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Introduction

This book was planned originally not as a work to be published, but as an excuse
to buy a computer, incidentally to give me a chance to organize my own ideas on
what measure theory every would-be analyst should learn, and to detail my
approach to the subject. When it turned out that Springer-Verlag thought that the
point of view in the book had general interest and offered to publish it, I was
forced to try to write more clearly and search for errors. The search was
productive.

Readers will observe the stress on the following points.

The application of pseudometric spaces. Pseudometric, rather than metric
spaces, are applied to obviate the artificial replacement of functions by
equivalence classes, a replacement that makes the use of “almost everywhere”
either improper or artificial. The words “function” and “the set on which a
function has values at least €” can be taken literally in this book. Pseudometric
space properties are applied in many contexts. For example, outer measures are
used to pseudometrize classes of sets and the extension of a finite measure from
an algebra to a G algebra is thereby reduced to finding the closure of a subset of
a pseudometric space.

Probability concepts are introduced in their appropriate place, not con-
signed to a ghetto. Mathematical probability is an important part of measure
theory, and every student of measure theory should be acquainted with the
fundamental concepts and function relations specific to this part. Moreover,
probability offers a wide range of measure theoretic examples and applications
both in and outside pure mathematics. At an elementary level, probability-in-
spired examples free students from the delusions that product measures are the
only important multidimensional measures and that continuous distributions are
the only important distributions. At a more sophisticated level, it is absurd that
analysts should be familiar with mutual orthogonality but not with mutual in-
dependence of functions, that they should be familiar with theorems on con-
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vergence of series of orthogonal functions but not on convergence of
martingales.

Convergence of sequences of measures is treated both in the general Vitali-
Hahn-Saks setting and in the mathematical setting of Borel measures on the
metric spaces of classical analysis: the compact metric spaces and the locally
compact separable metric spaces. The general discussion is applied in detail to
finite Lebesgue-Stieltjes measures on the line, in particular to probability
measures.
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0

Conventions and Notation

1. Notation: Euclidean space

R" denotes Euclidean N-space; R = Rl; RY is the half line [0,00); Rt is the
extended half-line [0,+<]; R is the extended line [-oo,4+o0]. The extended half-
lines and lines can be metrized by giving them the metric of their images under
the transformation s' = arctan s.

2. Operations involving too

a(teo) = oo if a>0,
=0 if a=0,
=Fe if a<0.

If a is finite, ateo = Foo; if @ =400, g+(+00) = +oo; if @ = —00, @+(~00) = —oo,

3. Inequalities and inclusions

“Positive” means “= 07; “strictly positive” means “> 0.” The symbols < and o
allow equality. "Monotone" allows equality unless modified by “strictly.” Thus
the identically O function on R is both monotone increasing and decreasing, but
is not strictly monotone in either direction.

4. A space and its subsets

If S is a space, the class of all its subsets is denoted by 2°. The complement of a
subset A of a space is denoted by A. If A and B are subsets of S, AnB is some-
times denoted by B—A. The indicator function of a subset A of S, defined on S as
1 on A and 0 on A, is denoted by 1,. In particular, the identically 1 function 1g
will be denoted by 1 and the identically O function 1¢ by 0.
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5. Notation: generation of classes of sets

If A is aclass of subsets of a space, the classes Ay, A, and A are, respectively,
the classes of countable unions, countable intersections, and complements of the
sets in A.

6. Product sets

If §y,....5, are sets, S;xxS,, is the product set
{(s1se-p): s5€ S, (1 S}
If A; isaclass of subsets of §;, A;xXxA, istheclass
{A X xXAp:Aje A; (i £n)}

of product sets. The corresponding definitions are made for infinite (not
necessarily countable) products.

7. Dot notation for an index set

“B.” is shorthand for {B;, i € I}, where / is a specified not necessarily countable
index set. Unless the subscript range is otherwise described, “a finite sequence
B.” means the sequence By,...,B,, for some strictly positive integer n, and “a
sequence B.” means the infinite sequence By,B,,... . The notation £B. means the
sum over the values of the subscript, and corresponding dot notation will be
applied to (not necessarily countable) set unions and intersections. If g. is a
sequence, the notation lim a. means lim, .. a,, and corresponding dot notation
will be applied to inferior and superior limits. When dots appear more than once
in an expression, the missing symbol is to be the same in each place. Thus if A.
and B. are sequences of sets, U(A.NB.) is the union of intersections A,NB;,.

8. Notation: sets defined by conditions on functions

If fis a function from a space S into a space S' and if A' is a subset of S', the set
notation {s € S: f(s) € A'} will sometimes be abbreviated to {f e A'}. Here f may
represent a set of functions. Thus if gy,...,g, are functions from S into S’ and if
B' is a subset of S§'", the notation {s € §: [g{(5),....gn(s)] € B'} may be
abbreviated to {(g;,....gn) € A'}.
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9. Notation: open and closed sets

The classes of open and closed subsets of a topological space will be denoted,
respectively, by G and F.

10. Limit of a function at a point

The limit of a function at a point depends somewhat on the nationality and back-
ground of the writer. In this book, the limit does not involve the value of the
function at the point. Thus the function 10}, defined on R as 0 except at the
origin, where the function is defined as 1, has limit O at the origin in this book
even though the function does not have a Bourbaki limit at the origin.

11. Metric spaces

Recall that a metric space is a space coupled with a metric. A metric for a space
S is a distance function d, a function from SXS into R* satisfying the following
conditions.

(a) Symmetry: d(s,t) = d(1,s).
(b) Identity: d(s,f) =0 if and only if s = 1.
(c) Triangle inequality: d(s,u) < d(s,t) + d(t,u).

A ballin S is an open set {s: d(s,59) < r}; sq is the center, r is the radius.
It is a useful fact that if d is a metric for S and if ¢ is a strictly positive constant,
the function dac is also a metric for S and determines the same topology as d.
That is, the class of open sets is the same for dac as for d. If d is a function from
SxS into R and satisfies (a), (b), and (c), the function dac is a finite valued
function satisfying these conditions and can therefore serve as a metric.

12. Standard metric space theorems

The following standard metric space theorems will be used. Proofs are sketched
to facilitate checking by the reader that they are valid for the pseudometric
spaces to be defined in Section 13.

(a) A metric space (S,d) can be completed, that is, can be augmented by
addition of new points to be complete. To prove this theorem, let S” be the class
of Cauchy sequences of points of S. The space S’ is partitioned into equivalence
classes, putting two Cauchy sequences s. and ¢, into the same equivalence class
if and only if lim d(s.,5) = 0. If s" and ¢’ are equivalence classes, define d'(s',t") =
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lim d(s.,t.) = 0. If 5" and ¢’ are equivalence classes, define d'(s',t") = lim d(s.,t.) for
$o in s" and t. in ¢". This limit exists, does not depend on the choice of Cauchy
sequences in their equivalence classes, and (S',d") is a complete metric space.
Define a function f from S into S' by f(s) = s,s,s,... . This map preserves distance,
and if § is identified with its image in S', S" is the desired completion of .

(b) A uniformly continuous function g from a dense subset of a metric space S
into a complete metric space S’ has a unique uniformly continuous extension to S.
To prove this theorem, observe that if s is not already in the domain of g, and if s.
is a sequence in the domain of g, with limit s, the uniform continuity of g implies
that lim g(s.) exists and does not depend on the choice of s.. The value g(s) is
defined as this limit, and as so extended g is uniformly continuous on S. The
uniqueness assertion is trivial.

(¢) If a complete metric space S is a countable union of closed sets, at least
one summand has an inner point. To prove this theorem, let US. be the union of a
sequence of closed nowhere dense subsets of S. There is a closed ball B, of radius
<1 in the open set S;. Similarly there is a closed ball B, of radius < 1/2 in BjN S,,
and so on. The intersection of these closed balls is a point of S in no summand.
Hence the union cannot be S, that is, if S is the union of a sequence of closed sets,
at least one is not nowhere dense, and therefore has an inner point.

(d) If fs is a sequence of bounded continuous functions from a complete metric
space § into R, and if sup |f«(s)| < +eo for each point s of S, then there is a number
Y for which the set {s € S: sup Ife(s)l < Y}has an inner point. This theorem follows
at once from (c) because for each value of y the set in question is closed, and as y
increases through the positive integers the set tends to S.

(e) A sequence f. of functions from a metric space (S,d) into a metric space
(8,d’) is said to converge uniformly at a point s of S, if there is convergence at s,
and if to every strictly positive € there corresponds a strictly positive 8 and an
integer k, with the property that d’(fm(s),fn(s)) < € whenevern > k, m 2k, and
d(s,59) < 8. An equivalent condition is that there is a point s’ of S’ with the
property that whenever . is a sequence in S, with limit s, then lim £u(t.) = 5" Iffe
is a convergent sequence of continuous functions from S into S', the limit function
[ is continuous at every point of uniform convergence of the sequence. In fact, if
5o is a point of uniform convergence, if €, 8, k are as just described, and if 8 is
decreased, if necessary, to make d ’(fk(s)fk(so)) < € whenever d(s,s;) < 8, then

(12.1) d(f(s)fs0) < () i) () fis0)) +d' (fiso)ofiso)) < 3¢

whenever d(s.,59) < 8. Hencefis continuous at sy, as asserted.

() If a sequence f. of continuous functions from a complete metric space (S,d)
into a metric space (S',d") is convergent, there must be at least one point of
uniform convergence. (Since this assertion can be applied to the restrictions of the
functions to an arbitrary closed ball in S, the set of points of uniform continuity of
the sequence, and therefore the set of continuity points of the limit function, is
actually dense in §.) This assertion is reduced to (c) as follows. For each pair of
strictly positive integers m, k, the set
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(12.2) Onsmis: d(fuls), fin)) < Uk}

is a closed subset of §. When £ is fixed and m increases, the union of these
closed sets is S. It follows that there is a closed ball By in one of these sets of
radius at most 1/k. If this argument is carried through with S replaced
successively by By,B,,...,the argument yields a monotone decreasing sequence B.
of balls whose intersection is a point of uniform convergence of the sequence f..

13. Pseudometric spaces

A pseudometric space is a space coupled with a pseudometric. A pseudometric
for a space § is a pseudometric distance function d, a function from SxS into
Rt that satisfies 11(a) and 11(c), but 11(b) is weakened to

(11b%) d(s,5) = 0.

There are two approaches to a pseudometric space (S,d). The most common
approach is to define a space §* of equivalence classes of subsets of S, putting
two points s and ¢ of § in the same equivalence class if and only if d(s,?) = 0. If
s* and r* are equivalence classes define d*(s*,#*) as d(s,1), for s in s* and tin t*.
This definition does not depend on the choice of s and ¢ in their equivalence
classes, and d* is a distance function making $* a metric space.

A second approach, used in this book, is to stay with the pseudometric space,
making the same definitions as formulated for metric spaces: open and closed
sets, separable spaces, complete spaces, and so on. Note that if a sequence of
points of a pseudometric space is convergent to a point, the sequence is also
convergent to every point at zero distance from that point, and that therefore if a
point is in an open (or closed) set of a pseudometric space every point at zero
distance from it is also in that set. The theorems and proofs of the theorems in
Section 12 remain valid for pseudometric spaces. It may seem that in fact there
is not much difference between handling S and S* except that $* is simpler, but
in fact in many measure theoretic contexts, the pseudometric space is less
clumsy.



I
Operations on Sets

In this chapter, certain relations between and operations on subsets of an
abstract space are described. When numbered relations are paired, as in (1.1),
each relation of the pair yields the other relation when the sets involved are
replaced by their complements. Proofs of easily verifiable assertions are
omitted.

1. Unions and intersections

If A. and B. are collections of subsets of a space S,

(1.1 (VA) =NA., (N4 =UA.,

(1.2) (WsAs)N(UtBr) = s t (AsNBy),
(NsAsI N Br) = Mt (As\IBp).

Obviously 1g4~B=1alg, 15=1-14 = 1+14 (mod 2), and

(1.3) laup =14+ 1g— 141p.

2. The symmetric difference operator A

In this section A, B, C, and D are subsets of a space S. The symmetric difference
AAB is defined by

2.1) AAB = (A-B) LU (B-A)
or, equivalently,

(2.2) 14ag =14+ 1  (mod 2).
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The latter form provides easy proofs of some of the relations listed below.
Obviously

(2.3) AAD = A, AAS =A, AMA =0, (AAB) =AAB, AAB=AABc AUB.
The symmetric difference operator is commutative and associative:
2.4) AAB = BAA, AA(BAC) = (AAB)AC,

and therefore parentheses can be omitted in expressions of the form AABACA-- .
The equality AAC = AABABAC yields the useful triangle inclusion relation

(2.5) AAC c (AABYU(BAC).

The symmetric difference operator satisfies

(2.6) (AAB)C = (AnC)A(BNC), (AAB)UC = (AUC)A(BNC),
and if A. and B. are collections of subsets of S,

2.7 (UsAs) A (UBr) € U(A«ABs), N(A«ABe) < (NAs) A (UiBy),
(2.8) (NsAs) A (MB) © U(A«AB.).

If A,,...,A,, are subsets of S,

loa, =214 - 2 1o,naA; ++ -y IAn.na,
i>l i<j J
(2.9)
g, = X 14; = Zlaoa ++CDHA O UA,
i21 i<j
When n = 2, both equalities reduce to (1.3). Each equality can be proved by
induction, or, more directly, by checking it at those points in A; for exactly m
values of j, for m = 0,...,n. Each equality reduces to the other when the sets in-
volved are replaced by their complements.

3. Limit operations on set sequences

If A. is a sequence of subsets of a space S, define

3.1 lim sup A. = ﬁk=1 Uj:k Aj , lim inf Ae = Uk:l mj:k Aj.
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The superior limit is the set of those points in A, for infinitely many values of #;
the inferior limit is the set of those points in A, for all but finitely many values
of n. The inferior limit is a subset of the superior limit, and if there is equality
with common limit set A, the sequence A. converges to A, written lim A. = A.
The following limit properties for sets are analogous to those for numbers,
because they correspond exactly to those for indicator functions, written at the
end of this section.

(a) A monotone increasing sequence of sets converges to the union of the sets; a
monotone decreasing sequence of sets converges to the intersection of the sets.

(b) If B. is a subsequence of A., then B, converges whenever A. does, because

(3.2) lim inf A. < lim inf B, < lim sup B, < lim sup A..
Since
(3.3) lim inf A = (lim sup A.) ",

(c) the sequence A. converges to A when A. converges to A. Furthermore, for
sequences A., B. of sets,

lim inf (A.UB.) D (lim inf A.) U (lim inf B.)

(B3.4)

lim sup (A.UB.) = (lim sup A.) U (lim sup B.),

lim inf (A.NB.) = (lim inf A.) N (lim inf B.,),
(3.5)

lim sup (A+NB,) < (lim sup A.) N (lim sup B.).
Hence,

(d) whenever sequences A. and B. converge respectively to A and B, the
sequences AdUB. and A.NB. converge respectively to AUB and ANB.
The equality
(3.6) UA.- MA. = U, (A AApy),
for a sequence A. of sets, is useful in convergence studies, because (3.6) implies

3.7 lim sup A. — lim inf Ae = lim supy, —ye0 (ApAA,4).
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Set sequence limit properties in terms of indicator functions. If A, is a
sequence of sets, the functions lim sup 14 and lim inf 14  are respectively the
indicator functions of the sets lim sup A. and lim inf A.. Thus the sequence A«
converges to A if and only if the corresponding sequence of indicator functions
converges to 14.

4. Probabilistic interpretation of sets and operations
on them

In the application of mathematical probability to nonmathematical contexts, a
space of points corresponds to a class of possible observations made in some
real context, for example, heights of humans in a specified country, positions of
stars, possible outcomes of tossing a coin twice, times of auto accidents on a
specified highway. The subsets of the space, events in the applications, are de-
termined by conditions in the real contexts. For example, in the last mentioned
application, one event is the class of accident times during the hours of daylight.
The union operation on sets corresponds to or for events; the intersection
operation for sets corresponds to and. It will be seen in later chapters that
mathematical probability (which must be distinguished from the
nonmathematical variety) is a certain specialization of measure theory,
distinguished by its own terminology and its field of nonmathematical
applications. On the one hand, mathematicians were computing probabilities
and expectations, on the other hand mathematicians were computing volumes
and masses, and the two fields did not come together until this century. In fact
some probabilists resented the invasion of their juicy domain by dry
mathematical rigor, and even now almost all probabilists write in the traditional
dialect of their subject.
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Classes of Subsets of a Space

1. Set algebras

Definition. A class S of subsets of aspace S is an algebra if the following
conditions are satisfied.

(a) QPesS. )
(b) The class S is closed under complementation: if Ae Sthen Ae S.
(¢) The class S is closed under finite unions: finite unions of sets in S are in

S.
(c) The class S is closed under finite intersections: finite intersections of sets
in § are in S.

Under (b), conditions (¢) and (c') are equivalent, in view of Equation I(1.1). If
A. is a finite or infinite sequence of sets in an algebra S, their union, which may
or may not be in the algebra if the sequence is infinite, can be expressed as the
disjunct union of a sequence of sets in S, each of which is a subset of the
corresponding term of A.:

(LD AjA U = A1 UAr-AY) U [As-(A LA

Definition. An algebra S of subsets of a space S is a ¢ algebra if S contains
the limit of every monotone sequence of its sets. The pair (S,S) is then a
measurable space, and the sets in S are measurable.

Application of complementation shows that this defining condition of a ¢
algebra, as distinguished from an algebra, is fulfilled even if it is specified as
fulfilled only for increasing (or only for decreasing) set sequences. If A. is a
sequence of sets in a ¢ algebra, the limit sets lim sup A. and lim inf A. are also
in the ¢ algebra..

The smallest algebra of subsets of a space S is the pair of sets (@,S5); the
largest algebra is 25. Both these algebras are ¢ algebras.
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2. Examples

(a) Finite unions of right semiclosed intervals of RY A right semiclosed
interval of R is either the empty set or a subset of R of the form

2.1) {se Ra<s<b} (oL a<b < +eo).

The complement of such an interval is either a right semiclosed interval or
the disjunct union of two such intervals, and the intersection of two such
intervals is another one. The class of finite unions of these intervals is therefore
an algebra. This algebra is not a ¢ algebra because, for example, it does not
contain the open interval (0,1) =\, (0,1-1/n].1

The right semiclosed intervals of RY for N >1 are defined as the N-fold
products of right semiclosed intervals of R. For N 2 1 the class of finite unions
of these intervals is an algebra, but not a ¢ algebra.

(a') In Example (a), replace R by the set of rational numbers. With this choice
instead of R in (2.1), the class of finite unions of these intervals is still an
algebra but not a ¢ algebra.

(b) Classes of 0,1 sequences. For n = 1,2,... let S, be the space of n—tuples of
0's and 1's, and define S = §;x §;x, the space of infinite sequences of 0's and

1's. Let x,, be the nth coordinate function of S. Under the map taking a point of
Sy, into the subset of S with that point as initial n-tuple, the algebra S, of all
subsets of S, maps into a set algebra S ;' of subsets of S. The union \U S.' of all
these algebras is itself an algebra S' of subsets of S. The algebra S,,' is the al

gebra of sets specified by conditions on xy,...,%,; the algebra S is the algebra of
sets specified by conditions on finitely many coordinate functions of S. The
algebra S' is not a ¢ algebra because, for example, A, = {x,=1} € ;' < §', but
(UA. is not in S'. The set algebra S' has the property, to be applied in Section

IV.14, that if A in S' is a disjunct countable union UA. of sets in S', then all but
a finite number of the summands are empty. Equivalently, phrased in terms of
the remainder sequence {A-u;’A., n21}, a decreasing sequence B.of non-

empty sets in S' has a nonempty limit. To prove this assertion about decreasing
sequences, observe that by hypothesis each set By, is specified by conditions on
a finite number of coordinates, say the first a, coordinates. (Note that if B, is
specified by conditions on the first a, coordinates then B, can also be specified
by conditions on the first a,' coordinates for a,' > ap.) The assertion to be
proved is trivial if the sequence a. is bounded. If this sequence is not bounded, it
can be supposed that the sequence is monotone increasing - if necessary replace
each value a, by a;v--va,. For each k, the set of initial ay-tuples of points of By
is not empty and decreases as n increases, to some nonempty set Cy of ai-tuples.
Moreover the ag-tuples in Cy are the initial ag-tuples of Cy;; for m >k. Thus the
sequence C.determines a nonempty set that is a subset of every set By, that is,
MB. is not empty, as was to be proved.
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Observation for later use. If, more generally, the space S is a metric space,
if §$=58;x8x", and if x, is the nth coordinate function of §, a trivial adapta-
tion of the argument just used yields the following: if B. is a decreasing
sequence of nonempty subsets of S, with B, = {{(x;,....x, )€ B,'}, where B, is a
compact subset of S,“n with a. some sequence of positi’\lle integers, then MB. is
not empty. This result is trivial unless the sequence a. is unbounded. It can be
assumed that 4. is an unbounded increasing sequence (if not already increasing,
choose a subsequence of B. for which the corresponding subsequence of a. is
increasing), and the rest of the argument for the special case is carried through
without change.

3. The generation of set algebras

Let Sy be a class of subsets of a space S, and let T be the class of those algebras
of subsets of S that include Sy Denote by 0y(S,) the class of sets in every
algebra in the class I'. Then 6y(Sy) is an algebra, the smallest one including all
the sets of Sy. Similarly there is a smallest G algebra o(S;) including all the sets
of Sy, the intersection of all such ¢ algebras. The algebras 6y(Sy) and o(Sy) are
generated by S;. Obviously

6[00S0)] = 6(Sp) = 6[6(Sp)], Tol0o(S0)] = To(S).

If A,,...,A, are subsets of a space S, they generate a partition of S into 2"
pairwise disjoint possibly empty cells, the intersections By~nBy, where each
set Bj is either A; or Aj. The algebra Gp(A.) is the class of finite unions of these
cells. In general, if S is an arbitrary class of subsets of S, the algebra 6y(Sg) is
the class of finite unions of finite intersections of the members and complements
of members of Sy. There is no such simple representation of 6(Sy).

4. The Borel sets of a metric space

A metric space is a pair (5,d) consisting of a space S and a distance function d.
The specification of d is usually omitted if it is irrelevant to the discussion or
obvious from the context. The distance function for the product of finitely many
metric spaces is to be understood to be defined by the Euclidean formula:
square root of the sum of squared distances for the factor spaces.

Every closed set in a metric space S is a countable intersection of open sets:
Fc G§. In fact if A is closed, the set {s € S:d(s.A) < 1/n} is open and

4.1y A= {se S d(s,A) < 1n).
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Complementation yields the fact that G < Fg, that is, every open set in a
metric space is a countable union of closed sets. These two inclusions imply
first, that 6(G) D F and therefore 6(G) > o(F), and next that 6(F) > G and
therefore that o(FF) > o(G). Hence o(F) = o(G).

Definition. The class B(S) of Borel subsets of a metric space S is the G
algebra o(G) (: o )).

In dealing with a measurable space (S,S) for which S is a metric space it will
always be assumed, unless stated otherwise, that S=B(S). The reasoning that
led to the equality o(F) = 6(G) for a metric space S shows that if S is so large
a class of Borel subsets of S that o(S) includes F or G, then o(S) = B(S). For
example B(R) is generated by the class of open intervals, also by the class of
closed intervals, also by the class of right semiclosed intervals, also by the class
of semi-infinite intervals, and so on.

Relativization of Borel sets. If A is a subset of a metric space (S,d), if A is
metrized by restricting d to pairs of points of A, and if Ay < A, then Ay e B(A) if
and only if Agis the intersection with A of a set in B(S), that is, in the obvious
notation, B(A) = B(S)NA. In fact the class of sets in B(A) that are intersections
with A of a set in B(S) is a ¢ algebra relative to A and includes the subsets of A
that are open relative to A, because these are the intersections with A of open
subsets of S. Hence B(A) < B(S)NA. In the other direction, B(S)nNA < B(A)
because the class of Borel subsets of S meeting A in a Borel set relative to A
includes the open subsets of S, is a ¢ algebra, and is therefore B(S).

In particular, if A is a Borel subset of S, then a subset of A is Borel relative to
A if and only if it is Borel relative to S. Thus, for example, a subset of a line in
R? is a Borel set relative to the line if and only if the subset is a Borel set
relative to the plane.

5. Products of set algebras

For i=1,...,n, let §; be an algebra of subsets of a space ;. Let S=S)x-x§,, be
the product of these spaces. In the following, “product set” will always mean a
set in the class Syx X S, of product sets A;x A, with 4; in S;. Observe that
the intersection of two product sets is a product set, and that the complement of
a product set is a finite disjunct union of product sets. It follows that the class of
finite unions of product sets is an algebra, necessarily 6o(S XX Sp).

In particular, if each space S; is R and if each algebra S; is the algebra of
finite unions of right semiclosed intervals of R, then 6y x--x S,) is the
algebra of finite unions of right semiclosed intervals of RY. The ¢ algebra B(RM)
is generated by this algebra, also generated by the class of N fold products of the
one-dimensional Borel sets, also by the class of N fold products of classes that
generate B(R), for example, by the class of N-fold products of open intervals of
R, or of right semiclosed intervals of R, and so on.
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Returning to general factor spaces Si....,5,, observe that

.1) oS xxS ) = 6(o(S - %(Sp)).

In fact, trivially, the right side is at least as large as the left. Conversely it is
sufficient to show that the left side is at least as large as the right by showing
that it includes o(S )X x(S,). Fix 4; in S; for all i>1. The class of sets A, in
o(S ) for which the product setA XA, is in 6(S1x X Sy) includes Sy, isa G
algebra, and is therefore o(S;). Thus the left side of (5.1) includes
o(S | )xS,x'S,.. Go on by induction to finish the proof of the stated inclusion.

Cross sections of multidimensional sets. If A is in 6(S;xxSy), denote by
A(s) the section of A with first coordinate s:

A1) = {(52,-.,8): (8,852,....5,) € A}.

This set is in the set ¢ algebra of subsets of SyxxS,, generated by S, xS,
because the class of sets A for which this is true contains S;x--xS, andisac
algebra of subsets of S. The corresponding assertions are true if more than one
coordinate is fixed.

Right semiclosed intervals in spaces of infinite dimensionality. Section 2,
Example (a), can be extended to an arbitrary infinite (not necessarily countable)
dimensionality. For every point i of an arbitrary index set /, let S; be a copy of
R and let S; be the algebra of finite unions of right semiclosed intervals of S;.
Define the space S as the class of all functions from I into R. Let x; be the ith
coordinate function of §. If i|,...,i, are index points and if A is a right semiclosed
interval of R”, the set {(x; ,....x;) € A} is an n-dimensional right semiclosed
interval of S. The algebra of finite unions of all such finite dimensional intervals
is the infinite dimensional version of the algebra of finite unions of right
semiclosed intervals of RV.

6. Monotone classes of sets

Monotone class definition. A class S of subsets of a space S is a monotone
class if S contains the limit of every monotone sequence of its sets.

To each class S of subsets of a space corresponds a smallest monotone class
M(S) containing S (cf. the corresponding proof for algebras in Section 3). The
class S generates M(S).

_ Theorem. Let S be a class of subsets of a space. Suppose that M(S) includes
S and includes either the finite unions or the finite intersections of members of
S. Then M(S) = &(S). In particular, M(S)=&XS) if S is an algebra.
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Proof. Under the hypotheses of the theorem, the class M(S) contains the
complements of its sets, because the class of sets in M(S) whose complements
are in M(S) is a monotone class containing S and therefore must be M(S). To
prove that M(S) is closed under finite unions if M(S) contains the finite unions
of sets in S, let B be in S. The class I'p of sets A in M(S) for which AUB is in
M(S), contains S, and is a monotone class. Hence I'y= M(S). Furthermore, the
class of sets in M(S), whose union with each set in M(S) is in M(S), was just
proved to contain S, and is a monotone class, so is M(S). Thus M(S) is an
algebra, necessarily a ¢ algebra because of the monotone class property, and
therefore M(S) = o(S). This conclusion follows in the same way if it is
supposed that M(S) contains the finite intersections rather than finite unions of
members of S.

Generation of the Borel sets by monotone sequential limits. According to
Theorem 6, the class of Borel sets of a metric space S is the monotone class
generated by the open sets, equivalently the monotone class generated by the
closed sets.

The classes in the inclusion relations

6.1) G cGsc Gsg < Gegs <

are all Borel sets but in most applications the union I" of these classes does not
contain all the Borel sets.

Example: S = R. In this case it can be shown that the monotone sequence
(6.1) is strictly monotone and that I' is a strict subclass of B(R). Moreover, it
can be shown that the monotone sequence

6.2) FclgcTlggcIggs <

is strictly monotone and that the union of these classes is a strict subclass of
B(R). This procedure can be continued (transfinite induction) to obtain a well-
ordered uncountable strictly increasing succession of classes of Borel sets

containing all the Borel sets of R. (A corresponding approach starts with the
sequence

(6.3) F c Fg c Fgs < Fggg <

instead of (6.1).) This analysis of Borel sets will not be used in this book.
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Set Functions

The point of this book is the study of countably additive set functions, and the
preceding chapters have set up the appropriate context by providing an
introductory analysis of classes of subsets of an abstract space. This chapter
introduces the set functions to be studied.

1. Set function definitions
Let A be a function from some class S of subsets of a space S into R.

(a) A is monotone increasing [decreasing] if MA) < MB) [AMA) = A(B)],
whenever AcB and both sets are in S.

In (b) and (c) it is supposed that @ € S and that M@) = 0.
(b) A is finitely [countably] subadditive if
(1.1) MUAL) < X NA)

whenever A. is a finite [infinite] sequence of sets, that, together with their union,
are in S, and ~ee and +oo do not both appear in the summands.

(c) Ais finitely [countably] additive if (1.1) is true with equality whenever A. is
a disjunct finite [infinite] sequence of sets that, together with their union, are in
S, and -e0 and +e= do not both appear in the summands.

In checking finite additivity or subadditivity, it is sufficient to consider
unions of only two sets.

Measures and signed measures. A countably additive set function from an
algebra into either [-o0,+00) or (-oo,+o0] is a signed measure, a measure if the
range space is R*. If A is a measure defined on a ¢ algebra S of subsets of S,
the triple (S,S,A) is a measure space, and the sets in S are measurable, or A
measurable if it is necessary to identify the measure. In particular, if M8)=1, a
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measure space is a probability space, and A is a probability measure. In
probability contexts, the measurable sets are sometimes called events.

A measure space S and its measure A are finite if A(S) < +oo, and are G finite
if § is a countable union of sets of finite measure. In view of the representation
II(1.1) of a countable union as a disjunct countable union, it is no further
restriction on the condition for ¢ finiteness to demand that the union be a dis-
junct union.

Null sets, carriers, and supports. A measurable set of measure O is null or,
more specifically, A null. An assertion about points of a measure space holds
almost surely, or almost everywhere, on the space, if true up to a null set, in the
sense that the set where the assertion is false is a null set. A subset of a null set
may not be measurable and therefore may not be a null set but (see Section
IV.1) the domain of definition of a measure can be extended to remove this
somewhat awkward complication. A measure is carried by a set if the set is
measurable and has a null complement.

Borel measures. A Borel measure is a measure A defined on the class of
Borel subsets of a metric space. If the space is separable there is a largest open A
null set, the union of the A null balls having centers at the points of a countable
dense set and having rational radii. The complement of this open set is the
smallest closed carrier of A. This uniquely defined closed carrier is the closed
support of A.

Monotonicity and subadditivity. Finite additivity of a positive set function
A, defined on a set algebra S, implies that A is monotone increasing, because if
Aand Baresets in S and if A c B,

(1.2) MB) = AA) + M(B-A) 2 MA).

Furthermore this set function A is finitely subadditive, because if sets C and D
are in S,

1.3) MCuD) = MC) + MD-C) < MC) + MD).

A slight extension of the argument, applying equality II(1.1), shows that a
measure on a set algebra is countably subadditive.

Countable additivity. The added condition of countable additivity imposed
on a finite valued finitely additive set function A, defined on an algebra S, can
be given the following equivalent forms.

(a) For a disjunct sequence A. of sets in S, with union in S, (1.1) is true with
equality.
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(b) For an increasing sequence B, of sets in S with limit B in S, lim A(B.) =

MB).
(c) For a decreasing sequence B, of sets in S, with limit @, lim A(B.)=0.

For example, to see that (a) implies (b), write B as a union:
B= BiAST (Bri-Bn).

Conversely (b) implies (a) because a countable union is the limit of the
monotone increasing sequence of partial unions.

The added condition of countable additivity imposed on a finitely additive,
not necessarily finite valued positive set function, defined on an algebra S, can
be given the following equivalent forms: (a) and (b) as above, but (¢) is
replaced by

(¢') For a decreasing sequence B. of sets in § with limit @, lim A(B.) =0 if
M By) < +eo,

2. Extension of a finitely additive set function

The following lemma will be useful in the construction of product measures on
product spaces. The properties of S in the lemma are modeled on the properties
of classes of product subsets of the product of a finite number of spaces.

Lemma. Let Sy be a collection of subsets of a space S. Suppose that the
intersection of two (and therefore every finite number) of sets in Sy is in Sy, and
suppose that the complement of a set in S is a finite disjunct union of sets in S,
so that 6y(Sy) is the class of finite unions of sets in Sy. Let Ay be a finitely
additive set function on Sy.with values in either (—oo,+o0] or [~o0,+00). There is
then a unique finitely additive extension of g 10 6y(Sg).

Proof. If A is a finite union of sets in Sy, A can be expressed as a finite disjunct
union of sets in S, say A = LUA.. Define MA) = 2 A(A.). To prove that A as so
defined is independent of the choice of representation of A as a finite disjunct
union of sets in Sy, suppose that LB, is another finite disjunct union of sets in
Sy with union A. Then

A=UA. =UB. =Uj [ AinBy,
and therefore
ZAA) = Zi L hAinBY) = 2p X AAjnBy) = X A(Bo),

as was to be proved. Thus A, has been given the required extension, obviously
finitely additive.
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3. Products of set functions

The following theorem will be useful, for example, in developing area in two
dimensions from length in one dimension.

Theorem. For i=1,...,n, let S; be an algebra of subsets of a space S;, and
define Sy= SixX Sy, S=0¢(So). If s is a finitely additive positive set function
on S;, for i =1,...n, then there is a finitely additive set function N on S for
which

@3.1) MA XA ) =ﬁ AA) (A€ S i=1,..n).

Proof. Define A by (3.1) on S. According to Section IL.5, each set in S can be
expressed as a finite disjunct union of sets in Sg. Define A on such a union by
additivity. The only question is whether this definition gives a value
independent of the representation of the given set as a disjunct product set
union. In proving the desired independence, it is sufficient, according to Lemma
2, to prove this independence for product set unions in Sy. The proof is by
induction. The independence is trivial when n=1. If n> 1, suppose independence
has been proved for n—1, and suppose that

k
(32) A1><"'XAn - U[ (B»XC.),
where Bj e S;x>8,.1, C; € S, for i=1,...k and the union is disjunct. According

to the induction hypothesis, there is a finitely additive set function v on
0o(S x-S ,-1) satisfying

n-l
(3.3) V(Dyx-XDp.q) = 11—1 MDs), (Dje S, i=1,..,n-1).
It is to be proved that
k
(3.4 V(A XAp1) An(Ap) = 21"’ V(B;) M (C).

According to Section I1.3, there are 2k pairwise disjoint sets in S,, with the
property that each set C; is a disjunct union of some of these sets. If in each term
B;xC; in (3.2), the set C; is expressed in terms of these sets, B;xC; is thereby
expanded into a disjunct union of product sets with common first factor set B;.
The ith summand in (3.4) is thereby expanded into several summands that have
sum V(B;)A,(C;), because A, is additive. If this expansion is carried through for
all i, the value of the sum in (3.4) is not changed. Suppose then that this
expansion has already been carried through, yielding a union in (3.2) in which
two sets Cp and Cj are either identical or nonintersecting. If identical, the terms
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BxC,, ByxCy can be combined into a single product set (B, UBg)xC,. When the
terms in (3.2) are combined in this way, the sum in (3.4) is unchanged, because
v is additive. After having made these changes, C,,C,,... are pairwise disjoint
and their union must be A,, whereas B; must be A xxA,_; for all i. The right
side of (3.2) has become UAx"XA,,XC ., and (3.4) is now trivial.

4. Heuristics on © algebras and integration

Let I,..I, be pairwise disjoint intervals of R with union an interval 1. Let f be a
function from 7 into R, with value g; on /j. The Riemann integral of f on I is %
aj MA;j), where X(Aj) is the absolute value of the difference between the
coordinates of the endpoints of A;. Riemann integration theory on R is based on
this integration of functions constant on intervals. In fact the Darboux upper and
lower sums for a function g (see Section VI.20), which approximate the
Riemann integral of g, are the Riemann integrals of functions constant on
intervals. Integration in the context of measure theory involves analogous sums,
but is based not on functions constant on intervals, but on functions constant on
sets of some © algebra of sets. The details of this integration will be given later,
but in this chapter preliminary definitions of integrals will be given in special
contexts to clarify the general case.

5. Measures and integrals on a countable space

Suppose that S is a countable space, written as a finite or infinite sequence s.,
and define S=25. A measure A on S is determined by its values on singletons: if

M{si})=p; then
MA)Y= 3 pi.
SiEA

Observe that if Zp. = +eo, but if each summand is finite, the sequence B, with
By= {sn,5p41,...} is a decreasing sequence of sets with limit @, even though
MBy) = +e for all n. This example justifies the Section 1(c') finiteness
condition.

If fis a function from this countable space S into R, it is natural to define the
integral of fon § as Zf(s.)p. if the sum converges absolutely, and this in fact is a
special case of the final definition of an integral to be given in Section VI.4.

Adaptation of integrands to G algebras. Let S be the finite or infinite se-
quence s, with at least two points, define S as the ¢ algebra of those subsets of S
that contain either both or neither of the two points s, 55, and let py,ps,... be
positive but not necessarily finite numbers. Define M{s]-}) =pj for j> 2, and
define X on the two-point set {s,.5,} as p,. These definitions, together with
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countable additivity, determine A on S. If f is a function from S into R*, and if
J(s1)#f(s,), there is no natural definition of the integral of f with respect to A on
S, because A is not defined on the singletons {s,} and {s,}. The difficulty is that,
as far as S is concerned, the point pair {s;,5,} is an indivisible atom of the
measure space. Thus integration theory in this context is forced to consider only
those integrands f with f(s,)=f(s,); for such a function, the natural definition of
the integral is

5.1) cha = b + 3,

when the series converges absolutely. The point is that an integrand must
assume each of its values on a measurable set. This fact leads to the general
concept of a function adapted to the class of measurable sets, a measurable
function, to be defined and discussed in Section V.1. At the present stage the
following definition is adequate.

Measurability definition for a function with a countable range space. Let
(S',ZS') be a countable measurable space, and consider functions from a
measurable space (S, S) into S". Such a function y is measurable if it assumes
each of its values on a measurable set, that is, if @' is a point of S ' then {y = d'}e
S, equivalently, {y € A'} € S whenever A' is a subset of S'". The function f in the
preceding paragraph, from § into R, is measurable if and only if f(s1)=f(s,).

If (8,S) is provided with a probability measure, a measurable function is a
random variable in probability terminology.

6. Independence and conditional probability (preliminary
discussion)

Let (S,S,P) be an arbitrary probability space. All subsets of § considered below
are in S, that is, are measurable.

Independence of sets. Sets A,...,A, inS are mutually independent if
6.1 P{Bi~nBp} = P{B}P{Bp},

for every one of the 2" choices of the n-tuple B,...,B,, where each set B; is
either A; orA;.

This mutual independence implies that for each choice of B., these sets are
also mutually independent. Moreover the sets of any subcollection of A. are
mutually independent. (For example, write (6.1) with B, replaced by its
complement, and then add the new equation to the original one, to find that
Aj,..,A,- are mutually independent.) In particular, sets A; and A, are mutually
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independent if P{A;nA4,} = P{A,}P{A,} because in this special case trivial eval-
uations show that the pairs (A4,,4,), (A;,4,), and (4,,4,) also satisfy this product
relation. A null set is independent of every set, as is also the complement of a
null set.

Infinitely many sets are mutually independent if the sets of every finite
subcollection are mutually independent.

Mutual independence of G algebras. The ¢ algebras of a collection of ©
algebras of measurable sets are mutually independent if, whenever a set is
chosen from each G algebra, these sets are mutually independent. Let S;,...,S4
be mutually independent G algebras of measurable sets. Then o(S(,S,) and
O(S3,S4) are mutually independent o algebras. To see this, let B be the
intersection of a set in S; with one in §,. The class I" of sets in 6(S;,S,)
independent of B is a monotone class closed under finite disjunct unions and
complementation, and I includes every intersection of a set in §; with one inS,
Since finite unions of such intersections can be written as disjunct unions of the
same type, and in fact constitute a set algebra, I' must be 6(S,,S,). Thus each set
in 6(S,S,) is independent of B. An application to 6(S3,S,) of the reasoning just
used shows that every set in 6(S3,S,) is independent of every set in 6(S,,S,), as
was to be proved. More generally, an obvious further elaboration of this proof
shows that if {S;, i e/} is a family of mutually independent G algebras, and if
{Iy. ot € E} are disjoint subsets of the index set I, then {O'{S,', iely), o e E}
are mutually independent G algebras.

Independence of random variables. In particular in this discussion let S’ be
a countable space, and consider random variables (= measurable functions) from
Sinto §' as defined in Section 5. The random variables of a collection of these
random variables are mutually independent if, whenever y,...,y, are finitely
many random variables in the collection and a;',...,a," are points of S, the sets
{yi=a1'}.....{yn=a,'} are mutually independent. This condition implies that if
A,..., Ay are subsets of §' the sets {y; € Ay'},...{yn € A,'}] are mutually
independent. The general definition that underlies these special cases (keeping
S ' countable at this stage, however) is the following. If y. is any collection of
random variables, measurable sets of the form {y, € A'}, with y; in the
collection, and A" a subset of S, generate a G algebra, denoted by 6(y.), and all
questions of independence of random variables are referred to the corresponding
G algebras. Thus two random variables y and z are mutually independent if and
only if o(y) and o(z) are mutually independent ¢ algebras; similarly two
families {y.} and {z} of random variables are mutually independent if and only
if o(y.) and 6(z.) are independent o algebras, and so on. In particular, the sets of
a collection of measurable sets are mutually independent if and only if their
indicator functions are mutually independent.

Independent events. Recall that in probability applications, measurable sets
are sometimes called “events.” Nonmathematical events that are independent of
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each other in a nonmathematical sense correspond in mathematical models to
mathematically independent measurable sets. For example, in the coin tossing
analysis to be given in Section 9, the events heads on the first toss and tails on
the third toss are thought of as independent real-world events, and the
corresponding measurable sets in the mathematical model are mathematically
independent.

Conditional probability. Let (S,S,P) be a probability space, and let A be a
measurable nonnull set. A new probability measure B— P{BlA} (read “the
conditional probability of B given A”) is defined by

6.2) P{B|A} = P{BA}/P{A}.

In simple contexts one can interpret such conditional probabilities for fixed A as
defining a new context, based on replacing S by A, replacing S by the class of
measurable subsets of A, and replacing P by the restriction of P to this class,
normalized to make the restriction a probability measure of sets B. However, in
most contexts it is preferable to keep S and S, so that (6.2) defines a new
probability measure on (S,S), carried by A. Observe that sets A and B are
mutually independent if and only if either A is null, or A is not null and
P{ B|A}=P{B}. The innocent looking conditional probability concept, when
formulated in a more general context (see Section XI.2), has had a profound
influence and unexpected mathematical applications, both inside and outside
probability theory.

Expectation and conditional expectation. If S={s1,s7,...} is a countable
space, and if a probability measure is defined on the ¢ algebra 25 by setting
P{s;}=p; with p; 20 and Xp. = 1, the integral of a numerically valued function f
on S, defined in Section 5, is commonly written E{f} by probabilists (read
“expectation of ). If this expectation exists, and if P{A}>O0, the integral of f
with respect to the conditional measure P{-lA} is written E{f IA} (read
“expectation of f given A”).

7. Dependence examples

Let S; be the set 1,...,N of integers, define S=S,”" as the space of m-tuples of
points of S}, and let x; be the kth coordinate function of S. The following lists
several ways of assigning each singleton of S a measure value, in order to define
a probability measure P on 25.

(a) Let P() be a measure on the kth factor space, say PR jl = qj(.k) , where

q](.k) >0and X c{k) =1, and assign to the singleton (jj,... i) of S the measure

Ik g; 7. For each pair k, j, the subset {x=j} of S contains N™! points and its
Jk
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probability is defined by

.1) Plusi)) =g,

The sets {x;=1},....{xm=f} are mutually independent subsets of S for every
choice of jj,... i, and corresponding to this fact, the measure P on § is what will
be defined in Section IV.11 as the product measure of the measures P;,...,Py,.
As the following examples illustrate, product measures are not the only way to
define measures on product spaces.

(b) Transition probabilities and stochastic matrices. A matrix of positive ele-
ments with row sums 1 is a stochastic matrix. One kind of random variable
dependence, Markov dependence, is characterized by the fact that in a sequence
of random variables, probabilities for the nth, conditioned by the values of all
the preceding random variables, actually depend only on the last preceding
random variable, not on those farther back. More precisely, in the discrete
context of (a), choose N positive numbers p., with sum 1, as initial probabilities,
setting

(71.2) P{x;=i}=p;, i=1,..N.

Next choose an NXN stochastic matrix (P,(,] )), the matrix of first step transition
probabilities, that is, define {x,,%} probabilities by

(7.3) Plxy=i, x757) = pipl)

Observe that summing over in (7.3) yields (7.2) and that
7.4 Ploxy=i|x,=i} = p P
(7.4) loFjln=i} =p;

when p; > 0. If m =2, (7.3) provides the most general probability measure on S.
If m > 2, choose another stochastic matrix (p k) as matrix of second step
probabilities, setting

(7.5) Plxi=i, x5, x3=k) =pip ply.

Observe that summing over k in (7.5) yields (7.3), and observe the Markov
property of the transition probabilities:

(7.6) Plxk|xi=i, xym) = Ples=klosi) =p @

when P{x=i, x,=j} > 0. The point of the Markov property is that the first
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conditional probability in (7.6) does not depend on i. If m > 3, go on with
further transition matrices. When m > 2, this procedure does not furnish the
most general probability measure on S. In fact to obtain the most general
probability measure when m = 3, replace the transition matrix (pj(kb) by a
stochastic matrix (p; jk) (stochastic matrix in jk for each i), which takes into
account the value two steps back, thereby replacing (7.5) by

)

(1.7) P{x\=i,x,=j, x3=k} =p; p ij Pk

Summing over & in (7.7) yields (7.3). Equation (7.6) is replaced by
(7.8) P{xy=k | x =i, 2,5} = pi jk,

when P{x;=i, x,=j} > 0. The Markov property is lost unless p; jk does not
depend on i.. This property will be defined in a more general context in Section
X14.

Although the preceding discussion was based on random variables that were
the coordinate functions of a product space, this special context was irrelevant.
The important point was that Equations (7.2), (7.3), and so on were satisfied on
whatever probability space the random variables x. were defined. It is a typical
feature of the special point of view of probability theory in measure theory that
the probability relations between random variables define the context; the space
on which the random variables are defined is irrelevant.

8. Inferior and superior limits of sequences of
measurable sets

The combination of parts (a) and (c) of the following theorem is the “Borel-
Cantelli Theorem.” It is a historical accident that part (a) is usually stated only
in probabilistic contexts.

Theorem. Let A. be a sequence of measurable sets of a measure space

S, SA).
(a) (Cantelli) If £ A(A.) < +oo, then
@8.1) A{lim sup A.} = 0.

(b) A{lim inf A.} <lim inf MA.) < lim sup MA.), and, if A is a finite measure,
the last term is at most A{lim sup A.}.

(c) (Borel) If (S,S,\) is a probability space, and if A. is a sequence of mutually
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independent measurable sets, then the condition X MA.) = +oo implies that
AMlim sup A.} = 1, and the condition T MA.) < +oo implies that Mlim sup A.}
=0.

Probability context. In the colorful language of probability, in which
measurable sets are “events,” (a) states for probability contexts a condition that
(almost surely) an event occurs only finitely often and (c) states that, in the
independence case, if the condition is not satisfied, the event is almost sure to
occur infinitely often. Observe, however, that it has not yet been shown that (c)
is a useful result, because no nontrivial example of an infinite sequence of
mutually independent measurable sets has been exhibited. The set sequence
@.0,... is an uninteresting trivial example that shows that (c) is not vacuous! A
nontrivial example inspired by coin tossing and number theory will be exhibited
in Section 9, but not justified until Section IV.14.

Proof. The definition of superior limit of a sequence of sets implies that, for all
k,

(8.2) Mlim sup 4.} SA(U, A <Z MAY),

from which (a) is immediate. Similarly, (b) follows directly from the definitions
of the inferior and superior limits of a sequence of sets. (The first inequality in
(b) is a special case of Fatou's integration limit inequality, which will be proved
in Section VI.8.) The second part of (c) is a special case of (a) but the following
direct proof of (c) does not use (a). The probability thaf the event A, does not
occur for n 2k, that is, the measure of the intersection M k A., is

limp —seo MR- NADT = [T, [1-240)],
and the probability that the event occurs only finitely often is therefore
(8.3) limg—yeo I, [1-2A0)].
Part (c) follows from the theory of infinite products:
(i) this infinite product converges if and only if ZA(A.) < +oo;

(ii) if the product converges, the limit in (8.3) is 1;
(iii) if the product diverges, this limit is O.

9. Mathematical counterparts of coin tossing

Coin tossing is not mathematics. A genuine human being of some sex, color,
creed, and national origin tosses a piece of metal, giving it certain initial
conditions and thereafter letting nature take its course (for which Newton
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devised a mathematical model). The coin comes to rest with either heads or tails
showing, and the tosser, enslaved by mathematical notation, registers xj as the
result of the jth toss, setting x; = 1 for heads, xj =0 for tails. She or he observes
that (x;+-+x,,)/m is usually close to 1/2 when m is large, and, more generally,

observes that when m is large, and o is a specified n-tuple of 1's and 0's,

(number of times o appears in m successive n-tuples of tosses)/m

is usually close to 2. The words “when m is large” suggest that, in a
mathematical model of these observations, there is a limit theorem. In fact a
Bernoulli proved such a limit theorem of course without the measure theoretic
mathematics now available (which some old-fashioned probabilists are
convinced only beclouds the context), about three hundred years ago. These
observations suggest that in any mathematical model for coin tossing, whatever
corresponds to a specified succession of n heads and tails at specified times
should be assigned the measure 27,

Desert now the interesting but imprecise real world in favor of the duller but
more precise mathematical world, and construct n functions xi,...x, on a
probability measure space, imposing the following conditions: x; is to have only
two possible values 0 and 1; the measure of the set on which these functions
take on any specified n—-tuple of O's and 1's is 2. A trivial computation
(addition) shows that then, for example, for each j, the measure of the set on
which xj = 1 is 1/2. There are many ways such a mathematical context can be
constructed. Two important ones will be exhibited in this section.

First mathematical coin tossing model. This model will look simpler and
be more interesting after Lebesgue measure is defined in Section IV.8. Every
number s in the interval (0,1] of R has a dyadic expansion s = .x;x,,..., that is,

.1 s=x27T +x,272 4.

Here Xj is a function of s, with the possible values 1 and 0, made single valued
by choosing the representation of s ending in a sequence of 1's rather than 0's at
the dyadic points. Thus {x;=0} is the interval (0,1/2], and, more generally, if
values are assigned to x,....x,, these functions will have those values on a right
semiclosed interval of length 2. If n is fixed, and if this length is assigned as
measure to each of these intervals, additivity determines the measures assigned
to the unions of these intervals. In this way, for each value of n, a probability
measure space (S,S;,P,) has been defined, consisting of the interval S = (0,1],
together with the o algebra S, of unions of right semiclosed intervals of the
form ((i-1)2‘", j27] for j = 1,...,2", with measure P, given by ordinary length.
The functions x,....x; have the required properties and are mutually
independent, corresponding to the notion of nonmathematical independence in
actual coin tossing. Statements about the results of actual coin tossing can be
translated into statements about this dyadic representation. The measures P. are
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mutually consistent, in the sense that if say m <n, then S,, ¢ S,, and P,,=P,, on
Sm. (This equality is trivial when n=m+1, and induction yields the general case.)
Define P, an additive set function on the algebra S, =US. of finite unions of
dyadic right semiclosed subintervals of (0,1], by assigning its length to each
subinterval, so that P=P,, on S,,. The set function P, is finitely additive be-
cause each measure P, is additive. (Actually P, is countably additive but the
proof is deferred until Section IV.14.) The space (§,Se,Poo) is not a probability
space, because S, is not a ¢ algebra. Such probabilities as

9.2) P{x;++x, < cn'?}

can be evaluated for all n, and the central limit theorem, which describes the
limit of this probability when n—eo, can be proved, but probabilities of the two
sets

(9.3) Ufxe =1}, {lim (e, +-+x,)n = 172}

are not defined because these sets are not in S... The sequence {x.=1} of sets is
not a sequence of mutually independent sets in a probability space because S o,
is not a ¢ algebra.

In nonmathematical probability language, the first event in (9.3) is that in an
infinite sequence of tosses, heads occurs at least once; the second is that, in
such an infinite sequence,

(number of heads in n tosses)/n

has limit 1/2. Although neither of these events is meaningful in actual coin
tossing in the real world, because infinitely many tosses cannot be performed, a
further development of the mathematical model makes the sets in (9.3)
measurable, with probability 1 for both. More precisely, Lebesgue measure,
developed in Section IV.9, makes it possible to extend P. to a probability
measure P on S=0(S.). The Borel-Cantelli theorem can then be applied to the
probability space (S,S,P) to obtain 1 for the probability that heads occurs
infinitely often. The strong law of large numbers in Section XI.19, when
applied to this probability space, yields 1 for the probability of the second set in
(9.3), but far more elementary proofs yield this special result.

In 1909 Borel stressed the significance of such mathematical results in an
influential paper (whose proofs were, however, defective even for that era).

Second mathematical coin tossing model. This model is more direct than
the first. The notation used corresponds to that in the first model. In this model,
let S,, be the space of the 2” n-tuples of O's and 1's, and determine the discrete
probability measure P, on the subsets of S, by defining the measure of each sin-
gleton as 2. The probability measure space (S,,25:,P,) is a mathematical
model for tossing a coin » times. Each succession of n tosses corresponds to a
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point of this model, whereas the succession of tosses corresponded to a dyadic
interval in the first model. The space S, is the n-fold product space S;", and the
measure P, is the corresponding n-fold product measure, a simple special case
of the set functions considered in Theorem 3. The jth coordinate function x;”” of
Sy is the measurable function (alias random variable) corresponding to the
result of the jth toss. It is perhaps a bit more obvious in this model than in the
first that probability calculations in this simple context are counting problems:
how many points of S, have the property whose probability is to be calculated?
The required probability is the number of those points multiplied by 2. In
order to define a model adapted simultaneously to all values of n, consider the
space S of infinite sequences of 0's and 1's. Let x; be the jth coordinate function
of S, and define an additive set function P, by setting, for each value of n, 2"
as the probability of the subset of S whose first # coordinates form a specified n-
tuple of O's and 1's. The finite unions of these sets form an algebra S.., and
probability is defined on this algebra by additivity. Note the parallelism between
this model and the first one, which was based on dyadic expansions. This model
has the same defect as the first one, in that probabilities like those in (9.2) are
accessible, but not those in (9.3). In both models, in order to go on, an additive
function on a set algebra must be extended to a measure on the generated ¢
algebra. This will be done in Chapter IV.

Finally, it is important to remember to keep mathematics and real life apart.
It is an interesting facet of human behavior that, even when actual coin tossing
is analyzed, the analysis has almost always been philosophical, ignoring the
laws of mechanics, which quite unphilosophically govern the motion of real-
world coins, under initial conditions imposed by real-world humans, and
thereafter subject to the laws of motion of a real body falling under the influence
of real gravity. The point is that the impossible-to-make-precise description of
the actual results of coin tossing has a precise mathematical counterpart, in
which mathematical theorems can be proved, some of which suggest real-world
observational results.

10. Setwise convergence of measure sequences

Let (S,S) be a measurable space, and let A« be a sequence of measures defined
on S. If lim A(A) = MA) exists for every measurable set A, then A. converges
setwise to M. Under certain added hypotheses stated in the following theorem,
the limit set function A is a measure. Part (b) is generalized to signed measures
in Section IX.11, using a quite different type of proof.

Theorem. Let (S,S) be a measurable space, and let A+ be a sequence of
measures on S, converging setwise to A. Then A is a measure if either of the

Sfollowing conditions is satisfied.

(a) A isanincreasing sequence.
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(b) (Vitali-Hahn-Saks) A is finite valued.
Proof of (a). The limit set function A is obviously finitely additive. If A. is a
disjunct sequence of measurable sets, with union A, monotonicity and finite
additivity of A imply

n

(10.1) MA) 221 MA.)
for all », and therefore
(10.2) MA) = X MAL).
On the other hand, if ¢ < M(A), and if k is sufficiently large,

(10.3) € < MA) = 2 MAs) < X MAW).

Therefore (10.2) is also true with the inequality reversed, that is, A is a measure.

Proof of (b). The limit set function is again obviously finitely additive. If A is
not countably additive, there is a decreasing sequence A. of measurable sets,
with empty intersection, but with lim A(A.) = € > 0. Define o; =B, =1; if o;
and B; have been defined for j < n choose 04 sO large that 0,4 > O, and that

oo >
(10.4) + >7\an+1(ABn) > Tel8,
and then choose By,4; so large that B, > B, and that
(10.5) Aoy, (4B, ) < /8.

Define B, = ABn-ABnH. Then ko‘n+1 (By) = 3¢/4, and it follows that, fork = 1,

(10.6) Aaj(U{B,,; neven, n>k}) > 3e/4 G odd, j > k).
Hence
(10.7) AU (By: neven, nik}) > 3e/4 k= 1).

Similarly, (10.7) is true if the union is over odd values of n. Add these
inequalities for even and odd values to obtain, since B. is a disjunct sequence,

(10.8) MAB) = MU, B.) 2362

for all k. This inequality contradicts the definition of € and thereby implies the
truth of (b).
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Observation. A glance at the proof of (b) shows that what has been proved,
in order to prove countable additivity of A, is that if A« is a sequence of
measures, with finite valued setwise limit A, then lim A(A.) = 0 implies that lim
Ae(As) = 0. This result expresses a kind of uniformity of the setwise
convergence, to be exploited in the proof of Theorem IX.10.

11. Outer measure

Outer measures, set functions for which the countable additivity measure
hypothesis is weakened to an inequality, are fundamental in the analysis and
construction of measures.

Definition. An outer measure on a space S is a function A" from 25 into RY
satisfying the following conditions:

@ A" (@)=0;
(b) A" is monotone increasing;
() A¥is countably subadditive.

A set for which A* vanishes is null, or, more specifically, A" null. Condition
(b) implies that a subset of a A* null set is also A* null, and condition (c) implies
that a countable union of A* null sets is A* null.

Observe that if A* is an outer measure, and if ¢ is a positive constant, the set
function A*Ac is also an outer measure. It will be useful later to modify a
possibly infinite valued outer measure in this way.

Generation of an outer measure. The most common way of obtaining an
outer measure is the following. Let A be an arbitrary collection of subsets of a
space S, containing @, and let ¢ be a function from A into R* with infimum 0. If
B is a subset of S, define K*(B) = +o0 if B cannot be covered by a countable
union of members of A, and otherwise define k*(B) by

(11.1) A B) = inf{ X ¢(B.): BcUB., Bpe A (n21)}.
It will now be shown that A is an outer measure. Conditions (a) and (b) are
obviously satisfied. To verify the countable subadditivity inequality (1.1),
observe that (1.1) is trivial unless k*(A.) < +oo. In the latter case, choose € > 0,
and, for n 2 1, choose a countable union \U A,. of sets in A in such a way that
Ay U Aye and that

2 0Ape) < KN Ap)+E2"

Then UA. c Upj Ayj and (c) is satisfied, because
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(11.2) AU A) < ZpioAn) XA @A) +e.

The outer measure obtained in this way is the outer measure generated by A
and ¢. For example, if A consists only of the empty set, with ¢(@) = 0, the
generated outer measure has value +eo for every other set.

The outer measure generated by a measure on an algebra. Suppose in
(11.1) that A is an algebra, and that ¢ = A is a measure on the algebra. In this
case the generated outer measure coincides with . on A. In fact, if Be A, the
sum in (11.1) can only be decreased if each summand set B, is decreased by
making the covering sequence disjunct, and can possibly be further decreased by
substituting B,,~B for B,. With these changes B. becomes a disjunct sequence
with union B, and the infimum in (11.1) is therefore A(B).

12. Outer measures of countable subsets of R

Let 1™ be the outer measure on R generated by the class of bounded open inter-
vals together with the function ¢ with value b-a on the interval (a,b). With this
definition, every countable set a;,4,... is null, contrary to unsophisticated
intuition, because if € > 0, and if B, is an open interval containing g, of length
€27, then B. covers the set g., and £ ®(B.) = €. More generally, a trivial
modification of this proof shows that if ¢((a.b)) = F(b)-F(a), where F is a
monotone increasing function on R, then the outer measure generated using this
choice of ¢ is O for every countable set of continuity points of F.

If instead of R, the space is the set S of rational numbers, and if A" s
generated by the bounded "intervals” of the form {r rational: a < r < b}, with ¢
defined on this interval as b-a, then A*(S) = 0. Thus it is not necessary that the
generated outer measure majorizes ¢ on the sets where ¢ is defined.

13. Distance on a set algebra defined by a
subadditive set function

If A is a finitely subadditive function from a collection S of subsets of a space S
into R*, with A(©D) = 0, define two distances between sets A and B in § by

(13.1) d)(A,B) = MAAB), d)\(A,B) = MAAB)AL.
Recall that if A is subadditive, the function AAl is also subadditive, and that if d

is a pseudometric, then dal is also. Each of these distance functions is positive,
vanishes if its two arguments are the same, and satisfies the distance triangle
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inequality because the symmetric difference operator A satisfies the triangle
inclusion relation I(2.5). Thus (S,dy) is a pseudometric space if A is finite
valued, and (S,d)') is a pseudometric space even without this finiteness
condition. These spaces are metric if every A null set is empty. The choice of the
number 1 in (13.1) is arbitrary in the sense that the topology defined by djAc is
independent of the choice of the strictly positive constant ¢, and, if A is finite
valued, is the same as that defined by d).

[The following standard procedure, noted for clarification, can be applied to
obtain a metric space from (S,d)) but this device will not be used in this book
except in the discussion of L as a Hilbert space. Let A be a finite valued outer
measure on the subsets of a space S and let S be the space of equivalence
classes of subsets of S, putting two subsets in the same equivalence class when
the distance between them is 0, that is, when they differ by a A null set. The
space of equivalence classes becomes a metric space if the distance between the
equivalence class containing a set A and the equivalence class containing a set B
is defined as d)(A,B). The corresponding procedure is applicable to d3,' and a not
necessarily finite outer measure.]

d), continuity of basic functions. In a pseudometric space, the pseudometric
distance function is uniformly continuous from SxS into R¥, as exhibited by an
application of the triangle inequality (A to A, to By to B):

(13.2) |d)'(A,B)-dy.'(A0.B)| < d)(4,A)+d)'(B.By).

and the primes can be omitted if A is finite valued.

The function Aal from S into R¥ is uniformly continuous, because (13.2)
reduces to the inequality I(A(A)A1)—(MAAL)I < d)'(A.Ag) when B=By=@. A
trivial modification of the discussion yields uniform continuity of Aac for an
arbitrary strictly positive constant ¢, and continuity of (possibly infinite valued)
A

Apply 1(2.7) and I(2.8) to prove that the union and intersection operations
from SXS into S are ¢} uniformly continuous:

d)'(AUBAGUBy) < dy'(A,Ag)+d)'(B,By),
(13.3)
d)(ANB.AgNBy) < dy'(A,Ag)+d) (B, By).

The primes can be omitted if A is finite valued.

14. The pseudometric space defined by an outer measure

The following theorem suggests that outer measures and measures endow their
domains with useful topologies. These topologies will be exploited in Chapter
Iv.
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Theorem. Suppose either that
(1) (S5.S,A) is a space S, with S = 25 and A an outer measure, or that
(1) (S,S,N\) is a measure space.

Let Sf be the subset of S on which A is finite valued and let Sy be a subclass of
S,with dj! closure So (=dy closure if S = Sf) Then under either (1) or (11):

(a) The pseudometric space (S,d)) is complete, and the class Sy is a closed
subset of S, at distance 1 from S—Sf.

(b) The d)' limit A of a d) convergent sequence is in S¢, [S=S¢] if and only if
all but a finite number of members of the sequence are in S, [S=S{1; up to a null
set, there is a subsequence with limit A in the convergence sense of Section1.3.

This theorem implies that the pseudometric space (Sy.dy,) is complete.

Proof of (a). Let A. be a d}" Cauchy sequence of sets in S. Choose strictly
positive integers o; < 0, < that are so large that MAmAAa ) = dk(Am,Aa )
<2 when m> o,. Then (see 1(3.7)),

(14.1)  Allim sup Ag_ - lim inf A, ] = A [lim sup, —sco (A(anAanH)]

<limg_ye0 D, MAg, M, )=0.
n=k

Define A as the superior or inferior limit (defined in Section 1.3) of the sequence
A o OF any set in S and between these limits, so that

(142) N A c A c Y, Ao= (N Aq) U U, Aoy da, ).

Since (14.2) remains true if A is replaced by A% dy(AAg ) = MAAAg )
<271 and " "

(14.3) d)(AAp) £ d?u'(A,A(xn) + dk'(A(xn’Am) <2t (m> oy).
Thus A is a d) limit (a d), limit if S = Sp) of the Cauchy sequence A., and
therefore (S,d)") is a complete pseudometric space. It is trivial that every set in

Sris atdy' distance 1 from every set in S-Sy, and that therefore Sris d)' closed.

Proof of (b). The assertions in (b) are trivial in the light of (a) and the set
convergence definition in Section 1.3.
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15. Nonadditive set functions

This book is devoted to additive set functions and their application to
integration. Subadditive outer measures are introduced only to derive measures.
Nevertheless, it is important to realize that nonadditive set functions are intrinsic
in some contexts, for example, in classical and probabilistic potential theory.
The following is a deceptively simple example of how a nonadditive set
function can arise. Let (S,S,P) be a probability space, let f. be a sequence of
functions from S into a space S' and let A’ be a subset of S". Define the function
0 on certain subsets of S ' (all hypotheses of function and set measurability are
omitted here) by

(15.1) o) =P{U{f.eA} }

= P{at least one function of the sequence takes on a value in A'}.

This function becomes more interesting if the context is glamorized! At each
point of S the corresponding sequence of values of f. is a trajectory. The value
O(A") is the probability that a trajectory hits A'. The set function ¢ is additive
only in trivial contexts, for example, if the functions fif,... are identical, but ¢ is
subadditive in a strong sense which will not be discussed here.
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Measure Spaces

1. Completion of a measure space (S,S,A)

The measure A and its measure space are complete if subsets of A null sets in S
are also in S; if so, the subsets are A null. According to the following theorem, if
(5,8, is not complete it can be completed, that is, S can be enlarged to obtain a
complete measure space.

Theorem. There is a smallest ¢ algebra s* satisfying the following
conditions:

1) s*sS:
(ii) there is a complete measure on S* whose restriction to S is .. S consists of
those sets A for which there are sets B and C in S satisfying the conditions

1.1 BcAcC, NMC-B)=0.
This extension of A is the completion of A.

Proof. Let S * be the class of subsets A of S for which there are sets B and C as
described in the theorem. Then A(B) = A C). Morover if the pair of sets (B',C")
has the same properties as the pair (B,C), then A(B') = MC") = MB) = MC)
because C - B'e S and this difference is a subset of the A null set (C- B)u
(C' -B"). Define A (A) = A(B), a defmmon just proved to be independent of the
ch01ce of B and Cin (1.1). The class S includes S, and A" = A on S. The class
s*is closed under complementation, because if Band C are as above, CcAcB
and B-C = C-Bis A null. The class S* is closed under countable unions,
because if A. is a sequence of sets in S*, andif, forn > 1, B, c A, cC,, with B,
and C, in S, and MCp, - B,) =0, then UB. < UA. < UC,, and

MuC. - UB.) <A[U(Ce-BY)] = 0.

Thus S¥isac algebra. Moreover A is countably additive on S *, because if A.,
B., and C. are as above, and if A. is a disjunct sequence, then B. is a disjunct
sequence, and therefore
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(1.2) AF(UAL) = MUBL) = 2 A(B.) = 2 X (A.).

Finally, if A' is an arbitrary complete measure extension of A, defined on a ©
algebra ', S' must include the subsets of A null sets and therefore must include
Ain (1.1). Hence S§' > S*, that is, A" is the minimal complete measure extension
of A.

2. Generalization of length on R

Consider the problem of defining the length of a subset of R. To avoid problems
connected with infinite length, consider only subsets of some closed finite
interval J. Borel proposed the following procedure to extend the definition of
length to a wide class of subsets of J. For a closed subinterval I of J, define A(/)
as the positive difference between the coordinates of its endpoints. Next define A
for finite disjunct unions of intervals by additivity, next define A by continuity
successively on the class of sets that are limits of increasing sequences of sets
on which A is already defined, the class of sets that are limits of decreasing se-
quences on which A is already defined, and so on, alternating between
increasing and decreasing sequences. The point of this procedure was to define
A as a measure on the G algebra B(J) of what are now called Borel sets, but the
procedure proved to be impractical, and it was Lebesgue who first devised a
procedure to extend length to the class B(J) and to B(R).

3. A general extension problem

A common measure theoretic context is the following. Let A be a finite measure
defined on an algebra S of subsets of some space, but suppose that Sy is not a ¢
algebra. If one wishes to treat problems involving repeated applications of
countable unions and intersections of sets without going beyond the domain of
A, this measure must be extended to a measure on G(Sg). Carrying through
Borel's idea of extending the definition of A first to Sy, and then to S yg8,... and
so on (the last three words stand for transfinite procedures) to reach 6(Sy) would
be difficult, but is unnecessary because, according to Sections 3-5, the sets in
0(Sg) are close to those in Sy in a sense that makes the extension easy. In fact
this extension will be formulated in Theorems 3 and 4 as the extension of A
from a subset of a certain pseudometric space into the closure of the subset.

Theorem. Let (S,S,A) be a finite measure space, let S be the domain of the
completion of A, and suppose that S = o(Sg),where Sy is a set algebra. Then:
(a) Sisthe dy, closure of S,.

(b) Ife>0,and ifAis in S, there are sets A'(e) and A" (€), with the following
properties:
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3.1 A€)cAcA"E), AE)e S5 MA-A(e)) <t;
A"(€) € Sogr MA"(E)-A(R)) <E.

(c) The space (Sx,dx) is a complete pseudometric space. If the G algebra S is
generated up to null sets by a countable collection of sets, then this
pseudometric space is separable.

If the measure A is not supposed finite, but S is a countable union of sets in
Sy of finite measure, then (3.1)is still true.

The meaning of the countable generation hypothesis in (c) is that there is a
countable collection S; of sets in S for which every set in S, equivalently every
set in S}, differs by an S null set from some set in o(S,). For example, this
hypothesis is satisfied if there is a countable collection S, of sets in S for which
oS, =S.

It will be seen that the separability assertion in (c) is false for infinite valued
measures (with d, repaced by dy') even if Ais o finite.

It was pointed out in Section IIL.13 that A is a d)' uniformly continuous
function from S into R. Thus in going from §; to S, the domain of A is
changed from a set algebra to its d)' closure, and the function A is extended by
continuity.

Proof of (a). The d, closure §0 of Sy is_a dj, closed subset of the complete

pseudometric space (S,Sx,d;“). The class Sy is closed under complementation,
because if A, is a sequence in Sy with d), limit A, then A. is a sequence in S
with dj, limit A. The class S is closed under finite unions and intersections,
because (Section III.13) if A. and B. are sequences with respective
pseudometric limits A and B, then A.UB. and A."B. are sequences with
respective pseudometric limits AUB and ANB. Thus §0 is an algebra, even a G

algebra, because a countable union of measurable sets is the d), limit of the
partial unions. Hence Sy > S, and finally Sy =S A because the sets of S differ

from those of S by null sets.

Proof of (b). It is sufficient to show that A" (g) exists, because application of this
result to A yields A'(e), on complementation. Let A* be the outer measure
generated by Sy and the restriction of A to Sg. Then A = A" on S, and the
existence of A"(€) is equivalent to the statement that A" = A on S*. The outer
measure A is finitely additive on S* because if A. and B. are sequences in Sy
with respective d) limits the disjunct pair of sets A, B, then the d) pseudometric
continuity properties yield

(3.2)  A*AUB) = lim A" (A.UB.) = lim [A*(A)+1F (B—AL)] = L*(A)+1*(B).

The outer measure is countably additive on s because, on the one hand, as an
outer measure it is countably subadditive, and on the other hand, if A. is a
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disjunct sequence of sets in S* with union A, then X*(A) > Zn k*(A.), and
therefore A" (A) > E?»*(A.). Thus, on S, the two set functions bxand A* are
measures that are equal on Sy and therefore equal on S because they are the
unique dj, continuous extensions of their common restriction to S,

Proof of (c). According to Theorem III.13, (Sk,dx) is a complete pseudometric
space. Suppose that up to null sets S is countably generated by a sequence B. of
sets in S. The algebra oy(B.) is countable because it consists of finite unions of
finite intersections of the members of B. and B.. It is therefore sufficient to
prove that the d), closure of Go(B.) includes s*. But according to what has just
been proved, such a closure is SA,

Proof of the last assertion of the theorem. It is no further restriction than that
stated in the theorem to assume that S = US, is a disjunct countable union of sets
in Sy of finite measure. Apply the theorem for finite A separately to each
measure B=~A(BNS},) on the class of intersections with S, of the sets in s, with
S% replaced by the algrebra of intersections with S, of the sets in S;,. If A is in
S* and if € > 0, there is a set Cy, satisfying the conditions

ANS,c Cpc Sy, Cp e Sog, MCy—A) <27,

then UG, is a superset of A, in Sgg, and MUC.—A) < €. Thus the part of (3.1)
involving a superset of A in Sy is true. Application of this result to A, together
with complementation, yield the other part of (3.1).

4. Extension of a measure defined on a set algebra

Theorem 3 shows how close the measurable sets of a finite measure space are to
the sets of an algebra that generates the class of measurable sets. The following
theorem uses this fact to show, under appropriate hypotheses, that a measure on
an algebra can be extended to a measure on the generated G algebra.

Theorem. (Hahn-Kolmogorov). A G finite measure Ay on an algebra Sy of
subsets of a space has a unique extension to a G finite measure on o(S g).

Proof when J, is finite valued. Define S = 6(S;) and define A* as the outer
measure generated by Sg and A. Then A = A* on S. It will be shown that the dy*
closure Sy of Sy includes S and that the restriction of A* to § is the desired
extension of A. In other words, the situation will be brought into the context of
Theorem 3. The class Sy is an algebra, according to the argument used in the
proof of Theorem 3, except that A takes the place of A in the pseudometric.
Moreover A ™ is countably additive on Sy by the proof of countable additivity of
A* in the proof of Theorem 3. It follows that S, is a G algebra. Thus A* offers

the desired extension of A and is unique because, as remarked in Section 3, the
extension from S to S necessarily extends A by continuity.
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Proof when A, is not finite. If S = US. is a disjunct countable union of sets in
Sy of finite measure, apply the theorem for spaces of finite measure separately
to each measure B— Ay(BNS,,) on the class of intersections with §,, of the sets
in §; to obtain an extension of Ay to 6(Sy). Since the separate extensions are
unique, the overall extension is unique.

5. Application to Borel measures

Theorem. Let S be a metric space, let A be a measure extended by
completion from B(S) to BA(S), and suppose that S is a countable union of open
sets of finite measure. Then if A is a measurable set and € > 0O, there is a closed
subset A'(e) of A and an open superset A"(€) satisfying the conditions
X(A—A'(e)) <€, K(A"(s)—A)< £

Proof when A is finite valued. Apply Theorem 3 with S, the set algebra
generated by the class of open subsets of S. According to Theorem 3, the
assertions involving A'(€) and A"(€) are true except that unfortunately these sets,
described in Theorem 3, are not respectively closed and open in the present
context. To get an open version of A"(¢) it is sufficient to show that if A is in
Syo there is an open superset of A that can be chosen to have measure arbitrarily
near that of A. Now the sets of Sy are disjunct countable unions of subsets of S
of the form BNC, where B is open and C is closed. It is therefore sufficient to
show that a closed set C has open supersets of measure arbitrarily close to that
of C, and since a closed set C is a countable intersection of open supersets, this
assertion is true. To get a closed version of A'(€), apply the result just obtained
to A. Thus the theorem is true when A is a finite measure.

Proof when A is not finite valued. If B is an open subset of S of finite measure

apply the present theorem for finite measures to the restriction of A to subsets of

B and thereby find that if A is a measurable subset of B, then there are open

subsets of B that are supersets of A of measure arbitrarily close to A(A). This fact

will now be applied in the present context, in which § = US. is a countable

union of open sets of finite measure, to find a set A"(€) with the desired

properties. If A is a measurable subset of S, and if € > 0, there is an open subset

Ap" of §, for which ANS,, < A," and MA,"-ANA,) < €27, The set UA,"
satisfies the conditions for A"(g). Apply this result to A to find a closed subset

of A satisfying the conditions for A'(g).

6. Strengthening of Theorem 5 when the metric space S is
complete and separable

The following theorem strengthens Theorem 5 in the more restrictive context of
a complete separable metric space.



42 Measure Theory

Theorem. Let S be a separable metric space and let N be a finite measure
extended by completion from B(S) to B*(S).

(a) The space (B*(S),dk) is a complete separable pseudometric space.

(b) (Prohorov) If S is complete then Theorem 5 is true with A'(€) compact, that
is, the measure of a measurable set is the supremum of the measures of its
compact subsets.

Proof of (a). The class S, of finite unions of balls with rational radii, with
centers a countable dense subset of S, is countable. Each open subset of S is the
limit of a monotone increasing sequence of sets in Sy, and therefore is a dj, limit
of Sy. Hence the class of open subsets of S is separable in the dj pseudometric.
According to Theorem 5, the class of open sets is d) dense in the class of
measurable sets, and therefore the latter class is ¢, separable.

Proof of (b). In view of Theorem $, it is sufficient to prove that if A is a closed
subset of S, then

6.1) MA) =sup {MF): F C A, F compact}.

In fact it is sufficient to prove (6.1) with A = S, because A provided with the §
metric is itself a complete separable space, and B(A) is the class of those Borel
sets relative to S that are subsets of A. If A(S) = 0 the theorem is trivial. If
MS) >0,choose ¢ < MS). The space S is the union \UB,. of countably many
closed sets of diameter < 1 (say the closed balls of diameter 1 with centers at the
points of a countable dense subset of S). Choose enough sets from Bj., with
union By, to get MB;) > c. If closed sets Bj,.., By, have been defined, with each
set B; a finite union of closed sets of diameter < 1/j and AM(B;~-nBy_;) > ¢, go
on to choose finitely many closed sets B,. of diameter < 1/n and union B, in
such a way that A(B;~nB,) > c. The closed set (MB. has measure at least ¢
and is compact because the set has the property that, for every strictly positive
integer n, the set B can be covered by finitely many closed sets of diameter <
1/n. Hence (b) is true. (This covering property is a standard compactness
criterion: the set B is compact because if C is an infinite subset of B, there must
be an infinite subset of C in a closed set C; of diameter <1, an infinite subset of
Cy in a closed subset C, of C; of diameter <1/2, and so on. The intersection
MC. is a limit point of C.)

7. Continuity properties of monotone functions

Recall that a monotone increasing function F from R into R, has left and right
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limits at each point s of R,
F(s-) = supscsF(t), F(s+) = infy5F (1),

and that F(s-) £ F(s) < F(s+). If the first [second] inequality is actually an
equality, F is left [right] continuous at s; if both inequalities are actually
equalities, F is continuous at s. The function F can have at most countably many
discontinuities, because at each discontinuity point s there is a rational number
strictly between the left and right limits at s, and different discontinuity points
correspond to different rational numbers. At a discontinuity point s, the dif-
ference F(s+)=-F(s-) is the jump of F at s. The left {right] limit function s= F(s-)
[s—F(s+)] is a left [right] continuous monotone increasing function with itself
as left [right] limit function, and a continuity point of F or of its left or right
limit function is necessarily a continuity point of all three functions.

More generally, if F is a monotone increasing function from a dense subset
of R into R, one sided limits F(s-) and F(s+) exist at every point s of R, and
F(s-) <F(s)<F(s+) whenever F is defined at s. The left and right limit functions
are respectively left and right continuous monotone increasing functions on R, a
continuity point of either is a continuity point of the other, and F has a limit at
such a point. The set of points of R at which F does not have a limit is
countable. An extension of F with domain R is monotone if and only if the
extension lies between the left and right limit functions of F. A monotone
extension is therefore uniquely determined at all the continuity points of these
left and right limit functions.

The necessary changes in the preceding discussion if the domain of F is a
subinterval of R or a set dense in such an interval are immediate.

8. The correspondence between monotone increasing
functions on R and measures on B(R)

The class of monotone increasing functions F on R corresponds to the class of
measures A on B(R) by way of the fact that the A measure of a Borel set is the
increase of F on the set. A precise statement of this correspondence is the
content of the following theorem.

Theorem. Let F be a finite valued monotone increasing right continuous
Sfunction on R. Define F(—co) as the right limit (> —o) of F at —eo, and define
F(+e0) as the left limit (<+o0) of F at +oo.

(a) Define a set function Ay on each right semiclosed interval of R by setting

8.1 rr((@blNR) = F(b)-F(a), (-0 S a<b < +oo).
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Then Agp has a unique extension to a measure AF on B(R); this extension is
finite on compact sets. Denote by 7»}: the completton of this measure and
choose € > 0. Each set A in the domain of A * lies between a closed subset and
an open superset whose difference has Ay’ measure at most €. Moreover if
7\,1: (A) < +oo, there is a finite union B of open intervals for which 7\}7 (AAB) < &.

(b) Conversely, if A is a measure on B(R), finite on compact sets, there is a
finite valued monotone increasing right continuous function Fy on R, uniquely
determined up to an additive constant by the condition

(8.2) Fa(b) - F(@) =A(a.b]), -0 <A< b < +oo,

(c) One monotone function determined in accordance with (b) by the measure
Ar in (a) is F, and the measure determined in accordance with (a) by the
monotone function F) in (b) is A.

After this theorem has been proved the asterisk will be dropped, that is, Ap
will be written instead of A5

Proof that Ay defined by (8.1) has an additive extension to the set algebra
Sy of finite unions of right semiclosed intervals. It is trivial that Ay is finitely
additive on the class of right semiclosed intervals of R. According to Lemma
II1.2, it follows that this set function has a unique finitely additive extension to
the algebra Sy. From now on, “Agf” refers to this extension.

Proof that Af is a measure on S;. The monotonicity and right continuity of F,
not yet used, are needed to prove that Agf is a measure on S. The fact that F is
monotone increasing makes A positive. To prove countable additivity, it must
be shown that if I is in Sy, that is, if I is a finite disjunct union of right
semiclosed intervals, and if [ = \UL is a disjunct countable union of members
of Sy, then

(8.3) Aor) = X ho(l).

Since Ayf is additive, each member of /. can be replaced by its component
intervals, and therefore it can be supposed that each set [ is a right semiclosed
interval. Since each component interval of I is the countable union of its
intersections with the members of L, it is sufficient to prove (8.3) for I a right
semiclosed interval. Thus from now in it will be supposed that the sets in (8.3)
are all right semiclosed intervals.

Since 1> \UY I, for all n, and since Aop is monotone and finitely additive on
So.

hor(D) 2 2 Aor(l))

for all n, and therefore
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(8.4) Az X ARl

The reverse (subadditivity) inequality is trivial if the sum is +eo. It is therefore
sufficient to prove subadditivity when each summand in (8.3) is finite. Let J be
a right semiclosed interval with compact closure J", a subset of /. Choose £ > 0.
Let /;' be a right semiclosed interval, with the same left-hand endpoint as I and
the same right-hand endpoint if that endpoint is +ee, but otherwise with right-
hand endpoint to the right of that of I; but so close that

ML} < hop(l)) +€27.

Let Ijo be the interior of I;'. The compact interval J' is covered by LS. Apply
the Heine-Borel theorem to find that

k o |k
JcJ'cL)1 1. cUll.'

for sufficiently large k, from which it follows, in view of the monotonicity and
finite subadditivity of Agr, that

k
(8.5) hor) S MopW ) S X dor(le) ST ARIL) +e.

When € tends to O and J increases to I, (8.5) yields the desired countable
subadditivity, and therefore the countable additivity, of AF on S.

Proof of (a). According to Theorem 4, the measure Aqgr has a unique extension
to a measure on 0(Sy)=B(R), and according to Theorem 1 this measure has a
unique completion. According to Theorem 5, a set A in the domain of the
completion lies between a closed subset and an open superset B' with an
arbitrarily small difference set measure. If Ap(A) < +eo and € > 0, the last
assertion of (a) is proved by choosing B' to make the difference set measure at
most €/2, and then choosing a large enough number of the pairwise disjoint
intervals making up B' to be within £/2 of the measure of B'. The measure A is
uniquely determined by F, because the values of Af on right semiclosed
intervals, and therefore on the sets in Sg,and finally on the sets of B(R), which
are all in the dj, closure of Sy, are uniquely determined by F.

Proof of (b). If A is a measure on the ¢ algebra B(R), finite on compact sets,
there is a monotone increasing right continuous function F on R, determined
up to an additive constant by its increase on right semiclosed intervals. For
example, the monotone increasing right continuous function defined by

FA®) = A0,6]) ifb>0,
0 ifb=0,
= = M@®,0]) ifb<0

(8.6)



46  Measure Theory

satisfies (8.2). If X((-oo,b]) is finite for some b, and therefore for all b, Fy, is
usually defined by

8.7) FA®) = M((-e2,b])
for all b, to make Fj(—oo+) = 0.

Proof of (c). What has been proved under (a) and (b) is that certain functions
and measures are paired: if a measure A and a monotone function F are paired,
the increase in F on a right semiclosed interval is the A measure of the interval.
This is the content of Equations (8.1) and (8.2). When X and F are paired, A is
written as Ag or F is written as F), to stress the pairing. Part (c) of the theorem is
thus trivial.

Terminology. When F(s) = s for all s, the measure Mg is Lebesgue measure,
named after the mathematician who inaugurated modern measure theory by
defining this measure. In the general case A is called, depending on the context
and the predilections of the caller, a Lebesgue-Stieltjes measure on R, a Radon
measure on R, or a distribution on R, or if MR) = 1, a probability measure or
probability distribution on R. In the last case, in which F is normalized by
setting F(-eo+) = O and therefore F(+eo-) = 1, F is a probability distribution
function on R. The terms “Lebesgue measure” and “Lebesgue-Stieltjes
measure” usually refer to the completed measures of Borel sets. The general
theory of measure and integration studied in this book is sometimes referred to
as Lebesgue measure theory.

Modification for intervals of R. It is obvious how to adapt the preceding
discussion to define measure on an open subinterval I of R: one simply starts
with a monotone function on 7 instead of a monotone function on R. There is no
added complication if / contains its right endpoint. There is, however, a slight
complication if  contains its left endpoint, in that the monotone function on /
must be allowed to have the left endpoint as a right discontinuity. Let I be an
interval containing its left endpoint a, and let F be a finite valued monotone
increasing function on I, right continuous except possibly at a, with Fy(a) = 0.
The discussion in this section, as adapted to I, leads to a measure Ar on B(J),
finite on compact sets, determined by setting F(a) = 0 and

(8.8) A(la,b]) = F(b)-F(a) b > a).

The singleton {a} has measure F(a+). Finally, the adaptation of the discussion
to intervals of R is now trivial: map such an interval onto a subinterval of R.
Example. Let A be Lebesgue measure on R, and consider the class of countable
unions of open intervals (n,n+1) with n an arbitrary integer. If A and B are two
such unions, not identical, then they differ by at least one set of measure 1.
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Hence d)'(A,B) = 1. Since there are an uncountable number of such unions, the
class of Borel sets is not separable in the dj' metric, even though the class is the
o algebra generated by a countable collection of sets, for example by the open
intervals with rational endpoints.

9. Discrete and continuous distributions on R

Let F be a monotone increasing right continuous function on R. If F has a jump
ata point s, Ag({s}) = F(s)-F(s-) > 0. Every singleton is Af null if and only if F
is continuous, and in that case Af is a continuous distribution. If F increases
only in jumps, that is, if F(b)-F(c) is the sum of the jumps at points in (a,b], for
every right semiclosed interval (a,b], F is a jump function, and Ap is a discrete
distribution. For example, if the sequence r. is dense in R, the function F de-
fined by

©.n Fs)= Y 2"

rp<s

is a jump function, with jump of 2" at ry,, and F is continuous except at the
points of r..

10. Lebesgue-Stieltjes measures on RY and their
corresponding monotone functions

If F is a finite valued function from R" into R, and if a < b, define the differ-
ence operator Dj(a,b) acting on F by

(10.1) (Dj(@.b)F) (s1,...r5v)

= F(S],...,&_],b,Sj.H,...,SN)'F(Sl,...,.S‘j'_l,a,Sj+],...,SN),
with the obvious conventions when j = 1 and j = N. The N operators defined in
this way commute with each other. In the present context, the appropriate
definition of a ri%,ht continuous monotone increasing function is that it is a
function F from R” into R which satisfies the following two conditions:
(a) F is right continuous in each variable when the others are fixed.

(b) If (ay,....ay) and (by,...,by) are points of RN, with a; < bj for all j, then

N
(10.2) (11‘[ D.(@.,bs))F > 0.
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In particular, if F tends to O when at least one of its arguments tends to -0, and
tends to 1 when all its arguments tend to +oo, F is a probability distribution
Sfunction on R Let Sy be the algebra of finite unions of right semiclosed
intervals of RY. If I is the bounded right semiclosed interval (a;,b;]x-X(ay,by],
define Agp(I) as the left side of (10.2). If / is not bounded, define Aor(/) as the
obvious limit of A on bounded intervals. The argument in Section 8, for N=1 —
that Ao is finitely additive on the class of right semiclosed intervals and
therefore has a finitely additive extension to the algebra S, of finite unions of
these intervals, that this extension is a measurc on Sy and therefore can be
extended to a measure on G(S;) = B(R ) finite valued on compact sets, and
then can be completed — is only slightly more complex when N>1, and the
details of this generalization will be omitted. Theorem 8 is therefore true for
measures on R", with essentially the same proof as given when N=1. In
particular, if F, is a probability distribution function on R then A.(RN) =1, and
A is a probability measure, or probability distribution on R".

Conversely suppose that A is a measure on B(RV), finite on compact sets.
There is then a monotone increasing right continuous function F; on RY,
satisfying the N-dimensional version of (8.1), that is, the left side of (10.2) is
KF((a],bl]x ><(aN,bN]) The function can be normalized, say by defining it as 0
at the origin. The measure defined by F, following the procedure in the first
part of this section, is then A. In particular, if k((-w,O]x'"x(-oo,O]) is finite, Fy
can be defined by

(103) Fk(s]?--'sz) = 7»((-°°,S1])<"')<(-°°,SN]).

11. Product measures

Note on the construction of product measures. If integration is introduced
before product measures, product measures can be defined directly, using
certain integrals, thus avoiding repetition of some of the arguments in the proof
of the following theorem. For further details on product measures defined in
terms of integrals, see Note on the construction of product measures in
Section VI.10.

Theorem. For i =1,...,N let (5;,S;,A;) be a © finite measure space, define
S=8xXSy, S'=8;x XSy,
and define A on S' by
(11.1)  MA;<-XAy) = f:,I MA) A €Si i=1,.,N).

Then \ can be extended uniquely to a measure on o(S").
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Proof. According to Theorem IIL3, the set function A has a unique finitely
additive extension to a set function on 6yS"). To prove the theorem, it is
sufficient, according to Theorem 4, to prove that this extension is a measure on
0o(S). Suppose first that N=2 and that A; and A, are finite valued. To prove that
A is a measure on Gy(S") it is sufficient to prove that if A. is a decreasing
sequence of sets in 6y(S"), given for n =1 by

(11.2) Ap =\ BpexCpe (Buke S, Cnke Sa),

where the union is finite and disjunct, and if MA. = @, then lim MA.) = 0.
Without loss of generality, the summand sets in (11.2) can be partitioned for
each value of n if necessary (see Section ILS) to make the members of By.
mutually disjoint. Define a function f,, on S; by

In(s) = M(Cni) if s€ Bp (k 21),

0 if s¢ UBp..

The sequence f. is a decreasing sequence of functions, with limit O because, for
each sin Sy, the set { € Sy (s.f) € A, } decreases monotonely when n—ee, with
limit the empty set. If € > 0, the set {s € S;: f(s) > €} is a subunion of \UB,.
and decreases monotonely when n—eo, with limit the empty set . The A,
measure of this subunion therefore decreases monotonely, with limit 0 when
n—co. Hence

(11.3) MAp) = Z MBpahaoCne) < Mi{s: fu(s) > €}0(S2)
+ 8)\,1(51) e d E}\,] (S]) (n—>°°)

It follows that limA(A.) = 0, as was to be proved. If A; and A, are not
necessarily finite valued but if, for i = 1,2, S;' € §;, and AMS;') < +eo, then the
result just obtained is applicable to §;'xS,'. It follows that the theorem covers ¢
finite measures, as stated. If N = 3, the space 5;x5,xS; can be written in the
form (§;xS,)xS; and the theorem for N=3 is thereby reduced to the case N=2.
The induction proof for general N is now obvious.

In Theorem 11 the measure A on o(S') is the product measure, written
AyxXhy, of the factor measures Aq,...,Ay.

12. Examples of measures on RY

Example (a). For i=1,....N let F; be a monotone increasing right continuous
function on R and define the monotone increasing function F on RY by
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F(s15e088) = Fy(s1 > Fp(sy).

The Lebesgue-Stieltjes measure A on R" is then the product measure of the
factor measures Ar,...Ag, In particular, if Fi(s) = s for all i, Az is N-
dimensional Lebesgue measure on B(RY), the extension of N-dimensional
volume to the class of Borel sets. As always, this measure can be completed.

Example (b). If A is a finite valued measure of Borel subsets of the unit
square S=[0,1]x[0,1], it is the restriction to subsets of S of a Lebesgue-Stieltjes
measure on R” for which R%-S is null.

Example (c). In Example (b), let D be the diagonal of S through the origin
and let v be a probability measure of Borel subsets of D. The measure v can be
considered to be the restriction to subsets of D of a probability measure A on the
Borel subsets of S, with A(S-D)=0.

13. Marginal measures

Let (51,8;) and (5,,S;) be measurable spaces, and define $=5,X5,, S=S;xS,.
Then a measure A on o(S) induces marginal measures A, on S; and A, on S»:
X](A] ) = MAPGz) and M(A2)=7\(S1XA 2) fOfA] in Sland A2 in Sz.

Example (a). If A = A;xA, is a product measure with finite valued factor
measures A; and A,, the marginal measures are A,(S)A; and A;(S;)A,. For
instance, in Section 12 Example (b), if A is two dimensional Lebesgue measure
on the square S, the marginal measures are both one dimensional Lebesgue
measure on the unit interval [0,1].

Example (b). In Section 12 Example (c), if v is 272 times one-dimensional
Lebesgue measure on D, the two marginal measures of A are again one-
dimensional Lebesgue measure on [0,1].

As these two examples show, marginal measures by no means determine the
measure of which they are marginal.

14. Coin tossing (Continuation of Section IIL.9)

First mathematical model. In the discussion of this model in Section IIL.9,
a finitely additive set function P was defined on the ¢ algebra S.. of finite
unions of dyadic right semiclosed subintervals of (0,1]. Functions x,x,,... were
defined as the successive digits in the dyadic representation of a point of (0,1].
Unfortunately the sets III(9.3) are not in S., and therefore their probabilities
cannot be defined until P is defined on G(Sw)=B((O,]]). Lebesgue measure on
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(0,1] provides the necessary extension of P. Under this extension, the first set
A= {x=1} inIII(9.3) has a well defined probability:

(14.1)  P{A)=1-P{A} =1-P{N{x=0}} = 1-limy_30 2" = 1.

This result is a special case of the Borel-Cantelli theorem. It will be proved in
Section XI.19 that the probability of the second set in III(9.3) is also 1.

Second mathematical model. In the second mathematical model, P is a
finitely additive set function defined on the algebra S.. of subsets of the space S
of infinite sequences of 1's and O's. This algebra is the class of finite unions of
sets determined by fixing a finite number of coordinates of S. The extension of
the domain of P from S. to 6(S.) can be made by mapping this model into the
first model, that is, the conditions x;=ay,...,x;=a, in the second model define a
subset of (0,1] in the first model, and probabilities are thereby referred from the
second model to the first. A more direct approach is to prove that, in the second
model, P is countably additive on S., and therefore has an extension to a
measure on 6(S.). To prove countable additivity of P on S, it need only be re-
marked that, according to Section IL.2 Example (b), if a countable union of sets
in Se is itself in Se then only a finite number of summands are nonempty. In
other words, the union is effectively a finite union. Thus, countable additivity is
trivially the same as finite additivity in this case. Alternatively, the Hahn-
Kolmogorov theorem can be invoked to prove that P has a measure extension to
O(S co),

15. The Carathéodory measurability criterion

Let (S,S,A) be a measure space, and let A be the outer measure generated by S
and A. Then (Section IIL.11) A* is a countably subadditive set function, equal to
AonS.

Theorem. If A is a subset of S, and if B. is a finite or infinite disjunct
sequence of measurable sets, with union B, then

(15.1) A (ANB) = T A*(ANB.).

Proof. Since A is countably subadditive, it is sufficient to prove (15.1) with
“2” instead of “=". Let C be a measurable superset of ANB. Then

(15.2) MC) 2 MCNB) = T MCNB.) 2  A*(ANB.).

B! definition of A*, the set C can be chosen to make MC) arbitrarily close to
A (ANB), thereby yielding the desired inequality.
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The Carathéodory approach to measure theory starts with an outer measure
and defines a set B to be measurable if (15.1) is satisfied with B = S and only
two summands.

16. Measure hulls

In this section the subsets of a & finite measure space (S,S,A) are treated, and the
outer measure A* is the outer measure generated by S and A. If A is a subset of S
of finite outer measure, a set A* is a measure hull of A if A* is a measurable
superset of A and if A(A*) = X*(A). A measure hull A* is determined uniquely
up to null sets because if A;* and A,* are measure hulls of Athen A;*NA,* is
also a measure hull of A, and

M) = MA®) = MA*OAL*) = MALY).

Every set A of finite outer measure has a measure hull, because if A. is a
sequence of measurable supersets of A with lim A(A.) = k*(A), then NA. is a
measure hull of A.

If A has measure hull A* and B is measurable, then ANB has measure hull
A*NB because there must be equality throughout the following string of
equalities and inequalities:

(16.1) MA*NB) 2 A"(AnB) = A"4) - AAnB) = AA*) - LMA*NB)
= MA*NB).

Here the first equality is a special case of (15.1). This hereditary character of the
measure hull justifies the definition that, for an arbitrary subset A of S, its
measure hull is defined as a superset A* of A with the property that if B is a
measurable set of finite measure, then A*N\B is a measure hull for AnB. Every
set A has a measure hull, because if § = \US. is a representation of S as a count-
able union of measurable sets of finite measure, and if ANS,, has measure hull
An*, then \A.” is a measure hull for A. The reader is invited to verify that a
measurable set A™ is a measure hull of A if and only if the difference A -A has
no non null measurable subset. In analysis involving arbitrary subsets of S it is
frequently advantageous to replace sets by their measure hulls.
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Measurable Functions

1. Function measurability

In the operations of analysis, it is desirable to work in a class of admissible
objects that does not have to be enlarged as the work progresses. For example,
in real analysis the basic set of admissible numbers is R, sometimes enlarged to
R. The class of rational numbers is too small because it is not closed under limit
operations. Similarly, in studying measures, a natural class of admissible sets is
a o algebra, because closure under the operations of complementation and the
forming of countable unions and intersections are needed.

In this chapter, functions from a space S into a space S' will be studied, and
the first decision to be made is the choice of admissible functions. Again, it is
desirable to choose a class that need not be enlarged as the work progresses, and
if S is coupled with a ¢ algebra S of its subsets to form a measurable space
(§,3), it is to be expected that the chosen class of functions will depend on S.
For example, it is desirable that the indicator functions of sets in S be in the
class of admissible functions. The following are (interrelated) reasonable re-
quirements.

(a) The class should be closed under the operations of taking linear
combinations, products, and limits, if such operations are meaningful for S'. If
S '=R, the class of continuous functions is not large enough to satisfy this
condition because the limit of a convergent sequence of continuous functions
need not be continuous.

(b) If f is an admissible function from S into a space S ' and g is an admissible
function from S’ into a space S", then g(f) should be admissible as a function
from S into S".

(c) If fis an admissible function from § into a space S', the set of points of S at
which f satisfies reasonable conditions, say that the set of points of S at which
the values of f lie in an admissible subset of S, should be an admissible subset
of S.
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Condition (c) leads to the concept of measurability of f, as formulated in the
next paragraph, and will be seen to imply conditions (a) and (b).

Let (5,S) and (§',S') be measurable spaces, and let f be a function from § into
§". It is convenient to call such a function a function from (§,S) into (§',S") as
well as from § into §'. The range space S ' of the function is commonly,
especially in probability contexts, called the state space of the function. The
inverse function f~! takes complements relative to §' into complements relative
to S, unions (even uncountable ones) in S' into the corresponding unions in S,
intersections (even uncountable ones) in S into the corresponding intersections
in §. That is, for example, if A ¢ is a family of subsets of S, then

LAY = UF LAY,

Hence f ~1(S"), the class of inverse images of the sets in S', isa & algebra; it will
be denoted by o(f). This ¢ algebra is, for given (S',S"), the class of subsets of S
determined by measurable conditions onf. If 6(f) c S, that is, if the inverse
image of a measurable set in the range space of f is a measurable set in the
domain space, the function fis measurable from (S,S) into (S'S"). It is
immediate that the transitivity condition (b) is satisfied: if f is a measurable
function from a measurable space into a second one, and if g is a measurable
function from the second space into a third, then g(f) is measurable from the first
into the third, and o g(H)] < o (.

Example. Given a space S, a measurable space (§',S'), and a function f from S
into §', one choice of ¢ algebra S of subsets of § making f measurable from
(5.S) into (5',8) is S = 25. The smallest choice of § making f measurable from
(8,8) into (§'.8") is 6(f). In particular, if S' is countable and §' =25 B f is mea-
surable if and only if the inverse image of every S' singleton is in S. This is the
definition given in Section IILS5 in studying discrete state spaces.

A function f may be described as S measurable, or measurable with respect
to S, or measurable from S into S ', or simply measurable, if the relevant spaces
or © algebras missing from the description have been specified or if the context
is so general that full measure space identification is not needed. Thus a
function identically equal to a real number is a measurable function from an
arbitrary measurable space into R, that is, into (R,B(R)). More generally, the
indicator function of a subset of a measurable space is a measurable function
from the space into R if and only if the subset is measurable. In probability
contexts, a measurable function is given the alias random variable.

Testing for measurability. In testing for measurability of a function ffrom a
measurable space (S,S) into a measurable space (S ',S"), the fact that S' and
fI(S") are o algebras implies that it is sufficient for measurability that the
condition f-1(Sy)c S be satisfied for a subclass Sy’ of S' large enough to
generate the © algebra S, that is, large enough to make S'=0(S ). In particular if
(§'.S") = R,B(R)), the real valued function f is measurable if f1(A") e S for
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every interval A' of the form (-e0,b), that is, if {f<b} € S for all . In fact, it was
pointed out in Section I1.4 that the class of these intervals generates B(R). Other
sufficiently large classes Sy are the classes of intervals of the form (-o0] or of
the form (b,+<), and so on. A dense set of values of b yields a sufficiently large
class of these intervals. The definition of measurability of a real valued function
is frequently given using one of these classes of intervals instead of the full class
S'=B(R).

Vector functions. If f;,....f; are functions from § into §', the vector function
[ 5 = [f1(8)se.of n(s)] from S into S is measurable from (§,S) into (S '”,O'(S'”))
if and only if each function jj is measurable from (S,S) into (S',S"), because the
product sets A x:XA ;, with factor sets in S' generate the ¢ algebra 6(S '), and

FAx>A ) =i @nfy ™ Ap).

The class of sets determined by measurable conditions on functions. If
{f:,t el} is a collection of measurable functions from (5,S) into (§',S"), with I an
arbitrary index set, the ¢ algebra o(f,t € I) of subsets of S determined by
measurable conditions on f. is the ¢ algebra generated by the sets of the form
{fi e A'}, for t in I and A' in §'. This o algebra is the smallest G algebra of
subsets of S making each of the given functions measurable. In particular, when
I=1,..,n, the ¢ algebra o(f},....fy;) is the G algebra of subsets of S of the form
{(f15---ofyy) € A'}for A" in o(S").

Let (S,8), (S,S"), and (§",S") be measurable spaces, and let f be a measurable
function from the first space into the second. By definition of o(f), f is not only
measurable from (S,S) into (§',S"), but even measurable from (S,G(f)) into
(5',S"). Thus if g is a measurable function from (S, S) into (§",S"), then 2 = g(f)
is not only measurable from (§,S) into (§",S") but even measurable from
(S,c(f)) into (§",S"). This restrictive measurability condition on a measurable
function A from (S,S) into (S",S") is not only necessary but, under certain
conditions on the spaces, is sufficient to ensure, for given f, measurable from
(S,S) into (S',S"), and given h, measurable from (S,S) into (§",S"), that & can be
written in the form g(f), with g measurable from (§',S") into (§”,S"). This fact
will not be needed explicitly but gives intuitive content to later definitions of
conditional expectations and probabilities. It will be proved, to exhibit the
principle involved, when S" contains the singletons and £ is a function from S
into §”, taking on only countably many values. Suppose then that % takes on the
values in the sequence a., and {h = a,} € 6(f). Then {h =a,} = {fe A,} for
some set A, in S'. Define g = a, on A, to obtain the representation & = g(f),
with g measurable from (S’,S') into (S”,S").

These simple remarks suggest that, whenever {f;, €I} is a collection of mea-
surable functions from a measurable space (S,S) into the measurable space
(5',S"), and a reasonable definition is needed of a measurable function g of all of
these functions into some measurable space, one reasonable definition is that g
be measurable from (S , 6(fy,t € I)) into the prescribed space.
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Measurability of a function defined on a subset of a space. If (S,S) is a
measurable space, a function f from a set A in S into the measurable space
(5',S") is measurable if f~1(S") c S. Equivalently, denoting by S4 the class of
subsets of A in S, the function fis measurable if and only if the function, when
considered as a function from (A,S4) into (§',S"), is measurable. In particular,
the restriction to A of a measurable function from (S,S) into (5,S") is
measurable.

Borel measurable functions. A measurable function from one metric space
into a second is Borel measurable. A continuous function from one metric space
into a second is Borel measurable, because the inverse image of an open state
space set is open and the open state space sets generate the o algebra of Borel
state space sets.

Approximation of measurable functions by step functions. A step function
from a measurable space (S,S) into R is a finite linear combination, with
coefficients in R, of indicator functions of sets in S. A step function is a simple
example of a measurable function from the measurable space into R. An
essential tool in the study of measurable functions from (S,S) into R is the fact
that a measurable function f from S into R is the limit of a monotone increasing
sequence f. of positive step functions. For example, define

fn=@-1)27" on {G-12" <f<j2n) (1<j<4m,
(1.
=20 on {f=z2"}.

If f is a measurable function from (S,S) into I_{, fis still the limit of a sequence of
step functions by way of the definition

fn=(G-127" on {g-127 < f<j2} (j 1 < 4m)
(1.2) =-2n on (f<—2n-2-n}
= 2" on (f=2m).

Under this definition, the sequence f. is monotone increasing, neglecting a finite
number of terms, if fis lower bounded.

2. Function measurability properties

(a) Applications of transitivity. If f},...,f, are measurable from (S,S) into a
metric space S’, and if fis measurable from (S'",B(S'”)) into R, then f(f1,....2) is
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measurable from (S,S) into R. For example, if §'=R it follows that |f;], ¢f; (forc¢
a constant), l/fj (if f; never vanishes), X f., []f., the pointwise maximum
fiveevfy, the pointwise minimum fiA--Af,, are measurable whenever each
function f; is. The last two are also measurable when the functions are extended
real valued. It can argued more directly that the pointwise supremum f = sup f.
1s measurable for a finite or countably infinite sequence f. of extended real
valued measurable functions, by noting that {f>c} = U{f.>c}. This assertion of
measurability is incorrect for uncountable collections of functions.

(b) Sets defined by inequalities between extended real valued measurable
functions. If f; and f, are measurable functions from a measurable space into R
the sets {f;>f>}, {fi<f»}, and {fi=f,} are measurable because (first set)

{fi>f} =Ur rational LUfi>r}n{f <r}],

the second set is the complement of the first, and the third set is {£,<f) }n{i5>]).
A somewhat more sophisticated proof of measurability of these sets applies (a).

(c) Completeness of a measure and function measurability. If f and g are
functions from a complete measure space into a measurable space, and if f=¢
almost everywhere, then if one of the functions is measurable, the other is also.
Less trivial than this is the fact that if (S,S,A) is a ¢ finite measure space and if
(S,S*,A*) is the completed measure space, then if f is a measurable function
from (S,S*) into I—{, there is a function g, measurable from (S,S) into R and \*
almost everywhere equal to f, that is equal to f except on a subset of a A null
set. It is sufficient to prove this assertion for f positive, because it is then trivial
that the result is true for f negative, and the two results combine to give the
result for arbitrary f. There is a function g as stated when f is the indicator
function of a set in S, because if A € S™ there is a subset Ag of A, in S, and
differing from A by a A™ null set. It follows that the assertion is true for an
(S,S*) step function. It was pointed out above, see (1.1), that, in the general case
of a £0sitive S* measurable function /. fis the limit of an increasing sequence of
(5,S7) step functions. The desired function g is the pointwise supremum of the
corresponding sequence of (S,S) step functions.

(d) Measurability of functions of several variables if one is fixed. If (S,,S,)
and (S,,S,) are measurable spaces, if § = §/x5,, if § = o(S,>8,), and if
f: (s1,%)=f(51,%) is a measurable function from (S,S) into R, then for each
point s; of §;_ the function f(s,*) is a measurable function from (S,,S,) into R.In
fact, this is true when f is the indicator function of a set in § according to
Section II.5, and therefore it is true when f is a step function. It is sufficient to
prove measurability for positive f; in that case apply the representation in (1.1)
of fas the limit of an increasing sequence of step functions.
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3. Measurability and sequential convergence

If £, is a sequence of measurable functions from a measurable space (S,S) into R,
it was pointed out in Section 2 that inff. and sup f. are measurable. It follows
that the functions

lim supf. = infj5) supp>jfy,  liminffe = supj> infps; fy

are measurable, the convergence set is measurable, and the restriction of the
limit function to the convergence set is measurable on that set.

More generally, it will now be proved that the last two assertions in the
preceding sentence are true if the range space of the sequence f. is a complete
metric space (§',d). For fixed m and n, the function s=[f,,(s)fm()] is a
measurable function from S into the metric product space S'2. Since a metric
space distance function is continuous, the function s-*d'(fn(s),fm(s)) from (S,S)
into R is measurable, and therefore the supremum #; of these functions for » and
m at least j is a measurable function. The convergence set C of the sequence f. is
measurable because C is the set on which the sequence . has limit 0. To prove
that on C the limit function f is measurable, it is sufficient to show that the set
{s e C:f(s) € A'} is measurable whenever A' is a closed subset of S'. This
measurability follows from the evaluation

(3.1) {se C:fise AY ={se C:d'(fs),A) =0},

since the distance from a point of §' to A" is a continuous function of the point
and vanishes if and only if the point is in A'.

4. Baire functions

If B, is the class of Borel measurable functions from a metric space (S,d) into R,
then

(a) B, contains the continuous functions, and
(b) B, is closed under sequential convergence,

that is, the limit of a convergent (everywhere on S) sequence of functions in the
class is itself in the class. Consider the classes of functions from § into R
satisfying conditions (a) and (b). The intersection B, of all these classes is a
class satisfying conditions (a) and (b) and is the smallest such class; its
members are the Baire functions. According to the following theorem, B, = B,.
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Theorem. A function from a metric space into R is a Baire function if and
only if the function is Borel measurable.

Proof. (The notation B, B,, will be used as just defined.)

(a) B, B, because B satisfies conditions (a) and (b) defining B,, and B, is the
minimum class satisfying these conditions.
The converse will be proved in several steps.

(b) If ¢ is a continuous function from R? into R, fand g are inB,,and f is
continuous, then ®(f,g) is in B,, because the class of functions g for which this
assertion is true contains the continuous functions and is closed under sequential
convergence.

(c) If ¢ is a continuous function from R? into R, and fand g are in B,, then
d0(f.g) is in B, because the class of functions f for which this is true contains the
continuous functions according to (a) and is closed under sequential
convergence. In particular if ¢ is a continuous function from R into R, and if fis
in B, then ¢(f) is in B,.

(d) The obvious induction proof shows that if ¢ is continuous from R into R,
and if fi,....f;, are in B,, then ¢(f},....f,) is in B,. Furthermore, the latter function
is in B, not only when ¢ is continuous but even for ¢ a Baire function from R"
into R, because the class of functions for which the assertion is true was just
proved to contain the continuous functions and is closed under sequential
convergence.

(e) The class Bs of subsets of S whose indicator functions are in B, is B(S). If A
is a closed subset of S, the continuous function f,;: s—exp[-nd(s.A)] is in B,, and
the sequence f. has limit 14. Thus B; includes the closed sets. Moreover the
class B; is closed under monotone convergence and therefore is B(S).

(f) B, =B,. Ifg € By, consider the step functiong,, from S into R defined by
gn(s)=(G-D2™ on {s: -2 <f(s) <j27"} (i h<4™)
4.1)
=0 elsewhere.
The function gy, is in B, because it is a linear combination of a finite number of
indicator functions of Borel subsets of S and therefore is a continuous function

of these indicator functions. Since the sequence g, converges to g, the function g
is in B,, and therefore B c B,. The reverse inclusion was proved in (a).
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5. Joint distributions

Let (S,S,A) be a finite measure space and let x,,...,xy be measurable functions
from this space into a measurable space (S',S"). These functions determine a
measure X' on 6 (S'V) by

G.0) KA =M s [6)xm)] € A}, (A€ o(S™M).

(This measure, the joint distribution of the given N functions, is almost
exclusively applied in probabilistic contexts, in most of which A is a probability
measure and S'= R.) In particular, the (one-dimensional marginal) distribution
of xj is given by

(5.2) A'(A) = AMs:xj(s) e A') AeS).

Representations of sets of measurable functions. Let x;,....xy be as above,
but suppose for simplicity that S ' = R. The distribution of xy,...xy 1is a
Lebesgue-Stieltjes measure on RY and, as determined by this measure, the
coordinate functions on RV have the same joint distribution on RY as the given
functions on S. In investigations in which only joint distributions of functions
are involved, it is sometimes convenient to use these N coordinate functions on
RY instead of the given N functions on S.

6. Measures on function (coordinate) space

Let U be a complete separable metric space, / be an arbitrary infinite set to be
used as an index set and S be the space of all functions ® from 7 into U. The
space S is a coordinate space of dimensionality the cardinality of /. Denote by x;
the ith coordinate function, a function from § into U, defined by setting x;(®) =
o(i). For example, if I is the set of strictly positive integers, and if U = R, the
space S is countably infinite dimensional Euclidean space. The following
discussion would not be simplified by supposing / to be only countably infinite,
and it is important that this restriction not be imposed, because in the probability
context of continuous parameter stochastic process theory the index set is
commonly an interval of R. Call a subset S of S a finite dimensional measurable
set based on the finite index set (ij,...,1) if

6.1 S = {0 [x;,@),...x;, (@] € A},

where A' € B(U"). The standard abbreviation will be used below, in which the
notation for the set in (6.1) is shortened to {(x,l, X, )E A'}. The class of subsets
of S obtained when iy,...,i, are specified, but A'is a]lowed to vary in B(U ™), is
O(x;,,..,%i, ). Denote by Sy the union of all these algebras of subsets of S, for all
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finite index sets, that is, the algebra of subsets of S determined by measurable
conditions on finitely many coordinates. The class S, is an algebra, but not a ¢
algebra unless U is a singleton.

Theorem (Kolmogorov). (Separable complete metric state space U, I an
arbitrary infinite index set, S the space of functions from I into U.) Let A be a
positive finite valued set function, defined on the algebra Sy of finite
dimensional measurable subsets of S, and suppose that A is countably additive
on each o algebra of finite dimensional measurable sets based on a specified
finite coordinate set. Then A is a measure on Sy, and therefore has an extension
to a measure on 6(Sg) =0(x;, i€ I).

The hypotheses imply that A is finitely additive on S

The context of this theorem is a generalization of that encountered in the
second mathematical model for coin tossing studied in Sections II1.9 and IV.14,
in which case U consisted of two points.

Proof. The fact that each product space U" is a complete separable metric space
and that therefore (Prohorov theorem) every finite measure on U™ has the
property that the measure of a Borel subset is the supremum of the measures of
its compact subsets will be used. To show that A is a measure on Sy, it suffices
to show that if S. is a decreasing sequence of sets in Sy, with empty intersection,
then lim A(S,.) = 0. This will be shown by showing that if S. is a decreasing
sequence of sets in Sy and A(S,,) > € > 0 for all n, then the sequence S. must
have a nonempty intersection. By hypothesis S, is defined by conditions on co-
ordinates with some finite index set, say S, = i(xi, iel)e Ay}, wherel, is
an index set containing a, points and A, € BU a”). The distribution of
{x;, i € I} is a Borel measure on U “n and therefore there is a compact subset
A’y of Ay for which

(6.2) Miie Iye Ay }>e-3n).

Define S,;; as the subset of S, on the left in (6.2), and define S,,= S;;~"Sy1.
Then A(S,,) >€/2 and S., is a decreasing sequence of nonempty sets in S
determined by conditions on values of the functions in S at compact subsets of
powers of U. This is precisely the context discussed in Section II.2
(Observation), where it was shown that the sequence S., must have a nonempty
intersection. Hence the sequence S. has a nonempty intersection, as was to be
proved.

7. Applications of coordinate space measures

To a distribution on R”, that is, to a Lebesgue-Stieltjes measure on B(RN),
correspond N functions, the coordinate functions of RY, with that joint
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distribution. In other words, the statement “let x;,...,xy be measurable functions
with distribution ‘- is never vacuous; the situation can be realized by
coordinate functions on R". Theorem 6 justifies the corresponding statement for
infinitely many functions with a complete metric separable state space in the
following sense. Suppose a finite measure space, together with an infinite family
of measurable functions from that space into a complete separable metric space
U, is to be constructed, and that each finite set of the functions is to have a
prescribed joint distribution. According to Theorem 6, such a family of
functions can be realized as the family of coordinate functions on a coordinate
space if the prescribed joint distributions are mutually consistent. “Mutually
consistent” means that the joint distributions of finite sets of the functions have
the property that if finitely many coordinate functions f. have prescribed joint
distribution v, the joint distribution prescribed for a subset of these functions is
the corresponding marginal distribution of v. In fact, if this is so, these
prescribed distributions define a set function A on the G algebra S in Theorem
6, with the properties stated in that theorem, and this set function is then a
measure, which can be extended to a measure on o(S;). The coordinate
functions of the measure space obtained in this way have the prescribed joint
distributions.

Observe that all these finite dimensional distributions need not be defined
explicitly. For example, if the index set is the set of strictly positive integers, the
state space is R, and x, is the sequence of coordinate functions of RXRX--, it is
sufficient to prescribe, for n = 1, the distribution of xi,...,x,, prescribing this
distribution in such a way that it induces as marginal distribution the prescribed
distribution of x;,...,.%,-;. The distribution prescribed for an arbitrary k-tuple of
the coordinate functions is then to be the corresponding k-dimensional marginal
distribution of x,...,x,, for n so large that the largest of the k-tuple of indices is
at most n.

Example (a). (Arbitrary index set) If the state space U is the interval [0,1] of
R and if, for n = 1, the specified distribution of every n-tuple of coordinate
functions is n-dimensional Lebesgue measure on [0,1]7, then these finite
dimensional measures are mutually consistent, and Theorem 6 yields Lebesgue
measure on the unit “cube” of dimensionality the (not necessarily countable)
cardinality of .

Example (b). Let the index set / be the set of strictly positive integers, N be a
strictly positive integer, the state space U be the set 1,...,N, py,...,py be positive
numbers with sum 1, and (p;j) be an NxN stochastic matrix. According to
Theorem 6 there is a probability measure on the space S of infinite sequences of
the integers 1,...,N, determined by (see Section III.7(b))

(7.1) Mxi=ay,... 5 = an} = pa, Paja," Pa,,_,a,
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8. Mutually independent random variables on a
probability space

Mutual independence of measurable sets and of ¢ algebras of measurable sets
was defined in Section IIL.6, and independence relations involving random
variables will now be reduced to independence relations between ¢ algebras of
sets. Each function x from a probability space into a measurable space deter-
mines the ¢ algebra 6(x) defined in Section 1, and, more generally, a family x.
of such functions determines a ¢ algebra 6(x.). An independence statement in-
volving random variables is to be interpreted as that statement with the random
variables replaced by the corresponding ¢ algebras generated by the random
variables. Thus, families x, and y, of random variables are independent of each
other if that is true of their ¢ algebras 6(x.) and 6(y.), and so on. Ifx;,...,.x, are
measurable functions from a probability space (S,S,P) into a measurable space
(S ',S"), these functions are mutually independent, by definition, if and only if
the ¢ algebras 6(x,),...,0(x,) are mutually independent, that is, if and only if

8.1) P{x;eA},..xpec Ay} =P{xje Al}P{xy,e A;} (Aje S, i=1,..n).

In particular, measurable sets are mutually independent if and only if their
indicator functions are mutually independent.

The condition (8.1) is satisfied if it is satisfied for sets A;' generating the G al-
gebra §'. Thus if (5',S") is (R,B(R)) in (8.1), it is sufficient if, for each i the sets
A;' run through the intervals of the form (-eo,b], and it is in this form that the
independence definition is sometimes formulated.

Let {x;, i € I} be a family of mutually independent measurable functions
(“random variables”) from a probability space (5,S) into a measurable space
(§,S"). Let I; and I, be disjoint subsets of I. Then 6(x;, i € I;) and 6(x;, i € 1)
are mutually independent sub ¢ algebras of S. Therefore, if x and y are random
variables from (S,S) into some state space and are measurable respectively with
respect to the first and second of these sub ¢ algebras, then these two random
variables are mutually independent. This statement can be stated more
intuitively (but less precisely) by stating that x and y are mutually independent
because they are defined respectively in terms of the collections (x;, i € I;) and
(x;, i € L), which are independent collections.

In particular, if x. is a sequence of mutually independent random variables
with state space R, y is a Borel measurable function of some of these random
variables, and z is a Borel measurable function of others, it follows that y and z
are mutually independent.

If x,,....xy are mutually independent, their joint distribution is the product of
the measures of the individual distributions. This property is the content of (8.1).
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9. Application of independence: the 0-1 law

The following two elementary facts about ¢ algebras of measurable sets of a
probability space (S,S,P) will be needed.

(a) A sub o algebra of S is independent of itself if and only if each of its sets is
either null or the complement of a null set. In fact, a measurable set A is
independent of itself if and only if P{A} = P{A}? that s, if and only if P{A} is
0 or 1, and two sets, each independent of itself, are mutually independent.

(b) If B is a sub o algebra of S containing only null sets and their
complements, and if x is a random variable measurable from (S,B,P) into R,
then x is equal almost everywhere to a constant. In fact, if ¢ is a constant the set
{x < c} must have probability 0 or 1, and this probability is a monotone
increasing function of c. If this probability is O for all finite ¢ then x =+co almost
everywhere. If this probability is 1 for all finite ¢ then x =-co almost everywhere.
Aside from these two cases there must be a point s at which the monotone
function jumps from O to 1 and then x=s almost everywhere, because P{x=s} =
limglgP{s-€e<x<s+e}.

Theorem. (0-1 law) Let F. be an increasing sequence of G algebras of
measurable sets of a probability space (S,S,P). Let G. be a decreasing sequence
of © algebras of measurable sets of the space, with G, c o(\U F.). Suppose that,
for each value of n, the two © algebras F;, and Gy, are mutually independent.
Then (M G. contains only null sets and their complements.

In intuitive language: for each value of n, F,, is the past through time n, G,
is the future strictly after time n, and by hypothesis the two are mutually
independent. The theorem asserts that in the given context, an event in the
distant future is either sure to occur or sure not to occur.

Proof. If A € M G. then, since A € o(\J F.), there is (Theorem IV.3(b)), for
every strictly positive integer k, a set A¢ in some F,, depending on k, with

P{AAAj) < 1/k. Since the sets Ag and A are mutually independent, P{AAAy} =
P{A}P{Ag}, and therefore (k—o), P{A} = P{A}?, as was to be proved.

10. Applications of the 0-1 law

In each of the following applications, x. is a sequence of mutually independent
finite valued random variables, and the ¢ algebras

Fp=0(x),....xn),  Gp = 0@n41.Xn42,)-

are therefore mutually independent. The G algebra N G, is the tail ¢ algebra, or
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tail of x.. The hypotheses of the 0-1 law are obviously satisfied. Hence a
measurable set (alias event) in the tail of the sequence must be either a null set
or the complement of a null set, and a measurable function (alias random
variable) measurable with respect to this tail, must be almost everywhere
constant.

Application (a). The convergence of the series Zx. depends only on the tail
of x., and therefore the series converges either almost everywhere or almost
nowhere on S.

Application (b). If A. is an infinite sequence of Borel subsets of R then
(10.1) P{lim inf, oo {xp € Ay} } = Oor 1,
P{lim SUPp—300 {Xp € A,,}} =0orl,

because the sets in (10.1) are tail sets. In colloquial language these probabilities
are respectively the probabilities that x,, enters the set A, only finitely often, and
that x,, enters the set A, infinitely often.

Application (c) The random variables
(10.2) lim inf,; _yo0 (X4 +x, ), Lim SUP, 300 (X1 4+ +x, )0
are measurable with respect to the tail o algebra because, say for the first,
(10.3) lim inf,, yo0 (x;++x, )0 = lim inf, 00 (Xt 4+x,)n

for all m. Hence the inferior and superior limits in (10.2) are almost everywhere
constant. The two constants are equal, with value say ¢, not necessarily finite, if
and only if the sequence of averages converges almost surely to c¢. Thus the
sequence of averages converges either almost everywhere on S (to a constant
function) or almost nowhere on S.

11. A pseudometric for real valued measurable functions
on a measure space

Let (S,S,A) be a measure space, denote by ' the class of almost everywhere
finite valued measurable functions from S intoR, and denote by § the subclass
of functions fin §' for which A{Ifl >} is finite for sufficiently large €, in which
case this measure decreases when € increases, with limit 0 when € —+co. The
class S' is linear in the sense that a linear combination of members of the class
coincides, on the set of finiteness of those members, with another member of the
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class. In the same sense, the subclass § is also linear; it is obviously closed
under multiplication by constants, and is closed under summation because

Mirrgl>e) saiizen} + AMiglzen}.
The norm of a function in §'. If f is in §, the inequality A{lf > €} < € is

satisfied for sufficiently large values of €, and if satisfied for one value of € it is
satisfied for all larger values. Define

(11.1) My =inf{e: Al >} <e} iffeS,

= oo iffe -8,
and define
(11.2) d(8) =g, d\'(fg)=If-ghal.

Here the norm Ifl), is the convergence in measure norm of f. The following three
properties of this norm will be needed.

(a) MIA > 17y} < IAy. In fact the inequality is trivial if the right-hand side is
+oo; if fhas finite norm and ife > Ifl) then A{Jf | >e}< &.

(b) IAl), =0 if and only if f = 0 almost everywhere because, according to (a),
zero norm implies that f= 0 almost everywhere, and the converse is obvious.

(c) Finite or not, the norm is subadditive:

(11.3) Ir+gh <1y + lgly.

In fact this inequality is trivial unless f and g have finite norms; if they do, the
inequalities € > Ifl) and €, > Igl) imply

(11.4) M |f+g| >ef+gg} < X{lfl > gf} +k{|g| > g} <gf+ g,

Hence If +gly, < € + €5 and therefore (11.3) is true. Properties (a), (b), and (c)
imply that d), satisfies the conditions for a pseudometric on the space §', aside
from the fact that it may take on the value +o, and that therefore d) satisfies the
conditions for a pseudometric on this space. The d)' distance between a function
of infinite norm and one of finite norm is 1.

In Section II1.13, the notations d)' and dj, referred to distance between sets;
here the notation refers to distance between functions. According to Theorem
III.14, the class S is a complete pseudometric space under the distance
definition dy'(A,B) = A(AAB)A1, and the subclass of sets of finite measure is a
closed subset of this space. Under the two uses of the notation dj', d)'(4,B) =
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d)(14,1p), and d)y(A,B) = d)(14,1p) if A(AAB) < 1. Thus it should cause no
confusion if the notations d3' and dj, are used both for pseudometrics on §' and
S. The role of the class of sets of finite measure in the pseudometric of
measurable sets is taken in the present context by the class S of measurable
functions of finite norm.

12. Convergence in measure
(Notation as in Section 11)

A sequence f. of functions in §' converges in measure with limit fin §' if there is
convergence to fin the 43’ norm. The limit function is in $'-§ [S] if and only if
all but a finite number of the functions are in S-S [S]. Written out, the
sequence converges in measure to f if and only if, for every strictly positive &,
lim A{If=£| > €} = 0; the sequence is a Cauchy sequence for convergence in
measure, that is, a 4’ Cauchy sequence, if and only if, for every strictly positive
€, limyp, ;s 4ooM [fin-ful > €} = 0.

Theorem (Measure space (S,S,?L)). The space (8.,d))is a complete
pseudometric space, and the subset S is a closed subset of §' at distance 1 from
S S. The space (S,d)) is separable if M is a finite measure and if the © algebra
S is generated up to null sets by a countable subcollection of sets.

It makes no difference in the last assertion of the theorem whether d), or dj’
is used as the pseudometric on §.

Proof. If f. is adj’ Cauchy sequence, choose a; = 1 < a, < successively so
large that A{lfy~fg,| > 27K} < 2% for n >ay. Then A | fg, Fap|> 27} < 27K,
and therefore (Cantelli's theorem), except for the points of a null set,
|fak+1—fak| <27k for sufficiently large k, depending on the point of S. Thus
the sequence f; is almost everywhere convergent to some function f, and
A{1r- fak| > 2'k.+1} < 2k+1 The sequence f. converges in measure to f, because
for 2741 < /2 and n >ay,

(12.1)  Mlf~f,l> €} s?»{lf—fakl >el2) + x{yfak—fn| >ef2} < 27k 4 2k,

Thus (S',d)) is a complete pseudometric space. Since every function in § is at
distance 1 from §'-8, the class S is necessarily closed and the space § with
pseudometric, the restriction of dy' (or equivalently of dj) is complete. In the
following, restrictions of dy' and dj will not have special notation.

To prove separability of (S,d)) when A is a finite measure and S is countably
generated up to null sets, observe first that the space (S,d)) is separable
according to Theorem IV.3(d). It follows that the space of indicator functions of
sets in S is separable in the dj pseudometric, and therefore the space of rational
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valued step functions is separable in this pseudometric. Now suppose that fis in
S and define f, by (1.2). Then f, is a rational valued step function and the
sequence f. converges in measure to f. It follows that (S,d)) is separable.

13. Convergence in measure vs. almost everywhere
convergence

The following example shows that convergence in measure does not imply
almost everywhere convergence, but Theorem 13 shows that the two types of
convergence are intimately related.

Example. Order the indicator functions of the right semiclosed subintervals
(j/n,(j+1)/n] of R, withj =0,...,n~1 and n = 1,2,... into a sequence f.. Let A be
Lebesgue measure on B((O,l]). Then £, is a bounded sequence of measurable
functions from (0,1] into R and, whatever the ordering of the indicator
functions, the limits inferior and superior of f. are identically 0 and 1,
respectively, although the sequence f. converges in A measure to 0.

Theorem. Let f. be a sequence of measurable functions from a measure
space (S,S,\) into R.

(@) Iff. converges in measure to a function f, then some subsequence converges
almost everywhere to f.

(b) If M is a finite measure and if f. is almost everywhere convergent to an
almost everywhere finite valued measurable function f, then f. converges in
measure to f.

Proof of (a). Choose a; = 1 <a, < - successively so large that

(13.1) M| fap= f1 > 1k} < 2%,

According to Cantelli's theorem, except possibly for the points of a null set,
If2, — fl < 1k for all sufficiently large k, and therefore f, converges to f
almost everywhere.

Proof of (b). Choose & > 0. In the inclusion relation

(132) {ffl> el e U {[ffi> e},

the union on the right decreases to a null set when n—»e. Hence the measure of
the set on the left tends to 0, as was to be proved.
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14. Almost everywhere convergence vs. uniform
convergence

Theorem (Egoroff). Let f. be an amost everywhere convergent sequence of
measurable functions from a finite measure space (S,S,\) into a metric space
(S',d"). Then to every strictly positive € corresponds a subset Ag of S, with
MS-Ag) < &, and with the property that the sequence f, is uniformly convergent
on Ag.

Proof. Let fbe an almost everywhere limit of the sequence f., and for strictly
positive integers m and n, define A(m,n) = {s: supi>m d’(f(s)fk(s)) > 1/n}. For
each value of n, A(s,n) is a decreasing sequence of sets, with intersection a null
set. Choose an increasing sequence m. of integers satisfying ?»(A(m,,,n)) <2
for n 2 1, and define Bj = U:‘:j A(my,n). For each value of j , it follows that
MBj) < 277+l and on $—B; the sequence f, converges uniformly, because
d'(f(s),fk(s)) < 1/n when k2 my, and s is in this set.

15. Function measurability vs. continuity

Theorem (Lusin). Let f be a measurable function from a complete separable
metric finite measure space (S,B(S),?») into a separable metric space S '. If
€> 0, there is a compact subset A of S, with MS—Ag) < €, and with the property
that the restriction of fto Ag is continuous.

Proof. Let B, be an enumeration of the balls in S’ of rational radius, centered at
the points of some countable dense subset of S'. The set f "1(B, ) is a
measurable subset of § and, according to Theorem IV.4, is contained in an
open subset G,, of S, satisfying the inequality A(G,~ f “(B,L)) < €271 Observe
that the set f “}(By,) is relatively open in every subset of G,Uf "1(B,,) because
f71(Bp,) is the intersection of such a subset with G,,. Define

A¢" = 5= (G -8y) = NT(G.uray).

Then M(S-A s*) < £ and, according to Prohorov's theorem, a subset A¢ of As* can
be chosen to be compact, with A(S—Ag) < €. For every value of n, f~1(B,) is
relatively open in Ag, Hence the inverse image under f of every open subset of S’
is relatively open in Ag, that is, the restriction of fto Ag* is continuous.
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16. Measurable functions as approximated by
continuous functions

Theorem. Let (S,B*(S),K) be a metric finite measure space, with B*(S) the
domain of the completion A of a measure on B(S), and let f be a measurable
function from this space into R. There are then

(a) a sequence of continuous functions from S into R with almost everywhere
limit f;

(b) a sequence f. of upper semicontinuous functions from S into R for which
fisfis<fonR, limfi=fae;

(c) a sequence f." of lower semicontinuous functions from S, into R for which
fizfoz2fonR, limfo=fa.e.

This theorem generalizes Theorem IV.3(c) in the following sense. Suppose that
f = 14 in the present theorem, let fi be a decreasing sequence of lower
semicontinuous functions with almost everywhere limit 14, and define A4,, =
{fu+1/n> 1}. Then the sequence A. is a decreasing sequence of open sets, and
lim MA.) = MA). Thus part (c) of the present theorem yields half of Theorem
IV.3(c); part (b) of the present theorem yields the other half of Theorem
IV.3(c).

Proof of (a). Let T be the class of measurable functions f from S into R for
which (a) is true. This class contains the continuous functions, and it will now
be shown that this class is closed under pointwise sequential convergence. To
prove this closure, suppose that g, is a convergent sequence of functions in T,
with almost everywhere limit g, finite valued almost everywhere. According to
Egoroff's theorem, the fact that g, is in I" implies that there is a continuous
function Ay, for which |h,=g,| < I/n except possibly at the points of a set A, of
measure 2°". An application of Cantelli's theorem shows that the sequence A,
has limit g almost everywhere on S, and therefore g is in I'. Thus I" is a class of
functions containing the continuous functions and closed under pointwise
sequential convergence. It follows that I" contains the Baire functions, that is
(Theorem 4) T" contains the Borel measurable functions. Finally, if f is
measurable from S into R, there is (Section 2(c)) a finite valued Borel
measurable function g, equal to f almost everywhere. Since g is in T, the
function fis also in T", as was to be proved.

Proof of (b) and (c). If f. is a sequence of continuous functions with almost
everywhere limitf, the almost everywhere equality



V. Measurable Functions 71

£= lim supfu = iy oo (V-1 V')

exhibits f as the almost everywhere limit of a decreasing sequence of functions
from S into R*. Each member g, = f,Vf,4; V- of this decreasing sequence is
itself the limit of an increasing sequence of continuous functions, the sequence
of partial maxima, and is therefore lower semicontinuous. Finally let H,, be an
open set of measure at most 1/m that is a superset of every null set {g, < f,},
and define hy, = +eo on Hy"nH,,, but h,, = 0 elsewhere on S. Then the
sequence g.+he is a decreasing sequence of lower semicontinuous functions,
majorizing f and with almost everywhere limit f. Thus (c) is true. To prove (b),
apply (c) to -f.

17. Essential supremum and infimum of
a measurable function

If fis a measurable function from a measure space (5,S,A) into R, ess supsf, the
essential supremum of f, also called the supremum of f neglecting null sets, is the
supremum of constants ¢ for which {f2>c} is nonnull. Thus f < ess supg f almost
everywhere on § but this almost everywhere inequality is true of no smaller
constant. The essential infimum of f, ess infg f, is defined as -ess supg (-f).

18. Essential supremum and infimum of a collection of
measurable functions

If T is a collection of measurable functions from a measure space into I_{, the
pointwise supremum of I, that is, the function defined at each point s as
sup{f(s): feI'}, need not be measurable unless I" is countable. A looser
supremum of I, described in the following theorem, avoids this measurability
difficulty at the cost of ignoring null sets.

Theorem. Let T be a class of measurable functions from a © finite measure
space (S,S,A) into R. There is then a measurable function g, uniquely
determined up to null sets by the two properties that if fis in T then g > f almost
everywhere, and if h is another measurable function with this property, then
h > g almost everywhere. One choice of g is the supremum of a suitably chosen
countable subset of T'.

The function g is the essential supremum, or essential upper envelope, or
essential order supremum of T'.

Proof. It is trivial that two functions with the properties ascribed to the essential
supremum are equal almost everywhere and that a measurable function equal
almost everywhere to a function with those prorerties also has the properties.
Thus “the essential supremum” is unique only up to null sets.
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In proving that there is a function with these properties, it can be assumed
without loss of generality that I" contains the pointwise maximum of every finite
set of its functions, because the class of all such finite maxima will have the
same essential supremum, if any, as the original class. Moreover a countable
supremum of members of the new class is also a countable supremum of
members of the original class. Furthermore it can be supposed that the members
of I" have a common finite constant upper bound, because the problem is an
order problem, and each function u of T can be replaced by arctanu to obtain a
common upper bound without changing the order relations of the functions.
Finally, it can be supposed that A is a finite measure, because if S is the disjunct
union \US. of a sequence of sets of strictly positive finite measure, the measure
A defined by

N(A) = 2 MSprAY(27M(S,))

is a finite measure with the same measurable sets and null sets as A. Choose a
member f; of I'. If there is a function h; in T" with A{h > f;+1}21, define
Jf>=fivhy. If there is no such function Ay, stop. If there is a function A, and if
there is a function h, in T', with A{ h, 2 f, +1} 21, define f3 = f,vh,. If there is no
such function, stop,... . This procedure must finally stop or there would be a
monotone increasing (neglecting null sets) sequence of functions in I', each
exceeding its predecessor by at least 1 on a set of measure > 1. The limit
superior of this sequence of sets, that is the class of points in infinitely many of
the sets, has measure > 1 (Theorem IIL.8), and at each point of this limit
superior the class I" is unbounded, contrary to fact. Hence the procedure must
end with a finite monotone increasing sequence, say fi, ...fg,.- Repeat this
procedure, starting with f;, but with the number 1 replaced by 1/2, next by 1/3,
and so on, to obtain an increasing finite or infinite sequence fi, fg,, fay,--- -
Define ag= 1. Under these definitions, f; > fak_1 , and the difference is at least
1/k on a set of measure at least 1/k, but tflere is no function in I" exceeding f; .
by at least 1/k on a set of measure at least 1/k. If the procedure stops, ending
with fg ,, then for n 21 there is no function in I" exceeding f;; , by at least 1/n on
a set of measure > 1/n. Hence there is no function 4 in T strictly exceeding fg ,
on a set of strictly positive measure, and fg, is the required function g, the
pointwise supremum of a finite subset of I'. If the procedure never stops, the
limit of the sequence f, ,is the required function g, the pointwise supremum of a
countable subset of T".

The essential infimum of T', also called the essential lower envelope of T, is
defined as the negative of the essential upper envelope of -T".
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Integration

1. The integral of a positive step function on a measure
space (S,S,A)

A positive step function f can be written uniquely in the form f=Xa.14,, a linear
combination, with positive pairwise distinct coefficients, of indicator functions
of a finite disjunct sequence of measurable sets. Define the integral of fon S
with respect to A, using this representation of f, by

(1.1 jfdk:Za.MA.).
S

Observe that if equality of coefficients is allowed in the representation of f, the
value of the integral, as just defined, is still given by the sum on the right in
(1.1).

Iff= Xz b.lp, is a step function, with each b; positive, the integral of f,
defined in the preceding paragraph, will now be shown to be equal to Zb.A(B.).
If C. is a finite disjunct sequence of measurable sets, chosen in such a way that
each set By, is a union of sets inC., then

(12) F=% (ZBm:cj b, )1c;

and therefore

NC))
- CjcBm J

(1.3) jfdx =3 (ZB by MC) =T by Z
J
’ = Zyybm MBm),

as asserted.

It will frequently be convenient, especially in undisplayed text, to write A[f]
for the integral with respect to a measure A, of a function fon a space.

The class of integrands whose integrals are defined will be extended far
beyond the positive step functions, but proofs in integration theory are
frequently based on properties of integrals of these very special functions. Step
functions play the same role in integration with respect to measures that linear
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combinations of indicator functions of intervals play in the theory of the
Riemann integral on intervals of R (see Section 20).

If f and g are positive step functions, then f < g implies the same inequality
for their integrals, and if a and b are positive constants,

(1.4) J'(af+bg) dh=a jfdk +b J.gd)».
S s

S
In fact these two assertions become trivial if the partitions of S in
representations of f and g are combined into a common partition.

2. The integral of a positive function

If fis a measurable function from § into l-l+, define

2.1) jfd)» = sup { J g d\: g <f, g is a positive step function} R
and if A isSa measurable sgt, define the integral of f on A by

2.2) dex = jflA .
A

S

Observe that if the measure space (S,S,A) is replaced by the measure space
(A,S4,M4) consisting of a set A in S, the ¢ algebra Sy of subsets of A in S, and
the restriction A4 of A to S4, the integral on this measure space of the restriction
to A of a measurable function f from A toR* is equal to the integral of f on A.
Thus, for positive functions, it is no more general to discuss integration of
functions on S than integration of functions on a measurable subset of §, in the
sense that in both cases one can consider the discussion as one of integration of
functions with domain a measure space. Since the integration of not necessarily
positive functions is based on that of positive functions, there is no reason to
derive integration properties for functions defined on subsets of S rather than
functions defined on S.

It is trivial from (2.1) that inequality f < g for positive functions implies the
same inequality for their integrals. It is almost as trivial that for given f the set
function of A defined by (2.2) is additive. In fact if A and B are disjoint
measurable sets with union C, let o, B., and Y. be sequences of positive step
functions majorized respectively by f14, fl1g, and fl1¢, with

(2.3) lim A{ow] = A[f14}, lim MB.]= Mf1g]. lim My.]= Mf1c].

Replace 7y, by Y,v(0y+f,), and then replace o, and B, by Y,14 and y,1p
respectively. These changes can only increase the functions changed, without
negating the conditions imposed on the sequences. After these changes have
been made, Y, = 0;+y,, and the stated additivity of the integral as a function of
the integration set follows from the additivity stated in (1.4) when the integrand
Is a positive step function.
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3. Integration to the limit for monotone increasing
sequences of positive functions

The following theorem is the basic theorem on going to the limit under the sign
of integration, to which the other theorems legitimizing the limit procedure will
be reduced.

Theorem (Beppo-Levi). Let f. be an increasing sequence of measurable
functions from a measure space (S,S,)) into RY, with limit f. Then

3.1) lim _[f.dx = jfa’k.
S S

Proof. Since the sequence f. is monotone increasing and is majorized by f, itis
trivial that the limit in (3.1) exists and is at most the value of the integral on the
right. If the limit on the left side of (3.1) is +oo, the theorem is therefore trivial.
Thus it will be supposed, in proving (3.1), that the limit in (3.1) is finite.

(a) Proof of (3.1) when fis a positive constant function c. If ¢=0, (3.1) is
trivial. If ¢ > 0, choose ¢’ with 0 <¢' < ¢. Then

32 [ranz [fadn 2 [fadh 2 erlfaze).

S S n>C'
Since the last term in (3.2) tends to the limit ¢'’A{S} as n increases, and since ¢’
can be taken arbitrarily close to c,

(3.3) Jfa')» > lim Jf.d)» > cAS)= dek,
S S S
as was to be proved under (a).

(b) Proof of (3.1) when fis a step function. When f'is a step function, an appli-
cation of the result in (a) to the restriction of f to each of the sets in a
representation of f yields (3.1).

(c) Proof in the general case. Choose a positive step function g, in such a way
that g, <f, and Alf,] < AMgn]+ 1/n. It can be assumed that g. is an increasing
sequence, replacing g, by g;v--vg, if necessary, to achieve monotonicity. If g
is a positive step function and g < f, the sequence gag. is an increasing
sequence of positive step functions with limit the step function g, and it follows
from (b) that

(G4 Jgd?» = lim Ig/xg.d)» <lim jg.dx = lim J'f. dA.
3 S s S

The limit in (3.1) is therefore at least A[g], and therefore at least the right side of
(3.1). It has already been noted that the reverse inequality is trivial.
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Linearity of the function f~A[f] for f > 0. To prove (1.4) for positive
constants a and b and positive measurable functions, it need only be remarked
that in view of the Beppo-Levi theorem, if f. and g. are increasing sequences of
positive step functions with respective limits fand g (see Section V.1), then the
fact that (1.4) is true for f,, and g, implies that the equality is true for fand g.

4. Final definition of the integral

Consider an arbitrary measurable function from (S,S,A) into R. The function can
be written in many ways as the difference between two measurable functions
from S into R*, never simultaneously +oo, for example f=f* - f~ where

Fr=po,  fT=(HvO.

This representation of f as a difference between two positive functions never
simultaneously +ee minimizes those two functions because if f= g-h is such a
representation, then it is trivial that A0 < g and (-f)v0 < h. If either f + or f -
has a finite integral, the integral of f is defined by

@.1) dek: ff+dk - Jf'dk.
s S S

If, say, f* has a finite integral and f, is a representation of f as the difference
between two positive measurable functions simultaneously +oo on at most a null
set, for which either f, or f, has a finite integral, then f t+f,=f ~—+f; almost
everywhere and therefore f| must have a finite integral and (4.2) is also true for
the representation of fin terms of f; and f :

4.2) _[fd)»= fflcﬁ»- jfzdk.
S S S

If }fi has a finite integral, that is, if f ¥ and f~ have finite integrals, then f is
integrable. By definition a positive (< +e) measurable function can always be
integrated, even though it is not called integrable unless the integral is finite.

The integral of f over a measurable set A. This integral is defined by (2.2)
when the integral of f14 over S is well defined. It is trivial that the integral of
J14 over S is well defined if and only if the integral of the restriction of fto A is
well defined on the measure space (4,S4,A4) (notation as in the paragraph
following (2.2)), and that if these integrals are well defined they are equal.

According to the definition of an integral, if f is a function that is identically
+oo on a measurable subset of S, the integral of f on that set is well defined,
equal to 0 if the set is null, equal to +eo otherwise. It follows that if f has an
integral over the whole space and f=+< on a set of strictly positive measure,
then the integral of f over the whole space is +oo.
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Integrands not defined on null sets. If the measure involved is complete, an
integrand can be changed arbitrarily on a null set without affecting
measurability of the integrand, its integrability, or the value of the integral if
there is integrability. In view of this fact, integrands will be allowed that are not
defined on some null set of the integration domain, under either the convention
that the integration domain is decreased to the domain of definition, of the
integrand, or that the integrand is defined (arbitrarily) where it is not already
defined. If the measure is not complete and the integrand is not defined on a
subset of a null set, the integration is treated as if the measure has been
completed.

Notation. It is sometimes convenient to write an integral in an expanded
form, in which the integrand's argument is explicit, writing

[ 116 Mas)
S
instead of

Jfa’)» or A[f].

N
The notation E{f} (read “expectation of f*) is commonly used for this integral
when (S) = 1, that is, when the measure space is a probability space.

Basic integration properties. All functions involved in the following list of
properties are supposed measurable.

(@) If f> 0 almost everywhere, then A[fl = 0 implies thatf= 0 almost
everywhere.

(b) Iff is integrable, then |f | < +oo almost everywhere, and the inequality
lg | < |f| implies that g is also integrable.

(c) If fand g are integrable and if a and b are constants, then aftbg is
integrable, and (1.4) is true.

(d) Iffand g are integrable and f < g almost everywhere, then Mf] < Mgl. In
particular,

(4.3) liral < Jrrian
M S
iffis integrable.

(e) Iffis measurable and if § is a monotone increasing function from RY into
R, then

44 ) > A\ = SEMIf12c).
(4.4) ﬁﬂ >m@? OEMIF1 > ¢}
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In particular, if f>0,

@.5) j fd\ > cMf2c).
S

Assertion (a) is true because

0= J'fdxz _[f dh > Mf>Un}in, and {f>0}=u:°{le/n}.
S {f21/n}

The other assertions need no comment.

Integration of complex valued functions. The definition of measurability
covers functions from a measure space into the complex plane: such a function
f=fi+if; is measurable if and only if its real part Rf and its imaginary part 3f
are. The function f is defined as integrable when Rf and 3f are integrable, and
in that case (definition),

J‘fd)» = anmxn ijdx.
N N N

The linearity property (c) with complex constants a and b is true for complex

integrands, because it is true for real integrands. Inequality (4.3) is true for

complex valued functions, because if ¢ is a complex number of modulus 1,

chosen to make real and positive the product of ¢ and the value of the integral

on the left in (4.3),

4.6) IIfa'AI = chd?&: ji)t(cf)) dh < jlfldk.
S S

S S
In the following, integrands will be real valued unless the contrary is stated
explicitly.

The class L’ S,S,A). This class, for 1 £ p <+, is the class of measurable
functions f for which [f[” is integrable; for p=+co the class is defined as the class
of essentially bounded measurable functions, that is those measurable functions
f for which there is a constant ¢ such that | f | < ¢ almost everywhere. The
identification of space, G algebra and measure, will be omitted from the notation
if the context is clear. The notation (read “L norm of £, and when p = +co,
“essential norm of f )

iy = [irram)"” (¢ <+,
N

“4.7)
= ess sup5|f| P = +o0),
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is used for functions in L. A family of functions in L’ is said to be L” bounded
if the supremum of the set of L norms of the functions is finite. The class I is
linear: it is trivial that a constant multiple of a function in the class is also in the
class, and in view of the inequality

(4.8) (a+bY < P(aPvbP) < P (aP+bP)

for positive numbers a and b, the sum of two functions in the class is in the
class.

L” and the convergence in measure norm. If fis in L” for some finite value
of p, it is obvious that the convergence in measure norm If; is finite. Thus the
d,, pseudometric is applicable to I”.

The class L” for complex valued functions is the class of measurable
complex valued functions f with If | in the class L” of real functions, for which it
is necessary and sufficient that the real and imaginary parts of f are in real L”
because

(4.9) IRf1 v ISFISIFL < IRF+ ISF L.

Extension of the Beppo-Levi theorem. In the Beppo-Levi theorem, the
hypothesis of positivity of f. can be weakened to suppose only that f,, for some
value of n majorizes a function g for which g~ is integrable. To prove the
theorem under this hypothesis, apply Theorem 3 as stated to the sequence fo+g~,
an increasing sequence of positive functions if some initial members are
omitted, and then use linearity property (c) to remove g”.

The Young definition of an integral. Theorem V.16 suggests that one way
to define the integral of a function is to define the integral of a semicontinuous
function and then to define the integral of a function f as the infimum
[supremum] of the integrals of larger lower [smaller upper] semicontinuous
functions, if these extreme values are equal. This is the Young approach to
integration.

5. An elementary application of integration

Let (5,S,A) be a finite measure space, and let A,,...,A,, be measurable sets.
Integration of the equations 1(2.9) yields
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MUA) = 3, MA) - X MANA)) ++(- 1N A N M),
i>1 <

5.1

MNA) =3 MA)) - E,MAiUAj) +o (= 1)PIMA O UAR).
21 g

For example, let S be the space of n! permutations of the integers 1,...,n, and
assign each singleton of S the A measure 1/n!. Then A is a probability measure.
Let A; be the set of permutations in S for which the ith place is i, that is, the set
of permutations matching the identity permutation in the ith place. Then UA. is
the set of permutations with at least one match with the identity permutation.
According to the first equation in (5.1), this set has measure

n(n-1)

(5.2) [ntr=1)11 =52yt #4177 ]

1 -
TR T

=1

which is close to el when n is large. Roughly speaking, about a third of the
permutations have at least one match with the identity permutation.

Card mixing interpretation. If a deck of n cards, is shuffled thoroughly, the
probability that at least one card is in the same position as before the shuffling is
about a third. Here shuffling thoroughly is translated mathematically into the
assignment of probability 1/n! to each shuffling permutation. In an attempt to
make this integration problem more interesting, succeeding in making it more
confusing, the context has sometimes been changed to replace n cards by n
drunken men who try to find their way home (very cleverly arriving at least
finding different homes), the conclusion being that the probability is about one
third that at least one will get to his own home.

6. Set functions defined by integrals

Let f be a measurable function from a measure space (S,S,A) into Rt Define p
on S by

©.1) W) = jfdx.
A
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Then [ is a measure: finite additivity follows from Section 4(c), and countable
additivity then follows from the Beppo-Levi theorem formulated in terms of a
sum instead of a sequence. More generally, if f need not be positive, but if either
f~ or f7 is integrable, this argument can be applied to f~ and f* to show that |
in (6.1) is a signed measure.

The following theorem covers a change of variable under the sign of
integration.

Theorem. If | is defined by (6.1), with f 2 0, and if g is a measurable
function from S into R, then

6.2) j gdi= j gf dh.
S S

Proof. Equation (6.2) is true, by definition of |, when g is the indicator function
of a measurable set, and the equation is therefore also true when g is a positive-
coefficient linear combination of such indicator functions. In particular, if Ayj =
{G-1)2" <g<j27"}, and

4n

&n =J§l(i-1)2'"1Anj+ (+00)1{ g=-oo}

then (6.2) is true for g=g,. Since g. is an increasing sequence with limit g, (6.2)
is true as stated.

The function g in (6.2) is [ integrable if and only if gf is A integrable. More
generally, if g is a measurable function from S into R, the preceding discussion
is applicable to g ¥ and g ~ and thereby shows that if |g | is | integrable,
equivalently if |g |f is A integrable, then (6.2) remains true.

7. Uniform integrability test functions

A uniform integrability test function is a function ¢ from R* into R*, with the
property that the function ¢ = ¢(#)/r is monotone increasing with limit +eo at
+oo. The function ¢ itself is then necessarily also monotone increasing. The
following intuitively obvious theorem will be needed.

Theorem. If f is a positive integrable function on a finite measure space
(S,S,\), there is a convex uniform integrability test function ¢ for which O(f) is
also integrable.

Proof. Define the measure 1 by (6.1) and define y(ot) = p{[o,+o0)} for 0=0.
The function y; is monotone decreasing, with limit O at +cc. Define y(n) =
lvl((n- l)vO) for n a positive integer, and define y between the positive integers
by linear interpolation. Then ; <y, that is,
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1) [fan < v,

{20}
and W is a continuous monotone decreasing function on R, with limit 0 at +oo.
If y ever vanishes, the function f must be essentially bounded, in which case the

existence of the desired uniform integrability test function is trivial. If v is
strictly positive, define

ay=0, a,=inf{s:y(s) < 1U/n} r21);  6(s) = s[y(s)] 2.

The function ¢ is a uniform integrability test function, and the following
inequalities show that ¢(f) is integrable:

72 [epar = j du < Zn”z Vi@n1) - i@n)]
S {0} n=1

<Y wi@n?- a-2] < Y R < oo,

n=l n=1
To finish the proof it will be shown, as is sufficient, that if ¢ is a uniform
integrability test function there is a convex uniform integrability test function
majorized by ¢ for sufficiently large values of the argument. Choose a strictly
positive number b; that is so large that¢(s) = s when s 2b. If by,....b,_1 have
been chosen, choose by, so large that b,, >b,,_; and ¢(s) 2 ns when s > b,,. Define
01(s) = by when 0 £ s < by and Oi5) = (n-1)(s—b,_)+0;(by-1) When
by <5< b,. Then ¢; < ¢ on [by,+o) and ¢, is a uniform integrability test
function.

8. Integration to the limit for positive integrands

Theorem (Fatou). Let f. be a sequence of measurable functions from a
measure space (S,S,\) into R*, and define f=1lim inff. Then

8.1) _[ fd\ < lim inf j fod\.
s S

If fand each function f,, are integrable, and if
(8.2) J' fdh =1lim '[ fodh,
S S

then
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(8.3) lim j [fful dh = 0.
S

If the sequence f. converges in measure to a function g, f can be replaced by
g in these assertions.

As of 1991 the oldest generation upholds tradition by still calling this
theorem “Fatou's lemma.”

Proof. Apply Beppo-Levi's theorem to yield

(8.4) j fdh= J Supg>1 infysk fin b = limg_yoo j infy> g frn
S s S

= lim infj—se J' infypsk fin dh < lim inf I fodh,
s

as was to be proved.
To prove (8.3) when (8.2) is true and all the functions involved are
integrable, majorize the integral in (8.3):

(8.5) J‘[f-ﬁ,m <- J(ffn)dk+2 jfaD»—zjinkanﬁ( .
S S S S

When n—eo, the first integral on the right tends to 0 by hypothesis. The third
integral on the right tends monotonely to the second by the Beppo-Levi
theorem . Thus the right side of (8.5) tends to 0, as asserted.

If the sequence f. converges in measure to g, choose a subsequence along
which the sequence A[f.]has as limit the inferior limit in (8.1), and then choose
a further subsequence along which f. converges almost everywhere to g. Apply
what has been proved to this subsequence to find that (8.1) is valid with f
replaced by g. If all the functions involved are integrable and (8.2) is true, then
what has already been proved implies that the sequence A[lf~f.l] has limit 0
along every subsequence of f. for which f. converges to f almost everywhere.
Thus every subsequence of A[lf-f.I] has a further subsequence with limit 0, and
therefore the sequence itself has limit 0, as asserted.

9. The dominated convergence theorem

Theorem (Lebesgue). Let f. be a sequence of measurable functions from a
measure space (S,S,A) into R, and suppose that suplf.l is integrable. If, either in
measure or almost everywhere, the sequence converges to a function f, then

9.1) jfdk = lim jf.d)».
s s
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This theorem is called the dominated convergence theorem, because the
condition of integrability of suplf.l is commonly phrased in the uneconomical
form there is a positive integrable function g such that |f,l < g almost
everywhere, for every value of n.

Proof. According to Fatou's theorem, whether the limit is an in measure or an
almost everywhere limit,

9.2) J' lim (g+£2) dA < lim inf J(g+f.)d?»,
S S

that is,

(9.3) J'fdx < lim inf jf A,

Inequality (9.3), together w1th its application to the sequence —f., yields (9.1).

The d), continuity of the functioni: A — j fdh.

If fis integrable, W is a finite valued signed measure (Section 6). If A is a finite
measure, d is a pseudometric for S (Section IIL13) and W is a continuous
Junction on (S,d,); equivalently, if A. is a sequence of measurable sets whose
measures tend to 0, then the sequence W(A.) has limit 0. This conclusion follows
from Theorem 9, because the sequence f1, converges to 0 in measure, and the

absolute value of each integrand is majorlzed by IA .

Bounded convergence theorem. This name is given to the dominated con-
vergence theorem's special case in which A is a finite measure and there is a
constant ¢ for which suplfil <c¢ almost everywhere. The classical corresponding
theorem, that a uniformly convergent sequence of continuous functions on a
compact interval of R can be integrated (Riemann integral) to the limit, is a
special case of the bounded convergence theorem, because each function of the
uniformly convergent sequence is bounded, and that fact together with the
uniform convergence implies that the sequence has an overall bound. (The fact
that Riemann integration is a special case of Lebesgue integration will be
proved in Section 20.)

10. Integration over product measures

In this section, let (S} S1,A1) and (5,,5,,4,) be ¢ finite measure spaces. The
measures may or may not be complete. Provide the product space S = xS,
with the product ¢ algebra S = 6(S;x S,) and product measure A = A;x A,. If A
is a subset of S, for each point s; of S; define A(s;) = {szz (s51,%) € A}. It is
convenient to write a function f on S as f(*,*) to exhibit it as a function of its
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arguments in §; and S,. Recall from Sections IL.5 and V.2, that if A is in S, then
for each point s; of S, the set A(s;) is in Sy, and if f is measurable from (S,S)
into R, then f{s,*) is measurable from (S5,,S,) into R.

Theorem (Fubini, Tonelli). (a) If fis measurable from (S,S) into l_1+, the
integral f S(0.52) My(dsy) is a measurable function from (S, S,) into R+, and
5
(10.1) deh = J. M(dsy) Jf(susz) ha(dsy).
S
2

5

(b) If f is measurable from (S,S) into R and is A integrable, then fs,*) is A
integrable for A, almost every point s,,the inner integral in (10.1) defines a
measurable and A, integrable function from (51,8) into R, and (10.1) is true.

Observe that under the hypotheses of the theorem, the iterated integral can be
evaluated in either order.

Proof of (a) for finite measures. If A is in the class S;x§, of product sets, it is
trivial that

(10.2) NA) = SJ M(A () Mds).

It follows that the class T" of sets A in S for which (10.2) is true contains the
algebra 64(S%x S,) of disjunct unions of product sets. Moreover (bounded
convergence theorem) I' is a monotone class, and therefore (Theorem I1.6)
contains 6(S;xS,) = S. It is important to note that (10.2) implies that A is A null
if and only if A(s) is A, null, for A; almost every point s.

If fis a measurable function from (S,S,A) into R+, the function

Jﬂ'ssz) Adsy)
5

is a measurable function from (S;,S;) into f{+ and (10.1) is true. In fact (10.1)
reduces to (10.2) when f is the indicator function of a set in S, and (10.1) is
therefore true (along with the measurability of the inner integral) when f is a
positive step function. For general positive f, V(1.1) exhibits f as the limit of an
increasing sequence of positive step functions. An application of the Beppo-
Levi theorem to this increasing sequence yields (10.1).

Proof of (b) for finite measures. Apply (a) to fv0 and to -(fAQ).

Proof of the theorem. Since the theorem is true for finite measure spaces, it is
true if S in the theorem is replaced by a product set A;x A, with A; in §; , of
finite A; measure, for i = 1, 2. Since S is a countable disjunct union of such
product sets, the theorem is true as stated.
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Adaptation to complete measures. In the preceding proof, completeness of
the measures A; and A,, or its absence, is irrelevant, and A was not completed.
Suppose that A; %, 1, and A* are respectively the completions of A, A,, and A.
Since (Section IV.1) every null set of a completed measure space is a subset of a
null set of the original measure space, (10.2) implies that a A" measurable set is
A* null if and only if A;(s1) is A, null, for A, * almost every s,, and then that, if
A if X* measurable, A,(s) is A,* measurable for A,* almost every s,, and (10.1)
is true. Since (Section V.2(c)) every A* measurable function on S is A* almost
everywhere equal to a A measurable function, it follows that if f is a A*
measurable function from S into R*, then f(s;,*) is A,* measurable for A,*
almost every s, that the inner integral in (10.1) defines a A,;* measurable
function of s;, and that (10.1) is true. Apply this result to A0 and -(fA0) to
deduce the obvious version of (10.2) for integrable not necessarily positive
functions that are measurable with respect to the ¢ algebra of A* measurable
sets. This discussion is not much simpler if A| and A, in the theorem are already
complete measures, because even then the measure A in the theorem is not
necessarily complete.

Note on the construction of product measures. Product measures were
constructed before integration, in Section IV.11. Alternatively, the construction
can be deferred until integration is available, when, in the notation of Theorem
10, the product measure A can be defined by (10.2).

Application to the volume under a graph. Let (S,S,A) be a finite measure
space and define St = SXR*, ST = o(SxB(R')). The space (S*,S*) is a
measurable space. Let | be the mcasure on S* that is the product of the
measures A on S and Lebesgue measure on R. If fis a function from S into R*
the subsets

{(s.0):1 =f(s)} {(s.0): 0 <1 5f(5)}

of § are respectively the graph of f and the ordinate set O(f) of f. I f is

measurable, let fo be the increasing sequence of step functions, with limit f,

defined by V(1.1), and define g, =f,,+27". The ordinate sets O(f;;) and O(g,,) are
each a union of products of measurable subsets of S and compact intervals of R.

These ordinate sets are therefore measurable subsets of S*. Define
D,=0(gn)-Of;,) The set D,, contains the part of the graph of f over the set {s: f(s)

< 2"}. Moreover WD) < 27"N(S), and lim D, is the graph. Thus the graph is in

S* and is W null. The sequence O(f.) is an increasing sequence of measurable
subsets of St,with limit O(f) less the graph of f, and therefore the ordinate set of
fisin 8T, According to Theorem 10,

(10.3) n(op)= [ran.
S
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If S is a compact interval of R and A is Lebesgue measure on this interval, (10.3)
is the usual formula for the area under the graph of f.

The preceding discussion has been under the hypothesis that f is a measurable
function, and under this hypothesis, the measurability of O(f) was proved.
Conversely, O(f) measurability implies that f is a measurable function, because
O(f) measurability implies (Theorem 10) that the integrand in (10.3) is a
measurable function on S and that (10.3) is true.

11. Jensen's inequality

Theorem (Jensen). Let § be a convex function from an interval I of R into
R, and define ¢ at an endpoint of I not in I as the limit of ¢ at the point. Let f be
a measurable function from a probability space into L If f and ¢(f) are
integrable, then

(1L.1) olE(A] < E{on).

If f and &(f) are not supposed integrable, but if ¢ and f are lower bounded,
(11.1) remains true.

Proof. The graph of ¢ has the property that if (E,o,q)(go )) is a point of the graph,
no point of the graph lies strictly below a suitably chosen line L through the
point. Hence, if the equation for L is 1 = a(§-Eg) + ¢(&y), it follows that ¢(f) >
a(f-€o) + (o). In particular, if f and ¢(f) are integrable, choose &, = E{f}, and
integrate this inequality to obtain Jensen's inequality. More generally, if f and ¢
are lower bounded, in which case I can be chosen with a finite left-hand
endpoint, E{f} and E{¢(/)} are well defined, possibly +=. To prove the
inequality in this case, apply the case of Jensen's inequality already proved to
fac and let ¢ tend to supgf.

Application to L” for a probability space. According to Jensen's inequality,
if 1< p<+oo,

(11.2) {11} < E{Irr'},

which can be rewritten in the form [f|, < Fip.if fe L More generally, if
I <p <p <+oo then E2{ 1P Y< E{ifP'}, thatis, if fe 17,

(11.3) flp < Iflp.

Moreover this inequality is true for p' = +oo in the sense that direct substitution
in the integral over the space S for the I norm yields the inequality
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Iflp < ess supg |f|, and this essential supremunm, if finite, is If lo Finally,
limp 00 If 1, = €55 supslf |. In fact this limit relation is true not only for fon a
probability space, but for f on an arbitrary finite measure space. To prove this,
trivial if A(S) = 0, suppose that A(S) > 0, denote the essential supremum by ¢ and
observe that if ¢' < ¢,

(11.4) cMrzel?<([if1? )" < ¢ pusy™,
S

and observe that when p — +oo, the first and third terms have limits ¢' and ¢
respectively.

12. Conjugate spaces and Holder's inequality
If 1 < p < 4o and
(12.1) Ilp+1/g=1,

then g > 1; g is the index conjugate to p, and I is conjugate to L ”. The relation
is symmetric; if p is conjugate to g, then g is conjugate to p. The only self-
conjugate index is 2.

Theorem (Holder's inequality). (p, g, conjugate indices, measure space
(S.S\) Iffe L'andg e LY then fg is integrable, and

(12.2) ufg | <Ifiplgly.

Proof. It is sufficient to prove this inequality when f and g are positive, because
replacing fand g in (12.2) by their absolute values does not change the right side
and can only increase the left side. The inequality is trivial if either norm on the
right vanishes, and it can therefore be assumed that each is strictly positive, and
even that each is 1, because multiplying the functions by constants does not
affect the inequality. Under these hypotheses, (6.1), with f replaced by g4,
defines a probability measure |, and an application of Jensen's inequality (11.1),
with  ¢(s) = s? on Rt yields

@23 (Jea)r = ( Jrr@an) < [perigiay <1,
{g>0} {g>0}

as was to be proved.
Holder's inequality for the case p= g =2. In this case, (12.2) becomes

(12.4) (Jea) < [ra [ea,

which is trivial when g vanishes almost everywhere, and otherwise is most
easily proved by defining ¢ = Mfg]ﬂglé2 and noting that (fcg) has a positive
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integral. This inequality is variously named, in honor of Bunyakovsky, Cauchy,
and Schwarz who fortunately are not available to express their appreciation at
the dubious honor of being so closely identified with this (now) rather simple
inequality.

Hoélder's inequality in the discrete context. Suppose that p and g are
conjugate indices, g. and b. are sequences of numbers, and o is a sequence of
positive numbers. If the series  la. cu and T b0 converge, then X |a.bel0w
converges, and

(12.2)) £ aboctl < (Zlabon)'? (T bdd0n)" .

This is the special case of Holder's inequality in which the space S is countable
and o, is the sequence of measures of its singletons.

13. Minkowski's inequality
This inequality makes an L” pseudometric possible (see Section 14).

Theorem (Minkowski's inequality). (Measure space (SS,A)) Ifp>1andf
and g are in L” then f+g is in L and

(13.1) If+gl, < I, +lgl,.
Proof. Inequality (13.1) is trivial when p is 1 or +eo; in the following suppose
that 1 <p < +eo. It was already noted in Section 4 that linear combinations of

functions in L? are in L”. It is sufficient to prove (13.1) when f and g are
positive. Apply Hélder's inequality to derive

(13.2) g ly= [ rgpirane [ rapgan
s s

< If+g IZ/q [lf I, +1g I,,],
which yields (13.1).

Minkowski's inequality in the discrete context. Suppose that p > 1, a. and
b. are sequences of numbers, and ol is a sequence of positive numbers. Then

(13.1) [2 tatb.0.]" < [B1al 0] + [ 16 0u]”

This is the special case of Minkowski's inequality in which the space § is
countable and L. is the sequence of measures of its singletons.
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14. The L” spaces as normed linear spaces
(1 £ p < +oo, measure space (S,S,\))

Define the distance between the functions f and g in L” as If- gl,- Minkowski's
inequality yields the triangle inequality for this distance function:

(14.1) I-hl, < If-gl, +1g-Al,

Thus this definition of distance makes L.” a pseudometric space. A function f is
at L” distance 0 from a function g if and only if the two functions are equal
almost everywhere.

Observation. If functions equal almost everywhere are identified with each
other, the space of equivalence classes obtained in this way can be made into a
metric space in the usual way (Section 0.13). This procedure involves defining
summation and other operations on equivalence classes, operations already
defined on functions, and it is not clear what is gained thereby. A comon style
makes L? the metric space of equivalence classes but uses the word “function”
and the phrase “except for a set of measure 0” anyway, thus attaining the best of
all nonlogical worlds.

L” convergence. Convergence of a sequence of functions in the L”
pseudometric, called L’ convergence, or convergence in the mean of order p,
implies convergence in measure, in view of the inequality

(14.2) Jlrean 2 €){irgl 2 e}

The converse is false; a sequence in 154 may converge in measure to a function
that is not even integrable.

Observations on L convergence. If a sequence f. converges in the mean of
order p to f then the sequence If. also converges in the mean of order p to |ﬂ,
because Ilfi—lfn” < lf—fnl. If f. converges to f in the mean of order p, then the
sequence |f P converges to |f [” in the mean of order 1. This fact, already noted

for p=1, is implied for p > 1 by the following inequality, obtained by combinini
the Holder and Minkowski inequalities with the elementary inequality ld) -
< pla-bl (a+bY ' for positive numbers a and b:

(14.3) 1V -IEC 1 <plf-£il, 1 IA+f,] |p”/" <plf-fl, (lf,,-fl,, + |2f|,,)”/" )

The following fact will be used in Chapter XI. If a sequence f. converges to f
in the mean of order p and a sequence g. converges to g in the mean of the
conjugate order g then the sequence f.g. of products converges to fg in the mean
of order 1. This convergence assertion follows from the inequalities
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(144) Ifg_fngnh < I(f_fn)gll + l(g_gny‘nll
<177, gl +1g-8d (U1, + 1£1,).

Completeness of L?. The space 17 is complete. In fact if f. is an L” Cauchy
sequence, (14.2) implies that the sequence is a Cauchy sequence for
convergence in measure, and therefore (Theorem V.12) the sequence converges
in measure to some function f. Apply Fatou's theorem to derive the inequality

(14.5) If-f,l, < lim inf Ifuf),,

The L Cauchy condition implies that the right side of this inequality tends to 0
as n—+oo, and therefore L” is complete.

15. Approximation of L” functions

It is sometimes useful to approximate an L’, function, in the sense of LV
distance, by functions in various special classes.

Approximation of L” functions by step functions (1 < p < +oo, measure
space (S,S,A), L’ distance). The class of L step functions is dense in L. In fact,
if fis in L” and is positive, let fo be the monotone increasing step function
sequence with limit f defined by V(1.1). The sequence If-fol, has limit O
according to the dominated convergence theorem. If f is not necessarily positive,
its positive and negative parts can be approximated separately.

A more delicate approximation result is sometimes needed. Let Sy be a
subalgebra of S, generating S, that is, 6(Sg) = S. It will now be shown that the
preceding result remains true when A is a finite measure and the step functions
are to be linear combinations of indicator functions of sets in Sy. All that needs
proof is that if A,,...,A,, are sets of finite measure, in S, and if cy,....c, are
strictly positive constants, then the function

n

f= 21: leAj

can be approximated arbitrarily in the L” distance sense by functions of the same
type, except that the sets involved are in Sy. According to Theorem IV.3(b),
there is a set A;' in Sy with the property that A(4;AA;") < (El(cj'n))p. Define

n

g= Z, cjlAj.

Then
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1 , )
(15.1) lejla; - ¢jlajlp < ¢ Pajaap) <em, G <n.

Add these inequalities to find that | f-glp < e

According to this result if S = R" and the measure is finite, approximating
step functions can be chosen to be linear combinations of indicator functions of
right semiclosed intervals, in view of Theorem IV.8(a) when N = 1 and Section
IV.10 when N > 1.

Separability of L”(S,S,A). If the measure space is © finite, 1 < p < +oo, and
the G algebra S is generated up to null sets by a countable subclass of S, then
L is complete and separable. Completeness was shown in Section 14. To prove
separability, observe first that it is sufficient to prove separability when A is
finite valued, because the class of L” functions vanishing off a set of finite
measure is dense in L”. For A finite valued, the space (S,d)) is separable
according to Theorem IV.3(d); cquivalently the subspace of I” consisting of
indicator functions of sets is separable. It follows that the subspace of rational
valued L’ step functions and therefore the class of all L” step functions is
separable. The latter class is dense in L” according to the first assertion in this
section, and it follows that L? is separable.

Topology of L’ for functions on a separable metric space (1 <p < +o0), It
is supposed that the functions are defined on a separable metric space S, the
measure space is (S,B(S),?») and the measure is © finite.

(a) Since the hypotheses of the preceding paragraphs are satisfied, the space L”
is a complete separable pseudometric space.

(b) The class of continuous functions in L’is dense in 1. Tt is sufficient to
show that every step function in L”, or even every indicator function of a
measurable set of finite measure, or even every indicator function of a closed set
of finite measure is an L” limit of a sequence of continuous functions in I”. If
A is a closed set of finite measure, it has an open neighborhood G of finite
measure according to Theorem IV 5. If d is the metric of S, define

(15.2) () = [expl-nd(s,A)] - expl-nd(s.5-G]] v 0.

The sequence f. is a uniformly bounded sequence of positive continuous
functions with limit 14. Each function vanishes outside G. It follows that
lim 114-fe1,=0.

Example. Let S be the circle in R’of radius 1 and center the origin, and let A
be the completion of a finite measure on B(S). It is an important fact that the
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class of complex valued trigonometric polynomials, that is, the linear
combinations with complex coefficients, of the functions of the sequence f.
defined by f,,(z) =z"" = expinB ,0 <6 < 2x, in which »n runs through the positive
and negative integers, is dense in L” for 1 € p < +eo. In view of the results in this
section, to prove this, it is sufficient to prove that an arbitrary continuous
function f on S can be approximated arbitrarily closely in L” by trigonometric
polynomials. A sequence of trigonometric polynomials will be defined that
converges to f uniformly, and therefore also in L” distance. It will be convenient
to write f as a function F of the central angle 0, on the interval [0,27].
Furthermore it will be convenient to extend F to R, making the function
continuous with period 2m. Consider the sequence g. of trigonometric
polynomials, defined by

(15.3) gn(0)= kZ are’*®, g = —j Fove 0 A dory (nz0),
=-n
where A is Lebesgue measure. Fourier series theory (to be discussed in Section

VIL7) suggests that under appropriate conditions on F, g. is a sequence with

limit F. In the present context it is simpler to apply Césaro averages. Define
T

(15.4) gn ®) = [go®)+4gn.1 (®)Vn = an(a)F(Gm)Mda),
where

sinZno/2

(15.5) Rn(0) = ﬁ nsin2o/2”

Choosing F =1 makes g,,* =1, and it follows that
n
j K (o) AMdo) = 1.

Finally,

(15.6) gn" (0)-F(8) = [Kn(ot)[F(9+0t)-F(9)] Mdor)

Choose € > 0, and choose 8 so small that F has oscillation at most € in every
interval of length 23. It follows, separating out the integration in the interval

(-95,6), that
(15.7) g, " (©)-F(0)l < £ +2 (sup IA )(sin"2(8/2))/n < 2e

for sufficiently large n. It follows that the sequence g.* converges uniformly to
F, as was to be proved.
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16. Uniform integrability

Let {f;, i € I} be a family of integrable functions on a finite measure space
(S,S,7A). Then (dominated convergence theorem) for each value of i,

(16.1) limg,_ye Jlfildx = 0.
{Iff20 }

Definition. A family of integrable functions on a finite measure space is
uniformly integrable if (16.1) is true uniformly for i in /.

This definition implies that finitely many integrable functions form a
uniformly integrable family and, slightly more generally, that the functions in a
finite number of uniformly integrable families are uniformly integrable. The
family of linear combinations of members of a uniformly integrable family is
uniformly integrable if there is a uniform bound on the coefficient absolute
values.

Theorem. A family {f;, i € I} of integrable functions on a finite measure
space (S,S,\) is uniformly integrable if and only if

(a) the family is L bounded, that is, sup Ifl; < +eo, and

(b) if W; is the measure defined by Wj(A) =J i | dh,
then limy(A)—0 Hi(A) = 0, uniformly for i in I.

The condition (b) is described in Section IX.4 as uniform absolute continuity
of the family of measures [l..

Proof. In the following proof, it will be supposed that the functions are all
positive, since only the absolute values of the functions are involved. Observe
that

(16.2) KAy < fi dh + J} fidh < OMA) + J.f,'d?».

AN{fi<a) (fiza (fiza)

If the sequence f. is uniformly integrable, the last integral can be made
uniformly srrllall by choosing o large. The inequality with A = § therefore
implies the L° boundedness of the sequencefo. If €> 0, the last integral can be
made < €, uniformly for all i, by choosing o sufficiently large, and then the
preceding term can be made uniformly small by choosing A(A) small. Thus (b)
is satisfied.

Conversely, if conditions (a) and (b) are satisfied, If;l;=Af;1 > oA{f; > o }.
Hence A{f; > o} is uniformly small when o is large, and, according to (b), this
implies that (16.1) is true, uniformly as i varies.



VI Integration 95

17. Uniform integrability in terms of uniform
integrability test functions

Theorem. Let {f;, i € I} be a family of measurable functions on a finite
measure space (S,S,A). If the family is uniformly integrable, there is a convex
uniform integrability test function ¢ for which

(17.1) sup J'¢([f.|) d) < +oo.
N

Conversely, if there is a uniformly integrable test function ¢ for which (17.1) is
true, the family is uniformly integrable.

Proof. To economize on absolute value signs, it will be assumed in the proof
(without loss of generality) that the functions are positive. If there is uniform
integrability, there is a positive monotone decreasing function y; on R*, with
limit O at +oo, for which

(17.2) J fidh < yi@)
=)

for all i. The very special case of this converse in Section 7 was treated in such a
way that the discussion is applicable here; the function y; can be majorized by a
continuous monotone function Y satisfying (17.2), and the desired convex
uniform integrability test function is defined in terms of y by the procedure of
Section 7. Conversely, if there is a uniform integrability test function ¢
satisfying (17.1), then

(17.3) '[cp(fi)dk > T jﬁa.
S

When o becomes infinite the left side is bounded uniformly as i varies, the
fraction on the right becomes infinite, and therefore there is uniform
integrability.

18. L' convergence and uniform integrability

Theorem. Let f. be a sequence of integrable functions on a finite measure
space (S,S,A), converging in measure to a function f. Then the sequence is
uniformly integrable if and only if there is L™ convergence.
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Proof. If there is uniform integrability, the sequence f. is L bounded, and
therefore (Fatou's thecorem) fis integrable. Then the sequence f. -f is uniformly
integrable. Given € >0,

(18.1) J‘If-ﬁ,ldk < eNS).
(17, <e)

On the other hand, lim A{lf-f.| 2€}=0 because there is convergence in measure,
and therefore (Theorem 16)

(18.2) limp—yo0 J' Fofol d = 0.
(17, 25)

Relations (18.1) and (18.2) combine to yield i convergence. Conversely, if
there is L convergence, uniform int{sgrability of fo will follow from that of g« =
If-fel. The L convergence implies L boundedness of the sequence g.. There re-
mains the proof that if A(A) is small the integral Alg,14] is uniformly small as n
varies. Choose € > 0, and choose k so large that Alg,l< € when n > k. Then, if
MA) is so small that max,<t Mg,14]< €, it follows that A[g,14]1< € for all n.

Remark on integrating term by term to the limit for a convergent se-
quence of measurable functions. Aside from the rather specialized Beppo-Levi
theorem, there are only two general criteria for integrating a convergent function
sequence term by term to the limit: Lebesgue dominated convergence and
uniform integrability. If the measure space is a finite measure space, dominated
convergence implies uniform integrability. For such a measure space the
uniform integrability criterion is more general, but the dominated convergence
criterion is more natural in many contexts. In other contexts, for example, in
martingale theory (Sections XI.14-16), uniform integrability is more natural —
and even necessary — because the dominated convergence criterion is
insufficiently general.

19. The coordinate space context

Let fbe a real valued random variable on a probability space (S,S,P), and define
F: F(o) = P{f < a}, the distribution function of f. One of the special aspects of
probability theory is that many questions about random variables are formulated
in terms of distributions and do not otherwise involve the probability space on
which the random variables are defined. In the present context, the distribution
function F determines the Lebesgue-Stieltjes probability measure A on R, and
the coordinate variable x on the probability space (R,B(R),?»p) then has the
distribution function F. In any question involving the distribution function of f
or of a Borel measurable function of f, the probability space (R,B(R),?»p) can
serve as well as the original probability space. For example, if ¢ is a Borel
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measurable function from R into R, then §(f) is integrable on (S,S,P) if and only
if ¢(x) is integrable on (R,B(R),?»p), and

00

(19.1) Eop) = [odhe = [ o) dF(o.
R -c0

The expectation is an integral over the space on which f is defined, the second
expression is an integral over R, and the third is an alternative form of the
second, but can also be interpreted in terms of Riemann-Stieltjes integration if ¢
is bounded and Ar almost everywhere continuous (see Section 20). The point is
that the measure relations involved in defining these integrals are identical. In
particular, if f is integrable, oo

(19.2) E{f} = _[ ahpdo) = J' adF(0).
R

Application to independent random variables. If (5;,S;,A;) and (5,,S,,A,)
are o finite measure spaces, and A is the product measure A;x),, let f; be an
integrable function on the first space and f, on the second. Then (Theorem 10)
J1/2 is integrable on the product space, and

(193) [apa = [radu [ran,
%5 5 5

Conversely if fif, is A integrable and neither factor vanishes almost everywhere
on its space, then each factor is integrable on its space. The probability version
of this is phrased somewhat differently and it is not quite obvious that the
probability version is a special case. The probability version deals with two
mutually independent real valued random variables f, f, on a probability space.
The standard theorem is that if they are integrable, then fif; is integrable, and
E{fifa} = E{A1E{f,}. Conversely, if neither random variable vanishes almost
surely, their individual integrability is implied by that of their product. To put
this probabilistic context into the product space context, all that has to be done is
to observe that the joint distribution of the two random variables is the product
measure of their separate distributions, so that f; and f, can be replaced by the
coordinate functions of R” on which a product measure is defined, the product
of the distributions of f; and f,.

More generally, if f) and f, are random variables on some probability space
(with measure denoted by P) and have the joint distribution function F, that is,

Flou,00) = P{fisou, f,<00,},

then the Lebesgue-Stieltjes measure A is a probability measure on R?, and, if ¢
is a Borel measurable function from R? into R, for which O(f1./2) is integrable,

(19.4)  E{o(hp)} = J‘(P(thz)d}vF = J¢(a1,afz)dF(OC1,(sz)-
RZ

R
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Here x; and x, are the coordinate variables of (RZ,B(RZ),XF). If f; and f, are
mutually independent, and if ¢ is the indicator function of the set {(04,0,) € R%:
oy+0, < o} then (19.4) yields the distribution function G of the random variable
fi+f2, defined on S, the same distribution function as that of x;+x,, defined on
R’, in terms of the distribution functions F, of f; and F, of f,. Theorem 10
yields G as the evaluation of an iterated integral:

(19.5) G = [F@-p) dF,@).
R

Thus the distribution function of the sum of two mutually independent random
variables is the convolution of the distribution functions of the summands.

Coordinate functions can be used to replace any finite number of random
variables for many purposes. The corresponding replacement for infinitely many
random variables is provided by a probability measure on infinite dimensional
coordinate space (see Kolmogorov's theorem V.6).

20. The Riemann integral

In this section, the concept of Riemann integration is placed in a general
context. The application to the simplest context, in which the domain of
definition of the integrand is a compact interval of R, is made at the end of the
discussion. Let S be a compact metric space, and A be the completion of a finite
measure on B(S). Throughout this section, all measure concepts refer to A,
unless otherwise specified.

Each point of S has arbitrarily small neighborhoods with null boundaries,
because the boundary of a ball centered at the point is null, except perhaps for at
most countably many values of the radius. The space S can be expressed in
many ways as a finite disjunct union of sets with null boundaries. For example,
S is the union of finitely many balls with null boundaries, and the union can be
made into a disjunct union of subsets of the balls. A partition of S is defined as
the cells (summands) of a finite disjunct sequence of subsets of S with null
boundaries and union S. A cell of such a partition is the union of its open
interior and part of its null boundary and is therefore measurable. If w and 7 are
partitions, and if each set of the 7' partition is a subset of a set in the 7 partition,
T is a refinement of ©. If m and 7' are partitions, they can be combined into a re-
finement of both in which the cells are the intersections of the cells of the two
partitions.

Let f be a function from S into R. When S is a compact interval of R, the
Riemann integration procedure, which defines an integral with respect to f under
rather strong restrictions on f, with A on intervals defined as interval length, is
what is given in the traditional introduction to integration on compact intervals
of R. The principles involved may perhaps be more readily understood in the

present more general context. If S and A are as described in the preceding
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paragraph, suppose that the Darboux sums

(20.1) T (sup 5, HASn) and E, (infSy ) MSp),

corresponding to a partition with cells S. having closures S., are well defined
and finite. If so, the union of those cell closuresS, that are not A null must
contain the compact support of A. The first sum, the upper Darboux sum for the
partition, is at least as large as the second sum, the lower Darboux sum. These
sums are finite if and only if fis bounded on each nonnull partition cell closure,
and if so, f is bounded on the support of A. If this condition is satisfied for one
partition, it is satisfied for all the refinements of that partition. Moreover,
considering only finite sums, in going from a partition to a refinement, an upper
sum can only change by decreasing, because each partition cell is replaced by
one or more partition refinement cells whose sum is at most the original
partition cell. Similarly, in going from a partition to a refinement, a lower sum
can only change by increasing. The upper sum for a partition 7t is at least as
large as the lower sum for a partition 7', because the upper sum for 7 is at least
as large as the upper sum for the combined partition, which in turn is at least as
large as the lower sum for the combined partition, which in turn is at least as
large as the lower sum for . The function f is Riemann integrable on S for a
given measure A, if the Darboux upper and lower sums are finite for some
partition, and if the infimum of the class of upper sums is equal to the
supremum of the class of lower sums. The value assigned to the Riemann
integral ts then this common extreme value, which is necessarily finite. In the
following, the integral defined in the preceding chapters is identified as the
“Lebesgue integral”, to distinguish it from the Riemann integral.

Theorem (S compact metric, A the completion of a finite measure of Borel
sets). A function from S into R is Riemann integrable for A if and only if the
function is bounded on the compact support of A and is continuous at A almost
every point of this support. If Riemann integrable, the function is measurable
and Lebesgue integrable, with Lebesgue integral equal to the Riemann integral.

Proof. It will be convenient to evaluate the Darboux sums as L integrals. Define
S and fr on each cell of a partition T as the supremum and infimum of f on the
closure of the cell. Under these definitions the upper and lower sums, supposed
finite, are equal respectively to the Lebesgue integrals on S of frand fr. If n'is
arefinement of %, fr<fr <f< Fn £ f 5 Suppose that there is at least one
partition with well-defined and finite upper and lower sums. Let C, be the
infimum of the upper sums, the limit of a sequence of upper sums for a
sequence T. of partitions. Replace each partition ®, by the combination of
... Ty, if necessary, to ensure that m,; is a refinement of ©,,. Then ]_‘n. is a
decreasing sequence of measurable functions. If ]_‘ is the sequence limit, then
(bounded convergence theorem)
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(20.2) Cy = lim an.zﬁ = J f dn.

Since f is continuous at each point of the interior of each cell of 1, and there-
fore contmuous at almost every point of S, the function f is upper
semicontinuous at almost every point of S. Similarly, the supremum C; of the
lower sums is the integral of the limit j-” of an increasing sequence of measurable
almost everywhere continuous functions, and f is lower semicontinuous at
almost every point of S. Moreover f<f<f, and B

(20.3) C =Jjjdxsjfdx=

There is Riemann integrability, that is, C,= C,, if and only if f=f=j-C almost
everywhere on S. In this case, f is measurable, continuous at almost every point
of S, bounded on the compact support of A, and its Riemann integral is equal to
its Lebesgue integral.

Conversely, suppose that f is bounded on the compact support of A and is
continuous at A almost every point of this compact support, that is, at almost
every point of S. Let A be a compact non A null subset of S with the property
that f is continuous at every point of A. The function fis uniformly continuous
on A in the sense that if 1| > 0, there is a strictly positive d so small that if s is a
point of A and s' is a point of § within distance 8 of s, then If{s)-f(s)| < 1. (Note
that this statement is stronger than the statement that the restriction to A of fis
uniformly continuous on A, but that the proof of this stronger statement differs
only trivially from that of the weaker one.) Therefore if € > 0 there is a partition
of § with the property that the oscillation of f on each cell containing points of
A is at most €. It follows that there are partition sequences for which f - f<e¢
on A. Let A. be an increasing sequence of compact subsets of the set of points of
continuity of A with the property that lim A(A.) is the measure of the compact
support of A. There is a sequence of partitions, each a refinement of its
predecessor, for which the nth partition cells containing points of A, are so
small that the oscillation of f on them is at most 1/n, and that the upper and
lower Darboux sums for the ath partition have as respective limits the extreme
values C, and C; of such sums. The corresponding limit functions f and f are
then equal almost everywhere on the support of A and therefore f is Riemann
integrable.

The case when S is a compact interval of R. In this case, the proof that the
stated condition in Theorem 20 is sufficient shows that partitions whose cells
are intervals suffice in the analysis, that is, yield the common extreme limiting
value to the upper and lower Darboux sums. The Riemann integral in this
context is also called the Riemann-Stieltjes integral when the measure A is not
Lebesgue measure, that is, when the measure of an interval is not the positive
difference between endpoint coordinates. When Riemann integrals are used over
the whole line R, they are improper Riemann integrals, whose values are
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defined as the limit of values of the integrals over an increasing sequence of
compact intervals with union R.

21. Measure theory vs. premeasure theory analysis

Before the advent of measure theory, classical analysis dealt for the most part
with smooth functions, considering others as pathological, useful — if at all -
only as a source of counterexamples designed to show the scope of definitions
and theorems. If a sequence of functions converged, but not uniformly, the
convergence was difficult to exploit, for example, in term-by-term integration to
the limit, unless the domain of the functions could be divided into finitely many
subdomains of uniform convergence, and small remainder sets. In many con-
texts, measure theory widened the class of admissible domains and functions to
the classes of measurable sets and measurable functions, and in so doing made it
possible to apply the usual limiting procedures without leaving admissible
classes. What was unexpected was that, in a reasonable sense, most of the old
concepts were very nearly still present. Egoroff's theorem showed that uniform
convergence was nearly present whenever there was convergence. Lusin's
theorem showed that the new measurable functions were nearly continuous. On
the other hand, measure theory could be applied in abstract contexts where
topology was inappropriate. In fact probabilists had been doing this for
centuries, except that they called measure “probability” and integrals
“expectations”, and of course they lacked the refinements and rigor of modern
analysis and were scorned because no one was sure what mathematical
probability was, and it certainly was not part of respectable analysis.

At the present time, one of the more profound differences between
probability and other aspects of measure theory is that if a mathematician
explicitly evaluates an integral of a function defined on a space other than a
subset of R”, the mathematician is almost surely a probabilist, even more surely
if “a.s.” rather than “a.e.” appears in the analysis. But probabilists, like other
mathematicians, are not above the use of classical methods, based essentially on
antiderivatives, to evaluate integrals of functions on RY
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Hilbert Space

1. Analysis of L?

The L” space of functions on a measure space (S,S,A) was discussed in Section
VL14. The special case p = 2 plays a strong role in analysis and will now be
discussed in more detail in an abstract form. It is useful to allow complex
valued measurable functions in this study. Complex conjugates are indicated by
upper bars. Recall that a complex valued function fis measurable if and only if
its real part Rf and imaginary part Jf are.

The following are basic properties of L, some obtained by setting p = 2 in
Section VI.14.

(a) The space is a linear space, that is, linear combinations (with complex
coefficients) of members of the space are in the space.

(b) Each pair f, g of members has an inner product

(1) (re)= [ 15
S

that satisfies the following conditions.

(i) Hermitian symmetry: (f,g) = (g,f)—.
(i1) Linearity in the first argument: for complex constants ay, a;:

(afirarrg) = al(figd+a.8).
(i) (ff) 20, with equality if and only if f= 0 a.e.

The number If| =O§f)1/2 is the norm of f. (The subscript 2 will be omitted
from the norm notation throughout this discussion of L2.) A glance at the proof
in Section VI.12 of the Holder inequality for the case p = 2 shows that the
properties under (b) imply the Schwarz et al. inequality

(1.2) ()l <111 g1
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without the necessity of referring back to the definition of the inner product as
an integral. More explicitly,

a3 gLt P - 1G] = Digrr -(rg)e 1220,

Inequality (1.2) implies Minkowski's inequality in the present context:
1.4) If+gl<ifl+lgl,
and this in turn yields the triangle inequality for L2,
(1.5) If-Al < If-g I+ Ig-hl.

(c) The pseudometric space L" is complete. It is convementzto write in a special
way that a sequence f. of functions converges to f in the L™ pseudometric, that
is, that there is a limit in the mean of order 2:

(1.6) Lim.f, =f;

“of order 2" will be omitted below.

2. Hilbert space

The properties listed in Section 1 suggest a postulate system that makes it
possible to ignore the measure background. That is, instead of functions f, g,...
postulate that there is an abstract space 1), Hilbert space, consisting of points,
written in boldface: f, g,... with the properties listed in Section 1(a), 1(b)(i) and
(ii). The inner product and norm notation used for L? will also be used for T,
Properties (a), (b) (i), and (ii), with the points of I in boldface instead of L
functions in italics, need no changes in wording. The product of the complex
constant 0 and a member of ) is a member 0 of 1, the identity element of the
space considered as a group with group operation addition. Property (b)(iii) can
now be restated without reference to a measure space: Ifi = 0 if and only if
f=0, and (c) becomes: B is a complete metric space under the definition that
the distance between f and g is If-gl. One way of looking at this discussion is
that as so defined T satisfies properties (a), (b), and (c) if these properties are
restated in the language of equivalence classes, in which functions are identified
if they are equal almost everywhere.

The axioms given above are for complex Hilbert space. Real Hilbert space
has the same axioms except that the inner product is real valued, and in (b)(ii)
only real coefficients a; and a; are allowed. These axioms correspond to the
properties of real v%lued functions (or better, equivalence classes of real valued
functions) in an L~ space. In this chapter the Hilbert space will always be
complex unless the contrary is stated.
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The preceding paragraphs outline the axioms of Hilbert space. Readezrs who
prefer measure theory to axiomatics can think of the space as an L~ space
partitioned into equivalence classes, but they may lose the flavor of the
geometry of the space. To stress this flavor, points of 1) will be called
“vectors”. The intuitive simplified picture is that these are analogs of vectors
from the origin of a finite dimensional Euclidean space; the Euclidean distance
between the endpoints of two such vectors corresponds to the distance between
two Hilbert space vectors. In fact the Euclidean space picture is a special (real)
Hilbert space according to an example below.

Continuity of the inner product. The inequality

(2.1) |(f,g) - (fl’gl)l = l(f'fl’gl) + (f-fn,g-gl) + (fl,g-g1)|
< Iff gl + -1 Ig-g,| +If 1 ig-g,!

implies continuity of the inner product at the pair f;, g;. It follows that the norm
is a continuous function of its argument.

Dimensionality. The dimensionality of a Hilbert space is infinite if there are
arbitrarily large finite sets of linearly independent vectors; otherwise it is the
largest cardinality of a set of linearly independent vectors.

Hilbert space isomorphisms and unitary operators. Two Hilbert spaces
are isomorphic if there is a 1-1 linear correspondence between them preserving
inner products. A unitary transformation on a Hilbert space is a linear
transformation T of the space onto itself which preserves inner products.
Observe that preservation of norms implies preservation of the inner product. In
fact if T is a norm preserving linear transformation of a Hilbert space onto
itself, or even only into itself, then the two equations

if+gl =1TE+g)l, f+ig = ITE+ig)

imply, when the equalities are squared and written out in detail, that (f,g) =
(Tf, Tg).

Example. The axioms of Hilbert space are modeled on the properties of
complex function L” space, which in turn is an obvious example if the functions
are replaced by equivalence classes, identifying two functions if they are equal
almost everywhere. In particular, if the measure space is the space of strictly
positive integers (or of those < N), if all subsets of the space are measurable,
and if each singleton has measure 1, L becomes the space of infinite (or length
N) sequences a. of complex numbers, with

2.2) lal=E1a)? <+e, (ab)=%ab.
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This special Hilbert space is denoted by I’. In this special L’ context, null
sets are empty, and therefore “almost everywhere” never appears.

Orthogonality. Vectors f and g in I are orthogonal to each other if
(f,g) =0. The vector f is orthogonal to a set of vectors if it is orthogonal to each.
If f is orthogonal to g, then If+g| =1 + ﬂgl the Hilbert space version of the
Pythagorean theorem. Without orthogonality,

2.3) it+gl = 1P +1g” + 2% (5.g).

A set f. of vectors is an orthonormal set if the vectors are pairwise
orthogonal and each has norm 1. An orthonormal set is complete if there is no
vector other than 0 orthogonal to every vector in the set. If the set is not
complete there is a vector of norm 1 orthogonal to every vector in the set. In I,
the sequence (1,0,0,...), (0,1,0,...),... is an orthonormal sequence, which is com-
plete because orthogonality of (a;.4....) to the nth member of this sequence
implies that a, = 0.

Subspaces. A subset of B is a subspace (or a closed linear manifold) if it is
a closed set that is linear, that is, that contains the linear combinations of its
members. Observe that the closure of a linear subset of ) is also a linear set
and therefore is a subspace. The vectors orthogonal to a given set of vectors
form a subspace. In particular the set of vectors orthogonal to a subspace M is
the orthogonal subspace, denoted by m The geometric notion of a subspace
is a hyperplane through the origin.

3. The distance from a subspace
If A is a subset of a Hilbert space, let d(f.A) be the distance from a vector fto A.

Lemma. If M is a subspace of a Hilbert space, there is a unique vector in
M at distance dE, M) from £.

Proof. If fis in M, d(f,M) = 0 and the lemma is trivial. If f is not in M, let g,
be a sequence of points of M for which lim If-g.l= d(f, ). It will be shown

that the sequence g. is a Cauchy sequence, converging to the point of M closest
to f. Note the equation

2 2 2
3.1) gm-gnl’ = gl + 1-gal’ - 2R(F-gm g1 ).
The inequality

(3.2) - (gn+en )2l <U-gl/2 +Iif-g,l/2
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implies that the left side of (3.2) tends to d(E, M) when m and n become infinite.
The limit equation

(3.3) EE M) = Timyy, ysoo H-(gn+e,)2”

= ity oo [1-gol*+ 1£-gut 42 (£-g .-, ) | 14
implies
(3.4) litnp psoo R E-gf-gs ) = 4°C. ).

This limit relation combines with (3.1) to yield the fact that g. is a Cauchy
sequence: limy, ;oo 1,~gnl= 0. Thus the sequence g. has limit g, at distance
d(f, M) from £, by continuity of the distance function. There is only one vector
of M at distance d(fM) from f, because if g and g" are vectors in M at
distance d(f,#¥) from f then g'=g" because what was just proved implies that the

URERT R}

sequence g'.g"g'...., in which the two vectors alternate, is a Cauchy sequence.

4. Projections

The projection of a Hilbert space T onto a subspace il is the transformation
taking each point f of ) into the closest point to f on .

Theorem. The projection T of 1 onto 8 has the following properties.
(a) T is idempotent: T2 =T.
(b) T=f for £ in M; TE=0 for £ in M.
(¢) T is Hermitian symmetric: (Tf,g) = (f,Tg).
(d) For every vector f, £ —Tf is orthogonal to M. Thus the equation
f= Tf + (-Tf) is a representation of f as the sum of a vector in M and one in
im Such a repre 9entatmn is umque and the second summand is the projection
of fon M. Moreover (m )
(e) T is linearr T(af+bg) = aTt+bTg, for all complex constants a,b, and all
vectors f, g.

Conversely, if T is a transformation from W into a subspace M, and iff-Tf
is orthogonal to M8\ for all f, then T is the projection on the subspace.

Proof of (a). This property follows trivially from the projection definition.

Proof of (b), (c), and (d). If g is a point of #, the inequality
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@.1) I-TH < If-(Tf+g)l” = I-TA" + Igl’ - 2R(E-Th,g)
implies that
4.2) Igl® > 2R(E-Tf,g).

The vector g can be replaced here by cg, with an arbitrary complex constant c,
and then if ¢ tends to 0, (4.2) yields (f-Tf,g) =0, that is, f~Tf is orthogonal to
M.

Thus f=Tf + (f Tf) is a representation of f as a sum f = f;+f of a vector in
M and one in M If £ = f] +,' is a second such representation, f,-f,' =f,—f, is
a vector in both #l and " and is therefore 0. Thus this representation of f as a
sum of orthogonal components is unique. Since the projection of ) on M
prov1des another such representatlon it follows that f-Tf is the projection of 1
on m and that Ml = (m ) Direct computation yields, in terms of the
representations of f and g as sums of components in ##l and MJ’,

“4.3) f=f+f,, g=gi+g, (Tf.g) ={.g)=0FTy.

Proof of (e). In the notation of (4.3), af+bg = (af; +bg1) + (af,+bf,) represents
the left side as the sum of vectors in M and M from which the linearity
property (e) can be read off.

Proof of the converse. Under the hypotheses of the converse, f = Tf + (f——Tf)
expresses f as the sum of vectors in ffl and M™, and T is therefore the
projection on 4.

5. Bounded linear functionals on T

A bounded linear functional on B is a function L from T to the complex plane
which is linear and bounded, that is, for all complex constants a, b, and all
vectors f, g

6.1 L(af+bg) = aL(f) + bLL(g), Ll <cim,

for some positive constant ¢. The minimum value of ¢ satisfying (5.1) is the
norm of L. Observe that L is continuous, because IL(f-g)l < clf-gl.

Example. If g is a vector, the function f=(f,g) is a bounded linear
functional. In fact, linearity of the functional is an inner product axiom, and the
boundedness follows from the inequality I(f,g)| < Iglifi, according to which the
norm of this linear functional is at most Igl. The norm of the functional is
actually Igl because there is equality in this inequality when f = g. Different
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choices of g yield different linear functionals, because (f,g,) = (f,g;) for all f
implies that g;-g, is orthogonal to every vector, in particular is orthogonal to
itself, and is therefore 0. According to the following thegrem, every bounded
linear functional has the form of this example. Thus, for L on a measure space,
this theorem sets up a linear, norm and order preserving correspondence
between bounded linear functionals on L’ and the members of the dual space,
which is also L.

Theorem. If L is a bounded linear functional, there is a vector h for which
L(*) = (+h).

Proof. The set of vectors on which L vanishes is a subspace #l of ). If the
theorem is true, h must be orthogonal to M. Let T be the projection of I on
M. Then for every vector f, f-Tf is in M1, L(f) = L(Tf), and for every vector g,

(5.2) L[L#)Tg-L(g)Tf]=0,

It follows that for all vectors f and g, L(f)Tg-L(g)Tf is a vector in 8 and ml
and is therefore 0. Thus M is the space of multiples of some vector hg in #".
If hy=0, the theorem is true with h=0 and L vanishes identically. If hy=0, it can

be supposed that lhol = 1. Then f = gh, + f, with f; in #fl, for some constant a

depending on f, and in fact (f,hg) = a. Finally, L(f) = (f,hg)L(hy), that is, the

theorem is true with h= L (hg)h,,.

6. Fourier series

If f. is an orthonormal sequence and f is an arbitrary vector, the number (f f,) is
the nth Fourier coefficient of £ (relative to £) and 2(f.f.)f. is the corresponding
Fourier series of f. The notation f ~ X a.f. will mean that the series is the
Fourier series for f, that is, that the coefficients are the Fourier coefficients. The
key convergence properties of orthogonal series are given by the following
theorem.

Theorem. Let f. be an orthonormal sequence in a Hilbert space H .
(a) The series LaJf. converges if and only if © Ia.l2 < oo,
(b) Iff =Zads and g= Zb.g. are convergent series, then (f,g) = X ub.
(c) (Bessel's inequality) If f~ Za.f, ,then IfIZZ z Ia.Iz.

Proof of (a). The series Zadf. converges if and only if the Cauchy condition
k k
6.1) 1imj koo | Y, anful” = limj o0 3 121" =0,
n=j n=j
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and therefore if and only if = lad < +oo.

Proof of (b). By direct calculation, if fand g are given as the indicated sums,

m m m
(6.2) (f' Z anfn.g— Z bngn) = (f,g) - Z anl;n-
n=1

n=1 n=1
Apply continuity of the inner product to obtain (b) when m—+ee.

Proof of (c). It is sufficient to prove Bessel's inequality for a finite orthonormal
sequence. In this case, if f ~ Za.f., there is no convergence problem, and
(special case of (6.2))

2

(6.3) If— Zafd’ =if = Sl >0.

7. Fourier series properties

The following theorem lists the Fourier series properties with special emphasis
on their geometric significance.

Theorem. Let f. be an orthonormal sequence in a Hilbert space 1.
(a) The class ' of the sums Za.f. with = lau’ < +o0 is a subspace of M.

(b) If £~ Zad. then the selries converges; denote the series sum by f. Then B'
is the class of vector sums f .

(c) f is the projection of fon W', and f-f is the projection of fon B b=
T if and only if £ is a complete orthonormal sequence. In this case, f ~ Zadf.
implies that f= Za.f..

(d) (Parseval identity) If f. is complete and f= Za.d. and g= Zb.g., then
(7.1 m =zt (fg) = Zabn.

Equivalence of the Parseval identity and equality in Bessel's inequality.
If the Parseval identity holds for all pairs f, g, then it is trivial that there is
equality in Bessel's inequality; one need only take f = g. Conversely, if equality
holds in Bessel's inequality for all f, then Parseval's identity holds for all pairs f,
g. In fact if equality in the Bessel inequality is written out for f, g, f+g, and if+g,
the equations imply the Parseval identity.

Proof of (a). Rather than proving directly that ' is linear and closed, it is
more instructive to note that by its very definition ' is in 1-1 correspondence
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with the Hilbert space of sequences (Fourier coefficients) a. satisfying
2 la.” < +4oo, described in the example in Section 2. The correspondence
preserves inner products, and the two spaces must therefore be isomorphic
Hilbert spaces.

Proof of (b). According to ’l:heorem 6, the series converges. The second
assertion of (b) states that if f = X a.f. then the coefficients are the Fourier
coefficients. Apply the continuity of the inner product:

(7.2) (.£) =limp—so0 (’ga,,fn,fk) —a

Proof of (c). The fact that the vectors fand f " have the same Fourier coefficients
implies that the difference f-f "is orthogonal to every f,, and therefore to every
linear combination of these vectors, and therefore (continuity of the inner
product) to the closure T’ of these linear combinations. Thus f = f'+(f-f ') is the
representation of f as the sum of a vector in ' and one in T that is, as the
sum of its projections on these mutually orthogonal subspaces. Completeness of
f. is equivalent to ™" = 0.

Proof of (d). This is now simply an application of Theorem 6(b).

8. Orthogonalization (Erhardt Schmidt procedure)

If g;.....g), are linearly independent vectors of a Hilbert space, the following
procedure yields an orthonormal set fi,....fy of linear combinations of these
vectors, and the given vectors are in turn linear combinations of those in the
orthonormal set. Define

f; = giligil,
8D &=g- (2 £, = £/,
fy' =gy - (gS’fl)fl - (g3,f2)f2’ f; = £;11f51,

The idea guiding this procedure is that when j > 1, the vector f;' is g; less the
sum of its Fourier series for the orthonormal set £y, 8

Dimensionality of a Hilbert space and complete orthonormal sets. If a
Hilbert space has finite dimensionality N, the result just proved shows that there
is an orthonormal set of N vectors. This set is obviously complete.

Suppose that a Hilbert space J has infinite dimensionality, but that the
space is separable, that is, there is a dense sequence g. of vectors. Delete from
this sequence any vector g that is a linear combination of gi,....g ¢-;. The
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remaining vectors have the property that their linear combinations are dense in
the space and that every finite subset is a linearly independent set. Apply the
Schmidt procedure to these remaining vectors to find an orthonormal sequence
f.. The linear combinations of the vectors f. are dense in the Hilbert space. The
closure of the linear combinations is a subspace of I according to Theorem 6,
and therefore is J). Thus the sequence f. is a complete orthonormal set, an
infinite sequence, because J) was supposed infinite dimensional.

Conversely, if a Hilbert space has a countable complete orthonormal set the
space is a separable metric space. In fact if the sequence f. is a complete
orthonormal set, the class of all finite linear combinations of these vectors with
rational real and imaginary part coefficients is a countable dense set.

Separable Hilbert spaces and I°. If a Hilbert space I is separable and if f.
is a finite or infinite complete orthonormal sequence, as determined by the
dimensionality of J), every Hilbert space vector f is the sum of its Fourier
series, f = X a.f., and according to (7.1),

=% la = lal’,

where the first norm is that for J) and the second is that for the Hilbert space r.
Thus there is a_one-to-one correspondence between the vectors of the Hilbert
spaces I and I, which preserves norms, and therefore, as remarked in Section
2, preserves inner products. That is, these two Hilbert spaces are 1somorph1c

This argument shows that up to isomorphisms, for a given dimensionality, Pis
the most general Hilbert space, at least if the Hilbert space is supposed
separable. The conclusion is actually valid for the most general Hilbert space, if
uncountable infinite series are allowed, under the usual summation conventions.

9. Fourier trigonometric series

Let S be the circle in R” of radius 1 with center the origin, equivalently the
interval [-rt, ] of R, for -m identified with 7. The measure involved is one-
dimensional Lebesgue measure. The sequence f. defined on [-T,xt] by
fa(s) = 2m) 28, p = -,-1,0,1, is an orthonormal sequence. According to
Section VI.14, the setzof linear combinations of these funcztions is dense in the
pseudometric space L. It follows that every function in L” is equal to the sum
of its Fourier series, in the sense that the partial sums converge to the function
in the mean. Actually it was proved by Carleson that there is almost everywhere
convergence in this particular context.
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10. Two trigonometric integrals

The following integrals, in which ds refers to Lebesgue measure and only
Riemann integration is needed because the integrands are continuous, will be
used in discussing Fourier transforms:

- =n - =fr >0
sin 1—cos PBs
(10.1) J Sﬁsds -0, _[—szﬁds =0 if =0
o =n =Bn <0.

The first integral, which is not absolutely convergent, is defined by

o
) sins
(10.2) limg—y00 J‘ T ds

o

and is evaluated by residues. Replace sins by sints in the first integrand and
integrate with respect to t over the interval [0,B] to evaluate the second integral.

11. Heuristic approach to the Fourier transform via
Fourier series

Throughout this section the measure involved will be Lebesgue measure on R
or on a subinterval of R.

The Fourier transform. If fis a Lebesgue measurable function from R into
R, the Fourier transform Uf of fis defined by

oo

(L U0 =@ry' [ fises ds,

00

under suitable hypotheses on f, and the integral is the Fourier integral. (In the
following, the left side of (11.1) will be abbreviated to Uf(t).) If i is replaced
by —i in the integrand, the integral is the inverse Fourier integral, defining the
inverse Fourier transform U*. The Fourier integral is well defined when
fe L'(R), but it is sometimes necessary to define the Fourier integral in a way
that requires less of f There is a general principle that possibly with
generalizations of the definitions of the integrals involved, U and U* are
inverse operations, and that these operations preserve inner products, that is, on
suitably restricted domains, UU* and U*U are the identity and
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(ﬁg) = (UﬁUg) = (U*ﬁU*g)-

This rather vague remark will be justified by the Fourier-Plancherel theorem in
the next section, and by Lévy's theorem on the representation of a distribution
function in terms of its characteristic function in Section X.14.

The following unrigorous argument leads from trigonometric Fourier series
(which make correspond to a function in Lz([~n,7t]) (Lebesgue measure) the
sequence in I of its Fourier coefﬁcients) to Fourier integrals (which, in the
context of the Fourier-Plancherel theorem, make correspond to2 a function in
L°(R) its generalized Fourier transform, also a function in L (R)). Fourier
series based on a complete orthornormal sequence define a transformation from
one Hilbert space onto a second; Fourier transforms, in the context of the
Fourier-Plancherel theorem, define a transformation from a Hilbert space onto
itself. Both transformations preserve inner products.

The relations to be applied between the Fourier trigonometric series of a
function fin Lz([-TC,TE]) and its coefficients, are n
(11.2) f(s)t: @Qny'12s, bpe"S, b, = (2m) 12 J. fls) einsds,

? ‘"

j )P ds=x " Ib,

-
Here the first sum is convergent in the mean. These relations can be rewritten
for functions defined on the interval [-Ir,Int], in the form I
(11.3)  fls) = Quy1252 b(n,l) "Y1, b(n,l) = 2my 1”2 J' fis) eisnll gs,

mn -Int
j Iy s = = 2 bl
-t

in which b(n,l) is not normalized like a Fourier coefficient. When [ becomes

infinite, the sums are approximating sums for Riemann integration and thereby
suggest, with a change of notation and the help of a grain of salt, the relations

©o o0

foy=@re [Uweistar =00 U0 =@mte [ A e ds,

-0 -0

(11.4)

o0 o0

J' i) ds = JIU*f(t)Izdz.

-0 -0
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These manipulations suggest that if f is in L’ and Uf and U*f are suitabl
defined, if necessary by loosening the definition of an integral, then Uf and U f
are in L*, UU* and U*U are the identity, and U and u* preserve L™ norms; as
has already been noted, U and U* then also preserve inner products.

12. The Fourier-Plancherel theorem

This theorem is the most elegant version of (11.2) in the Fourier transform
context. In the following, the measure is Lebesgue measure on R. Observe that
if fis in L’ (R) it does not follow that fis in L. (R), and therefore the Fourier
integral of f cannot be defined as an ordinary integral. The Fourier-Plancherel
theorem solves this problem by using an L~ definition of the Fourier integral.

The clearest way to deal with the Fourier-Plancherel theorem is to use both
L’ and Hilbert space terminology. To make the reasoning both perspicuous and
correct a careful distinction will be made between L™ functions and their
equivalence classes. If fis a function, the corresponding equivalence class,
consisting of all functions equal to f almost everywhere, will be denoted by f
and identified as a point of the Hilbert space T of equivalence classes. (The
only exception is the notation for an indicator function, already in boldface, but
it will be clear from the context whether an indicator function or an equivalence
class is meant.) Thus, for example, convergence in the mean of a sequence f. is
equivalent to Hilbert space convergence of f.. In the following theorem Uf is
defined as a function, a certain limit in the mean. Such a limit is any function in
an equivalence class of functions in L’. This equivalence class is unaffected by
a change of f on a null set. Thus U determines a transformation of equivalence
classes, that is, a transformation U from B into itself.

Theorem. Iffe LZ(R), the mean limits

(12.1) Uf(t) = 1i.m. gy 00 (2712 Jf(s) eIt s |
-0
U*f(#) = Lim.gyoo(2m) 12 J As) eist ds
-0

exist. The transformations U and U¥* are unitary operators on M, and each is
the inverse of the other.

e 2 1 T
Observe that if fis in both L" and L', the mean limits in (12.1), once they are
known to exist, can be chosen as the ordinary integrals.

Proof. The Fourier transforms of the indicator functions of compact intervals
can be calculated as ordinary integrals, as can — using (10.1) — the inner
products of the Fourier transforms:
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¢ith _ ita eitd - gitc
Ulgpi="1—, Ulq)=""—,
itV 2n itN2m
(12.2)
mcost(b-d) + cost(a-c) - cost(b-c) - cost(a-d)
(V1101 c)= J by d
= (1[a,b1’1[c,d] )

Observe that Ufin (12.2) is in L’(R) but not in L'®R). It follows from (12.2)
that the Fourier transform U defines a linear transformation, which preserves
inner products, on the class of step functions constant on intervals. The
corresponding Hilbert space transformation U is thereby defined on a certain
linear set, dense in I according to Section VIL.15.

Now (Section 0.12(b)) a uniformly continuous function from a dense subset
of a complete metric space into a complete metric space has a unique con-
tinuous extension to the whole space. In the present context, the extension of U
is a linear map of B into itself, with a corresponding extension of U. Moreover
(continélity of the Hilbert space inner product), U preserves inner prodlzxcts If
f e L"R) and [ is a finite interval, the restrlctlon tol of fisin L (1) and
therefore (Schwarz et al. inequality) also in L' (), that is, fly is in both L (R)
and L R). If fs is a sequence of step functions, vanishing outside /, convergent
in the mean to f1j, the Fourier transform sequence Uf. has as limit in the mean
the Fourier transform of flj, and therefore Uf, as defined by the extension
theorem, is the Fourier transform of f1;. That is, one version of U(f 1) is given
by an ordinary integral:

UG = @ry'2 [ fis) ei5 ds,
(12.3) oo !
j ool dr = j i)l as.
-0 [
It follows that if /. is an increasing sequence of finite intervals with center

the origin and limit R, the sequence of integrals

(271:)'”2 J‘f(s) PAN
I.
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is a Cauchy sequence in L. Thus Uf is defined by (12.1) and preserves inner
products. Similarly, U* is defined by (12.1) and preserves inner products.
Apply U* to Ul[, ], evaluated in (12.2):

Q

(12.4) UH(Ulggp))(s) = Lim.gose Je—ist

-0

elth - pita
~—dt

2mit

0Lsinz‘(b—s)— sint(a-s)
=limgoe | - dt.

-

According to (10.1), the pointwise limit of the second integral is 1(4 p),
neglecting the points a and b, and therefore this indicator function is also the
limit in the mean. Thus U*U, neglecting null sets, is the identity on the class of
indicator functions of intervals, therefore also on the class of linear
combinations of these indicator functions, and therefore (continuity of these
distance-preserving operators) U*U is the identity on L2, that is, U*U is the
identity on T). The set UD is a subspace of J). If an element of I is orthogonal
to this subspace, U™U takes this element into one orthogonal to P, and it
follows that the element is the zero element, that is, U is a unitary operator
taking T onto itself, and U™U is the identity. Similarly, Urisa unitary operator
taking T) onto itself, and UU" is the identity.

13. Ergodic theorems

If U is a unitary transformation of a Hilbert space onto itself, the invariant
vectors, that is, those vectors f satistying the equation Uf = f, form a subspace.
The iterates of unitary transformations on a Hilbert space arise in many
applications, and it is an important theorem that the average of the iterates
converges to the projection on this invariant subspace. Applications and
examples will be given after the proof of the theorem.

Theorem (von Neumann's Hilbert space ergodic theorem). Let U be a

unitary transformation on a Hilbert space B, and let P be the projection of T
onto the invariant subspace 8 for U. Then for every vector f,

n
. 1
(13.1) limy e~ Y U Pt
m=0

To prove the theorem, following F. Riesz, it is sufficient to prove that (13.1)

is true both for £ in M and f in iml, because each average in (13.1) is a linear
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transformation of f, and f can be written as the sum of a vector in # and one in
M~ Tt is trivial that (13.1) is true for f in M. There remains the identification

of ML, and the proof that the limit on the left in (13.1) is 0 for f in that
subspace. Denote by 2 and ?, respectively, the linear class of vectors of the

form g-Ug and the closure of R, a subspace. It will be shown that M=m
and that the limit in (13.1) is 0 when fis in 2. In the equality

13.2) (h,g-Ug) =(h,g) - (h,Ug) = (Uh,Ug) - (h,Ug)
= (Uh-h,Ug),

if h is orthogonal to J, the first term on the left vanishes for every g, and
therefore the last term vanishes for every g. Hence Uh-h is orthogonal to UM,
that is, to 1), and it follows that Uh-h = 0, that is, h is in M. Conversely, if h
is in W, the last term in (13.2) vanishes for every g, and the vanishing of the
first term means that h is orthogonal to 2. Thus the subspaces ffl, 2 are
complementary orthogonal subspaces. If € > 0, f is in 2, and g-Ug is a vector
in 2, at distance at most € from f, then

n n
1 m 1 n
(133) I— Y, U <l— Y U te-Ug ]l + lg-U" glins1).
m=0 m=0

The first term on the right is majorized by €, the second is majorized by
2lgl/(n+1), and therefore the limit of the term on the left is O when n becomes
infinite, as was to be proved.

Example (a) (Koopman). Let (S,S,A) be a finite measure space, let T be a
one-to- one transformation of S onto itself, and suppose that T is measure
preserving, in the sense that T takes measurable sets into measurable sets of the
same measure. If f is a measurable function from S into R, define a
transformation U of functions by (Uf)(s) = f(Ts). Then U is a linear
transformation, takes measurable functions into measurable functions, and Uf
has the same distribution as f. Hence, for every p = 1, U on L? is a linear norm-
preserving transformation of L onto itself. In particular, if p = 2, U defines a
unitary transformation U of the Hilbert space of equivalence classes of L™. A
function f is invariant if f(s) = f{Ts) for almost all s, that is, if its equivalence
class is invariant under U. A set is invariant if its indicator function is. For
example, the almost everywhere constant functions are invariant functions, and
the null sets and their complements are invariant sets. If the latter are the only
invariant sets, then an invariant function is necessarily equal almost everywhere
to a constant, because if fis an invariant function, every set of the form {fe A},
with A in B(R), is an invariant set.
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The study of the iterates of a unitary transformation of Hilbert space gives
information on the iterates of measure-preserving transformations. Measure-
preserving transformations of the phase space of mechanical systems are of
fundamental importance in physics, and the question of possible long-time
averages of transforms of a function, that is, of possible limits of the average of
the first n transforms of f, is crucial. In the slang of physics, the function f has a
space average A[f] = MfV/A(S), and one important question is whether the long-
time average of the transformed functions,

(13.4) nm,,_m Z AT(s)) —llm,,_>°° 2 Ufs),

exists in some sense, and 1f S0 whether this limit average is constant and equal
to the space average. The following translation of Theorem 13 into measure
theory gives one answer to this question.

L’ Ergodic theorem. Let (S,S,A) be a finite measure space, and let T be a
one-to- one measure-preserving transformation of S onto itself. If fe L~ then

(13.5) LM e 2 AT7(s))

m=0

exists. The limit is almost everywhere constant (necessarily the constant
A[f])/?u(S)) for every choice of f if and only if the only invariant functions are
the almost everywhere constant functions, equivalently if and only if the only
invariant sets are the null sets and their complements.

Generalization of the L° ergodic theorem. In the preceding discussion,
define f,, = U™, for n 2 0. The sequence f. is stationary, in the sense that for k >
1, the k-dimensional distribution of f;,.fy, 41,-..fn+k-1 18 the same for every integer
n. That is, the distributions involved are invariant under index set translation.

Suppose, more generally, that f.' is an arbitrary sequence, indexed by the
positive integers, of measurable square integrable functions from a finite
measure space (S',S,A") into R, with the stationarity property that for k 2 1, the
k-dimensional distribution of f,,' fy; 41',.. fu+k-1' is the same for every positive
integer n. As an application of the ideas in Section V.6 on measures in
coordinate spaces, it will now be shown that the study of such a stationary
sequence can be reduced to the context of the L’ ergodic theorem. Let the index
set I be the set of all integers, and let S be the space R/ of all sequences
(indexed by I) of real numbers. Let f,, be the nth coordinate function of S, and
letS = o(fs) be the s algebra of subsets of § generated by the class of sets of the
form {f,, € A}, where A is a Borel subset of R. In other words, S is the smallest
o algebra making all the coordinate functions measurable. For each n in I and
each k = 0, assign to the coordinate functions fy,....fp4x of S the joint
distribution of fy,....fy'. These distributions are mutually consistent in the sense
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of Section V.6, because the joint distributions of the given functions are
mutually consistent, and these distributions therefore determine a measure A on
S, according to Theorem V.6. By definition of A, the joint distribution of the
coordinate functions fy,...fi is the same as that of the given functions f',... /',
and therefore in any question regarding limits of averages of the given
functions, there is no loss of generality in replacing $'',S',A') by (5',S,A) and
replacing fo' by {f;, n = 0}. The space S has the advantage that if T is the
translation taking each point of S into the point with index value increased by 1,
then T is a one to one measure preserving transformation of S onto itself and
JoT™s) = fu(s). Thus the problem of the possible limits of successive averages
of members of the original stationary sequence f.' has been reduced to the
context of measure preserving transformations. The fact that the mean limit in
(13.5) exists implies that the corresponding mean limit for the original primed
functions exists.

Example (b). Consider the N-dimensional Hilbert space I° defined in Section
2. Let f. be a complete orthonormal sequence in the space, let &.. be N numbers
of modulus 1, and define

U(Zaf.) = Xowad..

The transformation U is unitary, and Um(Za.f.) = XaMapf,. Since the sum
1+0++0"1 is n when o = 1, and otherwise is (1-0/*)/(1-o0). It follows that

n
. 1 m
(13.6) limypoe = O, U= Doy, afn = PR,
m=0

where P is the projection of T onto the subspace generated by those vectors fy,
with oy, = 1, that is, P is the projection on the invariant subspace for U, as it
should be according to the Hilbert space ergodic theorem. This simple example
is actually not far from the general case. To formulate a hint of the general case,
let B. be the distinct values of o and write U in the form U = 2 B.P., where P,
is the projection of the Hilbert space on the subspace of linear combinations of
f;, for those values of k with oy = B,,,. Thus these projections are on mutually
orthogonal subspaces. The general unitary transformation of a separable Hilbert
space has nearly the same form: the finite sum is replaced by a continuous sum
(a form of Stieltjes integral of a family of projections).

Example (c). Let S be a circle of radius 1, S = B(S), and A be Lebesgue
measure on the circle. Let o be an irrational number and T be the rotation of S
through o radians about the center. Then T is one to one and measure
preserving. Moreover, only the almost everywhere constant functions are
invariant under T. To prove this assertion, suppose that T is a square integrable
invariant function. Then the Fourier coefficients of f and the transformed
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function must be equal, and a trivial calculation yields, for the sequence a. of
Fourier coefficients of f,

(13.7) ap = a,e"®, (n=0£142,..).

Then a,, = 0 except possibly when n = 0, and therefore the Fourier series for f
makes f an almost everywhere constant function. The L’ ergodic theorem yields
the limit equation

(13.8) Lin.p—seo ‘—1 2 Jlsrmo) = j fs) ds,

where ds refers to Lebesgue measure.

The law of large numbers. A theorem that states that the sequence of
successive averages of a sequence of functions on a probability space is
convergent in some sense, is a law of large numbers. If the theorem states that
the convergence is azlmost everywhere convergence, it is a strong law of large
numbers. Thus the L ergodic theorem, and the corresponding limit equation for
a stationary sequence are laws of large numbers when the measure space is a
probability space. This sort of romantic nomenclature adds romance (and
mystery to nonprobabilists) to measure theory whenever the measure of the
space is 1!

According to the Birkhoff ergodic theorem, whose proof will be omitted, the
limit equation (13.5), and the corresponding limit equation for a stationary
sequence, are true in the sense of almost everywhere convergence, even if fis
supposed to be only in L'. When the measure space is a probability space, the
Birkhoff ergodic theorem is thus the strong law of large numbers for stationary
sequences of random variables.

The law of large numbers in the independence case. Let f. be a sequence
of mutually independent random variables, with a common distribution, on a
probability space (S,S,P). Recall that if the common distribution is the measure
A of Borel subsets of R, one representation of such a sequence is the sequence
of coordinate functions of infinite dimensional Euclidean space RxRx w1th
the product measure AxAX-:. The sequence f, is stationary, and therefore the L’
ergodic theorem is applicable if f; is in L”. In this case the limit is almost surely
constant, according to the 0-1 law (Theorem V.9) and the L’ law of large
numbers takes the form

n
(13.9) Limp e 7oz 2, Ja=EUf).
m=

As already noted, this limit is valid as an almost everywhere limit, even when f,
isin L', and when so stated (13.9) becomes the strong law of large numbers for
identically distributed independent random variables. This form of the strong
law of large numbers will be proved (Theorem X1.19) as an application of a
martingale convergence theorem.



VIII

Convergence of Measure Sequences

1. Definition of convergence of a measure sequence

This chapter discusses the kinds of convergence of a measure sequence most
frequently met in classical analysis. The typical context to be considered is the
following. A class M of measures on a measurable space (S,S) is given, together
with a class T of functions from S into R. The problem is to find a definition of
convergence of the sequence A. in M to a measure A in M, which implies that
limA.[f] = A[f] for every function f in I'. This problem has an easy solution, a
solution by definition: the sequence A is T convergent to A if

(1.1) limA.[f] = A[A] fel.

This chapter is based on this easy solution, but there is an old proverb to take
into account: there is no free theorem. The easy solution is indeed easy, but is
only a first step in finding and characterizing a useful solution, that is, one in
which §,S, T, and M are chosen in such a way that the choice can be shown to
be applicable to the needs of analysis.

Example. The Vitali-Hahn-Saks theorem. Let (S,S) be an arbitrary
measurable space, I be the class of bounded measurable functions from S into
R, and M be the class of finite measures. Under these definitions, the indicator
functions of measurable sets are in I', and therefore I" convergence of a
sequence of measures implies setwise convergence. Conversely, the Vitali-
Hahn-Saks theorem states that if there is setwise convergence of A. to a finite
valued set function A, then A is a measure. Under setwise convergence, the limit
relation in (1.1) is true when f is the indicator function of a measurable set, and
therefore successively when f is a step function and when fis in I'. Thus T’
convergence is the same as setwise convergence.

The Vitali-Hahn-Saks theorem is a valuable tool, but setwise convergence of
measure sequences is a strong kind of convergence that is rare in classical
analysis. What is common is the following context:

(a) the space S is a metric space, either compact or at least separable and locally
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compact, and S is the class of Borel subsets of S;
(b) T is the class of bounded continuous functions from Sinto R;

(c) M is the class of Radon measures, those measures finite valued on compact
sets.

This will be the context in the rest of this chapter.

Punctured compact metric spaces. If S is a not compact metric space, a
function f from S into a metric space is said to have limit o at infinity if the
inverse image of each neighborhood of o is contained in the complement of a
compact subset of S. The following argument shows that this terminology can
be interpreted literally, under appropriate conventions.

Let S’ be a compact metric space and s’ be a not isolated point of the space.
The space S = S'—{s'} is then a locally compact but not compact separable
metric space and will be called a punctured compact metric space. Conversely,
if § is a locally compact but not compact separable metric space, it will now be
shown that under a change of metric that does not change the class of open sets,
S becomes a punctured compact metric space. To see this let §; be the distance
function of §, . be a sequence dense in S, and A. be an increasing sequence of
compact subsets of S, with union S. For each value of n, the function 8;(*,%,)A1
is a positive continuous function on S, vanishing only at f,. The function
2 8,(*A,)A2™" = g is a strictly positive continuous function on S, at most 2~
on Ap,. If “going to infinity” means proceeding through the sequence A., this
function has limit O at infinity. This idea is made precise as follows. Define

fn = [81(taglaz™.

If s and ¢ are points of S at which f,(s) = f,,(¢) for all n, then s = ¢. Define a new
distance function d for S by

(1.1) 8(s, ) = Zlfu(s)~fol0).

The space S under the 8 metric has the same topology as under the &; metric
because a sequence s. has limit s in S under one of the two metrics if and only
if it has s as limit in the other. Adjoin a point “e” to § to obtain a space S’ =
SU{e<}, define f},(e0) = g(e<) = 0, and define distance on S’ by (1.1). Under this
definition, f,, and g are continuous on S’ If 5. is a sequence in S, either some
subsequence is &; convergent and therefore § convergent to a point of S, or only
a finite number of members of the sequence are in any one set of the sequence
A.. In the latter case, each function f,, has limit 0 along the sequence, and
therefore the sequence has the point e as limit in the 8 metric. Thus S’ is a
compact metric space, exhibiting S as a punctured compact metric space.
“Going to infinity” in S means approaching the point o of S’ in the 8 metric of
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§". In particular, an open not compact subset of a compact metric space can be
remetrized to be a punctured compact metric space. The effect of the new metric
is to replace the original boundary by a single point, oo,

If S is a punctured compact metric space and A is a Radon measure on B(S),
the extension of A to a measure on B(S") obtained by assigning a finite measure
to the singleton {eo} will be denoted by X

The class M(S). If S is a metric space, the space of finite measures on B(S)
will be denoted by M(S), and {A € M(S): A(S) < ¢} will be denoted by M ~(S).

The class C(S) and its norms. If S is a metric space, denote by C(S) the
class of bounded continuous functions from § into R, and define the sup norm of
a function fin C(S):

(1.2) If1 = sups If |.

The space C(S) is a complete metric space under the sup norm metric, in which
the distance between two functions f and g is If-gl.

If Sis a locally compact but not compact separable metric space and A. is a
sequence of compact subsets of S, with union S define a local sup norm of a
function fin C(S):

(1.3) Ifhioc = Znsupa,(f-g1A27").

The space C(S) is a metric space under the local sup norm metric, in which the
distance between two functions f and g is 1f~ghc.

When S is not compact, the sup norm metric of C(S), for which convergence
of a sequence of functions is uniform convergence, is sometimes less useful than
the local sup norm metric, for which convergence of a sequence of functions is
locally uniform convergence, that is, uniform convergence on every compact
subset of S. In the local sup norm metric, the set {fe C(S): If I <c¢} is a closed
subset of C(S) for every positive c.

Separability of C(S). The class C(S) on a compact metric space S is
separable under the sup norm. In fact, if 8(e,*) is the metric for § and s. is a
sequence in S, dense in S, then the class of rational coefficient polynomials in
finitely many variables, with arguments {8(e,s,), 21} form a countable algebra
of continuous functions on S, separating S and containing the constant functions.
Hence (Stone-Weierstrass theorem) this class is dense in C(S).

The class Cyo(S). A continuous function f from a metric space S into R has
compact support if the open subset {f# 0} of § has compact closure. Denote by
Cpo(S) the class of these functions. Then Cyy(S) < C(S), and there is equality
when S is compact.
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The class Cy(S) and its separability. If S is a locally compact but not
compact separable metric space, Cy(S) is the class of continuous functions from
S into R with limit 0 at infinity. Then Cyo(S) < Cy(S) = C(S). If S is a punctured
compact metric space, with §' = SU{eo}, extend each function in Cy(S) is to S’
by setting the function equal to 0 at . The resulting class is a closed subset of
the separable metric space C(S’) under the sup norm. Hence Cy(S) is separable
in the sup norm metric, and this assertion must be true whenever S is a locally
compact separable metric space.

Relations among Cy(S), C((S), and C(S). If S is a locally compact but not
compact separable metric space, Cy(S) is a closed subset of C(S) in the sup
norm metric. Furthermore, in this metric, Coo(S) is dense in Cy(S). To show this,
it will be shown that if € is strictly positive and fe Cy(S), there is a function fg in
Coo(S) for which If-fd < €. Since f=f vO-[(-f)v0)] it is sufficient to find f¢ for f
positive. If fis positive, define A = {f< €/2}, let 8(,A) be the distance of a point
from A, and choose c to satisfy the inequality c¢&*,A) 2 maxgf on the compact
set {f2 €}. Define fe = f Alcd(+,A)], a function in Cyy(S), and observe that the
desired inequality If-f¢l <€ is satisfied.

Sequential convergence of Radon measures. If S is a metric space, a
sequence A. in M(S) is Cyo(S) convergent to a Radon measure A (also called
vaguely convergent to A) if limAJ[f] = Mf] for fin Cyy(S). If S is compact, then
Cpo(S) = C(S), and in this context Cgy(S) convergence will be called C(S)
convergence. If S is a not compact open subset of a compact space, a sequence
Ao in M(S) is Cy(S) convergent to a Radon measure A if lim A.[f] = A[f] for fin
Cy(S). In each context the limit measure A is unique if a Radon measure A is
uniquely determined by A[f], as will be shown to be true in the contexts studied
in this chapter.

2. Linear functionals on subsets of C(S)

Let S be a topological space and C,(S) be a linear subset of C(S), that is, a
subset of C(S) containing the linear combinations of its members. The sup norm
metric of C(S) will be used when boundedness of a linear functional is
discussed.

Functionals on C;(S). A function L from C(S) into R is honored by the
name functional. A functional L is

positive if f 2 0 implies that L(f) =0,
bounded if L) < constlfl,
linear if L(af+bg) = aL.(f) + bL(g) for f, g in C;(S) and a,bin R

The following properties (a)-(g) of a functional L will be needed.
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(a) Positivity and linearity of L imply that L(f) <L(g) when f< g.
(b) L is continuous if positive, linear, and bounded, because then
@.1) ILh-Lgl = I - o)l <Ldf- gl) <const. 1f- 4.

Conversely, L is bounded if positive and continuous, because if |L(g)| <1 when
Igl < m, it follows that for f not identically O,

(2.2) Ll = amua) Linhr) < aliet.

() IfCy(S) includes the constant functions, L is bounded if positive and linear
because then

(2.3) ILpl < Ldfh < Lia.

(d) If S is a locally compact but not compact separable metric space and C(S)
=Cy(S), then L is bounded if positive and linear. To prove this, define

M =sup{L(): fe Cy(5),0<f<1}.

Unless this supremum is finite, to each strictly positive integer n there
corresponds a function f, in C ((S) for which 0 < f,, < 1 and L(fy,) = n?. Define

f= ﬁ 2.

Since the series converges uniformly, f € Cy(S) Apply the positivity and
linearity of L to obtain the inequality

L() ZL(EI:_‘, n2f,) 2k

for all £. Since this inequality contradicts the finiteness of L(f), it follows that M
must be finite. Hence L is bounded, because for g in Cy(S), and not vanishing
identically,

(2.4) IL)| <Ldglngh 1gt <Migl.

(e) The following example exhibits a positive linear unbounded functional on
Coo(S).

Example. Let S’ be the interval [0,1] on R, a compact metric space under the
Euclidean metric, and delete the point 1 to obtain S. If A is a Radon measure,
the functional L: f =A[f] on Cyy(S) is a positive linear functional, but is not
bounded unless A(S) is finite.
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(H If S is a topological space, L is a positive linear functional on Cy(S), and S,
is an open subset of S with compact closure, each function fin the class Cy(Sp)
has an extension to a function in Cyy(S), obtained by defining fas 0 on § - S,
The restriction of L to these extensions defines a positive linear functional on

CoSo)-

(g) If S is alocally compact but not compact separable metric space, a bounded
positive linear functional on Cy(S) can be extended uniquely to one on Cgy(S).
To prove this, recall that Cg(S) is a dense (in the sup norm metric) subset of the
closed subset Cy(S) of C(S), and therefore a bounded positive linear functional
L on Cyy(S) is a uniformly continuous function from a subset of a metric space
into a subset of a complete metric space. Hence (Section 0.12(b)) L can be
extended uniquely to be a positive linear functional on Cy(S).

3. Generation of positive linear functionals by measures
(S compact metric)

If A € M(S), the functional L defined on C(S) by

(3.1 L{H = NA

is a positive linear functional, bounded according to Section 2 property (c), but
here, more specifically, |L(f)| < AS)IA. The following theorem asserts that all
positive linear functionals on C(S) can be generated in this way. Thus measures
on compact metric spaces can be defined indirectly, as positive linear
functionals. (Actually this can be done on suitably restricted non- metric spaces,
but doing so is beyond the scope of this book.)

Theorem (S compact metric). If L is a positive linear functional on C(S),
there is a unique measure A in M(S) for which (3.1) is true.

Proof. (a) There can be only one measure A satisfying (3.1) because, under
(3.1), if f. is a decreasing sequence in C(S), with limit the indicator function of a
compact subset F of S, then lim L(f.) = M(F). Thus two measures satisfying (3.1)
are equal on the class of compact sets. Since the class of sets on which the
measures are equal is a monotone class containing the compact (that is, closed,
in the present context) sets, the measures are equal on B(S). (A sequence f. with
the properties used here is exhibited in part (c) of this proof.)

(b) Define set functions A and A by

(3.2) MF)=inf{L(f): fe C(S),f=1F} (F compact),
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(3.3) MG) = sup{ MF): F compact, F c G} (G open),
(3.4) A*(A) = inf { MG): G open, G A} (A e 25).

If F is a set that is both open and compact, the value of M(F) from (3.3) is the
same as that from (3.2). In particular, A(S) = L(1). The set functions A and A¥
are monotone increasing on their domains of definition. The set function At is
the outer measure generated by the class of open sets together with the set
function A on this class, and therefore the definition dy+(A,B) = X*(AAB) yields
a distance function on the class 25. The dj* closure A of the class of compact
sets is closed under finite unions and intersections, because the class of compact
sets is closed under these operations. It will be shown that A is a ¢ algebra
including B(S) and that the restriction of A* to A is a measure, satisfying (3.1)
and equal to A on the closed and open sets.

(c) If F is a compact set, there are monotone decreasing sequences of
continuous functions with limit 15, and if f. is such a sequence, lim L(f.) = A(F).
For example, the sequence {exp[(-nd(*,F)], n 21}, where 8(s,F) is the distance
from the point s to the set F, is a monotone decreasing sequence of continuous
functions with limit 1x. Moreover, if fo is any such sequence and f is a
continuous function majorizing 1r, then (Dini's theorem) the sequence fovf
converges uniformly to f, that is, converges in the C(S) metric, and therefore

MF) <lim L(f.) < lim L(f.vf) = L.
Then (c) is true because f can be chosen to make L(f) arbitrarily close to A(F).

(d) It is trivial that A = A* on the class of open sets. To see that these two set
functions are also equal on the class of compact sets, let F be a compact set and
f+ be a monotone decreasing sequence of continuous functions, with limit 1z. If
&n =fn + UUn, the sequence g, has these same properties, and the set G,= {g,> 1}
is an open superset of F. Furthermore A(G,) < L(g,) because g, majorizes the
indicator function of every compact subset of G,,. Hence

MF) < X'(F) < MGy) < Lign) L MP),
and it follows that A(F) = A*(F).
(e) The set function A is finitely additive on the class of compact sets. Let A and

B be compact sets and f. and g. be decreasing sequences of continuous functions
with respective limits 14 and 1g. The equation

(3.5) L{fn + gn) = L(fnvgn) + L{fuagn) = L{fy) + L(g,)
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yields, when n —oo, the equation
3.6) MAUB) + MANB) = MA) + MB),

which implies that A is additive on the class of compact sets.
(f) The class A contains the open sets. It is sufficient to prove that if F is a
compact subset of an open set G, then

(3.7 MG) 2 MF) + MG—F),

because if (3.7) is applied to an increasing sequence F. of compact subsets of G
for which lim A(F.) = M G), (3.7) implies that lim dy*(G,F;;) = lim AM(G-F},) = 0.
To prove (3.7) observe that if F'is a compact subset of the open set G~F , then
MG) 2 MFUF"y = MF)+MF"), and this inequality implies (3.7).

(g) A isan algebra. All that remains to be proved is that A c A. Since the class
A contains the open sets, A is the class of dj » limits of the class of all sets that
are either compact or open, a class closed under complementation. Therefore A
is also closed under complementation.

(h) The outer measure AF s finitely additive on A because the additivity
equation (3.6) is true for compact sets.

(i) The outer measure X* is countably additive on A, and A is a o algebra,
because on the one hand A" is countably subadditive and on the other hand, if A
is a disjunct countable union WA, of sets in A, VD> X*(A.) because the
inequality is true for the partial sums. This countable additivity shows that A is
closed under countable unions, and is therefore a ¢ algebra including B(S).

()) Equation (3.1) is correct with A extended to B(S) by A*. Since MS) =LA), it
is sufficient to prove that (3.1) is true for fincreased by a constant function, and
therefore it is sufficient to prove (3.1) for strictly positive f, and it is even
sufficient to prove that L(f) < A[f] for strictly positive £, because this inequality
can then be applied to the function c1-f for ¢ >maxgf. Fix f, supposed strictly
positive, choose a to satisfy the inequality 0 < @ < ming f, choose € > 0, and
define the compact set A;j = {atje < f<a+(j+1)e} for j = 0,...k with k large
enough to satisfy the inequality a+(k+1)e > max f. Suppose further that a has
been chosen to make each set {f = a+je¢} A null; only countably many points of
R have to be avoided to make this choice. Let f; be a continuous function
majorizing lAj and define g= X; [a+(j+1)£]fj. Then

(3.8) L() < L(g) =% [a+(i+De] L,

7~[Zj [@+G+De] 1 Aj] < Af] + eMS).
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Since each function f; can be chosen to make L(f;) arbitrarily close to X(Aj),
(3.8) implies

(3.9) L) < Af] + e(S),

and therefore L(f) < Mf1if fis strictly positive, as was to be proved.

4. C(S) convergence of sequences in M (S)
(S compact metric)

C(S) sequential convergence of Radon measures was defined in Section 1. It
will be seen below that there is a metric on M(S), consistent with C(S)
sequential convergence, making M(S) complete and M(S) compact.

Example. Let S be the compact interval [0,1] on R, and define A, as the
probability measure in M(S) supported by the singleton {1/n}. The sequence A.
is C(S) convergent to the probability measure supported by the singleton {0}.
Observe that each measure A, assigns the measure 1 to the open interval (0,1),
and 0 to the singleton {0}, but the limit measure assigns the value O to that
interval and 1 to that singleton. Thus C(S) convergence on S does not imply
C(S) convergence on the compact subset {0} and does not imply setwise
convergence of the sequence of measures, the convergence prescribed in the
Vitali-Hahn-Saks theorem. According to Theorem 6, the latter convergence
implies C(S) convergence when S is compact metric.

Theorem (S compact metric). If Ao is a sequence in M(S) for which the
sequence A.[f] has a finite limit for f in a dense subset of C(S), then the sequence
he is C(S) convergent.

Proof. Let C be a dense subset of C(S) on which the sequence A. has a finite
limit. There is a function g inC' with g > 1. If fe C(S) and if £ >0, there is a
function f¢ inC' with  If~f¢l <€. Then f<f, + €g, and therefore

@.1) lim sup A[fl < lim AJfe] + elim Aufg].

Apply this inequality to -f to find that the difference between the limit superior
in (4.1) and the limit inferior of the same sequence is at most 2elim A.[g] for
every €, and is therefore 0. Thus the sequence A.[f] has a finite limit for f in
C(S). This limit defines a positive linear functional on C(S), necessarily of the
form f— A[f] for some measure A, that is, there is C(S) convergence to A.
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5. Metrization of M(S) to match C(S) convergence;
compactness of M ¢(S) (S compact metric)

A metric for R*. Let d be a metric on the space R™ of infinite sequences of
real numbers under which R* is complete and under which convergence means
coordinatewise convergence. For example, if &: €, and 1: 1. are points of R™,
define

(5.1) dEmn) = 2 277 A el

A metric for M(S). Although C(S) sequential convergence was defined in
Section 1, no corresponding metric was exhibited. A metric on M(S) consistent
with the C(S) sequential convergence definition will now be defined. Let 4. be a
dense subset of C(S). For each measure A in M((S), the sequence A[h.] is a point
of R%. If u is a second measure in M(S), define the distance between the two
measures by

(5.2) dpghr) = d(MALu[ha]).
This definition satisfies the axioms for a metric.

Theorem (S compact metric).

(@) A sequence in M(S) is dyy convergent if and only if the sequence is C(S)
convergent.

(b) M(S) in the dy; metric is a complete metric space.

(¢) (C(S) in the sup norm metric, M (S ) in the dyy metric). The function
(f, )= Mf] from C(S)>xM (S) into R is continuous.

(d) For each positive constant ¢, M (S) is a compact subset of M(S), as is the
subset {A e M(S): A(S) = c}.

In the following proof, k. is the sequence in the definition of dy. The dy
metric depends on the choice of ., but in view of this theorem, the C(S)
topology, that is, the class of open sets, is independent of this choice.

Proof of (a). Under the dyy metric, a sequence A. in M(S) has limit A in M(S) if
and only if lim AJ[f] = Af] is satisfied for fin k.. Hence (Theorem 4), there is
C(S) convergence if and only if there is convergence in the dy metric.

Proof of (b). If A. is a dyy Cauchy sequence in M(S), the conditions of Theorem
4 are satisfied, with h. the dense set of functions, and therefore the sequence A.
is C(S) convergent.
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Proof of (¢). If f, in C(§) is convergent in the sup norm sequence and A. in M(S)
is a dy convergent sequence, the following inequality makes (c) obvious:

(53) WA - Malfall SAnllFAl1 + 1A = Al < I An1] + 2072 - Al
Proof of (d). If A. is a sequence in M (S), the sequence A.[f] is bounded for
each fin C(S), and (Bolzano-Weierstrass theorem and the diagonal procedure)
there is a subsequence of A. along which this sequence of integrals converges to
a finite limit for every function h,, and therefore this subsequence is C(S)
convergent. The limit measure A is in M(S), because

lim A[1] = lim A(S) = A[1] = A(S).

More generally, this argument shows that if A is a compact subset of R*, the
set of measures {A € M(S): M(S) € A} is compact in the dyy metric.

6. Properties of the function u—[f] from M(S), in the dy
metric, into R (S compact metric)

If f is in C(S), the function u—=p[f] from M(S) into R is continuous under the
dy metric of M(S), because convergence in the dyf metric implies C(S)
convergence. The next theorem treats this function for other choices of f. The
following observation is made to clarify the hypotheses of the theorem.

Observation on semicontinuity. If f is a function from § into R, denote by
f* the upper limit function of i fA(s) = f(s)vlim sup;—, (#). This function is
upper semicontinuous, majorizes f, and there is equality at a point if and only if
f is upper semicontinuous at the point. Thus if f is upper semicontinuous A
almost everywhere, f coincides A almost everywhere with the upper
semicontinuous function f~. In the other direction, a function coinciding A
almost everywhere with an upper semicontinuous function need not be upper
semicontinuous at any point. For example, if A vanishes on singletons and f is
defined as O except at the points of a countable dense set, at which fis defined
as 1, fcoincides with the continuous function 0 at A almost every point although
" is identically 1.

Theorem (S compact metric, dy metric of ,M(S), A € M(S), f bounded and
Borel measurable from S into R, A € B(S)).

(a) Iffis upper [lower] semicontinuous A almost everywhere on S, the function
u= Wyl from M(S) into R is upper [lower ]semicontinuous at . If f is

continuous h almost everywhere on S, the function \W—W[f] is continuous at \.

(b) In particular, if A is an infinite sequence in M(S) with C(S) limit (that is,
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dy limit) A
() if MANDA) =0, for example, if A is closed, then lim sup A+(A) < MA);
(ii) if MANDA) = 0, for example, if A is open, then lim inf L.(A) 2 A(A);
(iii) if the conditions on A in (i) and (ii) are both satisfied, that is, if M0A) =
0, then lim Ae(4) = A(A).

(c) Conversely, if he M(S), if A is an infinite sequence in M(S) and 1im A.(A)
= MA) whenever A(0A) = 0, then the sequence A« has C(S) limit \.

Proof of (a). Let f* be the upper limit function of f. Then f* is a bounded upper
semicontinuous function and as such is the limit of a decreasing sequence f. in
C(S). The function pu—pff 7] is the limit of the decreasing sequence
{u—=ulf,1, n 2 1} of continuous functions from M(S) into R, and is therefore
upper semicontinuous. If fis upper semicontinuous at A almost every point of S,
then f=f” at A almost every point of S, and therefore

(6.1) Mf1= Nf"] 2 lim supy -, U[f*] 2 lim supy,—5), ufl

This inequality is the condition that the function pu=—p[f] be upper
semicontinuous at A. Apply this result to -f to obtain the corresponding result in
the lower semicontinuous context, and combine these two results to obtain the
last assertion in (a).

Proof of (b). Recall that A[14] is defined as A(A). Assertions (i) and (ii) are
applications of (a) and the fact that the indicator function of a closed [open] set
is upper [lower] semicontinuous. Assertion (b)(iii) follows from (b)(i) and
(b)(ii), or from (a).

Proof of (c). Choose € > 0, f in C(S), and a with a < ming f and define the
compact set Aj = {a+je < f < a+(+1)e} for j = 0,...k, with k so large that
a+(k+1)e > max f. The number a can be chosen in such a way that the sets
{f=a+je} are A and A, null for all n and j, because this condition excludes only
countably many values of a. Thus each boundary set dA; is A and Ay null for all
n. The integral of fover § with respect to either A or A, is the sum of the
integrals of f over Ay.Ay,..., and therefore

©2) IMf1- Zj@rionap | <eAs), Ml - 5 @riora@pl <enns).
Under condition (b)(iii), when n — +eo the right side of the second inequality

tends to the right side of the first, and the sum in the second inequality tends to
the sum in the first. It follows that

(6.3) - a0l <3ens)

for large n, and therefore the sequence A has C (S) limit A.
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Observation. Theorem 6 implies that if A. is a C(S) convergent sequence of
measures in M(S), with limit measure A, and if Sy is a compact subset of S with
A null boundary, then the sequence of restrictions of A. to B(S) is a sequence in
M(Sy) with C(S,) limit the restriction of A to B(Sp).

7. Generation of positive linear functionals on C(S) by
measures (S a locally compact but not compact separable
metric space)

The following theorem is the adaptation of Theorem 3 to linear functionals on
Co(S) and Cyy(S).

Theorem (S a locally compact but not compact separable metric space,
Coo(S) in the sup norm metric). If L is a positive linear functional on Cy(S) [a
positive bounded linear functional on Cy(S)], there is a unique measure N in

M(S) for which L(f) = M.

Proof. It can be supposed that S is a punctured compact metric space. Since a
positive linear functional on Cy(S) (under the sup norm) is bounded (Section 2
property (d)), and since (Section 2 property (g)), a positive bounded linear
functional on Cyy(S) can be extended uniquely into a positive linear functional
on Cy(S), it is sufficient to prove the part of the theorem for functionals on
Co(S). If g'is a function on §’' = §U {eo}, denote by g'¢ the restriction of g'to S.
Define a functional L' on C(§") by

(7.1 L'(f) = L{[f'f'(eo)ls) +f (=M,

where M is at least as large as the constant M in (2.4). This functional L'is
obviously linear, and is positive because, under posiivity of f',

L([f'~f'()1s) 2 —L([f'(e)—f'IV01s) 2 ~f (co)M.

According to Theorem 3 there is a unique measure A' in M(S") for which L'(f‘) =
AIf'), and therefore if A is the restriction of A' to B(S) and f e Cy(S), it follows
that L(f) = A[f] and that A is a uniquely defined measure generating L.

Unbounded positive linear functionals on Cyy(S). Suppose that L is a
positive and linear but not bounded functional on Cyy(S). Let Sy be an open
subset of S, with compact closure. As pointed out in Section 2 under property
(f), L defines a positive linear functional L(Sy,*) on Cy(Sy), with L(Sg.f) equal
to the value of L for the extension of f; with value 0 on S-S;. It follows that
there is a measure A(Sp,*) in M(Sy) generating L(Sy,*): L(So5) = MSo/0l
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Moreover if Sy is an open subset of S, then L(S},*) = L(Sp,*) on Cy(S)) in the
sense that if f; € Cy(S;) then L(S;,/) is L(Sp,*) evaluated at the extension of f; by
0 to Sp. Hence A[Sy,*] = ALS;,*] on subsets of ;. Thus there is a Radon measure
A on B(S) for which L(f) =A[f] for f in Cyy(S). Since L is not bounded, A(S) =
+oo,

8. Cy(S) and Cy(S) convergence of sequences in M(S)
(S a locally compact but not compact separable metric
space)

As the following example shows, if A. is a C(Sy,) convergent sequence in M(S),
it is not necessarily true that sup A.(S) is finite.

Example. Let S be the interval (0,1) and A, be the measure supported by the
singleton {1/n}, with A,,({1/n}) = n. Then the sequence A. has C(Sy) limit the
identically vanishing measure, but the sequence is not C(S;) convergent, and in
fact such a sequence cannot be C () convergent according to the next theorem.

Theorem (S a locally compact but not compact separable metric space, with
metric 8, Cy(S) and Cyy(S) in the sup norm metric, and \. a sequence in M(S).

(a) Iflim AJff] exists and is finite for f in Cy(S) then supA«(S) < +eo, and the
sequence A. is Co(S) and Cy(S) convergent to a measure ) in M(S).

(b) If supAa(S) < +oo, and limA.[f] exists (finite) for f in a dense subset of Cy(S)
(for example, for fin Cyy(S) ), then the sequence ko is Co(S) convergent.

(c) If S is a punctured compact metric space, with §' = SU{e}, let U' be the
extension of a measure W in M(S) to a measure in M(S’) obtained by assigning a
value to P'({e}). Then Ao is Cy(S) convergent to A if and only if there are
choices of A'({eo}) and X'({eo}) for which A" is C(S") convergent to \'.

Proof of (a), It is trivial that Cy(S) convergence implies Cgy(S) convergence.

The positive linear functional L defined on Cj by L(f) = lim A.[f] is generated by
a measure in M(S), according to Theorem 7, and this measure is the Cy(S) limit

of A.. If the sequence A. is Cy(S) convergent to A, but if the sequence A(S) is

not bounded, there is a subsequence Aq4, of A. for which A4, (S) 2 n?. The
functional

=3 g
n=1

is positive and linear on Cy(S) and as such is generated by some finite measure
W, that is,
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@®.1) WA= g, (f € Co(S)).
n=1

The function s = fi(s) = 1-exp[-kd(s,)] on § is in Cy(S). The fact that the
sequence f. is a monotone increasing positive sequence on S, with limit the
function 1, yields the impossible inequality

®2) WO =limplfl=lim ¥ n2g [ 12 X n722g,(5) = +oo,
n=1 n=1
and therefore the sequence A.(S) is bounded.

Proof of (b). The proof is parallel to that of Theorem 4. Let Cy'(S) be a dense
subset of Cy(S) for which the sequence A. has a finite limit. If f € Cy(S) and
€ > 0, there is a function fg in Cy'(S) at distance < € from f. Hence

(8.3) lim sup A.[f] < lim AJfe] + €sup Ae(S).

The rest of the proof of (b) is the same as the corresponding part of the proof of
Theorem 4.

Proof of (¢). If the sequence A. has Cy(S) limit A, and supA(S) = &, extend A,
to a measure A’ in M(S) by defining A,'({oo}) = & = A,(S), so that A,,'(S") = o
Let f" be a function in C(S"), and let [f-f'(c)] s be the restriction of f'-f(c) to
S. This restriction is in Cy(S) and

(8.4) LimA[f'] = Lim AL {F-f ()] 5] + £ (e)or = AL[F=F ()]s ] + £ (o0

It follows that the sequence A.' is C(S") convergent with limit A, where A'({e})
= o-M(S). Conversely, if there are extensions A.' of A and X' of A for which the
sequence A.' is C(S") convergent to X' in M(S"), and if fis in Cy(S), define f' on
S"as fon S and as 0 at . Then the sequence AJ[f] = A«(f ) has limit A'[f] =
A /1. Hence A is Cy(S) convergent.

9. Metrization of M(S) to match C,(S) convergence;
compactness of M .(S) (S a locally compact but not
compact separable metric space, c a strictly positive
number)

If hge is a sequence dense in €y(S) under the sup norm metric, define the Cy(S)
distance between measures A and 1 in M(S) by

©.1) dom o) = A (M(hoe).1u(ho.)) s
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as suggested by the distance definition (5.2) between measures on a compact
metric space. In the present context, Theorem 5 takes the following form.

Theorem (S a locally compact but not compact separable metric space, ¢ a
strictly positive number).

(a) A sequence in M(S) is dyy convergent if and only if the sequence is Cy(S)
convergent.

(b) M((S) in the dyy metric is a compact metric space.

(¢) (C(S) in the sup norm metric, M(S) in the dgy . metric) The function
;) Nf] from C (S)XM(S) into R is continuous.

The proof of this theorem is a mild modification of the proof of Theorem 5
and is left to the reader. Although M(S) is compact in this metric, the following
example shows that the set {A € M(S): A(S) = c} is not compact. The point is
(see the next section), that when A. is a Cy(S) convergent sequence in M(S),
with limit A, then A(S) < lim inf A«(S) and there may be strict inequality.

Example. If S is the interval (0,1) on R and A, is the probability measure
supported by the singleton {1/n}, the sequence A. is Cy(S) convergent to the
identically O measure.

10. Properties of the function u—u[f], from M(S) in the
dyy metric into R ($ a locally compact but not compact
separable metric space)

The following theorem is the adaptation of Theorem 6 to the present context.

Theorem (S a locally compact but not compact separable metric space, dyy
metric of M(S), A € M (S), f bounded and Borel measurable from S into R,
A e B(S)).

(@) Iffis upper [lower] semicontinuous A almost everywhere on S, with limit
superior < 0 [limit inferior 2 0] at infinity, the function u=ul[f] from M(S)
into R is upper [lower] semicontinuous at A. If f is continuous A almost
everywhere on S, with limit 0 at infinity, the function p—W[f] is continuous at \.

(b) In particular, if A is an infinite sequence in M(S), with Cy(S) limit A,
(i) if MANdA) = 0 and A has compact closure, for example, if A is compact,
then lim sup A.(A) < A(A),
@i1) if MANdA) =0, for example, if A is open, then lim inf A.(A) 2 A(A),
(iil) if the conditions on A in (i) and (ii) are both satisfied, that is, if A has
compact closure and M0A) = 0, then 1im A.(A) = A(A).
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(c) Conversely, if L € M(S), and if A+ is a sequence in M(S), for which
sup Ae(S) < +oo and lim AA) = MA) whenever MdA) = 0 and A has compact
closure, then the sequence hs has Cy(S) limit .

The proof follows that of Theorem 6. Alternatively, the theorem can be
reduced to Theorem 6.

Observation. Theorem 10 implies that if A is a Cy(S) convergent sequence
of measures in M(S) with limit measure A and S, is a compact subset of § with A
null boundary, then the sequence of restrictions of A to B(Sy) is a sequence in
M(Sy) with C(Sp) limit the restriction of A to B(Sp).

11. Stable Cy(S) convergence of sequences in M(S) (S a
locally compact but not compact separable metric space)

Let A. be a sequence in M (S) with Cy(S) limit A in M (S). The sequence is stably
CoS) convergent to A if limA.(S) = A(S). The point of this strengthening of
Co(S) convergence is that the sequence of measures is not allowed to unload
measure at infinity.

By definition, A. is stably Cy(S) convergent to A if and only if limA[f]1 = A[f],
whenever fis in C(S) and is either identically constant or has limit 0 at infinity;
in other words if and only if limA.[f] = A[f] whenever f is continous and has a
finite limit at infinity. If S is a punctured compact metric space, this condition
has an elegant formulation: limA.[f] = A[f] whenever f can be defined at the
point e of §'to become a member of C(S’). A trivial computation shows that A.
converges to A in this sense if and only if, when A, and A are extended to
measures A,' and A’ in M(S"), by assigning the measure value 0 to the singleton
{oo}, it follows that the sequence As' is C(S") convergent to A'. Instead of the
measure value 0, an arbitrary positive measure value can be used.

12. Metrization of M(S) to match stable C(S)
convergence (S a locally compact but not compact
separable metric space)

It can be assumed that S is a punctured compact metric space, with § =
SU{+eo}. The space S’ is a compact metric space in which the point = plays a
special role. Define a distance on M(S") as in Section 5 in terms of a dense
sequence in C(S") but adjoin the function 1{c) to this dense sequence. In other
words a sequence A.' of measures in M(S") is convergent to A' in the sense of
this distance if and only if there is C(S") convergence and lim A.'({e}) =
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A({ec}). Under this metric the space M(S’) of measures is complete, and the
subset of these measures for which {e} is null is a closed subset. If A € M(S),
extend A to X' in M(S") by defining A'({ee}) = 0 and define the distance dy'
between two measures in M(S) as the distance just defined between the
corresponding primed measures in M(S"). Under this metric, M(S) is a complete
metric space for which convergence is stable Cy(S) convergence. As the
Example in Section 9 showed, in general the dyy' metric does not make the space
M(S) compact. The following theorem restates the fact that the dy' metric is
adapted to stable Cy(S) convergence and includes other properties of this type of
convergence.

Theorem (S a locally compact but not compact separable metric space, ko a
sequence in M(S), c a positive constant).

(a) If the sequence he is C(S) convergent to a measure in M(S), this
convergence is stable Cy(S) if and only if to every strictly positive € there
corresponds a compact subset Ag of S, with the property that sup A(Ag) < €.

(b) A sequence in ML(S) is dy' convergent if and only if the sequence is stably
Co(S) convergent; M(S) in the dy' metric is a complete metric space.

(¢) The function (f,L)=A[f] from C(S)xM(S) (C(S) in the local sup norm metric,
M(S) in the dyf' metric) into R is continuous on the set {Ifl <c}xXM(S). In
particular, limAlff] = M1 when Ae is stably Cy(S) convergent to A and f is in
C(S).

Proof of (a). Without loss of generality, it can be assumed that S is a punctured
compact metric space. Extend A. and A to measures A.' and A' on B(S") by
defining the extended measures to be O on the singleton {e}. It was noted above
that the sequence A.' is C(S") convergent to A' if and only if A. is stably Cy(S)

convergent to A. If there is C(S”) convergence to A, and if € is strictly positive,
choose a ball B in S', with a A null boundary, with center the point oo, radius so
small that A(B) < €. Only countably many radius values are exceptional for the A
null property of the ball boundary. Then lim A(B) = A(B). Hence A,(B) < € for
all but finitely many values of n, and the radius of B can be decreased further, if
necessary to make this inequality valid for all values of n. The trace on S of the
ball obtained in this way is the complement of the desired set Ag. Conversely, if
to every strictly positive € there is a compact subset A¢ of S with the stated
properties, it can be assumed, increasing the set, if necessary, that MAg) < € and
0Ag (=0Ag) is A null. (For example, the open set Ag can be taken as the trace on
S of a sufficiently small ball in S', with center the point .) Then lim A«(S) =
AS) because

(12.1) lim sup IMS)A«(S)! < AMAg) + lim sup IMA g)-Ae(Ag)!



VIIIL. Convergence of Measure Sequences 141
+ lim supA.(Ag) < 2€.
Proof of (b). The proof was given at the beginning of this section.

Proof of (c). Suppose that f, is a uniformly bounded sequence of functions in
C(S), convergent to f in the local sup norm metric, and that A. is a stably Cy(S)
convergent sequence in MI(S), with limit A. Choose Ag with the properties stated
in (a), increasing this set, if necessary to satisfy the conditions L[fl,se] <Eg,
MOAg) = 0. Define b = suplfel. According to Theorems 10 and 6, the sequence
of restrictions of A. to B(Ag) is C(A¢) convergent to the restriction of A to B(Ag).
Furthermore, the sequence of restrictions to Ag of f. is convergent in the sup
norm topology of C(A¢) to the restriction of f to Ag. It follows, according to
Theorem 6, that lim Au[f.14.] = A[f14.], and therefore

lim sup IA(f) - Au(f)l < lim sup Aplfp14.] + Mf1i.] < (c+De.

Hence (c) is true.

13. Properties of the function u=u[f], from M(S) in the
dy' metric into R (S a locally compact but not compact
separable metric space)

The following theorem is the adaptation of Theorem 10 to the present context.

Theorem (S a locally compact but not compact separable metric space, dyf'
metric of) M(S), A e M(S), f bounded and Borel measurable from S into R,
A e B(5)).

(a) Iffis upper [lower] semicontinuous A almost everywhere on S, the function
u=u() from M(S) into R is upper [lower] semicontinuous at . If f is
continuous h almost everywhere on S, then the function LW~W[f} is continuous at

A

(b) In particular, if A is an infinite sequence in M((S), with stable C S) limit A,
(1) ifMAMDA) = 0, for example, if A is closed, then lim sup A(A) < A(A),
(i) if MANOA) = 0, for example, if A is open, thenlim inf A.(A) = A(A),

(iii) if the conditions on A in (i) and (ii) are both satisfied, that is, if
MOA) = 0, then lim A.(A) = A(A).

(¢) Conversely, if ke ML(S), if e is a sequence in M(S) for which lim A.(A) =
MA) whenever MOA) = 0, then the sequence A has stable Cy(S) limit .

The proof follows that of Theorem 6; alternatively this theorem can be
deduced from Theorem 6.
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14. Application to analytic and harmonic functions

A function defined on an open plane set is harmonic if it has continuous second
partial derivatives and satisfies Laplace's equation. The real part of an analytic
function is harmonic, and conversely a harmonic function on a simply
connected domain is necessarily the real part of an analytic function. As an
example of the application of sequential convergence of measures in classical
analysis the Riesz-Herglotz representation of a positive harmonic function on a
disk in terms of a measure on the disk boundary will be derived.

All disks considered have the origin as center. Let By be the open disk of
radius o, choose B > 0, and let u be a harmonic function with domain BB' Then
u = Rf for some function fanalytic on Bg, given by a power series

(14.1) fz) =Xy a2 =y arei® (z = rei®, r<B).
If 0 < a0 < B, there is uniform convergence when r = ¢, and therefore

2n
J Roels) e™is [(ds) =2ma,o+  (n20),

(14.2)
=0 (n < 0).

Here /(ds) refers to length (Lebesgue measure) on the interval [0,2n], and the
integral can be evaluated as a Riemann integral. Aside from a multiplicative
constant, the evaluations in (14.2) are the evaluations of the (trigonometric)
Fourier coefficients of the restriction of f to dBq. The evaluations (14.1) and
(14.2) yield, for z = re!® with r < o < B,

2n

(14.3) f2)= 2 J RoeS)(rionl eni(s-0) y(ds)
n_—oa
=L J 5O 9 1ol

where the measure Iy is length on dBq. This expression for fcan also be
obtained using the Cauchy integral formula. The harmonic function u = Rf is
therefore given by the corresponding integral

(14.4) u@) = = B[ o) & —T ) (d<a<p).

This representation of u in By in terms of the values of u on dBg, is the
Poisson integral representation of u.
Suppose now that u is positive and harmonic in Bp. The Riesz-Herglotz
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representation of u generalizes (14.4) by providing a Poisson-Stieltjes
representation of u in B in terms of a measure on aBB even though u is not
defined on the boundary. To derive this representation, put (14.4) in a slightly
different form:

o2-z1?
(14.5) u(z) = =2 A(d) (Izl < ot < B)
aBa |C-Z|

where A is the measure of Borel subsets of dBq, defined by

(14.6) Agl4) = 2—1‘5/{[ ) Ha(dD).

Then Ag(dBg) = u(0). The measure Aq can be thought of as a measure on Eﬁ
carried by dBy. When o tends to P along an increasing sequence, the
corresponding sequence Aq. of measures is a bounded sequence of measures on
the compact space Bp, and therefore there is a C(Bp) convergent subsequence
with limit measure A carried by BBB. In view of Theorem 5(c),

(14.7) u(z) = j % MdE) (zI < B).
aBB IC-ZI

This is the Riesz-Herglotz representation of u in terms of a measure on dBg. In a
more thorough discussion it is shown that A is uniquely determined by « and
that A is C(S) convergent to A when o tends to f.



IX

Signed Measures

1. Range of values of a signed measure

Signed measures, defined in Section III.1, have values either in (-eo,+e0] or
[-o0,+00), to avoid the possibility of adding +eo to -cc. It will be shown in Section
2 that a signed measure is actually bounded on the side where it is finite. For a
signed measure space (S,S.A), the signed measure A has its values in (—oo,+oo] if
and only if A(S) > —oo, its values in [—oe,+0) if and only if A(S) < +co, and A is
finite valued if and only if A(S) is finite.

2. Positive and negative components of a signed measure
If (S,S,)) is a signed measure space and A is a measurable set, define
(2.1)  A*(A)=supBcA MB), A~(A)=—infgg MB), 1Al = A*+47.

The set functions A*, -A~ and IA} are respectively the positive, negative,
and total variations of A. It will be shown that all three set functions are
countably additive. The signed measure is finite, or G finite, when the total
variation is. A measurable set A is a positivity set of A if A" (A) = 0, a negativity
set if A*(A) = 0. A positivity [negativity] set A is maximal if every positivity
[negativity] set is a subset of A, neglecting IAl null sets. If § is the union of a
positivity and a negativity set, the summands are obviously maximal.

Theorem. Let (S,S,\) be a signed measure space. Then:

(@) AT, Aand WAl are measures; N1 (S) is finite if A < +9°, A°(S) is finite if
A> =00,

(b) (Jordan decomposition) A = At - A~. Moreover, if A=A - A, is any
representation of A as the difference between two measures, then At < A, and
AT <A,
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(c) (Hahn decomposition) S is the disjunct union of a positivity set S* for A
and a negativity set S~ for A each maximal, and unique up to VAl null sets.

(d) For every measurable set A, XT(A) = MANSH), X(A) =-MANS 7).

Proof. Suppose, for definiteness, that A < +eo, and choose a sequence A. of
measurable sets for which lim A(A.) = AT(S). Let B,, be the union of those cells
of the partition of S generated by A,,..,A, (see Section I1.3), at which A is
positive. Then MB,)) 2 MA,). As n increases, the partition becomes finer,
B, By, is B, augmented perhaps by cells of B, 4+ and so on. Thus

22) M©2MUTB) 2 MBy) 2 MAn).

Define S* = lim sup B. and § ~= S - S*. Then A(S") = AT(S), and therefore
A*(S) < +o0. Moreover, in view of the maximal property of S*, A~(§1) = AT ($7)
= 0. Thus St and S~ are the sets of a Hahn decomposition and the Jordan
decomposition can be written in the form A(A) = MANST) + MANS™). Only
the minimal character of A+ and A~ stated in (b) is still to be proved, and this
character follows at once from the definitions of these measures.

Example. Let (S5,S,A) be a measure space, let f be a measurable function
from the space into R, define f* = A0, f~ = (<f)v 0, and suppose that ¥ is A
integrable. Then the set function u: A—=u(A) = Mfl4] is a signed measure, a
finite valued signed measure if and only if f is integrable. Obviously

pHA) = MfH1al uo (@) = M 1) lul4) = M1yl

and the sets St and S~ of a Hahn decomposition for y can be chosen
respectively as the sets {f= 0}, {f<0}.

3. Lattice property of the class of signed measures

Theorem. If A and N are signed measures on a measurable space, there is a
signed measure AN majorizing A and X' and majorized by every other signed
measure majorant of .. and \'.

The theorem implies that in addition to the smallest measure majorant AVA'
of A and A’ there is also a largest measure minorant, - (-A)v(-A"). This minorant
is denoted by AAL'. Obviously AT = AvAg, and A™ = -(Aakg), with A, the
identically vanishing measure.

Proof. If A-A' is a well-defined signed measure, that is, if A(S) and A'(S) are
not both +eo or both -, let S* be a maximal positivity set and let S ~ be a
maximal negativity set, for A-A". Define
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AWVAA) = MANST) + M (ANS).

This sum defines a measure with the required properties. There remains the case
when AS) and A'(S) are both +oo or both —c. Assume the first possibility. If
MA) = A'(A) = +oo, define (AVA')(A) = +oo. If either A(A) or A'(4) is finite, let A4
and A4 be, respectively, the restrictions of A and A' to the measurable subsets of
A, and let A* and A™ be, respectively, maximal positivity and negativity sets for
A - N4. If Ag is a measurable subset of A , define

WA (Ag) =A(AprA™) + N(Agnd)).

This value is independent of the choice of the superset A of A, and yields the
required measure.

Example. If (5,S,A) is a measure space and if f and f ' are measurable
functions from the space into R, for which either A0 or (-fv0 is A integrable
and either f'v0 or (=f")vO0 is A integrable, define W(A)=Mf14] and L'(A)=A[f"14}.
Then p and W' are signed measures, (WVIL)(A) = M ({FVf )14]), and (LAWY A) =
AL(AfY14)

4. Absolute continuity and singularity of a signed
measure

Let A be a measure and W be a signed measure on a measurable space (S,S). The
signed measure W is absolutely continuous relative to A, or A absolutely
continuous, if | vanishes on A null sets, equivalently if il vanishes on A null
sets. At the other extreme, U is singular relative to A, or A singular, if there is a
A null set whose complement is lpl null. Only the identically vanishing signed
measure is both A absolutely continuous and A singular. If A and | are measures,
W is A singular if and only if A is p singular, that is, each of the measures is
carried by a null set of the other.

Theorem (Measure space (S,S,M). If a signed measure L on S is A
absolutely continuous, or singular, \* and W~ have this same character .

The theorem is clear from the definitions of u and u™.

Alternative approach to the absolute continuity definition. (Notation as
above, but A and p are both measures.) It is trivial that the limit equation

@.1) lima(4)—0 KA) = 0

implies that | is A absolutely continuous. Conversely, if L is a finite measure
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that is A absolutely continuous, then (4.1) is true. To prove this, it is sufficient to
prove that if A. is a set sequence for which lim A(4.) = O then every
subsequence of A. has a further subsequence along which p(A.) tends to O.
Given a subsequence of A., choose a further subsequence B. for which ZA(B.)
converges, and define C, = u:: B.. Then the sequence C. is monotone
decreasing with limit a A null set, a set which is necessarily also a p null set, and
therefore the sequence [(C.), which majorizes the sequence (B.), is monotone
decreasing with limit 0.

Uniform absolute continuity. If {|;, i € I} is a family of finite measures on
a measure space (S,S,A) and limy(4)—0 M;(A) = 0, uniformly as i varies in /, the
family of measures is uniformly absolutely continuous relative toAh. If A is a
finite measure and d) is the pseudometric on S determined by A, that is, d)(A,B)
= MAAB), then the condition of uniform absolute continuity of the family L. of
measures is equivalent to the uniform dy, continuity of the family \. considered
as a family of functions from (S,dy) into R. In fact uniform d) continuity at the
empty set is precisely the definition of uniform absolute continuity, and uniform
d), continuity at the empty set implies uniform dj, continuity because d)(A,B) =
d)\(AAB,D).

5. Decomposition of a signed measure relative
to a measure

Theorem (Lebesgue decomposition). (Measure space (S,S,A)). If L is a
signed measure on S, | is the sum, W = Wac+ Us, of uniquely determined A
absolutely continuous and A singular signed measures.

Proof. If there is a decomposition, 1L = H,c+s, into absolutely continuous and
singular measures, it is unique, because if there were two such decompositions,
the difference between the singular components would be the negative of the
difference between the absolutely continuous components. These differences
would be both A absolutely continuous and A singular and would therefore
vanish identically. In view of Theorem 4 it will be sufficient to derive the
Lebesgue decomposition when L is a measure. If ¢ = sup{p(A): MA) = 0}, then
¢ =0 if and only if 1 is A absolutely continuous, in which case there is nothing
to prove. If ¢ > 0 and A. is a sequence of sets for which MA,Q:O and lim pL(A.)
= ¢, define B = UA., and then define e by Hac(A) = H(ANB), Ug by p(A) =
HANB).

Ex_aw{nples. (a) Letfbe a measurable function from a measurable space (S,S)
into R and define a measure L by w(A) = A[f14] Then u is A absolutely
continuous. In particular, f may be identically +eo, in which case M is +eo on all
non A null sets.
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(b) Let S be R and A be Lebesgue measure. If A =r, is a countable subset of R
and p. is a sequence in Rt, let W be the measure, carried by A, with
w({rn}) = pn. This measure is A singular. It is finite if Zp. converges, o finite if
the series diverges but each summand is finite.

(c) The Cantor set on R and a corresponding measure, singular relative to
Lebesgue measure, with no nonnull singletons. Let S be the interval [0,1] on
R and A be Lebesgue measure on that interval. A monotone increasing
continuous function F will now be defined on S, with F(0) = 0 and F(1) = 1,
with the property that the measure Af generated by F is A singular and that the
derivative F'exists and vanishes A almost everywhere on S. Let S be on the axis
of abscissas of coordinate axes in a plane and choose a sequence s. on the
ordinate axis, as follows.

Step 0: choose an arbitrary point s, of the interval (0,1) of the ordinate axis.
Step 1: the point s; divides (0,1) into two open intervals; choose points s, in the
upper interval, s5 in the lower.

Step n: 2" points having been chosen, dividing (0,1) into 2” open intervals,
choose a point in each, going down from the top. These choices should be made
in such a way that the sequence s. is dense in S.

Next, delete from S, on the axis of abscissas, a sequence /. of open
subintervals, as follows.

Step 0": delete from S an open interval [; with closure in (0,1).

Step 1" the deletion of I, leaves a right and a left interval in §; corresponding to
the choices of s, and s, delete I, an open interval with closure in the interior of
the right interval, and delete I3, an open interval with closure in the interior of
the left interval.

Step n': 2" intervals having been left in S; delete from the interior of each of
these an open interval whose closure is in that interior, ordering the sequence /I
of deletions from right to left. Choose these intervals to make Z A(l.) = 1.

Having ordered s. and /. in this way, define F on I, to be identically s, As
so defined, F is monotone increasing, defined A almost everywhere on S, and its
range of values is dense on [0,1]. Define F elsewhere on $ by continuity to ob-
tain a function with the desired properties. The set S — \UIL is a perfect
nowhere dense A null set, and the measure A generated by F is A singular. This
set was devised by Cantor, who chose each point s, in the middle of its interval
and chose each interval [, as the middle third of its interval. With these choices
the set is the Cantor set. Lebesgue used Cantor's set to obtain the continuous
monotone function F, generating a measure singular with respect to his measure.
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6. A basic preparatory result on singularity

Lemma. Let A and | be finite measures on a measurable space (S,S), and let
T be the class of positive measurable functions g satisfying the inequality

6.1) jgd?L < wA)  @Aes)

A
Then, gvg, is in T if gy and g, are, and, unless L is A singular, I contains a
function not vanishing A almost everywhere,

Proof. If g, and g, are in T, their maximum on An{g; > g,} is g, and therefore
satisfies (6.1) on this set. Similarly their maximum satisfies (6.1) on AN{g2g}.
Hence their maximum satisfies (6.1) and accordingly is in the class I'. Forn 2 1,
let A,, be a maximal positivity set of the signed measure W-A/n, so that (A,) <
MA)/n < MS)/n, and A. is an increasing sequence, neglecting A null sets. If A,
is A null for every value of n, then p(MA.) = 0, that is, W is carried by UA. and
must be A singular. On the other hand, if some set A, is not A null, then the
function lAn/" is in " and does not vanish almost everywhere.

7. Integral representation of an absolutely continuous
measure

Theorem (Radon-Nikodym). Let [ be a finite signed measure and A be a G
finite measure on a measurable space (S,S). There is then a A integrable
function f, uniquely determined up to A null sets, satisfying

(7.1) Uac(A) = J'fa’)» (A e S).
A

For ¢ a constant, the inequality tae 2 ch [ Hac < cA] implies the A almost
everywhere inequality f=>c [f< c].

The function f in (7.1), the Radon-Nikodym derivative of Uac with respect to
A, or density with respect to A of the measure |y, is sometimes denoted by
dpgc/dh.

Proof. In view of Theorem 4, in proving the existence of f it will be sufficient
to assume that L is a measure. Moreover it will be sufficient to consider only the
case of finite A, because the result in that case can be applied individually to
cach of a disjunct sequence of measurable sets on which A is finite valued.
Under these hypotheses of positivity and finiteness it will now be shown that
any order supremum of the class T in Lemma 6, can be taken as the function f
in (7.1). If T contains only functions that vanish A almost everywhere, | is
singular, and the theorem is true with f identically 0. Otherwise, there is a
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sequence f. of members of I" whose pointwise supremum is an essential order
supremum of I" (Theorem V.18). Since g,vg, is inI" whenever g, and g, are, f,
can be replaced by f;v--vfy,, to make the sequence f. monotone increasing. An
application of the Beppo-Levi theorem now shows that the limit g of the
sequence, an essential order supremum of T', is in T". The measure

n=p— jgdk

must be A singular, or an application of Lemma 6 to ' would yield a not A
almost everywhere vanishing integrand whose sum with g is in ', contrary to
the maximality of g . Thus p-t' = H,c, and g is the desired Radon-Nikodym
derivative of Mye.

Going back to the general case of signed measures, to show that the Radon-
Nikodym derivative is unique up to A null sets, suppose that f and another
integrable function f ' have the same integral over every measurable set A. The
fact that

I(ﬂf)dk:OwhmA= {fzf1i

implies that f < f°, 71? almost everywhere; by symmetry, f'< f, A almost
everywhere, and therefore finally f= £, A almost everywhere.

To prove the last statement of the theorem, observe that if pac = cA then
Lac—c\ is a positive measure, and its Radon-Nikodym derivative with respect to
A must be positive and be (dugcdh)—c up to A null sets. The inequality in the
other direction is treated similarly.

8. Bounded linear functionals on L'

Let (S,S,A) be a filnite measure space. A bounded linear functional on L'isa
function L from L' into R satisfying the following conditions:

L{af+bg) = aL(f) + bL(g) fO{'f, gin L' and constants a,binR;
IL(g)l <constlgl; forginL;
L(g) = 0 if g vanishes A almost everywhere.

The first and third conditions imply that L defines a unique function of
equivalence classes of members of L', if two members are put in the same
equivalence class if and only if they are equal almost everywhere. In the
following, however, functions rather than equivalence classes will be treated.
The norm IL| of L is the smallest constant for which the second condition is
valid. The functional L is positive when f 2> 0 implies that L(f) = 0.

Iffisa bolunded measurable function, with essential supremum If l., the
function on L~ defined by
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@.1) L(g) = jgfd)u

is a bounded linear functional, positive if f is almost everywhere positive, and
IL@I £ If le If1,. Moreover, this inequality forfin L is not satisfied with any
constant smaller than Ifl.., because this inequality with a constant o implies that
Ifl £ o almost everywhere, according to the last assertion in Theorem 7. The
norm of L is therefore the essential supremum of f. A similar argument shows
that L. is a positive functional if and only if f > 0 almost cvcrywhere The
following theorem states that every bounded linear functional on L' has this
form.

Theorem (0 finite measure space (S,S,?»)). If L is a bounded linear
functional on Ll, there is a unique (neglecting null sets) bounded measurable
function f for which L is given by (8.1). Moreover ILl= If leo, and L is positive
if and only if f 2 0 almost everywhere.

This theorem sets up a linear, norm and order preserving correspondence
between bounded linear functionals on L' and the members of the dual space
L”.

Proof. Define a set function . on S by u(A) = L(14). The properties of L imply
that [L is a A absolutely continuous finite signed measure. Hence there is a A
integrable function f, the Radon-Nikodym derivative of u with respect to A, for
which, for Ain S,

In@l = lILag) = Iaql < ILhig, = ol vy,

and therefore (Theorem 7) If | < IL] almost everywhere. Thus (8.1) is true for g
the indicator function of a measurable set, and therefore (8.1) is true when g is a
linear combination of such functions. Since every function in L' can be
approximated arbitrarily closely in the LIOu) distance sense by such step
functions (see Section VI.15), this evaluation of L is valid for g in Ll.

9. Sequences of signed measures

In this and the next two sections, sequences of signed measures on a measurable
space are treated, and a method based on a property of complete pseudometric
spaces is applied, namely, the property (Scction 0.12(c)) that if a complete
pseudometric space is a countable union of closed sets, then at least one
summand has an inner point.

If A is a signed measure on a measurable space (S,S), the inequality

9.1 IAKS) < 2sup{IMA): A € S}

implies that, for a finite set As of signed measures, sup 1A.1(S) < +o whenever
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sup IA.(A)! < +oo for every set A in S, but it is not at all obvious how this
conclusion must be weakened for a sequence of signed measures. According to
the following theorem, no weakening is necessary.

Theorem. Let A, be a sequence of signed measures on a measurable space
(S,S). Then the boundedness condition

(9.2) suplAe(A)l < +oo for every measurable set A
implies the uniform boundedness condition
9.3) sup{ Ay A): n21,A € S} < +oo,
that is, suplAd(S) < +eo.

Inequality (9.2), with A = §, implies that each signed measure A, in this
theorem is finite valued. The theorem is trivial if the signed measures are
measures, because then the conclusion follows from (9.2) with this choice of A.

The condition (9.2) is equivalent to the pair of conditions

() the signed measures A are all finite valued,
(b) lim sup IAe(A)i < +o0 for every measurable set A,

and (a) is equivalent to the condition
(a') the values As(S) are all finite.

Under (b) without (a), A,(S) is finite valued when n is sufficiently large, say
n 2 ny, and therefore Theorem 9 is applicable to the sequence {A,, n 2 ng}.

Proof of the theorem. Choose a finite measure A on S, relative to which every
set function A, is absolutely continuous; for example, define

A= 25 200 K(S).

It will be proved first that there are strictly positive constants ¢, & for which
MA) < & implies that sup IA.I(A) < c. Under the pseudometric dy: d)(A,B) =
MAAB), S is a complete pseudometric space (Section IIL.14), and each function
Ay is a continuous function from § into R, The set

(9.4) f\:;l{A € S: A AN <k} ={Ae S:supl(A) Lk}
is a d, closed subset of S that increases as k increases, tending to S. It follows

(pseudometric version of Section 0.12(c)) that there is a value of k for which the
set in (9.4) contains a ball, say one with center By and radius 3. That is, there are
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numbers ¢; and 8 for which 1A, (C)l < ¢ for all values of n, whenever &\B,C)< 3.
Now suppose that A is a set with MA) < 8. Then d\(ByAB)< 8, h(ByrAR)<dand

therefore
(9.5) Ay (A) = A (BguA) — A (By-A)l £ dy(ByJA,By) +dy(By-A,By) < 2¢.

This is the desired inequality, with ¢ = 2c;, and the proof of the theorem is now
complete if S can be written as the union of finitely many sets of arbitrarily
small strictly positive A measure. Many measure spaces, for example, a finite
interval of R with A defined as Lebesgue measure, have this property. On the
other hand, a probability space does not have this property if the class of
measurable sets is the whole space and the empty set. The following completion
of the proof of the theorem shows that the latter example, in which there is a
nonnull set whose subsets have measure either O or that of the set, exhibits the
only context that must be taken into account. Let o be the supremum of the class
I" of constants 1 for which there is a measurable set A with A(A) = 1 and
suplA.J(A)< +oo. The proof of the theorem will be completed by proving that o
is in T and that o0 = A(S).

Proof that oc € T. For n 2 1, choose a measurable set A, with A(Ap) > o—1/n,
and with the property that sup IAel(4,) < +eo. Define AKX = U, A.. Then
o~1/n £ X(Ak) < o If some set AK has A measure o, then otis in T, as desired. If
MAK) < o for all n, the union of these sets is a set A of A measure o. Choose n
so large that A(A%) > 0~8. Then

suplred(4) < sup ILI(AR)] + ¢,

ThusoisinT.

Proof that o = AMS). Let B be a measurable set, of measure o, for which
suplL(B) < +oo. If S-B is A null there is nothing more to prove, and the
following argument shows that the hypothesis that S—B is not A null leads to a
contradiction. If S—B is not A null, this set has the following two properties:

(i) S—B has no measurable subset C for which 0 < A(C) < 8, because such a
set could be adjoined to B, thereby contradicting the maximal character of o

(ii) S-B has no measurable subset C, of strictly positive A measure, all of
whose subsets have measure either 0 or A(C), because such a set could be
adjoined to B, thereby contradicting the maximal character of o

Hence there is a measurable subset C of S-B, of A measure strictly between 0
and A(S-B). Either C or (S-B)-C has A measure at most A(S—B)/2 Choose the
one, say C,, with this property, and continue, replacing S—B in the reasoning by
S—(BUC)) and so on, obtaining a sequence C. of subsets of S~B, with strictly
positive A measures tending to 0. Since such a sequence contradicts property (1),
the set S—B must be A null, as was to be proved.



IX. Signed Measures 155

10. Vitali-Hahn-Saks theorem (continued)

A part of the Vitali-Hahn-Saks theorem was proved in Section III.10. That part
is repeated as part (a) of the following more complete version.

Theorem (Vitali-Hahn-Saks). Let . be a sequence of finite measures on
the measurable space (§,S).

(a) If he converges setwise to a finite valued set function A, then A is a measure.

(b) In (), if there is a finite measure | with respect to which each measure Ay
is absolutely continuous then A is also W absolutely continuous, and the
sequence A is equiuniformly W absolutely continuous.

As already noted, part (a) of the theorem is simply a restatement of Theorem
HI.10.

Proof of (b). In view of the setwise convergence of A, the limit measure A
vanishes on p null sets and therefore is }L absolutely continuous. If the sequence
A+ is not uniformly L absolutely continuous, there are a subsequence A, and a
sequence B. of measurable sets, with the property that lim p(B.) = O but
inf Ag (B.) > 0, contradicting the Observation in Section III.10.

Relation to Fatou's theorem. Let f. be a sequence of positive measurable in-
tegrable functions on a measure space (S,S,)t), with a measurable integrable
function f as an almost everywhere or in measure limit and define A,(A) =
Lfn14] and A(A) = plf1s) Ilf lim p[fs] = ulfl, then (Fatou's theorem) the
sequence fe has limit fin the L sense. Moreover (Theorem V1.18) in that case if
M is a finite measure, the sequence f. is | uniformly integrable; equivalently A.
is dy equicontinuous. The unifogm integrability of fo implies the uniform
absolute continuity of A., and the L' convergence of f. implies that the sequence
A is setwise convergent to A and in fact that the sequence of variations Ih.—Al
has limit O, a stronger form of convergence than setwise convergence. On the
other hand, the sequence f. in Theorem 10(b) converges to f only in the weak
sense that there is setwise convergence of A. to A.

11. Theorem 10 for signed measures

Theorem. If A is a sequence of finite signed measures on a measurable
space (5,8), setwise convergent to a finite valued set function A then A is a
signed measure.

Proof. The set function A is obviously finitely additive. Choose a finite measure
L on S, relative to which every measure A, is absolutely continuous, say
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W = X5 n 20, VIL,1(S). Then A is a sequence of continuous functions from the
complete pseudometric space (S,dy) into R, and the sequence has limit A.
According to Theorem 9, A is bounded. There remains the proof of countable
additivity. According to a standard metric space theorem (pseudometric version
of (Section 0.12(f)), the function A must have a d), continuity point, say the set
A, at which the sequence is uniformly convergent. If B € S,

(11.1) MB) = MAUB) -A(A-B).

Now when B tends to @ in the dp metric, that is, when Q(B) tends to 0, both
AUB , and A-B tend to A in this metric, and therefore by dj, continuity of A at A,
(11.1) implies that A(B) tends to 0. Thus A is dy, continuous at @. It follows that
if a monotone decreasing sequence of measurable sets has limit @, the
corresponding sequence of A values has limit 0, that is, A is countably additive.



X

Measures and Functions of Bounded
Variation on R

1. Introduction

This chapter is devoted to the context of set functions and corresponding point
functions on R, a context so important that it deserves a treatment beyond the
discussion of Lebesgue-Stieltjes measures in Chapter IV. The first topic will be
the derivation of monotone functions, for which a covering lemma will be
needed.

2. Covering lemma

In the following lemma, the fact will be used that if I. is an arbitrary collection
of intervals of R (which may or may not include one or both endpoints), and if A
is the union of their interiors, then the difference B = Ul - A is countable. To
see this, for each point of B choose a corresponding interval in I. containing the
point as an endpoint. The intervals chosen with the point of B as their left
endpoint have pairwise disjoint interiors and are therefore countable in number,
as are the intervals chosen with the point of B as their right endpoint. Hence B is
countable. Incidentally this countability implies that B and \Ul. are Borel sets.

Lemma (Aldaz). If A is a Lebesgue-Stieltjes measure on R, I. is a collection
of intervals of R (which may or may not include one or both endpoints), and

c<1/2, there is a finite disjunct sequence J. of members of I. with
T MJ)>cMUL).

Proof. In the notation used at the beginning of this section, the set B is
countable, and its points are endpoints of a countable subcollection of /.. By
Lindelof's theorem, the union of the /. interval interiors is the same as some
countable subunion of the interiors. Thus it can be assumed that the given
collection /. is a finite or infinite sequence. Choose n so large that
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i M1j) > 2cMULL),
j=1

and for convenience in referencing define J; = I; for i < n. It is no restriction to
assume that each interval J; contains a point s; not in any other of these n
intervals and that these intervals are ordered in such a way that s. is monotone
increasing. Then J; < (-eo,57) and Jg  (sj,00) when i < j < k. The intervals J.
with even indices are pairwise disjoint, as are the intervals with odd indices.
Hence either the union of the even indexed intervals or of the odd indexed
intervals has measure > c¢A(UJ.) and provides the intervals demanded by the
lemma.

3. Vitali covering of a set

A class of intervals of RY covers a set in the sense of Vitali if each point of the
set is a point of an arbitrarily small interval in the class.

Theorem. Let A be a Lebesgue-Stieltjes measure on R. If a class of closed
intervals of R covers a subset A of R in the sense of Vitali, there is a countable
disjunct sequence of those intervals with union including A almost every point of
A.

Proof. Let A be the outer measure generated by B(R) and A. If A is A" null
there is nothing to prove. Since it is suffu,lem to prove the theorem for a
bounded set A, it can be supposed that 0 < A% (A) < +oo. Let G be an open
superset of A with M G) < (10/9)L™(A) and let 1. be the collection of the intervals
of the Vitali cover of A that are subsets of G. According to Lemma 2, there are
flmtely many pairwise disjoint intervals J. in /. with union of measure at least
AF (A)/3 and therefore leaving a subset of A of outer measure at most (7/9)?\. A
uncovered. Replace A in this argument by A - UJ., replace the given Vitali cover
by its members not meeting A - UJ., and repeat the argument to find pairwise
disjoint members of this cover, not meetmg J., and together with J. leaving a
subset of A of outer measure at most (7/9)27» (A) uncovered. And so on, through
the powers of 7/9.

4. Derivation of Lebesgue-Stieltjes measures and of
monotone functions

In this section, A and p are Lebesgue-Stieltjes measures on R, and A is
complete. The functions F) and Fy are corresponding monotone increasing right
continuous functions that generate these measures, and A, u* are respectively
the outer measures generated by A, [L. Let s be a point of R and / be a closed
interval containing s. The upper [lower] derivate at s of Fy with respect to Fy, is
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defined as the limit superior [inferior], of wW(I)A(I), when I shrinks to s except
that these derivates are left undefined when A/)=0 for some choice of I. In the
latter case, s is in a maximal interval of such points, and the class of such points
is a A null countable disjunct union of such intervals. If the upper and lower
derivates exist and are equal at s, that is, if there is a limit at s, the limit is the
derivative at s of WL with respect to A, or of Fy, with respect to F), and will be
denoted by (dp/dA)(s), or by (dFu/dFD(s). Observe that if s is a discontinuity
point of Fj, that is, if M{s}) > O, then the derivative exists at s and is
w({s})/M{s}). If A is Lebesgue measure, the derivative will be denoted, as usual,
by Fy'.

Theorem. Let A and |\ be Lebesgue-Stieltjes measures on R. Then
(a) the derivative duld\ exists and is finite A almost everywhere on R;

(b) this derivative (extended arbitrarily to all of R) is A measurable and
integrable, and is a version of the Radon-Nikodym derivative with respect to A
of the absolutely continuous component of L relative to \.

Proof of (a). It is sufficient to prove the theorem for the derivative at the points
of a finite open interval J. Choose numbers a, b, with a < b, and let A be the set
of points s in J at which the upper and lower derivates exist and are respectively
> b and < a. The closed subintervals [ of J with the property that I contains a
point of A and that w(IA(I) > b, cover A in the sense of Vitali, and Theorem 3
therefore implies that there is a disjunct countable union B of closed intervals
covering A+ almost every point of A and satisfying the inequality W(B) > bA(B).
Then p(B) > bA*(A). Now if y> 0, all the above can be done with the additional
condition on the Vitali covering intervals: they are to be subsets of an open set J'
covering A, chosen in such a way that u(J") < A*(A)+y. It follows that p*(4) >
bA*(A). A parallel proof shows that p*(4) < aA*(A), and therefore that
A*(A) = 0 (= M(A)). The set where the derivative does not exist for s in J is the
union of all sets defined like A, as a and b range through the rational numbers. It
follows that this limit exists A almost everywhere on J.

The following argument to prove A almost everywhere finiteness of the
derivative should be compared with the application of martingale theory to
derivation in Section XI.17. Choose numbers o and B, with § > o. It will be
shown that the derivative is finite A almost everywhere by showing that the
derivative is A measurable and satisfies the inequality

B
@.1) [ (ansany an < iy,

o+

where here and below it is to be understood that the notation for the integration
limits means that
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the integration is over the right semiclosed interval (ot,]. Define right
semiclosed subintervals of (o, ] by

Ly m = (ov+m(B-00)2",00+-(m+1)(B—00)2~"] (n=21,m=0,..2"-1),

and define a function x,, on (c,B], constant on each interval I, ,,,, equal to O on
the interval when the interval is A null and otherwise equal to W, /Ay, 1) On
the interval. The function x, is Borel measurable, its integral with respect to A
over the interval (o] is p((0,B]), and lim x. = du/d\ at each point at which the
derivative exists. It follows that the derivative is A measurable and Fatou's
theorem yields (4.1). Since the measure A—’)»[(du/d?») 1,4] is majorized by W on
right semiclosed intervals, this majorization is valid on Borel sets and therefore
on the domain of A; that is, for every A measurable set A,

(4.2) j dWdh dh < (A).
A

Proof of (b) when L is A absolutely continuous. Letf be (a version of) the
Radon-Nikodym derivat[iive of p with respect to A. Thcén (4.1) becomes

43) | dwiay dhsp(@p) = [ fan.

If f is bounded, the sequence x. is uniformly bounded, and the Lebesgue
dominated convergence theorem can be applied above, instead of Fatou's
theorem. Hence in this case there is equality in (4.3) and therefore in (4.2). If
is the measure with Radon-Nikodym derivative fan, the derivates of p are at
least as large as thosg, of W, and thereé‘ore

p
(4.4) j duld d\ 2 J dipldhdh= [ fan dh.
ot o+ o+
Let n—+ec in (4.4) to obtain the reverse of the inequality in (4.3). Thus there is
equality in (4.3), therefore also in (4.2), and by uniqueness of the Radon-
Nikodym derivative it follows that f=du/dA up to A null sets.

Proof of (b) when p is A singular. If p is A singular, choose A in (4.2) as a 1
null set that carries A to find that di/dA vanishes A almost everywhere.

In view of the Lebesgue decomposition of p relative to A, the fact that (b) is
true both when L is A absolutely continuous and when W is A singular implies
that (b) is true for arbitrary {.

5. Functions of bounded variation

Let F be a function from a compact interval I: [a,b] of R into R, choose a finite
increasing sequence f; =a < *** <t, = b, and consider the sums
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n— n—1
Vi =3 [(FoF o], v =3 [(F 6r-Fam)vo),
j= j=

(5.1)

n-1
V(F) =Y Fej-F @l
Jj=1

The values V+(F,t.), -V'(F,t.), and V(F,t.) are, respectively the positive,
negative, and total variations of F on the sequence . They satisfy the equations

52) V(Ft)= V+(F,t.) +V (F.t.), F(b)-F(a)= V+(F,t.) -V (Ft.).

The suprema of V+(F,t.), V (F.t.), and V(F,t.) over all sequences t. are,
respectively, the positive, minus the negative, and the total variations of F on |,
denoted by V+(F,I), V (F,D), and V(F,]). If the total variation on I is finite, the
other two variations are also finite, and F is of bounded variation on I
Obviously |F(b)-F(a)l £ V(F,I). If F is of bounded variation on I, define the
total variation function 1F1 on I by

I1Fl(a) = 0; 1F1(t) = V(F,[a,1]) t >a),

and define the positive and negative variation functions F *and -F " in the
corresponding way.

The following properties are readily checked, taking advantage of the fact

that if more points are added to the sequence f., each of the three sums in (5.1)
can only increase.
(a) Maximizing successions of finite sequences for the three sums in (5.1) can
be combined to yield one maximizing succession for all three, and thereby, if F
is of bounded variation, to derive the equalities (5.2) for the variations on I.
Apply this with  replaced by a subinterval with left endpoint a to find that if F
is of bounded variation,

(5.3) INM=F +F~, F-Fa)=F T-F~.

(b) If F and G are functions from / into R, then V(F+G,I) < V(F.)+V(G,I); vt
and V™ satisfy the same inequality.

(c) The set function V(F,*) is additive in the sense that if I; and [, are compact
subintervals of 1, disjoint except for a common endpoint, then

5.4 V(F.Luh)=V(F, I}) + V(F.L),

and the other two variations are additive in the same sense. It follows that the
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. + — . . . .
functions 1F1, F ",and F ~ are monotone increasing on I; and in factifa <s<t
<b,

V(FIs,l)=F “0)-F ~(s), V'(F[s,)=F T@t)-F *(s),
(5.5)
V(F,[s,]) = IFIg)-1F(s).

Theorem. Let F be a function from a compact interval I into R. Then the
Sfollowing holds.

(a) (Jordan decomposition) F is of bounded variation if and only if F is the
difference between two monotone increasing functions, for example, as exhibited
by (5.3).

(b) If F is of bounded variation, then
(i) F has a right and left limit at every point, and
(ii) F is right [ left] continuous at a point if and only if 1F1 is; in more detail,

F Y (s+)-F *(s) = [F(s+)-F(s) M0, F ¥ (5)-F T (s2) = [F(s)-F (s—)] V0.
(5.6)

[ Fs+)-F "] = [Fs+)-F©)]A0, —[F “(5)-F “(s=)] = [F(s)-F(s-)]0.

In particular, if F i_f of bounded variation, and right continuous at the interior
points of I, then F ~ and F have this same continuity property.

+ - ) . . . . .
(¢) F " and F are minimal in the sense that if F is of bounded variation and
F = F,—F,, with each function F; monotone increasing, then

5.7 F Y (0)-F Y(5) S Ft)-F,(s5), F ()-F “(s) < Fy0)-F1(s) (a Ss<t<b).

The point of the first equality in (5.6) is that F * has the same right jump at s
as F if F has a positive right jump there, and F Tis right continuous at s if F is
right continuous there or has a negative jump there. The other inequalities have
corresponding significance. Observe that (b) implies

(5.8) 1A (s+) - VF(s) = IF (s+)-F (s)I, LFI(s) - 1 Fl(s—) = |F (s)-F (s-).
The notation of the preceding paragraphs will be used in the following proof.
Proof of (a). It is trivial that if the function F is monotone increasing, then its

total variation on [ is F(b)-F(a), and it follows that the difference between two
monotone increasing functions on / is of bounded variation on /. Conversely, if
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F is of bounded variation, (5.3) exhibits F as the difference between two
monotone increasing functions.

Proof of (b). A function of bounded variation has right and left limits at all
points because monotone functions have this property. Now (notation of (5. 1))

[Faj)-Fap MO < F " @0-F *@p);

moreover the sum over the values of J of the dlfterences between the two sides
of this inequality is the difference vt (F, I)—V (F,t.). Choose € > 0 and choose ¢.
in such a way that this difference is at most €. Then, all the more,

(5.9) 0<F Yt,)-F Y(a) - [Fip)F(a)]v0 < &

Add a point to #. if necessary — adding a point does not 1nva11date (59)—to
make #,—a so small that |F(t;)-F(a+)l <€ and F (z2)—F (a +) < €. With this
choice of t,, (5.9) yields

(5.10) 0 <F Y(a+)-F T(a) -[Fla+)-F(a)]v0 <3¢,

and therefore the first equality in (5.6) is true when s =g, in fact, for every value
of s. The corresponding arguments yield the other equalities.

Proof of (c). It is sufficient to prove (c) for s = a and ¢ = b. Under the hypotheses
of (¢) (notation of (5. 1))

611 S [(Fej-F @p)v0] < 2 [(Fatj)-Foep)V0] = Fatt)-Frta),
j=1

and the supremum of the left side for all sequences f. is F (b) -F +(a). Thus the

first inequality in (5.7) is true, and the corresponding argument yields the second

inequality.

6. Functions of bounded variation vs. signed measures

Let F be a function of bounded variation on the compact interval I. Then
F = F,-F}, where Fy and F, are monotone increasing. Moreover, it F is right
continuous except possibly at a, F; and F, can be chosen with this same
continuity property. (Apply Theorem 5, or simply replace the original choices of
F) and F; by their right limit functions at the points of I other than a.) Under
this right continuity condition define (notation of Section IV.8) the signed
measure Ap by Ap =Ap,~Af,. Observe that this definition is independent of the

choice of F| and F;, (satisfying the stated right continuity condition), that the Ax
measure of the interval [a,t] is F(f)~F(a), and that this evaluation of A on each
interval [a,t] uniquely determines A g. Thus to a function of bounded variation on
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I, right continuous except possibly at a, corresponds a finite signed measure on
B(D). Conversely if A is a finite signed measure on B([), define F), on I by
Fy(a) = 0 and Fj(t)= M[a.1]) for t > a. The function Fy is right continuous
except possibly at a and is monotone increasing if and only if A is a measure. In
view of the Jordan decomposition of a signed measure, Fj, is the difference
between two monotone increasing functions and is therefore of bounded
variation. Moreover A is the signed measure generated by Fj by the above
defined procedure, because this procedure assigns the same measure as A to each
interval [a,t]. Finally it is trivial to check that F'is, up to an additive constant, the
function of bounded variation determined by the signed measure Ar. The
minimal properties of F “and F ~ are in exact correspondence with the minimal
properties of positive and negative variations of a signed measure on B(J), as
applied to intervals, and it follows that if F is of bounded variation, then
AR’ =hpeand  (Ap) =Ap

7. Absolute continuity and singularity of a function of
bounded variation

Let F be a monotone increasing function on the compact interval /:[a,b], right
continuous except perhaps at a, and let G be a function defined and of bounded
variation on /[, right continuous except perhaps at a. The function F is absolutely
continuous [singular] relative to G if Ap is absolutely continuous [singular]
relative to Ag. The function F is simply described as absolutely continuous
[singular] if F is absolutely continuous [singular] relative to Lebesgue meaasure.
The Lebesgue decomposition of a signed measure in the present context states
that a function of bounded variation relative to a function is the sum of an
absolutely continuous and a singular function (relative to the specified
monotone function). Here all functions are supposed right continuous except
possibly ata.

For example, suppose that F is a monotone increasing function on /, right
continuous except possibly at a. Suppose that, if € > 0, there is a corresponding
& > 0 with the property that if /. is a finite set of pairwise disjoint subintervals of
I, open relative to I, and if Ag(UL) < & then Ag (UL) < €. The same assertion
will then be true for countable interval unions and is equivalent to the condition
that Az vanishes on Ag null sets. Thus this condition is necessary and sufficient
for absolute continuity. The condition can be phrased trivially without reference
to measure because the values of Ag and Ag on intervals have simple
expressions without intervention of measure theory. Similarly, singularity of a
function of bounded variation relative to a monotone increasing function can be
expressed without the help of measure theory.
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8. The convergence set of a sequence of monotone
functions

Let F. be a sequence of monotone increasing functions from R into R. (The
changes to be made below if the domain of definition of the functions is an
interval of R will be obvious.) Suppose that the set S of points of convergence
of the sequence (to a finite value) is dense in R, and define F on § as the limit of
F.. Then F is a monotone increasing function from S into R, and the left and
right limit functions of F, defined on R, are respectively left and right
continuous. Moreover at each point s of R,

lim sup Fo(s) < lim Fo(s) = F(s) (s<s'eld),
&.1)

lim inf Fu(s) 2 lim Fu(s") = F(s") (s >s'e ),
so that
(8.2) F(s-) < lim inf F.(s) < 1lim sup Fo(s) < F(s+).

Thus the sequence F, converges at every point s at which F(s—) = F(s+). It
follows that R-S is countable. The function s=— F(s+) is a right continuous
function on R, and the sequence F. converges to this function at its continuity
points.

9. Helly's compactness theorem for sequences of
monotone functions

Roughly speaking, Helly's theorem states that for each positive constant ¢, the
class

{ F: F is monotone increasing from R into R and IF1 < ¢}
of functions is compact. In later sections, this assertion will be put in precise
topological contexts, in terms of the measures generated by monotone increasing

functions.

Theorem (Helly). If F. is a uniformly bounded sequence of monotone
increasing functions from R into R, there is a subsequence converging onR.

The theorem is true for monotone functions on an arbitrary interval, with or
without its endpoints, and the proof requires only trivial modifications.
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Proof. According to the Bolzano-Weierstrass theorem, if s is a point of R, some
subsequence of F. converges to a limit at s. If S ' is a finite subset of R, the
preceding remark, applied repeatedly, yields a subsequence of F. converging at
every point of §". Finally, if §' is countably infinite, the diagonal procedure
yields a subsequence of F. converging at every point of S'. Suppose now that S’
has been chosen to be countable and dense in R. The monotonicity of the
functions has not yet been used, but according to Section 8, the fact that the
functions of the given sequence are monotone increasing implies that the
convergence set of F. is R less an at most countable set. Hence a further
subsequence of F. can be chosen to obtain convergence everywhere on R.

10. Intervals of uniform convergence of a convergent
sequence of monotone functions

Theorem. A sequence F. of monotone increasing functions from Rinto R,
converging to a finite valued monotone increasing function F at the set of points
of continuity of F, converges uniformly on each compact interval of continuity of
F.

Proof. If the sequence F. does not converge uniformly on a compact continuity
interval / of F, there is a subsequence G. of F., a sequence s. of points of I, and
a strictly positive €, with the property that

(10.1) |F(s,)-Gps)l 2 (=1

It can be supposed, going to further subsequences if necessary, that the sequence
se is convergent, with limit sin I. If s'<s <s"” and if s’ and s" are points of
continuity of F, then

(10.2) F(s") <lim inf Gu(s.) < lim sup Go(s.) £ F(s").

Since the first and last terms of this inequality have limit F(s) when s’ and s"
tend to s, it follows that the sequences F(s.) and G.(s.) have the same limit F(s).
This conclusion contradicts (10.1) and therefore there is the stated uniform
convergence.

11. C(Z) convergence of measure sequences on a
compact interval /

If I=]a,b]is a compact interval of R, then (Section IV.9) a measure A in M (J),
the class of finite measures on the Borel subsets of I, generates a unique
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bounded monotone increasing function F3, the distribution function
corresponding to A, defined on /, right continuous on (a,b), and vanishing at a.
Conversely, a monotone increasing function F on I, right continuous on (a,b)
and vanishing at @, generates a unique measure A in M (/). The monotone
function generated by Ap is F and the measure generated by F) is A. The
following theorem relates the convergence of a sequence of finite measures on
B(]) to the convergence of the corresponding sequence of monotone functions.

Theorem. Let I: [a,b] be a compact subinterval of R.

(a) If a sequence h in M(I) is C(I) convergent to A, then the sequence F),
converges to F» at the continuity points of F) and at b.

(b) Let F. be a sequence of monotone increasing functions on |a,b], right
continuous on (a,b) and vanishing at a, and let F be a function with these same
properties. If F. converges to F at the continuity points of F, and at b, then the
sequence hF, is C(I) convergent to Ap.

Proof of (a). If A is C(J) convergent to A, and if a < s < b, with M({s }) =0
when s < b, that is, if s is a continuity point of F) when s < b, then [a,s] is a set
with a A null boundary relative to I, and it follows from Theorem 8.6(b)(iii) that
lim L([a,s]) = l([a,s]), that is, lim F ,(s) = F(s).

Proof of (b). If the sequence F. converges to F at the continuity points of F, and
at b, the sequence Af,(I) is bounded, and therefore a subsequence of Ag, is C(I)
convergent to some measure A, according to Section VIIL5(c). According to
part (a) of the present theorem, the corresponding subsequence of F. is
convergent to F), at the continuity points of F and at b, and therefore F) = F,
that is, A = Ag. But then the C (/) convergent subsequences of A. must all have
the same limit measure A, and therefore the sequence A. is C(I) convergent to
AE.

12. C4(R) convergence of a measure sequence

In many applications one is dealing with monotone functions and measures on
open subintervals of R. Since in fact the most common application is to R itself,
this section deals with that case; the generalization to an arbitrary open
subinterval of R is trivial. The monotone functions considered will be bounded,
the measures will be finite, and R will be treated (see Section VIIL.1) as a
punctured compact space, the space obtained by removing the point at infinity of
a one-point metric compactification of R. If A is a finite measure on B(R), F), is
the right continuous monotone function defined on R by setting
Fy(s) = K((-—oo,s]). Then Fj(—eco+) = 0. In the other direction, if F is a bounded
right continuous monotone increasing function on R, with F(-eo+) = 0, the
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measure Ap is the corresponding Lebesgue-Stieltjes measure generated by
setting Ag((—ee,6]) = F(b). The monotone function generated by Afis F, and the
measure generated by Fj, is A.

Theorem. (a) If a sequence A in M(R) is Cy(R) convergent to a measure A,
then the sequence Fy, is bounded, and

(12.1) Lim[Fy,(b)-F.(@)] = FA(b)~Fi(a) = A((a,b])
whenever a and b are continuity points of Fy.

(b) Let F, be a bounded sequence of monotone increasing right continuous
functions on R with F,(—eo+) = 0. If lim[F.(b)-F.(a)] exists for a and b in a
dense subset of R, then the sequence AR, is CoR) convergent to a measure .
Proof of (a). If the sequence A. has Cy(R) limit A, boundedness of the sequence
F), follows from the boundedness of A«(S). The limit equation (12.1) is true
because, according to Theorem VIIL10(b)(iii), lim A+«(A) = MA) when A has
compact closure and A null boundary.

Proof of (b). Under the hypotheses of (b), the sequence Af,(S) is bounded, and
therefore a subsequence of Ap, is Co(R) convergent to some measure, A,
according to Section VIIL.9. According to (a) the corresponding subsequence of
[Fu(b)-F.(a)] converges to F)(b)-Fy(a) = AM((a,b]) whenever {a} and {b} are A
null, and therefore whenever neither a nor b is in a certain countable set. But
then two CyR) convergent subsequences of A. must converge to the same
values on intervals (a,b] whenever neither a nor b is in an exceptional countable
set, and therefore the two limit measures must agree on intervals whose
endpoints are in a dense set. Thus the Cy(R) convergent subsequences of A. all
have the same limit measure A, and therefore the sequence Af, is convergent to

A

Example. Let F be a probability distribution function on R, that is, F is a
right continuous monotone increasing function with limits 0 and 1 at —ee, and
+oo, respectively. Define F,(s) = F(s+n). When either n——cc or n—>+co, the
corresponding sequence of measures has Co(R) limit the identically vanishing
measure. The sequence F,F_,F,,F_,,... does not converge at any point, but the
corresponding sequence of measures again has the identically vanishing measure
as Cy(R) limit. This example shows that there may not be Fj, convergence
when there is Co(R) convergence of A.. Of course, even in this example the
difference sequence limit in (12.1) exists, and is identically O, as it should be
according to Theorem 12.
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13. Stable C(R) convergence of a measure sequence

The added condition that Co(R) convergence of a sequence A. to A be stable is
the condition lim A(R) = AR). According to Theorem VIIL.13, a bounded
sequence A. of measures on R is stably Co(R) convergent with limit A if and
only if lim A«(A) = MA) for every set A with a A null boundary. Moreover it is
sufficient if A in the stated condition is an interval with A null boundary, because
then there is Co(R) convergence according to Theorem 12, and in addition
lim A(R) = AR) because 0R = @, Thus A. has stable Co(R) limit A if and only
if not only lim F), = F), at the continuity points of F), but also lim Fj (+o—) =
F) (4oo-).

According to Theorem VIIL.13, if fis a bounded continuous function on R,
then under stable C o(R) convergence of A to A,

(13.1) lim J fs) dFy.(s) = j fs) dFAGs).
R R

Conversely the validity of (13.1) for every bounded continuous function f with a
finite limit at 4o and the same limit at — is essentially the definition of stable
Co(R) convergence.

Example. If x. is a sequence of random variables on a probability space, and
if the sequence converges in measure, then the sequence A. of distributions of
the random variables is stably Co(R) convergent, because lim E{fix.)} = A[f] is
a convergent sequence whenever ¢ is a bounded continuous function from R
into R.

The Lévy metric for stable Cy(R) convergence. According to Section
VIIIL.12, there is a stable Co(R) metric for the class M(R) of finite measures on
R, that is, a metric under which this class is a complete metric space, with
convergence in the metric the same as stable Co(R) convergence. An equivalent
metric adapted to the class of corresponding bounded monotone increasing
functions (right continuous and with F(-eo+) = 0) was devised by P. Lévy. If Fis
such a function, fill in its graph at each discontinuity point s with the vertical
line segment from ((s,F(s-)) to (s,F (s)). If F and G are two such functions,
each line of slope -1, in the plane of the filled graphs, determines a line segment
with endpoints on the graphs, and Lévy defined the distance from F to G as the
maximum length of all these line segments between the two graphs. The
verification that this distance definition has the stated properties is left to the
reader.

14. The characteristic function of a measure

Let A be a finite measure on R with corresponding distribution function Fj,. The
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characteristic function of A, also called the characteristic function of F,, is the
function @ from R into the complex numbers defined by

(14.1) D) = _[ eNds) = [ edR().
R R

The characteristic function of a real valued measurable function is defined as
the characteristic function of its distribution. Thus, in a probability context, the
characteristic function of a random variable x is the function +E{e*}. The
characteristic function of a measure A is bounded in absolute value by A(R) and
is continuous, with value A(R) = Fy(eo-) at the origin. If A is absolutely
continuous with respect to Lebesgue measure, (D/\/E is the Fourier transform of
F,' and therefore, according to the general remarks on Fourier transforms in
Section VIL.11, F;' would be expected in some sense to be the inverse Fourier
transform of &/ 2%,

1
(14.2) FA() =5 f it O() d,
R

and thereby to be determined by its characteristic function. These remarks are
not rigorous mathematics but in fact even without a hypothesis of absolute
continuity, a version of (14.2) suggested by formal integration is true, according
to the following theorem.

Theorem (Lévy). If A is a finite measure on R, with characteristic function
D, then
FAb)+Fab-)  Fy(@)+F(a-) Ceith - it

= limg_ye0 J' —— o) dt.
2 2 -2mit

(14.3)

Proof. The integral on the right becomes, after the formula for @ is inserted and

the integration order is reversed,
o

e-ir(b-s) - -it(a-s)

(14.4) J Mds) J —
R -2mit

o

o

sin#(b-s) - sin t(a-s)
= RJ' Mds) - dr.

o
According to Section VII.10, when ot—+oo the inner integral on the right has
limit 1 for s in (a,b), limit 1/2 at a and b, and limit O elsewhere; since this
integral is bounded uniformly as s varies, the Lebesgue dominated convergence
theorem is applicable and yields (14.3).
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15. Stable C,(R) convergence of a sequence of
probability distributions

In the following discussion, the issue is the stable Co(R) convergence of a
sequence of finite measures on R. It is trivial that under this convergence (13.1)
is true for every bounded continuous function f from R into the complex
numbers as well as into the real numbers. The most important case is that of a
sequence of probability measures on R converging to a probability measure on
R, and the discussion is restricted to that case, but the results are easily
translated to cover the general case.

Theorem (Lévy). Let A. be a sequence of probability measures on R, with
characteristic function sequence ®..

If Ao is stably CyR) convergent to a probability measure A, equivalently if
the sequence F), converges to F) at the continuity points of F), then the
sequence ®. converges to the characteristic function of A, uniformly on every
finite interval. Conversely, if the sequence ®. converges, and the convergence is
uniform on some neighborhood of the origin, then the limit function is the
characteristic function of a probability measure A and the sequence h.
converges stably CyR)to A.

Proof. If the sequence A. converges stably Co(R) to A, Theorem VIIL.13 implies
that the sequence ®. of characteristic functions converges to the characteristic
function @ of A, and that the convergence is uniform on finite intervals. In fact,
according to that theorem, if #. is a sequence in R, with limit #, then lim ®.(z.) =
D).

Conversely, supppose that the sequence ®. of characteristic functions
converges to some function ®. The sequence A. is a bounded sequence of
measures, and therefore there is a Cy(R) convergent subsequence, with some
limit measure A. According to Theorem 14, A is uniquely determined by ®, and
therefore the sequence A is Co(R) convergent, because every Co(R) convergent
subsequence has the same limit measure A. Since the sequence @, has limit @,

(15.1) lim j(l - cos Is ) ha(ds) = 1 - RD().
R

The integrals on the left define a bounded sequence of functions of ¢, and
therefore Lebesgue's domigated convergence theorem is applicable to yield

15.2 im
(15.2) lim 5 0'[ dt Rj (1 - costs) Ae(ds)

=tim [(1-

8
sin & 1
5 ) M) =1 - 80‘[ RO() dr.
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Since there is Cy(R) convergence of A. to A,

ind ind
(15.3) lim j 0 )= [ =
A)
R

) Os

When & tends to 0, the Lebesgue dominated convergence theorem is applicable
to the second integral in (15.3), yielding the limit A(R). Now by hypothesis, ® is
the limit of a sequence of characteristic functions, converging uniformly in some
neighborhood of the origin, and therefore ®(0) = 1 and @ is continuous in a
neighborhood of the origin. Thus the third integral in (15.3) has limit 1 when &
tends to 0. Hence A is a probability measure, the sequence A. is stably Co(R)
convergent to A, and, according to the first part of the theorem, @ is the
characteristic function of A.

Ad 1 8SRcI) d
s)_SOJ' @) dt.

16. Application to a stable Cy(R) metrization of M(R)

Theorem 15 suggests that one simple stable Cy(S) metrization of the class of
probability measures on R is by way of characteristic functions. For example, if
A and A, are probability measures on R, with respective characteristic functions
@, and @,, define the distance between the probability measures as

(16.1) > 2 sup{loyes) - @)l 1<}
n=1

Under this metric, a sequence A. of probability measures converges stably
Cy(R) to a probability measure A if and only if the corresponding characteristic
function sequence converges to the characteristic function of A locally uniformly
on R, and the Cauchy condition for convergence implies the existence of a
stable Co(R) limit. Thus the metric is a metric for Co(R) convergence, making
the class of probability measures a complete metric space. It is left to the reader
to check that this metric also makes M(R) a complete metric space.

17. General approach to derivation

Let (S,S) be a measurable space, A be a finite measure on S, and [t be a finite
signed measure on S. In many contexts, each point s of § is associated with a
system S; of subsets of S in such a way that, at A almost every point s, the
denominator in the following relation does not vanish, and that the limit

. kA
(17.1) lim = fs)

MA)

exists and is finite, when A runs through S in some prescribed order or partial
order. For example, according to Theorem X.4, a Lebesgue-Stieltjes signed
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measure on R has derivative lim p(A)/A(A) at A almost every point s, when A is
a closed interval containing s that shrinks to s. A second example, in an abstract
context, will be given in Section XI.17: a sequence of finer and finer partitions
of S is chosen, A, (s) is the cell of the nth partition containing s, and then for A
almost every s, lim L(A.(s))/MA .(s)) exists.

In such a context, the difference between the limit superior and limit inferior
of L(A)/MA)) at s when A runs through S in the prescribed way will be denoted
by Dg[i,Al, and the limit, when it exists, will be denoted by Dg[u,A]. If, for
every pair A, i, DJ[Y,A] exists A almost everywhere, then D will be called a
derivation operator for the measurable space, a Radon-Nikodym derivation
operator if D.J[LA] is a version of the Radon-Nikodym derivative of the
absolutely continuous component of W relative to A. The exact context is
irrelevant in the following. Recall the notation I+l for the absolute variation of a
signed measure. The inequality

HA©)-MA®) | . lu-aAl(A(s))

(17.2) | <
MA(s)) MA(s))

lu(A ()

|
-]
MA(9)
suggests a useful stronger condition on the derivation operator than Dg[A,U] = a,
the condition

(17.3) Dy[lp-arlA] =0,

which has the advantage that the ratios leading to derivation are ratios of
positive quantities, and the limit to be verified is 0. A point s at which (17.3) is
true is a Lebesgue point for [ relative to A, and of course relative to the
prescribed derivation procedure.

Theorem. Let (S,S) be a measurable space, D be a Radon-Nikodym
derivation operator for (S,S), W be a finite signed measure on' S, and A be a
finite measure on S. Then A almost every point of S is a Lebesgue point for B
relative to \.

In view of the Lebesgue decomposition of p relative to A, it is sufficient to
prove the theorem when (1 is A singular and when L is A absolutely continuous.

Proof when L is A singular. When | is A singular, that is, by definition, when
Iul is A singular, D[l ,A] = D[, Al = O for A almost every s, because D is a
Radon-Nikodym derivation operator.

Proof when p is A absolutely continuous. Let f be the Radon-Nikodym
derivative of [ relative to A. If ris a real number, then lp—rAl is a finite measure

absolutely continuous relative to A, with Radon-Nikodym derivative |f-rl:

(17.4) Dg[lp—ALA] = IRs)-r,
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for A almost every s. Hence there is a A null set B with the property that (17.4) is
true for every rational value of r, when s is not in B. Moreover, if r is an
arbitrary real number and if r' is rational,

1
MA)

1 . 1 ' '
:mIJ [V—rl—’f—r |] d;&l < WJ r=r'ldh =Ir-r.

(17.5) | lu—rM (A)—(lu—r‘M(A)l

It follows that when s is not in B, Ds[lu~rAl,A] < 2lr—rl, and therefore the
derivative on the left in (17.4) exists, and (17.4) is true. Hence, for s not in B,
(17.4) is true with r replaced by f(s), that is, every point of S-B is a Lebesgue
point for p relative to A.

Example. Let the measure space be R under Lebesgue measure, let ds refer
to Lebesgue measure, let derivation refer to the usual difference quotient limit
procedure, let f be a Lebesgue measurable function on R, integrable over every
finite interval, and define p(A) = Mf14], for bounded Lebesgue measurable sets
A. The fact that almost every point is a Lebesgue point of [ relative to Lebesgue
measure is the fact that for (Lebesgue measure) almost every point ¢,

+8

(17.6) limg % JIf(t)—f(s)I ds = 0.

This result is stronger than the result that the integrand f is almost everywhere
the derivative of its integral.

18. A ratio limit lemma

In many applications of analysis one deals with sequences of integrals of the
form

b
(18.1) MKy = J Kn(s) Mds),

where K. is a sequence of positive functions, A is a measure on the integration
interval [0,b], and the sequence K. has limit O on (0,5] but converges to O in
such a way that as n increases, the integration outside an interval containing O
becomes negligible, compared to the value of the integral inside the interval.
Thus, roughly, MK,] ~ K,(0)AMI},) for I some interval with left-hand endpoint
0, whose choice is the same for every choice of A. If this guess is indeed true,
then if W is a second measure on [0,b], the ratio p[K,V/A[K,] would be near
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Wl YAd,) for large n, and therefore would tend to dp/dA at 0, if this derivative
exists. The following lemma gives a simple set of conditions on K. that will be
used in identifying a context in which this reasoning can be made precise. It will
be convenient to write integrals with respect to a measure in terms of the
monotone increasing function generating the measure.

Lemma. Let K. be a sequence of strictly positive continuous functions on the
interval [0,b]. Suppose that

(a) each derivative K" exists, is continuous, and K,' <0;
(b) if 0 < a < b, the function lim inf K./K.(a) has limit +oo at 0, and has
Lebesgue integral +eo over every neighborhood of 0.

Let F and G be monotone increasing functions on [0,b], with F(0) = G(0) =0,
right continuous on (0,b), and satisfying one of the following conditions:

(") F(0+)=0, G(0+)> 05

() G(0+) =0, limy_so F(sYG(s) = 0, and 1im supy_sg 5/G(5) < +oo.

b
Then j K.(s) dF(s)
(18.2) lim &5—— =o.
J K.(s) dG(s)
0

Observe that the hypotheses on K. imply that lim K.(@)/K.(0) = 0.

Proof. In the following, ds will refer to one-dimensional Lebesgue measure.
Integration by parts of Riemann-Stieltjes integrals will be used.
Under (¢), if O < a< b,

(18.3) j K, dF <Ky(a)F(a) - F(a)J' K, ds = F(a)K,(0),
0 0
b

J’ K, dF < F(h)K (@),

and therefore the ratio in (18.2) is at most

F(a)Kn(0) + F(b)Kp(a)
G(OH)K,(0)

(18.4)

When #n increases, the ratio in (18.4) tends to F(a)/G(0+), which can be made
arbitrarily small by choosing a small. Hence (18.2) is true under (c").
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Under (c"), choose € strictly positive but small enough to satisfy the
inequality lim sups_,q s/G(s) < 1/e, and then choose a strictly positive and so
small that F <e€G and G>¢s on[0,a]. Then

(18.5) JK,, dF = F@)Kp(a) - JFK,,' ds < F(a)K,(a) - ¢ J' GK,' ds
0 0 0

= Ky(@)[Fla)-eG(@)] + ¢ j K,dG <t f K, dG.
0 0

Similarly,
a a a

(18.6) J' K,dG =G @K, (a) - j GKy' ds 2 G(a)Kn(a) - sj sK,' ds
0 0 0

= K, (@)[G(a)-eal +¢ J' Kpds ¢ J' K,, ds.
0 0

Hence b b
J' Ko(s) dF(s) j K.dG
(18.7) lim sup O_b“—— <€ + lim sup 4 P
j Ku(s) dG(s) J' K. ds
0 0

Since the numerator on the right is majorized by K,,(a) G(b), the superior limit on
the right-hand side is majorized by

-1
(18.8) G(b) [lim infy—yee j (K n/K(a)) ds ]
0

! -
< G(b)[ J' lim infpy—sealK o/ Kn(@)] ds ] =0,
0

and therefore the lemma is true.

19. Application to the boundary limits of harmonic
functions

Recall the Riesz-Herglotz representation in Section VIIL.14 of a positive
harmonic function on a disk Bg of radius B, center the origin:

2 ;2 .
(19.1) w@= | %k(d@) (2 = rei®).
a8 [¢-rei®l



X. Measures and Functions of Bounded Variationon R 177

In particular, when A is one dimensional Lebesgue measure divided by 2nf the
function « is identically 1. Observe that when 9 is fixed and z tends to a
boundary point Bef, the integrand tends to 0 at all other boundary points. Thus
this context is precisely that envisaged in Section 18.

Theorem (Fatou-Doob). If u and h are positive harmonic functions on a
disk, determined respectively by the Riesz-Herglotz measures Ay, and Ay, then,
on radial approach to hp, almost every boundary point of the disk, w/h has limit
the Radon-Nikodym derivative of the absolutely continuous component of h,
relative to Ay,

The Radon-Nikodym derivative in question is uniquely determined only up to
a A null set, and this lack of uniqueness matches the fact that the radial limit
exists aside from a Aj null boundary set. In other words, the radial limit function
(augmented say by 0 where the limit does not exist) is one version of this
Radon-Nikodym derivative. According to Theorem 4, one version of this
Radon-Nikodym derivative at a boundary point can be obtained as the pointwise
derivative defined at the boundary point s as the limit, when this limit exists, of
W, (/up ) when the closed interval / containing s shrinks to s, and it is this
derivative that will be considered from now on. It will be proved that the radial
limit of u/h exists at every boundary point that (i} is a Lebesgue point for A,
relative to Ay, and (ii) is a point at which the derivative of Lebesgue measure on
the boundary relative to Ay exists and is finite. The set of such boundary points
is the complement of a Ay null set. It is no restriction to consider only the
boundary point z = . Write the Riesz-Herglotz representations of « and % at the
point at distance » from the origin on the positive real axis in the form

kL kL

2_,2
(19.2) u(r):J P
0

B2-r2
o dF(s), h(r) = J o dG(s),
|Beis-rl Beis-r|
where F and G are positive monotone increasing functions on [0,1] vanishing at
0. To prove the assertion on the existence of a radial limit, it is sufficient to
prove that lim, g u(r)/h(r) = O under the combined assumptions that dF/dG
vanishes at the origin, and that lim supg_yq S/G(s) is finite. Lemma 18 will be
applied to obtain this result.

Let B. be an increasing sequence of strictly positive numbers with limit .
Take b in the lemma as 7, and define K,(s) as the value of the integrand in
(19.2) with r =B,. Condition (a) of the lemma is obviously satisfied. The limit
inferior in condition (b) is an actual limit that majorizes const.s~2. Thus the
lemma is applicable and yields the desired zero limit.

With a little more care, this method shows that the limit in question exists not
only as a radial limit but as a nontangential limit.
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Conditional Expectation; Martingale
Theory

1. Stochastic processes

In probability theory, a family {x;, ¢ € I} of random variables on a probability
space (S,S',P), that is, a family of measurable functions from § into R, is
sometimes glorified by the name stochastic process or, simply, process. At the
point s of S, the random variable x; has value x,(s), a point of the state space of
the process, and the function x.(s), from I into the state space, is a sample
function of the process. The set [ is the parameter set of the family. There is no
definition of the term stochastic process more specific than that just given, but
the term is usually reserved for families with some interesting property. To
loosely paraphrase a judge discussing a somewhat different concept, probabilists
cannot define stochastic processes, but they recognize one when they see it!
Typical examples of the application of the term are to martingales and to
Markov processes, both defined in this chapter.

An attentive reader will observe, and perhaps resent, that in other chapters a
function is f or g, and so on, whereas in this chapter a function is more likely to
be x or y, and so on, at the other end of the alphabet. This difference is
traditional, and is one of the principal features that distinguishes probability
from the rest of measure theory.

2. Conditional probability and expectation

Let (S,S',P) be a probability space, x be an integrable random variable, and A be
a measurable set. In Section IIL.6, in the context of a discrete probability space,
the conditional expectation E {xlA} was defined by

2.1 E{x|A} = E{x14}/P{A}

when A is not null. With this definition, meaningful whenever x is an integrable
random variable on a probability space, if S,....5, is a partition of S, that is, if



180 Measure Theory

these sets are pairwise disjoint measurable sets with union S, and if E{xlS i} 1s
defined arbitrarily when S j is null,

(2.2) YE(x|S.)P(S.) = E{x),
and more generally, if A is a union of sets of the partition,

(2.3) > E{]sj}P{S;} 24[ xdP.
Sch

Let S be the algebra of unions of partition sets. A function from S into R is
measurable from (S,S) into R, in short, is S measurable, if and only if the
function is constant on each partition cell. If E{xlS} is defined as the random
variable with value E {xl S;} on each nonnull cell § j and is any constant on each
null partition cell, (2.3) can be written in the elegant form

(2.4) A[ E{x|s} aP =A[ xdP (AeS).

The integrand on the left is uniquely determined on the nonnull partition cells by
(2.4) and S measurability. This discussion leads to the following Kolmogorov
definition of conditional expectation.

Definition of conditional expectation. Let (S,S',P) be a probability space, S
be a ¢ algebra of measurable sets, and x be an integrable random variable. Then
E {xlS }, the conditional expectation of x given S, is a random variable satisfying
the following conditions:

(a) E {xlS} is S measurable and integrable;
(b) E{x|S} satisfies (2.4).

This definition is not vacuous, because the right side of (2.4) defines a
function of A, a measure on S, which is absolutely continuous relative to the
restriction Pg of P to S, and therefore (Radon-Nikodym theorem) there is a
function satisfying (a) and (b), uniquely determined up to Pg null sets. The
symbol E{ xIS} refers to a function, any function, satisfying (a) and (b), a func-
tion, not an equivalence class of functions. This convention means that in almost
every discussion involving conditional expectations, almost everywhere or
almost surely, or their respective abbreviations a.e., a.s., will be sure to appear
almost everywhere.

In the extreme case when S is the ¢ algebra consisting of the whole space
and the empty set, E{xIS} = E{x}; almost everywhere is unnecessary in this
case. At the other extreme, when S = §', E{xIS} = x almost everywhere. The
new conditional expectation definition is consistent with the old, in the sense
that if S. is a partition of S, as discussed at the beginning of this section, and if S
is the ¢ algebra of unions of partition cells, E{xIS} is constant on each partition
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cell §j; the constant is arbitrary if Sj is null, and is the jth conditional expectation
in (2.2) if S is not null.

Definition of conditional probability. If A is measurable, P{AlS} is defined
as E{ 1A|S}; more precisely, the first function is to be taken as any one of the
possible conditional expectation functions. (This last proviso will be omitted
from now on in similar contexts.)

Conditioning by a random variable family. If x. is a family of random
variables, E{ x|x.} is defined as E{xlc(x.)}, where (see Section V.1) o(x.) is the
o algebra of sets defined by measurable conditions on the random variables x.,
that is, the smallest ¢ algebra S making every random variable x; measurable
from (§,S) into R.

Example (a), Densities on R’ LetPbea probability distribution on the
plane, given by a Radon-Nikodym (Lebesgue measurable) density p(,*) with
respect to two-dimensional Lebesgue measure, that is, the measure assigned to a
Lebesgue measurable subset of R” is the integral of p (with respect to Lebesgue
measure on R") over the set. To avoid a few almost everywheres, it is supposed
in the following, without loss of generality, that p is Borel measurable. Let x,
and x, be the coordinate functions on the plane. Then the distributions of x; and
x, are the marginal distributions given by the respective densities (with respect
to one- dimensional Lebesgue measure),

2.5 D= jp(',a) do, and p, = Jp(a,') do..

Here do. refers to Lebesgue measure on R. The random variables x; and x; are
mutually independent if and only if p definzes a product measure, a measure
necessarily given (P almost everywhere on R”) by the density that is the product
of the marginal densities relative to one-dimensional Lebesgue measure: p(c.,)
= p1(©@)p2@)-

Without the hypothesis of independence, one version of the conditional
distribution of x, for given x; is given by

@.6) Pixedolx) = [ plevc) dofpice,
2

determined by the conditional density (relative to Lebesgue measure on R)
plx1,*)p(x)). In fact t2he function of x; in (2.6), when integrated with respect to
P measure over the R” set {x;€ A} yields P{x,e A, x,€ A,}. Observe that the

random variable p(x;) vanishes P almost nowhere. The fact that p is Borel
measurable implies that every integrand here is Borel measurable on whatever
space is relevant.

Example (b). Let P be a probability distribution on R?, and again let x; and
x, be the coordinate functions on R’ Suppose that P is carried by the line
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through the origin of slope 1. Then x;=x, almost surely. In this case
P{x, e Azlxl} =14,() almost surely.

Example (c). Transition functions and the processes they generate. Let
(S.S) be a measurable space. A transition function on the space is a function
(s,A)—p(s,A) from SXS into R with the following properties:

(c1) For each point s of S, the function p(s,*) is a probability measure on S.
(c2) For each set A in S, the function p(+,A) is S measurable.

Transition functions generalize the stochastic matrices discussed in Section
IIL.7. In intuitive language, in a probabilistic context, p(s,A) is the probability of
a transition from the point s into a point of the set A. For example, let (S,S) be a
measurable space, p be a probability measure on S, and p(*,*) be a transition
function on (§,S). Define a measure P on the measurable space (SXS,G(SXS))
for which (generalization of II1(7.3))

@7 PlAxAs) = | pordopdsy)  (Aje ),
4]
by the definition (integral over Sx5)

(2.8) PA) = f p(dsl)j 14 p(sy.dsy) (A e o(SxS)).

(It is left to the reader to check that the inner integral actually defines an S
measurable function.) For this measure, if x; and x, are the coordinate functions
of xS,

2.9) P{x; € A} =p{A), P{x,eA]x)=p(x.4,) as. (4;eS),

and if f is a Borel measurable function from R into R for which j{(x;) is
integrable then

2.10) Elfe)]x) = Jﬂ@) pad)  as.

One can go on, following Section III.7, but no new ideas beyond measure
niceties are involved. These measure niceties are so unnice that the probability
measure P defined on o(SXS) by an initial distribution together with a transition
function does not quite provide the most general measure on 6(SxS) unless
restrictions are imposed on the measurable space (S,S).

In particular, a common construction of a probability measure P on the n-fold
product (8”,s(S™)) applies n transition functions p() on S together with an initial
point s by the definition (integral over 5")
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@11) PA) = [ pXsods) [ PO dso).. | 14p®snrdtsy
(A € o(SM)).

If xi,....x, are the coordinate functions of S", these functions are random
variables for which

212)  P{xme1 € At | X0 m) = P (omar € At bim) =p™* DA
as. (0€m <n)

and more generally, if fis a Borel measurable function from R into R for which
f(x;111) 1s integrable then (2.12) implies

@13)  EGCma)| Xoreoin) = E (o) xm} = J AP )
as. (0<m <n).

Observe that the conditional probabilities and expectations in (2.12) and (2.13)
depend only on the last conditioning variable x,,. This property will be defined
as the Markov property in the general definition of this property in Section 4.

3. Conditional expectation properties

In the following list of properties of conditional expectations, since all ¢
algebras are to be ¢ algebras of measurable sets and all random variables are to
be integrable, these hypotheses are omitted in the listing except in (d), (e), (f),
and (h), in which the omission might lead to misunderstanding. Some of the
properties can be stated more generally: E{xIS} can be defined for x positive,
not necessarily integrable, but somewhat restricted, and (d) and (e) can be
correspondingly extended, but the restrictions make the extensions not very
useful. Proofs are given at the end of the list.

(a) If x=y a.e. then E{xlS} = E{yIS} a.e.
(b) If a and b are constants, E{ax+by|S} = aE{xlS} + bE{yIS} a.e.

(©) Ifx<yae. then E{x|S} < E(y|S} a.e. In particular, |E{(x|S}| < E{ix|S}
a.e.

(d) Beppo-Levi's theorem for conditional expectations. If x. is an increasing
sequence of positive random variables with integrable limit x, then

3.1 lim E{x|S} = E{x|S)} a.e.
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In particular, if A. is a disjunct sequence of measurable sets, with union A, then

(3.2) 2 P{A.S} = P{A]S} ae.

(e) Fatou's theorem for conditional expectations. Let x. be a sequence of
positive integrable random variables, and define x = lim inf x.. If x is integrable,

then

(3.3) E{x|S} < liminf E{x.|S} a.e.

Moreover lim E{ Ix-x.IIS} = 0 almost everywhere where

(3.4) E{x|S} =lim E{x.]S}.

(f) Lebesgue's dominated convergence theorem for conditional expec-
tations. Let x. be a sequence of random variables, and suppose that suplx.| is
integrable. If the sequence x. converges almost everywhere [in measure) to a

random variable x, then lim E {x.IS} =F {xIS} almost everywhere [in measure)].

(g) If x is a constant function, or more generally, if x is S measurable and
integrable, then E{xIS} =x a.e.

(h) Ifyis a bounded S measurable function and x is integrable, then
(3.5) E{yx|S} = yE{x|S} a.e.

@) IS cTthenE{E{xlS}lT} = E{Ex|T)|s} = Eals) ae

() If S and the random variable x are mutually independent, then E{ xlS} =
E{x} a.e.

(k) IfT is independent of the pair x, S, then E {xlS,T} = E{xlS} a.e. (Property
(j) is a slightly concealed special case of (k).)

(1) Jensen's inequality for conditional expectations. Let ¢ be a convex
function from an interval I of R into R and x be a random variable with range in
L If x and O(x) are integrable, then ¢[E{x|S}] < E{q)(x)IS} a.e.

Observe that if p > 1, this inequality implies that

(3.6) E{E (x|S}} <E{E{xP| S} } = E(ix},

and therefore, to show that the conditional expectation of a random variable can
be approximated in the sense of L” distance by conditional expectations of other
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random variables, it is sufficient to show that L distance approximation is
possible for the unconditioned random variables.

(m) The class of random variables
{ E{xlS }: S is a 6 algebra of measurable sets}
is uniformly integrable.

(n) Holder's inequality for conditional expectations. If x € L’and y ¢ LY,
where 1/p + 1/q = 1, then xy is integrable and

3.7) IEylsy < EP{ufls} EY{ps) ae.

(o) Minkowski's inequality for conditional expectations. [fp>1andxandy
are in L’ then x+y is in L” and

(3.8) EP{xnfls) < EP{iP|s} + EP{yPls} ae.

) Ifxe L? then E{xIS} e L% and x-E{xIS} is the unique up to null sets
random variable, in L2, which is orthogonal to every S measurable random
variable in L%

Properties (a)—(g) follow at once from the defining properties of conditional
expectations and the corresponding properties of expectations, or from
translations of the expectation proofs into conditional expectation proofs. The
casiest way to prove (f) when there is convergence in measure is to remark that
according to the dominated convergence theorem, convergence in measure of x.
to x, when suplx.| is integrable, implies that x. converges to x in the L' metric. It
follows that the sequence E{x.lS} converges to E{xIS} in this metric, and
therefore converges in measure. The choice S = §' shows that under the
hypothesis of convergence in measure, there need not be almost everywhere
convergence of the sequence of conditional expectations.

Proof of (h). It is sufficient to prove (h) when x and y are positive functions. If
y is the indicator function of a set in S, then (h) becomes a trivial consequence
of the conditional expectation definition. It follows that (h) is true for y a
positive linear combination of indicator functions of sets in S, and therefore for
y a limit of a bounded increasing sequence of such functions; the class of these
limits is the class of positive bounded S measurable functions.

Proof of (i). The equality between first and third terms is a special case of (g),
because the inner conditional expectation in the first term is a T measurable
function. To prove equality between the second and third term it must be
verified that E {x|’]I‘} has the same integral as x over a set in S, and this is true
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because the two functions have the same integral over every set in T, a larger ¢
algebra than S.

Proof of (j). If A € S, the random variables x and 14 are mutually independent,
and therefore (Section VI.19) E{xl4} = E{x}P{A}, that is, the function
identically equal to E{x} satisfies the defining equality for E{ xlS }.

Proof of (k). It must be shown, generalizing the preceding proof slightly, that
E{xIS} has the same integral as x over every set in 6(S,T}. Now o(S,T) is the ¢
algebra generated by the class of disjunct finite unions of sets of the form ANB,
with A in S and B in T. In view of the fact that this algebra is dense in o(S,T)
under the set distance dp, it is sufficient to prove that E{xlS} has the same
integral as x over every set ANB. The independence assumption implies the
desired equality by way of the fact that the expectation of the product of
mutually independent integrable random variables is the product of their
expectations:

(3.9)  E{xla ~p} =E{xl4 1) =E{x14)E{1p)
=E{ E{x|S}14 }E{15} =E{E(x[S}1418} =E{ E{x|S}14~8}.

Proof of (I). If §(€) = a&+b for all & in 1, then

(3.10) E{o()|S} = E{ax+b|S} ae.

The convex function ¢ is the supremum of all the linear functions it majorizes
and, neglecting null sets, is therefore (Section V.18) the supremum of a
countable subset of these linear functions, the limit of an increasing sequence f.
of maxima of finitely many of these linear functions. To obtain (1), apply the
Beppo-Levi theorem for conditional expectations to (3.10), with ax+b replaced

by fe(x).

Proof of (m). According to Theorem V1.7, integrability of x| implies that there
is a convex uniform integrability test function ¢ for which ¢(lxl) is integrable.
Apply Jensen's inequality for conditional expectations,

G.11) E{ o[E(wls}] } < E{E(om]s} } =E(oax),

to find that the class of functions

3.12) { E{ q)(Lxl)IS }: S is a ¢ algebra of measurable sets}

is L' bounded. This fact implies the stated uniform integrability.

Proof of (n). If x and y are step functions, written as linear combinations of
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indicator functions of pairwise disjoint measurable sets, the conditional
expectations relative to S of their rth powers have the form X a.”P{ A.lS}, and
the discrete context Holder inequality yields (n) for this special case. In the
general case, xy is integrable, according to Hoélder's inequality, and it need only
be shown that E {xy|S}, Ef{ lxIPIS} and E{ IquIS} can be approximated arbitrarily
closely in the L* sense by the corresponding expressions with step functions. As
pointed out in a remark after the statement of Jensen's inequality for conditional
expectations, it is sufficient to show that these approximations are possible for
the unconditioned random variables, and the possibility of the latter
approximations was shown in Sections VI.14-15.

Proof of (0). The Minkowski inequality for conditional expectations can be
reduced to the Holder inequality for conditional expectations just as in the
unconditioned context, treated in Section VI.13. Alternatively the Minkowski
inequality for conditional expectations follows from the unconditioned
Minkowski inequality when the random variables are step functions, and an
approximation procedure yields the general case.

Proof of (p). The square integrablity of E{x|S} follows from Jensen's (or
Schwarz et al.'s) inequality for conditional expectations. Denote by L™(S) the
class of square integrable S measurable functions. The defining equation for a
conditional expectation implies that the random variable y = x—E{xIS}is
orthogonal to the indicator function of a set in S, and therefore orthogonal to the
class of linear combinations of such functions, that is, to the 2class of S
measurable step functions. Hence y is orthogonal to the L closure L"(S) of this
clzass. Conversely, if z is in L") and has the property that x—z is orthogonal to
L°(S) then z satisfies the conditions for E{xl S}. A more elegant formulation of
this characterization of F{ xIS }is given in the following paragraph.

Hilbert space description of conditional expectations. Denote by T the
Hilbert space of equivalence classes of square integrable random variables, and
denote by 8l the space of equivalence classes of square integrable S measurable
functions, in each case identifying two random variables when they are equal
almost everywhere. According to (p), E{- |S} acting on B is the Hilbert space
projection onto .

4. Filtrations and adapted families of functions

Let (S,S) be a measurable space and I be an ordered set, with order relation
symbol <. A filtration of the space is a map i— §; from [ into the class of sub ¢
algebras of S, increasing in the sense that S; — Sj when i <j. The triple (S,S,S.)
is a filtered measurable space. If P is a probability measure defined on S,
(5,S,S.,P) is a filtered probability space. If x. is a family of measurable
functions, indexed by I, from (§,S) into some measurable state space, and if, for
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every index point i, x; is not only measurable from (S,S) into the state space, but
even measurable from (§,S;) into the state space, the family x. is adapted to S.
and (S,S,S.,x.,P) is a filtered stochastic process. These concepts are
fundamental in modern probability theory and are stated here in a general form,
but when applied in this book the parameter set / will always be a set of integers
in their natural order, sometimes with +eo [-eo] adjoined when the set of integers
is unbounded above [below], and the state space will be a subset of R unless
specified otherwise. In discussing filtered stochastic processes, the full notation
S,S,S..x.,P) will be abbreviated to show only those items needed to avoid
ambiguity.

Example. If x. is a finite or infinite sequence of random variables on a
probability space and S, = o(xy,....x;), the ¢ algebra of sets determined by
measurable conditions on xy,...,x;; (see Section V.1), then S. is a filtration, the
one with the minimal ¢ algebras to which the sequence x. is adapted.

Transition functions and Markov processes. In Section III.7, the Markov
property was defined in a very special context. The general definition is the
following. If (S,S,S..x.,P) is an adapted process with ordered parameter set /,
the process is a Markov process , that is, it has the Markov property, if whenever
i and j are parameter values with i <j and A is a measurable subset of the state
space then

4.1) P{xje AlS;} =P(xje Alx;} ae.

This property means, roughly, that conditional probabilities of future events,
given the whole past up through time i, actually depend on the past only by way
of x;. In Section 2 it was shown how to construct a finite sequence of random
variables with the Markov property, based on an initial point and transition
functions. This construction will be applied in Section 21.

The idea of a Markov process is that certain conditional probabilities (and
necessarily corresponding expectations when the state space is R) depend only
on the last conditioning variable. Martingale theory is based in part on the same
idea - dependence only on the last conditioning variable - but imposes stringent
hypotheses on the values of certain conditional expectations rather than on
conditional probabilities.

5. Martingale theory definitions

Set G algebras are basic in measure theory, because they are the natural domains
of definition of measures. In martingale theory, the effect of varying these set ¢
algebras is studied systematically. A natural way to initiate such a study is to see
the effect on a conditional expectation of varying the conditioning ¢ algebra. It
turns out that an analysis of this effect leads to applications in many parts of
mathematics.



XI. Conditional Expectation; Martingale Theory 189

Let (§,S,S.,x.,P) be a filtered stochastic process. The process is a martingale
if, for every index point i, x; is integrable, and for i < j,

B X = E{leSi} a.e.

Submartingales and supermartingales are defined like martingales except that,
in (5.1) equality is replaced by inequality, “<” for submartingales, “>” for
supermartingales. Thus the negative of a submartingale is a supermartingale,
and a process that is both a submartingale and a supermartingale is a martingale.
These processes can of course be defined by integral equalities and inequalities
without the explicit use of conditional expectations. For example, the integrated
form of the defining martingale equation (5.1) is

.19 A_[x,-dP = JdeP (A e S;i<y).
A

To obtain the integrated versions of the submartingale and supermartingale
inequalities replace “=" in (5.1") by “<” and *“>”, respectively.

Observe that, if S;' = o(x;: i <j), then S;' < Sj, and {x.,S.} is a martingale,
or submartingale, or supermartingale if {x.,S.} is. In fact, say in the martingale
case, if both sides of (5.1) are operated on by E{'IS '}, the left side becomes x;
almost everywhere according to Section 3(g), and the right side becomes
E{ijSi'} almost everywhere according to Section 3(i).

When there is no question about the filtration, the notation x. is used instead
of (x.,S.). A subset of a martingale, submartingale, or supermartingale is,
respectively, a martingale, submartingale, or supermartingale relative to the
corresponding subset of the given.filtration

Nonmathematical interpretation. If the parameter set is thought of as
representing the flow of time, if S; is thought of as a representation of all past
events through time i in some context, and if x; represents some present
evaluation in this context, then the martingale, submartingale, and su-
permartingale conditions state, respectively, that given the whole past, what one
expects to get in the future is what one has already, something more, or
something less. This rather vague interpretation should not be scorned, because
it has led to basic theorems in martingale theory. See Section 10 for an
application of this interpretation to suggest a mathematical theorem.

6. Martingale examples

(a) Let (S,S,S.,P) be a filtered probability space and x be an integrable random
variable. For each parameter point i, define x; = E{xlS,’}. An application of
Section 3(i) shows that (x.,S.) is a martingale. This martingale is uniformly inte-
grable, according to Section 3(m). Moreover if another index point o is adjoined
to I, following all the others in the ordering, and if x¢ is defined as x, S¢ as S,
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the extended family is still a martingale. Every martingale whose parameter set
has a last element is of this type. The following is a particular case. On a
probability space, let x be an integrable random variable and y. be a finite or
infinite sequence of random variables. Define S, = 6(yy,....yy) and x, =
E{xlSn }. Then (x.,S.) is a martingale, and if the pair (x,S) is adjoined at the end,
the new process, with last random variable x, is a martingale.

(b) Let y. be a sequence of mutually independent integrable random variables
on a probability space, and define x, = y;++y,, S, = 6(¥1,e-dn) = CKpsenesky)-
Then, if every yj has zero expectation, (x.,S.) is a martingale; if every y; has
positive [negative] expectation (x.,S.) is a submartingale [supermartingale]. To
prove the submartingale assertion, for example, apply Sections 3(g) and 3(j): if
m<n,

6.1) E{xa|Sm} =E{mlSm} + E{xp-xm|Sm} =xm + E{xn-xm} Zxm ace.

7. Elementary properties of (sub- super-) martingales.

(@) The function i = E{x;} is a constant function if x. is a martingale,
monotone increasing [decreasing] if x. is a submartingale [supermartingale].

(b) If the parameter set is a set of successive integers, it is sufficient for the
martingale equality (5.1) that every almost everywhere one-step equality x; =
E{ xn+an} be valid, because then

xn=E{ EinalSus} | Sn} = EtrnsalSa)  ae.

and so on. Similarly, the one-step submartingale and supermartingale
inequalities suffice in the context of the stated parameter set.

(©) If (x.,S.) is a martingale [submartingale] and ¢ is a convex [convex
monotone increasing] function on R, with O(x;) integrable for all index points i,
then (cp(x.),S.) is a submartingale. To prove this assertion for x. a
submartingale, first apply the monotonicity of ¢, then Jensen's inequality for
conditional expectations, to obtain

.1) o0 < o[ Exlsit] < E{ocplsit  ae. i <)),

which is the submartingale inequality for ¢(x.). If x. is a martingale, the first
inequality is replaced by an equality, and monotonicity of ¢ is not needed.

According to (c), if x. is a submartingale the process xevc is a submartingale
for every constant ¢, and the process e*. is also a submartingale if its random
variables are integrable. If x. is a martingale and p = 1, the process Ixf is a
submartingale, if its random variables are integrable.
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(d) If (x.,S.) and (3.,S.) are submartingales, then the process (xsVys,S.) is a
submartingale because

x,'SE{xj'I S;} SE{xj'VyjIS,'} a.e. (i <j),

and the corresponding inequality is true for y. and therefore for x.vy..

8. Optional times

In Section 5, nonmathematical interpretations of martingale theory concepts
were suggested. More specifically, in the context of a gambler betting on each
of a sequence of successive plays, if (x.,S.) is a martingale, x; can be interpreted
as the gambler's money at time i, and S; can be interpreted as the relevant past:
the gambler's fortune at all past times, together perhaps with other past items, up
through time i. Under this interpretation, the martingale equality states that the
gambler expects, given the past through play i, to have, after a later play, the
same fortune as at time i. This is a somewhat crude version of the idea that the
gambling context is fair; the submartingale case corresponds to a favorable
context, the supermartingale case to an unfavorable context. If the gambler's
fortune is checked at random times, chosen by what has been going on, in other
words at times determined by the past up to and including the present, it is
reasonable to suppose that the context seems fair, favorable, or unfavorable
when checked at those times if it seems so when checked at the end of each
play. That is, if a game looks fair, favorable, or unfavorable, it will look the
same way at random times chosen without forcknowledge. The problem
suggested by this reasoning is to devise a mathematical formulation of the
concept of a random time, and then to show that the martingale, submartingale,
and supermartingale inequalities remain valid if parameter values are chosen at
random in this sense. The following definition of a random time seems to be the
appropriate one for a filtration with a finite or infinite sequence as parameter
set.

Optional time definition. Let S. (finite or infinite parameter sequence) be a
filtration of a measurable space (S,S). A random variable o defined on the
space, and taking on only parameter values and +eo, is an optional time if
{ae=n} e S, forall finite n, equivalently if

{o<n)= U7=1 {o=j} e S,

for all finite n. The o algebra Sq is defined as the class of sets in S for which

ANn{a =n} € S, for all finite n, equivalently for which An{a <n} € Sy for all
finite n. This class is a ¢ algebra: it obviously contains the countable unions of
its members, and it is closed under complementation because A € S¢ implies
that An{o=n} = {a=n}n{An{o=n} }~ € Sp.
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A random variable identically equal to a parameter value & is an optional
time, and the definition of S§ , formulated for k considered as a constant
optional time, yields Sy as originally defined. The maximum and minimum of
two optional times are also optional times.

Example: Entry (hitting) time. Let (x.,S.) be an adapted finite or infinite
sequence on a probability space, let A' be a measurable set of the state space,
and define the function o as the first time an x. sample sequence enters A"

o=min {j:xje A},
with ot = +eo if no x; value is a point of A". Then o is an optional time, because

{asn}=U_ {xie A} e S,

If the parameter set is 1,...,m, the finite valued optional time otam is usually
more useful than o as just defined.

9. Optional time properties

In the following list, the optional times are based on a finite or infinite filtration
sequence S.. It is supposed that all optional times have values in the parameter
sequence.

(a) If ouis an optional time, Ol is S, measurable, because
{a=k}n{a=n} € S, for all n.

(b) If ocand B are optional times and o.< B, then S < S, because if
A€ S(x,

An{B<n}=(An{asn}))N{B<n}e S,
for all n.
According to (b), if o, B,... is an increasing finite or infinite sequence of

optional times, the sequence Sq, SB.... is a filtration.

() If (xe,Se¢) is an adapted process, and O is an optional time, then xq is Sq
measurable, because if A' is a measurable subset of the state space,

{xqae A'IN{oe=n}= {x,e A'In{aa=n} € S,.
According to (c), if (x.,S.) is an adapted process and Ol is an increasing finite

or infinite sequence of optional times for S., then the sequence (x¢,,Sq,) is an
adapted process.
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10. The optional sampling theorem

The following theorem is the simplest theorem on the invariance of a process
type under optional sampling.

Theorem (Doob). Let (x.,S.) be a martingale with finite or infinite
parameter sequence and o. and B be bounded optional times, with o. < B. Then
Xg and xg are integrable, and

(10.1) Xo = E{xBISa} a.e.

If the process is a submartingale [supermartingale), equality in (10.1) is
replaced by the inequality < [2].

The point of the theorem is that if (x.,S.) is a martingale, or is a
submartingale, or is a supermartingale, the two element filtered process
xS a),(xB,S B) has this same property.

Proof. If k is the maximum value of B, then gl <lxl ++|xgl, and therefore xg
is integrable, as is xq according to the same reasoning. Suppose first that the
given process is a martingale. The martingale equality (10.1) will be proved first
for the very special case P < o+1. In this case, if A € Sg, define A; = {a =i,
B=i+1). Then A; = {a=i}N{P =i}~ € §;, and therefore

(10.2) Af @p-x) dP = iy Aj (cisq - X)) dP = 0.

Equation (10.2) is the integrated version of the martingale equality. For general
B, consider the increasing sequence o, (0+1)AB, ...,(0+k)AP = B of optional
times. According to what has just been proved, if the x. process is evaluated at
these optional times, the one-step martingale equality is satisfied, and it was
noted above that this fact makes the process a martingale. Hence the first and
last members of this martingale form a martingale, as was to be proved. If x. is a
submartingale [supermartingale], the only difference in the discussion is that the
integrals on the right in (10.2) are positive [negative], as desired for the proof of
the theorem.

According to this theorem, if os is an increasing sequence of bounded op-
tional times for S., the process (xq..Sq.), is a martingale, submartingale, or
supermartingale, if the original process is. This is the desired result suggested
by the gambling interpretation, at least if the optional times are bounded;
fairness or unfairness is preserved under sampling at optional times. This result
is not true for unbounded optional times without restrictions on the optional
times or on the process or on both.
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11. The maximal submartingale inequality

The simplest nontrivial application of this sampling theorem is to the following
maximal inequality.

Theorem. If xy,...,X, is a submartingale and c € RY, then
(11.1) cP{max x.2 c} £ E{x,v0}.

Proof. Define A = {max x. 2 ¢} and o0 = min{j: x; 2c},on A, o.=n on A, that
is, ot is the minimum of » and the hitting time of the state space set [c,+o°). Then
o and the function identically n are optional times, and therefore (xq, xp) is a
submartingale. The integral submartingale inequality E{xq} < E{x,} yields

(11.2) E{x;} =2cP{A} + andP,

which implies a stronger inequality than (11.1).

This proof of the maximal inequality is given as an easy application of
optional sampling, but in fact a direct proof of the inequality, which amounts to
proving the integrated submartingale inequality in this case, is equally easy. The
upcrossing inequality in Section 13 shows the power of the optional sampling
theorem in a more complicated context.

12. Upcrossings and convergence

Let &,,....&, a, b be real numbers with a < b. Define oy as follows, with the
understanding that if the indicated condition on j is not satisfied for any value of
J, 0 is defined as n.

oy =min {j: §; <a},
(12.1) oy = min {j:j > o, & 2 b} (k even, = 2),
=min {j:j > oy, § <a} (k odd, = 3).

The number of upcrossings U of [a,b] by &E. is the number of times &. proceeds
from below a to above b, that is, this number is O if o, = 0, and otherwise is the
maximum value of k&/2 with k even, 0 > 0y, and x¢ ;, 2 b. If &. is an infinite
sequence, 0y is defined in the obvious way and is the limit as n — +e of the
number of upcrossings of [a,b] by &,,....&,.

An infinite sequence &, has a (not necessarily finite) limit if and only if for
every pair [a,b] of numbers with a<b, the number of upcrossings of [a,b] by the
sequence is finite. It is sufficient if this upcrossing condition is satisfied for
rational a and b.
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13. The submartingale upcrossing inequality

Theorem (Doob, Snell). Let xi,...x, be a submartingale, a,b be real
numbers with a < b, and U be the number of upcrossings of [a,b] by x.. Then

E{xyva - x,va} < E{ Ix;, -xll}

(13.1) E{U} < <
b-a b-a

Proof. Define oy as above for each sample sequence of x.. The random variable
0y is an optional time, because the condition 0y = m is a condition on xy,...,y.
Hence the process x,....Xo 18 @ submartingale, and therefore each of the
summands in the following equality has positive expectation:

(13.2) Xp-X] = JZQ(X%' - Xo)-

On the set {U = k}, each of the first k summands with even j has value 2(b-a),
and the later summands with even j are all 0 except possibly the first one,
Xoipua = Xopes - I this difference does not vanish, xgp,, < @, Oy =n and x, < b.
Thus the difference is at least (x,-a)A0. Applying these inequalities in (13.2),
and ignoring the summands with odd j, which have positive expectations, yields

(13.3) E{x,- x;} = (b-a)E{U} + E{(xp-a)A0}.

If x. is replaced in this inequality by the submartingale x.va, the number of
upcrossings is unchanged, and (13.3) yields (13.1).

14. Forward (sub-super-) martingale convergence

The basic martingale theory convergence theorems are due, at various levels of
generality, to Doob, Jessen, and Lévy. These convergence theorems are the
forward one, for the parameter set of strictly positive integers, and the backward
one, for the parameter set ...,-1, 0. The backward theorem is simpler because in
that context the parameter set has a last point. The following is the forward
convergence theorem.

Theorem (Forward martingale convergence). Let (x,,S,,, n = 1) be an
adapted process, and define S = 6(U S).

(a) If the process is an L' bounded submartingale, martingale, or
supermartingale, then lim x. = x, exists almost surely and is integrable.

(b) Ifthe process is a lower bounded supermartingale, that is, if x. 2 const., the
process is L' bounded, and the extended process (xp,S;,, n < 4) is a
supermartingale.
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(c) If the process in (a) is uniformly integrable, then the limit x.. is both an
almost sure and an L' limit, and the extended process (x,,Sp, n < +o0) is also
respectively a submartingale, martingale or supermartingale. In particular, if x
is an arbitrary integrable random variable,

(14.1) lim E{x|S.} =E{x|Sw} ae.

Proof of (a). If U,(a,b) is the number of upcrossings of [a,b] by x,,...,x,;, the
sequence U.[a,b] is an increasing sequence of positive random variables, with
limit Ula,b], the number of upcrossings by the infinite sequence. In view of the
assumed L boundedness, Theorem 13 implies that the limiting expectation
E{Ula,b]} = limE{U.[a,b]} is finite, and therefore that Ula,b] is almost surely
finite. This means that each summand on the right in the following equation is a
null set.

(14.2) {lim sup xe> lim inf x.}
= U{ {lim sup x. > b >a > lim inf x.}: a, b rational } .

It follows that there is a (possibly infinite) almost sure limit x. of the sequence
X.. Moreover x. is integrable and therefore almost surely finite because, ac-
cording to Fatou's theorem,

E{lxl} < lim inf E{frol} < +oo.

Proof of (b). If x. is a lower bounded supermartingale, it can be supposed
positive for the purposes of the theorem, at the cost of an additive constant. The
integral form of the supermartingale inequality on the whole space slhows that
E{x.} is a decreasing sequence and the supermartingale is therefore L bounded.
An application of Fatou's theorem yields, for every parameter value m

(14.3) J.xm dP 2= lim inf Jx. dap 2 J'xw daP A e Sy

A £ A
The inferior limit is actually a limit, because the integral sequence is a
decreasing sequence, for subscript values at least m. The inequality between first
and third terms is the integrated form of the supermartingale inequality, and
therefore the extended process (x,,,S,,, n < +0) is a supermartingale.

1
Proof of (c). If the sequence x. is uniformly integrable, convergence implies L
convergence (Section VI.18). Under the uniform integrability hypothesis, if
A € S, and if x. is a submartingale,

(14.4) j Xm dP < Aj xp dP (n>m).
A
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When n—eo, the integrand x,, is replaced by x.., and the inequality becomes the
integrated form of the submartingale inequality x,, <E {xwlsm} a.e. Thus (c) is
true for submartingales, and the corresponding proof is applicable to martingales
and supermartingales. In particular, if x,= E {xlSn}, there is uniform
integrability, and the limit function x. is S measurable. Moreover, when
m < n, x has the same integral as x;,, over every S, set, therefore has the same
integral as x., over every S, set, that is, x has the same integral as x..over every
set in the algebra US.. Since this algebra is dense in S, under the dp metric,
these two random variables have the same integral over every S.. set, that is
Xeo =F {xISw} almost surely, as asserted in (c).

15. Backward martingale convergence

It will be convenient to treat backward convergence of a martingale separately
from that of submartingales and supermartingales.

Theorem (Backward martingale convergence theorem). If (x,,S,, n < 0)
is a martingale and S_co = (\S., the martingale is uniformly integrable, and for
every parameter value m,

(15.1) 1imy—y-00 Xp= E{ xS -00}
almost everywhere and in the L' sense.

Proof. Uniform integrability follows from a conditional expectation property
(Section 3(m)) and implies that the sequence x. is L' bounded. The proof
method of Theorem 14 is applicable to show that limj—y—oo X = X_oo €XiSts
almost everywhere and in the L' sense. If m is arbitrary, an application of the L!
convergence and the integrated form of the martingale equality yields

(15.2) Jxm dP = lim, 5 o Ixn dP = Ixm dP Ae S_w)

A A
in which the value of the second integral is the same for all n; (15.2)
implies that x_oo= E{xml S.w} ae.

Observe that this limit result is equivalent to asserting that if (S, n < 0) is a
filtration and x is an integrable random variable, then if S_oo is defined as M S.,

(15.3) E{x]|S-c} = limp—s-00 E{x|Sp} ae.

- . . 1
and the limit equation is also true in the L sense. The process {xy, Sy, n 2 =00}
is a martingale.
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16. Backward supermartingale convergence

Since the negative of a submartingale is a supermartingale, only one of the two
need be treated in a convergence theorem. The following phrasing is for
supermartingales, for which the phrasing is slightly more elegant.

Theorem (Backward supermartingale convergence theorem). Suppose
that (xu,Sy, n <0) is a supermartingale, and define S.co= (s S.. Then

() +o0 212 2E{x} 2E(xo};

(b) lim xe =X_co exists almost surely; =00 < X_oo < +o0 almost surely; and x-oon0
is integrable.

(c) If I < +oo, then x.oo is almost surely finite, the supermartingale is uniformly
integrable, and the convergence is both almost sure and in the L sense.
Moreover in this case the enlarged process {x,,S,, -~ < n} is a
supermartingale.

Proof of (a). The assertion is trivial, stated only to set the context for (b) and (c).
The example x, = -n for n £ 0 shows that the limit / may be +e and the
sequence x« may have limit identically +oo.

Proof of (b). The upcrossing argument used in the proof of Theorem 14 shows
that the submartingale —x. is almost everywhere convergent to a limit —x_,
which may not be finite valued. Apply Fatou's theorem and the submartingale
inequality to the submartingale —(x.A0) to obtain the inequality

(16.1) E{x_oon0} 2 lim E{x.A0} 2 E{x¢A0},
which implies that x_.AQ is integrable. Thus (b) is true.

Proof of (c). The process xe can be written as the sum of a uniformly integrable
martingale and a positive supermartingale:

(16.2) Xn = E{xolSn} + [xn - E{xolSn}]  as.

In view of this decomposition of x. and of Theorem 15, it can be assumed in
proving (c) that x. is a positive supermartingale with finite . Choose ¢ > 0, and
observe that the supermartingale x.Ac is bounded, and

(16.3) E{x_conc} =lim E{x.Ac} = E{xyAc} (n<0).

It follows that E{x_..} = E{x;,}, and therefore E{x_.} 2 I. On the other hand,
according to Fatou's theorem, E{x_..} < I Thus there is equality in Fatou's
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theorem, and therefore the jSequence x. is uniformly integrable, and (Section
VI.18) the convergence is L' convergence. The supermartingale inequality

(16.4) AJ Xy dP 2 I X, dP (m <n),

A
for A in S, will now be applied for A in the smaller ¢ algebra S_... With this
choice of A, inequality (16.4) is valid whenever m < n. In view of the uniform
integrability of x., (16.4) is also valid for m = —oo, and the inequality then
becomes the supermartingale inequality for the pair x_..,x,. Thus the process
{x4,S,,, —= < n } is a supermartingale.

17. Application of martingale theory to derivation

Let (S,S) be a measurable space, Q be a finite measure on S, and P be a
probability measure on S. In the following discussion of derivation of Q with
respect to P, probabilities and probabilistic statements all refer to the probability
space (§,S,P). For derivation with respect to a finite not identically vanishing
measure P, other than a probability measure define P = P1/P(S).

If m:S. is a partition of S into a finite number of pairwise disjoint measurable
sets, with union S, define

_ 96) ,
17.1) Xg = P(S)) on S;
for each nonnull partition cell Sj; if S; is null, define xy on S; as any constant.
Then xpis a random variable, with expectation

(17.2) E{xn} = Zjx {Q(S)): P(Sj) >0} < (S,

and there is equality if every partition cell null for P is also null for Q. Now
suppose that 7. is a sequence of partitions of S, with each partition a refinement
of its predecessor, that is each partition cell of 7,4, is a subset of a partition cell
of . Define x,, = xg, . If Sy, is the ¢ algebra of unions of the partition cells Sy,
of ®,, then x, is S, measurable. Furthermore, on each non- null cell S,

(173)  E{xp41|Sn}
= 2 {O(Sn+1j) P(Sns1j> 0, Snaij < Suk HPSup) < xp ae,,

with equality if every partition cell Sy+;; null for P is also null for Q. Thus
{x.,S.} is a positive supermartingale, and in particular is a martingale if Q is P
absolutely continuous. (More accurately, as defined above the process random
variables are almost surely positive; they could have been defined to be
positive, but there is no advantage in doing so except to make this sentence su-
perfluous.)
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According to Theorem 14, the supermartingale x. is almost everywhere
convergent to an almost surely finite limit function xe.. This convergence result
is more intuitive if formulated as follows. If s is P almost any point of S, and if
Su(s) is the partition cell of S, that contains s, then the sequence
QLS($)1/PS(5)] is well defined and has a finite limit.

The limit function x., will now be analyzed. Letx be the Radon-Nikodym
derivative of the absolutely continuous component of Q relative to P, and define
S'= 6(U S.), the o algebra generated by the class of partition cells. It will be
proved that x., = E{ xIS'} almost surely. It is sufficient to consider the absolutely
continuous and singular cases separately.

Absolutely continuous case. Suppose that Q is absolutely continuous rela-
tive to P:

17.4) 0(A) = J'de (A eS).
A

In this case, the sequence x. is a uniformly integrable martingale that converges
almost everywhere and in the L’ sense to E x|S‘}. In fact in this case

(17.5) = _f xdP)IPs,p = Esls,)  as.

Sni
on each nonnull partition cell Spj, and Theorem 14 is applicable. In particular, if
S' =S, the limit function is almost surely x.

Singular case. In general, since (Theorem 14(a)) x. extended by the limit
function x. is a supemartingale,

(17.6) Jxoo dP < JxmdP < Q@A) (Ae Sp)

A
for all m. The class of sets A for which the first term is majorized by the third
term is a monotone class including the algebra \U S. and therefore includes S'.
In particular, if Q is singular relative to P, the set A can be chosen so that A is Q
null and A is P null. Hence x.. vanishes P almost everywhere, when Q is P
singular.

Example (a). Derivative of a monotone increasing function. Let S be an
interval of R of unit length, F be a monotone increasing right continuous
function on S, Q be the measure Ax generated by F, and P be Lebesgue measure
on S. Choose pairwise disjoint intervals as partition cells of 7, choosing them
so that the maximum interval length of a partition set of 7, tends to 0 as n—oo.
The © algebra S' then contains every interval and is therefore B(R). The
convergence result obtained suggests (but does not imply) that F' exists
Lebesgue measure almost everywhere and is the Radon-Nikodym derivative
anc/ dP. In fact this result was proved in Section X.4. If S is not of unit length,
this application is still valid; all that need be done is to make P into Lebesgue
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measure divided by the Lebesgue measure of S. The method is applicable with
P and Q arbitrary Lebesgue-Stieltjes measures on R, but the derivation method
in Section X.4 yielded much stronger results. The advantage of the partition
method of derivation is that it is applicable in very general contexts.

Example (b). A simple singular context. Let § be the interval [0,1Jon R, §
be B(S), P be Lebesgue measure on S, and Q be the probability measure on S
carried by the singleton {0}. Then Q is singular relative to P. Let &, be the
partition of S into pairwise disjoint right closed intervals of length
2" [0,277],...,(1-27%,1]. The random variable x, defined in this section has
value 2" on [0,2?] and is O elsewhere on S. The sequence x. is a
supermartingale with limit O except at the origin, thus has limit 0 almost
everywhere, as it should. Actually, in this case the supermartingale is even a
martingale, because no partition set is null. This example exhibits a positive
martingale x., whose random variables all have expectation 1 but for which lim
xe = 0 almost surely.

18. Application of martingale theory to the 0-1 law

Martingale theory provides an instructive proof of the 0-1 law, Theorem V.9,
although the elementary proof given in Section V.9 is easier. In the language of
that theorem, if A € M G., then A is independent of each G algebra F,,. Hence
P{AlIFn} = P{A} for all n. On the other hand, since A € Foo, the forward mar-
tingale convergence theorem states that lim P{Al]F.} = P{Al]Foo} =14 almost
everywhere. Hence P{A} must be either O or 1.

19. Application of martingale theory to the strong
law of large numbers

The martingale theory convergence theorems make it easy to devise
convergence theorems in various contexts. One need only define a filtration and
take conditional expectations. Most results obtained in this way are
uninteresting, but the following application illustrates the interesting
possibilities.

Theorem (Kolmogorov). Let x. be a sequence of mutually independent
random variables with a common distribution, and suppose that x, is integrable.
Then

(19.1) lim;—y00 (x,+'--+xn)/n = E{x} a.e.

Proof. Define s, = x|+ +x, and S_, = G6(s, Sy+1,...) for n = 1. Then S. is a
filtration, and the process { E{x, ﬂS }.Sp, n < -1y is a martingale. Each random
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variable of the process has expectation E{x, }. By symmetry,
(19.2) E{x; |s,,,s,,+1,...} = E{les,,,s,,+1,...} ae. (=1,.,..n).

Averaging the n equalities here, it follows that the nth term of the backward
martingale is

(19.3) E{sn/nlsn,sn.,.l,...} =sp/n ae.

According to the backward martingale convergence theorem, the sequence of
these conditional expectations converges almost everywhere and in L' to a limit
random variable x_., with F{x_.} = E{x;}. Furthermore, according to
Application Section V.10(c) of the 0-1 law, x_., must be almost surely constant,
and therefore equal almost surely to its expectation, as asserted in (19.1).

Theorem 19 answers the coin-tossing question raised in Section IV.14; it is
true that, in the mathematical context, the number of heads tossed in 7 tosses
of a balanced coin, divided by n, has almost sure limit 1/2. Whether this is true
or not in real life must await an examination of an experiment, a
nonmathematical concept (although that fact is sometimes not made clear in
elementary probability texts), in which a coin is tossed infinitely often. Up to the
present time, no one has been able to toss a coin that often, and this is sufficient
reason for mathematicians to hand the problem to philosophers and ingenious
physicists.

20. Application of martingale theory to the convergence
of infinite series

Let y. be a sequence of square integrable mutually independent random
variables, with zero expectations, on some probability space. These random
variables are then mutually orthogonal (see Section VI.19), and therefore the
convergence of the series 2 ly.l,” implies that the series converges in the mean,
that is, the series of mutually orthogonal random variables is L" convergent. The
independence condition is far stronger than orthogonality, and Kolmogorov's
theorem, that the series converges almost surely, will now be proved as an
application of martingale convergence. According to Section 6, Example (b), the
sequence x. of partial sums of y. is a martingale, and to prove almost sure
convergence it is only necessary to remark that the convergence of 2 Iy.l2
implies L™ boundedness of the martingale, which is stronger than the L
boundedness condition in Theorem 14, and thereby ensures almost everywhere
convergence.
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21. Application of martingale theory to the boundary
limits of harmonic functions

According to equation VIII(14.4), if u is a function harmonic on an open
neighborhood B of the closure of a disk D of radius o, center z', and if z is a
point of the disk, then u(z) is a weighted average of its values on the disk
boundary aD:

QLD u@)= L[u(o Upedl), up@ A)= = [ FEZP o
2 2moL 4 (&4
(AcC aD),

where [ is length on @D and pp(z,*) is a measure on the Borel subsets of B,
carried by 0D. (An application of (21.1) to the identically 1 function shows that
Hp(z,*) is a probability measure.) This measure is called “harmonic measure on
oD relative to z It is convenient to extend L p by defining Up(z,*) for z in B-D
as the probability measure of Borel subsets of B supported by the singleton {z}.
The function (z,A) = 1pk,A) is a transition function on B, and can serve as the
transition probability function of Markov processes as detailed in Sections 2 and
4. One simple Markov process with this transition probability function is the
following.

Let B be a disk of radius B, center the origin, and D. be a sequence of disks
with the origin as center, and radii strictly increasing, with limit B. Consider a
sequence {z,,,m 2 0} of random variables with values in B, that is, measurable
functions from some probability space into B, for which z. is a Markov process
with state space B, with mth transition probability function ftp,, and initial point
Zo in D;. That is, 2, is a constant function, with value in Dy, and for m> 0 and A a
Borel subset of B,

21.2) P{zmar € Alzorszim} = Hp,, GmA)  as.
This choice of transition functions means that, successively, z; is almost surely

on Dy, z, is almost surely on dD,, and so on. Thus, for example, if C is a Borel
subset of dDX0D,>dD 3, then (integration over 0D x0D ,x0D4)

(21.3) P{(z1.z3) € C} = JHDI(Zo,dCx) [ 1p,C1.dss) f1c Hp4G2.d0s)-

It follows that if fis a Borel measurable function on B, bounded on 9Dy, and
n> 0, then

(21.4) E(fGms )l 2002m) = EfemsDlzm)

J‘ﬂg) qu.;.l(zm’L&) a.s.

Dy
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The fact that there is such a process follows from Kolmogorov's theorem V.6,
according to which there is a probability measure on the product space BxBX -,
with the property that the coordinate functions determine a Markov process with
initial point zy and the prescribed transition functions. Almost all the sample
sequences of z. are sequences with initial point zy and with z,,;, on dDj,.

Now suppose that u is a harmonic function on B. An application of (21.4)
with f = u yields

@15 Eluenlzowin) = | WO Dy emdD) =uten) 2
m+1

Thus the sequence u(z.) is a martingale relative to the filtration S.. According to
Theorem 14, positivity of u , or, trivially more generally, lower boundedness of
u, implies that this martingale converges almost surely, that is, « has a finite
limit along almost every sample path of the z. process to the boundary. The
application to the bounded harmonic functions Rz and 3z shows that almost
every sample sequence of z. converges, necessarily to a point of oB. If u is an
arbitrary positive harmonic function, the almost everywhere convergence of
u(z.) means that u has a boundary limit along almost every sample sequence of
z.to 0B.

More generally, if 4 is a strictly positive harmonic function on B, the function
u/h is a function with an average property determined by & harmonic measure
“D (21.1) yields

u@) _ [ u® _ ()
aLe) 42 ab[ MO wpeaihe = [ MBuledd) e D)

where u'[',(z d0) = up(z,dOn(C)/h(z). The h harmonic measure ].L'[’, can serve as the
transition function of a Markov process in the same way as the particular case
uD for the special case h =1. (Set 4 = h to find that uD(z,-) is a probability
measure carried by dD.). For each choice of 4, there is a sequence z. of random
variables, with z,, almost surely on dD,,, along which the function w/h has an
almost sure limit. The measure properties of the sequence z. depend on the
choice of h. It can be shown that, whatever the choice of A, lim z. = z exists
almost certainly. The random variable z is almost surely on dB, but the
distribution of z on dB depends on the choice of /.

Observe the difference between Theorem X.19 and the present result. Both
state that w/ has a finite limit along almost all paths of a certain sort to 0B but
in Theorem X.19 the paths are radii, and the present probabilistic result has
paths of a quite different sort. (In a deeper investigation, the martingale method
leads to continuous paths (Brownian motion paths conditioned by #) along
which u/h has its boundary limits.) The advantage of the martingale method is
that it can be adapted to be applicable to harmonic functions on an arbitrary
open set and to functions with average properties analogous to those of
harmonic functions, for example, to solutions of elliptic and parabolic partial
differential equations.
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Nikodym theorem 150, 155; of a
function of bounded variation 164; and
derivation 158-160, 199.

Adaptation of integrand to a ¢-algebra: 21.

Adapted families of functions: 187.

Algebras: set - 11; generation of 12;
products of 14.

Almost: everywhere, surely 18.

Analytic function: Riesz-Herglotz 142.
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step functions and continuous functions
91.

Baire functions 58.

Beppo-Levi theorem: 75.

Bessel's inequality: 109.

Birkhoff ergodic theorem: 121.

Borel measure: 18.

Borel measurability: of functions 56, 58.
Borel sets: 13, 16.

Borel theorem: 26.

Borel-Cantelli theorem: 26.

Bounded convergence theorem: 84.

Cantelli theorem: 26.
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Carrier: 18.
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Central limit theorem 29.
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Change of variable in integration: 80.

Characteristic function: 170.
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Coin tossing: 24, 27, 50.
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78.
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91,
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132,136, 137, 139, 165-169, 171, 172 ;
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81.
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98.
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Covering lemma: 150.
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Darboux sums: 99.
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in M(S) 132, 137, 139, 172.
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Entry time: 192.
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208 Measure Theory

Ergodic theorem: 117.
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Expectation: 24, 76.

Extension of a measure: 38, 40.
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Fatou theorem: 82; for conditional
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Fourier: series 109, 112; lead to Fourier
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-Plancherel theorem 115.

Fg: 16.
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Function: measurability 22, 53;
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Hahn decomposition: 146.
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176, 203.
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202.
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Intersection: expression for the indicator
function of the - of n sets 7.
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Jensen's inequality: 87; for conditional
expectations 184.
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160
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Lusin's theorem: 69.
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12: 106, 112.

L 78, 89; bounded 79; convergence 90;
completeness 90; approximation of -
functions 91; separability 92.

Marginal measures: 50.

Markov: property 25; process 188.

Martingale: (super- and sub-) 189;
examples 189; elementary properties
190; convergence 195-199 application
to derivation 198; proof of 0-1 law
201; application to law of large numbers
201; application to convergence of
infinite series 202; application to
boundary limits of harmonic functions
203.

Maximal: submartingale inequality 194.

Measurable: space and set 11 -function 17,
53; Borel--56 - functions of several
variables if one is fixed 57; -conditions on
a set of functions 55; sequential limit
functions are - 58; -- functions as limits of
continuous functions 69.

Measure space: 17; discrete ---21.

Measure: finite, signed 17; probability 18;
marginal 50; hull 52; on coordinate space
(Kolmogorov) 61; defined by integrals 80;
- theory vs. premeasure theory 101.



Metric space theorems: 3.

Metric on C(S): sup norm - 125; local sup
norm - 1285.

Metric on MI((S): C(S) - 132; Cy(S) - 137,
139, 172.

Minkowski's inequality: 89; for cond. exp.
185.

Monotone class of sets: 15.

Monotone function: cont. props.
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Monotone sequences: integration to limit
(Beppo-Levi) 75.

HEt 43,

Nonadditive set function: 35
Norm: for convergence in measure 66; of

an L? function 79; of a linear functional
onTH 108.

Null set: 18; integrand not defined on one
77.

Optional: times 191; sampling theorem
193.

Ordinate set: 84.

Orthogonality: 106; Schmidt
orthogonalization. 111.

Orthonormal sequence: 106.

Outer measure: 32; generated by an algebra
and measure 33; of countable subsets of
R 33; distance defined by an --33.

Parseval identity: 110.

Poisson integral: 142.

Probability: 10; - space 18; in measure
theory 101, 179.

Product measure: 24, 48, 84.

Product sets: 2; infinite dimensional 12;
additive functions on - 20.

Prohorov theorem: 42.

Projection: 107.

Pseudometric spaces: 13; of sets 34; of
functions for convergence in measure
65; d; continuity of a A absolutely
continuous signed measure 150 .

Punctured compact space: 124; Measures
ona- 135-141.

Radon measure: 43, 124,

Radon-Nikodym theorem: 150.

Random variables: 21, 53; Independent 23,
63; series of independent 64.

Ratio limit lemma: 174

Riemann integrai 98.

Riesz-Herglotz theorem 142.

Index 209

Right semiclosed interval: 12, in infinite
dimensional spaces 15.

Separable space of sets 38
Separable space of functions: under

convergence in measure norm 67; L7 91.

Set function: subadditive, additive,
countably additive, monotone
17; extension of finitely additive 19;
product 20, 24, 48; nonadditive 35.

Setwise convergence of measure
sequences: 30.

Sets: unions and intersections 7 algebras of
11; cross sections of 15, null 18.

o algebra: 11; and integration 21; adapted
integrands 21.

Signed measures: definition 17; properties
145; lattice property 146; absolute
continuous, singular 147.

Singular: signed measure: 147, 155;
function of bounded variation 164.

Stable C(S) convergence: 139-141; on R
169.

Step functions: 56; approximation by 56, 91.

Stochastic matrices: 25.

Stochastic processes: 179.

Strong law of large numbers: 29;
martingale proof 201.

Sub [super] martingale: definition 188;
convergence 195-199.

Subspace of Hilbert space: 106.

Support: of a measure 18; of a function
123

Supremum: essential 71.

Symmetric difference operator: 7.

Tail ¢ algebra: 64

Tonelli-Fubini theorem: 85.

Trajectory: and nonadditive set functions
36.

Transition function: 25, 182.

Triangle inequality: for sets 7; for distance
defined by an outer measure 33.

Trigonometric integrals: evaluation of two
113.

Trigonometric series: Césaro convergence
of 93, 112.

Uniform absolute continuity: of a family of
measures 148.

Uniform convergence: at a point 4; of
monotone function sequences 166.

Uniform integrability: definition and test
functions 94-95; - and L! convergence
95.
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Unitary operator: 105.

Union: expression for the indicator
function of the - of n sets 7.

Upcrossings: and convergence 194;
inequality 195.

Upper Darboux sums: for the Riemann
integral 99.

Variation: positive, negative, total
variations of a signed measure 145;
positive, negative, total variations of a

function of bounded variation 160.
Vitali covering: 158.
Vitali-Hahn-Saks theorem: 30, 155.

Young approach to integration: 12.

0-1 law: 64, 201
0,1 sequences: set algebras in the space of
12
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