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Preface

Combinatorics and graph theory have mushroomed in recent years. Many
overlapping or equivalent results have been produced. Some of these are
special cases of unformulated or unrecognized general theorems. The body
of knowledge has now reached a stage where approaches toward unification
are overdue. To paraphrase Professor Gian-Carlo Rota (Toronto, 1967),
““Combinatorics needs fewer theorems and more theory.”

In this book we are doing two things at the same time:

A. We are presenting a unified treatment of much of combinatorics
and graph theory. We have constructed a concise algebraically-
based, but otherwise self-contained theory, which at one time
embraces the basic theorems that one normally wishes to prove
while giving a common terminology and framework for the develop-
ment of further more specialized results.

B. We are writing a textbook whereby a student of mathematics or a
mathematician with another specialty can learn combinatorics and
graph theory. We want this learning to be done in a much more
unified way than has generally been possible from the existing
literature.

Our most difficult problem in the course of writing this book has been to
keep A and B in balance. On the one hand, this book would be useless as a
textbook if certain intuitively appealing, classical combinatorial results were
either overlooked or were treated only at a level of abstraction rendering
them beyond all recognition. On the other hand, we maintain our position
that such results can all find a home as part of a larger, more general structure.

To convey more explicitly what this text is accomplishing, let us compare
combinatorics with another mathematical area which, like combinatorics, has
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Preface

been realized as a field in the present century, namely topology. The basic
unification of topology occurred with the acceptance of what we now call a
“topology” as the underlying object. This concept was general enough to
encompass most of the objects which people wished to study, strong enough
to include many of the basic theorems, and simple enough so that additional
conditions could be added without undue complications or repetition.

We believe that in this sense the concept of a “system ™ is the right unifying
choice for combinatorics and graph theory. A system consists of a finite set
of objects called “vertices,” another finite set of objects called ““blocks,” and
an “incidence” function assigning to each block a subset of the set of vertices.
Thus graphs are systems with blocksize two; designs are systems with con-
stant blocksize satisfying certain conditions; matroids are also systems; and
a system is the natural setting for matchings and inclusion-exclusion. Some
important notions are studied in this most general setting, such as connectivity
and orthogonality as well as the parameters and vector spaces of a system.
Connectivity is important in both graph theory and matroid theory, and
parallel theorems are now avoided. The vector spaces of a system have
important applications in all of these topics, and again much duplication is
avoided.

One other unifying technique employed is a single notation consistent
throughout the book. In attempting to construct such a notation, one must
face many different levels in the hierarchy of sets (elements, sets of elements,
collections of sets, families of collections, etc.) as well as other objects
(systems, functions, sets of functions, lists, etc.). We decided insofar as possible
to use different types of letters for different types of objects. Since each topic
covered usually involves only a few types of objects, there is a strong tempta-
tion to adopt a simpler notation for that section regardless of how it fits in
with the rest of the book. We have resisted this temptation. Consequently,
once the notational system is mastered, the reader will be able to flip from
chapter to chapter, understanding at glance the diverse roles played in the
middle and later chapters by the concepts introduced in the earlier chapters.

An undergraduate course in linear algebra is prerequisite to the com-
prehension of most of this book. Basic group theory is needed for sections
IIE and XIC. A deeper appreciation of sections IIIE, IIIG, VIIC, and VIID
will be gained by the reader who has had a year of topology. All of these
sections may be omitted, however, without destroying the continuity of the
rest of the text.

The level of exposition is set for the beginning graduate student in the
mathematical sciences. It is also appropriate for the specialist in another
mathematical field who wishes to learn combinatorics from scratch but from
a sophisticated point of view.

It has been our experience while teaching from the notes that have evolved
into this text, that it would take approximately three semesters of three
hours classroom contact per week to cover all of the material that we have
presented. A perusal of the Table of Contents and of the “Flow Chart of the
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Sections” following this Preface will suggest the numerous ways in which a
subset of the sections can be covered in a subset of three semesters. A List of
Symbols and an Index of Terms are provided to assist the reader who may have
skipped over the section in which a symbol or term was defined.

As indicated in the figure below, a one-semester course can be formed
from Chapters I, II, IX, and XI. However, the instructor must provide some
elementary graph theory in a few instances. The dashed lines in the figure
below as well as in the Flow Chart of the Sections indicate a rather weak
dependency.

I II ~ TII v v
// \
A XX
P ///7
IX X1 VII —— VIII VI

If a two-semester sequence is desired, we urge that Chapters I, IT, and III
be treated in sequence in the first semester, since they comprise the theoretical
core of the book. The reader should not be discouraged by the apparent
dryness of Chapter II. There is a dividend which is compounded and paid
back chapter by chapter. We recommend also that Chapters IV, V, and VI
be studied in sequence; they are variations on a theme, a kind of minimax or
maximin principle, which is an important combinatorial notion. Since
Chapter X brings together notions from the first six chapters with allusions to
Chapters VII and IX, it would be a suitable finale.

There has been no attempt on our part to be encyclopedic. We have even
slighted topics dear to our respective hearts, such as integer programming
and automorphism groups of graphs. We apologize to our colleagues whose
favorite topics have been similarly slighted.

There has been a concerted effort to keep the technical vocabulary lean.
Formal definitions are not allotted to terms which are used for only a little
while and then never again. Such terms are often written between quotation
marks. Quotation marks are also used in intuitive discussions for terms which
have yet to be defined precisely.

The terms which do form part of our technical vocabulary appear in
bold-face type when they are formally defined, and they are listed in the Index.

There are two kinds of exercises. When the term “Exercise” appears in
bold-face type, then those assertions in italics following it will be invoked in
subsequent arguments in the text. They almost always consist of straight-
forward proofs with which we prefer not to get bogged down and thereby
lose too much momentum. The word ‘“Exercise” (in italics) generally
indicates a specific application of a principle, or it may represent a digression
which the limitations of time and space have forced us not to pursue. In
principle, all of the exercises are important for a deeper understanding of and
insight into the theory.

Chapters are numbered with Roman numerals; the sections within each
chapter are denoted by capital letters; and items (theorems, exercises, figures,
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etc.) are numbered consecutively regardless of type within each section. If
an item has more than one part, then the parts are denoted by lower case
Latin letters. For references within a chapter, the chapter number will be
suppressed, while in references to items in other chapters, the chapter number
will be italicized. For example, within Chapter III, Euler’s Formula is
referred to as F2b, but when it is invoked in Chapter VII, it is denoted by
IIIF2b.

Relatively few of the results in this text are entirely new, although many
represent new formulations or syntheses of published results. We have also
given many new proofs of old results and some new exercises without any
special indication to this effect. We have done our best to give credit where
it is due, except in the case of what are generally considered to be results
“from the folklore”.

A special acknowledgement is due our typist, Mrs. Louise Capra, and to
three of our former graduate students who have given generously of their time
and personal care for the well-being of this book: John Kevin Doyle, Clare
Heidema, and Charles J. Leska. Thanks are also due to the students we have
had in class, who have learned from and taught us from our notes. Finally,
we express our gratitude to our families, who may be glad to see us again.

Syracuse, N.Y. Jack E. Graver
April, 1977 Mark E. Watkins
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CHAPTER 1

Finite Sets

TA Conventions and Basic Notation

The symbols N, Z, Q, R, K will always denote, respectively, the natural num-
bers (including 0), the integers, the rational numbers, the real numbers, and
the field of order 2. In each of these systems, 0 and 1 denote, respectively, the
additive and multiplicative identities.

If Uis a set, Z(U) will denote the collection of all subsets of U. It is called
the power set of U. In general, the more common, conventional terminology
and notation of set theory will be used throughout except occasionally as
noted. One such instance is the following usage: while “U < W will con-
tinue to mean that U is a subset of W, we shall write “U < W” when
U< Wand U # W.(Thus U can be empty if W is not empty.) The cardi-
nality of the set U will be denoted by |U|, and £,(U) will denote the collec-
tion of all subsets of U with cardinality m. A set of cardinality m is called
an m-set.

The binary operation of sum (Boolean sum) of sets S and T in #(U) is
denoted by S + T, where

S+ T={x:xeSUT;x¢SNT}

In particular, S + U is the complement of S in U, and no other notation for
complementation will be required. Since the sum is the most frequently used
set-operation in this text, we include a list of properties which can be easily
verified.

For R, S, T e #(U),

Al S+T=T+$§S
A2 (R+S)+T=R+@E+17)
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A3 S+T=8ST=g

Ad S+T=g<x8=T

A5 S+T=E U+ SnNT)

A6 RUS+T)2(RUS)+ (RUT)

AT RAES+T)=RNS)+RNT)

A8 R+SNT)2R+SNR+T)

A9 R+SNR+TSR+ESVUDNSR+SVR+T)

A10 Exercise. Show that the inclusions in A6, A8, and A9 cannot, in general,
be reversed.

Because of Al and A2, the sum Js.o S where & < Z(U) is well-defined
if ¥ # @.If ¥ = @, we understand this sum to be &.

As usual, the cartesian product of sets Xi,..., X, will be denoted by
X; X...X X,. Thus

Xy xooox Xp ={(x1,...,xp): e X;fori=1,...,m}.

A function f from X into Y is a subset of X x Y such that
[fn({x} x Y)] =1 for all xeX. Following established convention,
f: X— Y will mean that f is a function from X into Y. For each x € X,
Sf(x) is the second component of the unique element of N ({x} x Y). We
shall adhere to the terms injection if [/ N (X x {y})| < 1 for all ye ¥;
surjection if | f N (X x {y})| = 1forally € Y;and bijectionif | f N (X x {y})|
= 1forallyeY.

We say sets X and Y are isomorphic if there exists a bijection b: X — Y,
and we note that X and Y are isomorphic if and only if |X| = |Y|.

A (binary) relation on U is a subset of U x U. Let R, be a relation on U,
for i = 1,2. We say that (U;, R,) is isomorphic to (U,, R,) if there exists a
bijection b: U, — U, such that (x, y) € R, if and only if (b(x), b(3)) € R,.
A binary relation R on U is reflexive if (v, 4) € R for all u € U; R is symmetric
if (u, v) € R implies (v, u) € R for all u, v € U; R is transitive if (4, v) € R and
(v, w) € R together imply (¥, w) € R for all u,v, we U. R is an equivalence
relation if it is reflexive, symmetric, and transitive.

Problems involving categories being outside the scope of this book, we
find it best to ignore them, and we shall freely use such terms as “equivalent”
and “equivalence relation” in regard to objects from various categories
and not only to elements of some given set. Such disregard for categorical
problems will be particularly flagrant as we treat in turn various notions of
“isomorphism.” For example, the “relation” of ‘“‘is isomorphic to” is
clearly an “equivalence relation” on the category of sets.

We denote the set of all functions from Xinto Y by Y*.Since x Y = @,
Y? consists of a single function @ which is an injection; in case ¥ = &,

2



IA Conventions and Basic Notation

it is a bijection, of course. If S < X, then the restriction of f to S, denoted by
fis, belongs to Y and satisfies fis(x) = f(x) for all x € S.

A bijection b: U — U is called a permutation of U. The set of all permuta-
tions of U is denoted by II(U). The ideatity on U is the function 1, € II(U)
given by 15(x) = x for all xe U.

The function f: X — Y induces two corresponding functions between
P(X) and Z(Y). One of these is also denoted by f, and f: #(X) — #(Y) is
given by

fIS] = {f(x): xe S}, forall SeZ(X).

(Note that the choice of parentheses or brackets to surround the argument
determines which of the two functions denoted by the symbol f'is intended.)
The set f[S] is the image of S under /. In particular, f[X] is the image of f.
The other function induced by fis the function f~*: #(Y) — #(X) given by

ST ={x:f(x)eT}, forallTe#Y).

If fis a bijection, its inverse, also denoted by f~1, is a function f~1: Y — X.
By our convention, if y € Y, f~[y] (= f*[{y}]) denotes a subset of X, but
if fis a bijection, f~*(y) denotes an element of X. fmaps Sinto Tif f[S] = T
and onto T if f[S] = T. We say fis a constant function if | /[X]| < 1.

Let 1 X— Y; S, Te #(X); U, We #(Y). The following basic proper-
ties of functions and sets are readily verified:

All SISV T] = fIS]VfIT]

A12 SIS T] = fIS1nfIT]

A13 UV W] = f ULV f-{W]
Al4 [THUN W] = Ul o f- W]
A5 fIS + T1 2 £IS] + £1T]
Al6 U + W] =f-1 U] + f-Y{W]

Al7 Exercise. Show that the inclusions in A12 and A15 cannot, in general,
be reversed.

Let X, Y, and Z be sets. Let fe Y* and g € Z¥. The composite of f by g
will be denoted by gf. Clearly gf e Z*. We conclude the present section with
a rapid review of some elementary properties of functions and some termi-
nology.

A18 If both f and g are injections (respectively, surjections, bijections), then
so is gf.

A @) = fig e P(X)P.
A20 g is an injection if and only if there exists 4 € Y2 such that hg = 1.
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A21 Let g be an injection. If gfy = gf; for fi, fo € Y%, then f; = f,. The
converse holds if | X| > 2.

A22 fis a surjection if and only if there exists j € XY such that fj = 1.

A23 Let f be a surjection. If g, f = g,f for g,, g, € Z¥, then g, = g,. The

converse holds if |Z| > 2.

A24 fis a bijection if and only if there exists b € X¥ such that bf = 1 and
fb = 1y. In this case b = f~1, and so b is unique.

A25 If X is finite and & € X%, then A is a surjection if and only if 4 is an
injection.

If S < X and he X%, we say h fixes S if A[S] < S. If hs = 15, we say
h fixes S pointwise.

If = is a binary operation on Y, then * induces a binary operation on Y*
which is also denoted by *. Thus

(f1 * f2)(x) = fi(x) * fo(x), forall fi,f5€ YX, x€e X.

Note that if * on Y enjoys any of the properties of associativity, commu-
tativity, or existence of an identity, then that property is also enjoyed by *
on Y%

One final important convention: henceforth, all arbitrarily chosen sets
will be finite unless explicitly stated otherwise.

A26 Exercise. Let f: X — Y. Show that if f is an injection (respectively,
surjection, bijection), then so is the induced function f: #(X) — #(Y), and
conversely.

A27 Exercise. Let f: X — Y. Show that if f is an injection (respectively,
surjection, bijection), then f~1: #(Y) — Z(X) is a surjection (respectively,
injection, bijection), and conversely.

IB Selections and Partitions

Let U be a set and let S € #(U). The characteristic function of S is the func-
tion

cs: U= K
given by
B1 cs(x)={1 ifxeS;

0 ifxeU+ S.

B2 Proposition. The function o: KY — P(U) given by
o(c) ={xeU:c(x) # 0} forallce KY
is a bijection. Moreover, c~*(S) = cs for all S € #(U).
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PrOOF. Clearly o is an injection. If S e Z(U), then o(cs) = S. Hence o is a
surjection. O

B3 Exercise. Let S, 7€ #(U). Prove that
¢s+ ¢cr = csyr and csCp = Csnr,

and express cg r in terms of ¢g and cy.

For a set U, a function s € NU is called a selection from U. If x € U, the
number s(x) is the “number of times x is selected by s”. The number
ls| = > s()
xeU
is the cardinality (weight) of the selection s. If |s| = m, we say that s is an

m-selection. The set of all m-selections from U is denoted by S,(U), and we
let

SW) = | Sa(U) = NV.
m=0
If S € Z(U), we define the characteristic selection of S by

1 ifxeS;

B4 $s(x) = {0 ifxeU+S.

The difference between Bl and B4 is subtle but important. In B4, the
symbols 0 and 1 denote elements of N rather than K. Of course, cs and sg
are closely related, but since 1 + 1 gives a different “answer” in N than
in [, the characteristic function and characteristic selection are not the same
thing. In particular, the correspondence S — 55 gives a natural injection of
Z(U) into S(U) under which S + T is not necessarily mapped onto sg + sr,
even though S N T is always mapped onto sgsy for all S, T e #(U). (Cf. B3.)

A subcollection 2 = Z#(U) of nonempty subsets of U is called a partition
of U if

S0-v
Qe2

and
ONnR=g, forall Q,Re2;0 # R.

The elements of 2 are called the cells of 2.1If |2| = m, we call 2
an m-partition of U. The collection of all m-partitions of U is denoted
by P,(U); P(U) denotes the collection of all partitions of U. A
fundamental identity satisfied by any partition 2 € P(U) is

B5 |U| = QZQIQI.
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There is a natural multiplication on P(U). Let 2,Z e P(U) and let
22 be the collection of nonempty subsets of the form Q N R where Q € 2
and Re 4.

B6 Exercise. Prove that if 2 € P,(U) and % € P,(U), then 2% € P,(U) for
some p < mn. Show, moreover, that this multiplication is commutative and
associative and admits an identity in P(U).

The next result delineates the fundamental relationship between parti-
tions and equivalence relations.

B7 Proposition. A4 necessary and sufficient condition that a relation R on a
set U be an equivalence relation is that there exist a partition 2 € P(U)
such that (x,y) € R if and only if x and y are elements of the same cell
of 2.

PrOOF. Let R be an equivalence relation on U. For each xe U let S, =
{we U: (x,w) e R}. Since R is reflexive, x€ S, and so S, # & for each
xeU. Let x,ye U and suppose we S, N S,. Thus (x, w) and (y, w)€ R.
Since R is symmetric, (w, y) € R, and since R is transitive, (x, y) € R. Now
let z € S, ; hence (», z) € R. Again by transitivity, (x, z) € R and z € S,. This
proves that S, < S,. By a symmetrical argument we see that S, < S,. Thus
exactly one of the following holds for any x, ye U: S, = S,or S, N S, = 2.
If 2 ={S:S = S, for some x € U}, then 2 € P(U).

Conversely, let 2 € P(U). Define the relation R on U by: (x,y)eR
if x, y e Q for some Q€ 2. One readily verifies that R is an equivalence
relation. O

B8 Proposition. Let f: B—> U. Then {f *[x]: x € f[Bl} is a | f[B]|-partition
of B.

Proor. For each be B, bef[x] if and only if x = f(b). Hence
Seermf %] = Band f~Yx] N f[y] = @ forx # y. Finally, f~'[x] #
if and only if x € f[B]. O

B9 Proposition. Let f: B— U. Let s: U—> N be defined by s(x) = |f~[x]|.
Then s is a | B|-selection from U.

Proor. Clearly s € S(U). We have that
ls| = > [l = > 1f 7l = 1Bl

xeU xef(B]

The first equality here is the definition of |s|; the second follows from the
fact that |@| = 0 and f~*[x] = @ for x ¢ f[B]; the third equality follows
from B5 and BS. 0
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IB Selections and Partitions

If f: B— U, then the partition of fis {f~[x]: x € f[B]}, and the selection
of f'is the function s: U— N given by s(x) = |f~*[x].

B10 Exercise. Prove that the functions f: B— U and g: C — U have the
same selection if and only if there is a bijection b: B — C such that f = gb.

B11 Exercise. Prove that the functions f: B— U and h: B— W have the
same partition if and only if there is a bijection b: f[B] — h[B] such that bf = h.

B12 Exercise. Let f: X — Y. Define f;: S(Y) — S(X) by fi(s) = sf for all
s € S(Y). Show that f is an injection (respectively, surjection, bijection) if
and only if f; is a surjection (respectively, injection, bijection).

B13 Exercise. Let f: X — Y. Define f: P(Y) — P(X) as follows: if 2 € P(Y),
then f;(2) consists of the nonempty members of the collection{f~[Q]: Q € 2}.
First verify that f,(2) € P(X); then show that f'is an injection (respectively,
surjection, bijection) if and only if £, is a surjection (respectively, injection,
bijection).

The remainder of this section is concerned with the notion of “‘isomor-
phism” between objects of the kinds we have been considering.

Functions f: B— U and g: C — W are isomorphic if there exist bijections
p:B— C and q: U— W such that f = q~*gp. The pair (p, q) is called a
function-isomorphism. The selections s € S(U) and ¢ € S(W) are isomorphic
if there exists a bijection g: U — W such that s = tq. Such a bijection is
called a selection-isomorphism. (These two definitions are illustrated by the
commutative diagrams B14. In this and other such diagrams bijections are
indicated by the symbol ~.) Partitions 2 € P(B) and Z € P(C) are isomorphic
if there exists a bijection p: B— C such that p[Q] € Z for all Q € 2. The
bijection p is a partition-isomorphism.

B14
B-——f—-—>U U—Z——>W
pJ; ';Jq \ /
Cc — W N

g

B1S Exercise. Prove that in each of the above definitions, ‘isomorphism™ is
an equivalence relation.

B16 Proposition. Let f: B—> U and g: C— W.Let p: B—Cand q: U—> W
be bijections.
@) If (p, q) is a function-isomorphism from f to g, then p is a partition-
isomorphism from the partition of f to the partition of g and q is a selection-
isomorphism from the selection of f to the selection of g.
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(b) If q is a selection-isomorphism from the selection of f to the selection
of g, then there exists a bijection p’: B— C such that (p’, q) is a function-
isomorphism from f to g.

(¢) If p is a partition-isomorphism from the partition of f to the partition
of g and if |U| = |W|, then there exists a bijection q': U — W such that
(p, q) is a function-isomorphism from f to g.

PRrOOF. (a) Let S be a cell of the partition of f, i.e., S = f~*[x] for some
x e U. By Al9, p[S] = p[f~[x]] = g~ [g(x)], which is a cell of the par-
tition of g. Let s be the selection of f and ¢ the selection of g. Let x € U. By
definition and A19,

Hq(x)) = g7 g = |p~ g g = /%] = s(x).

Thus tq = s.
(b) With s and ¢ as in the proof of (a), we assume ¢g = s. For any x € U,

|f7x]| = s(x) = 19(x) = |g7*[g()]-

Hence there exists a bijection p,:f~[x] = g~ [g(x)]. These bijections for
all x € U determine a bijection p’: B— C by p’(w) = p.(w) where w € f~*[x].
Clearly f = g~ *gp’.

(c) Since p is a partition-isomorphism from the partition of f to the par-
tition of g, we have

{g7[x]: xe W} = {p[f'[x]]: xe U}.

We may define ¢”: f[B] — g[C] by choosing ¢"(x) to be the unique ye W
such that g=[y] = p[f~[x]]. Clearly ¢q" as defined is a bijection, and since
|U| = |W]|, it may be extended to a bijection ¢': U~ W. One may easily
verify that q’f = gp. O

A more succinct but somewhat weaker formulation of the above proposi-
tion is the following.

B17 Corollary. Let f: B— U and g: C — W. Then the following statements
are equivalent:
(a) f and g are isomorphic;
(b) the selections of f and g are isomorphic;
(©) |U| = |W| and the partitions of f and g are isomorphic.

We return briefly to cartesian products presented in the first section and
list some readily verifiable properties. Let W, X, and Y be sets. Then
B18 X x Yand Y x X are set-isomorphic.
B19 W x (X x Y)and (W x X) x Y are set-isomorphicto W x X x Y.
B20 2eP(Y)if and only if {X x Q: Qe 2} e P(X x Y).

8
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B21 If {X,,..., X,} € P(X), then the function fi> (fix,,-..,fix,) is a set-
isomorphism between Y% and Y*1 x ... x Y%m,

Given the cartesian product X; x ... X X, the ith-coordinate projection
is the function from X; x ... x X into X; given by (x;, ..., x,) > X;.

B22 Exercise. Describe the selections and partitions of the coordinate pro-
jections of the cartesian product X x Y.

IC Fundamentals of Enumeration

We begin this section with a list of some of the more basic properties of finite
cardinals. Some of these were mentioned in the preceding sections.

Cl1 If Se€ #(U), then |S| < |U|.
C2 If 2 e P(U), then |U| = Jgez | Q|-
For sets X and Y,

c3 XU Y|+ XA Y| =|X]| + Y]
c4 XU Y| - |XAY|=|X+ Y|
s X+ Y| +2|XN Y| = |X| +|Y]
C6 X x Y| = |X||Y].

C7 Proposition. For any sets X and Y,
Y5 = |y],
PROOF. Let X be an m-set. We first dispense with the case where m = 0. If

also Y = g, then the Proposition holds if we adopt the convention that
0° = 1. If Y # &, then | Y|'?!= 1, as required.

Now suppose m > 0, and consider the m-partition {{x,}, ..., {x,}} of X.
By B21 and C6,
[YX| = |Y®™2) x ... x Y& = | Y. ., | Y|,
Clearly | Y| = | Y| for all , and so | Y*| = | Y|™ = | Y|!*. O

C8 Corollary. |2(U)| = 2'Y! for any set U.
Proor. Use C7 and B2. O

Because of C8, one often finds in the literature the symbol 2V in use in
place of the symbol Z(U).

C9 Exercise. Let S € Z(U). How many functions in UV fix $? How many
fix S pointwise?



I Finite Sets

C10 Exercise. Let Se€ #(X) and Te #(Y). How many functions in Y*
map S into T'?

C11 Exercise. Let {S,, ..., Sp} € P(X) and {T3, ..., T} € P(Y). How many
functions in Y% map S;into 7; foralli =1,...,m?
C12 Exercise. Let S, T e #(U). How many subsets of U contain S? How

many avoid S (R avoids S if RN S = @)? How many meet S (R meets S
if RN S # 2)? How many meet both S and T'?

Three important cardinality questions about the set Y* are how many
elements are injections, how many are surjections, and how many are bi-
jections. For convenience we denote

inj(Y*) = {fe Y*: fis an injection}
sur(Y*) = {fe Y*: fis a surjection}
bij(Y¥) = {fe Y%: fis a bijection}.
We now proceed to resolve the first and third of these questions. The

second question is deceptively more complicated and will not be resolved
until §E. By convention, 0! = 1 and n! = n(n — 1)! forne N + {0}.

C13 Proposition. For sets X and Y,
0 rlx|>|x];
linj(Y®)| = Bdl .
m———— If|X| < |Y]|.
qrr— ey Y=Y
ProOF. Obviously inj(Y*) = @ if | X| > | Y|. Suppose | X| < |Y|.If X = &,
then both |inj(¥Y*)| and |Y|!Y/(|Y| — |X])! equal 1. If |X| = 1, then
inj(¥Y*) = Y*, and by C7, |inj(¥Y®)| = |Y|'*' = |Y| = |Y[Y/(| Y| — DL
We continue by induction on | X|, assuming the proposition to hold when-

ever |X| < m for some integer m > 1. Suppose |X| = m + 1. Fix xe X
andlet X' = X + {x}. Let Y = {y1,..., y»} and let

Y1=Y+{yj}, j=1,...,n.
Since m = |X'| = |X| = 1< |Y| —=1=Y,], the induction hypothesis
implies that '

ly)!  @m-=1)!
“IXD T =1 =m)!

Cl4  ini(¥/")| = gy G=1,...,n).

If we define
II = {fE mj(YX):f(x) = y!}s (j = la ey n)’

it is clear that {I,..., I} € P(inj(Y*)). Moreover, the correspondence
[+ fix- is clearly a bijection from I, onto inj(Y,*) for each j = 1,...,n.

10
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Combining this fact with C2 and C14, we obtain

lini(r%)|= 3 11

i=1
= 2 i)
_ (n-=1D! n!
TP —-1-m (- (m+ D)
__|r
= ¥ = @Y =

From the above formula one immediately obtains

C15 Corollary. For sets X and Y,

0 if|X] #|Y[;

[bij(Y)| = {lyl! if | X| = |Y|.

Since bij(X*) = II(X) we have
C16 Corollary. If X is an n-set, |II(X)| = n!

C17 Exercise. Let X be an n-set and let S e Z,(X). How many permuta-
tions of X fix § pointwise? How many fix S (set-wise)? How many map
some given point x € X onto some point of S?

For m, n € N it is conventional to write

n n! i .
(m)= ml—my TS

0 ifm > n.
Observe that (*) = (,*,) if m < n.

C18 Corollary. For any set X, |Z(X)| = (‘Z)).

ProOF. Let M be some fixed m-set. For each S e Z,(X), let Bs = bij(S™).
Then clearly {Bs: S € Z,(X)} € P(inj(X™)). By C13, C2, and then C15,
X! . .
TRl = el = 3 (8 = 2a0lmt. O

SePu(X)

Numbers of the form (};) are called binomial coefficients because they arise
also from the binomial theorem of elementary algebra, as will presently be
demonstrated. A vast amount of literature has been devoted to proving
“binomial identities.” The following corollary and some of the ensuing

11
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exercises in this section provide examples of some of the easier and more
useful such identities.

C19 Corollary.

2()=>

PrROOF. Let X be an n-set. Then {#(X):i=0,1,...,n}e P(#(X)). The
result follows from C2 and C8. O

(=) ()= G)

Proor. Let U be an n-set and choose x € U. The collection of m-subsets of
U which do not contain x is precisely Z,(U + {x}), while the collection of
those that do is set-isomorphic to %, _,(U + {x}). Hence |%,_(U + {x})| +
|Z0(U + {xD)] = [Za(U)]. O

C20 Corollary.

Of course one could also have obtained this corollary from the definition
by simple computation. It is, however, of interest to see a combinatorial
argument as well.

C21 Binomial Theorem. Let a and b be elements of a commutative ring with
identity. Then

(a + b)y" = Z ('f)a‘b"".
i=o \!
Proor. To each function f: {1, 2,.. ., n} — {a, b} there corresponds a unique
term of the product (a + b)", namely g~ *@Ip!/~ 0Nl Thus

@+ b= Z alf~Maplr =i where f € {a, b}+2m,
7

Hence

n

(@ + by = > [{f:|fa]| = i}ab*""

i=0

Z I.?;({l’ 2,...,n})|ab"!

S (n) ab*t, O
=0

2,{;

-,
(=]

i
By choosing the ring to be Z and letting a = —1, and b = 1 above, we

obtain the following identity:

12
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C22 Corollary.
> (7)o
i=0 !
JSor all n e N; equivalently,
(= 1B = QY1

Rez(U)

for any set U.

C23 Exercise. How many subsets in #(U) have even (respectively, odd)
cardinality ?

As we have indicated, we will evaluate |sur(Y%)| in §E after having
developed more powerful techniques. Enumeration of the m-partitions of a
set must also be deferred. In fact, |P,(U)| and |sur(¥%)| are closely related
as we see in the next result.

C24 Proposition. If M is an m-set, then

Pa(e)| = 23T

PRrOOF. Let ¢: sur(MY) — P,(U) by defining ¢(f) to be the partition of f.
By Proposition B8, ¢(f) is a |f[U]|-partition. Since f is a surjection, ¢(f)
is an m-partition. Since g is clearly a surjection, we also have from B8 that
{p~[2]: 2 € P,(U)} is a partition of sur(MY). Thus

M) = > |p~H2]l.
2ePp(U)
It remains only to show that |p~1[2]| = m! for all 2 € P,(U).

Fix 2eP,(U) and ge ¢~[2]. If heII(M), then clearly p(hg) = ¢(g),
i.e., hg € 9~ [2]. Hence we have a function y: II(M) — ¢~ 1[2] defined by
y(h) = hg. Since g is a surjection, we have by A23 that if h,g = h,g then
hy = hy. Hence y is an injection. Finally, it follows from B11 that for any
fe @ [2], there exists & € II(M) such that f = hg. We conclude that y is
a bijection, and |p~1[2]] = |II(M)| = m!. O

In order that the reader may become aware of the difficulties in counting

surjections, he is asked in the next exercise to work out the two easiest non-
trivial cases.

C25 Exercise. Compute |sur(Y*)| where |Y| = |X| — ifori =1, 2.

Of the fundamental objects that we have introduced, only the selections
remain to be considered.

13
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C26 Proposition. [S,(U)| = ("), except that |Sy(2)| = 1.

Proor. Let U = {u;,...,u,} and let X ={1,2,...,n + m — 1}. We con-
struct a function ¢: Z,_;(X) — S,(U) as follows. Let ¥ = {y;,..., o1} €
%, _1(X) where the elements of Y are indexed so that y; < ys <...< Yu_1.
Letting yo = 0 and y, = n + m, we define ¢(Y) to be the selection s € S(U)
given by

s)=y—p_1—1, fori=1,...,n.
Note that

Is| = Z S(w) = Z o= Yies = 1) = m,

i.e., p(Y) € S,(U).
It suffices to show that ¢ is a bijection, since

= (1) 1) - (5 )

@ is an injection. Suppose that ¢(Y) = 5 = ¢(W). We have Y =
{yla .. -9yn—1}’ W= {wh LUKCE ] wn—l} e'?;l-l(XL and

Vi—=Vici—1l=s@@)=w—w_;—1, fori=1,...,n

By induction on i one readily verifies that the system of equations y; — y;_; —
l=w,—w_,—1fori=1,...,n, and y, = wy, ¥, = w, has exactly one
solution: y; = w, fori =0,1,...,n. Hence Y = W.

@ is a surjection. Let s € S,(U) and define y; = i + X}, s(¥,). One may
easily verify that y, =0, y,=n+m, and 0 < y; < s <...< Y1 <
n+ m. Thus {y,,..., ya_1} €% _1(X), and p({y1, ..., Yn-1}) = 5. O

C27 Exercise. Compute 3% _, |Sn(U)| where r is any positive integer. (Hint:
use Corollary C20.)

C28 Exercise. How many elements of S,(U) select all elements of U at
least once? How many select all elements an even (respectively, odd) num-
ber of times?

The last counting problem that we wish to discuss at this time is the
following: how many functions in Y* are distinct up to isomorphism? In
other words, given that function-isomorphism is an equivalence relation on
YX (B15), how many equivalence classes are there? Generally speaking,
the equivalence classes will be of varying sizes. For instance, the set of
bijections, if any, will form a single equivalence class of size | X|!. On the
other hand, the constant functions form an equivalence class of size | Y]|.
Because these equivalence classes are not of uniform cardinality, we are
unable to use that old “cowboy” technique applied in C24; in effect to
“count their legs and divide by 4. However, it is clear that isomorphic

14
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functions will have isomorphic partitions and vice versa (B17). While the
same can be said of the selections of isomorphic functions, it is more fruit-
ful to consider partitions.

We have then that ¢: YX¥ — P(X), where ¢(f) is the partition of f, is an
injection which maps isomorphism classes onto isomorphism classes. What
is the image of ¢? Clearly a partition 2 = ¢(f) for some f if and only if
|2| < |Y|. Hence the image of g is P;(X) U Py(X) U. ..U P(X) where ¢ =
min{| X |, | Y|}. It is also clear that isomorphic partitions are of equal cardin-
ality. Hence the problem reduces to counting the isomorphism classes of
P.(X) for each m. In fact, each isomorphism class can be uniquely represented
by a selection s from N + {0} where s(i) is the number of cells of cardinality i.
This leads us to define a partition of the positive integer » to be a selection
s€S(N + {0}) such that >2;is(i) = n. If |s| = m, then s is called an
m-partition of n.

As an example, let X be a 19-set, and suppose 2 € P,(X) has two single
element cells, a 2-cell, three 3-cells, and a 6-cell. The selection corresponding
to 2 is a 7-selection with s(1) =2, sQ2) = 1, s(3) = 3, s@4) = s(5) = 0,
s(6) =1, and s(/) = O fori > 6.

We combine the results in this discussion in the following proposition.

C29 Proposition. Let p,(n) denote the number of m-partitions of the positive
integer n while p(n) denotes the total number of partitions of n. Let X be
an n-set. Then the number of isomorphism classes in P, (X) is pn(n). The
number of isomorphism classes in P(X) is p(n). If | Y| < n, the number of
isomorphism classes in Y* is YL, pu(n); if |Y| = n, the number of iso-
morphism classes in Y* is p(n).

C30 Exercise. Show that the number of isomorphism classes in S,(X) is
Pn(m), where X is an n-set.

We close this section with a small but representative assortment of prob-
lems analogous to the “word problems”” of high school algebra or elementary
calculus, insofar as their difficulty lies in translating the language of the
stated problem into the abstract terminology of the theory. Observe that
in some of these problems, the question “how many” does not always make
precise a unique answer which is sought. When such ambiguity arises, the
reader should investigate all alternative interpretations of the question.

C31 Problem. Prove the identity () (F)= () (%-%) where k < m < n by enu-
meration of appropriate sets rather than by direct computation (cf. the
comment following C20).

C32 Problem. From a list of his party’s n most generous contributors, the
newly-elected President was expected to appoint three ambassadors (to

15
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different countries), a Commissioner of Indian Affairs, and a Fundraising
Committee of five people. In how many ways could he have made his ap-
pointments ?

C33 Problem. A candy company manufactures sour balls in tangy orange,
refreshing lemon, cool lime, artificial cherry, and imitation grape flavors.
They are randomly packaged i cellophane bags each containing a dozen
sour balls. What is the probability of a bag containing at least one sour ball
of each of the U.S. certified flavors?

C34 Problem. Let m, k € Z. How many solutions (xy, ..., x,) are there to
the equation

X t+...+ X, =m
where x; is an integerand x; > k(i=1,...,n)?

C35 Problem. A word is a sequence of letters. How many four-letter-words
from the Latin alphabet have four distinct letters, at least one of which is a
vowel? (An exhaustive list is beyond the scope of this book.)

C36 Problem. How many ways can the numbers {1, 2, ..., n} be arranged
on a “roulette” wheel? How many ways can alternate numbers lie in black
(as opposed to red) sectors?

C37 Problem. Compute pg(n).

C38 Problem. What fraction of all 5-card poker hands have 4-of-a-kind?
a full-house ? 3-of-a-kind ? 2-of-a-kind ? a straight flush ? a flush? a straight?
none of these?

Two good sources for more problems of this type are C. L. Liu [£2,
pp. 19-23] and Kemeny, Snell, and Thompson [k.2, pp. 97-99, 102-104,
106-108, 111-113, 136-139].

ID Systems

A system A isatriple (V, f, E) where V and E are disjoint sets and f: E — Z(V).
The elements of E are called the blocks of A and the elements of V are called
the vertices of A. If x € f(e), we say that the block e *““contains” the vertex x,
or that x and e are incident with each other. If S e 2(V), we say that the
block e “contains” S (“‘is contained in” S) if S < f(e) (f(e) = S). Simi-
larly we say that the block e ““is contained in” the block e’ if f(e) < f(e).
The size of a block e is the natural number | f(e)]. If all the blocks of A have
size k, we say A has blocksize k.

The systems A = (V, f, E) and Q = (W, g, F) are isomorphic if there exist
bijections p: E— F, q: V— W such that g[f(e)] = g(p(e)) for all ec E
(see Figure D1). The pair (p, q) is then called a system-isomorphism.
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D1
% Py — g
qJ; ql; pJ';
w PO —— F

D2 Exercise. Show that system-isomorphism is an equivalence relation.

Whenever (V, f, E) and (W, g, F) are isomorphic systems, then f and g
are isomorphic functions. The converse of this statement is false, since a
bijection from Z(V) onto #(W) need not be induced by a bijection from
V onto W.

If A= (V,f, E) is a system and if f is an injection, then A is called a
set system. For example, if & < #(K) and if the “inclusion function”
j:&— P(V) is defined by j(S) = S for each S &, then (V,], &) is a set
system. In this case, the function j is suppressed and the set system is denoted
simply by the pair (V, &).

Let (V, f, E) be any set system. Let & = f[E] and let j: & — Z(V) be the
inclusion function. Since f is an injection, f': E— & given by f'(e) = f(e)
for all e € E is a bijection. Then the pair (f’, 1y) is a system-isomorphism
between (V, f, E) and (V, &) = (V,f[E]).

If V and E are sets and f: E— Z(V), the function f*: V — P(E) given
by f*(x) = {e€ E: x € f(e)} is called the transpose of f. Since

D3 xef(e) <-ecf*x), forallxeV,e€kE,

we have f** = f. If A = (V, f, E), then the system A* = (E,f*, V) is called
the tramspose of A. Since f** = f, A** = A,

D4 Proposition. If (V, f, E) is isomorphic to (W, g, F), then (E, f*, V) is
isomorphic to (F, g*, W).

PrOOF. Assume that (p,q) is a system-isomorphism from (V,f, E) to
(W, g, F). We assert that (g, p) is a system-isomorphism from (E, f*, V) to
(F, g*, W). Let xe V. Then

plf*(x)] = pliec E: x e f(e)}],
= pl{e € E: q(x) e q[f(O1}]
= pl{e € E: q(x) € g(p(e))}],
= {p(e): q(x) € g(p(e))},
= {de F: q(x) e g(d)},
= g*(q(x)), as required. 0

For A = (V,f, E) and x, ye€ V, one has f*(x) = f*(y) if and only if
x and y are incident with precisely the same blocks. This motivates the
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following definition: a system A distinguishes vertices if for every two dis-
tinct vertices there is a block which contains exactly one of them. In this
terminology,

D5 A* is a set system if and only if A distinguishes vertices.

It is interesting to note that this property is analogous to the topological
property T, (given a pair of distinct points in a Ty-topological space there is
an open set containing one but not the other). This analogy may be extended.
We could say that a system is *“7;” if given any two distinct vertices x and y,
there is a block containing x but not y and vice versa.

D6 Exercise. Show that a system A is “7,” if and only if A* has the property
that no block contains any other block.

A system of blocksize 2 is called a multigraph. If it is also a set system, it
is called a graph. The blocks of a multigraph are called edges. Some mathe-
maticians, taking the reverse approach from the one adopted here, have
begun with a study of multigraphs and subsequently treated systems as
generalizations of multigraphs. In particular, Berge [b.5] has defined the
term hypergraph to denote a system (V, f, E) with the two additional proper-
ties that f(e) # @ for all e € E and that f*(x) # o for all xe V.

A graph (V, &) is said to be bipartite if |V/| < 1 or if there exists a parti-
tion {V;, Vo} € Py(V) such that |[EN V| = |[ENV,| =1 for all E€é. If
(V, &) is a bipartite graph, the partition {V;, V,} need not be unique. When
we wish to specify the partition we shall write: (¥, &) is a bipartite graph
with respect to {V, Va}, or ({V3, V3}, €) is a bipartite graph.

There is a natural correlation between systems and bipartite graphs. If
(U,f, D) is a system, we may define ¥ = UU D and let & = {{x, d}: x e f(d)}.
Since UNn D = @, (V, &) is a bipartite graph called the bipartite graph of
(U, f, D). From D3 it follows that (U, f, D) and (D, f*, U) have the same
bipartite graph. Conversely, if (V,&) is a bipartite graph with respect to
{V1, VJ}, then (V, &) is the bipartite graph of (at least) two systems, namely:
(Vi f, Vo) where f(vy) = {v:{v,v;} €&} and (Vg g, V1) where g(v;) =
{v:{v,, v} € &}. In fact, g = f*.

Another method for representing a system (V, f, E) is obtained by index-
ing both ¥V and E; thus V = {x,, ..., x,}, E = {ey, €3, . . ., &}. We then con-
struct the v x b matrix M where 1 is the (i, j)-entry if x; € f(e;); otherwise
the (i, j)-entry is 0. M is called an incidence matrix of the system (V, f, E).
It is not difficult to see that any v x b {0, 1}-matrix is an incidence matrix
of some system. Furthermore, systems (V, f, E) and (W, g, F) are isomorphic
if and only if for some indexing of V, E, W, and F the corresponding incidence
matrices are identical. Two {0, 1}-matrices M, and M, are incidence
matrices for isomorphic systems if and only if M, may be obtained from
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M, by row- or column-permutations. Clearly if M is an incidence matrix
for A, then the transpose of M (denoted by M*) is an incidence matrix for
A*,

A system Q = (W, g, F) is a subsystem of the system A = (V,f, E) if:
W < V,F < E,and for all e € Fit holds that g(e) = f(e) = W. For example,
let A= (V,f, E) and suppose F < E. Then A, = (W, g, F), where W =
Waer f(d) and g = fi7, is a subsystem of A. Ay is called the subsystem in-
duced by F. We let Ay = (V, fig+r, E + F). If W < V, the subsystem in-
duced by W is the subsystem Ay = (W, g, F) where F = {ec E: f(e) < W}
and g = fir. Welet Ay = Ay,

D7 Exercise. Let M be the incidence matrix for the system A = (V,f, E)
corresponding to the indexing V = {xy,...,x,} and E = {ey,...,e,}. If
M*M = [m,], show that m;; = |f(e) N f(ey)| for all i,je{l,..., b}. Inter-
pret the entries of MM*.

IE Parameters of Systems

If A = (V,f, E) is a system, recall that the selection of the function fis
s:P2(V)y—N
given by
s(S) = |f[S] forall SeZWV).

For convenience, this selection will also be called the selection of the system
A. When the symbol s is used to denote the selection of A, the selection of A*
will be denoted by s*. If A is the set system (¥, &), then s = sg, the charac-
teristic selection of &.

We shall presently see that if two systems have the same selection, then
they are isomorphic; however, two systems having isomorphic selections
can still be nonisomorphic. This is consistent with the fact that two systems
(V,f, E) and (W, g, F) need not be system-isomorphic even though f and g
may be function-isomorphic. (See the discussion following D2.) The next
proposition makes these remarks precise.

E1 Proposition. Let (V, f, E) and (W, g, F) be systems with selections s and t,
respectively. The following three statements are equivalent:
(@) (V.f, E) and (W, g, F) are system-isomorphic.
(b) There exists a bijection q: V — W such that s(S) = t(q[S)) for all
S < V. (See Figure E2a.)
(c) There exists a bijection p: E — F such that s*(S) = t*(p[A]) for all
A < E. (See Figure E2b.)
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2 ., Z . W E—2 . F
207) z PW) PE) —L—— 2(F)
(a) \ / \ /
N

PRrROOF. We need only demonstrate the equivalence of (a) and (b); the equiva-
lence of (a) and (c) will then follow from this result and Proposition D4,

Assume that (a) holds. There exist bijections p: E—>F and q: V— W
such that

qlf(e)] = g(p(e)), for allecE.

Thus (p, q) is a function-isomorphism from fto g. By Bl6a, ¢ is a selection-
isomorphism from s to .

Conversely, assume that (b) holds. By B16b there exists a bijection p’: E —
F such that (p’, q) is a function-isomorphism from f to g. The result follows
from the definition of system-isomorphism. O

For any given selection s € S(#(V)), a system (V, f, E) having s as its
selection can always be constructed. For each S e Z(V), let Es be an s(S)-
set, and let all the sets Eg be disjoint from ¥ and from each other. Let

E= | Es
SeP(V)
Now define f: E— P(V) by f(e) = S if e € E;. The selection of this system
is obviously s. Moreover, this system is unique up to isomorphism. We may
therefore identify systems having vertex set J with elements of S(#(V)).

From another point of view, the selection s of a system A = (V,f, E)
may be regarded as a list of parameters. For each S € Z(V), each value s(S)
is a parameter in the list, namely, the number of blocks which “coincide”
with S. This list of parameters is a *‘complete list,” inasmuch as A is uniquely
determined (up to isomorphism) by the selection s. In the same way, the
selection s* determines the transpose A* (up to isomorphism), and therefore
by D4, the values of s* on #(E) form another complete list of parameters
determining A.

We now consider a third complete set of parameters which determines A
(up to isomorphism, continuing to be understood). Unlike s and s*, each
of which tells the number of blocks “coinciding™ with a given set, the
function we are about to define will tell the number of blocks containing
each given set.

For subsets S, Te Z(V), let [S, T]1 € N be given by

1 fScT;
Tl =
[, 7] {0 otherwise.
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E3 Exercise. Show that for any S, T, W e Z#(V),
[S,TT,W]=[S+T,S + WIS, W].
For any selection s € S(#(V)), we define § € S(#(V)) in terms of s by:
E4 5(S)= > IS, TIs(T), forallSe (V).
TeF(V)
ES Lemma. For S, We 2(V),
> (=SS, T[T, W] = 0is+¥1,

TeP(V)
PROOF.
> (=DSHIS, T, Wl = > (=DS*TS + T, 8 + WIS, W]
TeP(V) TeP(V)
= > (=D®[R, S + WIS, W]
ReP (V)
- [ (-1)'*“] s, W]
ReP(S+ W)
= QIS*+VI[S, W] by C22
— OIS+W|. D

The next result is the inverse of E4; it allows us to recover s when § is
given.

E6 Proposition. Let s € S(P(V)). Then
s(S) = > (=DS*T[S, T(T), for all Se #(¥).

Te(V)
PROOF. Let S € Z(V). Then by definition of 5,
> (=DSHIS, TIT) = > (DTS, T] > [T, Wis(W)

TeP(V) Tep (V) We(V)

S (1SS, T, W}]s(W)

Weg (V) [TEQ(V)

0+ Fls(W) = 5(S). O

Wez(V)

Since a system A is determined by the values of its selection s and since,
by the above proposition, the values of s are in turn determined by the
values of 5, it follows that the values of § form another “complete list of
parameters” for A, as promised. Similarly, the values of s* form a com-
plete list of parameters for A*, and hence also for A.

E7 Exercise. Show that the function ® from S(#(V)) to itself given by
®(s) = 5 is an injection and satisfies the ‘“‘linearity” condition:

D(ms + nt) = mOP(s) + n®@)
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for all 5, t € S(Z(V)) and m, n € Z. Show further that @ is never a surjection
when | V]| > 2.

When s is the selection of a system A, the values of the four selections
s, s*, §, and s* have important set-theoretical interpretations in terms of A,
as summarized by the next result.

E8 Proposition. Let s be the selection of the system (V, f, E). Let S € #(V),
and A € P(E). Then:
(a) s(S) = [{e€ E: f(e) = S}|;
(b) 5(S) = {e€ E: f(e) 2 S};
© s*(A4) = |[(MNeca /(@) N (Necz+a (V + f(@)];
(d) s¥(4) = IneeAf(e)I-
PROOF. (a) is, of course, the definition of s.
(b) represents the underlying motivation for defining § as we have. From
the definitions of § and s,
()= 2 sM= > HecE:fl)=T),
var=28 varas

whence the result.
(c) By definition,

SHA) = |(xe Vif*x) = )|
= [{xeV:{ec E: xef(e)} = A4}
= |{xeV:xef(e) «ec 4}
=|{xeV:iecd=>xecf(e);ecE+ A=>xeV + f(e)}
= |[{xe V:xef(e)foralleec A}
N{xeV:xeV + fle)forallec E + A}

(Nr@)n (N 0 +re) |

eed ecE+ A

(d) Again by definition,
A= 2> sMC)= D [xeV:ifecE:xef(e)} = C}.

ASCEE ASCSE
Let C;,CoeP(E) and let V= {xeV:{ecE:xef(e)} = C} for i =1,2.
Then V; NV, = @ if C; # C,. Hence by C2,
Z {xeV:{ec E: xef(e)} = C}|
E

AsCs

| {xeV:i{fecE:xef(e)} = C}

- |{xe_V: feeE:xef(e)} 2 A|
= |[{xe V:xef(e)forallee A},

whence the result. O
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We are now prepared, at least mathematically, to state and prove a major
theorem in combinatorial theory. Since the statement of this result in the
generality in which it will be given is probably less than transparent, we insert
here an example and two exercises which should better familiarize the reader
with the four selections considered in this section.

E9 Example. Consider the system A = (V, f, E) where E = {e,, e,, e3}. Let
S;=f(e) (i=1,2,3), and let V, S;, S;, Ss be represented by the Venn
diagram E10, where n,, ..., n;3 represent the cardinalities of the subsets
corresponding to the regions in which they have been written.

E10

If s is the selection of A, then with i and j being distinct indices,
sH(2) = 1 s*2) = V]
s*fed) = m s*({ed) = |SI|
s*{ene) = my  s*(ene) = S, 0 S)|
S*(E) = S¥(E) = nygs = |S1 N S3 N Sg).

E11 Exercise. If A is the set system (V, Z(V)), determine the selection s
of A and show that for all S e Z(V),

0 if |S| > k;
§(S) = - .
) {(l;l_ 1) sy <

E12 Exercise. Let A = (V, f, E) have selection s. Show that 5(S) < m for
all Se (V) if and only if s¥(4) < ¢ for all 4 € Z,(E).

We now present a fundamental counting theorem. Observe that its second
statement is dual to the first.
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E13 Theorem (The Principle of Inclusion-Exclusion). Let (V, f, E) be a sys-
tem with selection s.
(@) Forr =0,1,..., |E|, the number of vertices belonging to precisely
r blocks is

'E’ (- 1)*(’ * i) S 54).

|Al=r+i
(b) Fork =0,1,...,|V|, the number of blocks of size k is
=k k+i N
E (—1)'( ; ’) > K(S).
i=0 ISi=k+1

Proor. As remarked above, it suffices to prove (a) alone.

If A € Z(E), then by ES8c, s*(4) represents the number of vertices which
belong to every block in 4 but to no other block. Thus the number of ver-
tices which belong to precisely r blocks is >4, =, s¥(4). By applying Proposi-
tion E6 to s*, we get

> s5(A)
141=r ld[=r cegE

2 (2, coea 1))

Z (_1)|c|—r(|€|)§f=(c)

ICl2r

(=D)ie*4[4, CIs*(O)

|E|—r

I
™M

(_l)lc|—r(|(’;|)?(0)

-
]

0 [Cl=i+r

(_ l)i(r -:- l) |Cl=zr:-‘H E;(C)' =

=]

-7

i

0

Returning to Example E9, let us now apply the Principle of Inclusion—
Exclusion. The number of vertices belonging to precisely » = 1 block is

(') 3 = (5)asi + 1sd + 1

|Al=1+1
2 3
- (asinsi + 105+ 1s08D + (3)is 0 S0,

which after substitution reduces to n, + ng + ns.

Since s¥(A) is the number of vertices belonging to every block in 4 (see
E8d), part (a) of the Principle of Inclusion-Exclusion gives the number of
vertices contained in precisely r blocks in terms of the number of vertices
contained in sets of » or more blocks. First we “include” the vertices belong-
ing to at least r blocks, but because we have counted some of these more
than once, we then “exclude” those belonging to at least r + 1 blocks.
Having now excluded too much, we “reinclude” those vertices belonging
to at least » + 2 blocks, and so on. Dually, since 5(S) is simply the number
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of blocks containing S, part (b) gives the number of blocks of fixed size k
in terms of the number of blocks containing subset S of ¥ of size at least k.

The Principle of Inclusion-Exclusion has a wide range of applications.
The remainder of this chapter is devoted to some of them. We begin by
completing the answer to the question raised just after C12.

E14 Proposition. For sets X and Y,
1¥| I Yl
jsur(r] = (=% >, (~1y( ] )ave,
i=0

Proor. Let the function ®: Y¥ — #(Y) be given by O(f) = Y + f[X] for
all fe Y*. Then (Y, ®, YX) is a system. Let s denote its selection. Note that
fe YX is a surjection if and only if ®(f) = &. Hence |sur(Y%)| is the num-
ber of blocks of size k = 0. By Theorem E13b,

U}
lsur(¥] = > (=1 2, 5(S).

1S1=7
By E8b,
5(S) = [{fe Y*: &(f) = S}
= |{feYX:f[X]< Y + S}
=|Y + S|'¥,
by C7. Thus
Y|
oy = 3 =17 3 17+ 51 = 3 -u( M)t -
=1 i=0
Substituting i for | Y| — j completes the proof. O

Combining this result with C24, we have

E15 Corollary.

Panl = S5 3 (-ax(7)im.

In the literature the numbers |P,(V)|, usually denoted by S(|V|, m), are
called the Stirling numbers of the second kind. Another sequence of numbers
well enough known to have been given a name is the sequence {D,: n e N}
of derangement numbers. For each n e N, D, is the number of derangements,
i.e., permutations with no fixed points, of an n-set. The derangement num-
bers arise as a special case of the following result.

E16 Proposition. The number of permutations of an n-set which have precisely
r fixed-points is

Z (—1)‘
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PROOF. Let B be an n-set and let the function f: B — Z(II(B)) be given by
f() = {p e II(B): ¢(b) = b}. Thus (TI(B),f, B) is a system, and a given
permutation ¢ belongs to a block b if and only if b is a fixed-point of ¢.
Hence we seek the number of vertices (i.e., permutations) which lie in
exactly r blocks. This number is given in E13a; we now compute its value.
First we deduce from E8d that if 4 < B, then s¥(4) is the number of
permutations of B which fix 4 pointwise. Clearly this is (|B| — |4]|)!. Hence

Fn_ | " n!
IAI=r+iS ) = (" + i)(n ¢+ D)= T+

Substituting this into E13a yields

K fr +i n! n"I (=1
Z(—l)( i )(r+l)'__'zo e =

i=0

Letting r = 0-in E16 we obtain

E17 Corollary.
i=0

By convention, D, = 1, and this corroborates the corollary. Observe that,
D,[n! is the (n + 1)-st partial sum of the power series expansion of e~1,
and so lim,.. (D,/n!) = e~1. In other words, and perhaps contrary to
intuition, when # is large, approximately 1/e of all permutations of an n-set
are derangements.

The next three exercises are concerned with derangements.

E18 Exercise. Prove that for n > 2, at least one-third of the permutations
of an n-set are derangements.

E19 Exercise. Prove the following identities by set enumeration (cf. C31):

(@ D, =(@m— 1)(D,_, + D,_p) forn = 2;
(b) 2 ( )D. = nl.

E20 Exercise. Prove that for any n-set ¥, n > 0,
13 (7
PO =1 3 @ - iy(})
*i=0

Our final application of the Principle of Inclusion-Exclusion is to derive
a classical result from number theory. The function ¢: N + {0} — N given
by

o) = [{beN:0 < b < n; bis relatively prime to n}|,
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for all neN + {0}, is known as the “Euler ¢-function. For example,
@(n) = n — 1 whenever n is prime.

E21 Theorem. Let n€ N, and let V be the set of prime divisors of n. Then

on) = nH (1 - —)
pevV

Proor. Clearly o(1) = 1. If n > 2, let B={1,2,...,n}, and let the func-
tion f: B— (V) be given by f(b) = {p € V: p divides b}, for each be B.
Thus, (V,f, B) is a system, and ¢(n) is the number of blocks of size 0. Let
s be the selection of (V, f, B). By ES8b, for each S € Z(¥), 5(S) is the number
of blocks divisible by every prime in S. Thus §(S) = n/[ [,es p. Substituting
this into E13b with & = 0, we have

14} . _ __1 B _l
(P(n) z ( 1) |Z npesp " Z I—'[ - pevV (1 p).

SI=1 seg)ves P

this last step requiring only algebraic manipulation. O
We close with two exercises of a general nature.

E22 Exercise. Verify that if (V, &) is a set system, then

' ‘z( 1)i+1 z

A EPE)
E23 Exercise. Let s € S(Z(V)) and let ® be the function from S(Z(V)) to
itself given by ®(s) = § where

58) = > I[T,SIs(T), forallSeP(V).
Tep(V)

State and prove results analogous to E6, E7, E8b, and E13b.

(E '
Eeof

Eed

27



CHAPTER II

Algebraic Structures on Finite Sets

ITA Vector Spaces of Finite Sets

In IB we introduced the characteristic functions cg for subsets S of a set U
and proved (/B2) that the function ¢g > S is a bijection between KUY and
#(U). Subsequently it was to be verified (Exercise /B3) that this same bijec-
tion made the assignments ¢g + ¢y S + T and cscp — SN T. We have
thereby that (#(U), +, N) is “algebra-isomorphic” to the commutative alge-
bra (KY, +, -), and hence (#(U), +, N) is a commutative algebra over the
field K. In particular, (#(U), +) is a vector space over K, while
(#(U), +, N) is a commutative ring; & is the additive identity and U itself
is the multiplicative identity. For the present we shall be concerned only
with the vector space structure.

For the reader who has studied vector spaces only over real or complex
fields, we should remark that most of the results concerning such concepts
as independence, spanning sets, bases, and dimension are not dependent
upon the particular field in question but only upon the axioms common to
all fields. These results are valid for (#(U), +) over K, too. However,
some results involving the inner product often not only involve properties
characteristic of the real or complex numbers, but explicitly preclude the
field K.

We denote the dimension of a finite-dimensional vector space ¥~ by
dim(¥"). For any set U, dim(#(U)) = |U|. This follows since dim(K") = |U]|,
but may also be seen directly by observing that the subcollection #(U) is
a basis for Z(U).

For each S < U, #(S) is a subspace of Z(U). A subspace of this form
is called a coordinate subspace.
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Another subspace of interest consists of all the subsets of even cardi-
nality:

EU) = {Se #(U): |S|iseven}.

A1 Proposition. If U # o, then §(U) is a subspace of #(U) and dim(&(U)) =
|U| = 1. If U = @, then &(U) = (V).

Proor. Clearly @ € £(U). If U = g, then £(U) = {g} = Z(U). We suppose
U+#g.

By ICS, if S, Te&(U), then S + Te&(U); also 0S =@ and 1S = §
belong to &(U). Since &(U) is closed with respect to + and scalar multi-
plication, &(U) is a subspace of #(U).

Select x, € U. One can easily verify that if Z = {{x,, x}: x€ U + {xo}},
then & is independent and |#| = |[U| — 1. Hence dim(6(U)) = |U| — 1.
However, since U # @, &(U) # #(U), so dim(&(U)) < dim(P(U)) = |U|. O

The following corollary offers a different approach to Exercise IC23.

A2 Corollary. If U # @, then |E(U)| = |P(U) + EU)| = 2191,
Proor. Let W be a (|U| — 1)-set. By the proposition, IC7, and IC8,
[6U)] = |K¥| = |[K|'™! = 2191=1 = |Z(U)|/2.
So |2(U) + 6(U)| = |2(U)|/2. a

A3 Exercise. Let &, = {(Z(U)),1i.e., the subspace of #(U) spanned by Z,(U).
Show that

PWU) if0<m< |U|andmisodd;

EWU) if0 <m < |U| and mis even;
"" e} ifm=0;

{2,U} ifm=|U|.

Ad Exercise. Let f: U— V. Recall (§/A) the functions f: #(U) — #(V) and
[~ P(V) — P(U) induced by f. First consider the vector spaces (#(U), +)
and (#(V), +) and determine when f and f~! are linear transformations
and, in particular, nonsingular linear transformations. Then determine
when f and f~! are algebra-homomorphisms and, in particular, algebra-
isomorphisms between the algebras (#(U), +,nN) and (Z#(V), +, N).
Finally, show that there can be no other algebra-isomorphisms.

A5 Exercise. Determine all subspaces of #(U) left invariant under the set
of linear transformations induced by elements of II(U).
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For any set U we define a function Z(U) x #(U) — K, called the inner
product on #(U), as follows: if S, T € #(U), then

{0 if |S N T|iseven;
S-T= ) .
1 if|SNT|isodd.
It follows at once from the definition, 7A7, and ICS, that for all R, S, T e
2(U),
R-S=S'R;

RES+T)=(@RS)+ (R-T).

Furthermore,
R-§=0 forallSeP(U)<R=g.

We say S'is orthogonal to 7if S- T = 0. If ¥ < #(U), then the orthogonal
complement of ¥ is :

St ={TePU):S-T=0forall Se 7}

Observe that &+ is always a subspace of (U) and that (&*)! is a subspace
of #(U) which contains & In fact, & is a subspace of Z(U) if and only if
(FHt = & Another important result concerning orthogonal complements
(regardless of the characteristic of the field) is

A6 dim(#/) + dim(«/*) = |U|, for all subspaces & < Z(U).

The foregoing properties of inner products are all that will be required
in this text. In a vector space over a subfield of the real numbers with the
standard inner product, a subspace and its orthogonal complement have only
the 0-vector in common. This is certainly not the case in the following example
where the underlying field is K.

Example. Let |U| = n and let &7 be the subspace of Z(U) spanned by a
[n/2]-collection of pairwise-disjoint elements of Z(U). Then dim(&) =
[#/2]. Observe that if n is even, then & = &/, If nis odd, then &/ is spanned
by & together with the 1-set contained in no element of &7 and so &/ < &/,

A7 Exercise. Show that ({z, UD)* = &(U).

A subspace of #(U) is even if all its elements are sets of even cardinality.
This concept allows us to state the important algebraic result which under-
lies the classical Euler Theorem for graphs. This latter theorem will be en-
countered in its more traditional setting in §7I7A.

A8 Proposition. Let &7 be any subspace of P(U). Then U € « if and only if
A+ is even.
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PROOF. Since &7 is a subspace, & = (&/*)*. Hence:

UeA < S-U=0 forall Sesst
< |S N U| = 0(modulo 2) forall Se/*
< |S| iseven forall e/t O

If & < #(U), the foundation of & is the set Fnd(¥) = Usee S. If & and
2% are subspace of Z(U), then clearly their intersection &/ N & is a subspace
of #(U). Their join (also referred to as “sum™) given by

AN B={S+T:SecA;TecH}

is also a subspace of Z(U). Clearly v is a commutative and associative
operation on the collection of subspaces of #(U). In the special case where
the foundations of & and & are disjoint, the subspace &/ v # is called the
coordinate sum of </ and 4 and is denoted by &/ @ %.

The following is a standard result from linear algebra:

A9 dim(«/ v &) + dim( N %) = dim() + dim(%).
In particular,
dim(«Z @ %) = dim() + dim(%).

We use the shorthand notation

to represent &4, @ A, @...D .
It is easy to see that for each S < U,

PU) = #(S) D PU + S).

There is a function =g: P(U) — P(S) given by #n(T) =TN S for all
T € #(U). It can be readily demonstrated using /A7 that = is a linear trans-
formation. It is a surjection, its kernel is Z(U + S§), and it fixes Z(S) point-
wise. In vector space terminology, ‘=g projects Z(U) onto Z(S) along
PU + 8).”

If o is a subspace of Z(U) and if S < U, then n[#/] is a subspace of
Z(S). Since the kernel of the restriction g, is (U + ) N &/, we have

A10 dim(#(U + S) N &) + dim(wg[/]) = dim().
Since 75 fixes 2(S) pointwise,
All PESYN A < wg[H].

Of interest are those sets S e P(U) for which equality holds in All. The
following result shows them to correspond to “summands” in a coordinate
sum.
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A12 Proposition. Let &7 be a subspace of #(U).
@ If & = BDF and if B= Fnd(D), then mg[f] = P(BYN A = AB.
(b) Conversely, if Be P(U) and if wg[¥] = P(B) N <, then

A13 myesl] = P(U + B) N o,
and
A = (PB)NA) D (P(U + B)N L) = wg[A] D my, 5[]

PROOF. (a) Let &/ = # P ¥ and B = Fnd(#). By these assumptions and
All, # < P(B) N A < mp[Z]. It suffices to show that =p[e/] = Z.

Let Se /. Then S = S; + S, for some S, € # and S, € €. By definition
of ®, BN S, = @. Hence

(S)=SNB=S5 e

(b) Let Be #(U) and assume that #p[/] = Z(B) N .
By All, Z\U + B)N & < my., 5[] By Al0 and our assumption,

dim(Z(U + B) N &) = dim(«/) — dim(mp[/])
= dim(&/) — dim(#(B) N &)
= dim(wy , g[]),

and A13 follows.
The coordinate sum (#(B) N ) D (P(U + B) N ) is clearly a sub-
space of &Z. Moreover, by A9, A13, and A0,

dim(Z(B) N ) ® (P(U + B) N L))
= dim(#(B) N ) + dim(P(U + B) N )
= dim(Z(B) N ) + dim(my . 5[]
= dim(=).

Hence & = (ZB)NA)PD(P(U + B)n /), which in turn equals
(] @ 7y, p[] by Al3. O

A14 Corollary. Let &/ be a subspace of P(U) and let # be a subspace of o/
with B = Fnd(%). Then o/ = B @ € for some subspace € of P(U) if
and only if ng[] < &.

ProOOF. By All, Z < #(B) N < mg[H]. If np[f] < &, then by part (b)
of the Proposition, we may let ¥ = wy,5[%/]. The converse follows from
part (a) of the Proposition. O

A15 Exercise. Let V = U and let & be a subspace of #(U). Prove that
my[F*1] is the orthogonal complement in P(V) of (V) N <. (Hint: use Al10
and A6.)
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IIB Ordering

A partial order on a finite or infinite set U is a relation R on U which is
reflexive, transitive, and antisymmetric, i.e.,

(x,»)eR and (y,x)eR imply x = y.

A partial order is frequently designated by a symbol such as < which will
be used in the following way. Instead of writing: (x, y) € <, one writes:
x < y. In this context, the symbol < will be used to mean: x < y and x # y.
(Compare the use of < and <.) Clearly < is also a relation on U.

A pair (U, <), where U is a finite or infinite set and < is a partial order
on U, is called a partially-ordered set. (U, <) is a totally-ordered set and <
is a total order if either x < y or y < xforall x, y € U. Isomorphism between
sets with relations was defined in §7A.

B1 Exercise. If (U, <) is a partially-ordered set, show that < is antisym-
metric and transitive on U.

Certainly if (U, <) is a partially-ordered set, and if S € #(U), then the
intersection of < with § x S'is a partial order on S. We abuse notation and
designate such a partially-ordered set by (S, <).

The structures we have been considering readily provide examples of
partial orderings.

Example. (#(U), <) and (#(U), 2) are partially-ordered sets.

B2 Example. A partially-ordered set (Y, <) determines a partially-ordered
set (Y*, <) for any set X: if f, ge Y%, we say f < g if f(x) < g(x) for all
x € X. In particular, for any set U, S(U) will be regarded as a partially-
ordered set, the partial order being determined by the total order on N.

Let &, < P(U). We say & refines 7, or & is a refinement of 7, if for
every Se & and TeZ, either SNT =g or SNT = S. Observe that
refinement as a relation on Z(#(U)) is generally not reflexive. In fact,

B3 & refines itself if and only if the elements of & are pairwise-disjoint. Thus
refinement is reflexive on P(U).

We say that & covers U, or & is a covering of U, if U = Fnd(¥).

B4 Exercise. Show that if ¥ and I are coverings of U, and if each refines
the other, then & = J € P(U).

Thus refinement is antisymmetric on the set of coverings (and hence on
the set of partitions) of any set.
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B5 Exercise. Suppose %, S, = P(U) and that & covers U. Show that
if Z refines & and & refines 7, then & refines J.

We conclude that refinement is transitive on the set of coverings (and
hence on the set of partitions) of any set, but one can readily verify that
refinement need not be transitive on Z(#(U)). From B3, B4, and B5 we
conclude:

B6 Proposition. For any set U, refinement is a partial order on P(U).

Thus each of Z(U), S(U), and P(U) admits a partial order in a rather
natural way. Having defined various operations on these objects in the first
chapter, let us observe how they relate to these objects as partially-ordered
sets.

B7 Forall R, S, T e #(U),

SNTcT,
and
ifSc<T, thnSNR<cTNR.

B8 For all #, 4,7 € P(U), with < denoting refinement,
ST < I,

and
if <9, then % < I A.

B9 Forallr,s,te S(U),

s+t=>t
and
ifs>t thens+r=>t+r.

B10 Exercise. Reconsider B7 with the operation N replaced by U (respec-
tively, +), and reconsider B9 with addition replaced by multiplication. In
each case prove or disprove the analogous assertions.

Let (U, <) be a finite or infinite partially-ordered set. We say an ele-
ment x of (U, <) is minimal (respectively, maximal) if there exists no x’' e U
such that x’ < x (respectively, x' > x). An element x of (U, <) is the
minimum (respectively, the maximum) element of (U, <) if x < x" (respec-
tively, x > x') for all x'e U. Two facts are immediate: first, a partially-
ordered set need not have a minimum (respectively, maximum) element;
second, if a partially-ordered set does have a minimum (respectively, maxi-
mum) element, then that element is the unique minimal (respectively, maximal)
element of the partially-ordered set. The converse of this second remark is
also true (see B12 below). If /: Y — N, we say y € Y is a smallest (respec-
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tively, largest) element of Y (relative to f being understood) if £ () < f(»")
(respectively, f(y) = f(¥)) forall y' e Y.

Example. Let U = {a, b, ¢, d} and let ¥ consist of the sets {a}, {b}, {q, b},
{b, ¢}, {c,d}, {a, b, c}, {b, ¢, d}, {a, ¢, d}. Then (&, <) has neither a minimum
nor a maximum element. The 3-sets in & are all maximal (with respect to
inclusion) and largest (with respect to cardinality). Similarly the 1-sets in &
are minimal and smallest. However, the set {c, d} is also minimal but it is not
smallest.

We return to the convention that all sets are presumed to be finite. If
(U, <) is a partially-ordered set, a totally ordered m-subset S of U is called
a chain or, more specifically, an m-chain. The collection of all chains on
(U, <) is partially-ordered by the usual set-inclusion, and the term maximal
chain denotes a maximal element of this ordered collection.

Clearly a maximal chain of (U, <) contains both a unique maximal ele-
ment of (U, <) and a unique minimal element of (U, <). For let § =
{x1, X2, ..., Xn} and suppose x; < X3 <...< Xp. If x, is not maximal in
(U, <), then x, < w for some we U. It follows that S + {w} is also a
chain and S < S + {w}. Similarly one shows that x; is minimal in (U, <).
Now let x € U. Since {x} itself is a chain, the collection of all chains contain-
ing x is not empty and hence contains a largest member S. Clearly S is also
a maximal chain. We have proved:

B11 Proposition. Let (U, <) be a partially-ordered set. If x € U, then x is
an element of some maximal chain in (U, <). Moreover, y < x < z for
some minimal element y € U and some maximal element z € U.

B12 Exercise. If the partially-ordered set (U, <) has a unique minimal (respec-
tively, maximal) element x, prove x is the minimum (respectively, maximum)
element of (U, <).

The next proposition gives a further connection between partial orders
and algebraic structures.

B13 Proposition. Let (U, <) be a partially-ordered set and let O be a com-
mutative, associative operation on U such that x O x' < x for all x, x' € U.
If S is a nonempty subset of U closed under O, then (S, <) has a minimum
element.

PRrROOF. Let S = U be closed under © and let x, be the “product” of all
elements in S. (Since © is commutative and associative, x, is well-defined.)
Clearly x, < x for all x € S, and of course x, € S. O

Note that the finiteness of S is essential to the above proof. As an im-
mediate application, we have:
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B14 Corollary. Any nonempty subcollection of (#P(U), <) which is closed
under N (respectively, V) contains a minimum (respectively, maximum)
subset.

B15 Corollary. Any nonempty subcollection of P(U) which is closed under
multiplication of partitions contains a minimum partition (with respect to
refinement).

B16 Proposition. Let & = P(U) and let < denote refinement on P(P(U)).
Then{2 e P(U): & < 2} has a minimum element and{2 € P(U): 2 < &}
has a maximum element.

PrOOF. Let #,, %, € P(U) and suppose & < %, and & < #,. We show
that & < %,%,. An arbitrary cell of #,%, is of the form R, N R, where
R e Let Se¢ L If SN R, # @, then § < R, by the definition of refine-
ment. It is immediate that either S < R, " Ry or SN R; N R, = . Hence
{2e P(U): & < 9} is closed under multiplication. By B1S it contains a
minimum element.

To complete the proof, we define a relation ~ on U whereby x ~ y
if
B17 xeS<yeS, forallSe

Obviously ~ is an equivalence relation on U, the equivalence classes of
which form a partition 2,€ P(U). Moreover 2, < & If 2eP(U) and
2 < & and if x, y belong to the same cell of 2, then indeed B17 holds, and
x ~ y. Hence x and y belong to the same cell of 2,,. It follows that 2 < 2,
and 2, is the required maximum element. O

If & < #(U), the minimum and maximum partitions guaranteed by B16
are called the coarse partition of & and the fine partition of <, respectively.
Thus the coarse partition of & is the “finest” partition refined by & and
the fine partition of & is the “coarsest” of the partitions which refine .
This is just fine, of course. If & has fine partition 2, and coarse partition
2,, it follows from BS5 that

B18 2, < 2,, whenever & is a covering of U,
and from B4 and BS5 that
B19 92, = 9, <+ ¥ €P(U), whenever & is a covering of U.

B20 Exercise. Show that the condition that & be a covering of U is essen-
tial in both B18 and B19.

B21 Exercise. Let & be a covering of U.
(a) If & has the property that

S, 8,6 >8NS, #,

what is the coarse partition of & ?
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(b) Let < have the property that the system (U, &) distinguishes vertices.
What is the fine partition of & ?
(c) Give examples of collections & having both of the above properties.

A collection & < Z(U) is said to be incommensurable if no element of
& is a subset of any other element of % (Cf. ID6.)

B22 Exercise. Let 2,, 2, € P(U) be given with 2, < 2,. Determine when
there exists & < #(U) such that 2, is the fine partition of &% and 2, is
the coarse partition of ¥ What is the answer if it is imposed further that &
be incommensurable ?

B23 Exercise (Sperner [s.7]). Show that any largest incommensurable sub-
collection of #(U) has cardinality

Ul

)
2
(Hint: Let % be the set of (|U| + 1)-chains in (#(U), <). For each S € #(U),

let ;s consist of those chains in % of which S is an element. Begin by showing
that if & < 2(U) is incommensurable, then |€]| > Ss.o |%sl.)

A pair (V, D), where Vis a set and D = (V x V) + {(v,v):ve V}, is
called a directed graph. The elements of ¥ are called vertices and the ele-
ments of D are called edges. A sequence of vertices and edges of the form

Vo, (o, 11), V1, (U1, V2), Vgy .+« «, Vg1, (Vg -1, Ok), Uk

from (¥, D) is called a vov,-path. The length of a path is the number of edges
it contains. In particular, a single vertex constitutes a path of length 0. If
v eV, a vv-path is called a directed circuit. A directed graph is acyclic if all
its directed circuits have length 0.

B24 Proposition. Let (V, D) be a directed graph. Define the relation < on
V by: u < v if (V, D) admits a uv-path. Then < is reflexive and transitive.
Moreover, (V, D) is acyclic if and only if (V, <) is a partially-ordered set.

Proor. Trivially < is reflexive.
If u < v and v < w, then (V, D) admits a uv-path:

U = Uo, (Uo, Un)y Uss -« oy Uy, (Uy_1, Up), Uy = ¥
and a vw-path:
v = g, (Vg, V1), V15« « o5 U1, (U—1, Ug), U = W.
The following sequence is a uw-path:
u, (u, uy), Uy, - oy Uyq, (U1, Uy), 0, (Vo, 01), Vs, .+« oy Dpm gy (D1, Uk), W.

Hence < is transitive.
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Now suppose v < w and w < v. A repetition of the above construction
yields a vv-path, and if v # w, this path will have positive length. Hence if
(V, D) is acyclic, then < is antisymmetric. Conversely, if there exists a
directed circuit through distinct vertices v and w, then v < wand w < v. [

From the previous result we have that every acyclic directed graph uniquely
determines a partially-ordered set. Conversely, every partially-ordered set
can be obtained in this way. However, a given partially-ordered set may be
determined by many different directed graphs. For let (V, <) be a partially-
ordered set and let D = {(v, w)e V x V:v < w}. Clearly (V, D) is an acyclic
directed graph which yields (¥, <) in the manner of the proof of the previous
proposition. In this case, (¥, D) is the directed graph of (¥, <) which has
the largest possible number of edges.

Given (V, <), we say that w is a successor of vif v < wandifv < x <w
implies x = v or x = w.

B25 Exercise. Given (V, <), let Dy = {(v, w): w is a successor of v}. Show
that the partial order determined by the directed graph (V, D,) is precisely
(V, <). Moreover, D, < D, < D if and only if (¥, D,) determines (V, <).

Let (U, <) be a finite or infinite partially-ordered set. If x, y e U, we
define the meet of x and y, denoted by x A y, to be the maximum element of
{ze U:z < x;z < y}, if it exists. We define the join of x and y, denoted by
X V y, to be the minimum element of {ze U:x < z;y < z}, if it exists.
A partially-ordered set (U, <) is called a lattice if x A y and x v y exist for
all x, ye U.

B26 Example. For any set U, the partially-ordered set (#(U), <) is a
lattice, where the usual set-theoretic intersection and union are the two
lattice operations of meet and join, respectively. Any lattice which is iso-
morphic to (#(U), <) for some set U is called a Boolean lattice.

B27 Example. Consider the partially-ordered set (U, |) of all positive integral
divisors of the positive integer n, where | means ““divides.” The join of any
two elements of U is their least common multiple and their meet is their
greatest common divisor. It is not difficult to see that (U, |) is a lattice, and
it is Boolean if and only if » is divisible by no perfect square greater than 1.

We shall have frequent recourse to the following two examples.

B28 Example. Let S(¥") denote the set of all subspaces of the vector space
V. If 4, B eS(¥), let & < # mean that & is a subspace of #. With the
join of &/ and & as defined in the previous section and their meet defined to
be their intersection, (S(¥7), <) becomes a lattice. The verification involves
only elementary linear algebra. It will be shown subsequently that these
lattices are not Boolean when |¥"| > 2.
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B29 Example. Let S(A) denote the set of all subsystems of the system
A =(V,f,E). If Q, Q, € S(A), then Q, < Q, means that Q, is a subsystem
of Q,. Clearly (S(A), <) is a partially-ordered set. Let Q, = (W, g, F)
for i = 1, 2, and define

Q A Qp = (W 0 Wa, firyare F1 O F));
Qv Qy = (Wy U Wy, fir,ur, F1 Y Fo).
It is straightforward to verify that (S(A), <) now becomes a lattice.

B30 Exercise. Show that for any set U, the partially-ordered set (P(U), <)
is a lattice.

If (U, <) is a finite or infinite partially-ordered set, we define the dual
order > on Uby: x > yifand only if y < x, for all x, y € U. Then (U, =)
is also a partially-ordered set. In particular, if (U, <) is a lattice with meet
and join denoted by A and v, respectively, then (U, >) is its dual lattice,
with meet and join given by v and A, respectively, as can be easily verified
from the definitions. For example, (#(U), 2) is dual to (#(U), <) in
Example B26, where the roles of union and intersection have been inter-
changed. Clearly the dual of the dual of a lattice is the original lattice.

The next exercise is a list of algebraic properties to be verified for all
lattices. They follow from basic definitions. The concept of duality can be
used to substantially shorten the work.

B31 Exercise. Let (U, <) be a lattice. Show that for all x, y, z€ U,
(@) A and v are idempotent (ie., x A x = x V x = X);
(b) A and v are commutative and associative;
@W@xAxVvY)=x=xV(xA)Y);
d) x < yimpliesbothx Nz<yAzandxVz<yVz
@xApyvEAZDSxAQV2);
OxvipazddsxvyAalxv 2.

If W is any finite subset of U, then part (b) above yields that the meet of
all the elements of W, denoted A ,w x, is well-defined. Analogously, we
write \/ .ew X. Henceforth, all lattices are assumed to be finite. We may now
define two distinguished elements 0 = A,y x and 1 = \/,.y x. Thus
0 < x < 1 for all xe U. Every (finite) lattice has a minimum element and a
maximum element. In Examples B26, B27, and B28, the minimum elements
are @, 1, and {0}, respectively, while the maximum elements are U, n, and ¥;
respectively.

B32 Proposition. The following statements are equivalent for any lattice
(U, <):
@OEAYVEADY=xANQV Z)foralx,y zeU;
D EVvWAEXVZD=xV (YA2)foralx,y,zeU,
©@&xEvNAzsxV (YA2)foralx,y zeU.
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PROOF. (a) = (b). Assume (a) to hold and substitute x v y for x and x for y,
obtaining

[xVI)AXIVIGEVIIAZI=(xVI)A GV 2)
The left-hand member becomes

xV [(x VvV y AZz], byB3lbandc;
=xV [(x A2) v (¥ A 2)], byassumption (with x and z interchanged);
=xV (yAz), byB3lbandc.

(b) = (¢). Since z < x v z, B31d followed by our assumption (b) yields
xvy)Azs(xVYYAEXVZYI=xV (YA 2).

(c) = (a). We need only prove that (c) implies the reverse inequality of
B31f. With appropriate substitutions, two successive applications of assump-
tion (c) yield

xVvPYAMEXVZLSXV[yA(V 2]
<xVixv ((yA?2)]
=xV (y A z), asrequired. Od

A lattice which satisfies any one (and hence all three) of the conditions
of Proposition B32 is called a distributive lattice.

B33 Example. (#(U), <) is a distributive lattice for any set U. Hence all
Boolean lattices are distributive.

B34 Exercise. Prove that

(a) If U is a set with at least two elements, then the lattice (S(#(U)), <)
is not distributive (and hence not Boolean).

(b) (S(A), <) is a distributive lattice for any system A.

B35 Exercise. Determine whether the lattice (P(U), <) is distributive.

A lattice (U, <) is said to be complemented if for each x € U there exists
x"€ U such that x A x’ =0 and x v x’ = 1. In this case x’ is called a
complement of x.

B36 Example. In the lattice (#(U), <), the complement in the lattice of
any set S e #(U) is its set-theoretic complement U + S. Hence all Boolean
lattices are complemented.

When (U, <) is distributive, one may speak of the complement of x, for
if both y and z were complements of x, one would have by B32c and b that
y=yAl=yA(xVv2<xAYVz=0Vz=z Bysymmetryz < y,
and so y = z. Hence x” = x for all complemented elements x.
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B37 Exercise. Let (U, <) be a distributive lattice. Let a,be€ U and let a < b.
Let W ={xe U:a < x < b}. Show that

(@) (W, <) is a distributive lattice.

(b) For each x€ W there exists at most one element y € U such that
XxXAy=aandxV y=2>

(©) If (U, <) is complemented, then (W, <) is complemented.

If (U, <) is a partially-ordered set and if (W, <) is a lattice where W < U,
then (W, <) is a sublattice of (U, <).

B38 Lemma. Let (U, <) be a lattice and let W< U. If x ANy, xV yeW
for all x, y € W, then (W, <) is a sublattice of (U, <).

PRrROOF. By definition,

xAy=max{zeU:z < x;z < y}
>max{ze W:z<x;z<y} = x A Y,

since x A y € W. The argument for x v y is analogous. O

When (U, <) is a distributive lattice, we shall write x; @ x. D... D x,
for x; VxgVv...Vx, if x;, Ax;=0 for 1 <i<j< m Clearly if
x @y = 1, then x and y are complements.

B39 Exercise. Show that for any elements x,y, z of a distributive lattice,

DNDz=xDyDz.

B40 Proposition. Let (U, <) be a distributive lattice. Then the set of comple-
mented elements of U forms a complemented distributive sublattice of
(U, <).

Proor. Denote the set of complemented elements of U by W. Surely if
(W, <) is a sublattice of (U, <), then it is distributive and complemented.
It suffices, therefore, to show that the meet of any two elements of W is
complemented and so belongs to W. (The analogous proof for the join fol-
lows by duality.) Specifically, we show that for x, ye W, (x A y) = x' v ¥'.
We use B32a:

EANANE VY)=xA[yAE V)
=xA[(yAx)vyAY)]
=xA[(y Ax)vDO]
=xAyAx =0.

We next use B32b:
EANVEVY)=IxAY VXTIV
[(xvx)A(vX)vy

=[IA(vx))vy
=yvxvy =1

as required. (|
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An atom of a lattice (U, <) is a minimal element of the partially-ordered
set (U + {0}, <). In Examples B26, B27, and B28, the atoms are, respec-
tively, the 1-subsets of U, the prime divisors of #, and the 1-dimensional sub-
spaces of ¥ Note that if a and b are distinct atoms of (U, <),thena A b = 0,
a<aVvbyandb<avb.

B41 Proposition. Let (U, <) be a complemented distributive lattice, and let
A be the set of atoms of (U, <). Let f: #(A) — U be given by
f(B) = @-a for each B € P(A),

aeB

where the join of an empty collection is understood to be 0. Then f is a

bijection.

ProOF. Since the meet of any two atoms is 0, f is a well-defined function.
To prove that f is surjective, we first prove that 1 is the join of all the atoms
in U. For suppose that @,_, @ = x for some x < 1. Thena < xforalla € 4.
Since (U, <) is complemented, x’ exists, and x’ > 0. Hence the set
{ze U: z < x'} contains at least one atom a. Thus @ < x’, and since a < x,
we have a < x A x’ = 0, which is absurd. Hence @, a = 1.

Now let x € U and consider the set W = {z € U: z < x}. By Exercise B37,
(W, <) is a complemented distributive sublattice of (U, <). Moreover, if
B is the set of atoms of W, then B < A. Applying the argument of the
preceding paragraph to (W, <), we obtain x = Pges @ = f(B).

To prove that f is injective, let B and C be distinct subsets of 4 such
that f(B) = f(C). We may pick ze B + C; say z€ B and z ¢ C. Then

zAN@a=\(Gra) =z

aeB aeB
while
z/\@a=\/(zAa)=0. |
aeC aeC

B42 Corollary. The function f: (P(A), <) — (U, <) of the above proposition
is a lattice-isomorphism.

ProoF. It has already been established that fis a bijection. We need only
verify that fis an isomorphism of partially-ordered sets.

Let B, C € #(A) such that C = B. Clearly ®,.;a < @, a-

Conversely, let x,ye U such that y < x. Then y = @, ¢ and x =
@pep b for some subsets C, B € #(A4). Since y A x = y, we have by “dis-
tributivity”, Veec.oer (€ A B) = (Veec ©) A (Ve ) = @eec ¢. Each term
¢ A b clearly equals either ¢ or 0. Specifically, \ cec.pes (¢ A ) = @Pgecns -
Thus f(C N B) = f(C), and since fis injective, CN B = C. Hence C = B. []

B43 Corollary. A lattice is Boolean if and only if it is complemented and
distributive.

42



IIC Connectedness and Components

IIC Connectedness and Components

In the previous section we considered minimal, nonzero elements of a
lattice (‘“‘atoms”); in this section we begin by considering the collection
A () of minimal, nonempty subsets belonging to a collection &7 of sets.
Like the set of atoms of a lattice, .#(&/) is an incommensurable collection.
These subsets are called the elementary sets in &/ For example,
M(PU)) = Z(U) and A(E(U)) = Z(U). It holds not only in these two
examples, but in general, that if <7 is a subspace of #(U), then #(&) spans
/. We shall look to #(&7) to yield further properties about &, Throughout
this section &7 will denote a subspace of (Z(U), +).

C1 Lemma. Every subset in & is the sum of pairwise-disjoint elementary
subsets in .

Proor. Let S e« We proceed by induction on |S|. If S = &, then S is
the sum over the empty collection. Let n be a positive integer, and assume
the conclusion holds for T whenever Te/ and |T| < n. Now assume
[S| = n. By Proposition B11, there exists an elementary set M < S. Thus
|S + M| = |S| — |[M| < n, and by the induction hypothesis, there exist
pairwise-disjoint subsets M;, ..., M, e #()suchthat S + M = M, +...
+ M,. Hence S = M, +...4+ M, + M is the required sum. O

The incommensurability of .#(2/) plays an important role in proving the
next result.

C2 Lemma. Let M,, M, € M() such that M, N M, # @. Given x, € M,
and x, € M, there exists M € M() such that {x,, x,} = M.

Proor. We proceed by induction on |M; U M,|. If |M; U M,| < 2, the
result is obviously true. Let m > 2 be given and suppose the lemma holds
whenever |M; U M,| < m.

Suppose |M; U M,| = m, and let x,, x, be given. Clearly if x, € M, for
some I # j, there remains nothing to prove. We suppose therefore that
X1, X € M; + M,.

By Lemma Cl1, M, + My, = N; +...+ N, for some pairwise-disjoint
elementary subsets Ny,..., Ni. If one of these sets N; contains {x;, x,},
then set M = N,. Hence we may assume without loss of generality that
X, € Ny and x; € N,. Because #(s7) is incommensurable, [M; + (M, N M)] N
N;# o forall i=1,2; j=1,...,k. Hence NyUM, < M; U M, We
may therefore apply the induction hypothesis to N, U M,, since x; € Ny,
X, € My, and Ny 0 M, # . Hence {x;, xo} < M for someset M e #(). []

C3 Lemma. If & = @}, &, and B, # {&} for all i, then
(MB):i = 1,..., K e P (ML)
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Proor. We give a proof when k = 2; the general case then follows easily
by induction. That #(%,) N #(%,) = &, is immediate. Hence we wish to
prove MH(F) = M(HB,) Y M(#,). Let B, = Fnd(#) for i =1,2. Let
A e M (), and suppose that A N B, # & for some i. By Al2a, AN B, e
wp[#] = %, = & By the minimality of 4, we must have 4 N B; = A4, and
so A < B;. Hence A4 € #(%#,). Conversely, let A € #(%,) for some i. Then
Aesd since B < A If A¢ M), then g < C < A for some C e« But
then Cesf/ N P(B) < mp[] = % by All and Al2a, contrary to the
minimality of A. O

We are now ready to define some basic concepts of this chapter.

A subspace # is a direct summand of &7 if & = # @ ¥ for some sub-
space %. Clearly {@} and &/ are always direct summands of . The subspace
&/ is said to be connected if these are the only direct summands of .7, Finally,
we define a component of 7 to be a connected direct summand of &/ other
than {&}.

C4 Example. If o = S < U, then Z(U) = #(S) ® (U + S). Hence #(S)
and Z(U + S) are direct summands of Z(U). It follows that Z(U) is con-
nected if and only if |U| < 1. Therefore the components of #(U) are all
the subspaces of the form 2({x}) where x € U. It is true not only in this
example, but in general, that the foundations of disjoint direct summands
are disjoint.

CS Lemma. If & = Df., % and B, + {@} for all i, then
(Fnd(@):i = 1, ..., k} € P,(Fnd ().

Proor. For 1 <i<j<k, we have # N %, ={w}, and so Fnd(Z) N
Fnd(%,) = o. Since %, # {@}, Fnd(%,) # o. Finally let x € Fnd(s/). Then
x € A for some A € #(). By Lemma C3, 4 € %, for some i, whence
x € Fnd(4%,) as required. O

Given two systems Ay = (V,f, E) for i = 1,2 where VNV, =g =
E,NE, the system A = (V,U V,f, E,UE,;) where f(e) = fi(e) for
ec E, is called the direct sum of A, and A, and is denoted by A; @ A,.
Since the operation @ on systems is commutative and associative, this
definition may again be extended to any finite number of systems A; =
Vo, E), i=1,...,k, as long as V,NV;=E NE, =g for all i #j.
The resulting system A is called the direct sum of A, ..., A, and is denoted
by @F_, A,. Note that each A, is a subsystem of (;_, A;. Each A, is called
a direct summand of A. The system (@, f, @) is called the trivial system.
Clearly A itself and the trivial system are always direct summands of A.
Hence we say that A is connected if these are its only direct summands.
Finally, a connected nontrivial direct summand of A is called a component
of A.
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Direct summands for subspaces are closely related to those of systems,
as we shall now see. If &7 is a subspace of #(V), we define A(&) to be

(Fnd(s7), A ().

C6 Proposition. Let o/ be a subspace of (V).
@) If o = Di., B, then M) = B, MAB).
®) If M) = DF., A, where A, = (V, &), then A, = A A P(V)
fori=1,..., k. Furthermore o/ = @f_, (& N P(V)).

ProoF. (a) This follows at once from Lemmas C3 and C5 and the definitions.

b) Let Z =L NPWV) for i = 1,...,k. Clearly Fnd(%#) < V,. Hence
@DF_, &, is a well-defined subspace of <7 Now let 4 € /. By Lemma Cl, 4 =
>¥ 1 B, where B; is a sum of sets in & N .#(<). Since fori = 1,...,k,
B e/ and B, < V,, we have B, %, Thus A € PF., %, and we conclude
thate? = F_, 4. By part (a) above, A(&) = @F_, A(%). Since Fnd(%) <
Vifori=1,...,k, we must have V; = Fnd(%) and &, = A(%). O

C7 Proposition. Let A,,..., A, be the components of the system A. A sub-
system Q of A is a direct summand of A if and only if Q = @),5 A, for some
subset S < {1, ..., k}. In particular, A = @¥_, A,.

ProoF. Let D(A) denote the collection of direct summands of A. This is
precisely the set of complemented elements of the lattice (S(A), <) presented
in Example B29. By B34b and B40, (D(A), <) is a distributive complemented
sublattice of (S(A), <). The atoms of (D(A), <) are precisely the com-
ponents of A, and the result follows from Corollary B42. ]

This result combined with C6 yields:

C8 Corollary. Let %,,. .., €, be the components of . A subspace & of A is
a direct summand of </ if and only if B = @ s ¥, for some subset S <
{1,..., k}. In particular & = Dy_, %,

It follows from this Corollary and Lemma C5 that {Fnd(%): € is a com-
ponent of 27} is a partition of Fnd(2). This partition is called the compenent
partition of the subspace /.

C9 Example. Let U = {s, t, u,v, w, x, y, z} and let &/ be spanned by S; =
{s, t, u,v}, Sy = {s, t, w}, S5 = {u, v, w, x, y, z}. Then & consists of all possible
sums of these three sets. The remaining setsin &/ are: @, S; + S, = {u, v, w},
Si+Ss={s,t,w,x,9,2z}, So+Ss=1{s,t,u,v,x,y,z}, and S; + S, +
S5 = {x, y, z}. Since the sets in the list are all distinct, |«/| = 23, and so
dim(«/) = 3.Let 2 = {Q,, Q5} where Q; = {s, t, u, v, w}and Q, = {x, y, z}.
Then #(Q;,) N = {3, S1, Sz, S1 + Sq} has dimension 2 and #(Q,) N & =
{2, S, + S; + Ss} has dimension 1. Each of these two subspaces is connected.
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Also, 7 = (P(Q;) N ) D (P(Q2) N ). Thus #(Q,) N and P(Q,) N 4
are the components of <7, and 2 is the component partition of <.

C10 Exercise. Prove:
(a) The component partition of .« is the coarse partition of .#(%).
(b) If {x} e  for some x € Fnd(&), then P({x}) is a component of .
(¢) If xe U + Fnd(&), then P({x}) is a component of /*.

C11 Lemma. Let |U] > 2. Fnd(&) = U and & is connected if and only if
Fnd(«/Y) = U and o/* is connected.

ProOF. Clearly by duality it suffices to prove this lemma in just one direction.
Suppose Fnd(«/) = U and that &/ is connected, and let x € U + Fnd(</4).
By Exercise C10c, Z({x}) is a component of . Since |U| > 2, & is not
connected, contrary to assumption. Hence Fnd(«/*) = U.

Suppose At = H, @ H,. Let & be the orthogonal complement of 4, in
P(Fnd(#)) fori = 1,2. For all A € o and A’ € o7+,

|40 4] = |40 (4 0 Fnd@)] + |4 0 (4 N Fnd(B)|
= |4 0 (4" N Fnd(%))| = 0 (mod 2).

Hence A € &, whence &/, < . Since Fnd(+/) N Fnd(4,) = @, &, @ &, <
&. To prove the reverse inequality, we use A6:

dim(#) = |Fnd(%)| — dim(®) i=1,2.

Since Fnd(&/*) = U, we have dim(e) @ &%) = |U| — dim(%B, D %,) =
|U| — dim(«/) = dim(#/), and so & @ A = & If o ={@}, then for
je{l,2} + {i}, U = Fnd(&) = Fnd(«%) < Fnd(#;) = U + Fnd(%), and so
Fnd(%,) = o, whence %, = {@}. This proves that if %, and %, are nontrivial,
then &/ is not connected, which completes the proof. O

C12 Proposition. Let €, . . ., 6, be the components of &/ andlet U + Fnd(&) =
{¥1s..., Yo} Let D, be the orthogonal complement of €, in Z(Fnd(%))),
i=1,..., k. Then the components of &/* are Z({y;}) fori =1,...,p and
the nontrivial spaces among &, fori = 1, ..., k. In particular, if Fnd(/) =
Fnd(&/t), then o is connected if and only if &/* is connected.

PrOOF. If 4 € &7 and D € 9, then |A N D| = |mppai,(4) N D| = 0 (mod 2),
since the projection of 4 belongsto €, (i = 1, ..., k). Hence D € &%, and so
9, </ fori=1,...,k By ClOc, Z({y,}) is a component of &/* and so

Z = [Df-, 2] D [Dr-, Z(y Y] < #*. Since dim(¥) = |Fnd(%)| — dim(2)
fori=1,...,k, we have

dim(sZ) = dim(é f@) Ul —p— dim(@"rl Qi)
= |U| - dim(®) > |U| — dim(aY),
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and so Z = &/*. Hence each subspace &, is a direct summand of &7+, and
by the lemma, it is a component whenever it is nontrivial. The rest is im-
mediate. O

C13 Exercise. Prove

(@) &(U) is connected for any set U.

() If |U| = 3, then 6(U) is the only connected (|U| — 1)-dimensional
subspace of #(U).

Continuing our notation, let M; be an incidence matrix for the direct
summand A; fori = 1,..., k. Then the matrix

[ 1,

M,

0 .
IMk

is clearly an incidence matrix of ()f_, A, provided none of the systems A,
has an empty vertex set or empty block set. Its transpose M* has the same
form except that M,* replaces the submatrix M, for i = 1,..., k. From this
argument the following is clear:

C14 Proposition. Let A,, ..., A, be hypergraphs. If their direct sum is defined,
then the direct sum of their transposes is defined, and

k * k
(8] - o
i=1 i=1
Since a system is trivial if and only if its transpose is trivial, we have
C15 Corollary. A system is connected if and only if its transpose is connected.

C16 Exercise. Show that if Q = (W, fis, F) is a direct summand of A =
(V,f,E) then Q = Ay = A, whenever W + & # F.

C17 Exercise. Let A = (V, f, E) be a system such that f(e) = & for some
e € E. Prove A is connected if and only if V = & and |E| = 1.

Let A;,..., A, be the components of the system A = (V, f, E) and write
Ay= (Ve fi E)fori=1,...,k.ByCl,A = @}_, A,andsoif A,,..., A,
are the components with nonempty vertex sets, we have {V;, .. ., Vi) € B(V).
This partition is called the component partition of A.
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C18 Exercise: Continuing this notation, find the component partition of
A*,

Let A = (V, f, E) be asystem, and let s, t € V' U E. An st-path is a sequence
§ = Sg, §1,..., 5, = t of elements of ¥V U E such that:

(a) any three consecutive terms of the sequence are distinct;

(b) {s,-1, s;} is an edge of the bipartite graph of A forj=1,...,n.

For example, if x, y € ¥, an xy-path is an alternating sequence x = x,, e;, X,
es,...,e,_1, X, = y of vertices and blocks such that {x;, x;,,} < f(e,.,) for
i=20,2,...,n — 2. Note that a single vertex or block is itself a path; such
a path is said to be trivial. A path is said to be elementary if all of its terms
are distinct.

C19 Exercise. (a) Let A = (V, f, E) be a system and let s,te V U E. Show
that if A admits an st-path, then it admits an elementary st-path.

(b) Define the relation ~ on VU E by: s ~ t if and only if there exists an
st-path in A. Show that ~ is an equivalence relation.

C20 Proposition. The component partition of A = (V, f, E) is the partition of
the equivalence relation ~ of C19b restricted to V.

PROOF. Assume Ay,,..., Ay, are the components of A = (¥, f, E) and let
F,={ecE:f(e) = V;}.Letse V,and t € ¥V, for some i # j. Suppose s = s,
S1,..., 8, = t is an st-path, and let s, be the last term in the path in V; U
F. If s, is a vertex, then s, € f(s,+;) where s, €V, and s,,, ¢ F,. Since
Ay, ..., Ay, are the components of A, s..,€F, for some g # i and
f(sir1) S Vo, 1e., f(sk+1) NV, = @. This is clearly impossible. If s, is a
block, then s;.; € f(si), but f(s,) < V; while s, ¢ F; which is impossible. We
conclude that there exists no st-path. Hence the partition defined by ~
refines the component partition.

Now suppose s, t € V; for some i. Let S = {re V; U F;: there is an sr-
path}. Observe that if r € S N F;, then f(r) = S and hence f(r) € SN V..
On the other hand if re F; + (SN F), then f(r) N S = &, i.e,, f(r) eV, +
(SN V). We conclude that Q; =(SNV, fisnr, SN F) and Q, =
Vi + (SO V), fir,+snrpy Fi + (S N F)) are both well-defined subsystems
of A. Furthermore, Q, A Q, ={g,f,2} and Q; v Q, = Ay, ie,, Q; D
Q, = Ay,. However Ay, being a component, is connected. Hence Q; or Q,
is trivial. Since s € S, Q, is not trivial. Thus te V; < S, and s ~ ¢. O

C21 Corollary. Let A = (V,f, E). The following three conditions are equivalent:
(a) A is connected.
(b) f(e) # @ for all e € F, and for every s, t € V there is an st-path.
(¢) For every s, t€ V U E there is an st-path.
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C22 Proposition. (a) 4 necessary and sufficient condition for a subspace S to
be connected is that given x,, x; € Fnd(&), there exists M € #() such
that {x,, x5} < M.

(b) The relation ~ on Fnd(%7) given by

x~y<s{x,yt S A forsomeAec MH(H)

is an equivalence relation. The equivalence classes are precisely the cells of
the component partition.

Proor. The sufficiency of the condition in (a) is immediate.

By repeated application of Lemma C2, we see that there exists an x;x,-path
in A(&Z) if and only if {x;, x;} & M for some M € #(</), whence the necessity
follows. Part (b) is merely a restatement of this principle. O

Let T be the bipartite graph of the system A. The terms of a path in A are
precisely the vertices of a path in the system T', and conversely. Consequently
by C17 we have:

C23 Proposition. Let T" be the bipartite graph of the system A. T is connected
if and only if A is connected.

C24 Exercise. Prove that if T'; is the bipartite graph of the system A; for
i=0,1,...,n then Ay,..., A, are the components of A, if and only if
ry,..., I'; are the components of T',.

C25 Exercise. Show that a bipartite graph is connected if and only if it is
bipartite with respect to a unique partition.

C26 Exercise. Show that a bipartite graph with k components is the bipartite
graph of precisely 2* systems (but of at most 2* nonisomorphic systems).

C27 Exercise. Let Q be a subsystem of a system A. Show that Q is a com-
ponent of A if and only if Q* is a component of A*, thereby extending C14
to all systems.

IID The Spaces of a System

Let A = (V, f, E) be a system. The function f, when extended by linearity,
yields a linear transformation f: Z(E) — Z(V) given by

f(4) =" fle) forall4 < E.

ecA

As a linear transformation, f determines two important subspaces. The image
of £, denoted by #(A), is called the space of A, and the kernel of £, denoted
by Z'(A), is called the cycle space of A. The space #(A) is, of course, the
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subspace of #(V) spanned by f[E]. The space Z(A), on the other hand,
is a subspace of #(E). Let A < E. Then

D1 AeZ(A) ifandonlyif > fle) = .

ecd
The orthogonal complements #+(A) and Z*(A) of #(A) and Z(A) are
called the cospace of A and the cocycle space of A, respectively. An element
of Z(A)is called a cycle of A and an element of Z'*(A) is called a cocycle of A.

D2 Exercise. Let R = {a, b, c,d, e,f}.Let S = {a, b}, T = {a, ¢}, U = {b, d},
V={cd}, W=1{bc}, X=1{d,e}, Y={ef}, Z=1{d f}. Let &=
{S,T,U,V,W,X,Y,Z}, and let I" be the graph (R, &). Determine #(I),
Z[), g4I, and Z4(I"). Compare these findings with your results in
Example C9.

We display some immediate consequences of the definitions of these spaces.
Since the dimension of the domain of fis |E|, we have

D3 dim(Z(A)) + dim(@(A)) = |E|.
From A6, we have

D4 dim(Z'(A)) + dim(Z4(A)) = |E|,
and

D5 dim@(A)) + dim@*(A)) = |V|.

Combining D3, D4, and D5, we have
D6 dim@(A)) = dim(Z4(A)) = |E| — dim(Z(A)) = |V| — dim(@*(A)).

D7 Proposition. Let A be a system. Then
Y(A*) = ZY(A) and Z(A*) = ZL(A).

Proor. Let A = (V, f, E) and A € Z(A). We show that A4 is orthogonal to
each element of #(A*) by showing that A is orthogonal to each element of
its spanning set {f*(x): x € V}. By DI, J... f(e) = . That is to say, for
each x € V, x € f(e) for an even number of blocks e € 4. Thus | f*(x) N 4| =
[{e € A: x e f(e)}| is even, i.e., 4-f*(x) = 0. Hence Z(A) < #Z*(A*), whence
H(A*) = ZL(A). Dually we have #(A) = Z*(A*). By these two inclusions
and D6, we have:

dim@(A)) < dm(ZLA*) = dim@(A%) < dim(ZL(A)) = dim(@(A)).

Equality must then hold throughout and in the above inclusions. O
The following example ties together many of these notions.

D8 Example. Let n > 3 be an odd integer, and let £ = {e;, ..., e,}and ¥V =
{%1,..., xp} be disjoint n-sets. Let A = (V, f, E) be the set system where
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fle)=V+{x} fori=1,...,n. Since f[E] = Z,_(V), H(A) = &V) by
A3. Hence dim(#(A)) = n — 1, by Al. By D3, dim(Z(A) =n—-(n— 1) =
1. Since x; € f(e,) if and only if i # j, each vertex is incident with an even
number (namely, n — 1) of the blocks. Hence >7.; f(e;) = @, and E € Z(A).
Since dim(Z'(A)) = 1, Z(A) = {3, E}. By Exercise A7, if you were diligent,
the cospace #4(A) = {@, V} while Z+(A) = &(E). (If you were not diligent,
you could still obtain these two results. By A8, ¥Ve%*(A), and by D5
dim(#+(A)) = 1. By A8, Z1(A) is even, and by D4, dim(Z+(A)) =n — 1.
By C11, Z4(A) is connected, and the result follows by C13b.) Now consider
A* = (E,f*, V). Thus f¥(x) = E+ {e} fori=1,...,n. Let p: E—> V be
given by p(e)) = x; i = 1, ..., n). Clearly (p, p~?) is a system-isomorphism
from A to A*. By the above discussion with the roles of ¥ and E interchanged,
¥ (A*) = &(E) while Z(A*) = {@, V}. We have verified Proposition D7 for
this example directly.

D9 Proposition. Let A = (V, f, E) be a hypergraph, and suppose A = A, @
Ay Then Y(A) = Y(A) DU(Ag), Z(A) = Z(A) D Z(Ag), UHA) =
YH(A) @ YH(Ay), and ZH(A) = ZH(A) @ ZH(Ay).

Proor. Let A; = (Vi, fi, E) (i = 1, 2). Since f(e) = fi(e) < V; forallec E,,
and since #(A,) is spanned by {f(e): e € E;}, we have that Fnd(#(A)) < V..
Thus #(A;) and #(A,) have disjoint foundations, and #(A,) @ #(A,) is
well-defined. That this equals %(A) follows when we observe that

{f(e): ec E;} + {f(e): e € E,} spans Z(A).
Since Fnd(Z'(A)) < E;, Z(A,) @ Z(A,) is well-defined. Since Z(A,) is
clearly a subspace of Z(A),

D10 Z(A) @ Z(Ay) < Z(A).
By D3,
dim(Z(A) @ Z(Ay) = |Ei| — dim@(AY) + |E;| — dim(#(Ay))
= |E, + E;| — dim(#%(A))
= dim(Z'(A)).
Thus equality holds in D10. The last two parts of the proposition follow from
the first two parts, C14, and D7. O

D11 Corollary. Let A be a hypergraph. If any one of the spaces ¥(A), Z(A),
YY(A), or Z+(A) is connected, then A is connected.

D12 Exercise. (a) Determine %/(T") for the graph I' = (V, Z(V)).
(b) Fix x € V, and for each {y, z} e &(V + {x}), let

'91;12 = {{x’ y}’ {xa Z}, {y1 Z}}

Show that {Z,.: {y, z} € Z(V + {x})} is a basis for Z(T").
(c) In what remains of your youth, determine a basis for 2+(I).
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D13 Exercise. Let Q = (W, g, F) be a subsystem of a system A. Prove:
(@) Z(Q) = P(F) N Z(A).
(b) Z4Q) = m[Z+(A)]. (Hint: see Al5.)
(¢) dim(Z(Q)) < dim(Z'(A)) and dim(Z+(Q)) < dim(Z*(A)).

IIE The Automorphism Groups of Systems

In ID we considered isomorphisms between two systems. In the present
section we turn our attention to the isomorphisms between a system A =
(V, f, E) and itself. (It will always be assumed that ¥ # & or E # &.) Such
a system-isomorphism is called an automorphism of A. The set of auto-
morphisms is precisely:

G(A) = {(p,9): p € I(E); g € II(V); q[f(e)] = f(p(e)) for all ec E}.

Under the operation of componentwise composition

(P2, 42)(P1, 91) = (P2P1, 9291),

it is immediate that G(A) is a group, and we call G(A) the automorphism
group of A. Clearly G(A) =~ G(A¥).

Note: the isomorphism indicated here as well as the isomorphisms below
are to be interpreted in terms of the abstract group structure, and not neces-
sarily of the permutation group structure.

Let
Go(A) = {ge II(V): (p, q) € G(A) for some p € II(E)}
and
G,(A) = {p e I(E): (p, q9) € G(A) for some q € II(V)}.

Under composition Go(A) is a subgroup of II(¥) and G,(A) is a subgroup of
II(E). Go(A) is the vertex group of A, and G,(A) is the block group of A.
Their elements are, respectively, vertex-automorphisms and block-auto-
morphisms of A. Observe that

E1 Go(A) = Gy(A%); Gi(A) = Go(A®).
E2 Proposition. Let A be a system. A is a set system if and only if Go(A) =
G(A).

Proor. Define #: G(A) — Go(A) by =(p, q) = q for all (p,q) € G(A). 1t is
immediate that = is an epimorphism. The groups G(A) and Gy(A) will be
isomorphic if and only if = is injective. If (p, g) is in the kernel of =, then
q = 1. Hence G(A) 2 Gy(A) if and only if

(p, Iy) eker(m) = p = 1.
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Suppose A is a set system, and let (p, 1) € ker(w). By definition of G(A),
E3 fe) = 1,[f(e)] = f(p(e)), foralleekE.

Since fis an injection, p(e) = e for all e € E. Hence p = 1.
If A is not a set system, there exists a set {e,, eo} € %(E) such that f(e,) =
f(es). We define

€y ife=e1;

ple) =1<e; ife=ey;
e ifecE + {e,es}.
Clearly p satisfies E3, and so (p, 1y) € ker(s). But p # 1;. O

E4 Corollary. Let A be a system. A distinguishes vertices if and only if G(A) ~
Gi(N).

ProoF. By E2, A* is a set system if and only if G(A*) = G(A¥*). The corollary
follows from El and IDS. O

ES5 Corollary [w.5]. Let A be a set system. A distinguishes vertices if and only
if Go(A) = Gy(A).

Proor. Apply E2 and E4. O

It can happen that Gy(A) ~ G;(A), where the groups are isomorphic
even as permutation groups while A neither is a set system nor distinguishes
vertices. Suppose, for example, that ¥V = {x;,..., x;} and E = {e,,..., e},
and let

Sfled) = flez) = {x1, X2, xs} and fles) = fles) = {x3, X4, X5}

In this case A is connected. One straightforwardly verifies that G(A) is
generated by the cyclic permutations g, = (x;, X3, X3, X4) and g, = (x1, X5),
which satisfy the relations ¢;* = ¢,2 = (¢:1¢5)* = 1;. Thus Go(A) is isomorphic
to the dihedral group D,. Similarly, G,(A) is generated by p, = (e, €3, e,, €,)
and p, = (e;, ey), satisfying p,* = p,® = (p,p.)? = 15. We see that Go(A) and
G,(A) are isomorphic as abstract groups. In fact, if the vertex x; were to be
removed, they would be isomorphic permutation groups. However, A neither
is a set system nor does A distinguish vertices. Of course, neither group is
isomorphic to G(A).

E6 Exercise. Determine G(A) in the above example.

E7 Exercise. Let A be a system and let 5: Go(A) — G,(A) be a function which
satisfies

(m(q), 9) € G(A) for all g € Go(A).
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Such a function clearly exists.

Prove:

(a) If A distinguishes vertices, then % is an injection.

(b) If A is a set system, then % is uniquely determined and is a (group)
epimorphism.

(c) For any A, there exists a homomorphism %: Go(A) — G,(A) such
that (7(q), ) € G(A) for all g € Go(A).

E8 Exercise. Show that if A is allowed to be infinite, then the two-way
implication in Corollary ES need hold in only one sense [L. Babai, L. Lovész].

Consider an st-path s = s¢, 53, ..., 8, = ¢in A, and let us say, for definite-
ness, that s € V. One easily verifies that for any (p, ¢) € G(A), the sequence

q(s0), P(s1), 4(s2), - - -, P(S31-1), 4(s2:), . . ., p(¢) or g(¢) is also a path in A.
From this together with C20 we immediately deduce:

E9 Proposition. Let A = @]_, A, with components A; = (V,, f,, E}) for i =
L,...,n. If (p,q) € G(A), then to each i € {1, . . ., n} there corresponds some
J€{l,...,n} such that q[V}] = V; and p[E] = E,. Moreover, (p\z, qv,)
is a system-isomorphism from A; to A,

If X is a set and if G is a subgroup of II(X), then G is said to be transitive
on X if for each x, y € X, there exists some p € G such that p(x) = y. The
system A = (V, f, E) is vertex-transitive if Go(A) is transitive on V; A is
block-transitive if G,(A) is transitive on E.

E10 Exercise. Let A = @;_, A, with components A; = (V,, f;, E)) for i =
1,..., n. Show that if A block-transitive (respectively, vertex-transitive) and
if E, # @ # E, (respectively, V; # @ # V), then A, and A, are isomorphic
subsystems.

E11 Proposition. Let A, be a component of the system A. If A is vertex-
transitive (respectively, block-transitive), then so is A;.

PRrOOF. Suppose A is vertex-transitive, and let A; = (Vy, fi1, Ey). If x, y e V4,
then g(x) = y for some g € Go(A), whence (p, g) € G(A) for some p € G,(A).
By E9, (P,x,, qiv,) is a system-automorphism of A;. Hence gy, € Go(A;) and
maps x onto y.

If A is block-transitive, then A* is vertex-transitive, and by what we have
just proved, A,* is also vertex-transitive. By C14, A, is block-transitive. []

‘We may suspect when studying vertex-transitive or block-transitive systems,
that one could assume for all practical purposes that they are connected
systems. The next proposition bears this out. It is essentially a theorem on
permutation groups. As such, it is not truly in the domain of this book. It is
therefore stated without proof. Let II(n) denote the permutation group
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({1, ...,n}). If G and G’ are permutation groups, let G wreath G’ denote
the wreath product of G by G'.

E12 Proposition. Denote the set of components of a system A by
{A.,:i= 1,...,n,;j= l,...,r}
where Ay and Ay, are system-isomorphic if and only if j = j'. Let Ay =
(Viys fiss E)) for eachi, j. Let my; = [{i: Vy; # @} andmy; = |{i: E,; # @}].
Then for h = 0, 1,

T

Gu(A) = @ (T(my) wreath Gy(A)

i=1

(Here @ denotes the direct product of permutation groups.)

If Go(A) = {1}, then A is said to be asymmetric. If A is not asymmetric
but if every element of Gy(A) is a derangement of ¥V, then A is said to be
fixed-point free.

The next result was first proved by G. Sabidussi [s.3] for the special case
of graphs.

E13 Proposition. Let A be fixed-point free. If A is not connected, then at most
two components A, and A, have nonempty vertex sets, and A, and A, are
each asymmetric.

Proor. Let A = P, A, where A, = (V,, f,, E) for i = 1,..., k are the

components of A, and V,, V, # @. Suppose some component, say A,, is

not asymmetric. Then G,(A;) contains some vertex-automorphism g, # 1y,.

Now define g € II(V) by

_ ql(x) ifxe Vl;
9() = {x ifxeV + V.

To show that g € Go(A), define p € II(E) by letting p(e) = e for ec E + E;

and p(e) = pi(e) if e € E,, where (ps, g;) € G(A,). Then (p, q) € G(A). Thus

q # 1y but g has a fixed-point, contrary to hypothesis. Hence each component

of A is asymmetric.

Now suppose k > 3, that V3, V,, V5 # @, and that (py, ¢,) is an isomor-
phism from A, to A,. Define p and g by

pi(e) ife€ E;;

ple) =<p~(e) ifeeEy;
e ifeecE + (E, VY Ey);
q:1(x) if xeVy;

q(x) =<q:7}(x) fxeV,;
x ifxeV+ VUV,
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Clearly (p, ) € G(A), and so g € Go(A). But g # 1, while g(x) = x for some
x € V3, contrary to hypothesis. O

E14 Exercise. Let A be fixed-point free and let A; and A, be distinct com-
ponents with nonempty vertex sets. Show that if Go(A) is nontrivial, then (a)
A; and A, are isomorphic; (b) |Go(A)| = 2; (c) if A is a set system with
|V| = 3, then |G,(A)] = 2.
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CHAPTER III

Multigraphs

Throughout this chapter the symbol I' = (V, f; E) will be used exclusively
to denote a multigraph. Multigraphs have been studied far more than any
other kind of system. They are the simplest interesting systems, since those
with blocksize <1 have only trivial components. Another and perhaps more
important reason for the extensive research in multigraphs is that they are
the abstract mathematical objects which lie behind the many diagrams one
often draws. Historically, multigraphs were first studied as topological objects.

I—-IX
N
I — XI H H
J |
I — VII c—¢

7 N\
Voo H—C C—H
IV VI e—ec’
N\ [
vV VI H H

v/
X

The vertices were points in the plane or 3-space, and the edges were simple
arcs joining the vertices. As a result of these ““graphic” beginnings, much of
the terminology is geometric in spirit, and most of the results can be geomet-
rically motivated. The reader is encouraged to draw pictures and to use them
as an aid in following the proofs and doing the exercises.

In this chapter we are mainly interested in the particular results of graph
theory which arise as a consequence of considering multigraphs as systems.
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Some of our results can be stated and proved for more general systems;
others cannot. The reader is encouraged to make appropriate generalizations
whenever possible.

IITA The Spaces of a Multigraph

The number of components of the system I' will be denoted by v_,(I"). We
shall let vo(T") denote the number of vertices of I and »(I") the number of
edges. When there is no risk of confusion, we shall write briefly v_,, vy, and v,.

If s is the selection of T' and x is a vertex of I', then 5({x}) is called the
valence of x and is denoted by p(x). If p(x) = 0, x is an isolated vertex; if
p(x) = 1, x is a pendant vertex. If for some ke N, p(x) = k for all xe V,
then T is k-valent. I is isovalent if it is k-valent for some k. (In the literature,
the word “regular” is often used in place of “isovalent .)

Let M be an incidence matrix for I'. Counting the 1’s in M by rows, we
get .y p(x). Since there are precisely two 1’s in each column, this number
is also 2v,(I"). Hence

Al n@ =1 o).

2 xeV

It follows from Al that the number of vertices with odd valence is even.
In view of Al, it is reasonable to define the average valence of I' to be

_ 2v,(T)
D) =30

A2 Exercise. Prove that if T' is a graph with vo(T") > 2, then there exist at
least two vertices with the same valence. Describe all graphs which have
exactly two vertices of the same valence.

A3 Exercise. Prove that for each n > 2 there exists a multigraph I' with
vo(T") = n which has no two vertices of the same valence. For each n, find a
multigraph T satisfying these properties for which »;(T) is as small as possible.

In §/IC we defined a path for an arbitrary system. For a multigraph we
use path exclusively for paths which have vertices as both initial and final
terms and wherein all edges are distinct.

We now show that the space of a multigraph I' = (V, f, E) has a par-
ticularly simple structure. From /IC20 and the definition of “component,”
we see that x, y € V lie in the same component of I if and only if I' admits
an xy-path. If x # y and if x, e;, Xy, €a, . . ., X—1, €, Xi = Y is such a path,
then S¥_, f(e;) = {x, y}. Hence if T is connected, then £(V) < #(I). On the
other hand, #(I") is spanned by {f(e): e € E}, and | f(e)| is even for all e € E.
Hence #(T") < &(V), and equality holds when T is connected. Thus by 1ID9,
we have
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Ad Proposition. If T is a multigraph with components T; = (V,, f,, E}),
(i=1,...,k), then¥T) = DF., V).

If A is a system, a subsystem I' which is a multigraph (respectively, graph)
is called a submultigraph (respectively, subgraph) of A. By a circuit we shall
mean a nontrivial path x,, ey, x4, . . ., €, X, = X, Where all of the edges are
distinct. Such a circuit is said to be elementary if x,, x1, . . ., X, _; areall distinct.
The length of a path (and hence of a circuit) is the number of edges in the
path.

Observe that the vertices and edges of a path (elementary path) in I" form
a submultigraph (subgraph) of I'. We will often identify the path with this
corresponding submultigraph. Note that many paths may correspond to the
submultigraph of a given path. To say that one path or circuit is contained
in another path or circuit means that the submultigraph of the one is con-
tained in the submultigraph of the other. The graph consisting of a single
elementary circuit of length k will be denoted by A,.

A5 Exercise. Prove that every circuit of length k contains A, for some n < k.

A6 Exercise. Prove:

(a) If p(x) = 2 for every vertex x of the multigraph I, then T' contains a
circuit.

(b) If p(x) > 2 for every vertex x of the multigraph I', and if there exists
a vertex of T' in no circuit, then I contains two disjoint circuits.

(¢) If p(I') = 2, then T contains a circuit.

(d) Let T" be a connected multigraph. Then I" contains a circuit if and
only if p(I") > 2.

(e) Let I' be a connected multigraph. Then I' contains exactly one circuit
if and only if p(I") = 2.

A7 Exercise. Let (V,, f;, E) be acircuit of I fori = 1, 2. Suppose E, NE, = &,
but VNV, # @. Show that (V, U V,, f, E, + E,), where f(e) = fi(e) for
all e € E,, is a circuit.

A8 Exercise. Prove that in a multigraph, every circuit has even length if and
only if every elementary circuit has even length.

A9 Proposition. If x,, €1, X1, . . ., ex, X, is a circuit (respectively, an elementary
circuit) of T, then {ey, ..., e} is a cycle (respectively, an elementary cycle)
of T. Conversely, all elementary cycles of T" are the edge sets of elementary
circuits.

PROOF. Let xo, €1, ..., €, X = X, be a circuit. Since f(e;) = {x;_1, x;} for
eachj = 1,..., k, we have 3%, f(e;) = . Hence by IID1, {e,..., e} is a
cycle. Assume the circuit is elementary, and assume that f(e;) belongs to a
subset of {f(e,), ..., f(e,)} whose sum is zero. Then that subset must also
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III Multigraphs

include f(e; . ,) in order to “cancel out” x; (the indices being read modulo k).
We conclude that {e,, ..., e} is elementary.

Conversely, assume that Z is an elementary cycle of I". Since 3., f(e) = &,
the vertices of I'; all have valence 2 or more. By Exercise A6a, I'; contains a
circuit, the edges of which form a cycle Z’' € Z(I';) € Z(I"). Clearly Z' < Z.
Since Z is elementary, Z' = Z, and I'; is a circuit. O

Note that the ““converse” in this proposition is only a *“partial converse.”
It is not in fact true that every cycle is the set of edges of some circuit. For
example, the edges of two disjoint circuits taken together form such a cycle.
The strongest possible “converse” is given in the next proposition. -

A10 Proposition. If Z € Z(I") + {@} and if the submultigraph T, is connected,
then T'; is a circuit.

Proor. By IIC1, Z is the sum of pairwise-disjoint elementary cycles. Hence
by A9, T', contains a circuit. If I'; is not itself a circuit, let A be a largest
circuit in IT';. The set Z” of the edges of A is a cycle by A9. Clearly Z" < Z,
and Z” is disjoint from the cycle Z' = Z + Z". Let A’ = I'z.. If A and A’
have no common vertex, then I'; = A @ A’, contrary to hypothesis. Thus there
exists a vertex x common to Aand A’. By IIC1,Z’' = Z," +...+ Z;' where
each cycle Z/ is elementary. Let A’ =T';. for i =1,...,k. We may
assume without loss of generality that x is a vertex of A,’. Hence by A7, A and
A,’ yield a circuit in I'; larger than A. O

With the relationship between cycles and circuits on a firm footing, we
may now explore the graph-theoretical significance of the cocycle space. By
IID7, the cocycle space Z+(T") = #(T'*). Recall that #(I'*) is spanned by
the images under f* of the blocks of I'*, i.e., of the vertices of I'. For each
x € V, the set f*(x) = {e € E: x € f(e)} is called a vertex cocycle. Since I' is a
multigraph, each edge is an element of precisely two vertex cocycles. Hence

A1l > fHx) =o.

xeV
This relation shows that while the collection of vertex cocycles spans Z*(T"),
it is too large to be a basis. Two more observations of use are that
Fnd(ZXI) = Uxev f*(x) = E, and that | f*(x)| = p(x) for all xe V.

We now use these algebraic tools to prove perhaps the oldest theorem in
graph theory. A circuit in a multigraph is called an Euler circuit if it includes
every edge and every vertex. A multigraph which contains an Euler circuit
is said to be Eulerian. Intuitively, an Eulerian graph can be “‘drawn” com-
pletely without having either to retrace any “edge” or withdraw one’s quill
from one’s parchment. For the interesting historical background of the next
result, see [b.8].
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A12 Theorem (L. Euler [e.8], 1736). A multigraph is Eulerian if and only if it
is connected and every vertex has even valence.

ProoF. Let T = (V, f, E) be a multigraph. By I7A8, E € Z(T') if and only if
ZL(T) is even, i.e., if and only if each vertex has even valence. If T is con-
nected and if E is a cycle, then by Proposition A10, I' is an Euler circuit.
Conversely, if T' has an Euler circuit, it is connected. Moreover, the set E
of the edges of the Euler circuit is a cycle. O

The traditional proof of Euler’s Theorem is constructive. The algebraic
proof, however, has the advantage that it shows that Euler’s Theorem and
the following well-known result are really “dual” to one another.

A13 Theorem. A multigraph is bipartite if and only if every circuit has even
length.

Proor. Let T' = (¥, f, E). To say that every circuit has even length is by
A8 and A9 to say that Z(I") is an even space, which is equivalent (/A8 again)
to saying that E e Z4(T'). Equivalently, E = 3.y f*(x) for some U < V.
This means that each edge is incident with exactly one vertex in U and that
{U, V + U} is the required partition of V. Conversely, if I' is bipartite with
partition {U, V + U}, then E = J,.y f*(x), and one pursues the chain of
equivalent statements in the reverse direction. O

Al4 Exercise. A path in a multigraph is said to be an Euler path if it contains
each edge exactly once and each vertex at least once. State and prove a
proposition about Euler paths analogous to Euler’s Theorem.

A15 Proposition. For any multigraph with space % and cycle space Z :

(a) dim(®?) = dim(Z*) = vy — v_3;

(b) dm(Z) = v, —vo + v_y;

(¢©) dim@*) = v_,.
PRrOOF. () is an immediate consequence of IID6, A4, and I7A1. (b) follows
from (a) and ITD3. (c) follows from (a) and IID5. O

A16 Corollary. If I' = (V,f, E) is connected and x,€V, then & =
{f*(x): x e V + {xo}} is a basis for Z1(T').

ProOF. By All, # spans Z*(I"). Since v_;(I") = 1, we have |[#| = v, — 1 =

dim(Z+(T)). O

A17 Exercise. Determine Z+(I).

Propositions A9 and A10 gave precise graph-theoretical interpretations of
the algebraic notion of a cycle. The following proposition attempts to give a
corresponding interpretation for cocycles. However, we must first introduce
some notation.

Let F < E and recall that I', is the submultigraph (V, fig.r, E + F). If
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F = {e} we write T, for I'y,,. Note that 'z, and I'g, ; differ only in that
I'») may contain some vertices in addition to those in I'y, z. Since none of
these vertices is incident with edges in E + F, they are isolated vertices in
I'y. There are precisely v_,(I'y) — v_1(I'g+r) of them. It follows that
Z(Tw) = Z(Tg+5) and Z4(T) = Z4(Tg.p).

A18 Proposition. Let F be a set of edges of the multigraph T.
-(a) F contains a nonempty cocycle if and only if v_,(L's) > v_1(T).
(b) F is an elementary cocycle if and only if v_(L'w) > v_(T') and
v_1(Dr s epy) = v_1(I') for every e € F, i.e., F is minimal with respect to the
property given in (a).

ProoF. (a) If C is an arbitrary vertex cocycle of T', then 7z, ;[C] = CN
(E + F) is a vertex cocycle of I's,. Moreover, all vertex cocycles of I', are
of this form. Thus 7z, p: Z+(I") - Z*(T') is a surjection. Hence dim(Z+(T))
= dim(ker 7z, ) + dim(Z*(Ty)) = dim(ZY(T) N P(F)) + dim(Z*T &)
Thus by Proposition Al5a,

dim(ZH(T) N 2(F)) @o(T) — v (1)) - (Vo(Fm) —vo(U'w)

= V—1(F<F)) = v_y(D).

Hence v_,(T') > v_y(T) if and only if dim(Z+(T") N &(F)) > 0, i.e., if and
only if F contains a nonempty cocycle.

®) If v_;(Tx) > vo(I'), then F contains a nonempty cocycle (by (a)
above). Also, if v_ (T4 (o) = v—_1(T), then F + {e} contains no nonempty
cocycle, for each e € F. Hence F is an elementary cocycle. Conversely, if F
is a nonempty cocycle, v_ (I') > v_(I"). If in addition, F is elementary,
then F + {e} contains no nonempty cocycle and v_;(I';z, (o)) = v-1(T") for
alleeF. O

An edge e € Fis called an isthmus of I if the 1-set {e} is a cocycle. A vertex
x of I' is called an articulation vertex if the vertex cocycle f*(x) is not an
elementary cocycle.

Example. In Figure A19, the vertices x, y, and z are articulation vertices.

A19
u
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To see that z is an articulation vertex, note that the cocycle f*(u') + f*(v")
is a proper subset of f*(z). We may also observe that e is an isthmus, for
{e} = f*() + f*@©) + f*(x). The edge ¢ is also an isthmus; in this case w
is a pendant vertex and {e'} = f*(w).

A20 Exercise. If a vertex x is incident with an isthmus in a multigraph, show
that x is either an articulation vertex or a pendant vertex.

A21 Exercise. Show that Fnd(Z(')) = E + I, where I is the set of isthmuses
of T.

IIIB Biconnectedness

When a connected multigraph with at least two edges has no articulation
vertex, it is said to be biconnected. Thus, a multigraph containing two or more
edges is biconnected if and only if it is connected and every vertex cocycle is
elementary. We shall see that there is a close relationship between the structure
of the cycle space and biconnectedness. Also there is an interesting parallel
between the relationship of paths to connectedness (cf. §/IC) and the relation-
ship of elementary circuits to biconnectedness.

B1 Lemma. If Z*(1) is connected, then T' has no articulation vertex.

ProoF. There is no loss of generality in assuming that I' has no isolated
vertices and hence is a hypergraph. Thus by IID11, T' is connected. Suppose
that x, is an articulation vertex of I'. Let C; be an elementary cocycle such
that C; < f*(x,), and let C; = f*(xo) + Cy. By A16, C; = 3 ey, f¥(x) for
some U, © V + {xo}. Let U, = V + {xo} + U,. Thus

B2 C, + Zf*(x)=z, and C, + Zf*(x)=f5.
xeUy xeUg

(The second equation is obtained by addition of the first equation to All.)
Let &, be the subspace of 2(I") spanned by {f*(x): xe U}, for i = 1, 2.
Since each edge belongs to exactly two vertex cocycles, B2 implies that %,
and %, have disjoint foundations. Hence %, @ %, is well-defined. It follows
from A16 that #, ® %, = Z*(T). Finally, since C;e %, for i = 1, 2, %, is not
trivial, and Z*(T") is not connected. O

B3 Proposition. Let I' have at least two edges but no isolated vertices. The
following are equivalent:
(a) T is biconnected;
) ZL(T) is connected,;
(¢) Z(T) is connected and Fnd(Z (")) = E;
(d) every two edges of T are in a common elementary circuit.

PrOOF. (2) = (b). Assume I' is biconnected and that Z*(I") = %, @ %..
Since T' is biconnected, the vertex cocycles are the elementary cocycles. By
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IIC3, each vertex cocycle lies in exactly one of %, and %,. Let U, =
{xeV:f¥(x)e %} for i = 1,2. Thus U; N U, = @. Therefore no edge is
incident with both a vertex from U, and a vertex from U,. Hence all the
vertices of any path lie entirely in U, or entirely in U,. Since I is connected,
we conclude that either U, or U, is empty, and hence that either %, or %,
is trivial. Thus Z*(T") is connected.

(b) = (¢). Since Z*(I') is connected and |E| > 2, T' has no isthmuses by
IIC10b. By Exercise A21, Fnd(Z(I")) = E = Fnd(Z4(I")). By I1IC12, Z(T)
is connected.

(¢) = (b). Since Fnd(Z+(I")) = E, the result follows from IIC12.

(c) <> (d). This follows from IIC22a.

(b) = (a). Assume that Z*(I") is connected. It follows from Bl that I
contains no articulation vertex. Now let x and x’ be any two vertices of I';
we must show that there exists an xx’-path. Since I" has no isolated vertices,
we may choose edges e, e’ incident with x and x', respectively. Since (b)
implies (d), e and €’ (and hence x and x') are in a common elementary circuit.
Thus there exists an xx’-path, and I is connected. O

B4 Lemma. (a) Z(Ty) = 2T+ p) = Z(T) N P(F), for all F < E;
() ZXTy) = ZXTgsr) = [ ZXD)], for all F < E.

Proor. Let Z be any elementary cycle of I'. By A9, I'; is an elementary
circuit of I". Thus

Z e Z(I'p) < I'; is a submultigraph of I's,
Z < F,
< ZeZ[) N AF),

as required to prove (a). Taking the orthogonal complement of each term in
(a) and applying ITA15, we get (b). |

Let 2 be the component partition of the space Z+(I"). For each Q € 2,
T, is called a lobe of I'; a subgraph consisting of an isolated vertex of I' is
also called a lobe of I". By B4a, IIC12, and the definition of component of a
space, we have ‘

BS ZO) =P ZTy) and Z'T) = P ZLTy).

Qe2 Qe2
Let us consider the internal structure of the lobes I', of I'. First note that
distinct lobes have no common edges. If Q = {e}, then e is an isthmus.
Conversely, if an edge e is an isthmus, then by IIC10b and 7IC22b, {e} is a
cell of the component partition of Z*(I"). We have shown:

B6 Lemma. An edge e is an isthmus of T if and only if {e} induces a lobe of T'.

B7 Lemma. A biconnected submultigraph T = (V', f', E') of T is a submulti-
graph of some lobe of T

64



IIIB Biconnectedness

Proor. By B3, any two edges of I'V belong to a common elementary circuit.
By IIC3, E' = Q for some cell Q of the component partition of Z(I"). It
follows that I'" is a submultigraph of the lobe induced by Q. O

B8 Lemma. Let Ty be a lobe of T' with |Q| > 1. Then T, is biconnected.

Proor. Since Q is a cell of the component partition of Z°(I"), we have by IIC22a,
that every two edges in Q belong to a common elementary cycle. By A9,
every two edges in Q belong to a common elementary circuit. Finally by B3,
I, is biconnected. O

B9 Proposition. A submultigraph T of T' is a lobe of T' if and only if T is
induced by an isolated vertex or I is induced by an isthmus or I is a maximal
biconnected submultigraph of T'.

ProOF. Let IV be a lobe of I" which is not induced by an isolated vertex,
i.e.,, IV = I'y, for some cell Q of the component partition of Z+(T'). If |Q| = 1
then by B6, I'" is induced by an isthmus. If |Q| > 1, then by B8, I is bicon-
nected, and by B7, I is a maximal biconnected submultigraph of I".
Conversely, if I is induced by an isthmus, then it is a lobe by B6. If
I" is a maximal biconnected submultigraph of I', then it is a lobe by B7
and BS. O

Observe that the multigraph in Figure A19 has exactly six lobes, two of
which are isthmuses and four of which are maximal biconnected submulti-
graphs.

B10 Exercise. Prove that a biconnected multigraph I with p(I") = 2 is an
elementary circuit.

B11 Exercise. Let I' be a multigraph and let x € V. Prove that the following
three statements are equivalent

(a) x is an articulation vertex;

(b) x is a vertex of more than one lobe of T';

(c) there exist vertices y,z€ V + {x} such that there exists a yz-path and
every yz-path contains X.

B12 Exercise. Prove that two distinct lobes have at most one common vertex.

B13 Exercise. Assuming that v((I') > 2, prove that the following seven state-
ments are equivalent:

(a) T is biconnected.

(b) T consists of a single lobe.

(¢) Every two vertices of T' belong to a common elementary circuit.

(d) Each vertex and each edge from T' belong to a common elementary
circuit.

(e) Given any x,y€ V and any e € E, there exists an elementary xy-path
containing e.
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(f) Given distinct x, y, z € V, there exists an elementary xy-path containing z.
(g) Given distinct x, y, z € V, there exists an elementary xy-path avoiding z.

B14 Exercise. Prove that if a multigraph has an odd circuit, then it has an
odd elementary circuit.

B15 Exercise. Prove that a biconnected multigraph is either bipartite or has
the property that each edge lies on an odd elementary circuit.

B16 Exercise [w.1]. Prove that a biconnected multigraph either is an odd
circuit or contains an elementary even circuit.

B17 Exercise [0.1]. For each vertex x of I let i(x) = v_1(I'y 4 () — v-1(I).
Prove that the number of lobes of I' is (3 ,ev i(x)) + 1.

B18 Exercise. Let I' be a biconnected multigraph with dim(Z'(I")) > 2. Prove
that every edge of I" belongs to at least two distinct elementary circuits.

A graph is geodetic if given any two vertices x and y, there exists a unique
xy-path of smallest length.

B19 Exercise. Prove that:
(a) T is geodetic if and only if every lobe of I is geodetic.
(b) If T is geodetic and biconnected, then dim(Z'(I")) # 2.

IIIC Forests

A multigraph T is said to be a forest if Z(I') = {@}. A connected forest is
called a tree. Clearly every forest is a graph; for if f(e) = f(e’) for distinct
e, ¢’ € E, then f(e) + f(¢') = @, i.e., {e, e’} € Z(I"). We will show that every
multigraph T contains certain special subgraphs which are forests (trees if
the multigraph is connected), and that these subgraphs give particular
information about the structure of I' itself. These subgraphs will be con-
structed by removing, one at a time, edges which belong to circuits, thereby
destroying all the circuits. We start our discussion by considering the algebraic
consequences of deleting a single edge from a multigraph.

C1 Proposition. Let e be an edge of the multigraph I'. Then.

0 if e is an isthmus;

@@  dim(Z(I) — dim(Z(T)) = {1 otherwise.

1 ifeis an isthmus;
: L A 1 —
® dim@im) - dim@aa) = {5 1o

1 if e is an isthmus;

© ) = v =

otherwise.
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ProoOF. By ITA10, dim(Z/(T)) = dim(r,[Z(D)]) + dim(P(E + {e}) n Z(T)).
By Bda, #(E + {e})) N Z(I") = Z(I'y,). Combining these, we get

2 dim(Z(D)) — dim(ZT) = m,

where m = dim(z,[Z(T)]). By IIA6, dim(Z(T)) + dim(Z~(I)) = »()
while dim(Z(T,)) + dim(Z*(T,)) = v»,(T") — 1. Substituting these into C2
yields

c3 dim(ZXT) — dim(Z*(Te)) = 1 — m.

By Al5a, dim(Z4(I) = vo(T) — v_1(T) while dim(Z*(T,)) = vo(T') —
v_1(Tey) = vo(T') — v_;(I',). Substituting these into C3 yields

C4 v1(lPe) — v =1—m.

If e is an isthmus, no cycle contains e. Hence 7 ,[Z(I)] = {@}, and m = 0.
If e is not an isthmus, some cycle contains e; hence 7, [Z(I")] = Z({e}) and
m = 1. Thus C2, C3, and C4 give (a), (b), and (c), respectively. O

C5 Corollary. For each integer j = 0, 1, . .., dim(Z(I")), there exists a subset
F < E such that dim(Z (1)) = j while diim(Z*(T ) = dim(Z*(I")) and
vo1(Pimy) = voyo(D).

Proor. We proceed by induction on dim(Z(I"). If dim(Z(T")) = 0, then
F = @ and the result is valid. Let n > 0 and suppose the result is valid when-
ever dim(Z(I") < n. If dim(Z(I")) = n, there exists a nonempty cycle and
hence an edge e which is not an isthmus. By the proposition, dim(Z(I',)) =
dim(ZT")) — 1, while dim(Z*(T"))) = dim(Z+(I")) and v_,(T,) = v_1(I).
Letjbe an integer such that 0 < j < dim(Z'(I")). Ifj = dim(Z(I")),let F = &.
If j < dim(Z(T)), we apply the induction hypothesis to I, to choose F' <
E + {e} so that with F=F' + {e}, dim(Z[T)) =j, dim(Z*T)) =
dim(ZYT,)) = dim(Z*T)), and v_,(Tx) = v_1(Te) = v_1(I). Since F =
E, we are done. O

Implicit in the foregoing proof is the following result:

C6 Corollary. If F < E, then
@ v1(T'w) 2 v-o(T);
(b) dim(Z4(Tr)) < dim(Z4T));
(©) dim(Z(T')) < dim(Z(I)).
Moreover, equality holds in (a) if and only if it holds in (b); equality holds
simultaneously in (a), (b), and (¢c) if and only if F = &.

C7 Corollary. Let C < E. C is an elementary cocycle of T' if and only if
vo1(le) = voa(l) + 1andv_y(Lg s (eny) = v-1(T') for every e € C; i.e., the
subset C is minimal with respect to the first equality.

Proor. Apply A18b and Clc. O
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C8 Exercise. Show that if I' is a multigraph with at least one edge, then
dim(Z) < v,. Characterize all multigraphs for which dim(Z) = », — 1.

C9 Proposition. For a multigraph T, conditions (a), (b), and (c) below are
equivalent. If two of the conditions hold including at least one from among
(d) and (), then all five hold. In particular, if T is a tree, then all five hold.

(a) T is a forest.

(b) Every edge is an isthmus.
(¢) dim(Z*) = v,.

(d) T is connected.

€ v, =y, — 1.

Proor. It follows directly from the definitions that each of (a), (b), and (c)
is equivalent to &+ = 2(E). Hence they are equivalent to each other.

Note that (d) is equivalent to v_; = 1. Thus by Al5a, any two of the
conditions (c), (d), (e) imply the third. If I' is a tree, then (a) and (d) hold. [J

In Figure C10, graph (a) satisfies only conditions (a), (b), and (c) above;
graph (b) satisfies only condition (d); graph (c) satisfies only condition (e).

C10

(a) (b) (c)

We call a subgraph of I" which is a forest or tree a subforest or a subtree,
respectively. If T is a subforest (subtree) of the multigraph I' such that
vo(T) = vo(T) and v_,(T) = v_,(T), we call T a spanning forest (spanning tree).
It follows directly from Corollary C5 with j = O that every multigraph con-
tains a spanning forest and that every connected multigraph contains a
spanning tree.

C11 Proposition. Let F < E and let T = Tz, 5. Then the following six state-

ments are equivalent:

(@) |F| = dim(24(T)) = dim(Z*([D));

(b) T is a spanning forest of T';

(c) F is a maximal subset of E which contains no nonempty cycle of T';

(d) F is a minimal subset of E which meets each nonempty cocycle of T';

() Z(T) admits a basis {Z,: e € E + F} such that for each ec E + F,
Z,N(E+ F)={e};

() Z~T) admits a basis {C,: e € F} such that for eachec F,C.NF =
{e}.
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PrROOF. Let E;, ©« E; € Eandlet Iy = Tz, gy (( = 1, 2.) By C6 we have

c12 voi(T) = v_y(D); - dim(ZXTY) < dim(ZXD));
c13 dim(Z(T))) < dim(ZT));
c14 vou(Ts) = voy(Ty);  dim(ZXTy) < dim(ZATy));
Cis dim(Z(T,)) < dim(Z(T)).

Equality must hold or fail simultaneously for the two inequalities in each of
C12 and Cl14. Furthermore, equality cannot hold in both Ci14 and C15.
Finally, equality holds in both C12 and C13 if and only if I'; = T".

(a) = (b). Let I'y = T, and note that the second equality in (a) implies
v_1(T) = v_,(I"). By C9, the first equality in (a) implies T is a forest. Finally,
since vo(T) = vo(T"), T is a spanning forest.

(b) = (¢). If T is a spanning forest, then, of course, F contains no non-
empty cycle. If T = I', we are done. Otherwise, let I'y = T and let E, satisfy
F < E, c E. Since T is a spanning forest, v_,(T) = v_1(I"), and so v_{(T) =
v_1(T";). Hence equality holds in Cl14 and fails in C15. We conclude that
dim(Z(T'y)) > 0 and E; contains a nonempty cycle.

(b) = (d). LetT’; = Tandlet E, < F. Since T is a spanning tree, v_,(T) =
v_,(T) and dim(Z(T)) = 0. Thus equality holds in C12 and C15 and fails in
Cl4. Thusv_;(I'y) < v_;(T"). By Al8a, E + F contains no nonempty cocycle
while E + E, contains at least one nonempty cocycle, i.e., F meets every
nonempty cocycle, but no proper subset E, of F has this property.

(c) = (e). For each ec E + F there exists Z,e Z(I') + {@} such that
Z, < F + {e}. Since F contains no nonempty cycle, Z, N (E + F) = {e}.
Clearly {Z,: e € E + F} is an independent set. Let Z € Z(I"). Since the cycle
Z + Seczmw+m Zo S F, it must be empty, i.e., Z = J.czn@+r Ze. It follows
that {Z,: ee E + F} spans Z(I') and hence is a basis.

(d) = (f). For each e € F, there exists C, € Z(I") + {@} such that C, N
(F+{e}) =2.Since CCNF+# g, C.NF = {e}. Clearly {C,: e F} is an
independent set. To show that this collection spans Z(I"), let C € Z*(I).
Then the cocycle C + >.c+r C. is disjoint from F and hence must be empty,
ie., C = J.cnr C.. Thus {C,: e € F} spans Z+(T") and hence is a basis.

(e) > (a). Since {Z.,:eeE + F} is a basis for Z(I'), dim(Z(D)) =
|E + F|, which implies dim(Z*(T")) = |F|. Clearly E + F meets every non-
empty sum of cycles in this basis. Hence F contains no nonempty cycle. It
follows from B4a that 2Z(T) = {2} and hence dim(ZX(T)) = |F]|.

(f) = (a). Since {C,: e F} is a basis for Z4(T"), dim(Z*+(T)) = |F|. To
complete the proof we need only show that F contains no nonempty cycles.
Let A < F be any nonempty subset of F. Then |4 N C,| = 1 for each e € A4.
Hence A4 is not orthogonal to C, and cannot be a cycle. O

C16 Exercise. Let I'y be a spanning forest of T'. Show that for any ec E + F,
there exists €' € F such that I'y, ., is a spanning forest of T'. (This is called
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the Exchange Property because a new spanning forest is obtained from an old
one by the “exchange” of one edge for another. It will be generalized in §XA.)

C17 Exercise. Show that any spanning forest of I' can be obtained from any
other spanning forest by a finite number of applications of the Exchange
Property.

If T is a spanning forest of I', then I'z, s, is a spanning coforest. (The
edge set of a spanning coforest is called a ““dendroid” by Tutte [t.6].) The
following result is dual to C11 and should be proved as an exercise.

C18 Proposition. Let F = E. The following six statements are equivalent :
@ |F| = dim(ZTer) = dim(Z(I);
(b) Tz is a spanning coforest;
(¢) Fis a maximal subset of E which contains no nonempty cocycle of T';
(d) F is a minimal subset of E which meets every nonempty cycle of T';
(e) Z(I) admits a basis {Z,: e € F} such that for eachee F,Z, N F = {e};
) ZYT) admits a basis {C,: e € E + F} such that for each ec E + F,

C.N(E + F) = {e}.

C19 Exercise. State and prove an “Exchange Property” for coforests.

IIID Graphic Spaces

Since the concept of the cycle space of a multigraph is easy to grasp in-
tuitively, it is a natural question to ask: under what conditions will an
arbitrary subspace & < #(F) be the cycle space of some multigraph I" =
(V, f, E)? Since the cycle space of I' is the orthogonal complement of its
cocycle space, this question is clearly equivalent to asking whether &/* can
be realized as the cocycle space of T'. It turns out that necessary and sufficient
conditions are more easily stated in terms of the cocycle space.

When the term ““vertex cocycle” was defined, it was noted that every
cocycle of I' is a sum of vertex cocycles f*(x) for x € V. Also, every edge
belongs to f*(x) for exactly two vertices x € V. Note our cautious wording
both here and in Proposition D3 below; we will not say,  Every edge belongs
to exactly two vertex cocycles.” Although an edge belongs to the vertex
cocycle of two distinct vertices, it may belong to only one vertex cocycle.
For example, we may have, for some e € E, f(e) = {x, y} where f*(x) =
f*(»). In this case I' has a component IV = ({x, y}, k, f*(x)) where k is the
constant function onto {x, y}.

D1 Exercise. Prove that for a multigraph I' = (V, f, E), the following state-
ments are equivalent:

(a) f* is an injection;

(b) no component of T' contains exactly two vertices, and I' has no more
than one isolated vertex.
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Prove also that these statements must hold if T is connected and vo(T") = 3.

D2 Exercise. Prove that the vertex group and the edge group of a finite graph
are group-isomorphic if and only if the graph has at most one isolated vertex
and no component has exactly one edge. [Hint: use IIES5.] Show that this
statement is false for infinite graphs. (The result is due to Sabidussi [s.2]
and Harary and Palmer [h.6]. The suggested method of proof appears in

[w.5].)

D3 Proposition. Let E be a set, let Cy, . . ., C, € P(E), and let o be a subspace
of P(E). « is the cocycle space of a multigraph whose edge set is E and
whose vertex cocycles are C.,. .., C, if and only if

(a) {C4,..., C,} spans & ; and

(b) if e€ E, then e € C, for exactly two indices i.
Furthermore, if o is the cocycle space of some multigraph, then &/ is the
cocycle space of a connected multigraph.

Proor. If &/ = Z4(T"), we have seen that the sets f*(x) for x € V satisfy
condition (a) and condition (b).

Conversely, assume the existence of Cy, .. ., C, € & satisfying (a) and (b).
Let V ={1,..., m} and define f:E — Z(V) by

fle)={ieV:eeC}, forallecE.

By (b), the system I' = (V, f, E) is a multigraph. Since f*({) = C; for all
i eV, and since Z+(I") is spanned by the set of all vertex cocycles, condition
(a) implies Z(I") = .

We may reindex Ci,..., C, so that for some k < m, {Cy,...,C} is a
basis for &7, Since Fnd(&/) = E, each edge belongs to at least one set C; with
1 < i < k. Then the set C’' = C; + C; +...+ C, consists of those edges
which belong to exactly one of the sets Cy,..., C,. Hence Ci,..., C, C’
satisfies condition (b). Since it clearly satisfies (a), we have shown that we
may take m = k + 1 = dim(%/) + 1. In this case dim(Z*T) =m — 1 =
vo(I') — 1, and by Al5a, T is connected. O

The subsets Cj, ..., C, in the above proposition form what is called a
graphical realization of &/, and %/ is said to be a graphic subspace. It is natural
to ask, under what conditions will the choice of Ci,..., C, be uniquely
determined (up to permutation)? In other words, under what conditions will
a multigraph be determined by its cocycle space (or, equivalently, by its cycle
space) ? This, the second question of this section, was answered by H. Whitney
[w.10] in 1933. However, his proof did not capitalize on the linear algebra.
Rather, he posed the question in nonalgebraic terms: under what conditions
can a bijection between the edge sets of two multigraphs which takes the edge
set of an elementary circuit onto the edge set of an elementary circuit be
“extended” to a system-isomorphism ?

Before we answer these questions, let us consider some examples. First of
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all, if I is an arbitrary multigraph and if & = Z*(I"), the constructions in
the proof of Proposition D3 applied to 2/ will yield anew a connected multi-
graph I' with the same edge set, the same cocycle space, and the same cycle
space as I'". We can restate our second question as, what are sufficient con-
ditions on I' to assure that I" will be system-isomorphic to I'V? Since I' is
connected, it is clearly necessary that IV be connected. Connectivity alone,
however, is not sufficient. The first three multigraphs in Figure D4 are all
nonisomorphic but have identical cocycle spaces. Observe that both I'; and
I's are connected.

D4
3 3 6 r
1/ |12 4|5 6 4 5 4 5
2
L

2 7 2

l: 5 1: S

None of these graphs is biconnected, and we may inquire whether perhaps
biconnectivity will suffice. It does not; I'y and I'; are biconnected, non-
isomorphic, and have identical cycle and cocycle spaces. We observe in this
example that while {1, 3, 4} is a vertex cocycle of I'y, it is not a vertex cocycle
of I's. We wish then to find conditions on a multigraph so that its vertex
cocycles may be distinguished algebraically from the other cocycles.

Let I be connected and let C be an elementary cocycle. By C7, ', has
two components. If C is not a vertex cocycle, both of these components
contain edges, and so Z*(T',) is not connected. (For example, let C = {4, 5}
in I', of the Figure.) We have shown:

D5 Proposition. If C is an elementary cocycle of the biconnected multigraph T,
and if Z*(T)) is connected, then C is a vertex cocycle.

For example, if C = {1,2} in I' = T'y (Figure D4), then Z*(T',) is con-
nected. By the proposition, {1, 2} must be a vertex cocycle in both I'y and
T's as well as in any other graphical realization of Z*(T';). The following
corollary restates the above proposition in terms of the cocycle space of '
rather than the cocycle space of I',.

72



IIID Graphic Spaces

D6 Corollary. If C is an elementary cocycle of the biconnected multigraph T',
and if 75, [Z*(D)] is connected, then C is a vertex cocycle of T'.

ProOF. By B4b, 75, [Z*(1)] = Z*(T' ;). Now apply the proposition. [

A multigraph T' is triconnected if for each x e V, the submultigraph
I'y + () 1s biconnected.

D7 Exercise. Show that every triconnected multigraph T (a) is biconnected
and hence connected, (b) has at least three vertices, and (c) satisfies
dim(Z(T)) = 2.

D8 Proposition. Let I' be a triconnected multigraph, and let I be a multigraph
with no isolated vertices. If Z(I") = Z(I"), then T and I' are system-
isomorphic.

Proor. Let I' = (V, f, E) and IV = (U, g, E) satisfy the hypotheses. Then
for any x € ¥, I'y,(,, is biconnected. Since the submultigraphs I'y, (., and
T s+ differ only insofar as the latter includes the isolated vertex x, the two
submultigraphs have equal cocycle spaces, which by B3 must be connected.
Also ZH(IV ey is connected, since by B4b it is equal to mg , yo[Z4(I)] =
ZHT xp)- Since f*(x) is an elementary cocycle of I', and hence of I, we
may apply Proposition D5 to IV to deduce that f*(x) is also a vertex cocycle
of IV,

Since v»,(I") = »y(T") = 2 (T" is triconnected and hence biconnected by
Exercise D7), since I was presumed to have no isolated vertices, and since
ZYI") is connected, we infer from B3 that I is connected. By D7,
dim(Z4T")) = dim(Z+T")) = 2, and so by AlSa, vo(I'V) > 3. By DI, g* is
an injection. Therefore, the function g: V — U given by

g*(q(x)) = f*(x), forallxeV

is well-defined, and Figure D9 is a commutative diagram.

D9 r*
V ———— #(E) E
q|{= P >\ 1g
U pr P(E) £

It remains only to show that ¢ is a bijection. It is clearly an injection,
since both f* and g* are. Since every element e € E belongs to f*(x) for two
distinct values of x € V, e belongs to g*(g(x)) for two distinct values of
x € V. Hence e can belong to no other vertex cocycle of I'. Since I'V has no
isolated vertices, g*(u) # @ for all u € U. It follows that g is a surjection. []
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We recast the above proposition in the language of Whitney’s original
paper [w.10].

D10 Corollary. (H. Whitney). Let I' = (V, f, E) be triconnected, and let ® =
(U, h, F) be a multigraph with no isolated vertices. Let there be a bijection
P: E— F such that Z is the edge set of a circuit in T if and only if p[Z] is
the edge set of a circuit in ©. Then I and O are system-isomorphic.

ProoF. Define g = hp, and observe that the lower rectangle in Figure D11
commutes.

D11
1 |4 PYV) ~— A E
q|= ql’; 131’;
4
U PU) <—— E )/
Iy|= lulg pl;
U P R N— -

Thus IV = (U, g, E) and O are system-isomorphic. By this and the hypothesis,
plZ(T)] = Z(®) = p[Z(I")]. Since p is a bijection, Z(I'') = Z(I'). Hence
Z+HI") = Z4(T), and the result follows from the proposition. O

If V is an n-set for n > 0, any graph which is isomorphic to the graph
(V, Z(V)) is called a complete graph of order n, and the symbol K,, is always
used to denote such a graph. Thus, K, is connected and dim(Z(K,)) =
@-n+1=03)

D12 Exercise. Let K, = (V, Zy(V)) and let &, = Z(K,). Show that:
(@) &, is spanned by {#(W): W € #(V)}. [Hint: use induction on n.]
(b) A, is connected for all n, and hence K, is biconnected for all n > 3.
(c) If I is a multigraph such that Z*(I") = o, then Z+(I" g,wy) is
connected and Fy(W) is a vertex cocycle of I for all We Z(V).
(d) Each edge of I belongs to Zy(W) for exactly n — 2 sets W e Z(V).
(e) Combine parts (a)-(d) of this exercise to deduce:

D13 Proposition. Z(K,) is graphic if and only if n < 4.

D14 Exercise. Prove that for any set E, the space &(E) is graphic.

D15 Exercise. Let E = {1, 2,. .., T}. Let &/ be the subspace of #(E) spanned
by

{{1,2,3,4},{2,4,5,6},{3,4,6, T}}.
Show that neither &/ nor &7+ is graphic.
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IIIE Planar Multigraphs

Intuitively, a “planar multigraph” is a multigraph which can be represented
in the plane in such a way that edges meet only at vertices. One can be more
rigorous in topological language, but it requires regarding a multigraph as a
topological object, namely as a 1-dimensional simplicial complex (except that
two vertices may be joined by more than a single edge), an edge being regarded
as a homeomorph of a closed real interval. Such a topological “multigraph’’
is called planar if it can be homeomorphically embedded into 2-dimensional
Euclidean space, or equivalently, into the 2-sphere. Our approach here,
however, will be combinatorial and ultimately algebraic. Demonstrating the
equivalence of various mathematical approaches to planarity is no easy or
elegant matter. Since one cannot seem to exploit the best from all possible
mathematical worlds simultaneously, we will confine our rigor to com-
binatorics (except in §VIID and §VIIE). Nonetheless we will freely use more
pictorial language for both motivation and reinforcement.

Working unrigorously, the reader may observe by trial and error that K,
for example, can be drawn in the plane if and only if n < 4. In particular, K
must be drawn with some edges meeting other than at common vertices
(Figure Ela). With care the number of these ‘“cross-overs” can be reduced
to just one (Figure Elb).

After the reader has spent some time on this trial-and-error method, the
difficulties of demonstrating for instance, that K; is ‘“nonplanar” become

E1

(@ (b)

apparent, and the lack of a rigorous terminology should no doubt contribute
to the frustration. Among the various combinatorial developments of
planarity, ours will most closely parallel the work of S. MacLane [m.1] and
will be closely related also to the approach of H. Whitney [w.9].

The first observation related to MacLane’s approach to planarity is that
when a multigraph I is realized in the plane (without ““cross-overs™), there
are certain cycles which play a special role. The set-theoretic complement in
the plane of the realization of I" has connected components, which are usually
called “regions.” The boundaries of these “regions,” except when they con-
tain isthmuses, correspond to circuits of I'. The edge sets of these circuits,
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as noted in §A, belong to the cycle space of I" and have algebraic significance
in this space. These topological regions will be identified with their bounding
cycles. MacLane used these cycles to characterize planarity.

We illustrate for a specific multigraph I', MacLane’s “bounding cycles.”
Let I' be the multigraph drawn in Figure E2. Its “regions” are:

{ela 82}, {ez, eas‘e4}a {84, es}’ {eSa €s, 37}, {el9 €3, €g, e’l}-

E2

We observe that
(a) this set of cycles spans Z(I'), and
(b) each edge of T' is an element of exactly two of these cycles.

Observe how these properties are precisely dual to the properties of vertex
cocycles in Proposition D3. What MacLane proved is that, in general, the
existence of a list of cycles of I' satisfying conditions (a) and (b) is equivalent
to the existence of a topological realization of the graph in the plane. The
approach of this text, however, is combinatorial rather than topological.
What we will do is to use MacLane’s combinatorial characterization of
planarity as the definition of planarity.

A sequence Z, ..., Z; of cycles of the multigraph T is called a planar
imbedding of T if:

@) {Z.,...,Z} spans Z(I"), and

(b) if e € Fnd(Z(T')), then e € Z; for precisely two indices ie{1,..., k}.

We say that I is planar if it admits a planar imbedding.
An isthmus of a multigraph of course belongs to no cycle while (cf. A21)
all other edges belong to Fnd(Z(I")). By condition (b),

E3 §Z¢=Q
i=1

holds for any planar imbedding Z,, ..., Z,. We return to this development
after a brief look at Whitney’s approach.

The motivation behind Whitney’s development is that when a multigraph
I without isthmuses is realized in the plane, there is a ““natural” construction
which leads to a realization of a second multigraph ® (whose edges are those
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of T'). Whitney called @ a “combinatorial dual” to I'. The algebraic relation
between I' and O is that Z4(0) = Z(T"). For this reason we prefer to say that
® is ‘““orthogonal” to T, rather than “dual” to I'. Having characterized
orthogonal multigraphs in purely combinatorial terms, Whitney then proved
that a realization of a multigraph is planar in the topological sense if and only
if some multigraph is orthogonal to it.

An orthogonal multigraph © is shown in Figure E4 in solid lines super-
imposed on T (cf. Figure E2) in broken lines. Solid and broken edges crossing
each other receive the same label. Note how the “regions” of I' are precisely

E4

the vertex cocycles of @, and vice versa. Surely the relationship between I" and
O here is intuitively apparent. To obtain a realization of ® from a realization
of T, place a vertex in the interior of each “‘region” of I'. These are the vertices
of ©. Then across each edge e of I" draw an edge of ® joining the two vertices
of ® in the two regions of I" having e on their boundary. Note that at the same
time one vertex of I' appears in each “region” of ®. Had this construction
been carried out beginning with ®, one would thereby have obtained I". We
may rightly perceive at this juncture as did Whitney the equivalence between
the planarity of I' and the existence of a multigraph ® “orthogonal” to it.

When this same multigraph I' is realized in the plane with different
“regions” as in Figure E5a, however, the multigraph ® obtained by the
above method has instead the form of Figure E5b, which is obviously not
isomorphic to the ® of Figure E4. Comparing Figures E4 and ESb with T,
and I'; in Figure D4, one observes that the two constructions of ® have the
same cycle space and the same cocycle space. Whitney’s result D10 suggests
that triconnectedness may be required to insure the uniqueness of the con-
struction of ®. Observe also that each vertex cocycle of ® in each of the two
constructions consists of edges corresponding to edges of a “region” of T,
and each vertex cocycle of I' determines a “region” of the appropriately
constructed ©.
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E5

(b) C

Let the multigraphs I" and ® have a common edge set E. We say that I'
is orthogonal to O, and write I' | @ if Z(I") = Z4(0).

Some consequences of the assertion I' | ® are immediate. First of all,
® | T. Secondly, E = Fnd(Z4(I")) = Fnd(Z(I")), and so neither I' nor ®
may have an isthmus. Thirdly, if neither graph has isolated vertices, it then
follows from B3 that I' is biconnected if and only if © is biconnected. Fourthly,
if ' | ® also holds, then ® and @’ have identical cycle space and cocycle
space.

Because we have given a combinatorial definition for planarity, we obtain
a short proof of Whitney’s characterization of planar multigraphs.

E6 Theorem. (H. Whitney). Let the multigraph T' contain no isthmus. T is
planar if and only if there exists a multigraph © such that T' | ©.

ProoOF. The theorem is an immediate consequence of the definition of a planar
imbedding, the fact that Fnd(Z(I')) = Fnd(Z*(T")) = E, and Proposition

D3. O
If Z,,..., Z, is a planar imbedding of a connected multigraph I" without
isthmus, then the multigraph ® whose vertex cocycles are Z,, . . ., Z,, is called

the multigraph orthogonal to I' with respect to (the planar imbedding) Z,, .. .,
Z,. One observes that @ is already furnished with an imbedding C,,..., C,
(which are the vertex cocycles of I') and that I' is the multigraph orthogonal
to ® with respect to this imbedding.

A planar imbedding Z;,...,Z, is elementary if each cycle Z; is an
elementary cycle; it is a simple imbedding if E3 is the only relation among
Ziseois Zps e, dm(Z(I) =k — 1.

Example. Let T' be represented by Figure E7. Then Z = {e,, e5} and
Z' = {e,, €4, es} are the only elementary cycles of I'. The list Z,Z', Z + Z’
is a simple imbedding but it is not elementary, while Z,Z,Z’,Z’ is an
elementary imbedding which is not simple. Up to reordering the cycles, these
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E7

are the only planar imbeddings of I'. Observe (in anticipation of Proposition
E9) that Z(T") is not connected.

E8 Exercise. Prove that every planar multigraph admits an elementary
imbedding and a simple imbedding.

E9 Proposition. Let T' be a planar multigraph. Every planar imbedding of T
is both simple and elementary if and only if Z(I") is connected.

ProoOF. Suppose that Z,,...,Z, is a planar imbedding of I" which is not
simple, in which case, for some reordering of the cycles,

h
E10 2 Z, =g forsomeh < k.
i=1

Let %, and %, be the subspaces spanned by {Z,,...,Z,}and {Z, .4, ..., Z,},
respectively, and let B; = Fnd(%)) for j = 1, 2. These subspaces are not
trivial. If e € B, N B,, then by the definition of a planar imbedding, e belongs
to only one of the cycles Z,, ..., Z,, contrary to E10. Hence B, " B, = &,
and %, @ %, is a well-defined subspace of Z(I'). On the other hand, if
Z e Z(), thenforsomea,,...,a.€l{,wehaveZ = 3¥_, aZ, = >t a,Z, +
Sk ni1aZ € B, D B,. Hence Z(I') is not connected.

If we suppose instead that the planar imbedding Z,, . . ., Z, is not elemen-
tary, then some cycle, say Z,, is not elementary, and by IIC1, Z,, = >, W;
where Wi, ..., W, are pairwise-disjoint elementary cycles, and » > 1. Hence
Ziy.onZy_1, Wi, ..., W, is a planar imbedding of I' with more than
dim(Z(T")) — 1 cycles. Thus the existence of a planar imbedding which is not
elementary implies the existence of one which is not simple, and we proceed
as in the previous paragraph.

Conversely, if Z(I') is a nontrivial direct sum %, @ %,, we suppose that
the planar imbedding Z, . . ., Z; of I is elementary. By IIC3, we may reindex
this imbedding so that Z,,..., Z, € %, while Z, , ., ..., Z, € &, for some h
satisfying 1 < h < k — 1. But since %, and %, have disjoint foundations,
the definition of a planar imbedding implies that E10 must hold. Therefore,
the imbedding is not simple. O
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One of the important and topologically obvious properties of planar
multigraphs is that their submultigraphs are also planar, as are the multi-
graphs obtainable therefrom by identifying a pair of vertices incident with a
common edge.

A system IV = (V', f', E’) is a contraction of the multigraph I" = (V, f, E)
if

(a) V' e P(V) and T'y is connected for all We V’;

(b) E' ={ecE:fle) £ Wlorall WeV'};

© flee={WeV':feen W # g}, forallec E’'.

A contraction of a multigraph is clearly a multigraph, but a contraction
of a graph need not itself be a graph. The contraction I'V is uniquely deter-
mined by I' and V. Every multigraph is obviously a contraction of itself.
In Figure El1, each of the last three multigraphs is a contraction of the first.

El1
S {s}
(S,t,u}
u t {t,u} ist.uvk <>{vv}
v W v.w} Wi

A subcontraction of a multigraph I' is a submultigraph of a contraction of -
I'. For example, every submultigraph of I is also a subcontraction of I'.

The next two exercises cover most of the elementary but essential properties
of contractions and subcontractions.

E12 Exercise. Let ', be a subcontraction of . Prove:
(@) If Z, e Z(I'y), then Z, < Z for some Z € Z(I').
(b) If an edge e of Ty is an isthmus of T', then e is an isthmus of T';.

E13 Exercise. Prove:

(a) If Ty is a contraction of 'y and if Ty is a contraction of ', then 'y is a
contraction of T'.

(b) If Ty is a subcontraction of T, then there exists a submultigraph I'; of
I' such that Ty is a contraction of T';.

(¢) Let Ty,..., Ty be multigraphs such that T is either a submultigraph
or a contraction of U'y_; (i = 2, ..., k). Then I, is a subcontraction of I';.

(@) If T is a subcontraction of T, then there exists a sequence of multigraphs
I=",...,0 = I such that for eachi = 2,...,k, I'; = (V, f;, E)) is one
of the following :

@) (T'i- 1)) Where x is an isolated vertex of T, _;
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(i) (Ty-1)e for some e€ E,_;;
(iii) the contraction of T';_, obtained by identifying two vertices x, y € V;_,
incident with a common edge. Thus

Vi={wh:weVi_1 + {xy}u{{x
and

E, = E_, + fiAlx, v}l

E14 Lemma. If Ty = (V4, fi, E,) is a contraction of T', then
ZFY ) = ZT0)NPE) and Z(y) = =z [Z(D)]

PrOOF. In the light of Exercise E13a and the fact that every contraction of I'
may be obtained by iterating the procedure of E13d(iii), we may assume that
I', has been obtained from T by just one application of this procedure. Thus

Vi={whweV+{x i uilx »
and
E, = {e€E: f(e) # {x, y}}-

Z4T',) is spanned by the collection of its vertex cocycles, and these are
fi*(w)) = f*(w) forweV + {x,y}
[i¥@x, )} = ) + f* ).

We show that this very same collection spans Z(I') N #(E;). For if
Ce Z(T) N #(E,), then C = Y,y f*(w) for some U < V. Since C < Ey,
either {x, y} = U or {x, y} " U = @. Hence Z(I";) = Z*T") N Z(E,).

The second equality follows from the first and I7A15. O

Comparing this lemma with /7D13a and b, we see that the roles of the
cycle space and cocycle space are interchanged, and one may infer a duality
between contractions of I' and submultigraphs of I'. This principle recurs in
Exercise E16.

E15 Proposition. Every subcontraction of a planar multigraph is planar.

Proor. Let I' = (V, f, E) be a planar multigraph. By Exercise E13d, it
suffices to prove that the multigraph I'" is planar if I is obtained from I' by
one of the following three operations: (i) deletion of an isolated vertex, (ii)
deletion of an edge, (iii) identification of two vertices incident with a common
edge.

Clearly if Z(T') = Z(I'), then any planar imbedding for I is also a planar
imbedding for I'. This is indeed the case when I is obtained from I' by
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operation (i) or by operations (ii) or (iii) where the edge in question is an
isthmus. Therefore, let e € Fnd(Z(I"))}—recall A21—and let Z,,...,Z, be a
planar imbedding of I" such that ee Z, N Z,.

To show that Z, + Z,,Z,, ..., Z, spans Z(I'), let Z = 3¥., a,Z, for
some ay,...,a. € K. If Ze Z(I',), then a, = a,, and Z = a\(Z, + Z,) +
¥ s aZ; as required. It follows that each edge in Fnd(Z'(T,,)) belongs to at
least one of the cycles Z, + Z,,Z,, ..., Z,. Since Z,,...,Z, is a planar
imbedding, each such edge is in at most two of Z; + Z,, Z;, . . ., Z,. Finally,
since (Z, + Z,) + Z; +...+ Z, = @ (by E3), each edge in Fnd(Z'(T,,)) lies
in exactly two of the cycles. Hence Z, + Z,, Z,, . . ., Z, is a planar imbedding
of T',,.

If I is obtained by identification of the two vertices in f(e), let F =
Fnd(Z(T)) + f~'[f(e)]. By Lemma E14, Z(I") = #;[Z(I")], which implies
that Z, N F,...,Z, N F spans Z(I"). As in the previous paragraph, one
easily demonstrates that part (b) of the definition of planar imbedding is
satisfied. O

E16 Exercise. Let ©® = (W, g, E).

(a) LetI" | O, and let e be in their (common) edge set. Let IV be obtained
from I' by identification of the vertices incident with e. Prove that I |
O -t thereby showing that the deletion of the edges having a given
common image and the identification of their two incident vertices are dual
operations.

(b) Let I' | © and let IV be a subcontraction of I' without isthmuses.
Then I | ®' for some subcontraction ®’ of ©.

E17 Corollary. I' is planar if and only if every lobe of T is planar.

ProoF. If T' is planar, then by the proposition, every lobe is also planar.
Conversely, let 'y, ..., I',, be the lobes of I' which are not isolated vertices
or isthmuses, and let Z, 4, . . ., Z; ;, be a planar imbedding of T, (i=1, ..., m).
Since Z(I') = @, Z(I) by BS, the list Z;5,..., 21 4,5 Z5,15 -  +» Za kg
e v s Zp i, Of cycles clearly spans Z(I'). If e € Fnd(Z(T)), then e € Fnd(Z/(T",))
for exactly one lobe I';. Hence e € Z; ; for exactly two indices j, and e is in
no other cycle of the planar imbedding. O

E18 Exercise. Show that the same cycle Z can occur twice in a planar imbedding
of T if and only if 'z is a lobe of T'.

In the light of this exercise, whenever dim(Z(®)) > 1 for each lobe ® of T,
one can treat every planar imbedding of I" as a set of cycles rather than as a
list of cycles.

The symbol K, , will denote the bipartite graph ({V;, V,}, &) where
|Vi| = m, |Va| = n, and & = {{x;, x5}: x; € V}. Such a graph is called a
complete bipartite graph.
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E19 Exercise. Prove that:
(@) If m < 2o0rn < 2, then K, , is planar;
(b) If n < 4 then K, is planar.

In the next section it will be shown (F9) that neither part of E19 can be
sharpened.

E20 Exercise. In §VIE we will prove: if I' is a triconnected graph and if
I' | O, then O is likewise a triconnected graph. Assuming this result, show
that if I is a triconnected planar graph, then the set of regions of a planar
imbedding is unique and that there exists only one connected multigraph ®
such that I | ©.

Let Z, denote the cyclic group with n elements. A cyclic ordering of an
n-set U is a bijection x: Z, — U, the image of i under x is then denoted by x;.

E21 Lemma. Let I’ = (V, f, E) be a biconnected multigraph. Given any planar
imbedding for T, for each vertex x of I' there exists a cyclic ordering
€05 - - -5 €pxy—1 Of the elements of f*(x) such that e, and e, , , lie in a common
cycle of the imbedding for i = 0,.. ., p(x) — 1.

PRrROOF. Let Z,, ..., Z, be a planar imbedding for I', and let x be a vertex
of I'. By reordering if necessary, we may suppose that Z,,..., Z, are the
cycles of the imbedding which contain edges incident with x. Since T is
biconnected, the imbedding is elementary by B3 and E9. Hence for i = 1,
..., h, the cycle Z, contains exactly two edges belonging to f *(x). Lete, € Z; N
S*(x). Then the edge e, € (Z, N f*(x)) + {e,} is uniquely determined. We
suppose then that ey, ey, . . ., e, have been selected and that Z,, ..., Z, have
been reordered so that e;€eZ;,_, NZ, N f*(x) for i =1,...,m, where
2 < m < h — 1. It suffices merely to show that e, ¢ Z,,.

If e, € Z,,, then there exists an edge e,,,; € f*(x) such that e, ,, ¢ UM, Z,.
Since I' is biconnected, we deduce from B3 that e,.; and e, lie on some
common elementary circuit. By A9, e,,; and ¢, belong to a common

elementary cycle Z. Let us write Z = >¥_,a,Z,, where a, ..., a, € K. Since
therefore ey, ..., e,_; ¢ Z, we must have a, =...= q,. But e,eZ, NZ,,
which implies that e, ¢ Z. 0O

Let I have a planar imbedding and let A and A’ be elementary circuits
with Z and Z’ as corresponding cycles. We say A and A’ cross at a vertex x if
the two edges in f*(x) N Z and the two edges in f*(x) N Z' alternate in any
cyclic ordering for f*(x) constructed as in Lemma E21. We may now state
and prove:

E22 Theorem (Jordan Curve Theorem for Planar Multigraphs). Let T be a
planar multigraph. If two elementary circuits A and A’ of T cross at a vertex
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in some planar imbedding of T, then they have at least one other vertex in
common.

PRrOOF. Let Z,, . . ., Z, be a planar imbedding in which A and A’ cross at a
vertex. We write Z = JF., a,Z,, where Z is the cycle of A. Each edge of T
is then of one of three types: an edge is of type j (j = 0, 1, 2) if it belongs
to exactly j cycles Z; having coefficient a; = 1. Clearly the edges of type 1
are the edges in Z. By the lemma, if the vertex x is not in A, then the edges in
S*(x) are either all of type 0 or all of type 2.

Now let A’ be given by xo, €5, X1, . . ., €, X, = Xo, and suppose A and A’
cross at x,. By the lemma we may assume without loss of generality that e,
is of type 0 and e, is of type 2. Thus there is a first index i > 1 such that ¢, is
not of type 0. The vertex x;_, # X, is then a vertex common toA and A’. []

To conclude this section, we give a heuristic proof of the result of MacLane
stated at the beginning of the section, namely that our combinatorial definition
of planarity is equivalent to the usual topological definition.

Consider first the case where I' is an arbitrary biconnected multigraph and,
by our definition, planar. Let Z,, . . ., Z, be the regions of a planar imbedding
of I'. By B3 and E9, Z,,.. ., Z, are all elementary. Hence I';, defined to be
I'z,, is an elementary circuit of I'. Let D, be a topological disk whose boundary
is a topological realization of I',. Identify D, with D, along each edge and
each vertex that I'; and I'; have in common. Let K denote the resulting cell
complex. Clearly each point of K which is not a vertex of I" has a neighbor-
hood homeomorphic with a disk. By Lemma E21, each vertex of I' also has
a neighborhood in K homeomorphic with a disk. Hence K is a surface. To
see that K is in fact a sphere, observe that the topological imbedding of T'
into K yields a cell decomposition of K with Euler characteristic

k —»(T) + w(T) = dim(Z(T)) — vy(T) + »o(I) + 1,

which equals 2 by A15b.

Now assume I is an arbitrary planar multigraph (again by our definition).
By E17 each lobe of T is planar, and by the above argument each lobe of T'
is planar in the topological sense. Since the statement of E17 is also valid
when the terms are understood topologically, I" is therefore planar in the
topological sense.

Conversely, if I' is any multigraph which is planar in the topological sense,
we need only delete the isthmuses. The bounding cycles of the regions then
form a planar imbedding by our definition.

It should be apparent now that our special treatment of isthmuses is
necessitated by the fact that no 1-subset of edges can be a cycle in a multi-
graph—as we have defined multigraphs. In order to accommodate such
cycles, we would have to introduce “loops,” i.e., edges which join a vertex
to itself. In Figure E23 we carry out, for a multigraph I" with isthmuses, the
topological construction of an orthogonal multigraph, illustrating that
“loops” must then be included.
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E24 Exercise. Let T' be a connected planar multigraph. Let Z be a cycle of
T which is not a region of some planar imbedding of T, and let U be the set of
vertices incident with edges in Z. Show that if 'y is an elementary circuit, then
L'y, is not connected.

HIIF Euler’s Formula

We have seen by example in the previous section that a planar multigraph
need not uniquely determine which cycles will be regions of a simple planar
imbedding. It does, however, determine the number of regions in any simple
planar imbedding.

F1 Proposition. The number of regions in any simple planar imbedding of a
multigraph T is
() = vo(T) + v_o(T) + 1.

Proor. If Z,, . . ., Z, is a simple planar imbedding of I, then by the definition
and A15b,

k =dim(Z@) + 1 = w(@) — o) + v_(T) + 1. O
The number of regions in a simple planar imbedding of I' is thus a param-
eter of I' and is denoted by v(I"), abbreviated by v, when there is no risk of
confusion. We now state a result familiar to both graph theorists and topol-
ogists, according to how the symbols are interpreted.
F2 Corollary. (a) For any planar multigraph,
V2—V1+Vo—l'_1=1.
(b) (The Euler Formula). For any connected planar multigraph,

VQ—V1+V0=2.
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For the remainder of this section it will be understood that T' = (V, f; E)
denotes a planar multigraph. We define the average covalence of I' to be the
number

2v(T)

v(I)’

writing simply p* when there is no risk of confusion. In terms of p = p(I")
and p*, the Euler Formula has another useful form:

F3 pH(I) =

F4 Corollary. For a connected planar multigraph with v, > 0,

1,1 1 1

; + F =3 + 1’_1
ProOF. One merely substitutes into the Euler Formula the values v, = 2v,/p
and v, = 2»,/p! from Al and F3, respectively, and then divides by 2»,. [

Suppose now that 7 is the set of isthmuses of I' and that Z,, ..., Z,,q, is
a planar imbedding of I'. The covalence of the region Z, is the integer p*(Z,) =
|Z,|]. Note that if 'y, | ® where ® = (U, g, E + I) and Z, = g*(u;) for
w e U(i=1,...,vy(Iy)), then the covalence of g*(u,) is precisely the valence
of . Thus not only do we have

FS P(I) _L @ = V2(P) = Vo(@),
but from Al,
1 vo(I)
F6 n@® =3 (3, P@) + .
i=1

F7 Proposition. Let Z,, .. ., Z,, be a planar imbedding for T'.
(@) If T has no isthmuses, then
1 va(l)

HT) = — > pHZ).
P() v2(1'\)i=zlp(i)
(b) There exists some index i such that p(Z,) < p*(I").

Proor. From F6 we have

=) 13 )

Va Va i=1
Hence

pm -2 LSz
and (a) follows when I = @. If p"'(Z‘) > p!(T") for all i, then
pm -2 L3 iz > p,
which is impossible. O
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Suppose that T' is without isthmuses and that Z,, ..., Z,,r is a simple
planar imbedding of T. If for some k € N, p*(Z)) = k foralli = 1,...,vy(D),
then the planar imbedding is said to be k-covalent. If for some k € N, every
simple planar imbedding of T' is k-covalent, we say that I is k-covalent. We
say that I is isocovalent if it is k-covalent for some k € N.

Examples. The circuit A, is n-covalent. K, is both 3-valent and 3-covalent.
A multigraph with », = 2 and »; > 2 is v;-valent and 2-covalent. The multi-
graph shown in Figure F8 has a 3-covalent planar imbedding, as shown in
F8a, but it is not a 3-covalent multigraph, as seen by F8b.
F8

(@) (b)

The following necessary condition for planarity is known as the “ Kuratow-
ski criterion.” The proof of its sufficiency is much more difficult and will be
given in the next section.

F9 Proposition. Any graph having K; or K35 as a subcontraction is not
planar.

Proor. By E15 it suffices to prove only that neither K5 nor K3 5 is planar.

By D13, Z(K;) is not graphic, and since K5 has no isthmus, K; is not
planar, by Proposition E6.

Now suppose that K; s is planar. By substituting v(K;3) = 9 and
p(Ks.5) = 3into F4, we obtain p*(Kg,5) = & < 4. Hence some cycle of Kj,3
consists of three or fewer edges, which is impossible since Kj 5 is a bipartite
graph. O

F10 Exercise. Prove that K; is not planar directly from F4.

F11 Proposition. Let T' = (V, f, E) be a planar multigraph.
@) If pX(T) = 3, then p(x) < S for some x e V.
() If o(T') = 3, then every planar imbedding contains a region Z such that
pH(Z) < 5.
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PRrOOF. (a) Since 1/pX(T") < %, F4 yields

1 1 1 1_1
D27 RM 376
Hence p(I') < 6, and p(x) < 6 for at least one vertex x € V.
(b) Similarly, if p(I') > 3, then p'(I') < 6. The result then follows by

Corollary F7b. O

F12 Corollary. Every planar graph has a vertex of valence at most 5.

Proor. Every nonempty cycle of a graph I' has covalence at least 3. By F7b,
pH(T) = 3. The result follows from F1la above. O

F13 Exercise. Show that if a planar graph has smallest valence 5, then it has
at least 12 vertices of valence 5.

F14 Exercise. Let ' be a planar graph with vy(I") > 4. Then I' has at least
four vertices of valence at most 5.

F15 Proposition. Let " be a planar isovalent multigraph without isthmuses or
isolated vertices, and let T have an m-covalent imbedding for some m. Then
the parameters vy, vy, v, p, p* of T' must conform to one of the seven types
in Table F16, where k is any integer greater than 1.

[

F16 Type Yo 2 vy P P
I 2 k k k 2
II k k 2 2 k
III 4 6 4 3 3
v 6 12 8 4 3
A\ 8 12 6 3 4
VI 12 30 20 5 3
VII 20 30 12 3 5

Proor. Since T is isovalent, p is an integer. Since I' has no isolated vertices
or isthmuses, p > 1. By F7a, p* is likewise an integer greater than 1. The
parameters vy, p, and p* of I' thus form an integral solution to the system of
inequalities:

1

+ =3
pt

+

5 [

.
b

N ==

F17 p =2, pt > 2, v, = 2, and

R

this last equation is from Corollary F4.
If p > 4 and p* > 4, we have (1/p) + (1/p*) < % and the last equality in
F17 cannot hold. Hence either p < 3 or p* < 3. We should also observe
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that the system F17 is symmetric in p and p*. Thus if we find the solutions
with p > p*, we may obtain all other solutions by interchanging the values
of p and pt.

Case 1: p* = 2. Then F17 becomes:

P22’ V122,

o |-
5 |

This yields the solutions p =v; =k, pt = 2,fork =2,3,....
Case 2: p* = 3. Then F17 becomes:

+

3 |

(=

1
2 3, =2, -
P V1 >

Clearly we must have p < 6, i.e., p = 3, 4, or 5, whence the solutions:

P=3, V1=6;
p=4, =12
p =35, v, = 30.

We have then a total of 4 solutions with p > p* and we get three more
by symmetry. Using the definitions of average valence and average covalence,
we may compute v, and v, and fill in the table. O

F18 Proposition. For each integer k > 2, there is a unique planar multigraph of
each of the Types I and II in Table F16.

Proofr. Suppose I' = (V, f, E) is of Type 1. Since v, = 2, f(e) = V for all
ee E. Since v; = k, I is uniquely determined. To prove existence, let I' =
(V,f, E) where vy = 2, E ={ey,...,e,; and f(e)) = Vforalli=1,...,k.
It is easy to see that Z(I') = &(E). It is also easy to see that

{Z,={e,e1}:i=1,...,k -1}

is a basis for Z(I"). It follows at once that Z,, ..., Z,, where Z, = {e, 1},
is a planar imbedding of T and that T is of Type 1.

The remainder of the proof (for Type II) is left as an exercise for the
reader. O

A planar multigraph of one of the five remaining types is, in fact, a graph
and is called a Platonic graph. This name comes from the fact that the 1-
skeletons of the five Platonic solids are graphs of these five types. They are
illustrated in Figures F19 through F23. Actually, these are the only multi-
graphs of these types, i.e., there are precisely five Platonic graphs. We will
prove the uniqueness for Types III, IV, and V, leaving the “dirty” cases of
Types VI and VII as exercises for the reader.
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F23

Dodecahedron Type VII

F24 Lemma. If' T is a Platonic graph, there exists a connected Platonic graph
O such that T | ©.

Proor. Let I' be a Platonic graph and let Z,, ..., Z, be the regions of an
isocovalent imbedding of I'. By the definition and D3, Z,,..., Z, form the
vertex cocycles of a connected multigraph ® orthogonal to I'. Clearly O is
isovalent without isthmuses or isolated vertices. The vertex cocycles of T’
form a p(I')-covalent imbedding of ®. Hence by F15, @ is of one of the types
in Table F16. Since p(®) = p'(I") and p(®) = p(I"), O is Platonic. O

F25 Lemma. Every Platonic graph is biconnected.

PRrROOF. By two successive applications of the foregoing Lemma, we infer the
existence of a connected Platonic graph I' of each type.

If p(I") = 3, let x, be an articulation vertex of I'. Since f*(x,) is not
elementary, while | f*(x,)| = 3, at least one of the edges in f*(x,) is an isthmus.
But by the definition of a Platonic graph, I' contains no isthmuses. If p(T") > 3,
then by the lemma, there exists a Platonic graph ® such that ® | T'. From
F16 we see that p(®) = p*(I") = 3. Hence @ is biconnected and it follows that
I" is biconnected. U

F26 Lemma. If I' = (V, f, E) is Platonic and p(I') = 3, then T is a graph.

PRrOOF. Suppose f(e;) = f(ez) = {x, y}. Since p(x) = 3, there is a third edge
e3 such that x € f(e;). Hence f*(x) = {ey, e,, e3}. For any region Z of an
isocovalent imbedding of T, |Z N {e,, e,, €3} is even. Since, in addition, each
of these edges belongs to two regions, there exist regions Z,, Z,, Z, such that
Z, O f*(x) = {e,, e} for {i, j, k} = {1,2,3}. Hence Z; contains the cycle
{e,, ey}. Since p*(T') > 3, Z; is not elementary. But since I is biconnected, each
region must be elementary by E9. O

F27 Proposition. There is only one Platonic graph of each of the Types III,
1V, and V. Furthermore, each is an isocovalent graph.
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Proor. Assume I is of Type III. By F26, it is a graph. Since it has 4 vertices
each of valence 3, it must be K,, which is isocovalent since it has a unique
planar imbedding.

Assume T' is of Type V. It is also a graph by F26. Furthermore, Z(T') is
even, and hence by A13, T is bipartite, say with respect to {V;, V,}. Since
T isisovalent, |V;| = |V;|. Thus I'is a subgraph of K, ,. Since »,(T') = 12 =
11(Ky,e) — 4, T must be obtained by deleting 4 edges from K, , which
reduces the valence of each vertex by 1. This can be done in essentially one
way, yielding the cube (F21).

Assume I' is of Type IV. Let © be Platonic and let ® | T'. We have just
shown that O is the cube. Since the cube has no cocycle consisting of two
edges, I' has no cycle of length 2 and is therefore a graph. Hence T’ is a sub-
graph of K. Since v;(I") = »,(Kg) — 3, I must be obtained by deleting three
edges from K¢ in such a way as to reduce the valence of each vertex by 1.
This can be done in only one way (up to system-isomorphism) yielding the
octahedron (F20). One may easily verify that the cube and the octahedron
have each only one planar imbedding and hence are isocovalent. O

IIIG Kuratowski’s Theorem

This section is devoted to proving:
G1 Theorem (Kuratowski [k.6]). 4 necessary and sufficient condition for a
multigraph T to be planar is that neither K nor K3 3 is a subcontraction of T'.

Actually Kuratowski’s original formulation was slightly different:

A necessary and sufficient condition for a graph to be planar is that it have
no subgraph ‘‘ homeomorphic” to Kg or K3 3.

Our combinatorial (and therefore nontopological) approach to graph
theory precludes our proving the theorem in its original form. To understand
better the relationship between Theorem G1 and Kuratowski’s original
statement, consider the graph obtained by replacing some of the edges of K5
(or K3 3) by elementary paths of length more than 1. The resulting graph is
“homeomorphic” to Ks (or K3 ) but only the appropriate contraction of it is
K; (or K3 3). The closest we can come to Kuratowski’s original statement is:

G2 Corollary. If T is a nonplanar multigraph with p(x) > 3 for every vertex x
and such that every subgraph (other than T itself) is planar, then T is K
or Ka'a.

The proofs of these results will come at the end of this section.
Let ' = (V, f, E) be a connected multigraph. A set W < V is called a
separating set of I' if v_;(T'y,) > 1. In E17, we proved that a graph is planar
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if and only if its lobes are planar. In the next proposition we extend this
result to biconnected and triconnected multigraphs.

G3 Proposition. Let T' = (V, f, E) be a connected multigraph, let W be a
minimal separating set such that |W| < 3. Let U, be the vertex set of a
component of Ty, and let Uy = V + W + U,. Then T is planar if and
only if the contraction T'; obtained by contracting U, to a single vertex is
planar forj = 1,2.

Proor. If T is planar, then so are I'; and I'; by E15.
The converse follows from E17 in the case |W| = 1. We will prove the
converse in the case || = 3, leaving the simpler case | W| = 2 to the reader.
Let W = {x;, x,, x5}, and let {x,, e;, e;, €5} be a set of four distinct
elements disjoint from all sets in question. Forj = 1,2,let V; = U, + W +
{xo};let F,betheedgesetof I'y, y,;let F; = E + Fi;let E; = F; U {ey, e;, €3};
and finally let ®; = (V}, f;, E;) where

_ {x0,x)} ife=¢(@=1,2,3);
/e = { f(e) otherwise
(see Figure G4). One easily sees that ; is a subcontraction of T'.
G4
r X S)
X3

T, and ©, may differ only in that I'; may admit more than one edge whose
image is {x,, x;}. By assumption I, is planar, and so by E15, 0, is planar.

Let Z,,...,Z,/ be a simple imbedding of ®, (j = 1, 2). If ¢, were an
isthmus in either ®; or ®,, then x; would be an articulation vertex of T,
contrary to the minimality of W. Hence ¢, is contained in two of the cycles
of the imbedding of ©, (i = 1,2, 3;j = 1, 2). Since p(x,) = 3, any cycle
containing one of ey, e,, e; contains exactly two of these edges. We may
therefore assume without loss of generality that {e,, es} < Z,/, {e;, es} < ZJ,
and {e,, e;} < Z5 for j = 1, 2. Now consider the list

GS Zr+Z2%2Z27+222Z +22424,...,2,,232,...,2,,°%
We assert that this list is a planar imbedding of T'.
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Part 1: The cycles in G5 are all in Z(I') and each edge of T" which is not an
isthmus belongs to exactly two of these cycles.

Fori>4,j= 1,2, Z/ < F,; and hence is a cycle of (0))y,+w = Ly, +w-
But any cycle of T'y,,  is a cycle of T'. We observe that Z,” + {e,, e5} is the
edge set of an xyx5-path in I'y, . w. Thus, Z;* + Z,2 is the edge set of a circuit
in T' passing through x, and x;, and by A9, Z,* + Z,%2e Z(I'). Similarly
Z,' + Z,2 and Z3' + Z3® are cycles of T,

Observe that E is the disjoint union of F; and F,, and that if e € F; is an
isthmus of @, then it is an isthmus of I'. Thus if e € F; and is not an isthmus
of T, it belongs to two of the cycles Z,/, ..., Z,}, and hence to two of the
cycles in GS5.

Part 2: The set of cycles in G5 spans Z(I").
SinceZ,, .. .,Z,}isa simple imbedding of ©,, we have by Euler’s Formula:

m; — vi(0) + v(®,) =2, forj=1,2.
Adding these two equations together yields
my + my — (1) + 6) + ((T) + 5) = 4,
which in turn yields by A15b,
my + mg — 3 = 1([) — v + 2 =dim(ZM)) + 1.

Thus there are exactly dim(Z(I")) + 1 cycles in GS5. It suffices to show that
there is only one nontrivial relation over I among these cycles. Assume

2 my
a'(Z} +Z3 + z Z o'z} = o,
=1 i=4

Ma

G6

i=1

where a’e Kforj=1,2;i=1,..., m;. Then

mi mg

Z a'Zy + Z a’Z? = &,

i=1 i=1
where a2 = a;* for i = 1, 2, 3. From this we conclude

my mg

z a'Z} = z a’Z? = Z,

i=1 i=1
where Z is a cycle in E; N E, = {e, e,, eg}. It follows that Z = &. Since
ZJ,...,Z,} is a simple imbedding of @, it follows that @,/ = a)' =...=
an/ forj = 1,2.Buta,* = a,? hence all of the coefficients in G6 are equal. ]

A subcontraction ® of T is proper if © is not isomorphic to I'.

G7 Exercise. Let I be a nonplanar multigraph with the property that every

proper subcontraction is planar. Prove that then:
(a) T is a triconnected graph;
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(b) If W is any separating 3-set, then W is the set of vertices incident with
a vertex of valence 3.

G8 Lemma. Let T’ = (V, &) be a nonplanar graph such that every proper sub-
contraction is planar. If for some edge the subgraph obtained by deleting the
two vertices incident with that edge is an elementary circuit, then T" is K;
or K3’3.

PROOF. Let V = {31, ya, X1, . . ., Xi}, and suppose {yy, ya}, {Xi, X,+1} €S, the
indices being read modulo k, and that there are no other edges of the form
{x;, x;}.

Case 1: Three or more of the vertices x,, ..., X; have valence 4 (i.e., are
incident with bothy, andy,). Say x,, x,, and x,all have valence 4 (1 < p < g < k).
Then the contraction defined by the partition

{{xla ey xp—1}9 {xps ey xq-—l}: {xq, L] xlc}a {yl}’ {y2}}

of V contains K5 as a subgraph. We conclude I' is K.

Case 2: At most two of the vertices in {x, ..., x;} have valence 4. Since
|V| > 4 by E19b, and since each vertex of I' has valence at least 3 by G7a,
we may assume Xx, is incident with y, and not with y, and that x, is incident
with y,. Now let p be the least index such that x, is incident with y,, and let
q be the first index in cyclic order after p such that x, is incident with y,. If
q = k or 1, we assert that I' is planar, contrary to assumption. We have
illustrated this fact in Figure G9, leaving the reader to list the cycles of this
imbedding. We assume then that x,, x,, x,, and x; are distinct. Then the con-
traction defined by the partition

{{xl’ vy xp—l}s {xps LS ] xa—l}s {xqs LR xk—l}’ {xk}a {yl}’ {y2}}
has a subgraph isomorphic to K3 5. We conclude I is K5 5. O

G9
Xk-1 X k X1
X2

xp*l Xp Xp-l

G10 Exercise. Prove that if I is a triconnected graph such that for each edge
the two vertices incident with that edge are also incident with a common vertex
of valence 3, then I is K,.
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G11 Proposition. If I' = (V, &) is a nonplanar graph such that every proper
subcontraction is planar, then T' is K5 or K3 5.

Proor. By Exercise G7a, I is triconnected. If {x, y} = E€& and if I'y,
(the graph obtained by deleting the vertices x and y) is not biconnected, then
by G7b, x and y are incident with a common vertex of valence 3. It follows
from Exercise G10 that there exists at least one edge E; = {x,, x,} such that
Iy, g, is biconnected. )

Let {E,, E/, E//, ..., E,} be the edges incident with x; (j = 1, 2), and
let &’ be the set of edges incident with neither x, nor x,. Let x, be an element
distinct from all other objects under consideration, let F = E/ + {x,, x;}
for j=1,2; i=1,...,m; and let F ={F/:j=12;i=1,...,m}.
Finally let @ = (V + {x,, X1, X2}, &' U F}. Thus 0 is isomorphic with a sub-
graph of the contraction of I' obtained by contracting {x,, x,} to a single
vertex. By assumption @ is planar.

Let Z,,..., Z, be a planar imbedding of ®. Since I is biconnected, O is
biconnected, and by E9 and B3, this imbedding is both simple and elemen-
tary. Thus each region Z; contains exactly two or none of the edges in Z.
Assume that Z,, ..., Z, are the cycles in the list avoiding %, and let Z =
Zyiy +...+ Z,. We assert that Z,,...,Z,, Z is a planar imbedding of
O = (V + {x1%5}, ).

Since each edge of & is contained intwo of thecycles Z,, , 4, . . ., Z,, and since
each of these cycles contains two of the edges in &, |#| = m — k. Hence

dim(Z(0 ) = 11(Ox) — v0(Oppy) + 1
= (1©®) — |F) — ((®) - D+ 1
=dim(Z@®) + 1 - |F| =k.

Furthermore, one easily sees that Z,, ..., Z,, Z satisfies only one nontrivial
relation over K. (Any relation among Z,, ..., Z,, Z yields a relation among
Z,,...,Z,) We conclude that Z,, ..., Z,, Z spans Z(0,,) and that every
edge of ©,, belongs to a positive even number of the cycles in this list.
Finally, no edge of ., can belong to more than two of the cycles Z,,
vesZy, Z. Thus Z,,...,Z,, Z is a planar imbedding of ©,. Since by
assumption @, = I'y, g, is biconnected, this imbedding is elementary, and
in particular Z is an elementary cycle.

Let " = & + &’ (i.e., the set of edges of I" incident with x; or x,) and
consider the subgraph I';, g.. If I' = I'; . ¢, then I' satisfies the hypothesis
of Lemma G8 and we conclude I' is K; or K3 3. We suppose then that I'; , ¢
is a proper subgraph of I and show that this supposition leads to a contra-
diction.

By hypothesis, I';,¢g- is planar. There exists a planar imbedding
Ziy. ..y 2y f Ty g0 Since I';, ¢~ is clearly biconnected, this imbedding is
both simple and elementary. Thus

n=dm(ZTz.e)) = (Z| + 16D - (Z] +2)+ 1 =[6"] - 1
= (p(x1) + p(xz) — 1) — L.
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By direct computation, exactly p(x;) + p(x3) — 2 cycles contain edges in &”.
Thus one cycle in the list, say Z,, , ,, is contained entirely in Z, i.e., Z,,, = Z.

We wish to show that Z,, ..., Z,, Z,/,..., Z, is a planar imbedding of T.
These are clearly cycles of I'. Every edge in Z + &’ belongs to two of the
cycles Z,, ..., Z,. Every edge in &” belongs to two of the cycles Z,, ..., Z,’,
and every edge in Z belongs to one of the cycles from each list. Finally,
Zy,..., 2, 2Z),...,2Z, spans Z(I') since these cycles clearly satisfy only one
relation and since

dim(Z(I")

(T — () + 1
11Oy + |€"]) — (o(Oxpy) + 2) + 1
(dim Z©uy) + |6 — 2=k +n— 1. 0

The necessity of Kuratowski’s Theorem as we have stated it follows from
Proposition F9. The sufficiency follows from Proposition G11. We leave the
proof of Corollary G2 as an exercise for the reader.
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CHAPTER IV

Networks

IVA Algebraic Preliminaries

Let X be a set. In §7TA we discussed the algebraic structure of K*, and we
demonstrated an isomorphism from KX onto 2(X). In this section, we
develop an analogous theory for QX. Many of the following results admit
immediate generalizations to FX¥ where F is an arbitrary field or at least an
arbitrary ordered field.

The set Q% is a commutative algebra under the usual operations. For
hy, hy € Q%, we have addition of functions:

(hy + ho)(x) = hy(x) + hy(x) for all xe X;
multiplication of functions:
(hh3)(x) = hy(x)hy(x) for all x e X;
and scalar multiplication:
(nhy)(x) = phy(x) forallne@, xe X.

Characteristic functions cs for § < X as defined in IB1 acquire a different
meaning since the symbols 0 and 1 are now understood to be in Q instead
of in K. When S = {x}, we shall supress the braces and write c, for c,;. The
reader should verify that the set {c,: x € X'} is a basis for @* (as it was for
K¥), that ¢, is the additive identity of the vector space @¥, and that cy is
the multiplicative identity of the algebra @*. No confusion should arise from
our use of the symbols O and 1 also to designate the identities ¢, and cy,
respectively.

The algebra QX yields a rather natural inner product:

Al hy-hy = D hy(x)hy(x), for all hy, by € Q.

xeX
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Observe that when Q is replaced by K, then Al reduces to the inner product
on #(X) defined in §/IA. The support function o: Q* — Z(X) is given by

olh) = {xe X: h(x)eQ + {0}}, forall he QX

and the set o(h) is called the support of 4. Thus when Q is replaced by IK,
o is the algebra isomorphism from (K%, +, -) onto (#(X), +, N) discussed
at the beginning of §I/JA. However, in the present case, ¢ need not be an
injection. Even still there is a relationship between Q* and #(X), and this is
the subject matter of the present section.

Let L be a subspace of QX and let

H(L) = {o(h): he L}.

As a subcollection of #(X), #°(L) inherits the partial order <. We let (L)
denote the collection of elementary sets in A°(L). If he€ L and o(h) € (L),
we say that 4 is a minimal function of L.

A2 Proposition. Let L be a subspace of Q*. Let hy, h, € L, where h, is a minimal
Junction of L and o(hy) < o(h;). Then hy = nhy for some 5 € Q.

Proor. By hypothesis, o(h;) # &, and so we may fix x € o(h;). Let

_ g _ h(®)
hy = hy e hy.
Clearly h3 € L and o(hg) < o(hy) U o(hy) = o(hy). In fact, o(hs) < o(h,) since
x € o(h;) but hg(x) = 0. But since o(h,) € #(L), o(hs) = @. Hence hy =
and

_ ha(x)
hy = (o) hy. O

Let Y = X and consider the injection j: QY — QX given by

. _ x) ifxeY;
GENE) = {o ifxeX+ 7,

for h € Q¥. We say that j(h) is the “extension by 0 of 4 to a function on X.
Clearly j is a nonsingular linear transformation. Hence QY is isomorphic to,
J[QY], which is the subspace of Q¥ consisting of all functions 4 € Q% with
o(h) < Y. Identifying QY with j[QY], we henceforth consider QY as a sub-
algebra of QX. It is in fact an ideal of Q.

The above identification is analogous to the fact that (Y) is a subspace
of Z(X). While such “coordinate subspaces” QY could provide a theory of
connectedness for subspaces of Q¥ analogous to the theory in §/IC, we shall
have different aims and emphases in the present chapter. Nonetheless, many
of our techniques will be reminiscent of earlier ones, and a perusal of §IJA
and §/IC is recommended, with an eye toward comparing present and past
results as we proceed.
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For each subset Y < X, we define the projection my: QX — QY where
my(h) is the product hcy for each h e Q*. Thus wy(h) is the restriction Ay
extended by 0 to all of X. The image of =y has been identified with QY. Its
kernel is @**¥. Thus my[L] is a subspace of Q¥ whenever L is a subspace
of QX. Since L N QX+Y is the kernel of the restriction y,;, we have

A3 dim(L N Q**Y) + dim(my[L]) = dim(L).

A4 Exercise. Prove that for any subspace L < QX and any Y < X,

(L N QY'Y = my[L*]
and
(my[L])'r = L+ N @Y,

where | , indicates the orthogonal complement in QF.

A5 Exercise. For Y < X and L a subspace of Q%, prove that the minimal
functions of L N QY are precisely the minimal functions of L with support
contained in Y.

The next proposition, which is parallel to Proposition IICl1, is the central
result of this section.

A6 Proposition. Let L be a subspace of QX, and let he L. Then h = 3, b
where hye L fori = 1,...,m, and
(@) o(h) e A(L);
(®) o(hy) = olh);
(©) h(x)h(x) = O for all x € X.
ProOF. We proceed by induction on |o(h)|. If o(h) = o, then & = 0, and the
proposition is trivially satisfied with m = 0.

Now assume that |o(k)] = n > 0 and, as the induction hypothesis, that
the conclusion holds for all g € L with |a(g)| < n.

If o(h) € # (L), we are done; so assume o(h) ¢ .#(L). We shall demonstrate
the existence of a function g € L having simultaneously the following three
properties:

() o(g) < o(h);
(i) o(g) € #(L);
(iii) g(x)h(x) = 0 for all x e X.

By IIB11, we may select a function g” satisfying (i) and (ii). Assuming (iii)
to fail for g”, let
Y={xeX:g"(x)h(x) < 0}.
Hence Y # @, and one may let

w= max{:,g(xx)): X€ Y}.

100



IVA Algebraic Preliminaries

Then p < 0. Let g’ = h — pg”. Since o(h) ¢ A (L), g" is not a scalar multiple
of 4, and so g’ # 0. Clearly g’ satisfies (i).

We next show that g’ satisfies (iii). If x € X, then g'(x)A(x) = [A(x)]* —
rg"(x)h(x), which is clearly nonnegative when x€ X + Y. If xe Y, then
h(x)/g"(x) < p < 0, and so

gOh() = [P — ’i,%(—g@ [hGo)T?

oy )
= [h)] (1—",1—@)20

as required.
For some point y € Y, p = h(y)/g"(»), and this point y lies in o(h) + o(g").
Hence |o(g')| < |o(h)|, and we may apply the induction hypothesis to g’ to

obtain
P
g =2 g
i=1

where g; satisfies (i) and (ii) and g(x)g’(x) > 0 for each i = 1,..., p. Thus

for each x € X, gi(x) and g'(x) never have opposite sign. We have already

shown that g’(x) and A(x) never have opposite sign. It follows that g,, ..., g,

also satisfy (iii). For definiteness, let g = g;, and we have the desired function.
Let v = min{A(x)/g(x): x € a(g)}, and let

h,=vg and A =h — h,.
Since g satisfies (iii), v > 0; but in fact since g also satisfies (i), » > 0. Hence
hy(X)h(x) = vg(x)h(x) = 0, for all x e X.
If x € o(g), then clearly v < Ah(x)/g(x), whence
A7 vg()h(x) < [A(x)]2.

When x € X + o(g), the left-hand member of A7 is 0, and so A7 holds for
all x € X. Hence for all x € X,

A8 0 < [A(X)P? — vg()h(x) = h(x)(h(x) — vg(x)) = h(x)H'(x).

For some point x, € o(g), h(x,) = vg(x,), and hence 4'(x,) = 0. Thus
a(h") < o(h). Applying the induction hypothesis to 4’, we obtain

K = i h
i=2
where b, € #(L), o(h) < o(h’) < o(h), and
A9 h(x)h'(x) =0, forallxeX;i=2,...,m.
Clearly

b= h
i=1
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as required. The condition required in (c) now follows from the definition
of h;, A8, and A9. O

The decomposition of s guaranteed by Proposition A6 is called an
# -decomposition of A.
The following is immediate.

A10 Corollary. If L is a subspace of Q* and if {h,, ..., hy} is an M -decom-
position of he L, then

|A(x)| = i |h(x)|, for all x € X.

Al1 Corollary. Let L be a subspace of QX, let Y < X, and let g be a minimal
JSunction of ny[L). Then g = mwy(h) for some minimal function h of L.

PRrOOF. Since gemy[L], g = h'cy for some function A’ € L. Applying the
proposition, let {h,, ..., h,} be an #-decomposition of 4’. Clearly,

m
g=Hhey = Z hicy,
i=1

and o(hicy) < o(g). By Proposition A2, there exists 7 € @ such that hcy =
mg (@ =1,...,m). Since g # 0, n; # 0 for some index i; say ; # 0. Let

h = l hl-
M
Then A4 is a minimal function of L and g = hcy = my(h). O

If L is a subspace of QX and if /4 is a minimal function of L, then there
exists a smallest positive number § € Q such that the function g = 6h is
integer-valued. Such a function g is called an elementary function of L. We
list some immediate consequences of this definition:

Al12 A function g € L is an elementary function of L if and only if g is an
integer-valued minimal function of L with the property that 1 is the greatest
common divisor of the set {g(x): x € o(g)}.

A13 For each set S € #(L), there are precisely two elementary functions of
L whose support is S. If g is one such function, then —g is the other.

Al4 There are finitely many elementary functions of L.
With the notion of “elementary function,” Proposition A6 yields:
A15 Corollary. Let L be a subspace of QX and let h€ L. Then
h = i T84
i=1
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where v, is a positive rational number, g, is an elementary function of L, and
g(h(x) > 0forallxe Xandalli=1,...,m.

Proor. Apply the proposition to A. By A2 and A13, each minimal function
h, may be replaced by n,g, where 7, > 0 and g; is an elementary function
G=1,...,m).

A subspace L of QX is unimodular if g[X'] < {0, 1, —1} for every elementary
function g of L.

Al16 Example. Let L = {fe Q%: 3,z f(x) = 0}. One easily verifies that L is
a subspace of @* and that #(L) = %(X). An elementary function f with
o(f) = {x, y} has the form
+1 fu=x
Jw)y=<F1 ifu=y
0 ifueX + {x,y}.
Thus L is unimodular. Observe that L' is the subspace of the constant

functions in @*. Note that {o(f): fe L} = &(X), and {o(f): fe L*} = {@, X}
(cf. ITAT).

Al7 Exercise, Let L be a subspace of Q* and let he L N ZX. Prove that
h=3",g where g is an elementary function of L, o(g) < o(h), and
g(xX)h(x) = Oforallxe Xandalli = 1,..., m. [Hint: Prove by induction on
zxex |h(x)| USing A6]

A18 Exercise. Prove that if L is a unimodular subspace of Q* and if Y < X,
then both L N QF and wy[L] are unimodular subspaces.

A19 Proposition. Let L be a subspace of QX. If L is unimodular, then L* is
unimodular.

ProoF. We shall assume that | X| > 2 since otherwise the result is trivial.
Assuming L to be unimodular, let us first resolve the special case where L*

has the properties:

A20 dim(LY) = 1; Fnd(L*) = X.

Let x, € X. It is evident that L* has a basis {h} where o(h) = X and h(x,) = 1,
and it suffices to prove that A[X] < {1, —1}.
IfgeL,theng-h = 0,and if g # 0, one must have |o(g)| # 1. Arbitrarily
select x; € X + {x,}, and define
h(x) if x = xg;
g(x)=q-1 ifx=2x;
0 if xe X + {xo, X1}
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Since g, -h = h(x;) — h(x,) = 0, g, € L. Furthermore, since |o(g,)| = 2, g, is
a minimal function of L and hence by A2, g, is a multiple of some elementary
function with the same support. Since L is unimodular, the fact that g,(x;) =
—1 implies that A(x,) = gi(x,) = + 1. Since x; was arbitrarily chosen and
h(x,) = 1, we conclude that A[X] < {I, —1}. Hence L* is unimodular.

Now let the conditions A20 on L* be relaxed, and let 4 be any minimal
function of L'. (We assume L* # {0}, since trivial subspaces are trivially
unimodular.) Let S = o(h) and let M = =g[L]. By Exercise A4, M*s =
L* n Q5, where | s denotes orthogonal complements in Q5. Since S € #(LY),
it follows from this and Proposition A2 that M*s = {9h: 7 € Q}. By Exercise
A18, M is unimodular and hence we may invoke the special case above (with
M in place of L and S in place of X) to conclude that M*s is unimodular.
Hence A[S] < {6, —6} for some 6 Q, and so A[X] < {0,6, —6}. L' is
therefore unimodular. O

IVB The Flow Space

Let V be a set, and fix the letter W = (V' x V) + {(x, x): x € V} throughout
this chapter. Recall that a basis for the vector space QY is {c,.: x € V'}, and so
a basis for Q¥ is {c(x.y: (x, y) € W}.

We define d(c ;) = ¢, — ¢, for all (x, y) € W and extend by linearity,
ie.,

ifh = z a(x.y)C(x'y), then a(h) = Z a(x,y)(cy - Cx).

(x,¥)eW (x, M)W

We thus obtain a linear transformation 9: Q% — QV, called the boundary
operator on W.

B1 Exercise. For h € QY and x, € V, verify that
@) = > (h(x, x0) — h(xo, X))

xeV +{xq}
The kernel of @ is called the flow space, and is denoted by F(V) or simply
by F. By BI,

B2 > h(x,x)= > h(xo,x), forallheFandallxoeV.
xeV +{xo} xeV +{xp}

An intuitive description of a flow space F(V) may be given as follows.
Consider the directed graph (V, W), and let A€ Q". For each (x, y)e W,
imagine A(x, y) to measure a “flow” of fluid or current or a commodity
through the edge (x, y) in the direction from x to y. If h € F, Equation B2
can be interpreted to mean that the total “flow” into any vertex x, equals
the total “flow” out of x,. This is a sort of principle of conservation of
matter or energy or money. It is this situation which has historically motivated
the abstract notion of a flow space, an element of which is called a flow. A
minimal (elementary) flow is a minimal (elementary) function in F.
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IVB The Flow Space

For the remainder of this chapter, T' will denote the multigraph (V, f, W),
where for each (x, y) € W, we define f(x, y) = {x, y}.

B3 Exercise. The three diagrams B4 below all depict the directed graph (V, W)
or equally well the multigraph I' = (V, f, W), where the arrow on an “edge”
from, say, u to v is to designate the edge (u, v) € Wrather than the edge (v, u).
The number beside an “edge” in the ith diagram indicates the value of 4;
on that “edge” (i = 1, 2, 3). Compute the value of (k) fori = 1, 2, 3. When
is h,e F(V)?

B4
Mm (2) (3)
2 3 2 5 3

< > L[ KT T

BS Proposition. (a) dim(F) = (|V| — 1)%; (b) dim(F4) = |V]| — 1.
PRrOOF. (a) From the fundamental result
dim(Q") = dim(ker 9) + dim(e[Q"]),
it follows that
dim(F) = |W| — dim(@[Q"]) = |V|? — |V]| — dim(o[Q¥]).

LetL = {ge€ QV: >, v g(x) = 0}. Clearly L is the kernel of the transformation
hi> Y v h(x) from Q" onto Q. Hence

B6 dim(L) = dim(Q") — dim(Q) = |V| — 1,

and to prove (a) it will suffice to prove that L = o[QVY].
From Bl we have that for each 4 € QV,

2 @)X =2 > (k%) — hx, ) = 0.

xeV xeV veV +{x}

Hence 9[Q%] = L. On the other hand, for any fixed x, € V,

{a(c(xo.y)): Y€ 14 + {xO}}

is an independent ([V| — 1)-set contained in L. By B6, it is a basis for L
which is contained in 8[Q"Y]. Hence o[Q¥] = L.

(b) dim(FY) = dim(QY) — dim(F)
=(VP-1vh-(V| -1 =|V| -1 O
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Let xo, €1, X1, €2, . . ., €m, Xm = Xo be a circuit of I'. In the present context
we need to distinguish between different cyclic orderings corresponding to
the same submultigraph. Therefore, we shall denote this cyclically-ordered
circuit by the symbol D instead of by the usual capital Greek letter used for
submultigraphs. We define the function 4p € Q¥ by

1 ife=(x_y,x)forsomei=1,...,m;
ho(e) =< —1 ife=(x;, x;_,) forsomei=1,...,m;
0 ifeeW + {es,...,en}

B7 Lemma. If D is a circuit in T', then hp € F(V).

PRrOOF. As above, represent D by the list: x,, ey, X3, €3, .. ., €m, Xn = X, and
let {1, J} be a 2-partition of {1, ..., m} where

I={iie,=(x-1,x) and J={i:e = (x;, x;-1)}

By definition, b = Ji¢; €o, — Dies Ce,- Hence,

d(ho) = Z B(ce) — 2, d(ce)

ieJ

= 2 (Cx‘ - cx1—1) - Z(cx‘_l - cx()

iel ieJ

since xo = Xp. O

B8 Proposition. F(V) is a unimodular subspace of Q¥. Moreover, a function
he QY is an elementary flow if and only if h = hp for some elementary
circuit D of T'.

ProoF. Let % be a minimal flow and let x, be a vertex of the subgraph I',.
By B2, 3 v + (xo (B(x, Xo) — h(%o, X)) = 0. Since some term A(x, x,) or h(xo, x)
is nonzero, there must be at least two such nonzero terms. Hence x, has
valence p(x,) > 2. By Exercise IIIA6a, T',, contains an elementary circuit,
which we can represent by the list D. Hence o(hp) < o(h). By B7 and A2,
ho = nh for some n € Q. Since Ao # 0, n # 0, and we observe that A[W] <
{0, 1/n, —1/x}. This proves that F is unimodular.

If, moreover, h is an elementary flow, then necessarily n = +1, and so

= +hp. If h = —hp, then h = ho’, where D’ is the list D in the reverse
order.

Conversely, let D be an elementary circuit of I'. By Lemma B7, hp is a
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flow. In order to show that Ap is an elementary flow, it suffices to prove that
hp is a minimal flow, since by definition, Ao[W] < {0, 1, —1}. We select
a minimal flow 4 such that o(h) < o(hp). By the first part of this same proof,
there exists an elementary circuit D” such that o(hp”) < o(h), and so o(hp”) <
o(hp). By ITTA9, both o(hp~) and o(hp) are elementary cycles of I'. Hence

o(hp) = o(h) = o(ho) € M (F). O
As an immediate consequence of this proposition and IIJA9 we have
B9 Corollary. #(F) is the set of elementary cycles of T.

The close relationship between flows and cycles of I' delineated by B7,
B8, and B9 suggests that F* may be related to the cocycle space of I. This is
indeed the case.

For each vertex x € V, define g,, € Q¥ by

1 ifu=x;
gu,0) =< -1 ifv=x;

0 otherwise.

Clearly o(g,) = f*(x).

B10 Exercise. Show that g, € F* for all x € V. [Hint: Show that g,.-hp = 0
for any elementary circuit D of I'; then use Proposition A6.]

Bl11 Lemma. Let g = 3,.yn.8: where U< V and 5,€Q + {0}. Then
2xev f¥(x) S o(g). Furthermore, equality holds if and only if 4, = v, for
all x,yeU.

PROOF. Let e = (x, y) and let Y = {x, y} N U. Then e € 5,y f*(u) if and
only if | Y| = 1. On the other hand,

0 ifY=g;
e Y ={x
-ny,  fY={y4
N — 1y if ¥ ={x, y}
Hence e € o(g) if and only if either | Y| = 1 or | Y| = 2 with 9, # %,. [

gle) =

B12 Proposition.
(a) F!is spanned by {g,: xe V}.
(b) >.ev &x = O is the only relation among the functions g, for xe V.
(©) Sxev 8« is an elementary function of F* if and only if S .cv f*(x) is
an elementary cocycle of T.
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(d) A(F*) is the set of elementary cocycles of T.
(e) F*! is unimodular.

ProoOF. (a) and (b). Let G be the subspace of Q¥ spanned by {g,: x e V}.
Suppose that g = Jcy 7:8x = 0. By the lemma, & = o(g) 2 J,ev f*(%),
where U = {x: 7, # 0}. Furthermore, o(g) = D cv f*(x) and g = >..cv 18
for some fixed 7€ Q + {0}. Since (V, f, W) is connected, we have from
HIA11 and IITA16 that 3, ., f*(x) = @ ifand only if U =@ or U = V.
Hence the only (nontrivial) relation among the functions in the set {g,.: x € V'}
181 Dyev 8x = 0, OF D ,c & = 0. We conclude that dim(G) = |V| — 1. But
by Exercise B10, G < F* and by Proposition B5b, dim(F*) = |V| — 1. We
conclude that G = F+, and that (a) and (b) hold.

(c) and (d). It follows from the lemma and part (a) that if g e F* + {0},
then o(g) contains a nonempty cocycle of I and that if C € Z*(T"), then C =
o(g) for some g € F*. Hence H(F*) = {C e Z*(T'): Cis elementary}. On the
other hand, if Cis an elementary cocycle of ', then C = >,y f*(x) for some
Uc V. Since g = J,cv g~ takes on only the values 0, +1, —1, and since
o(g) = C, g is elementary. Furthermore, —g = >,cv+v g% Hence by Al3,
these are all of the elementary functions of F*.

(e) This follows from B8 and A19. O

B13 Exercise. Prove that in Proposition B12, conclusion (e) follows directly
from (a)-(d), i.e., without the use of A19.

IVC Max-Flow-Min-Cut

A network is a pair (V, k) where V is a set, and k € Q% with k(e) = O for all
e € W. The function k is called the capacity, and the value k(e) is called the
capacity of e. A flow 4 € F(V) is said to be feasible if

0 < hle) < k(e) forallee W.

If (V, k) is a network and K = o(k), then (V, K) is a directed graph. Itis a
“‘sub-directed graph” of the directed graph (¥, W) discussed at the beginning
of the previous section. In line with the interpretation developed there, the
values of the capacity function represent the actual “‘capacities” of the various
links in the highway system or pipeline, etc. When two ““ vertices” are joined
by no road or pipe, we assign a capacity of 0 to the corresponding edge. The
directed graph (¥, K) is then an abstraction of the highway system or pipeline,
etc. If 4 is a feasible flow, the numbers assigned to each edge of (V, K) are
nonnegative but do not exceed the capacity of that edge. The sum of these
numbers over the edges entering a vertex equals the sum of the numbers
assigned to the edges leaving that vertex. Hence a feasible flow represents a
possible flow of traffic or fluid or money, etc. through the system.
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A cut of (V, k) is a cocycle of the multigraph I' = (V, f, W) and a cut
through e will mean, of course, a cut containing the edge e.

Let C be any cut through e, = (o, X;). Then for some U< ¥V, C =
> cev S*(x). Replacing U by V + U if necessary, we may assume x,€ U S
V + {yo}. For all (x, y) € W, define:

1 if{x, y} N U= {x};

C1 gu(x,y) =4q—1 if{x,y}nU={y};
0 otherwise.

Clearly gy = >.cv .- Hence gy € F* by Bl2a, and gy(e,) = — 1. Further-
more, since I' is connected, U is uniquely determined by C and e,. In terms
of this function gy, we define the capacity of the cut C through e, to be

kCie) = . ke).

gye)=1

C2 Proposition. Let e, € W. Then h(eg) < k(C; e,) for every feasible flow h
and every cut C through e,.

PrOOF. Let 4 € F be feasible, let C be a cut, and let g be the function gy
determined by C and e, as above. Since Since g € F*, we have

0=hg= th(e)g(e) = > he— D k).

g(e)=1 ge)=-1

Hence Dg)=1 7€) = D¢ = -1 hle). Since h is feasible,
he) < D W)= > he)< > k) = k(C;ed),

gle)y=-1 g(e)=1 gey=1

as required. O

If e, € W, a feasible flow A is said to be a maximum flow through e, if
h(e,) = h'(ey) for any feasible flow A'. Clearly if 4 is a feasible flow and
if h(ey) = k(e,), then A is a maximum flow through e,. A cut through e, is said
to be a minimum cut through ¢, if X(C; e;) < k(C’; e,) for any cut C’ through
e,. The following result is immediate from these definitions.

C3 Corollary. Let e, € W, let h be a feasible flow, and let C be a cut through e,.
Ifh(ex) = k(C; e,), then h is a maximum flow through e, and C is a minimum
cut through e,.

Example. Let V = {1, 2,...,9}. Define k € Q¥ to be 0 except as follows:
k(1,2) =3, k(1,3) =L k3, D) =2, k4, 1) =1, k(5,1) =1, k(1,7) = 5,
k(1,9) =5, k(9,8) =6, k(8,2) =6, k(2,3) =7, k(3,4) = 4, k(4,5) = 3,
k(5,6) = 1, k(6,7) = 1 and k(7, 8) = 1. We have drawn the directed graph
(¥, K) in Figure C4, listing the capacity of each edge beside it.
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Define A(i, j) to be 1 eitherif j =i + landi = 2,3,...,7orif (i, j) = (8, 2),
and to be 0 otherwise. This may be visualized as a flow of one unit “around
the outer rim™ of the figure. It is clearly a feasible flow. If e, = (8, 2), the
cut C determined by U = {1, 2, 3, 4} is a cut through e,. The edges which
appear in the figure and belong to C are (8, 2), (1, 9), (1, 7), (5, 1), and (4, 5).
Furthermore, k(C; ¢;) = 13.

C5 Problem. Find an integer-valued feasible flow for the network described
in C4 which has support as large as is possible. Let

C={82,(1,2,1,3,G,D,G 49

What is its capacity as a cut through (8,2)? through (3,1)? Verify
Proposition C2 for this flow and these cuts. Find a maximum flow through
(8, 2) and a minimum cut through (8, 2).

A function 4 € QV is said to be integral if # € Z¥. We may thus speak of
an integral capacity and an integral flow. A network (¥, k) is an integral
network if k is an integral capacity.

The next theorem is the main result of the present chapter. It is also the
point of departure for both Chapters V and VI.

C6 The Max-Flow-Min-Cut Theorem. Let (V, k) be a network and let
eo = (Yo, Xo) € W. Then there exists a maximum flow h through e, such that
h(ey) = min({k(eo)} Y {k(C; eo): C is a cut through e.}).

Furthermore, if (V, k) is an integral network, h may be taken to be an
integral flow.

PRrOOF. Let n be the least positive integer such that nk is integral. Let

F’ = {h e F: h is feasible; nh is integral}.
110



IVC Max-Flow-Min-Cut

Then for all A’ e F' and allee W,
h'(e) {0, 1/n,2/n, ..., k(e)}.
Moreover,

C7 (a) K(e) > 0= K(e) > 1/n; (b) H(e) < k(e) = K'(e) < k(e) — 1/n.

Clearly there exists a flow & € F’ such that h(e;) > h'(eo) for all A’ € F'.
In particular, if k is integral, then n = 1 and A is integral. If h(eo) = k(eo),
then 4 is a maximum flow through e, and the theorem is proved. Hence
suppose

C8 h(eo) < k(eo)-
An x,x-path x,, €1, X3, . . ., €n, X is said to be unsaturated with respect to
hif
e #e fori=1,...,m;
e, = (x;-1, X)) = h(e) < k(e);
e = (x;, x;-1) = h(e}) > 0.

Let U = {x € V: there exists an unsaturated x,x-path}. Trivially x, € U. Also
if x € U, then so is every vertex on an unsaturated x,x-path.

Case 1: y, € U. Let xo, €y, X1, . . ., €n, Yo be an unsaturated x, yo-path, and
let D be the circuit xg, €3, X1, . . 5 €m, Yo, €0, Xo. From the definition of ““un-
saturated”, C8, and C7, it follows that 4 + (1/n)hp € F'. Thisis a contradiction
since (& + (1/n)hp)(eo) = h(eo) + 1/n > h(ey).

Case 2: yo ¢ U. The cocycle C = 3,y f*(x) is then a cut through e,.
Let gy be defined as in Cl. Since gy € F* and he F,
9 0= hlgole) = > hle)— D he).

esWw gyle)=1 gyle)=-1

Let e = (x, y) and suppose gy(x,y) = 1. Thus xe U and y ¢ U. Hence
there exists an unsaturated xox-path xg,es,..., e, x. If h(e) < k(e), the
Xoy-path x, ey, ..., en, X, e, y would be unsaturated, which is impossible
since y ¢ U. We conclude that if gy(e) = 1, then h(e) = k(e). Similarly one
can show that if gy(e) = —1 and e # e,, then A(e) = 0. Substituting these
values into C9 we get

0= ( 3 ko) - hey = KCie) ~ e

g(e)=1

Thus h(e,) = k(C; eo). By C3, h is a maximum flow through ¢, and C is a
minimum cut through e,. O

C10 Problem. Let (V, k) be defined by Figure C4. Find a maximum flow
Through (1, 9) and the corresponding minimum cut. (Hint: Start with the
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flow you produced in CS5 and try to find an unsaturated path from 9 to 1.
If you can find such a path, increase the flow by one unit as in Case 1 above.
If there is no such path, construct the cut as in Case 2 above.)

IVD The Flow Algorithm

Let (V, k) be any network. As in the proof of the Max-Flow-Min-Cut
Theorem, let n be the least positive integer such that nk is integral. Then
(V, nk) is an integral network. Furthermore, 4 is a feasible flow in (V, k) if
and only if nhk is a feasible flow in (V, nk). Finally, for any e, € W, his a
maximum flow through e, in (¥, k) if and only if nk is a maximum flow
through e, in (¥, nk). It should thus be clear that for the purposes of actually
computing maximum flows, it suffices to restrict oneself to integral networks.

D1 Proposition. Let (V, k) be an integral network. Let h be a feasible flow
which is not a maximum flow through e,. Then there exists an elementary
circuit D of T such that ho(e,) = 1 and h + ho is a feasible flow.

Proor. By the Max-Flow-Min-Cut Theorem (C6), there exists an integral
maximum flow A’ through e,. By Al7, the integral flow A’ — h admits an
M -decomposition {g, . . ., gn} Where g, is elementary, o(g;) < o(h’ — h), and
(W' — h)(e)gi(e) = Oforallee Wandalli = 1,2,...,m. Since h'(e;) > h(eo)
by assumption, gie,) = 1 for some j. By B8, g; = hp for some elementary
circuit D of T, and so hp(e,) = 1. Since 4 + hp is a flow, it remains only to
prove that it is feasible. Let e W.

Case 1: (W — h)(e) = 0. Since o(hp) < o(h' — h), ho(e) = 0. It follows
that (h + ho)(e) = h(e), which lies between 0 and k(e).

Case 2: (W — h)(e) > 0. Then A'(e) = h(e) + 1, and ho(e) =0 or 1.
Hence 0 < h(e) < (h + ho)(e) < H'(e) < k(e).

Case 3: (W' — h)(e) < 0. Then h'(e) < h(e) — 1 and ho(e) = 0 or —1.
Hence 0 < #'(e) < (h + ho)e) < h(e) < k(e). O

Both the Max-Flow-Min Cut Theorem and the foregoing proposition are
assertions concerning existence. In particular, the former asserts the existence
of a maximum flow through a given edge e, and gives the value of that flow
through e,. On the other hand, the Flow Algorithm below is actually a
procedure for obtaining a maximum flow through e,. It is basically an
“improvement process” and is motivated by Proposition DI.

If & is a feasible flow for an integral network (V, k), a circuit D of I' is
said to be unsaturated with respect to » and e, if hpo(e;) = 1 and & + hp is
feasible.

D2 Exercise. Prove that a circuit x,, €1, X1, . . ., €m, Yo, €0, Xo is unsaturated
with respect to h and e, if and only if h(e,) < k(e,) and the path x,, e, x1, . . .,
em, Yo is unsaturated with respect to h.
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We can now state:

D3 The Flow Algorithm. Let (V, k) be an integral network and let e, € W.
Step 1: Select a feasible flow h for (V, k). (This is always possible, since
the zero-function is always a feasible flow.)
Step 2: Search for an elementary circuit D which is unsaturated with respect
to h and e,.
Step 3: If such a circuit D exists, replace h by h + ho and return to Step 2.
Step 4: If no such D exists then h is a maximum flow through e, by D1.

This algorithm is indicated schematically in Figure D4.

D4

start { | | —————— | 2 | «——

B ——— 4 | finish

Before investigating the details of the Flow Algorithm we show:

DS Proposition. Let (V, k) be an integral network, e, € W, and h a feasible
Sflow. With h as initial feasible flow, the Flow Algorithm yields a maximum
flow through e, within at most k(e,) — h(e,) iterations.

PROOF. Let A, = h, and let A, be the feasible flow obtained in the ith iteration
of Step 3 of the Flow Algorithm. By the definition of A, h,(e,) = h;_1(eo) + 1
for i > 1. Thus hye;) = h(e,) + i. Since A, is feasible, k(e,) = hi(e,) for all i,
and so the maximum number of iterations possible is k(eo) — h(e,). O

Evidently the efficiency of the Flow Algorithm depends upon the efficiency
of the search technique used in implementing Step 2. There is a search technique
implicit in the proof of the Max-Flow-Min-Cut Theorem; it is the one most
often associated with the Flow Algorithm in the literature. This section con-
cludes with a description of this search technique.

Let (V, k) be an integral network, e, = (¥, Xo) € W, and A an integral
feasible flow. We seek either to construct an elementary circuit in I' which is
unsaturated with respect to 4 and e, or to show that such a circuit cannot
exist.

If h(eo) = k(e,), then there exists no unsaturated circuit. Assume then that
h(eo) < k(eo). By Exercise D2, it suffices either to find an unsaturated
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Xoyo-path (with respect to &, henceforth being understood) or to show that
such a path cannot exist. Fori = 0, 1,2,..., let

D6 U, = {x € V: there exists an unsaturated xyx-path of length i
but none of shorter length}.

Clearly y, € U, for some i if and only if there is an unsaturated x,y,-path.
Since UynU; =g for i # j, U, # @ for only finitely many indices i.
Moreover, if U; = @, then U; = @ for allj > i.

The sets U; admit an inductive construction as follows. Let U, = {x,},
and assume U; has been constructed. Then U;,, is the collection of all
xe€V + Uy, + Uy +...4 U; such that for some ye U, one has either
h(y, x) < k(y, x) or h(x, y) > 0. One readily sees that this construction is
consistent with D6.

Let m be the smallest integer such that either U, = @ or y,€ U,. If
U, = &, thenno unsaturated x,y,-path exists. If y, € U,,, then an unsaturated
XoYo-path exists and one may be constructed as follows. Write x,, = y,, and
forj=m — 1,m — 2,...,0, one may inductively select x; € U;and ¢; ., € W
such that either

€41 = (x5, X;41) and  h(e;4;) < k(ey41), o
€1 = (X;41,%x;) and h(e;y,) > O.

In using the Flow Algorithm with this ““ subroutine as the search technique,
we terminate the process when a feasible flow has been constructed such that
either h(e,) = k(eo) or h(e,) = k(C; e,) for some cut C through e,. In the
latter case such a cut C is actually constructible by means of this subroutine,
since there exists no x, y,-path unsaturated with respect to 4. Hence U,, = @
in the last iteration of the subroutine. The set U= U, + U, +...+ U,_;
is then the very same set U defined in the proof of the Max-Flow-Min-Cut
Theorem (C6). The required cut is C = 3.y f*(x).

Example. Consider (V, k) as in Figure C4. We will use the Flow Algorithm
with the above subroutine to find a maximum flow through ¢, = (8, 2). Start
with A equal to the zero-function. Searching for an unsaturated 2,8-path,
we have U, = {2}, U, = (3}, U, = {1,4}, U; = {5,7, 9}, U, = {6, 8}. This
yields among others the elementary cycle D = 2,(2,3),3,(3,1), 1, (1, 9), 9,
9, 8), 8, (8, 2), 2, and we replace 2 by 2 + hp, which is a unit flow through D.
Returning to Step 2, we start our search again. However, there is a short cut.
We have just constructed D and we could check to see whether it is un-
saturated with respect to the new . It is, and we replace h by & + hp again.
As we return to Step 3 our flow is & + 2hp. Since D is saturated with respect
to this flow (A(3, 1) = 2 = k(3, 1)), we must make another search:

Us={2LU ={3,U,={4}, Us = {1,5}, U, = {6, 7, 9}, Us = {8}.
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IVD The Flow Algorithm

A new circuit D is 2, (2, 3), 3,(3,4),4,(4, 1),1,(1,9), 9, (9, 8), 8, (8, 2), 2.
Adding this flow to 4 yields the flow whose values are underlined in Figure D7.

=
<

The next search yields: U, = {2}, U, = {3}, U, ={4}, Us = {5}, U, =
{1, 6}, Us = {7, 9}, Ug = {8}, which in turn yields a circuit D = 2, (2, 3), 3,
(3,4),4,4,5),56,1),1,0,7N,7@,8), 8, (8, 2), 2. The new flow & + hp
is then underlined in Figure D8.

Repeating the ““subroutine’ again yields: U, = {2}, U; = {3}, U, = {4},
Us={5}, Us={6}, Us={T}, Us={l}, U; ={9}, and Us = {8}. This
clearly determines uniquely the circuit

2,(2,3),3,...,6,(6,7,7,(1,7,1,1,9,9,...,2

Note the edge (1, 7); it is our first example of a “back flow.” The new flow
is depicted in Figure D9.
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The final application of the subroutine now yields a minimum cut C. We
have Uy = {2}, U, = {3}, U, = {4}, U; = {5}, U, = @.Hence U = {2, 3,4, 5}.
The edges of C which appear in D9 are (8, 2), (1, 2), (1, 3), (3, 1), 4, 1), (5, 1),
and (5, 6). One easily checks that k(C; e;) = 5 = h(ep).

IVE The Classical Form of the Max-Flow-
Min-Cut Theorem

The Max-Flow-Min-Cut Theorem was developed, stated, and proved in this
chapter in such a way as to be consistent with the algebraic structure of this
book. For completeness we reformulate this result in the traditional form.
This is the form in which the reader is most likely to encounter it in the
literature, especially in the context of optimization problems.

Rather than the multigraph T' = (¥, f, W) considered in the previous
sections, we now deal with an arbitrary directed graph (¥, D) and use the
term “a capacity for (V, D)” to indicate any function k: D — N. Two vertices
Xo, Yo € V are distinguished and are called the “source” and “sink”, respec-
tively. A “network” now denotes a 4-tuple ((V, D), k, xo, ¥o).

A function f: D — N is called a “feasible flow” for this network if

(@) 0 < f(x, ) < k(x, y) for all (x, y) e D, and

(®) Syev.xmen S, ¥) = Zyeviw,nen S, X), for all xe ¥V + {x,, Yo}-

As before, the zero-function is still a feasible flow. If fis a feasible flow, we
define its “value” to be

of) = ZV 0 ) — ZV 1, xo).

(xgeueD W, %oyeD
Of course, the zero-function has value 0.
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E1 Exercise. Show that if fis a feasible flow, then
= 2 fOy - 2 SfOod)
vV

Ve ve
(v,v0)eD (Yo,¥)ED

Recall how a cut in a network was expressed as the sum of vertex cocycles
over a subset of V. Classically, a cut is identified with that subset. Thus, by a
“cut” we shall mean a subset U < V¥ such that xoe U< V + {y,}. The
“capacity of U” is the number

KUY = D k(x ).
L
yeV+U

E2 Max-Flow-Min-Cut Theorem: Classical Form (L. R. Ford, Jr. and D. R.
Fulkerson [f.3]). In any network ((V, D), k, xo, yo), max{v(f): fis a feasible
Sflow} = min{k(U): U is a cut}.

E3 Exercise. Prove that E2 and C6 are equivalent for integral networks.

Often E2 is stated and proved in the case where the capacity function and
the feasible flows are defined as functions from D into the nonnegative ele-
ments of Q or R. The proof of C6 takes care of the rational case of E2, but
not the real case. The difficulty in the real case is that the iteration process
need not increase the value of the flow by a fixed minimum amount and hence
may never terminate. If the process does not terminate, suppose 4o, 51, . . .
is a sequence of feasible flows constructed via this iteration process. Since
the sequence is bounded above by k, there is a function 4 € R? such that
lim,, » A(x, ¥) = h(x, y) for all (x, y) € D. While it is not difficult to show
that 4 is a feasible flow, it cannot be shown—in fact, it need not even be true—
that 4 is a maximum flow. The existence of a maximum flow in the real case
must be proved using the fact that (under the product topology on RP) the
set of feasible flows is a closed and bounded subset and that the value
function v is continuous. Once the existence of a maximum flow is established,
the proof of C6 may be adapted to show that its value equals the capacity of
a “minimum” cut.

IVF The Vertex Form of Max-Flow-Min-Cut

A variant of the Max-Flow-Min-Cut Theorem is obtained by assigning
capacities to the vertices of a directed graph. One then considers cuts as
consisting of sets of vertices which interrupt all directed circuits through a
given vertex rather than as sets of edges which interrupt all directed circuits
through a given edge. In this section we prove that the “edge form” C6 of
the theorem implies the ““vertex form.” The latter is particularly important
as it affords an elegant proof of Menger’s Theorem in VIA below. The cycle
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of equivalence will be completed in the same section. There Menger’s Theorem
will in turn be used to give another proof of Theorem C6.

Let (¥, D) be a directed graph and let j: ¥ — N. The function j is called
a vertex capacity for (V, D). By a flow in (¥, D) we shall mean a flow 4 in
F(V) such that (k) = D. The value of the flow / at the vertex x is denoted by
h(x) and defined by

hx) = D h(yx).

yeV+{x}

Since the “inflow” equals the ““outflow” at x, we have by B2 that

F1 hx) = > hix, ).
yev +{x}

A flow h in (V, D) is said to be feasible if 0 < A(x, y) for each (x, y)e W
while A(x) < j(x) for all x € V. Finally, 4 is said to be a maximum flow through
X, if h is a feasible flow and if A(x,) > A'(x,) for every feasible flow A’ in
(V, D). A vertex-cut through x, is a subset U < V + {x} such that every
directed circuit through x, contains an element of U. Clearly V + {x,} is a
vertex-cut through x,. If there are no directed circuits through x,, then &
is a vertex-cut through x,. The capacity of a vertex-cut U is

) =3 j).

xeU

F2 Max-Flow-Min-Cut Theorem (Vertex Form). Let (V, D) be a directed
graph. Let j be a vertex capacity for (V, D), and let x, € V. Then there exists
a maximum flow h through x, such that

h(xo) = min({j(x,)} U {j(U): U is a vertex-cut through x,}).

PrROOF. Let X = V x {1,2}. For (x,i)e X we write x’. Let Y = (X x X) +
{(x, x*): x* € X}, and let u denote some integer greater than 3.y j(x). Let
k: Y — N be given by

k(x,y)=0 forallx,yeV,ie{l,2};
s o [p G eD;
ke = {5 if (x, ) ¢ D;

s [JO) ifx=;
k(<% 7Y {O if x # y.

The pair (X, k) is then a network. As was indicated in Figure C4, a network
(X, k) may be viewed in terms of the directed graph (X, o(k)). In Figure F3
we indicate how (X, o(k)) may be constructed locally from (V, D). The
numbers beside the edges in Figure F3b represent the values of k.
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F3 (a) (V, D) y
V
X > AN
W vioily) W2

®) (X, o(k))

vZ jv)

Let 4 be a feasible flow in (V, D). We define h: Y — N by
h(x', y) =0 forallx,yeV,ie{l,2};
h(x*, y*) = h(x,y) forallx, yeV;

h(x) if x =y;
2 1) —
A2, ) {0 if x # y.

By this definition, the definition of feasible flow in (¥, D), and F1, we have
that 4 is a feasible flow in the network (X, k). In fact, one easily verifies that
the mapping h+> k is a bijection from the set of feasible flows on (¥, D)
onto the set of feasible flows on (X, k). Furthermore, since h(x,) = h(e,)
where e, = (xo2?, x,!), we have

F4 max{h(x,): h is a feasible flow in (V, D)}
= max{h(eo): & is a feasible flow in (X, k)}.

Define g: Y — Z(X) by g(x*, y™) = {x!, y"}, and let @ denote the multi-
graph (X, g, Y). A cut C through ¢, in (X, k) is then of the form C =
Sates 8¥(x?) for some subset S = X such that x,' €S and x,2€ X + S. Let
T,={xeV:x*e S} fori=1,2. The edges (x!, y) € C which contribute to
k(C; eo), the capacity of C, are those for which x* € S and y™ € X + S. These
edges fall into two classes:

C={x4y):xeTy;yeV + Ty (x, p) € D},
Co={(x% xY):xeTy,n(V + Ty}
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Each edge in C, contributes the quantity p to k(C; e,), while each edge
(x2, x}) € C; contributes the quantity j(x). Thus k(C; e;) = p if C, # &,
whileif C; = @ and U = T, + (V + T), then

Fs k(C;e0) = 2 j(x) = j(U) < .
xeU

If there exists at least one cut C through e, with C; = &, then any mini-
mum cut must also have that property. Hence we may assume for the cuts
under consideration that C; = @. We will show that cuts of this type do
exist and that they in fact correspond to vertex-cuts of (V, D).

Let C = 3 ,4cs g*(x*) and assume that C, = @. Let Ty, T, be defined as
above in terms of S. We proceed to show that U = T, N (V + Ty)is a vertex-
cut of (V, D). Let x,, (xo, X1), X1, - - -, (Xms Xo), Xo be an arbitrary directed
circuit through x,. We may assume x; # x, for i = 1,..., m, for if not we
may replace the above circuit by a shorter one. This path induces an x,x,%-
path in ©:

Fé6 on', (x019 x12)’ x129 (x12’ xll)a x119 cees (xmla xoz)a x02'

Since x,! € S while x,2€ ¥V + S, some edge in F6 has its “first vertex’’ in §
and its “second vertex” in V + S; such an edge is in C. Since C; = &, this
edge must be of the form (x2, x;*) for some i = 1,..., m. Thus x; # x,,
x; € Ty, x; ¢ T;. In other words, U # &.

We next show that for every vertex-cut U < V + {x,}, there exists a cut C
in (X, k) such that k(C; e,) = j(U). Let U be a vertex-cut of (V, D). Let
U, = {x € V: there exists a directed xox-path containing no vertex of U},
and let U, = U+ U, + {xo}. Thus xo€U;, x¢ U, and U= U, N
(V+ U). Let S = (Uy, x {1P) U (U, x {2}), and let C = 3 s g*(x*). Since
xot €S and x,2€ ¥V + S, Cis a cut through e, in ©. It suffices to show that
C, = @. Suppose that (x!, y*) € C;. Since x € U,, there exists a directed
xox-path ““avoiding” U, which may clearly be extended via (x, y) to a
directed x, y-path. Since y ¢ U,, the extended path avoids U. Therefore y € U,
which is only possible if y = x,. But this means that the extended path is a
directed circuit through x, avoiding U, contrary to our assumption that U
is a vertex-cut.

Combining these last two arguments and F5, we have

min{k(C; e,): C is a cut through e, in (X, k)}
= min{j(U): U is a vertex-cut through x, in (V, D)}.

Since k(eo) = j(xo)s

F7 min({k(eo)} U {k(C; eo): C is a cut through e, in (X, k)})
= min({j(xo)} U {j(U): U is a vertex-cut through x, in (V, D)}).

By Theorem C6, the left-hand number of F7 equals the right-hand member
of F4. This string of equalities proves the theorem. O
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IVG Doubly-Capacitated Networks and
Dilworth’s Theorem

A doubly-capacitated network is a triple (V, ky, k,) where k; € ZV for i = 1, 2,
and k;(e) < kg(e)forall e € W. The functions k, and k, are called, respectively,
the lower and upper capacities. An integral flow 4 is said to be feasible if

ki(e) < h(e) < ky(e) forallee W.

If e, € W, h is a maximum flow through e, if 4 is a feasible flow and A(e,) >
K'(eo) for any feasible flow 4’. An integral network (V, k) as defined in §C
can be regarded as the doubly-capacitated network (¥, 0, k) where 0 denotes
the zero function in Z¥. It follows from the discussion at the beginning of
§D that the results of the present section hold as well with Z replaced by Q.

Consider a system of pipelines where k,(e) represents the capacity of a
link e as did k(e) in §C. Suppose, however, that to prevent deterioration, each
link e must carry a certain minimum flow k,(e). The doubly-capacitated net-
work (V, ki, k3) can be regarded as an abstraction of just such a situation as
this. While in this situation k, and k, are nonnegative functions, it is not
required that they always be so.

It should be emphasized that in general a doubly-capacitated network
need not always admit a feasible flow. In Figure G1, for example, where
|V| = 5, suppose that k;(e) = 1 and k,(e) = 2 for every edge e represented
in the figure, while k,(e) = ko(e) = O for every other edge. If there existed a
feasible flow, the “inflow” into the vertex x could be at most 2 while its
“outflow” must be at least 3.

Gl1

Let e, = (Yo, Xo) € W. A cut C through ¢, in the doubly-capacitated net-
work (V, ki, k) is defined exactly as it is for a network; it is of the form
C = Jyecv [¥(x) where xoe U< V + {y,}. With g, as defined in Cl, the
upper capacity of C through ¢, is defined as

kfCie) = > kole) — > ko),
gy(e)=1 e#eg
gy(e)=-1
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and the lower capacity of C through ¢, as

ki(C; e0) = 2 ki(e) - Z ks(e).

gy(e)=1 e#eg
gyle)=-1
If A is a feasible flow,
O=hgo= o he)— D hie) < ky(C;eo) — hieo).
gyle)=1 gyle)=-1

Similarly, 0 > k,(C; e;) — h(ey). Thus

G2 k1(C; eo) < h(eo) < k3(C; eo)

for any feasible flow 4 and any cut C through e,.

G3 Max-Flow-Min-Cut Theorem (Doubly-Capacitated Form). If e, € W and
if the doubly-capacitated network (V, ki, k3) admits a feasible flow, then it
admits a maximum flow h through e, and

h(e,) = min({ky(ey)} U {k2(C; e5): C is a cut through ep}).

ProoF. The proof of C6 may be adapted to prove this result with the following
modest changes. First, replace k by k, throughout. Second, alter the third
condition in the definition of ‘“‘unsaturated path” to read: ¢, = (x;, x;_1) =
h(e) > ki(e). O

The first inequality in G2 gives a lower bound for flows through e,. We
are thus led to call a feasible flow # a minimum flow through e, if 4(e;) <
H (e,) for any feasible flow #'. Clearly if k, is a flow, then it is a minimum flow
through each edge. However, when k; is not a flow, the following result is
nontrivial.

G4 Min-Flow-Max-Cut Theorem. If e, € W and if the doubly-capacitated
network (V, ky, ko) admits a feasible flow, then it admits a minimum flow
h through e,, and

h(eo) = max({k,(eo)} U {k:(C; eo): C is a cut through ey}).

PRrROOF. Let k' = —k, and k' = —k;. Then (V, k', kJ) is also a doubly-
capacitated network. Moreover, a flow A is feasible (minimum through e,)
in (V, kq, ko) if and only if — A is feasible (maximum through e;) in (¥, k,’, k').
Finally, for any cut C through e, k,(C; €;) = —k3'(C; €,). Thus

max({k,(eo)} U {k1(C; eo): C is a cut through eo})
= —min({k;'(eo)} U {k2'(C; eo): C is a cut through e,}),

and the result follows from Theorem G3. O
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The existence of a feasible flow in a doubly-capacitated network (V, &, k3)
is the essential question, for without it, Theorems G3 and G4 add nothing
to what has already been said. Let e, € W and let a cut C = >,y f*(x)
through e, be given. If 4 is a feasible flow, then by G2,

ko(C; e0) = h(eo) = ki(eo),
and so

G5 0<kfCier) —kile) = 2, ko) — > kule)

gy(e)=1 gyle)=-~1
If k(U) denotes the right-hand quantity in G5, then the assertion: k(U) > 0
whenever @ < U < V, is a necessary condition for the existence of a feasible
flow. Indeed, it is also sufficient.

G6 Exercise. Prove that (V, ky, k;) admits a feasible flow if and only if
k(U) = Ofor all U < V. [Hint: construct a new doubly-capacitated network
as follows. Let x,, y, be two vertices notin ¥V and let V' = ¥V + {x,, yo}. Let

e) ifeeW,;
ki'(e) = {I(;l( ) otherwise;
ko(e) ifeecW,;
ko'(e) = qu if e = (Yo, Xo), (X0, X), OF (X, y,) for x € V;
0 otherwise;

where p is a fixed integer greater than Y,y ko(e). Show that (V', k', k,’) has
a feasible flow and hence a minimum flow 4 through ¢, = (y,. x;). Observe
that if 4(e,) = O, then h,y is a feasible flow on (¥, k,, k), while if A(e,) > 0,
then there exists no feasible flow on (V, k4, k,).]

Let (X, <) be a partially-ordered set and recall the definition of a chain
from §IIB. The notion of an incommensurable set defined prior to Exercise
ITB22 is generalized here to denote a set S < X such that x < y fails for all
x, y€S.

G7 Theorem (R. P. Dilworth [d.2], 1950). Let (X, <) be a partially-ordered
set. Then

max{|S|: S is incommensurable in (X, <)}
= min{|2|: 2 € P(X); Q is a chain for all Q € 2}.

PROOF. Let V = (X x {1, 2}) U {x,, yo} where x, and y, are distinct objects
which are not elements of X x {1, 2}. As in §F, we write x! for the element
(x,i)e V. We form the doubly-capacitated network (V, k,, k;), where if
e € W, then

1 ife = (x', x?) for some x € X;
0 otherwise;

ki(e) = {
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and
1 if ky(e) = 1;
|X| if e = (xo, xt) oOr (x2, y,) for some x € X;
ky(e) = {|X| if e = (yo, X0);
|X| ife=(x% y*)forx,ye Xand x < y;
0 otherwise.

(For example, let X = {x, y, z} and suppose x < y < z. In Figure G8 the
directed graph (V, a(k;)) is shown where the integer beside the edge e represents

ka(e).)

G8

We assert that (V, ky, k,) admits a feasible flow. Indeed the function A
given by

1 if e = (x4, x1), (x1, x2), or (x2, y,) for some x € X;
h(e) = {|X| if e = (¥o, Xo);
0 otherwise;

is a feasible flow. Hence Theorem G4 applies to (V, k,, k) nonvacuously.
Let 4 be any feasible flow in (¥, k;, k). Then A is nonnegative since k; is.
By Exercise A17, we can write

where g, is a nonnegative elementary flow and o(g) € o(h) fori = 1,..., m.
Let i now be fixed. By B8, g, = hp for some circuit D of I' = (V, f, W).
Since Ap is nonnegative, D must assume the form

Xos (X0 X11), X1%, (%1%, X1%), X12, (%13, Xa), Xa1, (2%, Xa%), X22, . ..
ey x!11 (le, xja)’ x.f29 (sza .Vo), Yos (yOa xo)a Xos
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where x; < x;3 <...< x; for some j > 1. Thus 4 is a sum of elementary
flows, each of which corresponds to a chain in (X, <). But since 4 is a feasible
flow, A(x!, x?) = 1 for all x € X. This implies that the set of chains corre-
sponding to elementary flows g, ..., g, is an m-partition of X. Conversely,
each partition 2 € P(X) whose cells are nonempty chains corresponds to a
feasible flow whose value at e, is |2|. We have proved:

G9 min{h(e,): h is a feasible flow}
= min{|2|: 2 € P(X); Q is a chain, for all Q € 2}.

Consider an arbitrary cut C = 3.y f*(x) through e,, where it may be
assumed that x,e U < ¥V + {y,}. Let

S={xeX:xteU;x2eV + U},

T={xeX:x*eV+ U;x*eU},

D={xyyeXx X:x<y;x2eV + U;y*e U}
By definition,

G0 Kk(Cie)= D kiwo) — > kalw,0) = |S| — (IT] + |D|| X]).

ueU ueV+U
veV+U velU

Since |S| < | X|, k1(C; e5) < 0 whenever D # &. If X, 7€ S, then X2 €
V + U and y* € U. Hence if (%, y) ¢ D, then ¥ < j fails. Thus if D = &,
then x < y fails for all x, y € S, i.e., S is incommensurable. Since k,(e,) = 0,
we have proved:

G11 max({k;(eo)} U {k1(C; e5): C is a cut through e,})
< max({|S|: S is incommensurable in (X, <)}.

On the other hand, let S, be any incommensurable set and define

U={x'e X x {1}: x < y for some y € Sy}
U{x?e X x {2}: x < y for some y € Sy} U {x,}.
One readily observes that S = S,and D = T = &. By G10, k,(C; eo) = |So|.
This proves that equality indeed holds in G11. This equality combined with
G9 and Theorem G4 yield a string of equalities which proves the theorem. []
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CHAPTER V

Matchings and Related Structures

The spaces of a system were studied in Chapter II; in Chapter III they were
interpreted in the context of multigraphs and in Chapter IV in the context
of networks. Once again we shall see how a single combinatorial notion
transcends the peculiarities of the model which serves as the vehicle for its
presentation. The Main Matching Theorem, to be presented and proved in
the first section of this chapter, is the keystone for the rest of the chapter.
Initially the vehicle for presentation is the bipartite graph. In the subsequent
sections, the Main Matching Theorem will give information about many
outwardly dissimilar yet nearly equivalent structures.

Since our proof of the Main Matching Theorem will be facilitated by the
Max-Flow-Min-Cut Theorem, the reader is advised to refamiliarize himself
with the definitions and the statements of results in §/VB and §/VC before
proceeding.

VA Matchings in Bipartite Graphs

Let (¥, &) denote a graph. The notion of incidence introduced earlier was a
“relation” between the sets ¥ and &. We now extend it to a reflexive and
symmetric relation on V' U & as follows. For x;, x,€ V and E;, E; € &

x; is incident with E; if x, € E; ;
x; is incident with x, if either x; = x, or {x, x5} € §;
E, is incident with E, if E; N E, # &.

A set S < VU is a vertex-covering set (respectively, edge-covering set)
if each vertex of positive valence (respectively, edge) is incident with some
element of S. Observe that supersets of vertex- (respectively, edge-) covering
sets are also vertex- (respectively, edge-) covering sets.
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A set S < VUG& is independent if no two distinct elements of S are
incident. Clearly subsets of independent sets are also independent. An
independent vertex set (also called an ““internally stable set”) is an independ-
ent subset of V. The cardinality of a largest independent vertex set in T is
called the vertex-independence number (or ““internal stability”’) of I" and is
denoted by ('), or simply by «,. An independent edge set is defined
analogously, and the edge-independence number is denoted by «,(T"), or simply
«;. We define the function N: Z(V) — #(V) whereby for each Ue Z(V),

NWU) ={yeV + U:{x, y} €& for some x € U}.

In this section we are concerned only with the bipartite graph B =
V1, Va}, &), the significance of these letters being hereby fixed for all of this
section. If U < V, or U < V,, we define the deficiency of U to be the integer

8U) = |U| - IN(U)I,
and we define
§B) =max{s(UV): U<V} (=12,

writing briefly §; when B is understood from the context.
Since 8(@) = 0, 8; > O for any bipartite graph. A subset U < ¥, such that

8(U) = §,(B) is called a critical set. An independent set 8’ < & is called a
matching. If U, < V, fori = 1, 2, a matching & is a matching of U, into U, if

(a) |€'| = |Uy], and
(b) each edge in & is incident with one vertex in U, and one vertex in U,.

Of course, the condition |U,| < |U,| is necessary though hardly sufficient
for such a matching to exist. When we say briefly, ‘“a matching of U,,” one
should understand ‘a matching of U, into V,.”

Recall that to say that a matching &’ in B is largest means that no other
matching &” of any subset of ¥, whatever satisfies |6’| < |£”|.

Al Main Matching Theorem. In the bipartite graph B = ({V,, V3}, &),
o(B) = lVll - 8,(B) = |V2| — 0y(B).

ProoF. Form the set V' = V; U V, U {q, z}, where a and z are ““new”” objects
not in ¥; U V,. Let u be some integer greater than | V|2 We then form the
integral network (¥, k) where

1 ife = (a, x,) or (x,, z) for some x,€ V,,
or if e = (x;, x,) for x, € ¥, and {x,, x,} € &;
k(e) = )
v ife = (z a);
0 otherwise.
(In Figure A2 we show a bipartite graph B together with the directed graph
(¥, o(k)) obtained as described. All edges shown except (z, a) have capacity 1.)
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A2
By,
v, K (V, (k) 2
Wy
Wo
Xl a z
X2
A
Y

If h is an integer-valued feasible flow on (¥, k), then clearly / assigns 0 or 1
to every element of W = (V x V) + {(x, x): x € V} except perhaps to (z, a).
Since 4 is a flow, one sees by the structure of (¥, k) that

h(z, a) = |{(x1, x3): X, € Vi3 h(xy, x2) = 1}

= Z Z h(x1, x5).

Xx1€Vy Xg€Vg

Alsotheset &' = {{x,, x,} € &: h(x,, x;) = 1} is a matching in B of cardinality
h(z, a). Conversely, any matching in B of an m-subset of V; determines a
feasible flow 4 in (V, k) with A(z, a) = m. This proves that

A3 o;(B) = max{A(z, a): h is a feasible flow in (V, k)}.

Let the set Usatisfyae U< V + {z},and let U, = UN V; (i=1, 2). Let
C be the cut determined by U. Then C is a cut through (z, @), and its capacity
satisfies

k(C;(z,a) = V1 + Ui + z k(x1, x3) + |Ua|
xgxelve;ile

> [Vy + Uy + |N(Uy) + (N(Uy) N U)| + |Ug|
> |V, + Uy| + |N(UY)|

= |V = (U] = |N(UL)))

= || = 8(Uy) 2 |V4] — 8,(B).

In particular, suppose U, is a critical subset of V;. Then the set U = {a} +
U, + N(U,) determines a cut C through (z, a) of capacity |V;| — 8,(B). This
proves

Ad [Vi] — 8:(B) = min{k(C; (z, a)): C is a cut through (z, a)}.
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By the Max-Flow—Min-Cut Theorem (IVC6), A3, and A4, one has «;(B) =
[ V1| — 8,(B). The other equality is proved symmetrically. O

AS Corollary. For any bipartite graph, vy = 2¢; + 8, + 8.

A6 Corollary. A necessary and sufficient condition for B to admit a matching
of V,is
UcsV,=|U| < |NWUO)| (=1,2).

Proor: Sufficiency. The condition is clearly equivalent to the assertion that
8U) < Ofor all U < V,, i.e., that §(B) = 0. Now apply the theorem.

Necessity. Suppose that B admits a matching of V; and let U = V,. By
the theorem,

0 = 8(B) = 8(U) = |U| — |N(U)),

whence the condition follows. O

A7 Corollary. If in B one has & # @ and p(x,) > p(x,) for all x, € V,, then
there exists a matching of V.

PRrROOF. Let m = min{p(x): x € V;}, and let U < V. Since any edge incident
with a vertex in U is also incident with a vertex in N(U), one has

A8 mU| < 3 pa) < 2 plx) < mN(U),

x1€U XeN(U)
the last inequality in A8 holding since p(x,) < mfor all x; € V,. Since & # &,
p(xz) > 0 for some x, € V,. Hence m > 0, and A8 implies 8(U) < 0. The
result follows from the preceding corollary. ]

The reader may wish to find other sufficient conditions on B for there to
exist a matching of ¥V,;. A particularly easy case presents itself when B is
m-valent for some m > 0. Then m|V;| = || = m|V,|, and every matching
of V, into ¥V, is also a matching of ¥, into ¥;. Such a matching is called a
mutual matching.

A9 Exercise. Prove that if B is m-valent, then there exists an m-partition of &,
each cell of which is a mutual matching.

A10 Exercise. Given m, n € N with m < n, prove that there exists an m-valent
bipartite graph ({V1, Va}, &) with |Vy| = |V,| = n.

For any multigraph T, the largest valence among the vertices in T" will be
denoted by 4(I") or briefly by g when there is no risk of ambiguity. Similarly,
p(I") will denote the smallest valence in I'. The next proposition shows how a
bipartite graph B may be extended to an isovalent bipartite graph with the
same largest valence without ““joining by an edge” any vertices of B not
already so joined.
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A1l Proposition. Given any bipartite graph B, there exists a p(B)-valent
bipartite graph A = (W1, W,}, F) such that Vi< W, for i = 1,2 and
B = AV]_UVa'

ProOF. Let ¥}’ be formed from ¥; by adjoining sufficiently many new vertices
to ¥, (i = 1, 2) so that |V;'| = | V5| and that

Al12 BB) — 1 < pB)|Vy'| — |8].

Then B’ = ({V7/, V,'}, &) is a bipartite graph. Its valence function, being the
extension by zero of p, will also be denoted by p.
Let n denote the right-hand member of A12. By Exercise A10, there exists
a (p(B) — 1)-valent bipartite graph B” = ({V,", V;"}, €") with |V;"| =
|V2"| = n. We may assume that B” is disjoint from B'.
Foreachi = 1,2,
> (#B) - p(x)) = AB) VY| — |€] = n.
x€Vy
Hence for je{l, 2}, j # i, V,” admits a partition {U,: x € V; p(x) < p(B)}
wherein each cell U, has (positive) cardinality |U,| = p(B) — p(x). Now let

(9@' = {{x7 y}:xe Vll ¥ V2'§y€ Ux}9
F=EU&UE,

and W, = VUV, fori=1,2.
Then A = ({W,, Wy}, #) is the required bipartite graph. (See Figure
Al3) O

Al3

pB) =2,|€| =4,n=2

The set & of edges of a bipartite graph B clearly admits a partition each
of whose cells is a matching. Indeed, each matching could consist of a single
edge, and we would have a |€|-partition. At the other extreme, no such
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partition could have fewer than g(B) cells. The next result shows that this
bound is ““best possible” in general and not only in the case of an isovalent
bipartite graph (cf. A9).

Al4 Proposition. For any bipartite graph B there exists a p(B)-partition of &
each of whose cells is a matching.

Proor. By Proposition A1l we may let A = (W, W,}, #) be a p(B)-valent
bipartite graph such that ¥, = W, (i = 1, 2)and B = Ay y,. By Exercise A9,
there exists a partition {#, ..., %m,} of & each of whose cells is a mutual
matching of W,. Since B contains a vertex incident with precisely 4(B) edges
in &, it is readily seen that for each i = 1,..., #(B), the set £ N & is a
nonempty matching in B. Hence {§ N &#,..., & N Fp)} is the required
partition. O

The remainder of this section is concerned with the properties of critical
sets and the role that they play in matchings.
First we observe that for any U,, U, < V3, one has

Al5 NU, v U,) = NU) v NU)
while
Al6 NWU, N U,) = N(U,) n N(U).

(Cf. IA11 and JA12.) That strict inequality may hold in A16 is seen by the
example in Figure A17. (Cf. IA17.)

Al7
U,
/\
. M/}

Uanz ,
. N(Ul)ﬂ NUp)

~

« NU P

N(U,)

Evaluating cardinalities in A15 and A16 and then adding gives

INU, V Up)] + [N(U, 0 Uy)| < [N(U) U N(U)| + |N(U) 0 N(U)|
= [N(U)| + [N(U)|.
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When this inequality is subtracted from
(U U Us| + Ui N Uy = |Uy| + |
(cf. IC3), one obtains

A18 S(U,) + 8(Us) < 8(Uy U Uy) + 8(Uy 0 Uy).

A19 Exercise.

(a) Prove that N(U;) + N(Uy) = N(U; + Uy). (Cf. IA15.)

(b) Determine what inequality, if any, relates 8(U; + U,) with 8(U;) +
8(Uy).

A20 Proposition. The set of critical subsets of V, is closed with respect to union
and intersection.

Proor. If U, and U, are critical sets, A18 gives
28, < (U, V Uy) + 8(U, 0 Uy).

Since no set has deficiency greater than §;, it must hold that (U, U U,) =
81 = S(UI N Uz). D

Since the Main Matching Theorem establishes the cardinality of a largest
matching as |V;| — 8;, we know that certain overly large subsets of V;
cannot be “matched,” i.e., if fewer than &, vertices of ¥; are deleted, the
remaining set is still too big to admit a matching. The next proposition, on
the other hand, gives affirmative information; it says that the complement
in V; of any critical set U has a matching and that, moreover, the vertices of
N(U) are not required for it.

A21 Proposition. If U < V, and U is a critical set in the bipartite graph B,
then there exists a matching of Vy, + U into V, + N(U).

ProOF. Let U be a critical set and let B’ = ({V, + U, V, + N(U)}, &’) be the

subgraph of B induced by (V7 + U) U (V; + N(U)). Let N’ denote the

function for B’ analogous to N for B, and let &' denote deficiencies in B'.
IfT< V, + U, then

() = |T| - |[N'(D)|
= |T| — |[N(T) + (N(U) N N(T))|
= 8(U) + |T| — (N(D)| — [N(U) " N(T)|) — &U)
= |U| + |T| = (IN(U)| + |N(T)| — [N(U) " N(T)|) — 8(U)
= |U| +|T| - INUUT)| — 8U) (Al5 and IC3)
—8UUT) — 8,(B) <0

since U is critical and UN T = @. The proposition now follows from
Corollary A6. |
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The abundance of existence results above notwithstanding, it is worthwhile
to note that in any bipartite graph one can actually construct a largest
matching, merely by applying the Flow Algorithm (/'D3) to the network
constructed in the proof of the Main Matching Theorem.

VB 1-Factors

The notions developed for bipartite graphs in the previous section admit
extensions to arbitrary graphs. Analogously to the concept of a mutual
matching, we define a 1-factor of a graph I' = (V, &) to be a subset of &
which is at once both independent and vertex-covering. Thus the existence
of a 1-factor in T is equivalent to vo(I') = 2e,(I") and implies that I' has no
isolated vertices.

For any subset U € Z(V), we consider the components of I'y; which contain
an odd number of vertices and we let |U| denote the number of such
components. In case U is independent, then |U| = |U|, and so our definition

8(U) = |U| - |NU)|

as the deficiency of U is clearly seen to include the definition of deficiency in
§A as a special case. Analogously we define

§(I) = max{8(U): Ue Z(V)}

and note that §(I") > 0 since 8() = 0.

Analogous to a critical set of §A is the following notion: U is extremal if
8(U) = §(T). The precise relationship between these two terms will be made
clear in the following proof.

B1 Proposition. For any bipartite graph, § = 8, + 8,.

ProoF. Let B = ({V3, V,}, &) be a bipartite graph. We first show that if
U< V, U V,is a smallest extremal set in B, then U is independent. Let W
be the vertex set of a component of By and let W, = Wn V(i = 1, 2). For
definiteness suppose that | W;| < |W,|. One readily verifies that |U + W;| =
|U|l — & + |Wa|, where e = 1 if |W| is odd and & = 0 if | W| is even. Since
W, # @, we have N(U + W,) =€ N(U) + W,. Hence

U+ wy) = |[U+ Wy — [N(U + W)
2 |U| = INQU)| + |Ws| — [Wy| — e 2 8B),

which is contrary to the choice of U unless W; = @ and U is independent.
Therefore,

§(B)

[UNVi + [UN V| = [NUN V)| = [N(UN V)|
S.(UN V) + 8,(UN V) < 8,(B) + 8,(B).
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To prove the reverse inequality, let U, and U, be critical subsets of ¥,
and ¥, respectively, and let W = (U; N N(U,)) U (U, © N(U,)). Then

8:(B) + 8x(B) = |Us| + |Us| — (IN(UY)| + [N(U2)))
= |Uy + Uy — (IN(U; + Up)| + |W])
< Ui + Us| + |W] = IN(Uy + Up)| — |W]
= 8(U; + U,) < 8(B). O

B2 Corollary. For any bipartite graph, vy = 2¢; + 8.
Proor. Combine the above proposition with Corollary A5. O

Much of the work of the present section is motivated by the fact (Theorem
B14 below) that the identity in B2 holds for all graphs.

Since |U]| is odd if and only if I'y has an odd number of components with
odd vertex sets, one has

B3 |U + NU)| — 8(U) = |U| — |U] = 0 (mod 2).

B4 Lemma. For any extremal set U there exists an extremal set W containing
U such that W + N(W) = V and |U| < |W].

Proor. If U is extremal, let W = V 4+ N(U). Clearly U = W, and every
component of I'y is a component of I'y. Hence |U| < |W| while N(U) =
N(W). Thus (W) = 8(U), and so W is extremal. O

B5 Lemma. For any graph, v > 2« + 8.

PrOOF. Let U be an extremal set of I' = (¥, &) and let C, .. ., C,, be the odd
vertex sets from among the components of I'y. Let &# be an independent
«,-subset of &. Note that if each vertex in C; is incident with some edge in &,
then at least one edge in & is incident with both a vertex in C; and a vertex
in NU) (@ =1,...,m). Since & is independent, there cannot be more than
|N(U)| such edges. Hence at least m — |N(U)| sets C; contain a vertex
incident with no edge in #. In other words, at least m — |N(U)| = |U| —
|N(U)| = &(T") vertices are incident with no edge in #. Hence 2|#| + § < v,.

O

B6 Example. Consider the graph I' = (V, &) shown in the figure:

b E, X
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Let U=1{a,b,c,d,e,f,g}, and so N(U) = {x, y}. We let C, = {a, b, ¢},
C, = {d}, and C; = {e, £, g}. Thus 8(U) = |U| — |N(U)| =3 — 2 = 1.
By Lemma BS, § < vy — 20 = 9 — 2-4 = 1, and so U is extremal.

An obvious necessary condition for a graph I' = (V, &) to admit a 1-factor
is that vo(I") be even. If, however, I' has the property that I, admits a 1-factor
for all x € ¥, then certainly vo(I") is odd, but I' is as close to admitting a
1-factor as an odd graph can be. Such graphs are said to be almost factorable.
For example, for all n, the graph K,, admits a 1-factor, and so K;, ., is
almost factorable.

A subset U < V is said to be normal if it is extremal, ¥V = U + N(U),
and every component of I'y is itself almost factorable (and hence odd).
Clearly the set U in Example B6 is normal. However, the graph I' in the
example is not almost factorable since I',, has no 1-factor.

B7 Exercise. Prove that a graph I = (V, &) is almost factorable if and only
if it is connected, vy(T') is odd, and V is a normal set.

B8 Exercise.

(a) Let © be a spanning subgraph of I". Show that if ® is almost factorable,
then sois I'.

(b) Find all “edge-minimal”’ almost factorable graphs on <5 vertices.

Corresponding to any normal subset U of V, there exists a bipartite
multigraph By of particular interest. By is a subcontraction of I' and is
constructed as follows. First delete any and all edges incident only to vertices
in N(U). Let the vertices of By consist of the singletons {x} for x € N(U) and
of the vertex sets of the odd components of I';. Thus By is a bipartite multi-
graph, but need not be a graph as we shall see presently. (Clearly all the
results of §A, although stated only for graphs, are extendable in an obvious
way to multigraphs.) The multigraph B, corresponding to U and T' of
Example B6 has the form of Figure B9. Observe that it is not a graph.

B9

{x} {v})

B10 Theorem. If T' admits a normal set U, then vy(T) = 2ay(T) + §(T).
Moreover, the associated bipartite multigraph By admits a matching of the
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set {{x}: x € N(U)}. Finally, each largest independent set F of edges of T'
can be constructed as follows:
(a) Let #' be a matching of {{x}: x € N(U)} in By.
(b) Let C be the vertex set of a component of I'y. Regarding C as a vertex
Of BU’
(i) if C is incident with an edge E € F', then let x¢ be the vertex in C
incident with E in T".
(ii) if C is incident with no edge in %", then arbitrarily select x; € C.
(c) Since U is normal, there exists a 1-factor % in the component of T’y
with vertex set C.
) Lat F = F' + 3. Z.

Before proving this theorem, let us first illustrate how the construction of
& works for the graph I' and set U of Example B6. First we must consider
the graph By of Figure B9. Let &’ = {E,, Es}. Then x,, = b and x, = d.
Let us arbitrarily choose x¢, = f. Then %, = {{a, ¢}}, %, = @, and F, =
{{e, g}} Hence # = {El: E;, {d, C}, {e’ g}}'

Proor oF THEOREM B10. In the graph By, let V; = {C: C is the vertex set of
a component of 'y}, and let ¥, denote the set of vertices complementary to V5.
Since U is extremal, 8;(By) = 8(Vy) = |U|| — |N(U)| = &U) = 8(By). By
Proposition B1, 8,(By) = §(By) and 8,(By) = 0. We may obviously identify
V, with N(U), and by the Main Matching Theorem, there exists a matching
F' of N(U) into V. It is clear that steps (b), (c), and (d) can now be carried
out to yield an independent edge set & of cardinality

|#| = INU)| + ;al(rc) = [N(U)| + c2%(101 -1

= 32|N@)] + »(D) — [NU)| = |U]] = $@o(I) — 8(U)).

By Lemma BS5 it follows that & is indeed a largest independent set of edges.
It is now straightforward to verify that every largest independent set of edges
can be constructed in exactly this way. The details are left to the reader. [

The following result appears in papers by T. Gallai [g.3], J. Edmonds [e.2],
and W. Mader [m.4].

B11 Theorem. Every graph admits a normal set of vertices.

Proor. The method of proof is by induction on vo(I"). The assertion is trivially
valid in case vo(I') = 1. Let T = (¥, &) be given and suppose as induction
hypothesis that every proper subgraph of I' admits a normal set. By Lemma
B4 we may let U be an extremal set such that U + N(U) = V. Subject to
this condition, we may assume that |U| is as large as possible.

We first show that every component of Ty has an odd number of vertices.
For let C be the vertex set of a component of I'y, suppose that C is even,
and let x € C. Since C + {x}is odd, we have |U + {x}| > |U||+ 1. Meanwhile,
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since x is incident to some other vertex in C, we have N(U + {x}) € N(U) +
{x}. Thus 8(U + {x}) = 8(U), and so U + {x} is extremal. By B4 there exists
an extremal set W containing U + {x} such that W + N(W) =V and
W] = |U + {x}]| > |U|, contrary to the maximality of |U|.

To show that the set U is normal, it remains only to show that every
component of I'y is almost factorable. We have two cases.

Case 1: U = V and T is connected. In this case I' = Ty consists of a single
odd component, and so §T) = |V| — |@| = 1. Suppose that I' is not
almost factorable; there exists a vertex x € ¥ such that I ,, admits no 1-factor.
By the induction hypothesis, I' ., admits a normal set W, and so by Theorem
B10, 8(Ty) = vo(T(x) — 20(T). Since this quantity is even and positive,
8(T.,) = 2. Let N, and &, denote the functions for I, corresponding to
N and 4. Since W is normal, W + N ,(W) = V + {x}.

If x € N(W), then 8(W) = |W| — [NOW)| = |W| = (Neo(W)| + 1) =
8(W) — 1 > 1. Hence W is an extremal set in ', and |W| = &(W) +
[N(W)| > 1 = |V|, giving a contradiction. If x ¢ N(W), then |W U {x}|| =
|| + 1, while N(W + {x}) = N,(W). Hence §W + {x}) = |W| + 1 —
[Neo(W)| = 8.(W) + 1 = 3, contrary to the fact that §(T') = 1.

Case2: U < V,or U= V and I is not connected. Let C be the vertex set
of some component of I'y. Then C < ¥ and by the induction hypothesis,
I'c admits a normal set W. Hence W + N (W) = C, where N is the re-
striction of N to I'c. We define 8, analogously. Thus

BL2 (W)= W] — IN(W)| = |W| - (C| - |W]) =1
by B3 since |C| is odd. Let X = U + W. Then
B13 (a) N(X) = N(U) + Ny(W)

(b) lxI=dul-n+ [w].

Thus  §(X) = |X| - [NX)| = |U] + [W] — 1 = [N(U)| — [Ne(W)| =
8(U) + 8.(W) — 1 = 8(U) by Bl3a and B12. Since U is extremal, strict
equality must hold throughout this chain and hence in Bl13a as well. We
see that X is extremal and that X + N(X) = V. Therefore | X| < |U|,
which by B13b implies that || < 1. Hence W = C by BI2, and I'; is
almost factorable by Exercise B7. O

Combining Theorems B10 and B11 we have
B14 Theorem (C. Berge.[b.3]). For any graph, vy = 2«; + 8.
Since §(I") = 0 if and only if I" admits a 1-factor, we deduce immediately

B15 Corollary (W. T. Tutte [t.4]). The graph I = (V, &) admits a 1-factor if
and only if |U| < |[N(U)| forall U < V.
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Note in particular how Tutte’s result generalizes Corollary A6 from
bipartite graphs to all graphs.

B16 Exercise. LetI' = (¥, &) be a graph with »(I") even. Show that I' admits
a 1-factor if and only if |U| < |[N(U)| + 1forall U< V.

B17 Exercise (Errera [e.7]). Let I" be a connected trivalent graph in which
all isthmuses lie on a single path. Show that I has a 1-factor. [Hint: use
Exercise B16.]

B18 Exercise (C. Berge [b.5]). Let I' = (V, &) be h-valent and suppose that
whenever & < S < V, then the number of edges incident with exactly one
element of S is at least » — 1. Show that I" either admits a I-factor or is
almost factorable.

B19 Exercise. Show that «; > min{[v,/2], g} for any graph.

B20 Exercise (P. ErdGs and T. Gallai [e.4]). Prove for any graph

({2« .
( 21) lf Vo = 2“1;
2
v < < ( a12+ 1) if 20, < vy < 5a12+ 2;
((;1) + o (vo — @) if 5oy + 2)/2 < v,

For further information on 1-factors, see Lovasz [£.5].

VC Coverings and Independent Sets in Graphs

Throughout this section, I' = (¥, &) denotes a graph. An externally stable set
(also called a “dominating set™) is a vertex-covering subset of V. The
cardinality of a smallest externally stable set in ¥ is denoted by Boo(T"), or
simply Boo, and is called the external stability of I'. In a like manner, but
without specific names, we define:

Bo1(T) = cardinality of a smallest edge-covering subset of V;
B1o(T) = cardinality of a smallest vertex-covering subset of &;
B11(T") = cardinality of a smallest edge-covering subset of &.

Example. The graph in Figure Cl1 has vy = 9, v; = 11, o = 5, a; = 4,
ﬁoo =3, 301 = 4, 1310 =3, /311 = 2.

C1
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C2 Exercise. Compute each of the above parameters for:
(a) the complete graph K,;
(b) the n-circuit A,, n > 3;
(c) the graph obtained by removing an elementary n-cycle from K,,, n > 3.

C3 Exercise. Find two nonisomorphic connected graphs I'; and I'; for
which o(T';) = &(T';) and Bi(T'y) = Bi(T',) for all i, j {0, 1}.

C4 Exercise. Show that if I" has no isolated vertices and if W is any minimal
externally stable set, then ¥ + W contains another minimal externally stable
set, and hence By, < v,/2.

C5 Exercise. Let W < V. Show that W is an independent vertex set if and
only if V + W is an edge-covering set.

The present section is concerned with the relationships of various graph-
theoretical parameters to each other. Theorem B14 of the previous section
was the first of the present sequence of identities and inequalities.

C6 Proposition. For any graph with k isolated vertices,
@) Buo+ k=0, + 8
() § < o < Bio + £.

PrOOF. (a) Let & be a vertex-covering f8;,-set of edges. By the minimality of
Z, I's must be a forest. Since its cycle space is trivial, ZIIA15b yields »o(T') =
vo(Tg) = v(Tg) + v_1(T's) < Bio(T) + & (T) + £, since the selection of one
edge from each component of I's yields an independent set. Combining this
with Theorem B14 yields ; + § < By, + k. To obtain the reverse inequality,
let & denote instead an independent a,-set of edges. By Theorem Bl4,
there are precisely § vertices incident with no edge in & If for each of the
8 — k nonisolated vertices, an edge is adjoined to & which is incident with
that vertex, the resulting set is vertex-covering and contains «; + 6— k
edges. Hence ;0 < o; + § — k.

(b) By Theorem Bl14, exactly § vertices are incident with no edge of a
largest independent edge set. Such a 8-set of vertices must be independent.
Hence § < «. If the isolated vertices of T are deleted, then each edge of a
vertex-covering B;,-set of edges is incident with at most one vertex of any
independent set of vertices. Hence ¢y — k < Bi,. O

Iff < P(U), let & = {U + T:Tes/}. Then a set T < U is a minimal
element of (&4, <) if and only if U + T is maximal in (&7, <). It follows that
for any & = #(U),

Cc7 min{|T|: T e #} + max{|T|: Te &} = |U|.
The first part of the next proposition is a direct application of this principle.
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C8 Theorem. (T. Gallai [g.2], 1959).
(a) For any graph, ay + Boy = vo.
(b) For any graph without isolated vertices, «; + Big = vo.

PROOF. (a) Let o/ = {We P(V): Wis edge-covering}. By C5, o = {(We P(V):
W is independent}. Then by C7,

Bor + o = min{|W|: We L} + max{|W|: We L} = v,
(b) Eliminate § from B14 and Céa. O

C9 Proposition. For any graph without isolated vertices, the following in-

equalities hold:

(@) @ < Pro < o + o

(®) o < Bor < 2043

©) o <vg— g < 204.
Furthermore, if equality holds in any one of the left-hand inequalities above,
then it holds in all three of the left-hand inequalities. If equality holds in any
one of the right-hand inequalities or in the inequality § < «, (cf. C6b), then
it holds in all three right-hand inequalities and § = «,.

Proor. From the two parts of Gallai’s theorem, B — @ = Bo1 — @ =
vo — %o — a;, and by Proposition C6b, B, — &, > 0. This establishes the
three left-hand inequalities as well as the fact that if equality holds in any
one of them, then it holds in all three. By Theorem B14 and Proposition C6b,
20, — (vo — @) = @y — & > 0. This establishes (c) and that equality holds
in the right-hand inequality of (c) if and only if § = «,. The rest follows
by substitution from Gallai’s theorem. O

Actually portions of the above proposition hold when the prohibition
against isolated vertices is relaxed. These are the portions not requiring C8b.
The greater generality obtained by sorting them out, however, is in our
opinion not worth the effort.

The following is an equivalent formulation of the Main Matching
Theorem.

C10 Theorem (D. Konig [k.5], 1936). In a bipartite graph, o; = Bo;.

Proor. Let I' = ({Vy, Va}), ). By Proposition C9b, «; < Bo;, and so it
suffices to find an edge-covering «;-subset of V; U V,. Clearly «, is the
cardinality of a largest matching in I'. By the Main Matching Theorem,
a, = |V3| — 8. Let U < V; be a critical set. One observes that V; + U +
N(U) is an edge-covering set with cardinality

|V1| - (|U| - IN(U)D = |V1| — ;. O

C11 Corollary. In a bipartite graph without isolated vertices, ao = P10 and
Og + o = Vop.
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C12 Proposition. In any graph,
(®) Boo < &
() Bu1 < oy;

(¢) Boo < oy if there are no isolated vertices.

IA

A IA

Proor. (a) Clearly every maximal independent vertex set is externally stable.

(b) The argument is the same as in (a).

(c) Consider a smallest externally stable set V; of vertices of I' and let
V, = V + Vi. Let & be the subset of & consisting of edges incident with one
vertex in V; and one vertex in V,. Then B = ({V,, V,}, &) is a bipartite
graph, and by the Main Matching Theorem,

,Boo(P) - 81(B) = IVII - 81(B) = o(B) < “1(F)-

It suffices to show that 8,(B) = 0. Suppose that in B, 8(U) > 0 for some
Uc Vy,andlet W= V; + U+ N(U). Then |W| < |V,|, and since I" has
no isolated vertices, W is externally stable, contrary to the definition of
V. O

C13 Exercise. From C6 and C9 we deduce that for j # k, we have o; < B, 5
in three of the four possible cases. From C12, we infer 8, ; < «; in three of
four possible cases. Determine whether the remaining inequalities, namely
oy < Bo; and By; < «y, are true or false, and show that in any graph without
isolated vertices, we have the weaker result 8;; < Bq;.

C14 Exercise. Let o(T") = max{|U|: U < V; I'y is a forest}, and let B(T") =
min{|U|: U < V; every circuit in I' meets U}. Prove «(T") + B(I") = »o(T).

C15 Exercise. State and prove a result analogous to C14 with ¥ replaced by
& in the definitions of «(I") and B(T").

C16 Exercise. Show that in a graph without isolated vertices, the cardinality
of a minimum subset & < & with the property that &# excludes at most one
edge from each vertex cocycle is 819 — v; + v,.

C17 Exercise. Prove:

(a) Every smallest vertex-covering edge set contains a largest independent
edge set.

(b) Every largest independent edge set is contained in a smallest vertex-
covering edge set.

VD Systems with Representatives

For this section A = (V, f, E) will denote an arbitrary system. We define a
list of distinct representatives (LDR) for A to be an injection A: E — ¥ such
that A(e) € f(e) for all e € E. A system admitting an LDR is called a system
with distinct representatives (SDR). The fundamental result in the literature
concerning SDR’s is the following:
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D1 Theorem (Philip Hall [h.4], 1935). The system (V, f, E) is an SDR if
and only if

F< E=|F| <

U e

eeF

The Philip Hall Theorem should readily be seen to be equivalent to Corol-
lary A6 above. For let I' = ({V, F}, &) be the bipartite graph of A. If F < E,
then N(F) = U.cr f(e), and the equivalence is immediate. It should be re-
marked that Philip Hall’s theorem is strictly a statement of existence. It
indicates neither how an LDR can be found nor, when an LDR does exist,
how many distinct LDR’s A may have. The enumerative problem is considered
below in §F. When an LDR exists, it can be found in the following way. Since
an LDR X: E — V of A exists if and only if the set of edges {{e, A(e)}: ec E}
is a matching of E in T', the algorithm for constructing a largest matching in
I" can thus be employed to find a ““longest LDR for A.

D2 Exercise. Just as the Philip Hall Theorem is the analog for systems of
Corollary A6, devise and justify system analogs for:

(a) The Main Matching Theorem;

(b) Corollary A7,

(c) The Ko6nig Theorem (C10).

D3 Exercise. Let # be an independent subset of the vector space (Z(U), +).
Prove that the set system (U, %) is an SDR.

Let V be a fixed set and consider two systems A; = (V, f;, E) fori =1, 2.
A list of common representatives (LCR) for the two systems is a pair (A, A5)
where A; is an LDR for A; (i = 1, 2) and A [E;] = Ay[E;]. An obvious neces-
sary condition for the existence of a LCR is that |E;| = |E,|.

D4 Proposition. Let the systems Ay = (V, f1, Ey) and Ay = (V, f3, E;) be
given with |E\| = |E;| = m. A necessary and sufficient condition for A,
and A, to have an LCR is that for all D, < E, and D, < E,,

(U @) n (U 50)

eeDy eeDy

|Dy| + |Dg| — m <

PROOF. Necessity. Suppose that (A4, A;) is an LCR for A; and A,, and let
D, c E, and D, < E,. Clearly |A\[D;]U A[D,]] < m, while A[D;Jn
Ao[Ds] € (Ueen, f(€)) N (Ueen, f(€)). Hence

IDI| + IDzl = I)‘l[D1]| + IAz[Dz]I
[A[D1] Y AS[ D5l + |A[D1] N 5[ D]

(U s0) (U s0)

eeD, eeDg

IA

m +
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Sufficiency. Let V' be a |V|-set disjoint from ¥ and all other sets in
question. There is a bijection ¥ — V'’ given by x—>x". If S ¥V, let §' =
{x'e V':xe V}. We now form the bipartite graph B = {{V' U E;, V' U E,}, &),
where

E={x,x}:xeV}U{{x,e}:ec E;; x€ fole)} U {{e, x'}: e € Eq; x € fi(e)}.
Observe that |V U E;| = |V’ U E,|. See Figure D5.

DS

The bipartite graph of A, The bipartite graph of A,
(isomorphic copy)

Let us first suppose that B admits a mutual matching. Let U denote the
set of vertices in V thereby matched with elements of E,. Thus Ue Z,(V).
It follows that ¥ + U is matched with (V' + U)’, and so U’ is necessarily
matched with E;. For i = 1, 2, define A;: E; — U so that for each ec E,,
As(e)’ is the vertex in U’ matched with e, while for each e € Ej, Ay(e) is the
vertex in U matched with e. Clearly (A, A;) is an LCR.

It suffices therefore to prove that B admits a mutual matching. By
Corollary A6, this is equivalent to showing that §(4) < Oforall4 < V U E,.
We may write 4 = W + D,, where W < V and D, < E;. Then

Ny = w0 () /) + (e Baifi@y n W # o),

eeDy

Let D, = {ee E,: f2(e) < V + W3}. Invoking the condition, we compute
8(4) = |4] — [N(4)|

= |Dy] + W] - (IW’I +

(U @) e+ wy |+ (2l - 12)

eeD;

= |Dy| + |Dy| — m —

(U fl(e)) N+ W)l

eeD;

(Ys@)n(Use) |-

eeDy eeDgy

<

(Ufl(e)) N+ W)\ <0. I

eeD;y
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D6 Exercise. Let A; = (V, f, E) be a system with |Ej| = mfori=1,...,k.
An LCR (1, ..., A) for these systems is defined in the obvious way. Consider
the condition

k

N U s

i=1 eeD;

N for all l)iS; lz.

k
2D - (k- Dm <
i=1

(a) Show that this condition is necessary for the existence of an LCR.

(b) Show that it is sufficient for the existence of “pairwise LCR’s” (A;, X))
for Ajand A;whenl <i< j<k.

(c) Give a counter-example to show that this condition is not sufficient
for the existence of an LCR when k = 3 and m = 2.

D7 Exercise (H. J. Ryser [r.9]). Let 2,e P, (U) fori =1, 2.
(a) Prove that (U, £,) and (U, £,) admit an LCR if and only if for all
L <2 U,

& covers U = |&| = m.

(b) Prove that if 2, U 2, < Z(U) for some n, then (U, 2,) and (U, 2,)
admit an LCR.

D8 Exercise. Let G be a finite group, let H be an arbitrary subgroup, and let
m be the index of H in G. Prove that there exist x,, ..., X, € G such that

m m
G = U x;H = U th.
i=1 i=1

We conclude this section with an application of the foregoing theory.

An r x s Latin rectangle is a rectangular array of symbols with » rows
and s columns such that each symbol appears at most once in each row and
each column. A Latin square of order » is an n x n Latin rectangle on n
symbols.

D9 Proposition. If r < s, an r x s Latin rectangle on s symbols can always be
extended to a Latin square of order s.

ProoF. Let ¥V = {1, 2,.. ., s} be the set of symbols of the given rectangle. Let
E = {ey, ..., e;} be an arbitrary s-set and define f: E — 2(V) by letting f(e;)
be the (s — r)-set of symbols not appearing in the ith column. Since each
symbol j € V appears precisely once in each of the r rows, it must appear in
precisely r columns. Hence j is absent in precisely s — r columns. By the
analog for systems of Corollary A7 (see Exercise D2b), if r < s then the
system (V, f, E) admits an LDR A, and an (r 4+ 1)-st row A(e,), ..., A(e;)
may be adjoined to the Latin rectangle to form an (r + 1) x s Latin rectangle.
If r + 1 < s, the above argument may be repeated until a Latin square of
order s is obtained. O

144



VE {0, 1}-Matrices

VE {0, 1}-Matrices

In this section M = [m;;] will denote an r x s matrix where m;; = 0 or 1
forall (i, j)e{l,...,r} x {1,...,s}. Such a matrix is called a {0, 1}-matrix.
By a line of M is meant either a row or a column of M.

We shall now define a rather broad ““incidence relation’” among lines and
positions in a {0, 1}-matrix. The reader should perceive that this definition
is motivated by the definitions of incidence in multigraphs (§A) and of
incidence matrix of a system (§/D).

We say that the ith row and jth column of M are incident if m;; = 1. The
ith and jth rows are incident if their inner product satisfies

S
Z mymy, > 0.
k=1

(Thus my, = 1 = my, for some ke{l,...,s}) Similarly two columns are
incident if their inner product is positive. We say that the position (i, j) is
incident with the ith row and with the jth column. Finally, two positions on a
common line are incident.

The number of lines of an r x s matrix M is denoted by #(M) = r + s.

If M is an incidence matrix of a system A = (V, f, E), then the matrix
MM* = A = [a;] is called a vertex-vertex incidence matrix (or an adjacency
matrix) of A. The set V' = {x;,..., x,} may be indexed so that for i, je

{,...,r},
ay = [{e€ E: {x;, x;} < f(e}}| = |f*(x) O f*(x))|.

E1 Exercise. Show that a multigraph is uniquely determined (up to isomorphism)
by any one of its adjacency matrices. Show that this does not hold for systems
in general.

A block-block incidence matrix of a system (V, f, E) with incidence matrix
M is the matrix M*M = H = [h;,]. The set E = {e,, ..., e;} may be indexed
so that for i, je{l,..., s},

hy = |fle) N fle)] = [{xe V:{e, e} = f¥(X)}].

(The significance of these entries a;; and A;; will be pursued in Chapter IX.)

E2 Exercise. Characterize all graphs not uniquely determined (up to isomor-
phism) by their block-block incidence matrices.

Let I' = (V, &) be a graph with V = {x,,...,x} and & = {E,, ..., E}.
Let M = [my,] be the incidence matrix of I" which conforms to this indexing.
Then the entry a;; in the corresponding adjacency matrix 4 = MM* of I' is

p(x) ifi=j;
a; =<0 ifi #jand {x;, x} ¢ ¢&;
1 ifi # jand {x;, x;} €é.
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Moreover,

p(x;) = Z ai; = z ai.
J#i J#1
In the block-block incidence matrix of I', the diagonal entries are all 2 and
the others are each O or 1. Graphs are not the only systems with the property
that the nondiagonal entries in these two matrices are 0 or 1, as we see in the
following exercise.

E3 Exercise. Prove that for any {0, 1}-matrix M the following three statements
are equivalent.

(a) The nondiagonal entries on MM* are 0 or 1.

(b) The nondiagonal entries of M*M are O or 1.

(c) M has no 2 x 2 submatrix of the form

11
[1 1].
E4 Exercise. Let A be the adjacency matrix of a graph I' = (¥, &) which
corresponds to the indexing {x,,..., x,} = V. Let B be obtained from A by
replacing all the diagonal entries with 0. For n € N, consider the nth power
B" = [b;(n)] of B. Show that there exists an x;x,-path of length at most n
if and only if b,,(n) > 0. If in the definition of path (§/IC) we relax the con-
dition that two consecutive edges must be distinct, show that b,/(n) is the
precise number of ““x;x,-paths” of length n.

Consider the bipartite graph I' = ({V3, V3}, &) where | V| = r;. Its (vertex-
edge) incidence matrices are incidence matrices of the set system (V; U V5, &)
and are not of great interest; they assume the form of Figure ES, where the
ry X |€| submatrix M, has exactly one 1 in each column and at most r, (j # i)

&

Vi[ M, ]

ES A
Vz[ M,

I’s in each row. The adjacency matrices of I', on the other hand, have the
form of Figure E6, where D, is a diagonal matrix whose diagonal is a list of

Vi YV,

V.[ D iM]

E  rE oo
Vz[M* | D,

the valences of the vertices in V; (i = 1, 2) and M is a {0, 1}-matrix of order
r; X ry. Observe that M is an incidence matrix of a system for which T is the
bipartite graph. In the light of Exercise E1, M alone suffices to characterize I'.
In fact, there is a natural identification of the set of all r; x ry {0, 1}-matrices
with the set of all subgraphs of I' obtained from K,, ,, by deleting edges only.
Permutations of rows or of columns of M correspond to automorphisms of
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the system I leaving V¥, and ¥, fixed setwise. It is thus natural that some of
the graph-theoretical parameters introduced in §A and §C yield the following
interpretations, which may be considered as definitions, in the context of the
{0, 1}-matrices:

ao(M) = max({ry, ro} U {m(L): L is a zero-submatrix of M}).

o;(M) = cardinality of a largest set of positions occupied by 1’s
in M, no two of which are incident. (This parameter
is called ‘““term rank” in the literature, notably by
H. J. Ryser [r.9].)

Boi(M) = cardinality of a smallest set of lines of M such that
every position occupied by a 1 is incident with a line
in the set.

Bio(M) = cardinality of a smallest set of positions occupied by
I’s in M at least one of which lies on every line
containing a 1.

The parameters By, and B,; do not appear to have interesting matrix
analogs. Clearly equivalent to the Konig Theorem (C10) is

E7 Theorem (Egarvary [e.3]). In a {0, 1}-matrix, the cardinality of a largest
set of positions occupied by 1’s no two of which are incident equals the
cardinality of a smallest set of lines such that every position occupied by
a 1 is incident with a line in the set.

Occasionally we may require a matrix over an arbitrary integral domain,
in which case the symbol 1 in the above theorem can be replaced by the words
“nonzero element.”

An isolated vertex of the bipartite graph I' corresponds to a line of 0’s
in each of its adjacency matrices. Thus the analog of Corollary Cl11 is:

E8 Proposition. If there is a 1 in each line of an r, x ry {0, 1}-matrix M,
then the cardinality of a smallest set of positions occupied by 1’s at least one
of which lies on every line equals «o(M), and

ao(M) + ay(M) = =(M).
Applying Theorem C8 to bipartite graphs yields
E9 Proposition. For a {0, 1}-matrix M,
ao(M) + Boy(M) = =(M),
and if there is a 1 in each line of M, then o;(M) + B1o(M) = =(M).

We state an analog for matrices of Corollary A6.
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E10 Proposition. Given any r, x ry {0, 1}-matrix with r, < r,, there exist r,
positions occupied by 1’s, no two of which are incident, if and only if every
n X ry submatrix has at most ry — n columns of 0’s (n = 1,...,ry).

The four parameters and four results in this section pertain to {0, 1}-
matrices in general, i.e., not just to those matrices reflecting the particular
kind of incidence defined for systems in §A. These results should therefore
yield information about arbitrary systems associated, by some yet-to-be-
defined kind of incidence, with some given {0, 1}-matrix. The reader may
find it fruitful to explore various types of incidence in multigraphs or other
systems, interpreting such “‘incidence matrices” as edge-cycle, edge-cocycle,
cycle-spanning forest, vertex-circuit, etc. Perhaps the results of this section
will yield some new results or at least some short proofs of old results. This
is indeed a very open-ended problem.

E11 Exercise. Let L be a {0, 1}-matrix and let » be the largest number of 1’s
in any line. Prove that L is a submatrix of a {0, 1}-matrix each of whose lines
contains exactly n 1’s.

VF Enumerative Considerations

The results in the first four sections of this chapter have been largely con-
cerned with questions of existence—existence of matchings, of LDR’s, of sets
of lines in matrices with given properties, and so forth. Here in the final
section of the chapter, we consider questions of the form, *“ Given existence,
how many are there ?”’ The flavor is reminiscent of §IC, but the earlier sections
of this chapter permit extension again of our numerical answers to a wide
variety of superficially dissimilar models.

Let M = [m,] be an r x s matrix over some integral domain. If r < s,
the permanent of M is given by

perm(M) = z My,00)" « -« " Mr,0m)
(4

where the summation is over all injections

e:{l,...,r}=>{1,...,s}

By Proposition IC13, perm(M) is the sum of s!/(s — r)! products. If r = s,
then perm(M) can be thought of as the ““unsigned determinant” of M. The
following proposition should be evident.

F1 Proposition. Let A = (V, f, E) be a system with |E| < |V|. Let T =
({E, V}, &) be the bipartite graph of A and let M be an incidence matrix of
A. Then perm(M) equals both the number of LDR’s of A and the number
of matchings of Ein I,
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Before the next theorem, due to Marshall Hall, it may be well to stand off
for a moment and consider the logical relationships among the results of
Chapters IV, V, and VI. The Max-Flow-Min-Cut Theorem was proved in
Chapter IV essentially from first principles developed in Chapters I, II, and
III. From it we deduced the Main Matching Theorem, one of whose corol-
laries (A6) has been demonstrated (§C, §D, §E) to be equivalent to various
other results, notably the Philip Hall Theorem. The Main Matching Theorem
can straightforwardly be shown to imply the Max-Flow-Min-Cut Theorem.
Looking ahead to Chapter VI, we anticipate proving the equivalence between
the Max-Flow-Min-Cut Theorem and the Menger Theorem for separation
in graphs. Marshall Hall’s theorem below is totally independent of this
logical chain. It will be proved from first principles; yet it yields the Philip
Hall Theorem as a trivial corollary. Marshall Hall’s theorem, therefore,
might have been used as our logical starting point rather than Max-Flow-
Min-Cut. The choice of a starting point for this presentation is very much
a matter of taste.

F2 Theorem (Marshall Hall [h.1], 1948). Let ge N + {0}. Let the system
A = (V, f, E) satisfy

F3 DS E=|D| <

U 1@

eeD

and suppose that all blocks have size at least q. The number of LDR’s admitted
by A is at least:
(@) q'ifq < |E[;
(®) q'/(q — |[ED'If|E| < gq.
PrOOF. (Adapted from H. B. Mann and H. J. Ryser [m.6].) We proceed by
induction on |E|. If E = {e}, then |E| < gand A admits exactly | f(¢)] LDR’s,
where | f(e)| = ¢ = q!/(g — 1)! as required. The induction hypothesis is that
the theorem holds for all systems with fewer than m blocks. We assume
|E| = m. Condition F3 can be broken into two cases.

Casel: 3 < D < E=|D| < |U.ep f(€)]- Let e, € E. Since | f(eo)| =g = 1,
pick x, € f(e,). Let E' = E + {e;} and V' = V + {x,}, and form the sub-
system A’ = (V', f', E') where

fle=fleynV’, forallecE’.
If D = E’, then by assumption

U £

eeD

b

|D| < -1x<

Lg 1@

ie.,, A’ satisfies F3. Clearly ¢ < |E| if and only if ¢ — 1 < |E’|. By the
induction hypothesis, A’ admits at least (§ — 1)! LDR’s if ¢ < |E| and at
least

b

(¢ - D! _ (g=Dn!
[g-D—[E] (¢ - [ED!
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LDR’s if ¢ > |E|. To each LDR X of A’ corresponds the uni