


Graduate Texts in Mathematics 143 
Editorial Board 

S. Axler FW. Gehring P.R. Halmos 

Springer Science+Business Media, LLC 



Graduate Texts in Mathematics 

TAKEUTI/ZARING. Introduetion to 33 HIRSCH. Differential Topology. 

Axiomatic Set Theory. 2nd ed. 34 SPIlLER. Principles of Random Walk. 

2 OXTOBY. Measure and Category. 2nd ed. 2nd ed. 

3 SCHAEFER. Topological Vector Spaces. 35 WERMER. Banach Algebras and Several 

4 HILTON/STAVIMBACH. A Course in Complex Variables. 2nd ed. 
Homological Algebra. 2nd ed. 36 KELLEY/NAVlIOKA et al. Linear 

5 MAC LANE. Categories for the Working Topological Spaces. 

Mathematician. 37 MONK. Mathematical Logic. 

6 HUGIIES/PIPER. Projective Planes. 38 GRAUERT/FRITLSCHE. Several Complex 

7 SERRE. A Course in Arithmetic. Variables. 

8 TAKEUTI/ZARING. Axiomatic Set Thcory. 39 ARVESO~·i. An Invitation to C*-Algebras. 

9 HUVlPHREYS. Introduction to Lie Algebras 40 KEVlENy/SNELLIKNAPP. Denumerable 

and Reprcsentation Theory. Markov Chains. 2nd ed. 

10 COHEN. A Course in Simple Homotopy 41 ApOSTOL. Modular Functions and 

Theory. Dirichlet Series in Number Theory. 

11 CONWAY. Functions of One Complex 2nd cd. 

Variable I. 2nd ed. 42 SERRE. Linear Representations of Finite 

12 BEALS. Advanced Mathematical Analysis. Groups. 
13 ANDERSON/FuLLER. Rings and Categories 43 GILLMAN/JERISON. Rings of Continuous 

of Modules. 2nd cd. Functions. 

14 GOLUBITSKY/GUILl.EMIN. Stable Mappings 44 KENDIG. Elementary Algebraic Geometry. 
and Their Singularities. 45 LoEvE. Probability Theory I. 4th ed. 

15 BERBERIAN. Lectures in Functional 46 LOEVE. Probability Theory 11. 4th ed. 
Analysis and Operator Theory. 47 MOISE. Geometrie Topology in 

16 WINTER. The Structure of Fields. Dimensions 2 and 3. 

17 ROSENBLATI. Random Processes. 2nd ed. 48 SACHS/Wu. General Relativity for 

18 HAl.MOS. Measurc Theory. Mathematicians. 

19 HALMOS. A Hilben Space Problem Book. 49 GRUENBERG/WEIR. Linear Geometry. 

2nd cd. 2nd ed. 

20 HUSEMOLLER. Fibre Bund1es. 3rd ed. 50 EDWARDS. Fermat's Last Theorem. 

21 HCMPHREYS. Linear Algebraic Groups. 51 KUNGENBERG. A Course in Differential 

22 BARNES/MACK. An Algebraic Introduction Geometry. 
to Mathematical Logie. 52 HARTSHORNE. Algebraic Geometry. 

23 GREUB. Linear Algebra. 4th ed. 53 MANIN. A Course in Mathematical Logic. 

24 HOLMES. Geometrie Functional Analysis 54 GRA VERlW ATKINS. Combinatorics with 

and Its Applications. Emphasis on the Theory of Graphs. 

25 HEWITT/STROMBERG. Real and Abstract 55 BROWN/PEARCY. Introduction to Operator 

Analysis. Theory I: Elcments of Functional 

26 MANES. Algebraic Theories. Analysis. 

27 KELLEY. General Topology. 56 MASSEY. Algebraic Topology: An 
28 ZARlSKilSAMUEL. Commutative Algebra. Introduction. 

Vol.1. 57 CRowEuJFox. Introduction to Knot 

29 ZARISKI/SAMUEL. Commutative Algcbra. Theory. 

Vol.ll. 58 KOBLITL p-adic Numbers, p-adic 

30 JACOBSON. Lcctures in Abstract Algebra I. Analysis, and Zeta-Functions. 2nd ed. 

Basic Concepts. 59 LANG. Cyc1otomic Fields. 

31 JACOBSON. Lectures in Abstract Algebra 60 ARNOLD. Mathematical Methods in 

11. Linear Algebra. Classical Mcchanics. 2nd ed. 

32 JACOBSON. Lectures in Abstract Algebra 
111. Theory of Fields and Galois Theory. continued after index 



IL. Doob 

Measure Theory 

Springer 



J.L. Doob 
101 West Windsor Road 
Urbana, IL 61801 
USA 

Editorial Board 
S. Axler 
Department of 

Mathematics 
Michigan State University 
East Lansing, MI 48824 
USA 

F.w. Gehring 
Department of 

Mathematics 
University of Michigan 
Ann Arbor, MI 48 \09 
USA 

P.R. Halmos 
Department of 

Mathematics 
Santa Clara University 
Santa Clara, CA 95053 
USA 

Mathematics Subject Classitication (1991 ): 28-0 I, 60A I 0, 60Bxx. 60Gxx 

Library of Congress Cataloging-in-Publication Data 
Doob. J. L. 

Measure theory / J. L. Doob 
p. cm. - <Graduate texts in mathematics ; 143) 

Includes bibliographical references and index. 
ISBN 978-1-4612-6931-1 ISBN 978-1-4612-0877-8 (eBook) 
DOI 10.1007/978-1-4612-0877-8 
I. Measure theory. 2. Probabilities. I. Title. 11. Series. 

QA325.D66 1993 
515 '.42-dc20 93-17497 

Printed on acid-free paper. 

© 1994 Springer Science+Business Media New York 
Originally published by Springer-Verlag New YOlk, Inc. in 1994 
Softcover reprint ofthe hardcover Ist edition 1994 
All rights reserved. This work may not be translated or copied in whole or in part without the 
written permission ofthe publisher Springer Science+Business Media, LLC, except for brief 
excerpts in connection with reviews or scholarly analysis. Use in connection with any form of 
information storage and retrieval. electronic adaptation. computer software or by similar or 
dissimilar methodology now known or hereafter developed is forbidden. 
The use of general descriptive names. trade names. trademarks. etc .. in this publication. even 
if the former are not especially identified. is not to be taken as a sign that such names, as 
understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely 
byanyone. 

Production managed by Henry KreH: manufacturing supervised by Jacqui Ashri. 
Camera-ready copy prepared from author's Microsoft Word files. 

9876543 

ISBN 978-1-4612-6931-1 
SPIN 10636463 



Introduction 

This book was planned originally not as a work to be published, but as an excuse 
to buy a computer, incidentally to give me a chance to organize my own ideas ~n 
what measure theory every would-be analyst should learn, and to detail my 
approach to the subject. When it turned out that Springer-Verlag thought that the 
point of view in the book had general interest and offered to publish it, I was 
forced to try to write more clearly and search for errors. The search was 
productive. 

Readers will observe the stress on the following points. 

The application of pseudometric spaces. Pseudo metric, rather than metric 
spaces, are applied to obviate the artificial replacement of functions by 
equivalence classes, a replacement that makes the use of "almost everywhere" 
either improper or artificial. The words "function" and "the set on which a 
function has values at least E" can be taken literally in this book. Pseudometric 
space properties are applied in many contexts. For example, outer measures are 
used to pseudometrize classes of sets and the extension of a finite measure from 
an algebra to a 0" algebra is thereby reduced to finding the closure of a subset of 
a pseudo metric space. 

Probability concepts are introduced in their appropriate place, not con­
signed to a ghetto. Mathematical probability is an important part of measure 
theory, and every student of measure theory should be acquainted with the 
fundamental concepts and function relations specific to this part. Moreover, 
probability offers a wide range of measure theoretic examples and applications 
both in and outside pure mathematics. At an elementary level, probability-in­
spired examples free students from the delusions that product measures are the 
only important multidimensional measures and that continuous distributions are 
the only important distributions. At a more sophisticated level, it is absurd that 
analysts should be familiar with mutual orthogonality but not with mutual in­
dependence of functions, that they should be familiar with theorems on con-
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vergence of senes of orthogonal functions but not on convergence of 
martingales. 

Convergence of sequences of measures is treated both in the general Vitali­
Hahn-Saks setting and in the mathematical setting of Borel measures on the 
metric spaces of classical analysis: the compact metric spaces and the locally 
compact separable metric spaces. The general discussion is applied in detail to 
finite Lebesgue-Stieltjes measures on the line, in particular to probability 
measures. 
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o 
Conventions and Notation 

1. Notation: Euclidean space 

RN denotes Euclidean N-space; R = Rl; R+ is the half line [0,00); ii+ is the 
extended half-line [0,+00]; R is the extended line [-00,+00]. The extended haIf­
lines and lines can be metrized by giving them the metric of their images under 
the transformation s' = arctan s. 

2. Operations involving ±oo 

a(±oo) = ±oo if a> 0, 
= 0 if a = 0, 
=+00 if a < o. 

If a is finite, a±oo = ±oo; if a =+00, a+(+oo) = +00; if a = -00, a+(-oo) =-00. 

3. Inequalities and inclusions 

"Positive" means "~ 0"; "strictly positive" means" > 0." The symbols c and ~ 
allow equality. "Monotone" allows equality unless modified by "strictly." Thus 
the identically 0 function on R is both monotone increasing and decreasing, but 
is not strictly monotone in either direction. 

4. A space and its subsets 

If S is a space, the class of all its subsets is denoted by i. The complement of a 
subset A of a space is denoted by A. If A and B are subsets of S, AnB is some­
times denoted by B-A. The indicator function of a subset A of S , defined on S as 
1 on A and 0 on A, is denoted by 1A. In particular, the identically 1 function Is 
will be denoted by 1 and the identically 0 function 10 by o. 
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5. Notation: generation of classes of sets 

If A is a class of subsets of a space, the classes Ao, A& and A are, respectively, 
the classes of countable unions, countable intersections, and complements of the 
sets in A. 

6. Product sets 

If Sj, ... ,~ are sets, S\x"'xSn is the product set 

{(sj, ... ,~): Si E Si, (i S; n)}. 

If Ai is a class of subsets of Si, A\ X"·X An is the class 

{A\x .. · xAn: Ai E Ai (i :S;n)} 

of product sets. The corresponding definitions are made for infinite (not 
necessarily countable) products. 

7. Dot notation for an index set 

"B." is shorthand for {Bi, i E I}, where / is a specified not necessarily countable 
index set. Unless the subscript range is otherwise described, "a finite sequence 
B." means the sequence BJ, ... ,Bn, for some strictly positive integer n, and "a 
sequence B." means the infinite sequence B1,B2, ... • The notation LB. means the 
sum over the values of the subscript, and corresponding dot notation will be 
applied to (not necessarily countable) set unions and intersections. If a. is a 
sequence, the notation lim a. means Iimn-700 an, and corresponding dot notation 
will be applied to inferior and superior limits. When dots appear more than once 
in an expression, the missing symbol is to be the same in each place. Thus if A. 
and B. are sequences of sets, u(A.nB.) is the union of intersections AnnBn. 

8. Notation: sets defined by conditions on functions 

If fis a function from a space S into a space S' and if A' is a subset of S', the set 
notation {s E S:f(s) E A'} will sometimes be abbreviated to {IE A'}. Herefmay 
represent a set of functions. Thus if gj, ... ,gn are functions from S into S' and if 
B' is a subset of s'n, the notation {s E S: [g\(s), ... ,gn(s)] E B'} may be 
abbreviated to {(gj, ... ,gn) E A'}. 
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9. Notation: open and closed sets 

The classes of open and closed subsets of a topological space will be denoted, 
respectively, by G and IF. 

10. Limit of a function at a point 

The limit of a function at a point depends somewhat on the nationality and back­
ground of the writer. In this book, the limit does not involve the value of the 
function at the point. Thus the function l{O}, defined on R as 0 except at the 
origin, where the function is defined as 1, has limit 0 at the origin in this book 
even though the function does not have a Bourbaki limit at the origin. 

11. Metric spaces 

Recall that a metric space is a space coupled with a metric. A metric for a space 
S is a distance function d, a function from SxS into R+ satisfying the following 
conditions. 

(a) Symmetry: d(s,t) = d(t,s). 
(b) Identity: d(s,t) = 0 if and only if s = t. 
(c) Triangle inequality: d(s,u) :::; d(s,t) + cK.t,u). 

A ball in S is an open set {s: d(s,so) < r}; So is the center, r is the radius. 
It is a useful fact that if d is a metric for S and if c is a strictly positive constant, 
the function dl\c is also a metric for S and determines the same topology as d. 
That is, the class of open sets is the same for dl\c as for d. If d is a function from 
SXS into R+ and satisfies (a), (b), and (c), the function dl\c is a finite valued 
function satisfying these conditions and can therefore serve as a metric. 

12. Standard metric space theorems 

The following standard metric space theorems will be used. Proofs are sketched 
to facilitate checking by the reader that they are valid for the pseudometric 
spaces to be defined in Section 13. 

(a) A metric space (S,d) can be completed, that is, can be augmented by 
addition of new points to be complete. To prove this theorem, let S' be the class 
of Cauchy sequences of points of S. The space S' is partitioned into equivalence 
classes, putting two Cauchy sequences s. and t. into the same equivalence class 
if and only if lim d(s.,f.) = O. If s' and t' are equivalence classes, define d'(s',t') = 
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lim d(s.,t.) = O. If s' and t' are equivalence classes, define d'(s',!,) = lim d(s.,t.) for 
s. in s' and t. in t'. This limit exists, does not depend on the choice of Cauchy 
sequences in their equivalence classes, and (S' ,d') is a complete metric space. 
Define a functionffrom S into S' by f(s) = s,s,s, ... . This map preserves distance, 
and if S is identified with its image in S', S' is the desired completion of S. 

(b) A uniformly continuous function g from a dense subset of a metric space S 
into a complete metric space S' has a unique uniformly continuous extension to S. 
To prove this theorem, observe that if s is not already in the domain of g, and if s. 
is a sequence in the domain of g, with limit s, the uniform continuity of g implies 
that lim g(s.) exists and does not depend on the choice of s •. The value g(s) is 
defined as this limit, and as so extended g is uniformly continuous on S. The 
uniqueness assertion is trivial. 

(c) If a complete metric space S is a countable union of closed sets, at least 
one summand has an inner point. To prove this theorem, let uS. be the union of a 
sequence of closed nowhere dense subsets of S. There is a closed ball BI of radius 
::; I in the open set S\. Similarly there is a closed ball B2 of radius::; 112 in BIn 52, 
and so on. The intersection of these closed balls is a point of S in no summand. 
Hence the union cannot be S, that is, if S is the union of a sequence of closed sets, 
at least one is not nowhere dense, and therefore has an inner point. 

(d) Iff. is a sequence of bounded continuous functions from a complete metric 
space S into R, and if sup If.(s) I < +00 for each point s of S, then there is a number 
y for which the set {s E S: sup !f.(s)1 ::; y} has an inner point. This theorem follows 
at once from (c) because for each value of y the set in question is closed, and as y 
increases through the positive integers the set tends to S. 

(e) A sequence f. of functions from a metric space (S,d) into a metric space 
(S',d') is said to converge uniformly at a point So of S, if there is convergence at so, 
and if to every strictly positive E there corresponds a strictly positive 0 and an 
integer k, with the property that d'lfm(s)Jn(s») < E whenever n :2: k, m :2: k, and 
d(s,so) < O. An equivalent condition is that there is a point s' of S' with the 
property that whenever t. is a sequence in S, with limit so' then limf.(t.) = s'. Iff. 
is a convergent sequence of continuous functions from S into S', the limit function 
f is continuous at every point of uniform convergence of the sequence. In fact, if 
So is a point of uniform convergence, if E, 0, k are as just described, and if 0 is 
decreased, if necessary, to make d'lfis)Jiso») < E whenever d(s,so) < 0, then 

whenever d( s ,so) < 8. Hence f is continuous at so' as asserted. 
(f) If a sequence f. of continuous functions from a complete metric space (S,d) 

into a metric space (S ',d') is convergent, there must be at least one point of 
uniform convergence. (Since this assertion can be applied to the restrictions of the 
functions to an arbitrary closed ball in S, the set of points of uniform continuity of 
the sequence, and therefore the set of continuity points of the limit function, is 
actually dense in S.) This assertion is reduced to (c) as follows. For each pair of 
strictly positive integers m, k, the set 
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(12.2) 

is a closed subset of S. When k is fixed and m increases, the union of these 
closed sets is S. It follows that there is a closed ball Bk in one of these sets of 
radius at most 11k. If this argument is carried through with S replaced 
successively by B1 ,B2, •.• ,the argument yields a monotone decreasing sequence B. 
of balls whose intersection is a point of uniform convergence of the sequence /0. 

13. Pseudometric spaces 

A pseudometric space is a space coupled with a pseudometric. A pseudometric 
for a space S is a pseudometric distance function d, a function from SxS into 
R+ that satisfies 11(a) and 11(c), but 11(b) is weakened to 

(11 b') des,s) = o. 

There are two approaches to a pseudometric space (S,d). The most common 
approach is to define a space S* of equivalence classes of subsets of S, putting 
two points sand t of S in the same equivalence class if and only if d(s,t) = O. If 
s* and t* are equivalence classes define d*(s*,t*) as d(s,t), for sin s* and tin t*. 
This definition does not depend on the choice of sand t in their equivalence 
classes, and d* is a distance function making S* a metric space. 

A second approach, used in this book, is to stay with the pseudometric space, 
making the same definitions as formulated for metric spaces: open and closed 
sets, separable spaces, complete spaces, and so on. Note that if a sequence of 
points of a pseudometric space is convergent to a point, the sequence is also 
convergent to every point at zero distance from that point, and that therefore if a 
point is in an open (or closed) set of a pseudometric space every point at zero 
distance from it is also in that set. The theorems and proofs of the theorems in 
Section 12 remain valid for pseudometric spaces. It may seem that in fact there 
is not much difference between handling Sand S* except that S* is simpler, but 
in fact in many measure theoretic contexts, the pseudometric space is less 
clumsy. 



I 
Operations on Sets 

In this chapter, certain relations between and operations on subsets of an 
abstract space are described. When numbered relations are paired, as in (1.1), 
each relation of the pair yields the other relation when the sets involved are 
replaced by their complements. Proofs of easily verifiable assertions are 
omitted. 

1. Unions and intersections 

If A. and B. are collections of subsets of a space S, 

(1.1) (uA.f=nA., (rlA.f = uA., 

(1.2) 

Obviously lAnB = lA1B, 1,4 = l-lA = l+lA (mod 2), and 

(1.3) 

2. The symmetric difference operator .d 

In this section A, B, C, and D are subsets of a space S. The symmetric difference 
AAB is defined by 

(2.1) AM = (A-B) u (B-A) 

or, equivalently, 

(2.2) lAM = IA + IB (mod 2). 
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The latter form provides easy proofs of some of the relations listed below. 
Obviously 

(2.3) AA0 = A, AM =A, AM = 0, (AM) - = AM, AM = AM c AuB. 

The symmetric difference operator is commutative and associative: 

(2.4) AM = BM, AA(BAC) = (AM)AC, 

and therefore parentheses can be omitted in expressions of the form AMACA'" . 
The equality AAC = AMMAC yields the useful triangle inclusion relation 

(2.5) AAC c (AM)u(BAC). 

The symmetric difference operator satisfies 

(2.6) (AAB)nC = (AnC)A(BnC), (AM)uC = (AuC)A(BnC), 

and if A. and B. are collections of subsets of S, 

If AJ> ... ,An are subsets of S, 

IUA. = ~ lAj - ~.lAinAj +"+ (-l)n-1IA In ... !'lAn' 
I~ 1<] 

(2.9) 

InA. = L lAj - L lAiuAj +"'+(-l)n-JIAIU ... uAn· 
i~ i<;i 

When n = 2, both equalities reduce to (1.3). Each equality can be proved by 
induction, or, more directly, by checking it at those points in Aj for exactly m 
values of j, for m = O,,,.,n. Each equality reduces to the other when the sets in­
volved are replaced by their complements. 

3. Limit operations on set sequences 

If A. is a sequence of subsets of a space S, define 
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The superior limit is the set of those points in An for infinitely many values of n; 
the inferior limit is the set of those points in An for all but finitely many values 
of n. The inferior limit is a subset of the superior limit, and if there is equality 
with common limit set A, the sequence A. converges to A, written lim A. = A. 
The following limit properties for sets are analogous to those for numbers, 
because they correspond exactly to those for indicator functions, written at the 
end of this section. 

(a) A monotone increasing sequence of sets converges to the union of the sets; a 
monotone decreasing sequence of sets converges to the intersection of the sets. 

(b) If B. is a subsequence of A., then B. converges whenever A. does, because 

(3.2) lim inf A. c lim inf B. c lim sup B. c lim sup A.. 

Since 

(3.3) lim inf A. = (lim sup A.)-, 

(c) the sequence A. converges to A when A. converges to A. Furthermore, for 
sequences A., B. of sets, 

lim inf (A.uB.) => (lim inf A.) u (lim inf B.) 
(3.4) 

lim sup (A.uB.) = (lim sup A.) u (lim sup B.), 

lim inf (A.nB.) = (lim inf A.) n (lim inf B.), 
(3.5) 

lim sup (A.nB.) c (lim sup A.) n (lim supB.). 

Hence, 

(d) whenever sequences A. and B. converge respectively to A and B, the 
sequences A.uB. and A.nB. converge respectively to AuB and AnB. 

The equality 

(3.6) 

for a sequence A. of sets, is useful in convergence studies, because (3.6) implies 

(3.7) lim sup A. -lim inf A. = lim SUPn~oo (AnMn+l). 
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Set sequence limit properties in terms of indicator functions. If A. is a 
sequence of sets, the functions lim sup IA and lim inf IA are respectively the 
indicator functions of the sets lim sup A. ~nd lim inf A •. Thus the sequence A. 
converges to A if and only if the corresponding sequence of indicator functions 
converges to IA. 

4. Probabilistic interpretation of sets and operations 
on them 

In the application of mathematical probability to non mathematical contexts, a 
space of points corresponds to a class of possible observations made in some 
real context, for example, heights of humans in a specified country, positions of 
stars, possible outcomes of tossing a coin twice, times of auto accidents on a 
specified highway. The subsets of the space, events in the applications, are de­
termined by conditions in the real contexts. For example, in the last mentioned 
application, one event is the class of accident times during the hours of daylight. 
The union operation on sets corresponds to or for events; the intersection 
operation for sets corresponds to and. It will be seen in later chapters that 
mathematical probability (which must be distinguished from the 
non mathematical variety) is a certain specialization of measure theory, 
distinguished by its own terminology and its field of nonmathematical 
applications. On the one hand, mathematicians were computing probabilities 
and expectations, on the other hand mathematicians were computing volumes 
and masses, and the two fields did not come together until this century. In fact 
some probabilists resented the invasion of their juicy domain by dry 
mathematical rigor, and even now almost all probabilists write in the traditional 
dialect of their subject. 



II 
Classes of Subsets of a Space 

1. Set algebras 

Definition. A class S of subsets of a space S is an algebra if the following 
conditions are satisfied. 

(a) 0 E S. 
(b) The class S is closed under complementation: if A E S then A E S. 
(c) The class S is closed under finite unions: finite unions of sets in S are in 

S. 
(c') The class S is closed under finite intersections: finite intersections of sets 

in S are in S. 

Under (b), conditions (c) and (c') are equivalent, in view of Equation 1(1.1). If 
A. is a finite or infinite sequence of sets in an algebra S, their union, which may 
or may not be in the algebra if the sequence is infinite, can be expressed as the 
disjunct union of a sequence of sets in S, each of which is a subset of the 
corresponding term of A.: 

(1.1) 

Definition. An algebra S of subsets of a space S is a cr algebra if S contains 
the limit of every monotone sequence of its sets. The pair (S,S) is then a 
measurable space, and the sets in S are measurable. 

Application of complementation shows that this defining condition of a cr 
algebra, as distinguished from an algebra, is fulfilled even if it is specified as 
fulfilled only for increasing (or only for decreasing) set sequences. If A. is a 
sequence of sets in a cr algebra, the limit sets lim sup A. and lim inf A. are also 
in the cr algebra .. 

The smallest algebra of subsets of a space S is the pair of sets (0,S); the 
largest algebra is 2s Both these algebras are cr algebras. 
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2. Examples 

(a) Finite unions of right semiclosed intervals of RN. A right semiclosed 
interval of R is either the empty set or a subset of R of the form 

(2.1) {sER:a<s~b} (-00 $; a < b $; +00). 

The complement of such an interval is either a right semiclosed interval or 
the disjunct union of two such intervals, and the intersection of two such 
intervals is another one. The class of finite unions of these intervals is therefore 
an algebra. This algebra is not a 0' algebra because, for example, it does not 
contain the open interval (0,1) = U~(O,I-lIn].l 

The right semic10sed intervals of RN for N > 1 are defined as the N-fold 
products of right semiclosed intervals of R. For N ~ I the class of finite unions 
of these intervals is an algebra, but not a 0' algebra. 

(a') In Example (a), replace R by the set of rational numbers. With this choice 
instead of R in (2.1), the class of finite unions of these intervals is still an 
algebra but not a 0' algebra. 

(b) Classes of 0,1 sequences. For n = 1,2, ... let Sn be the space of n-tuples of 
D's and l's, and define S = SIX SI x .. ·, the space of infinite sequences of D's and 
l's. Let Xn be the nth coordinate function of S. Under the map taking a point of 
Sn into the subset of S with that point as initial n-tuple, the algebra Sn of all 
subsets of Sn maps into a set algebra S n' of subsets of S. The union U So' of all 
these algebras is itself an algebra S' of subsets of S. The algebra §,z' is the al­
gebra of sets specified by conditions on xt. ... ,xn; the algebra S ' is the algebra of 
sets specified by conditions on finitely many coordinate functions of S. The 
algebra S' is not a 0' algebra because, for example, An = {xn=l} E Sn' c So, but 
UA. is not in St. The set algebra S' has the property, to be applied in Section 
IV.14, that if A in S' is a disjunct countable union uA. of sets in So, then all but 
a finite number of the summands are empty. Equivalently, phrased in terms of 
the remainder sequence {A-u7A., n ~1}, a decreasing sequence B. of non­
empty sets in S' has a nonempty limit. To prove this assertion about decreasing 
sequences, observe that by hypothesis each set Bn is specified by conditions on 
a finite number of coordinates, say the first an coordinates. (Note that if Bn is 
specified by conditions on the first an coordinates then Bn can also be specified 
by conditions on the first an' coordinates for an' > an.) The assertion to be 
proved is trivial if the sequence a. is bounded. If this sequence is not bounded, it 
can be supposed that the sequence is monotone increasing - if necessary replace 
each value an by alv"·van. For each k, the set of initial ak-tuples of points of Bk 
is not empty and decreases as n increases, to some nonempty set Ck of ak-tuples. 
Moreover the ak-tuples in Ck are the initial ak-tuples of Cm for m >k. Thus the 
sequence C. determines a nonempty set that is a subset of every set Bk, that is, 
nB. is not empty, as was to be proved. 
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Observation for later use. If, more generally, the space SI is a metric space, 
if S = SIX SIX ... , and if Xn is the nth coordinate function of S, a trivial adapta­
tion of the argument just used yields the following: if B. is a decreasing 
sequence of nonempty subsets of S, with Bn = {(XI , ... .-Xu ) E Bn'}, where Bn' is a 
compact subset of SIan. with a. some sequence ofpositi~e integers, then nB. is 
not empty. This result is trivial unless the sequence a. is unbounded. It can be 
assumed that a. is an unbounded increasing sequence (if not already increasing, 
choose a subsequence of B. for which the corresponding subsequence of a. is 
increasing), and the rest of the argument for the special case is carried through 
without change. 

3. The generation of set algebras 

Let So be a class of subsets of a space S, and let r be the class of those algebras 
of subsets of S that include So. Denote by O"oCSo) the class of sets in every 
algebra in the class r. Then O"oCSo) is an algebra, the smallest one including all 
the sets of So. Similarly there is a smallest 0" algebra O"(So) including all the sets 
of So, the intersection of all such 0" algebras. The algebras O"oCSo) and o(So) are 
generated by So. Obviously 

If A], ... ,An are subsets of a space S, they generate a partition of S into 2n 

pairwise disjoint possibly empty cells, the intersections B\n···nBn , where each 
set Bj is either Aj or AI The algebra O"o(A.) is the class of finite unions of these 
cells. In general, if So is an arbitrary class of subsets of S, the algebra O"oCSo) is 
the class of finite unions of finite intersections of the members and complements 
of members of So. There is no such simple representation of O"(So). 

4. The Borel sets of a metric space 

A metric space is a pair (S,d) consisting of a space S and a distance function d. 
The specification of d is usually omitted if it is irrelevant to the discussion or 
obvious from the context. The distance function for the product of finitely many 
metric spaces is to be understood to be defined by the Euclidean formula: 
square root of the sum of squared distances for the factor spaces. 

Every closed set in a metric space S is a countable intersection of open sets: 
1F c Go. In fact if A is closed, the set (s E S: d(s,A) < lin} is open and 

~ 

(4.1) A = r\ (s E S: d(s,A) < lin}. 



14 Measure Theory 

Complementation yields the fact that 0 c JFa , that is, every open set in a 
metric space is a countable union of closed sets. These two inclusions imply 
first, that a(O) => JF and therefore a(O) => a(lF), and next that a(lF) => 0 and 
therefore that O"(JF) => 0"(0). Hence O"(JF) = a(O). 

Definition. The class B(S) of Borel subsets of a metric space S is the cr 
algebra a(O) (= a(lF». 

In dealing with a measurable space (S,S) for which S is a metric space it will 
always be assumed, unless stated otherwise, that S=B(S). The reasoning that 
led to the equality a(JF) = a(O) for a metric space S shows that if S is so large 
a class of Borel subsets of S that a(S) includes JF or 0, then a(S) = B(S). For 
example B(R) is generated by the class of open intervals, also by the class of 
closed intervals, also by the class of right semiclosed intervals, also by the class 
of semi-infinite intervals, and so on. 

Relativization of Borel sets. If A is a subset of a metric space (S,d), if A is 
metrized by restricting d to pairs of points of A, and if Ao c A, then Ao E B(A) if 
and only if Ao is the intersection with A of a set in B(S), that is, in the obvious 
notation, B(A) = B(S)nA. In fact the class of sets in B(A) that are intersections 
with A of a set in B(S) is a a algebra relative to A and includes the subsets of A 
that are open relative to A, because these are the intersections with A of open 
subsets of S. Hence B(A) c B(S)nA. In the other direction, B(S)nA c B(A) 
because the class of Borel subsets of S meeting A in a Borel set relative to A 
includes the open subsets of S, is a cr algebra, and is therefore B(S). 

In particular, if A is a Borel subset of S, then a subset of A is Borel relative to 
A if and only if it is Borel relative to S. Thus, for example, a subset of a line in 
R2 is a Borel set relative to the line if and only if the subset is a Borel set 
relative to the plane. 

5. Products of set algebras 

For i = l, ... ,n, let Si be an algebra of subsets of a space Si. Let S:::;S'IX"'X Sn be 
the product of these spaces. In the following, "product set" will always mean a 
set in the class SIX"'X Sn of product sets Alx"'xAn with Ai in Si. Observe that 
the intersection of two product sets is a product set, and that the complement of 
a product set is a finite disjunct union of product sets. It follows that the class of 
finite unions of product sets is an algebra, necessarily ao(Slx"'x Sn). 

In particular, if each space Si is R and if each algebra Si is the algebra of 
finite unions of right semiclosed intervals of R, then ao(Slx, ··x Sn) is the 
algebra of finite unions of right semiclosed intervals of RN. The a algebra B(RN) 
is generated by this algebra, also generated by the class of N fold products of the 
one-dimensional Borel sets, also by the class of N fold products of classes that 
generate B(R), for example, by the class of N-fold products of open intervals of 
R, or of right semiclosed intervals of R, and so on. 
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Returning to general factor spaces S], ... ,Sn, observe that 

(5.1) 

In fact, trivially, the right side is at least as large as the left. Conversely it is 
sufficient to show that the left side is at least as large as the right by showing 
that it includes cr(SI)x"'Xa(Sn)' Fix Ai in Si for all i > 1. The class of sets AI in 
cr(S I) for which the product set A IX' "X'\. n is in cr(S 1 x·"x S n) includes S 10 is a cr 
algebra, and is therefore cr(Sd. Thus the left side of (5.1) includes 
cr(S I )xSzx'''Sw Go on by induction to finish the proof of the stated inclusion. 

Cross sections of multidimensional sets. If A is in cr(SIX"'X Sn), denote by 
AI(s) the section of A with first coordinate s: 

This set is in the set cr algebra of subsets of SZX"'XSn generated by Szx'''~ n 
because the class of sets A for which this is true contains SIX"'~n and is a cr 
algebra of subsets of S. The corresponding assertions are true if more than one 
coordinate is fixed. 

Right semiclosed intervals in spaces of infinite dimensionality. Section 2, 
Example (a), can be extended to an arbitrary infinite (not necessarily countable) 
dimensionality. For every point i of an arbitrary index set I, let Si be a copy of 
R and let Si be the algebra of finite unions of right semiclosed intervals of Sj. 
Define the space S as the class of all functions from I into R. Let Xi be the ith 
coordinate function of S. If it , ... ,in are index points and if A is a right semi closed 
interval of Rn, the set {(XiI , ... ,Xin ) E A} is an n-dimensional right semiclosed 
interval of S. The algebra of finite unions of all such finite dimensional intervals 
is the infinite dimensional version of the algebra of finite unions of right 
semiclosed intervals of RN. 

6. Monotone classes of sets 

Monotone class definition. A class S of subsets of a space S is a monotone 
class if S contains the limit of every monotone sequence of its sets. 

To each class S of subsets of a space corresponds a smallest monotone class 
M(S) containing S (cf. the corresponding proof for algebras in Section 3). The 
class S generates M(S). 

Theorem. Let S be a class of subsets of a space. Suppose that M(S) includes 
S and includes either the finite unions or the finite intersections of members of 
S. Then M(S) = cr(S). In particular, M(S) = a(S) ifS is an algebra. 
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Proof. Under the hypotheses of the theorem, the class M(S) contains the 
complements of its sets, because the class of sets in M(S) whose complements 
are in M(S) is a monotone class containing S and therefore must be M(S). To 
prove that M(S) is closed under finite unions if M(S) contains the finite unions 
of sets in S, let B be in S. The class rB of sets A in M(S) for which AuB is in 
M(S), contains S, and is a monotone class. Hence rB= M(S). Furthermore, the 
class of sets in M(S), whose union with each set in M(S) is in M(S), was just 
proved to contain S, and is a monotone class, so is M(S). Thus M(S) is an 
algebra, necessarily a 0' algebra because of the monotone class property, and 
therefore M(S) = O'(S). This conclusion follows in the same way if it is 
supposed that M(S) contains the finite intersections rather than finite unions of 
members of S. 

Generation of the Borel sets by monotone sequential limits. According to 
Theorem 6, the class of Borel sets of a metric space S is the monotone class 
generated by the open sets, equivalently the monotone class generated by the 
closed sets. 

The classes in the inclusion relations 

(6.1) 

are all Borel sets but in most applications the union r of these classes does not 
contain all the Borel sets. 

Example: S = R. In this case it can be shown that the monotone sequence 
(6.1) is strictly monotone and that r is a strict subclass of B(R). Moreover, it 
can be shown that the monotone sequence 

(6.2) r c ro c roo c roao c ... 

is strictly monotone and that the union of these classes is a strict subclass of 
B(R). This procedure can be continued (transfinite induction) to obtain a well­
ordered uncountable strictly increasing succession of classes of Borel sets 
containing all the Borel sets of R. (A corresponding approach starts with the 
sequence 

(6.3) IF c lFa c lFao c lFaoo c ... 

instead of (6.1).) This analysis of Borel sets will not be used in this book. 



III 
Set Functions 

The point of this book is the study of countably additive set functions, and the 
preceding chapters have set up the appropriate context by providing an 
introductory analysis of classes of subsets of an abstract space. This chapter 
introduces the set functions to be studied. 

1. Set function definitions 

Let A be a function from some class § of subsets of a space S into R. 

(a) A is monotone increasing [decreasing] if A(A) ~ A(B) [A(A) ~ A(B)], 
whenever AcB and both sets are in §. 

In (b) and (c) it is supposed that 0 E § and that A(0) = o. 

(b) A is finitely [countably] subadditive if 

(Ll) A(UA.) ~ L A(A.) 

whenever A. is a finite [infinite] sequence of sets, that, together with their union, 
are in §, and -00 and +00 do not both appear in the summands. 

(c) A is finitely [countably] additive if (Ll) is true with equality whenever A. is 
a disjunct finite [infinite] sequence of sets that, together with their union, are in 
§, and -00 and +00 do not both appear in the summands. 

In checking finite additivity or subadditivity, it is sufficient to consider 
unions of only two sets. 

Measures and signed measures. A countably additive set function from an 
algebra into either [-00,+00) or (-00,+00] is a signed measure, a measure if the 
range space is R+. If A is a measure defined on a cr algebra § of subsets of S, 
the triple (S,S,A) is a measure space, and the sets in S are measurable, or A 
measurable if it is necessary to identify the measure. In particular, if A(S)=1, a 
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measure space is a probability space, and A is a probability measure. In 
probability contexts, the measurable sets are sometimes called events. 

A measure space S and its measure A are finite if A(S) < +00, and are cr finite 
if S is a countable union of sets of finite measure. In view of the representation 
11(1.1) of a countable union as a disjunct countable union, it is no further 
restriction on the condition for cr finiteness to demand that the union be a dis­
junct union. 

Null sets, carriers, and supports. A measurable set of measure 0 is null or, 
more specifically, A null. An assertion about points of a measure space holds 
almost surely, or almost everywhere, on the space, if true up to a null set, in the 
sense that the set where the assertion is false is a null set. A subset of a null set 
may not be measurable and therefore may not be a null set but (see Section 
IV.l) the domain of definition of a measure can be extended to remove this 
somewhat awkward complication. A measure is carried by a set if the set is 
measurable and has a null complement. 

Borel measures. A Borel measure is a measure A defined on the class of 
Borel subsets of a metric space. If the space is separable there is a largest open A 
null set, the union of the A null balls having centers at the points of a countable 
dense set and having rational radii. The complement of this open set is the 
smallest closed carrier of A. This uniquely defined closed carrier is the closed 
support of A. 

Monotonicity and subadditivity. Finite additivity of a positive set function 
A, defined on a set algebra S, implies that A is monotone increasing, because if 
A and B are sets in S and if A c B, 

(l.2) A(B) = A(A) + A(B-A) ~ A(A). 

Furthermore this set function A is finitely subadditive, because if sets C and D 
are in S, 

(1.3) A( CuD) = A(C) + A(D-C) 5,. A(C) + A(D). 

A slight extension of the argument, applying equality II( 1.1), shows that a 
measure on a set algebra is countably subadditive. 

Countable additivity. The added condition of countable additivity imposed 
on a finite valued finitely additive set function A, defined on an algebra S, can 
be given the following equivalent forms. 

(a) For a disjunct sequence A. of sets in S, with union in S, (Ll) is true with 
equality. 
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(b) For an increasing sequence B. of sets in S with limit B in S, lim /J..B.) = 
/J..B). 

(c) For a decreasing sequence B. of sets in S, with limit 0, lim /J..B.) = o. 

For example, to see that (a) implies (b), write B as a union: 

B = B1uU";'(Bn+1-Bn). 

Conversely (b) implies (a) because a countable UnIon is the limit of the 
monotone increasing sequence of partial unions. 

The added condition of countable additivity imposed on a finitely additive, 
not necessarily finite valued positive set function, defined on an algebra S, can 
be given the following equi valent forms: (a) and (b) as above, but (c) is 
replaced by 

(c') For a decreasing sequence B. of sets in S with limit 0, lim /J..B.) = 0 if 
/J..B 1) < +00. 

2. Extension of a finitely additive set function 

The following lemma will be useful in the construction of product measures on 
product spaces. The properties of S 0 in the lemma are modeled on the properties 
of classes of product subsets of the product of a finite number of spaces. 

Lemma. Let So be a collection of subsets of a space S. Suppose that the 
intersection of two (and therefore every finite number) of sets in So is in So, and 
suppose that the complement of a set in So is a finite disjunct union of sets in So, 
so that O"o(So) is the class of finite unions of sets in So. Let Ao be a finitely 
additive set function on So, with values in either (-00,+00] or [-00,+00). There is 
then a unique finitely additive extension of Ao to O"o(So). 

Proof. If A is a finite union of sets in So, A can be expressed as a finite disjunct 
union of sets in So, say A = UA •. Define A.(A) = L Ao(A.). To prove that A as so 
defined is independent of the choice of representation of A as a finite disjunct 
union of sets in So, suppose that UB. is another finite disjunct union of sets in 
So with union A. Then 

and therefore 

as was to be proved. Thus AO has been given the required extension, obviously 
finitely additive. 
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3. Products of set functions 

The following theorem will be useful, for example, in developing area in two 
dimensions from length in one dimension. 

Theorem. For i=I, ... ,n, let Si be an algebra of subsets of a space Si, and 
define So = Sj X· ··x Sn, S=O"o(So). If'Aq is a finitely additive positive set function 
on Si, for i = 1, ... ,n, then there is a finitely additive set function A on S for 
which 

(3.1) 
n 

ACAjx"'xA n) = n A.(A.) (Ai E Sj, i = 1, ... ,n). 
j 

Proof. Define A by (3.1) on S. According to Section 11.5, each set in S can be 
expressed as a finite disjunct union of sets in So. Define A on such a union by 
additivity. The only question is whether this definition gives a value 
independent of the representation of the given set as a disjunct product set 
union. In proving the desired independence, it is sufficient, according to Lemma 
2, to prove this independence for product set unions in So. The proof is by 
induction. The independence is trivial when n=l. If n > 1, suppose independence 
has been proved for n-l, and suppose that 

(3.2) 

where Bj E Sjx"'~n-j, Ci E Sn for i=l, ... ,k and the union is disjunct. According 
to the induction hypothesis, there is a finitely additive set function V on 
O"o(Sj x···~ n-l) satisfying 

n-j 
(3.3) v(Djx"'><D n_j) = n '}..(D.), (Dj E Sj, i=l, ... ,n-l). 

j 

It is to be proved that 

(3.4) 

According to Section 11.3, there are 2k pairwise disjoint sets in Sn, with the 
property that each set Ci is a disjunct union of some of these sets. If in each term 
BixCi in (3.2), the set Ci is expressed in terms of these sets, BixCi is thereby 
expanded into a disjunct union of product sets with common first factor set Bi. 
The ith summand in (3.4) is thereby expanded into several summands that have 
sum V (Bi)An (Ci), because An is additive. If this expansion is carried through for 
all i, the value of the sum in (3.4) is not changed. Suppose then that this 
expansion has already been carried through, yielding a union in (3.2) in which 
two sets Cr and Cs are either identical or nonintersecting. If identical, the terms 
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BrxCn BsxCs can be combined into a single product set (BruBs)xCr. When the 
terms in (3.2) are combined in this way, the sum in (304) is unchanged, because 
v is additive. After having made these changes, C1,C2, ..• are pairwise disjoint 
and their union must be An, whereas Bi must be A IX"'xA n-1 for all i. The right 
side of (3.2) has become uA1x···xAn_1xC., and (304) is now trivial. 

4. Heuristics on cr algebras and integration 

Let /J, .. Jn be pairwise disjoint intervals of R with union an interval I. Let/be a 
function from / into R, with value aj on Ij. The Riemann integral of / on / is Lj 
aj A(Aj), where A(Aj) is the absolute value of the difference between the 
coordinates of the endpoints of Aj- Riemann integration theory on R is based on 
this integration of functions constant on intervals. In fact the Darboux upper and 
lower sums for a function g (see Section VI.20), which approximate the 
Riemann integral of g, are the Riemann integrals of functions constant on 
intervals. Integration in the context of measure theory involves analogous sums, 
but is based not on functions constant on intervals, but on functions constant on 
sets of some cr algebra of sets. The details of this integration will be given later, 
but in this chapter preliminary definitions of integrals will be given in special 
contexts to clarify the general case. 

5. Measures and integrals on a countable space 

Suppose that S is a countable space, written as a finite or infinite sequence s., 
and define 3=2S. A measure A on 3 is determined by its values on singletons: if 
A.( { s j} )=Pi then 

A.(A) = L Pi· 
siEA 

Observe that if Lp. = +00, but if each summand is finite, the sequence B. with 
Bn= {sn,sn+l>"'} is a decreasing sequence of sets with limit 0, even though 
A.(Bn) = +00 for all n. This example justifies the Section 1 (c') finiteness 
condition. 

If / is a function from this countable space S into R, it is natural to define the 
integral of/ on S as Lf(s.)p. if the sum converges absolutely, and this in fact is a 
special case of the final definition of an integral to be given in Section VIA. 

Adaptation of integrands to cr algebras. Let S be the finite or infinite se­
quence s. with at least two points, define 3 as the cr algebra of those subsets of S 
that contain either both or neither of the two points Sl, S2, and let P2,P3, ... be 
positive but not necessarily finite numbers. Define A.( {Sj}) =Pj for j > 2, and 
define A on the two-point set {SI>S2} as P2' These definitions, together with 
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countable additivity, determine A. on S. If/is a function from S into R+, and if 
/(sl)#(s2), there is no natural definition of the integral of/ with respect to A. on 
S, because A. is not defined on the singletons {sJl and {S2}' The difficulty is that, 
as far as S is concerned, the point pair {SI,Sz} is an indivisible atom of the 
measure space. Thus integration theory in this context is forced to consider only 
those integrands/with/(SI)=/(S2); for such a function, the natural definition of 
the integral is 

(5.1) 

when the series converges absolutely. The point is that an integrand must 
assume each of its values on a measurable set. This fact leads to the general 
concept of a function adapted to the class of measurable sets, a measurable 
function, to be defined and discussed in Section V.I. At the present stage the 
following definition is adequate. 

Measurability definition for a function with a countable range space. Let 
(S',2S') be a countable measurable space, and consider functions from a 
measurable space (S, S) into S'. Such a function y is measurable if it assumes 
each of its values on a measurable set, that is, if a' is a point of S ' then {y = a'} E 

S, equivalently, {y E A'} E S whenever A' is a subset of S '. The function/in the 
preceding paragraph, from S into R+, is measurable if and only if/(SI)=f(s2)' 

If (S,S) is provided with a probability measure, a measurable function is a 
random variable in probability terminology. 

6. Independence and conditional probability (preliminary 
discussion) 

Let (S,S,P) be an arbitrary probability space. All subsets of S considered below 
are in S, that is, are measurable. 

Independence of sets. Sets AI, ... .An in S are mutually independent if 

(6.1) 

for everyone of the 2n choices of the n-tuple Bl> ... ,Bn, where each set Bj is 
either Aj or Aj. 

This mutual independence implies that for each choice of B., these sets are 
also mutually independent. Moreover the sets of any subcollection of A. are 
mutually independent. (For example, write (6.1) with Bn replaced by its 
complement, and then add the new equation to the original one, to find that 
AI> ... ,An-1 are mutually independent.) In particular, sets Al and A2 are mutually 
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independent if P{A\nA2 } = P{A\ }P{A2 } because in this special case trivial eval­
uations show that the pairs (A \>..12), (A \ ,A2), and (A \ ,.42) also satisfy this product 
relation. A null set is independent of every set, as is also the complement of a 
null set. 

Infinitely many sets are mutually independent if the sets of every finite 
subcollection are mutually independent. 

Mutual independence of a algebras. The a algebras of a collection of a 
algebras of measurable sets are mutually independent if, whenever a set is 
chosen from each a algebra, these sets are mutually independent. Let SJ, ... ,s4 
be mutually independent a algebras of measurable sets. Then a(S \ ,S2) and 
a(S 3,§4) are mutually independent a algebras. To see this, let B be the 
intersection of a set in S3 with one in S4. The class r of sets in a(S\ ,S2) 
independent of B is a monotone class closed under finite disjunct unions and 
complementation, and r includes every intersection of a set in S\ with one in~ 
Since finite unions of such intersections can be written as disjunct unions of the 
same type, and in fact constitute a set algebra, r must be a(S\,S2). Thus each set 
in a(S\ ,S2) is independent of B. An application to a(S3,s4) of the reasoning just 
used shows that every set in a(S3,S4) is independent of every set in a(S\ ,S2), as 
was to be proved. More generally, an obvious further elaboration of this proof 
shows that if {Si, i EI} is a family of mutually independent a algebras, and if 
{la, a E =:} are disjoint subsets of the index set!, then {a{ Si, iE Ia}, a E =:} 
are mutually independent a algebras. 

Independence of random variables. In particular in this discussion let S' be 
a countable space, and consider random variables (= measurable functions) from 
S into S' as defined in Section 5. The random variables of a collection of these 
random variables are mutually independent if, whenever y\> ... ,Yn are finitely 
many random variables in the collection and a\ ', ... ,an' are points of S " the sets 
{y\=a\ '}, ... ,{Yn=an'} are mutually independent. This condition implies that if 
A\', ... An' are subsets of S' the sets {y\ E A\'}, ... ,{Yn E An'} are mutually 
independent. The general definition that underlies these special cases (keeping 
S' countable at this stage, however) is the following. If y. is any collection of 
random variables, measurable sets of the form {Yt E A'}, with Yt in the 
collection, and A' a subset of S', generate a a algebra, denoted by a(y.), and all 
questions of independence of random variables are referred to the corresponding 
a algebras. Thus two random variables Y and z are mutually independent if and 
only if a(y) and a(z) are mutually independent a algebras; similarly two 
families {y.} and {Zo} of random variables are mutually independent if and only 
if a(y.) and a(z.) are independent a algebras, and so on. In particular, the sets of 
a collection of measurable sets are mutually independent if and only if their 
indicator functions are mutually independent. 

Independent events. Recall that in probability applications, measurable sets 
are sometimes called "events." Nonmathematical events that are independent of 



24 Measure Theory 

each other in a nonmathematical sense correspond in mathematical models to 
mathematically independent measurable sets. For example, in the coin tossing 
analysis to be given in Section 9, the events heads on the first toss and tails on 
the third toss are thought of as independent real-world events, and the 
corresponding measurable sets in the mathematical model are mathematically 
independent. 

Conditional probability. Let (S,S,P) be a probability space, and let A be a 
measurable nonnull set. A new probability measure B-+ p{BIA} (read "the 
conditional probability of B given A") is defined by 

(6.2) p{BIA} = P{BnA}/P{A}. 

In simple contexts one can interpret such conditional probabilities for fixed A as 
defining a new context, based on replacing S by A, replacing S by the class of 
measurable subsets of A, and replacing P by the restriction of P to this class, 
normalized to make the restriction a probability measure of sets B. However, in 
most contexts it is preferable to keep Sand S, so that (6.2) defines a new 
probability measure on (S,S), carried by A. Observe that sets A and Bare 
mutually independent if and only if either A is null, or A is not null and 
p{BIA}=P{B}. The innocent looking conditional probability concept, when 
formulated in a more general context (see Section XI.2), has had a profound 
influence and unexpected mathematical applications, both inside and outside 
probability theory. 

Expectation and conditional expectation. If S={SI ,S2, ... } is a countable 
space, and if a probability measure is defined on the 0' algebra 2S by setting 
P{Si }=Pi with Pi ~ 0 and 'fp. = 1, the integral of a numerically valued function! 
on S, defined in Section 5, is commonly written E{f} by probabilists (read 
"expectation off"). If this expectation exists, and if P{A}>O, the integral of! 
with respect to the conditional measure P {·IA} is written E {f IA} (read 
"expectation of! given A"). 

7. Dependence examples 

Let SI be the set 1, ... ,N of integers, define S=S\m as the space of m-tuples of 
points of SI> and let Xk be the kth coordinate function of S. The following lists 
several ways of assigning each singleton of S a measure value, in order to define 
a probability measure P on 2S. 

(a) Let p(k) be a measure on the kth factor space, say p(k) {j} = q~k), where 

qt) > 0 and L cik) = 1, and assign to the singleton V1, ... jm) of S t6e measure 
Ilk q}~). For each pair k, j, the subset {XFj} of S contains Nm-\ points and its 
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probability is defined by 

(7.1) 

The sets {xl=}d, ... ,{xm=}m} are mutually independent subsets of S for every 
choice of }b ... Jm, and corresponding to this fact, the measure P on S is what will 
be defined in Section IV.II as the product measure of the measures PJ, ... ,Pm. 
As the following examples illustrate, product measures are not the only way to 
define measures on product spaces. 

(b) Transition probabilities and stochastic matrices. A matrix of positive ele­
ments with row sums 1 is a stochastic matrix. One kind of random variable 
dependence, Markov dependence, is characterized by the fact that in a sequence 
of random variables, probabilities for the nth, conditioned by the values of all 
the preceding random variables, actually depend only on the last preceding 
random variable, not on those farther back. More precisely, in the discrete 
context of (a), choose N positive numbers po, with sum I, as initial probabilities, 
setting 

(7.2) P{xl=i} = Pi, i = I, ... ,N. 

Next choose an NxN stochastic matrix (p~~ », the matrix of first step transition 
probabilities, that is, define {xJ,~} probahllities by 

(7.3) 

Observe that summing over j in (7.3) yields (7.2) and that 

(7.4) P{ '1 '} (I) X2=] Xl=Z = P ij 

when Pi> O. If m = 2, (7.3) provides the most general probability measure on S. 
If m > 2, choose another stochastic matrix (pW) as matrix of second step 
probabilities, setting ] 

(7.5) P{x -I' X -::; X -k} -p'p (l)p(2) 
1-, 2-J' 3- - 1 ij }k' 

Observe that summing over k in (7.5) yields (7.3), and observe the Markov 
property of the transition probabilities: 

(7.6) p{x3=klxl=i,X2=J} = p{x3=klx2=j} = p jf 
when P{xl=i, X2=}} > O. The point of the Markov property is that the first 
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conditional probability in (7.6) does not depend on i. If m> 3, go on with 

further transition matrices. When m > 2, this procedure does not furnish the 

most general probability measure on S. In fact to obtain the most general 

probability measure when m = 3, replace the transition matrix ~~) by a 

stochastic matrix (Pi,jk) (stochastic matrix in j,k for each i), which takes into 

account the value two steps back, thereby replacing (7.5) by 

(7.7) P{X]=i,X2=j,X3=k} =Pi p~) Pi,jk· 

Summing over k in (7.7) yields (7.3). Equation (7.6) is replaced by 

(7.8) 

when P{x]=i, X2=j} > O. The Markov property is lost unless Pi,jk does not 
depend on i .. This property will be defined in a more general context in Section 
XI.4. 

Although the preceding discussion was based on random variables that were 
the coordinate functions of a product space, this special context was irrelevant. 
The important point was that Equations (7.2), (7.3), and so on were satisfied on 
whatever probability space the random variables x. were defined. It is a typical 
feature of the special point of view of probability theory in measure theory that 
the probability relations between random variables define the context; the space 
on which the random variables are defined is irrelevant. 

8. Inferior and superior limits of sequences of 
measurable sets 

The combination of parts (a) and (c) of the following theorem is the "Borel­
Cantelli Theorem." It is a historical accident that part (a) is usually stated only 
in probabilistic contexts. 

Theorem. Let A. be a sequence oj measurable sets oj a measure space 
(S,S,"-). 

(a) (Cantelli) If L "-(A.) < +00, then 

(8.1) "-{lim sup A.} = o. 

(b) "-{ lim inf A.} ~ lim inf "-CA.) ~ lim sup "-CA.), and, if "- is a finite measure, 
the last term is at most "-{ lim sup A.}. 

(c) (Borel) IJ(S,S,,,-) is a probability space, and if A. is a sequence oJmutually 
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independent measurable sets, then the condition L A.(A.) = +00 implies that 
A{lim sup A.} = 1, and the condition L A.(A.) < +00 implies that A{lim sup A.} 

= o. 

Probability context. In the colorful language of probability, in which 
measurable sets are "events," (a) states for probability contexts a condition that 
(almost surely) an event occurs only finitely often and (c) states that, in the 
independence case, if the condition is not satisfied, the event is almost sure to 
occur infinitely often. Observe, however, that it has not yet been shown that (c) 
is a useful result, because no nontrivial example of an infinite sequence of 
mutually independent measurable sets has been exhibited. The set sequence 
0,0, ... is an uninteresting trivial example that shows that (c) is not vacuous! A 
nontrivial example inspired by coin tossing and number theory will be exhibited 
in Section 9, but not justified until Section IV.14. 

Proof. The definition of superior limit of a sequence of sets implies that, for all 
k, 

(8.2) 

from which (a) is immediate. Similarly, (b) follows directly from the definitions 
of the inferior and superior limits of a sequence of sets. (The first inequality in 
(b) is a special case of Fatou's integration limit inequality, which will be proved 
in Section VI.8.) The second part of (c) is a special case of (a) but the following 
direct proof of (c) does not use (a). The probability thal,the event An does not 
occur for n '?k, that is, the measure of the intersection (l k A., is 

and the probability that the event occurs only finitely often is therefore 

(8.3) 

Part (c) follows from the theory of infinite products: 
(i) this infinite product converges if and only ifLA(A.) < +00; 
(ii) if the product converges, the limit in (8.3) is 1; 
(iii) if the product diverges, this limit is O. 

9. Mathematical counterparts of coin tossing 

Coin tossing is not mathematics. A genuine human being of some sex, color, 
creed, and national origin tosses a piece of metal, giving it certain initial 
conditions and thereafter letting nature take its course (for which Newton 
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devised a mathematical model). The coin comes to rest with either heads or tails 
showing, and the tosser, enslaved by mathematical notation, registers Xj as the 
result of the jth toss, setting Xj = 1 for heads, Xj = ° for tails. She or he observes 
that (xl+···+xm)/m is usually close to 112 when mis large, and, more generally, 
observes that when m is large, and (l is a specified n-tuple of 1 's and D's, 

(number of times (l appears in m successive n-tuples of tosses)/m 

is usually close to 2-n. The words "when m is large" suggest that, in a 
mathematical model of these observations, there is a limit theorem. In fact a 
Bernoulli proved such a limit theorem of course without the measure theoretic 
mathematics now available (which some old-fashioned probabilists are 
convinced only beclouds the context), about three hundred years ago. These 
observations suggest that in any mathematical model for coin tossing, whatever 
corresponds to a specified succession of n heads and tails at specified times 
should be assigned the measure 2-11. 

Desert now the interesting but imprecise real world in favor of the duller but 
more precise mathematical world, and construct n functions Xl, •.. ,Xn on a 
probability measure space, imposing the following conditions: Xj is to have only 
two possible values ° and 1; the measure of the set on which these functions 
take on any specified n-tuple of D's and 1 's is 2-n . A trivial computation 
(addition) shows that then, for example, for each j, the measure of the set on 
which Xj = 1 is 112. There are many ways such a mathematical context can be 
constructed. Two important ones will be exhibited in this section. 

First mathematical coin tossing model. This model will look simpler and 
be more interesting after Lebesgue measure is defined in Section IV.8. Every 
number s in the interval (0,1] of Rhas a dyadic expansion s = .XlX2, .•• , that is, 

(9.1) 

Here Xj is a function of s, with the possible values 1 and 0, made single valued 
by choosing the representation of s ending in a sequence of 1 's rather than D's at 
the dyadic points. Thus {Xl=O} is the interval (0,112], and, more generally, if 
values are assigned to Xl , ... ,xn' these functions will have those values on a right 
semiclosed interval of length 2-n. If n is fixed, and if this length is assigned as 
measure to each of these intervals, additivity determines the measures assigned 
to the unions of these intervals. In this way, for each value of n, a probability 
measure space (S,Sn,Pn) has been defined, consisting of the interval S = (0,1], 
together with the (J algebra Sn of unions of right semiclosed intervals of the 
form (j-1)2-n,j2-n] for j = 1, ... ,2n, with measure Pn given by ordinary length. 
The functions Xl> ••• ,Xn have the required properties and are mutually 
independent, corresponding to the notion of nonmathematical independence in 
actual coin tossing. Statements about the results of actual coin tossing can be 
translated into statements about this dyadic representation. The measures P. are 
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mutually consistent, in the sense that if say m < n, then Sm c Sn and Pm=Pn on 
Sm. (This equality is trivial when n=m+ 1, and induction yields the general case.) 
Define P 00, an additive set function on the algebra Soo =uS. of finite unions of 
dyadic right semiclosed subintervals of (0,1], by assigning its length to each 
subinterval, so thatPoo=Pm on Sm. The set functionP oo is finitely additive be­
cause each measure Pn is additive. (Actually Poo is countably additive but the 
proof is deferred until Section IV.14.) The space (S,Soo,Poo) is not a probability 
space, because Soo is not a a algebra. Such probabilities as 

(9.2) 

can be evaluated for all n, and the central limit theorem, which describes the 
limit of this probability when n~oo, can be proved, but probabilities of the two 
sets 

(9.3) u{x. = I}, 

are not defined because these sets are not in Soo. The sequence {x.=l} of sets is 
not a sequence of mutually independent sets in a probability space because S 00 

is not a a algebra. 
In nonmathematical probability language, the first event in (9.3) is that in an 

infinite sequence of tosses, heads occurs at least once; the second is that, in 
such an infinite sequence, 

(number of heads in n tosses )/n 

has limit 112. Although neither of these events is meaningful in actual coin 
tossing in the real world, because infinitely many tosses cannot be performed, a 
further development of the mathematical model makes the sets in (9.3) 
measurable, with probability I for both. More precisely, Lebesgue measure, 
developed in Section IV.9, makes it possible to extend Poo to a probability 
measure P on S=a(Soo). The Borel-Cantelli theorem can then be applied to the 
probability space (S,S,P) to obtain 1 for the probability that heads occurs 
infinitely often. The strong law of large numbers in Section X1.19, when 
applied to this probability space, yields 1 for the probability of the second set in 
(9.3), but far more elementary proofs yield this special result. 

In 1909 Borel stressed the significance of such mathematical results in an 
influential paper (whose proofs were, however, defective even for that era). 

Second mathematical coin tossing model. This model is more direct than 
the first. The notation used corresponds to that in the first model. In this model, 
let Sn be the space of the 2n n-tuples of O's and 1 's, and determine the discrete 
probability measure Pn on the subsets of Sn by defining the measure of each sin­
gleton as 2-n. The probability measure space (Sn,2Sn ,Pn) is a mathematical 
model for tossing a coin n times. Each succession of n tosses corresponds to a 



30 Measure Theory 

point of this model, whereas the succession of tosses corresponded to a dyadic 
interval in the first model. The space Sn is the n-fold product space SIn, and the 
measure Pn is the corresponding n-fold product measure, a simple special case 
of the set functions considered in Theorem 3. The jth coordinate function x(n) of 
Sn is the measurable function (alias random variable) corresponding (0 the 
result of the jth toss. It is perhaps a bit more obvious in this model than in the 
first that probability calculations in this simple context are counting problems: 
how many points of Sn have the property whose probability is to be calculated? 
The required probability is the number of those points multiplied by 2-n . In 
order to define a model adapted simultaneously to all values of n, consider the 
space S of infinite sequences of O's and I's. Let X) be the jth coordinate function 
of S, and define an additive set function P 00 by setting, for each value of n, 2-n 

as the probability of the subset of S whose first n coordinates form a specified n­
tuple of O's and I's. The finite unions of these sets form an algebra Soo, and 
probability is defined on this algebra by additivity. Note the parallelism between 
this model and the first one, which was based on dyadic expansions. This model 
has the same defect as the first one, in that probabilities like those in (9.2) are 
accessible, but not those in (9.3). In both models, in order to go on, an additive 
function on a set algebra must be extended to a measure on the generated cr 
algebra. This will be done in Chapter IV. 

Finally, it is important to remember to keep mathematics and real life apart. 
It is an interesting facet of human behavior that, even when actual coin tossing 
is analyzed, the analysis has almost always been philosophical, ignoring the 
laws of mechanics, which quite unphilosophically govern the motion of real­
world coins, under initial conditions imposed by real-world humans, and 
thereafter subject to the laws of motion of a real body falling under the influence 
of real gravity. The point is that the impossible-to-make-precise description of 
the actual results of coin tossing has a precise mathematical counterpart, in 
which mathematical theorems can be proved, some of which suggest real-world 
observational results. 

10. Setwise convergence of measure sequences 

Let (S,S) be a measurable space, and let "J... be a sequence of measures defined 
on S. If lim ')...(A) = ')..(A) exists for every measurable set A, then')... converges 
setwise to "J... Under certain added hypotheses stated in the following theorem, 
the limit set function "J.. is a measure. Part (b) is generalized to signed measures 
in Section IX.Ii, using a quite different type of proof. 

Theorem. Let (S,S) be a measurable space, and let "J... be a sequence of 
measures on S, converging setwise to "J... Then "J.. is a measure if either of the 
following conditions is satisfied. 

(a) ')... is an increasing sequence. 
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(b) (Vitali-Hahn-Saks) A isfinite valued. 

Proof of (a). The limit set function A is obviously finitely additive. If A. is a 
disjunct sequence of measurable sets, with union A, monotonicity and finite 
additivity of A imply 

(10.1) 

for all n, and therefore 

(10.2) A(A) ~ L A,(A.). 

On the other hand, if c < A,(A), and if k is sufficiently large, 

(10.3) 

Therefore (10.2) is also true with the inequality reversed, that is, A is a measure. 

Proof of (b). The limit set function is again obviously finitely additive. If A is 
not countably additive, there is a decreasing sequence A. of measurable sets, 
with empty intersection, but with lim A,(A.) = £ > O. Define al = ~l = 1; if aj 
and ~j have been defined for j::; n choose an+l so large that an+l > an and that 

(lOA) +00 > Aa CAA) ~ 7E18, 
n+l I-'n 

and then choose ~n+l so large that ~n+l > ~n and that 

(10.5) Aa (AA + ) ::; £/8. 
n+! I-'n ! 

Define Bn = AA -AA . Then Aa (Bn) ~ 3E14, and it follows that, for k ~ 1, 
I-'n I-'n+! n+! 

(10.6) Aa/U{Bn:neven, n~}) ~ 3E14 (jodd,j>k). 

Hence 

(10.7) A( U{Bn: n even, n~}) ~ 3E14 (k ~ 1). 

Similarly, (l0.7) is true if the union is over odd values of n. Add these 
inequalities for even and odd values to obtain, since B. is a disjunct sequence, 

(10.8) 

for all k. This inequality contradicts the definition of £ and thereby implies the 
truth of (b). 
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Observation. A glance at the proof of (b) shows that what has been proved, 
in order to prove countable additivity of A, is that if A.. is a sequence of 
measures, with finite valued setwise limit A., then lim A(A.) = 0 implies that lim 
A..(A.) = O. This result expresses a kind of uniformity of the setwise 
convergence, to be exploited in the proof of Theorem IX.1 O. 

11. Outer measure 

Outer measures, set functions for which the countable additivity measure 
hypothesis is weakened to an inequality, are fundamental in the analysis and 
construction of measures. 

Definition. An outer measure on a space S is a function A* from 2S into R+ 
satisfying the following conditions: 

(a) A \0) = 0; 
(b) A* is monotone increasing; 
(c) ,,* is countably subadditive. 

A set for which A* vanishes is null, or, more specifically, A* null. Condition 
(b) implies that a subset of a A * null set is also A * null, and condition (c) implies 
that a countable union of A * null sets is A * null. 

Observe that if A * is an outer measure, and if c is a positive constant, the set 
function A * I\C is also an outer measure. It will be useful later to modify a 
possibly infinite valued outer measure in this way. 

Generation of an outer measure. The most common way of obtaining an 
outer measure is the following. Let A be an arbitrary collection of subsets of a 
space S, containing 0, and let $ be a function from A into R+ with infimum O. If 
B is a subset of S, define "*(B) = +00 if B cannot be covered by a countable 
union of members of A, and otherwise define A * (B) by 

(11.1 ) A*(B) = inf{ L $(B.): Be uB., BnE A (n ~ I)}. 

It will now be shown that A* is an outer measure. Conditions (a) and (b) are 
obviously satisfied. To verify the countable subadditivity inequality (1.1), 
observe that (1.1) is trivial unless LA \A.) < +00. In the latter case, choose £ > 0, 
and, for n ~ I, choose a countable union U An. of sets in A in such a way that 
An c U An. and that 

Then UA. c Unj Anj and (c) is satisfied, because 
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(11.2) 

The outer measure obtained in this way is the outer measure generated by A 
and <1>. For example, if A consists only of the empty set, with <1>(0) = 0, the 
generated outer measure has value +00 for every other set. 

The outer measure generated by a measure on an algebra. Suppose in 
(11.1) that A is an algebra, and that <1> = A is a measure on the algebra. In this 
case the generated outer measure coincides with A on A. In fact, if B E A, the 
sum in (11.1) can only be decreased if each summand set B n is decreased by 
making the covering sequence disjunct, and can possibly be further decreased by 
substituting BnnB for Bn. With these changes B. becomes a disjunct sequence 
with union B, and the infimum in (11.1) is therefore A(B). 

12. Outer measures of countable subsets of R 

Let A * be the outer measure on R generated by the class of bounded open inter­
vals together with the function <1> with value b-a on the interval (a,b). With this 
definition, every countable set a"a2, ... is null, contrary to unsophisticated 
intuition, because if E > 0, and if Bn is an open interval containing an, of length 
E2-n, then B. covers the set a., and L <1>(B.) = E. More generally, a trivial 
modification of this proof shows that if <1>((a,b») = F(b)-F(a), where F is a 
monotone increasing function on R, then the outer measure generated using this 
choice of <1> is 0 for every countable set of continuity points of F. 

If instead of R, the space is the set S of rational numbers, and if A* is 
generated by the bounded "intervals" of the form {r rational: a < r < b}, with <1> 

defined on this interval as b-a, then A*(S) = O. Thus it is not necessary that the 
generated outer measure majorizes <1> on the sets where <1> is defined. 

13. Distance on a set algebra defined by a 
sub additive set function 

If A ~ a finitely subadditive function from a collection § of subsets of a space S 
into R+, with A(0) = 0, define two distances between sets A and Bin § by 

(13.1 ) d')...(A,B) = ACA fill), d')...'(A,B) = ACAfill)A. 1. 

Recall that if A is subadditive, the function AA.I is also subadditive, and that if d 
is a pseudometric, then dA.1 is also. Each of these distance functions is positive, 
vanishes if its two arguments are the same, and satisfies the distance triangle 
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inequality because the symmetric difference operator Ll satisfies the triangle 
inclusion relation 1(2.5). Thus (S,d').,) is a pseudometric space if A. is finite 
valued, and (S,d').,') is a pseudometric space even without this finiteness 
condition. These spaces are metric if every A. null set is empty. The choice of the 
number 1 in (13.1) is arbitrary in the sense that the topology defined by d)...Ac is 
independent of the choice of the strictly positive constant c, and, if A. is finite 
valued, is the same as that defined by d).... 

[The following standard procedure, noted for clarification, can be applied to 
obtain a metric space from (S,d)...) but this device will not be used in this book 
except in the discussion of L 2 as a Hilbert space. Let A. be a finite valued outer 
measure on the subsets of a space S and let § be the space of equivalence 
classes of subsets of S, putting two subsets in the same equivalence class when 
the distance between them is 0, that is, when they differ by a A. null set. The 
space of equivalence classes becomes a metric space if the distance between the 
equivalence class containing a set A and the equivalence class containing a set B 
is defined as d)...(A,B). The corresponding procedure is applicable to d)...' and a not 
necessarily finite outer measure.] 

d)...' continuity of basic functions. In a pseudometric space, the pseudometric 
distance function is uniformly continuous from §x§ into R+, as exhibited by an 
application of the triangle inequality (A to Ao to Bo to B): 

(13.2) 

and the primes can be omitted if A. is finite valued. 
The function A.Al from § into R+ is uniformly continuous, because (13.2) 

reduces to the inequality 1('A(A)Al)-('A(Ao)AI)1 ::; d)...'(A,Ao) when B=Bo=0. A 
trivial modification of the discussion yields uniform continuity of A.AC for an 
arbitrary strictly positive constant c, and continuity of (possibly infinite valued) 
'A. 

Apply 1(2.7) and 1(2.8) to prove that the union and intersection operations 
from §x§ into § are d)...' uniformly continuous: 

(13.3) 

The primes can be omitted if A is finite valued. 

14. The pseudometric space defined by an outer measure 

The following theorem suggests that outer measures and measures endow their 
domains with useful topologies. These topologies will be exploited in Chapter 
IV. 
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Theorem. Suppose either that 
(i) (S,S,A.) is a space S, with S = 2S and A. an outer measure, or that 
(ii) (S,S,A.) is a measure space. 

Let Sf be the subst;} ofS on which A. is finite valued and let So be a subclass of 
S,with d"i closure So (= d').. closure ifS = Sf). Then under either (i) or (ii): 

(a) The pseudometric space (S,d')..') is complete, and the class Sf is a closed 
subset ofS, at distance I from S-Sj-

(b) The d')..' limit A of a d')..' convergent sequence is in Sf, [S-Sf) if and only if 
all but afinite number of members of the sequence are in Sf, [S-Sf); up to a null 
set, there is a subsequence with limit A in the convergence sense of Section 1.3. 

This theorem implies that the pseudometric space (Sf,d')..) is complete. 

Proof of (a). Let A. be a d')..' Cauchy sequence of sets in S. Choose strictly 
positive integers al < ~ < ... that are so large that A.(AmMa ) = d')..(Am,Aa ) 
< 2-n when m > an. Then (see 1(3.7)), n n 

(14.1) A.[lim supAa - lim inf AaJ = A. [lim SUPn-7oo(Aa Ma )] 
• 00 n n+1 

Define A as the superior or inferior limit (defined in Section 1.3) of the sequence 
Aa.' or any set in S and between these limits, so that 

(14.2) n 00 Aa. cAe U OO Aa. = (n 00 Aa.) u U k
oo (AakMak ). n n n =n +1 

Since (14.2) remains true if A is replaced by A%, 
< 2-n+l , and 

(14.3) 

d')..'(A,Aa ) = A.(AMa ) 
n n 

Thus A is a dX limit (a d').. limit if S = Sf) of the Cauchy sequence A., and 
therefore (S,d')..') is a complete pseudometric space. It is trivial that every set in 
Sf is at d')..' distance I from every set in S-Sf' and that therefore Sf is d')..' closed. 

Proof of (b). The assertions in (b) are trivial in the light of (a) and the set 
convergence definition in Section 1.3. 
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15. Nonadditive set functions 

This book is devoted to additi ve set functions and their application to 
integration. Subadditive outer measures are introduced only to derive measures. 
Nevertheless, it is important to realize that nonadditive set functions are intrinsic 
in some contexts, for example, in classical and probabilistic potential theory. 
The following is a deceptively simple example of how a nonadditive set 
function can arise. Let (S$,P) be a probability space, let /. be a sequence of 
functions from S into a space S' and let A' be a subset of S'. Define the function 
<jl on certain subsets of S ' (all hypotheses of function and set measurability are 
omitted here) by 

(15.1) <jl(A') = p{ Ulf. E A'} } 
= P{ at least one function of the sequence takes on a value in A'}. 

This function becomes more interesting if the context is glamorized! At each 
point of S the corresponding sequence of values off. is a trajectory. The value 
<jl(A') is the probability that a trajectory hits A'. The set function <jl is additive 
only in trivial contexts, for example, if the functions/liz, ... are identical, but <jl is 
subadditive in a strong sense which will not be discussed here. 



IV 
Measure Spaces 

1. Completion of a measure space (S,S,A) 

The measure A and its measure space are complete if subsets of A null sets in S 
are also in S; if so, the subsets are A null. According to the following theorem, if 
(S,S,A) is not complete it can be completed, that is, S can be enlarged to obtain a 
complete measure space. 

Theorem. There is a smallest cr algebra S* satisfying the following 
conditions: 

(i) S*::> S; 
(ii) there is a complete measure on S* whose restriction to S is A. S* consists of 
those sets A for which there are sets Band C in S satisfying the condi tions 

(Ll) B cA c C, A(C - B) = O. 

This extension of A is the completion of A. 

Proof. Let S * be the class of subsets A of S for which there are sets Band C as 
described in the theorem. Then A(B) = A( C). Morover if the pair of sets (B', C') 
has the same properties as the pair (B,C), then A(B') = A( C ') = A(B) = A(C) 
because C - B'e S, and this difference is a subset of the A null set (C- B)u 
(C' -B '). Define A *(A) = A(B), a definition just proved to be independent of the 
choice of Band C in (Ll). The class S* includes S, and A * = A on S. The class 
* - - -S is closed under complementation, because if Band C are as above, C cA cB 

and B-C = C-B is A null. The class S* is closed under countable unions, 
because if A. is a sequence of sets in S *, and if, for n ~ 1, Bn c An cCn, with Bn 
and Cn in S, and A(Cn - Bn) = 0, then uB. c uA. c uC., and 

A( uC. - uB.) ~ A [u(C.-B.)] = o. 

Thus S * is a cr algebra. Moreover A * is countably additive on S *, because if A., 
B., and C. are as above, and if A. is a disjunct sequence, then B. is a disjunct 
sequence, and therefore 
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(1.2) A*(uA.) = A.(uB.) = L J/..B.) = L A*(A.). 

Finally, if A' is an arbitrary complete measure extension of /.., defined on a a 
algebra S', S' must include the subsets of A null sets and therefore must include 
A in (1.1). Hence S'::;l S*, that is, A* is the minimal complete measure extension 
0fA.. 

2. Generalization of length on R 

Consider the problem of defining the length of a subset of R. To avoid problems 
connected with infinite length, consider only subsets of some closed finite 
interval 1. Borel proposed the following procedure to extend the definition of 
length to a wide class of subsets of 1. For a closed subinterval/of I, define A.(/) 
as the positive difference between the coordinates of its endpoints. Next define A 
for finite disjunct unions of intervals by additivity, next define A by continuity 
successively on the class of sets that are limits of increasing sequences of sets 
on which A is already defined, the class of sets that are limits of decreasing se­
quences on which A is already defined, and so on, alternating between 
increasing and decreasing sequences. The point of this procedure was to define 
A as a measure on the a algebra B(J) of what are now called Borel sets, but the 
procedure proved to be impractical, and it was Lebesgue who first devised a 
procedure to extend length to the class B(J) and to B(R). 

3. A general extension problem 

A common measure theoretic context is the following. Let A be a finite measure 
defined on an algebra So of subsets of some space, but suppose that So is not a a 
algebra. If one wishes to treat problems involving repeated applications of 
countable unions and intersections of sets without going beyond the domain of 
A, this measure must be extended to a measure on a(So). Carrying through 
Borel's idea of extending the definition of A first to Soo, and then to Sooo, ... and 
so on (the last three words stand for transfinite procedures) to reach a(So) would 
be difficult, but is unnecessary because, according to Sections 3-5, the sets in 
a(So) are close to those in So in a sense that makes the extension easy. In fact 
this extension will be formulated in Theorems 3 and 4 as the extension of A 
from a subset of a certain pseudometric space into the closure of the subset. 

Theorem. Let (S,S,A) be afinite measure space, let SA. be the domain of the 
completion of A, and suppose that S = a(So),where So is a set algebra. Then: 

(a) SA. is the dA. closure of So. 

(b) IfE> 0, and if A is in sA, there are sets A'(E) and A "(E), with the following 
properties: 
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A'(e) c A cA "(e). A'(e) E Soo. A(A-A'(e)) < e; 

A"(e) E Soo. A(A"(e)-A(e)) < e. 

(c) The space (SA,d'),) is a complete pseudometric space. If the 0' algebra S is 
generated up to null sets by a countable collection of sets, then this 
pseudometric space is separable. 

If the measure A is not supposed finite, but S is a countable union of sets in 
So offinite measure, then (3.l)is still true. 

The meaning of the countable generation hypothesis in (c) is that there is a 
countable collection S) of sets in S for which every set in S. equivalently every 
set in SA. differs by an S A null set from some set in O'(S)). For example. this 
hypothesis is satisfied if there is a countable collection S2 of sets in S for which 
O'(S2) = S. 

It will be seen that the separability assertion in (c) is false for infinite valued 
measures (with dA repaced by dA') even if A is 0' finite. 

It was pointed out in Section 111.13 that A is a dA' uniformly continuous 
function from S into R. Thus in going from So to SA. the domain of A is 
changed from a set algebra to its dA' closure. and the function 'A, is extended by 
continuity. 

Proof of (a). The dA closure So of So is_a dA closed subset of the complete 
pseudometric space (S,SA.d,.). The class So is closed under complementation. 
because if A. is a sequence in So with d')... limit A, then A. is a sequence in So 
with dA limit A. The class So is closed under finite unions and intersections. 
because (Section 111.13) if A. and B. are sequences with respective 
pseudometric limits A and B, then A.uB. and A.f""IB. are sequences with 
respective pseudometric limits AuB and Af""IB. Thus So is an algebra, even a 0' 

algebra. because a countable union of measurable sets is the dA limit of the 
partial unions. Hence So => S, and finally So = S ')... because the sets of SA differ 
from those ofS by null sets. 

Proof of (b). It is sufficient to show that A "(e) exists, because application of this 
result to A yields A '(e). on complementation. Let 'A,* be the outer measure 
generated by So and the restriction of A to So. Then A = A * on So. and the 
existence of A "(e) is equivalent to the statement that 'A, * = 'A, on SA. The outer 
measure 'A, * is finitely additive on SA because if A. and B. are sequences in So 
with respective dAlirnits the disjunct pair of sets A, B, then the dA pseudometric 
continuity properties yield 

(3.2) 'A,*(AuB) = lim'A,*(A.uB.) = lim ['A, *(A.)+'A,*(B.-A.)] = 'A, *(A)+'A, *(B). 

The outer measure is countably additive on SA because, on the one hand. as an 
outer measure it is countably sub additive, and on the other hand. if A. is a 



40 Measure Theory 

disjunct se~uence of sets in SA. with union A, then A. * (A) ~ r..n A. * (A.), and 
therefore A. (A) ~ r..A.*(A.). Thus, on S, the two set functions ~ and A. * are 
measures that are equal on So and therefore equal on S because they are the 
unique dA. continuous extensions of their common restriction to So. 

Proof of (c). According to Theorem 111.13, (SA,d')J is a complete pseudometric 
space. Suppose that up to null sets S is countably generated by a sequence B. of 
sets in S. The algebra (Jo(B.) is countable becau~ it consists of finite unions of 
finite intersections of the members of B. and B •. It is therefore sufficient to 
prove that the dA. closure of (Jo(B.) includes SA.. But according to what has just 
been proved, such a closure is SA.. 

Proof of the last assertion of the theorem. It is no further restriction than that 
stated in the theorem to assume that S = uS. is a disjunct countable union of sets 
in So of finite measure. Apply the theorem for finite A. separately to each 
measure B-+A.(BnSn) on the class of intersections with Sn of the sets in sA, with 
S~ replaced by the algrebra of intersections with Sn of the sets in So. If A is in 
S and if £ > 0, there is a set Cn satisfying the conditions 

AnSn c Cn c Sn, Cn E Socr, A(Cn-A) < 2-ne, 

then uc. is a superset of A, in Socr, and A.{uC.-A) < e. Thus the part of (3.1) 
involving a superset of A in Socr is true. Application of this result toA, together 
with complementation, yield the other part of (3.1). 

4. Extension of a measure defined on a set algebra 

Theorem 3 shows how close the measurable sets of a finite measure space are to 
the sets of an algebra that generates the class of measurable sets. The following 
theorem uses this fact to show, under appropriate hypotheses, that a measure on 
an algebra can be extended to a measure on the generated (J algebra. 

Theorem. (Hahn-Kolmogorov). A (J finite measure Ao on an algebra So of 
subsets of a space has a unique extension to a (J finite measure on (J(S 0)' 

Proof when Ao is finite valued. Define S = (J(So) and define A * as the outer 
measure j?;enerated by So and A. Then A. = A * on So. It will be shown that the dA. * 
closure So of So includes S and that the restriction of A * to S is the desired 
extension of A.. In othe~ words, the situation will be brought into the context of 
Theorem 3. The class So is an algebra, according to the argument used in the 
proof of Theorem 3, except that A * takes the place of A in the pseudometric. 
Moreover A * is countably additive on So by the proof of countable additivity of 
A* in the proof of Theorem 3. It follows that So is a (J algebra. Thus A * offers 
the desired extension of A and is unique because, as remarked in Section 3, the 
extension from So to S necessarily extends A by continuity. 
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Proof when 1.0 is not finite. If S = uS. is a disjunct countable union of sets in 
So of finite measure, apply the theorem for spaces of finite measure separately 
to each measure B ..... Ao(JJrlSn) on the class of intersections with Sn of the sets 
in So to obtain an extension of AO to O'(So). Since the separate extensions are 
unique, the overall extension is unique. 

5. Application to Borel measures 

Theorem. Let S be a metric space, let A be a measure extended by 
completion from B(S) to BA(S), and suppose that S is a countable union of open 
sets offinite measure. Then if A is a measurable set and E> 0, there is a closed 
subset A '(E) of A and an open superset A "(E) satisfying the conditions 
A(A-A'(E)) < E, A(A"(E)-A)< E. 

Proof when A is finite valued. Apply Theorem 3 with So the set algebra 
generated by the class of open subsets of S. According to Theorem 3, the 
assertions involving A'(E) and A"(E) are true except that unfortunately these sets, 
described in Theorem 3, are not respectively closed and open in the present 
context. To get an open version of A"(E) it is sufficient to show that if A is in 
Soa there is an open superset of A that can be chosen to have measure arbitrarily 
near that of A. Now the sets of Socr are disjunct countable unions of subsets of S 
of the form Bne, where B is open and e is closed. It is therefore sufficient to 
show that a closed set e has open supersets of measure arbitrarily close to that 
of e, and since a closed set e is a countable intersection of open supersets, this 
assertion is true. To get a closed version of A '(E), apply the result just obtained 
to A. Thus the theorem is true when A is a finite measure. 

Proof when A is not finite valued. If B is an open subset of S of finite measure 
apply the present theorem for finite measures to the restriction of A to subsets of 
B and thereby find that if A is a measurable subset of B, then there are open 
subsets of B that are supersets of A of measure arbitrarily close to A,(A). This fact 
will now be applied in the present context, in which S = uS. is a countable 
union of open sets of finite measure, to find a set A"(E) with the desired 
properties. If A is a measurable subset of S, and if E > 0, there is an open subset 
An" of Sn for which AnSn c An" and A,(An "-AnAn) < E2-n. The set uAn" 
satisfies the conditions for A"(E). Apply this result to A to find a closed subset 
of A satisfying the conditions for A'(E). 

6. Strengthening of Theorem 5 when the metric space S is 
complete and separable 

The following theorem strengthens Theorem 5 in the more restrictive context of 
a complete separable metric space. 
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Theorem. Let S be a separable metric space and let A be a finite measure 
extended by completion from 8(S) to 8*(S). 

(a) The space (8*(S),d,J is a complete separable pseudometric space. 

(b) (prohorov) If S is complete then Theorem 5 is true with A'( £) compact, that 
is, the measure of a measurable set is the supremum of the measures of its 
compact subsets. 

Proof of (a). The class So of finite unions of balls with rational radii, with 
centers a countable dense subset of S, is countable. Each open subset of S is the 
limit of a monotone increasing sequence of sets in So, and therefore is a d')... limit 
of So. Hence the class of open subsets of S is separable in the d')... pseudometric. 
According to Theorem 5, the class of open sets is d')... dense in the class of 
measurable sets, and therefore the latter class is d')... separable. 

Proof of (b). In view of Theorem 5, it is sufficient to prove that if A is a closed 
subset of S, then 

(6.1) I..(A) = sup {I..(E): Fe A, F compact}. 

In fact it is sufficient to prove (6.1) with A = S, because A provided with the S 
metric is itself a complete separable space, and 8(A) is the class of those Borel 
sets relative to S that are subsets of A. If I..(S) = 0 the theorem is trivial. If 
I..(S) >O,choose c < I..(S). The space S is the union UBI. of countably many 
closed sets of diameter::; 1 (say the closed balls of diameter 1 with centers at the 
points of a countable dense subset of S). Choose enough sets from B)., with 
union BI, to get I..(B) > c. If closed sets BI, .. ,Bn_1 have been defined, with each 
set Bj a finite union of closed sets of diameter::; lIj and I..(BIIr··nBn_l ) > c, go 
on to choose finitely many closed sets Bn. of diameter::; lin and union B n' in 
such a way that A(BllrnBn) > c. The closed set nB. has measure at least c 
and is compact because the set has the property that, for every strictly positive 
integer n, the set B can be covered by finitely many closed sets of diameter ::; 
lin. Hence (b) is true. (This covering property is a standard compactness 
criterion: the set B is compact because if C is an infinite subset of B, there must 
be an infinite subset of C in a closed set CI of diameter ::;1, an infinite subset of 
CI in a closed subset C2 of CI of diameter ~1/2, and so on. The intersection 
nco is a limit point of C.) 

7. Continuity properties of monotone functions 

Recall that a monotone increasing function F from R into R, has left and right 
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limits at each point s of R, 

F(s-) = supt<sF(t), F(s+) = inft>sF(t), 

and that F(s-) ::s; F(s) ::s; F(s+). If the first [second] inequality is actually an 
equality, F is left [right] continuous at s; if both inequalities are actually 
equalities, F is continuous at s. The function F can have at most countably many 
discontinuities, because at each discontinuity point s there is a rational number 
strictly between the left and right limits at s, and different discontinuity points 
correspond to different rational numbers. At a discontinuity point s, the dif­
ference F(s+)-F(s-) is thejump of Fat s. The left [right] limit functions-+F(s-) 
[s-+F(s+)] is a left [right] continuous monotone increasing function with itself 
as left [right] limit function, and a continuity point of F or of its left or right 
limit function is necessarily a continuity point of all three functions. 

More generally, if F is a monotone increasing function from a dense subset 
of R into R, one sided limits F(s-) and F(s+) exist at every point s of R, and 
F(s-) ::S;F(s)::S;F(s+) whenever F is defined at s. The left and right limit functions 
are respectively left and right continuous monotone increasing functions on R, a 
continuity point of either is a continuity point of the other, and F has a limit at 
such a point. The set of points of R at which F does not have a limit is 
countable. An extension of F with domain R is monotone if and only if the 
extension lies between the left and right limit functions of F. A monotone 
extension is therefore uniquely determined at all the continuity points of these 
left and right limit functions. 

The necessary changes in the preceding discussion if the domain of F is a 
subinterval of R or a set dense in such an interval are immediate. 

8. The correspondence between monotone increasing 
functions on R and measures on B(R) 

The class of monotone increasing functions F on R corresponds to the class of 
measures').., on B(R) by way of the fact that the').., measure of a Borel set is the 
increase of F on the SGt. A precise statement of this correspondence is the 
content of the following theorem. 

Theorem. Let F be a finite valued monotone increasing right continuous 
function on R. Define F(-oo) as the right limit (~-oo) of Fat -00, and define 
F(+oo) as the left limit (5+00) of F at +00. 

(a) Define a set function /...oF on each right semiclosed interval ofR by setting 

(8.1 ) AoP(a,b]nR) = F(b)-F(a), (-oo::S;a<b::S;+oo). 
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Then ~F has a unique extension to a measure 'AF on B(R); this extension is 
finite on compact sets. Denote by 'AF * the completion of this measure and 
choose E> O. Each set A in the domain of'Af* lies between a closed subset and 
an open superset whose difference has 'AF measure at most E. Moreover, if 
'A/(A) < +00, there is a finite union B of open intervals for which 'A/(AllB) < £. 

(b) Conversely, if'A is a measure on B(R), finite on compact sets, there is a 
finite valued monotone increasing right continuous function FA on R, uniquely 
determined up to an additive constant by the condition 

(8.2) FA(b) - FA(a) = 'A(a,b]), -00 < a < b < +00. 

(c) One monotone function determined in accordance with (b) by the measure 
'AF in (a) is F, and the measure determined in accordance with (a) by the 
monotone function FA in (b) is 'A. 

After this theorem has been proved the asterisk will be dropped, that is, 'AF 
will be written instead of 'AF *. 

Proof that ~F defined by (8.1) has an additive extension to the set algebra 
So of finite unions of right semiclosed intervals. It is trivial that AoF is finitely 
additive on the class of right semiclosed intervals of R. According to Lemma 
111.2, it follows that this set function has a unique finitely additive extension to 
the algebra So. From now on, "'AoF" refers to this extension. 

Proof that 'AoF is a measure on So. The monotonicity and right continuity of F, 
not yet used, are needed to prove that 'AoF is a measure on So. The fact that F is 
monotone increasing makes 'AoF positive. To prove countable additivity, it must 
be shown that if f is in So, that is, if f is a finite disjunct union of right 
semiclosed intervals, and if f = Uf. is a disjunct countable union of members 
of So, then 

(8.3) 

Since ~F is additive, each member of f. can be replaced by its component 
intervals, and therefore it can be supposed that each set fj is a right semiclosed 
interval. Since each component interval of f is the countable union of its 
intersections with the members of f., it is sufficient to prove (8.3) for I a right 
semiclosed interval. Thus from now in it will be supposed that the sets in (8.3) 
are all right semiclosed intervals. 

Since f:::J U7 I. for all n, and since 'AoF is monotone and finitely additive on 
So, 

for all n, and therefore 



IV. Measure Spaces 45 

(8.4) 

The reverse (subadditivity) inequality is trivial if the sum is +00. It is therefore 
sufficient to prove subadditivity when each summand in (8.3) is finite. Let J be 
a right semiclosed interval with compact closure J", a subset of I. Choose £ > O. 
Let If be a right semiclosed interval, with the same left-hand endpoint as ~ and 
the same right-hand endpoint if that endpoint is +00, but otherwise with right­
hand endpoint to the right of that of ~ but so close that 

~F(lf) ~ ~p(IJ) + £2-J. 

Let ~ 0 be the interior of If. The compact interval J' is covered by UI.o. Apply 
the Heine-Borel theorem to tind that 

k 0 k 
J c J' cUI. cUI.' 

1 1 

for sufficiently large k, from which it follows, in view of the monotonicity and 
finite subadditivity of ~F' that 

(8.5) 

When £ tends to 0 and J increases to I, (8.5) yields the desired countable 
subadditivity, and therefore the countable additivity, of AF on So. 

Proof of (a). According to Theorem 4, the measure AoF has a unique extension 
to a measure on a(So)=B(R), and according to Theorem I this measure has a 
unique completion. According to Theorem 5, a set A in the domain of the 
completion lies between a closed subset and an open superset B' with an 
arbitrarily small difference set measure. If AP(A) < +00 and £ > 0, the last 
assertion of (a) is proved by choosing B' to make the difference set measure at 
most £/2, and then choosing a large enough number of the pairwise disjoint 
intervals making up B' to be within £12 of the measure of B '. The measure AF is 
uniquely determined by F, because the values of AF on right semiclosed 
intervals, and therefore on the sets in So, and finally on the sets of B(R), which 
are all in the dA. closure of So, are uniquely determined by F. 

Proof of (b). If A is a measure on the a algebra B(R), finite on compact sets, 
there is a monotone increasing right continuous function FA. on R, determined 
up to an additive constant by its increase on right semiclosed intervals. For 
example, the monotone increasing right continuous function defined by 

FA.(b) = A((O,b)) 
(8.6) = 0 

- A((b,O)) 

if b > 0, 
if b = 0, 
if b < 0 
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satisfies (8.2). If A((-oo,bJ) is finite for some b, and therefore for all b, F').. is 
usually defined by 

(8.7) F')..(b) A((-oo,bJ) 

for all b, to make F')..(---oo+) = O. 

Proof of (c). What has been proved under (a) and (b) is that certain functions 
and measures are paired: if a measure A and a monotone function F are paired, 
the increase in F on a right semiclosed interval is the A measure of the interval. 
This is the content of Equations (8.1) and (8.2). When A and F are paired, A is 
written as AF or F is written as F').. to stress the pairing. Part (c) of the theorem is 
thus trivial. 

Terminology. When F(s) = s for all s, the measure AF is Lebesgue measure, 
named after the mathematician who inaugurated modern measure theory by 
defining this measure. In the general case AF is called, depending on the context 
and the predilections of the caller, a Lebesgue-Stie/tjes measure on R, a Radon 
measure on R, or a distribution on R, or if A.(R) = I, a probability measure or 
probability distribution on R. In the last case, in which F is normalized by 
setting F( -00+) = 0 and therefore F( +00-) = 1, F is a probability distribution 
function on R. The terms "Lebesgue measure" and "Lebesgue-Stieltjes 
measure" usually refer to the completed measures of Borel sets. The general 
theory of measure and integration studied in this book is sometimes referred to 
as Lebesgue measure theory. 

Modification for intervals of R. It is obvious how to adapt the preceding 
discussion to define measure on an open subinterval I of R: one simply starts 
with a monotone function on I instead of a monotone function on R. There is no 
added complication if I contains its right endpoint. There is, however, a slight 
complication if I contains its left endpoint, in that the monotone function on I 
must be allowed to have the left endpoint as a right discontinuity. Let I be an 
interval containing its left endpoint a, and let F be a finite valued monotone 
increasing function on I, right continuous except possibly at a, with F')..(a) = O. 
The discussion in this section, as adapted to I, leads to a measure AF on B(l), 
finite on compact sets, determined by setting F(a) = 0 and 

(8.8) AF([a,bJ) = F(b)-F(a) (b > a). 

The singleton J a} has measure F( a+). Finally, the adaptation of the discussion 
to intervals of R is now trivial: map such an interval onto a subinterval of R. 
Example. Let A be Lebesgue measure on R, and consider the class of countable 
unions of open intervals (n,n+ 1) with n an arbitrary integer. If A and B are two 
such unions, not identical, then they differ by at least one set of measure 1. 
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Hence d')..,'{A,B) = I. Since there are an uncountable number of such unions, the 
class of Borel sets is not separable in the d')..: metric, even though the class is the 
0' algebra generated by a countable collection of sets, for example by the open 
intervals with rational endpoints. 

9. Discrete and continuous distributions on R 

Let F be a monotone increasing right continuous function on R. If F has a jump 
at a point s, A.F< {s}) = F(s)-F(s-) > O. Every singleton is A.F null if and only if F 
is continuous, and in that case A.F is a continuous distribution. If F increases 
only in jumps, that is, if F(b)-F(c) is the sum of the jumps at points in (a,b], for 
every right semiclosed interval (a,b], F is a jump function, and A.F is a discrete 
distribution. For example, if the sequence r. is dense in R, the function F de­
fined by 

(9.1) F(s) = L 2-n 
rn~s 

is a jump function, with jump of 2-n at rn , and F is continuous except at the 
points of r •. 

10. Lebesgue-Stieltjes measures on RN and their 
corresponding monotone functions 

If F is a finite valued function from RN into R, and if a < b, define the differ­
ence operator Dj{a,b) acting on F by 

(10.1) 

with the obvious conventions whenj = I andj = N. The N operators defined in 
this way commute with each other. In the present context, the appropriate 
definition of a ri~ht continuous monotone increasing function is that it is a 
function F from R into R which satisfies the following two conditions: 

(a) F is right continuous in each variable when the others are fixed. 

N 

(10.2) (n D.(a.,b.»F ~ O. 
I 
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In particular, if F tends to 0 when at least one of its arguments tends to -00, and 
tends to 1 when all its arguments tend to +00, F is a probability distribution 
function on RN Let So be the algebra of finite unions of right semiclosed 
intervals of RN If I is the bounded right semiclosed interval (ab~]x"'x(aN,bN]' 
define AOF(l) as the left side of (10.2). If I is not bounded, define AoF(I) as the 
obvious limit of AF on bounded intervals. The argument in Section 8, for N = 1 -
that AOF is finitely additive on the class of right semiclosed intervals and 
therefore has a finitely additive extension to the algebra So of finite unions of 
these intervals, that this extension is a measure on So and therefore can be 
extended to a measure on cr(So) = B(RN), finite valued on compact sets, and 
then can be completed - is only slightly more complex when N> 1, and the 
details of this generalization will be omitted. Theorem 8 is therefore true for 
measures on RN , with essentially the same proof as given when N=1. In 
particular, if F).. is a probability distribution function on RN then A(RN) = 1, and 
AF is a probability measure, or probability distribution on RN. 

Conversely suppose that A is a measure on B(RN), finite on compact sets. 
There is then a monotone increasing right continuous function F).. on RN, 

satisfying the N-dimensional version of (8.1), that is, the left side of (10.2) is 
AF((ab~]x"'x(aN,bN])' The function can be normalized, say by defining it as 0 
at the origin. The measure defined by F).., following the procedure in the first 
part of this section, is then A. In particular, if A((-OO,O]x"'x(-oo,O]) is finite, F).. 
can be defined by 

(10.3) 

11. Product measures 

Note on the construction of product measures. If integration is introduced 
before product measures, product measures can be defined directly, using 
certain integrals, thus avoiding repetition of some of the arguments in the proof 
of the following theorem. For further details on product measures defined in 
terms of integrals, see Note on the construction of product measures in 
Section VI.lD. 

Theorem. For i = 1, ... ,N let (Si'si,Ai) be a crfinite measure space, define 

and define A on S' by 

N n A..(A.) (Ai E Si, i = 1, ... , N). 
1 

Then A can be extended uniquely to a measure on cr(S'). 
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Proof. According to Theorem 111.3, the set function A has a unique finitely 
additive extension to a set function on cro(S'). To prove the theorem, it is 
sufficient, according to Theorem 4, to prove that this extension is a measure on 
cro(S). Suppose first that N=2 and that A1 and ~ are finite valued. To prove that 
A is a measure on cro(S') it is sufficient to prove that if A. is a decreasing 
sequence of sets in cro(S'), given for n :::::1 by 

( 11.2) 

where the union is finite and disjunct, and if (lA. = 0, then lim A,(A.) = O. 
Without loss of generality, the summand sets in (11.2) can be partitioned for 
each value of n if necessary (see Section 11.5) to make the members of Bn. 
mutually disjoint. Define a functionfn on S1 by 

(k :::::1), 

The sequence f. is a decreasing sequence of functions, with limit 0 because, for 
each sin S1' the set {t E S2: (s ,t) E An} decreases monotonely when n~oo, with 
limit the empty set. If £ > 0, the set {s E S1: fn(s) > £} is a subunion of UBn• 
and decreases monotonely when n~oo, with limit the empty set . The A1 
measure of this subunion therefore decreases monotonely, with limit 0 when 
n~oo. Hence 

(11.3) 

(n~oo). 

It follows that limA,(A.) = 0, as was to be proved. If A1 and ~ are not 
necessarily finite valued but if, for i = 1,2, S/ E Si, and A,(Si') < +00, then the 
result just obtained is applicable to S1 'xS2'. It follows that the theorem covers cr 
finite measures, as stated. If N = 3, the space S1xS2xS3 can be written in the 
form (S1XS2)XS3 and the theorem for N=3 is thereby reduced to the case N=2. 
The induction proof for general N is now obvious. 

In Theorem 11 the measure A on cr(S ') is the product measure, written 
A1 X"'XAN' of the factor measures Alo ... ,AN' 

12. Examples of measures on RN 

Example (a). For i=I, ... ,N let Fi be a monotone increasing right continuous 
function on R and define the monotone increasing function F on RN by 
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The Lebesgue-Stieltjes measure AF on RN is then the product measure of the 
factor measures AFI, ... ,AFN In particular, if F i(s) = s for all i, AF is N­
dimensional Lebesgue measure on B(RN), the extension of N-dimensional 
volume to the class of Borel sets. As always, this measure can be completed. 

Example (b). If A is a finite valued measure of Borel subsets of the unit 
square S=[O,l]x[O,l], it is the restriction to subsets of S of a Lebesgue-Stieltjes 
measure on R2 for which R2 -S is null. 

Example (c). In Example (b), let D be the diagonal of S through the origin 
and let v be a probability measure of Borel subsets of D. The measure v can be 
considered to be the restriction to subsets of D of a probability measure A on the 
Borel subsets of S, with A(S-D)=O. 

13. Marginal measures 

Let (Sj,31) and (S2$2) be measurable spaces, and define S=SI ><5'2 , 3=3 1><S2. 
Then a measure A on 0'(3) induces marginal measures Alan 3 1 and ~ on 3 2: 
Al (A 1) = A,(A I ><5'2) and ~(A2)=A,( S I xA 2) for A I in 3 I and A2 in 3 2, 

Example (a). If A = Al x~ is a product measure with finite valued factor 
measures Al and ~,the marginal measures are A2(S2)AI and Al (SI)/.,,2. For 
instance, in Section 12 Example (b), if A is two dimensional Lebesgue measure 
on the square S, the marginal measures are both one dimensional Lebesgue 
measure on the unit interval [0,1]. 

Example (b). In Section 12 Example (c), if v is 2- 112 times one-dimensional 
Lebesgue measure on D, the two marginal measures of A are again one­
dimensional Lebesgue measure on [0, I]. 

As these two examples show, marginal measures by no means determine the 
measure of which they are marginal. 

14. Coin tossing (Continuation of Section 111.9) 

First mathematical model. In the discussion of this model in Section 111.9, 
a finitely additive set function P was defined on the a algebra 3 00 of finite 
unions of dyadic right semicIosed subintervals of (0, I]. Functions XI,x2,'" were 
defined as the successive digits in the dyadic representation of a point of (0, I]. 
Unfortunately the sets 111(9.3) are not in 3 00 and therefore their probabilities 
cannot be defined until P is defined on a (300)=B «0, I)). Lebesgue measure on 
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(0,1] provides the necessary extension of P. Under this extension, the first set 
A= U {x.=l} in 111(9.3) has a well defined probability: 

(14.1) P{A} = 1 - P{A} = 1 - p{ (J{x.=O}} = 1- limn~oo 2-n = 1. 

This result is a special case of the Borel-Cantelli theorem. It will be proved in 
Section XI.19 that the probability of the second set in 111(9.3) is also 1. 

Second mathematical model. In the second mathematical model, P is a 
finitely additive set function defined on the algebra Seo of subsets of the space S 
of infinite sequences of 1 's and O's. This algebra is the class of finite unions of 
sets determined by fixing a finite number of coordinates of S. The extension of 
the domain of P from s.,., to cr(Seo) can be made by mapping this model into the 
first model, that is, the conditions Xl=Ql, .•• ,xn=an in the second model define a 
subset of (0,1] in the first model, and probabilities are thereby referred from the 
second model to the first. A more direct approach is to prove that, in the second 
model, P is countably additive on Seo and therefore has an extension to a 
measure on cr(Seo)' To prove countable additivity of P on Seo it need only be re­
marked that, according to Section 11.2 Example (b), if a countable union of sets 
in Seo is itself in Seo then only a finite number of summands are nonempty. In 
other words, the union is effectively a finite union. Thus, countable additivity is 
trivially the same as finite additivity in this case. Alternatively, the Hahn­
Kolmogorov theorem can be invoked to prove that P has a measure extension to 
cr(S eo). 

15. The Caratheodory measurability criterion 

* Let (S,S,A) be a measure space, and let A be the outer measure generated by 51 
and A. Then (Section 111.11) A * is a countably subadditive set function, equal to 
Aon S. 

Theorem. If A is a subset of S, and if B. is a finite or infinite disjunct 
sequence of measurable sets, with union B, then 

(15.1) A*(AnB) = ~ A *(AnB.). 

Proof. Since A * is countably subadditive, it is sufficient to prove (15.1) with 
H~" instead of H=". Let C be a measurable superset of AnB. Then 

(15.2) A.( C) ~ A,(CnE) = ~ A.( CnB.) ~ ~ A*(AnB.). 

Bl definition of A *, the set C can be chosen to make A.(C) arbitrarily close to 
A. (AnB), thereby yielding the desired inequality. 



52 Measure Theory 

The Caratheodory approach to measure theory starts with an outer measure 
and defines a set B to be measurable if (15.1) is satisfied with B = S and only 
two summands. 

16. Measure hulls 

In this section the subsets of a cr finite measure space (S,3,A) are treated, and the 
outer measure A * is the outer measure generated by 3 and A. If A is a subset of S 
of finite outer measure, a set A * is a measure hull of A if A * is a measurable 
superset of A and if A(A*) = A *(A). A measure hull A* is determined uniquely 
up to null sets because if A]* andA 2* are measure hulls of A then A]*nA2* is 
also a measure hull of A, and 

Every set A of finite outer measure has a measure hull, because if A. is a 
sequence of measurable supersets of A with lim A(A.) = A *(A), then nA. is a 
measure hull of A. 

If A has measure hull A * and B is measurable, then A nB has measure hull 
A *nB because there must be equality throughout the following string of 
equalities and inequalities: 

(16.1) ACA*nB) ~ A*(AnB) = A*(A) - A*(AnB) ~ A(A*) - A(A*nB) 

= A(A*nB). 

Here the first equality is a special case of (15.1). This hereditary character of the 
measure hull justifies the definition that, for an arbitrary subset A of S, its 
measure hull is defined as a superset A * of A with the property that if B is a 
measurable set of finite measure, then A *nB is a measure hull for AnB. Every 
set A has a measure hull, because if S = US. is a representation of S as a count­
able union of measurable sets of finite measure, and if AnSn has measure hull 
An *, then UA. * is a measure hull for A. The reader is invited to verii}' that a 
measurable set A * is a measure hull of A if and only if the difference A -A has 
no non null measurable subset. In analysis involving arbitrary subsets of S it is 
frequently advantageous to replace sets by their measure hulls. 



V 
Measurable Functions 

1. Function measurability 

In the operations of analysis, it is desirable to work in a class of admissible 
objects that does not have to be enlarged as the work progresses. For example, 
p real analysis the basic set of admissible numbers is R. sometimes enlarged to 
R. The class of rational numbers is too small because it is not closed under limit 
operations. Similarly, in studying measures, a natural class of admissible sets is 
a 0' algebra, because closure under the operations of complementation and the 
forming of countable unions and intersections are needed. 

In this chapter, functions from a space S into a space S' will be studied, and 
the first decision to be made is the choice of admissible functions. Again, it is 
desirable to choose a class that need not be enlarged as the work progresses, and 
if S is coupled with a 0' algebra S of its subsets to form a measurable space 
(S,S), it is to be expected that the chosen class of functions will depend on S. 
For example, it is desirable that the indicator functions of sets in S be in the 
class of admissible functions. The following are (interrelated) reasonable re­
quirements. 

(a) The class should be closed under the operations of taking linear 
combinations, products, and limits, if such operations are meaningful for S'. If 
S '=R. the class of continuous functions is not large enough to satisfy this 
condition because the limit of a convergent sequence of continuous functions 
need not be continuous. 

(b) If/is an admissible function from S into a space S ' and g is an admissible 
function from S' into a space S", then g(j) should be admissible as a function 
from S into S". 

(c) If/is an admissible function from S into a space S', the set of points of Sat 
which / satisfies reasonable conditions, say that the set of points of S at which 
the values of/lie in an admissible subset of S " should be an admissible subset 
of S. 
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Condition (c) leads to the concept of measurability of f, as formulated in the 
next paragraph, and will be seen to imply conditions (a) and (b). 

Let (5,51) and (5',51') be measurable spaces, and letfbe a function from 5 into 
5'. It is convenient to call such a function a function from (S,S) into (S',S') as 
well as from S into 5 '. The range space S ' of the function is commonly, 
especially in probability contexts, called the state space of the function. The 
inverse functionr1 takes complements relative to S' into complements relative 
to 5, unions (even uncountable ones) in 5' into the corresponding unions in 5, 
intersections (even uncountable ones) in 5' into the corresponding intersections 
in 5. That is, for example, if A ~ is a family of subsets of 5', then 

Hence f -1 (51'), the class of inverse images of the sets in 51', is a a algebra; it will 
be denoted by a(j). This a algebra is, for given (S' ,51'), the class of subsets of 5 
determined by measurable conditions onf. If a(j) c 51, that is, if the inverse 
image of a measurable set in the range space of f is a measurable set in the 
domain space, the function f is measurable from (5,51) into (S ',51'). It is 
immediate that the transitivity condition (b) is satisfied: if f is a measurable 
function from a measurable space into a second one, and if g is a measurable 
function from the second space into a third, then g(j) is measurable from the first 
into the third, and cr[g(j)] c a(j). 

Example. Given a space 5, a measurable space (5 '$), and a function ffrom 5 
into 5', one choice of a algebra 51 of subsets of 5 making f measurable from 
(5,51) into (5'$) is 51 = 25. The smallest choice of 51 makingfmeasurable from 
(5,51) into (S ',S ') is a(j). In particular, if S' is countable and 51' =25 'J is mea­
surable if and only if the inverse image of every 5' singleton is in S. This is the 
definition given in Section 111.5 in studying discrete state spaces. 

A functionf may be described as 51 measurable, or measurable with respect 
to 51, or measurable from S into 5 " or simply measurable, if the relevant spaces 
or a algebras missing from the description have been specified or if the context 
is so general that full measure space identification is not needed. Thus a 
function identically equal to a real number is a measurable function from an 
arbitrary measurable space into R, that is, into (R,B(R)). More generally, the 
indicator function of a subset of a measurable space is a measurable function 
from the space into R if and only if the subset is measurable. In probability 
contexts, a measurable function is given the alias random variable. 

Testing for measurability. In testing for measurability of a functionffrom a 
measurable space (5,S) into a measurable space (S '$), the fact that 51' and 
f -1 (51') are a algebras implies that it is sufficient for measurability that the 
condition rl(So')c 51 be satisfied for a subclass So' of 51' large enough to 
generate the a algebra 51', that is, large enough to make 51 '=cr(So'). In particular if 
(5',51') = (R,B(R)), the real valued functionfis measurable if rl(A') E 51 for 
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every interval A' of the form (-oo,b), that is, if {f<b} E S for all b. In fact, it was 
pointed out in Section 11.4 that the class of these intervals generates B(R). Other 
sufficiently large classes So' are the classes of intervals of the form (-cop] or of 
the form (b,+oo), and so on. A dense set of val ues of b yields a sufficiently large 
class of these intervals. The definition of measurability of a real valued function 
is frequently given using one of these classes of intervals instead of the full class 
S'=B(R). 

Vector functions. Iffl"",/h are functions from S into S', the vector function 
f: s -+ [fI(s)""!n(s)] from 5 into 5 'n is measurable from (5,S) into (S 'n,a(s'n)) 
if and only if each function/! is measurable from (5,S) into (S',S'), because the 
product sets A ;x"'xA ~ with factor sets in S' generate the a algebra a(S 'n), and 

The class of sets determined by measurable conditions on functions. If 
{ft,t El} is a collection of measurable functions from (5,S) into (5',S'), with I an 
arbitrary index set, the a algebra a(ft,t E l) of subsets of 5 determined by 
measurable conditions on f. is the a algebra generated by the sets of the form 
{ft E A'}, for t in I and A' in S'. This a algebra is the smallest a algebra of 
subsets of 5 making each of the given functions measurable. In particular, when 
1= 1, ... ,n, the a algebra a(fb"'!n) is the a algebra of subsets of 5 of the form 
{(fb ... In) E A'}for A' in a(s'n). 

Let (5,S), (5',s'), and (5",S") be measurable spaces, and letfbe a measurable 
function from the first space into the second. By definition of a(f),j is not only 
measurable from (5,S) into (5',S'), but even measurable from (S,a(j») into 
(5',s'). Thus if g is a measurable function from (S',S') into (S",S"), then h = g(j) 
is not only measurable from (S,S) into (S",S") but even measurable from 
(5,a(j») into (S",S"). This restrictive measurability condition on a measurable 
function h from (S,S) into (S",S") is not only necessary but, under certain 
conditions on the spaces, is sufficient to ensure, for given f, measurable from 
(S,S) into (S',S'), and given h, measurable from (S,S) into (S",S"), that h can be 
written in the form g(j), with g measurable from (5',S') into (S",S"). This fact 
will not be needed explicitly but gives intuitive content to later definitions of 
conditional expectations and probabilities. It will be proved, to exhibit the 
principle involved, when S" contains the singletons and h is a function from S 
into S", taking on only countably many values. Suppose then that h takes on the 
values in the sequence a., and {h = an} E a(j). Then {h = an} = {f E An} for 
some set An in S'. Define g = an on An to obtain the representation h = g(j), 
with g measurable from (S',S') into (S",S "). 

These simple remarks suggest that, whenever {ft,t E l} is a collection of mea­
surable functions from a measurable space (S,S) into the measurable space 
(S',S'), and a reasonable definition is needed of a measurable function g of all of 
these functions into some measurable space, one reasonable definition is that g 
be measurable from (S, a(ft,t E I)) into the prescribed space. 
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Measurability of a function defined on a subset of a space. If (S,S) is a 
measurable space, a function f from a set A in S into the measurable space 
(S ',S ') is measurable if f -I (S') C S. Equivalently, denoting by SA the class of 
subsets of A in S, the function f is measurable if and only if the function, when 
considered as a function from (A,SA) into (S ',§'), is measurable. In particular, 
the restriction to A of a measurable function from (S,S) into (S',S') is 
measurable. 

Borel measurable functions. A measurable function from one metric space 
into a second is Borel measurable. A continuous function from one metric space 
into a second is Borel measurable, because the inverse image of an open state 
space set is open and the open state space sets generate the 0' algebra of Borel 
state space sets. 

Approximation of measurable functions by step functions. A step function 
from a measurable space (S,S) into R is a finite linear combination, with 
coefficients in R, of indicator functions of sets in S. A step function is a simple 
example of a measurable function from the measurable space into R. An 
essential tool in the study of measurable junctions from (S,S) into R is the fact 
that a measurable functionffrom S into R+ is the limit of a monotone increasing 
sequence f. of positive step functions. For example, define 

fn = (j- 1 )2-n on 

(l.l) 

on 

-
Iff is a measurable function from (S,S) into R,fis still the limit of a sequence of 
step functions by way of the definition 

fn = (j-l)2-n on 

(1.2) on 

on 

Under this definition, the sequence f. is monotone increasing, neglecting a finite 
number of terms, iff is lower bounded. 

2. Function measurability properties 

(a) Applications of transitivity. If fl,''',!h are measurable from (S,S) into a 
metric space S', and iffis measurable from (S'n,B(s'n) into R, thenf(fl>'''~) is 
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measurable from (S,S) into R. For example, if S'=R it follows that ltd, cfl (for c 
a constant), lIfl (if fl never vanishes), L f., Ilf., the pointwise maximum 
flv"'vfn, the pointwise minimum fll\"";jn are measurable whenever each 
functionfi is. The last two are also measurable when the functions are extended 
real valued. It can argued more directly that the pointwise supremum f = sup f. 
is measurable for a finite or countably infinite sequence f. of extended real 
valued measurable functions, by noting that {f>c} = U {f. >c }. This assertion of 
measurability is incorrect for uncountable collections of functions. 

(b) Sets defined by inequalities between extended real valued measurable 
functions. Iffl andh are measurable functions from a measurable space into R 
the sets {fl>h}, {f1:::f2}, and {fl=h} are measurable because (first set) 

{fl>h} =Urrational [{jj >r }n{h <r}], 

the second set is the complement of the first, and the third set is {fi:!,fl }n{jj~2}' 
A somewhat more sophisticated proof of measurability of these sets applies (a). 

(c) Completeness of a measure and function measurability. If f and g are 
functions from a complete measure space into a measurable space, and if 1=g 
almost everywhere, then if one of the functions is measurable, the other is also. 
Less trivial than this is the fact that if (S,S,A.) is a 0' finite measure space and if 
(S,S *,A. *) is the completed measure space, then if f is a measurable function 
from (S,S*) into R, there is a function g, measurable from (S,S) into Rand A.* 
almost everywhere equal to f, that is equal to f except on a subset of a A. null 
set. It is sufficient to prove this assertion for fpositive, because it is then trivial 
that the result is true for f negative, and the two results combine to give the 
result for arbitrary f. There is a function g as stated when f is the indicator 
function of a set in S*, because if A E S* there is a subset Ao of A, in S, and 
differing from A by a A. * null set. It follows that the assertion is true for an 
(S,S*) step function. It was pointed out above, see (1.1), that, in the general case 
of a rositive S * measurable functionf, f is the limit of an increasing sequence of 
(S,S ) step functions. The desired function g is the pointwise supremum of the 
corresponding sequence of (S,S) step functions. 

(d) Measurability of functions of several variables if one is fixed. If (SI ,SI) 
and (S2's2) are measurable spaces, if S = SIXS'2, if S = 0'(S lxS 2), and if 
f: (S]o~)-+j(SI ,S2) is a measurable function from (S,S) into R, then for each 
point SI of S I, the function f(s I ,.) is a measurable function from (S2's2) into R. In 
fact, this is true when f is the indicator function of a set in S according to 
Section 11.5, and therefore it is true whenf is a step function. It is sufficient to 
prove measurability for positive f; in that case apply the representation in (1.1) 
off as the limit of an increasing sequence of step functions. 
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3. Measurability and sequential convergence 

Iff. is a sequence of measurable functions from a measurable space (S,S) into R, 
it was pointed out in Section 2 that inff. and sup f. are measurable. It follows 
that the functions 

lim supf. = in~>] sUPn»fn, lim infj. = SUP»] infn» fn 

are measurable, the convergence set is measurable, and the restriction of the 
limit function to the convergence set is measurable on that set. 

More generally, it will now be proved that the last two assertions in the 
preceding sentence are true if the range space of the sequence f. is a complete 
metric space (S',d). For fixed m and n, the function s-[fn(s)Jm(s)] is a 
measurable function from S into the metric product space S '2. Since a metric 
space distance function is continuous, the function s-d{fn(s)Jm(s») from (S,S) 
into R is measurable, and therefore the supremum h) of these functions for nand 
mat leastj is a measurable function. The convergence set C of the sequencef. is 
measurable because C is the set on which the sequence h. has limit O. To prove 
that on C the limit functionf is measurable, it is sufficient to show that the set 
{s E C:f(s) E A'} is measurable whenever A' is a closed subset of S'. This 
measurability follows from the evaluation 

(3.1) {SE C:f(S)E A'} = {SE C: d'(r(s),A') =O}, 

since the distance from a point of S' to A' is a continuous function of the point 
and vanishes if and only if the point is in A'. 

4. Baire functions 

If B] is the class of Borel measurable functions from a metric space (S,d) into R, 
then 

(a) B] contains the continuous functions, and 

(b) B] is closed under sequential convergence, 

that is, the limit of a convergent (everywhere on S) sequence of functions in the 
class is itself in the class. Consider the classes of functions from S into R 
satisfying conditions (a) and (b). The intersection B2 of all these classes is a 
class satisfying conditions (a) and (b) and is the smallest such class; its 
members are the Bairefunctions. According to the following theorem, B] = B 2• 
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Theorem. A function from a metric space into R is a Baire function if and 
only if the function is Borel measurable. 

Proof. (The notation Bb B2, will be used as just defined.) 

(a) B2c B), because B) satisfies conditions (a) and (b) defining B2, and B2 is the 
minimum class satisfying these conditions. 

The converse will be proved in several steps. 

(b) If cp is a continuous function from R 2 into R, f and g are in B2, and f is 
continuous, then cp(f,g) is in B2, because the class of functions g for which this 
assertion is true contains the continuous functions and is closed under sequential 
convergence. 

(c) If cp is a continuous function from R2 into R, and f and g are in B2, then 
cp(f,g) is in B2 because the class of functionsffor which this is true contains the 
continuous functions according to (a) and is closed under sequential 
convergence. In particular if cp is a continuous function from R into R, and if f is 
in B2 then cp(f) is in B2. 

(d) The obvious induction proof shows that if cp is continuous from R into R, 
and iffb ... /n are in B2, thencp(f), ... /n) is in B2. Furthermore, the latter function 
is in B2 not only when cp is continuous but even for cp a Baire function from Rn 

into R, because the class of functions for which the assertion is true was just 
proved to contain the continuous functions and is closed under sequential 
convergence. 

(e) The class B3 of subsets of S whose indicator functions are in B2 is B(S). If A 
is a closed subset of S, the continuous functionfn: s ..... exp[-nd(s,A)] is in B2, and 
the sequence f. has limit lA. Thus B3 includes the closed sets. Moreover the 
class B3 is closed under monotone convergence and therefore is B(S). 

(f) B) = B2. Ifg E Bb consider the step functiongn from S into R defined by 

(4.1) 

= 0 elsewhere. 

The function gn is in B2 because it is a linear combination of a finite number of 
indicator functions of Borel subsets of S and therefore is a continuous function 
of these indicator functions. Since the sequence g. converges to g, the function g 
is in B2, and therefore B) c B2. The reverse inclusion was proved in (a). 
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5. Joint distributions 

Let (S,S,A.) be a finite measure space and let X"""XN be measurable functions 
from this space into a measurable space (S',S'). These functions determine a 
measure ').: on 0" (SW) by 

(5.1) '}.;(d) =A.{ s: [(x)(s), ... ,xNCs)] Ed:}, 

(This measure, the joint distribution of the given N functions, is almost 
exclusively applied in probabilistic contexts, in most of which A. is a probability 
measure and S' = R.) In particular, the (one-dimensional marginal) distribution 
of Xj is given by 

(5.2) ~'(A') = A.{s: xjCs) E A'} (A' E S'). 

Representations ofsets of measurable functions. Let X). ... ,XN be as above, 
but suppose for simplicity that S ' = R. The distribution of X" ... ,xN is a 
Lebesgue-Stieltjes measure on RN and, as determined by this measure, the 
coordinate functions on RN have the same joint distribution on R" as the given 
functions on S. In investigations in which only joint distributions of functions 
are involved, it is sometimes convenient to use these N coordinate functions on 
RN instead of the given N functions on S. 

6. Measures on function (coordinate) space 

Let V be a complete separable metric space, I be an arbitrary infinite set to be 
used as an index set and S be the space of all functions 00 from I into V. The 
space S is a coordinate space of dimensionality the cardinality of I. Denote by Xi 

the ith coordinate function, a function from S into V, defined by setting xi(oo) = 
oo(i). For example, if I is the set of strictly positive integers, and if V = R, the 
space S is countably infinite dimensional Euclidean space. The following 
discussion would not be simplified by supposing I to be only countably infinite, 
and it is important that this restriction not be imposed, because in the probability 
context of continuous parameter stochastic process theory the index set is 
commonly an interval ofR. Call a subset S. of S a finite dimensional measurable 
set based on the finite index set (i" ... ,in) if 

(6.1) 

where d' E B(Vn). The standard abbreviation will be used below, in which the 
notation for the set in (6.1) is shortened to {(XiI' ... ,Xin)E d'}. The class of subsets 
of S obtained when i), ... ,in are specified, but d' is allowed to vary in B(V n), is 
O"(XiI' ... ,Xin ). Denote by So the union of all these algebras of subsets of S, for all 
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finite index sets, that is, the algebra of subsets of S detennined by measurable 
conditions on finitely many coordinates. The class So is an algebra, but not a a 
algebra unless U is a singleton. 

Theorem (Kolmogorov). (Separable complete metric state space U, I an 
arbitrary infinite index set, S the space offunctions from I into U.) Let A be a 
positive finite valued set function, defined on the algebra So of finite 
dimensional measurable subsets of S, and suppose that A is countably additive 
on each a algebra of finite dimensional measurable sets based on a specified 
finite coordinate set. Then A is a measure on So, and therefore has an extension 
to a measure on a(So) = a(xi> i E l). 

The hypotheses imply that A is finitely additive on So. 
The context of this theorem is a generalization of that encountered in the 

second mathematical model for coin tossing studied in Sections 111.9 and IV.14, 
in which case U consisted of two points. 

Proof. The fact that each product space un is a complete separable metric space 
and that therefore (Prohorov theorem) every finite measure on un has the 
property that the measure of a Borel subset is the supremum of the measures of 
its compact subsets will be used. To show that A is a measure on So, it suffices 
to show that if S. is a decreasing sequence of sets in So, with empty intersection, 
then lim A(S.) = O. This will be shown by showing that if S. is a decreasing 
sequence of sets in So and A(Sn) > £ > 0 for all n, then the sequence S. must 
have a nonempty intersection. By hypothesis S'I is defined by conditions on co­
ordinates with some finite index set, say Sn = t (xi> i E In) E A 'n }, where In is 
an index set containing an points and d. 'n E B(U an). The distribution of 
{Xj, i E -4J} is a Borel measure on U an and therefore there is a compact subset 
A'~ of A ~ for which 

(6.2) 

Define Snl as the subset of Sn on the left in (6.2), and define Sn2= SI1("\"nSnl' 
Then A(Sn2) >£/2 and S.2 is a decreasing sequence of nonempty sets in So 
detennined by conditions on values of the functions in S at compact subsets of 
powers of U. This is precisely the context discussed in Section 11.2 
(Observation), where it was shown that the sequence 5'.2 must have a nonempty 
intersection. Hence the sequence S. has a nonempty intersection, as was to be 
proved. 

7. Applications of coordinate space measures 

To a distribution on RN, that is, to a Lebesgue-Stieltjes measure on B(R N), 
correspond N functions, the coordinate functions of RN, with that joint 
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distribution. In other words, the statement "let Xl , ... ,XN be measurable functions 
with distribution ... " is never vacuous; the situation can be realized by 
coordinate functions on RN Theorem 6 justifies the corresponding statement for 
infinitely many functions with a complete metric separable state space in the 
following sense. Suppose a tinite measure space, together with an infinite family 
of measurable functions from that space into a complete separable metric space 
U, is to be constructed, and that each finite set of the functions is to have a 
prescribed joint distribution. According to Theorem 6, such a family of 
functions can be realized as the family of coordinate functions on a coordinate 
space if the prescribed joint distributions are mutually consistent. "Mutually 
consistent" means that the joint distributions of finite sets of the functions have 
the property that if finitely many coordinate functions f. have prescribed joint 
distribution v, the joint distribution prescribed for a subset of these functions is 
the corresponding marginal distribution of v. In fact, if this is so, these 
prescribed distributions define a set function A on the a algebra So in Theorem 
6, with the properties stated in that theorem, and this set function is then a 
measure, which can be extended to a measure on a(So). The coordinate 
functions of the measure space obtained in this way have the prescribed joint 
distributions. 

Observe that all these finite dimensional distributions need not be defined 
explicitly. For example, if the index set is the set of strictly positive integers, the 
state space is R, and x. is the sequence of coordinate functions ofRxRx···, it is 
sufficient to prescribe, for n ~ 1, the distribution of XI> ... ,Xn , prescribing this 
distribution in such a way that it induces as marginal distribution the prescribed 
distribution of XI> ... ,Xn-l- The distribution prescribed for an arbitrary k-tuple of 
the coordinate functions is then to be the corresponding k-dimensional marginal 
distribution of Xl , ••. ,xn, for n so large that the largest of the k-tuple of indices is 
at most n. 

Example (a). (Arbitrary index set) If the state space U is the interval [0,1] of 
R and if, for n ~ 1, the specified distribution of every n-tuple of coordinate 
functions is n-dimensional Lebesgue measure on [0, l]n, then these finite 
dimensional measures are mutually consistent, and Theorem 6 yields Lebesgue 
measure on the unit "cube" of dimensionality the (not necessarily countable) 
cardinality of I. 

Example (b). Let the index set I be the set of strictly positive integers, N be a 
strictly positive integer, the state space U be the set I, ... ,N, PI> ... ,pN be positive 
numbers with sum 1, and (Pi)) be an NxN stochastic matrix. According to 
Theorem 6 there is a probability measure on the space S of infinite sequences of 
the integers I, ... ,N, determined by (see Section III.7(b)) 

(7.1) 
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8. Mutually independent random variables on a 
probability space 

Mutual independence of measurable sets and of a algebras of measurable sets 
was defined in Section 111.6, and independence relations involving random 
variables will now be reduced to independence relations between a algebras of 
sets. Each function x from a probability space into a measurable space deter­
mines the a algebra a(x) defined in Section 1, and, more generally, a family x. 
of such functions determines a a algebra a(x.). An independence statement in­
volving random variables is to be interpreted as that statement with the random 
variables replaced by the corresponding a algebras generated by the random 
variables. Thus, families x. and y. of random variables are independent of each 
other if that is true of their a algebras a(x.) and a(y.), and so on. If xI, ... ,xn are 
measurable functions from a probability space (S,S,P) into a measurable space 
(S "S'), these functions are mutually independent, by definition, if and only if 
the a algebras a(xI), ... ,a(xn) are mutually independent, that is, if and only if 

(8.1) P{XIEAi, ... ,xnEA~}=P{XIE Ai}"'P{XnE A~} (AiES',i=I, ... ,n). 

In particular, measurable sets are mutually independent if and only if their 
indicator functions are mutually independent. 

The condition (8.1) is satisfied if it is satisfied for sets Ai' generating the a al­
gebra S'. Thus if (S',S') is (R,B(R») in (8.1), it is sufficient if, for each i the sets 
Ai' run through the intervals of the form (-oo,b], and it is in this form that the 
independence definition is sometimes formulated. 

Let {Xi, i E I} be a family of mutually independent measurable functions 
("random variables") from a probability space (S,S) into a measurable space 
(S,s'). Let 11 and 12 be disjoint subsets of I. Then a(xi, i Ell) and a(xj, i E 12) 
are mutually independent sub a algebras of S. Therefore, if x and yare random 
variables from (S,S) into some state space and are measurable respectively with 
respect to the first and second of these sub a algebras, then these two random 
variables are mutually independent. This statement can be stated more 
intuitively (but less precisely) by stating that x and yare mutually independent 
because they are defined respectively in terms of the collections (Xi, i E h) and 
(Xi, i E h), which are independent collections. 

In particular, if x. is a sequence of mutually independent random variables 
with state space R, y is a Borel measurable function of some of these random 
variables, and z is a Borel measurable function of others, it follows that y and z 
are mutually independent. 

If XI>"',XN are mutually independent, their joint distribution is the product of 
the measures of the indi vidual distributions. This property is the content of (8.1). 
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9. Application of independence: the 0-1 law 

The following two elementary facts about a algebras of measurable sets of a 
probability space (S,S,P) will be needed. 

(a) A sub a algebra of S is independent of itself if and only if each of its sets is 
either null or the complement of a null set. In fact, a measurable set A is 
independent of itself if and only if P {A} = P{ A} 2, that is, if and only if P {A} is 
o or 1, and two sets, each independent of itself, are mutually independent. 

(b) If JB is a sub a algebra of S containing only null sets and theJr 
complements, and if x is a random variable measurable from (S,JB,P) into R, 
then x is equal almost everywhere to a constant. In fact, if c is a constant the set 
{x < c} must have probability 0 or 1, and this probability is a monotone 
increasing function of c. If this probability is 0 for all finite c then x =+00 almost 
everywhere. If this probability is 1 for all finite c then x =-00 almost everywhere. 
Aside from these two cases there must be a point s at which the monotone 
function jumps from 0 to 1 and then x=s almost everywhere, because P{x = s} = 
lim£J-O P {s - £ < x < s + £ } . 

Theorem. (0-1 law) Le t F. be an increasing sequence of a algebras of 
measurable sets of a probability space (S,S,P). Let G. be a decreasing sequence 
ofa algebras of measurable sets of the space, with G l c a(U F.). Suppose that, 
for each value of n, the two a algebras Fn and Gn are mutually independent. 
Then n G. contains only null sets and their complements. 

In intuitive language: for each value of n, Fn is the past through time n, Gn 
is the future strictly after time n, and by hypothesis the two are mutually 
independent. The theorem asserts that in the given context, an event in the 
distant future is either sure to occur or sure not to occur. 

Proof. If A EnG. then, since A E a(U F.), there is (Theorem IV.3(b)), for 
every strictly positive integer k, a set Ak in some Fn, depending on k, with 
P{AMk) < 11k. Since the sets Ak and A are mutually independent, P{AMk} = 
P{A} P{AkL and therefore (k~oo), P{A} = P{A }2, as was to be proved. 

10. Applications of the 0-11aw 

In each of the following applications, x. is a sequence of mutually independent 
finite valued random variables, and the a algebras 

are therefore mutually independent. The a algebra n G. is the tail a algebra, or 
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tail of x •. The hypotheses of the 0-1 law are obviously satisfied. Hence a 
measurable set (alias event) in the tail of the sequence must be either a null set 
or the complement of a null set, and a measurable function (alias random 
variable) measurable with respect to this tail, must be almost everywhere 
constant. 

Application (a). The convergence of the series Lx. depends only on the tail 
of x., and therefore the series converges either almost everywhere or almost 
nowhere on S. 

Application (b). If A. is an infinite sequence of Borel subsets of R then 

(10.1) p{ lim infn~oo {xn E An} } = 0 or I, 

P{limsuPn~oo{xn E An}} = Oor I, 

because the sets in (l 0.1) are tail sets. In colloquial language these probabilities 
are respectively the probabilities that Xn enters the set An only finitely often, and 
that Xn enters the set An infinitely often. 

Application (c) The random variables 

(10.2) 

are measurable with respect to the tail (j algebra because, say for the first, 

(l0.3) 

for all m. Hence the inferior and superior limits in (10.2) are almost everywhere 
constant. The two constants are equal, with value say c, not necessarily finite, if 
and only if the sequence of averages converges almost surely to c. Thus the 
sequence of averages converges either almost everywhere on S (to a constant 
function) or almost nowhere on S. 

11. A pseudometric for real valued measurable functions 
on a measure space 

Let (S,S,A) be a measure space, denote by S,'_the class of almost everywhere 
finite valued measurable functions from S intoR, and denote by S, the subclass 
of functions fin S,' for which A{ lf1 >f} is finite for sufficiently large f, in which 
case this measure decreases when f increases, with limit 0 when f ~+oo. The 
class S,' is linear in the sense that a linear combination of members of the class 
coincides, on the set of finiteness of those members, with another member of the 
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class. In the same sense, the subclass £ is also linear; it is obviously closed 
under multiplication by constants, and is closed under summation because 

The norm of a function in £'. If f is in £, the inequality A{!If > E} < E is 
satisfied for sufficiently large values of E, and if satisfied for one value of E it is 
satisfied for all larger values. Define 

(11.1) IjI", = inf{ E: A{!If > E} < d iff E S, 

= +00 if f E S'-S, 

and define 

(11.2) d",if,g) = If-gl"" d",'(f,g)= If-gl"'/..1. 

Here the norm !fI", is the convergence in measure norm off. The following three 
properties of this norm will be needed. 

(a) A{[fl > IjI",} ~ 1fI",. In fact the inequality is trivial if the right-hand side is 
+00; if fhas finite norm and if E > IjI", then A {If I > E}< E. 

(b) IjI", = 0 if and only if f = 0 almost everywhere because, according to (a), 
zero norm implies thatf= 0 almost everywhere, and the converse is obvious. 

(c) Finite or not, the norm is subadditive: 

(1l.3) 

In fact this inequality is trivial unless f and g have finite norms; if they do, the 
inequalities Ef> IjI", and Eg > Igl", imply 

(11.4 ) 

Hence If + gl", ~ Ef+ Eg and therefore (11.3) is true. Properties (a), (b), and (c) 
imply that d", satisfies the conditions for a pseudometric on the space £', aside 
from the fact that it may take on the value +00, and that therefore d",' satisfies the 
conditions for a pseudometric on this space. The d",' distance between a function 
of infinite norm and one of finite norm is 1. 

In Section 111.13, the notations d",' and d", referred to distance between sets; 
here the notation refers to distance between functions. According to Theorem 
111.14, the class S is a complete pseudometric space under the distance 
definition d",'(A,B) = A(AM) 1..1 , and the subclass of sets of finite measure is a 
closed subset of this space. Under the two uses of the notation d",', d",'(A,B) = 
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d,,'(IA,IB), and d,,(A,B) = d,,(IA,IB) if A(AL\B) ::; 1. Thus it should cause no 
confusion if the notations d,,' and d" are used both for pseudometrics on S' and 
S. The role of the class of sets of finite measure in the pseudometric of 
measurable sets is taken in the present context by the class .s. of measurable 
functions of finite norm. 

12. Convergence in measure 
(Notation as in Section 11) 

A sequence f. of functions in S: converges in measure with limit f in S: if there is 
convergence to fin the d,,' norm. The limit function is in .s.'-£ [[] if and only if 
all but a finite number of the functions are in .s.'-£ [S]. Written out, the 
sequence converges in measure to f if and only if, for every strictly positive E, 

lim A{!f-f.1 > E} = 0; the sequence is a Cauchy sequence for convergence in 
measure, that is, a d,,' Cauchy sequence, if and only if, for every strictly positive 
E, Iimm,n-HooA{!fm-fnl > E} = O. 

Theorem (Measure space (5,S,A)). The space c.s.',d,,') is a complete 
pseudometric space, and the subset .s. is a closed subset of .s.' at distance Ifrom 
.s.'- £. The space (£,d,,) is separable if A is a finite measure and if the cr algebra 
S is generated up to null sets by a countable subcollection of sets. 

It makes no difference in the last assertion of the theorem whether d" or d,,' 
is used as the pseudo metric on £. 

Proof. If f. is a d,,' Cauchy sequence, choose al = I < a2 < ... successi vely so 
large that A{!fn-fakl > 2-k } .::;. 2-k for n >ak. Then A{ I fak+ I-fak I > 2-k } ::; 2-k, 
and therefore (Cantelli's theorem), except for the points of a null set, 
Ifak+l-fak I ~ 2-k for sufficiently large k, depending on the point of 5. Thus 
the sequence fa is almost everywhere convergent to some function f, and 
A{ If- fak I > 2-k'+1} ::; 2-hl. The sequencef. converges in measure toj, because 
for 2-k+1 < £/2 and n > ak, 

(12.1) A{ !f-fnl > E} ::; A{ If-fa I> £/2} + A{!fa -fnl > £/2}::; 2-h1 + 2-k. 
k k 

Thus c.s.',d,,') is a complete pseudometric space. Since every function in £ is at 
distance I from .s.'-£, the class £ is necessarily closed and the space £ with 
pseudometric, the restriction of d,,' (or equivalently of d,,) is complete. In the 
following, restrictions of d,,: and d" will not have special notation. 

To prove separability of c.s.,d,.J when A is a finite measure and S is countably 
generated up to null sets, observe first that the space (S,d,,) is separable 
according to Theorem IV.3(d). It follows that the space of indicator functions of 
sets in S is separable in the d" pseudometric, and therefore the space of rational 
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valued step functions is separable in this pseudometric. Now suppose thatfis in 
~ and define fn by 0.2). Then fn is a rational valued step function and the 
sequence f. converges in measure to f. It follows that (ii,d,.J is separable. 

13. Convergence in measure vs. almost everywhere 
convergence 

The following example shows that convergence in measure does not imply 
almost everywhere convergence, but Theorem 13 shows that the two types of 
convergence are intimately related. 

Example. Order the indicator functions of the right semiclosed subintervals 
(jln,(j+1)ln] of R, with) = O, ... ,n-l and n = 1,2, ... into a sequence f.. Let 'A be 
Lebesgue measure on B( (0,1]). Then f. is a bounded sequence of measurable 
functions from (0,1] into R and, whatever the ordering of the indicator 
functions, the limits inferior and superior of f. are identically ° and 1, 
respectively, although the sequencef. converges in 'A measure to 0. 

Theorem. Let f. be a sequence of measurable functions from a measure 
space (S,§,'A) into R. 

(a) Iff. converges in measure to afunctionf, then some subsequence converges 
almost everywhere to f 

(b) If 'A is a finite measure and iff. is almost everywhere convergent to an 
almost everywhere finite valued measurable function f, then f. converges in 
measure to f. 

Proof of (a). Choose al = 1 < a2 < ... successively so large that 

(13.1) 

According to Cantelli's theorem, except possibly for the points of a null set, 
If a - fl :5 11k for all sufficiently large k, and therefore fa converges to f k • 
almost everywhere. 

Proof of (b). Choose £ > 0. In the inclusion relation 

DO 

(13.2) Ufn-j] > £} c U {If.-fl > £}, n 

the union on the right decreases to a null set when n~oo. Hence the measure of 
the set on the left tends to 0, as was to be proved. 
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14. Almost everywhere convergence vs. uniform 
convergence 

Theorem (Egoroff). Let f. be an amost everywhere convergent sequence of 
measurable functions from a finite measure space (S,S,A) into a metric space 
(S ',d). Then to every strictly positive E corresponds a subset A€ of S, with 
A,( S-A€) < E, and with the property that the sequence f. is uniformly convergent 
onA€. 

Proof. Letfbe an almost everywhere limit of the sequence f., and for strictly 
positive integers m and n, define A(m,n) = {s: sUPk~m d'(r(s)J/J.s») > lin}. For 
each value of n, A(o,n) is a decreasing sequence of sets, with intersection a null 
set. Choose an increasing sequence m. of integers satisfying A(A(mn,n») < rn 
for n ~ 1, a~d define Bj = U;;'=j A(mn,n). For each value of j , it follows that 
A,(Bj) < TJ+l, and on S-Bj the sequence f. converges uniformly, because 
d(j(S)!k(S») ::;; lin when k ~ mn and s is in this set. 

15. Function measurability vs. continuity 

Theorem (Lusin). Let f be a measurable function from a complete separable 
metric finite measure space (S,B(S),A) into a separable metric space S '. If 
E> 0, there is a compact subset A€ ofS, with A,(S-A€) < E, and with the property 
that the restriction off to A€ is continuous. 

Proof. Let B~ be an enumeration of the balls in S' of rational radius, centered at 
the points of some countable dense subset of S'. The set f -I (Bn') is a 
measurable subset of S and, according to Theorem IVA, is contained in an 
open subset Gn of S, satisfying the inequality A(Gn- f-I(B;;)) < Ern. Observe 
that the setf-I(B~) is relatively open in every subset of Gnuf-I(B~) because 
r l (B~) is the intersection of such a subset with Gn . Define 

Then A,(S-A€ *) < £ and, according to Prohorov's theorem, a subset A€ of A€ * can 
be chosen to be compact, with A(S-A€) < £. For every value of n, f -I (B~) is 
relatively open in A€. Hence the inverse image underf of every open subset of S' 
is relatively open in A€, that is, the restriction offtoA€ * is continuous. 
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16. Measurable functions as approximated by 
continuous functions 

Theorem. Let (S,B*(S)) .. ) be a metric finite measure space, with B*(S) the 
domain of the completion A of a measure on B(S), and let f be a measurable 
function from this space into R. There are then 

(a) a sequence of continuous functions from S into R with almost everywhere 
limitf; 

(b) a sequence f. of upper semicontinuous functions from S into Rfor which 

fl-::'h-::'''·-::'fonR,limf·=fa.e.; 

(c) a sequence f." of lower semicontinuousfunctionsfrom S, into Rfor which 

fl?h? .. · ?f on R, limf. = f a.e. 

This theorem generalizes Theorem IV.3(c) in the fo\1owing sense. Suppose that 
f = IA in the present theorem, let f. be a decreasing sequence of lower 
semicontinuous functions with almost everywhere limit lA, and define An = 
lfn+ 1 In> I}. Then the sequence A. is a decreasing sequence of open sets, and 
lim A(A.) = A(A). Thus part (c) of the present theorem yields half of Theorem 
IV.3(c); part (b) of the present theorem yields the other half of Theorem 
IV.3(c). 

Proof of (a). Let r be the class of measurable functions f from S into R for 
which (a) is true. This class contains the continuous functions, and it wi\1 now 
be shown that this class is closed under pointwise sequential convergence. To 
prove this closure, suppose that g. is a convergent sequence of functions in r, 
with almost everywhere limit g, finite valued almost everywhere. According to 
Egoroffs theorem, the fact that gn is in r implies that there is a continuous 
function hn for which Ihn-gnl < Un except possibly at the points of a setAn of 
measure Tn. An application of Cante\1i's theorem shows that the sequence h. 
has limit g almost everywhere on S, and therefore g is in r. Thus r is a class of 
functions containing the continuous functions and closed under pointwise 
sequential convergence. It follows that r contains the Baire functions, that is 
(Theorem 4) r contains the Borel measurable functions. Finally, if f is 
measurable from S into R, there is (Section 2(c)) a finite valued Borel 
measurable function g, equal to f almost everywhere. Since g is in r, the 
functionfis also in r, as was to be proved. 

Proof of (b) and (c). Iff. is a sequence of continuous functions with almost 
everywhere limitf, the almost everywhere equality 
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f = lim supf. = liIIln~oo ifn vfn+1 v···) 

exhibits f as the almost everywhere limit of a decreasing sequence of functions 
from S into ii+. Each member gn = fn vfn+1 v··· of this decreasing sequence is 
itself the limit of an increasing sequence of continuous functions, the sequence 
of partial maxima, and is therefore lower semicontinuous. Finally let Hm be an 
open set of measure at most 11m that is a superset of every null set {gn ~ fn}, 
and define hm = +00 on H1n···rJlm , but hm = 0 elsewhere on S. Then the 
sequence g.+h. is a decreasing sequence of lower semicontinuous functions, 
majorizingfand with almost everywhere limitf Thus (c) is true. To prove (b), 
apply (c) to -f 

17. Essential supremum and infimum of 
a measurable function 

Iffis a measurable function from a measure space (S,S,A) into ii, ess supsf, the 
essential supremum off, also called the supremum off neglecting null sets, is the 
supremum of constants c for which {f~c} is nonnull. Thus f ~ ess supS f almost 
everywhere on S but this almost everywhere inequality is true of no smaller 
constant. The essential irifimum off, ess infs f, is defined as -ess sups (-fl. 

18. Essential supremum and infimum of a collection of 
measurable functions 

If r is a collection of measurable functions from a measure space into ii, the 
pointwise supremum of r, that is, the function defined at each point s as 
sup{j{s): fe n, need not be measurable unless r is countable. A looser 
supremum of r. described in the following theorem, avoids this measurability 
difficulty at the cost of ignoring null sets. 

Theorem. Let r be a class of measurable functions from a 0" finite measure 
space (S,S,A) into ii. There is then a measurable function g, uniquely 
determined up to null sets by the two properties that iff is in r then g ~f almost 
everywhere, and if h is another measurable function with this property, then 
h ~ g almost everywhere. One choice of g is the supremum of a suitably chosen 
countable subset of r. 

The function g is the essential supremum, or essential upper envelope, or 
essential order supremum of r. 

Proof. It is trivial that two functions with.the properties ascribed to the essential 
supremum are equal almost everywhere and that a measurable function equal 
almost everywhere to a function with those pronerties also has the properties. 
Thus "the essential supremum" is unique only up to null sets. 
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In proving that there is a function with these properties, it can be assumed 
without loss of generality that r contains the pointwise maximum of every finite 
set of its functions, because the class of all such finite maxima will have the 
same essential supremum, if any, as the original class. Moreover a countable 
supremum of members of the new class is also a countable supremum of 
members of the original class. Furthermore it can be supposed that the members 
of r have a common finite constant upper bound, because the problem is an 
order problem, and each function u of r can be replaced by arctan u to obtain a 
common upper bound without changing the order relations of the functions. 
Finally, it can be supposed that A. is a finite measure, because if S is the disjunct 
union US. of a sequence of sets of strictly positive finite measure, the measure 
A.' defined by 

is a finite measure with the same measurable sets and null sets as A.. Choose a 
member fl of r. If there is a function hI in r with A.{hl ~fl+l}~l, define 
h=flvhl . If there is no such function hb stop. If there is a function hb and if 
there is a function h2 in r, with A.{ h2 ~h + I} ~1, defineh = hvh2. If there is no 
such function, stop, .... This procedure must finally stop or there would be a 
monotone increasing (neglecting null sets) sequence of functions in r, each 
exceeding its predecessor by at least 1 on a set of measure ~ 1. The limit 
superior of this sequence of sets, that is the class of points in infinitely many of 
the sets, has measure ~ 1 (Theorem 111.8), and at each point of this limit 
superior the class r is unbounded, contrary to fact. Hence the procedure must 
end with a finite monotone increasing sequence, say fl' .. .tal. Repeat this 
procedure, starting with fa!, but with the number 1 replaced by 112, next by 113, 
and so on, to obtain an increasing finite or infinite sequence fl .fa!, faz, .... 
Define ao= 1. Under these definitions,fa ~fa , and the difference is at least 
11k on a set of measure at least 11k, but iliere itAo function in r exceeding fa 
by at least 11k on a set of measure at least 11k. If the procedure stops, endin~ 
withfa k' then for n ~1 there is no function in r exceeding fa by at least lin on 
a set of measure ~ lin. Hence there is no function h in r strfctly exceeding fa k 

on a set of strictly positive measure, and fak is the required function g, the 
pointwise supremum of a finite subset of r. If the procedure never stops, the 
limit of the sequence fa. is the required function g, the pointwise supremum of a 
countable subset of r. 

The essential infimum ofr, also called the essential lower envelope ofr, is 
defined as the negative of the essential upper envelope of -r. 
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Integration 

1. The integral of a positive step function on a measure 
space (S,§,A) 

A positive step functionfcan be written uniquely in the formf= La.IA., a linear 
combination, with positive pairwise distinct coefficients, of indicator functions 
of a finite disjunct sequence of measurable sets. Define the integral off on S 
with respect to A., using this representation off, by 

(1.1) Sf dA. = La.~A.). 
S 

Observe that if equality of coefficients is allowed in the representation of f, the 
value of the integral, as just defined, is still given by the sum on the right in 
(1.1 ). 

If f = L b.ls. is a step function, with each bj positive, the integral off, 
defined in the preceding paragraph, will now be shown to be equal to Lb.~B.). 
If C. is a finite disjunct sequence of measurable sets, chosen in such a way that 
each set Bm is a union of sets in C., then 

(l.2) 

and therefore 

(1.3) SfdA. 
s 

as asserted. 
It will frequently be convenient, especially in undisplayed text, to write A[f] 

for the integral with respect to a measure A., of a function f on a space. 
The class of integrands whose integrals are defined will be extended far 

beyond the positive step functions, but proofs in integration theory are 
frequently based on properties of integrals of these very special functions. Step 
functions play the same role in integration with respect to measures that linear 
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combinations of indicator functions of intervals play in the theory of the 
Riemann integral on intervals of R (see Section 20). 

If f and g are positive step functions, thenf:5: g implies the same inequality 
for their integrals, and if a and b are positive constants, 

(04) J (af+bg) dA= a J f dA + b J g dA. 

s s S 
In fact these two assertions become trivial if the partitions of S III 

representations off and g are combined into a common partition. 

2. The integral of a positive function 

Iffis a measurable function from S into R+, define 

(2.1) J f dA = sup { J g dA: g :5:.f, g is a positive step function} , 

S S 
and if A is a measurable set, define the integral off on A by 

(2.2) J f dA = J flA dA. 

A S 
Observe that if the measure space (S,S,A) is replaced by the measure space 
(A,SA,AA) consisting of a setA in S, the cr algebra SA of subsets of A in S, and 
the restriction 'AA of A to SA, the integral on this measure space of the restriction 
to A of a measurable function f from A toR+ is equal to the integral off on A. 
Thus, for positive functions, it is no more general to discuss integration of 
functions on S than integration of functions on a measurable subset of S, in the 
sense that in both cases one can consider the discussion as one of integration of 
functions with domain a measure space. Since the integration of not necessarily 
positive functions is based on that of positive functions, there is no reason to 
derive integration properties for functions defined on subsets of S rather than 
functions defined on S. 

It is trivial from (2.1) that inequality f:5:. g for positive functions implies the 
same inequality for their integrals. It is almost as trivial that for given f the set 
function of A defined by (2.2) is additive. In fact if A and B are disjoint 
measurable sets with union C, let a., ~., and y. be sequences of positive step 
functions majorized respectively by flA,flB, andflc, with 

(2.3) lim A(a.] = A(f1A], lim A(~.] = A(f1B], lim A(y.] = A(f1c]. 

Replace Yn by Ynv(an+~)' and then replace an and ~n by YnlA and YnlB 
respectively. These changes can only increase the functions changed, without 
negating the conditions imposed on the sequences. After these changes have 
been made, Yn = an+~' and the stated additivity of the integral as a function of 
the integration set follows from the additivity stated in (104) when the integrand 
is a positive step function. 
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3. Integration to the limit for monotone increasing 
sequences of positive functions 

The following theorem is the basic theorem on going to the limit under the sign 
of integration, to which the other theorems legitimizing the limit procedure will 
be reduced. 

Theorem (Beppo-Levi). Let f. be an increasing sequence of measurable 
functions from a measure space (S,S).,) into R:+, with limit f Then 

(3.1) lim Jf.dA- = JfdA-. 

s S 
Proof. Since the sequence f. is monotone increasing and is majorized by f, )t)S 
trivial that the limit in (3.1) exists and is at most the value of the integral on the 
right. If the limit on the left side of (3.1) is +00, the theorem is therefore trivial. 
Thus it will be supposed, in proving (3.1), that the limit in (3.1) is finite. 

(a) Proof of (3.1) whenfis a positive constant function c. If c=O, (3.1) is 
trivial. If c > 0, choose c' with 0 < c' < c. Then 

(3.2) JfdA-;;::: JfndA- ~ Jfn dA ;;::: c'A{fn~C'}. 
S S ifna-'} 

Since the last term in (3.2) tends to the limit C'A{S} as n increases, and since c' 
can be taken arbitrarily close to c, 

(3.3) J fdA;;::: lim J f· dA ;;::: c/J..S) = J f dA, 

S S S 
as was to be proved under (a). 

(b) Proof of (3.1) whenfis a step function. Whenfis a step function, an appli­
cation of the result in (a) to the restriction of f to each of the sets in a 
representation of fyields (3.1). 

(c) Proof in the general case. Choose a positive step function gn in such a way 
that gn -5.fn and AUn] -5. A[gn1 + lin. It can be assumed that g. is an increasing 
sequence, replacing gn by g)V"'vgn if necessary, to achieve monotonicity. If g 
is a positive step function and g -5. f, the sequence gAg. is an increasing 
sequence of positive step functions with limit the step function g, and it follows 
from (b) that 

(3.4) J g dA = lim J gAg. dA -5. lim J g. dA = lim J f. dA. 

S S S S 
The limit in (3.1) is therefore at least A[g], and therefore at least the right side of 
(3.1). It has already been noted that the reverse inequality is trivial. 
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Linearity of the function.f-+A{j] for f ~ O. To prove (1.4) for positive 
constants a and b and positive measurable functions, it need only be remarked 
that in view of the Beppo-Levi theorem, iff. and g. are increasing sequences of 
positive step functions with respective limits f and g (see Section V.l), then the 
fact that (1.4) is true for fn and gn implies that the equality is true for f and g. 

4. Final definition of the integral 

Consider an arbitrary measurable function from (S,S,A) into R. The function can 
be written in many ways as the difference between two measurable functions 
from S into R+, never simultaneously +00, for example f = f+ - r where 

f+ =jvO, f- = (-f>vO. 

This representation of f as a difference between two positive functions never 
simultaneously +00 minimizes those two functions because iff = g- h is such a 
representation, then it is trivial that fvO :::; g and (-j)vO :::; h. If either f + or f -
has a finite integral, the integral offis defined by 

(4.1) ff dA = ff+dA - ff- dA. 

s s S 
If, say, f+ has a finite integral and f112 is a representation of! as the difference 
between two positive measurable functions simultaneously +00 on at most a null 
set, for which either It or h has a finite integral, then f + +h= f - +fl almost 
everywhere and therefore fl must have a finite integral and (4.2) is also true for 
the representation off in terms offl andh : 

(4.2) f f dA = fit liA - f h liA. 
s s S 

If )f1 has a finite integral, that is, iff + and f- have finite integrals, then f is 
integrable. By definition a positive G; +00) measurable function can always be 
integrated, even though it is not called integrable unless the integral is finite. 

The integral off over a measurable set A. This integral is defined by (2.2) 
when the integral of flA over S is well defined. It is trivial that the integral of 
flA over S is well defined if and only if the integral of the restriction off to A is 
well defined on the measure space (A,SA,AA) (notation as in the paragraph 
following (2.2», and that if these integrals are well defined they are equal. 

According to the definition of an integral, iff is a function that is identically 
+00 on a measurable subset of S, the integral of f on that set is well defined, 
equal to 0 if the set is null, equal to +00 otherwise. It follows that if f has an 
integral over the whole space and 1=+00 on a set of strictly positive measure, 
then the integral off over the whole space is +00. 
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Integrands not defined on null sets. If the measure involved is complete, an 
integrand can be changed arbitrarily on a null set without affecting 
measurability of the integrand, its integrability, or the value of the integral if 
there is integrability. In view of this fact, integrands will be allowed that are not 
defined on some null set of the integration domain, under either the convention 
that the integration domain is decreased to the domain of definition, of the 
integrand, or that the integrand is defined (arbitrarily) where it is not already 
defined. If the measure is not complete and the integrand is not defined on a 
subset of a null set, the integration is treated as if the measure has been 
completed. 

Notation. It is sometimes convenient to write an integral in an expanded 
form, in which the integrand's argument is explicit, writing 

instead of 

f f(s) IJ..ds) 

S 

f f elA or A[t]. 

S 
The notation E{f} (read "expectation off') is commonly used for this integral 
when Il(S) = 1, that is, when the measure space is a probability space. 

Basic integration properties. All functions involved in the following list of 
properties are supposed measurable. 

(a) If f ~ 0 almost everywhere, then A[t] = 0 implies thatf= 0 almost 
everywhere. 

(b) If f is integrable, then If I < +00 almost everywhere, and the inequality 
Ig I ~ If I implies that g is also integrable. 

(c) Iff and g are integrable and if a and b are constants, then af+bg is 
integrable, and (1.4) is true. 

(d) Iff and g are integrable and f $. g almost everyWhere, then A(f] ~ A.[g]. In 
particular, 

(4.3) I JfelAl $. J!fldA 
s s 

iff is integrable. 

(e) Iff is measurable and if <!l is a monotone increasing function from R+ into 
R+, then 

(4.4) J<!l(!fI)dA ~ I J<!l(c)elA = <!l(c)A{lfl~c}. 
S { fr~} 
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In particular, if f ~ 0, 

(4.5) f f dA ~ CA.{f~ c}. 

S 

Assertion (a) is true because 

0= ffdA~ ffdA.~ A.{f~1In}ln, and {f>0}=u1 {f~lIn}. 
S {f;z.lln} 

The other assertions need no comment. 

Integration of complex valued functions. The definition of measurability 
covers functions from a measure space into the complex plane: such a function 
f = fl+if2 is measurable if and only if its real part g{f and its imaginary part 5f 
are. The functionfis defined as integrable when g{f and 5f are integrable, and 
in that case (definition), 

f f dA = f g{f dA + i f 5f dA. 
S S S 

The linearity property (c) with complex constants a and b is true for complex 
integrands, because it is true for real integrands. Inequality (4.3) is true for 
complex valued functions, because if c is a complex number of modulus 1, 
chosen to make real and positive the product of c and the value of the integral 
on the left in (4.3), 

(4.6) Iff dA I = f cf dA. = f g{(cf)) dA.::; f ifl dA.. 

S s S S 
In the following, integrands will be real valued unless the contrary is stated 
explicitly. 

The class LP(S,S,A.). This class, for 1 ::; p <+00, is the class of measurable 
functionsffor which If( is integrable; for p=+oo the class is defined as the class 
of essentially bounded measurable functions, that is those measurable functions 
f for which there is a constant c such that If I .::; c almost everywhere. The 
identification of space, 0' algebra and measurtp will be omitted from the notation 
if the context is clear. The notation (read "L norm off", and when p = +00, 

"essential norm off") 

= ( f IfIP dA.) yIp (p < +00), 

S 
(4.7) 

= ess sups Ii I (p = +00), 
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is used for functions in e. A family of functions in e is said to be e bounded 
if the supremum of the set of e norms of the functions is finite. The class If is 
linear: it is trivial that a constant multiple of a function in the class is also in the 
class, and in view of the inequality 

(4.8) (a+b'f::; '2P(aPvbP) ::; 2J'(aP+bP) 

for positive numbers a and b, the sum of two functions in the class is in the 
class. 

e and the convergence in measure norm. lffis in LP for some finite value 
of p, it is obvious that the convergence in measure norm IjI" is finite. Thus the 
d" pseudometric is applicable to r!. 

The class LP for complex valued functions is the class of measurable 
complex valued functionsfwith ifl in the class e of real functions, for which it 
is necessary and sufficient that the real and imaginary parts of f are in real e 
because 

(4.9) 19\fl v Igfl::; If I ::; 19\fl + Igfl. 

Extension of the Beppo-Levi theorem. In the Beppo-Levi theorem, the 
hypothesis of positivity off. can be weakened to suppose only thatfn for some 
value of n majorizes a function g for which g- is integrable. To prove the 
theorem under this hypothesis, apply Theorem 3 as stated to the sequencef.+g-, 
an increasing sequence of positive functions if some initial members are 
omitted, and then use linearity property (c) to remove g -. 

The Young definition of an integral. Theorem V.16 suggests that one way 
to define the integral of a function is to define the integral of a semicontinuous 
function and then to define the integral of a function f as the infimum 
[supremum] of the integrals of larger lower [smaller upper] semicontinuous 
functions, if these extreme values are equal. This is the Young approach to 
integration. 

5. An elementary application of integration 

Let (S,S,A) be a finite measure space, and let Ab ... An be measurable sets. 
Integration of the equations 1(2.9) yields 
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A.(uA.) = L A.(Ai) - ~.A.(AinAj) +···+(_1)n-1A(A 1n···nAn), 
i"2:1 1<.J 

(5.1 ) 

A.(nA.) = L A.(Ai) - ~.A.(AiUAj) + ... +(-l)n-1A(A1v··uAn )· 
i"2:1 1<.J 

For example, let S be the space of n! permutations of the integers I , ... ,n, and 
assign each singleton of S the A measure lin!' Then A is a probability measure. 
Let Ai be the set of permutations in S for which the ith place is i, that is, the set 
of permutations matching the identity permutation in the ith place. Then uA. is 
the set of permutations with at least one match with the identity permutation. 
According to the first equation in (5.1), this set has measure 

(5.2) 
n(n-I) 

[n[(n-I)!1--2-!-(n-2)! +···+(-If-1]/n! 

I (-If-1 

=1--+···+---
2! n! ' 

which is close to e-1 when n is large. Roughly speaking, about a third of the 
permutations have at least one match with the identity permutation. 

Card mixing interpretation. If a deck of n cards, is shuffled thoroughly, the 
probability that at least one card is in the same position as before the shuffling is 
about a third. Here shuffling thoroughly is translated mathematically into the 
assignment of probability lin! to each shuffling permutation. In an attempt to 
make this integration problem more interesting, succeeding in making it more 
confusing, the context has sometimes been changed to replace n cards by n 
drunken men who try to find their way home (very cleverly arriving at least 
finding different homes), the conclusion being that the probability is about one 
third that at least one will get to his own home. 

6. Set functions defined by integrals 

Letfbe a measurable function from a measure space (S,S,A) into R+· Define Jl 
on S by 

(6.1 ) Jl(A) = f f dA. 

A 
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Then fl is a measure: finite additivity follows from Section 4(c), and countable 
additivity then follows from the Beppo-Levi theorem formulated in terms of a 
sum instead of a sequence. More generally, iff need not be positive, but if either 
f- orf+ is integrable, this argument can be applied tof- andf+ to show that fl 
in (6.1) is a signed measure. 

The following theorem covers a change of variable under the sign of 
integration. 

Theorem. If fl is defined by (6.1), with f ~ 0, and if g is a measurable 
function from S into R:+, then 

(6.2) f g dfl = f gf cIA. 
s S 

Proof. Equation (6.2) is true, by definition of fl, when g is the indicator function 
of a measurable set, and the equation is therefore also true when g is a positive­
coefficient linear combination of such indicator functions. In particular, if Anj = 
{(i-I )2-n $; g < j2-n }, and 

then (6.2) is true for g=gn. Since g. is an increasing sequence with limit g, (6.2) 
is true as stated. 

The function g in (6.2) is fl integrable if and only if gf is A. integrable. More 
generally, if g is a measurable function from S into ii, the preceding discussion 
is applicable to g + and g - and thereby shows that if Ig I is fl integrable, 
equivalently iflg If is A. integrable, then (6.2) remains true. 

7. Uniform integrability test functions 

A uniform integrability test function is a function <I> from R+ into R+, with the 
property that the function t ..... <I>(t)/t is monotone increasing with limit +00 at 
+00. The function <I> itself is then necessarily also monotone increasing. The 
following intuitively obvious theorem will be needed. 

Theorem. Iff is a positive integrable function on a finite measure space 
(S,S,1.,), there is a convex uniform integrability test function <I> for which <1>(1) is 
also integrable. 

Proof. Define the measure fl by (6.1) and define \jIl(a) = fl{[a,+oo)} for ~O. 
The function \jIl is monotone decreasing, with limit 0 at +00. Define \jI(n) = 
\jIl «n-l)vO) for n a positive integer, and define \jI between the positive integers 
by linear interpolation. Then \jIl $; \jI, that is, 
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(7.1) ffefA:::; \jI(a), 

{fta} 

and \jI is a continuous monotone decreasing function on R+, with limit 0 at +00. 
If", ever vanishes, the functionfmust be essentially bounded, in which case the 
existence of the desired uniform integrability test function is trivial. If '" is 
strictly positive, define 

Go = 0, an = inf{s: ",(s):::; lin} (n~I); <I>(s) = s[\jI(s)rll2. 

The function <I> is a uniform integrability test function, and the following 
inequalities show that <1>(1) is integrable: 

00 

(7.2) f <I>(f)dA = f ~ d~ :::; L nll2[ \jI1(an-l) - \jI1(an)] 

S {pO} n=l 

00 

~ L "'1(an)[n I/2 - (n-l)1/2] ~ L n-312 < +00. 

n=1 n=1 

To finish the proof it will be shown, as is sufficient, that if <I> is a uniform 
integrability test function there is a convex uniform integrability test function 
majorized by <I> for sufficiently large values of the argument. Choose a strictly 
positive number bl that is so large that <I>(s) ~ s when s ? bl . If b /, ... ,bn-I have 
been chosen, choose bn so large that bn >bn- I and <I>(s) ? ns when s? bn. Define 
<l>1(s) = bl when 0 :::; s :::; bl and <l>1(S) = (n-l)(s-bn_I)+<I>I(bn_l) when 
bn- I :::; s:::; bn . Then <1>1 :::; <I> on [bJ>+oo) and <1>1 is a uniform integrability test 
function. 

8. Integration to the limit for positive integrands 

Theorem (Fatou). Let f. be a sequence of measurable functions from a 
measure space (S,s ,A) into ii+, and define f = lim inff.. Then 

(8.1) f f efA :::;, lim inf f f· dA. 
s s 

Iff and eachfunctionfn are integrable, and if 

(8.2) f f efA = lim f f· dA, 
S S 

then 
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(8.3) lim f Iff·1 dA, = 0. 

S 

If the sequence f. converges in measure to a function g, f can be replaced by 
g in these assertions. 

As of 1991 the oldest generation upholds tradition by still calling this 
theorem "Fatou's lemma." 

Proof. Apply Beppo-Levi's theorem to yield 

(8.4) f f dA, = f sUPk> I infm>kfm dA, = limk~oo f infm>kfm dA, 

S S S 

= lim infk~oo f infm>kfm dA, :::; lim inf f f. dA" 
s s 

as was to be proved. 
To prove (8.3) when (8.2) is true and all the functions involved are 

integrable, majorize the integral in (8.3): 

(8.5) f If-fn l dA, :::;, - f if-fn) dA + 2 f f dA, - 2 f infk~nfk dA. 

S S S S 

When n~oo, the first integral on the right tends to ° by hypothesis. The third 
integral on the right tends monotonely to the second by the Beppo-Levi 
theorem. Thus the right side of (8.5) tends to 0, as asserted. 

If the sequence f. converges in measure to g, choose a subsequence along 
which the sequence A[{.] has as limit the inferior limit in (8.1), and then choose 
a further subsequence along whichf. converges almost everywhere to g. Apply 
what has been proved to this subsequence to find that (8.1) is valid with f 
replaced by g. If all the functions involved are integrable and (8.2) is true, then 
what has already been proved implies that the sequence A[if-f.l] has limit ° 
along every subsequence of f. for whichf. converges to f almost everywhere. 
Thus every subsequence of Al!f-f.l] has a further subsequence with limit 0, and 
therefore the sequence itself has limit 0, as asserted. 

9. The dominated convergence theorem 

Theorem (Lebesgue). Let f. be a sequence of measurable functions from a 
measure space (S,S,A) into ii, and suppose that sup!f.1 is integrable. If, either in 
measure or almost everywhere. the sequence converges to afunctionf, then 

(9.1) f fdA, = lim f f· dA,. 

S S 
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This theorem is called the dominated convergence theorem, because the 
condition of integrability of sup!!.1 is commonly phrased in the uneconomical 
form there is a positive integrable function g such that !!nl ~ g almost 
everywhere, for every value of n. 

Proof. According to Fatou's theorem, whether the limit is an in measure or an 
almost everywhere limit, 

(9.2) f lim (g+f·) dA ::; lim inf f (g+f·) dA., 

S S 
that is, 

(9.3) f fdA::; lim inf f f. dA. 

s S 
Inequality (9.3), together with its application to the sequence -f., yields (9.1). 

The d" continuity of the function Jl: A..... f fdA. 
A 

If f is integrable, Jl is a finite valued signed measure (Section 6). If A is a finite 
measure, dA. is a pseudometric for S (Section 111.13) and Jl is a continuous 
function on (S,dA.); equivalently, if A. is a sequence of measurable sets whose 
measures tend to 0, then the sequence Jl(A.) has limit o. This conclusion follows 
from Theorem 9, because the sequence flA. converges to 0 in measure, and the 
absolute value of each integrand is majorized by !fI . 

Bounded convergence theorem. This name is given to the dominated con­
vergence theorem's special case in which A is a finite measure and there is a 
constant c for which sup!!. I ~ c almost everywhere. The classical corresponding 
theorem, that a uniformly convergent sequence of continuous functions on a 
compact interval of R can be integrated (Riemann integral) to the limit, is a 
special case of the bounded convergence theorem, because each function of the 
uniformly convergent sequence is bounded, and that fact together with the 
uniform convergence implies that the sequence has an overall bound. (The fact 
that Riemann integration is a special case of Lebesgue integration will be 
proved in Section 20.) 

10. Integration over product measures 

In this section, let (S1,S]>A1) and (S2,s2'~) be cr finite measure spaces. The 
measures mayor may not be complete. Provide the product space S = S1><5'2 
with the product cr algebra S = cr(S1X S2) and product measure A = A1X~. If A 
is a subset of S, for each point S1 of S1 define A 1 (s1) = {S2: (S1,S2) E A}. It is 
convenient to write a functionf on S as f(',·) to exhibit it as a function of its 



VI. Integration 85 

arguments in S] and S2. Recall from Sections 11.5 and V.2, that if A is in S, then 
for each point s] of S]o the setA](s]) is in S2, and iff is measurable from (S,S) 
into R, thenfis]oe) is measurable from (52$2) into R. 

Theorem (Fubini, Tonelli). (a) Iff is measurable from (S,S) into i+, the 

integral ff(e'S2) ~(ds2) is a measurable function from (SI,SI) into i+, and 
S2 

(10.1) J f d).., = f Al (ds l ) f j(s],&].) ~(ds2). 
s] S2 

(b) Iff is measurable from (S,S) into R and is A integrable, thenj(s],e) is A2 
integrable for Al almost every point s], the inner integral in (10.1) defines a 
measurable and Al integ rable function from (S]oS I) into R, and (10.1) is true. 

Observe that under the hypotheses of the theorem, the iterated integral can be 
evaluated in either order. 

Proof of (a) for finite measures. If A is in the class SIXS2 of product sets, it is 
trivial that 

(10.2) 

It follows that the class r of sets A in S for which (10.2) is true contains the 
algebra O"O(SIX S2) of disjunct unions of product sets. Moreover (bounded 
convergence theorem) r is a monotone class, and therefore (Theorem 11.6) 
contains 0"(SIXS2) = S. It is important to note that (10.2) implies that A is A null 
if and only if A I (s) is A2 null, for A I almost every P2!nt s. 

Iffis a measurable function from (S,S,A) into R +, the function 

f j(e,S2) ~(ds2) 
Sz 

is a measurable function from (Sl,s]) into R+ and (10.1) is true. In fact (10.1) 
reduces to (10.2) whenfis the indicator function of a set in S, and (10.1) is 
therefore true (along with the measurability of the inner integral) when f is a 
positive step function. For general positive f, V(I.I) exhibits f as the limit of an 
increasing sequence of positive step functions. An application of the Beppo­
Levi theorem to this increasing sequence yields (10.1). 

Proof of (b) for finite measures. Apply (a) tofvO and to -(fAO). 

Proof of the theorem. Since the theorem is true for finite measure spaces, it is 
true if S in the theorem is replaced by a product set A I X A2 with Ai in Si , of 
finite A; measure. for i = 1. 2. Since S is a countable disjunct union of such 
product sets. the theorem is true as stated. 



86 Measure Theory 

Adaptation to complete measures. In the preceding proof, completeness of 
the measures Al and 1..2, or its absence, is irrelevant, and A was not completed. 
Suppose that Al *, 1..2*' and 1..* are respectively the completions of 1..1'1..2, and A. 
Since (Section IV .1) every null set of a completed measure space is a subset of a 
null set of the original measure space, (10.2) implies that a 1..* measurable set is 
1..* null if and only if A I (s I) is 1..2* null, for Al * almost every s" and then that, if 
A if 1..* measurable, AI(sl) is 1..2* measurable for Al * almost every Sl, and (10.1) 
is true. Since (Section V.2(c)) every 1..* measurable function on S is 1..* almost 
everywhere equal to a A measurable function, it follows that if f is a 1..* 
measurable function from S into R+, then f(sl ,-) is 1..2* measurable for Al * 
almost every SI, that the inner integral in (10.1) defines a 1..1* measurable 
function of SI, and that (10.1) is true. Apply this result tofvO and -(jAO) to 
deduce the obvious version of (10.2) for integrable not necessarily positive 
functions that are measurable with respect to the cr algebra of A * measurable 
sets. This discussion is not much simpler if Al and "-2 in the theorem are already 
complete measures, because even then the measure A in the theorem is not 
necessarily complete. 

Note on the construction of product measures. Product measures were 
constructed before integration, in Section IV.II. Alternatively, the construction 
can be deferred until integration is available, when, in the notation of Theorem 
10, the product measure A can be defined by (10.2). 

Application to the volume under a graph. Let (S,S,A) be a finite measure 
space and define S+ = SxR+, S+ = cr(SxB(R+)). The space (S+,S+) is a 
measurable space. Let /-l be the measure on S+ that is the product of the 
measures A on S and Lebesgue measure on R. Iff is a function from S into R+ 
the subsets 

{(S,t):t =f(s)} {(S,t): 0 5,t 5,f(s)} 

of S are respectively the graph of f and the ordinate set O(j) of f. If f is 
measurable, let f. be the increasing sequence of step functions, with limit f, 
defined by V(l.1), and define gn=fn+2-n. The ordinate sets Oifn) and O(gn) are 
each a union of products of measurable subsets of S and compact intervals of R. 
These ordinate sets are therefore measurable subsets of S+. Define 
Dn=CXgn)-Q{n} The set Dn contains the part of the graph off over the set {s:f(s) 
< 2n}. Moreover /-l(Dn) ::; 2-n').f,S), and lim D. is the graph. Thus the graph is in 
S+ and is /-l null. The sequence 0if.) is an increasing sequence of measurable 
subsets of S+ ,with limit O(j) less the graph off, and therefore the ordinate set of 
fis in S+. According to Theorem 10, 

(10.3) /-l( O(j)) = f fdA. 

s 
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If S is a compact interval of R and A is Lebesgue measure on this interval, (10.3) 
is the usual formula for the area under the graph off. 

The preceding discussion has been under the hypothesis thatf is a measurable 
function, and under this hypothesis, the measurability of O(J) was proved. 
Conversely, O(J) meamrability implies that f is a measurable function, because 
O(f) measurability implies (Theorem 10) that the integrand in (10.3) is a 
measurable function on S and that (10.3) is true. 

11. Jensen's inequality 

Theorem (Jensen). Let<\> be a convex function from an interval IofR into 
R, and define <\> at an endpoint of I not in I as the limit of <\> at the point. Let f be 
a measurable function from a probability space into I. If f and <\>(1) are 
integrable, then 

(11.l ) <\>[E{f}] ~ E{<\>(I)}. 

If f and <\>(f) are not supposed integrable, but if <\> and f are lower bounded, 
(11.l) remains true. 

Proof. The graph of <\> has the property that if (~o,<\>(~o ») is a point of the graph, 
no point of the graph lies strictly below a suitably chosen line L through the 
point. Hence, if the equation for L is 11 = a(~~o) + <\>(~o), it follows that <\>(f) ~ 
alf~o) + <\>(~). In particular, iff and <\>(1) are integrable, choose ~ = E{f}, and 
integrate this inequality to obtain Jensen's inequality. More generally, iff and <\> 
are lower bounded, in which case I can be chosen with a finite left-hand 
endpoint, E{f} and E{ <\>(J)} are well defined, possibly +00. To prove the 
inequality in this case, apply the case of Jensen's inequality already proved to 
f I\C and let c tend to sups!. 

Application to LP for a probability space. According to Jensen's inequality, 
if 1 $ P < +00, 

(11.2) 

which can be rewritten in the form Ifl] ~ !tlp, iffE e. More generally, if 
';' I I 

I ~ P <p' < +00, then E' P{ Ifn~ E{ Ifr }, that is, iffE LP , 

(11.3) Iflp ~ Iflp" 

Moreover this inequality is true for p' = +00 in the sense that direct substitution 
in the integral over the space S for the r!.? norm yields the inequality 
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Iflp $. ess sUPS In and this essential supremum, if finite, is if 100. Finally, 
liIl1p~oo If ip = ess suPS!! I. In fact this limit relation is true not only for f on a 
probability space, but for f on an arbitrary finite measure space. To prove this, 
trivial if J...J,.S) = 0, suppose that J...J,.S) > 0, denote the essential supremum by c and 
observe that if c' < c, 

(11.4) 

and observe that when p ~ +00, the first and third terms have limits c' and c 
respectively. 

12. Conjugate spaces and Holder's inequality 

If 1 < P < +00 and 

(12.1) l/p+ l/q= 1, 

then q > 1; q is the index conjugate to p, and ~ is conjugate to L p. The relation 
is symmetric; if p is conjugate to q, then q is conjugate to p. The only self­
conjugate index is 2. 

Theorem (Holder's inequality). (p, q, conjugate indices, measure space 
(S,S,A)) Iff E e and g E Lq, thenfg is integrable, and 

(12.2) 

Proof. It is sufficient to prove this inequality whenf and g are positive, because 
replacing f and gin (12.2) by their absolute values does not change the right side 
and can only increase the left side. The inequality is trivial if either norm on the 
right vanishes, and it can therefore be assumed that each is strictly positive, and 
even that each is I, because multiplying the functions by constants does not 
affect the inequality. Under these hypotheses, (6.1), with f replaced by gq, 
defines a probability measure 11, and an application of Jensen's inequality (11.1), 
with <p(s) = sP on R+, yields 

as was to be proved. 

ffPgP-pq(gqdA) $. I, 
{g>o} 

Holder's inequality for the case p = q = 2. In this case, (12.2) becomes 

(12.4) 

which is trivial when g vanishes almost everywhere, and otherwise is most 
easily proved by defining c = A[fg]lgli and noting that (j-cgf has a positive 
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integral. This inequality is variously named, in honor of Bunyakovsky, Cauchy, 
and Schwarz who fortunately are not available to express their appreciation at 
the dubious honor of being so closely identified with this (now) rather simple 
inequality. 

HOlder's inequality in the discrete context. Suppose that p and q are 
conjugate indices, a. and b. are sequences of numbers, and a. is a sequence of 
positive numbers. If the series L la.1" a. and L Ib.lqa. converge, then L la.b.la. 
converges, and 

(12.2') 

This is the special case of HOlder's inequality in which the space S is countable 
and a. is the sequence of measures of its singletons. 

13. Minkowski's inequality 

This inequality makes an LP pseudo metric possible (see Section 14). 

Theorem (Minkowski's inequality). (Measure space (S,S ,A» Ifp ~ 1 andf 
and g are in LP, thenf+g is in LP and 

(13.1) 

Proof. Inequality (13.1) is trivial whenp is 1 or +00; in the following suppose 
that 1 <p < +00. It was already noted in Section 4 that linear combinations of 
functions in LP are in If. It is sufficient to prove (13.1) when f and g are 
positive. Apply HOlder's inequality to derive 

(13.2) if+g I~ = f (j+gr- l fdA + f (j+gr- l g dA 
s s 

p/q [ ] ::;", !f+g Ip Iflp + Ig ip , 

which yields (13.1). 

Minkowski's inequality in the discrete context. Suppose that p?: 1, a. and 
b. are sequences of numbers, and a. is a sequence of positive numbers. Then 

(13.1') [L (1a.+b.I")a.] lip :s; [L laJ a.] lip + [L Ib.P a.] lip 

This is the special case of Minkowski's inequality in which the space S is 
countable and a. is the sequence of measures of its singletons. 
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14. The LP spaces as normed linear spaces 
(1 $.p < +00, measure space (S,S),A» 

Define the distance between the functions f and g in LP as !f-glp. Minkowski's 
inequality yields the triangle inequality for this distance function: 

(14.1) If-hlp ~ !f-glp + Ig-hlp. 

Thus this definition of distance makes I!' a pseudometric space. A functionf is 
at LP distance 0 from a function g if and only if the two functions are equal 
almost everywhere. 

Observation. If functions equal almost everywhere are identified with each 
other, the space of equivalence classes obtained in this way can be made into a 
metric space in the usual way (Section 0.13). This procedure involves defining 
summation and other operations on equivalence classes, operations already 
defined on functions, and it is not clear what is gained thereby. A comon style 
makes LP the metric space of equivalence classes but uses the word "function" 
and the phrase "except for a set of measure 0" anyway, thus attaining the best of 
all nonlogical worlds. 

e convergence. Convergence of a sequence of functions in the e 
pseudometric, called LP convergence, or convergence in the mean of order p, 
implies convergence in measure, in view of the inequality 

(14.2) j If-gi P dA ~ e"A.{ If-gl ~ € } • 

The converse is false; a sequence in If may converge in measure to a function 
that is not even integrable. 

Observations on I!' convergence. If a sequence f. converges in the mean of 

order p to t then the sequence Ir.I also converges in the mean of order p to ltl, 
because I ItHfnl I ~ It-fnl. Iff. converges to f in the mean of order p, then the 
sequence It IP converges to It I P in the mean of order 1. This fact, already noted 

for p=1, is implied for p > I by the following inequality, obtained by combinin& 
the HOlder and Minkowski inequalities with the elementary inequality I~ -ill 
::;;pla-bl (atbr l for positive numbers a and b: 

P f p/q ( )P/q (14.3) I ifl -ifn II ::;;plf-fn1p I !fl+!fnllp ::;;plf-fn1p Ifn:f1p + 12flp . 

The following fact will be used in Chapter XI. If a sequence f. converges to f 
in the mean of order p and a sequence g. converges to g in the mean of the 
conjugate order q then the sequence f.g. of products converges to fg in the mean 
of order 1. This convergence assertion follows from the inequalities 
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(14.4) Ifg-fngnl] :S;! if-fn)gl] + I (g- g n'tnl] 

:s; If-fnlp Iglq + Ig-gnl/lfn-f1p + Iflp). 

Completeness of LP. The space rJ is complete. In fact iff. is an e Cauchy 
sequence, (14.2) implies that the sequence is a Cauchy sequence for 
convergence in measure, and therefore (Theorem V.12) the sequence converges 
in measure to some function! Apply Fatou's theorem to derive the inequality 

(14.5) 

The LP Cauchy condition implies that the right side of this inequality tends to 0 
as n~+oo, and therefore LP is complete. 

15. Approximation of LP functions 

It is sometimes useful to approximate an LP, function, in the sense of r!' 
distance, by functions in various special classes. 

Approximation of e functions by step functions (1:S; p < +00, measure 
space (S,S,A.), LP distance). The class ofe step functions is dense in LP In fact, 
if f is in e and is positive, let f. be the monotone increasing step function 
sequence with limit f defined by V(1.1). The sequence !f-f.lp has limit 0 
according to the dominated convergence theorem. Iffis not necessarily positive, 
its positive and negative parts can be approximated separately. 

A more delicate approximation result is sometimes needed. Let So be a 
subalgebra of S, generating S, that is, a(So) = S. It will now be shown that the 
preceding result remains true when A. is a finite measure and the step functions 
are to be linear combinations of indicator functions of sets in So. All that needs 
proof is that if AJo ... ,An are sets of finite measure, in S, and if CJo ... ,Cn are 
strictly positive constants, then the function 

n 

f= L CjIA' 
] J 

can be approximated arbitrarily in the LP distance sense by functions of the same 

type, except that the sets involved are in So. According to Theorem IV.3(b), 

there is a set A/ in So with the property that A.(Ai't1A/) < (£/(cjn))p' Define 

Then 
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(15.1) 

Add these inequalities to find that If-gip ~ E. 

According to this result if S = RN and the measure is finite, approximating 
step functions can be chosen to be linear combinations of indicator functions of 
right semiclosed intervals, in view of Theorem IV.8(a) when N = 1 and Section 
IV. 10 when N > 1. 

Separability of e (S,S,A,). If the measure space is (J finite, 1 75, P < +00, and 
the (J algebra S is generated up to null sets by a countable subclass ofS, then 
e is complete and separable. Completeness was shown in Section 14. To prove 
separability, observe first that it is sufficient to prove separability when A, is 
finite valued, because the class of e functions vanishing off a set of finite 
measure is dense in e. For A, finite valued, the space (S,d,..) is separable 
according to Theorem IV.3(d); equivalently the subspace of r!' consisting of 
indicator functions of sets is separable. It follows that the subspace of rational 
valued LP step functions and therefore the class of all LP step functions is 
separable. The latter class is dense in e according to the first assertion in this 
section, and it follows that r!' is separable. 

Topology of e for functions on a separable metric space (I 75, P < +00). It 
is supposed that the functions are defined on a separable metric space S, the 
measure space is (S,B(S),A,) and the measure is (J finite. 

(a) Since the hypotheses of the preceding paragraphs are satisfied, the space r!' 
is a complete separable pseudometric space. 

(b) The class of continuous functions in eis dense in LP• It is sufficient to 
show that every step function in e, or even every indicator function of a 
measurable set of finite measure, or even every indicator function of a closed set 
of finite measure is an LP limit of a sequence of continuous functions in r!'. If 
A is a closed set of finite measure, it has an open neighborhood G of finite 
measure according to Theorem IV.5. If d is the metric of S, define 

(15.2) fn(s) = [exp[-nd(s,A)J - exp[ -nd(s,S-GJ] v O. 

The sequence f. is a uniformly bounded sequence of positive continuous 
functions with limit IA. Each function vanishes outside G. It follows that 
lim IlA-f.1p = O. 

Example. Let S be the circle in R2 of radius 1 and center the origin, and let A, 
be the completion of a finite measure on B(S). It is an important fact that the 
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class of complex valued trigonometric polynomials, that is, the linear 
combinations with complex coefficients, of the functions of the sequence /. 
defined by Inez) = zn = expin9 ,0 ~ 9 ~ 2n, in which n runs through the positive 
and negative integers, is dense in LP for 1 ~ P < +00. In view of the results in this 
section, to prove this, it is sufficient to prove that an arbitrary continuous 
function / on S can be approximated arbitrarily closely in e by trigonometric 
polynomials. A sequence of trigonometric polynomials will be defined that 
converges to/uniformly, and therefore also in LP distance. It will be convenient 
to write / as a function F of the central angle 9, on the interval [0,2n]. 
Furthermore it will be convenient to extend F to R, making the function 
continuous with period 2n. Consider the sequence g. of trigonometric 
polynomials, defined by 

(15.3) gn(9) = f akftike, ak = -21 ]
1t

FCa.)e-ikcx IJ..da.) (n ~ 0), 
k=-n n 

where A. is Lebesgue measure. Fourier series theory (to be discussed in Section 
VII.7) suggests that under appropriate conditions on F, g. is a sequence with 
limit F. In the present context it is simpler to apply Cesaro averages. Define 

(15.4) gn *(9) = fgo(9)+···+gn-l(9)¥n = ]1tKn(a.)F(9+CJ.)lJ..da.), 

where 

(15.5) 

Choosing F = 1 makes gn * = 1, and it follows that 

]1tKn (a.) A.(da.) = 1. 

Finally, 

(15.6) gn *(9)-F(9) = _[ Kn(a.)[F(9+a.)-F(9)] IJ..da.) 

Choose e > 0, and choose B so small that F has oscillation at most e in every 
interval of length 2B. It follows, separating out the integration in the interval 
(-a,B), that 

(15.7) ign *(9)-F(9)1 ~ e +2 (sup 1F1 )(sin-2(BI2))ln ~ 2e 

for sufficiently large n. It follows that the sequence g. * converges uniformly to 
F, as was to be proved. 
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16. Uniform integrability 

Let {fi, i E l} be a family of integrable functions on a finite measure space 
(S,S,A). Then (dominated convergence theorem) for each value of i, 

(16.1 ) limu--.~ f Vi I dA = O. 
{lfil~} 

Definition. A family of integrable functions on a finite measure space is 
uniformly integrable if (16.1) is true uniformly for i in I. 

This definition implies that finitely many integrable functions form a 
uniformly integrable family and, slightly more generally, that the functions in a 
finite number of uniformly integrable families are uniformly integrable. The 
family of linear combinations of members of a uniformly integrable family is 
uniformly integrable if there is a uniform bound on the coefficient absolute 
values. 

Theorem. A family {fi, i E l} of integrable functions on a finite measure 
space (S,s,A) is uniformly integrable if and only if 

(a) the family is Ll bounded, that is, sup !f.1 1 < +00, and 

(b) if ~i is the measure defined by ~i(A) = J 'Ii IdA, 

then limA(A)~O ~i(A) = 0, uniformly for i in I. 

The condition (b) is described in Section IXA as uniform absolute continuity 
of the family of measures ~ •. 

Proof. In the following proof, it will be supposed that the functions are all 
positive, since only the absolute values of the functions are involved. Observe 
that 

(16.2) ~i(A) $. r Ii dA + f Ii dA $. <XA(A) + f Ii dA. 
An{/;<U} lh"'u} [fi;"'u} 

If the sequence f. is uniformly integrable, the last integral can be made 
uniformly small by choosing <X large. The inequality with A = S therefore 
implies the L 1 boundedness of the sequencef •. If £ > 0, the last integral can be 
made < E, uniformly for all i, by choosing <X sufficiently large, and then the 
preceding term can be made uniformly small by choosing A(A) small. Thus (b) 
is satisfied. 

Conversely, if conditions (a) and (b) are satisfied, Ifill=Artd ~ <XAlfi ~ <X}. 
Hence A{fi ~ <X} is uniformly small when <X is large, and, according to (b), this 
implies that (16.1) is true, uniformly as i varies. 
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17. Uniform integrability in terms of uniform 
integrability test functions 

Theorem. Let {Jj, i E I} be a family of measurable functions on a finite 
measure space (S,S,A). If the family is uniformly integrable. there is a convex 
uniform integrability test function <P for which 

(17.1) sup f <P(lf·1) dA < +00. 

S 

Conversely, if there is a uniformly integrable test function <P for which (17.1) is 
true, the family is uniformly integrable. 

Proof. To economize on absolute value signs, it will be assumed in the proof 
(without loss of generality) that the functions are positive. If there is uniform 
integrability, there is a positive monotone decreasing function", I on R+, with 
limit 0 at +00, for which 

(17.2) f fi dA ~ "'I(a) 

~a} 

for all i. The very special case of this converse in Section 7 was treated in such a 
way that the discussion is applicable here; the function "'I can be majorized by a 
continuous monotone function", satisfying (17.2), and the desired convex 
uniform integrability test function is defined in terms of", by the procedure of 
Section 7. Conversely, if there is a uniform integrability test function <P 
satisfying (17.1), then 

(17.3) 
<p(a) 

>-­
- a 

When a becomes infinite the left side is bounded uniformly as i varies, the 
fraction on the right becomes infinite, and therefore there is uniform 
integrability. 

18. L 1 convergence and uniform integrability 

Theorem. Let f. be a sequence of integrable functions on a finite measure 
space (S,S,A), converging in measure to a function f Then the sequence is 
uniformly integrable if and only if there is L I convergence. 
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Proof. If there is uniform integrability, the sequence f. is Ll bounded, and 
therefore (Fatou's theorem) f is integrable. Then the sequence f. -f is uniformly 
integrable. Given e > 0, 

(18.1) J !f1nl cIA ::; eA(S). 

{lf1nkE} 

On the other hand, lim A{!f-f.1 ;:::e}=O because there is convergence in measure, 
and therefore (Theorem 16) 

(18.2) J 1f1nl cIA = o. 
{If-ini""} 

Relations (18.1) and (18.2) combine to yield Ll convergence. Conversely, if 
there is L 1 convergence, uniform integrability off. will follow from that of g. = 
!f-f.l. The Ll convergence implies Ll boundedness of the sequence g •. There re­
mains the proof that if A,(A) is small the integral A[gn1A] is uniformly small as n 
varies. Choose e> 0, and choose k so large that A[gn]< e when n > k. Then, if 
A,(A) is so small that maxn::;k A[gn1A] < e, it follows that A{gn1A] < e for all n. 

Remark on integrating term by term to the limit for a convergent se­
quence of measurable functions. Aside from the rather specialized Beppo-Levi 
theorem, there are only two general criteria for integrating a convergent function 
sequence term by term to the limit: Lebesgue dominated convergence and 
uniform integrability. If the measure space is a finite measure space, dominated 
convergence implies uniform integrability. For such a measure space the 
uniform integrability criterion is more general, but the dominated convergence 
criterion is more natural in many contexts. In other contexts, for example, in 
martingale theory (Sections XI.14-16), uniform integrability is more natural -
and even necessary - because the dominated convergence criterion is 
insufficiently general. 

19. The coordinate space context 

Letfbe a real valued random variable on a probability space (S,S,P), and define 
F: F(a) = P{f::; a}, the distribution function of f. One of the special aspects of 
probability theory is that many questions about random variables are formulated 
in terms of distributions and do not otherwise involve the probability space on 
which the random variables are defined. In the present context, the distribution 
function F determines the Lebesgue-Stieltjes probability measure AF on R, and 
the coordinate variable x on the probability space (R,B(R),AF) then has the 
distribution function F. In any question involving the distribution function off 
or of a Borel measurable function of f, the probability space (R,B(R),AF) can 
serve as well as the original probability space. For example, if '1> is a Borel 
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measurable function from R into R, then <I(f) is integrable on (S,S,P) if and only 
if $(x) is integrable on (R,B(R),AF), and 

+00 

(19.1) E{$(f)} = f $dAF = f $(a)dF(a). 

R 

The expectation is an integral over the space on which f is defined, the second 
expression is an integral over R, and the third is an alternative form of the 
second, but can also be interpreted in terms of Riemann-Stieltjes integration if $ 
is bounded and AF almost everywhere continuous (see Section 20). The point is 
that the measure relations involved in defining these integrals are identical. In 
particular, iffis integrable, 

+00 

(19.2) E{f} = f aAF<da) = f adF(a). 

R 

Application to independent random variables. If (S],S],AI) and (S2,S2'~) 
are (J finite measure spaces, and A is the product measure AIX~, letfl be an 
integrable function on the first space and h on the second. Then (Theorem 10) 
fth is integrable on the product space, and 

(19.3) 

SIxS2 SI S2 

Conversely iffJi is A integrable and neither factor vanishes almost everywhere 
on its space, then each factor is integrable on its space. The probability version 
of this is phrased somewhat differently and it is not quite obvious that the 
probability version is a special case. The probability version deals with two 
mutually independent real valued random variablesf],h on a probability space. 
The standard theorem is that if they are integrable, thenfth is integrable, and 
E{fth} = E{fj}E{h}· Conversely, if neither random variable vanishes almost 
surely, their individual integrability is implied by that of their product. To put 
this probabilistic context into the product space context, all that has to be done is 
to observe that the joint distribution of the two random variables is the product 
measure of their separate distributions, so that fl and h can be replaced by the 
coordinate functions of R2 on which a product measure is defined, the product 
of the distributions of fl and f2. 

More generally, iffl andh are random variables on some probability space 
(with measure denoted by P) and have the joint distribution function F, that is, 

then the Lebesgue-Stieltjes measure AF is a probability measure on R2, and, if $ 
is a Borel measurable function from R 2 into R, for which $(fJ h) is integrable, 

(19.4) E{$(flh)} = f$(xI'X2)dAF = RJ$(a],~)dF(a],~). 
R2 
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Here xI and X2 are the coordinate variables of (R2,B(R\Ap). Iffl andh are 
mutually independent, and if <P is the indicator function of the set {( al ,Uz) E R2: 
al +Uz ::; a} then (19.4) yields the distribution function G of the random variable 
fl+h, defined on S, the same distribution function as that of xl+x2, defined on 
R2, in terms of the distribution functions FI of fl and F2 01'12. Theorem 10 
yields G as the evaluation of an iterated integral: 

(19.5) G(a) = fFI(a-~) dF2$). 
R 

Thus the distribution function of the sum of two mutually independent random 
variables is the convolution of the distribution functions of the summands. 

Coordinate functions can be used to replace any finite number of random 
variables for many purposes. The corresponding replacement for infinitely many 
random variables is provided by a probability measure on infinite dimensional 
coordinate space (see Kolmogorov's theorem Y6). 

20. The Riemann integral 

In this section, the concept of Riemann integration is placed in a general 
context. The application to the simplest context, in which the domain of 
definition of the integrand is a compact interval of R, is made at the end of the 
discussion. Let S be a compact metric space, and A be the completion of a finite 
measure on B(S). Throughout this section, all measure concepts refer to "A, 
unless otherwise specified. 

Each point of S has arbitrarily small neighborhoods with null boundaries, 
because the boundary of a ball centered at the point is null, except perhaps for at 
most countably many values of the radius. The space S can be expressed in 
many ways as a finite disjunct union of sets with null boundaries. For example, 
S is the union of finitely many balls with null boundaries, and the union can be 
made into a disjunct union of subsets of the balls. A partition of S is defined as 
the cells (summands) of a finite disjunct sequence of subsets of S with null 
boundaries and union S. A cell of such a partition is the union of its open 
interior and part of its null boundary and is therefore measurable. If nand n' are 
partitions, and if each set of the n' partition is a subset of a set in the n partition, 
n' is a refinement of n. If nand n' are partitions, they can be combined into a re­
finement of both in which the cells are the intersections of the cells of the two 
partitions. 

Let f be a function from S into R. When S is a compact interval of R, the 
Riemann integration procedure, which defines an integral with respect tofunder 

rather strong restrictions on f, with "A on intervals defined as interval length, is 
what is given in the traditional introduction to integration on compact intervals 
of R. The principles involved may perhaps be more readily understood in the 

present more general context. If S and "A are as described in the preceding 
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paragraph, suppose that the Darboux sums 

(20.1 ) 

corresponding to a partition with cells S. having closures S., are well defined 
and finite. If so, the union of those cell closuresSn that are not f... null must 
contain the compact support of f.... The first sum, the upper Darboux sum for the 
partition, is at least as large as the second sum, the lower Darboux sum. These 
sums are finite if and only iffis bounded on each nonnull partition cell closure, 
and if so, f is bounded on the support of f.... If this condition is satisfied for one 
partition, it is satisfied for all the refinements of that partition. Moreover, 
considering only finite sums, in going from a partition to a refinement, an upper 
sum can only change by decreasing, because each partition cell is replaced by 
one or more partition refinement cells whose sum is at most the original 
partition cell. Similarly, in going from a partition to a refinement, a lower sum 
can only change by increasing. The upper sum for a partition n is at least as 
large as the lower sum for a partition n', because the upper sum for n is at least 
as large as the upper sum for the combined partition, which in turn is at least as 
large as the lower sum for the combined partition, which in turn is at least as 
large as the lower sum for n'. The function f is Riemann integrable on S for a 
given measure ').., if the Darboux upper and lower sums are finite for some 
partition, and if the infimum of the class of upper sums is equal to the 
supremum of the class of lower sums. The value assigned to the Riemann 
integral is then this common extreme value, which is necessarily finite. In the 
following, the integral defined in the preceding chapters is identified as the 
"Lebesgue integral", to distinguish it from the Riemann integral. 

Theorem (S compact metric. f... the completion of a finite measure of Borel 
sets). A junction from S into R is Riemann integrable for f... if and only if the 
function is bounded on the compact support of f... and is continuous at f... almost 
every point of this support. If Riemann integrable. the junction is measurable 
and Lebesgue integrable. with Lebesgue integral equal to the Riemann integral. 

Proof. It will be convenient to evaluate the Darboux sums as L integrals. Define 
] 7t and Ln on each cell of a partition n as the supremum and infimum off on the 
closure of the cell. Under these definitions the upper and lower sums, supposed 
finite, are equal respectively to the Lebes~ue integrals on S of ] 7t and Ln. If n' is 
a refinement of n, f n~f n' ~ f ~ J 7t' ~ f 7t. Suppose that there is at least one 
partition with well-defined and finite upper and lower sums. Let C2 be the 
infimum of the upper sums, the limit of a sequence of upper sums for a 
sequence n. of partitions. Replace each partition 1tn by the combination of 
7tl, ... ,1tn, if necessary, to ensure that 1tn+l is a refin_ement of 1tn. Then] n. is a 
decreasing sequence of measurable functions. If f is the sequence limit, then 
(bounded convergence theorem) 
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(20.2) C2 = lim J ] It. rIA = J ] rIA. 

Since 1 1tn is continuous at each point of the interior of each cell of It!] and there­
fore continuous at almost every point of S, the function 1 is upper 
semicontinuous at almost every point of S. Similarly, the supremum C1 of the 
lower sums is the integral of the limit] of an increasing sequence of measurable 
almost everywhere continuous functions, and 1 is lower semicontinuous at 
almost every point of S. Moreover [-;;;'1-;;;'], and -

(20.3) C1 = J [dA -;;;, J ] rIA = C2· 

There is Riemann integrability, that is, C 1= C2, if and only if [=1=] almost 
everywhere on S. In this case,1 is measurable, continuous at almost every point 
of S, bounded on the compact support of A, and its Riemann integral is equal to 
its Lebesgue integral. 

Conversely, suppose that 1 is bounded on the compact support of A and is 
continuous at A almost every point of this compact support, that is, at almost 
every point of S. Let A be a compact non A null subset of S with the property 
that 1 is continuous at every point of A. The functionlis uniformly continuous 
on A in the sense that if 11 > 0, there is a strictly positive 8 so small that if s is a 
point of A and s' is a point of S within distance 8 of s, then Ifis)-fis')l < 11. (Note 
that this statement is stronger than the statement that the restriction to A 01'1 is 
uniformly continuous on A, but that the proof of this stronger statement differs 
only trivially from that of the weaker one.) Therefore if c > 0 there is a partition 
of S with the property that the oscillation of Ion each cell containing points of 
A is at most c. It follows that there are partition sequences for which 1 - [ -;;;, c 
on A. Let A. be an increasing sequence of compact subsets of the set of points of 
continuity of A with the property that lim A,(A.) is the measure of the compact 
support of A. There is a sequence of partitions, each a refinement of its 
predecessor, for which the nth partition cells containing points of An are so 
small that the oscillation 01'1 on them is at most lin, and that the upper and 
lower Darboux sums for the nth partition have as respective limits the extreme 
values C2 and C1 of such sums. The corresponding limit functions 1 and] are 
then equal almost everywhere on the support of A and therefore 1 is Riemann 
integrable. 

The case when S is a compact interval of R. In this case, the proof that the 
stated condition in Theorem 20 is sufficient shows that partitions whose cells 
are intervals suffice in the analysis, that is, yield the common extreme limiting 
value to the upper and lower Darboux sums. The Riemann integral in this 
context is also called the Riemann-Stieltjes integral when the measure A is not 
Lebesgue measure, that is, when the measure of an interval is not the positive 
difference between endpoint coordinates. When Riemann integrals are used over 
the whole line R, they are improper Riemann integrals, whose values are 
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defined as the limit of values of the integrals over an increasing sequence of 
compact intervals with union R. 

21. Measure theory vs. premeasure theory analysis 

Before the advent of measure theory, classical analysis dealt for the most part 
with smooth functions, considering others as pathological, useful - if at all -
only as a source of counterexamples designed to show the scope of definitions 
and theorems. If a sequence of functions converged, but not uniformly, the 
convergence was difficult to exploit, for example, in term-by-term integration to 
the limit, unless the domain of the functions could be divided into finitely many 
subdomains of uniform convergence, and small remainder sets. In many con­
texts, measure theory widened the class of admissible domains and functions to 
the classes of measurable sets and measurable functions, and in so doing made it 
possible to apply the usual limiting procedures without leaving admissible 
classes. What was unexpected was that, in a reasonable sense, most of the old 
concepts were very nearly still present. Egoroffs theorem showed that uniform 
convergence was nearly present whenever there was convergence. Lusin's 
theorem showed that the new measurable functions were nearly continuous. On 
the other hand, measure theory could be applied in abstract contexts where 
topology was inappropriate. In fact probabilists had been doing this for 
centuries, except that they called measure "probability" and integrals 
"expectations", and of course they lacked the refinements and rigor of modern 
analysis and were scorned because no one was sure what mathematical 
probability was, and it certainly was not part of respectable analysis. 

At the present time, one of the more profound differences between 
probability and other aspects of measure theory is that if a mathematician 
explicitly evaluates an integral of a function defined on a space other than a 
subset of RN. the mathematician is almost surely a probabilist, even more surely 
if "a.s." rather than "a.e." appears in the analysis. But probabilists, like other 
mathematicians, are not above the use of classical methods, based essentially on 
antiderivatives, to evaluate integrals of functions on RN 
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Hilbert Space 

1. Analysis of L2 

The e space of functions on a measure space (S,S,A.) was discussed in Section 
V1.14. The special case p = 2 plays a strong role in analysis and will now be 
discussed in more detail in an abstract form. It is useful to allow complex 
valued measurable functions in this study. Complex conjugates are indicated by 
upper bars. Recall that a complex valued functionfis measurable if and only if 
its real part 'ft.f and imaginary part gfare. 

The following are basic properties of L2, some obtained by settingp = 2 in 
Section VI. 14. 

(a) The space is a linear space, that is, linear combinations (with complex 
coefficients) of members of the space are in the space. 

(b) Each pair f, g of members has an inner product 

(1.1) 

that satisfies the following conditions. 

(i) Hermitian symmetry: V,g) = (g!) -. 
(ii) Linearity in the first argument: for complex constants ah a2: 

(aJi+aff2,g) = a,Vi,g)+a2(h,g). 

(iii) V!) ~ 0, with equality if and only iff= ° a.e. 

The number If I = V,t),12 is the no rm of f. (The subscript 2 will be omitted 
from the norm notation throughout this discussion of L 2.) A glance at the proof 
in Section VI.12 of the HOlder inequality for the case p = 2 shows that the 
properties under (b) imply the Schwarz et al. inequality 

(1.2) I (r,g) I ~ If I I g I 
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without the necessity of referring back to the definition of the inner product as 
an integral. More explicitly, 

Inequality (1.2) implies Minkowski's inequality in the present context: 

(1.4) ~f+ g ~ :::; ~fl+ Igl, 

and this in turn yields the triangle inequality for L2, 

(1.5) If-hi :::; If-g 1+ Ig-hI. 

(c) The pseudometric space L 2 is complete. It is convenient to write in a special 
way that a sequence f. of functions converges to f in the L 2 pseudometric, that 
is, that there is a limit in the mean of order 2: 

(1.6) l.i.mj. =f; 

"of order 2" will be omitted below. 

2. Hilbert space 

The properties listed in Section I suggest a postulate system that makes it 
possible to ignore the measure background. That is, instead of functions f, g, ... 
postulate that there is an abstract space ]f), Hilbert space, consisting of points, 
written in boldface: f, g, ... with the properties listed in Section lea), l(b)(i) and 
(ii). The inner product and norm notation used for L2 will also be used for ]f). 
Properties (a), (b) (i), and (ii), with the points of]f) in boldface instead of L2 
functions in italics, need no changes in wording. The product of the complex 
constant 0 and a member of]f) is a member 0 of ]f), the identity element of the 
space considered as a group with group operation addition. Property (b)(iii) can 
now be restated without reference to a measure space: 1ft = 0 if and only if 
f = 0, and (c) becomes: ]f) is a complete metric space under the definition that 
the distance between f and g is If-gl. One way of looking at this discussion is 
that as so defined ]f) satisfies properties (a), (b), and (c) if these properties are 
restated in the language of equivalence classes, in which functions are identified 
if they are equal almost everywhere. 

The axioms given above are for complex Hilbert space. Real Hilbert space 
has the same axioms except that the inner product is real valued, and in (b)(ii) 
only real coefficients a1 and a2 are allowed. These axioms correspond to the 
properties of real valued functions (or better, equivalence classes of real valued 
functions) in an L 2 space. In this chapter the Hilbert space will always be 
complex unless the contrary is stated. 
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The preceding paragraphs outline the axioms of Hilbert space. Readers who 
prefer measure theory to axiomatics can think of the space as an L 2 space 
partitioned into equivalence classes, but they may lose the flavor of the 
geometry of the space. To stress this flavor, points of :ro will be called 
"vectors". The intuitive simplified picture is that these are analogs of vectors 
from the origin of a finite dimensional Euclidean space; the Euclidean distance 
between the endpoints of two such vectors corresponds to the distance between 
two Hilbert space vectors. In fact the Euclidean space picture is a special (real) 
Hilbert space according to an example below. 

Continuity of the inner product. The inequality 

implies continuity of the inner product at the pair fl' gl. It follows that the norm 
is a continuous function of its argument. 

Dimensionality. The dimensionality of a Hilbert space is infinite if there are 
arbitrarily large finite sets of linearly independent vectors; otherwise it is the 
largest cardinality of a set of linearly independent vectors. 

Hilbert space isomorphisms and unitary operators. Two Hilbert spaces 
are isomorphic if there is a 1-1 linear correspondence between them preserving 
inner products. A unitary transformation on a Hilbert space is a linear 
transformation T of the space onto itself which preserves inner products. 
Observe that preservation of norms implies preservation of the inner product. In 
fact if T is a norm preserving linear transformation of a Hilbert space onto 
itself, or even only into itself, then the two equations 

If+gl = IT(f+g)I, If+igl = IT(f+ig)1 

imply, when the equalities are squared and written out in detail, that (f,g) 
(Tf,Tg). 

Example. The axioms of Hilbert space are modeled on the properties of 
complex function L 2 space, which in turn is an obvious example if the functions 
are replaced by equivalence classes, identifying two functions if they are equal 
almost everywhere. In particular, if the measure space is the space of strictly 
positive integers (or of those::; N), if all subsets of the space are measurable, 
and if each singleton has measure 1, L 2 becomes the space of infinite (or length 
N) sequences (k of complex numbers, with 

(2.2) Ia.I = (L laiYI2 < +00, (a.,b.) = L a.b .. 
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This special Hilbert space is denoted by 12. In this special L 2 context, null 
sets are empty, and therefore "almost everywhere" never appears. 

Orthogonality. Vectors f and g in :D) are orthogonal to each other if 
(f,g) =0. The vector f is orthogonal to a set oi vectors if it is orthogonal to each. 
If f is orthogonal to g, then If+gl2 = Ifi2 + igl2, the Hilbert space version of the 
Pythagorean theorem. Without orthogonality, 

(2.3) 2 2 2 () If+gl = Ifi +Igi + 29\ f,g . 

A set f. of vectors is an orthonormal set if the vectors are pairwise 
orthogonal and each has norm 1. An orthonormal set is complete if there is no 
vector other than 0 orthogonal to every vector in the set. If the set is not 
complete there is a vector of norm 1 orthogonal to every vector in the set. In 12, 
the sequence (1,0,0, ... ), (0,1,0, ... ), ... is an orthonormal sequence, which is com­
plete because orthogonality of (aj,G)., ... ) to the nth member of this sequence 
implies that an = O. 

Subspaces. A subset of:D) is a subspace (or a closed linear manifold) if it is 
a closed set that is linear, that is, that contains the linear combinations of its 
members. Observe that the closure of a linear subset of:D) is also a linear set 
and therefore is a subspace. The vectors orthogonal to a given set of vectors 
form a subspace. In particular the set of vectors orthogonal to a subspace m is 
the orthogonal subspace, denoted by m-L. The geometric notion of a subspace 
is a hyperplane through the origin. 

3. The distance from a subspace 

If A is a subset of a Hilbert space, let d(f,A) be the distance from a vectorfto A. 

Lemma. If m is a subspace of a Hilbert space, there is a unique vector in 
m at distance d(f,m)from f. 

Proof. Iff is in m, d(f,m) = 0 and the lemma is trivial. Iff is not in m, let g. 
be a sequence of points of m for which lim If-g.i= d(f,m). It will be shown 
that the sequence g. is a Cauchy sequence, converging to the point of m closest 
to f. Note the equation 

(3.1) 

The inequality 

(3.2) 
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implies that the left side of (3.2) tends to d(f,m) when m and n become infinite. 
The limit equation 

(3.3) J(f,m) = limm,n~ If-(gm+gn)121 2 

= liII1m,n~ [If-gmI2 + If-gnl2 +29t(f-gm,f-gn) ]/4 

implies 

(3.4) 

This limit relation combines with (3.1) to yield the fact that g. is a Cauchy 
sequence: liII1m n~ Igm-gni= O. Thus the sequence g. has limit g, at distance 
d(f,m) from f, by continuity of the distance function. There is only one vector 
of m at distance d(f,m) from f, because if g' and g" are vectors in m at 
distance d(f,m) from f then g'=g" because what was just proved implies that the 
sequence g',g",g', ... , in which the two vectors alternate, is a Cauchy sequence. 

4. Projections 

The projection of a Hilbert space])) onto a subspace m is the transformation 
taking each point f of])) into the closest point to f on m. 

Theorem. The projection T of])) onto m has the following properties. 

(a) T is idempotent: T2 = T. 

(b) Tf=fforf in m; Tf=Oforf in m.l. 

(c) T is Hermitian symmetric: (Tf,g) = (f,Tg). 

(d) For every vector f, f -Tf is orthogonal to m. Thus the equation 
f = Tf + (f-Tf) is a representation of f as the sum of a vector in m and one in 
m.l. Such a representation is unique, and the second summand is the projection 
of f on m. Moreover (m.ll = m. 

(e) T is linear. T(af+bg) = aTf+bTg, for all complex constants a,b, and all 
vectors f, g. 

Conversely, if T is a transformation from ])) into a subspace m, and iff-Tf 
is orthogonal to m for all f, then T is the projection on the subspace. 

Proof of (a). This property follows trivially from the projection definition. 

Proof of (b), (c), and (d). If g is a point of m, the inequality 
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(4.1) 
2 2 2 2 

If-Ttl s If-(Tf+g)1 = If-Ttl + Igl - 29\(f-Tf,g) 

implies that 

(4.2) 
2 

Igi :2: 29\(f-Tf,g). 

The vector g can be replaced here by cg, with an arbitrary complex constant c, 
and then if c tends to 0, (4.2) yields (f-Tf,g) = 0, that is, f-Tf is orthogonal to 
jIJl. 

Thus f = Tf + (f-Tf) is a representation of f as a sum f = f] +f2 of a vector in 
jIJl and one in jIJl.I. Iff= f]'42' is a second such representation, f]-f] , =f2'-f2 is 
a vector in both jIJl and jIJl.I and is therefore O. Thus this representation of f as a 
sum of orthogonal components is unique. Since the projection of]f.l on jIJl.I 
provides another such representation, it follows that f-Tf is the projection of]f.l 
on jIJl.I and that jIJl = (jIJl.Il. Direct computation yields, in terms of the 
representations of f and g as sums of components in jIJl and jIJl.I, 

(4.3) 

Proof of (e). In the notation of (4.3), af+bg = (af]+bg]) + (af2+bf2) represents 
the left side as the sum of vectors in jIJl and jIJl.I from which the linearity 
property (e) can be read off. 

Proof of the converse. Under the hypotheses of the converse, f = Tf + (f-Tf) 
expresses f as the sum of vectors in jIJl and jIJl.I, and T is therefore the 
projection on jIJl. 

5. Bounded linear functionals on ]f) 

A bounded linear functional on ]f.l is a function IL from ]f.l to the complex plane 
which is linear and bounded, that is, for all complex constants a, b, and all 
vectors f, g 

(5.1) IL(af+bg) = aIL(!) + bIL(g), IIL(f) I sci fl, 

for some positive constant c. The minimum value of c satisfying (5.1) is the 
norm of lL. Observe that IL is continuous, because IIL(f-g)1 s C/f-gl. 

Example. If g is a vector, the function f-+(f,g) is a bounded linear 
functional. In fact, linearity of the functional is an inner product axiom, and the 
boundedness follows from the inequality I (f,g) I s Igllfl, according to which the 
norm of this linear functional is at most Igl. The norm of the functional is 
actually Igi because there is equality in this inequality when f = g. Different 



VII. Hilbert Space 109 

choices of g yield different linear functionals, because (f,gl) = (f,g2) for all f 
implies that gl-g2 is orthogonal to every vector, in particular is orthogonal to 
itself, and is therefore o. According to the following theorem, every bounded 
linear functional has the form of this example. Thus, for L 2 on a measure space, 
this theorem sets up a linear, norm and order preserving correspondence 
between bounded linear functionals on L2 and the members of the dual space, 
which is also L2. 

Theorem.lfL is a bounded linear functional, there is a vector hfor which 
L(o) = (o,h). 

Proof. The set of vectors on which L vanishes is a subspace ~ of ]f). If the 
theorem is true, h must be orthogonal to ~. Let T be the projection of]f) on 
~l.. Then for every vector f, f-Tfis in~, L(t) = L(Tt), and for every vector g, 

(5.2) L[L(f)Tg-L(g)Tf] = 0, 

It follows that for all vectors f and g, L(f)Tg-L(g)Tf is a vector in ~ and ~l. 
and is therefore O. Thus ~l. is the space of multiples of some vector ho in ~l.. 
If ho=O, the theorem is true with h=O and L vanishes identically. If ho:;tO, it can 
be supposed that Ihol = 1. Then f = aho + fl with fl in m, for some constant a 
depending on f, and in fact (f,ho) = a. Finally, L(t) = (f,ho)lL(ho), that is, the 
theorem is true with h = L (ho)ho. 

6. Fourier series 

If f. is an orthonormal sequence and f is an arbitrarx vector, the number (Un) is 
the nth Fourier coefficient of f (relative to f.) and ~(f,fo)f. is the corresponding 
Fourier series of f. The notation f .... ~ a.f. will mean that the series is the 
Fourier series for f, that is, that the coefficients are the Fourier coefficients. The 
key convergence properties of orthogonal series are given by the following 
theorem. 

Theorem. Let f. be an orthonormal sequence in a Hilbert space H . 

(a) The series ~aof. converges if and only if~ lai < +00. 

(b) Iff = ~a.f. and g= ~b.g. are convergent series, then (f,g) = ~ a.b •. 

(c) (Bessel's inequality) If f .... ~.fo ,then If12;:: ~ 1a.12. 

Proof of (a). The series ~a.f. converges if and only if the Cauchy condition 
k k 

(6.1) limj,k~oo I L anfnF = limj,k~oo L lai = 0, 
n=j n=j 
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and therefore if and only if r lai < +00. 

Proof of (b). By direct calculation, if f and g are given as the indicated sums, 
m m m 

(6.2) (f- I anfn,g- I bngn) = (f,g) - I anbn· 
n=! n=! n=! 

Apply continuity of the inner product to obtain (b) when m-Hoo. 

Proof of (c). It is sufficient to prove Bessel's inequality for a finite orthonormal 
sequence. In this case, if f - ra.f., there is no convergence problem, and 
(special case of (6.2» 

(6.3) 

7. Fourier series properties 

The following theorem lists the Fourier series properties with special emphasis 
on their geometric significance. 

Theorem. Let f. be an orthonormal sequence in a Hilbert space ]f). 

(a) The class]f)' of the sums ra.f. with r lai < +00 is a subspace of ]f). 

(b) If f- ra.f. then the series converges; denote the series sum by i. Then ]f)' 
is the class of vector sums r'. 

(c) C is the projection of f on ]f)', and f-C is the projection of f on ]f)'l.; ]f)'= 
]f) if and only iff. is a complete orthonormal sequence. In this case, f - ra.f. 
implies that f = ra.f •. 

(d) (Parseval identity) Iff. is complete and f= ra.f. and g= rb.g., then 

(7.1) (f,g) = Wob •. 

Equivalence ofthe Parseval identity and equality in Bessel's inequality. 
If the Parseval identity holds for all pairs f, g, then it is trivial that there is 
equality in Bessel's inequality; one need only take f = g. Conversely, if equality 
holds in Bessel's inequality for all f, then Parseval's identity holds for all pairs C, 
g. In fact if equality in the Bessel inequality is written out for f, g, f+g, and if+g, 
the equations imply the Parseval identity. 

Proof of (a). Rather than proving directly that ]f)' is linear and closed, it is 
more instructive to note that by its very definition ]f)' is in 1-1 correspondence 
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with the Hilbert space of sequences (Fourier coefficients) a. satisfying 
l: lai < +00, described in the example in Section 2. The correspondence 
preserves inner products, and the two spaces must therefore be isomorphic 
Hilbert spaces. 

Proof of (b). According to Theorem 6, the series converges. The second 
assertion of (b) states that if f' = l: a.f. then the coefficients are the Fourier 
coefficients. Apply the continuity of the inner product: 

(7.2) (f',fk) = limm~oo ( f anfn,fk) = ak· 
n=1 

Proof of (c). The fact that the vectors f and f' have the same Fourier coefficients 
implies that the difference f-f' is orthogonal to every fn and therefore to every 
linear combination of these vectors, and therefore (continuity of the inner ,.,. , , 
product) to the closure )II' of these linear combinations. Thus f = f +(f-f) is the 
representation of f as the sum of a vector in 1)' and one in 1),1 that is, as the 
sum of its projections on these mutually orthogonal subspaces. Completeness of 
f. is equivalent to J)'.L = O. 

Proof of (d). This is now simply an application of Theorem 6(b). 

8. Orthogonalization (Erhardt Schmidt procedure) 

If gb""~ are linearly independent vectors of a Hilbert space, the following 
procedure yields an orthonormal set fb ... ,fN of linear combinations of these 
vectors, and the given vectors are in turn linear combinations of those in the 
orthonormal set. Define 

(8.1) f2' =g2 - (g2,ft)fb 

f3' = g3 - (g3,ft)ft - (g3,fJf2, 

The idea guiding this procedure is that when j > 1, the vector ~' is gj less the 
sum of its Fourier series for the orthonormal set fl, ... ,~-t 

Dimensionality of a Hilbert space and complete orthonormal sets. If a 
Hilbert space has finite dimensionality N, the result just proved shows that there 
is an orthonormal set of N vectors. This set is obviously complete. 

Suppose that a Hilbert space 1) has infinite dimensionality, but that the 
space is separable, that is, there is a dense sequence g. of vectors. Delete from 
this sequence any vector gk that is a linear combination of gb ... ,g k-t. The 
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remaining vectors have the property that their linear combinations are dense in 
the space and that every finite subset is a linearly independent set. Apply the 
Schmidt procedure to these remaining vectors to find an orthonormal sequence 
f •. The linear combinations of the vectors f. are dense in the Hilbert space. The 
closure of the linear combinations is a subspace of ]f.l according to Theorem 6, 
and therefore is ]f.l. Thus the sequence f. is a complete orthonormal set, an 
infinite sequence, because ]f.l was supposed infinite dimensional. 

Conversely, if a Hilbert space has a countable complete orthonormal set the 
space is a separable metric space. In fact if the sequence f. is a complete 
orthonormal set, the class of all finite linear combinations of these vectors with 
rational real and imaginary part coefficients is a countable dense set. 

Separable Hilbert spaces and 12. If a Hilbert space ]f.l is separable and if f. 
is a finite or infinite complete orthonormal sequence, as determined by the 
dimensionality of ]f.l, every Hilbert space vector f is the sum of its Fourier 
series, f = 1: a.f., and according to (7.1), 

2 2 2 
Ifl =1:la.1 =la.l, 

where the first norm is that for ]f.l and the second is that for the Hilbert space t 
Thus there is a one-to-one correspondence between the vectors of the Hilbert 
spaces ]f.l and 12, which preserves norms, and therefore, as remarked in Section 
2, preserves inner products. That is, these two Hilbert spaces are isomorphic. 
This argument shows that up to isomorphisms, for a given dimensionality, 12 is 
the most general Hilbert space, at least if the Hilbert space is supposed 
separable. The conclusion is actually valid for the most general Hilbert space, if 
uncountable infinite series are allowed, under the usual summation conventions. 

9. Fourier trigonometric series 

Let S be the circle in R2 of radius 1 with center the origin, equivalently the 
interval [--n,n] of R, for --n identified with n. The measure involved is one­
dimensional Lebesgue measure. The sequence f. defined on [-n,n] by 
fn(s) = (2ntl/2eins, n = ···,-1,0,1,··· is an orthonormal sequence. According to 
Section VI.14, the set of linear combinations of these functions is dense in the 
pseudometric space L 2. It follows that every function in L2 is equal to the sum 
of its Fourier series, in the sense that the partial sums converge to the function 
in the mean. Actually it was proved by Carleson that there is almost everywhere 
convergence in this particular context. 
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10. Two trigonometric integrals 

The following integrals, in which ds refers to Lebesgue measure and only 
Riemann integration is needed because the integrands are continuous, will be 
used in discussing Fourier transforms: 

=1t =[37t >0 
00 00 f sin ~s =0, 

f l--cos 13s' 
=0 if ~ = 0 (10.1) --ds 2 ds s s 

-00 -00 

= ~1t <0. =-1t 

The first integral, which is not absolutely convergent, is defined by 

a 

(10.2) f sins 
lima~oo -s- ds 

-a 

and is evaluated by residues. Replace sins by sints in the first integrand and 
integrate with respect to t over the interval [O,~] to evaluate the second integral. 

11. Heuristic approach to the Fourier transform via 
Fourier series 

Throughout this section the measure involved will be Lebesgue measure on R 
or on a subinterval of R. 

The Fourier transform. Iff is a Lebesgue measurable function from R into 
R, the Fourier transform Ufoffis defined by 

00 

(1Ll) (Uf)(t) = (21tt I/2 f f(s)e its ds. 

-00 

under suitable hypotheses on f, and the integral is the Fourier integral. (In the 
following, the left side of (11.1) will be abbreviated to Uf(t).) If i is replaced 
by -i in the integrand, the integral is the inverse Fourier integral. defining the 
inverse Fourier transform U*. The Fourier integral is well defined when 
f E L\R), but it is sometimes necessary to define the Fourier integral in a way 
that requires less of f. There is a general principle that possibly with 
generalizations of the definitions of the integrals involved. U and U* are 
inverse operations, and that these operations preserve inner products, that is. on 
suitably restricted domains, UU* and U*U are the identity and 
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(r,g) :;; (Uj,Ug) :;; (U*j,U*g). 

This rather vague remark will be justified by the Fourier-Plancherel theorem in 
the next section, and by Levy's theorem on the representation of a distribution 
function in terms of its characteristic function in Section X.14. 

The following unrigorous argument leads from trigonometric Fourier series 
(which make correspond to a function in L\[-n:,1tJ) (Lebesgue measure) the 
sequence in 12 of its Fourier coefficients) to Fourier integrals (which, in the 
context of the Fourier-Plancherel theorem, make correspond to a function in 
L2(R) its generalized Fourier transform, also a function in L2(R». Fourier 
series based on a complete orthornormal sequence define a transformation from 
one Hilbert space onto a second; Fourier transforms, in the context of the 
Fourier-Plancherel theorem, define a transformation from a Hilbert space onto 
itself. Both transformations preserve inner products. 

The relations to be applied between the Fourier trigonometric series of a 
function fin L\[-1t,1t]) and its coefficients, are 

Tt 

(11.2) 

-Tt 

bn :;; (21tt I/2 J f(s) e-insds, 

-Tt 

Here the first sum is convergent in the mean. These relations can be rewritten 
for functions defined on the interval [-i1t,i1t], in the form 

In 

(11.3) f(s):;; (21ttI/21:_: ben,!) eisnll/l, 

lIt 

b(n,!) :;; (21tt 1l2 f f(s) e-isnll ds, 

-ITt 

J !res) 12 ds :;; 1: _: Ib(n,!)1 2/l, 

-ITt 
in which ben,!) is not normalized like a Fourier coefficient. When i becomes 
infinite, the sums are approximating sums for Riemann integration and thereby 
suggest, with a change of notation and the help of a grain of salt, the relations 

00 00 

f(s) = (21tt1l2 J U*f(t) eist dt = UU*j, U*f(t) =(21ttl12 J f(s) e-ist ds, 

-00 -00 

(11.4) 

00 00 

-00 -00 



VII. Hilbert Space 115 

These manipulations suggest that iff is in L 2 and Uf and u* fare suitabll 
defined, if necessary by loosening the definition of an integral, then Uf and U f 
are in L2, UU* and u*u are the identity, and U and U* preserve L2 norms; as 
has already been noted, U and U* then also preserve inner products. 

12. The Fourier-Plancherel theorem 

This theorem is the most elegant version of (11.2) in the Fourier transform 
context. In the following, the measure is Lebes9.ue measure on R. Observe that 
if f is in L 2 (R) it does not follow that f is in L (R), and therefore the Fourier 
integral off cannot be defined as an ordinary integral. The Fourier-Plancherel 
theorem solves this problem by using an L2 definition of the Fourier integral. 

The clearest way to deal with the Fourier-Plancherel theorem is to use both 
L2 and Hilbert space terminology. To make the reasonin8.zboth perspicuous and 
correct a careful distinction will be made between L functions and their 
equivalence classes. If f is a function, the corresponding equivalence class, 
consisting of all functions equal to f almost everyWhere, will be denoted by f 
and identified as a point of the Hilbert space ]f) of equivalence classes. (The 
only exception is the notation for an indicator function, already in boldface, but 
it will be clear from the context whether an indicator function or an equivalence 
class is meant.) Thus, for example, convergence in the mean of a sequencef. is 
equivalent to Hilbert space convergence of f •. In the following theorem Uf is 
defined as a function, a certain limit in the mean. Such a limit is any function in 
an equivalence class of functions in L 2• This equivalence class is unaffected by 
a change off on a null set. Thus U determines a transformation of equivalence 
classes, that is, a transformation U from ]f) into itself. 

Theorem.lffE L2(R), the mean limits 

(12.1) 

a 

f f(s) eist ds , 

-aa 

f f(s) e-ist ds 

-a 

exist. The transformations U and u* are unitary operators on ]f), and each is 
the inverse of the other. 

Observe that iff is in both L 2 and Ll, the mean limits in (12.1), once they are 
known to exist, can be chosen as the ordinary integrals. 

Proof. The Fourier transforms of the indicator functions of compact intervals 
can be calculated as ordinary integrals, as can - using (l0.1) - the inner 
products of the Fourier transforms: 
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eitb - eita 

UI[a,b](t) = _ c--- ' 
it-V 21t 

(12.2) 

00 

eitd _ eite 

UI[e,d](t) = _ c--- ' 
it-V 21t 

( ) cost(b-d) + cost(a-c) - cost(b-c) - cost(a-d) 
UI[a,b}UI[e,d] = f 2m2 dt 

-00 

= (l[a,b ],l[e,d] ). 

Observe that Ufin (12.2) is in L\R) but not in L\R). It follows from (12.2) 
that the Fourier transform U defines a linear transformation, which preserves 
inner products, on the class of step functions constant on intervals. The 
corresponding Hilbert space transformation U is thereby defined on a certain 
linear set, dense in ]I) according to Section VI.15. 

Now (Section O.12(b») a uniformly continuous function from a dense subset 
of a complete metric space into a complete metric space has a unique con­
tinuous extension to the whole space. In the present context, the extension of U 
is a linear map of]l) into itself, with a corresponding extension of U. Moreover 
(continuity of the Hilbert space inner product), U preserves inner products. If 
f E L 2(R) and 1 is a finite interval, the restriction to 1 of f is in L 2(/) and 
therefore (Schwarz et al. inequality) also in L \1), that is,fll is in both L 2(R) 
and L I (R). Iff. is a sequence of step functions, vanishing outside I, convergent 
in the mean tofll, the Fourier transform sequence Ufo has as limit in the mean 
the Fourier transform of fll, and therefore Uf, as defined by the extension 
theorem, is the Fourier transform of fll. That is, one version of U(fl/) is given 
by an ordinary integral: 

(12.3) 

U(f11 )(t) = (21tjIl2 f f(s) eist ds, 

00 1 

f IU(f11 )(t)1 2 dt = f If(s)1 2 ds. 

1 
-00 

It follows that if I. is an increasing sequence of finite intervals with center 
the origin and limit R, the sequence of integrals 

(21tt Il2 f f(s) eist ds 

I. 
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is a Cauchy sequence in L2. Thus Uf is defined by (12.1) and preserves inner 
products. Similarly, u* is defined by (12.1) and preserves inner products. 
Apply U* to Ul[a,b) , evaluated in (12.2): 

(12.4) 

a .b . 
elt - elta 

I . f -ist ---- dt = .l.m·a~oo e 2mt 
-a 

asint(b-s) - sint(a-s) 

= l.i.m·a~oo f 2m dt. 

-a 

According to (10.1), the pointwise limit of the second integral is l[a,b), 
neglecting the points a and b, and therefore this indicator function is also the 
limit in the mean. Thus U*U, neglecting null sets, is the identity on the class of 
indicator functions of intervals, therefore also on the class of linear 
combinations of these indicator functions, and therefore (continuity of these 
distance-preserving operators) u*u is the identity on L2, that is, U*U is the 
identity on ]f). The set u]f) is a subspace of ]I). If an element of]l) is orthogonal 
to this subspace, U*U takes this element into one orthogonal to ]I), and it 
follows that the element is the zero element, that is, U is a unitary operator 
taking ]I) onto itself, and U*U is the identity. Similarly, U* is a unitary operator 
taking ]I) onto itself, and UU* is the identity. 

13. Ergodic theorems 

If U is a unitary transformation of a Hilbert space onto itself, the invariant 
vectors, that is, those vectors f satisfying the equation Uf = f, form a subspace. 
The iterates of unitary transformations on a Hilbert space arise in many 
applications, and it is an important theorem that the average of the iterates 
converges to the projection on this invariant subspace. Applications and 
examples will be given after the proof of the theorem. 

Theorem (von Neumann's Hilbert space ergodic theorem). Let U be a 
unitary transformation on a Hilbert space ]f), and let P be the projection of]l) 
onto the invariant subspace m for U. Then for every vector f, 

n 

(13.1) limn~oo n:1 L iff,:: Pf. 
m=O 

To prove the theorem, following F. Riesz, it is sufficient to prove that (13.1) 

is true both for fin m and fin m.L, because each average in (13.1) is a linear 



118 Measure Theory 

transformation off, and f can be written as the sum of a vector in :iIJl and one in 

:iIJl.l. It is trivial that (13.1) is true forf in :iIJl. There remains the identification 

of :iIJl.l, and the proof that the limit on the left in (13.1) is 0 for f in that 
subspace. Denote by lila and lIl, respectively, the linear class of vectors of the 

form g-Ug and the closure of lila, a subspace. It will be shown that :iIJl.l = III 
and that the limit in (13.1) is 0 when f is in lIl. In the equality 

(13.2) (h,g-Ug) = (h,g) - (h, Ug) = (Uh,Ug) - (h,Ug) 

= (Uh-h,Ug), 

if h is orthogonal to lIl, the first term on the left vanishes for every g, and 
therefore the last term vanishes for every g. Hence Uh-h is orthogonal to u]f.l, 
that is, to ]f.l, and it follows that Uh-h = 0, that is, h is in :iIJl. Conversely, if h 
is in :iIJl, the last term in (13.2) vanishes for every g, and the vanishing of the 
first term means that h is orthogonal to lIl. Thus the subspaces :iIJl, III are 
complementary orthogonal subspaces. If £ > 0, f is in lIl, and g-Ug is a vector 
in lila at distance at most £ from f, then 

n n 

(13.3) ~ n~ I I. umri :::; ~ n: I I. Um[f-(g-Ug)]~ + ~(g_Un+l g)~/(n+ I). 
m=O m=a 

The first term on the right is majorized by £, the second is majorized by 
2Igl/(n+I), and therefore the limit of the term on the left is 0 when n becomes 
infinite, as was to be proved. 

Example (a) (Koopman). Let (S,51,A) be a finite measure space, let T be a 
one-to- one transformation of S onto itself, and suppose that T is measure 
preserving, in the sense that T takes measurable sets into measurable sets of the 
same measure. If I is a measurable function from S into R, define a 
transformation U of functions by (Uj)(s) = fiTs). Then U is a linear 
transformation, takes measurable functions into measurable functions, and UI 
has the same distribution as/. Hence, for every p ;?: I, U on LP is a linear norm­
preserving transformation of LP onto itself. In particular, if p = 2, U defines a 
unitary transformation U of the Hilbert space of equivalence classes of L2. A 
function I is invariant if I(s) = fiTs) for almost all s, that is, if its equivalence 
class is invariant under U. A set is invariant if its indicator function is. For 
example, the almost everywhere constant functions are invariant functions, and 
the null sets and their complements are invariant sets. If the latter are the only 
invariant sets, then an invariant function is necessarily equal almost everywhere 
to a constant, because if I is an invariant function, every set of the form if E A}, 
with A in B(R), is an invariant set. 
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The study of the iterates of a unitary transformation of Hilbert space gives 
information on the iterates of measure-preserving transformations. Measure­
preserving transformations of the phase space of mechanical systems are of 
fundamental importance in physics, and the question of possible long-time 
averages of transforms of a function, that is, of possible limits of the average of 
the first n transforms off, is crucial. In the slang of physics, the functionfhas a 
space average A(f] = A[f]1A.(S), and one important question is whether the long­
time average of the transformed functions, 

n n 

(13.4) limn--+oo n:l ,Lj(Tn(s) = limn--+oon:l ,L Unf(s), 
m=O m=O 

exists in some sense, and if so whether this limit average is constant and equal 
to the space average. The following translation of Theorem 13 into measure 
theory gives one answer to this question. 

L2 Ergodic theorem. Let (S,S,A) be a finite measure space, and let T be a 
one-to- one measure-preserving transformation of S onto itself IffE L2 then 

n 

(13.5) l.i.m·n--+oo n:l ,Lj(Tn(s) 
m=O 

exists. The limit is almost everywhere constant (necessarily the constant 
A(f])lA.{S) for every choice off if and only if the only invariant functions are 
the almost everywhere constant functions, equivalently if and only if the only 
invariant sets are the null sets and their complements. 

Generalization of the L 2 ergodic theorem. In the preceding discussion, 
define fn = Unf, for n ~ O. The sequence f. is stationary, in the sense that for k ~ 
1, the k-dimensional distribution offn/n+l' ... .fn+k-l is the same for every integer 
n. That is, the distributions involved are invariant under index set translation. 

Suppose, more generally, that fo' is an arbitrary sequence, indexed by the 
positive integers, of measurable square integrable functions from a finite 
measure space (S',s',A') into R, with the stationarity property that for k ~ 1, the 
k-dimensional distribution offn'/n+l" ... /n+k-l' is the same for every positive 
integer n. As an application of the ideas in Section V.6 on measures in 
coordinate spaces, it will now be shown that the study of such a stationary 
sequence can be reduced to the context of the L 2 ergodic theorem. Let the index 
set I be the set of all integers, and let S be the space RI of all sequences 
(indexed by /) of real numbers. Let fn be the nth coordinate function of S, and 
let S = a(f.) be thea algebra of subsets of S generated by the class of sets of the 
form {fn E A}, where A is a Borel subset of R. In other words, S is the smallest 
a algebra making all the coordinate functions measurable. For each n in I and 
each k ~ 0, assign to the coordinate functions fn' ... /n+k of S the joint 
distribution offo', ... /k'. These distributions are mutually consistent in the sense 
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of Section V.6, because the joint distributions of the given functions are 
mutually consistent, and these distributions therefore determine a measure A on 
S, according to Theorem V.6. By definition of A, the joint distribution of the 
coordinate functionsfo, ... Jk is the same as that of the given functionsfo', ... Jk', 
and therefore in any question regarding limits of averages of the given 
functions, there is no loss of generality in replacing (S",S',A') by (S',S,A) and 
replacingf.' by {tn, n ~ OJ. The space S has the advantage that if T is the 
translation taking each point of S into the point with index value increased by 1, 
then T is a one to one measure preserving transformation of S onto itself and 
fo(T"s) = fn(s). Thus the problem of the possible limits of successive averages 
of members of the original stationary sequence f.' has been reduced to the 
context of measure preserving transformations. The fact that the mean limit in 
(13.5) exists implies that the corresponding mean limit for the original primed 
functions exists. 

Example (b). Consider the N-dimensional Hilbert space 12 defined in Section 
2. Let f. be a complete orthonormal sequence in the space, let cx. be N numbers 
of modulus 1, and define 

U(L1.f.) = Lex.a.f •. 

The transformation U is unitary, and If\LaJ".) = Lamamtz. Since the sum 
1 +cx+···+cxn- 1 is n when CX = 1, and otherwise is (l-an)/(1-a). It follows that 

n 

(13.6) . lIm"" hmn~oo -1 U f= ~m·a -1 amtz = Pf, n+ . m-
m=O 

where P is the projection of ]f) onto the subspace generated by those vectors fm 
with cxm = 1, that is, P is the projection on the invariant subspace for U, as it 
should be according to the Hilbert space ergodic theorem. This simple example 
is actually not far from the general case. To formulate a hint of the general case, 
let~. be the distinct values of ex. and write U in the form U = L ~.P., where Pm 
is the projection of the Hilbert space on the subspace of linear combinations of 
fk for those values of k with cxk = ~m. Thus these projections are on mutually 
orthogonal subspaces. The general unitary transformation of a separable Hilbert 
space has nearly the same form: the finite sum is replaced by a continuous sum 
(a form of Stieltjes integral of a family of projections). 

Example (c). Let S be a circle of radius 1, S = B(S), and A be Lebesgue 
measure on the circle. Let cx be an irrational number and T be the rotation of S 
through a radians about the center. Then T is one to one and measure 
preserving. Moreover, only the almost everywhere constant functions are 
invariant under T. To prove this assertion, suppose that T is a square integrable 
invariant function. Then the Fourier coefficients of f and the transformed 
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function must be equal, and a trivial calculation yields, for the sequence a. of 
Fourier coefficients off, 

(13.7) 

Then an = ° except possibly when n = 0, and therefore the Fourier series for f 
makesfan almost everywhere constant function. The L2 ergodic theorem yields 
the limit equation 

J1t 
. 1 n 1 

l.1.m·n~oo --=i=T L f(s+ma) = 21t j{s) ds, 
n m=O 

(13.8) 

where ds refers to Lebesgue measure. 

The law of large numbers. A theorem that states that the sequence of 
successive averages of a sequence of functions on a probability space is 
convergent in some sense, is a law of large numbers. If the theorem states that 
the convergence is almost everywhere convergence, it is a strong law of large 
numbers. Thus the L2 ergodic theorem, and the corresponding limit equation for 
a stationary sequence are laws of large numbers when the measure space is a 
probability space. This sort of romantic nomenclature adds romance (and 
mystery to nonprobabilists) to measure theory whenever the measure of the 
space is I! 

According to the Birkhojf ergodic theorem, whose proof will be omitted, the 
limit equation (13.5), and the corresponding limit equation for a stationary 
sequence, are true in the sense of almost everywhere convergence, even iff is 
supposed to be only in L I. When the measure space is a probability space, the 
Birkhoff ergodic theorem is thus the strong law of large numbers for stationary 
sequences of random variables. 

The law of large numbers in the independence case. Let f. be a sequence 
of mutually independent random variables, with a common distribution, on a 
probability space (S,S,P). Recall that if the common distribution is the measure 
').. of Borel subsets of R, one representation of such a sequence is the sequence 
of coordinate functions of infinite dimensional Euclidean space RxRx'" with 
the product measure ')..x')..x .. ·. The sequencef. is stationary, and therefore the L2 
ergodic theorem is applicable iffl is in L2. In this case the limit is almost surely 
constant, according to the 0-1 law (Theorem V.9) and the L 2 law of large 
numbers takes the form 

n 
(13.9) l.i.m·n~oo n+ 1 L fn = E{f) }. 

m=O 

As already noted, this limit is valid as an almost everywhere limit, even when f) 
is in L I, and when so stated (13.9) becomes the strong law of large numbers for 
identically distributed independent random variables. This form of the strong 
law of large numbers will be proved (Theorem XI. 19) as an application of a 
martingale convergence theorem. 



VIII 
Convergence of Measure Sequences 

1. Definition of convergence of a measure sequence 

This chapter discusses the kinds of convergence of a measure sequence most 
frequently met in classical analysis. The typical context to be considered is the 
following. A class M of measures on a measurable space (S,S) is given, together 
with a class r of functions from S into R. The problem is to find a definition of 
convergence of the sequence A.. in M to a measure A. in M, which implies that 
limA.[f] = A.[f] for every function f in r. This problem has an easy solution, a 
solution by definition: the sequence A.. is r convergent to A. if 

(1.1) limA.. [f] = A. [f] (j'E r). 

This chapter is based on this easy solution, but there is an old proverb to take 
into account: there is no free theorem. The easy solution is indeed easy, but is 
only a first step in finding and characterizing a useful solution, that is, one in 
which S,S, r, and M are chosen in such a way that the choice can be shown to 
be applicable to the needs of analysis. 

Example. The Vitali-Hahn-Saks theorem. Let (S,S) be an arbitrary 
measurable space, r be the class of bounded measurable functions from S into 
R, and M be the class of finite measures. Under these definitions, the indicator 
functions of measurable sets are in r, and therefore r convergence of a 
sequence of measures implies setwise convergence. Conversely, the Vitali­
Hahn-Saks theorem states that if there is setwise convergence of A.. to a finite 
valued set function A., then A. is a measure. Under setwise convergence, the limit 
relation in (1.1) is true when f is the indicator function of a measurable set, and 
therefore successively when f is a step function and when f is in r. Thus r 
convergence is the same as setwise convergence. 

The Vitali-Hahn-Saks theorem is a valuable tool, but setwise convergence of 
measure sequences is a strong kind of convergence that is rare in classical 
analysis. What is common is the following context: 

(a) the space S is a metric space, either compact or at least separable and locally 
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compact, and S is the class of Borel subsets of S; 

(b) r is the class of bounded continuous functions from S into R; 

(c) M is the class of Radon measures, those measures finite valued on compact 
sets. 

This will be the context in the rest of this chapter. 

Punctured compact metric spaces. If S is a not compact metric space, a 
function I from S into a metric space is said to have limit a at infinity if the 
inverse image of each neighborhood of a is contained in the complement of a 
compact subset of S. The foIIowing argument shows that this terminology can 
be interpreted IiteraIIy, under appropriate conventions. 

Let S' be a compact metric space and s' be a not isolated point of the space. 
The space S = S'-{s1 is then a 10caIIy compact but not compact separable 
metric space and will be caIIed a punctured compact metric space. Conversely, 
if S is a locally compact but not compact separable metric space, it will now be 
shown that under a change of metric that does not change the class of open sets, 
S becomes a punctured compact metric space. To see this let 0) be the distance 
function of S, t. be a sequence dense in S, and A. be an increasing sequence of 
compact subsets of S, with union S. For each value of n, the function o)(-,tn)l\l 
is a positive continuous function on S, vanishing only at tn. The function 
~ 0)(-.An)1\2-n = g is a strictly positive continuous function on S, at most 2-n 

on An. If "going to infinity" means proceeding through the sequence A., this 
function has limit 0 at infinity. This idea is made precise as follows. Define 

If sand t are points of Sat whichln(s) = In(t) for all n, then s = t. Define a new 
distance function 0 for S by 

(1.1) O(s,t) = l:!f.(s)-I.(t)1. 

The space S under the 0 metric has the same topology as under the 0) metric 
because a sequence s. has limit s in S under one of the two metrics if and only 
if it has s as limit in the other. Adjoin a point "00" to S to obtain a space S' = 
SU{ OO}, defineln(oo) = g(oo) = 0, and define distance on S' by (Ll). Under this 
definition, In and g are continuous on S'. If s_ is a sequence in S, either some 
subsequence is 0) convergent and therefore 0 convergent to a point of S, or only 
a finite number of members of the sequence are in anyone set of the sequence 
A.. In the latter case, each function In has limit 0 along the sequence, and 
therefore the sequence has the point 00 as limit in the 0 metric. Thus S' is a 
compact metric space, exhibiting S as a punctured compact metric space. 
"Going to infinity" in S means approaching the point 00 of S' in the 0 metric of 
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S'. In particular, an open not compact subset of a compact metric space can be 
remetrized to be a punctured compact metric space. The effect of the new metric 
is to replace the original boundary by a single point, 00. 

If S is a punctured compact metric space and A is a Radon measure on B(S), 
the extension of A to a measure on B(S,) obtained by assigning a finite measure 
to the singleton {oo} will be denoted by A'. 

The class M(S). If S is a metric space, the space of finite measures on B(S) 
will be denoted by M(S), and {A E M(S): A,(S) :S; c} will be denoted by Mc(S). 

The class C(S) and its norms. If S is a metric space, denote by C(S) the 
class of bounded continuous functions from S into R, and define the sup norm of 
a function/in C (S): 

(1.2) 1/1 = sups It I. 

The space C(S) is a complete metric space under the sup norm metric, in which 
the distance between two functions / and g is If-gl. 

If S is a locally compact but not compact separable metric space and A. is a 
sequence of compact subsets of S, with union S define a local sup norm of a 
function/in C(S): 

(1.3) 

The space C(S) is a metric space under the local sup norm metric, in which the 
distance between two functions/and g is 1/-gI1oc. 

When S is not compact, the sup norm metric ofC(S), for which convergence 
of a sequence of functions is uniform convergence, is sometimes less useful than 
the local sup norm metric, for which convergence of a sequence of functions is 
locally uniform convergence, that is, uniform convergence on every compact 
subset of S. In the local sup norm metric, the set {f E C(S): If I :S; c} is a closed 
subset ofC(S) for every positive c. 

Separability of C (S). The class C(S) on a compact metric space S is 
separable under the sup norm. In fact, if 8(·,·) is the metric for Sand s. is a 
sequence in S, dense in S, then the class of rational coefficient polynomials in 
finitely many variables, with arguments {8(o,sn), n~l} form a countable algebra 
of continuous functions on S, separating S and containing the constant functions. 
Hence (Stone-Weierstrass theorem) this class is dense in C(S). 

The class Coo(S). A continuous function / from a metric space S into R has 
compact support if the open subset {f::F. O} of S has compact dosure. Denote by 
Coo(S) the class of these functions. Then Coo(S) c C(S), and there is equality 
when S is compact. 
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The class Co(S) and its separability. If S is a locally compact but not 
compact separable metric space, Co(S) is the class of continuous functions from 
S into R with limit 0 at infinity. Then Coo(S) c Co(S) c C(S). If S is a punctured 
compact metric space, with S' = Sur oo}, extend each function in Co(S) is to S' 
by setting the function equal to 0 at 00. The resulting class is a closed subset of 
the separable metric space C(S) under the sup norm. Hence Co(S) is separable 
in the sup norm metric, and this assertion must be true whenever S is a locally 
compact separable metric space. 

Relations among Coo(S), Co(S), and C(S). If S is a locally compact but not 
compact separable metric space, Co(S) is a closed subset of C(S) in the sup 
norm metric. Furthermore, in this metric, Coo(S) is dense in Co(S). To show this, 
it will be shown that if E is strictly positive andf E Co(S), there is a functionfe in 
Coo(S) for which If-frJ < E. Sincef= fvO-[(-j)vO)] it is sufficient to findfe for f 
positive. Iffis positive, define A = {f:S; EI2}, let O(·,A) be the distance of a point 
from A, and choose c to satisfy the inequality c&:·,A) ~ maxsf on the compact 
set {f~ E}. Definefe =f ,,[cOCo,A)], a function in Coo(S), and observe that the 
desired inequality If-Jel < E is satisfied. 

Sequential convergence of Radon measures. If S is a metric space, a 
sequence A.. in M(S) is Coo(S) convergent to a Radon measure A. (also called 
vaguely convergent to A.) if limA.(f] = A.[j] for fin Coo(S). If S is compact, then 
Coo(S) = C (S), and in this context Coo(S) convergence will be called C(S) 
convergence. If S is a not compact open subset of a compact space, a sequence 
A. in M(S) is Co(S) convergent to a Radon measure A. if lim A.(f] = 1..(f] for f in 
Co(S). In each context the limit measure A. is unique if a Radon measure A. is 
uniquely determined by A,[f], as will be shown to be true in the contexts studied 
in this chapter. 

2. Linear functionals on subsets of C (S) 

Let S be a topological space and C1(S) be a linear subset of C(S), that is, a 
subset of C(S) containing the linear combinations of its members. The sup norm 
metric of C(S) will be used when boundedness of a linear functional is 
discussed. 

Functionals on C 1 (S). A function L from C 1 (S) into R is honored by the 
name functional. A functional L is 

positive iff ~ 0 implies that L(j) ~ 0, 
bounded if IL(j)1 :s; const.lfl, 
linear ifL(af+bg) = aL(j) + bL(g) forf, g in C1(S) and a,b in R 

The following properties (a)-(g) of a functional L will be needed. 
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(a) Positivity and linearity 0/ L imply that L(j) ~ L(g) when /~; g. 

(b) L is continuous if positive, linear, and bounded, because then 

(2.1) IL(j)-L(g)1 = IL(f- g)1 ~Ld/- gl) ~const.I/- gI. 

Conversely, L is bounded ifpositive and continuous, because if IL(g)1 ~ 1 when 
Igl ~ Tl, it follows that for/ not identically 0, 

(2.2) 

(c) I/C1(S) includes the constant/unctions, L is bounded ifpositive and linear 
because then 

(2.3) IL(j)1 ~ Ld/b ~ L(l)lfl· 

(d) If S is a locally compact but not compact separable metric space and Ct(S) 
= Co(S), then L is bounded if positive and linear. To prove this, define 

M = sup{L(j):/E Co(s), 0 ~/~ I}. 

Unless this supremum is finite, to each strictly positive integer n there 
corresponds a function/n in Co(S) for which 0 ~/n ~ 1 and L(fn) ~ n2• Define 

Since the series converges uniformly, / E Co(S). Apply the positivity and 
linearity of L to obtain the inequality 

L(j) ~ Lcf n-2/n) ~ k 
t 

for all k. Since this inequality contradicts the finiteness ofL(j), it follows that M 
must be finite. Hence L is bounded, because for g in Co(S), lmd not vanishing 
identically, 

(2.4) IL(g) I ~Ldgl/lgl) Igl ~Mlgl. 

(e) The following example exhibits a positive linear unbounded functional on 
Coo(S). 

Example. Let S' be the interval [0,1] on R, a compact metric space under the 
Euclidean metric, and delete the point 1 to obtain S. If ').. is a Radon measure, 
the functional L: / -+A[fJ on Coo(S) is a positive linear functional, but is not 
bounded unless ')..(S) is finite. 
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if) If S is a topological space, L is a positive linear functional on Coo(S), and So 
is an open subset of S with compact closure, each function fin the class Co(So) 
has an extension to a function in Coo(S), obtained by defining f as 0 on S - So. 
The restriction of L to these extensions defines a positive linear functional on 
Co(So)· 

(g) If S is a locally compact but not compact separable metric space, a bounded 
positive linear functional on C oo(S) can be extended uniquely to one on ICo(S). 
To prove this, recall that Coo(S) is a dense (in the sup norm metric) subset of the 
closed subset ICo(S) of IC(S), and therefore a bounded positive linear functional 
L on Coo(S) is a uniformly continuous function from a subset of a metric space 
into a subset of a complete metric space. Hence (Section O.12(b») L can be 
extended uniquely to be a positive linear functional on ICo(S). 

3. Generation of positive linear functionals by measures 
(S compact metric) 

If A E M(S), the functional L defined on IC(S) by 

(3.1) Lif) = AU1 

is a positive linear functional, bounded according to Section 2 property (c), but 
here, more specifically, ILif)1 $; A(S)ljl. The following theorem asserts that all 
positive linear functionals on IC(S) can be generated in this way. Thus measures 
on compact metric spaces can be defined indirectly, as positive linear 
functionals. (Actually this can be done on suitably restricted non- metric spaces, 
but doing so is beyond the scope of this book.) 

Theorem (S compact metric). IfL is a positive linear functional on IC(S), 
there is a unique measure A in M(S) for which (3.1) is true. 

Proof. (a) There can be only one measure A satisfying (3.1) because, under 
(3.1), iff. is a decreasing sequence in OS), with limit the indicator function of a 
compact subset F of S, then lim Lif.) = A(F). Thus two measures satisfying (3.1) 
are equal on the class of compact sets. Since the class of sets on which the 
measures are equal is a monotone class containing the compact (that is, closed, 
in the present context) sets, the measures are equal on D(S). (A sequencef. with 
the properties used here is exhibited in part (c) of this proof.) 

(b) Define set functions A and A * by 

(3.2) A(F) = inf{Lif):fE C(S),f"?lF} (F compact), 



(3.3) 

(3.4) 
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~ G) = sup { ~F): F compact, F c G} 

')..*(A) = inf {~G): G open, G~ A} 

(G open), 

If F is a set that is both open and compact, the value of ~F) from (3.3) is the 
same as that from (3.2). In particular, ~S) = L(l). The set functions').. and ')..* 

are monotone increasing on their domains of definition. The set function ').. * is 
the outer measure generated by the class of open sets together with the set 
function').. on this class, and therefore the definition d", * (A,B) = ').. * (A!J.B) yields 
a distance function on the class 2S. The d", * closure A of the class of compact 
sets is closed under finite unions and intersections, because the class of compact 
sets is closed under these operations. It will be shown that A is a cr algebra 
including B(S) and that the restriction of').. * to A is a measure, satisfying (3.1) 
and equal to ').. on the closed and open sets. 

(c) If F is a compact set, there are monotone decreasing sequences of 
continuous functions with limit IF, and iff. is such a sequence, lim L(f.) = ')..(F). 
For example, the sequence {exp[(-nO(·,F)], n ~1}, where O(s,F) is the distance 
from the point s to the set F, is a monotone decreasing sequence of continuous 
functions with limit IF. Moreover, if f. is any such sequence and f is a 
continuous function majorizing IF, then (Dini's theorem) the sequence j.vf 
converges uniformly tof, that is, converges in theC(S) metric, and therefore 

~F) :5; lim L(f.) :5; lim Lif.vf) = Lif). 

Then (c) is true because f can be chosen to make Lif) arbitrarily close to ')..(F). 

(d) It is trivial that').. = ')..* on the class of open sets. To see that these two set 
functions are also equal on the class of compact sets, let F be a compact set and 
f. be a monotone decreasing sequence of continuous functions, with limit IF. If 
gn = fn + lfn, the sequence g. has these same properties, and the set Gn= {gn> I} 
is an open superset of F. Furthermore ')..(Gn) :5; L(gn) because gn majorizes the 
indicator function of every compact subset of Gn. Hence 

and it follows that ~F) = ')..*(F). 

(e) The set function').. is finitely additive on the class of compact sets. Let A and 
B be compact sets andf. and g. be decreasing sequences of continuous functions 
with respective limits lA and lB. The equation 
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yields, when n ~, the equation 

(3.6) A(AuB) + A(AnB) = A.(A) + A.(B), 

which implies that A is additive on the class of compact sets. 
(f) The class A contains the open sets. It is sufficient to prove that if F is a 
compact subset of an open set G, then 

(3.7) A(G) ~ A.(F) + A(G-F), 

because if (3.7) is applied to an increasing sequence F. of compact subsets of G 
for which limA.(F.) = A.(G), (3.7) implies that limdA,*(G,Fn) = lim A(G-Fn) = O. 
To prove (3.7) observe that if F' is a compact subset of the open set G-F , then 
A.( G) ~ A.(FuF) = A.(F)+A.(F'), and this inequality implies (3.7). 

(g) A is an algebra. All that remains to be proved is that A cA. Since the class 
A contains the open sets, A is the class of dA, * limits of the class of all sets that 
are either compact or open, a class closed under complementation. Therefore A 
is also closed under complementation. 

(h) The outer measure A * is finitely additive on A because the additivity 
equation (3.6) is true for compact sets. 

(i) The outer measure A* is countably additive on A, and A is a cr algebra, 
because on the one hand A * is countably subadditive and on the other hand, if A 
is a disjunct countable union uA. of sets in A, A \A) ~ k A*(A.) because the 
inequality is true for the partial sums. This countable additivity shows that A is 
closed under countable unions, and is therefore a cr algebra including B(S). 

U) Equation (3.1) is correct with A extended to B(S) by A *. Since A.(S) = L(1), it 
is sufficient to prove that (3.1) is true for f increased by a constant function, and 
therefore it is sufficient to prove (3.1) for strictly positive f, and it is even 
sufficient to prove that L(j) ~ A(f] for strictly positive f, because this inequality 
can then be applied to the function c1-ffor c >maxsf Fixf, supposed strictly 
positive, choose a to satisfy the inequality 0 < a < minS f , choose E > 0, and 
define the compact set Aj = {a+jE ~ f~ a+(j+l)E} for j = O, ... ,k, with k large 
enough to satisfy the inequality a+(k+ 1)£ > max f Suppose further that a has 
been chosen to make each set {f = a+jE} A. null; only countably many points of 
R have to be avoided to make this choice. Let f) be a continuous function 
majorizing lAj and define g= kj [a+(j+ l)eJ/j. Then 

(3.8) L(j)::;; L(g) = J:; [a+(j+l)£] Lifj), 

1..[ kj [(a+(j+ 1)£] 1 A .] ~ A.(f] + £A.(S). 
J 



VIll. Convergence of Measure Sequences 131 

Since each function /j can be chosen to make Llf.j) arbitrarily close to A.(Aj), 
(3.8) implies 

(3.9) L(f) ::;; A.(f] + £A.(S), 

and therefore L(f)::;; A.(f] iffis strictly positive, as was to be proved. 

4. C(S) convergence of sequences in M (S) 
(S compact metric) 

C(S) sequential convergence of Radon measures was defined in Section I. It 
will be seen below that there is a metric on M(S), consistent with C(S) 
sequential convergence, making M(S) complete and Mc(S) compact. 

Example. Let S be the compact interval [0, I] on R, and define ~ as the 
probability measure in M(S) supported by the singleton {lIn}. The sequence A.. 
is C(S) convergent to the probability measure supported by the singleton to}. 
Observe that each measure A.n assigns the measure 1 to the open interval (0,1), 
and 0 to the singleton {O}, but the limit measure assigns the value 0 to that 
interval and 1 to that singleton. Thus C(S) convergence on S does not imply 
C(S) convergence on the compact subset to} and does not imply setwise 
convergence of the sequence of measures, the convergence prescribed in the 
Vitali-Hahn-Saks theorem. According to Theorem 6, the latter convergence 
implies C(S) convergence when S is compact metric. 

Theorem (S compact metric). If A.. is a sequence in M(S) for which the 
sequence A..[f] has a finite limit for f in a dense subset of C(S), then the sequence 
A.. is C(S) convergent. 

Proof. Let C' be a dense subset of C(S) on which the sequence A.. has a finite 
limit. There is a function g in C' with g > 1. Iff E C(S) and if £ > 0, there is a 
functionfE in C' with If-fEI < £. Thenf<fe + £g, and therefore 

(4.1) lim sup A.[f] ::;; lim "-[t£] + £lim A..[g]. 

Apply this inequality to -f to find that the difference between the limit superior 
in (4.1) and the limit inferior of the same sequence is at most 2£lim A..[g] for 
every £, and is therefore O. Thus the sequence A..[f] has a finite limit for f in 
C(S). This limit defines a positive linear functional on C(S), necessarily of the 
formf"" A[fJ for some measure A., that is, there is C(S) convergence to A.. 
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5. Metrization ofM(S) to match C(S) convergence; 
compactness ofMcCs) (S compact metric) 

A metric for Roo. Let dl be a metric on the space Roo of infinite sequences of 
real numbers under which Roo is complete and under which convergence means 
coordinatewise convergence. For example, if ;:;. and T): T). are points of Roo, 
define 

00 

(5.1) dl(;,T) = L 2-n /\ I~-T)nl. 
1 

A metric for M(S). Although C(S) sequential convergence was defined in 
Section I, no corresponding metric was exhibited. A metric on M(S) consistent 
with the C(S) sequential convergence definition will now be defined. Let h. be a 
dense subset of C(S). For each measure J... in M(S), the sequence J...[h.] is a point 
of Roo. If 11 is a second measure in M(S), define the distance between the two 
measures by 

(5.2) 

This definition satisfies the axioms for a metric. 

Theorem (S compact metric). 

(a) A sequence in M(S) is dM convergent if and only if the sequence is C(S) 
convergent. 

(b) M(S) in the dM metric is a complete metric space. 

(c) (C(S) in the sup norm metric, M (S ) in the dM metric). The function 
(f,J...)~')JJJfrom C(S)xM(S) into R is continuous. 

(d) For each positive constant c, McCS) is a compact subset ofM(S), as is the 
subset {J... E M(S): J...(S) = c}. 

In the following proof, h. is the sequence in the definition of dM . The dM 
metric depends on the choice of h., but in view of this theorem, the C(S) 
topology, that is, the class of open sets, is independent of this choice. 

Proof of (a). Under the dy metric, a sequence J.... in M(S) has limit J... in M(S) if 
and only if lim /..o(f] = J...(f] is satisfied for fin h •. Hence (Theorem 4), there is 
C(S) convergence if and only if there is convergence in the dy metric. 

Proof of (b). If J.... is a ~ Cauchy sequence in M(S), the conditions of Theorem 
4 are satisfied, with h. the dense set of functions, and therefore the sequence J.... 
is C(S) convergent. 
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Proof of (c). Iff. in C(S) is convergent in the sup norm sequence and A. in M(S) 
is a dM convergent sequence, the following inequality makes (c) obvious: 

(5.3) JA{f] - An[fn]1 S An[lf-fnl] + 1A[t] - An[f]1 S V-fnIAn[I] + IA[f] - An[f]1. 
Proof of (d). If A. is a sequence in Mc(S), the sequence A.[f] is bounded for 
each f in C (S), and (Bolzano-Weierstrass theorem and the diagonal procedure) 
there is a subsequence of A. along which this sequence of integrals converges to 
a finite limit for every function hn' and therefore this subsequence is C(S) 
convergent. The limit measure A is in Mds), because 

lim A.[l] = lim A.(S) = A[l] = A.(S). 

More generally, this argument shows that if A is a compact subset of R+, the 
set of measures {A E M(S): A(S) E A} is compact in the dt.! metric. 

6. Properties of the function Jl-+Jl[f] from M(S), in the dM 

metric, into R (S compact metric) 

If f is in C (S), the function Il .... ~ from M(S) into R is continuous under the 
liM metric of M(S), because convergence in the liM metric implies C(S) 
convergence. The next theorem treats this function for other choices of f. The 
following observation is made to clarify the hypotheses of the theorem. 

Observation on semicontinuity. If f is a function from S into R, denote by 
f" the upper limit function of f: f"(s) = .f(s)vlim SUPt-+J(t). This function is 
upper semicontinuous, majorizes f, and there is equality at a point if and only if 
f is upper semicontinuous at the point. Thus if f is upper semicontinuous A 
almost everywhere, f coincides A almost everywhere with the upper 
semicontinuous function f". In the other direction, a function coinciding A 
almost everywhere with an upper semicontinuous function need not be upper 
semicontinuous at any point. For example, if A vanishes on singletons and f is 
defined as 0 except at the points of a countable dense set, at whichfis defined 
as 1, f coincides with the continuous function 0 at A almost every point although 
f" is identically 1. 

Theorem (S compact metric, ~ metric of ,M(S), A E M(S), f bounded and 
Borel measurable from S into R, A E B(S»). 

(a) Iffis upper [lower] semicontinuous A almost everywhere on S, the function 
11 .... Il[f] from M(S) into R is upper [lower ]semicontinuous at A. If f is 
continuous A almost everywhere on S, the function 1l .... 1l[f] is continuous at A.. 

(b) In particular, if A. is an infinite sequence in M(S) with C(S) limit (that is, 
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dM limit) A.: 
(i) if A,(AnoA) = O.for example, if A is closed, then lim sup A..(A) ~ A.(A); 
(ii) ifA.(AnoA) = O,for example. if A is open. then lim inf A..(A) ~ A.(A); 
(iii) if the conditions on A in (i) and (ii) are both satisfied, that is, if A,(oA) = 

O. then lim A..(A) = A.(A). 

(c) Conversely. if A. E M(S). if A.. is an infinite sequence in M(S) and lim A..(A) 
= A.(A) whenever A.(oA) = O. then the sequence A.. has C(S) limit A.. 

Proof of (a). Letr be the upper limit function off. Thenr is a bounded upper 
semicontinuous function and as such is the limit of a decreasing sequence f. in 
C(S). The function fl-+fl[{ 1\] is the limit of the decreasing sequence 
{fl-+fl[{n]. n ~ I} of continuous functions from M(S) into R. and is therefore 
upper semicontinuous. Iffis upper semicontinuous at A. almost every point of S. 
then f = r at A. almost every point of S, and therefore 

(6.1) A(f] = A[fl\] ~ lim sUPJl-+A.fl[{l\] ~ lim sUPJl-+A.fl[f]. 

This inequality is the condition that the function fl-+fl[f] be upper 
semicontinuous at A.. Apply this result to -f to obtain the corresponding result in 
the lower semicontinuous context. and combine these two results to obtain the 
last assertion in (a). 

Proof of (b). Recall that A.[lA] is defined as A.(A). Assertions (i) and (ii) are 
applications of (a) and the fact that the indicator function of a closed [open] set 
is upper [lower] semicontinuous. Assertion (b)(iii) follows from (b)(i) and 
(b)(ii). or from (a). 

Proof of (c). Choose £ > o. f in C(S). and a with a < minS f and define the 
compact set Aj = {a+ j£ ~ f ~ a+{;+ 1)£} for j = 0 •.. .• k, with k so large that 
a+(k+ l)E > max f. The number a can be chosen in such a way that the sets 
{j=a+j£} are A. and An null for all n andj. because this condition excludes only 
countably many values of a. Thus each boundary set oAj is A. and An null for all 
n. The integral of f over S with respect to either A. or A.n is the sum of the 
integrals off over Ao.A 10 •••• and therefore 

Under condition (b)(iii). when n -+ +00 the right side of the second inequality 
tends to the right side of the first. and the sum in the second inequality tends to 
the sum in the first. It follows that 

(6.3) 

for large n. and therefore the sequence A.. has C(S) limit A.. 
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Observation. Theorem 6 implies that if t... is a C(S) convergent sequence of 
measures in M(S), with limit measure A., and if So is a compact subset of S with 
A. null boundary, then the sequence of restrictions of A.. to B(So) is a sequence in 
M(So) with C(So) limit the restriction of A. to B(So). 

7. Generation of positive linear functionals on CCo(S) by 
measures (S a locally compact but not compact separable 
metric space) 

The following theorem is the adaptation of Theorem 3 to linear functionals on 
Co(S) and Coo(S). 

Theorem (S a locally compact but not compact separable metric space, 
Coo(S) in the sup norm metric).lf L is a positive linear functional on Co(S) [a 
positive bounded linear functional on Coo(S)], there is a unique measure A. in 
M( S) for which Lif) = A{f]. 

Proof. It can be supposed that S is a punctured compact metric space. Since a 
positive linear functional on Co(S) (under the sup norm) is bounded (Section 2 
property (d)), and since (Section 2 property (g)), a positive bounded linear 
functional on Coo(S) can be extended uniquely into a positive linear functional 
on Co(S), it is sufficient to prove the part of the theorem for functionals on 
Co(S). If g' is a function on S' = S u {oo}, denote by g' S the restriction of g' to S. 
Define a functional L' on C(S1 by 

(7.1) L'(f') = L([f'-f'(oo)]S) + f'(oo)M, 

where M is at least as large as the constant Min (2.4). This functional L' is 
obviously linear, and is positive because, under posiivity off'. 

L([f'-f'(oo)]S) ~ -L([f'(oo)-f']vO]S) 2: -f'(oo)M. 

According to Theorem 3 there is a unique measure A.' in M(S~I for which L'if) = 
I..'[t'], and therefore if A. is the restriction of A.' to B(S) andf E Co(s), it follows 
that L(f) = I..[f] and that A. is a uniquely defined measure generating L. 

Unbounded positive linear functionals on Coo(S). Suppose that L is a 
positive and linear but not bounded functional on Coo(S). Let So be an open 
subset of S, with compact closure. As pointed out in Section 2 under property 
(f), L defines a positive linear functional L(So,·) on Co(So), with L(So.fo) equal 
to the value of L for the extension of 10 with value 0 on S-So. It follows that 
there is a measure I..(So,·) in M(So) generating L(So,·): L(So.fo) = A,[So.fo]. 
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Moreover if SI is an open subset of So, then L(Sl>-) = L(So,-) on CO(SI) in the 
sense that iffl E CO(SI) then L(SJJ) is L(So,-) evaluated at the extension off I by 
o to So. Hence AlSo,-] = AlSI'-] on subsets of SI. Thus there is a Radon measure 
A. on B(S) for which L(f) =A{f] for f in Coo(S). Since L is not bounded, A.(S) = 
+00. 

8. Co(S) and Coo(S) convergence of sequences in M(S) 

(S a locally compact but not compact separable metric 
space) 

As the following example shows, if A. is a C(Soo) convergent sequence in M(S), 
it is not necessarily true that sup A.(S) is finite. 

Example. Let S be the interval (0, I) and An be the measure supported by the 
singleton {lIn}, with An({llnD = n. Then the sequence A. has C(Soo) limit the 
identically vanishing measure, but the sequence is not C(So) convergent, and in 
fact such a sequence cannot be C (So) convergent according to the next theorem. 

Theorem (S a locally compact but not compact separable metric space, with 
metric 8, Co(S) and Coo(S) in the sup norm metric, and A._ a sequence in M (S). 

(a) .if lim A.-rtl exists and is finite for fin Co(S) then SUpA.(S) < +00, and the 
sequence A._ is Co(S) and Coo(S) convergent to a measure A. in M(S). 

(b) .if SUpA.(S) < +00, and limA..rtl exists (finite) for f in a dense subset ofCo(S) 
(for example, for fin Coo(S»), then the sequence A. is Co(S) convergent. 

(c) If S is a punctured compact metric space, with S' = Sur oo}, let !J.' be the 
extension of a measure !J. in M(S) to a measure in M(S) obtained by assigning a 
value to !J.'( {oo D. Then A.. is C o(S) convergent to A. if and only if there are 
choices of A.'( { oo}) and A.'( { 00 }) for which A.' is C(S) convergent to A.'. 

Proof of (a), It is trivial that Co(S) convergence implies Coo(S) convergence. 
The positive linear functional L defined on Co by L(f) = lim A.rtl is generated by 
a measure in M(S), according to Theorem 7, and this measure is the Co(S) limit 
of A. •. If the sequence A. is Co(S) convergent to A., but if the sequence A.(S) is 
not bounded, there is a subsequence A.a. of A. for which A.an(S) ~ n2• The 
functional 

f-+ t n-2Aanrtl 
n=1 

is positive and linear on Co(S) and as such is generated by some finite measure 
!J., that is, 
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(8.1) ~[f] = ! n-2Aan[f] if E CO(S)). 
n=! 

The function s -+ /k(s) = 1-exp[ -k3{s,oo)] on S is in Co(S). The fact that the 
sequence f. is a monotone increasing positive sequence on S, with limit the 
function 1, yields the impossible inequality 

00 00 

(8.2) ~(S) = lim ~[f.] = lim L n-2Aan[f.] ~ L n-2Aan(S) = +00, 

n=1 n=1 

and therefore the sequence A.(S) is bounded. 

Proof of (b). The proof is parallel to that of Theorem 4. Let Co'(S) be a dense 
subset of Co(S) for which the sequence A.. has a finite limit. If f E Co(S) and 
E> 0, there is a functionfE in Co'(S) at distance < E fromf. Hence 

(8.3) lim sup A.[f] :s; lim A..[fE] + ESUP A.o(S). 

The rest of the proof of (b) is the same as the corresponding part of the proof of 
Theorem 4. 

Proof of (c). If the sequence A. has Co(S) limit A., and SUpA..(S) = a, extend An 
to a measure An' in M(S) by defining An'( {oo}) = a - An(S), so that An'(S,) = a. 
Lett be a function in C(S,), and let [f-f'(oo)]S be the restriction off'-f(oo) to 
S. This restriction is in Co(S) and 

(8.4) limA..,[f'] = limA..[[f'-f(oo)]s] +f'(oo)a=A[[f'-f'(oo)]s] +f'(oo)a. 

It follows that the sequence A.' is C(S') convergent with limit A', where 1..'( {oo}) 
= a-A(S). Conversely, if there are extensions A.' of A.. and A' of A for which the 
sequence A.' is C(S') convergent to A' in M(S'), and iff is in Co(S), define f' on 
S' as f on S and as 0 at 00. Then the sequence A..'[f 1 = A.lf) has limit A'[f 1 = 
A.[t]. Hence A.. is Co(S) convergent. 

9. Metrization ofM(S) to match Co(S) convergence; 
compactness of Mc(S) (S a locally compact but not 
compact separable metric space, c a strictly positive 
number) 

If hoe is a sequence dense in Co(S) under the sup norm metric, define the Co(S) 
distance between measures A and ~ in M(S) by 

(9.1) 
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as suggested by the distance definition (5.2) between measures on a compact 
metric space. In the present context, Theorem 5 takes the following form. 

Theorem (S a locally compact but not compact separable metric space, c a 
strictly positive number). 

(a) A sequence in :MIAS) is dOM convergent if and only if the sequence is Co(S) 
convergent. 
(b) Mc(S) in the daM metric is a compact metric space. 
(c) (C(S) in the sup norm metric, McCS) in the dOMe metric) The function 
if,'A)~ Alf] from C (S)xM:c(s) into R is continuous. 

The proof of this theorem is a mild modification of the proof of Theorem 5 
and is left to the reader. Although Mc(S) is compact in this metric, the following 
example shows that the set {'A E M(S): 'A(S) = c} is not compact. The point is 
(see the next section), that when 'A. is a Co(S) convergent sequence in Mc(S), 
with limit A, then Af..S) :5: lim inf 'A.(S) and there may be strict inequality. 

Example. If S is the interval (0,1) on R and An is the probability measure 
supported by the singleton {lin}, the sequence 'A. is Co~ convergent to the 
identically 0 measure. 

10. Properties of the function Il-+Il[f], from M(S) in the 
dOM metric into R (S a locally compact but not compact 
separable metric space) 

The following theorem is the adaptation of Theorem 6 to the present context. 

Theorem (S a locally compact but not compact separable metric space, daM 
metric of Mc(S), 'A E Mc(S), f bounded and Borel measurable from S into R, 
A E B(S). 

(a) Iff is upper [lower] semicontinuous 'A almost everywhere on S, with limit 
superior :5: 0 [limit inferior ~ 0] at infinity, the function j.1~j.1(f] from Mc(S) 
into R is upper [lower] semicontinuous at 'A. Iff is continuous 'A almost 
everywhere on S, with limit 0 at infinity, the function j.1 ~j.1(f] is continuous at 'A. 

(b) In particular, if'}.. is an infinite sequence in Mc(S), with Co(S) limit A, 
(i) if 'A(AndA) = 0 and A has compact closure, for example, if A is compact, 
then lim sup 'A.(A) :5: 'A(A), 
(ii) if 'A(AnaA) = O./or example, if A is open, then lim inf '}..(A) ~ 'A(A), 
(iii) if the conditions on A in (i) and (ii) are both satisfied, that is, if A has 
compact closure and 'A(dA) = D, then lim 'A.(A) = 'A(A). 
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(c) Conversely, if 'A. E M(S), and if 'A.. is a sequence in M(S), for which 
sup 'A..(S) < +00 and lim 'A..(A) :::: A.(A) whenever A.(dA) :::: 0 and A has compact 
closure, then the sequence 'A.. has Co(S) limit 'A.. 

The proof follows that of Theorem 6. Alternatively, the theorem can be 
reduced to Theorem 6. 

Observation. Theorem 10 implies that if 'A.. is a Co(S) convergent sequence 
of measures in M(S) with limit measure 'A. and So is a compact subset of S with 'A. 
null boundary, then the sequence of restrictions of 'A.. to B(So) is a sequence in 
M(So) with C(So) limit the restriction of 'A. to B(So). 

11. Stable Co(S) convergence of sequences in M (S) (S a 
locally compact but not compact separable metric space) 

Let 'A.. be a sequence in M (S) with Co(S) limit 'A. in M (S). The sequence is stably 
Co(S) convergent to 'A. if lim 'A..(S) :::: 'A.(S). The point of this strengthening of 
Co(S) convergence is that the sequence of measures is not allowed to unload 
measure at infinity. 

By definition, 'A.. is stably Co(S) convergent to 'A. if and only if lim'A..(f] :::: 'A.(f], 
whenever f is in C (S) and is either identically constant or has limit 0 at infinity; 
in other words if and only if lim'A..(f] = A.(j] whenever f is continous and has a 
finite limit at infinity. If S is a punctured compact metric space, this condition 
has an elegant formulation: lim'A..(f] = 'A.(f] whenever f can be defined at the 
point 00 of S' to become a member of C(S). A trivial computation shows that 'A.. 
converges to 'A. in this sense if and only if, when 'I-.n and 'A. are extended to 
measures 'A.n ' and 'A.' in M(S,), by assigning the measure value 0 to the singleton 
{oo}, it follows that the sequence 'A.. , is C(S,) convergent to 'A.'. Instead of the 
measure value 0, an arbitrary positive measure value can be used. 

12. Metrization of M(S) to match stable Co(S) 
convergence (S a locally compact but not compact 
separable metric space) 

It can be assumed that S is a punctured compact metric space, with S = 
Su{ +oo}. The space S' is a compact metric space in which the point 00 plays a 
special role. Define a distance on M(S,) as in Section 5 in terms of a dense 
sequence in C(S') but adjoin the function l{oo} to this dense sequence. In other 
words a sequence 'A..' of measures in M(S') is convergent to A' in the sense of 
this distance if and only if there is C (S,) convergence and lim 'A..'( {oo}) = 
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A({oo}). Under this metric the space M(S) of measures is complete, and the 
subset of these measures for which {oo} is null is a closed subset. If '}.. E M(S), 
extend'}.. to '}..' in M(S) by defining '}..'( {oo}) = 0 and define the distance dM ' 

between two measures in M(S) as the distance just defined between the 
corresponding primed measures in M(S). Under this metric, M(S) is a complete 
metric space for which convergence is stable Co(S) convergence. As the 
Example in Section 9 showed, in general the dM' metric does not make the space 
Mc(S) compact. The following theorem restates the fact that the dM' metric is 
adapted to stable Co(S) convergence and includes other properties of this type of 
convergence. 

Theorem (S a locally compact but not compact separable metric space, '}... a 
sequence in M(S), c a positive constant). 

(a) If the sequence '}... is Co(S) convergent to a measure in M(S), this 
convergence is stable Co(S) if and only if to every strictly positive E there 
corresponds a compact subset Ae of S, with the property that sup '}...(Ae) < E. 

(b) A sequence in M(S) is dM ' convergent if and only if the sequence is stably 
Co(S) convergent; M(S) in the dM ' metric is a complete metric space. 

(c) Thefunction (f,'}..)-+'}..ff1from C(S)xM(S) (C(S) in the local sup norm metric, 
M(S) in the elM' metric) into R is continuous on the set {ljI $c }xM(S). In 
particular, lim'}...[f] = AUl when'}... is stably Co(S) convergent to '}.. and f is in 
C(S). 

Proof of (a). Without loss of generality, it can be assumed that S is a punctured 
compact metric space. Extend'}... and'}.. to measures '}...' and '}..' on B(S) by 
defining the extended measures to be 0 on the singleton {oo}. It was noted above 
that the sequence '}...' is C(S) convergent to '}..' if and only if'}... is stably Co(S) 
convergent to '}... If there is C(S) convergence to '}..', and if E is strictly positive, 
choose a ball B in S', with a'}.. null boundary, with center the point 00, radius so 
small that A(B) < E. Only countably many radius values are exceptional for the '}.. 
null property of the ball boundary. Then lim '}...(B) = '}..(B). Hence '}..n(B) < E for 
all but finitely many values of n, and the radius of B can be decreased further, if 
necessary to make this inequality valid for all values of n. The trace on S of the 
ball obtained in this way is the complement of the desired set Ae. Conversely, if 
to every strictly positive E there is a compact subset Ae of S with the stated 
properties, it can be assumed, increasing the set, if necessary, that A(Ae) < E and 
oAe (=oAe) is '}.. null. (For example, the open set Ae can be taken as the trace on 
S of a sufficiently small ball in S', with center the point 00.) Then lim '}...(S) = 
A( S) because 

(12.1) lim sup I'}..(S)-'}...(S)I :5: '}..(Ae) + lim sup IA(A e)-'}...(Ae)1 
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Proof of (b). The proof was given at the beginning of this section. 

Proof of (c). Suppose thatf. is a uniformly bounded sequence of functions in 
C(S), convergent to f in the local sup norm metric, and that A.. is a stably Co(S) 
convergent sequence in M(S), with limit A.. Choose Ae with the properties stated 
in (a), increasing this set, if necessary to satisfy the conditions A.[flAe) < E, 

A(i)Ae) = O. Define b = sup".1. According to Theorems 10 and 6, the sequence 
of restrictions of A.. to B(Ae) is C(Ae) convergent to the restriction of A. to B(Ae). 
Furthermore, the sequence of restrictions to Ae of f. is convergent in the sup 
norm topology of C(Ae) to the restriction of f to Ae. It follows, according to 
Theorem 6, that lim A..[f.lAe) = A[f1.Ae), and therefore 

Hence (c) is true. 

13. Properties of the function Jl-+Jl[f], from M(S) in the 
dM I metric into R (S a locally compact but not compact 
separable metric space) 

The following theorem is the adaptation of Theorem 10 to the present context. 

Theorem (S a locally compact but not compact separable metric space, dM' 
metric ofM(S), A. E M(S), f bounded and Borel measurable from S into R, 
A E B(S). 

(a) Iffis upper [lower] semicontinuous A. almost everywhere on S, the function 
J.l~J..l(f) from M(S) into R is upper [lower] semicontinuous at A.. If f is 
continuous A. almost everywhere on S, then the function J..l~J..l[f] is continuous at 
A.. 

(b) In particular, if A. is an infinite sequence in M (S), with stable C o(S) limit A., 
(i) ifA.(AndA) = O,for example, if A is closed, then lim sup A..(A) S; A.(A), 
(ii) ifA.(AndA) = O,for example, if A is open, then lim inf A..(A) ~ A.(A), 
(iii) if the conditions on A in (i) and (ii) are both satisfied, that is, if 
A.(dA) = 0, then lim A..(A) = A,(A). 

(c) Conversely, ifA.E M(S), if A.. is a sequence in M(S) for which lim A..(A) = 
A.(A) whenever A.(dA) = 0, then the sequence A.. has stable Co(S) limit A.. 

The proof follows that of Theorem 6; alternatively this theorem can be 
deduced from Theorem 6. 
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14. Application to analytic and harmonic functions 

A function defined on an open plane set is harmonic if it has continuous second 
partial derivatives and satisfies Laplace's equation. The real part of an analytic 
function is harmonic, and conversely a harmonic function on a simply 
connected domain is necessarily the real part of an analytic function. As an 
example of the application of sequential convergence of measures in classical 
analysis the Riesz-Herglotz representation of a positive harmonic function on a 
disk in terms of a measure on the disk boundary will be derived. 

All disks considered have the origin as center. Let Ba be the open disk of 
radius a, choose ~ > 0, and let u be a harmonic function with domain B~. Then 
u = 9t/for some function/analytic on B~, given by a power series 

(14.1) (z = reiS, r< ~). 

If ° < a < ~, there is uniform convergence when r = <X, and therefore 

21t 

(14.2) 
J j(ae is) e-nis /(ds) = 21tanan +1 (n ~ 0), 

= ° (n < 0). 

Here L(ds) refers to length (Lebesgue measure) on the interval [0,21t), and the 
integral can be evaluated as a Riemann integral. Aside from a multiplicative 
constant, the evaluations in (14.2) are the evaluations of the (trigonometric) 
Fourier coefficients of the restriction of/to aB a. The evaluations (14.1) and 
(14.2) yield, for z = re i8 with r < a <~, 

(14.3) 

+00 21t 

j(z) = i1t n~ J j(aeis)(rla)lnl eni(s-S) L(ds) 

where the measure La is length on aBa. This expression for / can also be 
obtained using the Cauchy integral formula. The harmonic function u = 9V is 
therefore given by the corresponding integral 

(14.4) 1 1 a2-1z12 
u(z) = 21t<X a a u(~) 1~_zI2 La(d~) (Izl < a < ~). 

This representation of u in Ba in terms of the values of u on aBa is the 
Poisson integraL representation of u. 

Suppose now that u is positive and harmonic in B~. The Riesz-Herglotz 
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representation of u generalizes (14.4) by providing a Poisson-Stieltjes 
representation of u in B~ in terms of a measure on aB~ even though u is not 
defined on the boundary. To derive this representation, put (14.4) in a slightly 
different form: 

(14.5) u(z) = f ~ 'Aa(dt,) 
aBo. It,-zl 

where 'Ao. is the measure of Borel subsets of aBo. defined by 

(14.6) 'Ao.(A) = 2!a j u(t,) l(a(dt,). 

Then 'Ao.(aBa ) = u(O). The measure Aa can be thought of as a measure on B~ 
carried by aBo.. When ex tends to ~ along an increasing sequence, the 
corresponding sequence Aa. of measures is a bounded sequence of measures on 
the compact space B~, and therefore there is a C(B~) convergent subsequence 
with limit measure A carried by aB~. In view of Theorem 5(c), 

(14.7) f ~ u(z) = 1 12 A( dt,) 
aB~ t,-z 

(Izl < ~). 

This is the Riesz-Herglotz representation of u in terms of a measure on aB~. In a 
more thorough discussion it is shown that A is uniquely determined by u and 
that Aa is C(S) convergent to A when ex tends to ~. 



IX 
Signed Measures 

1. Range of values of a signed measure 

Signed measures, defined in Section 111.1, have values either in (-00,+00] or 
[-00,+00), to avoid the possibility of adding +00 to -00. It will be shown in Section 
2 that a signed measure is actually bounded on the side where it is finite. For a 
signed measure space (S,S,A), the signed measure Ahas its values in (-00,+00] if 
and only if A,(S) > -00, its values in [-00,+00) if and only if A,(S) < +00, and A is 
finite valued if and only if A.( S) is finite. 

2. Positive and negative components of a signed measure 

If (S,S,A) is a signed measure space and A is a measurable set, define 

The set functions A+, -A- and IAI are respectively the positive, negative, 
and total variations of A. It will be shown that all three set functions are 
countably additive. The signed measure is finite, or (J finite, when the total 
variation is. A measurable set A is a positivity set of A if A-(A) = 0, a negativity 
set if A +(A) = O. A positivity [negativity] set A is maximal if every positivity 
[negativity] set is a subset of A, neglecting I AI null sets. If S is the union of a 
positivity and a negativity set, the summands are obviously maximal. 

Theorem. Let (S,S,A) be a signed measure space. Then: 

(a) A+, A-,and IAI are measures; A+(S) isfinite ifA< +00, A-(S) isfinite if 
A> -00. 

(b) (Jordan decomposition) A = 1,,+ - 1,,-. Moreover, if A. = Al - 1,,2 is any 
representation of A. as the difference between two measures, then A +.$. Al and 
A. - ~ 1,,2. 
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(c) (Hahn decomposition) S is the disjunct union of a positivity set s+ for A 
and a negativity set S - for A, each maximal, and unique up to I A I null sets. 

(d) For every measurable set A, A+(A) = A(ArS+), A-(A) = -A(ArS -). 

Proof. Suppose, for definiteness, that A < +00, and choose a sequence A. of 
measurable sets for which lim A(A.) = A +(S). Let Bn be the union of those cells 
of the partition of S generated by AJ, .. An (see Section 11.3), at which A is 
positive. Then A,(Bn) ~ A,(An). As n increases, the partition becomes finer, 
BnuBn+1v·· is Bn augmented perhaps by cells of Bn+1 and so on. Thus 

(2.2) 

Define s+ = lim sup B. and S - = S - S+. Then A(S+) = A +(S), and therefore 
A +(S) < +00. Moreover, in view of the maximal property of S+, A - (S+) = A +(S-) 
= 0. Thus s+ and S- are the sets of a Hahn decomposition and the Jordan 
decomposition can be written in the form A(A) = A,(Ans+) + A,(AnS-). Only 
the minimal character of A + and A -, stated in (b) is still to be proved, and this 
character follows at once from the definitions of these measures. 

Example. Let (S,S,A) be a measure space, let f be a measurable function 
from the space into R, definer =jvO,f- = (-j)v 0, and suppose thatr is A 
integrable. Then the set function Il-: A ..... Il-(A) = A.[f1A] is a signed measure, a 
finite valued signed measure if and only iff is integrable. Obviously 

and the sets s+ and S- of a Hahn decomposition for Il- can be chosen 
respectively as the sets if~ O}, if < OJ. 

3. Lattice property of the class of signed measures 

Theorem. If A and A' are signed measures on a measurable space, there is a 
signed measure AVA' majorizing A and A' and majorized by every other signed 
measure majorant of A and A'. 

The theorem implies that in addition to the smallest measure majorant AVA' 
of A and A' there is also a largest measure minorant, - (-A)V(-A'). This minorant 
is denoted by A/\A'. Obviously A+ = AV~, and A - = -(A/\~), with Ao the 
identically vanishing measure. 

Proof. If A-A' is a well-defined signed measure, that is, if A,(S) and A'(S) are 
not both +00 or both -00, let S+ be a maximal positivity set and let S - be a 
maximal negativity set, for A-A'. Define 
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(A.vA.')(A) = A.(Anst) + A.'(AnS"). 

This sum defines a measure with the required properties. There remains the case 
when A.(S) and A'(S) are both +00 or both -00. Assume the first possibility. If 
A.(A) = A'(A) = +00, define (AvA')(A) = +00. If either A.(A) or A'(A) is finite, let AA 
and A'A be, respectively, the restrictions of A and A' to the measurable subsets of 
A, and let A + and A-be, respectively, maximal positivity and negativity sets for 
AA - A'A. IfAo is a measurable subset of A ,define 

This value is independent of the choice of the superset A of Ao and yields the 
required measure. 

Example. If (S,S,A) is a measure space and if f and f ' are measurable 
functions from the space into R, for which either tvO or (-f>vO is A. integrable 
and eitherf'vO or (-f')vO is A integrable, define Il(A)=A(tlA) and 1l'(A)=A(f'lA). 
Then 11 and 11' are signed measures, (Ilvll')(A) = ~lfvf ')lA), and (IlAIl')(A) = 
~(fAf')lA). 

4. Absolute continuity and singularity of a signed 
measure 

Let A be a measure and 11 be a signed measure on a measurable space (S,S). The 
signed measure 11 is absolutely continuous relative to A, or A absolutely 
continuous, if 11 vanishes on A null sets, equivalently if Illi vanishes on A null 
sets. At the other extreme, 11 is singular relative to A, or A singular, if there is a 
A null set whose complement is 1111 null. Only the identically vanishing signed 
measure is both A. absolutely continuous and A. singular. If A and 11 are measures, 
11 is A. singular if and only if A. is 11 singular, that is, each of the measures is 
carried by a null set ofthe other. 

Theorem (Measure space (s,s,A». If a signed measure 11 on 51 is A 
absolutely continuous, or singular, 11+ and 11- have this same character. 

The theorem is clear from the definitions of 11+ and 11-. 

Alternative approach to the absolute continuity definition. (Notation as 
above, but A and 11 are both measures.) It is trivial that the limit equation 

(4.1 ) 

implies that 11 is A absolutely continuous. Conversely, if 11 is a finite measure 
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that is A absolutely continuous, then (4.1) is true. To prove this, it is sufficient to 
prove that if A. is a set sequence for which lim A(A.) = 0 then every 
subsequence of A. has a further subsequence along which ~(A.) tends to O. 
Given a subsequence of A., choose a further subsequence B. for which "f.A,(B.) 
converges, and define Cn = u; B •. Then the sequence C. is monotone 
decreasing with limit a A null set, a set which is necessarily also a ~ null set, and 
therefore the sequence ~(C.), which majorizes the sequence ~(B.), is monotone 
decreasing with limit O. 

Uniform absolute continuity. If {~i, i E I} is a family of finite measures on 
a measure space (S,S,A) and lim).(A)~O IJi<A) = 0, uniformly as i varies in I, the 
family of measures is uniformly absolutely continuous relative to A. If A is a 
finite measure and d). is the pseudometric on S determined by A, that is, d).(A,B) 
= A,(AM), then the condition of uniform absolute continuity of the family ~. of 
measures is equivalent to the uniform d). continuity of the family ~. considered 
as afamily offunctionsfrom (S,d).) into R. In fact uniform d). continuity at the 
empty set is precisely the definition of uniform absolute continuity, and uniform 
d). continuity at the empty set implies uniform d). continuity because d).(A,B) = 
d).(A~B,0). 

5. Decomposition of a signed measure relative 
to a measure 

Theorem (Lebesgue decomposition). (Measure space (S,S,A». If ~ is a 
signed measure on S, ~ is the sum, ~ = ~ac+ fls, of uniquely determined A 
absolutely continuous and A singular signed measures. 

Proof. If there is a decomposition, ~ = ~ac+fls, into absolutely continuous and 
singular measures, it is unique, because if there were two such decompositions, 
the difference between the singular components would be the negative of the 
difference between the absolutely continuous components. These differences 
would be both A absolutely continuous and A singular and would therefore 
vanish identically. In view of Theorem 4 it will be sufficient to derive the 
Lebesgue decomposition when ~ is a measure. If c = sup{~(A): A,(A) = A}, then 
c = 0 if and only if Il is A absolutely continuous, in which case there is nothing 
to prove. If c > 0 and A. is a sequence of sets for which A,(A'l2=O and lim Il(A.) 
= c, define B = uA., and then define Ilac by Ilac(A) = Il(AnB), Ils by fls(A) = 
Il(AnB). 

Examples. (a) Letfbe a measurable function from a measurable space (S,S) 
into R + and define a measure Il by Il(A) = A(flAJ Then ~ is A absolutely 
continuous. In particular,fmay be identically +00, in which case Il is +00 on all 
non A null sets. 
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(b) Let S be R and I.. be Lebesgue measure. If A = r. is a countable subset of R 
and p. is a sequence inR+, let Il be the measure, carried by A, with 
Il({ rn}) = Pn. This measure is I.. singular. It is finite if'Lp. converges, cr finite if 
the series diverges but each summand is finite. 

(c) The Cantor set on R and a corresponding measure, singular relative to 
Lebesgue measure, with no nonnull singletons. Let S be the interval [0,1] on 
R and I.. be Lebesgue measure on that interval. A monotone increasing 
continuous function F will now be defined on S, with F(O) = 0 and F(1) = 1, 
with the property that the measure I..F generated by F is I.. singular and that the 
derivative F' exists and vanishes I.. almost everywhere on S. Let S be on the axis 
of abscissas of coordinate axes in a plane and choose a sequence s. on the 
ordinate axis, as follows. 

Step 0: choose an arbitrary point S1 of the interval (0,1) of the ordinate axis. 
Step 1: the point S1 divides (0,1) into two open intervals; choose points S2 in the 
upper interval, S3 in the lower. 
Step n: 2n points having been chosen, dividing (0,1) into 2n open intervals, 
choose a point in each, going down from the top. These choices should be made 
in such a way that the sequence s. is dense in S. 

Next, delete from S, on the axis of abscissas, a sequence I. of open 
subintervals, as follows. 

Step 0': delete from S an open interval 11 with closure in (0,1). 
Step I': the deletion of 11 leaves a right and a left interval in S; corresponding to 
the choices of S2 and S3' delete h, an open interval with closure in the interior of 
the right interval, and delete h, an open interval with closure in the interior of 
the left interval. 
Step n': 2n intervals having been left in S; delete from the interior of each of 
these an open interval whose closure is in that interior, ordering the sequence I. 
of deletions from right to left. Choose these intervals to make 'L 1..(1.) = 1. 

Having ordered s. and I. in this way, define F on In to be identically Sn. As 
so defined, F is monotone increasing, defined I.. almost everywhere on S, and its 
range of values is dense on [0,1]. Define F elsewhere on S by continuity to ob­
tain a function with the desired properties. The set S - UI. is a perfect 
nowhere dense I.. null set, and the measure I..F generated by F is I.. singular. This 
set was devised by Cantor, who chose each point Sn in the middle of its interval 
and chose each interval In as the middle third of its interval. With these choices 
the set is the Cantor set. Lebesgue used Cantor's set to obtain the continuous 
monotone function F, generating a measure singular with respect to his measure. 
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6. A basic preparatory result on singularity 

Lemma. Let A and Il be finite measures on a measurable space (S,S), and let 
r be the class of positive measurable functions g satisfying the inequality 

(6.1) f g dA ::; Il(A) (A E S). 

A 
Then, g] vg2 is in r if g] and g 2 are, and, unless Il is A singular, r contains a 
function not vanishing A almost everywhere, 

Proof. If g] and g2 are in r, their maximum on An{gl > g2} is gl and therefore 
satisfies (6.1) on this set. Similarly their maximum satisfies (6.1) on An{g2~gd. 
Hence their maximum satisfies (6.1) and accordingly is in the class r. For n ~ 1, 
let An be a maximal positivity set of the signed measure Il-Aln, so that Il(An)::; 
A(An)/n ::; A(S)/n, and A. is an increasing sequence, neglecting A null sets. If An 
is A null for every value of n, then ll(nA.) = 0, that is, Il is carried by uA. and 
must be A singular. On the other hand, if some set An is not A null, then the 
function lA In is in r and does not vanish almost everywhere. 

n 

7. Integral representation of an absolutely continuous 
measure 

Theorem (Radon-Nikodym). Let Il be afinite signed measure and A be a (j 
finite measure on a measurable space (S,S). There is then a A integrable 
function J, uniquely determined up to A null sets, satisfying 

(7.1) llac(A) = f f M 
A 

(A E S). 

For c a constant, the inequality Ilac ~ CA [Ilac:::; CA] implies the A almost 
everywhere inequality f~ c If::; c]. 

The function fin (7.1), the Radon-Nikodym derivative of Ilac with respect to 
A, or density with respect to A of the measure Ilac, is sometimes denoted by 
dllac/dA. 

Proof. In view of Theorem 4, in proving the existence off it will be sufficient 
to assume that Il is a measure. Moreover it will be sufficient to consider only the 
case of finite 'A, because the result in that case can be applied individually to 
each of a disjunct sequence of measurable sets on which A is finite valued. 
Under these hypotheses of positivity and finiteness it will now be shown that 
any order supremum of the class r in Lemma 6, can be taken as the function f 
in (7.1). If r contains only functions that vanish A almost everywhere, Il is 
singular, and the theorem is true with f identically O. Otherwise, there is a 
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sequence f. of members of r whose pointwise supremum is an essential order 
supremum of r (Theorem V.i8). Since glvg2 is in r whenever gl and g2 are,fn 
can be replaced by fl v"'vfn' to make the sequence f. monotone increasing. An 
application of the Beppo-Levi theorem now shows that the limit g of the 
sequence, an essential order supremum ofr, is in r. The measure 

11' = 11- f g dA 

must be A singular, or an application of Lemma 6 to 11' would yield a not A 
almost everywhere vanishing integrand whose sum with g is in r, contrary to 
the maximality of g . Thus 11-11' = Ilac, and g is the desired Radon-Nikodym 
derivative of Ilac. 

Going back to the general case of signed measures, to show that the Radon­
Nikodym derivative is unique up to A null sets, suppose that f and another 
integrable function f ' have the same integral over every measurable set A. The 
fact that 

f if-f) dA = 0 when A = {f~j'} i 
A 

implies that f:::; 1', A almost everywhere; by symmetry, 1':::; f, A almost 
everywhere, and therefore finally f = 1', A almost everywhere. 

To prove the last statement of the theorem, observe that jf Ilac ~ CA then 
Ilac-CA is a positive measure, and its Radon-Nikodym derivative with respect to 
A must be positive and be (dJ.lacdA)-c up to A null sets. The inequality in the 
other direction is treated similarly. 

8. Bounded linear functionals on LI 

Let (S,S,A) be a finite measure space. A bounded linear functional on LI is a 
function L from LI into R satisfying the following conditions: 

L(af+bg) = aUf) + bL(g) for f, g in L I and constants a, b in R; 
IL(g)1 :::; constlg II for g in L I; 
L(g) = 0 if g vanishes A almost everywhere. 

The first and third conditions imply that L defines a unique function of 
equivalence classes of members of LI, if two members are put in the same 
equivalence class if and only if they are equal almost everywhere. In the 
following, however, functions rather than equivalence classes will be treated. 
The norm ~d of L is the smallest constant for which the second condition is 
valid. The functional L is positive when f ~ 0 implies that L(f) 2 O. 

If f is a bounded measurable function, with essential supremum ~f 100 , the 
function on L I defined by 
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(8.1) L(g) = f gfd"A 
s 

is a bounded linear functional, positive if f is almost everywhere positive, and 
IL(f)I::;; !fIco IfIJ. Moreover, this inequality forfin LI is not satisfied with any 
constant smaller than !fIco, because this inequality with a constant ex implies that 
!fl ::;; ex almost everywhere, according to the last assertion in Theorem 7. The 
norm of L is therefore the essential supremum off. A similar argument shows 
that L is a positive functional if and only if f ~ 0 almost everywhere. The 
following theorem states that every bounded linear functional on L 1 has this 
form. 

Theorem (0" finite measure space (S,S,A»). If L is a bounded linear 
functional on L I, there is a unique (neglecting null sets) bounded measurable 
functionffor which L is given by (8.1). Moreover ILi = If lco, and L is positive 
if and only if f~ 0 almost everywhere. 

This theorem sets up a linear, norm and order preserving correspondence 
between bounded linear functionals on LI and the members of the dual space 
L co. 

Proof. Define a set function ~ on S by ~(A) = L(lA). The properties of Limply 
that ~ is a A absolutely continuous finite signed measure. Hence there is a A 
integrable functionf, the Radon-Nikodym derivative of ~ with respect to A, for 
which, for A in S, 

and therefore (Theorem 7) ifl::;; ~L~ almost everywhere. Thus (8.1) is true for g 
the indicator function of a measurable set, and therefore (8.1) is true when g is a 
linear combination of such functions. Since every function in LI can be 
approximated arbitrarily closely in the L'(A) distance sense by such step 
functions (see Section VI.15), this evaluation of L is valid for g in L I. 

9. Sequences of signed measures 

In this and the next two sections, sequences of signed measures on a measurable 
space are treated, and a method based on a property of complete pseudometric 
spaces is applied, namely, the property (Section O.12(c») that if a complete 
pseudometric space is a countable union of closed sets, then at least one 
summand has an inner point. 

If A is a signed measure on a measurable space (S,S), the inequality 

(9.1) IAI(S) ::;; 2sup{ IA.(A)I: A E S} 

implies that, for a finite set A.. of signed measures, sup IA.I(S) < +00 whenever 
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sup IA.(A)I < +00 for every set A in S, but it is not at all obvious how this 
conclusion must be weakened for a sequence of signed measures. According to 
the following theorem, no weakening is necessary. 

Theorem. Let A. be a sequence of signed measures on a measurable space 
(S,S). Then the boundedness condition 

(9.2) suplA.(A)1 < +00 for every measurable set A 

implies the uniform boundedness condition 

(9.3) sup{ IAn(A)I: n;:::: I,A E S} < +00, 

that is, suplA.I(S) < +00. 

Inequality (9.2), with A ::: S, implies that each signed measure An in this 
theorem is finite valued. The theorem is trivial if the signed measures are 
measures, because then the conclusion follows from (9.2) with this choice of A. 

The condition (9.2) is equivalent to the pair of conditions 

(a) the signed measures A. are allfinite valued, 
(b) lim sup IAo(A)1 < +00 for every measurable set A, 

and (a) is equivalent to the condition 

(a') the values Ao(S) are all finite. 

Under (b) without (a), An(S) is finite valued when n is sufficiently large, say 
n ;:::: no, and therefore Theorem 9 is applicable to the sequence {An, n ;:::: no}. 

Proof of the theorem. Choose a finite measure A on S, relative to which every 
set function An is absolutely continuous; for example, define 

It will be proved first that there are strictly positive constants c, 0 for which 
A,(A) < 0 implies that sup IA.I(A) :5 c. Under the pseudometric d'A.: d'A.(A,B) ::: 
A,(AAB), S is a complete pseudometric space (Section 111.14), and each function 
An is a continuous function from S into R. The set 

00 
(9.4) (In:::! {A E S: IAn(A)1 :5 k}) ::: {A E S: sup IA.(A)I :S; k } 

is a d'A. closed subset of S that increases as k increases, tending to S. It follows 
(pseudometric version of Section O.12(c» that there is a value of k for which the 
set in (9.4) contains a ball, say one with center Bo and radius O. That is, there are 
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numbers CI and 0 for which 'An (C)' ~ CI for all values of n, whenever d;U)<o. 
Now suppose that A is a set with A.(A) < O. Then ~~< o,~< oand 
therefore 

This is the desired inequality, with C = 2c), and the proof of the theorem is now 
complete if S can be written as the union of finitely many sets of arbitrarily 
small strictly positive')., measure. Many measure spaces, for example, a finite 
interval of R with')., defined as Lebesgue measure, have this property. On the 
other hand, a probability space does not have this property if the class of 
measurable sets is the whole space and the empty set. The following completion 
of the proof of the theorem shows that the latter example, in which there is a 
nonnuli set whose subsets have measure either 0 or that of the set, exhibits the 
only context that must be taken into account. Let a be the supremum of the class 
r of constants 11 for which there is a measurable set A with ').,(A) ~ 11 and 
supl').,.I(A)< +00. The proof of the theorem will be completed by proving that a 
is in r and that a = ').,(S). 

Proof that a E r. For n;?: 1, choose a measurable set An with ').,(Ani > a-lin, 
and with the property that sup I')., .I(An) < +00. Define A k = UtA •. Then 
a-lin ~ ').,(Ak) ~ a. If some setA k has')., measure ex, then a is in r, as desired. If 
A.(Ak) < a for all n, the union of these sets is a set A of')., measure a. Choose n 
so large that ').,(Ak) > a-o. Then 

supl').,.I(A) ~ sup 1').,.I(Ak)1 + C. 

Thus a is in r. 

Proof that a = A.(S). Let B be a measurable set, of measure a, for which 
supl').,.I(B) < +00. If S-B is ')., null there is nothing more to prove, and the 
following argument shows that the hypothesis that S-B is not')., null leads to a 
contradiction. If S-B is not')., null, this set has the following two properties: 

(i) S-B has no measurable subset C for which 0 < ').,(C) < 0, because such a 
set could be adjoined to B, thereby contradicting the maximal character of a. 

(ii) S-B has no measurable subset C, of strictly positive')., measure, all of 
whose subsets have measure either 0 or ').,(C), because such a set could be 
adjoined to B, thereby contradicting the maximal character of a 

Hence there is a measurable subset C of S-B, of ')., measure strictly between 0 
and A.(S-B). Either Cor (S-B)-C has')., measure at most ').,(S-B)/2 Choose the 
one, say Cl> with this property, and continue, replacing S-B in the reasoning by 
S-(BuC,) and so on, obtaining a sequence C. of subsets of S-B, with strictly 
positive')., measures tending to O. Since such a sequence contradicts property (i), 
the set S-B must be ')., null, as was to be proved. 
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10. Vitali-Hahn-Saks theorem (continued) 

A part of the Vitali-Hahn-Saks theorem was proved in Section 111.10. That part 
is repeated as part (a) of the following more complete version. 

Theorem (Vitali-Hahn-Saks). Let A.. be a sequence of finite measures on 
the measurable space (S,S). 

(a) If')... converges setwise to a finite valued set function A., then A. is a measure. 

(b) In (a), if there is afinite measure ~ with respect to which each measure An 
is absolutely continuous then A. is also ~ absolutely continuous, and the 
sequence A.. is equiuniformly ~ absolutely continuous. 

As already noted, part (a) of the theorem is simply a restatement of Theorem 
111.10. 

Proof of (b). In view of the setwise convergence of ')..., the limit measure A. 
vanishes on ~ null sets and therefore is ~ absolutely continuous. If the sequence 
')... is not uniformly ~ absolutely continuous, there are a subsequence A.a. and a 
sequence B. of measurable sets, with the property that lim ~(B.) = 0 but 
inf '>--a.(B.) > 0, contradicting the Observation in Section 111.10. 

Relation to Fatou's theorem. Letf. be a sequence of positive measurable in­
tegrable functions on a measure space (S,S,~), with a measurable integrable 
function f as an almost everywhere or in measure limit and define A.n(A) = 
~[fnlA] and A.(A) = Il[f1Al If lim Il[f.] = IlUl, then (Patou's theorem) the 
sequencef. has limitfin the L 1 sense. Moreover (Theorem V118) in that case if 
~ is a finite measure, the sequence f. is Il uniformly integrable; equivalently')... 
is dll equicontinuous. The uniform integrability of f. implies the uniform 
absolute continuity of A.., and the Ll convergence off. implies that the sequence 
')... is setwise convergent to A. and in fact that the sequence of variations IA..-IJ 
has limit 0, a stronger form of convergence than setwise convergence. On the 
other hand, the sequence f. in Theorem lO(b) converges to f only in the weak 
sense that there is setwise convergence of')... to A.. 

11. Theorem 10 for signed measures 

Theorem. If ')... is a sequence of finite signed measures on a measurable 
space (S,S), setwise convergent to a finite valued set function A, then A. is a 
signed measure. 

Proof. The set function A. is obviously finitely additive. Choose a finite measure 
Il on S, relative to which every measure A.n is absolutely continuous, say 
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~ = l:j n-2IAnI/IAnl(S). Then A. is a sequence of continuous functions from the 
complete pseudometric space (S,d!!) into R, and the sequence has limit A. 
According to Theorem 9, A is bounded. There remains the proof of countable 
additivity. According to a standard metric space theorem (pseudometric version 
of (Section 0.12(f), the function A must have a d'A continuity point, say the set 
A, at which the sequence is uniformly convergent. If BE S, 

(11.1) A,(B) = A,(AuB) --A(A-B). 

Now when B tends to 0 in the d!! metric, that is, when ~(B) tends to 0, both 
AuB , and A-B tend to A in this metric, and therefore by dJ.., continuity of A at A, 
(11.1) implies that A,(B) tends to 0. Thus A is d!! continuous at 0. It follows that 
if a monotone decreasing sequence of measurable sets has limit 0, the 
corresponding sequence of A values has limit 0, that is, Ais countably additive. 



X 
Measures and Functions of Bounded 
Variation on R 

1. Introduction 

This chapter is devoted to the context of set functions and corresponding point 
functions on R, a context so important that it deserves a treatment beyond the 
discussion of Lebesgue-Stieltjes measures in Chapter IV. The first topic will be 
the derivation of monotone functions, for which a covering lemma will be 
needed. 

2. Covering lemma 

In the following lemma, the fact will be used that if I. is an arbitrary collection 
of intervals ofR (which mayor may not include one or both endpoints), and if A 
is the union of their interiors, then the difference B = uI. - A is countable. To 
see this, for each point of B choose a corresponding interval in I. containing the 
point as an endpoint. The intervals chosen with the point of B as their left 
endpoint have pairwise disjoint interiors and are therefore cOllntable in number, 
as are the intervals chosen with the point of B as their right endpoint. Hence B is 
countable. Incidentally this countability implies that Band uI., are Borel sets. 

Lemma (Aldaz). If A, is a Lebesgue-Stieltjes measure on R, I. is a collection 
of intervals of R (which mayor may not include one or both endpoints), and 
c<1I2, there is a finite disjunct sequence J. of members of I. with 
1: 1J.,J.)xA,(uI.). 

Proof. In the notation used at the beginning of this section, the set B is 
countable, and its points are endpoints of a countable subcollection of I •. By 
LindelOfs theorem, the union of the I. interval interiors is the same as some 
countable subunion of the interiors. Thus it can be assumed that the given 
collection I. is a finite or infinite sequence. Choose n so large that 
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L IJ.Jj) > 2c'A,(uI.), 
)=1 

and for convenience in referencing define Ji = Ii for i ::; n. It is no restriction to 
assume that each interval Ji contains a point Si not in any other of these n 
intervals and that these intervals are ordered in such a way that s. is monotone 
increasing. Then Ji C (-oo,Sj) and Jk C (S),oo) when i < j < k. The intervals J. 
with even indices are pairwise disjoint, as are the intervals with odd indices. 
Hence either the union of the even indexed intervals or of the odd indexed 
intervals has measure > c~uJ.) and provides the intervals demanded by the 
lemma. 

3. Vitali covering of a set 

A class of intervals of RN covers a set in the sense of Vitali if each point of the 
set is a point of an arbitrarily small interval in the class. 

Theorem. Let 'A, be a Lebesgue-Stieltjes measure on R. If a class of closed 
intervals of R covers a subset A of R in the sense of Vitali, there is a countable 
disjunct sequence of those intervals with union including 'A, almost every point of 
A. 

Proof. Let 'A, * be the outer measure generated by B(R) and 'A,. If A is 'A, * null 
there is nothing to prove. Since it is sufficient to prove the theorem for a 
bounded set A, it can be supposed that 0 < 'A, *(A) < +00. Let G be an open 
superset of A with 'A,( G) < (1 0/9)'A, * (A) and let I. be the collection of the intervals 
of the Vitali cover of A that are subsets of G. According to Lemma 2, there are 
finitely many pairwise disjoint intervals J. in I. with union of measure at least 
'A, * (A)/3 and therefore leaving a subset of A of outer measure at most (7/9)'A, * (A) 
uncovered. Replace A in this argument by A - uJ., replace the given Vitali cover 
by its members not meeting A - uJ., and repeat the argument to find pairwise 
disjoint members of this cover, not meeting J., and together with J. leaving a 
subset of A of outer measure at most (7/9)2'A,*(A) uncovered. And so on, through 
the powers of 7/9. 

4. Derivation of Lebesgue-Stieltjes measures and of 
monotone functions 

In this section, 'A, and Jl are Lebesgue-Stieltjes measures on R, and 'A, is 
complete. The functions F-)... and FJl are corresponding monotone increasing right 
continuous functions that generate these measures, and 'A,*, Jl * are respectively 
the outer measures generated by 'A" Jl. Let s be a point of R and I be a closed 
interval containing s. The upper [lower] derivate at s of FIl with respect to FA is 
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defined as the limit superior [inferior], of Il(l)/'M.l), when I shrinks to s except 
that these derivates are left undefined when 'M.I)=O for some choice of I. In the 
latter case, s is in a maximal interval of such points, and the class of such points 
is a A. null countable disjunct union of such intervals. If the upper and lower 
derivates exist and are equal at s, that is, if there is a limit at s, the limit is the 
derivative at s of 11 with respect to A., or of F ~ with respect to FA, and will be 
denoted by (dflldA)(s), or by (dFIlIdP).)(s). Observe that if s is a discontinuity 
point of FA, that is, if 'M.{s}) > 0, then the derivative exists at s and is 
Il( {s} )/'M. {s}). If A. is Lebesgue measure, the derivative will be denoted, as usual, 
by F~'. 

Theorem. Let A. and 11 be Lebesgue-Stieltjes measures on R. Then 

(a) the derivative dflldA. exists and is finite A. almost everywhere on R; 

(b) this derivative (extended arbitrarily to all of R) is A. measurable and 
integrable. and is a version of the Radon-Nikodym derivative with respect to A. 
of the absolutely continuous component ofll relative to A.. 

Proof of (a). It is sufficient to prove the theorem for the derivative at the points 
of a finite open interval J. Choose numbers a, b, with a < b, and let A be the set 
of points s in J at which the upper and lower derivates exist and are respectively 
> band < a. The closed subintervals I of J with the property that I contains a 
point of A and that Il(l)/A.(l) > b. cover A in the sense of Vitali, and Theorem 3 
therefore implies that there is a disjunct countable union B of closed intervals 
covering A.+11 almost every point of A and satisfying the inequality Il(B) > bA.(B). 
Then Il(B) > bA.*(A). Now if y> 0, all the above can be done with the additional 
condition on the Vitali covering intervals: they are to be subsets of an open set J' 
covering A, chosen in such a way that 11(1') ~ A. * (A)+y. It follows that 11 *(A) ~ 
bA.*(A). A parallel proof shows that 1l*(A) ~ aA.*(A), and therefore that 
A. *(A) = 0 (= A.(A». The set where the derivative does not exist for s in J is the 
union of all sets defined like A, as a and b range through the rational numbers. It 
follows that this limit exists A. almost everywhere on 1. 

The following argument to prove A. almost everywhere finiteness of the 
derivative should be compared with the application of martingale theory to 
derivation in Section XI.17. Choose numbers ex and ~, with ~ > ex. It will be 
shown that the derivative is finite A. almost everywhere by showing that the 
derivative is A. measurable and satisfies the inequality 

(3 

(4.1) f (dflldA.) dA. ~ Il«ex,~]), 
a+ 

where here and below it is to be understood that the notation for the integration 
limits means that 
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the integration is over the right semiclosed interval «X,~]. Define right 
semiclosed subintervals of (a,~] by 

(n ;::: 1, m = O, ... ,2n-l), 

and define a function Xm on «X,~], constant on each interval In,m, equal to ° on 
the interval when the interval is 'A null and otherwise equal to 11(1 n,mY'A (In, m) on 
the interval. The function Xn is Borel measurable, its integral with respect to 'A 
over the interval «X,~] is 11( (x, ~]), and lim x. = dllldA at each point at which the 
derivative exists. It follows that the derivative is 'A measurable and Fatou's 
theorem yields (4.1). Since the measure A ..... A[(dllld'A)lA1 is majorized by 11 on 
right semiclosed intervals, this majorization is valid on Borel sets and therefore 
on the domain of 'A; that is, for every 'A measurable set A, 

(4.2) f dJ.Jld'A dA:;;, Il(A). 

A 

Proof of (b) when 11 is 'A absolutely continuous. Let/ be (a version of) the 
Radon-Nikodym derivative of 11 with respect to 'A. Then (4.1) becomes 

~ ~ 

(4.3) f (dllldA) d'A:;;, 1l((X,~]) = f / dA. 
a+ a+ 

If / is bounded, the sequence x. is uniformly bounded, and the Lebesgue 
dominated convergence theorem can be applied above, instead of Fatou's 
theorem. Hence in this case there is equality in (4.3) and therefore in (4.2). If Iln 
is the measure with Radon-Nikodym derivative/An, the derivates of 11 are at 
least as large as those of Iln' and therefore 

~ ~ ~ 

(4.4) f dIlfd'A d'A;::: f dllnld'A d'A = J /An dA. 
a+ a+ a+ 

Let n-Hoo in (4.4) to obtain the reverse of the inequality in (4.3). Thus there is 
equality in (4.3), therefore also in (4.2), and by uniqueness of the Radon­
Nikodym derivative it follows that / = dill d'A up to 'A null sets. 

Proof of (b) when 11 is 'A singular. If 11 is 'A singular, choose A in (4.2) as all 
null set that carries 'A to find that dIlfd'A vanishes 'A almost everywhere. 

In view of the Lebesgue decomposition of 11 relative to A, the fact that (b) is 
true both when 11 is A absolutely continuous and when 11 is 'A singular implies 
that (b) is true for arbitrary 11. 

5. Functions of bounded variation 

Let F be a function from a compact interval I: [a,b] of R into R, choose a finite 
increasing sequence t1 = a < ... < tn = b, and consider the sums 
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n-I 

V+(F,t.) = I, [(F(tj+I)-F (tj))VO], 
j=1 

n-I 

V-(F,t.) = I, [(F (~;)-F(tj+I))VO], 
j=1 

(5.1) 
n-I 

V(F,t.) = I, IF{tj+I)-F (tj)1. 
j=1 

The values V+(F,t.), -V-(F,t.), and V(F,t.) are, respectively the positive, 
negative, and total variations of F on the sequence 1.. They satisfy the equations 

(5.2) + -V(F,t.) = V (F,t.) + V (F,t.), +. -F(b)-F(a) = V (F,t.) - V (F,t.). 

+ -The suprema of V (F,t.), V (F,t.), and V(F,t.) over all sequences t. are, 
respectively, the positive, minus the negative, and the total variations of F on I, 
denoted by V+ (F,l), V-(F,l), and V(F,l). If the total variation on I is finite, the 
other two variations are also finite, and F is of bounded variation on l. 
Obviously IF(b)-F(a)1 ~ V(F,l). If F is of bounded variation on I, define the 
total variation function IFI on I by 

IFl(a) = 0; IFl(t) = V(F,[a,t]) (t > a), 

and define the positive and negative variation functions F + and -F - in the 
corresponding way. 

The following properties are readily checked, taking advantage of the fact 
that if more points are added to the sequence t., each of the three sums in (5.1) 
can only increase. 
(a) Maximizing successions of finite sequences for the three sums in (5.1) can 
be combined to yield one maximizing succession for all three, and thereby, if F 
is of bounded variation, to derive the equalities (5.2) for the variations on I. 
Apply this with I replaced by a subinterval with left endpoint a to find that if F 
is of bounded variation, 

(5.3) IFl + - + -=F +F, F-F(a) =F -F . 

(b) If F and G are functions from I into R, then V(F+G,l) ~ V(F,l)+V(G,l); V+ 
and V- satisfy the same inequality. 

(c) The set function V (F,·) is additive in the sense that if II and lz are compact 
subintervals of I, disjoint except for a common endpoint, then 

(5.4) 

and the other two variations are additive in the same sense. It follows that the 
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functions IFl, F +, and F - are monotone increasing on I; and in fact if a ~ s < t 
~b, 

- - - + + + V (F,[s,t]) = F (t)-F (s), V (F,[s,t]) = F (t)-F (s), 

(5.5) 

V(F,[s,t]) = IFI(t)-IF1(s). 

Theorem. Let F be a function from a compact interval I into R. Then the 
following holds. 

(a) (Jordan decomposition) F is of bounded variation if and only if F is the 
difference between two monotone increasing functions,for example, as exhibited 
by (5.3). 

(b) If F is of bounded variation, then 
(i) F has a right and left limit at every point, and 
(ii) F is right [left] continuous at a point if and only if IFl is; in more detail, 

F +(s+)-F +(s) = [F(s+)-F(s)]vO, 

(5.6) 

F + (s)-F + (s-) = [F(s)-F(s-)]vO. 

-[ F -(s+)-F -(s)] = [F(s+)-F(s)]/\O, -[F -(s)-F -(s-)] = [F(s)-F(s-)]/\O. 

In particular, if F is of bounded variation, and right continuous at the interior 
points of I, then F + and F - have this same continuity property. 

(c) F + and F - are minimal in the sense that if F is of bounded variation and 
F = F2 -F1, with each function Fi monotone increasing, then 

The point of the first equality in (5.6) is that F + has the same right jump at s 
as F if F has a positive right jump there, and F + is right continuous at s if F is 
right continuous there or has a negative jump there. The other inequalities have 
corresponding significance. Observe that (b) implies 

(5.8) 11'1 (s+) - 1F1(s) = IF (s+ )-F (s)1 , 11'1 (s) -I FI(s-) = IF (s)-F (s-)I. 

The notation of the preceding paragraphs will be used in the following proof. 

Proof of (a). It is trivial that if the function F is monotone increasing, then its 
total variation on I is F(b)-F(a), and it follows that the difference between two 
monotone increasing functions on I is of bounded variation on I. Conversely, if 
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F is of bounded variation, (5.3) exhibits F as the difference between two 
monotone increasing functions. 

Proof of (b). A function of bounded variation has right and left limits at all 
points because monotone functions have this property. Now (notation of (5.1)) 

moreover the sum over the values of j of the differences between the two sides 
of this inequality is the difference V+ (F,l)-V+ (F, t.). Choose E :> 0 and choose t. 
in such a way that this difference is at most E. Then, all the more, 

(5.9) 

Add a point to t. if necessary - adding a point does not invalidate (5.9) - to 
make tr-Q so small that IF(t2)-F(a+)I::; E and F +(t2)-F +(a+) ::; E. With this 
choice of t2 , (5.9) yields 

(5.10) O::;F +(a+)-F +(a) -[F(a+)-F(a)]vO ::; 3E, 

and therefore the first equality in (5.6) is true when s = a, in fact, for every value 
of s. The corresponding arguments yield the other equalities. 

Proof of (c). It is sufficient to prove (c) for s = a and t = b. Under the hypotheses 
of (c) (notation of (5.1»), 

n-\ n-\ 

(5.11) L [(F(tj+\)-F {tj»)vo] ::; L [(F2(tj+\)-F2(tj»)vO] = F2(b)-F2(a), 
j=1 j=J 

and the supremum of the left side for all sequences t. is F + (b)-F + (a). Thus the 
first inequality in (5.7) is true, and the corresponding argument yields the second 
inequality. 

6. Functions of bounded variation vs. signed measures 

Let F be a function of bounded variation on the compact interval I. Then 
F = F2-FJ, where F J and F 2 are monotone increasing. Moreover, if F is right 
continuous except possibly at a, F J and F2 can be chosen with this same 
continuity property. (Apply Theorem 5, or simply replace the original choices of 
F\ and F2 by their right limit functions at the points of I other than a.) Under 
this right continuity condition define (notation of Section IV.8) the signed 
measure A,F by A,p = A,F2...:)...F\. Observe that this definition is independent of the 
choice of F\ and F2 (satisfying the stated right continuity condition), that the A,p 
measure of the interval [a,t] is F(t)-F(a), and that this evaluation of A,p on each 
interval [a,t] uniquely determines A,p. Thus to a function of bounded variation on 
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I, right continuous except possibly at a, corresponds a finite signed measure on 
B(I). Conversely if A is a finite signed measure on B(I), define FA on I by 
FA(a) = ° and FA(t)= A.([a,t]) for t > a. The function FA is right continuous 
except possibly at a and is monotone increasing if and only if A is a measure. In 
view of the Jordan decomposition of a signed measure, FA is the difference 
between two monotone increasing functions and is therefore of bounded 
variation. Moreover A is the signed measure generated by FA by the above 
defined procedure, because this procedure assigns the same measure as A to each 
interval [a,t]. Finally it is trivial to check that Fis, up to an additive constant, the 
function of bounded variation determined by the signed measure AF. The 
minimal properties of F + and F - are in exact correspondence with the minimal 
properties of positive and negative variations of a signed measure on B(I), as 
applied to intervals, and it follows that if F is of bounded variation, then 
(AF)+ = AF + and (AFf = AF _· 

7. Absolute continuity and singularity of a function of 
bounded variation 

Let F be a monotone increasing function on the compact interval I:[a,b], right 
continuous except perhaps at a, and let G be a function defined and of bounded 
variation on I, right continuous except perhaps at a. The function F is absolutely 
continuous [singular] relative to G if AF is absolutely continuous [singular] 
relative to /..c. The function F is simply described as absolutely continuous 
[singular] if Fis absolutely continuous [singular] relative to Lebesgue meaasure. 
The Lebesgue decomposition of a signed measure in the present context states 
that a function of bounded variation relative to a function is the sum of an 
absolutely continuous and a singular function (relative to the specified 
monotone function). Here all functions are supposed right continuous except 
possibly at a. 

For example, suppose that F is a monotone increasing function on I, right 
continuous except possibly at a. Suppose that, if e > 0, there is a corresponding 
o > ° with the property that if I. is a finite set of pairwise disjoint subintervals of 
I, open relative to I, and if AG(uI.) :$; 0 then AF (uI.) :$; e. The same assertion 
will then be true for countable interval unions and is equivalent to the condition 
that AF vanishes on /..c null sets. Thus this condition is necessary and sufficient 
for absolute continuity. The condition can be phrased trivially without reference 
to measure because the values of AF and AG on intervals have simple 
expressions without intervention of measure theory. Similarly, singularity of a 
function of bounded variation relative to a monotone increasing function can be 
expressed without the help of measure theory. 
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8. The convergence set of a sequence of monotone 
functions 

Let Fo be a sequence of monotone increasing functions from R into R. (The 
changes to be made below if the domain of definition of the functions is an 
interval of R will be obvious.) Suppose that the set S of points of convergence 
of the sequence (to a finite value) is dense in R, and define F on S as the limit of 
Fo. Then F is a monotone increasing function from S into R, and the left and 
right limit functions of F, defined on R, are respectively left and right 
continuous. Moreover at each point s of R, 

lim sup Fo(s) :s; lim Fo(s) = F(s) (s < s' E S), 

(8.1) 

lim inf Fo(s) ~ lim Fo(s) = F(s) (s > s'e S), 

so that 

(8.2) F(s-):S; lim inf Fo(s):S; lim sup Fo(s):S; F(s+). 

Thus the sequence Fo converges at every point s at which F(s-) = F(s+). It 
follows that R-S is countable. The function s ..... F(s+) is a right continuous 
function on R, and the sequence Fo converges to this function at its continuity 
points. 

9. ReIly's compactness theorem for sequences of 
monotone functions 

Roughly speaking, Helly's theorem states that for each positive constant c, the 
class 

{F: F is monotone increasing from R into R and IF!:S; c} 

of functions is compact. In later sections, this assertion will be put in precise 
topological contexts, in terms of the measures generated by monotone increasing 
functions. 

Theorem (Helly). If Fo is a uniformly bounded sequence of monotone 
increasing functions from R into R, there is a subsequence converging on R. 

The theorem is true for monotone functions on an arbitrary interval, with or 
without its endpoints, and the proof requires only trivial modifications. 
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Proof. According to the Bolzano-Weierstrass theorem, if s is a point of R, some 
subsequence of F. converges to a limit at s. If S ' is a finite subset of R, the 
preceding remark, applied repeatedly, yields a subsequence of F. converging at 
every point of S'. Finally, if S' is countably infinite, the diagonal procedure 
yields a subsequence of F. converging at every point of S'. Suppose now that S' 
has been chosen to be countable and dense in R. The monotonicity of the 
functions has not yet been used, but according to Section 8, the fact that the 
functions of the given sequence are monotone increasing implies that the 
convergence set of F. is R less an at most countable set. Hence a further 
subsequence of F. can be chosen to obtain convergence everywhere on R. 

10. Intervals of uniform convergence of a convergent 
sequence of monotone functions 

Theorem. A sequence F. of monotone increasing functions from R into R, 
converging to a finite valued monotone increasing function F at the set of points 
of continuity of F, converges uniformly on each compact interval of continuity of 
F. 

Proof. If the sequence F. does not converge uniformly on a compact continuity 
interval 1 of F, there is a subsequence G. of F., a sequence s. of points of I, and 
a strictly positive E, with the property that 

(10.1 ) (n ~ 1). 

It can be supposed, going to further subsequences if necessary, that the sequence 
s. is convergent, with limit s in I. If s' < s < s" and if s' and s" are points of 
continuity of F, then 

(10.2) F(s') ::; lim inf G.(s.) ::; lim sup G.(s.) ::; F(s"). 

Since the first and last terms of this inequality have limit F(s) when s' and s" 
tend to s, it follows that the sequences F(s.) and G.(s.) have the same limit F(s). 
This conclusion contradicts (10.1) and therefore there is the stated uniform 
convergence. 

11. C (I) convergence of measure sequences on a 
compact interval I 

If 1= [a,b] is a compact interval of R, then (Section IV.9) a measure A in M(l), 
the class of finite measures on the Borel subsets of I, generates a unique 
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bounded monotone increasing function FA, the distribution function 
corresponding to A, defined on I, right continuous on (a,b), and vanishing at a. 
Conversely, a monotone increasing function F on I, right continuous on (a,b) 
and vanishing at a, generates a unique measure AF in M(I). The monotone 
function generated by AF is F and the measure generated by FA is A. The 
following theorem relates the convergence of a sequence of finite measures on 
B(l) to the convergence of the corresponding sequence of monotone functions. 

Theorem. Let I: [a,b1 be a compact subinterval ofR. 

(a) If a sequence 'A.. in M(I) is qI) convergent to A, then the sequence FA. 
converges to FAat the continuity points of FA and at b. 

(b) Let F. be a sequence of monotone increasing functions on [a,b], right 
continuous on (a,b) and vanishing at a, and let F be afunction with these same 
properties. If F. converges to F at the continuity points of F, and at b, then the 
sequence AF. is C(I) convergent to Ap. 

Proof of (a). If A. is ql) convergent to A, and if a < s :s; b, with 1..( {s }) = ° 
when s < b, that is, if s is a continuity point of FA when s < b, then [a,s 1 is a set 
with a A null boundary relative to I, and it follows from Theorem 8.6(b)(iii) that 
lim 'A..([a,sl) = A([a,sl), that is, lim F .(s) = FA(s). 

Proof of (b). If the sequence F. converges to F at the continuity points of F, and 
at b, the sequence AF.(I) is bounded, and therefore a subsequence of AF. is C (l) 
convergent to some measure A, according to Section VIII.5(c). According to 
part (a) of the present theorem, the corresponding subsequence of F. is 
convergent to FA, at the continuity points of FA and at b, and therefore FA = F, 
that is, A = Ap. But then the C(l) convergent subsequences of 'A.. must all have 
the same limit measure AF, and therefore the sequence A. is C(I) convergent to 

AF· 

12. Co(R) convergence of a measure sequence 

In many applications one is dealing with monotone functions and measures on 
open subintervals of R. Since in fact the most common application is to R itself, 
this section deals with that case; the generalization to an arbitrary open 
subinterval of R is trivial. The monotone functions considered will be bounded, 
the measures will be finite, and R will be treated (see Section VIII.i) as a 
punctured compact space, the space obtained by removing the point at infinity of 
a one-point metric compactification of R. If A is a finite measure on B(R), FA is 
the right continuous monotone function defined on R by setting 
FA(s) = A(-oo,s]). Then p}...(-oo+) = O. In the other direction, if F is a bounded 
right continuous monotone increasing function on R, with F(-oo+) = 0, the 
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measure AF is the corresponding Lebesgue-Stieltjes measure generated by 
setting AF((-oo,b l) =:: F(b). The monotone function generated by AF is F. and the 
measure generated by FA is A. 

Theorem. (a) If a sequence A. in M(R) is Co(R) convergent to a measure A. 
then the sequence FA. is bounded, and 

(12.1) lim[FA.(b)-FA.(a)] =:: FA(b)-FA(a) =:: A((a,b]) 

whenever a and b are continuity points of Fl.... 

(b) Let F. be a bounded sequence of monotone increasing right continuous 
functions on R with F.( -00+) =:: o. If lim[F.(b )-F.(a)] exists for a and b in a 
dense subset ofR, then the sequence AF. is Co(R) convergent to a measure A. 
Proof of (a). If the sequence A. has Co(R) limit A, boundedness of the sequence 
FA. follows from the boundedness of A.(S). The limit equation (12.1) is true 
because, according to Theorem VIII.lO(b)(iii), lim A.(A) =:: A(A) when A has 
compact closure and A null boundary. 

Proof of (b). Under the hypotheses of (b), the sequence AF.(S) is bounded, and 
therefore a subsequence of AF. is Co(R) convergent to some measure. A, 
according to Section VIII.9. According to (a) the corresponding subsequence of 
[F.(b)-F.(a)] converges to FA(b)-FA(a) =:: A((a,b]) whenever {a} and {b} are A 
null. and therefore whenever neither a nor b is in a certain countable set. But 
then two Co(R) convergent subsequences of A. must converge to the same 
values on intervals (a,b 1 whenever neither a nor b is in an exceptional countable 
set, and therefore the two limit measures must agree on intervals whose 
endpoints are in a dense set. Thus the Co(R) convergent subsequences of A. all 
have the same limit measure A, and therefore the sequence AF. is convergent to 
A. 

Example. Let F be a probability distribution function on R. that is, F is a 
right continuous monotone increasing function with limits 0 and 1 at -00, and 
+00. respectively. Define Fn(s) =:: F(s+n). When either n~-oo or n~+oo, the 
corresponding sequence of measures has Co(R) limit the identically vanishing 
measure. The sequence F],F_],F2.F_2 •... does not converge at any point. but the 
corresponding sequence of measures again has the identically vanishing measure 
as Co(R) limit. This example shows that there may not be FA. convergence 
when there is Co(R) convergence of A •. Of course, even in this example the 
difference sequence limit in (12.1) exists, and is identically 0, as it should be 
according to Theorem 12. 
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13. Stable CoCR) convergence of a measure sequence 

The added condition that Co(R) convergence of a sequence A. to /-.. be stable is 
the condition lim A.(R) = A.(R). According to Theorem VIII.13, a bounded 
sequence /-... of measures on R is stably Co(R) convergent with limit /-.. if and 
only if lim A.(A) = A.(A) for every set A with a /-.. null boundary. Moreover it is 
sufficient if A in the stated condition is an interval with /-.. null boundary, because 
then there is Co(R) convergence according to Theorem 12, and in addition 
lim t..(R) = A.(R) because aR = 0, Thus A. has stable Co(R) limit /-.. if and only 
if not only lim FA. = FA at the continuity points of FA, but also lim FA.( +=-) = 
FA(+=-)· 

According to Theorem VIII. 13, iff is a bounded continuous function on R, 
then under stable C o(R) convergence of A. to f..., 

(13.1) lim f f(s) dFA.(s) = f f(s) dF')...(s). 
R R 

Conversely the validity of (13.1) for every bounded continuous functionfwith a 
finite limit at +00 and the same limit at -00 is essentially the definition of stable 
Co(R) convergence. 

Example. If x. is a sequence of random variables on a probability space, and 
if the sequence converges in measure, then the sequence /-... of distributions of 
the random variables is stably Co(R) convergent, because lim E{ftx.)} = A.[f] is 
a convergent sequence whenever <\l is a bounded continuous function from R 
into R. 

The Levy metric for stable Co(R) convergence. According to Section 
VIII.12, there is a stable Co(R) metric for the class M(R) of finite measures on 
R, that is, a metric under which this class is a complete metric space, with 
convergence in the metric the same as stable Co(R) convergence. An equivalent 
metric adapted to the class of corresponding bounded monotone increasing 
functions (right continuous and with F(-oo+) = 0) was devised by P. Levy. If F is 
such a function, fill in its graph at each discontinuity point s with the vertical 
line segment from «s,F(s-)) to (s,F(s)). If F and G are two such functions, 
each line of slope -1, in the plane of the filled graphs, determines a line segment 
with endpoints on the graphs, and Levy defined the distance from F to G as the 
maximum length of all these line segments between the two graphs. The 
verification that this distance definition has the stated properties is left to the 
reader. 

14. The characteristic function of a measure 

Let /-.. be a finite measure on R with corresponding distribution function FA. The 
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characteristic function of J...., also called the characteristic function of FJ..., is the 
function <I> from R into the complex numbers defined by 

(14.1) <I>(t)= f eisttJ.,ds) = f eistdFJ...(s). 

R R 

The characteristic function of a real valued measurable function is defined as 
the characteristic function of its distribution. Thus, in a probability context, the 
characteristic function of a random variable x is the function t-+E{ eUI}. The 
characteristic function of a measure A is bounded in absolute value by A(R) and 
is continuous, with value A(R) = F},.coo--) at the origin. If A is absolutely 
continuous with respect to Lebesgue measure, <l>/-6is the Fourier transform of 
F'J..' and therefore, according to the general remarks on Fourier transforms in 
Section VIlli, f.i-would be expected in some sense to be the inverse Fourier 
transform of <l>N 21t , 

(14.2) F').,;(s) = 2~ f e-ils <I>(t) dt, 
R 

and thereby to be determined by its characteristic function. These remarks are 
not rigorous mathematics but in fact even without a hypothesis of absolute 
continuity, a version of (14.2) suggested by formal integration is true, according 
to the following theorem. 

Theorem (Levy). If A is a finite measure on R, with characteristic function 
<1>, then 

(14.3) 
F'J..(a)+F'J..(a--) IX e-ith __ e-ila 

2 = liIIla--+>" f <I>(t) dt. 
--2mt 

Proof. The integral on the right becomes, after the formula for <I> is inserted and 
the integration order is reversed, 

IX 

(14.4) f tJ.,ds) f 
R 

e-il(h-sj __ e-it(a-sj 
-----dt 

--2Ttit 

IX 

f f sin t(b-s) -- sin t(a-s) 
tJ.,ds) 2 dt. Ttt 

R 

According to Section VlllO, when a-Hoo the inner integral on the right has 
limit I for s in (a, b), limit 112 at a and b, and limit 0 elsewhere; since this 
integral is bounded uniformly as s varies, the Lebesgue dominated convergence 
theorem is applicable and yields (14.3). 
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15. Stable Co(R) convergence of a sequence of 
probability distributions 

In the following discussion, the issue is the stable Co(R) convergence of a 
sequence of finite measures on R. It is trivial that under this convergence (13.1) 
is true for every bounded continuous function f from R into the complex 
numbers as well as into the real numbers. The most important case is that of a 
sequence of probability measures on R converging to a probability measure on 
R, and the discussion is restricted to that case, but the results are easily 
translated to cover the general case. 

Theorem (Levy). Let A. be a sequence of probability measures on R, with 
characteristic junction sequence <1> •. 

If 'A.. is stably Co(R) convergent to a probability measure A, equivalently if 
the sequence FA. converges to F'A. at the continuity points of F'A., then the 
sequence <1>. converges to the characteristic function of 'A., uniformly on every 
finite interval. Conversely, if the sequence <1>. converges, and the convergence is 
uniform on some neighborhood of the origin, then the limit function is the 
characteristic function of a probability measure 'A. and the sequence 'A.. 
converges stably Co(R)to 'A.. 

Proof. If the sequence A. converges stably Co(R) to A., Theorem VIII.13 implies 
that the sequence <1>. of characteristic functions converges to the characteristic 
function <I> of A., and that the convergence is uniform on finite intervals. In fact, 
according to that theorem, if t. is a sequence in R, with limit t, then lim <I>.(t.) = 
<I>(t). 

Conversely, supppose that the sequence <1>. of characteristic functions 
converges to some function <1>. The sequence A. is a bounded sequence of 
measures, and therefore there is a Co(R) convergent subsequence, with some 
limit measure A. According to Theorem 14, 'A. is uniquely determined by <1>, and 
therefore the sequence 'A.. is Co(R) convergent, because every Co(R) convergent 
subsequence has the same limit measure 'A.. Since the sequence <1>. has limit <1>, 

(15.1) lim f (1 - cos ts ) A.(ds) = 1 - 9t<l>(t). 
R 

The integrals on the left define a bounded sequence of functions of t, and 
therefore Lebesgue's dominated convergence theorem is applic:able to yield 

Ii 

(15.2) limi fdt f(l-costS)'A..(ds) 
o R 

Ii 

f ( sin 0.1\ 1 f = lim 1 - &) 'A..(ds) = I - 8' 9t<l>(t) dt. 
R 0 
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Since there is Co(R) convergence of A. to A., 
Ii 

(15.3) f sinos f sinOs 1 f 
lim fuA.(ds)= fu~ds)=8 9\<I>(t)dt. 

R R 0 

When 0 tends to 0, the Lebesgue dominated convergence theorem is applicable 
to the second integral in (15.3), yielding the limit ~R). Now by hypothesis, <1> is 
the limit of a sequence of characteristic functions, converging uniformly in some 
neighborhood of the origin, and therefore <1>(0) = 1 and <1> is continuous in a 
neighborhood of the origin. Thus the third integral in (15.3) has limit 1 when 0 
tends to 0. Hence 'A is a probability measure, the sequence 'A. is stably Co(R) 
convergent to A., and, according to the first part of the theorem, <1> is the 
characteristic function of 'A. 

16. Application to a stable Co(R) metrization of M(R) 

Theorem 15 suggests that one simple stable Co(S) metrization of the class of 
probability measures on R is by way of characteristic functions. For example, if 
'A, and "-2 are probability measures on R, with respective characteristic functions 
<1>, and <1>2, define the distance between the probability measures as 

(16.1) 
n=] 

Under this metric, a sequence "A. of probability measures converges stably 
Co(R) to a probability measure 'A if and only if the corresponding characteristic 
function sequence converges to the characteristic function of 'A locally uniformly 
on R, and the Cauchy condition for convergence implies the existence of a 
stable Co(R) limit. Thus the metric is a metric for Co(R) convergence, making 
the class of probability measures a complete metric space. It is left to the reader 
to check that this metric also makes M(R) a complete metric space. 

17. General approach to derivation 

Let (S,S) be a measurable space, 'A be a finite measure on S, and Il be a finite 
signed measure on S. In many contexts, each point s of S is associated with a 
system Ss of subsets of S in such a way that, at "A almost every point s, the 
denominator in the following relation does not vanish, and that the limit 

(17.1 ) lim Il(A) = j{s) 
~A) 

exists and is finite, when A runs through Ss in some prescribed order or partial 
order. For example, according to Theorem XA, a Lebesgue-Stieltjes signed 
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measure on R has derivative lim Il(A)/A(A) at A almost every point s, when A is 
a closed interval containing s that shrinks to s. A second example, in an abstract 
context, will be given in Section X117: a sequence of finer and finer partitions 
of S is chosen, An(s) is the cell of the nth partition containing s, and then for A 
almost every s, lim Il(A.(s))/A(A.(s)) exists. 

In such a context, the difference between the limit superior and limit inferior 
of Il(A)/A.(A)) at s when A runs through Ss in the prescribed way will be denoted 
by Ds[Il,A], and the limit, when it exists, will be denoted by Ds[Il,A]. If, for 
every pair A., 11, D.[Il,A] exists A almost everywhere, then D will be called a 
derivation operator for the measurable space, a Radon-Nikodym derivation 
operator if D.[Il,A] is a version of the Radon-Nikodym derivative of the 
absolutely continuous component of 11 relative to A. The exact context is 
irrelevant in the following. Recall the notation 1·1 for the absolute variation of a 
signed measure. The inequality 

(17.2) 
IIl(A(S) -al = I Il(A(s)-1.(A(s) I 
1.(A(s) A(A(s) 

IIl-aAI(A(s) 
~ 

1.(A(s) 

suggests a useful stronger condition on the derivation operator than Ds[1.,Il] = a, 
the condition 

(17.3) 

which has the advantage that the ratios leading to derivation are ratios of 
positive quantities, and the limit to be verified is O. A point s at which (17.3) is 
true is a Lebesgue point for 11 relative to A., and of course relative to the 
prescribed derivation procedure. 

Theorem. Let (S,S) be a measurable space, D be a Radon-Nikodym 
derivation operator for (S,S), 11 be a finite signed measure on S, and A. be a 
finite measure on S. Then A. almost every point of S is a Lebesgue point for 11 
relative to A. 

In view of the Lebesgue decomposition of 11 relative to A., it is sufficient to 
prove the theorem when 11 is A singular and when 11 is A. absolutely continuous. 

Proof when 11 is A singular. When 11 is A. singular, that is, by definition, when 
1111 is A singular, Ds[lIll,A] = Ds[Il,A] = 0 for A almost every s, because D is a 
Radon-Nikodym derivation operator. 

Proof when 11 is A. absolutely continuous. Let f be the Radon-Nikodym 
derivative of 11 relative to A.. If r is a real number, then IIl-rAi is a finite measure 
absolutely continuous relative to A., with Radon-Nikodym derivative jf-rl: 

(17.4) 
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for A. almost every s. Hence there is a A. null set B with the property that (17.4) is 
true for every rational value of r, when s is not in B. Moreover, if r is an 
arbitrary real number and if r' is rational, 

(17.5) A.(~)II~-rA.I(A)-(I~-r'AJ(A)1 

= A.(~)I) IJ-rl - !f-r'l] dA.I ~ A.(~») lr-r'l dA. = Ir-r'l. 

It follows that when s is not in B, Ds[l~-rAJ,A.] ~ 2Ir-r'l, and therefore the 
derivative on the left in (17.4) exists, and (17.4) is true. Hence, for s not in B, 
(17.4) is true with r replaced by f(s), that is, every point of S-B is a Lebesgue 
point for ~ relative to A.. 

Example. Let the measure space be R under Lebesgue measure, let ds refer 
to Lebesgue measure, let derivation refer to the usual difference quotient limit 
procedure, letfbe a Lebesgue measurable function on R, integrable over every 
finite interval, and define ~(A) = A{flA], for bounded Lebesgue measurable sets 
A. The fact that almost every point is a Lebesgue point of ~ relative to Lebesgue 
measure is the fact that for (Lebesgue measure) almost every point t, 

(17.6) 

1+0 

lim8~ ~ f )f(t)-fls)I ds = O. 
t 

This result is stronger than the result that the integrandf is almost everywhere 
the derivative of its integral. 

18. A ratio limit lemma 

In many applications of analysis one deals with sequences of integrals of the 
form 

b 

(18.1) A.[Kn] = j Kn(s) A.(ds), 

where K. is a sequence of positive functions, A. is a measure on the integration 
interval [O,b], and the sequence K. has limit 0 on (O,b] but converges to 0 in 
such a way that as n increases, the integration outside an interval containing 0 
becomes negligible, compared to the value of the integral inside the interval. 
Thus, roughly, A.[Kn] - Kn(O)A.(In) for I some interval with left-hand endpoint 
0, whose choice is the same for every choice of A.. If this guess is indeed true, 
then if ~ is a second measure on [O,b], the ratio ~[Kn]/A.[Kn] would be near 
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Il(In )/A(In ) for large n, and therefore would tend to dllld).. at 0, if this derivative 
exists. The following lemma gives a simple set of conditions on K. that will be 
used in identifying a context in which this reasoning can be made precise. It will 
be convenient to write integrals with respect to a measure in terms of the 
monotone increasing function generating the measure. 

Lemma. Let K. be a sequence of strictly positive continuous functions on the 
interval [O,b]. Suppose that 

(a) each derivative Kn' exists, is continuous, and Kn'::; 0; 

(b) if ° < a < b, the function lim inf K./K.(a) has limit +00 at 0, and has 
Lebesgue integral +00 over every neighborhood ofO. 

Let F and C be monotone increasing functions on [O,b], with F(O) = C(O) = 0, 
right continuous on (0, b), and satisfying one of the following conditions: 

(c') F(O+) = 0, C(O+) > 0; 

(c n ) C(O+) = 0, limS--70 F(s)/C(s) = 0, and lim sUPS--70 s/C(s) < +00. 
h 

Then f K.(s) dF(s) 

(18.2) lim 
o 

b = O. 

f K.(s) dC(s) 
o 

Observe that the hypotheses on K. imply that lim K.(a)/K.(O) = O. 

Proof. In the following, ds will refer to one-dimensional Lebesgue measure. 
Integration by parts of Riemann-Stieltjes integrals will be used .. 

Under (c'), if 0< a < b, 

a a 

(18.3) f Kn dF::; Kn (a) F(a) - F(a) f Kn' ds = F(a)Kn(O), 
o 0 

b 

f Kn dF::; F(b)Kn(a), 
a 

and therefore the ratio in (18.2) is at most 

(18.4) 
F(a)Kn(O) + F(b)Kn(a) 

C(O+)Kn(O) 

When n increases, the ratio in (18.4) tends to F(a)/G(O+), which can be made 
arbitrarily small by choosing a small. Hence (18.2) is true under (c'). 
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Under (en), choose £ strictly positive but small enough to satisfy the 
inequality lim sups~o s/G(s) < 1/£, and then choose a strictly positive and so 
small that F 5, £G and G? £S on [O,a]. Then 

a a a 

(18.5) f Kn dF = F(a)Kn(a) - f FKn' ds 5, F(a)Kn(a) - £ f GKn' ds 
o 0 0 

a a 

= Kn(a)[F(a)-EG(a)] + £ f Kn dG 5, £ f Kn dG. 
o 0 

Similarly, 
a a a 

(18.6) f Kn dG = G(a)Kn(a) - f GKn' ds ? G(a)Kn(a) - E f sKn' ds 

Hence 

(18.7) 

o 0 0 
a u 

= Kn(a)[G(a)-ea] +E f Kn ds ? E f Kn ds. 
o 0 

h 

f K.(s) dF(s) 

1. "-0 ___ _ 
1m sup b 

f K.(s) dG(s) 
o 

h 

f K.dG 

5, E + lim sup "-.u -a--

f K.ds 
o 

Since the numerator on the right is majorized by Kn(a)G(b), the superior limit on 
the right-hand side is majorized by 

a 

(18.8) G(b) [lim infn~oo f [KnIKn(a)] ds ]-1 
o 

a 

5, G(b)[ f lim infn~oo[KnIKn<a)] ds ]-1 = 0, 
o 

and therefore the lemma is true. 

19. Application to the boundary limits of harmonic 
functions 

Recall the Riesz-Herglotz representation in Section VIII.14 of a positive 
harmonic function on a disk B~ of radius ~, center the origin: 

(19.1) u(z) = f 
aBIl 
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In particular, when A is one dimensional Lebesgue measure divided by 2n~ the 
function u is identically 1. Observe that when 1'} is fixed and z tends to a 
boundary point ~eit'}, the integrand tends to 0 at all other boundary points. Thus 
this context is precisely that envisaged in Section 18. 

Theorem (Fatou-Doob). If u and h are positive harmonic functions on a 
disk, determined respectively by the Riesz-Herglotz measures Au and "-Iz, then, 
on radial approach to Ah almost every boundary point of the disk, u/h has limit 
the Radon-Nikodym derivative of the absolutely continuous component of Au 
relative to Ah. 

The Radon-Nikodym derivative in question is uniquely determined only up to 
a Ah null set, and this lack of uniqueness matches the fact that the radial limit 
exists aside from a Ah null boundary set. In other words, the radial limit function 
(augmented say by 0 where the limit does not exist) is one version of this 
Radon-Nikodym derivative. According to Theorem 4, one version of this 
Radon-Nikodym derivative at a boundary point can be obtained as the pointwise 
derivative defined at the boundary point s as the limit, when this limit exists, of 
llu(l)/Ilh(I) when the closed interval I containing s shrinks to s, and it is this 
derivative that will be considered from now on. It will be proved that the radial 
limit of u/h exists at every boundary point that (i) is a Lebesgue point for Au 
relative to Ah and (ii) is a point at which the derivative of Lebesgue measure on 
the boundary relative to Ah exists and is finite. The set of such boundary points 
is the complement of a Ah null set. It is no restriction to consider only the 
boundary point z = ~. Write the Riesz-Herglotz representations of u and h at the 
point at distance r from the origin on the positive real axis in the form 

1t 1t 

(19.2) f ~2_r2 
her) = -~. ~2 dG(s), 

1~IS_rl 
o 

where F and G are positive monotone increasing functions on [O,n] vanishing at 
O. To prove the assertion on the existence of a radial limit, it is sufficient to 
prove that limr~13 u(r)/h(r) = 0 under the combined assumptions that dF/dG 
vanishes at the origin, and that lim sups~o sIG(s) is finite. Lemma 18 will be 
applied to obtain this result. 

Let ~. be an increasing sequence of strictly positive numbers with limit ~. 
Take b in the lemma as n, and define Kn(s) as the value of the integrand in 
(19.2) with r =l3n. Condition (a) of the lemma is obviously satisfied. The limit 
inferior in condition (b) is an actual limit that majorizes const.s-2. Thus the 
lemma is applicable and yields the desired zero limit. 

With a little more care, this method shows that the limit in question exists not 
only as a radial limit but as a non tangential limit. 



XI 
Conditional Expectation; Martingale 
Theory 

1. Stochastic processes 

In probability theory, a family {Xl' t E J} of random variables on a probability 
space (S,S',P), that is, a family of measurable functions from S into i, is 
sometimes glorified by the name stochastic process or, simply, process. At the 
point s of S, the random variable Xl has value xr(s), a point of the state space of 
the process, and the function x.(s), from J into the state space, is a sample 
function of the process. The set J is the parameter set of the family. There is no 
definition of the term stochastic process more specific than that just given, but 
the term is usually reserved for families with some interesting property. To 
loosely paraphrase a judge discussing a somewhat different concept, probabilists 
cannot define stochastic processes, but they recognize one when they see it! 
Typical examples of the application of the term are to martingales and to 
Markov processes, both defined in this chapter. 

An attentive reader will observe, and perhaps resent, that in other chapters a 
function is f or g, and so on, whereas in this chapter a function is more likely to 
be X or y, and so on, at the other end of the alphabet. This difference is 
traditional, and is one of the principal features that distinguishes probability 
from the rest of measure theory. 

2. Conditional probability and expectation 

Let (S,S',P) be a probability space, X be an integrable random variable, and A be 
a measurable set. In Section 111.6, in the context of a discrete probability space, 
the conditional expectation E{xIA} was defined by 

(2.1) E{xlA} = E{xlA}IP{A} 

when A is not null. With this definition, meaningful whenever X is an integrable 
random variable on a probability space, if Sh""~ is a partition of S, that is, if 
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these sets are pairwise disjoint measurable sets with union S, and ifE{xISj} is 
defined arbitrarily when Sj is null, 

(2.2) LE{xls.}p{s.} = E{x}, 

and more generally, if A is a union of sets of the partition, 

IE{xISj}p{Sj} =j xdP. 
SjcA 

(2.3) 

Let S be the algebra of unions of partition sets. A function from S into R is 
measurable from (S,S) into R, in short, is S measurable, if and only if the 
function is constant on each partition cell. If E {xiS} is defined as the random 
variable with value E {xISj} on each nonnull cell Sj and is any constant on each 
null partition cell, (2.3) can be written in the elegant form 

(2.4) j E{xIS} dP = j xdP (A E S). 

The integrand on the left is uniquely determined on the nonnull partition cells by 
(2.4) and S measurability. This discussion leads to the following Kolmogorov 
definition of conditional expectation. 

Definition of conditional expectation. Let (S,§',P) be a probability space, S 
be a cr algebra of measurable sets, and x be an integrable random variable. Then 
E{xls}' the conditional expectation of x given S, is a random variable satisfying 
the following conditions: 

(a) E{xl S} is S measurable and integrable; 

(b) E{xIS} satisfies (2.4). 

This definition is not vacuous, because the right side of (2.4) defines a 
function of A, a measure on S, which is absolutely continuous relative to the 
restriction Ps of P to S, and therefore (Radon-Nikodym theorem) there is a 
function satisfying (a) and (b), uniquely determined up to Ps null sets. The 
symbol E{xIS} refers to a function, any function, satisfying (a) and (b), a func­
tion, not an equivalence class of functions. This convention means that in almost 
every discussion involving conditional expectations, almost everywhere or 
almost surely, or their respective abbreviations a.e., a.s., will be sure to appear 
almost everywhere. 

In the extreme case when S is the cr algebra consisting of the whole space 
and the empty set, E{xIS} = E {x}; almost everywhere is unnecessary in this 
case. At the other extreme, when S = S', E{xIS} = x almost everywhere. The 
new conditional expectation definition is consistent with the old, in the sense 
that if S. is a partition of S, as discussed at the beginning of this section, and if S 
is the cr algebra of unions of partition cells, E{xIS} is constant on each partition 
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cell Sj; the constant is arbitrary if Sj is null, and is the jth conditional expectation 
in (2.2) if Sj is not null. 

Definition of conditional probability. If A is measurable, p{AIS} is defined 
as E{ IAIS}; more precisely, the first function is to be taken as anyone of the 
possible conditional expectation functions. (This last proviso will be omitted 
from now on in similar contexts.) 

Conditioning by a random variable family. If x. is a family of random 
variables, E{xlx.} is defined as E{xla(x.)}, where (see Section V.I) a(x.) is the 
a algebra of sets defined by measurable conditions on the random variables x., 
that is, the sma~est a algebra S making every random variable Xt measurable 
from (S,S) into R. 

Example (a), Densities on RZ. Let P be a probability distribution on the 
plane, given by a Radon-Nikodym (Lebesgue measurable) density p(",") with 
respect to two-dimensional Lebes¥ue measure, that is, the measure assigned to a 
Lebesgue measurable subset of R is the integral of P (with respect to Lebesgue 
measure on RZ) over the set. To avoid a few almost everywheres, it is supposed 
in the following, without loss of generality, that P is Borel measurable. Let XI 

and Xz be the coordinate functions on the plane. Then the distributions of XI and 
Xz are the marginal distributions given by the respective densities (with respect 
to one- dimensional Lebesgue measure), 

(2.5) PI = J~",a)da, and pz = J~a,") du. 

Here da refers to Lebesgue measure on R. The random variables XI and X2 are 
mutually independent if and only if P defines a product measure, a measure 
necessarily given (P almost everywhere on R2) by the density that is the product 
of the marginal densities relative to one-dimensional Lebesgue measure: p(a,~) 
= PI (a)p2$)· 

Without the hypothesis of independence, one version of the conditional 
distribution of Xz for given XI is given by 

P{Xz E A21 XI} = f p(x},a) da/PI(xI)' 
Az 

(2.6) 

determined by the conditional density (relative to Lebesgue measure on R) 
p(x},")lpI(xI). In fact the function ofxl in (2.6), when integrated with respect to 
P measure over the RZ set {XI E Ad yields P{XI E A}, x2E Az}. Observe that the 
random variable PI(XI) vanishes P almost nowhere. The fact that P is Borel 
measurable implies that every integrand here is Borel measurable on whatever 
space is relevant. 

Example (b). Let P be a probability distribution on R2, and again let XI and 
Xz be the coordinate functions on RZ. Suppose that P is carried by the line 
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through the origin of slope 1. Then X]=X2 almost surely. In this case 
P{X2 E A2Ix]} = lA2{t]) almost surely. 

Example (c). Transition functions and the processes they generate. Let 
(S,S) be a measurable space. A transition function on the space is a function 
(s,A)-+p(s,A) from SXS into R with the following properties: 

(el) For each point s of S, the function p(s,") is a probability measure on S. 

(c2) For each setA in S, the functionp(",A) is S measurable. 

Transition functions generalize the stochastic matrices discussed in Section 
111.7. In intuitive language, in a probabilistic context, p(s,A) is the probability of 
a transition from the point s into a point of the set A. For example, let (S,S) be a 
measurable space, p be a probability measure on S, and p(",") be a transition 
function on (S,S). Define a measure P on the measurable space (SXS,a(SxS)) 
for which (generalization of 111(7.3)) 

(2.7) P{A]xA 2} = f p(s].A2)p(ds]) (Ai E S), 
A] 

by the definition (integral over SxS) 

(2.8) peA) = f peds]) f lA Ji"s]ods2) (AE cr(SxS»). 

(It is left to the reader to check that the inner integral actually defines an S 
measurable function.) For this measure, if x] and X2 are the coordinate functions 
of SXS, 

(2.9) 

and if f is a Borel measurable function from R into R for which JrX2) is 
integrable then 

(2.10) a.s. 

One can go on, following Section 111.7, but no new ideas beyond measure 
niceties are involved. These measure niceties are so unnice that the probability 
measure P defined on a(SxS) by an initial distribution together with a transition 
function does not quite provide the most general measure on a(SxS) unless 
restrictions are imposed on the measurable space (S,S). 

In particular, a common construction of a probability measure P on the n-fold 
product (sn ,s(sn») applies n transition functions p(.) on S together with an initial 
point So by the definition (integral over sn) 
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peA) = f p(I)(so,dsl ) f p(2)(s\>dS].) ... f lAP(n)(Sn_bdsn 

(A E cr(sn»). 

If xl, ... ,Xn are the coordinate functions of sn, these functions are random 
variables for which 

a.s. (0::;; m <n) 

and more generally, iffis a Borel measurable function from R into R for which 
f(Xm+l) is integrable then (2.12) implies 

(2.13) E{f(Xm+I)lxo, ... ,Xm} =E{j{Xm+I)lxm} = J f{l,)p(m+I)(xm,tK.,) 

a.s. (0::;; m < n). 

Observe that the conditional probabilities and expectations in (2.12) and (2.13) 
depend only on the last conditioning variable Xm. This property will be defined 
as the Markov property in the general definition of this property in Section 4. 

3. Conditional expectation properties 

In the following list of properties of conditional expectations, since all cr 
algebras are to be cr algebras of measurable sets and all random variables are to 
be integrable, these hypotheses are omitted in the listing except in (d), (e), (f), 
and (h), in which the omission might lead to misunderstanding. Some of the 
properties can be stated more generally: E{xIS} can be defined for X positive, 
not necessarily integrable, but somewhat restricted, and (d) and (e) can be 
correspondingly extended, but the restrictions make the extensions not very 
useful. Proofs are given at the end of the list. 

(a) Ifx=ya.e. thenE{xIS} =E{yIS}a.e. 

(b) Ifa and b are constants, E{ax+byIS} = aE{xIS} +bE{yIS} a.e. 

(c) Ifx::;;y a.e. then E{xIS}::;; E{yIS} a.e. In particular, IE(xIS}I::;; E{lxIIS} 
a.e. 

(d) Beppo-Levi's theorem for conditional expectations. Ifx. is an increasing 
sequence of positive random variables with integrable limit x, then 

(3.1) lim E{x.IS} = E{xIS} a.e. 
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In particular, if A. is a disjunct sequence of measurable sets, with union A, then 

(3.2) L p{A.IS} = p{AIS} a.e. 

(e) Fatou's theorem for conditional expectations. Let x. be a sequence of 
positive integrable random variables, and define x = lim inf x •. If x is integrable, 
then 

(3.3) E{xls} ~ lim inf E{x.IS} a.e. 

Moreover lim E{ Ix-x.IIS} = 0 almost everywhere where 

(3.4) E{xls} = limE{x.IS}. 

(f) Lebesgue's dominated convergence theorem for conditional expec­
tations. Let x. be a sequence of random variables, and suppose that suplx.1 is 
integrable. If the sequence x. converges almost everywhere [in measure] to a 
random variable x, then lim E{x.IS} = E{xIS} almost everywhere [in measure]. 

(g) If x is a constant function, or more generally, if x is S measurable and 
integrable, then E{xIS} = x a.e. 

(h) Ify is a bounded S measurable function and x is integrable, then 

(3.5) E{yxIS} = yE{xIS} a.e. 

(i) IfSc']['thenE{E{xIS}I']['} = E{E{XI']['}ls} = E{xIS} a.e. 

(j) If S and the random variable x are mutually independent, then E{xIS} = 
E{x} a.e. 

(k) If'][' is independent of the pair x, S, then E {xls,']['} = E{xIS} a.e. (Property 
U) is a slightly concealed special case of (k).) 

(1) Jensen's inequality for conditional expectations. Let <I> be a convex 
function from an inte rvall of R into R and x be a random variable with range in 
I. If x and <I>(x) are integrable, then <I>[E{xIS}] ::; E{ <I>(x)IS} a.e. 

Observe that if p <:: 1, this inequality implies that 

(3.6) 

and therefore, to show that the conditional expectation of a random variable can 
be approximated in the sense of e distance by conditional expectations of other 
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random variables, it is sufficient to show that e distance approximation is 
possible for the unconditioned random variables. 

(m) The class of random variables 

{E{xls}: S is a 0' algebra of measurable sets} 

is uniformly integrable. 

(n) HOlder's inequality for conditional expectations. If x E e and y E L q, 

where lip + l/q = I, then xy is integrable and 

(3.7) 

(0) Minkowski's inequality for conditional expectations. If p ;;:: 1 and x and y 
are in e, then x+y is in e and 

(p) If x E L2 then E{xIS} E L2, and x-E{xIS} is the unique up to null sets 
random variable, in L 2 , which is orthogonal to every S measurable random 
variable in L 2. 

Properties (a)-(g) follow at once from the defining properties of conditional 
expectations and the corresponding properties of expectations, or from 
translations of the expectation proofs into conditional expectation proofs. The 
easiest way to prove (f) when there is convergence in measure is to remark that 
according to the dominated convergence theorem, convergence in measure of x. 
tox, when suplx.1 is integrable, implies thatx. converges tox in the LI metric. It 
follows that the sequence E{x.IS} converges to E{xIS} in this metric, and 
therefore converges in measure. The choice S = S· shows that under the 
hypothesis of convergence in measure, there need not be almost everywhere 
convergence of the sequence of conditional expectations. 

Proof of (h). It is sufficient to prove (h) when x and y are positive functions. If 
y is the indicator function of a set in S, then (h) becomes a trivial consequence 
of the conditional expectation definition. It follows that (h) is true for y a 
positive linear combination of indicator functions of sets in S, and therefore for 
y a limit of a bounded increasing sequence of such functions; the class of these 
limits is the class of positive bounded S measurable functions. 

Proof of (i). The equality between first and third terms is a special case of (g), 
because the inner conditional expectation in the first term is a T measurable 
function. To prove equality between the second and third term it must be 
verified that E{xIT} has the same integral as x over a set in S, and this is true 
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because the two functions have the same integral over every set in 1', a larger cr 
algebra than S. 

Proof of (j). If A E S, the random variables x and IA are mutually independent, 
and therefore (Section V1.l9) E{xIA} = E{x}P{A}, that is, the function 
identically equal to E{x} satisfies the defining equality for E{xIS}. 

Proof of (k). It must be shown, generalizing the preceding proof slightly, that 
E{xIS} has the same integral as x over every set in cr(S,1'}. Now cr(S,1') is the cr 
algebra generated by the class of disjunct finite unions of sets of the form AnB, 
with A in Sand B in 1'. In view of the fact that this algebra is dense in cr(S ,1') 
under the set distance dp, it is sufficient to prove that E{xIS} has the same 
integral as x over every set AnB. The independence assumption implies the 
desired equality by way of the fact that the expectation of the product of 
mutually independent integrable random variables is the product of their 
expectations: 

(3.9) E{xIA nB} =E{xIA IB} =E{xIA}E{IB} 

= E{ E{xIS}IA }E{lB} =E{ E{xIS }lAIB} =E{ E{xIS}IAnB}' 

Proof of (1). If <I>@ ;::: a~+b for all ~ in I, then 

(3.10) E{<I>(x)ls};::: E{ax+bIS} a.e. 

The convex function <I> is the supremum of all the linear functions it majorizes 
and, neglecting null sets, is therefore (Section V.18) the supremum of a 
countable subset of these linear functions, the limit of an increasing sequence f­
of maxima of finitely many of these linear functions. To obtain (1), apply the 
Beppo-Levi theorem for conditional expectations to (3.10), with ax+b replaced 
by f.(x). 

Proof of (m). According to Theorem VI. 7, integrability of Ixl implies that there 
is a convex uniform integrability test function <I> for which <I>(lxl) is integrable. 
Apply Jensen's inequality for conditional expectations, 

(3.11) 

to find that the class of functions 

(3.12) {E{ <I>(lxI)IS}: S is a cr algebra o/measurable sets} 

is LI bounded. This fact implies the stated uniform integrability. 

Proof of (n). If x and y are step functions, written as linear combinations of 
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indicator functions of pairwise disjoint measurable sets, the conditional 
expectations relative to S of their rth powers have the form L a.rP{A.IS}, and 
the discrete context Holder inequality yields (n) for this special case. In the 
general case, xy is integrable, according to HOlder's inequality, and it need only 
be shown that E{xyls}' E{lxfIS} and E {lylqIS} can be approximated arbitrarily 
closely in the L 1 sense by the corresponding expressions with step functions. As 
pointed out in a remark after the statement of Jensen's inequality for conditional 
expectations, it is sufficient to show that these approximations are possible for 
the unconditioned random variables, and the possibility of the latter 
approximations was shown in Sections VI.14-IS. 

Proof of (0). The Minkowski inequality for conditional expectations can be 
reduced to the HOlder inequality for conditional expectations just as in the 
unconditioned context, treated in Section V1.13. Alternatively the Minkowski 
inequality for conditional expectations follows from the unconditioned 
Minkowski inequality when the random variables are step functions, and an 
approximation procedure yields the general case. 

Proof of (p). The square integrablity of E{ xiS} follows from Jensen's (or 
Schwarz et al.'s) inequality for conditional expectations. Denote by L\S) the 
class of square integrable S measurable functions. The defining equation for a 
conditional expectation implies that the random variable y = x-E{x I S lis 
orthogonal to the indicator function of a set in S, and therefore orthogonal to the 
class of linear combinations of such functions, that is, to the class of S 
measurable step functions. Hence y is orthogonal to the r3 closure L2(S) of this 
class. Conversely, if z is in L 2(S) and has the property that x-z is orthogonal to 
L\S) then z satisfies the conditions for E{xl S}. A more elegant formulation of 
this characterization of E{ xiS} is given in the following paragraph. 

Hilbert space description of conditional expectations. Denote by J} the 
Hilbert space of equivalence classes of square integrable random variables, and 
denote by M the space of equivalence classes of square integrable S measurable 
functions, in each case identifying two random variables when they are equal 
almost everywhere. According to (p), E{ -I S} acting on 1) is the Hilbert space 
projection onto M. 

4. Filtrations and adapted families of functions 

Let (S,S) be a measurable space and I be an ordered set, with order relation 
symbol ~. Afiltration of the space is a map i ..... Sj from I into the class of sub 0' 

algebras of S, increasing in the sense that Sj c Sj when i ~j. The triple (S,S,S.) 
is a filtered measurable space. If P is a probability measure defined on S, 
(S,S,S.,P) is a filtered probability space. If x. is a family of measurable 
functions, indexed by I, from (S,S) into some measurable state space, and if, for 
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every index point i, Xi is not only measurable from (S,S) into the state space, but 
even measurable from (S,Si) into the state space, the family x. is adapted to S. 
and (S,S,S.,x.,P) is a filtered stochastic process. These concepts are 
fundamental in modern probability theory and are stated here in a general form, 
but when applied in this book the parameter set J will always be a set of integers 
in their natural order, sometimes with +00 [-00] adjoined when the set of integers 
is unbounded above [below], and the state space will be a subset of Runless 
specified otherwise. In discussing filtered stochastic processes, the full notation 
(S,S,S.,x.,P) will be abbreviated to show only those items needed to avoid 
ambiguity. 

Example. If x. is a finite or infinite sequence of random variables on a 
probability space and Sn = cr(x1,""xn), the cr algebra of sets determined by 
measurable conditions on X],""Xn (see Section V .1), then S. is a filtration, the 
one with the minimal cr algebras to which the sequence x. is adapted. 

Transition functions and Markov processes. In Section 111.7, the Markov 
property was defined in a very special context. The general definition is the 
following. If (S,s,S.,x.,P) is an adapted process with ordered parameter set J, 
the process is a Markov process, that is, it has the Markov property, if whenever 
i and} are parameter values with i <} and A is a measurable subset of the state 
space then 

(4.1) 

This property means, roughly, that conditional probabilities of future events, 
given the whole past up through time i, actually depend on the past only by way 
of Xi. In Section 2 it was shown how to construct a finite sequence of random 
variables with the Markov property, based on an initial point and transition 
functions. This construction will be applied in Section 21. 

The idea of a Markov process is that certain conditional probabilities (and 
necessarily corresponding expectations when the state space is R) depend only 
on the last conditioning variable. Martingale theory is based in part on the same 
idea - dependence only on the last conditioning variable - but imposes stringent 
hypotheses on the values of certain conditional expectations rather than on 
conditional probabilities. 

5. Martingale theory definitions 

Set cr algebras are basic in measure theory, because they are the natural domains 
of definition of measures. In martingale theory, the effect of varying these set cr 
algebras is studied systematically. A natural way to initiate such a study is to see 
the effect on a conditional expectation of varying the conditioning cr algebra. It 
turns out that an analysis of this effect leads to applications in many parts of 
mathematics. 
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Let (S,S,S.,x.,P) be a filtered stochastic process. The process is a martingale 
if, for every index point i, x i is integrable, and for i < j, 

(5.1) 

Submartingales and supermartingales are defined like martingales except that, 
in (5.1) equality is replaced by inequality, ":5:" for submartingales, "~" for 
supermartingales. Thus the negative of a submartingale is a supermartingale, 
and a process that is both a submartingale and a supermartinga[e is a martingale. 
These processes can of course be defined by integral equalities and inequalities 
without the explicit use of conditional expectations. For example, the integrated 
form of the defining martingale equation (5.1) is 

(5.1') ) XidP = ) xjdP 

To obtain the integrated versions of the submartingale and supermartingale 
inequalities replace "=" in (5.1') by ":5:" and "~", respectively. 

Observe that, if Sf = cr(Xi: i :5:J), then Sf c Sj' and {x.,S.'} is a martingale, 
or submartingale, or supermartingale if {x.,S.} is. In fact, say in the martingale 
case, if both sides of (5.1) are operated on by E{ -lSi'}, the left side becomes Xi 
almost everywhere according to Section 3(g), and the right side becomes 
E{xjlsj'} almost everywhere according to Section 3(i). 

When there is no question about the filtration, the notation x. is used instead 
of (x.,S.). A subset of a martingale, submartingale, or supermartingale is, 
respectively, a martingale, submartingale, or supermartingale relative to the 
corresponding subset of the given. filtration 

Nonmathematical interpretation. If the parameter set is thought of as 
representing the flow of time, if Si is thought of as a representation of all past 
events through time i in some context, and if Xi represents some present 
evaluation in this context, then the martingale, submartingale, and su­
permartingale conditions state, respectively, that given the whole past, what one 
expects to get in the future is what one has already, something more, or 
something less. This rather vague interpretation should not be scorned, because 
it has led to basic theorems in martingale theory. See Section 10 for an 
application of this interpretation to suggest a mathematical theorem. 

6. Martingale examples 

(a) Let (S,S,S.,P) be a filtered probability space and x be an integrable random 
variable. For each parameter point i, define Xi = E{xlsj}. An application of 
Section 3(i) shows that (x.,S.) is a martingale. This martingale is uniformly inte­
grable, according to Section 3(m). Moreover if another index point a is adjoined 
to I, following all the others in the ordering, and if Xa is defined as x, Sa as S, 
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the extended family is still a martingale. Every martingale whose parameter set 
has a last element is of this type. The following is a particular case. On a 
probability space, let x be an integrable random variable and y. be a finite or 
infinite sequence of random variables. Define Sn = a(YI, ... ,Yn) and Xn = 
E{xISn }. Then (x.,S.) is a martingale, and if the pair (x,S) is adjoined at the end, 
the new process, with last random variable x, is a martingale. 

(b) Let y. be a sequence of mutually independent integrable random variables 
on a probability space, and define Xn = YI+···+Yn, Sn = o"(YI, ... ,Yn) = a(xjo ... ,Xn). 
Then, if every Yj has zero expectation, (x.,S.) is a martingale; if every Yj has 
positive [negative] expectation (x.oS.) is a submartingale [supermartingale]. To 
prove the submartingale assertion, for example, apply Sections 3(g) and 3(j): if 
m<n, 

7. Elementary properties of (sub- super-) martingales. 

(a) The function i ~ E{Xi} is a constant function if x. is a martingale, 
monotone increasing [decreasing] ifx. is a submartingale [supermartingale]. 

(b) If the parameter set is a set of successive integers, it is sufficient for the 
martin!!.ale equality (5.1) that every almost everywhere one-step equality Xn = 
E{Xn+lISn} be valid, because then 

xn=E{E{xn+2ISn+ll! Sn} =E{Xn+2ISn} a.e., 

and so on. Similarly, the one-step submartingale and supermartingale 
inequalities suffice in the context of the stated parameter set. 

(c) If (x.,S.) is a martingale [submartingale] and <I> is a convex [convex 
monotone increasing]function on R, with <I>(Xi) integrable for all index points i, 
then (<I>(x.),S.) is a submartingale. To prove this assertion for x. a 
submartingale, first apply the monotonicity of <1>, then Jensen's inequality for 
conditional expectations, to obtain 

(7.1) (i <j), 

which is the submartingale inequality for <I>(x.). If x. is a martingale, the first 
inequality is replaced by an equality, and monotonicity of <I> is not needed. 

According to (c), if x. is a submartingale the process x.vc is a submartingale 
for every constant c, and the process eX. is also a submartingale if its random 
variables are integrable. If x. is a martingale and p 2! 1, the process Ix.(} is a 
submartingale, if its random variables are integrable. 
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(d) If (x.'§.) and (y.,S.) are submartingales, then the process (x.vy.,S.) is a 
submartingale because 

(i <j), 

and the corresponding inequality is true for y. and therefore for x.vy •. 

8. Optional times 

In Section 5, nonmathematical interpretations of martingale theory concepts 
were suggested. More specifically, in the context of a gambler betting on each 
of a sequence of successive plays, if (x.,§.) is a martingale, Xi can be interpreted 
as the gambler's money at time i, and Si can be interpreted as the relevant past: 
the gambler's fortune at all past times, together perhaps with other past items, up 
through time i. Under this interpretation, the martingale equality states that the 
gambler expects, given the past through play i, to have, after a later play, the 
same fortune as at time i. This is a somewhat crude version of the idea that the 
gambling context is fair; the submartingale case corresponds to a favorable 
context, the supermartingale case to an unfavorable context. If the gambler's 
fortune is checked at random times, chosen by what has been going on, in other 
words at times determined by the past up to and including the present, it is 
reasonable to suppose that the context seems fair, favorable, or unfavorable 
when checked at those times if it seems so when checked at the end of each 
play. That is, if a game looks fair, favorable, or unfavorable, it will look the 
same way at random times chosen without foreknowledge. The problem 
suggested by this reasoning is to devise a mathematical formulation of the 
concept of a random time, and then to show that the martingale, submartingale, 
and supermartingale inequalities remain valid if parameter values are chosen at 
random in this sense. The following definition of a random time seems to be the 
appropriate one for a filtration with a finite or infinite sequence as parameter 
set. 

Optional time definition. Let S. (finite or infinite parameter sequence) be a 
filtration of a measurable space (S,S). A random variable (X defined on the 
space, and taking on only parameter values and +00, is an optional time if 
{a = n} E S n for all finite n, equivalently if 

for all finite n. The cr algebra Sa is defined as the class of sets in S for which 
An{ a =n} E Sn for all finite n, equivalently for which An{ a:::; n} E Sn for all 
finite n. This class is a cr algebra: it obviously contains the countable unions of 
its members, and it is closed under complementation because A E Sa implies 
thatAn{a=n} = {a=n}n{An{a=n}}- E Sn. 
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A random variable identically equal to a parameter value k is an optional 
time, and the definition of S k , formulated for k considered as a constant 
optional time, yields Sk as originally defined. The maximum and minimum of 
two optional times are also optional times. 

Example: Entry (hitting) time. Let (x.,S.) be an adapted finite or infinite 
sequence on a probability space, let A' be a measurable set of the state space, 
and define the function a. as the first time an x. sample sequence enters A ': 

a. = min {j: Xj E A'}, 

with a. = +00 if no Xj value is a point of A'. Then a. is an optional time, because 

If the parameter set is 1, ... ,m, the finite valued optional time Wvn is usually 
more useful than a. as just defined. 

9. Optional time properties 

In the following list, the optional times are based on a finite or infinite filtration 
sequence S •. It is supposed that all optional times have values in the parameter 
sequence. 

(a) If a. is an optional time, a. is Sa. measurable, because 
{a. = k }n{ a. = n} E Sn for all n. 

(b) If a. and ~ are optional times and a.::;~, then Sa. c S~, because if 
A E Sa., 

for all n. 
According to (b), if a., ~, ... is an increasing finite or infinite sequence of 

optional times, the sequence Sa, Sj3, ... is a filtration. 

(c) If (x"S.) is an adapted process, and a. is an optional time, then Xa is Sa 
measurable, because if A I is a measurable subset of the state space, 

{XaE A'}n{a.=n} = {xn E A'}n{a.=n} E Sn. 

According to (c), if (x.,S.) is an adapted process and a.. is an increasing finite 
or infinite sequence of optional times for S" then the sequence (xa.,Sa) is an 
adapted process. 
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10. The optional sampling theorem 

The following theorem is the simplest theorem on the invariance of a process 
type under optional sampling. 

Theorem (Doob). Let (x.,S.) be a martingale with finite or infinite 
parameter sequence and a and ~ be bounded optional times, with a ~ ~. Then 
Xa and XJ3 are integrable, and 

(10.1) Xa = E{x/3ISa} a.e. 

If the process is a submartingale [supermartingale], equality in (10.1) is 
replaced by the inequality ~ [~]. 

The point of the theorem is that if (x.,S.) is a martingale, or is a 
submartingale, or is a supermartingale, the two element filtered process 
(xa,sa),(x/3,S/3) has this same property. 

Proof. If k is the maximum value of ~, then 1x/31 ~ IXII +- .. + Ixkl, and therefore x/3 
is integrable, as is Xa according to the same reasoning. Suppose first that the 
given process is a martingale. The martingale equality (10.1) will be proved first 
for the very special case ~ ~ a+ 1. In this case, if A E Sa, define Ai = {a = i, 
~ = i+1}. Then Ai = {a= i}n{ ~ = i} - E Si, and therefore 

(10.2) ) (x/3 - xa) dP = I:i ~l j (Xi+! - Xi) dP = O. 

Equation (10.2) is the integrated version of the martingale equality. For general 
~, consider the increasing sequence a, (a+l)J\~, ... ,(a+k)J\~ = ~ of optional 
times. According to what has just been proved, if the x. process is evaluated at 
these optional times, the one-step martingale equality is satisfied, and it was 
noted above that this fact makes the process a martingale. Hence the first and 
last members of this martingale form a martingale, as was to be proved. If x. is a 
submartingale [supermartingale], the only difference in the discussion is that the 
integrals on the right in (10.2) are positive [negative], as desired for the proof of 
the theorem. 

According to this theorem, if a. is an increasing sequence of bounded op­
tional times for S., the process (xa.,Sa.), is a martingale, submartingale, or 
supermartingale, if the original process is. This is the desired result suggested 
by the gambling interpretation, at least if the optional times are bounded; 
fairness or unfairness is preserved under sampling at optional times. This result 
is not true for unbounded optional times without restrictions on the optional 
times or on the process or on both. 
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11. The maximal submartingale inequality 

The simplest nontrivial application of this sampling theorem is to the following 
maximal inequality. 

Theorem. Ifxj, ... ,xn is a submartingale and C E R+, then 

(11.1) cP{maxx.~c} $;E{xnvO}. 

Proof. Define A = {max x. ~ c} and (X = min {j: Xj ~ c }, on A, (X = n on A, that 
is, (X is the minimum of n and the hitting time of the state space set [c,+oo). Then 
(X and the function identically n are optional times, and therefore (xu, xn) is a 
submartingale. The integral submartingale inequality E{xu} $; E{xn} yields 

(11.2) E{xn } ~ cP{A} + 1 Xn dP, 

which implies a stronger inequality than (1Ll). 
This proof of the maximal inequality is given as an easy application of 

optional sampling, but in fact a direct proof of the inequality, which amounts to 
proving the integrated submartingale inequality in this case, is equally easy. The 
upcrossing inequality in Section 13 shows the power of the optional sampling 
theorem in a more complicated context. 

12. Upcrossings and convergence 

Let ~l'''''~' a, b be real numbers with a < b. Define (Xk as follows, with the 
understanding that if the indicated condition on j is not satisfied for any value of 
j, (Xk is defined as n. 

(12.1 ) 

(Xl = min U: ~j $;a}, 

(Xk = min U:j > (Xk-J, ~j ~ b} 

= min U:j > (Xk-J, ~j $;a} 

(k even, ~ 2), 

(k odd, ~ 3). 

The number of upcrossings U of [a,b] by ~. is the number of times ~. proceeds 
from below a to above b, that is, this number is 0 if CX2, = (Xl, and otherwise is the 
maximum value of kI2 with k even, Ok > (Xk-l' and X(X k ~ b. If ~. is an infinite 
sequence, (Xk is defined in the obvious way and is the limit as n ~ +00 of the 
number of upcrossings of [a,b] by ~j, ... ,~. 

An infinite sequence ~. has a (not necessarily finite) limit if and only if for 
every pair [a,b] of numbers with a<b, the number of upcrossings of [a,b] by the 
sequence is finite. It is sufficient if this upcrossing condition is satisfied for 
rational a and b. 
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13. The submartingale upcrossing inequality 

Theorem (Doob, Snell). Let XJ, ... 'Xn be a submartingale, a,b be real 
numbers with a < b, and U be the number of upcrossings of [a,b] by x •. Then 

(13.1) E{U} ~ E{XnV~-Xlva} ~ E{lxn-xll}. 
-a b-a 

Proof. Define ak as above for each sample sequence of x •. The random variable 
ak is an optional time, because the condition ak = m is a condition on Xb ... ,Xm. 
Hence the process x<Xt, ... ,xu is a submartingale, and therefore each of the 
summands in the following equality has positive expectation: 

n 
(13.2) Xn - XI = ~ (xa, - XU-.I)· 

~ -J 1 

On the set {U = k}, each of the first k summands with evenj has value ~(b-a), 
and the later summands with even j are all 0 except possibly the first one, 
xU2k+2 - xU2k+l· If this difference does not vanish, xa2k+l~ a, ~k+2 = nand xn < b. 
Thus the difference is at least (xn-a)"O. Applying these inequalities in (13.2), 
and ignoring the summands with oddj, which have positive expectations, yields 

(13.3) 

If x. is replaced in this inequality by the submartingale x.va, the number of 
upcrossings is unchanged, and (13.3) yields (13.1). 

14. Forward (sub-super-) martingale convergence 

The basic martingale theory convergence theorems are due, at various levels of 
generality, to Doob, Jessen, and Levy. These convergence theorems are the 
forward one, for the parameter set of strictly positive integers, and the backward 
one, for the parameter set ... ,-1, O. The backward theorem is simpler because in 
that context the parameter set has a last point. The following is the forward 
convergence theorem. 

Theorem (Forward martingale convergence). Let (xn,Sn, n ~ 1) be an 
adapted process, and define Sao = cr(u S). 

(a) If the process is an Ll bounded submartingale, martingale, or 
supermartingale, then lim x. = Xao exists almost surely and is integrable. 

(b) If the process is a lower bounded supermartingale, that is, ifx. ~ const., the 
process is L I bounded, and the extended process (xn,Sn, n ~ +00) is a 
supermartingale. 
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(c) If the process in (a) is uniformly integrable, then the limit Xoo is both an 
almost sure and an LI limit, and the extended process (xn,Sn, n:S; +00) is also 
respectively a submartingale, martingale or supermartingale. In particular, if x 
is an arbitrary integrable random variable, 

(14.1) limE{xls.} =E{xISoo } a.e. 

Proof of (a). If Un(a,b) is the number of upcrossings of [a,b] by XJ, ... ,Xn, the 
sequence U.[a,b] is an increasing sequence of positive random variables, with 
limit U[a,b I, the number of upcrossings by the infinite sequence. In view of the 
assumed L boundedness, Theorem 13 implies that the limiting expectation 
E{U[a,b]} = limE{U.[a,b]} is finite, and therefore that U[a,b] is almost surely 
finite. This means that each summand on the right in the following equation is a 
null set. 

(14.2) {lim sup x.> lim inf x.} 

= U { {lim sup x. > b > a > lim inf x.}: a, b rational} . 

It follows that there is a (possibly infinite) almost sure limit Xoo of the sequence 
x •. Moreover Xoo is integrable and therefore almost surely finite because, ac­
cording to Fatou's theorem, 

E{lxl} :s; lim inf E{Ix".I} < +00. 

Proof of (b). If x. is a lower bounded supermartingale, it can be supposed 
positive for the purposes of the theorem, at the cost of an additive constant. The 
integral form of the supermartingale inequality on the whole space shows that 
E{x.} is a decreasing sequence and the supermartingale is therefore LI bounded. 
An application of Fatou's theorem yields, for every parameter value m 

(14.3) ) Xm dP ~ lim inf ) x. dP ~ ) Xoo dP 

The inferior limit is actually a limit, because the integral sequence is a 
decreasing sequence, for subscript values at least m. The inequality between first 
and third terms is the integrated form of the supermartingale inequality, and 
therefore the extended process (xn,Sn, n :s; +00) is a supermartingale. 

1 
Proof of (c). If the sequence x. is uniformly integrable, convergence implies L 
convergence (Section VI.18). Under the uniform integrability hypothesis, if 
A E Sm. and ifx. is a submartingale. 

(14.4) ) xmdP:S; ) xndP (n> m). 
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When n~oo, the integrandxn is replaced by xoo, and the inequality becomes the 
integrated form of the submartingale inequality xm::;; E{xooISm} a.e. Thus (c) is 
true for submartingales, and the corresponding proof is applicable to martingales 
and supermartingales. In particular, if Xn= E {xlsn}, there is uniform 
integrability, and the limit function Xoo is Soo measurable. Moreover, when 
m < n, x has the same integral as Xn over every Sm set, therefore has the same 
integral as Xoo over every 51 m set, that is, x has the same integral as Xoo over every 
set in the algebra us.. Since this algebra is dense in 51 00 under the dp metric, 
these two random variables have the same integral over every 5100 set, that is 
Xoo = E{xISoo } almost surely, as asserted in (c). 

15. Backward martingale convergence 

It will be convenient to treat backward convergence of a martingale separately 
from that of submartingales and supermartingales. 

Theorem (Backward martingale convergence theorem). If (xn,Sn, n ::;; 0) 
is a martingale and 51_00 = (IS., the martingale is uniformly integrable, andfor 
every parameter value m, 

(15.1) 

almost everywhere and in the L 1 sense. 

Proof. Uniform integrability follows from a conditional expectation property 
(Section 3(m)) and implies that the sequence x. is Ll bounded. The proof 
method of Theorem 14 is applicable to show that limn~ Xn = X_oo exists 
almost everywhere and in the L 1 sense. If m is arbitrary, an application of the L 1 

convergence and the integrated form of the martingale equality yields 

(15.2) J X..oo dP = limn~_oo J Xn dP = J Xm dP (A E 51-00)' 

in which the value of the second integral is the same for all n; (15.2) 
implies that X_oo = E{xml S_oo} a.e. 

Observe that this limit result is equivalent to asserting that if (Sn, n ::;; 0) is a 
filtration and x is an integrable random variable, then if 51_00 is defined as (I 51., 

(15.3) 

and the limit equation is also true in the ~ sense. The process {xn, Sn, n ~ -oo} 
is a martingale. 
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16. Backward supermartingale convergence 

Since the negative of a submartingale is a supermartingale, only one of the two 
need be treated in a convergence theorem. The following phrasing is for 
supermartingales, for which the phrasing is slightly more elegant. 

Theorem (Backward supermartingale convergence theorem). Suppose 
that (xn,Sn, n ~ 0) is a supermartingale. and define S_oo = n. S •. Then 

(b) lim x. = X_oo exists almost surely; -00 < X_oo ~ +00 almost surely; and X_oo/I.O 
is integrable. 

(c) If 1< +00, then X_oo is almost surely finite. the supermartingale is uniformly 
integrable. and the convergence is both almost sure and in the L 1 sense. 
Moreover in this case the enlarged process {xn,Sn, -00 ~ n} is a 
supe rmartingale. 

Proof of (a). The assertion is trivial, stated only to set the context for (b) and (c). 
The example Xn == -n for n ~ 0 shows that the limit I may be +00 and the 
sequence x. may have limit identically +00. 

Proof of (b). The upcrossing argument used in the proof of Theorem 14 shows 
that the submartingale -x. is almost everywhere convergent to a limit -X_oo, 
which may not be finite valued. Apply Fatou's theorem and the submartingale 
inequality to the submartingale -(X.AO) to obtain the inequality 

(16.1) 

which implies that X-ooAO is integrable. Thus (b) is true. 

Proof of (c). The process x. can be written as the sum of a uniformly integrable 
martingale and a positive supermartingale: 

(16.2) a.s. 

In view of this decomposition of x. and of Theorem 15, it can be assumed in 
proving (c) that x. is a positive supermartingale with finite I. Choose c > 0, and 
observe that the supermartingale X./\C is bounded, and 

(16.3) E{x-ooAc} = lim E{x./\C} ~ E{XnAC} (n ~ 0). 

It follows that E{x-oo} ~ E{xn }, and therefore E{x_oo } ~ l. On the other hand, 
according to Fatou's theorem, E{x_oo } ~ l. Thus there is equality in Fatou's 
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theorem, and therefore the sequence x. is uniformly integrable, and (Section 
VI. 18) the convergence is LI convergence. The supermartingale inequality 

(16.4) ) xmdP~ ) xndP em <n), 

for A in Sm will now be applied for A in the smaller 0" algebra S-oo. With this 
choice of A, inequality (16.4) is valid whenever m < n. In view of the uniform 
integrability of X" (16.4) is also valid for m = -00, and the inequality then 
becomes the supermartingale inequality for the pair X-cooXn. Thus the process 
{xn,sn, -00::;; n } is a supermartingale. 

17. Application of martingale theory to derivation 

Let (S,S) be a measurable space, Q be a finite measure on S, and P be a 
probability measure on S. In the following discussion of derivation of Q with 
respect to P, probabilities and probabilistic statements all refer to the probability 
space (S,S,P>. For derivation with respect to a finite not identically vanishing 
measure PI other than a probability measure define P = PI/PI (S). 

If 1t:S. is a partition of S into a finite number of pairwise disjoint measurable 
sets, with union S, define 

(17.1) 
Q(S-) 

X1t = pes}) on Sj 

for each nonnull partition cell Sj; if Sj is null, define X7t on 5] as any constant. 
Then X1t is a random variable, with expectation 

(17.2) 

and there is equality if every partition cell null for P is also null for Q. Now 
suppose that 1t. is a sequence of partitions of S, with each partition a refinement 
of its predecessor, that is each partition cell of 1tn+1 is a subset of a partition cell 
of 1tn. Define Xn = X7tn . If Sn is the 0" algebra of unions of the partition cells Sn, 
of 1tn , then xn is Sn measurable. Furthermore, on each non- null cell Snk, 

with equality if every partition cell Sn+lj null for P is also null for Q. Thus 
{x.,S.} is a positive supermartingale, and in particular is a martingale if Q is P 
absolutely continuous. (More accurately, as defined above the process random 
variables are almost surely positive; they could have been defined to be 
positive, but there is no advantage in doing so except to make this sentence su­
perfluous.) 
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According to Theorem 14, the supermartingale x. is almost everywhere 
convergent to an almost surely finite limit function Xoo. This convergence result 
is more intuitive if formulated as follows. If s is P almost any point of S, and if 
Sn(s) is the partition cell of Sn that contains s, then the sequence 
Q[S.(s)]/P[S.(s)] is well defined and has afinite limit. 

The limit function Xoo will now be analyzed. Let x be the Radon-Nikodym 
derivative of the absolutely continuous component of Q relative to P, and define 
S' = a(U S.), the a algebra generated by the class of partition cells. It will be 
proved that Xoo = E{xIS'} almost surely. It is sufficient to consider the absolutely 
continuous and singular cases separately. 

Absolutely continuous case. Suppose that Q is absolutely continuous rela­
tive to P: 

(17.4) Q(A) = f xdP 
A 

(A E S). 

In this case, the sequence x. is a uniformly integrable martingale that converges 
almost everywhere and in the LI sense to E{xIS'}. In fact in this case 

xn = [ f xdP]/P(Snj) = E{xISn } 
Snj 

(17.5) a.s., 

on each nonnull partition cell Snj, and Theorem 14 is applicable. In particular, if 
S' = S, the limit function is almost surely x. 

Singular case. In general, since (Theorem 14(a) x. extended by the limit 
function Xoo is a superrnartingale, 

f Xoo dP ~ f xmdP ~ Q(A) 
A A 

(17.6) 

for all m. The class of sets A for which the first term is majorized by the third 
term is a monotone class including the algebra U S. and therefore includes S'. 
In particular, if Q is singular relative to P, the set A can be chosen so that A is Q 
null and A is P null. Hence Xoo vanishes P almost everywhere, when Q is P 
singular. 

Example (a). Derivative of a monotone increasing function. Let S be an 
interval of R of unit length, F be a monotone increasing right continuous 
function on S, Q be the measure AF generated by F, and P be Lebesgue measure 
on S. Choose pairwise disjoint intervals as partition cells of 1tn , choosing them 
so that the maximum interval length of a partition set of 1tn tends to 0 as n~oo. 
The a algebra S' then contains every interval and is therefore B(R). The 
convergence result obtained suggests (but does not imply) that F' exists 
Lebesgue measure almost everywhere and is the Radon- Nikodym derivative 
dQacl dP. In fact this result was proved in Section X.4. If S is not of unit length, 
this application is still valid; all that need be done is to make P into Lebesgue 
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measure divided by the Lebesgue measure of S. The method is applicable with 
P and Q arbitrary Lebesgue-Stieltjes measures on R, but the derivation method 
in Section X.4 yielded much stronger results. The advantage of the partition 
method of derivation is that it is applicable in very general contexts. 

Example (b). A simple singular context Let S be the interval [0,1] on R, S 
be B(S), P be Lebesgue measure on S, and Q be the probability measure on S 
carried by the singleton {O}. Then Q is singular relative to P. Let 1tn be the 
partition of S into pairwise disjoint right closed intervals of length 
2-n : [0,2-n ], ... ,(1-2-n ,1]. The random variable Xn defined in this section has 
value 2n on [0,2-n ] and is 0 elsewhere on S. The sequence x. is a 
supermartingale with limit 0 except at the origin, thus has limit 0 almost 
everywhere, as it should. Actually, in this case the supermartingale is even a 
martingale, because no partition set is null. This example exhibits a positive 
martingale x., whose random variables all have expectation 1 but for which lim 
x. = 0 almost surely. 

18. Application of martingale theory to the 0-1 law 

Martingale theory provides an instructive proof of the 0-1 law, Theorem V.9, 
although the elementary proof given in Section V.9 is easier. In the language of 
that theorem, if A EnG., then A is independent of each a algebra lFn. Hence 
p{AllFn } = P{A} for all n. On the other hand, since A E lFoo, the forward mar­
tingale convergence theorem states that lim p{AllF.} = p{AllFoo} = lA almost 
everywhere. Hence P{A} must be either 0 or 1. 

19. Application of martingale theory to the strong 
law of large numbers 

The martingale theory convergence theorems make it easy to devise 
convergence theorems in various contexts. One need only define a filtration and 
take conditional expectations. Most results obtained in this way are 
uninteresting, but the following application illustrates the interesting 
possibilities. 

Theorem (Kolmogorov). Let x. be a sequence of mutually independent 
random variables with a common distribution, and suppose that XI is integrable. 
Then 

(19.1) a.e. 

Proof. Define Sn = XI+···+Xn and S-n = a(sn ,sl+ I, ... ) for n ~ 1. Then S. is a 
filtration, and the process {E {x I ~ S n },S n' n :s; -1 is a martingale. Each random 
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variable of the process has expectation E{Xl}. By symmetry, 

(19.2) 

A veraging the n equalities here, it follows that the nth term of the backward 
martingale is 

(19.3) 

According to the backward martingale convergence theorem, the sequence of 
these conditional expectations converges almost everywhere and in Li to a limit 
random variable x-oo, with E{Loo } = E{Xl}. Furthermore, according to 
Application Section V.lO(c) of the 0-1 law, X-oo must be almost surely constant, 
and therefore equal almost surely to its expectation, as asserted in (19.1). 

Theorem 19 answers the coin-tossing question raised in Section IV.14; it is 
true that, in the mathematical context, the number of heads tossed in n tosses 
of a balanced coin, divided by n, has almost sure limit 112. Whether this is true 
or not in real life must await an examination of an experiment, a 
nonmathematical concept (although that fact is sometimes not made clear in 
elementary probability texts), in which a coin is tossed infinitely often. Up to the 
present time, no one has been able to toss a coin that often, and this is sufficient 
reason for mathematicians to hand the problem to philosophers and ingenious 
physicists. 

20. Application of martingale theory to the convergence 
of infinite series 

Let y. be a sequence of square integrable mutually independent random 
variables, with zero expectations, on some probability space. These random 
variables are then mutual~ orthogonal (see Section VI. 19), and therefore the 
convergence of the series L ly.122 implies that the series converges in the mean, 
that is, the series of mutually orthogonal random variables is L 2 convergent. The 
independence condition is far stronger than orthogonality, and Kolmogorov's 
theorem, that the series converges almost surely, will now be proved as an 
application of martingale convergence. According to Section 6, Example (b), the 
sequence x. of partial sums of y. is a martingale, and to prove almost sure 
convergence it is only necessary to remark that the convergence of L ly.122 

implies L2 bounded ness of the martingale, which is stronger than the Ll 
boundedness condition in Theorem 14, and thereby ensures almost everywhere 
convergence. 
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21. Application of martingale theory to the boundary 
limits of harmonic functions 

According to equation VIII(14.4), if u is a function harmonic on an open 
neighborhood B of the closure of a disk D of radius ex, center z', and if z is a 
point of the disk, then u(z) is a weighted average of its values on the disk 
boundary aD: 

(21.1) u(z) = J U(t;)J.lD(Z,dt;), ~D(Z, A) = 2~) ~~:z~? l(dt;) 

(A caD), 

where I is length on aD and ~D(Z,·) is a measure on the Borel subsets of B, 
carried by aD. (An application of (21.1) to the identically 1 function shows that 
~D(Z,·) is a probability measure.) This measure is called "harmonic measure on 
aD relative to z." It is convenient to extend ~D by defining ~D(Z,·) for z in B-D 
as the probability measure of Borel subsets of B supported by the singleton {z}. 
The function (z,A) ..... ~D(z,A) is a transition function on B, and can serve as the 
transition probability function of Markov processes as detailed in Sections 2 and 
4. One simple Markov process with this transition probability function is the 
following. 

Let B be a disk of radius ~, center the origin, and D. be a sequence of disks 
with the origin as center, and radii strictly increasing, with limit ~. Consider a 
sequence {zm, m ~ O} of random variables with values in B, that is, measurable 
functions from some probability space into B, for which z. is a Markov process 
with state space B, with mth transition probability function ~Dm and initial point 
Zo in D,. That is, Zo is a constant function, with value in D" and for m> 0 and A a 
Borel subset of B, 

(21.2) 

This choice of transition functions means that, successively, z, is almost surely 
on aD" Z2 is almost surely on aD2, and so on. Thus, for example, if C is a Borel 
subset of aD,xOD2xOD 3, then (integration over aD,xOD 2xOD 3) 

(21.3) P{(Z"Z2,Z3) E C} = J ~D,(zo,d',) J ~Dl~"~2) J Ie ~Dl'2'~3)' 
It follows that iff is a Borel measurable function on B, bounded on aDn+h and 
n> 0, then 

(21.4) E{f(zm+,)lzo, ... ,Zm} = E{f(zm+,)lzm} 

= J j(t;) ~Dm+,(zm,d;) a.s. 
ilDm+l 
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The fact that there is such a process follows from Kolmogorov's theorem V.6, 
according to which there is a probability measure on the product space BxBx ... , 
with the property that the coordinate functions determine a Markov process with 
initial point Zo and the prescribed transition functions. Almost all the sample 
sequences of z. are sequences with initial point Zo and with Zm on aDm. 

Now suppose that u is a harmonic function on B. An application of (2104) 
with! = u yields 

(21.5) E{ u(zm+l)lzo, ... ,Zm} = f u(0 J.lDm+l(Zm,d0 = u(zm) 
aDm+l 

a.s. 

Thus the sequence u(z.) is a martingale relative to the filtration S •. According to 
Theorem 14, positivity of u , or, trivially more generally, lower boundedness of 
u, implies that this martingale converges almost surely, that is, u has a finite 
limit along almost every sample path of the z. process to the boundary. The 
application to the bounded harmonic functions 9\z and gz shows that almost 
every sample sequence of z. converges, necessarily to a point of aBo If u is an 
arbitrary positive harmonic function, the almost everywhere convergence of 
u(z.) means that u has a boundary limit along almost every sample sequence of 
z. to aBo 

More generally, if h is a strictly positive harmonic function on B, the function 
u/h is a function with an average property determined by h harmonic measure 
J.l~: (21.1) yields 

!!ill. r~ r t\I r~ h r 
(21.6) h(z) = a6 he/;) h(...,) J.ldz,d~)Ih(z) = a6 he/;) J.lD(z,d...,) (z ED), 

where J.l~(z,d/;) = J.lJz,d/;)h(/;)lh(z). The h harmonic measure J.l~ can serve as the 
transition function of a Markov process in the same way as the particular case 
J.lD for the special case h =1. (Set u = h to find that J.l~(z,·) is a probability 
measure carried by aD.). For each choice of h, there is a sequence z. of random 
variables, with Zm almost surely on aDm, along which the function u/h has an 
almost sure limit. The measure properties of the sequence z. depend on the 
choice of h. It can be shown that, whatever the choice of h, lim z. = z exists 
almost certainly. The random variable z is almost surely on aB, but the 
distribution of z on aB depends on the choice of h. 

Observe the difference between Theorem X.19 and the present result. Both 
state that u/h has a finite limit along almost all paths of a certain sort to aB but 
in Theorem X .19 the paths are radii, and the present probabilistic result has 
paths of a quite different sort. (In a deeper investigation, the martingale method 
leads to continuous paths (Brownian motion paths conditioned by h) along 
which uIh has its boundary limits.) The advantage of the martingale method is 
that it can be adapted to be applicable to harmonic functions on an arbitrary 
open set and to functions with average properties analogous to those of 
harmonic functions, for example, to solutions of elliptic and parabolic partial 
differential equations. 
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Fourier: series 109, 112; lead to Fourier 

integrals, Fourier transform 113; 
-Plancherel theorem 115. 

Fa: 16. 
Fubini-Tonelli theorem: 85. 
Function: measurability 22,53; 

measurable vs. continuous 101 
FIl:43. 

Go: 16. 
Graph of a function: 86. 

Hahn decomposition: 146. 
Harmonic functions: Riesz-Herglotz 

representation 142; boundary limits of 
176,203. 

Helly's theorem: 165. 
Hermitian symmetry: 103. 
Hilbert space: - and subspaces 104; 

-dimensionality 105, Ill; ergodic 
theorem II 7. 

Hitting time: 192. 
Holder's inequality: 88; for conditional 

expectations 183. 

Independent: sets (events), set algebras, 
random variables 23, 63; distribution of 
sum of - random variables 96; 
convergence of - random variable sums 
202. 

Indicator function: 1. 
Inner product: 103. 
Integrable function: 76. 
Integral: on a countable space 21,22; 

general case 76; written E{ } 77; defines 
a signed measure 80; Riemann - 98; 
linear functional defined by an - 108, 
128,135. 

Integration: heuristics 21; definition of 
integral 76; of complex valued functions 
78. 

Intersection: expression for the indicator 
function of the - of n sets 7. 

Intervals: right semiclosed 12,15. 
Invariant: functions and sets 118. 

Isomorphism: of Hilbert spaces 105, 112. 
Iterated integral: 85. 

Jensen's inequality: 87; for conditional 
expectations 184. 

Jordan decomposition: of a signed measure 
145; of a function of bounded variation 
160 

Kolmogorov: Theorem 61; conditional 
expectation 179. 

Lattice: of signed measures 146. 
Law of large numbers: 121. 
Lebesgue point: 173. 
Lebesgue-Stieltjes measure: 43-48, 50. 
Lebesgue: measure 38, 43; measure on 

cube 62; decomposition: 148. 
Levy characteristic function theorem: 170. 
Limit: of a function at a point 3; inferior, 

superior of a sequence of sets, 9; prob­
ability of - event 26; measurability of, 
58; -- in mean 104. 

Linear functionals: on 11) 108; on C(S) 126 

on Co(S) 135; on LI 151. 
Lower Darboux sums: for the Riemann 

integral 98. 
Lusin's theorem: 69. 
L2: 103; ergodic theorem 119. 
12: 106, 112. 
LP: 78, 89; bounded 79; convergence 90; 

completeness 90; approximation of -
functions 91; separability 92. 

Marginal measures: 50. 
Markov: property 25; process 188. 
Martingale: (super- and sub-) 189; 

examples 189; elementary properties 
190; convergence 195-199 application 
to derivation 198; proof of 0-1 law 
201; application to law of large numbers 
20 I; application to convergence of 
infinite series 202; application to 
boundary limits of harmonic functions 
203. 

Maximal: submartingale inequality 194. 
Measurable: space and set 11 -function 17, 

53; Borel--56 - functions of several 
variables if one is fixed 57; -conditions on 
a set of functions 55; sequential limit 
functions are - 58; -- functions as limits of 
continuous functions 69. 

Measure space: 17; discrete ---2l. 
Measure: finite, signed 17; probability 18; 

marginal 50; hull 52; on coordinate space 
(Kolmogorov) 61; defined by integrals 80; 
- theory vs. premeasure theory 101. 



Metric space theorems: 3. 
Metric onC(S): sup norm - 125; local sup 

norm - 125. 
Metric onN((S): qS) - 132; Co(S) - 137, 

139,172. 
Minkowski's inequality: 89; for condo expo 

185. 
Monotone class of sets: 15. 
Monotone function: cont. props. 

42; and measures on R 43-48. 
Monotone sequences: integration to limit 

(Beppo-Levi) 75. 
11p: 43. 

Nonadditive set function: 35 
Norm: for convergence in measure 66; of 

an LP function 79; of a linear functional 
on]l'} 108. 

Null set: 18; integrand not defined on one 
77. 

Optional: times 191; sampling theorem 
193. 

Ordinate set: 84. 
Orthogonality: 106; Schmidt 

orthogonalization. III. 
Orthonormal sequence: 106. 
Outer measure: 32; generated by an algebra 

and measure 33; of countable subsets of 
R 33; distance defined by an --33. 

Parseval identity: 110. 
Poisson integral: 142. 
Probability: 10; - space 18; in measure 

theory 101, 179. 
Product measure: 24, 48, 84. 
Product sets: 2; infinite dimensional 12; 

additive functions on - 20. 
Prohorov theorem: 42. 
Projection: 107. 
Pseudometric spaces: 13; of sets 34; of 

functions for convergence in measure 
65; d).. continuity of a A absolutely 
continuous signed measure 150 . 

Punctured compact space: 124; Measures 
ona-135-141. 

Radon measure: 43, 124. 
Radon-Nikodym theorem: 150. 
Random ~ariab~es: 21,53; Independent 23, 

63; senes of mdependent 64. 
Ratio limit lemma: 174 
Riemann integral 98. 
Riesz-Herglotz theorem 142. 

Index 209 

Right semic10sed interval: 12, in infinite 
dimensional spaces 15. 

Separable space of sets 38 
Separable space of functions: under 

convergence in measure norm 67; LP 91. 
Set function: subadditive, additive, 

countably additive, monotone 
17; extension offinitely additive 19; 
product 20, 24,48; nonadditive 35. 

Setwise convergence of measure 
sequences: 30. 

Sets: unions and intersections 7 algebras of 
11; cross sections of 15, nu1118. 

a ~Igebra: II; and integration 21; adapted 
mtegrands 21. 

Signed measures: definition 17; properties 
145; lattice property 146; absolute 
continuous, singular 147. 

Singular: signed measure: 147,155; 
function of bounded variation 164. 

Stable Co(S) convergence: 139-141; on R 
169. 

Step functions: 56; approximation by 56, 91. 
Stochastic matrices: 25. 
Stochastic processes: 179. 
Strong law of large numbers: 29; 

martingale proof 201. 
Sub [super] martingale: definition 188; 

convergence 195-199. 
Subspace of Hilbert space: 106. 
Support: of a measure 18; of a function 

123 
Supremum: essential 71. 
Symmetric difference operator: 7. 

Tail a algebra: 64 
Tonelli-Fubini theorem: 85. 
Trajectory: and nonadditive set functions 

36. 
Transition function: 25. 182. 
Triangle inequality: for sets 7; for distance 

defined by an outer measure 33. 
Trigonometric integrals: evaluation of two 

113. 
Trigonometric series: Cesaro convergence 

of93,112. 

Uniform absolute continuity: of a family of 
measures 148. 

Uniform convergence: at a point 4; of 
monotone function sequences 166. 

Uniform integrability: definition and test 
functions 94-95; - and 0 convergence 
95. 



210 Measure Theory 

Unitary operator: 105. 
Union: expression for the indicator 

function of the - of n sets 7. 
Upcrossings: and convergence 194; 

inequality 195. 
Upper Darboux sums: for the Riemann 

integral 99. 

Variation: positive, negative, total 
variations of a signed measure 145; 
positive, negative, total variations of a 

function of bounded variation 160. 
Vitali covering: 158. 
Vitali-Hahn-Saks theorem: 30, 155. 

Young approach to integration: 12. 

0-1 law: 64,201 
0,1 sequences: set algebras in the space of 

12 
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