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Preface to the Third Edition 

It is gratifying that this textbook is still sufficiently popular to warrant a third 
edition. I have used the opportunity to improve and enlarge the book. 

When the second edition was prepared, only two pages on algebraic geometry 
codes were added. These have now been removed and replaced by a relatively 
long chapter on this subject. Although it is still only an introduction, the chapter 
requires more mathematical background of the reader than the remainder of this 
book. 

One of the very interesting recent developments concerns binary codes defined 
by using codes over the alphabet 7l.4• There is so much interest in this area that 
a chapter on the essentials was added. Knowledge of this chapter will allow the 
reader to study recent literature on 7l.4-codes. 

Furthermore, some material has been added that appeared in my Springer Lec­
ture Notes 201, but was not included in earlier editions of this book, e. g. Generalized 
Reed-Solomon Codes and Generalized Reed-Muller Codes. In Chapter 2, a section 
on "Coding Gain" ( the engineer's justification for using error-correcting codes) 
was added. 

For the author, preparing this third edition was a most welcome return to 
mathematics after seven years of administration. For valuable discussions on 
the new material, I thank C.P.l.M.Baggen, I. M.Duursma, H.D.L.Hollmann, 
H. C. A. van Tilborg, and R. M. Wilson. A special word of thanks to R. A. Pellikaan 
for his assistance with Chapter 10. 

Eindhoven 
November 1998 

I.H. VAN LINT 



Preface to the Second Edition 

The first edition of this book was conceived in 1981 as an alternative to 
outdated, oversized, or overly specialized textbooks in this area of discrete 
mathematics-a field that is still growing in importance as the need for 
mathematicians and computer scientists in industry continues to grow. 

The body of the book consists of two parts: a rigorous, mathematically 
oriented first course in coding theory followed by introductions to special 
topics. The second edition has been largely expanded and revised. The main 
editions in the second edition are: 

(1) a long section on the binary Golay code; 
(2) a section on Kerdock codes; 
(3) a treatment of the Van Lint-Wilson bound for the minimum distance of 

cyclic codes; 
(4) a section on binary cyclic codes of even length; 
(5) an introduction to algebraic geometry codes. 

Eindhoven 
November ] 99 ] 

J .H. V AN LINT 



Preface to the First Edition 

Coding theory is still a young subject. One can safely say that it was born in 
1948. It is not surprising that it has not yet become a fixed topic in the 
curriculum of most universities. On the other hand, it is obvious that discrete 
mathematics is rapidly growing in importance. The growing need for mathe­
maticians and computer scientists in industry will lead to an increase in 
courses offered in the area of discrete mathematics. One of the most suitable 
and fascinating is, indeed, coding theory. So, it is not surprising that one more 
book on this subject now appears. However, a little more justification and a 
little more history of the book are necessary. At a meeting on coding theory 
in 1979 it was remarked that there was no book available that could be used 
for an introductory course on coding theory (mainly for mathematicians but 
also for students in engineering or computer science). The best known text­
books were either too old, too big, too technical, too much for specialists, etc. 
The final remark was that my Springer Lecture Notes (#201) were slightly 
obsolete and out of print. Without realizing what I was getting into I 
announced that the statement was not true and proved this by showing 
several participants the book Inleiding in de Coderingstheorie, a little book 
based on the syllabus of a course given at the Mathematical Centre in 
Amsterdam in 1975 (M.C. Syllabus 31). The course, which was a great success, 
was given by M.R. Best, A.E. Brouwer, P. van Emde Boas, T.M.V. Janssen, 
H.W. Lenstra Jr., A. Schrijver, H.C.A. van Tilborg and myself. Since then the 
book has been used for a number of years at the Technological Universities 
of Delft and Eindhoven. 

The comments above explain why it seemed reasonable (to me) to translate 
the Dutch book into English. In the name of Springer-Verlag I thank the 
Mathematical Centre in Amsterdam for permission to do so. Of course it 
turned out to be more than a translation. Much was rewritten or expanded, 



x Preface to the First Edition 

problems were changed and solutions were added, and a new chapter and 
several new proofs were included. Nevertheless the M.e. Syllabus (and the 
Springer Lecture Notes 201) are the basis ofthis book. 

The book consists of three parts. Chapter 1 contains the prerequisite 
mathematical knowledge. It is written in the style of a memory-refresher. The 
reader who discovers topics that he does not know will get some idea about 
them but it is recommended that he also looks at standard textbooks on those 
topics. Chapters 2 to 6 provide an introductory course in coding theory. 
Finally, Chapters 7 to 11 are introductions to special topics and can be used 
as supplementary reading or as a preparation for studying the literature. 

Despite the youth of the subject, which is demonstrated by the fact that the 
papers mentioned in the references have 1974 as the average publication year, 
I have not considered it necessary to give credit to every author of the 
theorems, lemmas, etc. Some have simply become standard knowledge. 

It seems appropriate to mention a number of textbooks that I use regularly 
and that I would like to recommend to the student who would like to learn 
more than this introduction can offer. First of all F.J. MacWilliams and 
N.J.A. Sloane, The Theory of Error-Correcting Codes (reference [46]), which 
contains a much more extensive treatment of most of what is in this book 
and has 1500 references! For the more technically oriented student with an 
interest in decoding, complexity questions, etc. E.R. Berlekamp's Algebraic 
Coding Theory (reference [2]) is a must. For a very well-written mixture of 
information theory and coding theory I recommend: R.J. McEliece, The 
Theory of Information and Coding (reference [51]). In the present book very 
little attention is paid to the relation between coding theory and combina­
torial mathematics. For this the reader should consult P.J. Cameron and 
J.H. van Lint, Designs, Graphs, Codes and their Links (reference [11]). 

I sincerely hope that the time spent writing this book (instead of doing 
research) will be considered well invested. 

Eindhoven 
July 1981 

J.H. VAN LINT 

Second edition comments: Apparently the hope expressed in the final line of 
the preface of the first edition came true: a second edition has become neces­
sary. Several misprints have been corrected and also some errors. In a few 
places some extra material has been added. 
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CHAPTER 1 

Mathematical Background 

In order to be able to read this book a fairly thorough mathematical back­
ground is necessary. In different chapters many different areas of mathematics 
playa role. The most important one is certainly algebra but the reader must 
also know some facts from elementary number theory, probability theory and 
a number of concepts from combinatorial theory such as designs and geo­
metries. In the following sections we shall give a brief survey of the prerequi­
site knowledge. Usually proofs will be omitted. For these we refer to standard 
textbooks. In some of the chapters we need a large number off acts concerning 
a not too well-known class of orthogonal polynomials, called Krawtchouk 
polynomials. These properties are treated in Section 1.2. The notations that 
we use are fairly standard. We mention a few that may not be generally 
known. If C is a finite set we denote the number of elements of C by I CI. If the 
expression B is the definition of concept A then we write A := B. We use "iff" 
for "if and only if". An identity matrix is denoted by I and the matrix with 
all entries equal to one is J. Similarly we abbreviate the vector with all 
coordinates 0 (resp. 1) by 0 (resp. 1). Instead of using [x] we write LXJ := 
max{n E illn S; x} and we use the symbol rxl for rounding upwards. 

§ 1.1. Algebra 

We need only very little from elementary number theory. We assume known 
that in '" every number can be written in exactly one way as a product of 
prime numbers (if we ignore the order of the factors). If a divides b, then we 
write alb. If p is a prime number and p'la but p,+1 i a, then we write p'lI a. If 



2 1. Mathematical Background 

kEN, k > 1, then a representation of n in the base k is a representation 

I 

n = " n·k i f..., , , 
i=O 

o ~ ni < k for 0 ~ i ~ I. The largest integer n such that nla and nib is called 
the greatest common divisor of a and b and denoted by g.c.d.(a, b) or simply 
(a, b). If ml(a - b) we write a == b (mod m). 

(1.1.1) Theorem. If 

qJ(n) := I {m E N 11 ~ m ~ n, (m, n) = I} I, 

then 

(i) qJ(n) = n TIpln (1 - lip), 
(ii) Ldln qJ(d) = n. 

The function qJ is called the Euler indicator. 

(1.1.2) Theorem. If (a, m) = t then a'P(m) == 1 (mod m). 

Theorem 1.1.2 is called the Euler- Fermat theorem. 

(1.1.3) Definition. The Mobius junction JL is defined by 

J1.(n) := ( -1)\ if n is the product of k distinct prime factors, {
t, ifn = 1, 

0, otherwise. 

(1.1.4) Theorem. Iff and g are functions defined on N such that 

g(n) = L f(d), 
din 

then 

Theorem 1.1.4 is known as the Mobius inversion formula. 

Algebraic Structures 

We assume that the reader is familiar with the basic ideas and theorems of 
linear algebra although we do refresh his memory below. We shall first give 
a sequence of definitions of algebraic structures with which the reader must 
be familiar in order to appreciate algebraic coding theory. 



§ 1.1. Algebra 3 

(1.1.5) Definition. A group (G, ) is a set G on which a product operation has 
been defined satisfying 

(i) 'v'aeG'v'beG[ab E G], 
(ii) 'v'aeG'v'beG'v'ceG[(ab)c = a(bc)], 

(iii) 3eeG'v'aeGEae = ea = a], 
(the element e is unique), 

(iv) 'v'aeG3beG[ab = ba = e], 
(b is called the inverse of a and also denoted by a-I). 

If furthermore 

(v) 'v'aeG'v'beG[ab = ba], 

then the group is called abelian or commutative. 

If(G, ) is a group and H c G such that (H, ) is also a group, then (H, ) 
is called a subgroup of(G, ). Usually we write G instead of(G, ). The number 
of elements of a finite group is called the order of the group. If (G, ) is a group 
and a E G, then the smallest positive integer n such that an = e (if such an n 
exists) is called the order of a. In this case the elements e, a, a2 , ••• , an- 1 form 
a so-called cyclic subgroup with a as generator. U(G, ) is abelian and (H, ) 
is a subgroup then the sets aH:= {ahJh E H} are called easets of H. Since two 
cosets are obviously disjoint or identical, the cosets form a partition of G. An 
element chosen from a coset is called a representative of the coset. It is not 
difficult to show that the co sets again form a group if we define mUltiplication 
of co sets by (aH)(bH):= abH. This group is called the Jactor group and 
indicated by GIR. As a consequence note that if a E G, then the order of a 
divides the order of G (also if G is not abelian). 

A fundamental theorem of group theory states that a finite abelian group is a 
direct sum of cyclic groups. 

(1.1.6) Definition. A set R with two operations, usually called addition and 
multiplication, denoted by (R, +, ), is called a ring if 

(i) (R, +) is an abelian group, 
(ii) 'v'aeR'v'beR'v'ceR[(ab)c = a(bc)], 

(iii) 'v'aeR'v'beR'v'ceR[a(b + c) = ab + ac 1\ (a + b)c = ac + bc]. 

The identity element of (R, +) is usually denoted by O. 
If the additional property 

(iv) 'v'aeR'v'beR[ab = ba] 

holds, then the ring is called commutative. 

The integers 71. are the best known example of a ring. 
If (R, +, ) is a commutative ring, a nonzero element a E R is called a zero 

divisor if there exists a nonzero element b E R such that ab = O. If a nontrivial 
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ring has no zero divisors, it is called an integral domain. In the same way that Z 
is extended to Q, an integral domain can be embedded in its field of fractions or 

quotient field. 

(1.1.7) Definition. If (R, +, ) is a ring and 0 i= S s; R, then S is called an ideal 

if 

(i) VaeSVbeS[a - bE S], 
(ii) VaeSVbeR[abES /\ baES]. 

It is clear that if S is an ideal in R, then (S, +, ) is a subring, but require­
ment (ii) says more than that. 

(1.1.8) Definition. A field is a ring (R, +, ) for which (R \ {O}, ) is an abelian 
group. 

(1.1.9) Theorem. Every finite ring R with at least two elements such that 

VaeRVbeR[ab = 0 =(a = 0 v b = 0)] 
is a field. 

(1.1.10) Definition. Let (V, +) be an abelian group, IF a field and let a multipli­
cation IF x V -. V be defined satisfying 

(i) V.ev[la = a], 
V«efVpefV.ev[ex(pa) = (exp)a], 

(ii) V«efV.eVVbeV[ex(a + b) = exa + exb], 
V«e FVpe FVaeV[(ex + p)a = exa + pal 

Then the triple (V, +, IF) is called a vector space over the field IF. The identity 
element of (V, +) is denoted by o. 

We assume the reader to be familiar with the vector space IIln consisting of 
all n-tuples (aI' al , ... , an) with the obvious rules for addition and multiplica­
tion. We remind him of the fact that a k-dimensional subspace C of this 
vector space is a vector space with a basis consisting of vectors a 1 := 

(all' all' ... , a 1n ), a l := (all' all' ... , aln ), ... , ak := (akl' akl' ... , akn), where 
the word basis means that every a E C can be written in a unique way as 
exl a 1 + exlal + ... + exkak • The reader should also be familiar with the process 
of going from one basis of C to another by taking combinations of basis 
vectors, etc. We shall usually write vectors as row vectors as we did above. The 
inner product <a, b) of two vectors a and b is defined by 

<a, b) := al b1 + al b2 + ... + anbn. 

The elements of a basis are called linearly independent. In other words this 
means that a linear combination of these vectors is 0 iff all the coefficients are 
O. If a I , ••• , ak are k linearly independent vectors, i.e. a basis of a k-dimensional 
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subspace C, then the system of equations (ai' y) = 0 (i = 1, 2, ... , k) has as 
its solution all the vectors in a subspace of dimension n - k which we denote 
by Col. So, 

Col := {y E IRnlV xeC[ (x, y) = O]}. 

These ideas playa fundamental role later on, where IR is replaced by a finite 
field IF. The theory reviewed above goes through in that case. 

(1.1.11) Definition. Let (V, +) be a vector space over IF and let a multiplica­
tion V x V ~ V be defined that satisfies 

(i) (V, +, ) is a ring, 
(ii) V"'eFV.eyVhy[(aa)b = a(ab)]. 

Then we say that the system is an algebra over IF. 

Suppose we have a finite group (G, .) and we consider the elements of Gas 
basis vectors for a vecto,r space (V, +) over a field IF. Then the elements of V 
are represented by linear combinations algi + rt.2g2 + ... + angn, where 

ai Elf, (1 ~ i ~ n = IGJ). 

We can define a multiplication * for these vectors in the obvious way, namely 

which can be written as Lk Ykgk' where Yk is the sum of the elements aiPj over 
all pairs (i, j) such that gi' gj = gk' This yields an algebra which is called the 
group algebra of G over IF and denoted by IFG. 

EXAMPLES. Let us consider a number of examples of the concepts defined 
above. 

If A := {ai' a2, ... , an} is a finite set, we can consider all one-to-one map­
pings of S onto S. These are called permutations. If a1 and a2 are permutations 
we define al a2 by (a1 a2)(a) := a1 (a2(a» for all a E A. It is easy to see that the 
set Sn of all permutations of A with this multiplication is a group, known as 
the symmetric group of degree n. In this book we shall often be interested in 
special permutation groups. These are subgroups of Sn. We give one example. 
Let C be a k-dimensional subspace of IRn. Consider all permutations a of the 
integers 1,2, ... , n such that for every vector c = (c 1 , c2 , ••• , cn) E C the vector 
(ca (1)' Ca(2)' ••• , caIn)~ is also in C. These clearly form a subgroup of Sn. Of 
course C will often be such that this subgroup of S consists of the identity only 
but there are more interesting examples! Another example of a permutation 
group which will tum up later is the affine permutation group defined as 
follows. Let IF be a (finite) field. The mapping fu.v, when u E IF, v E IF, u :f= 0, is 
defined on IF by fu,v(x) := ux + v for all x E IF. These mappings are permuta­
tions of IF and clearly they form a group under composition of functions. 
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A permutation matrix P is a (0, I)-matrix that has exactly one 1 in each row 
and column. We say that P corresponds to the permutation (1 of {I, 2, ... , n} 
if Pij = 1 iff i = (1(j) (i = 1,2, ... , n). With this convention the product of 
permutations corresponds to the product of their matrices. In this way one 
obtains the so-called matrix representation of a group of permutations. 

A group G of permutations acting on a set n is called k-transitive on n if 
for every ordered k-tuple (a l , ... , ak ) of distinct elements of n and for every 
k-tuple (bl , ... , 1\) of distinct elements of n, there is an element (1 E G such 
that bi = (1(ai) for 1 ~ i ~ k. If k = 1 we call the group transitive. 

Let S be an ideal in the ring (R, +, ). Since (S, +) is a subgroup of the 
abelian group (R, +), we can form the factor group. The cosets are now called 
residue classes mod S. For these classes we introduce a multiplication in the 
obvious way: (a + S)(b + S) := ap + S. The reader who is not familiar with 
this concept should check that this definition makes sense (i.e. it does not 
depend on the choice of representatives a resp. b). In this way we have 
constructed a ring, called the residue class ring R mod S and denoted by RjS. 
The following example' will surely be familiar. Let R := 7l. and tet p be a prime. 
Let S be p71., the set of all multiples of p, which is sometimes also denoted by 
(p). Then RjS is the ring of integers mod p. The elements of RjS can be 
represented by 0, 1, ... , p - 1 and then addition and mUltiplication are the 
usual operations in 7l. followed by a reduction mod p. For example, if we take 
p = 7, then 4 + 5 = 2 because in 7l. we have 4 + 5 = 2 (mod 7). In the same 
way 4· 5 = 6 in 7l.j771. = 7l./(7). If S is an ideal in 7l. and S :/= {O}, then there is a 
smallest positive integer k in S. Let s E S. We can write s as ak + b, where 
o ~ b < k. By the definition of ideal we have ak E S and hence b = s - ak E S 
and then the definition of k implies that b = O. Therefore S = (k). An ideal 
consisting of all multiples of a fixed element is called a principal ideal. If a ring 
R has no other ideals than principal ideals, it is called a principal ideal ring. 
Therefore 71. is such a ring. 

An ideal S is called a prime ideal if ab E S implies a E S or b E S. An ideal 
S in a ring R is called maximal if for every ideal J with S c J C R, J = S or 
J = R (S i= R). If a ring has a unique maximal ideal, it is called a local ring. 

(1.1.12) Theorem. If p is a prime then 7l./p71. is a field. 

This is an immediate consequence of Theorem 1.1.9 but also obvious 
directly. A finite field with n elements is denoted by IFn or GF(n) (Galois field). 

Rings and Finite Fields 

More about finite fields will follow below. First some more about rings and 
ideals. Let IF be a finite field. Consider the set IF[x] consisting of all polyno­
mials ao + a l x + ... + anxn, where n can be any integer in Nand ai E IF for 
o ~ i ~ n. With the usual definition of addition and multiplication of polyno-
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mials this yields a ring (IF[xJ, +, ), which is usually just denoted by IF[x]. 
The set of all polynomials that are multiples of a fixed polynomial g(x), i.e. all 
polynomials of the form a(x)g(x) where a(x) E IF[xJ, is an ideal in IF[x]. 

As before, we denote this ideal by (g(x». The following theorem states that 
there are no other types. 

(1.1.13) Theorem. IF [xJ is a principal ideal ring. 

The residue class ring IF[xJ/(g(x)) can be represented by the polynomials 
whose degree is less than the degree of g(x). In the same way as our example 
7l./T71. given above, we now multiply and add these representatives in the usual 
way and then reduce mod g(x). For example, we take IF = IFz = {O, I} and 
g(x) = x 3 + X + 1. Then (x + l)(x2 + 1) = x 3 + x2 + X + 1 = x2. This ex­
ample is a useful one to study carefully if one is not familiar with finite fields. 
First observe that g(x) is irreducible, i.e., there do not exist polynomials a(x) 
and b(x) E IF[xJ, both of degree less than 3, such that g(x) = a(x)b(x). Next, 
realize that this means that in 1F2[xJ/(g(x)) the product of two elements a(x) 
and b(x) is 0 iff a(x) = 0 or b(x) = O. By Theorem 1.1.9 this means that 
1F2[xJ/(g{x» is a field. Since the representatives of this residue class ring all 
have degrees less than 3, there are exactly eight of them. So we have found a 
field with eight elements, i.e. 1F23 • This is an example of the way in which finite 
fields are constructed. 

(1.1.14) Theorem. Let p be a prime and let g(x) be an irreducible polynomial of 
degree r in the ring IFp[x]. Then the residue class ring IFp[xJ/(g(x» is a field with 
pr elements. 

PROOF. The proof is the same as the one given for the example p = 2, r = 3, 
g(x) = x 3 + X + 1. . D 

(1.1.15) Theorem. Let IF be afield with n elements. Then n is a power of a prime. 

PROOF. By definition there is an identity element for multiplication in IF. We 
denote this by 1. Of course 1 + 1 E IF and we denote this element by 2. We 
continue in this way, i.e. 2 + 1 = 3, etc. After a finite number of steps we 
encounter a field element that already has a name. Suppose, e.g. that the sum 
of k terms 1 is equal to the sum of I terms I (k > I). Then the sum of (k - I) 
terms I is 0, i.e. the first time we encounter an element that already has a 
name, this element is O. Say 0 is the sum of k terms 1. If k is composite, k = ab, 
then the product of the elements which we have called a resp. b is 0, a 
contradiction. So k is a prime and we have shown that IFp is a subfield of IF. 
We define linear independence of a set of elements of IF with respect to 
(coefficients from) IFp in the obvious way. Among all linearly independent 
subsets of IF let {Xl' x 2 , ••• , x r } be one with the maximal number of elements. 
If x is any element of IF then the elements x, Xl' x 2, ... , Xr are not linearly 
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independent, i.e. there are coefficients 0 i= (X, (Xl' ••• , (x, such that !XX + (Xl Xl + 
... + (X,Xr = 0 and hence X is a linear combination of Xl to X,. Since there are 
obviously p' distinct linear combinations of Xl to X, the proof is complete. 0 

From the previous theorems we now know that a field with n elements 
exists iff n is a prime power, providing we can show that for every r ~ 1 there 
is an irreducible polynomial of degree r in IFp[x]. We shall prove this by 
calculating the number of such polynomials. Fix p and let I, denote the 
number of irreducible polynomials of degree r that are monic, i.e. the coeffi­
cient of xr is 1. We claim that 

00 

(1.1.16) (1 - pZ)-l = n (1 - zT1,. 
,=1 

In order to see this, first observe that the coefficient of z" on the left-hand side 
is p", which is the number of monic polynomials of degree n with coefficients 
in IFp. We know that each such polynomial can be factored uniquely into 
irreducible factors and we must therefore convince ourselves that these prod­
ucts are counted on the right-hand side of (1.1.16). To show this we just 
consider two irreducible polynomials al (x) of degree rand a2 (x) of degree s. 
There is a 1-1 correspondence between products (al(x»k(a2(x»' and terms 
z~' z~ in the product of (1 + z~ + zf' + ... ) and (1 + zi + z~s + "'). If we 
identify z 1 and Z2 with z, then the exponent of z is the degree of (a 1 (x)t(a2(x»'. 
Instead of two polynomials a l (x) and a2(x), we now consider all irreducible 
polynomials and (1.1.16) follows. 

In (1.1.16) we take logarithms on both sides, then differentiate, and finally 
mUltiply by z to obtain 

(1.1.17) 
pz 00 rz' 

1 - pz = ,~ I, 1 _ z" 

Comparing coefficients of z" on both sides of (1.1) 7) we find 

(1.1.18) p" = L rIr· 
'1" 

Now apply Theorem 1.l.4 to (1.1.18). We find 

1 1 (1.1.19) I, = - L j.l(d)p,,4 > _ {p' - p,/2 _ p,/3 - ... } 
r 41' r 

1 ( ,,2 .) 1 >- p'- L pi >_p'(1_p-,/2+1»0. 
r ;=0 r 

Now that we know for which values of n a field with n elements exists, we wish 
to know more about these fields. The structure of IF P' will playa very impor­
tant role in many chapters of this book. As a preparation consider a finite field 
IF and a polynomial f(x) E IF[x] such that f(a) = 0, where a E IF. Then by 
dividing we find that there is a g(x) E IF[x] such that f(x) = (x - a)g(x). 
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Continuing in this way we establish the trivial fact that a polynomial f(x) of 
degree r in IF[x] has at most r zeros in IF. 

If a is an element of order e in the multiplicative group (IF p.\ {O}, ), then a 
is a zero of the polynomial xl! - 1. In fact, we have 

x" - 1 = (x - l)(x - a)(x - ( 2 )···(x - a"-I). 

It follows that the only elements of order e in the group are the powers ai 

where 1 ::;; i < e and (i, e) = 1. There are cp(e) such elements. Hence, for every 
e which divides p' - 1 there are either 0 or cp(e) elements of order e in the field. 
By (1.1.1) the possibility 0 never occurs. As a consequence there are elements 

of order p' - 1, in fact exactly cp(p' - 1) such elements. We have proved the 
following theorem. 

(1.1.20) Theorem. In IFq the multiplicative group (lFq \ {O}, ) is a cyclic group. 

This group is often d~iloted by IF:. 

(1.1.21) Definition. A generator of the multiplicative group of IFq is called a 
primitive element of the field. 

Note that Theorem 1.1.20 states that the elements of IFq are exactly the q 
distinct zeros of the polynomial x q - x. An element fJ such that fJk = 1 but 
fJl -=F 1 for 0 < I < k is called a primitive kth root of unity. Clearly a primitive 
element a of IFq is a primitive (q - l)th root of unity. If e divides q - 1 then a" 
is a primitive «q - 1)/e)th root of unity. Furthermore a consequence of 
Theorem 1.1.20 is that IF".. is a subfield of IF P' itT r divides s. Actually this 
statement could be slightly confusing to the reader. We have been suggesting 
by our notation that for a given q the field IFq is unique. This is indeed true. In 
fact this follows from (1.1.18). We have shown that for q = pft every element 
of IFq is a zero of some irreducible factor of x q - x and from the remark above 
and Theorem 1.1.14 we see that this factor must have a degree r such that rln. 
By (1.1.18) this means we have used all irreducible polynomials of degree r 
where rln. In other words, the product of these polynomials is xq - x. This 
establishes the fact that two fields IF and IF' of order q are isomorphic, i.e. there 
is a mapping cp: IF -+ IF' which is one-to-one and such that cp preserves addition 
and multiplication. 

The following theorem is used very often in this book. 

(1.1.22) Theorem. Let q = p' and 0 -=F f(x) E IFq[x]. 

(i) If a E IFqk and f(a) = 0, then f(aq) = o. 
(ii) Conversely: Let g(x) be a polynomial with coefficients in an extension field 

of IFq. If g(aq ) = 0 for every a for which g(a) = 0, then g(x) E IFq[x]. 
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PROOF. 

(i) By the binomial theorem we have (a + b)p = aP + bP because p divides 

(n for 1 :::;:; k :::;:; p - 1. It follows that (a + b)q = aq + bq. If f(x) = L aix i 

then (f(x))q = La?(xq)i. 

Because ai E IFq we have a? = ai. Substituting x = a we find f(a q ) = 
(f(aW = O. 

(ii) We already know that in a suitable extension field of IFq the polynomial 
g(x) is a product of factors x - ai (all of degree 1, that is) and if x - ai is 

one of these factors, then x - a? is also one of them. If g(x) = Lk=O akxt 
then at is a symmetric function of the zeros ai and hence at = at, i.e. 
at E IFq. 

If a E IFq, where q = pr, then the minimal polynomial of a over IFp is the 
irreducible polynomial f(x) E IFp[xJ such that f(a) = O. If a has order e 
then from Theorem 1.1.22 we know that this minimal polynomial is 
n7'=ol (x - aP'), where m is the smallest integer such that pm == 1 (mod e). 

Sometimes we shall consider a field IF q with a fixed primitive element a. In 
that case we use mi (x) to denote the minimal polynomial of a i • An irreducible 
polynomial which is the minimal polynomial of a primitive element in the corre­
sponding field is called a primitive polynomial. Such polynomials are the most 
convenient ones to use in the construction of Theorem 1.1.14. We give an example 
in detail. 

(1.1.23) EXAMPLE. The polynomial X4 + x + 1 is primitive over 1F2 . The field 
1F2' is represented by polynomials of degree < 4. The polynomial x is a 
primitive element. Since we prefer to use the symbol x for other purposes, we 
call this primitive element a. Note that a4 + a + 1 = O. Every element in 1F24 
is a linear combination of the elements 1, ct, a2 , and a3• We get the following 
table for 1F2,. The reader should observe that this is the equivalent of a table 
of logarithms for the case of the field IR. 

The representation on the right demonstrates again that 1F2' can be inter­
preted as the vector space (1F2t, where {I, a, a2 , a3 } is the basis. The left-hand 
column is easiest for multiplication (add exponents, mod 15) and the right­
hand column for addition (add vectors). It is now easy to check that 

m1(x) = (x -a)(x _(2 )(x - ( 4 )(x _as) = X4 + X + 1, 

m3(x) = (x - ( 3 )(x - ( 6 )(x - ( 12 )(x - ( 9 ) = X4 + x 3 + x 2 + X + 1, 

ms(x) = (x - as)(x - a lO ) = x 2 + X + 1, 

m7(x) = (x - ( 7)(x - ( 14)(x - ( 13 )(x - all) = X4 + x 3 + 1, 

and the decomposition of X 16 - x into irreducible factors is 
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X l6 _ x = x(x - 1)(x2 + X + 1)(X4 + X + 1) 

X (x4 + Xl + 1)(x4 + Xl + x 2 + X + 1). 

Note that X4 - X = x(x - 1)(x2 + X + 1) corresponding to the elements 0, 1, 
as, a lO which form the subfield 1F4 = 1F2 [x]/(X2 + X + 1). The polynomial 
m3 (x) is irreducible but not primitive. 

Table of !F24 

o = (0 0 0 0) 
1 = 1 = (l 0 0 0) 
I;( = C( = (0 1 0 0) 
1;(2 1;(2 = (0 0 1 0) 
1;(3 rx3 = (0 0 0 1) 
rx4 = 1 + C( = (1 1 0 0) 
rx S rx + !X 2 = (0 1 1 0) 
1;(6 !X2 + 1;(3 = (0 0 1 1) 
ri.7 = 1 + !X + C(l = (1 1 0 1) 
rx8 = 1 + !X 2 = (1 0 1 0) 
!X9 C( + rx 3 = (0 1 0 1) 
1;(10 = 1 + C( + !X 2 = (1 1 1 0) 
C(II = !X + 1;(2 + C(3 = (0 1 1 1) 
1;(12 = 1 + C( + !X 2 + !Xl = (1 1 1 1) 
rx l3 = 1 + !X 2 + C(3 = (1 0 1 1) 
rx l4 = 1 -I-!X3 = (l 0 0 1) 

The reader who is not familiar with finite fields should study (1.1.14) to 
(1.1.23) thoroughly and construct several examples such as !F9, 1F27 , 1F64 with 
the corresponding minimal polynomials, subfields, etc. For tables of finite 
fields see references [9] and [10]. 

Polynomials 

We need a few more facts about polynomials. If f(x) E IFq[x] we can define the 
derivative f'(x) in a purely formal way by 

The usual rules for differentiation of sums and products go through and 
one finds for instance that the derivative of (x - a)2 f(x) is 2(x - rx)f(x) + 
(x - rx)2f'(X). Therefore the following theorem is obvious. 

(1.1.24) Theorem. If f(x) E IFq[xJ and CI. is a multiple zero of f(x) in some 
extension field of IFq, then CI. is also a zero of the derivative f'(x). 

Note however, that if q = 2', then the second derivative of any polynomial 
in IFq[x] is identically O. This tells us nothing about the multiplicity of zeros 
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of the polynomial. In order to get complete analogy with the theory of 
polynomials over IR, we introduce the so-called Hasse derivative of a polyno­
mial f(x) E IFq[x] by 

(so the k-th Hasse derivative of x· is G) x.-k )' 

The reader should have no difficulty proving that a is a zero of f(x) with 
multiplicity k iff it is a zero of flil(x) for 0 s i < k and not a zero of jlkl(x). 

Another result to be used later is the fact that if f(x) = U7=1 (x - aJ then 
rex) = Lt=1 f(x)/(x - aJ 

The following theorem is well known. 

(1.1.25) Theorem. If the polynomials a(x) and b(x) in IF[x] have greatest 
common divisor 1, then .there are polynomials p(x) and q(x) in IF[x] such that 

a(x)p{x) + b(x)q(x) = 1. 

PROOF. This is an immediate consequence of Theorem 1.1.13. o 
Although we know from (1.1.19) that irreducible polynomials of any degree 

r exist, it sometimes takes a lot of work to find one. The proof of (1.1.19) shows 
one way to do it. One starts with all possible polynomials of degree 1 and 
forms all reducible polynomials of degree 2. Any polynomial of degree 2 not 
in the list is irreducible. Then one proceeds in the obvious way to produce 
irreducible polynomials of degree 3, etc. In Section 9.2 we shall need irreduc­
ible polynomials over 1F2 of arbitrarily high degree. The procedure sketched 
above is not satisfactory for that purpose. Instead, we proceed as follows. 

(1.1.26) Lemma. 

PROOF. 

(i) For f3 = 0 and f3 = 1 the assertion is true. 
(ii) Suppose 3111(236 + 1). Then from 

(236 + 1 + 1) = (236 + 1){(236 + 1)(236 - 2) + 3}, 

it follows that if t 2:: 2, then 31+1 11 (236 + I + 1). 

(1.1.27) Lemma. If m is the order of 2 (mod 3'), then 

m = qJ(3') = 2· 3'-1. 

o 
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PROOF. If 2« == 1 (mod 3) then IX is even. Therefore m = 2s. Hence 2' + 1 == ° (mod 31). The result follows from Theorem 1.1.2 and Lemma 1.1.26. 0 

(1.1.28) Theorem. Let m = 2.31- 1• Then 

xm + X ml2 + 1 

is irreducible over 1F2 • 

PROOF. Consider 1F2m. In this field let ~ be a primitive (31)th root of unity. 
The minimal polynomial of ~ then is, by Lemma 1.1.27 

f(x) = (x - ~)(x - e2 )(x - ~4) ... (x _ ~2,"-1), 

a polynomial of degree m. Note that 

x 3 ' + 1 = (1 + x)(1 + x + x 2 )(1 + x 3 + x 6 )···(1 + X 31 - 1 + X 2 • 31 - 1
), 

a factorization which contains only one polynomial of degree m, so the last 
factor must be f(x), i.e. it is irreducible. 0 

Quadratic Residues 

A consequence of the existence of a primitive element in any field IFq is that it 
is easy to determine the squares in the field. If q is even then every element is 
a square. If q is odd then IFq consists of 0, t(q - 1) nonzero squares and 
t(q - 1) nonsquares. The integers k with 1 ~ k ~ p - 1 which are squares in 
IFp are usually called quadratic residues (mod pl. By considering k E IFp as a 
power of a primitive element of this field, we see that k is a quadratic residue 
(mod p) iff k(P-l)/2 == 1 (mod pl. For the element p - 1 = -1 we find: -1 is a 
square in IFp iff p == 1 (mod 4). In Section 6.9 we need to know whether 2 is a 
square in IFp. To decide this question we consider the elements 1, 2, ... , 
(p - 1)/2 and let a be their product. Multiply each of the elements by 2 to 
obtain 2, 4, ... , p - 1. This sequence contains UP - 1)/4 J factors which are 
factors of a and for any other factor k of a we see that - k is one of the 
even integers> (p - 1)/2. It follows that in IFp we have 2(p-1)/2 a = 
(_1)(P-lJ/2-l(P-IJ/4 J a and since a -# ° we see that 2 is a square iff 

p - 1 -lp -1 J 
2 4 

is even, i.e. p == ± 1 (mod 8). 

The Trace 

Let q = pro We define a mapping Tr: IFq .... lFp , which is called the trace, as 
follows. 
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(1.1.29) Definition. If ~ E IFq then 

Tr{~):= ~ + ~p + ~p2 + ... + ~P'"-I. 

(1.1.30) Theorem. The trace function has the following properties: 

(i) For every ~ E IFq the trace Tr{~) is in IFp; 
(ii) There are elements ~ E IFq such that Tr{~) =F 0; 
(iii) Tr is a linear mapping. 

PROOF. 

(i) By definition (Tr{~»P = Tr(~). 
(ii) The equation x + x P + ... + X"..-I = 0 cannot have q roots in IFq, 
(iii) Since (~ + ,,)P = ~p + "p and for every a E IFp we have aP = a, this is 

obvious. 0 

Of course the theorem implies that the trace takes every value p-l q times 
and we see that the polynomial x + x P + ... + X"..-I is a product of minimal 
polynomials (check this for Example 1.1.23). 

Characters 

Let (G, +) be a group and let (T, ) be the group of complex numbers with 
absolute value 1 with multiplication as operation. A character is a homo­
morphism x: G - T, i.e. 

(1.1.31) 

From the definition it follows that X{O) = 1 for every character X. If X(g) = 1 
for all 9 E G then X is called the principal character. 

(1.1.32) Lemma. If X is a character for (G, +) then 

L X(g) = {I GI, if X is the principal character, 
geG 0, otherwise. 

PROOF. Let It E G. Then 

X(h) L X(g) = L X(h + g) = L X{k). 
geG geG keG 

If X. is not the principal character we can choose h such that X(h) =F 1. 0 

§1.2. Krawtchouk Polynomials 

In this section we introduce a sequence of polynomials which play an impor­
tant role in several parts of coding theory, the so-called Krawtchouk polyno-
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mials. These polynomials are an example of orthogonal polynomials and 
most of the theorems that we mention are special cases of general theorems 
that are valid for any sequence of orthogonal polynomials. The reader who 
does not know this very elegant part of analysis is recommended to consult 
one of the many textbooks about orthogonal polynomials (e.g. G. Szego [67], 
D. Jackson [36], F. G. Tricomi [70]). In fact, for some of the proofs of 
theorems that we mention below, we refer the reader to the literature. Because 
of the great importance of these polynomials in the sequel, we treat them 
more extensively than most other subjects in this introduction. 

Usually the Krawtchouk polynomials will appear in situations where two 
parameters nand q have already been fixed. These are usually omitted in the 
notation for the polynomials. 

(1.2.1) Definition. For k = 0, 1,2, ... , we define the Krawtchouk polynomial 
K,,(x) by 

" .(x)(n - x) . K,,(x; n, q):= K,,(x):= L (-1)1 . k . (q - 1),,-J, 
j=O J - J 

where 

( x):= x(x - 1)· ··(x - j + 1) 
j j! ' 

(x E IR). 

Observe that for the special case q = 2 we have 

(1.2.2) K,,(x) = ± ( - lY(~) (nk -~) = ( - 1)"K,,(n - x). 
j=O J - J 

By mUltiplying the Taylor series for (1 + (q - l)zrX and (1 - z)X we find 

00 

(1.2.3) L K,,(x)z" = (1 + (q - l)zrx(l - z)". 
"=0 

It is clear from (1.2.1) that K,,(x) is a polynomial of degree k in x with leading 
coefficient (-q)"/k! The name orthogonal polynomial is connected with the 
following "orthogonality relation": 

(1.2.4) it (~)<q - l)iK,,(i)K1(i) = «5"I(~)(q - 1)"qn. 

The reader can easily prove this relation by multiplying both sides by x" yI 
and summing over k and I (0 to (0), using (1.2.3). Since the two sums are equal, 
the assertion is true. From (1.2.1) we find 

(1.2.5) (q - 1)(~)K"(i) = (q - 1)"(~)Ki(k)' 
which we substitute in (1.2.4) to find a second kind of orthogonality relation: 
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n 

(1.2.6) 2: K,{i)K;(k) = ~'kqn. ;=0 
We list a few of the Krawtchouk polynomials (k ~ 2) 

(1.2.7) Ko(n. x) = I, 

K1(n, x) = n(q - 1) - qx, (= n - 2x if q = 2), 

In Chapter 7 we shall need the coefficients of Xk, Xk-l, Xk-2, and XO in the 
expression of Kk(x). If Kk(x) = 2:7=0 CiXi. then for q = 2 we have: 

(1.2.8) ck = (-2)k/k!. 

Ck-l = C-2)k-1n/(k - I)!. 

Ck-2 = i( _2)k-2{3n2 - 3n + 2k - 4}/(k - 2)!' 

For several purposes we need certain recurrence relations for the Krawt­
chouk polynomials. The most important one is 

(k + I )Kk +1 (x) 
(1.2.9) = {k + (q - I)(n - k) - qx}Kk(x) - (q - I)(n - k + I)Kk_1(X). 

This is easily proved by dilTerentiating both sides of (1.2.3) with respect to z 
and mUltiplying the result by (1 + (q - I)z)(l - z). Comparison of coeffi­
cients yields the result. An even easier exercise is replacing x by x-I in (1.2.3) 
to obtain 

(1.2.10) 

which is an easy way to calculate the numbers Kk(i) recursively. 
If P(x) is any polynomial of degree I then there is a unique expansion 

I 

(1.2.11) P(x) = 2: I'tkKk(x), 
k=O 

which is called the Krawtchouk expansion of P(x). 
We mention without proof a few properties that we need later. They are 

special cases of general theorems on orthogonal polynomials. The first is the 
ChristolTel-Darboux formula 

(1.2.12) Kk+t<x)Kk(y) - Kk(x)Kk+l(Y) = _2_(n) ± K;(x)Ki(y). 

Y - x k + 1 k i=O C) 
The recurrence relation (1.2.9) and an induction argument show the very 
important interlacing property of the zeros of Kk(x): 
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(1.2.13) Kk(x) has k distinct real zeros on (0, n); if these are 
Vl < V2 < ... < Vk and if Ul < U2 < ... < Uk-l are the 
zeros of Kk - l , then 

0< Vl < U l < V2 < ... < Vk-l < Uk-l < Vk < n. 

17 

The following property once again follows from (1.2.3) (where we now take 
q = 2) by multiplying two power series: If x = 0, 1,2, ... , n, then 

/I 

(1.2.14) Ki(x)Kj(x) = L akKI,(x), 
k=O 

where 

ak:= (i +nj __ \)/2)(i _ j k+ k)/2). 
In Chapter 7 we shall ne~d the relation 

, 
(1.2.15) L Kk(x) = K,(x - 1; n - 1, q). 

k=O 

This is easily proved by substituting (1.2.1) on the left-hand side, changing the 

(x) (x - 1) (x - 1) order of summation and then using j = j _ 1 + j (j ~ 1). We 

shall denote K,(x - 1; n - 1, q) by 'P/(x). 

§1.3. Combinatorial Theory 

In several chapters we shall make use of notions and results from combina­
torial theory. In this section we shall only recall a number of definitions and 
one theorem. The reader who is not familiar with this area of mathematics is 
referred to the book [93]. 

(1.3.1) Definition. Let S be a set with v elements and let 11 be a collection of 
subsets of S (which we call blocks) such that: 

(i) IBI = k for every B E 11, 
(ii) for every T c S with I TI = t there are exactly A blocks B such that 

TeB. 

Then the pair (S,1I) is called a t-design (notation t - (v, k, A». The elements 
of S are called the points of the design. If A = 1 the design is called a Steiner 
system. 

A t-design is often represented by its incidence matrix A which has 1111 rows 
and lSI columns and which has the characteristic functions of the blocks as 
its rows. 
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(1.3.2) Definition. A block design with parameters (v, k; b, r, ;,) is a 2 - (v, k, 
).) with IgBl = b. For every point there are r blocks containing that point. If 
b = v then the block design is called symmetric. 

(1.3.3) Definition. A projective plane of order n is a 2 - (n2 + n + 1, n + 1, 1). 
In this case the blocks are called the lines of the plane. A projective plane of 
order n is denoted by PG(2, n). 

(1.3.4) Definition. The affine geometry of dimension m over the field IFq is the 
vector space (lFq)m (we use the notation AG(m, q) for the geometry). A k­
dimensional affine subspace or a k-Oat is a coset of a k-dimensionallinear 
subspace (considered as a subgroup). If k = m - 1 we call the flat a hyper­
plane. The group generated by the linear transformations of (lFq)m and the 
translations of the vector space is called the group of affine transformations 
and denoted by AGL(m, q). The affine permutation group defined in Section 
1.1 is the example with'm = 1. The projective geometry of dimension mover 
IFq (notation PG(m, q)) 'consists of the linear subspaces of AG(m + 1, q). The 
subspaces of dimension 1 are called points, subspaces of dimension 2 are lines, 
etc. 

We give one example. Consider AG(3, 3). There are 27 points, t(27 - 1) = 
13 lines through (0, 0, 0) and also 13 planes through (0, 0, 0). These 13 lines 
are the "points" of PG(2, 3) and the 13 planes in AG(3, 3) are the "lines" of 
the projective geometry. It is clear that this is a 2 - (13, 4, 1). When speaking 
of the coordinates of a point in PG(m, q) we mean the coordinates of any of 
the corresponding points ditTerent from (0, 0, ... , 0) in AG(m + 1, q). So, in 
the example of PG(2, 3) the triples (1, 2, 1) and (2, 1, 2) are coordinates for 
the same point in PG(2, 3). 

In Chapter 10 we shall consider n-dimensional projective space i?n over a 
field k. A point will be denoted by (ao : al : ... : an), not all a; = 0, and 
(ao : al : ... : an) = (bo : b l : ... : bn) if there is aCE k, c =f:. 0, such that 
bi = cai for 0 ::: i ::: n. 

(1.3.5) Definition. A square matrix H of order n with elements + 1 and -1, 
such that HHT = nl, is called a Hadamard matrix. 

(1.3.6) Definition. A square matrix C of order n with elements 0 on the 
diagonal and + lor -1 otT the diagonal, such that CCT = (n - 1)1, is called 
a conference matrix. 

There are several well known ways of constructing Hadamard matrices. 
One of these is based on the so-called Kronecker product of matrices which is 
defined as follows. 
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(1.3.7) Definition. If A is an m x m matrix with entries aij and B is an n x n 
matrix then the Kronecker product A ® B is the mn x mn matrix given by 

B a2lB a22 B ... a2m B 
A®:=.. .. [

aIlB a12B ... almBJ 
.. . .. . 

amlB am2B ... ammB 

It is not difficult to show that the Kronecker product of Hadamard matri­

ces is again a Hadamard matrix. Starting from H2 := (1 1) we can find 
1 -1 

the sequence Hr", where H1z = Hz ® Hz, etc. These matrices appear in 
several places in the book (sometimes in disguised form). 

One of the best known construction methods is due to R. E. A. C. Paley (see 
[93]). Let q be an odd prime power. We define the function X on IFq by X (0) := 
0, X (x) := 1 if x is a nonzero square, X (x) = -1 otherwise. Note.that X restricted 
to the multiplicative group of IF q is a character. Number the elements of IF q in any 
way as £20, al ... ,aq_h where ao = O. 

(1.3.8) Theorem. The Paley matrix S of order q defined by S;j:= x(a; - a) has 
the properties: 

(i) SJ = JS = 0, 
(ii) SST = qJ - J, 

(iii) ST = ( _1)(Q-l)/Z S. 

If we take such a matrix S and form the matrix C of order q + 1 as follows: 

0 
-1 

C:= -1 S 

-1 

then C is a conference matrix of order q + 1. If q == 3 (mod 4) we can then 
consider H := J + C. Since CT = - C because - 1 is not a square in IFq , we 
see that H is a Hadamard matrix of order q + 1. 

§1.4. Probability Theory 

Let x be a random variable which can take a finite number of values Xl' x 2 , 

.... As usual, we denote the probability that x equals Xi' i.e. P(x = x;), by Pi· 
The mean or expected value of x is Jl = 6"(x) := Li PiXi· 

If 9 is a function defined on the set of values of x then 6"(g(x)) = Li Pig(XJ 
We shall use a number of well known facts such as 
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cS'(ax + by) = acS'(x) + bcS'(y). 

The standard deviation a and the variance a2 are defined by: )1 = cS'(x), 

a2 := L Pixf - )12 = cS'(x - )1)2, 
i 

(a> 0). 

We also need a few facts about two-dimensional distributions. We use the 
notation Pij:= P(x = Xi A Y = y), Pi. := P(x = X;) = "'£Pij and for the condi­
tional probability P(x = x;ly = Yj) = pijlp.j. We say that x and yare indepen­
dent if Pij = Pi.P.j for all i and j. In that case we have 

cS'(xy) = L PijxiYj = cS'(x)cS'(y). 
i.j 

All these facts can be found in standard textbooks on probability theory (e.g. 

W. Feller [21]). The same is true for the following results that we shall use in 
Chapter 2. 

(1.4.1) Theorem (Chebyshev's Inequality). Let x be a random variable with 
mean)1 and variance a2• Then for any k > ° 

P(lx - )11 ~ ka) < k- 2 . 

The probability distribution which will play the most important role in the 
next chapter is the binomial distribution. Here, x takes the values 0, 1, ... , n 

and P(x = i) = C) piqn-i, where 0::::; P ::::; 1, q := 1 - p. For this distribution 

we have)1 = np and a2 = np(I - pl. An important tool used when estimating 
binomial coefficients is given in the following theorem 

(1.4.2) Theorem (Stirling's Formula). 

log n! = (n - !) log n - n + tlog(21t) + 0(1), 

= n log n - n + O(log n), 

(n ... co) 

(n ... co). 

Another useful lemma concerning binomial coefficients is Lemma 1.4.3. 

(1.4.3) Lemma. We have 

PROOF. 

o 

We shall now introduce a function that is very important in information 
theory. It is known as the binary entropy function and usually denoted by H. 
In (5.1.5) we generalize this to other q than 2. In the following the logarithms 
are to the base 2. 
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(1.4.4) Definition. The binary entropy function H is defined by 

H(O):= 0, 

H(x):= -x log x - (1 - x) log(l - x), 

(1.4.5) Theorem. Let 0::; A ::; t. Then we have 

(i) LO$i$.ln G) ::; 2nH(A), 

(ii) limn_a> n-1 log LO$i$.in (~) = H(A). 

PROOF. 

(i) 

(0 < x ::; t). 

~ L ~ (1 - A)n -- = rnH(.l) L ~. ( ) ( A ).In (. ) 
O$i$.ln I 1 - A O$i$.ln I 

21 

(ii) Write m := LAn J. Then m = An + 0(1) for n -. 00. Therefore we find from 
Theorem 1.4.2: 

n-1 log o$f;.ln (~) ~ n-1 IOg(:) 

= n-l{n log n - m log m -en - m) log(n - m) + o(n)} 

= log n - Alog(An) - (1 - A) log«l - A)n) + 0(1) 

= H(A) + 0(1) for n -. 00. 

The result then follows from part (i). o 
A probability distribution that plays an important role in information theory 

is the normal or Gaussian distribution. It is used to describe one of the common 
kinds of "noise" on communication channels. We say that a continuous random 
variable has Gaussian distribution with mean IL and variance (}"2 if it has density 
function 

1 (X-ILl) p(x):= ~exp - 2 • 
V 21((}"2 2(}" 



CHAPTER 2 

Shannon's Theorem 

§2.1. Introduction 

This book will present an introduction to the mathematiCal aspects of the 
theory of error-correcting codes. This theory is applied in many situations 
which have as a common feature that information coming from some source 
is transmitted over a noisy communication channel to a receiver. Examples 
are telephone conversations, storage devices like magnetic tape units which 
feed some· stored information to the computer, telegraph, etc. The following 
is a typical recent example. Many readers will have seen the excellent pictures 
which were taken of Mars, Saturn and other planets by satellites such as the 
Mariners, Voyagers, etc. In order to transmit these pictures to Earth a fine 
grid is placed on the picture and for each square of the grid the degree of 
blackness is measured, say in a scale of 0 to 63. These numbers are expressed 
in the binary system, i.e. each square produces a string of six Os and Is. The 
Os and Is are transmitted as two different signals to the receiver station on 
Earth (the Jet Propulsion Laboratory of the California Institute of Tech­
nology in Pasadena). On arrival the signal is very weak and it must be 
amplified. Due to the effect of thermal noise it happens occasionally that a 
signal which was transmitted as a 0 is interpreted by the receiver as a 1, and 
vice versa. If the 6-tuples of Os and Is that we mentioned above were transmit­
ted as such, then the errors made by the receiver would have great effect on 
the pictures. In order to prevent this, so-called redundancy is built into the 
signa~ i.e. the transmitted sequence consists of more than the necessary 
information. We are all familiar with the principle of redundancy from every­
day language. The words of our language form a small part of all possible 
strings of letters (symbols). Consequently a misprint in a long(!) word is 
recognized because the word is changed into something that resembles the 
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correct word more than it resembles any other word we know. This is the 
essence of the theory to be treated in this book. In the previous example the 
reader corrects the misprint. A more modest example of coding for noisy channels 
is the system used for the serial interface between a terminal and a computer or 
between a PC and the keyboard. In order to represent 128 distinct symbols, strings 
of seven Os and Is (i. e. the integers 0 to 127 in binary) are used. In practice one 
redundant bit ( ... binary digit) is added to the 7 -tuple in such a way that the resulting 
8-tuple (called a byte) has an even number of Is. This is done for example in the 
ASCn character code. A failure in these interfaces occurs very rarely but it is 
possible that an occasional incorrect bit occurs. This results in incorrect parity 
of the 8-tuple (it will have an odd number of Is). In this case, the 8-tuple is not 
accepted. This is an example of what is called a single-error-detecting code. 

We mentioned above that the 6-tuples of Os and Is in picture transmission 
(e.g. Mariner 1969) are replaced by longer strings (which we shall always call 
words). In fact, in the case of Mariner 1969 the words consisted of 32 symbols 
(see [56J). At this point the reader should be satisfied with the knowledge that 
some device had been designed which changes the 64 possible information 
strings (6-tuples of Os and Is) into 64 possible codewords (32-tuples of Os and 
Is). This device is called the encoder. The codewords are transmitted. We 
consider the random noise, i.e. the errors as something that is added to the 
message (mod 2 addition). 

At the receiving end, a device called the decoder changes a received 32-
tuple, if it is not one of the 64 allowable codewords, into the most likely 
codeword and then determines the corresponding 6-tuple (the blackness of 
one square of the grid). The code which we have just described has the 
property that if not more than 7 of the 32 symbols are incorrect, then the 
decoder makes the right decision. Of course one should realize that we have 
paid a toll for this possibility of error correction. namely that the time available 
for the transmission of each bit is only 1/5 of what would be available with no 
coding, leading to increased error probability! We shall treat this example in more 
detail in §2.3. 

In practice, the situation is more complicated because it is not the trans­
mission time that changes, but the available energy per transmitted bit. 

The most spectacular application of the theory of error-correcting codes is 
the Compact Disc Digital Audio system invented by Philips (Netherlands). 
Its success depends (among other things) on the use of Reed Solomon codes. 
These will be treated in Section 6.8. Figure 1 is a model of the situation 
described above. 

In this book our main interest will be in the construction and the analysis 
of good codes. In a few cases we shall study the mathematical problems of 
decoding without considering the actual implementation. Even for a fixed 
code C there are many different ways to design an algorithm for a decoder. 
A complete decoding algorithm decodes every possible received word into 
some codeword. In some situations an incomplete decoding algorithm could 
be preferable, namely when a decoding error is very undesirable. In that case 
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ENCODER CHANNEL DECODER 

• = (a , •.. . . a6 ) 
• is mapped 

t--!-
errors r=x+e most likely e' into are e is --=.... 

r 
x = (x, • ...•. Tn) added determined 

message received word estimate 

Figure 1 

the algorithm will correct received messages that contain a few errors and for 
the other possible received messages there will be a decoding failure. In the 
latter case the receiver either ignores the message or, if possible, asks for a 
retransmission. Another distinction which is made is the one between so­
called hard decisions and soft decisions. This regards the interpretation of 
received symbols. Most ofthem will resemble the signal for 0 or for 1 so much 
that the receiver has no doubt. In other cases however, this will not be true 
and then we could prefer putting a ? instead of deciding whether the symbol 
is 0 or it is 1. This is often referred to as an erasure. More complicated systems 
attach a probability to the symbol. 

Introduction to Shannon's Theorem 

In order to get a better idea about the origin of coding theory we consider the 
following imaginary experiment. 

We are in a room where somebody is tossing a coin at a speed of t tosses 
per minute. The room is connected with another room by a telegraph wire. 
Let us assume that we can send two different symbols, which we call 0 and 1, 
over this communication channel. The channel is noisy and the effect is that 
there is a probability p that a transmitted 0 (resp. 1) is interpreted by the 
receiver as a 1 (resp. 0). Such a channel is called a binary symmetric channel 
(B.S.c.) Suppose furthermore that the channel can handle 2t symbols per 
minute and that we can use the channel for T minutes if the coin tossing also 
takes T minutes. Every time heads comes up we transmit a 0 and if tails comes 
up we transmit a 1. At the end of the transmission the receiver will have a 
fraction p of the received information which is incorrect. Now, if we did not 
have the time limitation specified above, we could achieve arbitrarily small 
error probability at the receiver as follows. Let N be odd. Instead of a 0 (resp. 
1) we transmit NOs (resp. Is). The receiver considers a received N-tuple and 
decodes it into the symbol that occurs most often. The code which we are now 
using is called a repetition code of length N. It consists of two code-words, 
namely 0 = (0, 0, ... , 0) and 1 = (1, 1, ... , 1). As an example let us take 
p = 0.001. The probability that the decoder makes an error then is 

(2.1.1) L (N)qkpN-k < (0.07t, (here q:= 1 - p), 
OSk<N/2 k 
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and this probability tends to 0 for N -+ 00 (the proof of (2.1.1) is Exercise 
2.4.1). 

Due to our time limitation we have a serious problem! We can only transmit 
two symbols for each toss of the coin. There is no point in sending each symbol 
twice instead of once. A most remarkable theorem, due to C. E. Shannon (cf. [62]), 
states that, in the situation described here, we can still achieve arbitrarily small 
error probability at the receiver for large T. The proof will be given in the next 
section. A first idea about the method of proof can be obtained in the following 
way. We transmit the result of two tosses of the coin as follows: 

heads, heads -+ 0 0 0 0, 

heads, tails -+ 0 1 1 1, 

tails, heads -+ 1 0 0 1, 

tails, tails -+ 1 1 1 O. 

Observe that the first two transmitted symbols carry the actual information; 
the final two symbols are redundant. The decoder uses the following complete 
decoding algorithm. If a received 4-tuple is not one of the above, then assume 
that the fourth symbol is correct and that one of the first three symbols is 
incorrect. Any received 4-tuple can be uniquely decoded. The result is correct 
if the above assumptions are true. Without coding, the probability that two 
results are received correctly is q2 = 0.998. With the code described above, 
this probability is q4 + 3q3 P = 0.999. The second term on the left is the 
probability that the received word contains one error, but not in the fourth 
position. We thus have a nice improvement, achieved in a very easy way. The 
time requirement is fulfilled. We extend the idea used above by transmitting 
the coin tossing results three at a time. The information which we wish to 
transmit is then a 3-tuple of Os and Is, say (ai' a2 , a3 ). Instead of this 3-tuple, 
we transmit the 6-tuple a = (a l , ... , a6), where a4 := a2 + a3' as := a l + a3, 
a6:= al + a2 (the addition being addition mod 2). What we have done is to 
construct a code consisting of eight words, each with length 6. As stated 
before, we consider the noise as something added to the message, i.e. the 
received word b is a + e, where e = (e l' e2' ... , e6) is called the error pattern 
(error vector). We have 

e2 + e 3 + e4 = b2 + b3 + b4 := 51' 

e1 + e3 + es = b1 + b3 + bs := 52' 

el + e2 + e6 = b1 + b2 + b6 := 53· 

Since the receiver knows b, he knows 51' 52' 53. Given 51> 52' 53 the decoder 
must choose the most likely error pattern e which satisfies the three equations. 
The most likely one is the one with the minimal number of symbols 1. One 
easily sees that if (51,52,53) i- (1, 1, 1) there is a unique choice for e. If 
(51,52,53) = (1, 1, 1) the decoder must choose one of the three possibilities (1, 
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0,0, 1,0,0), (0, 1,0,0, 1,0), (0,0, 1,0,0, I) for e. We see that an error pattern 
with one error is decoded correctly and among all other error patterns there 
is one with two errors that is decoded correctly. Hence, the probability that 
all three symbols a l , a2 , a3 are interpreted correctly after the decoding proce­
dure, is 

q6 + 6qs p + q4p2 = 0.999986. 

This is already a tremendous improvement. 
Through this introduction the reader will already have some idea of the 

following important concepts of coding theory. 

(2.1.2) Definition. If a code C is used consisting of words of length n, then 

R:= n- l logic! 

is called the information rate (or just the rate) of the code. 

The concept rate is connected with what was discussed above regarding the time 
needed for the transmission of information. In our example of the PC-keyboard 
interface, the rate is ~. The Mariner 1969 used a code with rate f2. The example 
given before the definition of rate had R = t. 

We mentioned that the code used by Mariner 1969 had the property that 
the receiver is able to correct up to seven errors in a received word. The reason 
that this is possible is the fact that any two distinct codewords differ in at least 
16 positions. Therefore a received word with less than eight errors resembles 
the intended codeword more than it resembles any other codeword. This 
leads to the following definition: 

(2.1.3) Definition. If x and yare two n-tuples of Os and 1s, then we shall say 
that their Hamming-distance (usually just distance) is 

d(x, y):= I{ill ~ i ~ n, Xi #- yJI. 

(Also see (3.l.1).) 

The code C with eight words of length 6 which we treated above has the 
property that any two distinct codewords have distance at least 3. That is why 
any error-pattern with one error could be corrected. The code is a single­
error-correcting code. 

Our explanation of decoding rules was based on two assumptions. First 
of all we assumed that during communication all codewords are equally 
likely. Furthermore we used the fact that if n l > n2 then an error pattern with 
n1 errors is less likely than one with n2 errors. 

This means that ify is received we try to find a codeword x such that d(x, y) 
is minimal. This principle is called maximum-likelihood-decoding. 
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§2.2. Shannon's Theorem 

We shall now state and prove Shannon's theorem for the case of the example 
given in Section 2.1. Let us state the problem. We have a binary symmetric 
channel with probability p that a symbol is received in error (again we write 
q := 1 - pl. Suppose we use a code C consisting of M words of length n, each 
word occurring with equal probability. If Xl' Xl •••. , XM are the codewords 
and we use maximum-likelihood-decoding, let ~ be the probability of making 
an incorrect decision given that XI is transmitted. In that case the probability 
of incorrect decoding of a received word is: 

(2.2.1) 
M 

Pc := M-l L~' 
1=1 

Now consider all possible codes C with the given parameters and define: 

(2.2.2) P*,(M, n, p) := minimal value of Pc. 

(2.2.3) Theorem (Shannon 1948). If 0 < R < 1 + P log P + q log q and 
Mn := 2lRnJ then P*(Mn, n, p) -. 0 if n -. co. 

(Here all logarithms have base 2.) We remark that in the example of the 
previous section p = 0.001, i.e. 1 + P log p + q log q is nearly 1. The require­
ment in the experiment was that the rate should be at least t. We see that for 
e > 0 and n sufficiently large there is a code C of length n, with rate nearly 
1 and such that Pc < e. (Of course long codes cannot be used if T is too 
small.) 

Before giving the proof of Theorem 2.2.3 we treat some technical details to 
be used later. 

The probability of an error pattern with w errors is p W qn-w, i.e. it depends 
on wonly. 

The number of errors in a received word is a random variable with ex­
pected value np and variance np(l - pl. If b := (np(l - p)/(e/2Wll, then by 
Chebyshev's inequality (Theorem 1.4.1) we have 

(2.2.4) pew > np + b) :::;; teo 
Since p < t, the number p:= lnp + bJ is less than tn for sufficiently large n. 
Let Bp(x) be the set of words y with d(x, y) :::;; p. Then 

(2.2.5) (n) 1 C) 1 nn I BiX) I = L . < -2 n :::;; -2 n ' p( r p 
iSp I P n - P 

(cf. Lemma 1.4.3). The set Bp(x) is usually called the sphere with radius p and 
center x (although ball would have been more appropriate). 

We shall use the following estimates: 

(2.2.6) ~ log~ = ~ lnp + bJ log lnp + bJ = P log p + D(n- l/l ), 
n n n n 



28 2. Shannon's Theorem 

(I -~) IOg( 1 -~) = q log q + O(n- I /2 ), (n -+ 00). 

Finally we introduce two functions which playa roie in the proof. Let 

u E {a, l}n, V E {a, l}n. 

Then 

(2.2.7) f( ) '= {a, if d(u, v) > p, u, v . . 
I, If d(u, v) ~ p. 

If Xi E C and Y E {a, l}n then 

(2.2.8) gi(Y):= 1 - f(y, xJ + L f(y, x). 
j# 

Note that if Xi is the only codeword such that d(xj, y) ~ p, then gi(Y) = 0 and 
that otherwise gi(Y) ;;::: 1. 

PROOF OF THEOREM 2.2.3. In the proof of Shannon's theorem we shall pick 
the codewords Xl' x2 , ... , XM at random (independently). We decode as 
follows. If Y is received and if there is exactly one codeword Xi such that 
d(x i , y) ~ p, then decode Y as Xi' Otherwise we declare an error (or if we must 
decode, then we always decode as Xl)' 

Let Pi be as defined above. We have 

~ = )' P(ylxi)gi(Y) 
ye (0, 1)" 

= I P(Ylxi){l - f(y, Xi)} + L I P(Ylx;)f(y, xJ 
y y j*i 

Here the first term on the right-hand side is the probability that the received 
word Y is not in Bp(x;). By (2.2.4) this probability is at most ie. 

Hence we have 

1 M 
Pc ~ 2e + M-1 i~ ~ #i P(ylxJf(y, x). 

The main principle of the proof is the fact that P*(M, n, p) is less than the 
expected value of Pc over all possible codes C picked at random. Therefore 
we have 

1 M 
P*(M, n, p) ~ 2e + M-l i~ ~ #i @"(P(YlxJ)@"(f(y, x)) 

= ~e + M- 1 I L I @"(P(YlxJ).IB:1 
2 i=l y Hi 2 

= ie + (M - l)rnIBpl. 

We now take logarithms, apply (2.2.5) and (2.2.6), and then we divide by n. 
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The result is 

n-1 log(P*(M, n, p) - til) 

~ n-1 log M - (1 + p log p + q log q) + O(n- 1/2 ). 

Substituting M = Mn on the right-hand side we find, using the restriction on 
R, 

n-1 log(P*(Mn, n, p) - til) < - p < 0, 

for n > no, i.e. P*(M, n, p) < til + 2-Pn• 

This proves the theorem. 

§2.3. On Coding Gain 

o 

In many practical appli~ations, one has to choose B and W, where B equals the 
number of user bits per second that must be transmitted reliably through a noisy 
channel, using a power of at most W Watt. A well known example is in mobile 
telephony, where B determines the speech quality and W is related to the life 
time of the batteries. Another example is in deep space transmission, where B 
determines the number of pictures that can be transmitted in the fly by time, while 
W is the power that is available from the solar panels. In all these cases, the 
transmitter has an average energy of Eb = WI B Joule per user bit available to 
generate signals to be sent to the receiver. Coding may influence the choices. The 
effect of coding is often expressed as "coding gain" which we now introduce. 
(Details from electrical engineering are not treated.) 

If no coding is used, the energy E b is available to the transmitter for mapping a 
user bit onto a signal with amplitude s := .J"E; if a 1 is transmitted, and s = -.J"E; 
for a O. Often, the transmission channel is modeled as an Additive White Gaussian 
Noise (AWGN) channel. This means that the received signal amplitude r equals 
r = s + n, where the noise n is drawn from a Gaussian distribution having 
zero mean and variance u 2• A receiver, making hard decisions, compares each 
received signal amplitude r with threshold 0 and decides for a 1 if r > 0, and for 
a 0 otherwise. Such a receiver makes an error if the noise n results in r having the 
wrong sign. Therefore, the error probability (per bit) P. is 

100 1 (_y2) ( &\ 
P. = .fE ../2rru2 exp 2u2 dy = Q V ~ J ' 

where 
1 [00 (y2) 1 ( x ) Q(x) := -- exp - dy = -erfc - . 

v'2ii x 2 2-1i 
The ratio Eblu2 is called the Signal to Noise Ratio (SNR). 

If we use a code C that maps k user bits onto n bits to be transmitted over the 
channel (channel bits), then we say that we are using a code with rate R := kin 
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(see (3.1.3». We have to send these channel bits 1/ R times as fast to keep to our 
required speed of B user bits per second. Because of the power constraint of W 
Watt, we now only have available an energy of E' := W / (JJ / R) = R . Eb Joule 
per channel bit. Assuming a similar transmission scheme for the channel bits as 
before, we obtain an error rate p~ (per channel bit) equal to 

, =Q(ff)Eb p. 2 • 
(1 

So, coding results in p~ > P. because of the reduced energy budget. The whole 
idea of coding only makes sense if error correction more than makes up for this 
loss of energy per bit. 

Let us look at the Mariner '69 again in more detail. Instead of calling the 
transmitted symbols 0 and 1, we denote them by + 1 and -1. The 64 sequences of 
length 32 that the Mariner used were the rows of the matrices H?5 and - H~ of 
§1.3. For a received signal (with hard decisions), the received row of 32 symbols 
± 1 was taken and the imier product of this row and the 32 rows of H?S was 
calculated. If no error occurred, 31 of these products were 0 and one was ±32 
showing that the received signal was correct. In the case of one error, the inner 
products were ±2, with one exception, where it was ±30, yielding the correct 
signal. Note that, for up to seven errors, there is a unique inner product with 
absolute value greater than 16, pointing out the correct signal. 

Let us now look at the effect of coding. 

(2.3.1) ExAMPLE. Consider the example of the Mariner code. Suppose that 
for a useful picture, each 6-tuple may be wrong with a probability PE at most 
10-4• In case of no coding, we need Eb/(12 ~ 17.22 to achieve this, since 
P. = Q(J17.22) ~ 10-4/6, and PE = 1 - (1 - p.)6 ~ 10-4• 

Next, suppose that we use the [32,6] code, correcting at most seven errors, at 
the same SNR of 17.22. Since R = 6/32, we obtain p~ ~ 0.036. (Note that this 
error probability is 2000 times as large as before!) After decoding, we obtain 
erroneous 6-tuples with probability 

P~ = L (3~) (p~); (1 - p~)32-; ~ 1.4. 10-5, 

;>7 I 

which is almost an order of magnitude better than PE. 
When using soft decisions, the received waveform is not translated into a row 

of 1 s and -1 s, but correlated directly with the rows of H~. In that case, the 
probability that the signal we choose as most likely is indeed correct, is even 
larger. 

We remark that if we had used soft decision decoding in Example 2.3.1, the 
error probability would have been reduced to 2 . 10-11 • 

There is another way of looking at this situation. We could use coding to need 
less energy. We might choose to exploit C not for reducing the error rate, but for 
reducing the required SNR in the presence of coding. 

In the Mariner example, we were satisfied with a probability of 10-4 of receiv­
ing an incorrect 6-tuple. To obtain P~ = 10-4, an SNR of 14.83 would suffice 
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(by a calculation similar to the one above). This means that application of coding 
allows us to reduce the size of the solar panels by almost 15%. With soft decision 
decoding, the reduction would be more than 50%; (we need an SNR of 7.24 in 
that case). 

(2.3.2) Definition. The ratio between SNR (uncoded) and SNR' (coded) for equal 
error probability after decoding is called the coding gain. 

The coding gain depends on the code, the decoding algorithm, the channel in 
question, and the required error probability after decoding. It is often expressed 
in "dB" (this is 10 times the logarithm to base 10 of the ratio in Definition 2.3.2). 
In engineering literature, the result of Example 2.3.1 will be described as a coding 
gain of 0.65 dB. We point out that for a given code, there will always be a signal 
to noise ratio at which the code becomes ineffective; it makes the situation worse 
than not using it. 

We have only considered the energy aspect of transmission. One should realize 
that coding also increases the complexity of the process and in some way we pay 
for that too. 

§2.4. Comments 

C. E. Shannon's paper on the "Mathernatical theory of cornmunication" 
(1948) [62] marks the beginning of coding theory. Since the theorem shows 
that good codes exist, it was natural that one started to try to construct such 
codes. Since these codes had to be used with the aid of often very srnall 
electronic apparatus one was especially interested in codes with a lot of 
structure which would allow relatively sirnple decoding algorithms. In the 
following chapters we shall see that it is very difficult to obtain highly regular 
codes without losing the property promised by Theorern 2.2.3. We rernark 
that one of the important areas where coding theory is applied is telephone 
cornrnunication. Many of the names which the reader will encounter in this 
book are names of (former) mernbers of the staff of Bell Telephone 
Laboratories. Besides Shannon we rnention Berlekamp, Gilbert, Hamrning, 
Lloyd, MacWilliams, Slepian and Sloane. It is not surprising that rnuch of the 
early literature on coding theory can be found in the Bell System Technical 
Journal. The author gratefully acknowledges that he acquired a large part of 
his knowledge of coding theory during his rnany visits to Bell Laboratories. 
The reader interested in more details about the code used in the Mariner 1969 
is referred to [56]. For the coding in Compact Disc see [77], [78]. 

By consulting the references the reader can see that for rnany years now 
the rnost irnportant results on coding theory have been published in IEEE 
Transactions on Information Theory. 
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§2.5. Problems 

2.5.1. Prove (2.1.1). 

2.5.2. Consider the code of length 6 which was described in the coin-tossing experi­
ment in Section 2.2. We showed that the probability that a received word is 
decoded correctly is q6 + 6qs p + q4p2. Now suppose that after decoding we 
retain only the first three symbols of every decoded word (i.e. the information 
concerning the coin-tossing experiment). Determine the probability that a sym­
bol in this sequence is incorrect; (this is called the symbol error probability, which 
without coding would be p). 

2.5.3. Construct a code consisting of eight words of length 7 such that any two distinct 
codewords have distance at least 4. For a B.S.C. with error probability p, determine 
the probability that a received word is decoded correctly. 

2.5.4. A binary channel has a probability q = 0.9 that a transmitted symbol is received 
correctly and a probab,ility p = 0.1 that an erasure occurs (i.e. we receive ?). On 
this channel we wish to use a code with rate !. Does the probability of correct 
interpretation increase if we repeat each transmitted symbol? Is it possible to 
construct a code with eight words of length 6 such that two erasures can do no 
harm? Compare the probabilities of correct interpretation for these two codes. 
(Assume that the receiver does not change the erasures by guessing a symbol.) 

2.5.5. Consider the Mariner 1969 example. Suppose a row of 32 symbols is received with 
e, errors and e2 erasures. Show that if2e, +e2 < 16, the correct row can be retrieved. 

2.5.6. Let C be a binary code oflength 16 such that 

(i) Every codeword has weight 6; 
(li) Any two distinct codewords have distance 8. 

Show that ICI ~ 16. Does such a code with ICI = 16 exist? 

2.5.7. Let C be a binary single-error-correcting code of even length n. Show that 
ICI ~ 2n /(n + 2). 
Hint: Count pairs (x, c), where x is a word oflength n and c e C, and x and c differ 
in two places. 



CHAPTER 3 

Linear Codes 

§3.1. Block Codes 

In this chapter we assume that information is coded using an alphabet Q with 
q distinct symbols. A code is called a block code if the coded information can 
be divided into blocks of n symbols which can be decoded independently. 
These blocks are the code words and n is called the block length or word length 
(or just length). The examples in Chapter 2 were all block codes. In Chapter 
13 we shall briefly discuss a completely different system, called convolutional 
coding, where an infinite sequence of information symbols io, i l • i2 •••• is coded 
into an infinite sequence of message symbols. For example, for rate tone 
could have io• i1 • i2 , ••• ~ io, i~. i 1• i~ • ...• where i~ is a function of io• i1 , •.• , 

in. For block codes we generalize (2.1.3) to arbitrary alphabets. 

(3.1.1.) Definition. If x E Qn. Y E Qn, then the distance d(x, y) of x and y is 
defined by 

d(x, y) := I {ill::; i ::; n, Xi # Yi} I· 
The weight w(x) of x is defined by 

w(x) := d(x. 0). 

(We always denote (0, 0, ... ,0) by 0 and (1, 1, ... , 1) by I.) 

The distance defined in (3.1.1), again called Hamming-distance, is indeed a 
metric on Qn. If we are using a channel with the property that an error in 
position i does not influence other positions and a symbol in error can be each 
of the remaining q - 1 symbols with equal probability, then Hamming-dis­
tance is a good way to measure the error content of a received message. In 
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Chapter 12 we shall see that in other situations a different distance function 
is preferable. 

In the following a code C is a nonempty proper subset of Q". If I CI = 1 we 
call the code trivial. If q = 2 the code is called a binary code, for q = 3 a 
ternary code, etc. The following concepts play an essential role in this book 
(cf. Chapter 2). 

(3.1.2) Definition. The minimum distance of a nontrivial code C is 

min {d(x, y)lx E c, y E C, x :F y}. 

The minimum weight of C is 

min{w(x) I x e C, x ¥: O}. 

We also generalize the concept of rate. 

(3.1.3) Definition. If 1m = q and CeQ" then 

R:= n-1 10gqlCl 

is called the (information-) rate of C. 

Sometimes we shall be interested in knowing how far a received word can 
be from the closest codeword. For this purpose we introduce a counterpart 
of minimum distance. 

(3.1.4) Definition. If CeQ" then the covering radius p( C) of C is 

max {min {d(x, c)lc E C}lx E Q"}. 

We remind the reader that in Chapter 2 the sphere Bp(x) with radius p and 
center x was defined to be the set {y E Q"ld(x, y) :::; pl. If p is the largest 
integer such that the spheres Bp(c) with C E C are disjoint, then d = 2p + 1 or 
d = 2p + 2. The covering radius is the smallest p such that the spheres Bp(c) 
with C E C cover the set Q". If these numbers are equa~ then the code C is 
called perfect. This can be stated as follows. 

(3.1.5) Definition. A code CeQ" with minimum distance 2e + 1 is called a 
perfect code if every x E Q" has distance:::; e to exactly one codeword. 

The fact that the minimum distance is 2e + 1 means that the code is 
e-error-correcting. The following is obvious. 

(3.1.6) Sphere-packing Condition 
If C c: Q" is a perfect e-error-correcting code, then 

ICI t (~)(q - l)i = q". 
i=O I 
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Of course a trivial code is perfect even though one cannot speak of minimum 
distance for such a code. A simple example of a perfect code was treated in 
Chapter 2, namely the binary repetition code of odd length n consisting of the 
two words 0 and 1. 

§3.2. Linear Codes 

We now turn to the problem of constructing codes which have some algebraic 
structure. The first idea is to take a group Q as alphabet and to take a 
subgroup C of Q" as code. This is called a group code. In this section (in fact 
in most of this book) we shall require (a lot) more structure. In the following 
Q is the field IFq, where q = pr (p prime). Then Q" is an n-dimensional vector 
space, namely IF; (sometimes denoted by 91). In later chapters we sometimes 
use the fact that Q" is isomorphic to the additive group of IFqn (cf. Section 1.1). 

(3.2.1) Definition. A q-ary linear code C is a linear subspace of IF;. If C has 
dimension k then C is called an En, k] code. 

From now on we shall use En, k, d] code as the notation for a k-dimen­
sionallinear code of length n with minimum distance d. An (n, M, d) code is 
any code with word length n, M codewords, and minimum distance d. 

(3.2.2) Definition. A generator matrix G for a linear code C is a k by n matrix 
for which the rows are a basis of C. 

If G is a generator matrix for C, then C = {aGla E Qk}. We shall say that 
G is in standard form (often called reduced echelon form) if G = (Ik P), where 
Ik is the k by k identity matrix. The (6,8,3) code which we used in the example 
of Section 2.1 is a linear code with G = (I J - I). If G is in standard form, 
then the first k symbols of a codeword are called information symbols. These 
can be chosen arbitrarily and then the remaining symbols, which are called 
parity check symbols, are determined. 

The code used on the PC-keyboard interface mentioned in the Introduction has 
one parity check bit (responsible for the name) and generator matrix 

As far as error-correcting capability is concerned, two codes C [ and C2 are 
equally good if C2 is obtained by applying a fixed permutation of the positions to 
all the codewords of C [. We call such codes equivalent. Sometimes the definition 
of equivalence is extended by also allowing a permutation of the symbols of Q 
(for each position). It is well known from linear algebra that every linear code is 
equivalent to a code with a generator matrix in standard form. 
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In general a code C is called systematic on k positions (and the symbols in 
these positions are called information symbols) if I CI = qk and there is exactly 
one codeword for every possible choice of coordinates in the k positions. So 
we saw above that an [n, k] code is systematic on at least one k-tuple of 
positions. Since one can separate information symbols and redundant sym­
bols, these codes are also called separable. By (3.1.3) an [n, k] code has rate 
k/ n, in accordance with the fact that k out of n symbols carry information. The 
reader should check that the [6,3,3] code used in Section 2.1 is not systematic on 
four 3-tuples of positions. 

The reader will have realized that if ~ code C has minimum distance 
d = 2e + 1, then it corrects up to e errors in a received word. If d = 2e then 
an error pattern of weight e is always detected. In general if C has M words 

one must check (~) pairs of codewords to find d. For linear codes the work 

is easier. 

(3.2.3) Theorem. For a linear code C the minimum distance is equal to the 
minimum weight. 

PROOF. d(x, y) = d(x - y, 0) = w(x - y) and if x e C, y e C then x - y e C. 
o 

(3.2.4) Definition. If C is an [n, k] code we define the dual code Cl. by 

Cl.:= {yeatl'v'xec[(x, y) = O]}. 

The dual code Cl. is clearly a linear code, namely an [n, n - k] code. The 
reader should be careful not to think of Cl. as an orthogonal complement in 
the sense of vector spaces over ~. In the case of a finite field Q, the subspaces 
C and Cl. can have an intersection larger than {O} and in fact they can even 
be equal. If C = Cl. then C is called a self-dual code. 

If G = (Ik P) is a generator matrix in standard form of the code C, then 
H = ( - pT In- k ) is a generator matrix for Cl.. This follows from the fact that 
H has the right size and rank and that GHT = 0 implies that every codeword 
aG has inner product 0 with every row of H. In other words we have 

(3.2.5) X e C <=> XHT = O. 

In (3.2.5) we have n - k linear equations which every codeword must satisfy. 
Ifye Cl. then the equation (x, y) = 0 which holds for every x e C, is called 

a parity check (equation). H is called a parity check matrix of C. For the [6, 
3] code used in Section 2.1 the equation a4 = a2 + a3 is one of the parity 
checks. (The code is not systematic on positions 2,3, and 4.) 

(3.2.6) Definition. If C is a linear code with parity check matrix H then for 
every x e Qn we call XHT the syndrome of x. Observe that the covering radius 
p(C) of an [n, k] code (cf. (3.14» is the smallest integer p such that any 
(column-)vector in Qn-k can be written as the sum of at most p columns of H. 
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In (3.2.5) we saw that codewords are characterized by syndrome O. The 
syndrome is an important aid in decoding received vectors x. Once again this 
idea was introduced using the [6, 3] code in Section 2.1. Since C is a subgroup 
of Qn we can partition Qn into cosets of C. Two vectors x and yare in the same 
coset iff they have the same syndrome (xHT = yHT <=>x - Y E C). Therefore if 
a vector x is received for which the error pattern is e then x and e have the 
same syndrome. It follows that for maximum likelihood decoding of x one 
must choose a vector e of minimal weight in the coset which contains x and 
then decode x as x-e. The vector e is called the coset leader. How this works 
in practice was demonstrated in Section 2.l for the [6, 3}code. For seven of 
the eight cosets there was a unique coset leader. Only for the syndrome (51' 

52,53) = (1, 1, 1) did we have to pick one out of three possible coset leaders. 
Here we see the first great advantage of introducing algebraic structure. 

For an [n, k] code over IFq there are qk codewords and qn possible received 
messages. Let us assume that the rate is reasonably high. The receiver needs 
to know the qn-k coset, leaders corresponding to all possible syndromes. Now 
qn-k is much smaller than qn. If the code had no structure, then for every 
possible received word x we would have to list the most likely transmitted 
word. 

It is clear that if C has minimum distance d = 2e + 1, then every error 
pattern of weight :s;; e is the unique coset leader of some coset because two 
vectors with weight :s;; e have distance :s;; 2e and are therefore in different 
cosets. If C is perfect then there are no other coset leaders. If a code C has 
minimum distance 2e + 1 and all coset leaders have weight :s;; e + 1 then the 
code is called quasi-perfect. The [6, 3] code of Section 2.1 is an example. The 
covering radius is the weight of a coset leader with maximum weight. 

We give one other example of a very simple decoding procedure (cf. [3]). 
Let C be a [2k, k] binary self-dual code with generator matrix G = (It Pl. 
The decoding algorithm works if C can correct 3 errors and if the probability 
that more than 3 errors occur in a received vector is very small. We have the 
parity check matrix H = (pT Ik ) but G is also a parity check matrix because 
C is self-dual. Let y = c + e be the received vector. We write e as (e l ; e2 ) where 
e l corresponds to the first k places, e2 to the last k places. We calculate the 
two syndromes 

s(1):= yHT = e l P + e2 , 

S(2) := yGT = el + e2pT• 

If the t :s;; 3 errors all occur in the first or last half of y, i.e. e l = 0 or e2 = 0, 
then one of the syndromes will have weight :s;; 3 and we immediately have e. 
If this is not the case then the assumption t :s;; 3 implies that e l or e2 has 
weight 1. We consider 2k vectors y(i) obtained by changing the ith coordinate 
of y (1 :s;; i :s;; 2k). For each of these vectors we calculate Sl (for i :s;; k) resp. S2 

(if i > k). If we find a syndrome with weight :s;; 2, we can correct the remaining 
errors. If we find a syndrome with weight 3, we have detected four errors if C 
is a code with distance 8 and if C has distance ~ lOwe can correct this pattern 
of four errors. 
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It will often turn out to be useful to adjoin one extra symbol to every 
codeword of a code C according to some natural rule. The most common of 
these is given in the following definition. 

(3.2.7) Definition. If C is a code of length n over the alphabet IFq we define the 
extended code C by 

If C is a linear code with generator matrix G and parity check matrix H 
then C has generator matrix G and parity check matrix Ii, where G is 
obtained by adding a column to G in such a way that the sum of the columns 
of G is 0 and where 

H-·-.- H 

1... 1 

o 
o 

o 
If C is a binary code with an odd minimum distance d, then C has minimum 
distance d + 1 since all weights and distances for C are even. 

§3.3. Hamming Codes 

Let G be the k by n generator matrix of an En, kJ code Cover IFq• If any two 
columns of G are linearly independent, i.e. the columns represent distinct 
points of PG(k - 1, q), then C is called a projective code. The dual code Cl. 
has G as parity check matrix. If C E Cl. and if e is an error vector of weight 1, 
then the syndrome (c + e)GT is a multiple of a column of G. Since this 
uniquely determines the column of G it follows that Cl. is a code which 
corrects at least one error. We now look at the case in which n is maximal 
(given k). 

(3.3.1) Definition. Let n:= (qk - l)/(q - I). The En, n - kJ Hamming code 
over IFq is a code for which the parity check matrix has columns that are 
pairwise linearly independent (over IFq), i.e. the columns are a maximal set of 
pairwise linearly independent vectors. 

Here we obviously do not distinguish between equivalent codes. Clearly 
the minimum distance of a Hamming code is equal to 3. 

(3.3.2) Theorem. Hamming codes are perfect codes. 
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PROOF. Let C be the En, n - k] Hamming code over IFq, where n = (qk - 1)/ 
(q - 1). Ifx E C then 

IB1(x)1 = 1 + n(q - 1) = qk. 

Therefore the q"-k disjoint spheres of radius 1 around the codewords of C 
contain IC!· qk = q" words, i.e. aU possible words. Hence C is perfect (cf. (3.1.5) 
and (3.1.6». 

(3.3.3) EXAMPLE. The [7, 4] binary Hamming code C has parity check matrix 

[
0 0 0 1 1 1 1] 

H= 0 1 1 0 0 1 1 . 

1 010 1 0 1 

If we consider two columns of H and the sum of these two (e.g. the first 
three columns of H), then there is a word of weight 3 in C with Is in the 
positions corresponding to these columns (e.g. (1110000». Therefore C has 
seven words of weight 3 which, when listed as rows of a matrix, form PG(2, 
2). The words of even weight in C are a solution to Problem 2.4.3. By 
inspection of H we see that the extended code C is self-dual. 

(3.3.4) EXAMPLE. Suppose that we use an extended Hamming code of length 
n = 2m on a B.S.C. with bit error probability p; (q := 1 - p). The expected 
number of errors per block before decoding is np. If one error occurs, it is 
corrected. If two errors occur, then we have error detection but no correction. So, 
the two errors remain. Otherwise, it is possible that the decoder introduces an 
extra error by changing a received word with ~ 3 errors into the closest codeword. 
Therefore, the expected number of errors per block after decoding is at most 

If p is small enough, this is a considerable improvement. We shall use this estimate 
in §4.4. 

§3.4. Majority Logic Decoding 

In this section we shall briefly sketch a decoding method which is used with 
many linear codes. Generalizations will occur in later chapters. The method 
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is simple and it has the advantage that in some cases more errors are cor­
rected than one expects to be able to correct. 

(3.4.1) Definition. A system of parity check equations <x, y(V» = 0 
(l ::;; v ::;; r), is said to be orthogonal with respect to position i (for the code C; 
yiV) E Cl.) if 

(i) y)V) = 1 (1 ::;; v ::;; r), 
(ii) if j i= i then y?) i= 0 for at most one value of v. 

Now suppose x is a received word that contains t errors, where t ::;; tr. 
Then 

ror {::;; t values of v, jf Xi is correct, 
(x, y(V) > i= 0 l' 

~ r - (t - 1) values of v, if Xi is incorrect. 

Since r - (t - 1) > t, the majority of the values of (x, yi V» (i.e. 0, resp. not 0) 
decides for us whether Xj is correct or not. In the case of a binary code we can 
subsequently correct the error. If we have such orthogonal check sets for 
every i, we can correct the different positions one by one. 

As an example we consider the dual of the [7, 4J Hamming code (cf. (3.3.3». 
The parity check equations 

Xl + X2 + X3 = 0, 

Xl + X4 + Xs = 0, 

Xl + X6 + X 7 = 0, 

are othogonal with respect to position 1. If x contains one error, then the 
three equations yield 1, 1, 1 if Xl is incorrect, respectively two Os and one 1 if 
Xl is correct. If two outcomes are 1, we see that more than one error has been 
made (the code is two-error detecting). 

Consider the [6, 3, 3] code with generator matrix G := (l J - /) and adjoin 
two symbols a7 = ag = at. The reader should check that we still have d = 3 but 
that the new parity check matrix has four rows that are orthogonal with respect to 
position 1. So, even if two errors occur, position 1 is correct after decoding. 

§3.S. Weight Enumerators 

The minimum distance of a linear code tells us how many errors a received 
word may contain and still be decoded correctly. Often it is necessary to have 
more detailed information about the distances in the code. For this purpose 
we introduce the so-called weight enumerator of the code. 

(3.5.1) Definition. Let C be a linear code oflength n and let Ai be the number 
of codewords of weight i. 

Then 
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n 

A(z):= I AiZi 
i=O 

is called the weight enumerator of C. The sequence (AJ7=o is called the weight 
distribution of C. 

If C is linear and C E C, then the number of codewords at distance i from c 
equals Ai. For a nonlinear code this is generally not true. A code that does have 
this property (for all codewords and all i) is called distance invariant. (Also see 
Definition 5.3.2.) 

As an example we calculate the weight enumerator of the binary Hamming 
code of length n. Consider i-I columns of the parity check matrix of this 
code. There are three possibilities: 

(i) the sum of these columns is 0; 
(ii) the sum of these columns is one of the chosen columns; 

(iii) the sum of these columns is one of the remaining columns. 

We can choose the i-I columns in (. n ) ways. Possibility (i) occurs 
1- 1 

A i- 1 times, possibility (ii) occurs (n - (i - 2))A i- 2 times, and possibility (iii) 
occurs iAi times. Therefore 

iAi = (. n ) - Ai- 1 - (n - i + 2)Ai- 2 , 
1- 1 

which is trivially correct if i > n + 1. If we multiply both sides by Zi-l and 
then sum over i we find 

A'(z) = (1 + zt - A(z) - nzA(z) + Z2 A'(z). 

Since A(O) = 1, this differential equation has the unique solution 

(3.5.2) 
1 n 

A(z) = --(1 + z)n + --(1 + z)(n-l)/2(1 _ z)(n+1)/2. 
n+I n+I 

One of the most fundamental results in coding theory is a theorem due to 
F. J. MacWilliams (1963) which gives a relation between the weight enumera­
tors of a linear code and its dual. 

(3.5.3) Theorem. Let C be an en, kJ code over IFq with weight enumerator A(z) 
and let B(z) be the weight enumerator of Cl.. Then 

( I-z ) 
B(z) = q-k(I + (q - I)ztA 1 + (q _ l)z . 

PROOF. Let X be any nontrivial character of (lFq, +). As usual let ~ = IF;. We 
define 

g(u):= I x«u, V»)ZW(Y). 
YE .Jt 



42 3. Linear Codes 

Then we have 

L g(u) = L L X«u, v»ZW(Y) = L zW(Y) L X«u, v» . 
• eC .eC ye tit ye tit .eC 

Here, ifv E Col the inner sum is ICI. Ifv ¢ Col then in the inner sum (u, v) takes 
every value in IFq the same number of times, i.e. the inner sum is O. Therefore 

(3.5.4) L g(u) = I CI' B(z). 
DeC 

Extend the weight function to IFq by writing w(v) = 0 if v = 0 and w(v) = 1 
otherwise. Then, writing u = (U1o U2, ... , u,,) and v = (v 1, V2' ... , v,,), we have 
from the definition of g(u): 

g(u) = L zW(U')+'··+W(u·)X(U1Vl + ... + u"v,,) 
(111.112 ..... l1n)E 3t 

= L zW(u'>X(U1V1)Zw(uz)X(U2 V2)···ZW(u·)X(u"v,,) 
(UI.VZt ••• ,vn)e at 

In the last expression the inner sum is equal to 1 + (q - l)z if Ui = 0 and it is 
equal to 

Therefore 

(3.5.5) 

1 + z L x(a) = 1 - z, 
lie Fq\{O} 

if Ui =1= O. 

g(u) = (1 - zr(U)(l + (q - l)z)"-W(U). 

Since I CI = q" the theorem now follows by substituting (3.5.5) in (3.5.4). 0 

For a generalization we refer to Section 7.2. 

as 
Sometimes the weight enumerator of a code C is given in homogeneous form 

Hamc;(x,y):= Lx"-W(C)yW(C). 
ceC 

In this notation, the MacWilliams relation for a binary code C and its dual Col is 
given by 

1 
HamcJ.(x, y) = jCjHamc;(x + y, x - y). 

This follows directly from Theorem 3.5.3. 

§3.6. The Lee Metric 

In many communication schemes used in practice, one can model the alphabet as 
a set of points regularly spaced on a circle. Take as example an alphabet of this 
kind with seven symbols. We identify these symbols (still on a circle) with the 
elements of 1.7, In these channels, the effect of additive Gaussian noise does not 
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make all errors equally likely. It is much more likely that a transmitted symbol is 
received as a symbol close to it. In our terminology, this means that if a 4 is sent 
and an error occurs, it is more likely that a 3 or a 5 is received than a 2 or a 6, etc. 

So, for these channels Hamming distance is not a natural metric for measuring 
errors. Instead, one uses the so-called Lee weight and Lee distance. 

(3.6.1) Definition. Consider Zm as alphabet. The Lee weight of an integer i 
(0 ~ i < m) is defined by 

wL(i) := min{i, m - i}. 

The Lee metric on Z~ is defined by 

n 

wL(a) := L wL(a;), 
i=1 

where the sum is defined in ~o. We define Lee distance by 

It is not difficult to see that this is indeed a distance function. 
In a later chapter, we shall be especially interested in the alphabet Z4' We 

treat this in more detail now. In Z4, the Lee weights of 0,1, and 2 are 0,1, and 2 
respectively, but the Lee weight of 3 is 1. 

For a code C £; Z: (see (8.1.1», we define two weight enumerators, the 
symmetrized weight enumerator and the Lee weight enumerator .. 

(3.6.2) Definition. The symmetrized weight enumerator of a code C £; Z: is 
given by 

swec(W, x, y) := L wno(C)xnl (C)+n)(c)ynz(c), 

ceC 

where ni(c) denotes the number of coordinates of c equal to i. 

(3.6.3) Definition. The Lee weight enumerator of a code C £; Z: is defined by 

Note that 
(3.6.4) 

LeecCx, y) := Lx2n- WdC)yWL(C). 

ceC 

LeecCx, y) = swecCx2, xy, i). 
Let us see if a slight modification of the proof of Theorem 3.5.3 can yield a 

generalization of the MacWilliams relation to codes over Z4' We take X to be a 
character on (Z4, +); below, we will take 

X (a) := ia , where i 2 = -1 inc' 

We consider a function f defined on on := Z: and define 

g(u):= LX«(u, v})f(v). 
ve.n 
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In the same way as for (3.5.4), we find 

(3.6.5) L g(u) = ICI L f(v). 
UEC 

In the next part of the proof, we choose 

Continuing exactly as in the proof of (3.5.3), we find 

n 

g(U) = n L X (UiV )Wno(V) xnt (vl+n3(V)yn2(V). 
i=1 VEZ. 

To calculate the inner sum, we must distinguish between Ui = 0, Ui = 1 or 3, and 
Ui = 2. In the three cases, we find (w + 2x + y), (w - y), and (w - 2x + y) 
respectively. Hence 

(3.6.6) g(u) = (w + 2x + yto(U)(w - yyt (ul+n3(U) (w - 2x + yY2(u). 

Substituting (3.6.6) in (3.6.5) yields 

1 
(3.6.7) swec.L(w, x, y) = ICTswec(w + 2x + y, w - y, w -2x + y). 

We find the following generalization of Theorem 3.5.3. 

(3.6.8) Theorem. IjC is a quaternary code and Cl. its dual, then 

1 
Leec.L(x, y) = ICTLeec(x + y, x - y). 

PROOF. Apply (3.6.4) to (3.6.7). 

§3.7. Comments 

o 

The subject of linear codes was greatly influenced by papers by D. E. Slepian 
and R. W. Hamming written in the 1950s. The reader interested in knowing 
more about majority logic decoding should consult the book by 1. L. Massey 
[47]. There are several generalizations of MacWilliams' theorem even to 
nonlinear codes. An extensive treatment can be found in Chapter 5 of [46]. 
For an application of (3.5.2) see Chapter 2 of [42]. 
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§3.8. Problems 

3.8.1. Let C be a binary perfect code oflength n with minimum distance 7. Show that 
n = 7 or n = 23. 

3.8.2. Let C be an [n, k] code over IF, which is systematic on any set of k positions. 
Show that C has minimum distance d = n - k + 1. 

3.8.3. Let C be a [2k + I, k] binary code such that C c C.L. Describe C.L \ C. 

3.8.4. Let r1l = IF; and let x E r1l. Determine IB1(x)l. Is it possible to find a set C c r1l 
with I CI = 9 such that for all x E C, Y E C, X :j: Y the distance d(x, y) is at least 
3? 

3.8.5. Let C be an [n, k] code over IF, with generator matrix G. If G does not have a 
column of Os then the sum of the weights ofthe codewords of C is n(q - l)qk-l. 
Prove this. 

3.8.6. Let C be a binary [n, k] code. If C has word of odd weight tl:ten the words of 
even weight in C form an [n, k - 1] code. Prove this. 

3.8.7. Let C be a binary code with generator matrix 

[~ ~ ~ ~ ~ : ]-
Decode the following received words: 

(a) (1 1 0 1 0 1 1); 
(b) (0 1 1 0 1 1 1); 
(c) (0 1 1 1 0 0 0). 

3.8.8. Let p be a prime. Is there an [8, 4] self-dual code over IFp? 

3.8.9. For q = 2 let Rk denote the rate of the Hamming code defined in (3.3.1). Deter­
mine Iimk_ co Rk • 

3.8.10. Let C be a binary code with weight enumerator A(z). What is the weight 
enumerator of C? What is the weight enumerator of the dual of the extended 
binary Hamming code of length 2k? 

3.8.11. Let C be a binary [n, k] code with weight enumeralor A(z). We use C on a 
binary symmetric channel with· error probability p. Our purpose is error 
detection only. What is the probability that an incorrect word is received and 
the error is not detected? 

3.8.12. The nz by n) matrices over IFz clearly form a vector space r1l of dimension n l nz. 
Let C/ be an [nt, k;] binary code with minimum distance di (i = 1,2). Let C be 
the subset of r1l consisting of those matrices for which every column, respec­
tively row, is a codeword in C1, respectively Cz. Show that C is an [n1nz, k1k2] 
code with minimum distance dl dz. This code is called direct product of C1 and 

Cz· 
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3.8.13. Let C be the binary [10, 5] code with generator matrix 

1 0 0 0 0 0 0 0 1 

0 1 0 0 0 0 0 0 

G= 0 0 0 0 0 1 0 0 

0 0 0 0 0 0 0 

0 0 0 0 1 0 0 

Show that C is uniquely decodable in the following sense: For every received 
word x there is a unique code word c such that d(x, c) is minimal. 

3.8.14. Let us define lexicographically least binary codes with distance d as follows. The 
word length is not specified at first. Start with Co = 0 and C1 = (1, 1, ... , 1, 0, 
0,0, ... ,0) of weight d. If Co, C1, .•. , CI- 1 have been chosen then Cl is chosen as 
the word which comes first in the lexicographic ordering (with Is as far to the 
left as possible) such that d(c j , cl ) 2 d(O ::; i ::; 1- 1). After I steps the length of 
the code is defined to be the length of the part where coordinates I occur. 

(i) Show that after 2k vectors have been chosen the lexicographically least 
code is linear! 

(ii) For d = 3 the Hamming codes occur among the lexicographically least 
codes. Prove this. 

3.8.15. Show that a [15,8,5] code does not exist 
Hint Show that such a code would have a generator matrix with a row of weight 5 
and consider the subcode generated by the other rows. 



CHAPTER 4 

Some Good Codes 

§4.1. Hadamard Codes and Generalizations 

Let Hn be a Hadamard matrix of order n (see (1.3.5». In Hn and - Hn we 
replace - 1 by O. In this way we find 2n rows which are words in IF~. Since any 
two rows of a Hadamard matrix differ in half of the positions we have 
constructed an (n, 2n, tn) code. For n = 8 this is an extended Hamming code. 
For n = 32 the code is the one used by Mariner 1969 which was mentioned 
in Section 2.1. In general these codes are called Hadamard codes. 

A similar construction starts from a Paley matrix S of order n (see (1.3.8». 
We construct a code C with codewords 0, 1, the rows of t(S + I + J) and 
t( -S + I + J). From Theorem 1.3.8 it follows that C is an (n, 2(n + 1), d) 
code, where d = t(n - 1) if n == 1 (mod 4) and d = t(n - 3) if n == 3 (mod 4). 
In the case n = 9 the code consists of the rows of the matrix 

000 000 000 
J p2 P 

P J p2 

(4.1.1) 
p2 P J 

I J_p2 J-P 

J-P I J _ p2 

J _p2 J-P I 
1 1 1 1 1 1 1 1 1 

where I and J are 3 by 3 and 

[0 I !] p= 0 0 
1 0 



48 4. Some Good Codes 

§4.2. The Binary Golay Code 

The most famous of all (binary) codes is the so-called binary Golay code f§23' 

There are very many constructions of this code, some of them quite elegant 
and with short proofs of the properties of this code. We shall prove that f§24' 

the extended binary Golay code, is unique and treat a few constructions. 
From these it follows that the automorphism group of the extended code is 
transitive and hence f§23 is also unique. 

We consider the incidence matrix N of a 2-(11, 6, 3) design. It is easy to 
show (by hand) that this design is unique. We have N NT = 31 + 3J. Consider 
N as a matrix with entries in 1F2 • Then NNT = I + J. So N has rank 10 and 
the only nonzero vector x with xN = 0 is 1. The design properties imply trivially 
that the rows of N all have weight 6, and that the sum of any two distinct rows of 
N also has weight 6. Furthermore, we know that the sum of three or four rows of 
N is notO. 

Next, let G be the 1~'by 24 matrix (over 1F2 ) given by G := (/12P), where 

(4.2.1) 
P:- [I N 1 

Every row of G has a weight == 0 (mod 4). Any two rows of G have inner 
product O. This implies that the weight of any linear combination of the rows 
ofG is == O(mod 4) (proof by induction). The observations made about N then 
show that a linear combination of any number of rows of G has weight at least 
8. Consider the binary code generated by G and call it f§24' Delete any 
coordinate to find a binary [23, 12] code with minimum distance at least 7. 
The distance cannot be larger, since (3.1.6) is satisfied with e = 3, which shows 
that in fact this [23, 12,7] code is a perfect code! We denote this code by f§23; 

(as mentioned above, we shall prove its uniqueness, justifying the notation). 

(4.2.2) Theorem. The codewords of weight 8 in f§24 form a 5-(24, 8, 1) design. 

PROOF. By an easy counting argument, one can show that the weight enumer­
ator of a perfect code containing 0 is uniquely determined. In fact, we have 
Ao = A23 = 1, A7 = A16 = 253, As = A 1S = 506, All = A12 = 1288. So, f§24 

has 759 words of weight 8, no two overlapping in more than four positions. 
Hence, these words together cover 759· (~) = CZs4 ) fivetuples. 0 

(4.2.3) Theorem. If C is a binary code of length 24, with ICI = 212, minimum 
distance 8, and if 0 E C, then C "is equivalent to f§24' 

PROOF. (i) The difficult part of the proof is to show that C must be a linear 
code. To see this, observe that deleting any coordinate produces a code C' of 
length 23 and distance 7 with IC'I = 212. So, this code is perfect and its weight 
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enumerator is as in the proof of the previous theorem. From the fact that this 
is the case, no matter which of the 24 positions is deleted, it follows that all 
codewords in C have weight 0, 8, 12, 16, or 24. Furthermore, a change of 
origin, obtained by adding a fixed codeword of C to all the words of C, shows 
that we can conclude that the distance of any two words of C is also 0, 8, 12, 
16, or 24. Since all weights and all distances are == 0 (mod 4), any two code­
words have inner product O. Therefore the codewords of C span a linear code 
that is selforthogonal. This span clearly has dimension at most 12, i.e. at most 
212 codewords.1t follows that this span must be C itself. In other words, C is 
a selfduallinear code! 

(ii) We form a generator matrix G of C, taking as first row any word of weight 
12. After a permutation of positions we have 

G=C .~. o ... 0) 
B . 

We know that any linear combination of the rows of B must have even 
weight # O. So, B has rank 11. This implies that the code generated by B is 
the [12,11,2] even weight code. We may therefore assume that B is the matrix 
III bordered by a column of l's. A second permutation of the columns of G 
yields a generator matrix G' of the form (/12P), where P has the same form as 
in (4.2.1). What do we know about the matrix N in this case? Clearly any row 
of N must have weight 6 (look at the first row of G'). In the same way we see 
that the sum of any two rows of N has weight 6. This implies that N is the 
incidence matrix of the (unique!) 2-(11, 6, 3) design. Hence C is equivalent 
to C§24. 0 

The following construction of C§24 is due to R. 1. Turyn. We consider the 
[7, 4] Hamming code H in the following representation. Take 0 and the seven 
cyclic shifts of (1 1 0 1 0 0 0); (note that these seven vectors form the inci­
dence matrix of PG(2, 2)). Then take the eight complements of these words. 
Together these form H. Let H* be obtained by reversing the order of the 
symbols in the words of H. By inspection we see that Hand H* are [8, 4] 
codes with the property H n H* = {O, I}. We know that both Hand H* are 
selfdual codes with minimum distance 4. 

We now form a code C with word length 24 by concatenating as follows: 

C:= {(a + x, b + x, a + b + x)la E H, b E H, x E H*}. 

By letting a and b run through a basis of H and x run through a basis of H*, 
we see that the words (a, 0, a), (0, b, b), (x, x, x) form a basis for the code C. 
Hence C is a [24, 12] code. Any two (not necessarily distinct) basis vectors of 
C are orthogonal, i. e. C is selfdual. Since all the basis vectors have a weight 
divisible by 4, this holds for every word in C. Can a word C E C have weight 
less than 8? Since the three components a + x, b + x, a + b + x all obviously 
have even weight, one ofthem must be o. Our observation on the intersection 
of Hand H* then leads to the conclusion that x = 0 or 1. Without loss of 
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generality we assume that x = O. Since the words of H have weight 0, 4, or 8, 
it follows that c = O. 

We have shown that C is a [24, 12,8] code; hence C = ~24' 
The next construction is due to J. H. Conway. Let 1F4 = {O, I, co, ca}. Let C 

be the [6, 3] code over 1F4 with codewords (a, b, c, f(I), f(co), f(w», where 
f(x) := ax2 + bx + c. It is an easy exercise to show that C has minimum 
weight 4 and no words of weight 5. C is known as the hexacode. 

Now, let G be a binary code of length 24 for which the words are represented 
as 4 by 6 binary matrices A. Denote the four rows of such a matrix A by 80, 81, 8w 
and 8,;;. A matrix A belongs to G iff the following two conditions are satisfied 

(1) Every column of A has the same parity as its first row 8 0; 

(2) a1 + C08Q) + ca8o; E C. 

These conditions obviously define a linear code. 
If the first row of A has even parity and the codeword in (2) is not 0, then 

A has at least four col~mns of weight ~ 2, i. e. weight ~ 8. If, on the other 
hand, the codeword in (2) is 0, then either A is the zero word or A has at least 
two columns of weight 4, again a total weight at least 8. If A has a first row 
of odd parity, then all the columns of A have odd weight. These weights 
cannot all be 1, because this would imply that the word of C in condition (2) 
has odd weight. We have shown that G has minimum distance 8. We leave it 
as an exercise for the reader to show that conditions (1) and (2) and the fact 
that C has dimension 3 imply that G has dimension 12. Therefore, the matri­
ces A form ~24' 

In Section 6.9 we shall find yet another construction of ~23 as a cyclic code, 
i. e. a code with an automorphism of order 23. All these constructions to­
gether show that the automorphism group of ~24 is transitive (in fact 5-
transitive; it is the Mathieu group M 24). Therefore ~23. is also unique. 

We mention that the construction of Exercise 3.8.14 with d = 8 and k = 12 
also produces the extended binary Golay code ~24' 

The following decoding algorithm for ~24 is a generalization of Section 
3.4 based on Theorem 4.2.1. Let Yi (1 ~ j ~ 253) be the 253 code words of 
weight 8 of~24 with a 1 in a given position, say position 1. Consider the parity 
checks (x, Yi) (1 ~ i ~ 253); here we use the fact that ~24 is self-dual. Suppose 
x is received and contains t ~ 4 errors. Theorem 4.2.1 implies that the number 
of parity checks which fail is given by the following table. 

XI correct X I incorrect 

t = 1 77 253 
2 112 176 
3 125 141 
4 128 128 
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So in case t s; 3 we can correct the symbol Xl' The line corresponding to t = 4 
demonstrates that t:§24 is 4-error-detecting but not 4-error-correcting. 

We remark that the procedure for self-dual codes that we described in 
Section 3.2, when applied to the extended binary Golay code, involves the 
calculation of at most 26 x 12 = 312 parity checks and produces all the 
coordinates of the error vector (if t S; 3). 

§4.3. The Ternary Golay Code 

Let S5 be the Paley matrix of size 5 defined in (1.3.8), i.e. 

0 + + 
+ 0 + 

S5 = + 0 + 
+ 0 + 

+ + 0 

Consider the [11, 6J ternary code C defined by the generator matrix 

1 1 1 I 1 

G= 

The code C is an [11, 6J code. From (1.3.8) it follows that C is self-dual. 
Therefore all the words of C have weight divisible by 3. The generator a for 
C is obtained by adding the column (0, -1, -1, -1, -1, -If to G. Every 
row of a has weight 6. A li'near combination of two rows of a"has weight at 
least 2 + 2, hence it has weight 6. Therefore a linear combination of two rows 
of a has exactly two zeros in the last six positions and this implies that a linear 
combination of three rows of a has weight at least 3 + 1, i.e. weight at least 
6. Therefore C has minimum distance 6. It follows that C is an (11, 36 , 5) code. 

From IB2 (x)1 = 2:1=0 C/) 2i = 35 it then follows that C is a perfect code. This 

code is known as the ternary Golay code. It has been shown that any (11, 36 , 

5) code is equivalent to C (cf. [46J). A simple uniqueness proof such as we 
gave for the binary Golay code has not been found yet. 

§4.4. Constructing Codes from Other Codes 

Many good codes have been constructed by modifying (in various ways) 
previously constructed codes. In this section we shall give several examples. 
The first method was introduced in (3.2.7), namely extending a code by adding 
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an extra symbol called the overall parity check. The inverse process. which 
we used in Section 4.2 to obtain the binary Golay code from its extension is 
called puncturing a code. If we consider as another example the (9. 20. 4) code 
of (4.1.1) and puncture it, i.e. delete the last symbol in every word. we obtain 
an (8, 20, 3) code. In the next chapter we shall see that this is indeed a good 
code. We remark that an equivalent code can also be obtained by -taking 
all cyclic permutations of the words (1 1 0 1 0 0 0 0), (1 1 1 0 
o 1 0 0). and (1 0 1 0 1 0 1 0) together with 0 and 1. 

A third procedure is shortening a code C. Here, one takes all codewords in 
C that end in the same symbol and subsequently deletes this symbol. This 
procedure decreases the length and the number of codewords but it does not 
lower the minimum distance. Note that if the deleted symbol is not O. this 
procedure changes a linear code to a nonlinear code (generally). 

Let us now look at a slightly more complicated method. From one of the 
constructions of the extended binary Golay code t§24 in Section 4.2 one 
immediately sees that ;t§24 has a subcode consisting of 32 words with 0 in 
the first eight positions. Similarly. if we take Cs = 1 and exactly one of the 
symbols C1 to C7 equal to 1. then we find a subcode of 32 words (c 1• c2 , •••• 

C24)' Doing this in all possible ways, we have a subset of256 words oft§24 with 
the property that any two of them differ in at most two positions among the 
first eight. Now we delete the first eight symbols from these words. The result 
is a binary (16, 256, 6) code which is nonlinear. This code is called the 
Nordstrom-Robinson code. This code is the first one in an infinite sequence 
that we discuss in Section 7.4. If we shorten this code twice and then puncture 
once the result is a (13, 64, 5) code. which we denote by Y. This will be an 
important example in the next chapter. It is known that Y is unique and that 
if we shorten Y there are two possible results (J.-M. Goethals 1977; cr. [26]). 
The two codes are: a code known as the Nadler code and the code of Problem 
4.8.7. 

A construction similar to our construction of the extended binary Golay 
code is known as the (u. u + v)-construction. Let Cj be an (n, M;, di ) binary 
code (i = 1, 2). Define 

(4.4.1) C:= {(u, u + v)lu E C1, v E C2 }. 

Then C is a (2n, M1 M2 , d) code, where d:= min{2d1, d2 }. To show this we 
consider two codewords (u1, u1 + VI) and (u2, U2 + v2). If VI = V2 and U1 :I: U2, 

their distance is at least 2d1• If VI :I: V2 the distance is w(u1 - u2 ) + 
w(u1 - U2 + VI - V2) which clearly exceeds w(v1 - v2 ), i.e. it is at least d2 • As 
an example we take for C2 the (8, 20, 3) code constructed above. and for C1 

we take the [8, 7] even weight code. The construction yields a (16, 5· 29. 3) 
code. There is no (16, M, 3) code known at present with M > 5.29. 

Many good codes were constructed using the following idea due to H. J. 
Helgert and R. D. Stinaff(1973; cf. [34]). Let C be an En, k] binary code with 
minimum distance d. We may assume that C has a generator matrix G with 
a word of weight d as its first row, say 
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1 ... 1 I ° ° ... OJ. 
GI G2 

Let d' be the minimum distance of the [n - d, k - 1] code generated by G2 

which we call the residual code w.r.t. the first row of G. From G we see that to 
each codeword of the residual code there correspond two codewords of C, at 
least one of which has weight::; td on the first d positions. Hence d' ~ td. To 
illustrate this method we now show that a linear code with the parameters of 
the Nadler code does not exist. If there were such a code it would have a 
generator matrix G as above where G2 generates a [7, 4] code with distance 
d' ~ 3. Therefore the residual code is a Hamming code. W.l.o.g. we can take 
G2 to have four rows of weight 3 and then GI must have (w.l.o.g.) four rows 
of weight 2. There are only a few possibilities to try and these do not yield a 
code with d = 5. Even for small parameter values it is often quite difficult to 
find good codes. For example, a rather complicated construction (cf. [46], 
Chapter 2, Section 7) produced a (10, M, 4) code with M = 38 and for a long 
time it was believed that this could not be improved. M. R. Best (1978; cf. [8]) 
found a (10, 40, 4) code which we describe below. In the next chapter we shall 

:~ ::: f:::e:t~: [d ~~ f r~ i: Jind
::
d ;::~;~: C:l:'t~::::::o::: ~: 3~a:d: 

° ° 1 1 ° [10,3] code C2 with minimum distance d = 4. Now add (10000 00100) to 
all the words of C2 • The new code is no longer linear and does not contain O. 
Numbering the positions from 1 to 10 we subsequently permute the positions 
of the codewords by elements of the subgroup of SIO generated by 
(1 2 3 4 5)(6 7 8 9 10). This yields 40 codewords which turn out 
to have minimum distance 4. 

In many technical applications (such as the compact disc) two codes are used. 
These codes collaborate in some way. Sometimes the goal is to combat burst 
errors. Quite often, more errors can be corrected than one would expect from the 
minimum distance. 

We saw an example of collaborating codes in Problem 3.7.12, namely a direct 
product code. Let us have another look at such a code. Consider the product of an 
[8,4,4] extended Hamming code with a [16,11,4] extended Hamming code. The 
product can correct up to 7 errors. Now suppose a received word (i. e. a 16 by 8 
matrix) has five rows with no errors, eight rows with one error, and three rows with 
two errors. We have 14 errors, twice the number we expect to be able to handle. 
However, when we decode the rows, thirteen are corrected and the three bad ones 
are recognized. We now declare these rows to be erasures! When we decode 
the columns, we will not encounter words with errors, but all of them have three 
erasures. Since the column code has distance 4, we can handle these erasures. At 
the end, all 14 errors have been corrected. 

The codes used in practice apply variations of this idea. In the compact disc, 
two codes, each with distance 5, collaborate. For one of them, the decoder only 
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corrects if at most one error occurs; otherwise, the word is declared an erasure. In 
the end, this turns out to increase the efficiency of the collaborating pair. 

We extend the example treated above, to introduce a sequence of codes defined 
byP.Eliasin 1954. We start with an extended Hamming code C1 oflengthnl = 2"'. 
Assume that the codes are to be used on a B. S. C. with bit error probability p, 
where niP < ~. For C2 we take the extended Hamming code of length 2"'+1. 
Define VI := CI and define V2 to be the direct product of CI and C2• We continue 
in this way: if V; has been defined, then V;+I is the direct product of Vi and the 
extended Hamming code Ci+1 of length 2"'+i. Denote the length of Vi by ni and 
its dimension by ki • Finally, let Ei be the expected number of errors per block in 
words of Vi after decoding. 

From the definition, we have: 

ni+1 = ni' 2",+i, 

ki+1 = ki · (2"'+i - m - i - 1), 

and from Example 3.3.4 it follows that Ei+1 ~ E;andEI ~ (nIP)2 ~ *.Sothese 
codes have the property that Ei tends to zero as i -+ 00. 

From the recurrence relations for ni and ki , we find 

n . - 2mi+!i<i-I) . ,- , 
i-I ( m+ j +l) 

ki = ni n 1 - 2m+j • 
)=fl 

So, if Ri denotes the rate of Vi, then 

nco ( m+ j +1) Ri -jo- 1 - . > 0 2m+) 
i=fl 

for i -jo- 00. So we have a sequence of codes for which the length tends to 00, the 
rate does not tend to 0, and nevertheless the error probability tends to O. This is 
close to what Shannon's theorem promises us. Note that these codes, called Elias 
codes, have minimum distance di = 4! and hence dJni -jo- 0 as i -jo- 00. 

§4.S. Reed-Muller Codes 

We shall now describe a class of binary codes connected with finite geo­
metries. The codes were first treated by D. E. Muller (1954) and I. S. Reed 
(1954). The codes are not as good as some of the codes that will be treated in 
later chapters but in practice they have the advantage that they are easy to 
decode. The method is a generalization of majority logic decoding (see Sec­
tion 3.4). 

There are several ways of representing the codewords of a Reed-Muller 
code. We shall try to give a unified treatment which shows how the different 
points of view are related. As preparation we need a theorem from number 
theory that is a century old (Lucas (1878». 
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(4.5.1) Theorem. Let p be a prime and let 

and 

be representations of n and k in base p (i.e. 0 :s; ni :s; p - 1, 0 :s; k i :s; p - 1). 
Then· 

PROOF. We use the fact that (1 + x)P == 1 + x P (mod p).IfO:s; r < p then 

(1 + x)"p+r == (1 + x P),,(1 + x)' (mod p). 

Comparing coefficients of x"p+s (where 0 :s; s < p) on both sides yields 

(::::) == (:)(:) (mod p). 

The result now follows by induction. 0 

The following theorem on weights of polynomials is also a preparation. 
Let q = 2r. For a polynomial P(x) E 1F,,[x] we define the Hamming weight 
w(P(x)) to be the number of nonzero coefficients in the expansion of P(x). Let 
c ElF", c ,,;: O. The polynomials (x + C)i, i ;?: 0, are a basis of IFq[x]. 

(4.5.2) Theorem (Massey et al. 1973; cf. [49]). Let P(x) = 1:1:0 b;(x + C)i, 

where bl ,,;: 0 and let io be the smallest index i for which bi ,,;: o. Then 

w(P(x)) ;?: w«x + C)iO). 

PROOF. For 1=0 the assertion is obvious. We use induction. Assume the 
theorem is true for I < 2". Now let 2" :s; I < 2"+1. Then we have 

2"-1 I 

P(x) = 1: b;(x + C)i + 1: b;(x + C)i 
i=O i=2" 

= PI (x) + (x + C)2" P2(x) = (PI (x) + C2"P2(X)) + x 2" P2(x), 

where P1(x) and P2 (x) are polynomials for which the theorem holds. We 
distinguish two cases. 

(i) If PI (x) = 0 then w(P(x)) = 2w(P2 (x)) and since io ;?: 2" 

w«x + C)iO) = w«x2" + c2")(x + C)iO-Z") = 2w«x + C)io-2"), 

from which the assertion follows. 
(ii) If PI (x) ,,;: 0 then for every term in cZ" Pz(x) that cancels a term in PI (x) we 

have a term in X Z" Pz(x) that does not cancel. Hence w(P(x)) ;?: w(P1 (x)) 
and the result follows from the induction hypothesis. 0 
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The three representations of codewords in Reed-Muller codes which we 
now introduce are: (i) characteristic functions of subsets in AG(m, 2); (ii) co­
efficients of binary expansions of polynomials; and (iii) lists of values which 
are taken by a Boolean function on IFf. 

First some notations and definitions. We consider the points of AG(m, 2), 
i.e. IFf as column vectors and denote the standard basis by Uo, U1, ... , Um _ 1. 

Let the binary representation of j be j = L;"=-01 ~ij2i (0 5 j < 2m). 
We define Xj := L;'!,-01 ~ijUi' This represents a point of AG(m, 2) and all 

points are obtained in this way. Let E be the matrix with columns Xj 
(0 5 j < 2m). Write n := 2m. The m by n matrix E is a list of the points of 
AG(m, 2), written as column vectors. 

(4.5.3) Definitions. 

(i) Ai := {Xj E AG(m, 2)I~ij = I}, i.e. Ai is an (m - I)-dimensional affine sub­
space (a hyperplane), for 0 5 i < m; 

(ii) vi := the ith row orE, i.e. the characteristic function of Ai' The vector Vi 
is a word in lFi; as usual we write 1:= (1, 1, ... , 1) for the characteristic 
function of AG(m, 2); 

(iii) if a = (ao• a1, •••• an-I) and b = (bo• b1 ••••• b,,-d are words in lFi. we de­
fine 

(4.5.4) Lemma. Let I = :L:"=-01 ~il2i and let i1 , •••• is be the values of i for which 
~il = O. If 

then 
71-1 

(x + 1)1 = L al,jXn - I - j . 
j=O 

(Here, as usual, a product with no factors (s = 0) is defined to be 1.) 

PROOF. By Theorem 4.5.1 the binomial coefficient ( II .) is 1 itT ~ij = 1 
n- -] 

for every i for which ~il = O. By (4.5.3) (i). (ii) and (iii) we also have al,j = 1 iff 
~ij=lfori=il •...• is' D 

The following shows how to interpret the products Vi, ... Vi. geometrically. 

(4.5.5) Lemma. If i1 , i2 .... , is are different then 

(i) Vi, Vi,'" Vi. is the characteristic function of the (m - s)-flat 
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(ii) the weight W(Vil ••• Vi) of the vector Vii' •• Vi. in lFi is 2"'-', 
(iii) the characteristic function of {Xj}, i.e. the jth basis vector of lFi is 

m-l 

e j = Il {Vi + (1 + ~i)l}, 
i=O 

(iv) the products Vii'" Vi. (0::::;; S ::::;; m) are a basis of lFi. 

PROOF. 

(i) This is a consequence of (4.5.3)(i)-(iii). 
(ii) By (i) the weight is the cardinality of an (m - s)-flat. 

(iii) Consider the matrix E. For every i such that ~ij = 0 we replace the ith 
row of E, i.e. Vi' by its complement 1 + Vi' If we then multiply the rows of 
the new matrix, the product vector will have entry 1 only in position j, 
since all possible columns occur only once. As an example consider {X I4 } 

in the following table. Since 14 = 0 + 2 + 22 + 23 we see that 1 + ~ij = 1 
only if i = 0 (here j = 14). So in the table we complement the row corre­
sponding to Vo and then multiply to find (vo + 1) VI V2 V3 which is a row 
vector which has a 1 only in the fourteenth position. 

(iv) There are L:':o (7) = 2m = n products Vii'" Vi.' The result follows from 

(iii). Since the polynomials (x + 1)1 are independent we could also have 
used Lemma 4.5.4. 0 

The following table illustrates Lemmas 4.5.4 and 4.5.5. For example, 
Vo V2 corresponds to 1 = 15 - 20 - 22 = 10 and hence (x + 1)10 = 
x lO + x 8 + x 2 + 1. 

Vii Viz'" Vi., Coordinates = coefficients of (x + 1 i 1= n -1 - It-
t 1111111111111111 15 = 1111 

Vo o 1 0 1 0 1 0 101 0 1 0 1 0 1 14=1110 
VI 0011001100110011 13 = 1101 
V2 o 0 0 0 1 1 1 100 001 1 1 1 11 = 1011 
V3 o 0 0 0 0 0 0 0 1 1 111 1 1 1 7 = 0111 

Vo VI 000 1 000 100 0 1 000 1 12 = 1100 
Vo V2 o 0 0 0 0 1 0 100 0 0 0 1 0 1 10 = 1010 
Vo V3 o 0 0 0 0 0 000 1 0 1 0 101 6 = 0110 
VI V2 o 0 0 0 0 0 1 100 0 0 0 0 1 1 9 = 1001 
VI V3 000 0 0 0 0 000 1 100 1 1 5 = 0101 
V2 V3 o 0 0 0 0 000 0 0 0 0 1 1 1 1 3 = 0011 

Vo VI V2 o 0 0 0 000 1 0 0 000 0 0 1 8 = 1000 
Vo VI V3 o 0 0 0 0 0 0 0 000 1 000 1 4 = 0100 
Vo V2 V3 000 0 0 0 0 0 0 0 000 1 0 1 2 = 0010 
VI v 2 V3 o 0 0 0 0 0 000 0 0 0 0 0 1 1 1 = 0001 

Vo VI V2 V3 o 0 0 0 0 0 000 0 0 0 000 1 0=0000 
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(4.5.6) Definition. Let 0 ~ r < m. The linear code of length n = 2m which has 
the products Vi, ••• Vi. with s ~ r factors as basis is called the rth order binary 
Reed-Muller code (RM code; notation 3l(r, m». 

The special case ~(O, m) is the repetition code. From Lemma 4.5.5(i) we see 
th~t the Boolean function Xi, Xi2 '" Xi. where x = (Xo, ... , Xm- 1) runs through 
lFi has value 1 iff x E Ai, Il'" Il Ai.' Hence 9l(r, m) consists of the sequences 
of values taken by polynomials in xo, ... , X m - 1 of degree at most r. 

(4.5.7) Theorem. ~(r, m) has minimum distance 2m- r • 

PROOF. By the definition and Lemma 4.5.5(ii) the minimum distance is at most 
2m- r and by Lemma 4.5.4 and Theorem 4.5.2 it is at least 2m- r• (Also see 
Problem 4.7.9.) 0 

(4.5.8) Theorem. The dual of 9l(r, m) is 9l(m - r - 1, m). 

PROOF. 

(a) By the definition and the independence of the products Vi, ... Vi. the 

dimension of ~(r, m) is 1 + (7) + ... + (~). So dim 9l(r, m) + 

dim ~(m - r - 1, m) = n. 
(b) Let Vi, ••. Vi. and vi, ... Vj, be basis vectors of ~(r, m) and 3l(m - r - 1, m) 

respectively. Then s + t < m. Hence the product of these two basis vectors 
has the form vk, ••• Vku where u < m. By Lemma 4.5.5(ii) this product has 
even weight, i.e. the original two basis vectors are orthogonal. 0 

Corollary. ~(m - 2, m) is the En, n - m - IJ extended Hamming code. 

We have chosen the characteristic functions of certain flats as basis for an 
RM-code. We shall now show that for every flat of suitable dimension the 
characteristic function is in certain RM codes. 

(4.5.9) Theorem. Let C = ~(m - I, m) and let A be an I-flat in AG(m, 2). Then 
the characteristic function of A is in C. 

PROOF. Let f = D:J jjej be the characteristic function of A. By Definition 
4.5.3(iv) and Lemma 4.5.5(iii) we have 

and therefore 

m 

ej = I I Vi, Vi2 '" Vi, 
.=0 (i, •...• i.l 

jeC(i, ..... i.l 



§4.5. Reed-Muller Codes 59 

Here the inner sum counts the number of points in the intersection of A and 
the s-flat 

L = {xj E AG(m, 2)1j E C(ii' ... , is)}. 

If s > m - I then L n A is either empty or an affine subspace of positive 
dimension. In both cases I L n A I is even, i.e. the inner sum is O. 0 

This theorem and the definition show that a word is in 9l(r, m) iff it is the 
sum of characteristic functions of affine subspaces of dimension;::: m - r. In 
the terminology of Boolean functions 9l(r, m) is the set of polynomials in xo, 
Xl' .•. , Xm - l of degree:::;; r. 

In Section 3.2 we defined the notion of equivalence of codes using permuta­
tions acting on the positions of the codewords. Let us now consider a code C 
of length n and the permutations 1t E Sn which map every word in C to a word 
in C. These permutations form a group, called the automorphism group of C 
(Notation: Aut(C)). For example, ifC is the repetition code then Aut(C) = Sn. 

(4.5.10) Theorem. AGL(m, 2) c Aut(9l(r, m)). 

PROOF. This is an immediate consequence of Theorem 4.5.9 and the fact that 
AGL(m, 2) maps a k-flat onto a k-flat (for every k). 0 

Remark. The reader should realize that we consider AGL(m,2) acting on 
AG(m, 2) as a group of permutations of the n positions, which have been 
numbered by the elements of AG(m, 2). 

Without going into details we briefly describe a decoding procedure for 
RM codes which is a generalization of majority decoding. Let C = 9l(r, m). 
By Theorems 4.5.8 and 4.5.9 the characteristic function of any (r + I)-flat in 
AG(m, 2) is a parity check vector for C. Given an r-flat A there are 2m- r - I 
distinct (r + I)-flats which contain A. A point not in A is in exactly one of 
these (r + I)-flats. Each of these (r + I)-flats contains the points of A and 
exactly as many points not in A. 

Now let us look at the result of the parity checks. Let a received word 
contain less than 2m- r - 1 errors (see Theorem 4.5.7). Let t parity checks fail. 
These are two possible explanations: 

(i) This was caused by an odd number of errors in the positions of A, 
compensated 2m- r ,- I - t times by an odd number of errors in the re­
maining positions of the check set. 

(ii) The number of errors in the positions of A is even but in t of the parity 
check eql:lations there is an odd number of errors in the remaining 
positions. 

By maximum likelihood (ii) is more probable than (i) if t < 2m- r - 1 and 
otherwise (i) is more probable. This means that it is possible to determine the 
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parity of the number of errors in the positions of any r-flat. Then, using a 
similar procedure, the same thing is done for (r - I Fflats, etc. After r + 1 steps 
the errors have been located. This procedure is called multistep majority 
decoding. 

§4.6. Kerdock Codes 

We shall briefly discuss a class of nonlinear codes known as Kerdock codes, 
(cf. [75], [11]). A Kerdock code is a subcode of a second order Reed-Muller 
code consisting of a number of co sets of the corresponding first order Reed­
Muller code. Note that ~(2, m) is itself a union of cosets of 9l( 1, m), each coset 
corresponding to some quadratic form 

(4.6.1) 

Corresponding to Q, there is an alternating bilinear form B defined by 

B(v, w):= Q(v + w) - Q(v) - Q(w) = vBwT , 

where B is a symplectic matrix (zero on the diagonal and B = - BT). By an 
easy induction proof one can show that, by a suitable affine transformation, 
Q can be put into the form 

h-l 

(4.6.2) L V2i V2i+l + L(v), 
i=O 

where L is linear and 2h is the rank of B. In fact, one can see to it that L(v) = 0, 
t or V2h • 

(4.6.3) Lemma. The number of points (xo, Xl' ••• , X 2h - 1) E IFr for which 
,h-l 0· 22h - 1 2h- 1 
L..i=O XZiXZi+l = IS + . 

PROOF. If xo = Xz = ... = X2h-2 = 0, then there are 2h choices for 
(x l' ... , x 2h - 1). Otherwise there are 2h- 1 choices. So, the number of zeros is 
2h + (2h - 1)2h - 1• 0 

From (4.6.2) and (4.6.3) we find the following lemma. 

(4.6.4) Lemma. Let m be even. If Q(v) is a quadratic form corresponding to a 
symplectic form of rank m, then the coset of 9l(J, m) determined by Q(v) has 2m 

words of weight 2m- 1 - 2m/2 - 1 and 2m words of weight 2m - 1 + 2m/2 - 1. 

(Note that this implies that if Q has rank smaller than m, the corresponding 
coset has smaller minimum weight). 

Clearly, a union of cosets of 9l(1, m) will be a code with minimum distance 
at most 2m- 1 - 2m/2 - 1• We wish to form a code C by taking the union of 
co sets corresponding to certain quadratic forms Q l' ... , Ql (with associated 
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symplectic forms B1 , ••• , B,). To find the minimum distance of this code, we 
must consider codes corresponding to cosets defined by the forms Qi - Qj 
(i # j) and find their minimum weight. The best that we can achieve is that 
each difference Qi - Qj corresponds to a symplectic form of maximal rank, 
that is a nonsingular symplectic form. Since the symplectic forms correspond 
to skew-symmetric matrices with zero diagonal and no two of these can have 
the same first row, it follows that I :s; 2m - 1 if the minimum distance d of C is 
to be 2m - 1 _ 2m/2 - 1. 

(4.6.5) Definition. Let m be even. A set of 2m - 1 symplectic matrices of size m 
such that the difference of any two distinct elements is nonsingular, is called 
a Kerdock set. 

(4.6.6) Definition. Let m be even. Let I = 2m- 1 and let Q l' ... , Q, be a Kerdock 
set. The nonlinear code f(m) oflength n = 2m consisting of co sets of 9l(1, m), 
corresponding to the forms Qi (1 :s; i :s; I), is called a Kerdock. code. 

To show that such codes actually exist is a nontrivial problem related to 
the geometry of lFi (cf. [11]). We only give one example. Let m = 4. If Q is a 
quadratic form L(=o %XiXj , we represent Q by a graph on the vertices xo, ... , 
X3 with an edge {Xi' Xj } if and only if % = 1. 

If Q corresponds to a nonsingular sympletic form, then the graph must be 
isomorphic to one of the following graphs: 

• • c • • 
(1) (2) (3) (4) 

Order the partitions (12)(34), (13)(24), and (14)(23) cyclically. Form six 
graphs of type (2) by taking two sides from one pair of these partitions and 
one from the following one. It is easily seen that these six graphs, the empty 
graph and the graph of type (4) have the property that the sum (or difference) 
of any two corresponds to a nonsingular symplectic form. In this way we find 
the 8· 25 = 28 words of a (16, 28 , 6) code, which is in fact the Nordstrom­
Robinson code of §4.4. 

In the general case f(m) is a (2m, 22m, 2m - 1 - 2m/2 - 1 ) code. So, the number 
of words is considerably larger than for 9l(1, m) although the minimum 
distance is only slightly smaller. 

§4.7. Comments 

For details about the application of Hadamard codes in the Mariner expedi­
tions we refer to reference [56]. 

The Golay codes were constructed by M. 1. E. Golay in 1949 in a different 
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way from our treatment. For more about these codes and several connections 
to combinatorial theory we refer to a book by P. J. Cameron and J. H. van 
Lint [11] or to [46]; also see [19]. 

The reader who is interested in more material related to Section 4.4 is 
referred to references [64] and [65]. For more about encoding and decoding 
of RM codes see [2] or [46]. 

§4.8. Problems 

4.8.1. Let n = 2"'. Show that the Reed-Muller code (;f(1, m) is a Hadamard code of 
length n. 

4.8.2 Show that the ternary Golay code has 132 words of weight 5. For each pair 
{x, 2x} of codewords of weight 5 consider the subset of positions where Xi #: O. 
Show that these 66 sets form a 4 - (11, 5,1) design. 

4.8.3. Let S be the Paley matrix of order 11 and A = !(S + I + J). Consider the rows 
of A, all 55 sums of two distinct rows of A, and the complements of these 
vectors. Show that this is an (11, 132,3) code. 

4.8.4. Construct a (17, 36, 8) code. 

4.8.5. Consider Conway's construction Of~14. Then consider the subcode consisting 
of the matrices A that have the form (B, B, B), where each B is a 4 by 2 matrix. 
Show that the matrices B are the words of a code equivalent to the [8, 4] 
extended Hamming code. 

4.8.6. Show that ifthere is a binary (n, M, d) code with d even then there exists an (n, 
M, d) code in which all codewords have even weight. 

4.8.7. Consider I, J, and P of size 3 as in (4.1.1). Define 

[1 ~l I I I 

B'_[ ~ 
P I 

~'] J-I I 
I ] 

J p1 
A:= 

I ' pl P , I I J-I J 

I I 1 J-I p2 1 P J 

D'_[~ 
111 III 111] 000 III 111 

C := (J - 1 J - I J - I J - 1), 
III 111 000 III . 

III 111 III 000 

Show that 0 and the rows of A, B, C and D are the words of a (12, 32, 5) code. 

4.8.8. Let H be the Hadamard matrix HIl of (1.3.9) and let A := H - I, G:= (I A). 
Show that G is the generator matrix of a ternary [24, 12] code with minimum 
distance 9. 

4.8.9. Show that the (u, u + v}-construction of (4.4.1) with C1 = (;f(r + 1, m), C1 = 
(;f(r, m) yields C = Bl(r + 1, m + 1). Use this to give a second proof of Theorem 
4.5.7. 
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4.8.10. (i) Let n = 2 .... For x E f~ we define x* E {l, -I}· as the vector obtained by 
replacing the Os in x by -1. In Problem 4.7.1 we saw that this mapping applied 
to 9f( 1, m) yields vectors ± a I, ± a2 , ••• , ± a. where the aj are the rows of a 
Hadamard matrix. By using this show that if x E f~ then there exists a code­
word c E 9f(1, m) such that d(x, c) ::s: (n - In)/2. 
If m = 2k and x is the word E 9f(2, m) corresponding to the Boolean function 
X 1X2 + X3X4 + ... + X2k-IX2k show that d(x, c) ~ (n - In)f2 for all C E 

9f(1, m). (In other words: the covering radius of (1, 2k) is 22k - 1 - 2k- I .) 

4.8.11. Let H be a parity check matrix for the [4, 2] ternary Hamming code and let I 
and J be the 4 by 4 identity resp. all one matrix. Show that 

.= [J + I I I ] 
G. 0 H-H 

generates a [12, 6] code C with d = 6, i.e. a code equivalent to the extended 
ternary Golay code. 



CHAPTER 5 

Bounds on Codes 

§5.1. Introduction; The Gilbert Bound 

In this chapter we shall be interested in codes that have as many codewords 
as possible, given their length and minimum distance. We shall not be inter­
ested in questions like usefulness in practice, encoding or decoding of such 
codes. We again consider as alphabet a set Q of q symbols and we define 
():= (q - 1)/q. Notation is as in Section 3.1. We assume q has been chosen 
and then define an (n, *, d) code as a code with length n and minimum 
distance d. We are interested in the maximal number of codewords (i.e. the 
largest M which can be put in place of the *). An (n, M, d) code which is not 
contained in any (n, M + 1, d) code is called maximal. 

(5.1.1) Definition. A(n, d):= max{M I an (n, M, d) code exists}. A code C such 
that ICI = A(n, d) is called optimal. 

Some authors use the term "optimal" for en, k] codes with d = n - k + 1 
(see Problem 3.8.2). Such codes are optimal in the sense of (5.1.1) (cf. (5.2.2)). 
Usually en, k, n - k + IJ ci>des are called maximum distance separable codes 
(MD8 codes). 

The study of the numbers A(n, d) is considered to be the central problem 
in combinatorial coding theory. In Chapter 2 we learned that good codes are 
long, or more precisely, given a channel with a certain error probability p, we 
can reduce the probability of error by looking at a sequence of codes with 
increasing length n. Clearly the average number of errors in a received word 
is np and hence d must grow at least as fast as 2np if we wish to correct these 
errors. This explains the importance of the number cx(a) which we define as 
follows. 
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(5.1.2) Definition. 

a:(I5) := lin sup n-1 108q A(~, I5n). 

In Chapter 2 we studied good codes with a given rate R. In that case we 
should ask how large d/n is (as a function of n). By (5.1.2) this means that we 
are interested in the inverse function a:-(R). 

The functions A and a: are not known in general. We shall study upper and 
lower bounds for both of them and special values of A{n, d). The techniques 
of extending, shortening, or puncturing (see Section 4.4) will often come in 
handy. These immediately yield the following theorem. 

(5.1.3) Theorem. For binary codes we have 

A(n, 21 - 1) = A(n + 1,2/). 

We remind the reader of the definition of a sphere Br(x), given in Section 
3.1 and we define ' 

(5.1.4) 

(cr. (3.1.6». 
In order to study the function a:, we need a generalization of the entropy 

function defined in (1.4.4). We define the entropy function Hq on [0, 9], where 
9 := (q - 1)/q, by 

(5.1.5) Hq(O):= 0, 

Hq(x) := x logq(q - 1) - x logq x - (1 - x) 10gq(1 - x) 

for 0 < x ~ 9. 

Note that Hix) increases from 0 to 1 as x runs from 0 to 9. 

(5.1.6) Lemma. Let 0 ~ A ~ 9, q ~ 2. Then 

lim n-1 logq Yq(n, LAnJ) = Hq(A). 
n-<Xl 

PROOF. For r = LAnJ the last term of the sum of the right-hand side of (5.1.4) 
is the largest. Hence 

(L.1.:J)(q - 1)[4nl ~ Yq(n, LAnJ) ~ (1 + LAnJ)(L)~nJ)(q - 1)[4nl. 

By taking logarithms, dividing by n, and then proceeding as in the proof of 
Theorem 1.4.5 the result follows. 0 

To finish this section we discuss a lower found for A(n, d) and the corre­
sponding bound for a:(b). Although the result is nearly trivial, it was thought 
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for a long time that a(l5) would be equal to this lower bound. In 1982, 
Tsfasman, Vliidut. and Zink [81] improved the lower bound (for q ~ 49) using 
methods from algebraic geometry. 

(5.1.7) Theorem. For n E N, dEN, d s; n, we have 

A(n, d) ~ qft/Yq(n, d - 1). 

PROOF. Let the (n, M, d) code C be maximal. This implies that there is no 
word in Qft with distance d or more to all the words of C. In other words: the 
spheres Bd- I (c), with C E C, cover Qft. Therefore the sum of their "volumes", 
i.e.ICI Yq(n, d - 1) exceeds qft = IQlft. 0 

The proof shows that a code which has at least qft/Yq(n, d - 1) codewords 
can be constructed by simply starting with any word Co and then consecu­
tively adding new word~ that have distance at least d to the words which have 
been chosen before, until the code is maximal. Such a code has no structure. 
Surprisingly enough, the requirement that C is linear is not an essential 
restriction as the following theorem shows. 

(5.1.8) Theorem. If n E N, dEN, kEN satisiY Vq (n, d - 1) < qft-k+I, then an 
[n, k, d] code exists. 

PROOF. For k = 0 this is trivial. Let Ck - I be an En, k - 1, d] code. Since 
ICt-11 Yq(n, d - 1) < qft, this code is not maximal. Hence there is a word x E 

Qn with distance ~ d to all words of Ct- I . Let Ck be the code spanned by Ck - I 

and {x}. Let z = ax + y (where 0 =F a E Q, y E Ck - I ) be a codeword in Ct. 
Then 

w(z) = w(a-Iz) = w(x + a-Iy) = d(x, -a-Iy) ~ d. 0 

The codes of Problem 3.8.14 are an example of Theorem S.1.8. 

EXAMPLE. Let q = 2, n = 13, d = 5. Then from (5.1.4) we find V2(13, 4) = 1093 
and hence A(l3, 5) ~ l8192/1093 J = 8. In fact Theorem 5.1.8 guarantees the 
existence of a [13, 3, 5] code. Clearly this is not a very good code since by 
Theorem 4.5.7 puncturing 91(1, 4) three times yields a [13,5,5] code and in 
fact the code Y of Section 4.4 is an even better nonlinear code, namely a 
(13,64,5) code. This example shows one way of finding bounds for A(n, d), 
namely by constructing good codes. We know that A(13, 5) ~ 64. 

The bound of Theorem 5.1.7 is known as the Gilbert bound (or Gilbert­
Varshamov bound). Let us now look at the corresponding bound for cx. 

(5.1.9) Theorem (Asymptotic Gilbert Bound). If 0 S; 15 S; 8 then 

cx(l5) ~ 1 - Hi15). 
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PROOF. By (5.1.7) and (5.1.6) we have 

<X{") = lim sup n-1 logq A{n, "n) ~ lim {I - n-1 logq Vq(n, "n)} 

o 

§5.2. Upper Bounds 

In this section we treat a number of upper bounds for A{n, d) that are fairly 
easy to derive. In the seventies more complicated methods produced better bounds, 
which we shall discuss in Section 5.3. 

By puncturing an en, M, d) code d - 1 times we obtain an (n - d + 1, M, I) 
code, i.e. the M punctured words are different. Hence M :::; qn-d+1. We have 
proved the following tqeorem, known as the Singleton bound. 

(5.2.1) Theorem. For q, n, dEN, q ~ 2 we have 

A(n, d) :::; qn-d+l. 

(5.2.2) Corollary. For an En, k] code over IFq we have k :::; n - d + 1. 

A code achieving this bound is called an MDS code (see Problem 3.8.2). 

EXAMPLE. Let q = 2, n = 13, d = 5. Then we have A{13, 5) :::; 512. 
The asymptotic form of Theorem 5.2.1 is as follows. 

(5.2.3) Theorem. For 0 :::; " :::; 1 we have <X{") :::; 1 - ". 

Our next bound is obtained by calculating the maximal possible value of 
the average distance between two distinct codewords. Suppose C is an (n, M, d) 
code. We make a list of words of C. Consider a column in this list. Let the jth 
symbol of Q (O :::; j :::; q - 1) occur mj times in this column. The contribution 
of this column to the sum of the distances between all ordered pairs of distinct 
codewords is Ir;:b mj(M - mj). Since Ij:b mj = M we have from the Cauchy­
Schwarz inequality 

:t: mj{M - mj) = M2 - :~ mf :::; M2 - q-l C~ mjY = ()M2. 

Since our list has n columns and since there are M(M - 1) ordered pairs of 
codewords, we find 

M(M - l)d :::; n()M2. 

We have proved the so-called Plotkin bound. 
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(5.2.4) Theorem. For q, n, d E 1\1, q :;:: 2, e = 1 - q-I we have 

d 
A(n, d)::; d _ en' if d > en. 

EXAMPLES. (a) Let q = 2, n = 13, d = 5. Then e =!. In order to be able to 
apply Theorem 5.2.4 we consider a (13, M, 5) code and shorten it four times 
to obtain a (9, M', 5) code with M' :;:: r 4 M. By the Plotkin bound M' ::; 
51(5 - 4!) = 10. So M ::; 160, i.e. A(l3, 5) ::; 160. A better bound can be 
obtained by first applying Theorem 5.1.3 to get A(l3, 5) = A(14, 6) and then 
repeating the above argument to get A(l4, 6) ::; 23 . 6/(6 - 5!) = 96. 

(b) Let q = 3, n = 13, d = 9. Then e = t and the Plotkin bound yields 
A(13, 9) ::; 27 for ternary codes. Consider the dual of the ternary Hamming 
code (see (3.3.1». This code has generator matrix 

[
0 0 0 ° 1 1 1 1 

G = 0 1 1 100 0 1 

1 0 1 2 ° 1 2 ° 
1 1 1 1] 
1 2 2 2 . 
2 0 1 2 

This matrix has the points of PG(2, 3) as columns. The positions where 
(ai, a2 , a3 )G has a zero correspond to the points of PG(2, 3) on the projective 
line with equation alx l + a2 x 2 + a3 x 3 = 0, i.e. if a", 0 there are exactly four 
such positions. Hence every codeword", 0 has weight 9 and hence any two 
distinct codewords have distance 9. So this is a linear code satisfying Theorem 
5.2.4 with equality. 

From the proof of Theorem 5.2.4 we can see that equality is possible only 
if all pairs of distinct codewords indeed have the same distance. Such a code 
is called an equidistant code. 

Again we derive an asymptotic result. 

(5.2.5) Theorem (Asymptotic Plotkin Bound). We have 

l1(b) = 0, if e ::; b ::; 1, 

l1(b) ::; 1 - b/e, ifo::; b < e. 

PROOF. The first assertion is a trivial consequence of Theorem 5.2.4. For 
the second assertion we define n' := L(d - 1)le J. Then 1 ::; d - en' ::; 1 + e. 
Shorten an (n, M, d) code to an (n', M', d) code. Then M' :;:: q"-'M and by 
Theorem 5.2.4 we have M' ::; dl(d - en') ::; d. So M ::; dqn-n'. From this and 
n'/n -> b/e if n -+ 00 and d = bn we find l1(b) ::; 1 - ble. 0 

The following bound, found by J. H. Griesmer (1960), is a bound for linear 
codes which is asymptotically equivalent to the Plotkin bound but in some 
cases it is better. Even though the proof is elementary, it turns out that the 
bound is sharp quite often. The proof is based on the same ideas as the 



§S.2. Upper Bounds 69 

method of Helgert and StinatT treated in Section 4.4. Let G be the generator 
matrix of an [n, k, d] code. We may assume that the first row of G has weight 
d, in fact we may assume w.l.o.g. that it is (111 ···10···0) with d ones. Every 
other row has at least rdjql coordinates in the first d positions that are 
the same. Therefore the residual code with respect to the first row is an 
[n - d, k - I, d'] code with d' ~ r djq 1- Using induction we then find the 
following theorem. 

(5.2.6) Theorem (Griesmer Bound). For an [n, k, d] code over IFq we have 
i-I 

n ~ L rdjqil-
1=0 

EXAMPLES. (a) Let q = 2, n = 13, d = 5. Since L~=o r5j2i l = 13 we see that a 
[13, k, 5] code must have k ~ 6. The code Y of Section 4.4 has 64 words but 
it is not linear. In fact a [13,6,5] code cannot exist because it would imply 
the existence of a [12,,5,5] code contradicting the analysis given in Section 
4.4. So in this case the Griesmer bound is not sharp. . 

(b) Let q = 3, n = 14, d = 9. From L~=o r9j3 i l = 14 it follows that a 
[14, k, 9] ternary code has k ~ 4. A shortened version of such a code would 
be like Example (b) following Theorem 5.2.4. Suppose such a code exists. As 
before we can assume w.l.o.g. that (11 ... 100000) of weight 9 is the first row 
of the generator matrix. Then, as in the proof of the Griesmer bound, the 
residual code is a [5, 3, 3] ternary code. W.l.o.g. the generator of such a code 
would be 

[1 0 0 1 1] 
G= 0 lOa b , 

o Ole d 
where a, b, c, d are not O. 

Clearly a :F band c :F d and hence there is a combination of rows 2 and 3 
with weight 2, a contradiction. Again the Griesmer bound is not sharp. 

One of the easiest bounds to understand generalizes (3.l.6).1t is known as 
the Hamming bound or sphere packing bound. 

(5.2.7) Theorem. If q, n, e E N, q ~ 2, d = 2e + 1, then 

A(n, d) s; q"jYq(n, e). 

PROOF. The spheres Be(c), where C runs through an (n, M, 2e + 1) code, are 
disjoint. Therefore M· Yq(n, e) S; q". 0 

EXAMPLE. Let q = 2, n = 13, d = 5. Then from Vz(13, 2) = 1 + 13 + 78 = 92 
we find A(13, 5) S; L2 13j92J = 89. 

We have defined a perfect code to be a code that satisfies (5.2.7) with 
equality. We return to this question in Chapter 7. 
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(5.2.8) Theorem (Asymptotic Hamming Bound). We have 

cx(b) ~ 1 - Hq(ib). 

PROOF. A(n, rbnl) ~ A(n, 2ribnl - 1) ~ q"/v,,(n, rfbnl - 1). 

The result follows from Lemma 5.1.6. o 
We now come to an upper bound which is somewhat more difficult to 

prove. For a long time it was the best known upper bound. From the proof 
of the Plotkin bound it should be clear that that bound cannot be good if the 
distances between codewords are not all close to the average distance. The 
following idea, due to P. Elias, gives a stronger result. Apply the method of 
proof of the Plotkin bound to the set of codewords in a suitably chosen sphere 
in Q". The following lemma shows how to choose the sphere. W.!. :"l.g. we take 
Q = l/ql. 

(5.2.9) Lemma. If A and C are subsets of Q" then there is an x E Q" suct! that 

I(x + A) n q I q 
-~---,--- > -. 

IAI - q" 

PROOF. Choose Xo such that I(xo + A) n q is maximal. Then 

I(xo + A)" q ~ q-" L I(x + A) n q 
xeQ" 

=q-" L L L l{x+a}n{c}1 
xeQ" aeA tee 

=q-n L L 1 = q-"IAI·lq. 
aeA tee 

o 

Now let C be an (n, M, d) code and let A be Br(O). We may assume w.l.o.g. 
that the point Xo of the lemma is O. Consider the code A" C. This is an 
(n, K, d) code with K ~ Mv,,(n, r)/q". We list the words of this code as rows 
of a K by n matrix. Let mij denote the number of occurrences of the symbol j 
in the ith column ofthis matrix. We know 

(i) D;J mij = K 

and 

(ii) Li'=l mjQ =: S ~ K(n - r) 

because every row of the matrix has weight at most r. 
Therefore: 

(iii) D;f m~ ~ (q - Ifl(D;f mij)2 = (q - Ifl(K - mjQ)2 

and 

(iv) Li'=l mfo ~ n-1(Li'=1 mjQ)2 = n-1S2• 
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We again calculate the sum of the distances of all ordered pairs of rows of the 
matrix. We find from (i) to (iv): 

" ~ nK2 - (q - 1)-1 I (qmro + K2 - 2KmiO ) 
i=1 

~ nK2 - (q - Ifl(qn-1S2 + nK2 - 2KS). 

In this inequality, we substitute S 2:: K(n - r), where we now pick r ~ On, and 
hence S 2:: q-l nK. We find I7=1 D;J mij(K - mij) ~ K2r(2 - (rjOn». Since 
the number of pairs of rows is K(K - 1), we have 

K(K - l)d ~ K2r(2 - rO-l n-l ). 

Therefore we have proved the following lemma. 

(5.2.10) Lemma. If the words of an (n, K, d) code all have weight ~ r ~ On, 
then 

Kr ( r) d~-- 2--. 
K - 1 On 

(5.2.11) Theorem (Elias Bound). Let q, n, d, r E N, q 2:: 2, 0 = 1 - q-l and 
assume that r ~ On and r2 - 20nr + Ond > O. Then 

Ond q" 
A(n,d)~ 2 20 Od ( ). r - nr+ n Y.,n,r 

PROOF. From Lemma 5.2.9 we saw that an (n, M, d) code has a subcode with 
K 2:: MY.,(n, r)jq" words which are all in some Br(x), So we may apply Lemma 
5.2.1 O. This yields 

o 

Note that r = On, d > On yields the Plotkin bound. 

EXAMPLE. Let q = 2, n = 13, d = 5. Then 0 = t. The best result is obtained if 
we estimate A(14, 6) in (5.2.11). The result is 

42 214 
A(13, 5) = A(14, 6) ~ 2 .~ 

r - 14r + 42 L l~ 
i~r I 

and then the best choice is r = 3 which yields A(13, 5) ~ 162. 

The result in the example is not as good as earlier estimates. However, 
asymptotically the Elias bound is the best result of this section. 
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(5.2.12) Theorem (Asymptotic Elias Bound). We have 

a(<5) ~ 1 - Hq(O - JO(O - <5», if 0 ~ <5 < 0, 

a(<5) = 0, 

PROOF. The second part follows from Theorem 5.2.5. So let 0 < <5 ~ O. Choose 
o ~ ). < 0 - JO(O - <5) and take r = l,lnJ. Then 0<5 - 20,l + ,l2 > O. From 
Theorem 5.2.11 we find, with d = l<5nJ 

-1 < -1 (Ond qn ) 
n lo~ A(n, <5n) - n logq r2 _ 20nr + Ond' Y,,(n, r) 

,... n-1 {IOgqC2 _ ;:,l + 0<5) + n - nHq(,l)} 

,... 1 - llq(,l), (n -+ co). 

Therefore a(<5) ~ 1 - Hq(,l). Since this is true for every A.. with A. < 0 -
JO(O - <5) the result follows. 0 

The next bound is also based on the idea of looking at a subset of the 
codewords. In this case we consider codewords with a fixed weight w. 

We must first study certain numbers similar to A(n, d). We restrict our­
selves to the case q = 2. 

(5.2.13) Definition. We denote by A(n, d, w) the maximal number of code­
words in a binary code of length n and minimum distance 2! d for which all 
codewords have weight w. 

(5.2.14) Lemma. We have 

lnln-1l In-w+kJ IJJ A(n, 2k - 1, w) = A(n, 2k, w) ~ ; w _ 1 ... k ... J . 

PROOF. Since words with the same weight have even distance A(n, 2k - 1, w) 
= A(n, 2k, w). Suppose we have a code C with I CI = K satisfying our condi­
tions. Write the words of C as rows of a matrix. Every column of this matrix 
has at most A(n - 1, 2k, w - 1) ones. Hence Kw ~ nA(n - 1, 2k, w - 1), i.e. 

A(n, 2k, w) ~ l.; A(n - 1, 2k, w - 1) J 
Since A(n, 2k, k - 1) = 1 the result follows by induction. o 

This lemma shows how to estimate the numbers A(n, d, w). The numbers 
can be used to estimate A(n, d) as is done in the following generalization of 
the Hamming bound, which is known as the Johnson bound. 
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(5.2.15) Theorem. Let q = 2, n, e EN, d = 2e + 1. Then 

A(n, d) :::;; () () . ± (~) + e: 1 - : A(n, d, d) 

i=O I l e: 1 J 

2" 

PROOF. The idea is the same as the proof of the Hamming bound. Let there 
be N"+l words in {O, I}" which have distance e + 1 to the (n, M, d) code C. 
Then 

In order to estimate N"+l we consider an arbitrary codeword c which we can 
take to be 0 (w.l.o.g.). lJlen the number of words in C with weight d is clearly 

at most A(n, d, d). Each of these words has distance e to G) ~ords of weight 

e + 1. Since there are C : 1) words of weight e + 1 there must be at least 

C: 1) - (:) A(n, d, d) among them that have distance e + 1 to C. By 

varying c we thus count M {C: 1) -G)A(n, d, d)} words in {O, I}" that 

have distance e + 1 to the code. How often has each of these words been 
counted? Take one of them; again w.l.o.g. we call it o. The codewords with 
distance e + 1 to 0 have mutual distances ~ 2e + 1 iff they have 1s in different 
positions. Hence there are at most In/(e + I)J such codewords. This gives us 
the desired estimate for N.,+l. 0 

From Lemma 5.2.14 we find, taking k = e + 1, W = 2e + 1 

Substitution in Theorem 5.2.15 shows that a code C satisfies 

(5.2.16) { ., (n) (:) (n -e In -eJ)} :::;; 2", 
ICJ ,~o i +l.:IJ .+1- .+1 

which is the original form of the Johnson bound. 

EXAMPLE. Let q = 2, n = 13, d = 5 (i.e. e = 2). Then A(13, 5, 5):::;; 
llll1fl ¥ JJJ = 23 and the Johnson bound yields 
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A(13,5)::$; 286-10.23 =77. l 213 J 
1 + 13 + 78 + 4 

For 11 = 13, q = 2, d = 5 this is the best result up to now. Only the powerful 
methods of the next section are enough to produce the true value of A (13, 5). 

§5.3. The Linear Programming Bound 

Many of the best known bounds for the numbers A(n, d) known at present 
are based on a method which was developed by P. Delsarte (1973). The idea 
is to derive inequalities that have a close connection to the MacWilliams 
identity (Theorem 3.5.3) and then to use linear programming techniques to 
analyze these inequalities. In this section we shall have to rely heavily on 
properties of the so-called Krawtchouk polynomials. 

In order to avoid cumbersome notation, we assume that q and 11 have been 
chosen and are fixed. Then we define 

where 

( X):=X(X-l) ... (X-j+ 1) 
j j! ' 

(x E IR). 

For a discussion of these polynomials and the properties which we need, we 
refer to Section 1.2. 

In the following we assume that the alphabet Q is the ring 7L./q7L. (which we 
may do w.l.o.g). Then (x, y) denotes the usual inner product L?=I XiYi for x, 
y E Q". 

(5.3.1) Lemma. Let w be a primitive qth root of unity in C and let x E Qn be a 
fixed word of weight i. Then 

L w<x.Y) = Kk(i). 
yeQ" 

w(y)=k 

PROOF. We may assume that x = (x I' X2, ... , Xi' 0, 0, ... ,0) where the co­
ordinates XI to Xi are not O. Choose k positions, hi' h2' ... , hk such that 
o < hi < h2 < ... < hj ::$; i < hj +1 < ... < hk ::$; n. Let D be the set of all words 
(of weight k) that have their nonzero coordinates in these positions. Then by 
Lemma 1.1.32 
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I oo<x.y> = I 
yeD Yh.eQ\{O} 

i 

L WXItI}'hl+···+XhkYhJc 

Yh. e Q\ (O) 

= (q - l)k-i 11 I oo Xh ,' = (_l)i(q - l)k-i. 
1=1 yeQ\{Oj 

Since there are C) (~ = ~) choices for D the result follows. 
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o 

In order to be able to treat arbitrary (i.e. not necessarily linear) codes we 
generalize (3.5.1). 

(5.3.2) Definition. Let C c;;; Qn be a code with M words. We define 

A;:= M-11 {(x, y)lx E C, Y E C, d(x, y) = i}l. 

The sequence (A;l/=o is called the distance distribution or inner distribution of 
C. . 

Note that if C is linear or distance invariant, the distance distribution is the 
weight distribution. 

The following lemma is the basis of the linear programming bound (Theorem 
5.3.4). 

(5.3.3) Lemma. Let (Aj)/=o be the distance distribution of a code C C;;; Qn. Then 

n 

I A;Kk(i) ~ 0, 
;=0 

for k E {O, 1, ... , n}. 

PROOF. By Lemma 5.3.1 we have 

n n 

M I A;Kk(i) = L I I oo<"-Y .• > 
;=0 ;=0 (x.y)eC2 zeQ" 

d(x. y)=i w(z)=k 

= L II oo<",z>12 ~ O. 
zeQ" xeC 

w(z)=k 

(5.3.4) Theorem. Let q, n, dEN, q ~ 2. Then 

A(n, d) ~ max L~ A;IAo = 1, A; = 0 for 1 ~ i < d, 

o 

A; ~ O,;~ A;Kk(i) ~ 0 for k E {O, 1, ... , n}}. 

If q = 2 and d is even we may take Ai = 0 for i odd. 
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PROOF. By Lemma S.3.3, the distance distribution of an (n, M, d) code satisfies 
the inequalities L7=o AiKk{i) ~ O. Clearly the Ai are nonnegative and Ao = I, 
Ai = 0 for 1 ;S; i < d. Furthermore by (S.3.2)we have L7=o Ai = M-I IC21 = M. 

The final assertion is Problem 4.8.6. 0 

EXAMPLE. As in several previous examples we wish to estimate AU3, S) = 
A(14, 6) for q = 2. For the distance distribution of a (14, M, 6) code we may 
assume 

Ao = I, AI = A2 = A3 = A4 = As = A7 = A9 = A11 = AI3 = 0, 

A6 ~ 0, As ~ 0, Alo ~ 0, All ~ 0, A14 ~ O. 

For these we have the following inequalities from Lemma S.3.3. (The values 
of Kk{i) are found by using (1.2.1O).) 

14 + 2A6 - 2As - 6A lo - IOA 12 - 14AI4 ~ 0, 

91 - SA6'- SAs + llA lo + 43A 12 + 91A 14 ~ 0, 

364 - 12A6 + 12As + 4A 10 - 100A 12 - 364A 14 ~ 0, 

1001 + 9A6 + 9As - 39AIO + 121A12 + l00IA I4 ~ 0, 

2002 + 30A6 - 30As + 38AIO - 22A12 - 2002A 14 ~ 0, 

3003 - SA6 - SAs + 27A lo - 16SA I2 + 3003A I4 ~ 0, 

3432 - 40A6 + 40As - 72A lO + 264A 12 - 3432A I4 ~ O. 

We must find an upper bound for M = 1 + A6 + As + AlO + A12 + A14 • 

This linear programming problem turns out to have a unique solution, 
namely 

A6 = 42, As = 7, Alo = 14, A12 = Al4 = O. 

Hence M ;S; 64. In Section 4.4 we constructed a (13, 64, S) code Y. Therefore 
we have now proved that A{13, S) = 64. 

We shall now put Theorem S.3.4 into another form which often has ad­
vantages over the original form. The reader familiar with linear programming 
will realize that we are applying the duality theorem (cf. [32]). 

(5.3.5) Theorem. Let P{x) = 1 + Lk=l PkKk{X) be any polynomial with Pk ~ 0 
(1 ;S; k ;S; n) such that P(j) ;S; 0 for j = d, d + 1, ... , n. Then A(n, d) ;S; P{O). 

PROOF. Suppose Ao, A I' ... , An satisfy the conditions of Theorem S.3.4, i.e. 
Kk(O) + L7=dAiKii) ~ O(k = 0, 1, ... , n; Ai ~ 0 for i = d, d + 1, ... , n). Then 
the condition on P yields Lf=d AjP{i) ;S; 0 i.e. 

n n II II 

- L Aj ~ L Pk L AjKk(i) ~ - L PkKk(O) = 1 - P(O) 
j=d k=1 i=d k=1 
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and hence 
n 

1 + L Ai ~ fJ(O). o 
i=d 

The advantage of Theorem 5.3.5 is that any polynomial fJ satisfying the 
conditions of the theorem yields a bound for A(n, d) whereas in Theorem 5.3.4 
one has to find the optimal solution to the system of inequalities. 

EXAMPLE. Let q = 2, n = 21 + 1, d = 1 + 1. We try to find a bound for A(n, d) 
by taking fJ(x) = 1 + fJIK1(X) + fJ2K2(X) = 1 + fJl(n - 2x) + fJ2(2x2 - 2nx 
+ !n(n - 1». Choose fJl and fJ2 in such a way that fJ(d) = fJ(n) = O. We find 
fJl = (n + 1)/2n, fJ2 = lin and hence the conditions of Theorem 5.3.5 are 

satisfied. So we have A(21 + 1,1 + 1) ~ fJ(O) = 1 + fJl n + fJ2 (~) = 21 + 2. 

This is the same as the Plotkin bound (5.2.4). 

The best bound for a(o) that is known at present is due to R. J. McEliece, 
E. R. Rodemich, H. C. Rumsey and L. R. Welch (1977; cf. [50]). We shall not 
treat this best bound but we give a slightly weaker result (actually equal for 
o > 0.273), also due to these authors. It is based on an application of Theorem 
5.3.5. 

(5.3.6) Theorem. Let q = 2. Then 

a(o) ~ H2(! - JO(1 - 0». 

PROOF. We consider an integer t with 1 ~ t ~!n and a real number a in the 
interval [0, n]. Define the polynomial a(x) by 

a(x):= (a - x)-l{K,(a)K'+l(X) - K'+1(a)K,(x)}2. 

By applying (1.2.12) we find 

2 (n) ~ Kk(a)Kk(x) 
t + t 1<=0 n 

(5.3.7) a(x) = -1 {K,(a)K,+l(x) - K,+l(a)K,(x)} L. () . 

k 

Let !X(x) = Lf~~l a"Kk(x) be the Krawtchouk expansion of a(~). We wish to 
choose a and t in such a way that fJ(x) := a(x)/ao satisfies the conditions of 
Theorem 5.3.5. If we take a ~ d then the only thing we have to check is 
whether !Xi ~ 0 (i = 1, ... , n), ao > O. If X~k) denotes the smallest zero of K" then 
we know that 0 < xr+l) < x~') (cf. (1.2.13». 

In order to simplify the following calculations, we choose t in such a way 
that xi') < d and then choose a between X~'+l) and x~') in such a way 
that K,(a) = - K'+l (a) > o. It follows that (5.3.7) expresses a(x) in the form 
L c",K,,(x)K,(x), where all coefficients Ck' are nonnegative. Then it follows 
from (1.2.14) that all !Xi are nonnegative. Furthermore, ao = -[2/(t + 1)] x 
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C) Kt(a)Kt+1 (a) > O. Hence we can indeed apply Theorem 5.3.5. We find 

(5.3.8) A(n, d) :s; {3(0) = et(O) = (n + 1 )2 (n). 
eto 2a(t + 1) t 

To finish the proof, we need to know more about the location of the zero x~t). 
It is known that if 0 < r < t, n -+ 00 and tin -+ r then x~t)/n -+ t - Jr(l - r). 
It follows that we can apply (5.3.8) to the situation n -+ 00, din -+ 0 with a 
sequence of values of t such that tin -+ t - J 0(1 - 0). Taking logarithms in 
(5.3.8) and dividing by n, the assertion of the theorem follows. (For a proof of 
the statement about x~t), we refer the reader to one of the references on 
orthogonal polynomials or [46J or [50].) 0 

§5.4. Comments 

For a treatment of the codes defined using algebraic geometry, and for the 
improvement of the Gilbert bound, we refer to [73]. For an example see §6.8. 

In Figure 2 we compare the asymptotic bounds derived in this chapter. We 

t 
1X(.5) 

o 

,Gilbert 

,-' ,Hamming 

Figure 2 

,Plotkin 

"Singleton 

.5-+ 
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have not included bounds given by V. I. Levenshtein (1975; cf. [40]) and V. 
M. Sidelnikov (1975; cf. [63]) because these are not as good as the results by 
McEliece et al. [50] and rather difficult to derive. The best known bound 
mentioned above is 

(5.4.1) lX(b) ~ min{l + g(u2 ) - g(u2 + 2bu + 2b)10 ~ u ~ 1 - 2b}, 

where 

g(x):= H2 C -~). 
For a proof we refer to [50] or [52]. For very small values of b, the Elias 
bound is better than (5.3.6) but not as good as (5.4.1). 

In a paper by M. R. Best et al. (1977; cf. [6]) (5.3.3) and (5.3.4) are general­
ized: 

(i) by observing that if,ICI is odd, then the inequalities of (5.3.3) are much 
stronger; and 

(ii) by adding inequalities (such as the obvious inequality An-I + An ~ 1) to 
(5.3.4). This yields several very good bounds (see Problem 5.5.12). 

§s.s. Problems 

5.5.1. Use the fact that a linear code can be defined by its parity check matrix to 
show that an [n, k, d] code over fq exists if Vq(n - 1, d - 2) < qn-k. Com­
pare this with Theorem 5.1.8. 

5.5.2. Determine A(10, 5) for q = 2. 

5.5.3. Let q = 2. Show that if in Theorem 5.2.4 the right-hand side is an odd integer 
I then A(n, d) ~ I - 1. 

5.5.4. Determine bounds for A(t7, 8) if q = 2. 

5.5.5. Consider a generator matrix for the [31, 5] dual binary Hamming code. Show 
that it is possible to leave out a number of columns of this matrix in such a 
way that the resulting code has d = 10 and meets the Griesmer bound. 

5.5.6. Let C be a binary code of length n with minimum distance d = 2k and let 
all codewords of C have weight w. Suppose ICI = [n(n - l)/w(w - 1)] x 
A(n - 2, 2k, w - 2). Show that the words of C are the blocks of a 2-design. 

5.5.7. Show that a shortened binary Hamming code is optimal. 

5.5.8. Let wEN, W > 4. Let C1 be the binary code of length n defined by 

{ \
n-I. } 

C/ := (co,c1, ... ,cn-I).L cj=w,.L icj=l(modn) , 
1=0 1=0 

where the summations are in l.. Show that 
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nw - I 

A(n, 4, w) - -, 
w! 

(n .... co). 

5.5.9. Let q = 2. Show that (:) A(n, 2k) :::; 2" A(n, 2k, w). 

5. Bounds on Codes 

5.5.10. (i) Sho.",,: that A(n'2k'W):::;(I-I(I-~)rl if the right-hand side is 
pOSItive. 

(ii) Using this and Problem 5.5.9 derive the Elias bound. 

5.5.11. Let C be a binary (n, M,d) code with n - In < 2d :::; n. Suppose C has the 
property that if x E C then also x + 1 E C. Show that k = 2 in (5.3.3) yields the 
bound 

8d(n - d) 
M < 2' - n - (n - 2d) 

(This is known as the Grey bound.) 

5.5.12. Show that the (8,20,3) code of Section 4.4 is optimal. (This is difficult. See 
Section 5.4.) 



CHAPTER 6 

Cyclic Codes 

§6.1. Definitions 

In Section 4.5 we defined the automorphism group Aut(C) of a code C. 
Corresponding to this group there is a group of permutation matrices. Some­
times the definition of Aut(C) is extended by replacing permutation matrices 
by monomial matrices, i.e. matrices for which the nonzero entries correspond 
to a permutation matrix. In both cases we are interested in the group of 
permutations. In this chapter we shall study linear codes for which the auto­
morphism group contains the cyclic group of order n, where n is the word 
length. 

(6.1.1) Definition. A linear code C is called cyclic if 

'v'(Co.c, ..... cn_,)EC[(cn-l' co, c1 , ••• , cn-z) E C]. 

This definition is extended by using monomial matrices instead of per­
mutations as follows. If for every codeword (co, c1, ••• , c,,-d, the word 
(..1.C"_l' co, c1, •.. , c,,-z) is also in C (here ). is fixed), the code is called consta­
cyclic (and negacyclic if..1. = -1). We shall present the theory for cyclic codes; 
the generalization to constacyclic codes is an easy exercise for the reader. 

The most important tool in our description of cyclic codes is the following 
isomorphism between IF; and a group of polynomials. The multiples of x" - 1 
form a principal ideal in the polynomial ring IFq[xJ. The residue class ring 
IFq[x]/(x" - 1) has the set of polynomials 

{ao + a1x + ... + a"_lX,,-llaj E IFq, 0::;; i < n} 

as a system of representatives. Clearly IF; is isomorphic to this ring (considered 
only as an additive group). In the following we shall also use the multi-
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plicative structure which we have now introduced, namely multiplication of 
polynomials mod(xn - I). From now on we make the following identifica­
tion: 

(6.1.2) (ao, ai' ... , an-I) E IF; +=2 ao + a 1 x + ... + an- 1 x n- 1 E IFq[xJ/(xn - 1) 

and we shall often speak of a codeword c as the codeword c(x), using (6.1.2). 
Extending this, we interpret a linear code as a subset of IFq[xJ/(xn - 1). 

(6.1.3) Theorem. A linear code C in IF; is cyclic if and only if C is an ideal in 
IFlxJ/(xn - 1). 

PROOF. 

(i) If C is an ideal in IFq[xJ/(xn - I) and c(x) = Co + c1x + ... + cn_1xn- 1 is 
any codeword, then xc(x) is also a codeword, i.e. 

(ii) Conversely, if C is cyclic, then for every codeword c(x) the word xc(x) is 
also in C. Therefore xic(x) is in C for every i, and since C is linear a(x)c(x) 
is in C for every polynomial a(x}. Hence C is an ideal. 0 

(6.1.4) Convention. From now on we only consider cyclic codes of length 
n over IFq with (n, q) = 1. For some theory of binary cyclic codes with even 
length see §6.10. 

Since IFq[x]/(x n - 1) is a principal ideal ring every cyclic code C consists of 
the multiples of a polynomial g(x) which is the monic polynomial of lowest 
degree (i.e. not the zero polynomial) in the ideal (cf. Section 1.1). 

This polynomial g(x) is called the generator polynomial of the cyclic code. 
The generator polynomial is a divisor of xn - 1 (since otherwise the g.c.d. of 
xn - 1 and g(x) would be a polynomial in C of degree lower than the degree 
of g(x». Let xn - 1 = fl(X)f2(X) ... /r(x) be the decomposition of xn - 1 into 
irreducible factors. Because of (6.1.4), these factors are different. We can now 
find all cyclic codes of length n by picking (in all possible ways) one of the 2' 
factors of xn - 1 as generator polynomial g(x) and defining the corresponding 
code to be the set of multiples of g(x) mod(xn - 1). 

(6.1.5) EXAMPLE. Over ·IF 2 we have 

x7 - 1 = (x - 1)(x3 + X + l)(x3 + x2 + 1). 

There are altogether eight cyclic codes of length 7. One of these has 0 as the 
only codeword and one contains all possible words. The code with generator 
x-I contains all words of even weight. The [7, IJ cyclic code has 0 and 1 as 
codewords. The remaining four codes have dimension 3, 3, 4, and 4 respec­
tively. For example, taking g(x):= (x - l)(x 3 + X + 1) = X4 + x 3 + Xl + 1, 
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we find a [7, 3] cyclic code. This code is an example of the irreducible cyclic 
codes defined below. 

(6.1.6) Definition. The cyclic code generated by h(x) is called a maximal cyclic 
code (since it is a maximal ideal) and denoted by Mt. The code generated by 
(xn - l)/.t;(x) is called a minimal cyclic code and denoted by Mi-. Minimal 
cyclic codes are also called irreducible cyclic codes. 

Our definition (6.1.1) guarantees that the automorphism group of a cyclic 
code C contains the cyclic group generated by the permutation 

i f-+ i + 1 (mod n). 

However, since a(xq) = a(x)q is in the same cyclic codes as a(x), we see that 
the permutation 1tq defined by 1tq(i) = qi (mod n) (Le. x f-+ xq) also maps a 
cyclic code onto itself. If m is the order of q (mod n) then the two permutations 
i f-+ i + 1 and 1tq generate a group of order nm contained in Aut(C). 

§6.2. Generator Matrix and Check Polynomial 

Let g(x) be the generator polynomial of a cyclic code C of length n. If g(x) has 
degree n - k, then the codewords g(x), xg(x), ... , Xk- l g(x) clearly form a basis 
for C, i.e. C is an En, k] code. Hence, if g(x) = go + gl X + ... + gn_kXn-\ then 

1
9O gl ... gn-k 0 

G = ~ g; . . . gn-k-l gn-k 

00% 

o 
o 

Xl 
is a generator matrix for C. This means that we encode an information 
sequence (ao, al , ... , ak-d as aG which is the polynomial 

(ao + alx + ... + ak_1xk-1)g(x). 

A more convenient form of the generator matrix is obtained by defining (for 
i ~ n - k), Xi = g(X)qi(X) + ri(x), where ri(x) is a polynomial of degree < 
n - k. The polynomials Xi - ri(x) are codewords of C and form a basis for 
the code, which yields a generator matrix of C in standard form (with Ik 
in back). In this case (ao, al , ... , ak- l ) is encoded as follows: divide 
(ao + al x + ... + ak- l Xk- l )xn- k by g(x) and subtract the remainder from 
(ao + al x + ... + ak - l Xk - l )x"-k, thus obtaining a codeword. 

Technically this is a very easy way to encode information because the 
division by a fixed polynomial can be realized by a simple shift register (for a 
definition see Chapter 13 ). 

Since g(x) is a divisor of x" - 1, there is a polynomial h(x) = ho + hi X + 
... + hkXk such that g(x)h(x) = x" - 1 (in IFq[x]). In the ring IFq[x]/(x" - 1) we 



84 6. Cyclic Codes 

have g(x)h(x) = 0, i.e. gohi + 9 I hi - I + ... + g,,-khi-lI+k = 0 for i = 0, I, ... , 
n - 1. It follows that 

[

0 0 ... 0 hk ... hi hO] 

H := 0 0 ... hk . . . hi ho ~ 

hk •.. hi ho 0 0 

is a parity check matrix for the code C. We call h(x) the check polynomial of 
C. The code C consists of all c(x) such that c(x)h(x) = O. By comparing G and 
H we see that the code with generator polynomial hex) is equivalent to the 
dual of C (obtained by reversing the order of the symbols). Very often this 
code is simply called the dual of C (which causes a lot of confusion since it is 
not equal to Cl.). Notice that in this sense, the "dual" of a maximal cyclic code 
Mt is the minimal cyclic code Mi- . 

Consider the minimal cyclic code M i- with generator g(x) = (x" - 1)/..t;(x) 
where ..t;(x) has degree k. If a(x) and b(x) are two codewords in M i- such that 
a(x)b(x) = 0, then one of them must be divisible by..t;<x) and it is therefore o. 
Since Mi- has no zero divisors, it is a field, i.e. it is isomorphic to IF:. A 
particularly interesting example is obtained if we take n = 2k - 1 and ..t;(x) a 
primitive polynomial of degree k. In that case the n cyclic shifts of the 
generator polynomial g(x) are apparently all the nonzero codewords of Mi-. 

This means that the code is equidistant (cf. Section 5.2) and therefore this 
distance is 2k- 1 (by (3.8.5». As a consequence we see that for every primitive 
divisor lex) of x" - 1 (where n = 2k - 1) the polynomial (x" - I)I/(x) has 
exactly 2k- 1 coefficients equal to 1. An example with k = 3 was given in (6.1.5). 

§6.3. Zeros of a Cyclic Code 

Let x" - 1 = /1 (x) . .. !rex) and let Pi be a zero of ..t;(x) in some extension field 
of IFq• Then ..t;(x) is the minimal polynomial of Pi and therefore the maximal 
code Mt is nothing but the set of polynomials c(x) for which C(Pi) = O. So in 
general a cyclic code can be specified by requiring that all codewords have 
certain prescribed zeros. In fact, it is sufficient to take one zero Pi of each 
irreducible factor ..t; of the generator polynomial g(x) and require that all 
codewords have these points as zeros (all in a suitable extension field of IFq). If 
we start with any set (XI' (X2' ••• ' (Xs and define a code C by c(x) E C iff C«(Xi) = 0 
for i = 1, 2, ... , s, then C is cyclic and the generator polynomial of C is the 
least common multiple of the minimal polynomials of (XI' (X2, .•• , (Xs. Suppose 
that all these zeros lie in IFqm (which we can represent as a vector space IF,;"). 
For every i we can consider the m by n matrix with the vector representations 
of 1, (Xi' (Xf, ••• , «(Xi),,-I as columns and put all these together to form the 
sm by n matrix H which has its entries in IFq• Clearly CHT = 0, where c = 
(co, C I' ••• , c,,-d, means the same thing as C(lXi) = 0 for i = I, 2, ... , s. The 
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rows of H are not necessarily independent. We may obtain a parity check 
matrix from H by deleting some of the rows. As an illustration of this way of 
describing cyclic codes, we shall prove that binary (and many other) Ham­
ming codes (cf. (3.3.1» are (equivalent to) cyclic codes. 

(6.3.1) Theorem. Let n := (qm - 1)/(q - I) and let p be a primitive nth root 01 
unity in IFqm. Furthermore, let (m, q - 1) = 1. The cyclic code 

C := {c(x)lc(P) = O} 

is equivalent to the en, n - m] Hamming code over IFq• 

PROOF. Since 

n = (q - l)(qm-2 + 2qm-3 + ... + m - 1) + m, 

we have (n, q - 1) = (m, q - 1) = 1. Therefore Pi(q-l) :F 1 for i = 1, 2, ... , 
n - 1, i.e. pi ¢ IFq for i ~ 1, 2, ... , n - 1. It follows that the columns of the 
matrix H, which are the representations of 1, p, p2, ... , pn-1 as vectors in IF;', 
are pairwise linearly independent over fq • So H is the parity check matrix of 
an en, n - m] Hamming code. 0 

We illustrate what we have learned so far by constructing binary cyclic 
codes of length 9. 

(6.3.2) EXAMPLE. The smallest extension field of f2 which contains a primitive 
9th root of unity isf26. If ex is a primitive element of the field, then ex63 = 1 and 
p:= ex7 is a primitive 9th root of unity. By Theorem 1.1.22, the minimal 
polynomial of P has the zeros p, p2, p4, p8, p16 = p7, p14 = ps. This polyno­
mial must be (x9 - 1)/(x3 - 1) = x6 + x 3 + 1 (cf. (1.1.28». So 

(x9 - 1) = (x - l)(x2 + X + l)(x6 + x 3 + 1) = 11 (X)/2(X)/3(X). 

The code Mt has pairwise independent columns in H, i.e. minimum dis­
tance ~ 3. Since Mt clearly consists of the codewords 

(co C1 C2 Co C1 C2 Co c 1 c2 ) 

we immediately see that d = 3. The code M3 has check polynomial x6 + 
x3 + 1, so it is a [9,6] code. Since x3 - 1 is a codeword, the distance is 2. If 
we construct f26 with x 6 + x + 1 and then form the 12 by 9 matrix H for M3 
in the way described before (6.3.1) it will have six rows of Os only, the all one 
row, the row (110 110 110) and four rows (011 011 011). So from this 
we find a 3 by 9 parity check matrix. Of course from x 6 + x3 + 1 we find a 
parity check matrix equivalent to (I 1 I). The reader can work out less 
trivial examples in a similar way. 

(6.3.3) EXAMPLE. We consider x 8 - lover f3 • If P is an 8th root of unity in 
f32, then p9 = p. Therefore x 8 - 1 must be the product of (x - 1), (x + 1), and 
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three irreducible polynomials of degree 2. By substituting x = 0, 1, or 2 in 
x2 + ax + b, we see that the only irreducible polynomials of degree 2 in 1F3[X] 
are x2 + 1, x2 + X + 2, and x2 + 2x + 2. So we know the factorization of 
x8 - 1. The cyclic code with generator g(x) := (x2 + l)(x2 + X + 2) has mini­
mum distance :s;; 4 since g(x) has weight 4. In §6.6 we demonstrate an easy way 
to prove that 4 is the minimum distance of this code. 

§6.4. The Idempotent of a Cyclic Code 

In many applications it turns out to be advantageous to replace the generator 
polynomial of a cyclic code by a polynomial c(x} called the idempotent. The 
definition is included in the following theorem. 

(6.4.1) Theorem. Let C'be a cyclic code. Then there is a unique codeword c(x) 
which is an identity element for C. 

PROOF. Let g(x) be the generator polynomial of C and h(x} the check polyno­
mial, i.e. g(x}h(x) = xn - 1 in IFq[xJ. Since xn - 1 has no Illultiple zeros we 
have (g(x), h(x» = 1 and hence there exist polynomials a(x) and b(x) such that 
a(x)g(x) + b(x)h(x) = 1. Now define 

c(x) := a(x}g(x) = 1 - b(x)h(x}. 

Clearly c(x) is a codeword in C. Furthermore if p(x)g(x) is any codeword in 
C, then 

c(x)p(x)g(x) = p(x)g(x) - b(x)h(x)p(x)g(x) 

== p(x)g(x) (mod(xn - 1). 

So c(x) is an identity element for C, and hence it is unique. o 
Since c2 (x) = c(x), this codeword is called the idempotent. Of course, there 

can be other elements in C that are equal to their squares, but only one 
of these is an identity for the code. Since every codeword vex) can be written 
as v(x)c(x), i.e. as a multiple of c(x), we see that c(x) generates the ideal C. 

Let us consider the factorization xn - 1 = f1 (x) . .. fr(x) once more. We now 
take q = 2. From Theorem 1.1.22 we know that these factors correspond to 
the decomposition of {O, 1, ... , n - I} into so-called cyclotomic cosets: {O}, {I, 
2,4, ... , 2'}, ... , {a, 2a, ... , 2Sa}, where s is the minimal exponent such that 
a(2S +1 - 1) == 0 (mod n). In Example 6.3.2 this decomposition was {O}, {I, 2, 4, 
8, 7, 5}, {3, 6}, with n = 9. On the other hand, it is obvious that if an 
idempotent c(x) contains the term Xi, it also contains the term X2i. Therefore 
an idempotent must be a sum of idempotents of the form xa + x2a + ... + 
x 2' a, where {a, 2a, ... , 2S a} is one of the cyclotomic cosets. Since there are 
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exactly 2' such sums, we see that it is very easy to find all possible idempotents 
and hence generate all binary cyclic codes of a given length without factoring 
xft - 1 at all! 

We extend the theory a little further. Again we make the restriction q = 2. 
First observe that from the proof of Theorem 6.4.1 it follows that if c(x) is the 
idempotent of the code C, with generator g(x) and check polynomial h(x), 
then 1 + c(x) is the idempotent of the code with generator h(x). Therefore 
1 + x ft c(x- l ) is the idempotent of the dual code. 

(6.4.2) Definition. The idempotent of an irreducible cyclic code M i- is called 
a primitive idempotent and denoted by 8i(x). For example in (6.1.5) the polyno­
mial (x2 + l)g(x) = x6 + XS + x3 + 1 is a primitive idempotent. 

Let IX be a primitive nth root of unity in an extension field of !F2. If the 
polynomial c(x) is idempotent, then C(lXi) = 0 or 1 for all values of i and the 
converse is clearly also true. If c(x) is a primitive idempotent, then there is an 
irreducible factor f(x) of xft - 1 such that c(ex i ) = 1 iff f(lX i ) = 0, i.e. C(lXi) = 1 
iff i belongs to one of the cyclotomic co sets {a, 2a, ... }. Such a primitive 
idempotent is often denoted by 8a , i.e. in (6.4.2) the index i is chosen from the 
representatives of different cyclotomic cosets. For example, consider n = 15 
and let IX be a zero of X4 + x + 1. Then the primitive idempotent belonging 
to the minimal cyclic code with check polynomial X4 + x + 1 is denoted by 
81 and in this case 8_1 corresponds to nonzeros ex-I, 1X-2, 1X-4, IX- S, i.e. to the 
check polynomial X4 + x3 + 1. In the following, if no such ex has been fixed, 
we simply number the irreducible cyclic codes M1, Mi, ... , M,- . 

(6.4.3) Theorem. If C1 and C2 are cyclic codes with idempotents Cl (x) and c2 (x), 
then: 

(i) C l r. C2 has idempotent c l (x)c2(x); 
(ii) C1 + C2 , i.e. the set of all words a + b with a E C1 and bE C2 , has idem­

potent c1(x) + C2(X) + C1(X)C2(x). 

PROOF. 

(i) is a trivial consequence of Theorem 6.4.1; 
(ii) follows in the same way since c1(x) + c2(x) + C1(X}c2(X) is clearly in 

C l + C2 and is again easily seen to be an identity element for this code 
because all codewords have the form a(x)c 1 (x) + b(X}c2(X). 0 

(6.4.4) Theorem. For the primitive idempotents we have: 

(i) 8;(x)8j(x) = 0 if i =I- j; 
(ii) 2::=18;(x) = 1; 

(iii) 1 + 8;,(x) + 8;2(X) + ... + 8;Jx) is the idempotent of the code with genera­
tor !;,(X)!;2(X) .. . !;Jx). 
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PROOF. 

(i) follows from Theorem 6.4.3(i) since Mi- f"'I Mj- = {O}; 
(ii) follows from Theorem 6.4.3(ii) and Theorem 6.4.4(i) because Ml + 

Mi + ... + M,- is the set of all words of length n; and finally 
(iii) is proved by observing that the check polynomial of M i: + ... + M i: is 

h, (x) .. ·hJx). 0 

It is not too difficult to find the primitive idempotents, using these theo­
rems. One then has an easy way of finding the idempotent of a code if the 
generator is given in the form h (x) ... h (x). 

I r 

In several more advanced topics in coding theory, one finds proof tech-
niques involving idem po tents. In this book we shall not reach that stage but 
nevertheless we wish to show a little more.about idem po tents. The reader who 
wishes to study the literature will find the following remarks useful. 

Consider a cyclic code C of length n with generator g(x). Let x" - 1 = 
g(x)h(x). We consider the formal derivatives of both sides (cf. Section 1.1). We 
find 

X"- 1 = g'(x)h(x) + g(x)h'(x). 

Here the degree of g(x)h'(x) is n ~ 1 iff the degree of h(x) is odd. Multiply 
both sides by x and reduce mod x" - 1. We find 

1 = xg'(x)h(x) + xg(x)h'(x) + (x" - 1), 

where the final term cancels the term x" which occurs in one of the other two 
polynomials. We see that the idempotent of Cis xg(x)h'(x) + <5 (x II - 1), where 
<5 = 1 if the degree of h(x) is odd, 0 otherwise. As an example consider 
the minimal code of length 15 with check polynomial X4 + x + 1. The idem­
potent (}1 is xg(x) = x(x lS - 1)/(x4 + X + 1). 

The following correspondence between idempotents is another useful exer­
cise. The example above can serve as an illustration. Let f(x) be a primitive 
divisor of x" - 1, where n = 2k - 1. Let oc be a primitive element of 1F2k for 
which f(rx) = O. The primitive idempotents (}1' resp. (}-1 correspond to the 
cyclotomic cosets {I, 2, ... , 2 k- 1 }, resp. { -1, - 2, ... , - 2k-l}. We claim that 

n-I 

9_1 (x) = q1(x) = LTr(ai)x i , 

i=O 

where Tr is the trace function (cf. (1.1.29)). In order to show this;we must 
calculate q1(a1) for 1 = 0, 1, ... , n - 1. We have 

n-l k-l k-l 11-1 

q1(a1) = L (OCI)i L (OC i)2i = L L (ocl+ 2Jl 
i=O j=O j=O i=O 

The inner sum is 0 unless a l+2i = 1. Hence q1(al ) = 1 if 1 = _2i for some value 
of j and q1(a1) = 0 otherwise. This proves the assertion. 

Idempotents are used in many places, e.g. to calculate weight enumerators. 
We do not go into this subject but refer the reader to [42] and [46]. The 
theory treated in this section, especially Theorem 6.4.4, is a special case of the 
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general theory of idempotents for semi-simple algebras. We refer the reader 
to [16]. 

§6.5. Other Representations of Cyclic Codes 

There are several other ways of representing cyclic codes than the standard 
way which was treated in Section 6.1. Sometimes a proof is easier when one 
of these other representations is used. The first one that we discuss makes use 
of the trace function (cf. (1.1.29». 

(6.5.1) Theorem. Let k be the multiplicative order of p mod n, q = pk, and let 
p be a primitive nth root of unity in rFq• Then the set 

V:= {c(~):= (Tr(~), Tr(~p), ... , Tr(~pn-I))I~ E rFq } 

is an En, k] irreducible cyclic code over rFp. 

PROOF. By Theorem 1.1.30, V is a linear code. Next, observe that C(~P-l) is a 
cyclic shift of c(~). Hence V is a cyclic code. Since p is in no subfield of IFq we 
know that p is a zero of an irreducible polynomial h(x) = ho + h1x + ... + 
hkxk of degree k. If c(~) = (co, c l , ... , cn- l ) then 

k 

L cihi = Tr(~h(p» = Tr(O) = 0, 
i=O 

i.e. we have a parity check equation for the code V. 
Since h(x) is irreducible, we see that Xk h(x- l ) is the check polynomial for 

V and V is therefore an irreducible cyclic En, k] code. 0 

We shall now introduce a discrete analog of the Fourier transform, which 
in coding theory is always referred to as the Mattson-Solomon polynomial. 
Let p be a primitive nth root of unity in the extension field $' of IFq • Let T be 
the set of polynomials over $' of degree at most n - 1. We define <1>: T ...... T 
as follows. Let a(x) E T. Then A(X) = (<I>a)(X) is defined by 

n 

(6.5.2) A(X):= L a(pi)Xn-i. 
j=l 

If a = (ao, a I, ... , an- d, then the polynomial A (X) obtained from ao + a 1 x + 
... + an- 1 x n - l is called the Mattson-Solomon polynomial of the vector a. 

(6.5.3) Lemma. The inverse of <I> is given by 

(mod xn - 1). 

PROOF. 

n "-1 n-1 n 

A (13 k ) = L L aiPii p-kj = L aj L P(i-klj = nak • o 
i=l i=O i=O j=l 
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Let 0 denote multiplication of polynomials mod(x" - 1) and let * be 
defined by 

(I aixi) * (L bixi) := L aAxi. 

Then it is easily seen that Cl> is an isomorphism of the ring (T, +,0) onto the 
ring (T, +, *). 

Now let us u'se these polynomials to study cyclic codes. 

(6.5.4) Lemma. Let V be a cyclic code over IFq generated by 

g(x) = fl (x - Pk ). 

keK 

Suppose {1, 2, ... , d - I} c K and a E V. Then the degree of the M attson­
Solomon polynomial A of a is at most n - d. 

PROOF. a(fY) = 0 for 1 ~ j ~ d - 1 since a(x) is divisible by g(x). The result 
follows from (6.5.2). 0 

(6.5.5) Theorem. If there are r n-th roots of unity which are zeros of the 
Mattson-Solomon polynomial A of a word a, then w(a) = n - r. 

PROOF. This is an immediate consequence of Lemma 6.5.3. o 

We can also make a link between cyclic codes and the theory of linear 
recurring sequences for which there exists extensive literature (cf. e.g. [61]). A 
linear recurring sequence with elements in IFq is defined by an initial sequence 
aQ , ai' ... , ak - I and a recursion 

(6.5.6) 
k 

ar + L bial - i = 0, 
i=1 

(l ;::: k). 

The standard technique for finding a solution is to try al = pl. This is a 
solution of (6.5.6) if P is a zero of h(x), where h(x) := Xk + L~=I bixk-i. Let us 
assume that the equation h(x) = 0 has k distinct roots PI' Pz, ... , Pk in some 
extension field of IFq• Then, if c I' CZ , ••• , Ck are arbitrary, the sequence al = 
L~=I c}! is a solution of (6.5.6). We must choose the Ci in such a way that aQ , 

a l , ... , ak - I have the prescribed values. This amounts to solving a system of 
k linear equations for which the determinant of coefficients is the Vander­
monde determinant 

Pk 
(6.5.7) Pi = fl (Pi - Pj ) # O. 

i>j 

p~-l pr l ••• Pt-1 

So we can indeed find the required sequence. 
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Suppose hex) is a divisor of xn - 1 (again (n, q) = 1). Then the linear 
recurring sequence is periodic with period a divisor of n. Now consider all 
partial sequences (ao, al' ... , an-l) where (ao, al, ... , at-l) runs through IF:. 
We then have an En, k] cyclic code with xkh(x-l ) as check polynomial. So 

C = {(ao, ... , an-dia, = it cdJ/(O !5; 1< n), (c l , cz, ... , ct ) E IF:} 

is another representation of a cyclic code. 

§6.6. BCH Codes 

An important class of cyclic codes, stilI used a lot in practice, was discovered 
by R. C. Bose and D. K. Ray-Chaudhuri (1960) and independently by A. 
Hocquenghem (1959). The codes are known as BCH codes. 

(6.6.1) Definition. A cyclic code of length n over IFq is called a BCH code of 
designed distance b if its generator g(x) is the least common multiple of the 
minimal polynomials of pi, p'+l, ••• , p1+6-Z for some I, where p is a primitive 
nth root of unity. Usually we shall take I = 1 (sometimes called a narrow-sense 
BCH code). If n = qm - 1, i.e. p is a primitive element of IFqm, then the BCH 
code is called primitive. 

The terminology "designed distance" is explained by the following theo­
rem. 

(6.6.2) Theorem. The minimum distance of a BCH code with designed distance 
d is at least d. 

FIRST PROOF. In the same way as in Section 6.3 we form the m(d - 1) by n 
matrix H: 

H := [: ... /' ..... . p~:~~'...::: ... ~~~:~:':::.] 
1 p'+d-2 P2(ITd-2) .•. p(n-l)(I+d-2) 

where each entry is interpreted as a column vector oflength mover IFq • A word 
c is in the BCH code iff cHT = O. The m(d - 1) rows of H are not necessarily 
independent. Consider any d - 1 columns of H and let pi", ... , Pid-" be the 
top elements in these columns. The determinant of the submatrix of H ob­
tained in this way is again a Vandermonde determinant (cf. (6.5.7» with value 
P(i'+"'+id-,)IDr>s(pir - Pis) =F 0, since p is a primitive nth root of unity. 
Therefore any d - 1 columns of H are linearly independent and hence a 
codeword c =F 0 has weight ~ d. 
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SECOND PROOF. W.l.o.g. we take I = 1. By Lemma 6.5.4 the degree of the 
Mattson-Solomon polynomial of a codeword c is at most n - d. Therefore in 
Theorem 6.5.5 we have r =:;; n - d, i.e. w(c) ;::: d. 0 

REMARK. Theorem 6.6.2 is usually called the BCH bound. From now on we 
usually consider narrow sense BCH codes. If we start with I = 0 instead of 
I = 1 we find the even weight subcode of the narrow sense code. 

EXAMPLE. Let n = 31, m = 5, q = 2 and d = 8. Let a be a primitive element of 
1F32 . The minimal polynomial of a is 

(x - a)(x - ( 2)(x - ( 4)(x - ( 8)(x _ ( 16). 

In the same way we find the polynomial m3(x). But 

ms(x) = (x - as)(x - a10)(x - a20)(x - ( 9 )(x - 18) = m9 (x). 

It turns out that g(x) is the least common multiple ofml (x), m3 (x), ms(x), m7(x) 
and m9(x). Therefore the minimum distance of the primitive BCH code with 
designed distance 8 (which was obviously at least 9) is in fact at least 11. 

Several generalizations of the BCH bound have been proved. We now 
describe a method of estimating the minimum distance of a cyclic code. The 
method is due to 1. H. van Lint and R. M. Wilson [76]. Earlier improvements 
of Theorem 6.6.2 are consequences of the method. 

If A = {ai!, .•• , ail} is a set of n-th roots of unity such that for a cyclic code 
C of length n 

c(x) E C ~ 'v'~eA[C(e) = OJ, 

then we shall say that A is a defining set for C. If A is the maximal defining 
set for C, then we shall call A complete. 

(6.6.3) Definition. We denote by M(A) or M(a il , ... , ail) the matrix of size I 
by n that has 1, ai., a2i., ... , a(n-l)ik as its kth row; that is 

[

1 ail a2il ... a(n_l)il ] 
1 a i2 a 2i2 ... a(n-l)i2 

. .. . 
1 ail a2il ... a(n-l)i, 

We refer to M(A) as the parity check matrix corresponding to A. This is 
the same notation as in Theorem 6.6.2. (Note that over IFq the matrix M(A) 
has rows that are not necessarily independent.) 

(6.6.4) Definition. A set A = {ait, ... , (Xi,} will be caIled a consecutive set of 
length I if there exists a primitive nth root of unity [3 and an exponent i such 
that A = {[3i, [3i+l, ... , [3i+l-l}. 
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So, Theorem 6.6.2 states that if a defining set A for a cyclic code contains 
a consecutive set of length d - 1, then the minimum distance is at least d. A 
conseq uence of our proof of Theorem 6.6.2 is the following lemma. 

(6.6.5) Lemma. If A is a consecutive set of length I, then the submatrix of M(A) 
obtained by taking any I colum~ has rank I. 

We shall frequently use the following corollary of this lemma. 

(6.6.6) Corollary. If {J is a primitive n-th root of unity and 

il < i2 < '.' < ik = il + t - 1, 

then if we take any t columns of M({J\ {J\ ... , (Jik), the resulting matrix has 
rank k. 

We now introduce the notation 

AB:= g"le E A,,, E B}. 

Subsequently, we consider a product operation for matrices that will be 
applied in the special situation where the matrices are parity check matrices 
of the form M(A) defined in (6.6.3). 

(6.6.7) Definition. The matrix A * B is the matrix that has as its rows all 
products ab, where a runs through the rows of A and b runs through the rows 
of B. 

The following (nearly trivial) lemma is the basis of the method to be 
described. We consider matrices A and B with n columns. 

(6.6.8) Lemma. If a linear combination of all the columns of A * B with non­
zero coefficients is 0, then 

rank(A) + rank(B) :s; n. 

PROOF. If the coefficients in the linear combination are Aj (j = 1, ... , n) then 
mUltiply column j of B by Aj (j = 1, ... , n). This yields a matrix B' with the 
same rank as B. The condition of the lemma states that every row of A has 
inner product 0 with every row of B'. Since this implies that rank(A) + 
rank(B') :s; n, we are done. 0 

Now we are in a position to state the theorem that will enable us to find 
the minimum distance of a large number of cyclic codes. If c is a codeword in 
a cyclic code, then the support I of c is the set of coordinate positions i such 
that Ci =I: O. If A is a matrix, then AI denotes the submatrix obtained by 
deleting th~ positions not in I. 
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(6.6.9) Theorem. Let A and B be matrices with entries from a field IF. Let A * B 
be a parity check matrix for the code C over IF. If I is the support of a codeword 
in C, then 

PROOF. This is an immediate corollary of Lemma 6.6.8. o 

We shall apply this theorem in the following way. Lemma 6.6.5 allows us 
to say something about the rank of suitable matrices of type AI' respectively 
BI.lfthe sum of these ranks is> III for every subsetl of{l, 2, ... , n} of size 
< 0, then the code has minimum distance at least o. 

(6.6.10) EXAMPLE. We illustrate the method by proving the so-called Roos 
bound. This bound states that if A is a defining set for a cyclic code with 
minimum distance d .. and if B is a set of nth roots of unity such that the 
shortest consecutive set that contains B has length :s; I BI + d .. - 2, then the 
code with defining set AB has minimum distance d ~ IBI + d .. - 1. 

To prove this, we first observe that we have 

{III, for III < d .. 
rank(M(Ah) = ~ d .. - 1, for III ~ d ... 

Then Corollary 6.6.6 provides us with information on the rank of submatrices 
of M(B), namely 

k(M(B» {I, for III < d .. 
ran I ~ 111- d .. + 2, ford .. :S; III:s; IBI + d .. - 2. 

We now apply Theorem 6.6.9. We find from the above that 

rank(M(Ah) + rank(M(Bh) > III for III :s; IBI + d .. - 2, 

and hence for these values of III, the set I cannot be the support of a codeword 
of a code with defining set AB. (Here we use the fact that the rows of 
M(A) * M(B) are the same as the rows of M(AB).) 

Remark. This bound is due to C. Roos [80]. The special case where B is a 
consecutive set was proved by C. R. P. Hartmann and K. K. Tzeng in 1972; 
cf. [33]. 

EXAMPLE. Consider the cyclic code C of length 35 with generator 

g(x) = m l (x)m5 (x)m7 (x). 

If (X is a primitive 35th root of unity, then the defining set of C contains the 
set {(Xiii = 7, 8,9,10, 11,20,21,22, 23}. This set can be written as AB, where 
A = {(Xiii = 7,8,9, 10} and B = {Pilj = 0,3, 4} with P = (X12 (also a primitive 
35th root of unity). The set A is the defining set for a cyclic code with 
minimum distance d .. = 5. The set B is contained in a consecutive set oflength 
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5. The condition on IBI of Example 6.6.10 is satisfied. It follows that C has 
minimum distance at least 3 + 5 - I = 7. This is in fact the minimum dis­
tance of this code. Note that the BCH bound only shows that the minimum 
distance is at least 6. 

Before giving one of the nicest examples of our method, we prove a special 
case of a theorem due to R. J. McEliece. 

(6.6.11) Lemma. Let C be a binary cyclic code of length n with complete 
defining set R. Suppose that no two nth roots of unity that are not in R have 
product 1. Then the weight of every codeword in C is divisible by 4. 

PROOF. Clearly 1 E R and for every nth root of unity y, we have y E R or 
y-1 E R. Let c(x) = Xii + Xi2 + ... + Xik be a codeword. Since 1 E R, k must 
be even. Since c(x)c(x-1 ) is zero for every nth root of unity, it is the zero 
polynomial. If X i - i = xl - m, then X i - i = x m- l , i.e. in the product c(x)c(x-1 ) 

the terms cancel four at a time. There are k terms equal to 1 and hence 
k(k - 1) == 0 (mod 4), so 41k. 0 

A consequence of Lemma 6.6.11 is that the dual C of the primitive BCH 
code of length 127 and designed distance 11, has minimum distance divisible 
by 4. By the BCH bound, C has minimum distance at least 16. By the Roos 
bound the distance is at least 22, so in fact at least 24 from Lemma 6.6.11. 
Since the code contains the shortened second order Reed-Muller code 9i(2, 
7), its minimum distance is at most 32. We shall now show that the method 
treated above shows that d ~ 30, thus showing that in fact d = 32. 

EXAMPLE. Let R be the defining set of C. Note that R contains the sets 
{a i181 ~ i ~ 95}, {a i198 ~ i ~ Ill}, {a i ll13 ~ i ~ 127}, where a is a primitive 
127th root of unity. Let 

A = {a i 183 ~ i ~ 95} u {a i 198 ~ i ~ Ill} 

B = {Piij = -7,0, I}, P = a16• 

Then R ~ AB. The set A contains 14 consecutive powers of a, and further­
more, it is a subset of a set of 29 consecutive powers of a, with the powers a96 

and a97 missing. So, from Lemma 6.6.5 and Corollary 6.6.6 we have 

{
Ill, 

rank(M(Ah) ~ 14, 

111- 2, 
In the same way we find 

{
Ill, 

rank(M(Bh) ~ 2, 
3, 

for 1 ~ III ~ 14 

for 14 ~ III ~ 16 

for 17 ~ III ~ 29. 

for 1 ~ III ~ 2 

for 2 ~ III ~ 8 

for III ~ 9. 
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By Theorem 6.6.9 a set I with III < 30 cannot be the support of a codeword 
in C. 

It was shown by Van Lint and Wilson [76] that the method described 
above gives the exact minimum distance for all binary cyclic codes of 
length < 63 with only two exceptions. 

Finding the actual minimum distance of a BCH code is in general a hard 
problem. However, something can be said. To illustrate this we shall restrict 
ourselves to binary primitive BCH codes. We first must prove a lemma. 
Consider 1F21c as the space IF~ and let U be a subspace of dimension I. We define 
Li(U):= Lzeuxi. 

(6.6.12) Lemma. If i has less than I ones in its binary expansion then Li (U) = o. 

PROOF. We use induction. The case I = 1 is trivial. Let the assertion be true 
for some I and let V have dimension I + 1 and V = U u (U + b), where U has 
dimension I. Then 

Li(V) = Li(U) + L (x + b)i = if (i)b i-. L.(U). 
xeU .=0 V 

If the binary expansion of i has at most lones, then by Theorem 4.5.1 the 

binomial coefficient G), where v < i, is 0 unless the binary expansion ofv has 

less than lones, in which case L.(U) is 0 by the induction hypothesis. 0 

(6.6.13) Theorem. The primitive binary BCH code C of length n = 2m - 1 and 
designed distance 0 = 2' - 1 has minimum distance o. 

PROOF. Let U be an I-dimensional subspace of 1F2 m. Consider a vector c which 
has its ones exactly in the positions corresponding to nonzero elements of U, 
i.e. 

c(x) = L xl. 
j: .. )e U\{O} 

Let 1 :s; i < 2' - 1. Then the binary expansion of i has less than I ones. 
Furthermore c(cx i ) = Li(U) and hence by Lemma 6.6.12 we have c(cx i ) = 0 for 
1 :s; i < 2' - 1, i.e. c(x) is a codeword in C. 0 

(6.6.14) Corollary. A primitive BCH code of designed distance 0 has distance 
d:s; 20 - 1. 

PROOF. In Theorem 6.6.13 take I such that 21-1 :s; 0 :s; 2' - 1. The code of 
Theorem 6.6.13 is a subcode of the code with designed distance o. 0 

Although it is not extremely difficult, it would take us too long to also give 
reasonable estimates for the actual dimension of a BCH code. In the binary 
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case we have the estimate 2m - 1 - mt if ~ = 2t + 1, which is clearly poor for 
large t although it is accurate for small t (compared to m). We refer the 
interested reader to [46]. Combining the estimates one can easily show that 
long primitive BCH codes are bad in the sense of Chapter 5, i.e. if Cv is a 
primitive [ny, kv, d.] BCH code for v = 1, 2, ... , and ny -+ 00, then either 
k./nv -+ 0 or d./n. -+ O. 

In Section 6.1 we have already pointd out that the automorphism group 
of a cyclic code of length n over IFq not only contains the cyclic permutations 
but also 1tq• For BCH codes we can prove much more. Consider a primitive 
BCH code C of length n = qm - 1 over IFq with designed distance d (i.e. (x, (X2, 

••• , (Xd-l are the prescribed zeros of the codewords, where (X is a primitive 
element of IFqm). 

We denote the positions of the symbols in the codewords by Xi (i = 0, 1, 
... , n - 1), where Xi = a i . We extend the code to C by adding an overall 
parity check. We denote the additional position by 00 and we make the 
obvious conventions concerning arithmetic with the symbol 00. We represent 
the codeword (co, CI , ... , coo) by Co + C1X + ... + cn_Ixn- 1 + cooxoo and make 
the further conventions 100 := 1, (ai)<x> := 0 for i :/=. 0 (mod n). 

We shall now show that C is invariant under the permutations of the affine 
permutation group AGL(l, qm) acting on the positions (cf. Section 1.1). This 
group consists of the permutations 

pu.v(X) := uX + v, 

The group is 2-transitive. First observe that p~.o is the cyclic shift on the 
positions of C and that it leaves 00 invariant. Let (co, c l' ... , c n- 1, COt,) E C and 
let Pu,v yield the permuted word (c~, c~, ... , c;'J Then for 0 ~ k ~ d - 1 we 
have 

because the inner sum is 0 for 0 ~ I ~ d - 1 since C E C. SO we have the 
following theorem. 

(6.6.15) Theorem. Every extended primitive BCH code of length n + 'I = qm 
over IFq has AGL(l, qm) as a group of automorphisms. 

(6.6.16) Corollary. The minimum weight of a primitive binary BCH code is odd. 

PROOF. Let C be such a code. We have shown that Aut(C) is transitive on the 
positions. The same is true if we consider only the words of minimum weight 
in C. SO C has words of minimum weight with a 1 in the final check position. 

o 
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§6. 7. Decoding BCH Codes 

Once again consider a BCH code of length n over IFq with designed distance 
b = 2t + 1 and let p be a primitive nth root of unity in IFqm. We consider a 
codeword C(x) and assume that the received word is 

R(x) = Ro + R 1 x + ... + R,,_lx n - 1 

Let E(x):= R(x) - C(x) = Eo + Elx + ... + E"_IX"-I be the error vector. 
We define: 

M:= {iIEi =F OJ, the positions where an error occurs, 

e:= IMI, the number of errors, 

er(z):= TI (1 - piz), which we call the error-locator polynomial, 
ieM 

w(z):= L EipiZ . TI (1 - Piz). 
ieM ieM\/i} 

It is clear that if we can find er(z) and w(z), then the errors can be corrected. 
In fact an error occurs in position i itT er(p-i) = 0 and in that case the error is 
Ei = _W(P-i)Pi/er'(p-i). From now on we assume that e :s; t (if e > t we do 
not expect to be able to correct the errors). Observe that 

w(z) = L EiPi~ = L Ei f (Pi Z)' 

er(z) ieM 1 - P z ieM '=1 

co co 

= L z, L Eip'i = L z, E(P'), 
'=1 ieM '=1 

where all calculations are with formal power series over IFqm. For 1 :s; I:s; 2t 
we have E(P') = R(P'), i.e. the receiver knows the first 2t coefficients on the 
right-hand side. Therefore w(z)/er(z) is known mod Z21+1. We claim that the 
receiver must determine polynomials er(z) and w(z) such that degree w(z) :s; 
degree er(z) and degree er(z) is as small as possible under the condition 

(6.7.1) (mod Z21+1 ). 

Let S, := R(P') for I = 1, ... , 21 and let er(z) = Lr=o eriz i. Then 

w(z) == (,~ s,z') Cto erizi) = f Zk C+~k s,eri) (mod Z2I+l). 

Because w(z) has degree :s; e we have 

L S,erj = 0, for e + 1 :s; k :s; 2t. 
i+'=k 

This is a system of 2t - e linear equations for the unknowns erl , ... , ere (we 
know that ero = 1). Let o'(z) = Li=o O'iZ i (where 0'0 = 1) be the polynomial of 
lowest degree found by solving these equations (we know there is at least the 



§6.8. Reed-Solomon Codes and Algebraic Geometry Codes 99 

solution q(z». For e + 1 ;5; k ;5; 2t we have 

o = L SHUl = I I EdJ(k-IJiUl = I EdJikiJ(P-i). 
1 ieM I ieM 

We can interpret the right-hand side as a system of linear equations for 
EiiJ(P-i) with coefficients pit. So the determinant of coefficients is again 
Vandermonde, hence :1= O. So EiU(P-i) = 0 for i E M. Since Ei :1= 0 for i EM 
we see that q(z) divides iJ(z), i.e. iJ(z) = q(z). So indeed, the solution iJ(z) of 
lowest degree solves our problem and we have seen that finding it amounts 
to solving a system oflinear equations. The advantage of this approach is that 
the decoder has an algorithm that does not depend on e. Of course, in 
practice it is even more important to find a fast algorithm that actually does 
what we have only considered from a theoretical point of view. Such an 
algorithm (with implementation) was designed by E. R. Berlekamp (cf. [2J, 
[24J) and is often referred to as the Berlekamp-decoder. 

If we call the (known) polynomial on the right hand side of(6.7.1) S(z) and 
define G(z) := z2t+l, then (6.7.1) reads 

(6.7.1) S(z)q(z) == w(z) (mod G(z». 

We need to find a solution of this congruence with q of degree ;5; t and w of 
degree smaller than the degree of q. The (unique) solution makes the error 
correction possible. In §9.5 we encounter the same congruence. 

§6.8. Reed-Solomon Codes 

One of the simplest examples of BCH codes, namely the case n = q - 1, turns 
out to have many important applications. 

(6.8.1) Definition. A Reed-Solomon code (RS code) is a primitive BCH code of 
length n = q - 1 over IFq • The generator of such a code has the form g(x) = 
Il1.:1 (x - (Xi) where (X is primitive in IFq• 

By the BCH bound (6.6.2) the minimum distance of an RS code with this 
generator g(x) is at least d. By Section 6.2 this code has dimension k = 
n - d + 1. Therefore Corollary 5.2.2 implies that the minimum distance is d 
and the RS code is a maximum distance separable code. 

Suppose we need a code for a channel that does not have random errors 
(like the B.S.C.) but instead has errors occurring in bursts (i.e. several errors 
close together). This happens quite often in practice (telecommunication, 
magnetic tapes, compact disc). For such a channel, RS codes are often used. 
We illustrate this briefly. Suppose binary information is taken in strings of m 
symbols which are interpreted as elements of 1F2". If these are encoded using RS 
code, then a burst of several errors (in the Os and Is) will influence only a few 
consecutive symbols in a codeword of the RS code. Of course this idea can be 
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used for any code but since the RS codes are MDS they are particularly useful. 
A more important application will occur in Section 11.2. In connection with this 
application we mention the original approach of Reed and Solomon. Let n = q -1, 
a a primitive element of IFq • As usual, identify a = (ao, a" ... ,at-I) E [Fk with 

k-I q ao + alx + ... + at_IX = a(x). Then 

c = {(co, Ct, ... , cn-dlci = a(a i ), 0:::;; i < n, a ElF:} 

is the RS code with d = n - k + 1. To see this first observe that C is obviously 
cyclic. The definition of C and Lemma 6.5.3 imply that a codeword c has na(x) 
as its Mattson-Solomon polynomial. Since the degree of a(x) is :::;; k - 1 this 
means that c(a i ) = 0 for i = 1, 2, ... , n - k. Hence C is an RS code. This 
representation gives a very efficient encoding procedure for RS codes even 
though it is not systematic. 

If we extend the words of C by adjoining a symbol Cn = a(O), then L7=o Ci = 
aoq = o. So, we indeed obtain C. If Cn = 0, i.e. c(l) = 0, then the word has 
weight;::: n - k + 2 and clearly this is also true if Cn # O. So, the code C is also 
an MDS code. 

The second representation of Reed-Solomon codes allows us to generalize the 
idea. We now consider IF q" as alphabet and choose n distinct elements from the 
field, say a" a2, ... , an. Let V = (v" V2, ... , Vn) be a vector from IF; .. with no 
zero coordinates and write a := (ai, a2, ... ,an). 

(6.8.2) Definition. The generalized Reed-Solomon code GRSt(a, v) has as code­
words all (vd(al), vd(a2), ... , vn!(an», where! runs through the set of poly­
nomials of degree less than k in IF q'" [x]. 

In the same way as above, we see that a generalized Reed-Solomon code and 
its dual are MDS codes. 

Our second description of RS codes also allows us to give a rough idea of the 

codes that are defined using algebraic geometry. In (1.3.4) we saw that the 
projective line of order q can be described by giving the points coordinates 
(x, y), where (x, y) and (cx, cy) are the same point (c E IFq). If a(x, y) and b(x, y) 
are homogeneous polynomials of the same degree, then it makes sense to 
study the rational function a(x, y)/b(x, y) on the projective line (since a change 
of coordinates does not change the value of the fraction). We pick the point 
Q := (1, 0) as a special point on the line. The remaining points have as 
coordinates (0, 1) and (ai, 1), (0 :::;; i < q - 1), where a again denotes a primi­
tive element of IFq. We now consider those rational functions a(x, y)/y' for 
which I < k (and of course a(x, y) is homogeneous of degree I). This is a vector 
space (say K) of dimension k and one immediately sees that the description 
ofRS codes given above amounts to numbering the points of the line in some 
fixed order (say Po, PI' ... , Pq _ I ), and taking as codewords (f(Po), ... , f(Pq- I ), 

where f runs through the space K. The functions have been chosen in such a 
way that we can indeed calculate their values in all the points Pi; this is not 
so for Q. In terms of analysis, the point Q is a pole of order at most k - 1 for 
the functions in K. 
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The simplest examples of algebraic geometry codes generalize this con­
struction by replacing the projective line by a projective curve in some projec­
tive space. We treat algebraic geometry codes in Chapter 10. 

We now look at MOS codes in general. If C is an [n, k] code with minimum 
distance d = n - k + 1, then C is systematic on any k positions (cf. Problem 3.8.2). 

(6.8.3) Theorem. The dual of an MDS code is also an MDS code. 

PROOF. Let G = (Ik P) be the generator matrix of C. Since C has mini­
mum weight d, every set of d - 1 = n - k columns of the parity check matrix 
H := (-P T In- k) is linearly independent. Hence every square submatrix of His 
nonsingular, i. e. no codeword of Cl. has n - k zeros. So Cl. is an [n, n - k, k + 1] 
code, i. e. MOS. 0 

Let C be a [n, k, d] code with d = n - k + 1. If we consider a set of d positions 
and then look at the subcode of C with zeros in all other positions, this subcode 
has dimension::: k - (n - d) = 1. Since this subcode has minimum distance d, 
it must have dimension exactly 1. It follows that for n ::: d' > d, specifying a set 
of d' positions and requiring the codewords to be zero in all other positions, will 
define a subcode of C with dimension d' - d + 1. We formulate this result as a 
lemma. 

(6.8.4) Lemma. For n ::: d' ::: d = n - k + 1, the subcode of an MDS code with 
parameters n, k, d, consisting of those codewords that have zeros outside a set of 
d' positions has dimension d' - d + 1. 

We shall use this lemma and an analog of the MObius inversion formula (1.1.4) 
to find the weight enumerator of an MOS code. We first prove an analog of the 
MObius inversion formula. 

(6.8.5) Definition. If N is a finite set and SeT eN, then we define 

JL(S, T) := (_I)ITHSI. 

(6.8.6) Theorem. Let N be a .finite set and let f be a function defined on the 
subsets of N. If 

g(S) := L f(R), 
ReS 

then 
f(T) = L JL(S, T)g(S). 

SeT 
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PROOF. 

LIL(S, T)g(S) = LIL(S, T) Lf(R) 
SeT SeT ReS 

= L feR) L IL(S, T), 
ReT ReSeT 

and the result then follows from the equality 

L IL(S, T) = lEI (ITI ~ IRI) (-I)j = (l_l)ITI-IRI = {OI ' if R:f: T 
J ' if R = T. ReSeT j=O 

o 
We now show that the weight enumerator of an MDS code is determined by 

its parameters. 

(6.8.7) Theorem. Let C be an [n, k] code with distance d = n - k + 1. lfthe 
weight enumerator of C is 1 + L;=d Ail, then 

Ai = C) (q - 1) I:(-I)j (i -: 1) qi-i-d 

I j=O J 
(i = d, d + I, ... , n). 

PROOF. If R is a subset of N := {O, I, ... , n - I}, define feR) to be the number 
of codewords (co, CI, ••• , Cn-I) for which Ci :f: 0 <:? i e R. If we define g as in 
Theorem 6.8.6, then we have by Lemma 6.8.4 

{ I, if lSI!: d - 1 
g(S) = qISI-d+I, if n ~ lSI ~ d. 

By our definition of f, we have Ai = LReN.IRI=i feR) and therefore application 
of Theorem 6.8.6 yields 

Ai = L L IL(S, R)g(S) 
ReN.IRI=i SeR 

= G) {~(~) (-I)i-i + t (~) (_I)i-iqj-d+l} 

= (~) t (i.) (_IY-j(qj-d+1 -I). 
I j=d J 

Theresultnowfollowsifwereplace jbyi - j and then use C) = C=~)+ C~I). 
o 

Theorem 6.8.7 gives the following restriction on the size of the alphabet of an 
MDScode. 

(6.8.8) Theorem. If there exists an MDS code overfq with length n anddimension 
k. then q ~ n - k + 1 or k !: 1. 
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PROOF. Let d = n - k + 1. By Theorem 6.8.7 we have for d < n. 0 ::: Ad+1 = 
C:l) (q -l)(q -d). 0 

Since the dual of an MDS code is also MDS (Theorem 6.8.3), we find the 
following corollary. 

(6.8.9) Corollary. If there exists anMDS code over fF q with length n anddimension 
k, then q ~ k + 1 or d = n - k + 1 ::: 2. 

§6.9. Quadratic Residue Codes 

In this section we shall consider codes for which the word length n is an odd 
prime. The alphabet fFq must satisfy the condition: q is a quadratic residue 
(mod n). i.e. q1lt-ll/2 == 1 (mod n). As usual ex will denote a primitive nth root 
of unity in an extension ,field of fFq• Later it will tum out that we shall require 
that ex satisfies one more condition. We define 

Ro := W (mod n)li E f ll • i ::;. O}, the quadratic residues in f ll , 

i.e. the set of nonsquares in f ll, 

90(X):= n (x - exr ), gl(X):= n (x - ar ). 
reRa reR t 

Since we have required that q (mod n) is in Ro. the polynomials go(x) and gl (x) 
both have coefficients in fq (cf. Theorem 1.1.22). Furthermore 

x" - 1 = (x - 1)90(X)9 I (x). 

(6.9.1) Definition. The cyclic codes of length n over fq with generators 90(X) 
resp. (x - l)go(x) are both called quadratic residue codes (QR codes). 

We shall only consider extended QR codes in the binary case, where the 
definition is as in (3.2.7). Such a code is obtained by adding an overall parity 
check to the code with generator go(x). 

For other fields the definition of extended code is usually modified in such 
a way that the extended code is self-dual if n == - 1 (mod 4), resp. dual to the 
extension of the code with generator 91(X) if n == 1 (mod 4) (cf. [46]). In the 
binary case the code with generator (x - l)go(x) is the even-weight subcode 
of the other QR code. If G is a generator matrix for the first of these codes 
then we obtain a generator matrix for the latter code by adding a row of Is 
to G. If we do the same thing after adding a column of Os to G we obtain a 
generator matrix for the extended code. 

In the binary case the condition that q is a quadratic residue mod n simply 
means that n == ± 1 (mod 8) (cf. Section 1.1). The permutation 1tj : i 1--1- ij (mod 
n) acting on the positions of the codewords maps the code with generator 
go(x) into itself if j E Ro resp. into the code with generator gl (x) if JERI' SO 
the codes with generators 90(X) resp. gl (x) are equivalent. If n == -1 (mod 4) 
then -1 E RI and in that case the transformation x -+ X-I maps a codeword 
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of the code with generator go(x) into a codeword of the code with generator 
gl (x). 

(6.9.2) Theorem. If c = c(x} is a codeword in the QR code with generator go(x} 
and if c(I} ~O and w(c} = d, then 

(i) d2 ~ n, 
(ii) if n == -1 (mod 4) then d2 - d + 1 ~ n, 

(iii) if n == -1 (mod 8) and q = 2 then d == 3 (mod 4). 

PROOF. 

(i) Since c(l) ~ 0 the polynomial c(x) is not divisible by (x - 1). Bya suitable 
permutation 1CJ we can transform c(x) into a polynomial e(x) which is 
divisible by gl(X) and of course again not divisible by (x - 1). This 
implies that c(x)e(x) is a multiple of 1 + x + x2 + ... + X"-I. Since the 
polynomial c(x)e(~) has at most d2 nonzero coefficients we have proved 
the first assertion; 

(ii) In the proof above we may take j = - 1. In that case it is clear that 
c(x)e(x) has at most d2 - d + 1 nonzero coefficients. 

(iii) Let c(x) = It=1 X'I, e(x) = It=1 X-II. If Ii - IJ = I" - I, then IJ - Ii = I, -
I". Hence, if terms in the product c(x)e(x) cancel then they cancel four at 
a time. Therefore n = d2 - d + 1 - 4a for some a ~ O. 0 

The idempotent of a cyclic code, introduced in Section 6.4, will prove to be 
a powerful tool in the analysis of QR codes. 

(6.9.3) Theorem. For a suitable choice of the primitive n-th root of unity (%, the 
polynomial 

6(x):= L x' 
reRo 

is the idempotent of the binary QR code with generator (x - l)go(x) if n == 1 
(mod 8) resp. the QR code with generator go(x) if n == -1 (mod 8). 

PROOF. 6(x) is obviously an idempotent polynomial. Therefore {6«(%)}2 = 8«(%), 
i.e. 6«(%) = 0 or 1. By the same argument 6«(%1) = 6«(%) if i E Ro and 

6«(%i) + 6«(%) = 1 

if i E R 1. The "suitable choice" of (% is such that 6«(%) = O. (The reader should 
convince himself that it is impossible that all primitive elements of IFq satisfy 
6«(%) = 1.) Our choice implies that 6«(%i) = 0 if i E Ro and 6«(%i) = 1 if i E R 1• 

Finally we have 8«(%0) = (n - 1)/2. This proves the assertion. 0 

With the aid of 9 we now make a (0, I)-matrix C (called a circulant) by 
taking the word 9 as the first row and all cyclic shifts as the other rows. Let 
c := (00 ... 0) if n == 1 (mod 8) and c := (11. .. 1) if n == -1 (mod 8). We have 



§6.9. Quadratic Residue Codes 105 

G := L~IT 1 .~ 1]. 
It follows from Theorem 6.9.3 that the rows of G (which are clearly not 
independent) generate the extended binary QR code oflength n + 1. We now 
number the coordinate places of codewords in this code with the points of the 
projective line of order n, i.e. 00, 0, 1, ... , n - 1. The overall parity check is in 
front and it has number 00. We make the usual conventions about arithmetic 
operations involving 00. The group PSL(2, n) consists of all transformations 
x ~ (ax + b)/(cx + d) with a, b, c, d in fn and ad - bc = 1. It is not difficult to 
check that this group is generated by the transformations S: x ~ x + 1 and 
T: x -+ - X-i. Clearly S is a cyclic shift on the positions different from 00 and 
it leaves 00 invariant. By the definition of a QR code, S leaves the extended 
code invariant. To check the effect of T on the extended QR code it is 
sufficient to analyse what T does to the rows of G. It is a simple (maybe 
somewhat tedious) exereise to show that T maps a row of G into a linear 
combination of at most' three rows of G (the reader who does 'not succeed is 
referred to [42]). Therefore both Sand T leave the extended QR code in­
variant, proving the following theorem. 

(6.9.4) Theorem. The automorphism group of the extended binary QR code of 
length n + 1 contains PSL(2, n). 

The modified definition of extended code which we mentioned earlier 
ensures that Theorem 6.9.4 is also true for the nonbinary case (cf. [46]). 

(6.9.5) Corollary. A word of minimum weight in a binary QR code satisfies the 
conditions of Theorem 6.9.2. 

PROOF. The proof is the same as for Corollary 6.6.16. In this case we use the 
fact that PSL(2, n) is transitive. Therefore the minimum weight is odd. 0 

EXAMPLES. (a) Let q = 2, n = 7. We find 

x 7 - 1 = (x - l)(x3 + X + l)(x3 + x 2 + 1). 

We take go(x) as generator. The choice of C( specified in Theorem 6.9.3 implies 
that x + x 2 + X4 is also a generator. Hence go(x) = 1 + x + x 3• Of course 
this code is the (perfect) [7, 4] Hamming code (see Section 3.3 and Theorem 
6.31). The corresponding even weight subcode was treated in (6.1.5). 

(b) Let q = 2, n = 23. We have 

X 23 _ 1 = (x - l)(xll + x 9 + x 7 + x 6 + X S + x + 1) 

X (xll + x iO + x 6 + x 5 + X4 + x 2 + 1). 

Again we take go(x) to be the multiple of O(x), which is 

Xll + x9 + X 7 + x 6 + x 5 + X + 1. 
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By Corollary 6.9.5 the corresponding QR code C has minimum distance 
d ~ 7. 

Since Lf=o ei3) = 211 and I CI = 212 it follows that d is equal to 7 and by 

(3.1.6) C is a perfect code. Since the binary Golay code of Section 4.2 is unique 
we have now shown that it is in fact a QR code. 

We leave several other examples as exercises (Section 6.13). 

§6.10. Binary Cyclic Codes of Length 2n (n odd) 

Let n be odd and xn - 1 = II (x)I2 (x) . .. f,{x) the factorization of xn - 1 into 
irreducible factors in 1F2[X]. 

We define gI(X):= Il(x) ... h{x), g2{X):= h+l(X) ... j,{x), where k < 1< t. 
Let'l := deg gI,'2 := deg glg2' 

Let C1 be the cyclic code of length n and dimension n - '1 with generator 
gl(X), and let C2 be the cyclic code of length n and dimension n -'2 with 
generator gl (X)g2(X), and let di be the minimum distance of Ci (i = 1, 2). 
Clearly d2 ~ d1 • 

We shall study the cyclic code C of length 2n and dimension 2n - '1 - '2 
with generator g{x) := gi(X)g2(X). We claim that this code has the following 
structure: 

Let a = (ao, aI' ... , an-d E C1 and c = (co, C1, ... , cn-d E C2. Define b:= 
a + c. Since n is odd, we can define words that belong to C by 

and in this way we find all words of C; (the final assertion follows from 
dimension arguments). To demonstrate this, we proceed as follows. Write 

a{x) = ao + a1 x + ... + an_1 x n- 1 

= (ao + a2x 2 + ... + an_1 x n- 1 ) + x(a 1 + ... + an_2 Xn- 3 ) 

= ae(x2) + xao(x2), 

and analogously for c(x) and b(x). We then have the following two (equal) 
representations for the polynomial w(x) corresponding to the codeword w: 

(6.10.1) 

and 

(6.1 0.2) w(x) = {a(x) + x(xn + 1 )ao(x2 )} + {b(x) + (xn + l)be(x2 )}. 

Both terms in (6.10.2) are divisible by gl (x). From (6.10.1) we see that the first 
term only contains even powers of x, the second one only odd powers of x. 
Since g 1 (x) has no multiple factors, this implies that both terms are actually 
divisible by gi(x). 
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From (6.10.2) we find 

w(x) = (x' + l)a(x) + c(x) + (x' + l)ce(x 2 ) 

in which every term is divisible by g2(X). 
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Since b = a + c, the word w is a permutation of the word lala + cl, (cf. 
4.4.1). We have proved the following theorem. 

(6.10.3) Theorem. Let C I be a binary cyclic code of length n (odd) with gene­
rator 9 I (x), and let C2 be a binary cyclic code of length n with generator 
9 I (X)g2(X). Then the binary cyclic code C of length 2n with generator gi(X)g2(X) 

is equivalent to the lulu + vi sum of C1 and C2 • Therefore C has minimum 
distance min{2d l , d2 }. 

There are not many good binary cyclic codes of even length. However, the 
following theorem shows the existence of a class of optimal examples. 

(6.10.4) Theorem. The even weight subcode of a shortened binary Hamming 
code is cyclic (for a suitable ordering of the symbols). 

PROOF. It is not difficult to see that it makes no difference on which position 
the code is shortened (all resulting codes are equivalent). Let n = 2" - 1. Let 
ml (x) denote the minimal polynomial of a primitive element IX of !F2" Then 
m l (x) is the generator polynomial ofthe En, n - s] binary Hamming code and 
(x + 1)m1 (x) is the generator polynomial of the corresponding even weight 
subcode. In Theorem 6.10.3 we take gl(x) = (x + 1) and g2(X) = ml(x). We 
then find a cyclic code C of length 2n, dimension 2n - s - 2, with minimum 
distance 4. It follows from the lulu + vi construction that all weights in Care 
even. Therefore C has a parity check matrix with a top row of l's and all 
columns distinct. Hence C is equivalent to the even weight subcode of a 
shortened Hamming code. 0 

We observe that there is a different way of proving the previous theorem. 
We shall use the Hasse derivative (see Chapter 1). The generator of C has 1 
as a zero with multiplicity 2 and IX as a zero with multiplicity 1. This means 
that if c(x) = L CiX i is a codeword, then 

LCi=O, L iCi = 0, L CiIXi = 0, 

i.e. 

H,~ U 
1 1 1 1 .Ll 0 0 0 0 

IX IX2 IX·- I IX' IX·+1 IX2.-2 

is a parity check matrix for C; here the second row is obtained by using the 
property of the Hasse derivative and multiple zeros. Note that IX' = 1. Hence 
the matrix HI consists of all possible columns with a 1 at the top, except for 
(1000 ... 0)T and (1100 ... Of, i.e. the code is indeed equivalent to the even 
weight subcode of a shortened Hamming code. 
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§6.11. Generalized Reed-Muller Codes 

We shall define a class of (extended) cyclic codes over IFq that are equivalent to 
Reed-Muller codes in the case q = 2. First, we generalize the idea of Hamming 
weight to integers written in the q -ary number system. 

(6.11.1) Definition. If q is an integer::: 2 and j = r:,;:;/ gjqj, with 0 ~ gj < q 
for i = 0, 1, ... ,m - 1, then we define wq(j) := r:,:~1 gj. 

Note that the sum is taken in 71.. The new class of codes is defined as follows. 

(6.11.2) Definition. The shortened rth order generalized Reed-Muller code (GRM 
code) of length n = qm - 1 over IF q is the cyclic code with generator 

<rl 

g(x) := f1 (x - a j ), 

where a is a primitive element in IF qM and the upper index (r). iitdicates that the 
product is over integers j with 0 ~ j < qm - 1 and 0 ~ Wq (j) < (q - l)m - r. 

The r-th order GRM code of length qm has a generator matrix G* obtained 
from the generator matrix G of the shortened GRM code by adjoining a column 
of Os and then a row of Is. 

Note that the set of exponents in this definition of shortened GRM codes is 
indeed closed under multiplication by q. Let h (x) be the check polynomial of the 
shortened r th order GRM code. Then the dual of this code has the polynomial 
h*(x) as generator, where h*(x) is obtained from h(x) by reversing the order of 
the powers of x. It is defined in the same way as g(x), now with the condition 
0< wq(j) ~ r. 

We have the following generalization of Theorem 4.5.8. 

(6.11.3) Theorem. The dual of the r-th order GRM code of length qm is equivalent 
to a GRM code of order (q - l)m - r - 1. 

PROOF. We have seen above that (x - 1)h*(x) is the generator of the shortened 
GRM code of order (q - l)m - r - 1. If we now lengthen the cyclic codes to 
GRM codes, we must show orthogonality of the rows of the generator matrices. 
The only ones for which this is not a consequence of the duality of the shortened 
codes are the all one rows. For these, the factor (x - 1) in the generators and the 
fact that the length is qm takes care of that. Since the dimensions of the two codes 
add up to qm, we are done. O. 

To handle the binary case, we need a lemma. 

(6.11.4) Lemma. Let C I and C2 be cyclic codes of length n over IFq with check 
polynomials fl (x) := TI:~I (x - aj), resp. TI~~I (x - tJj). Let C be the cyclic code 
of the same length for which the check polynomial has all the products aj tJ j as its 
zeros. Then C contains all the words ab, where a E C[, b E C2• 
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PROOF. We use the representation of cyclic codes by linear recurring sequences, 
given at the end of §6.5. We know that the coordinates of a and b can be represented 
as sums al = L:~l ciai1 and bl = L~~l cj/lil. The result follows immediately 
from this representation and the definition of abo 0 

The following theorem justifies the terminology of this section. 

(6.11.5) Theorem. The rth order binary GRM code of length 2m is equivalent to 
the rth order Reed-Muller code of length 2m • 

PROOF. The proof is by induction. For r = 0, the codes defined by (4.5.6) and 
(6.11.2) are both repetition codes. We know that the binary Hamming code is 
cyclic. So, for r = 1 we are done by the corollary to Theorem 4.5.8. Assume 
that the assertion is true for some value of r. The check polynomial h*(x) of the 
shortened GRM code has zeros a j , where W2(j) ~ r. The zeros of the check poly­
nomial of the shortened I-st order RM code are the powers a j with W2 (j) = 1. The 
theorem now follows from, the induction hypothesis, Definition 4.5.6 and Lemma 
6.11.4. 0 

We end this section with a theorem on weights in RM codes. It is another 
application of Theorem 6.8.5. 

(6.11.6) Theorem. Let F = F(Xh X2, ... , xm) be apolynomialof degree r defined 
on 1F2'. We write G C F if the monomials ofG form a subset of the set of monomials 
ofF. We define v( G) to be the number of variables not involved in G and we denote 
the number of monomials in G by IG I. If N (F) is the number of zeros of F in 1F2', 
then 

N(F) = 2m- 1 + L(_I)IGI2IGI+V(GH. 
GcF 

PROOF. For every G C F, we define f(G) to be the number of points in 1F2' where 
all the monomials of G have the value 0 and all the other monomials of F have 
the value 1. Clearly we have 

L f(H) = 2v(F-G) 

HcG 

(because this is the number of points in the affine subspace of 1F2' defined by 
Xii = Xi2 = ... = Xi. = 1, where the Xit are the variables occurring in F - G). It 
follows from Theorem 6.8.6 that 

f(G) = L IL(H, G)2v(F-H). 

HcG 

Furthermore 
N(F) = f(G). 

GCF.IF-GI=O (mod 2) 

Since LGa /(G) = 2m , we find 
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N(F) = 2m - 1 + ~ L(-l),F-G' f(G) 
2 GcF 

= r-1 + ~ L(_l)lF-GI LJ.L(H, G)2v(F-Hl 
2 GcF HcG 

= 2m- 1 + ~ L(_1)1F-HI 2V(F-Hl L 1 
2 HcF HcGcF 

= 2m- 1 + ~ L(_1)1F-HI2V(F-Hl21F-HI 
2 HcF 

= 2m - 1 + ~ L(_1)IGI2V(Gl+IGI. 0 
2 GcF 

We now apply this to RM codes. 

(6.11.7) Theorem. ~ weights of the codewords in .9B(r, m) are divisible by 
2fm/rl-l. 

PROOF. The code .9B(r, m) consists of the sequences of values taken by polynomials 
of degree at most r in m binary variables. The codeword corresponding to a 
polynomial F has weight 2m - N(F). If G C F and G bas degree d, then 
v(G) ~ m -IGI' d, i.e. IGI ~ rm-;(Gl 1. Since 

m - v(G) m 
v(G) + r d 1 ~ r d 1, 

the result follows from Theorem 6.11.6 o 

§6.12. Comments 

The reader who is interested in seeing the trace function and idempotents 
used heavily in proofs should read [46, Chapter 15]. 

A generalization of BCH codes will be treated in Chapter 9. There is 
extensive literature on weights, dimension, covering radius, etc. of BCH 
codes. We mention the Carlitz-Uchiyama bound which depends on a deep 
theorem in number theory by A. Weil. For the bound we refer to [42]. For a 
generalization of Q R codes to word length n a prime power, in which case the 
theory is similar to Section 6.9 we refer to a paper by J. H. van Lint and F. J. 
MacWilliams (1978; [45]). 
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§6.13. Problems 

6.13.1. Show that the [4, 2] ternary Hamming code is a negacyclic code. 

6.13.2. Determine the idempotent of the [IS, 11] binary Hamming code. 
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6.13.3. Show that the rth order binary Reed-Muller code of Definition 4.5.6 is 
equivalent to an extended cyclic code. 

6.13.4. Construct a ternary BCH code with length 26 and designed distance 5. 

6.13.5. Let ex be a primitive element of f 2• satisfying exS = C(2 + 1. A narrow-sense 
BCH code oflength 31 with designed distance 5 is being used. We receive 

(1001 0110 1111 0000 1101 0101 0111 111). 

Decode this message using the method of Section 6.7. 

6.13.6. Let m be odd. Let p be a primitive element of f 2m. Consider a binary cyclic 
code C oflength n '= 2/ft - 1 with generator g(x) such that g(P) = g(P-I) = O. 
Show that the minimum distance d of C is at least 5. 

6.13.7. Let C be a [q + 1,2, d] code over fq(q odd). Show that d < q (i.e. C is not an 
MDS code, cf. (5.2.2)). 

6.13.8. Show that the [II, 6] ternary QR code is perfect. (This code is equivalent to 
the code of Section 4.3.) 

6.13.9. Determine the minimum distance of the binary QR code with length 47. 

6.13.10. Determine all perfect single error-correcting QR codes. 

6.13.11. Generalize the ideas of Section 6.9 in the following sense. Let e > 2, n a prime 
such that el(n - 1) and q a prime power such that q(.-Il/e == 1 (mod n). Instead 
of using the squares in IF. use the eth powers. Show that Theorem 6.9.2(i) can 
be generalized to de > n. Determine the minimum distance of the binary cubic 
residue code oflength 31. 

6.13.12. Let m be odd, n = 2/ft - I, oc a primitive element of IFzm• Let g(x) be a divisor 
of x· - 1 such that g(oc) = g(ex5 ) = o. Prove that the binary cyclic code with 
generator g(x) has minimum distance d ~ 4 in two ways: 

(a) by applying a theorem of this chapter, 
(b) by showing that 1 + ~ + " = 0 and 1 + eS + "s = 0 with e and" in 1F2m 

is impossible. 
(c) Using the idea of (b), show that in fact d ~ 5. 

6.13.13. Show that the ternary Golay code has a negacyclic representation. 

6.13.14. By Theorem 6.9.2, the [31, 16] QR code has d ~ 7, whereas the BCH bound 
only yields d ~ 5. Show that the AB-method of §6.6 also yields d ~ 7. 



CHAPTER 7 

Perfect Codes and Uniformly 
Packed Codes 

§7.1. Lloyd's Theorem 

In this chapter we shall restrict ourselves to binary codes. To obtain insight 
into the methods and theorems of this part of coding theory this suffices. 
Nearly everything can be done (with a little more work) for arbitrary fields IFq• 

In the course of time many ways of studying perfect codes and related 
problems have been developed. The algebraic approach which will be dis­
cussed in the next section is perhaps the most elegant one. We start with a 
completely different method. We shall give an extremely elementary proof of 
a strong necessary condition for the existence of a binary perfect e-error­
correcting code. The theorem was first proved by S. P. Lloyd (1957) (indeed 
for q = 2) using analytic methods. Since then it has been generalized by many 
authors (cf. [44]) but it is still referred to as Lloyd's theorem. The proof in 
this section is due to D. M. Cvetkovic and J. H. van Lint (1977; cf. [17]). 

(7.1.1) Definition. The square matrix Ak of size 2k is defined as follows. 
Number the rows and columns in binary from 0 to 2k - 1. The entry Ak(i, j) 
is 1 if the representations of i and j have Hamming distance 1, otherwise 
Ak(i, j) = O. 

From (7.1.1) we immediately see 

(7.1.2) 

(7.1.3) Lemma. The eigenvalues oj Ak are -k + 2j (0 ~ j ~ k) with multi­

plicities e) . 
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PROOF. The proof is by induction. For k = 1 it is easily checked. Let the 
column vector x be eigenvector of Ak belonging to the eigenvalue)_ Then by 
(7.1.2) we have 

Ak+1 (:) = (1 + 1) (:). 

Ak+1 (_:) = (1 - 1) (_:). 

The proof now follows from well-known properties of binomial coefficients. 

o 

The technically most difficult part of this section is determining the eigen­
values of certain tridiagonal matrices which occur in the proof of the theorem. 
To keep the notation compact we use the following definition. 

(7.1.4) Definition. The matrix Qe = QAa, b) is the tridiagonal matrix with 

(Qe)i,i := a, 

(QeL+1 := b - i, 

(Qe)i,i-1 := i, 

Furthermore, we define 

o ~ i ~ e, 

o ~ i ~ e - 1, 

1 ~ i ~ e. 

Pe := Pe(a, b):= Qe-1 (a, b) 

00 ... 0 e 

The determinants of these matrices are denoted by Qe resp. Pe• 

(7.1.5) Lemma. Let 'Pe(x) be the Krawtchouk polynomial Ke(x - 1; n - 1, 2) 
defined in (1.2.1) and (1.2.15). Then 

Pe(2Y - n, n) = (-l)ee!'Pe(y). 

PROOF, By adding all columns to the last one and then developing by the last 
row we find 

Qe = (a + e)Qe-1 - e(a + b)Pe- 1· 

Developing Pe by the last row yields 

Pe = Qe-1 - ePe- 1· 

Combining these relations yields the following recurrence relation for Pe: 

(7.1.6) 
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It is easy to check that the assertion of the lemma is true for e = 1 and e = 2. 
From (1.2.9) and (7.1.6) it follows that the two polynomials in the assertion 
satisfy the same recurrence relation. This proves the lemma. 0 

We need one more easy lemma on eigenvalues. 

(7.1.7) Lemma. Let A be a matrix of size m by m which has the form 

A = [~.:: .. ~:.: .. :::.~::], 
Au Au ... Au 

where Au has size mi by mj (i = 1, 2, ... , k; j = 1, 2, ... , k). Suppose that for 
each i and j the matrix Aij has constant row sums bij • Let B be the matrix with 
entries bu. Then each eigenvalue of B is also an eigenvalue of A. 

PROOF. Let Bx = ,lx, where x = (Xl' x2, ... , xkf. Define y by 

where each Xi is repeated mi times. By definition of B it is obvious that 
Ay = Ay. 0 

We now come to the remarkable theorem which will have important 
consequences. 

(7.1.8) Theorem. If a binary perfect e-error-correcting code of length n exists, 
then 'Pe(x) has e distinct zeros among the integers 1,2, ... , n. 

PROOF. The fact that the zeros are distinct is a well-known property of 
Krawtchouk polynomials (cf. (1.2.13». To show that they are integers, we 
assume that C is a code as in the theorem. Consider the matrix An (cf. (7.1.1». 
Reorder the rows and columns as follows. First take the rows and columns 
with a number corresponding to a codeword. Then successively those with 
numbers corresponding to words in Ci := {x E lFild(x, C) = i}, 1:::;;; i:::;;; e. 
Since C is perfect, this yields a partitioning of All into blocks such as in 
Lemma 7.1.7, where now 

0 n 0 0 0 ........................... 

1 0 n - 1 0 0 ........................... 

0 2 0 n - 2 0 ........................... 
B = 

o ....................... 0 e-l 0 n-e+l 

o ....................... 0 0 e n-e 

The substitution x = n - 2y in det(B - x/e+!) yields 
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det(B - xI,,+d = 2yP,,(2y - n, n). 

The result now follows from Lemmas 7.1.3, 7.1.5 and 7.1.7. o 

The proof given in this section gives no insight into what is going on (e.g. 
Do the zeros of'l'" have a combinatorial meaning?) but it has the advantage 
of being completely elementary (except for the unavoidable knowledge of 
properties of Krawtchouk polynomials). In Section 7.5 we shall use Theorem 
7.1.8 to find all binary perfect codes. 

§7.2. The Characteristic Polynomial of a Code 

We consider a binary code C of length n. In (3.5.1) we defined the weight 
distribution of a code and in (5.3.2) generalized this to distance distribution 
or inner distribution (A'i)7=0. Corresponding to this sequence we have the 
distance enumerator 

n 

(7.2.1) Adz):= L A;zi = ICI-I L zd(a.y). 

;=0 .eC 
yeC 

To get even more information on distances we now define the outer distri­
bution to be a matrix B (rows indexed by elements of fJf = IF~, columns indexed 
0, 1, ... , n), where 

(7.2.2) B(x, i):= I{c E Cld(x, c) = i}l. 

The row of B indexed by x is denoted by B(x). Observe that 

(7.2.3) (Ao, AI' ... , An) = ICrl L B(x), 
lteC 

and 

(7.2.4) X E C<=>B(x, 0) = 1. 

(7.2.5) Definition. A code C is called a regular code if all rows of B with a 1 
in position 0 are equal. The code is called completely regular if 

'v'XE~'v'Je~[(P(x, C) = p(y, C»=> (B(x) = B(y))], 

where p(x, C) is the distance from x to the code C. 

Observe that if a code C is regular and 0 E C, then the weight enumerator 
of C is equal to Adz). 

In order to study the matrix B, we first introduce some algebra (cf. (1.1.11». 

(7.2.6) Definition. If G is an additive group and IF a field, then the group 
algebra IFG (or better (IFG, Ef), *» is the vector space over IF with elements of 
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G as basis, with addition E9 and a multiplication * defined by 

L a(g)g * L P(h)It:= L ( L a(g)p(It») k. 
geG heG keG g+k=k 

Some authors prefer introducing an extra symbol z and using formal 
multiplication as follows 

L a(g)zg * L P(h)Zh = L ( L a(g)p(h») Zk. 
gE G he G keG g+h=Ic 

We shall take G to be 91 = IF; and IF = C. We denote this algebra by d. In 
order not to confuse addition in G with the addition of elements of d we write 
the elements of the group algebra as E XE ~ a(x)x. If S is a subset of 91 we shall 
identify this subset with the element Exesx in d (i.e. we also denote this 
element by S). We introduce a notation for the sets of words of fixed weight 
resp. the spheres around 0: 

(7.2.7) 

(7.2.8) 

Y;:= {x E Brlw(x) = i}, 

Sj:= {x E 91lw(x) ~ j}. 

If C is a code with outer distribution B, then the conventions made above 
imply that 

(7.2.9) Y;* C = E B(x, i)x. 
XE JI 

If D(x, j) denotes the number of codewords with distance at most j to x (i.e. 
D(x, j) = Li~jB(x, i», then we have 

(7.2.10) Sj* C = E D(x, j)x. 
xe j/ 

Let X be the character of 1F2 with X(t) = -1. For every U E 91 we define a 
mapping Xu: 91- C by 

(7.2.11) V.., j/[Xu(v) := X«u, v» = (_1)(8, Y>, 

i.e. Xu(v) = 1 if u J.. v and - 1 otherwise. 
We extend this mapping to a linear functional on the group algebra d by 

(7.2.12) x.(E a(x)x) := L a(x)x.(x). 

The following two assertions follow immediately from our definition. We 
leave the proofs as easy exercises for the reader. 

(7.2.13) 

(7.2.14) 

VUE j/VAe .<iVBe .<i[Xu(A * B) = X.(A)X.(B)], 

(XO(S) = 2ft and V ... o[X.(S) = O])<::>S = Sn. 

The result of Lemma 5.3.1 (where we now have q = 2) can be written as 

(7.2.15) 

From this it follows that if w(u) = x 
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(7.2.16) 

(Cf. (1.2.15).) 

Let C be a code. We consider the numbers 

Cj := /Crt L X.(C)· 
.e fj 

We have seen these numbers before. If C is a linear code, then the proof of 
Theorem 3.5.3 shows us that Cj is the number of words of weight j in Cl.. If 
C is not linear, we can still consider the numbers Cj and continue the proof 
of Theorem 3.5.3 to find that 2-n / C/ Lj=o Cj (1 - zY(1 + zrj is the weight 
enumerator of C. This relation between the weight enumerator and the num­
bers Cj ' defined with the aid of X, is a nonlinear form of the MacWilliams 
relation. 

We now define a secQnd sequence of numbers, again using the character X. 

(7.2.17) Definition. The characteristic numbers Bj (0 :=;; j :=;; /1) of the code Care 
defined by 

Hj:= /C/-2 L Ix.(CW. 
Refj 

As before we see that Bj is the number of words of weight j in the code Cl. 
if C is a linear code. Let N(C):= {j/1 :=;; j :=;; n, Hj i= OJ. We define the charac­
teristic polynomial Fc of the code C by 

Fdx):= 2n lC/-l n (1 - ~). 
jeN(C) } 

(7.2.18) 

(7.2.19) Theorem. Let 1X0, lXI' .•• , IXn be the coefficients in the Krawtchouk 
expansion oj Fc. Then in .s;I we have 

~ lXi l'i * C = Sn· 

PROOF. Let u E 9t, w(u) = j. By (7.2.13) and (7.2.15) we have 

Xu(~ lXi l'i * C) = X.(~ IXi l'i)X.(C) = X.(C) L IXiKi(j) = Xu(C)Fdj)· 

If u i= 0 the right-hand side is 0 by definition of Fc. If u = 0 then the right­
hand side is 2n. The assertion now follows from (7.2.14). 0 

(7.2.20) Corollary. IJ 1X0, IX 1, ... , IXn are the coefficients in the Krawtchouk 
expansion oj Fc and U E !Jf then 

• L lXiB(u, i) = 1. 
i=O 

PROOF. Apply (7.2.9). o 
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(7.2.21) Definition. The number s := IN{c)1 is called the external distance of 
C. 

Note that if C is linear, then s is the number of nonzero weights occurring 
in Col. The somewhat strange name is slightly justified by Corollary 7.2.20 
which shows that the covering radius p(C) of a code (see (3.14» is at most 
equal to s. 

§7.3. Uniformly Packed Codes 

In this section we consider codes which are generalizations of perfect codes 
(cf. (S.l.S». Note that if C is a perfect e-error-correcting code, then in .!II 
we have Se. C = Sn. We now consider codes C with d ~ 2e + 1 and p{ C) = 
e + 1. (If d = 2e + 3 then this means that C is perfect.) The spheres with 
radius e - 1 around co~ewords are disjoint and each word not in one of these 
spheres has distance e or e + 1 to at least one codeword. 

(7.3.1) Definition. A code C with p(C) = e + 1 and d ~ 2e + 1 is called 
uniformly packed with parameter r if each word u with p(u, C) ~ e has dis­
tance e or e + 1 to exactly r codewords. 

Note that if r = 1, then C is a perfect (e + I)-error-correcting code. Of 
course a word u with p{u, C) = e has distance e to exactly one codeword. Let 
p{u, C) = e + 1 and w.l.o.g. take u = O. Then the codewords with distance 
e + 1 to u have weight e + 1. Since they must have mutual distances ~ 
2e + 1, it follows that 

(7.3.2) 
n 

r::;; e + 1· 

We now assume that e + 1 does not divide n + 1. A code for which r = 
Ln/(e + I)J is called nearly perfect. It is easy to check that this means that C 
satisfies the Johnson bound (S.2.16) with equality. In a paper by J.-M. Goe­
thals and H. C. A. van Tilborg [2S], (7.3.1) is generalized by replacing r by 
two numbers depending on whether p(u, C) = e or e + 1. 

(7.3.3) Theorem. A code C with p(C) = e + 1 and d ~ 2e + 1 is uniformly 
packed with parameter r iff in .!II we have 

{YO$ Y1 $ ... $ Ye- 1 E9~(l~$ Ye+d}. C = Sft· 

PROOF. This follows from (7.2.2), (7.2.9) and (7.3.1). 0 

(7.3.4) Theorem. A code C with p(C) = e + 1 and d ~ 2e + 1 is uniformly 
packed with parameter r iff the characteristic polynomial has degree s = e + 1 
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and Krawtchouk coefficients 

IXO = 1X1 = ... = 1X.-1 = 1, 

PROOF. 

IX. = 1X.+1 = -. 
r 

(i) The if part follows from Theorem 7.2.19 and Theorem 7.3.3. 

119 

(ii) Let C be uniformly packed. We know that Fc has degree s ~ e + 1. Let 
F(x) := Lf~J lXiKi(X) with lXo = 1X1 = ... = 1X.-1 = 1, IX. = (.'(.+1 = l/r. If 
U E Bl, w(u) = j =F 0 and lu(C) =F 0, then F(j) = 0 by (7.2.13), (7.2.14), 
(7.2.15) and Theorem 7.3.3. Then by (7.2.18) it follows that Fdx) divides 
F(x). Hence s = e + 1 and F(x) = aFdx) for some a. Substituting x = 0 
we find a = 1 (again using Theorem 7.3.3). 0 

The following is a different formulation of Theorem 7.3.4. 

(7.3.5) Theorem. If a uniformly packed code C with p(C) = e + 1 and d ~ 
2e + 1 exists, then the polynomial 

.-1 1 
F(x):= L Ki(X) + - [KAx) + K'+l (x)] 

i=O r 

has e + 1 distinct integral zeros in [1, nJ and F(O) = 2ft ICl-1• 

First observe that if C is a perfect code, i.e. d = 2e + 3, then r = 1 and 
F(x) = 'I'.+l(X) by (1.2.15) and Theorem 7.3.5 is Lloyd's theorem (7.1.8). 

Next we remark that the requirement about F(O) can be written as 

(7.3.6) { .-1 (n) 1 (n + I)} ICI L . + - 1 = 2n, 
i=O Ire + 

which is (3.1.6) ifr = 1, resp. (5.2.16) ifr = Ln/(e + 1)J. 
In fact (7.3.6) is true in general if we interpret r as the average number of 

codewords with distance e or e + 1 to a word u for which p(u, C) ~ e. 
In general it is not easy to check if a given code is uniformly packed using 

the definition. 
We shall now consider a special case, namely a linear code C with e = 1. 

In order for C to be uniformly packed, the characteristic polynomial must 
have degree 2 (by Theorem 7.3.4). We have already remarked that this means 
that in Cl. only two nonzero weights WI and W2 occur. Now suppose that Cl. 
is such a two-weight code with weight enumerator 

AC1(z) = 1 + N1zwI + N2 z W 2. 

Consider the MacWilliams relation (cf. Section 7.2) and substitute 
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for (1 + z)"-%(1 - z)% (cf. (1.2.3)). Since we have assumed that C has minimum 
distance d ~ 3, we find three equations from the coefficients of zo, Zl, Z2, 

namely 
1 + N1 + N2 = 2"ICI-I , 

Kk(O) + N1 Kk(W1 ) + N2 Kk(w2 ) = 0, (k = 1, 2). 

By definition we have Fdwd = Fdw2) = 0 and FdO) = 2"ICI-l . For the coef­
ficients oco, OC l , OC2 in the Krawtchouk expansion of Fdx) we then find, using 
(1.2.7) 

(i = 1,2). 

We compare these equations with the equations for Nl and N2 • This shows 
that OCo = 1. We define 

r:= 2(n + l)w1 - 2wf - tn(n + 1). 

It then follows that OC I = oc2 = l/r if WI + W2 = n + 1. We have thus proved 
the following characterization of l-error-correcting uniformly packed codes. 

(7.3.7) Theorem. A linear code C with p(C) = 2 and d ~ 3 is uniformly packed 
iff Col is a two-weight code with weights WI' W2 satisfying WI + W2 = n + 1. 

In [25] it is shown that if we adopt the more general definition of uniformly 
packed codes, we can drop the restriction WI + W2 = n + 1. The theorem is 
also true for e > 1 with e + 1 weights in Col instead of two. 

§7.4. Examples of Uniformly Packed Codes 

(7.4.1) A Hadamard code (cf. Section 4.1) 

Consider the (12,24,6) Hadamard code. Puncture the code to obtain the (11, 
24,5) code C. It is obvious that any word z can have distance 2 or 3 to at most 
four codewords and if this happens we have the following situation (after 
changing back to ± notation and suitable multiplications of columns by - 1): 

Z= -- +++ +++ + + +, 

Xl = + + +++ +++ + + +, 

X2 = -- +++ + + +, 

X3 = -- +++ + + +, 

X4 = -- +++ +++ 
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This would mean that the original Hadamard matrix of order 12 had the four 
rows (+, XI)' (-, X2), (-, X3), (-, x4)· The row vector (-4, -4, -4,0,0, 
... , 0) is a linear combination of these four rows and must therefore be 
orthogonal to the remaining rows of the Hadamard matrix, which is clearly 
impossible. It follows that a word z has distance 2 or 3 to at most three 
codewords. From (7.3.6) it follows that the average number of codewords with 
distance 2 or 3 to a word z with p(z, C) > 1 is three. Hence this number is 
always three. So C is uniformly packed with r = 3. In this example C is 
nonlinear. 

Note that in this example, e + 1 divides n + 1. So (7.3.6) holds but is not equal 
to (5.2.16). This is not a nearly perfect code. 

(7.4.2) A Punctured RM Code 

Let V be the six-dimensional vector space over !F2' Let W be the set of 35 
points x in V\ {O} on th~ quadric with equation XI X2 + X3X4 + XSX6 = O. We 
take these vectors as columns of a 6 by 35 matrix G. As in Section 4.5 we see 
that the ith row of G is the characteristic function of the intersection of Wand 
the hyperplane with equation Xi = 1 (1 :s; i :s; 6). Hence the weight of a linear 
combination aT G (a E V) is the number of solutions of 

W.l.o.g. we may take al = 1 (unless a = 0). By substitution and the affine 
transformation 

(which is invertible) we see that we must count the number of solutions of the 
equation 

(1 + a2 + a3 a4 + aSa6)Y2 + Y3Y4 + YSY6 = O. 

If the coefficient of Y2 is 1 this number is 16, if it is 0 the number of solutions 
is 20. Therefore the code C which has G as parity check matrix has a dual Cl. 
which is a two-weight code with weights 16 and 20. The code C has d ~ 3 
since it is projective. By the remark following (7.2.21) we have p(C) = 2. So 
by Theorem 7.3.7, C is uniformly packed with r = 10 (by (7.3.6». The same 
method works in higher dimensions. 

(7.4.3) Preparata-codes 

In 1968, F. P. Preparata [57] introduced a class of nonlinear double-error­
correcting codes which turned out to have many interesting properties. His 
definition was based on a combination of Hamming codes and 2-error­
correcting BCH codes. The analysis of the codes involves tedious calculation 
(cf. [11]). The following description of the Preparata codes is due to R. D. 
Baker, R. M. Wilson and the author (cr. [72]). 
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In the following m is odd (m ~ 3), n = 2m - 1. We shall define a code 9 of 
length 2n + 2 = 2m+l. The words will be described by pairs (X. Y), where 
Xc 1F2m and Y C 1F2m. As usual, we interpret the pair (X. Y) as the corre­
sponding characteristic function, which is a (0, I)-vector oflength 2m+l. 

(7.4.4) Definition. The extended Preparata code 9 of length 2m+l consists of 
the codewords described by all pairs (X. Y) satisfying 

(i) IXI is even. I YI is even. 

(ii) Lxex x = LyeYY, 

(iii) LxexX3 + (LxexX)3 = Lyeyy3. 

The code 9 is obtained by leaving out the coordinate corresponding to the 
zero position in the first half. 

We first show that 9 has 22n- 2m words. We can choose X, satisfying (i) in 
2n ways. Next, we observe that since m is odd the minimal polynomial m3(x) 
for 1F2m has degree m. Therefore the BCH code of length 1'1 and designed 
distance 5 has dimension n - 2m. This in turn implies that for a given X the 
equations (ii) and (iii) have 2n- 2m solutions Y c IFtm. We can add the zero 
element to this Y if necessary to satisfy (i). This proves our assertion. 

The next claim is that 9 has minimum distance 6. From (7.4.4)(i) we see 
that the minimum distance is even and also that if (X, Y) satisfies the condi­
tions. then so does (Y, X). Suppose we have two words (X, Yl) and (X, Y2 ) and 
let Y:= Yl b" Y2 • Then from (7.4.4)(ii) and (iii) we find that 

L Y = L y3 = 0, 
)'eY yeY 

i.e. I YI ~ 5 by the BCH bound. So in this case the two words have distance 
~ 6. It remains to consider the possibility (Xl' Yl ), (X2 , Y2 ) with 

IXl b" X 21 = I Yl b" Y21 = 2. 

Let Xl b"X2 = {a, p}, Yl b" Y2 = {y, c5} and let s + a be the sum of the 
elements in Xl' Then (7.4.4)(ii) and (iii) imply 

a + p = y + c5, 

s2(a + p) + s(a + P)2 = y3 + c53. 

From these we find (s + y)3 + (s +(5)3 = 0, i.e. y = a, a contradiction. This 
proves our claim. We have proved the following theorem. 

(7.4.5) Theorem. The Preparata code flJ of length 2m+l - I (m odd, m ~ 3) has 
191 = 2K, where k = 2m+l - 2m - 2, and minimum distance 5. 

From (7.3.6) we find that the average value of r for the code 9 is 
(2m+l - 1)/3 and then (7.3.2) implies that r is constant and equal to 
(2m+l - 1)/3, i.e. 9 is nearly perfect. 
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If we take m = 3 in (7.4.4) then we find the Nordstrom-Robinson code 
which was introduced in Section 4.4. 

Remark. The exponents 3 in (7.4.4)(iii) are not essential. We can replace 3 by 
s:= 2' + 1, where we require that x - X S and x - xs- 2 are 1-1 mappings of 
IFm to itself. The first part of the argument concerning minimum distance is 
then replaced by one involving Theorem 6.6.3. We leave this as an easy 
exercise for the reader. 

Observe that the code satisfying only (i) and (ii) in (7.4.4) is the extended 
Hamming code of length 2m+1. From this and a counting argument it follows 
that if we take &J and adjoin to it all words at distance 3 to .9, we obtain the 
Hamming code oflength 2m+ 1 - 1. In Theorem 7.4.6 we give a direct construction. 

(7.4.6) Theorem. The union o/the Preparata code g; o/length n = 2m+1 -1 (m 
odd) and the set o/words with distance 3 to g; is the Hamming code o/length n. 

PROOF. Since g; satisfies (5.2.16) with equality, we know that there are 19;1 . "~I 
words with distance 3 to @. Hence the union C has 2,,-m-1 words, which is the 
cardinality of the Hammin....1. code of length n. 

We now define Co := g;andfora elF;"', wedefineCa to be the code obtained 
by adding the word corresponding to ({O, a}, {O, aD to the words of Co. Clearly, 
each Ca has only even weight vectors. If weight 2 would occur, then Co would have 
a word corresponding to X = {O, a}, Y = {O, a, {3, y}, contradicting (li) in (7.4.4). 
So, each Ca has minimum weight 4. From the proof of Theorem 7.4.5, it follows 
that the Ca are pairwise disjoint (a e IF := 1F2"')' We claim that H := UaeFCa is 
linear. To show this, using (7.4.4) (iii), comes down to solving an equation of type 
x3 = a, which is possible since m is odd. From the parameters and the linearity 
we conclude that H is the extended Hamming code of length n + 1. This proves 
the assertion about C. 0 

Note that it follows from Theorem 7.4.6 that the linear span of the Preparata 
code is contained in the Hamming code. 

§7.S. Nonexistence Theorems 

It was shown by A. Tietiiviiinen [68] and 1. H. van Lint [41] that the Golay 
codes are the only nontrivial e-error-correcting perfect codes with e > lover 
any alphabet Q for which IQI is a prime power. For e > 2 the restriction on 
Q can be dropped as was shown by M. R. Best [7] and Y. Hong [74] but that 
is much more difficult to prove. For e = 1 we have seen the Hamming codes. 
There are also examples of nonlinear perfect codes with e = 1 (cf. (7.7.4». 

In 1975 Van Tilborg [69] showed that e-error-correcting uniformly packed 
codes with e > 3 do not exist and those with e ~ 3 are all known. In this 
section we wish to give some idea of the methods which were used to establish 
these results. It suffices to consider the binary case. 
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(7.5.1) Theorem. If C is a perfect e-error-correcting binary code with e> 1, 
then C is a repetition code or the binary Golay code. 

PROOF. By Lloyd's theorem (7.1.8) the polynomial 'lie has zeros Xl < Xl < 
... < Xe which are integers in [1, n]. By the definition of 'lie and (1.2.8), the 
elementary symmetric functions of degree 1 and 2 of the zeros are known: 

(7.5.2) 
e 1 
,~ X, = 2e(n + I), 

(7.5.3) 
1 

~ X,Xj = 24 e(e - 1){3n2 + 3n + 2e + 2}. 

Observe that (7.5.2) also follows from (1.2.2) which also shows that 

(7.5.4) Xe-i+l = n + 1 - X,. 

From (7.5.2) and (7.5.3) we find 

(7.5.5) eel {2e - I} L L(x,-xY=-e2(e-l) n--- . 
'=1 j=l 2 3 

To find the product of the zeros, we calculate 'Pe(O). From (1.2.1) we find 

'I' e(O) = D=o (;). Combining this with (3.1.6) and (1.2.8), we find 

(7.5.6) 
e n x, = e!2', 

'=1 
(for some integer 1). 

In a similar way we calculate 'l'e(1) and 'l'e<2), which leads to 

e 

(7.5.7) n (x, - 1) = re(n - l)(n - 2) .. . (n - e), 
'=1 

e 
(7.5.8) n (XI - 2) = re(n - 1 - 2e)(n - 2)(n - 3) .. . (n - e). 

'=1 
We now draw conclusions about Xl' X2, ... , Xe from these relations. Let 

A(x) denote the largest odd divisor of x. Then (7.5.6) shows that 

e n A(x,) = A(e!) < e!. 
'=1 

This implies that there must be two zeros x, and Xj such that A(x,) = A(x) 
(i < j). Hence 2x, ~ Xj and therefore 2Xl ~ Xe and then (7.5.4) implies 

(7.5.9) Xe - Xl ~ t(n + 1). 

If we fix Xl and X e, then the left-hand side of (7.5.5) is minimal if X2 = 
X -"'-x _l(x +x) 3 - - e-l - 2 1 e . 

Substitution of these values in (7.5.5) leads to 

(7.5.10) (Xe - Xl)l ~ ~e(e -l)(n _ 2e; 1). 
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which we combine with (7.5.9). The result is 

(7.5.11) n + 1 5 ieee - 1). 

Now consider (7.5.7) and (7.5.8). Since (x - l)(x - 2) is always even if 
x EN, we find 

(7.5.12) (n - 1 - 2e)(n - l)(n - 2)2(n - 3)2···(n - e)2 == 0 

This is a triviality if e = ten - 1), i.e. C is the repetition code. Suppose 
e < ten - 1). Let 2" be the highest power of 2 in any factor n - j on the 
left-hand side of (7.5.12), including n - 1 - 2e. Then the highest power of 2 
that divides the left-hand side of (7.5.12) is at most 23,.+2e-3, which implies 
that <X ~ te + 1. 

Hence 

(7.5.13) 

If e is large then (7;5.13) contradicts (7.5.11). Small values of e which by 
(7.5.11) imply small values of n are easily checked. In fact,if we are a little 
more accurate in estimating n, there are only very few cases left to analyze. It 
turns out that e = 3 is the only possibility. Actually e = 3 can be treated 
completely without even using Lloyd's theorem. This was shown in Problem 
3.7.1. 0 

The reasoning used to show that all uniformly packed codes are known 
(i.e. those satisfying (7.3.1» follows the same lines but a few extra tricks are 
necessary because of the occurrence of the parameter r. 

(7.5.14) Theorem. Table 7.5.18 lists all uniformly packed codes. 

PROOF. We start from the generalization of Lloyd's theorem, i.e. Theorem 
7.3.5. In exactly the same way as we proved (7.5.10) resp. (7.5.13), we find 

(7.5.15) ( n + 1)112 
x e+l - Xl 5 (e + 1) -2- , 

(7.5.16) 

The argument which led to (7.5.9) has to be modified. We number the zeros 
in a different way as Ylo ... , Ye+l, where Yj = A(Yj)2"j and <Xl 5 <X2 5 ... 5 
<Xe+1' On the one hand we have (writing (a, b) for the g.c.d. of a and b): 

Ii IYi - Yi+ll ~ Ii (Yi' Yi+l) = n (A(Yi), A(Yi+1»2'" 
i=1 Yi i=1 Yi i Yi 

~ Ii _1_ ~ 1 A(ICI) 
i=l A(Yi) A(Yl" ·Ye+d A(r)A«e + 1)!) 

1 
> . 
- rA«e + I)!) 
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Here, the last equality follows from (7.3.6). On the other hand, we have 

Ii !Yi - Yi+l! ~ (Xe+l - xd ~ n(X.+1 - Xl)' 

i=1 Yi YI" ·Y. X1X2··· X.+l 

= n(xe+l - X de. 2e+1 ! C! 
r(e + I)! 2n 

Combining these two inequalities we find 

(e + I)! 1 2n 

(Xe+l - X de ~ A«e + I)!)' 2e+1 • n! C! 

(e + I)! lIe (n) (e + I)! 1 1 (n) 
~ A«e + I)!)' 2e+1 'n i~O i ~ A«e + I)!) 2e+1 n e ' 

and hence 

e (e + 1) 1 . 
(7.5.17) (Xe+1 - xd ~ A«e + 1)1) 2e+1 (n - l)(n - 2) . .. (n - e + 1). 

We now compare (7.5.15), (7.5.16) and (7.5.17). If e ~ 3 only a finite number 
of pairs (e, n) satisfy all three inequalities. The cases e = 1 and e = 2 can easily 
be treated directly with Theorem 7.3.5. As a result finitely many cases have 
to be analyzed separately. We omit the details (cf. [69J). As a result we find 
the codes listed in the table below. 0 

(7.5.18) Table of all Perfect, Nearly Perfect, and Uniformly Packed Binary 
codes 

e n Ie! Type Description 

0 n 2" perfect {O, I}" 
2m - I 2n- m perfect Hamming code (and others) 
2m - 2 2"-m nearly perfect shortened Hamming code 

(cf. (7.7.1) 
1 22m- I ± 2m- I - 1 2"-2m uniformly packed cf. (7.4.2) 
2 22m - 1 2"+1-4m nearly perfect Preparata code 
2 22m+1 - 1 2"-4m-2 uniformly packed BCH code (cf. (7.7.2)) 
2 11 24 uniformly packed cf. (7.4.1) 
3 23 212 perfect Golay code 
e 2e + 1 2 perfect repetition code 
e e 1 perfect {O} 

(Here the entries "Hamming code" and "Preparata code" are to be interpreted 
as all codes with the same parameters as these codes.) 
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§7.6. Comments 

Perfect codes have been generalized in several directions (e.g. other metrics 
than Hamming distance, mixed alphabets). For a survey (including many 
references) the reader should consult [44]. 

A modification of Tietiiviiinen's nonexistence proof can be found in [46], 
also many references. 

The most complete information on uniformly packed codes can be found 
in [69]. For connections to design theory we refer to [11] and [46]. 

The problem of the possible existence of unknown 2-error-correcting codes 
over alphabets Q with IQI not a prime power seems to be very hard but 
probably not impossible. The case e = 1 looks hopeless. 

Many of the ideas and methods which were used in this chapter (e.g. 
Section 7.2) were introduced by P. Delsarte (cf. [18]). 

§7.7. Problems 

7.7.1. Show that the [2m - 2, 2m - m - 2] shortened binary Hamming code is nearly 
perfect. 

7.7.2. Let C be the binary BCH code of length n = 22m+1 - 1 with designed distance 
5. Show that C is uniformly packed with parameter r = t(n - 1) by explicitly 
calculating the number of codewords with distance 3 to a word u with 
p(u, C) ~ 2. 

7.7.3. Show that there is a nearly perfect code C for which C is the Nordstrom­
Robinson code. 

7.7.4. Let H be the [7,4] binary Hamming code. Define f on H by f(O) = 0, f(c) = 1 
if c # O. Let C be the code of length 15 with codewords 

(x, x + c, it Xi + f(C»), where C E H, x E fi. 

Show that C is perfect and C is not equivalent to a linear code. 

7.7.5. Show that a perfect binary 2-error-correcting code is trivial. 

7.7.6. Let C be a uniformly packed code of length n with e = 1 and r = 6. Show that 
n = 27 and give a construction of C. 

7.7.7. In (3.3.3) we saw that the lines ofPG(2,2) generate the [7,4] Hamming code. The 
extended code is an [8,4,4] code. One might hope that by using PG(2, q), one could 
find a code C of length q2 + q + 2 over f q with d = 4 and I C I = qn-4. This would in 
fact be an example of a uniformly packed code in the more general sense (as treated 
in [25]). Consider the case q = 3, ICI = 310. Show that such a code does not exist 
Hint Cotintin two ways the pairs (x, c) with x E f~4, C E C, d(x, c) = 2. Calculate 
A4• Then calculate As. 

7.7.8. Consider the alphabet 7Lm (m odd) with Lee distance. Construct a perfect single­
error-correcting code oflength n = ~(m2 - 1). 



CHAPTER 8 

Codes over Z4 

§8.1. Quaternary Codes 

In 1994 it was shown (see [88], which we use as guideline for this chapter) that 
several well known good binary codes can be constructed by first constructing a 
code over the alphabet 7L4 and then mapping the coordinates to 7L~. We first study 
codes over 7L4 in general. 

(8.1.1) Definition. If C is an additive subgroup of 7L:, then we shall call C a linear 
block code of length n over 7L4 or a quaternary code. 

Although C is a 7L4-module and not a vector space, we follow the terminology 
of coding theory and misuse the word "linear". 

The inner product {a, b} of two words in 7L: is defined in the usual way. We can 
then define the dual code C.l. in the same way as in (3.2.4). 

As usual, we call two codes equivalent if one can be obtained from the other 
by a permutation of coordinate positions. Sometimes this definition is extended by 
also allowing a change of signs in some positions; (this interchanges the symbols 1 
and 3). 

In generalizing the concept of generator matrix, we have to be careful. We first 
give an example. 

(8.1.2) EXAMPLE. Consider the additive subgroup of 7L! consisting of all the words 
(x, x, x) and (y, y + 2, y + 2), (x, y E 7L4). We can consider this quaternary code 
as the set of linear combinations a(1, 1, 1) + b(O, 2,2), where a E 7L4 and bE 7L2 , 

(addition mod 4). 
In general, a quaternary code is a direct product of subcodes of order 4 or 2 

(additive cyclic groups of order 4 or 2). This means that there is an equivalent code 
with generator matrix of the form 
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(8.1.3) 

where the entries in A and C are 0 or 1, and those in B are in 7L4• A codeword has 
the form aG, where al to akl are in 7L4 and akl+1 to akl+k2 are in 7L2. The dual code 
C.l has a generator matrix of the form 

(8.1.4) 
._ (_BT _ C T AT CT 

H .- 2AT 21 
k2 

Following the treatment of linear codes in Chapter 3, we now should look at 
weight enumerators. As a preparation for this chapter, these were treated in §3.6. 
We introduced the symmetric weight enumerator of a code in 7L~ and the Lee weight 
enumerator. The important result was the fact that the Lee weight enumerators of a 
code and its dual satisfy the MacWilliams relations. 

§8.2. Binary Codes Derived from Codes over £:4 

There is a natural mapping ¢ from 7L4 to 7L;, mapping Lee distance in 7L4 to Hamming 
distance. It is 

¢(O) = (0,0), ¢(1) = (0, 1), ¢(2) = (1, 1), ¢(3) = (1,0). 

We now extend this to codes in 7L~. To make future notation easy, we introduce three 
functions from 7L4 to 7L2 as follows. 

i E 7L4 aCi) fi(i) YCi) 

0 0 0 0 
1 0 1 

2 0 1 
3 0 

Note thati written in the binary system with most significant digit first is (fi(i), a(i». 
Furthermore YCi) = aCi) + fiCi). The map ¢ defined above is generalized to 7L~ in 
the obvious way. 

(8.2.1) Definition 
¢(e) := (fi(e), y(e», (e E 7L~). 

This map is called the Gray map and for a quaternary code C, the code C' := ¢(C) 
is called the binary image of C. Such a binary code is called 7L4-linear. In the 
following, C' will always denote the binary image of a quaternary code C. 

(8.2.2) EXAMPLE. Consider the quaternary code C of length 3 generated by (1,1,3) 
and (0,2,2). (These are then the rows of G in (8.1.3) with kl = k2 = 1.) The 
contribution of the first row to the binary image are the linear combinations of 
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(001110) and (110001). The second row only contributes (011011). Finally, we 
have linear combinations of these. So in this case, the binary image C' is a linear 
code with generator 

(
1 1 1 1 1 1) 
011011. 
o 0 1 1 1 0 

By comparing with this example, the reader can check that if C is a quaternary 
code with generator as in (8.1.3), and ifits binary image C' is a binary linear code, 
then C' has generator matrix 

(8.2.3) 
A a(B) Ikl 

h2 C 0 
o P(B) hi 

a(B») 
h2 C . 
A y(B) 

A 

In general, C' will not be linear because ¢ is not a linear map. The most important 
fact for us is that the map t/> preserves distance, i. e. the Lee distance of two codewords 
in C equals the Hamming distance of their images. 

One of the reasons for the interest in codes over 7L4 was the fact that they gave 
the explanation for a remarkable "coincidence". A Kerdock code and a Preparata 
code of the same length are both nonlinear. Their distance enumerators satisfy 
the MacWilliams relations. In other words: they are trying to be duals although 
this concept does not make sense for nonlinear codes. We are on our way to the 
explanation. Both these codes are binary images of quaternary codes that are indeed 
each others dual. We therefore define 7L4-duality as follows. 

(8.2.4) Definition. If C is a quaternary code and C.i is its dual code, then C' = ¢ (C) 
and (C.i)' := ¢(C.i) are called 7L4-duals. 

From the fact that C is linear, it follows that its binary image C' is distance 
invariant. 

(8.2.5) Theorem. If C and C.i are dual quaternary codes, then the weight distri­
butions of their binary images C' and (C.i)' satisfy the MacWilliams relations of 
Theorem 3.5.3. 

PROOF. We have observed that the Hamming weight of ¢(c) equals WL (c). The code 
C' has length 2n if C has length n. So, from (3.6.3) and Theorem 3.6.8 we indeed 
find 

1 
Ham(cLY(x, y) = IC'IHamc'(x + y, x - y). D 

We shall now establish a necessary and sufficient condition for a binary code to 
be the binary image of a quaternary code. First, observe that¢(-c) = (y(c), P(c». 
This implies that a 7L4-linear code is fixed by the permutation a given by (I, n + 1) 
(2, n+2) . .. (n, 2n). This permutation interchanges the left and right halves of each 
codeword. 
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(8.2.6) Lemma. For all a, b E Z: we have 

</J(a + b) = </J(a) + </J(b) + (</J(a) + cr (</J (a))) (</J (b) + cr(</J(b))). 

PROOF. This follows from the following facts : 

(1) a(a) + {3(a) + y(a) = 0; 

(2) a(a)a(b) = 1 iff a and b are odd; 

(3) {3(a+b) = {3(a) + {3(b) +E, where E = liff a andb are both odd (0 otherwise), 
and y satisfies the same relation. 

o 

(8.2.7) Theorem. A binary, not necessarily linear code of even length is Z4-linear 
iff it is equivalent to a code C for which 

a, bE C =? a + b + (a + cr (a»(b + cr(b» E C. 

PROOF. This follows immediately from Lemma 8.2.6. o 

(8.2.8) EXAMPLE. Consider the first order Reed-Muller code n(l, m) of length 
2m • Every codeword has the form a = (x, x + E), where E = 0 or 1 (oflength 2m- I ). 

If b = (y, y + E') is a second codeword, then (a + cr(a»(b + cr(b»= 0 or 1 and 
hence by Theorem 8.2.7, n(l, m) is Z4-linear. If we take the example m = 3, then 
the corresponding quaternary code has generator 

(1 1 1 1) 
G:= 0 2 0 2 . 

002 2 

From G and (8.1.3), we find the standard basis vectors ofn(l, 3). 

We now consider binary linear codes that are images of quaternary codes. The 
following statement is a direct consequence of Theorem 8.2.7. 

(8.2.9) Corollary. The binary image </J (C) of a quaternary code is linear iff 

a, b E C =? 2(a(a)a(b» E C. 

PROOF. By two applications of Lemma 8.2.6, we find 

</J(a + b + 2(a(a)a(b))) = </J(a) + </J(b). o 

This means that the word with 2s in the positions where both a and b have odd 
entries, and Os elsewhere, is in the code. 
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We shall now show that the extended Hamming code of length n = 2m is not 
1'4-linear for m ~ 5. 

(8.2.10) Theorem. The code R(m - 2, m) is not 1'4-linear for m ~ 5. 

PROOF. Suppose C is a quaternary code of length 2m- 1 that has the extended binary 
Hamming code Hm of length n = 2m as its binary image. Let G of (8.1.3) be the 
generator matrix of C. Call the upper part Gkl and the lower part 2Gk2 • Since Hm is 
an even weight code, Gkl has rows with an even number of odd entries. We define 

G~l := (hI A aCB». 

We shall study the binary code H' generated by G~I. Note that 2G~1 and 2Gk2 

generate the subcode of C consisting of the words with even coordinates only. 
Clearly kl + k2 :S 2m- 1 - 1. Since 2kl + k2 = 2m - m - 1, we see that H' has 
dimension at least 2m- 1 - m. 

From Corollary 8.2.9 it follows that if H I has words of weight 2, then the supports 
of these words are disjoint. We can take these words as basis vectors of the code 
and we may assume that the other basis vectors have supports disjoint from those 
of vectors of weight 2 (again because the intersection of the supports cannot be one 
point). If there are a words of weight 2, we delete these from G~l and puncture 
by the positions of these words. We find the generator of a binary code of length 
2m- 1 - 2a with dimension at least 2m- 1 - m - a and minimum distance 4. This 
contradicts the Hamming bound unless a = O. We have thus shown that H' is itself 
an extended Hamming code. Since Hamming codes are perfect, one easily sees that 
the words of weight 4 in an extended Hamming code form a 3 - (2m , 4, 1) design. 
For m ~ 4, this design has blocks that meet in one point (an easy calculation). This 
was excluded by Corollary 8.2.9, so we have a contradiction. This completes the 
proof. 0 

§8.3. Galois Rings over £:4 

We wish to generalize the concept of cyclic codes to codes over 1'4. To do this, we 
need some algebra. For cyclic codes oflength n over iF2 , we needed an extension 
field that contained an nth root of unity. The present situation is similar. We must 
consider an extension of 1'4 by an nth root of unity. We call such an extension a 
Galois Ring. 

We need some preparation on irreducible polynomials in 1'4[X]. Consider a 
polynomial f(x) in 1'2[X] and write this as f(x) = a(x2) - xb(x2) (where we use 
the minus sign because we will shortly do calculations over 1'4). Define the map </> 

by 
</>(f)(x) = F(x) := ±(a(x)2 - Xb(X)2) E 1'4[X], 

where the sign in ± is chosen in such a way that the coefficient of the highest power 
of x is 1. Note that </>(xn - 1) = xn - 1 if n is odd. Clearly the inverse mapping is 
f(x) == F(x) (mod 2). 
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It is a trivial calculation to check that ¢(fg) = ¢(f)¢(g). Since both ¢ and its 
inverse do not change the degree of a polynomial nor the coefficient of the highest 
power of x, irreducible polynomials correspond to irreducible polynomials. It fol­
lows that if xn -1 (wheren = 2m -1) can be written as a product 11 (x)lz(X) ... fz(x) 
of irreducible polynomials in Zz[x], then Fl (x)Fz(x) ... F/(x) , where F; := ¢(f;), 
is the (unique) factorization of xn - 1 in Z4[X]. An irreducible factor h(x) of degree 
m is called a basic primitive polynomial in Z4[X]. 

This method of lifting an irreducible polynomial in Zz [x] to an irreducible poly­
nomial in Z4[X] (with the map ¢) is known as Graeffe's method (see [100]). It is a 
special case of a result known as Hensel's lemma (see [94]). 

(8.3.1) EXAMPLE. Consider the primitive polynomial I(x) = x 3 + X + 1, a factor 
of x 7 - 1. With the notation used above, we have a(x) = 1 and b(x) = -1 - x, 

so F(x) = x 3 + 2xz + x-I == x 3 + X + 1 (mod 2). In this way we find the 
factorization 

x 7 - 1 = (x 3 4- 2xz + x - 1)(x3 - XZ + 2x - I)(x - 1), 

where the first two factors are basic primitive polynomials in Z4[X]. 

(8.3.2) Definition. The Galois Ring GR(4, m) is defined to be Z4[H where ~ is a 
zero of h(x) (so ~ is an nth root of unity; Z4[~] = Z4[X]/ (h(x)) ). 

Note that we again have 

h(x) = x 3 + 2xz + x-I = (x - ~)(x - e)(x _ ~4). 

Just as in Example 1.1.23, one can represent elements of GR(4, m) as polyno­
mials of degree < m in ~, with coefficients in Z4' 

(8.3.3) EXAMPLE. For GR(4, 3), generated by x 3 + 2xz + x-I, we have the 
following table for the set {O, 1, ~, ~z, ... , ~6}. Here 

z 
c= La;~;, 

;=0 

c ao al az 
0 0 0 0 
1 1 0 0 

~ 0 1 0 

e ° 0 1 

e 1 3 2 
~4 2 3 3 
~5 3 3 1 
~6 1 2 1 

Such a table does not tell us how to express elements of G R (4, m) that are not in 
the set 



134 8. Codes over 7L4 

7:= {O, 1,~, e, ... , ~n-l}. 
Observe that from the representation of ~i as polynomial of degree < m in ~, we 

see that 24i = 2 implies that ~i = 1, i. e. ~ = 1. Hence if t runs through 7, then the 
elements 2t are all different. 

Consider the 4m sums of the form a + 2b, where a and b are in the set 7. If 
a + 2b = a' + 2b', then 2a = 2a', so a = a', and then it follows that b = b'. 
Therefore the sums a + 2b are all different and hence represent all the elements of 
G R (4, m). The set 7 is the set of squares of elements of G R (4, m). 

To find the representation of a given element, we use the following lemma. 

(8.3.4) Lemma. We have 

PROOF. For k = 1, this is trivial. Squaring both sides, the result follows by induc­
tion. 0 

So, if c = a + 2b, a E 7, b E 7, then 

Therefore, the map T : c ~ a is given by 

(8.3.5) (c E GR(4, m), n = 2m - 1). 

Once a is known, b follows from c = a + 2b. 
Clearly T(cd) = T(C)T(d) and by Lemma 8.3.4 we have 

T(C + d) = T(C) + T(d) + 2(cd)2m-l. 

We can now describe the structure of the ring R := GR(4, m). The unique 
maximal ideal in R is the set 27. The product of any two elements in this set is 0 
(so in R there are zero divisors). The remaining set, R* := R\(27), consists of the 
invertible elements. They form a multiplicative group of order (2m - 1 )2m. This 
group is a direct product of the cyclic group H of order n generated by ~ and the 
group £ consisting of the elements of the form 1 + 2t, t E 7; (these are the principal 
units of R). 

To understand the structure of £, observe that if ti and tj are in 7, then ti + tj = 
aij + 2bij with aij E 7, bij E T. Therefore (1 + 2t;) (1 + 2t j) = 1 + 2aij. Furthermore, 
the additive representation of aij (as in the table of Example 8.3.3) is congruent mod 
2 to the sum of the representations of ti and tj. Indeed, mod 2 the elements in the 
table are the additive group of [F2"" So, £ is isomorphic to this group. Every element 
of R* has a unique representation of the form ~r (1 + 2t), 0 ~ r < n, t E 7. The 
elements with fixed r form a residue class of the ring R/(2R) = R/(27) and 27 
is the class corresponding to O. Let e be a zero of h2(x), i. e. a primitive element of 
[F2nl. We have already observed that the table for the values of ~r , taken mod 2, is the 
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addition table for !F2" with generator (). It follows that the map f..L that sends ~r to ()r 

and 0 to 0 is an isomorphism of the residue class ring R/(2T) onto the field !F2", 
Below, we shall need this isomorphism and the fact that 2~r = ~s implies that 

r = s. We shall need a number of results on dependencies among the powers ~r • 
We formulate these as a lemma. 

(8.3.6) Lemma. Let m 2: 2. Consider GR(4, m) = il4[~] with ~n = 1. (n = 
2m -1). We have 

(1) ±~j ± ~k is invertible for 0:::: j < k < n; 

(2) ~j - ~k =F ±~I for distinct j, k, 1 in [0, n - 1]; 

(3) ifm 2: 3 and i =F j. k =F lin [0, n - 1], then 

~i _ ~j = ~k _ ~I '* i = k and j = I; 

(4) ifm 2: 3, m odd, then· 

PROOF. (1) If ±~j ± ~k = 2>" for some>.. E R, then squaring both sides of the 
equation ±~j = =t=~k + 2>" yields j = k. 

(2) An equation of this kind can be reduced to 1 + ~a = ~b. Raise both sides to 
the power 2m and apply Lemma 8.3.4. We find 2~a.2"-1 = 0, a contradiction. 

(3) An equation of this kind can be reduced to 1 + ~a = ~b + ~c. Applying 
Lemma 8.3.4, we find 2(~a)2"-1 = 2(~b+c)2"-1 , so ~a = ~b+c. The equation becomes 
(~b _ 1)(~C - 1) = 0 and we are done by (1). 

(4) Here it is necessary to work in !F2'" We use the isomorphism f..L. If four 
powers of ~ add up to 0, there is a similar relation in which one of the powers is 1. 
Furthermore, since ~n = 1, we may assume that the other exponents are even. So 
we have 

~2a + ~2b = _~2c _ 1. 

Raising both sides to the power 2m and using Lemma 8.3.4, we find 

From this equation we cannot draw a conclusion in R but it does have an implication 
for !F2'" Apply the map f..L and write x := ()a, y := ()b, Z := ()c. From the last equation, 
we conclude thatx2+xy+y2 = z. The original equation impliesx2+y2+z2+ 1 = 0, 
and hence x + y = z + 1. From these two we find x2 + y2 = (x + l)(y + 1). We 
must show that this implies x = y = z, because that shows that a = b = c = O. 

Assume that x =F 1. Write x = u + 1, Y = ut + 1. We find the equation 
U 2(t 2 + t + 1) = O. Since u =F 0, we must have t 2 + t + 1 = 0, which contradicts 
the fact that m is odd. 0 
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§8.4. Cyclic Codes over 1:4 

In the same way as we did for IFq, we now study cyclic codes over ~4' Again, we 
identify a word c = (co, Cj, .•. , Cn-I) with the polynomial c(x) := Co + CIX + ... + 
Cn_IXn- 1 in the ring n := ~4[X]/(Xn - 1). Not everything generalizes! n is not 
a unique factorization domain, i. e. some polynomials in n can be written as a 
product of irreducible polynomials in more than one way. This will not influence 
our arguments. 

As usual, we define codes either by giving a generator matrix or a parity check 
matrix. These have a more compact form than those in §8.1 (as always with cyclic 
codes; now, elements of R are to be replaced by column vectors, corresponding 
to their representation of the type of Example 8.3.3). If we are interested in the 
extension of a code, we first add a column of O's to the parity check matrix and then 
a row of 1 'so This increases the length of the ~4-code by one, but the binary image 
becomes two symbols longer. 

(8.4.1) EXAMPLE. Consider the quaternary cyclic code C oflength n = 2m -1 with 
generator (2 2~ ~n-I). This is a trivial code, a binary code in disguise. 
All the codewords of the binary image have the form (c, c), where c is in the dual of 
the [2m - 1, 2m - m - 1,3] Hamming code. 

Next, consider the ~4-code with generator matrix 

G:= (~ 1 
2 

1 
2~ ~~-I) . 

Both C and C' have 2m+2 codewords. The binary image has length 2m+1 and is clearly 
the first order Reed-Muller code no, m + 1). We had already seen that this code is 
~4-linear in Example 8.2.8. 

We now come to the codes that caused the sudden surge of interest in codes over 
~4' Consider an extended cyclic ~4-code Cm of length n + 1 = 2m (m odd) with 
parity check matrix 

H.- (1 .- 0 
1 1 

~ 

~ is a primitive nth root of unity in GR(4, m). 

(8.4.2) Lemma. Cm has Lee distance d 2: 6. 

PROOF. The first row of H implies that every codeword in Cm has an even number 
of odd entries. Therefore it has even Lee weight. So, d is even. In the four cases 
below, we consider possible codewords with nonzero coordinates not in the initial 
position. For the corresponding situations, where there is a nonzero coordinate in 
front, similar equations with one term less have to be considered and we leave that 
to the reader. 

(1) If a codeword in Cm had Lee weight 2, the two nonzero coordinates would be 
1 and -1. Then the second row of H implies that there are i and j such that 
~i = ~j, which is false. 
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(2) If a codeword in Cm had Lee weight 4 and the nonzero coordinates were 1,1,2 
(or 3,3,2), we would have ~i + ~j = ±~k for some i, j, k. By Lemma 8.3.6 
(1), this is impossible. 

(3) If a codeword in C m had Lee weight 4 with two coordinates 1 and two coordinates 
3, there would be indicesi, j, k, 1 such that~i -~j = ~k _~l. By Lemma 8.3.6 
(3), this is impossible. 

(4) If a codeword of weight 4 existed with four equal nonzero coordinates, we would 
contradict Lemma 8.3.6 (4). 

The reader can now easily check the four other cases. This completes the 
proof. 0 

From H and (8.1.4), we see that Cm has 4n- m- 1 codewords. We now look at 
the binary image of Cm. It is a binary code of length 2m+1, cardinality 2k, where 
k = 2m+1 - 2m - 2 and it has minimum distance at least 6. From §7.4 we see that 
if we shorten this binary cope, we obtain a code of length 2m+1 - 1 with the same 
parameters as the Preparata code! So it is also a nearly perfect code and hence has 
the same weight enumerator as the Preparata code of the same length. The authors 
of [88] called C~ a ''Preparata'' code because it is not equivalent to the code of §7.4. 

Let us now consider the dual code C;. It has H as generator matrix. By Theorem 
8.2.5, the weight enumerators of the two binary images satisfy the MacWilliams 
relations. It was known that the weight enumerators of the Kerdock code and the 
extended Preparata code of the same length satisfy the MacWilliams relations; (this 
was the "coincidence" that has puzzled coding theorists for years). (For a proof 
see [46].) We now know that the binary code that is the image of the code over 
Z4 with generator H must have the same weight enumerator as a Kerdock code of 
that length. In [88] it is shown that the codes defined by Kerdock in [75] are in fact 
binary images of the Z4-codes we have discussed here. 

We give one example of a good binary code that is the binary image of a Z4-code 
that is cyclic but not linear. 

(8.4.3) EXAMPLE. Look at (11100) and its five cyclic shifts. When we compare 
two of these, we find three possibilities: (1) three odd-odd pairs and two even-even 
pairs, (2) four odd-even pairs and one odd-odd pair, (3) two odd-even pairs, two 
odd-odd, and one even-even. We now take this vector and three others, obtained 
by replacing 111 by 113 or some permutation, and 00 by 02, 20, or 22. We claim 
that the choice (11120), (31100), (13102), (11322) has the property that these four 
vectors, their negatives, and all the cyclic shifts form a Z4-code with Lee distance 4. 
When calculating Lee distance, an odd-even pair contributes 1, a pair with the same 
parity contributes 0 or 2. Our substitution guarantees that if there are two even-even 
combinations, then one contributes 2 to the distance or the other coordinates yield 
distance 6. A 1-3 pair also contributes 2 to the Lee distance. How could there be 
two codewords with Lee distance < 4? This can only happen if we have two words 
(010 02. 03, elo e2) and (e;. 0;. 0;. 0;. e;) (0 is odd, e is even), where 02 = 0;,03 = 0;, 
e2 = e;. From our choice, it is easy to see that only six pairs of words have to be 
checked to show that this does not happen. 
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Now consider the binary image of this code. It has 40 words, length 10, and 
minimum distance 4. Since it is known that the Best code of §4.4 is unique, this code 
must be equivalent to the Best code. This construction (cf. [83]) has the advantage 
that very few pairs of codewords have to be checked by hand. 

§8.5. Problems 

8.5. I. Construct a selfdual quaternary code of length 6. Show that such a code must contain 
the word (222222). Is the binary image of the code linear? Is it also selfdual? 

8.5.2. Prove that the Reed-Muller code R(2, m) is if4-linear. 

8.5.3. Let c =;i + 2;j be an element of GR(4, m). Determine its inverse. 

8.5.4. Consider the weight enumerator of the Nordstrom-Robinson code. Show that it is 
equal to its MacWilliams transform. 

8.5.5. Consider the Preparata code P of Theorem 7.4.5. Determine the number of words of 
weight 5, resp.6. Use this to find the weight enumerator of the extended Preparata 
code of length 16. 

8.5.6. Show that the first order Reed-Muller code is a subcode of the binary image of the dual 
of the code em of §8.4. 

8.5.7. Show that the code C~ and the code of (7.4.5) are not equivalent for m 2: 5. (Hint: 
show that the linear span of C~ has words of weight 2.) 



CHAPTER 9 

Goppa Codes 

§9.1. Motivation 

Consider once again the parity check matrix of a (narrow sense) BCH code 
as given in the proof of Theorem 6.6.2, i.e. 

H~ [j P p2 

PO-' ] p2 r p2(n-l) 

. , 

pd-1 P2(d-l) p(d-i)(n-l) 

where P is a primitive nth root of unity in IFq ... and each entry is interpreted as 
a column vector oflength mover IFq; existence of P implies that nl(qm - 1). 

In Theorem 6.6.2 we proved that the minimum distance is at least d by 
using the fact that any submatrix of H formed by taking d - 1 columns is a 
Vandermonde matrix and therefore has determinant =F O. Many authors have 
noticed that the same argument works if we replace H by 

[ 
hoPo h1Pl ... hn-l~n-l] 

fi = ho~g-l hl~t-l hn-1'P::f' 

where hi E IFq":.. and the Pi are different elements of IFq":...1f hj E IFq (0 ::;; j ::;; n - 1) 
then the factors hi have no essential effect; the code is replaced by an equiva­
lent code. However, if the hi are elements of IFq ... , then the terms hiP] considered 
as column vectors over IFq can be very different from the original entries. 

We shall consider two ways of generalizing BCH codes in this manner. 
That we really get something more interesting will follow from the fact that 
the new classes of codes contain sequences meeting the Gilbert bound where­
as long BCH codes are known to be bad. 
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§9.2. Goppa Codes 

Let (co, C I' •.. , cn- I ) be a codeword in a BCH code with designed distance 
d (word length n, p a primitive nth root of unity). Then, by definition 
L7':-6 Ci(Pj)i = ° for 1 ~ j < d. We wish to write this condition in another way. 
Observe that 

(9.2.1) 

It follows that 

(9.2.2) 
n-I Ci Zd-I p(z) 
L -P-;= n 1 

i=O Z - Z -

for some polynomial p(z). 
If g(z) is any polynomial and g(y) #- 0, we define 1/(z - 1') to be the unique 

polynomial mod g(z) such that (z - 1'). l/(z - 1') == 1 (mod g(z)), i.e. 

(9.2.3) _1_ =~. (g(Z) - g(y)). 
z - I' g(y) z - I' 

These observations serve as preparation for the following definition. 

(9.2.4) Definition. Let g(z) be a (monic) polynomial of degree t over IFqm. Let 
L = {Yo, 1'1' ... , Yn-d c IFqm, such that ILl = nand g(y;) #- ° for 0 ~ i ~ n - 1. 
We define the Gappa code r(L, g) with Gappa polynomial g(z) to be the set of 
codewords c = (co, C I' ... , cn-d over the alphabet IFq for which 

(9.2.5) 
n-I C. 

L -'- == 0 (mod g(z)). 
;=0 z - Yi 

Observe that Goppa codes are linear. 

(9.2.6) EXAMPLE. From the introductory remarks we see that if we take the 
Goppa polynomial g(z) = Zd-I and L:= {P-iIO ~ i ~ n - I}, where P is a 
primitive nth root of unity in IFqm, the resulting Goppa code r(L, g) is the 
narrow sense BCH code of designed distance d (cf. Problem 9.8.2). 

In order to establish the connection with Section 9.1, we try to find a suitable 
parity check matrix for r(L, g). From (9.2.5) and (9.2.3), we see that 

( 1 g(z) - g(yo) 1 g(z) - g(Yn-d) 
g(yo)· (z - Yo) , ... , g(Yn-I)· (z - I'n-I) , 

with each entry interpreted as a column vector, is, in a sense, a parity check 
matrix. Let hj := g(Yjfl and hence hj #- O. If g(z) = L:=o gizi, then in the same 
way as (9.2.1) we have 

g(z) - g(x) 

z-x 
" j i L. gi+j+1 X Z . 

i+j,;r-l 
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Leaving out the factors Zi, we find as parity check matrix for nL, g) 

[

hog, 

ho(g'-l + g,yo) 

hO(gl + g2'10 ~ ... + g,yr l ) 

h.-1g, J 
h,,-l (g'-I + g, Y.-l) 

hn-1(gl + g2Yn-:l + ... + g,y!=D 

By a linear transformation we find the matrix we want, namely 

... h,,-l J 

... h"-l:Y"-l 

h._1 Y!=~ 

(here we have used the fact that g, :f= 0). 
This does not have the full generality of the matrix fj of Section 9.1, where 

the hj were arbitrary, since we now have hj = g(Yj)-l. 

(9.2.7) Theorem. The Goppa code f(L, g) defined in (9.2.4) has dimension 
~ n - mt and minimum distance ~ t + 1.5. 

PROOF. This follows from the parity check matrix H in exactly the same way 
as for BCH codes. 0 

The example given in (9.2.6) shows that the BCH bound (for narrow-sense 
BCH codes) is a special case of Theorem 9.2.7. 

As a preparation for the generalization of these codes to codes on algebraic 
curves (see Chapter 10), we reformulate the definition of Goppa codes. Start with 
the field IF q"" Consider the vector space of all rational functions f (z) with the 
following properties : 

(i) fez) has zeros in all the points where g(z) has zeros, each with at least the 
same multiplicity as the zero of g(z), 

(ii) fez) has no poles, except possibly in some points Yo, YI, ... , Yn-I and in that 
case poles of order 1. 

A code over IFqm is defined by taking as codewords the n-tuples 

where the residue of fez) in a point Yi is defined in the usual way. The Goppa 
code f(L, g) is the subfield subcode (over IFq) of this code. 

Consider the parity check matrix H defined above. Compare the situation with 
Definition 6.8.2, where we take v := (ho, hl>"" hn- I ) and a := (Yo, YI> ... , Yn-I), 
k = t. We see thatH is thegeneratormatrixofthecodeGRSk(a, v). So the Goppa 
code f (L, g) is a subfield subcode of the dual of a generalized Reed-Solomon code. 
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We have thus seen that the codes, defined using polynomials as in Definition 
6.8.2, and the codes that we have defined here, using residues in first order poles, are 
dual codes. We shall encounter the same phenomenon in the chapter on algebraic 
geometry codes. 

§9.3. The Minimum Distance of Goppa Codes 

If we change our point of view a little, it is possible to obtain (9.2.7) in another 
way and also some improvements. As before, let fJi denote (lFq)" with Ham­
ming distance. Let L be as in (9.2.4). We define 

{
,,-I b· I } 9i*:= ~(z) = L _1- (bo, bl> ... , b,,-l) E fJi 
1=0 Z - 1'1 

and we define the distance of two rational functions ~(z), '1(z) by 

d(~(z), '1(z» := 1I~(z) - '1(z)II, 

where 1I~(z)11 denotes the degree of the denominator when ~(z) is written as 
n(z)/d(z) with (n(z), d(z» = 1. This is easily seen to be a distance function and 
in fact the mapping (bo, ... , b,,-d -+ Li':J bJ(z - 1'1) is an isometry from 9i 
onto 9i*. We shall use this terminology to study Goppa codes by considering 
the left-hand side of (9.2.5) as an element of fJi* (i.e. we do not apply (9.2.3)). 
If ~(z) = n(z)/d(z) corresponds to a nonzero codeword, then degree d(z) ~ deg 
n(z) + 1. The requirement ~(z) == 0 (mod g(z» implies that g(z) divides n(z), i.e. 
degree d(z) ~ t + 1. So we have 1I~(z)1I ~ t + 1, which is the result of Theorem 
9.2.7. 

If we write ~(z) as n(z)/d(z), where now d(z) equals the product of all n 
factors (z - )'i), then we can improve our estimate for the minimum distance if the 
degrees of n(z) and d(z) differ by more than 1. The coefficient of zn-l in n(z) is 
L;':;: bi • It follows that if we add an extra parity check equation L;':;: bi = 0, the 
estimate for the minimum distance will increase by 1 and the dimension of the code 
will decrease by at most 1. We can use the same idea for other coefficients. The 
coefficient of zn-s-l in the numerator n(z) is (_I)S L;':-~ bi L~:l.h ..... j, )'h)'h ... )'js 

(where L' indicates that jv ::f. i for v = 1,2, ... , s). This coefficient is a linear 
combination of the sums L;':;: bi)'ir (0 ~ r ~ s). It follows that if we add s + 1 
parity check equations, namely L;':;: by! = 0 (0 ~ r ~ s), we find a code with 
dimension at least n - tm - (1 + sm) and minimum distance at least t + s + 2. 
How does this compare to simply replacing g(z) by another Goppa polynomial 
with degree t + s? The first method has the advantage that L;':-~ bi)'i = 0 implies 
that L;':-~ bi )'iq = O. Hence, once in q times we are sure that the dimension does 
not decrease. 

(9.3.1) Theorem. Let q = 2 and let g(z) have no multiple zeros. Then r(L, g) 
has minimum distance at least 2t + 1 (where t = degree g(z». 
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PROOF. Let (co, c l , ... , cn-d be a codeword. Define f(z) = ni:6 (z - "It)Ci. 
Then e(z) = 2:i:6 cd(z - "I;) = f'(z)lf(z), where f'(z) is the formal derivative. 
In f'(z) only even powers of z occur, i.e. f'(z) is a perfect square. Since we 
require that g(z) divides f'(z) we must actually have g2(Z) dividing f'(z). So 
our previous argument yields d ~ 2t + 1. 0 

Of course one can combine Theorem 9.3.1 with the idea of intersecting with a 
BCHcode. 

§9.4. Asymptotic Behaviour of Gappa Codes 

In Section 6.6 we pointed out that long primitive BCH codes are bad. This 
fact is connected with Theorem 6.6.7. It was shown by T. Kasami (1969; 
[39]) that a family of cy!tlic codes for which the extended codes are invariant 
under the affine group is bad in the same sense: a subsequence of codes Cj 

with length nj, dimension k, and distance d, must have lim inf(kdn,) = 0 or lim 
inf(ddnj) = O. We shall now show that the class of Goppa is considerably 
larger. 

(9.4.1) Theorem. There exists a sequence of Goppa codes over IFq which meets 
the Gilbert bound. 

PROOF. We first pick parameters n = qm, t and d, choose L = IFq ... , and we try 
to find an irreducible polynomial g(z) of degree t over 1Fq'" such that r(L, g) 
has minimum distance at least d. Let c = (co, c l , ... , cll- l ) be any word of 
weight j < d, i.e. a word we do not want in r(L, g). Since 2:i:6 cd(z - "I,) has 
numerator of degree at most j - 1, there are at most L(j - 1)/tJ polynomials 
g(z) for which r(L, g) does contain c. This means that to ensure distance d, 

we have to exclude at most D:f L(j - 1)/tJ(q - lye) irreducible polyno­

mials of degree t. This number is less than (d/t)Y,,(n, d - 1) (cf. (5.1.4». By 
(1.1.19)' the number of irreducible polynomials of degree t over IFq ... exceeds 
(l/t)qml(1 - q-(IJ2)mr+m). So a sufficient condition for the existence ofthe code 
r(L, g) that we are looking for is 

(9.4.2) ~ Y,,(n, d - I) < ~qmr(l _ q-(1/2)mr+m). 

By Theorem 9.2.7, the code has at least q"-mt words. On both sides of (9.4.2) 
we take logarithms to base q and divide by n. Suppose n is variable, n -+ co, 
and din -+ O. Using Lemma 5.1.6 we find 

mt 
Hq(o) + 0(1) < - + 0(1). 

n 
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The information rate of the code r(L, g) is ~ 1 - mt/n. It follows that we can 
find a sequence of polynomials g(z) such that the corresponding Goppa codes 
have information rate tending to 1 - Hq(b). This is the Gilbert bound (5.1.9). 

o 

§9.S. Decoding Goppa Codes 

The Berlekamp decoder for BCH codes which was mentioned at the end of 
Section 6.7 can also be used to decode Goppa codes. In order to show this, 
we shall proceed in the same way as in Section 6.7. 

Let (Co, C1, ••• , Cn- 1) be a codeword in r(L, g) as defined in (9.2.4) and 
suppose we receive (Ro, R 1, ••• , Rn- 1). We denote the error vector by (Eo, 
E1 , ••• , En-d = R - C. Let M:= {iIEi:F o}. We denote the degree of g(x) by 
t and assume that IMI = e < ft. Again using the convention (9.2.3)we define 
a polynomial S(x), called the syndrome, by 

(9.5.1) 
n-l E 

S(x)== L_i 
i=O X - 1i 

(mod g(x». 

Observe that S(x) can be calculated by the receiver using Rand (9.2.5). We 
now define the e"or-Iocator polynomial O'(z) and a companion polynomial 
co(z) in a manner similar to Section 6.7 (but this time using the locations 
themselves instead of inverses). 

(9.5.2) 

(9.5.3) 

O'(z):= n (z - 1i), 
ieM 

CO(z):= L Ei n (z - 1i)' 
ieM jeM\{i) 

From the definitions it follows that O'(z) and co(z) have no common factors, 
O'(z) has degree e, and co(z) has degree < e. The computation of co(z)/O'(z) of 
Section 6.7 is replaced by the following argument. 

(9.5.4) 
n-l E. 

S(z)O'(z) == L -' n (z - Yi) 
i=O z - Yi ieM 

== co(z) (mod g(z». 

Now suppose we have an algorithm which finds the monic polynomial O'l(Z) 
oflowest degree (0'1 (z) :F 0) and a polynomial COl (z) oflower degree, such that 

(9.5.5) (mod g(z». 

It follows that 

(mod g(z». 

Since the degree of the left-hand side is less than the degree of g(z), we find 
that the left-hand side is o. Then (O'(z), co(z» = 1 implies that O'(z) divides 0'1 (z) 
and therefore we must have O'l(Z) = O'(z). Once we have found O'(z) and co(z), 
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it is clear that we know E. The Berlekamp-algorithm is an efficient way of 
computing CT 1 (z). There are other methods, based on Euclid's algorithm for 
finding the g.c.d. of two polynomials (cf. [51]). 

§9.6. Generalized BCH Codes 

Let us take another look at Goppa codes. We consider L = {I, p, p2, ... , pn-1} 
where p is a primitive nth root of unity in 1F2'"' g(z) a suitable polynomial. 
Let (ao, a1, ••• , a,,-tl E r(L, g). As in (6.5.2) we denote by A(X) the Mattson­
Solomon polynomial of ao + a1x + ... + an_ 1X,,-1. 

Consider the polynomial 

" ,,-1 A(Pi) " ,,-1 ai 
(X - 1) i~ X _ pi = (X - l)n i~ X _ pi· 

(by Lemma 6.5.3). The left-hand side is a polynomial of degree ~ n - 1 which 
takes on the value np-iA(pi) for X = pi (0 ~ i ~ n - 1). We can replace n by 
1 since we are working over 1F2 • Therefore the left-hand side is the polynomial 
X,,-l 0 A(X) (using the notation of Section 6.5) because this also has degree 
~ n - 1 and takes on the same values in the nth roots of unity. Hence we 
have proved the following theorem. 

(9.6.1) Theorem. If L = {I, p, ... , P"-l} where p is a primitive nth root of unity 
in 1F2'" and (g(z), z" - 1) = 1, then the binary Goppa code f(L, g) consists of the 
words (ao, a1 , ••• , a,,-tl such that the Mattson-Solomon polynomial A(X) of a(x) 
satisfies 

X,,-l 0 A(X) == 0 (mod g(X». 

In Theorem 6.6.2 we proved the BCH bound by applying Theorem 6.5.5 
and by using the fact that the Mattson-Solomon polynomial of a codeword 
has sufficiently small degree. For Goppa codes a similar argument works. The 
polynomial g(X) has degree t and (g(X), X" - 1) = 1. It then follows from 
Theorem 9.6.1 that at most n - 1 - t nth roots of unity are zeros of A(X). 
This means that a has weight at least t + 1, yielding a second proof of 
Theorem 9.2.7. 

The argument above shows how to generalize these codes. The trick is to 
ensure that the Mattson-Solomon polynomial of a codeword has few nth 
roots of unity as zeros. This idea was used by R. T. Chien and D. M. Choy 
(1975; [13]) in the following way. 

(9.6.2) Definition. Let (T, +, 0) be as in Section 6.5 with IF = IFq," and S = 
IFq[x] mod(x" - 1). Let P(X) and G(X) be two polynomials in T such that 
(P(X), X" - 1) = (G(X), X" - 1) = 1. The generalized BCH code (= GBCH 
code) of length n over IFq with polyriomial pair (P(X), G(X» is defined as 

{a(x) E SIP(X) 0 (~a)(X) == 0 (mod G(X»}. 

A GBCH code is obviously linear. 
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(9.6.3) Theorem. The minimum distance of the GBCH code of (8.6.2) is at least 
1 + degree G(X). 

PROOF. We apply Theorem 6.5.5. A common factor f(X) of Cl>a and X" - 1 is 
also a factor of P(X) 0 (Cl>a)(X). But (G(X), f(X» = 1. So the degree of f(X) 
must be at most n - 1 - degree G(X). 0 

Notice that the special Goppa codes of Theorem 8.6.1 are examples of 
GBCH codes. If we take P(X) = X,,-l and G(X) = X"-l we obtain a BCH 
code. 

The GBCH codes have a parity check matrix like Ii of Section 8.1. In order 
to show this, we consider the polynomials p(x) = (Cl>-1 P)(x) = Li'=J PiXi and 
g(x) = (Cl>-1 G)(x) = Li'=J g,x'. By Lemma 6.5.3, all the coefficients of p(x) and 
g(x) are nonzero since nth roots of unity are not zeros of P(X) or G(X). Let 
a(x) be a codeword and A(X) = (Cl>a)(X). By (9.6.2)there is a polynomial B(X) 
of degree at most n - 1 - degree G(X) such that 

P(X) 0 A(X) = B(X)G(X) = B(X) 0 G(X). 

Define b(x) := (Cl»-1 B)(x) = Li'=J b,x'. Then we have 

p(x) * a(x) = b(x) * g(x), 

i.e. 

,,-1 11-1 

L p,a,x' = L b,gjx'. 
'=0 i=O 

So we have found that b, = p,g!l a, (0 :::;; i :::;; n - 1). Let h, := p,g!l and define 

H:= ht h1r ... h"_1~2(1I-1) [

hO hlP ... hll_1PII_1] 

h h Pr h pr(II-1) o 1 ... 11-1 

Let 1 :::;; j :::;; t = degree G(X). Then BII -i = O. By (6.5.2) 

11-1 ,,-1 

BII -i = b(Pi ) = L b,P ij = L h,aip ii. 
'=0 '=0 

So aHT = O. Conversely, if aHT = 0 we find that the degree of B(X) is at most 
n - 1 - t. Hence B(X)G(X) = B(X) 0 G(X) = P(X) 0 A(X), i.e. a is in the 
GBCH code. 

§9.7. Comments 

The codes described in Section 9.1 are called alternant codes. The codes 
treated in this chapter are special cases depending on the choice of hi and Pi' 
The first interesting subclass seems to be the class of Srivastava codes intro-
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duced by J. N. Srivastava in 1967 (unpublished). E. R. Berlekamp [2J recog­
nized their possibilities and recommended further study of this area. The 
alternant codes were introduced by H. J. Helgert (1974; [35J). The most 
interesting turned out to be the Goppa codes introduced by V. D. Goppa [27J 
in 1970 (cf. [4J). 

BCH codes are the only cyclic Goppa codes (cf. Problem 9.8.2) but E. R. 
Berlekamp and O. Moreno [5J showed that extended 2-error-correcting 
binary Goppa codes are cyclic. Later K. K. Tzeng and K. P. Zimmerman [71J 
proved a similar result for other Goppa codes and the same authors have 
generalized the idea of Goppa codes. 

§9.8. Problems 

9.8.1. Let L consist of the primitive 15th roots of unity in IFz• (take 0(4 + 0( + 1 = 0). 
Let g(z) := ZZ + 1. Analyze the binary Goppa code r(L, g). 

9.8.2. Let 0( be a primitive nth root of unity in IFzm and let L:= {I, ex, ex z, ... , O(o-I}. Let 
the binary Goppa code C = f(L, g) be a cyclic code. Show that g(z) = z' for 
some t, i.e. C is a BCR code. 

9.8.3. Let n = qm - 1, L = IFqm\{O}. Let CI be the BCR code of length n over IFq 
obtained by taking 1= 0 and (j = dl in (6.6.1). Let Cz be a Goppa code f(L, g). 

Show that CIIl C2 has minimum distance d ~ dl + d2 - I, where d2 := 1 + 
degg. 

9.8.4. Consider the GBCR code with polynomial pair (P(X), G(X)) where G(X) has 
degree t. Show that there is a polynomial P(X) such that the pair (P(X), X') 
defines the same code. 

9.8.5. Let C be the binary cyclic code of length 15 with generator x 2 + x + 1. Show 
that C is a BCR code but not a Goppa code. 



CHAPTER 10 

Algebraic Geometry Codes 

§10.1. Introduction 

One of the major developments in the theory of error-correcting codes in the 80's was 
the introduction of methods from algebraic geometry to construct good codes. The 
ideas are based on generalizations of the Goppa codes of the previous chapter. The 
algebraic geometry codes were also inspired by ideas of Goppa. In fact, the codes 
of Chapter 9 are now sometimes called "classical" Goppa codes, and those of this 
chapter "geometric" Goppa codes. We use the terminology" algebraic geometry" 
codes. 

An intriguing development was a paper by Tsfasman, VUidul, and Zink [99]. 
By using codes from algebraic curves and deep results from algebraic geometry, a 
sequence of error-correcting codes was constructed that led to a new lower bound 
on the information rate of good codes. The bound improved the Gilbert-Varshamov 
bound (5.1.9). This was the first improvement of that bound in thirty years. 

This chapter is based on expository lectures given by the author in 1988 (see 
[92]) and a course given by G. van der Geer and the author in 1987 (see [73]). We 
shall only treat the necessary algebraic geometry superficially, often omitting proofs. 
We point out that in a number of places, more algebraic background is necessary 
than was treated in Chapter 1. 

Much of the recent work on these codes concerns decoding methods. In this book, 
we have not been concerned too much with decoding, so we do not go into these 
methods. Actually, the only decoding method that is used extensively in practice 
(for block codes) is the one of §6.7. It is not clear when algebraic geometry codes 
will become of practical importance. 

We point out that many of the results cuncerning these codes can be derived 
without using the heavy machinery of algebraic geometry. For an exposition of that 
approach we refer to [90]. 
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In §6.9, we saw that it was possible to define Reed-Solomon codes by considering 
points with coordinates in IF q on the projective line (possibly over the algebraic 
closure of IFq). Codewords were defined by considering rational functions with a 
pole of restricted order at a specified point and taking the values of these functions 
at the given points as coordinates. In §9.2, we defined Goppa codes by calculating 
residues of certain functions at given points. The set of functions was restricted by 
requirements on their zeros and poles. These two ideas are what we shall generalize 
in this chapter. We must study algebraic curves, find a way to describe the restrictions 
on the set of functions that we use, and generalize the concept of residue. We describe 
two classes of codes that are duals. 

§ 1 0.2. Algebraic Curves 

In the following, k is an algebraically closed field. In our applications, k will be 
the algebraic closure of IF q' (In this section, the reader may think of k as IC if that 
makes things easier; however, one must be careful since some situations are quite 
different for the fields we consider.) An will denote n-dimensional affine space 
(with coordinates x], X2, ••• ,xn ). Similarly, IFDn will be n-dimensional projective 
space (with homogeneous coordinates XQ, x], ... ,xn ). First, we discuss the affine 
case. The situation for projective spaces is slightly more complicated. 

In the space An, we introduce a topology, the so-called Zarisld topology. The 
closed sets are the sets of zeros of ideals a of k[x I, X2, ••. , xn ], i. e. 

B = V(a) := {(Xl, X2,"" Xn) E: An f(x], X2, ... , Xn) = 0 for all f E a}. 

We always assume that a is radical, i. e. a consists of all the polynomials that vanish 
on B. (An ideal a is called radical if, for all n E N, f" E a :::} f E a.) A closed 
subset B is called irreducible if B cannot be written as the union of two proper closed 
subsets of B. The set V(a) is irreducible iff a is a prime ideal. An open set is the 
complement of a closed set. 

(10.2.1) EXAMPLE. In the affine plane, consider the principal ideal generated by 
X2 - y2. The corresponding closed set is the union of two lines with equations 
y = x, respectively y = -x. Each of these lines is an irreducible closed set in the 
plane N. 

All the curves in affine or projective space in this paragraph are required to be 
irreducible. 

Consider a prime ideal p in the ring k[x], X2, •.• , xn]. The set X of zeros of p 
is called an affine variety. 

(10.2.2) EXAMPLE. In 3-dimensional space, we consider the unit sphere, i. e. the set 
with equation X2 + i + Z2 = 1. In our terminology, this is the affine variety consisting 
of the zeros of the ideal p, generated by the polynomial X2 + y2 + Z2 - 1. We are 
just using algebraic terminology to describe geometric objects that are defined by 
equations. 



150 10. Algebraic Geometry Codes 

Two polynomials that differ by an element of p will have the same value in each 
point of X. This is the reason for introducing the following ring. 

(10.2.3) Definition. The ring k[Xl, Xz, ... , xnll p is called the coordinate ring k[Xl 
of the variety X. 

The coordinate ring is an integral domain since p is a prime ideal. Therefore, 
we can make the following definition. 

(10.2.4) Definition. The quotient field of the ring k[Xl is denoted by k(X). It is 
called the function field of X. The dimension of the variety X is the transcendence 
degree of k(X) over k. If this dimension is 1, X is called an algebraic curve. 

(10.2.5) EXAMPLE. In the affine plane over the field k, we consider the parabola X 
with equation y2 = x. In this example, the coordinate ring k[Xl consists of all the 
expressions of the form 4- + By, where A and B are in k[xl and y satisfies y2 = X. 
SO, k(X) is an algebraic extension of k(x) by the element y, satisfying this equation 
of degree 2. 

In projective space IJl>n, the situation is complicated by the fact that we must use 
homogeneous coordinates. This means that it only makes sense to study rational 
functions for which numerator and denominator are homogeneous polynomials of 
the same degree. A projective variety X is the zero set in IJl>n of a homogeneous 
prime ideal p in k[xo, Xl> ... ,xnl. Consider the subring R(X) of k(xo, Xl> ... ,xn) 
consisting of the fractions fig, where f and g are homogeneous polynomials of the 
same degree and g ¢ p. Then R(X) has a unique maximal ideal M(X) consisting 
of all those fig with f E p. The function field k(X) is by definition R(X)I M(X). 

Now, let X be an affine or a projective variety. Let P be a point on X and let U be 
a neighborhood of this point Let f and g be polynomials, respectively homogeneous 
polynomials of the same degree, and let g(P) ::f: O. Then the quotient 4> = fig, 
defined on U, is called regular in the point P. The functions that are regular in every 
point of the set U form a ring, denoted by k[Ul. Since k is algebraically closed, 
there are no regular functions on X except constant functions, if X is projective. 

(10.2.6) Definition. The local ring Op (sometimes denoted by Op(X» of the point 
P on the variety X is the set of rational functions on X that are regular in P. 

The reader familiar with algebraic terminology will realize that this is indeed a 
"local ring" in the algebraic sense, i. e. it has a unique maximal ideal, namely the set 
m p of functions in 0 p that are zero in P. 

An affine variety can be embedded in a projective variety in the following way. 
If f E k[xl> X2, ... , xnl, then we associate with f the homogeneous polynomial 

where I is the degree of f. 
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Let X be an affine variety in A,n defined by the prime ideal p. Let p* be the 
homogeneous prime ideal generated by the set U*I I E p}. Then p* defines a 
projective variety X* in pn. We define Xci := {(xo,X., ... ,xn) E X*lxo =f:: O}. 
Then X is isomorphic with Xci under the map (X., ... ,xn ) ~ (1 : XI : ... : xn). 
The points (xo : ... : xn) E X* with Xo = 0 are called points at infinity of X. 
Furthermore, the function fields k(X) and k(X*) are isomorphic under the map 
II g ~ f* x~ I g*, where m is deg(g) - deg(f). 

(10.2.7) EXAMPLE. InP2 withcoordinates(x: y: Z),considerthevarietyXdefined 
by xz - y2 = O. (This is the parabola of (10.2.5), now with a point at infinity, namely 
Q:=(I:O:O).) The function (2xz+z2)/(y2+Z2) is regular in the point P = (0: 0: 1). 
By replacing y2 by xz, we see that the function is equal to (2x + z)/(x + z) and 
therefore also regular in Q. 

Note that the function (X3 + y3)lz3 which is 0 in P, can be written as the product 
of y3 I Z3 and (y3 + Z3) I Z3 , where the second factor is regular and not 0 in P. If k = C 
with the usual topology, then for points near P, there is a one to one correspondence 
with the value of y I z but this is not true for xl z. This is an example of what will be 
called a local parameter below. 

The examples at the end of this paragraph will clarify things, but we must first 
introduce all the terminology that we need. From now on, we only consider curves. 

Consider a curve in A,2, defined by an equation F(x, y) = O. Let P = (a, b) be 
a point on this curve. If at least one of the derivatives Fx or Fy is not zero in P, then 
P is called a simple or nonsingular point of the curve. The curve then has a tangent 
at P with equation FAP)(x - a) + Fy(P)(y - b) = O. We now define 

dpF := FAa, b)(x - a) + Fy(a, b)(y - b). 

Then the tangent Tp at P is defined by dpF = O. This is well known. If G E k[X], 
it would not make sense to define dpG in the same way because G is only defined 
modulo multiples of F. However, on Tp the linear function dpG := GAa., b)(x­
a)+Gy(a, b)(y-b) is well defined. Given P, themapdp maps an element of k[X] 
to a linear function defined on the tangent Tp , i. e. an element of T;. We can extend 
this mapping to Op. Since dpl = 0 if I is constant, we can restrict ourselves to 
rational functions I in m p. Then from the product rule for differentiation, we see 
that m~ is in the kernel of this mapping. Without proof we state that it is in fact 
the kernel. Therefore mplm~ is isomorphic to T; and for a nonsingular point that 
is a I-dimensional space. This means that we can define a simple point of a curve 
by requiring that the k-vector space mplm~ has dimension 1. From now on we 
consider only nonsingular curves (also called smooth curves), i. e. curves for which 
all the points are nonsingular. This restriction has the following consequence. Let 
P be a point of X. We remind the reader that the maximal ideal m p of the local ring 
o p consists of the "functions" that are 0 in P. The other elements of 0 p are units. 
Since mplm~ has dimension 1, there is a generating element t for this space. We 
also use the symbol t for a corresponding element in mp. We can then write every 
element Z of Op in a unique way as z = utm , where u is a unit and m E No. The 
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function t is called a local parameter or unijormizing parameter in P. A function 
f is a local parameter at P if dp f is not zero on Tp. 

If m > 0, then P is a zero of multiplicity m of z. (We saw an example with 
m = 3 in Example 10.2.7.) We write m = ordp(Z) = vp(z). (For readers familiar 
with the terminology: 0 p is a discrete valuation ring and elements t with v p (t) = 1 
are local parameters.) We extend the order function to k(X) by defining vp(f/g) := 
vp(f) - vp(g). If vp(z) = -m < 0, then we say that z has a pole of order min P. 
If z is an element of k(X) with vp(z) = m, then we can write Z = atm + z', where 
a E k, a =I- 0, and vp(z') > m. In this way, one can show that z can be expanded as 
a Laurent series. Later, we shall use this to define the "residue" of z. 

(10.2.8) EXAMPLE. Let X be the circle in N with equation x2 + y2 = 1 and let 
P = (1,0), (char(k) =I- 2). Letz = z(x, y) = 1 - x. This function is 0 in P, so it is 
in mp. We claim that z has order 2. To see this, observe that y is a local parameter 
in P. Note that dpx = x-I which is 0 on Tp, so x is not a local parameter at P. 
On X we have 1 - x = y2/{1 + x) and the funcion 1/{1 + x) is a unit in Op. In 
Example 10.2.7 we saw a'similar situation for 1fD2. 

(10.2.9) EXAMPLE. Consider once again the parabola of Example 10.2.7. Let Q be 
the point at infinity, i. e. Q = (1 : 0 : 0). The field k(X) consists of the fractions 
(AI + BI-ty)/(CI + DI-ty), where the coefficients are homogeneous polynomials of 
degree I (resp.l - 1) in x and z, and y satisfies y2 = xz. Such a function is regular in 
Q if the coefficient of Xl in CI is not O. It is easy to see that y / x is a local parameter 
in Q. What can we say about the behavior of the function g := (Z3 + xyz)/x3 in 
Q? On X we have 

Z3 + xyz = (~)3 (X2 + yz) . 
x 3 X x 2 

The second factor on the right is a unit in 0 Q, so g has a zero of multiplicity 3 in Q. 
When we construct codes, we will be interested in points that have their coordi­

nates in our alphabet IFq • We give these a special name. 

(10.2.10) Definition. If k is the algebraic closure of IF q and X is a curve over k, then 
points on X with all their coordinates in IF q are called rational points. (We shall only 
use this terminology for curves over k with equations that have all coefficients in 
IFq .) 

We give three more examples 

(10.2.11) EXAMPLE. Let IfD be the projective line over k. A local parameter in the 
point P = (1 : 0) is y/x. The rational function (x2 - y2)/y2 has a pole of order 2 
in P. If k does not have characteristic 2, then (1 : 1) and (-1 : 1) are zeros with 
multiplicity 1. 

(10.2.12) EXAMPLE. The plane curve with equationx3y+ lZ+Z3X = 0 is called the 
Klein quartic. We consider the curve over the algebraic closure of 1F2• Look at a few 
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of the subfields. Over 1F2 the rational points are (1 :0:0), (0: 1 :0), and (0:0: 1). If we go 
to IF 4, there are two more rational points, namely (1 : a : 1 + a) and (1 : 1 + a : a) 
if 1F4 = to, 1, a, a 21, where a 2 = 1 + a. 

In later examples, this curve will be studied over IFg. As usual, we define this 
field as 1F2(~)' where ~3 = ~ + 1. If a rational point has a coordinate 0, it must be 
one of the points over 1F2• If xyz =1= 0, we can take z = 1. If y = ~j (0 :5 i :5 6), 
then write x = ~3j '1. Substitution in the equation gives '13 + '1 + 1 = 0, i. e. '1 is one 
of the elements ~,~2, or ~4. So we find a total of 24 rational points over IFg. 

(10.2.13) EXAMPLE. Let X be the plane curve with equation x 3 + y3 + Z3 = 0 over 
the closure of IF 2 and look at the subfield IF 4. Since a third power of an element of IF 4 

is 0 or 1, all the rational points have one coordinate O. We can take one of the others 
to be 1, and the third one any nonzero element of IF 4. So we find nine (projective) 
points. In Q = (0 : 1 : 1), we can take t = x/z as local parameter. We consider 
a difficulty that will come up again. The expression f := x/(y + z) looks like a 
perfectly reasonable funotion and in fact on most of X it is. However, in Q the 
fraction does not make sense. We must find an equivalent form for f near Q. On X 
we have 

_x_ = X(y2 + yz + Z2) =,-2 y2 + yz + Z2 
Y + z y3 + Z3 Z2 

where the second factor on the right is regular and not 0 in Q. By our earlier con­
ventions, we say that f has a pole of order 2 in Q. Similarly, y / (y + z) has a pole 
of order 3 in Q. 

As a preparation for § 1 0.6, we now consider the intersections of plane curves. We 
assume that the reader is familiar with the fact that a polynomial of degree m in one 
variable, with coefficients in a field has at most m zeros. If the field is algebraically 
closed and if the zeros are counted with mUltiplicities, then the number of zeros is 
equal to m. We shall now state a theorem, known as Bezout's theorem, which is a 
generalization of these facts to polynomials in several variables. We only consider 
the case of two variables, i. e. we consider plane curves. Again, we assume that the 
reader knows how multiplicities are attached to points of intersection of two plane 
curves. (If P is a nonsingular point of a curve with equation F (x, y) = 0 and the 
curve with equation G(x, y) = 0 contains P, then the multiplicity of intersection is 
vp(G).) In the following, we consider two affine plane curves defined by equations 
F(x, y) = 0 and G(x, y) = 0 of degree I respectively m. We assume that F and 
G do not have a nontrivial common factor, i. e. the curves do not have a component 
in common. We consider the case where the coefficients are from an algebraically 
closed field k. 

(10.2.14) Theorem. Two plane curves of degree I and m that do not have a compo­
nent in common, intersect in exactly 1m points (if counted with multiplicity and the 
points at infinity are also considered). 

If k is not algebraically closed, the curves intersect in at most 1m points. 
We do not prove this theorem. 
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(10.2.15) EXAMPLE. Clearly the affine plane curve over the closure of 1F2 with equa­
tion x3 + y3 = 1 and the line with equation x = y do not meet However, when 
considered projectively, we have the curve X of Example 10.2.13 and the reader can 
easily check that X and the line with equation x + y = 0 intersect in P := (1 : 1 : 0) 
(at infinity) with mUltiplicity 3; (this is done in the same way as in Example 
10.2.13). 

We now generalize the idea of Reed-Solomon codes as defined in §6.8 (second 
description). Let VI be the vector space of polynomials of degree at most I in two 
variables x, y and coefficients in IF q. Consider an irreducible element G of degree m 
in IFq[x, y]. Let p" P2, ••• , Pn be points on the plane curve defined by the equation 
G(x, y) = 0, i.e. G(P;) = 0 for 1 ::: i ::: n. We define a code C by 

C := ((F(P1), F(P2), ••• , F(Pn )) I F E IFq[x, y), deg(F) ::: I}. 

We shall use d for the minimum distance of this code and (as usual) call the dimension 
k (not to be confused with the field that was considered earlier in this section). 

(10.2.16) Theorem. Let 1m < n. For the minimum distance d and the dimension k 
oiC, we have 

d::: n -1m, 

_ { ('~2) ifl < m, 
k- Im+l_(m~l) if/:::m. 

PROOF. The monomials of the form x"'yfJ with ot + (3 ::: I form a basis of VI. Hence 
VI has dimension C~2). 

Let F E VI. If G is a factor of F, then the codeword in C corresponding to F 
is zero. Conversely, if this codeword is zero, then the curves with equation F = 0 
and G = 0 have degree I' ::: I and m respectively, and they have the n points 
p" P2 , ••• , Pn in their intersection. Bezout's theorem and the assumption 1m < n 
imply that F and G have a cornmon factor. Since G is irreducible, F must be 
divisible by G. Hence the functions F E VI that yield the zero codeword form the 
subspace GVI-m. This implies that if I < m, then k = C~2), and if I ::: m, then 

The same argument with Bezout's theorem shows that a nonzero codeword has at 
most 1m coordinates equal toO, i. e. it has weight at leastn -1m. Hence d ::: n -1m. 
o 
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§10.3. Divisors 

In the following, X is a smooth projective curve over k. 

(10.3.1) Definition. 

(1) A divisor is a formal sum D = Lpex npP, with np E 7L and np = 0 for all but 
a finite number of points P; 

(2) Div(X) is the additive group of divisors with formal addition (the free abelian 
group on X); 

(3) A divisor D is called effective if all coefficients np are non-negative (notation 
D>,=O); 

(4) The degree deg( D) of the divisor D is L n p . 

Let Vp = ordp be the discrete valuation defined for functions on X in §1O.2. 

(10.3.2) Definition. If lis a rational function on X, not identically 0, we define 
the divisor of f to be 

PeX 

So, in a sense, the divisor of f is a bookkeeping device that tells us where the zeros 
and poles of f are and what their multiplicities and orders are. Since f is a rational 
function for which the numerator and denominator have the same degree, and since 
k is algebraically closed, it is intuitively clear that f has the same number of zeros 
as poles, if counted properly. We do not give a proof but state the consequence as a 
theorem. 

(10.3.3) Theorem. The degree of a divisor of a rational function is O. 

The divisor of a rational function is called a principal divisor. 

(10.3.4) Definition. We shall call two divisors D and D' linearly equivalent iff 
D - D' is a principal divisor; notation D == D'. 

This is indeed an equivalence relation. 
In §9.2, we gave a definition of Goppa codes, involving a vector space of functions 

with prescribed zeros and possible poles. We now have a mechanism available to 
generalize this to curves. 

(10.3.5) Definition. Let D be a divisor on a curve X. We define a vector space 
£(D) over k by 

£(D) := {f E k(X)* : (f) + D>,=O} U {O}. 

Note that if D = L~=lniPi - L~=lmjQj with all ni,mj > 0, then £(D) 
consists of 0 and the functions in the function field that have zeros of multiplicity at 
least m j at Qj (1 :s j :s s) and that have no poles except possibly at the points Pi, 
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with order at most ni (1 ::: i ::: r). We shall show that this vector space has finite 
dimension. 

First we note that if D == D' and g is a rational function with (g) = D - D', 
then the map / t-+ /g shows that £(D) and £(D') are isomorphic. 

(10.3.6) Theorem. 
(i) £(D) = 0 if deg(D) < 0; 
(ii) leD) := dimk£(D) ::: 1 + deg(D). 

PROOF. (i) Ifdeg(D) < 0, then for any function / E k(X)*, we have deg«(f)+D) < 
0, i. e. / tj. £(D). 

(ii) If / is not 0 and / E £(D), then D' := D + (f) is an effective divisor for 
which £(D') has the same dimension as £(D) by our observation above. So w.l. o. g. 
D is effective, say D = L;=I niPi, (ni 2: 0 for 1 ::: i ::: r). Again, assume that / is 
not 0 and / E £(D). In the point Pi, we map / onto the corresponding element of 
the n i -dimensional vector space (ti- ni 0 Pi) /0 Pi' where ti is a local parameter at Pi. 
We thus obtain a mapping of / onto the direct sum of these vector spaces ; (map 
the O-function onto 0). This is a linear mapping. Suppose that / is in the kernel. 
This means that / does not have a pole in any of the points Pi, i. e. / is a constant 
function. It follows that dimk£(D) ::: 1 + L;=I ni = 1 + deg(D). D 

(10.3.7) EXAMPLE. LookatthecurveofExample 10.2.13. Wesawthat/ = x/(y+z) 
has a pole of order 2 in Q = (0 : 1 : 1). The function has two zeros, each 
with multiplicity 1, namely PI = (0 : a : 1) and P2 = (0 : 1 + a : 1). From 
the representation / = (y2 + yz + Z2)/X2 we see that Q is the only pole. So 
(f) = PI + P2 - 2Q and deg( (f)) = 0 in accordance with Theorem 10.3.3. It is not 
trivial, but one can show that there cannot be a function in k(X) that has a pole of 
order 1 in Q and no other poles. So in this example, the space £(2Q) has dimension 
2 and / and the function that is identically 1 form a basis. 

§10.4. Differentials on a Curve 

Consider a smooth affine curve X in N defined by the equation F (x, y) = 0, and 
let P = (a, b) be a point on X. The tangent Tp at P is defined by dpF = O. In 
Section 10.2 we defined the map dp that maps an element of k[X] to a linear function 
on Tp (i. e. an element of T;). We now consider the set ¢[X] of all mappings that 
associate with each point P of X an element of T;. 

(10.4.1) Definition. An element </> E ¢[X] is called a regular differential/orm (on 
the curve X) if every point P of X has a neighborhood U such that in this neigh­
borhood, </> can be represented as </> = L;=l j;dgi , where all the functions j; and gi 
are regular in U. 

The regular differential forms on X form a k[X]-module, which we denote 
by Q[X]. This module is generated by elements d/, where / E k[X], with the 
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relations d(f + g) = df +dg andd(fg) = fdg + gdf and da = 0 for a E k. For 
the extension to rational differential forms we must add the (well known) relation 
d(fjg) = (gdf - fdg)jg2. We wish to define a rational differential form on 
a smooth projective curve X. To do this, consider pairs (U, a.», where U is a 
nonempty affine set in X and a.> has the form g df on U. We call pairs (U, a.» and 
(V, 17) equivalent if a.> = 17 on the set U n V. An equivalence class for this relation 
is called a rational differential form. From now on, we call the rational differential 
forms on X differentials and denote the space of differentials by Q(X). We state 
without proof: 

(10.4.2) Theorem. The space Q(X) has dimension lover k(X); in a neighbor­
hood of a point P with local parameter t, a differential a.> can be represented as 
a.> = f dt, where f is a rational function. The reader might think this is unneces­
sarily complicated. Why not just use functions? The next example shows that on a 
projective curve, one can have a nonzero rational differential form that is regular on 
the whole curve, this in contrast to rational functions. 

(10.4.3) EXAMPLE. We again look at the curve X in \p2 given by x 3 + l + Z3 = 0 
(char(k) i= 3). We define the open set Ux byUx := {(x: y: z) EX: Y i= 0, Z i= O} 
and similarly Uy and Uz. Then Un Uy, and Uz cover X since there is no point on X 
where two coordinates are zero. It is easy to check that the three representations 

define one differential on X. For instance, to show that 17 and ~ agree on Uy n Uz , one 
takes the equation (x j Z)3 + (y j Z)3 + 1 = 0, differentiates, and applies the formula 
d (f-l) = - f- 2 d f to f : = zj x. A regular function on X is constant, so one cannot 
represent this differential as g df with f and g regular functions on X. 

(10.4.4) Definition. The divisor (a.» of the differential a.> is defined by 

(a.» := L vp(fp)P, 
PEl( 

where a.> = fp dtp is the local representation of a.> and Vp is the valuation on Op 

(extended to k(X)). 

Of course, one must show that this does not depend on the choice of local 
parameters and also that only finitely many coefficients are not O. 

Let a.> be a differential and W = (a.». Then W is called a canonical divisor. 
If a.>' is another nonzero differential, then a.>' = fa.> for some rational function f. 
So (a.>') = W' == W and therefore the canonical divisors form one equivalence 
class. This class is also denoted by W. Now consider the space L(W). This 
space of rational functions (cf.(lO.3.S)) can be mapped onto an isomorphic space of 
differential forms by f r-+ fa.>. By the definition of L(W), the image of f under 
the mapping is a regular differential form, i. e. L(W) is isomorphic to Q[X]. 
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(10.4.5) Definition. Let X be a smooth projective curve over k. We define the 
genus g of X by g := l(W). 

The genus of a curve will play an important role in the following sections. 
For methods with which one can determine the genus of a curve, we must refer 
to textbooks on algebraic geometry. We mention one formula without proof, the 
so-called Plucker formula. 

(10.4.6) Theorem. If X is a nonsingular projective curve of degree d in 1P2, then 

1 
g = "2(d - l)(d - 2). 

So the curve of Example 10.4.3 has genus 1 and by the definition of genus, 
.c(W) = k, so regular differentials on X are scalar mUltiples of the differential w of 
Example 10.4.3. 

For the construction of codes over algebraic curves that generalize Goppa codes, 
we shall need the concept of "residue" of a differential at a point P. This is defined 
in accordance with our treatment of local behavior of a differential w. Let P be a 
point on X, t a local parameter at P and w = f dt the local representation of w. 
The function f can be written as Li aiti. We define the residue Resp(w) of w in the 
point P to be a_I (as was to be expected). One can show that this algebraic definition 
of the residue does not depend on the choice of the local parameter t. 

One of the basic results in the theory of algebraic curves is known as the "residue 
theorem". We only state the theorem. 

(10.4.7) Theorem. If w is a differential on a smooth projective curve X, then 

LResp(w) = O. 
PEX 

§10.5. The Riemann-Roch Theorem 

The following famous theorem, known as the Riemann-Roch theorem is not only a 
central result in algebraic geometry with applications in other areas, but it is also the 
key to the new results in coding theory. 

(10.5.1) Theorem. Let D be a divisor on a smooth projective curve of genus g. 
Then,for any canonical divisor W 

I(D) -1(W - D) = deg(D) - g + 1. 

We do not give the (quite complicated) proof. The theorem allows us to determine 
the degree of canonical divisors. 
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(10.5.2) Corollary. For a canonical divisor W, we have deg(W) = 2g - 2. 

PROOF. Everywhere regular functions on a projective curve are constant, i. e . 
.c(0) = k, so 1(0) = 1. Substitute D = W in Theorem 10.5.1 and the result 
follows from Definition 10.4.5. 0 

It is now clear why in Example 10.3.7 the space .c(2Q) only had dimension 2. 
By Theorem 10.4.6, the curve X has genus I, the degree of W - 2Q is negative, so 
I(W - 2Q) = O. By Theorem 10.5.1, we have 1(2Q) = 2. 

At first, Theorem 10.5.1 does not look too useful. However, Corollary 10.5.2 
provides us with a means to use it successfully. 

(10.5.3) Corollary. Let D be a divisor on a smooth projective curve of genus g and 
let deg(D) > 2g - 2. Then 

I(D) = deg(D) - g + 1. 

PROOF. By Corollary 10.5.2, deg(W - D) < 0, so by Theorem 1O.3.6(i), 
I(W - D) =0. 0 

(10.5.4) EXAMPLE. Consider the code of Theorem 10.2.16. We embed the affine 
plane in a projective plane and consider the rational functions on the curve defined 
by G. By Bezout's theorem, this curve intersects the line at infinity, i. e. the line 
defined by z = 0, in m points. These are the possible poles of our rational functions, 
each with order at most I. So, in the terminology of Definition 10.3.5, we have a 
space of rational functions, defined by a divisor D of degree 1m. By the Plucker 
formula (10.4.6), the curve defined by G has genus equal to (m~l). If I ::: m - 2 we 
may apply Corollary 10.5.3 and we find the same result as from Theorem 10.2.16. 

The term I (W - D) in Theorem 10.5.1 can be interpreted in terms of differentials. 
We introduce a generalization of Definition 10.3.5 for differentials. 

(10.5.5) Definition. Let D be a divisor on a curve X. We define 

Q(D) := {w E Q(X) : (w) - D)rO} 

and we denote dimk Q (D) by 8 (D), called the index of speciality of D. 

The connection with functions is established by the following theorem. 

(10.5.6) Theorem. 8(D) = I(W - D). 

PROOF. IfW = (w),wedefinealinearmap</>: .c(W-D) ~ Q(D)by</>(f):= fw. 
This is clearly an isomorphism. 0 

(10.5.7) EXAMPLE. If we take D = 0, then by Definition 10.4.5 there are exactly 
g linearly independent regular differentials on a curve X. So the differential of 
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Example 10.4.2 is the only regular differential on X (up to a constant factor) as was 
already observed after Theorem 10.4.6. 

§10.6. Codes from Algebraic Curves 

We now come to the applications to coding theory. Our alphabet will again be IF q' We 
shall apply the theorems of the previous sections. A few adaptations are necessary, 
since e. g. the space .c(D) will not be considered over an algebraically closed field 
but over IFq. All that we need to know is that Theorem 10.5.1 remains true. In a 
number of examples this will be obvious from the basis of .c(D) (a basis over the 
closure k, consisting of polynomials over IF q). 

Let X be a non-singular projective curve over IF q' We shall define two kinds 
of algebraic geometry codes from X. The first kind generalizes Reed-Solomon 
codes, the second kind generalizes Goppa codes. In the following, PI, Pz, ..• , Pn 
are rational points on X and D is the divisor PI + Pz + ... + Pn. Furthermore G 
is some other divisor that has support disjoint from D. Although it is not necessary 
to do so, we shall make more restrictions on G, namely that the support of G also 
consists of rational points and furthermore 

(10.6.1) 2g - 2 < deg(G) < n. 

(10.6.2) Definition. The linear code C(D, G) of length n over IFq is the image of 
the linear map a : C(G) ~ IF; defined by aU) := U(P1), f(P2), ... , f(Pn». 

Codes of this kind are called "geometric generalized RS codes". 

(10.6.3) Theorem. The code C(D, G) has dimension k = deg(G) - g + 1 and 
minimum distance d 2: n - deg(G). 

PROOF. (i) If f belongs to the kernel of a, then f E .c(G - D) and by Theorem 
1 0.3.6(i), this implies f = O. The result follows from (10.6.1) and Corollary 10.5.3. 

(ii) If aU) has weight d, then there are n - d points Pi, say Pi!, Pi2 , ... , Pin-d , 

for which f(Pi) = O. Therefore f E .c(G - E), where E = Pi! + ... + Pin-d' 
Hence deg(G) - n + d 2: O. 0 

Note the analogy with the proof of Theorem 10.2.16. 

(10.6.4) EXAMPLE. Let X be the projective line over IFq. Take G := mQ where 
Q is the point (1:0), n = q, Pi = (ai : 1), where IFq = {ai, a2, ... , aq}. Then, if 
m = k - 1, we see that C(D, G) is the extended Reed-Solomon code as described 
in §6.8. 

(10.6.5) EXAMPLE. Let X be the curve of Examples 10.2.13 and 10.3.7, G := 2Q, 
where Q := (0 : 1 : 1). We take n = 8 (so D is the sum of the remaining rational 
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points). The coordinates are given by 

Q PI P2 P3 P4 Ps P6 P7 Ps 
X 0 0 0 1 a a- 1 a a-
y 1 a a- 0 0 0 1 1 1 
z 1 1 1 1 1 0 0 0 

where a- = 1 + a. We saw in Example 10.3.7 that 1 and xj(y + z) are a basis of 
£(2Q) over k and hence also over 1F4• This leads to the following generator matrix 
for C(D, G): 

( 1 1 1 1 1 1 1 1) 
o 0 1 a a- 1 a a- . 

By Theorem 10.6.2, the minimum distance is at least 6 and of course, one immedi­
ately sees from the generator matrix that d = 6. 

We now come to the second class of algebraic geometry codes. We shall call 
these codes "geometric Goppa codes". 

(10.6.6) Definition. The linear code c*(D, G) oflength n over IFq is the image of 
the linear map a* : Q(G - D) --+ IF; defined by 

a*(I7) := (ResPI (17), Resp2(17),···, ResP.(I7». 

The parameters are given by the following theorem. 

(10.6.7) Theorem. The code C*(D, G) has dimension k* = n - deg(G) + g - 1 
and minimum distance d* ~ deg(G) - 2g + 2. 

PROOF. Just as in Theorem 10.6.3, these assertions are direct consequences ofTheo­
rem 10.5.1 (Riemann-Roeh), using Theorem 10.5.5 (making the connection between 
the dimension of Q(G) and I(W - G» and Corollary 10.5.2 (stating that the degree 
of a canonical divisor is 2g - 2). 0 

(10.6.8) EXAMPLE. Consider the projective line over IFqm. Let Pi := (Yi : 1), where 
Yi (0 ::: i ::: n - 1) are as in Definition 9.2.4. We define D := Po + PI + ... + Pn- I 
and G := (g) where g(x, y) is the homogeneous form of the Goppa polynomial g(z) 
of (9.2.4). Then the Goppa code r(L, g) of (9.2.4) is the subfield subcode (over 
IFq) of the geometric Goppa code C*(D, G). We observed in §9.2 that this code is a 
subcode of the dual of a generalized Reed-Solomon code. This is a special case of 
the following theorem. 

(10.6.9) Theorem The codes C(D, G) and C*(D, G) are dual codes. 

PROOF. From Theorem 10.6.3 and Theorem 10.6.7 we know that k + k* = n. So 
it suffices to take a word from each code and show that the inner product of the 
two words is o. Let 1 E £(G), 17 E Q(G - D). By Definitions 10.6.2 and 
10.6.6, the differential 117 has no poles except possibly poles of order 1 in the points 
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Ph P2 , ••• , Pn • The residue of f1J in Pi is equal to f(Pi)Resp; (1J). By Theorem 
10.4.7, the sum of the residues of f1J over all the poles (i. e. over the points Pi) is 
equal to zero. Hence we have 

n 

0= L f(Pi)Resp;(1J) = (a(f), a*(1J»). D 
;=1 

Several authors prefer the codes C*(D, G) over geometric RS codes but the 
nonexperts in algebraic geometry probably feel more at home with polynomials 
than with differentials. In [73] it is shown that the codes C(D, G) suffice to get 
all the codes. However, it is useful to have both classes when treating decoding 
methods. These use parity checks, so one needs a generator matrix for the dual 
code. 

In the next paragraph, we treat several examples of geometric codes. It is already 
clear that we find some good codes. E. g. from Theorem 10.6.3 we see that such 
codes over a curve of genus 0 (the projective line) are MDS codes (cf. §5.1). In fact, 
Theorem 10.6.3 says that d ~ n - k + 1 - g, so if g is small, we are close to the 
Singleton bound (cf. (5.2.2». 

§10.7. Some Geometric Codes 

We know that to find good codes, we must find long codes. To use the methods 
from algebraic geometry, it is necessary to find rational points on a given curve. The 
number of these is a bound on the length of the code. A central problem in algebraic 
geometry is finding bounds for the number of rational points on a variety. In order 
to appreciate some of the examples in this paragraph, we mention without proof the 
H asse-Weil bound. 

(10.7.1) Theorem. Let X be a curve of genus g over IFq. If Nq(X) denotes the 
number of rational points on X, then 

We first give an example that does not yield anything new. 

(10.7.2) EXAMPLE. Let X be the projective line over IFqm. Let n := qm - 1. We 
define Po := (0: 1), Pee := (1 : 0) and we define the divisor D as :E;=l Pj, where 
Pj := (fJj : 1), (1 ::s j ::s n). We define G := aPo + bPee , a ~ 0, b ~ O. (Here fJ is 
a primitive nth root of unity.) By Theorem 10.5.1, L(G) has dimension a + b + 1 
and one immediately sees that the functions (x / y)i, -a ::s i ::s b form a basis of 
L(G). Consider the code C(D, G). A generator matrix for this code has as rows 
(fJi, fJ2i, ... , fJ"i) with -a ::s i ::s b. One easily checks that (Cl, C2, ... , cn ) is a 
codeword in C(D, G) iff :E~=l Cj(fJl)j = 0 for alII with a < I < n - b. It follows 
that C(D, G) is a Reed-Solomon code. The sub field subcode with coordinates in IFq 
is a BCH code. 
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(10.7.3) EXAMPLE. In this example we consider codes from Hermitian curves. Let 
q = r2 = 2/. A Hermitian curve X in p2 over IF q is defined by the equation 

(10.7.4) 

By Theorem 10.4.6, the genus g of X equals ~r(r - 1) = ~(q -,Jii). We shall first 
show that X has the maximal number of rational points, i.e. by Theorem 10.7.1 
exactly 1 + q,Jii rational points. If in (10.7.4) one of the coordinates is 0, then 
w. 1. o. g. one of the others is 1 and the third one is one of the solutions of ~T+ 1 = 1, 
which hasr+ 1 solutions in IFq. This shows that X has 3(r+ 1) points with xyz = O. 
If xyz #- 0, we may take z = 1 and y any element in IF; such that yT+l #- 1. For 
each choice of y, there are r + 1 solutionsx. This yields (r - 2)(r + 1)2 pairs (x, y). 
It follows that X has 3(r + 1) + (r - 2)(r + 1)2 = 1 + q,Jii rational points. (We 
remark that this calculation could have been made for other primes than 2.) 

We take G := mQ, where Q := (0: 1 : 1) and q -,Jii < m < q,Jii. The 
code C (D, G) over IF q has length n = q,Jii, dimension k = m - g + 1, and distance 
d 2:: n - m. To see how good these codes are, we take as example q = 16. A basis 
for C( G) is easily found. 'The functions h.j(X, y, z) := Xi yj / (y + Z)i+ j , 0 ~ i ~ 4, 
4i + 5 j ~ m will do the job. First, observe that there are m - 5 = m - g + 1 pairs 
(i, j) satisfying these conditions. The functions x/(y + z) and y/(y + z) can be 
treated in exactly the same way as in Example 10.2.13, showing that h.j has a pole 
of order 4i + 5 j in Q. Hence, these functions are independent. Therefore, the code 
is easily constructed. Decoding is another question! Let us try to get some idea of 
the quality of this code. Suppose that we intend to send a long message (say 1()9 
bits) over a channel with an error probability Pe = 0.01 (quite a bad channel). We 
compare coding using a rate ~ Reed-Solomon code over 1F16 with using C(D, G), 
where we take m = 37 to also have rate ~. In this case, C(D, G) has distance 27. 
The RS code has word length 16 (so 64 bits) and distance 9. If a word is received 
incorrectly, we assume that all the bits are wrong when we count the number of 
errors. For the RS code, the error probability after decoding is roughly 3 . 10-4 

(indeed a nice improvement); however, for the code C(D, G), the error probability 
after decoding is less than 2 . 10-7• In this example, it is important to keep in mind 
that we are fixing the alphabet (in this case 1F16). If we compare the code C(D, G), 
for which the words are strings of 256 bits, with a rate ~ RS code over 1F25 (words are 
160 bits long), the latter will come close in performance (error probability 2.10-6) 

and a rate ~ RS code over 1F26 (words are 384 bits long) performs better (roughly 
10-7). 

One could also compare our code with a binary BCH code of length 255 and 
rate about ~. The BCH code wins when we are concerned with random errors. If 
we are using a bursty channel, then the code C(D, G) can handle bursts of length 
up to 46 bits (which influence at most 13 letters of a codeword) while the BCH code 
would fail completely. Although one could argue about the question which of these 
comparisons really says something, it was this example (used by the author) that 
convinced several engineers, who believed firmly that RS codes were the only useful 
codes for them, to look more closely at codes from algebraic geometry. This has led 
to nice results on decoding, a problem we neglect in this book, but clearly central to 
applications. 
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(10.7.4) EXAMPLE. Let X be the Klein quartic over IFs of Example 10.2.12. By 
Theorem 10.4.6, the genus is 3. By Theorem 10.7.1, X can have at most 25 rational 
points and as we saw in Example 10.2.12, it has 24 rational points; (in fact, this 
is optimal by an improvement of Theorem 10.7.1, due to J.-P.Serre [99]). Let 
Q := (0: 0 : 1) and let D be the sum of the other 23 rational points, G := 10Q. 
From Theorem 10.6.3, we find that C(D, G) has dimension 10 - g + 1 = 8 and 
minimum distance d ~ 23 - 10 = 13. We now concatenate this code with the 
[4,3,2] single parity check code as follows. The symbols in codewords of C(D, G) 
are elements of IF s which we interpret as column vectors of length 3 over IF 2 and then 
we adjoin the parity check. The resulting code C is a binary [92, 24,26] code. The 
punctured code, a [91, 24, 25] code (constructed by A. M. Barg et al. [82] in 1987) 
set a new world record for codes with n = 91, d = 25. Several other codes of this 
kind are given in the same paper. 

(10.7.5) EXAMPLE. We show how to construct a generator matrix for the code of the 
previous example. We cOJ?Sider the functions y / z, z/ x, and x / y. The points where 
these functions can have zeros or poles are PI := (1 : 0 : 0), P2 := (0 : 1 : 0), and 
Q = (0: 0 : 1). Since the line with equation y = 0 (in affine coordinates) is not a 
tangent at Q of the curve with affine equation x3 y + y3 + X = 0, we see that y / z is 
a local parameter in Q (an idea that has been used in earlier examples). Similarly, 
z/x is a local parameter in PI, and x/y is a local parameter in P2• We analyze the 
behavior of y / z in PI and P2 • In PI we have 

y (Z)2 x3 
~ = ~ x3 + y2z ' 

so y / z has a zero with multiplicity 2 in PI' Similarly in P2 we have 

l = (l)3 y3 +Z2X, 
Z X y3 

so P2 is a pole of order 3 for the function y / z. Therefore (1 ) = 2PI - 3P2 + Q. In the z 
same way one calculates ( ~) = PI + 2P2 - 3 Q and C!) = - 3PI + P2 + 2Q. From 

x y 

these divisors, we can deduce that the functions (z/xY (y/x)j with 0:::: 3i+2j :::: 10, 
o :::: j :::: 2i are in C(IOQ). We thus have eight functions in C(IOQ) with poles 
in Q of order 0,3,5,6,7,8,9, and 10 respectively. Hence they are independent and 
since l(IOQ) = 8, they are a basis of C(IOQ). By substituting the coordinates of 
the rational points of X in these functions, we find the 8 by 23 generator matrix of 
the code. 

(10.7.6) EXAMPLE. Let 1F4 = {O, 1, a, a}, where a 2 = a + 1 = a. Consider the 
curve X over 1F4 given by the equationx2y+ay2z+az2x = O. This is anonsingular 
curve with genus 1. Its nine rational points are given by 

PI P2 P3 P4 Ps P6 QI 
xl 00111 a 
yO 1 Oaa 1 
zOO a a 
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Let D := PI + P2 + ... + P6, G := 2QI + Q2. We claim that the functions 
x/(x + y+az), y/(x + y+aZ),az/(x + y +az) are a basis of £(G). To see this, 
note that the numerators in these fractions are not 0 in Q I and Q2 and that the line 
with equation x + y +az = 0 meets X in Q2 and is tangent to X in QI. By Theorem 
IO.6.2, the code C(D, G) of length 6 has minimum distance at least 3. However, 
the code is in fact an MDS code, namely the hexacode of §4.2. 

§10.8. Improvement of the Gilbert-Varshamov Bound 

We fix the alphabet IFq • We consider codes C(D, G) as defined in §IO.6, with a 
curve X that has n + 1 rational points Ph P2 , ••• , Pn , Q. We take G = mQ with 
2g - 2 < m < n. We define y(X) := gin. It was shown by Tsfasman, VHidut, 
and Zink [99] that there exists a sequence of curves X such that the corresponding 
geometric codes are a sequence of codes that yield an improvement of Theorem 
5.l.9. They proved the following theorem. 

(10.8.1) Theorem. Let q be a prime power and a square. There exists a sequence 
of curves Xi over IF q (i E N) such that Xi has ni + 1 rational points, genus gi, where 
ni -+ 00 as i -+ 00, y(~) -+ (q! - 1)-1 =: Y for i -+ 00. 

As we saw in Theorem IO.6.3, the corresponding codes Ci := C(D, G) over ~ 
have rate Ri = (mi - gi + 1)/ni and distance di 2: ni - mi. So, with the notation 
of §5.1, we have Ri + Oi 2: 1 - y(Xi). From Theorem IO.8.1 we then find: 

(10.8.2) Theorem. 8 + a(8) 2: 1 - Y 

It is an elementary exercise in calculus to determine whether or not the straight 
line in the (8, a) plane, defined by the equation 8 + a = 1 - y, intersects the curve 
of Theorem 5.l.9. For intersection, one finds q 2: 43 and since q must be a square, 
we have an improvement of the Gilbert-Varshamov bound for q 2: 49. 

§10.9. Comments 

The first interesting decoding methods were given in a paper by J. Justesen et al. 
[91]. The ideas were generalized by A. N. Skorobogatov and S. G. VUidut [97]. 
Since then, the methods have been considerably improved (cf. [84]) and simplified 
by G.-L. Feng et al. and several others. For these results we referto the survey paper 
[89]. 

As was mentioned in the introduction, many of the results presented in this 
chapter can be explained, more or less avoiding the deep theorems from algebraic 
geometry. The ideas, due to G.-L. Feng et al. [85,86] were recast and can be found 
in [90]. 
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There are some textbooks on the material of this chapter. We recommend [98] 
that uses a purely algebraic approach by means of function fields. 

The improvement of the Gilbert-Varshamov bound ([81D uses the theory of 
modular curves. This is a central but very involved part of mathematics, much more 
so than the Riemann-Roch theorem. It needs the theory of schemes, i. e. curves over 
rings instead of fields, and the analytic and algebraic properties of curves. 

The recent work of Garcia and Stichtenoth [87] gives an explicit description of 
sequences of curves proving Theorem 10.8.1 by means of more moderate tools from 
algebraic geometry. 

§10.10. Problems 

10.10.1. Consider the curve of Example 10.2.7. What is the behavior of the function x / z in 
the point (1 :O:O)? 

10.10.2. Show that if the Klein quartic is singular over IF p. then p = 7. If p = 7. find a 
singular point. 

10.10.3. Consider the parabola X of Example 10.2.7 over 1F4• Let g = (Z3 + xyz)/x3• 
Determine the divisor of g. 

10.10.4. Let X be the projective curve over the algebraic closure of 1F2 defined by the equation 
x4y + y4Z + Z4X = O. Determine the divisor of f := x / z. 

10.10.5. Show that the code of Example 10.7.6 is indeed equivalent to the hexacode. 

10.10.6. Consider the curve of Example 10.7.4. What does the Riemann-Roch theorem say 
about 1(3Q)? Show that 1(3Q) = 2. 



CHAPTER 11 

Asymptotically Good Algebraic Codes 

§11.1. A Simple Nonconstructive Example 

In the previous chapters we have described several constructions of codes. If 
we considered these codes from the point of view of Chapter 5, we would be 
in for a disappointment. The Hadamard codes of Section 4.1 have 8 = t and 
if n - 00 their rate R tends to O. For Hamming codes R tends to 1 but 8 tends 
to O. For BCH codes we also find (j - 0 if we fix the rate. For all examples of 
codes which we have treated, an explicitly defined sequence of these codes, 
either has 8 -+ 0 or R - O. 

As an introduction to the next section we shall now show that one can give 
a simple algebraic definition which yields good codes. However, the definition 
is not constructive and we are left at the point we reached with Theorem 2.2.3. 
We shall describe binary codes with R = t. Fix m and choose an element 
am E 1F2m. How this element is to be chosen will be explained below. We 
interpret vectors a E IF; as elements of 1F2m and define 

C,.:= {(a, aa)la Elf;}. 

Let ). = A.m be given. If C", contains a nonzero word (a, aa) of weight < 2mA., 
then this word uniquely determines a as the quotient (in 1F2m) of aa and a. It 

follows that at most Li<2mJ. e~) choices of a will lead to a code C,. which 

has minimum distance < 2m A.. Now we take i.:= H-(t - (l/log m». By 
Theorem 1.4.5 the number of "bad" choices for a is o(2m) (m - 00). Therefore 
for almost all choices of a we have 

d > 2mH-(~ __ 1_) 
- 2 logm' 
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where d denotes the minimum distance of Ca. Letting m ~ co and taking 
suitable choices for am we thus have a sequence of codes with rate t such that 
the corresponding b satisfies 

(m ~ co). 

So this sequence meets the Gilbert bound (5.1.9). If we could give an explicit 
way of choosing am' that would be a sensational result. For a long time there 
was serious doubt whether it is at all possible to give an explicit algebraic 
construction of a sequence of codes such that both the rate and din are 
bounded away from zero. In 1972, J. Justesen [37] succeeded in doing this. 
The essential idea is a variation of the construction described above. Instead 
of one (difficult to choose) value of a, all possible multipliers a occur within 
one codeword. The average effect is nearly as good as one smart choice of !X. 

§11.2. Justesen Codes 

The codes we shall describe are a generalization of concatenated codes which 
were introduced by G. D. Forney [22] in 1966. The idea is to construct a code 
in two steps by starting with a code C1 and interpreting words of Cl as 
symbols of a new alphabet with which Cz is constructed. We discuss this in 
more detail. Let Cz be a code over IFzm. The symbols Cj of a codeword (co, C 1, 
••• , cn-tl can be written as m-tuples over IFz, i.e. Cj = (Cil' CjZ, ••• , cjm)(i = 0, 1, 
••. , n - 1), where cij E IFz. Such an m-tuple is the sequence of information 
symbols for a word in the so-called inner code C1 • Let us consider the simplest 
case where the rate is t. Corresponding to Cj = (Cil' CiZ' ••• , Cjm) we have a 
word of length 2m in the inner code. 

The rate of the concatenated code is half of the rate of Cz. Justesen's idea 
was to vary the inner code Cl , i.e. to let the choice of C1 depend on i. As in 
the previous section, the inner codes are chosen in such a way that a word of 
length 2m starts with the symbols of Cj. For the outer code Cz we take a 
Reed-Solomon code. 

The details of the construction are as follows. Since we intend to let m tend 
to infinity, we must have a simple construction for IFzm. We use Theorem 
1.1.28. So take m = 2·3'-1 and IFzm in the representation as IFz[x] (mod g(x», 
where g(x) = xm + x m/Z + 1. The Reed-Solomon code Cz which is our outer 
code is represented as follows (cf. Section 6.8). An m-tuple of information 
symbols (io, ii' ... , im-tl is interpreted as the element io + il X + ... + 
im- 1 x m- 1 E IFzm. Take K successive m-tuples ao, ai' ... , aK-l and form the 
polynomial a(Z):= ao + alZ + ... + aK_1Z K- 1 E IFzm[Z]. For j = 1, 2, ... , 
2m - 1 =: N, define j(x) by j(x) = Li"=-OI Gjx i if Li'.:O' Gj2i is the binary repre­
sentation of j. Then j(x) runs through the nonzero elements of IFzm. We 
substitute these in a(Z) and thus obtain a sequence of N elements of 1F2m. This 
is a codeword in the linear code Cz, which has rate KIN. Since a(Z) has 
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degree ~ K - 1, it has at most K - 1 zeros, i.e. Cz has minimum weight 
D ~ N - K + 1 (cf. Section 6.8). This is a completely constructive way of 
producing a sequence of Reed-Solomon codes. We proceed in a similar way 
to form the inner codes. If Cj is the jth symbol in a codeword of the outer code 
(still in the representation as polynomial over IFz) we replace it by (Cj' j(x)Cj), 
where multiplication is again to be taken mod g(x). Finally, we interpret this 
as a 2m-tuple of elements of IFz. 

(11.2.1) Definition. Let m = 2· 3' - 1, N = 2m - 1. K will be chosen in a suitable 
way below; D = N + 1 - K. The binary code with word length n := nm := 
2mN defined above will be denoted by 'Wm• It is called a Justesen code. The 
dimension of'Wm is k:= mK and the rate is tK/N. 

In our analysis of ~m we use the same idea as in Section 11.1, namely the 
fact that a nonzero 2m-tuple (Cj' j(x)Cj) occurring in a codeword of ~m deter­
mines the value of j. 

(11.2.2) Lemma. Let y e (0, 1), b e (0, 1). Let (ML)Le N be a sequence of natural 
numbers with the property ML' r u = y + o(l)(L -+ 00). Let W be the sum of 
the weights of ML distinct words in 1Ft. Then 

(L -+ 00). 

PROOF. For L sufficiently large we define 

l:= I1(b -10~ L). 
By Theorem 1.4.5 we have 

L (~) S; 2 L(.J-(1/1ogL)). 

OSislL I 

Hence 

W ~ {ML - L (~)}lL ~ lL{ML - 2L(.J-(1/logLll} 
OSiS'<L , 

= lL2U{y + 0(1)} = yL2U {I1(b) + 0(1)}, (L -+ 00). 0 

We choose a rate R, 0< R < t. The number Kin (11.2.1) is taken to be the 
minimal value for which Rm := tK/N ~ R. This ensures that the sequence of 
codes ~m obtained by taking 1= 1,2, ... in (11.2.1)has rate Rm -+ R (1-+ 00) 
What about the minimum distance of~m? A nonzero word in the outer code 
has weight at least N - K + 1 = D. 

Furthermore 

(11.2.3) N - K + 1 > N - K = N(l - 2Rm) 

= (2m - 1){1 - 2R + 0(1)}, (m -+ 00). 
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Every nonzero symbol in a codeword of the outer code yields a 2m-tuple 
(Cj' j(x)cj ) in the corresponding codeword c of ~ .. and these must all be 
different (by the remark following (11.2.1». Apply Lemma 11.2.2 to estimate the 
weight of c. We take L = 2m, 8 = ~, y = 1 - 2R and ML = D. By (11.2.3) the 
conditions of the lemma are satisfied. Hence 

w(c) ~ (1 - 2R)'2m'2111{11{t) + o(I)}, 

Therefore 

dlll/n ~ (1 - 2R){H-{t) + o(1)}, 

We have proved the following theorem. 

(m ...... 00). 

(m ...... 00), 

(l1.2.4)Theorem. Let 0 < R < t. The Justesen codes ~m defined above have 
word length n = 2m (2m - 1), rate Rill and minimum distance dill' where 

(i) Rill -+ R, (m -+ 00), . 
(ii) lim inf dm/n ~ (1 - 2R)H-{t). 

Using the notation of Chapter 5, we now have (j ~ (1 - 2R)H-{t) for 
values of R less than t. For the first time (j does not tend to 0 for n -+ 00. 

A slight modification of the previous construction is necessary to achieve 
rates larger than t. Let 0:::;; s < m (we shall choose s later). Consider ~m' 
For every 2m-tuple (Cj' j(x)cj ) in a codeword c we delete the last s symbols. 
The resulting code is denoted by ~m.s' Let R be fixed, 0 < R < 1. Given 
m and s, we choose for K the minimal integer such that R m•s := [m/ 
(2m - s)] (K/ N) ~ R (this is possible if m(2m - s) ~ R). In the proof of 
Theorem 11.2.4 we used the fact that a codeword c contained at least D distinct 
nonzero 2m-tuples (Cj' j(x)Cj)' By truncating, we have obtained (2m - s)-tuples 
which are no longer necessarily distinct but each possible value will occur at most 
2s times. So there are at least 

Ms:= rS(N - K) = r SN(1 - 2mm- s Rm.s) 

distinct (2m - s)-tuples in a codeword c of ~m.s' 
Again we apply Lemma 11.2.2, this time with 

L =2m-s, 
m-s 

(j=-­
L ' 

2m-S 
Y= l---R, 

m 

Let dm•s be the minimum distance of~lII.s' We find 

( 2m-s) {(m-s)} dlll • s ~ 1 - -m-R (2m - s)2m - s H- 2m _ s + 0(1) 2s , 

Therefore 

(m ...... (0). 
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(11.2.5/:" ~ (1 - 2mm- s R ){11(~ -=..SS) + 0(1)}, (m -+ 00). 

We must now find a choice of s which produces the best result. Let r be 
fixed, r E (t, 1). Take s:= lm(2r - 1)/rJ + 1. If r ~ R then we also have m/ 
(2m - s) ~ R. From (11.2.5) we find 

(11.2.6) d: •• ~ (1 -~) {H-(l - r) + 0(1)}, (m -+ 00). 

The right-hand side of (11.2.6) is maximal if r satisfies 

(11.2.7) 
r2 

R= . 
1 + log{l - H-(1 - r)} 

If the solution of (11.2.7) is less than ~, we take r = ~ instead. The following 
theorem summarizes this construction. 

(11.2.8) Theorem. Let 0 < R < 1 and let r be the maximum of ~ and the solution 
of(I1.2.7). Let s = lm(2r - 1)/r J + 1. 

The Justesen codes ~m •• have word length n, rate Rm•s , and minimum distance 
dm •• , where 

lim infd: .. ~ (1 -~) 11(1 - r). 

In Figure 3 we compare the Justesen codes with the Gilbert bound. For r > ~, 
the curve is the envelope of the lines given by (11.2.6). 

,dIn 
0.5 

Theorem 11.2.4 
~ (0.5) - - - - -l--------------------

Figure 3 

I 
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§11.3. Comments 

The extremely simple idea of Section 11.1 has received very little attention up to 
now. A more serious attempt may lead to the discovery of explicit choices of Q! 

which yield relatively good codes (but see Problem 11.4.1). The discovery of the 
Justesen codes was one of the major developments in coding theory in the 1970s. 

§ 11.4. Problems 

11.4.1. Let 1F26 be represented as in Section 11.2. Show that there is no value of a for the 
construction os Section 11.1 such that Ca has distance greater than 3. Compare 
with other known [12, k] codes with rate ~ ~. 

11.4.2. Let a(x) be a polynomial of degree < k. A [2k, k] binary double circulant code 
consists of all words of the form (a (x), a (x)a (x», where multiplication is mod(xk -

1). In this case the code is invariant under a simultaneous cyclic shift of both halves 
of the words. Construct a [12,6] code of this type which has d = 4. 

11.4.3. Use the truncation method of Section 11.2 to show that the idea of Section 11.1 
leads to codes meeting the Gilbert bound for any rate R. 



CHAPTER 12 

Arithmetic Codes 

§12.1. AN Codes 

In this chapter we shall give a brief introduction to codes which are used to 
check and correct arithmetic operations performed by a computer. Opera­
tions are now ordinary arithmetic and as a result the theory is quite different 
from the preceding chapters. However, there is in several places a similarity 
to the theory of cyclic codes. In some cases we shall leave the details of proofs 
to the reader. For further information on this area see the references men­
tioned in Section 12.4. 

The arithmetic operations in this chapter are carried out with numbers 
represented in the number system with base r (r EN, r ~ 2). For practical 
purposes the binary case (r = 2) and the decimal case (r = 10) are the most 
important. The first thing we have to do is to find a suitable distance function. 
In the previous chapters we have used Hamming distance but that is not a 
suitable distance function for the present purposes. One error in an addition 
can cause many incorrect digits in the answer because of carry. We need a 
distance function that corresponds to arithmetical errors in the same way as 
Hamming distance corresponds to misprints in words. 

(12.1.1) Definition. The arithmetic weight w(x) of an integer x is the minimal 
t 2: 0 such that there is a representation 

t 

X = " a.rn(i) L.., , 
i=1 

with integers ai' n(i) for which lad < r, n(i) ~ 0 (i = 1,2, ... , t). The arithmetic 
distance d(x, y) of two integers is defined by 

d(x, y) := w(x - y). 
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It is easily checked that this is indeed a metric on 7L. Arithmetic distance is 
translation invariant, i.e. d(x, y) = d(x + z, y + z). This is not true for the 
Hamming distance of two integers (in r-ary representation). Arithmetic dis­
tance is at most equal to the Hamming distance. 

We shall consider codes C of the form 

C:= {ANIN E 7L, 0 ~ N < B}, 

where A and B are fixed positive integers. Such codes are called AN codes. 
These codes are used in the following way. Suppose we wish to add two 
integers NI and N2 (both positive and small compared to B). These are 
encoded as ANI and AN2 and then these two integers are added. Let S be the 
sum. If no errors have been made, then we find NI + N2 by dividing by A. If 
S is not divisible by A, i.e. errors have been made, we look for the code word 
AN3 such that d(S, AN3 ) is minimal. The most likely value of N1 + N2 is N3 • 

In order to be able to correct all possible patterns of at most e errors it is again 
necessary and sufficient that the code C has minimum distance ~ 2e + 1. As 
before, that is equivalent to requiring that C has minimum weight at least 
2e + 1. These properties of the code C are based on the resemblance of C to 
the subgroup H:= {ANIN E 7L} of 7L. It would not be a good idea to take H 
as our code because H has minimum weight ~2 (see Problem 12.5.1). 

In order to avoid this difficulty we shall consider so-called modular AN 
codes. Define m := AB. Now we can consider C as a subgroup of 7L/m7L. This 
makes it necessary to modify our distance function. Consider the elements of 
7L/m7L as vertices of a graph rm and let x (mod m) and x' (mod m) be joined by 
an edge iff 

x-x'= ±c·ri (modm) 

for some integers c, j with 0 < c < r, j ~ O. 

(12.1.2) Definition. The modular distance dm(x, y) of two integers x and y 
(considered as elements of 7L/m7L) is the distance of x and y in the graph rm. 
The modular weight wm(x) of x is dm(x, 0). Note that 

Wm(x) = min{ w(y)ly E 7L, y = x (mod m)}. 

Although we now have achieved a strong resemblance to linear codes there 
is another difficulty. Not every choice of m makes good sense. For example, 
if we take r = 3, A = 5, B = 7, i.e. m = 35, then by (12.1.2) we have dm(0;4) = 
1 because 4 = 310 (mod 35). But it is not very realistic to consider errors in 
the position corresponding to 310 when adding integers less than 35. Re­
strictingj in the definition of edges of rm also has drawbacks. It turns out that 
we get an acceptable theory if we take m = rft - 1 (n E 7L, n ~ 2). In practice 
this is also a good choice because many computers do arithmetic operations 
mod 2ft - 1. 

Every integer x has a unique representation 
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n-l 

X == L Cj,j (mod ,n - 1), 
j=O 

with Cj E {O, 1, ... , , - I} (0 ~ i < n), not all ci = 0. Hence 71../(,n - 1) can be 
interpreted as the set of nonzero words of length n over the alphabet {O, 
1, ... , , - I}. Of course it would not have been necessary to exclude 0 if we 
had taken m = ,n, which is again a practical choice because many computers 
work mod 2n. However, we cannot expect good codes for r = 2, m = 2n. We 
would have to take A = 2k for some k and then the code C would consist of 
the integers Li';J c j 2i , Cj E {O, I}, for which Co = c1 = ... = Ck- 1 = 0. An inte­
ger x (mod B) would be encoded by adding k Os to its representation. This 
would serve no purpose. For arbitrary r there are similar objections. The 
reader should convince himself that in the case AB = m = ,n - 1 modular 
distance is a natural function for arithmetic in 71../m71.. and that C behaves as a 
linear code. In fact we have an even stronger analogy with earlier chapters. 

(12.1.3) Definition. A cyclic AN code of length n and base r isa subgroup C 
of 71../(rn - 1). Such a code is a principal ideal in this ring, i.e. there are integers 
A and B such that AB = rn - 1 and 

C = {ANJN E 71.., ° ~ N < B}. 

As in Section 6.1, we call A the generator of C. By now it will not be 
surprising to the reader that we are primarily interested in codes C with a 
large rate (=(I/n) log, B) and a large minimum distance. The terminology of 
(12.1.3) is in accordance with (6.1.1). If x E C then 'x (mod rn - 1) is also a 
codeword because C is a group and rx (mod rn - 1) is indeed a cyclic shift of 
x (both represented in base r). The integer B can be compared with the check 
polynomial of a cyclic code. 

The idea of negacyclic codes can be generalized in the same way by taking 
m = rn + 1 and then considering subgroups of 71../m71... 

(12.1.4) EXAMPLE. Let r = 2, n = 11. Then m = rn - 1 = 2047. We take A = 
23, B = 89. We obtain the cyclic AN code consisting of 89 multiples of 23 up 
to 2047. There are 22 ways to make one error, corresponding to the integers 
± 2i (0 :::; j < 11). These are exactly the integers mod 23 except o. Therefore 
every integer in [1,2047J has modular distance ° or 1 to exactly one code­
word. This cyclic AN code is therefore perfect. It is a generalization of the 
Hamming codes. 

§ 12.2. The Arithmetic and Modular Weight 

In order to be able to construct AN codes that correct more than one error we need 
an easy way to calculate the arithmetic or modular weight of an integer. 

By Definition 12.1.1, every integer x can be written as 
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with integers ai' neil, lail < r, neil ~ 0 (i = 1, ... , w(x)). It is easy to find ex­
amples which show that this representation is not unique. We shall put 
some more restrictions on the coefficients which will make the representation 
unique. 

(12.2.1) Definition. Let bElL, cElL, Ibl < r, Ici < r. The pair (b, c) is called 
admissible if one of the following holds 

(i) bc = 0, 
(ii) bc> 0 and Ib + cl < r, 

(iii) bc < 0 and Ibl > lei-
Note that if r = 2 we must have possibility (i). Therefore a representation 

x = L~OCi2i in which,all pairs (Ci+l' Ci) are admissible has no two adjacent 
nonzero digits. This led to the name nonadjacent form (N AF) which we now 
generalize. 

(12.2.2) Definition. A representation 
00 

x = ~ C.,i f... I , 

i=O 

with Ci E lL, Icil < r for all i and Ci = 0 for all large i is called an N AF for x if 
for every i ~ 0 the pair (Ci +1, ci ) is admissible. 

(12.2.3) Theorem. Every integer x has exactly one NAF. If this is 

then 

PROOF. 

00 

x = ~ c.r i f... I , 

i=O 

w(x) = I{ili ~ 0, Ci :F O}l. 

(a) Suppose x is represented as L~o biri, Ib;l < r. Let i be the minimal value 
such that the pair (bi+1, bi) is not admissible. W.l.o.g. bi > 0 (otherwise 
consider -x). Replace bi by bi:= bi - r and replace bi+1 by bi+l := 
bi+l + 1 (if bi+1 + 1 = , we carry forward). If bi+1 > 0 we either have 
bi+l = 0 or bibi+l < 0 and bi+l = bi+l + 1 > r - bi = Ibi! since (bi+l' bi) 
was not admissible. If bi+l < 0 then bi+l = 0 or bi bi+l > 0 and I bi + bi+ll = 
r - bi - bi+l - 1 < r because - bi+l ~ bi as (bi+l' bi) is not admissible. So 
(bi+l' bi) is admissible and one checks in the same way that (bi, bi- 1) is 
admissible. In this way we can construct an NAF and in the process the 
weight of the representation does not increase. 
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(b) It remains to show that the NAF is unique. Suppose some x has two 
h . "'" i "Xl 'i WI suc representatIOns x = L.,i=O cir = L.,i=O cir . . .o.g. we may assume 

Co 1= C~, CO> O. Therefore c~ = Co - r. It follows that c~ E {c 1 + 1 - r, 
c1 + 1, c1 + 1 + r}. If c~ = C1 + 1 - r then C1 ~ 0 and hence Co + C1 :s; 
r - 1. Since c~c~ > 0 we must have -c~ - c~ < r, i.e. r - Co + r - C1 -

1 < r, so Co + C1 > r - 1, a contradiction. In the same way the assump­
tions c~ = C 1 + 1 resp. c~ = C 1 + 1 + r lead to a contradiction. Therefore 
the NAF is unique. 0 

A direct way to find the NAF of an integer x is provided in the next 
theorem. 

(12.2.4) Theorem. Let x E lL, x ~ O. Let the r-ary representations of (r + l)x 
and x be 

<Xl 

(r + l)x = I ajrj, 
j=O 

with aj' bj E {O, 1, ... , r - I} for all j and aj = bj = 0 for j sufficiently large. 
Then the NAF for x is 

<Xl 

X = L (aj+1 - bj+drj. 
j=O 

PROOF. We calculate the numbers aj by adding IJ=o bjr j and Il=o bjr j+ l • Let 
the carry sequence be eo, el' ... , so eo = 0 and ei := L(ei-I + bi- I + b;)/r J. We 
find that ai = ei-I + bi - I + bi - eir. If we denote ai - bi by Ci then Ci = ei-1 + 
bi- t - eir. We must now check whether (Ci+I, c;) is an admissible pair. That 
ICi+1 + cd < r is a trivial consequence of the definition of ei' Suppose Ci > 0, 
Ci+1 < O. Then Gi = O. We then have Ci = Gi-1 + bi-I' Ci+1 = bi - r and the 
condition ICi+l1 > led is equivalent to ei-I + bi- 1 + bi < r, i.e. ei = O. The final 
case is similar. 0 

The NAF for x provides us with a simple estimate for x as shown by the 
next theorem. 

(12.2.5) Theorem. If we denote the maximal vallie of i for which Ci 1= 0 in an 
NAF for x by i(x) and define i(O):= - 1 then 

r k+ 2 

i(x):S; k<=>lxl < --. 
r + 1 

We leave the completely elementary proof to the reader. 

From Section 12.1, it will be clear that we must now generalize these ideas in 
some way to modular representations. We take m = Tn - 1, n ::: 2. 
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(12.2.6) Definition. A representation 

n-I 

X == L Ciri (mod m), 
i=O 

with Ci E Z, Icd < r is called a CNAF (=cyclic NAF) for x if (Ci+l,CJ is 
admissible for i = 0, 1, ... , n - 1; here Cn := Co. 

The next two theorems of CNAF's are straightforward generalizations of The­
orem 12.2.3 and can be obtained from this theorem or by using Theorem 12.2.4. 
A little care is necessary because of the exception, but the reader should have no 
difficulty proving the theorems. 

(12.2.7) Theorem. Every integer x has a CNAF mod m; this CNAF is unique 
except if 

(r + l)x == 0 ¥= x (mod m) 

in which case there are two CNAFs for x (mod m). If x == L:7.:-J Ciri (mod m) is 
a CNAF for x then 

(12.2.8) Theorem. If (r + l)x == 0 ¥= x (mod m) then wm(x) = n except if n == 0 
(mod 2) and x == ± [m/(r + 1)] (mod m), in which case wm{x) = tn. 

If we have an NAF for x for which Cn- I = 0 then the additional require­
ment for this to be a CNAF is satisfied. Therefore Theorem 12.2.5 implies the 
following theorem. 

(12.2.9) Theorem. An integer x has a CNAF with cn - I = 0 iff there is ayE Z 
with x == y (mod m), Iyl ::; m/{r + 1). 

This theorem leads to another way of finding the modular weight of an 
integer. 

(12.2.10) Theorem. For x E Z we have wm{x) = I {jIO ::; j < 11, there is ayE Z 
with 

m/{r + 1) < y ::; mr/(r + 1), y == rix (mod m)}l. 

PROOF. Clearly a CNAF for rx is a cyclic shift of a CNAF for x, i.e. wm{rx) = 
wm{x). Suppose x == L:7~J Ciri (mod m) is a CNAF and Cn - 1- i = O. Then rix has 
a CNAF with 0 as coefficient of r n - I . By Theorem 12.2.9 this is the case if 
there is a y with y == rix (mod m) and Iyl ::; m/(r + 1). Since the modular 
weight is the number of nonzero coefficients, the assertion now follows unless 
we are in one of the exceptional cases of Theorem 12.2.7, but then the result follows 
from Theorem 12.2.8. 0 
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§12.3. Mandelbaum-Barrows Codes 

We now introduce a class of cyclic multiple-error-correcting AN codes which 
is a generalization of codes introduced by 1. T. Barrows and D. Mandelbaum. 
We fir:st need a theorem on modular weights in cyclic AN codes. 

(12.3.1) Theorem. Let C c 7LI(r" - 1) be a cyclic AN code with generator A 
and let 

B:= (r" - I)IA = ICI. 
Then 

L: wm(x) = n(l~J -l~J)· 
%eC r + 1 r + 1 

PROOF. We assume that every x E C has a unique CNAF 

"-I 
X == L Ci.xri (mod r" - 1). 

i=O 

The case where C has an element with two CNAFs is slightly more diffi­
cult. We leave it to the reader. We must determine the number of nonzero 
coefficients ci •x , where 0 ~ i ~ n - 1 and x E C, which we consider as ele­
ments of a matrix. Since C is cyclic every column of this matrix has the 
same number of zeros. So the number to be determined is equal to 
nl {x E Clcn- l .% # O} I.By Theorem 12.2.9, we havecn _ l •x # 0 iff there is ayE 1L 
with y == x (mod r" - 1), ml(r + 1) < y ~ mr/(r + 1). Since x has the form AN 
(mod r" - 1) (0 ~ N < B), we must have BI(r + 1) < N ~ Br/(r + 1). 0 

The expression in Theorem 12.3.1 is nearly equal to nICl[(r - 1)/(r + 1)] 
and hence the theorem resembles our earlier result 

q - 1 L w(x) = nICl'--
xeC q 

for a linear code C (cf. (3.7.5». 
The next theorem introduces the generalized Mandelbaum-Barrows codes 

and shows that these codes are equidistant. 

(12.3.2) Theorem. Let B be a prime number that does not divide r with the 
property that (lLIBlL) is generated by the elements rand -1. Let n be a posi­
tive integer with r" == 1 (mod B) and let A := (r" - 1)/B. Then the code C c 
1L1(r" - 1) generated by A is an equidistant code with distance 
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PROOF. Let x E C, X:F O. Then x = AN (mod rn - 1), with N =1= 0 (mod B). 
Our assumptions imply that there is a j such that N == ± ri (mod B). Therefore 
wm(x) = wm(±riA) = wm{A). This shows that C is equidistant and then the 
constant weight follows from Theorem 12.3.1. 0 

The Mandelbaum-Barrows codes correspond to the minimal cyclic codes 
M i- of Section 6.2. Notice that these codes have word length at least HB - 1) 
which is large with respect to the number of codewords which is B. So, for 
practical purposes these codes do not seem to be important. 

§ 12.4. Comments 

The reader interested in more information about arithmetic codes is referred 
to w. w. Peterson and ~.J. Weldon [53], J. L. Massey and o. N. Garcia [48], 
T. R. N. Rao [58]. Perfect single error-correcting cyclic AN codes have been 
studied extensively. We refer to M. Goto [28], M. Goto and T. Fukumara 
[29], and V. M. Gritsenko [31]. A perfect single error-correcting cyclic AN 
code with r = 10 or r = 2k (k > 1) does not exist. 

For more details about the NAF and CNAF we refer to W. E. Clark and 
J. J. Liang [14], [15]. References for binary Mandelbaum-Barrows codes can 
be found in [48]. There is a class of cyclic AN codes which has some resem­
blance to BCH codes. These can be found in C. L. Chen, R. T. Chien and 
C. K. Liu [12]. 

For more information about perfect arithmetic codes we refer to a contri­
bution with that title by H. W. Lenstra in the Seminaire Delange-Pisot­
Poitou (Theorie des Nombres, 1977/78). 

§12.5. Problems 

12.5.1. Prove that min {w(AN)IN E lL, N i: O} :s; 2 for every A E lL if w is as defined in 
(12.1.1). 

12.5.2. Generalize (10.1.4). Find an example with r = 3. 

12.5.3. Consider ternary representations mod 36 - 1. Find a CNAF for 455 using the 
method of the proof of Theorem 12.2.3 .. 

12.5.4. Determine the words of the Mandelbaum-Barrows code with B = 11, r = 3, 
n = 5. 
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Convolutional Codes 

§ 13.1. Introduction 

The codes which we consider in this chapter are quite different from those in 
previous chapters. They are not block codes, i.e., the words do not have 
constant length. Although there are analogies and connections to block codes, 
there is one big difference, namely that the mathematical theory of convolu­
tional codes is not well developed. This is one of the reasons that mathemati­
cians find it difficult to become interested in these codes. 

However, in our introduction we gave communication with satellites as 
one of the most impressive examples ofthe use of coding theory and at present 
one of the main tools used in this area is convolutional coding! Therefore a 
short introduction to the subject seems appropriate. For a comparison of 
block and convolutional codes we refer to [51, Section 11.4]. After the intro­
ductory sections we treat a few of the more mathematical aspects of the 
subject. The main area of research of investigators of these codes is the 
reduction of decoding complexity. We do not touch on these aspects and we 
must refer the interested reader to the literature. 

In this chapter we assume that the alphabet is binary. The generalization 
to IFq is straightforward. Every introduction to convolutional coding seems to 
use the same example. Adding one more instance to the list might strengthen 
the belief of some students that no other examples exist, but nevertheless we 
shall use this canonical example. 

In Figure 4 we demonstrate the encoding device for our code. The three 
squares are storage elements (flip-flops) which can be in one of two possible 
states which we denote by 0 and 1. The system is governed by an external 
clock which produces a signal every to seconds (for the sake of simplicity we 
choose our unit of time such that to = 1). The effect of this signal is that the 
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~--------To 

lo------l .. 

t----------- TI 

Figure 4 

contents of the flip-flops move in the direction of the arrows to the next 
element of this so-called shift register. The elements $ indicate mod 2 adders. 
F or every pulse of the clock, we see that the contents of the first and third 
flip-flop are added and then leave the encoder via the stream To. The informa­
tion to be processed enters on the left as stream 10 . Notice that the first 
flip-flop is actually superfluous since it only serves to divide the input stream 
into three directions. The second and third element of the shift register show 
the essential difference with block coding. They are memory elements which 
see to it that at time t the input signals for t - 1 and t - 2 are still available. 
The output depends on these three input symbols. In practice the output 
streams To and Tl are interlaced to produce one output stream. So, if we start 
with (0 0 0) in the register and have a message stream consisting of 1 followed 
by Os, we see that the register first changes to (1 0 0) and yields the output 
(1 1); then it moves to (0 1 0) with output (0 1); subsequently (0 0 1) with 
output (1 1) and then back to the original state and a stream of Os. 

An efficient way of describing the action of this encoder is given by the state 
diagram of Figure 5. Here the contents of the second and third flip-flop are 
called the state of the register. We connect two states by a solid edge if the 
register goes from one to the other by an input o. Similarly a dashed edge 
corresponds to an input 1. Along these edges we indicate in brackets the two 
outputs at To, T1. An input stream 10 corresponds to a walk through the 
graph of Figure 5. 

A mathematical description of this encoding procedure can be given as 
follows. Describe the input stream io, ii' i2 , ••• by the formal power series 
lo(x):= io + i1x + i2X2 + ... with coefficients in 1F2. Similarly describe the 
outputs at To and Tl by power series To{x) resp. T1(x). We synchronize time 
in such a way that first input corresponds to first output. Then it is clear that 
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To(x) = (1 + x 2 )Io(.x), 

Tl (x) = (1 + x + x 2 )Io(x). 

The interlacing of To and Tl then is described by 

T(x) = TO(.X2) + xT1 (X 2 ). 

In our example we had input Io(x) = 1 and the output sequence 

11 01 11 00 00 ... 

which is 

G(x) := 1 + x + x 3 + X4 + X S = (1 + (X2)2) + x(1 + (x2) + (X2)2). 

SO if we define I(x) := Io(x2), then 

(13.1.1) T(x) = G(x)I(x). 

183 

For obvious reasons we say that the rate of this convolutional code is t. As 
usual, the code is the set of possible output sequences T(x). The polynomial 
G(x) is sometimes caIIed the generator polynomial of this code. 

In the description given above, the information symbol i. entering the shift 
register influences six of the symbols of the transmitted sequence. This num­
ber is caIIed the constraint length of the code. The constraint length equals 
1 + degree G(x). The reader is warned that there are at least two other 
definitions of constraint length used by other authors (one of these is: the 
length of the shift register, e.g. in Figure 4 this is 3). In our example we say 
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that the memory associated with the convolutional code is 2 because the 
encoder must remember two previous inputs to generate output when i. is 
presented. 

We know that one of the most important numbers connected to a block 
code C is its minimum distance. For convolutional codes there is a similar 
concept which again plays a central role in the study of decoding. This 
number is called the free distance of the code and is defined to be the 
minimum weight of all nonzero output sequences. In the example treated 
above, this free distance is the weight of G(x), i.e. 5. 

In a completely analogous way, we now introduce rate lin convolutional 
codes. We have one sequence of information symbols given by the series Io(x). 
There are n sequences leaving the shift register: To(x), Tl (x), ... , T,.-1 (x), where 
each encoded sequence ~(x) is obtained by multiplying Io(x) by some polyno­
mial Gi(x). The transmitted sequence T(x) is 'D:ci Xi ~(xn). As before, we 
define I(x) := Io(xn) and G(x) := I7':6 XiGi(Xn). Then T(x) = G(x)I(x). 

It is obvious that the;! choice of the polynomials Gi(x) (i = 0, 1, ... , n - 1) 
determines whether the code is good or bad, whatever we decide this to mean. 
Let us now describe a situation that is obviously bad. Suppose that the 
input stream Io(x) contains an infinite number of Is but that the correspond­
ing output stream T(x) has only finitely many Is. If the channel accidentally 
makes errors in the position of these Is the resulting all-zero output stream 
will be interpreted by the receiver as coming from input Io(x) = 0. Therefore 
a finite number of channel errors has then caused an infinite number of 
decoding errors! Such a code is called a catastrophic code. There is an easy 
way to avoid that the rate lin convolutional code is catastrophic, namely by 
requiring that 

g.c.d.(Go(x), G1 (x), ... , Gn-dx» = 1. 

It is well known that this implies that there are polynomials ai(x) (i = 0, 
... , n - 1) such that I7:6 ai(x)Gi(x) = 1. From this we find 

n-l n-l 

I ai(xn) ~(xn) = I aj(xn)Gi(xn)Io(xn) = I(x), 
i=O i=O 

i.e. the input can be determined from the output and furthermore a finite 
number of errors in T(x) cannot cause an infinite number of decoding errors. 

There are two ways of describing the generalization to rate kin codes. 
We now have k shift registers with input streams 10 (x), ... , Ik - 1 (x). There 
are n output streams ~(x) (i = 0, ... , n - 1), where ~(x) is formed using all 
the shift registers. We first use the method which was used above. Therefore 
we now need kn polynomials Gij(x) (i = 0, ... , k - 1; j = 0, ... , n - 1) to 
describe the situation. We have 

k-l 

1j(x) = L Gij(x) Ii(x). 
i=O 

It is no longer possible to describe the encoding with one generator polyno-
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mial. We prefer the following way of describing rate kin convolutional codes 
which makes them into block codes over a suitably chosen field. 

Let!F be the quotient field of 1F2 [x], i.e. the field of all Laurent series of the 
form 

We consider the k bits entering the different shift registers at time t as a 
vector in IF~. This means that the input sequences are interpreted as a vec­
tor in !Fk (like in Chapter 3 the vectors are row vectors). We now consider 
the kn polynomials G1j(x) as the elements of a generator matrix G. Of course 
the n output sequences can be seen as an element of !Fft• This leads to the 
following definition. 

(13.1.2) Definition. A rate kin binary convolutional code C is a k-dimensional 
subspace of!Fft which bas a basis of k vectors from IF[x]ft. These basis vectors 
are the rows of G. 

Although this shows some analogy to block codes we are hiding the 
difficulty by using !F and furthermore the restriction on the elements of G is 
quite severe. In practice all messages are finite and we can assume that there 
is silence for t < o. This means that we do not really need !F and can do every­
thing with IF[x]. Since this is not a field, there will be other difficulties for that 
approach. 

When discussing block codes, we pointed out that for a given code there 
are several choices of G, some of which may make it easier to analyze C. The 
same situation occurs for convolutional codes. For such a treatment of gener­
ator matrices we refer the reader to [23]. This is one of the few examples 
of a mathematical analysis of convolutional codes. 

§ 13.2. Decoding of Convolutional Codes 

There are several algorithms used in practice for decoding convolutional 
codes. They are more or less similar and all mathematically not very deep. 
In fact they resemble the decoding of block codes by simply comparing a 
received word with all codewords. Since the codewords of a convolutional 
code are infinitely long this comparison has to be truncated, i.e., one only 
considers the first I symbols of the received message. After the comparison 
one decides on say the first information symbol and then repeats the proce­
dure for subsequent symbols. We sketch the so-called Viterbi-algorithm in 
more detail using the example of Figures 4 and 5. 

Suppose the received message is 10 00 01 10 00 .... The diagram of 
Figure 6 shows the possible states at time t = 0, 1, 2, 3, the arrows showing 
the path through Figure 5. Four of the lines in Figure 6 are dashed and these 
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t= 0 2 3 
00 

01. 

state 

10. 

I' 

" I 
" " " 1 " 11. 

Figure 6 

1= 0 2 3 4 5 

" I 
2 3 

00 

state 

Figure 7 

will be omitted in the next figure. To see why, let us assume that at t = 3 
the register is in the state 00. One way to get in this state is the horizontal 
path which would correspond to output 00 00 00 ... and hence this as­
sumption means that at t = 3 two errors have already been made. If, on the 
other hand the state 00 was reached via 10 and 01, there would have been 
output 11 01 11 and so there are already three errors. We do not know 
whether the register is in state 00 but if it is, then the horizontal path is the 
more likely way of having gotten there. Furthermore this path involves two 
errors. Let us extend Figure 6 to Figure 7 where t = 4 and t = 5 are included 
and we also show the number of errors involved in reaching the different 
stages. 

Of course it can happen that there are two equally likely ways to reach a 
certain state in which case one chooses one of them and discards the other. 
Corresponding to each time and state, one can list the most likely outputs 
corresponding to that assumption. In this way Figure 7 would lead to the 
following list of outputs. 
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t = 1 t=2 t=3 t=4 t=5 

00 00 0000 000000 00000000 0000000000 
state 01 11 01 00 11 01 11 10 01 10 0000111010 

10 11 0011 000011 00000011 11 10 01 10 00 
11 1110 11 10 01 00001110 00 00 11 10 01 

Clearly at t = 5 a maximum likelihood decision would be that the register 
is in state 10, that two errors have been made and that the output was 11 10 
01 10 00. The corresponding input can be found from Figure 7. The easiest 
way is to mark each edge with the input symbol corresponding to that edge. 
We leave it to the reader to invent several ways of continuing after truncation. 
It is clear that we have come upon problems of computing time and storage. 
A mathematically more interesting question is to calculate the effect of an 
incorrect decision on s~bsequent decoding decisions and also to find out what 
is the influence of the free distance ofthe code on the decodirig accuracy. For 
a more detailed treatment of these questions we refer to [51]. 

§13.3. An Analog of the Gilbert Bound 
for Some Convolutional Codes 

We consider a special class of rate kin convolutional codes, namely those 
defined as follows. Take the k input sequences 10 (x), ... , lk- 1 (x) and form 

k-I 

l(x):= I Xi l i (x n ). 
i=O 

This means that every n-tuple of information bits ends in n - k zeros. Take 
a generator polynomial G(x) and define output by T(x) = G(x)I(x). This 
corresponds to a special choice of the polynomials Giix) in our earlier 
description of rate kin codes. As before, we define the constraint length to be 
I + 1 = 1 + degree G(x) and we consider only codes for which I + 1 ~ mn, 
where m is fixed. We are interested in the free distance df of such codes. 
Clearly df ~ I + 1. By shifting the time scale, we see that in studying the 
encoding procedure we may make the restriction that io = to = G(O) = 1. 
For every initial mn-tuple 1 = to, t l , ••• , tmn- I of an output sequence and 
every initial mk-tuple 1 = io, ii' ... , imk - I , there is exactly one polynomial 
G(x) of degree ~ mn such that these initial sequences are in accordance with 
T(x) = G(x)l(x). We wish to exclude all initial segments of T(x) which have 

weight < d. This means that we exclude at most 2mk- t It::g ( mm i- 1) poly­

nomials with G(O) = 1 as generators. Hence there is a choice of G(x) yielding 
at least the required free distance if 
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Taking d = A.mn and writing R := kin, we have from Theorem 1.4.5(i) by 
taking logarithms. 

1 d (mn) - log I . < HU·) < 1 - R, 
mn i=O I 

if 

}. < H-(1 - R). 

Here A. is the quotient of the free distance and the constraint length. This 
bound should be compared with Theorem 5.1.9. 

§13.4. Construction of Convolutional Codes 
from Cyclic Block Codes 

Since quite a lot is known about block codes, it is not surprising that several 
authors have used good block codes to construct convolutional codes with 
desirable properties. In this section we describe one of the methods which 
were developed. 

We use the notation of Section 4.5. 

(13.4.1) Lemma. Let q = 2', P(x) E IFq[xJ, c E IFq \ {OJ, n ~ 0, N ~ O. Then 

w(P(x)(xn - ct) ~ w«x - C)N). w(P(x) mod(xn - c». 

PROOF. Write P(x) as I?~6 XiQi(X n ). Then by Theorem 4.5.2 we have 
n-l 

w(P(x)(xn - C)N) = I W(Qi(X)(X - C)N) 
i=O 

n-l 

~ I W(Qi(C»W«X - ct) 
i=O 

= w«x - C)N). W C~ Qi(C)X i) 

= w«x - C)N). w(P(x) mod(xn - c». 0 

REMARK. It is not difficult to prove Lemma 13.4.1 for an arbitrary field IFq• 

(13.4.2) Theorem. Let g(x) be the generator oj a cyclic code oj length n (odd) 
over IFq (q = 2') with minimum distance dg and let h(x) be the parity check 
polynomial and dh the minimum distance oj the code with generator h(x). Then 
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the convolutional code with rate 1/(2m) over the same field and with generator 
G(x) = g(x) is noncatastrophic and satisfies d, ~ min{dg , 2d,,}. 

PROOF. 

(i) Write G(x) = :LJ.='OI xi(Gi (xm»2. If we consider the representation of the 
convolutional code with polynomials Go(x), ... , G2m- 1 (x) as in Section 
13.1, then for any irreducible common factor A(x) of these polynomials 
G(x) would be divisible by A 2 (X) which is impossible since n is odd and 
g(x) divides x" - 1. So the code is noncatastrophic. 

(ii) Consider an information sequence Io(x). We have T(x) = G(x)Io(x2m) = 
G(x)(lo(xm»2, and therefore T(x) has the form 

T(x) = P(x)(g(x»2i+l(h(x»2i 

with i ~ 0, j ~ 0, P(x) i: 0, P(x) not divisible by g(x) or h(x). We consider 
two cases: 
(a) Let i ~ j. Then we find 

T(x) = P(X)(g(X»2(i-J1 +1 (x" - 1)2i 

and then Lemma 13.4.1 yields 

w(T(x» ~ w«x - 1)2i ). w(P(X)(g(X»2(i-i)+1 mod(x" - 1» ~ dg 

since the second factor concerns a codeword in the cyclic code gene­
rated by g(x). 

(b) Let i < j. We then find 

T(x) = P(X)(h(X»2U-i)-1 (x" _ 1)2i+l 

and then Lemma 13.4.1 yields w(T(x» ~ 2d" because 

w«x - 1 )2i+l) ~ 2. o 

Before looking at more examples of this argument, we discuss a bound for 
the free distance. Consider a convolutional code with rate I/n over IFq with 
generator polynomial G(x) = :Li~J XiGi(X"). Let 

L:= n(1 + max {degree Gi(x)IO:$; i:$; n - I}). 

(Some authors call L the constraint length.) It is obvious that 

d, :$; L. 

This trivial bound has a certain analogy with the Singleton bound d :$; n -
k + 1 for block codes. We shall now describe a construction due to J. 
Justesen [38] of convolutional codes which meet this bound. First we show 
that this requirement yields a bound on L. 

(13.4.3) Lemma. If a rate l/n convolutional code over IFq has df = L then 
L :$; nq. 



190 13. Convolutional Codes 

PROOF. If df = L then each of the polynomials Gj(x) has weight Lin. We 
consider input sequences Io(x) = 1 + a:x where a: runs through IFq\{O} and 
determine the average weight w of the corresponding encoded sequences. 
We find 

n-I 

W = (q - ttl L L w(Gj(x)(I + (Xx» 
Clefq\{O} i=O 

Since w ~ L, we must have L ::;; nq. o 
By using a method similar to the one of Theorem 13.4.2, we can give an 

easy example of a convolutional code with df = L. 

(13.4.4) EXAMPLE. Let (X be a primitive element of 1F4 • Let gl (x) := x2 + (Xx + 
1, g2(X) = x 2 + (X2X + 1. Then (x5 - 1) = (x - l)gl(x)g2(x) a.nd gl(x) and 
g2(X) are relatively prime. We consider a rate! convolutional code Cover 1F4 

with generator polynomial 

G(x):= gl(X 2 ) + Xg2(X 2 ). 

The code is noncatastrophic. We write an information sequence as Io(x) = 
I~(x)(x5 - I)N where N is maximal. By Lemma 13.4.1 we have 

w(T(x» = w(gl(x)Io(x» + w(g2(x)Io(x» 

~ w«x - I)N). {w(gl(x)I~(x) mod(x5 - 1» 
+ w(g2(x)I~(x) mod(x5 - I»}. 

Now, if I~(x) is not a multiple of (x - l)gl (x) or (x - I)g2(x), then the BCH 
bound shows that both terms in the second factor on the right are ~ 3. 
If on the other hand I~(x) is a multiple of (x - I)gl (x), then both terms on 
the right in the top line are even (because of the factor x-I) and both are 
positive. If the second one is 2, then the first one is at least 4, again by the 
BCH bound. Therefore C has free distance at least 6. Since L = 6, we have 
df = L. 

To generalize the idea behind Theorem 13.4.2 in order to construct rate! 
codes over IFq we consider polynomials of the form 

gj(x) := (x - (Xm)(x - (Xm+1) •. . (x _ a:m+d- 2 ), 

where (X is a primitive element of IFq• We choose 9 I (x) and 9 2 (x) in such a 
way that they both have degree LtqJ and that they have no zeros in common. 
Then G(x):= gl(X2) + xg2(X2) generates a noncatastrophic convolutional 
code Cover IFq • The two cyclic codes with generators gl (x) and g2(X) both 
have minimum distance ~ 1 + LtqJ =: d. Let these codes have check polyno­
mials hi (x) and h2(x). An information sequence Io(x) for C is written as 
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lo(x) = (xq- I - l)'(h l (x)f(h2(x»), p(x), 

where p(x) is not a multiple of hi (x) or h2(x) and s or t is O. First assume that 
s = t = O. By Lemma 13.4.1 we have 

w(T(x)) = w(gl(x)lo(x)) + w(g2(x)lo(x)) 

2 

~ L w«x - lY)w(p(x)g,(x) mod(xq- I - 1)) 
1=1 

~2d. 

If s > 0 we obtain in a similar way 

w(T(x)) = w«xq- I - ly(hl(x)fgl(x)p(x)) + w«xq - I - 1)'(h l (x»)"g2(x)p(x» 

~ w«x - ly+1 )w(p(x)(hl (X»S-I mod(xq- I - 1)) 

+ w«x - 1)')' w(p(x)(hl (X»)"g2(X) mod(xq - I - 1» 

~ 2 + (q - l!qj) ~ 2 + 2l!qj = 2d. 

From the construction we have L = 2(1 + l!qj), so df = L. These examples 
illustrate that this is a good way to construct convolutional codes. The 
method generalizes to rate lin. For details we refer to [38]. 

§ 13.5. Automorphisms of Convolutional Codes 

We have seen, e.g., in the chapter on cyclic codes, that the requirement that 
a code is invariant under a certain group of permutations can lead to interest­
ing developments. A lot of algebraic methods could be introduced and several 
good codes were found in this way. Therefore it is not surprising that attempts 
have been made to do something similar for convolutional codes. We shall 
sketch some of these ideas and define cyclic convolutional codes. We shall 
not give many details but hope that the treatment will be sufficient for the 
reader to decide whether he wishes to become interested in this area in which 
case he is referred to the work of Ph. Piret (see [54], [55]). This work was recast by 
C. Roos (see [59]). The ideas have led to some good codes and they are certainly 
worth further research. 

We consider a convolutional code as defined in (13.1.2). If we call such 
a code cyclic if a simultaneous cyclic shift of the coefficients a l of Xi 
(a j E lFi) leaves the code invariant, we do not get anything interesting. In 
fact the code is simply a block code. This shows that it is already difficult 
to define automorphisms in a sensible way. We do this as follows. Let K be 
the group of permutations acting on lFi. Consider K z, i.e. the set of all map­
pings tp: 7L -+ K, which we make into a group by defining tpl IP2(n) := 
tpl (n)tp2(n). We shall write tpn instead of tp(n). Note that tpn E K. We then 
define an action of tp on elements of ;Fn by 
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(13.5.1) 

(13.5.2) Definition. If C is a convolutional code, then the set of all elements 
cP E K Z such that cp( C) = C is called the automorphism group of C. 

From the definition of convolutional codes, it is obvious that multiplica­
tion by x leaves a code C invariant. So, if cp is an automorphism of C, then 
cpx := X-l cpx is also an automorphism. Furthermore it is clear that if we 
consider only the action on a fixed position, say only cp;, we obtain a permuta­
tion group on lFi which is the projection of the automorphism group on the 
ith coordinate. By our remark above and the fact that cpf(a i ) = CPi+l (a i ), we 
see that all projections are the same group. So it seems natural to try to 
find codes for which this projection is the cyclic group. We shall do this 
using the same algebraic approach as we did for block codes. We introduce a 
variable z and identify-lFi with 1F2[Z] mod(zn - 1). Let n be an integer such 
that (n, n) = 1 and let a be the automorphism of lFi defined by a: fez) -+ 

f(z"). The elements of fFn can now be written as L~T aix i where ai = a;(z) 
is a polynomial of degree < n (i E Z). In!P we define addition in the obvious 
way and a mUltiplication (denoted by *) by 

(13.5.3) L aixi * L bjx j := L L aj(a;lbjxi+j. 
i j i j 

Suppose we take the factor on the left to be z (i.e. ao = z, aj = 0 for i i= 0). 
Then from (11.5.3) we find 

(13.5.4) z * L bjxi = L (Z"i bi)x j. 
i i 

This means that the coefficient bj of xi is shifted cyclically over ni (mod n) 
positions. The main point of the definition above is that (fFn, +, *) is an 
algebra which we denote by den, n). 

(13.5.5) Definition. A cyclic convolutional code (notation CCC) is a left ideal 
in the algebra den, n) which has a basis consisting of polynomials. 

Observe that by (13.5.4), we now indeed have a group of automorphisms of 
the code. This group has the cyclic group as its projection on any coordinate. The 
difference with the trivial situation is the fact that the cyclic shifts are not the same 
for every position. We give one example to show that we have a class of nontrivial 
objects worth studying. We define a rate ~ binary convolutional code with memory 
one by the matrix G given by 

(13.5.6) 
l+x 

1 

x 

1 + x 

x 

x 1 + x 
1 + x x 
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We shall now identify elements of If} with polynomials in 1F1 [z] mod(z 7 - 1). 
Writingz7 - 1 = (I + z)(1 + z + z3)(1 + Z2 + Z3) = mo(z)m 1(z)m3(z) we can 
then abbreviate G as follows: 

(13.5.7) 

We claim that G is the generator matrix for a CCC in d(7, -1). Since 1t = -1 
we have from (13.5.4) 

(13.5.8) z * L CiX i = L (Z(-l)i Ci)Xi. 
i i 

To show that the code is a CCC it is sufficient to consider the words (lOOO)G, 
(OIOO)G, (0010)G, (OOOI)G and multiply these on the left by z and then show 
that the product is in the code. For the first three this is obvious from the 
form of (13.5.7) and from (13.5.8). For example, 

Z*(0100)G = Z*(mOm3 + m~mlx) 

Furthermore 

= zmOm3 + z-lm~mlx = (0010)G. 

= z3 mOm3 + z-3m~mlx 

= (I + z)mOm3 + (1 + z6)m~ml x 

= (OllO)G. 

The main point of Piret's theory is to show that a CCC always has a generator 
matrix with a "simple" form similar to (13.5.7). This makes it possible to 
construct examples in a relatively easy way and then study their properties, 
such as their free distance. 

§13.6. Comments 

Convolutional codes were introduced by P. Elias in 1955 (cf. [20J). There 
has been quite a lot of controversy about the question whether convolutional 
codes are "better" than block codes or not. Despite the lack of a deep mathe­
matical theory, convolutional codes are used successfully in practice. Many of 
these codes were simply randomly chosen. For one of the deep space satellite 
missions ([ I]) a scheme was proposed that combined block codes and convolutional 
codes. The idea was to take an information stream, divide it into blocks of twelve 
bits, and code these blocks with the [24,12] extended Golay code. The resulting 
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stream would be input for a convolutional encoder. This is the same idea as in the 
concatenated codes of Section 9.2. 

For a connection between quasi-cyclic block codes and convolutional 
codes we refer to a paper by G. Solomon and H. C. A. van Tilborg [66]. They 
show, e.g. that the Golay code can be encoded and decoded convolutionaHy. 

In Section 3.2 we saw that in decoding block codes the procedure for 
estimating the error pattern does not depend on the transmitted word. The 
idea was to introduce the syndrome (cf. (3.2.6)). The same idea has been used 
very successfully for convolutional codes. For more about this idea we refer 
to a paper by J. P. M. Schalkwijk, A. J. Vinck, and K. A. Post [60]. Some 
results concerning the error probability after decoding convolutional codes 
can be found in [51, Section 9.3]. 

The most complete treatment of convolutional codes can be found in a 
recent book by Ph. Piret [79]. 

§13.7. Problems 

13.7.1. Suppose that in Figure 4 we remove the connection of the third flip-flop with 
the adder for T1 • Show that the resulting code is catastrophic. 

13.7.2. Let g(x) be the generator polynomial of a cyclic code with minimum distance d. 
As in Section 13.1 we take two polynomials Go(x) and Gt(x) to generate a rate 
1/2 convolutional code. If we take these such that g(x) = GO(x 2 ) + xGt (x 2 ) 

then by (13.1.1) all encoded sequences are multiples of g(x). Give an example 
where nevertheless the free distance is less than d. Check the result by con­
structing the encoder as in Figure 4. 

13.7.3. Determine the free distance of the CCC given by (13.5.7). 



Hints and Solutions to Problems 

Chapter 2 

2.5.1. L (N)qkpN-k < (pq)N/Z L (N) 
Os,k<N/Z k Os,k<N/Z k 

= 2N - 1(pqt/Z < (0.07)N. 

2.5.2. There are 64 possible error patterns. We know that 8 of these lead to 
3 correct information symbols after decoding. To analyse the remainder one 
should realize that there are only 4 essentially different 3-tuples (Sl' Sz, S3)' 
Consider one possibility, e.g. (Sl' Sz, S3) = (1, 1, 0). This can be caused by 
the error patterns (101011), (011101), (110000), (010011), (100101), (000110), 
(111110) and of course by (001000) which is the most likely one. Our decision 
is to assume that e3 = 1. So here we obtain two correct information symbols 
with probability pZq4 + 2p4qZ and we have one correct information symbol 
with probability 2p3 q3 + pS q. 

By analysing the other cases in a similar way one finds as symbol error 
probability 

!(22p2 q4 + 36p3 q3 + 24p4 q2 + 12ps q + 2p6) 

= !(22p2 - 52p3 + 48p4 - 16pS). 

In our example this is 0.000007 compared to 0.001 without coding. 

2.5.3. Take as codewords all possible 8-tuples of the form 

This code is obtained by taking the eight words of the code of the previous 
problem and adding an extra symbol which is the sum of the first 6 symbols. 
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This has the effect that any two distinct codewords differ in an even number 
of places. i.e. d(x, y) ~ 4 for any two distinct codewords x, y. 

The analysis of the error patterns is similar to the one which was treated 
in Section 2.2. For (e l , e2, ... ' e7) we find 

e2 + e3 + e4 = Sl' 

e l + e3 + es = S2' 

e l + e2 + e3 + e7 = S4· 

There are 16 possible outcomes (S1> S2' S3' S4). Eight of these can be explained 
by an error pattern with no errors or one error. Of the remainder there are 
seven, each of which can be explained by three different error patterns with 
two errors, e.g. (Sl' S2' S3' S4) = (1, 1,0, 0) corresponds to (e1, e2 • ... , e7) 
being (0010001), (1100000) or (0001100). The most likely explanation of 
(1, 1, 1, 0) is the occurrence of three errors. Hence the probability of correct 
decoding is 

q7 + 7q6p + 7qSp2 + q4p3. 

This is about 1 - 14p2, i.e. the code is not much better than the previous 
one even though it has smaller rate. 

2.5.4. For the code using repetition of symbols the probability of correct 
reception of a repeated symbol is 1 - p2. Therefore the code of length 6 with 
codewords (ai' a2, a3' ai' a2• al) has probability (1 - p2)3 = 0.97 of correct 
reception. The code of Problem 2.5.2 has the property that any two code­
words differ in three places and therefore two erasures can do no harm. In fact 
an analysis of all possible erasure patterns with three erasures shows that 16 
of these do no harm either. This leads to a probability (1 - p)3(1 + 3p + 
6p2 + 6p3) = 0.996 of correct reception. This is a remarkable improvement 
considering the fact that the two codes are very similar. 

2.5.5. Treat the erasures as zeros. The inner products are changed by at most 
2el +e2· 

2.5.6. Replace a 1 in C by -1, a 0 by + 1. The two conditions (i) and (ll) imply 
that the images of codewords are orthogonal vectors in R16. Hence ICI ::: 16. To 
construct such a code, we need a Hadamard matrix of order 16 with six -Is in 
every row. There is a well known construction. It yields a binary code that is most 
easily described by writing codewords as 4 by 4 matrices. Fix a row and a column; 
put Is in this row and in this column, except where they meet. In this way, we find 
16 words of weight 6 that indeed pairwise have distance 8. 

2.5.7. For any x, there are at most n/2 codewords that differ from x in two places. 
If there exists a codeword that differs from x in exactly one place, then there are 
at most (n - 2)/2 other code words that differ from x in two places (because n is 
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even). For any codeword e, there are exactly n words that differ from e in one 
place and (~) words that differ in two places. 

Counting pairs (x, c) in two ways, we find 

(n) n - 2 n n 
IC!' 2 ~ IC!' n . -2- + (2 - IC! . (n + 1» . 2' 

from which the result follows. The code of §2.1 is an example where equality 
holds. 

Chapter 3 

3.8.1. By (3.1.6) we have L~=OC) = 2' for some integer I. This equation 

reduces to (n + 1)(n2 -;n + 6) = 3.2'+1, i.e. (n + l){(n + 1)2 - 3(n + 1) + 8} 
= 3.21+1. If n + 1 is divisible by 16 then the second factor on the left is 
divisible by 8 but not by 16, i.e. it is 8 or 24 which yields a contradiction. 
Therefore n + 1 is a divisor of 24. Since n ~ 7 we see that n = 7, 11, or 23 
but n = 11 does not satisfy the equation. For n = 7 the code M = {O, I} is 
an example. For n = 23 see Section 4.2. 

3.8.2. Let e E C, wee) ~ n - k. There is a set of k positions where e has a 
coordinate equal to O. Since C is systematic on these k positions we have 
e = O. Hence d > n - k. Given k positions, there are codewords which have 
d - 1 zeros on these positions, i.e. d ~ n - k + 1. In accordance with the 
definition of separable given in Section 3.1 an [n, k, n - k + 1] code is 
called a maximum distance separable code (MOS code). 

3.8.3. Since C c Col every e E C has the property (e, c) = 0, i.e. wee) is 
even and hence (e, 1-) = O. However, (1, 1) = 1 since the word length is 
odd. Therefore Col \ C is obtained by adding 1 to all the words of C. 

3.8.4. IB1(x)1 = 1 + 6 = 7. Since 71C1 = 63 < 26 one might think that such 
a code C exists. However, if such a C exists then by the pigeon hole prin­
ciple some 3-tuple of words of C would have the same symbols in the last 
two positions. Omitting these symbols yields a binary code C' with three 
words of length 4 and minimum distance 3. W.l.o.g. one of these words is 
o and then the other two would have weight ~ 3 and hence distance ~ 2, a 
contradiction. 

3.8.5. By elementary linear algebra, for every i it is possible to find a basis 
for C such that k - 1 basis vectors have a 0 in position i and the remaining 
one has a 1. Hence exactly qk-1 code words have a 0 in position i. 

3.8.6. The even weight subcode of C is determined by adding the row 1 to 
the parity check matrix of C. This decreases the dimension of the code by 1. 

3.8.7. From the generator matrix we find for e E C 

C1 + C2 + Cs = C3 + C4 + C6 = C1 + C2 + C3 + C4 + C7 = O. 
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Hence the syndromes 

(Sl' S2' S3) = (e 1 + ez + es, e3 + e4 + e6 , e1 + e2 + e3 + e4 + e7 ), 

for the three received words are resp. (0. 0, 0), (0, 0, 1), (1, 0, 1). Hence (a) is 
a code word; by maximum likelihood decoding (b) has an error in position 7; 
(c) has an error in position 1 or an error in position 2, so here we have a 
choice. 

3.8.8. (i) If p == 1 (mod 4) then there is an rt. E IFp such that rt.z = -1. Then 

3.8.9. 

G = (/4' rt.I4 ) is the generator matrix of the required code. 

(ii) If p == 3 (mod 4) we use the fact that not all the elements of IFp are 
squares and hence there is an rt. which is a square, say rt. = f3z, 
such that rt. + 1 is not a square, i.e. rt. + 1 = _yz. Hence f3z + 
yZ = -1. Then 

G ~ [~ 
0 0 ° 13 y 0 

~l ° 0 -y 13 0 

° 1 0 ° ° 13 
0 ° ° ° -y 

does the job. 
(iii) If p = 2, see (3.3.3). 

n-k 2k - 1 - k 
as k -. 00. Rk =--= 

2k - 1 
-.1, 

n 

3.8.10. (i) Let (Ao, AI' ... , An, An+d be the weight distribution of C. 
Then AZk - 1 = ° and AZk = AZk- 1 + AZk . Since L AZkzZk = 
HA(z) + A( -z)} and LAzk_lZZk-l = HA(z) - A( -z)}, we find 
A(z) = t{(1 + z)A(z) + (1 - z)A( -z)}. 

(ii) From (i) and (3.5.2) we find the weight enumerator of the extended 
Hamming code of length n + 1 = 2k to be 

!{(l + zr 1 + (1 - z)n+l} + _n_(1 _ zZ)(n+l)/Z. 
2 n+l n+l 

Now apply Theorem 3.5.3. The weight enumerator of the dual 
code is 1 + 2nz(n+l)/z + zn+l, i.e. all the words of this code, except 
o and 1, have weight 2k- 1• 

3.8.11. The error pattern is a nonzero codeword c. If w(c) = i then the 
probability of this error pattern is pi(l - p)n-i. Therefore the probability of 
an undetected error is (1 - pt{ -1 + A(p/(1 - p))}. 

3.8.12. Let Gi (i = 1,2) be a generator matrix of Ci in standard form. Define 
Au E flt (1 ~ i ~ kl' 1 ~ j ~ kz) as follows. The first kl rows of Au are 0 except 
for row i which is equal to the ith row of G1 and similarly for the first kz 
columns except for column j which is the transpose of the jth row of Gz. It is 
easy to see that this uniquely determines an element Aij in flt. The Au are kl k2 
linearly independent elements of Yt which generate the code C. If A E flt has 
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a nonzero row then this row has weight ~ d1 , i.e. A has at least d1 columns 
with weight ~ dz. So C has minimum distance ~ d1 dz. In fact equality holds. 

3.8.13. The subcode on positions 1,9 and 10 is the repetition code which is 
perfect and single-error correcting. The subcode on the remaining seven 
positions is the [7, 4] Hamming code which is also perfect. So we have a 
unique way of correcting at most one error on each of these two subsets of 
positions. C has minimum distance 3 and covering radius 2. 

3.8.14. (i) Consider the assertion A" := "after 2" choices we have a linear 
code and for i < k the word length increases after 2i steps". For 
k = 1 the assertion is true. Suppose A" is true for some value of k. 
Consider the codeword cZ'" The list of chosen words looks like 

{" =0 0 ... 0 0 0 
A : 

CZ"-I-l =* * 0 0 

{"',-' =* * * 11 1 

B : 
CZ"-1 =* * .. , * 11 1 

where the words in B are obtained by adding Czk-l to the words 
of A. If eZk has the same length as the words of B, since it is 
lexicographically larger, CZ" must be of the form CZk- I + x 

where x has Os in the last positions. However d ::;; d(CZk-1 + x, 

CZk-1 + c i) = d(x, Ci)' where 0 S; i < 2"-1, shows that we should 
have chosen x instead of CZk-l. a contradiction. So the length 
of the code increases when we choose cZ'" Now suppose that 
we have shown that CZ"+i = cZ" + Ci for 0 S; i < j (it is true for 
i = 0). We have d(cz" + Cj. cZ" + c/) = d(cj • cj) ~ d, d(cz" +cj ' Cj) = 
d(cz'" Cj + cj ) ~ d since by the assumption on linearity ci + cj = 
Cv for some v. This proves that CZk + cj is a possible choice for the 
codeword cZ"+j' The difficult part is to show that it is the least 
choice. On the contrary, suppose the choice should be CZk + x 

where CZk + x -< CZk + Cj (we use -< for the lexicographic order­
ing). By the induction hypothesis x >- cj . These inequalities imply 
that cj ' x, and CZk look like 

Cj =* * 0 al aZ ar 0 0 0 0 

x =* * 1 a1a2 ar 0 0 0 0 

CZk = * * 1 ** ........................ *1. 

The assumption that C2k + x is an admissible choice implies (again 
using linearity) 

for 0::;; i < 2\ 

i.e. 
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d(C2k + X + Cj , Ca ~ d, for 0 S i < 2k. 

But C2k + X + cj -< C2k, i.e. the choice for C2k was not the least, a 
contradiction. This completes the proof by induction of assertion 

Ak • 

(ii) Now consider the case d = 3. Let nk be the length of the code after 
2k vectors have been chosen. So n1 = 3. Let C .. be the linear code 
after 2k choices. If C .. is not perfect then there is a vector x of 
length nk which has distance ~ 2 to every word of C ... So (x, 1) is 
a possible choice for C2k. This gives us nk+l = n .. + 1. If, on the 
other hand, C .. is perfect it is clear that nk+l = n .. + 2 and C2k = 
(1,0,0, ... ,0, 1, 1). The assertion B,,:= "the length n .. equals 20 + i 
for k = 20 - a-I + i and 1 S i < 20 " now follows by induction 
from the observations above. In each of the sequences mentioned 
in Bo the final code is a Hamming code. 

3.8.15. If C is a [15,8,5,] code, then C must contain a word of weight 5 because 
otherwise we could puncture to a [14,8,5] code which cannot exist because 28 

spheres of radius 2 contain too many points (see (5.2.7). Take such a word as first 
row of a generator matrix. On the positions where this row has zeros, the other 
seven rows generate a [10,7] code which must have minimum distance 3. Again, 
this violates the sphere-packing condition. (See the part on residual codes in §4.4.) 

Chapter 4 

4.8.1. By (4.5.6) 9l(1, m) has dimension m + 1, i.e. it contains 2m+1 words 
of length n = 2m. By Theorem 4.5.9 each of the 2(2m - 1) hyperplanes of 
AG(m, 2) yields a codeword of 9l(I, m), i.e. except for 0 and 1 every codeword 
is the characteristic function of a hyperplane. Take 0 and the codewords 
corresponding to hyperplanes through the origin. Replace 0 by - 1 in each 
of these codewords. Since two hyperplanes intersect in 2m- 1 points the n 
vectors are pairwise orthogonal. 

4.8.2. Since the code is perfect every word of weight 3 in IFj 1 has distance 
2 to a codeword of weight 5. Therefore As = 23enlW = 132. Denote the 
5-set corresponding to x by B(x). Suppose x and y I/: {x, 2x} are codewords of 
weight 5 such that IB(x) n B(Y)I > 3. Then w(x + y) + w(2x + y) S 8 which 
is impossible because x + y and 2x + yare codewords. Therefore the 66 sets 
B(x) cover 66· m = (1) 4-subsets, i.e. all 4-subsets. 

4.8.3. By Theorem 1.3.8 any two rows of A have distance 6 and after a 
permutation of symbols they are (111, 111, 000, (0) and (111, 000, 111, 00). 
Any other row of A then must be of type (100, ItO, 110, to) or 
(110, tOO, 100, 11). Consider the 66 words Xi resp. Xj + x ... We have 
d(Xi' Xi + Xk) = w(x .. ) = 6, d(Xi' Xj + x .. ) = w(x i + Xj + x .. ) = 4 or 8 by the 
above standard representation. Finally, we have d(Xi + Xj' Xl + x,) ~ 4 by 
two applications of the above standard form (for any triple Xi> xi' Xk)' Since 
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d(x, 1 + y) = 11 - d(x, y), adding the complements of the 66 words to the 
set decreases the minimum distance to 3. 

4.8.4. Apply the construction of Section 4.1 to the Paley matrix of order 17. 

4.8.5. a) Show that the subcode corresponds to the subcode of the hexacode 
generated by (1, co, 1, co, 1, co). 

b) As in the proof for <:§24' show that the subcode has dimension 4. 
c) Show that d = 4. 

4.8.6. Let C be an (n, M, d) code, d even. Puncture C. The new code C' 
is an (n - 1, M, d - 1) code (if we puncture in a suitable way). The code C' is 
an (n, M, d) code because all words in C' have even weight. 

4.8.7. If Rand S are 3 by 3 matrices then write 

[
R S S S] S R S S 
S S R S := M(R, S). 

S S S R 

The rows of A, B, C, D have weight 5, 6, 8,9, respectively. For two words a, 
b we have d(a, b) = w(a) + w(b) - 2(a, b) where (a, b) is calculated in 7L.. 
By block multiplication we find 

AAT = M(4I + J,2J), 

ABT = M(5J, 3J) - 2BT, 

BBT = M(3I + 3J, 3J - I), 

a matrix with entries 3 or 1. 

It follows that two rows of A resp. B have distance 6 or 8 and that a row of 
A and a row of B have distance 5 or 9. In the same way the fact that the 
remaining distances are at least 5 follows from 

CAT = (4J - 21, 4J - 2I,4J - 21, 4J - 21), 

CBT = (4J, 4J, 4J, 4J), 

DAT = 3J + D, 

CCT =4J +41, 

DBT = 3J + 2D, 

DDT = 31 + 6J, DCT = 6J. 

(This construction is due to J. H. van Lint, cf. [43].) 

4.8.8. From Theorem 1.3.8 we have AT = -A and AAT = 111. It follows 
that over 1F3 any two rows of G have inner product 0, i.e. G generates a 
[24, 12] self-dual code C. Therefore (A 1) is also a generator matrix for 
C. So, when looking for words of minimum weight we may assume that the 
first twelve positions contribute at most one half of the total weight. Since C 
is self-dual all weights are divisible by 3. Every row of G has weight 1 + 11 = 
12 and a linear combination of two rows has weight 2 + 7 = 9 (this follows 
from AA T = Ill). Therefore a linear combination of three rows has weight 
at least 3 + (11 - 7) and hence at least 9. This shows that C has minimum 
weight 9. 
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Remark. This code and the ternary Golay code are examples of symmetry 
codes. These codes were introduced by V. Pless (1972). The words of fixed 
weight in such codes often yield t-designs (even with t = 5) as in Problem 
4.8.2. The interested reader is referred to [11]. 

4.8.9. Let 1, Yo, ... , Vm- l be the basis vectors of 9l(I, m}. From (4.5.3)(i) 
and (ii) we then see that 1 = (1, I), Wo = (vo, vol, ... , Wm- l = (vm - l , vm- l ), 
Wm = (0, I) are the basis vectors (of length 2m+l) of 9l(I, m + 1). There­
fore a basis vector of 9l(r + 1, m + 1) of the form Wi, ... Wi, is of type (u, u) with 
u a basis vector of 9l(r + I, m) if Wm does not occur in the product and it is of 
type (0, v), where v is a basis vector of 9l(r, m) if Wm does occur in the product. 
If d(r, m) is the minimum distance of 9l(r, m) then from the (u, u + v}-construc­
tion we know that d(r + 1, m + 1) = min{2d(r + 1, m), d(r, m)} and then 
Theorem 4.5.7 follows by induction. 

4.8.10. (i) We consider the vectors x* and c* = ±ai as vectors in IR". Clearly 
(x*, c*) = n - 2d(x, c). We may assume that the a i are chosen 
in such a way that (x*, a;) is positive (1 ~ i ~ n). The vectors 

x* and all a i have length In. Therefore 2:7=1 (x*, a;)2 = n2 , 

because the a i are pairwise orthogonal. It follows that there is 

an i such that (x*, a i) is at least In. 
(ii) Now let m = 2k and c E 9l(I, m). By definition c is the list of values 

of a linear function on lFi and d(x, c) is therefore the number of 
points in lFi where the sum of XI X2 + X 3 X 4 + ... + X2k-IX2k and 
this linear function takes the value 1. Observe that 

XI X2 + X 3 X 4 + ... + X 2k -\X2k + Xl 

= xIXZ + X 3 X 4 + ... + X2k-lX2k 

where x2 := X2 + 1. Therefore a sequence of coordinate transfor­
mations Xi := Xi + I (for 1Fi) changes the sum into an expression 
equivalent to X I X2 + ... + X2k-IX2k or to its complement (if the 
term 1 occurs in the linear function). We count the points x, for 
which X 1X2 + ... + X2k-IX2k = 1. Call this number nk • Clearly 
nk = 3nk- 1 + (22k - 2 - n k ), from which we find n k = 22k- 1 - 2k - l . 
This can also be calculated by considering the vector (Xl' X 3 , ••• , 

X Zk - I ). If this is not ° then 2k - 1 choices for (x 2 , X 4 , •.• , X 2k ) are 
possible. Hence nk = (2k - 1)2k-l. 

4.8.11. Since the ternary Hamming code is self-dual it follows that C is 
self-dual; (J + I has rank 4 and hence C has dimension 6). Therefore the 
minimum distance of C is either 3 or 6. Clearly a linear combination of the 
first four rows of G has weight> 4. On the other hand a linear combination 
of the last two rows has weight 6. Again since J + I has rank 4 a combination 
involving rows of both kinds cannot have weight 3. 
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Chapter 5 

5.5.1. We construct a suitable parity check matrix for the desired code C 
by successively picking columns. Any nonzero column can be our first choice. 
If m columns have been chosen we try to find a next column which is not a 
linear combination of i previous columns for any i :s; d - 2. This ensures that 
no (d - I)-tuple of columns of the parity check matrix is linearly dependent, 
i.e. the code has minimum distance at least d. The method works if the 
number of linear combinations of at most d - 2 columns out of m chosen 
columns is less than qn-k (for every m :s; n - 1). So a sufficient condition is 

:~ (n ~ l}q _ l)i < qn-k. 

The left-hand side of the inequality in (5.1.8) is at least n(q - 1)/(d - 1) times 
as large, the right-hand side only q times as large, i.e. Problem 5.5.1 is a 
stronger result in general. 

5.5.2. By (5.1.3) we have A(lO, 5) = A(lI, 6). The best bound is obtained by 
using (5.2.4) (also see the example following (5.3.5». It is A(II, 6) :s; 12. From 
(1.3.9) (also see the solution of Problem 4.8.3) we find an (11, 12, 6) code. 
Hence A(10, 5) = 12. 

5.5.3. Equality in (5.2.4) can hold only if this is also the case for the in­
equalities used in the proof and that is possible only if tM2 is an integer. So 
M = I is impossible. 

5.5.4. By Problem 4.8.4 we have A(17, 8) ~ 36. The best estimate from 
Section 5.2 is obtained by using the Plotkin bound. We find A(17, 8) :s; 
4A(15, 8) :s; 64. A much better result is obtained by applying Theorem 5.3.4. 
The reader can check that the result is A(17, 8) :s; 50. The best known bound, 
obtained by refining the method of (5.3.4), is A(17, 8) :s; 37 (cf. [6]). 

5.5.5. The columns of the generator matrix are the points 
(Xl' X2, X3' X,,-, xs) of PG(4, 2). We know (cf. Problem 3.7.10) that all 
the nonzero codewords of the [31, 5] code have weight 16. By the same 
result the positions corresponding to Xl = X2 = 0 yield a subcode of 
length 7 with all nonzero weights equal to 4 and the positions with X3 = 
X"- = Xs = 0 give a subcode oflength 3 with all nonzero weights equal to 2. 
If we puncture by these ten positions the remaining [21, 5] code therefore 
has d = 16 - 4 - 2 = 10. From (5.2.6) we find n ~ 10 + 5 + 3 + 2 + 1 = 21, 
i.e. the punctured code meets the Griesmer bound. 

5.5.6. This is a direct consequence of the proof of Lemma 5.2.14 (the average 

number of occurrences of a pair of ones is ICI'(;)/(;) = A(n - 2, 2k, 

w - 2) and no pair can occur more than this many times). 

5.5.7. Let n = 2k - 2. By Lemma 5.2.14 we have A(n, 3, 3):s; in(n - 2). 
Hence Theorem 5.2.15 yields 
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Hence the en, n - k, 3] shortened Hamming code is optimal. 

5.5.8. If two word's c and c' of weight w have distance 2, say cj = c~ = 1, 
c; = ck = 0, then 2:1';6 ici - Li';6 ic; == j - k (mod n). It follows that each of 
the codes C, (0 :s; I :s; n - 1) has minimum distance 4. Therefore A(n, 4, w) ~ 

I /n(:), since L:7;JIC,1 =(:). By Lemma 5.2.14 we have A(n, 4, w):S; 

(: )I(n - w + 1). Combining these inequalities the result follows. (For gener­

alizations of this idea cf. [30].) 

5.5.9. Let C be a binary (n, M, 2k) code. Define 

S:= {(c, x)lc E C, x E IF~, d(c, x) = w}. 

Clearly lSI = (:) M. For a fixed x there are at most A(n, 2k, w) words c in C 

such that d(c, x) = w. Therefore (:) M :s; 2n A(n, 2k, w). 

5.5.10. (i) The proof of this inequality is essentially the same as the proof of 
Lemma 5.2.10. If a constant weight code has mi words with a 1 in 
position i then, in our usual notation, 

(ii) Let 2kln ..... (j as n ..... 00. Let w/n ..... W as n -+ 00. Then A(n, 2k, w) 
is bounded as n -+ 00 and Problem 5.5.9 yields cc(fJ) :s; 1 - Hz(w). 
We must still satisfy the requirement 1 - (w/k)(1 - (win» > O. 
So the best result is obtained if 1 - (2w/fJ)(1 - w) = 0, i.e. w = 
t - tJI=2c5, which is (5.2.12). 

5.5.11. We have Kz(i) = 2iz - 2ni + (;) and this is less than 2d z - 2nd + 

(;) for d :s; i :s; n - d. Since Ao = An = 1 (w.l.o.g.) and Ai = 0 for all other 

values of i outside Cd, n - d], we find from (5.3.3) 

2(;) + (2d 2 - 2nd + (;)) :t: Ai ~ O. 
This yields the required inequality. 

5.5.12. Consider the problem of determining A(9, 4) with Theorem 5.3.4. 
We find four inequalities for A4 , A 6 , As. To this system we may add the 
obvious inequality As :s; 1. A rather tedious calculation yields the optimal 
solution A4 + A6 + As S 20t, So we have to consider the possibility of a 
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(9, 21, 4) code. Taking w = -1 in the proof of Lemma 5.3.3 yields the 
ineq uali ties 

i.e. using 

Since the code has 21 words, there are at most 10 pairs of codewords with 
distance 8, i.e. As ~ ~? Therefore the numbers ~bAi must satisfy the same 
inequalities which we solved to start with. This implies A4 + A6 + As ~ 
~~. 631 < 20, a contradiction. 

Chapter 6 

6.13.1. We generalize Sections 6.1 and 6.2. Over 1F3 we have X4 + 1 = 
(x 2 + X + 2)(x2 + 2x + 2). Hence x 2 + x + 2 is the generator of a nega­
cyclic [4, 2] code which has generator matrix (6 i ~ ?). By Definition 
3.3.1 this is a [4, 2] Hamming code. 

6.13.2. Since X4 + x + 1 is primitive we can take it as generator for the 
[15, 11] Hamming code. Now follow the procedure of the proof of Theorem 

6.4.1 to find a(x)(x4 + x + 1) which turns out to be 1 + (x + x 2 + X4 + Xs) 
+ (x3 + x 6 + x9 + xl2), a sum of three idempotent corresponding to cyclo­
tomic cosets. The method described after Theorem 6.4.4 and the example 
given there provide a second solution. 

6.13.3. Consider the matrix E introduced in Section 4.5 and leave out the 
initial column. We now have a list of the points i= (0, 0, ... , 0) in AG(m, 2), 
written as column vectors. We can also consider this as a list of elements of 
1Fi'~. This is a cyclic group generated by a primitive element ~ of 1F2m. The 
mapping A: 1F2~ -+ 1F2'" defined by A(x) := ~x is clearly a nonsingular linear 
transformation of AG(m, 2) into itself and as a permutation of the points of 
AG(m, 2)\ {O} it has order 2m - 1. The mapping A maps flats into flats. It 
now follows from Lemma 4.5.5(i), (4.5.6) and Theorem 4.5.9 that the per­
mutation of coordinate places corresponding to A yields a cyclic represen­
tation of the shortened code. 

6.13.4. Use x 3 + 2x + 1 to generate 1Ft. If {3 is a primitive element 
x 3 + 2x + 1 is its minimal polynomial. Using a table of the field we 
find the minimal polynomial of {32 to be (x - {32)(X - {36)(X - {318) = 
x 3 + x 2 + X + 2 and the minimal polynomial of {34 is (x3 + x 2 + 2). The 
product of these functions has {3, {32, {33, p4 among its zeros. So it generates 
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the required code. The generator polynomial is 1 + x + 2X2 + 2Xl + 2X4 + 
X S + X 6 + X 7 + 2xs + x9• The dimension of the code is 17. 

6.13.5. First make a table of !F2'. By substitution we find E(rxi) = R(rxi) 

for i = 1, 2, 3,4. These are respectively rx2S, rx2S, 1, rx 19• We must determine 
O'(z) = 1 + O'lZ + 0'2Z2 from the equations 1 + 0'1rx2S + 0'2rx2S = 0, rx 19 + 0'1 + 
0'2a2S = o. We find 0'1 = rx2S, 0'2 = rx lO, i.e. 

O'(Z) = (1 - rx 14z)(1 - rx27 z). 

So the codeword was 

(1 00 1 0 1 1 0 1 1 1 1 00 1 0 1 1 0 1 0 1 0 1 0 1 1 0 1 1 1). 

The generator of the code is (1 + x 2 + xS )(1 + x 2 + Xl + X4 + X S ), i.e. g(x) = 
1 + Xl + X S + x 6 + x 8 + x9 + x lO• The codeword is 

g(x)(1 + x 11 + x 20 ). 

6.13.6. Since the defining set of C contains {Pilj = - 2, - 1~ 1, 2}, it follows 
from Example 6.6.10 (with d" = 3 and IBI = 2) that d ~ 4. Consider the even 
weight subcode C of C. The words of this code have p-2, p-l, po, pi, p2 as 
zeros. Hence C has minimum distance at least 6 by the BCH bound. It follows 
that d ~ 5. 

6.13.7. Consider any [q + 1,2, q] code C. This code is systematic on any 
two positions (cf. (3.8.2». For the coefficients of the weight enumerator this 
implies 

(q + l)A q+1 + aAq = (q + 1)(q2 - q). 

Since Aq+l + 4q = q2 - 1 we find that Aq+l = 0, i.e. every nonzero code­
word has weight q. There is a unique codeword c = (co, Cl , ••• , cq ) with 
Co = C(q+l)/2 = 1. Since exactly one coordinate of c is 0, a cyclic shift of c 
over t(q + 1) positions does not yield the same word c. Hence C is not cyclic. 

6.13.8. Over IFl we have 

Xli _ 1 = (x - l)(xS - Xl + x 2 - X - l)(xS + X4 - Xl + x 2 - 1), 

where the factors are irreducible. So, as in (6.9.1), we can take go(x) = 
(X S - x 3 + x 2 - x-I) as generator of the ternary [11, 6] QR code C. 
Both the BCH bound and Theorem 6.9.2 yield d ~ 4; in the latter case there 
is the restriction c(l) =F o. The code CJ. has generator (x - l)go(x) (cf. 
Section 6.2). Now consider the code C obtained by adding an overall parity 
check in the usual way. If G is a generator matrix for Cl., then a generator 
matrix for C is obtained by adding the row 1 and a generator matrix for C is 
given by 
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G 

o 
o 

o 
1 1 .. , 1 1 
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We see that C is self-dual. The inner product of a codeword with itself (over 
\R) is the number of nonzero coordinates. Hence every codeword in C has a 
weight divisible by 3. This proves d ~ 5. That C is perfect follows from the 
definition by using 1 + en· 2 + en· 22 = 3'. 

6.13.9. By (6.9.5) d is odd. By Theorem 6.9.2(ii) and (iii) we have d2 - d 
+ 1 ~ 47 (i.e. d ~ 8) and d == 3 (mod 4). Hence d ~ 11. By the Hamming 
bound (Theorem 5.2.7) we have, with d = 2e + 1, 

t (4:) S; 247/ICI. 
1=0 1 

Since C has dimension 24, we find e :s;; 5. It follows that d = 11. 

6.13.10. In the example of Section 6.9 and in Problem 6.12.8 we have already 
found the [7, 4] Hamming code and the two Golay codes as examples of 
perfect QR codes. There is one other perfect QR code. That there are no 
others with e > 1 is a consequence ofthe results of Chapter 7. Suppose C is a 
QR code of length n over fq and C is a perfect code with d = 3. Then by 
(3.1.6) we have 

1 + n(q - 1) = q(n-l)/2, (or q(n+l)/2). 

The two cases are similar:. In the first we have 

n = 1 + q + q2 + ... + q(n-J)/2. 

If n > 5 then the right-hand side is at least 

n-5 
1 + 2 + -2-'4 = 2n - 7, 

i.e. n = 7 and q = 2 and C is the [7,4] Hamming code. It remains to try n = 3 
and n = 5. We find 

1 + 3(q - 1) = q resp. 1 + 5(q - 1) = q2. 

So the only solution is n = 5, q = 4. 

6.13.1.1. Let P be a primitive element of fn• Define R.:= {Pi E filii == 
v (mod e)}, 0 :s;; v < e. Let a be a primitive nth root of unity in an extension 
field of fq • We define 

g.(x):= n (x - aT), 0 :s;; v < e. 
reR" 

Since q E Ro each of the g. has coefficients in f q • Furthermore these poly­
nomials all have degree (n - 1)/e and 
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xn - 1 = (x - l)gO(x)gl(x) ... ge-I(X). 

The eth power residue code C has generator go(x). The codes with generator 
gv(x) are all equivalent. The proof of Theorem 6.9.2(i) can be copied to yield 
de> n. If n = 31, e = 3, q = 2 this yields d3 > 31 so d ~ 4. Since 53 = -1 
in 1F31 we see that go(a) = go(a- I ) = O. Hence by Problem 6.13.6 we have 
d ~ 5. Furthermore, d < 7 by the Hamming bound. In fact the Hamming 
bound even shows that the code consisting of the 220 words of C with odd 
weight cannot have d = 7. Hence d = 5. 

6.13.12. (a) Since a, a2, a4, as are zeros of codewords d ~ 4 is a direct con­
sequence of Example (6.6.10). 

(b) By the BCH bound we have d ~ 3. If d = 3 there would be a 
codeword with coordinates 1 in positions 0, i, j. Let e = (Xi, 

" = ai . Then 1 + e + " = 0, 1 + es + "s = O. We then find 
1 = (e + ,,)S = (e S + "S) + ~,,(e3 + ,,3), i.e. e3 + ,,3 = O. This is 
a contradiction because 2'" - 1 i= 0 (mod 3), so x 3 = 1 has the 
unique solution x = 1, whereas e :f: ". 

(c) If there is a word of weight 4, then by a cyclic shift, there is a word 
of weight 4 with its nonzero coordinates in positions ~ , ~ + 1, 11, and 
11 + 1. The sum of the fifth powers of these elements is O. This yields 
(~ + 11)3 = 1, i. e. ~ + 11 = 1, a contradiction. 

6.13.13. Consider the representation of (6.13.8). Let a be a primitive element 
of 1F3 ,. Then a22 is a primitive 11 th root of unity, i.e. a zero of go(x) or 9 I (x). 
So the representations of 1, a22, a44, ..• , a220 as elements of (1F3)S are the 
columns of a parity check matrix of C. Multiply the columns corresponding 
to a22i with i> 5 by -1 = a l21 and reorder to obtain 1, all, a22, ... , a llO 

corresponding to a zero of Xii + 1. This code is equivalent to C which is 
known to be unique and this representation is negacyc1ic. 

6.13.14. The defining set of this code is 

R = {aili = 1,2,4,5,7,8,9,10,14,16,18,19,20,25, 28}. 

Show that the set R contains AB, where A = {aili = 8, 9, to} and B = 

{Pilj = 0, 1, 3}, P = ('.(10. This implies d ~ 6. For the even weight subcode take 
A = {aili = 4,7,8, 9}, B = {Pilj = 0,3, 4}, P = £lB. Apply Theorem 6.6.9 with 
III = 6. 

Chapter 7 

7.7.1. Let C be the code. Since the Hamming code oflength n + 1 = 2111 - 1 
is perfect with e = 1, C has covering radius 2. Substitute n = 2m - 2, 
ICI = 2n-lII, e = 1 in (5.2.16). We find equality. It follows that C is nearly 
perfect. 

7.7.2. Suppose p(u, C) = 2, i.e. u = c + e, where C E C and e has weight 2. 
So c(a) = c(a3 ) = 0 and e(x) = Xi + xi for some i and j. We calculate in how 



Hints and Solutions to Problems 209 

many ways we can change three positions, labelled Xl' X2, X3' and thus find 
a codeword. So we are calculating the number of solutions of 

Xl + X2 + X3 + a i + aj = 0, 

xi + x~ + x~ + a3i + a3j = o. 
Substitute Yi := Xi + e(a). We find 

Yl + Y2 + Y3 = 0 

yi + y~ + y~ = s := ai+j(a i + aj ), 

where s =F 0 and Yk ¢ {ai, aj }. 

From the first equation we have Y3 = Yl + Y2 which we substitute in the 
second equation. The result is 

YlY2(Yl + Y2) = s. 

Since s =F 0 we have Y2 =F O. Define Y := Yl/Y2. The equation is reduced to 

y(1 + y) = s/y~. 

Since (3, n) = (3, 22m+l - 1) = 1 it follows that for every value of y, except 
Y = 0, Y = 1, this equation has a unique solution Y2 (in 1F22m+'). Hence we 
find n - 1 solutions {Yl' Y2} and then Y3 follows. Clearly, each triple is 
found six times. Furthermore, we must reject the solution with Yl = ai, 
Y2 = aj because these correspond to Xl = aj , X2 = ai, X3 = 0 (or any permu­
tation). So p(u, C) = 2 implies that there are i(n - 1) - 1 codewords with 
distance 3 to u. In a similar way one can treat the case p(u, C) > 2. 

7.7.3. The code C is the Preparata code of length 15. However, we do not 
need to use this fact. Start with the (16, 256, 6) Nordstrom-Robinson code C 
and puncture to obtain a (15, 256, 5) code C. These parameters satisfy (5.2.16) 
with equality. 

7.7.4. That C is not equivalent to a linear code is easily seen. If it were, then 
C would in fact be a linear code since 0 E C. Then the sum of two words of C 

would again be in C. This is obviously not true. To show that C is perfect 
we must consider two codewords a = (x, x + C, LXi + f(c)) and b = 
(y, y + c', LYi + f(c'». If c = c' and x =F y it is obvious that d(a, b) ~ 3. 
If c =F c' then d(a, b) ~ w(x - y) + w(x + c - y - c') ~ w(c - c') ~ 3. Since 
ICI = 211 and d = 3 we have equality in (3.1.6), i.e. C is perfect. 

7.7.5. For the two zeros of '1'2 we find from (7.5.2) and (7.5.6) 

and 

Hence Xl = 2a, X 2 = 2b (a < b). From (3.1.6) we find n2 + n + 2 = 2' (where 
c ~ 3 since n ~ 2). 

So 
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Since on the left-hand side we have a term 2, the other term is not divisible 
by 4. Therefore a = ° or a = 1. If a = ° we find 2b(2b + 1) + 2 = 2c, i.e. 
b = 1 and n = 2 corresponding to the code C = {(OO)}. If a = 1 we find 
22b + 3· 2b + 4 = 2c, i.e. b = 2 and then n = 5 corresponding to the repetition 
code C = {(00000), (11111)}. 

7.7.6. First use Theorem 7.3.5 and (1.2.7). We find the equation 

4X2 - 4(n + l)x + (n2 + n + 12) = 0, 

with zeros X 1,2 = !(n + 1 ± Fn=11). 
It follows that n - 11 = m2 for some integer m. From (7.3.6) we find 

12·2" = I CI· (n2 + n + 12) = I CI(n + 1 + m)(n + 1 - m). 

So n + 1 + m = a·2,,+I, n + 1 - m = b·2/1+1 with ab = 1 or 3. First try 
a = b = 1. We find n + 1 = 2" + 2/1, m = 2" - 2/1 (IX> f3) and hence 

2" + 2/1 - 12 = 22" - 2,,+/1+1 + 22/1, 
i.e. 

-12 = 2"(2" - 2/1+1 - 1) + 211(2/1 - 1), 

an obvious contradiction. 
Next, try b = 3. This leads to n + 1 = a· 2" + 3.211, m = a· 2" - 3.211 and 

hence 

3·2/1(3·2/1 - 2"+1 - 1) + 2"(2" - 1) + 12 = o. 
If IX > 2 then we must have f3 = 2 and it follows that IX = 4. Since IX ~ 2 does 
not give a solution and the final case a = 3 also does not yield anything we 
have proved that n + 1 = 24 + 3.22, i.e. n = 27. 

The construction of such a code is similar to (7.4.2). Replace the form used 
in (7.4.2) by X1X2 + X3X4 + XSX6 + Xs + X6 = o. The rest of the argument 
is the same. We find a two-weight code of length 27 with weights 12 and 16 
and then apply Theorem 7.3.7. 

7.7.7. (i) Let N denote the number of pairs (x, c) with x E 1F~4, C E C, d(x, c) = 
2. By first choosing c, we find N = ICI . (~4) ·22. For any x with 
d (x, C) = 2, there are at most seven possible codewords with d (x, c) = 
2. Hence 

N ~ (3 14 - ICI(l + 2.14»). 

Comparing these results, we see that in the second one, equality must 
hold. Every x E 1F~4 either has distance at most one to C or distance 2 
to exactly seven codewords. 

(ii) There are C;) . 22 words of weight 2 in 1F~4. Each has distance 2 to 0 and 
hence distance 2 to six codewords of weight 4. Since each codeword of 
weight 4 has distance 2 to six words of weight 2, we find A4 = 364. 

(iii) From (ii) we see that 4A4 = 1456 words of weight 3 have distance 1 
to C. We count pairs (x, c) with w(x) = 3, c E C, and d(x, c) = 2. 
Apparently there are C;) . 23 - 1456 choices for x. Starting with a 
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codeword e with weight 4, there are 12 choices for x. If wee) = 5, 
there are 10 choices for x. So we find 

12A4 + IOAs = 7 . 1456, 

i. e. As = 582~, which is absurd. e does not exist! 

7.7.8. In the Lee metric, the volume of a sphere with radius one is VI = 1 + 2n = 
m2• Split the words in the set z;, \{O, O} into pairs (x, -x) and from each pair, 
take one as a column of a 2 by n parity check matrix H. Generalizing the idea of 
Hamming codes, define a linear code e by: 

c E e {:> CHT = o. 

e is clearly 1-error-correcting and e is perfect because lei· VI = mn. 

Chapter 8 

8.5.1. First note that in a selfdual quaternary code of length 6, words with an 
odd coordinate have four such coordinates. Since the code must have 43 words, 
the generator matrix in the form (8.1.3) has 2kl + k2 = 6. Clearly, kl = 3 is 
impossible. 

For kl = 0 we find the trivial example IF~. Its Lee weight enumerator (x2 + y2)6 
is one of two independent solutions to the equation of Theorem 3.6.8 in the case 
of selfduality. The other is x 2y2(X4 - y4)2. (These are easily found using the fact 
that all weights are even.) All linear combinations with a term Xl2 also have a term 
y12, so the code contains (2,2,2,2,2,2). 

We now try kl = k2 = 2. The rows of (A B) must each have three odd 
entries. One easily finds an example, e. g. 

The weight enumerator is the solution to the equation of Theorem 3.6.8 with no 
term x lO y2, namely Xl2 + 15x8y4 + 32x6y6 + 15x4yB + y12. The two rows of A 
could cause nonlinearity because 0'(1) + 0'(1) # 0'(2). The codeword (002200) 
compensates for that. Note that the binary images of the first two basis vectors are 
not orthogonal. 

For kl = 1, k2 = 4, we easily find a solution. Take A = (1100), B = (1), 
e = (1100) T. The binary image is linear and selfdual. 

REMARK. We observed above that k = 3 is impossible. From (8.1.3) and (8.1.4) 
it is immediately obvious that the quaternary code with generator (/3 213 - h) 
and its dual have the same weight enumerator (as above with 15 words of weight 
4). The code is of course not self dual. It is interesting that its binary image is a 
selfdual code. It is equivalent to the code with generator (/6 16 - 16)' 
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8.5.2. Let the vectors Vi (0 :::: i :::: m - 2) be basis vectors of .9B(1, m - 1). 
The codewords of .9B(2, m) are linear combinations of wordsof type (Laivi, 0), 
(0, L f3i Vi), (LYijViVj, LYijViVj) and (Elo E2), where Ei = 0 or 1. 

By Theorem 8.2.7 (and the fact that.9B(2, m) is linear), we only have to check 
whether the coordinatewise product of words of type (L 8i Vi + E, L 8i Vi + E) is 
in the code and clearly it is. 

8.5.3. Try;Q + 2;b. One easily finds a = n - i, b = n - 2i + j. 

8.5.4. By Lemma 4.6.4, the Nordstrom-Robinson code has weight enumerator 

1 + 112z6 + 30z8 + 112z10 + ZIZ. 

Apply Theorem 3.5.3. Here, calculating with the homogeneous form is easier. 

8.5.5. The number of pa,irs (x, c) with c E 9, w(x) = 2, d(x, c) = 3 is WAs. By 
(7.3.1) it is also equal to (;) (r - 1) = (;) n~3. Hence 

n(n - 1)(n - 3) 
As = 6 . 

There are C) words of weight 3. Of these, WAs have distance 2 to the code and 

therefore distance 3 to n~6 words of weight 6. The remaining (;) - WAs words 
of weight 3 have distance 3 to r - 1 = n~3 words of weight 6. Since a word of 
weight 6 has distance 3 to 20 words of weight 3, double counting yields 

A _ n(n - 1)(n - 3)(n - 5) 
6 - 18 . 

For n = 15 we find As = 40, A6 = 70. We know that the Nordstrom-Robonson 
code is distance invariant. So the weight enumerator has Ai = A I6- i. We know 
A6 = AlO = 112 and therefore As = 30. 

8.5.6. This follows from Example 8.4.1 

8.5.7. From Theorem 7.4.6 it follows that the linear span of the extended Preparata 
code is contained in the extended Hamming code and therefore has minimum 
distance 4. 

Consider GR(4m). We know that 1 +; can be written as;i + 2;j. Hence 
Cm has a codeword a with coordinates 1,1,1,3,2 in the positions corresponding to 
0, 1, ~, ;i , ~ j. By a cyclic shift, we find a similar codeword b with a 1 in position 
o and the other odd coordinates in positions differing from those where a has odd 
coordinates. The linear span of C~ contains the word <p(a) + <p(b) + <p(a + b) 
which has weight 2. 

Note that this argument does not work for m = 3. 



Hints and Solutions to Problems 213 

Chapter 9 

9.8.1. In Theorem 9.3.1 it was shown that if we replace g(z) by g(z):= z + 1 
we get the same code. So f(L, g) has dimension at least 4 and minimum 
distance d ~ 3. As was shown in the first part of Section 9.3, d might be 
larger. We construct the parity check matrix H = (hoh l ... h7) where hi runs 
through the values (a i + 1)-1 with (j, 15) = 1. We find that H consists of 
all column vectors with a 1 in the last position, i.e. f(L, g) is the [8, 4, 4] 
extended Hamming code. 

9.8.2. Let a be a word of even weight in C. By (6.5.2) the corresponding 
Mattson-Solomon polynomial A(X) is divisible by X. By Theorem 9.6.1 the 
polynomial Xn- I 0 A(X), i.e. X-I A(X), is divisible by g(X). Since C is cyclic 
we find from (6.5.2) that X-I A(X) is also divisible by g(a i X) for 0 < i :::;; 
n - 1. If g(X) had a zero different from 0 in any extension field of 1F2 we would 
have n - 1 distinct zeros of X-I A(X), a contradiction since X-I A(X) has 
degree < n - 1. So g(z) = Zl for some t and C is a BCH code (cf. (9.2.6». 

9.8.3. This is exactly what was shown in the first part of Section 9.3. For any 
codeword (bo, bl , .•• , bn-d we have Ii:J biyr = 0 for 0:::;; r :::;; d l - 2, 
where Yi = a i (a primitive element). So the minimum distance is ~ (d2 - 1) 
+ (d l - 2) + 2 = d l + d2 - 1. 

9.8.4. Let G-1 (X) denote the inverse of G(X) in the ring (T, +, 0). The 
definition of GBCH code can be read as 

P(X)· (<I>a)(X) = Q(X)G(X) + R(X)(X" - 1), 

where Q(X) has degree < n - t. This is equivalent to 

(G-I(X) 0 P(X»(<I>a)(X) = Q(X) + R*(X)(X" - 1), 

for a suitable R*(X). The same condition, including the requirement that 
degree Q(X) < n - t, is obtained if we take the pair (P(X), XI), where 

P(X) = XI 0 G-I(X) 0 P(X). 

Second solution: To ensure that we have the same code, we see to it that we 
obtain the same parity check matrix as in §9.6. We have hi = Pig;), where 
p(x) = L PiXi = (<1>-) P)(x) and g(x) = LgiXi = (<I>-IG)(X). We must find 
Pi such that Pig;1 = Pigi- I • Since L gixi = (<1>-1 X')(x) is known, we also know 
p(x). Then P(X) = <I> p. 

9.8.5. In (6.6.1) take 1= 5 and <5 = 2. We find that C is a BCH code with 
minimum distance d ~ 2. Since (x + l)(x2 + X + 1) = x 3 + 1 E C we have 
d = 2. Ifin(9.2.4) we take g(x) of degree> 1 then by Theorem 9.2.7 the Goppa 
code f(L, g) has distance at least 3. If g(z) has degree 1 then Theorem 9.3.1 
yields the same result. So C is not a Goppa code. 
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Chapter 10 

10.10.1. To study X in (1:0:0), we take (y, z) as affine coordinates. The equation 
becomes z = y2. So, we see that y is a local parameter (and z is not). So in (1;0:0) 
we take y/x as local parameter. Since x/z = (X/y)2, we see that there is a pole 
of order 2 in (1:0:0). 

10.10.2. If f and the three partial derivatives are zero in a point (x : y : z), 
then xyz =1= 0 and we find three equations 2x3 = y2z, etc. These three give us 
8(xYZ)3 = (xYZ)3, so P = 7. We may take x = 1. The equations y2z = 2 and 
y = 2z3 then give y = 2 and z = 4. So there is one singular point. 

10.10.3. X has five points: P = (0 : 0 : 1), Q := (1 : 0 : 0), and Ri := (ai : 
a 2i : 1) (0 ::: i ::: 2). Clearly, every point Ri is a zero of multiplicity 1. In Q we 
have y / x as a local parameter and 

g = (~)3 x3 + y3 , 
X x 3 

so Q is a zero with multiplicity 3. In P, a local parameter is y / z and 

g = (~)6 Z3 + y3 , 
Y Z3 

so P is a pole of order 6. Hence (g) = -6P + 3Q + RI + R2 + R3• 

10.10.4. We only have to look at the three points where two coordinates are 0, 
P = (0: 0: 1), Q = (1 : 0: 0), and R = (0: 1 : 0). The easiest is Q, wherez/x 
is a local parameter. So Q is a pole of order 1. In P, we have the local parameter 
y/z and 

X (y)4 Z4 
~ = ~ x 3y +Z4' 

where the second factor is a unit. So P is a zero with multiplicity 4. In R, a local 
parameter is x / y. From 

~ = (~)3 y4 +Z3X 
Z X y4 

we see that R is a pole of order 3. We find 

(f) = 4P - Q - 3R. 

10.10.5. Just substitute the coordinates of the points PI to P6 in the three basis 
functions. By multiplication of certain rows and columns by suitable constarits 
and a permutation, the two generator matrices are shown to belong to equivalent 
codes. 
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10.10.6. Since g = 3, we find from Theorem 10.5.1 that 1(3Q) ::: 1. From 
Corollary 10.5.3 it follows that 1(5Q) = 3. From Example 10.7.5 we see that the 
functions 1 and z/x are in $(3Q) and also that they are a basis. 

Chapter 11 

11.4.1. The words of Co; have the form (a (x), a(x)a(x» where a(x) and a(x) 
are polynomials mod x6 + Xl + 1. To get d> 3 we must exclude those 
a(x) for which a combination a(x) = Xi, a(x)a(x) = xi + Xk is possible and 
also the inverses of these a(x). Since (1 + X)8 = 1 + x8 = x-l(x + x 9) = X-I 

(x + 1) it is easily seen that each nonzero element of !Fz• has a unique represen­
tation xi(l + xY where 

i E {O, ± 1, ±2, ±3, ±4}, j E {O, ± 1, ±2, ±4}. 

So the requirement d > 2 excludes nine values of a(x) and d > 3 excludes 
the remaining 54 values of a(x). This shows that for small n the construction 
is not so good! By (3.8.14) there is a [12, 7] extended lexicographically least 
code with d = 4. In (4.7.3) we saw that a nonlinear code with n = 12, d = 4 
exists with even more words. 

11.4.2. Let a(x) be a polynomial of weight 3. Then in (a(x), a(x)a(x» the 
weights of the two halves have the same parity. So d < 4 is only possible if 
there is a choice a(x) = Xi + xi such that (X(x)a(x) == 0 mod(x6 - 1). This is 
so if (X(x) is periodic, i.e. 1 + x2 + X4 or x + Xl + xS. For all other choices we 
have d = 4. 

11.4.3. Let the rate R satisfy 1/(1 + 1) < R ~ 1/1 (I E "I). Let s be .the least 
integer such that m/[(I + l)m - s] ~ R. We construct a code C by picking 
an I-tuple «(Xl' (X2' ... , (XI) E (!F2m)1 and then forming (a, (Xl a, ... , ala) for all 
a E !Fi and finally deleting the last s symbols. The word length is n = (I + 1) 
m-s. 

A nonzero word C E C corresponds to 2' possible values of the 1-
tuple «(Xl' ... , al)' To ensure a minimum distance ~ An we must exclude 

~ 2·Li<;.n(~) values of (ai' ... , al)' We are satisfied if this leaves us a choice 

for (ai, ... , al), i.e. if 

From Theorem 1.4.5 we find 

s + nH(}.) < ml, 
i.e. 

ml-s m 
H(A) < -- = 1 - - = 1 - R + 0(1), 

n n 
(m ~ 00). 
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Chapter 12 

12.5.1. Consider the sequence r, r2, r\ .... There must be two elements in 
the sequence which are congruent mod A, say r" - rm == 0 (mod A)(n > m). 

12.5.2. Let m = r" - 1 = AB, where A is a prime> r2. Suppose that r gene­
rates a subgroup H of IF] with IHI = n which has {±clc = 1,2, ... , r - I} 
as a complete set of coset representatives. Consider the cyclic AN code C 
ofiength n and base r. Clearly every integer in the interval [1, m] has modular 
distance 0 or 1 to exactly one codeword. So C is a perfect code. (Since 
wm(A) ~ 3 we must have A > r2.) A trivial example for r = 3 is the cyclic code 
{13, 26}. Here we have taken m = 33 - 1 and A = 13. 

The subgroup generated by 3 in lFi3 has index 4 and the coset represen­
tatives are ± 1 and ± 2. 

12.5.3. We have 455 = I,i=o b)i where (bo, bl , ... , bs) = (2, 1, 2, 1, 2, 1). 
The algorithm describe.d in (10.2.3) replaces the initial 2, 1 by -1, 2. In this 
way we find the following sequence of representations: 

(2, 1,2, 1,2, 1) -+ (-1,2,2, 1,2, 1) -+ (-1, -1,0,2,2, 1) 

-+ (-1, -1,0, -1,0,2) -+ (0, -1,0, -1,0, -1). 

So the representation in CNAF is 

455 == -273 = -3 - 33 - 35• 

12.5.4. We check the conditions of Theorem 10.3.2. In lFi! the element 3 
generates the subgroup {I, 3, 9,5, 4}; multiplication by -1 yields the other 
five elements. r" = 35 = 243 = 1 + 11.22. So we have A = 22, in ternary 
representation A = 1 + 1.3 + 2.3 2. The CNAF of 22 is 1 - 2.3 + 0.32 + 
1.33 + 0.34 (mod 242). The code consists of ten words namely the cyclic 
shifts of (1, - 2,0, 1,0) resp. (-1,2,0, -1,0). All weights are 3. 

Chapter 13 

13.7.1. Using the notation of Section 11.1 we have 

G(x) = (1 + (X2)2) + x(1 + x2) = 1 + x + x 3 + X4. 

The information stream 1 1 1 1 1 ... would give Io(x) = (1 + x)-t, and 
hence 

T(x) = (1 + X2)-IG(X) = 1 + x + x2, 

i.e. the receiver would get 1 1 1 0 0 0 0 .... 
Three errors in the initial positions would produce the zero signal and lead 

to infinitely many decoding errors. 

13.7.2. In Theorem 13.4.2 it is shown how this situation can arise. Let hex) = 
X4 + X + 1 and g(x)h(x) = XIS - 1. We know that g(x) generates an irre-
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ducible cyclic code with minimum distance 8. Consider the information se­
quence 1 1 0 0 1 0 0 0 0 ... , i.e. 10(x) = h(x). Then we find 

T(x) = h(X2)g(X) = (x lS - l)h(x), 

which has weight 6. By Theorem 13.4.2 this is the free distance. In this 
example we have g(x) = Xll + x8 + X 7 + x5 + x 3 + x 2 + X + 1. Therefore 
Go(x) = 1 + x + x\ Gl(x) = 1 + x + x 2 + x 3 + x 5• The encoder is 

Figure 8 

and 

10 = 1 1 0 0 1 0 0 0... yields as output 

T = 11 00 10 00 00 00 00 01 10 01 00 00 ... 

13.7.3. Consider a finite nonzero output sequence. This will have the form 
(ao + a 1x + ... + a,x')G, where the a i are row vectors in 1Ft. We write G as 
Gl + xG2 as in (13.5.7). Clearly the initial nonzero seventuple in the output is 
a nonzero codeword in the code generated by m3 ; so it has weight ~ 3. If this 
is also the final nonzero seven tuple, then it is (11. .. 1) and the weight is 7. If 
the final nonzero seven tuple is a,G, then it is a nonzero codeword in the code 
generated by mOml and hence has weight at least 4. However, if a, = (1000), 
then a,G = 0 and the final nonzero seven tuple is a nonzero codeword in the 
code generated by ml and it has weight ~ 3. So the free distance is 6. This is 
realized by the input (1100) * (lOOO)x. 
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