v X by (I), so 
F /\ (:) v X. Hence FX, contradiction. [J 

Lemma 22.7. Suppose r, ~ ~ Sent.:e and: 

(i) Ifl:s: 1~I,and1'Il~=O 
(ii) for every 'P E~, not(r U ~ ~ {'P} F 'P) 

Then there is an independent set (-) which axiomatizes {'P E Sent.."" : 
l' u ~ F 'P}. 

PROOF. Let <p: l' >-+~. Let 0) = {'P 1\ <P({J : 'P E r} U (~ ~ Rng <p). Then 
obviously l' u ~ ~ {'P : (;:J F 'P}, and (:) ~ {'P : l' u ~ F 'P}, so 8 axiomatizes 
ru ~. 

Now to show that 0) is independent, let X E (-), and suppose, to try to 
reach a contradiction, that 8 ~ {X} 1= X. First suppose that X has the form 
'P A <P({J where 'P E 1'. If e E l' and e =I- 'P, then e =I- <P({J since l' II ~ = 0, so 
(1' u ~) ~ {<f;({J} 1= e; also <P8 =I- <P({J' so (1' u ~) ~ {<f;({J} F <Po; it follows that 
(1' u ~) ~ {<f;({J} F e 1\ <Po whenever 8 E 1', e =I- 'P. If e E ~ ~ Rng <p, then 
8 =I- <p,p and (1' u ~) ~ {<f;({J) 1= 8. Thus (I' u ~) ~ {<f;({J} 1= 8 for each 8 E 

8 ~ {X}, so, by our assumption that 8 ~ {X} 1= X, (1' u ~) ~ {<f;({J} F X and 
hence (1' u ~) ~ {<p({J} F <P({J. This contradicts (ii). If X E ~ ~ Rng <p, a contra
diction is similarly reached. D 

Lemma 22.8. Let 2 be a language with infinitely many nonlogical constants. 
Suppose that l' is a set of sentences in 2 satisfying the following condition: 

(i) if 'P E 1', mEw ~ I, <P E mI', and there is a nonlogical constant 
occurring in 'P but not in /\i < m <Pi' then note F /\i < m <Pi --')0 'P). 

Then {'P: I' 1= 'P} is independently axiomatizable. 

PROOF. Let 2- be the reduct of 2 to all nonlogical constants occurring 
in some sentence of r. Now 

(I) 
if ~ ~ Sentz - independently axiomatizes {'P E Sentz - : I' F 'P} 
in 2-, then ~ independently axiomatizes {'P : r F 'P} in 2. 
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For, assume the hypothesis of (I). Then ~ 1= f{J for each f{J E r, so .1 axioma
tizes {f{J : r F f{J}. Obviously .1 is still independent in the it'-sense. 

By (I) it suffices to show that {f{J E Sent£'- : r F go} is independently 
axiomatizable. Thus, returning to the original statement of the theorem, 
we may assume 

(2) every nonlogical constant of 2 occurs in some sentence of r. 

By 22.6 we still may assume that 2 has infinitely many nonlogical constants. 
Let a well-ordering of J' be fixed, so that we can speak of the first member 
of any nonempty subset of r. Let In = I Fmla£'i. Clearly In is the cardinality 
of the set C of all nonlogical constants of 2, and it is also the cardinality 
of r. Choose C so that c: In -+>- C. For each sentence 'P of it' let C'P be the 
set of all nonlogical constants appearing in 'P. 

We now define a sequence <'Pa : a < 111', of sentences of r. Assume that 
13 < m and that 'Pa has been defined for all a < 13. Thus clearly IUa<o C'Pal 
< m. Let d be the first nonlogical constant in the list Co, CI , . .. not in 
Ua <0 Cf{Ja, and let 'Pfi be the first member of r in which d occurs. This 
defines the sequence <'Pa : a < m). 

Next we define a sequence <~" : a < 111) of subsets of r, namely .10 = 

{if; E r : Cif; ~ C'Po} , while for any 13 =1= 0 we set 

~a = {if; E r : Cif; ~ U C'Pa and Cif; n C'PB ~ U C'Pa =1= OJ. 
a <£3 a<!3 

Now we note some properties of the sequences 'P and ~. By induction on 
13 we clearly have 

(3) 

Hence it follows that 

(4) 

(5) 

for each 13 < m. 

U C'Pa = C. 
8<m 

If 13 < y < m, then ~a n ~y = O. 

For, if 13 < y < m and if; E ~a, then Cif; ~ Ua';fi C'Pa, while for each X E~, 

we have Cx $ Ua<Y C'Pa ~ Ua<8 C'Pa, so if; ¢ ~y. 

(6) U ~8 = r. 
8<m 

For, c:; is trivial, so assume that if; E r. If Cif; = 0, then if; E 6.0, Assume that 
Cif; =1= O. By (4) we may choose y < m minimum so that Cif; c:; Ua<y C'Po. 
Note that y =I 0 and y is not a limit ordinal, since 0 < I Cif;1 < No. Say 
y = S + 1. Thus Cif; $ U8<O C'P8' It follows that if; E ~" as wished in (6). 

For any f3 < m, let Ta = C'P8 ~ Ua<8 C'Pa' Then the following two 
conditions are obvious: 

(7) 
(8) 
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Since (7) holds, it follows that for any if; E r the set {{3: Cif; n To '# O} is 
finite. This enables us to define, for any {3 < m, 

where if Ccpe n Ta = 0 for all a < {3 we understand that if;p is the sentence 
VVo(vo = vo) ~ CPo· If X E r - {CPa: a < m}, we define a sentence x' as fol
lows: 

x' = /\ {CPa: a < m and Cx n Ta '# O} ~ x; 

again, we let x' be the sentence VVo(vo = vo) ~ x if Cx n Ta = 0 for all 
a < m (this can happen, by (8), only if X has no nonlogical constants). 

Let 8 = {if;e : {3 < m} and U = {x' : X E r - {CPa: a < m}}. The rest of 
this proof is devoted to showing that n u 8 axiomatizes {cp : r F cp} and that 
nand El satisfy the conditions of Lemma 22.7; hence by that lemma, our 
lemma follows. Obviously n u G) <;; {cp : r F cp}. By induction on {3 it is clear 
that n u El F CPP for each {3 < m. Hence it follows easily that il u 8 F X 
for each X E r - {CPa: a < m}. Thus n u 8 axiomatizes r. 

It remains only to check the conditions of 22.7. It is clear that CPP E !l.p 
for each {3 < m, and hence by (5) cP is one-one. Therefore if; is also one-one, 
and hence lill :-::; IElI. Furthermore, it is obvious that n n 8 = O. To check 
condition (ii) of 22.7, assume that {3 < m and that (n u 8) - {CPo} F if;o; we 
shall reach a contradiction. By this assumption, there exist m, nEw and 
a E m(m - {{3}), X E nCr - {cpy : y < m}) such that 

(9) F I\. (I\. {cpy : y < ai and CCPai n Ty '# O} ~ CPai) 
i<m 

1\ I\. (I\. {cpy : y < m and CXi n Ty '# O} ~ Xi) 
;<n 

~ (I\. {cpy : y < {3 and Ccpo n Ty '# O} ~ CPo», 

where for simplicity we ignore the case when some of these expressions 
should be replaced by VVo(vo = vo). We now construct a structure which is 
not a model of the sentence in (9). Let I = {i < m : CCPai n To = O} and 
J = {j < n : CXi n To = OJ. Note that if y < {3 then Ccpy n To = 0, while 
Ccpp n To '# O. Thus 

Ccpn $ U Ccpai U U CXi U U {Ccpy: y < {3, Ccpo n Ty '# OJ. 
ieI ieI 

It follows from assumption (i) of our lemma that there is an 2'-structure QI 
which is a model of the sentence 

(10) I\. CPai 1\ I\. Xi 1\ I\. {cpy : y < {3, Ccpp n Ty '# O} 1\ -'cpp. 
iel jeJ 

Now if i E m - I, then CCPai n To '# 0; since ai '# {3 it is clear that {3 < a;, 
and hence Ql is a model of the sentence 

(11) 
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for each i Em'" I. Similarly, Q[ is a model of the sentence 

(12) -, /\ {<py : y < m and CXj n Ty =I O} 

for each.i E n ~ J. Thus Q[ is a model of all of the sentences in (10), (II), 
(12). This contradicts (9). 0 

Theorem 22.9. (Reznikoff). Every theory is independently axiomatizable. 

PROOF. Again, we let C<p denote the set of all nonlogical constants occur
ring in <po By 22.6 we may assume that our language has infinitely many 
nonlogical constants. Let r be a theory. We define <~i: i < w) by recursion: 

~n = {<PE r: not(~ tl i I=<p) and [C<p[ = n}-
Let tlw = Ui < w tl i • Then ~w axiomatizes r. This follows from the following 
obvious fact: 

if <p E rand [C<p[ = n, then U ~i 1= <po 
i.:S n 

This fact also implies that 

(I) then not(l=x ~ <p). 

Now to show that r is independently axiomatizable, it suffices to show 
that ~w satisfies the condition (i) of Lemma 22.8. Hence assume that <p E ~w, 

mEw~ I, .pEm~w, C<p$ C/\i<m.pi, while l=/\i<m.pi~<P' By the inter
polation theorem let X be a sentence such that 1= /\i < m .pi ~ X, I=X ~ <p, and 
Cx s; C<p n C /\i < m .pi' Since C<p $ C /\i < m .pi' it follows that Cx c C<p 
and hence [CX[ < [C<p[. This contradicts (I). So the condition (i) of 22.8 
holds, and 22.8 implies that r is independently axiomatizable. 0 

EXERCISES 

22.10. Prove the interpolation theorem for formulas <p, .p and X. 

22.11. Let <p be the sentence 

3VOVVI(VI = Vo V VI = Ovo V VI = OOvo) 

and let .p be the sentence 

Vvo -, Rvovo A VVOVVIVV2(RVOL'1 A RVI1'2 ~ Rl'oL'2) ~ 3VOVVI -, RVOVI. 

Show that F<p ~.p, and find a sentence X involving only equality such 
that F<p ~ X and FX ~.p, 

22.12. Let <p be the sentence 
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Show that F!p -+.p, but there is no sentence X involving neither R nor 
equality such that F!p -+ X and FX -+ .p. 

22.13. Show that 22.2(iO cannot be omitted. 

22.14. Show that 22.2(iv) cannot be omitted. 

22.15. Under the hypotheses of 22.2, show that r 1 u r 2 is a conservative exten
sion of roo 

22.16. Let ..2"0, r o, ~, r l for i E I be given, satisfying the following conditions: 
(i) .2'0 and each ~ are first-order languages, and ~ is an expansion 

of 20; 
(ii) for distinct i, j E I, any nonlogical symbol common to ~ and ~ 

is a symbol of .2'0; 
(iii) r l is a consistent theory in ~ (each i E I), and ro is a consistent 

theory in .2'0; 
(iv) for each i E I, r l is a conservative extension of roo 
Show that Ulel r l is consistent. 

22.17. Let.2' be a language with nonlogical constants 0 (unary operation symbol) 
and P (unary relation symbol). Let r be the theory in .2' with the follow
ing axioms: 

o is one-one 
'v'vo(O"vo = Vo -+ PVo), each nEw"" 1, 

where 0" is 0 repeated n times: Show that P is not definable in terms of 
o in (.2', r). 

22.18. For any structure ~, give explicitly an independent axiomatization of 
the diagram of~. 

22.19. If ~ is an infinite free Boolean algebra and I is an ideal of~, then I has 
an irredundant set of generators. That is, there is a subset X of I which 
generates I but is such that no proper subset generates I. 
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23* Generalized Products 

In this chapter we want to present some interesting logical properties of 
products. The proofs of the results use a very general notion of product, 
which we shall develop only enough to obtain results concerning ordinary 
products (but see the exercises). The idea of the generalization is to consider 
two languages, one language for the factors and one somehow connected 
with the index set of the product. A third language, for the product, IS 

derived from these. The basic definitions are as follows. 

Definition 23.1. Let two first-order languages !/;ac and ~nd be given. 
Suppose that <Q(i : i E I> is a system of !/;ac-structures. For any formula 
rp of !/;ae and any fE wPiEI Ai we set 

K?!f = {i E I: Q(i 1= rp[pri 0 f]}. 

An !/;ae, ~nd-sequence is a sequence <rp, 0/0, ... , o/m> such that rp is a 
formula of ~nd with Fv rp S {Vo, ... , vm} and 0/0, ... , o/m are formulas of 
!/;ae. We let p< rp, 0/0, ... , o/m> be the least n such that Fv Vi';; m o/i S {Do, ... , vn}. 
The sequence < rp, 0/0, ... , o/m> is partitioning if the following formulas are 
tautologies: 

VI,;;m 0/1; 
""(o/i A o/j) for i "# j. 

We suppose now that !/;ae and ~nd each have only finitely many non
logical constants, and then we fix upon an enumeration ~o, ~l' ... of all 
!/;ae, ~nd-sequences. In case !l;ae and ~nd are effectivized, we suppose 
that the associated sequence of Godel numbers ,1 + ~o, ,1 + ~l' . .. is recur
sive, where ,1+ is defined in the usual way. Let ~rod be a first-order 
language whose nonlogical constants are, for each nEw, a Pn-ary rela
tion constant Rn, where Pn = P~n-

376 



Chapter 23: Generalized Products 

N ow if we are given m as above and we are also given an 2';nd structure 
'B with universe SI, we define the generalized product <r = P~l mi, which 
is to be an 2;,rod-structure. Its universe is PiEI Ai, while for each nEw, 

R; = {f E cnpiEI At : there is agE wPiEI Ai such that f s g and 
'B 1= <p[K~og, ... , R1mg]}, 

where ~n = <<p, !fa, ... , !fm)· 

We will also assume below that 2';nd is a language extending a language 
for Boolean algebras, and that 'B is an expansion of the Boolean algebra 
(SI, u, n, ",,0, I). 

Before proceeding to the main theorem let us see how to conceive of direct 
products as a special case of this notion. Let 'B be the Boolean algebra 
(S(I), u, n, ",,0, I). Now <p = Va = 1 is an 2';nd formula with Fv <p = {va}' 
and, if S is an n-ary relation symbol of .Prae , then !f = SVo' .. Vn -1 is a 
formula of !l;ac. Thus (<p, !f) is an .Prae, 2';nd-seqUl'!nce, say (<p, !f) = ~p, Then 
for any fE nptEI Ai' 

iff 3g E wPiEI Ai such thatfs g and 'B 1= <p[K~g] 
iff 3g E wPiEI Ai such thatf s g and K~g = I 
iff Vi E I(foi> ... ,fn -l,i) E SQli. 

Thus R; is the same as the relation of PiEI m; corresponding to S. Similarly, 
for an n-ary operation symbol 0 there is apE w such that R~ is an (n + 1)
ary relation of <r which is identical with the n-ary operation that is the opera
tion of PtEI mi corresponding to 0 (take <p as above and!f = Ova' .. Vn -1 = vn). 

Lemma 23.2. If (<p, !fa, ... , !fm) is an !l;ae, 2';nd-sequence then one can 
effectively find a partitioning !l;ac, 2';nd-sequence (X, 00 , ••• , On) such that 
Fv I\i,;.m!ft = Fv I\;,;.n Ot and for any m and'B as above, andfE WP;EI A;, 
'B 1= <p[K:of, ... , R1mf] iff'B 1= X[K~f, ... , Ke~f]· 

PROOF. Let n = 2m+! - 1, and let ro, . .. , rn be a list of all subsets of 
{O, ... , m}. For each k ::;; n let 

Ok = 1\ !fj A 1\ .!fj. 
jErk jE(m+ l)-rk 

and set 

Clearly (X, 00 , ••. , On) is a partitioning !l;ac, 2';nd-sequence and Fv I\i,;.m!f; = 

Fv I\;,;.n OJ. Now note that 

'B 1= x[K~of, ... , ~nf] iff 
'B 1= [U {K~J: k ::;; n, ° E rk},"" U {K~J: k ::;; n, m E rk}]' 

But it is easily seen that if I ::;; m, then U {Kifcf: k ::;; n, IE r,J = K'fzf, so 
the desired equivalence follows. 0 
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The main theorem on generalized products is as follows: 

Theorem 23.3 (Feferman, Vaught). Assume the notation above. Then for 
each formula X of .2"prod there is a partitioning .!i;ae, fL'tnd-sequence ~ = 
(cp, .po, ... , .pn) with the following properties (for any system <mf : i E I> 
of .!i;ae-structures and any fL'tnd-structure <;8): 
(i) Vi is free in X iff it is free in some .pi; 

(ii) ~ is effectively obtained from x; 
(iii) P~I mf ~ X[[] iff <;8 ~ cp[Kl'of, ... , Kl'mf]· 

PROOF. We proceed by induction on x, where by 23.2 we do not have to 
produce a partitioning sequence. First suppose that X is RnVkO' •. Vk(pn -1)' 
Let ~n = (cp, .po, ... , .pm)· For each j :5: m let Xi = .plvkO , ... , Vk(pn -1»' Con
sider the .!i;ae, fL'tnd-sequence (cp, Xo, ... , Xm)· We have, with <r = P~I mi, 

P~I mi ~ x[!] iff (fkO, ... Jk(pn -1» E R~ iff there is a 
g;2 (fkO," ·,fk(pn-1» such that g E wPiEI Ai and <;8 ~ cp[K~og, ... , 
Kl'mg]. 

Now for eachj :5: m, if g is as above, then 

Iqjg = {i E I : ~ ~ .pi [prj 0 g n 
= {i E I: ~ ~ .pi[[kO;' ... Jk(pn-1)in 
= {i E I: mj ~ Xi[pri 0 fn 
= K':;f. 

Thus, by the above, 

P~I mi ~ X[[] iff <;8 ~ cp[K~of, ... , K~mf]. 

Second, suppose that X is Vi = Vk, let cp be Vo = 1, and let .p be Vj = Vk' Thus 
(cp, .p) is an .!i;ae, .2"ind-sequence, and 

iffjj = fk 
iffK~=I 

iff 'Vi E I(jjj = fki) 
iff <;8 ~ cp[Iq!]. 

Now we proceed to the induction steps. Suppose that (cp, .po, ... , .pm) is 
correlated with X as in the statement of the theorem. Then ( ""cp, .po, ... , .pm) 
is an Sfcae, fL'tnd-sequence, and 

iff not(p~I mf ~ x[[]) 
iff not(<;8 ~ cp[~of, ... , Kl'mf]) 
iff <;8 ~ ""cp[Kl'of, ... , Kl'of]· 

Next, suppose that (cp, .po, ... , .pm) is correlated with Xo and (8, TO, ••• , Tn) 
with XI. as in the statement of the theorem. Then (cp v 8(Vm+I." ., Vm+n +1), 
.po, ... , .pm, TO, ••• , Tn) is an Sfcaco .2"ind-sequence, and it is straightforward to 
check that it works for Xo v Xl' Conjunction is treated similarly. 

Finally, suppose that a formula VViX is given, and that a sequence 
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~ = (gJ, .po, ... , .pm) is correlated with X (in particular, ~ is a partitioning se
quence). For each k :s; m let fLk be the formula 3vj .p", and let 0 be the formula, 

VVm+l·· ·VV2m +l[Vm+1 + ... + V2m+l = 1 A 

!\ (Vm+"+l'Vm+l+l = 0) A 
"<Ism 

!\(Vm+k+l' V" = Vm+"+l) ~ gJ(Vm+l> .. . , V2m+l)]. 
"sm 

Thus (0, fLo, ... , fLm) is an !i;ae, ~nd-sequence. Now suppose that P~ 2!i F 
Vvfx[f]. In order to check that \13 F O[K~of, ... , K~(n-lJ], assume that 
Jo, ... , Jm E B forms a partition of I, and that J" s K~"f for each k :s; m. 
We now define g E PiEI Ai. Given i E I, there is a unique k :s; m such that 
i E J", and hence i E ~"f, which means that 2!i F fLk[pri 0 fl. Since fL" = 3v j .p", 
we may hence choose gi E Ai such that 2!i F .pk[(pri 0 f)~;]. This defines g. 
Thus for any i E I, with k as above, 2!i F .pdpri 0f~], so i E K~Jt. That is, 
J" s ~"ft. Now since ~ is a partitioning sequence, it follows that 
K~mft, ... , K~mft is a partition of I. Hence Jk = K~Jt for all k :s; m. Also, 
P~I Q(i F x[ftJ, so by the induction hypothesis, \13 F gJ[Jo, ... , Jm], as desired. 

Conversely, suppose that \13 F O[K~of, ... , K~nf], and let g E PiEI Ai. Then 
K~Jt s K~J for all k :s; m, and K~mn is a partition of I, so the definition 
of 0 yields \13 F gJ[~oft, ... , K~mftl. By the induction hypothesis, P~I 2!i F 

x[ft]· 0 

Now we shall give some interesting consequences of 23.3. 

Theorem 23.4. If 2!i =ee \13 i for each i E I, then PiEI 2!i =ee PiEI Q3j. 

PROOF. Let Ir be the Boolean algebra of all subsets of I. As we saw following 
Definition 23.1, any sentence X of our given language can be considered as 
a sentence of ~rod. Thus by 23.3, PiEI2!i F X iff Ir F gJ[K~o, ... , K~(m-l)] iff 
Ir F gJ[K~o, ... , K~m-l)] iff PiEI \13 i F X, where (gJ, .po, ... , .pm) is correlated 
with X by 23.3, and ~" = K~" since 2!i =ee \13 i for all i E I. 0 

Theorem 23.5. If 2! =ee Q3 and I and J are index sets such that either III = 
IJI < ~o or else III, IJI ;0: ~o, then IQ( =ee 1\13. 

PROOF. By Theorem 21.34, the hypothesis implies that the Boolean algebras 
SI and SJ are elementarily equivalent. Now if.p is a sentence of our language, 
then K~~:iEI> is I or 0, and K<'8:jEl) is J or O. Furthermore, the first is I iff 
the second is J, since 2! =ee \13. Hence for any sentence X, if (gJ, .po, ... , .pm) 
is correlated by 23.3 we have 

iff SI F gJ[K~~:i';I>, ... , K~~:jEI>] 

iff SJ F gJ[K~~:jE/}, ... , K~~:iEI>] 
iff '\13 F x. o 

Theorem 23.6 (Vaught). IfPiEF 2!i F x for each finite F s I, then PiEI2!j F x. 
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PROOF. We may assume that I is infinite. Assume the hypothesis of 23.6. 
Let (rp, .po, ... , .pm) be correlated with X by 23.3. Set L = {k ::::: m : K~k is 
finite}. For each SEw let 8s be the following sentence of the theory of Boolean 
algebras. 

VVo· .. Vvm[( <va' ... , vm ) forms a partition of the universe) A !\kEL 
(there are exactly IK~kl atoms::::: Vk) A !\kE(m+ll-L (there are at 
least s atoms ::::: Vk) -+ rp]. 

We claim 

(1) there is an SEw such that 8s holds in every finite BA. 

Otherwise, for each SEw let SBs be a finite BA in which 8s fails; say 
b~, ... , b':" E Bs satisfying the hypothesis of the implication above but not 
rp in SBs. Choose a finite Ls S I so that K~k s Ls for each k E L, while 
Ls () K~k has at least as many elements as there are atoms of SBs ::::: b'fc, for 
k E (m + 1) ~ L. Note that K~kLS = Ls () K~k for each k ::::: m. Let ~s = SLs. 
Clearly there is an isomorphism Is of SBs into ~s such that Isb1 = K~Fs for 
each k ::::: m. Thus SBs F .rp[bb, . .. , b':,,], while ~s F rp[fsbb, ... , Isb':,,], by the 
hypothesis of the theorem. Let F be a nonprincipal ultrafilter over w. Then 
PSEW SBs/F and PSEW ~s/F are infinite atomic BA's. Let b~ = [(b1 : SEw)]. 

Then there is an isomorphism g of PSEW SBs/F into PSEW ~s/F such that g [x] = 
[<Isxs : SEW)] for all x E P SEW Bs. Now let SB' and ~' be the expansions of 
PSEW SBs/F and PSEW ~s/F respectively to models of OrAt. By the proof of 
21.34, OrAt is model complete. Hence by 21.27(iv) there is a universal for
mula .p in or:t such that OrAt F rp +-+.p and Fv.p S {vo, ... , vm}. Since 
~' F rp[gb~, ... , gb;"], it follows that ~'F .p[gbo, ... , gbm], hence SB' F 
.p[b~, ... , b;"] and SB F rp[bo, ... , bm]. But also SB F -'rp[b~, ... , b;"], contra
diction. Thus (1) holds. 

From (1) and the completeness of the theory of infinite atomic BA's it 
follows that 8s holds in all infinite BA's, for some s. Choosing such an s, 
we see that SI F rp[K~o, . .. , K:m]. Hence by 23.3, PiE1 Q{i F X· 0 

Corollary 23.7. If r is a set of sentences and Mod r = {Q{; Q{ is a model 
of r} is closed under products with two, or zero, factors, then Mod r is 
closed under arbitrary products. 

Finally, we give some applications to decidable theories. 

Theorem 23.8. If Q{ has a decidable theory, then so does 1Q{. 

PROOF. From 21.34, SI has a decidable theory. The decision procedure 
for {X; 1Q{ F X} goes as follows. Given X, determine (rp, .po, ... , .pm) by 23.3. 
Note that ~k = I or 0 for each k ::::: m. Hence we can determine if SI F 
rp[~o, ... , K:m] by first deciding whether or not Q{ F.pk for each k ::::: m, 
then using the decision procedure for SI. By 23.3 this gives the decision 
procedure for 1Q{ F X. 0 
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Theorem 23.9. If {x : K F x} is decidable, then so is {X : PK F X}, where PK 
is the class of all products of members of K. 

PROOF. The decision procedure for {X : PK F X} is as follows. Given X, let 
(cp, ifJo, ... , ifJm) be determined as in 23.3. Then let T = {k ~ m : K F -,ifJk}, 
which can be effectively determined, by assumption. Let (J be the following 
sentence of the theory of Boolean algebras: 

Vvo···Vvm[vo+···+vm =l A /\ (Vt'Vj=O) A /\Vk=O~cp]. 
i<i<m keT 

We claim 

(1) PKI=X iff (J holds in all atomic BA's. 

By 21.34 and 15.6, this completes the decision procedure. 
To prove (1), first suppose that PK F X. By 21.34 it suffices to show that 

(J holds in any BA of the form S1. Assume that Jo, ... , Jm S; I, they form 
a partition of I, and Jk = 0 whenever k E T; we must show that 
SI F cp[Jo, ... , Jm]. Now for k E (m + 1) '" T there is a structure ~k E K 
such that ~k 1= ifJk' Define !:!3: I ~ K as follows. Given i E I, there is a unique 
k E (m + 1) '" T such that i E Jk, and we set !:!3i = ~k' Thus K~k 2 Jk for 
each k E m + 1, and hence, since (cp, ifJo, .. . , ifJm) is partitioning, Kr:k = Jk 
for all k E m + 1. But PK F X, so by 23.3, SI F cp[Kr:o, ... , Kr:m], as desired. 

Conversely, suppose that (J holds in all atomic BA's. To show that PK 1= X, 
let ~: I ~ K be given. Then Kro, ... , K'f". forms a partition of I, and Krk = 0 
if k E T. Hence, since (J holds in SI, we see that SI F cp[Kro, ... , Kifn]. Hence, 
by 23.3, Ptel ~ F X. D 

We conclude this chapter with two simple applications of the above 
results. 

Corollary 23.10. The theory of Boolean algebras which have a maximal 
nonzero atom less element, but infinitely many atoms, is complete and 
decidable. 

PROOF. Let ~ and !:!3 be two such Boolean algebras. Then we can write 
~ ;;;; Iro x Irl and !:!3 ;;;; ~o X ~l> where Iro and ~o are atomless, while Irl 
and ~l are infinite atomic. By 21.7 and 21.34 we have Iri =ee ~t for i < 2. 
Hence ~ =ee !:!3 by 23.4. D 

The following is immediate from 23.6: 

Corollary 23.11. For any structure ~, a sentence cp holds in all powers l~ 
of ~ iff cp holds in all finite powers i~ of~, i E w. 

EXERCISES 

23.12. Let 2rin be an expansion of the language for Boolean algebras obtained 
by adjoining a unary relation symbol Fin. Given any formula cp of SfrID 
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and any mEw with Fv rp ~ {va, ... , Vm -I} one can effectively find MEw, 
functions pIc E Smw for each k < m and partitions (U~, U~, U~, U~) of 
Sm for each k < M, such that for any !l'-structure of the form m = 
(S/, u, n, ~, 0, I, Fl ), where Fl is the collection of all finite subsets of I, 
and given x E '" B the following conditions are equivalent: 
(i) m F rp[x]; 

(ii) there exists k < M such that for each r ~ m, the set nleTXI n 
nlem-T(I ~ XI) has: 
(a) exactly plcr elements, if r E U~; 

(b) at least pIer elements, if r E U~; 
(c) at least pIer elements, but only finitely many elements, if r E U~; 

(d) infinitely many elements, if r E U~. 

Hint: proceed by induction on rp, beginning with atomic formulas of the 
form VI = V;. v, + Vi = V", etc. 

23.13. The theory of a structure of the form m in 23.12 is decidable. 

23.14. Let a language !l' have a certain individual constant c in it. Given a 
system «Q!h al) : i E I> of !l'-structures such that for each i E I, {al} is 
the universe of a substructure of Q!h we form the weak direct product 
P;:'IQ!1 as follows. Its universe is {IE PIEI AI: {i:Ji "# al} is finite}. This 
set is clearly the universe of a substructure P;:'l Q!I of PiEl Q!I. 

We now indicate how to encompass such products under the general 
notion of product of 23.1. We let ~ac = !l' and .s!;nd = ~In in 23.1. 
Let ~m = (Fin va, "'Vo = c). We define a translation from certain formulas 
X of !l' to formulas X* of !l'prod' Set (VI = Vj)* = VI = Vi. For an n-ary 
relation symbol S of!l', set ~p = (va = 1, SVo' •• Vn -1) and let 

If 0 is an n-ary operation symbol of!l', set ~. = (va = 1, Ova· .. Vn -1 = vn) 

and let 

Further, let ("'rp)* = "'rp*, (rp v .p)* = rp* v .p*, (rp A .p)* = rp* A .p*, 
and 

(VVlrp)* = VVI{Rmvl- rp*). 

Now let «Q!h al) : i E I) be as above, let m be as in 23.12, and show that 
for any formula X of!:t' and any X E "'P;:'l Ah 

P~l~ F X*[x] iff P;:'l ~ F X[x]. 

23.15. If Q! has a decidable theory, then so does lQ!w (i.e., P;:'l ml where ml = Q! 
for each i E I). 

23.16 (Skolem). The structure (w ~ 1, " 1) has a decidable theory. Hint: use 
23.15, and recall that (w, +,0) has a decidable theory. 

23.17. The structure (w, .) has a decidable theory. Hint: if rp is any formula 
built up from atomic formulas VI = Vj and VI· Vi = V", and y : {i : VI occurs 
in rp} -+ 2, we can effectively associate a formula rpy as follows: 
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(VI = v,)" = VI = v, if YhY' "" 0, 
(VI = v,)" = VVo(vo = vo) if YI = y, = 0, 
(VI = v,)" = ,Vvo(vo = vo) otherwise, 
(VI·V, = Vk)" = VI·V, = Vk if Yh y" Yk "" 0, 
(VI·V, = Vk)" = VVo(vo = vo) if YI = Yk = ° or y, = Yk = 0, 
(VI· V, = Vk)" = ,Vvo(vo = vo) otherwise, 
('!p)" = '!py, (!p v if)" = !p" v if", (!p A if)" = !p" A if", 
(VVI!P)" = !P"_{(I.,,I)} if VI does not occur in !p, 
(VVI!P)" = VVI!Pz A !pw if VI occurs in !p, where z = yi, W = yb. 

Note that if Yi = 0, then Vi does not occur free in !p". Now show that for 
any !P, y, x, z, if!p and yare as above, x E "'w, Y ~ sg 0 x, Z E "'(w ~ 1), 
zi = xi if xi "" 0, and zi = 1 if xi = 0, then (w, .) ~ !p[x] iff (w ~ 1, .) ~ 
!p,,[z]. Then use 23.16. 

23.18. The theory of any free Abelian group is decidable. 

23.19. Theorem 23.6 does not carryover for weak direct products. Hint: con
sider Boolean algebras. 
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24 Equational Logic 

In this chapter we shall prove several theorems of a truly model-theor
etical character, relating structures and languages, but restricting ourselves 
to very simple first-order sentences, namely equations. The main result is a 
purely algebraic characterization of those classes of structures definable by 
equations. The results of this chapter show in a simplified situation the kind 
of model-theoretic connections with which we deal in more complicated 
settings in the two following chapters. Also, a great deal of algebraic machin
ery needed later is introduced. The material of this chapter really lies on the 
borderline between logic and general algebra. 

Definition 24.1. A language .fe is algebraic if it has no relation symbols. 
In any language, an atomic equality formula will also be called an equa
tion. An (equational) identity is the universal closure of an equation. A 
variety is a class of .fe-structures which is the class of all models of a set 
of identities, in an algebraic language. For any class K of .fe-structures, 
let 

SK = {Ql: Ql >+ sa E K for some sa}; 
PK = {Ql : Ql ~ PiEI sai for some sa ElK}. 

Note that PK is always nonempty, even if K is empty, since one can choose 
1= 0 in 24.1. Thus K = PK implies K ¥- O. 

Lemma 24.2. 11K is a variety, then K = SK = PK. 

PROOF. Say K is the class of all models of the set r of identities. Obviously 
K ~ SK and K ~ PK. Now assume thatf: Ql >+ sa, sa E K, and [[a = T]] E r. 
for any x E W A we have, using 19.5, 

fa'<1x = ~(f 0 x) = T'!!3(f 0 x) = fT'<1X. 
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Thus [[a = T]] holds in Q!, and it is an arbitrary member of r, so Q! E K. 
Next, assume that I: Q! >-* PiEI 'Bi = <r with 'B ElK, and [[a = T]] E r. For 
any x E ill A and any i E I we have using 18.14 

[a"(fo X)]i = aSBi(pri 0/0 x) = TSB!(pri 0/0 x) 
= [T"(f 0 x)];. 

Since i is arbitrary, a"(f 0 x) = T"(f 0 x). Then by 18.22 we have a2lx = T2IX. 
Thus [[a = T]] holds in Q!. Hence Q! E K. 0 

We need to consider another algebraic operation under which varieties 
are closed. It is important for languages in general, not only for algebraic 
languages, so we do not restrict the language. 

Definition 24.3. Let Q! and 'B be ..2"-structures. A homomorphism Irom Q! 
into ..2" is a function I mapping A into B such that: 

(i) if 0 is an operation symbol, say of rank m, and if a E rnA, then 

1021 (ao, ... , am-I) = OSB(fao, ... ,lam- 1 ); 

(ii) if R is an operation symbol, say of rank m, and if a E rnA, then 

<ao, . .. , am-I) E R2I ~ <lao, ... ,lam- 1 ) E RSB. 

We say that I is a homomorphism of Q! onto 'B if it maps onto B. We 
use the respective notations I: Q! -+ 'B and I: Q! ""* 'B for these two cases. 

Note that in (ii) above we do not insist that <lao, ... ,lam- 1 ) E RSB ~ 
<ao, . .. , am-I) E R2I. Hence a one-one homomorphism is not necessarily an 
isomorphism. We state without proof two very easy consequences of the 
definition of homomorphism; the first proposition is a generalization of a 
part of 18.23. 

Proposition 24.4. Let I be a homomorphism Irom Q! into 'B; let a be a term, 
and let x E W A. Then la2lx = aSB(f 0 x). 

Proposition 24.5. Let <Q!i : i E I) be a system ol..2"-structures. Then pr! is 
a homomorphism Irom PiEI Q!i onto Q!i' 

Now we introduce a useful notion related to the notion of homomorphism; 
in fact, it can be considered as a kind of internal version of homomorphisms. 

Definition 24.6. Let..2" be an algebraic language, and let Q! be an..2" -struc
ture. A congruence relation on Q! is an equivalence relation R on A such 
that for any operation symbol 0 (say m-ary) and any a, bEmA, the 
condition Vi < m(aiRbi) implies 02l(ao, ... , am -l)R 02l(bo, ... , bm -1)' 
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Given such a relation R, we can define a uniquely determined .:t>
structure ~/R whose universe is the set AIR of R-equivalence classes and 
whose operations are given by 

O~/R([ao],···, [am-I]) = [O~ao,···, am-I)]; 

this structure is denoted by ~I R. 
If f is any function, then the kernel of J, ker J, is {(x, y) : x, y E Dmnf 

andfx =fy}. 

The basic facts relating homomorphisms and congruence relations are 
as follows: 

Proposition 24.7. Let.:t> be an algebraic language, and let ~ and.:t> be .:t>
structures. 

(i) If R is a congruence relation on ~, then [ ]R is a homomorphism from 
~ onto ~/R. 

(ii) If f is a homomorphism from ~ into m, then ker f is a congruence 
relation on ~. 

(iii) Iff is a homomorphism from ~ onto m, then m ;;;:: ~/R; infact, there 
is an isomorphism g from m onto ~I R such that g 0 f = [ ]ker f: 

~~m 

~ 19 
~/R 

PROOF. Conditions (i) and (ii) are completely straightforward. Now 
assume the hypothesis of (iii). Let g = {(fa, [a]) : a E A}. To see that g is a 
function, assume thatfa = fc with a, c E A; we must show that [a] = [c]
but this is obvious. Thus g: B"""'» AIR. Similarly, g is one-one. If 0 is m-ary 
and a E mA, then 

g O~ (fao, .. ·,fam- 1) = gfO~ (ao, ... , am-I) 
= [O~ao, ... , am-I)] 

= OWR([ao],· .. , [am-I]) 
= OWR(gfao, ... , gfam -1). 

Hence g: m >* ~/R. Obviously g 0 f = [ ]. o 
Definition 24.8. Let K be a class of .:t>-structures, where .:t> is not neces

sarily algebraic. We set 

11K = {~ : ~ is a homomorphic image of some m E K}; 
UpK = {~ : ~ is isomorphic to an ultraproduct of members of K}. 

Note that all of the classes SK, PK, 11K and UpK are closed under taking 
isomorphic images. 

Proposition 24.9. IfK is a variety, then K = 11K. 
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PROOF. Obvious from 24.4. o 
Thus a variety is closed under all three operators H, S, and P. The main 

theorem of this chapter is that the converse holds. Before beginning the 
proof of this, we want to develop the basics of general algebra and equational 
logic a little further. The following proposition is easy to prove. 

Proposition 24.10 
(i) SHK s HSK. 

(ii) PSK s SPK. 
(iii) PHK s HPK. 

Easy examples can be given to show that none of the inclusions in 24.10 
can be replaced by equalities, in general; see Exercises 24.25-24.27. These 
inequalities lead to the following useful equivalences. 

Proposition 24.11. The following condit ions are equivalent: 

(i) K = SK = HK = PK. 
(ii) K = HSPK. 

(iii) K = HSPL for some L. 

PROOF. Obviously (i) =:> (ii) =:> (iii). Now assume (iii). Clearly HK = K 
and K S SK, K s PK. Next, 

Finally, 

SK = SHSPL s HSSPL 
= HSPL = K. 

PK = PHSPL s HPSPL s HSPPL 
= HSPL = K. 

by 24.1O(i) 

by 24.1O(ii), (iii) 
o 

To prove our main theorem, we need the notion of an absolutely free 
algebra. As will be seen, this notion is very analogous to the construction 
in 11.12 of an "internal" model for a consistent set of sentences. It is really 
just a part of that construction. 

Definition 24.12. Let 2 be an algebraic language. We construct an 2-
structure 5'r'p which will be called the absolutely free 2-algebra. Its 
universe is Trm,P, and for any operation symbol 0 of fi', 

Now the definition of satisfaction yields the following basic fact about 
5'r,P: 

Proposition 24.13. If 2 is algebraic, Qt is an 2-structure, and x E W A, then 
<a21x: a E Trm,P) is a homomorphism of5'rz into Qt. 
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A very useful congruence relation on tyrz is introduced in the following 
definition. 

Definition 24.14. If ff is an algebraic language and r is a set of equations 
of ff, we let 

=r = {(a, T) : a, T E Trmz and r 1= a = T}. 

Proposition 24.15. Under the assumptions of 24.14, =r is a congruence 
relation on tyrz. 

The following simple proposition is proved by induction on a: 

Proposition 24.16. If g is a homomorphism from tyrz into m, and if Xi = gVi 
for every i < w, then amx = ga for every term a. 

Recall that, by the completeness theorem, the model-theoretic condition 
r 1= f{J is equivalent to the proof-theoretic condition r ~ f{J. If we apply this 
fact when f{J is an equation and r is a set of equations, it seems a little un
satisfactory, since the proof-theoretic condition involves the logical axioms 
and hence the whole apparatus of first order logic. We now describe a proof
theoretic condition in which only equations appear-no quantifiers and not 
even any sentential connectives. 

Definition 24.17. Let r be a set of equations in an algebraic language. 
Then r-eqthm is the intersection of all sets ~ of equations such that the 
following conditions hold: 

(i) r s ~; 
(ii) Vo = Vo E ~; 
(iii) if f{J E ~, i < w, a is a term, and if is obtained from f{J by replacing 

Vi throughout f{J by a, then if E ~; 

(iv) if a = T E ~ and p = T E ~, then a = p E ~; 

(v) if a = T E ~, 0 is an operation symbol, say of rank m, i < m, and 
ao, ... , am _ 2 are variables, then the following equation is in ~: 
O(ao, ... , ai-l, a, ai>"" am-2) = 0(0:0,"" ai-I, 7, Uh"" a m -2). 

We write r ~eq f{J instead of f{J E r-eqthm. 

We shall prove an analog of the completeness theorem for this notion. 
First a technical lemma: 

Lemma 24.18. Let r be a set of equations in an algebraic language. Then 
for any terms a, T, p, 
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(0 rl-eqa=a; 
(ii) ifr I-eq a = T, then r I-eq T = a; 

(iii) ifr I-eq a = T and r I-eq T = p, then r I-eq a = p; 

(iv) if 0 is an operation symbol, say of rank m, and if ao, ... , am-1> 

TO, ... , T m -1 are terms such that r I-eq ai = TI for each i < m, then 
r I-eq Oao·· ·am-l = OTO· .. Tm-l. 

PROOF. Condition (i) is obvious from 24.l7(ii) and 24.l7{iii). For (i0: 
assume that r I-eq a = T. We also have r I-eq T = T by (i), so r I-eq T = a 

by 24.l7(iv). Condition (iii) clearly follows from (ii) and 24.l7(iv). To prove 
Uv), let CXo, ... , CXm-l be distinct variables not occurring in any of ao, ... , am-I. 

TO, ... ' Tm-l. Then 

r I-eq O(cxo, ... , CXI -1, aj, CXI+1> ••• , CXm-l) 
= O(ao, .. " (Xi-I, 'Ti, Q';i+l,··" am-I) 

for each i < m. Applications of 24.l7(iii) then give, for each i < m, 

r I-eq O(TO, .•. , TI-1> ai, ai+l,·· ., am-I) 

= O(TO,··., Ti-1> T;, al+1>.·., am-I). 

Now several applications of (iv) give the desired result. o 
Theorem 24.19 (Completeness theorem for equational logic). Let r V {tp} 

be a set of equations in an algebraic language. Then r 1= tp iff r I-eq tp. 

PROOF. It is easily checked that r I-eq tp => r 1= tp. Now suppose that 
not(r I-eq tp); we shall construct a model of r V {'[[tpl]}. In fact, the desired 
model is simply m = fjr/=r. To show that m is a model of r, let a = T be 
an arbitrary element of r, and let x E wTrm.!l'; we want to show that 
am([ ] 0 x) = Tm([ ] 0 x). To do this, for any p E Trm.!l' let Sp be the result 
of simultaneously replacing Vj by Xi in p, for each i < w. Then 

(1) r I-eq Sa = ST. 

To prove (1), let Vw, ... , VHm-l) be all of the variables occurring in the 
equation a = T. Let 13o, ... , f3m-l be new variables, not appearing in a = T, 

different from Vw, ... , VHm -1) and not appearing in XW, ... , XHm -1). Let 
a' = T' be obtained from a = T by replacing in succession ViO throughout 
by 13o, Vil throughout by 131>···, VHm-l) throughout by 13m-I. By 24.l7(iii) 
we have r I-eq a' = T'. Since 13o, ... , 13m -1 do not occur in a = T and they 
are different from Vw, ... , VHm -1), the equation a' = T' is also obtainable 
from a = T by simultaneously replacing Vw,···, Vi(m -1) by 13o, ... , f3m-l 

respectively. Now by replacing 13o throughout by xw, then 131 throughout 
by Xil , ... , f3m-l throughout by XHm-l) we obtain Sa = ST and (1) follows. 
Note that 13o, ... , f3m-l are introduced to reduce simultaneous substitution 
to a sequence of simple substitutions. 

Next, note that 

(2) for any term p we have pm([ ] 0 x) = [Sp]. 
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Condition (2) is easily proven by induction on p. 

From (1) and (2) we obtain 

a~([ ] 0 x) = [Sa] = [ST] = T~([ ] 0 x). 

Thus a = T holds in Qt, so Qt is a model of r. However, Qt is not a model of 
f{J. For, say f{J is the equation ao = TO. Let Yt = [v;] for each i E w. Then by 
24.16 we obtain a~y = [ao] and T~Y = [TO]. Since not(r I-eq ao = TO)' we 
have [ao] i' [TO]. Thus ao = TO fails to hold in Qt. 0 

Now we return to our discussion of free algebras, and give a lemma 
needed for our main characterization theorem. 

Lemma 24.20. Let K be a class of .If-structures, where .If is an algebraic 
language. Let r = {a = T : the equation a = T holds in each member ofK} 
Then 'iJt.;e/=r E SPK. 

PROOF. Let I = 2Trm '" {(a, T) : a = T E r}. Then for each (a, T) E I there 
is a structure Qta< E K such that a = T fails to hold in Qta<; hence, further, 
there is an Xa< E '" Aa< such that a~a,xa< i' T!illa•xa<. Let y be the unique element 
of "'PiE! Qti such that for each mEw and i E I, (Ym)t = (x;}m. Let !;l3 = PiE! 'll;. 
Then 

(1) 

For, suppose a =r T. Thus r 1= a = T, so it follows that a = T holds in every 
member of K. From 18.14 we infer that a = T holds in !;l3, as desired. 

By (I) there is a mapping f of Fr .;e/=r into B such that f[a] = a'By for 
each term a. It is easily checked that f is a homomorphism of 'iJt.;e/=r into 
!;l3. It only remains to check that f is one-one. Suppose [a] i' [T]. Thus not 
(r 1= a = T), so in particular a = T rf: r. Thus (a, T) E I. Hence 

(~Y)a< = pra< (a'By) = a~'(pra< 0 y) 
= a~a'xa, i' T~a'Xa, = (T'By )",. 

o 

We now find it convenient to prove Exercise 19.42. 

Lemma 24.21. Suppose K = SK = UpK, in a not necessarily algebraic 
language .!Z'. If ~{ is an .If -structure every finitely generated substructure of 
which is in K, then ~{ is in K. 

PROOF. Let I = {F: 0 i' F ~ A, F finite]. For each FE I, let ~{F be the 
substructure of ~{ generated by F. Thus ~{F E K by assumption. For each 
FEIlet MF = {GEI:F~ G}. If F,GEI, then MFnMG = MFuG.1t fol
lows that there is an ultrafilter 'iJ over J such that M F E \3' for all FE I. Thus 
PFE! ~{F/'iJ E K, so it suffices to define an embedding f of ~I into PFE! ~IF/'iJ. 
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By the axiom of choice let x E PFEI AF. For each a E A define ga E PFEI AF 
by 

iff a E A F , 

otherwise, 

and let fa = [ga]ij. The desired properties off are easily checked. 0 

Theorem 24.22 (Birkhoff). K is a variety iffK = HSPK. 

PROOF. The trivial direction => is given by 24.2 and 24.9. Now assume 
that K = HPSK. By 24. I I, K is closed under H, S, and P; and so it is also 
obviously closed under Up. Let r = {a = T : a = T holds in every member 
of K}. We claim that K is exactly the class of all models of r. Obviously 
each member of K is a model of r. Now let Ql be a model of r. By 24.21 it 
now suffices to take any finitely generated substructure m of ~l, say generated 
by F #- 0, F finite, and show that m E K. 

Choose x E W B so that Rng x = F. Then 

(I) for every b E B there is a term a such that a'l3x = b. 

Indeed, let C = {afllx : a E Trmz}. It is easily seen that F s C and C is a 
subuniverse of m, so B s C, as desired in (I). Now m is a model of rand 
m s Ql, so m is a model of r. Hence there is a function f mapping Frz/=r 
into B such thatf[a] = a'l3x for all a E Trmz. Clearly fis a homomorphism 
from frrz/=r into m, and it is onto by (I). Hence mE K by 24.20. 0 

Theorem 24.22 is a typical characterization theorem (it was historically 
the first such). A logical concept (variety) is characterized in terms of non
logical notions (closure under H, Sand P). It may of course also be viewed 
as a characterization of closure under H, S, and P in terms of the logical 
notion of a variety. Such equivalences between notions in widely separated 
domains are typical of a large part of model theory and illustrate a healthy 
trend toward unification in mathematics. 

A closely related result is the following preservation theorem. 

Theorem 24.23. Let cp be a sentence, in an algebraic language, which is 
preserved under H, S, and P. That is, assume about cp the following three 
things: 

(i) (fQl t= cp and m ~ m, then m t= cp; 
(ii) ifm t= cp and m s ~l, then m t= cp; 

(iii) ifmi t= cp for each i E I, then PiEl ~li t= cpo 

Then there is a conjunction zfo of equational identities such that t=cp - zfo. 

PROOF. Let K be the class of all models of cpo The conditions (i)-(iii) imply 
that K = HSPK. Hence by 24.22 there is a set r of identities such that K 
is the class of all models of r. Thus r t= cp, so t=zfo ~ cp for some finite con
junction zfo of members of r. But obviously t=cp ~ zfo also, so t=cp - zfo. 0 

391 



Part 4: Model Theory 

Theorem 24.23 is a typical preservation theorem. Such a theorem has the 
following form: if a sentence cp is preserved under certain algebraic opera
tions or relations, then cp is equivalent to a sentence '" of a specified syn
tactical form. In such cases it is usually obvious that such a sentence", is 
preserved under the given operations. Thus, for example, any identity is 
obviously preserved under H, S, and P. 
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EXERCISES 

24.24.* If we consider sequences of operators H, S, and P, there are exactly 
18 distinct sequences (with the empty sequence allowed). 

24.25. Give an example of a class K such that SHK of:. HSK. 

24.26. Give an example of a class K such that PSK of:. SPK. 

24.27. Give an example of a class K such that PHK of:. HPK. 

24.28. For any equation cp, Pcp iff cp has the form a = a for some term a. 

24.29. In an algebraic language, a class K is a variety iff K = "HSP('i)'r/=r), 
where r = {(a, 'T) : a = 'T holds in each member of K}. 

24.30. Birkhoff's theorem cannot be improved by eliminating H, S, or P. 

24.31. An algebra Q{ is a subdirect product of the system <!~\ : i E I) provided 
that Q{ s PIEI ~I and pr~ A = BI for all i E I. Show that K is a variety 
iff K is closed under H and under subdirect products. Hint: if Q{ s 
~ E K, consider {b E '" B: 3a E A{i E w : hi of:. a} is finite}. 

24.32. A class K is a variety iff K is closed under H, S, Up, and finite products. 

24.33. Let r U {cp} be a set of sentences in an algebraic language. Assume that 
cp is preserved under HSP relative to r, i.e., assume that if K is the set 
of all models of rand L is the set of all models of r U {cp}, then Ql E 

K n HSPL implies Q{ F cpo Show that there is a conjunction", of equa
tional identities such that r PCP _ "'. 
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Preservation and 
Characterization Theorems 25 

In this chapter we shall prove several more theorems of the general type 
of 24.22 and 24.23. We shall consider universal sentences, quasivarieties, 
universal-existential sentences, and positive sentences. We have not tried to 
give uniform proofs for these results, but we have instead chosen the proofs 
that seem most natural to us. 

Universal Sentences 

Definition 25.1. For any set r of sentences, Mod r is the class of all models 
of r. A class K is a universal class ifK = Mod r for some set r of universal 
sentences. K is an elementary class if K = Mod r for some set r of sen
tences. We also say that r characterizes Mod r. 

We shall give two characterizations of universal classes. The first is due to 
Los, and is valid in any language; its proof is similar to that of 24.22 in many 
respects. The second is due to Tarski. In its simplest form, which is all we 
shall give here, it applies only to languages with no operation symbols and 
only finitely many relation symbols. Elementary classes will be discussed in 
the next chapter. 

Theorem 25.2 (Los). A class K is universal ijJSK = K and UpK = K. 

PROOF. The direction ~ is trivial. Now assume that SK = K and UpK = K. 
Let r = {qJ: qJ is a universal sentence which holds in each Q1 E K}. Clearly 
K s Mod r. Thus the main part of our proof is to take any Q1 E Mod rand 
show that Q1 E K. To do this it is enough, by our assumptions, to show that 
Q1ESUpK. 

Let < be a well-ordering of A. Let !f' be an A-expansion of!f, and let Ll 
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be the 2"-diagram of 2l. We shall form an ultraproduct over the index set 
1= {0 : 0 is a finite subset of ~}. Given any 0 E I, letca(0, 0), ... , 
ca( 0, me - I) be all of the new constants which occur in the sentences of 0, 
where a(0, 0) < ... < a(0, me - 1). Let !foe be obtained from A ° by 
replacing all occurrences of ca( 0, 0), ... , ca( 0, me - 1) by vO, ... , v(me - 1) 
respectively, and let CPe be the universal sentence 'rIvo·· ·'rIv(me - 1) ..., !foe. 
Thus 2l 1= ""CPe so, since 2l is a model of r, CPe ¢: r. Hence we may pick a 
structure 'Be E K such that 'Be 1= -'CPe. Choose Xe E OJ Be such that 'Be 1= 

!foe [xe]. For any 0 E I let 

Me = {Q E I: 0 s; Q}. 

Thus Me Il Mn = Meun for any 0, Q E I, so the family {Me: 0 E I} has the 
finite intersection property. Let F be an ultrafilter over I such that Me E F 
for each 0 E I. Thus PeEl 'Be/FE UpK. It remains to define an embeddingf 
of 2l into this ultraproduct. 

Define g: A -+ PeEl Be by setting, for any bE A, 

(gb)e = xei 
(gb)e = XeO 

if b = a(0, i), 
if b f= a(0, i) for all i < me. 

Letfb = [gb] for all b EA. Now we check thatf: 2l >+ PeEl 'Be/F. First,fis 
one-one. For, suppose that band c are distinct elements of A. Then 
-'(Cb = cc) E~. Let 0 = {-,(cb = cc)}. If Q is any member of Me, we may 
choose i,j so that a(Q, i) = band a(Q, j) = c. Now -'(cb = cc) is a conjunct 
of A Q, so -'(Vi = Vj) (or -'(Vj = Vi)) is a conjunct of !fon. It follows that 

(gb)n = xni f= xnj = (gc)n· 

Hence {Q : (gb)n f= (gc)n} ::2 Me E F, so fb f= fc. 
We check that f preserves operations; a similar argument shows that f 

preserves relations. Let 0 be an operation symbol of rank n. Set <r = 
PeEl 'Be/ F, and let bo, ... , bn -1 E A. Let c = O~bo· .. bn -1, and set 

o = {OCbo •• ·Cb(n-l) = Cc}. 

Suppose that Q is any member of Me. Then we may choose io, ... , in < mn 
such that a(Q, ij) = b j for each j < nand a(Q, in) = c. Thus the formula 

is a conjunct of !fon, and hence 

O~O«gbo)o, ... , (gbn -1)0) = o~n(xnio, ... , xoin -1) = xoin = (gc )0· 

Since this is true for each Q E Me, and Me E F, it follows easily that 

OfE.(fbo, ... ,fbn- 1) = fc. o 

Now we want to draw some conclusions from 25.2. For this purpose the 
following trivial proposition will be needed; it is analogous to 24.10. 
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Proposition 25.3. UpSK ~ SUpK. 

Recall from 11.14 the notion of a reduct of a structure, for which we 
introduced the notation ~ ~!£'. We now need to extend this notation to 
classes of structures: 

Definition 25.4. Let ff' be an expansion of !l', and let K be a class of ff'
structures. Then we let K ~ ff denote the class of all ff-reducts of members 
ofK. 

The following corollary of 25.2 is very important. 

Corollary 25.5. Let K be a class of ff'-structures and let ff be a reduct of 
ff'. IfK can be characterized by first-order sentences, then S(K ~ ff) is a 
universal class. 

PROOF. By 25.3 and 18.29, S(K ~ ff) is closed under S and Up. Hence 25.5 
is immediate from 25.2. 0 

Of course, Corollary 25.5 is valid for ff = ff' also. Some applications of 
25.5 are as follows: 

1. The class of all semigroups embeddable in groups is universal. Specific 
universal sentences for this purpose have been found by MaIcev; his 
sentences are infinite in number and cannot be replaced by a finite set of 
sentences. 

2. The class of all rings which can be ordered is universal. 
3. The class of all rings embeddable in fields is universal. 
4. The class of all structures <A, R) embeddable in linear orderings <B, <) 

is universal. 

A somewhat stronger form of 25.5 can be given which depends on the 
following important model-theoretic notion. 

Definition 25.6. Let U be a unary relation symbol in a language!£'. The ff
closure conditions for U are all sentences of the following forms: 

for each (m-ary) operation symbol O. 

Let ff-u be the reduct of ff obtained by deleting U. Now with each ff
structure ~ which is a model of the ff-closure conditions for U we associate 
the uniquely determined substructure ~ ~ U of ~ ~ ff-U with universe~. 
And for each class K of such structures ~ we let K ~ U = {~ ~ U : ~ E K}. 
Given any expansion ff' of ff and any ff'-structure OS which is a model 
of the ff-closure conditions for U, the ff-u structure (OS ~ ff) f U is 
called a relativized reduct of os. 

395 



Part 4: Model Theory 

Proposition 25.7. With notation as in 25.6, suppose that for each i E I, an 
2'-structure <ri is a model of the 2'-closure conditions for U. Then 

PiEI (<ri r U)/F ~ (PiEI <r;/F) r U. 

PROOF For any x E PiEI (<r; r U), let fx = [x], the equivalence class of x 
under F in the structure PiEI <r;/F. It is easy to see thatfinduces the desired 
isomorphism. The induced map is, in fact, only in a subtle way different from 
the identity map. 0 

Corollary 25.8. Assume that !l', U, and 2" are as in 25.6, and that r is a set 
of sentences of fE' including the set of 2'-closure conditions for U. Then 
S«Mod r) r fE) r U) is a universal class. 

PROOF By 25.2 and 25.3 it suffices to show that «Mod r) I fE) I U is closed 
under ultraproducts. Suppose that Qli E «Mod r) IfE) I U for each i E I, say 
Qli = (SBi IfE) I U where SBi E Mod r. Then 

PiEI QI;/F ~ (PiEI (SBi IfE)/F) I U by 25.7 

((PiEISB;/F) IfE) I U by 18.28 

and PiEI SB;/F E Mod r, so PiEI QI;/F E «Mod r) r 2') I u. o 
We want to give one nontrivial application of 25.8. Let fE be a language 

with two nonlogical constants, a binary operation symbol . and a unary 
operation symbol u. We say that an fE-structure QI = (A, ., U) is a relation 
system provided that A is a collection of binary relations on some set X, 
and for any R, SEA, 

R·S = {(a, b) : 3c(aRcSb)}, 
RU = {(a, b) : (b, a) E R}. 

Let K be the set of all fE-structures isomorphic to a relation system. Then K 
is a universal class. In fact, expand 2' first by adding a unary relation symbol 
U, forming 2". Then expand fE' further to fE" by adjoining V (another unary 
relation symbol) and F (a ternary relation symbol). Let r be a collection of 
sentences in 2''' expressing the following: 

(1) fE' -closure conditions for U; 
(2) U and V are disjoint; 
(3) V is nonempty; 
(4) F establishes an isomorphism from (U, ., U) onto a relation system of 

relations on V. 

For example, four sentences can express (4): 
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Clearly S«(Mod r) ~ 2') ~ U) = K. Hence by 25.8, K is a universal class. 
This class K has been studied in connection with algebraic logic and in the 
theory of semigroups. A "nice" set of ax oms for K has not been given. It is 
known that K is axiomatizable by a set whose corresponding set of Godel 
numbers is elementary, but it is unknown whether it is finitely axiomatizable. 

Another corollary of 25.2 is the following characterization of universal 
classes. 

Corollary 25.9. A class K is universal ijfSK = K and K = Mod r for some 
set r of sentences. 

And a corollary is the following preservation theorem which is analogous 
to 24.23. 

Corollary 25.10. Let r u {'P} be a collection of sentences. Then the following 
conditions are equivalent: 
(i) 'P is preserved under substructures relative to r, i.e.Jor all m, Q3 E Mod r, 

ifm s::: Q3 and Q3 1= 'P, then m 1= 'P; 
(ii) there is a universal sentence if; such that r 1= rp +-+ if;. 

PROOF. It is trivial that (ii) ~ (i). Now assume that (i) holds. Now by 25.3, 
SMod(r u {'P}) is closed under Up, so by 25.2 we may write SMod(r u 
{'P}) = Mod ~ for some set ~ of universal sentences. Now by (i) Modr n 
SMod(l' u {'P}) s::: Mod {'P}, so r u ~ 1= 'P. Hence r 1= if; ~ 'P for some finite 
conjunction if; of members of~. But Mod (r u {'P}) s::: Mod ~, so r u {rp} 1= if;, 
hence r 1= 'P +-+ if;. Clearly I=if; +-+ x for some universal sentence X. 0 

Now we shall give Tarski's characterization of universal classes, which is 
simpler than the ultraproduct characterization and easier to prove. 

Theorem 25.11 (Tarski). Let 2 be a language with no operation symbols, and 
with only finitely many relation symbols. Let K be a class of 2 structures. 
Then the following conditions are equivalent: 

(i) K is a universal class; 
(ii) SK = K, and for every subset d of K directed by s:::, U d E K; 

(iii) SK = K, and for every 2-structure m, ({ every finite substructure ofm 
is in K, then m is in K. 

PROOF 

(i) ~ (ii). Assume (i) and the hypothesis of (ii); say K = Mod r, with r 
a set of universal sentences. Let 'P = VviO •• ,Vvi(m-l)if; be any member of r, 
where if; is quantifier-free. To show that U d 1= rp, let x E wU d be arbitrary. 
Then, since d is directed, choose m Ed such that xij E A for each) < m. 
Thus m 1= if;[y] for any YEw A with Xij = Yij for each) < m, since m E Mod r. 
Hence U d 1= if;[y] and so U d 1= 'P. Since 'P is arbitrary. U d E Mod r = K. 

(ii) ~ (iii). This is obvious, since any structure is the union of its finite 
substructures. 
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Finally, assume (iii). Let r = {cp: cp is a universal sentence and ~ 1= cp for 
each ~ E K}. Obviously K £: Mod r. To prove the converse, let ~ E Mod r. 
Let ~ be any finite substructure of~. Let ,!l>' be a B-expansion of .!l', and let 
11 be the ,!l>' -diagram of~. Thus 11 is finite, by our special assumptions on the 
language !l'. Let cp be a conjunction of all members of 11, let cp' be obtained 
from cp by replacing all constants Cb for b E B by variables, and let rp be 
obtained from cp' by prefixing existential quantifiers in front of cp' for all these 
variables. Then rp holds in ~. Hence ""rp does not hold in ~ and, since 
1= "",p_ X for some universal sentence x and ~ E Mod r, "",p fails in some 
<r E K, i.e., <r I=,p. Hence ~ can be isomorphically embedded in <r. Hence 
~ E K since SK = K by (iii). Since ~ is arbitrary, ~ E K by (iii). 

Quasivarieties 
As the name suggests, quasivarieties are closely related to varieties. Instead 

of equations, we deal with simple implications, as defined in the following 
definition. 

Definition 25.12. A Horn formula is a formula cp of the form 

Qo" ·Qm-l I\. ,ph 
i<1I 

where each Qj is a quantifierVvk or 3Vk, and each rpi has one of the following 
three forms: 
(i) x, x atomic; 

(ii) ""Xo v ... V ""Xph each x. atomic; 
(iii) Xo A .•. A Xpt -+ Xq; each x. atomic. 
We say that cp is a universal Horn formula (or an implicational identity) 
if each Qt is universal. A quasivariety is a class characterized by universal 
Horn sentences. 

We obtain a logically equivalent definition of Horn formulas if in 25.12 
we say that each formula ,pi is a disjunction of atomic formulas and their 
negations, having at most one unnegated disjunct. In a language with no 
relation symbols, every variety is a quasivariety, but there are examples in 
which the converse fails. The theory of quasivarieties is not as well developed 
as the theory of varieties. We give here, again, characterization and preserva
tion theorems. 

Theorem 25.13. The following conditions are equivalent: 
(i) K is a quasivariety,' 

(ii) K is a universal class, and PK = K; 
(iii) SK = K, UpK = K, and PK = K; 
(iv) SK = K, UpK = K, and ~ x ~ E K whenever ~ E K and ~ E K. 

PROOF 

(i) ~ (ii). Let K = Mod r, r a set of universal Horn sentences. Let ~ ElK; 
we wish to show that Piel ~ = ~ E K. So, let cp be any member of r; say cp 
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has the form 25.12(iii). Let x E W B, and assume that on 1= (Xo A ... A XPi) [x ]. 
Now since each Xj is atomic, it follows from 18.13 and 18.14 that Qlk 1= 

(Xo A .•. A XPi)[prk 0 x] for each k E l. Since Qlk E K = Mod r, it follows that 
Qlk 1= Xq[prk 0 x] for each k E I. Hence by 18.13 and 18.14 again, on 1= Xq[x]. 
Thus on 1= p. Since p is arbitrary, on E K. 

(ii) => (iii) and (iii) => (iv) are obvious. 
(iv) => (i). Assume (iv). By Los's theorem 25.2, K is a universal class, say 

K = Mod r, where r is a set of universal sentences. We may assume that 
each member p of r has the form 

Qcp[xcp ~ 8(0, p) v ... v 8(mcp - 1, p)], 

where Qcp is a string of universal quantifiers, Xcp is a conjunction of atomic 
formulas, and each 8(i, j) is atomic (perhaps Xcp does not occur, or mcp = 0; 
then the notation should be changed, but the argument to follow is still o.k.). 
For each pEr and each j < mcp let pj -be the universal Horn sentence 
Qcp(X", ~ 8{j, p». Clearly 

(1) I=pj ~ p whenever pEr andj < m",. 
(2) For each pEr with m", # ° there is aj < m", such r 1= Pj' 

For, assume the contrary: say pEr, mcp # 0, and for allj < m", not (r 1= Pj)' 
Then for each j < mcp let Qlj be a model of r in which not (Qlj 1= Pj). Say 
Xi E wAi and not Qlj 1= [X'" ~ 8{j, p)][xi]. Let y: w ~ Pi<mcp Qlj be defined by 
setting (ym)j = xjm for all mEw andj < mrp. Then by 18.13 and 18.14, not 

(Pj<mcp Qlj 1= [xrp ~ 8(0, p) v ... v 8(mrp - 1, p)][y]). 

Since Pj<mrp Qlj E K by (iv), this is a contradiction. Thus (2) holds. 
For each pEr with mrp # 0, letfp be the least natural number <mcp such 

that r 1= Plrp' Clearly for each pEr with mp = ° there is a set 0",ofidentities 
with Modp = Mod 0cp. Let L\ = U{0",: pEr,mcp = O}U{Plrp: pEr,mp# O}. 
Clearly L\ is a set of universal Horn sentences, and by (1) and (2), K = 
Modr. D 

Our preservation theorem for quasivarieties is as follows. 

Theorem 25.14. Let r u {p} be a set of sentences such that P Mod r = 
Mod r. Then the following two conditions are equivalent: 
(i) p is preserved under substructures and finite products relative to r, i.e., 

for all Ql, on E Mod r, ifQl s on and on 1= p then Qll= p, and ifQlI= p and 
on 1= p then Ql x on 1= p; 

(ii) there is a conjunction t/J of universal Horn sentences such that r 1= 

p-t/J. 

PROOF. It is trivial that (ii) => (i). To prove (i) => (ii), assume (i). By 25.10 
let X be a universal sentence such that r 1= p - X. The method of proof of 
25.13 then gives the desired sentence t/J. 0 

399 



Part 4: Model Theory 

Universal-Existential Sentences 

Definition 25.15. A formula is universal-existential if it has the form 

"lao' .. "lam -13{30' .. 3{3n -1.p, 

where .p is quantifier-free. 

Obviously every universal sentence is also universal-existential. A class 
characterized by universal-existential sentences is not in general closed under 
substructures. For an example, take the class of linearly ordered structures 
with no last element. There is a natural algebraic operation which charac
terizes universal-existential sentences, however. Our characterization theorem 
in this case has the following form. 

Theorem 25.16 (Chang; Los, Suszko). Let r be a set of sentences. Then the 
following conditions are equivalent: 

(i) Mod r can be characterized by a set of universal-existential sentences; 
(ii) Mod r is closed under unions of directed subsets; 
(iii) Mod r is closed under unions of chains of type w. 

PROOF 
(i) ~ (ii). Suppose Mod r = Mod Il, where Il is a set of universal

existential sentences. Suppose d is a subset of Mod r directed by c:;. Let 
<p be any member of Il; say <p is the sentence 

(1) 

To show that <p holds in U d, take any x E wU d. Then by directedness there 
is an Ql E d such that Xii E A for eachj < m. Since Ql F <p, choose YEw A with 
y ~ w '" {i j : m :$ j < n} = x ~ w '" {ij : m :$ j < n} such that Ql F .p[y]. But 
Ql c:; U d, so U d F .p[y] also. Hence U d F 3Vim' . ·3Vi(n-1l.p[X]. Since x is 
arbitrary, U d F <p. Hence, <p being arbitrary, U d E Mod Il = Mod r. 

(ii) ~ (iii) is obvious. Now assume (iii). Let Il = {<p : <p is a universal 
existential sentence and r F <p}. Obviously Mod r c:; Mod Il. Now take any 
Ql E Mod Il; it suffices to show that Ql E Mod r. To this end we shall construct 
a chain Ql = "230 c:; "231 c:; . .. of structures whose union will be in Mod r by 
(iii). The following notation will be useful. We write Ql C:;"". "23 provided that 
Ql c:; Q3 and for every universal-existential formula <p and every x E W A, if 
Q3 F <p[x] then Ql F <p[x]. To get our chain started we need the following state
ment: 

(2) there is a model "231 of r such that Ql c:; "" Q31' 

To prove (2), let 2' be an A-expansion of.!£'. Let Il' be the set of all universal 
sentences in 2' which hold in (Ql, a)aEA' Then 

(3) Il' uris consistent. 
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For, otherwise there is a conjunction 'P of members of /1' such that f 1= ''P' 
Now 1= ''P +-+ ifi for some existential sentence ifi of 2' . We can replace the 
constants Ca, for a E A, which appear in ifi by variables and obtain a universal
existential sentence X of 2 such that I=x ~ ifi and f 1= x. Thus X E /1, so m 1= X. 

On the other hand, 'ifi holds in (Q!, a)aEA' so 'X'holds in Q!, contradiction. 
Thus (3) holds. 

Let (SB,la)aEA be a model of /1' u f. Noticing that the 2'-diagram of m 
is a subset of /1', we see that I: Q! >+ SB. Now suppose that 'P is a universal
existential formula of .!£', x E W A, and m 1= ''P[x]. Say 'P has the form (1). 
Choose Y E "'A such that Y ~ w ~ {ij :j < m} = x ~ w ~ {ij:j < m} and m 1= 

VVim",VV,(n-1) 'ifi[Y]' Let FVVVim",VVi(n-1) 'ifis;{vo, ... ,vP - 1}' Then 
(m, a)aEA 1= VVim' .. VVi(n -1) 'ifi(cyo , . .. , Cy(p -1»), so the sentence VVim '" 

VVi(n-1) 'ifi(cyo , ... , Cy(p-1J of 2' is in/1' and so holds in (SB, laLEA' Hence 
SB I=Vvim",VVi(n-1) 'ifi[loy] and so SB 1= ''P[/ox]. Now a simple replace
ment yields (2). 

Let SBo = m, and let SB1 be as in (2). We now suppose that SB2n and SB 2n + 1 
have been defined so that SB2n s;"" SB2n +1. Now we define SB2n +2 and SB 2n + 3 • 

We shall find SB 2n + 2 so that 

(4) and SB 2n + 1 s; SB2n + 2' 

To do this, let 2' be a B2n + r expansion of.!£', let /1' be the elementary 2'
diagram of SB 2n, and let f' be the 2'-diagram of SB2n + 1 • Then 

(5) /1' u f' is consistent. 

For, otherwise there is a finite conjunction 'P of members of f' such that 
/1' 1= ''P. Replace constants Cb for b E B2n + 1 ~ B2n occurring in 'P by variables, 
and generalize; we obtain a universal sentence ifi of 2', involving only con
stants from SB2n> such that /1' 1= ifi and I=ifi ~ ''P. There is then a universal 
formula X of 2 such that ifi = X( CbO, ... , Cb(m -1») for some m. Hence SB2n 1= 

x[bo, ... , b m - d. Since SB2n s; "" SB2n + 1> it is clear then that SB2n + 1 1= X[bo, ... , 

b m - d· But (SB2n + 1, b )bEB(2n + 1) 1= 'P, and hence (SB 2n + 1> b )bEB(2n) 1= 'ifi and 
SB2n + 1 1= 'x[bo, ... , bm-d, contradiction. Thus (5) holds after all. 

By (5), let (~, Ib)bEB(2n+1) be a model of /1' u f'. Thus 1 is an embedding of 
SB2n +1 into ~ and 1 ~ B2n is an elementary embedding of SB2n into ~. Let 
SB2n + 2 be an 2 -structure and s a map such that SB 2n + 1 s; SB2n + 2, s: ~ >--* SB2n + 2, 
and sol = I ~ B2n + 1 • Clearly then also SB 2n ~ SB2n + 2 as desired in (4). 

Next, we shall find SB2n + 3 so that 

(6) 

To this end, let 2' be a B2n + 2-expansion of!l'. Let /1' be the set of all sentences 
holding in SB2n + 1> and let f' be the set of universal sentences of 2' holding 
in (SB2n + 2, b )bEB(2n + 2)' Then 

(7) /1' u f' is consistent. 

For, otherwise there is a finite conjunction 'P of members of f' such that 
/1' 1= ''P. Replacing the constants Cb, b E B 2n +2, which occur in 'P by variables 
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and generalizing, we obtain a sentence ifI equivalent to a universal-existential 
sentence such that FifI ~ 'rp and 11' F ifI. Hence~2n+l F ifI. But (~2n+2' b)beB(2n+2) 
F rp, and hence ~2n+2 F .ifI. By (4) it follows that ~2n F 'ifI, and hence the 
assumption ~2n S; "a ~2n + 1 yields ~2n + 1 F 'ifI, contradiction. Thus (7) holds. 
Then (6) easily follows, using the argument that (3) implies (2). 

Thus we have constructed our chain ~ = ~o S; ~l S; ~2 S; ... so that ~l 
is a model of r, ~l =ee ~3 =ee ~5 =ee ... , and ~o ~ ~2 ~ ~4 ~ •••• Hence 
~2n+l is a model of r for each nEw, so that by (iii), Uneco ~2n+l is a model 
of r. And by 19.36, we have ~ ~ Uneco ~2n. But obviously Uneco ~2n+l = 
Uneco ~n = Uneco ~2n> so ~ has been elementarily embedded in a model of r. 
Thus ~ itself is a model of r. D 

Corollary 25.17. Let r u {rp} be a set of sentences such that Mod r is closed 
under directed unions. Then the following conditions are equivalent: 
(i) rp is preserved under directed union relative to r, i.e., Mod (r u {rp}) is 

closed under directed unions; 
(it) there is a universal-existential sentence ifI such that r F rp +-+ ifI. 

The corollary is proved just like 25.10. 

Positive Sentences 

Definition 25.18. A formula rp is positive if it is built up from atomic formulas 
using only A, V, V, and 3 (no negation). We write ~ pos ~ provided that 
every positive sentence holding in ~ also holds in ~. 

The main theorem concerning this notion is proved very similarly to 25.16 
above. First we need three lemmas. 

Lemma 25.19. If~ pos~, then there is an elementary extension ~' ~ ~ and 
a homomorphismf: ~ ~ ~' such that (~, a)UeA pos (~/,fa)ueA (in a suitable 
A-expansion of our language). 

PROOF. Let!l' be our initial language, !l" an A-expansion of!l', and !l'" a 
B-expansion of!l'; say we have new constants cu(a E A) in!l" and new con
stants db(b E B) in !l'". Let r be the set of all positive sentences of!l" holding 
in (~, a)ueA' and 11 the elementary !l'"-diagram of (~, b)beB. Our assumption 
~ pos ~ implies, by the argument usual in this chapter, that r u 11 has a model 
<r' = (<r, la, Sb)ueA.beB. Thus by a basic fact concerning elementary diagrams, 
there is an isomorphism t of <r onto an elementary extension ~' ~ ~ such 
that to s = I t B. Clearly (~, a)ueA pos (~/, tla)ueA (because of r holding in 
<r/) and hence, as is easily seen, to I: ~ ~ ~' is a homomorphism. 0 

Lemma 25.20. If ~ pos~, then there is an elementary extension ~' ~ ~ and 
a one-one mapping g: B ~ A' such that (~/, gb)beB pos (~, b)beB. 
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PROOF Let it" and 2" be as in the proof of 25.19. Let r be the elementary 
2' -diagram of Q!, and let ~ be the set {'g> : g> is a positive sentence of 2" 
and (~, bhEB 1= 'g>}. The rest of the proof proceeds as with the proof of 
25.19. 0 

Similarly we have: 

Lemma 25.21. Assume that ~ is a model of {g> : g> is a positive sentence and 
r 1= g>}. Then r has a model Q! such that Q! pos~. 

PROOF. Consider r V {'g> : g> is a positive sentence and r 1= 'g>}. 0 

Theorem 25.22 (Lyndon). For any set r of sentences the following conditions 
are equivalent: 
(i) Mod r can be characterized by a set of positive sentences; 

(ii) Mod r is closed under homomorphisms, i.e., ifQ! E Mod rand Q!"*~, 
then ~ E Mod r. 

PROOF. The trivial direction is (i) => (ii): assume (i). To show (ii) it suffices 
to prove 

(1) if g> is any positive formula,f: Q!"* ~, X E W A and Q! 1= g>[x], then 
~ 1= g>[fo x]. 

This statement is proved by an obvious induction on g>, using 24.4; we take 
one atomic case and the passage from g> to VVig> as examples. Suppose first 
that g> is Rao' . ·am-I. Since Q! 1= g>[x], we have (a~x, ... , a~_lx) E R~. Hence 
(fa~x, ... ,fa~-Ix) E R18, so by 24.4, (afi(f 0 x), ... , a~-I(f 0 x» E R18. Thus 
~ 1= g>[fo x]. Now assume (1) for g>, and suppose that Q! I=VVig>[X]. Let b be 
any element of B. Say b = fa. Then Q! 1= g>[x~], so by the induction hypothesis 
~ 1= g>[f 0 x~], i.e., ~ 1= g>[(f 0 x)~], as desired. 

(ii) => (i). As usual, let ~ = {g> : g> is a positive sentence holding in each 
member of Mod r}. Thus Mod r s Mod~, so it suffices to take any model 
~ of ~ and show that ~ is a model of r. We shall do this by constructing 
structures, Q!w and ~w such that ~ ~ ~w, Q!w is a model of r, and Q!w"* ~w, 
which obviously shows by (ii) that ~ is a model of r. 

To construct Q!w and ~w we construct certain sequences <Q!n: nEw), 
<~n : nEw), <fn: nEw), and <gn: nEw'" I). Let ~o =~, and choose 
Q!o E Mod r so that Q!o pos ~o, by 25.21. By 25.19 choose ~I andfo so that 
~o ~ ~I,JO is a homomorphism ofQ!o into ~I' and (Q!o, a)aEAO pos (~l,foa)aEAo· 
Then by 25.20 choose Q!l and gl so that (Q!o, a)aEAO ~ (Q!l> a)aEAO' gl is a one
one map of Bl into Al> and (Q!l> a, glb)aEAo,bEBI pos (~l' foa, b)aEAo,bEBI. 
Now suppose that n ;;::: 1, Q!i' ~i' and gi have been defined for all i ::; n, and 
j; has been defined for all i < n, so that the following condition holds: 

(2) (Q!n> a, gnb)aEA(n-l),bEBn pos (~n,fn-Ia, b)aEA(n-l),bEBn. 

We now define ~n+l> fn' Q!n+l, and gn+l. Choose ~n+1 and fn by 25.19 so 
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that (>13n,ln-1a, b)aeA(n-1),beBn ~ (>13 n +lo / n - 1a, b)aeA(n-1),beBn, In is a homo
morphism of (mn, a, gnb)aeA(n-1),beBn into (>13 n +lo / n - 1a, b)aeA(n-1),beBn, and 
(mn, a, gnb, a')aeA(n -l),beBn,a'eAn pos (>13 n + loin -la, b, Ina')aeA(n -l),beBn,a'eAn' Then 
we use 25.20 to find mn + 1 and gn+1 so that (mn' a)aeAn ~ (mn + lo a)aeAn, 

gn+1 is a one-one mapping of Bn+1 into An +1, and (mn + lo a, gn+1b)aeAn,beB(n+1) 

pos (>13 n +1, Ina, b)aeAn,beB(n+1)' 

This completes our inductive definition. Thus we have the following 
situation: 

mO~m1~~{2 ~ ... ~mn~mn+l~'" 

~ rg~ Ig2 gnl ~ Ignu 
Q3 0 ~ >131 ~ >132 ~ ~ >13n ~ >13n +1 ~ ••• 

Sinceln is a homomorphism of (mm a, gnb)aeA(n-1),beBn into 

itfollows thatln -1 S; In and g;; 1 S; In. Let mOl = Unew mn and >13 Ol = Unew >13n• 

By 19.36 we have m = mo ~ mOl and Q3 = >130 ~ >13 Ol • Since m is a model of r, 
so is mOl' Let/Ol = UneOlln. Then clearly IOl is a homomorphism from mOl into 
>13Ol • But g;;l S; In for all n E cu, so/Ol maps onto Bw. 0 

Corollary 25.23. Let r be a set 01 sentences such that Mod r is closed under 
H, and let rp be a sentence. Then the lollowing conditions are equivalent: 
(i) rp is preserved under homomorphism relative to r; 

(ii) there is a positive sentence if such that r 1= rp ++ if. 

EXERCISES 

25.24. For any class K, the class SUpK is the smallest universal class containing K. 

25.25. A class K can be characterized by a single universal sentence iff SK = K, 
UpK = K, and Up(~K) = ~K. 

25.26. Let .!£ be a language with one nonlogical constant, a binary operation 
symbol. Let K be the class of all structures isomorphic to structures (B, 0), 
where B is a set of one-one functions (with not necessarily equal domains) 
closed under composition 0 of functions. Show that K is universal. 

25.27. Let.!£' have nonlogical constants < (binary relation symbol) and s (unary 
operation symbol), and let.!Z' be the reduct of .!£' to s. Let r be the follow
ing set of sentences in .!Z": 

sentences saying < is a linear ordering 
VVo(vo < sVo). 

Thus by 25.5 S(Mod r ~.!Z') is a universal class. Find explicit universal 
axioms for it, and show that it is not finitely axiomatizable. 

25.28. Let.!Z" be an expansion of .Sf, r a set of sentences of .!Z", and let m be an 
.!Z' -structure. Then the following conditions are equivalent: 
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(1) ~ can be embedded in ~ t.!R for some model ~ of r. 
(2) for every universal sentence ffJ of 2, the condition r F ffJ implies that 

~ FffJ· 

25.29. Let K be the class of all Abelian groups in which every element is of finite 
order. Show that 25.11(ii) and 25.11(iii) hold but 25.11(i) fails. 

25.30. Give an example of an elementary class K such that PK is not elementary. 

25.31. Let K be the class of all commutative rings satisfying VVo(vo' Vo = Vo -
Vo = 0). Show that K is a quasivariety but not a variety. 

25.32. Give an example of a universal class which is not a quasivariety. 

25.33. Give an example of a system <~I : i E w) of structures such that ~I £; ~I+l 

for all i E W, ~I == ~I + 1 for all i, but not (~o == UIEro ~I)' 

25.34. If K is an elementary class closed under directed unions and under products, 
then K can be characterized by universal-existential Horn sentences. (Such 
sentences are defined in a natural way along the lines of 25.12 and 25.15.) 

25.35. An occurrence of a symbol in ffJ is positive if it is within the scope of an 
even number of negation symbols; otherwise it is negative. Now let.!R be 
a language with no operation symbols. Assume that ffJ and I/J are sentences 
in which = does not occur, and that FffJ -I/J, not (F ..., ffJ), and not (FI/J). 
Then there is a sentence X in which = does not occur such that FffJ - X 
and FX -I/J, and such that any relation symbol occurring positively 
(negatively) in X also occurs positively (negatively) in both ffJ and I/J. 

Hint: Use the model existence theorem, as follows. For each sentence X 
of.!R let 

rr = {{} : {} is a sentence of .!R', and each relation symbol 
which occurs positively (negatively) in {} also occurs 
positively (negatively) in X}. 

Also, let r' = {{} : {} is a sentence of 2, and = does not occur in {}}. Let 
S be the collection of all ~ £; Sentz, such that there exist finite subsets 
0 0 £; r., and 0 1 £; r...,~ with ~ = 0 0 U 0 1 such that: 
(1) if X E ~ and = occurs in X, then X is c = c for some c E C; 
(2) both 0 0 and 0 1 have models; 
(3) for all XO E r., n r ~ n r' and Xl E r...,., n r ..,~ n r', if F 1\ 0 0 - XO 
and F 1\ 0 1 - Xl> then XO 1\ Xl has a model. 

25.36. Let r be a consistent theory in 2, and let ~ be a set of sentences of !E' 
such that for each finite subset 0 of ~ there is a ffJ E ~ such that F V 0 ++ ffJ. 
Then the following conditions are equivalent: 
(1) there is a 0 £; ~ which axiomatizes r; 
(2) for any model ~ of r and any !E'-structure ~, if every ffJ E ~ which 
holds in ~ holds in~, then ~ is a model of r. 

This lemma can be used to shorten the proofs of 25.16 and 25.22. 
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26 Elementary Classes and 
Elementary Equivalence 

We now investigate the basic notions of first-order logic. We shall give 
mathematical characterizations of elementary classes due to Fraisse, Ehren
feucht, and Keisler and Shelah. The fundamental results of first-order logic 
are distinguished from more general languages by a theorem of Lindstrom. 

Definition 26.1. Let K be a class of ~-structures. 

(i) We set 0pK = {If' E Sent2': If' holds in each member of K}; we call 
0p the theory of K. We set 0p21 = 0p{21}. 

(ii) K is elementarily closed iff for all ~-structures 21, ~, if 21 =ee ~ E K 
then 21 E K. 

(iii) K is a projective (or pseudo-elementary) class iff there is an expansion 
~' of ~ and an elementary class L in ~' such that K = {21 t ~: 
21 E L}. 

(iv) K is compact iff for all r s Sent2', if every finite subset of r has a 
model in K, then r has a model in K. 

Relationships between these notions are given in the following theorem, 
which has an important corollary for the rest of our work in this chapter. 

Theorem 26.2. Let K be a class of ~-structures. Each of the following condi
tions implies the succeeding one. If K is elementarily closed, then they are 
all equivalent. 

(i) K is an elementary class; 
(ii) K is a projective class; 

(iii) UpK = K; 
(iv) K is compact. 
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PROOF. Obviously (i) => (ii) => (iii) => (iv). Now suppose that K is elemen
tarily closed and compact. We show that K = Mod 8pK, so that (i) holds. 
Obviously K s Mod 8pK, so we need to take any Q! E Mod 8pK and show 
that Q! E K. Now 

(1) Mod 8p{Q!} n K =f O. 

For, otherwise K compact implies that there is a finite Ll S Bp{Q!} such that 
Ll does not have a model in K. Thus • 1\ Ll E K, so • 1\ Ll E 8pK and Q! F 
• 1\ Ll, which is impossible. 

So (1) holds. Hence Q! =ee"23 E K for some "23, so Q! E K since K is elemen-
tarily closed. 0 

There is a projective class which is not elementary. In fact, let 2 be any 
language, and let K be the class of all 2 -structures with > I Fmla21 elements. 
Then by the downward L6wenheim-Skolem theorem, K is not elementary. 
To see that K is projective, let 2' be an expansion of 2 obtained by adjoining 
new nonlogical constants c'" for all a < I Fmla21 +, and let r be the set of all 
sentences of the form .(c", = co), where a < (3. Obviously K = (Mod r) ~.!l?, 

as desired. Examples of classes K with UpK = K but K not projective appear 
to be known only under the assumption that no measurable cardinals exist. 
Finally, a compact K with UpK =f K is found by letting K = {Q! : Q! is an 
2-structure and IAI = IFmla21. 

Corollary 26.3. For any class K the following conditions are equivalent: 

(i) K is an elementary class; 
(ii) UpK = K, and K is elementarily closed. 

This corollary gives rise to the possibility of mathematically characterizing 
elementary classes by means of mathematically characterizing elementary 
equivalence. We shall do this in two different ways, due respectively to 
Ehrenfeucht and Fraisse and to Keisler and Shelah. 

The characterization of Ehrenfeucht and Fraisse can be given in many 
forms. We shall give four of these forms here and prove their equivalence. 
Since Q! =ee "23 iff Q! ~ 2' =ee "23 ~ 2' for every reduct 2' of 2 to finitely many 
symbols, we may assume that our language has only finitely many symbols. 
It is also clear that Q! =ee "23 iff Q!' =ee "23', where Q!' and "23' are the relational 
versions of Q! and "23 respectively (see Theorem 11.28). So, we may also assume 
that our language has no operation symbols. These assumptions will be useful 
for our main theorem, but they are not needed for some of the lemmas. 

Definition 26.4. Let 2 be any first-order language, and let Q! be an 2-
structure. If 2 has individual constants, we let Q! - be the substructure of 
Q! generated by {c2I : c is an individual constant of 2}. 

Now we define some equivalence relations =m between structures in 
various languages; however, Q! =m "23 shall always imply, implicitly, that 

407 



Part 4: Model Theory 

~ and ~ are .9"-structures for the same .!l'. These relations are defined by 
induction on m. 
~ =0'2.3 iff 2! and ~ are .9"-structures and either .9" has no individual 

constants or else it does and ~ - ~ ~ - ; 
~ =m+l '2.3 iff for every a E A there is abE B such that (~, a) =m (~, b) 

and similarly with the roles of ~ and ~ interchanged. 

Lemma 26.5. Let cp be a sentence in prenex normal form with m initial 
quantifiers, and suppose that ~ =m ~. Then ~ 1= cp iff~ 1= cpo 

PROOF. We proceed by induction on m. For m = 0, cp is a sentence with no 
variables, and hence.9" has individual constants. Thus the assumption ~ =0 ~ 
means that ~ - ~ ~ -. Hence, obviously, ~ 1= cp iff ~ 1= cpo 

Now assume the result true for m, for all logics .9" and all pairs of .9"
structures. Suppose cp is a prenex sentence with m + I initial quantifiers and 
~ =m+l ~. We take only the case where the first quantifier of cp is existential, 
assume that ~ 1= cp, and prove that ~ 1= cpo Say cp is 3Vi.p. Choose a E A so that 
~ 1= .p[a, a, ... ]. Thus (~, a) 1= Subf~~.p in a suitable expansion of the language 
of ~. Since ~ =m+l ~, choose bE B so that (~, a) =m ('2.3, b). Then by the 
induction hypothesis, (~, b) 1= Subf~~.p, i.e., '2.3 1= .p[b, b, ... ], i.e., '2.3 1= cpo D 

According to this lemma, if~ =m ~ for all m (a purely mathematical condi
tion), then ~ =ee ~. This is true for any language whatsoever. The converse 
fails in general (see Exercise 26.47), but it does hold for languages with no 
operation symbols and only finitely many relation symbols. We shall prove 
this via a slight reformulation of the definition of =m' 

Definition 26.6 
(i) Let.9" be a language with no operation symbols and only finitely many 

relation symbols. We define some sets ~~ of formulas of.9", where ° :s; i :s; 
n > 0, by induction on i. Let ~~ be the set of all atomic formulas of .9" 
with free variables among Vo, . .. , Vn-l' Our assumptions on.9" imply that 
~~ is finite. Suppose i < n and ~~ has been defined so that it is a finite set 
of formulas with free variables among Vo, . .. , Vn-l-i' Let ~~+l consist of 
all formulas 

for e a subset of ~~. 

(ii) Let a E w U {w}, and let ~ and '2.3 be two .9"-structures (.9" any first
order language). An a-sequence for 21, '2.3 is a sequence I = <1m: mEa) 
such that the following conditions hold: 
(1) 1m s mA X mB for each mEa; 
(2) 0/00; 
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(3) If m + 1 E IX, xImy, and a E A, then there is abE B such that <xo, ... , 
Xm-lo a)Im+1<yo, ... , Ym-lo b), and similarly with the roles of A and 
B exchanged; 

(4) If IX E w '" 1 and xIa-1y, then Qt F cp[x] iff !is F cp[Y] for any atomic 
formula cp with variables among {Vi: i E a - I}, and if IX = w then 
Qt F cp[x] iff !is F cp[Y] for any x E m A and Y E m A with mEw, xImy, and 
any atomic formula cp with Fv cp ~ {vo, . .. , Vm-l}' 

Note that there is, trivially, always a I-sequence for any two structures Qt, 

!is in a language with no operation symbols, since then 26.6(ii)(4) holds 
vacuously, there being no atomic formulas without variables. 

Lemma 26.7. Let!l' be a language with no operation symbols and only finitely 
many relation symbols. Assume that Qt and !is are !l'-structures, nEw'" 1, 
and that for any cp E ~~, Qt F cp iff!iS F cpo Then there is an (n + I)-sequence 
for Qt, !is. 

PROOF. For each i ~ n let 

Ii = {(x, y) : x EtA, Y E tB, and Qt F cp[x] iff !is F cp[y] for all cp E ~~-t}. 

Obviously 26.6(ii)(1),(2),(4) hold. To check (3), suppose that m + 1 < n + 1, 
xImy, and a E A. Let 

o = {cp E ~~-m-1 : Qt F cp[xo, . .. , X m- lo a]}. 

Then the formula 3Vm(/\a>E8CP 1\ !\a>E!>(n-m-l.nJ-8 --, cp) is in ~~-m and it holds 
in Qt, so it also holds in !is. This gives us an element b E B such that <xo, ... , 
x m- 1, a)Im+1<yo, ... , Ym-1, b), as desired. Of course the argument is similar 
if Qt and !is are interchanged. Hence 26.6(ii)(3) holds. n 

The following lemma completes the proof of equivalence of =ee with our 
mathematical notions in 26.4 and 26.6. 

Lemma 26.8. Let nEw. If there is an (n + I)-sequence for Qt and !is, then 
Qt =n !is. 

PROOF. Let <1m: m ~ n) be an (n + I)-sequence for Qt, !is. We now prove 
the following statement by induction on i; the case i = n gives the desired 
result. 

(1) 

The case i = 0 is obvious. Now assume (1) for i, and suppose that xln - i - 1 y. 

To prove that (Qt, Xt)t<n-t-1 =1+1 (!is, Yt)t<n-i-b by symmetry take a E A. 
From the definition of I, 26.6(ii), choose b E B such that <xQ, •• ", X"-i-2, a) 
In-i<yo,""·, Yn-i-2, b). By our induction assumption, (Qt, XI, a)t<n-i-1 =i 
(!is, Yto b)t<n-i-1' 0 
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Now we introduce another slight variation of the notion =m. 

Definition 26.9. Let m and m be 2"-structures. A partial isomorphism of m 
into m is a one-one function f mapping a subset of A into B such that if 
m ::; I Omn fl, rp is an atomic formula, Fv rp S; {va' ... , Vm -I}, and x E 
mOmn/, then m F rp[x] iff m F rp[fo x]. For any a E w U {w}, an a-system 
of partial isomorphisms of minto m is a system <1m: mEa) satisfying the 
following conditions: 

(i) each 1m is a nonempty set of partial isomorphism of minto m; 
(U) if m + 1 E a, then Im+l S; 1m; 

(iii) if m + 1 E a, fE Im+l> and a E A (resp. bE B), then there is agE 1m 
such that f S; g and a E Omn g (resp. b E Rng g). 

In view of the above lemmas, the following lemma shows that elementary 
equivalence implies this new notion. 

Lemma 26.10. Let m and m be 2" -structures and let nEw. If there is an 
(n + I)-sequence for m and m, then there is an (n + I)-system of partial 
isomorphisms of minto m. 

PROOF. Let <Jm : mEn + I) be an (n + I)-sequence for m, m. For each 
mEn + 1 we set 

1m = {{(x;, Yt) : i < k} : k ::; n - m and xJky}. 

Thus 26.9(ii) is obvious. By 26.6(ii)(2),(3) each Jk is nonempty, so each 1m 
is nonempty. Also, from 26.6(ii)(2),(3),(4) we infer that for each k ::; n, if 
xJky then m F rp[x] iff m F rp[y], for each atomic formula rp with variables 
among va' ... , Vk-l. It follows that each 1m is a set of partial isomorphisms 
of minto m. Finally, 26.6(ii)(3) immediately yields (iii). 0 

Our final equivalent for elementary equivalence is not quite such a simple 
reformulation of the relations =m. It is formulated in game terminology, and 
we shall first give an intuitive account of the game. 

Let m and m be 2"-structures, and let two players I and II be given. Player I 
begins the game by picking a positive integer n, an e E 2, and if e = 0 an 
element a o of A, while if e = 1 an element bo of B. The game continues with 
II and I moving in turn. At the ith move of 1, he chooses an e E 2, and if 
e = Oan element at of A while if e = 1 he chooses an element bi of B. Then 
II chooses an element bi of B if e = 0, or an element ai of A if e = I. The 
game ends after 2n moves, at which point two sequences a E nA and bEn B 
have been constructed. The rule of the game is that II wins provided that 
{(a" bi) : i < n} is a partial isomorphism of minto m. As we shall show, 
elementary equivalence is equivalent to the existence of a winning strategy 
for II. It is clear intuitively what we mean by "winning strategy" : there must 
exist a completely deterministic method for II to make a move, given what 
has happened so far in the game, so that at the end II always wins. The precise 
definition runs as follows: 
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Definition 26.11. Let ~ and ~ be .P-structures. We say that II has a winning 
strategy for the m-elementary game over ~, ~ provided that there is a 
function F with the following two properties: 

(i) If k < m, x E" A, and y E "B, then F(x, y, 0, a) E B for each a E A 
and F(x, y, 1, b) E A for each b E B. 

(U) For every z E m[({o} X A) u ({I} x B)], define x E mA and y E mB 
by induction as follows. Suppose k < m and x ~ k, y ~ k have been defined. 
If (zk)o = 0, let x" = (Zk)l and YT< = F(x ~ k, y ~ k, 0, x,,). If (zk)o = 1, 
let y" = (Zk)l and x" = F(x ~ k, y ~ k, 1, y,,). Then for the so defined 
sequences x and y it is the case that {(XI> yj)} : i < m} is a partial isomorphism 
of~ into~. 

Lemma 26.12. Let ~ and ~ be .P-structures, and let m be a positive integer. 
If there is an (m + I)-system of partial isomorphisms of ~ into ~, then 
player II has a winning strategy for the m-elementary game over ~, ~. 

PROOF. Assume the hypothesis of26.12, and let (I" : k ::;; m) be an (m + 1)
system of partial isomorphisms of ~ into ~. We define a function satisfying 
26.II(i) as follows. Let a well-ordering of A, B, and all sets I" for k < m be 
given. Let k < m, x E "A, and y E "B. Setf = {(XI> yj): i < k}. Let a E A and 
bE B. If there is no g E Im -" such thatf S; g, we let F(x, y, 0, a) be the first 
element of Band F(x, y, 1, b) be the first element of A. Now suppose there 
is such a g, and let g be the first such. By 26.9(iii) let h be the first member 
of Im-"-l such that g S; h and a E Dmn h, and let I be the first member of 
Im-"-l such that g S; I and bE Rng I. Then we set F(x, y, 0, a) = ha and 
F(x, y, 1, b) = I-lb. Thus Fis constructed so that 26.11(i) holds. 

To check 26.1 1 (ii), let z E m[({o} X A) u ({I} x B)] be given, and construct 
x and y as in 26.11(ii). It is straightforward to check by induction on k that 
whenever k ::;; m there is an g E Im-" such that {(XI> yj) : i < k} S; g. Applying 
this for k = m, we obtain the conclusion of 26.1 1 (ii). 0 

Our final lemma completes the circle of implications between the above 
notions. 

Lemma 26.13. Let ~ and ~ be .P-structures, and let m be a positive integer. 
If player II has a winning strategy for the m-elementary game over ~, ~, 
then ~ 1= rp iff~ 1= rp whenever rp is a prenex sentence with m initial quantifiers. 

PROOF. Let F be as in 26.11, and for each z E m[({o} X A) u ({I} x B)] let 
X z and Yz be constructed as in 26.II(;i). Let rp be a sentence Qovo' , ,Qm-1Vm-lifi 
where ifi is quantifier free and each Qi is V or 3. We now prove the following 
statement by downward induction on k from m to 0. 

for all k ::;; m and all z E m[({o} X A) u ({I} x B)], ~ 1= Q"v,,' , , 
(1) Qm-1Vm-lifi[xzO",., xik - 1)] iff~ 1= Q"v,,··· 

Qm-1Vm-lifi[yzO, . .. , yz(k - 1)]. 
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The case k = m is true because of the conclusion of 26.11 (ii). Now suppose 
that (1) is true for k + 1; we prove it for k. Suppose that Z E m[({o} X A) U 

({I} x B)]. We take only the case Qk = V, and argue from satisfaction in m 
to satisfaction in SB. Assume, then, that m 1= QkVk" . Qm-1Vm-1!f[XzO, ... , 
xik - 1)]. Let b be any element of B. Let w be like z except that Wk = (1, b). 
Clearly (by 26.11(ii) Xz I k = Xw I k, so m 1= QkVk" . Qm-1Vm-1!f[XwO, ... , 
xw(k - 1)]. Since Qk = V, we have m 1= Qk+1Vk+1" . Qm-1Vm-1!f[XwO, ... , 
xwk]. By the induction hypothesis, SB 1= Qk+1Vk+ l' .. Qm-1Vm-1!f[YwO, ... , Ywk]. 
But Ywk = band Yw I k = Yz I k, so SB 1= Qk+lVk+1" . Qm-1Vm-1!f[YzO, ... , 
yik - 1), b]. Since b is arbitrary, it follows that SB 1= QkVk' .. Qm-1Vm-1!f[YzO, 
... , Yz(k - 1)]. Hence (1) holds. But condition (1) for k = ° is exactiy what 
we want to prove. 0 

Now we can give the main theorem characterizing elementary equivalence 
by the back-and-forth method: 

Theorem 26.14 (Fraisse, Ehrenfeucht). Let 2 be a language with no operation 
symbols and only finitely many relation symbols. Let m and SB be two 2-
structures. Then the following conditions are equivalent: 

(i) m ==ee SB; 
(ii) m ==m SB for each mEW; 

(iii) for each mEw, there is an m-sequence for m, SB; 
(iv) for each mEw, there is an m-system of partial isomorphisms ofm into 

SB; 
(v) for each mEw, player II has a winning strategy for the m-elementary 

game over m, SB. 

As mentioned following 26.3, this theorem immediately gives rise to 
mathematical characterizations of the logical notion of an elementary class, 
using 26.3. We shall not state these characterizations explicitly. 

We now want to give an application of 26.14. We shall give a simple 
characterization for the elementary equivalence of two structures (a, <), 
Cf3, <), where a and f3 are nonzero ordinals. For the next few pages 2 will 
denote a fixed first-order language with only one nonlogical constant, a binary 
relation symbol <, and we shall implicitly work within!l'. We assume a very 
modest acquaintance with the arithmetic of ordinals. In what follows we deal 
with the ordinal operations of addition, multiplication, and exponentiation. 

The division algorithm for ordinals plays an important role in what follows. 
According to it, if a and f3 are any two ordinals with f3 #- 0, then there exist 
unique ordinals y and 8 such that a = f3. y + 0 and 8 < f3; we call 8 the 
remainder upon dividing a by f3. Given ordinals a, f3 and a nonzero ordinal y, 
we say that a and f3 are congruent modulo y, in symbols a == f3 (mod y), if a 
and f3 have the same remainder upon division by y. Our mathematical charac
terization of elementary equivalence of (a, <) and (f3, <) is that a = f3 < w'" 

or else a, f3 ;::: w'" and a == f3 (mod w"'). We proceed to prove one implication: 
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Lemma 26.15. If (a, <) ==ee ({3, <), then a == {3 (mod w Ol), and if a < WOl or 
{3 < w OJ then a = {3. 

PROOF. The idea of the proof is to show that each ordinal < w OJ is elemen
tarily definable; the theorem then easily follows. To prove this, we need to 
express some simple concepts concerning ordinals. Let "vo - VI is a suc
cessor" be the formula 

VI < Vo A 3V2[V2 < Vo A .3V3(V2 < V3 A V3 < vo)]. 

Clearly we have 

(1) 
(a, <) 1= "vo - VI is a successor" [f3, y] iffy < {3 < a and {3 - y 

is a successor ordinal. 

Next, let "vo - VI is divisible by w" be the formula 

Thus 

(2) 

VI < Vo A .(" Vo - VI is a successor "). 

(a, <) 1= "Vo - VI is divisible by w" [{3, y] iff y < {3 < a and 
{3 - y is divisible by w. 

For any positive integer m, having defined the formula "vo - V1 is divisible 
by w m", let "vo - V1 is divisible by wm+1" be the formula 

(3) 
3V2(V2 < Vo A "V2 - VI is divisible by wm") A VV2[V2 < Vo 

~ 3V3(V2 < Va A V3 < Vo A "V3 - V1 is divisible by wm")]. 

We now prove: 

(4) 
(a, <) 1= "vo - V1 is divisible by wm" [f3, y] iffy < {3 < a and 
{3 - y is divisible by w m• 

We show this by induction on m. The case m = 1 is given by (2). Now suppose 
that (4) holds for m; we verify it for m + 1. First suppose that y < {3 < a 
and {3 - y is divisible by wm + 1; say {3 - y = w m + I . S. Thus S ¥- O. Hence 
y + wm < {3 and (y + wm) - y = wm is divisible by wm, and the induction 
hypothesis (4) yields the satisfaction by (f3, y) in (a, <) of the first conjunct 
of (3) for m + 1. Now let 8 < {3 be arbitrary. If 8 :$ y, then 8 < y + wm < fJ 
and (y + wm) - y = wm is divisible by wm, giving satisfaction of the second 
conjunct of (3). If y < 8, write 8 - Y = w m + 1. ~ + 7J with 7J < w m+ 1, and 
7J = wm. n + () where nEw and () < wm• Then 8 < y + wm + I . ~ + wm. 
(n + 1) <: {3 and (y + wm+1.~ + wm·(n + 1)) - y = wm+1.~ + wm·(n + 1) 
is divisible by w m, so again the second conjunct of (3) is satisfied. 

For the converse of (4), assume that (a, <) 1= "vo - VI is divisible by 
wm + 1 " [f3,y]. Clearlyy < {3. Write{3 - y = wm+ 1 ·S + 8 with 8 < wm+l, and 
write 8 = wm·n + ~ with nEw and ~ < wm• Suppose ~ ¥- O. Then y + wm+1. 

S + wm·n < {3, so by (3) and the induction hypothesis there is an 7J with 
y + wm+1. S + wm·n < 7J < {3 and 7J - y divisible by wm• Say 7J - Y =wm. (). 

Since 
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it follows that w· 0 + n < O. But 

{3 = y + w m + 1 . 0 + e = y + w m + 1 . 0 + wm. n + ~ 
< y + w m + 1 . 0 + wm. n + w m = y + wm. (w· 0 + n + I) 
~ y + w m • 0 = TJ < {3, 

a contradiction. Thus ~ = O. Suppose n #- O. Then y + w m + 1 . 0 + w m • 

(n - 1) < {3, so by (3) and the induction hypothesis there is an , with y + 
wm+1·o + wm·(n - 1) < , < {3 and, - y divisible by w m. Say, - y = 
Wm·K. Then 

y + wm. (w· 0 + n - 1) = y + w m + 1 . 0 + wm. (n - 1) < , 
= y + Wm'K, 

so w·o + n - 1 < K. Hence 

{3 = y + wm+1·o + wm'n = y + wm·(w·o + n) ~ y + Wm'K 

= , < {3, 

again a contradiction. So n = 0 also, and we have {3 - y = wm + 1 . O. This 
completes the proof of (4). 

Now for each mEw let" va - Vl = m" be the formula saying that Vl < va 

and there are exactly m V2 such that Vl < V2 < va. For m, nEw'" 1, let 
"va - V1 = wm·n" be the formula 

(5) 
"va - Vl is divisible by w m," and there are exactly n - 1 V2 such 
that Vl < V2 < Va and" V2 - V1 is divisible by wm". 

Let k E w '" 1, mE k(w '" 1), n E k(w '" 1), and mo > ... > m k - 1. We define 
"va - Vl = wmO'no + ... + Wm<k-l)·nk _ 1" by induction onk. The case k = 1 
is taken care of by (5). Assuming the formula defined for k, we let" Va - Vl = 
w mO . no + ... + wmk . n k " be the formula 

3V2(V1 < V2 A V2 < Va A "V2 - Vl = wmo'no + ... + wm<k-l)·nk _ 1" 

A "Va - V2 = wmk·nk"). 

Clearly we have 

(6) 

(7) 

if mEw, then (a, <) "Va - V1 = m" [{3, y] iff y < {3 < a and 
{3 - y = m; 
if k E w '" 1, mE k(m '" 1), n E k(m '" 1), and mo > ... > mk-l, 
then (a, <) 1= "Vo - Vl = wmo'no + ... + wm<k-l)·nk_l" [{3, y] 
iffy < {3 < a and {3 - y = wmo'no + ... + wm<k-l)·nk_l' 

Recall that for any {3 < w"', either {3 < w or {3 can be written in the form 
{3 = wmo'no + ... + wm<k-l)·nk_l with mo > ... > mk-l' Thus we have now 
shown that any ordinal < w'" is elementarily definable. 

To prove the lemma, assume that (a, <) =ee ({3, <). Write a = w""y + 0 
and {3 = w"'·e + ~ with 0, ~ < w"'. Suppose 0 #- ~, say 0 < ~. Choose mE 

w '" 1 so that ~ < wm• Now clearly 
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Hence the following sentence holds in (a, <): 

3vO{3vl[VV2 ..., (V2 < VI) A "vo - VI is divisible 
by wm"] A ...,3Vl("Vl - Vo = 8")}. 

Hence it also holds in ({3, <), so there is an TJ < {3 such that TJ is divisible by 
wm, but there is no (J such that (J - TJ = 8. This latter statement implies that 
TJ + 8 ~ {3. Say TJ = w m .,. Then 

wm., = TJ < (3 = wCiJ . e + ~ < wCiJ . e + wm 

= wm·wCiJ· e + wm = wm'(wCiJ'e + 1), 

so , :$; wCiJ . e. But then 

{3 :$; TJ + 8 = wm., + 8 < wm. wCiJ . e + ~ = wCiJ . e + ~ = {3, 

contradiction. Thus 8 = ~ after all. Thus a == {3 (mod wCiJ). 
Now suppose, say, that a < wCiJ while {3 ~ wCiJ. Then 

({3, <) F 3Vl(VV2 ..., (V2 :$; VI) A "Vo - VI = a ")[a]. 

Hence 

(a, <) F 3v03vl(VV2 ..., (V2 :$; VI) A "Vo - VI = a"), 

which is impossible. o 

To obtain the converse of 26.15 we need to define another equivalence 
relation: 

Definition 26.16. Let <ao,"" an-I) and <(3o, ... , (3n-l) be sequences of 
ordinals, where nEw'" 1, and let mEw. We write <ao, . .. , an-I) "'m 

<{3o, ... , (3n-l) provided the following two conditions hold for all i,j < m: 

(i) aj < aj iff {3j < {3j; 
(ii) if aj < aj, then either aj - aj = {3j - {3" or else both are ~ rom and 

aj - al == {3j - {3j (mod wm). 

Note that <a) ""m <(3) for any ordinals a, {3 and any mEw. If m = 0, then 
condition (ii) does not say anything. Also note that if m > n then a == 
{3 (mod wm) implies that a == {3 (mod wn). The converse of 26.15 follows from 
the following lemma: 

Lemma 26.17. Let ~ = <ao, <, a2, ... , an_I) and<;[3 = <{3o, <, {32,' .. , (3n-l), 
where a2,"" an -1 E ao '# 0 and {32,··· , {3n -1 E (3o '# O. Assume that 
<ao, ... , an-I) ""m <{3o, ... , (3n-l), where al = {31 = O. Then ~ ==m <;[3. 

PROOF. We proceed by induction on m. The case m = 0 is clear. Now assume 
the lemma for m, and assume the hypothesis of the lemma for m + 1. To 
verify that ~ ==m+l <;[3 it suffices, by symmetry, to take any an E ao and find 
{3n E {3o so that (~, an) ==m (<;[3, (3n). If an = aj for some i = 1, ... , n - 1, let 
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f3n = f3t; from 26.16 it is then clear that (m, an) ==m (SB, f3n). So suppose that 
an =1= at for all i < n. Choose af maximum so that af < an, and choose ak 
minimum so that an < ak; ak always exist (perhaps) = 1 or k = 0). We shall 
now find f3n so that 

f3n - f3f = an - af or both are ~ w m and f3n - f3f == an - af 
(1) (mod w m), and f3k - f3n = ak - an or both are ~ w m and 

f3k - f3n == ak - an (mod w m). 

Because <ao, ... , an-I) "'m+1 <f3o,.,., f3n-I), we have two possible cases: 
Case 1. ak - af = f3k - f3f. Let f3n = f3f + (an - af)' Then (1) is clear. 
Case 2. ak - af and f3k - f3j are both ~ w m + \ and ak - aj == f31e -

f3j (mod w m + I). We consider three subcases. 
Subcase 1. an - aj < w m• Let f3n = f3J + (an - aj). Obviously then f3n -

f3j = an - aj. Since ak - aj and f3k - f3j are both ~ w m + I, and w m + I absorbs 
all smaller ordinals, we have 

f3k - f3j = (f3n - f3j) + w m + 1 + «f3k - f3n) - w m + l ) 

= w m + 1 + «(f3k - f3n) - w m + 1) 

= f3k - f3n, 

and similarly ak - aj = ak - an ~ w m + 1. Hence also ak - an == f3k - f3n 
(mod w m). 

Subcase 2. ale - an < w m• (Note that since (an - aj) + (ak - an) = ale -
aj ~ w m + 1, this sub case is mutually exclusive of sub case 1.) By the assumption 
of this case we may write ak = a, + w m + 1 ,y + 13andf3k = f3j + w m + 1 'e + 8 
with 8 < wm+ 1 and y, e =1= O. Now 

(2) 

For, otherwise an < aj + w m + 1 .y; write an = aj + {.Then{ < w m + 1 'y,and 
if we write { = wm + 1 '7] + 8 with 8 < w m + 1 we have 7] < y. But then 

ak - aj = (an - aj) + (ak - an) = { + (ak - an) 
= w m + 1 '7] + 8 + (ak - an), 

and 8 + (ak - an) < w m + 1. But y and 8 are uniquely determined by ak and 
aj' so 7] = y, a contradiction. Hence (2) holds. 

Write an = aj + wm+1.y + t with t < w m+ 1• Then 

w m + 1 ,y + 8 = ak - aj = (an - aj) + (ak - an) 
= wm+1,y + t + (ak - an), 

so 8 = t + (ale - an). Let f3n = f3j + wm+ 1 . e + t. Clearly f3k - f3n = ak -

an, while f3n - f3j' an - aj ~ wm and 

f3n - f3j == t 

== an - a, 
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Subcase 3. an - aj, a" - an ;::: wm• Write an - aj = wm. K + A with A < 
w m• Let f3n = f3j + WmK + A. Thus an - aj' f3n - f3j ;::: w m and both are con
gruent to A mod wm• Now since a" - an ;::: wm and hence a" - an absorbs A, 
we have 

a" - an == wm. K + A + (a" - an) 
= (an - aj) + (a" - an) 
= a" - aj == 13" - f3j 
= (f3n - 13,) + (f3" - f3n) 
= w m + A + (13" - f3n) == 13" - f3n 

This completes the proof of (1). 
Now suppose that an < al #- a". Then al - an = (a" - an) + (al - a,,), 

and either al - a" = 131 - 13" or else both are ;::: wm + 1; and al - a" == 131 -
13" (mod w m+ 1). Hence clearly either al - an = 131 - f3n or else both are;::: wm 

and al - an == 131 - f3n (mod wm). We argue similarly if al < an. Hence we 
have now shown that < ao, ... , an> '" m <13o, ... , f3n>. Hence by the induction 
hypothesis <ao, <, a2,···, an> ==m <13o, <,132' ... ' f3n)· Thus m ==m+l Q3. D 

Combining Lemmas 26.15 and 26.17 with the Ehrenfeucht-Fraisse theorem 
we obtain 

Theorem 26.18. For any nonzero ordinals a, 13, we have (a, <) ==ee (13, <) iff 
a = 13 < w OJ or both a, 13 ;::: w OJ and a == 13 (mod w OJ). 

Now we turn to the second main topic of this section, Lindstrom's charac
terization of first-order logic. Roughly speaking, only first-order logic has the 
compactness theorem and the downward Lowenheim-Skolem theorem. To 
make this precise we must, of course, have some general notion of logic. We 
introduce this notion in the following definition. 

Definition 26.19 
(i) Let !l' and !l" be two first-order languages. A function f is an 

isomorphism of !l' into !l" provided that f maps the nonlogical constants 
of!l' one-one into the nonlogical constants of !l", taking relation symbols 
to relation symbols and operation symbols to operation symbols, and f 
preserves the ranks of all symbols. We call f an isomorphism onto if f 
maps onto all nonlogical constants of !l". 

(ii) Given!l',!l", f as in (i), with f onto, with each !l' -structure m we 
associate an !l" -structure mf by setting 

A, = A; 

IIW" = (f-1Il)m for each nonlogical constant II of !l". 
(iii) For any first-order language !l', we let S.2" be the class of all !l'

structures. 
(iv) A weak general logic is a class L of quadruples (!l', r, m, g» such 

that !l' is a first-order language, with no operation symbols and only 
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finitely many relation symbols, r is a class, ~ E Sz, and cp E r, such that 
r is uniquely determined by 2 alone, i.e., if (~r,~, cp) and also 
(~ r', ~", cp') are in L, then r = r'. We sometimes write ~ FL.z cp when 
(~ r, ~, cp) E L. An L, 2-sentence is an object cp such that cp E r, where 
(~ r, ~, ,p) E L for some ~, ,p. For any L, 2-sentence cp we let 

Modz .L cp = {~ : ~ FL.z cpl. 

A class K is an L-elementary class provided that K = Modz .L cp for some 
2 and cp; we also call it an L, 2-elementary class. 

(v) A general logic is a weak general logic L which satisfies the following 
conditions: 

(1) Every L-elementary class is closed under isomorphism. 
(2) If ~ 2',f are as in (i),f onto, and K is an L, 2 -elementary class, then 

{~f : ~ E K} is an L, 2' -elementary class. 
(3) If K is an L, 2 -elementary class and 2' is an expansion of ~ then 

{~ E Sz' : ~ ~ 2 E K} is an L, 2'-elementary class. 
(4) If K is an L, 2-elementary class, then Sz '" K is an L, 2-elementary 

class. 
(5) If K and Mare L, 2-elementary classes, then so is K n M. 

(vi) Given a first-order language ~ and a general logic L, a class K 
of 2 -structures is an L-projective class, or an L, 2 -projective class provided 
that there is an expansion 2' of 2 such that K = {~ ~ 2 : ~ E M} for 
some L, 2' -elementary class M. 

(vii) If Lo and L1 are general logics, we write Lo S L1 . (respectively 
Lo S InfL1) provided that every Lo-elementary class is also an L1-elementary 
class (respectively, every Lo-elementary class has the same infinite members 
as some L1-elementary class). Also, we write Lo == L1 provided that 
Lo S L1 S Lo. 

(viii) L fo is the class of all quadruples (~Sentz, ~, cp) such that 2 is 
a first-order language with no operation symbols and only finitely many 
relation symbols, ~ E Sz, cp E Sent~, and ~ I" cpo Clearly L fo is a general 
logic. 

This definition is rather long, but the notions introduced in it are all very 
intuitive. The properties of a general logic given in 26.19( v) are very minimal, 
and apply to all of the known extensions of first-order logic in which the 
notion of model is still first order; thus the various infinitary languages and 
the Q-languages of Chapters 30 and 31 fall under this heading. Note that the 
notion of elementary class corresponds to the notion of a finitely axiomatizable 
elementary class in the usual sense: a class is Lfo-elementary in the sense of 
26.19(iv) iff it is a finitely axiomatizable elementary class in the usual sense. 
Since we are dealing with finitely axiomatizable elementary classes, and since 
operation symbols can be replaced by relation symbols as indicated in 
Chapter 11, it does not seem to be a loss of generality to restrict ourselves 
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as indicated, to first-order languages with no operation symbols and only 
finitely many relation symbols. 

We shall prove two theorems about general logics here. One is that a 
general logic in which the compactness theorem and downward Lowenheim
Skolem theorem hold is equivalent to Lie in the sense of 26.4(viii). The other 
is that an effectivized general logic, as defined below, in which the downward 
Lowenheim-Skolem theorem holds is effectively equivalent to Lre, in the sense 
indicated below. The proofs of these results depend on a main lemma, 26.22 
below. First we need two small lemmas. The first one gives another useful 
fact about the Ehrenfeucht-Fraisse construction: 

Lemma 26.20. If m and '13 are denumerable if-structures and there is an w-
sequence for m, '13, then m ~ '13. 

PROOF. Let A = {a i : i E w} and B = {bi : i E w}. Let <1m: mEw) be an w
sequence for m, '13. Now we define sequences x E W A, YEw B by recursion. 
Suppose that XI and Yi have been defined for all i < 2m in such a way that 
<xo, ... , x2m-l)I2m<yo,···, Y2m-l) (note that this holds if m = 0). Choose i 
minimum such that ai rf= {xo, ... , X2m-l}, and let X2m = ai. Then choose j 
minimum such that <xo, ... , x2m)I2m+l<Yo, ... , Y2m-l, b) and set Y2m = b j • 

To define Y2m + 1 and X2m + 1 we interchange the roles of A and B. This completes 
the definition of X and y. Thus 

(1) 

Furthermore, by induction on i, 

(2) ai E {xo, ... , X2i} for all i E w, and bi E {Yo, ... , Y21+ I} 

for all i E w. Hence by 26.6(ii)(4), {(Xi' Yi) : i E w} is the desired isomor
~~. 0 

Lemma 26.21. Let if be a first-order language with no operation symbols and 
only finitely many relation symbols, and let K be a class of if-structures. 
Suppose that m is any cardinal, and that there is no finitely axiomatizable 
elementary class which has the same members of power m as K. Then for 
every nEw there are if-structures mE K and '13 E S.,2' '" K of power m and 
an (n + 1 )-sequence for m, '13. 

PROOF. Clearly we may assume that n =1= O. We shall apply 26.7. For each 
m E K let cp~ be the sentence 

/\ {cp E.:\~ : m 1= cp} 1\ /\ {""cp : cp E .:\~, m 1= ..., cp}, 

and let X be the sentence 

V {cp~ : mE K, and m has power m}. 

Note that K has members of power m, since otherwise K and Mod {cp 1\ ...,cp} 
would have the same members of power m, for any cp E Sent.,2', contradicting 
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our hypothesis. Since each member of K of power m is in Mod {x}, but by 
hypothesis the converse fails, choose SB E Mod {x} ~ K. From the construc
tion of x, SB F CP91 for some Q( E K. Clearly Q( F '" iff SB F '" for all '" E ~~, so our 
lemma follows by 26.7. D 

Now we come to the main lemma: 

Lemma 26.22. Let L be a general logic such that L ro S L but L $Inr L ro . 
Assume also that L satisfies the downward Lowenheim-Skolem theorem, in 
the sense that any L-elementary class with an infinite member has a denumer
able member. 

Furthermore, let 2 be afirst-order language with exactly one nonlogical 
constant, a unary relation symbol P. Then there is a class K of 2-structures 
satisfying the following conditions: 

(i) every member of K is infinite; 
(ii) for any Q( = (A, p91) E K, the set p91 is finite and nonempty; 

(iii) for every nEw ~ I there is a countable Q( E K such that [P91[ = n; 
(iv) K is L-projective. 

PROOF. By assumption there is an L-elementary class M, say in a language 
2', such that there is no finitely axiomatizable elementary class in the usual 
sense with the same infinite members as M. Then 

(I) there is no finitely axiomatizable elementary class N with the same 
denumerable members as M. 

For let N be any elementary class. Since L ro S L, we also have that N is an 
L-elementary class. Now let Q = (N ~ M) u (M ~ N). Then by 26. 19(v)(4), 
(5) we see that Q is an L, 2'-elementary class. Now by our choice of M, 
there is an infinite Q( E Q. Hence by the downward L6wenheim-Skolem 
theorem for L, Q has a denumerable member SB. Thus SB E (M ~ N) u 
(N ~ M), as desired in (I). 

Let the nonlogical constants of 2' be Ro, ... , Rm- b of ranks no,· .. , nm- l 

respectively. Let 2" be an expansion of 2' in which we have additional 
relation symbols 8 o, ... , 8m- l , To, Tb T2 , T3 , T4 of ranks no,·.·, nm- l , 

1,2,2,3,3 respectively. Let 2'" be the reduct of 2" to To. It suffices now to 
verify the conclusion of the lemma for 2'" in place of!l', since 2" is isomorphic 
to an expansion of 2 via a mapping that takes To to P [see 26. 19(i),(ii),(v)(2)]. 

Clearly there is a sentence cP of 2" such that for any 2" -structure Q(, 

Q( F cP iff the following conditions hold: 

(2) J3I =ft 0; 
(3) Til is a one-one function mapping A onto a proper subset of A; 
(4) n' is a linear ordering of T31 such that T3l has a n'-first element, while 

every member of J3I which has a J1I-successor has an immediate n'
successor; 
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(5) for every a E A, the relation fa = {(x, y) : (a, x, y) E Ts} is a function 
mapping n' into A; 

(6) if x is the 11'-first element of Tg, then there are a, b such that (x, a, b) E 

'fiI; 
(7) if (x, a, b) E 'fiI, x E n', y is the immediate 'JW-successor of x, and Z E A, 

then there exist c, d, u such that (y, c, d) E 'fiI,!cx = Z, fdx = u, while 
for every v E n', if v =I- x thenfcv = fav andfdv = It,v; 

(8) like (7), but with a and b interchanged in its conclusion; 
(9) if (x, a, b) E 11', i < m, and y = <Yo, ... , Ynt-l) is a sequence of 11-

predecessors of x, then fa 0 Y E R~ iff It, 0 Y E S~; 
(10) if (x, a, b) E'fiI and y and z are 11'-predecessors of x, then faY = faz 

ifffbY = hz. 

Next, let fflv be the reduct of ff" to the symbols So, ... , Sm-l' Clearly 
ff' is isomorphic to fflV, via the isomorphism g taking Rt to St for each 
i < m. Let Qo be the class of ff" -structures such that m r ff' EM; thus by 
26.19(v)(3), Qo is an L-elementary class. Let Ql = {mg : mE S,2" '" M}; by 
26.19(v)(4),(2), Ql is an L-elementary class. Hence so are Q2 = {m E S,2'" : 
m r ff' E Ql} and Qs = Qo n Q2' By the assumption Lro S; L, Mod {cp} is an 
L-elementary class. Let Q4 = Qs n Mod {cp}. Thus Q4 is also an L-elementary 
class. It is Q4 that we work with below, Qo through Qs being mentioned just 
to construct it; and the properties of Q4 that we need below are just the 
following: mE Q4 iff the following hold: 

(11) m I=cp; 
(12) m r ff' EM; 
(13) (m r ,9'IV)g_l E S,2" '" M. 

Now we shall verify that K = Q4 r fflll satisfi<:s the conditions (i)-(iv). 
Indeed, (i) is immediate from (11) and (3), and (iv) is obvious. Next we check 
(iii). To this end, let n be any positive integer. By (1) and Lemma 26.21 there 
are ff'-structures "B EM and <r E S,2" '" M, both denumerable, and an n
sequence <It: i < n) for "B, <r. We now construct an ff"-structure m whose 
ffm-reduct will satisfy (iii). We may assume that B = C = w (using 26.l9(v) 
(1)). Let A = w, R~ = R;a, S~ = Rf for all i < m. Set n' = n. Let 11 be 
anyone-one function mapping w onto a proper subset of w. Let 'JW be the 
natural ordering of ~. In order to define ~ and 'fiI, let g be a one-one 
function mapping w onto w n • Then we set 

~ = {em, x, y): m, yEw and x E nand gmx = y}; 
'fiI = {em, x, y) : mEn and x, yEw and 

<gxO, ... , gx(m - I)Im<gyO, ... , gim - I)}. 

In the definition of'J1l it is to be understood that (0, x, y) E 'fiI for all x, yEW. 
It is now a straightforward matter to check that m E Q4 (which is all that is 
needed to check (iii), since I~I = nand IA I = No). In fact, m r ff' = "B, 
and (m r ffIV)g-l = <r, so (12) and (13) hold. To check (11) we must look at 
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the conditions (2)-(10). Of these conditions, (2), (3), (4), (5), and (6) are 
obvious. Now assume the hypotheses of (7). Thus 

(gaO, ... , ga(X - 1»Ix<gbO, ... , gb(X - I», 

so there is a U E w such that <gaO, ... , ga(x - 1), Z)/X+1<gbO, ... , gb(X - 1, u). 
Choose c, dEw so that gc = (ga): and gd = (gb);. Then the conclusion of 
(7) is clear. Condition (8) is checked similarly. Next, assume the hypothesis 
of (9). Thus (gaO, ... , ga(x - 1»Tx<gbO, ... , gb(X - I». By 26.6(ii)(3),(4), it 
follows that for any atomic formula cp' with variables among Vo, .. . , Vx-1 
we have ~ F cp'[gaO, ... , gaCx - 1)] iff sa F CP'[gbO, ... , gb(X - 1)]. Hence, 
noting that It = gt for all t E w, 

iff (gaYo, .. . , gaYni-1) E R~ 
iff ~ F R;vyo·· ·VY(ni-1)[gaO, ... , ga(x - I)] 
iff sa F R;vyo·· ·VY(nf-1)[gbO, ... , gb(X - I)] 
iff (gbYO, ... , gbYni -1) E Rj8 
iff/b 0 Y E Rj8. 

Thus (9) holds. Finally, (10) is proved just like (9). We have now checked 
condition (iii) of our lemma. 

It remains only to verify condition (ii). Suppose, to the contrary, that we 
have a member sa of Q4 such that T~ is infinite (note, by (11) and (2) that 
~ -# ° always). Let .!£'V be an expansion of .!£''' by adjoining a new binary 
relation symbol T5. Let Q5 be the elementary class of .!£'v-structures ~ such 
that 'J1I is a one-one function mapping ~ onto a proper subset of~. Since 
Leo s L, Q5 is also an L-elementary class. Let Q6 = {~E Q5 : ~ t .!£''' E Q4}. 
Clearly [by 26.19(v)(3),(5)] Q6 is an L-elementary class. For any ~ E Q6 we 
have properties (11)-(13) as well as 

(14) 'J1I is a one-one function mapping ~ onto a proper subset of~. 

Now clearly sa can be expanded to give us a member of Q6, so, in particular, 
Q6 has an infinite member. By the downward Lowenheim-Skolem theorem 
for L, let ~ be a denumerable member of Q6. Let ~ and !!JJ be the two .!£"
structures ~ = (A, R~)I<m and!!JJ = (A, Sn<m. By (12) and (13) we have 

(15) ~ E M and !!JJ E S3" ,.., M. 

But we shall now apply Lemma 26.20 to show that ~ ~ !!JJ. In view of 26. 19(v), 
(1), this is the contradiction we have been seeking. 

To apply 26.20, first, in view of (11) we may choose I as in (5). Now ~ 
is infinite by (14), so by (4) we can choose for each nEw a member an of 
~ which has exactly n T2-predecessors. Now for each nEw we set 

(16) In = {(x, y) : x E n A, yEn A, and there exist c, dE A such that (an, c, d) E 

11 and Vi < n (!cal = XI and Idal = YI)}. 

Thus to apply 26.20 and hence finish the proof it remains only to check that 
(In: nEw) is an w-sequence for ~, !!JJ. Conditions 26.6(ii)(I),(2) are obvious. 
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Now assume that xlpy and bEe (the case bED is treated similarly). Thus 
by (16) there exist c, dE A such that (ap, c, d) E'J1i and Vi < P (fcai = Xi and 
fdai = Yi).1t follows from (7) that there are c', d' E A such that (ap+ 1, c', d') E 
'J1iJc,ap = b, while for any v E R~ different from ap we havefc,v = fcv and 
fd'v =fdv, Hence <xo,···, XP-l> b)Ip+ 1<Yo, ... , Yp-1Jd,ap), as desired in 
26.6(ii)(3). Finally, assume that pEw, X, yEP A, xlpY, and Fvrp' ~ {vo, . .. , vp_1}, 
where rp' is an atomic formula. Choose c, d as in (16). If rp' is Vi = Vj, then 

<r FVi = vj[x] iff Xi = Xj iff!cai = !caj 
iff fdai = fdaj (by (10)) 
iff .@ FVi = vj[y] similarly. 

If rp' is Riv jO' .. V j(ni _ 1) with i < m, then 

<r F rp'[x] iff <XjO, ... , Xj(ni -1» ERr 
iff <XjO, ... , Xj(ni -1» E RT£ 
iff <fcajo, ... ,fcaj(ni -1» E RT£ by (16) 
iff <fdajo, ... , fdaj(ni -1» E RT£ by (9) 
iff.@ F rp'[y] similarly. 

The following form of this lemma will be needed. 

o 

Lemma 26.23. Let L be a general logic such that L ro ~ L but L cj;. L ro• Assume 
also that L satisfies the downward Lowenheim-Skolem theorem, in the sense 
of26.22. Let 2 be as in 26.22. Then there is a class K of 2-structures satisfy
ing the conditions (ii)-(iv) of 26.22. 

PROOF. By 26.22 we may assume that L ~ inr L ro• Let K be an L-elementary 
class which is not a finitely axiomatizable elementary class in the usual sense. 
Then there is a finitely axiomatizable elementary class L with the same 
infinite members as K. Then 

(1) 
for every mEw there is an n > m such that K and L do not have 
the same members of power n. 

For, otherwise choose mEw such that for all n > m, K and L have the same 
members of power n. Say L = Mod {rp}. For each n ::; m, let Mn be a set of 
members of K containing exactly one member from each isomorphism type 
of members of K of power n. For each QI of power ::; n let .p21 be a sentence 
whose models are exactly all structures isomorphic to QI. Then the sentence X: 

(3 at least m + 1 things, and rp) A /\ V .p21 
nSm ~El\ln 

characterizes K, i.e., K = Mod {X}, which is impossible. Thus (1) holds. Let 
2 be the language ofK, let 2' be an expansion of 2 by adjoining a new unary 
relation symbol P, and let 2" be the reduct of 2' to P. It suffices to verify 
our desired conclusions for 2" in place of 2 (by 26.19(v)(2)). Let rp be the 
formula 3vo(pvo). Then Mod {rp} is an L, 2'-elementary class, since L ro ~ L. 
Set 

(2) M = Mod {rp} n «K '" L) u (L '" K)). 
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Then M t.P" satisfies (ii) and (iv) of 26.22, obviously. Given nEw'" 1, 
choose by (1) a structure ~ E (K '" L) u (L '" K) with IAI ~ n, and let>B be 
any expansion of ~ with I~I = n. From (2) it is clear that >B EM. Thus 
26.22(iiO holds. 0 

Now we can prove the first main theorem of Lindstrom. 

Theorem 26.24 (Lindstrom). Let L be a general logic such that Leo S; L. 
Assume that L satisfies the downward Lowenheim-Skolem theorem and the 
countable compactness theorem; that is, assume the following conditions: 

(0 any L-elementary class with an infinite member has a denumerable 
member; 

CU) if .% is a countable collection of L-elementary classes and n :F #- 0 
for every finite :F S; .%, then n .% #- O. 

Then Leo == L. 

PROOF. Assume the hypothesis, but suppose that L $ Leo. By Lemma 26.23, 
with .P as in 26.22, there is an expansion .P' of.P and an L-elementary class 
Ko of 'p'-structures such that Ko t.P satisfies (ii)-(iv) of 26.22. For each 
nEw'" llet 

Kn = MOd{3vo ... 3Vn_l /\ [""(Vt=Vf) A PVt A PVf]}' 
t<!<n 

Then for each mEw, nnsm Kn #- 0 by 26.22(iii), but nn<w Kn = 0 by 
26.22(;;), contradiction. 0 

The notation used in this theorem as well as its proof is a little bit illegal. 
Since L-elementary classes are proper classes if they are nonempty [by 
26.19Cv)(I)], we cannot really speak of a collection of L-elementary classes. 
But each L-elementary class is determined by a single object cp, so we could 
make these formulations legal by talking about the cp's instead. Thus 26.24(;;) 
could be reformulated as follows: 

Let.P be a first-order language, let CoP, r, !i8, r/s) E L, and let T be a count-. 
able subset of r. Suppose that for each finite subset U of T there is an ~ 
with ~ I=L,2' cp for each cp E U. Then there is an ~ such that ~ I=L,2' cp for each 
cp E T. 

We think that the formulation actually given in 26.24 is clearer from an 
intuitive point of view. 

The second theorem of Lindstrom depends upon an effectivization of our 
notion of general logic: 

Definition 26.25 
(i) A weak eJfectivized general logic is a collection L of quintuples 

CoP, r, ~, cp, h) such that CoP, r, ~,cp) satisfies the conditions of 26.19(iv), 
h depends only on oP, and h is a one-one function mapping r into w. 
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(ii) An efJectivized general logic is a weak effectivized general logic L 
such that the following conditions hold: 

(1) There is a unary recursive function CompL such that if (,P, r, Qt, cp, h) E 

Land ff is a reduct of ~n (see 14.22), then for any cp E r, CompL hcp = 

hif; for some if; E r such that Modz .L If; = Sz ~ Mod~L cp; 
(2) There is a binary recursive function IntL such that if ,P, I', h are as in 

(1) and cp, if; E I', then IntL (hcp, hif;) = hX for some X E r such that 
Modz,L X = Modz,L cp n ModzL if;; 

(3) The set {hcp : (,P, I', Ql, if;, h) E L, cp E r, ff is a reduct of ~n} is recursive. 

(iii) L~~r is the set of all quintuples (,P, Sentz, Ql, cp, h) such that 
(2, Sentz, Q(, cp) is as in 26.l9(viii) and for some fI' (,P,,1) is an effectivized 
first-order language and h =.1+ I Sentz; if ff is a reduct of ~m then we 
insist that !J is the restriction of the G6del-numbering function of ffun . 

Clearly then L~~r is an effectivized general logic. 
(iv) If Land L' are effectivized general logics, we write L <::::: eff L' 

provided that L <::::: L', and there is a unary recursive function Transu ' such 
that if (,P, r, Qt, cp, h) E L, (,P, I", Ql', cp', h') E L' and ff is a reduct of ffun' 
then for any if; E r, Transw hif; = h'x for some X E r' such that Modz .L if; 
= Modz,L' X. We write L =eff L' if L <::::: err L' <::::: err L. 

(v) An effectivized general logic L is recursively enumerable provided 
that the following set is r.e.: 

{hif; : (oP, r, Qt, cp, h) E L, ff a reduct 'of ~m if; E r, and Qt i=L,Z if; 
for all Ql E Sz}. 

Note that the functions CompL, IntL, and Transw above do not depend 
on the particular language!£'. Also note for later reference that under the 
assumptions of (ii) a kind of disjunction can be formed. Namely, there is a 
binary recursive function VnL such that if cp, if; E r, then VnL(hcp, hif;) = hX 
for some X E L such that 

Modz,L X = Modz,L cp U Modz,L tjJ. 

Namely, for any i, JEW let 

VnL (i,j) = CompL (IntL' (CompL i, Compd». 

The last clause of 26.25 says, roughly speaking, that a logic is recursively 
enumerable if its set of universally valid sentences is (uniformly) recursively 
enumerable. 

The main theorem on effectivized general logics can now be proved: 

Theorem 26.26 (Lindstrom). If L is a recursively enumerable efJectivized 
general logic, L~~r <::::: eff L, and L satisfies the downward Lowenheim-Skolem 
theorem, then L~~f =eff L. 

PROOF. First we show that L <::::: L ro• Assume not. Let ff be a language with 
only one nonlogical constant, a unary relation symbol P. Then by 26.23 
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there is an expansion ff" of ft', still with only finitely many relation symbols 
and no operation symbols, and there is an L, ff'1-elementary class ModL,9".p, 
such that the following conditions hold: 

(1) For any Q! E Modz',L .p, pQl is finite and nonempty. 
(2) For every nEw ~ 1 there is a countable Q! E Modz',L.p such that 

IPQlI = n. 

By 26.19(v)(2) we may assume that ff" is a reduct of .Pun. Let ff'" be an expan
sion of 'p' by adjoining a binary relation symbol R, with ff'" still a reduct of 
~n' Say the symbols of ff'" are So, ... , Sm -1' R, P, of ranks no, ... , nm -1, 2, I 
respectively. By 26.19(iv)(3) let X be an L, ff'"-sentence such that 

(3) Modz",L X = {Q! E Sz" : Qt I ff" E Modz',L .p}, 

Let ff"11 be the reduct of ff'" to R. We recall the following fact about ff'1II 
which is a consequence of 16.52 and 15.32. 

(4) ji'+*{8 E Sentz", : 8 holds in all finite ff'1II-structures} is not Le. 

For each formula 8 of ff'1II let 58 be obtained from r.p by relativizing all quanti
fiers to P (replacing VVi by VVi(PV, -+ ). Clearly the formation of 58 is an 
effective procedure, so there is a recursive function 5' such that 5'#+ 8 = #+ 58 
for every formula 8 of ff"II. For any ff'"_structure Q! with pQI i= ° let Q!P be 
the ff'm-structure (PQI, RQI n2 pQI). By induction on 8 one easily shows that 
for any ff'"_structure Q! with pQI i= 0, any x E wpQl, and any formula 8 of ff'11I, 

Q! 1= s8[x] 

Hence for any sentence 8 of ff'"1 and any ff'"_structure Qt with pQl i= ° we 
have 

(5) Q! 1= 58 iff Q! PI= 8. 

Now for any x E w let 

tx = UnL (CompL ?+x, TransL(fO,eff),L s'x). 

We claim 

(6) for any sentence 8 of ff'm, 8 holds in all finite ff"II_structures iff t?+ 8 = h.p 
for some .p E rand 'v'Q! E Sz-(Q! I=L.Z- .p), where ('pili, r, sa, f-L, h) E L for 
some sa, f-L. 

By 26.25(iv), this will contradict (4) (cf. 6.10). To establish (6), note from the 
construction of t that for any sentence 8 of ff'm, t?+ 8 has the form ha, where 

(7) Modz".L a = (SZ" '" Modz".L X) U ModZ " {58}. 

Assume that Q! 1= z" ,L a for all ff'"_structures Q!. If sa is any finite ff'''' -structure, 
we can, by (2), find an ff'"_structure Q! such that Q! I ff" 1= Z' ,L .p and Q!P = sa. 
Thus by (3) Q! E Modz",L X, so the assumption Q! 1= Z",L a yields via (7) that 
Q! 1= 58. Hence by (5) sa 1= 8. Similarly reasoning gives the converse of (6). 
Hence (6) holds, and a contradiction has been reached. Hence L c:; L fo ' 
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Now we show that L S; eff L~~f. Let f be a recursive function with range 
j1+* Sent.2'(Un)' Now for any x, yEw we set 

k(x, y) = UnL(lntL (x, TransL(fO,eff),Lfy), IntL (CompL x, 
CompL TransL(fo,eff ),L fy))· 

Thus k is a recursive function, and if (2, r, m, ((y, h) E L, .p E r, iF is a reduct 
of Y"m nEw, andfn = j1+X, then k(h.p, n) = hB for some BE r such that 

Mod.2',L B = (Mod.2'.L.p n Mod.2',L(fo,e!f) x) U [(S.2' ~ Mod.2',L.p) 
n (S.2' ~ Mod.2',L(fo,effl x)]. 

Thus 

(8) m 1= .2',L B for all mE S.2' iff Mod.2',L .p = Mod.2',L(fo,eff) X. 

Now by the assumption of the theorem and 26.25(iv), let I be a recursive 
function whose range is the set indicated there. Then our desired function t 

showing that L S; eff L'i~f is defined as follows: 

tx = 0 if x is not in the set of 26.25(i)(3), 
tx = f(/1-n(/(n)o = k(x, (n)l))h if x is in the set of 26.25(i)(3). 

In fact, t is defined by cases over a recursive set by 26.25(i)(3). The /1- operator 
is always applicable, by (8) and the fact that L s L fo ' So, t is recursive, and 
the preceding facts also show that it works as desired. 0 

The last main topic of this chapter is the theorem of Keisler and Shelah 
characterizing elementary equivalence and hence elementary classes. The 
theorem, 26.42 below, is that m =ee Q3 iff some ultrapower of m is isomorphic 
to some ultra power of Q3. There is no restriction on the language here as there 
is in the Ehrenfeucht-Fraisse characterization. The theorem was first proved 
assuming GCH by Keisler in 1961; his proof was relatively short, being a 
fairly natural back-and-forth argument. Shelah in 1972 showed that the GCH 
is not needed, using an entirely different and much more intricate argument. 
The argument of Shelah, given below, is based upon the idea of introducing 
set-theoretical combinatorial conditions in the construction of ultrafilters, an 
idea first introduced in a simpler setting by Kunen. 

Recall the notion of a filter from 18.15. The following proposition is 
obvious and justifies the definition given after it. 

Proposition 26.27. If.fF is a nonempty collection of filters over I, then n .fF 
is a filter over l. 

Proposition 26.28. If K is a collection of subsets of I, we set 

.1lj:K = n {F: K s F, F is a filter over I}; 

.1lj:K is called the filter generated by K. 
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The following three propositions are easy to establish, but are quite useful 
later on. We shall use them without specific reference to them. 

Proposition 26.29. If K is a nonempty collection of subsets of I, then for any 
X ~ I the following conditions are equivalent: 

(i) XE~K; 
(ii) 3mEw ~ 13YE mK(Yo n···n Ym - 1 ~ X). 

Proposition 26.30. Let F be a filter over I and let Z ~ I. Then for any X ~ I 
the following conditions are equivalent: 

(i) X E ~(F u {Z}); 
(ii) 3 Y E F( Y n Z ~ X). 

Proposition 26.31. If K is a collection of subsets of I, then the following 
conditions are equivalent: 

(i) K has the finite intersection property; 
(ii) 0 ¢=~K. 

It is convenient to have a special notation for the following operation on 
cardinals: 

Definition 26.32. For any infinite cardinal m let mil be the least cardinal n 
such that mn > m. 

Let us note a few facts about this operation; they will be used below with
out proof. Since mn = m for n finite but mm > m, we clearly have No ::; 
mil ::; m. Obviously Ng = No. If GCR is assumed and m is regular, then mil = 

m. We have N~ = No, since 

Again assuming GCR, mil = cf m for all infinite m, where cf m is the smallest 
cardinality of a family of ordinals < m with union m. It is consistent with 
ZFC to assume that Nq = No, or that Nq = N1 • The main fact used below is 
that No ::; mil ::; m. 

The following definition is the main one for all that follows. It expresses 
the combination of some set-theoretical conditions with the existence of a 
filter. 

Definition 26.33. Let m and n be cardinal numbers, with n infinite. A triple 
(F, G, D) is m-consistent over n provided that the following conditions hold: 
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(iii) D is a filter over n, and D is generated by a set of cardinality ~ m; 
(iv) for all p < n8, for all one-one f E P F, for all IX E P(n8), for all nEw, 

for all one-one hE RF with Rng h n Rngf = 0, and for all k ERG, 
the following set is not in D: 
n "'" {fJ < n: 'tIy < p(f.tfJ = IXy) and 'tim < n(hmfJ = kmfJ)}. 

To understand this definition a little bit, think of the members of D as 
being "large," IFllarge, and G as a small set. The set in braces in 26.33(iv) 
is then to be considered large. Thus intuitively speaking the members of F 
take on many common values and agree with finitely many members of G 
at a large number of places. Note that D is a proper filter because of condition 
(iv) (with p = f = IX = n = h = k = 0). The notion will be used as follows. 
Given ~ =ee m, the cardinal n will be chosen large relative to IAI, IBI, 
and I Fmla9' I. Then we shall construct a long sequence of triples m-consistent 
over n, in which we are only really interested in the third component, the filter 
over n. The first triple has IFI very large, G = 0, m = 2, and D = {n}. As 
the construction proceeds, D is gradually extended to an ultrafilter over n 
with some desirable properties; F is reduced in size, G increases, and m 
increases. The final ultrafilter Dover n will be such that n~/D ~ "mID. The 
sets F, G, m serve only an auxiliary purpose, to obtain our desired properties 
of D. What these "desired properties" are will perhaps become clear as we 
proceed. The main parts of the construction are expressed in several lemmas. 
The first few lemmas are purely set-theoretical. We begin with the lemma that 
enables the above construction to be started. 

Lemma 26.34. Let n ~ No. Then there is an F s n(n8) with IFI = 2n such that 
(F, 0, {n}) is 2-consistent over n. 

PROOF. Since G is empty, we really only have to find a "big" F whose 
members take on many common values; in our case the condition 26.33(iv) 
simply reads 

(1) for all p < n8 and for all one-one g E PF and all IX E P(n8) there is a 
fJ < n such that 'tIy < p(gyfJ = IXy). 

The other conditions are trivial. Let Hbe the set of all pairs (A, h) such that: 

(2) As n, and IAI < n8, 

(3) h is a function, Dmn h s SA, IDmn hi < n8, and Rng h s n8 . 

Now the number of sets A satisfying (2) is 

~ nP ~ ~ n (by definition of n8) 

p<nll p<nll 

~ n·n8 = n (since n8 ~ n). 

For each such A, the number of X s SA with IXI < n8 is at most 

~ (2 IAI )P ~ ~ (nIAI)P ~ ~ n 
p<nll p<nll p<nil 

~ n·n8 = n (since IAI," < n8). 
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And for each such A and X, the number of functions h mapping X into nil 
is at most (nil)IXI :-0; nixi :-0; n. Thus IH I :-0; n. But clearly ({a}, {({a}, O)}) E H for 
each a < n, so actually I H I = n. Hence we may write 

Now for each B s; n define fB : n -0> nil as follows. For any a < n, 

if Aa n B E Dmn ha, 

otherwise. 

Let F = {fB: B s; n}. We claim now that (F, 0, {n}) is 2-consistent over nand 
IFI = 2n, as desired in the lemma. To prove this, first note: 

(4) if B, C s; nand B =f. C, thenfB =f. fe. 

For, say B $ C, say a E B ~ C. Then ({a}, {({a}, I)}) E H, by (2) and (3), so 
there is a f3 < n such that Ae = {a} and he = {({a}, I)}. Thus Ap n B = 
{a} E Dmn he, so fBf3 = hP(Ae n B) = 1. Clearly, though, fef3 = 0. Hence 
fB =f. fe, and (4) holds. 

From (4) we know that IFI = 2n. To check (1), which is all that remains, 
assume its hypothesis. Say ge = fBfJ for each f3 < p. Since g is one-one, the 
function B in the subscript off here is also one-one. Hence whenever f3 < 
y < p we can choose 15fJy E BpllBy (the symmetric difference of Bp and By). 
Let C = {15fJy : f3 < y < p}. Thus lei < nil, and Bp n C =f. By n C whenever 
f3 < y < p. Let I be the function with domain {Bp n C: f3 < p} such that 
I(Bp n C) = af3 for each f3 < p. Thus by (2) and (3), (C, I) E H; say (C, I) = 
(A p , hfJ). Then for every y < p we have 

o 

The following obvious lemma will be used without specific citation: 

Lemma 26.35. If (F, G, D) is m-consistent over nand F' s; F, G' s; G, and 
m :-0; m', then (F', G', D) is m'-consistent over n. 

The next lemma will be used at limit stages in our construction: 

Lemma 26.36. Let 8 be a limit ordinal <m+ and suppose that (Fp, Gp, Dp) 
is mp-consistent over n for each f3 < 8. Also assume that if f3 < y < 8 then 
Fp 2 Fy, Gp S; Gy , and De S; Dy. Set Fo = ne<o Fe, Go = UP<o Ge, 
Do = Ue<o De, and ma = (Up<a me)·I!)I· 

Then (fa, Ga, Da) is ma-consistent over n. 

PROOF. The conditions (i)-(iii) of 26.33 are obvious. Now assume the 
hypothesis of 26.33(iv), but assume that the conclusion fails: 
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Say that this set is in DB' where e < S. Clearly k E nG~ for some g < S. Let 
T) = e U g, which is the maximum of e and g. ThenfE PF~, h E nF~, k E nG~ 
and the set of (1) is in D~, contradicting the fact that (f~, G~, Dn) is m~
consistent over n. 0 

The following lemma enables us to add to the set G in certain circum
stances. 

Lemma 26.37. Let n ~ No, and assume that n8 ~ m ~ No. Suppose that 
(F, 0, D) is m-consistent over nand IFI > m. Suppose that G is a finite 
subset ofUp<no np. 

Then there is an F' £ F with IF'I ~ m such that (F'" F', G, D) is 
m-consistent over n. 

PROOF. Let G = {go, ... , gn}, where g is one-one. Suppose there is no F' 
of the kind indicated. Then we shall define p E m+(n8), fE Pp<m+PPF, X E 
Pp<m+ PP(n8), q E m+ w, hE Pa<m+qpF, and k E Pp<m+qpG by induction. Sup
pose that {3 < m+ and py, /y, Xy, qy, hy, and ky have been defined for all 
y < {3. Let F' = {J"S : y < {3, S < py} U {hym : y < {3, m < qy}. Clearly 

IF'I ~ L Ipyl + L No ~ m·n8 + m.No ~ m. 
y<P y<P 

Hence by our supposition, (F'" F', G, D) is not m-consistent over n. This 
means that we may choose a pp < n8, a one-onefp E PP(F '" F'), a XP E PP(n8), 
a qp E w, a one-one hp E qP(F '" F') with Rng h8 n Rngfp = 0, and a k p E qPG 
such that n '" Ap E D, where 

Ap = {S < n: 'rIy < pp(fP}S = Xpy) and 'rim < qp(hpmS = kpmS)}. 

This completes the definition of p, J, x, q, h, and k. 
Since k E Pp<m+ qPG, we can choose for each (3 < m+ and m < qp an 

integer ipm ~ n such that k8m = gl(p,m)' Since (F, 0, D) is m-consistent over n, 
by 26.33(iii) write D = §'ff{Jo : {3 < m}, where {Jp : {3 < m} is closed under 
intersections. Since n '" Ap E D for each {3 < m +, choose a E m + m such that 
JaO £ n '" Ap for every {3 < m +. Now 

m+ = U U U {{3 E m+ : ap = y, Po = /L, qp = s}, 
y<m Jl<no sew 

and all of m, n8, w are ~ m, so there exist Yo < m, /Lo < n8 and So E w so 
that IBI = m+, where 

B = {{3 E m+ : ap = Yo, Po = /Lo, qp = so}. 

Let if; be a one-one function mapping m + onto B. Now since G is finite and 
G £ U«nO nT, there is a TO < n8 such that gm E nTo for all m ~ n. Let 
{<eg, ... , e~> : {3 < Tl} be an enumeration of all (n + I)-termed sequences of 
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ordinals ::;; TO (thus TI ::;; TO + ~o, and TI = TO if TO is infinite; note that 
TI < no). Now let 

C = {o < n : V{3 < TI Vy < fLo(f"'B.yO = X"'fJ.y) and 
V{3 < TI '1m < So(h"'B.mo = 8~"'B.mi)}' 

Note that if {3, {3' < Tb y, y' < fLo, and (f3, y) ¥- (f3', y'), thenf"'B.y ¥- f"'8'.y" 
Further, if {3, {3' < TI, y < fLo, and m < So, then f"'8.y ¥- h8'm' And if {3, 
{3' < Tb m, m' < So, and ({3, m) ¥- (f3', m'), then h"'B.m ¥- h"'B'.m" Since ITII· 
IfLol + ITII'lsol < no, and since (F, 0, D) is m-consistent over n, it follows 
that n ~ C ¢ D. In particular J yO $ n ~ C, so we may choose 0 E J yO n C. 
Choose f3 < TI such that <goo, ... , gno) = < 8g, ... , 8~). Then since P"'B = fLo 
and 0 E C we have for any m < So 

h"'8.mo = 8BI/IB.m) = gi("'B.m)o = k"'B.m o. 

Since q"'B = So, the fact that 0 E C yields further that 0 E A"'B' But a"'8 = Yo, 
so J yO = Ja "'8 s:: n ~ A "'fJ; but 0 E J yO , contradiction. 0 

We now extend this lemma slightly: 

Lemma 26.38. Let n ::::: ~o. Assume that G s:: Up<niJ np and that no + IGI :::; 
m ::::: ~o. Suppose that (F, 0, D) is m-consistent over n, with IFI > m. 

Then there is an F' s:: F with IF'I :::; m such that (F ~ F', G, D) is m
consistent over n. 

PROOF. Let 1= {H: H s:: G, H finite}. For each HE I choose FH s:: F by 
the preceding lemma so that IFHI :::; m and (F ~ FH , H, D) is m-consistent 
over n. Then clearly UHEl FH s:: F, IUHEl FHI :::; m, and (F ~ UHEl FH, G, D) 
is m-consistent over n. 0 

The next, very important, lemma enables us to slowly extend D to an 
ultrafilter. 

Lemma 26.39. Suppose that (F, G, D) is m-consistent over nand r s:: n. Then 
thereisanF's:: Fwith IF - F'I < no such that either (F', G, .fF?(D U {r})) 
or (F', G, .fF ?(D u {n ~ r})) is m-consistent over n. 

PROOF. Let Dl = .fF?(D u {r}) and D2 = .fF?(D u {n ~ r}). Assume that 
(F, G, D I ) is not m-consistent over n. This means that there is a P < no, a 
one-onefE PF, an a E P(no), an nEw, a one-one hE nFwith Rng h n Rngf = 
0, and a k E nG such that n ~ B E D1 , where 

B = (f3 < n: Vy < pCfr{3 = a y) and '1m < n(hm{3 = k m(3)}. 

Choose!1 ED so that r n!1 s:: n ~ B (using 26.30). Now set F" = Rngfu 
Rng h. Clearly IF"I < no, so it suffices now to show that (F ~ F", G, D 2 ) is 
m-consistent over n. Suppose not: then there is a p' < no, a one-one 
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I' E "(F '" F"), an (x' E "(n8), an n' E w, a one-one h' E n'(F '" F") with 
Rng h' n Rngf' = 0, and a k' E n'G such that n '" C E D 2 , where 

C = {fi < n: 'tIy < p'(j;fi = (x~) and 'tim < n(h~fi = k~fi)}. 
Choose 0 E D so that (n '" r) n 0 S; n '" C. Thus Ll n 0 S; n '" (Bn C), 
so n '" (B n C) E D. But this clearly contradicts the fact that (F, G, D) 
m-consistent over n. 0 

An easy argument gives a generalization of the lemma just proved: 

Lemma 26.40. Suppose that (F, G, D) is m-consistent over n and that r" s; n 
for every (X < m. Assume that n8 :::; m. Then there exist F' S; F with 
IF", F'I :::; m, and D' 2 D such that (F', G, D') is m-consistent over nand 
for every (X < m, either ret E D' or n '" ret ED'. 

PROOF. We define <H" : (X < m) and <E" : (X < m) by transfinite recursion. 
Suppose Hp and Ep have been defined for all fi < (x, where (X < m, in such a 
way that Hp S; F, IHpl :::; m, (F'" H p, G, Ep) is m-consistent over n, and 
Hp S; Hy and Ep S; Ey whenever fi < y < (x. Then by Lemma 26.36, 
(F'" Up<a H p, G, Up<" Ep) is m-consistent over n. By 26.39 there is an 
F' S; F", Up<a Hp with I(F '" Up<a Hp) '" F'I < no such that (F', G, E,,) is 
m-consistent over n, where either E" = ~.?(Up<a Ep u {ra}) or E" = 
~.?(Up<a Ep u {n '" ra}). Let Ha = Up<a Hp U «F'" Up<a Hp) '" F'). 
Note that F", H" = F', so the induction assumptions are met and the 
definition of Hand E is complete. Since n8 :::; m, an argument by transfinite 
induction shows that IHal :::; m for each (X < m. Applying 26.36 again, we see 
that (F '" Ua<m H", G, Ua<m E,,) is m-consistent over n. Clearly IU,,<mHal 
:::; m and the conditions of the lemma are met. "D 

The next lemma, whose formulation is somewhat involved, essentially 
ensures the desirable properties of the final ultrafilter which yield the 
isomorphism between the ultrapowers. 

Lemma 26.41. Assume that n ;:::: ~o and n8 :::; m. Suppose that (F, 0, D) is 
m-consistent over n, and IFI > m. Let Q1 be an f£'-structure, IAI < no. 
Suppose jL < m+, a: jL x W x n --? A, and fP E ILFmla£>. Suppose that for 
every finite M S; jL there is a v < jL such that for all x E A and all 0 < n 
the following condition holds: 

(i) Q11= fPv[<aVjO : j < w)~] ifffor all a E M Q11= fPcr[aVjO :j < w)~]. 

Furthermore, assume that for every J) < jL we have 

(ii) {o < n: Q11= (3vofPv)[<aVjo:j < w)]} ED. 

Under all of these assumptions it follows that there are bEn A, F' S; F 
and D' 2 D such that IF", F'I :::; m, the triple (P', 0, D') is m-consistent 
over n, and for every v < jL we have 
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Note that the essence of this lemma is that in the final ultraproduct certain 
small sets of formulas can be satisfied simultaneously by the same elements, 
a general phenomenon which will be investigated more thoroughly in the next 
two sections. The condition (i) of 26.41 is rather innocuous, saying roughly 
that the system of formulas rp is closed under conjunction. 

PROOF OF 26.41. Let A = {cy : y < p}, where p < no. For each I' < fL let 

Bv = {o < n: 2! to (3vorpv)[<aVjo :j < w)]). 

Thus Bv E D by 26.41 (ii). Now for every I' < fL choose gv : n --+ p such that 
for every 0 E Bv we have 2! to rpv[ <avl6 : j < w )~9V6]. Let G = {gv : I' < fL}. Since 
(F, 0, D) is m-consistent over nand IFI > m, by Lemma 26.38 choose a 
nonempty Fl s; F such that IFll ::; m and (F ~ Fb G, D) is m-consistent 
over n. FixfE F ~ Fl. Let 

and for each 0 < n let 

h6 = cr6 if fl < p 
h6 = Co otherwise. 

For each I' < fL let 

and let D' = §!AD U {Cv : I' < fL}). We claim, now, that (F', 0, D') is m
consistent over n, and hence the lemma holds. Since fL < m +, clearly D' is 
generated by ::; m elements. Suppose that (F', 0, D') is not m-consistent over 
n. Then there is a g < no, a one-one h E ~F', and an ex E ~(no) such that 
n ~ E E D', where 

(1) 

Now by (i) it is clear that if M is any finite subset of fL then there is a I' < fL 

such that n"EM C" = Cv• Hence from our assumption n ~ E E D' and by 
the definition of D', there exist XED and I' < fL such that X n Cv S; n ~ E. 
Hence 

In fact, let 0 E X n Bv. Thus 2! to rpV[<aVJ6 :j < W)~9Y6]. Assume that 0 is in the 
set in braces in (2). In particular, 0 E E andfl = gvo < p, so h6 = Cr6 = Cgv6 . 
So 2! to rpv[<avJ6 :j < W)g6]; but this contradicts the fact that X n Cv S; n ~ E. 
Hence (2) does hold. But Bv E D, so the right-hand side of (2) is in D. This 
contradicts the fact that (F ~ F l , G, D) is m-consistent over n. 0 

Now we can give the promised ultrapower characterization of elementary 
equivalence: 
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Theorem 26.42 (Keisler, Shelah). The following conditions are equivalent: 

(i) m =ee '=B; 
(ii) there exist I and D such that Im/D ~ I'=B/D. 

PROOF. Obviously (ii) => (i), so we begin immediately with the hard direc
tion (i) => (ii). Assume that m =ee '=B. Let 

n = 2IAI+IBI+IFmla.2'l. 

The set I of the theorem will be this cardinal number n. Note that n lAI = 
n lBI = n lFm1a.2'1 = n, and hence [A [, [B[, [Fmla.2'[ < no. Let" A = {aa : a < 2"} 
and "B = {ba : a < 2"}. Now the set 

{CO, aa) : a < 2"} u {(l, ba) : a < 2"} u {(2,~) : ~ S n} 

has cardinality 2"; let R be a one-one function from 2" onto this set, with 
Ro = (0, ao). 

Now we shall define by recursion on y :$ 2" a set of functions F y , a filter 
Dy over n, and a relation Hy such that the following conditions hold: 

(1) (Fy,O, Dy) is (n + [y[)-consistent over n, [Fo[ = 2", Do = {n}, [Fa ~ Fy[ :$ 

n + [y[, and for any f1 < y, Fp 2 Fy, and Dp S Dy; 
(2) Hy s "A x "B, [Hy[ :$ [y[, and for any f1 < y, Hp SHy; 
(3) if cjHA for all i < wand cp is any formula, then {o < n: m 1= cp[<cjo : 

i< w)]}EDyiff{o < n:'=Bl=cp[<djo:i< w)]}EDy; 
(4) if C E "'Dmn Hy and cp is any formula, then either {o < n: m 1= cp[<cjo : 

i < w)]} E Dy or {o < n: m 1= -'cp[<cjo: i < w)]} E Dy; 
(5) if Ry = (0, aa), then aa E Dmn H y+ 1 ; 

(6) if Ry = (1, ba), then ba E Rng HY+l; 
(7) if Ry = (2, ~), then ~ E DY+l or n ~ ~ E DY+l. 

The importance of these various conditions for our construction should be 
fairly clear. Condition (3) assures that in the final ultrapowers Hy-related 
elements will have the same first-order properties, while (5) and (6) assure 
that the limit of the relations Hy will induce a function with domain" A/ D 
and range" B/ D. Condition (7) allows a slow extension to an ultrafilter. 
Condition (4) has a technical character, while (1) embodies the combinatorial 
conditions that make the construction possible. Note that the construction 
again has a back-and-forth character. 

Suppose that Fn, Dn, and Hn have been defined for all Tj < Y so that 
(1 )-(7) hold whenever the relevant indices are :$ Tj, where y :$ 2". We now 
define Fy, Dy, and Hy by distinguishing several cases. 

Case 1. y = 0. By Lemma 26.34, choose Fa S "(no) with [Fo[ = 2" such 
that (Fa, 0, {n}) is 2-consistent over n. Let Ho = 0, Do = {n}. Clearly (I), (2), 
and (4) hold. Condition (3) holds since m =ee '=B. Conditions (5)-(7) are not 
relevant to this case. 

Case 2. y is a limit ordinal. Let 
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By Lemma 26.36, (Fy, 0, Dy) is (n + Iyl)-consistent over n. Also, we have 

!Po"" Fyi = I U (Fo"" Fn) I ~ 2: !Po - Fnl 
n<y n<y 

~ 2: (n + 17Ji) ~ (n + lyi)·lyl = n + Iyl· 
n<y 

Thus (1) holds for y. Clearly (2) holds. In (3) and (4) we may assume that 
Rng C and Rng d are finite, and then these conditions are obvious. Conditions 
(5)-{7) are not relevant to this case. 

Case 3. y = f3 + 1, Rp = (0, aa). The construction here is in two steps: 
first to insure that (4) holds, and second, to take care of(3). For every formula 
cP and every C E W(Dmn Hp u {aa}) for which there is a dE Dmn Hp U {aa} 
with Cj = d for all but finitely many i < w let 

r<pc = {8 < n:ml=cp[<Ci8:i < w)]}. 

Clearly the number of such sets r <pc is 

~ IFmla2'l· (~ Iylm) ·Iyl (using (2) for (3) 

= IFmla2'I·lyl· No ~ n + 1f31. 

Hence we may apply 26.40 to (Fp, 0, Dp) and the set of all r <pc. We thus obtain 
(F', 0, D') such that F' S; Fp, Dp S; D', IFp"" F'I ~ n 1f31, (F', 0, D') is 
(n + 1f3i)-consistent over n, and for all cP, C as above, r <pc E D' or n ,.., r <pc E D'. 
To do the second step of the construction in this case, it is convenient to 
consider two subcases. 

Subcase 1. y = 1. Thus f3 = 0 and a = 0. Let 0 consist of all cP such 
that Fvcp S; {vo} and {8 < n: m 1= cp[ao8]} ED'. 

Say 0 = {cp. : v < n} (obviously 0-=1= 101 ~ n). Pick b: n x w x n --'>- B 
arbitrarily. We shall now verify the hypotheses of 26.41 with n, m, F, D, m, 
IL, a, cp replaced by n, n + 1f31, F', D', m, n, b, cp respectively. Now m 1= 3voCP 
for each cp E 0, and m =ee m, so m 1= 3voCP for each cp E 0. If M S; n is finite, 
then clearly AaEM CPa E 0, say AaEM CPa = CP.; clearly then 26.41(i) holds for 
m, b. Thus the hypotheses of 26.41 are met. Hence we can choose b EnB, 
F1 S; F', and D1 ;2 D' such that IF',.., F11 ~ n, the triple (Flo 0, D1) is 
n-consistent over n, and for every v < n, {8 < n: m 1= cp.[b8]} E D1. Set H1 = 
{(ao, b)}. Then all of the conditions (1)-{7) except (3) and (4) are clear; and 
(4) is immediate from our construction of D'. Now suppose that cj H 1d; for 
all i < w, and cp is any formula. Thus Ci = ao and dj = b for all i < w. Let 
if = cp(vo, ... , vo), with enough vo's to take care of all free variables of cp. 
Then for any structure <r and any C E C, <r 1= cp[c, c, ... ] iff <r 1= if[c]. If 
{8 < n: m 1= cp[<cj 8: i < w)]} E Dlo then {8 < n: m 1= if[co8]} E D1 and hence 
{8 < n: m 1= if[co8]} ED' by our choice of D', since D1 ;2 D'. So if E 0, and 
we infer that {8 < n : m 1= if[do8]} E D1. Hence {8 < n : m 1= cp[<di8 : i < w)]} E 

D 1 , as desired. 
Subcase 2. y > 1. From (5) and the fact that Ro = (0, ao) we know that 
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HB i' O. Let 0 consist of all pairs (9', c) such that 9' is a formula, c E CIlDmn HB, 
for some dE Dmn HB we have I{i : c, i' d}1 < No, and 

(8) {8 < n : ~ 1= 9'[<c,8 : i < W)~a6]} ED'. 

Clearly 0 i' 101 ::::; n + 1.81. Say 0 = {(9'y, Cy) : v < n + 1.81}. Now for any 
v < n + 1.81 we have {8 < n: ~ 1= 3vo9'y[<cy,8 : i < w)]} ED' ;2 DB so, by (4) 
for .8, {8 < n: ~ 1= 3vo9'y[<cy,8 : i < w)]} E DB. For each x E Dmn Hs choose 
dx so that xH{Jdx • Then by (3) for .8 we obtain for each v < n + 1.81 

{8 < n : ~ 1= 3vo9'y[<dey,8 : i < w)]} E DB. 

We now check the hypotheses of 26.41 with n, m, F, D, ~, p" a, 9' replaced 
by n, n + 1.81, F', D', ~, n + 1.81, <deyi8 : v < n + 1.81, i E w, 8 < n), 9' respec
tively. In fact, it remains only to check (i). So suppose M £:: n + 1.81 is finite. 
For each v E M letJy = {j E w : Vi occurs free in 9'y} ,..., {O}. Choose <Ky : v E M) 
so that each Ky £:: W ,..., 1, the Ky's are pairwise disjoint, IJyl = IKyl, and 
for all j E UyeM K y , the variable Vi does not occur in any of the 9'y for v E M. 
Say Uy : J y >-*- Ky. Let 9'~ be obtained from 9'y by replacing each free occurrence 
of Vi by V .. YJ for eachj E J y • Let ifs = I\YeM 9'~. Define e E CIlDmn H{J as follows, 
where Z E Dmn H{J is fixed: for eachj E w, 

eJ = cyu;lj if j E Ky and v E M, 
eJ = Z otherwise. 

Now the value assigned to uvj under <e,8: i < w)~ is cYJ8, for any jEJy, 
so for any x E A, 8 < n, and v E M we have 

~ 1= 9'y[<cy,8 : i < w)~] iff ~ 1= 9'~[<e,8 : i < w)~]. 

Hence it is clear that ~ 1= ifs[<e,8 : i < w)~] iff for all v E M, ~ 1= 9'y[<cy,8 : 
i < w)~]. Now by (8) for any v E Mwe have {8 < n : ~ 1= 9'y[<cy,8 : i < W)~a6]} 
ED', so {8 < n : ~ 1= ifs[<e,8 : i < W)~a6]} ED'. Hence (ifs, e) E 0, say (ifs, e) =; 

(9',,, c ... ), where CJ' < n + 1.81. Now for each v E M and 8 < m, the value 
assigned to uvj by <deal8 : i < w) is de ..... yJ8 = de .. yJ8 = deyJ8, which is the same 
value the sequence <dey,8 : i < w) assigns to j, where j E Ky. Hence for any 
Y EB we have 

~ 1= 9' ... [<de ... ,8 : i < w)g] iff Vv E M 
~ 1= 9';[<de ... ,8 : i < w)g] iff Vv E M ~ 1= 9'y[<deyI8 : i < w)g], 

which is as desired in 26.41(i). We now apply 26.41 to obtain b E "B, Fy £:: F' 
and Dy ;2 D' so that IF' ,..., Fyi ::::; n + 1,.,1, (Fy, 0, Dy) is (n + I,.,I)-consistent 
over n, and for every v < n + 1.81 we have 

(9) {8 < n : ~ 1= 9'y[<dey,8 : i < W)g6]} E Dy. 

Let Hy = Hs u {(aa, b)}. Clearly now (1), (2), and (5) hold, while (6) and 
(7) are not relevant to this case. To check (4), suppose x E CIlDmn Hy and 8 
is any formula. We may assume that there is ayE Dmn Hy such that Xi = Y 
for all but finitely many i E w. Thus by our choice of D', we have either 
rex E D' £:: Dy or n ,..., rex E D' £:: Dy, as desired. 
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To check (3), suppose that xiHyYi for each i < w, that 0 is any formula, 
and that 

10 {o < n: m F O[<xio : i < w)]} E Dy. 

We may assume that aa rf: Dmn H8, and hence that Yi = b whenever Xi = aa. 
To apply the result of our construction, we need to reformulate things so that 
only the variable Vo has the new value aao assigned to it. To this end, let 0' 
be obtained from 0 by replacing each free occurrence of Vo by a new variable 
vs , and changing all bound occurrences of Vo to some still newer variable. Let 
x' = x~o and Y' = >'to. Thus still x;HyY; for each i < w, and by (10), 

(11) {o < n : m F O'[<x;o: i < w)]} E Dy. 

Let X = {i: x; = aa, Vi occurs in O'}, and let if; be obtained from 0' by 
replacing Vi by Vo for each i E X. Choose W so that aoHpw, and define for each 
iE w 

Zi = x; 
Zl = ao 
Ui = Y; 
Ui = W 

if x; '" aa and Vi occurs in 0', 
otherwise, 
if x; '" aa and Vi occurs in 0', 
otherwise. 

Thus ZiH8Ui for all i < w. Moreover, Zi = ao E Dmn Hp for all but finitely 
many i E w. Furthermore, for any ° < n we have m F O'[<x;o : i < w)] iff 
m F if;[<zio : i < w)gao]. Hence from (11) we obtain E E Dy, where E = 
{o En: m F if;[<zio : i < w)gao]}. By our choice of D' it is then clear that 
E ED'. Thus (if;, z) EO, say (if;, z) = (If'., cv). Thus (9) holds for this v. Now 
for all i < w we have ziH8Ui and ziHpdCVl> and {o < n: m F (vo = Vl)[ZiO, ZiO]) 
= n E D8, so by (3) for {3, {o < n : ~ F (vo = Vl)[UiO, dcvio]) E Dp. Thus for any 
iE w, 

{o < n: uio = dcv.0} E Dy. 

Now if we intersect all of these sets where Vi occurs in if; with (9) we easily 
obtain 

{o < n : ~ F if;[<uio : i < w)go]} E Dr. 

It follows easily that 

{o < n: ~ F O[<YiO : i < w)]} E Dr> 

as desired. 
Case 4. y = {3 + 1,R8 = (1,ba).LikeCase3,withAandBinterchanged. 

Subcase 1 is unnecessary. 
Case 5. y = (3 + 1, Ri2,~) where ~ <:; n. By Lemma 26.39 choose Fy <:; 

F8 and Dy;:::> D8 so that IF8 ", Fyi < no, Dy = .1Fff(D8 V {~}) or Dy = 
.1F ff(D8 V {n '" ~}), and (Fy, 0, Dy) is (n + Iyl)-consistent over n. Let Hy = 
H 8• All of the desired conditions are clear except (3). Assume that CiHyd; for 
all i < w, that If' is any formula, and that {o < n: m F 1f'[<CiO: i < w)]} E Dy. 
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By (4) for {3 it is clear that {o < n: Qll= cp[<c;o : i < w)]} E DB. Hence by (3) 
for {3, {o < n: m 1= cp[<d;o : i < w)]} E Dp s Dy, as desired. 

This completes the inductive definition. Let p = 2n and let E = Dp. By 
(I) and (7), E is an ultrafilter over n. Let K = {([alE' [bh) : aHpb}. By (5) and 
(6), K has domain nA/E and range nB/E. If aHpb and a'Hpb', then aHyb and 
a' Hyb' for some y < p, so 

iff {o < n : ao = a~} E E 
iff {o < n: Qll= (vo = vI)[aO, a~]) E E 
iff {o < n: Qll= (vo = vI)[ao, a~]}E Dy 
iff {o < n: m 1= (vo = vI)[bo, b~]) E Dy 
iff [b lE = [b'lE similarly. 

by (4) 
by (3) 

Thus K is a one-one function. In an exactly analogous way it is shown that K 
preserves relations and operations. For example, if R is an m-ary relation 
symbol, ao, ... , am-I En A, and a;Hpb; for all i < m, then a;Hyb; for some 
y < p, and hence, with cp the formula Rvo· . ·Vn-I, ~ = nQl/E, ~ = "m/E, 

<[aol, ... , [am-d) ER'l: iff ~ 1= cp[[aol, ... , [am - dl 
iff{o < n:Qll=cp[aoo, ... ,am_IO]}EE 
iff{o < n:Qll=cp[aoo, ... ,am_lo]}EDy by (4) 
iff {o < n : m 1= cp[boo, ... , bm - I on E Dy by (3) 
iff <[bol, ... , [bm-Il) E R~ similarly. 0 

As mentioned at the beginning of this section, a characterization as in 
26.42 immediately gives a characterization of the notion of eleIJ1entary class: 

Theorem 26.43 (Keisler, Shelah). The following qmditions are equivalent: 

(i) K is an elementary class; 
(ii) UpK = K and if lQl/ FE K, then Ql E K. 

PROOF. The implication (i) ~ (ii) is obvious. Now assume (ii). By 26.2 it 
suffices to show that K is elementarily closed. Assume, then, that Ql =ee m E K. 
By Theorem 26.42 there exist I and F with lQl/ca ~ 1m/ca. Since UpK = K and 
mE K, it follows that lQl/F E K. Hence by (ii), Ql E K, as desired. 0 

Thus we may say that a class K is an elementary class iff it is closed under 
ultraproducts and ultraroots. 

EXERCISES 

26.44. If K is compact and L = {Ql: for some m, Ql ""ee mE K}, then L is elemen
tary. 

26.45. For any class K, let K< = {Ql: for some m, Ql ~ m E K}. The following 
conditions are equivalent: 
(i) K is an elementary class; 

(ii) UpK< ~ K. 
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26.46. Ql = •• Q3 iff Ql can be elementarily embedded in some ultrapower of Q3. 

Prove directly, without using 26.42. 

26.47. The converse of 26.5 fails in general. Hint: consider Ql = <A, Ri)iEW and 
Q3 = <B, Si)iEW, with A = B = w, Ro = So = w, Ri+l = Rf ~ {i + I}, 
Si+l = Sf ~ {i}. 

26.48. Use 26.14 to show that the following two structures are elementarily 
equivalent: Ql = (w, <), Q3 = (w + w* + w, <) (see 20.2 for notation). 

26.49. Show that the conditions (1)-(5) of 26.19(v) are independent of each other. 

26.50. 0pK u 0pL is consistent iff UpK (\ UpL '" O. 

26.51. K is closed under elementary equivalence iff both K and Sz ~ K are 
closed under ultra powers and isomorphisms. 

26.52. K is a finitely axiomatizable elementary class iff both K and Sz ~ K are 
closed under ultraproducts. 

26.53. If L is a general logic in which every L, .2 -elementary class is closed under 
ultra products, then L S Lro• 

26.54. If K = UpK, L = UpL, and K (\ L = 0, then there is a finitely axiomatiz
able elementary class M such that K S M and L (\ M = O. 

26.55. Derive Craig's interpolation theorem from the result of Exercise 26.54. 
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Types 27 

So far in this part we have spoken about satisfaction of sentences and 
methods for finding models for sets of sentences. We now want to consider 
similar general questions concerning sets of formulas. Thus instead of con
sidering global questions, about classes of structures, we shall be considering 
local questions, about sets of elements, or sets of finite sequences of elements. 
Generally speaking, we shall be concerned with conditions on a set fl. of 
formulas for there to exist a structure ~ and an x E "'A such that x E p'l1 

for all p E fl.. The basic definitions with which we shall be working in this 
chapter are given in 

Definition 27.1. 
(i) For any nEw, Fmla1f is the set of all formulas p of 2 such that 

Fvp £: {vo, ... , V"-l}. 
(ii) If fl. £: Fmla~, ~ is an 2-structure, and a E "A, then we say that a 

realizes fl. in ~ provided that ~ 1= p[a] for all p E fl.. 
(iii) If fl. £: Fmla1f and ~ is an 2 -structure, then we say that ~ realizes 

fl. provided that some a E "A realizes fl. in ~. If no a E n A realizes fl., 
then we say that ~ omits fl.. 

(iv) If ~ is an 2-structure and a E "A, then the n-type of a in ~ is the set 
{p E Fmla1f : ~ 1= p[a]}. A set fl. £: Fmla1f is an n-type if it is the n
type of a in ~ for some a E nA and some 2-structure ~. 

(v) Let (r,2) be a theory, and let fl. £: Fmla1f. We say that fl. is con
sistent over r provided that for every finite fl.' £: fl., r u {3vo ... 
3V"_1 /\ fl.'} is consistent. We say that fl. is an n-type over r provided 
that it is the n-type of a in ~ for some a and some model ~ of r. 

Note that if fl. £: Fmla1f is realized by a in ~, then fl. is contained in an 

441 



Part 4: Model Theory 

n-type. It is clear that a set Ll c;: Fmlaz is consistent over a theory r iff every 
finite subset of Ll is realized in a model of r. The possibility of omitting sets of 
formulas can be illustrated by the structure Qt = (w, 0, -:!, <). Consider the 
set Ll of all formulas an < Vo for nEw (recall the definition of a from 14.1). 
Obviously Ll is omitted in Qt. Some natural questions which will occupy us 
for much of this and the next chapter are: does "a theory r always have a 
model which omits many sets; or omits few sets; does r have a model with 
many sequences which admit a given set? 

The following equivalent formulations of n-types are frequently useful. 

Proposition 27.2. Let (r, .5£) be a theory and let Ll S Fmla.!l'. The following 
conditions are equivalent: 

(i) Ll is an n-type over r; 
(ii) Ll is maximal consistent over r; 

(iii) there is a model Qt of r with IA I :::; I Fmla.!l' I and an a E nA such that 
Ll is the n-type of a in Qt. 

PROOF. Obviously (i) =? (ii) and (iii) =? (i). Now assume (ii). Let us expand 
the language.5£ to .5£' by adjoining new individual constants eo, ... , en-I' 
Let 

Ll' = {rp(eo, ... , en-I): rp Ell}. 

Our assumption that Ll is consistent over r clearly implies that every finite 
subset of Ll' uris consistent. But Ll' uris a set of sentences, so we can 
apply the compactness theorem to obtain a model (Qt, ao, ... , an -1) of Ll' u r 
with IAI :::; IFmla.!l'l. Clearly Ll is contained in the n-type of a over Qt. Since 
Ll is maximal consistent over r, it must actually equal this n-type. D 

By applying Zorn's lemma we obtain a simple criterion for realizability: 

Corollary 27.3. Let (r, .5£) be a theory and Ll c;: Fmlaz. Then the following 
conditions are equivalent: 
(i) Ll is realizable in a model of r ; 

(ii) Ll is consistent over r. 
It is more difficult to give a simple criterion for omitting types. The follow

ing general theorem turns out to be very useful. 

Theorem 27.4 [Omitting types theorem (Henkin, Orey)]. Let r be a con
sistent theory in a countable language .5l'. Suppose that N is a non-empty 
subset of wand that for each n E N a set Lln c;: Fmlaz is given. Then the 
follOWing conditions are equivalent: 
(i) there is a countable model Qt of r which omits each Lln ; 

(ii) there is a consistent theory r' ~ r which satisfies the following con
dition: for any n E N and any !fi E Fmlaz, if r' u {3vo' .. 3vn - 1!fi} has 
a model, then there is a rp E Lln such that r' u {3vo ... 3vn - 1(!fi A ...,rp)} 
has a model. 
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PROOF 
(i) => (ii). Let Qt be a model of r which omits each Lln • Set r' = 0pQt. 

To verify (ii), suppose n E N, if; E Fmla}, and r' u {3vo· . ·3Vn-lif;} has a 
model. Since r' is complete, it follows that 3vo ... 3vn -lif; holds in Qt. Hence 
there is an a E n A such that Qt 1= if;[a]. Since Q! omits Lln' we also have Qt 1= 

--''P[a] for some 'P E Lln. Hence Qt 1= 3vo ... 3vn- 1(if; 1\ --''P), as desired. 
(ii) ~ (i). We shall apply the model existence theorem 18.9, in the form 

of Corollary 18.11. Let .P' be an expansion of.P rich by C. Let S consist of 
all finite 0 c::; Senty, such that r' u 0 has a model. Now S satisfies (CO)
(C9). To check this, only (C6) and (C9) require any thought. For (C6), 
assume that 3o:'P E 0 E S. Choose C E C so that it does not occur in any 
sentence of 0. Obviously then any model of 0 can be modified to become a 
model of 0 u {Subfg'P}. Hence clearly 0 u {Subfg'P} E S. Condition (C9) is 
similarly checked. So, S satisfies (CO)-(C9). 

It also has the following property: 

(1) if 0 E S, n EN, and C E nc, then there is a 'P E Lln such that 0 u 
{--''P(co, ... , Cn-l)} E S. 

For, let do, ... , dm - 1 be all of the members of C ~ {co, ... , Cn-l} which 
occur in /\ 0. Let if; be obtained from /\ 0 by first changing all bound 
variables of /\ 0 to variables Vi with i ;::: m + n, and then replacing co, ... , 
Cn-I> do,· .. , dm - 1 respectively by Vo, .. . , Vn-I> Vno .. . , Vn+m-l. Since r' u 0 
has a model, clearly r' u {3vo· .. 3Vn+m-lif;} has a model. Therefore, by (ii), 
there is a 'P E Lln such that the set r' u {3vo ... 3vn -1(3vn ... 3vn + m -1 if; 1\ 

--''P)} has a model, call it Qt. Choose a E n+m A such that Qt 1= --''P[ao, ... , an-I] 
and Qt 1= if;[ao, ... , an+m-d. Now we expand Qt to an .P'-structure Qt' by 
assigning ao, ... , an- 1 to co, ... , Cn-I> an, ... , an+m-l to do, ... , dm-I> and 
extending on in any fashion. Clearly Qt' is a model of r' u 0 u {--''P(co, ... , 
Cn -I)}, so 0 u {--''P(Co, ... , Cn-l)} E S, as desired in (1). 

Now the set {en, c) : n E Nand C E nc} has power No, so we can enumerate 
it in a simple infinite sequence «ni, ci) : i < w). For each i < w we define a 
function j;: S -+ S : for each 0 E S, 

j;0 = 0 U {--''P(CiQ, ... , ct •nt - 1)}, 

where'P is minimum (in some fixed well-ordering of Fmlay) such that 0 U 

{--''P(CiQ, ... ,Ci.ni-1)}ES and 'PELln; this is possible by (1). Clearly each 
function j; is admissible over S. Clearly rES, so by 18.11 we obtain a 
countable model (Qt, aC)CEC of r such that A = {ac : C E C} and for each i < w, 

there is a <I> E S with r c::; j;<I> c::; {'P : (Qt, aC)CEC 1= 'P}. To see that Qt omits each 
Lln with n E N, take n EN and x E nA. Say x = aDd with dE nco Choose 
i E w with (n, d) = (ni' ci), and choose <I> E S with r c::; j;<I> c::; {'P : (Qt, aC)CEC 1= 'P}. 
By the definition of j; it follows that there is a 'P E Lln such that (Qt, aC)CEC 1= 

--''P(do, ... , dn-l), which shows that Qt omits Lln. D 

We shall derive some consequences of the omitting types theorem which 
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are most easily motivated using terminology of Boolean algebras, although 
no results of Chapter 9 will be used. 

Definition 27.5. Let r be a theory and mEw. 
(i) We define ~:;; = {(tp, .p) : tp, .p E Fmla], and r 1= tp +-+ .p}. 

(ii) A formula tp E Fmla], is m-atomic over r provided that r u 
{3vo' .. 3Vm -1tp} has a model and for any.p E Fmla]" either r 1= tp ~.p 
or r 1= tp ~ ,.p. 

(iii) A formula tp E Fmla], is m-atomless over r provided that r u 
{3vo' .. 3Vm -1 tp} has a model but there is no formula .p E Fmla], 
m-atomic over r such that r 1= .p ~ tp. 

Using the procedure of 9.56, Fmla]'/~:;; can be made into a Boolean 
algebra m:;;. A formula tp E Fmla], is m-atomic over r iff [tp] is an atom of 
m:;;, and it is m-atomless over riff [tp] is an atomless element of m:;;. Let mEw 
and let fE' be an expansion of fE by adjoining m new individual constants 
Co, ... , Cm - 1 . Then a formula tp E Fmla], is m-atomic over r iff r u 
{tp(co, ... , Cm -1)} is a consistent complete set, while tp is m-atomless over r 
iff r u {tp(co, ••. , cm- 1)} is consistent but is not contained in any finitely 
axiomatizable complete consistent extension of r. 

To illustrate these notions by concrete examples, first take r = 
0p(w, 0, (), <). Since this is a complete theory, it is clear that Vo = 0 is 
I-atomic over r. On the other hand, consider the theory P of Peano arith
metic. For each mEw, there are no formulas m-atomic over P, for if.p were 
m-atomic over P, clearly P u {3vo' . ·3Vm -1.p} would be complete and 
axiomatizable, contradicting 16.2. Thus every .p E Fmla]'(nos) is m-atomless 
over P. 

The following theorem is a weaker kind of omitting types theorem. 

Theorem 27.6 (Ehrenfeucht). Let r be a consistent theory in a countable 
language !E, and suppose 0 =I- N ~ w. For each n E N let ~n be an n-type 
over r, and assume that no set ~n contains aformula n-atomic over r. Then 
r has a countable model that omits each type ~n' 

PROOF. We shall apply 27.4. To this end, assume that n E N, .p E Fmla~, 

and r u {3vo ... 3Vn -1 tP} has a model. If.p ¢; ~n' then • .p E ~n since ~n is an 
n-type. So in this case r u {3vo ... 3Vn -1(.p A ..., "".p)} has a model, as desired 
in 27.4(U). Assume, on the other hand, that tP E ~n' Now by hypothesis .p 
is not n-atomic over r, so there is a tp E Fmla~ such that not (r 1= tP ~ tp) and 
not (r 1= .p ~ ...,tp). Since ~n is an n-type, either tp E ~n or ""tp E ~n' say 
tp E ~n' From not (r 1= tP ~ tp) it follows that there is a model m of r such that 
ml= 3vo' .. 3Vn -1(.p A 'tp), as desired in 27.4(U). 0 

We can apply Ehrenfeucht's theorem to the theory P to obtain further 
incompleteness properties of it. For example, if ~ is any I-type there is a 
countable model of P which omits ~. Thus the infinitely long formula 
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3vo 1\ ~ is not a consequence of P. Another example: let Q( be any denumer
able model of P, say A = {an: nEw}. For each nEw ~ 1 let ~n = 
{rp E Fmla} : Q( 1= rp[an, ... , an, ... ]}. Clearly ~n is an n-type over P. Let SB be 
a countable model of P omitting each type ~n' Then each element of B has 
type different from each element of A, i.e., first-order distinguishable from 
each element of A. 

Using the omitting types theorem 27.4 we can prove the following useful 
theorem of Vaught. 

Theorem 27.7 (Vaught). Let r be a consistent theory in a countable language. 
Then r has a countable model Q( such that for every nEw, every n-tuple of 
elements of A satisfies either an n-atomic formula over r or an n-atomless 
formula over r. 

PROOF. For each nEw let 

~n = {rp E Fmla}: -'rp is n-atomic or n-atomless over r}. 

To check the hypothesis of 27.4, assume that nEw, .p E Fmla}, and that 
r U {3vo ... 3vn -l.p} has a model. If .p is n-atomless over r, then -,.p E ~n 
and the desired conclusion is obvious. Otherwise there is a formula rp n
atomic over r such that r 1= rp --+.p. Thus ""'rp E ~n' and any model of r u 
{3vo' .. 3Vn -lrp} is a model of r u {3vo" . 3Vn -l(.p A ...., -'rp)}, as desired. 

Thus 27.4 applies, and this obviously gives the desired model. 0 

We now apply these results to characterize the following important notion 
(cf. the notion of a prime model in 21.28): 

Definition 27.S. A structure Q( is an elementary prime model of r provided 
that Q( is a model of r which can be elementarily embedded in each model 
ofr. 

Note that if r has an. elementarily prime model, then r is automatically 
complete. If r is model complete, then prime and elementarily prime have 
the same meaning. 

Theorem 27.9 (Vaught). Let fR be countable and r a complete theory in fRo 
Thenfor any fR-structure Q( thefol/owing conditions are equivalent: 
(i) Q( is an elementarily prime model of r; 

(ii) Q( is a countable model of r, and for every nEw and a E n A, a satisfies 
some n-atomic formula over r in Q(. 

PROOF 

(0 => (ii). Let Q( be an elementarily prime model of r. By the downward 
Lowenheim-Skolem theorem, r has a countable model SB. Since Q( can be 
elementarily embedded in SB, Q( is also countable. Now let nEw and a E nA. 
Set ~n = {rp E Fmla}: Q( 1= rp[a]}}; thus ~n is an n-type over r. Now 

(1) ~n contains an n-atomic formula over r. 
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For, if not, by 27.6 with N = {n} there is a countable model ~ of r which 
omits ~n. Let f: ~ >+ ~ be an elementary embedding. For any rp E ~n we 
have ~ 1= rp[a] and hence ~ 1= rp[f 0 a]. Thus ~ admits ~n' contradiction. 
Hence (1) holds. Therefore a satisfies an n-atomic formula over r in ~. 

(ii) => (i). Assume (ii). Let A = {ai : i < w}, and let ~ be any model of 
r. For each nEw let rpn be an n-atomic formula over r such that ~ 1= 

rpn[ao, . .. , an-d. We now define a sequence (b;: i < w) of elements of B by 
recursion. Since ~ 1= rpo, ~ is a model of r, and r is complete, we have 
r 1= rpo and hence ~ 1= rpo. Suppose that nEw, bo, ... , bn -1 have been defined, 
and ~ 1= rpn[bo, ... , bn-d. Now ~ 1= rpn[ao, ... , an-d and ~ 1= rpn+1[aO, ... , an], 
so ~ 1= (rpn A 3Vnrpn+1)[aO, ... , an-d. Since ~ is a model of r, therefore it is 
not the case that r 1= rpn - ...,3Vnrpn+1. Since rpn is n-atomic over r, it follows 
that r 1= rpn -3Vnrpn+1. Hence, since ~ is a model of r and ~ 1= rpn[bo, ... , bn-d, 
choose bn E B such that ~ 1= rpn + 1 [bo, ... , bn]. This completes the definition of 
the sequence (bt)tEW. 

Now let f = {Cal> bi) : i E w}. We claim that f is the desired elementary 
embedding of ~ into ~. First we show that f is a function. For, suppose 
at = aj, say i < j. Let if; be the formula Vi = Vj. Thus ~ 1= if;[ao, ... , aj], and 
if; E Fmla~~P. Since also ~ 1= rpi+1[aO,' .. , aj], and rpj+1 is n-atomic over r, it 
follows easily that r 1= rpi+1 - if;. Since ~ 1= rpj+dbo, ... , bj], hence ~ 1= 

if;[bo, ... , bj], i.e., bi = bj. If we suppose at =1= aj, take if; to be ...,(v; = Vj) and 
apply the same argument, we see that b i =1= b j • Thus f is a one-one function 
mapping A into B. 

To show that f is an elementary embedding, let if; be any formula, let 
x E wA, and suppose that ~ 1= if;[x]. Say Xi = aji for all i < w. Now for any 
formula x, say with Fv X s; {Vo, ... , vn - 1}, and .P-structure cr, and any 
u, WE wC with Ui = Wj; for all i < w we have 

(2) 

where m = max Uo, ... ,jn-1}. (2) is easily established by induction on x. 
Now we return to our formula if;. By (2), ~ 1= if;(vjo, ... , Vj(n-1l)[aO,' .. ' am]. 
But also ~l=rpm+1[aO, ... ,am] so, as above, rl=rpm+1-if;(vjo, ... ,Vj(n-1,). 
Therefore, ~1=if;(VjO, ... ,Vj(n-l)[bo, ... ,bm]. Hence, again by (2), ~I= 

if;[fxo, ... ,fxn-d, sincefxi = faji = bji for all i < n. D 

Theorem 27.10 (Vaught). Let r be a complete theory in a countable language 
.P. Then the following conditions are equivalent: 
(i) r has an elementarily prime model: 

(ii) for every nEw there are no n-atomless formulas over r. 

PROOF 
(i) => (ii). Let r have an elementarily prime model ~. Let nEw, and let 

rp E Fmla9-, with r v {3vo' . ·3Vn-1rp} consistent. Thus ~ is a model of 
3vo···3vn-1rp, so choose aEnA such that ~I=rp[ao, ... ,an-d. By 27.9, 
there is a n-atomic formula 8 over r such that ~ 1= 8[ao, ... , an _ d. Thus 
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2t 1= (8 A <p)[ao, .. . , an-d. Since 8 is n-atomic over r, it follows easily that 
r 1= 8 ~ <po Thus <p is not n-atomless, as desired. 

(ii) ~ (i). Assume (ii). Obviously 27.7 and 27.9 yield an elementarily 
prime model of r. 0 

Theorem 27.11 (Vaught). Any two elementarily prime models of a theory r 
in a countable language !l' are isomorphic. 

PROOF. We shall apply 26.20; so we need to construct an w-sequence for 
the elementarily prime models 2t and SB of r. For each mEw, let 1m consist 
of all pairs (x, y) E mA x mB such that there is an m-atomic formula <p over 
r such that both 2t 1= <p[x] and SB 1= <p[y]. Note that the O-atomic formulas 
over r are just the <p with r 1= <p, since r is complete. Thus 0100. Now suppose 
that xlmy and a E A. Say <p is m-atomic over rand 2t 1= <p[x], SB 1= <p[y]. By 
27.9 choose an (m + I)-atomic formula ,p over r such that 2t 1= x[xo, ... , 
xm- 1, a]. Hence, easily, r 1= <p ~ 3vm,p, so SB 1= 3vm,p[y]. Hence choose b E B so 
that SBI=,p[Yo, ... ,Ym-lob]. Thus we have <xo, ... ,xm-1,a)/m+1<yo, ... , 
Ym-lo b), as desired. The proof is similar with 2t and SB interchanged. Finally, 
suppose that mEW, xlmy, <p is an atomic formula with Fv <p s; {Vo, ... , Vm-l}, 
and (say) 2t 1= <p[x]. Say,p is m-atomic and both 2t 1= ,p[x] and SB 1= ,p[y]. Clearly 
r 1= ,p ~ <p, so SB 1= <p[y], as desired. 0 

One of the most striking theorems concerning types is the following 
characterization of No-categoricity. Recall the definition of ~~ from 27.5(i). 

Theorem 27.12 (Engeler, Ryll-Nardzewski, Svenonius). Let r be a complete 
theory in a countable language !l'. Assume that r has only infinite models. 
Then the folloWing conditions are equivalent: 
(i) r is No-categorical: 
(ii) for all nEw, Fmla1o/~~ is finite. 

PROOF 

(i) ~ (ii). Assume that (ii) is false; fix nEw such that Fmla1o/~~ is 
infinite. Let 

A = {<p : <p E Fmla10 and '<p is n-atomic over r}. 

We claim that A is consistent over r. If not, choose a finite A' s; A such that 

(1) there is no model 2t of r having an x E nA with 
2t 1= <p[xo, ... , Xn-l] for all <p E A'. 

Let A" = A' V {3vo(vo = vo)}. Now we claim: 

(2) for any ,p E Fmla1o, there is a subset AWl of A" such that 
r 1= ,p ++ V rpel1- '<p. 

[Of course, (2) is a contradiction]. To prove (2), let ,p E Fmla1o. Let A'" = 
{<pEA": r 1= '<p~,p}. Clearlyr 1= V rpel1m '<p~,p. Suppose r 'rJ,p~ V rpel1- '<p. 
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Let ~ be a model of r such that there is an x E nA with ~ 1= ,p[xo, ... , xn-d 
and ~ 1= !p[xo, ... , Xn- d for all !p E ~m. By (I), choose !p E~' such that ~ 1= 

'!p[xo, ... ,xn-d. Thus !p¢~"'. Since ~I=(,p 1\ ,!p)[xo, ... ,xn- 1 ] and '!p 
is n-atomic over r, it follows easily that r 1= '!p -+,p. Thus !p E ~"'. This is 
impossible. Thus (2) holds. Hence ~ is consistent over r after all. Also note: 

(3) if!p is n-atomic over r, then '!p is not n-atomic over r. 
For otherwise both !p and '!p would be in ~, contradicting the consistency 
of~. 

Now extend ~ to an n-type ~* over r. By 27.2, there is a denumerable 
model of r which realizes ~*. Note by construction and (3) that ~* does not 
contain an n-atomic formula over r. By 27.6 there is a denumerable model of 
r which omits ~*. Thus r is not No-categorical. 

(ii) => (i). By 27.11 it suffices to show under the assumption (ii) that 
any denumerable model ~ of r is elementarily prime. We shall do this by 
applying 27.9. (From the point of view of the theory of Boolean algebras 
the desired conclusion is obvious, since Fmlal-/~~ is finite. The remainder 
of this proof is just to work out in first-order logic some elementary Boolean 
algebra.) To this end, let nEw and a E nA. Let ~ have exactly one member in 
common with each equivalence class under ~~. By (ii), ~ is finite. Now 
3vo(vo = vo) E Fmlal-, so r 1= 3vo(vo = vo) +-+ !p for some !p E~. Hence there is 
a !p E ~ with ~ 1= !p[a], and we can form ,p = 1\ {!p E ~ : ~ 1= !p[a]}. Thus 
~ 1= ,p[a]. Furthermore, ,p is n-atomic over r (as desired). For, let !p be any 
member of Fmlal-. Say r 1= !p +-+!p' with !p' E~, and r 1= '!p +-+!p" with 
!p" E~. If ~ 1= !p[a], then ~ 1= !p'[a] and clearly r 1= ,p -+!p. If ~ 1= '!p[a] it is 
similarly clear that r 1= ,p -+ '!p. Thus if is n-atomic over r. 0 

The last topic of this section is indiscernibles. We want to find models in 
which many n-tuples realize exactly the same n-type and hence cannot be 
distinguished from each other by first-order means. For the main theorem 
we need a purely set-theoretical result known as Ramsey's theorem. 

Definition 27.13. SmX = {Y: Y ~ X, I YI = m}. 

Theorem 27.14 (Ramsey). If X is an infinite set, nEw"'" 1, and SnX = 
Ao U AI> then there is an infinite Z ~ X and an i < 2 such that SnZ ~ Aj • 

PROOF. We proceed by induction on n. The case n = 1 is trivial. Assume 
the result for n, and assume that X is an infinite set and Sn+lX = Ao U AI. 
We now define three sequences <Xj : i < w), < 1'; : i < w), <mj: i < w) by 
recursion. Let/be a choice function for non-empty subsets of X. Set Xo = IX, 
Yo = X, mo = O. Now suppose that XI> 1';, mi have been defined so that 1'; 
is an infinite subset of X and Xi E 1';. Let Ai = {Z: Z E S,,( 1'; ,..., {xa), and 
Z U {xa E Aj} for each j E 2. Thus S,,( 1'; ,..., {Xi}) = A~ U A~, so there is an 
infinite subset 1'; +1 of 1'; ,..., {Xi} and an mi+ 1 E 2 such that S" 1'; +1 ~ A;"(i + 1). 
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Let Xi+ 1 = fY;+l' This completes the recursive definition. Now {i: mt = O} 
or {i: mi = I} is infinite; say, by symmetry, that {i: mi = O} is infinite. Let 
Z = {Xi: mt = O}. Now note: 

(1) Yi+l s:; Yi; 
(2) Xi E Yi '" Yi+ 1 ; 

(3) X is one-one; 
(4) Vi E w[mi = 0 ~ VW E SnYi+l(W U {Xi} E A o)]. 

By (3), Z is infinite. We claim that Sn+1Z s:; A o• For, let WE Sn+1Z, Choose 
i minimum such that Xi E W. Then mi = 0 and by (1) and (2) W", {Xi} s:; Yi+l' 
Hence by (4), WE Ao, as desired. D 

Definition 27.15 
(i) A simple ordering structure is a pair Q[ = (A, :::;) such that :s; IS a 

simple ordering with field A. 
(ii) Let Q[ = (A, :::;) be a simple ordering structure, Q3 an 2-structure 

(2 is an arbitrary first-order language). We say that Q[ is homogeneous for 
Q3, or is a set of indiscernibles for Q3 provided that A s:; B and the following 
condition holds: 
(*) Vn E wVx E nAVy E nA(Vi,j < n(xi < Xj iff Yt < Yj) 

~ X and Y realize the same n-type in Q3). 

Perhaps the archtype of indiscernibles is furnished by the transcendentals 
in Co If xo, ... , Xn-1 are distinct transcendentals and Yo, ... , Yn -1 are distinct 
transcendentals, then there is an automorphismf of C such that/Xi = Yi for 
each i < n. Hence, clearly, X and Y realize the same n-type in Co Thus any 
ordering of the transcendentals gives a set of indiscerI1ibles for C in the sense 
of 27.15. Perhaps the notion in 27.15 should be termed order-indiscernibles, 
since indiscernibles in the more natural sense do exist. The following slight 
reformulation of the notion will be useful in what follows. 

Proposition 27.16. Let Q[ = <A, :::; > be a simple ordering structure, A s:; B, 
Q3 an 2 -structure. The following conditions are equivalent: 
(0 Q[ is homogeneous for Q3; 

Oi) Vn E wVx E nAVy E nA[Vi,j < n(i < j ~ Xi < Xj and Yi < Yj) ~ X and 
Y realize the same n-type in Q3]. 

PROOF. (i) ~ Oi): trivial. (ii) ~ (i). Assume (ii), and assume that nEw, 

f{J E Fmlaz, x, Y E nA, and 

(1) Vi,j < n(xi < Xj iff Yi < yj). 

Say I{xi : i < n}1 = m. There is an order-preserving function x' mapping m 
one-one onto {Xi: i < n}. Choose s: n "* m such that Xi = X~i for all i < n. 
For any j < m choose i < n with si = j and set Y; = Yi' This does not de
pend on the particular choice of such an i, by (1). Thus Yi = Y~i for all i < n. 
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If j < k < m, then x; < x~ by the choice of x'; and if si = j, sl = k, then 
Xi < Xl, hence Y; < Yl by (1), hence yj < y~. Hence 

(2) Vi,} < m(i < j ~ x; < xj and y; < yj). 

Hence, using (ii), 

S!3 F <p[xo, . .. , xm-d iff S!3 F <p(vso, ... , vs(n-l)[x~, . .. , X;"-l] 
iffS!3 F <p(vso, ... , VS(n-1»[Y~'···' y;"-d 
iff S!3 F <p[Yo, ... , Yn- d· o 

The basic existence theorem for indiscernibles is as follows. This theorem 
has found wide use in logic. 

Theorem 27.17 (Ehrenfeucht, Mostowski). Let r be a theory with an 
infinite model, and let Q[ = <A, :::; > be a simple ordering structure. Then r 
has a model S!3 such that: 

(i) Q[ is homogeneous for S!3; 
(ii) any automorphism of Q[ extends to an automorphism of S!3; 

(iii) IBI :::; IFmla21 + IAI· 

PROOF. Let <r be an infinite model of r, and let :::; be a simple ordering of 
C. Let !.e' be a Skolem expansion of!.e (see 11.33), and let r ' be r together 
with the Skolem set for .se, !.e'. By Lemma 11.36 let <r' be an expansion of <r 
to a model of r/. 

Next, expand !.e' to !.e" by adjoining new individual constants da for 
a E A. Let ~ be the set of all sentences of the forms 

for a #- b, 
<p(dao , ... , dan) +-+ <p(dbO' ... , dbn), 

where <p E Fmla£,.J;l for some nEw, a, b E n+1A, and for all i,} :::; n, if i <} 

then a; < aj and b; < b j • We claim that r' u ~ has a model. To prove this 
we apply the compactness theorem. Let 0 be a finite subset of ~; say 0 = 
{ifJo, ... , ifJm} U 0 /, where for each i :::; m the sentence ifJi is, as above, 

(1) 

while 0 ' is a finite set of sentences of the form .(da = db) where a #- b. 
We now define subsets Do, ... , Dm + 1 of C by induction. Let Do = C. 
Having defined D; as an infinite subset of C, where i :::; m, we define D; + 1 

as follows. Let 

Eo = {F E Sn; + 1D; : if x is the unique order-preserving map from 
n; + 1 onto F, then <r' F <p;[xo, ... , xnJ}, 

E1 = Sni+1 Di ~ Eo. 

By Ramsey's theorem, there is an infinite D; + 1 S; D; and a j E 2 such that 
Sn; + 1D; + 1 S; E j • This completes the definition of the sequence Do, ... , Dm+ 1. 

Now let A' = {x E A : x = a;j or x = bij for some i :::; m and j :::; n;} u 
{x E A : dx occurs in some sentence of 0 /}. Thus A' is finite. Letfbe an order 
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preserving map from A' into Dm+ 1 • Set ~" = (~', Ix)xEA' where I: A --+ C is 
arbitrary subject only to the restriction that f S; I. We claim that ~" is the 
desired model of r' u 0. It is obviously a model of r' u 0'. Now suppose 
that i ::0:: m; we must check that the sentence (1) holds in ~". Now aiD < ... 
< ain(i), so faiD < ... < fain(il> and similarly fbiD < ... < fbln(i)' With Eo and 
E1 as above, let us suppose that Sni + 1Di +1 S; Eo, the case Sni + 1Di +1 S; E1 
being treated similarly. Since Rngf s; Dm + 1 s; Di + 1, we have both 
{laiD' ... ,fain(o} E Eo and {IbiD' ... ,jbin(o} E Eo. Thus ~' F <Pi[faiD, ... , fain(i)) 
and ~' F <Pi[!biD , ... ,jbin(o). Since f S; I, it follows that (1) holds in ~". Thus, 
indeed, ~" is a model of r' u 0. 

Hence, by the compactness theorem, r' u A has a model, which we may 
assume has the form ~ with A S; D, and with da interpreted by a for each 
a E A. Let ~' be the substructure of ~ generated by A, and set ~ = ~' I:£'. 
We now proceed to check the conditions (i)-(iii) of the theorem. Clearly 
IBI S; I Fmla..rl + IAI, i.e., (iii) holds. To check (i), first note that ~' S; ~ 
and ~ is a model of the Skolem set for !l', :£", so by Proposition 19.20, 
~ ~ ~ I!Z'. Hence if nEw, X, yEn A, and Xi < Xj, Yi < Yj whenever i < j < n, 
then for any <P E Fmla:fe we have 

~ F <p[x) iff ~ i= Q?[x) iff ~ F <p[dxo , ... , dX (n-1») 
iff ~ F <p[dyo , ••. , dy(n-1») 
iff ~ F <p[y). 

Thus by 27.16 m is homogeneous for ~, i.e., (i) holds. 
Finally, letfbe an automorphism of m. Clearly 

(2) B = {a~x: a is a term of:£,' and X E "'A}. 

Now letf+ = {(a@x, a~(f 0 x)) : a is a term of :£" and x E "'A}. Then by (2), 
Dmnf+ = Rngf+ = B. Obviously fs;f+. Now f+ is a function. For, 
suppose that a~x = T!3}y, where a and T are terms of :£" and x, Y E co A. Say 
the variables of a are among Vo, ... , Vm and those of T are among Vo, ... , Vn. 
Let T' be obtained from T by replacing Vo, ... , Vn by Vm + 1, ... , Vm + n + 1 

respectively. Let Zi = Xi for i ::0:: m and Zi = Yi-m-1 for i > m. Clearly then 
a!3}x = a@z and T!3}y = T,!3}Z. Thus ~ F (a = T')[ZO,"" zm+n+d. Note from 
27.16 that m is homogeneous for ~ I :£,'. Hence ~ F (a = T')[fzo, ... , 
fZm+n+d, so a!3}(fo x) = a~(fo z) = T'~(fO z) = T@(foy), showing thatf+ 
is a function. In an entirely analogous way one shows thatf+ is one-one and 
that it preserves relations and operations. 0 

We shall present one corollary of this important theorem. It depends on 
the following result from the theory of ordered sets. 

Theorem 27.18. For any infinite cardinal m there is a simple ordering structure 
m = (A, ::0:: > with I A I = m such that m has 2m automorphisms. 

PROOF. Let A = m x T, where T is the set of all rational numbers r such that 
o ::0:: r < 1. We define a linear order on A as follows: 

(ex, r) < ({3, s) iff ex < {3, or ex = {3 and r < s. 
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In the notation of the theory of ordered sets, this linear order has type 
(1 + 7]). m; one replaces each ordinal a < m by a copy of the rationals in 
[0, I). Let F = {fE m2 :fa = 0 for every limit ordinal a < m}. Clearly 
IFI = 2m. With every fE F we shall associate an automorphism g, of ~ = 
<A, :::;), as follows. Take any (a, r) E A. Write a = {3 + m, where {3 is a 
limit ordinal and mEw. We define g,(a, r) as follows: 

Case 1. fa = O,f(a + 1) = O. Let 
g,(a, r) = (f3 + 2m,2r) if 0 :::; r < 1/2, 
g,(a, r) = (f3 + 2m + 1,2(r - 1/2» if 1/2 :::; r < 1. 

Case 2. fa = O,f(a + 1) = 1. Let 
g,(a, r) = (f3 + 2m, 3r) if 0 :::; r < 1/3, 
g,(a, r) = (f3 + 2m + 1,3(r - 1/3» if 1/3 :::; r < 2/3, 
g,(a, r) = ({3 + 2m + 2,3(r - 2/3» if 2/3 :::; r < 1. 

Case 3. fa = 1,f(a + 1) = O. Let 
g,(a, r) = (f3 + 2m + 1, r). 

Case 4. fa = 1,f(a + 1) = 1. Let 
g,(a, r) = (f3 + 2m + 1, 2r) if 0 :::; r < 1/2, 
g,(a, r) = (f3 + 2m + 2, 2(r - 1/2» if 1/2 :::; r < 1. 

Obviously g, maps A into A. Also, g, is onto, for let (y, s) EA. Write y = 
{3 + n, {3 a limit ordinal, nEw. 

Case 1. n even, say n = 2m. 
Subcase 1. f(f3 + m) = 0,f({3 + m + 1) = O. Then g,(f3 + m, s/2) = (y, s). 
Subcase 2. f(f3 + m) = 0.f(f3 + m + 1) = 1. Then g,(f3 + m, s/3) = (y, s). 
Subcase 3. f(f3 + m) = 1. Then by our assumption onf, m "1= o. 
Subsubcase 1. f(f3 + m - 1) = O. Theng,({3 + m - 1, (s + 2)/3) = 

(f3 + 2(m - 1) + 2, 3«s + 2)/3 - 2/3» = (y, s). 
Subsubcase 2. f(f3 + m - 1) = 1. Theng,(f3 + m - 1, (s + 1)/2) = 

(f3 + 2(m - 1) + 2,2«s + 1)/2 - 1/2» = (y, s). 
Case 2. n odd, say n = 2m + 1. 

Subcase 1. f(f3 + m) = O,f(f3 + m + 1) = O. Then g,(f3 + m, (s + 1)/2) = 

(y, s). 
Subcase 2. f(f3 + m) = 0,f(f3 + m + 1) = 1. Then g,(f3 + m, (s + 1)/3) = 

(y, s). 
Subcase 3. f(f3 + m) = 1,f(j3 + m + 1) = O. Then g,(f3 + m, s) = (y, s). 
Subcase 4. f(f3 + m) = 1,f(f3 + m + 1) = 1. Then g,(f3 + m, s/2) = (y, s). 

Thus g, maps A onto A. To show that g, is an automorphism of ~ it 
remains only to show that it preserves <. So, assume that (a, r) < (f3, s). 

Case 1. a < {3. Write a = y + m, {3 = 8 + n, where y and 8 are limit 
ordinals and m, nEw. If y < 8, clearly g,( a, r) < g,(f3, s). Hence assume that 
y = 8. Clearly it suffices now to take the case n = m + 1, i.e., {3 = a + 1. 
Subcase 1. fa = 0,f{3 = O. Then l"t coord g,(a, r) :::; y + 2m + 1, 

pt coord g,({3, s) ;::: y + 2(m + 1) = y + 2m + 2. So g,(a, r) < g,(f3, s). 
Subcase 2. fa = 0,f{3 = 1. Then 1st coord g,(a, r) :::; y + 2m + 2, 

pt coord g,({3, s) ;::: y + 2(m + 1) + 1 = y + 2m + 3. So g,(a, r) < 
g,(f3, s). 
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Sub case 3. fa = 1,J{3 = O. Then l"t coord gf(a, r) = Y + 2m + 1, 
l"t coord gf({3, s) ~ y + 2(m + 1) = y + 2m + 2. So grCa, r) < grC{3, s). 

Sub case 4. fa = 1,J{3 = 1. Then l"t coord gf( a, r) :s:; y + 2m + 2, 
pt coord gf({3, s) ~ y + 2(m + 1) + I = y + 2m + 3. So gf(a, r) < 
grC{3, s). 
Case 2. a = {3, r < s. The desired conclusion is clear. 
Thus gf is an automorphism of QI. Now suppose J,/, E F and f"# /'. Say 

a < m and fa "# /' a. Say fa = 0,1' a = 1. Let a = {3 + m, (3 a limit ordinal, 
mEw. Then }"t coord grCa, 0) = (3 + 2m. l"t coord gr(a, 0) = (3 + 2m + I, 
so gf "# gr' D 

This theorem together with the Ehrenfeucht-Mostowki theorem gives the 
following interesting property of first-order theories: 

Corollary 27.19 If r is a theory with an infinite model and m ~ IFmiazl, 
then r has a model of power m with 2m automorphisms. 

EXERCISES 

27.20. Let !l' be a language whose only nonlogical constants are individual 
constants c! for i < w. Let r be the theory in with axioms ...,(c! = Cj) for 
all i # j. Show that r is complete. 

27.21. Continuing 27.20, find the elementarily prime model of r. 

27.22. Give an example of a complete theory in a countable language, having 
only infinite models, which has a prime model but no elementarily prime 
model. 

27.23. Give an example of a complete theory in a countable language with only 
infinite models, No-categorical, and with exactly one I-atomic formula 
(up to equivalence of formulas). 

27.24. Suppose!l' is a countable language, QI is an !l'-structure, and cp E Fmla~ 
is such that cpm well-orders A. Show that E>pQl has an elementarily prime 
model. 

27.25. Under the hypotheses of 27.12, the conditions (i) and (ii) are also equivalent 
to: 
(*) for every model QI of r, every nEw, and every a E nA, a satisfies some 

n-atomic formula over r in QI (cf. 27.9). 

27.26. IfQl is any Boolean algebra, then the atoms ofQl form a set ofindiscernibles 
for QI, under any ordering of them. 

27.27. Does E>p(w, a, 0) have an elementarily prime model? 

27.28. Suppose a group ~ = (G, " 1) has the property that for every cp E Fmla\ 
if ~ F 3vocp(vo), then there is an nEw ~ 1 such that ~ F 3vo(v3 = 1 A 

cp(vo)). Show that ~ is elementarily equivalent to a group in which every 
element has finite order. 
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Saturated structures are structures in which all possible types are realized 
(roughly speaking; see below for an exact formulation). In this chapter we 
prove their existence and uniqueness and show how they can be used in logical 
investigations. 

Definition 28.1. An 2'-structure Qt is m-saturated iff for every X S A with 
I XI < m, if 2" is an expansion of 2' obtained by adding a new individual 
constant ex for each x E X, and if ~ S Fmla1, is such that for each finite 
subset ~' of ~ there is an a E A with (Qt, X)XEX 1= 1\ ~'[a], then there is an 
a E A such that (Qt, X)XEX 1= <p[a] for all <p E~, 

An 2'-structure Qt is saturated iff it is IAI-saturated. 

Given that are are trying to make exact the notion of a structure in which 
the maximum amount of formulas can be simultaneously satisfied, Definition 
28.1 exhibits two peculiarities. First, constants are taken from A, rather than 
dealing with just formulas of the original language 2'. Second, only formulas 
with just one free variable are considered rather than arbitrary formulas. The 
first restriction is essential; without mentioning constants from A, an essenti
ally weaker notion is obtained (see Exercise 28.34). It is from the point of view 
of applications that the stronger notion given in 28.1 is to be preferred. The 
second restriction in 28.1 is inessential, as the following proposition shows. 

Proposition 28.2. Let Qt be an 2'-structure and m an infinite cardinal. Then 
the following conditions are equivalent: 

(i) Qt is m-saturated; 
(ii) for every X S A with IXI < m, if 2" is an X-expansion of!L', and if 

~ is a set of formulas of 2" such that for each finite subset ~' of ~ 
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there is an a E OJ A with (m, X)XEX F 1\ Ll'[a], then there is an a E OJ A 
such that (m, X)XEX F 11' [a] for all 11' Ell. 

PROOF. Obviously (ii) ~ (i). Now assume (i) and the hypothesis of (ii). 
We may assume that Ll is closed under conjunction. For each 11' Ell choose 
m<p such that Fv 11' S; {va' ... , vm<p}. We define a E OJ A by recursion. Suppose 
that a I i has been defined in such a way that each formula 

11' Ell, 

holds in (m, x, aj)XEX,j<i' This is clearly true for i = O. Now let 0 be the set 
of all formulas 3Vi + 1 ... 3vm<p<p( CaO , ... , Cali -1) with 11' Ell. Thus 

IXV {aj:j < i}1 < m, 

and 0 is a set of formulas", with Fv", S; {Vi}' If 0' is a finite subset of 0, 
we may write 0' = {3Vi+l ... 3vm<p<p(cao , ... , Ca (i-l) : 11' Ell'}, where Ll' is a 
finite subset of Ll. Now 1\ Ll' Ell, so 3Vi ... 3vmx 1\ Ll' (Cao, ... , Cali -1) holds in 
(m, x, aj)XEX,j<i' Thus there is abE A such that b assigned to Vi satisfies each 
'" E 0' in (m, x, aj)XEX,j<i' It follows from (i) that there is an ai E A such that 
each formula 

holds in (m, x, aj)XEX,j:!r.j. This finishes the construction of a. Clearly the 
conclusion of (ii) then holds. D 

We are really interested in the notion "the 2' -structure m is m-saturated" 
only when I Fmla.2' I :s; m :s; IAI. The next few remarks indicate why these 
restrictions are reasonable. Since, clearly, n < m and m m-saturated imply m 
n-saturated, the assumption that I Fmla.2' I :s; m does no harm when we prove 
the existence of m-saturated structures. Since the assumption I Fmla.2' I :s; m 
is needed for our constructions, we are justified in making it. The assumption 
m :s; IAI is resonable in view of the following two results. 

Proposition 28.3. If m is m-saturated, then either m is finite or I A I ~ m. 

PROOF. Suppose m is infinite and IAI < m. Let 2" be an A-expansion of 
ff, and let Ll be {...,(vo = ca) : a E A}. Clearly every finite subset of Ll can be 
realized in (m, a)aEA, but Ll itself cannot be, so m is not m-saturated. 0 

Proposition 28.4. m is finite iff m is m-saturated for all m. 

PROOF. The second condition implies the first, by 28.3. Now suppose that m 
is finite, X S; A, IXI < m, 2" is an X-expansion of 2', and Ll S; Fmlak-. 
Suppose that Ll cannot be realized in (m, X)XEX' Then for each a E A there is a 
<Pa Ell such that (m, X)XEX F '<Pa[a]. Thus {<Pa : a E A} is a finite subset of Ll 
which cannot be realized in (m, X)XEX' Hence m is m-saturated. 0 
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Before coming to the main existence and uniqueness results we want to 
give a few more trivial properties of m-saturated structures, some of which 
are useful in applications. 

Proposition 28.5 
(i) ~ is m-saturated iff ~ is n-saturated for every n :::;; m; 

(ii) if m is a limit cardinal, then ~ is m-saturated iff ~ is n-saturated for 
every n < m; 

(iii) m is m-saturated iff for every X £ A with IXI < m, the structure 
(~, x)xex is O-saturated; 

(iv) if ~ is m-saturated, X £ A, then IXI < m, then (~, X)XEX is m
saturated. 

We now consider the existence of m-saturated structures. 

Theorem 28.6. Let.f£', .!&", .!&'" be first-order languages, m and n cardinals, 
and r and r' theories in .!&' and .!&" respectively, subject to the following 
conditions: 

(i) No :::;; m, n; 
(ii) .!&" is an expansion of.f£', and IFmla~'1 = n; 

(iii) .!&'" is an expansion of .!&" rich by C; 
(iv) ifl' is any nonzero cardinal < m, then nP :::;; n; 
(v) r £ r', and r' is consistent; 

(vi) for each B £ C with IBI < m, let.!&'B be the reduct of.!&'" to the symbols 
of.!&' and B; then there are at most n I-types over r in the language 
.!&'B. 

Under all of these assumptions it follows that there is a model ~ of r' 
of power :::;; n such that m t .!&' is m-saturated. 

PROOF. Let a well-ordering of C be given. We shall apply the model exist
ence Theorem 18.9 in its full form. Let S be the set of all 0 £ Sent~. such 
that r u 0 is consistent and {c E c: c occurs in some rp E 0} has power < n. 
It is a straightforward matter to check that S is a consistency family; cf. 
the proofs of 22.1 and 27.4. The family S also has this additional property: 

(1) if 0 E S, B £ c, IBI < m, and fl. is a I-type over r in .!&'B which 
is consistent over 0, then 0 u {rp(c) : rp E fl.} E S, where c is the 
first member of C not in B or in any sentence of 0. 

For, if fl.' is any finite subset of fl., then by the hypothesis of (1), 0 u 
{3vo /\ fl.'} has a model, ~. We can modify ~ by assigning to c an element 
a E A such that ~ 1= /\fl.'[a], and we then obtain a model of 0 u {rp(c) : rp Efl.'}. 
Thus 0 u {rp(c) : rp E fl.} is consistent, so it follows that it is in S, and (1) 
holds. 

Let T = {(B, fl.) : B £ c, IBI < m, and fl. is a I-type over r in .!&'B}. The 
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assumptions of the theorem imply that I TI ~ n, and obviously T i= O. Hence 
we may write T = {(BB' d a): a < n}. For each a < n we define a functionfa 
with domain S: 

fa0 = 0 u {p(c) : p E d a} if this set is in S, where c is the first member 
of C not in Ba or in any sentence of 0; 

fa 0 = 0 otherwise. 

Obviously fa is admissible over S. 
By the model existence theorem, since r' E S, let (Qt, aC)CEC be a model of 

r' such that A = {ac : C E C}, hence IAI ~ n, and: 

(2) if a < n, then there is a 0 E S such that r' s fa 0 s 
{p: (Qt, aC)CEC 1= p}. 

To show that Qt i 2 is m-saturated, let B S C with IBI < m, and let 
d S Fmla1B be such that (Qt i !l', aC)CEB 1= 3vo 1\ d' for each finite subset 
d' of d. Thus d is consistent over 0p(Qt i !l', aC)CEB, so we can extend d to 
a I-type d* over 0p(Qt i!l', aC)CEB' Thus d* is a I-type over r in 2 B, so 
(B, d*) E T. Write (B, d*) = (Ba, d a), and choose 0 by (2) so that 0 E Sand 
r s fa0 S 0p(Qt, aC)CEC. Since d* is consistent over 0 because 0 S fa0 S 

0p(Qt, aC)CEC, it follows from (1) and the definition of fa that (Qt i 2, aC)CEC 1= 

p(d) for each p E d*, where d is a suitable element of C. Thus ad realizes d 
in (Qt i !l', aC)CEB, as desired. 0 

Theorem 28.6 is our main existence theorem for saturated structures. We 
shaH apply it in two ways: to No-saturation on the one hand, and m-satura
tion for m > Fmla:e on the other hand. In the case of countable languages, 
we can actuaHy characterize when a theory has an No-saturated countable 
model: 

Theorem 28.7 (Vaught). Let r be a theory in a countable language 2. Then 
the following conditions are equivalent: 

(i) r has a countable No-saturated model; 
(ii) for each mEw there are only countably many m-types over r. 

PROOF 
(i) ~ (U). Let Qt be a countable No-saturated model of r, and let mEw. 

For each m-type dover r let fd = {a E m A : a realizes d in Qt}. Since Qt is No-
saturated, by Proposition 28.2 we see thatfd i= 0 for each m-type dover r. 
Clearly fd (\ fd' = 0 for distinct m-types d, d' over r. Hence (ii) holds since 
Qt is countable. 

(ii) ~ (i). We apply 28.6 with m = n = No, 2 = 2', and r = r'. 
Obviously nP = n for 0 < p < m. Let 2" be as in 28.6, and let B S C with 
IBI < No, say B = {bo, ... , bm - 1} with m < w. For each p E FmlairB' let 
p' be obtained from p by first suitably replacing bound variables and then 
replacing bo, ... , bm - 1 by VI. .•. , Vm respectively. For each I-type dover r 

457 



Part 4: Model Theory 

in .PB, let fl:!. = {q,' : cP E I:!.}. We claim that f establishes a one-one corre
spondence between 1 types over r in .PB and (m + I)-types over r in .!£'. 
It is a routine matter to check this claim. Hence the assumption (ii) yields the 
fact that there are only countably many I-types over r in .PB. Thus the hy
potheses of 28.6 are fulfilled, and (i) follows. 0 

From 28.7 and 27.12 we obtain many examples of theories with countable 
No-saturated models: 

Corollary 28.8. If r is a consistent No-categorical theory with only infinite 
models, in a countable language, then r has a countable No-saturated 
model. 

Of course, actually all the countable models of r in this case are No-
saturated. Recall from Chapter 21 our many examples of No-categorical 
theories. Actually 27.12 is not needed to establish 28.8. A more direct argu
ment can be given which generalizes to prove 

Corollary 28.9. If r is a consistent theory in a countable language and r has 
up to isomorphism only countably many countable models, then r has a 
countable No-saturated model. 

PROOF. Let mEw. Each m-type over r is realized in some countable model 
of r, by 27.2. Hence there are only countably many m-types over r (cf. the 
proof (i) => (ii) in 28.7). So by 28.7, r has a countable No-saturated model. 0 

Corollary 28.9 makes evident the existence of No-saturated models in 
several more theories. For example, consider the theory r of algebraically 
closed fields of characteristic o. The countable models of r are, up to iso
morphism, the algebraically closed fields ma for ex :s; w, where ma has tran
scendence degree ex over 10. Hence by Corollary 28.9, one of these fields is 
No-saturated. In fact, only mw is No-saturated. For, let m < w, and let X 
be a transcendence base for mm. Thus IXI = m. For each nEw one has a 
formula CfJn of.P' (with.P' as in 28.1) such that mm 1= cpn[a] iff a is not algebraic 
of degree n over iQ(X). For each n there is such an a, by elementary field 
theory, but {CPn: nEw} is not realized in (mm, x)xex. Thus mm is not No-
saturated. So mw is No-saturated by 28.9. 

The following interesting result connects No-saturation with the existence 
of elementarily prime models. 

Theorem 28.10. Let r be a complete theory in a countable language. If r has 
a countable No-saturated model, then r has an elementarily prime model. 

PROOF. Suppose that r has no elementarily prime model. Then by 27.10 
there is an nEw for which there is an n-atomless formula cP over r. We shall 
show that there are 2lto n-types over r, so that by 28.7 r has no countable 
No-saturated model. 
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For each f E Ume", m2 we define a formula ifJ,. Let ifJo = rp. Suppose that 
ifJ, has been defined so that ifJ, E Fmlaz and ifJ, is n-atomless over r. Then 
there is a X E Fmlaz such that r II ifJ, -+ X and r II ifJ, -+ -,X. Let ifJ,o = 
ifJ, A X and ifJf1 = ifJ, A -'X· Clearly ifJ,o and ifJf1 are again n-atomless over 
r. This completes the definition. For each fE "'2 let t:., = {ifJg: g £; f}. 
Clearly t:., is consistent over r and so it can be extended to an n-type 0,. For 
f of h obviously 0, of 0 h , as desired. D 

In the case of No-categorical theories with only infinite models, the de
numerable model is both No-saturated and elementarily prime. If r is the 
theory of algebraically closed fields of characteristic 0, its elementarily 
prime model, the field of algebraic numbers, is different from its No-saturated 
model. 

Now we turn to the existence problem for m-saturated structures with 
m > IFmlazl. The main theorem is as follows: 

Theorem 28.11. Let ~ .!C" be the first-order languages, m and n cardinals, 
and r' a theory in .!C", subject to the following conditions: 

(i) I Fmlazl < m; 
(ii) .!C" is an expansion of ~ and I Fmlaz,1 :$ n; 

(iii) if p is any nonzero cardinal < m, then n" :$ p; 
(iv) r' is consistent. 

Under all of these assumptions it follows that there is a model ~ of r' of 
power :$ n such that ~ t .!C' is m-saturated. 

PROOF. Let r = r' n Sentz. By extending .!C" and r' we may assume that 
I Fmlaz,1 = n. Let.!C''' be as in 28.6. Clearly 28.6 will give the desired result, 
and only 28.6(vi) remains to be verified. Suppose that B :$ C with IBI < m 
and with .!C'B as in 28.6. Now by (i), I FmlazBI < m. The number of I-types 
over r in .!C'B is clearly :$ 21Fm1a.2'BI :$ n by (iii), so 28.6(vi) holds. D 

The most useful corollaries of this theorem are as follows. 

Corollary 28.12. Suppose I Fmlazl :$ m, and ~ is an .!C'-structure with 
No :$ IAI :$ 2m. Then there is an m+-saturated elementary extension ~ of 
~ of power 2m. 

PROOF. Let.!C'* be an A-expansion of ~ with new individual constants ea 

for a E A, and let .!C" be an expansion of .!C'* by adjoining new individual 
constants da, a < 2m. Let r' = {rp E Sentz, : (~, a)aeA F rp} U {-,da = dp : a < 
f3 < 2m}. The conditions of 28.11 are clearly met with m, n replaced by m +, 2m 
respectively. D 

Corollary 28.13. Suppose that m is strongly inaccessible, I Fmlazl < m, and 
~ is an .!C'-structure with No :$ IA I :$ m. Then ~ has an m-saturated 
elementary extension ~ of power m. 
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The proof of 28.13 is similar to that of 28.12. Using GCH we obtain 

Corollary 28.14 (GCH). Every theory in .!l' with infinite models has a 
saturated model of each regular cardinality > I Fmlazl. 

We now want to give different proofs for these corollaries which are 
perhaps more natural than the above. The proofs are based on the following 
lemma, which is of course, weaker than 28.12: 

Suppose I Fmlazl ::; m, and m is an .!l'-structure with No ::; IAI 
::; 2m. Then there is an elementary extension S8 of m such that 

(*) IBI = 2m , and if X is a subset of A of power ::; m, .!l'x is an X
expansion of.!l', and ~ is a I-type over 0p(m, X)XEX in .!l'x, then ~ 
is realized in (S8, X)XEX' 

We prove (*) by applying the compactness theorem; it can also be proved 
using ultraproducts (Exercise 28.39). We consider each language .!l'x as a 
reduct of a certain A-expansion ~ of .!l'. For each pair (X,~) such that 
X S A, IXI ::; m, and ~ is a I-type over 0p(m, X)XEX in .!l'x, we introduce a 
new constant CXt" thus expanding ~ to a new language .!l". Let r be the set 

0p(m, a)aEA U {'PCcx~): X s A, IXI < m, ~ a 
I-type over 0p(m, X)XEX in .!l'x, rp E~}. 

Clearly every finite subset of r has a model, so r has a model S8 of power 
::; IFmlaz.l. Now the number of pairs (X,~) of the above sort is clearly at 
most 2m, so IBI ::; 2m. Also, m is elementarily embeddable in S8, so B is 
infinite. By the upward Lowenheim-Skolem theorem we can assume that 
IBI = 2m. Clearly S8 r.!l' is as desired in (*) (up to isomorphism). 

On the basis of (*), Corollary 28.12 is established as follows: Assume the 
hypothesis of 28.12. We define a sequence <S8a : ex ::; m+) of .!l'-structures. 
Let S80 = m. Suppose that ex < m + and S8a has been defined so that No ::; 

IBal ::; 2m. By (*), choose S8a+1 to be an elementary extension ofS8a of power 
2m such that if X is any subset of Ba of power ::; m, .!l'x is an X-expansion of 
.!l', and ~ is a I-type over 0p(S8a , X)XEX, then ~ is realized in (S8a+1 , X)XEX' For 
,\ a limit ordinal ::; m + , let S8" = Ua <" S8a• Then S8m + satisfies the conclusion 
of 28.12. In fact, it is obviously an elementary extension of m of power 2m. 
Now suppose that X s Bm +, IXI ::; m, .!l'x is an X-expansion of .!l', and ~ is 
a subset of Fmla1-x such that (S8m +, X)XEX 1= 3vo /\~' for every finite subset 
~' of~. Extend~ toa I-type~* over 0p(S8m +, X)XEX' There is an ex < m+ such 
that X s Ba , since I XI ::; m and m + is regular. Clearly ~ * is also a I-type 
over 0p(S8a, X)XEX' From our construction it follows that ~* is realized in 
(S8a+l> X)XEX' Since S8a ~ S8m +, ~* is also realized in (S8m +, X)XEX' Thus S8m + 

is m-saturated. 
Corollary 28.13 can also be easily established in case IAI < m, on the 

basis of (*) or 28.12: one simply extends the above construction all the way 
to m. We leave the details for an exercise. 
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Another way of establishing these corollaries, and one which is very 
interesting from the point of view of general algebra, is via the notions of 
universal and homogeneous structures. 

Definition 28.15. Let K be a class of 2-structures and let m be a cardinal. 
An 2-structure Q( is m-universal over K provided that every member of K 
of power < m can be embedded in Q(. This is the general algebraic notion, 
which we modify as follows for the present purposes. An 2-structure Q( 

is m-universal provided that every model ~ =ee Q( of power < m can be 
elementarily embedded in Q(. Q( is universal iff it is IAI-universal. 

An 2-structure Q( is algebraically m-homogeneous over K provided that 
for every substructure ~ of Q( and for every isomorphism f of ~ into Q(, 

if I BI < m and ~ E K, then f can be extended to an automorphism of Q(. 

Again, we modify this for logical purposes. An 2-structure Q( is m
homogeneous iff for all a < m and all x E aA and y E aA, if (Q(, XI;) I; <a =ee 

(Q(, YI;)I;<a, then for any c E A there is a dE A such that (Q(, XI;, C)I;<a =ee 

(Q(, YI;, d)l;<a· Q( is homogeneous iff it is IAI-homogeneous. 

We will not be working with the purely algebraic notions defined in 
28.15. We mention them only in order to be able to informally describe the 
third method for constructing saturated structures. In fact, for all classes K 
and cardinals m having some natural properties one can construct in a 
straightforward algebraic fashion a structure m-universal and m-homo
geneous over K and of power m. Applying this general existence theorem to 
certain very special classes K one obtains the existence of universal-homo
geneous structures (in the above, logical, sense). We shall now establish that 
these structures are just the saturated structures. We break the proof into 
several steps, some of which are independently interesting. First of all it is 
convenient to slightly reformulate the definition of m-saturation. 

Proposition 28.16. Let Q( be an 2-structure. The following conditions are 
equivalent: 

(i) Q( is m-saturated; 
(ii) for all a < m, if 2' is an expansion of 2 obtained by adding new in

dividual constants cl;for each g < a, ifa E aA, and ifl1 s:; Fmla}e, is 
such that each finite subset of it can be realized in (Q(, al;)1; < a, then 11 
can be realized in (Q(, al;)1; < a. 

PROOF. Assume (i) and the hypothesis of (ii). Let X = {al; : g < a}, and 
let 2" be an X-expansion of 2, obtained by adding new individual constants 
dx for each X EX. For each formula q; of 2' let q;" be obtained from q; by 
replacing each individual constant CI; by dal;. Then for any yEW A and any 
formula q; of 2', we have (Q(, al;)1; < a t= q;[y] iff (Q(, X)XEX t= q;"[y]. It follows that 
if we let 11" = {q;" : q; E 11}, then each finite subset of 11" can be realized in 
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(Q!, X)XEX. Hence by (i), ~" can be realized in (Q!, X)XEX, so ~ can be realized 
in (Q!, a"),, «". 

Now assume (ii), and let X, !E', and ~ be as 28.1. Then there is an a < m 
and a one-one a: a ""* X. Let !E" be an expansion of !E be adjoining new 
individual constants CI; for g < a. Say !E' is obtained from !E by adjoining 
new individual constants dx for x E X. For each formula ffJ of !E' let ffJ" be 
obtained from ffJ by replacing each individual constant dx by ca- 1x. Then for 
any Y E wA, (Q!, X)XEX 1= ffJ[Y] iff (Q!, al;)l;<a 1= ffJ"[y]. We proceed further as in 
the proof of (i) => (ii). 0 

Lemma 28.17. IfQ! is m-saturated, then Q! is m-homogeneous. 

PROOF. Assume that Q! is an m-saturated !E-structure, a < m, x E a A, 
Y E aA, (Q!, XI;)I;<a =ee (Q!, YI;)I;<a, and C EA. Let !E' be the expansion of !E 
to a language for (Q!, X1)I;<a. Set ~ = {ffJ E Fmla~, : (Q!, XI;)I;<a 1= ffJ[c]). Since 
(Q!, X,,)I; < a =ee (Q!, YI;)I; «n each finite subset of ~ can be realized in (Q!, YI;)I; < a. 
Hence by 28.16, ~ can be realized in (Q!, YI;)I;<a. Say (Q!, YI;)I;<a 1= ffJ[d] for each 
ffJ E~. Clearly then (Q!, XI;, C)I;<a =ee (Q!, YI;, d)l;<a. 0 

Lemma 28.18. If Q! is m-saturated, Q! =ee SB, and b E m B, then there is an 
a E mA such that (Q!, al;)l;<m =ee (SB, bl;)l;<m. 

PROOF. Assume the hypothesis. We define the sequence a E m A by induction 
so that for each a :::; m the following condition holds: 

(1) 

Thus (1) is given for a = O. Suppose al; has been defined for each g < a so 
that (1) holds, where a < m. Let ~ = {ffJ: FVffJ S {va}' ffJ is in the language of 
(SB, bl;)l;<a, and (SB, bl;)l;<a 1= ffJ[ba]). From (1) it is clear that each finite subset 
of ~ can be realized in (Q!, al;)l;<a. Hence, by 28.16, choose aa so that aa 
realizes ~ in (Q!, al)1; < a. Thus (1) holds with a replaced by a + 1, the definition 
of a is complete, and (l) holds for a = m. 0 

Lemma 28.19. If Q! is m-saturated, then Q! is m + -universal. 

PROOF. Let Q! be m-saturated, and assume that Q! =ee SB and IBI :::; m. Let 
b: m -* B be an onto map. Then by 28.18 there is an a E m A such that 
(Q!, a,,)I;<m =ee (SB, b,,)I;<m. 

Let f = {(b", al;) : g < m}. Clearly f is a one-one function mapping B into 
A. Now let ffJ be any formula of!t', say ffJ E Fmlaz, and let X E nB. Say Xi = b"i 
for each i < n. Then 

SB 1= ffJ[x] 
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Lemma 28.20. Let 2 be afirst-order language and assume that I Fmlazl < m. 
lf~ is m-universal and m-homogeneous, then ~ is m-saturated. 

PROOF. Suppose that ~ is m-universal and m-homogeneous, and assume 
that the hypothesis of 28. 16(i0 holds. Expand 2' to 2" by adjoining a new 
individual constant d. Now consider the set 

r = 0p(~, a~)~<a U {rp(d): rp Ell}. 

Our hypothesis of 28. 16(i0 implies that every finite subset of r has a model 
which is an expansion of (~, a~)~<a. Hence r has a model (sa, b~, e)~<a of 
power < m. Thus ~ == ee sa, so by the m-universality of ~ we may assume that 
sa ~ ~. Hence (~, a~)~ < a ==ee (sa, b~)~ < a == ee (~, b~)~ < a' Furthermore, e realizes 
Ll in (sa, b~)~<a and hence in (~, b~)~<a. From the m-homogeneity of ~ it 
follows that there is an x E A with (~, a~, x)~<a ==ee (~, b~, e)~<a. Hence x 
realizes Ll in (~, a~)~ < a' o 

Combining the essential content of the preceding lemmas, we obtain 

Theorem 28.21. Let 2 be a first-order language, ~ an 2-structure, m a 
cardinal, and assume that I Fmlazl < m. Then the following conditions are 
equivalent: 

(i) ~ is m-saturated; 
(ii) ~ is m+-universal and m-homogeneous; 

(Ui) ~ is m-universal and m-homogeneous. 

Now we turn to the question of uniqueness of saturated structures. 

Theorem 28.22. If ~ and sa are elementarily equivalent saturated structures 
of the same power, then ~ ~ sa. 

PROOF. Let IAI = IBI = m, and let a: m >-*- A and b: m >-*- B. We use the 
by now very familiar back-and-forth method to show that ~ ~ sa; otherwise 
the proof is similar to that for 28.18. We define sequences x E mA, y E mB.by 
induction so that for each a ~ m the following condition holds: 

(1) 

Thus (1) is given for a = O. Suppose x~ and y~ have been defined for each 
g < a so that (1) holds, where a < m. If a is even, we proceed as follows. 
Choose g minimum such that a~ f/= x*a, and set Xa = a~. Let Ll = {rp: Fv rp £ 

{vo}, rp is in the language of (~, x~)~<a, and (~, x~)~<a F rp[xa]). From (1) it is 
clear that each finite subset of Ll can be realized in (sa, y~)~ < a so, since sa is 
m-saturated, by 28.16 we see that there is a Ya E B which realizes Ll in 
(sa, Y~)~<a. If a is odd, we interchange the roles of a and b, x and y, ~ and sa 
above. Clearly (1) now holds with a replaced by a + 1, the definition of x 

and Y is complete, and (1) holds for a = m. 
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Let f = {(XI;, yl;) : g < ct}. We claim that f is the desired isomorphism. 
To prove this, first note: 

(2) if ct < m, and ct = f3 + n where f3 is a limit ordinal and nEw, then 
aa E x*(f3 + 2n + 1) and ba E y*(f3 + 2n + 2). 

This condition is easily proved by induction on ct. Hencefhas domain A 
and range B. It is then clear from (1) for ct = m that f is the desired iso
morphism. 0 

We now want to give a couple of applications of saturated models. 
Saturated models have been extensively used in logic, and these two appli
cations just give a very small sample of their effectiveness for logical problems. 
The first, rather simple, application is a corollary of the following property 
of universal structures. 

Theorem 28.23. lfm is an m+-universal !f!-structure of power m ;::: I Fmlazl , 
then m is isomorphic to a proper elementary substructure of itself. 

PROOF. Assume the hypothesis. Let Q3 be a proper elementary extension 
of m. Choose bE B - A. Let (~, a, bLEA be an elementary substructure of 
(Q3, a, b)aEA of power m. Thus A S C, and in fact m < ~. For, if g; is any 
formula and X E OJ A, then m 1= g;[x] iff Q3 1= q:>[x] iff ~ 1= g;[x]. Also, note that 
b 1= A, so m is a proper elementary substructure of~. Since m is m + -universal 
and m =ee ~, there is an elementary embeddingf of ~ into m. Clearly f I A 
is an isomorphism from m onto a proper elementary substructure of m. 0 

Corollary 28.24 (GCH). If':J! is any infinite !f!-structure and I Fmlazl ::; m, 
then there is a Q3 =ee m of power m such that Q3 is isomorphic to a proper 
elementary substructure of itself. 

PROOF. By Corollary 28.12, let ~ be a saturated elementary extension of m 
of any power n ;::: m. By Theorem 28.21, ~ is n+-universal, so by Theorem 
28.23, there is an isomorphismf of ~ onto a proper elementary substructure 
'S) of~. Expand !f! to !f!' by adjoining a unary relation symbol P and a unary 
operation symbol O. Then for any g; E Fmlaz, the following sentence holds 
in (~, D,J): 

(1) VVo·· .vvn-1(A PVi -+ [g;+-+ g;P(Ovo,.··, OVn - 1)]) , 

I<n 

where r is obtained from g; by relativizing quantifiers to P. Let (Q3, E, g) be 
an elementary substructure of (~, D,J) of power m. Since all of the sentences 
(1) hold in (~, D,J), they also hold in (Q3, E, g), and it follows easily that g 
is an isomorphism of Q3 onto a proper elementary substructure of itself. 0 

We will see at the end of this chapter that GCH can be eliminated in 
28.24. Our second application depends on the following two important 
properties of saturated structures. The first proposition is obvious. 
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Proposition 28.25. If Qt is an m-saturated 2-structure and 2' is a reduct of 
.P, then Qt t 2' is m-saturated. 

Proposition 28.26. Let 2 be a language having a unary relation symbol P, 
and suppose that Qt is an m-saturated 2 -structure satisfying the following 
conditions: 

(i) I~I ~ No; 
(ii) for each operation symbol 0 of'p' the set pQI is closed under OQl. 

Let Q3 be the .!l'-structure such that B = pQI, R\23 = RQln mpQl for each 
m-ary relation symbol R of'p' and 0\23 = OQl t mpQl for each m-ary operation 
symbol 0 of 2. 

Then Q3 is m-saturated, and IBI ~ m. 

PROOF. Suppose X s ~ with IXI < m, and let 2' be an X-expansion of 
2. Assume that Ll s Fmla}e, is such that each finite subset of Ll can be real
ized in (Q3, X)XEX' For each formula rp of 2' let rp* be obtained from rp by 
relativizing quantifiers to P. Then for any b E pQl, 

(1) iff (Q3, X)XEX 1= rp[b]. 

Now let Ll* = {rp* : rp Ell} U {Pvo}. Then each finite subset of Ll* can be 
realized in (Qt, X)XEX, by (1), so Ll* is realized by some element b. Clearly 
bE B and, by (1) b realizes Ll in (Q3, X)XEX' Thus Q3 is m-saturated. Ob
viously IBI ~ m. 0 

The construction of 28.26 is of general interest; see, e.g., 25.6-25.8. 

Theorem 28.27 (Specker) (GCH). Let 2 be a first-order language having 
unary relation symbols P and Q. Suppose that 2' is another first-order 
language, and that f and g are isomorphisms from 2' into 2 (see 26.19). 
Let Qt be an 2-structure, and assume the following: 

(i) I~I, IQQlI ~ No; 
(ii) for each operation symbol 0 of 2', ~ is closed under (fO)QI, and QQI 

is closed under (gO)QI. 

Now let Q3 and cr be the 2'-structures such that B = pQl, C = QQI, while 
ifR is an m-ary relation symbol of 2' then R\23 = (fR)QI n mpQl and Rfi. = 
(gR)QI n mQQI, and if 0 is an m-ary operation symbol of 2' then 0\23 = 
(fO)QI t m~ and Ofi. = (gO)QI t mQQI. Assume that Q3 =ee cr. 

Under all of these assumptions there is a structure Qt' =ee Qt, such that if 
Q3' and cr' are formed from Qt' similarly to the formation of Q3 and cr from Qt, 

then Q3' ~ cr'. 
PROOF. By Corollary 28.12 choose Qt' to be a saturated structure elemen
tarily equivalent to Qt. By 28.25 and 28.26, Q3' and cr' are saturated, and 
IB'I = IC'I = IAI. Hence by 28.22 (since clearly Q3' =ee cr' because Q3 =ee cr), 
Q3' ~ cr'. 0 
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Again, we shall see shortly how to eliminate GCH. These two applica
tions of saturated structures are typical in the need to assume GCH. For many 
applications, one can show by delicate considerations concerning models of 
set theory that the GCH is unnecessary. Even in such cases the problem 
remains to devise a proof within ordinary set theory without GCH for the 
result in question. A small modification of the notion of saturated structure 
turns out to be sufficient for most problems: 

Definition 28.28. An .P-structure Q{ is special if and only if either IAI is a 
successor cardinal, and Q{ is saturated, or else I A I is a limit cardinal and 
there is a sequence <mm : m < IAI) such that: 

(i) each mm is m + -saturated; 
(ii) mm ~ mn whenever m < n < IAI; 

(iii) Q{ = Um< IAI mm. 

We shall not go into the theory of special models very much; we restrict 
ourselves to an existence theorem and a uniqueness theorem. 

Theorem 28.29. Suppose Q{ is an .P-structure and m is a cardinal. Assume 
that 2n :::; m whenever n < m, that I Fmla2' I < m, and that ~o :::; IAI :::; m. 
Then Q{ has a special elementary extension of power m. 

PROOF. If m = n + for some n, then the assumptions imply that 2n = n +, 
so the desired result is clear from 28.12. So assume that m is a "limit cardinal. 
We define the desired sequence <mn: n < m), leading up to the desired 
structure, by induction on n. Set p = I Fmla2' I -+ IAI. Thus 2q :::; m. By 
28.12, let mo be a p + -saturated elementary extension of Q{ of power 2Q, and 
for 0 < q < p, let mq = mo. Now suppose that p :::; n < m and mq has been 
defined for all q < n so that mq ~ mt for q < r < n, and IBql :::; 2p +q. Then 
IUq<n mql :::; 2n, so by 28.12 let mn be an n+-saturated elementary extension 
of Uq<n mq of power 2n. This completes the definition of <mn : n < m). 
Clearly Un <m mn is as desired in the theorem. 0 

Note that, by this theorem, without GCH, any infinite .P-structure Q{ has 
a special elementary extension. In fact, pick any cardinal m > IA I + I Fmla2' I 
such that n < m implies 2n :::; m. For example, m can be the supremum of 
the sequence 

IAI + I Fmla2'l, exp (lAI + I Fmla2' I), exp exp (IAI + I Fmla2'J), .... 

Then apply 28.28. On the other hand, without GCH one cannot always find 
a saturated elementary extension of a structure; see exercise 28.40. 

Theorem 28.30. If Q{ and <l: are elementary equivalent special.P-structures of 
the same non-denumerable cardinality, then Q{ ~ <l:. 
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PROOF. We may assume that m = [A[ is a limit cardinal. Let <:;an: n < m) 
be a sequence of the sort described in 28.28 for m, and let <~n :n < m) be a 
similar sequence for <r. Let n: a >-* {p : ~o ::; p < m}, where n is strictly 
increasing and hence a is a limit ordinal. Choose a: m >-* A and c: m >-* C. 
We now modify the sequence a; more precisely, we define a new sequence 
a': m -+ A by recursion. Suppose that g < m and a' I g has been defined. 
Choose y < a minimum such that g < ny. Then choose TJ minimum such that 
an E Bny ~ {a~ : y < g}, which is possible since [Bny[ ;::: n: by 28.28 and 28.3, 
and set a~ = an- Thus clearly 

(1) 
(2) 

a' I ny E ny Bny for each y < a. 

a': m >-* A. 

For, obviously a' is one-one. Suppose Rng a' i= A, and choose TJ minimum 
such that an rf: Rng a'. Choose y < a minimum such that an E Bny. For each 
T < TJ there is a (}t < m such that at = a~t. Let g = (Ut<n (}t + 1) u ny. Let 
y' be minimum such that g < ny .. Thus y < y', and TJ is minimum such that 
an E Bny' ~ {a~ : p, < g}, since at = a~t and (}t < g for each T < TJ. Hence 
a~ = an' contradiction. So (2) holds. Similarly we can define c': m ~ C so 
that 

(4) 
(5) 

c' I ny E ny Dny for each y < a; 
c':m~C. 

Now we define two sequences <Xy: y < a) and <Yy: y < a) by recursion; 
we want Xy: ny -+ Bny and yy: ny -+ Dny for each y < a. Suppose we have 
already defined Xy and yy for all y < f3, where f3 < a, in such a way that 

(6) (m, xyv)y<p,v<ny =ee (<r, Yyv)y<p,v<ny; 
(7) Xy: ny -+ Bny and yy: ny: ny -+ Dny for each y < f3. 

We now consider two cases 
Case 1. f3 = 0 + 2n for some 0, a limit ordinal or 0, and some nEw. Let 

xf3 be any function mapping np onto {a'y : y < np}. Thus by (1), xf3: np -+ Bnp. 
Now 

I{yyv : y < f3, v < ny}[ ::; 2: ny ::; np; 
y<p 

YYV E Dny S; DnfJ for y < f3 and v < ny; 
(<r, Yyv)y<p,v<ny =ee (~np, Yyv)y<fJ,v<ny. 

Since ~np is nt-saturated, clearly (~np, Yyv)y<p,v<ny is also. Hence from (6) 
and all of the above we easily infer from 28.18 that there is a yf3: nf3 -+ Dnp 
such that (m, xyv)Ysp,v<ny =ee (~np, Yrv)ysp,v<ny. Thus (6) and (7) now hold 
with f3 replaced by f3 + 1. 

Case 2. f3 is odd. We reverse the roles of x and Y, etc. 
The rest of the proof now follows a familiar pattern; cf. the proof of 
~n 0 
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Now we return to the consideration of our two applications of saturated 
structures. The first one can now clearly by proved without GCH using special 
structures as soon as we prove 

Lemma 28.31. If ~ is an uncountable special structure, then ~ is IAI + 

universal. 

The proof of this lemma is, however, just a "one-sided" version of the 
proof of 28.30; see the relationship between the proofs of 28.18 and 28.22. 

Turning to the second application of saturated structures, we first note 
that the analog of 28.25 is clear: 

Proposition 28.32. If ~ is a special .f.t' -structure and .f.t" is a reduct of !l', 
then ~ t .f.t" is special. 

The analog of 28.26 also holds. Since it is not quite so clear, we sketch the 
proof of it .. 

Proposition 28.33. Let.f.t' be a language having a unary relation symbol P, 
and suppose that ~ is a special.f.t'-structure satisfying the following con
ditions: 

(i) I~I ~ No; 
(ii) for each operation symbol 0 of!l', the set ~ is closed under Oil. 

Let ~ be the .f.t'-structure such that B = ~, R!B = R~ n m~ for each 
m-ary relation symbol R of .Ie, and O!B = O~ t m~ for each m-ary opera
tion symbol 0 of .f.t'. 

Then ~ is special, and IBI = IAI. 
PROOF. We take only the case in which m = IAI is a limit cardinal. Let 
<~: n < m) be a sequence as indicated in 28.28 for ~. For each n < m let 
!S)n be obtained from ~ like ~ was obtained from ~. Then by 28.26, each 
structure !S)n is n + -saturated and of power ~ n +. Clearly !S)n ~ !S)" whenever 
n <" < m, and ~ = Un<m!S)n. 0 

From 28.32 and 28.33 one can prove 28.27 without using GCH, by re
placing saturated structures by special structures in the proof of 28.27. 

EXERCISES 

28.34. Let m ~ No. Give an example of a O-saturated structure of power m 
which is not m-saturated. 

28.35. Every complete theory with infinite models in a countable language has 
O-saturated models of each power ~ exp No. 
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28.36. Let r be a theory in a language 2, and let 2' be an expansion of 2 by 
adjoining m new individual constants, where mEw. Show that there is a 
one-one correspondence between I-types over r in 2' and (m + 1)
types over r in 2. (See the proof of 28.7.) 

28.37. Assume the hypotheses of 27.12. Then the following condition is equiv
alent to (i) and (ii) of 27.12: 

(*) r has a model which is both No-saturated and elementarily prime. 

28.38. Let r be a complete theory in a countable language. Then r cannot have 
exactly two non isomorphic countable models. 

28.39. Prove the lemma (*) following 28.14 using uitraproducts instead of the 
compactness theorem. 

28.40. Find a denumerable structure Q! such that Q! has a saturated elementary 
extension of power Nl iff exp No = N1 . 

28.41. If Qla is m-saturated for each a < n, Q!a ~ Qlp whenever a < {J < n, and 
n is regular, then Ua<n Q!a is m-saturated. 

28.42. Find the denumerable No-saturated model of the theory of 27.20. 
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PART V 

Unusual Logics 



In this part we shall treat several kinds of logic which differ from first
order logic in standard formalization, which has been the almost exclusive 
topic in Parts II, III, and IV. Our aim is not to give as comprehensive a 
treatment as for first-order logic, but just to introduce various new forms of 
logic, prove one or two important theorems about the new logic, and state 
without proof some further results. To avoid consideration of trivialities, we 
shall not formulate the foundations of the new logics as carefully as we have 
for first-order logic. The one or two results we select usually show strong 
connections, or strong differences, of the new logic when compared with 
first-order logic. 



Inessential Variations 29 

We begin by considering four logics which are usually considered to be 
inessential variations of first-order logic with equality: first-order logic 
without equality, description operators, Hilbert's e-operator, and many
sorted logic. 

Logic without Equality 

Here we modify the notion of a first-order language only by eliminating 
the equality symbol. Throughout this section, unless otherwise mentioned, 
the languages referred to will be equality-free. Most of the facts concerning 
logic with or without equality are similar, and we shall not state all- the 
important results even without proof. The notion of an 2-structure remains 
the same, and the relation Q{ 1= gJ[x] and related concepts are defined as before. 
For logical axioms we can take the following formulas, where gJ and I/J are 
arbitrary formulas and a is any variable: 

gJ, for gJ a tautology; 
Vex(gJ --+- I/J) --+- (gJ --+- VexI/J) if ex does not occur free in gJ; 
VexgJ --+- SubffgJ, if no free occurrence of ex in gJ is within the scope of 

a quantifier on a variable appearing in T. 

This leads to a notion r I-ne gJ as in Chapter 10. Various elementary facts 
about I-ne are proved just as in Chapter 10. Of course we still have the notion 
r 1= gJ as in Chapter 11. We can prove the model existence theorem for logic 
without equality, and it even becomes simpler. We shall carry this through in 
detail for relational languages. 

Definition 29.1. Let 2' be a rich expansion of 2 by C, and let S be a family 
of sets of sentences of 2'. Then S is a consistency family (for .ft', 2') 
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iff for each rES all of the following hold, for all sentences f{', !f; of .fe': 

(CO) if Ll S; r, then Ll E S; 
(CI) f{' ¢: r or of{' ¢: r; 
(C2) if of{' E r, then r u {f{'--+} E S; 
(C3) if f{' A !f; E r, then r u {f{'} E Sand ruN} E S; 
(C4) if f{' v !f; E r, then r u {f{'} E S or r u {!f;} E S; 
(C5) ifVaf{' E r, then for all C E e, r u {Subfgf{'} E S; 
(C6) if 3af{' E r, then for some C E e, r u {Subfgf{'} E S; 
(C7) if a is a limit ordinal < IFmla.5fl, 0 0 E S for each {3 < a, 0 0 s; 0 y 

whenever {3 < y < a, and I{c E e: c occurs in some f{' E 01l for some 
(3 < a}1 < IC/, then Uo<" 0 0 E S; 

(C8) I{c E e: c occurs in some f{' E r}1 < lei. 

Theorem 29.2. Let .P be a relational language, and let .P' be a rich expansion 
of.P bye. Let S be a consistency family, and let rES, Then r has a model 
m with A = e, and hence IAI = I Fmla.5fl· 

PROOF. Let m = IFmla.5fl, f{': m>-* Sent.5f', and let a well-ordering of e be 
given. We now define a sequence < 0" : a ::; m) of members of S. Let 0 0 = r. 
Suppose that 0" E S has been defined, where a < m. Let 

0~ = 0" if 0" u {f{',,} ¢: S; 
0~ = 0" u {f{',,} otherwise; 
0~ = 0~ u {f{'s} if 0" u {f{',,} E S, f{'" = f{'s v f{'t. and 

0~ u {f{'s} E S, 
0; = 0~ u {f{'t} if 0" u {f{',,} E S, f{'" = f{'s V f{'t, and 

0~ u {f{'s} ¢: s, 
0~ = 0~ otherwise; 
0,,+! = 0; u {SubfN} if 0" u {f{',,} E S, f{'" = 3{3!f;, and c is 

the least member of e such that 0~ u {SubfN} E S, 
0,,+! == 0; otherwise. 

Clearly 0" + 1 E S. For ,\ a limit ordinal ::; m let 0", = U", <A 0". Clearly 
0", E S if ,\ < m. This completes the definition of < 0" : a ::; m). All of the 
following hold, for all sentences f{', !f; of 'p'. 

(1) f{' ¢: 0 m or of{' ¢: 0 m ; 

(2) if of{' E 0 m, then f{'--+ 0 m ; 

(3) if f{' A !f; E 0 m , then f{', !f; E 0 m ; 

(4) if f{' v !f; E 0 m , then f{' E 0 m or !f; E 0 m ; 

(5) if Vaf{' E 0 m , then for all C E e, Sub fgf{' E 0 m ; 

(6) if 3af{' E 0 m , then for some C E e, Sub fgf{' E 0 m ; 

Let A = e, and for each m-ary relation symbol R of .P let R2l = {c E me: 
Rco·· . Cm-l E 0 m}. For C E e let c2l = c. This defines an .fe'-structure m. 

(7) for any sentence f{' of 'p', if f{' E 0 m then m F f{', while if of{' E Qm then 
m F of{'. 
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The proof of (7), by induction on cp, is straightforward using (1)-(6); see the 
proof of 18.9. Hence the theorem follows. D 

From 29.2 we immediately obtain the completeness theorem for logic 
without equality: 

Theorem 29.3. Let!/! be a relational language, r a set of sentences of !/! 
consistent in the sense I-ne. Then r has a model of power IFmla,2'l. 

Corollary 29.4. r I-ne cp iff r 1= cp iff r I- cpo 

Corollary 29.5. I-ne cp iff 1= cp iff I- cpo 

Let us go into a little more detail about the relationship between logic with 
and without equality. 

Definition 29.6. If!/! is a first-order language with equality, we let !/!e be 
the first-order language ~ithout equality in which equality is treated as a 
new binary relation symbol. 

Thus !/!e is obtained from!/! by moving the equality symbol from the list 
of logical constants to the list of nonlogical constants. If Q{ is an !/! -structure, 
then (Q{, =) is a natural kind of !/!8_structure. But of course in !/!8-structures 
equality can be interepreted as any binary relation whatsoever. The relation
ship between!/! and !/!e can be expressed more fully using the following 
concepts. 

Definition 29.7. Let!/! be a relational first-order language without equality, 
and let Q{ and ~ be !/!-structures. A two-way homomorphism from Q{ onto 
~ is a function f mapping A onto B such that for every m-ary relation 
symbol R and every a E mA, a E R2I ifff oa E RIB. 

If!/! is a relational first-order language with equality and r s Fmla,2', 
then Er is the following set of sentences of !/!: 

VVo(vo = vo) 
VVOVVI(VO = VI ~ VI = vo) 
VVOVV1VV2(VO = VI A VI = V2 ~ Vo = V2) 
Vvo·· . VV2m-I(Rvo·· . Vm-l A !\i<m VI = Vm+ i 

~ Rvm · .. V2m -l) for any m-ary relation symbol R which occurs in 
some formula of r. 

The following proposition is easily established by induction on cp: 

Proposition 29.8. Let!l', Q{, ~ andfbe as in the first part of29.7. Let cp be a 
formula and x E "'A. Then Q{ 1= cp[xl iff ~ 1= cp[fo xl. 
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From the very definition of satisfaction we obtain the following prop
osition: 

Proposition 29.9. Let.f£' be a relational first-order language with equality, 
cp an .f£'-sentence, and 2t an .f£'-structure. Then 2t I=:l' cp iff (2t, =) I=:l'e cpo 

Proposition 29.10. Let.f£' be a relational first-order language with equality, 
cp E Sent:l', and r a set of .f£'-sentences such that equality does not appear in 
any sentence of r. 

Then r I=.!l' cp iff r I=:l'e /\ E{cp} ~ cpo 

PROOF. First assume that r I=:l' cpo Let (2t, E) be any model in the .f£'e-sense 
of r u E{cp}, where 2t is the underlying .f£'-structure. Then E is an equivalence 
relation on A. We form an .f£'-structure 2tjE with universe AjE by setting 
R~/E = {([ao], . .. , [am-I]): (ao, .. . , am-I) E R~} for each m-ary relation 
symbol R of .f£'. For each a E A letfa = [a]. It is easily verified thatfis a two
way homomorphism of 2t onto 2tjE. From 29.8 we see, then, that (2tjE, =) 
is a model of r in the .f£'e-sense, so obviously 2tj E is a model of r in the .f£'
sense. Hence by assumption 2tjE I=.!l' cpo Thus 29.9 yields (2tjE, =) I=.!l'e cp, and 
so by 29.8 we get (2t, E) I=:l'e cp, as desired. 

Conversely, suppose r I=.!l'e /\ E{cp} ~ cp, and let 2t be any model of r. 
Then (2t, =) is a model of r u E{cp} in the .f£'e-sense, so it is a model of cpo 
By 29.9 this means that 2t I=.!l' cpo 0 

If we recall 16.51, we obtain the following lemma. 

Lemma 29.11. Let.f£' be a first-order language without equality, and with 
exactly two non-logical constants, both binary relation symbols. Then 
,,+*{cp: cp E Sent.!l', I=.!l' cp} is not recursive. 

We can apply the method of proof of 16.51 to improve 29.11: 

Lemma 29.12. The theory of one binary relation, in logic without equality, is 
undecidable. 

PROOF. Let.f£' be as in 29.11, with Rand S the nonlogical constants, and 
let .f£" be a language without equality with single nonlogical constant T, 
a binary relation symbol. With each formula cp of.f£' we associate a formula 
cpo of .f£"; we define cpo by recursion on cpo For cp = RVjvj> let Vk and VI be the 
first two new variables, and set 

cpo = 3vk [TVkVk A TVkVj A 3VI(TVkVI A .,TVIVk A TVIVj)]. 

For cp = SVjvj> let Vk and VI be the first two new variables, and set 

cpo = 3Vk[3vl(TvkVI A TVIVk A .,TVIVj) A 

TV"Vi A 3vl(TVkVI A TVIVj A .,TVIVk)]. 
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Further, we let 

(g> A ifJ)O = g>0 A ifJo, (g> v ifJ)O = g>0 v ifJo, (.g»O = 'g>0, 
(Vacp)O = Va( .3,B(Ta,B) ~ g>0), 

where,B is the first variable not occurring in Vag>. Now: 

(1) 
if m is any Sf-structure, then there is an Sf'-structure "13 such that 
m F g>[x] iff "13 F g>°[x] for every formula cp and every x E ill A. 

For, given m we introduce new elements Sabo, Sabl for each (a, b) E R2! and 
new elements tabO' tabl , tab2 for each (a, b) E S2!. These elements are to lie 
outside A and should be distinct from each other for different choices of 
(a, b). Let B be A together with all of the new elements. For each (a, b) E R2! 
the following set is to be a part of TB: 

{(SabO' Sabo), (Sabo, a), (Sabo, Sabl), (Sabl' b)}. 

For each (a, b) E S2! the following is a part of TB: 

{(tabo, tabl ), (tab!> tabO), (tabo, a), (tabo, tab2), (tab2, b)}. 

This completes the definition of "13. It is routine to check (1). Next, 

(2) 
if "13 is an Sf'-structure for which {b E B: Vc(b, c) 1 TB} f=. 0, then 
there is an Sf-structure m such that m and "13 are related as in (1). 

For, let A = {b E B : Vc(b, c) 1 T21}, and set 

R2! = {(a, b) : S!3 F (RVovl)O[a, b]), 
S2! = {(a, b) : S!3 F (SVOvl)O[a, b]). 

Then (2) is easily checked. From (1) and (2) we easily get 

(3) for any sentence g> of Sf, F g> iff F 3vo VVl • TVovl ~ cpo. 

Our lemma now follows. o 
Theorem 29.13. Let Sf be a relational first-order language without equality 

and with at least one relation symbol of rank;?: 2. Then {g>: F g>} is un
decidable. 

PROOF. Let R be a relation symbol of Sf of rank ;?: 2. Let Sf' be a first
order language with sole non-logical constant the binary relation symbol S. 
With each formula g> of Sf' we associate the formula cpo of Sf obtained by 
replacing each atomic part S"jVj of cp by Rvjvjvj ... Vj. Clearly F cp iff F cpo, so 
29.12 yields our theorem. 0 

Now we turn to model-theoretic matters. The compactness theorem is, of 
course, an immediate consequence of 29.3: 

Theorem 29.14. If r is a set of sentences, every finite subset of which has a 
model, then r has a model of power I Fmla.p1 (in a relational language). 
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The notions of elementary substructure and elementary extension carry
over in an obvious way to logic without equality, and the proof of 19.17 
yields: 

Theorem 29.15. Let 2 be a relational language without equality, Q3 an 2-
structure, m a cardinal such that I Fm1a.!t' I :$ m :$ IBI, and C a subset of B 
such that I C I :$ m. Then there is an elementary substructure Q! of Q3 such 
that C s; A and IAI = m. 

Concerning the upward Lowenheim-Skolem theorem, we can prove here 
an even stronger theorem than 19.24. This is perhaps surprising, since our 
second proof of 19.24, essentially involved equality. Finite structures can be 
elementarily extended to infinite structures! 

Theorem 29.16. Let Q! be an 2-structure, 2 a relational language without 
equality, and let A S; B. Then there is an 2-structure Q3 with universe B 
such that Q! ~ Q3. 

PROOF. Fix a E A and defineJ: B ---+ A by settingfx = x for x E A andfx = 
a for x E B ~ A. For each m-ary relational symbol R, let RSl3 = {x E mB:f c 

X E RQI}. This defines our 2-structure Q3. One easily checks 

(1) for any x E WB and any formula ({l of 2 we have Q3 F ({l[x] iff 
Q! F ({l[fo x]. 

Thus Q! ~ SB. o 

Our final theorem for logic without equality is a version of Craig's inter
polation theorem; cf. Exercise 25.35, where an even stronger result is stated. 

Theorem 29.17. Let 2 be a relational language without equality, and let ({l 

and 0/ be sentences of 2 such that F ({l ~ 0/ while neither F '({l nor F 0/. 
Then there is a sentence X such that F ({l ~ x, F X ~ 0/, and every nonlogical 
constant occurring in X occurs in both ({l and 0/. 

PROOF. First note: 

(1) there is a nonlogical constant common to ({l and 0/. 

For, suppose not. Let Q! be a model of ({l and Q3 a model of ,0/. By taking 
elementary extensions, by 29.16 we may assume that A = B. Let C = A, and 
for R a relation symbol occurring in ({l let R<r = RQI, and let R<r = RSl3 other
wise. Clearly <r is a model of ({l 1\ ,0/, contradiction. 

Making use of (1), one can now apply the model existence theorem 29.2 
just like 18.12 was applied in the proof of 22.1. Instead of 3vo( Vo = vo), used 
in the proof of 22.1, one can use any sentence (j v ,(j where (j involves only 
nonlogical constants common to ({l and 0/. 0 
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The Description Operator 

We now imagine a first-order language with equality!&' endowed with a 
new symbol "t' and a distinguished individual constant O. Intuitively, we 
want to consider expressions like "t'VICP, where cP is any formula, and interpret 
it as "the unique Vi such that cP, or 0 if there is no Vi> or several VI, such that 
cp." We want to define for such a language the precise meaning of terms and 
formulas and their precise interpretation in !&'-structures. Then we prove the 
basic fact about descriptions, which for clear reasons is analogous to a 
similar fact about definitions: description operators can be eliminated. A 
triple (oP, "t', 0) as above is called a descriptive triple. 

Definition 29.18. Let (oP, "t', 0) be a descriptive triple. We define simul
taneously the notions of terms and formulas for (oP, "t', 0): 

(i) any variable is a term; 
(ii) if 0 is an operation symbol of rank m and ao, ... , am-1 are terms, 

then Oao· .. am-1 is a term; 
(iii) if a and p are terms, then a = p is a formula; 
(iv) if R is a relation symbol of rank m and ao, ... , am -1 are terms, then 

Rao·· . a m-1 is a formula; 
(v) if cp and ,p are formulas, then so are -'cp, cp v ,p, and cp A ,p; 

(vi) if a is a variable and cp is a formula, then Vacp is a formula; 
(vii) if a is a variable and cp is a formula, then "t'acp is a term. 

Some examples of terms are VI> "t'V1(VI = 0), VI + "t'Vj(Vj = "t'Vk(Vk < VI)), in 
a language with appropriate operation and relation symbols 0, +, <. The 
notions of free and bound occurrences of variables in formulas or terms (!) is 
defined as usual. In this regard, VI is to be regarded as bound wherever it 
occurs in "t'VICP, i.e., "t' is a variable-binding operator. 

Definition 29.19. Let (oP, "t', 0) be a descriptive triple, let ~ be an !&'
structure, and let x E 0) A. We define simultaneously the notions ~x (for 
a a term) and ~ 1= cp[x] (for cp a formula): 

V,!,X = XI; 

(Oao··· am-1)~X = O~(a%'x, ... , a~_1x); 
~ 1= (a = p)[x] iff a~x = p~x; 
~ 1= Rao··· am-1[x] iff (a%'x, ... , a~_1X) E R~; 
~ 1= -,cp[x] iff not (~ 1= cp[xD; 
~ 1= (cp v ,p)[x] iff ~ 1= cp[x] or ~ 1= ,p[x]; 
~ 1= (cp A ,p)[x] iff ~ 1= cp[x] and ~ 1= ,p[x]; 
~ 1= VViCP[X] iff for all a E A, ~ 1= cp[x~]; 
("t'ViCP)~X is the unique a E A such that ~ 1= cp[x~], if such an a exists and is 
unique, and it is O~ otherwise. 
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Before proceeding to our main theorem, we may mention that the main 
place in formalized mathematics where descriptions are useful is in axiomatic 
set theory. In fact, the class {x : tp(x)} is most naturally interpreted as 

'tyVx[x E Y - 'P(x)] 

in formalized set theory. In precise metamathematical investigations of 
axiomatic set theory the following theorem is then quite useful. 

Theorem 29.20. Let ("P, 't, 0) be a descriptive triple, r a set of sentences in 
("P, 't, 0), a a term of("p' 't, 0) and'P aformula of("p' 't, 0). Then 

(i) if Vk is a variable not occurring in a, then there is a formula tP not 
involving T and with Fv tP ~ Fv a U {Vk}' such that r 1= a = Vk - tP; 

(ii) there is a formula 'P* not involving T and with Fv 'P* ~ Fv 'P such that 
r 1= 'P- 'P*' 

PROOF. We proceed by simultaneous induction on a and 'P. If a is VI> then 
for tP in (i) we may obviously take the formula Vi = Vk • If a is 0po' .. Pm-1 

and Vk does not occur in a, first choose distinct new variables VIO, ... , VI(m -1) 

not occurring in a and different from Vk' By the induction assumption there 
are formulas tPi for i < m not involving T such that 

r 1= P. = Vii - tPi for each i < m. 

Clearly then 

Next, suppose 'P is the formula a = p. Let Vk be a variable not occurring in 
'P, and by the induction hypothesis let tP and X be formulas not involving T 

such that r l= a = Vk - tP and r l= p = Vk - X. Clearly then 

r l= a = p - 3Vk(tP 1\ X). 

In all of the above cases the free variable restriction in the theorem can 
clearly be met. Atomic formulas Rao'" a m-1 are treated similarly. The 
induction steps involving ..." v, 1\, V are trivial. Finally, suppose a in the 
term 'tVI'P, and Vk does not occur in a. By the induction assumption let 'P* be 
a formula not involving 't with Fv 'P* s Fv 'P and r l= 'P - 'P*' Let VI be a 
new variable. Clearly then 

r 1= a = Vk - 3vl[Vv.('P* - v. = VI) 1\ VI = Vk] 
v [...,3vIVv.('P* - V. = VI) 1\ Vk = 0]. 0 

The correspondence from 'P to 'P* in 29.20 is clearly effective. A particular 
case of 29.20 is that l= 'P iff l= 'P*, for any sentence 'P of ("P, 't, 0). Thus we 
obtain a weak completeness theorem by 11.21 and 6.10: 

480 



Chapter 29: Inessential Variations 

Theorem 29.21. For a descriptive triple (oP, T, 0) the set j1+*{rp : rp a sentence 
of(oP, 't, 0) and 1= rp} is recursively enumerable. 

This gives rise to a possibility of giving logical axioms for 't, and this has been 
done, leading to a notion r I-n rp. The completeness theorem can thus be 
proved for this notion. 

The Hilbert E-operator 

A choice triple is a triple (oP, e, 0) of the same kind as a descriptive triple, 
and all the syntactical definitions above are the same. But now we want to 
interpret eVirp differently, namely ambiguously as any Vi such that rp holds. 
It is not completely clear how to make this rigorous, but the following way 
has seemed appropriate. 

Definition 29.22. Let (oP, e, 0) be a choice triple. A choice structure for 
(oP, e, 0) is a pair (Q1.,!) such that Q1. is an 2"-structure and f is a choice 
function for nonempty subsets of A. The definition of aWx and (Q1.,f) 1= 

rp[x] for x E "'A goes just as for the description operator in 29.19 except 
for the term eVirp, where we set 

(eVirp)~fX = f{a E A: (Q1.,!) 1= rp[xm if this set is nonempty; 
(evirp)Wx = O~ otherwise. 

The analog of 29.20 does not hold for the e-operator. A counterexample 
can be obtained as follows. Let 2" be a language with just one nonlogical 
constant, an individual constant 0, and consider a choice triple (oP, e, 0). 
Suppose that I/J is a formula not involving e such that 1= evo(vo = vo) = Vo +-+ I/J; 
such a formula would have to exist if the analog of 29.20 holds. Let Q1. be any 
2" -structure with I A I > 1, and fix a EA. If Q1. 1= I/J[ a], let fbe a choice function 
such thatfA i= a. Then (evo(vo = vo))~f = fA i= a, so (Q1.,!) II (evo(vo = vo) = 
Vo +-+ I/J)[a]. If Q1. II I/J[a], we let f be a choice function such that fA = a and 
get a similar contradiction. 

As is to be expected, however, there is a close connection between the 
e-operator and Skolem expansions. We describe this in the next definition 
and results. 

Definition 29.23. Let (oP, e, 0) be a choice triple, and let 2'" be a Skolem 
expansion of oP, with notation as in 1l.33. With terms a and formulas rp 
of (oP, e, 0) we shall associate terms a* and formulas rp* of 2"', by re
cursion: 

vi = Vi; (Oao··· am-l)* = Oari··· a!_l; 
(a = p)* = a* = p*; (Rao··· am-l)* = Rat··· a!_l; 
(...,rp)* = ...,rp*, (rp V I/J)* = rp* V I/J*, (rp 1\ I/J)* = rp* 1\ I/J*, 
(VVirp)* = VVirp*; 
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the only nontrivial part of the definition is in dealing with evitp. Let 
Fv 3vitp = {vjO , ... , Vj(m -I)} with jo < ... < jm -1' Choose k minimal such 
that tp* is a formula of .Pk • Then we set 

Next, let Qt be an .p-structure, and letfbe a choice function for nonempty 
subsets of A. We shall define an 'p'-structure 'l3Q(f which is to be an ex
pansion of Qt. Thus we must interpret in 'l3Q(f all of the new operation 
symbols S~IX"" For each term evitp of (2: e, 0) with notation as above, and 
for each aD, ... , am-l E A, let x E '"A be any sequence with Xit = at for 
each t < m and set 

S~~~!(aO' ... , am -1) = f{a : (Qt,j) 1= tp[x~]} if this is nonempty, 
S~~!(ao, ... , am-I) = OQ( otherwise. 

Since our mapping * is clearly one-one, this is possible. F or S~a'" not of the 
above form, let S~7{$lf be the constant function with value OQ(. 

Proposition 29.24. Let the notation be as above. Suppose that a is a term of 
(2, e, 0), tp is a formula of (2, e, 0), and x E '"A. Then aW x = a*'l3Q(f X and 
(QI,j) 1= tp[x] iff'13Q(f 1= tp*[x]. 

PROOF. The simultaneous inductive proof on a and tp is straightforward. 0 

From this proposition we again obtain a weak completeness theorem: 

Theorem 29.25. The set ?+*{tp : tp is a sentence (2, e, 0) and 1= tp} is re
cursively enumerable. 

PROOF. We claim that 1= tp iff r 1= tp*, using the notation of 29.23, where r is 
the following set of sentences of 'p': 

the Skolem set of 'p' over .p; 
Xij",,,, for i,j < wand tp, «P formulas of 'pI, 

where Xii"'''' is formed as follows. Let Fv 3vitp = {VkO, ... , Vk(m-l)} with ko < 
... < km-l> and Fv3vi«P{VIO"",V/(n-l)} with 10 < ... < In-I' Choose s 
minimum such that tp is a formula of -p., and t minimum such that «P is a 
formula of ~. Let VuO, ... , Vu(m + n) be the first m + n + 1 distinct variables 
not occurring in 3Vitp or 3Vi«P, and set 

tp' = Subf~~8 ... Subf~~~:::: fltp, 
«P' = Subf~~~· .. Subf~~~~-+~_l)«p, 

Then let Xii"'''' be the sentence 

VVUO ... VVu(m + n -l)[Vvu(m + n)(Subf~~(m + n)tp' +-+ 

Subfg~(m+n)«P') -+ S~Vi"'VuO ... vu(m-l) = SjviI/IVum ' .. vU(m+n-l)] 

Our claim can now be routinely checked. Since r is clearly effective, the 
theorem follows. 0 
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As in the case of description operators, Theorem 29.25 implies the 
possibility of developing a proof theory based upon the e-operator. This has 
been done, and the completeness theorem has been proved for the resulting 
notion 1-•• Two of the major results here are: (1) (" second e-theorem") if 
r u {cp} is an e-free set of sentences and r 1-. cp, then r 1= cp; (2) ("first e
theorem") a formulation of Herbrand's theorem in the e-Ianguage. Note 
that for any formula cp we have 1= 3voCP - cp(evocp). This gives rise to the 
possibility of founding logic using the e-symbol and no quantifiers, taking the 
above as a definition of 3; this has been carefully worked out. Another 
interesting use of the e-calculus is in axiomatic set theory. Although the 
second e-theorem above implies that nothing is gained by introducing 
the e-symbol after setting out the usual axioms for ZF (set theory without the 
axiom of choice), the situation is different if e-formulas are allowed in the 
schema of set formation of ZF. Then the axiom of choice in its usual formu
lation becomes provable. This is worked out carefully in Bourbaki's treatment 
of set theory. 

Many-Sorted Logic 

This variant of first-order logic is considerably more important than the 
ones above. The basic idea is to allow several universes in the structure instead 
of only one. As far as syntax is concerned, this is expressed in the following 
definition: 

Definition 29.26. A many sorted language .!C' is determined by specifying 
the following. There is a nonempty set Y of sorts. For each s E Y we 
have individual variables of sort s: 

v~, vt, .... 

The logical symbols are the usual ones: ..." v, A, "I, =. The nonlogical 
constants are some relation and operation symbols. Each relation symbol 
and each operation symbol has a rank which is a finite non-empty sequence 
of members of Y. 

Given such a language, we define terms and formulas as follows: 

(i) v~ is a term of sort s; 
(ii) if Q is an operation symbol of rank (so, ... , sm) and ao, ... , am -1 are 

terms of sorts so, ... , Sm -1 respectively, then Qao ... am -1 is a term 
of sort sm; 

(iii) if a and T are terms of the same sort, then a = T is a formula; 
(iv) if R is a relation symbol of rank (so, ... , sm) and ao, ... , am are terms 

of sorts so, ... , Sm respectively, then Rao ... am is a formula; 
(v) if cp and I/J are formulas and ex is a variable, all of the following are 

formulas: ""cp, cp v I/J, cp A I/J, "Iexcp; 
(vi) terms and formulas can only be formed in these ways. 
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The notion of an 2'-structure for such a language is clear: 

Definition 29.27. Let 2' be a many sorted language as above. An 2'
structure is a triple Ql = (A, f, R) such that: 

(i) A is a function which assigns to each s E :7 a nonempty set As; 
(ii) 1 is a function whose domain is the set of operation symbols of 2'; 

if 0 is an operation symbol of rank (so, ... , sm), then 10 : Aso x ... 
X As<m -1) --+ Asm; 

(iii) R is a function whose domain is the set of relation symbols of 2'; 
if R is a relation symbol of rank (so, ... , sm), then RR S Aso x ... 
X A.m. 

Let 2' and Ql be as in 29.27. Given x E P SE[/' OJ As> it is clear how to define 
the notions a2lx and Ql F <p[x]. This, then, defines the fundamental notions 
for many-sorted logic. 

There is a natural way of relating many sorted logic to ordinary logic. 
Let 2' be a many sorted language, as above. With 2' we associate an ordinary 
first-order language 2'* as follows. The language 2'* is to have the relation 
and operation symbols of 2', and additional unary relation symbols Ps for 
s E Y'. If 0 is an operation symbol of 2' of rank (so, ... , sm), then as a symbol 
of 2'* the operation symbol 0 will have rank m. For a relation symbol R of 
rank (so, ... , sm), the symbol R will have rank m + 1. We shall treat the 
variables v~ as the variables of 2'* also. Note that this is, strictly speaking, 
impossible when 1:71 > ~o, but for almost all logical purposes it makes no 
difference. Now with each formula <p of 2' we associate the formula <p* of 
2'* obtained by replacing "Vvf" by "Vv~(Psvf~" throughout <po Let r be 
the set of all of the following sentences of 2'* : 

for each s E:7; 

VvsOVvs1 . .. vv.<m-l)[/\ P v~j --+ P Ovso ... vs<m-l)l ° 1 m -1 sI , sm ° m-1 
i<m 

for each operation symbol 0 of 2' of rank (so, ... , Sm). 

Next, let Ql be any 2'-structure. Fix a E A. We convert it into an 2'*-structure 
Qlt as follows. Set 

A* = U As; 
se[/' 

R2I* = R2I; 
02l*(ao, .. . , am-I) = 02l(ao, ... , am-I) if aj EASj for each i > m, 
02l*(ao, ... , am -1) = ao otherwise, 

where 0 has rank (so, ... , Sm -1)' The following proposition is then easy to 
establish. 
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Proposition 29.28. Let.!f7 be a many sorted language, .!f7* the associated 
first-order language, ~ an .!f7-structure. Then ~* is a model of r above. 
Furthermore, let x E P SE.9" wAs. Then a2lx = a2l* X and ~ F <p[x] iff~* F 
<p*[x]. 

Corollary 29.29. For any many-sorted sentence <p, F <p iff r F <p*. 

Corollary 29.30. j'+*{<p: <p is a many-sorted sentence and F <p} is r.e. 

Again, explicit axiom systems for many-sorted logic have been developed. 
The model theory for many-sorted logic is rather well developed. Some of 
the details are outlined in the exercises. 
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EXERCISES 

29.31. Let .2 be a relational language without equality. Let <~t: i E I) be a 
system of .2-structures. Let F be an ultrafilter on I. We define a structure 
'S = PiEI ~h which serves the role of ultra products in logic without 
equality. Its universe is B = PtEI At. Given an m-ary relation symbol R, 
we set 

RIB = {x E mB: {i: (XOh . .. , Xm-l.t) E R2I} E F 

Prove the following version of the fundamental theorem on ultraproducts: 
If x E W Band <p is a formula of .2, then the following two conditions are 
equivalent: 

(i) prel ~t F <p[x]; 
(ii) {i E I: ~t F <p[prt . x]} E F. 

29.32. Find a set r of sentences in a suitable language without equality such that 
r has no finite model. 

29.33. Let .2 be a relational language without equality, ~ an .2-structure. A 
relation E S; A x A is a congruence relation in ~ if it is an equivalence 
relation on A, and for any m-ary relation symbol R of .2, if a, bEmA, 
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ajEbj for all i < m, and a E R~ then b E R~. Given such an E, we let 
~/E be the .!l'-structure with universe AlE and with 

R~/E = {x E m(AIE) : there exists a E R~ with aj E Xj for all i < m}. 

Show that the mapping f such that fa = [a]E for all a E A is a two-way 
homomorphism from ~ onto ~/E. 

29.34. With.!l' and ~ as in 29.33, there is a maximal congruence on ~. 

29.35. For any relational language.!l' without equality there is a denumerable 
.!l'-structure ~ and a congruence E on ~ such that IAIEI = 1. 

29.36. Let .!l' be a relational language without equality. An .!l'-structure ~ is 
primitive if there is no congruence on ~ except the identity. If IAI > 1 and 
~ is elementarily equivalent (without equality) to a one-element .!l'
structure, then ~ is not primitive. 

29.37. Let .!l' be a relational language without equality and with only finitely 
many non logical constants. Suppose that ~ is a finite .!l' -structure, ~ is 
elementarily equivalent (without equality) to <;8, and IAI < IBI. Then <;8 

is not primitive. 

29.38. Formulate Definition 29.18 more precisely. Hint: let Trmfmla be the set 
of all pairs (T, 0), (cp, 1) with T a term and cp a formula, and define Trmfmla 
in a standard set-theoretic way. 

29.39. Let (2, ~, 0) be a descriptive triple. Take as logical axioms the schemes 
10.23(1)-(5) as well as the following two schemes: 

(6) 'VVj(Vj = Vj _ cp) -+ Vj = ~VjCP, if j is minimum such that Vj does not 
occur in cp; 

(7) ...,3vj'Vvj(Vj = Vj_ cp) -+ ~VjCP = 0, withj as in (6). 

This gives rise to a notion r ~ d cp and the attendant notions, such as 
d-consistency. Prove the usual versions of the completeness theorem, 
analogous to 11.19-11.20. Hint: reprove 29.20, using ~d instead of F. 

29.40. Show that with descriptions the usual validity 10.61, that F'Vacp -+ Subfgcp 
under certain conditions, no longer holds. 

29.41. The description operator can be made precise in several non-equivalent 
ways. We indicate briefly another possibility different from the one 
expounded in this section. It applies to an arbitrary first-order language, 
without an individual constant 0 being distinguished. But satisfaction is 
modified as follows. If ~ is an .!l'-structure and a E A, we define (~, a) F 
cp[x] for x E mA just as in 29.19, except that (~VjCP)~x is a if there is no 
unique b E A such that (~, a) F cp[xh]. Show that 29.20 then fails, in general. 

29.42. The compactness theorem holds for many-sorted logic. Hint: Use 29.28. 

29.43. Define the ultraproduct of many-sorted structures and prove the funda
mental theorem on ultraproducts. 

29.44. Formulate and prove a general downward Lowenheim-Skolem theorem 
for many-sorted logic. 
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29.45. Formulate and prove a general upward Lowenheim-Skolem theorem for 
many-sorted logic. 

29.46. Let r be the theory of vector spaces of infinite dimension over algebraically 
closed fields, formulated in a two-sorted language. Show how this can be 
done in a precise way, and show that r is complete. 
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In this chapter we want to consider various essential extensions of first
order languages in which the formulas are still of finite length. In particular, 
we shall consider higher-order logic, w-Iogic, and cardinality quantifiers. 

Weak Second-Order Logic 
Let a first-order language .It' be augmented by new quantifiable variables 

Fo, Flo ... which in an .It'-structure are interpreted to range over finite 
subsets of the universe: this gives us a formulation of weak second-order 
logic. Among the atomic formulas are new ones of the form Fja, where a 
is a term. 

In a weak second-order logic the compactness theorem fails to hold. 
Perhaps the simplest example is given by the following set of sentences: 

3FoVvoFovo; 
there are at least n things (a sentence for each nEw). 

Various other of our theorems in first-order logic fail in weak second-order 
logic. Two important theorems are the upward Lowenheim-Skolem theorem 
and the recursive enumerability of the set of validities. To prove that these 
do not hold here, consider the following set QW of weak second-order sen
tences, formulated in -P..os: 

Q (recall 14.17) 
VVo3Fo[Fovo 1\ VVl(Fosvl -+ Fovl)] 

It is clear that ~ is a model of QW if and only if ~ is isomorphic to (w, +, ·,0, (j). 
In fact, let ~ = (A, +, ., O,J) be a model of QW. Define g: w -+ A recursively 
by setting gO = 0 and g(m + I) = fgm for all mEw. Thus gm = (Il.m)~ 
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for each mEw (proof by induction on m). The function g preserves + and 
. because R is a subtheory of Q. Suppose that g does not map onto A, and 
choose a E A '" g*w. By axiom 14.17(i)(c) of Q we see that it is possible 
to define a sequence <Xi: i E w) such that Xo = a and GXi + 1 = Xi for every 
i E w. This clearly contradicts our one weak second-order axiom for QW. 
Hence g is onto, so it is an isomorphism from (w, +, " .1, 0) onto Q!. Thus 
the upward Lowenheim-Skolem theorem fails. Furthermore, we can repeat 
the proofs of 15.20 and 15.21 to obtain 

Theorem 30.1. The set {?+ifi: ifi is a sentence of ~os in weak second-order 
logic and QW F ifi} is not elementarily definable in (w, +, " .1, 0), in weak 
second-order logic. 

Now QW F ifi iff F 1\ QW ~ ifi. Hence {{f+ifi : Fifi} is not weak second order 
elementarily definable in (w, +, " 0, G) either. Thus by 14.16, {{f + ifi : F ifi} is 
not recursively enumerable, so there is no hope of finding a reasonable proof 
theory for this logic. 

In view of all of these negative results, it is interesting that the downward 
Lowenheim-Skolem theorem, 19.17, goes over verbatim. The proof of this 
fact depends upon the following lemma analogous to 19.16 (where we use 
a rather obvious notation for satisfaction): 

Lemma 30.2. Let Q! and ~ be .Y-structures, with Q! s; ~. Then the following 
two conditions are equivalent,' 

(i) Q! ~ ~ in the weak second-order sense; 
(ii) for every weak second-order formula rp, every k E w, every X E W A, and 

every y E W{F: F s; A, IFI < No}, if ~ F 3Vkrp[X; y] then there is an 
a E A such that ~ F rp[ x~; y], and if ~ F 3Fkrp[ X; y] then there is a finite 
G s; A such that ~ F rp[x; y~]. 

The proof is just like for 19.16. 

Theorem 30.3 (Tarski). Let ~ be an .Y-structure, let m be a cardinal such 
that I Fmla..rl ~ m ~ IBI, and let C be a subset of B of power ~ m. Then 
there is an elementary substructure Q! of~ (in the weak second-order sense) 
such that C s; A and IA I = m. 

PROOF. The proof is very similar to that for 19.17, but for completeness 
we shall sketch it. Let rt' be a choice function for nonempty subsets of 
B uSB. We now define a sequence <Dm : mEw) by recursion. Let Do be 
any subset of B such that C S; Do and I Dol = m. Fix dE Do. Now suppose 
Dm has been defined. Let 1m be the set of all sextuples (G, rp, k, I, x, y) such 
that G is a finite subset of D m , rp is a weak second-order formula of .:£', 
k, 1 E w, X E W G, and Xj = d whenever Vj does not occur in rp, and yEW SG 
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and Yj = ° whenever Fj does not occur in f{J. Clearly equality (5) in the proof 
of 19.17 still holds. Now let 

Dm+l = Dm U {~{a: 'B 1= f{J[x~; y]}: (G, f{J, k, I, x, y) Elm and 'B 1= 3Vkf{J[X; y]} 
U {~{H : 'B 1= f{J[x; yk]} : (G, f{J, k, I, x, y) E 1m and 'B 1= 3F/f{J[x; y]}. 

The rest of the proof proceeds as before. o 
We may mention without proof the following decidability results of 

Liiuchli [4] and Rabin [6]: the weak second-order theory of linear ordering 
is decidable; the weak second-order theory of one function is decidable. 

Monadic Second-Order Logic 
In monadic second-order logic we strengthen a first-order language by 

adjoining variables Po, P lo .•. which are to range over all subsets of a given 
universe. The negative facts mentioned above for weak second-order logic 
still are true for the monadic case. We need new proofs now, however. Let 
QID consist of the theory Q together with the sentence 

VPo[PoO 1\ VVo(Povo ~ Posvo) ~ VVoPovo]. 

Then up to isomorphism (w, +, ,,0,0) is the only model of Qrn. Hence the 
upward L6wenheim-Skolem theorem fails to hold. Thus just as for 30.1 
we obtain the important 

Theorem 30.4. The set {fJ+!f : !f is a sentence of 2nos in monadic second-order 
logic and QID 1= if} is not elementarily definable in (w, +, ,,0,0), in monadic 
second-order logic. 

Thus again {fJ+!f : 1= if} is not r.e., and there is no reasonable proof theory 
for this logic. Theorem 30.4 stands in contrast with the following result: 

Theorem 30.5. The set {fJ+!f : !f is a sentence of 2nos in ordinary first-order 
logic which holds in (w, +, ,,0,0) is elementarily definable in (w, +, ,,0,0) 
in monadic second-order logic. 

PROOF. We wish to formalize in monadic second-order logic the following 
definition of truth of a sentence in (w, +, ,,0,0). First define a function f 
mapping the variable-free terms of ~os into w as follows: 

fO = 0; fsa = fa + 1; 
f(a + or) = fa + fT; f(a'T) = faIT. 

Then we can say that a sentence f{J holds in (w, +, ,,0,0) if and only if it is 
a member of the unique set A of sentences such that a sentence !f is in A 
iff one of the following conditions holds: 

(1) !f has the form a = T, andfa = fT; 
(2) !f has the form ""x, and X if: A; 
(3) !f has the form X 1\ 8, and X E A and 8 E A ; 
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(4) .p has the form X v 8, and X E A or 8 E A; 
(5) .p has the form VViX, and Subf~mX E A for every mEw. 

In fact, {cp E Sent.~no.: (w, +, ',0,0) Pcp} = B clearly satisfies (1)-(5), and 
if A satisfies (1)-(5), it is easily seen by induction on the sentence cP that 
cP E A iff cP E B. To formalize this definition, consider the following relations: 

ff + *Sent.!t'nos; 
{m : m = ff+(a = 'T) for some variable-free terms a, 'T such thatfa = f'T}; 
{em, n) : m = ff+CP and n = ff+( ...,cp) for some sentence cp}; 
{em, n,p): m = ff+CP, n = ff+.p, and p = ff+(CP A .p) for some sentences 

cP, .p}; 
{em, n,p): m = ff+CP, n = ff+.p, and p = ff+(CP A .p) for some sentences 

cP, .p}; 
{em, n, p) : m = ff+CP and p = ff+VvnCP for some sentence VVnCP}; 
{em, n, p, q) : m = ff + cP and q = ff + Sub f.~':,cP for some formula cP with 

Fvcp S; {vn}}. 

Clearly all of these relations are recursive. Hence by 14.15 they are elemen
tarily definable in (w, +, " 0, 0), say by formulas CPo, CPI, CP2, CPs, CP4, CP5, CP6, 
respectively. Hence {ff+.p : .p is a sentence of Y"os in ordinary first-order logic 
which holds in (w, +, " 0, O)} is elementarily defined in (w, +, " 0, 0) by 
the following formula of monadic second-order logic: 

VPo[Vvo(CPo -+ {Povo +-+ CPI V 3vI [CP2(Vb Vo)] A POVI 
v 3vI3v2[CP3(VI, V2, VO) A POVI A POV2] V 3vI3v2[CP4(VI, V2, Vo) 
A (POVI v POV2)] V 3vI3v2[CP5(Vb V2, Vo) 
A VVSVV4(CP6(VI , V2, VS, V4) -+ POV4)]}) -+ PoVo]· 0 

The compactness theorem fails in monadic second-order logic, since we 
can add to Y"os a new individual constant c and consider Qm together with 
all sentences ""(c = 11m). The downward L6wenheim-Skolem theorem 
fails, since, for example, we can fully express, by finitely many sentences, the 
usual definition of the field of reals as a Dedekind complete ordered field; in 
fact, the ordered field axioms are finitely many first order sentences, and 
completeness is expressed by the following sentence: 

VPo(3voPovo A 3VI VVo(PoVo -+ Vo < VI) -+ 3VI{VVO(PoVo -+ Vo < Vl) 

A VV2[VVO(POVo -+ Vo < V2) -+ VI < V2 V Vl = V2]})' 

One of the strongest decidability results in all of logic is Rabin's theorem 
that the monadic second-order theory of two successor functions is decid
able (see the table at the beginning of Chapter 13). 

Second-Order Logic 

Now we expand the apparatus of monadic second-order logic by adding 
to first-order logic for each i E w ~ 1 variables Rh, Rio ... ranging over i-ary 
relations of the universe, and variables Oh, OL . .. ranging over i-ary 
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operations On the universe; the formation rules and satisfaction and truth 
rules for this language are obvious. For simplicity we shaIl delete from this 
natural definition the variables ranging over operations, retaining only those 
which range over relations (plus all of the usual first-order set-up). As for 
first-order logic, this is not an essential restriction, since m-ary operations can 
be considered as special (m + l)-ary relations. NaturaIly enough, the nega
tive results concerning monadic second-order logic extend automaticaIly to 
this case. There are a couple of results about this logic that are worth men
tioning in this short survey, however. 

Theorem 30.6. For any formula cp of second-order logic there is a formula .p 
in the following very particular prenex normal form such that I=cp ~ .p: 

.p = QolXo' .. Qm -lIXm-l Vf3o' .. Vf3n-13yo' . ·3YP-IX, 

where the IX'S are all relation variables, the Q's are quantifiers V or 3, the 
{3's and y's are all individual variables, and X is quantifier-free. 

PROOF. The usual transformations yield a prenex normal form for cpo To 
get the quantifier prefix in the above specific form, we need some facts which 
will aIlow us to interchange types of quantifiers. The first fact is obvious: 

(1) 
(2) 

1=3vj3Rl,.p ++ 3Rl,3vj.p. 
I=Vvj3Rt.p ++ 3Rl, + IVVj.p', 

where Rfr.+l is new and .p' is obtained from .p by replacing each,atomic part 
Rl,uo" 'Uj_l of.p by Rfr.+luo·' ·Uj_lVj. We prove (2) somewhat informally, 
in particular ignoring assignment of values to tht? variables other than 
those mentioned in (2). Take a structure m and first suppose R(H 1m S; HI A 
so that for all a E A, m I=.p' under the obvious assignment. Given any a E A, 
let Rfc'll = {x E fA: x<a) E R!1+ 1m}. Clearly, then m I=.p under this assignment. 
Conversely, suppose m I=Vvj3Rfr..p. For each aEA choose Rl,a s; fA so that 
.p will hold under this assignment. Let Rfr.+1 = {x<a) : a E A and x E Rfr.a}. 
Clearly then m 1= VVj.p' under this assignment. 

Taking negations in (2) we easily obtain 

(3) 

with assumptions similar to the above. Another obvious fact is 

(4) 
(5) 

I=VvjV Rfr..p ++ V Rfr.Vvj.p. 
1=3vjVvf .p ++ 3RU3VjR~Vi A VVjVvlR~Vi ~ .p»), 

where R~ is new. Again we give an informal proof. Assume that m 1= 3vjVvj .p, 
and choose a E A so that for all b E A we have m I=.p under the obvious 
assignment. Let R~'ll = {a}. Obviously then the right hand side of (5) holds 
in m. Now suppose the right-hand side of (5) holds in m, and choose m'll s; A 
accordingly. Fix a E R~'ll. Then for any bE A, m l=.p under the natural 
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assignment, as desired. By standard arguments for shifting quantifiers around 
we obtain the following from (5): 

if ifJ is in prenex normal form, ifJ = Qoao' .. Qm -1 am -lX with X 
quantifier free, each Qj either V or 3, and the a;'s individual or 
relation variables, then 

(6) F3vjVvj Qoao" ·Qm-1am-1X 

where R~ and V/ are new. 

Now using (1)-(6) we can easily carry out the proof of our theorem. In fact, 
we can use (1), (3), and (6) to shift all existential quantifiers 3vi to the far 
right of the quantifier prefix of cpo Then we can use (2) and (4) to shift the 
second-order quantifiers to the far left of the prefix. 0 

Another important fact about second-order logic is that there is a reason
able proof theory with respect to a weakened form of validity. We shall go 
into this in some detail for the more complicated theory of types below. In 
conclusion, note that for second order logic it is natural to expand our notion 
of structure, by also admitting various second-order relations. For example 
we might admit a binary relation constant between elements and subsets of 
the universe. Again, more details will be found below in the discussion of 
type theory. 

Theory of Types 
If we imagine iterating the process which led from first-order logic to 

second-order logic we arrive at third-, fourth-, etc., order logic. The union 
of them all is the theory of types, a version of which we now proceed to 
describe fairly precisely. 

First we need the notion of a type (symbol). The type symbols are built 
up from symbols (0) as follows: 

(1) 0 is a type symbol; 
(2) if a is a finite nonzero sequence of type symbols, then (a) is a type 

symbol; 
(3) type symbols can only be formed in these ways. 

Now a type language consists of the following parts: 

logical constants: -', V, 1\, V, =; for each type T #- 0, relation variables 
PJ, P~, ... and for each type T not of the form (a), operation variables 
Vb, vi, ... ; 

nonlogical constants, namely relation constants of types #- 0 and operation 
constants of various types. 
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For such a language, we define the notion of a term: 

(4) operation variables of type 0 and operation constants of type 0 are 
terms of type 0; 

(5) a relation variable or constant of type a#-O is a term of type a; 
(6) If 0 is an operation variable or constant of type (ao, ... , am) with 

m > 0 and "To, ... , "Tm-l are terms of types ao, ... , am-l respectively, then 
O"To, ... , "Tm-l is a term of type am; 

(7) terms can only be formed in these ways. 

Then we define formulas: 

(8) If a and "T are terms of the same type, then a = "T is a formula; 
(9) if R is a relation variable or constant of type (ao, ... , am), and "To, ... , "T m 

are terms of types ao, ... , am respectively, then R"To· . ·"Tm is a formula; 
(10) if qJ and if1 are formulas, so are 'qJ, qJ v if1 and qJ A if1; 
(11) if qJ is a formula and a is a variable, then 'f/aqJ is a formula; 
(12) formulas can only be formed in these ways. 

Now we turn to the semantic notions. After the precise definitions we 
shall give a few concrete examples of formulas and satisfaction of them in 
structures. 

Let A be a nonempty set. By induction on a we now define the set Au of 
relations of type a on A; 

(13) Ao = A; 
(14) for a type a = ("To, ... , "Tm), set Au = {R: R 5; A to x··· x A tm}. 

Next, we define the set AU of operations of type a on A: 

(15) for a type a = ("To, ... , "Tm), m > 0, set AU = {f:f is a function and 
f: A ta x ... X A'Cm-l) -+ A,m}. 

Now let a type language .!l' be given, as above. An .f.t'-structure is a pair 
~ = (A, D) such that A#-O and D is a function which assigns to each 
relation and operation constant of .!l' a relation or operation respectively 
of the same type on A. Instead of DR or DO we might write R~ or O~. An 
assignment for ~ is a function x assigning to each relation and operation 
variable of .!l' a relation or operation on ~ of the appropriate type. It is 
then obvious how to define ~x and ~ ~ qJ[x], and we omit these details. 

A formula in which the constants have only the types 0 or (0· . ·0) and 
the variables are only the operation variables of type 0 is essentially just a 
first-order formula. Similarly, the second-order formulas can be easily 
identified. It follows that the negative results for second-order logic carry 
over to this case. Type theory has enormous expressive power; indeed, it 
really encompasses a substantial portion of set theory. To illustrate the basic 
concepts, let us consider a type language whose sole non-logical constant 
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is a relation constant < of type (00). The following sentence rp holds in a 
structure (A, <) iff (A, <) ::: (w, <): 

« is a linear order) A 

« has a first element) A 

(in A every element has an immediate successor) /\ 
VP~O) (if the least element under < is in P&O) and P~O) is closed 

under taking immediate successors, then VvgP~O)vo). 

[The actual sentence rp is easily constructed from this informal description.] 
The following sentence holds in (A, <) iff < well-orders A in a type 

~Wl: 

( < is a well ordering of A) /\ 3vg[vg has no immediate predecessor, 
but every element < vg which is not the first element of A has an 
immediate predecessor, and ...,3VbOO) (Vb 00) is a one-one function 
onto A when it is restricted to {v? : v? < vg}]. 

Now we want to give a weakened kind of validity, for which it is possible to 
develop a proof theory and prove a completeness theorem. Let .If be a type 
language, as above, and Qt any .If-structure. A frame for Qt consists of two 
mappings F, G whose domains are the set of all appropriate type symbols 
and which satisfy the following conditions: 

(16) £0 = A = GO; 
(17) for a type a = (TO' ... ' Tm), with m > ° we have ° =1= F" S; {f:f is a 

function andf: GtO x ... X Gt(m-l) --+ Gtm}; 

(18) for a type a = (TO' ... ' Tm), we have ° =1= G" s; {R: R S; G'o X··· 

X Gtm}; 

(19) if 0 is an operation constant of.If of type a, then Om E F"; 
(20) if R is a relation constant of.If of type a =1= 0, then Rm E G". 

Note that frames exist; for example let F" = A" for all types a and G" = AO" 
for all types a =1= o. It is not immediately clear that frames other than this 
natural one exist, but that is true, and it follows from the theorem below. 

Let (F, G) be a frame for A. An assignment for (A, F, G) is a function x 
such that for each type a, xPt E GO" for a =1= 0 and xv'{ E F". Given such an 
assignment, we define TmFGX and (Qt, F, G) F rp[x] as follows. 

v?VGx = xv?; 

PIGVGX = xPt; 

for R a relation constant of type a =1= 0, RmFGx = Rm; if 0 is an operation 
constant or variable of type (ao, ... , am) and TO, ... , T m -1 are terms of 
types ao, ... , am-l respectively, then we let L = om (for 0 a constant), 
or L = xO (for 0 a variable), and set 

(OTO··· Tm_l)VGX = L(T'f}FGX, . .. , T~~<iX). 

If a and T are terms of the same type, then we define 

(Qt, F, G) F (a = T)[X] 
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Let R be a relation variable or constant of type a =/= O. If R is a variable, 
let S = xR, and if R is a constant, let S = R!U. If a = (70' .. 7 m) and Po, ... , 

Pm are terms of types 70, ... , 7 m respectively, we let 

Further, 

(Q{, F, G) 1= '<p[x] iff not[(Q{, F, G) 1= <p[x]]; 
(Q{, F, G) 1= (<p v .p)[x] iff (Q{, F, G) 1= <p[x] or (Q{, F, G) 1= .p[x]; 
(Q{, F, G) 1= (<p A .p)[x] iff (Q{, F, G) 1= <p[x] and (Q{, F, G) 1= <p[x]; 
(Q{, F, G) 1= VPi<p[x] iff for every REG' we have 

(Q{, F, G) 1= <p[xH where Q = Pi'; 
(Q{, F, G) 1= Vvi<p[x] iff for every 0 E F' we have 

(Q{, F, G) 1= <p[x~], where Q = vi. 

Thus we have a new notion of validity, which we shall denote by I=f. We shall 
now show that this notion reduces, in a certain sense, to first-order validity, 
and that (hence) there is a reasonable proof theory for I=f. The basic idea is 
as for many sorted logic in Chapter 29. For simplicity we shall assume that 
there are no operation constants, and no operation variables except those 
of type o. As for first-order logic, this is not an essential restriction. 

Let 2 be a type language as above, with these restrictions. Say the rela
tion constants are <Ri : i E I). Let 2' be the associated first-order language, 
in which: 

(21) the variables P~, PI, ... , 7=/=0, vg, v~, ... are all treated as individual 
variables; 

(22) A relation constant of type (ao' .. am) is treated as an (m + 1 )-ary rela-
tion symbol. 

Now we expand 2' to 2" by adjoining new unary relation symbols T' for 
each type 7, and also for each type 7 = (ao' .. am) an (m + 2)-ary relation 
symbol S'. Now with each formula <p of 2 we associate a formula <p* of 2": 
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(vr = v7)* = vr = v7; 
(Pi = Pj)* = Pi = Pi; 
(Pi = R j)* = vPgo .. ·vp~m[s'pgo ... pg,mpt'+-+ RjPgo, ... , pg,m], 

where 7 = (ao' .. am) is the type of R j; 
(Rj = P;,)* = (Pi = Rj)*, 7 the type of Rj; 
(R; = RJ* = vPgo .. ·vpg,m(R;pgo ... pg,m+-+ RjPgo ... pg,m), 

where Ri and R j are of type (ao" 'am); 
(PiMo' .. Mm)* = 3PZo ... 3PZ~m[/\i,;;m (P/{~i = Mi)* 

A S'PZO . .. P/{"i- mPl], where 7 = (ao' .. am) and k is minimal 
such thatPZo, .. . ,PZ~m¢:{Mo, ... , Mm}; 

(R;Mo' .. Mm)* = 3PZo .. ·3PZ~m[Ai,;;m (P/{~i = Mi)* 
A R;PZO .. 'PZ~m]' where Ri has type 7 = (ao" . am) and k is 
as above; 

(.<p)* = '<p*; (<p v .p)* = <p* v .p*; (<p A .p)* = <p* A .p*; 
(Vv7<p)* = Vvr(rovr ~ <p*); (VPl<p)* = VPi(T'Pl ~ <p*). 
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With each .'l'-structure Q( and each frame G for A (since there are no opera
tion symbols except vp, F is omitted) we associate an .'l'''-structure Q(~. Let 

A~ = U G'; 
t a. type 

R;21*G = R~; 

T'21*G = G'; 
St2l*G = {CUD' ... , Urn, V) : Uo, ... , Urn, V E A~, (Uo, . .. , Um) EVE G" 

where T = (uo, ... , um). 

Now the following lemma is easily checked, by induction on q;: 

Lemma 30.7. Let G be a frame for A, Q( an .'l'-structure, x an assignment 
over A, i.e., xPf E G" for each type U =f 0, and xv? E A for each i E w. 

Then (Q(, G) 1= q;[x] if.fQ(~ 1= q;*[x]. 

Now let r be the following set of sentences of .'l''': 

3vgTtvg for each type T; 
vPgo .. ·vpg,mVP6(Stpgo ... pg,mpJ ~ /\ piPt A TtP6) 

iSm 

for a type T = (Uo" ·Um); 

VPJVPHvPgo .. ·vpg,m{Stpgo ... Pg,mp6 
+-+ s'Pgo ... pg,mpD ~P6 = Pi], where T = (uo" ·um); 
3PJV Pgo . .. V pg,m(RiPgo . .. pg,m +-+ S' Pgo . .. pg,m P6), 
where Ri has rank T = (uo" .um). 

Clearly then: 

Lemma 30.8. Under the hypotheses of 30.7, Q(& is a model ofr. 

Now we can prove the main theorem: 

Theorem 30.9. For any sentence q; of!l', I=fq; ijjT 1=9'" q;*. 

PROOF. The direction ¢ is given by the preceding two lemmas. For =>, 

assume that I=fq;, and let en be any .'l'''-structure which is a model of r. Set 
A = TO'S. We now define by induction functions f' with domain T''S for 
each type T. We letfO be the identity on A. For T = (uo·· . urn) and y E Tt'S 
we set 

Now let Gt be the range of ft for each type T. For each relation constant Ri 
of type T = (uo·· . urn) let 
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Then it is easily verified that G is a frame for Qt. The following is easily 
verified: 

(23) Suppose xP[, E pm and xv? E A for all a and i; and let yv? = xv?, 
yPt" = j"xP[, for all i and a; then for any formula of !f>, Qt~ 1= 1/1* [x] iff 
S!3 1= 1/1* [y]. 

Now Qt 1=/ cp by assumption, so by Lemma 30.7, Qtet 1= cp* and hence by (23), 
S!3 1= cp*, as desired. D 

From 30.9 we see that {9+cp: cp is a sentence of ,P and I=fCP} is Le. if the 
language is effective. Thus there is a reasonable proof theory for this form 
of validity; it has actually been worked out in detail. See Henkin [2] for the 
details, where a more comprehensive type theory is used. 

w-Iogic 
Let ,P be any first-order language. An w-expansion of ,P is an expansion 

'p' of ,P in which a new unary relation symbol N is introduced as well as 
new individual constants Co, Cl , .... The term w-Iogic is applied in a loose 
sense to considerations about the pair (,P, 'p'). An 'p'-structure (Qt, NQ!, ai)i< W 

is an w-structure if NQ! = {ai: i < w}. Note that if the a/s are pairwise 
distinct, then the w-structure is isomorphic to one of the form (en, w, i)i < W' 

Thus in 'p' one has available, so to speak, the set of natural numbers, con
stants for each of them, and variables to range over w (by restricting quanti
fiers to N). Now with the above notation, let r be the set of all sentences 
NCi for i < w. Let ~ be the set of all formulas Nvo and ,(vo = ci) for i E w. 

Then clearly the w-structures are exactly those models of r which omit ~. 
Now let 8 be a theory in 'p'. We say that 8 is w-complete provided that for 
any formula cp E Fmla1o" if CP(Ci) E 8 for each i E w, then 'v'vo(Nvo ~ cp) E 8. 
Then the following basic theorem follows easily from the omitting types 
theorem 27.4: 

Theorem 30.10 (w-completeness theorem). With the above notation, let 8 
be a theory in 'p' which includes r, has a model, and is w-complete. Then 
8 has an w-model, i.e., it has a model which is an w-structure. 

PROOF. From the above remarks we see that it suffices to find a model of 
8 which omits ~. We apply 27.4 with N = {I}. Suppose that 1/1 E Fmla1o, 
and 8 u {3vol/I} has a model. To obtain a contradiction, suppose that 
8 u {3vo(1/I A 'cp)} is inconsistent for every cp E~. Thus 8 1= 'cp ~ ,1/1 
for each cp E~, and hence 8 1= ,I/I(ci) for every i < w. Hence by w-com
pleteness, 8 l='v'vo(Nvo ~ '1/1). But also, since Nvo E~, 8 I='v'vo( ,Nvo ~ ,1/1), 
so 8 1= 'v'vo ,1/1, which contradicts the supposition that 8 U {3vol/I} has a 
model. 0 

Many other logics can be reduced to w-Iogic, in a certain sense. We shall 
illustrate this with weak second-order logic. Let ,P be a first-order language, 
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and let K be a class of 2"-structures. We say that K is w-projective provided 
that there is an expansion 2'" of 2", an w-expansion 2"" of 2"', and a theory 
o in 2"", such that K is the class of all2"-reducts of w-models of 0. 

Theorem 30.11. Let 2" be any first-order language, and let 0 be a set of 
weak second-order sentences over 2" with only infinite models. Then Mod 0 
is w-projective. 

PROOF. Let 2'" be an expansion of 2" by adding a new binary relation 
symbol R and a new ternary relation symbol S, and let 2"" be an w-expan
sion of 2"'. Now we shall associate with each second-order formula ffJ of 2" 
a formula ffJ* of 2""; we shall assume that 2"" is supplied with certain new 
individual variables F.o, F.1 for i E w: 

(a = T)* = a = T; 
(Pao" .am-1)* = Pao" ·am-1; 

(F.a)* = SF.oFna ; 
('ffJ)* = 'ffJ*; (ffJ V "')* = ffJ* V"'*; (ffJ A "')* = ffJ* A "'*; 
('rIviffJ)* =VViffJ*; 
('rIFiffJ)* = VFiQVF.l(RFiQFil ~ ffJ*)· 

Now let n consist of the following sentences of 2""; 

ffJ*, for ffJ E 0; 
Nc;, for each i < w; 
,(ci = c j ) for i < j < w; 

Vvo' .. VVn_13vnVVn+1[S(Cn, Vn> vn+1) +-+ V (Vj = Vn+1), for each nEw; 
j<n 

VVOVV1(RvOV1 ~ Nvo); 
VVOVV1VV2(SVOV1V2 ~ RVOV1); 
Vvo[ 'Vo = Co ~ 3V13v2(SVOV1V2)]; 
VV03V1RvOV1; 
VVOVV1VV2{VV3[S(Vo, Vb V3) +-+ S(Vo, V2, V3)] ~ V1 = V2}' 

We claim that Mod 0 is exactly the class of all 2"-reducts of w-models of n. 
To see this, we have to establish a relationship between satisfaction of ffJ 
and ffJ*. Let m be any infinite 2" -structure. Let f~ be a one-to-one function 
mapping A onto the set of all finite subsets of A. Let a~: w >+ A. Set 

R~* = {(a~n, b): nEW, b E A, If~bl :$ n}; 
S~* = {(a~n, b, c) : nEW, b E A, If~bl :$ n, c Ef~b}. 

Then with a = a~, as is easily seen, m* = (m, R~*, S~*, Rng a, aj)i<", is a 
model of n except possibly for the sentences ffJ*. Furthermore, if x E "'A, 
y E "'{X: X ~ A, X finite}, and if for each i < w we choose nj E wand 
bl E A so that Ifb;! :$ nj and fbj = YI, and if ffJ is any second-order formula 
of 2", then, with ZFiO = ani and zFn = b j for all i < w, and with a natural 
satisfaction notation, 

(1) m FffJ[X; y] iff m* F ffJ*[x; z]. 
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This is easily shown by induction on cpo Now it follows that if 21 is a model 
of 0, then 21* is a model of Q. Conversely, it is easily seen that any w-model 
m of Q is isomorphic to 21* for some .!l'-structure 21, so the .!l'-reduct of m 
is a model of 0. 0 

Cardinality Quantifiers 
Given a first-order language .fi7, we can convert .!l' into a Q-language by 

adjoining a new symbol Q which is used syntactically just like the universal 
quantifier V. Thus to the rules of formulas is added the stipulation that 
Qv!cp is a formula whenever cp is. Of course, Q can be given many interpreta
tions; some reasonable limitations on the interpretations of Q have been 
set down in Mostowski [5]. We consider here certain cardinality interpreta
tions. Given an infinite cardinal m, the m-interpretation of QVj is "there 
are at least m Vi such that." Thus to the other satisfaction rules we add: 

iff I{a E A : 21 1= cp[x~]}i ;::: m. 

First we consider the case m = No. Then QVi is interpreted as "there are 
infinitely many Vj such that" and hence" -,Qvi" means "there are only 
finitely many Vi such that." Hence in this interpretation the Q-Ianguage 
resembles weak second-order logic. Various negative facts are seen just as 
in that case. The compactness theorem fails, as is seen from the set 

-,Qvo(vo = vo); 
there are at least n things (a sentence for each nEw). 

The system (w, +, " 0, 0) is characterized up to isomorphism by the finite 
set 

the theory Q; 
VVo -, Qv13v2(V1 + V2 = vo)· 

Hence in the familiar way we see that {?+cp : cp is a Q-sentence in .P..os and 
I=",cp} is not r.e., so that there is no reasonable proof theory for the w-valid 
Q-sentences. 

In spite of these discouraging facts, the situation improves considerably 
for m > No. First consider the compactness theorem. It still fails, for any 
m ;::: No. This can be seen from the following set of sentences (where we deal 
with a language with individual constants Ca for each IX < m): 

""(ca = CIl) for IX < fJ < m; 
...,Qvo(vo = vo). 

However, a weaker kind of compactness sometimes occurs, depending on m. 
To encompass some other kinds of weak compactness introduced in the 
next section, we give a general definition: 

Definition 30.12. Let m and n be infinite cardinals with m < n. We say 
that a logic .!l' is (m, n)-compact provided that if r is a set of sentences 
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with Ifl < n, and if every subset of r of power < m has a model, then 
r has a model. And r is (m, oo)-compact if it is (m, n)-compact.for all 
n> m. 

Thus ordinary first-order logic is (w, oo)-compact. To formulate our main 
result on compactness for Q-quantifiers we need a certain cardinal number 
function. For any m ~ No let 

7Tm = the least n such that there is a family (Va: ex < n) of 
cardinals <m such that Oa<n Va ~ m. 

Thus No ~ 7Tm ~ m for any cardinal m. We have 7TNo = No; 7TNl = No; 
7Tm + ~ m; 7Tm = m if m is strongly inaccessible; 7Tm ~ cf m if m is singular; 
and 7T(exp No)+ ~ N1 • 

Theorem 30.13 (Fuhrken). Let (Q(t : i E I) be a system of !l'-structures, with 
III < 7Tm, where m ~ No. Let g> be a Q-formula and x E WPtEl At. Then 
PiEl Q(dF Fm cp[[ ] 0 x] iff {i E I: Q(t Fm cp[prt 0 x]} E F. 

PROOF. The proof is by induction on cp, and goes just as in Chapter 18 
except for the step from cp to QVjCP. Let 

J = {i E I: Q(i Fm QVjg>[pri a x]}, 
1'; = {a E At : Q(i Fm CP[(pri a x)m for each i E I. 

First suppose J E F. Then 11';1 ~ m for each i E J, so we can choose 
YI : m>+ 1';. For each ex < m let fa E PiEl At be such that fat = Yta whenever 
i E J. Then ([fa]: ex < m) is one-one. For suppose that ex < f3 < m. Then 
J ~ {i E I: fai = Yla and Inl = YIO} ~ {i: fal oF fOI}, so [fa] oF [fo]. Further
more, J ~ {i E I: Q(i Fm g>[prl 0 x}a]}, so by the induction hypothesis 
PIEI Q(t/F Fm g>[([ ] 0 x){,al]. Thus we have shown that PIEI ~/F Fm 
QVjCP[[ ] 0 x]. 

Second, suppose that J rt F. Thus I", J E F. Let K = {c E PIEI AdF: 
PiEl ~/F Fm cp[([ ] 0 x)m, and let L consist of one representative from each 
member of K. Now for eachfEL we define GfE PiEl-l (1'; U {O}) as follows: 

(Gf)1 = /t if/t E 1';, 
(Gf)i = 0 otherwise. 

Now we claim that G is one-one. For, if f and g are distinct members of L, 
then PiEl~!F Fm g>[[ ] 0 xn and so by the induction hypothesis {i E I: 
~ Fm g>[pr; 0 xf]} E F, and hence, arguing similarly for g, the set 

(I'" J) n {i E I:/t oF g;} n {i E I: Q(I Fm cp[pr; 0 xm 
n {i E I: Q(i Fm g>[prl 0 xm 

is in F. But for any member of this set we have It, gt E 1';, and i E I '" J, so 
(Gf)loF (Gg)i. Thus, indeed, G is one-one. Hence 

ILl ~ TI (11';1 + 1) < m, 
1£1-1 
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since lTd < m for i E I ~ J and III < 17m. Therefore not(PiEI 21tlF Fm 
QVj<p[xD. D 

Recalling from p. 323 our proof of the compactness theorem using ultra
products, we obtain 

Corollary 30.14. In the m-interpretation, any Q-Ianguage is (~o, 17m)-com
pact. 

Thus in the (exp ~o)+ -interpretation, any Q-Ianguage is (~o, ~l)-compact: 
any countable set of Q-sentences such that every finite subset has a model, 
also has a model. Since 17~1 = ~o, this corollary does not give any informa
tion about the ~rinterpretation. Fuhrken, however, has shown that in the 
~l-interpretation, any Q-Ianguage is (~o, ~l)-compact, which is clearly a 
"best possible" result. Vaught has shown that the valid Q-sentences in the 
~l-interpretation are r.e., and so there is a reasonable proof theory for these 
sentences. Keisler has given an elegant axiom system for them. These results 
make the ~l-interpretation of Q-Ianguages one of the most interesting 
extensions of first-order logic. For results on Q-Ianguages, see Bell, Slom
son [1]. 
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EXERCISES 

30.15. Let.f£' be a countable first-order language and let r be an ~o-categorical 
weak second-order theory in .f£' with only infinite models. Show that r is 
complete in the weak second-order sense. 

30.16. Let!l' be a first-order language whose only nonlogical constant is a binary 
relation symbol <. Show that there is a weak second order sentence <p 
whose models are exactly all !l' -structures isomorphic to (w + w, <). 

30.17. Modify the equivalence relations =m of 26.4 as follows. First,21 =If!:!3 iff 
21 =0!:!3 as in 26.4. Second, 21 =~+1!:!3 iff for every nEw and every a E nA 
there is abE nB such that (21, al)l<n =m (!:!3, bl)l<n, and similarly with the 
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roles of 21 and S8 interchanged. Show that if21 =~ S8 for every mEw then 21 
is weak second order elementarily equivalent to S8. 

30.18. Using 30.17, show that (w"'·w·2, <) and (w"'·(w + w*), <) are weak 
second-order elementarily equivalent. Hence well-order is not definable in 
weak second-order logic. 

30.19. Show that in 30.6 we may instead take the existential quantifiers on 
individual variables to occur before the universal quantifiers on individual 
variables. 

30.20. Let r be a collection of sentences with the special form of 30.6, where no 
existential quantifiers on individual variables occur. Show that Mod r is 
a universal class in the usual, first-order, sense. 

30.21. Let r be a set of sentences in a Q-Ianguage, and let K be the class of all 
models of r in the ~o-interpretation. Show that K is w-projective. 

30.22. There is a set r of sentences in w-logic such that every finite subset of r 
has an w-model while r does not have an w-model. 

30.23. Take a Q-language !£' with the m-interpretation. Then every set r of 
sentences of!£' which has a model of power ;;:: m + I Fmla..wl has a model 
of power m + IFmla..wl. 
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31 Infinitary Extensions 

In this final chapter we want to consider the presently most popular 
extensions of first-order logic, namely languages in which the expressions 
are of infinite length. 

The Languages L oo1oo 

Consider an ordinary first order language st', and enlarge it by allowing 
countable conjunctions and disjunctions /\iEW f{Ji and' ViEW f{Ji' The satis
faction rules are clear for such a language. Many natural things can be 
expressed in an LWlw-language which require circumlocutions in the other 
languages we have discussed. For example, the natural numbers are charac
terized by adding to the theory Q the sentence 

VVo(vo = 0 v Vo = 1 v Vo = 2 v ... ). 

The notion of an Archimedean-ordered field is expressed by the following 
sentence added to the axioms for ordered fields: 

VVo(vo < 1 v Vo < 1 + 1 v Vo < 1 + 1 + 1 v ... ). 

As is to be expected, the compactness theorem fails in L W1W , as is seen from 
the following set of sentences: 

3vo[ ",,(vo = co) 1\ •.. 1\ ",,(vo = cn)] 

VVo(vo = Co v Vo = C1 v·· .). 

(for all nEw); 

It turns out, however, that much of the model-theoretic machinery of first
order logic is still available in the L W1W case, and new methods can also be 
used. We give two illustrations: Scott's isomorphism theorem and the model 
existence theorem. 
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Theorem 31.1 (D. Scott). Let 2 be a countable language, and Q{ a countable 
2-structure. Then there is an Lw1w-sentence '" in 2 whose countable models 
are exactly the 2-structures isomorphic to Q{. 

PROOF. For each finite sequence a of length n of elements of A and each 
fJ < WI we define a formula rp~ E Fmla!£. Let 

rp~ = /\ N E Fmla,!l' : Q{ F "'[a] and", is atomic or 
the negation of an atomic formula}. 

For ,\ a limit ordinal < WI let 

rp~ = /\ rp~. 
a<l\ 

Finally, for Ct < WI let 

rp~+1 = rp~ A /\ 3Vnrp~<b> A VVn V rp~<b>. 
beA beA 

Thus we have, by induction on Ct, 

(1) 

(2) 

Q{ F rp~[a]; 

Now by (2), <{x: Q{ F rp~[x]}: Ct < W1) is a sequence of subsets of nA non
increasing under c:::::. Since InAI = No, it follows that there is an Ct < W1 
such that for all fJ 2': Ct, Q{ F rp~ +-+ rp~. Thus to each finite sequence a of 
elements of A there is such an ordinal Cta• If we let fJ be the sup of all ordinals 
Cta , we have fJ < W1 and 

(3) 
for all finite sequences a of elements of A and all Ct 2': fJ, 
Q{ F rp~ +-+ rp~. 

Now let the desired sentence", be 

rpg A /\ {VVo· .. VVn -1 (rp~ ~ rp~ + 1) : a is a finite sequence of 
elements of A, say of length n}. 

From (1) and (3) it is clear that Q{ is a model of "'. Now let ~ be any count
able model of "'. We shall show that Q{ :;;; ~ by constructing an w-sequence 
for Q{ and ~, and applying 26.20. For each mEw, let 

Since rpg is a part of "', it is immediate that 0100. Thus conditions (1) and (2) 
of 26.6(ii) hold. Next, suppose that aImb and x E A. Thus ~ F rp~[b]. Since 
~ is a model of "', it follows that ~ F rp~ + 1[b], so, by the definition of rp~ + 1 

we have ~ F 3vnrp~<x>[b]. Hence there is ayE B such that ~ F rp~<x>[b<y)]. 
Thus a(x)Imb<y). Now suppose that y E Band aImb. Thus ~ F rp~[b], so 
~ F rp~ + 1[b] and hence ~ F rp~M [b<y)] for some x E A, so again a<x)Imb<y). 
Thus 26.6(ii)(3) holds. Since Frp~ ~ rp~, condition 26.6(ii)(4) is clear. 0 
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The model existence theorem carries over almost verbatim to L"l". We 
sketch here the necessary changes. First of all, the notation cP-+ must be 
extended to infinite conjunctions and disjunctions: 

( /\ CPI)-+ = V cpi; 
i<co i<co 

(V CPI)-+ = /\ cpi· 
1<., 1<., 

The other parts of the definition of cP-+ remain as before. Let.ff be an L"l"
language, and let .ff' be an expansion of .ff by adjoining a countable set C 
of new individual constants. A consistency family for (..P, .ff') is a family S 
of countable sets of sentences of .ff' such that for each rES, conditions 
(CO)-(C9) of Chapter 18 hold, as well as: 

(C3') If /\1<., CPi E r, then r U {CPi} E S for each i < w. 

(C4') If Vt<., CPt E r, then r U {CPi} E S for some i < w. 

The following lemma is proved just like 18.7: 

Lemma 31.2. If S satisfies (Cl)-(C9), (C3'), and (C4'), then S' = {r : 
r s:::: tJ.for some tJ. E S} satisfies (CO)-(C9), (C3'), and (C4'). 

For our present purposes the following weak kind of model existence 
theorem will prove useful. 

Theorem 31.3. Let.ff have only countably many nonlogical constants. If S 
is a consistency family for (..P, .ff') and rES, then r has a model. 

PROOF. Let tJ. be the closure of r under the following operations: passage 
to subformulas; passage from cP to Subfgcp, where C E C; passage from "'cP 
to cP-+; formation of c = d for any c, dEC. Clearly tJ. is countable. Let cP 
map w onto all of the sentences in tJ., let T enumerate all primitive terms of 
.!&", and let a well-ordering of C be given. Now we define a sequence 
(8; : i ~ w>. Let 8 0 = r. 81+1 is formed from 8 i as in the proof of 18.9, 
so that: 

(1) if 8 t V {cpt} E S, then CPi E 81+1; 
(2) if 8 i v {cpt} E Sand CPi = CPs V CPh then CPs E 8 i+1 or CPt E 8 i+1; 

(3) if 8 t V {CPi} E S and CPt = 3a,p, then Subfg,p E 8 i+1 for some c E C; 
(4) for some C E C, C = 71 E 8 i +1; 

(5) if 8 i U {CPI} E Sand CPI = Vi<" ,pi' then ,pi E 81+1 for somej < w. 

At this point the remainder of the proof of 18.9 continues with practically 
no changes. 0 

As an application of 31.3 we give Craig's interpolation theorem for 

L"l": 
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Theorem 31.4. Let ((J and tfo be sentences in an Lw,w-language such that 
I=((J -+ tfo. Then there is a sentence X such that I=((J -+ X, I=x -+ tfo, and any 
nonlogical constant occurring in X occurs in both ((J and tfo. 

The proof is almost identical with that of 22.1, and we omit it. 
Of the infinitary languages, LW,W is perhaps the most interesting. The 

above results give some indications that many interesting methods and 
results are still available in LW,W , and it is this fact that has led to its exten
sive study among the logics much more expressive than ordinary first-order 
logic. 

Languages Lmn 
Let m and n be infinite cardinal numbers. An Lmn-language is a first

order language augmented by allowing c~njunction and disjunction of 
fewer than m formulas, and universal quantification on fewer than n vari
ables. Thus the new formation and satisfaction rules are codified as follows: 

If <((Ja: a < p) is a system of formulas with p < m, then /\a<p ((Ja and 
Va<p ((Ja are formulas. We allow, instead of just No variables, n variables 
<va: a < n) and add the formation rule: 

If ((J is a formula and a E Pn is one-one, where p < n, then VVao' .. va~' .• ((J 
is a formula. 

We say that ~ 1= /\u.<p ((Ja[x] iff for all a < p, ~ 1= ((Ja[x]. And we write 
~ I=Vvao " ·va~" '((J[x] iff ~ 1= ((J[Y] for every y E nA such that y~ = x~ for all 
~ 1= Rng a. Clearly these definitions correspond to the intuitive notions. 
Note that one could conceive of more general quantification than the above. 
For example, 

VV03Vl VV23v3' •• ((J 

clearly has an intuitive sense. For development of such more general quanti
fication see, e.g., [2]. 

The languages Lmn have been extensively developed. We shall restrict 
ourselves here to just one aspect of this development, the question of extend
ing the compactness theorem. If m > No, the compactness theorem always 
fails, as indicated above for L W1W , by an example that obviously extends to 
any language Lmn with m > No. The languages Lwn are clearly just slight 
variants of ordinary first-order logic. Despite the failure of the compactness 
theorem in general, there are two modifications of it whose study has been 
very fruitful in the discussion of numerous foundational questions: 

Definition 31.5 (Recall Definition 30.12). A cardinal m ;?: No is strongly 
compact provided that any Lmm-language is (m, oo)-compact. The cardinal 
is weakly compact if any Lmm-Ianguage is (m, m+)-compact. 

Obviously No is both strongly and weakly compact, and every strongly 
compact cardinal is weakly compact. Our object now is to show that un-
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countable strongly and weakly compact cardinals are very big, and to give 
some purely mathematical equivalents of these notions. 

Lemma 31.6. Any strongly compact cardinal is a strong limit cardinal. 

PROOF. Suppose that m is not a strong limit cardinal. We shall show that 
it is not strongly compact. Clearly there is a cardinal n < m such that 
m :::; 2n. Let !E be a first-order language with unary relation symbols P<:e 
for each g < nand e < 2. Let r consist of the following sentences: 

(1) /\<:<n Ve<2 VVoP<:evo; 
(2) VVOVvl(VO = Vl); 
(3) -'/\<:<n VVoP<:.nvo (for eachfE n2). 

Suppose r has a model, Q{ = <{a}, P~><:<n.e<2' By (I), there is a function 
f E n2 such that P~n = {a} for every g < n. This contradicts (3). 

Now let A be any subset of r of power < m. Since m :::; 2n, there is then 
a functionfE n2 such that the corresponding sentence of type (3) is not in A. 
Let A = {O}, and for g < n, e < 2, let 

P~ = {O} 
P~ = 0 

ifR = e, 

if R =1= e. 

Clearly then Q{ = <{O}, P~><:<n.e<2 is a model of A. o 
In the next few results we shall be working with expansions of a first

order language which has a binary relation symbol <. In this language, in 
any Lmn with m, n ;::: Nb the notion of well-order can be defined: 

< is a simple order, 
-,3vo·, 'Vi" '1<00 /\ (Vi+l < Vi)' 

1<00 

We also need certain formulas fPa E Fmla1, formulated III any language 
Lmm such that a < m: 

3vl " ·vl +<:" '<:<a{ /\ (VlH < Vl+ n) 1\ 
e<n<a 

VVl+a[Vl+ a < Vo +-+ >L (Vl+ a = VlH)]} 

If {3 is a nonzero ordinal and y < {3, then ({3, <) F fPa[Y] iff a = y, as IS 

easily seen, 

Lemma 31.7. Any weakly compact cardinal is regular, 

PROOF, Assume that m is singular, say m = Ua<n Pa, where n < m and 
each Pa < m, Let!E be a first-order language with two nonlogical constants, 
a binary relation symbol < and a unary relation symbol p, Consider the 
following set r of sentences: 
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(1) < is a well-ordering, 
(2) Va<n3vo" ·v~·· '~<pa'v'vpa[Pvpa ~ V~<pa (vpa = v~)], 
(3) 3vo('Pa A Pvo) for each a < m. 

Thus there are m sentences altogether. Suppose r has a model; we may 
assume that it has the form ({3, <, S) for some nonzero ordinal {3, where 
< is the natural ordering on {3. The sentences of type (3) together with the 
remarks preceding this lemma show that m s;: S. But the sentence (2) says 
that I S I ::; Va for some a < n, contradiction. So, r has no model. Take 
any subset ~ of r of power <m. Let S = {a < m: 3vo('Pa A PVo) E ~}. 

Thus lSI < m, so lSI::; Va for some a < n. Hence (m, <, S) is a model 
cl~. D 

The two preceding lemmas give us the following important result concern
ing strongly compact cardinals: 

Theorem 31.8. Every strongly compact cardinal is strongly inaccessible. 

Recall that the existence of strongly inaccessible uncountable cardinals 
is not provable in ordinary set theory. Thus it is not provable that any of 
the languages Lmm for m > No are (m, oo)-compact. Actually, strongly com
pact cardinals are extremely inaccessible. If there are arbitrarily large in
accessibles, and all inaccessibles are enumerated in an increasing sequence 
<ea : a E Ord), then the strongly compact cardinals are certain fixed points 
of e, i.e., they satisfy m = em. Even stronger properties of the strongly 
compact cardinals are known. We shall not prove any very general facts 
here, but to give an idea of the flavor of the arguments we will at least show 
that if inaccessibles exist, not all of them are strongly compact: 

Theorem 31.9 (Hanf). If m is an uncountable weakly compact cardinal, then 
m is not the first uncountable strongly inaccessible cardinal. 

PROOF. Let m be the first uncountable strongly inaccessible cardinal; we 
show that it is not weakly compact. Take a first-order language !f with 
nonlogical constants <, F (ternary), G (ternary), P (unary), and Q (unary). 
Let r be the following set of sentences of Lmm: 

(1) < is a well ordering; 
(2) 3vo'Pa (for each a < m); 
(3) 'v'VO'v'VI'v'V2'v'V3(FvoVIV2 A FVOVIV3 ~ V2 = v3); 
(4) 'v'V03VI[VI < Vo A 'v'VZ'v'V3(FvOV2V3 ~ V2 < VI A V3 < vo)]; 
(5) 'v'VO'v'vl[PVO A VI < Vo ~ 3v23viFvoV2V3 A VI < v3)]; 
(6) 'v'vO'v'VI 'v'V2[VI < Vo A V2 < Vo A 'v'V3(GVOVIV3 +-+ GVOV2V3) ~ VI = v2]; 
(7) 'v'vo{Qvo ~ 3vI [VI < Vo A 'v'V2'v'V3(GVOV2V3 ~ V3 < VI)]}; 

(8) 3VO'v'VI • (vo < VI); 

(9)'v'vo(Pvo V Qvo V 3vI {VI < Vo A 'v'V2[VI < V2 ~ '(V2 < Vo)]} V 'Pw). 

Thus I rt = m. Suppose r has a model, Q{. We may assume that Q{ has the 
form (a + 1, <, P, G21, p21, Q21), by virtue of (1) and (8). Because of the 

509 



Part 5: Unusual Logics 

sentences (2), it follows that m s; IX + 1 hence m :s: IX + 1 and actually 
m ::;; IX since m is an infinite cardinal. Thus mE IX + l. We shall obtain a 
contradiction by showing that each uncountable infinite cardinal n E IX + 1 
is accessible, i.e., is either singular or else satisfies n ::;; 2P for some P < n. 
By (9) we have n E ~ or n E Q2t. 

Case 1. n E~. Let I = {(,8, y) : (n,,8, y) E Pl. Thus by (3), I is a func
tion. By (4) we can choose S < n such that I maps a subset of S into n. By 
(5), U Rngl = n. Thus n is singular. 

Case 2. n E Q2t. By (7), choose ,8 < n such that S <,8 whenever 
(n, y, S) E G2t. Now for each y < n letIY = {S: (n, y, S) E G2t}. ThuslY s; ,8. 
And by (6),fis one-one. Hence I: n>+ 8,8, as desired. 

Since m is strongly inaccessible, we have reached a contradiction. Thus 
r has no model. 

Now let ~ be a subset of r of power < m. Let ,8 be the supremum of all 
ordinals IX < m such that 3vo'Pa E~. We now build up a model 2l of ~ with 
universe A = ,8 + 1 and with the natural ordering of,8 + 1 as the interpreta
tion of <. Thus (1), (2), and (8) automatically hold for formulas in ~. Let 
p2t consist of all singular cardinals ::;;,8. For each n E ~ choose Pn < nand 
a function In: Pn ---+ n such that U Rng/n = n. Set 

P = {(n, y, S) : n E~, (y, S) E/n}. 

Clearly, then, (3)-(5) will hold. Next, let Q2t = {n: n is a cardinal ::;;,8, and 
n ::;; 2P for some P < n}. For each n E Q2t choose Pn < nand gn: n>+ 8Pn. 
Set 

G2t = {(n, S, y) : n E Q2t, S < n, and y E gnS}, 

Then (6) and (7) are clear. Finally, (9) holds since ,8 + 1 < m. o 
The above results give a fairly good picture of the rarity of strongly 

compact cardinals. Now we want to add a few results which indicate that 
weakly compact cardinals are rare also. (But perhaps they are not as rare 
as strongly compact cardinals.) By the proof of 31.6 we have 

Theorem 31.10. /fm ~ No, then 2m is not weakly compact. 

Theorem 31.11. Every weakly compact cardinal is weakly inaccessible. 

PROOF. By 31.7 it suffices to show that any successor cardinal m+ > No 
is not weakly compact. Let r be the following set of sentences: 

(1) < is a well-ordering; 
(2) 3vo'Pa for each IX < m + ; 
(3) 3vo" ·v~·· '~<mVvm V~<m (vm = v~). 
It is easily checked that r violates (m+, m+ +)-compactness. o 
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Theorem 31.12 (Hanf). If m is an uncountable weakly compact cardinal, 
then there is a cardinal n < m which is uncountable, weakly inaccessible, 
and not a power of 2. 

PROOF. Assume the hypothesis holds but the conclusion fails. By 31.10 
and 31.11, m is weakly inaccessible but not a power of 2. We take a language 
!£' with nonlogical constants <, F (ternary), G (ternary), H (4-ary), P, Q, R 
(unary). Let r be the following set of sentences of Lnun: 

(1) < is a well-ordering; 
(2) 3vo9'a (for each ex. < m); 
(3) VVOVVlVV2VVa(FvoVlV2 A FVoVlVa -+ V2 = Va); 
(4) VV03Vl[Vl < Vo A VV2VVa(FVoV2Va -+ V2 < Vl A Va < vo)]; 
(5) VVOVVl [Pvo A Vl < Vo -+ 3V23va(FVoV2Va A Vl < Va)]; 
(6) VVOVVlVV2VVa[(Gvovlv2 A GVoVlVa -+ V2 = Va) 

A (GVOV2Vl A GVoVaVl -+ V2 = Va)]; 
(7) Vvo[Qvo -+ 3Vl(Vl < Vo AVV2{V2 < Vo 

-+ 'Iva [Va < V2 -+ 3V4(V4 < Vl A GV2VaV4)]})]; 
(8) Vvo VVl VV2 VVa{VV4[H(VO, Vb V4, Va) 

.... H(vo, V2, V4, Va)] -+ Vl = V2}; 
(9) VVo{Tvo -+ 3va[va < Vo AVVlVV2(Vl < Vo 

A H(vo, Vh V2, Va) -+ V2 < Va)]}; 
(10) VVoVva[Tvo A Va < VO-+VV4·· ·V~·· ·~<nU\4 .. ~ .. n(V~ < Va) 

-+ 3vl{Vl < Vo A VV2[H(VO, Vl, V2, Va)"" V 4 .. ~ .. n V2 = V~]})], 
a sentence for each n < m; 

(11) 3VOVVl • (vo < Vl); 

(12) Vvo(Pvo v Qvo v Tvo V 3Vl{Vl < Vo 
A VV2[Vl < V2 -+ .(V2 < Vo)]} v 9'0». 

Clearly r has m elements. Suppose r has a model, ~. 
We may assume that ~ has the form (ex. + 1, <, FlI, G~, !P,~, Q~, R~), 

by (1) and (11). We have m s; ex. + 1 by (2). Thus mE ex. + 1. By (12) we 
have three cases. 

Case 1. m E~. As in the proof of 31.9, we see that m is singular, so 
it is not weakly compact (see 31.7), contradiction. 

Case 2. m E Q~. By (7), choose fl < m as indicated there. For each 
y < m let f, = {(8, B) : (y, 8, B) E G~}. Thus f1 is a one-one function by (6). 
By (7), f, t y: y >+ fl. Thus m is the least cardinal > fl, so m is a successor 
cardinal and hence by 31.11, m is not weakly compact, contradiction. 

Case 3. mE ra. Choose fl < m in accordance with (9). For each y < m 
let f, = {8 : (m, y, 8, fl) E !P}. Thus by (9) f: m --+ Sfl. By (8), f is one-one. 
From this we know that fl is infinite. Let il be any subset of fl and set I ill = n. 
From (10) we easily infer that il E Rngf Thus m is a power of 2, so by 
31.10, m is not weakly compact, contradiction. 
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Thus r does not have a model. Now let ~ be a subset of power < m. 
Let {3, ~, yu be as in the proof of 3l.9. Qfl( and Gfl( are easily defined to 
satisfy (6), (7). Let ru be the set of all uncountable powers of 2 less than 
{3 + l. For each n with No < 2n < {3 + I let hn : 2n >+ Sn. Set JI2l = {(2n, 

a, y, n) : 2n E ru, y < 2n , a E hny}. This yields, as is easily seen, a model ~ 
~~. D 

To hint at the importance of strongly and weakly compact cardinals we 
shall now give some results which show their relationships with properties 
of cardinals defined in purely mathematical ways. The following definition 
will play a role here; it gives one of the most important notions of large 
cardinals. 

Definition 31.13. An infinite cardinal m is measurable if there is a mapping 
fL: Sm --+ {O, I} satisfying the following conditions: 

(i) fLm = 1; 
(ii) fLO = fL{a} = 0 for each a E m; 

(iii) if X is a collection of pairwise disjoint nonempty subsets of m with 
IXI < m, then fL UXEX x = ~{fLX: x E X} (thUS fL UXEX x = 1 iff 
for some unique x EX, fLX = 1). 

We will give its connections with compact cardinals presently. For now 
we give this important result of Vlam: 

Theorem 31.14 (Vlam). Every measurable cardinal is strongly inaccessible. 

PROOF. Let m be measurable, and suppose n < m and Va < m for each 
a < n; we shall show that IIa<n Va < m (this is one of the equivalent con
ditions for m to be strongly inaccessible). Let fL be a measure on SCm) (as 
in 3l.13). Suppose m ::;; IIa<n Va, and let f: m r.>- Pa<n Va' For each a < n 
and {3 < Va let 

Aap = {y E m :fra = {3}. 

Clearly Aap n Aa6 = 0 if {3 =f 15, and Up<pa Aap = m. It follows that for 
each a < n there is a unique {3, call it ga, such that fLAa,ga = 1. Hence 
fL(m ,...., Aa,ga) = 0 and so 

fL U (m ,...., Aa,ga) = O. 
a<n 

But Ua<n (m ,...., Aa,ga) = m,...., na<n Aa,ga' Thus fL na<n Aa,ga = 1. But if 
y E na<n Aa,ga, then for all a < n, fya = gao Thus fr = g. Hence 
Ina<n Aa,gal ::;; I, contradiction. D 

The following equivalences for strongly compact cardinals are due to 
Tarski, Monk, Scott, and Mycielski. 
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Theorem 31.15. For any infinite cardinal m, the following conditions are 
equivalent: 

(i) m is strongly compact; 
(ii) if Qt is an m-complete, m-distributive Boolean algebra, then Qt has 

an m-complete ultrafilter (recall that Qt is m-complete provided that ~X 
exists whenever X c::::; A and I X I < m; Qt is m-distributive provided that the 
conditions n, p < m and a: n x p -+ A imply that ~{Ila<n aa,!a :fE np} 
exists and equals Ila<n ~p<p aaP; a filter F is m-complete provided that 
IlXEFwhenever Xc::::; Fand IXI < m); 

(iii) in every m-complete field of sets, any proper m-complete filter can 
be extended to an m-complete ultrafilter (a field F of sets is m-complete if 
U XEFwhenever Xc::::; Fand IXI < m); 

(iv) in the field of all subsets of a set, any proper m-complete filter can 
be extended to an m-complete ultrafilter; 

(v) any m-product of (m, oo)-compact Hausdorff spaces is (m, oo)-com
pact (a space X is (m, oo)-compact provided that every cover of X by open 
sets has a subcover with <m elements; the m-product topology is the 
closure of the usual product topology under taking intersections of < m 
things); 

(vi) any product of (m, 00 )-compact Hausdorff spaces is (m, 00 )-compact. 

PROOF. We shall prove (ii) ~ (iii) ~ (iv) ~ (v) ~ (vi) ~ (ii) and (iv) ~ 
(i) ~ (iv). 

(ii) ~ (iii). Assume (ii), and let Qt be an m-complete field of sets and F 
a proper m-complete filter over Qt. Then Qtj F is an m-complete, m-distributive 
Boolean algebra. In fact, if a E n A where n < m, it is easily seen that 
~a<n [aa] = [Ua<n aa]. And if n, p < m and a: n x p -+ A, then 

n U aaP = U {n aa.!a :fEnp}, 
a<n B<P a<n 

and it follows easily that QtjF is m-distributive. By (ii), let G be an m-com
plete ultrafilter over QtjF. Then {a: [a] E G} is easily seen to be an m-complete 
ultrafilter over Qt which extends F. 

(iii) ~ (iv): obvious. 
(iv) ~ (v). Here we generalize one of the usual proofs of the Tychonoff 

product theorem. Assume (iv), and suppose that <Xi: i E I) is a family of 
(m, oo)-compact spaces. Recall that a subbase for the ordinary topology on 
Y = PiE! Xi consists of all sets of the form U:h E U} where i E I and U 
is open in Xi. To proceed further we need to show 

(1) m is regular. 

For let J = {G c::::; m2: IGI < m}. Let F be the m-complete ideal in S(ffi2) 
generated by J. Since cf(2m) > m, it is clear that F is an m-complete proper 
ideal in s(m2). By (iv), let K be an m-complete prime ideal in s(m2) extending 
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F. Suppose m is singular, say m = Ua<nPa where n < m and Pa < m for 
each a. < n. Then K is m + -complete. For, if a : m --+ K, then 

U aa = U U afJ E K. 
a<m a<n 8<J)« 

Now for each a. < m we have m2 = {f:fa. = O} U {f:fa. = I}, so we can 
choose ga E 2 such that {f:fa. = ga.} 1= K. By the m+-completeness of K, 
{g} = na<m {f:fa. = ga.} 1= K, contradiction. 

Now we come back to the main part of the argument. From (1) it follows 
that a base for the m-topology on Y is the family of all sets of the form 

(2) 

where J is a subset of I of power < m and Ui is open in Xi for each i E J. 
To check (v), it suffices to take a family 111 of basic open sets of Y, assume that 
no subset of 111 of power < m covers Y, and show that 111 does not cover Y. 
Let K be the m-complete ideal in S Y generated by 111. By (1), K is a proper 
ideal. Hence by (iv), there is an m-complete prime ideal L in S Y which ex
tends K. For each i E I let 

~ = {U: Uis an open set in XI and {fE Y:j; E U} EL}. 

Since L is m-complete and Y 1= L, no subfamily of ~ of power < m covers 
.¥;. Hence by the (m, 00 )-compactness of Xi> ~ does not cover .¥;. Thus for 
each i E I we can choose j; E XI '" U~. We claim that f 1= U 111. For, sup
pose fEU 111, say f EVE PA, where V has the form (2). Now 

V = n {g E Y: gj E Uj }, 

leI 

and IJI < m. Since VEL (because 111 s; Ks; L), it follows that there is an 
i E J with {g E Y: gj E Ui} E L. Hence UI E ~ and j; E U ~, contradiction. 

(v) ~ (vi): obvious. 
(vi) ~ (ii). Assume (vi), and let ~ be an m-complete, m-distributive 

Boolean algebra. Let B be the set of all subsets of A of power < m. Now 
we need to show 

(3) m is measurable. 

To prove (3), let C = Ua<m ma.. Thus Ie! = 2m. Letf: 2m>+ C. For each 
~ < 2m we have IRnghl < m, and hence as a discrete space Rngh is 
(m, oo)-compact. Hence by (vi), the space X = P~<expm Rngh is (m, (0). 
compact. For each a. < m, let ta be the member of X such that ta~ = ha. 
for all ~ < 2m. Set D = {ta : a. < m}. For each a. < m let ~a be the unique 
ordinal <2msuchthatha:m--+2,haa. = l,whileha,8 = o for all,8Em '" {a.}. 
Let Ua = {g EX: g~(a) = I}. Thus Ua is open in X, and D n Ua = {tal. 
It follows that D is not closed, since otherwise {X'" D} u {Ua : a. < m} 
would be an open cover of X with no subcover of power < m. So, let u be 
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in the closure of D but not in D. Now we are ready to define our "measure" 
f' on S(m). For any r ~ m we set 

f'r = 1 

f'r = 0 

if there is a ~ < 2m such 
that r = {a < m : ta~ = u~}, 

otherwise. 

To check 31.13(i), choose ~ < 2m such that h: m ~ {O}. Clearly then m = 
{a < m : ta~ = u~}, since u~ = 0 and ta~ = 0 for any ex < m. For 31.13(ii), 
for any ~ < 2m let U = {g EX: g~ = u~}. Thus Uis a neighborhood of u, 
so there is an ex < m with taEU. Hence ta~ = ug. This shows that f'0 = O. 
Next, for any ex < m, suppose f'{ex} = 1, and let ~ < 2m be such that {ex} = 
{fJ < m : t8~ = u~}. Let U be a neighborhood of u such that ta 1= U. Let V = 

{g EX: g~ = u~}. Thus V is also a neighborhood of u. Choose t8 E Un V. 
Then fJ :f= a and t8~ = u~ contradiction. Hence f'{ex} = 0 after all. Finally, sup
pose that Y is a collection of pairwise disjoint nonempty subsets of m with 
I YI < m. First suppose f' UIIEY Y = 1. Choose ~ < 2m accordingly so that 
UIIEY Y = {a < m: t~ = u~}. Since I YI < m, we can choose ~ < 2m such 
that for each Y E Y there is a fJ E Rngfc with /e l{fJ} = y. Let U = {g E X: 
g~ = u~ and g~ = u~}. Then U is a neighborhood of u, so we can choose 
ta E U. Since ta~ = u~, by choice of ~ there is ayE Y with ex E Y. Thus by 
choice of ~, fr. a = ta~ = u~ implies that y = fc-1{un = {a : ta~ = u~}, and 
f'Y = 1. Thus 

(4) 

(5) 

if Y is a collection of pairwise disjoint nonempty subsets of m 
with I YI < m and f' UIIEY Y = 1, then f'Y = 1 for some Y E Y. 

If Y and z are pairwise disjoint subsets of X with f'Y = 1, then 
f'z = O. 

Indeed, suppose that f'Z = 1 also. Thus there are ~,~ < 2m with Y = 
{ex < m : ta~ = u~} and z = {ex < m: ta~ = u~}. Choose ta in the neighbor
hood {g EX: g~ = u~, g~ = u~} of u. Then ex E Y n z, contradiction. Thus 
(5) holds. In particular, the Y in (4) is unique. If f' UYEY Y = 0, then by (4) 
f'(m'" UYEY y) = 1, and hence by (5) f'Y = 0 for each Y E Y. We have now 
verified 31.13(iii), and with it (3) has now been checked. Actually we need 
not (3), but the following consequence of it (by 31.14): 

(6) m is strongly inaccessible. 

For each C E B let Xc be the set P aEd - a, a}, with the discrete topology. 
By (6), IXcl < m, so Xc is (m, oo)-compact. Hence by our assumption (vi), 
so is Y = PCEB XC. For each C E B, set 

Dc = {fE PaEC {-a, a} : TI"EC/a :f= O}. 

Now by m-distributivity we have 

1 = TI"EC (a + -a) = ~ {TI"EC/a :/E PaEc {-a, a}}, 
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from which it follows that Dc =F O. Now for C, E E B we set 

KeE = {fE Y:le len E =IE len E and Ie E Dc and IE E DE}' 

Each such set is closed; this follows easily from the fact that 

{f E Y: Ie len E = IE len E} n [({fE Y:/ex = x} n {fE Y:IEX = x}) 
xEe()E 

U ({fE Y:/ex = -x} n {fE Y:fEX = -x})]. 

Now if F s Band IFI < m, then ne,EEF KeE =F O. In fact U FEB since 
m is regular. Choose lED U F, and let g E Y be any element such that ge = 
I I C for each C E F. Clearly then g E ne,EEF KeE. From the (m, oo)-com
pactness of Y it now follows that there is an h E ne,EEB KeE. Set F = 
UeEB Rng he. Then F is the desired m-complete ultrafilter on m. For, clearly 
F =F O. Suppose 0 E F, say 0 E Rng he. This contradicts he E Dc. Suppose 
x E F and x ~ y. Say x E Rng he. Let E = C U {y}. Since hE KeE, it fol
lows that x E Rng hE, and hE E DE implies that hEY = y, so Y E F. Next, 
suppose x E A is arbitrary. Then h{x}x = x or h{x}x = -x, so X E F or 
- x E F. Finally, suppose Z s F with IZ I < m; we must show that ITZ E F. 
For each Z E Z choose Cz E B with Z E Rng hez . Let E = UZEZ Cz u {ITZ}. 
Thus E E B since m is regular. Since h E KeZ,E for each Z E Z, we have Z E 

Rng hE' Now ITZ E Rng hE or - ITz E Rng hE' If the latter is the case, then 

contradicting hE E DE' Thus ITZ E Rng hE S F, as desired. 
(iv) => (i). This is a straight-forward generalization of the ultraproduct 

proof of compactness. Indeed, it is routine to check that the proof of 18.29 
extends to Lmm-languages if F is assumed to be m-complete. In the proof of 
the compactness theorem on p. 323, we take I = {~ : ~ s r, I~I < m}, and 
for each ~ E I set Gil = {0 : ~ S 0 E I}. The rest of the proof is similar, 
replacing "finite" by "cardinality < m ". But here it is necessary to show 
that m is regular; this was done above in the proof that (iv) => (v). 

(i) => (iv). Let A be the field of all subsets of X, and let F be an m-com
plete filter over A. Consider a first-order language with a unary relation 
symbol P a for each a E A and an individual constant c. Let r be the follow
ing set of sentences of Lmm: 

all sentences holding in (X, a)aEA, 
Pac for each a E F. 

If ~ is a subset of r of power < m, then there is an x E X such that x E 

n {a E F: Pac is in ~}. Hence (X, a, X)aEA is a model of ~. It follows from 
(m, oo)-compactness that r has a model Q3 = (B, ba, Y)aEA' Let G = {a E A: 
Y E ba}. Our claim is that G is the desired m-complete ultrafilter extending 
F. If a E F, then Pac E r and so Y E ba since Q3 is a model of r. Thus F s G. 
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Suppose a E G and a :-:; dE A. Then VVo(P aVO -+ P aVo) holds in (X, U)UEA and 
hence in m. Since y E ba , it follows that y E ba and so dE G. Next, 01= G, 
since Vvo --, Povo holds in (X, U)UEA and hence in m, so that y 1= bo and hence 
o rf: G. Now let a E A be given. Then VVo(Pavo v P -avo) holds in (X, U)UEA 
and hence in m, so y E ba or y E b_ a, and hence a E G or -a E G. Finally, 
suppose Y c:::::: G and I YI < m. Let d = n Y. Then VvO(f\aEY Pavo -+ Pavo) 
holds in (X, ULEA' and hence in m. Since y E ba for each a E Y, it follows 
that y E ba and dE G, as desired. D 

Recalling the proof of (vi) ~ (ii), above, we have 

Theorem 31.16. Every strongly compact cardinal is measurable. 

Now we turn to equivalences for weakly compact cardinals, which we 
shall only carry through for strongly inaccessible cardinals. One of them 
concerns a generalization of Ramsey's theorem. Recall that S2S = {X c:::::: S: 
I XI = 2}. We shall write m -+ (n)2 provided that whenever S2m = A u B 
it follows that there is arc:::::: m with I fI = n such that S2r c:::::: A or S2r c:::::: B. 
Thus Ramsey's theorem says that m -+ (No)2 for any m :2: No. Another 
equivalence involves the notion of a tree. A tree is a partially ordered set 
(P,:-:;) in which {x:x < y} is well-ordered for each yEP; its order type 
is the level of y. A cardinal m has the tree property provided that if (T, :-:;) 
is a tree of power m and every level has < m elements, then there is a simply 
ordered subset of T of power m. 

The following characterizations of weakly compact cardinals are due to 
Keisler, Tarski, Erdos, Parovicenko, Monk, Scott, and Hanf. 

Theorem 31.17. Assume that m is strongly inaccessible. Then the following 
conditions are equivalent; 

(i) m is weakly compact; 
(ii) m has the tree property; 

(iii) if Ql is an m-complete, m-distributive Boolean algebra of power :-:; m 

but> 1, then Ql has an m-complete ultrafilter; 
(iv) if Ql is an m-complete field of subsets of m of power m, then any m

complete proper filter on Ql can be extended to an m-complete ultra
filter; 

(v) m -+ (m)2; 
(vi) if (T, :-:;) is a linear ordering with ITI = m, then T has a subset of 

power m which is either well-ordered under :-:; or under :2:. 

PROOF. We shall show (i) ~ (ii) ~ (iii) ~ (iv) ~ (v) ~ (vi) ~ (ii) ~ (i). 

(i) ~ (ii). Assume (i), and let (T, :-:;) be a tree such that every level La 
for a < m has <m elements, while ITI = m. Clearly then La #- 0 for all 
a < m. Let !l' be a language with a binary relation symbol <, unary 
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relation symbols P" for each a < m, individual constants Ct for each f E T, 
and one more individual constant d. Consider the following set of sentences: 

3vo(P "Va A Va < d) each a < m, 
all Lmm-sentences holding in m = (T, <, L", t)" <m.teT. 

Clearly every subset of r of power < m has a model. Hence r has a model, 
QI. For each a < m choose a" E P~ with a" < QI dQl. Now the following sentence 
holds in m, hence in QI: 

Hence for each a < m choose f" E T so that a" = c~. Now the sentence 

holds in m, hence in QI. Thus c~ and c'f1 are comparable under <QI for any 
a, (3 < m. Hence f" and fn are comparable (otherwise the sentence saying 
they aren't would hold in m, hence in QI). Hence (ii) holds. 

(ii) => (iii). Assume (ii), and let QI be as in the hypothesis of (iii). Say 
(a" : a < m) has range A. Let T = {g: :Ja < meg E Pn<" {a", -a,,} and 
IIn<" gp "# O)}. Thus (T, s;) is a tree; the level of gET is its domain. Since 
m is strongly inaccessible, the set of elements of level a < m has power 
:::;21"1 < m. Furthermore, for each a < m we have 

I = IIn<" (an + -an) = I: {IIn<" gp : g E Pp<" {an, -an}}, 

and so there is an element of T of level a. Thus ITI = m. So now we can 
apply (ii) to obtain g E Pn<m {ap, -an} such that IIn<" gp "# 0 for all a < m. 
Let F = Rng g. Obviously F"# 0, 1 E F, and x E F or -x E F for all x E A. 
Suppose x E F and x :::; y. Then - y 1 F, otherwise with a such that x, - y E 

g*a we would have IIn<" gn = O. So Y E F. Finally, suppose that Y S; F 
and I YI < m. Then there is an a < m such that Y s; g*a and II Y E g*a 
or - II Y E g*a. In the second case, IIn<" gn :::; II y. - II Y = 0, which is 
impossible. Thus II Y E F and F is the desired m-complete ultrafilter. 

(iii) => (iv). Assume (iii) and the hypothesis of (iv). Let F be an m-com
plete proper filter on QI. Then QIjF is an m-complete, m-distributive Boolean 
algebra of power :::; m. By (iii), let G be an m-complete ultrafilter over QIj F. 
Then {a : [a] E G} is an m-complete ultrafilter on QI which extends F. 

(iv) => (v). Assume (iv), and let S2m = A u B. For each a E m let M" = 
{(3 : {a, (3} E A}. Let QI be the m-complete field of subsets of m generated by 
all the sets M" as well as the singletons {(3} for (3 < m. Let F be any m-com
plete ultrafilter over QI containing all the complements of singletons. Thus 
each member of F has power m. Define {x" : a < m} by induction by letting 
x" for each a < m be the least element of 

n{Mxn :(3 < a,MxpEF} 
n n {m '" Mxp : (3 < a, Mxn1 F} n (m '" {xp : (3 < a}). 
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Thus x is one-one. Set S = {x" : M x " E F}. If a < f3 and x"' Xo E S, then 
Xo E Mx" and so {a, f3} E A. Thus S2S s.; A. Similarly, [Rng x '" S]2 s.; B. 
Since lSI = m or IRng x'" SI = m, (v) holds. 

(v) ~ (vi). Assume (v), and let (T, ::;) be a linear ordering with ITI = m. 
Let:::;; be a well-ordering of T. Set A = {{s, t} : s -< t and s < t}, and let 
B = [T]2 '" A. An application of (v) yields the desired result. 

(vi) ~ (ii). Assume (vi), and let (T, ::;) be a tree of power m such that 
every level has < m elements. For each element x of T and each a < m, 
let x" = x if a ~ level of x, x" = the unique y of level a with y < x if 
a < level of x. Clearly then 

(1) if x and yare incomparable, then there is a unique a such that 
x" =I y" and the predecessors of x" and y" are the same. 

Let <' be any well-order of T. We now define another order <" on T. For 
any x, YET, x <" y iff x < y, or else x and yare incomparable and x" <' y", 
where a is as in (1). We leave it to the reader to check that <" is a linear 
order of T such that 

(2) if u < x, u < Z, and x <" y <" z, then u < y. 

Now by (vi), say that L is a subset of T of power m well-ordered by <". 
We may assume that L has order type m. Let 

B = {t E T: 31 E L V a E L(l <" a ~ t ::; a)}. 

We claim that B is the desired linearly ordered subset of T of power m. 
Suppose to, tl E B, and choose 10 , II correspondingly. Let It be the maximum 
of 10 , II under <". Then by the definition of B, to ::; Ii and tl ::; Ii. Hence 
to and tl are comparable. Now let a < m; we show that B has an element 
of level a. Let E be the collection of all sets of the form Vx = {I E L : x ::; I} 
where x is an element of T of level a. Then {l E L : level of I ~ a} = 

U {Vx: x of level a}, and since ILl = m and {x: x is of level <a} has power 
< m, this union has power m. But there are fewer than m elements of level a, 

so I Vxl = m for some x of level a. Thus Vx is cofinal in L (in the <" sense). 
We claim x E B. Choose any IE Vx with x =I I and suppose I <" a with 
a E L. Then there is an l' E v., with a <" 1'. Thus x < I and x < I', so by 
(2), x < a, as desired. 

(ii) ~ (i). Assume (ii). We shall prove (i) by modifying the proof of the 
completeness theorem, 11.19. Let r be a set of sentences of power m such 
that every subset Ll of r of power < m has a model Q{ t:.. First we modify the 
proof of 11.18. Let 0 be the collection of all subformulas of sentences in r. 
Expand our language by adjoining individual constants c" for each a < m. 
Clearly 101 ::; m. Let C = {c" : a < m}. Let <'P,,: a < m) be a list of all 
sentences of the form 'P" = 3vi ,,0·· ·Vi"/; .•. I;<O"'Y,, which are obtainable from 
members of 0 by replacing variables by members of C. Then we define a 
sequence <d,,: a < m); each d" is to be a sequence of members of C, of 
length < m. Suppose do defined for all f3 < a, where a < m. Then 

U Rng do u {c E C: c occurs in 'Po for some f3 < a} 
0<" 
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has power <m. We let da be a ,8a-termed one-one sequence of members of 
C not in this set. This defines <da : a < m). Next, for each a < m let 

Oa = rU{3VlyO···VIY~".~<8Y1f"y~1f"~:i' < a}, 

where 1f"~ is obtained from 1f" y by replacing all free occurrences of ViY~ (, < ,8y) 
by dy~. Then it is easy to expand each structure ~ l!. to be a model of tl. 
together with the set in braces. Hence Om still has the property that each 
subset tl. of it of power < m has a model ~~. 

Now we shall use (ii) to extend Om. Let (1f"a : a < m) be an enumeration 
of all sentences obtained from members of e by replacing variables by 
members of C. Let Tconsist of all functions/such that/E P8<a{1f"8, -,1f"8} 
for some a < m, Rng/ has a model, and \/,8 < a[(1f"8 E Om => /8 = 1f"8) 1\ 

(,1f"8 E Om => In = ,1f"8)]. Under £, T is a tree. There is an element of T 
of any level a < m. For, let tl. = {1f" 8 : ,8 < a, 1f" 8 E Om} U { ,1f" 8 : ,8 < a, 
,1f"8 E Om}. Then tl. has a model, ~', and if we let/8 = 1f"8 or ,1f"8 accord
ing as ~' 1= 1f" 8 or ~' 1= ,1f" 8, we see that / E T. The other hypotheses of (ii) 
clearly hold, so T has a branch F of power m. Let 8 = {fa :/E F, a < m}. 
Then 8 ;2 em and 1f"8 E 8 or ,1f"8 E 8 for each ,8 < m. Note that every 
subset of 8 of power < m has a model. We are now in a position to repeat 
the proof of 11.12, except that instead of (4) one checks 

(3) for any sentence 1f" 8' 1f" 8 E r iff ~ 1= '¥ 8. 

We leave the details to the reader. o 

BIBLIOGRAPHY 

1. Dickmann, M. A. Large Injinitary Languages. Amsterdam: North-Holland 
(1976). 

2. Henkin, L. Some remarks on infinitely long formulas. In Injinitistic Methods. 
Warsaw (1961), 167-183. 

3. Keisler, H. J. Model Theory for Injinitary Logic. Amsterdam: North-Holland 
(1971). 

EXERCISES 

31.18. Give examples of structures ~, ~ in a countable language !Z' such that 
~ =ee ~ in the L"'l",-sense, ~ is countable, but ~ is uncountable. 

31.19. If r is a countable set of sentences of L"'l'" and r has a model, then r has 
a countable model. 

31.20. Show that for any set a there is a formula cp with one free variable vo, in 
some language Lmm with only £ as a nonlogical constant, such that for any 
transitive set A, (A, £) F cp[b] iff b = a. 

31.21. Every measurable cardinal is weakly inaccessible. 

31.22. Let~ be an!Z'-structure. Suppose~ =ee ~ in the Lmm sense, where IAI < m 
and !Z' has fewer than m nonlogical constants. Show that ~ ~ ~. 

31.23. Give an example in which 31.17(vi) fails if m = Nl • 
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Set theory 
d m) 18 
xy 18 

{x: p(x)} 6 ZF 299 
s; 7 
c 7 Recursive function theory 0 7 

7 Roman alphabet 

(a, b) 7 0, 38 
(a, b, c) 7 C 53 
(a, b, c, d) 7 cn m 29 
Dmn 7 Cat 55 
Rng 7 Con' 166 
a/, a/' tn,fa,fa,f(a) 7 ConN 166 
<7(;) : i E I> 7 Conm 166 
AB 7 IE 53 
<x,y> 7 Exc 56 
--+ ""* >+ >-* 7 fJ 52, 53, 73, 74 
I 7 164, 173 
t 7 J 57 
S 7 K 94 
[ ]R, [ ] 7 Km n .27 
AIR 7 1 34 
a,j3, y, ... 7 L 57 
m,n, ... 7 max 33 
IAI 7 maxm 33 
m+ 7 min 33 
exp 7 minm 33 
7L 15 fz 30 
Fe e 16 Pk 33 
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P 63 K~! 376 
PM 33 L ro 418 
Rm 34 Leu 

ro 425 
rm 33 L"'l'" 504 
1J 30 Lmn 507 
sm n 81 2'At 360 
sg 29 2'BA 359 
sg 29 ~l 300 
T 53 -Prac 376 
Tm 55 -Prln 381 
T right, etc. 17ff 2'lnd 376 
U~ 27 .P"os 244 
V 56 2'prod 376 

-P.et 283 
Other ~n 254 
M-+N 19 N 252 
Mm 24 P 252 
[mIn] 27 p 384 

'"i:.! 27 pos 402 

IT! 27 Pr(vo) 298 

ILY < Xm-l 32 prj 154,318 

X-'-Y 33 Prf 172 

xlY 33 Q 251 
(a), 34 Qm 490 

[v'] 56 QW 488 
{3(x, i) 58 QVi'P 500 
!<-l)y 58 R 247 
a-+b 70 IR 341 

a~·b 70 S 283 

q»:' 79 S 384 
q»' 79 s~ 221 
'"i:.m 85 sm 235 

ITm 85 Sm X 448 
.6.m 86 Senta' 116 

Sentz 187 
st 345 

Logic Subb~'P 180 

Roman alphabet 
Subf~'P 178 
Symz 164 

Axmz 171 Thmz 171 
BA 141 Trmz 166 
CAa 219 Up 386 
eqthm 388 
Exprz 164 Other 

Fmla 168 0 6 
Fmla:T 441 => 6 
H 386 ¢:> 6 
iff 6 -, 6 
ISOL 108ff V 6 
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3 6 cp'U 196 
, 116,165 ncp'U 196 
-+ 116,165 21 F cp[x] 196 
r ~9' cp 117 21 Fcp 196 
~9'cp 117 21F~ 196 
~cp 117 KFcp 196 
n9'CP 121 KF~ 196 
F9'CP 121 rFcp 196 
v 124, 165 rF~ 196 
/\ 124, 165 SBi.:t' 201 
cpd 124 cps 212 
+-+ 124 cpH 213 

/\ CPI 126,165 SBr"'U 216 
iSm aX 222 
V CPi 126, 165 =!l' 224 ISm -r 

cpo /\ • . • /\ cpm 126 'm.!l' r 225 
cpo V ... V cpm 126 am 235,237,244 
:rcp 129 a =m T 237 
[aJr 147 m 235,237,244 
A/I 147 ma 237 
21/1 147,223 I-I 300 
1* 147 [/1 300 
2 149 ur 300 
~X 152 C:;'(O; Po, .. ·, Pn - 1) 300 
IIX 152 1:(0) 300 
PIEI21i 153,318 11(0) 300 
I<r 153,318 Ro 301 
210 x 211 153,318 #F 301 
211 a 154 of 303 
Ala 154 oR 303 
=9' 158 cp'" 311 -r 
'm9' 

r 158 pcu 319 
V 165 PiEI 21I/F 320 

= 165 l<rtF 320 
+-+ 165 - 321 

" 165 21sSB 328 
v' 165 ~ 331 
/\' 165 UK 338 
V' 165 ~ 345 
-, 165 ~m 352 
--+-' 165 r equlv 353 
+-+' 165 r BA 360 
3' 165 CPAt 360 
~.!l' cp 171 rAt 360 
r~.!l' cp 171 rAt 360 
cp(ao, .•. , am-I) 184 OrAt 360 
[[!p]] 190 orAt 360 
a'U 195 P<!P, !fo, ... , !fm> 376 
na'U 195 r ~eq cp 388 
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=r 388 
K r .9? 395 
Qi- 407 
=m 407 
N n 408 
a == f3 (mod y) 412 

415 
Qir 417 
La == L, 418 
La <;; Ll 418 
La <;;inr Ll 418 
L <;;errL' 425 
L == eff L' 425 
m 0 428 
~r 444 ~m 

r f- ne 'P 473 
'T:Vi'P 479 
eVi'P 481 
Qi Fm 'P 500 
/\ 'Pi 504 

t<w 

V 'Pi 504 
t<w 

/\ 'Pa 507 
a<p 

V 'Pa 507 
a<p 
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A 
A priori, 2 
Absolute, 2 
Absolutely free, 387 
Abstract, 2 
Admissible function, 313 
Algebraic language, 384 
Algorithmic function, 70 
Algorithmic step, 69 
Applicability, 3 
Arithmetical hierarchy, 85 
Arithmetical relation, 86 
Arithmetization, 12 
Assignment, 495 
Atom, 151 
m-atomic, 444 
Atomic BA, 151 
Atomic formula, 168 
Atomic equality formula, 168 
Atomic nonequality formula, 168 
m-atomless, 444 
Atomless BA, 151 
Automorphism, 352 
Ax, J., 234 
Axioms, 208 

B 
Basic formula, 233, 235, 238, 240 
m-basic model, 353 
Basic theorem on ultraproducts, 322 
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definitions 

Bell, J., 502 
Beth, E., 6 
Beth's theorem, 369 
Birkhoff, G., 391 
Bishop, E., 5, 7 
Bolzano-Weierstrauss theorem, 346 
Boolean algebra, 141 
Boolean prime ideal theorem, 150 
Boolean representation theorem, 150 
Boone, W., 111 
Bound occurrence, 176 

c 
Cantor, G., 350 
Cantor diagonal argument, 47 
Cardinality quantifier, 500 
Categorical theory, 349 
m-categorical theory, 349 
Chang, C. C., 217,310,400 
Change of bound variable, 181 
Characteristic function, 30 
Characterization theorem, 391 
Characterizes, 393 
Chinese remainder theorem, 57 
Choice structure, 481 
Church, A., 191, 485 
Church's theorem, 293 
Church's thesis, 46 
Closure, 190 
Y-closure conditions, 395 
Cohen, P., 4, 7 
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Collins, G., 296 
Compact class, 406 
(m, n)-compact, 500 
Compactness theorem, 6, 204 
Complete, 198 
w-complete, 498 
Complete computation, 54 
Complete configuration, 53 
Completeness theorem, 6, 122, 123, 204 
Completeness theorem for equational 

logic, 389 
w-completeness theorem, 498 
Composition, 27, 77 
Computation, 16, 69 
Computation step, 15 
Computed by, 50 
Configuration, 15 
Congruence relation, 385 
Congruent modulo y, 412 
Conjunctive normal form, 128 
Conjunction symbol, 162 
Consequence, 171 
Conservative extension, 208 
Consistency family, 311, 312, 473, 506 
Consistent, 122, 189 
w-consistent, 247 
m-consistent over n, 428 
Consistent over, 441 
Construction sequence, 116 
Craig, W., 262 
Craig's interpolation theorem, 365, 506 
Creative set, 97 
Curry, H., 69, 75 
Cylindric algebra, 219 
Cylindric field of sets, 219 
Cylindric set algebra, 219 

D 
Davis, M., 25, 64, 111 
Decidable theory, 233 
Deduction theorem, 118, 188 
Defining relation, 110 
Definitional extension, 208 
Dekker, J., 111 
Description operator, 479 
Descriptive triple, 479 
Detachment, 117, 171 
Detlovs, Y., 69, 75 
Diagram, 329 
Dickmann, M., 520 
Diophantine equation, 111 
Discrete ordering, 331 
Disjunction symbol, 162 
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Disjunctive normal form, 127,235 
Division algorithm, 412 
Downward Lowenheim-Skolem theorem, 

332 
Duality principle, 142 
Dyson, Y., 277 

E 
Effective definitional extension, 208 
Effective expansion, 201 
Effective function, 12 
Effective partial function, 76 
Effective procedure, 11 
Effective set, 12 
Effective Skolem expansion, 211 
Effectively calculable function, 46 
Effectively enumerable, 12 
Effectively enumerable set, 92 
Effectively incompletable, 267 
Effectively inseparable, 100 
Effectivized first-order language, 164 
Effectivized general logic, 425 
Effectivized relational version, 206 
Ehrenfeucht, A., 234, 406, 412, 417, 419, 

444, 450, 453 
Elementary class, 393 
Elementary diagram, 337 
Elementary effectivized first-order 

language, 190 
Elementary embedding, 334 
Elementary equivalent, 327 
Elementary extension, 331 
m-elementary extension, 352 
m-elementary game, 411 
Elementary prime, 445 
Elementary recursive function, 26 
Elementary recursive operations, 29 
Elementary relation, 30 
Elementary substructure, 331 
Elementarily closed, 406 
Elimination of quantifiers, 233 
Embedding, 320 
Endomorphism, 145 
Engeler, E., 447 
Equality symbol, 162 
Equation, 384 
Erdos, P., 517 
Ershov, Yu., 234, 242, 260, 264, 277, 280, 

296 
Essentially undecidable, 266 
Exact, 2 
Existence condition, 206 
Existential formula, 213, 355 



Expansion, 201,329 
Exponentiation, 30 
Expression, 115, 164 
Extension, 208, 328 

F 
Factorial, 30 
Falsity, 121 
Feferman, S., 307, 378 
Field of sets, 141 
Fields of a tape, 14 
Filter, 146, 318 
Filter generated by, 148, 427 
Finite element, 342 
Finite extension, 270 
Finite intersection property, 318 
Finite presentation, 110 
Finitely inseparable, 266 
First occurrence, 69 
First-order language, 162 
Fixed point theorem, 83, 275 
Formal proof, 118, 172 
Formalism, 4 
Formula, 168 
Fraisse, R., 406, 412, 417, 419 
Frame, 495 
Free Boolean algebra, 156 
Free group, 110 
Free occurrence, 176, 177 
Freely generated, 156 
Fuhrken, G., 501 
Full language of a nonempty set, 163, 

195 
Functionally complete, 129 

G 
General logic, 418 
General recursive function, 45 
General recursive operation, 46 
General recursive relation, 46 
General sentential logic, 129 
Generalization, 171 
Generalized product, 377 
Godel, K., 4, 7, 298 
Godel numbering, 12, 52, 53, 54, 77, 121, 

154 
Godel-Herbrand-Kleene calculus, 13,45, 

67 
Gratzer, G., 392 
Greatest lower bound, 152 
Grzegorczyk, A., 41 
Gurevich, Yu., 234 
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H 
Halmos, P., 160,228 
Halpern, J., 296 
Halting problem, 82 
Hanf, W., 277, 509, 511, 517 
Hanf number, 337, 340 
Hanf system, 336, 340 
Henkin, L., 228, 311, 329, 442, 502, 
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Henkin's embedding theorem, 330, 339, 

340 
Herbrand, J., 214 
Herbrand's theorem, 213 
Hermes, H., 14,25,64,111 
Heyting, A., 5, 7 
Hierarchy theorem, 89 
Hilbert, D., 4, 7, 192 
Hilbert e-operator, 481 
Hilbert's tenth problem, 111 
Holds in, 196 
Homogeneous structure, 461 
Homomorphism, 145, 223, 385 
Homomorphism theorem, 147 
Horn formula, 398 

I 
Ideal, 146, 223 
Ideal generated by, 148, 224 
Identity, 384 
Implicational identity, 398 
Incompleteness, 6 
Independent, 370 
Independently axiomatizable, 370 
Indiscernibles, 449 
Individual constant, 162 
Individual variable, 162 
Induction on formulas, 168 
Induction on terms, 167 
Infinite digital computer, 67 
Infinite element, 342 
Infinitely close, 345 
Infinitesimal, 344 
Initial state, 15 
Inseparable, 266 
Intermediate value theorem, 347 
Interpretation, 216 
Intuitionism, 4 
Intuitionistic logic, 137 
Intuitionistic model, 138 
Inversion, 58 
Isolated set, 109 
Isomorphic, 145 
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Isomorphism, 145, 223, 320, 417 
Iteration theorem, 81 

J 
Janiczak, A., 234 
Joint extension property, 358 
Jonsson, B., 392 

K 
Kalish, D., 485 
Kalmar, L., 2, 7 
Keisler, H. J., 6, 217, 310,311,427,435, 

439,502,517,520 
Kernel,147 
Kleene, S., 90 
Kochen, S., 234 
Kreisel, G., 7 

L 
LaGrange, J., 282 
Language of equality, 163 
Language of ordered fields, 163 
Language of rings, 163 
Language of set theory, 163, 195 
Liiuchli, H., 490, 502 
Lavrov, I., 242, 260, 277, 280, 296 
Law of excluded middle, 5 
Least upper bound, 152 
Lefschetz principle, 351 
Leisenring, A., 485 
Liar paradox, 276 
Lies on, 50 
Lindenbaum, A., 200 
Lindstrom, P., 6, 417, 424, 425 
Lob, M., 299, 307 
w-Iogic, 498 
Logic without equality, 473 
Logical axiom, 117, 171 
Logical theorem, 171 
Los, J., 393, 400 
Los-Vaught test, 350 
Lowenheim, L., 234 
Lowenheim-Skolem theorem, 419, 478 
Lukasiewicz, J., 131, 132 
Lyndon, R., 403 

M 
Makkai, M., 311 
Mal'cev, A. 1.,90, 102,234,279,280,485 
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Many-sorted language, 483 
Many-sorted logic, 483 
Markov, A., 75 
Markov algorithms, 13, 45, 69 
Matiyasevic, Y., 111 
Matrix, 187 
Maximal filter, 149 
Maximal ideal, 149 
Measurable cardinal, 512 
Meredith, C., 132 
Metalanguage, 6 
Minimal degree, 106 
Minimalization, 78 
Minsky, M., 25 
Modal logic, 139 
Model, 121, 196 
Model completeness, 234, 354 
Model existence theorem, 313 
Modus ponens, 117, 171 
Monadic second-order logic, 490 
Monk, J. D., 4, 5, 7, 8, 228, 512, 517 
Montague, R., 485 
Mostowski, A., 4, 8, 217, 242, 277, 279, 

450, 453, 502 
Multiplication, 27 
Mycielski, J., 512 
Myhill, J., 111 

N 
Negation symbol, 162 
Nonlogical constants, 164 
Nonstandard analysis, 341 
Nonstandard mathematics, 341 
Nonstandard natural numbers, 341 
Nonstandard number theory, 341 
Nonstandard real numbers, 341 
Nonterminating algorithmic step, 69 
Normal form theorem, 80 
Novikov, P., III 
Number-theoretic function, 26 
Number-theoretic relation, 30 

o 
Occurrence, 69 
Occurs in, 69, 169 
Omits, 441 
Omitting types theorem, 442 
Operation symbol, 162 
Oracle, 105 
Orey, S., 442 



p 
Padoa's method, 368 
Pairing function, 56 
Parentheses, 132 
Parenthesis-free notation, 116 
Parovicenko, I., 517 
Partial function, 76 
Partial functional, 107 
Partial recursive function, 78 
Partial recursive functional, 107 
Partitioning sequence, 376 
Peter, R., 26, 41 
Platonism, 3 
Polish notation, 116 
Positive formula, 402 
Possible definition, 208 
Post, E., 131 
Pour-EI, M., 277 
Prenex normal form, 187 
Presentation, 110 
Presburger, M., 234 
Preservation theorem, 391 
Prime, 343 
Prime model, 358 
Primitive formula, 356 
Primitive recursion, 77 
Primitive recursive function, 34 
Primitive recursive operations, 35 
Primitive recursive relation, 35 
Primitive Skolem expansion, 211 
Primitive structure, 486 
Primitive term, 312 
Principal ultrafilter, 321 
Principia Mathematica, 3 
Priority arguments, 106 
Product, 318 
Productive set, 97 
Projective class, 406, 418 
Proper substitution, 179 
Pseudoelementary class, 406 

Q 
Quantifier on, 176 
Quantifier-free, 187 
Quantifier-free combinations, 234 
quasivariety, 398 
Quine, W., 192 

R 
Rabin, M., 234, 242, 296, 490, 491, 502 
Ramsey's theorem, 448 
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r.e., 92 
Real closed ordered field, 361 
Realizes, 441 
Recursion on formulas, 169 
Recursion on terms, 168 
Recursion principle, 117 
Recursion theorem, 82 
Recursive, 46, 109 
Recursive equivalence type, 108 
Recursive function, 45, 105 
Recursive in, 105 
Recursive real numbers, 109f 
Recursively axiomatizable, 246 
Recursively converges, 109 
Recursively enumerable, 92, 96, 107,425 
Recursively inseparable, 100 
Recursively separable, 100 
Reduct, 201 
Regular ultrafilter, 324 
A-relation, 31 
(m, n}-relation, 107 
Relation symbol, 162 
Relation system, 396 
Relational version, 206 
Relativized reduct, 395 
Remainder, 412 
RET, 108 
Reznikoff, I., 374 
Rice, H., 84 
Rich, 198 
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Robinson, A., 4, 8, 329, 341, 348, 354 
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Russell, B., 3, 6 
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Satisfies, 196 
Saturated, 454 
Schmidt, H., 131 
Schwabhauser, W., 234 
Scott, D., 352, 505, 512, 517 
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