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Preface to the Third Edition

It is gratifying that this textbook is still sufficiently popular to warrant a third
edition. I have used the opportunity to improve and enlarge the book.

When the second edition was prepared, only two pages on algebraic geometry
codes were added. These have now been removed and replaced by a relatively
long chapter on this subject. Although it is still only an introduction, the chapter
requires more mathematical background of the reader than the remainder of this
book.

One of the very interesting recent developments concerns binary codes defined
by using codes over the alphabet Z,. There is so much interest in this area that
a chapter on the essentials was added. Knowledge of this chapter will allow the
reader to study recent literature on Z,-codes.

Furthermore, some material has been added that appeared in my Springer Lec-
ture Notes 201, but was not included in earlier editions of this book, . g. Generalized
Reed-Solomon Codes and Generalized Reed-Muller Codes. In Chapter2, asection
on “Coding Gain” ( the engineer’s justification for using error-correcting codes)
was added.

For the author, preparing this third edition was a most welcome return to
mathematics after seven years of administration. For valuable discussions on
the new material, I thank C.P.J. M. Baggen, 1. M. Duursma, H.D.L. Hollmann,
H. C. A.van Tilborg, and R. M. Wilson. A special word of thanks toR. A. Pellikaan
for his assistance with Chapter 10.

Eindhoven J.H. vAN LINT
November 1998



Preface to the Second Edition

The first edition of this book was conceived in 1981 as an alternative to
outdated, oversized, or overly specialized textbooks in this area of discrete
mathematics—a field that is still growing in importance as the need for
mathematicians and computer scientists in industry continues to grow.

The body of the book consists of two parts: a rigorous, mathematically
oriented first course in coding theory followed by introductions to special
topics. The second edition has been largely expanded and revised. The main
editions in the second edition are:

(1) a long section on the binary Golay code;

(2) a section on Kerdock codes;

(3) a treatment of the Van Lint-Wilson bound for the minimum distance of
cyclic codes;

(4) a section on binary cyclic codes of even length;

(5) an introduction to algebraic geometry codes.

Eindhoven J.H. vaN LINT
November 1991



Preface to the First Edition

Coding theory is still a young subject. One can safely say that it was born in
1948. It is not surprising that it has not yet become a fixed topic in the
curriculum of most universities. On the other hand, it is obvious that discrete
mathematics is rapidly growing in importance. The growing need for mathe-
maticians and computer scientists in industry will lead to an increase in
courses offered in the area of discrete mathematics. One of the most suitable
and fascinating is, indeed, coding theory. So, it is not surprising that one more
book on this subject now appears. However, a little more justification and a
little more history of the book are necessary. At a meeting on coding theory
in 1979 it was remarked that there was no book available that could be used
for an introductory course on coding theory (mainly for mathematicians but
also for students in engineering or computer science). The best known text-
books were either too old, too big, too technical, too much for specialists, etc.
The final remark was that my Springer Lecture Notes (# 201) were slightly
obsolete and out of print. Without realizing what 1 was getting into I
announced that the statement was not true and proved this by showing
several participants the book Inleiding in de Coderingstheorie, a little book
based on the syllabus of a course given at the Mathematical Centre in
Amsterdam in 1975 (M.C. Syllabus 31). The course, which was a great success,
was given by M.R. Best, A.E. Brouwer, P. van Emde Boas, T.M.V. Janssen,
H.W. Lenstra Jr., A. Schrijver, H.C.A. van Tilborg and myself. Since then the
book has been used for a number of years at the Technological Universities
of Delft and Eindhoven.

The comments above explain why it seemed reasonable (to me) to translate
the Dutch book into English. In the name of Springer-Verlag I thank the
Mathematical Centre in Amsterdam for permission to do so. Of course it
turned out to be more than a translation. Much was rewritten or expanded,



X Preface to the First Edition

problems were changed and solutions were added, and a new chapter and
several new proofs were included. Nevertheless the M.C. Syllabus (and the
Springer Lecture Notes 201) are the basis of this book.

The book consists of three parts. Chapter 1 contains the prerequisite
mathematical knowledge. It is written in the style of a memory-refresher. The
reader who discovers topics that he does not know will get some idea about
them but it is recommended that he also looks at standard textbooks on those
topics. Chapters 2 to 6 provide an introductory course in coding theory.
Finally, Chapters 7 to 11 are introductions to special topics and can be used
as supplementary reading or as a preparation for studying the literature.

Despite the youth of the subject, which is demonstrated by the fact that the
papers mentioned in the references have 1974 as the average publication year,
I have not considered it necessary to give credit to every author of the
theorems, lemmas, etc. Some have simply become standard knowledge.

It seems appropriate to mention a number of textbooks that I use regularly
and that I would like to recommend to the student who would like to learn
more than this introduction can offer. First of all F.J. MacWilliams and
N.J.A. Sloane, The Theory of Error-Correcting Codes (reference [46]), which
contains a much more extensive treatment of most of what is in this book
and has 1500 references! For the more technically oriented student with an
interest in decoding, complexity questions, etc. E.R. Berlekamp’s Algebraic
Coding Theory (reference [2]) is a must. For a very well-written mixture of
information theory and coding theory I recommend: R.J. McEliece, The
Theory of Information and Coding (reference [51]). In the present book very
little attention is paid to the relation between coding theory and combina-
torial mathematics. For this the reader should consult P.J. Cameron and
J.H. van Lint, Designs, Graphs, Codes and their Links (reference [11]).

I sincerely hope that the time spent writing this book (instead of doing
research) will be considered well invested.

Eindhoven J.H. vaN LINT
July 1981

Second edition comments: Apparently the hope expressed in the final line of
the preface of the first edition came true: a second edition has become neces-
sary. Several misprints have been corrected and also some errors. In a few
places some extra material has been added.



Contents

Preface tothe Third Edition . . . . . ... ... ... ... ......... A"
Preface tothe Second Edition . . . ... ... ... ... .......... VII
Preface tothe FirstEdition . . . . ... ... ... ... .......... X
CHAPTER 1

Mathematical Background . . . ... ... .. ... . L0000 1
LI, Algebra . . .. . . .. e e e 1
1.2. KrawtchoukPolynomials . . . ... .... .. ... ... .. ... 14
1.3. Combinatorial Theory . . ... ... ... .. .. ... 17
1.4. Probability Theory . . . . . . . . i i i i i it it ittt ittt oo e 19
CHAPTER 2

Shannon’s Theorem . . . . . . . . . . . . . . @ i i i it 22
2.1, Introduction . . . . . v v i i e e e e e e e e e e e e e e e e e e e e e e 22
2.2. Shannon’s Theorem . . . . . . . . . . . i it i i it ittt et e e 27
23. OnCodingGain . ... ... ... ittt ittt e e 29
2 T @) 111311 11 - 31
25. Problems . . . . .. .. e e e e e e e e e e e e e e 32
CHAPTER 3

LinearCodes . . . . . . . . i i i e e e e e e e e e 33
3.0, BlockCodes . . . . . i i e e e e e e e e e e e e e e e 33
3.2, LinearCodes . . . . . o v i i it e e e e e e e e e e e e e e e e e e 35

33. HammingCodes . . . . . v v v vt vt it i it e 38



XII Contents

3.4. Majority LogicDecoding . . . . . ... ... ... ... .. ... ..., 39
3.5. Weight EnUmerators . . . . . .« v v vt it i it i e e e e e et e 40
36. TheleeMetric . . . . . . . i i i i i it i e e e e e e e e e e e e e e 42
37. COMMENES . . . v v et e e e e e e e e e e e e e e e e e e e e e e 44
38. Problems . . . . .. . .. et e e e e e e e e e e e e e e e e 45
CHAPTER 4

SomeGoodCodes . . . .. ... . . . . e e 47
4.1. Hadamard Codes and Generalizations . . .. ... ............... 47
42. TheBinaryGolayCode . ... ... ..... ... .. ... ... 48
43. TheTemaryGolayCode . . . . .. .. ..ot ittt ii e 51
4.4. Constructing Codes fromOtherCodes . . . . . ... ... ........... 51
45. Reed-MullerCodes . . . . . . . . o i i it ittt e ittt et e e e e 54
46. KerdockCodes . . . . . . . . . i i i i e e e e 60
47, COMMENS . . . . v vttt it i ettt e e e e e e et e e et e 61
48. Problems . ... .. . ... e e e e e e e 62
CHAPTER 5

BoundsonCodes . . . . . . .. . .. .. . ... . 64
5.1. Introduction: The GilbertBound . . . . . . ... ... ... .......... 64
52. UpperBounds .. ... .. ... ...ttt iniineeeenn 67
5.3. The Linear ProgrammingBound . . . . . ... ... ... ........... 74
5S4, COMMENIS . . v v vttt it i et e et e et e et et et e e eaaaean 78
55. Problems . . ... . e e e e 79
CHAPTER 6

CyclicCodes . . . . . . .. . . e 81
6.1. Definitions . . . . . . . . . .. e e e 81
6.2. Generator Matrix and Check Polynomial . ................... 83
63. Zerosof aCyclicCode . . v v v v vt e e e e e 84
6.4. TheldempotentofaCyclicCode . ... .................... 86
6.5. Other Representations of CyclicCodes . . . .. ... ... .......... 89
6.6. BCHCOES . . . . v v i i ittt e et et e e e et e et e e e et e e e 91
6.7. DecodingBCHCodes . . ... ....... i iinneneennnnen.. 98
68. Reed-SolomonCodes . .. ... ....... ...t ... 99
6.9. QuadraticResidueCodes . . . . . . ... .. ... i it 103
6.10. Binary Cyclic Codes of Length2n(nodd) . . . . ... . ... ... ...... 106
6.11. Generalized Reed-MullerCodes . . .. . . ... ... ... .......... 108
6.12. COMMENLS . . . . v v it it i i e e e e e e et et et e e 110
6.13. Problems . . . . . . .. e e e e e e e e e e e e e e 111
CHAPTER 7

Perfect Codes and Uniformly Packed Codes . . . . ... ... ....... 112
7.0, Lloyd’sTheorem . . . . . . . o v i v i i it i i it et e ettt et e e 112

7.2. The Characteristic PolynomialofaCode ... ... .............. 115



Contents X111

7.3. UniformlyPackedCodes . . . . .. .. ... ... .o, 118
7.4. Examples of Uniformly PackedCodes . . . . . ... ... ........ ... 120
7.5. Nonexistence TheOTEMS . . . . . . v v v v v v b it e bt s et e e e e e e 123
T, COMMENES . . v v v v e v e i et e e e e it ettt s s et ee e e 127
77, Problems . . . . .. e e e e e e e e e e e e e e e e e e e 127
CHAPTER 8

CodeSOVET Z4 . v v o e e e e e e e e e e e e e e e e e e e e 128
8.1. Quaternary CodeS . . . « v v v v v v vttt e e e e e 128
8.2. Binary Codes Derived from CodesoverZ, . . . .. .. .. ... ... .... 129
83. GaloiSRINESOVErZy . . .« v v v v it e e et et e i e 132
8.4, CyclicCodesOVEr Zyg . « « « v v v i v ot e et e e e e e e 136
8.5. Problems . . . . .. ittt e e e e e e e e e e e 138
CHAPTER 9

GoppaCodes . . . . .. .. vt i it e f e 139
0.1, MoOtIVation . . . . . . i i i i e e e e e e e e e e e e e e e e e e e 139
9.2, GoppaCodes . . . . . v it e e e e e e e e 140
9.3. The Minimum Distance of GoppaCodes . . . . . ... ... ... ...... 142
9.4. Asymptotic Behaviourof GoppaCodes . . . . .. ... ... ... ...... 143
9.5. DecodingGoppaCodes . . ... . ... ... 144
9.6. Generalized BCHCodes . . . ... ... ittt it 145
0.7. COMMENLS . . v v v v vt e e e ettt o e et e e e ettt e oo e e o 146
98. Problems ................ S T T 147
CHAPTER 10

Algebraic Geometry Codes . . . . . ... .. ... oL 148
101 Introduction . . . . . . v v it vt e e e e 148
10.2. AlgebraicCurves . . . . . o o v i i it e e e e e e e 149
103, DIVISOTS & & v v v v v e e e e e e e e e e e e e e e e e e e e 155
10.4. DifferentialsonaCurve . . .. .. .. . i i ittt e e 156
10.5. The Riemann-Roch Theorem . ... ... . ... ... ... ... ... 158
10.6. Codes from AlgebraicCurves . . . . . . .. . ..o i it 160
10.7. Some GeometricCodes . . . . . . . it e e e e 162
10.8. Improvement of the Gilbert—VarshamovBound . . . . ... ... ... .... 165
10.9. COMMENES . . & v v v v v e e e e e e e e et e et et e e et e e e 165
T0U0PIODIEIMS . & v v v v e e e e e e e e e e e e e e e e e e e 166
CHAPTER 11

Asymptotically Good Algebraic Codes . . . .. ... ............ 167
11.1. A Simple Nonconstructive Example . . . . . ... ... .. .......... 167
11.2. Justesen Codes . . . . . v v v i i i e e e e e e e e e e e e e e e e e e 168
11.3. COMMENES & v v v v e e e e e e e e e et e e e e e e e e e e e e 172

11.4. Problems . . . . . v i i e i e e e e e e e e e e e e e e e e e e e e e 172



X1v Contents

CHAPTER 12

ArithmeticCodes . . . . . . . ... ... . e 173
121 ANCodes . . . . . v oo e e e e e e 173
12.2. The Arithmetic and Modular Weight . . . . . .. .. ... ... ... ..... 175
12.3. Mandelbaum-Barrows Codes . . . . . . .. ... ... oot 179
124, COMMENIS . . & v v v v vt e e e e e e e e s e s e e e e e e 180
125. Problems . . . . . . . . . L e e e e e 180
CHAPTER 13

Convolutional Codes . . . . . ... ... ... ... ... . ... 181
130, Introduction . . . . . . . . . o i e e e e e e e e e e e e e e e e 181
13.2. Decoding of Convolutional Codes . . . . . ... ... ..., 185
13.3. An Analog of the Gilbert Bound for Some Convolutional Codes . . . ... .. 187
13.4. Construction of Convolutional Codes from Cyclic Block Codes . . ... ... 188
13.5. Automorphisms of Convolutional Codes . . . . . . ... ... ......... 191
136 COMMENES . . . . . v v it e e e e e e e e e e e et e e e e e e e e e s 193
137.Problems . ... ....... .. ... . e e 194
Hints and Solutions toProblems . . . . . ... .. ... .......... 195
References . . . . . . . . . . . . .. e 218



CHAPTER 1

Mathematical Background

In order to be able to read this book a fairly thorough mathematical back-
ground is necessary. In different chapters many different areas of mathematics
play a rdle. The most important one is certainly algebra but the reader must
also know some facts from elementary number theory, probability theory and
a number of concepts from combinatorial theory such as designs and geo-
metries. In the following sections we shall give a brief survey of the prerequi-
site knowledge. Usually proofs will be omitted. For these we refer to standard
textbooks. In some of the chapters we need a large number of facts concerning
a not too well-known class of orthogonal polynomials, called Krawtchouk
polynomials. These properties are treated in Section 1.2. The notations that
we use are fairly standard. We mention a few that may not be generally
known. If C is a finite set we denote the number of elements of C by |C|. If the
expression B is the definition of concept A then we write A :== B. We use “iff”
for “if and only if”. An identity matrix is denoted by I and the matrix with
all entries equal to one is J. Similarly we abbreviate the vector with all
coordinates O (resp. 1) by 0 (resp. 1). Instead of using [x] we write |X| =
max{n € Z|n < x} and we use the symbol [x] for rounding upwards.

§1.1. Algebra

We need only very little from elementary number theory. We assume known
that in N every number can be written in exactly one way as a product of
prime numbers (if we ignore the order of the factors). If a divides b, then we
write a|b. If p is a prime number and p"|a but p"*! | a, then we write p’| a. If



2 1. Mathematical Background

ke N, k > 1, then a representation of n in the base k is a representation

1
n = Z nikl,
i=0

0 <n; < kfor0<ix<l The largest integer n such that nia and n|b is called
the greatest common divisor of a and b and denoted by g.c.d.(a, b) or simply
(a, b). If m|(a — b) we write a = b (mod m).

(1.1.1) Theorem. If
o) :=|{meN|l <m<n(m,n) =1},
then

(i) @(m) = n[],m(1 = 1/p),
(i) Yamo(d) =n.

The function ¢ is called the Euler indicator.
(1.1.2) Theorem. If (a, m) = 1 then a®*™ = | (mod m).
Theorem 1.1.2 is called the Euler—Fermat theorem.

(1.1.3) Definition. The Mobius function . is defined by

1, ifn=1,
u(n) := < (= 1), ifnisthe product of k distinct prime factors,
0, otherwise.

(1.1.4) Theorem. If f and g are functions defined on N such that
g(n) = ; f@),

then
fy =Y. u(d)g(g).
din

Theorem 1.1.4 is known as the Mébius inversion formula.

Algebraic Structures

We assume that the reader is familiar with the basic ideas and theorems of
linear algebra although we do refresh his memory below. We shall first give
a sequence of definitions of algebraic structures with which the reader must
be familiar in order to appreciate algebraic coding theory.
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(1.1.5) Definition. A group (G, )is a set G on which a product operation has
been defined satisfying

(l) Vae Gvbe G[ab € G]:
(ll) Vae Gvbe GVce G[(ab)c = a(bc)],
("1) 3ee(;vneGEae =ea= a]’
{the element e is unique),
(lV) VasGabeG[ab =ba = e],
(b is called the inverse of a and also denoted by a™?).

If furthermore
(V) YaegVYseclab = ba],

then the group is called abelian or commutative.

If (G, )is a group and H < G such that (H, ) is also a group, then (H, )
is called a subgroup of (G, ). Usually we write G instead of (G, ). The number
of elements of a finite group is called the order of the group. If (G, )isa group
and a € G, then the smallest positive integer n such that a" = e (if such an n
exists) is called the order of a. In this case the elements ¢, a, a?%, ..., a"! form
a so-called cyclic subgroup with a as generator. If (G, ) is abelian and (H, )
is a subgroup then the sets aH := {ah|h € H} are called cosets of H. Since two
cosets are obviously disjoint or identical, the cosets form a partition of G. An
element chosen from a coset is called a representative of the coset. It is not
difficult to show that the cosets again form a group if we define multiplication
of cosets by (aH)(bH) := abH. This group is called the factor group and
indicated by G/H. As a consequence note that if a € G, then the order of a
divides the order of G (also if G is not abelian).

A fundamental theorem of group theory states that a finite abelian group is a
direct sum of cyclic groups.

(1.1.6) Definition. A set R with two operations, usually called addition and
multiplication, denoted by (R, +, ), is called a ring if

(i) (R, +)is an abelian group,
(“) VaeRVbEvaeR[(ab)c = a(bc)],
(i) Ve rVperV.erla(d + ¢) = ab + ac A (a + b)c = ac + bc].

The identity element of (R, +) is usually denoted by 0.
If the additional property

(iv) YoerVyerlab = ba]

holds, then the ring is called commutative.

The integers Z are the best known example of a ring.
If (R, +, ) isacommutative ring, a nonzero element a € R is called a zero
divisor if there exists a nonzero element » € R such that ab = 0. If a nontrivial
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ring has no zero divisors, it is called an integral domain. In the same way that Z
is extended to @, an integral domain can be embedded in its field of fractions or
quotient field.

(1.1.7) Definition. If (R, +, )isaringand @ # S < R, then S is called an ideal
if

(l) VHESVbGS[a -be S]’

(i) VoesVocglabe S A baeS].

It is clear that if S is an ideal in R, then (S, +, ) is a subring, but require-
ment (ii) says more than that.

(1.1.8) Definition. A field is a ring (R, +, )for which (R\{0}, )is an abelian
group.

(1.1.9) Theorem. Every finite ring R with at least two elements such that

VaerVoerlab =0=>(a =0 v b =0)]
is a field.

(1.1.10) Definition. Let (V, +) be an abelian group, F a field and let a multipli-
cation F x V — V be defined satisfying

() Vacy[la =a],
Vae Fvﬂe Fvlel’[a(ﬁa) = (aﬂ)a},

(ll) Vas Fvle VVbeV[a(a + b) =oa+ ab],
vae Fvﬁe IFVnsV[(a + ﬂ)a = oa + ﬁa]

Then the triple (V, +, F) is called a vector space over the field F. The identity
element of (V, +) is denoted by 0.

We assume the reader to be familiar with the vector space R” consisting of
all n-tuples (a,, a,, ..., a,) with the obvious rules for addition and multiplica-
tion. We remind him of the fact that a k-dimensional subspace C of this
vector space is a vector space with a basis consisting of vectors a, :=
@11, 819, ..., 01,), 85 1= (A31, 32525 Aap)y -5 B = (Axy, Agas - - -, Gyy), Where
the word basis means that every a € C can be written in a unique way as
oy a; + o4, + - + o, a,. The reader should also be familiar with the process
of going from one basis of C to another by taking combinations of basis
vectors, etc. We shall usually write vectors as row vectors as we did above. The
inner product {a, b) of two vectors a and b is defined by

{a,b):=a,b, +a,b, +- + a,b,.

The elements of a basis are called linearly independent. In other words this
means that a linear combination of these vectors is 0 iff all the coefficients are
0.1fa,,...,a, are k linearly independent vectors, i.e. a basis of a k-dimensional
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subspace C, then the system of equations {a;,y> =0 (i=1, 2,..., k) has as
its solution all the vectors in a subspace of dimension n — k which we denote
by C*. So,

C'L = {y € RnlvxeC[<x’ Y> = 0]}

These ideas play a fundamental role later on, where R is replaced by a finite
field F. The theory reviewed above goes through in that case.

(1.1.11) Definition. Let (¥, +) be a vector space over F and let a multiplica-
tion V x V — V be defined that satisfies

(@ (V, +, )isaring,
(ii) Vtxe Fvlevvbev[(aa)b = 3(ab)]-

Then we say that the system is an algebra over F.

Suppose we have a finite group (G, -) and we consider the elements of G as
basis vectors for a vector space (¥, +) over a field F. Then the elements of V
are represented by linear combinations a,g, + a,g, + *** + &,g,, where

o; € F, g;€ G, (l<i<n=]|G).

We can define a multiplication * for these vectors in the obvious way, namely

(Z “igi) * <Z ﬁjgj) = Z Z (aiﬁj)(gi'gj),

which can be written as ) , y,g,, where y, is the sum of the elements a;f; over
all pairs (i, j) such that g;-g; = g,. This yields an algebra which is called the
group algebra of G over F and denoted by FG.

EXAMPLES. Let us consider a number of examples of the concepts defined
above.

If A:= {ay, a,, ..., a,} is a finite set, we can consider all one-to-one map-
pings of S onto S. These are called permutations. If ¢, and ¢, are permutations
we define g, 0, by (g,0,)(a) := 7,(0,(a)) for all a € A. It is easy to see that the
set S, of all permutations of 4 with this multiplication is a group, known as
the symmetric group of degree n. In this book we shall often be interested in
special permutation groups. These are subgroups of S,. We give one example.
Let C be a k-dimensional subspace of R". Consider all permutations ¢ of the
integers 1,2, ..., nsuch that for every vector ¢ = (¢, c;, ..., ¢,) € C the vector
(Ca1)s Co(2) -+ > Camy) 18 also in C. These clearly form a subgroup of S,. Of
course C will often be such that this subgroup of S consists of the identity only
but there are more interesting examples! Another example of a permutation
group which will turn up later is the affine permutation group defined as
follows. Let F be a (finite) field. The mapping f, ,, whenue F,ve F, u # 0, is
defined on F by f, ,(x) := ux + v for all x € F. These mappings are permuta-
tions of F and clearly they form a group under composition of functions.
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A permutation matrix P is a (0, 1)-matrix that has exactly one 1 in each row
and column. We say that P corresponds to the permutation ¢ of {1,2, ..., n}
fp;j=1fi=0(j)(=12..., n). With this convention the product of
permutations corresponds to the product of their matrices. In this way one
obtains the so-called matrix representation of a group of permutations.

A group G of permutations acting on a set Q is called k-transitive on Q if
for every ordered k-tuple (a,, ..., a;) of distinct elements of Q and for every
k-tuple (b,, ..., b,) of distinct elements of Q, there is an element ¢ € G such
that b, = a(a;) for 1 < i < k. If k = 1 we call the group transitive.

Let S be an ideal in the ring (R, +, ). Since (S, +) is a subgroup of the
abelian group (R, +), we can form the factor group. The cosets are now called
residue classes mod S. For these classes we introduce a multiplication in the
obvious way: (a + S)(b + S):= ab + S. The reader who is not familiar with
this concept should check that this definition makes sense (i.e. it does not
depend on the choice of representatives a resp. b). In this way we have
constructed a ring, called the residue class ring R mod S and denoted by R/S.
The following example will surely be familiar. Let R := Z and let p be a prime.
Let S be pZ, the set of all multiples of p, which is sometimes also denoted by
(p). Then R/S is the ring of integers mod p. The elements of R/S can be
represented by 0, 1, ..., p — 1 and then addition and multiplication are the
usual operations in Z followed by a reduction mod p. For example, if we take
p =17, then 4 + 5 = 2 because in Z we have 4 + 5 = 2 (mod 7). In the same
way 4-5 = 6in Z/7Z = Z/(7). If S is an ideal in Z and S # {0}, then there is a
smallest positive integer k in S. Let s € S. We can write s as ak + b, where
0 < b < k. By the definition of ideal we have ak € S and hence b =s —ake S
and then the definition of k implies that b = 0. Therefore S = (k). An ideal
consisting of all muitiples of a fixed element is called a principal ideal. If a ring
R has no other ideals than principal ideals, it is called a principal ideal ring.
Therefore Z is such a ring.

An ideal S is called a prime ideal if ab € S impliesa € Sorb € S. An ideal
S in a ring R is called maximal if for every ideal / with S C I C R, I = Sor
I = R (S # R). If aring has a unique maximal ideal, it is called a local ring.

(1.1.12) Theorem. If p is a prime then Z/pZ is a field.

This is an immediate consequence of Theorem 1.1.9 but also obvious
directly. A finite field with n elements is denoted by F, or GF (n) (Galois field).

Rings and Finite Fields

More about finite fields will follow below. First some more about rings and
ideals. Let F be a finite field. Consider the set F[x] consisting of all polyno-
mials a, + a,x + -*- + a,x", where n can be any integer in N and g; € F for
0 < i < n. With the usual definition of addition and muitiplication of polyno-
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mials this yields a ring (F[x], +, ), which is usually just denoted by F[x].
The set of all polynomials that are multiples of a fixed polynomial g(x), i.e. all
polynomials of the form a(x)g(x) where a(x) € F[x], is an ideal in F[x].

As before, we denote this ideal by (g(x)). The following theorem states that
there are no other types.

(1.1.13) Theorem. F[x] is a principal ideal ring.

The residue class ring F[x]/(g(x)) can be represented by the polynomials
whose degree is less than the degree of g(x). In the same way as our example
Z/7Z given above, we now multiply and add these representatives in the usual
way and then reduce mod g(x). For example, we take F = F, = {0, 1} and
g(x) =x>+ x + L. Then (x + 1)(x? + 1) = x> + x? + x + | = x%. This ex-
ample is a useful one to study carefully if one is not familiar with finite fields.
First observe that g(x) is irreducible, i.e., there do not exist polynomials a(x)
and b(x) € F[x], both of degree less than 3, such that g(x) = a(x)b(x). Next,
realize that this means that in F,[x]/(g(x)) the product of two elements a(x)
and b(x) is 0 iff a(x) =0 or b(x) = 0. By Theorem 1.1.9 this means that
F,[x]/(g(x)) is a field. Since the representatives of this residue class ring all
have degrees less than 3, there are exactly eight of them. So we have found a
field with eight elements, i.e. F,;. This is an example of the way in which finite
fields are constructed.

(1.1.14) Theorem. Let p be a prime and let g(x) be an irreducible polynomial of
degree r in the ring F,[x]. Then the residue class ring F,[x]/(g(x)) is a field with
p” elements.

PRroOOF. The proof is the same as the one given for the example p =2, r =3,
gx)=x>+x+ 1" d

(1.1.15) Theorem. Let [ be a field with n elements. Then n is a power of a prime.

Proor. By definition there is an identity element for multiplication in F. We
denote this by 1. Of course 1 + 1 € F and we denote this element by 2. We
continue in this way, ie. 2 + 1 = 3, etc. After a finite number of steps we
encounter a field element that already has a name. Suppose, e.g. that the sum
of k terms 1 is equal to the sum of | terms 1 (k > I). Then the sum of (k — )
terms 1 is 0, i.e. the first time we encounter an element that already has a
name, this element is 0. Say 0 is the sum of k terms 1. If k is composite, k = ab,
then the product of the elements which we have called a resp. b is 0, a
contradiction. So k is a prime and we have shown that [, is a subfield of F.
We define linear independence of a set of elements of F with respect to
(coefficients from) F, in the obvious way. Among all linearly independent
subsets of F let {x,, x5, ..., x,} be one with the maximal number of elements.
If x is any element of F then the elements x, x,, x, ..., X, are not linearly



8 1. Mathematical Background

independent, i.e. there are coefficients 0 # &, ay, ..., «, such that ax + a; x; +
-+ 4+ a,x, = 0 and hence x is a linear combination of x, to x,. Since there are
obviously p” distinct linear combinations of x, to x, the proofis complete. [J

From the previous theorems we now know that a field with n elements
exists iff n is a prime power, providing we can show that for every r > 1 there
is an irreducible polynomial of degree r in F,[x]. We shall prove this by
calculating the number of such polynomials. Fix p and let I, denote the
number of irreducible polynomials of degree r that are monic, i.e. the coeffi-
cient of x" is 1. We claim that

(1.1.16) (1 —pz)t =[] (1 —2)™.
r=1

In order to see this, first observe that the coefficient of z” on the left-hand side
is p", which is the number of monic polynomials of degree n with coefficients
in F,. We know that each such polynomial can be factored uniquely into
irreducible factors and we must therefore convince ourselves that these prod-
ucts are counted on the right-hand side of (1.1.16). To show this we just
consider two irreducible polynomials a,(x) of degree r and a,(x) of degree s.
There is a 1-1 correspondence between products (a,(x))*(a,(x))' and terms
2% in the product of (1 + 2§ +z% +---) and (1 +z5 + 23+ ---). If we
identify z, and z, with z, then the exponent of z is the degree of (a, (x))*(a,(x))".
Instead of two polynomials a,(x) and a,(x), we now consider all irreducible
polynomials and (1.1.16) follows.
In (1.1.16) we take logarithms on both sides, then differentiate, and finally
multiply by z to obtain

r

(1.1.17) i

l—pz , l—z

Comparing coefficients of z" on both sides of (1.1.17) we find
(1.1.18) p" =) rl,.

rin

Now apply Theorem 1.1.4 to (1.1.18). We find

{ 1
(1.1.19) Ir=;Zu(d)pr/d>;{pr__pr/2__pr13 -}
d|r

r/2
(P _ Z p ) . pr(l —r/2+l) > 0.

Now that we know for which values of n a field with n elements exists, we wish
to know more about these fields. The structure of F,. will play a very impor-
tant role in many chapters of this book. As a preparation consider a finite field
F and a polynomial f(x)e F[x] such that f(a) =0, where a e F. Then by
dividing we find that there is a g(x) € F[x] such that f(x) = (x — a)g(x).
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Continuing in this way we establish the trivial fact that a polynomial f(x) of
degree r in F[x] has at most r zeros in F.

If ¢ is an element of order e in the multiplicative group (F,-\ {0}, ), then a
is a zero of the polynomial x¢ — 1. In fact, we have

x¢—1=(x—1)(x—a)(x—a?)(x—at).

It follows that the only elements of order e in the group are the powers o'
where 1 <i < e and (i, ¢) = 1. There are ¢(e) such elements. Hence, for every
e which divides p” — 1 there are either O or ¢(e) elements of order ¢ in the field.
By (1.1.1) the possibility 0 never occurs. As a consequence there are elements
of order p" — 1, in fact exactly @(p" — 1) such elements. We have proved the
following theorem.

(1.1.20) Theorem. In [, the multiplicative group (F,\{0}, ) is a cyclic group.
This group is often denoted by F*.

(1.1.21) Definition. A generator of the multiplicative group of F, is called a
primitive element of the field.

Note that Theorem 1.1.20 states that the elements of F, are exactly the g
distinct zeros of the polynomial x? — x. An element f such that §* = 1 but
B' # 1for 0 <[ < kis called a primitive kth root of unity. Clearly a primitive
element « of F, is a primitive (g — 1)th root of unity. If e divides g — 1 then a®
is a primitive ((q — 1)/e)th root of unity. Furthermore a consequence of
Theorem 1.1.20 is that F, is a subfield of F, iff r divides s. Actually this
statement could be slightly confusing to the reader. We have been suggesting
by our notation that for a given g the field F, is unique. This is indeed true. In
fact this follows from (1.1.18). We have shown that for g = p”" every element
of F, is a zero of some irreducible factor of x? — x and from the remark above
and Theorem 1.1.14 we see that this factor must have a degree r such that r|n.
By (1.1.18) this means we have used all irreducible polynomials of degree r
where r|n. In other words, the product of these polynomials is x? — x. This
establishes the fact that two fields F and F’ of order g are isomorphic, i.e. there
isa mapping ¢: F — F' which is one-to-one and such that ¢ preserves addition
and multiplication.

The following theorem is used very often in this book.

(1.1.22) Theorem. Let g = p" and 0 # f(x) € F,[x].

() If a € Fix and f(o) = O, then f(a?) = 0.
(i) Conversely: Let g(x) be a polynomial with coefficients in an extension field
of F,. If g(a?) = O for every a for which g(«) = 0, then g(x) € F,[x].
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ProOF.

(i) By the binomial theorem we have (a + b)’ = a”? + bP because p divides

Z) for1 <k < p— 1. It follows that (a + b)? = a? + b%. If f(x) = ) a;x’
then (f(x))? = Y. af(x).

Because g; € F, we have af = g;. Substituting x = a we find f(a?) =
(flm)y =0.

(i) We already know that in a suitable extension field of F, the polynomial
g(x) is a product of factors x — «; (all of degree 1, that is) and if x — «; is
one of these factors, then x — o is also one of them. If g(x) = } §_, a,x*
then g, is a symmetric function of the zeros «; and hence a, = af, i.e.
ael,.

If « € F,, where q = p", then the minimal polynomial of « over F, is the
irreducible polynomial f(x)e F,[x] such that f(a) =0. If « has order e
then from Theorem 1.1.22 we know that this minimal polynomial is

™o (x — af'), where m is the smallest integer such that p™ = 1 (mod e).

Sometimes we shall consider a field F, with a fixed primitive element . In
that case we use m;(x) to denote the minimal polynomial of a’. An irreducible
polynomial which is the minimal polynomial of a primitive element in the corre-
sponding field is called a primitive polynomial. Such polynomials are the most
convenient ones to use in the construction of Theorem 1.1.14. We give an example
in detail.

(1.1.23) ExaMpPLE. The polynomial x* + x + 1 is primitive over F,. The field
F,« is represented by polynomials of degree <4. The polynomial x is a
primitive element. Since we prefer to use the symbol x for other purposes, we
call this primitive element a. Note that «* + « + 1 = 0. Every element in F,.
is a linear combination of the elements 1, «, a?, and «3. We get the following
table for F,.. The reader should observe that this is the equivalent of a table
of logarithms for the case of the field R.

The representation on the right demonstrates again that F,. can be inter-
preted as the vector space (F,)*, where {1, o, «, «*} is the basis. The left-hand
column is easiest for multiplication (add exponents, mod 15) and the right-
hand column for addition (add vectors). It is now easy to check that

my(x) = (x — a)(x — a?)(x — «*)(x — «®) =x*+x+1,

myx) =(x —a)(x —af)(x —a'?)(x—a®) =x*+x*+xT+x+1,
ms(x) = (x — o®)(x — a'?) =x2+x+1,

mq(x) = (x —a”)(x —a'*)(x —a'3)(x —a'!) =x*+x>+1,

and the decomposition of x' — x into irreducible factors is
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X1 —x=x(x—Dx*+x+ DEx*+x+1)
x(x*+ x>+ Dx*+x3+x*+x+1).

Note that x* — x = x(x — 1)(x* + x + 1) corresponding to the elements 0, 1,
o, a'® which form the subfield F, = F,[x]/(x* + x + 1). The polynomial
ms(x) is irreducible but not primitive.

Table of F,.
0 = =(0000
1 =1 =(1 000
o0 = x =0100
a? = a? =001 0)
a = a>=(000 1)
at =1+a =(1100)
a’ = o+ a? =0110)
a = at+a>=0011
2 =14ua +2*=(1101)
a® =1 + o2 =(1010
o = 2 +=0101
al® =1 +a+0a? =(1110)
al' = a+al+a>=0111
al?=14+a+a2+a>=(1111)
a?=1 +d+23=(1011
al* =1 +a3=(1001)

The reader who is not familiar with finite fields should study (1.1.14) to
(1.1.23) thoroughly and construct several examples such as Fy, F,,, Fo, with
the corresponding minimal polynomials, subfields, etc. For tables of finite
fields see references [9] and [10].

Polynomials

We need a few more facts about polynomials. If f(x) € F,[x] we can define the
derivative f’(x) in a purely formal way by

(Z akx"> =Y kax*71.
k=0 k=1

The usual rules for differentiation of sums and products go through and
one finds for instance that the derivative of (x — a)?f(x) is 2(x — &) f(x) +
(x — a)*f"(x). Therefore the following theorem is obvious.

(1.1.24) Theorem. If f(x)e F,[x] and « is a multiple zero of f(x) in some
extension field of F,, then « is also a zero of the derivative f'(x).

Note however, that if ¢ = 2", then the second derivative of any polynomial
in F,[x] is identically 0. This tells us nothing about the multiplicity of zeros
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of the polynomial. In order to get complete analogy with the theory of
polynomials over R, we introduce the so-called Hasse derivative of a polyno-
mial f(x) € F,[x] by

1
S0 = O

(50 the k-th Hasse derivative of x" is (:)M’"‘).

The reader should have no difficulty proving that a is a zero of f(x) with
multiplicity k iff it is a zero of f1(x) for 0 < i < k and not a zero of f™(x).

Another result to be used later is the fact that if f(x) = [ ], (x — «;) then
f1x) = Yy fOf(x — o).

The following theorem is well known.
(1.1.25) Theorem. If the polynomials a(x) and b(x) in F[x] have greatest
common divisor 1, then there are polynomials p(x) and q(x) in F[x] such that
a(x)p(x) + b(x)g(x) = 1.

ProoF. This is an immediate consequence of Theorem 1.1.13. O

Although we know from (1.1.19) that irreducible polynomials of any degree
r exist, it sometimes takes a lot of work to find one. The proof of (1.1.19) shows
one way to do it. One starts with all possible polynomials of degree 1 and
forms all reducible polynomials of degree 2. Any polynomial of degree 2 not
in the list is irreducible. Then one proceeds in the obvious way to produce
irreducible polynomials of degree 3, etc. In Section 9.2 we shall need irreduc-
ible polynomials over F, of arbitrarily high degree. The procedure sketched
above is not satisfactory for that purpose. Instead, we proceed as follows.
(1.1.26) Lemma.

FERY + 1),

PRrROOF.

(i) For B = 0 and § = 1 the assertion is true.
(ii) Suppose 3'[(2* + 1). Then from

¥+ D=+ D{R¥+ DY -2 + 3},
it follows that if ¢t > 2, then 3**[|2¥™" + 1). O

(1.1.27) Lemma. If m is the order of 2 (mod 3'), then
m= (3" =2-3"1
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PrOOF. If 2* = 1 (mod 3) then « is even. Therefore m = 2s. Hence 2° + 1 =
0 (mod 3'). The result follows from Theorem 1.1.2 and Lemma 1.1.26. d

(1.1.28) Theorem. Let m = 2-3""'. Then
x™ 4+ x™ + 1

is irreducible over F,.

PRrOOF. Consider F,... In this field let ¢ be a primitive (3)th root of unity.
The minimal polynomial of £ then is, by Lemma 1.1.27

) = (x = &)x = &) (x — &) (x = &™),
a polynomial of degree m. Note that
P Hl=01+x)0+x+x3)(1+ x>+ x8) (1 + x> 4 x237),

a factorization which contains only one polynomial of degree m, so the last
factor must be f(x), i.e. it is irreducible. O

Quadratic Residues

A consequence of the existence of a primitive element in any field F, is that it
is easy to determine the squares in the field. If g is even then every element is
a square. If g is odd then F, consists of 0, (g — 1) nonzero squares and
1(g — 1) nonsquares. The integers k with | < k < p — 1 which are squares in
F, are usually called quadratic residues (mod p). By considering ke F, as a
power of a primitive element of this field, we see that k is a quadratic residue
(mod p) iff k"2 = | (mod p). For the element p — 1 = —1 we find: —1lisa
square in F, iff p = 1 (mod 4). In Section 6.9 we need to know whether 2 is a
square in F,. To decide this question we consider the elements 1, 2, ...,
(p — 1)/2 and let a be their product. Multiply each of the elements by 2 to
obtain 2, 4, ..., p — 1. This sequence contains |(p — 1)/4] factors which are
factors of a and for any other factor k of a we see that —k is one of the
even integers > (p — 1)/2. It follows that in F, we have 2¢7V? g=
(= 1)~ 12=Up=hi4l 5 and since a # 0 we see that 2 is a square iff

p—1 p—1
2 4
is even, i.e. p = +1 (mod 8).

The Trace

Let g = p". We define a mapping Tr: F, — F,, which is called the trace, as
follows.
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(1.1.29) Definition. If ¢ € F, then
Tr(@) =+ &7+ &7+ + 877

(1.1.30) Theorem. The trace function has the following properties:

(i) For every ¢ e F, the trace Tr(&) is in F;
(ii) There are elements € F, such that Tr() # 0;
(iti) Tr is a linear mapping.

PROOF.

(i) By definition (Tr(£))? = Tr(&).
(i) The equation x + x” + -*- + x” ' = 0 cannot have g roots in Fp»
(iii) Since (£ + n)f = P + n? and for every ae F, we have a? = q, this is
obvious. O

Of course the theorem implies that the trace takes every value p~'q times
and we see that the polynomial x + x? + :-- + x? ' is a product of minimal
polynomials (check this for Example 1.1.23).

Characters

Let (G, +) be a group and let (T, ) be the group of complex numbers with
absolute value 1 with multiplication as operation. A character is a homo-
morphism x: G — T, i.e.

(1.1.31) Vo,e6V0ealx(9: + 92) = x(91)x(g2)].

From the definition it follows that x(0) = 1 for every character y. If x(g) = 1
for all g € G then y is called the principal character.

(1.1.32) Lemma. If y is a character for (G, +) then
|G|, if x isthe principal character,

Y, x(9) = {0’

4G otherwise.

ProoF. Let h € G. Then
A Y =Y tth+g =3 xk).
geG keG

geG

If ¥ is not the principal character we can choose h such that y(h) # 1. d

§1.2. Krawtchouk Polynomials

In this section we introduce a sequence of polynomials which play an impor-
tant role in several parts of coding theory, the so-called Krawtchouk polyno-
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mials. These polynomials are an example of orthogonal polynomials and
most of the theorems that we mention are special cases of general theorems
that are valid for any sequence of orthogonal polynomialis. The reader who
does not know this very elegant part of analysis is recommended to consult
one of the many textbooks about orthogonal polynomials (e.g. G. Szegd [67],
D. Jackson [36], F. G. Tricomi [70]). In fact, for some of the proofs of
theorems that we mention below, we refer the reader to the literature. Because
of the great importance of these polynomials in the sequel, we treat them
more extensively than most other subjects in this introduction.

Usually the Krawtchouk polynomials will appear in situations where two
parameters n and g have already been fixed. These are usually omitted in the
notation for the polynomials.

(1.2.1) Definition. For k = 0, 1, 2, ..., we define the Krawtchouk polynomial
K,(x) by

Ki(xm,9) = Ky = 3 (- 1)1@ <’; " ’]‘) (g~ 17,

i=0

where

(x) _xx=1)(x—j+ 1)
il J! ’
Observe that for the special case g = 2 we have

k —
(1.22) K= Y (~ 1Y <’J‘) ('l’( B ’J‘) = (= 1K, (n — x).

By multiplying the Taylor series for (1 + (g — 1)2)"* and (1 — z)* we find

(x e R).

(1.2.3) Y Ki(x)z* = (1 + (g — Dz *(1 — 2)*.
k=0
It is clear from (1.2.1) that K,(x) is a polynomial of degree k in x with leading

coefficient (—g)*/k! The name orthogonal polynomial is connected with the
following “orthogonality relation™

n(n . . . n n
(1.24) _ZO (l.)(q = VKK, (i) = by (k) (@ — g™
The reader can easily prove this relation by multiplying both sides by x*y*

and summing over k and /(0 to c0), using (1.2.3). Since the two sums are equal,
the assertion is true. From (1.2.1) we find

(12.5) (q—1) ('Z) K(i) = (g — 1) (Z) K(K),

which we substitute in (1.2.4) to find a second kind of orthogonality relation:
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(1.2.6) ;0 K, ()K(k) = 0 q".

We list a few of the Krawtchouk polynomials (k < 2)
(1.2.7)  Ko(n,x)=1,
K,(n,x)=n(g - 1) — gx, (=n—-2xifg=2),

K,(n, x) = ${g*x* — q(2qn — g — 2n + 2)x + (g — 1)*n(n — 1)},

<= 2x% — 2nx + (;)ifq = 2).

In Chapter 7 we shall need the coefficients of x*, x*7*, x*~2, and x° in the
expression of K, (x). If K,(x) = > %, ¢;x’, then for ¢ = 2 we have:
(1.2.8) ¢ = (—2)"/kl,

oot = (=2 'nf(k = 1)L,

Comz = H(—22{3n — 3n + 2k — 4}/(k — 2)!.

For several purposes we need certain recurrence relations for the Krawt-
chouk polynomials. The most important one is

(k + DK,4i(x)
(1.2.9) ={k+(q—1n—-k—gx}K(x)—(qg—1)n—k+ DK, (x)
This is easily proved by differentiating both sides of (1.2.3) with respect to z
and multiplying the result by (1 + (g — 1)z)(1 — z). Comparison of coeffi-

cients yields the result. An even easier exercise is replacing x by x — 1in(1.2.3)
to obtain

(1.2.10) K, ()= K (i — 1) — (g = DK (i) = Ky (i = 1),

which is an easy way to calculate the numbers K, (i) recursively.
If P(x) is any polynomial of degree I then there is a unique expansion

{
(1.2.11) P(x) = k;) o, K, (),

which is called the Krawtchouk expansion of P(x).

We mention without proof a few properties that we need later. They are
special cases of general theorems on orthogonal polynomials. The first is the
Christoffel-Darboux formula

Ky () K (y) — Ky () Kies 1 (3) 2 (") x Ki(x)Ki(J’)_

(1.2.12) = . ;o <n>
i

y—x Tk+1
The recurrence relation (1.2.9) and an induction argument show the very
important interlacing property of the zeros of K, (x):
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(1.2.13)  K,(x) has k distinct real zeros on (0, n); if these are
v, <v, < <yandifu;, <u, <---<u._,arethe
zeros of K;_,, then

O<v, <uUy <0< <Py <Upoy <P <N

The following property once again follows from (1.2.3) (where we now take
q = 2) by multiplying two power series: If x =0, 1, 2,..., n, then

(1.2.14) Ki(x)K;(x) = é‘o o K (x),

=0 )l )
BE\a+i-k2)\i-j+o2)

In Chapter 7 we shall need the relation

where

(1.2.15) i K(x)=K/(x—1n-1,q).
k=0

This is easily proved by substituting (1.2.1) on the left-hand side, changing the
-1 -1
order of summation and then using <7) = (x > + (x i )( j=1). We

j—1
shall denote K;(x — 1; n — 1, q) by ¥,(x).

§1.3. Combinatorial Theory

In several chapters we shall make use of notions and results from combina-
torial theory. In this section we shall only recall a number of definitions and

one theorem. The reader who is not familiar with this area of mathematics is
referred to the book [93].

(1.3.1) Definition. Let S be a set with v elements and let & be a collection of
subsets of S (which we call blocks) such that:

(i) |B| = k forevery Be %,
(ii) for every T < § with |T| =t there are exactly A blocks B such that
T < B.

Then the pair (S, 8) is called a t-design (notation ¢ — (v, k, 1)). The elements
of § are called the points of the design. If 1 = 1 the design is called a Steiner
system.

A t-design is often represented by its incidence matrix A which has | #| rows
and |S| columns and which has the characteristic functions of the blocks as
its rows.
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(1.3.2) Definition. A block design with parameters (v, k; b, r, A)isa 2 — (v, k,
Z) with |8| = b. For every point there are r blocks containing that point. If
b = v then the block design is called symmetric.

(1.3.3) Definition. A projective plane of ordernisa2 —(n> + n+ 1,n + 1, 1).
In this case the blocks are called the lines of the plane. A projective plane of
order n is denoted by PG(2, n).

(1.3.4) Definition. The affine geometry of dimension m over the field F, is the
vector space (F,)™ (we use the notation AG(m, q) for the geometry). A k-
dimensional affine subspace or a k-flat is a coset of a k-dimensional linear
subspace (considered as a subgroup). If Kk = m — 1 we call the flat a hyper-
plane. The group generated by the linear transformations of (F,)" and the
translations of the vector space is called the group of affine transformations
and denoted by AGL(m, q). The affine permutation group defined in Section
1.1 is the example with-m = 1. The projective geometry of dimension m over
F, (notation PG(m, gq)) consists of the linear subspaces of AG(m + 1, q). The
subspaces of dimension 1 are called points, subspaces of dimension 2 are lines,
etc.

We give one example. Consider AG(3, 3). There are 27 points, (27 — 1) =
13 lines through (0, 0, 0) and also 13 planes through (0, 0, 0). These 13 lines
are the “points” of PG(2, 3) and the 13 planes in AG(3, 3) are the “lines” of
the projective geometry. It is clear that thisis a 2 — (13, 4, 1). When speaking
of the coordinates of a point in PG(m, ) we mean the coordinates of any of
the corresponding points different from (0, 0, ..., 0) in AG(m + 1, g). So, in
the example of PG(2, 3) the triples (1, 2, 1) and (2, 1, 2) are coordinates for
the same point in PG(2, 3).

In Chapter 10 we shall consider n-dimensional projective space P over a
field k. A point will be denoted by (a; : @, : ... : a,), not all ¢; = 0, and
(@:a:...:a,) = (bg:by:...:b,)ifthereisac € k, ¢ # 0, such that
b, =ca; for0<i <n.

(1.3.5) Definition. A square matrix H of order n with elements +1 and —1,
such that HHT = nl, is called a Hadamard matrix.

(1.3.6) Definition. A square matrix C of order n with elements 0 on the
diagonal and +1 or —1 off the diagonal, such that CCT = (n — 1)1, is called
a conference matrix.

There are several well known ways of constructing Hadamard matrices.
One of these is based on the so-called Kronecker product of matrices which is
defined as follows.
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(1.3.7) Definition. If 4 is an m x m matrix with entries a; and Bisann x n
matrix then the Kronecker product 4 ® B is the mn x mn matrix given by

a,B a,,B ... a,,B
A®B = a,B a,,B ... a,,B
a,B a,,B ... a,,B

It is not difficult to show that the Kronecker product of Hadamard matri-

1 1
| - 1) we can find

the sequence H$", where HS? = H, ® H,, etc. These matrices appear in
several places in the book (sometimes in disguised form).

One of the best known construction methods is due to R.E. A. C. Paley (see
[93]). Let g be an odd prime power. We define the function x on F, by x(0) :=
0, x(x) := 1ifxis anonzero square, x (x) = —1 otherwise. Note that x restricted
to the multiplicative group of [, is a character. Number the elements of F, in any
way as ag, 4, . . ., a,., where ay = 0.

ces is again a Hadamard matrix. Starting from H, := (

(1.3.8) Theorem. The Paley matrix S of order q defined by S; := x(a; — a;) has
the properties:
(@) SJ=JS=0,
(i) SST =ql — J,
(iii) ST = (—1)~brzg,
If we take such a matrix S and form the matrix C of order g + 1 as follows:

o 11 ... 1
-1
C:=| —1 S R

-1

then C is a conference matrix of order g + 1. If g = 3 (mod 4) we can then
consider H := I + C. Since CT = —C because —1 is not a square in F,, we
see that H is a Hadamard matrix of order g + 1.

§1.4. Probability Theory

Let x be a random variable which can take a finite number of values x, x,,
.... As usual, we denote the probability that x equals x;, i.e. P(x = x;), by p;.
The mean or expected value of x is u = &(x) := ) ; p;x;.

If g is a function defined on the set of values of x then £(g(x)) = Y _; p;g(x;).
We shall use a number of well known facts such as
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&(ax + by) = ad(x) + b&(y).
The standard deviation ¢ and the variance ¢* are defined by: u = &(x),
or=) pxi—pt=8x—p (6>0)
We also need a few facts about two-dimensional distributions. We use the
notation p; := P(X = x; A Yy = y;), p;. := P(x = x;) = Y ; p;; and for the condi-

tional probability P(x = x;|y = y;) = p;;/p.;. We say that x and y are indepen-
dent if p; = p; p ;for all i and j. In that case we have

&(xy) = Z PijXxiy; = E(x)&(y).

All these facts can be found in standard textbooks on probability theory (e.g.

W. Feller [21]). The same is true for the following results that we shall use in
Chapter 2.

(1.4.1) Theorem (Chebyshev’s Inequality). Let x be a random variable with
mean u and variance 2. Then for any k > 0
P(Ix — p| > ko) < k™2

The probability distribution which will play the most important role in the
next chapter is the binomial distribution. Here, x takes the values 0, 1, ..., n

and P(x = i) = (’?)p"q"“’, where 0 < p < 1, q:= 1 — p. For this distribution
1

we have u = np and ¢ = np(1 — p). An important tool used when estimating
binomial coefficients is given in the following theorem

(1.4.2) Theorem (Stirling’s Formula).
logn!=(n—1)logn—n+ ilog2n) + o(1), (n— )
= nlogn— n+ O(logn), (n - o).

Another useful lemma concerning binomial coefficients is Lemma 1.4.3.

Lo
m m™(n — m"™™

n"={m+@n-m}"> (::)m"'(n —my " 0

(1.4.3) Lemma. We have

PROOF.

We shall now introduce a function that is very important in information
theory. It is known as the binary entropy function and usually denoted by H.
In (5.1.5) we generalize this to other g than 2. In the following the logarithms
are to the base 2.
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(1.4.4) Definition. The binary entropy function H is defined by

H(0):= 0,
H(x):= —xlogx — (1 —x)log(l —x), (0<x<}i)

(1.4.5) Theorem. Let 0 < A < L. Then we have
) Tosisin ('Z) <200,
(i) lim,, n "' log o cicin (':) = H(}).

PROOF.

@ n\ . X
l={A+1-h)= ¥ (i>/1'(1 o

0<i<in

n ! "‘_ - 'n
Zogzsu(i)(l—l) <T——1> =2 H(A)OS.Z;M(I')'

(i) Write m := | An|. Then m = in + O(1) for n — co. Therefore we find from
Theorem 1.4.2:

n n
n"tlo J=nllo ( )
goszgzn<l> & m

=n""{nlog n—mlog m—(n— m) log(n — m) + o(n)}
= log n — Alog(in) — (1 — ) log((1 — A)n) + o(1)
= H(4) + o(1) for n — co.
The result then follows from part (i). O
A probability distribution that plays an important role in information theory
is the normal or Gaussian distribution. It is used to describe one of the common

kinds of “noise” on communication channels. We say that a continuous random
variable has Gaussian distribution with mean y and variance o if it has density

function
() = L O w)?
Pl = V2ro? P 202 ’



CHAPTER 2

Shannon’s Theorem

§2.1. Introduction

This book will present an introduction to the mathematical aspects of the
theory of error-correcting codes. This theory is applied in many situations
which have as a common feature that information coming from some source
is transmitted over a noisy communication channel to a receiver. Examples
are telephone conversations, storage devices like magnetic tape units which
feed some-stored information to the computer, telegraph, etc. The following
is a typical recent example. Many readers will have seen the excellent pictures
which were taken of Mars, Saturn and other planets by satellites such as the
Mariners, Voyagers, etc. In order to transmit these pictures to Earth a fine
grid is placed on the picture and for each square of the grid the degree of
blackness is measured, say in a scale of 0 to 63. These numbers are expressed
in the binary system, i.e. each square produces a string of six Os and 1s. The
Os and 1s are transmitted as two different signals to the receiver station on
Earth (the Jet Propulsion Laboratory of the California Institute of Tech-
nology in Pasadena). On arrival the signal is very weak and it must be
amplified. Due to the effect of thermal noise it happens occasionally that a
signal which was transmitted as a 0 is interpreted by the receiver as a 1, and
vice versa. If the 6-tuples of Os and 1s that we mentioned above were transmit-
ted as such, then the errors made by the receiver would have great effect on
the pictures. In order to prevent this, so-called redundancy is built into the
signal, i.e. the transmitted sequence consists of more than the necessary
information. We are all familiar with the principle of redundancy from every-
day language. The words of our language form a small part of all possible
strings of letters (symbols). Consequently a misprint in a long(!) word is
recognized because the word is changed into something that resembles the
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correct word more than it resembles any other word we know. This is the
essence of the theory to be ireated in this book. In the previous example the
reader corrects the misprint. A more modest example of coding for noisy channels
is the system used for the serial interface between a terminal and a computer or
between a PC and the keyboard. In order to represent 128 distinct symbols, strings
of seven Os and 1s (i.e. the integers O to 127 in binary) are used. In practice one
redundant bit (= binary digit) is added to the 7-tuple in such a way that the resulting
8-tuple (called a byte) has an even number of 1s. This is done for example in the
ASCII character code. A failure in these interfaces occurs very rarely but it is
possible that an occasional incorrect bit occurs. This results in incorrect parity
of the 8-tuple (it will have an odd number of 1s). In this case, the 8-tuple is not
accepted. This is an example of what is called a single-error-detecting code.

We mentioned above that the 6-tuples of Os and 1s in picture transmission
(e.g. Mariner 1969) are replaced by longer strings (which we shall always call
words). In fact, in the case of Mariner 1969 the words consisted of 32 symbols
(see [56]). At this point the reader should be satisfied with the knowledge that
some device had been designed which changes the 64 possible information
strings (6-tuples of Os and 1s) into 64 possible codewords (32-tuples of Os and
1s). This device is called the encoder. The codewords are transmitted. We
consider the random noise, i.e. the errors as something that is added to the
message (mod 2 addition).

At the receiving end, a device called the decoder changes a received 32-
tuple, if it is not one of the 64 allowable codewords, into the most likely
codeword and then determines the corresponding 6-tuple (the blackness of
one square of the grid). The code which we have just described has the
property that if not more than 7 of the 32 symbols are incorrect, then the
decoder makes the right decision. Of course one should realize that we have
paid a toll for this possibility of error correction. namely that the time available
for the transmission of each bit is only 1/5 of what would be available with no
coding, leading to increased error probability! We shall treat this example in more
detail in §2.3.

In practice, the situation is more complicated because it is not the trans-
mission time that changes, but the available energy per transmitted bit.

The most spectacular application of the theory of error-correcting codes is
the Compact Disc Digital Audio system invented by Philips (Netherlands).
Its success depends (among other things) on the use of Reed Solomon codes.
These will be treated in Section 6.8. Figure 1 is a model of the situation
described above.

In this book our main interest will be in the construction and the analysis
of good codes. In a few cases we shall study the mathematical problems of
decoding without considering the actual implementation. Even for a fixed
code C there are many different ways to design an algorithm for a decoder.
A complete decoding algorithm decodes every possible received word into
some codeword. In some situations an incomplete decoding algorithm could
be preferable, namely when a decoding error is very undesirable. In that case
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ENCODER CHANNEL DECODER
a=(a.. .. ag) 2is ir:‘llaé)ped x er;)crs r=x+e moset iIsikcly _a_”
] X = (X;,...,X;3;) added determined I
message : received word estimate
Figure 1

the algorithm will correct received messages that contain a few errors and for
the other possible received messages there will be a decoding failure. In the
latter case the receiver either ignores the message or, if possible, asks for a
retransmission. Another distinction which is made is the one between so-
called hard decisions and soft decisions. This regards the interpretation of
received symbols. Most of them will resemble the signal for 0 or for 1 so much
that the receiver has no doubt. In other cases however, this will not be true
and then we could prefér putting a ? instead of deciding whether the symbol
is O oritis 1. This is often referred to as an erasure. More complicated systems
attach a probability to the symbol.

Introduction to Shannon’s Theorem

In order to get a better idea about the origin of coding theory we consider the
following imaginary experiment.

We are in a room where somebody is tossing a coin at a speed of ¢ tosses
per minute. The room is connected with another room by a telegraph wire.
Let us assume that we can send two different symbols, which we call 0 and 1,
over this communication channel. The channel is noisy and the effect is that
there is a probability p that a transmitted O (resp. 1) is interpreted by the
receiver as a 1 (resp. 0). Such a channel is called a binary symmetric channel
(B.S.C)) Suppose furthermore that the channel can handle 2t symbols per
minute and that we can use the channel for T minutes if the coin tossing also
takes T minutes. Every time heads comes up we transmit a 0 and if tails comes
up we transmit a 1. At the end of the transmission the receiver will have a
fraction p of the received information which is incorrect. Now, if we did not
have the time limitation specified above, we could achieve arbitrarily small
error probability at the receiver as follows. Let N be odd. Instead of a 0 (resp.
1) we transmit N Os (resp. 1s). The receiver considers a received N-tuple and
decodes it into the symbol that occurs most often. The code which we are now
using is called a repetition code of length N. It consists of two code-words,
namely 0 =(0,0,...,0) and 1 =(1, 1, ..., 1). As an example let us take
p = 0.001. The probability that the decoder makes an error then is

(2.1.1) y (N) g p¥* < (0.07)%, (hereg:=1— p),
o<i<nz \ k
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and this probability tends to 0 for N — oo (the proof of (2.1.1) is Exercise
24.1).

Due to our time limitation we have a serious problem! We can only transmit
two symbols for each toss of the coin. There is no point in sending each symbol
twice instead of once. A most remarkable theorem, due to C. E. Shannon (cf. [62]),
states that, in the situation described here, we can still achieve arbitrarily small
error probability at the receiver for large 7. The proof will be given in the next
section. A first idea about the method of proof can be obtained in the following
way. We transmit the result of two tosses of the coin as follows:

heads, heads -0 0 0 O,
heads, tails -0 1 1 1,
tails,heads -1 0 0 1,

tails, tails -1 1 1 0.

Observe that the first two transmitted symbols carry the actual information;
the final two symbols are redundant. The decoder uses the following complete
decoding algorithm. If a received 4-tuple is not one of the above, then assume
that the fourth symbol is correct and that one of the first three symbols is
incorrect. Any received 4-tuple can be uniquely decoded. The result is correct
if the above assumptions are true. Without coding, the probability that two
results are received correctly is g2 = 0.998. With the code described above,
this probability is gq* + 3¢°p = 0.999. The second term on the left is the
probability that the received word contains one error, but not in the fourth
position. We thus have a nice improvement, achieved in a very easy way. The
time requirement is fulfilled. We extend the idea used above by transmitting
the coin tossing results three at a time. The information which we wish to
transmit is then a 3-tuple of Os and 1s, say (a,, a,, a;). Instead of this 3-tuple,
we transmit the 6-tuple a = (a,, ..., a¢), where a, := a, + a3, a; == a, + as,
ag '= a, + a, (the addition being addition mod 2). What we have done is to
construct a code consisting of eight words, each with length 6. As stated
before, we consider the noise as something added to the message, i.e. the
received word b is a + e, where e = (¢, e,, ..., ¢¢) is called the error pattern
(error vector). We have

e2+33+e4=b2+b3+b4:=51,
e, +e3+es=>b +by+bs:=s5,,
el+€2+86=b1+b2+b61=83.

Since the receiver knows b, he knows s, s,, s3. Given s,, s,, 53 the decoder
must choose the most likely error pattern e which satisfies the three equations.
The most likely one is the one with the minimal number of symbols 1. One
easily sees that if (s, 55, 53) #(1, 1, 1) there is a unique choice for e. If
(15 54, 53) = (1, 1, 1) the decoder must choose one of the three possibilities (1,
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0,0,1,0,0),(0,1,0,0,1,0),(0,0, 1,0,0, 1) for e. We see that an error pattern
with one error is decoded correctly and among all other error patterns there
is one with two errors that is decoded correctly. Hence, the probability that

all three symbols a,, a,, a, are interpreted correctly after the decoding proce-
dure, is

q® + 64°p + q*p* = 0.999986.

This is already a tremendous improvement.
Through this introduction the reader will already have some idea of the
following important concepts of coding theory.

(2.1.2) Definition. If a code ‘C is used consisting of words of length n, then
R:=n"1log|C|

is called the information rate (or just the rate) of the code.

The concept rate is connected with what was discussed above regarding the time
needed for the transmission of information. In our example of the PC-keyboard
interface, the rate is Z. The Mariner 1969 used a code with rate £. The example
given before the definition of rate had R = 1.

We mentioned that the code used by Mariner 1969 had the property that
the receiver is able to correct up to seven errors in a received word. The reason
that this is possible is the fact that any two distinct codewords differ in at least
16 positions. Therefore a received word with less than eight errors resembles
the intended codeword more than it resembles any other codeword. This
leads to the following definition:

(2.1.3) Definition. If x and y are two n-tuples of Os and 1s, then we shall say
that their Hamming-distance (usually just distance) is

d(x, y):= [{ill <i<nx; #y}l
(Also see (3.1.1).)

The code C with eight words of length 6 which we treated above has the
property that any two distinct codewords have distance at least 3. That is why
any error-pattern with one error could be corrected. The code is a single-
error-correcting code.

Our explanation of decoding rules was based on two assumptions. First
of all we assumed that during communication all codewords are equally
likely. Furthermore we used the fact that if n, > n, then an error pattern with
n, errors is less likely than one with n, errors.

This means that if y is received we try to find a codeword x such that d(x, y)
is minimal. This principle is called maximum-likelihood-decoding.
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§2.2. Shannon’s Theorem

We shall now state and prove Shannon’s theorem for the case of the example
given in Section 2.1. Let us state the problem. We have a binary symmetric
channel with probability p that a symbol is received in error (again we write
q:= 1 — p). Suppose we use a code C consisting of M words of length n, each
word occurring with equal probability. If x,, X,, ..., X,, are the codewords
and we use maximum-likelihood-decoding, let P, be the probability of making
an incorrect decision given that x; is transmitted. In that case the probability
of incorrect decoding of a received word is:

M
@.2.1) P.:=M"1Y P.
i=1

Now consider all possible codes C with the given parameters and define:
(2.2.2) P"yﬁ(M , n, p) := minimal value of P.

(2.2.3) Theorem (Shannon 1948). If O <R <1+ plogp+qlogq and
M, = 28" then P*(M,, n, p) = 0 if n - .

(Here all logarithms have base 2.) We remark that in the example of the
previous section p = 0.001, i.e. 1 + plog p + g log g is nearly 1. The require-
ment in the experiment was that the rate should be at least 3. We see that for
¢ > 0 and n sufficiently large there is a code C of length n, with rate nearly
1 and such that P < & (Of course long codes cannot be used if T is too
small.)

Before giving the proof of Theorem 2.2.3 we treat some technical details to
be used later.

The probability of an error pattern with w errors is p¥q" ™", i.e. it depends
on w only.

The number of errors in a received word is a random variable with ex-
pected value np and variance np(l — p). If b:= (np(1 — p)/(¢/2))*?, then by
Chebyshev’s inequality (Theorem 1.4.1) we have

(2.24) P(w>np + b) < ie

Since p < 4, the number p := |np + b] is less than 3n for sufficiently large n.
Let B,(x) be the set of words y with d(x, y) < p. Then

n 1 /n 1 n"
(2.2.5) | B,(x)] =§,, (,-)<§"(p>$§"';7(n__p7-7

(cf. Lemma 1.4.3). The set B,(x) is usually called the sphere with radius p and
center x (although ball would have been more appropriate).
We shall use the following estimates:

lnp + b
n

1
(2.2.6) %logg = [np + b] log =plogp+ O(n™'?),
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(B I (B I

Finally we introduce two functions which play a roie in the proof. Let

ue{0,1}",ve {0, 1}~

Then
__Jo, ifd(u,v) > p,
@2.7) S, v):= {1, ifd(u, v) < p.
Ifx;e Cand y € {0, 1}" then
(22.8) gi(y) =1 — f(y,x;) + ; Sy, x;)
J#i

Note that if x; is the only codeword such that d(x;, y) < p, then g,(y) = 0 and
that otherwise g,(y) > 1.

PrOOF OF THEOREM 2.2.3. In the proof of Shannon’s theorem we shall pick
the codewords x;, X,, ..., X, at random (independently). We decode as
follows. If y is received and if there is exactly one codeword x; such that
d(x;, y) < p, then decode y as x;. Otherwise we declare an error (or if we must
decode, then we always decode as x,).

Let P, be as defined above. We have

P = ye%}l}" P(y|x;)g;(y)

y J#i
Here the first term on the right-hand side is the probability that the received
word y is not in B,(x;). By (2.2.4) this probability is at most }e.
Hence we have

1 M
Pe<se+ MY 3 Y PYIX)AY, x;).
2 =1y j#i
The main principle of the proof is the fact that P*(M, n, p) is less than the
expected value of P, over all possible codes C picked at random. Therefore
we have

IngES

1
P*(M,n,p) <56+ M LY XY EPYIX)ES(, x;))
y

j#i

([
-
[

[
Nl —
iMx

| I
Z 2. E(P(ylx;
y j#i
=3¢+ (M — 1)27"|B,|.
We now take logarithms, apply (2.2.5) and (2.2.6), and then we divide by n.
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The result is
n”! log(P*(M, n, p) — }e)
<n'logM —(1 +plogp+ qlogq) + O(n~*?).

Substituting M = M, on the right-hand side we find, using the restriction on
R,

n~! log(P*(M,, n,p) — 4e) < —B <0,

for n > ny, i.e. P*(M, n, p) < 3¢ + 27",
This proves the theorem. |

§2.3. On Coding Gain

In many practical applications, one has to choose B and W, where B equals the
number of user bits per second that must be transmitted reliably through a noisy
channel, using a power of at most W Watt. A well known example is in mobile
telephony, where B determines the speech quality and W is related to the life
time of the batteries. Another example is in deep space transmission, where B
determines the number of pictures that can be transmitted in the fly by time, while
W is the power that is available from the solar panels. In all these cases, the
transmitter has an average energy of E, = W/B Joule per user bit available to
generate signals to be sent to the receiver. Coding may influence the choices. The
effect of coding is often expressed as “coding gain” which we now introduce.
(Details from electrical engineering are not treated.)

If no coding is used, the energy E, is available to the transmitter for mapping a
user bit onto a signal with amplitude s := /E, ifa 1 is transmitted, and s = —/E,
for a 0. Often, the transmission channel is modeled as an Additive White Gaussian
Noise (AWGN) channel. This means that the received signal amplitude r equals
r = s + n, where the noise n is drawn from a Gaussian distribution having
zero mean and variance o2, A receiver, making hard decisions, compares each
received signal amplitude r with threshold 0 and decides fora 1 if r > 0, and for
a 0 otherwise. Such a receiver makes an error if the noise n results in » having the
wrong sign. Therefore, the error probability (per bit) p, is

o0 1 —_2 E
p,=f ———=€exp = dy=0\[/—=]).
VE V2mo? 207 o?

o=t [(F) o= b (3

The ratio E, /o is called the Signal to Noise Ratio (SNR).
If we use a code C that maps k user bits onto »n bits to be transmitted over the
channel (channel bits), then we say that we are using a code with rate R := k/n

where
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(see (3.1.3)). We have to send these channel bits 1/R times as fast to keep to our
required speed of B user bits per second. Because of the power constraint of W
Watt, we now only have available an energy of E' := W/(B/R) = R - E, Joule
per channel bit. Assuming a similar transmission scheme for the channel bits as
before, we obtain an error rate p, (per channel bit) equal to

) RE
p,=Q< -

o?

So, coding results in p, > p. because of the reduced energy budget. The whole
idea of coding only makes sense if error correction more than makes up for this
loss of energy per bit.

Let us look at the Mariner '69 again in more detail. Instead of calling the
transmitted symbols O and 1, we denote them by +1 and —1. The 64 sequences of
length 32 that the Mariner used were the rows of the matrices H¥® and — H® of
§1.3. For a received signal (with hard decisions), the received row of 32 symbols
+1 was taken and the inner product of this row and the 32 rows of HY® was
calculated. If no error occurred, 31 of these products were 0 and one was +32
showing that the received signal was correct. In the case of one error, the inner
products were +2, with one exception, where it was +30, yielding the correct
signal. Note that, for up to seven errors, there is a unique inner product with
absolute value greater than 16, pointing out the correct signal.

Let us now look at the effect of coding.

(2.3.1) ExampLe. Consider the example of the Mariner code. Suppose that
for a useful picture, each 6-tuple may be wrong with a probability Pr at most
10~%. In case of no coding, we need E,/0? ~ 17.22 to achieve this, since
p. = Q(+/17.22) ~ 1074/6,and P =1 — (1 — p,)’ ~ 10~*.

Next, suppose that we use the [32,6] code, correcting at most seven errors, at
the same SNR of 17.22. Since R = 6/32, we obtain p, = 0.036. (Note that this
error probability is 2000 times as large as before !) After decoding, we obtain
erroneous 6-tuples with probability

32 . .
P, = ;( ; ) (Pl —py*i~1.4-107,
which is almost an order of magnitude better than Pg.

When using soft decisions, the received waveform is not translated into a row
of 1s and —1s, but correlated directly with the rows of Hy°. In that case, the
probability that the signal we choose as most likely is indeed correct, is even
larger.

gWe: remark that if we had used soft decision decoding in Example 2.3.1, the
error probability would have been reduced to 2 - 107",

There is another way of looking at this situation. We could use coding to need
less energy. We might choose to exploit C not for reducing the error rate, but for
reducing the required SNR in the presence of coding.

In the Mariner example, we were satisfied with a probability of 10~* of receiv-
ing an incorrect 6-tuple. To obtain P, = 10~%, an SNR of 14.83 would suffice
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(by a calculation similar to the one above). This means that application of coding
allows us to reduce the size of the solar panels by almost 15%. With soft decision
decoding, the reduction would be more than 50%; (we need an SNR of 7.24 in
that case).

(2.3.2) Definition. The ratio between SNR (uncoded) and SNR’ (coded) for equal
error probability after decoding is called the coding gain.

The coding gain depends on the code, the decoding algorithm, the channel in
question, and the required error probability after decoding. It is often expressed
in “dB” (this is 10 times the logarithm to base 10 of the ratio in Definition 2.3.2).
In engineering literature, the result of Example 2.3.1 will be described as a coding
gain of 0.65 dB. We point out that for a given code, there will always be a signal
to noise ratio at which the code becomes ineffective; it makes the situation worse
than not using it.

‘We have only considered the energy aspect of transmission. One should realize
that coding also increases the complexity of the process and in some way we pay
for that too.

§2.4. Comments

C. E. Shannon’s paper on the “Mathematical theory of communication”
(1948) [62] marks the beginning of coding theory. Since the theorem shows
that good codes exist, it was natural that one started to try to construct such
codes. Since these codes had to be used with the aid of often very small
electronic apparatus one was especially interested in codes with a lot of
structure which would allow relatively simple decoding algorithms. In the
following chapters we shall see that it is very difficult to obtain highly regular
codes without losing the property promised by Theorem 2.2.3. We remark
that one of the important areas where coding theory is applied is telephone
communication. Many of the names which the reader will encounter in this
book are names of (former) members of the staff of Bell Telephone
Laboratories. Besides Shannon we mention Berlekamp, Gilbert, Hamming,
Lloyd, MacWilliams, Slepian and Sloane. It is not surprising that much of the
early literature on coding theory can be found in the Bell System Technical
Journal. The author gratefully acknowledges that he acquired a large part of
his knowledge of coding theory during his many visits to Bell Laboratories.
The reader interested in more details about the code used in the Mariner 1969
is referred to [56]. For the coding in Compact Disc see [77], [78].

By consulting the references the reader can see that for many years now
the most important results on coding theory have been published in IEEE
Transactions on Information Theory.
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2. Shannon’s Theorem

§2.5. Problems

25.1.
25.2.

2.5.3.

2.5.4.

2.55.

2.5.6.

257.

Prove (2.1.1).

Consider the code of length 6 which was described in the coin-tossing experi-
ment in Section 2.2. We showed that the probability that a received word is
decoded correctly is ¢° + 6g°p + q*p>. Now suppose that after decoding we
retain only the first three symbols of every decoded word (i.e. the information
concerning the coin-tossing experiment). Determine the probability that a sym-
bol in this sequence is incorrect; (this is called the symbol error probability, which
without coding would be p).

Construct a code consisting of eight words of length 7 such that any two distinct
codewords have distance at least 4. For a B.S.C. with error probability p, determine
the probability that a received word is decoded correctly.

A binary channel has a probability g = 0.9 that a transmitted symbol is received
correctly and a probability p = 0.1 that an erasure occurs (i.e. we receive 7). On
this channel we wish to use a code with rate 1. Does the probability of correct
interpretation increase if we repeat each transmitted symbol ? Is it possible to
construct a code with eight words of length 6 such that two erasures can do no
harm? Compare the probabilities of correct interpretation for these two codes.
(Assume that the receiver does not change the erasures by guessing a symbol.)
Consider the Mariner 1969 example. Suppose a row of 32 symbols is received with
e, errors and e, erasures. Show that if 2¢; +e, < 16, the correct row can be retrieved.

Let C be a binary code of length 16 such that:

(i) Every codeword has weight 6;
(ii) Any two distinct codewords have distance 8.
Show that |C}| < 16. Does such a code with |C| = 16 exist?

Let C be a binary single-error-correcting code of even length n. Show that
IC1<2"/(n+2).

Hint: Count pairs (x, ¢), where x is a word of length n and ¢ € C, and x and c differ
in two places.



CHAPTER 3

Linear Codes

§3.1. Block Codes

In this chapter we assume that information is coded using an alphabet Q with
q distinct symbols. A code is called a block code if the coded information can
be divided into blocks of n symbols which can be decoded independently.
These blocks are the codewords and n is called the block length or word length
(or just length). The examples in Chapter 2 were all block codes. In Chapter
13 we shall briefly discuss a completely different system, called convolutional
coding, where an infinite sequence of information symbols ig, iy, i, ... is coded
into an infinite sequence of message symbols. For example, for rate 1 one
could have iy, iy, iy, ... = ig, iy, iy, i1, ..., where i, is a function of iy, iy, ..
i,. For block codes we generalize (2.1.3) to arbitrary alphabets.

iR]

(3.1.1.) Definition. If x € 0", y € Q", then the distance d(x, y) of x and y is
defined by

d(x, y):= {ill <i<nx #y}l
The weight w(x) of x is defined by
w(x) := d(x, 0).
(We always denote (0,0,...,0)by0and (1, 1,..., 1) by 1)
The distance defined in (3.1.1), again called Hamming-distance, is indeed a
metric on Q" If we are using a channel with the property that an error in
position i does not influence other positions and a symbol in error can be each

of the remaining g — 1 symbols with equal probability, then Hamming-dis-
tance is a good way to measure the error content of a received message. In
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Chapter 12 we shall see that in other situations a different distance function
is preferable.

In the following a code C is a nonempty proper subset of Q”. If |C] = 1 we
call the code trivial. If g = 2 the code is called a binary code, for g=3 a
ternary code, etc. The following concepts play an essential réle in this book

(cf. Chapter 2).
(3.1.2) Definition. The minimum distance of a nontrivial code C is
min{d(x, y)lxe C,ye C,x #y}.
The minimum weight of C is
min{w(x) | x € C, x # 0}.

We also generalize the concept of rate.

(3.1.3) Definition. If |Q} = g and C = Q" then
R:=n""log,|C|
is called the (information-) rate of C.
Sometimes we shall be interested in knowing how far a received word can

be from the closest codeword. For this purpose we introduce a counterpart
of minimum distance.

(3.1.4) Definition. If C = Q" then the covering radius p(C) of C is
max {min{d(x, c¢)|c € C}|x € Q"}.

We remind the reader that in Chapter 2 the sphere B,(x) with radius p and
center x was defined to be the set {y € Q"|d(x,y) < p}. If p is the largest
integer such that the spheres B,(c) with ¢ € C are disjoint, thend = 2p + 1 or
d = 2p + 2. The covering radius is the smallest p such that the spheres B,(c)
with ¢ e C cover the set Q" If these numbers are equal, then the code C is
called perfect. This can be stated as follows.

(3.1.5) Definition. A code C = @" with minimum distance 2e¢ + 1 is called a
perfect code if every x € Q" has distance < e to exactly one codeword.

The fact that the minimum distance is 2¢ + 1 means that the code is
e-error-correcting. The following is obvious.

(3.1.6) Sphere-packing Condition
If C = Q" is a perfect e-error-correcting code, then

13, @“’ —1 =
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Of course a trivial code is perfect even though one cannot speak of minimum
distance for such a code. A simple example of a perfect code was treated in
Chapter 2, namely the binary repetition code of odd length n consisting of the
two words 0 and 1.

§3.2. Linear Codes

We now turn to the problem of constructing codes which have some algebraic
structure. The first idea is to take a group Q as alphabet and to take a
subgroup C of Q" as code. This is called a group code. In this section (in fact
in most of this book) we shall require (a lot) more structure. In the following
Q is the field F,, where g = p" (p prime). Then Q" is an n-dimensional vector
space, namely F} (sometimes denoted by %). In later chapters we sometimes
use the fact that Q" is isomorphic to the additive group of . (cf. Section 1.1).

(3:2.1) Definition. A g-ary linear code C is a linear subspace of F}. If C has
dimension k then C is called an [n, k] code.

From now on we shall use [n, k, d] code as the notation for a k-dimen-
sional linear code of length n with minimum distance d. An (n, M, d) code is
any code with word length n, M codewords, and minimum distance d.

(3.2.2) Definition. A generator matrix G for a linear code C is a k by n matrix
for which the rows are a basis of C.

If G is a generator matrix for C, then C = {aG|a € Q*}. We shall say that
G is in standard form (often called reduced echelon form) if G = (I, P), where
I, is the k by k identity matrix. The (6, 8, 3) code which we used in the example
of Section 2.1 is a linear code with G =(I J — I). If G is in standard form,
then the first k symbols of a codeword are called information symbols. These
can be chosen arbitrarily and then the remaining symbols, which are called
parity check symbols, are determined.

The code used on the PC-keyboard interface mentioned in the Introduction has
one parity check bit (responsible for the name) and generator matrix

G=( 17).

As far as error-correcting capability is concerned, two codes C, and C, are
equally good if C, is obtained by applying a fixed permutation of the positions to
all the codewords of C,. We call such codes equivalent. Sometimes the definition
of equivalence is extended by also ailowing a permutation of the symbols of O
(for each position). It is well known from linear algebra that every linear code is
equivalent to a code with a generator matrix in standard form.
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In general a code C is called systematic on k positions (and the symbols in
these positions are called information symbols) if |C| = g* and there is exactly
one codeword for every possible choice of coordinates in the k positions. So
we saw above that an [n, k] code is systematic on at least one k-tuple of
positions. Since one can separate information symbols and redundant sym-
bols, these codes are also called separable. By (3.1.3) an [n, k] code has rate
k/n, in accordance with the fact that k out of n symbols carry information. The
reader should check that the [6,3,3] code used in Section 2.1 is not systematic on
four 3-tuples of positions.

The reader will have realized that if a code C has minimum distance
d = 2e + 1, then it corrects up to e errors in a received word. If d = 2e then
an error pattern of weight e is always detected. In general if C has M words

one must check (1;1) pairs of codewords to find d. For linear codes the work

is easier.

(3.2.3) Theorem. For a linear code C the minimum distance is equal to the
minimum weight.

PRrOOF. d(x,y) =d(x —y,0) =w(x —y) and if xe C, ye C then x —ye C.
‘ O

(3.2.4) Definition. If C is an [n, k] code we define the dual code C* by
Cti={y e R|¥sec[<{x,y) = 0]}.

The dual code C* is clearly a linear code, namely an [n, n — k] code. The
reader should be careful not to think of C* as an orthogonal complement in
the sense of vector spaces over R. In the case of a finite field Q, the subspaces
C and C* can have an intersection larger than {0} and in fact they can even
be equal. If C = C* then C is called a self-dual code.

If G =(I, P)is a generator matrix in standard form of the code C, then
H = (—P" 1I,_,)is a generator matrix for C*. This follows from the fact that
H has the right size and rank and that GH' = 0 implies that every codeword
aG has inner product 0 with every row of H. In other words we have

(3.2.5) xeCexH =0.

In (3.2.5) we have n — k linear equations which every codeword must satisfy.

Ify € C* then the equation {x, y) = 0 which holds for every x € C, is called
a parity check (equation). H is called a parity check matrix of C. For the [6,
3] code used in Section 2.1 the equation a, = a, + a, is one of the parity
checks. (The code is not systematic on positions 2,3, and 4.)

(3.2.6) Definition. If C is a linear code with parity check matrix H then for
every x € Q" we call xH" the syndrome of x. Observe that the covering radius
p(C) of an [n, k] code (cf. (3.14)) is the smallest integer p such that any
(column-)vector in Q"* can be written as the sum of at most p columns of H.
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In (3.2.5) we saw that codewords are characterized by syndrome 0. The
syndrome is an important aid in decoding received vectors x. Once again this
idea was introduced using the [6, 3] code in Section 2.1. Since C is a subgroup
of Q" we can partition Q" into cosets of C. Two vectors x and y are in the same
coset iff they have the same syndrome (xH" = yH" <>x — y € C). Therefore if
a vector X is received for which the error pattern is e then x and e have the
same syndrome. It follows that for maximum likelihood decoding of x one
must choose a vector e of minimal weight in the coset which contains x and
then decode x as x — e. The vector e is called the coset leader. How this works
in practice was demonstrated in Section 2.1 for the [6, 3]-code. For seven of
the eight cosets there was a unique coset leader. Only for the syndrome (s,,
5,5, 83) = (1, 1, 1) did we have to pick one out of three possible coset leaders.

Here we see the first great advantage of introducing algebraic structure.
For an [n, k] code over [, there are q* codewords and g" possible received
messages. Let us assume that the rate is reasonably high. The receiver needs
to know the g"* coset leaders corresponding to all possible syndromes. Now
q""* is much smaller than g". If the code had no structure, then for every
possible received word x we would have to list the most likely transmitted
word.

It is clear that if C has minimum distance d = 2e + 1, then every error
pattern of weight < e is the unique coset leader of some coset because two
vectors with weight < e have distance < 2e¢ and are therefore in different
cosets. If C is perfect then there are no other coset leaders. If a code C has
minimum distance 2e + 1 and all coset leaders have weight < e + 1 then the
code is called quasi-perfect. The [6, 3] code of Section 2.1 is an example. The
covering radius is the weight of a coset leader with maximum weight.

We give one other example of a very simple decoding procedure (cf. [3]).
Let C be a [2k, k] binary self-dual code with generator matrix G = (I, P).
The decoding algorithm works if C can correct 3 errors and if the probability
that more than 3 errors occur in a received vector is very small. We have the
parity check matrix H = (P* I,) but G is also a parity check matrix because
Cisself-dual. Lety = ¢ + e be the received vector. We write e as (e,; e,) where
e, corresponds to the first k places, e, to the last k places. We calculate the
two syndromes

sV:=yH =¢,P +e,,

s?:=yG =e, +e,P".

If the t < 3 errors all occur in the first or last half of y, i.e.e;, =0 ore, =0,
then one of the syndromes will have weight < 3 and we immediately have e.
If this is not the case then the assumption ¢t < 3 implies that e, or e, has
weight 1. We consider 2k vectors y® obtained by changing the ith coordinate
of y (1 <i < 2k). For each of these vectors we calculate s, (for i < k) resp. s,
(if i > k). If we find a syndrome with weight < 2, we can correct the remaining
errors. If we find a syndrome with weight 3, we have detected four errors if C
is a code with distance 8 and if C has distance > 10 we can correct this pattern
of four errors.
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It will often turn out to be useful to adjoin one extra symbol to every
codeword of a code C according to some natural rule. The most common of
these is given in the following definition.

(3.2.7) Definition. If C is a code of length n over the alphabet F, we define the
extended code C by

—_ n+1
C:= {(cl, Caseves Cay Cuxl(Cyy oy ) €C, Y ¢ = 0}.
=1

If C is a linear code with generator matrix G and parity check matrix H
then C has generator matrix G and parity check matrix H, where G is
obtained by adding a column to G in such a way that the sum of the columns
of G is 0 and where

——t
o
—
ot

sy
I

=]
o

0
If C is a binary code with an odd minimum distance d, then C has minimum
distance d + 1 since all weights and distances for C are even.

§3.3. Hamming Codes

Let G be the k by n generator matrix of an [n, k] code C over F,. If any two
columns of G are linearly independent, i.e. the columns represent distinct
points of PG(k — 1, q), then C is called a projective code. The dual code C*
has G as parity check matrix. If ¢ € C* and if e is an error vector of weight 1,
then the syndrome (c + €)G' is a multiple of a column of G. Since this
uniquely determines the column of G it follows that C* is a code which
corrects at least one error. We now look at the case in which n is maximal
(given k).

(3.3.1) Definition. Let n:= (g* — 1)/(q — 1). The [n, n — k] Hamming code
over F, is a code for which the parity check matrix has columns that are
pairwise linearly independent (over F,), i.e. the columns are a maximal set of
pairwise linearly independent vectors.

Here we obviously do not distinguish between equivalent codes. Clearly
the minimum distance of a Hamming code is equal to 3.

(3.3.2) Theorem. Hamming codes are perfect codes.
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ProoF. Let C be the [n, n — k] Hamming code over F,, where n = (¢* — 1)/
(g—1).Ifx e C then

[By(x)] = 1 +n(g — 1) = g~

Therefore the g"* disjoint spheres of radius 1 around the codewords of C

contain |C|- g* = " words, i.e. all possible words. Hence C is perfect (cf. (3.1.5)
and (3.1.6)).

(3.3.3) ExampLE. The [7, 4] binary Hamming code C has parity check matrix

0001111
H={0 110011
1010101

If we consider two columns of H and the sum of these two (e.g. the first
three columns of H), then there is a word of weight 3 in C with s in the
positions corresponding to these columns (e.g. (1110000)). Therefore C has
seven words of weight 3 which, when listed as rows of a matrix, form PG(2,
2). The words of even weight in C are a solution to Problem 2.4.3. By
inspection of H we see that the extended code C is self-dual.

(3.3.4) ExamrLE. Suppose that we use an extended Hamming code of length
n = 2™ on a B.S.C. with bit error probability p; (¢ := 1 — p). The expected
number of errors per block before decoding is np. If one error occurs, it is
corrected. If two errors occur, then we have error detection but no correction. So,
the two errors remain. Otherwise, it is possible that the decoder introduces an
extra error by changing a received word with > 3 errors into the closest codeword.
Therefore, the expected number of errors per block after decoding is at most

()i s B (e
2( ) [ n-z+2(l:(1))() Ry }

i=3

N R Yo

= n(n-1Dp* < (np)*.

IA

If p is small enough, this is a considerable improvement. We shall use this estimate
in §4.4.

§3.4. Majority Logic Decoding

In this section we shall briefly sketch a decoding method which is used with
many linear codes. Generalizations will occur in later chapters. The method
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is simple and it has the advantage that in some cases more errors are cor-
rected than one expects to be able to correct.

(3.4.1) Definition. A system of parity check equations (x, y”> =0
(1 £ v <), is said to be orthogonal with respect to position i (for the code C;
y" e Ch)if

i) y"=11<v<r),
(i) if j # i then y/” # 0 for at most one value of v.

Now suppose x is a received word that contains ¢ errors, where ¢ < ir.
Then

X y">#0  for {S t values of v, if x; is correct,

> r — (t — 1) values of v, if x; is incorrect.

Since r — (t — 1) > t, the majority of the values of {x, y"’) (i.e. 0, resp. not 0)
decides for us whether x; is correct or not. In the case of a binary code we can
subsequently correct the error. If we have such orthogonal check sets for
every i, we can correct the different positions one by one.

As an example we consider the dual of the [7, 4] Hamming code (cf. (3.3.3)).
The parity check equations

x1+X2+X3=0,
X, + X4+ x5=0,
X, + X6 +x9 =0,

are othogonal with respect to position 1. If x contains one error, then the
three equations yield 1, 1, 1 if x, is incorrect, respectively two Os and one 1 if
x, is correct. If two outcomes are 1, we see that more than one error has been
made (the code is two-error detecting).

Consider the [6, 3, 3] code with generator matrix G := (I J —I) and adjoin
two symbols @; = ag = a,. The reader should check that we still have d = 3 but
that the new parity check matrix has four rows that are orthogonal with respect to
position 1. So, even if two errors occur, position 1 is correct after decoding.

§3.5. Weight Enumerators

The minimum distance of a linear code tells us how many errors a received
word may contain and still be decoded correctly. Often it is necessary to have
more detailed information about the distances in the code. For this purpose
we introduce the so-called weight enumerator of the code.

(3.5.1) Definition. Let C be a linear code of length n and let A; be the number
of codewords of weight i.
Then
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A@2) = ‘Z Azt
0

is called the weight enumerator of C. The sequence (4,)}, is called the weight
distribution of C.

If C is linear and ¢ € C, then the number of codewords at distance i from ¢
equals A;. For a nonlinear code this is generally not true. A code that does have
this property (for all codewords and all i) is called distance invariant. (Also see
Definition 5.3.2.)

As an example we calculate the weight enumerator of the binary Hamming
code of length n. Consider i — 1 columns of the parity check matrix of this
code. There are three possibilities:

(i) the sum of these columns is 0;
(ii) the sum of these columns is one of the chosen columns;
(iii) the sum of these columns is one of the remaining columns.

" l) ways. Possibility (i) occurs

We can choose the i — 1 columns in <

A;_, times, possibility (ii) occurs (n — (i — 2))4;_, times, and possibility (iii)
occurs iA; times. Therefore

id, = (i " 1) A — =i+ DAy

i-1

which is trivially correct if i > n + 1. If we multiply both sides by z and

then sum over i we find

A'(2) = (1 + 2" — A(2) — nzA(z) + 22 A'(2).
Since 4(0) = 1, this differential equation has the unique solution
1 n
- n (n—1)/2 _ \(nt+1)/2
(3.5.2) A(2) a1 1(1 + 2z + ——l 1(l + 2) (1-2) .

One of the most fundamental results in coding theory is a theorem due to
F.J. MacWilliams (1963) which gives a relation between the weight enumera-
tors of a linear code and its dual.

(3.5.3) Theorem. Let C be an [n, k] code over F, with weight enumerator A(z)
and let B(z) be the weight enumerator of C*. Then

_ . 1-z2
B =q*1+(@-12) A(m)

PROOF. Let x be any nontrivial character of (F,, +). As usual let Z = /. We
define

gw = ) x(Cu,v))z*".

ve X
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Then we have

.gc gw =Y ¥ x(u,v))z*M= 3 2% ZC (<, vD).

ueC ve & ve X

Here, if v € C* the inner sum is |C|. If v ¢ C* then in the inner sum <u, v) takes
every value in F, the same number of times, i.e. the inner sum is 0. Therefore
(3.5.4) ZC g(u) = |C|- B(z).

Extend the weight function to F, by writing w(v) =0 if v = 0 and w(v) = 1
otherwise. Then, writing u = (4, u,, ..., 4,) and v = (v, v,, ..., v,), we have
from the definition of g(u):

g(u) = ( Z Ye 2 ZW(Ul)+.'.+W(0"’X(uIUI + '” + unvn)
VpsU24.e-s v,) € A
= T )z gl vg) 2 g w,)
[CIY 7PN vy)e A
n s
= Y z¥y(u).
=1l vefy

In the last expression the inner sum is equal to 1 + (g — 1)z ifu; = 0O and it is
equal to

l+z Y xe)=1—z  ifu#0
ae Fp\{0}

Therefore
(3.5.5) gu) =(1 — Z)W(“)(I +(q— I)Z)"_w‘“).
Since |C| = g* the theorem now follows by substituting (3.5.5) in (3.54). ([J

For a generalization we refer to Section 7.2.

Sometimes the weight enumerator of a code C is given in homogeneous form
as

HamC(x, y) = Zx""w(t)yw(c).

ceC

In this notation, the MacWilliams relation for a binary code C and its dual C* is
given by

1
Hamc:(x,y) = Tc—,l-HamC(x +y.x—y.

This follows directly from Theorem 3.5.3.

§3.6. The Lee Metric

In many communication schemes used in practice, one can model the alphabet as
a set of points regularly spaced on a circle. Take as example an alphabet of this
kind with seven symbols. We identify these symbols (still on a circle) with the
elements of Z,. In these channels, the effect of additive Gaussian noise does not
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make all errors equally likely. It is much more likely that a transmitted symbol is
received as a symbol close to it. In our terminology, this means that if a 4 is sent
and an error occurs, it is more likely that a 3 ora 5 is received than a 2 or a 6, etc.

So, for these channels Hamming distance is not a natural metric for measuring
errors. Instead, one uses the so-called Lee weight and Lee distance.

(3.6.1) Definition. Consider Z,, as alphabet. The Lee weight of an integer i
(0 < i < m) is defined by

w, (i) := min{i, m — i}.

The Lee metric on Z” is defined by

w, (@) =) w.(a),

i=1

where the sum is defined in N,. We define Lee distance by

di(x,y) :=w, (x-y).

It is not difficult to see that this is indeed a distance function.

In a later chapter, we shall be especially interested in the alphabet Z,. We
treat this in more detail now. In Z,, the Lee weights of 0,1, and 2 are 0,1, and 2
respectively, but the Lee weight of 3 is 1.

For a code C C 74 (see (8.1.1)), we define two weight enumerators, the
symmetrized weight enumerator and the Lee weight enumerator.”

(3.6.2) Definition. The symmetrized weight enumerator of a code C € Z is
given by
swec(w, x, ) = Z WO x M @+ns(© yna(©)
ceC

where n;(¢) denotes the number of coordinates of ¢ equal to i.
(3.6.3) Definition. The Lee weight enumerator of a code C C Zj is defined by

Leec(x,y) := Zx”‘""b(c) wa(c).

ceC

Note that
(3.6.4) Leec(x, y) = swec(x?, xy, ).

Let us see if a slight modification of the proof of Theorem 3.5.3 can yield a
generalization of the MacWilliams relation to codes over Z,. We take x to be a
character on (Z,, +); below, we will take

x(a) :==i°, where i*’=-1inC.

We consider a function f defined on % := Z and define

g(w) =) x((u, v)) f(¥).

vesB
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In the same way as for (3.5.4), we find
(3.6.5) Y e =IClY_ f®).

ueC veCt

In the next part of the proof, we choose
fv) = wno(V)xnl(V)+n3(V)ynz(V)_
Continuing exactly as in the proof of (3.5.3), we find
g(u) = n Z x(u,-v)w"°"’)x"‘(")“"3(”)}:”2"‘).
i=1 vedy

To calculate the inner sum, we must distinguish between i; =0, ; = 1 or 3, and
u; = 2. In the three cases, we find (w + 2x + y), (w — y), and (w — 2x + y)
respectively. Hence

(3.6.6) g) = (w+2x + y)* (w — y)" OO (yy — 2x 4 yyn®
Substituting (3.6.6) in (3.6.5) yields

1
(3.6.7) swecr(w,x,y) = I—é—]swcc(w +2x+y,w—y,w—2x+y).

We find the following generalization of Theorem 3.5.3.

(3.6.8) Theorem. If C is a quaternary code and C* its dual, then

1
Leeci(x,y) = IFILCCC(x +y,x—y.

Proor. Apply (3.6.4) to (3.6.7). (|

§3.7. Comments

The subject of linear codes was greatly influenced by papers by D. E. Slepian
and R. W. Hamming written in the 1950s. The reader interested in knowing
more about majority logic decoding should consult the book by J. L. Massey
[47]. There are several generalizations of MacWilliams’ theorem even to
nonlinear codes. An extensive treatment can be found in Chapter 5 of [46].
For an application of (3.5.2) see Chapter 2 of [42].
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§3.8.

3.8.1.

3.8.2.

3.8.3.
3.8.4.

3.8.5.

3.8.6.

3.8.7.

3.8.8.
3.8.9.

3.8.10.

3.8.11.

3.8.12.

Problems

Let C be a binary perfect code of length n with minimum distance 7. Show that
n=7o0rn=23

Let C be an [n, k] code over F, which is systematic on any set of k positions.
Show that C has minimum distanced =n — k + 1.

Let C be a [2k + 1, k] binary code such that C = C*. Describe C*\C.

Let # = F$ and let x € . Determine | B (x)|. Is it possible to find a set C = #
with |C| = 9 such thatforall x e C, y € C, x # y the distance d(x, y) is at least
3?

Let C be an [n, k] code over F, with generator matrix G. If G does not have a
column of Os then the sum of the weights of the codewords of C is n(q — 1)g*™*.
Prove this.

Let C be a binary [n, k] code. If C has word of odd weight then the words of
even weight in C form an [n, k — 1] code. Prove this.

Let C be a binary code with generator matrix
1000101
01 0O0T1O0°1
0010011
0001011

Decode the following received words:

@@ 1010 1 Iy
®)@© 1 1 0 1 1 1y
©@© 1 110 0 O

Let p be a prime. Is there an [8, 4] self-dual code over F,?

For g = 2 let R, denote the rate of the Hamming code defined in (3.3.1). Deter-
mine lim,_,, R,.

Let C be a binary code with weight enumerator A(z). What is the weight
enumerator of C? What is the weight enumerator of the dual of the extended
binary Hamming code of length 2*?

Let C be a binary [n, k] code with weight enumerator A(z). We use C on a
binary symmetric channel with error probability p. Our purpose is error
detection only. What is the probability that an incorrect word is received and
the error is not detected?

The n, by n; matrices over F, clearly form a vector space & of dimension n, n,.
Let C; be an [n;, k;] binary code with minimum distance d; (i = 1, 2). Let C be
the subset of & consisting of those matrices for which every column, respec-
tively row, is a codeword in C,, respectively C,. Show that Cis an [n,n,, k,k,]
code with minimum distance d,d,. This code is called direct product of C, and
C,.
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3.8.13.

3.8.14.

3.8.15.

3. Linear Codes

Let C be the binary [10, 5] code with generator matrix

1 00000O0O0O0T1TI
01000O0T1 100
G=|/0 01 0010100
0001011000
000O0OT1T1T1T1O0OUO0

Show that C is uniquely decodable in the following sense: For every received
word x there is a unique code word ¢ such that d(x, ¢) is minimal.

Let us define lexicographically least binary codes with distance d as follows. The
word length is not specified at first. Start withe¢y =0andc, =(1, 1,..., 1, 0,
0,0,...,0) of weight d. If ¢g, ¢y, ..., ¢,_, have been chosen then ¢, is chosen as
the word which comes first in the lexicographic ordering (with s as far to the
left as possible) such that d(c;, ¢;) = d(0 < i < I — 1). After [ steps the length of
the code is defined to be the length of the part where coordinates 1 occur.

(i) Show that aftér 2* vectors have been chosen the lexicographically least
code is linear!

(i) For d = 3 the Hamming codes occur among the lexicographically least
codes. Prove this.

Show that a [15,8,5] code does not exist.
Hint: Show that such a code would have a generator matrix with a row of weight 5
and consider the subcode generated by the other rows.



CHAPTER 4

Some Good Codes

§4.1. Hadamard Codes and Generalizations

Let H, be a Hadamard matrix of order n (see (1.3.5)). In H, and — H, we
replace — 1 by 0. In this way we find 2n rows which are words in F. Since any
two rows of a Hadamard matrix differ in half of the positions we have
constructed an (n, 2n, 1n) code. For n = 8 this is an extended Hamming code.
For n = 32 the code is the one used by Mariner 1969 which was mentioned
in Section 2.1. In general these codes are called Hadamard codes.

A similar construction starts from a Paley matrix S of order n (see (1.3.8)).
We construct a code C with codewords 0, 1, the rows of (S + I + J) and
4(—S + I + J). From Theorem 1.3.8 it follows that C is an (n, 2(n + 1), d)
code, where d = 4(n — 1)ifn = 1 (mod 4) and d = 4(n — 3) if n = 3 (mod 4).
In the case n = 9 the code consists of the rows of the matrix

@4.1.1)

(000

000
P2

000]]
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§4.2. The Binary Golay Code

The most famous of all (binary) codes is the so-called binary Golay code %,,.
There are very many constructions of this code, some of them quite elegant
and with short proofs of the properties of this code. We shall prove that 4, ,,
the extended binary Golay code, is unique and treat a few constructions.
From these it follows that the automorphism group of the extended code is
transitive and hence %, is also unique.

We consider the incidence matrix N of a 2-(11, 6, 3) design. It is easy to
show (by hand) that this design is unique. We have NN = 3] + 3J. Consider
N as a matrix with entries in F,. Then NNT =1 + J. So N has rank 10 and
the only nonzero vector x with XN = 0 is 1. The design properties imply trivially
that the rows of N all have weight 6, and that the sum of any two distinct rows of
N also has weight 6. Furthermore, we know that the sum of three or four rows of
N isnot 0.

Next, let G be the 12 by 24 matrix (over |F,) given by G := (I, P), where
4.2.1) P:=

Every row of G has a weight = 0 (mod 4). Any two rows of G have inner
product 0. This implies that the weight of any linear combination of the rows
of G is = 0(mod 4) (proof by induction). The observations made about N then
show that a linear combination of any number of rows of G has weight at least
8. Consider the binary code generated by G and call it 4,,. Delete any
coordinate to find a binary [23, 12] code with minimum distance at least 7.
The distance cannot be larger, since (3.1.6) is satisfied with e = 3, which shows
that in fact this [23, 12, 7] code is a perfect code! We denote this code by 9, 5;
(as mentioned above, we shall prove its uniqueness, justifying the notation).

(4.2.2) Theorem. The codewords of weight 8 in %,, form a 5-(24, 8, 1) design.

ProOF. By an easy counting argument, one can show that the weight enumer-
ator of a perfect code containing 0 is uniquely determined. In fact, we have
Ag=A,3=1,A,=A,4=253,43=A,5=506,4,, = A, = 1288.50,%,,
has 759 words of weight 8, no two overlapping in more than four positions.
Hence, these words together cover 759 - (%) = (%) fivetuples. O

(4.2.3) Theorem. If C is a binary code of length 24, with |C| = 2'2, minimum
distance 8, and if 0 € C, then C is equivalent t0 %,,.

Proor. (i) The difficult part of the proof is to show that C must be a linear
code. To see this, observe that deleting any coordinate produces a code C’ of
length 23 and distance 7 with |C’| = 2!2. So, this code is perfect and its weight
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enumerator is as in the proof of the previous theorem. From the fact that this
is the case, no matter which of the 24 positions is deleted, it follows that all
codewords in C have weight 0, 8, 12, 16, or 24. Furthermore, a change of
origin, obtained by adding a fixed codeword of C to all the words of C, shows
that we can conclude that the distance of any two words of C is also 0, 8, 12,
16, or 24. Since all weights and all distances are = 0 (mod 4), any two code-
words have inner product 0. Therefore the codewords of C span a linear code
that is selforthogonal. This span clearly has dimension at most 12, i.e. at most
2!2 codewords. It follows that this span must be C itself. In other words, C is
a selfdual linear code!

(ii) We form a generator matrix G of C, taking as first row any word of weight
12. After a permutation of positions we have

I ... 1.0 ... 0
o-(' 5 0)

We know that any linear combination of the rows of B must have even
weight # 0. So, B has rank 11. This implies that the code generated by B is
the [12, 11, 2] even weight code. We may therefore assume that B is the matrix
I,, bordered by a column of 1’s. A second permutation of the columns of G
yields a generator matrix G’ of the form (I, , P), where P has the same form as
in (4.2.1). What do we know about the matrix N in this case? Clearly any row
of N must have weight 6 (look at the first row of G'). In the same way we see
that the sum of any two rows of N has weight 6. This implies that N is the
incidence matrix of the (unique!) 2-(11, 6, 3) design. Hence C is equivalent
t0 %,,. O

The following construction of %,, is due to R. J. Turyn. We consider the
[7, 4] Hamming code H in the following representation. Take 0 and the seven
cyclic shifts of (1 1 0 1 0 0 0); (note that these seven vectors form the inci-
dence matrix of PG(2, 2)). Then take the eight complements of these words.
Together these form H. Let H* be obtained by reversing the order of the
symbols in the words of H. By inspection we see that H and H* are [8, 4]
codes with the property H n H* = {0, 1}. We know that both H and H* are
selfdual codes with minimum distance 4.

We now form a code C with word length 24 by concatenating as follows:

C={@+xb+x,a+b+x)acHbeHxeH*}.

By letting a and b run through a basis of H and x run through a basis of H*,
we see that the words (a, 0, a), (0, b, b), (x, x, x) form a basis for the code C.
Hence C is a [24, 12] code. Any two (not necessarily distinct) basis vectors of
C are orthogonal, i. e. C is selfdual. Since all the basis vectors have a weight
divisible by 4, this holds for every word in C. Can a word ¢ € C have weight
less than 8? Since the three components a + x, b + x,a + b + x all obviously
have even weight, one of them must be 0. Our observation on the intersection
of H and H* then leads to the conclusion that x = 0 or 1. Without loss of
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generality we assume that x = 0. Since the words of H have weight 0, 4, or 8,
it follows that ¢ = 0.

We have shown that C is a [24, 12, 8] code; hence C = 4,,.

The next construction is due to J. H. Conway. Let F, = {0, 1, w, @}. Let C
be the [6, 3] code over F, with codewords (a, b, c, f(1), f(w), f(@)), where
f(x):=ax® + bx +c. It is an easy exercise to show that C has minimum
weight 4 and no words of weight 5. C is known as the hexacode.

Now, let G be a binary code of length 24 for which the words are represented
as 4 by 6 binary matrices A. Denote the four rows of such a matrix A by ay, a,, a,
and a;. A matrix A belongs to G iff the following two conditions are satisfied

(1) Every column of A has the same parity as its first row ag;
(2) a, + wa, + age C.

These conditions obviously define a linear code.

If the first row of A has even parity and the codeword in (2) is not 0, then
A has at least four columns of weight > 2, i. e. weight > 8. If, on the other
hand, the codeword in (2) is 0, then either A is the zero word or 4 has at least
two columns of weight 4, again a total weight at least 8. If 4 has a first row
of odd parity, then all the columns of 4 have odd weight. These weights
cannot all be 1, because this would imply that the word of C in condition (2)
has odd weight. We have shown that G has minimum distance 8. We leave it
as an exercise for the reader to show that conditions (1) and (2) and the fact
that C has dimension 3 imply that G has dimension 12. Therefore, the matri-
ces A form %,,.

In Section 6.9 we shall find yet another construction of %, , as a cyclic code,
i. e. a code with an automorphism of order 23. All these constructions to-
gether show that the automorphism group of %,, is transitive (in fact 5-
transitive; it is the Mathieu group M,,). Therefore %, , is also unique.

We mention that the construction of Exercise 3.8.14 withd = 8 and k = 12
also produces the extended binary Golay code %,,.

The following decoding algorithm for %,, is a generalization of Section
3.4 based on Theorem 4.2.1. Let y; (1 < i < 253) be the 253 code words of
weight 8 of 4,, with a 1 in a given position, say position 1. Consider the parity
checks {x, y;> (1 < i < 253); here we use the fact that ,, is self-dual. Suppose
x is received and contains t < 4 errors. Theorem 4.2.1 implies that the number
of parity checks which fail is given by the following table.

X, correct X, incorrect
t=1 77 253
2 112 176
3 125 141
4 128 128
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Soincase t < 3 we can correct the symbol x,. The line corresponding tot = 4
demonstrates that %, is 4-error-detecting but not 4-error-correcting.

We remark that the procedure for self-dual codes that we described in
Section 3.2, when applied to the extended binary Golay code, involves the
calculation of at most 26 x 12 = 312 parity checks and produces all the
coordinates of the error vector (if ¢ < 3).

§4.3. The Ternary Golay Code

Let S5 be the Paley matrix of size 5 defined in (1.3.8), i.e.

0 + - — +
+ 0 + - -
Ss=|- + 0 + -
- - + 0 +
+ — - 4+ 0

Consider the [11, 6] ternary code C defined by the generator matrix
11111

G - 16 Sj

The code C is an [11, 6] code. From (1.3.8) it follows that C is self-dual.
Therefore all the words of C have weight divisible by 3. The generator G for
C is obtained by adding the column (0, —1, —1, —1, —1, — 1)" to G. Every
row of G has weight 6. A linear combination of two rows of G has weight at
least 2 + 2, hence it has weight 6. Therefore a linear combination of two rows
of G has exactly two zeros in the last six positions and this implies that a linear
combination of three rows of G has weight at least 3 + 1, i.e. weight at least
6. Therefore C has minimum distance 6. It follows that C is an (11, 3%, 5) code.

11\ ..
From|B,(x)| = Y &, ( ; )2‘ = 3% it then follows that C is a perfect code. This

code is known as the ternary Golay code. It has been shown that any (11, 3¢,
5) code is equivalent to C (cf. [46]). A simple uniqueness proof such as we
gave for the binary Golay code has not been found yet.

§4.4. Constructing Codes from Other Codes

Many good codes have been constructed by modifying (in various ways)
previously constructed codes. In this section we shall give several examples.
The first method was introduced in (3.2.7), namely extending a code by adding
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an extra symbol called the overall parity check. The inverse process, which
we used in Section 4.2 to obtain the binary Golay code from its extension is
called puncturing a code. If we consider as another example the (9, 20, 4) code
of (4.1.1) and puncture it, i.e. delete the last symbol in every word, we obtain
an (8, 20, 3) code. In the next chapter we shall see that this is indeed a good
code. We remark that an equivalent code can also be obtained by -taking
all cyclic permutations of thewords(1 1 0 1t 0 0 0 0,(1 1 1 O
0 I 0 O,and(f 0 1 O 1 O 1 O)together with 0and 1.

A third procedure is shortening a code C. Here, one takes all codewords in
C that end in the same symbol and subsequently deletes this symbol. This
procedure decreases the length and the number of codewords but it does not
lower the minimum distance. Note that if the deleted symbol is not 0, this
procedure changes a linear code to a nonlinear code (generally).

Let us now look at a slightly more complicated method. From one of the
constructions of the extended binary Golay code ¥,, in Section 4.2 one
immediately sees that %,, has a subcode consisting of 32 words with 0 in
the first eight positions. Similarly, if we take ¢y = 1 and exactly one of the
symbols ¢; to ¢, equal to 1, then we find a subcode of 32 words (¢,, ¢,, ...,
¢;4)- Doing this in all possible ways, we have a subset of 256 words of %, , with
the property that any two of them differ in at most two positions among the
first eight. Now we delete the first eight symbols from these words. The result
is a binary (16, 256, 6) code which is nonlinear. This code is called the
Nordstrom-Robinson code. This code is the first one in an infinite sequence
that we discuss in Section 7.4. If we shorten this code twice and then puncture
once the result is a (13, 64, 5) code, which we denote by Y. This will be an
important example in the next chapter. It is known that Y is unique and that
if we shorten Y there are two possible results (J.-M. Goethals 1977; cf. [26]).
The two codes are: a code known as the Nadler code and the code of Problem
4.8.7.

A construction similar to our construction of the extended binary Golay
code is known as the (u, u + v)-construction. Let C; be an (n, M,, d;) binary
code (i = 1, 2). Define

(4.4.1) C:={mu+vueC,veC,}

Then C is a (2n, M| M,, d) code, where d := min{2d,, d,}. To show this we
consider two codewords (u,,u, + v,)and (u,,u, + v,). If v, = v, and u, # u,,
their distance is at least 2d,. If v, # v, the distance is w(u, — u,) +
w(u, — uy + v; — v,) which clearly exceeds w(v, — v,), i.e. it is at least d,. As
an example we take for C, the (8, 20, 3) code constructed above, and for C,
we take the [8, 7] even weight code. The construction yields a (16, 5-2°, 3)
code. There is no (16, M, 3) code known at present with M > 5-2°.

Many good codes were constructed using the following idea due to H. J.
Helgert and R. D. Stinaff (1973; cf. [34]). Let C be an [n, k] binary code with
minimum distance d. We may assume that C has a generator matrix G with
a word of weight d as its first row, say
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1 1 ... 1 0 0 ... 0
G‘[ G, i G, ]

Let d’ be the minimum distance of the [n — d, kK — 1] code generated by G,
which we call the residual code w.r.t. the first row of G. From G we see that to
each codeword of the residual code there correspond two codewords of C, at
least one of which has weight < 1d on the first d positions. Hence d’ > 1d. To
illustrate this method we now show that a linear code with the parameters of
the Nadler code does not exist. If there were such a code it would have a
generator matrix G as above where G, generates a [7, 4] code with distance
d’' > 3. Therefore the residual code is a Hamming code. W.l.o.g. we can take
G, to have four rows of weight 3 and then G, must have (w.lo.g.) four rows
of weight 2. There are only a few possibilities to try and these do not yield a
code with d = 5. Even for small parameter values it is often quite difficult to
find good codes. For example, a rather complicated construction (cf. [46],
Chapter 2, Section 7) produced a (10, M, 4) code with M = 38 and for a long
time it was believed that this could not be improved. M. R. Best (1978; cf. [8])
found a (10, 40, 4) code which we describe below. In the next chapter we shall
see that for n = 10, d = 4 this is indeed the Best code! Consider the [5, 3] code
10001
C, with generator [ 0 1 0 1 1 |. By doubling all the codewords we have a
00110

[10, 3] code C, with minimum distance d = 4. Now add (10000 00100) to
all the words of C,. The new code is no longer linear and does not contain 0.
Numbering the positions from 1 to 10 we subsequently permute the positions
of the codewords by elements of the subgroup of S,, generated by
(1 2 3 4 5(6 7 8 9 10). This yields 40 codewords which turn out
to have minimum distance 4.

In many technical applications (such as the compact disc) two codes are used.
These codes collaborate in some way. Sometimes the goal is to combat burst
errors. Quite often, more errors can be corrected than one would expect from the
minimum distance.

We saw an example of collaborating codes in Problem 3.7.12, namely a direct
product code. Let us have another look at such a code. Consider the product of an
[8,4,4] extended Hamming code with a [16,11,4] extended Hamming code. The
product can correct up to 7 errors. Now suppose a received word (i.e.a 16 by 8
matrix) has five rows with no errors, eight rows with one error, and three rows with
two errors. We have 14 errors, twice the number we expect to be able to handle.
However, when we decode the rows, thirteen are corrected and the three bad ones
are recognized. We now declare these rows to be erasures! When we decode
the columns, we will not encounter words with errors, but all of them have three
erasures. Since the column code has distance 4, we can handle these erasures. At
the end, all 14 errors have been corrected.

The codes used in practice apply variations of this idea. In the compact disc,
two codes, each with distance 5, collaborate. For one of them, the decoder only
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corrects if at most one error occurs; otherwise, the word is declared an erasure. In
the end, this turns out to increase the efficiency of the collaborating pair.

We extend the example treated above, to introduce a sequence of codes defined
by P. Elias in 1954. We start with an extended Hamming code C, of lengthn, = 2™.
Assume that the codes are to be used on a B. S. C. with bit error probability p,
where n,p < -;- For C, we take the extended Hamming code of length 2™*!,
Define V, := C, and define V, to be the direct product of C, and C,. We continue
in this way: if V; has been defined, then V., is the direct product of V; and the
extended Hamming code C;,, of length 2"/, Denote the length of V; by n; and
its dimension by k;. Finally, let E; be the expected number of errors per block in
words of V; after decoding.

From the definition, we have:
ni,, = n;- 2m+i,
ki = k- —-m—i-1),

and from Example 3.3.4 it follows that E;,, < E} and E, < (n,p)* < 1. So these

codes have the property that E; tends to zero as i — 00.
From the recurrence relations for n; and k;, we find

i-1 .
= G 1—[ (1 m+j+ 1) '

m-+-j
j=0 2

So, if R; denotes the rate of V;, then

fori — o0o. So we have a sequence of codes for which the length tends to oo, the
rate does not tend to 0, and nevertheless the error probability tends to 0. This is
close to what Shannon’s theorem promises us. Note that these codes, called Elias
codes, have minimum distance d; = 4’ and hence d;/n;, — 0 asi — co.

§4.5. Reed—Muller Codes

We shall now describe a class of binary codes connected with finite geo-
metries. The codes were first treated by D. E. Muller (1954) and 1. S. Reed
(1954). The codes are not as good as some of the codes that will be treated in
later chapters but in practice they have the advantage that they are easy to
decode. The method is a generalization of majority logic decoding (see Sec-
tion 3.4).

There are several ways of representing the codewords of a Reed—Muller
code. We shall try to give a unified treatment which shows how the different
points of view are related. As preparation we need a theorem from number
theory that is a century old (Lucas (1878)).
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(4.5.1) Theorem. Let p be a prime and let
1 1
n=Y np' and k=Y kp'
i=0 i=0

be representations of n and k in base p (ie. 0 <n,<p—1,0<k,<p—1).

Then.
n
k

Proor. We use the fact that (1 + x)? =1 + x? (mod p). If 0 < r < p then
(1 + x)"*" = (1 + x?*(1 + x)* (mod p).

Comparing coefficients of x??** (where 0 < s < p) on both sides yields

ap+r\ _[a\(r
(1) = (GLe) oot

The result now follows by induction. |

t /n.
Il (kl) (mod p).
i=0 i

The following theorem on weights of polynomials is also a preparation.
Let g = 2. For a polynomial P(x) e F,[x] we define the Hamming weight
w(P{x)) to be the number of nonzero coefficients in the expansion of P(x). Let
ceF, ¢ # 0. The polynomials (x + ¢y, i > 0, are a basis of F,[x].

(4.5.2) Theorem (Massey et al. 1973; cf. [49]). Let P(x) = Y o bi{x + ¢,
where by # 0 and let i, be the smallest index i for which b; # 0. Then

w(P(x)) = w((x + c)P).

ProoF. For [ = 0 the assertion is obvious. We use induction. Assume the
theorem is true for | < 2". Now let 2" < [ < 2"*!. Then we have

P(x) = z’il bix + ¢y + l bix + ¢
<0

i=2n
= Pi(x) + (x + ¢)*"Py(x) = (Py(x) + c*"Py(x)) + x*"Py(x),

where P;(x) and P,(x) are polynomials for which the theorem holds. We
distinguish two cases.

(i) If P,(x) = O then w(P(x)) = 2w(P,(x)) and since iy > 2"
w(lx + f°) = w((x® + ") (x + cJo7?") = 2w((x + )™,

from which the assertion follows.

(ii) If P,(x) # O then for every term in ¢*"P,(x) that cancels a term in P, (x) we
have a term in x*"P,(x) that does not cancel. Hence w(P(x)) > w(P, (x))
and the result follows from the induction hypothesis. O
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The three representations of codewords in Reed—Muller codes which we
now introduce are: (i) characteristic functions of subsets in AG(m, 2); (ii) co-
efficients of binary expansions of polynomials; and (iii) lists of values which
are taken by a Boolean function on Fy.

First some notations and definitions. We consider the points of AG(m, 2),
i.e. F" as column vectors and denote the standard basis by ug, uy, ..., u,_,.
Let the binary representation of j be j = Y 7oy £,2° (0 < j < 2™).

We define x;:= ) 7' £,u;. This represents a point of AG(m, 2) and all
points are obtained in this way. Let E be the matrix with columns x;
(0 < j <2™). Write n:=2™ The m by n matrix E is a list of the points of
AG(m, 2), written as column vectors.

(4.5.3) Definitions.

(i) A;:= {x;€ AG(m,2)|{; = 1},i.e. 4;is an (m — 1)-dimensional affine sub-
space (a hyperplane), for 0 < i < m;

(ii) v, := the ith row of E, i.e. the characteristic function of A4;. The vector v,
is a word in F5; as usual we write 1:= (1, 1, ..., 1) for the characteristic
function of AG(m, 2);

(iti) if a = (ag, ay, ..., a,.;) and b = (by, by, ..., b,_,) are words in [}, we de-
fine

ab:= (aghy, a by, ..., a1 b_y);

(iv) if S = {0, 1, ..., m — 1} we define

C(s) = {j = e 2i¢S=E,=00<i< m)}.

=0
(45.4) Lemma. Let [ =Y 7o &2 and let iy, ..., i, be the values of i for which
Ca=0.1f

Vi Ve Vi = (10,814, o0y Gy )s
s

then
n—1 X
(x+1)= -zb a, ;x""t
=

(Here, as usual, a product with no factors (s = 0) is defined to be 1.)

[ L
Proor. By Theorem 4.5.1 the binomial coefficient <n _q j) is1iff &; =1

for every i for which £, = 0. By (4.5.3) (i), (i) and (iii) we also have a, ; = 1 iff
Cij=1f0ri=i1,...,i3. I::]

The following shows how to interpret the products v; ...v; geometrically.

(4.5.5) Lemma. If i,, i,, ..., i, are different then
1242 s
(i) vi,vi,...v, is the characteristic function of the (m — s)-flat

A nA,n 04,
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(ii) the weight w(v;, ...v; ) of the vector v, ...v; in F} is 2",
(iii) the characteristic function of {x;}, i.e. the jth basis vector of Fj is

[] v, + (1 + &1},

(iv) the productsyv; ...v; (0 < s < m) are a basis of F5.

PRrOOF.

(i) This is a consequence of (4.5.3)(i)—(iii).
(i) By (i) the weight is the cardinality of an (m — s)-flat.

57

(iii) Consider the matrix E. For every i such that &; = 0 we replace the ith

row of E, i.e. v;, by its complement 1 + v;. If we then multiply the rows of
the new matrix, the product vector will have entry 1 only in position j,
since all possible columns occur only once. As an example consider {x,,}
in the following table. Since 14 =0 + 2 + 22 + 2* wesee that | + &, =1
only if i = 0 (here j = 14). So in the table we complement the row corre-
sponding to v, and then multiply to find (v, + 1) v, v, v; which is a row
vector which has a 1 only in the fourteenth position.

(iv) Thereare ) T, (m) = 2" = n products v; ...V, . The result follows from
s

(iii). Since the polynomials (x + 1)' are independent we could also have
used Lemma 4.5.4. O

The following table illustrates Lemmas 4.5.4 and 4.5.5. For example,

Vo v, corresponds to I=15-2°—-22=10 and hence (x+ 1)!°=
x4+ x® 4+ x? + 1.

Y V...V, Coordinates = coefficients of (x + 1)’ l=n—1-Y2"
1 t111111111111111 15 =1111
o 0101010101010101 14 = 1110
v, 0011001100110011 13 =1101
v, 0000111100001 111 11 = 1011
Vs 000000001111 T1T111 7=0111
Yo ¥, 000100010001 0001 12 = 1100
Yo ¥, 0000010100000101 10 = 1010
Vo V3 0000000001010101 6 =0110
vV, 0000001100000011 9 = 1001
v, vy 00000000001 10011 5=0101
v, V3 0000000000001 T1T11 3 =0011
Vo V1 V2 0000000100000001 8 = 1000
Vo vy V3 0000000000010001 4 = 0100
VoV, ¥ 000000000000010T1 2= 0010
vv,v 00000000000000T1! | = 0001
VoV, ¥,vs 0000000000000001 0 = 0000
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(4.5.6) Definition. Let 0 < r < m. The linear code of length n = 2™ which has
the products v; ...v; with s < r factors as basis is called the rth order binary
Reed—Muller code (RM code; notation Z(r, m)).

The special case 2(0, m) is the repetition code. From Lemma 4.5.5(i) we see
that the Boolean function x; x;,...x; where x = (xo, ..., X,,—;) runs through
F7 has value 1 iff x € A; n---n A; . Hence 2(r, m) consists of the sequences
of values taken by polynomials in xq, ..., x,,_, of degree at most r.

(4.5.7) Theorem. Z(r, m) has minimum distance 2™,

ProoOF. By the definition and Lemma 4.5.5(ii) the minimum distance is at most
2™7" and by Lemma 4.5.4 and Theorem 4.5.2 it is at least 2™, (Also see
Problem 4.7.9.) d

(4.5.8) Theorem. The dual of Z(r, m) is #(m —r — 1, m).

PRrooF.
(a) By the definition and the independence of the products v; ...v; the
dimension of Z(r,m) is 1+<’I’)+-~+(':‘>. So dim (r, m) +

dimZm—r—1,m)=n.

(b) Lety; ...v;, andv; ...v; be basis vectors of Z(r, m) and Z(m —r — 1, m)
respectively. Then s + t < m. Hence the product of these two basis vectors
has the form v, ...v, where u < m. By Lemma 4.5.5(ii) this product has
even weight, i.e. the original two basis vectors are orthogonal. O

Corollary. Z(m — 2, m) is the [n, n — m — 1] extended Hamming code.
We have chosen the characteristic functions of certain flats as basis for an

RM-code. We shall now show that for every flat of suitable dimension the
characteristic function is in certain RM codes.

(4.5.9) Theorem. Let C = &(m — I, m) and let A be an I-flat in AG(m, 2). Then
the characteristic function of A isin C.

PRrOOF. Let f = ) 72} fie; be the characteristic function of 4. By Definition
4.5.3(iv) and Lemma 4.5.5(ii1) we have

and therefore
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Here the inner sum counts the number of points in the intersection of 4 and
the s-flat

L = {x;e AG(m, 2)|j € C(iy, ..., iy)}.

If s>m~—1 then LN A is either empty or an affine subspace of positive
dimension. In both cases |L n A} is even, i.e. the inner sum is 0. |

This theorem and the definition show that a word is in &(r, m) iff it is the
sum of characteristic functions of affine subspaces of dimension > m — r. In
the terminology of Boolean functions Z(r, m) is the set of polynomials in x,,
X{y ..oy Xm—y Of degree < r.

In Section 3.2 we defined the notion of equivalence of codes using permuta-
tions acting on the positions of the codewords. Let us now consider a code C
of length n and the permutations z € S, which map every word in C to a word
in C. These permutations form a group, called the automorphism group of C
(Notation: Aut(C)). For example, if C is the repetition code then Aut(C) = §,.

(4.5.10) Theorem. AGL(m, 2) = Aut(Z(r, m)).

Proor. This is an immediate consequence of Theorem 4.5.9 and the fact that
AGL(m, 2) maps a k-flat onto a k-flat (for every k). O

Remark. The reader should realize that we consider AGL(m, 2) acting on
AG(m, 2) as a group of permutations of the n positions, which have been
numbered by the elements of AG(m, 2).

Without going into details we briefly describe a decoding procedure for
RM codes which is a generalization of majority decoding. Let C = &(r, m).
By Theorems 4.5.8 and 4.5.9 the characteristic function of any (r + 1)-flat in
AG(m, 2) is a parity check vector for C. Given an r-flat 4 there are 2™ — |
distinct (r + 1)-flats which contain 4. A point not in A is in exactly one of
these (r + 1)-flats. Each of these (r + 1)-flats contains the points of 4 and
exactly as many points not in 4.

Now let us look at the result of the parity checks. Let a received word
contain less than 2™™""! errors (see Theorem 4.5.7). Let ¢ parity checks fail.
These are two possible explanations:

(i) This was caused by an odd number of errors in the positions of A,
compensated 2" — 1 — t times by an odd number of errors in the re-
maining positions of the check set.

{ii) The number of errors in the positions of A4 is even but in ¢t of the parity
check equations there is an odd number of errors in the remaining
positions.

By maximum likelihood (ii) is more probable than (i) if t < 2™""! and
otherwise (i) is more probable. This means that it is possible to determine the
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parity of the number of errors in the positions of any r-flat. Then, using a
similar procedure, the same thing is done for (r — 1)-flats, etc. After r + 1 steps
the errors have been located. This procedure is called multistep majority
decoding.

§4.6. Kerdock Codes

We shall briefly discuss a class of nonlinear codes known as Kerdock codes,
(cf. [75], [11]). A Kerdock code is a subcode of a second order Reed-Muller
code consisting of a number of cosets of the corresponding first order Reed-
Muller code. Note that 22(2, m) is itself a union of cosets of %(1, m), each coset
corresponding to some quadratic form

(4.6.1) oM:= 3  gywy.

0<i<j<m
Corresponding to @, there is an alternating bilinear form B defined by
B(v, W) == Q(v + W) — Q(v) — Q(w) = vBw',

where B is a symplectic matrix (zero on the diagonal and B = —B'). By an
easy induction proof one can show that, by a suitable affine transformation,
Q can be put into the form

h~1
4.6.2) z ¥VyiVaie + L(V),
i=0

where L is linear and 2h is the rank of B. In fact, one can see to it that L(v) = 0,
1 or vy

(4.6.3) Lemma. The number of points (xq, Xy, ..., Xo4—1) € F3* for which
oy XgiXgi4y = 00 2771 + 2871,

PrROOF. If xg=x,="""=x;,_, =0, then there are 2" choices for
(X1, ..., Xz5-1). Otherwise there are 2*~* choices. So, the number of zeros is
28+ (28 — 12, O

From (4.6.2) and (4.6.3) we find the following lemma.

(4.6.4) Lemma. Let m be even. If Q(v) is a quadratic form corresponding to a
symplectic form of rank m, then the coset of %(1, m) determined by Q(v) has 2™
words of weight 2™™! — 2™27! and 2™ words of weight 2™ 4 2m™271,

(Note that this implies that if Q has rank smaller than m, the corresponding
coset has smaller minimum weight).

Clearly, a union of cosets of 2(1, m) will be a code with minimum distance
at most 2™~! — 2271 We wish to form a code C by taking the union of
cosets corresponding to certain quadratic forms @, ..., Q, (with associated
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symplectic forms By, ..., B). To find the minimum distance of this code, we
must consider codes corresponding to cosets defined by the forms Q; — Q;
(i # j) and find their minimum weight. The best that we can achieve is that
each difference Q; — Q; corresponds to a symplectic form of maximal rank,
that is a nonsingular symplectic form. Since the symplectic forms correspond
to skew-symmetric matrices with zero diagonal and no two of these can have
the same first row, it follows that ! < 2™! if the minimum distance d of C is
to be 2™~ — 2m2-1,

(4.6.5) Definition. Let m be even. A set of 2™ symplectic matrices of size m
such that the difference of any two distinct elements is nonsingular, is called
a Kerdock set.

(4.6.6) Definition. Let mbeeven. Let/ = 2" ' andlet Q,,..., Q, be a Kerdock
set. The nonlinear code #"(m) of length n = 2™ consisting of cosets of Z(1, m),
corresponding to the forms Q; (1 < i < I), is called a Kerdock code.

To show that such codes actually exist is a nontrivial problem related to
the geometry of F3 (cf. [11]). We only give one example. Let m=4.IfQ isa
quadratic form ) 2 g;;x,x;, we represent Q by a graph on the vertices x, ...,
x5 with an edge {x;, x;} if and only if g;; = 1.

If Q corresponds to a nonsingular sympletic form, then the graph must be
isomorphic to one of the following graphs:

[ e ] E

(1)

Order the partitions {12)(34), (13)(24), and (14)(23) cyclically. Form six
graphs of type (2) by taking two sides from one pair of these partitions and
one from the following one. It is easily seen that these six graphs, the empty
graph and the graph of type (4) have the property that the sum (or difference)
of any two corresponds to a nonsingular symplectic form. In this way we find
the 8-2° = 28 words of a (16, 28, 6) code, which is in fact the Nordstrom-
Robinson code of §4.4.

In the general case " (m) is a (2™, 22, 2™~1 — 2™2~1) code. So, the number
of words is considerably larger than for %(1, m) although the minimum
distance is only slightly smaller.

§4.7. Comments

For details about the application of Hadamard codes in the Mariner expedi-
tions we refer to reference [56].

The Golay codes were constructed by M. J. E. Golay in 1949 in a different
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way from our treatment. For more about these codes and several connections
to combinatorial theory we refer to a book by P. J. Cameron and J. H. van
Lint [11] or to [46]; also see [19].

The reader who is interested in more material related to Section 4.4 is
referred to references [64] and [65]. For more about encoding and decoding
of RM codes see [2] or [46].

§4.8.

48.1.

4.8.2.

4.83.

4.8.4.
4.8.5.

4.8.6.

4.8.7.

4.8.38.

4.8.9.

Problems

Let n = 2™ Show that the Reed-Muller code (1, m) is a Hadamard code of
lergth n.

Show that the ternary Golay code has 132 words of weight 5. For each pair
{x, 2x} of codewords of weight 5 consider the subset of positions where x; # 0.
Show that these 66 sets form a 4 — (11, 5, 1) design.

Let S be the Paley matrix of order 11 and 4 = (S + I + J). Consider the rows
of A, all 55 sums of two distinct rows of 4, and the complements of these
vectors. Show that this is an (11, 132, 3) code.

Construct a (17, 36, 8) code.

Consider Conway’s construction of %,,. Then consider the subcode consisting
of the matrices A that have the form (B, B, B), where each B is a 4 by 2 matrix.
Show that the matrices B are the words of a code equivalent to the [8, 4]
extended Hamming code.

Show that if there is a binary (n, M, d) code with d even then there exists an (n,
M, d) code in which all codewords have even weight.

Consider I, J, and P of size 3 as in (4.1.1). Define

J-1 1 I I [J P 1 P?

P J P

J—-1 1 11 P2 g P/
(P21 P J
(000 111 111
111 000 111
111 111 000 111}

| 111 111 111 000
Show that 0 and the rows of 4, B, C and D are the words of a (12, 32, 5) code.

Let H be the Hadamard matrix H,, of (1.39)andlet A:=H - I,G:=(I A).
Show that G is the generator matrix of a ternary [24, 12] code with minimum
distance 9.

i

111

111
D:

C=0~-1 J=1 J—=1 J—1,

Show that the (u, u + v)-construction of (4.4.1) with C, = R + 1,m), C, =
A(r, m) yields C = &(r + 1, m + 1). Use this to give a second proof of Theorem
4.5.7.
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4.8.10.

4.8.11.

(i) Let n =2"™. For x € FJ we define x* € {1, —1}" as the vector obtained by
replacing the Os in x by — 1. In Problem 4.7.1 we saw that this mapping applied
to #(1, m) yields vectors +a,, +a,,..., +a, where the a; are the rows of a
Hadamard matrix. By using this show that if x € F} then there exists a code-
word ¢ € #(1, m) such that d(x, ¢) < (n — /n)/2.

If m = 2k and x is the word € (2, m) corresponding to the Boolean function
X1Xy + X3Xg + *° + Xpp-1 X, Show that d(x, ¢)>(n — ﬁ)/2 for all ce
(1, m). (In other words: the covering radius of (1, 2k) is 22*™! — 2¢~1)

Let H be a parity check matrix for the (4, 2] ternary Hamming code and let |
and J be the 4 by 4 identity resp. all one matrix. Show that

J+1 I 1
G= [ 0 H —-H]
generates a [12, 6] code C with d = 6, i.e. a code equivalent to the extended
ternary Golay code.



CHAPTER 5

Bounds on Codes

§5.1. Introduction; The Gilbert Bound

In this chapter we shall be interested in codes that have as many codewords
as possible, given their length and minimum distance. We shall not be inter-
ested in questions like usefulness in practice, encoding or decoding of such
codes. We again consider as alphabet a set Q of g symbols and we define
0 := (g — 1)/q. Notation is as in Section 3.1. We assume g has been chosen
and then define an (n, %, d) code as a code with length n and minimum
distance d. We are interested in the maximal number of codewords (i.c. the
largest M which can be put in place of the *). An (1, M, d) code which is not
contained in any (n, M + 1, d) code is called maximal.

(5.1.1) Definition. A(n, d) := max{M |an (n, M, d) code exists}. A code C such
that |C| = A(n, d) is called optimal.

Some authors use the term “optimal” for [n, k] codes withd =n — k + 1
(see Problem 3.8.2). Such codes are optimal in the sense of (5.1.1) (cf. (5.2.2)).
Usually [n, k, n — k + 1] ¢odes are called maximum distance separable codes
(MDS. codes).

The study of the numbers A(n, d) is considered to be the central problem
in combinatorial coding theory. In Chapter 2 we learned that good codes are
long, or more precisely, given a channel with a certain error probability p, we
can reduce the probability of error by looking at a sequence of codes with
increasing length n. Clearly the average number of errors in a received word
is np and hence d must grow at least as fast as 2np if we wish to correct these

errors. This explains the importance of the number «(6) which we define as
follows.
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(5.1.2) Definition.
a(d) := linsup n~* log, A(n, on).

In Chapter 2 we studied good codes with a given rate R. In that case we
should ask how large d/n is (as a function of n). By (5.1.2) this means that we
are interested in the inverse function @ (R).

The functions 4 and « are not known in general. We shall study upper and
lower bounds for both of them and special values of A{n, d). The techniques
of extending, shortening, or puncturing (see Section 4.4) will often come in
handy. These immediately yield the following theorem.

(5.1.3) Theorem. For binary codes we have
An, 2l — 1) = A(n + 1, 2]).

We remind the reader of the definition of a sphere B,(x), given in Section
3.1 and we define

(5.1.4) Vinr) =B = 3 (';)«; — 1y

i=0

(cf. (3.1.6)).
In order to study the function o, we need a generalization of the entropy
function defined in (1.4.4). We define the entropy function H, on [0, 87, where

0:=(q — 1)/q, by
(5.1.5) H,(0):=0,
H,(x) := xlog,(q — 1) — x log, x — (1 — x) log,(1 — x)
for0<x<8.

Note that H,(x) increases from 0 to 1 as x runs from 0 to 6.

(5.1.6) Lemma. Let 0 < A1 < 6,q > 2. Then
lim n™! log, V,(n, [ An]) = H, ().

n-+ao

PRrOOF. For r = | An] the last term of the sum of the right-hand side of {5.1.4)
is the largest. Hence

n

(unnj)(q = D)W <V (n, An]) < (1 + LAnJ)(UHJ)(q — q)uam

By taking logarithms, dividing by n, and then proceeding as in the proof of
Theorem 1.4.5 the result follows. O

To finish this section we discuss a lower found for A(n, d) and the corre-
sponding bound for a(d). Although the result is nearly trivial, it was thought
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for a long time that x(d) would be equal to this lower bound. In 1982,
Tsfasman, V1adut, and Zink {81] improved the lower bound (for g > 49) using
methods from algebraic geometry.

(5.1.7) Theorem. Forne N,de N, d < n, we have
A(n,d)= q"/V,(n, d — 1)

Proor. Let the (n, M, d) code C be maximal. This implies that there is no
word in Q" with distance d or more to all the words of C. In other words: the
spheres B,_,(c), with ¢ € C, cover Q". Therefore the sum of their “volumes”,
ie. |C| V(n,d — 1) exceeds q" = |Q]". O

The proof shows that a code which has at least q"/V,(n, d — 1) codewords
can be constructed by simply starting with any word ¢, and then consecu-
tively adding new words that have distance at least d to the words which have
been chosen before, until the code is maximal. Such a code has no structure.
Surprisingly enough, the requirement that C is linear is not an essential
restriction as the following theorem shows.

(5.1.8) Theorem. Ifn € N,d € N, k € Nsatisfy V,(n,d — 1) < q"**!, then an
[n, k, d] code exists.

ProOOF. For k = 0 this is trivial. Let C,_, be an [n, k — 1, d] code. Since
|Cy-1] Vy(n,d — 1) < q", this code is not maximal. Hence there is a word x €
Q" with distance > d to all words of C,..,. Let C, be the code spanned by C, _,
and {x}. Let z=ax +y (where 0 #a€e Q, ye C,_;) be a codeword in C,.
Then

w(z) = watz) =wx +a’ly)=dx, —aly) > d. O
The codes of Problem 3.8.14 are an example of Theorem 5.1.8.

ExaMpLE. Let g = 2, n = 13,d = 5. Then from (5.1.4) we find V,(13, 4) = 1093
and hence A(13, 5) > |8192/1093| = 8. In fact Theorem 5.1.8 guarantees the
existence of a [13, 3, 5] code. Clearly this is not a very good code since by
Theorem 4.5.7 puncturing %(1, 4) three times yields a [13, 5, 5] code and in
fact the code Y of Section 4.4 is an even better nonlinear code, namely a
(13, 64, 5) code. This example shows one way of finding bounds for A(n, d),
namely by constructing good codes. We know that A(13, 5) > 64.

The bound of Theorem 5.1.7 is known as the Gilbert bound (or Gilbert-
Varshamov bound). Let us now look at the corresponding bound for a.

(5.1.9) Theorem {Asymptotic Gilbert Bound). If 0 < § < 0 then
a(d) = 1 — H,(d).
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ProOF. By (5.1.7) and (5.1.6) we have
«(3) = limsup n™* log, A(n, 5n) > lim {1 — n™" log, V,(n, on)}

n—x n—*w®

=1 — H,). O

§5.2. Upper Bounds

In this section we treat a number of upper bounds for A(n, d) that are fairly
easy to derive. In the seventies more complicated methods produced better bounds,
which we shall discuss in Section 5.3.

By puncturing an (n, M, d) code d — 1 times we obtainan(n —d + 1, M, 1)
code, i.e. the M punctured words are different. Hence M < ¢"~**!. We have
proved the following theorem, known as the Singleton bound.

(5.2.1) Theorem. For q,n,d e N, g > 2 we have
A(n, d) < qn—d+1-

(5.2.2) Corollary. For an [n, k] code over F, we have k <n —d+ 1
A code achieving this bound is called an MDS code (see Problem 3.8.2).

ExaMPLE. Let g = 2, n = 13, d = 5. Then we have A(13, 5) < 512.
The asymptotic form of Theorem 5.2.1 is as follows.

(5.2.3) Theorem. For 0 < 6 < 1 we have a(d) < 1 — 4.

Our next bound is obtained by calculating the maximal possible value of
the average distance between two distinct codewords. Suppose C is an (n, M, d)
code. We make a list of words of C. Consider a column in this list. Let the jth
symbol of Q (0 < j < g — 1) occur m; times in this column. The contribution
of this column to the sum of the distances between all ordered pairs of distinct
codewords is Y 925 m{(M — m;). Since Y 92§ m; = M we have from the Cauchy-
Schwarz inequality

g-1 q-1 q—-1 2
.mei(M —m)=M?*— mejz < M? —q'1<zomj) = OM?>.
j= j= i=

Since our list has n columns and since there are M(M — 1) ordered pairs of
codewords, we find

MM — 1)d < ndM?>.
We have proved the so-called Plotkin bound.
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(5.2.4) Theorem. Forg,n,deN,q> 2,0 =1— g~ we have

An,d) <

T ifd> 6n

EXAMPLES. () Let g =2, n=13,d = 5. Then 6 = 1. In order to be able to
apply Theorem 5.2.4 we consider a (13, M, 5) code and shorten it four times
to obtain a (9, M, 5) code with M’ > 27*M. By the Plotkin bound M’ <
5/(5—44) =10. So M < 160, ie. A(13,5) < 160. A better bound can be
obtained by first applying Theorem 5.1.3 to get A(13, 5) = A(14, 6) and then
repeating the above argument to get A(14, 6) < 23-6/(6 — 5%) = 96.

(b) Let g=3, n=13,d=9. Then # =% and the Plotkin bound yields
A(13,9) < 27 for ternary codes. Consider the dual of the ternary Hamming
code (see (3.3.1)). This code has generator matrix

0000111111111
G=(0 11100011122 2]
1 012012012012
This matrix has the points of PG(2, 3) as columns. The positions where
(a,, a,, a;)G has a zero correspond to the points of PG(2, 3) on the projective
line with equation a, x; + a,x; + a;x; = 0, i.c. if a # 0 there are exactly four
such positions. Hence every codeword # 0 has weight 9 and hence any two

distinct codewords have distance 9. So this is a linear code satisfying Theorem
5.2.4 with equality.

From the proof of Theorem 5.2.4 we can see that equality is possible only
if all pairs of distinct codewords indeed have the same distance. Such a code
is called an equidistant code.

Again we derive an asymptotic result.

(5.2.5) Theorem (Asymptotic Plotkin Bound). We have
a(6) =0, fe<do<li,
a(6) <1 - 6/6, fo<d <.

Proor. The first assertion is a trivial consequence of Theorem 5.2.4. For
the second assertion we define n’ := [(d — 1)/8]. Then 1 <d —6n" <1+ 0.
Shorten an (n, M, d) code to an (n’, M’, d) code. Then M’ > g" "M and by
Theorem 5.2.4 we have M’ < d/(d — 6n’) < d. So M < dg"™". From this and
n'/n— /0 if n— o0 and d = dn we find a(d) < 1 — §/6. ad

The following bound, found by J. H. Griesmer (1960), is a bound for linear
codes which is asymptotically equivalent to the Plotkin bound but in some
cases it is better. Even though the proof is elementary, it turns out that the
bound is sharp quite often. The proof is based on the same ideas as the



§5.2. Upper Bounds 69

method of Helgert and Stinaff treated in Section 4.4. Let G be the generator
matrix of an [n, k, d] code. We may assume that the first row of G has weight
d, in fact we may assume w.l.o.g. that it is (111--- 10---0) with d ones. Every
other row has at least [d/q] coordinates in the first d positions that are
the same. Therefore the residual code with respect to the first row is an
[n—d, k—1,d"] code with d' > [d/q]. Using induction we then find the
following theorem.

(5.2.6) Theorem (Griesmer Bound). For an [n, k, d] code over F, we have
k=1
n> .ZO [d/q*].

ExaMPLES. (a) Let ¢ = 2, n = 13,d = 5. Since ) 7, [5/2'] = 13 we see that a
[13, k, 5] code must have k < 6. The code Y of Section 4.4 has 64 words but
it is not linear. In fact a [13, 6, 5] code cannot exist because it would imply
the existence of a [12, 5, 5] code contradicting the analysis given in Section
4.4. So in this case the Griesmer bound is not sharp. '

(b) Let =3, n=14, d =9. From ) 2,[9/3'] = 14 it follows that a
[14, k, 9] ternary code has k < 4. A shortened version of such a code would
be like Example (b) following Theorem 5.2.4. Suppose such a code exists. As
before we can assume w.l.o.g. that (11...100000) of weight 9 is the first row
of the generator matrix. Then, as in the proof of the Griesmer bound, the
residual code is a [5, 3, 3] ternary code. W.Lo.g. the generator of such a code
would be

10
G=|0 1

01 1
0 a b, where a, b, ¢, d are not 0.
0 01

Clearly a # b and ¢ # d and hence there is a combination of rows 2 and 3
with weight 2, a contradiction. Again the Griesmer bound is not sharp.

One of the easiest bounds to understand generalizes (3.1.6). It is known as
the Hamming bound or sphere packing bound.

(5.2.7) Theorem. If g,n,ee N, g > 2,d =2e + 1, then
A(n, d) < q"/V,(n, e).

Proor. The spheres B,(c), where ¢ runs through an (n, M, 2e + 1) code, are
disjoint. Therefore M -V (n, e) < q". d

ExXAMPLE. Let ¢ = 2, n = 13,d = 5. Then from V,(13,2) =1 + 13 + 78 = 92
we find A(13, 5) < [2'3/92] = 89.

We have defined a perfect code to be a code that satisfies (5.2.7) with
equality. We return to this question in Chapter 7.
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(5.2.8) Theorem (Asymptotic Hamming Bound). We have
a(d) < 1 — H,(30).

PROOF. A(n, [6n]) < A(n, 2[36n] — 1) < q"/V,(n, [36n] — 1).
The result follows from Lemma 5.1.6. O

We now come to an upper bound which is somewhat more difficult to
prove. For a long time it was the best known upper bound. From the proof
of the Plotkin bound it should be clear that that bound cannot be good if the
distances between codewords are not all close to the average distance. The
following idea, due to P. Elias, gives a stronger result. Apply the method of
proof of the Plotkin bound to the set of codewords in a suitably chosen sphere
in 0". The following lemma shows how to choose the sphere. W.1.».g. we take

Q=12/qZ.

(5.2.9) Lemma. If A and C are subsets of Q" then there is an x € Q" such that

[(x + A)n C| S 1C|
|A] T g

Proor. Choose x, such that |[(x, + A) n C| is maximal. Then

xo + A)NCl2g™" ¥ lx+A)NnC|

xeQn

=g 3 Y Y Hx+apn{c

xeQ" aeAd ceC

=q" Y Y 1=q7"|A]-|C|. O

aed ceC

Now let C be an (n, M, d) code and let A be B,(0). We may assume w.l.o.g.
that the point x, of the lemma is 0. Consider the code A n C. This is an
(n, K, d) code with K > MV,(n, r)/q". We list the words of this code as rows
of a K by n matrix. Let m;; denote the number of occurrences of the symbol j
in the ith column of this matnx We know

(i) Z}Cé my; = K
and
(i) Yroymo=:S>K(n-—r)

because every row of the matrix has weight at most r.

Therefore:
(i) DIt m? > (g — DN my) = (@ — DK — my)?
and

(iv) iy miy = n™ (L1 my)? =n'S2
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We again calculate the sum of the distances of all ordered pairs of rows of the
matrix. We find from (i) to (iv):

n g—1

n q-1
i=1 j=0 i=1 j=1

<nkK*—(g-1" Zl (gm% + K? — 2Kmy,)

< nK? —(q — 1)"(gn"'S? + nK? — 2KS).

In this inequality, we substitute S > K(n — r), where we now pick r < On, and
hence S > q~'nK. We find Y0, Y 4= my(K — my) < K*r(2 — (r/0n)). Since
the number of pairs of rows is K(K — 1), we have

K(K - 1)d < K*r(2—r07"'n™").

Therefore we have proved the following lemma.

(5.2.10) Lemma. If the words of an (n, K, d) code all have weight < r < 6n,

then K
r r
< —_———].
d< K- 1(2 9n>
(5.2.11) Theorem (Elias Bound). Let g, n,d, reN, g>2,0=1— q ! and
assume that r < On and r* — 20nr + 6nd > 0. Then

Ond o q"
— 20nr + Ond V,(n, 1)’

A, d) <

Proor. From Lemma 5.2.9 we saw that an (n, M, d) code has a subcode with

K > MV,(n, r)/q" words which are all in some B,(x). So we may apply Lemma
5.2.10. This yields

MY DS K S g o

— 26nr + Ond’
Note that r = 0n, d > 0On yields the Plotkin bound.

ExampLE. Let g = 2, n = 13,d = 5. Then 8 = }. The best result is obtained if
we estimate A (14, 6) in (5.2.11). The result is

42 214

2 _larid2 (14
z (V)

and then the best choice is r = 3 which yields A(13, 5) < 162.

A(13,5) = A(14,6) <

The result in the example is not as good as earlier estimates. However,
asymptotically the Elias bound is the best result of this section.
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(5.2.12) Theorem (Asymptotic Elias Bound). We have
a(d) < 1 — Hy (8 — /0(6 — 9)), ifo<d<,
a(0) = 0, f<d<l

Proor. The second part follows from Theorem 5.2.5. Solet 0 < < 8. Choose
Vo

0<i<f— 6 — b) and take r = |An]. Then 66 — 264 + 1* > 0. From
Theorem 5.2.11 we find, with d = | én]

Ond q"
-1 < -1 .
n~" log, A(n, én) < n™" log, (r’ ~2nr + 6nd Vm, r))

06
~n! {logq (m) +n— an(l)}

~1—H#), (1)

Therefore () < 1 — H,(4). Since this is true for every 4 with 1 <8 —
</ 6(0 — ) the result follows. O

The next bound is also based on the idea of looking at a subset of the
codewords. In this case we consider codewords with a fixed weight w.

We must first study certain numbers similar to A(n, d). We restrict our-
selves to the case g = 2.

(5.2.13) Definition. We denote by A4(n, d, w) the maximal number of code-
words in a binary code of length n and minimum distance > d for which all
codewords have weight w.

(5.2.14) Lemma. We have

A, 2Kk — 1, W) = Aln, 2%, w) < HU:‘ILL"—YL kJ“J

ProOF. Since words with the same weight have even distance A(n, 2k — 1, w)
= A(n, 2k, w). Suppose we have a code C with |C| = K satisfying our condi-
tions. Write the words of C as rows of a matrix. Every column of this matrix
has at most A(n — 1, 2k, w — 1) ones. Hence Kw < nA(n — 1, 2k, w — 1), i.e.

An, 2k, w) < [%A(n — 1,2k w— 1)J.
Since A(n, 2k, k — 1) = 1 the result follows by induction. O
This lemma shows how to estimate the numbers A(n, d, w). The numbers

can be used to estimate A(n, d) as is done in the following generalization of
the Hamming bound, which is known as the Johnson bound.
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(5.2.15) Theorem. Let g =2,n,ee N,d =2e + 1. Then

2'!
)= <d) A(n, d, d)
e
n

N
<> [eHJ

i
ProoF. The idea is the same as the proof of the Hamming bound. Let there
be N,,, words in {0, 1}" which have distance e + 1 to the (n, M, d) code C.

Then
MY ('l') + N, <2

i=0

An, d) <

i

In order to estimate N,., we consider an arbitrary codeword ¢ which we can
take to be 0 (w.l.o.g.). Then the number of words in C with weight d is clearly

at most A(n, d, d). Each of these words has distance e to (Z) words of weight

. n
e + 1. Since there are (
e+ 1

y .
(e:l_ 1> - (e) A(n, d, d) among them that have distance e + 1 to C. By

) words of weight e + 1 there must be at least

varying ¢ we thus count M {( : 1) - (Z) A(n, d, d)} words in {0, 1}" that
e

have distance e + 1 to the code. How often has each of these words been
counted? Take one of them; again w.l.o.g. we call it 0. The codewords with
distance e + 1 to 0 have mutual distances > 2e + 1 iff they have 1s in different
positions. Hence there are at most |n/(e + 1)| such codewords. This gives us
the desired estimate for N,,,. |

From Lemma 5.2.14 we find, takingk =e + l,w =2e + 1
d n\|n—e
An,d, d) < .
<e> .4 (e)twr IJ

Substitution in Theorem 5.2.15 shows that a code C satisfies

e (n e n—e n—e
5.2.16 C + - < 2"
( ) Icl izb(l) t n J(e+1 [e+1J> -

e+ 1

which is the original form of the Johnson bound.

ExampPLE. Let g=2, n=13, d=95 (le. e=2). Then A(13, 5, 5 <
2112215 11] = 23 and the Johnson bound yields



74 5. Bounds on Codes

213
286 —10-23 | =T7.
4

A(13,5) <

T+ 13+78 +

Forn = 13, g = 2,d = 5 this is the best result up to now. Only the powerful
methods of the next section are enough to produce the true value of 4(13, 5).

§5.3. The Linear Programming Bound

Many of the best known bounds for the numbers A4(n, d) known at present
are based on a method which was developed by P. Delsarte (1973). The idea
is to derive inequalities that have a close connection to the MacWilliams
identity (Theorem 3.5.3) and then to use linear programming techniques to
analyze these inequalities. In this section we shall have to rely heavily on
properties of the so-called Krawtchouk polynomials.

In order to avoid cumbersome notation, we assume that g and n have been
chosen and are fixed. Then we define

L1 x\{n—x ,
W(x) = -1yt g = 1,
Kl j=zo( y<1><k—1>(q )

where

(x):=x(x—1)--~(x—j+l) (xeR)

J J!

For a discussion of these polynomials and the properties which we need, we
refer to Section 1.2.

In the following we assume that the alphabet Q is the ring Z/qZ (which we

may do w.Lo.g). Then <x, y> denotes the usual inner product ) I, x;y; for x,
ye Q"

(5.3.1) Lemma. Let w be a primitive qth root of unity in C and let x € Q" be a
fixed word of weight i. Then

Y oY = K (i)
yegQn
w(y)=k
Proor. We may assume that x = (x,, x5,..., x;, 0,0, ..., 0) where the co-
ordinates x; to x; are not 0. Choose k positions, h,, h,, ..., h, such that
0<hy<hy<--<h<i<hy < <h <n LetD be theset of all words

(of weight k) that have their nonzero coordinates in these positions. Then by
Lemma 1.1.32
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z o = . P S LL TR TS
yeD ¥n, €Q\0}  yn, €Q\{0}
i . .
=@-D]] Y o™ =(=1ig- 1)}
i=1 yeQ\{0}
; i
Since there are ( )( k ) choices for D the result follows. 0O

In order to be able to treat arbitrary (1 e. not necessarily linear) codes we
generalize (3.5.1).

(5.3.2) Definition. Let C < Q" be a code with M words. We define
A= M7{(x,y)Ixe C,ye C,d(x,y) = i}|.

The sequence (4;)}-, is called the distance distribution or inner distribution of
C.

Note that if C is linear or distance invariant, the distance distribution is the
weight distribution.

The following lemma is the basis of the linear programming bound (Theorem
5.3.4).

(5.3.3) Lemma. Let (A;)}- be the distance distribution of a code C < Q". Then
Zn: A K, (i) =

forke{0,1,...,n}.

PrOOF. By Lemma 5.3.1 we have

n

MZAK =Y

i=0 (x,y)eC? zeQn
dix, y)=i w(z)=k

WX

2

w$*® >0. O

xeC

ze Q"
w(z)=k

(5.3.4) Theorem. Let g,n,de N, g > 2. Then
A(n, d) Smax{z AjlAg=1,4,=0forl1 <i<d,
i=0

A; >0, }:AK ) > 0 for k € {0, 1,...,n}}.

If q = 2 and d is even we may take A; = 0 for i odd.
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ProoF. By Lemma 5.3.3, the distance distribution of an (n, M, d) code satisfies

the inequalities Z, 0 Ai K, (i) = 0. Clearly the A4; are nonnegatlve and 4, = 1

A;=0forl <i<d Furthermore by (5.3.2) we have Yiodi=M1'CH=
The final assertion is Problem 4.8.6. E]

EXAMPLE. As in several previous examples we wish to estimate A(13,5) =
A(14, 6) for g = 2. For the distance distribution of a(14,M,6) code we may
assume

Ao=1A,=A;=A3=A,=As=A,=4s=4,,=A;3=0,
A5ZO,AgZO,ALOZO,AMZO,AMZO.

For these we have the following inequalities from Lemma 5.3.3. (The values
of K,(i) are found by using (1.2.10).)

14+ 24, — 244 — 6A;0— 104, — 144,, >0,
91 — SAg— SAg+ 114,p+ 43A4,,+ 914,320,
364 — 124, + 1244 + 44,0 — 1004, — 3644,, >0,
1001 + 9Ag + 944 —39A;0 + 1214,, + 10014,, > 0,
2002 + 304, — 3045 + 384, — 224,, — 20024,, = 0,
3003 — SAg— SAg+ 274, — 1654, + 30034, > 0,
3432 — 404, + 404, — 724, + 2644, — 34324, > 0.

We must find an upper bound for M =1 + Ag + Ag + Ao + A5 + A4
This linear programming problem turns out to have a unique solution,
namely

A6 = 42, As = 7, Alo = 14, A12 = A14 = O.

Hence M < 64. In Section 4.4 we constructed a (13, 64, 5) code Y. Therefore
we have now proved that A(13, 5) = 64

We shall now put Theorem 5.3.4 into another form which often has ad-
vantages over the original form. The reader familiar with linear programming
will realize that we are applying the duality theorem (cf. [32]).

(5.3.5) Theorem. Let f(x) = 1 + Y i, B K,(x) be any polynomial with f, = 0
(1 <k <n)suchthat B(j)<O0 for j=d,d +1,...,n Then A(n, d) < B(0).

PROOF. Suppose Ay, A4,, ..., 4, satisfy the conditions of Theorem 5.3.4, i.e.

Ky (0) + Y7 A, K,,()>0(k 0,1,...,n; A, > 0fori=d,d + 1,...,n). Then
the condition on  yields Y 7, 4,( l) S Oie.

uM:

>~ ¥ AKO) = 1= O
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and hence

+ i A; < B(0). O

The advantage of Theorem 5.3.5 is that any polynomial § satisfying the
conditions of the theorem yields a bound for A(n, d) whereas in Theorem 5.3.4
one has to find the optimal solution to the system of inequalities.

EXAMPLE. Let g =2,n =214+ 1,d =1 + 1. We try to find a bound for 4(n, d)
by taking B(x) =1+ B, K;(x) + B, K;(x) = 1 + B,(n — 2x) + B,(2x% — 2nx
+ in(n — 1)). Choose B, and B, in such a way that B(d) = B(n) = 0. We find
B, =(n+ 1)/2n, B, = 1/n and hence the conditions of Theorem 5.3.5 are

satisfied. So we have AQI+ LI+ 1)< B0)=1+ fin+ B, <;> =21+ 2.
This is the same as the Plotkin bound (5.2.4).

The best bound for «(d) that is known at present is due to R. J. McEliece,
E. R. Rodemich, H. C. Rumsey and L. R. Welch (1977, cf. [50]). We shall not
treat this best bound but we give a slightly weaker result (actually equal for

0 > 0.273), also due to these authors. It is based on an application of Theorem
5.3.5.

(5.3.6) Theorem. Let g = 2. Then
a(d) < Hy(3 — Jo(1 = 9)).

ProOF. We consider an integer ¢t with | < ¢ < 4n and a real number a in the
interval [0, n]. Define the polynomial a(x) by

a(x) := (@ — x) " {K (@)K 41 (x) — Koy (@)K (x)}.
By applying (1.2.12) we find

2 K@K,
(3:3.7) alx) = f + 1( >{K (@K +1(x) — Ky (@)K (x)} Z _La)n_ﬂ‘
)
Let a(x ZZ‘“ , K, (x) be the Krawtchouk expansion of a(x). We wish to

choose a and ¢ in such a way that f(x) := a(x)/a, satisfies the conditions of
Theorem 5.3.5. If we take a < d then the only thing we have to check is
whethero¢; > 0(i = 1,...,n), a9 > 0. If x{ denotes the smallest zero of K, then
we know that 0 < x{*1 < x{ (cf. (1.2.13)).

In order to simplify the following calculations, we choose ¢ in such a way
that x{” < d and then choose a between x!*" and x{” in such a way
that K,(a ) K, (a) > 0. It follows that (5.3.7) expresses a(x) in the form
ch,K ,(x ), where all coefficients ¢, are nonnegative. Then it follows
from (1.2 14) that all «; are nonnegative. Furthermore, ag = —[2/(t + 1)] x
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<r;) K,(@)K,.,(a) > 0. Hence we can indeed apply Theorem 5.3.5. We find

0 )2
(5.3.8) A(n, d) < B(0) = %) = 2(Z(z+—+)1)<rzl>

To finish the proof, we need to know more about the location of the zero x{".
Itis known thatif 0 < 1 < §,n— o and t/n —» t then x"/n - 1 — /1(1 — 7).
It follows that we can apply (5.3.8) to the situation n — oo, d/n — § with a
sequence of values of ¢ such that t/n —» 1 — . /(1 — 8). Taking logarithms in
(5.3.8) and dividing by n, the assertion of the theorem follows. (For a proof of

the statement about x{’, we refer the reader to one of the references on
orthogonal polynomials or [46] or [50].) O

§5.4. Comments‘

For a treatment of the codes defined using algebraic geometry, and for the
improvement of the Gilbert bound, we refer to [73]. For an example see §6.8.
In Figure 2 we compare the asymptotic bounds derived in this chapter. We

1
a(9)

Gilbert

" McElicce et al.
,Elias

"\, Hamming

_ Plotkin

,Singleton

0 i 5 1

Figure 2
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have not included bounds given by V. I. Levenshtein (1975; cf. [40]) and V.
M. Sidelnikov (1975; cf. [63]) because these are not as good as the results by
McEliece et al. [50] and rather difficult to derive. The best known bound
mentioned above is

(54.1) a(d) < min{l + g(u?) — gu® + 26u + 26)|0 < u < 1 — 25},

where
1—-J/1—=x
g(x):==H, (f>

For a proof we refer to [50] or [52]. For very small values of §, the Elias
bound is better than (5.3.6) but not as good as (5.4.1).

In a paper by M. R. Best et al. (1977; cf. [6]) (5.3.3) and (5.3.4) are general-
ized:

(i) by observing that if.{C| is odd, then the inequalities of (5.3.3) are much
stronger; and ‘ :

(i) by adding inequalities (such as the obvious inequality 4,_, + A, < 1) to
(5.3.4). This yields several very good bounds (see Problem 5.5.12).

§5.5. Problems

5.5.1. Use the fact that a linear code can be defined by its parity check matrix to
show that an [n, k, d] code over F, exists if Vy(n —1,d —2)< g"*. Com-
pare this with Theorem 5.1.8.

5.5.2. Determine A(10, 5) for g = 2.

5.5.3. Let g = 2. Show that if in Tﬁcorem 5.2.4 the right-hand side is an odd integer
lthen A(n,d) <1 — 1.

5.5.4. Determine bounds for A(17, 8)if g = 2.

5.5.5. Consider a generator matrix for the [31, 5] dual binary Hamming code. Show
that it is possible to leave out a number of columns of this matrix in such a
way that the resulting code has d = 10 and meets the Griesmer bound.

5.5.6. Let C be a binary code of length n with minimum distance d = 2k and let
all codewords of C have weight w. Suppose |C| = [n(n — 1)/w(w — 1)] x
A(n — 2, 2k, w — 2). Show that the words of C are the blocks of a 2-design.

5.5.7. Show that a shortened binary Hamming code is optimal.
5.58. Let we N, w > 4. Let C, be the binary code of length n defined by
n—1

z ’c.- = W, i ic; = I (mod ")}’
<0

i=0

CI = {(C07Cl! EEEX cn—l)

where the summations are in Z. Show that
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w—1

A(n, 4, w) ~ .

R (n — o).
w!

5.59. Let g = 2. Show that (")A(n, 2K) < 2°A(n, 2k, w).
w
w w7 . Sy .
5.5.10. (i) Show that A(n, 2k, w) < (1 - E(l — —)) , if the right-hand side is
positive. g
(if) Using this and Problem 5.5.9 derive the Elias bound.

5.5.11. Let C be a binary (n, M,d) code with n — \/; < 2d < n. Suppose C has the
property that if x € C then also x + 1 € C. Show that k = 2 in (5.3.3) yields the
bound

8d(n — d)
T n—(n-2d)>*
(This is known as the Grey bound.)

5.5.12. Show that the (8, 20, 3) code of Section 4.4 is optimal. (This is difficult. See
Section 5.4.)



CHAPTER 6
Cyclic Codes

§6.1. Definitions

In Section 4.5 we defined the automorphism group Aut(C) of a code C.
Corresponding to this group there is a group of permutation matrices. Some-
times the definition of Aut(C) is extended by replacing permutation matrices
by monomial matrices, i.e. matrices for which the nonzero entries correspond
to a permutation matrix. In both cases we are interested in the group of
permutations. In this chapter we shall study linear codes for which the auto-
morphism group contains the cyclic group of order n, where n is the word
length.

(6.1.1) Definition. A linear code C is called cyclic if

V(q,.c......c,,_l)eC[(Cn—Xa CorCrs-vns Cn—z) € C]

This definition is extended by using monomial matrices instead of per-
mutations as follows. If for every codeword (cq, ¢4, ..., ¢,—;), the word
(ACh-1>Co»> Cy» - -+, Cn—3) is also in C (here 2 is fixed), the code is called consta-
cyclic (and negacyclic if A = —1). We shall present the theory for cyclic codes;
the generalization to constacyclic codes is an easy exercise for the reader.

The most important tool in our description of cyclic codes is the following
isomorphism between F} and a group of polynomials. The multiples of x" — 1
form a principal ideal in the polynomial ring F,[x]. The residue class ring
F,[x]/(x" — 1) has the set of polynomials

{ap +ayx+ - +a,.x"a,eF,0<i<n}

as a system of representatives. Clearly [} is isomorphic to this ring (considered
only as an additive group). In the following we shall also use the multi-
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plicative structure which we have now introduced, namely multiplication of

polynomials mod(x” — 1). From now on we make the following identifica-
tion:

(6.12) (ap,ay,....,a,)eF2ay+a;x+ -+ a,,x" " eF[x]/(x" - 1)

and we shall often speak of a codeword ¢ as the codeword ¢(x), using (6.1.2).
Extending this, we interpret a linear code as a subset of F [x]/(x" — 1).

(6.1.3) Theorem. A linear code C in [} is cyclic if and only if C is an ideal in
F,[x1/(x" = 1).

Proor.

(i) If C is an ideal in F,[x]/(x" — 1) and ¢(x) = co + ¢, x + " + Cpoy X" 1 s
any codeword, then xc(x) is also a codeword, i.e.

(CpeisCps C1s--os Cuz) € C.

(i) Conversely, if C is cyclic, then for every codeword c(x) the word xc(x) is
also in C. Therefore x‘c(x)is in C for every i, and since C is linear a(x)c(x)
is in C for every polynomial a(x). Hence C is an ideal. O

(6.1.4) Convention. From now on we only consider cyclic codes of length
n over F, with (n, g) = 1. For some theory of binary cyclic codes with even
length see §6.10.

Since F,[x]/(x" — 1) is a principal ideal ring every cyclic code C consists of
the multiples of a polynomial g(x) which is the monic polynomial of lowest
degree (i.e. not the zero polynomial) in the ideal (cf. Section 1.1).

This polynomial g(x) is called the generator polynomial of the cyclic code.
The generator polynomial is a divisor of x" — 1 (since otherwise the g.c.d. of
x" — 1 and g(x) would be a polynomial in C of degree lower than the degree
of g(x)). Let x" — 1 = f,(x)f5(x)... f;(x) be the decomposition of x" — 1 into
irreducible factors. Because of (6.1.4), these factors are different. We can now
find all cyclic codes of length n by picking (in all possible ways) one of the 2'
factors of x" — 1 as generator polynomial g(x) and defining the corresponding
code to be the set of multiples of g(x) mod(x" — 1).

(6.1.5) ExampLE. Over F, we have
xT—1=(x—1)C+x+ D>+ x>+ 1)

There are altogether eight cyclic codes of length 7. One of these has 0 as the
only codeword and one contains all possible words. The code with generator
x — 1 contains all words of even weight. The [7, 1] cyclic code has 0 and 1 as
codewords. The remaining four codes have dimension 3, 3, 4, and 4 respec-
tively. For example, taking g(x) := (x — D(x* + x + ) = x* + x* + x> + 1,
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we find a [7, 3] cyclic code. This code is an example of the irreducible cyclic
codes defined below.

(6.1.6) Definition. The cyclic code generated by f;(x) is called a maximal cyclic
code (since it is a maximal ideal) and denoted by M;". The code generated by
(x" — 1)/fi(x) is called a minimal cyclic code and denoted by M;. Minimal
cyclic codes are also called irreducible cyclic codes.

Our definition (6.1.1) guarantees that the automorphism group of a cyclic
code C contains the cyclic group generated by the permutation

i+ i+ 1(mod n).

However, since a(x?) = a(x)? is in the same cyclic codes as a(x), we see that
the permutation n, defined by n,(i) = gi (mod n) (i.e. x — x?) also maps a
cyclic code onto itself. If m is the order of g (mod n) then the two permutations
i+ i+ 1and n, generate a group of order nm contained in Aut(C).

§6.2. Generator Matrix and Check Polynomial

Let g(x) be the generator polynomial of a cyclic code C of length n. If g(x) has
degree n — k, then the codewords g(x), xg(x), ..., x* "' g(x) clearly form a basis
for C,i.e. Cisan [n, k] code. Hence, if g(x) = gg + g; % + *** + gp—px" % then

go 91 --- In—xk 0 0 e 0
G = 0 go -+ Gnk-1 Guee O ... O

0 0 ... ... 0

0o 0 ... do 91 --- Gn-k

is a generator matrix for C. This means that we encode an information
sequence (@g, d;, ..., @) as aG which is the polynomial

(ap +a;x + - + ap_ x*)g(x).

A more convenient form of the generator matrix is obtained by defining (for
i>n—k), x' = g(x)q:(x) + r(x), where r(x) is a polynomial of degree <
n — k. The polynomials x’ — ry(x) are codewords of C and form a basis for
the code, which yields a generator matrix of C in standard form (with I,
in back). In this case (ay,a;,...,a,_;) is encoded as follows: divide
(ag +ayx+ -+ a_ x*")x"* by g(x) and subtract the remainder from
(@ + ayx + - + a,_, x*"')x""* thus obtaining a codeword.

Technically this is a very easy way to encode information because the
division by a fixed polynomial can be realized by a simple shift register (for a
definition see Chapter 13).

Since g(x) is a divisor of x" — 1, there is a polynomial h(x) = hy + h, x +
-+ + h,x* such that g(x)h(x) = x" — 1 (in F,[x]). In the ring F [x]/Ax" — 1) we
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have g(x)h(x) =0, i.e. gohy + g hiy + " + Guihipee =0 for i=0, 1, ...,
n — 1. It follows that

00 ... 0 h ... h h
Hee |00 o B oo By kg O
he ... hy hy O ... 0

is a parity check matrix for the code C. We call h(x) the check polynomial of
C. The code C consists of all ¢(x) such that c(x)h(x) = 0. By comparing G and
H we see that the code with generator polynomial h(x) is equivalent to the
dual of C (obtained by reversing the order of the symbols). Very often this
code is simply called the dual of C (which causes a lot of confusion since it is
not equal to C*). Notice that in this sense, the “dual” of a maximal cyclic code
M is the minimal cyclic code M.

Consider the minimal cyclic code M;” with generator g(x) = (x" — 1)/fi(x)
where f;(x) has degree k. If a(x) and b(x) are two codewords in M;” such that
a(x)b(x) = 0, then one of them must be divisible by f;(x) and it is therefore O.
Since M; has no zero divisors, it is a field, i.e. it is isomorphic to lF:. A
particularly interesting example is obtained if we take n = 2* — 1 and fj(x) a
primitive polynomial of degree k. In that case the n cyclic shifts of the
generator polynomial g(x) are apparently all the nonzero codewords of M.
This means that the code is equidistant (cf. Section 5.2) and therefore this
distance is 27" (by (3.8.5)). As a consequence we see that for every primitive
divisor f(x) of x" — 1 (where n = 2* — 1) the polynomial (x" — 1)/f(x) has
exactly 27! coefficients equal to 1. An example with k = 3 was given in (6.1.5).

§6.3. Zeros of a Cyclic Code

Let x" — I = fi(x)... fi(x) and let §; be a zero of f;(x) in some extension field
of F,. Then fi(x) is the minimal polynomial of §; and therefore the maximal
code M; is nothing but the set of polynomials ¢(x) for which ¢(8;) = 0. So in
general a cyclic code can be specified by requiring that all codewords have
certain prescribed zeros. In fact, it is sufficient to take one zero f5; of each
irreducible factor f; of the generator polynomial g(x) and require that all
codewords have these points as zeros (all in a suitable extension field of F,). If
we start with any set «;, a,, ..., «, and define a code C by c(x) € Ciffc(e;)) = 0
fori=1,2,...,s, then C is cyclic and the generator polynomial of C is the
least common multiple of the minimal polynomials of «,, «,, ..., a,. Suppose
that all these zeros lie in [ (Which we can represent as a vector space F").
For every i we can consider the m by n matrix with the vector representations
of 1, a;, a?, ..., ()" as columns and put all these together to form the
sm by n matrix H which has its entries in F,. Clearly cH” = 0, where ¢ =
{co, €y ..., Cuey), means the same thing as c(¢))=0fori=1, 2,...,s. The
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rows of H are not necessarily independent. We may obtain a parity check
matrix from H by deleting some of the rows. As an illustration of this way of
describing cyclic codes, we shall prove that binary (and many other) Ham-
ming codes (cf. (3.3.1)) are (equivalent to) cyclic codes.

(6.3.1) Theorem. Let n:= (g™ — 1)/(qg — 1) and let B be a primitive nth root of
unity in F m. Furthermore, let (m,q — 1) = 1. The cyclic code

C = {c(x)lc(B) = 0}

is equivalent to the [n, n — m] Hamming code over F,.

PRrOOF. Since
n=(@—-NWg" 2 +2¢" 3+ - +m—1)+m,

we have (n,q — 1) =(m,q — 1) = 1. Therefore @V %1 fori=1, 2, ...,
n—1,ie B'¢ F,fori=1,2,...,n— 1 It follows that the columns of the
matrix H, which are the representations of 1, B, 82,..., B! as vectors in F
are pairwise linearly independent over F,. So H is the parity check matrix of
an {n, n — m] Hamming code. O

We illustrate what we have learned so far by constructing binary cyclic
codes of length 9.

(6.3.2) ExampLE. The smallest extension field of F, which contains a primitive
9th root of unity is F,s. If a is a primitive element of the field, then a®* = 1 and
B:=a" is a primitive 9th root of unity. By Theorem 1.1.22, the minimal
polynomial of 8 has the zeros g, 82, g%, B8, B'¢ = 7, p** = B°. This polyno-
mial must be (x¥ — 1)/(x* — 1) = x® + x> + 1 (cf. (1.1.28)). So

(x° = 1) = (x = D(x* + x + DE® + x> + 1) = f{(x)f,(x)f3(x).

The code M3 has pairwise independent columns in H, i.e. minimum dis-
tance > 3. Since M7 clearly consists of the codewords

(cocrca coeycy €oeyca)

we immediately see that d = 3. The code M3 has check polynomial x® +
x3 4+ 1,s0it is a [9, 6] code. Since x* — 1 is a codeword, the distance is 2. If
we construct F,s with x® + x + 1 and then form the 12 by 9 matrix H for M3
in the way described before (6.3.1) it will have six rows of Os only, the all one
row, the row (110 110 110) and four rows (011 011 011). So from this
we find a 3 by 9 parity check matrix. Of course from x° + x> + 1 we find a
parity check matrix equivalent to (I I I). The reader can work out less
trivial examples in a similar way.

(6.3.3) EXAMPLE. We consider x® — 1 over F;. If B is an 8th root of unity in
F;:, then B° = B. Therefore x® — 1 must be the product of (x — 1), (x + 1), and
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three irreducible polynomials of degree 2. By substituting x =0, 1, or 2 in
x* + ax + b, we see that the only irreducible polynomials of degree 2 in F;[x]
are x> + 1, x> + x + 2, and x? + 2x + 2. So we know the factorization of
x® — 1. The cyclic code with generator g(x) := (x2 + 1)(x? 4+ x + 2) has mini-
mum distance < 4 since g(x) has weight 4. In §6.6 we demonstrate an easy way
to prove that 4 is the minimum distance of this code.

§6.4. The Idempotent of a Cyclic Code

In many applications it turns out to be advantageous to replace the generator
polynomial of a cyclic code by a polynomial c(x) called the idempotent. The
definition is included in the following theorem.

(6.4.1) Theorem. Let C be a cyclic code. Then there is a unique codeword c(x)
which is an identity element for C.

PRrOOE. Let g(x) be the generator polynomial of C and h(x) the check polyno-
mial, ie. g(x)h(x) = x" — 1 in F,[x]. Since x" — 1 has no multiple zeros we
have (g(x), h(x)) = 1 and hence there exist polynomials a(x) and b(x) such that
a(x)g(x) + b(x)h(x) = 1. Now define

c(x) == a(x)g(x) = 1 — b(x)h(x).

Clearly ¢(x) is a codeword in C. Furthermore if p(x)g(x) is any codeword in
C, then

c(x)p(x)g(x) = p(x)g(x) — b(x)h(x)p(x)g(x)
= p(x)g(x) (mod(x" — 1).

So ¢(x) is an identity element for C, and hence it is unique. ad

Since ¢?(x) = c(x), this codeword is called the idempotent. Of course, there
can be other elements in C that are equal to their squares, but only one
of these is an identity for the code. Since every codeword v(x) can be written
as v(x)c(x), i.e. as a multiple of c(x), we see that c(x) generates the ideal C.

Let us consider the factorization x" — 1 = f;(x)... f,(x) once more. We now
take g = 2. From Theorem 1.1.22 we know that these factors correspond to
the decomposition of {0, 1, ..., n — 1} into so-called cyclotomic cosets: {0}, {1,
2,4,...,2},...,{a, 2a, ..., 2°a}, where s is the minimal exponent such that
a(2**' — 1) = 0(mod n). In Example 6.3.2 this decomposition was {0}, {1, 2, 4,
8, 7, 5}, {3, 6}, with n=9. On the other hand, it is obvious that if an
idempotent c(x) contains the term x/, it also contains the term x*. Therefore
an idempotent must be a sum of idempotents of the form x® + x2* +--- +
x**, where {a, 2a, ..., 2°a} is one of the cyclotomic cosets. Since there are
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exactly 2‘ such sums, we see that it is very easy to find all possible idempotents
and hence generate all binary cyclic codes of a given length without factoring
x" — 1 at all!

We extend the theory a little further. Again we make the restriction g = 2.
First observe that from the proof of Theorem 6.4.1 it follows that if c(x) is the
idempotent of the code C, with generator g(x) and check polynomial h(x),
then 1 + ¢(x) is the idempotent of the code with generator h(x). Therefore
1 + x"c(x™!) is the idempotent of the dual code.

(6.4.2) Definition. The idempotent of an irreducible cyclic code M;™ is called
a primitive idempotent and denoted by 6,(x). For example in (6.1.5) the polyno-
mial (x? + 1)g(x) = x® + x5 + x> + 1 is a primitive idempotent.

Let a be a primitive nth root of unity in an extension field of F,. If the
polynomial ¢(x) is idempotent, then c(a’) = 0 or 1 for all values of i and the
converse is clearly also-true. If ¢(x) is a primitive idempotent, then there is an
irreducible factor f(x) of x™ — 1 such that c(z) = 1 iff f(a’) = 0, i.e. c(a’) = 1
iff i belongs to one of the cyclotomic cosets {a, 2a, ...}. Such a primitive
idempotent is often denoted by 8,, i.e. in (6.4.2) the index i is chosen from the
representatives of different cyclotomic cosets. For example, consider n = 15
and let « be a zero of x* + x + 1. Then the primitive idempotent belonging
to the minimal cyclic code with check polynomial x* + x + 1 is denoted by
6, and in this case 6_, corresponds to nonzeros a™!, 72, a™*, a7% ie. to the
check polynomial x* + x> + 1. In the following, if no such « has been fixed,
we simply number the irreducible cyclic codes M, M5, ..., M, .

(6.4.3) Theorem. If C, and C, are cyclic codes with idempotents c,(x) and c,(x),
then:

(i) C, N C, has idempotent c,(x)c,(x);
(ii) C, + C,, i.e. the set of all words a + b with a € C, and b € C,, has idem-
potent ¢,(x) + ¢,(x) + ¢, (x)c,(x).

PROOF.

(1) is a trivial consequence of Theorem 6.4.1;

(i) follows in the same way since c,(x) + ¢,(x) + ¢,(x)c,(x) is clearly in
C, + C, and is again easily seen to be an identity element for this code
because all codewords have the form a(x)c,(x) + b(x)c,(x). O

(6.4.4) Theorem. For the primitive idempotents we have:
(1) 6:(x)6;(x) =0 if i # j;
() Yiei 00 = 1;
(i) 1+ 6 (x) + 6,(x) + - + 6, (x) is the idempotent of the code with genera-
tor f; (x)f;,(x)...f: (x).
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PROOF.

(i) follows from Theorem 6.4.3(i) since M; N M; = {0};
(i1) follows from Theorem 6.4.3(ii) and Theorem 6.4.4(i) because M; +
M3 +--- + M/ is the set of all words of length n; and finally
(i) is proved by observing that the check polynomial of M; + --- + M| is
Ji,(%)... £, (x). O

It is not too difficult to find the primitive idempotents, using these theo-
rems. One then has an easy way of finding the idempotent of a code if the
generator is given in the form f; (x)... f; (x).

In several more advanced topics in coding theory, one finds proof tech-
niques involving idempotents. In this book we shall not reach that stage but
nevertheless we wish to show a little more.about idempotents. The reader who
wishes to study the literature will find the following remarks useful.

Consider a cyclic code C of length n with generator g(x). Let x" — 1 =

g(x)h(x). We consider the formal derivatives of both sides (cf. Section 1.1). We
find

T = g'(x)h(x) + g(x)h'(x).

Here the degree of g(x)h’(x) is n — 1 iff the degree of h(x) is odd. Multiply
both sides by x and reduce mod x" — 1. We find

= xg'(x)h(x) + xg(x)h’'(x) + (x" — 1),

where the final term cancels the term x" which occurs in one of the other two
polynomials. We see that the idempotent of C is xg(x)}h’(x) + 6(x" — 1), where
0 =1 if the degree of h(x) is odd, 0 otherwise. As an example consider
the minimal code of length 15 with check polynomial x* + x + 1. The idem-
potent 8, is xg(x) = x(x'% — 1)/(x* + x + 1).

The following correspondence between idempotents is another useful exer-
cise. The example above can serve as an illustration. Let f(x) be a primitive
divisor of x" — 1, where n = 2¥ — 1. Let « be a primitive element of F,« for
which f(a) = 0. The primitive idempotents 8,, resp. §_, correspond to the
cyclotomic cosets {1,2,...,2¥" 1}, resp. { — 1, —2,..., —2*7'}. We claim that

n—1
6.,(x) = p(x) = ) _ Tr(a))x',
i=0

where Tr is the trace function (cf. (1.1.29)). In order to show this, we must
calculate p(a') for/ =0,1,...,n— 1 We have

(0((21) — Z l)x Z (a Z ;) (al+21‘)i_

The inner sum is O unless @'*? = 1. Hence ¢(a') = 1 if | = —2 for some value
of j and g(@') = 0 otherwise. This proves the assertion.

Idempotents are used in many places, e.g. to calculate weight enumerators.
We do not go into this subject but refer the reader to [42] and [46]. The
theory treated in this section, especially Theorem 6.4.4, is a special case of the
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general theory of idempotents for semi-simple algebras. We refer the reader
to [16].

§6.5. Other Representations of Cyclic Codes

There are several other ways of representing cyclic codes than the standard
way which was treated in Section 6.1. Sometimes a proof is easier when one
of these other representations is used. The first one that we discuss makes use
of the trace function (cf. (1.1.29)).

(6.5.1) Theorem. Let k be the multiplicative order of p mod n, q = p*, and let
B be a primitive nth root of unity in F,. Then the set

= {c(¢) = (Tr(£), Tr(CB), ..., Tr(¢B )¢ e F}

is an [n, k] irreducible éyclic code over F,.

ProoF. By Theorem 1.1.30, V is a linear code. Next, observe that ¢(éf7!) is a
cyclic shift of ¢(¢). Hence V is a cyclic code. Since § is in no subfield of F, we
know that f8 is a zero of an irreducible polynomial h(x) = hy + hyx + -+ +
h,x* of degree k. If ¢(£) = (cg, €y ---» Cpy) then

ich = Tr(¢h(B)) = Tr(0) = 0,

i.e. we have a parity check equation for the code V.
Since h(x) is irreducible, we see that x*h(x™!) is the check polynomial for
V and V is therefore an irreducible cyclic [n, k] code. |

We shall now introduce a discrete analog of the Fourier transform, which
in coding theory is always referred to as the Mattson-Solomon polynomial.
Let B be a primitive nth root of unity in the extension field # of F,. Let T be
the set of polynomials over & of degree at most n — 1. We define ®: T > T
as follows. Let a(x) € T. Then A(X) = (®a)(X) is defined by

(6.52) AX) = Z a(BH) X",

Ifa =(ay, ay,...,a,,), then the polynomial A(X) obtained from a, + a,x +
-+ a,_,x""!is called the Mattson-Solomon polynomial of the vector a.

(6.5.3) Lemma. The inverse of ® is given by
a(x) = n"Y®@A)(x"")  (mod x" — 1).

Proor.

n

T 0 ST

Jj=1i
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Let o denote multiplication of polynomials mod(x” — 1) and let = be
defined by

O aix) =} bix') =Y abxt
Then it is easily seen that @ is an isomorphism of the ring (T, +, o) onto the
ring (T, +, *).
Now let us use these polynomials to study cyclic codes.

(6.5.4) Lemma. Let V be a cyclic code over F, generated by
g(x) = [] (x— .

kekK
Suppose {1, 2, ...,d — 1} =« K and a € V. Then the degree of the Mattson-
Solomon polynomial A of a is at most n — d.

PRrOOF. a(f’) = 0for 1 < j < d — 1 since a(x) is divisible by g(x). The result
follows from (6.5.2). , O

(6.5.5) Theorem. If there are r n-th roots of unity which are zeros of the
Mattson-Solomon polynomial A of a word a, then w(a) =n —r.

Proor. This is an immediate consequence of Lemma 6.5.3. O

We can also make a link between cyclic codes and the theory of linear
recurring sequences for which there exists extensive literature (cf. e.g. [61]). A
linear recurring sequence with elements in [ is defined by an initial sequence
ag, ay, ..., a,_, and a recursion

k
(6.5.6) a+ Y ba_;=0, (k)
i=1

The standard technique for finding a solution is to try g, = B°. This is a
solution of (6.5.6) if B is a zero of h(x), where h(x) := x* + Y%, b,x*™%. Let us
assume that the equation h(x) = 0 has k distinct roots j,, B,, ..., B, in some
extension field of F,. Then, if ¢, ¢,, ..., ¢, are arbitrary, the sequence g, =
Y% ¢;B! is a solution of (6.5.6). We must choose the c; in such a way that a,
a,, ..., a,_; have the prescribed values. This amounts to solving a system of
k linear equations for which the determinant of coefficients is the Vander-
monde determinant

1 1 .1
B B . B
(6.5.7) gt B ... B | =TlB—-B)#0.
i>j
RRTIEE -
1 2 s Pk

So we can indeed find the required sequence.
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Suppose h(x) is a divisor of x" — 1 (again (n, g) = 1). Then the linear
recurring sequence is periodic with period a divisor of n. Now consider all
partial sequences (ao, ay, ..., a,_,) where (ag, a,, ..., a;_,) runs through F}.
We then have an [n, k] cyclic code with x*h(x™"') as check polynomial. So

C = {(aO’ LERE} an—l)

k
a = Zi c;pl0<l<n)(cy,cy.-.rC)E lF:}

is another representation of a cyclic code.

§6.6. BCH Codes

An important class of cyclic codes, still used a lot in practice, was discovered
by R. C. Bose and D. K. Ray-Chaudhuri (1960) and independently by A.
Hocquenghem (1959). The codes are known as BCH codes.

(6.6.1) Definition. A cyclic code of length n over [, is called a BCH code of
designed distance J if its generator g(x) is the least common multiple of the
minimal polynomials of 8/, '*!, ..., B'**~2 for some I, where f is a primitive
nth root of unity. Usually we shall take [ = 1 (sometimes called a narrow-sense
BCH code). If n = g™ — 1, i.e. f§ is a primitive element of F,., then the BCH
code is called primitive.

The terminology “designed distance” is explained by the following theo-
rem.

(6.6.2) Theorem. The minimum distance of a BCH code with designed distance
d is at least d.

FIrsT PROOF. In the same way as in Section 6.3 we form the m(d — 1) by n
matrix H:

1 ﬁ[ BZI . ﬁ(n—l)l
oo 1 ﬂu-x ﬂZ(H-l) . ﬂ(n-l)(lﬂ)
1 ﬁH—d—Z ﬂl(hd—Z) . ﬂ(n—l)(l+d-2)

where each entry is interpreted as a column vector of length m over F,. A word
cisin the BCH code iff cHT = 0. The m(d — 1) rows of H are not necessarily
independent. Consider any d — 1 columns of H and let g%, ..., -\ be the
top elements in these columns. The determinant of the submatrix of H ob-
tained in this way is again a Vandermonde determinant (cf. (6.5.7)) with value
Bt *ia-0lT] L (B — B) # 0, since B is a primitive nth root of unity.
Therefore any d — 1 columns of H are linearly independent and hence a
codeword ¢ # 0 has weight > d.
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SecoND PROOF. W.lo.g. we take | = 1. By Lemma 6.5.4 the degree of the
Mattson-Solomon polynomial of a codeword ¢ is at most n — d. Therefore in
Theorem 6.5.5 we have r < n — d, i.e. w(c) > d. O

REMARK. Theorem 6.6.2 is usually called the BCH bound. From now on we
usually consider narrow sense BCH codes. If we start with | = 0 instead of
I = 1 we find the even weight subcode of the narrow sense code.

ExaMPLE. Letn =31,m = 5,9 = 2 and d = 8. Let « be a primitive element of
Fs,. The minimal polynomial of a is

(x —a)(x — a®)(x — a*)(x — a®)(x — a'®).
In the same way we find the polynomial m;(x). But
ms(x) = (x — a®)(x — «*%)(x — «®°)(x — &®)(x — *®) = my(x).

It turns out that g(x) is the least common multiple of m, (x), m;(x), ms(x), m,(x)
and mg(x). Therefore the minimum distance of the primitive BCH code with
designed distance 8 (which was obviously at least 9) is in fact at least 11.

Several generalizations of the BCH bound have been proved. We now
describe a method of estimating the minimum distance of a cyclic code. The
method is due to J. H. van Lint and R. M. Wilson [76]. Earlier improvements
of Theorem 6.6.2 are consequences of the method.

If A = {a’,...,a"} is a set of n-th roots of unity such that for a cyclic code
C of length n

C(X) € C¢>V§EA[C(5) = O]’
then we shall say that A4 is a defining set for C. If 4 is the maximal defining

set for C, then we shall call A complete.

(6.6.3) Definition. We denote by M(4) or M(a'™, ..., a") the matrix of size [
by n that has 1, a®, a2 .. g™ Vi a5 its kth row; that is

1 ar gt . grbh

) ) 1 a2 g?2 .. g2
M(a™,...,a%) =

1 ot ot ... gk

We refer to M(A) as the parity check matrix corresponding to A. This is
the same notation as in Theorem 6.6.2. (Note that over [, the matrix M(4)
has rows that are not necessarily independent.)

(6.6.4) Definition. A set A = {a™, ..., a”*} will be called a consecutive set of

length [ if there exists a primitive nth root of unity f and an exponent i such
that 4 = {Bi, ﬁiﬂ’ ey ﬂiﬂ—l}_
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So, Theorem 6.6.2 states that if a defining set 4 for a cyclic code contains
a consecutive set of length d — 1, then the minimum distance is at least 4. A
consequence of our proof of Theorem 6.6.2 is the following lemma.

(6.6.5) Lemma. If A is a consecutive set of length |, then the submatrix of M(A)
obtained by taking any | columns has rank |.

We shall frequently use the following corollary of this lemma.

(6.6.6) Corollary. If B is a primitive n-th root of unity and
<< <ip=i+t—1,

then if we take any t columns of M(B", B, ..., B'), the resulting matrix has
rank k.

We now introduce the notation
AB:= {{n|ée A,ne B}.

Subsequently, we consider a product operation for matrices that will be
applied in the special situation where the matrices are parity check matrices
of the form M(A) defined in (6.6.3).

(6.6.7) Definition. The matrix A4 * B is the matrix that has as its rows all
products ab, where a runs through the rows of 4 and b runs through the rows
of B.

The following (nearly trivial) lemma is the basis of the method to be
described. We consider matrices 4 and B with n columns.

(6.6.8) Lemma. If a linear combination of all the columns of A+ B with non-
zero coefficients is 0, then

rank(A) + rank(B) < n.

Proor. If the coefficients in the linear combination are 4; (j = 1, ..., n) then
multiply column j of B by 4; (j = 1, ..., n). This yields a matrix B’ with the
same rank as B. The condition of the lemma states that every row of 4 has
inner product 0 with every row of B'. Since this implies that rank(4) +
rank(B’) < n, we are done. O

Now we are in a position to state the theorem that will enable us to find
the minimum distance of a large number of cyclic codes. If ¢ is a codeword in
a cyclic code, then the support I of ¢ is the set of coordinate positions i such
that ¢; # 0. If 4 is a matrix, then A, denotes the submatrix obtained by
deleting the positions not in .
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(6.6.9) Theorem. Let A and B be matrices with entries from a field F. Let A+ B

be a parity check matrix for the code C over F. If I is the support of a codeword
in C, then
rank(A;) + rank(B;) < |I|.

Proor. This is an immediate corollary of Lemma 6.6.8. O

We shall apply this theorem in the following way. Lemma 6.6.5 allows us
to say something about the rank of suitable matrices of type A,, respectively
B,. If the sum of these ranks is > |I| for every subset I of {1, 2, ..., n} of size
< &, then the code has minimum distance at least d.

(6.6.10) ExaMpLE. We illustrate the method by proving the so-called Roos
bound. This bound states that if 4 is a defining set for a cyclic code with
minimum distance d, and if B is a set of nth roots of unity such that the
shortest consecutive set that contains B has length < |B| + d, — 2, then the
code with defining set AB has minimum distanced > |B| + d, — L.

To prove this, we first observe that we have

1, for|I] < d,

rank(M(4),) = {Z d,—1, for|l|>d,.

Then Corollary 6.6.6 provides us with information on the rank of submatrices

of M(B), namely
rank(M(B);) > {1’ for|I} <d,

[ —-dy+2, ford,<|I|<|B{+d,—2
We now apply Theorem 6.6.9. We find from the above that
rank(M(A4),) + rank(M(B);) > |I| for |I| < |B| + d, — 2,

and hence for these values of | I, the set I cannot be the support of a codeword
of a code with defining set AB. (Here we use the fact that the rows of
M(A)» M(B) are the same as the rows of M(AB).)

Remark. This bound is due to C. Roos [80]. The special case where B is a
consecutive set was proved by C. R. P. Hartmann and K. K. Tzeng in 1972;
cf. [33].

ExaMPLE. Consider the cyclic code C of length 35 with generator

g(x) = my (x)ms(xym(x).

If « is a primitive 35th root of unity, then the defining set of C contains the
set {a']i = 7, 8,9, 10, 11, 20, 21, 22, 23}. This set can be written as 4B, where
A= {a'i=17,8,9,10} and B = {B/|j = 0, 3, 4} with B = a'? (also a primitive
35th root of unity). The set A is the defining set for a cyclic code with
minimum distance d, = 5. The set B is contained in a consecutive set of length
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5. The condition on |B| of Example 6.6.10 is satisfied. It follows that C has
minimum distance at least 3 + 5 — 1 = 7. This is in fact the minimum dis-
tance of this code. Note that the BCH bound only shows that the minimum
distance is at least 6.

Before giving one of the nicest examples of our method, we prove a special
case of a theorem due to R. J. McEliece.

(6.6.11) Lemma. Let C be a binary cyclic code of length n with complete
defining set R. Suppose that no two nth roots of unity that are not in R have
product 1. Then the weight of every codeword in C is divisible by 4.

Proor. Clearly 1 € R and for every nth root of unity y, we have y € R or
971 e R. Let ¢(x) = x"* + x'2 4+ --- 4+ x« be a codeword. Since 1 € R, k must
be even. Since c¢(x)c(x™!) is zero for every nth root of unity, it is the zero
polynomial. If x* = x'™™, then x/™" = x™, ie. in the product c(x)c(x™*)
the terms cancel four at a time. There are k terms equal to 1 and hence
k(k — 1) = 0 (mod 4), so 4]k. O

A consequence of Lemma 6.6.11 is that the dual C of the primitive BCH
code of length 127 and designed distance 11, has minimum distance divisible
by 4. By the BCH bound, C has minimum distance at least 16. By the Roos
bound the distance is at least 22, so in fact at least 24 from Lemma 6.6.11.
Since the code contains the shortened second order Reed-Muller code (2,
7), its minimum distance is at most 32. We shall now show that the method
treated above shows that d > 30, thus showing that in fact d = 32.

ExampPLE. Let R be the defining set of C. Note that R contains the sets
{of|81 <i <95}, {«!|98 < i< 111}, {a|113 < i < 127}, where a is a primitive
127th root of unity. Let

A={a'I83<i<95}u{ai98 <i< 111}
B={pl|j=-17,0,1}, B = al®.

Then R 2 AB. The set 4 contains 14 consecutive powers of «, and further-
more, it is a subset of a set of 29 consecutive powers of a, with the powers a”¢
and «®” missing. So, from Lemma 6.6.5 and Corollary 6.6.6 we have

|1, forl <l < 14
rank(M(4);) > < 14, forld<|I| <16
[l -2, forl7 <11} <29.
In the same way we find
], forl <l <2
rank(M(B);) > < 2, for2<|I|<8
3, for|l|=0.
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By Theorem 6.6.9 a set I with |I| < 30 cannot be the support of a codeword
in C.

It was shown by Van Lint and Wilson [76] that the method described
above gives the exact minimum distance for all binary cyclic codes of
length < 63 with only two exceptions.

Finding the actual minimum distance of a BCH code is in general a hard
problem. However, something can be said. To illustrate this we shall restrict
ourselves to binary primitive BCH codes. We first must prove a lemma.
Consider F,« as the space F% and let U be a subspace of dimension I. We define

i)=Y cux"
(6.6.12) Lemma. If i has less than | ones in its binary expansion then Y, (U) = 0.

Proor. We use induction. The case | = 1 is trivial. Let the assertion be true
for some [ and let V have dimension ! + 1and ¥V = U u (U + b), where U has
dimension I. Then

Al N S AT
V)= (U + ZU (x + by = ZO <v>b‘““ 2..(0).
If the binary expansion of i has at most / ones, then by Theorem 4.5.1 the

binomial coefficient , where v < i,1is 0 unless the binary expansion of v has
v

less than [ ones, in which case Y, (U) is 0 by the induction hypothesis. |

(6.6.13) Theorem. The primitive binary BCH code C of lengthn = 2™ — 1 and
designed distance 6 = 2' — 1 has minimum distance 6.

PrOOF. Let U be an I-dimensional subspace of F,.. Consider a vector ¢ which
has its ones exactly in the positions corresponding to nonzero elements of U,
ie.
cx)= Y xL
j:aie U\{0O}

Let 1 <i < 2'— 1. Then the binary expansion of i has less than [ ones.
Furthermore c(a’) = Y, (U) and hence by Lemma 6.6.12 we have c(«’) = 0 for
1<i<?2' —1,ie. c(x)is a codeword in C. g

(6.6.14) Corollary. A primitive BCH code of designed distance 6 has distance
d<2-1.

Proor. In Theorem 6.6.13 take ! such that 2'"! < § < 2' — 1. The code of
Theorem 6.6.13 is a subcode of the code with designed distance J. O

Although it is not extremely difficult, it would take us too long to also give
reasonable estimates for the actual dimension of a BCH code. In the binary
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case we have the estimate 2™ — 1 — mt if § = 2t + 1, which is clearly poor for
large ¢t although it is accurate for small ¢ (compared to m). We refer the
interested reader to [46]. Combining the estimates one can easily show that
long primitive BCH codes are bad in the sense of Chapter 5, i.e. if C, is a
primitive [n,, k,, d,] BCH code for v=1, 2, ..., and n, — o, then either
k,/m,-+0o0rd,/n,—0.

In Section 6.1 we have already point.d out that the automorphism group
of a cyclic code of length n over F, not only contains the cyclic permutations
but also 7,. For BCH codes we can prove much more. Consider a primitive
BCH code C of length n = q™ — 1 over F, with designed distance d (i.c. a, &%,

.., a%71 are the prescribed zeros of the codewords, where « is a primitive
element of F ).

We denote the positions of the symbols in the codewords by X; (i =0, 1,

., n— 1), where X; = o’. We extend the code to C by adding an overall
parity check. We denote the additional position by oo and we make the
obvious conventions concerning arithmetic with the symbol co. We represent
the codeword (cg, €1, ..., Co) DY Co + €1 X + -+ + €o— X" + o x® and make
the further conventions 1% := 1, (a!)® := 0 for i # 0 (mod n).

We shall now show that C is invariant under the permutations of the affine
permutation group AGL(1, ¢™) acting on the positions (cf. Section 1.1). This
group consists of the permutations

P, (X):=uX +v, (u € Fym, v € Fpm, u # 0).

The group is 2-transitive. First observe that P, o is the cyclic shift on the
positions of C and that it leaves oo invariant. Let (cy, ¢, ..., ¢y, ) € Cand
let P, , yield the permuted word (cg, i, ..., ¢p). Thenfor0 <k <d — 1 we
have

ZC' * = Zc(ua + o) ch,z(> k!

i 1=0

k (k .
= Z ( )ulvk—-l Z Ci(a’)l —
S0 \! T

because the inner sum is 0 for 0 </ <d — 1 since ce C. So we have the
following theorem.

(6.6.15) Theorem. Every extended primitive BCH code of length n +'1 = g™
over F, has AGL(1, q™) as a group of automorphisms.

(6.6.16) Corollary. The minimum weight of a primitive binary BCH code is odd.

PRroOF. Let C be such a code. We have shown that Aut(C) is transitive on the
positions. The same is true if we consider only the words of minimum weight
in C. So C has words of minimum weight with a 1 in the final check position.

a
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§6.7. Decoding BCH Codes

Once again consider a BCH code of length n over F, with designed distance
6 =2t + 1 and let B be a primitive nth root of unity in F,.. We consider a
codeword C(x) and assume that the received word is

R(x) =Ry + Ryx + "+ R, x""..

Let E(x):= R(x) — C(x) = Eq + E;x +--- + E,_;x"™* be the error vector.
We define:

M = {i|E; #0}, the positions where an error occurs,
e:=|M|, the number of errors,

a(z) = H (1 — B'z), which we call the error-locator polynomial,

ieM
w(z) == Z}w Epiz EL_!” (1 — piz).

It is clear that if we can find o(z) and w(z), then the errors can be corrected.
In fact an error occurs in position i iff 5(87) = 0 and in that case the error is
E, = —w(B7)B/d'(B~"). From now on we assume that e <t (if e > ¢t we do
not expect to be able to correct the errors). Observe that

(_D.@ = Eiﬂiz = . > (il
o(2) _iEZLl 1 —ﬂiZ i;M E z; (F2)
=32 Y Efi= Y JERY,
=1 ieM =1

where all calculations are with formal power series over F.. For 1 <1< 2t
we have E(B') = R(B"), i.e. the receiver knows the first 2t coefficients on the
right-hand side. Therefore w(z)/o(z) is known mod z%'*!. We claim that the
receiver must determine polynomials ¢(z) and w(z) such that degree w(z) <
degree a(z) and degree a(z) is as small as possible under the condition

2t
(67.1) 292 5 R (mod )

Let S,:= R(B") for I =1,..., 2l and let 6(z) = D {0 0;z". Then
2t e
w(z) = (Z S,z') ( Yy, a,-z‘) =) z"( Y S,a,-) (mod z2'*").
=1 i=0 X i+1=k
Because w(z) has degree < e we have

Y S0,=0  fore+1<k<2t
i+l=k
This is a system of 2t — e linear equations for the unknowns g, ..., g, (we
know that 6, = 1). Let 6(z) = ¥ &, 6;z' (where 6, = 1) be the polynomial of
lowest degree found by solving these equations (we know there is at least the
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solution ¢(z)). Fore + 1 < k < 2t we have

0= Z Si-10; = Z Z EiB(k_max = Z Eiﬁik&(ﬁ-i)-
1 ieM 1 ieM

We can interpret the right-hand side as a system of linear equations for
E.5(B7") with coefficients p*. So the determinant of coefficients is again
Vandermonde, hence # 0. So E;G(B~") =0 for ie M. Since E; #0 forie M
we see that o(z) divides (z), i.e. 6(z) = o(z). So indeed, the solution &(z) of
lowest degree solves our problem and we have seen that finding it amounts
to solving a system of linear equations. The advantage of this approach is that
the decoder has an algorithm that does not depend on e. Of course, in
practice it is even more important to find a fast algorithm that actually does
what we have only considered from a theoretical point of view. Such an
algorithm (with implementation) was designed by E. R. Berlekamp (cf. [2],
[24]) and is often referred to as the Berlekamp-decoder.

If we call the (known) polynomial on the right hand side of (6.7.1) 5(z) and
define G(z) := z%*!, then (6.7.1) reads

6.7.1) S(z)a(z) = w(z) (mod G(2)).

We need to find a solution of this congruence with o of degree < t and w of
degree smaller than the degree of ¢. The (unique) solution makes the error
correction possible. In §9.5 we encounter the same congruence.

§6.8. Reed-Solomon Codes

One of the simplest examples of BCH codes, namely the case n = g — 1, turns
out to have many important applications.

(6.8.1) Definition. A Reed-Solomon code (RS code) is a primitive BCH code of
length n = g — 1 over F,. The generator of such a code has the form g(x) =
[T/2 (x — ') where « is primitive in F,.

By the BCH bound (6.6.2) the minimum distance of an RS code with this
generator g(x) is at least d. By Section 6.2 this code has dimension k =
n — d + 1. Therefore Corollary 5.2.2 implies that the minimum distance is d
and the RS code is a maximum distance separable code.

Suppose we need a code for a channel that does not have random errors
(like the B.S.C.) but instead has errors occurring in bursts (i.e. several errors
close together). This happens quite often in practice (telecommunication,
magnetic tapes, compact disc). For such a channel, RS codes are often used.
We illustrate this briefly. Suppose binary information is taken in strings of m
symbols which are interpreted as elements of F,». If these are encoded using RS
code, then a burst of several errors (in the Os and 1s) will influence only a few
consecutive symbols in a codeword of the RS code. Of course this idea can be
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used for any code but since the RS codes are MDS they are particularly useful.
A more important application will occur in Section 11.2. In connection with this
application we mention the original approach of Reed and Solomon. Letn = g—1,
o a primitive element of F,. As usual, identify a = (ag, ai, ..., @) € F with
ag+ax+...+a_x*"' =a(x). Then

C={(co, €1s--» Cu)l; = a(@’), 0 < i< n,aeF}

is the RS code withd = n — k + 1. To see this first observe that C is obviously
cyclic. The definition of C and Lemma 6.5.3 imply that a codeword ¢ has na(x)
as its Mattson-Solomon polynomial. Since the degree of a(x) is < k — 1 this
means that c(@’)=0fori=1,2, ..., n—k Hence C is an RS code. This
representation gives a very efficient encoding procedure for RS codes even
though it is not systematic.

If we extend the words of C by adjoining a symbol ¢, = a(0), then ) J_oc; =
ayq = 0. So, we indeed obtain C. If ¢, = 0, i.e. ¢(1) = 0, then the word has
weight > n — k + 2 and clearly this is also true if ¢, # 0. So, the code Cisalso
an MDS code.

The second representation of Reed-Solomon codes allows us to generalize the
idea. We now consider F,» as alphabet and choose n distinct elements from the
field, say @), ¢, ..., d,. Letv = (v, v,,..., v,) be a vector from IF;,,. with no
zero coordinates and write a := (@, @3, ..., ®,).

(6.8.2) Definition. The generalized Reed-Solomon code GRS (a, v) has as code-

words all (v, f(), V2 f(@3), - . ., U, f(a,)), where f runs through the set of poly-
nomials of degree less than k in F »{x].

In the same way as above, we see that a generalized Reed-Solomon code and
its dual are MDS codes.

Our second description of RS codes also allows us to give a rough idea of the

codes that are defined using algebraic geometry. In (1.3.4) we saw that the
projective line of order g can be described by giving the points coordinates
(x, y), where (x, y) and (cx, cy) are the same point (c € F,). If a(x, y) and b(x, y)
are homogeneous polynomials of the same degree, then it makes sense to
study the rational function a(x, y)/b(x, y) on the projective line (since a change
of coordinates does not change the value of the fraction). We pick the point
Q := (1, 0) as a special point on the line. The remaining points have as
coordinates (0, 1) and (&}, 1), (0 < i < q — 1), where « again denotes a primi-
tive element of F,. We now consider those rational functions a(x, y/y' for
which [ < k (and of course a(x, y) is homogeneous of degree [). This is a vector
space (say K) of dimension k and one immediately sees that the description
of RS codes given above amounts to numbering the points of the line in some
fixed order (say Py, Py, ..., P,_,), and taking as codewords (f(F,), ..., f(Fy-1)s
where f runs through the space K. The functions have been chosen in such a
way that we can indeed calculate their values in all the points P; this is not
so for Q. In terms of analysis, the point Q is a pole of order at most k — 1 for
the functions in K.
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The simplest examples of algebraic geometry codes generalize this con-
struction by replacing the projective line by a projective curve in some projec-
tive space. We treat algebraic geometry codes in Chapter 10.

We now look at MDS codes in general. If C is an [n, k] code with minimum
distanced = n—k+1, then C is systematic on any k positions (cf. Problem 3.8.2).

(6.8.3) Theorem. The dual of an MDS code is also an MDS code.

Proor. Let G = (I, P) be the generator matrix of C. Since C has mini-
mum weight d, every set of d — 1 = n — k columns of the parity check matrix
H := (=P I,_.)islinearly independent. Hence every square submatrix of H is
nonsingular, i.e. no codeword of C* has n —k zeros. SoC*isan[n,n—k, k+1]
code, i.e. MDS. a

LetCbeal(n, k, d] code withd = n—k+ 1. If we consider a set of d positions
and then look at the subcode of C with zeros in all other positions, this subcode
has dimension > k — (n — d) = 1. Since this subcode has minimum distance d,
it must have dimension exactly 1. It follows that for n > d’ > d, specifying a set
of d’ positions and requiring the codewords to be zero in all other positions, will
define a subcode of C with dimension d’ — d + 1. We formulate this result as a
lemma.

(6.8.4) Lemma. Forn > d' > d = n — k + 1, the subcode of an MDS code with
parameters n, k, d, consisting of those codewords that have zeros outside a set of
d’ positions has dimensiond’ — d + 1.

‘We shall use this lemma and an analog of the Mébius inversion formula (1.1.4)
to find the weight enumerator of an MDS code. We first prove an analog of the
Mbbius inversion formula.

(6.8.5) Definition. If N is a finite setand S C T C N, then we define

WS, T) = (=17,

(6.8.6) Theorem. Let N be a finite set and let f be a function defined on the
subsets of N. If

g(8):=)_ f(R),

RCS
then

T =) (s, Tg(S).

ScT
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ProoF.
DS TS = I uE DY FR)
ScT ScT RcCS
= Y f® Y ws, 1),
RcT RcsScT

and the result then follows from the equality

ITI=IRI )
IT| - IRI) ; TI=iR] {o, fRAT
§ : §,7)= E -1Y=01-1 = .
RcScT“( ) j=0 ( J =1 ( ) 1, fR=T.

a

We now show that the weight enumerator of an MDS code is determined by
its parameters.

(6.8.7) Theorem. Let C be an [n, k] code with distance d = n — k + 1. If the
weight enumerator of C is 1 + Y 1_, A;Z, then

( )q-l)Z( 1)’( _.l)q"'f—" (i=d,d+1,...,n).

Jj=0

Proor. If Risasubsetof N := {0, 1,...,n — 1}, define f(R) to be the number
of codewords (co, ¢y, ..., ¢,—;) for which ¢; # 0 « i € R. If we define gasin
Theorem 6.8.6, then we have by Lemma 6.8.4

if|S]<d-1
g(8) = {q[sq d+l ifn>|S]>d.

By our definition of f, we have A; = 3, »_; f(R) and therefore application
of Theorem 6.8.6 yields

A= ) Y u(S Rg(S)

RCN,|R|=i SCR

() [Z()( 1)"’+Z< )( 1y qf-““}
(:l) Z <;) (=1 (g - 1).

Jj=d

The result now follows if we replace j by i — j and then use (;) = (i"1)+(i“').

i1 i
a

Theorem 6.8.7 gives the following restriction on the size of the alphabet of an
MDS code.

(6.8.8) Theorem. Ifthere exists an MDS code over F, with length n and dimension
k,theng>n—k+1lork <1.
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Proor. Letd = n — k + 1. By Theorem 6.8.7 we have ford < n,0 < Ay, =
(.2)@-D@-a. O

Since the dual of an MDS code is also MDS (Theorem 6.8.3), we find the
following corollary.

(6.8.9) Corollary. Ifthere exists an MDS code over [, with length n and dimension
k,theng>k+lord=n—-k+1<2.

§6.9. Quadratic Residue Codes

In this section we shall consider codes for which the word length n is an odd
prime. The alphabet F, must satisfy the condition: q is a quadratic residue
(mod n), i.e. ¢ "V2 = 1 (mod n). As usual a will denote a primitive nth root
of unity in an extension field of F,. Later it will turn out that we shall require
that « satisfies one more condition. We define

Ry:= {i* (mod n)lie F,,i #0},  the quadratic residues in F,,

R, = FEX\R,, i.e. the set of nonsquares in F,,

go¥)=[] x=a",  g:x):= [] x—a").

reRgy reR,

Since we have required that g (mod n) is in R,, the polynomials g,(x) and g, (x)
both have coefficients in F, (cf. Theorem 1.1.22). Furthermore

x"— 1= (x - 1)go(x)g,(x).

(6.9.1) Definition. The cyclic codes of length n over F, with generators gy(x)
resp. (x — 1)gq(x) are both called quadratic residue codes (QR codes).

We shall only consider extended QR codes in the binary case, where the
definition is as in (3.2.7). Such a code is obtained by adding an overall parity
check to the code with generator gq(x).

For other fields the definition of extended code is usually modified in such
a way that the extended code is self-dual if n = —1 (mod 4), resp. dual to the
extension of the code with generator g,{(x) if n = 1 (mod 4) (cf. [46]). In the
binary case the code with generator (x — 1)go(x) is the even-weight subcode
of the other QR code. If G is a generator matrix for the first of these codes
then we obtain a generator matrix for the latter code by adding a row of 1s
to G. If we do the same thing after adding a column of Os to G we obtain a
generator matrix for the extended code.

In the binary case the condition that g is a quadratic residue mod n simply
means that n = +1 (mod 8) (cf. Section 1.1). The permutation 7;: i = ij (mod
n) acting on the positions of the codewords maps the code with generator
go(x) into itself if j € R, resp. into the code with generator g, (x) if j € R;. So
the codes with generators g,(x) resp. g, (x) are equivalent. If n = —1 (mod 4)
then — 1 € R, and in that case the transformation x — x™! maps a codeword
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of the code with generator gq(x) into a codeword of the code with generator
g1(x).

(6.9.2) Theorem. If ¢ = c(x) is a codeword in the QR code with generator g,(x)
and if ¢(1) #0 and w(c) = d, then

(i) d*> = n,
@) ifn=—1(mod4)thend®> —d+1=>n,
(iii) if n= —1 (mod 8) and q = 2 then d = 3 (mod 4).

PROOF.

(i) Since c(1) # 0 the polynomial c(x) is not divisible by (x — 1). By a suitable
permutation n; we can transform c(x) into a polynomial é(x) which is
divisible by g,(x) and of course again not divisible by (x — 1). This
implies that c(x)é(x) is a multiple of 1 + x 4+ x? + --+ + x"". Since the
polynomial c(x)é(x) has at most d nonzero coefficients we have proved
the first assertion:

(i) In the proof above we may take j = —1. In that case it is clear that
c(x)é(x) has at most d2> — d + 1 nonzero coefficients.

(iii) Let c(x) = Y &,y x" e(x) =Y o, x " If = =1, — L then |, - =], -
I,. Hence, if terms in the product c(x)é(x) cancel then they cancel four at
a time. Therefore n = d> — d + 1 — 4a for some a > 0. O

The idempotent of a cyclic code, introduced in Section 6.4, will prove to be
a powerful tool in the analysis of QR codes.

(6.9.3) Theorem. For a suitable choice of the primitive n-th root of unity a, the
polynomial
B(x):= ) x
reRp

is the idempotent of the binary QR code with generator (x — 1)go(x) if n=1
(mod 8) resp. the QR code with generator go(x) if n = —1 (mod 8).

PROOF. 6(x) is obviously an idempotent polynomial. Therefore {8(a)}? = 6(),
ie. 8(e) = 0 or 1. By the same argument 8(«’) = () if i € R, and

0(@’) + O() = 1

if i € R,. The “suitable choice” of « is such that §(«) = 0. (The reader should
convince himself that it is impossible that all primitive elements of F, satisfy
f(e) = 1.) Our choice implies that 8(a’) =0 if i e R, and 6(a¢’) = 1 if i e R;.
Finally we have 6(a®) = (n — 1)/2. This proves the assertion. |

With the aid of 8 we now make a (0, 1)-matrix C (called a circulant) by
taking the word 0 as the first row and all cyclic shifts as the other rows. Let
c¢:=(00...0)if n =1 (mod 8) and ¢ :=(11...1)if n = — 1 (mod 8). We have
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1 1 ... 1
o[t 1 )

It follows from Theorem 6.9.3 that the rows of G (which are clearly not
independent) generate the extended binary QR code of length n + 1. We now
number the coordinate places of codewords in this code with the points of the
projective line of order n, i.e. 0,0, 1,..., n — 1. The overall parity check is in
front and it has number co. We make the usual conventions about arithmetic
operations involving co. The group PSL(2, n) consists of all transformations
x = (ax + b)f(cx + d) with a, b, c¢,d in F, and ad — bc = 1. It is not difficult to
check that this group is generated by the transformations S: x —» x + 1 and
T: x - —x'. Clearly § is a cyclic shift on the positions different from oo and
it leaves oo invariant. By the definition of a QR code, S leaves the extended
code invariant. To check the effect of T on the extended QR code it is
sufficient to analyse what T does to the rows of G. It is a simple (maybe
somewhat tedious) exercise to show that T maps a row of G into a linear
combination of at most three rows of G (the reader who does not succeed is
referred to [42]). Therefore both S and T leave the extended QR code in-
variant, proving the following theorem.

(6.9.4) Theorem. The automorphism group of the extended binary QR code of
length n + 1 contains PSL(2, n).
The modified definition of extended code which we mentioned earlier

ensures that Theorem 6.9.4 is also true for the nonbinary case (cf. [46]).

(6.9.5) Corollary. A word of minimum weight in a binary QR code satisfies the
conditions of Theorem 6.9.2.

Proor. The proof is the same as for Corollary 6.6.16. In this case we use the
fact that PSL(2, n) is transitive. Therefore the minimum weight is odd. [

ExaMpLES. (a) Letg =2, n = 7. We find
XT=1=x~-D>+x+ 1)+ x2+1).

We take gq(x) as generator. The choice of « specified in Theorem 6.9.3 implies
that x + x* + x* is also a generator. Hence go(x) = 1 + x + x>. Of course
this code is the (perfect) {7, 4] Hamming code (see Section 3.3 and Theorem
6.31). The corresponding even weight subcode was treated in (6.1.5).

(b) Let ¢ = 2, n = 23. We have

B —1=x=-DE"+x°+x7+x5+x°+x+1)
X (kM + x10 + x84+ x4+ x* + x2 + 1)
Again we take g4(x) to be the multiple of 6(x), which is
X+ T+ xS+ x5+ x+ L
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By Corollary 6.9.5 the corresponding QR code C has minimum distance
d>1.

Since Y 2 (213) =2'"'and |C| = 2! it follows that d is equal to 7 and by

(3.1.6) C is a perfect code. Since the binary Golay code of Section 4.2 is unique
we have now shown that it is in fact a QR code.

We leave several other examples as exercises (Section 6.13).

§6.10. Binary Cyclic Codes of Length 27 (n odd)

Let n be odd and x" — 1 = f,(x)f5(x). .. f,(x) the factorization of x" — 1 into
irreducible factors in F,[x].

We define g,(x) := f,(X)... fi(x), g2(x) := frs1(X)... fi(x), where k <<t
Letr, :=degg,,r, :=degg,g,.

Let C, be the cyclic code of length n and dimension n — r; with generator
g,(x), and let C, be the cyclic code of length n and dimension n — r, with
generator g,(x)g,(x), and let d; be the minimum distance of C; (i = 1, 2).
Clearly d, > d,.

We shall study the cyclic code C of length 2n and dimension 2n —r; —r,

with generator g(x) := g3(x)g,(x). We claim that this code has the following
structure:

Let a = (aq, a5, ..., a,—1) € C, and ¢ = (¢g, €y, +--5 Cp=y) € C,. Define b :=
a + c¢. Since n is odd, we can define words that belong to C by

W = (ao, bl’ az, ey b"_z, a"_l, bo, al, ey an_z, bn—-l)

and in this way we find all words of C; (the final assertion follows from
dimension arguments). To demonstrate this, we proceed as follows. Write

a(x) =ag+a;x +- -+ a, x"*
=(ag + ayx* + " + @y X" + x(a; + 0+ Gpyx"73)
= a,(x?) + xa,(x*),

and analogously for c(x) and b(x). We then have the following two (equal)
representations for the polynomial w(x) corresponding to the codeword w:

(6.10.1)  w(x) = {a,(x?) + x"*'a,(x?)} + {xb,(x?) + x"b,(x?)}
and
(6.10.2) w(x) = {a(x) + x(x" + 1)a,(x?)} + {b(x) + (x" + )b (x?)}.

Both terms in (6.10.2) are divisible by g, (x). From (6.10.1) we see that the first
term only contains even powers of x, the second one only odd powers of x.
Since g,(x) has no multiple factors, this implies that both terms are actually
divisible by g?(x).
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From (6.10.2) we find
w(x) = (x" + Da(x) + c(x) + (x" + D, (x?)

in which every term is divisible by g,(x).
Since b = a + ¢, the word w is a permutation of the word |aja + ¢|, (cf.
4.4.1). We have proved the following theorem.

(6.10.3) Theorem. Let C; be a binary cyclic code of length n (odd) with gene-
rator g,(x), and let C, be a binary cyclic code of length n with generator
g1(x)g5(x). Then the binary cyclic code C of length 2n with generator g3(x)g,(x)

is equivalent to the |uju + v| sum of C, and C,. Therefore C has minimum
distance min{2d,, d,}.

There are not many good binary cyclic codes of even length. However, the
following theorem shows the existence of a class of optimal examples.

(6.10.4) Theorem. The even weight subcode of a shortened binary Hamming
code is cyclic (for a suitable ordering of the symbols).

ProOF. It is not difficult to see that it makes no difference on which position
the code is shortened (all resulting codes are equivalent). Let n = 2° — 1. Let
m, (x) denote the minimal polynomial of a primitive element a of F,.. Then
m;(x)is the generator polynomial of the [n, n — 5] binary Hamming code and
(x + )m,(x) is the generator polynomial of the corresponding even weight
subcode. In Theorem 6.10.3 we take g,(x) = (x + 1) and g,(x) = m,(x). We
then find a cyclic code C of length 2n, dimension 2n — s — 2, with minimum
distance 4. It follows from the |u|u + v| construction that all weights in C are
even. Therefore C has a parity check matrix with a top row of 1’s and ail
columns distinct. Hence C is equivalent to the even weight subcode of a
shortened Hamming code. O

We observe that there is a different way of proving the previous theorem.
We shall use the Hasse derivative (see Chapter 1). The generator of C has 1
as a zero with multiplicity 2 and « as a zero with multiplicity 1. This means
that if ¢(x) = Y ¢;x' is a codeword, then

Ye=0, Yig=0 Yca'=0,

Le.
11 1 .. 1 1 | S 1 1
H=1]0110 .. 0 1 0 .. 0 1
1 « (ZZ . an—l o an+1 . aZn—Z aZn-l

is a parity check matrix for C; here the second row is obtained by using the
property of the Hasse derivative and multiple zeros. Note that " = 1. Hence
the matrix H, consists of all possible columns with a 1 at the top, except for
(1000...0)" and (1100...0), i.e. the code is indeed equivalent to the even
weight subcode of a shortened Hamming code.
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§6.11. Generalized Reed-Muller Codes

We shall define a class of (extended) cyclic codes over [, that are equivalent to
Reed-Muller codes in the case ¢ = 2. First, we generalize the idea of Hamming
weight to integers written in the g-ary number system.

(6.11.1) Definition. If ¢ is an integer > 2and j = Y 1 &q', with 0 < & < ¢
fori =0,1,...,m — 1, then we define w,(j) := 377" .
Note that the sum is taken in Z. The new class of codes is defined as follows.

(6.11.2) Definition.The shortenedrth order generalized Reed-Muller code (GRM
code) of length n = g™ — 1 over F, is the cyclic code with generator

(r)

gx) =[x —a?,

where « is a primitive element in F,» and the upper index (r) ifidicates that the
product is over integers j with0 < j < g™ —1and 0 < w,(j) < (g — )m —r.

The r-th order GRM code of length g™ has a generator matrix G* obtained
from the generator matrix G of the shortened GRM code by adjoining a column
of Os and then a row of 1s.

Note that the set of exponents in this definition of shortened GRM codes is
indeed closed under multiplication by g. Let 2(x) be the check polynomial of the
shortened r th order GRM code. Then the dual of this code has the polynomial
h*(x) as generator, where A*(x) is obtained from h(x) by reversing the order of
the powers of x. It is defined in the same way as g(x), now with the condition
O<w,(j)=<r.

‘We have the following generalization of Theorem 4.5.8.

(6.11.3) Theorem. The dual of the r-th order GRM code of length q™ is equivalent
to a GRM code of order (q — 1)m —r — 1.

Proor. We have seen above that (x — 1)A*(x) is the generator of the shortened
GRM code of order (¢ — 1)m —r — 1. If we now lengthen the cyclic codes to
GRM codes, we must show orthogonality of the rows of the generator matrices.
The only ones for which this is not a consequence of the duality of the shortened
codes are the all one rows. For these, the factor (x — 1) in the generators and the
fact that the length is g™ takes care of that. Since the dimensions of the two codes
add up to g™, we are done. O.
To handle the binary case, we need a lemma.

(6.11.4) Lemma. Let C, and C, be cyclic codes of length n over F, with check
polynomials fi(x) := ]"[f‘z‘ (x — ), resp. ]_[';; (x — B;). Let C be the cyclic code
of the same length for which the check polynomial has all the products «; B; as its
zeros. Then C contains all the words ab, wherea € C,, b € C,.
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Proor. We use the representation of cyclic codes by linear recurring sequences,
given at the end of §6.5. We know that the coordinates of a and b can be represented
assumsa, = Y o ¢ and by = Z'j.’:, ¢;B;"'. The result follows immediately
from this representation and the definition of ab. a
The following theorem justifies the terminology of this section.

(6.11.5) Theorem. The rth order binary GRM code of length 2™ is equivalent to
the rth order Reed-Muller code of length 2™.

Proor. The proof is by induction. For r = 0, the codes defined by (4.5.6) and
(6.11.2) are both repetition codes. We know that the binary Hamming code is
cyclic. So, for r = 1 we are done by the corollary to Theorem 4.5.8. Assume
that the assertion is true for some value of r. The check polynomial 4*(x) of the
shortened GRM code has zeros &/, where w,(j) < r. The zeros of the check poly-
nomial of the shortened 1-st order RM code are the powers o/ with w,(j) = 1. The
theorem now follows from, the induction hypothesis, Definition 4.5.6 and Lemma
6.11.4. » O

We end this section with a theorem on weights in RM codes. It is another
application of Theorem 6.8.5.

(6.11.6) Theorem. Let F = F(x, x3, ..., X,) beapolynomial ofdegreer defined
onF}. Wewrite G C F ifthe monomials of G form a subset of the set of monomials
of F. We define v(G) to be the number of variables not involved in G and we denote
the number of monomials in G by |G|. If N(F) is the number of zeros of F in 7,
then

N(F) =2""4 ) (=1)e2e@-,

GCF

Proor. Forevery G C F, we define f(G) to be the number of points in [} where
all the monomials of G have the value 0 and all the other monomials of F have
the value 1. Clearly we have

Y fE) =20

HcCG

(because this is the number of points in the affine subspace of [} defined by
X, =X; =...=X;, = 1, where the x;, are the variables occurring in F— G). It
follows from Theorem 6.8.6 that

fG) =) w(H, G2,
HcCG
Furthermore
N(F) = Y. .

GCF,|F~G|=0 (mod 2)

Since ) ;. f(G) =2, we find
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NF) = 2" 4= Z( 1)F-° £(G)

GCF
— 2m l+ Z( l)lF G]ZIL(H G)2D(F —~H)
GCF HCG
= 9l + = Z( 1)1F Hligv(F~H) Z 1
HCF HCGCF
= m l+ ( l)lF lev(F H)2IF —H|
_ 2m— + ( l)IGlzv(G)+IGI ]
‘We now apply this to RM codes.

(6.11.7) Theorem. The weights of the codewords in F(r, m) are divisible by
2[m/r]—1.

Proor. The code Z2(r, m) consists of the sequences of values taken by polynomials
of degree at most r in m binary variables. The codeword corresponding to a
polynomial F has weight 2” — N(F). f G C F and G has degree d, then
v(G) =m—|G|-d,i.e. |G| > [2=22]. Since

v©) + PP 2 15,

the result follows from Theorem 6.11.6 O

§6.12. Comments

The reader who is interested in seeing the trace function and idempotents
used heavily in proofs should read [46, Chapter 15].

A generalization of BCH codes will be treated in Chapter 9. There is
extensive literature on weights, dimension, covering radius, etc. of BCH
codes. We mention the Carlitz-Uchiyama bound which depends on a deep
theorem in number theory by A. Weil. For the bound we refer to [42]. For a
generalization of QR codes to word length n a prime power, in which case the
theory is similar to Section 6.9 we refer to a paper by J. H. van Lint and F. J.
MacWilliams (1978; [45]).
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§6.13

6.13.1.
6.13.2.
6.13.3.

6.13.4.
6.13.5.

6.13.6.

6.13.7.
6.13.8.

6.13.9.
6.13.10.
6.13.11.

6.13.12.

6.13.13.
6.13.14.

. Problems

Show that the [4, 2] ternary Hamming code is a negacyclic code.
Determine the idempotent of the [15, 11] binary Hamming code.

Show that the rth order binary Reed-Muller code of Definition 4.5.6 is
equivalent to an extended cyclic code.

Construct a ternary BCH code with length 26 and designed distance 5.

Let o be a primitive element of F,s satisfying 2> = a> + 1. A narrow-sense
BCH code of length 31 with designed distance 5 is being used. We receive

(1001 0110 111t 0000 1101 0101 o111 111).
Decode this message using the method of Section 6.7.

Let m be odd. Let # be a primitive element of F,... Consider a binary cyclic
code C of length n = 2™ — 1 with generator g(x) such that g(8) = g(pH)=0.
Show that the minimum distance d of C is at least 5.

Let Cbea[g + 1,2, d] code over F (g odd). Show thatd < g (i.e. Cis not an
MDS code, cf. (5.2.2)).

Show that the [11, 6] ternary QR code is perfect. (This code is equivalent to
the code of Section 4.3.)

Determine the minimum distance of the binary QR code with length 47.
Determine all perfect singie error-correcting QR codes.

Generalize the ideas of Section 6.9 in the following sense. Let ¢ > 2, na prime
such that e|(n — 1) and g a prime power such that ¢~'¢ = 1 (mod n). Instead
of using the squares in F, use the eth powers. Show that Theorem 6.9.2(i) can
be generalized to d® > n. Determine the minimum distance of the binary cubic
residue code of length 31.

Let m be odd, n = 2™ — 1, « a primitive element of F,.. Let g(x) be a divisor
of x" — 1 such that g(a) = g(«’) = 0. Prove that the binary cyclic code with
generator g(x) has minimum distance d > 4 in two ways:

(a) by applying a theorem of this chapter,

(b) by showing that | + & + n =0 and 1 + &° + n° = 0 with ¢ and # in F,m
is impossible.

(c) Using the idea of (b), show that in fact d > 5.

Show that the ternary Golay code has a negacyclic representation.

By Theorem 6.9.2, the {31, 16] QR code has d > 7, whereas the BCH bound
only yields d > 5. Show that the AB-method of §6.6 also yields d > 7.



CHAPTER 7

Perfect Codes and Uniformly
Packed Codes

§7.1. Lloyd’s Theorem

In this chapter we shall restrict ourselves to binary codes. To obtain insight
into the methods and theorems of this part of coding theory this suffices.
Nearly everything can be done (with a little more work) for arbitrary fields F,.
In the course of time many ways of studying perfect codes and related
problems have been developed. The algebraic approach which will be dis-
cussed in the next section is perhaps the most elegant one. We start with a
completely different method. We shall give an extremely elementary proof of
a strong necessary condition for the existence of a binary perfect e-error-
correcting code. The theorem was first proved by S. P. Lloyd (1957) (indeed
for g = 2) using analytic methods. Since then it has been generalized by many
authors (cf. [44]) but it is still referred to as Lloyd’s theorem. The proof in
this section is due to D. M. Cvetkovi¢ and J. H. van Lint (1977; cf. [17]).

(7.1.1) Definition. The square matrix A4, of size 2* is defined as follows.
Number the rows and columns in binary from 0 to 2* — 1. The entry A,(i, j)

is 1 if the representations of i and j have Hamming distance 1, otherwise
A, )=0.

From (7.1.1) we immediately see

A, 1
(7.1.2) Ak+1=(1k A,,)'

(7.1.3) Lemma. The eigenvalues of A, are —k + 2j (0 < j < k) with multi-
k

plicities ( )
J
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PRrROOF. The proof is by induction. For k =1 it is easily checked. Let the
column vector x be eigenvector of 4, belonging to the eigenvalue 1. Then by

(7.1.2) we have
Apsn C) =@+ 1)(2),

Am(_f‘>=u— 1)(_:>.

The proof now follows from well-known properties of binomial coefficients.

O

The technically most difficult part of this section is determining the eigen-
values of certain tridiagonal matrices which occur in the proof of the theorem.
To keep the notation compact we use the following definition.

(7.1.4) Definition. The matrix Q, = Q,(a, b) is the tridiagonal matrix with

(Q.)i=a, 0<i<e,
(Q)ii+1 :=b—1, 0<i<e—1,
(Qe)ii-r =1, 1<i<e.

Furthermore, we define

1
1

F.:=P(a,b):= | Qcyslab)
1

00...0e 1

The determinants of these matrices are denoted by Q, resp. P,.
(7.1.5) Lemma. Let ‘¥, (x) be the Krawtchouk polynomial K (x — 1;n — 1, 2)
defined in (1.2.1) and (1.2.15). Then

P2y — n,n) = (—1ye!'¥,(y).

PRrooF. By adding all columns to the last one and then developing by the last
row we find

0.=(@+¢e)0.-, —ela+bP._;.
Developing P, by the last row yields
P.=0.,—€P,_,.
Combining these relations yields the following recurrence relation for P,:

(7.1.6) P =(a—1)P,—eb—eP,_,.
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It is easy to check that the assertion of the lemma is true fore = l and e = 2.
From (1.2.9) and (7.1.6) it follows that the two polynomials in the assertion
satisfy the same recurrence relation. This proves the lemma. O

We need one more easy lemma on eigenvalues.

(7.1.7) Lemma. Let A be a matrix of size m by m which has the form

Ay Ay, Ay

A A A
A= 422 2 |

Ag A, A

where A;; has size m; bym; (i=1,2,...,k; j=1,2,..., k). Suppose that for
each i and j the matrix A;; has constant row sums b;. Let B be the matrix with
entries by;. Then each eigenvalue of B is also an eigenvalue of A.

PrOOF. Let Bx = 1x, where x = (x,, X, ..., X;)7. Define y by
T.
Y = (X Xqs ey Xy, Xy Xy eey Xy eees Xi» Xis v vy Xi)

where each x; is repeated m; times. By definition of B it is obvious that
Ay = ly. O

We now come to the remarkable theorem which will have important
consequences.

(7.1.8) Theorem. If a binary perfect e-error-correcting code of length n exists,
then ¥, (x) has e distinct zeros among the integers 1,2, ..., n.

Proor. The fact that the zeros are distinct is a well-known property of
Krawtchouk polynomials (cf. (1.2.13)). To show that they are integers, we
assume that C is a code as in the theorem. Consider the matrix A, (cf. (7.1.1)).
Reorder the rows and columns as follows. First take the rows and columns
with a number corresponding to a codeword. Then successively those with
numbers corresponding to words in C;:={xeFld(x,C)=i}, 1<i<e
Since C is perfect, this yields a partitioning of 4, into blocks such as in
Lemma 7.1.7, where now

[0 n 0 0 O
1 0 n—1 0 O

0 0 e—1 0 n—e+1
O e 0 0 e n—e

The substitution x = n — 2y in det(B — xI,,,) yields
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det(B — xI..,) = 2yP.(2y — n, n).
The result now follows from Lemmas 7.1.3, 7.1.5 and 7.1.7. O

The proof given in this section gives no insight into what is going on (e.g.
Do the zeros of 'V, have a combinatorial meaning?) but it has the advantage
of being completely elementary (except for the unavoidable knowledge of
properties of Krawtchouk polynomials). In Section 7.5 we shall use Theorem
7.1.8 to find all binary perfect codes.

§7.2. The Characteristic Polynomial of a Code

We consider a binary code C of length n. In (3.5.1) we defined the weight
distribution of a code and in (5.3.2) generalized this to distance distribution
or inner distribution (4;)%,. Corresponding to this sequence we have the
distance enumerator

(7.2.1) Ac(z) = Z Azt =|C|™? Z Zdtwy)
i=0 ueC
veC

To get even more information on distances we now define the outer distri-
bution to be a matrix B (rows indexed by elements of # = F}, columns indexed
0,1,..., n), where

(7.2.2) B(x, i) := |{c € Cld(x, ¢) = i}].

The row of B indexed by x is denoted by B(x). Observe that
(7.2.3) (Ao, Ay, .-, 4 = ICI! ZC B(x),

and

(7.2.4) xe C<=B(x,0)= 1.

(7.2.5) Definition. A code C is called a regular code if all rows of B with a 1
in position 0 are equal. The code is called completely regular if

Yie aVye 2l(p(x, C) = p(y, C)) = (B(x) = B(y))],
where p(x, C) is the distance from x to the code C.

Observe that if a code C is regular and 0 € C, then the weight enumerator
of C is equal to A(z).

In order to study the matrix B, we first introduce some algebra (cf. (1.1.11)).

(7.2.6) Definition. If G is an additive group and F a field, then the group
algebra FG (or better (FG, @, *)) is the vector space over F with elements of
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G as basis, with addition @ and a multiplication = defined by

Y a(g)g*hZG Bih:= Yy ( Y a(g)ﬁ(h)>k.

geG keG \g+k=k

Some authors prefer introducing an extra symbol z and using formal
multiplication as follows

T al@)zs T Bk = T ( 5 a(g)ﬁ(h))z*.
geG heG ke G \g+h=k

We shall take G to be # = F} and F = C. We denote this algebra by </ In
order not to confuse addition in G with the addition of elements of =/ we write
the elements of the group algebra as ¥ , . ,a(x)x. If S is a subset of # we shall
identify this subset with the element ¥, sx in &/ (i.e. we also denote this
element by S). We introduce a notation for the sets of words of fixed weight
resp. the spheres around 0:

(7.2.7) Y= {x € B|w(x) = i},

(7.2.8) S; = {x € ZIw(x) < j}.

If C is a code with outer distribution B, then the conventions made above
imply that

(7.2.9) YxC= ¥ B(x,i)x.

xe A
If D(x, j) denotes the number of codewords with distance at most j to x (i.e.
D(x, j) = Y ;<; B(x, i)), then we have

(7.2.10) S*C= % D(x, j)x.

xe X
Let x be the character of F, with y(1) = — 1. For every u € # we define a
mapping x,: Z — C by
(7.2.11) Ve la¥) = 1<y, ) = (= )7,

i.e. x4(¥v) = lifu L vand —1 otherwise.
We extend this mapping to a linear functional on the group algebra .« by

(7.2.12) Xl a(x)x) =Y a(x)yq(X).

The following two assertions follow immediately from our definition. We
leave the proofs as easy exercises for the reader.

(7.2.13) Ve #V4e oVBe w[1alA * B) = 1u(A)xu(B)],

(7.2.14) (xo(S) = 2" and ¥, o[xu(S) = 0]) =S = §,,.

The result of Lemma 5.3.1 (where we now have g = 2) can be written as
(7.2.15) 1ol Ye) = K (w(u)).

From this it follows that if w(u) = x
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(1216 1(5) = 3, Kl) = ).
(Cf. (1.2.15))

Let C be a code. We consider the numbers

G=1CI" %, 1(C)

sel;
We have seen these numbers before. If C is a linear code, then the proof of
Theorem 3.5.3 shows us that C; is the number of words of weight j in C*. If
C is not linear, we can still consider the numbers C; and continue the proof
of Theorem 3.5.3 to find that 27"|C| Y}, Ci(1 — zY(1 + z)"™ is the weight
enumerator of C. This relation between the weight enumerator and the num-
bers C;, defined with the aid of y, is a nonlinear form of the MacWilliams
relation.
We now define a second sequence of numbers, again using the character y.

(7.2.17) Definition. The characteristic numbers B; (0 < j < n) of the code C are
defined by

B:=|CI"* ¥ %O

ueY;

As before we see that B; is the number of words of weight j in the code ct
if C is a linear code. Let N(C) := {j|1 < j < n, B; # 0}. We define the charac-
teristic polynomial F. of the code C by

(7.2.18) Fe(:=2"1C1 ] (1—5_)

jeN(C) J

(7.2.19) Theorem. Let oy, %4, ..., &, be the coefficients in the Krawtchouk
expansion of F¢. Then in of we have

P YxC=35,

PROOF. Let u € Z, w(u) = j. By (7.2.13) and (7.2.15) we have

X..(E oY+ C) = Xu(E %; ) xu(C) = 1(C) Z o Ki(J) = 2u(C)Fc())-

If u # 0 the right-hand side is 0 by definition of F¢. If u = 0 then the right-
hand side is 2". The assertion now follows from (7.2.14). O

(7.2.20) Corollary. If ay, a,, ..., a, are the coefficients in the Krawtchouk
expansion of F; and u € & then

CXiB(ll, i) = 1.

i=0

it

ProoF. Apply (7.2.9). O
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(7.2.21) Definition. The number s := |N(C)| is called the external distance of
C.

Note that if C is linear, then s is the number of nonzero weights occurring
in C*. The somewhat strange name is slightly justified by Corollary 7.2.20

which shows that the covering radius p(C) of a code (see (3.14)) is at most
equal to s.

§7.3. Uniformly Packed Codes

In this section we consider codes which are generalizations of perfect codes
{cf. (5.1.5)). Note that if C is a perfect e-error-correcting code, then in &/
we have §,* C = §,. We now consider codes C with d > 2e + 1 and p(C) =
e+ 1. (If d = 2e + 3 then this means that C is perfect.) The spheres with
radius e — 1 around codewords are disjoint and each word not in one of these
spheres has distance e or e + 1 to at least one codeword.

(7.3.1) Definition. A code C with p(C)=e¢+ 1 and d >2e + 1 is called
uniformly packed with parameter r if each word u with p(u, C) > e has dis-
tance e or e + 1 to exactly r codewords.

Note that if r = 1, then C is a perfect (e + 1)-error-correcting code. Of
course a word u with p(u, C) = ¢ has distance e to exactly one codeword. Let
p(u, C) =e + 1 and w.lo.g. take u = 0. Then the codewords with distance
e+ 1 to u have weight e + 1. Since they must have mutual distances >
2e + 1, it follows that

n
7.3.2 <
( ) r"e+1

We now assume that e + 1 does not divide n + 1. A code for which r =
[n/(e + 1)} is called nearly perfect. It is easy to check that this means that C
satisfies the Johnson bound (5.2.16) with equality. In a paper by J.-M. Goe-
thals and H. C. A. van Tilborg [25], (7.3.1) is generalized by replacing r by
two numbers depending on whether p(u, C) =eore + 1.

(7.3.3) Theorem. A code C with p(C)=e+ | and d > 2e + 1 is uniformly
packed with parameter r iff in o/ we have

1
{Yo@ Y]_ @D Ye—l @;(YeC'B Yg+1)}*c = Sn‘
Proor. This follows from (7.2.2), (7.2.9) and (7.3.1). O

(7.3.4) Theorem. A code C with p(C)=e + 1 and d > 2e + 1 is uniformly
packed with parameter r iff the characteristic polynomial has degree s = ¢ + 1
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and Krawtchouk coefficients

Go =0y =" =0, =1, Le = Qopy = —.

PROOF.

(i) The if part follows from Theorem 7.2.19 and Theorem 7.3.3.

(ii) Let C be uniformly packed. We know that F. has degree s > ¢ + 1. Let
F(x):=Y 2, Ki(x) with g =ay, = =a,_, =1, a, =a,,, = 1/r. If
ue®, wu)=j#0 and x,(C) #0, then F(j)=0 by (7.2.13), (7.2.14),
(7.2.15) and Theorem 7.3.3. Then by (7.2.18) it follows that F,(x) divides
F(x). Hence s = e + 1 and F(x) = aF(x) for some a. Substituting x = 0
we find a = 1 (again using Theorem 7.3.3). |

The following is a different formulation of Theorem 7.3.4.

(7.3.5) Theorem. If a uniformly packed code C with p(C)=e¢ + 1 and d >
2e + 1 exists, then the polynomial

e—1 1
F(x):= ZO Ki(x) + ~[Kox) + Ko (x)]
has e + 1 distinct integral zeros in [1, n] and F(0) = 2"|C|™.

First observe that if C is a perfect code, i.e. d = 2e + 3, then r = 1 and
F(x) =¥, (x) by (1.2.15) and Theorem 7.3.5 is Lloyd’s theorem (7.1.8).
Next we remark that the requirement about F(0) can be written as

(73.6) IC| {g (':) + ;(Z I :)} o

which is (3.1.6) if r = 1, resp. (5.2.16) if r = |n/(e + 1)].

In fact (7.3.6) is true in general if we interpret r as the average number of
codewords with distance e or e + 1 to a word u for which p(u, C) > e.

In general it is not easy to check if a given code is uniformly packed using
the definition.

We shall now consider a special case, namely a linear code C with e = 1.
In order for C to be uniformly packed, the characteristic polynomial must
have degree 2 (by Theorem 7.3.4). We have already remarked that this means
that in C* only two nonzero weights w, and w, occur. Now suppose that C*
is such a two-weight code with weight enumerator

Ac:(z) =1+ Nyz% 4+ Nyz¥2,

Consider the MacWilliams relation (cf. Section 7.2) and substitute

M8

K,(x)z*

i

k=0
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for (1 + z)" (1 — z)*(cf. (1.2.3)). Since we have assumed that C has minimum
distance d > 3, we find three equations from the coefficients of z°, z!, 2%,
namely

1+ N, +N,=2"C|™},

Ki(0) + N, K (w;) + N, K (w,) =0, (k=1,2)

By definition we have F(w,) = Fc(w,) = 0 and F.(0) = 2"|C| ™. For the coef-
ficients g, a;, &, in the Krawtchouk expansion of F.(x) we then find, using
1.2.7)

xo + aln + az (;) = 2"lcl-l,

oo + oy (n — 2w;) + a, {ZW,-2 — 2nw; + (;)} =0, (i=1,2).

We compare these equations with the equations for N; and N,. This shows
that 2y = 1. We define

ri=2n+ w, — 2w} — in(n + 1).
It then follows that a; = a, = 1/r if w, + w, = n + 1. We have thus proved

the following characterization of 1-error-correcting uniformly packed codes.

(7.3.7) Theorem. A linear code C with p(C) = 2 and d > 3 is uniformly packed
iff C* is a two-weight code with weights w,, w, satisfying w, + w, = n + L.

In [25] itis shown that if we adopt the more general definition of uniformly
packed codes, we can drop the restriction w;, + w, = n + 1. The theorem is
also true for e > 1 with e + 1 weights in C* instead of two.

§7.4. Examples of Uniformly Packed Codes

(7.4.1) A Hadamard code (cf. Section 4.1)

Consider the (12, 24, 6) Hadamard code. Puncture the code to obtain the (11,
24, 5) code C. It is obvious that any word z can have distance 2 or 3 to at most
four codewords and if this happens we have the following situation (after
changing back to + notation and suitable multiplications of columns by —1):

z=—— +++ +++ +++,
X, =++ +++ +++ +++,
X=—— ——— +++ +++,
Xs3=—— +4++ ——— +++,
Xg=—— +++ +++ ——-
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This would mean that the original Hadamard matrix of order 12 had the four
rows (+, x,), (=, X;), (—, X3), (—, x4). The row vector (—4, ~4, —4, 0, 0,
..., 0) is a linear combination of these four rows and must therefore be
orthogonal to the remaining rows of the Hadamard matrix, which is clearly
impossible. It follows that a word z has distance 2 or 3 to at most three
codewords. From (7.3.6) it follows that the average number of codewords with
distance 2 or 3 to a word z with p(z, C) > 1 is three. Hence this number is
always three. So C is uniformly packed with r = 3. In this example C is
nonlinear.

Note that in this example, ¢ + 1 divides n + 1. So (7.3.6) holds but is not equal
to (5.2.16). This is not a nearly perfect code.

(7.4.2) A Punctured RM Code

Let V be the six-dimensional vector space over [F,. Let W be the set of 35
points x in ¥\ {0} on the quadric with equation x, x, + x3x, + xsx¢ = 0. We
take these vectors as columns of a 6 by 35 matrix G. As in Section 4.5 we see
that the ith row of G is the characteristic function of the intersection of W and
the hyperplane with equation x; = 1 (1 < i < 6). Hence the weight of a linear
combination a” G (a € V) is the number of solutions of

6
XX+ X3% + Xsxg =0 and ) ax; =1
i=1

W.lo.g. we may take a, = 1 (unless a = 0). By substitution and the affine
transformation

Y2 = X3, Y3 = X3+ 04X, Ya = X4 + a3X,,
Ys = X5 + agX3, Y6 = Xg + dsX;

(which is invertible) we see that we must count the number of solutions of the
equation

(1 +a, +asa, +asag)y, + Y3Ya + ysye = 0.

If the coefficient of y, is 1 this number is 16, if it is 0 the number of solutions
is 20. Therefore the code C which has G as parity check matrix has a dual C*
which is a two-weight code with weights 16 and 20. The code C has d > 3
since it is projective. By the remark following (7.2.21) we have p(C) = 2. So
by Theorem 7.3.7, C is uniformly packed with r = 10 (by (7.3.6)). The same
method works in higher dimensions.

(7.4.3) Preparata-codes

In 1968, F. P. Preparata [57] introduced a class of nonlinear double-error-
correcting codes which turned out to have many interesting properties. His
definition was based on a combination of Hamming codes and 2-error-
correcting BCH codes. The analysis of the codes involves tedious calculation
(cf. [11]). The following description of the Preparata codes is due to R. D.
Baker, R. M. Wilson and the author (cf. [72]).
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In the following m is odd (m > 3), n = 2™ — 1. We shall define a code 2 of
length 2n + 2 = 2™*!. The words will be described by pairs (X, Y), where
X < F;m and Y < F,.. As usual, we interpret the pair (X, Y) as the corre-
sponding characteristic function, which is a (0, 1)-vector of length 2™*!.

(7.4.4) Definition. The extended Preparata code 2 of length 2™*! consists of
the codewords described by all pairs (X, Y) satisfying

(1) | X|iseven,|Y]iseven,
(“) erxx = Zery’
(lll) erxxs + (erxx)3 = Zye)’y3'

The code 2 is obtained by leaving out the coordinate corresponding to the
zero position in the first half.

We first show that 2 has 22"~ 2™ words. We can choose X, satisfying (i) in
2" ways. Next, we observe that since m is odd the minimal polynomial m;(x)
for F,.. has degree m. Therefore the BCH code of length n and designed
distance 5 has dimension n — 2m. This in turn implies that for a given X the
equations (ii) and (iii) have 2"~?™ solutions Y < F}.. We can add the zero
element to this Y if necessary to satisfy (i). This proves our assertion.

The next claim is that £ has minimum distance 6. From (7.4.4)(i) we see
that the minimum distance is even and also that if (X, Y) satisfies the condi-
tions, then so does (Y, X). Suppose we have two words (X, Y;)and (X, ¥;)and
let Y:= Y, AY,. Then from (7.4.4)(ii) and (iii) we find that

ZY=ZY3=0,

yeyY yeY

i.e.|Y| = 5 by the BCH bound. So in this case the two words have distance
> 6. It remains to consider the possibility (X,, Y;), (X,, ¥;) with

X, AX,| =AY, =2

Let X,AX,={a, B}, AY,={y, 6} and let s+ « be the sum of the
elements in X,. Then (7.4.4)(ii) and (iii) imply

a+pf=7y+59,
s (@ + B) + sl + B =y* + &°.
From these we find (s + 9)® + (s + 8)*> = 0, i.e. y = 6, a contradiction. This

proves our claim. We have proved the following theorem.

(7.4.5) Theorem. The Preparata code 2 of length 2™ — 1 (m odd, m > 3) has
|| = 2% where k = 2™ — 2m — 2, and minimum distance 5.

From (7.3.6) we find that the average value of r for the code 2 is
(2™*! — 1)/3 and then (7.3.2) implies that r is constant and equal to
(2™ — 1)/3, i.e. 2 is nearly perfect.
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If we take m = 3 in (7.4.4) then we find the Nordstrom-Robinson code
which was introduced in Section 4.4.

Remark. The exponents 3 in (7.4.4)(iii) are not essential. We can replace 3 by

:= 2' + 1, where we require that x - x* and x — x*~2 are 1-1 mappings of
F, to itself. The first part of the argument concerning minimum distance is
then replaced by one involving Theorem 6.6.3. We leave this as an easy
exercise for the reader.

Observe that the code satisfying only (i) and (ii) in (7.4.4) is the extended
Hamming code of length 2™*!. From this and a counting argument it follows
that if we take 2 and adjoin to it all words at distance 3 to &, we obtain the
Hamming code of length 2"+! — 1. In Theorem 7.4.6 we give a direct construction.

(7.4.6) Theorem. The union of the Preparata code 2P of lengthn = 2"+ — 1 (m
odd) and the set of words with distance 3 to &P is the Hamming code of length n.

Proor. Since &7 satisfies (5.2.16) with equality, we know that there are (27| - %5+
words with distance 3 to &2 Hence the union C has 2"™! words, which is the
cardinality of the Hamming code of length n.

We now define C := &P and fora € F;a, we define C, to be the code obtained
by adding the word corresponding to ({0, &}, {0, «}) to the words of C,. Clearly,
each C, has only even weight vectors. If weight 2 would occur, then C, would have
aword corresponding to X = {0, «}, Y = {0, @, B, y}, contradicting (ii) in (7.4.4).
So, each C, has minimum weight 4. From the proof of Theorem 7.4.5, it follows
that the C, are pairwise disjoint (@ € F := F,»). We claim that H := U,¢C, is
linear. To show this, using (7.4.4) (iii), comes down to solving an equation of type
x* = a, which is possible since m is odd. From the parameters and the linearity
we conclude that H is the extended Hamming code of length n + 1. This proves
the assertion about C. a

Note that it follows from Theorem 7.4.6 that the linear span of the Preparata
code is contained in the Hamming code.

§7.5. Nonexistence Theorems

It was shown by A. Tietdviinen [68] and J. H. van Lint [41] that the Golay
codes are the only nontrivial e-error-correcting perfect codes with e > 1 over
any alphabet Q for which |Q] is a prime power. For e > 2 the restriction on
O can be dropped as was shown by M. R. Best {7] and Y. Hong [74] but that
is much more difficult to prove. For e = 1 we have seen the Hamming codes.
There are also examples of nonlinear perfect codes with e = 1 (cf. (7.7.4)).

In 1975 Van Tilborg [69] showed that e-error-correcting uniformly packed
codes with e > 3 do not exist and those with e < 3 are all known. In this
section we wish to give some idea of the methods which were used to establish
these results. It suffices to consider the binary case.
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(7.5.1) Theorem. If C is a perfect e-error-correcting binary code with e > 1,
then C is a repetition code or the binary Golay code.

ProoF. By Lloyd’s theorem (7.1.8) the polynomial ¥, has zeros x; < x, <
-+ < x, which are integers in [1, n]. By the definition of ¥, and (1.2.8), the
elementary symmetric functions of degree 1 and 2 of the zeros are known:

x.

13

(7.5.2) e(n + 1),

N!'—‘

I|MN

(7.5.3) Z X;X e(e — 1){3n® + 3n + 2e + 2}.
Observe that (7.5.2) also follows from (1.2.2) which also shows that
(7.5.4) Xp_ipp=n+1—x,
From (7.5.2) and (7.5.3) we find
2e -1
—1 - .
- in-21

Z (x; — x;)?
To find the product of the zeros, we calculate ¥,(0). From (1.2.1) we find
Y0 =%, <n> Combining this with (3.1.6) and (1.2.8), we find
J

(7.5.5)

n[\/]m

Nl'—‘

e

(7.5.6) [1xi=e2, (for some integer I).

i=1
In a similar way we calculate ¥,(1) and W, (2), which leads to

[

(7.5.7) H xi=D=2"%(n—1)(n—2)..(n—e),

i=1
(158  [Ji=2=2"(—1—2¢)n—2)n—3).(n—e)
i=1

We now draw conclusions about x;, x,, ..., x, from these relations. Let
A(x) denote the largest odd divisor of x. Then (7.5.6) shows that
[TAG) = A(e!) <e!.
i=1
This implies that there must be two zeros x; and x; such that A(x;) = A(x))
(i < j). Hence 2x; < x; and therefore 2x, < x, and then (7.5.4) implies

(1.5.9) X, —x, = 3n+ 1)

If we fix x, and x,, then the left-hand side of (7.5.5) is minimal if x, =
X3 =T Xey = %(xl + xe)‘
Substitution of these values in (7.5.5) leads to

(7.5.10) (x, — x,)? s%e(e— 1)<n—283— 1),
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which we combine with (7.5.9). The result is
(7.5.11) n+1<3ele—1).

Now consider (7.5.7) and (7.5.8). Since (x — 1)(x — 2) is always even if
x e N, we find

(7512) (n—1-2e)(n—n—2*mn—3%-(n—e?=0 (mod2%).

This is a triviality if e = {(n — 1), i.e. C is the repetition code. Suppose
e < 3(n — 1). Let 2° be the highest power of 2 in any factor n — j on the
left-hand side of (7.5.12), including n — 1 — 2e. Then the highest power of 2
that divides the left-hand side of (7.5.12) is at most 23**2¢73 which implies
that ¢ > Je + 1.

Hence

(7.5.13) n > 21tk

If e is large then (7,5.13) contradicts (7.5.11). Small values of e which by
(7.5.11) imply small values of n are easily checked. In fact, if we are a little
more accurate in estimating n, there are only very few cases left to analyze. It
turns out that e = 3 is the only possibility. Actually e = 3 can be treated
completely without even using Lloyd’s theorem. This was shown in Problem
3.7.1 O

The reasoning used to show that all uniformly packed codes are known
(i.e. those satisfying (7.3.1)) follows the same lines but a few extra tricks are
necessary because of the occurrence of the parameter r.

(7.5.14) Theorem. Table 7.5.18 lists all uniformly packed codes.

ProoOF. We start from the generalization of Lloyd’s theorem, i.e. Theorem
7.3.5. In exactly the same way as we proved (7.5.10) resp. (7.5.13), we find

1 1/2
(7.5.15) Xeri — %, < (e + 1)(" ’; ) ,

(7.5.16) n> 2¢77,

The argument which led to (7.5.9) has to be modified. We number the zeros
in a different way as y,, ..., y.+;, where y; = A(y)2% and a; <a, <-- <
®,+;- On the one hand we have (writing (a, b) for the g.c.d. of a and b):

ﬁ Vi = Visl s> Yisr) _ I (A(y:), A(yie1))2%

v
—e

i=1 Vi i=1 Vi i V