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Preface 

Over the last two decades the Borel-Chevalley theory of linear algebraic 
groups (as further developed by Borel, Steinberg, Tits, and others) has made 
possible significant progress in a number of areas: semisimple Lie groups 
and arithmetic subgroups, p-adic groups, classical linear groups, finite 
simple groups, invariant theory, etc. Unfortunately, the subject has not 
been as accessible as it ought to be, in part due to the fairly substantial 
background in algebraic geometry assumed by Chevalley [8], Borel [4], 
Borel, Tits [1]. The difficulty of the theory also stems in part from the fact 
that the main results culminate a long series of arguments which are hard 
to "see through" from beginning to end. In writing this introductory text, 
aimed at the second year graduate level, I have tried to take these factors 
into account. 

First, the requisite algebraic geometry has been treated in full in Chapter 
I, modulo some more-or-Iess standard results from commutative algebra 
(quoted in §O), e.g., the theorem that a regular local ring is an integrally 
closed domain. The treatment is intentionally somewhat crude and is not 
at all scheme-oriented. In fact, everything is done over an algebraically 
closed field K (of arbitrary characteristic), even though most of the eventual 
applications involve a field of definition k. I believe this can be justified as 
follows. In order to work over k from the outset, it would be necessary to 
spend a good deal of time perfecting the foundations, and then the only 
rationality statements proved along the way would be of a minor sort (cf. 
(34.2)). The deeper rationality properties can only be appreciated after the 
reader has reached Chapter X. (A survey of such results, without proofs, 
is given in Chapter XII.) 

Second, a special effort has been made to render the exposition trans
parent. Except for a digression into characteristic ° in Chapter V, the 
development from Chapter II to Chapter XI is fairly "linear", covering 
the foundations, the structure of connected solvable groups, and then the 
structure, representations and classification of reductive groups. The lecture 
notes of Borel [4], which constitute an improvement of the methods in 
Chevalley [8], are the basic source for Chapters II-IV, VI-X, while Chapter 
XI is a hybrid of Chevalley [8] and SGAD. From §27 on the basic facts 
about root systems are used constantly; these are listed (with suitable ref
erences) in the Appendix. Apart from §O, the Appendix, and a reference to 
a theorem of Burnside in (17.5), the text is self-contained. But the reader is 
asked to verify some minor points as exercises. 

While the proofs of theorems mostly follow Borel [4], a number of 
improvements have been made, among them Borel's new proof of the 
normalizer theorem (23.1), which he kindly communicated to me. 

VII 
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Conventions 

K* = multiplicative group of the field K 
char K = characteristic of K 

James E. Humphreys 

char exp K = characteristic exponent of K, i.e., max {I, char K} 
det = determinant 
Tr = trace 
Card = cardinality 
11 = direct sum 
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Chapter I 

Algebraic Geometry 

o. Some Commutative Algebra 

Algebraic geometry is heavily dependent on commutative algebra, the 
study of commutative rings and fields (notably those arising from polyno
mial rings in many variables); indeed, it is impossible to draw a sharp line 
between the geometry and the algebra. For reference, we assemble in this 
section some basic concepts and results (without proof) of an algebraic na
ture. The theorems stated are in most cases "standard" and readily accessible 
in the literature, though not always encountered in a graduate algebra course. 

We shall give explicit references, usually by chapter and section, to the 
following books: 

L = S. Lang, Algebra, Reading, Mass.: Addison-Wesley 1965. 
ZS = O. Zariski, P. Samuel, Commutative Algebra, 2 vo1., Princeton: 

Van Nostrand 1958, 1960. 
AM = M. F. Atiyah, I. G. Macdonald, Introduction to Commutative 

Algebra, Reading, Mass.: Addison-Wesley 1969. 
J = N. Jacobson, Lectures in Abstract Algebra, vo1. III, Princeton: Van 

Nostrand 1964. 
There are of course other good sources for this material, e.g., Bourbaki 

or van der Waerden. We remark that [AM] is an especially suitable reference 
for our purposes, even though some theorems there are set up as exercises. 

All rings are assumed to be commutative (with 1). 

0.1 A ring R is noetherian ¢> each ideal of R isfinitely generated ¢> R has 
ACC (ascending chain condition) on ideals ¢> each nonempty collection of ideals 
has a maximal element, relative to inclusion. Any homomorphic image of a noe
therian ring is noetherian. [L, V I § 1] [AM, Ch. 6, 7]. Hilbert Basis Theorem: 
If R is noetherian, so is R[T] (polynomial ring in one indeterminate). In par
ticular,for a field K, K[T b T 2, ... , Tn] is noetherian. [L, V I §2] [ZS, IV §1] 
[AM,7.5]. 

0.2 IfK is afield, K[T b ... , Tn] is a UFO (unique factorization domain). 
[L, V §6]. 

0.3 Weak Nullstellensatz: Let K be afield, L = K[Xl,"" xn] afinitely 
generated extension ring of K. If L is a field, then all Xi are algebraic over K. 
[L, X §2] [ZS, VII §3] [AM, 5.24; Ch. 5, ex. 18; 7.9]' 
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0.4 Let l/K be afield extension. Elements Xb ... , Xd E l are algebraically 
independent over K if no nonzero polynomial f(T b ... , T d) over K satisfies 
f(xb . .. , Xd) = O. A maximal subset ofl algebraically independent over K is 
called a transcendence basis of l/K. Its cardinality is a uniquely defined number, 
the transcendence degree tr. deg. K L. Ifl = K(Xb ... , xn), a transcendence basis 
can be chosen from among the Xi> say Xb ... ,Xd. Then K(Xb ... ,Xd) is purely 
transcendental over K and l/K(Xb ... , Xd) is (finite) algebraic. [L, X §1] 
[ZS, II §12] [J, IV §3]. 

Ltiroth Theorem: Let l = K(T) be a simple, purely transcendental exten
sion ofK. Then any sub field ofl properly including K is also a simple, purely 
transcendental extension. [J, IV §4]. (Remark: The proof in J is not quite 
complete, so reference may also be made to B. L. van der Waerden, Modern 
Algebra, vol. I, New York: F. Ungar 1953, p. 198.) 

0.5 Let E/F be afinitefield extension. There is a map NE/F: E -t F, callea 
the norm, which induces a homomorphism of multiplicative groups E* -t F*, 
such that NE/F(a) is a power of the constant term of the minimal polynomial of 
a over F, and in particular, NE/F(a) = a[E:F] whenever a E F. To define the 
norm, view E as a vector space over F. For each a E E, x ~ ax defines a linear 
transformation E -t E; let NE/F(a) be its determinant. [L, V III §5] [ZS, II §10]. 

0.6 Let R :::J S be an extension of rings. An element x E R is integral over 
S ¢> x is a root of a monic polynomial over S ¢> the subring S[x] of R is a 
finitely generated S-module ¢> the ring S[ x] acts on some finitely generated 
S-module V faithfully (i.e., y. V = 0 implies y = 0). R is integral over S if 
each element of R is integral over S. The integral closure of S in R is the set 
(a subring) of R consisting of all elements of R integral over S. If R is an integral 
domain, with field of fractions F, R is said to be integrally closed if R equals 
its integral closure in F. [L, IX §1] [ZS, V§l] [AM, Ch. 5]. 

0.7 Noether Normalization Lemma: Let K be an infinite field, R = 

K[ Xb ... , xn] afinitely generated integral domain over K with field offractions 
F, d = tr. deg. K F. Then there exist elements Yb ... , Yd E R such that R is 
integral over K[Yb ... , Yd] (and the Yi are algebraically independent over K). 
[L, X §4] [ZS, V §4] [AM, Ch. 5, ex. 16]. 

0.8 Going Up Theorem: Let R/S be a ring extension, with R integral 
over S. If P is a prime (resp. maximal) ideal of S, there exists a prime (resp. 
maximal) ideal Q of R for which Q (') S = P. [L, IX §1] [ZS, V §2] [AM, 
5.10,5.11]' 

Extension Theorem: Let R/S be an integral extension, K an algebraically 
closed field. Then any homomorphism <p: S -t K extends to a homomorphism 
<p': R -t K. Ifx E R, a E K, <p canfirst be extended to a homomorphism R[x] -t K 
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sending x to a (then be further extended to R, R being integral over R[ x]), 
provided f(x) = 0 implies f1p(a) = 0 for f(T) E SeT] (f1p(T) the polynomial over 
K gotten by applying cp to each coefficient of f(T)). [L, I X §3] [AM, Ch. 5] 
[J, Intro., IV]. 

0.9 Let PI, ... , P n be prime ideals in a ring R. If an ideal lies in the union 
of the Pi, it must already lie in one of them. [ZS, IV §6, Remark p. 215]. 

0.10 Let S be a multiplicative set in a ring R (0 ¢ s, 1 E S, a, b E S => ab E S). 
The generalized ring of quotients S-l R is constructed using equivalence 
classes of pairs (r, s) E R x S, where (r, s) ~ (rf, Sf) means that for some sft E S, 
s"(rs f - rf s) = O. The (prime) ideals of S-l R correspond bijectively to the 
(prime) ideals of R not meeting S. Incase R is an integral domain, with field 
of fractions F, S-l R may be identified with the set of fractions rls in F. In 
general, the canonical map R ~ S-l R (sending r to the class of (r, 1)) is injective 
only when S contains no zero divisors. For example, take S = {xnln E :Z'+} for 
x not nilpotent, to obtain S-l R, denoted Rx; R is a subring of Rx provided x 
is not a zero divisor. Or take S = R - P, P a prime ideal. Then S-l R is de
noted Rp and is a local ring (i.e., has a unique maximal ideal PRp, consisting 
of the nonunits of Rp). The prime ideals of Rp correspond naturally to the prime 
ideals of R contained in P. IfR is an integrally closed domain, then so is Rp. If 
R is noetherian, so is Rp. If M is a maximal ideal, the fields RIM and RMI M RM 
are naturally isomorphic, and the inclusion R ~ RM induces a vector space iso
morphism of MIM2 onto MRMI(MRMf. [L, II §3] [AM, Ch. 3]. 

0.11 Nakayama Lemma: Let R be a ring, M a maximal ideal, V a 
finitely generated R-modulefor which V = MY. Then there exists x ¢ M such 
that x V = O. In particular, if R is local (with unique maximal ideal M), x must 
be a unit and therefore V = O. [AM, 2.5, 2.6] [L, I X § 1 ]. 

0.12 The Krull dimension of a (noetherian) local ring R is the maximum 
length k of a chain of prime ideals 0 S P 1 S P 2 S ... S P k S R. If this equals 
the minimum number of generators of the maximal ideal M of R, R is called 
regular. Theorem: A regular local ring is an integral domain, integrally closed 
(in its field offractions). [AM, Ch. ll] [ZS, V III §11; cf. Appendix 7]. 

0.13 Let I be an ideal in a noetherian ring R, and let P 1, ... , PI be the 
minimal prime ideals containing I. The image of PIn· .. n PI in RII is 
the nilradical of RII, a nilpotent ideal. In particular, for large enough n, 
P~ p~ ... P~ C (P 1 n ... n PIt c I. [AM, 7.15] [L, VI §4]' 

0.14 A field extension ElF is separable if either char F = 0, or else char 
F = p > 0 and the plh powers of elements Xl' ... , Xn E E linearly independent 
over F are again so. This generalizes the usual notion when ElF is finite. 
E = F(Xb ... ,xn) is separably generated over FifE is a finite separable 
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extension of a purely transcendental extension of F. For finitely generated 
extensions ElF, "separably generated" is equivalent to "separable", and ElF 
is automatically separable when F is perfect. If F c LeE, ElF separable, 
then L/F is separable. If F c LeE, ElL and L/F separable, then ElF is 
separable [ZS, II §13] [L, X §6] [J, IV §5J. 

0.15 A derivation (j: E ---+ L (E a field, L an extension field of E), is a map 
which satisfies (j(x + y) = (j(x) + (j(y) and (j(xy) = x (j(y) + (j(x) y. IfF is a 
subfield ofE, (j is called an F-derivation if in addition (j(x) = 0 for all x E F (so 
(j is F-linear). The space DerF(E, L) of all F-derivations E ---+ L is a vector space 
over L, whose dimension is tr. deg' F E if ElF is separably generated. ElF is 
separable if and only if all derivations F ---+ L extend to derivations E ---+ L (L 
an extension field of E). If char E = P > 0, all derivations of E vanish on the 
subfield EP ofpth powers. [ZS, II §17] [J, IV §7] [L, X §7J. 

1. Affine and Projective Varieties 

In this section we consider subsets of affine or projective space defined 
by polynomial equations, with special attention being paid to the way in 
which geometric properties of these sets translate into algebraic properties 
of polynomial rings. K always denotes an algebraically closed field, of 
arbitrary characteristic. 

1.1. Ideals and Affine Varieties 

The set Kn = K x ... x K will be called affine n-space and denoted An. 
By affine variety will be meant (provisionally) the set of common zeros in 
An of a finite collection of polynomials. Evidently we have in mind curves, 
surfaces, and the like. But the collection of polynomials defining a geometric 
configuration can vary quite a bit without affecting the geometry, so we aim 
for a tighter correspondence between geometry and algebra. As a first step, 
notice that the ideal in K[T] = K[T b ... , Tn] generated by a set of polyno
mials {j;,(T)} has precisely the same common zeros as {j;,(T)}. Moreover, the 
Hilbert Basis Theorem (0.1) asserts that each ideal in K[T] has a finite set of 
generators, so every ideal corresponds to an affine variety. Unfortunately, 
this correspondence is not 1-1: e.g., the ideals generated by T and by T2 are 
distinct, but have the same zero set {O} in A 1. We shall see shortly how to 
deal with this phenomenon. 

Formally, we can assign to each ideal I in K[T] the set "Y(1) of its common 
zeros in An, and to each subset X c An the collection ..1(X) of all polynomials 
vanishing on X. It is clear that ..1(X) is an ideal, and that we have inclusions: 

X c "Y(..1(X)), 

I c ..1("Y(1)). 
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Of course, neither of these need be an equality (examples?). Let us examine 
more closely the second inclusion. By definition, the radical fl of an ideal 
I is {f(T) E K[T]lf(T)' E I for some r ~ O}. This is easily seen to be an ideal, 
including I. If f(T) fails to vanish at x = (XI> ... , xn), then f(T), also fails 
to vanish at x for each r ~ O. From this it follows that fl c J(1/(I)), which 
refines the above inclusion. Indeed, we now get equality-a fact which is 
crucial but not at all intuitively obvious. 

Theorem (Hilbert's Nullstellensatz). If I is any ideal in K[T I> ... , Tn], 
then fl = J(1/(I)). 

Proof. In view of the finite generation of I, the theorem is equivalent to 
the statement: "Given f(T), f1 (T), ... , !s(T) in K[T], such that f(T) vanishes at 
every common zero of the ,[;(T) in An, there exist r ~ 0 and gl(T), ... , 

s 

g,(T) E K[T] for which f(T), = L gi(T)Ji(T)." 
i= 1 

We show first that this statement follows from the assertion: 

(*) If 1/(1) = 0 then I = K[TJ. 

(Notice that this is just a special case of the theorem, since only the ideal 
K[T] can have K[T] as radical!) Indeed, given f(T), f1(T), ... ,!s(T) as in
dicated, we can introduce a new indeterminate To and consider the collection 
of polynomials in n + 1 indeterminates, f1(T), ... , !s(T), 1 - T of(T). These 
have no common zero in An + 1, thanks to the original condition imposed on 
f(T), so (*) implies that they generate the unit ideal. Find polynomials 
hi(To,· .. ,Tn) and h(To, . .. ,Tn) for which 1 = h1(To, T)fl(T) + ... + 
hs(T 0, T)!s(T) + h(T 0, T)(1 - T of(T)). Then substitute 1/f(T) for To through
out, and multiply both sides by a sufficiently high power f(T), to clear 
denominators. This yields a relation of the desired sort. 

It remains to prove (*), or equivalently, to show that a proper ideal in 
K[T] has at least one common zero in An. (In the special case n = 1, this 
would follow directly from the fact that K is algebraically closed.) Let us 
attempt naively to construct a common zero. By Zorn's Lemma, I lies in some 
maximal ideal of K[T], and common zeros of the latter will serve for I as 
well; so we might as well assume that I is maximal. Then the residue class 
ring L = K[T]/I is a field; K may be identified with the residue classes of 
scalar polynomials. If we write ti for the residue class of Ti , it is clear that 
L = K[t 1, ... , tn ] (the smallest subring of L containing K and the tJ More
over, the n-tuple (t 1, .•. , tn ) is by construction a common zero of the polyno
mials in I. If we could identify L with K, the ti could already be found inside 
K. But K is algebraically closed, so for this it would be enough to show that 
the ti are algebraic over K, which is precisely the content of (0.3). D 

The Nullstellensatz ("zeros theorem") implies that the operators 1/, J set 
up a 1-1 correspondence between the collection of all radical ideals in K[T] 
(ideals equal to their radical) and the collection of all affine varieties in An. 
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Indeed, if X = "Y(1), then f(X) = f("Y(1)) = y7, so that X may be re
covered as "Y(f(X)) (1 and y7 having the same set of common zeros). On 
the other hand, if I = y7, then I may be recovered as f("Y(1)). Notice that 
the correspondences X f-----+ f(X) and I f-----+ "Y(1) are inclusion-reversing. So the 
noetherian property of K[T] implies DCC (descending chain condition) on 
the collection of affine varieties in An. 

Examples of radical ideals are prime (in particular, maximal) ideals. We 
shall examine in (1.3) the varieties corresponding to prime ideals. For the 
moment, just consider the case X = "Y(1), I maximal. The Nullstellensatz 
guarantees that X is non empty, so let x E X. Clearly I c f( {x}) ~ K[T], 
so 1= f({x}) by maximality, and X = "Y(1) = "Y(f({x})) = {x}. On the 
other hand, ifx E An, thenf(T) f-----+ f(x) defines a homomorphism ofK[T] onto 
K, whose kernel f( {x}) is maximal because K is a field. Thus the points of 
An correspond 1-1 to the maximal ideals of K[T]. 

A linear variety through x E An is the zero set of linear polynomials of 
the form La;(Ti - xJ This is just a vector subspace of An if the latter is 
viewed as a vector space with origin x. From the Nullstellensatz (or linear 
algebra!) we deduce that any linear polynomial vanishing on such a variety 
is a K-linear combination of the given ones. 

1.2. Zariski Topology on Affine Space 

If K were the field of complex numbers, An could be given the usual 
topology of complex n-space. Then the zero set of a polynomial f(T) would 
be closed, being the inverse image of the closed set {O} in C under the con
tinuous mapping x f-----+ f(x). The set of common zeros of a collection of 
polynomials would equally well be closed, being the intersection of closed 
sets. Of course, complex n-space has plenty of other closed sets which are 
unobtainable in this way, as is clear already in case n = 1. 

The idea of topologizing affine n-space by decreeing that the closed sets 
are to be precisely the affine varieties turns out to be very fruitful. This is 
called the Zariski topology. Naturally, it has to be checked that the axioms 
for a topology are satisfied: (1) An and 9 are certainly closed, as the respective 
zero sets of the ideals (0) and K[T]. (2) If I, J are two ideals, then clearly 
"Y(1) u "Y(J) c "Y(1 n J). To establish the reverse inclusion, suppose x is a 
zero of I n J, but not of lor J. Say f(T) E I, g(T) E J, withf(x) "# 0, g(x) "# 0. 
Since f(T)g(T) E I n J, we must have f(x)g(x) = 0, which is absurd. This 
argument implies that finite unions of closed sets are closed. (3) Let Ia be an 
arbitrary collection of ideals, so La Ia is the ideal generated by this collec
tion. Then it is clear that na "Y(1 a) = "Y(La I a), i.e., arbitrary intersections of 
closed sets are closed. 

What sort of topology is this? Points are closed, since x = (Xl> ... , xn ) 

is the only common zero of the polynomials T 1 - xl> ... , Tn - xn. But the 
Hausdorff separation axiom fails. This is evident already in the case of A 1 , 
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where the proper closed sets are precisely the finite sets (so no two nonempty 
open sets can be disjoint). The reader who is accustomed to spaces with good 
separation properties must therefore exercise some care in reasoning about 
the Zariski topology. For example, the Dee on closed sets (resulting from 
Hilbert's Basis Theorem) implies the Aee on open sets, or equivalently, the 
maximal condition. This shows that An is a compact space. But in the absence 
ofthe Hausdorff property, one cannot use sequential convergence arguments 
or the like; for this reason, one sometimes uses the term quasicompact in this 
situation, reserving the term "compact" for compact Hausdorff spaces. 

In a qualitative sense, all nonempty open sets in An are "large" (think of 
the complement of a curve in A 2 or of a surface in A 3). Since a closed set 
"f/(I) is the intersection of the zero sets of the various f(T) E 1, a typical non
empty open set can be written as the union of principal open sets-sets of 
nonzeros of individual polynomials. These therefore form a basis for the 
topology, but are still not very "small". For example, GL(n, K) is the prin
cipal open set in An' defined by the nonvanishing of det (T;J; GL(n, K) de
notes here the group of all invertible n x n matrices over K. 

1.3. Irreducible Components 

In topology one often studies connectedness properties. But the union 
of two intersecting curves in An is connected, while at the same time capable 
of being analyzed further into "components." This suggests a different em
phasis, based on a somewhat different topological property. For use later 
on, we formulate this in general terms. 

Let X be a topological space. Then X is said to be irreducible if X cannot 
be written as the union of two proper, non empty, closed subsets. A subspace 
Y of X is called irreducible if it is irreducible as a topological space (with 
the induced topology). Notice that X is irreducible if and only if any two 
nonempty open sets in X have nonempty intersection, or equivalently, any 
nonempty open set is dense. Evidently an irreducible space is connected, but 
not conversely. 

Proposition A. Let X be a topological space. 
(a) A subspace Y of X is irreducible if and only if its closure Y is irreducible. 
(b) If cp: X ~ X I is a continuous map, and X is irreducible, then so is cp(X). 

Proof. (a) In view of the preceding remarks, Y is irreducible if and only 
if the intersection of two open subsets of X, each meeting Y, also meets Y; 
and similarly for Y. But an open set meets Y if and only if it meets Y. 

(b) If U, V are open sets in X' which meet cp(X), we have to show that 
Un V meets cp(X) as well. But cp-l(U), cp-l(V) are (nonempty) open sets 
in X, so they have nonempty intersection (X being irreducible), whose image 
under cp lies in U n V n cp(X). 0 
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Our intention is to decompose an affine variety into irreducible "com
ponents". Actually, an argument using Zorn's Lemma shows that any topo
logical space can be written as the union of its maximal irreducible subs paces 
(which are necessarily closed, in view of part (a) of the proposition). To insure 
a finite decomposition of this sort, we exploit the fact that an affine variety 
has maximal condition on open subsets. This too can be formulated in 
general. Call a topological space noetherian if each nonempty collection of 
open sets has a maximal element (equivalently, if open sets satisfy ACC, or 
if closed sets satisfy the minimal condition, or if closed sets satisfy DCC). 

Proposition B. Let X be a noetherian topological space. Then X has only 
finitely many maximal irreducible subspaces (necessarily closed, and having X 
as their union). 

Proof. Consider the collection .91 of all finite unions of closed irreducible 
subsets of X (for example, 9 E d). If X itself does not belong to .91, use the 
noetherian property to find a closed subset Y of X which is minimal among 
the closed subsets (such as X) not belonging to d. Evidently Y is neither 
empty nor irreducible; so Y = Y1 U Yz (Y; proper closed subsets of Y). The 
minimality of Y forces both Y1 and Yz to lie in d. But then Y also lies in .91, 
which is absurd. This proves that XEd. 

Write X = Xl U· .. U X n, where the Xi are irreducible closed subsets. 
n 

If Y is any maximal irreducible subset of X, then since Y = U (Y n XJ, 
i= 1 

we must have Y n Xi = Y for some i. Thus Y = Xi (by maximality). 0 
The proposition allows us to write a noetherian space as the union of its 

finitely many maximal irreducible subspaces; these are called the irreducible 
components of X. 

Let us return now to affine n-space. Which of its closed subsets 1'(1) are 
irreducible? 

Proposition C. A closed set X in An is irreducible if and only if its ideal 
..1(X) is prime. In particular, An itself is irreducible. 

Proof. Write I = ..1(X). Suppose X is irreducible. To show that I is 
prime, let /1 (T)/z(T) E I. Then each x E X is a zero of /1 (T) or of /z(T), i.e., X 
is covered by 1'(11) u 1'(1 z), Ii the ideal generated by 1;(T). Since X is 
irreducible, it must lie wholly within one of these two sets, i.e., /l(T) E I or 
/z(T) E I, and I is prime. 

In the other direction, suppose I is prime, but X = Xl U X Z (Xi closed 
in X). If neither Xi covers X, we can find 1;(T) E ..1(Xd, with .li(T) ~ I. But 
/l(T)/z(T) vanishes on X, so /l(T)/z(T) E I, contradicting primeness. 0 

As remarked in (1.1), a prime ideal is always a radical ideal; so the result 
just proved fits neatly into the 1-1 correspondence established in (1.1) 
between radical ideals in K[T b ... , Tn] and closed sets in An. 
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1.4. Products of Affine Varieties 

The cartesian product of two (or more) topological spaces can be topo
logized in a fairly straightforward way, so as to yield a "product" in the 
category of topological spaces (where the morphisms are continuous maps). 
Since we have not yet introduced morphisms of affine varieties, it would be 
premature to look for an analogous categorical product here. But it is reason
able to ask that the product of two affine varieties X cAn, YeA m, should 
look set-theoretically like the cartesian product X x Y c An+m. In par
ticular, this obliges us to define An X Am to be An+m, and suggests that we 
impose on X x Y its induced topology as a subspace of An+m. The question 
remains: Is X x Y an affine variety, i.e., is it closed? The answer is yes: If 
X is the zero set of polynomials Ji(T b ... , Tn) and Y is the zero set of poly
nomials gi(U 1, ..• , Um), then X x Y is defined by the vanishing of all 
Ji(T)g)U). (However, it is not immediately clear how to describe J(X x Y) 
in terms of J(X) and J(Y). The obvious guess does turn out to be correct.) 

It must be emphasized that the induced topology on X x Yis not what 
we would get by taking the usual product topology. For example, very few 
sets are closed in the product topology of A 1 times itself, as contrasted with 
A2. The topology on An X Am which identifies this set with An+m may be 
called the Zariski product topology. 

Proposition. Let X cAn, Y c Am, be closed irreducible sets. Then 
X x Y is closed and irreducible in An+m. 

Proof. Only the irreducibility remains to be checked. Suppose X x Y 
is the union of two closed subsets Z 1, Z 2' We have to show that it coincides 
with one of them. If x E X, {x} X Y is closed (since {x} is closed). It is also 
irreducible: any decomposition as a union of closed subsets would imply a 
similar decomposition of Y, since a closed subset of {x} x Y clearly has to 
be of the form {x} x Z for some closed subset Z of Y. Therefore the inter
sections of {x} x Y with Z b Z 2 cannot both be proper. So X = Xl U X 2, 
where Xi = {x E Xi{x} X Y c ZJ. 

Next we observe that each Xi is closed in X: For each y EY, X X {y} 
is closed, so that (X x {y}) n Zi is closed, which impJies in turn that the set 
X~) of first coordinates is closed in X. But Xi = nYEY X~). 

From the irreducibility of X we conclude that either X = X 1 or X = X 2, 
i.e., either X x Y = Z 1 or X x Y = Z 2' 0 

1.5. Affine Algebras and Morphisms 

Every category needs morphisms. Since affine varieties are defined by 
polynomial equations, it is only natural to turn to polynomial functions. 
If X is closed in An, each polynomial f(T) E K[TJ defines a K-valued function 
on X by the rule x ~ f(x}. But other polynomials may define the same 
function; indeed, a moment's consideration should convince the reader that 
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the distinct polynomial functions on X are in 1 ~ 1 correspondence with the 
elements of the residue class ring K[T]/J(X). We denote this ring K[X] and 
call it the affine algebra of X (or the algebra of polynomial functions on X). 
It is a finitely generated algebra over K, which is reduced (i.e., has no nonzero 
nilpotent elements), in view of the fact that J(X) is its own radical. When X 
is irreducible, i.e., when J(X) is a prime ideal (Proposition 1.3 C), K[ X] is 
an integral domain. So we may form its field of fractions, denoted K(X) and 
called the field of rational functions on X. This is a finitely generated field 
extension ofK. Although we are sometimes compelled to work with reducible 
varieties, we shall often be able to base our arguments on the irreducible case, 
where the function field is an indispensable tool. 

The affine algebra K[ X] stands in the same relation to X as K[T] does 
to An. With its aid we can begin to formulate a more intrinsic notion of 
"affine variety", thereby liberating X from the ambient space An. To begin 
with, X is a noetherian topological space (in the Zariski topology), with basis 
consisting of principal open subsets X f = {x E Xlf(x) =f:. O} for fE K[X]. 
It is easy to see that the closed subsets of X correspond 1 ~ 1 with the radical 
ideals of K[X] (by adapting the Nullstellensatz from K[T] to K[T]/J(X)), 
the irreducible ones belonging to prime ideals. In particular, we find that 
the points of X are in 1 ~ 1 correspondence with the maximal ideals of K[ X], 
or with the K-algebra homomorphisms K[ X] -t K. So X is in a sense re
coverable from K[ X]. 

Indeed, let R be an arbitrary reduced, finitely generated commutative alge
bra over K, say R = K[tb' .. , tn] (the number n and this choice of generators 
being nonunique). Then R is a homomorphic image of K[T I, ... , Tn], which 
is "universal" among the commutative, associative K-algebras on n gen
erators. Moreover, the fact that R is reduced just says that the kernel of the 
epimorphism sending T; to t; is a radical ideal I. So R is isomorphic to the 
affine algebra of the variety X c An defined by I. This points the way to an 
equivalence of categories, to which we shall return shortly. One advantage 
of this approach is that it enables us to give to any principal open subset Xf 
of an irreducible affine variety X its own structure of affine variety (in an affine 
space of higher dimension): Define R to be the subring of K(X) generated by 
K[ X] along with 1/f, and notice that R is automatically a (reduced) finitely 
generated K-algebra. Moreover, the maximal ideals of R correspond 1 ~ 1 
with their intersections with K[X], which are just the maximal ideals ex
cluding f. In turn, the points of the affine variety defined by R correspond 
naturally to the points of X f' What we have done, in effect, is to identify 
points of X f c X c An with points (Xl"'" X"' l/f(x)) in An+l. 

Next let X cAn, Y c Am, be arbitrary affine varieties. By a morphism 
<p:X -t Ywemeanamappingoftheform<p(xl,''''xn) = (l/Il(X), ... ,l/Im(x)), 
where l/I; E K[X]. Notice that a morphism X -t Y is always induced by a 
morphism An -t Am (use any pre-images ofthe l/I; in K[ An] = K[T]), and that 
a morphism X -t A 1 is the same thing as a polynomial function on X. 
A morphism <p: X -t Y is continuous for the Zariski topologies involved. 
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Indeed, if Z c Y is the set of zeros of polynomial functions Ii on Y, then 
<p -1(Z) is the set of zeros of the polynomial functions Ii 0 <p on X. 

With a morphism <p:X -> Y is associated its comorphism <p*: K[ Y] -> K[ X] 
defined by <p*(f) = .f ... <po It is obvious that the image of rp* does lie in K[ X], 
that <p* is a homomorphism of K-algebras, and that the usual functorial 
properties hold: 1 * = identity, (cp .• 1/1)* = cp* 0 1/1*. Moreover, knowledge of 
rp* is tantamount to knowledge of cp: K[ Y] is generated (as K-algebra) by the 
restrictions to Y of the coordinate functions T 1, ... , T m on Am, call them ti , 

and rp*(til is just the function l/1i used above to define cp. This shows that every 
K-algebra homomorphism K[Y] -> K[X] arises as the comorphism of some 
morphism X -> Y. 

The preceding discussion establishes, in effect, a (contravariant) equiva
lence between the category of affine K-algebras (with the K-algebra homomor
phisms as morphisms) and the category of affine varieties (with morphisms 
as defined above). This more intrinsic way to view affine varieties, cut loose 
from specific embeddings in affine space, will be explored further in §2. The 
"product" introduced in (1.4) turns out to be a categorical product, and cor
responds in fact to the tensor product of K-algebras (which is known to be the 
"coproduct" in the category of commutative rings). 

Suppose cp: X -> Y is a morphism for which rp(X) is dense in Y. Then 
cp* is injective (cf. Exercise 11 or (2.5) below). In particular, if X and Yare 
irreducible, rp* induces an embedding of K( Y) into K(X). 

1.6. Projective Varieties 

Geometers have long recognized the advantages of working in "projective 
space", where the behavior of loci at infinity can be put on an equal footing 
with the behavior elsewhere. From the algebraic viewpoint, the theory of 
projective varieties runs parallel to that of affine varieties, with homogeneous 
polynomials taking the place of arbitrary polynomials. We shall give only a 
brief introduction here, adequate for the later applications. In §2 the affine 
and projective theories will be subsumed under an abstract theory of "vari
eties", while in §6 the "completeness" of projective varieties (analogous to 
compactness) will be discussed systematically. 

Projective n-space pn may be defined to be the set of equivalence classes 
of Kn + 1 - {(O, 0, ... , 0) } relative to the equivalence relation: 

(xo, Xlo ... , xn) '" (Yo, Ylo ... , Yn) 

if and only if there exists a E K* such that Yi = aXi for all i. Intuitively, pn 
is just the collection of all lines through the origin in Kn+ 1. Sometimes it is 
convenient, when working with a vector space V of dimension n + 1, to 
identify the set of all 1-dimensional subspaces of V with pn; we write P(V) 
for pn in this case. 

Each point in pn can be described by homogeneous coordinates Xo, 
Xb ... , Xm which are not unique but may be multiplied by any nonzero 
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scalar. If a locus in pn is to be described by polynomial equations (in indeter
minates Xo, Xl> ... ,Xn ), this nonuniqueness forces us to require that the 
polynomials be homogeneous. Recall that f(X o, . .. , Xn) is homogeneous of 
degree d if it is a linear combination of monomials X~Xil··· X~n with 
Iii = d. Such a polynomial satisfies f(axo, ... , aXn) = adf(xo, ... , xn); in 
particular, if it takes the value 0 for one set of homogeneous coordinates of 
a point in pn, it takes the value 0 for any other choice. 

Now we can topologize pn by taking a closed set to be the common zeros 
of a collection of homogeneous polynomials, or equally well of the ideal they 
generate. Notice that the ideal generated by some homogeneous polynomials 
is a homogeneous ideal (i.e., contains the homogeneous parts of all its ele
ments). It is a straightforward matter to define operators 11, §, as in the 
affine case, thereby setting up an inclusion-reversing correspondence between 
projective varieties (closed subsets of pn) and homogeneous ideals. As in the 
affine case, ideals of the form §(X) are radical ideals. There is a version here 
of the Nullstellensatz, which requires only a minor adjustment. Namely, the 
ideal 10 generated by Xo, ... , Xn is proper, but clearly has no common zero 
in pn (since the origin of Kn+ 1 has been discarded). So we are led to the 
following formulation, which the reader can easily verify using the affine 
Nullstellensatz (1.1): 

Proposition. The operators 11, § set up a I-I inclusion-reversing cor
respondence between the closed subsets of pn and the homogeneous radical 
ideals ofK[Xo, ... ,Xn] other than 10· D 

The discussion of irreducible components in (1.3) applies here as well. 
In particular, the irreducible projective varieties belong to the homogeneous 
prime ideals (other than 1o). 

As in the affine case, the principal open sets form a basis for the Zariski 
topology on pn. Certain of these are especially useful, because they are 
naturally isomorphic to affine n-space. (This provides a suggestive link with 
the affine case, to be exploited in the general discussion of "varieties" in 
§2.) Let Ui be the set of points in pn having th homogeneous coordinate 
nonzero. Then Ui corresponds 1-1 with the points of An, via (xo, ... , xn) ~ 

( xo Xi-l Xi+ 1 Xn). . -, ... , --, --, ... , - . These quotIents of homogeneous coordmates 
Xi Xi Xi Xi 

are called affine coordinates on Ui (0 :::::; i :::::; n), Notice that the Ui cover pn. 
The correspondence between Ui and An is not just set-theoretic: the 

Zariski topologies also correspond. To see this, introduce indeterminates 
T l> ... , Tn- To each polynomial jF l> ... , Tn) we may associate a homo
geneous polynomial xrgj f(XO/X i, .•• , Xi - dX;, Xi + dX;, ... , Xn/X;), where 
deg. f is the largest degree of any monomial occurring in f(T). Then if X c An 
is the zero set of certain polynomials f(T), the image of X in Ui is the inter
section of Ui with the zero set in pn of the corresponding "homogenized" 
polynomials. In the reverse direction, let X c pn be the zero set of certain 
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homogeneous polynomials f(Xo, ... , Xn). For each i, consider f(Xo/X;, ... , 
Xi- !IX;, 1, Xi+ !lXi' ... , Xn/X;) = g(T 1, ... , Tn), Tk = Xk/X i • It is clear that 
X n Vi corresponds to the zero set in An of these polynomials g(T). 

The main point of the preceding discussion is that a subset ofpn is closed 
if and only if its intersections with the affine open sets Vi are all closed (Vi 
being identified canonically with An). More generally, if X is closed in pn, 
a subset Y of X is closed in X (or in pn) if and only if all Y n Vi are closed. 
This "affine criterion" will be put to good use immediately. 

1.7. Products of Projective Varieties 

Let X c pn, Y c pm be two projective varieties. If there is to be a 
"product" of X and Y, its underlying set ought to be the Cartesian product. 
But this set cannot be straightforwardly identified with a subset of pn x pm, 
due to the vagaries of homogeneous coordinates. Instead, we must resort to 
a more elaborate embedding. To this end, we map the Cartesian product 
pn x pm into pq, where q = (n + 1)(m + 1) - 1, by the recipe: <p( (xo," . ,xn), 

(Yo,· .. , Ym)) = (xoYo,· .. , XoYm, X1YO,· .. , X1Ym, ... , XnYo, ... ,xnYm)' Note 
that this is unambiguous. 

We want to show that the image of <p is closed in pq, using the affine cri
terion developed in (1.6). Denote the homogeneous coordinates on pn by Xi' 
on pm by Yj , and on pq by Zij (0 ~ i ~ n, 0 ~ j ~ m). Let Pi, Pj, P0 be the 
corresponding affine open subsets, with affine coordinates Si' Tj , Uij. Evi
dently <p maps Pi x Pj into p?j. For ease of notation, we treat just the 
(typical) case i = j = O. In affine coordinates, <p sends ((Sb ... ,sn), (tb ... ,tn)) 

to ( ... ,Uk(,' .. ), where Uk( = sktr (k, e ~ 1), UkO = Sb Uoc = t(. So the image 
in Pbo is just the locus of the equations Ukl = UkOU Of (k, e ~ 1). This shows 
that the image of <p is closed, as asserted. 

Moreover, it is easy to invert <p on each affine open set such as Pbo: Send 
( ... , Uk(, ... ) to ((U10" .. , unO), (UOb U02,· .. , Uom )). So <p actually induces iso
morphisms of the affine products Pi x Pj onto their images. This allows us 
finally to deal with arbitrary closed sets X c pn, Y c pm. X is the union 
of its intersections Xi with the Pi, and each Xi is closed in the affine space 
Pi; similarly for Y. Thanks to (1.4), Xi x lj is closed in Pi x Pj and hence 
maps isomorphically onto a closed subset of the affine op~n set <p(Pi x Pj) 
in <p (pn X pm). It follows from the affine criterion (1.6) that <p (X x Y) is 
closed in <p(pn x pm), which in turn is closed in pq. To sum up: 

Proposition. The map <p: pn X pm ~ pnm+n+m defined above is a bijection 
onto a closed subset. If X is closed in pn and Y is closed in pm, then <p(X x Y) 
is closed in pnm+n+m. 0 

Thus the Cartesian product of two projective varieties can be identified 
with another projective variety. Fortunately, the way in which this is done 
turns out to conform well with the categorical notion of "product" (2.4). 
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1.8. Flag Varieties 

Some of the most interesting examples of projective varieties (from our 
point of view) result from the following construction, which goes back to 
Grassmann. 

Let V be an n-dimensional vector space over K, with exterior algebra /\V 
(the quotient of the tensor algebra on V by the ideal generated by all v ® v, 
V E V). Recall that /\ V is a finite dimensional graded algebra over K, with 

/\oV = K, /\1 V = V. If Vb ... , vn is an ordered basis of V, then the G) wedge 

(or exterior) products Vi, A ... A Vi, (i1 < i2 < ... < id) form a basis of /\dV. 
Notice that /\nv is 1-dimensional, i.e., the wedge product of an arbitrary basis 
of V is well-determined up to a nonzero scalar multiple. If W is a subspace 
of V, then /\dW may be identified canonically with a subspace of /\dV. 

The preceding remarks show that there is a map t/J from the collection 
(f)iV) of all d-dimensional subspaces of V into P(/\dV), defined by sending a 
subspace D to the point in projective space belonging to /\dD (d ~ 1). We 
assert that t/J is injective. Indeed, let D, D' be two d-dimensional subspaces. 
Choose a basis of V so that Vb . .. , Vd span D, while V" . .. , Vr+d-1 span D'. 
Then VIA ... AVd cannot be proportional to VrA ... AVr+d-1 unless r = 1, i.e., 
unless D = D'. 

In order to endow (f)iV) with the structure of a projective variety, it now 
suffices to check that the image of t/J is closed. Thanks to the affine criterion 
(1.6), it is enough to do this on affine open sets which cover P(/\dV). (Of 
course, the extreme cases d = 1, d = n, require no checking, since then (f)iV) 
is respectively P(V) or a point.) 

Fix an ordered basis (V1, . .. , vn) of V and the associated basis elements 
VilA ... AVi, of /\dv. A typical affine open set U in P(/\dV) then consists of 
points whose homogeneous coordinate relative to (say) VI A ... AVd is non
zero. Let us show that 1m t/J intersects this U in a closed subset. Set Do = 
span of V1, ... , Vd. Clearly, t/J(D) belongs to U if and only if the natural pro
jection of V onto Do maps D isomorphically onto Do. In this case, the 
inverse images of Vb ... , Vd comprise a basis of D having the form: Vi + xi(D), 
where xi(D) = Lj>d aijvj. (And this is the only basis of D having this form.) 
The wedge product looks like: 

VIA· .. AVd + L (VIA··· AXi(D)A ... AVd) + (*), 
I~j~d 

where (*) involves basis vectors with two or more of Vb ... , Vd omitted. Here 
V1A ... AXi(D)A ... AVd = Lj>d aij(vlA ... AVjA ... AVd), with Vj substituted 
for Vi. Thus ±aij (1 ::::; i ::::; d, d + 1 ::::; j ::::; n) may be recovered as the coeffi
cient of the basis element VIA· .. AViA ... AVd AVj (Vi omitted), in the wedge 
product of the above basis of D. Furthermore, the coefficients in (*) are 
obviously polynomial functions of the aij' independent of D. 

Conversely, if we prescribe the d(n - d) scalars aij arbitrarily, it is clear 
that the resulting vectors Vi + xi(D) span a d-dimensional subspace of V 
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whose image under t/llies in U. The upshot is that 1m t/I n U consists of all 
points with (affine) coordinates ( ... aij' .. ,fi(aij) ... ), where the aij are arbi
trary and the fk are polynomial functions on Ad(n-d). This set can be viewed 
as the graph of a morphism from Ad(n-d) into another affine space. As such, 
it is closed in the Zariski product topology (cf. Exercise 8); and in turn 
1m t/I n U is closed in U (cf. (1.4)). 

The Grassmann varieties (fjd(V) lead us to other projective varieties, as 
follows. A flag in V is, by definition, a chain ° c V1 C ... c v" = V of 
subspaces of V, each properly included in the next. A full flag is one for 
which k = dim V (i.e., dim J!i+ t/J!i = 1). my) denotes the collection of all 
full flags of V. We want to give it the structure of projective variety (to be 
called the flag variety of V). 

Thanks to (1.7), it is possible to give the Cartesian product (fj1(V) x 
(fjz(V) x ... x (fjn(V) the structure of a projective variety. my) identifies in 
an obvious way with a subset, which we need only show to be closed. To 
avoid cumbersome notation, we just consider the product (fjiV) x (fjd+ 1(V)' 
Once it is proved that the set S of pairs (D, D') for which D c D' is closed, 
the reader should have no difficulty in completing the argument. 

As before, we may fix a basis Vb' .. , Vn of V, and consider the various 
affine open subsets of P(AdV), P(Ad+ 1 V), whose products cover the product 
variety. We can limit our attention to pairs such as U, U', where U is defined 
as before relative to V1" ... "Vd, and U' consists of points in P(Ad+ 1 V) with 
nonzero coordinate relative to V1" ... AVd+ 1. (The set S is already covered 
by products of the form U x U'.) If D (resp. D') has image in U (resp. U'), 
we get (as before) canonical bases: Vi + xi(D), 1 ~ i ~ d; Vi + Yi(D'), 1 ~ 
i ~ d + 1. Here xi(D) = Lj>d aijvj' Yi(D') = Lj>d+ 1 bijVj. A quick compu
tation with these bases shows that D c D' if and only if xi(D) = Yi(D') + 
ai, d+ 1(Vd+ 1 + Yd+ 1(D')) for 1 ~ i ~ d. This in turn translates into certain 
polynomial conditions on the aij' bij , whence S intersects U x U' in a 
closed set. 

Exercises 

1. If I, J are ideals in K[T b ... , Tn], recall that IJ is the ideal consisting of 
all sums of products f(T)g(T)(f(T) E I, g(T) E J), Prove that 1I(1J) = 

11(1 n J), Show by example that IJ may be included properly in I n J, 
2, Each radical ideal in K[T 1, ' , , , Tn] is an intersection of prime ideals. 
3. Any subspace of a noetherian topological space is also noetherian, 
4, Let X be a noetherian topological space, Y a subspace having irreducible 

components Yb ... , Y". Prove that the Yi are the irreducible components 
ofY. 

5. Find an open subset of A 2 which (with its given Zariski topology) cannot 
be isomorphic to any affine variety. [Delete the point (0, 0).] 

6. Show that a map between affine varieties which is continuous for the 
Zariski topologies need not be a morphism. [Consider A1 ~ A1.] 
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7. Prove that projection onto one of the coordinates defines a morphism 
An -+ A 1, which in general fails to send closed sets to closed sets. 

8. The graph of a morphism X -+ Y (X, Y affine varieties) is closed in 
X x Y. What if X, Yare projective varieties? 

9. Complete the proof in (1.8) that my) is closed in the product 

(fjl(V) x ... x (fjiV). 

10. Show that every automorphism of A 1 (= bijective morphism whose 
inverse is again a morphism) has the form: x 1----+ ax + b (a E K*, b E K). 

11. If cp: X -+ Y is a morphism of affine varieties for which cp(X) is dense 
in Y, then cp*: K[ Y] -+ K[ X] is injective. 

12. Let X be an irreducible affine variety, f E K(X). The set of points x E X 
at which f is defined (i.e., f can be written as g/h, with g, h E K[ X] and 
h(x) i= 0) is open. 

Notes 

Good references for the sort of algebraic geometry we require are Mum
ford [3, Chapter I] and Shafarevich [1], [2]. 

2. Varieties 

The notion of "pre variety" is introduced here, as a common generalization 
of the notions of affine and projective variety. After defining morphisms and 
products, we discuss in (2.5) the additional assumption ("Hausdorff axiom") 
which characterizes "varieties". 

2.1. Local Rings 

A point on a projective variety has an open neighborhood which looks 
just like an affine variety. It is this "local" behavior which suggests the correct 
route to follow. There is an analogy with the theory of manifolds, where each 
point has a neighborhood indistinguishable from an open set in euclidean 
space. But the Zariski topology does not separate points in the ordinary way; 
so our construction will lead (in the irreducible case) to a covering by affine 
open sets which overlap a great deal. 

To pinpoint the local behavior of an affine variety X, assume first that 
X is irreducible, with function field K(X). Consider the rational functions f 
which are defined at x EX, i.e., for which there is an expression f = g/h 
(g, h E K[X]) with h(x) i= o. One sees easily that these functions form a ring 
(!)x including K[X], which we call the local ring of x on X. In fact, (!)x results 
from the construction described in (0.10) and is a "local ring" in the technical 
sense: If R = K[X], P = J(x), then Rp = (!)x. The unique maximal ideal mx 

of (!)x consists of all rational functions representable as g/h (g, h E K[X]), 
where g(x) = 0, h(x) i= o. 
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The local rings of an irreducible affine variety X actually determine K[ X] 
(hence determine X), as the following proposition shows. 

Proposition. Let X be an irreducible affine variety. Then K[ X] = nXExCD X' 

Proof. K[ X] is evidently included in all @x. Conversely, let I E K(X) be 
in all @x. This means that for a given x, I = g/h for some g, hE K[ X] such 
that h(x) =f:. O. Of course, this representation of I is not unique. We consider 
the ideal I generated by all possible denominators h, as x ranges over X. If 
I were a proper ideal in K[ X], it would have a common zero (by the analogue 
for X of the Nullstellensatz (1.1)), which is impossible. So I = K[X], allowing 
ustowriteI=g/l(gEK[X]). D 

2.2. Prevarieties 

Let X be an irreducible affine variety. To each (non empty) open subset 
U c X, we may associate the subring of K(X) consisting of functions which 
are regular (or everywhere defined) on U: 

For example, Proposition 2.1 shows that @x(X) = K[X] or, more generally, 
that@x(Xf ) = K[Xf ] = K[X]f (since the local rings of points on the affine 
variety X f coincide with those on X). 

@x is an example of a sheaf offunctions on X. For our purposes, a sheaf 
of functions on a topological space X is a function fJ' which assigns to each 
open U c X a K-algebra fJ'( U) consisting ofK-valued functions on U, subject 
to two further requirements: 

(SI) If U c Yare two open sets, and I E 9"(V), then II U E 9"(U). 
(S2) Let U be an open set covered by open subsets Ui (i running over 

some index set 1). Given}; E fJ'(UJ, suppose that}; agrees withfi on Ui n Uj 

for all i, j E I. Then there exists I E fJ'(U) whose restriction to Ui is}; (i E 1). 
It is clear that @x satisfies (S1) and (S2). Moreover, in case X = 

Xl U ... U X t is an arbitrary affine variety, with irreducible components Xi> 
there is only one reasonable way to define a sheaf on X which extends all 
the @x, Namely, write an open set U c X as the union of the open sets 
Ui = U n Xi' and define @x(U) to be the set of K-valued functions on U 
whose restriction to each Ui lies in @x,(U;), In particular, @x(X) = K[X], as 
in the irreducible case. 

In case X is an irreducible affine variety, we can recover the local rings 
@x as stalks of the sheaf @x: The open sets containing a given point x form 
an inverse system, relative to inclusion, and it is immediate that @x = 

li.:u @x( U) (direct limit over these U), since in this case the direct limit is just 
u 

the union (in K(X)). (This suggests defining @x as such a direct limit when 
X is not irreducible.) 
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With the example pn in mind, we next define an irreducible prevariety X 
to be an irreducible noetherian topological space, endowed with a sheaf (!)x 
of K-valued functions, such that X is the union of finitely many open subsets 
Vi' each isomorphic to an affine variety when given the restricted sheaf of 
functions (!) xl Vi' (It is clear how (!) x induces a sheaf of functions on any open 
subset of X.) By a prevariety we shall mean a noetherian topological space 
X, whose irreducible components Xi are irreducible prevarieties in such a 
way that (!)x, and (!)Xj induce the same sheaf of functions on Xi n Xj for all 
i, j. Then there is a unique sheaf (!)x extending the (!)x" as in the affine case 
above. The elements of (!)x(V) are called the regular functions on V. The open 
sets Vi above are called affine open subsets of X. More generally, we give 
this name to any open subset of X which, with its induced sheaf of functions, 
is isomorphic to an affine variety. 

Let us see that X = pn qualifies as an irreducible prevariety, given the 
Zariski topology and a covering by open subsets Vi (each corresponding to 
An), as in (1.6). The sheaf(!)x has to be defined so as to induce on Vi the sheaf 
canonically attached to An. But this is easy enough. First attach to x E Vi 
its local ring (!)x in K(An); note that this is independent of the choice of Vi 
containing x. Then define (!)x(U) = nXEU (!)x, to get the desired sheaf on X. 

Arbitrary projective varieties X c pn can be given an induced structure 
of prevariety. This is true more generally for open or closed subsets of a 
prevariety, as follows. Say (X, (!)x) is an irreducible prevariety, V c X a 
(nonempty) open set. Then (!)x restricts (as above) to a sheaf of functions on 
V, making V also an irreducible prevariety. On the other hand, if Z c X 
is closed (and irreducible), we can cover Z with finitely many closed subsets 
Zi of the affine varieties Vi covering X. Each Zi has a canonical sheaf (!)zp 

and these agree on the intersections Zi n Zj; so they may be patched 
together as before to yield (!)z, which is independent of the choices made. 

Call a subset of a topological space locally closed if it is the intersection 
of an open set and a closed set. We call the locally closed subsets of a pre
variety X, with their induced sheaves of functions described above, the 
subprevarieties of X. Actually, the cases of interest to us all turn out 
to be obtainable as open subsets of projective varieties: these are called 
quasiprojective varieties. But it is more natural to work in a slightly more 
general framework. 

Notice that when X is an irreducible prevariety, covered by affine open 
sets Vi' the irreducibility forces Vi n Vj to be nonempty. It follows that 
Vi' Vj must have the same function field, which we call the function field 
K(X) of X. 

2.3. Morphisms 

A mapping <p:X ~ Y (X, Y prevarieties) should be called a morphism 
only if it respects the essential structure of X: its topology and its sheaf of 
functions. So we impose the following two conditions: 
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(Mi) cP is continuous. 

(M2) If V c Y is open and V = cp-l(V), then f 0 cP E <'9x(V) whenever 
f E <'9 y(V). 

It is easy to check that this definition is equivalent to the earlier one (1.5) 
when X, Yare affine varieties. Evidently the restriction of a morphism to 
a subprevariety is again a morphism. Note too that we get an obvious notion 
of isomorphism for prevarieties. 

Let us take a closer look at condition (M2). The assignment f f---+ f 0 rp 
is a K-algebra homomorphism <'9 y(V) -+ <'9 X(cp-l(V)), which we denote cp* 
and call the comorphism of cpo (Strictly speaking, cp* here ought to be denoted 
CPt or the like.) In case X, Yare irreducible and cp(X) is dense in Y, the co
morphism of cp can be thought of globally as a ring homomorphism K(Y) -+ 

K(X), whose restriction to <'9 y(V) has image in <'9X(cp-l(V)). Here cp* is injec
tive, enabling us to treat K(X) as a field extension of K(Y) (cf. the affine 
case (1.5) ). 

What effect does a morphism cp: X -+ Y have on local rings? Say X, Yare 
irreducible with cp(X) dense in Y, cp*: K( Y) -+ K(X). Since <'9 x (x E X) is just 
the union (= direct limit in this case) of all <'9 x( V) (Van open neighborhood 
of x), and similarly for <'9 y (Y E Y), it is clear that cp* maps <'9",(x) into <'9x (sending 
m",(x) into mx)' Conversely, this condition (at least in the irreducible case) 
could be used in place of (M2), since <'9x(V) = nXEu<'9X' 

It is important to be able to recognize when a mapping of prevarieties is 
a morphism. For this we develop an affine criterion. 

Proposition. Let cp:X -+ Y be a mapping (X, Y prevarieties). Suppose 
there is a covering of Y by affine open sets Vi (i E I, I a finite index set) and a 
covering of X by open sets Ui> such that: 

(a) cp(Uil c VJi E 1); 
(b) f 0 cp E <'9X(Ui) whenever f E <'9 y(VJ 

Then cp is a morphism. 

Proof. First we reduce to the case in which all Vi are also affine: If V 
is an affine open subset of Vi' then (b) shows that composing with cp sends 
<'9 y(Vil = K[VJ into <'9 x(U) = K[V]. So it does no harm to replace Vi by an 
affine open covering (thereby enlarging the index set 1). 

Now the hypotheses insure that the restriction of cp to Vi is a morphism 
of affine varieties CPi: Vi -+ Vi' since CPi is completely determined by the K
algebra homomorphism CPt: K[ViJ -+ K[VJ (cf. (1.5)). In particular, CPi is 
continuous. This makes it obvious that cp is continuous. 

It remains to verify (M2). Take an open set V c Y, and let V = cp -l(V). If 
f E <'9 y( V), then (b) implies that f 0 cp E <'9 x( cp - 1( V n Vil). But cp - 1( V n Vil :::J 

V n Ui' so f 0 cp E <'9 x(U n Vi), for all i E I. In turn, since V is the union of 
the V n Vi' and since <'9x is a sheaf, f 0 cp E <'9 x(V). 0 
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For the rest of this subsection we concentrate on irreducible prevarieties. 
It is clear that a regular function IE (!)x(X) defines a morphism X --+ At, 
but of course a rational function need not be regular (cf. projective varieties !). 
Nonetheless, given IE K(X), and given an affine covering {UJ of X, the 
subset of U i where I is defined is open (Exercise 1.12), so the subset U of 
X where I is defined is also open. Thus I induces a morphism U --+ A 1. In 
turn, the subset of U on which I =1= 0 is open and may be denoted X f' 
Similarly, we can define"Y(f) = {x E X I/(x) = O} for I E (!) x(X), as in the 
affine case. 

Two irreducible prevarieties X, Y may have function fields related by a 
monomorphism 0': K(Y) --+ K(X). We claim that 0' induces a "partial mor
phism", i.e., a morphism from a (nonempty) open subset of X into Y whose 
comorphism is essentially 0'. Indeed, we may first replace X, Y by affine open 
subsets; this has no effect on the function fields. Thus K(Y) is of the form 
K(fb' .. , In), where K[Y] = K(f1, ... , f,,]. Set gi = aU;) E K(X). Cut down 
as above, to an open subset of X on which all gi are defined, then further to 
an affine open set U for which all gi E K[U]. Now 0' takes K[Y] into K[U], 
so there is a unique morphism U --+ Y having this as comorphism. 

Finally, we introduce the notion of birational morphism: qJ : X --+ Y is 
birational if qJ* is an isomorphism of K( Y) onto K(X). Irreducible prevarieties 
with isomorphic function fields are called birationally equivalent; they need 
not be isomorphic (cf. Anand pn). 

2.4. Products 

For pairs of affine or projective varieties, we were able to give the same 
type of structure to the cartesian product set (cf. (1.4), (1.7)). For arbitrary 
prevarieties, the categorical notion of "product" is our surest guide. Given 
objects X, Y, a product of X and Y consists of an object Z, together with 
morphisms 1t 1: Z --+ X, 1tz: Z --+ Y (projections), satisfying the universal 
mapping property: For any object Wand any morphisms qJ1: W --+ X, 
qJz: W --+ Y, there exists a unique morphism I/!: W --+ Z such that 1til/! = qJi 

(i = 1, 2). The definition is constructed so as to insure the uniqueness of 
the product, if it exists, but the existence has to be settled by a specific 
construction. 

For prevarieties X, Y, the underlying set of a product prevariety would 
have to be the cartesian product: apply the universal property to morphisms 
W --+ {x}, W --+ {y}, where Wis a prevariety consisting ofa single point, to 
conclude that points of Z correspond bijectively to pairs (x, y). The construc
tion in (1.7) suggests that we give X x Y the structure of a pre variety by 
patching together products of various affine open subsets of X, Y. So we 
begin by examining more closely the affine situation. 

Proposition. Let X cAn, Y c Am be affine varieties, with R = K[X], 
S = K[Y]. Endow the cartesian product X x Y with the Zariski product 
topology (1.4). Then: 
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(a) X x Y, with the projections prl: X x Y ~ X and prz: X x Y ~ Y, 
is a product (in the categorical sense) of the prevarieties X, Y, and K[X x YJ ~ 
R@KS, 

(b) If(x, y) E X X Y, @(x.y) is the localization of@x @K @y at the (maximal) 
ideal mx ® @y + @x ® my-

Proof. (a) First we pin down the affine algebra of X x Y, which by its 
construction is a closed subset of An+m. Via the projections, polynomial 
functions on X, Y induce polynomial functions on X x Y. Assign to a pair 
(g, h) E R x S the polynomial function f(x, y) = g(x)h(y) on X x Y. This 
assignment is bilinear in each variable g, h, so it induces a K-algebra ho
momorphism (J: R @K S ~ K[ X x Y]. It is clear that each polynomial in 
m + n indeterminates Tb ... , Tn, U1, ••. , Urn can be expressed as a finite 
sum of products g(T)h(U). This shows that (J is surjective (polynomial func
tions on X x Y being the restrictions of polynomial functions on Am+n). 

r 

To show that (J is injective, let f = I gi @ hi be sent to O. We may 
i= 1 

assume that f is written with r minimal. In case f i= 0, we claim that r = 1. 
Indeed, not all hi are 0 in this case, so we can fix some y E Y for which not 
all hi(y) = O. Since Igi(x)hi(y) = 0 for all x E X, we get Ihi(y)gi = 0 in R, 
i.e., the gi are linearly dependent over K. If r > 1, we could reduce by one 
the number of gi and get a contradiction to the minimality of r. So r = 1. 
Now the argument shows that gl = 0, so f = O. 

It remains to verify the universal mapping property for X x Y. Given a 
prevariety Wand morphisms CfJl: W ~ X, CfJ2: W ~ Y, we have to construct 
a suitable morphism l{l: W ~ X x Y. There is a unique such mapping of sets 
which makes CfJi = pri 0 ljJ. To check that it is a morphism, we use the affine 
criterion (2.3). X x Y is affine, so it just has to be seen that ljJ pulls back 
polynomial functions on X x Y to regular functions on W. K[ X x Y] being 
generated by the pullbacks of K[X], K[Y] under pri' and the CfJi being mor
phisms by assumption, the conclusion follows. 

(b) If X, Yare irreducible, so is X x Y (1.4); part (a) shows that R @K S 
is an integral domain, with fraction field isomorphic to K(X x Y). Now we 
have inclusions R @ S c @x @ @y c @(x.y)' Since @(x.y) is the localization of 
R @ S at the ideal INI(X, y)' it is equally well the localization of @x @ @y at 
its ideal In vanishing at (x, y). Evidently mx ® @y + i!J x ® my c m. Con
versely, let f = Igi ® hi Em, with gi E @x, hi E @y' If qi(X) = ah h;(y) = b;, 
then f - Iaibi = Dqi - a;) ® hi + Ia i ® (hi - bi) E mx ® @y + @x ® my. 
This forces Iaibi = 0 and concludes the proof. D 

The proposition shows that X x Y has intrinsic meaning in the category 
of prevarieties, when X and Yare affine, independent of any particular 
embeddings in affine space. 

In order to treat the arbitrary prevarieties X, Y, we concentrate first on 
the irreducible ones. To endow the cartesian product X x Y with the struc
ture of pre variety, we have to specify a topology and a covering by affine 
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open sets. For all affine open sets U c X, V c Y, and all finite sets of poly
nomial functions fi on U, gi on V, we decree that the principal open sets 
(U x Vhj;g, should be basic open sets in X x Y. Notice that these sets do 
form a basis for a topology, since the intersection of two of them is another 
of the same type. Moreover, the description of the affine algebra of U x V 
in part (a) of the proposition shows that the topology induced on U x V 
coincides with the Zariski product topology there. 

The function field of X x Y will have to be that of U x V, where 
U c X, V c Yare affine open sets. Since K[U x V] = K[U] Q9 K[V], it 
is evident that K(U x V) can be described as the field of fractions of (the 
integral domain!) K( U) Q9 K( V). Call this field F. Part (b) of the proposition 
forces us to define the local ring of (x, y) E X X Y to be the localization of 
0x Q9 0 y at mx Q9 0 y + 0x Q9 my- In turn, we get a sheaf of functions on 
X x Y by assigning to each open set U the intersection ofa1l0(x. y)' (x, y) E U. 
(This agrees on each product of affine open sets with the affine product 
already defined.) It is clear that X x Y thus acquires the structure of pre
variety. Moreover, the set-theoretic projections onto X, Yare morphisms: 
use the affine criterion (2.3). 

To check the universal mapping property, let W be a prevariety, with 
morphisms <PI: W ~ X, <P2: W ~ Y. As before, there is a unique map of sets 
t/!: W ~ X x Y for which <Pi = pri 0 t/!. We appeal to the affine criterion (2.3) 
to prove that t/! is a morphism: By construction, products U x V of affine 
open sets in X, Yare affine open sets which cover X x Y. Open sets of the form 
W' = <p~l(U) n <PZI(V) cover W, and the universal property of U x V 
shows that the restriction of t/! to W' is a morphism. 

This takes care of the irreducible case. For arbitrary prevarieties X, Y, 
having irreducible components Xi' lj, we form the prevarieties Xi x lj as 
above. We then topologize X x Y by declaring that a set is open if and only 
if its intersection with each Xi x Xj is open. Finally, we endow X x Y with 
a sheaf offunctions as in (2.2). It is then a routine matter to verify that X x Y 
is a categorical product. Therefore: 

Theorem. Products exist in the category of prevarieties. 0 
The reader should check that the construction of products of projective 

varieties (1.7) is duplicated abstractly by the foregoing process. However, the 
embedding in projective space specified in (1.7) is needed in order to see that 
the resulting product is again projective. 

2.5. Hausdorff Axiom 

It is possible to concoct examples of prevarieties which are geometrically 
pathological. For instance, let X be covered by two copies U, V of AI, with 
x E U equal to x E V except when x = 0 ("the affine line with a point 
doubled"). 
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A prevariety X is called a variety if it satisfies the Hausdorff axiom: 
The diagonal ,1(X) = {(x, x)lx E X} is closed in X x X. (In the category of 
topological spaces, with X x X given the ordinary product topology, this 
condition is equivalent to the usual Hausdorff separation axiom.) An equiva
lent condition is this: (*) For morphisms cp, l/J: Y -> X, Y any pre variety, 
{y E Ylcp(y) = l/J(y)} is closed in Y. Indeed, by applying (*) to the situation 

X x X ~ X, we get il(X) closed in X x X; in the other direction, use the 
pr2 

set-up Y ~1jJ X x X ~ X, the inverse image of ,1(X) being {y E Ylcp(y) = 

l/J(y)}. pr2 

The example above fails to pass the test (*), if we take the two maps 
A 1 -> U C X, A 1 -> V C X, since A 1 - {O} is not closed in A 1. On the other 
hand, varieties do abound. 

Examples: (1) An affine variety is a variety. (The diagonal is clearly given 
by polynomial conditions.) 

(2) Subprevarieties of a variety are again varieties. These are therefore 
called subvarieties. 

(3) If X, Yare varieties, so is X x Y. 
(4) A projective variety is a variety. (This results from the following nice 

criterion.) 

Lemma. Let X be a prevariety, and assume that each pair x, Y E X lie in 
some affine open subset of X. Then X is a variety. 

Proof. Given a pre variety Y and morphisms cp, l/J: Y -> X, let Z = 

{y E Ylcp(y) = l/J(y)}. We have to show that Z is closed. If Z E Z, set x = 

cp(z), y = l/J(z). By hypothesis, x and y lie in some affine open set V. Then 
U = cp -l(V) n l/J- 1(V) is an open neighborhood of z, which must meet Z. 
But Z n U = {y E UJcp'(Y) = l/J'(y)}, where cp', l/J': U -> V are the restric
tions. Since V is a variety, Z n U is closed in U. This means that U - (Z n U) 
is an open set not meeting Z, so in particular it cannot contain z. We conclude 
that z E Z. 0 

The following proposition shows why it is better to deal with varieties 
than with prevarieties: 

Proposition. Let Y be a variety, X any prevariety. 
(a) If cp: X -> Y is a morphism, the graph rip = {(x, cp(x) )Ix E X} is closed 

in X x Y. 
(b) If cp, l/J: X -> Yare morphisms which agree on a dense subset of X, then 

cp = l/J. 

Proof. (a) rip is the inverse image of il(Y) under the morphism X x Y-> 
Y x Y which sends (x, y) to (cp(x), y)). 
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(b) The set {x E Xlcp(X) = ljJ(x)} is closed in X since Y is a variety. It is 
dense by assumption, so it coincides with X. 0 

In practice, we shall deal only with varieties in what follows: affine and 
projective varieties, their subvarieties, their products. 

Exercises 

1. Show that the definition of "morphism" (2.3) agrees with that given for 
affine varieties in (1.5). 

2. If cp : Al --+ Al is a birational morphism, then cp is necessarily an iso
morphism. 

3. Let char K = P > O. If X is an irreducible affine variety, let K(X)P = 

UPI! E K(X)}. Prove that the inclusion K(X)P --+ K(X) is the comor
phism of a morphism cp: X --+ X (called the Frobenius map). Describe cp 
explicitly when X cAn. 

4. Let X, Y be prevarieties. Prove that the projections X x Y --+ X, 
X x Y --+ Yare open maps (i.e., send open sets to open sets). Must they 
send closed sets to closed sets? 

5. If X, Yare prevarieties, and W is open (resp. closed) in X, then W x Y 
is open (resp. closed) in X x Y. 

6. Prove that a topological space X is T2 if and only if {(x, x)lx E X} is 
closed in X x X (given the ordinary product topology). 

7. Let cp, ljJ: Y --+ X be morphisms (X, Y prevarieties). Prove that {y E YI 
cp(y) = ljJ(y)} is locally closed in Y. 

8. If Y is a prevariety for which Proposition 2.5 (a) (resp. (b)) holds for all 
prevarieties X, then Y is a variety. 

9. Let cp:X --+ Y be a morphism of varieties. Prove that prl induces an iso
morphism of the graph r<p c X x Y onto X. 

Notes 

We have followed Mumford [3, I §6J. The current terminology is "variety" 
(resp. "separated variety") in place of our "pre variety" (resp. "variety"); but 
we prefer to follow the older usage, since all prevarieties we shall encounter 
are in fact varieties. 

3. Dimension 

Intuitively, a point is O-dimensional, a curve I-dimensional, a surface 
2-dimensional. The object of this section is to give precise algebraic meaning 
to the geometric notion of dimension. This in turn will allow us to describe 
the behavior of varieties under morphisms, in the following section. 

3.1. Dimension of a Variety 

With an irreducible variety X is associated its field K(X) of rational 
functions. As a finitely generated field extension of K, K(X) has finite tran-
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scendence degree over K (0.4), abbreviated tf. deg' K K(X). This number is 
called the dimension of X, written dim X. For example, dim An = dim pn = n. 
So the dimension measures the maximum number of algebraically indepen
dent functions on X (or the number of "parameters" required to describe X). 
In case X has more than one irreducible component, say X = Xl U ... U XI' 
it is reasonable to define dim X as max (dim XJ, 

Let X be irreducible. Since K(X) = K(U) for any affine open subset U, 
dim X = dim U. Similarly, dim X = dim X f for any f E K(X). For example, 
GL(n, K) is the principal open subset of An2 defined by nonvanishing of the 
determinant, so its dimension is n2 . 

Proposition. Let X, Y be irreducible varieties of respective dimension 
m, n. Then dim X x Y = m + n. 

Proof. In view of the preceding remarks, we may as well assume that 
X, Yare affine, with X cAP, Y c M. (The reader who prefers to avoid 
embedding X and Y in affine spaces can proceed more intrinsically by using 
the identification K[X] ® K[Y] = K[X x Y] (2.4).) If S1>' .. , Sp (resp. 
T 1, ... , T q) are the coordinates on AP (resp. A q), their restrictions Si (resp. td 
generate K(X) (resp. K(Y)). From these generating sets we can extract tran
scendence bases (0.4), say SI,"" Sm and t1>"" tno It is clear that K(X x Y) = 
K(SI' ... , sP' t1> ... , tq ) and that K(X x Y) is algebraic over the subfield 
K(s b ... , Sm, t 1, ... , tn). So it suffices to show that the latter field is purely 
transcendental over K. Suppose there is a polynomial relation f(Sb ... , Sm, 
t1, ... , tn) = O. Then for each fixed x = (Xl"", Xp) = (SI(X)"", six)) EX, 
the polynomial function f(Xb ... , Xm , tb ... , tn) vanishes on Y. The alge
braic independence of the ti forces all coefficients g(Xb ... , xm) of the polyno
mial f(X1, ... , Xm, T 10 .•• , Tn) to be zero. In turn, each g(Sb ... , sm) = 0 
(since X E X was arbitrary), so the algebraic independence of the Si forces all 
g(S1o"" Sm) = O. Finally,f(S1,"" Sm, T1,···, Tn) = O. D 

3.2. Dimension of a Subvariety 

The following is a first step toward understanding how dimension varies 
inside a given variety. 

Proposition. Let X be an irreducible variety, Y a proper, closed, irre
ducible subset. Then dim Y < dim X. 

Proof. It is harmless to assume that X is affine, say of dimension d. Let 
R = K[X], R = K[Y] ~ RIP (where P is a nonzero prime ideal of R). It is 
clear that transcendence bases for K(X), K(Y) can already be found in R, R. 
Suppose dim Y ~ d, and select algebraically independent elements Xl> ... , 
Xd E R (images of X10 •.. , Xd E R, which are clearly algebraically independent 
as well). Let f E P be nonzero. Since dim X = d, there must be a nontrivial 
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polynomial relation g(J, x b ... , Xd) = 0, where g(T 0, T b ... , T d) E K[T]. 
Because f #- 0, we may assume that To does not divide all monomials in 
g(To, Tb ··., Td), i.e., h(T b ···, Td) = g(O, Tb ... , Td) is nonzero. Now 
h(x b ... , Xd) = 0, contradicting the independence of the Xi' 0 

Define the codimension codimx Y of a subvariety Y of X to be dim X -
dim Y. 

Corollary. Let X be an irreducible affine variety, Y a closed irreducible 
subset of codimension 1. Then Y is a component of "fI(J) for some f E K[ X]. 

Proof. By assumption, Y #- X, so there is a nonzero f E K[X] van
ishing on Y. Then Y c "fI(J) S X. Let Z be an irreducible component of 
"fI(J) containing Y. The proposition says that dim Z < dim X, while dim 
Y :::;; dim Z, with equality only if Y = Z. Since codimx Y = 1, equality 
must hold. 0 

In the situation of the corollary, it is not usually possible to arrange that 
Y be precisely "fI(J). However, this can be done when Y has co dimension 1 
in some affine space An, or more generally, when K[X] is a unique factoriza
tion domain (Exercise 6). 

If subvarieties of codimension 1 (and hence, by induction, subvarieties 
of all possible dimensions) are to exist, the corollary indicates the shape they 
must have. We aim next for a converse to the corollary. 

3.3. Dimension Theorem 

The zero set in An of a single nonscalar polynomial f(T 1, ... , Tn) is called 
a hypersurface; its irreducible components are just the hyper surfaces defined 
by the various irreducible factors of f(T). More generally, when X is an affine 
variety, a nonzero nonunit f E K[ X] defines a hypersurface in X (whose 
components are not so easy to characterize unless K[ X] happens to be a 
unique factorization domain). For example, SL(n, K) is a hyper surface in 
GL(n, K), or in An2

, defined by det (Ti) = 1. 

Proposition. All irreducible components of a hypersurface in An have 
codimension 1. 

Proof. It suffices to look at the zero set X of an irreducible polynomial 
p(T). We can assume that (say) Tn actually occurs in p(T) (which is nonscalar 
by assumption). Let t; be the restriction ofT; to X, so K(X) = K(t b ... , tn). 

We claim that t 1, ••• , tn - 1 are algebraically independent over K. Otherwise 
there exists a nontrivial polynomial relation g(tb' .. , tn - 1) = 0, whence 
g(T b ... , Tn- 1 ) vanishes on X; but J(X) = (p(T)), forcing g(T) to be a 
multiple of p(T). This is impossible, since Tn occurs in p(T) but not in g(T). 
We conclude that dim X ~ n-1, which must be an equality in view of 
Proposition 3.2. 0 
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We want to generalize this result to arbitrary affine varieties. Two tech
nical tools are needed: Noether's Normalization Lemma (0.7) and the norm 
map N ElF: E --+ F for a finite field extension ElF (0.5). 

Theorem. Let X be an irreducible affine variety, 0 #- fE K[ X] a nonunit, 
Y an irreducible component of "flU). Then Y has codimension 1 in X. 

Proof. Let P = ,J'(Y) c K[X], and let Yb ... , 1'; be the components of 
"flU) other than Y, Pi = ,J'(li). The Nullstellensatz (1.1) implies that~ = 

P n P1 n ... n Pt. Choose 9 E P1 n ... n Pt - P (g exists, since Y is not 
contained in Y1 u ... u 1';). Then Xg is an (irreducible) affine variety having 
the same dimension as X, and Y n Xg is precisely the zero set of fin X g. 
Since Y n Xg is a principal open set in Y, it suffices to prove that its codi
mension in X 9 is 1. So we might as well assume at the outset that Y = "fI(f), 
P=~. 

Now we apply the Normalization Lemma (0.7) to the domain R = K[X]: 
R is integral over a subring S which is isomorphic to K[T 1, ... , T d], d = 

dim X. Let E = K(X), F = field of fractions of S; so ElF is finite. Notice that 
N ElF takes elements of R into S. Indeed, if hER, then h satisfies a monic 
polynomial equation over S, and by the definition of "norm", N E/F(h) is a 
power of the constant term. 

Set fo = NEfFU) E S. We claim that fo E P = J(f). Say fk + adk- 1 + ... + 
ak = 0 (ai E S), with fo = (ak)m (by the preceding paragraph). Then 0 = Uk + 
a f k- 1 + ... + a )am- 1 = f(fk-larn-l + ... + a am-l) + r so r is an 

1 k k .. k k-l k ./0')0 

R-multiple of f. 
If JUo) denotes the radical of (10) in S, what we have just shown implies 

that JUo) c P n S. The reverse inclusion also holds: Let 9 E P n S, so in 
particular, 9 E ..j[]) and 9 I = fh for some I E Z'+, hER. Take norms to get 
gl[EFl = .NE/F(gl) = NE/FU)NEAh), where the first equality holds because 
9 E S and the second because N ElF is multiplicative. As remarked earlier, 
NE/F(h) E S, so we conclude that a power of 9 is an S-multiple of fo, as claimed. 

Now we have replaced the prime ideal P = ~ in R by the prime ideal 
P n S = J(]J in S. The advantage of this is that S is a unique factorization 
domain. In particular, since the radical of Uo) is prime, it is very easy to see 
that (up to a unit multiple) fo is just a power of an irreducible polynomial p, 
whence P n S is just the principal ideal (p).1t is clear that p is nonscalar. 

If S is viewed as the affine algebra of An, then P n S defines a hypersurface 
in An, which has codimension 1 (by the preceding proposition). This means 
that the fraction field of S/(P n S) has transcendence degree n - lover K. 
On the other hand, R integral over S clearly implies that RIP is integral over 
S/(P n S), so the two fraction fields have equal transcendence degree. But the 
fraction field of RIP is K(Y); therefore, dim Y = n - 1. 0 

The theorem can easily be reformulated as an assertion about an arbitrary 
irreducible variety X: If U is open in X, and 0 #- f E 0 x(U) is a non unit, then 
each irreducible component of the zero set of fin U has codimension 1 in X. 
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(Deduce this from the theorem by cutting down to an affine open subset of 
U which meets the irreducible component in question.) 

3.4. Consequences 

Theorem 3.3 guarantees that an n-dimensional variety X has irreducible 
closed subsets of all dimensions less than n. More precisely: 

Corollary A. Let X be an irreducible variety, Y a closed irreducible sub
set of codimension r ~ 1. Then there exist closed irreducible subsets ~ of codi
mens ion 1 ~ i ~ r, such that Y1 ~ Yz ~ ... ~ Y,. = Y. 

Proof. It suffices to prove this for an affine open subset of X which 
meets Y, so we may as well let X be affine. For r = 1, there is nothing to 
prove. Proceed inductively. Since Y =I X, there exists f =I 0 in ,Jf(Y), and Y 
lies in some irreducible component Y1 of "Y(f). But Theorem 3.3 says that 
codimx Y1 = 1. By induction, Y1 has closed irreducible subsets of the required 
type, going down to Y. D 

Another obvious induction yields: 

Corollary B. Let X be an irreducible variety, fb ... , f,. E @x(X). Then 
each irreducible component Of"Y(fb ... , f,.) has co dimension at most r. D 

The inequality cannot be improved (e.g., let f1 = fz = ... = f,.). But we 
can say something useful in the other direction, which accords with the geo
metric idea that a surface (resp. curve, point) in 3-space should be definable 
by one (resp. two, three) polynomial equations. 

Corollary C. Let X be an irreducible affine variety, Y a closed irreducible 
subset of codimension r ~ 1. Then Y is a component Of"Y(fb ... ,f,.)for some 
choice of/; E K[ Xl 

Proof. It is easier to prove a more general statement: Given closed irre
duciblesubsets Y1 ~ Yz ~ ... ~ Y,.,withcodimx ~ = i,thereexist/;EK[X] 
such that all components of "Y(fb ... , h) have codimension q in X and such 
that Yq is one of these components (1 ~ q ~ r). (This really is a more general 
statement, thanks to Corollary A.) 

The proof goes by induction on q (r being fixed). For q = 1, we appeal 
first to Corollary 3.2 for the existence of fb and then to Theorem 3.3 for the 
fact that all components of "Y(f1) have co dimension 1. 

Assume that fb ... ,h-1 have been found. Let Z1 = Yq-b Zz, ... , Zm be 
the components of "Y(fb . .. , h-1). Since each has codimension q - 1, none 
can lie in Yq; so ,Jf(Zi) does not include ,Jf( Yq) (1 ~ i ~ m). The ideals ,Jf(ZJ 
being prime, it follows (0.9) that their union also does not include ,Jf(Yq). 
Choose fq vanishing on Yq but not vanishing identically on any Zi. If Z is 
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any component of Y(fb ... ,fq), then Z of course lies in one of the compo
nents Zi of Y(fb ... ,fq-l), as well as in Y(fq). Theorem 3.3 implies that 
Y(fq) n Zi has co dimension 1 in Zi (since h does not vanish on ZJ, hence 
codimension q in X. On the other hand, Corollary B says that codimx Z ~ q. 
So Z must have co dimension precisely q. Since fq vanishes on Yq, and Yq 
has co dimension q, we also conclude that Yq is one of the components of 
Y(fb ... , fq)· D 

Exercises 

1. A variety has dimension 0 if and only if it is a finite set of points. 
2. Show that the dimension of the Grassmann variety G>iV) of d-dimen

sional subspaces of an n-dimensional vector space V (1.8) is d(n - d). 
Try to determine the dimension of the flag variety mY). 

3. Let X be an arbitrary variety, Y a closed subset. Prove that dim Y ~ 
dimX. 

4. The dimension of an irreducible variety X is the largest d for which 
there exists a chain of (nonempty) closed irreducible subsets X 0 c Xl C 

X 2 C ... C Xd = X (all inclusions proper). 
5. In a variety X, the closed irreducible sets satisfy ACe. 
6. Let X be an irreducible affine variety for which K[X] is a unique fac

torization domain, e.g., X = An. Prove that each closed subset Y of codi
mension 1 has the form y(f) for some f E K[ Xl [Treat first the case: 
Y irreducible. Show that minimal prime ideals of K[ X] are principal.] 

Notes 

The exposition here follows Mumford [3, I §7]. 

4. Morphisms 

In the study of linear algebraic groups, two kinds of morphisms will be 
especially prominent: group homomorphisms (which are simultaneously 
required to be morphisms of varieties) and canonical maps G --+ G/H (where 
the coset space has to be given a suitable structure of variety, not necessarily 
affine). This section provides the essential tools for the study of these and 
other morphisms. The proofs depend heavily on considerations of dimension. 
As in §3, it is usually enough to treat irreducible varieties, which can often 
(though not always) be assumed to be affine. 

4.1. Fibres of a Morphism 

By definition, the fibres of a morphism ({J: X --+ Yare the closed sets 
({J -l(y), Y E Y. (If ({J were a group homomorphism, these would be co sets of 
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Ker cp.) We want to examine the dimensions of fibres and, in particular, to 
prove that they are not "too small". Of course, cp-l(y) is empty if y ¢ 1m cp, 
so care must be taken in the formulation below. More generally, we shall 
consider sets cp - l( W), where W c Y is closed and irreducible. 

It usually does no harm to replace Y by the closure of cp(X); this facilitates 
dimension comparisons. When X is irreducible and cp(X) is dense in Y, we 
say that cp is dominant. We could say the same when X is not irreducible, but 
instead we reserve the term "dominant" for the following more special 
situation: cp maps each component of X onto a dense subset of some com
ponent of Y, and cp(X) is dense in Y. Even when cp is dominant, the restriction 
of cp to an irreducible component of cp -I(W) (W closed irreducible in Y) 
certainly need not be dominant, viewed as a morphism from this component 
to W. But when it is so, we say that the component in question dominates W. 
One other remark: When cp: X ---> Y is dominant, X and Y irreducible, then 
cp* induces an injection of K( Y) into K(X); in particular, dim X ;;:: dim Y. 

Theorem. Let cp: X ---> Y be a dominant morphism of irreducible varieties, 
and set r = dim X - dim Y. Let W be a closed irreducible subset of Y. If Z 
is an irreducible component of cp - l(W) which dominates W, then dim Z ;;:: 
dim W + r. In particular, if y E cp(X), each component of cp - I(y) has dimension 
at least r. 

Proof. If U is an affine open subset of Y which meets W, then U n W 
is dense in W. For comparison of dimensions, we could therefore replace 
Y by U and X by the open subvariety cp-l( U). So we might as well assume 
at the outset that Y is affine. 

Let s = codimy W. According to Corollary C of (3.4), W is a compo
nent of "f/(fb' .. ,Is) for suitable fi E K[Y]. Setting gi = cp*(fi) E @x(X), 
we conclude that Z lies in "f/(gJ, . .. ,gs)' Since Z is irreducible, it lies in 
some component Zo of this set. But W = cp(Z), by assumption, while 
cp(Z) c cp(Zo) C "f/(fb ... ,Is). W being a component of "f/(fJ,"" Is), 
it follows that cp(Z) = cp(Zo) = W, whence Zo c cp-l(W). But Z is a com
ponent of cp-I(W), so Z = Zoo i.e., Z is a component of "f/(gb ... ,gs)' 
Now Corollary B of (3.4) says that codimx Z ~ s. The theorem follows at 
once. 0 

In the situation of the theorem, we now know that (nonempty) fibres 
of cp are not too small. Next we have to ask whether they can be "too big.". 
A simple geometric example helps to illustrate the possibilities: Define 
cp: A 2 ---> A 2 by cp(x, y) = (xy, y). The image consists of the complement of 
the "x-axis" along with the origin (0, 0). This is easily seen to be dense, so cp 
is dominant (though not surjective). If U is the principal open set in A 2 

defined by y =f. 0, then cp induces a bijection from U = cp-l(U) onto U, 
which is even an isomorphism of varieties. But the fibre cp - l( (0, 0)) is 1-
dimensional, consisting of all points (x, 0). 
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This example suggests that we look for an open set in the target variety 
above which all fibres have the "correct" dimension: dim X - dim Y. But 
if such an open set is to exist, it must lie in rp(X). So the study of fibres of 
rp leads also to the study of the image of rp. In preparation for the main the
orem (4.3), we look briefly at a special type of morphism which turns out to 
be surjective. 

4.2. Finite Morphisms 

Let rp: X --+ Y be a morphism of affine varieties. If K[ X] is integral over 
the subring rp*K[Y], we call rp finite. Notice that if X, Yare irreducible, and 
if rp is also dominant, then K(X) is a finite algebraic extension of rp*K(Y); 
so dim X = dim Y. 

As a nonexample, take rp(x, y) = (xy, y), discussed at the end of (4.1). Here 
rp*:K[8 1,82] --+ K[Tb T2] is injective and sends 8 1 to T1T2, 8 2 to T2. It is 
easy to see that, e.g., T 1 fails to be integral over K[T 1 T 2, T 2]. But this also 
follows from our next result. 

Proposition. Let rp:X --+ Y be a finite, dominant morphism of affine 
varieties. 

(a) If Z is closed in X, then rp(Z) is closed in Y, and the restriction of <p 
to Z is finite. In particular, rp is surjective. 

(b) If W is a closed irreducible subset of Y, and Z is any component of 
rp -l(W), then <p(Z) = W. 

Proof. Let R = K[ X], S = K[Y]. Since <p is dominant, rp* is injective; 
we abuse notation by viewing S as a subring of R (of which R is an integral 
extension by assumption). If I is an ideal of R, then RjI may be regarded 
naturally as an extension of Sj(I n S). This extension is clearly integral as well. 

(a) Now let Z = "Y(I) be closed in X, where I = J(Z). Then <p maps Z 
into the zero set Z' of l' = InS, which is a radical ideal of S (hence equal 
to J(Z')). The corresponding affine algebras are RjI and SjI n S, so the 
preceding remark shows that <p:Z --+ Z' is again finite (and dominant). It 
suffices now to prove that any finite dominant morphism is surjective. If 
y E Y, then to say that rp(x) = y is just to say that rp* sends the local ring of 
y into that of x, or that rp* sends the maximal ideal M' of S vanishing at y 
into the maximal ideal M of R vanishing at x. To show that rp is surjective, 
we therefore have to show that M' lies in some maximal ideal M of R (S still 
being viewed as a sub ring of R). But this follows from the Going Up Theorem 
(0.8), since R is integral over S. 

(b) According to part (a), the restriction of rp to Z is again finite, so rp(Z) 
is closed, irreducible. Now it suffices to show that dim Z = dim W. If 
I = J(Z), l' = J(W), then I is one of the prime ideals of R for which 
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InS = f'. But as before, RII is integral over SIf', so the corresponding 
extension of fields of fractions is algebraic and the dimensions coincide. 0 

4.3. Image of a Morphism 

Noether's Normalization Lemma (0.7) says that a finitely generated 
domain over K can be built up in two steps: a purely transcendental extension 
followed by an integral extension. In order to deal with a pair of irreducible 
affine varieties related by a dominant morphism cp: X ---+ Y, we have to 
develop a relativized version of this. 

Let S c R be two finitely generated domains over K, with respective 
fields of fractions E c F. Denote by R' the localization of R with respect to 
the multiplicative system S* of nonzero elements of S (0.10). Of course, R' 
still has F as field of fractions. On the other hand, R' includes E and can thus 
be viewed as a finitely generated E-algebra. The Normalization Lemma says 
that R' is integral over E[ Xl' ... , xr ] for some Xi E R' which are algebraically 
independent over E. It is clear that the Xi can be chosen to lie in R (since 
any denominators occurring are units in R'). It is also clear that r = tf. deg.E F. 

Now compare the integral extension E[ Xb ... , xr ] c R' with the exten
sion S[Xl' ... ,xr ] c R. The latter need not be integral. But R is finitely 
generated over S, and each generator satisfies a monic polynomial over 
E[Xb ... , xrJ. By choosing a suitable common denominator f E S, we can 
therefore guarantee that R f is integral over S f[ X b ... , x r ] (R f' Sf the rings 
of quotients gotten by allowing powers of f as denominators). This set-up 
will be used to prove the following key theorem. 

Theorem. Let cp: X ---+ Y be a dominant morphism of irreducible varieties, 
r = dim X - dim Y. Then Y has a nonempty open set U such that: 

(a) V ccp(X); 
(b) if W c Y is an irreducible closed set which meets U, and if Z is a 

component of cp-l(W) which meets cp-l(U), then dim Z = dim W + r. 

Proof. As in the proof of Theorem 4.1, it is harmless to replace Y by 
an affine open subset. We can also assume that X is affine: If we have found 
suitable open sets Vi c Y for the restrictions of cp to finitely many affine 
open sets Xi which cover X, then V = nPi clearly satisfies both (a) and (b). 

Let R = K[ X], S = K[ Y]; view S as a subring of R via cp* and use the 
method described above to find Xb ... ,Xr E R,f E S such that Rf is integral 
over S f[ Xb ... , xr ], the latter being isomorphic to a polynomial ring over 
Sf. Now R f' Sf are the respective affine algebras of the principal open sets 
X f' Yf (1.5); so S f[ Xb ... , x r ] may be viewed as the affine algebra of Yf x Ar. 
The restriction of cp to X f can be factored as X f ~ Yf x Ar ~ Yf , where t/J is 
afinitemorphism (and dominant). Set U = Yf,andnoticethat cp-l(U) = Xf. 

Thanks to Proposition 4.2, t/J is surjective, as is pr 1. Therefore V does lie 
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in cp(X), proving (a). For (b), we may as well let X = Xi' U = Y = Yi ' with 
the above factorization cp = pr 1 0 ljI (ljI finite). If W is a closed irreducible 
subset of Y, Z any component of cp - 1( W), then Z is a component of 
ljI - l(W X Ar) and therefore maps onto W x Ar, with dim Z = dim ljI(Z) = 

dim W + r (4.2). 0 
For use in (21.1) we record explicitly an assertion which is contained in 

in the above proof when r = O. 

Corollary (of proof). Let cp : X -* Y be a bijective morphism of irreducible 
varieties. Then dim X = dim Y and there exist affine open subsets U c X, 
V c Y, such that cp( U) c Vand cp I U is a finite morphism. 0 

4.4. Constructible Sets 

Part (a) of Theorem 4.3 can be used to characterize the image of an 
arbitrary morphism. Recall that a subset of a topological space X is said to be 
locally closed if it is the intersection of an open set with a closed set. Call a 
finite union of locally closed sets constructible. (The constructible sets com
prise the smallest collection of subsets of X containing all open and closed 
sets, and closed under the boolean operations, cf. Exercise 3.) Note that a 
constructible set contains a dense open subset of its closure. The following 
very useful result is due to Chevalley. 

Theorem. Let cp: X -* Y be a morphism of varieties. Then cp maps con
structible sets to constructible sets,' in particular, cp(X) is constructible. 

Proof. A locally closed subset of X is a subvariety, so a constructible 
set also is. It therefore suffices to prove that cp(X) is constructible. In turn, 
we may as well assume that X, Yare irreducible. Proceed by induction on 
dim Y, there being nothing to prove when this is O. By induction, we need 
only consider dominant cp. 

Choose an open subset U of Y contained in cp(X), using Theorem 4.3(a). 
Then the irreducible components Wb ... , Wr of Y - U have smaller dimen
sion than Y (Proposition 3.2). The restrictions of cp to the various components 
Zij of cp-l(W;) then have images which are constructible in W; (by induction), 
hence also constructible in Y. Therefore, cp(X) is constructible, being the 
union of U and the finitely many CP(ZiJ. 0 

This theorem will be used repeatedly. Another fact, based on a similar 
induction, will be handy in one later argument (5.2). It is called the "upper 
semi continuity of dimension" . 

Proposition. Let cp: X -* Y be a dominant morphism of irreducible vari
eties. For x E X, let Eq>(X) be the maximum dimension of any component of 
cp - l(cp(X)) passing through x. Then for all n E Z+, {x E Xlc(p(x) ~ n} is closed 
in X. 
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Proof. Use induction on dim Y. Choose U C ip(X) as in Theorem 4.3, 
and set r = dim X - dim Y, En(ip) = {x E Xle",(X) ~ n}. Theorem 4.1 im
plies that e",(X) ~ r, so that En(ip) = X is closed whenever n :::;; r. On the 
other hand, Theorem 4.3 insures that En(ip) C X - ip -l(U) whenever n > r. 
Let Wb ... , HI; be the irreducible components of Y - U, Zij the various com
ponents of ip-l(Wi), ipij: Zij -+ Wi the restriction of ip. Since dim Wi < dim Y, 
the induction hypothesis says that E.(ipij) is closed in Zij (hence in X). But 
for n > r, En( ip) = Ui,j En( ipij), a finite union of closed sets. D 

4.5. Open Morphisms 

The example at the end of (4.1) shows that the image of an open set under 
a morphism ip:X -+ Y need not be open. This is traceable to the fact that 
not all components of ip -l(W) (W closed, irreducible) need be of the same 
dimension. Such behavior is essentially confined to the complement of an 
open set in Y, thanks to Theorem 4.3 (b); so in a sufficiently "homogeneous" 
situation, the hypothesis of the following theorem will be fulfilled. 

Theorem. Let ip: X -+ Y be a dominant morphism of irreducible varieties, 
r = dim X - dim Y. Assume that for each closed irreducible subset W c Y, 
all irreducible components of ip-l(W) have dimension r + dim W. Then ip 
maps open sets to open sets. 

Proof. The hypothesis implies in particular that ip is surjective and that 
all irreducible components of ip-l(W) dominate W. 

Let x E X and let U be any open neighborhood of x. We have to show 
that ip(x) = y lies in the interior of ip(U) = V. Suppose not. Then y lies in 
the closure of Y - V. Because V is constructible (Theorem 4.4), Y - V is 
constructible. Thus y lies in the closure C of some locally closed set 0 n C 
contained in Y - V (where 0 is open in Y and C can be assumed to be 
irreducible, so that 0 n C is dense in C). By hypothesis, the irreducible 
components of C = ip - 1( C) have equal dimension, and each dominates C. 
So 0' = (P - 1(0) meets each such component; 0' n C is therefore dense in C. 
But 0' n C = ip - 1(0 n C) lies in the closed set X - U, forcing C c X - U. 
Since x E C, this is absurd. D 

This theorem will be applied in §12 to the canonical map G -+ G/H, 
where G is a linear algebraic group and H a closed subgroup (the homoge
neous space G/H being given a suitable structure of variety). 

4.6. Bijective Morphisms 

When a morphism is bijective, there is no mystery about either its fibres 
or its image. But its topological behavior and the effect of its comorphism 
on functions can be quite subtle. Here we are concerned mainly with the 
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latter. The Frobenius map Al ---+ AI , x f---+ xP (where char K = p > 0), illus
trates how inseparability can complicate the whole question. (But even in 
characteristic 0 one cannot assert that a bijective morphism is an isomor
phism, cf. Exercise 5.) The following theorem will be of great technical value 
in the study of homogeneous spaces in Chapter IV. 

Theorem. Let <p: X ---+ Y be a dominant, injective morphism of irreducible 
varieties. Then K(X) is afinite, purely inseparable extension of cp*K(Y). 

Proof. Since <p is dominant, cp* is injective, so we may identify K(Y) 
with cp*K(Y). Theorem 4.3 implies that dim X = dim Y. Therefore, K(X) is 
a finitely generated algebraic extension of K( V), i.e., a finite extension. 

The function fields do not change if we replace X, Y by non empty open 
subsets. As a first reduction, let F be the separable closure of K(Y) in K(X) 
(= the set of elements of K(X) which are separable over K(Y)). As a finitely 
generated extension of K, F may be viewed as the function field of some 
variety Z. Then the remarks in (2.3) allow us to factor cp as the composite 
of two (injective) morphisms X ---+ Z, Z ---+ Y, after cutting X, Z, Y down to 
suitable open sets. It suffices then to prove that Z ---+ Y is birational, i.e., it 
suffices to prove the theorem when K(X)jK(Y) is separable. 

Let n = [K(X): K( V)]. To show that n = 1, we shall find some y E Y 
whose fibre <p - 1( y) has cardinality at least n. 

The theorem of the primitive element allows us to choose a single genera
tor f of K(X) over K( Y), whose minimal polynomial has the form p(T) = 

n-1 

Tn + L giTi (gi E K(Y)). The separability further implies that f is not a root 
i=O 

of p'(T). Now X and Y may be replaced by open subsets so that the rational 
functions f, gi (i.e., CP*gi) are everywhere defined on X. We may also assume 
that Y is affine, with gi E S = K[Y]. Then f is integral over S, so R = S[fJ 
is integral over S. If U is an affine open subset of X, cp* induces inclusions 
S eRe K[ U]. The ring R is an affine algebra in its own right, so it belongs 
to some affine variety X', and the factorization of <p* corresponds to 
U ---+ X' ---+ Y. But K(U) = K(X), while R has fraction field K(Y)(f) = K(X). 
So it suffices to prove that thefinite morphism Ij;: X' ---+ Y is birational. Unlike 
cp, this morphism might not be injective. But its restriction to a nonempty 
open set must be so: The image of U in X' contains a dense open set U' (4.3), 
and after deleting from it its intersection with the proper closed subset 
Ij; -1( Ij;(X' - U' )) we are left with fibres consisting of single points. In turn, 
the image of this open set in Y contains a dense open subset V. 

Now consider the fibre l/J -l(y), Y E Y. The point y corresponds to a K
algebra homomorphism 8)":5 ---+ K, while the various x E l/J-l(y) correspond 
to homomorphisms Ex: R ---+ K extending Gy• Integrality of Rover 5 already 
guarantees at least one extension of Gy (cf. (4.2)), but we need to be more 
precise in order to get n distinct extensions. 
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Since f is a root of p(T), f(x) is a root of the polynomial piT) gotten by 
applying e = ey to each coefficient. We claim that for suitable choice of y, 
piT) has n distinct roots (i.e., is a separable polynomial over K). For this we 
look at derivatives. Separability of p(T) over K(Y) implies that p'(f) =f:. O. 
Since f is integral over S, p'(f) is also; so there is a monic polynomial q(T) = 

Tm + IATi (hi E S) of which p'(f) is a root (and we can assume that ho =f:. 0, 
since p'(f) =f:. 0). Choose y E V for which ho(Y) =f:. O. If ljJ(x) = y, the 
choice of y clearly implies that p'(f)(x) =f:. 0; in turn, f(x) cannot be a root 
of p~(T). This justifies our claim that piT) is separable over K for e = ey. 

For each of the n roots a of Pe(T), we can now construct a point x E ljJ-l(y) 
such that f(x) = a, thus completing the proof. The problem is to extend e 
to a homomorphism e': R ~ K for which e'(f) = a. By a standard extension 
theorem (0.8), this can be done provided we know that for each h(T) E SeT], 
the condition h(f) = 0 implies hi a) = O. But p(T) is the minimal polynomial 
of f over K(Y), so h(f) = 0 yields h(T) = p(T)k(T) (k(T) a polynomial over 
K(Y), hence over S since p(T) is monic and both h(T), p(T) E SeT]). From 
Pe(a) = 0 we get he(a) = 0, as required. 0 

4.7. Birational Morphisms 

A birational morphism need not be an isomorphism (cf. A 1 ~ p 1 or the 
example at the end of(4.1)); but it is not too far from being one. 

Proposition. Let cp: X ~ Y be a birational morphism (X, Y irreducible). 
Then there is a nonempty open set U c Y such that cp induces an isomorphism 
of cp -l(U) onto U. 

Proof. It does no harm to assume that Y is affine; set S = K[Y]. Let 
V c X be any affine open set, R = K[V]. Consider W = cp(X - V), all of 
whose irreducible components have lower dimension than Y (since the 
components of X - V are of smaller dimension than X, and dim X = dim Y). 
W being a proper closed subset of Y, we can find 0 =f:. f E S such that f 
vanishes on W, whence cp-l(yf ) = Xip*J c V. Replacing Y by Yf and X by 
Xip*f, we may therefore assume that both X and Yare affine, with respective 
affine algebras Rand S. By assumption, cp* maps the field of fractions of S 
isomorphically onto that of R. Let f1> ... , fn generate Rover K, where h = 

cp*gdcp*h (g;, h E S). It is clear that cp* maps the ring of quotients Sh isomor
phically onto Rip*h' So we choose U = Y". 0 

Exercises 

1. The fibres of a finite morphism cp:X ~ Y (X, Y affine) are all finite. 
2. Exhibit a subset of A 2 which is constructible, but not locally closed. 
3. The constructible subsets of a topological space X form the boolean 

algebra generated by the open (or closed) subsets of X: the smallest 
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collection containing all open sets, and closed under finite unions and 
complements. 

4. For the example in (4.1), verify Proposition 4.4 directly by finding the 
sets En( cp). 

5. Define cp: Al --+ A Z by cp(x) = (XZ, x 3). Verify that X = 1m cp is closed in 
AZ, and that cp:A1 --+ X is bijective, bicontinuous and birational, but not 
an isomorphism. 

Notes 

(4.1)-(4.4) are based on Mumford [3, I §8]' The proof of Theorem 4.5 is 
adapted from Chevalley [10, V, V, Prop. 3J; a somewhat more special 
criterion for openness, adequate for our needs in §12, is developed in Steinberg 
[13, appendix to 2.11]. The proof of Theorem 4.6 is adapted from Chevalley 
[10, II, V, Prop. 1 and Corollary]. 

5. Tangent Spaces 

The tangent line to a curve at a given point is a good local approximation, 
whenever it is unambiguously defined, i.e., whenever the point in question 
is not a double point, cusp point, or other singularity. In this section we 
develop an intrinsic algebraic notion of tangent space to a variety at a point, 
which in the case of an algebraic group will be seen in §9 to carry the addi
tional structure of a Lie algebra. The idea is to linearize problems and thereby 
simplify them. For our purposes it will be enough to consider those points 
which lie on only one irreducible component of a variety. So we assume, 
unless otherwise noted, that all varieties are irreducible. 

5.1. Zariski Tangent Space 

First we try to formulate geometrically the idea of "tangent space to a 
variety X at a point x". If X were a curve in A Z defined by a single equation 
f(T 1o Tz) = 0, we would describe the tangent (or tangents) at x = (X1o XZ) as 

the locus of the linear polynomial ~f (x)(T l - Xl) + :f (x)(T z - xz). This 
rTl uTz 

locus consists of a straight line through x, unless both partial derivatives 
vanish at x. 

By analogy, suppose X c An is defined by polynomials f(T 1, ... , Tn). Set 

dxf = it1 ;~i (X)(Ti - xJ Then write Tan(X)x for the linear variety in An 

defined by the vanishing of all dxf as f(T) ranges over J(X). It is easy to 
see that for any finite set of generators of J(X), the corresponding dxf gener
ate the ideal of Tan(X)x (Exercise 1); so this geometric tangent space may 



38 Algebraic Geometry 

be computed explicitly in some cases. Notice that the tangent space to a 
linear variety (such as An itself) is just the variety. 

If X is an arbitrary variety (not necessarily affine), we could choose an 
embedding in some An for an affine open neighborhood of x E X and thus 
define Tan(X)x as above. But this procedure is hardly intrinsic, since it 
depends on the choices made. Instead, we look for an algebraic description 
of the tangent space in terms of the local ring (!)x. 

For the moment, let X c An be affine, and let M = J(x) be the maximal 
ideal of R = K[ X] vanishing at x. Since RIM can be identified with K, the 
RIM-module MIM2 is a vector space over K (finite dimensional, since M 
is a finitely generated R-module). Now dxf, for arbitrary f(T) E K[T], can 
be viewed as a linear function on An (x being the "origin"), hence as a linear 
function on the vector subspace Tan(X)x of An. Since all dxf (f(T) E J(X)) 
vanish on Tan(X)x by definition, dxf is determined by the image of f(T) in 
R = K[T]/J(X). We can therefore write dxf for fER. It is evident that dx 
becomes in this way a K-linear map from R to the dual space of Tan(X)x. 
It is surjective, because a linear function g on Tan(X)x is the restriction of a 
linear function on An (origin at x), given by a linear polynomial f(T) whose 
dxf is the given g. 

Since R = K + M (vector space direct sum), and since dx (constant) = 0, 
we may as well view dx as a map from M onto the dual space of Tan(X)x. 
We claim that Ker dx = M2. Suppose dxf (f EM) vanishes on Tan(X)x, f 
the image of some nonconstant f(T) E K[TJ. By construction, dxf = Iaidx/; 
for some ai E K, /;(T) E J(X). Setting g(T) = f(T) - Iai/;(T), we see that dxg 
vanishes on all of An, i.e., is identically o. Since f(T) was nonconstant, we may 
assume that g(T) is also. Then g(T) must contain no linear term, i.e., g(T) 
belongs to the square of the ideal (T b ... , Tn). The image of this ideal in R 
is M, and g(T) has the same image f in R as f(T), so we conclude that f E M2, 
as asserted. 

This identification of Tan(X)x with the dual space (MIM2)* falls short of 
giving an intrinsic notion of tangent space. But it is easy to pass to the local 
ring({!)x,mJ: Since{!)x = RM,mx = MRM,thereisacanonicalisomorphism 
from the RIM-module MIM2 onto the {!)xI mx-module mxlll'b;, induced by 
the inclusion R --+ RM (0.10). We can therefore cut loose entirely from the 
embedding of X in Anand define the tangent space ff(X)x of X at x to be 
the dual vector space (mxl m;)* over K = (!) xl m x. This definition makes 
sense, of course, when X is an arbitrary irreducible variety (and even when 
X is reducible, provided we take care with the definition of (!) J. As a matter 
of notation, we use letters x, y, z ... to denote elements of ff(X)x. (On a 
blackboard, ordinary capital letters might be used.) 

A slightly different view of the tangent space is useful in some contexts. 
Define a point derivation (j: (!) x --+ K to be a map that behaves like a K
derivation of {!)x followed by evaluation at x, i.e., (j is to be a K-linear map 
satisfying 

(*) (j(fg) = (j(f). g(x) + f(x) . (j(g). 

It is clear that the point derivations of {!)x form a vector space over K, call it 
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!}fix. We claim that !}fix is naturally isomorphic to ff(X)x' Indeed, if f E (!Jx is 
constant or belongs to Jr1>~, (*) shows that b(f) = 0 for bE !}fix' Therefore, 
b is completely determined by its effect on rnx , or by its induced effect on 
mxlrn~. This injects !}fix into ff(Xk In the other direction, a K-linear map 
rnx/ rn~ ----+ K defines by composition with IIV x ----+ IIVx/ rn~ a K-linear map 
lnx ----+ K, which can be extended to (!Jx = K + nib x by sending constants to O. 
Then (*) is easy to check. 

So there is a certain amount of flexibility in the way tangent spaces are 
thought of. For example, the tangent space of An (or pn) at a point x is geo
metrically just An, viewed as a vector space with origin x; algebraically, the 

tangent space is the set of point derivations Iai ~f (x) of the local ring of x 
UTi 

in K(T b"" Tn)· 
When X is the disjoint union of irreducible components, or just when x 

lies on a unique component Y, we can define ff(X)x to be ff(Y)x' (Or we can 
use the dual space of Il'h x/ IIV~, for a suitably defined local ring (!Jx in the 
general case.) 

Tangent spaces behave as expected relative to the formation of products: 

Proposition. Let X, Y be (irreducible) varieties, x E X, Y E Y. Then 
ff(X x Y)(x, y) ~ ff(X)x EB ff(Y)y. 

Proof. This is obvious if we use the geometric description of tangent 
spaces. In algebraic terms, the assertion follows from the fact that (!J(x, y) is the 
localization of (!Jx ® (!Jy at the maximal ideal IIV x ® (!Jy + (!Jx ® my, cf. 
Proposition 2.4. 0 

5.2. Existence of Simple Points 

In the case of a curve in affine space, the space of tangents at a point has 
(vector space) dimension 1 unless the point is "singular", and then the dimen
sion goes up. We shall see shortly that dim .':1(X)x ;:, dim X for any variety. If 
equality holds, x is called a simple point of X. If all points of X are simple, 
X is called smooth (or nonsingular). 

It is clear from the definition that An and pn are smooth varieties, and it 
follows from Proposition 5.1 that the product of smooth varieties is smooth 
(cf. Proposition 3.1). But it is not so clear that an arbitrary variety possesses 
any simple points at all. Consider the special case of an irreducible hyper
surface X in An, where J(X) is the ideal generated by a single irreducible 
polynomial f(T b ... , Tn). If x = (x 1, ... , Xn) E X, the calculation in (5.1) shows 

that Tan(X)x is the zero set of the linear polynomial I ~f (X)(Ti - xJ 
i=l CTi 

Since dim X = n - 1, it follows that x will be simple unless this poly-

. I . h An' I II . I d' . ar . h nomIa vams es on ,I.e., un ess a parha envahves -'- vams at x 
aTi 
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(then dim Tan(X)x = n). If char K = 0, this last condition cannot occur for 
every x E X, else f(T) would be constant. The same is true when char K = 

P > 0: simultaneous vanishing of all 88f on X would force all powers of Ti 
Ti 

in f(T) to be multiples of p, so that f(T) = g(T)P for some g(T), contrary to 
the assumed irreducibility. Therefore X does have some simple points. In 
fact, the argument shows that they form a (dense) open set. Using this we 
can prove: 

Theorem. Let X be any (irreducible) variety. Then dim ff(X)x ;;:: dim X 
for all x E X, with equality holding for x in some dense open subset. 

Proof. K(X) is a separably generated extension of K (0.14), i.e., K(X) is a 
separable algebraic extension of a subfield L = K(t1, .•. , td), the latter being 
purely transcendental over K (d = dim X). The theorem of the primitive 
element allows us to find a single generator to of the extension K(X)/L. Let 
f(T 0) E L[T 0] be its minimal polynomial. This defines a rational function 
f(To, T ll ... , Td) E K(To, T ll ... , Td), defined on an affine open subset of Ad+ 1, 

where its set of zeros Y is a hypersurface with function field K( Y) isomor
phic to K(X). It follows from the remarks in (2.3) and Proposition 4.7 
that some nonempty open sets in X and Yare isomorphic. The points 
y E Y where dim ff( Y)y = dim Y = d form a dense open subset of Y, so in 
particular dim ff(X)x = dim X = d for all x in some dense open subset of X. 

Next we apply the "upper semicontinuity of dimension" (Proposition 4.4) 
to get information about dim ff(X)x for arbitrary x E X. Here it is enough 
to let X be an affine open neighborhood of x. So view X as a closed subset 
of some An and view all tangent spaces as linear subvarieties of An. The pairs 
(x, y) E X x An for which y E Tan(X)x are easily seen to form a closed subset T 
of the product. Projection onto the first factor defines a morphism cp: T --> X, 
whose fibre cp-l(X) has the dimension of ff(X)x. For each m, Xm = {x E Xl 
dim ff(X)x ? m} is closed in X (4.4). But Xd was seen above to be dense 
in X, so X d = X. 0 

5.3. Local Ring of a Simple Point 

The inequality dim ff(X)x ? dim X (5.2) may be interpreted as stating 
that no fewer than dim X "local parameters" are required to determine x. 
To make this idea precise, we need a general lemma. 

Lemma. Let R be a noetherian local ring, with unique maximal ideal M. 
Then M is generated as R-module by fll . .. ,f" <0> M/M2 is generated as 
R/M-module by the images of fll ... ,In-

Proof. This is obvious in one direction. So let the images of the j; 
generate M/M2, and let N be the R-submodule of M generated by fll· .. ,f". 
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The finitely generated R-module M/N then satisfies: M(M/N) = M/N. Ac
cording to Nakayama's Lemma (0.11), M/N = 0, i.e., M = N. 0 

In particular, the minimal number of generators n ofthe ideal mx coincides 
with the vector space dimension of mx/ m;, or of its dual space 5'"(X)x. What 
is the significance of this when x is a simple point, so that n = dim X? 

For a (noetherian) local ring (R, M), the Krull dimension of R is defined 
to be the greatest length k of any chain 0 S P 1 S P2 S ... S M = Pk of prime 
ideals. In the case of @x, we observe that the Krull dimension is just dim X. 
Indeed, we may assume that X is affine, so that @x = K[Xlf(x)' J(x) being a 
maximal ideal of K[X], it follows from the dimension theorem (cf. Exercise 
3.4) that dim X is the length of a maximal chain of distinct prime ideals 
between 0 and J(x). But the prime ideals of K[ X] contained in J(x) cor
respond 1-1 with the prime ideals of@x' 

A local ring (R, M) is called regular if its Krull dimension coincides with 
the minimal number of generators of M (= dimR /M M/M2 , by the lemma). 
It is a general fact (0.12) that a regular local ring is an integral domain and 
is integrally closed (in its field of fractions). The discussion above therefore 
establishes: 

Theorem A. Let x E X be a simple point on the (irreducible) variety X. 
Then @x is a regular local ring, hence is integrally closed (in its field offractions 
K(X)). 0 

With appreciably more labor, it can be shown that a regular local ring 
is even a UFD. We shall need to know this only when dim X = 1, where it 
is easy to give a direct proof (Exercise 2). 

The fact that the local ring of a simple point is integrally closed will enable 
us to apply the following result in the study of homogeneous spaces (12.3). 

Theorem B. Let X be an irreducible variety, x E X a point whose local 
ring @x is integrally closed, f E K(X) a function not in @x. Then there exists a 
subvariety Y of X containing x, such that f' = l/f E @yfor some y E Y and 
such that f' takes the value 0 on Y whenever it is defined. 

Proof. Let R = @x. Then I = {g E Rlgf E R} is a proper ideal of R 
(since f ¢ R by assumption), hence contained in mx· Let P = P 10 P 2, .•. , Pt 

be the distinct minimal primes of I in R (these lie in mJ, cf. (0.13). For large 
enough n, pnp~ ... P~ c I. For i > 1, it is clear that Pi generates the unit 
ideal in the local ring Rp c K(X), so that pnRp C IRp. In particular, since 
If c R, pnf c (If)Rp c Rp. Choose k ~ 0 as small as possible so that 
pkf c Rp (then k > 0), and let g E pk-1f, g ¢ Rp (then Pg lies in Rp). 

R being integrally closed (by hypothesis), Rp is also (0.10). Now g ¢ Rp, 
so g cannot be integral over Rp. It follows (0.6) that multiplication by g 
could not stabilize the finitely generated Rp-module PRp, i.e., PRpg ¢ PRp 
(although Pg c Rp). In other words, Pg generates the unit ideal in Rp, hence 
contains a unit of Rp. Therefore 1/g E PRp; in fact, PRp = (l/g)Rp. 
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Now h = fll E fpkR p c Rp (by choice of k). Observe that h is a unit in 
Rp: otherwise hE PRp = (1/g)Rp, or flgk- 1 E Rp (contradicting the choice 
of k). So 11f = h-l(l/gk) E PRp. If Y is the zero set of P (i.e., of the pullback 
of P in the affine algebra of some affine open subset of X containing x), this 
means that 11f defines a rational function on Y and vanishes whenever 
defined. Moreover, x E Y. 0 

5.4. Differential of a Morphism 

Let cp: X ~ Y be a morphism of (irreducible) varieties. If x E X, Y = cp(x), 
then cp* maps (@y, my) into (@x, mx)' By composition with cp*, a linear 
function x on lIibxl m~ therefore induces a linear function dcpx(x) on my/ m;. 
The resulting map dCPx:ff(X)x ~ ff(Y)y is evidently K-linear. We call it the 
differential of cp at x. 

Differentiation has the expected functorial properties: If cp: X ~ X is the 
identity map, so is d CPx' If cp: X ~ Y and ljJ: Y ~ Z are morphisms, with x E X, 
cp(x) = y E Y, ljJ(y) = Z E Z, then d(ljJ 0 cp)x = dljJ y 0 dcpx: ff(X)x ~ ff(Z)z' 

For computational purposes, an explicit recipe is sometimes useful. Say 
X cAn, Y c Am, so cp is given by m coordinate functions CPi(T 10 ••• , Tn). Let 
x E X, Y = cp(x), and identify the respective tangent spaces with subspaces of 
Kn, Km. This just identifies a = (al, ... , an) E Kn with the point derivation 

@x ~ K induced by Lai -a a (followed by evaluation at x). Then dcpx(a) = 
Ti 

(bb ... , bm), where bk = Li aaCPk (x)ai (Exercise 3). 
Ti 

One important example is provided by the determinant, where det: 
GL(n, K) ~ GL(l, K) cA l is given by a single polynomial in n2 indeter
minates Tij (1 ~ i, j ~ n). Since GL(n, K) is an affine open subset of An2, its 
tangent space at each point is just Kn2. It is convenient to view this vector 
space as the set M(n, K) of all n x n matrices. Then a quick calculation with 
the above formula for dCPe yields the result: d(det)e(a) = all + a22 + ... + 
ann E M(1, K) = K. In other words, the differential of the determinant is the 
trace. 

A couple of other computations will be referred to later: 
(1) If cp:An ~ An is a linear map, then dcpx may be identified with cp, 

if ff(A n)x is identified with An. 
(2) Let V be an n-dimensional vector space over K, and let cp: V - {O} ~ 

P(V) be the canonical map, V - {O} being viewed as a principal open subset 
of V = An. Let 0 "# v E V, and consider dcpv, where ff(V - {O})v is identified 
with V. If v is taken as a first basis vector, the map cp can be described in 
corresponding affine coordinates by CP(X1o"" xn) = (x2/x b x3Ix 1,···, xnlxl)' 
It follows readily that the kernel ofthe linear map dcpv is precisely the subspace 
Kv (and therefore dcpv is surjective, by comparison of dimensions). 

(3) If Y is a subvariety of X, y E Y, then the inclusion map i: Y ~ X 
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induces a monomorphism diy:§{Y)y ---t §(X)y. So we view the former as a 
subspace of the latter. 

5.5. Differential Criterion for Separability 

A field extension ElF is said to be separable if either char F = 0, or else 
char F = p and the pth powers of elements Xl, ... , Xr E E linearly independent 
over F are again linearly independent over F. We shall need to know various 
facts (0.14): (1) This is equivalent to the usual notion of separability when 
ElF is finite. (2) If F c LeE, ElF separable, then L/F is separable (but ElL 
need not be). (3) If F is perfect, ElF is always separable. (4) For finitely gener
ated extensions of F, "separable" is equivalent to "separably generated". 

For our purposes, the question of separability comes up in connection 
with dominant morphisms cp: X ---t Y of irreducible varieties (cf. Theorem 
4.6). Here cp* identifies K( Y) with a subfield of K(X), over which K(X) is 
finitely generated but not always separable. For example, the Frobenius 
map x f--+ xP is a bijective morphism A 1 ---t A 1, whose comorphism maps 
K(Al) = K(T) onto the subfield K(P). If K(X)/cp*K(Y) is separable, we call 
the morphism cp separable. In characteristic 0, all morphisms are therefore 
separable. For the time being let char K = P > 0. 

The separability of a finite field extension can be decided by testing the 
minimal polynomials of certain field elements for multiple roots; for this a de
rivative test is appropriate. Here we shall develop an analogous "differential 
criterion" for separability. Some further general facts are required (0.15): (5) 
Let ElF be separably generated, and let q; be the vector space over L of 
F-derivations E ---t L (L some extension field of E). Then dim L q; = tr. 
deg. F E. (6) An extension ElF is separable if(and only if) all derivations F ---t L 
extend to derivations E ---t L (L ::::J E any auxiliary field). (7) All derivations 
E ---t L are EP -derivations; in particular, if E is perfect, all derivations of E are 
zero. This applies in particular to the algebraically closed field K. 

Since K is perfect, any function field K(X) is automatically separably 
generated (and separable) over K, in view of (3) and (4) above. So (5) implies 
that dim X = dim L Oer (K(X), L) for any extension L of K. (All derivations 
are K-derivations, so we henceforth omit the subscript.) In particular, con
sider a dominant morphism cp:X ---t Y. Then dim X = dimK(x) Oer (K(X), 
K(X)) and dim Y = dimK(x) Oer (cp*K(Y), K(X)). On the other hand, cp 
induces a K(X)-linear map, which we denote i5cp, by restriction: 

i5cp: Oer (K(X), K(X)) ---t Oer (cp*K(Y), K(X)). 

If we know that bcp is surjective, then it will follow from (6) that K(X)lcp*K(Y) 
is separable (i.e., that cp is separable), and conversely. 

To test the surjectivity of i5cp, we make a comparison with dcpx: .'1 (X)x ---t 

.'1(Y)",(X)' where both x and cp(x) are assumed to be simple points. Thus dcpx 
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is a K-linear map from a vector space of dimension dim X into one of dimen
sion dim Y. By formally extending the base field from K to K(X), we get the 
following picture: 

Der (K(X), K(X)) ~ Der (cp*K(Y), K(X)) 
A A 

'i/ 'i/ 
K(X) ® Y(X)x I@d,,\ K(X) ® Y(Y)rp(x) 

The dotted map on the left can be supplied by identifying elements of Y(X)x 
(point derivations of f!J J with derivations f!J x --+ f!J x and hence with derivations 
of the fraction field K(X). (The quotient rule for differentiation shows that 
there is one and only one way to extend a derivation of f!J x to K(X).) Similarly, 
the dotted map on the right can be added. Note that K(X) just plays the role 
of an auxiliary field (large enough to contain all fields involved). 

It is evident that the diagram is commutative. Since the dimensions (over 
K(X) ) agree on the left side and also agree on the right side, we conclude that 
bcp will be surjective if and only if dcpx is surjective. This establishes the desired 
criterion for separability when char K = P > O. On the other hand, field 
extensions are always separable when char K = 0; using (6) and the preceding 
argument, we see that K -derivations always extend, so the same criterion 
follows: 

Theorem. Let (p:X --+ Y be a dominant morphism of irreducible varieties. 
Suppose that x, cp(x) are simple points. Then dcpx: Y(X)x --+ Y(Y)cp(x) is sur
jective if and only if cp is separable. 0 

An explicit calculation based on this criterion will be carried out in (6.4). 

Exercises 

1. Let X be an affine variety, X c An. If f1(T), ... ,f..(T) generate .J'(X), 
prove that dxfb ... , dxf.. generate the ideal of Tan( X)x, for x EX. 

2. Let dim X = 1, x E X simple. Prove that f!J x is a UFD. [Show that, up 
to units, a generator of lFhx is the only irreducible element of f!Jx , hence 
that f!Jx is a PID with unique nonzero prime ideal ll<b x .] 

3. Verify the formula for dcpx in (5.4). 
4. The canonical morphism V - {O} --+ P(V) is separable. 

Notes 

For Theorem B of (5.3), see Chevalley [8, expose 8, lemme 1]. 
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6. Complete Varieties 

The facts about completeness in (6.1) and (6.2) will play an important role 
from §21 on, in the study of homogeneous spaces G/H which are projective 
varieties. Some rather special observations about pI are made in (6.3) and 
(6.4), to be applied at a crucial stage of the structure theory of reductive groups 
(25.3). 

6.1. Basic Properties 

A variety X is called complete if for all varieties Y, pr 2: X x Y --+ Y is a 
closed map (i.e., sends closed sets to closed sets). The geometric meaning of 
completeness is not made intuitively obvious by this definition, but a kind of 
"compactness" is intended. Indeed, for nice enough Hausdorff spaces, the 
criterion just stated (with X x Y given the ordinary product topology) is 
equivalent to compactness. 

Evidently a single point, viewed as a variety, is complete. It is also clear 
that X is complete if and only if all its irreducible components are, and that 
the auxiliary varieties Y in the definition can be taken to be irreducible (and 
even affine) if a given variety X is to be tested for completeness. What is not 
so clear is that "interesting" complete varieties exist. It will be shown in (6.2) 
that projective varieties pass the test. On the other hand, not all varieties are 
complete: The locus of the equation TIT 2 = 1 in A I X A I projects to a 
nonclosed subset of A I, so A I cannot be complete. 

We assemble here a list of elementary facts about completeness, some of 
which should remind the reader of properties enjoyed by compact Hausdorff 
spaces. 

Proposition. Let X, Y be varieties. 
(a) If X is complete and Y is closed in X, then Y is complete. 
(b) If X and Yare complete, then X x Y is complete. 
(c) If q;: X --+ Y is a morphism and X is complete, then q;(X) is closed and 

complete. 
(d) If Y is a complete subvariety of X, then Y is closed. 
(e) If X is complete and affine, then dim X = O. 
(f) A complete quasiprojective variety is projective. 

Proof. (a) (b) These follow at once from the definitions. 
(c) Since we are dealing with varieties, the graph of q; is closed in X x Y 

(2.5). Its image under prz is q;(X), which is closed because X is complete. To 
test q;(X) for completeness, we can assume Y = q;(X). For any variety Z, 
consider pr 2: X x Z ---+ Z, pr~: Y x Z ---+ Z. If W is closed in Y x Z, then 
pr~(W) = pr2(q; x l)-l(W) is closed in Z because X is complete. 
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(d) Apply (c) to the inclusion morphism Y ~ X. 
(e) As remarked above, A 1 is not complete. In view of (c), the only 

morphisms X ~ A 1 from an irreducible complete variety X are the constant 
maps. So a complete irreducible affine variety X satisfies K[ X] = K, forcing 
X to be a point. 

(f) This follows from (d). D 

6.2. Completeness of Projective Varieties 

Theorem. Any projective variety is complete. 

Proof. Thanks to Proposition6.1(a),itisenough toshow that pr2: pn X Y 
~ Y is closed, for any variety Y. We can even assume that Y is irreducible 
and affine, with affine algebra R. The affine open sets Ui = Pi x Y cover 
the product. If Xo, ... ,Xn are homogeneous coordinates on pn, then the 
affine algebra of Ui can be described as Ri = R[XoIXi' ... , Xn/XJ (XO/X io ••• , 

Xn/Xi are affine coordinates on Pi, as in (1.6).) 
Take any closed set Z in pn x Y, and any point y E Y - pr2(Z), We want 

to find a neighborhood of yin Y of the form YJ which is disjoint from pr 2(Z), 
This amounts to findingf E R,J ¢ M = J( y), such that f vanishes on pr 2(Z), 
i.e., such that the pullback of fin Ri belongs to J(ZJ for all i, Zi = Z (\ Ui' 
The existence of such f will follow from a version of Nakayama's Lemma, 
applied to a suitable R-module, which we now proceed to construct. 

First, consider the polynomial ring S = R[Xo, ... ,Xn], with natural 
grading S = ISm' We construct a homogeneous ideal 1 c S by letting 1m 
consist of all f(Xo, ... , Xn) E Sm such that I(XO/X io • •• , Xn/Xi) E J(ZJ for 
each i. 

Next fix i, and let f E J(ZJ We claim that multiplication by a sufficiently 
high power of Xi will take f into I. Indeed, if we view f as a polynomial in 
XO/Xb ..• , Xn/Xb then Xi f becomes a homogeneous polynomial (of degree m) 
in Xo, ... ,Xn for large m. In turn, (Xi/Xj)f E R j vanishes on Zi (\ Uj = 

Zj (\ Ui' while (Xi+ 1 /Xj+ l)f vanishes at all points of Zj not in Ui' Since j 
is arbitrary, we conclude that Xi+ 1f lies in I m+1. 

Now Zi and Pi x {y} are disjoint closed subsets of the affine variety Ub 

so their ideals J(Zd and MRi generate the unit ideal Ri. In particular, there 
exists an equation 1 = fi + Ij mijgij, where fi E J(Zd, mij E M, gij E Ri• 

Thanks to the preceding paragraph, multiplication by a sufficiently high 
power of Xi takes fi into I. We can choose this power large enough to work 
in these equations for all i, and to take all gij into S as well. So we obtain: 
Xi E 1m + MSm (for all i). Enlarging m even more, we can get all monomials 
of degree m in Xo, ... , Xn to lie in 1m + M Sm. This implies that Sm = 1m + M Sm. 

Now apply (0.11) to the finitely generated R-module Sm/lm' which satisfies: 
M(Sm/ I m) = Sm/ I m' The conclusion is that there exists I E R, f ¢ M, such that 
f annihilates Sm/ I m' Thus fSm elm; in particular, IXi Elm' so that f vanishes 
on prz(Z). D 
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6.3. Varieties Isomorphic to p1 

The local ring (!Jx of a simple point on an irreducible variety X is an 
integrally closed domain (Theorem 5.3 A). This can easily be strengthened 
to the statement that (!Jx is a UFD when dim X = 1 (Exercise 5.2). In this 
case the maximal ideal lfllx is principal, therefore generated by an irreducible 
element q. Since (!Jx - lnx consists of units, it is clear that q is (essentially) 
the only irreducible element of (!J x. This implies that (!J x is a valuation ring, 
i.e., for each f E K(X), either f E (!Jx or else Ilf E (!Jx. Indeed, if f = glh 
(g, hE (!JJ, then we may assume that not both g, h are divisible by q; so 
either 9 or h is a unit in (!J x. 

Now specialize to the case in which K(X) ~ K(T), the function field of 
A 1 or pl, and assume that all points of X are simple. The preceding discussion 
shows that either T or liT belongs to each local ring (!Jx. It is an elementary 
exercise to determine all the valuation rings in K(T) which include either 
K[T] or K[1/T]: they are (aside from K(T)) precisely the local rings belonging 
to the points of pl (Exercise 2). Notice too that there cannot be any proper 
inclusions between pairs of these valuation rings. 

Theorem. Let X be a smooth variety of dimension 1, and let cp : pl --+ X 
be a dominant morphism. Then X is isomorphic to pl (although cp need not 
be an isomorphism). 

Proof. Thanks to Proposition 6.1 (c), cp is surjective, and X is complete 
(and irreducible). cp* identifies K(X) with a subfield of K(Pl) = K(T) having 
transcendence degree lover K. According to Uiroth's Theorem (0.4), every 
such subfield of K(T) is isomorphic to K(T). So we identify K(X) with K(T) 
and show that this, coupled with the completeness of X, forces X to be 
isomorphic to pl. 

Let f, 9 E K(X) correspond respectively to T, liT. As remarked above, the 
fact that (!Jx (x E X) is a valuation ring implies that either f E (!Jx or 9 E (!Jx; 

when both f, 9 E @x, we have f(x)g(x) = 1. The (open) subsets U, V of X 
on which f, 9 are defined cover X. We can define a morphism U --+ p1 (resp. 
V --+ pl) by sending x to the point whose homogeneous coordinates are 
(f(x), 1)(resp. (1, g(x)). Sincef(x)g(x) = lforx E U n V, these patch together 
to yield a morphism t/I: X --+ Pl(2.3). 

Because X is complete, t/I is surjective (Proposition 6.1 (c)). By construc
tion, t/I* is an isomorphism of function fields. To conclude that t/I is an 
isomorphism, it remains to show that t/I* maps local rings of pl isomorphi
cally onto local rings of X. But, as remarked above, there are no proper 
inclusions among the valuation rings of K(T) in question. 0 

6.4. Automorphisms of pl 

For use in (25.3), we have to determine the group Aut pl of automor
phisms of the projective line. First we exhibit some particular automorphisms, 
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induced by the natural action of GL(2, K) on the nonzero vectors in K2. 
We may view this action as a permutation of the lines (through the origin) 
in K2, which is doubly transitive: Any pair of distinct lines may be sent to 
any other pair of distinct lines, since GL(2, K) acts transitively on bases of 

K2. The scalar matrices (~ ~), a E K*, leave lines stable, so we obtain an 

action of PGL(2, K) = GL(2, K)/K*. Denote this group by G, and write the 

. (a b) [ab] Image of e d as e d . 

Now p 1 can be thought of as the set of all lines through the origin in 

K2, a typical point of pl being written as [:] (x, y E K, not both 0), with 

[:] = [:;] for all a E K*. So G acts on pl as a group of permutations: 

[a b] [x] [ax + bY] .. e d y = ex + dy . Moreover, It IS clear that each element of G defines 

an automorphism of pl as variety. 

Theorem. PGL(2, K) ~ Aut pl. 

Proof. The idea is to characterize an automorphism of pl by its effect 

on the triple (0, 1, (0), where ° = [~J 1 = GJ 00 = [~l (Here p1 = 

A 1 U { oo}, the points [~J corresponding to the points of the affine line.) 

Define a map <p:G~Pl x pl x pl by <p(g) = (g(O), g(I), g(oo)), i.e., 

[: ~J~([~ J [: : ~ J [: J). If <p(g) = (0,1, (0), then 9 = [~~J = [~ ~J 
which implies that <p is injective. On the other hand, if (x, y, z) is a triple of 
distinct points ofpl, we can find as follows an element of G sending (0,1, 00) to 

(x, y, z). First use the double transitivity of G to send (x, y, z) into (0, [~ ], (0), 

where [~] # 0, 00 (and thus uv # 0). In turn, [~- 1 :-1] sends (0, [~J 00) 

to (0, 1, 00). 
Now let a be an arbitrary automorphism of pl. Then (a(O), a(I), a( 00)) 

is a triple of distinct points, which by the preceding argument has the form 
(g(O), g(I), g( 00)) for some 9 E G. The automorphism r = a-lg therefore 
fixes 0, 1, 00. In particular, r restricts to an automorphism of Ale pl. Such 
an automorphism is easily seen to have the form: a~ra + s (r E K*, S E K), 
cf. Exercise 1.10. Since 0, 1 are fixed, we conclude that r = 1 and a = 

gE G. 0 
The map <p introduced in the preceding proof turns out, under closer 

scrutiny, to be a morphism (even an isomorphism) of affine varieties. GL(2, K) 
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can of course be regarded as a principal open subset of A 4, and the orbit map 
t/I:GL(2,K) ---> Y c pl X pl X pl defined by t/I(g) = (g(O), g(I), g(oo)) is 
clearly a morphism (Y = 1m cp). In Chapter IV we shall see how to regard 
PGL(2, K) as a 3-dimensional affine variety, so that the canonical map 
n:GL(2, K) ---> PGL(2, K) is a morphism (and so that cp is a morphism). The 
factorization t/I = cpn will then imply that cp is separable, provided we know 
that t/I is. (This in turn will be seen in (12.4) to imply that cp:PGL(2, K) ---> Y 
is an isomorphism of varieties.) 

Let us use the differential criterion (5.5) to verify that t/I is separable. 
Evidently GL(2, K) is smooth (either as a principal open subset of A4, or as 
an "algebraic group" (7.1)). Since Y has a transitive group of automorphisms, 
the fact (5.2) that some points are simple forces all points to be simple. So 

we need only verify the surjectivity of (say) dt/le, where e = G ~). For this 

we identify the tangent space at e with M(2, K) (i.e., A 4) and apply the formula 
of (5.4). 

Recall (1.7) how pl x pl X pl is embedded in p7. t/I sends G ~) to ([~ 1 
[: : ~ 1 [: J). which has homogeneous coordinates (ab(a + b), ab(c + d), 

bc(a + b), bc(c + d), ad(a + b), ad(c + d), cd(a + b), cd(c + d)). Note that 
t/I(e) belongs to the affine open set in p7 specified by nonvanishing of the 6th 

coordinate. So in affine coordinates, t/I is given in a neighborhood of e by 
seven coordinatefunctions, e.g., t/ll (T l' T 2, T 3, T 4) = T 2(T 1 + T 2)/T 4(T 3 + T 4). 

. .. (10) (01) The partIal denvatIves must then be evaluated at e. Set x = ° ° ' y = ° ° ' 
z = (~~} A routine calculation (Exercise 3) shows that dt/le sends x to 

(0,0,0,0,1,0,0), Y to (1, 1,0,0, 1,0,0), Z to (0,0,0,0, -1,1, 1). The image 
of dt/l e is therefore a 3-dimensional subspace of the 3-dimensional space 
§"(Y)ljJ(e). Conclusion: t/I is separable. 

Once it is established in (12.4) that cp is an isomorphism, it will follow 
that for any algebraic group H (7.1) acting on pl, there is a morphism 
H ---> PGL(2, K) giving the action. Indeed, the effect of an automorphism of 
pl on the triple (0, 1, 00) completely determines the automorphism, as shown 
above; so we have only to compose the orbit map H ---> Y with the inverse 
of cpo 

Exercises 

1. Must every dominant morphism pl ---> pl be an isomorphism? 
2. Prove that a valuation ring R in K(T) which includes K[TJ and is distinct 

from K(T) must consist of all f(T)/g(T), where f(T), g(T) E K[TJ are rela
tively prime and where some fixed linear polynomial T - a does not 
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divide g(T). Describe similarly the valuation rings which include K[ljT]. 
Show that no proper inclusions exist between pairs of such valuation 
nngs. 

3. Verify the differential calculation at the end of (6.4). 

Notes 

The proof (due to Grothendieck) of Theorem 6.2 is reproduced from 
Mumford [3, I §9]. For some facts about curves which include Theorem 6.3, 
consult Mumford [3, III §8, Theorem 5]. The discussion in (6.4) is taken from 
Borel [4, 10.8]' Theorem 6.4 is a special case of the Fundamental Theorem of 
Projective Geometry. 



Chapter II 

Affine Algebraic Groups 

7. Basic Concepts and Examples 

7.1. The Notion of Algebraic Group 

Let G be a variety (irreducible or not) endowed with the structure of a 
group. If the two maps /1: G x G --+ G, where /1(x, y) = xy, and I: G --+ G, where 
I(X) = [1, are morphisms of varieties, we call G an algebraic group. The 
reader who is familiar with the concept of "analytic group" will see here an 
obvious parallel. But there is a subtle difference: G x G is here given the 
Zariski topology rather than the product topology, so an algebraic group is 
not a topological group (except in dimension 0). Indeed, Gis T 1 without being 
T2 (except in dimension 0), while a Tl topological group is automatically T2. 

Translation by an element y E G (x f---+ xy) is clearly an isomorphism of 
varieties G --+ G, and therefore all geometric properties at one point of G can 
be transferred to any other point, by suitable choice of y. For example, since 
G has simple points (5.2), all points must be simple: G is smooth. 

There is an obvious notion of isomorphism: algebraic groups G and G' are 
called isomorphic if there exists an isomorphism of varieties ({J: G --+ G' which 
is simultaneously an isomorphism of groups. An automorphism of G is an 
isomorphism of G onto G. An algebraic group whose underlying variety is 
complete (6.1) is called an abelian variety. We shall not attempt to study 
these here (see Notes below). Instead we always reserve the term "algebraic 
group" for those groups whose underlying varieties are affine, unless the 
contrary is expressly stated. With this convention in mind, we proceed to 
list some examples. 

The additive_group Ga is the affine line Al with group law /1(x, y) = x + y 
(so I(X) = - x, e = 0). The multiplicative group Gm is the affine open subset 
K* c Al with group law /1(x, y) = xy (so I(X) = x-t, e = 1). Each of these 
groups is irreducible (as a variety) and I-dimensional; after a substantial 
amount of preparation, we shall eventually be able to prove that (up to 
isomorphism) they are the only algebraic groups with these two properties 
(§20). Generalizing the additive group, we see that affine n-space An has a 
natural (additive) structure of algebraic group. In each of these examples the 
underlying group is commutative. 

Denote by GL(n, K) the set of all n x n invertible matrices with entries 
in K; this is a group under matrix multiplication, called the general linear 
group. The set M(n, K) of all n x n matrices over K may be identified with An2

, 

and GL(n, K) with the principal open subset defined by the non vanishing of 
the polynomial det. Viewed thus as an affine variety, GL(n, K) has its algebra 
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of polynomial functions generated by (the restrictions of) the n2 coordinate 
functions Tij along with 1/det(Tij). The formulas for matrix multiplication 
and inversion make it clear that GL(n, K) is an algebraic group. Notice 
that Gm is the same thing as GL(1, K). 

It is easy to construct further examples, based on the obvious fact that 
a closed subgroup of an algebraic group is again an algebraic group. For 
instance, the group T(n, K) of all upper triangular n x n matrices is the set 
of zeros in GL(n, K) of the polynomials Tij (i > j), while the subgroup D(n, K) 
(resp. U(n, K)) consisting of diagonal matrices (resp. upper triangular matrices 
with all diagonal entries 1) is closed for similar reasons. Notice that U(2, K) 
is naturally isomorphic to Ga. 

In another direction, given a (not necessarily associative) finite dimen
sional algebra ~, the group Aut ~ of its algebra automorphisms may be 
regarded as a subgroup of GL(n, K) by choosing a basis for ~ (n = dim ~); 
in fact, it is readily seen to be a closed subgroup (Exercise 3). 

We mention finally that the direct product of two (or more) algebraic 
groups, i.e., the usual direct product of groups endowed with the Zariski 
topology, is again an algebraic group. For example, D(n, K) may be viewed 
as the direct product of n copies of Gm, while affine n-space may be viewed 
as the direct product of n copies of Ga. 

7.2. Some Classical Groups 

We introduce next some families of linear groups which playa central 
role in the theory to be developed in this book. The parameter C is in each 
case the dimension of the (closed) subgroup of diagonal matrices in the group 
under discussion. 

AI: The special linear group SL( C + 1, K) consists of the matrices of 
determinant 1 in GL( C + 1, K); it is clearly a group (because of the product 
rule for det) and is closed (being the set of zeros of det(T i ) - 1). Since it is 
defined by a single polynomial, SL( C + 1, K) is a hypersurface in M( C + 1, K) 
(3.3), so its dimension is (C + 1)2 - 1 = C2 + 2C. 

C( : The symplectic group Sp(2C, K) consists of all x E GL(U, K) satisfying 

IX ( _~~) x = ( _~~} where J = C.· 1} IX = transpose of x. It is im

mediate that Sp(2C, K) is a group. That it is closed follows from the fact that 
the indicated equation imposes certain (mildly complicated) polynomial 
conditions on x. In this case the dimension is difficult to compute directly. 

B/ : This is the special orthogonal group SO(U + 1, K); if char K i= 2, it 

consists of all x E SL(2C + 1, K) which satisfy IXSX = s, where s = (~~~). 
OJO 

Again it is easy to check that this condition defines a closed subgroup of 
the general linear group. 

0/ : This is another special orthogonal group SO(2C, K), defined by the 
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same condition as B(, txsx = s, where s is now (~ ~) (if char K =f. 2). 

The symplectic and special orthogonal groups arise geometrically as 
groups of linear transformations preserving certain skew-symmetric (resp. 
symmetric) bilinear forms. When char K = 2, special care has to be taken 
with the definitions, cf. Dieudonne [13J, Carter [1, Ch. 1]. 

7.3. Identity Component 

Let G be an algebraic group. We assert that only one irreducible com
ponent of G can pass through e. Indeed, let X b ... , X m be the distinct 
components containing e. The image of the irreducible variety X 1 X ... x X m 

(1.4) under the product morphism is an irreducible subset Xl' .. Xm of G, 
which again contains e. So Xl' .. Xm lies in some Xi' On the other hand, 
each of the components X b ... , X m clearly lies in Xl' .. X m' This forces 
m = 1. Denote by GO this unique irreducible component of e, and call it the 
identity component of G. 

Proposition. Let G be an algebraic group. 
(a) GO is a normal subgroup of finite index in G, whose cosets are the 

connected as well as irreducible components ofG. 
(b) Each closed subgroup of finite index in G contains GO. 

Proof. (a) For each x EGo, x-1Go is an irreducible component of G 
passing through e, so x - 1 GO = GO. Therefore, GO = (GO) - 1, and further, 
GOGo = GO, i.e., GO is a (closed) subgroup of G. For any x E G, xGO[ 1 is 
also an irreducible component of G containing e, so xGox- 1 = GO and GO 
is normal. Its (left or right) cosets are translates of GO, hence must also be 
irreducible components of G; there can only be finitely many of them (G 
being a noetherian space). Since they are disjoint, these are also the connected 
components of G. 

(b) If H is a closed subgroup of finite index in G, then each of its finitely 
many left cosets is also closed and so is the union of those distinct from H. 
As the complement of this closed set, H must be open. Therefore the left 
cosets of H partition GO into a finite union of open sets; since GO is connected 
and meets H, we get GO c H. 0 

Henceforth we shall refer to an algebraic group G as connected when 
G = GO, because the term "irreducible" has an entirely different meaning 
in the context of linear groups or group representations. 

Most of the groups encountered above are in fact connected, e.g., Ga and 
Gm• That GL(n, K) is connected follows from its being a principal open set in 
an affine space. However, the connectedness of SL(n, K) and other classical 
groups is not apparent from the definition alone, so a more indirect method 
must be developed (7.5). While our main interest will be in connected alge
braic groups, certain disconnected ones will be forced upon us (e.g., the group 
of "monomial" matrices in GL(n, K), cf. Exercise 7). 
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7.4. Subgroups and Homomorphisms 

The following lemma is trivial but useful. 

Lemma. Let U, V be two dense open subsets of an algebraic group G. 
Then G = U· V. 

Proof. Since inversion is a homeomorphism, V- 1 is again a dense open 
set. So is its translate x V- 1 (for any given x E G). Therefore, U must meet 
x V - 1, forcing x E U . v. 0 

We have already pointed out that a closed subgroup of an algebraic 
group is again an algebraic group. What can be said about an arbitrary 
subgroup? 

Proposition A. Let H be a subgroup of the algebraic group G, Hits 
closure. 

(a) H is a subgroup of G. 
(b) If H is constructible, then H = H. 

Proof. (a) Inversion being a homeomorphism, it is clear that H-1 = 

H- 1 = H. Similarly, translation by x E H is a homeomorphism, so xH = 

xH = H. In turn, if x E H, Hx c HH, so Hx = Hx c H. This says that 
H is a group. 

(b) If H is constructible, it contains a dense open subset U of H. Since 
H is a group, by part (a), the lemma above shows that H = U· U c 
H·H = H. 0 

Corollary. Let A, B be closed subgroups of an algebraic group G. If B 
normalizes A, then AB is a closed subgroup of G. 

Proof. Since B c NG(A), AB is a subgroup. As the image of A x B 
under the product morphism G x G --+ G, it is constructible (4.4), therefore 
closed, by part (b) of the proposition. 0 

By definition, a morphism of algebraic groups is a group homomorphism 
({J: G --+ G' which is also a morphism of varieties. 

Proposition B. Let ({J: G --+ G' be a morphism of algebraic groups. Then: 
(a) Ker ({J is a closed subgroup ofG. 
(b) 1m ({J is a closed subgroup of G'. 
(c) ({J(GO) = ({J(Gt. 
(d) dim G = dim Ker ({J + dim 1m ({J. 

Proof. (a) ({J is continuous and Ker ({J is the inverse image of the closed 
set {e}. 

(b) ({J(G) is a subgroup of G'. It is also a constructible subset of G' (4.4), 
so it is closed by part (b) of Proposition A. 

(c) ({J(GO) is closed (part (b)) and connected (= irreducible), hence lies 
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in cp(Gt. Being of finite index in cp(G), it must equal cp(Gt, thanks to Propo
sition 7 J(b). 

(d) Theorem 4.3 implies that dim G - dim cp(G) = dim cp-l(X) for some 
(indeed, for "most") x E cp( G). But all fibres cp - l(X) have the dimension of 
Ker cp, so we are done. 0 

A good example to keep in mind is det:GL(n, K) ~ GL(l, K) = Gm, 

which is evidently a morphism of algebraic groups. The image is Gm, the 
kernel SL(n, K). From part (d) of the corollary we recover the fact that dim 
SL(n, K) = n2 - 1. 

When the target group under a morphism is GL(n, K), we say that cp is a 
rational representation. In this connection, it is sometimes desirable to view 
GL(V) as an algebraic group (V = n-dimensional vector space over K). Since 
a change of basis in Kn corresponds to an inner automorphism x 1--+ yxy-l 
in GL(n, K), the Zariski topology on GL(V) can be specified unambiguously 
by an arbitrary choice of basis for V, identifying V with Kn. 

7.5. Generation by Irreducible Subsets 

It is essentially an exercise in linear algebra to show that SL(n, K) is 
generated by subgroups V ij (i i= j), where V ij consists of all matrices with 
1 's on the diagonal, arbitrary entry in the (i, j) position, and O's elsewhere. 
(In the same spirit, U(n, K) is generated by those Vij for which i < j.) Evidently 
V ij is isomorphic (as algebraic group) to Gm since multiplication of such 
matrices just involves addition of the (i, j) entries. Our next proposition, 
based on the use of constructible sets in (7.4), allows us to deduce from the 
connectedness of Ga that SL(n, K) is connected. The same technique can of 
course be applied to other groups. 

First, a definition. Given an arbitrary subset M of an algebraic group G, 
denote by d(M) the intersection of all closed subgroups of G containing M. 
This is the smallest closed subgroup of G containing M; we call it the group 
closure of M. 

Proposition. Let G be an algebraic group, I an index set, !;: X i ~ G 
(i E l) ajamily of morphism sf rom irreducible varieties Xi, such that e E Yi = j;(X;) 
for each i E I. Set M = UiEl Yi. Then: 

(a) d(M) is a connected subgroup ofG. 
(b) For somefinite sequence a = (a(I), ... , a(n)) in I, d(M) = Y~tl)'" Y~(n) 

(ei = ± 1). 

Proof. It is harmless to enlarge I so as to insure that the morphisms 
x 1--+ !;(X)-l from Xi to G also occur. For each finite sequence a = (a(I), ... , 
a(n)) in I, set Y" = y"(l)'" Y,,(n)' As the image of the irreducible variety 
Xu(l) x ... X Xa(n) under the morphism ;;'(1) x ... x faIn) composed with 
multiplication in G, Y" is constructible (4.4), and Y" is an irreducible variety 
(1.3) passing through e. Using the maximal condition on irreducible closed 
subsets of Ge , we can therefore find a sequence a for which Y" is maximal. 
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Given any two finite sequences b, c in J, we claim that (*) Y" t C ~b, c), 

where (b, c) is the longer sequence obtained by juxtaposition, The proof is in 
two steps. For x EYc, the (continuous) map y f---> yx sends }l, into 1(b,c), hence 
Y" into ~b, c), i.e., Y" Yc c ~b, c), In turn, x E Y" sends Yc into ~b, c), hence ~ 
as well. 

Because Y" is maximal, and e lies in each Yb, (*) implies that 

Y" c Y" Y" c ~a, b) = Y" 
for any b. Setting b = a, we have Y" stable under multiplication. Choosing 
b such that }l, = Y'; 1 (cf. first sentence of proof), we also have Y" stable under 
inversion. Conclusion: Y" is a closed subgroup of G containing all Ii (i E J), 
so Y" = d(M), proving (a). Moreover, since Ya is constructible, Lemma 7.4 
shows that Y" = Ya' Ya = 1(a, a), so the sequence (a, a) satisfies (b). D 

Corollary. Let G be an algebraic group, Ii (i E J) a family of closed con
nected subgroups of G which generate G (as an abstract group). Then G is 
connected. D 

The proposition itself (not just its corollary) will be offurther use in (17.2) 
when we consider the closure and connectedness properties of commutator 
groups. 

7.6. Hopf Algebras 

An affine variety is completely determined by its affine algebra (1.5). 
Therefore it is interesting to reformulate the axioms for an (affine) algebraic 
group G as a set of ..:onditions on the algebra A = K[ G]. If e is viewed as 
a morphism from a group of one element into G (K being the affine 
algebra!), then e*:A ---+ K sends ff---> f(e). From /1:G x G ---+ G we obtain 
/1*: A ---+ A ®K A, sending f f---> '2)i ® hi ifj(xy) = 2)i(x)hi(y). To I:G ---+ G 
corresponds 1*:A ---+ A, where (l*f)(x) = f(x- 1). It is also useful to write 
p:G ---+ G for the constant morphism p(x) = e. Then p*:A ---+ A satisfies 
(p* f)(x) = f(e). 

Now the group axioms for G (associative law, identity, inverses), as given 
by the commutativity of the lefthand diagrams, translate into corresponding 
conditions for (A, e*, /1*, 1*, p*): 

~ G x G 
tJI 

G x G x G 
I x~ t 
GxG --;;-JI~) G 

G pxl) G x G 

IXd~tJI 
G x G JI) G 

G Ixl) G x G 

IXlt~tJI 
G x G JI) G 

A®A®A 
I JI'I 

A ® A +-( ----:-c---
JI' 

A®A 
1 Jl' 

A 

A (p.®l A ®A 

I®P'1 ~ IJI' 

A ® A (JI' A 

A (l*®l A®A 
1®l*1 ~p, 1< IJI' 

A®A (~A 
JI' 
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Notice that p* is the composite of e*: A ---+ K and the natural inclusion K ---+ A. 
Therefore, to define a structure of algebraic group on the variety corresponding 
to A, we need only specify maps e*, /1*,1* making the three diagrams commute. 
(Then A becomes an example of a Hopf algebra with identity.) 

It is instructive to write down the group law for some of our earlier 
examples. Ga has K[T] as affine algebra, so it is enough to say what the various 
maps do to T:e*(T) = 0, /1*(T) = (T ® 1) + (l ® T), 1*(T) = - T. Gm has 
K[T, r1] as its affine algebra, and e*(T) = 1, /1*(T) = T ® T, 1*(T) = r1. 
For GL(n, K) we have A = K[T1i> T12, ... , Tnm d- 1], d = det (TiJ. Here 
e*(TiJ = bij, /1*(Ti) = Lh Tih ® Thj, 1*(Tij) = (_I)i+ jd- 1 det(Trs)r*j. s*i' (The 
reader should verify these formulas.) 

Exercises 

1. Prove that Ga and Gm are not isomorphic. 
2. Show that T(n, K), D(n, K), U(n, K) have respective dimensions n(n + 1)/2, 

n, n(n - 1)/2. 
3. Let m: be a finite dimensional K-algebra. Prove that Aut m: is a closed 

subgroup of GL(m:). 
4. The only automorphisms ofGm (as algebraic group) are x ~ x, x ~ [1, 

while Aut Ga ~ K*. 
5. A closed subset of an algebraic group which contains e and is closed 

under taking products is a subgroup of G. 
6. GO is a characteristic subgroup of G, i.e., stable under all automorphisms 

ofG. 
7. Let N c GL(n, K) be the group of monomial matrices, i.e., matrices having 

precisely one nonzero entry in each row and each column. Prove that 
N is a closed subgroup of GL(n, K), with N° = D(n, K) and [N: N°] = n! 
[Note that the finite group N/N° is isomorphic to the symmetric group 
Sn-] 

8. Prove that T(n, K), D(n, K), U(n, K) are all connected. 
9. In Proposition 7.5 (b), show that n can be taken to be :::;: 2 dim G. 

10. Show by example that the subgroup of an algebraic group generated by 
two non-irreducible closed subsets need not be closed. [Use the cyclic 

subgroups of GL(2, C) generated by (1 0) and (1 1).] 
0-1 0-1 

11. Let G be a connected algebraic group. Prove that any finite normal 
subgroup H lies in the center Z(G) = {x E Glxy = yx for all y E G}. 
[Consider the morphism G ---+ H defined by x ~ xyx- 1 Y E H.] 

12. Define a morphism G x G x G x G ---+ G x G by /1 x /1, and let X be 
be the inverse image of the diagonal {(x, x)lx E G}. If G is connected, 
prove that X is a closed irreducible subset of G x G x G x G. [Note 
that (w, x, y, z) ~ (w, x, y) induces an isomorphism of X onto G x G x G.] 
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Notes 

The idea of(7.5) goes back to Chevalley [4, §7J. For the theory of abelian 
varieties consult Lang [2], Mumford [2], Wei I [1 J. 

8. Actions of Algebraic Groups on Varieties 

In studying algebraic groups we shall very often exploit their actions on 
themselves or on other naturally associated varieties. The present section 
introduces most of the relevant machinery, and then uses some of it to prove 
that every (affine) algebraic group is isomorphic to a closed subgroup of 
some GL(n, K). 

8.1. Group Actions 

If G is an abstract group, X a set, we say that G acts on X if there is a 
map cp: G x X ---t X, denoted for brevity by cp(x, y) = x . y, such that: 

(A1) Xl' (X2 . y) = (X1X2)' y for XiE G, Y E X; 
(A2) e. y = y for all y E X. 

These two conditions can also be construed as the requirement that cp induce 
a group homomorphism from G to the symmetric group on X. The triple 
(G, X, cp) is sometimes called an algebraic transformation space. 

Let G act on X. We say that G acts transitively if G . y = X for arbitrary 
y E X. In any case, the set G . y is called the orbit of y; evidently the distinct 
orbits under G form a partition of X, and G acts (transitively) on each orbit. 
X G denotes the set of fixed points of G (i.e., the set of those y E X whose 
G-orbit consists of y alone). In general, if y E X, we define the isotropy group 
(or stabilizer) of y to be Gy = {x E Glx. y = y}. It is clear that Gy is a group. 
Moreover, the orbit map G ---t G . y defined by x f----+ x . y induces a bijection 
G/Gy ---t G . y. In case z = x . y for some x E G, it is easy to check that the 
isotropy groups Gy and Gz are conjugate: xGyx- 1 = Gz• (Conversely, if 
Gy and Gz are conjugate, then y and z lie in the same G-orbit.) If H is any 
subgroup of G, there is a natural transitive action of G on the left coset space 
G/H (yH f----+ xyH), H being the isotropy group of the coset H. In view of the 
preceding remarks, every transitive action of G has essentially this form. 

Consider now some natural actions of G on itself. For x E G, y f----+ xyx -1 = 
Int x(y) defines an action by inner automorphisms, with corresponding 
homomorphism G ---t Aut G. (Here the kernel is Z(G), the center of G, and 
the image Int G is easily seen to be a normal subgroup of Aut G.) The orbit 
of y is its conjugacy class, the isotropy group its centralizer CG(y). The set of 
fixed points is just Z( G). 

G also acts on itself as a group ofleft (resp. right) translations, via y f----+ xy 
(resp. y f----+ yx - 1). These actions are evidently transitive and the isotropy 
groups trivial. 
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8.2. Actions of Algebraic Groups 

Let G be an algebraic group, X a variety. If we are given a morphism 
<P: G x X --+ X such that axioms (AI), (A2) of(8.1) are satisfied, we say that G 
acts morphically on X (or just "acts", if no confusion is possible). For example, 
the actions of G on itself described above are clearly of this type. As in (8.1), 
we have the notions of orbit, isotropy group, .... Another useful notion is 
that of transporter: TranG(Y, Z) = {x E Glx· Y c Z}, where Y and Z are 
subsets of X. This is clearly a submonoid of G. Finally, write CG(Y) = nYEY Gy ; 

this is the centralizer of Y in G. 

Proposition. Let the algebraic group G act morphically on the variety X. 
Let Y, Z be subsets of X, with Z closed. 

(a) TranG(Y, Z) is a closed subset ofG. 
(b) For each y E X, Gy is a closed subgroup of G; in particular, CG(Y) 

is closed. 
(c) The fixed point set of x EGis closed in X; in particular, XG is closed. 
(d) If G is connected, G stabilizes each connected component of X, hence 

acts trivially on X in case X is finite. 

Proof. For each y E X, the orbit map <Py: G --+ X (x f--+ x . y) is the 
composite of x f--+ (x, y) and <p; therefore it is a morphism. As y runs over 
Y, the various inverse images <p; l(Z) are closed in G (because Z is closed 
in X) and TranG(Y, Z) is their intersection, whence (a). Since Gy = TranG({y}, 
{y}), Gy is a closed subgroup of G, thanks to (a). In turn, CG(Y) = nYEY Gy, 

so (b) follows. 
For (c), let x E G, and consider the morphism IjJ:X --+ X x X defined 

by y f--+ (y, x . y). The fixed point set XX is precisely the inverse image under 
IjJ of the diagonal, which is closed (X being a variety (2.5)); (c) follows. 

Finally, let G be connected. The stabilizer H in G of a connected com
ponent of X is closed, thanks to part (a), and is a subgroup. Since G permutes 
the finitely many components of X, H has finite index in G. Therefore 
(Proposition 7.3 (b)) H = G. D 

Corollary. Let G be an algebraic group, H a closed subgroup. Then 
NG(H) and CG(H) are closed subgroups, as is CG(x)for x E G. (Here NG(H) = 

{x E GlxHx- 1 = H}, the normalizer of H in G.) 

Proof. For CG(H) or CG(x) this results from part (b) of the proposition, 
if we let G act on itself by inner automorphisms. For N G(H) it results from 
part (a) and the fact that N G(H) = TranG(H, H). Indeed, the automorphism 
Int y (y E G) maps H to a closed subgroup of G of the same dimension as H, 
whose identity component is of index [H: H°]. So Int x maps H into H if 
and only if it maps H onto H. D 

We shall frequently use the fact that normalizers, centralizers, and fixed 
point sets are closed. Orbits, however, are often not closed (conjugacy classes 
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in G, for example), cf. (8.3) below. It may be well to emphasize also that the 
connectedness of normalizers and centralizers is not to be taken for granted. 
Some of the most subtle arguments in later chapters will involve precisely 
this question. 

Suppose next that cp: G ~ GL(V) is a (rational) representation of the 
algebraic group G. If we identify V with affine n-space (n = dim V), it is clear 
that the recipe x. v = cp(x)(v) (x E G, v E V) defines an action of G on V. 
In this case we may call Va (rational) G-module. For later reference we record 
here some related notions and constructions. 

Associated with cp is the dual or contragredient representation G ~ GL( V*), 
where V* is the dual vector space. This is defined by the rule: (x. f)(v) = 
f(x- 1 . v), where f E V*, V E V, X E G. We have to write x- 1 in order to insure 
that y . (x . f) = (yx). f. If dual bases for V, V* are chosen, it becomes clear 
at once that the dual representation really is a rational representation of G. 

Next, consider a pair of representations cp:G ~ GL(V), IjJ:G ~ GL(W). 
The tensor product space V ® W has as basis all Vi ® Wj if Vi (resp. wJ runs 
over a basis of V (resp. W). We can make x E G act on V ® W by requiring 
that x . (Vi ® Wj) = (x. vd ® (x. Wj) and extending linearly. (Of course, there 
is no need to choose bases, if we appeal directly to the universal property of 
a tensor product.) It is clear that this defines a (rational) representation 
G ~ GL(V ® W). 

It is a standard fact that the vector space V* ® V identifies naturally 
with the vector space End V, with f ® v corresponding to the endomorphism 
W f---+ f(w)v of V. Therefore, a (rational) representation G ~ GL(V) induces an 
action of G on End V, which is in fact the action sending t E End V to xtx - 1 

(x E G). The reader can check that a fixed point of G in End V is just a G
module homomorphism V ~ V. 

When G acts on two varieties X, Y, a morphism cp:X ~ Y is called 
G-equivariant provided cp(z . x) = z. cp(x) for all z E G, x E X. For example, 
a subgroup G of GL(V) acts on itself by left multiplication as well as on V. If 
v E V, the resulting orbit map G ~ V (sending z to z. v) is a G-equivariant 
morphism. (Cf. also Exercise 6.) 

8.3. Closed Orbits 

Proposition. Let the algebraic group G act morphically on the (nonempty) 
variety X. Then each orbit is a smooth, locally closed subset of X, whose bound
ary is a union of orbits of strictly lower dimension. In particular, orbits of minimal 
dimension are closed (so closed orbits exist). 

Proof. Say Y = G. Y is the orbit of y E X. As the image of G under the 
orbit map, Y is constructible (4.4), hence contains an open dense subset of Y. 
But G acts transitively on Y (leaving Y stable), so Y is smooth and contains 
a neighborhood in Y of each of its points, i.e., Y is open in Y. Therefore, 
Y - Y is closed and of strictly lower dimension than Y. Being G-stable, this 
boundary is just the union of other G-orbits. 0 
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This proposition will be of great use later on. It comes into play when X 
is not known in advance to have any points fixed by G. 

8.4. Semidirect Products 

An action of one group on another (as group automorphisms) permits 
construction of a larger group. First recall the (abstract) group-theoretic 
construction: When G acts (as a group of automorphisms) on N, the cartesian 
product N x G becomes a group if we define (Xb yd(X2, Y2) = (Xl(Yl . X2), 
YlY2)' This is called a semidirect product and is denoted N><1 G. Of course, 
the direct product N x G arises as a special case of this construction (when G 
acts trivially on N). N is embedded as a normal subgroup via x ~ (x, e), 
and G as a subgroup via Y ~ (e, Y), so that each element of N ><1 G may be 
written uniquely in the form xy (x E N, Y E G). The action of G on N is now 
realized by inner automorphisms. This construction may be summarized by 
an exact sequence (in which (J is the canonical "section" just described, n the 
projection onto the second factor): 

e-+N~N><1G~G-+e 
KJ 

(f 

How can we recognize a semi direct product? Given a group G' with 
subgroups Nand G (N being normal), G acts on N by inner automorphisms, 
allowing us to construct a semi direct product N ><1 G. It is easy to check that 
the homomorphism N ><1 G -+ G' defined by (x, y) ~ xy is an isomorphism 
precisely when G' = NG and N n G = e. 

This entire discussion can be carried over almost word-for-word to the 
case of algebraic groups. If G, N are algebraic groups and G acts morphically 
on N, then the variety N x G becomes an algebraic group N ><1 G under the 
above recipe, and the maps i, Jr, (J are morphisms of algebraic groups. 

In the reverse direction, a given algebraic group G', with closed subgroups 
G and N (N being normal), will be identifiable in the above way with N ><1 G 
provided the natural morphism N ><1 G -+ G' is an isomorphism of algebraic 
groups. (For this it is not always enough that the morphism be an isomor
phism of abstract groups.) Example: T(n, K) is easily seen to be the semi
direct product (as algebraic group) of its subgroups D(n, K) and U(n, K), 
the latter being normal (Exercise 2). 

8.5. Translation of Functions 

When an algebraic group G acts on an affine variety X (e.g., on itself), 
we also obtain interesting linear actions of G on the affine algebra K[ X] 
and certain of its finite dimensional subspaces. Namely, denote by rx the 
comorphism attached to the morphism y ~ X-l . Y (x E G, Y E X). So if 
f E K[X], y E X, (rxfHy) = f(x- l . y). The inverse appears here in order to 
insure that r:G -+ GL(K[X]), where r(x) = ex, is a group homomorphism. 
We call ex translation offunctions by x. Notice that ex is actually a K-algebra 
automorphism of K[ Xl 
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For example, when X = G, G acts on itself by left (resp. right) translations 
(8.1): y I--> xy (resp. y I--> yx - 1). The associated morphism introduced above 
is then y I--> x -1 y (resp. y I--> yx), and its comorphism Ax (resp. pJ is called 
left (resp. right) translation of functions by x: 

(Axf)(y) = f(x- 1 y), 

(pJ)(y) = f(yx). 

As above, A:G ~ GL(K[G]) and p:G ~ GL(K[G]), where A(x) = Ax and 
p(x) = Px, are both group homomorphisms. Moreover, Ax and Py obviously 
commute (for each pair x, y E G). These operators will prove to be extremely 
useful in what follows. As a sample, we use right translation to characterize 
membership in a closed subgroup: 

Lemma. Let H be a closed subgroup of an algebraic group G, I the ideal 
ofK[G] vanishing on H. Then H = {x E GiPx(I) c I}. 

Proof. In one direction, let x E H. Iff E I, (pJ)(y) = f(yx) = 0 for all 
y E H (since yx E H), so Pxf E I. In the reverse direction, let Px(I) c I. In 
particular, if f E I, then pJ vanishes at e E H, i.e., f(x) = O. So X E H. D 

8.6. Linearization of Affine Groups 

It was observed in (7.1) that any closed subgroup ofGL(n, K) is an (affine) 
algebraic group. The converse is also true, as we shall see by constructing a 
finite dimensional subspace of K[ G] on which G acts by translations. First 
we lay the groundwork. 

Proposition. Let the algebraic group G act morphically on an affine 
variety X, and let F be ajinite dimensional subspace ofK[X]' 

(a) There exists ajinite dimensional subspace E ofK[X] including F which 
is stable under all translations 'x (x E G). 

(b) F itself is stable under allrx (x E G) if and only if cp* F c K[G] @K F, 
where cp:G x X ~ X gives the action ofG on X. 

Proof. (a) We may assume that F is the span of a single f E K[X] (and 
"add up" the resulting spaces E afterward). Write (non-uniquely) cp* f = 
L}; @giE K[G] @K[X]. For each x E G, yE X, (,J)(y) = f(x- 1 • y) = 

L};(X- 1)gi(y), whence ,J = L};(X- 1)gi. The functions gi therefore span a 
jinite dimensional subspace of K[ X] which contains all translates off. So the 
space E spanned by all 'xf does the trick. 

(b) If cp*F c K[G] @F, then the proof of part (a) shows that the func
tions gi can be taken to lie in F, i.e., F is stable under all 'x (x E G). Conversely, 
let F be stable under translations, and extend a vector space basis {};} of F to 
a basis {};} u {gJ of K[X]. If cp*f = Lri @}; + L:Sj @ gj' we have ,J = 
Lr;(x- 1)}; + Ls/x- 1 )gj. Since this belongs to F, the functions Sj must 
vanish identically on G (and hence be 0), i.e., cp* F c K[ G] @ F. D 
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Theorem. Let G be an (affine) algebraic group. Then G is isomorphic to 
a closed subgroup of some GL(n, K). 

Proof. Choose generators f1, . ,.in for the affine algebra K[ G). By 
applying part (a) of the preceding proposition to the span F of the Ji, we can 
find a larger finite dimensional subspace E of K[ G] stable under all right 
translations Px (x E G). Changing notation, we may assume that f1 , . , In is a 
vector space basis of E (and generates K[ G]). If cp: G x E ~ E denotes the 
given action, use part (b) of the proposition to write cp*fi = Ljmij (8) jj, 
where mij E K[G). Then (pxJi)(y) = Ji(yx) = Lmij(x)jj(y), whence PxJi = 

Ljmij(x)!i. In other words, the matrix of PxlE (relative to the basis f1, . , In) 
is (mij(x)). This shows that lj;: G ~ GL(n, K), where lj;(x) = (mi)x)), is a 
morphism of algebraic groups. 

Notice that Ji(x) = j;(ex) = Lmij(x)!i(e), or Ji = L!i(e)mij. This shows 
that the mij also generate K[ G]; in particular, lj; is injective. Moreover, the 
image group G' = lj;(G) is closed in GL(n, K) (part (b) of Proposition 7.4 B). 
To complete the proof, we therefore need only show that lj; is an isomorphism 
of varieties. But the restrictions to G' of the coordinate functions Tij are sent 
by lj;* to the respective mij, which were just shown to generate K[ G). So lj;* 
is surjective, hence it identifies K[ G'] with K[ G). 0 

Just as Cayley's theorem in group theory reduces the study of abstract 
groups to that of permutation groups, this theorem reduces the study of 
(affine) algebraic groups to that oflinear groups. However, the "arbitrariness" 
of the concrete representation chosen makes us prefer to remain mostly in 
the general context. For our purposes, the theorem will be useful mainly as 
a technical aid in certain proofs: we embed a given group into a general 
linear group (as a closed subgroup) and then exploit the special properties 
of matrices (e.g., behavior of eigenvalues). This procedure is hardly very 
elegant, and could often be avoided, but it does make some of the proofs 
more transparent. 

In a sense, the action of G on K[ G] by right translations already contains 
all information about the linear representations of G. We shall exploit heavily 
the passage from x to Px in the next chapter. 

Exercises 

G denotes an arbitrary algebraic group. 
1. Let GL(n, K) act in the usual way on K" (identified with affine n-space). 

Prove that there are precisely two orbits, one closed and one not. 
2. Verify the assertion (8.4) that T(n, K) is the semidirect product of D(n, K) 

and U(n, K). 
3. K[ G] is the union of finite dimensional subspaces stable under right 

translations by G. 
4. Each finite dimensional subspace of K[ G] lies in a finite dimensional 

subspace stable under all Ax and Px (x E G). 
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5. Show that the following recipe defines on A 2 the structure of (connected) 
algebraic group. Let char K = P > 0, and let q, r be powers of p. Define 
(a, b) . (c, d) = (a + c, b + d + aqcr ). In case q i= r, notice that this 
group is not commutative. Try to find a closed subgroup of U(5, K) 
isomorphic to this group. 

6. GL(V) acts morphically on V - {O} (viewed as a principal open set in 
affine space) and on P(V). The canonical map V - {O} ~ P(V) is a 
G-equivariant morphism for any closed subgroup G of GL(V). 

7. Let V be a G-module which is isomorphic to the G-module V* (8.2). 
Prove that there exists a nondegenerate bilinear form f3: V x V ~ K 
which is invariant under G in the sense that f3(x . v, x. w) = f3(v, w) for 
all x E G, v, W E V. 

8. In GL(n, K), the normalizer of D(n, K) is the group N of monomial 
matrices (cf. Exercise 7.7). 

Notes 

For an intrinsic approach to affine algebraic groups, based on their Hopf 
algebras rather than on their realizations as linear groups, see Hochschild [8]. 



Chapter III 

Lie Algebras 

9. Lie Algebra of an Algebraic Group 

9.1. Lie Algebras and Tangent Spaces 

The object of this section is to attach to an algebraic group a Lie 
algebra (in a suitably functorial way). For our purpose, a Lie algebra over 
K is a subspace of an associative K-algebra which is closed under the bracket 
operation [x, y] = xy - yx. An important example is the general linear 
algebra gI(n, K), which is the associative algebra M(n, K) viewed as Lie alge
bra. (This will turn out to be essentially the Lie algebra of GL(n, K).) 

Let G be an algebraic group, A = K[G]. Recall (8.5) that G acts on A 
via left (resp. right) translation: (Axf)(y) = f(x -1 y)(resp. (Pxf)(y) = f(yx)). 
It is routine to verify that the bracket of two derivations of A is again a 
derivation; therefore, Der A is a Lie algebra. So is the subspace 2(G) = 

{o E Der AloAx = AxO for all x E G} = space of left invariant derivations of 
A, since the bracket of two derivations which commute with Ax obviously 
does likewise. We call 2(G) the Lie algebra of G. 

Several natural questions arise at this point: (1) Is 2( G) finite dimensional, 
and if so, what is its dimension? (2) How does a morphism of algebraic 
groups q>: G -+ G' relate the two Lie algebras 2( G), 2( G')? (3) How does 
the structure of 2( G) reflect the group structure of G? (4) If H is a closed 
subgroup of G, how is :£,(H) related to :£'(G)? 

Considerable light can be cast on these matters by comparing 2(G) 
with the tangent space ~(G)e (5.1). Recall that ~(G)e is identified with 
~(GO)e; it has the structure of a vector space over K, of dimension equal to 
dim G (since e is a simple point (7.1)). We shall usually write g for ~(G)e' 
Given a morphism q>: G -+ G' which sends e to e (e.g., a morphism of algebraic 
groups), we obtain a linear map dq>e: 9 -+ g'. Differentiation has the functorial 
properties (5.4): d(lG)e = IH' d(l/I 0 q»e = dl/le 0 dq>e. We also know that ~(G)e 
may be described algebraically as the space of point derivations from the 
local ring at e into K. But such derivations are already uniquely determined 
by their effect on the subring A = K[G]. This suggests that we might pass 
from 2(G) to g by evaluating functions at e. Formally, we define a K-linear 
map 8:2(G) -+ g by (8o)(f) = (Of)(e) (0 E 2(G), f E A). 

Theorem. Let G be an algebraic group, g = ~(G)e, 2(G) as above. Then 
8: 2( G) -+ g is a vector space isomorphism. Incase q>: G -+ G' is a morphism 
of algebraic groups, dq>e:g -+ g' is a homomorphism of Lie algebras (g, g' 
being given the bracket product of 2( G), :£'( G') ). 

65 
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The proof will be given in (9.2). Since that proof is rather formal, it may 
be well to explain informally the underlying idea. If we follow any derivation 
<5:A --+ A by evaluation at x E G, we obtain a tangent vector at x. (So <5 
determines a "tangent vector field" on G, assigning to each point of G a 
tangent vector.) Left invariance of <5 simply means that the tangent vector 
at e determined by <5 is "sent" (via left translations) to the various tangent 
vectors at other points x determined by <5. Therefore, <5 ought to be uniquely 
determined by the tangent vector f f-----+ (<5f)(e) (and any tangent vector at e 
should give rise to such a <5). 

The theorem answers questions (1) and (2) above. (Questions (3) and (4) 
will also be dealt with shortly.) When <p: G --+ G' is a morphism of algebraic 
groups, we shall write d<p in place of d<Pe. Consider, for example, the inner 
automorphism Int x (y) = xyx- 1 (x, y E G). Its differential d(Int x) will be 
of great importance; we denote it by Ad x. According to the theorem, Ad x 
is an automorphism of the Lie algebra g: the invertibility follows from the 
fact that (Ad x)(Ad x- 1) = d(Int x) 0 d(Int x- 1) = d(Int e) = 19, Indeed, 
(Ad x)(Ad y) = Ad xy, so Ad:G --+ Aut 9 c GL(g) is a homomorphism (of 
abstract groups), the adjoint representation of G. 

It is interesting to compute explicitly the effect of Ad x on 2(G) (via the 
identification (J). We claim that Ad x(<5) = px<5p; 1. (This is reasonable: since 
right and left translations commute, the right side is again in 2( G).) If 
Adx(<5) = <5', then by definition, (<5'f) (e) = <5(<p*f)(e)forallfEK[G],where 
<p = Int x. This applies in particular to functions of the form Pxf. But 
CP*(Pxf)(y) = (pxf)(xyx- 1) = f(xy) = (Ax-1f)(y), i.e., CP*(Pxf) = Ax-1f. Now 
(<5'pJ(f)(e) = <5(Ax- ,f)(e) = Ax- ,(<5f)(e) (<5 is left invariant!) = (<5f)(x) = 

px<5(f)(e). This shows that <5' = px<5p; 1, as claimed. 

9.2. Convolution 

In order to prove Theorem 9.1, we construct a backward map 11: 9 --+ 2(G), 
sending a tangent vector x to a derivation *x (called right convolution by x): 

(x E G,f E A). 

It has to be checked first that *x really is a left invariant derivation of A. 
If x, Y E G, f, g E A, we have: 

(fg*x)(x) = X(AX-l(fg)) 

= x( (Ax-,f)(Ax-,g)) 

= X(AX-lf)g(X) + f(X)X(Ax-lg) 

= ((f*x)g + f(g*x))(x) 

(so *x is a derivation, K-linearity being obvious), and 

(so *x is left invariant). 

(Ay(f*X))(x) = (f*X)(y-1 X) 

= X(AX-'yf) 
= x(Ax-'(Ayf)) 
= ((Ayf)*X)(X) 
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Now it is clear that 1] is a K-linear map. To see that it is inverse to 8, we 
must compute the two composites 1] 0 8 and 8 0 1]: 

(f*8(6))(X) = 8(6)(Ax-,f) 

= 6()., ,f)(e) 

= Ax,(6f)(e) 

= (6f)(x) 

(so for 6 E 2(G), (1] 0 8)(6) = 6), and 

(so for x E g, (8 C 1])(x) = x). 

8(*x)(f) = (f*x)(e) 

= X(Ae-,f) 

= x(f) 

It remains to show that if cp: G ---+ G' is a morphism of algebraic 
groups, then dcp: 9 ---+ g' preserves the bracket operation. For x, y E g, let 
x' = dcp(x), y' = dcp(y). Let l' E K[ G'] and write f = cp* 1'. By definition, 
[x', y'](f') = (f'*y'*x')(e) - (f'*x'*y')(e) = x'(f'*y') - y'(f'*x') = 
x(cp*(f'*y')) - y(cp*(f'd)). On the other hand, dcp([x, y]) sends l' to 
(f*y*x)(e) - (f*x*y)(e) = x(f*y) - y(f*x). We claim that each term is 
equal to the corresponding term in the preceding equation; for this it 
suffices to prove that f *x = cp*(f' *x'), i.e., that (cp* 1')*x = cp*(f' *dcp(x) ). 
Each side is a function on G, so we test the values at x E G:(cp*f'*x)(x) = 

x().x-,cp* 1'), while (f'*dcp(x) )(cp(x)) = dcp(x)(},1p(x)-'1') = X(cp*(A1p(x)-'1')). 
Finally, it suffices to prove that AX-lCP* l' = CP*().1p(X)-,1'), which follows 
immediately when we evaluate both sides at Y E G. 0 

9.3. Examples 

Let G = Gal so K[ G] = K[T]. The Lie algebra 2( G) is I-dimensional, 

so its bracket operation is identically O. We claim that the derivation 6 = ~ 
dT 

is left invariant (hence spans 2( G)). For this it suffices to test the polynomial 
T,lettingxEGbearbitrary:.L x6T = .LxI = I,while6.L xT = 6(T + x) = 

6T = 1. 
Next let G = Gm, K[G] = K[T, rl] (the ring of Laurent polynomials). 

Again 2( G) is I-dimensional. If we specify 6T = T, then 6 extends in one 
and only one way to a derivation of K[T, r 1], which is in fact left invariant 
(since 6(aT) = a6T for a E K*). 

These two examples are easy enough to work out by ad hoc methods. 
But for groups of larger dimension, a more systematic procedure is needed 
for calculation of 2(G). Since the tangent space is often more readily acces
sible to us than the abstractly defined space of left invariant derivations, it 
is advantageous to introduce the bracket operation directly into Y(G)e. This 
we shall do via an associative product x . y for tangent vectors at e, which 
of course must involve in some way the group operation. For A = K[G], 
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write p*f = IJi @ gi(f, f;, gi E A), where p: G x G ~ G is the given multi
plication in G. If x, y E5(G)e are viewed as derivations A ~ K, then it makes 
sense to define a K-linear map x @ y: A @ A ~ K by (x @ yHf @ g) = (xfHyg) 
(check that this is unambiguous by starting with a bilinear map A x A ~ K). 
Then let X· Y = (x@ y) 0 p*:A ~ K. 

Rather than verify directly that x . y is an associative operation and that 
[x, y] = x . y - y . x corresponds to the Lie bracket in 5l'( G), we just note 
that via 8: 5l'(G) ~ g, the ordinary associative product (*xH*y) goes over into 
x . y. Observe first that if p* f = If; @ gi' then 

f *x = If;x(gJ 

(Evaluate both sides at x E G, and use the fact that Ax-If = I!;(X)gi') Now, 
by definition, (x . y)(f) = Ix(!;)y(gJ On the other hand, using the observa
tion just made, 

((f *y)*x)(e) = ((If;y(gi) )*x)(e) = (I(f;*x)y(gi) He) 

= Ix(f;)y(gJ 

We can now compute the Lie algebra of G = GL(n, K). Since G is an open 
set in affine n2-space, its tangent space at e has as canonical basis the various 
partial differentiation operators 8/8Tij followed by evaluation at the identity 
matrix. It is convenient therefore to specify a tangent vector x by the n2 

numbers xij = x(Ti), arranged in a square matrix. With this convention, we 
have (x . y)(Tij ) = (x @ y)(Ih Tih @ T hj) = Ih XihYhj (the usual matrix prod
uct). In other words, the K-linear map x f---> (xij) of 9 into M(n, K) identifies 
9 as Lie algebra with glen, K). (The map is injective, since only the 0 tangent 
vector kills all Tij' hence surjective, since the dimensions are both n2.) All we 
have done here is to view 9 as the "geometric" tangent space to Gat e (namely, 
affine n2-space), with e translated to O. 

9.4. Subgroups and Lie Subalgebras 

Let H be a closed subgroup of the algebraic group G. The inclusion 
YJ: H ~ G is an isomorphism onto a closed subgroup: YJ* maps K [G] onto 
K[ H] ~ K [G]/I (l the ideal vanishing on H). Therefore, dYJe identifies ff(H)e 
with the subspace of ff( G)e consisting of those x for which x(l) = O. But YJ 
is also a morphism of algebraic groups, so dYJ: ~ ~ 9 is a Lie algebra homo
morphism, which allows us to view ~ as a Lie sub algebra of 9 (9.1). Recall 
(Lemma 8.5) that H may be characterized as the set of all x E G for which 
Px(l) c I. There is a similar characterization of~, based on right convolution: 

Lemma. Let H be a closed subgroup of G, I the ideal of K[ G] vanishing 
on H. Then ~ = {x E glhx c I}. 

Proof. In one direction, let x E~. If f E I, x E H, then (f *x)(x) = 

X(Ax-,f) = 0 since Ax-If again belongs to I. So f *x E I. In the reverse direction, 
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let x E 9 satisfy hx c I. Iff E I, then (f *x)(e) = X(Ae-lf) = x(f) = ° (since 
e E H), forcing x E 1). 0 

This lemma is not of much practical use in computing 1) (but will be of 
some theoretical use later on). Instead, one can frequently describe an 
algebraic group as a closed subgroup of some GL(n, K) and then compute 
explicitly its Lie algebra as a subalgebra of gI(n, K). 

Take T(n, K), for example. This may be viewed as the principal open set 
in An(n+ 1)/2 (embedded in the obvious way in An2) defined by the nonvanishing 
of det, so the tangent space at e is this affine space. In other words, after 
translating the tangent space from e to 0, the Lie algebra of T(n, K) is the 
set t(n, K) of all upper triangular matrices. Similarly, the Lie algebra of 
D(n, K) is the set b(n, K) of all diagonal matrices. U(n, K) is the closed subset 
of M(n, K) defined by vanishing of the linear polynomials Tii - 1, Tij (i > j), 
so according to (5.1) its tangent space at e (again translated to 0) consists 
of all matrices having zeros on or below the diagonal. This Lie algebra is 
(perversely) denoted n(n, K). Notice that in each ofthese cases, the dimension 
of the group (or Lie algebra) is easy to compute; this is not always true, of 
course. 

Consider also SL(n, K), the zero set of f(T) = det(Tij) - 1. As noted in 

(5.4), ~. ca;.. (e)Tij = L Tii , so according to (5.1), the Lie algebra of SL(n, K) 
l, ) " lJ l 

lies in the set sI(n, K) of matrices of trace O. But in each case the dimension 
is n2 - 1 (cf. (7.2)), so equality must hold. 

9.5. Dual Numbers 

There is another way to view the Lie algebra, within a scheme-theoretic 
framework. We shall indicate this briefly, referring the reader to Borel [4] 
and Demazure, Gabriel [1] for a rigorous development. The present sub
section is not needed elsewhere in the text. 

Let G be an algebraic group, A = K[ G]. The points of G correspond 1-1 
to the maximal ideals of A (1.5), or to the K-algebra homomorphisms A --+ K. 
We just write Hom(A, K) for the latter. To x E G corresponds the homo
morphism cx, where cx(f) = f(x). How does the multiplication f.1 in G 
carryover to Hom(A, K)? Given x, Y E G, we just form the composite 
A ~ A ® A ,.0>:y) K ® K --+ K, the last arrow being multiplication in K. 

If K is replaced by an arbitrary (commutative) K-algebra B, the set of 
K-algebra homomorphisms Hom(A, B) acquires a group structure in a similar 
way. This is thought of as the "points of G in B". So G is now viewed as a 
functor which assigns to each K-algebra B a group G(B) = Hom(A, B). For 
example, in place of the single group GL(n, K) we could study the functor 
GLn which assigns to B the group GL(n, B). Similarly, Ga and Gm could be 
viewed as functors. 

The algebra of dual numbers is defined to be K[T]/(T2 ), or K[6] (where 
62 = 0). A typical element of this algebra is therefore of the form a + M 
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(a, b E K). If G is a functor ofthe type just described, we write ff( G) = G(K[ 6]) 
and call this the tangent bundle of G. In effect, this will be an assemblage of 
all the tangent spaces at points of G(K). The inclusion K --+ K[ 6] and the pro
jection K[ 6] --+ K (a + M ~ a) induce group homomorphisms G(K) --+ ff( G), 
ff( G) --+ G(K), leading in turn to a split exact sequence, in which the kernel 
is interpreted as the tangent space at e: 

° --+ 9 --+ ff(G) --+ G(K) --+ e. 

Indeed, a typical element of ff(G) can be written in the form ex + 6x, where 
XE G and x Eff(G)x; this homomorphism A --+ K[6] sends! ~eA!) + 6x(f). 
The product (ex + 6x)(ey + 6y) equals exy + 6(exy + eyX). 

This set-up, once justified, makes certain computations to be encountered 
in §10 quite natural and transparent. For example, Ad x is just the restriction 
to 9 of Int ex. More generally, a morphism of algebraic groups cp: G --+ G' 
induces a homomorphism ff(G) --+ ff(G'), whose restriction to 9 is just dcp. 
This makes it possible to compute certain differentials very directly. 

Exercises 

1. Let G be a closed subgroup of GL(n, K), J the ideal of all polynomials in 
K[Tij] vanishing on G. Prove that G = {x E GL(n, K)lpJ = J}, 9 = 
{x E gI(n, K)lhx c J}. [Compare J with the ideal I of K[Tij, l/det] 
vanishing on G, and adapt Lemmas 8.5, 9.4.] 

2. Let G = SL(2, K), with 9 = sl(2, K). Relative to the basis h = G ~), 
(01) (0 0) . x = ° ° ' y = 1 ° of g, compute the matnx of Ad x (x E G). 

3. Let char K = P > 0. A Lie p-aJgebra (or restricted Lie algebra) is a Lie 
algebra closed under the associative lh power operation, e.g., gl(n, K) 
or sI(n, K). 
(a) If ~ is any K-algebra, Der ~ is a Lie p-algebra. 
(b) If G is an algebraic group, 2(G) is a Lie p-algebra. 
(c) Let G = Ga (resp. Gm ), 6 as in (9.3). Then (jP = ° (resp. 6P = b). 
(d) If cp: G --+ G' is a morphism of algebraic groups, then dcp is a homo

morphism of Lie p-algebras, i.e., dcp(x)P = dcp(xP). 

Notes 

This chapter is based on Borel [4, §3]; however, he places greater em
phasis on dual numbers. 

10. Differentiation 

Passage from G to 9 helps to "linearize" a number of questions. This 
technique is especially useful in dealing with morphisms. In the present sec
tion we shall compute the differentials of several morphisms and draw a few 
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immediate conclusions, e.g., that the Lie algebra of a closed normal subgroup 
is an ideal. 

10.1. Some Elementary Formulas 

Let G be an algebraic group, with product J1: G x G --+ G and inverse 
I: G --+ G. To calculate dJ1(e. e), recall first that 5""( G X G)(e. e) is canonically iso
morphic to 5""(G)e EB 5""(G)e = 9 EB 9 (5.1). Iff E K[G], write J1*f = Ih (5)gi' 
so f(xy) = Ih(x)gi(y). In particular: (*) f = IgJe)h = Ih(e)gi' Now if 
(x, y) E 5""( G x G)(e. e) (x, y E g), we have by definition z = dJ1(e. e)(x, y), where 
zU) = (x, y)(Ih ® gJ = Ix(fi)gi(e) + Ih(e)y(gJ But in view of formula 
(*) this is the same as applying x + y to f, so dJ1(e. elx, y) = x + y. (This 
indicates that addition in 9 is the infinitesimal analogue of multiplication 
in G.) 

Next we compute dle:g --+ g. Consider G ~ G x G.4 G. Since the 
composite sends every x to e, the differential sends all x E 9 to O. Using the 
fact that d(l) = 1 along with the fact that d(l, I) = (d(I), d(l)), we get: 
o = d(/l 0 (1, Z ))e(x) = dJ1(e. e)(d(1, I )e(x)) = dJ1(e. elx, dze(x)) = x + dzAx), 
thanks to the above formula for dJ1(e. e)' Therefore, dle(X) = - x (i.e., nega
tion in 9 is the analogue of inversion in G). 

Another interesting morphism is conjugation of a fixed x E G: CPx(Y) = 

yxy-l (y E G). This does not send e to e (unless x = e), so we consider 
first the morphism ljI(y) = xy-1X- 1. Evidently ljI = Int x 0 I, so dljle(x) = 

d(Int X)(dle(X)) = Ad x( - x) = - Ad x(x), where Ad x is by definition d(Int x) 
(9.1). In turn, consider Yx(Y) = yxy-l x- 1 (the commutator morphism relative 
to x), which may be realized as the composite G ~ G x G ~ G. If x E g, 
(dyJix) = dJ1(e. e)(x, dljlix)) = x - Ad x(x) = (1 - Ad x)(x). Finally, the orig
inal conjugacy class morphism CPx is just G~ G x G ~ G, where s(y) = x 
for all y E G. (Later on we shall use this description in terms of Yx to study the 
separability of CPx.) 

It may be well to summarize what we have obtained: 

Proposition. Let G be an algebraic group. Thenfor all x, y E g: 
(a) dJ1(e. e)(x, y) = X + y. 
(b) dle(X) = -x. 
(c) (d}'x)e(x) = (1 - Ad x)(x),whereyx(Y) = yxy-1X-1(X,YEG). 0 
One further remark will be useful in adapting results about GL(n, K) to 

its closed subgroups: If H is a closed subgroup of an algebraic group G, 
then the differential of the restriction to H of a morphism cP of G (sending 
e to e) is the restriction to f) of the differential dCPe (i.e., restriction commutes 
with differentiation). This is obvious from the definitions. 

10.2. Differential of Right Translation 

Recall from (8.5) that G acts on K[ G] by left and right translations: 
(Axf)(y) = f(x-1y), (Pxf)(y) = f(yx). The resulting group homomorphisms 
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A, p: G --+ G L(K[ G]) cannot themselves be regarded as morphisms of alge
braic groups, since K[ G] is infinite dimensional. However, K[ G] is the union 
of finite dimensional subspaces stable under all Px (or all Ax). If E is such a 
subspace (stable under all pJ, with basis (fb . ,fn), then we saw that PxJi = 

Lj mij(x)jj, where the comorphism cp* of the given action cp: G x E --+ E 
sends Ji to Lj mij ® jj. (Cf. Proposition 8.6 and the proof of Theorem 8.6.) 
It follows that I/J(x) = (miix)) defines a morphism I/J: G --+ GL(n, K), the 
matrix representation associated with the given basis of E. Notice too that the 
subspace of K[ G] spanned by the mij includes E and is stable under left trans
lations; this follows from the calculation: (Ax-1Ji)(y) = Ji(xy) = Lj mJy)jj(x) 
(remember that the action here of G on E involves right multiplication in G). 

It is interesting to compute the differential dl/J: 9 --+ gI(n, K). If x E g, then 
by definition the matrix dl/J(x) has as (i,j) entry the result of applying x to the 
pullback of the (i,j) coordinate function. But I/J*Tij = mij' as remarked above, 
so dl/J(x) = (x(mij)). On the other hand, consider the action of x on the given 
basis of E by right convolution: (Ji*x)(x) = x(Ax-tJi) = x(Lj jj(x)mij) = 

Lj .h{x)x(miJ, using the expression above for Ax-tJi. In other words, x leaves 
E stable and has matrix (x(mij)) relative to the basis (fb . ,in). To summarize: 

Proposition. Acting by right convolution, 9 leaves stable every subspace 
of K[ G] stable under right translation by G. On a finite dimensional, G-stable 
subspace, the differential of right translation is right convolution. D 

We could, of course, replace "right" by "left". Notice that the proposition 
sheds some light on the analogy between Lemma 8.5 and Lemma 9.4. 

10.3. The Adjoint Representation 

The action of G on K[G] by right translation is especially useful in 
constructing (finite dimensional) linear representations of G with good prop
erties; this will become apparent in Chapter IV. However, the adjoint action 
of G on 9 is more readily computable, and gives rather decisive information 
about G in case char K = O. It is in any case a valuable tool. In order to 
study this action, we begin with GL(n, K) and then adapt our findings to its 
closed subgroups. 

Recall (9.1) that for a fixed x E G, Ad x was defined to be the differential 
of the automorphism Int x of G; Ad x is therefore an automorphism of 9 
(as Lie algebra). If we think of 9 as 2"( G), the left invariant derivations of 
K[ G], then Ad x acts as 6 f---+ px6p; I (9.l), which is suggestive of the concrete 
situation for GL(n, K). 

Consider then the special case G = GL(n, K), with 9 = gI(n, K). We begin 
by describing explicitly the action of G (resp. g) on K [G] by translation (resp. 
convolution). For this it is sufficient to look at the effect on the coordinate 
functions Tij, since this determines the effect on l/det Tij. Denote by T the 
matrix whose (i,j) entry is Tij. 

Lemma A. Let x E GL(n, K), x E gI(n, K). Then PxTij (resp. AJij' resp. 
Tij*x) is the (i,j) entry of the matrix Tx (resp. x-IT, resp. Tx). 
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Proof. If Y E GL(n; K), (PxTij)(Y) = Tij(yx) = Lh YihXhj = Lh Tih(Y)Xhj = 

(Tx)u(y), and similarly for left translation. Using this, we get 

(Tij*x)(y) = x{A.y-:Ti) = x(~ YihThj) = ~ YihX(Th) 

= L YihXhj = L Tih(Y)Xhj = (TX)i/Y)' D 
h h 

With these descriptions in hand, it is easy to compute Ad x. 

Lemma B. Let x E GL(n, K), x E g[(n, K). Then Ad x(x) = x x X -1 (matrix 
product). 

Proof. It suffices to check that each side has the same effect on Tij. 

Ad x(x)(Tij) = Px( *x)p; l(Tij) 

= Px(*x)(Tx- 1)ij 

= Px (~(TX)ihX';/) 

= Px (~ ~ Til Xlh Xh} t) 
= L L L (Tim xml Xlh x;/) 

him 
= (Tx x X- 1)ij 

= x x x- 1(Tij)' 

Here we have used Lemma A repeatedly. D 

Corollary. Ad:GL(n, K) ~ GL(n2, K) is a morphism of algebraic groups 
(relative to any choice of basis for gI(n, K)). 

Proof. This is clear from the explicit formula given in Lemma B. D 
Consider now the general case. Thanks to Theorem 8.6, any algebraic 

group G may be regarded as a closed subgroup of some GL(n, K); in this 
way g becomes identified with a Lie sub algebra of gI(n, K). Moreover, if 
x E G, then IntG(x) is the restriction to G of IntGL(I1.Klx). Since restriction 
commutes with differentiation (10.1), we conclude that AdG(x) is the restric
tion to g of AdGUn. Klx). Therefore Lemma B and its Corollary carryover 
intact to the general case: 

Proposition. Let G be an algebraic group. Then Ad: G ~ GL(g) is a 
morphism of algebraic groups. In case G is a closed subgroup of GL(n, K), 
Ad x is just conjugation by x (x E G). D 

10.4. Differential of Ad 

Let G be an algebraic group. For each individual x in G, we obtained 
Ad x by differentiating the morphism Int x (at e). But in turn, Ad: G ~ GL(g) 
turned out to be a morphism of algebraic groups (10.3), whose differential is 
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therefore a Lie algebra homomorphism 9 --+ gl(g) (also called a representation, 
since the image lies in some gl(m, K)). 

Theorem. The differential of Ad is ad, where ad x(y) = [x, y], for x, 
y E g. 

Proof. As in (10.3), we treat first the special case G = GL(n, K), 9 = 
gl(n, K). If x E G, then Ad x is the image of x under the composite map 
G (~G x G u~t GL(g) x GL(g) -4 GL(g), where I(X) = x-l, Ji is the product 
morphism, and O'(x) (resp. 1'(x)) is the operation of left (resp. right) multiplica
tion by x in g. It has to be observed that 0', l' are morphisms (of varieties), 
which send e to the identity matrix. We can make this obvious, and at the 
same time compute the differentials, if we work with the standard basis of 
9 consisting of the matrices eij (having 1 in the (i, j) position and 0 elsewhere). 
The (i, j) entry of the matrix xelm is just Xii (if m = j), 0 otherwise. Therefore 
the matrix of O'(x) in GL(n2 , K) may be divided into n x n blocks, a typical 
block containing in one column (say the mth) the entries from one column 
(say the fh) of x, and zeros elsewhere. This shows not only that 0' (or 1') is 
a morphism, but also that the entries of O'(x) (or 1'(x)) are linear polynomials 
of the simplest kind in the coefficients of x. It follows that, for example, 
dO' e(x) = left multiplication by x in 9 (x E g). 

We already computed in (10.1) the differentials of I and Ji. Therefore, 
d(Ad) is given by the recipe: x 1----+ (x, -x) 1----+ left multiplication by x minus 
right multiplication by x, i.e., d(Ad)x(y) = xy - yx = [x, y J. 

In the general case, we use Theorem 8.6 to identify G with a closed 
subgroup of some GL(n, K) and then use the fact (10.1) that restriction 
commutes with differentiation to adapt the preceding results to G. 0 

It is worth remarking that, just as Ad x is a Lie algebra automorphism 
(not just an invertible linear transformation), so too ad x has a further 
property beyond being a linear transformation of g. It follows from (indeed, 
is equivalent to) the Jacobi identity for Lie algebras that ad x is a derivation 
of g. 

It is also worth remarking that Ker ad is precisely the center 3(9) of 9 
(those elements "commuting" with all elements of g). On the other hand, if 
x E Z(G), then Int x = 1 and hence Ad x = 1, i.e., Z(G) c Ker Ad. It turns 
out that equality holds in characteristic 0 (13.4); otherwise there are excep
tions (cf. Exercise 3). 

The preceding theorem allows us to see more clearly the nature of the 
correspondence G 1----+ 9 from the category of algebraic groups to the category 
of Lie algebras. 

Corollary A. Let H be a closed normal subgroup of the algebraic group G. 
Then 1) is an ideal in 9 (i.e., [x, y] E 1) whenever x E g, Y E 1)). 

Proof. To say that H is normal is to say that all Int x (x E G) stabilize H; 
hence all Ad x (x E G) stabilize 1). If we extend a basis of 1) to a basis 
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of g, the matrix of Ad x therefore has the form (~ I :), and clearly the matrix 

of d(Ad)x (x E g) inherits this form. But d(Ad) = ad, so it follows that 
[x, I)] c I) (x E g). D 

As a variant of this corollary, we deduce: 

Corollary B. Let H be a closed subgroup of the algebraic group G, N = 

NG(H) its normalizer. Then n c nil)) = {x E gl[x, I)] c I)}. 

Proof. We know that N is closed (Corollary 8.2), so n is defined. 
Applying Corollary A to the normal subgroup H of N, we see that I) is an 
ideal in n, hence that n normalizes I). D 

When char K = 0, the inclusion in the corollary is actually equality 
(Exercise 13.1). But this (like numerous other Lie algebra properties) has 
exceptions in prime characteristic, cf. Exercise 4. 

10.5. Commutators 

The commutator morphism yx:G -+ G, defined by yx(y) = Y x y-1x- 1, 
has been seen to have differential ( at e) 1 - Ad x: 9 -+ g. (Proposition 1 0.1 (c) ). 

Proposition. Let A, B be closed subgroups of the algebraic group G, and 
let C be the closure of the group (A, B) generated by commutators. Then c 
contains all elements y - Ad x(y), x - Ad y(x), [x, y] (x E A, x E a, y E B, 
y E b). 

Proof. For x E A, )Ix maps B -+ C, so the differential 1 - Ad x maps 
b -+ c. This yields all elements of the first type listed, and similarly for the 
second type. Next, for x E a, consider the morphism <p:B -+ c (c viewed as an 
affine space) defined by <p(y) = x - Ad y(x). (We just showed that the image 
lies in c.) Since <p maps e to 0, we can compute d<Pe: b -+ c (c being viewed as 
its own tangent space at 0). But d(Ad) = ad (Theorem 10.4), so d<ph) = 

- [y, x] = [x, y] lies in c. D 
Just as the sum and the negative in 9 are infinitesimal analogues of the 

product and the inverse in G (10.1), the bracket [x, y] is now seen to be analo
gous to the commutator in G (each measures the extent of departure from 
commutativity). 

Corollary. Let G be an algebraic group, H the closure of (G, G). Then 
I) includes [g, g] (= set of all linear combinations of elements [x, y], 
x, y E g). D 

It will be seen later on (17.2) that (G, G) is always closed. The inclusion 
1) => [g, g] is actually an equality in case char K = 0, but may be strict 
otherwise (Exercise 3). 



76 Lie Algebras 

10.6. Centralizers 

Consider further the commutator map Yx: G ---+ G for fixed x E G. The 
fibre y;l(e) is just CG(x). From the fact (10.1) that (dyJe = 1 - Ad x, we 
conclude that 2( CG(x)) is contained in c~(x) = {x E glAd x(x) = x} (the 
infinitesimal centralizer of x). As usual, this inclusion need not be an equality 
in prime characteristic (cf. Exercise 3). But in case G = GL(n, K), the situa
tion is always favorable. Indeed, the fixed points of Ad x in 9 are just the 
matrices commuting with x (Lemma B of (10.3)), so Ca(x) consists of the 
invertible matrices in cg(x); in other words, CG(x) is a principal open subset 
of the affine space cg(x), so the dimensions are equal. Coupled with the 
inclusion just noted, we get: 

Proposition. Let G be an algebraic group, x E G. Then 2(CG(x)) C cg(x). 
If G = GL(n, K), then equality holds. 0 

10.7. Automorphisms and Derivations 

The purpose of this subsection is to make precise the following assertion: 
When an algebraic group G acts as a group of automorphisms, 9 acts as a 
Lie algebra of derivations. This has already been observed in connection 
with the adjoint representation (lOA), for example. 

We begin by examining more closely the actions of G on dual spaces and 
on tensor product spaces (8.2). For brevity, we shall denote by x. v the vector 
cp(x)(v), when cp:G ---+ GL(V) is a rational representation. Similarly, x. v = 

dcp(x)(v), for x E g. 

Proposition. Let G be an algebraic group, and let cp: G ---+ GL (V), 
l/I: G ---+ G L (W) be rational representations. 

(a) G acts on V* by the rule: (x .f)(v) = f(x- 1 . v), while 9 acts by the 
rule: (x. f)(v) = - f(x . v), where x E G, x E g,f E V*, V E V. 

(b) G acts on V(8)W by the rule: x.(v(8)w) = x.v (8)x.w, while 9 
acts by the rule: x. (v (8) w) = x. v (8) w + v (8) x . w, where x E G, x E g, 
and v (8) w is a typical generator of V (8) W. 

Proof. (a) The action of G is prescribed as in (8.2). If we fix a basis of 
V and write cp(x) as a matrix, then it is clear that the matrix of x acting on 
V* (relative to the dual basis) is just the transpose inverse matrix. Thanks to 
(10.1), the differential of x I----> x -1 is x I----> - x, while the transposition map 
GL(n, K) ---+ GL(n, K) obviously has as differential the transposition map 
gI(n, K) ---+ gI(n, K) (the morphism in question being given by linear poly
nomials). So x acts on V* as indicated. 

(b) As remarked in (8.2), the action of G is defined (either via explicit 
choice of bases or via the universal property of tensor products). Fix bases 
(Vb . .. , vn) of V and (Wb ... , wm) of W. Relative to these bases, let the action 
of a typical x E G be given by an n x n matrix (aij) and an m x m matrix 
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(bij). For V ® W we take the basis elements Vr ® Ws (in some order), so that 
G acts via a matrix representation T: G -+ G L(mn, K). The matrix entry in 
the (i, j) row and (r, s) column is clearly airbjs' T factors as the composite of 
two morphisms G ~ GL(n, K) x GL(m, K) -+ GL(mn, K), the second being 
given by the coordinate recipe: Zijrs = XirYjs' Here we are just dealing with 
a morphism of affine n2 + m2-space into affine (nm)2-space, so the differ
ential is easy to compute using the method of (5.4). If (Ci) and (dij) are typical 
elements of gI(n, K) and gI(m, K), the differential takes the pair of them to the 
matrix whose entry in the (i, j) row and (r, s) column is bjsCir + birdjs. But 
this is precisely the rule asserted in the statement of the proposition. 0 

Part (b) of the proposition extends at once to tensor products involving 
three or more factors. In particular, the action of GL(V) on the tensor 
algebra '.!(V) as a group of algebra automorphisms has as infinitesimal 
analogue an action of gI(V) on '.!(V) as a Lie algebra of derivations. Since 
GL(V) leaves stable the ideal of '.!(V) which is factored out to obtain the 
exterior algebra !\V(1.S), we obtain analogous actions of GL(V) and gI(V) 
on the latter. (This will be important in (11.1) below.) 

In order to reach the general assertion made at the outset, we have to 
note that whenever a closed subgroup of GL(V) fixes a nonzero vector 
v E V, its Lie algebra kills that vector. This is easy to verify (cf. Exercise 2). 
In either case, we refer to the vector as an invariant. 

Corollary. Let \ll be a finite dimensional K-algebra (not necessary asso
ciative), and let G be a closed subgroup ofGL(\ll) consisting of algebra automor
phisms. Then 9 consists of derivations of\ll· 

Proof. To give \ll the structure of K-algebra is just to specify a bilinear 
map m: x m: -+ \ll, or equivalently, a K-linear map m: ® m: -+ \ll. But there 
is a standard identification (cf. (S.2)) of Hom(V,W) with V* ® W, so the 
K-algebra structure on \ll is given by an element t E (m: ® \ll)* ® \ll ~ 
\ll* ® \ll* ® \ll. For x E GL(\ll) to be an automorphism of A, it is necessary 
and sufficient that t be an invariant of x (as is easy to check). Therefore, the 
preceding remark shows that t must be an invariant of g. We just have to 
unpack this a bit to conclude that 9 consists of derivations. 

From the proposition and the identifications just made, we deduce 
that the action of x E gI(\ll) on Hom(\ll ® \ll, \ll) is given by the explicit 
rule: (x.f)(v®w) = x.(f(v®w)) - f(x.v®w + v®x.w), where 
f E Hom(\ll ® \ll, \ll), v, WE \ll. In particular, to say that x . t = 0 is just to 
say that x . (vw) = (x. v)w + v(x . w), where the algebra product is indicated 
by juxtaposition. 0 

Exercises 

1. Let G be a closed subgroup of G L(n, K). If G leaves stable a subspace W 
of Kn, prove that 9 c gI(n, K) does likewise. Converse? 



78 Lie Algebras 

2. If all elements of a closed subgroup G of GL(n, K) fix a vector in Kn, all 
elements of 9 send that vector to O. 

3. Let char K = P > O. The following example shows that Ker Ad may be 

largerthanZ(G):G c GL(3, K) consists of all matrices OaPb ,a =1= O. (ao 0) 
00 1 

It is a closed connected, noncommutative group having dimension 2. 

The Lie algebra 9 consists of all matrices 00 b (a, b E K), and is com-(
aOO) 

000 
mutative. Morever, Ker Ad = G. 

4. Let char K = 2, G = SL(2, K), B = T(2, K) (\ G. Verify that N G(B) = B, 
whereas ng(b) = 9 (cf. Corollary B of Theorem 10.4). 

5. Let H be a closed subgroup of the algebraic group G, C = CG(H). Prove 
thatc c Cg(~) = {xEgl[x,~] = O}. 

6. Let H be a closed subgroup of the algebraic group G, x E G. Prove that 
Ad x@ = fE (Int x(H) ). 

7. Describe explicitly the matrices in GL(n, K) (resp. gI(n, K)) which com
mute with a given diagonal matrix (cf. Proposition 10.6). 

Notes 

The example in Exercise 3 is taken from Chevalley [4, pp. 145 -146]. 



Chapter IV 

Homogeneous Spaces 

11. Construction of Certain Representations 

Given an algebraic group G and a closed subgroup H, how can the 
homogeneous space G/H (or H \G) be endowed with a "reasonable" structure 
of variety? This is a subtle question, in part because one is forced to accept 
non-affine varieties (for certain H). In this section we show how to construct 
a G-orbit in projective space having H as isotropy group, and then refine 
the construction in case H is a normal subgroup. In the next section we shall 
verify that the variety so constructed has the properties demanded of a 
"quotient". 

11.1. Action on Exterior Powers 

We shall need some simple facts from linear algebra. 
Recall (10.7) how GL(n, K) and gI(n, K) act on exterior powers of the 

vector space W = Kn. If M is a d-dimensional subspace of W, it is especially 
useful to look at the action on L = AdM, which is a I-dimensional subspace 
of V = I\dw. 

Lemma. With the notation just introduced, let x E GL(W), x E gI(W). 
Then 

(a) (l\dx)L = L if and only ifx(M) = M, 
(b) (dl\d)(x)L c L if and only ifx(M) c M. 

Proof. In each case, the "if" part is clear. For (a), choose a basis(wb' , wn) 

of W such that M is spanned by Wb ., Wd and x(M) by WZ+ b . , Wl+d for some 
I ~ O. We just have to show that I = O. Now WI/\ ... /\ Wd spans L, and is 
sent by I\dx to a (nonzero) multiple of itself (by assumption). But clearly I\dx 
sends it to a multiple ofwz+l/\ ... /\Wl+ d, forcing 1= O. 

For (b), choose a basis of M so that x maps the span of the first part of 
the basis back into M and sends all other vectors in M outside M. Then 
construct some y E gI( W) agreeing with x on the first part of this basis, but 
acting as 0 on the remainder of the basis for M. Evidently y leaves M stable, 
so (dl\d)(y) leaves L stable. Therefore x - y still verifies the hypothesis of (b). 
If we can show that x - y stabilizes M, it will follow that x does. So we may 
replace x by x - y. This allows us to assume that M intersects x(M) trivially. 
Now let WI' . ,Wd be a basis of M, chosen so that x(wd, ... ,x(wc) form a basis of 
x(M),whilex(wc+l) = ... = X(Wd) = O.Bydefinition,(dl\d)(x)(wl/\···/\wd) = 
Li WI/\ ... /\x(w;)/\' .. /\Wd' This is by assumption a multiple ofwi/\ ... /\Wd' 

79 
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But the vectors W1A' .. AX(WJA" . AWd are linearly independent, or else 0, 
and none is equal to W1A' .. AWd' Conclusion: x(wJ = 0 (1 ~ i ~ d), so 
x stabilizes M (by sending M to 0). 0 

11.2. A Theorem of Chevalley 

Theorem. Let G be an algebraic group, H a closed subgroup. Then there 
is a rational representation cp: G -+ G L( V) and a one dimensional subspace 
L of V such that.' 

H = {x E Gicp(x)L = L}, 

9 = {xEgidcp(x)L c L}. 

Proof. Let I be the ideal in K[ G] vanishing on H. Then I is finitely 
generated, and the span of a finite generating set lies in a finite dimensional 
subspace W of K[ G] stable under all Px (x E G) (Proposition 8.6). Set M = 

W n I (so M generates 1). Notice that M is stable under all Px (x E H), since 
H = {x E GiPxI = I} (Lemma 8.5). In turn, M is stable under all *x(x E 9) 
(Proposition 10.2). We claim, in fact, that H = {x E GiPxM = M}, 9 = 
{x E giM*x eM}. Say PxM = M (x E G). Since I is the ideal of A = K[G] 
generated by M, we have PxI = pAMA) = pAM)Px(A) = MA = I, forcing 
x E H (Lemma 8.5). Say M *x c M (x E g). Then the product rule for deriva
tions yields: hx = (MA)*x c (M*x)A + M(A*x) c MA = I, and therefore 
x E 9 (Lemma 9.4). 

What we have just obtained is a good first approximation to the theorem. 
It remains only to compress M to a line, which can be achieved by passing 
to V = /\dW, L = /\dM (d = dim M). Let cp:G -+ GL(V) be the dth exterior 
power ofthe representation constructed above. The desired characterizations 
of H, 9 then follow at once from Lemma 11.1. 0 

This theorem of Chevalley is useful not only in the present context but 
also in the study of representations of G, where it helps to prove the existence 
of certain key representations, and in several other situations. 

11.3. Passage to Projective Space 

As in (11.2), let H be a closed subgroup of the algebraic group G. The 
choice of the rational representation cp: G -+ GL(V) and the line L in V serves 
to identify H with the isotropy group in G of the point [L] in P(V) cor
responding to L. In this way the homogeneous space G/H is made to 
correspond (set-theoretically) to the orbit in P(V) ofthe point [L]. According 
to (8.3), such an orbit is itself a variety (quasiprojective, being open in its 
closure). 

We have to make more explicit the infinitesimal behavior of the mor
phism n:G -+ P(V) defined by x f-----> cp(x)[L] = [cp(x)L]. The canonical map 
a: V - {O} -+ P(V) has as differential at v (= any vector spanning L) a 
linear map whose kernel is precisely L (5.4). Fix v, and consider the orbit map 
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w:GL(V) ~ V defined by w(x) = x(v). Relative to a basis v = Vb V2, ... , Vn 
of V, w just assigns to a matrix its first column. In particular, w is given by 
linear polynomials, so dw is given in the same way: dwAx) = x(v) (x E gI(V)). 

Combining these observations, we conclude that dne sends x E 9 to the 
image of d(p(x)(v) in the tangent space to P(V) at [LJ. In particular, thanks 
to Theorem 11.2, f) is precisely Ker dne. By dimension comparison, dne is 
surjective, and therefore (5.5) the morphism n is separable. Notice too that 
n is G-equivariant (G acting on itself by left multiplication), cf. (8.2) and 
Exercise 8.6. 

11.4. Characters and Semi-Invariants 

In order to refine the preceding construction when H is a normal sub
group of G, we have to introduce the notion of character of an algebraic 
group G. This is by definition any morphism of algebraic groups x: G ~ Gm, 

e.g., det: GL(n, K) ~ Gm. If Xb X2 are two characters of G, so is their "product" 
XIX2, defined by (XIX2)(X) = XI(X)X2(X). Therefore, the set X(G) of all charac
ters has the structure of commutative group. It should be noted that some 
groups have no nontrivial characters, e.g., Ga and SL(n, K) (Exercise 2), while 
other groups have many, e.g., D(n, K). This will be explored in §16. 

Characters arise in connection with linear representations, as follows. 
Let G be a closed subgroup of GL(V). For each X E X(G), define Yx = 

{v E Vlx . v = X(x)v for all x E G}. Evidently Vx is a G-stable subspace of 
V (possibly 0). Any nonzero element of Yx is called a semi-invariant of G, of 
weight X. Conversely, if v is any nonzero vector which spans a G-stable line 
in V, then it is clear that x. v = X(x)v defines a character X of G. 

More generally, if q;: G ~ GL(V) is a rational representation, then the 
semi-invariants of G in V are by definition those of q;(G). Notice that com
position with q; induces an injective group homomorphism X(q;(G)) ~ X(G), 
so that Vx may be defined in the obvious way for any X E X(G) coming from 
a character of q;( G). 

Lemma. Let q;: G ~ GL(V) be a rational representation. Then the sub
spaces Vx' X E X( G), are linearly independent; in particular, only finitely many 
of them are nonzero. 

Proof. Otherwise we can choose minimal n ?: 2 and nonzero vectors 
Vi E VXi (for distinct Xi, 1 :::; i :::; n) such that VI + ... + Vn = O. Since the 
Xi are distinct, h(X) i= X2(X) for some x E G. But 0 = q;(x)(Lv;) = LXi(X)Vi, 
so LXI(X)-IXi(X)Vi = O. The coefficient of V2 is different from 1; so we can 
subtract this equation from the equation LVi = 0 to obtain a nontrivial 
dependence involving:::; n - 1 characters, contradicting the choice of n. 0 

Let us vary the situation slightly by assuming that N is a closed normal 
subgroup of G and by limiting our attention to the spaces Vx for X E X(N). 
We claim that each element of q;(G) maps Vx into some Vx" For this we may 
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as well assume that G c GL(V). Ifx E G, YEN, then yx . v = x(x-1yx). v = 
X. X(x-1yx)v = X(x-1yx)x . v (v E Vx)' and the function y ~ X(x-1yx) is 
evidently a character X' of N. So x maps Vx into Vx" Indeed, this calculation 
shows that G acts naturally on X(N), so we could write X' = x . x. 

11.5. Normal Subgroups 

Theorem. Let G be an algebraic group, N a closed normal subgroup ofG. 
Then there is a rational representation ",:G -+ GL(W) such that N = Ker '" 
and n = Ker d",. 

Proof. Use Theorem 11.2 to construct a morphism cp:G -+ GL(V) and 
a line L in V whose stabilizer in G (resp. g) is N (resp. n). Since N just acts 
on L by scalar multiplications, there is an associated character XO E X(N). 
Consider the sum in V of all nonzero subspaces Vx (X E X(N)): thanks to 
Lemma 11.4, this sum is direct (so only finitely many X appear) and of course 
includes L. Moreover, we saw in (11.4) that cp(G) permutes the various Vx' 
since N is normal in G. So it is harmless to assume that V itself is the sum of 
the Vx' N acting on each of these by scalar multiplications. 

N ow let W be the subspace of End V consisting of those endomorphisms 
which stabilize each Vx' X E X(N). There is a natural isomorphism W ~ 
U End Vx' (Think of W as consisting of all block diagonal matrices with 
blocks of sizes dim Vx') If we view End Vas gI(V), then GL(V) acts via the 
adjoint representation, Ad x being conjugation by x (Proposition 10.3). Notice 
that the subgroup cp(G) stabilizes W, since cp(G) permutes the Vx and W sta
bilizes each. Accordingly, we obtain a group homomorphism ",:G -+ GL(W). 
'" is just cp, followed by Ad, followed by restriction to the subspace W of 
gI(V); so '" is a rational representation. 

It remains to check Ker '" and Ker d",. If x E N, then cp(x) acts as a scalar 
on each Vx' so conjugating by cp(x) has no effect on W, i.e., x E Ker "'. Con
versely, let x E G, "'(x) = e. This means that cp(x) stabilizes each Vx and 
commutes with End V x' But the center of End V x is the set of scalars, so cp(x) 
acts on each Vx as a scalar. In particular, cp(x) stabilizes L c VXo ' forcing 
x EN (Theorem 11.2). Therefore, N = Ker "'. 

For d", the argument is similar, using the fact that d(Ad) = ad (Theorem 
10.4). If x E n, then dcp(x) acts (via dX) as a scalar on each Vx, so that ad(dcp(x)) 
is 0 on W, and x E Ker d",. Conversely, if x E Ker d"" then ad(dcp(x)) is 0 on 
W, so dcp(x) stabilizes each Vx and commutes with End Vx' hence acts on 
Vx as a scalar. In particular, dcp(x)L c L, forcing x E n. 0 

With the aid of this theorem, we can give the abstract group GIN the 
structure of (affine) algebraic group by identifying it with "'(G). However, 
some further work is needed in order to guarantee that this procedure is 
independent of the choices made and leads to good universal properties. In 
any case, the construction implies that the Lie algebra of ",(G) will be the 
quotient Lie algebra gin. 
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Exercises 

1. Prove that X(Gm) is an infinite cyclic group. What about the character 
group of D(n, K)? 

2. Prove that Ga and SL(n, K) have no nontrivial characters. 

Notes 

The material in this section (and the next) is drawn from Borel [4, 
Chapter II]. 

12. Quotients 

12.1. Universal Mapping Property 

Given a closed subgroup H of an algebraic group G, there is a separable, 
G-equivariant morphism n: G --+ Y (Y a G-orbit in some P(V)) whose fibres 
are precisely the co sets xH (11.3). In case H is normal in G, Y may be taken 
to be an (affine) algebraic group and n a group homomorphism (11.5). The 
problem now is to show that the pair(n, Y) satisfies the obvious requirement: 
( *). Given a variety X and a morphism cp: G --+ X whose nonempty fibres 
are unions of co sets xH, there exists a unique morphism 1/1: Y --+ X such that 
1/1 0 n = cp. 

This condition, applied to any other n': G --+ Y' we might have con
structed by the method of §11, would show quickly that Y' has to be isomor
phic (as variety) to Y by a unique 1/1 for which 1/1 0 n = n'. This in turn would 
entitle us to call Y the homogeneous space G/H and to call n the canonical 
morphism. (An entirely analogous argument leads, of course, to the space 
H\G of cosets Hx.) It just remains to prove: 

Theorem. The pair (n, Y) satisfies the condition (*). 
For the proof, we make use of the facts about morphisms developed in (4.5) 

and (4.6), as well as a result from (5.3). The details will be given in (12.2), (12.3). 
But first we reformulate (*). The uniqueness of the required morphism 
1/1: Y --+ X (if it exists) will be obvious, since n(x) has to be sent to cp(x) for all 
x E G (and n is surjective). In order to construct 1/1, three aspects of Y have 
to be dealt with (cf. (2.3)). 

(1) Y as a set. By construction, Y corresponds to the set of cosets xH 
and n to the map x ~ xH. Thanks to the hypothesis on cp, this insures the 
existence of a set-theoretic map 1/1: Y --+ X such that 1/1 0 n = cp. 

(2) Y as a topological space. The mapping 1/1: Y --+ X in (1) must be shown 
to be continuous. For this, it is enough to show that Y has the quotient topol
ogy, i.e., that U is open in Y if (and only if) n- 1 (U) is open in G. Because we 
are dealing with a group, this is equivalent to the apparently stronger re
quirement that n be an open mapping. Indeed, let U be open in G. Then 
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n-l(n(U)) is the union of those cosets which meet U; but this is the same as 
the union of all H-translates of U, which is a union of open sets and therefore 
open. So n(U) must be open (if Y has the quotient topology). It will be verified 
in (12.2) that n is in fact open. 

(3) Y as a space with sheaf of functions. Besides being continuous, t{! 
must induce homomorphisms (() x( U) ~ {()y( t{!- l( U) ) for all open sets U c X. 
The hypothesis on cp implies that for all such U, cp* maps (()x(U) into the 
regular functions on cp-l(U) which take constant value on each coset xH. 
So it would be enough to know n*{()y( t{!- 1 U) consists of all such functions: 
then t{!*(0x(U)) would automatically be included in 0 y(t{!-1 U), thanks to 
the way t{! is defined. This will be verified in (12.3). 

The preceding remarks reduce the proof of the theorem to checking two 
properties of (n, Y). We claim that it is enough to do this under the further 
assumption that G is connected. Indeed, suppose the connected case is done. 
Let H' = GO n H, Y' = orbit under GO of some point Y E Y, n' : GO ~ Y' 
the orbit map. Since H' has finite index in H, its Lie algebra is also 1). By the 
original construction of Y, H' is the full isotropy group of y in GO, while its 
Lie algebra 1) is the full isotropy algebra of y in g = 5£( GO). The connected 
case then shows that the pair (n', Y') has the two properties discussed above. 
Now the G-equivariance of n allows us to transfer these properties to the 
pair (n, Y). 

12.2. Topology of Y 

Theorem 4.5 provides a criterion for a dominant morphism of irreducible 
varieties to be open. So we just have to verify the hypothesis there for the case 
n: G ~ Y. First select an open subset U c Y as in Theorem 4.3. According 
to that theorem, for each closed irreducible W c Y which meets U, the 
components of n -l( W) meeting n - l( U) all have the "correct" dimension. 
Since G acts transitively on Y, the G-translates of U cover Y (and the G
translates of n-l(U) cover G). This makes it clear that all components of 
all n-1(W) have the correct dimension, so (4.5) applies. 

12.3. Functions on Y 

First we want to show that a polynomial function f E K[ G] which 
is constant on the co sets xH is the pullback under n* of a rational func
tion on Y. (Recall that G is being assumed to be connected, so that K(Y) is 
available.) For this, consider the set-up: G .!4 Y x A 1 ~ Y, where cp(x) = 

(n(x), f(x)). The composite is just n. If X is the closure in Y x A 1 of cp( G), 
then X is irreducible and pr 1 induces a surjective morphism t{!: X ~ Y. By 
construction, n is separable, so the same is true of t{!. 

Now cp(G) contains a (dense) open subset of X (4.3). Since f is constant 
on fibres of n, the restriction of t{! to this open set is clearly injective, as well as 
dominant and separable. So Theorem 4.6 may be applied. The conclusion 
is that t{!* maps K( Y) isomorphically onto K(X). But in the above set-up, 
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pr2: Y x Ai -> Ai induces on X a morphism g:X -> Ai (i.e., a regular 
function). Since g E K(X), there exists a rational function hE K(Y) for which 
g = Ij;*h. Finally, notice that cp*g = cp*lj;*h = n*h agrees everywhere on G 
with the function f. So f = n*h, as desired. 

Next we want to show that the rational function h E K( Y) just constructed 
is a regular function on Y. Since G acts transitively on Y, and Y has some 
simple points (5.2), all points of Yare simple. So Theorem 5.3B shows that 
unless h is everywhere defined on Y, 1/h is defined somewhere and then takes 
the value 0. But then n*(I/h) = 1/fmust also take the value 0, which is absurd 
(since f E K[G]). 

Notice that the preceding argument applies almost verbatim when we 
replace Y by an open subset U (whose points are again all simple!) and G 
by n-i(U). So in fact we have shown that each f E (OG(n-i(U)) constant on 
co sets of H is the pullback n*h for some h E (Oy(U). This completes the proof 
of Theorem 12.1. 0 

12.4. Complements 

(1) The proof of Theorem 12.1 involved in effect the verification of the 
following assertion: 

If G is an algebraic group, Y a variety on which G acts, n: G -> Y a sur
jective, separable, G-equivariant morphism whose fibres are the cosets xH 
(H a closed subgroup of G), then the variety Y is determined uniquely up to 
isomorphism. 

This may be applied in particular when H = e, to complete the discussion 
of G = PGL(2, K) in (6.4). Recall the orbit map cp: G -> Y c pi X pi X pi, 
which was shown to be bijective and separable. The conclusion now is that 
cp is an isomorphism. 

(2) Given G and a closed subgroup H, it is natural to ask when the variety 
G/H is affine or projective or neither. When H is normal, G/H has been seen 
to be affine. On the other hand, important examples in which G/H is pro
jective will emerge in Chapter VIII (cf. Exercise 3 below). Quite a bit is 
known about the nature of G/H in general (see Notes). 

12.5. Characteristic 0 

In case char K = 0, questions of separability do not arise. This has 
important implications for the algebraic group-Lie algebra correspondence, 
to be explored in the following chapter. 

Theorem. Let G be an algebraic group, with closed subgroups A, B. If 
char K = 0, then a n b = £( A n B). 

Proof. Let n: G -> G / B be the canonical morphism. So Ker dne = h. 
Consider the restriction n': A -> n(A). This morphism has as fibres the cosets 
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x(A n B), and is automatically separable (char K = 0). The remark (1) in 
(12.4) allows us to identify n' with the canonical morphism A ---+ A/(A n B). 
Therefore Ker dn~ = .P(A n B). But evidently Ker dn~ = a n Ker dne = 

an b. 0 

Exercises 

1. Let G be an algebraic group with closed subgroups A, B. Prove that 
a n b = .P(A n B) if and only if the restriction to A of the canonical 
morphism n:G ---+ G/B is again separable. 

2. Let G be a connected algebraic group, H a closed subgroup. Then H acts 
naturally on K(G) as a group of automorphisms, and K(G/H) is isomor
phic to the subfield K( Gt fixed by H. 

3. Prove that GL(n, K)/T(n, K) is isomorphic to the flag variety mKn) (1.8). 
Use this to compute the dimension of the latter (cf. Exercise 3.2). 

4. Let X, Y be varieties on which an algebraic group G acts transitively, 
and let qJ: X ---+ Y be a surjective, G-equivariant morphism. Prove that 
qJ is an opep map. 

Notes 

Concerning the nature of G/H, see Bialynicki-Birula [1], Borel [3, pp. 
45-49], Matsushima [1], Rosenlicht [4], as well as the references for Hilbert's 
14th Problem listed in the Notes to §14 below. 



Chapter V 

Characteristic 0 Theory 

This chapter constitutes a brief digression into the case when char K = 0. 
None of the results proved here will be essential elsewhere in the text. 

In §13 only a mild acquaintance with Lie algebras is presupposed, but in 
§14 the reader is expected to know some of the main theorems about semi
simple Lie algebras. A few notions will be met here which make their formal 
appearance somewhat later in the text. 

13. Correspondence Between Groups and Lie Algebras 

13.1. The Lattice Correspondence 

Some examples in the previous chapters (e.g., Exercises 10.3, lOA) have 
indicated that algebraic groups and their Lie algebras can behave in divergent 
ways in prime characteristic. More evidence of this will surface in Chapter VI. 
Inseparability of certain field extensions is to blame; this being absent in 
characteristic 0, the Lie algebra reflects quite faithfully what goes on in the 
group. 

Separability of morphisms implies on the one hand that whenever 
cp: G ---> G' is a morphism of algebraic groups, Ker dcp = 2(Ker cp). On the 
other hand, the separability of certain quotient morphisms yields Theorem 
12.5, affirming that the Lie algebra of an intersection of closed subgroups 
is the intersection of the Lie algebras. These facts are the key to everything 
we prove in the present section. 

Theorem. Let G be a connected algebraic group. The correspondence 
H f--+ ~ is 1-1 and inclusion preserving between the collection of closed con
nected subgroups H of G and the collection of their Lie algebras, regarded as 
subalgebras of g. 

Proof. Use Theorem 12.5. 0 
A subalgebra 2(H) = ~ of 9 is referred to as algebraic. It is not an easy 

matter to determine precisely which subalgebras of 9 come under this 
heading, e.g., when G = GL(n, K), 9 = gl(n, K). However, quite a bit is known 
(see Notes below). 

The theorem is deficient in another respect: it does not spell out the 
behavior of normal subgroups. In any characteristic, it is true that the Lie 
algebra of a closed normal subgroup of G is an ideal in 9 (Corollary lOAA). 
We shall prove shortly that the converse is true in characteristic 0, provided 
we limit our attention to connected groups (why is this necessary?). 

87 
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13.2. Invariants and Invariant Subspaces 

Suppose H is a closed subgroup of some GL( V). It is true in any character
istic (cf. Exercises 10.1, 10.2) that 1) leaves stable the subspaces of V stabilized 
by H and kills the vectors which are fixed by H. Both of these statements can 
be strengthened in the following way. Consider a subspace W of V, and let 
Gw = {x E GL(V)lx(W) = W}, gw = {x E gI(V)lx(W) c W}. Similarly, for 
v E V, define Gv = {x E GL(V)lx(v) = v} and gv = {x E gI(V)lx(v) = O}. The 
groups Gw, Gv are closed in GL(V) (8.2), while gw and gv are Lie subalgebras 
of gI(V). We claim that (in any characteristic): 2(Gw) = gw and 2(Gv) =gv. 
The proofs are based on dimension comparisons. Take a basis Vb . .. , Vn of 
V such that Vb ... , Vm span W (resp. such that V1 = v). Then gw (resp. gv) 
may be identified with a linear variety of dimension n(n - m) + m2 (resp. 
n2 - n) in An2 , and Gw (resp. Gv) with an affine open subset of this linear 
variety. (Strictly speaking, in the case of Gv one has to translate by the identity 
matrix.) Since 2(Gw) c gw, 2(Gv) c gv (by the exercises cited), equality 
must hold. 

Theorem. Let H be any closed subgroup of GL(V). If W is a subspace 
of V (resp. V E V), define closed subgroups Gw, Gv ofGL(V) as above, and let 
Hw = H n Gw, Hv = H n Gv. Then 2(Hw) = 1) n gw,2(Hv) = 1) n gv. 

Proof. Apply the previous remarks along with Theorem 12.5. D 
Notice that if cp:H ~ GL(V) is a rational representation, the fact that 

dcp(I)) = 2( cp(H) ) allows us to apply the theorem in the form: Hand 1) leave 
stable the same subspaces of V (resp. have the same invariants in V). 

Invariants were used in (10.7) to show that the Lie algebra of the auto
morphism group of a finite dimensional K-algebra consists of derivations. 
This can be strengthened in characteristic o. 

Corollary. Let m be a finite dimensional K-algebra, H = Aut m. Then 
1) = Der m, the full algebra of derivations. 

Proof. The proof of Corollary 10.7 shows that x E GL(A) is an auto
morphism if and only if it fixes a certain tensor t E m* ® m* ® m, while 
x E gI(m) is a derivation if and only if it kills t. Now apply the theorem above 
(and the comment following it). D 

For example, when m is the Cayley algebra (a certain 8-dimensional 
nonassociative algebra over K), Aut m has Der m as its Lie algebra. The 
latter is known to be a simple Lie algebra of type G2 , which implies that Aut 
U is "almost simple"; cf. § 14 for further applications in this direction. 

13.3. Normal Subgroups and Ideals 

Theorem. Let G be a connected algebraic group, H a closed connected 
subgroup. Then 1) is an ideal in 9 if and only if H is normal in G. 
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Proof. The "if" part is already known. Suppose f) is an ideal in g, and 
consider N = {x E GlAd x@ = f)}. According to Theorem 13.2 (and the 
remark following it), 11 = {x E gld(Ad)x(f)) c f)} = {x E glad x(f)) c f)} = 9 
(since ad is the differential of Ad (1004)). Because G is connected, this forces 
N = G. Now if x E G, 2(lnt x(H)) = Ad x@ = f). The two connected groups 
Hand xHx- 1 have the same Lie algebra, so they must coincide (Theorem 
13.1). 0 

A variation on this proof shows that the Lie algebra of N G(H) is the 
normalizer of f) in 9 (Exercise 1). 

13.4. Centers and Centralizers 

Theorem. Let G be a connected algebraic group. 
(a) If x E G, 2( CG(x)) = cg(x)( = {x E glAd x(x) = x}). 
(b) Ker Ad = Z(G), and its Lie algebra is Ker ad = 3(9). 

Proof. (a) Proposition 10.6 shows that this is true when G = GL(n, K), 
9 = gI(n, K). In general, embed G as a closed subgroup of some GL(n, K) 
(Theorem 8.6). Then CG(x) = G n CGL(n. Klx), while cg(x) = 9 n CgI(I1. Klx). So 
Theorem 12.5 applies. 

(b) Separability of morphisms implies that N = Ker Ad has as Lie alge
bra Ker d(Ad) = Ker ad (1004), but this is by definition 3(9). It remains to 
show that N = Z(G). We already know that Ad x = lfor x E Z(G)(since Adx 
is the differential of Int x). Conversely, if Ad x = 1, then cg(x) = g; but this 
coincides (by (a)) with 2(CG(x)), forcing CG(x) = G, or XEZ(G). 0 

13.5. Semisimple Groups and Lie Algebras 

Theorem 13A(b) shows that a connected algebraic group G is commuta
tive if and only if its Lie algebra is commutative, i.e., [x, yJ = 0 for all x, Y E g. 
By definition, a Lie algebra of positive dimension is semisimple if it has no 
nonzero commutative ideal. This suggests that we call a connected algebraic 
group of positive dimension semisimple if it has no closed connected com
mutative normal subgroup except e. (A different, but equivalent, definition 
will be given in (19.5).) Now we can prove: 

Theorem. A connected algebraic group G is semisimple if and only if 9 
is semisimple. 

Proof. Let 9 be semisimple. If N is a closed connected commutative 
normal subgroup of G, then 11 is a commutative ideal of 9 (use the easy half 
of Theorem 13.3 and the remarks above). So 11 = 0, forcing N = e. 

Conversely, let G be semisimple and let n be a commutative ideal of g. 
Define H = CG(nf. Then 9 = cn(n) (this follows from Theorem 13.2, cf. 
Exercise 2). Since n is an ideal, the Jacobi identity shows at once that 9 is 
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also an ideal (including n, since n is commutative, as part of its center). Thanks 
to Theorem 13.3, H must be normal in G; as a result Z = Z(Ht is also 
normal in G. By Theorem 13.4(b), 3 is the center off), and therefore includes n. 
But G is semisimple, so Z = e, 3 = O. This forces n = O. 0 

Quite a lot is known about semis imp Ie Lie algebras, so this theorem is 
especially significant, as we shall see in the following section. 

Exercises 

1. Let G be a connected algebraic group, H a closed connected subgroup. 
Provethat2(NG(H)) = ng@(cf.Corollary10AB)andthat2(CG(H)) = 
cif») (cf. Exercise 10.5). 

2. Let G be a connected algebraic group, n a subalgebra of g. Prove that 
2(CG(n)) = cg(n) (= {xEgl[x,y] = Of orally En}. 

3. Prove that SL(2, K) is semisimple. 

Notes 

The correspondence between linear algebraic groups and Lie algebras was 
first developed in depth by Chevalley [4] [5], relying on formal exponential 
power series; for another approach, cf. Hochschild [8]. Further results may 
be found in Borel [4, §7] and in Demazure, Gabriel [1, II §6]. Some questions 
about algebraic Lie algebras are treated in Hochschild [2J [7], Humphreys 
[1], Seligman [1J [2J [3]. 

14. Semisimple Groups 

As in §13, we assume that char K = O. We also assume that the reader 
is familiar with the theory of semisimple Lie algebras. 

14.1. The Adjoint Representation 

In general, Ker Ad = Z(G) and its Lie algebra is Ker ad = 3(9) (13.4). 
When Gis semisimple, 9 is also semisimple (13.5), so 3(9) = 0 and Z(G) is 
finite. More interesting in this case are the images of Ad and ad. 

Theorem. Let G be semisimple. Then Ad G = (Aut gt and ad 9 = Der g. 

Proof. It is known that all derivations of a semisimple Lie algebra are 
"inner" (i.e., of the form ad x), since the Killing form is nondegenerate. Thus 
ad 9 = Der g. In turn, Corollary 13.2 says that Der 9 is the Lie algebra of 
Aut g. Since Ker Ad = Z(G) is finite, while Ker ad = 0, the dimensions of 
G, g, Ad G, Aut g, Der 9 all coincide. In particular, Ad G c (Aut gt forces 
equality to hold. 0 
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This theorem goes a long way toward a classification of semisimple 
algebraic groups (in characteristic 0). It shows already that if G, G' are 
semisimple groups whose Lie algebras g, g' are isomorphic, then G/Z(G) is 
isomorphic to G'/Z(G'). (Thus G and G' are "locally isomorphic", to borrow 
the language of Lie group theory.) Now the classification of semisimple Lie 
algebras is completely known, thanks to the classical work ofW. Killing and 
E. Cartan: 9 is determined (up to isomorphism) by its "root system" (see 
Appendix), which is a disjoint union of irreducible root systems belonging 
to the (unique) simple ideals of which the Lie algebra is a direct sum. The 
irreducible root systems comprise four infinite families Ae, Be, Ce, De and 
five exceptional types E6, E7, Es, F4 , G2. 

To complete the picture, one of course has to pin down Z(G). It turns 
out (via representation theory, for example) that Z(G) must be isomorphic 
to a subgroup of the "fundamental group" of the root system (cf. Appendix), 
defined to be the weight lattice modulo the root lattice. For example, in type 
Al this group has order 2; so SL(2, K) and PGL(2, K) will be the only semi
simple groups of type AI' 

Remarkably enough, the classification of semisimple groups in prime 
characteristic (Chapter XI) leads to virtually the same results. The Lie algebra 
no longer plays so much of a role, but the root system emerges in due course 
as a crucial invariant of the group. All of this, however, requires a considerable 
amount of further work. This further work does lead to much more detailed 
information about the groups than can be gotten from the Lie algebra alone 
in characteristic 0, so the extra effort is worthwhile even for the reader 
interested just in this case. 

14.2. Subgroups of a Semisimple Group 

Let G again be a semisimple group. It is interesting to see what the known 
structure of 9 can tell us about the closed subgroups of G. As stated in (13.1), 
it is generally difficult to decide whether a given subalgebra I) of 9 plays 
the role of 5f'(H). But the nice correspondence between normalizers (or 
centralizers) can sometimes be exploited. 

Consider, for example, the canonical decomposition of 9 as a direct sum 
of simple ideals g1> ... , gt, to which we alluded in (14.1). (A nonzero Lie 
algebra is simple if it is noncommutative and has no proper ideals.) Here 
Cg(92 EB ... EB 9t) = 91> and this is the Lie algebra of CG(92 E9 ... E9 9t) (cf. 
Exercise 13.2). Call the identity component of the latter group G l' Then G 1 

is normal in G (13.3). If G1 had a proper closed connected normal subgroup 
H, then I) would be a proper ideal of 91> contradicting the simplicity. So G1 

is almost simple (i.e., noncommutative and having no proper closed connected 
normal subgroups). Construct G2 , ••. , Gt in similar fashion. Since [gi 9j] = ° for i =I- j, we see quickly that Gi centralizes Gj • Moreover, G = G1 ... Gt 

(since the right side is a closed subgroup whose Lie algebra includes g), and 
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each Gi intersects the remaining product in a central (hence finite) subgroup. 
So G is decomposed as an "almost direct" product. 

In another direction, the reader familiar with Cartan and Borel sub
algebras of g, each of which is its own normalizer, will have no difficulty 
in constructing corresponding subgroups of G. Such subgroups will be 
introduced in arbitrary characteristic later in the text, as (respectively) 
"maximal tori" and "Borel subgroups". It will then be shown, using some 
algebraic geometry, that all subgroups of G of either species are conjugate 
in G. As a result, in characteristic 0 the Cartan (resp. Borel) subalgebras of 
9 must all be conjugate under Ad G. This latter result is of course well known 
(but not easy to prove !), if Ad G is defined directly as the subgroup of Aut 9 
generated by "inner" automorphisms exp ad n (ad n nilpotent). 

14.3. Complete Reducibility of Representations 

A basic theorem ofWeyl states that every (finite dimensional) representa
tion p: 9 ---> gI( V) of a semisimple Lie algebra is completely reducible. This 
means that each subspace of V stable under p(g) has a complement with 
the same property. Thus V can be written as a direct sum of subspaces stable 
under p(g), each having no proper subspace stable under p(g). In view of 
Theorem 13.2, rational representations of a semisimple algebraic group are 
also completely reducible. This fact has an important application to Hilbert's 
Fourteenth Problem, which we now sketch. 

GL(n, K) acts naturally on Kn and hence on the symmetric algebra of this 
vector space, which may be identified with the polynomial algebra R = 

K[T b ... , Tn]. This is a "rational" action in the sense that R is the union 
of finite dimensional subspaces stable under GL(n, K), on each of which 
GL(n, K) acts rationally: To see this, notice that R has a natural grading 
(based on degree) which the group action respects. If G is an arbitrary sub
group of GL(n, K), denote by RG the set of its fixed points in R. Evidently 
RG is a K-algebra. Hilbert's question was: Must RG be finitely generated (as 
a K-algebra)? The answer is affirmative in many cases of interest, as we shall 
see; but in 1958 M. Nagata produced an example for which the answer is 
no (K of any characteristic). 

Since G and its Zariski closure have the same invariants, G might as well 
be assumed to be closed in GL(n, K). 

Theorem. Let G be a closed subgroup of GL(n, K), acting naturally on 
R = K[T b ... , Tn]. Assume that all rational representations of G are com
pletely reducible. Then RG is a finitely generated K-algebra. 

Proof. First observe that if G fixes a polynomial, it also fixes the homoge
neous parts of this polynomial, so RG inherits the grading from R. Complete 
reducibility of the representation of G on the individual graded pieces of R 
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then allows us to write R = RG EB S, where S is the sum of all subspaces of 
R on which G acts irreducibly but nontrivially. Evidently RG n RGS = O. 
Since RGS is stable under the action of G, complete reducibility further 
implies that RGS c S. 

Now we can show that the ring RG is noetherian. If It> ... ,ft ERG, the 
preceding argument implies that CI.hR) n RG = 'L,.hRG. So extending and 
then restricting a finitely generated ideal of RG gets us back to the given ideal. 
This implies that RG satisfies ACC on ideals, since R does. 

In particular, the homogeneous ideal in RG consisting of polynomials of 
positive degree has a finite set of generators, which may be assumed to be 
homogeneous. Call them Ij,' .. ,ft. We claim that every homogeneous 
IE RG of positive degree is a polynomial in the .h, from which it will follow 
that RG = K[j1' ... ,ft]. Start with I = 'L,ai.h, where ai E RG is homogeneous 
and can be assumed to be of degree = deg I - deg.h ~ 0 (or else ai = 0 if 
deg I < deg n. Then either ai E K or 0 < deg ai < deg I, in which case 
induction can be used. 0 

One reason for being interested in the finite generation of rings of invari
ants is this: When an algebraic group G acts on an affine variety X, the set 
Y of its orbits in X can often be given the structure of a variety in such a 
way that the canonical map G ~ Y is a morphism with good universal 
properties. For example, X could be an algebraic group containing G, with 
G acting on X by left or right translations; then Y is the set of right or left 
cosets (cf. Chapter IV). Once such a "quotient" is constructed, it is natural 
to ask whether the underlying variety is affine or not. If it is to be affine, the 
only plausible candidate for its affine algebra is the ring of invariants K[ XJG 
(the polynomial functions on X taking constant value on each G-orbit). So 
one is led to ask whether this ring is finitely generated. Conversely, if G acts 
on X and if K[XJG is known to be finitely generated, one can attempt to 
impose a corresponding structure of affine variety on the set of G-orbits, in 
such a way that the orbit map has a suitable universal property. For this 
one may have to add supplementary conditions, e.g., that the orbits all be 
closed in X. 

The preceding theorem deals only with the case in which the variety X 
has K[T 1, ... , T nJ as its ring of polynomial functions. But the general case 
can be reduced to this one (Exercise 2), since K[XJ is a homomorphic image 
of such a ring. The conclusion is that K[XJG is finitely generated, provided 
all rational representations of G are completely reducible. 

Exercises 

1. Let G be an algebraic group, R a finitely generated (commutative) K
algebra on which G acts as a group of algebra automorphisms. We say 
that G acts "rationally" on R if each element of R lies in a finite dimen
sional G-stable subspace which affords a rational representation of G. 
Let G act rationally on two such algebras R, R', and let <p: R ~ R' be 
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a G-equivariant epimorphism. Assuming that all rational representations 
of G are completely reducible, prove that qJ maps RG onto R'G. 

2. Let the algebraic group G act on an affine variety X. Assuming that all 
rational representations of G are completely reducible, prove that K[ X]G 
is a finitely generated K-algebra. [Use Exercise 1 to reduce this to 
Theorem 14.3.] 

Notes 

For the theory of semis imp Ie Lie algebras consult Jacobson [1], Serre [2], 
Humphreys [6]. The literature on invariant theory and Hilbert's 14th 
Problem is extensive, cf. Dieudonne, Carrell [1], Fogarty [1], Grosshans [4], 
Hochschild, Mostow [4], Mumford [1], Nagata [1] [2] [3], Seshadri [1] [2] 
[3], Takeuchi [1]. 



Chapter VI 

Semisimple and Unipotent Elements 

15. Jordan-Chevalley Decomposition 

The Jordan normal form (diagonal plus nilpotent) for a single linear 
transformation has a multiplicative counterpart (diagonal times unipotent) 
in GL(n, K). The main result of this section (Theorem 15.3) asserts that a 
closed subgroup of GL(n, K) contains these components of each of its ele
ments. From this we can deduce to some extent the structure of a commutative 
algebraic group (15.5). 

15.1. Decomposition of a Single Endomorphism 

Let x E End V, V a finite dimensional vector space over K. Then x is 
nilpotent if xn = 0 for some n (equivalently, if 0 is the sole eigenvalue of x). 
At the other extreme, x is called semisimple if the minimal polynomial of x 
has distinct roots (if and only if x is diagonalizable over K). Evidently, 0 is 
the only endomorphism of V which is both nilpotent and semisimple. Indeed, 
the following (additive) Jordan decomposition is well known: 

Lemma A. Let x E End V. 
(a) There exist unique x" Xn E End V satisfying the conditions: x = 

Xs + Xm Xs is semisimple, Xn is nilpotent, XsXn = XnXs' 

(b) There exist polynomials peT), q(T) in one variable, without constant 
term, such that Xs = p(x), Xn = q(x). In particular, Xs and Xn commute with 
any endomorphism of V which commutes with x. 

(c) If A c B c V are subspaces, and x maps B into A, then so do Xs and Xn

(d) If xy = yx (y E End V), then (x + Y)s = Xs + Ys and (x + Y)n = 

Xn + Yn' 0 
In case x E GL(V), its eigenvalues are nonzero and thus Xs E GL(V). 

Therefore, we can write Xu = 1 + xs-1xm thereby obtaining a (multiplicative) 
Jordan decomposition x = XsXu' Notice that xs- 1 Xn is nilpotent (since Xn is, 
and xs- 1 commutes with it). We call an invertible endomorphism unipotent 
ifit is the sum of the identity and a nilpotent endomorphism, or equivalently, 
if its sole eigenvalue is 1. We just showed how to write x as product of com
muting semisimple and unipotent endomorphisms. If x = su is any such 
decomposition, then x = s(1 + n) (n nilpotent, ns = sn), or x = s + sn 
(s semisimple, sn nilpotent, s commuting with sn). By part (a) of Lemma A, 

95 
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s = Xs and sn = Xm whence also u = 1 + n = XU" This proves (in view of 
Lemma A): 

Lemma B. Let x E GL(V). 
(a) There exist unique x" Xu E GL(V) satisfying the conditions: x = XsXu, 

Xs is semisimple, Xu is unipotent, XsXu = XuXs. 
(b) x" Xu commute with any endomorphism of V which commutes with x. 
(c) If A is a subspace of V stable under x, then A is stable under x" XU" 
(d) If xy = yx (y E GL(V)), then (xY)s = XsY" (xY)u = XuYu· 0 
We call Xs the semisimple part and Xu the unipotent part of x. Note that 

if X is both semisimple and unipotent, then X = 1. 
It is sometimes useful to allow V to be infinite dimensional, even though 

the notions "semisimple" and "unipotent" do not carryover directly to this 
case. If X E GL(V), and if V is the union of finite dimensional subspaces 
stable under x, then the decompositions xl W = (xl W)s (xl W)u exist for all 
such subspaces W. Moreover, the restriction of a semisimple (resp. unipotent) 
endomorphism to an intersection W n W' is of the same type, so it is clear 
that we can piece together the various (xl W)s (resp. (xl W)u) to obtain in
vertible endomorphisms of V, of which x is the product. These may again 
be denoted x" xu, and called the Jordan parts of x. It is important to observe 
(using part (c) of Lemma B) that Xs and Xu leave stable every subspace of 
V, finite dimensional or not, which is stable under x. Similar remarks of 
course apply to the additive Jordan decomposition. 

The behavior of semisimple endomorphisms is much the same in both 
zero and prime characteristics. But not so for unipotents. When ° < P = 

char K, we claim that x E GL(V) is unipotent if and only if x PI = 1 for 
some t ~ 0. Indeed, if x = 1 + n (n nilpotent), then for large enough t, 
nP' = 0, whence x PI = (1 + ny' = 1 + npl = 1. (The argument is reversible.) 
When char K = 0, the picture is totally different, since a unipotent ele
ment # 1 of GL(V) must have infinite order (Exercise 5). In this case the 
nature of unipotent elements can be made clear by introducing exponential 
and logarithmic power series. If n E End V is nilpotent, the series exp n = 

00 

L ni/i! is a polynomial and therefore defines an element of GL(V), which 
i=O 

is unipotent (being the sum of 1 and a nilpotent endomorphism). If x E GL(V) 
00 

is unipotent, then x-I is nilpotent and the series log x = L (_I)i+ l(X - I)i 
i= 1 

is a polynomial which defines a nilpotent endomorphism of V. Thanks to the 
usual formal identities for power series, exp (log x) = x and log (exp n) = n. 

Lemma C. Let char K = 0. If x E GL(V) is unipotent, x # 1, the map 
q>(a) = exp (an) (n = log x) defines an isomorphism of Ga onto a closed sub
group of G L( V), which is the unique smallest closed subgroup of G L( V) con
taining x. In particular, every connected closed I-dimensional subgroup of 
GL(V) which contains a unipotent element # 1 must be isomorphic to Ga. 
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Proof. The assignment <p(a) = exp (an) defines a morphism of varieties 
Ga ~ GL(V), which is a homomorphism by virtue of the formal identity 
exp ((T + T)n) = (exp Tn)(exp Tn). (This holds in the formal power series 
ring in two variables T, l' over the commutative sub ring K[ n] of End v.) 
Moreover, <p(1) = x. To show that <p is an isomorphism, we just note that 

an = log exp (an) = log (p(a) = L (_1)i+ l(<p(a) _l)i is a polynomial in 
i= 1 

<p(a). Finally, since x has infinite order, the closure ofthe subgroup it generates 
in GL(V) has dimension at least 1, hence must coincide with the closed sub
group <p(Ga) of dimension 1. 0 

15.2. GL(n, K) and g1(n, K) 

If G is an arbitrary subgroup of GL(n, K), there is no reason to expect G 
to contain the semisimple and the unipotent part of each of its elements. 
If G is closed, however, this does turn out to be the case. (And, for good 
measure, 9 also turns out to contain the semisimple and the nilpotent part in 
g1(n, K) of each of its elements.) The reason for this becomes transparent if 
we recall the criterion for membership in G (resp. g) given by Lemma 8.5 
(resp. Lemma 9.4). For example, given x E G, one wants to know that Px 
leaves stable the ideal I c K[GL(n, K)] vanishing on G. In view of th~ 
discussion in (15.1), it would be enough to know that Px, is the "semisimple 
part" of PX. Accordingly, we look first at this question (which has nothing 
to do with G). 

Proposition. Let G = GL(n, K), 9 = g1(n, K). If x E G (resp. x E g), then 
Px (resp. *x) has Jordan decomposition Px,Px, (resp. *xs + *xn). 

Proof. Since K[ G] is the union of finite dimensional subspaces stable 
under all Px (hence under all *x, cf. Proposition 10.2), Jordan decompositions 
do exist. Moreover, Px = Pxpx, (resp. *x = *xs + *xn), and the operators 
commute, so it will be enough to show that Px, and *xs are semisimple, that 
Px, is unipotent, and that *Xn is nilpotent. 

K[ G] is the ring of quotients of the polynomial ring K[T] in n2 indeter
minates Tij obtained by allowing powers of d = det (Tij) as denominators. 
It is clear from Lemma 10.3A that K[T] is stable under both right translation 
and right convolution. Moreover, it is easy to describe how G and 9 act on d: 
First, (Pxd)(y) = det (yx) = det y . det x, so Pxd = det x . d. This shows that 
the space spanned by d is G-stable, hence (Proposition 10.2) g-stable, with 
d*x = Tr (x)d, in view of the fact (5.4) that the differential of det is trace. From 
this we see how to describe the action of Px or *x on K[ G] once the action on 
K[T] is known. 

In particular, if PxIK[T] is semisimple, then Px is semisimple (d being an 
eigenvector of Px in a~y case). If PxIK[TJ is unipotent, then its eigenvalue det 
x on the space spanned by d must be 1, so it is clear that Px is unipotent. 
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Similarly, if *x!K[T] is semisimple (resp. nilpotent), then so is *x. (Recall that 
*x acts on f(T)/d t by the quotient rule for derivations.) Therefore it will be 
enough to consider the actions of Px, *x on K[T] in place of K[ G]. 

Set E = End V, where V = Kn, and regard G as the subset GL(V) of 
E, while 9 = gI(V) = E. K[T] may be identified with the symmetric alge
bra 6(E*) on the dual space of E. If x E E, define an endomorphism rx:E -t 

E by rAy) = yx, and let r x *: E* -t E* be its transpose. Then we see that 
Px (resp. *x) is just the canonical extension of r x * (resp. r x *) to an automor
phism (resp. derivation) of 6(E*), cf. Lemma 10JA. So it just has to be 
verified that the property of being semisimple or unipotent (resp. semisimple 
or nilpotent) is preserved at each step when we pass from x to r x to r x * to Px 

(resp. from x to rx to rx * to *x). The passage from rx to rx * poses no problem. 
To go from the action on E* to the action on 6(E*) we first act on tensor 
powers of E* (cf. Exercise 1), then factor out from the tensor algebra the 
appropriate ideal (which is stable under the given action) to reach 6(E*); 
so again there is no problem. It remains to treat the passage from x to rx 
(x E E). 

Consider the separate cases. If x E E is semisimple, choose a basis 
(Vb . .. , vn) of V consisting of eigenvectors, so that x. Vi = aivi for some 
ai E K. Take the corresponding basis eij for E, where eij(vk) = (5jk Vi, so 
rxeij = ajeij. This shows that rx is semisimple. If x E E is nilpotent, say xt = 

0, then (rxY(y) = yxt = ° for all y E E, so rx is nilpotent. If x = 1 + n is 
unipotent, say nt = 0, then rx = 1 + rm so (rx - lY = ° and rx is unipotent. 
(As an alternative to treating these cases, notice that when E is identified 
canonically with V* ® V, rx corresponds to the endomorphism x* ® 1.) 0 

15.3. Jordan Decomposition in Algebraic Groups 

In order to treat the general case, we look more closely at right translation 
and convolution, for arbitrary algebraic groups. These are, in the first place, 
faithful representations of G, g. In the second place, translation and con
volution behave well when we pass from G to a closed subgroup H. Indeed, 
if x E H, then the following diagram commutes: 

K[G] 4 K[G] 
t t 

K[H] p; K[H] 

(where Px on top is right translation for x viewed as an element of G, and 
where the vertical maps are canonical). For right convolution one has the 
same sort of diagram. Similarly, let cp: G -t G' be an epimorphism of algebraic 
groups, so cp* identifies K[ G'] with a subring of K[ G]. If x E G, then clearly 
p",(x) may be viewed as the restriction of Px to this subring (and *dcp(x) as 
the restriction of *x). 
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Theorem. Let G be an algebraic group. 
(a) If x E G, there exist unique elements s, u E G such that: x = su, sand 

u commute, Ps is semisimple, Pu is nilpotent. (Then we call s the semisimple 
part of x, written x., and u the unipotent part, written xu,) 

(b) If x E g, there exist unique elements s, nEg such that: x = s + n, 
[s, n] = 0, *s is semisimple, *n is nilpotent. ( We write s = x., n = Xno and 
call these the semisimple and nilpotent parts of x.) 

(c) If cp: G ---> G' is a morphism of algebraic groups, then cp(x)s = cp(xs), 
cp(x)u = cp(xu), dcp(x)s = dcp(xs), and dcp(x)n = dcp(xn) for all x E G, x E g. 

Proof. We may embed G as a closed subgroup of some GL(n, K) 
(Theorem 8.6). If I is the ideal in K[GL(n, K)] defining G, then the criterion 
for x E GL(n, K) (resp. x E gI(n, K)) to be in G (resp. g) is that Px (resp. *x) 
stabilize I (Lemmas 8.5, 9.4). Now let x E G, and let x = su be its Jordan 
decomposition in GL(n, K). Thanks to Proposition 15.2, (Px)s = Ps and 
(Px)u = Pu' The remarks in (15.1) then show that both of these operators 
stabilize I, so that s, u E G. This yields the desired decomposition of x in 
G, in view of the preceding remarks (the uniqueness being a consequence of 
the faithfulness of pl. For x E g, the argument is parallel. So (a) and (b) are 
proved. 

Next consider cp: G ---> G', which factors into two morphisms: the epi
morphism G ---> cp( G), followed by the inclusion cp( G) ---> G'. It suffices to 
treat each of these cases separately. In case cp is an epimorphism, we noted 
above that right translation by cp(x) is essentially the restriction of Px to 
K[ G'] viewed as a subring of K[ G] (and similarly for right convolution). 
But the restriction of a semisimple (resp. unipotent) operator to a subspace 
is again of the same type. It follows that Prp(x) = Prp(xs)Prp(xu) is the Jordan 
decomposition of p",(x), hence that cp(xsl = cp(x)., cp(xu) = cp(x)u (and similarly 
for dcp(x)). In case cp is an inclusion, the situation is just like the one con
sidered above (G viewed as a closed subgroup of GL(n, K)). 0 

The theorem shows that in any algebraic group G, the subsets Gs = 

{x E Glx = xs} and Gu = {x E Glx = xu} are intrinsically defined and in
tersect in e. (Similarly, we can define gs and gn; these intersect in 0.) Part (c) 
of the theorem insures that morphisms of algebraic groups (and their 
differentials) preserve these sets: cp( Gs) = cp( G)., etc. Moreover, Gu and gn 
are closed sets (g being given the topology of an affine space). To see this, 
just observe that the set of all unipotent (resp. nilpotent) matrices in GL(n, K) 
(resp. M(n, K)) is closed, being the zero set of the polynomials implied by 
(x - It = 0 (resp. xn = 0). By contrast, G, is rarely a closed subset of G. 

15.4. Commuting Sets of Endomorphisms 

A subset M of M(n, K) is said to be diagonalizable (resp. trigonalizable) 
if there exists x E GL(n, K) such that xMx- 1 c b(n, K) (resp. t(n, K)). 
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Proposition. If M c M(n, K) is a commuting set of matrices, then M is 
trigonalizable. In case M consists of semisimple matrices, M is even diago
nalizable. 

Proof. Set V = Kn and proceed by induction on n. 
If x E M, a E K, the subspace W = Ker (x - a' 1) is evidently stable 

under the endomorphisms of V which commute with x (hence is stable under 
M). Unless M consists of scalar matrices (then we are done), it is pos
sible to choose x and a so that 0 =I- W =I- V. By induction, there exists 
VI E W such that KVI is stable under M. Applying the induction hypothesis 
next to the induced action of M on VjKVb we obtain V2, . , Vn E V completing 
the basis for V, such that M stabilizes each subspace KVI + ... + KVi 
(1 (: i (: n). The transition from the canonical basis of V to (Vb' , vn) there
fore trigonalizes M. 

In case M consists of semisimple matrices, for each x E M we can write 
V = VI EB· .. EB v,., Vi = Ker (x - ai' 1), where ab" ar are the distinct 
eigenvalues of x. As before, each Vi is M-stable. Unless M consists of scalar 
matrices (hence is diagonal already), it is possible to choose x so that r > 1. 
Then the induction hypothesis allows us to diagonalize the action of M on 
each Vi, 0 

15.5. Structure of Commutative Algebraic Groups 

Theorem. Let G be a commutative algebraic group. Then Gs> Gu are 
closed subgroups, connected if G is, and the product map <p: G s x G u ~ G 
is an isomorphism of algebraic groups. Moreover, !t'(Gs) = gs and !t'(G.) = gw 

Proof. That Gs> Gu are subgroups of G follows from Lemma B (d) of 
(15.1). We already observed (15.3) that Gu is closed. Moreover, Theorem 15.3 
makes it clear that <p is a group isomorphism. Now embed G in some GL(n, K). 
Proposition 15.4 allows us to assume without loss of generality that G c 

T(n, K) and then that Gs c D(n, K). This forces Gs = G n D(n, K), so Gs 
is also closed. Moreover, <p is a morphism of algebraic groups. 

It has to be shown that the reverse map is a morphism. For this it suffices 
to show that x f---+ Xs and x f---+ Xu are morphisms. But the second is if the 
first is, since Xu = xs- 1 X. Now if x E G, the eigenvalues of x (with multiplicity) 
are those of its diagonal part. But Xs is also diagonal and has precisely these 
same eigenvalues; moreover, Xs is a polynomial in x (15.1), so Xs must simply 
be the diagonal part of x. It follows that x f---+ Xs is a morphism. Furthermore, 
when G is connected, so are Gs> Gu (these being the images of G under the 
morphisms x f---> Xs> x f---> xu). 

The chosen embedding of Gin T(n, K) shows also that !t'(Gs) c b(n, K), 
!t'(Gu) c n(n, K). Therefore, !t'(Gs) c gs and !t'(Gu) c gw But <p is an 
isomorphism, so !t'(Gs) EB !t'(Gu) = g. Since also g = gs + gn (with unique
ness of expression), this forces each inclusion to be equality. D 
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Exercises 

1. Let x E GL(V), Y E GL(W). Prove that (x @ Y)s = Xs @ Ys and that 
(x @ y)u = Xu @ yU" 

2. Let m be a finite dimensional K-algebra. If x E Aut m (resp. x E Der m), 
then x" Xu E Aut m (resp. x" Xn E Der m). 

3. Find a subgroup of GL(2, K) which does not contain the semisimple 
and unipotent parts of all its elements. 

4. Show that the semisimple (resp. unipotent) elements of SL(n, K) (n ~ 2) 
do not form a subgroup. 

In the remaining exercises, char K = o. 
5. An element of GL(n, K) having finite order must be semisimple. 
6. Prove that any closed subgroup of GL(n, K) consisting of unipotent 

elements is connected. 
7. Prove that every nontrivial rational representation Ga --+ GL(V) has 

the form indicated in Lemma 15.1C. 
8. Prove that exp and log set up a bijection between the set of nilpotent 

matrices in M(n, K) and the set of unipotent matrices in GL(n, K). 
9. An element x E GL(V) is unipotent if and only if there exists a rational 

representation Ga --+ GL(V) whose image contains x. 
10. If U is a closed subgroup of GL(V) consisting of unipotent elements, 

show that log x belongs to u. 
11. Prove that any I-dimensional algebraic group consisting of unipotent 

elements is isomorphic to Gao 

Notes 

The treatment here follows Borel [4, §4]; cf. the predecessor of Borel, 
Springer [1], which appears in AGDS. The proof of Theorem 15.3 in 
Chevalley [8, 4-10] is more complicated and less transparent. For the origins 
of this theorem, see Kolchin [2], Chevalley [4], Borel [1]. 

16. Diagonalizable Groups 

16.1. Characters and d-Groups 

It is natural to call an algebraic group G diagonalizable if it is isomorphic 
to a closed subgroup of the diagonal group D(n, K) for some n. In that case 
G is evidently commutative and consists of semisimple elements. Conversely, 
if G has these two properties and if we embed G in some GL(n, K), then it 
follows from (15.4) that G is conjugate in GL(n, K) to a subgroup of D(n, K). 
Notice that closed subgroups and homomorphic images of a diagonalizable 
group are again diagonalizable (since such groups are commutative and 
consist of semisimple elements). 
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The precise structure of a diagonalizable group G is not immediately 
obvious from the definition. For example, we would like to know that if 
G is n-dimensional and connected, then G is isomorphic to D(n, K). We 
would also like to know how (in principle) to describe all the closed subgroups 
of D(n, K), for a given n. Recall (11.4) the notion of (rational) character of 
an algebraic group G. This is by definition any morphism of algebraic groups 
x: G ~ Gm• If X, I/! are two characters of G, we obtain another character by 
multiplying their values: (xl/! )(x) = X(x)I/!(x). In this way we obtain an 
abelian group X(G), the character group of G. Notice that X(G) can be 
viewed as a subset of K[G]. 

D(n, K) has plenty of characters, e.g., the various coordinate functions 
Xi: diag (al. ... , an)f--~ ai. (Indeed, X(D(n, K)) is free abelian of rank n, 
with basis Xl. ... , Xn-) By contrast, a group such as SL(n, K) which is perfect 
(equal to its own derived group) has no nontrivial character (Exercise 3). 
The idea now is to characterize diagonalizable groups as those algebraic 
groups possessing enough characters to separate points. We shall need the 
following familiar lemma. 

Lemma. Let G be an (abstract) group, X the set of all homomorphisms 
G ~ K*. Then X is a linearly independent subset of the space of all K-valued 
functions on G. 

Proof. Suppose not. Let Xl. ... , Xn E X be linearly dependent, with 
n-l 

n > 1 as small as possible; say I aiXi + Xn = 0 (ai E K). Since Xl # Xm 
i~ I 

we can find y E G such that XI(Y) # Xiy). For arbitrary x E G we get two 
equations: 

n-l 

I aiXi(X)Xi(Y) + Xn(X)Xn(Y) = 0, 
i~ 1 

n-l 

L a;x;(x)Xn(Y) + Xn(x)XiY) = o. 
i~ I 

n-l 

Subtracting, we are left with I ai(Xi(Y) - Xn(Y) )Xi = 0, not all coefficients 0, 
i~ 1 

which contradicts the minimality of n. 0 
Now define an algebraic group G to be a d-group if K [G] has a basis 

consisting of characters. (The lemma shows that this is equivalent to requiring 
that X( G) be a basis of K[ G].) For example, D(n, K) is a d-group, since any 
polynomial function is a combination of monomials constructed from the 
coordinate functions and their inverses. When G, G' are d-groups, a morphism 
cp:G ~ G' of algebraic groups yields a group homomorphism cpo:X(G') ~ 
X(G), the restriction of cp*:K[G'] ~ K[G]. Conversely, a group homo
morphism X(G') ~ X(G) extends (since these are bases) to a homomorphism 
of K-algebras K[ G'] ~ K[ G] and in turn defines a morphism G ~ G'. 



16.2. Tori 103 

Proposition. (a) If H is a closed subgroup of ad-group G, then H is 
also a d-group and is the intersection of kernels of some characters of G. In 
particular, diagonalizable groups are d-groups. 

(b) Any d-group is diagonalizable. 

Proof. (a) The canonical homomorphism q>: K[ G] ~ K[ H] induced 
by restriction is surjective. Evidently the restriction to H of a character of 
G is a character of H, so K[ H] is spanned by characters and H is ad-group. 
Moreover, if a linear combination of characters of G vanishes on H, then 
so does each individual character (thanks to the lemma above, applied to 
the group H). We conclude that the kernel cf(H) of q> is spanned by the 
kernel of the restriction map X(G) ~ X(H). Since D(n, K) is a d-group, we 
also conclude that diagonalizable groups are d-groups. 

(b) Let G be a d-group. Since K[G] is a finitely generated K-algebra and 
spanned by X( G), it is generated as K-algebra by some finite set of characters 
Xlo.··, Xn- Define q>:G ~ Gm x ... x Gm ~ D(n, K) by q>(x) = (Xl(X), ... , 

\. \, , 

11 copies 

xix)). Evidently q> is a morphism of algebraic groups, with trivial kernel 
(because the Xi generate K[ G]). In particular, G must be commutative and 
must consist of semisimple elements, i.e., G is diagonalizable. (We do not 
claim, however, that q> is itself an isomorphism of G onto a subgroup of 
D(n, K) unless char K = 0; cf. Exercise 8). 0 

There is a notion dual to "character" which will be handy later on. If 
G is a d-group, any morphism of algebraic groups ,1:Gm ~ G is called 
a one parameter multiplicative subgroup of G (by abuse of language), abbre
viated I-psg. The set of these is denoted Y(G). It becomes an abelian group 
if we define a product (,1,u)(a) = ),(a),u(a). Notice that the composite of a 
1-psg A with a character X of G yields a morphism of algebraic groups 
G m ~ Gm , i.e., an element of X(Gm) ~ Z. This allows us to define a natural 
pairing X(D) x Y(D) ~ OZ, denoted <X, A), under which X(D) and Y(D) 
become dual Z-modules if D is connected (Exercise 4). As a matter of notation, 
we shall write the groups X(D), Y(D) additively from now on. 

16.2. Tori 

The characters of ad-group (= diagonalizable group) may be used to 
good advantage. 

Lemma A. Let G be a d-group. Then X( G) is a finitely generated abelian 
group. 

Proof. IfG c D(n, K),X(G) is a homomorphic image ofX(D(n, K)) ~ 7./. 
(The lemma actually holds for arbitrary G: Exercise 12.) 0 

The structure of a finitely generated abelian group A is well known: 
A = Z' x B, where B is the torsion subgroup of A (= set of all elements 
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of finite order) and r = rank A is a well determined nonnegative integer. 
Observe that when char K = P # 0, the character group A = X( G) of an 
algebraic group has no p-torsion (since K has no nontrivial pth roots of 
unity). This shows that not every group A can appear as an X(G); but we 
shall see below that p-torsion creates the only exceptions. 

Lemma B. If G is a connected algebraic group, X(G) is torsionjree. 

Proof. If X E X( G), the image X( G) in Gm is connected. The only con
nected subgroups of Gm being itself and 1, we conclude that Xn # 1 (n > 0) 
unless X = 1. 0 

The reader may be familiar with the duality theory of locally compact 
abelian groups, in which (compact) tori correspond to (discrete) free abelian 
groups. This analogy and other considerations lead us to call an algebraic 
group a torus if it is isomorphic to some D(n, K). The following lemma 
will be useful in (27.4). 

Lemma C. Let T be a torus. Ifxb ... , Xr E X(T) are linearly independent, 
and Cb ... , Cr E Gm, there exists t E T for which Xi(t) = Ci (1 ~ i ~ r). 

Proof. It makes sense to describe characters as "linearly independent", 
since X(T) is free abelian. Define <p: T -+ Gm x ... x Gm (r copies) by 
<p(t) = (Xl(t), ... , X,(t)). The characters L,miXi (mi E Z) are all distinct, so 
the functions n xii (in multiplicative notation) are linearly independent over 
K in K[T] (Lemma 16.1). It follows that Xb ... , Xr are algebraically inde
pendent in K(T), so <p* is injective and <p is dominant. Being a morphism 
of algebraic groups, <p is therefore surjective. 0 

It is time to lay bare the structure of an arbitrary d-group. 

Theorem. Let G be a d-group. Then G = GO x H (direct product of 
algebraic groups), where GO is a torus and H is a finite group (not uniquely 
determined in general) of order prime to p (= char exp K). In particular, a 
connected d-group is a torus. 

Proof. We must find a suitable complement H for the torus GO. To 
begin with we may assume that G is a closed subgroup of D = D(n, K) 
for some n. Let X( G) have rank r (= dim G). If r = 0, there is nothing to 
prove. In general, the inclusion GO 4 D induces a surjective restriction 
homomorphism zn = X(D) -'4 X(GO) = zr. This allows us to use the 
characteristic property of free (= projective) Z-modules to obtain a splitting 
X(D) = Ker <p EEl Zr. As a subgroup of the free abelian group X(D), Ker 
<p has a basis Xb ... , Xn-n to which we may add a basis Xn-r+b···, Xn 
of zr (mapped by <p onto a basis of X(G°)). It is clear that x ~ diag 
(Xl(X), ... , Xn(x)) defines an automorphism of D, sending GO onto the sub
group of diagonal matrices whose first n - r coordinates are equal to 1. 
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If D' = {diag (ab"" an)!an- r +l = ... = an = 1}, then D = D' x GO 
(direct product of algebraic groups). Therefore, G = H x GO, where H = 
D' n G ~ GIGo. Finally, H has order prime to p, since 1 is the only pth 
root of unity. D 

It may be well at this point to sum up in categorical language the con
nection between d-groups and finitely generated abelian groups having 
no p-torsion. Call ~ and d the respective categories having these groups 
as their objects and having the obvious morphisms. To ad-group D we of 
course associate X(D), while to a morphism <p: D -+ D' of d-groups we 
associate the group homomorphism <po: X(D') -+ X(D) gotten by composing 
<p with characters of D'. This yields a (contravariant) functor F: ~ -+ d. 

How can we go in the reverse direction? Given a finitely generated 
abelian group A, we can always form its group algebra K[ A], which is 
described informally as consisting of the finite formal K-linear combinations 
of elements of A, the product of two such elements being determined by the 
distributive law and the product in A. Rigorously, K[ A] is defined to be 
the vector space of K-valued functions on A having finite support, with 
convolution product. Since A is finitely generated, K[ A] is obviously a 
finitely generated commutative K-algebra. It is easy to see that the absence 
of p-torsion in A is equivalent to the absence of nilpotent elements in K[ A J. 
In particular, we obtain an affine algebra for each object A of d, thereby 
defining an affine variety. But K[ A] also has a Hopf algebra structure 
(coming from the group law in A), which gives us an affine algebraic group 
(cf. (7.6)), call it D(A). What are its characters? To X:D(A) -+ Gm corresponds 
X*:K[Gm] -+ K[D(A)] = K[A], which in turn induces a homomorphism 
of character groups Z -+ A. But Hom (Z, A) ~ A, so we conclude that 
X(D(A)) ~ A. It follows readily that D(A) is a d-group and that A f-+ D(A) 
(along with the induced action on morphisms) is a contravariant functor 
d -+ ~ whose composite in either order with F is equivalent to the identity. 
Therefore d and ~ are canonically equivalent under F. 

16.3. Rigidity of Diagonalizable Groups 

We have shown that a d-group is isomorphic to a direct product of 
algebraic groups Gm x ... x Gm x H, with H finite (of order relatively 
prime to the characteristic exponent p of K). This description is quite satis
factory if the d-group is taken in isolation. But more often we shall be 
interested in d-groups of more complicated algebraic groups, e.g., D(n, K) 
in GL(n, K). The main result to be established in this subsection says that 
a d-group is "rigid", i.e., admits "few" nontrivial automorphisms; in parti
cular, the normalizer of a d-group in an ambient algebraic group is not much 
bigger than the centralizer. 

Rigidity will follow from two basic facts about elements of finite order 
in a d-group: (a) they are a dense subset, and (b) there are only finitely many 
of them of given order. To prove these facts, notice that it suffices to treat the 
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case G = Gm. The elements of K* of finite order are just the mth roots of 
unity (m E Z+), of which there are at most m for each fixed m. Since K is 
algebraically closed, there exist infinitely many distinct roots of unity in 
K*; since Gm is connected and one dimensional, the closure of this torsion 
subgroup is therefore Gm. (One can be a bit more precise about counting 
roots of unity: if (p, m) = 1, there are exactly cp(m) elements of order m in 
K*, cp the Euler function.) 

The following argument is axiomatized to emphasize the precise assump
tions needed. 

Proposition. Let cp: V x G ---> H be a morphism of varieties, where: 
(a) G is an algebraic group whose elements of finite order form a dense 

subset; 
(b) H is an algebraic group containing only finitely many elements of 

order m (for each m > 0); 
(c) Vis a connected variety; 
(d) for x E V, CPx: G ---> H (sending y f-----t cp(x, y)) is a group homomorphism. 
Then x f-----t CPx is constant (x E V). 

Proof. Define for y E G, l/Iy(x) = cp(x, y), so l/Iy: V ---> H is a morphism. 
When y has finite order, the image of l/Iy is finite, thanks to (b) (d). But V is 
connected, by (c), so this image must reduce to a point. In other words, 
for y of finite order in G, cp(x, y) = cp(x', y) for all x, x' E V, i.e., CPx(Y) = CPx'(Y)' 
Therefore CPx'Cp; 1 sends a dense subset of G (thanks to (a)) onto e. Conclusion: 
CPx = CPx' for all x, x' E V. D 

Corollary. Let G be a diagonalizable subgroup of an algebraic group G'. 
Then NG,(Gt = CG,(Gt. 

Proof. Set G = H in the proposition, so (a) (b) hold by the preceding 
remarks. Then let V = N G'( Gt, and define cp: V x G ---> G by cp(x, y) = xyx - 1. 

Evidently (c) and (d) are satisfied. That CPx is constant implies that CPx = CPe, 
i.e., that all x EN G'( G)O actually centralize G. Conversely, of course, CG,( Gt c 

NG,(Gt· D 
As an example, the normalizer of D(n, K) in GL(n, K) is the group of 

monomial matrices; the centralizer of D(n, K) being itself, the quotient is 
finite, isomorphic to Sn. On the other hand, D(n, K) is a self-normalizing 
subgroup of the group T(n, K). 

16.4. Weights and Roots 

Let D be a diagonalizable subgroup of an algebraic group G. We have 
just seen that D is rather "rigid" under the action of G by inner automor
phisms. It is also important to turn the question around and to see how D 
acts on G. For example, when D is the diagonal subgroup of G = SL(n, K), 
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it can be seen that D stabilizes certain one dimensional unipotent subgroups 
of G corresponding to the root system in the Lie algebra case (char K = 0). 

In general, Int x (x E D) is an automorphism of G, so its differential 
Ad x is an automorphism of g. Ad being a morphism of algebraic groups 
(10.3), Ad D is a diagonalizable subgroup of Aut 9 c GL(g). Whenever we 
are given ad-group H in some GL(V), it is convenient to write Vas a direct 
sum of subspaces v" a E X(H), where 

V, = {VE Vlx. v = a(x)vforallxEH}. 

Those IY. for which V, i= 0 are the weights of H in V (11.4). In particular, 
returning to the situation D c G, Ad D c GL(g), we obtain weights of 
D (i.e., of Ad D) in g. The nonzero ones are called the roots of G relative to D, 
the set of these being denoted <1>(G, D) (or just <1> when no confusion can 
exist). Corresponding to the weight 0 we have the fixed point space gD, 
which of course includes b (but may be bigger). With this notation we have 
a decomposition: 9 = gD EB U ga, <1> = <1>( G, D). When G is "semisimple" 

"fE1> 

and D is chosen to be a torus of maximal dimension, we shall eventually be 
able to show that <1> is an abstract root system in the sense of the Appendix 
and that G is (almost) characterized by <1>. Indeed, the decomposition of 
9 just obtained will turn out to be the classical Cart an decomposition when 
char K = O. But all of this requires a substantial amount of groundwork. 

To conclude this section we prove a modest, but useful, proposition. 

Proposition. Let D be a connected d-subgroup of G (i.e., a torus), H a 
closed subgroup of G stabilized by Int D. Then there exists XED such that 
CH(x) = CH(D) and cl)(x) = c!)(D). In particular, CG(D) coincides with the 
centralizer of some element of D. 

Proof. We can assume that G = GL(V) for some V. Write V = 

VI EB ... EB v,., where V; belongs to the weight IY.; E X(D). Since D is connected, 
Ker (1Y.;lY.j I) (i i= j) has codimension one in D; it is therefore possible to 
find XED not in any of these (finitely many) subgroups. View M = 

GL(Vd x ... x GL(v,.) as a closed subgroup of GL(V) in the obvious way. 
Then it follows readily that CH(x) = M n H = CH(D), Ch(X) = m n 1) = clJ(D) 
(by direct calculation). D 

If D is a d-group which acts as a group of automorphisms of G (not 
necessarily inner), then D also acts as a group of automorphisms of g. This 
leads again to a set <1>(G, D) consisting of the nonzero weights of D in g. 

Exercises 

1. Give an example of an algebraic group which consists of semisimple 
elements but is not diagonalizable. 

2. If G is ad-group, 9 consists of semisimple elements. 
3. If G = (G, G), then X(G) = O. 
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4. Let T be a torus. Show that X(T) and Y(T) are dual Z-modules under 
the natural pairing <X, Jc) E Z. How does this fail if T is replaced by 
a nonconnected d-group? 

5. Let T be a torus, m a positive integer. Prove that the morphism x ~ xm 
maps Tonto T and is bijective if m is a power of p, separable if (p, m) = 1 
(p = char exp K). 

6. Prove that a connected subgroup of a d-group is a direct factor. [Cf. 
the proof of Theorem 16.2.J 

7. Assume K is not the algebraic closure of a finite field. If T is a torus, 
show that T is the closure of the cyclic subgroup generated by one of 
its elements. [Note that K* contains free abelian groups of arbitrarily 
large finite rank.J 

8. The differential of a character X: G ---+ Gm is a linear function dX: 9 ---+ K. 
If G is a torus and X(G) has basis Xb ... ,Xm prove that dX = 0 if and 
only if X = P LaiXi (ai E Z). 

9. Let T = SL(n, K) n D(n, K), X: T ---+ Gm the character sending diag 
(at, ... , an) ~ aiai+\ for fixed i < n. Construct a I-psg Jc:Gm ---+ T such 
that <X, Jc) = 2. 

10. For which x E D(n, K) is it true that COL(n, Klx) = CGL(n, K)(D(n, K))? 
11. Verify the details of the equivalence between;;) and d outlined in (16.2). 
12. Let G be an algebraic group, H = nXEXIG) Ker X. Prove that (a) H is a 

closed normal subgroup, (b) G/H is diagonalizable, (c) X(G) ~ X(G/H). 
In particular, X(G) is finitely generated. Describe X(GL(n, K)). 

13. The elements xED described in Proposition 16.4 form a dense subset 
of D. 

Notes 

The categorical framework sketched in (16.2) is developed extensively 
in SGAD and in Demazure, Gabriel [1 J. 



Chapter VII 

Solvable Groups 

17. Nilpotent and Solvable Groups 

The usual notions of "nilpotent" and "solvable" group adapt very well to 
the study of algebraic groups, because the various commutator groups 
involved turn out to be closed (17.2). To prove this we need a purely group
theoretic fact, which is developed in (17.1) to avoid a later interruption. 
In (17.5) and (17.6) we shall see to what extent a solvable linear group can 
be put in triangular form. The result of (17.5) is essential later on, while that 
of (17.6) will be proved again in §21 using some high powered machinery 
(the proof here is, by contrast, quite elementary). 

17.1. A Group-Theoretic Lemma 

Recall that (x, y) denotes the commutator xyx- 1y-l, when x, yare ele
ments of a group G. If A, B are two subgroups of G, the subgroup of G 
generated by all (x, y), x E A, y E B, will be denoted by (A, B). The identity 

(*) z(xyx- 1y-l)Z-1 = (zxz- 1)(zyz-1)(zxz- 1r 1(zyz-1)-1 

shows that (A, B) is normal in G if both A and B are normal. 
Our first result will be a corollary of the main lemma, but is needed to 

obtain the latter. 

Lemma A. Let [G:Z(G)] = n < 00. Then (G, G) is finite. 

Proof. Let S be the set of all commutators in G, so S generates (G, G). 
It is clear that (x, y) depends only on the cosets of x, y modulo Z(G); in 
particular, Card S ~ nZ• Given a product of commutators, any two can 
be made adjacent by suitable conjugation, e.g., (Xl> yd(xz, YZ)(X3, Y3) = 

(Xl> yd(X3, Y3)(Z-l XZZ , Z-l Yzz), where z = (X3' Y3). Therefore it is enough to 
show that the (n + 1)SI power of an element of S is the product of n elements 
of S, in order to conclude that each element of (G, G) is the product of at 
most n3 factors from S. This in turn will clearly force (G, G) to be finite. 

Now (x, yt E Z(G), allowing us to rewrite (x, yt+ 1 as y-1(X, y)"y(x, y) = 

y-1( (x, yt- 1(x, yZ) )y, a product of n commutators. D 
It is only the finiteness of S which counts in this lemma, not the size of 

G/Z(G), but this fact requires a more subtle proof. The following lemma of 
R. Baer goes through under an even weaker hypothesis (see Notes), but we 
need only the stated version. 

109 
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Lemma B. Let A, B be normal subgroups of G, and suppose the set 
S = {(x, y)lx E A, y E B} is finite. Then (A, B) is finite. 

Proof. It does no harm to assume that G = AB. G permutes the set S 
(acting via inner automorphisms, as in (*) above). If H is the kernel of the 
resulting homomorphism G -+ symmetric group on S, then clearly H is 
normal and of finite index in G. Moreover, H centralizes C = (A, B). It 
follows that H n C is central in C and of finite index. By Lemma A, (C, C) 
isfinite(as well as normal in G, since C <J G). So we can replace G by G/(C, C), 
i.e., we can assume that C is abelian. 

Now the commutators (x, y), x E A, y E C, lie in S and commute with each 
other. C being abelian, (x, y? = (xy[ 1 )2y- 2 = (x, i) is another such 
commutator. This clearly forces (A, C) to be finite (as well as normal in G). 
Replacing G by G/(A, C), we may further assume that A centralizes C. This 
implies that the square of an arbitrary commutator is again a commutator. 
It follows that (A, B) is finite. 0 

17.2. Commutator Groups 

If A and B are arbitrary closed (e.g., finite) subgroups of an algebraic 
group G, the group (A, B) generated by commutators xyx- 1y-l (x E A, y E B) 
unfortunately need not be closed (Exercise 1). The situation improves when 
A or B is connected, or when both A and B are normal in G. (In fact, if A is 
only required to normalize B, part (b) of the following proposition remains 
true; but this requires a more elaborate version of Lemma 17.1B.) 

Proposition. Let A, B be closed subgroups of an algebraic group G. 
(a) If A is connected, then (A, B) is closed and connected. 
(b) If A and B are normal in G, then (A, B) is closed (and normal in G). 

In particular, (G, G) is always closed. 

Proof. (a) Associate with each y E B the morphism rpy:A -+ G defined 
by rpy(x) = xyx- 1y-l. Since A is connected, and rpy(e) = e, Proposition 7.5 
shows that the group generated by all rpy(A) (y E B) is closed and connected; 
but this is by definition (A, B). 

(b) It follows from part (a) that (Ao, B) and (A, BO) are closed, connected 
(as well as normal) subgroups of G, so their product C has the same properties 
(cf. Corollary 7.4). To show that (A, B) is closed, it therefore suffices to show 
that C has finite index in (A, B), which is a purely group-theoretic question. 
In the abstract group G/C, the image of AO (resp. BO) centralizes the image 
of B (resp. A). Since [A:AO] and [B:BO] are finite, this implies that there are 
only finitely many commutators in G/C constructible from the images of 
A and B. Lemma 17.1B then guarantees that (A, B)/C is finite. 0 

17.3. Solvable Groups 

Recall that an abstract group G is solvable if its derived series terminates 
in e, this series being defined inductively by E&oG = G, E&i+ IG = (E&iG, E&iG) 
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(i ~ 0). In case G is an algebraic group, ~lG = (G, G) is a closed normal 
subgroup of G, connected if G is (Proposition 17.2). By induction, the same 
holds true for all ~iG. Therefore, the abstract notion of solvability is well 
suited for use here. For example, if G is a connected solvabie algebraic group 
of positive dimension, then dim (G, G) < dim G. (This fact is handy in 
inductive arguments.) It is easy to see that an algebraic group G is solvable 
if and only if there exists a chain G = Go =:J G1 =:J .•• =:J Gn = e of closed 
subgroups for which (Gi , G;) c Gi + 1 (0 ~ i < n), cf. Exercise 4. 

The following group-theoretic facts are well known. 

Lemma. (a) Subgroups and homomorphic images of a solvable group 
are solvable. 

(b) If N is a normal solvable subgroup of G for which GIN is solvable, 
then G is itself solvable. 

(c) If A, B are normal solvable subgroups of G, so is AB. D 
Since the theory of finite solvable groups is rather elaborate in its own 

right, it is unrealistic to expect a detailed description of all solvable algebraic 
groups. But the connected ones turn out to be fairly manageable. A good 
example to keep in mind is the upper triangular group T(n, K). Since the 
diagonal entries in the product of two upper triangular matrices are just the 
respective products of diagonal entries, it is clear that the derived group of 
T = T(n, K) lies in V = U(n, K). On the other hand, we have seen that V is 
generated by the matrices uiia) = 1 + aeij (i < j; a E K). If t is the diagonal 
matrix with ith entry 2 and all other diagonal entries 1, then a quick calcula
tion shows that tUij(a)t- 1 = uiPa), hence that (t, Uij(a)) = Uij(a). It follows 
that V is precisely (T, T). 

Consider in turn the commutation in V. It is convenient to approach this 
a bit indirectly. Denote by :! the full set of upper triangular matrices, viewed 
as an associative subalgebra of M(n, K) (rather than as the Lie algebra 
t(n, K)). Evidently the subset 91 of matrices with 0 diagonal is a 2-sided ideal 
of:! (as a Lie algebra, 91 is n(n, K)). So each ideal power 91h (h ~ 1), consisting 
of sums of h-fold products from 91, is again a 2-sided ideal. It is easy to see 
that 91h is the linear span of all eij (j - i ~ h). Now V = 1 + 91, so we 
conclude from this that V h = 1 + 91h is a closed normal subgroup of V, 
with (Vh' VI) c VhH In particular, V is solvable. This shows that T is 
solvable. 

As a sort of converse, it will be seen in (17.6) that every connected solvable 
algebraic group is isomorphic to a closed subgroup of some T(n, K). 

17.4. Nilpotent Groups 

The descending central series of a group G is defined inductively by 
«?°G = G, «?i+ lG = (G, «?iG). Each «?iG is normal in G. Thanks again to 
Proposition 17.2, these are closed subgroups when G is an algebraic group 
(connected if Gis). G is called nilpotent provided «?nG = e for some n. Evi
dently a commutative group is nilpotent; on the other hand, a nilpotent 
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group is solvable, because of the inclusion ~iG c rt'iG. The calculations made 
in (17.3) actually show that U(n, K) is nilpotent, whereas T(n, K) (n ~ 2) is not. 
For later use, define GW = n rt'i(G). 

We recall a few familiar facts from group theory. 

Lemma. (a) Subgroups and homomorphic images of a nilpotent group 
are nilpotent. 

(b) IfGjZ(G) is nilpotent, then G is nilpotent. 
(c) Let G be nilpotent. If n is the greatest index for which rt'nG "# e, then 

rt'nG c Z(G); in particular, Z(G) "# e (unless G = e). 
(d) Let G be nilpotent, H a proper subgroup of G. Then H is properly 

included in N a(H). 0 
For algebraic groups, there are a couple of important refinements: 

Proposition. Let G be a connected nilpotent algebraic group of positive 
dimension. Then: 

(a) Z( G) has positive dimension. 
(b) If H is a proper closed connected subgroup of G, dim H < dim N G(H). 

In particular, if co dim H = 1, then H is normal in G. 

Proof. (a) Since all rt'iG are connected, part (c) of the lemma shows that 
Z(G)O "# e. 

(b) Use induction on dim G. If Z = Z(G)" is included in H, pass to the 
connected nilpotent group GjZ (of lower dimension than G, thanks to (a)), 
By induction, the image of H is properly contained in its normalizer, being a 
proper subgroup of GjZ; so the same holds true for H. If Z is not included 
in H, then ZH is a subgroup of N G(H) having larger dimension than H. 0 

17.5. Unipotent Groups 

A subgroup of an algebraic group is called unipotent if all its elements are 
unipotent (15.1). Example: U(n, K). We intend to prove that a unipotent 
linear group (closed or not) is conjugate to a subgroup of U(n, K), hence 
is nilpotent. This may be viewed as a generalization of the fact that finite 
p-groups are nilpotent, since in the case char K = P > 0, an endomorphism 
is unipotent if and only if its order in GL(V) is a power of p. 

Theorem. Let G be a unipotent subgroup ofGL(V), 0 "# V finite dimen
sional. Then G has a common eigenvector in V, i.e., a nonzero vector fixed by 
all elements of G. 

Proof. Suppose V has a proper nonzero subspace W stable under G. 
Then the image of G in GL(W) is unipotent, and a vector in W fixed by this 
group is also a vector in V fixed by G. Therefore, we may assume from the 
outset that V is an irreducible G-module. This will allow us to invoke a stan
dard (though nontrivial) theorem of Burnside: If R is a subalgebra of End V 
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which acts irreducibly on V, then R = End V. (For a proof, cf. S. Lang, 
Algebra, XVII, §3.) 

Now the assumption that G is unipotent implies Tr(x) = Tr(l) = 
(dim V)· 1 for all x EO G. Writing a typical x EO G as 1 + n (n nilpotent), 
we deduce that for arbitrary yEO G, Tr(y) = Tr(xy) = Tr((l + n)y) = 

Tr(y) + Tr(ny), or Tr(ny) = O. The K-linear combinations y of elements of 
G therefore satisfy the same equation. But these form a subalgebra R of 
End V, acting irreducibly on V (since G does). Burnside's Theorem implies 
that for all x = 1 + n EO G, all y EO End V, Tr(ny) = O. By taking n in matrix 
form and letting y vary over the standard unit matrices eij, we see that all 
entries of n are 0, i.e., G consists only of 1 (and dim V = 1). 0 

Under the assumption that G c GL(V) is unipotent, the theorem yields 
a common eigenvector VI' If VI = KVb G acts on V/Vt, the image of Gin 
GL(V/Vd being again unipotent. Induction on dim V therefore allows us 
to conclude that V has a full flag of subspaces stable under G. In matrix terms: 

Corollary. If G is a unipotent subgroup ofGL(n, K), then G is conjugate 
to a subgroup ofU(n, K). In particular, G is nilpotent. 0 

There is no corresponding theorem for subgroups of GL(V) consisting 
of semisimple elements; indeed, examples of such groups are quite varied 
(cf. Exercise 6). (So we do not want to waste the term "semisimple group" 
on this concept! Cf. (19.5) below.) After further study of solvable groups we 
shall, in partial compensatiun, be able to prove that a closed connected sub
group of GL(V) consisting of semisimple elements must be a torus (Exercise 
21.2). 

17.6. Lie-Kolchin Theorem 

Theorem 17.5 and its corollary may be viewed as the precise analogue 
of Engel's Theorem for Lie algebras. We can also prove a good analogue of 
Lie's Theorem (if we impose a connectedness assumption); this works in 
arbitrary characteristic, although the Lie algebra theorem does not. 

Theorem. Let G be a connected solvable subgroup of GL(V), 0 0/= V 
finite dimensional. Then G has a common eigenvector in V. 

Proof. We may assume that G is closed (cf. Exercise 2). The theorem 
follows at once from Proposition 15.4, if G is commutative. To proceed in 
general, we use induction on n = dim V and on d = derived length of G 
(the least d for which £0dG = e). The cases n = 1, d = 1 have just been 
disposed of. 

Suppose V has a nonzero proper subspace W stable under G. If a basis 
of W is extended to a basis of V, the matrices representing G have the form 

( q>(X) *) 
o t/I(x) 
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Evidently the group of all such matrices is closed in GL(n, K), and the homo
morphism x ~ <p(x) is a morphism of algebraic groups. G being connected, 
<p(G) c GL(W) is also connected, as well as solvable (17.3). Since n > dim W, 
we can find a common eigenvector for <p( G) in W, hence for G in V. 

This leaves the case in which G acts irreducibly on V. As in the proof of 
Theorem 17.5, we have to show now that n = 1. Set G' = (G, G), so G' is 
normal in G, connected (17.2), and solvable of derived length d - 1. By 
induction, G' has a common eigenvector in V, i.e., a semi-invariant (11.4). Let 
W be the span of all such vectors in V. Then Lemma 11.4 implies that G' 
acts diagonally on W. The discussion in (11.4) shows also that W is G-stable, 
so W = V by irreducibility. Since G' acts diagonally on V, G' is commutative 
(i.e., d ~ 2). 

Take y E G'. What we have just said shows that for each x E G, the matrix 
of xyx - 1 (relative to a basis of Von which y acts diagonally) is again diagonal. 
Being conjugate to the matrix of y, it has the same eigenvalues (possibly 
permuted), which limits xyx - 1 to a finite number of possibilities. Thus, the 
image of G under the morphism x ~ xyx - 1 is both finite and connected, 
hence consists only of y. In other words, G' c Z( G). 

Now we appeal to Schur's Lemma, which is standard (and also very 
easy to prove): cf. S. Lang, Algebra, XVII, §1. This guarantees (since K is 
algebraically closed and G acts irreducibly on V) that G' consists of scalars. 
But any commutator of matrices has determinant 1, so the scalars in G' 
are nth roots of unity (of which K contains at most n). This forces G' to be 
finite, as well as connected, i.e., G' = e and d = 1, n = 1. 0 

This theorem, usually referred to as the Lie-Kolchin Theorem, will be 
proved again in §21, in a way which does not depend on the intervening appli
cation in §19. So the present proof, though elementary, could be omitted. 

Exercises 

1. Find an algebraic group G having two closed subgroups A, B for which 
(A, B) is not closed. [Cf. Exercise 7.10.] 

2. Let G be an algebraic group, H a (not necessarily closed) subgroup. If 
H is commutative (resp. nilpotent, solvable, unipotent), prove that H 
has the same property. 

3. Let G be an algebraic group. Use Lemma 17.1A to prove directly that 
(G, G) is closed, avoiding Lemma 17.1B. 

4. An algebraic group G is solvable if and only if there is a chain G = 
Go :J G1 :J ... :J Gn = e of closed subgroups such that (G;, Gi ) c Gi + 1 

(0 ~ i < n). Give an analogous criterion for G to be nilpotent. 
5. Let G be a nilpotent algebraic group (not necessarily connected). Prove 

that Z( G) has positive dimension if G does. 
6. Prove that SO(3, R) (= group of 3 x 3 real orthogonal matrices of 

det 1) is a connected subgroup of SL(3, C) consisting of semisimple ele
ments, but is not commutative. 
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7. Show as follows that U = U(n, K) has a chain of closed connected sub" 
groups, each normal in U and of codimension 1 in the preceding one. 
Order the pairs (i, j) with i < j by the rule: (i, j) < (k, I) if j < I or if 
j = I and i > k. So the ascending order is: (1, 2); (2,3), (1,3); (3, 4), (2, 4), 
(1, 4); ... , (2, n), (1, n). Set Uij = {x E U!Xkl = 0 for (k, I) ~ (i, j)}, and 
verify that the chain U ::::J U 12 ::::J U 23 ::::J ••• ::::J U in ::::J e has the asserted 
properties. Verify too that each Uij is normalized by D(n, K). 

8. Let G be a unipotent algebraic group acting on an affine variety X. Prove 
that all G-orbits are closed in X. In particular, all conjugacy classes of 
G are closed. [Consider the action of G on K[ XJ by translations (8.6). 
If Y is a nonclosed orbit, find f E K[ XJ vanishing on Y - Y but not 
on Y. The G-translates of f span a finite dimensional G-stable space 
consisting of functions which vanish on Y - Y. Apply Theorem 17.5 
to this representation of G.J 

Notes 

Lemma 17.1A goes back to I. Schur, while Lemma 17.1B (in a stronger 
version) is due to R. Baer, cf. Rosenlicht [5J or Borel [4, pp. 111-114]. 
Theorem 17.5 was proved by Kolchin [2, pp. 775-776J (for another approach, 
see Demazure, Gabriel [1, IV §2J). Theorem 17.6 appears in Kolchin [1, pp. 
19-20]' 

18. Semisimple Elements 

In §16 we studied the structure of a commutative algebraic group con
sisting of semisimple elements and looked at how such a group acts upon 
(or is acted on by) an ambient group. This action can be described to a certain 
extent in terms of a single semisimple element s. We have to analyze now 
some of the more subtle aspects of this situation, with a view toward proving 
a structure theorem for solvable groups in §19. 

To motivate what follows, it is instructive to look at the way 9 decomposes 
under Ad s (which is also semisimple): 9 = (g(s) EB n, where n is the sum of 
eigenspaces for eigenvalues of Ad s different from 1. Is there a corresponding 
decomposition in G? On the one hand, the group CG(s) ought to correspond 
to (g(s), i.e., the latter ought to be the Lie algebra of the former. This is true 
for semisimple s (18.1) (but fails sometimes for other elements of G when 
char K =P 0). What should correspond to n is less obvious. The conjugacy 
class CIG( s) has the right dimension. It turns out to be closed (not just locally 
closed) when s is semisimple (18.2), and its translate M = CIG(S)S-l turns 
out to have n as its tangent space at e. When we generalize this situation 
to the case where s acts (by conjugation) on a connected unipotent subgroup 
U of G we obtain finally a very precise decomposition in U of the above 
type (18.3). 
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18.1. Global and Infinitesimal Centralizers 

Let G = GL(n, K), 9 = gI(n, K). It was shown in (10.6) that for arbitrary 
x E G, CG(x) has as Lie algebra precisely cg(x). When char K = 0, this is true 
for any algebraic group (13.4), but unfortunately it can fail in characteristic 
p. The problem arises in connection with the bad behavior of unipotent 
elements, and disappears when we limit attention to semisimple elements. 

Consider a closed subgroup H of G = GL(n, K) which is normalized 
by a semisimple element s E G. Evidently CH(s) = H n CG(s), forcing 
2(CH(s)) c 9 n 2(CG(s)) = 9 n cg(s) = c~(s). To prove the reverse inclu
sion we must in effect show that c~(s) is not "too big". But since Ad s is 
semisimple, we have a decomposition 9 = c[)(s) EB n' (cf. beginning of this 
section), n' being the sum of nontrivial eigenspaces, and it is therefore suffi
cient to show that n' is not "too small". 

The conjugacy class CIG(s) is a locally closed set (8.3) of dimension 
complementary to dim CG(s) (cf. Theorem 4.3). Its translate M = CIG(S)S-l 
passes through e, so we can consider its tangent space 5(M)e = m to be a 
subspace of 5(G)e = g. We shall see below that m coincides with the space 
n defined earlier: 9 = cl~) EB n. Now M n H :::J M', the analogous sub
variety of H (of dimension complementary to dim CH(s)), and the tangent 
space m' lies in m n 9 = n n 9 = n'. This time the inclusion works in our 
favor: dim m' ~ dim n' implies that co dim CH(s) in H = dim M' ~ dim n' = 

codim c~(s) in 9, whence dim c~(s) ~ dim CH(s), as desired. 
It remains to be shown that m = n. (This concerns only G, not H.) 

Recall that the morphism ys:G -+ G defined by Ys(x) = xsx-1s- 1 has as 
differential the linear map 1 - Ad s: 9 -+ 9 (10.1). Evidently M = y.(G), so 
(1 - Ad s) gem. On the other hand, it is plain that Ker (dys) = cis) and 
1m (dys) = n, so in particular m :::J n. But we already know all the dimen
sions involved, since cis) = :£(CG(s)): dim m = dim M = co dim CG(s) = 

codim cg(s) = dim n. Therefore, m = n. To summarize: 

Proposition. Let H be a closed subgroup of GL(n, K), normalized by a 
semisimple element s E GL(n, K). Then c~(s) = 2(CH(s)), and the sum of all 
nontrivial eigenspaces of Ad sin 9 is the tangent space ofCIH(s)s-l. 0 

(Notice that the proposition remains true if we substitute for GL(n, K) 
any algebraic subgroup containing Hand s.) 

It is worthwhile to interpret this result in geometric terms. With G, H, 
s as before, consider the conjugacy class morphism 

where ip(x) = xsx- 1. This is just the composite of Ys and translation by s; 
the latter being an isomorphism, we see that Ker (dip)e = Ker (dYs)e = cl)(s) = 

:£(CH(s)). Since the fibres of ip are the cosets of CH(s), this implies that ip is 
separable (5.5). From remark (1) in (12.4) we then conclude: 
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Corollary A. G, H, s as before. The conjugacy class morphism cp:H ~ 
CIH(s) may be identified with the canonical morphism H ~ HjCH(s). 0 

At the outset we discussed the problem of imitating the decomposition 
~ = clj(s) EB n' in H. Since n' is precisely the tangent space of M' = CIH(s)S-l, 
by the above proof, and since clls) is the Lie algebra of CH(s), we obtain the 
following partial solution: 

Corollary B. G, H, s as before. Let r:CH(s) x M' ~ H be the product 
morphism. Then dr(e. e) is an isomorphism cq(s) EB m' ~ ~. Moreover, d(YsIM') = 

(1 - Ad s)/m<m' ~ m' is an isomorphism. 0 

18.2. Closed Conjugacy Classes 

Proposition. Let H be a closed subgroup ofG = GL(n, K) normalized by 
a semisimple element s E G. Then CIH(s) is closed. 

Proof. If x is an endomorphism of a finite dimensional vector space, T 
an indeterminate, denote by m(x, T) (resp. c(x, T)) the minimal (resp. charac
teristic) polynomial of x. Recall that x is semisimple if and only if m(x, T) 
has no repeated roots. 

Now define W = {x EN G(H)lm(s, x) = 0 and c(Ad xl~, T) = c(Ad sl~, T)}. 
Evidently W is a closed subset of N G(H) (hence of G), stable under conju
gation by H. The first condition defining W requires that each x E W satisfy 
the minimal polynomial of s, which has no multiple roots (by assumption); 
therefore m(x, T) has no multiple roots, and x is also semisimple. Then 
Proposition 18.1 applies to the action of x on H:dim CIH(x) = co dim 
CH(x) = co dim cb(x) = dim ~ - ml(x), where ml(x) = multiplicity of the 
eigenvalue 1 of Ad xl~. But the second condition defining W forces ml(x) = 
ml(s), whence all H-orbits in W have equal dimension. By Proposition 8.3, 
all orbits CIH(x) are closed in W, hence in G. In particular, CIH(s) is closed. 0 

There is an analogous result for the H-orbit of a semisimple element of 
g: Exercise 6. As in (18.1) we note that G L( n, K) may be replaced by a closed 
subgroup G containing H, s. 

The reader may wonder to what extent conjugacy classes of non-semi
simple elements fail to be closed. This information is not needed elsewhere 
in the book, so we shall only indicate briefly what is true. If H is a commu
tative algebraic group, then each class consists of a single element, hence is 
surely closed. The classes of a unipotent group are also closed (Exercise 17.8). 
But if H is reductive (19.5), then the only closed classes are the semisimple 
ones. It is easy to see why this should be so in some cases. For example, in 
GL(n, K) the matrices 1 + aeij for fixed i i= j form a one dimensional uni
potent group normalized by O(n, K), and since K is closed under taking 
square roots, all such matrices with a i= 0 are easily seen to be conjugate. 
But then the closure of the conjugacy class of I + eij in GL(n, K) will include 
1 (Exercise 5), which is in a class by itself. 
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18.3. Action of a Semisimple Element on a Unipotent Group 

When H is a closed subgroup of an algebraic group G, normalized by a 
semisimple element s E G, Proposition 18.2 shows that M = ClH(s)s-l is 
closed in H (and irreducible whenever H is connected, being the image of 
H under the morphism Ys). On the other hand, C = CH(s) is a closed sub
group of H. If we know that H is connected and that the product morphism 
r: C x M -+ H is bijective, we can conclude that C is also connected: The 
image of CO x M (call it D) is constructible (4.4) and its finitely many left 
translates are disjoint and cover H. Since Jj is irreducible, Jj = H. But then 
the left translates of D contain disjoint open subsets of H, which is possible 
only if D = H. Unfortunately, r need not be bijective and C need not be 
connected, unless we restrict the choice of H. We are going to require now 
that H be unipotent. This allows us to exploit fully the Jordan decomposition 
and also to use induction on dim H, based on the fact that H is a nilpotent 
group (Corollary 17.5). 

Theorem. Let U be a connected unipotent subgroup of an algebraic group 
G, s EGa semisimple element normalizing U. Defineys(x) = xSX-1S- 1 (x E G), 
M = ys(U), C = Cu(s). Then: 

(a) C is a closed subgroup and M a closed connected subvariety of u. 
(b) The product morphism r: C x M -+ U is bijective and (hence) C is 

connected. 
(c) y = YslM is a bijection of M onto itself. 

Proof. The preceding remarks imply (a), while for (b) it will suffice to 
show that r is bijective. For (c), we must show y bijective. We proceed in 
steps, the first of which is obvious. 

(1) Ifx E U, Y E C, then Ys(xy) = Ys(x) = Ys(x)Ys(Y). 
(2) Ifx E Z(U), Y E U, then ys(xy) = ys(x)y.(y), whence ys(x- 1) = y.(X)-l. 

Write ys(xy) = xysy-1x-1s- 1 = x(ysy- 1S-l)X- 1(xsX- 1S- 1). When x is 
central, this equals Ys(Y)Ys(x). But y.(xy) = Ys(Yx), so the assertion follows. 

(3) In case U is abelian, r is bijective. Since U = Z(U), part (2) shows that 
Ys: U -+ U is a group homomorphism. Its image is M, by definition, and its 
kernel is evidently C. Since M is now a group, r is a group homomorphism, 
therefore surjective (since dim U = dim C + dim M). If x E C, Y E M and 
r(x, y) = xy = e, then writing y = ys(u) for some u E U, we have S-l x = 

US-1U- 1 ; but s and x commute, so the left side must be the Jordan decom
position of the semisimple element US-1U- 1, forcing x = e = y. This shows 
that r is also injective. 

(4) r is always bijective. Here we use induction on dim U. U being 
nilpotent, there is a nontrivial connected subgroup V of Z(U) normalized 
by s (e.g., the identity component of Z(U), cf.(17.4)(a)). If V = Z(U) = U, 
we can appeal to (3). Otherwise we consider the smaller dimensional con
nected unipotent group U' = UIV. Notice that s, U both lie in NG(V), 
while Vis a normal subgroup, so we can set S' = n(s), n:NG(V) -+ NG(V)/V 
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the canonical morphism. The triple (G', U', s'), where G' = N G(V)/V, satisfies 
the original assumptions on (G, U, s), so by induction the product morphism 
1:': Cu'(s') x M' -+ U' is bijective, where M' = ys,(U') = n(M). The induction 
hypothesis applies equally well to (G, V, s), so that 1:0: Cy(s) x ys(V) -+ V is 
bijective. 

Now we can prove r injective. Let ZIX = Z2Y (Zi E C, X, Y EM), or zx = Y 
(z = Z21Z1 E C). Apply n to this equation; since n(z) E Cu'(s') and n(x), 
n(y) EM', the injectivity of 1:' yields n(z) = e, or z E V. Write x = y.(u), 
y E Ys(v), so z(usu- 1) = vsv- 1. The left side is the Jordan decomposition of 
the semisimple element vsv -1 (since V c Z( U)), whence z = e and x = y, 
as desired. 

Finally we have to show r surjective. Notice first that ys(V) c M n V. 
Conversely, any v E V has the form zy (y E Ys(V), z E Cy(s)) because 1:0 is 
surjective; if in addition v EM, then v = y E Ys(V) since 1: is injective. This 
equality Ys(V) = M n V can be used in turn to show that Cu'(s') = n(C), 
as follows. Let n(x) = x' (x E U) commute with n(s) = s'. Then Ys.(x') = e, or 
Ys(x) E Ker n n M = V n M = ys(V), or Ys(x) = Ys(v) (v E V). But V c Z(U), 
so (2) implies that V-IX E C, n(v- 1x) = n(x) as claimed. 

To show that 1: is surjective is now easy: 

U = CMV 

= CVM 

(1:' is surjective, n(M) = M', n(C) = Cu.(s')) 
(V c Z(U)) 

= CCy(s)y.(V)M (1:0 is surjective) 

= CM (since y.(V)M = M by (2)). 

(5) y is bijective. By part (1) and the surjectivity of 1: in (4), M = y.(U) = 
ys(CM) = y.(M), so y is surjective. Ifys(x) = Ys(Y) for x, y E M, then xy-l E C 
and r(e, x) = r(xy-\y), whence xy-l = e (r being injective), x = y. 0 

The connectedness of Cu(s) is going to be crucial later on. Instead of 
obtaining it directly we resorted to an admittedly roundabout argument; 
this illustrates the fact that connectedness properties of centralizers (etc.) 
are often quite subtle. However, it should be pointed out that when 0 = 

char K, a unipotent group (such as Cds)) is always connected (Exercise 15.6). 
The bijectivity of r and of y would, in any case, still have to be proved more 
or less as above, for later use. 

18.4. Action of a Diagonalizable Group 

Let G be any algebraic group. Besides studying the fixed points of a single 
semisimple element of G on a closed subgroup H, we shall have to investigate 
the action of ad-group D. For example, do global and infinitesimal central
izers still correspond as in (18.1)? 

Proposition A. Let H be a closed subgroup of G normalized by ad-group 
D. Then 2(CH(D)) = c(,(D). 



120 Solvable Groups 

Proof. If HO c CH(D), there is nothing to prove. Otherwise use induc
tion on dim H, starting at dimension O. Find SED for which H' = CH(s) 
has smaller dimension than H. Of course, CH(D) c H'. Thanks to Pro
position 18.1, c~(s) = £)'; therefore c~(D) c £)'. Using these facts and induction, 
we have £>(CH(D» = £>(Cw(D» = cl){D) = cl)(D) n £)' = cl)(D). 0 

Whenever ad-group D acts on an algebraic group H, Proposition A 
implies that the Lie algebra of the closed subgroup HD consists of the fixed 
points of D on £). Indeed, just take G to be the semidirect product of D with 
H. 

Corollary. Let the d-group D act on algebraic groups H, H', and let 
cp: H ----* H' be an epimorphism equivariant with respect to these actions of D. 
Then cp maps the identity component of HD onto that of H'D. 

Proof. cp may be factored as H ----* H/K ----* H', each morphism D
equivariant (K = Ker cp). Since the second arrow is bijective, we may assume 
that cp is separable, H' = H/K. This means that Ker dcp = f. Since D acts 
diagonalizably on £), we can find a D-invariant subspace n complementary to 
f; then n is mapped isomorphically onto £)' by dcp, the fixed points of D on 
n corresponding to the fixed points of D on £)'. The proposition shows that 
dim KD = dim fD, while dim H'D = dim £)'D = dim £)D. Combining these, we 
get dim H'D = dim £)D - dim KD = dim HD - dim KD = dim cp(HD). Since 
cp maps the identity component of HD into that of H'D, this yields the desired 
surjectivity. 0 

Finally, we consider the analogue of (18.3). 

Proposition B. Let U be a connected closed unipotent subgroup ofG, nor
malized by ad-group D. Then Cu(D) is connected. 

Proof. If D centralizes U there is nothing to prove. Otherwise use induc
tion on dim U. Find SED not centralizing U. Then U' = Cu(s) is connected 
(Theorem 18.3) and includes Cu(D), so we may replace U by U' and appeal 
to induction. 0 

It is worth remarking that Proposition B and the Corollary of Proposi
tion A make no mention of Lie algebras. However, neither of these would 
be so easy to prove without the aid of infinitesimal techniques. 

Exercises 

1. Let G = PGL(2, C), s = diag(i, - i), where i2 = -1. Show that CG(s) 
has two connected components. 

2. Let G = GL(V), H a closed subgroup of G. Assume: (*) £) has a com
plementary subspace ill in g invariant under Ad H. Prove that if x E H, 
then C1G(x) n H is the union of finitely many H-conjugacy classes. Prove 
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an analogous statement for C1G(x) n ~, x E~. [Compare dimensions as 
in (1S.1).] 

3. Use Exercise 2 to show that SL(n, K) has only finitely many classes of 
unipotent elements, provided char K does not divide n. (Or appeal to the 
Jordan normal form for arbitrary n.) What can you say about other 
classical groups? 

4. Under assumption (*) of Exercise 2, prove that global and infinitesimal 
centralizers in H, ~ correspond for arbitrary x E G. 

5. Prove the assertion made in (IS.2), that the class of 1 + eij in GL(n, K) 
(or SL(n, K)) fails to be closed. Exhibit nonclosed unipotent classes in 
the other classical groups. 

6. Let H be a closed subgroup of an algebraic group an algebraic group G. 
An element x Egis said to normalize H if Ad y(x) - x E ~ for all y E H 
(and in that case [x~] c ~). Prove that if x is semisimple and normalizes 
H, then {Ad y(x)i y E H} is closed in g. [Imitate the proof of Proposition 
IS.2.] 

7. Let G = SL(2, K), s = diag (a, a-i), a # ± 1. Then CG(s) = D(2, K) n G. 
Show that CG(s) intersects C1G(s)s-1 in {I, diag(a- 2, a2 )}. Is the map T 

of Theorem IS.3 surjective in this case? 
8. Prove the analogue of Theorem 18.3 when S is replaced by a unipotent 

element u and U is replaced by a torus T, assuming that £( CT(u)) = 

ct(u). 
9. In Theorem 18.3, prove that T and yare isomorphisms of varieties. 

[For separability, cf. Corollary B of Proposition 18.1.] 
10. Let G be a connected I-dimensional algebraic group. Prove first that each 

semisimple element of G lies in Z( G), then deduce that G = Z( G). 

Notes 

Theorem 18.3 appears in Borel [1], but the emphasis on the correspon
dence between global and infinitesimal centralizers (18.1) is more recent, cf. 
Borel [4, §9], Borel, Tits [1, §1O], Borel, Springer [1] (and its predecessor 
in AGDS). Further discussion of closed conjugacy classes may be found in 
Borel, Harish-Chandra [1]. The techniques of (1 S.l)(cf. Exercises 2, 3,4) are 
applied to the study of unipotent conjugacy classes in Richardson [1]; cf. 
Springer, Steinberg [1, I.5.2]' 

19. Connected Solvable Groups 

In this section we obtain a description of an arbitrary connected solvable 
algebraic group as semidirect product of a torus and a (normal) unipotent 
subgroup. For this we make rather full use of the results of §16 and §18, 
along with the fundamental Lie-Ko1chin Theorem (17.6). 
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19.1. An Exact Sequence 

If G is a connected solvable algebraic group, the Lie-Kolchin Theorem 
allows us to regard G as a subgroup of some T(n, K). For the latter there is 
a (split) exact sequence: 

1 ----* U(n, K) ----* T(n, K) ~ D(n, K) ----* 1. 

Restriction to G yields immediately: 

Here Gu = G n U(n, K) is the closed normal subgroup of G consisting of all 
unipotent elements of G, while T' = n(G) is a closed connected subgroup of 
D(n, K), hence a torus (Proposition 16.2). G/Gu being abelian, Gu includes 
(G, G). 

We claim that Gu is connected. This is true in the commutative case (15.5), 
in particular for the group G/(G, G) = G' = G~ x G~. Let qJ:G ----* G' be the 
canonical morphism. Evidently Gu C qJ -1( G~). Conversely, the inclusion 
(G, G) = Ker qJ C Gu forces qJ-l(G~) c Gu • Now (G, G) and G~ are both con
nected (cf. (17.2)), so our claim follows at once. 

By intersecting Gu with successive terms of a suitable normal series of 
U(n, K) (Exercise 17.7), taking identity components, and eliminating repeti
tions, we see that Gu has a chain of connected subgroups, each normal in G 
and each of codimension one in the preceding. 

It has to be shown that the exact sequence is split. For this it will suffice 
to prove that G actually includes a torus T of the same dimension as T', 
for in that case Tn Gu = e is obvious, 2(T) n 2(Gu) = 0 is almost as 
obvious (15.3), and n(T) = T' for reasons of dimension. We shall also prove 
that any two maximal tori of G are conjugate. (This result eventually plays 
the role which is played in Lie algebra theory by the conjugacy of Cart an 
subalgebras.) The abelian case is already done (15.5), so we treat next the 
nilpotent case. 

19.2. The Nilpotent Case 

When G is solvable, the set Gs of all semisimple elements need not be 
closed and need not be a subgroup (cf. G = T(n, K), n > 1). 

Proposition. Let G be a connected solvable algebraic group. Then G is 
nilpotent if and only if Gs is a subgroup, in which case Gs is closed and G = 
Gs x Gu• 

Proof. Let Gs be a subgroup of G. In the exact sequence (*) of (19.1), n 
injects Gs into T', so Gs is a d-group. But n is also surjective, so Gs is also 
closed (and connected). In particular, (*) splits and G is a semi direct product 
Gs t>< Guo But Gs is obviously normal in G, so in fact the product is direct. In 
particular, Gs and Gu commute elementwise, so Gs c Z(G) (this follows also 
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from the rigidity of d-groups, Corollary 16.3). Now GIZ(G) is isomorphic to 
a subgroup ofthe nilpotent group Gu (17.5), so G is nilpotent (Lemma 17.4(b)). 

In the other direction, suppose G is nilpotent. We have to show that Gs 

is a subgroup; for this it is clearly enough to show that any pair of semisimple 
elements x, y commute (the product of commuting semisimple elements 
being again semisimple). But xyx-1y-l = Z E (G, G) c GU) xyx- 1 = zy. If 
we can show that y commutes with all unipotents, it will follow that the right 
side is the Jordan decomposition of the semisimple element xyx- 1, whence 
z = e and xy = yx as desired. To show that y E Gs centralizes Gu, recall the 
set-up of Theorem 18.3: y acts on the connected unipotent group Gu, M = 

yiGu), and Yy:M -+ M is bijective (part (c)). But then M c GOO. Since Gis 
nilpotent, M = {e} and y centralizes Guo 0 

It is worth emphasizing that a connected nilpotent group has a unique 
maximal torus (namely, Gs), so the question of conjugacy does not arise here. 

19.3. The General Case 

Theorem. Let G be a connected solvable algebraic group. Then: 
(a) Gu is a closed connected normal subgroup ofG including (G, G), and Gu 

has a chain of closed connected subgroups, each normal in G and each of 
codimension one in the next. 

(b) The maximal tori ofG are conjugate under Goo, and if T is one of these, 
G = T t>< Gu. 

Proof. The assertions in (a) have been proved in (19.1). For (b), use 
induction on dim G (starting at dimension 0). The first task is to locate a 
torus in G which projects onto T in the exact sequence (*) of (19.1), from 
which it will follow that G = T t>< Gu• If G is nilpotent, Proposition 19.2 
does the job. Otherwise it is clear that we can find a noncentral semisimple 
element s E G, so H = CG(sr has lower dimension than G. If D is the closure 
of <s) in G, the morphism n:G -+ GIGu = Tis equivariant with respect to 
D, the action of n(D) on T being trivial since T is commutative. Applying 
the Corollary of Proposition 18.4A, we see that n(H) = T. This shows that 
Hu has codimension equal to dim T. By induction, H includes a torus of this 
dimension. 

Now fix a maximal torus T of G. As a first step in showing that all other 
maximal tori are conjugate to T, we claim that any semis imp Ie element 
s E G has a conjugate (under GOO) in T. If G is nilpotent, T = Gs (19.2), and 
there is nothing to prove. Otherwise GOO c Gu is nontrivial, as well as con
nected and unipotent (hence nilpotent thanks to Corollary 17.5). The identity 
component N of Z(G oo ) therefore has positive dimension, and is clearly 
normal in G. Under the canonical map cp:G -+ GIN = G', Goo maps onto 
G"Y). Write G' = S t>< G~, S = cp(T). By induction, cp(s) has a conjugate 
cp(x)cp(s)cp(X)-l in S, cp(x) E G'Y) (where we may assume x E GOO). This means 
that s is Goo-conjugate to xsx - 1 E TN. Changing notation, it will suffice to 
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prove that any semisimple element s E TN is conjugate under N to an element 
of T. Write s = tn (t E T, n E N) and apply Theorem 18.3(b) to the action 
of t- 1 on N: n = zYt-l(u), for some Z E CN(t), u EN, whence s = tzt- 1utu- 1 = 

z(utu -1). But z is unipotent and (N being abelian) commutes with u as well 
as t, so the right side is the Jordan decomposition of s, forcing z = e. Con
clusion: u- 1su = tE T. 

Finally, let S be any other maximal torus of G. By Proposition 16.4, 
there exists s E S having the same centralizer in Gas S. The preceding para
graph allows us to assume, after replacing S by a conjugate, that SET. But 
then T c CG(s) = CG(S). Therefore, (ST)O is a torus (= connected d-group) 
including the maximal tori S, T. Conclusion: S = T. 0 

In proving that all maximal tori of G are conjugate, we actually showed 
more: 

Corollary (of proof). Let G be a connected solvable group. Then each 
semis imp Ie (resp. unipotent) element of G lies in a maximal torus (resp. a max
imal connected unipotent subgroup). 0 

Later on we will be able to remove the word "solvable" from this state
ment, by proving that any connected algebraic group is the union of con
nected solvable subgroups (22.2). 

The structure theorem we have proved gives a satisfactory picture of an 
arbitrary connected solvable group, with one important exception: It does 
not pin down the exact structure of a one dimensional group. In fact, Ga and 
Gm are the only possibilities (this will be shown in the following section), but 
the unipotent case (when char K > 0) is a bit tricky to settle. 

19.4. Normalizer and Centralizer 

To round out our discussion of solvable groups, we record some useful 
information which is peculiar to the solvable case (cf. Exercise 1). 

Proposition. Let H be a subgroup (not necessarily closed) of a connected 
solvable group G, H consisting of semisimple elements. Then 

(a) H is included in a torus; 
(b) CG(H) = N G(H) is connected. 

Proof. The canonical map n:G ~ GIGu, restricted to the subgroup H, 
is injective. Therefore H is commutative and its closure H is a d-group. Since 
H, H have the same normalizer (resp. centralizer) in G, we may as well assume 
now that H is closed. Rigidity of d-groups (Corollary 16.3) already implies 
that NG(H)" = CG(Ht, but we can argue more precisely (using n): If 
x E N G(H), then since n(x) commutes with n(H), we have xyx- 1 = yz for 
y E H (ZE Ker n = Gu), while xyx- 1 E H. Thus ZE H n Gu = {e},xE CG(H). 

Now fix a maximal torus T of G. If H c Z(G), Corollary 19.3 shows that 
each element of H already lies in T (and, of course, CG(H) = G is connected). 
Otherwise find s E H, s ¢ Z(G). Corollary 19.3 allows us to replace T by a 
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conjugate which contains s, so T C CG(s). This makes it clear that CG(s) = 

T f>< Cds). But Cds) is connected (Theorem 18.3), so CG(s) is connected, 
includes H, and has smaller dimension than G. By induction on dim G, His 
conjugate in CG(s) to a subgroup of T, and moreover, CG(H) = CcG(s)(H) is 
connected. 0 

19.5. Solvable and Unipotent Radicals 

Modulo §20, we are now prepared to tackle the general structure theory 
of algebraic groups. This is a good time to introduce the key notions of 
"semisimple" group and "reductive" group. We could have done so a little 
earlier, but that would not have had any practical value. In conjunction with 
Corollary 7.4, Lemma 17.3(c) shows that an arbitrary algebraic group G 
possesses a unique largest normal solvable subgroup, which is automatically 
closed. Its identity component is then the largest connected normal solvable 
subgroup of G; we call it the radical of G, denoted R(G). The subgroup of 
R( G) consisting of all its unipotent elements is normal in G; we call it the 
unipotent radical of G, denoted Ru(G). It may be characterized as the largest 
connected normal unipotent subgroup of G. 

If R(G) is trivial and G i=- e is connected, we call G semisimple (example: 
SL(n, K)). If Ru( G) is trivial and G i=- e is connected, we call G reductive 
(examples: GL(n, K), any torus, any semisimple group). Starting with an 
arbitrary connected algebraic group G, we obviously get a semisimple group 
GIR(G) and a reductive group GIRu(G), unless G = R(G) or G = Ru(G). 
Therefore, the study of an arbitrary G reduces to some extent to the study of 
a finite group GIGo, a semisimple (or reductive) group, and a connected 
solvable (or unipotent) group. Of course, the way in which these pieces fit 
together (the extension problem) also has to be considered; it may in practice 
be rather intractable. The remainder of this book will be concerned largely 
with reductive groups. It is very difficult (as we shall see) to make use of the 
assumption that G has no normal connected unipotent subgroup. But some 
preliminary remarks can be made. 

Lemma. Let G be reductive. Then R(G) = Z(Gt is a torus which has 
only a finite intersection with (G, G). 

Proof. That R(G) is a torus follows from (19.1). Rigidity (Corollary 16.3) 
implies that G = NG(R(G))O = CG(R(G))", so R(G) is central; conversely, 
of course, Z = Z(G)O always lies in R(G). For the remaining assertion, embed 
G in some GL(V) and write V = 11 v, (a ranging over the weights of Z 
in V, cf. (16.4)). Evidently the centralizer of Z in GL(V) is the subgroup 
consisting of corresponding block diagonal matrices, which we write as n 
GL(Va). It includes G. Therefore (G, G) lies in f1 SL(V,), while each block of 
a matrix in Z is a scalar matrix. Since there are only finitely many scalar 
matrices of a given size having determinant 1, our assertion is proved. 0 
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Later on (27.5) we will be able to prove that a reductive group G is the 
product of its center and derived group (the intersection being finite, by the 
above lemma). The reader might try this now, in order to appreciate the 
difficulty of using the assumption RiG) = e. 

Exercises 

1. Show by examples that the assertions in Proposition 19.4 fail if G is not 
required to be solvable: H may fail to be commutative, may fail to lie in 
a torus even if it is commutative, etc. 

2. Let G be a connected solvable algebraic group. Prove that 2(Gu ) is the 
set of all nilpotent elements of g. If G is nilpotent, 2( Gs) is the set of all 
semisimple elements of g .. 

3. Let G be a connected solvable algebraic group. If T is a maximal torus 
of G, then CG(T) is nilpotent. 

4. If G is a connected solvable algebraic group, Z( G)s is the intersection of 
all maximal tori of G. 

5. If G is any connected algebraic group, T a torus in Z(G), prove that 
(G, G) nTis finite. [Cf. Lemma 19.5.] 

6. A closed connected normal subgroup of positive dimension in a semi
simple (resp. reductive) group is again semisimple (resp. reductive). 

7. Let G be a connected algebraic group of positive dimension. Prove that 
G is semisimple if and only if G has no closed connected commutative 
normal subgroup except e. 

Notes 

Theorem 19.3 is due to Borel [1], cf. Borel [4, 10.6]' 

20. One Dimensional Groups 

The aim of this section is to prove that Gm and Go are the only connected 
one dimensional algebraic groups. We first show that such a group is com
mutative, hence consists entirely of semisimple elements or of unipotent 
elements. The only difficult case-that of a unipotent group in characteristic 
p-is treated in the more general context of "e-groups" (not needed elsewhere 
in the text), to bring out an analogy with d-groups. Other treatments of the 
one dimensional groups are indicated in the Notes. 

20.1. Commutativity of G 

Let G be a connected one dimensional algebraic group. Since (G, G) is 
connected, either G is commutative or else G = (G, G). The powerful struc
ture theory of the next chapter would easily rule out the second possibility; 



20.2. Vector Groups and e-groups 127 

but we can reason in an elementary way, as follows. The assumption that 
G = (G, G) forces Ad G = (Ad G, Ad G) to lie in SL(g) (= 1, 9 being one 
dimensional). In particular, if s EGis semisimple, Cg(s) = 9 implies that 
CG(s) = G, since G is connected (Proposition 18.1). This means that all 
semisimple elements of G lie in Z(G), which must of course be finite. Now 
GjZ(G) = G' is again connected and one dimensional, but has no semisimple 
elements except e. Therefore G' is unipotent, hence nilpotent (Corollary 17.5). 
In turn G is nilpotent (Lemma 17.4 (b)), contradicting the assumption that 
G = (G, G). 

G being commutative, Theorem 15.5 applies: either G = Gs or G = Gu. 

In the first case G is a connected d-group, hence a torus (Theorem 16.2), 
hence isomorphic to Gm• In the second case, if char K = 0, Lemma 15.1C 
and Exercise 15.11 show that G is isomorphic to Ga. If char K = P > 0, 
notice that x ~ xP is a morphism of algebraic groups G ...... G, with image 
GP connected and unequal to G. Therefore GP = e (we say G has exponent p 
in this case). It is not at all obvious that G is isomorphic to Ga. In the re
mainder of this section we shall study closely the structure of commutative 
groups of exponent p, obtaining the desired theorem on one dimensional 
groups as a by-product. 

20.2. Vector Groups and e-groups 

Untilfurther notice, char K = p > O. Let us calle-group any commutative 
algebraic group G of exponent p (G is then unipotent). One example is a 
finite elementary abelian p-group ZjpZ x ... x ZjpZ. Another relevant 
example is affine n-space Kn regarded as Ga x .. . x Ga : any e-group iso
morphic to one ofthe latter will be called a vector group. The group operation 
is often written additively. 

There is a good analogy between tori and vector groups, or more gener
ally, between d-groups and e-groups. Let us recall some salient properties of 
the former from § 16: (a) Any d-group is isomorphic to a closed subgroup of a 
torus. (b) Any closed subgroup of a torus is the intersection of kernels of 
characters. (c) A closed connected d-group is a torus (and a direct factor of any 
larger torus). In this subsection we prove the analogue of the first of these 
(with a refinement not possible for d-groups, cf. Exercise 3). 

Proposition. Any e-group G is isomorphic to a closed subgroup of some 
vector group, which can be chosen to be of dimension 1 larger than G. 

Proof. We attempt to imitate the maps log, exp in characteristic 0 (15.1). 
Begin with G c GL(n, K) for some n. Let in be the subspace of M(n, K) 
spanned by the matrices x-I (x E G), m = K + in ::::J G. The equation 
(x - 1)(y - 1) = (xy - 1) - (x - 1) - (y - 1) shows that in is closed 
under multiplication, hence that m is a commutative ring having in as an 
ideal. Because G has exponent p, (x - 1)P = 0 (x E G) and therefore yP = 0 
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for all y E 91. The commuting set 91 of nilpotent matrices can be simulta
neously trigonalized (Proposition 15.4). It follows that all k-fold products 
from 91 are 0 if k is chosen large enough, i.e., 91 is a nilpotent ideal of ill: 
(cf. (17.3)). 

Since xP = 0 for all x E 91, we may define a truncated exponential 
p-l 

exp'(x) = L xk/k!, which clearly lies in 1 + 91 c ill:. It is easy to check 
k=O 

(Exercise 4) that exp'(ax) exp'(bx) = exp'( (a + b)x) for a, bE K. Therefore 
we can define, relative to an ordered basis (Xb-... , Xt) of 91, specified below, 
a morphism qJ: 91 ~ ill: by setting qJ(La;x;) = flexp'(a;x;). This is a morphism 
of algebraic groups, 91 being given its natural additive structure of vector 
group and 1m qJ being a subgroup ofthe mUltiplicative group of ill: in G L(n, K). 
Of course, G itself lies in the latter, though not obviously in 1m qJ. 

We want to show that qJ has an inverse morphism (defined on the in
vertible elements ofill:). For this we use the nilpotence ofm: Define qJ relative 
to an ordered basis (Xb ... , Xt) ofm such that each mk is spanned by a final 
segment. Let T;, Ui be two sets of t indeterminates, and write flexp'(T;x;) = 

1 + LUiXi. Expansion of the left side reveals at once that U; = Ti + fi(T b ... , 
Ti-1),fi some polynomial in i-I variables. Invertibility of qJ is then a matter 
of expressing the Ti in terms of the U;. But T 1 = U b T 2 = U2 - f2(T d = 
U2 - f2(U 1), ...• Therefore we can proceed recursively. 

From this construction it follows that G does lie in 1m qJ and that qJ - 1 

maps G isomorphically onto a closed subgroup of the vector group m. 
Now let V be any vector group (written additively), G a closed subgroup 

of codimension ~ 2 in V. We will replace V by a vector group 1 dimension 
smaller, containing an isomorphic copy of G; induction then completes the 
argument. 

It is an elementary geometric fact (Exercise 5) that the union of all lines 
through 0 passing through other points of G cannot exhaust V, since codim 
G ~ 2. Identify (canonically) V with .P(V). Then the linear subspace 'p(G) 
of .P(V) = V obviously cannot exhaust what remains of V, since it too has 
codimension at least 2. Therefore we can locate x E V such that no nonzero 
scalar multiple of x lies in G or 'p(G). Let X = Kx, and let n: V ~ W = 

V/X be the canonical morphism. Because of the identification V = .P(V), it 
is clear that Ker dn = .P(X) = X, X viewed as vector subgroup of V. By 
choice of x, Ker n (\ G = 0 = Ker dn (\ 'p(G), so nlG is bijective and 
separable, hence an isomorphism of G onto n(G), cf. remark (1) of (12.4). 0 

20.3. Properties of p-polynomials 

A character of an algebraic group G is simply a morphism of algebraic 
groups G ~ Gm• The obvious unipotent counterpart would be a morphism 
qJ: G ~ Gao What form must qJ take when K has prime characteristic p? 
Since Ga is isomorphic (as variety) to the affine line K, qJ is given by a single 
polynomial. Consider first the case where G is a vector group K" (written 
additively). 
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Lemma A. Let f(T I, ... , Tn) be an additive polynomial, i.e.,f(al + bl , ... , 

an + bn) = f(ab ... , an) + f(bb ... , bn) for all (a), (b) E Kn. Then f(T) is a 
p-polynomial, i.e., f(T) is a linear combination of terms T ( (r ~ 0). 

Proof. Use induction on the degree of f(T) and denote by (DJ)(T) 
the "partial derivative" of f(T) with respect to Ti. From the assumed identity 
f(T 1 + ab ... , Tn + an) = f(T) + f(a), (a) E Kn, we obtain (DJ)(T + a) = 

(DJ)(T). Therefore the polynomial (DJ)(T) takes constant value Ci on Kn, 
and all partial derivatives of f(T) - (c 1 T 1 + ... + Cn T n) are O. It is easy 
to check that any polynomial with this property has the form g(Tf, ... , T~), 
g(T) E K[T]. Since K is algebraically closed, arbitrary (a), (b) E Kn satisfy ai = 

dr, bi = er for some di, ei E K. SO g(a + b) = g( (d l + el)P, ... ,(dn + en)P) = 
f(d + e) - LcMi + ed = g(a) + g(b). Now g(T) is additive but of smaller 
degree than f(T), so by induction g(T) (hence also f(T) ) is a p-polynomial. 0 

Conversely, of course, any p-polynomial defines a morphism of algebraic 
groups Kn --+ Gao We shall abuse terminology by identifying the polynomial 
and the morphism it affords. Evidently the kernel of a nonzero p-polynomial 
(i.e., the set of zeros of f(T) ) is a closed subgroup of Kn (of codimension one). 
This property actually characterizes p-polynomials: 

Lemma B. Let f(T b ... , Tn) be a square free polynomial, viewed as a 
morphism Kn --+ K. If the set of zeros of f(T) is a subgroup of Kn, then f(T) is 
a p-polynomial. 

Proof. We may assume that f(T) =F O. To prove that f(T) is a p
polynomial, it will suffice (by Lemma A) to prove that it is additive. Let G 
be its set of zeros. If(a) E G,f(T + a) has the same set of zeros asf(T), because 
G is a group. But f(T) is squarefree, so this forces the former to be a (nonzero) 
scalar multiple of the latter, say y(a)f(T) (K[TJ is a UFD (0.2)). If (a), (b) E G, 
then in turn y(a + b)f(T) = f(T + a + b) = y(b)f(T + a) = y(a)y(b)f(T). The 
function y: G --+ Gm is therefore a homomorphism, hence identically 1, 
because G is a p-group while Gm has no p-torsion. This says that f(T + a) = 

f(T) for all (a) E G. 
Turning this around, for all (a) E Kn, the polynomial f(T + a) - f(a) =F 0 

vanishes on G, and is clearly squarefree. This yields a function c5: Kn --+ Gm, 

satisfyingf(T + a) - f(a) = c5(a)f(T). For any (b) E Kn, direct calculation shows 
that f(T + a + b) = f(a) + c5(a)f(b) + c5(a)c5(b)f(T), while also f(T + a + b) = 

f(a + b) + c5(a + b)f(T). Comparing highest terms, we deduce that c5 is a 
homomorphism, hence trivial, i.e., f(T + a) = f(a) + f(T) for all (a) E K". 
This proves that f is additive on K". 0 

In (20.2) we proved that e-groups are the same thing as closed subgroups 
of vector groups, and that a given e-group can even be realized as such a 
subgroup of codimension 1. Now we can go a step further. 

Proposition. Let V be a vector group (say V = Kn), G a closed subgroup 
of codimension 1. Then there exists a p-polynomial (in n variables) having G 
as its set of zeros. 
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Proof. By the results of §3 (cf. Exercise 3.6), G is the set of zeros of some 
polynomial f(T) E K[T], which may be assumed to be squarefree. Then 
Lemma B says that f(T) must be a p-polynomial. 0 

20.4. Automorphisms of Vector Groups 

To show that a connected d-group is a torus, we first embedded the given 
group in a torus, then found an automorphism of the torus which would take 
this subgroup onto a canonical subtorus. An analogous procedure works for 
e-groups. We shall construct automorphisms by using induction on degrees, 
so it is convenient to make a definition: Let f(T b ... , Tn) = Li Lr CirT( be 
a p-polynomial. If r(i) is the largest exponent for which Cir of- 0, the principal 
part of f(T) is the polynomial Clr(l)T(' + ... + cnr(n)T~'("'. 

Proposition. Let V = Kn, and let f(T) be a p-polynomial, viewed as a 
morphism of algebraic groups V -4 Ga. Then there exists an automorphism cp 
of V (i.e., a change of coordinates Ti f--> UJ such that the kernel of f(U) = f(T) 0 cp 
contains all (a, 0, ... , 0) E V. 

Proof. Write the principal part of f(T) as Li CiT (~ for brevity. Evidently 
a permutation ofT b' .. , Tn induces an automorphism of V, so we may assume 
that all Ci of- ° (otherwise we are done) and that r(l) ~ r(2) ~ ... ~ r(n). 
Proceed by induction on Lr(i). If this is 0, then f(T) is a linear polynomial, 
and a linear change of variables Ti f--> Ui does the trick. In general, find a 
zero (a) E V for the principal part of f(T). Say a1 = Uz = ... = am-l = 

o of- am' The following equations define an automorphism in V (Exercise 6): 

Um - 1 = Tm - 1 

Um = amTm 

After substituting Ui for Ti in f(T), we obtain a new p-polynomial: g(T) = 

i~m CiT(' + (tm Cia;"i)) T ~(m' + (lower degree terms). By the choice of (a), 

the sum of degrees in the principal part of g(T) is smaller than Lr(i). So the 
induction hypothesis applies. 0 

If V = Kn, let Vi be the set of vectors having all coordinates 0 except 
possibly the ith. 

n 

Corollary. With V = Kn = IT Vi as above, let G be a closed connected 
i= 1 

subgroup of V. Then there exists an automorphism cp of V such that cp( G) is 
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the direct product of some of the canonical subgroups Vi of V. In particular, 
G is itself a vector group. 

Proof. Use induction on n (for n = 1, there is nothing to prove). Con
sider first the case: dim G = n - 1. By Proposition 20.3, G is the kernel of 
some p-polynomial f(T) (viewed as a morphism V ~ Ga), Then the above 
proposition yields an automorphism qJ of V such that qJ(G) includes V1• If 

n 

H is the projection of qJ( G) on V' = Il Vi, then clearly qJ( G) = V1 X H. 
i=2 

Since H has codimension 1 in V' (and is connected), induction yields an 
automorphism of V', which extends to an automorphism of V fixing Vb 
mapping H onto a product of some of the Vi, 

n 

In case dim G < n - 1, define V' = Il Vi as above, and project G to 
i=2 

a closed connected subgroup G' of V'. By induction, there is an automorphism 
qJ' of V' sending G' onto a product of some Vi. Extend qJ' to qJ: V ~ V 
(qJ!Vl = IvJ as above. Then qJ(G) lies in the product of fewer than n of the 
Vi, so we can throwaway the others and appeal again to induction. D 

20.5. The Main Theorem 

From the preceding description of e-groups we obtain as a special case 
the fact that a connected I-dimensional e-group G is isomorphic to Ga- The 
reader interested only in this result can take a few (but very few) shortcuts. 
The essential line of argument is this: G is isomorphic to a closed subgroup 
of the vector group K2 (20.2), hence is precisely the set of zeros of a p
polynomial in two variables (20.3). Using this p-polynomial, one constructs 
an automorphism of K2 such that the image of G includes (hence equals) a 
canonical copy of Ga (20.4). 

Since a connected 1-dimensional unipotent group is commutative (20.1), 
hence of exponent p, hence an e-group, this completes the proof of the main 
theorem: 

Theorem. Let K have arbitrary characteristic. Up to isomorphism, the 
only connected 1-dimensional algebraic groups are Ga and Gm• D 

Exercises 

1. In (20.1), prove that G is commutative by using (18.2) in place of (18.1): 
semisimple conjugacy classes are closed (and connected), hence trivial. 

2. In (20.1), prove that G is commutative without invoking §18, as follows: 
Let x ¢ Z(G). The class of x is infinite, hence dense (as well as locally 
closed); deduce that its complement is finite. Assume G c GL(n, K), 
Ci(Y) = ith coefficient of characteristic polynomial of Y E G. Then qJ(Y) = 

(co(Y), ... , ciy)) defines a morphism G ~ Kn + 1 with finite image. Con
clude that G is unipotent, hence nilpotent. 
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3. Show that a d-group cannot always be embedded in a torus as a closed 
subgroup of codimension 1. 

4. LetcharK = p > O.IfxEM(n,K),xP = O,showthatexp'(ax)exp'(bx) = 
exp'( (a + b)x) for a, b E K, where exp' is the truncated exponential (20.2). 
On the other hand, if x, y E M(n, K) commute and if xP = 0 = yP, it 
need not be the case that exp' (x + y) = exp' (x) exp' (y): e.g., let 2 = 

(
0100) ('0010)' 0000 0001 

char K, and take x = 0 0 0 1 ,y = 0 0 0 0 . 

0000 0000 

5. Let Vbe an affine variety in An of codimension ~ 2. Prove that {axla E K, 
x E V} is properly contained in An. [Consider K x V.J 

6. Let char K = p > O. Verify that the change of variable Ti f-----+ Ui described 
in the proof of Proposition 2004 induces an automorphism of V. Try to 
formulate necessary and sufficient conditions for a collection of n p
polynomials to define an automorphism of V. 

7. Let char K = P > O. Prove that each closed subgroup of a vector group 
is the intersection of kernels of p-polynomials. 

Notes 

The material in this section is drawn from Tits [9, 111.3.3]. An earlier 
proof of Theorem 20.5, given by Grothendieck in Chevalley [8, expose 7], is 
sketched in Borel [4,11.6]; yet another proof appears in Borel [4, 10.7~ 10.9]. 
The study of commutative unipotent groups (and group schemes) can be 
pursued in Demazure, Gabriel [1], Oort [1], Seligman [4] [5], Serre 
[1, VII §2J, Tits [9J, Schoeller [1], Simon [lJ, Nakamura [1] [2]. The 
example in Exercise 4 was furnished by George Seligman. 



Chapter VIII 

Borel Subgroups 

21. Fixed Point and Conjugacy Theorems 

The structure of connected solvable groups is made clear enough by the 
results of the preceding chapter. What is still lacking is insight into the 
interaction between an arbitrary algebraic group and its subgroups of this 
type. Borel's fixed point theorem (21.2) provides this insight. Here, for the 
first time, we make essential use of homogeneous spaces G/H which are 
projective (or complete) varieties. G will denote an arbitrary algebraic group, 
assumed from (21.3) on to be connected. 

21.1. Review of Complete Varieties 

For the reader's convenience we shall list those properties of complete 
varieties which are needed in the sequel. By definition, a variety X is complete 
if, for all varieties Y, the projection map X x Y ---+ Y is closed. In Chapter I 
the following facts were proved: 

(a) A closed subvariety of a complete (resp. projective) variety is complete 
(resp. projective), cf. (6.1) and (1.6). 

(b) If <p: X ---+ Y is a morphism of varieties, with X complete, then the 
image is closed in Y, and complete (6.1). 

(c) A complete affine variety has dimension 0 (6.1). 
(d) Projective varieties are complete (6.2); complete quasiprojective 

varieties are projective (6.1). 
( e) The flag variety ~(V) of a finite dimensional vector space V is pro

jective (1.8), hence complete. 
Besides these facts, we need a lemma. 

Lemma. Let G act transitively on two irreducible varieties X, Y, and let 
<p: X ---+ Y be a bijective, G-equivariant morphism. If Y is complete, then X is 
complete. 

Proof. Notice that the assertion is not obvious, though in the reverse 
direction it would be (cf. (b) above). Thanks to (6.1), it just has to be shown 
that pr 2: X x Z ---+ Z is closed for all affine varieties Z. Since Y is complete, 
it suffices to prove that <p xl: X x Z ---+ Y x Z is closed. 

Corollary 4.3 yields affine open subsets U eX, V c Y such that <p( U) c V 
and <pI U is a finite morphism. Let R, S, T be the respective affine algebras 
of U, V, Z. Since R is integral over S, it is trivial to check that R (8) T is 
integral over S (8) T. Therefore <p xl: U x Z ---+ V x Z is also a finite 
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morphism (cf. (2.4)); in particular, it is a closed map (4.2). Because G acts 
transitively on X, Y, and qJ is G-equivariant, X (resp. Y) is covered by 
finitely many translates Xi . U (resp. Xi . V) for some Xi E G. It follows that 
qJ x 1: X x Z ---+ Y x Z is closed. 0 

21.2. Fixed Point Theorem 

Theorem. Let G be a connected solvable algebraic group, and let X be a 
(nonempty) complete variety on which G acts. Then G has a fixed point in X. 

Proof. If dim G = 0, G = e and there is nothing to prove. Proceed by 
induction on dim G. H = (G, G) is connected (17.2), solvable, and of lower 
dimension (G being solvable), so by induction the set Y of fixed points of H 
in X is nonempty. Y is closed (Proposition 8.2), hence complete (21.1)(a). 
G keeps Y stable, because H is normal in G, so we may as well replace X 
by Y. 

This leaves us with the situation: H c G x for all X E X (= Y). In particular, 
all isotropy groups are normal in G, so G/Gx is an affine variety. Choose 
X E X whose orbit G. x is closed, hence again complete: this is possible, by 
Proposition 8.3. Now the canonical morphism G/Gx ---+ G. x is bijective, with 
the left side affine and the right side complete. According to Lemma 21.1, 
G/Gx is complete. By (21.1)(c), G = Gx , so x is the desired fixed point. 0 

We use the theorem first to obtain a new proof of the Lie-Kolchin Theo
rem (17.6). Let G be a closed connected solvable subgroup of GL(V). Then 
G acts on the flag variety mV), which is complete (21.1)(e), so G fixes a flag 
o = Vo C VI C ... C ~ = V. In other words, G is triangular for suitable 
choice of basis in V. 

Next we shall apply the fixed point theorem in a more essential way. 

21.3. Conjugacy of Borel Subgroups and Maximal Tori 

A Borel subgroup of G is a closed connected solvable subgroup properly 
included in no other (the word "closed" being redundant). Since Borel sub
groups of G and of GO coincide, we shall always assume in what follows that 
G is connected. A connected solvable subgroup of largest possible dimension 
in G is evidently a Borel subgroup; but it is not obvious that every Borel 
subgroup has the same dimension. This emerges from a stronger result: 

Theorem. Let B be any Borel subgroup of G. Then G/B is a projective 
variety, and all other Borel subgroups are conjugate to B. 

Proof. Begin with a Borel subgroup S of largest possible dimension. 
Represent G in some GL(V) with a 1-dimensional subspace VI whose 
stabilizer in G is precisely S (Theorem 11.2). The induced action of S on 
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V /V1 is trigonalizable, thanks to Lie-Ko1chin (17.6), so there is a full 
flag 0 C VI C ... C V stabilized by S, call it f. In fact, S is the isotropy 
group of f in G, by choice of VI' It follows that the induced morphism of 
G/S onto the orbit of fin mV) is bijective. On the other hand, the stabilizer 
of any flag is solvable and therefore has dimension no bigger than dim S. 
It follows that the orbit off has smallest possible dimension, hence is closed 
(8.3). So the orbit is complete (21.1)(a)(e). This forces G/S to be complete 
(Lemma 21.1), hence projective (21.1)(d). 

Now the given Borel subgroup B acts by left multiplication on the com
plete variety G/S. By Theorem 21.2, it fixes a point xS, i.e., BxS = xS, 
or X-I Bx C S. Each of these being a Borel subgroup, we conclude that 
X-I Bx = S. From this both assertions of the theorem follow. D 

Corollary A. The maximal tori (resp. maximal connected unipotent sub
groups) of G are those of the Borel subgroups of G, and are all conjugate. 

Proof. Let T be a maximal torus of G, U a maximal connected unipotent 
subgroup. Evidently T is included in some Borel subgroup B, so it is a 
maximal torus of B, to which all other maximal tori of B are conjugate 
(Theorem 19.3). Similarly, U lies in some Borel subgroup B', with U = B~ 

by maximality. Since all Borel subgroups of G are conjugate, the corollary 
follows. D 

Call the common dimension of the maximal tori of G the rank of G. For 
example, SL(n, K) has rank n - 1. 

The fact that G/B is a projective variety may appear at this point to be 
merely incidental, but in fact the geometry of this variety is of central im
portance in what follows. Let us just observe now that G/B is the largest 
homogeneous space for G having the structure of projective variety. Indeed, if 
H is any closed subgroup of G such that G/H is projective, then B fixes a 
point and therefore has a conjugate in H, forcing dim G/H :(; dim G/B. Con
versely, if H is a closed subgroup including B, then G/B --+ G/H is a surjective 
morphism from a complete variety, forcing G/H to be complete (21.1)(b). But 
then G/H is projective (21.1)(d), since all homogeneous spaces are quasi
projective by construction (11.3). This discussion leads us to define a special 
class of closed subgroups P of G: P is parabolic if and only if G/ P is projective 
(equivalently, complete). We have shown: 

Corollary B. A closed subgroup of G is parabolic if and only if it includes 
a Borel subgroup. In particular, a connected subgroup H of G is a Borel sub
group if and only if H is solvable and G/H projective. D 

For example, let G = GL(n, K), B = T(n, K). The Lie-Ko1chin Theorem 
implies that B is a Borel subgroup of G. Of course, G/B is just the orbit in 
mKn) of the standard flag (i.e., O:(Kn) itself). Which parabolic subgroups of 
G include B? If (ell' .. , en) is the standard basis of Kn, then for each partial 
flag (ell' .. , ei(l)) c (eJ, ... , ei(2)) c ... , the stabilizer in G is evidently a 
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closed subgroup including B. In GL(3, K) the two parabolic subgroups other 
than Band G which arise this way consist of matrices in one of the forms 

The characterization of Borel subgroups given in Corollary B can be 
used to good advantage to describe their behavior under homomorphisms. 

Corollary C. Let cp: G ---+ G' be an epimorphism of (connected) algebraic 
groups. Let H be a Borel subgroup (resp. parabolic subgroup, maximal torus, 
maximal connected unipotent subgroup) of G. Then cp(H) is a subgroup of the 
same type in G' and all such subgroups of G' are obtained in this way. 

Proof. In view of Corollaries A, B, it suffices to prove this when H = B 
is a Borel subgroup. Evidently B' = cp(B) is connected and solvable. But the 
natural map G ---+ G' ---+ G'IB' induces a surjective morphism GIB ---+ G'IB', 
forcing the latter to be complete (2l.1)(b), i.e., B' is a parabolic subgroup of 
G'. Corollary B then says it is a Borel subgroup. Since some Borel subgroup 
of G' has the form cp(B), it follows from the conjugacy theorem (for G') that 
all do. 0 

21.4. Further Consequences 

At this point it is easy to carryover to an arbitrary connected group G 
some facts proved in the preceding chapter for solvable groups. The results 
we obtain are still a bit crude, but will be refined in subsequent sections. 

Proposition A. An automorphism (J of G which fixes all elements of a 
Borel subgroup B must be the identity. 

Proof. The morphism cp:G ---+ G, cp(x) = (J(x)x-l, sends B to e, hence 
factors through G ---+ GIB. By Theorem 21.3 and (2l.1)(b), cp(G) is closed 
(therefore affine) and complete. By (21.1)(c), cp(G) = e. 0 

Corollary. Z(Gt c Z(B) c CG(B) = Z(G). 

Proof. Z( G)O is connected and solvable, hence lies in some Borel sub
group of G. Conjugating the latter onto B (Theorem 21.3) leaves Z( G)O 
unmoved, so the first inclusion follows. The second inclusion is obvious, as 
is the inclusion Z( G) c CG(B). Finally, if x E CG(B), then (J = Int x satisfies 
the hypothesis of the proposition, forcing Int x = 1, x E Z( G). 0 

Later on (Corollary 22.2B) we shall see that Z(B) = Z(G), but this is not 
yet obvious. 
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Proposition B. (a) If some Borel subgroup B is nilpotent (in particular, 
if B = Bs or B = Bu), then G = B. 

(b) G is nilpotent if and only if G has just one maximal torus. 

Proof. (a) Note first that if B = Bs or B = Bm then B is a torus or a 
unipotent group (Theorem 19.3), hence nilpotent in either case. Whenever B 
is nilpotent, of positive dimension, its center also has positive dimension 
(Proposition 17.4(a)). But Z(G) c Z(B) c Z(G), by the preceding corollary. 
So we can pass to the lower dimensional group G/Z(G)", in which B/Z(G)O 
is a nilpotent Borel subgroup (this is obvious even without Corollary C of 
(21.3)). By induction, these groups are equal, so G = B follows. (The induction 
starts with dim G = 0.) 

(b) We know from (19.2) that a nilpotent group has a unique maximal 
torus. Conversely, if T is the only maximal torus of G and B some Borel 
group containing it, then B must be nilpotent (19.2) (19.3), forcing B = G 
by part (a). D 

Corollary. Let T be a maximal torus of G, C = CG(T)". Then C is 
nilpotent and C = N G( C)". 

Proof. T is the unique maximal torus of C, thanks to the conjugacy 
theorem (Corollary 21.3A), hence C is nilpotent, by the proposition just 
proved. Evidently T is normal in N G( ct, hence also central, by rigidity of 
tori (Corollary 16.3). D 

The connected centralizer C of a maximal torus T of G is often called a 
Cartan subgroup because of the analogy with Cart an sub algebras (nilpotent 
and self-normalizing) in Lie algebra theory. It will be shown in §22 that 
CG(T) is already connected (if G is); but in general Nc(C) need not be. 

Exercises 

G denotes a connected algebraic group. 

1. Prove that rank G = 0 if and only if G is unipotent. 
2. Prove that a torus may be characterized as a connected algebraic group 

consisting of semisimple elements. 
3. Let T be a torus which is normal in G, and suppose G/T is also a torus. 

Prove that G is a torus. 
4. If dim G ~ 2, then G is solvable. 
5. Let H be a closed subgroup of G. Denote by L a Borel subgroup (resp. 

maximal torus, maximal connected unipotent subgroup) of H. Prove 
that L = (H n M)O for a suitable subgroup M of G of the same type. 
If H is normal in G, show that any such (H n M)" is a Borel subgroup 
(resp., ... ) of H. What can you say about parabolic subgroups of H? 

6. The radical (resp. unipotent radical) of G is the identity component in 
the intersection of all Borel subgroups (resp., of their unipotent parts). 
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7. Verify that every subgroup of GL(3, K) including T(3, K) is the stabilizer 
of some partial flag (hence is automatically closed), and is connected 
and self-normalizing. 

8. Describe Borel subgroups of the various classical groups, as well as some 
parabolic subgroups. 

9. Let P be a parabolic subgroup of G. Then the Borel subgroups of Pare 
also Borel subgroups of G. 

10. If B is a Borel subgroup of G, then B = N G(Bt (and similarly for 
parabolic subgroups). 

11. Let ({J: G -+ G' be an epimorphism of connected algebraic groups. If T is 
a maximal torus of G, T' = ({J(T), prove that the Cart an subgroup CG(Tt 
is mapped by ({J onto the Cartan subgroup CG,(T')". 

12. Let T be a maximal torus of G, C = CG(Tt. Show that any Borel 
subgroup of G which includes T must also include C. 

Notes 

The theorems of this section originate with Borel [1], cf. Borel [4, 
§1O-11]' The proof of Lemma 21.1 is taken from Steinberg [13, appendix 
to 2.11]' Sweedler [1] has another proof of the conjugacy ofBorel subgroups, 
which does not require the construction of homogeneous spaces. 

22. Density and Connectedness Theorems 

If G is a connected solvable group, then each semisimple (resp. unipotent) 
element of G lies in a maximal torus (resp. maximal connected unipotent 
subgroup), and the centralizer of a torus in G is always connected (cf. 
Proposition 19.4). In this section we shall extend these results to an arbi
trary connected algebraic group, via its Borel subgroups. Unless otherwise 
specified, G always denotes a connected group. 

22.1. The Main Lemma 

First we ask what can be said about the union of all conjugates of a 
closed subgroup H of G. The special assumptions made about H in parts 
(a), (b) of the following lemma will turn out to be true when H is (respectively) 
a Borel subgroup or a Cartan subgroup. 

Lemma. Let H be a closed connected subgroup of G, and set X = 

UXEGxHx- 1• 

(a) If G/H is complete, then X is closed. 
(b) If some element of H fixes only finitely many points of G/H, then X 

contains an open subset of G (in particular, X is dense). 
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Proof. Since X is rather hard to study directly, we make use of some 
auxiliary morphisms: 

'" pr, G x G 54 G x G --'-+ (G/H) x G :::::t giR. 
pr, 

Here cp(x, y) = (x, xy[ 1), so cp is clearly an isomorphism of varieties, 
while ljJ(x, y) = (xH, y). Notice that ljJ may be viewed as the canonical 
morphism G x G ---+ (G x G)/(H x e), so ljJ is an open map (12.2). Let 
M = ljJ 0 cp(G x H); evidently, X = prz(M). 

To prove (a), it suffices (by the definition of complete variety) to prove 
that M is closed. In turn it suffices (ljJ being an open map) to prove that 
ljJ -l(M) is closed. Now cp( G x H) c ljJ -l(M), and the former is closed 
because cp is an isomorphism of varieties, so we need only show that equality 
holds. Let (x, y) E G with (xH, y) E M, i.e., y = xzx- 1 for some z E H. Then 
(x, y) = cp(x, z) E cp( G x H), as desired. 

Next consider (b). Since X is constructible (as the image of the morphism 
prz 0 ljJ 0 cp (4.4)), it is enough to show that X is dense in G, or that dim X = 

dim G. We showed in general that M is closed, and we can easily compute 
its dimension: prl maps M onto G/H, and the fibre over xH of this morphism 
isclearlyisomorphictoxHx-l,sodimM = dimG/H + dimH = dimG.On 
the other hand, the assumption of (b) says that the fibre of pr z: M ---+ X c G 
over at least one element of H is O-dimensional (and, of course, nonempty). 
Moreover, M is connected because H is. It follows that the fibres of prz in 
M are "generically" finite (Theorems 4.1, 4.3). Since dim M = dim G, we 
conclude that prz is dominant and X = G. 0 

22.2. Density Theorem 

Let T be a maximal torus of G, C = CG(T)". We know that C is nilpotent 
(Corollary of Proposition 21.4B), hence C = T x Cu (Proposition 19.2). 
Furthermore, there exists a semisimple element t E T such that C = CG(tt 
(Proposition 16.4). We claim that the group H = C and the element t meet 
the requirement of Lemma 22.1(b). Indeed, t fixes a point xC E G/C precisely 
whenx-ltxEC.Thenx-ltxECs = T,soT c CG(x-ltxt = x-1CG(ttx = 

X-1CX, or xTx- l c C. This forces xTx- l = T, xCx- l = C. But C = 
N G( ct (Corollary of Proposition 21.4B), so this allows only finitely many 
choices for xc. 

Thanks to (21.3), the choice H = B (any Borel subgroup) meets the 
requirement of Lemma 22.1(a), so we can state: 

Theorem. Let B be a Borel subgroup of G, T a maximal torus of G, 
C = CG(Tt a Cartan subgroup. Then the union of all conjugates of B (resp. 
T, resp. BJ is G (resp. G., resp. Gu ). Moreover, the union of the conjugates of 
C contains a (dense) open subset of G. 
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Proof. The statement about C follows from Lemma 22.1(b) and the 
preceding remarks. C lies in some conjugate of B, so it follows that the 
union of all conjugates of B is also dense in G; by Lemma 22.1(a), it is closed, 
hence equal to G. The statement about T now follows from Proposition 19.4, 
while that about Bu is obvious. 0 

Corollary A. Each semisimple (resp. unipotent) element of G lies in a 
connected nilpotent subgroup of G. 0 

Corollary B. If B is any Borel group ofG, then Z(G) = Z(B). 

Proof. As a consequence of the conjugacy of Borel subgroups, we 
already showed (Corollary of Proposition 21.4A) that Z (G)C c Z(B) c Z( G). 
If x E Z(G), the theorem above shows that x lies in some Borel subgroup, 
hence (by the conjugacy theorem) in all B. D 

There is a Lie algebra analogue of the theorem, which asserts that 9 is 
the union of its Borel subalgebras. The proof is based on a straightforward 
analogue of Lemma 22.1, but the final step requires more detailed information 
than we have yet, cf. Borel [4, 14.16]. 

22.3. Connectedness Theorem 

The following result is very useful (and somewhat surprising). 

Theorem. Let S be a torus in G. Then CG(S) is connected. 

Proof. If G is solvable, this is already known (Proposition 19.4). To 
reduce the general case to this one, it suffices to show that there exists a Borel 
subgroup which includes both S and a given element x E CG(S): then x must 
lie in CG(st, as desired. According to Theorem 22.2, x does lie in some 
conjugate of a given Borel subgroup B, i.e., the fixed point set X of x in 
G/B is nonempty. X is closed in G/B, hence complete. Since S commutes 
with x, S leaves X stable and therefore has a fixed point (21.2). This yields the 
required Borel group. D 

Corollary A. 
of maximal tori. 

The Cartan subgroups of G are precisely the centralizers 

D 

Corollary B. If x EGis semisimple and centralizes a torus S of G, then 
{x} uS lies in a torus ofG. 

Proof. The proof of the theorem allows us to place x, S in a Borel 
subgroup, so we may assume that G is solvable. But then CG(S) is connected 
and solvable; S lies in some (hence every) maximal torus of CG(S), and 
one of these contains x (Corollary 19.3). 0 
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22.4. Borel Subgroups of CG(S) 

If B is a Borel subgroup and H an arbitrary closed subgroup of G, it is 
hardly to be expected that B n H will be a Borel subgroup of H, or even 
be connected. But when H is the centralizer of a torus, this does turn out 
to be the case. (Since the Borel subgroups of H are all conjugate, it will 
follow that all of them are gotten in this fashion.) 

Let B be a fixed Borel subgroup of G, containing the torus S, C = CG(S). 
Consider how S acts on the variety G/B. Its fixed point set X is closed 
(Proposition 8.2(c)), hence complete (21.1)(a), and C evidently stabilizes X. 
Since C is connected (22.3), it must in fact stabilize each connected component 
of X (Proposition 8.2(d)). These components are also complete, being closed 
in X. 

Theorem. Let S be a torus in G, C = CG(S), B a Borel subgroup of G 
containing S, X the set offixed points ofS in G/B, Y any connected component 
of X. Then C acts transitively on Y. 

Proof. We noted already that C stabilizes Y. Let us assume (without 
loss of generality) that B is the isotropy group of some y E Y. It has to be 
shown that C. y = Y. Equivalently, if Z is the inverse image of Y under the 
canonical map G ~ G/B, it has to be shown that CB = Z. 

Notice that Z is a connected variety, since Yis connected and the canonical 
map has connected fibres. Moreover, Z-l Sz c B for z E Z, by construction. 
So the morphism Z x S ~ B defined by (z, s) f--+ Z-l sz makes sense. Let q> 

be the composite of this with the canonical map B ~ B/Bu. For fixed z E Z, 
the resulting morphism S ~ B/Bu is clearly a homomorphism of tori. Z 
being connected, it follows from rigidity (16.3) that this map is independent 
of z. But e E Z, so we conclude: Z-l SZ == s (mod Bu) for all z E Z, S E S. In 
particular, Z-l Sz lies in the connected solvable group SBu, of which both 
it and S are maximal tori. Thanks to (19.3), there exists u E Bu such that 
U- 1Z- 1SZU = S, or zu E N = NG(S). This proves that CB c Z c NB. But 
[N: C] is finite (16.3),forcing dim CB = dim Z = dim NB. Finally, CB = Z, 
since both are connected. 0 

Corollary. CB(S) = C n B is a Borel subgroup of C (and all Borel sub
groups of C are obtained in this way). 

Proof. Let X and Y be as before, with B the isotropy group of a point 
y E Y. Y is a complete variety and, according to the theorem, is the orbit 
of y under C. The isotropy group of yin C is just C n B = CB(S). Therefore, 
CjC n B is complete (Lemma 21.1). Now the criterion of Corollary 21.3B 
is applicable: en B is solvable, and connected (19.4), so it must be a Borel 
subgroup of C. 0 
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22.5. Cartan Subgroups: Summary 

If S is any torus of G, we have seen that CG(S) is connected (22.3). In 
particular, a Cart an subgroup may now be described simply as the centralizer 
of a maximal torus (Corollary 22.3A). Since all maximal tori are conjugate 
(21.3), so are all Cartan subgroups. Let C = CG(T) be one of them. We 
showed in (21.4) that C is nilpotent and that C = N G( ct. Being nilpotent, 
C = T x Cu (T the unique maximal torus of C). Moreover, the union of 
the conjugates of C includes an open subset of G (and is therefore dense), 
thanks to (22.2). 

In case G is reductive, it will turn out later on (§26) that Cu = e, C = T. 
(For semisimple or reductive Lie algebras in characteristic 0, the analogous 
result is proved fairly soon, by a Killing form argument. Here it is not so 
easy.) The emphasis therefore will be placed on maximal tori rather than on 
Cartan subgroups. This is consistent also with the fact that semisimple ele
ments (and tori) behave rather uniformly in characteristics ° and p, whereas 
unipotent elements do not. 

Exercises 

G denotes a connected algebraic group. 

1. Z( G)s is the intersection of all maximal tori in G. 
2. If x E G has semisimple part x" then x E CG(xs)"' Must x lie in CG(xut? 
3. Let B be a Borel subgroup of G, U = Bu' Prove that B = NG(U)o. 

[Show that U = Hu , where H = NG(Ur; deduce that H/U is a torus.J 
4. Deduce from Exercise 3 that if P is any parabolic subgroup of G (e.g., 

P = B), then P = NG(Pt (cf. Exercise 21.10). [When char K = P > 0, 
U may be thought of as a "p-sylow subgroup" of G; this result then 
resembles a well-known theorem about finite groups.J 

5. If cp: G ---+ G' is an epimorphism of algebraic groups, the Cart an sub
groups of G' are precisely the images of the Cart an subgroups of G. 
[Cf. Exercise 21.11.J 

6. A Cart an subgroup of G is maximal among the (not necessarily closed) 
nilpotent subgroups of G, but not every maximal nilpotent subgroup 
need be a Cart an subgroup. 

7. Suppose some (hence every) maximal torus T of G is equal to CG(T). Then 
the set of semisimple elements s E G for which CG(s) is a torus contains 
a nonempty open set. (Such elements are called regular semisimple.) 

8. For SL(n, K) and other classical groups, prove directly that each element 
of G lies in some Borel subgroup and that the centralizer of a maximal 
torus is itself. 

9. Let C be a closed connected nilpotent subgroup of G, with C = N G( C)". 
Prove that C is a Cartan subgroup of G. 

10. If x EGis semisimple, must CG(x) be connected? 
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Notes 

This material is based on Borel [4, §10-11], which in turn is based on 
Borel [1 J. 

23. Normalizer Theorem 

As in the previous section, G will denote a connected algebraic group. To 
make effective use of the Borel subgroups of G, we have to prove one more 
rather subtle fact, that B = N G(B). That B has finite index in its normalizer 
is not hard to see (cf. Exercises 21.10,22.4), so this may be viewed as another 
connectedness theorem. 

23.1. Statement of the Theorem 

First, we prove a fact just alluded to. 

Lemma. Let B be a Borel subyroup of G, N = NG(B). Then B = N°. 

Proof. Evidently B is a Borel subgroup of N°. Thanks to the conjugacy 
theorem (21.3) and the fact that B is normal in NU, B is the sole Borel subgroup 
of N°. The density theorem (22.2) then forces B = N°. 0 

Next we state the main theorem, to be proved in (23.2), and derive some 
corollaries. 

Theorem. Let B be a Borel subgroup of G. Then B = N G(B). 

Corollary A. B is maximal in the collection of solvable (not necessarily 
connected or closed) subgroups of G. 

Proof. If S is a maximal solvable subgroup of G, then evidently S is 
closed. If S => B, then So = B (by definition of Borel subgroup), whence 
S c NG(B) = B. 0 

In general, however, there exist maximal solvable subgroups of G which 
are not Borel subgroups (see Notes). They are necessarily disconnected and 
of lower dimension than B (Exercise 1). Notice that Corollary A is actually 
equivalent to the theorem (Exercise 2). 

Corollary B. Let P be a parabolic subgroup of G. Then P = N G(P). In 
particular, P is connected. 

Proof. By definition, P includes some Borel subgroup B of G. Let 
x E N G(P). Then both Band xBx- 1 are Borel subgroups of po, so they are 
conjugate by some y E r (21.3). In turn, xy E N G(B) = B (thanks to the 
theorem). But then xy, YEP together force x E PO, i.e., po = P = N G(P), 0 



144 Borel Subgroups 

Corollary C. Let P, Q be parabolic subgroups of G, both of which include 
a Borel subgroup B. If P, Q are conjugate in G, then P = Q. 

Proof. Let x - 1 Px = Q. Then B and x - 1 Bx are two Borel subgroups 
of the connected group Q, so there exists yE Q such that B = y-lx - 1Bxy. 
Therefore xy E N G(B) = B, forcing x E Q and P = Q. 0 

This shows that the number of conjugacy classes of parabolic subgroups 
of G is precisely the number of parabolic subgroups containing a given B. 

Corollary D. Let B be a Borel subgroup ofG, V = Bu' Then B = N G(U)' 

Proof. Set N = NG(V). Since V is a maximal connected unipotent 
subgroup of N°, it contains a conjugate of every unipotent element of N° 
(Theorem 22.2). But V is normal in N°, so we conclude that N° IV consists 
of semisimple elements and hence is a torus (cf. Exercise 21.2). In particular, 
N° is solvable. Since B c N°, we get B = N°. But B = N G(B), so finally 
N° = N. 0 

23.2. Proof of the Theorem 

We are given a Borel subgroup B, with normalizer N (where B = N°, 
thanks to Lemma 23.1). To show that N = B, we proceed by induction on 
dim G. It is clear that R( G) lies in all Borel subgroups of G (cf. Exercise 21.6), 
so we may assume without loss of generality that G is positive dimensional 
and semisimple: otherwise the induction hypothesis applies to G/R(G). 

Let x E N, and let T be any maximal torus of G contained in B. Then 
xTx- 1 is another such torus, so there exists y E B for which yxTx- 1 y-l = T 
(Corollary 21.3A). Evidently x belongs to B if and only if yx does, so we 
may as well assume at the outset that x E N G(T). Let S = CT(xt, a subtorus 
of T. Two cases are possible: 

Case 1. Sole. 
Then C = CG(S) has nontrivial radical, so C is a proper subgroup of G. 

According to (22.4), B' = B n C is a Borel subgroup of C. Moreover, C is 
connected (22.3). The induction hypothesis says that N dB') = B'. But x lies 
in C and normalizes B, so x E N dB') = B' c B. 

Case 2. S = e. 
Since x normalizes T, while T is commutative, a quick calculation shows 

that the commutator morphism )Ix: T ~ T (sending t to txt- 1X- 1 ) is actually 
a group homomorphism with kernel CT(x). This is finite, because S = e, so 
)Ix must be surjective, for reasons of dimension (Proposition 7.4B). Therefore 
T lies in (M, M), where M is the subgroup of N generated by x and B. As 
a result, B = T Bu lies in the subgroup of M generated by Bu and (M, M). 

Now choose a rational representation p:G ~ GL(V), where V contains 
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a line D whose isotropy group in G is precisely M (Theorem 11.2). Let 
X:M ~ Gm be the associated character. Then X is trivial on (M, M) as well 
as on the unipotent group Bu; so X is trivial on B. If 0 #- v E V spans D, 
this implies that p induces a morphism GIB ~ Y = orbit of v under p(G). 
Since GIB is complete, its image Y is closed in V (hence affine) as well as 
complete, by (21.1)(b). But then Y is a point (21.1)(c). Therefore G = M. 
Since G is connected and [M:B] < 00 (Lemma 23.1), this forces G = B, 
which is absurd. D 

23.3. The Variety G / B 

Let B be any Borel subgroup of G (thanks to the conjugacy theorem, it 
makes no real difference which B we choose). The normalizer theorem enables 
us to identify the collection m of all Borel subgroups of G with the projective 
variety GIB. Indeed, if B' E m, then B' has a fixed point xB on GIB (i.e., 
x- 1 B'x = B). If yB is any fixed point of B', then xBx- 1 = B' = yBy-l, 
or y - 1 X E N G(B) = B, whence xB = yB. This shows that the assignment 
B' f-+ xB is unambiguous. It is surjective, since xBx -1 f-+ xB for arbitrary 
x E G. Finally, it is injective, again by the normalizer theorem. 

Under the 1-1 correspondence just described, the natural action of G on 
m (B' f-+ xB'x- 1 ) evidently goes over into the natural action of G on GIB 
(yB f-+ xyB). In particular, for any subgroup H of G, the set of all Borel 
groups (if any) containing H corresponds to the set of fixed points of H on 
GIB. We shall denote these sets respectively by mH and (GIB)H. The first is 
of course intrinsically defined, while the second is dependent on the choice 
of B. 

23.4. Summary 

The results of this chapter form the essential foundation for the study 
of reductive groups in subsequent chapters. To make reference easier and 
to etch these results more sharply in the reader's mind, we summarize 
briefly the main ones (G is a connected group): 

(a) All Borel subgroups (resp. all maximal tori) of G are conjugate (21.3). 
(b) If B is a Borel subgroup, then GIB is a projective variety (21.3). 
(c) A closed subgroup P of G includes a Borel subgroup if and only if 

GI P is a complete variety (then P is called parabolic) (21.3). 
(d) The union of all Borel subgroups of G is G itself (22.2). 
(e) If S is any torus of G, CG(S) is connected; in case S is maximal, 

CG(S) is nilpotent and of finite index in its normalizer, and lies in every 
Borel subgroup which includes S (22.3). For any torus S, any Borel subgroup 
B of G, B (\ CG(S) is a Borel subgroup of CG(S) (22.4). 

(f) If P is a parabolic subgroup of G, P = N G(P) (23.1). In particular, 
if B is a Borel subgroup, GIB may be identified with the collection m of all 
Borel subgroups of G (23.3). 
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All of these results depend in turn on Borel's fixed point theorem (21.2): 
If X is a nonempty complete variety on which a connected solvable algebraic 
group G acts, then there exists a point of X fixed by G. 

Exercises 

G denotes a connected algebraic group. 

1. Let S be a maximal solvable subgroup of G, S not a Borel subgroup. 
Prove that S is closed, disconnected, and of lower dimension than any 
Borel subgroup of G. 

2. Prove that Theorem 23.1 is equivalent to its Corollary A. 
3. Let B be a Borel subgroup of G. If P, Q are parabolic subgroups of G 

which include B, prove that P c Q implies Ru(P) :=> RiQ). 
4. For G = SL(n, K), describe the parabolic subgroups including B = 

G n T(n, K), and deduce that the number of conjugacy classes of para
bolies in G is 2n - 1 (n - 1 = rank G). Treat the other classical groups 
similarly. 

5. If T is a maximal torus of G, the number of distinct Borel subgroups 
including T is finite, equal to [N G(T): CG(T)]. 

6. If char K = 0, B a Borel subgroup of G, then b is a maximal solvable 
subalgebra of g, nn(b) = b, and NG(b) = B. 

7. If char K = 0, why is it obvious that every unipotent element normalizing 
a Borel subgroup B of G must belong to B? 

8. Prove that a closed subgroup H of G is a Borel subgroup if and only 
if H is solvable and G/H is complete. 

Notes 

Theorem 23.1 was first proved by Chevalley [8, expose 9], thereby paving 
the way for the further structure and classification theory. The elegant proof 
given here is due to Borel (1973 Buenos Aires lectures). Maximal solvable 
subgroups of algebraic groups are investigated by Platonov [4], who shows 
that they form only finitely many conjugacy classes. 



Chapter IX 

Centralizers of Tori 

Throughout this chapter G denotes a connected algebraic group. 
The collection m of all Borel subgroups of G may be identified with the 

variety G/B, for any fixed B in m (23.3). The action of G on m induced by 
conjugation corresponds to left multiplication on G/B. Here we shall examine 
how various tori S and their centralizers act on m. Since CG(S) is itself con
nected (22.3), and often of smaller dimension than G, it is possible to reduce 
many questions to the case of "semisimple rank 1", where the action on m 
yields decisive information about the structure of G. 

24. Regular and Singular Tori 

It is useful to categorize a torus S in G by its number of fixed points on 
m (i.e., by the number of Borel subgroups it lies in). If ms is finite, call S 
regular; otherwise call S singular. (In Chevalley [8], Borel [4], the term 
"semiregular" is used in place of "regular".) For example, we shall soon see 
that a maximal torus is regular, while in cases like SL(n, K), the identity 
component in the kernel of a root turns out to be a singular torus. 

24.1. Weyl groups 

Let S be any torus in G. Because of the rigidity oftori (16.3), NG(S)/CG(S) 
is a finite group, called the Weyl group of G relative to S and denoted W( G, S). 
Since all maximal tori are conjugate, all their Weyl groups are isomorphic; 
such a group will be called simply the Weyl group of G. 

Lemma. Let T be a maximal torus ofG, C = CG(T). Then C lies in every 
Borel subgroup which contains T. 

Proof. Since C is connected (22.3) and nilpotent (21.4), at least one Borel 
subgroup B includes CIf B' = xBx- 1 is also in mT, then T and xTx- 1 are 
maximal tori of B', hence are conjugate by some y E B'. So y(xCX-1)y-l = 

C c B', as required. D 
The lemma implies that C acts trivially on the set mT. On the other hand, 

N = NG(T) obviously permutes mT, so we obtain an action of W = N/C on 
mT. 

Proposition A. Let T be a maximal torus ofG, W = W(G, T). Then W 
permutes the set mT simply transitively. In particular, Card mT = IWI isfinite, 
so T is regular. 

147 
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Proof. First we show that W acts transitively. Let Br, B2 E Q3T. The 
conjugacy theorem shows that xB2x- 1 = Br, for some x E G. Since xTx- 1 

and T are maximal tori of B 1, there also exists Y E B 1, such that yx Tx - 1 Y - 1 = 
T, so z = yx E NG(T). But zB2z- 1 = Bb so the coset of z in W sends B2 to 
B1· 

To say that W acts simply transitively is just to say that the isotropy 
group in W of B E Q3T is trivial, i.e., that if x E N G(T) satisfies xBx- 1 = B, 
then x E CG(T). But NG(B) = B (23.1), while NB(T) = CB(T) (19.4), so this 
follows. 0 

To prepare for the semisimple (or reductive) case, we ask how passage 
to G/R(G) affects W. In general, if T is a maximal torus of G and q>:G ~ G' 
an epimorphism, we know that T' = q>(T) is a maximal torus of G' (Corollary 
21.3 C). 

Proposition B. Let q>: G ~ G' be an epimorphism of algebraic groups, with 
T and T' = q>(T) respective maximal tori. Then q> induces surjective maps 
Q3T ~ Q3,T and W(G, T) ~ W(G', T'), which are also injective in case Ker q> 
lies in all Borel subgroups of G. 

Proof. If B is a Borel subgroup of G containing T, then B' = cp(B) is a 
Borel subgroup of G' containing T' (Corollary 21.3C), so Q3T ~ Q3,T is de
fined. Since q>(NG(T)) c NG.(T'), cp(CG(T)) c CdT'), it is clear that W = 
W(G, T) ~ W(G', T') = W' is also defined. 

q> induces a surjection Q3 ~ Q3' (again by Corollary 21.3C). If B' E Q3,T , 

then each Borel subgroup of H = cp - l(B'r is a Borel subgroup of G mapped 
by q> onto B'; but T is a maximal torus of H, so it lies in one of these. This 
shows that Q3T ~ Q3'T is surjective. In case Ker q> lies in all Borel subgroups 
of G, Q3 ~ Q3' becomes injective as well. 

For the Weyl groups, we exploit their simple transitivity (Proposition A). 
Choose B E Q3T, set B' = q>(B), and use the vertical (bijective) orbit maps to 
construct a commutative diagram: 

W ~W' 
~ ~ 

Q3T ~ Q3,T' 

Surjectivity of the top map comes from the just proved surjectivity of the 
bottom map; injectivity likewise follows in case Q3 ~ Q3' is injective. 0 

Recall that R( G) is the identity component in the intersection of all Borel 
subgroups of G (Exercise 21.6), so the proposition yields bijections in the 
important special cases: G' = G/R(G), G' = G/Ru(G). 

Before discussing arbitrary subtori of T, let us note that the Weyl group 
W acts naturally on the root system 4> = 4>( G, T) as a finite group of permu
tations. Indeed, for any torus T the natural action of the normalizer on 
X(T), Y(T) induces an action of W = NG(T)/CG(T) (Exercise 8). Corre
spondingly, N = N G(T) (and hence W) permutes the eigenspaces of T in 9 
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along with the roots. Explicitly, (cra)(t) = a(n-1tn) if n EN represents cr E W. 
In turn, W permutes the root spaces ga (via Ad N): Ad n(ga) = gala) (cf. (16.4)). 

24.2. Regular Tori 

Let S be an arbitrary torus, C = CG(S). In (22.4) we studied the set ms 

of Borel groups containing S, which may be identified with a closed subset X 
of some GIB, B ::J S. The connected group C stabilizes, and in fact acts 
transitively on, each connected component Y of X. Therefore, the complete 
variety Y looks just like CjCB(S). From this we deduced in particular that 
CB(S) is a Borel subgroup of C. 

Recall that S is called regular if ms is finite. For example, maximal tori 
are regular (Proposition 24.1 A). 

Proposition. Let S be a torus in G, C = CG(S). Then S is regular if and 
only if C is solvable. J n that case C lies in every Borel subgroup of G containing 
S, and for each maximal torus T containing S, mT = ms. 

Proof. As above, identify ms with a closed subset X of some GIB, 
B ::J S. The connected components Y of X all have dimension equal to the 
codimension in C of a Borel subgroup of C. As a result, S is regular ¢> ms 

is finite ¢> C is a Borel subgroup of itself (i.e., C is solvable). The argument 
shows also that for regular S, C lies in each Borel subgroup of G containing 
S (i.e., C fixes each point of mS ). In particular, since any maximal torus T 
containing S lies in C, mT = ms. D 

24.3. Singular Tori and Roots 

A torus S eGis singular if I,Bs is infinite, or equivalently (by Proposi
tion 24.2), if C = CG(S) is nonsolvable. The largest tori of this kind arise in 
connection with roots, as follows. Recall that if T is a maximal torus of G, 
the roots of G relative to T are the nontrivial weights of Ad T in g: 

9 = cn(T) EB 11 ga, 

where ga = {x E glAd t(x) = a(t)x, t E T}, a E X(T). (Cf. (16.4).) 

Since Ad T is diagonalizable, we can split off a complement to !l'(H) in 
9 stable under Ad T for any closed subgroup H of G normalized by T. In 
particular, take H to be J(T), the identity component in the intersection of 
all Borel subgroups of G containing T, and write 

9 = !l'(I(T)) EB 11 g~. 
Notice that CG(T) c J(T) (Lemma 24.1), so 'l' c CPo It is clear that 'l' is 
independent of the choice of complement. (Eventually we shall show that 
J(T) = T· Ru(G).) 
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With this set-up, define Ta = (Ker at c T for a E 'l'. Evidently Ta is a 
torus of codimension 1 in T. We intend to show that Ta is singular. 

Proposition. Let S be a torus in G, T a maximal torus containing it. Then 
S is singular if and only if SeTa for some a E 'l'. 

Proof. Let S be singular. Then C = CG(S) is non solvable (24.2); in par
ticular, C has larger dimension than the solvable group C n I(T), so the 
space of fixed points of S in 9 is not wholly included in 2(I(T)). If S fixes 
x E g, it also fixes the various g~ components of x, so we conclude that 
S c Ker a for at least one a E 'l'. But then SeTa. 

Conversely, let SeTa for some a E 'l'. If S is not singular, then C must be 
solvable and lie in all Borel subgroups of G including S; in particular, 
C c I(T). Since the global and infinitesimal centralizers of S correspond 
(Proposition 18.4A), all the fixed points of Sin 9 must lie in 2(I( T) ), contrary 
to the definition of 'l'. 0 

Corollary. For a E 'l', set Za = CG(Ta)' Then Ga = Za/R(Za) is a semi
simple group of rank 1. 

Proof. Since Ta is singular, the connected group Za is not solvable (24.3). 
Therefore Ga is semisimple. But Ta c Z(Zat c R(Za), so rank Ga = 1. 0 

In §25 we shall prove that Ga is "locally isomorphic" to PGL(2, K); in 
particular, its dimension is 3. (This fact will be a first step in showing that 
'l' is an abstract root system in the sense of the Appendix.) The proof is 
closely tied up with showing that the Weyl group of G is not "too small". 
In case it has not already occurred to the reader, we point out that we have 
yet to prove the existence of more than one Borel subgroup containing a 
given maximal torus (in case Gis nonsolvable). 

24.4. Regular 1-parameter Subgroups 

Fix a maximal torus T of G. At the opposite extreme from the singular 
tori Ta , a E 'l' (24.3), which have codimension 1 in T, are certain regular sub
tori of dimension 1. Call a I-parameter subgroup A E Y(T) regular if the 
torus A(Gm) c T is regular. Write Y(T)reg for the set of all regular I-psg's. 
Provided dim T > 0, we can show that such 1-psg's abound. They will play 
a vital role in §25. 

Proposition. A E Y(T) is regular ~ <a, A) 1= 0 for all a E 'l'. 

Proof. Thanks to Proposition 24.3, S = A(Gm) is singular if and only if 
SeTa for some a E 'l'. But this happens if and only if <a, A) = 0 for some 
a E 'l', by the way the dual pairing of X(T) and Y(T) is defined. 0 
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Exercises 

1. If S is a torus in G, X = i.Bs, all connected components of X have dimen
sion equal to the dimension of the variety of Borel subgroups of CG(S). 
Show by example that these components need not be permuted transi
tively by W(G, S). 

2. Let T be a maximal torus of G, S a subtorus of T. Prove that T fixes a 
point in each connected component of i.B s, and deduce that the number 
of such components is less than or equal to IW(G, T)I. 

3. For G = SL(n, K) (or other classical group), prove that the group J(T) 
in (24.3) is equal to T, so that P = <P(G, T). 

4. Prove that Z, (24.3) has Weyl group of order 2. [Use Proposition 24.1B.] 
Describe the Z, occurring in SL(n, K). 

5. Prove that a subtorus of the diagonal torus in SL(n, K) is regular if and 
only if it contains a regular semisimple element (Exercise 22.7). 

6. Let T be a maximal torus of G, S a subtorus of T. Then S is regular ~ 
CG(S) c J(T) ~ i.Bs = i.B T . 

7. If S is a singular torus of G, dim CG(S) ;:, rank G + 2. 
8. Let T be a torus in G, W = W(G, T), X = X(T), Y = Y(T), If a E W has 

coset representative n E N G( T), show that the following formulas yield 
an action of W on X, Y independent of the choice of n: 

(ax)(t) = x(n-1tn) 

(aJc)(a) = nJc(a)n- l 

(t E T, X EX), 

(a E Gm, Jc E Y). 

Verify that <ax, d) = <X, Jc) for a E W, X E X, Jc E Y. 

Notes 

This chapter follows, with minor expository changes, Borel [4, Chapter 
IV]. 

25. Action of a Maximal Torus on G/B 

Any maximal torus T of G fixes at least one point of GjB, but at most 
finitely many (24.1). In particular, the action of Ton GjB is highly nontrivial 
when G i= B. We shall prove that T fixes precisely two points of GjB when 
dim GjB = 1, and fixes at least three points when dim GjB > 1 (25.2). At 
the same time we shall obtain a good description of GjR(G) in case this 
group has rank 1 (to be applied when G is the centralizer Z, of a singular 
torus '4 in a larger connected group). 

F or all of this, we use 1-psg's Jc: Gm --> T and extend the resulting action 
of Gm on GjB to pl = Gm U {O} U {oo}. In order to study GjB concretely, 
we can embed G in some GL(V) and find a point in P(V) whose precise 
stabilizer in G is B, thereby identifying GjB with the G-orbit of this point in 
P(V) (11.3). This orbit is of course closed, because GjB is complete. We can 
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even arrange matters so that the image of G/B in P(V) lies in no hyperplane, 
simply by replacing Vby the subspace spanned by the preimage of G/B under 
n: V - {O} --+ P(V). (Similarly, we could realize G/P concretely, P any 
parabolic subgroup of G.) 

25.1. Action of a I-parameter Subgroup 

(In this subsection G plays no role.) 
Let Tbe a torus in GL(V) (maximal or otherwise), with 1-psg A:Gm --+ T. 

Then Gm acts (via A) on P(V). To make this action explicit, choose a basis 
(Vb' .. , vn) of V consisting of eigenvectors for T. The weights of T in V 
are the restrictions Yb ... , Yn of the corresponding coordinate functions; 
they generate X(T). Set mi = <Yi' A). If V = Iaivi E V, t E Gm, we have by 
definition: A(t). v = Iaitmivi' The action ofGm on P(V) is gotten by passing 
from v =1= 0 to n(v) = [v]. 

Fix an arbitrary nonzero vector v E V, V = Iaivi' For reasons which will 
soon become clear, we wish to extend the orbit map t ~ A(t)[ v] to a mor
phism pi --+ P(V). Here we view pi as covered by the two affine open 
subsets K* u {O}, K* u {oo}, so it suffices to extend cp to each of these. (Actu
ally, the existence of an extension of cp to pi can be proved quite generally 
when the target variety is complete; but we need an explicit description.) 

With mi = <Yi' A) as above, let mo (resp. mO) be the minimum (resp. 
maximum) value of mi for i E I = {ilai =1= O}. Set 10 = {i E 11mi = mo}, 
1° = {iE1lmi = mO}. Notice that for tEK*, [v] = [t-mov] = [t-mov]. 
Accordingly, we can express cp in two ways: CPo(t) = O)itmi-mOvJ makes 
sense even when t = 0, while cpO(t) = [Iaitmi-movJ makes sense when t = 00. 

(In each case the vector in brackets is nonzero in V) Evidently CPo, cpo define 
morphisms of the respective affine lines K* u {O}, K* u { oo} into P(V) 
which agree with cp on K*, so they yield the desired morphism pi --+ P(V) 
(2.3). The images of 0, 00 will be denoted ..1(0) [v], A( (0) [v]: 

A(O)[v] = [I aivi] , 
IElo 

A(oo)[V] = [~o aivi} 

These explicit formulas show that },(Gm)jixes each of the two points },(O) [v ] and 
A( 00)[ v] in P(V). (This was our motive for constructing them.) It still has to 
be decided when these two points are distinct. But this is easy: A(O)[v] = 

A( (0) [v] =- 1o = 1° =- mo = mO =- v is an eigenvector of the torus 
A(Gm) =- [v] is fixed by A(Gm). In the contrary case, it is easy to see that 
A(t)[v] is fixed only for t = 0,00 (Exercise 1). 

One further observation: If A had been chosen so that the mi = <Yi' A) 
for distinct Yi were all distinct, then the eigenvectors of T and of A(Gm) would 
coincide. In this case, we would have: A(O)[v] = A(oo)[v] =- T fixes [v]. 
Such a choice of A is always possible, since X(T) x Y(T) --+ Z is a dual 
pairing and since the Yi generate X(T). 
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25.2. Existence of Enough Fixed Points 

First we prove an auxiliary geometric lemma. 

Lemma. Let W be a subspace of codimension 1 in a vector space V, X an 
irreducible closed subvariety of P(V) not wholly contained in P(W). If dim 
X > 0, then X meets P( W), and each irreducible component of their intersec
tion has codimension 1 in X. 

Proof. If X n P(W) were empty, then X would be a complete closed 
subset of the affine variety P(V) - P(W), forcing dim X = ° (21.1)(c). Now 
the remaining assertion follows from Theorem 3.3, combined with Corollary 
3.2. D 

Theorem. Let T c GL(V) be a torus, acting naturally on P(V). Let X 
be an irreducible closed set in P(V) stabilized by T. Assume that X lies in no 
hyperplane P(W) ofP(V). 

(a) If dim X ~ 1, T fixes at least two points of X. 
(b) If dim X ~ 2, T fixes at least three points of X. 

Proof. Let (Vb . .. , vn ) be a basis of V consisting of eigenvectors for 
T, with corresponding weights I; E X(T). Choose I, E Y(T) so that m; = <I;, Jc) 
are distinct when the I; are distinct. As remarked at the end of (25.1), T and 
Jc(Gm) then have precisely the same fixed points in P(V). So we may as well 
assume that T = Jc(Gm). 

(a) Since dim X ~ 1, X is infinite. In case T fixes all points of X, we 
therefore have nothing to prove. Otherwise let [v] E X be not fixed by T. 
Following the recipe in (25.1) for this choice of v, we get two distinct fixed 
points ),(0)[ v] and Jc( <Xl )[v] in P(V). But the associated morphism p 1 ~ P(V) 
has closed image (21.1)(b), and X is closed, so these points must lie in X. 

(b) As in the proof of (a), we may assume that some [v] in X is not 
fixed by T. Using the notation of (25.1) (for this choice of v), order the basis 
of V so that ml = mO has the maximum value for basis vectors involved 
in v. Let W be the subspace of V spanned by vz, ... , Vn" Then the lemma 
shows that the irreducible components of X n P(W) have codimension 1 
in X. They are obviously stable under T (since X and Ware), and of dimension 
at least 1 (since dim X ~ 2). Let Y be one ofthese components. Then part (a) 
implies that T fixes at least two points of Y. It remains to find a third fixed 
point. By choice of v, Jc( <Xl) [v] = [1:: iEI O aiv;] does not lie in P( W), but is 
fixed by T, so this does the trick. D 

We now deduce from the theorem that G has sufficiently many Borel 
subgroups containing a given maximal torus T. 

Corollary A. Let P be a proper parabolic subgroup of G, T any torus in 
G. Then T fixes at least two points of G/P (resp. at least three, when 
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dim G/P > 1). In particular, a maximal torus lies in at least two Borel sub
groups (resp. at least three, when dim G/B > 1). 

Proof. As remarked at the beginning of this section, G may be embedded 
into some GL(V) in such a way that G/P is isomorphic to the orbit X of 
some point in P(V); we can even guarantee that X lies in no hyperplane. 
Since G/P is complete and irreducible, X is closed and irreducible (21.1)(a). 
T stabilizes X, so the theorem applies. D 

This corollary can be formulated also as an assertion that the Weyl 
group of G is not "too small", in view of Proposition 24.1A: 

Corollary B. Let B be a Borel subgroup of G, T a maximal torus, 
W = NG(T)/CG(T) the Weyl group of G relative to T. If dim G/B ~ 1 
(resp. ~ 2), then I Wi ~ 2 (resp. ~ 3). D 

Corollary C. Let T be a maximal torus of G. Then G is generated by 
the set !!J T of Borel subgroups containing T. 

Proof. Use induction on dim G. The subgroup P of G generated by 
!!JT is evidently parabolic. Suppose P -# G. By Corollary A, there is at least 
one conjugate pi of P containing T, with pi -# P. But T is a maximal torus 
of pi, and the Borel subgroups of pi containing T are also Borel subgroups 
of G (Exercise 21.9). The latter generate pi, by induction, forcing pi c P, 
which is absurd. D 

Later on it will be shown that two suitably chosen elements of!!JT already 
suffice to generate G. For example, when G = SL(n, K), take the upper and 
the lower triangular groups (Exercise 2). 

25.3. Groups of Semisimple Rank 1 

We can use (25.2) along with (6.3), (6.4), to obtain a description of semi
simple groups of rank 1. The semisimple rank, rankssG (resp. reductive 
rank, rankredG) is the rank of G/R(G) (resp. G/Ru(G)). For example, SL(2, K), 
GL(2, K), PGL(2, K), and the groups Za (24.3) all have semisimple rank 1, 
while G L(2, K) has reductive rank 2. 

Theorem. Let T be a maximal torus ofG, W = W(G, T). Thefollowing 
statements are equivalent: 

(a) RankssG = 1. 
(b) IWI = 2. 
(c) Card!!JT = 2. 
(d) Dim G/B = 1. 
(e) G/B ~ pl. 
(f) There exists anepimorphismq>:G ~ PGL(2, K),with(Kerq>t = R(G). 
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Proof. (a) => (b) Since every Borel subgroup includes R(G), the Borel 
subgroups of G including T are in 1-1 correspondence with those of 
G' = G/R(G) including T' = TIT n R(G), and the number in each case 
is the order of the respective Weyl group W, W' (Proposition 24.1 B). But 
dim T' = 1, by assumption, and Aut Gm = 'L/2'l, (Exercise 7.4), so I Wi = 

IW'I ~ 2. On the other hand, G is nonsolvable by assumption, so IWI ~ 2 
by Corollary 25.2B. 

(b) => (c) The equivalence of (b) and (c) (24.1) was just noted. 
(c) => (d) Since T lies in two distinct Borel subgroups, G/B has dimension 

at least 1. If dim G/B ~ 2, then Corollary 25.2A says that Card '!3 T ~ 3, 
contrary to (c). 

(d) => (e) Let dim G/B = 1. As in (25.1), we may construct a nonconstant 
morphism pi ~ G/B c P(V) relative to any regular I-psg }, E Y(T), T a 
maximal torus of G. Its image is closed, because pi is complete (2l.1)(b), 
hence equal to G/B, because G/B is irreducible and of dimension 1. This 
implies that G/B is isomorphic to pi (6.3). 

(e) => (f) G acts as a group of automorphisms of G / B ~ pl. But we 
know that Aut pi = PGL(2, K), whence a morphism of algebraic groups 
cP: G ~ PGL(2, K) (6.4). Evidently Ker cp is the intersection of all Borel sub
groups of G, so (Ker cpr = R(G)(cf. Exercise 21.6). Since G' = G/R(G) is non
solvable, its dimension is at least 3 (Exercise 21.4), forcing cp to be an epi
morphism. 

(f) => (a) This is clear. D 
The theorem tells us a considerable amount about the structure of a 

semisimple group of rank 1, notably that its dimension must be 3. More 
generally, we get information about reductive groups of semisimple rank 1, 
which will turn out to be applicable to the groups Za when G is reductive: 

Corollary. Let G be reductive, rankssG = 1, T a maximal torus of G, 
Z = Z(Gt. Then: 

(a) (G, G) is semisimple, of dimension 3. 
(b) G = (G, G)· Z, the intersection of(G, G) with Z being finite. 
(c) CG(T) = T, and in particular, Z(G) c T. 
(d) If cp: G ~ PG L(2, K) is an epimorphism, Ker cp = Z( G). 

Proof. We get from part (f) of the theorem an epimorphism cp: G ~ 
PGL(2, K), with (Ker CPt = R(G). Since G is reductive, R(G) = Z and is 
a torus (Lemma 19.5). On the other hand, PGL(2, K) is its own derived 
group: for example, otherwise the derived group would be solvable (Exercise 
21.4), contrary to the semisimplicity of PGL(2, K). It follows that cp maps 
(G, G) onto PGL(2, K). Combined with the fact that (G, G) is connected 
(17.2) and the fact that (G, G) n Z is finite (19.5), this proves both (a) and (b). 
It is easy to see that a maximal torus in PGL(2, K) is its own centralizer, 
by computing in SL(2, K), so CG(T) and T have the same image under cp, 
forcing T c CG(T) cT· Ker cp. But T has finite index in the right side, 
while CG(T) is connected (22.3). So (c) and (d) follow. D 
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25.4. Weyl Chambers 

Let us look more closely at Borel subgroups of the centralizer of a singular 
torus. 

Fix a maximal torus T of G. For each a E lJI (24.3), T" = (Ker at is a 
singular subtorus of T, whose centralizer Z~ has semisimple rank 1. From 
Theorem 25.3 (in fact, already from Exercise 24.4) it follows that 
W~ = W(Z~, T) has order 2, so the maximal torus T of Z~ lies in precisely 
two Borel subgroups (say B~ and B~) of Z~. Since Z~ includes CG(T), W~ 
may be identified canonically with a subgroup of W = W(G, T); denote a 
generator by a~, and choose some representative n~ of a~ in N z (T). Then 

~ 

n~B~n; 1 = B~. For each B E ~V, we know (22.4) that B !l Z~ is a Borel 
subgroup of Z~, hence is either B~ or B~. Say B !l Z~ = B~, so n~Bn; 1 !l z~ = 

B~. Then it is clear that precisely half the elements of W (whose order is 
even!) send B to other Borel subgroups with the same property; thus a 

induces a natural partition of !!)T. We can make this partition more recog
nizable if we formulate it in terms of I-psg's. 

The idea is to assign to each A E Y(T)reg a Borel subgroup B(A) containing 
T, in such a way that B(A) !l Z~ = B~ precisely when <a, A) > O. Since A 
is regular if and only if <a, A) #- 0 for alIa E lJI (24.4), this idea is certainly 
reasonable. Of course, the correspondence A f----+ B(A) will be many-to-one, 
since Card !!)T = IWI is finite. 

Choose an embedding G c GL(V), so that G/B is identified with the 
orbit X of a point of P(V) (X being contained in no hyperplane P(W)). 
As in the set-up of (25.1), let m; = <y;, A) for A E Y(T)reg' Order the basis 
(Vb' .. , vn) of V so that mO = m1 = ... = mr > mr+ 1 ~ ... ~ mn = mo. 
Let W be the span of (vz, ... , vn). By construction, X does not lie wholly 
within P(W), so we may choose [v] = [Ia;v;] EX with a1 #- O. The discussion 
in (25.1) shows that A(Gm) fixes the point A(OO)[V] = [a1v1 + ... + arvr]. 
Because A is regular, we can argue that r = 1: Otherwise we can find infinitely 
many distinct points in X of the type [v'] = [V1 + bvz + ... ] for distinct b, 
since X cannot lie in the union of P(W) and only finitely many other hyper
planes defined by conditions "b = ratio of second to first coordinate". 
So we can find infinitely many distinct fixed points A( 00) [v'] of A(Gm ) in 
X, contradicting the regularity of l Therefore, r = 1, [v] = [V1]. 

Consider the neighborhood U = X - (X!l P(W))of[v1]. The preceding 
argument shows that A( 00) [v'] = [V1] for all [v'] E U. This singles out the 
fixed point [V1] of A(Gm ) for special attention: the corresponding Borel 
group is denoted B(A). Notice that Tfixes [V1] (A being regular), so B(A) E !!)T, 

as desired. 
The Weyl group W permutes !!)T simply transitively (24.1). On the other 

hand, Wacts naturally on Y(T) via (aA)(a) = nA(a)n- 1 (n any representative 
of a in NG(T)); this action satisfies <ax, aA) = <X, A) for X E X(T), A E Y(T) 
(Exercise 24.S). Since ). is regular ¢;> <a, A) #- 0 for all a E lJI, this shows 
that W permutes Y(T)reg' We claim that the two actions of W respect the 
map A f----+ B(A). Let a E Wbe represented by n EN G(T). Concretely, n permutes 
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the eigenspaces of T in V, hence permutes the weights Yi and the integers 
mi = (Yi, A). But then the above recipe singles out the fixed point [n. VI] 
of O'A(Gm) and labels the corresponding Borel group nB(A)n- 1 as B(O'A). 
This proves our claim. In particular, the correspondence A 1---+ B(2) is onto 
1ST . Write [(B) = {A E Y(T)regIB = B(A)} for each BE 1ST, and call this 
the Weyl chamber of B (relative to T). The (nonempty) sets [(B) therefore 
form a disjoint partition of Y(T)reg' 

Return now to the discussion of Za (IX E 0/) which began this subsection, 
with O'a, na, etc. Choose 20 E Y(T)reg so that <IX, Ao) > 0, set B = B(20), and 
define Ba = B n Za, B~ = n,Ban; 1. Then B" B~ are the two Borel subgroups 
of Za containing T. Moreover, since O'alX = -IX (in additive notation !), 
we see from the W-equivariance of the map 21---+ B(2) that (IX, A) > 0 
precisely when B(2) n Za = Ba. To summarize our findings: 

Proposition. Fix a maximal torus T of G, and assign to each 2 E Y(T)reg 
a Borel subgroup B(2) containing T, as above. Let IX E 0/, Za = CG(1~). Then 
the two Borel subgroups B" B~ of Z, containing T may be labelled so that for all 
2 E Y(T)reg, (IX, 2) > 0 precisely when B(2) n Za = Ba. 0 

Exercises 

1. In the notation of (25.1), suppose that 2(0) [v] i= 2( OCI) [v]. Prove that 
no other point 2(t)[ v] can be fixed by 2(Gm). 

2. Let G = SL(n, K) (or other classical group). Show that G is generated 
by two suitably chosen Borel subgroups. 

3. Fix a maximal torus T of G. Then G is generated by all CB(S), B ranging 
over 1ST and S ranging over the subtori of co dimension 1 in T. 

4. Let G be a reductive group of semisimple rank 1, T a maximal torus, 
ifJ = ifJ(G, T)' W = W(G, T)' Prove that: 

(a) Ker Ad = Z(G). 
(b) ifJ = {IX, -IX} for some IX E X( T), with O'IX = -IX if 0' generates W. 
(c) If B, B' are the two Borel subgroups containing T, then B n B' = 

T, while Bu and B~ are isomorphic to Gao 
(d) 9 = t EB 9, EB 9-" with 9a = 2(Bu), 9-a = 2(B~) (for suitable 

labelling of IX, - a). 
5. Exhibit three reductive groups of dimension 4 and semisimple rank 1 

which are pairwise nonisomorphic (as algebraic groups). [To show non
isomorphism when char K = 2, compare Lie algebras.] 

26. The Unipotent Radical 

Let T be a fixed maximal torus of G. We are going to prove that RiG) 
coincides with the unipotent part of the intersection of all Borel subgroups 
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containing T. Coupled with the earlier description of the groups Za, this 
will yield a reasonably clear picture of the root system of a reductive group. 

26.1. Characterization of Ru(G) 

First we prove a lemma which insures the existence of enough regular 
l-psg's. Recall from (24.3) the set 'P of roots "outside" I(T)u-

Lemma. Let a, {3 E 'P be nonproportional. Then there exists Je E Y(T)reg 
for which <a, Je) > 0 and <{3, Je) < O. 

Proof. The criterion for Je E Y(T) to be regular is that <y, Je) i= 0 for 
all y E 'P (24.4). The free abelian groups X(T) and Y(T), of rank n = dim T, 
become dual vector spaces over Q if we tensor with Q over Z and extend 
the pairing <y, Je). In this setting a, {3 are linearly independent vectors, 
while the condition for regularity is that Je avoid finitely many hyperplanes 
(including those "orthogonal" to a, {3). So it is geometrically obvious that 
the conditions of the lemma can be met by some Q-linear combination of 
l-psg's: a and {3 simply have to lie on different sides of the hyperplane 
orthogonal to this vector. (The reader should supply an algebraic proof.) 
Multiplying by a common denominator of the coefficients gets us back into 
Y(T), where the conditions of the lemma are still satisfied. 0 

As in (24.3), I(T) denotes the identity component in the intersection of 
the (finitely many) Borel subgroups containing T. 

Theorem. Ru(G) = I(T)u. 

Proof. Abbreviate I(T)u by U. Since RiG) lies in Bu for all Borel 
subgroups B, it is clear that Ru(G) c U. To get the reverse inclusion, it will 
be enough to show that U <J G. But G is generated by the Borel subgroups 
containing T (Corollary 25.2C). In turn we claim that B E ~-V is generated by 
its subgroups CB(S), where S ranges over the subtori of co dimension 1 in T: 
Let A be the subgroup of B so generated. Since C B( T) c C B( S), all occurrences 
of the weight 0 in b occur in a (global and infinitesimal centralizers of tori 
correspond: Proposition 18.4A). If a is a nontrivial weight, S = (Ker at has 
co dimension 1 in r, so all occurrences of a in b already occur in a (for the same 
reason). Conclusion: a = b, hence A = B (since A c Band B is connected). 

This reduces matters to showing that U is normalized by all CB(S), 
S as above. If S is regular, then CB(S) = CG(S) lies in all Borel subgroups 
containing T(24.2), hence in I(T), so there is nothing to prove. Next let S 
be singular, so S = (Ker at = Ta for some a E 'P (24.3). Here C B( Ta) = Za n B 
is one of the two Borel subgroups Ba, B~ of Za (25.4). We can even say which 
it is if we write B = B(Je) for some (nonunique) Je E Y(T)reg: Za n B = Ba ~ 
<a, Je) > 0 (25.4). 
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It is awkward to prove directly that Ba (or B~) normalizes U. Instead 
let us look at the root structure as a whole for some guidance. This is shown 
schematically in Figure 1. 

b 

9/b bu/u u 
~ ~ ~ ~ 

-IJ., -[3, ... 0,0, ... IJ., [3, ... y, 6, ... 
Figure 1 

Here P = {± IJ., ± [3, ... }, while various y, 6, ... over which we have no 
control (some may be 0) occur in u. Varying the choice of BE mT just replaces 
some of the roots in P by their negatives. Ba involves (besides ° weights 
corresponding to t) IJ. along with some unknown weights occurring in u. 

Our strategy is to find a closed subgroup H of Bu containing both U 
and (Ba)u, with U of codimension one in H. Then Proposition 17.4(b) will 
force U to be normal in H. 

Define H to be the unipotent part of the intersection of all BE mT 

for which B (l Za = Ba. This amounts (25.4) to intersecting those B(A)u, 
A E Y(T)reg, for which <IJ., A) > 0. It is clear that U and (Ba)u lie in H, so 
we just have to compare dimensions. For this it suffices to show that u has 
dimension one less than 1). Now H is stable under conjugation by T, so 
1) is the sum of u and certain 9p for [3 E P (notation of (24.3)), IJ. included. 
Among the latter roots none can appear along with its negative (cf. Figure 1), 
so for [3 #- IJ., we deduce from (25.3) that [3 and IJ. are nonproportional. The 
above lemma furnishes a regular I-psg A satisfying: <IJ., A) > 0, <[3, A) < 0. 
Thus B(A) (l Zp = Bp, while H c B(A). Assuming that [3 (but not - [3) 
occurs in 9, this forces CH(Tp) = e. But global and infinitesimal centralizers 
of tori correspond (18.4A), so [3 cannot occur in 9 after all. We conclude 
that only a occurs in 1) outside u. Since dim 9~ = 1 (25.3), the proof is 
complete. 0 

26.2. Some Consequences 

With Theorem 26.1 in hand, it is possible (for the first time) to exploit 
fully the assumption that a group is reductive. 

Corollary A. Let G be reductive, S any sub torus of T. Then: 
(a) CG(S) is reductive. 
(b) If S is regular, then CG(S) = T. In particular, the Cartan subgroups 

of G are just the maximal tori, and Z( G) c T. 

Proof. Let C = CG(S). Theorem 26.1, applied to C, shows that Ru(C) 
is the unipotent part of the intersection of all Borel subgroups of C containing 
the maximal torus T of C. This in turn lies in I(T)u = e, proving (a). In case 
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S is regular, C is solvable (24.2) as well as reductive, i.e., C is a torus. So (b) 
follows. D 

The fact that centralizers of tori in reductive groups are again reductive 
often makes it possible to use inductive arguments (which is why we em
phasize these rather than semisimple groups). 

Corollary B. Let G be reductive, <P = <p(G, T). Then: 
(a) <P = lJ', and <P = - <P. 
(b) 9 = t EB li'E<P go. with dim 9a = 1. 
(c) The singular tori of codimension 1 in G are the Ta = (Ker IXt, IX E <P. 
(d) Let Za = CG(Ta) (IX E <p). Then Za is a reductive group of semisimple 

rank 1, with 3a = t EB 9a EB g-a. Moreover, the Za generate G. 
(e) Z(G) = n'E<P Ta· 
(f) The rank of the subgroup R of X(T) generated by <P is equal to rankssG. 

Proof. Assertions (a), (b), (c), and the first part of (d) are all immediate, 
in view of Corollary A and (25.3). That the Za generate G follows from the 
fact that they generate a closed subgroup of G having Lie algebra 9 (cf. (b)). 
Consider (e). According to Corollary A, Z(G) c T, forcing Z(G) c Ta 
for all IX. Conversely, if t E Ta for all IX, then t centralizes every Za; these 
generate G (by (d)), so t E Z( G). As to (f), we need only prove this when 
Gis semi simple. Let R' be the annihilator of R in Y(T), relative to the dual 
pairing X(T) x Y(T) ~ z. It just has to be shown that R' = O. Now 
(IX, A) = 0 for all IX E <P means that A(Gm) c Ker IX, hence that A(Gm) eTa, 
for all IX. By (e), A(Gm) c Z(G), which is finite because G is semisimple. 
But A(Gm) is connected, forcing A = O. D 

Corollary C. Let G be reductive. For each Borel subgroup B containing 
T, there exists B- E mT such that B n B- = T. Then 9 = b- + b = 

u- EB t EB u, where B = TV, B- = TV-. 

Proof. We know that B = B(A) for some regular I-psg A, and that 
each IX E <P satisfies (A, IX) "# 0 (cf. Corollary B). Set B- = B( -A). For 
each IX E <P, Za n Band Za n B- are therefore the two Borel subgroups 
of Za containing T (25.4). In view of part (b) of Corollary B, B n B- = T, 
while 9 decomposes as indicated. D 

B- is in fact unique (Exercise 6); it is called the Borel subgroup opposite 
B (relative to T). 

26.3. The Groups Va 

Let G henceforth be reductive, <P = <p(G, T), W = W(G, T). So far we 
have studied roots as characters of T, permuted by W (or N). The decom
position 9 = t EB li'E<P 9a offers a more concrete portrayal of <P, making it 
clear (for example) that dim G = rank G + Card <P. 
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The root system may even be viewed as living within G itself, in the 
following sense. For each iY. E CP, ga is the Lie algebra of the unipotent part 
Ua of one of the two Borel subgroups of Za containing T (part (d) of Corollary 
26.2B). In fact, Ua is the unique connected T-stable subgroup of G having 
Lie algebra 9a. (This is clear if char K = 0, cf. (13.1)). For suppose Va satisfies 
these conditions. Since its Lie algebra consists of nilpotent elements, Va 
must be unipotent rather than toral (cf. (20.5)). Moreover, H = TVa is a 
connected solvable subgroup of G, so it lies in some BE 5!:)T. Since Ta cen
tralizes 1) = t + g" Ta must also centralize H: global and infinitesimal 
centralizers of tori correspond (Proposition 18.4A). Therefore, Va c B n Za 
(one of the two Borel subgroups of Za containing T), forcing Va = Ua. 

Theorem. Let G be reductive, iY. E CPo 
(a) There exists a unique connected T-stable subgroup Ua of G having 

Lie algebra ga (and Ua c Za). 
(b) If n E N represents (J E W, then n U an - 1 = U ala). 
(c) There exists an isomorphism ea:Ga -+ Ua such that for all t E T, 

x E Gm te,(X)t- 1 = diY.(t)x). 
(d) G is generated by the groups Ua (iY. E CP), along with T. 

Proof. We just verified (a). Since :£l(nUan-l) = Ad n(:£l(Ua)) = 

Ad n(9a) = gala) (24.1), while nUan- 1 is obviously connected and T-stable, 
(b) follows from (a). For (d), use part (d) of Corollary 26.2B. 

It remains to prove (c). The fact that Ua is a connected I-dimensional 
unipotent group insures the existence of some isomorphism e: Ga -+ U a (20.5). 
The action of T on U a by inner automorphisms therefore yields an action 
on Ga, hence a morphism of algebraic groups T -+ Aut Ga ~ Gm (cf. Exercise 
7.4), i.e., a character y of T. Thus te(x)t- 1 = e(y(t)X). For each t E T, there 
is a corresponding commutative diagram, the left vertical arrow being 
multiplication by y(t): 

Ga -4 Ua 

1 1 Intt 
Ga -4 Ua 

If we identify the Lie algebra of Ga with K, the differential of multiplication 
by y(t) is again multiplication by y(t), while d(Int t) = Ad t. It follows that 
Ad t(x) = y(t)x for x Ega' which forces y = iY.. So we can set ea = e. D 

The proof of (c) shows that any isomorphism Ga -+ Ua will be compatible 
with the action of T; but for emphasis we call such an isomorphism admissible. 
It is unique only up to a scalar factor (i.e., an automorphism of Ga), which 
amounts to the choice of a basis for ga. 

Exercises 

G denotes a reductive group. 
1. Let S be any torus in a connected group H. Prove that CR"IH) (S) = 

Ru(CH(S) ). 



162 Centralizers of Tori 

2. Z( G) is the intersection of all maximal tori of G. 
3. A subtorus of G is regular if and only if it contains a regular semisimple 
. element (Exercise 22.7). 

4. Z(G) = naE'P Ker rI.. 

5. If x Egis semisimple, then CG(xt is reductive. 
6. Prove that B- in Corollary 26.2C is unique. 
7. All elements of Ua (other than e) are conjugate in G. 
8. The character group of a maximal torus in Ad G is generated by roots. 
9. Find the index in X(T) of the subgroup R generated by (/J when G = 

SL(n, K) (or other classical group). What is the structure of X(T)/R? 
10. The groups Ua generate (G, G). 
11. If B is a Borel subgroup containing the maximal torus T, then 

NG(T) n B = T. 
12. G is generated by its semisimple elements. 



Chapter X 

Structure of Reductive Groups 

By studying the actions of tori and their centralizers on G/B, we showed 
in Chapter IX that a reductive group is generated by the centralizers of 
singular tori (the latter being precisely the connected kernels of roots). 
Moreover, we showed that the quotient of such a centralizer by its center 
is essentially PGL(2, K). The goal of this chapter is a more detailed description 
of G: properties of the root system, structure of normal subgroups of G, 
"normal form" for elements of G, structure of parabolic subgroups. 

Except in §29, G will denote a reductive group, T a fixed maximal torus, 
if) = if)(G, T), W = W(G, T), X = X(T), Y = Y(T). 

27. The Root System 

Our first objective is to prove that if) is an abstract root system, in the 
sense of the Appendix. This will lead in turn to a determination of the closed 
normal subgroups of G. 

27.1. Abstract Root Systems 

Given a finite dimensional vector space E over R, an abstract root system 
in E consists of a subset 'JI of E satisfying the following axioms: 

(Rl) 'JI is finite, spans E, and does not contain O. 
(R2) If ct E IJ', the only multiples of ct in IJ' are ± ct. 

(R3) If ct E IJ', there exists a reflection T, relative to ct which leaves 'JI 
stable. 

(R4) If ct, f3 E 'JI, then T,(f3) - f3 is an integral multiple of ct. 

Recall (A.1) that T, in (R3) is uniquely determined by ct, so (R4) is un
ambiguous. Moreover, T, = T _a' and T,(f3) - f3 is in any case a scalar multiple 
of ct. The rank of 'JI is dim E. The abstract Weyl group W('JI) is the (finite) 
subgroup of GL(E) generated by all T, (ct E 'JI). 

With these notions in hand, we can formulate the main result of this 
section. 

Theorem. Let G be semis imp ie, E = R 0z X. Then if) is an abstract root 
system in E, whose rank is rank G and whose abstract Weyi group is isomorphic 
to W. 

The proof of (R4) will be given in (27.2), but the other points can be 
settled right away. (Rl) follows from part (f) of Corollary 26.2B, while (R2) 
is a consequence ofthe fact (25.3) that ± ct are the only roots of Z, relative to 
T. The study of Z, also yields a unique nontrivial element (J, E W(Z" T) c W 
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(cf. Proposition 24.1B), which sends IX to -IX (and has order 2). This is our 
candidate for reflection relative to IX. For (Ja to be a reflection, it should fix 
pointwise a subgroup of corank 1 in X. Select a I-psg A for which (JJ = - A; 
then the subgroup of X consisting of characters X for which <X, A) = 0 does 
the trick. (R3) requires that (Ja stabilize <P, but this was observed earlier for 
arbitrary elements of W (24.1) (26.3). 

Once (R4) has been verified, the abstract Weyl group W(<P) may be 
identified with the subgroup of W generated by all (Ja (IX E <P). We can then 
conclude that W(<P) = W by noting that each acts simply transitively on a 
set of the same cardinality: W(<P) does so on the collection of abstract Weyl 
chambers in E (A.4), while W does so on the set mT(24.1), or equivalently, on 
the set ofWeyl chambers in Y. To see that the sets in question have the same 
number of elements, it is enough to observe that after extending scalars to R 
and identifying E with E* = R Q9z Y, the two notions of Weyl chamber 
coincide. Indeed, one looks in each case at the connected components in 
the complement of the union of hyperplanes "orthogonal" to roots. 

While the theorem applies directly only to semisimple groups, there is 
no difficulty about treating an arbitrary reductive group. The roots of G 
and of (G, G) (or GjZ(Gt) are in natural 1-1 correspondence, and the Weyl 
groups may be identified (24.1). 

In case G = SL(n, K), it is easy to see that <P is the abstract root system 
whose Dynkin diagram (A.7) has type An - 1 (Exercise 1); other classical 
groups lead to types B, C, D. 

27.2. The Integrality Axiom 

In order to verify (R4) we have to look concretely at the way in which 
W permutes <P. If (J E W is represented by n E N G( T), then Ad n maps gp onto 
g".(P) (24.1). Proposition 26.3 shows that this infinitesimal action actually 
derives from the action ofInt n on the collection of subgroups {Va, IX E <P}, 
viz., n V pn - 1 = V".(P)' Recall further that for each [3 E <P, there exists a 
(non unique) isomorphism t:p: Ga -+ V p such that for all t E T, tt:p(X)C 1 = 
t:p([3(t)x). We have to deal with the case (J = (Ja (IX E <P), [3 arbitrary. 

The strategy is to show that Ad Za stabilizes the subspace m = LgP+ka 
(k E Z); since (Ja has a representative in Nz,(T), this will imply (R4). Now 
Za is generated by T, Va, V -a (Theorem 26.3), and Ad T certainly stabilizes 
m. It is therefore enough (by symmetry) to show that Ad Va also does. 

Notice that our problem has been reduced to one concerning the reductive 
group Za, acting on g via the adjoint representation of G. There is really 
nothing special here about Ad. Rather, the essential situation is this: A 
reductive group G is represented in some GL(V), where a weight X relative 
to T is singled out (16.4). (For example, take Ad: Za -+ GL(g) and the weight 
[3.) It just has to be shown that Va stabilizes Lk Yx+ka, or merely that Va 
sends Vx into LYx+ka (where we can specify that k E Z+.) This more general 
formulation will be applied in §31 to the study of representations of G. 
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It is technically convenient to consider only those representations 
p: G -t GL(V) for which Ker p c Z( G). Actually, by the end of this section 
it will be clear that Ker Ad = Z( G) for any reductive group G. In the case 
of the restricted Ad:Za -t GL(g), comparison with the homomorphic image 
PGL(2, K) of Za implies directly that the kernel in question is central. Indeed, 
PGL(2, K) is nonsolvable and therefore cannot have a proper closed normal 
subgroup of positive dimension (cf. Exercise 21.4). In turn, since T ¢ Ker Ad, 
the restriction of Ad to Za cannot be trivial, so its kernel must lie in the 
center of Za. 

Proposition. Let p : G -t G L( V) be a rational representation, with 
Ker p c Z(G). Let Vx be a weight space relative to p(T). lfa E CP, then p(Ua) 
sends Vx into LVx+ka (k E Z'+). 

Proof. Since Ker p c Z( G) c T, there is no loss of generality in re
placing G by the linear group p( G), which can be viewed as a matrix group 
if we choose a basis for V, say consisting of weight vectors relative to T. Since 
TUa lies in a Borel group, the Lie-Kolchin Theorem even allows us to take 
U a in upper triangular (unipotent) form, while T consists of diagonal matrices 
t = diag (tb"" tn).Notice that if U E U, t E T, the matrix t U t- 1 has (i,j) 

-1 entry titj Uij' 
Now we exploit the isomorphism ca:Ga -t Ua' Concretely, Ca(X)ij must be 

a polynomial in x, say Co + C1X + ... + cmxm (Ck E K independent of x). 
Therefore cia(t)x)ij = Co + cl(a(t)x) + ... + cm(a(t)mxm). But this is also 
equal to titj-l CiX)ij' since tcix)t- 1 = ca(a(t)x). Equating these two results, we 
have a polynomial equation valid for all x E K: 

co(1 - tli 1) + Cl(a(t) - titj- l)X + ... + ... + cm(a(t)m - titj-l )Xm = 0. 

K being an infinite field, all coefficients must vanish. Whenever Ck i= 0, we 
must therefore have ak = y, where y is the character t ~ tit; 1 of T. Since a 
is not trivial, this implies that at most one Ck can be nonzero, and then 
Ca(X)ij = CkXk. 

Let us see that this means in terms of weights. Say the ph basis vector 
is of weight X, i.e., X(t) = tj • Then Ua sends this vector to a sum of vectors 
of weights lJ(t) = ti • Our calculation shows that those IJ which actually occur 
must satisfy: IJX - 1 = nonnegative power of a. In additive notation, this says 
that IJ = X + ka (for some k E Z+). D 

As remarked earlier, this proposition completes the proof of Theorem 
27.1. 

27.3. Simple Roots 

Now that f[> is known to be an abstract root system, all the results sum
marized in the Appendix are available. Recall (A.4) that a base of cP is a 
subset Ll = {lXb .•. , IX I }, C = rank f[>, which spans E (hence is a basis of E) 
and relative to which each root IX has a (unique) expression IX = LCilXi, where 
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the Ci are integers oflike sign. The elements of .1 are called simple roots. Bases 
do exist; in fact, W = W(<P) permutes them simply transitively, and each root 
lies in at least one base. Moreover, W is generated by the reflections a~ (IX E .1), 
for any base .1 (A. 5). 

In view of the discussion in (27.1), the following objects correspond 1-1 
in a natural way and are permuted simply transitively by W: bases, Weyl 
chambers in E, Weyl chambers in Y, Borel subgroups containing T. In 
particular, each choice of BE 5B T amounts to a choice of .1, or to a choice of 
positive roots <p+ (those for which all Ci ;;:;: 0 above). If B = B(A), A E Yreg , 

then IX is positive precisely when <IX, A) > O. 
The generation of W by {a~, IX E L1} leads to an analogous statement 

about G. 

Theorem. Let .1 be a base of <P. Then G is generated by the Z~ (IX ELI), 
or equivalently, by T along with all U ~ (± IX ELI). 

Proof. The subgroup H of G generated by the Z~ (IX ELI) includes T as 
well as representatives of all a E W (since the a~, IX ELI, generate W). So the 
Lie algebra 1) includes t along with all root spaces gO"(~) (IX ELI, a E W). As 
recalled above, these a(lX) exhaust <P, forcing 1) = 9 and hence H = G. 
Theorem 26.3 (d) completes the proof. D 

27.4. The Automorphism Group of a Semisimple Group 

In (27.5) we shall show that a semisimple group is the product of its 
"simple" subgroups, which correspond to the irreducible components of the 
root system. But first we have to get some information about automorphisms. 
Assume that G is semisimple, and denote by Aut G the (abstract) group 
consisting of all algebraic group automorphisms of G. Int G is a normal 
subgroup. Another subgroup of Aut G, denoted D, consists of those auto
morphisms which leave stable a given maximal torus T and a Borel subgroup 
B containing it. 

We fix the choice of B, which amounts to fixing a base ,1 of <P (27.3). Each 
a ED induces in an obvious wayan automorphism fj of <P, since a(T) = T. 
Since moreover a(B) = B, fj stabilizes ,1. Therefore fj belongs to the group 
r of diagram (or graph) automorphisms of <P (A.8). The correspondence a ~ fj 

is evidently a group homomorphism D ---+ r. 

Theorem. Let G be semisimple. 
(a) Aut G = (Int G)D. 
(b) The natural map D ---+ r induces a monomorphism Aut Glint G ---+ r; 

in particular, Int G has finite index in Aut G. 

Proof. (a) If a E Aut G, the conjugacy of Borel groups yields x E G such 
that Int x(a(B)) = B. In turn, the maximal tori T and xa(T)x- 1 of Bare 
conjugate by some y E B, so that Int yo Int x 0 a = Int(yx) 0 a belongs to D. 



27.5. Simple Components 167 

(b) It suffices to show that (Int G) n D is the precise kernel of the homo
morphism D ---+ r, thanks to part (a). In one direction, this is easy: IfInt x lies 
in D, then x normalizes B (hence lies in B by Theorem 23.1) and x normalizes 
T (i.e., x EN = N G(T)). But N n B = T (cf. Proposition 19.4, Corollary 
26.2A). So Int x induces the identity automorphism of CPo 

In the other direction, let (J E D induce the identity on CPo We have to show 
that (J is inner. For each a E A, select as in (26.3) an isomorphism Sa: Ga ---+ Va. 
By assumption, (J(Va) = Va, so there exists c. E K* such that (J(sa(x)) = 

sa(cax) for all x E K. (Recall that Aut Ga = K*, cf. Exercise 7.4.) In turn, the 
linear independence of the set A enables us to select t E T for which aCt) = 

ca( a E A) (Lemma 16.2C). After replacing (J by (Int t - 1 )(J, we may assume that 
each Ca = 1. The new (J does nothing to Va (a E A). In turn, ift E Tis arbitrary, 
a((J(t)) = aCt) (a E A). G being semisimple, A spans a subgroup of finite index 
in X(T) (part (f) of Corollary 26.3B), from which it follows that (J(t) = t for 
all t E T. Now (J fixes To and therefore stabilizes Za (a E A), acting on its 
Borel subgroup TVa as the identity; so (J is the identity on Za (Proposition 
21.4A). But the Za (a E A) generate G (Theorem 27.3), forcing (J = 1. This 
means that the original (J was inner. 0 

27.5. Simple Components 

As in (27.4), we assume that Gis semisimple. Any closed connected normal 
subgroup =1= e is also semisimple: its radical is a characteristic subgroup, 
hence normal in G. Now we are in a position to describe these subgroups. 

Theorem. Let G be semisimple, and let {Gili E I} be the minimal closed 
connected normal subgroups of positive dimension. Then,' 

(a) If i =1= j, (Gi, Gj ) = e. 
(b) I isfinite, say I = {1, ... , n}, and the product morphism Gl x··· x Gn 

---+ G is surjective, with finite kernel. 
(c) An arbitrary closed connected normal subgroup of G is the product of 

those Gi which it contains, and is centralized by the remaining ones. 
(d) G = (G, G). 
(e) G is generated by the groups Va (± a E A). 

Proof. (a) (G i, Gj ) is a closed connected normal subgroup ofG contained 
in both Gi and Gj , so it must be e, by minimality. 

(b) Let J = {i(1), ... , i(r)} c l. It follows from (a) that the product map 
n: Gi(l) x ... x Gi(r) ---+ G is a morphism of algebraic groups. In particular, 
Gi(l) ... Gi(T) is a closed connected normal subgroup of G, semisimple in its 
own right. It also follows from (a) that any other Gi (i ~ J) centralizes this 
group, so G i n Gi(l) ... Gi(T) is finite. As a result, Ker n must be finite, and 
for large enough J the collection must be exhausted, i.e., I is finite. Say 
I = {l, ... , n}, H = Gl ... Gn- It remains to show that H = G. 

The action of G on H by inner automorphisms yields a group homo
morphism t/J: G ---+ Aut H, with t/J(H) = Int H. Since H is semisimple, Int H 
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has finite index in Aut H (Theorem 27.4). On the other hand, Ker tj; = CG(H); 
call its identity component H'. Then H H' has finite index in G, hence equals 
G by connectedness. Since H' <l G, H' is also semisimple. Its minimal closed 
connected normal subgroups -# e centralize H and are therefore also normal 
in G; but then they are among the Gi and lie in H. This is absurd unless 
H' = e,H = G. 

(c) Let H be an arbitrary closed connected normal subgroup of G, H -# e. 
The argument in (b) shows that each Gi (i E 1) either lies in H or centralizes H. 
From this we deduce that the minimal closed connected normal subgroups 
of H are certain of the Gi, and then (as in (b)) that H is their product. 

(d) The derived group of Gi is a characteristic subgroup, hence normal in 
G; since Gi is not commutative, minimality forces (G i, GJ = Gi• Thanks to 
parts (a) and (b), (G, G) = (G b G1) ... (Gm Gn) = G1 ... Gn = G. 

(e) Since G is generated by T along with the Ua (±rJ. E .1) (Theorem 27.3), 
the group H generated by the U a alone is closed, connected, and normal in 
G, while GjH is a torus. But then H ::J (G, G), so (d) forces H = G. 0 

It is an immediate consequence of part (d) that a reductive group G is the 
product of its center and derived group, the intersection being finite (cf. 
Lemma 19.5). For the reductive groups Za this was already observed in 
Corollary 25.3. 

Recall (A.7) that rfJ is called irreducible if it (or equivalently, .1) cannot 
be partitioned into two disjoint "orthogonal" subsets, and that rfJ decomposes 
uniquely into the disjoint union rfJ 1 U ... U rfJt of irreducible root systems 
(in subspaces of E). Consider what happens when rJ., f3 lie in different com
ponents. First of all, no f3 + krJ. (k E Z) can be a root except f3 itself. So 
Proposition 27.2 implies that Ad Za stabilizes the i-dimensional space gp; in 
particular, Ad Ua acts trivially (being unipotent). If x E Ua, 2(XUpX-l) = 

Ad x(gp) = gp, so from Proposition 26.3 (a) we conclude that xU px- 1 = Up, 
i.e., Ua normalizes Up. By symmetry, up normalizes Ua' It follows that 
(Ua, Up) = e. This argument shows that the subgroups Hi of G generated by 
the Ua for rJ. E rfJ i centralize each other, and together generate G (part (e) 
of theorem). Therefore the Hi are closed connected normal subgroups, whose 
product is G. According to the theorem, each Hi is a product of certain Gj . 

But it cannot be a product of several, since the roots occurring in distinct Gj 

are "orthogonal". To summarize: 

Corollary. The decomposition G = G1 ... Gn corresponds precisely to 
the decomposition of rfJ into its irreducible components. 0 

As a byproduct of the preceding arguments, we see that each Gi is non
commutative and has no closed connected normal subgroups other than 
itself and e. Such an algebraic group is called simple (or almost simple, if we 
wish to emphasize that the group need not be simple as ar abstract group). 
Example: SL(n, K). It will be shown in §29 that when G is a simple algebraic 
group, the abstract group GjZ(G) is simple in the usual sense of having no 
proper normal subgroup -# e. 
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Exercises 

1. Verify that SL( n, K) has root system of type An - 1. 

2. Let rJ., 13 E L1 (a base of cP).Prove that Za, Zf3 generate a reductive subgroup 
of semisimple rank 2 in G (if rJ. =f. 13). 

3. What can you say about Aut G (G reductive)? 
4. Let G be semisimple. If cP has t irreducible components, G has precisely 

21 closed connected normal subgroups. 
5. Prove that Ker Ad = Z( G). 
6. A proper closed normal subgroup of an almost simple group G lies in 

Z(G). 
7. If H is a closed normal subgroup of G, T a maximal torus of G, then 

T n H is a maximal torus of H. 

Notes 

The treatment here differs somewhat from that in Borel [4, §14]; the use 
of Proposition 27.2 was suggested by Steinberg, cf. Steinberg [10, Lemma 72] 
or [13, 3.3], Humphreys [1, Lemma 2.1]. 

28. Bruhat Decomposition 

As in §27, G will be a reductive group, T a maximal torus. We fix a 
Borel subgroup B of G containing T (i.e., we fix a base L1 of cP) and set U = Bu , 

N = NG(T). 
The object now is to develop a normal form for elements of G, para

metrized by B and the Weyl group W. In case G = GL(n, K), the reader should 
already be familiar with the underlying idea. A given matrix can be multiplied 
on the left and on the right by diagonal or upper triangular unipotent matrices 
(corresponding to elementary row and column operations) until it becomes 
just a permutation matrix (a representative of W in N). With a little more 
care, this decomposition G = BNB can be made unique (the representatives 
of W in N having been fixed). 

28.1. T-Stable Subgroups of Bu 

The Lie algebra of U = Bu is just the direct sum of 1-dimensional root 
spaces ga (a > 0), with ega, gf3] c gdf3' (A precise description of structure 
constants is, however, difficult to obtain at this point.) We have to develop 
analogous information about U itself, or more generally, about its T-stable 
subgroups, e.g., (U a' U 13) or U n nUn -1 (n EN). If H is a T-stable closed 
subgroup of U, 9 is stable under Ad T and is therefore just the sum of certain 
gao We want to show that H is the product of the corresponding groups Ua. 
More precisely, we say that an algebraic group H is directly spanned by its 
closed subgroups H 1, ... , H n in the given order if the product morphism 
H 1 X ... x Hn ~ H is bijective. (If we know that 9 = (h EEl ... EEl 9n, this 
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morphism will also be separable; since the varieties involved are smooth, it 
can then be shown to be an isomorphism of varieties, by invoking a special 
case of Zariski's Main Theorem. We shall obtain this more directly in cases 
of interest to us, cf. (28.5) below.) 

It is important to notice that T acts on U without fixing any element 
other than e (26.2). 

Proposition. Let H be a closed, T-stable subgroup of U. Then H is 
connected and is directly spanned by those Ua for which Ua = ga lies in I) 
(taken in any order). 

Proof. Let 'l' = C/J(H, T), so I) = U'E'l' ga. Order 'l' in any way as 
(1X1> ... ,lXn ), and let n: Ua! X .•• X Uan ~ H be the product morphism. 
This makes sense, because for IX E 'l', Ua = Cu(Ta) does lie in H (apply 
Proposition 18.4A to the action of Ta on H). We have to show that n is 
bijective (which will imply that H is connected). We use induction on dim H; 
but for this purpose we assume only that U is a connected unipotent group 
on which T acts without nontrivial fixed points, while u is the direct sum of 
l-dimensional eigenspaces for T corresponding to characters IX with distinct 
connected kernels Ta. 

First we treat the case in which H is connected. If H is commutative, 
then n is actually a homomorphism, with Ker n finite and T-stable. The 
connected group T must permute the finite set Ker n trivially (Proposition 
8.2(d)), forcing Ker n c fixed point set of T on H = e. On the other hand, 
1m n is a closed subgroup of the same dimension as H, so it coincides with 
H (H being connected). 

Even if H is not commutative, it is nilpotent and therefore has a center 
of positive dimension (Proposition 17.4(a)), which is evidently T-stable. The 
commutative case shows that Z = Z(Ht is directly spanned by those Ua 

it contains (in any order!). Notice that it is enough to prove that n is bijective 
when the central Ua are pushed to the end in the chosen ordering; say these 
are Ua.+l' .. . , Ua •. If cp:H ~ HjZ is the canonical map, then T acts in a 
natural way on HjZ. By induction on dimension, cp(H) is directly spanned 
by cp( Ua.), .•• ,cp( Ua.) in the given order. This implies that H is directly 
spanned by U1J. 1 ' ••• , Uan. 

Finally, we drop the assumption that H is connected. The preceding 
argument gives the structure of both U and HO, allowing us in particular 
to write U = HOV, where V is the product of those Ua not in HO. So His 
the set-theoretic product of HO and H n V. But H n V is finite, T-stable, 
hence trivial (as in the argument above). D 

Notice that the proposition leaves unsettled the question: Which subsets 
'l' of cP + actually belong to T-stable subgroups of U? But we can single 
out some interesting examples. Let (J E W be represented by n E N. Then 
nUn - 1 is independent of the choice of coset representative, since T normalizes 
U, so we may allow ourselves to write (JU(J-l. Similarly, we write (JUa(J-l 
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(= Uu(a))' If B- = TU- is the Borel subgroup contammg T opposite 
to B (26.2), we have T-stable subgroups of U:Uu = U!l (JU(J-l, U~ = 
U !l (JU-(J-l. Their respective sets of roots partition cp+: 

CP: = {IX > 01(J(IX) > O}, 
cp;; = {IX > 01(J(IX) < O}. 

The proposition shows that U = UuU~ = U~Uu ((J E W); but in general 
this direct span is not a semidirect product. 

Consider what happens when IX E,1, (J = (Ja' Since IX is simple, (Ja permutes 
the positive roots other than IX (A.S). Thus Uu, has codimension 1 in U (and 
U = UaUu ). From Proposition 17.4 we conclude that Uu is normal in U. 
Even more'is true: Since (J; = e, UO', is also normalized by da (i.e., by Nz.{T)). 
It follows that Ua, is normalized by Za' This will be exploited presently. 

28.2. Groups of Semisimple Rank 1 

First, a couple of general observations. Since T lies in B, the double coset 
BnB is independent of the choice of n representing a given (J E W = NIT. 
It is convenient to write B(JB in this case (as we wrote (JU(J-l in (28.1)). 
The mixture of roman and greek letters should suffice to warn the reader 
not to take this notation too literally. Observe next that if we wish to verify 
the equality G = BNB, it is enough to do so for the image of G under a 
morphism of algebraic groups whose kernel lies in Z( G). More precisely, 
given <p: G ---+ G', with Ker <p c Z( G) c T, G' = <p( G) is again reductive 
(or trivial), with Borel subgroup B' = <p(B), maximal torus T' = <p(T), 
normalizer N' = <p(N). So G' = B' N' B' will imply G = BN B (or vice versa). 

Proposition. Suppose rankss(G) = 1. Then G = B u B(JB (disjoint 
union), where (J is the nontrivial element of W. Moreover, B(JB = U(JTU, 
and if n E N is a fixed representative of (J, each element of this double coset 
has a unique expression of the form untu' (u, U' E U, t E T). 

Proof. Recall (Corollary 25.3) that there exists an epimorphism G ---+ 

PGL(2, K) having Z(G) as kernel. In view of the preceding remarks, it is 
enough to prove all assertions when G = SL(2, K). That the union is disjoint 
is clear, since two double co sets are either equal or disjoint, while N!l B = T. 
It is also evident that B(JB = U (JTU. We just have to show that each element 
of G not in B has a unique expression of the indicated form. By direct cal
culation (when c #- 0): 

When a representative of (J is fixed, e.g., 
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the diagonal part is clearly determined by c. The reader can easily check 
the other uniqueness assertions. 0 

This result can be given a geometric interpretation. With G still of 
semisimple rank 1, consider how U acts on the (I-dimensional) variety G/B, 
which is essentially pl. U of course fixes the point corresponding to B (and 
no other). The second Borel subgroup containing T corresponds to the 
point (JB (i.e., nB for n representing (J), and according to the proposition 
its U -orbit exhausts what is left of G / B. 

28.3. The Bruhat Decomposition 

Now we can derive the Bruhat decomposition of G, to be refined to a 
normal form in (28.4). 

Theorem. G = UaEW B(JB (disjoint union), with B(JB = BrB if and only 
if (J = r in W. 

Proof. According to Theorem 27.3, G is generated by the groups Z~ for 
IX simple. Proposition 28.2 shows that Z~ c BWB. To show that G = BWB, 
it will therefore suffice to show that BWB is closed under (left) multiplication 
by Z~, IX E .1. At the end of (28.1) we observed that U = U<1,u~ and that Z~ 
normalizes Ua,. So any element of Z, (notably a representative of (J,) can 
be moved past Ua,. 

Let (JB = Xo ((J E W) be a point of G/B corresponding to one of the IWI 
Borel subgroups which contain T. The stabilizer of Xo in Z, is one of its two 
Borel subgroups (label it B,) containing T (25.4). Therefore, Z~/B, maps 
1-1 onto the orbit of Xo under Z" the map being equivariant with respect 
to Z~. The geometric interpretation following Proposition 28.2 shows that 
this orbit can be written as U~. Xo u U~(J, . Xo (regardless of whether U~ 
lies in B~ or in its opposite). 

Combining these two paragraphs, we obtain: Z~B(JB = Z~U",U~(JB = 

Ua,Z~(JB = U", U~(JB u U", U~(J~(JB = B(JB u B(J~(JB. In particular, Z~BWB c 
BWB, as required. 

Two double cosets B(JB, BrB are either disjoint or identical, so it re
mains to prove that equality can hold only if (J = r. For this we use the 
fact that N n B = T, along with the preceding calculation in the form: 
(J~B(J c B(JB u B(J~(JB ((J E W, a E .1). Since the (J, (a E .1) generate W, it is 
natural to exploit the length function (A.5) on W: f( (J) = minimum t such that 
(J = (J~(1) ... (J~(t), a(i) E .1. Clearly f((J) = 1 precisely when (J = (J~ (a E .1), 
while C(e) = 0. 

Assume B(JB = BrB, with (say) C((J) ~ C(r), and use induction on £((J). If 
£((J) = 0, (J = e, so B = BrB forces r to normalize B; but B n N = T, so r = e. 
In general, write (J = (J~(J* (a E .1), with C((J*) = C((J) - 1. From B(JB = BrB 
we get (J~(J* Br c BrB, hence (because (J; = e) (J* B c (J,BrB c BrB u Ba, rB. 
Two cases are possible: 

(a) (J* B c BrB. Then B(J* B = BrB, so by induction (J* = r, contra
dicting f((J*) < £((J) ~ £(r). 
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(b) <J*B c B<JaTB. Then B<J*B = B<JaTB. Evidently f(<J*) ~ l(<JaT), so by 
induction <J* = <JaT, whence <J = <Ja<J* = <J;T = T, as desired. 0 

An axiomatic version of the Bruhat decomposition (devised by 1. Tits) 
will be presented in §29. The key axiom, contained in the above proof that 
G = BWB, is as follows. 

Corollary (of proof). If lI. E ,1, <J E W, then a ,Ba c Ba B u Ba aa B. 0 
It is also worthwhile to note an easy corollary of the theorem itself, 

which is by no means obvious at an earlier stage. 

Corollary. Let B' be any Borel subgroup of G. Then B (\ B' includes a 
maximal torus of G. 

Proof. We know that B' is conjugate to B (21.3). The theorem allows 
us to write a conjugating element in the form uab (u E U, <J E W, bE B); 
so B' = uaBa-1u- 1. But aTa- 1 = T, while uTu- 1 c B, so the maximal 
torus uaTa-1u- 1 of B' is also included in B. 0 

28.4. Normal Form in G 

The double coset BaB can also be written as UaB or as UaTU, but 
the two U-components of an element are not uniquely determined, except 
in the rank 1 case treated in (28.2). In general, a portion of U can be moved 
past a (and T) and combined with the other copy of U. With this refinement, 
the decomposition does turn out to be unique. 

Recall the discussion at the end of (28.1), where for each a E W we 
partitioned the positive roots and wrote U = U o-U~ = U~U 0- (direct span). 
This implies that BaB = UaB = U~Uo-aB = U~(JB, since a-1U,,(J c U. 

Theorem. For each a E W, fix a coset representative n(a) EN. Then 
each element x E G can be written in the form x = u'n(a)tu, where a E W, 
t E T, u E U, U' E U~ are all determined uniquely by x. 

Proof. The existence of such a decomposition, along with the fact that 
x determines the choice of a, follows from Theorem 28.3 and the preceding 
remarks. Suppose we also have x = v'n(a)tov (v EU, v' E U~, to E T). Then 
tu = (n(a)-l(u'-lv')n(a))tov. But the expression in parentheses belongs to 
a-lU~a c U-, while U- (\ B = e, so this expression is e and u' = v'. 
Moreover, tu = tov, forcing t = to and u = v (since T (\ U = e). 0 

28.5. Complements 

So far we have ignored the topological aspect of the Bruhat decom
po~ition. Let B- = TU- be as before, and let <Jo be the (unique) element 
of W sending B to B-. 
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Proposition. The product map n: U- x B ---+ G defines a bijection of 
u- x B onto an open subset Q ofG (called the big cell). 

Proof. Since U- (\ B = e, n is certainly injective. Moreover, dim Q = 

dim u - + dim b = dim 9 = dim G, so the constructible set Q contains a 
dense open subset of G. But Q is the translate by CTo of the double coset 
BCToB. Thus it suffices to show that BCTOB is open, or that BCTo . Xo is open 
in GjB (xo the point corresponding to B). Being a full B-orbit as well as a 
constructible set, BCTo . Xo is actually open in its closure (8.3); but we observed 
that the latter is GjB. 0 

The fact that Q is open in G can be made more precise: Take a basis 
of 9 including an x, E g, for each IX E cjJ along with a basis of t, and form 
the mth exterior power of g, on which G acts via the adjoint representation 
(m = Card cjJ +). Let f be the coordinate function on G corresponding to the 
exterior product of those Xa for which IX > O. Then f is clearly a polynomial 
function on G, and it can be shown that Q is precisely the principal open 
set consisting of nonzeros of f in G. (See Notes below.) 

In the following chapter it will be important to know that n: U - x B ---+ Q 

is actually an isomorphism of varieties. Indeed, n is bijective and separable, 
the latter because its differential maps u - EEl b isomorphically onto 9 (= tan
gent space to Q at e), cf. (5.5). This implies that n is birational (4.6), hence 
that its restriction to some dense open subset of U- x B is an isomorphism 
(4.7). The collection of all such open sets has a maximal element (thanks to 
ACq, call it O. But n is (left) U- -equivariant and (right) B-equivariant, so 
o must be stable under left multiplication by U- and right multiplication 
by B (thanks to maximality). It follows that 0 = U- x B. 

This argument exploits (as in §12) the homogeneity resulting from group 
actions. In fact, a version of Zariski's Main Theorem would show more 
generally that a separable bijective morphism of varieties is an isomorphism 
provided that the target variety is smooth (or just "normal"). 

The product map Ua x U~ ---+ U in (28.1) can be shown to be an isomor
phism of varieties by imitating the preceding argument. In Chapter XI we 
shall also need this sort of result for more than two factors, e.g., we shall 
need to know that the product map U" x . .. x U'm ---+ U is an isomorphism 
of varieties when 1X1' ••. ,lXm are the positive roots in any order. This fact may 
be proved inductively, using the existence of a series of T-stable connected 
normal subgroups of U each of codimension 1 in the next (Theorem 19.3), 
along with Proposition 28.1. 

Exercises 

1. The assignment H ~ E) is an injection of the collection of all T-stable 
subgroups of U into the collection of all T-stable subalgebras of u. 

2. Let H, xH x - 1 be T-stable closed subgroups of U, where x E U. Prove 
that H = xH x - 1. [Use Proposition 28.1 and induction on dim U, 
passing to UjUp for some Up C Z(U).] 
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3. Let IJ., {3EtP+. Prove that (Ua, Up) is included in the product (in any 
order) of those U ia + jp for which i, j > 0 and ilJ. + jf3 E tP. 

4. Write down some explicit formulas for commutators in U involving 
Ua, Up when G = SL(3, K), Sp(4, K). 

5. Complete the proof of uniqueness in (28.2). 
6. Call two Borel subgroups distant if their intersection is a torus (necessarily 

maximal, thanks to Corollary 28.3). If B', Bn are both distant from B, 
prove that B' is conjugate to Bn by some element of B. 

7. Prove that dim U~ = C(a), a E W. [Use (A.5).] 

8. Let G = SL(2, K), Q as in (28.5). Prove that (: ;) belongs to Q if and 

only if a =F O. (More generally, when G = SL(n, K), the criterion for 
x E G to lie in Q is that all diagonal minors of x be nonzero.) 

9. Let H be an algebraic group, ({J: G ~ H a homomorphism of abstract 
groups. If ({JIB is a morphism, prove that ({J is a morphism. [Use Q ~ 
U- x B.] 

10. Assuming the truth of Corollary 28.3, deduce the existence half of 
Theorem 28.3, i.e., the assertion that G = BNB. 

11. Give another proof of the uniqueness assertion in Theorem 28.3, along 
the following lines: If Ba B = BTB, then for chosen representatives n( a), 
n(T) E N, there exist b, b' E B such that bn(a) = n(T)b'. For arbitrary 
tE T, bn(a)tn(a)-lb- 1 = n(T)b'tb,-ln(T)-1 EB. Rewrite the left side as 
n(a)tn(a)-lv and the right side as (n(T)tn(T)-l)(n(T)v'n(T)-l) for some v, 
v' E Bu, and conclude that a = T. 

Notes 

The Bruhat decomposition was first observed in the framework of clas
sical linear Lie groups; it was then exploited in the study of finite simple 
groups and algebraic groups by Chevalley [7] [8], and subsequently axiom
atized by Tits [3]. In Steinberg [13, 2.14], the Bruhat decomposition is 
obtained directly for some classical groups. For a more precise description 
of the big cell (28.5) and the role it plays, cf. Chevalley [11], Borel [6, 4.5]. 

29. Tits Systems 

Inspired by Chevalley's T6hoku paper [7], Tits devised an efficient set of 
axioms to describe the structure of Chevalley's simple groups (and the 
variations of them constructed afterwards), thereby obtaining a unified 
simplicity proof for all types. The resulting "Tits systems" are to be found 
in all reductive algebraic groups, as well as in their subgroups (perhaps finite) 
consisting of matrices over certain subfields of K. They also occur, in a rather 
different way, in simple algebraic groups over local fields (cf. (35.4)). Because 
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the axiomatic development is quite useful and uncluttered, we shall present 
it here, even though our only applications are to reductive groups over K. 
Besides obtaining a more precise description of parabolic subgroups, we 
shall deduce from the axioms a useful presentation of the Weyl group, to be 
applied in an essential way in §32, and a simplicity criterion which implies 
that a simple algebraic group over K has no proper normal subgroups outside 
its center. (This latter result is not used elsewhere in the text). 

To avoid proliferation of notation and to render the proofs somewhat 
more intuitive, we retain in the axioms much of the notation already intro
duced : G, B, T, N, W, .... However, the roots of G relative to T do not appear 
explicitly. Implicitly, the choice of B fixes a set of simple roots, hence a set 
S of simple reflections (which generate W); we shall reserve the letter p for 
these reflections, but allow a to denote any element of W. 

29.1. Axioms 

Let G be a group generated by two subgroups Band N, where T = B n N 
is normal in N. Denote the quotient group NIT by W, and suppose that W is 
generated by a subset S consisting of involutions (elements of order 2). 
Notation such as BaB or aB or Ba (a E W) is permitted, since two repre
sentatives of a in N differ only by an element of T, and T c B. We call 
(G, B, N, S) a Tits system provided the following axioms are satisfied: 

(Tl) If PES, a E W, then pBa c BaB u BpaB. 
(T2) If PES, pBp i= B. 
W is called the Weyl group of the Tits system, while Card S is the rank. 

In most applications, the rank is finite, but W can be either finite or infinite. 
(In any case, no restrictions on either cardinality need be made in advance.) 
We call B, or any of its conjugates in G, a Borel subgroup of G. 

Axiom (Tl) just expresses the fact that the product of the two double 
co sets BpB and BaB (with pES) lies in the union of the two double cosets 
indicated. The apparent asymmetry can be removed if we take inverses and 
use the assumption that p2 = e: 

(Tl/) If PES, a E W, then aBp c BaB u BapB. 
The example of a Tits system which ought to come to mind is that in 

which G is a reductive algebraic group, B a Borel subgroup including a 
maximal torus T, N = NG(T), W = NIT the Weyl group, and S the set of 
simple reflections corresponding to the base of the root system determined 
by B. We know that G is generated by the Borel subgroups containing T 
(Corollary 25.2C), hence by Band N, while S consists of involutions and 
generates W (27.3). Axiom (Tl) is just Corollary 28.2, while axiom (T2) follows 
from the fact that W acts simply transitively on )BT (24.1). One cautionary 
word: In this example, Card S is the rank of the root system, i.e., the semisimple 
rank of G. So the rank of the Tits system is not necessarily the full rank of G. 
(The point is that the center of G plays no role here.) 
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29.2. Bruhat Decomposition 

Henceforth (G, B, N, S) denotes a Tits system, with Weyl group W. Call 
an expression CJ = Pi ... Pk (Pi E S) reduced if k is as small as possible, and 
write C(CJ) = k (this is the length of CJ, relative to S). By convention, C(CJ) = 0 
if and only if CJ = e. Evidently C(CJ) = 1 if and only if CJ E S. 

For each subset I c S, let Vl-j be the subgroup of W generated by I. 
Set PI = B~B (product set), so PfIJ = B. 

Theorem. (a) If I c S, PI is a subgroup ofG (in particular, Ps = BWB 
coincides with G, since Band N generate G). 0 

(b) For CJ, CJ' E W, BCJB = BCJ'B if and only if CJ = CJ'. # 

Proof. (a) PI is closed under taking inverses and under left multipli
cation by B, so it suffices to check closure under left multiplication by P E I. 
But (Tl) implies that pBVl-jB c BVl-jB u BpVl-jB cPl. 

(c) The "only if" part needs proof. For this we repeat the argument in 
(28.3). Proceed by induction on C(CJ), which we may assume ~ C(CJ'). If C(CJ) = 0, 
CJ = e and the assumption reads: B = BCJ' B. So a representative of CJ' in 
N lies in B. But B n N = T, so CJ' = e. For the induction step, let BCJB = 

BCJ'B, with C(CJ) ~ 1. Write CJ = pCJ*(p E S) with C(CJ*) = C(CJ) - 1. There
fore, CJB = pCJ*B c BCJ'B, or CJ*B c pBCJ'B (because p2 = e). Using (Tl), 
CJ* B c BCJ' B u BpCJ' B. In particular, BCJ* B coincides with one of these 
double cosets. 

Suppose BCJ* B = BCJ' B. By induction, CJ* = CJ', contrary to the fact that 
C(CJ*) < C(CJ) ~ C(CJ'). Therefore, BCJ*B = BpCJ'B. Clearly C(CJ*) ~ C(PCJ'), so 
induction implies that CJ* = PCJ', or pCJ* = CJ', or CJ = CJ'. D 

Notice that axiom (T2) has not yet been invoked. 

29.3. Parabolic Subgroups 

We are going to make axiom (Tl) more precise by relating the inclusion 
there to the lengths of elements of W. This information will then be used to 
show that the only subgroups of G containing B are the groups PI of (29.2). 
Notice that (Tl), along with part (b) of Theorem 29.2, allows us to state 
(for pES): 

(*) pBCJ c BpCJB ¢:> pBCJ n BCJB = 9. 

Lemma A. Let PES, CJ E W. 
(a) C(pCJ) ~ C(CJ) implies pBCJ c BpCJB. 
(b) C(pCJ) ~ C(CJ) implies pBCJ n BCJB # 9. 
(c) C(pCJ) = C(CJ) ± 1. 

Proof. The conclusions of (a) and (b) are incompatible, thanks to (*), 
so C(pCJ) # C(CJ). On the other hand, C(pCJ) obviously cannot differ by more 
than 1 from t(CJ). So (c) will follow from (a), (b). 
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(a) Use induction on ((a), the case ((a) = 0 being obvious. Write 
a = a'p', where p' E S and ((a') = ((a) - 1. Suppose the conclusion is false, 
i.e., pBa meets BaB. Right multiplication by p' yields: pBa' n BaBp' -=1= 

~. But C(pa') ~ ((pa'p) - 1 = ((pO") - 1 ~ ((a) - 1 = ((a'). By induc
tion, pBa' c Bpa'B, forcing BaBp' n Bpa'B -=1= ~. In turn, (Tl') says that 
BaBp' c BaB u Bap'B = BaB u Ba'B. Therefore, Bpa'B intersects (hence 
equals) one of these double cosets. By Theorem 29.2(b), either pa' = a 
(absurd, since ((a') < ((a) ~ ((pa) by assumption), or else pa' = a', p = e 
(absurd, since P has order 2). This contradiction shows that (a) is true. 

(b) Here we use both axioms. (Tl) implies that pBp c BpB u B; there
fore, (T2) says in effect that pBp n BpB -=1= ~. Multiplying on the right by pa, 
we get pBa n BpBpa -=1= ~. But by assumption, ((p 2a) = £(a) ~ ((pa), so 
part (a) forces BpBpa c BO"B, whence pBa n BaB -=I=~. 0 

As a consequence of (c), the number of p's in any expression (reduced or 
not) for a E W has the same parity as ((a). 

Lemma B. Let a = Pl ... Pk (reduced form), I = {Pi> ... ,pd. Then 
the group PI is generated by Band aBa-l, or by B and a. 

Proof. Set a' = PlO", so ((a') < £(a). Part (b) of Lemma A says that 
PlBa meets BaB; in particular, Pl E BaBa- l B, which lies in the group gen
erated by Band aBa-l. Using induction on ((a), we may assume already 
that P2, .. , Pk lie in the group generated by Band a'Ba,-l = PlaBa-lpl. 
Combining these two steps, we conclude that PI = BVVrB is generated 
by Band aBa-l. But <B, aBa-l) c <B, a) c PI. so equality holds 
throughout. 0 

It follows from Lemma B that the set of PES occurring in a reduced 
expression for a is determined uniquely by a (Exercise 4). Some other 
consequences of the lemma are of more immediate interest: 

Lemma C. S is precisely the set of those a E W for which B u BaB is a 
group (so G, B, N determine S uniquely), and S is a minimal generating set 
for W. 

Proof. If I = {p}, PES, then VVr = {e, p} and PI = B u BpB is a 
group, thanks to Theorem 29.2(a). Conversely, if B u BaB is a group, 
and a = Pl ... Pk is a reduced expression, then {Pi. ... , pd c <B, a) = 

B u BaB, by Lemma B. Since Pi has order 2, it follows from Theorem 2').2(b) 
that Pi = a, whence a E S (and k = 1). 

Finally, suppose a subset S' c S generates W. It is obvious that (G, B, 
N, S') is again a Tits system, with Weyl group W, so the conclusion just 
reached is that S' may be characterized as the set of those a E W for which 
B u BaB is a group. In particular, S c S'. 0 

Lemma D. Let a E W, and let I, J c S. If aPIa- 1 c Pj, then a E PJ 

(i.e., all coset representatives of a belong to P J). 
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Proof. By hypothesis, both Band aBa - I lie in P J, so the coset repre
sentatives of a do, by Lemma B. 0 

Call a subgroup of G parabolic if it includes a Borel subgroup (i.e., a 
conjugate of B). We can now prove that every parabolic subgroup is con
jugate to some PI. 

Theorem. (a) The only subgroups of G containing B are those of the 
form P[, I c S. 

(b) If PI is conjugate to Pj, then PI = Pj. 
(c) NG(PI) = PI (in particular, NG(B) = B). 
(d) If~ c WJ, then I c 1. 
(e) If PI c Pj, then I c J. 

Proof. (a) By Theorem 29.2(a), any subgroup H of G including B is the 
union of certain double cosets BaB. Let I be the set of all PES appearing in 
reduced expressions for such a E W. Then clearly H c PI. On the other 
hand, Lemma B implies that PI c H. 

(b) Since Band N (or W) generate G, two subgroups containing Bare 
conjugate in G only if they are conjugate by some a E W. But then Lemma 
D applies. 

(c) Apply Lemma D again. 
(d) Each P E I is a product of certain elements of J, so Lemma C forces 

Ie J. 
(e) If PI c Pj, ~ c Pj and then ~ c Wj (Theorem 29.2(b)), whence 

I c J by part (d). 0 
The theorem shows that the lattice of subgroups of G containing B is 

isomorphic to the lattice of subsets of S (ordered by inclusion), or to the 
lattice of subgroups ~ of W. 

29.4. Generators and Relations for W 

When a Tits system has rank 1, its Weyl group is generated by a single 
element p, subject to the sole relation p2 = e. In case the rank is 2, W has 
two generators PI> P2, and these satisfy at least the relations Pf = e (i = 1,2). 
If PIP2 has finite order (say m), then W is a homomorphic image of the 
abstract group whose presentation is <PI> P21pf = e = (PIP2)m). It is well 
known (and easy to prove) that the latter group is isomorphic to the dihedral 
group Dm of order 2m. But W also has order 2m: Otherwise it would equal 
its cyclic subgroup <PIP2) of order m, so there would be a unique subgroup 
<PI) = <P2) of order 2, which is absurd. This shows that W is dihedral. In 
case PIP2 has infinite order, W is clearly isomorphic to the infinite dihedral 
group Dxo , with presentation <PI> P21pf = e). 

For notational ease, we shall assume that S has finite cardinality ((though 
the following arguments go through for a generating set of arbitrary size). By 
definition, a Coxeter group of rank C is a group with generators pJ1 ~ i ~ C) 
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and defining relations (pijJm(i, j) = e, where m(i, i) = 1 and 2 :::;: m(i, j) = 

m(j, i) :::;: 00 for i # j. (When m(i,j) = 00, we simply omit the corresponding 
relation.) The preceding discussion shows already that the Weyl group of a 
Tits system of rank :::;: 2 is a Coxeter group. Our aim is to prove this in 
general. As a first step, let us observe that W satisfies an exchange condition. 

Lemma. Let a E W have reduced expression Pill) ... Pi(I)' Suppose that 
t(pi(O)a) :::;: t(a). Then there exists s, 1 :::;: s :::;: t, such that Pi(O)Pi(l) ... Pi(s-l) = 

Pi(1) ... Pi(s)' 

Proof. By Lemma A of (29.3), pi(o)B c BaBa- 1 B, which (by repeated 
application of (Tl)) lies in the union of all double cosets Bap;(n l ) ••• P;(n,)B, 
where r :::;: t and t ~ nl > nz > ... > nr ~ 1. In particular, thanks to 
Theorem 29.2, Pi(O) is equal to one (and only one!) of the indicated elements 
of W. But t(a) = t and t(Pi(O)) = 1, so it is clear that r = t - 1, therefore 
that only one Pi(s) has been omitted. It is this choice of s which verifies the 
lemma. 0 

Theorem. Let m(i, j) ( :::;: 00) be the order of PiP j in W(I :::;: i, j :::;: t). Let 
TC: W -+ W be the canonical epimorphism, where W is the Coxeter group 
<pi,I :::;: i :::;: t I(pipj)m(i,j) = e). Then TC is an isomorphism. 

Proof. (1) The first step is to show that if Pill) ... Pi(1) and pj(l) ... Pj(t) 
are two reduced expressions for the same element a of W, then Pi(l)'" 
Pi(1) = pj(l) ... Pj(t) in W. For this we use induction on t, the case t = 1 being 
trivial. Assume the result proved for lengths < t. As an abbreviation, let us 
write (i(1), ... ,i(s)) ~ (j(l), ... ,j(s)) when Pi(1)'''Pi(s) = Pj(1)'''Pj(s) and 
these expressions are reduced. So our assumption is that (i(I), ... , i(t)) ~ 
(j(I), ... ,j(t)). 

Since left multiplication by j(1) reduces the length of a, the exchange 
condition allows us to find s, 1 :::;: s :::;: t, for which (i(I), ... , i(s)) '" (j(I), 
i(I), ... , i(s - 1)). Therefore, (j(1), ... ,j(t)) '" (i(I), ... , i(t)) '" (j(1), i(I), ... , 
i(s-I), i(s+ 1), ... , i(t)), whence (j(2), ... ,j(t))",(i(I), ... ,i(s-I), i(s+ 1), ... , 
i(t)). By induction, Pj(Z)'" Pj(t) = Pi(l) ... Pi(s-1)Pi(S+ 1) ••• Pi(t), or Pj(1)'" 
Pj(t) = Pj(1)Pi(1) ... Pi(S-l)Pi(S+ 1) ••. Pi(t)· In case s < t, induction also yields 
Pi(1) ... Pi(s) ... Pi(t) = pj(l)Pi(l) ... Pi(s-l)Pi(s+ 1) ••• Pi(t), which completes the 
proof. 

This leaves the case s = t, where Pj(1) ... Pj(t) = Pj(1)Pi(1) ... Pi(t-l) (and 
j(1) # i(1)). The original problem has been replaced by one concerning 
(i(l), i(2), . .. , i(t)) '" (j(l), i(l), ... , i(t - 1)). Repeat the above argument, 
this time using left multiplication by i(l) to reduce length; either the induc
tion step is completed or else we are left with (i(l),j(I), i(I), ... , i(t - 2)) '" 
(j(I), i(I), ... , i(t - 1)). This leads finally to sequences of length t involving 
only i(I), j(I) (in alternation). To say that the corresponding elements of W 
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are equal (and reduce) is just to say that t is m = m(i(1), j(1)), since the 
subgroup of W generated by Pi(1) and Pj(1) has been seen above to be dihedral. 
In particular, since (Pi(l)Pj(1)t = e, while each (f5;)2 = e, we get the induction 
step. 

(2) Step (1) allows us to define unambiguously a function <P: W --+ W by 
letting <P(Pi(1) ••• Pi(t)) = Pi(l) ... Pi(!) whenever the first expression is reduced. 
Evidently 11: <P = 1 w, so <P is injective. It will suffice to prove <P surjective, 
or that 1m <p (which contains all generators p;) is a subgroup of W. Since 
1m <p is obviously closed under inverses (the Pi and Pi being involutions), it 
is enough just to show that 1m <p is closed under left multiplication by all 
Pi(O)' Say Pi(O)Pi(1)' •• Pi(t) is reduced. Then Pi(O) <P(Pi(1)" • Pi(I)) = <P(Pi(O) ••. 

Pi(t)), so there is nothing to prove. Otherwise, the exchange condition allows 
us to write Pi(O)Pi(1)'" Pi(s-l)Pi(s+ 1) ••• Pi(t) = Pi(1) •.• Pi(t)· By step (1), the 
corresponding equation is true in W. Multiply both sides by Pi(O) (noting that 
p~O) = e) to finish the proof. D 

A striking feature of a Coxeter group (such as W) is that its defining 
relations come from (Coxeter) subgroups of rank ~ 2. In §32 we shall see a 
similar phenomenon in reductive algebraic groups, which enables us to 
reduce the classification problem to the case of rank 2. 

29.5. Normal Subgroups of G 

Lemma. Let H be a normal subgroup of G. Then there is a partition S = 

I u J such that I, J commute elementwise and HB = PI. 

Proof. Since H is normal, HB is a parabolic subgroup, therefore equal 
to some PI (Theorem 29.3 (a) ). Let J = S - I. We have to show that I and J 
commuteelementwise. LetI' = {p E SIBpB II H oF 9}. We claim that! = I'. 
Since HB = P[, the inclusion I c l' is clear. Conversely, if BpB meets H, 
then BpB c HB, so P E I by Theorem 29.2. 

Now take P E I, P' E J. Clearly C(pp') ~ 1 = C(p), so Lemma A of (29.3) 
says that pBp' c Bpp'B, or p'BpBp' c p'Bpp'B c Bpp'B u Bp'pp'B (Tl). 
By the preceding paragraph, H meets BpB; since H is normal, it also meets 
the conjugate p'BpBp' (p'2 = e), which lies in the indicated union of double 
cosets. Therefore H meets one of these cosets, and either pp' or p'pp' lies in 
WI. The first is absurd, so p'pp' E WI II W:p,p) = W1n{p,p] = W(p} = {e, p} 
(here we use Theorem 29.3 (d), cf. Exercise 5). Clearly p'pp' oF e, so p'PP' = p, 
showing that P and P' commute. 0 

Any partition of S into subsets I, J which commute elementwise yields a 
decomposition of W as a direct product WI x W J • If no nontrivial decom
position of this sort is possible, we call W irreducible. In this case, a normal 
subgroup of G must (according to the lemma) be rather "large" or else be 
contained in B, hence in all conjugates of B. Let us write Z = nxEG xBx- 1. 

(When G is a reductive group, Z will be the center of G.) In order to obtain 
a useful simplicity criterion, we need to impose further conditions. 
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Theorem. Let W be irreducible, and assume that G is generated by the 
conjugates of a normal solvable subgroup U of B, while G = (G, G). Then G/Z 
is simple (or trivial). 

Proof. It just has to be shown that a normal subgroup H of G not 
included in Z is equal to G. Thanks to the lemma and the irreducibility of 
W, G = HB. The normality of U in B forces the subgroup HU already to 
contain all HB-conjugates of U (i.e., all G conjugates); the latter generate G, 
so in fact G = HU. 

A standard isomorphism theorem shows that U/U nH ~ HU/H ~ G/H. 
The left side is solvable (since U is), while the right side is its own derived 
group (since this is true of G), forcing G = H. D 

Corollary. Let G be a simple algebraic group, Z its (finite) center. Then 
G/Z is simple as an abstract group. 

Proof. For U take Bu (or even B itself !). Then use Theorem 27.5. D 
We remark that for a finite (or other) subgroup of an algebraic group, 

which need not equal its derived group, a less restrictive formulation of the 
theorem is needed. (Cf. PGL(2, k), k a subfield of K; its derived group, usually 
PSL(2, k), may be a proper subgroup.) As before, let W be irreducible. Require 
U to be a normal solvable subgroup of B for which B = TU, and require 
G' = (G', G'), where G' is the (normal) subgroup of G generated by all con
jugates of U. Then one can show that each subgroup of G normalized by G' 
is included in Z or else includes G'; in particular, G'/G' n Z is simple (or 
trivial). 

Exercises 

(G, B, N, S) is a Tits system, with Weyl group W. 
1. For each subset I c S, (Ph B, N I , I) is a Tits system with Weyl group 

WI; here NI denotes the inverse image of WI in N. 
2. If (T2) is replaced by the requirement that pBp - I ¢ B (p E S), then the 

fact that S consists of involutions can be deduced from the other assump
tions. [Note that Bp -I B meets BpB, so B c BpBpB.] 

3. Let (J = PI ... Pko with t((J) = k. Prove that B(JB = (Bp1B)(Bp2B)· .. 
(BpkB). [Use Lemma 29.3A]' 

4. Deduce from Lemma 29.3B that the set of PES occurring in a reduced 
expression for (J E W is uniquely determined by (J. 

5. Prove that Hl;nj = lfl n WJ for I, J c S. 
6. Let I be an index set, and let G' be a group which permutes I doubly 

transitively. Fix distinct i, j E I, and set B' = {n E G'ln(i) = i}, N' = 
{n E G'ln{i,j} = {i,j}}. Show that T' = B' n N' is normal in N', and 
that W' = N'/T' has order 2. If S' = {p}, where p generates W', prove 
that (G', B', N', S') is a Tits system of rank 1. 
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7. Let (G, B, N, S) have rank 1, S = {p}, so G = B u BpB. G permutes GIB 
(via left multiplication), with B = {x E Glx B = B} and N the subgroup 
of G stabilizing the set {B, pB}. Prove that G acts doubly transitively on 
GIB (cf. Exercise 6). 

8. A Tits system is said to be saturated if nXENXBx - 1 = T (in general, this 
intersection includes T). Call the intersection T', and let N' = (N, T'). 
Prove that W' = N'IT' is canonically isomorphic to W = NIT. If S' 
corresponds to S (under this isomorphism), prove that (G, B, N ', S') is a 
saturated Tits system (with Weyl group W'). 

9. Prove that S can be partitioned uniquely into elementwise commuting 
sets lb ... , It so that W = WI, X ... X WI, and no further partition is 
possible. 

10. In the proof of Theorem 29.5, show that the assumption that U is 
solvable may be weakened to require only that each nontrivial homo
morphic image of U is distinct from its derived group. (Sn satisfies this 
requirement, for example). 

Notes 

For Tits systems and their applications to finite groups of Lie type, cf. 
Tits [3] [5] [6] [7] [12] (etc.), Bourbaki [1, Ch. 4], Carter [1], Curtis [3]. 

30. Parabolic Subgroups 

We return to the situation of §28: G is a reductive group, T a maximal 
torus, B a Borel subgroup containing T, J the corresponding base of cPo 

Starting with the general description of parabolic subgroups in Tits 
systems (29.3), we shall investigate in more detail the internal structure of such 
subgroups of G. In particular, we shall show that a parabolic subgroup is the 
semidirect product of its unipotent radical and a reductive subgroup, the 
latter determined up to conjugacy (30.2). Then we shall use parabolic sub
groups to get more information about the unipotent subgroups of G. Much 
of the material in this section is essential in the applications of algebraic 
groups, but only (30.1) is needed for the classification theory in Chapter XI. 

30.1. Standard Parabolic Subgroups 

In the context of Tits systems, Theorem 29.3 asserts that the conjugacy 
classes of parabolic subgroups of G correspond 1-1 with those groups 
which contain B. We call the latter the standard parabolic subgroups of G 
(relative to B). They correspond 1-1 to the 2f subsets of J (.e = rankss(G)), 
with I c J belonging to PI = Blt[B. Here It[ is the subgroup of W generated 
by {a "Ia E I}. Of course, all of this could have been deduced directly from the 
Bruhat decomposition of G, without the formalism of §29. (Note that we use 
I to denote a subset of J rather than a subset of {a"la E J} as in §29.) 
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It is clear that 2(PI ) = t EEl Ug", where IX ranges over some set ofroots 
B including cP+. Our first task is to determine B. Since global and infin
itesimal centralizers of tori correspond (18.4), we see that a negative root IX 

lies in B if and only if Z" C PI. By construction, if (J" E J.t[, then Z" = 

B" u B"(J"B,, C PI (where B" = B n Z,,). Now J.t[ is the Weyl group of the 
root system consisting of all Z-linear combinations of I in cP (A.6). It follows 
that all such roots lie in B. Conversely, suppose that a pair {IX, -IX} is con
tained in B. Then (J"E WI> due to the uniqueness in the Bruhat decomposition. 
In turn, this shows that IX is orthogonal to the orthogonal complement of the 
subspace spanned by I (in the euclidean space E where cP lives); so IX is an 
R -linear combination of I and hence (being a root) a Z-linear combination. 

Let us summarize this discussion: 

Theorem. (a) Each parabolic subgroup of G is conjugate to one and only 
one subgroup PI = BJ.t[B, where I C .1. 

(b) The roots of PI relative to T are those in cP+ along with those roots in 
cP- which are Z-linear combinations of I. 0 

30.2. Levi Decompositions 

Consider the unipotent radical V = Ru(PI) of a standard parabolic sub
group. At the two extremes I = .1, I = I), we have no trouble describing V. 
In general, being a T-stable subgroup of V = Bm V must be the product (in 
any order) of those V" which it contains (28.1). We claim that these IX are 
precisely the positive roots not in 'P = subsytem of cP spanned by 1. Indeed, 
T is mapped isomorphically onto a maximal torus of the reductive group 
PJ/V (since t n ° = 0), whose roots may therefore be identified with certain 
pairs of roots ±IX of PI relative to T. In view of Theorem 30.1(b), all such 
pairs must lie in 'P. On the other hand, no pair ± IX can occur in 0, so our 
claim follows. 

The Lie algebra of PI decomposes neatly as I + ° (direct sum), where 
I = t EEl U g" (IX E lJI). Since [g", gp] c ga+ p, I is even a subalgebra, while ° 
is an ideal (because V <l PI). Is there a corresponding decomposition of PI 
as a semidirect product LV? If so, we call it a Levi decomposition, and we 
call L a Levi factor. Notice that L must be reductive. (In general, such a 
decomposition (reductive times unipotent radical) exists in an arbitrary con
nected algebraic group when char K = 0, but need not exist when char K 
is prime.) 

In the case of Ph there are several approaches to the construction of L. 
We could, for example, take the subgroup generated by T along with all 
U" (IX E lJI). But then it would have to be shown that the group is not too big, 
i.e., does not contain other V" as well. Alternatively, we could construct Las 
a set, since we know what its Bruhat decomposition must look like, and then 
verify that the set is a group. For this purpose we would take as our candidate 
for Borel subgroup of L the group B' = B - n PI (B - the Borel subgroup of 
G opposite B, relative to T), so that L = B' J.t[ B'. 
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A third approach is more satisfactory. We begin with the torus Z = 
(naEI Ker at and define L = CG(Z). Then L is automatically reductive, 
thanks to Corollary 26.2A. Those roots which are trivial on Z are just the 
roots in lJI (since the characters of T trivial on Z are R-linear combinations 
of I). In particular, I = t EB Un, (a E lJI) c 2(PI ). Since global and infin
itesimal centralizers of tori correspond, it follows that L c PI and then that 
PI = L V (since the Lie algebra of this subgroup is 2(PI)). Since I n tJ = 0, 
L n V is finite as well as T-stable, so L n V = e (28.1). The semidirect product 
PI = L t>< V is not just group-theoretic: since the differential of the product 
map n: L x V -+ PI is an isomorphism of vector spaces I EB tJ -+ 2(P I), it 
can be shown that n is an isomorphism of varieties. (But we shall not pursue 
this here.) 

Notice that Z is nothing but the connected center of L, so that ZV = 

R(PI ). If L were another Levi factor of PI' it is clear that its connected center 
Z' would also be a maximal torus of R(P I)' while L' = CG(Z'). But then 
xZ'x- 1 = Z for some x E V (Theorem 19.3), so we would have xL'x- 1 = L. 
This establishes: 

Theorem. Any parabolic subgroup P of G has a Levi decomposition 
P = LV (V = RiP)), and any two Levi factors are conjugate by an element 
ofV. 0 

When P i= G, we have V i= e. So the reductive group L has smaller 
semisimple rank than G. This provides an extremely useful inductive method 
for studying various properties of reductive groups (e.g., representations). 

30.3. Parabolic Subgroups Associated to Certain Unipotent Groups 

Let U be a closed, but not necessarily connected, unipotent subgroup of 
G. Define Nl = NG(U), U1 = U· Ru(Nd, and then (inductively) Ni = 

N G(Ui- 1), Ui = Ui- 1 . Ru(NJ Since unipotent radicals are connected, it is 
clear that either dim Ui+ 1 > dim Ui or else Ui+ 1 = Ui. In particular, these 
two sequences of closed subgroups of G must stabilize, say Uk = Uk+ 1 = 

... , Nk = Nk+ 1 = .... Set .q1J(U) = Nb V = Uk. The first thing to observe 
is that any automorphism of U of the form Int x (x E G) stabilizes N 1, hence 
Ru(Nd, hence U1 , .•• , hence £?l>(U). Therefore, NG(U) normalizes £?l'(U). 

Suppose next that that U lies in some Borel subgroup of G (this cannot 
be taken for granted if U is not connected!). Thanks to the following lemma, 
the same is true for each Ui. 

Lemma. Let H be an algebraic group, B a Borel subgroup and A a 
subset of B. If S is a connected solvable subgroup of H normalizing A, then 
S . A lies in some Borel subgroup of H. 

Proof. By assumption, the (closed) set X of fixed points of A in H/B 
is nonempty, and S stabilizes X. Since S is connected and solvable, it fixes 
a point of X (21.2), i.e., S lies in a Borel subgroup containing A. 0 
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Returning to our construction, V = Uk includes the unipotent radical of 
N G(V), as well as U. Assuming that U (hence V) lies in some Borel subgroup, 
we shall prove that .9( U) is parabolic and that V is connected. From this it 
will follow that N G( U) c .9( U), since parabolic subgroups are their own 
normalizers (Corollary 23.1B), and also that U c Ru(.9(U)) = v. 

Proposition. Let V be a closed unipotent subgroup of G, N = N G( V). 
Assume that V lies in some Borel subgroup of G, and that V ::::> Ru(N) (equiv
alently, Va = Ru(N)). Then N is a parabolic subgroup of G, with V = Ru(N). 

Proof. Let B be a Borel subgroup of G which includes V, and set S = 

(B n Nt, Then S lies in a Borel subgroup B1 of N, and we can choose an 
"opposite" nB1n- 1(n EN), i.e., Ru(B1 n nB1n- 1) = Ru(N) (apply Corollary 
26.2C to N° jRu(N)). Evidently this choice implies that RJN n B n nBn-1) c 

Ru(N) c V. On the other hand, n normalizes V, so V lies in the unipotent 
part of the solvable group N n B n nBn - 1. This forces equality to hold 
throughout; in particular, V = Ru(N) is connected. Moreover, V lies in the 
intersection B n B' (B' = nBn- 1). If V were smaller than Ru(B n B'), its 
normalizer in this group would have larger dimension than V (Proposition 
17.4(b)), contradicting RJN n B n B') = V. Therefore, V = Ru(B n B'), 
whence B n B' c N. But B n B' includes a maximal torus T of G (Corollary 
28.4), so N has maximal rank in G. 

Now we can use the root system of G to show that N is parabolic. Let 
Ll be the base of I/> determined by B, and let '1' be the set of roots of N relative 
to T. If Ua C V(IX ELl), then IX E '1'. Otherwise Ua c B but Ua ¢ V, forcing 
Ua ¢ B', and in turn, U -a C B'. Let B" = GaBGa; its roots are those of B, 
except that - IX replaces IX: the simple reflection Ga permutes the positive 
roots other than IX (A.S). Now U -a normalizes both B' and Ru(B n B"), 
hence also Ru(B n B' n B") = RJB n B') = V. So - IX E '1'. Since U -a lies 
in B' but not B, a similar argument (with B replaced by B' and B" replaced 
by GaB' Ga) shows that U a normalizes V, so IX E '1'. It follows that Ll c '1', 
and therefore BeN. 

We conclude that N is parabolic; indeed, N is the standard parabolic 
subgroup (relative to B, T) determined by the subset {IX E LlIUa ¢ V}. 0 

From the discussion preceding the proposition we draw an immediate 
inference: 

Corollary A. Let U be a closed unipotent subgroup of G contained in 
some Borel subgroup. Then the group P = .9(U) constructed above is parabolic, 
with NG(U) c P and U c RJP). 0 

Since each connected unipotent group does lie in a Borel subgroup, we 
also ded uce : 

Corollary B. Let U be a connected unipotent subgroup of G. If U = 

RJN G(U)), then N G(U) is parabolic. 0 
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30.4. Maximal Subgroups and Maximal Unipotent Subgroups 

The results of (30.3) lead to the following rather striking theorem. 

Theorem. (a) Let H be a maximal (proper) closed subgroup of G. Then 
either HO is reductive or else H is parabolic. 

(b) Each unipotent subgroup of G lies in some Borel subgroup .. in particu
lar, the maximal unipotent subgroups of G are the unipotent radicals of Borel 
subgroups. 

Proof. (a) If HO is not reductive, then V = Ru(H) is nontrivial. G being 
reductive, N G(V) is therefore a proper closed subgroup of G, including H. 
Maximality of H forces H = N G(U)' Then Corollary B of (30.3) says that 
H is parabolic. 

(b) We proceed by induction on dim G. Let V be a unipotent subgroup 
of G (not necessarily closed or connected), V i= e. Since V is nilpotent (17.6), 
its center is nontrivial. Choose e i= u E Z(V). The closure V 1 of the subgroup 
generated by u lies in the unipotent part of some Borel subgroup of G, 
since u does (by the density theorem (22.2)). So we obtain from Corollary A 
of (30.3) a parabolic subgroup P = !?J>( V 1) such that V c N G( V d c P and 
e i= V 1 C Ru(P), In particular, P i= G. Pass to the reductive group P/Ru(P), 
of lower dimension than G. The image of V is a unipotent group (15.3), 
therefore contained (by induction) in some Borel subgroup of P/RiP). It 
follows that V lies in a Borel subgroup of P, which in turn lies in (actually 
equals) a Borel subgroup of G. D 

We remark that part (b) extends at once to an arbitrary connected group 
G (not necessarily reductive). In characteristic 0, all unipotent groups are 
known to be connected (Exercise 15.6), so we have proved nothing new. In 
characteristic p, (b) asserts in effect that maximal "p-subgroups" of G exist 
and are conjugate (cf. the Sylow theorems for finite groups). 

Exercises 

1. Determine the standard parabolic subgroups of G L(n, K) (relative to 
T(n, K)) and their dimensions. Describe their Levi factors. 

2. Describe the parabolic subgroups of Sp(4, K) and their Levi factors. 
3. Let H be a closed subgroup of G containing T along with at least one 

of Va, V -a (for each IX E cP). Prove that H is parabolic. (Example: 
H = (P n PI)Ru(P), where P and pi are parabolic.) 

4. Does every element of G lie in a (proper) maximal closed subgroup? 

Notes 

The discussion in (30.1), (30.2) is based on Borel, Tits [1]; however, they 
also consider fields of definition. Similarly, (30.3) and (30.4) are drawn from 
Borel, Tits [2]. Part (b) of Theorem 30.4 is essentially due to Platonov [2]. 



Chapter XI 

Representations and Classification of 
Semisimple Groups 

In order to classify (up to isomorphism) the possible semisimple algebraic 
groups, we have to get a little information about their representations. 
For this purpose, (31.1)-(31.3), and the first few paragraphs of (31.4), will 
be essential. The reader is of course encouraged to read the rest of §31, even 
though this is not essential to the further development. 

31. Representations 

In this section we explore the rational representations of a semisimple 
group G. As in the Cartan-Weyl theory for semisimple Lie algebras overC, 
the irreducible ones turn out to be parametrized by "highest weights". 
Let T be a maximal torus of G, B = TV a Borel subgroup containing 
T, B- = TV- the opposite Borel subgroup containing T, L\ the base of 
~ determined by B. 

31.1. Weights 

If p:G -+ GL(V) is a rational representation, the weights of p are the 
images in X(T) of the weights of p(T) in V (16.4), via the canonical homo
morphism X(p(T)) -+ X(T). Of course, p has only finitely many weights, 
since V is finite dimensional. It is often convenient to view V directly as a 
G-module, so that a weight space VA is described as {v E Vlt . v = A.(t)v 
for all t E T}. We call dim VA the multiplicity of the weight A.. Notice that 
W permutes the weights of p. More precisely, if n E N G(T) represents (] E W, 
then n . VA = v.,.(A); so all weights in a W-orbit have the same multiplicity. 

It is always possible to find an isomorphism of G onto a closed subgroup 
of some GL(V) (8.6). In this case, the weights of the representation generate 
the group X(T). In general, Ker p will be a closed normal subgroup of G, 
for which there are a limited number of choices (27.5). For example, in case 
G is almost simple, Ker p is either all of G or else a finite normal (hence 
central) subgroup. In this latter situation, the weights of p generate a sub
group of finite index in X(T). When p = Ad the same is true for any semi
simple group Corollary 26.2B(f). The weights of the adjoint representation 
are just the roots (each with multiplicity 1) and the trivial weight 0 (with 
multiplicity C = rank G). 

Let us see what can be said about the weights of an arbitrary rational 
representation p:G -+ GL(V). By applying Proposition 27.2 to the group 
p(G), which is either semisimple or trivial, and lifting back to G, we see 

188 
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that for any lJ. E <P, p(U.) maps a weight space V;. into IVHk• (k E Z+). 
It follows that p(Z.) stabilizes IVHk• (k E Z); in particular, aiA) is of 
the form A + klJ.. But in the framework of abstract root systems (27.1), 

a. acts in E = R Q9z X(T) as a reflection: a,(A) = A - 2((A,lJ.)) a (where the 
a,a 

. d"') Th I" h h b 2(A, a) lllner pro uct IS W-illvanant. e conc uSlOn IS t at t e num er --) 
(lJ., a 

is an integer. By definition, A is therefore an abstract weight (A. 9). 
The abstract weights in E form a lattice A (free abelian group of rank C) 

which contains the root lattice Ar as a subgroup of finite index. If 
~ = {a b ... , a(}, A has a corresponding basis {A b ... , At} consisting of 
fundamental dominant weights, where 2(Ai, lJ.J/(aj, lJ.j) = <Sij. Recall further 
that each abstract weight is conjugate under W to precisely one dominant 
weight, where LCiAi (Ci E Z) is called dominant whenever all Ci ? 0 (A. 10). 

Combining these observations, we conclude that all weights of rational 
representations are abstract weights; therefore, X(T) consists of abstract 
weights and the index of the root lattice in X(T) is bounded by a constant 
depending only on <P. For example, let rank G = 1. Then A1 = lJ.d2, so 
[A:ArJ = 2. This allows only two possibilities for the position ofX(T). In 
general, we call A/X(T) the fundamental group of G (because of a close analogy 
with the topology of compact Lie groups), denoted n( G). When this is trivial, 
we call G simply connected (or of universal type). At the opposite extreme, 
when X(T) = An we say that G is of adjoint type (e.g., Ad G for any semisimple 
G). In this language, SL(2, K) is simply connected and PGL(2, K) is adjoint. 
Evidently the fundamental group of G is an important invariant, which 
must be taken into account if we wish to arrive at a classification of semi
simple groups. 

31.2. Maximal Vectors 

Given a rational representation p:G ~ GL(V), V i= 0, the Lie-Kolchin 
Theorem insures the existence of a I-dimensional subspace of V stable 
under p(B). By definition, a maximal vector v E V is a vector which spans 
such a subspace; equivalently, 0 i= v lies in some weight space Vt and is 
fixed by all p( U .), a > O. This notion of course depends on the choice of B. 
In what follows we tacitly exclude the case V = 0 (but not the case in which 
dim V = 1), so that maximal vectors always exist. 

Proposition. Let V be a (rational) G-module, v + a maximal vector of 
weight A, V' the G-submodule generated by v +. Then the weights of v' are 
of the form A - Lc,a (a E ct>+, c. E :/'+), and A itself has multiplicity 1. More
over, V' has a unique maximal submodule. 

Proof. As remarked in (31.1), it follows from Proposition 27.2 that 
for any a, Ua sends VA into 2.YHka (k E '/, +). More precisely, if x E U" 
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x. v+ = v+ + (sum of vectors of weights A + kr!., k > 0). Successive 
application of elements of U- therefore yields sums of vectors of weights 
A - Lcar!. (r!. E <P +, Ca E Z +), with v + the only vector of weight A occurring. 
Now the subspace of V spanned by U- . v+ is also the subspace spanned 
by U - B . v + = Q. v +, where Q is known to be dense in G (28.5). It follows 
that this is the same as the subspace V' spanned by G. v+. Finally, each 
proper submodule of V'is a sum of weight spaces for weights distinct from 
A, so the sum of all these submodules is still proper. 0 

The lattice A of abstract weights is partially ordered by: A > J.t if A - J.t 
is a sum (possibly 0) of positive roots (A.10). So the proposition shows 
that A is the highest weight of V', all other weights being < A. The reasoning 
which shows that each abstract weight is W-conjugate to precisely one 
dominant weight shows also that a dominant weight A satisfies: A > 0"(..1,) 
for all 0" E W (A.10). Since W permutes the weights of V', this establishes: 

Corollary. In the notation of the proposition, A is a dominant weight. 0 

31.3. Irreducible Representations 

A G-module V#-O is irreducible if it has no G-stable subspaces except 0 
and itself. This is the case, for example, if G = SL(n, K) acts on V = Kn 

in the natural way, since G then permutes transitively the 1-dimensional 
subspaces of V. Any G-module V, being finite dimensional, has a composition 
series with irreducible composition factors, which makes it especially 
interesting to know what the irreducible modules look like. 

We remark that in characteristic 0, Weyl's theorem on complete re
ducibility can be used to show that each G-module splits into a direct sum 
of irreducible submodules, cf. (14.3); but in prime characteristic this fails. 
There is, however, a weaker condition called semireductivity which all re
ductive groups satisfy: Given a G-module V with a maximal submodule 
W of co dimension 1, such that G acts trivially on V/W, say V = Kv + W, 
there is a symmetric power of V which contains a G-invariant polynomial 
involving v. This condition was conjectured by Mumford [1] and recently 
proved by W. 1. Haboush, cf. Seshadri [3]. It is adequate to insure finite 
generation of rings of invariants, as in (14.3); see Nagata [2]. 

Proposition 31.2 shows that in case V is irreducible, V must coincide 
with the submodule V' generated by a maximal vector. In turn, the weight A 
is singled out for special attention. 

Theorem. Let V be an irreducible (rational) G-module. 
(a) There is a unique B-stable 1-dimensional subspace, spanned by a 

maximal vector of some dominant weight A, whose multiplicity is 1. (A is called 
the highest weight of v.) 

(b) All other weights of V are of the form A - Lcar!. (r!. E <P+, Ca E :Z/). 
They are permuted by W, with W-conjugate weights having the same 
multiplicity. 
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(c) If Viis another irreducible G-module, of highest weight X, then V is 
isomorphic to V' (as G-module) if and only if A = X. 

Proof. (a) (b) We have already observed, on the strength of Proposition 
31.2, that V is generated by a maximal vector v+ of (dominant) weight A, 
that A has multiplicity 1, and that all other weights are lower in the partial 
ordering. If V had a maximal vector non proportional to v +, its weight fl 
would have to be distinct from A, with fl < A. But the same reasoning, 
applied to fl, would force A < fl, which is absurd. This proves all of (a) and 
(b), except for the last assertion of (b), which was already remarked in (31.1). 

(c) If V is isomorphic to V', it follows at once from (a) that A = X. 
For the converse, consider the G-module V EEl V' and its projections onto 
V, V' (which are G-module homomorphisms). Let v E V, Vi E V' be respective 
maximal vectors of weight ), = X. Then (v, Vi) is a maximal vector of weight 
A in V EEl V', so the submodule V" which it generates has A as weight only 
with multiplicity 1 (31.2). Regarding Vand V' as submodules of V EEl V', 
it follows in particular that v ¢ V', Vi ¢ V" (neither ofthese being proportional 
to (v, Vi)). So V n V", V' n V" are proper submodules of V, V', hence 0 
(by irreducibility). This shows that the two projections map V" isomor
phically onto (nonzero) submodules of V, V', which must be all of V, V' 
(by irreducibility). Thus V is isomorphic to V'. 0 

31.4. Construction of Irreducible Representations 

The arguments in (31.3) closely parallel those for semisimple Lie algebras 
over C. There remains the problem of constructing an irreducible G-module 
of highest weight A, for each dominant A E X(T). The solution here is less 
direct than in the case of Lie algebras. 

First, we observe that it is enough to construct a G-module containing 
a maximal vector of weight A. Indeed, Proposition 31.2 shows that the sub
module generated by this vector has a maximal submodule excluding A 
as a weight, so we need only pass to the (irreducible) quotient module. 
This observation is useful in the context of tensor products. Say V has a 
maximal vector v of weight A and V' has a maximal vector Vi of weight A'. 
IftE T, t. (v® Vi) = t. v ®t. Vi = A(t)X(t) V ®v', while ifuE U, U .(v ®v') = 

v ® Vi; so v ® Vi is a maximal vector in V ® V' of weight A + X (additive 
notation). This shows that the existence of an irreducible module of highest 
weight A + Ie' follows from the existence of irreducible modules of highest 
weights A, A'. (Similarly for arbitrary finite sums.) 

Still, an actual construction of some sort is needed in order to get things 
started. For this we recall Chevalley's Theorem 11.2. Each simple root 
rx E ~ determines a maximal parabolic subgroup P/1-[>}, cf. (30.1). Say 
~ = {rx b ... , rx I}, Pi = P /1- [ai}. For each i, choose a rational representation 
G ...... GL(V;) containing a line KVi whose isotropy group in G is precisely 
Pi. Each (J~k (k of. i) has a representative in Pi, which fixes Vi. By construction, 
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Vi is a maximal vector of some (dominant) weight /li = IdjAj. So for k =1= i, 
we have (Jak(/ld = /l;, forcing dk = O. On the other hand, G does not act 
trivially on Vi, so /li is a positive multiple diAi. 

Combine the two preceding paragraphs: If A = ICiAi (Ci E Z +) belongs 
to X(T), then dA is a positive Z-linear combination of the /li = d)i (where 
d = n dd, hence occurs as highest weight of an irreducible G-module. 
This is a first approximation to what we want. 

To develop the right strategy, suppose for the moment that we already 
have an irreducible G-module V of highest weight A, with a maximal vector 
v+. Let V' be the subspace spanned by all weight vectors of weights other 
than A, so V = Kv+ EB V' (as vector space). Let r+ E V* be the linear function 
which takes value 1 at v+ and value 0 on V'. Then define a function C;. on 
G by c;.(x) = r+(x. v+). It is clear that C;. E K[G], and that x . v+ == c;.(x)v+ 
(mod V') for all x E G. (Think of C;. as a "coordinate function".) We deduce 
that for all x E B-, y E G, Z E B: 

(*) C;.(xyZ) = A(X)C;.(y)A(Z), 

where A is viewed as a function on B- or B by defining A(U-) = A(U) = 1. 
Indeed, just use the above congruence along with the fact that Viis stable 
under B- (cf. Proposition 27.2). As a special case of (*) we get c;.(xy) = A(Y) 
for x E U-, Y E B. Since Q = U- B is dense in G (28.5), this implies that 
C;. is completely determined by A. Moreover, (*) shows that C;. is a maximal 
vector of weight A in K[ G], where G acts by right translations: (Pxf)(y) = 

f(yx). Recall (8.6) that K[ G] is the union of finite dimensional G-stable 
subspaces. It follows that K[G] itself contains a submodule of the type 
described in Proposition 31.2, so that passage to an irreducible quotient 
yields a copy of V (cf. (31.3)). 

Now abandon the assumption that V exists. The preceding discussion 
tells us where to look in K[ G] for a maximal vector of weight A. But does 
C;. exist? Note that is is possible to define a polynomial function on Q by 
the rule: c(xy) = A(Y) (x E U-, Y E B). Since Q is open in G, K(Q) = K(G) 
and C is at least a rational function on G. All we need show now is that C is 
everywhere defined (cf. Proposition 2.1). Thanks to Theorem 5.3B, it will 
even suffice to show that some (positive) power of C is everywhere defined. 
Take d as above, so the dominant weight dA does occur as highest weight 
of an irreducible G-module, and Cd;' exists in K[ G]. On Q, Cd;' coincides 
with Cd. Q being dense in G, it follows that Cd is everywhere defined, as required. 
We have proved: 

Theorem. Let A E X(T) be dominant. Then there exists an irreducible 
G-module of highest weight A. 0 

The role of the polynomial function C;. introduced above can be made 
more precise. With A E X(T) a dominant weight, viewed as a function on 
B or B-, define F;. = {fEK[G]lf(xy) = A(x)f(y) for xEB-, YEG}. 
Evidently F;. is a subspace of K[ G], stable under right translations. Moreover, 
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the equation (*) shows that CA E FA' Suppose F is an irreducible G-submodule 
of FA (necessarily finite dimensional), with a maximal vector f + of weight /1. 
We claim that /1 = A and that f + is proportional to CA' Since f + is a maximal 
vector, f+(xy) = /1(y)f+(x) for x E G, y E B. In particular, for all t E T, 
f+(e) = f+(tet- 1) = /1(t-1)f+(te) = /1(t- 1)A(t)f+(e) (this last because 
f+ E FA)' To deduce that }, = /1, it just has to be observed that f+(e) =1= 0. 
Since A(U-) = e, f+(xy) =r+(y) for x E U-, Y E G; taking Y E B, we get 
(**)f+(xy) = f+(e)/1(Y)· If f+(e) were 0, f+ would therefore vanish on Q = 

U- B, hence on G, contrary to f + =1= 0. Now}. = /1 follows. Comparison with 
(**) shows that on Q, f+ = f+(e)c A; by density, f+ is proportional to CA, 

as claimed. 
This discussion shows that an irreducible G-module of highest weight A 

can be constructed canonically in K[ G], as the submodule generated by 
CA' When char K = 0, a complete reducibility argument shows further that 
this submodule is precisely FA' When char K is prime, this is usually not 
the case (but F). can still be proved to be finite dimensional). 

31.5. Multiplicities and Minimal Highest Weights 

Let A E X(T) be dominant. Theorems 31.3 and 31.4 show that there 
exists one and (up to isomorphism) only one irreducible G-module of 
highest weight A, call it V(Je). The weights of V(A) are certain dominant 
/1 E X(T) satisfying /1 < },' along with all G(/1) (G E W), W-conjugate weights 
having the same multiplicity. Moreover, A and its W-conjugates occur 
with multiplicity 1. A satisfactory description of V(A) (e.g., a determination 
of its dimension) would certainly require detailed knowledge of these 
multiplicities. When char K = 0, Lie algebra theory provides rather complete 
information (formulas of Weyl, Freudenthal, Kostant). Unfortunately, far 
less is known in prime characteristic. 

One case in which the structure of V(A) is reasonably transparent occurs 
when Je is minimal, i.e., when no J1 < Je distinct from Je is dominant. In this 
case, the weights are just the W-conjugates of Je, and dim V(A) is the cardinality 
of the W-orbit of Je. It is not too difficult to determine, for each irreducible 
root system iJ>, exactly which A E A are minimal. Of course, ° is always 
minimal (and yields the trivial 1-dimensional representation of G). For 
SL( C + 1, K), the other minimal weights are just the fundamental dominant 
weights Ab ... '}'( (e.g., A1 occurs as highest weight of the natural C + 1-
dimensional representation). For root systems other than AI, there are fewer 
nonzero minimal weights, all of them again occurring among the fundamental 
weights. 

31.6. Contragredients and Invariant Bilinear Forms 

Let V = V(A), A E X(T) dominant. Recall that the dual space V* also 
affords a rational representation of G, where G acts according to the rule 
(x. f)(v) = f(x- 1 . v) (x E G, f E V*, V E V), cf. (8.2). It is clear that the 
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G-submodules of V* are in 1-1 correspondence with the G-submodules 
of V, with inclusions reversed. Therefore V* is also irreducible, hence 
isomorphic to Veu) for some fl E X(T). 

It is not hard to find a maximal vector in V*, hence to determine fl. 
As in (31.4), write V = Kv+ EB V' (v+ a maximal vector), and require r+ E V* 
to take value I at v+, ° on V'. If x E B-, it follows that (x. r+)(v+) = 

r+(x- 1 • v+) = Je(x- 1), while for v E V', (x. r+)(v) = 0, since B- stabilizes 
V'. In other words, x . r+ = Je(x- 1 )r+. This says that r+ is a maximal vector 
of weight - Je relative to the opposite Borel group B-. Now W has a unique 
element (To which interchanges Band B-, so it follows that V* has highest 
weight - (To(Je) relative to B. 

It is known that (To = -1 for precisely the following irreducible root 
systems: Ab B(, Ct , D( (C even), E7, Eg, F 4, G2 . In these cases V* is therefore 
always isomorphic (as G-module) to V. Even when (To i= -1, it can of course 
happen that - (T o(Je) = Je for certain A. 

Suppose that Vis in fact isomorphic to V*. This gives rise to a G-invariant 
bilinear form on V, as follows. Since V is irreducible, HomG(V, V) is easily 
seen to be I-dimensional (Schur's Lemma). But under the standard identifica
tion (8.2) of Hom(V, V) with V* ® V, this subspace goes over to the space 
of G-invariants. In turn, V* ® V ~ V* ® V* ~ (V ® V)* may be viewed 
as the space of all bilinear forms on V. So we get a G-invariant bilinear 
form, which is unique (up to scalar multiples). 

Suppose, for example, that G is a simply connected group of type C2. 

From (31.5) one gets an irreducible representation p:G -t GL(4, K), whose 
highest weight is minimal. The G-invariant bilinear form on V = K4 can 
then be shown to be "alternating", from which it follows that the image 
of G lies in Sp(4, K). Comparing dimensions, one sees that the image must 
be all of Sp(4, K), while Ker p = e. A little further argument shows that 
G is isomorphic as algebraic group to Sp(4, K). This presupposes that G 
is simply connected: otherwise the highest weight in question would not 
lie in X(T). But if we had introduced "projective" representations (as in 
Chevalley [8]), we could have used this method to classify all groups of 
type C2. 

Exercises 

1. Let char K = 2. Prove that SL(2, K) and PGL(2, K) are isomorphic 
as abstract groups, but have distinct fundamental groups. 

2. Show that Ad is an irreducible representation of SL(3, K) unless char 
K=3. 

3. Let V be an irreducible G-module of highest weight Je, and define v +, 

r+, C). as in (31.4). For v E V, r E V*, define Cr. v(x) = r(x . v) for all x E G. 
Note that Pxcr,v = Cr,x.v and that c). = cr+,v+' Show that v~cr+,v 
defines a G-module isomorphism of V onto the G-submodule of K[G] 
generated by c).. 
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4. Keep the notation of Exercise 3. Set I = {ct E JIO'iA) = A} and let 
Vfj be the corresponding subgroup of W, PI = BVfjB. Verify that PI 
is the isotropy group in G of Kv +. Using the Bruhat decomposition, 
show that c'" (x n(O')y) = ),(y) for x E V-, Y E B, 0' E Vfj, while on other 
double cosets the value of c'" is 0. 

5. Let G be a simply connected, simple algebraic group of type A2 • Prove 
that G is isomorphic (at least as an abstract group) to SL(3, K). [Show 
that G has an irreducible 3-dimensional representation.] 

Notes 

We have followed Borel [6] [8], Steinberg [10, §12], Steinberg [13, 
3.3-3.4]' Projective representations are studied in Chevalley [8, exposes 
15,16]' There are quite a few open questions in prime characteristic, cf. 
Carter, Lusztig [1], Humphreys [5], Jantzen [1] [2], Verma [1]. 

32. Isomorphism Theorem 

In this section and the next we shall prove that a simple algebraic group 
G is determined up to isomorphism by its root system and its fundamental 
group. More generally, we consider the case when G is semisimple. Let 
T be a maximal torus of G, B a Borel subgroup containing T, Ll the corre
sponding base of f/J, N = N(T), W = NIT. Recall that for each root ct, Za = 
CG(Ta) (where T, = (Ker ct)"} is a reductive group of semisimple rank 1, with 
Borel subgroups TVa and TV -a containing T, and Weyl group ~ c W 
generated by the "reflection" 0',. 

Besides the groups Za we shall have to consider certain reductive sub
groups of semisimple rank 2 in G. For each pair of distinct simple roots ct, 
{3, let ZaP = CG( (Ta n T prj). As the centralizer of a torus, Zap is reductive, 
thanks to Corollary 26.2A. It is not difficult to see that 2(Z,p) = t EB U gr' 
sum over all y in the root subsystem f/Ja{! of rank 2 having {::I., {3} as base. 
(For example, use the fact that global and infinitesimal centralizers of tori 
correspond.) The reader who has studied (30.2) will recognize Zaf3 as a Levi 
factor of the standard parabolic subgroup P:~.p:. As a matter of notation, 
let Zaf3 = Z, when ct = {3. 

32.1. The Classification Problem 

Assume first that G is simple, i.e., that its root system f/J is irreducible 
(27.5). Theorem 27.1 affirms that f/J is an abstract root system, in the sense of 
the Appendix; the classification of the latter being known, f/J is a suitable 
invariant to work with. Another invariant of G is the fundamental group 
n(G) = A/X(T), where A is the full lattice of abstract weights (31.1). Our 
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efforts in §32 and §33 will be devoted to the proof of the following decisive 
result: 

Theorem. II G, G' are simple algebraic groups having isomorphic root 
systems and isomorphic jimdamental groups, then G and G' are isomorphic 
(as algebraic groups). 

The reader who is acquainted with the isomorphism theorem for semi
simple Lie algebras over C will see that this is the best possible group
theoretic analogue. In fact, the proof we shaB give resembles to some extent 
the Lie algebra proof; but it is much harder to construct a group isomorphism 
than to construct a Lie algebra isomorphism. We shall outline the method 
of proof in this subsection, then go on to fiB in the details and to reduce the 
problem to rank 2, which will be treated separately in §33. 

The theorem was first proved by Chevalley [8] in the more comprehensive 
setting of isogenies. By definition, an isogeny ({J: G --+ G' is an epimorphism 
of algebraic groups whose kernel is finite (for example, Ad: G --+ Ad G when 
G is semisimple). Chevalley classified the possible isogenies, including iso
morphisms, which can exist between semisimple groups. These are almost 
all of the sort we might expect, e.g., from SL(n, K) to the quotient by its 
center. But there are some unexpected isogenies between groups of type 
Bf and Ct in characteristic 2, or between a group of type F 4 (resp. G2) and 
itself in characteristic 2 (resp. 3). We shall not enter into these constructions 
here. 

How can we begin to exploit the hypothesis of the theorem, in order to 
arrive eventuaBy at an isomorphism ({J:G --+ G'? Let T', B', <1>' (etc.) have the 
obvious significance for G'. Set E = R ® X(T), E' = R ® X(T'). By assump
tion, there is a vector space isomorphism I: E --+ E' sending <1> onto <1>' and 
preserving the Cart an integers <a, f3) (a, f3 ELl). If A and A' are the respective 
lattices of abstract weights, then I automatically maps A onto A'. 

Now A =:> X(T) =:> Ar (= subgroup generated by <1», thanks to (31.1). 
Similarly, A' =:> X(T') =:> A~. The second part of the hypothesis says that 
AjX(T) is isomorphic to A'jX(T'). In all cases except Of (C even), A/A' is a 
cyclic group (A.9) and therefore has a unique subgroup of each possible 
order; it follows in such cases that I must map X(T) onto X(T'). When <1> is 
of type Of (C even), and n( G) of order 2, this is not automatically the case. 
But an easy argument (Exercise 2) shows that the choice of I can be modified 
if necessary so as to send X(T) onto X(T'). In effect, the subgroups of order 2 
in the Klein 4-group are abstractly indistinguishable. 

The study of tori and characters (16.2) shows that an isomorphism be
tween X(T) and X(T') induces uniquely an isomorphism between T and T' 
(as algebraic groups). Strictly speaking, this works contravariantly: f -1: 

X(T') --+ X(T) belongs to a morphism ({JT:T --+ T'. The remaining problem is 
to extend ({JT to an isomorphism of algebraic groups ({J: G --+ G'. Formulated 
thus, the problem can be stated when G is semisimple (not necessarily 
simple). Here the theorem to be proved is: 
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Theorem'. Let G, G' be semisimple groups with respective maximal tori 
T, T', and root systems !P, !P'. If CPT: T -t T' is an isomorphism whose asso
ciated map X(T') -t X(T) induces an isomorphism between !P' and !P, then CPT 
can be extended to an isomorphism of' G onto G'. 

The set-theoretic definition of cP will rest on the Bruhat normal form (28.4). 
To avoid a notational conflict here, and also to avoid a proliferation of primed 
objects, let us write H for G' and discard T', !P', etc. Instead of giving explicit 
names to certain subgroups of H, we shall refer to them as the subgroups 
which "correspond" to T, B, U, U-, Ua, Za, etc. The correspondence in 
question is of course based on the given isomorphism CPT and the attached 
isomorphism of root systems. It will become clear to the reader that all the 
essential manipulations occur within G. 

In (32.2) we shall show how to extend CPT to CPN: N -t H, provided the 
analogous extension exists for certain of the subgroups Z,fJ of semisimple 
rank 1 or 2 in G. In (32.3) we shall show how to extend CPT to an isomorphism 
of algebraic groups from Za (0( E LJ) onto the corresponding subgroup of H. 
Then in (32.4), (32.5), we shall show how to extend CPT to CPB:B -t H in a way 
compatible with all cPz,iUa , again provided the analogous extension can be 
made for subgroups of semisimple rank 2. The rank 2 verifications on which 
these extensions are conditional will be deferred until §33, because they in
volve rather detailed calculations for the individual root systems of rank 2. 

Assume for the moment that CPN and CPB have been defined. According to 
(28.4), each x E G has a unique expression of the form x = u'n(a)tu (a E W, 
t E T, u E U, U' E U~). This depends on a prior choice of coset representative 
n(a) E N for each a E W; but no matter what choice is made, the N-component 
n = n(a)t is uniquely determined by x. Therefore we can define a function 
cP: G -t H by the recipe cp(x) = CPB(u')CPN(n)CPB(u). It is by no means obvious 
that cP is a group homomorphism or that cP is a morphism of varieties. The 
former question is the harder one to settle. Subject to rank 2 conditions, 
whose proof is deferred to §33, we shall verify the multiplicativity of cP in 
(32.6). Once this is settled, we can then apply the following general criterion 
to conclude that cP is a morphism: 

Lemma. Let G be semisimple, B a Borel subgroup, H another algebraic 
group. If cP: G -t H is a homomorphism of abstract groups whose restriction to 
B is a morphism, then cP is a morphism. 

Proof. Recall (28.5) the isomorphism (of varieties) U- x B -t Q = U- B. 
Here U- = ao( U), where 0'0 E W interchanges positive and negative roots. 
Because cP is a group homomorphism and U- is conjugate to U in G, the 
hypothesis implies that cpiU- is a morphism. But the following diagram com
mutes (the maps being the obvious ones): 

U- x B -t cp(U-) x cp(B) 
t t 
Q -t cp(Q) 
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It follows that <pIQ is a morphism (similarly for the translates of .0). Since .0 is 
open in G (28.5), <P is given by rational functions on G, which are everywhere 
defined, i.e., belong to K[ G] (Proposition 2.1). Therefore <P is a morphism. D 

32.2. Extension of <PT to N(T) 

According to Theorem 29.4, W is generated by the elements (J~ (rx E .1), 
subject only to the relations: ((J~(Jp)m(~, fl) = e, where m(rx, [3) denotes the order 
of (J~(Jp in W (in particular, m(rx, rx) = 1). Our task here is to transmute this 
presentation of W into a presentation of N, in which the relations will be 
those for T along with others coming from pairs of simple roots. 

Consider the exact sequence: 

e --+ T --+ N --+ W --+ e. 

If this sequence were split (which it usually is not), our task would be simple. 
In general, we can select arbitrary representatives n~ EN for the (J~ (rx E .1) 
and assert that these elements along with T suffice to generate N. Next, set 
tafJ = (nanpt(a, fJ) E T. We claim that these relations, along with relations 
defining T, suffice to determine N uniquely. In other words: 

Proposition. Let t/J: T --+ H be a homomorphism of abstract groups, and 
let h~ E H (rx E .1). Then t/J can be extended to a homomorphism N --+ H, 
sending n~ to h~ (rx E .1), if and only if (h~hp)m(~,p) = t/J(t~fl) for all rx, [3 E .1. 

Proof. The "only if" part is clear. Suppose the condition is satisfied, and 
introduce a free group W* on C generators n; (rx ELI). Associate to n; the 
automorphism t 1----+ nIXtn; 1 of T, thus obtaining canonically a homomorphism 
W* --+ Aut T. Denote by N* the resulting semi direct product W* ~ T (where 
T is identified with a subgroup of N*). Next factor out the smallest normal 
subgroup of N* containing the elements t;/(n;n;t<a, [3) (rx, [3 ELI), and call 
the resulting factor group N. Evidently N is a homomorphic image of N, 
with T (in N*) being mapped isomorphically onto a subgroup of N (also 
called T) and then onto T (in N). It is also clear that t/J: T --+ H extends 
(uniquely) to a homomorphism N --+ H sending nIX to hlX (rx E .1), where n~ is 
the image of n;. 

All that remains is to show that the canonical map N --+ N is an isomor
phism. For this it suffices to show that the epimorphism N/T --+ N/T = W 
is an isomorphism, which just requires that the two groups in question have 
the same (finite) cardinality. But N/T is generated by elements (images of 
nIX, IX E LI) which satisfy the defining relations of W (Theorem 29.4), so this 
group is a homomorphic image of W. It therefore cannot be bigger than 
W. D 

Return now to the situation of (32.1), where <PT: T --+ H is given. In order 
to extend <PT to <PN:N --+ H, we must select elements nIX EN (rx ELI), thus 
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determining elements tap E T (Lt, f3 E ,1), and then select images ha in H for 
which (hahp)m(a,p) = CPT(tap), All of this depends only on what happens in 
the groups ZaP of semisimple rank 1 or 2. The rank 1 case will be studied 
in (32.3) and the rank 2 cases in §33. Notice that since G, H have isomorphic 
Weyl groups, CPN will automatically be a group isomorphism. It will also be 
a morphism of varieties, since CPT is such and [N: T] < cx). 

32.3. Extension of CPT to Z, 

Let us recall what we know about reductive groups of semisimple rank 1. 
To avoid notational problems, just call the group in question Z" to: being 
the roots relative to a maximal torus T (0: positive relative to a Borel group 
Ba :=J T). Let U ±a be the corresponding root groups in Ba and its opposite, 
and let (Ja be the nontrivial element of the Weyl group. 

According to (25.3), Za/Ba is isomorphic to pl, and the natural action 
of Za on this homogeneous space induces an epimorphism of algebraic 
groups n: Z, ---+ PGL(2, K). The connected kernel here is R(ZJ = Z(Zat 
More precisely, we can say that Ker n = Z(Z,) c T (Corollary 25.3). 

The action of U, on Z,/Ba is straightforward to describe (28.2), if the 
coset representatives U a(J a are taken to form a copy of A 1 in pl (the remaining 
point of pl corresponds to the coset Ba). In effect, Ga just acts on Ga by 
translations, while fixing the point at infinity. This implies that the restriction 
of n to Ua is separable, as well as bijective and Ga-equivariant (Ga acting in 
the evident way). So nl U a is an isomorphism of algebraic groups (12.4). 
By symmetry, nl U _, is also an isomorphism. For concreteness, we can 
even select admissible isomorphisms ca:Ga ---+ Ua> La:Ga ---+ U _a> so that 

n(ca(x)) = [~;J, n(L,(x)) = [~~J (notation of (6.4)). With this choice, 

n(T) is the "diagonal" subgroup of PGL(2, K). We can go a step further, by 
fixing a representative na of (Ja in Nz,(T): define na = ca(l)L,( -1)c,(I), so 

n(na) = [ _~ ~l Then ta = n; is sent to [ -~ -~J = [~~l 
These choices having been made for Za, let Z~, be another reductive 

group of semisimple rank 1, and use primes to denote corresponding objects. 

Proposition. With the above notation, let CPT: T ---+ T' be an isomorphism 
of tori whose associated isomorphism X(T') ---+ X(T) sends 0:' to 0:. Then CPT 
can be extended in one and only one way to an isomorphism of algebraic groups 
cP: Za ---+ Z~, so that cp(ca(x)) = c~,(x) (x EGa) and cp(na) = n~,. 

Proof. The uniqueness of cP (if it exists) is clear, since T, na> U a generate 
Za' It is also clear how to define an isomorphism of varieties between the 
corresponding big cells Q ao Q~,: CP(La(X)tca(y)) = B'-a'(X)CPT(t)C~'(y). Next we 
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exploit the epimorphisms n, n' onto PGL(2, K) to construct a common 
"covering" S as indicated in the following diagram: 

Start with the closed subgroup R = {(z, z') E Za x Z~'ln(z) = n'(z')} (why 
is it closed?); then set S = RO, and let p, p' be the respective projections. 
Evidently np = n'p'. Since n, n' are surjective, so are the projections of R 
onto the two factors of the product. But S has finite index in R, so comparison 
of dimensions shows that p, p' are surjective. Note that, by construction, 
cPp = p' whenever defined. 

At this stage cp is given by rational functions on Za (Qa being an open 
subset). We claim that cp is everywhere defined and is then a group homo
morphism. Say XES, z = p(X), Z' = p'(x). Denote by AO, A, A' the respective 
left translations in S, Za, Z~, induced by these elements. The following 
equations hold whenever both sides are defined. First of all, cpp = p'implies 
A'cpp = A'p', which in turn equals p'Ao (p' being a homomorphism). But 
p'AO = CPPAo = CPAP (p being a homomorphism). Because p is surjective, it 
follows that H A' cP = cpA. So if cP is defined at Y E Za, it is also defined at 
A(Y) = zy, by the recipe cp(zy) = A' cp(y) = z' cp(y). Since z was arbitrary, cp 
is everywhere defined. From (*) and cPp = p' we then conclude that cP is 
a homomorphism. 

The construction of cp forces cp(na) = n' a'. To see that cp is an isomor
phism, one just repeats the argument in the reverse direction to obtain 
its inverse. D 

An immediate consequence of the proposition is the complete classi
fication of semisimple groups of rank 1. 

Corollary. A semis imp Ie group of rank 1 is isomorphic to SL(2, K) or 
PGL(2, K). 

Proof. As remarked in (31.1), a group whose root system has type Ai 
must be of either simply connected or adjoint type. In these respective cases, 
the character group of a maximal torus is naturally isomorphic to the group 
X(T) ~ X(Gm) ~ Z for SL(2, K) or PGL(2, K), with the positive root rx 
corresponding to 2 (resp. 1). Then the proposition takes over. D 

32.4. Extension of CPT to TUa 

In (32.3) we saw how to extend CPT to an isomorphism of Za onto the 
corresponding subgroup of H, for any root rx (say rx E c[>+). The choice of 
8a : Ga ---+ U a was somewhat arbitrary there, giving us no reason to expect 
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all of the maps <Pz, to be compatible, i.e., to admit some common extension 
to G. So let us begin by constructing extensions <Pz, only for simple roots ex; 
here the choices are "independent". Denote by <Pa the restriction of <Pz, 
to Ua, and by na the distinguished representative of (Ja defined in (32.3): 
na = £,(1)£_,( -1)£a(I), while ta = 11;( = taa)' Set ha = <pz,(na). 

According to (32.2), <PT can be extended to a homomorphism <PN : N -+ H, 
sending na ~ ha (ex E J), provided the following condition is met: 

(A) <PT(taP) = (hahpt(a, P) for all ex, {J E J, where tap = (nanpt(a, P), m(ex, (J) = 

order of (J a(J p in W. 

This condition will be verified in §33, but in the meantime we shall assume 
it is true and utilize <PN freely. By construction, <PN and <Pz, agree on Nz.{T). 

How can <PT be extended to B? We insist, of course, that such an extension 
should agree with <P, (ex E J), and should send every Ua (ex > 0) to the cor
responding subgroup of H. In particular, if UaP (ex, (J E J) denotes Un ZaP' 
we require that the following condition be satisfied: 

(B) For each pair ex, {J E J, there is an isomorphism <Pap (of algebraic 
groups) from U ap onto the corresponding subgroup of H, such that <Pap extends 
both <Pa and <pp. 

Like condition (A) above, this just involves rank 2 and will be verified in 
§33. For the remainder of §32 we assume its truth. 

If <PT is to be extended not only to B, but eventually to G, even more 
is required. Say {J is a positive root, sent by (J E W to a simple root ex, and 
let nEN represent (J. (For brevity, we write Ii = (J.) Then nUpn- 1 = Ual 

or Up = n - 1 U an. If there is to be a homomorphism <P: G -+ H extending 
both <PN and <Pa, this equation tells us how <P must be defined on Up. But 
there is a catch: f3 might be sent to ex by another element of W, and f3 might 
also be sent to another simple root. We have to be certain that the choices 
made do not affect the definition of <pp: Up -+ H. This problem arises already 
in rank 2, where the crucial condition to verify turns out to be the following 
(<PaP as in (B)): 

(C) Let ex, f3 E J. If }' E f/J~ with}' -# a, then Int ha 0 <Pap agrees on Uy 
with <Pap oInt na' 

Like (A) and (B), this condition will be checked in §33; for now we accept 
it and proceed to show that <Pa can be defined consistently for all roots ex 
(positive or negative). 

Proposition. Assume (A), (B), (C) above, so that <PN and <Pa, <Pap (a, (J E J) 
are defined. Then there exists for each ex E f/J an isomorphism <Pa of U a onto 
the corresponding subgroup of H, satisfying: 

(a) If ex E J, <Pa agrees with the given morphism, and <P-a = <pzJU -a' 
(b) Ifa, {JE J and}' E f/J~, then <py = <PapiUy-
(c) If n EN, and n(lX) = f3 (IX, f3 E <P), then Int <PN(n) 0 <Pa agrees with 

<pp oInt n on Ua' 
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Proof. This proceeds in steps. Set NaP = Nz.,(T). 
(1) Let rx, f3 E .1, rx of- f3. If n E NaP and n(rx) = rx (resp. n(rx) = (3), then 

on V" Int ({IN(n) 0 ({Ja agrees with ({J, oInt n (resp. ({Jp oInt n). 
Write n = ny, ... nYI t for some t E T and Yi E {rx, f3}. In case n = t (so n(rx) = 

rx), the assertion follows from the construction of ({Jz,. So we can assume that 
n = ny,' •• nYI and use induction on k. When k = 1, n = na or np. In fact, 
since (Ja permutes the set ifJ:p - {rx} (A.5), it is clear that n of- na (so we are 
in the case n(rx) = rx). Condition (C) can then be applied (in view of condition 
(B) ). 

For the induction step, consider the sequence of roots rxi = (JY'_l' .. 
(JYI (rx) E ifJap. If all rxi E ifJ~, repeated application of condition (C) completes 
the proof, just as in the case k = 1. Otherwise find i < k for which rxi is 
positive but rxi+ 1 is negative. The only positive root which (Jr, sends to a 
negative root being Yi, we get rxi = rx or f3. Now write n = n"n', where n' = 

(JYi-! ... (JYI' n" = (Jl" ••• (Ji',· Observe that each of n', n" satisfies the original 
hypothesis on n (with the roles of rx and f3 possibly interchanged for n"). 
Induction finishes the argument. 

(2) Let rx, f3 E .1, and suppose n(rx) = f3, n E N. Then Int ({IN(n) 0 ({Ja agrees 
with ({Jp oInt n on Va. 

Note that this would follow at once from step (1) if rx of- f3 and n E NaP, 
or even if rx = f3 and n E Nay for some other simple root y. To reduce matters 
to one of these situations, we appeal to a lemma of Tits (A.12), which yields a 
sequence of simple roots Yo = rx, Yb ... ,Yk = f3, and a sequence (Jo, . .. , (Jk-l 
from W, such that: n = (Jk-l ... (Jo, (Ji(yJ = Yi+ 1 (0 ~ i ~ k - 1). The 
lemma also asserts that for each i there exists bi E .1 for which (Ji E Wy,b, and 
Yi+ 1 = Yi or bi· So step (1) may be applied repeatedly. 

(3) Let rx E ifJ, n, n' E N. Suppose n(rx) = f3 E .1 and n'(rx) = f3' E .1. Then 
Int qJN(n)-l 0 ({Jp oInt n agrees with Int ({IN(n')-l 0 ({JfJ' oInt n' on Va. 

It just has to be shown that Int ({IN(n'n- 1) 0 ({Jp agrees with ({JfJ' o Int(n'n- 1) 

on V p. But this follows from step (2). 
(4) Now we are in a position to define ({Ja for all rx E ifJ, in a way con

sistent with the cases already covered by (B). There exists a simple root f3 
and an n E N for which n(rx) = f3 (A.4). For x E Va, we then define ({J,(x) to be 
Int ((IN(n) -l({Jp Int n(x). According to step (3), this recipe does not depend on 
which f3 and n we chose. In particular, parts (a) and (b) of the proposition 
follow. Moreover, ({Ja is clearly an isomorphism of Va onto the corresponding 
subgroup of H (since ({Jp is an isomorphism). Finally, the construction, 
coupled with step (3), implies (c). 0 

32.5. Extension of ({JT to B 

Assumptions (A), (B), (C) of (32.4) remain in force. The morphisms ({Ja 
(rx E ifJ+) constructed in Proposition 32.4, can now be combined with ({JT to 
yield an isomorphism (of varieties) from B onto the corresponding Borel sub
group of H. Indeed, B is isomorphic (as variety) to T x Val X ••• X Vam, 
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where the positive roots at. ... , am are ordered in any way (28.5). So 
CPT X CP~I X ... X CP~m induces the desired isomorphism CPB' Of course, 
this much could have been accomplished by defining the cP~ arbitrarily 
(each of the I-dimensional unipotent groups involved being isomorphic to 
Ga). But we also want CPB to be a group homomorphism. For this the main 
point to be settled involves the commutation in V. Proposition 28.1 says 
that the T-stable closed subgroup (V~, Vp) (where a, P E (j>+) is the product 
of those Vy it contains. Using the technique of Proposition 27.2 we can deter
mine the possible "I which occur and at the same time obtain a fairly precise 
commutator formula. 

Lemma. Let a, p E (j> + , and let tp be the set of all roots of the form ra + sp 
(r, s positive integers). Fix any admissible isomorphisms eb:Ga --+ Vb. Then 
(e~(X), ep(Y)) = n cic,. [3. yXrys), where the product is taken over all "I = 

ra + sp E tp (in some fixed order) and where C~.IJ. y E K is independent of x, y. 
In particular, (V~, V[3) = e if tp = ~ (e.?]., if a + p ¢ (j> (Ao4)). 

Proof. Order the positive roots at, ... , am in some way compatible with 
the chosen ordering of tp; as above, the product map V ~I X ... V ~m --+ V 
is an isomorphism of varieties. Next define a morphism t/t:Ga x Ga --+ V 
by t/t(x, y) = (e~(X), ep(y)) = c,(X)ep(y)e~( - X)ep( - y). The image has "normal 
form" e~Jpl(X, y)) ... e~m(Pm(x, y)), where the Pi are polynomials in two 
variables: 

Pi(X, Y) = I ai. r, sxrys. 
r, S :? 0 

By definition of tIt, t/t(x, 0) = e = t/t(0, y), so that XY actually divides Pi(X, Y) 
(i.e., r, s > ° whenever ai .... s i= 0). 

To pin down the image of tIt, we conjugate t/t(x, y) by t E T and write 
the result in two different ways. On the one hand, (e~(a(t)x), cp(P(t)y)) = ni C,,(Pi(a(t)x, P(t)y)). But the right side equals ni e,,(ai(t)Pi(X, y)). Com
parison reveals that ai, r. s = 0 unless ai = rer: + sp (r, s > 0), in which case 
rand s are uniquely determined by i (it may be assumed that a and pare 
linearly independent). From this the lemma follows. 0 

The lemma shows that the group law in V is determined by the group 
laws in certain "rank 2" subgroups. In case a, p are simple roots, the subgroup 
in question is V~p, and CP~p = CPBIVap is a group isomorphism by assumption 
(B) of(3204). In general, let a, p be positive roots, which may be assumed to be 
distinct (since cP~ is already a group isomorphism). According to (A A), there 
exist (J E Wand "I, 6 E L1 so that (J(a) = "I while (J(P) E (j>~. Say (J = n (n EN). 
Then Proposition 3204(c), combined with the fact the CPyb is a group homo
morphism, allows us to conclude that CPB preserves the commutator formula 
for a, p developed in the lemma. From this it follows readily that CPBI V is an 
isomorphism of algebraic groups. In turn, CPB respects the action of T (by 
conjugation) on each Va> again by Proposition 3204(c). So CPB is a group 
isomorphism. 



204 Representations and Classification of Semisimple Groups 

We remark that the verification of (B) to be made in §33 will yield very 
explicit descriptions of the constants which occur in the commutator formula 
above, for pairs of positive roots. 

32.6. Multiplicativity of cp 

Still working under the assumptions (A), (B), (C) of (32.4), we may now 
define as in (32.1) a set-theoretic bijection cp:G ~ H which extends both 
CPN and CPB, and whose restriction to the big cell Q is an isomorphism of 
varieties. The proof of Theorem 32.1 will be completed (modulo (A), (B), (C)) 
if we can show that cP is a group homomorphism, since that will in turn force 
cP to be an isomorphism of varieties. The restrictions of cP to N, V, V-, Za 
(IJ( E LI) are already known to be morphisms of algebraic groups. 

To simplify matters, let us show that it suffices to prove that cP is "generi
cally" multiplicative, i.e., that cp(xy) = cp(x)cp(y) whenever x, y, xy all lie in Q. 

Indeed, the following lemma implies that if cplQ has this property, then it 
admits an extension (unique, thanks to Proposition 2.5(b)) to a morphism 
cp': G ~ H which is multiplicative. Since Q n Za is dense in Za (IJ( ELI), cp' 
must agree with cp on Za' But the Za generate G, so cp' must coincide with cp. 

Lemma. Let Gb G2 be connected algebraic groups, Van open (nonempty) 
subset of Gb 1/1: V ~ G2 a morphism such that I/I(xy) = l/I(x)l/I(y) whenever 
x, y, xy E V. Then 1/1 extends (uniquely) to a morphism of algebraic groups 
1/1': GI ~ G2 . 

Proof. Lemma 7.4 says that GI = U' U. This suggests (in fact, dictates) 
a recipe for 1/1'. If x E GI can be written as x = yz (y, z E V), we should set 
I/I'(x) = l/I(y)l/I(z). For this to define a function, however, it is essential that (*) 
l/I(y)l/I(z) = 1/I(y')I/I(z') whenever y', z' E V and yz = y'z'. Once this point is 
settled, 1/1' will automatically be a morphism, since its restriction to each 
translate xV (x E V) is a morphism. In turn, 1/1' will automatically be 
multiplicative. To see this, observe first that the subset V of V x V, con
sisting of pairs (x, y) for which xy E V, is dense in G j x GI : V is the 
intersection of the open sets V x V and j1-I(V), where j1:GI x GI ~ GI 

is the product. Further, the morphism GI x GI ~ G2 defined by (x, y) f-t 
1/I'(xy)I/I'(y) -II/I'(X) -I agrees on V with the constant morphism (x, y) f-t e, 
so it must agree everywhere (Proposition 2.5(b) again). 

It remains to prove (*). Denote by DI (resp. D2 ) the diagonal in GI x GI 

(resp. G2 x G2); so DI and D2 are closed sets (2.5). Let X be the inverse image 
of DI under the morphism (V x V) x (V x V)~':: GI x GJ, and let Y be 
the inverse image of D2 under the composite morphism (V x V) x (V x V) 
r/lxr/lxr/lxt (G2 x G2) X (G2 x G2)~':: G2 x G2. Then both X and Yare 
closed in V x V x V x V. It is easy to see that X is irreducible (Exercise 
7.12), since (w, x, y, z) f-t (w, x, y) induces an isomorphism of varieties from 
the inverse image of DI in (G I x GI ) X (G j x Gd onto G j x GI X Gb 

and X is an open subset of the first of these. 
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If the open set V in V x V is defined as above, the original hypothesis 
on l/I implies that X' = (V x V) n X is contained in Y. But X' is open 
(therefore dense) in the irreducible closed set X, so the closedness of Y 
forces X c Y. 0 

The remaining task of this section is to prove that cplQ is "generically" 
multiplicative. 

Proposition. Assume (A), (B), (C) of(32.4), and define cp: G ~ H as above. 
Ifx, y, xy E Q, then cp(xy) = cp(x)cp(y). 

Proof. A number of preliminary steps will be required, involving cp and 
not just cplQ. We lean heavily on the fact that the restrictions of cp to Za, 
N, V, V- are already known to be group homomorphisms. 

(1) Let n EN represent the element of W which interchanges positive and 
negative roots, so nVn- 1 = V -, nV -n- 1 = V. Then for all u E V (resp. 
u E V -), cp( nun - 1) = cp( n )cp( u )cp( n - 1 ). 

Since cpl V and cpl V- are group homomorphisms, this is an immediate 
consequence of Proposition 32.4(c). 

(2) Let u E B, v E B -, X E Q. Then cp(vxu) = cp(v)cp(x)cp(u). 
Write v = Vltlo X = vztzuz, u = t3U3 (ViE V-, tiE T, UiE V). Then 

by definition, cp(v)cp(x)cp(u) = cp(vl)cp(tdcp(V2)CP(tZ)CP(UZ)CP(t3)CP(U3)' Similarly, 
cp(vxu) = CP(VltlVZtlltltZt3t31u2t3U3) = CP(VltlV2tll)cp(tlt2t3)CP(t31uzt3U3)' 
this last because tlV2tli E V- and t31u2t3 E V. Since cplV and cplV- are 
homomorphisms, the left and right terms can be factored further. Comparison 
with the first equation leaves us with the following equations to verify: 

CP(tlVZtll) = cp(tdcp(v2)cp(tll), 

CP(t31uZt3) = CP(t3 1 )cp(UZ)CP(t3)' 

But these follow readily from Proposition 32.4(c), thanks to the way cp is 
defined on V, V -. 

(3) Let rt. E iJ, x E Q. Iflnt na(x) lies in Q, then cp(naxna-1) = cp(na)cp(x)cp(na) -1. 
Write x = VX-atxau, with t E T, X-a E V -a, Xa E Va, V in the product of 

all V _ f3 and u in the product of all V f3 (fJ E </J + - {rt.}). These latter products 
are normalized by Int n", since (Ja permutes </J+ - {rt.} (A.S). When x = u 
or v, the desired formula therefore follows from Proposition 32.4(c). Thanks 
to step (2), it is enough to verify the formula when x = x-atxa E Za. But 
cplZa is already known (32.3) to be a homomorphism, and na E Za. 

(4) Let n E N, x E Q. If Int n(x) E Q, then cp(nxn -1) = cp(n)cp(x)cp(n) -1. 
This is true for nET, by Proposition 32.4(c) and the way cp is defined. It 

is also true when n = na (rt. E iJ), by step (3). Any n can be built up from an 
element of T and a sequence of such elements na, but we cannot be sure that 
the successive images of x all lie in Q, so the general case is not a trivial 
consequence of these special cases. Instead, notice that the two sides of the 
desired formula define morphisms of Q n lnt (n - l)Q into H. For these mor
phisms to coincide, it is sufficient to verify that: (*) There exists an open 
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subset v" ofa (depending on n) such that Int n(v,,) c a and such that <p oInt n 
agrees with Int <p(n) 0 <p on v". In turn, it is enough to prove that if (*) holds 
for n' EN, then it holds for n = n'na (a ELl). Let v" , be given and define 
v" = an Int (na)-l v"" so that Int n(v,,) c Int n'(V~) c a. If x E v", 
then Int n(x) = Int n' oInt na(x). Since Int nix) E v"" <p(Int n(x)) = <p(Int n' 
(Int na)(x)) = Int <p(n')(<p(Int n,,(x)), by hypothesis. By step (3), <p(Int n,,(x)) = 

Int <p(na)(<p(x)), which yields (*). 
(5) The proof of the proposition can now be completed. If x, x' E a, 

write x = vtu, x' = v't'u' (v, v' E U-; t, t' E T; u, U' E U), so xx' = vtuv't'u'. 
Thanks to step (2) and the fact that U - au = a, it is enough to show that 
uv' E a implies <p( uv') = <p( u )<p( v'). As in step (1), let n E N send U to U - , 
so that 

<p(u) = <p(n) -l<p(nun -1 )<p(n), 

<p(v') = <p(n)-1<p(nv'v- 1 )<p(n). 

Then <p(u)<p(v') = <p(n) -l<p(nun - 1 )<p(nv'n -1 )<p(n). Since nun -1 E U-, nv'n -1 E U, 
the two inner terms may be combined (by definition of <p). The assumption 
that uv' E a now allows us to complete the proof by appealing to step (4). 0 

Exercises 

1. Assume that all semisimple algebraic groups are known (up to isomor
phism). To what extent can you classify all reductive groups? 

2. Let G, G' be simple algebraic groups, with respective maximal tori T, 
T'. If G, G' have isomorphic root systems and isomorphic fundamental 
groups, prove that there exists an isomorphism of X(T) onto X(T') 
inducing isomorphisms of root systems and fundamental groups, as 
asserted in (32.1). 

3. Deduce from Theorem 32.1 that if G is of simply connected or of adjoint 
type, every graph automorphism of (jJ induces an automorphism of G 
(cf. Theorem 27.4). To what extent is this true for G of arbitrary type? 

4. Deduce from Theorem 32.1 that all semisimple groups of type Es (resp. 
F 4, resp. G 2) are isomorphic. 

5. Up to isomorphism, there exist precisely three distinct reductive groups 
over K having dimension 4 and semisimple rank 1. (Cf. Exercise 25.5.) 

6. According to (32.3), (Za, Z,,) is isomorphic either to SL(2, K) or to 
PGL(2, K). Prove that the former is always the case if G is simply con
nected, while the latter is not always the case if G is adjoint. [Let A" be 
the fundamental dominant weight relative to a, a E Ll. Its restriction to a 
maximal torus of (Z", Z,,) is a weight A for which both O"aA = A - a 
andO"aA = -}o.] 

Notes 

Theorem 32.1 (or a more general version, dealing with isogenies and not 
just isomorphisms) is due to Chevalley [8, exposes 23,24]' However, the 
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method of proof followed here is closer to that of SGAD, expose XXIII, 
except for Proposition 32.3, which is based on Chevalley [8, expos 18]. 
Lemma 32.6 comes from SGAD, expose XVIII. 

33. Root Systems of Rank 2 

Retain the notation of §32. 

33.1. Reformulation of (A), (B), (C) 

The extension of CPT: T -t H to an isomorphism cP: G -t H was carried 
out under several assumptions involving the canonical rank 1 or 2 subsystems 
CP~fJ of cP (ct, ~ E ,1). These assumptions were formulated as follows in (32.4): 

(A) CPT(t~fJ) = (h~hfJt(~· fJ) for all ct, ~ E ,1, where t~fJ = (n~nfJ)m(~, fJ), m(!X, p) = 
order of (J ~(J fJ in W. 

(B) For each pair !x, ~ E ,1, there is an isomorphism CP~fJ (of algebraic groups) 
from U ~fJ onto the corresponding subgroup of H, such that CP~fJ extends both 

cP~ and CPfJ· 
(C) Let !x, ~ E ,1. Ify E cP~ with y #- !x, then Int h~ 0 CP~fJ agrees on Uy with 

CP~fJ oInt na' 

Notice that when !X = ~,(B) and (C) are vacuous, while (A) is satisfied by 
virtue of the classification of rank 1 groups in (32.3). 

Ostensibly these three statements involve the pair of groups G, H. But to 
verify them it is actually sufficient to work inside G alone. All we have to 
show is that the choices made (G~, La, hence na, for !X E ,1) completely deter
mine the elements t~p, the commutation in U ~p, and the action of lnt r1. on 
certain root groups. Then the corresponding choices in H must lead to 
corresponding results. (This approach amounts to providing generators and 
relations for G.) With this in mind, let us reformulate (A), (B), (C). 

To prove (A) it will be enough to express tafJ in terms of ta and tli in a 
way depending only on which root system of rank 2 is involved, since we 
already know that ta and tp are well determined by the given data. 

For (B) we shall prescribe G).: Ga -t U y for each y E cP~ in a way depending 
only on the root system, then show that the constants occurring in the 
commutator formulas (Lemma 32.5) for all pairs of roots in cP ~ are completely 
determined. So the group-theoretic structure of U ~fJ will just depend on the 
root system. On the other hand, it is easy to construct an isomorphism of 
varieties from U~fJ onto the corresponding subgroup of H (cf. (32.5)); the use 
of the Gy and corresponding G;' will insure that this is a group homomorphism. 
As an example of how Gy is to be prescribed, consider type A2, where the 
positive roots are ct, ~, !X + ~. We are already given G~ and nfJ' so we just set 
G~+p(x) = lnt np(G~(x)). (Of course, it is then a problem to decide how this 
is related to the other natural choice, where !X and ~ are interchanged.) In 
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this case, we shall complete the description of the group law in V ~p by veri
fying that (Bp(y), B~(X)) = B~+p(XY), while B~+p(Z) commutes with everything. 

Next consider (C). The requirement that I' =F a just insures that (j = ail') 
is again positive, so By and Bb are given (cf. the preceding discussion of (B)). 
Following By with Int n~ yields another admissible isomorphism Ga -+ Vb, 
which we shall relate to Bb in a way depending only on the root system. This 
will guarantee the same relationship in H, thereby proving (C). For example, 
in the discussion above of type A2 we left open the question of how Int n~ 0 Bp 
would be related to BdP; it will be shown that n~Bp(x)n; 1 = BdP( - x) (x EGa). 
This sort of conclusion can be expressed a bit more efficiently if we use the 
Lie algebra. The choice of an admissible isomorphism By: Ga -+ V y really 
amounts to a choice of basis vector Xy = dBy(l) for gy, cf. (26.3). This choice 
can only vary by a scalar multiple, i.e., by an automorphism of Gao The equa
tion above is then equivalent to: Ad na(xp) = - Xa+ p, the choice Xd p = 

Ad nlb~) having been made earlier. 
Whenever we define Xy for a nonsimple positive root I' by a recipe of the 

form Xy = Ad np(x~) (a, {3 E L1), we also decree that Ly = Ad np(La). Having 
defined both By and L y, we can then set ny = By(l)Ly( -l)By(l). In this 
way, Int np transfers the canonical choices made in Za over to Zy. As a 
result, we can compute: npnanp 1 = (npBil)np l)(npL a( -l)np l)(npBil)np 1) = 
By(l)Ly( -l)By(l) = ny. 

There are just four root systems of rank 2 (A.7): Al x Ab A2, 8 2 (= C2), 

G2. Only G2 will require lengthy calculations. It may be well to point out 
that G2 cannot play the role of lfJ~p inside any irreducible root system other 
than itself; so the isomorphism theorem for types A - F does not depend 
at all on these calculations. 

It is also worth remarking that the fundamental group of G only influences 
the nature of the elements t~ (i.e., whether ta = e or not). The root system 
alone determines the other relations involved in (A), (B), (C). 

33.2. Some Preliminaries 

Before tackling the root systems A2, 8 2, G2, we have to make a few general 
observations. 

The commutator formula (Lemma 32.5) was stated for pairs of positive 
roots, but of course it applies whenever two roots can be made positive by 
a suitable choice of base. We shall very frequently use the fact that (Va, V p) = e 
when a + {3 ¢: 1fJ, in order to rearrange formulas. In particular, when neither 
rt. + {3 nor a - {3 is a root, the definition of nIX shows that Ad na(xp) = xp 
and also that nanp = npna. These considerations already settle the case 
At x At: 

Proposition. Let lfJap be of type Al x AI, with positive roots rt., {3. Then: 
(a) tap = (nanp)2 = tatp = (npnaf = tpa. 
(b) (Va, Vp) = e. 
(c) Ad nixp) = Xp, Ad np(Xa) = Xa· 0 
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The other information we need concerns the elements ta: What can be 
said about P(ta) or about nptanji 1 when p E L1 ? 

Recall (A.11) the notion of dual root system If>*. This is the set of vectors 
Ci* = 2Ci/(Ci, Ci) in the euclidean space E where If> is defined. In the cases A2, 

B 2, G2, If>* is a root system of the same type; but a long root Ci gives rise to 
a short root Ci* when there are two root lengths involved. The Weyl group 
of If>* is canonically isomorphic to W, with (JiP*) = {3* - <{3*, Ci*)Ci* = 

{3* - < Ci, {3)Ci*, where < Ci, {3) = 2( Ci, {3)1({3, {3). 
Our aim is to construct a copy of If>* directly in Y(T), so that in the 

natural pairing X(T) x Y(T) --> Z, we shall have <{3, Ci*) equal to the Cart an 
integer <{3, Ci). For each Ci E .1, (Za, ZJ is isomorphic to SL(2, K) or to 

PGL(2, K) (32.3). In either case, the assignment x ~ (~ ~ -1) yields a I-psg 

y:Gm --> Tn (Za, Za) for which ta = y( -1) and for which <Ci, y) = 2 (i.e. 
Ci(y(X)) = x 2 ). This is our candidate for Ci*. 

Now (Za, Za) lies in each maximal parabolic subgroup Pj-{Pl ({3 =I Ci) and 
then fixes a vector (in some rational representation of G) whose weight is 
a positive multiple of the fundamental dominant weight Ap attached to {3 (cf. 
first three paragraphs of(31.4) ).It follows that for some positive c, Ap(Y(X)) = 1 
for all X E Gm, or <cAp, y) = O. The vector spaces R ® Y(T) and E = R ® X(T) 
are in duality via the pairing, and y therefore corresponds to the unique 
linear function on E which assigns 2 to Ci, 0 to all Ap ({3 =I Ci). But in the natural 
pairing of E with itself via (,), Ci* plays precisely this role (A.ll). As a result, 
we obtain a base {Ci*ICi E .1} for a root system in R ® Y(T) isomorphic to If> * , 
with <{3, Ci*) = <{3, Ci) (Ci, {3 E .1), cf. (A.11). The action of W is then consistent 
with Exercise 24.8. 

The following basic formulas are now evident: 

(a) {3(ta) = {3(Ci*( -1)) = (_l)<p,a); 

(b) nptanji 1 = ((JpCi*)( -1) = (Ci* - <{3, Ci){3*)( -1) 
= Ci*(-l){3*(-l)-<P"> = tatp-<p,a> (Ci,j3 E .1). 

33.3. Type A2 

Proposition. Let cI>ap he of type A2, with positive roots Ci, {3, Ci + {3. Set 
xa+P = Ad np(xa). Then: 

(a) taP = (nanp)3 = e = (npna)3 = tPa' 
(b) For all x, y EGa, ep(y)eiX) = ea(X)ep(y)ea+p(XY). 
(c) Ad na(xp) = -Xa+p, Ad niXdP) = Xp, Ad np(xa+p) = -Xa' 

Proof. Since <Ci, {3) = <{3, Ci) = -1 (A.7), we have Ci(tp) = {3(ta) = -1 
(33.2)(a). From the definition ofxdP we deduce that Ad np(xa+p) = Ci(tp)Xa = 
-Xa, as asserted in (c). On the other hand, Ad nixp) = hxdP for some h E K, 
whence Ad na(xa+p) = {3(ta)h- 1xp = -h- 1xp. So the other assertions in (c) 
require h to be -1. 
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Lemma 32.5 says that for some a E K independent of x, y, the following 
identity holds: 

(1) 

To prove (b) we have to show that a = 1. First apply Int np to both sides of 
(1),toget: 

(2) 

By definition, npSa(x)njJ 1 = Sd p(x), or 

(3) Sp(1)Lp( -1)sp(1)six)sp( -1)Lp(1)sp( -1) = SdP(X). 

Since rJ. + 2/3 ¢ (/J, this can be rewritten: 

(4) 

Applying (1) to the left side (with y = 1) and (2) to the right side (with y = - 1), 
this becomes: 

(5) sa(x)Sp(1)sdP(ax)sp( -1) = sa+p(x)Lp(1)sa(ax)Lp( -1). 

Because rJ. + 2/3, rJ. - /3, 2rJ. + /3 ¢ (/J, (5) can be rewritten: 

(6) 

It follows that a = 1, proving (b). Next apply Int n" to both sides of (1): 

(7) Sa + p(bY)Li -x) = La;( -x)sdP(by)sp( -b-1xy). 

From n"sp(y)na- 1 = sdP(by) we derive (by the sort of argument that led to (4)): 

(8) 

Now apply (1) to the left side and (7) to the right side of (8): 

(9) sp(y)sa+p(-Y) = sp(-b-1Y)SdP(by). 

This forces b = -1, proving (c). It remains to prove (a). Start with the 
equation: 

(10) 

where n"npn; 1 is evaluated using np = SP(1)Lp( -1)sp(1), as described in 
(33.1). From (10) and (33.2) (formula (b)), we get: 

(11) npn"npnanp = npna-+1pt"np = npn;lpnjJ 1 tatp -(P, a) tp = n"t" = n" - 1 . 

From this (a) follows. D 

33.4. Type B2 

Proposition. Let (/JaP be of type B2> with positive roots rJ., /3, rJ. + /3,2rJ. + /3. 
Set xdp = Ad np(xa), X2a+p = Ad n,,(xp). Then: 

(a) tap = (nanp)4 = ta = (npna)4 = tp". 
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(b) For x, Y E Gm ep(y)ea(X) = ea(X)ep(Y)cdP(Xy)eZa+/J(X2y), while ed/J(Y)' 
eix) = ea(X)ea+/J(y)c2a+/J(2xy). 

(c) Ad na(xdP) = -xdp, Ad na(X2a+P) = xp, Ad np(xa+p) = -Xa, 
Ad np(x2a+P} = X1dP' 

Proof. Since<o:,{3) = -1,<{3,0:) = -2,wehaveo:(tp) = -1,{3(ta) = 1 
(33.2). From the definitions ofxa+p and Xla+P we deduce that Ad np(xdP) = 

o:(tp)xa = -Xa and that Ad na(X2a+P) = {3(ta)xp = xp, as asserted in (c). More
over, Ad np(x1dp) = X1d/J because 20: + 2{3, 20: ¢ tP (33.2). To complete the 
proof of (c), we must show that d = -1, where Ad na(xdP) = dx,,+p. 

Lemma 32.5 yields scalars a, b, c E K (independent of x, Y EGa) such that 
the following formulas hold: 

(1) cp(Y)ca(X) = ca(X)cp(Y)£d/iaxY)CldP(bx1y), 

(2) ca+p(y)cix) = ciX)£a+p(Y)Cla+p(CXY). 

To prove (b) we have to show that a = b = 1, C = 2. Apply lnt na to both 
sides of(1) (resp. (2)), to get: 

(3) CldP(Y)La( -x) = Li -X)CldP(y)ea+p(adxy)cp(bxly), 

(4) ca+p(dY)Li - x) = La( - x)ca+p(dy)ep(cXY). 

'Similarly, apply lnt np to both sides of(1): 

(5) Lp( - y)ea+p(X) = ca+p(X)Lp( - y)ea( -axy)cla+p(bx1y). 

From npca(x)ni 1 = ea+p(X) and the fact that 0: + 2{3 ¢ tP we obtain: 

(6) 

Applying (1) to the left side (with y = 1) and (5) to the right side (with y = -1), 
this becomes: 

(7) Ca(X)C/J(1)CdP(aX)CldP(bx1 )ep( -1) 

= Sd/J(X)Lp(1)siax)sldP( - bXl)Lp( -1). 

Because 0: + 2{3, 20: + 2{3, 0: - {3, 20: ¢ tP, this can be rearranged: 

(8) s,,(x)sa+p(ax)sld p(bXl) = Cd p(x)ca(aX)Cla+ p( - bXl). 

In turn, (2) can be applied to the right side to yield: 

(9) ca(x)sa+p(ax)CldP(bx1) = sa(ax)sa+p(X)CldP((ac - b)Xl), 

whence a = 1 and c = 2b. From nacp(y)n; 1 = CldP(y) and the fact that 
30: + {3 ¢ tP we next obtain: 

(10) 

After (1) is applied to the left side, (3) to the right side, this becomes: 

(11) sp(y)ca+p( -ay)cla+p(by) = Cldp(y)sdp(ady)cp(by). 

Since Ua+p, U 2dP, Up all commute, we conclude at once that b = 1, -a = ad, 
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whence a = b = 1, c = 2, d = -1. This completes the proof of (b) and (c). 
It remains to prove (a). To begin with: 

(12) 

In turn, 

(13) npnanpnanp = npn2dpnp-ltatp-(p.'>tp = nZa+ptatp, 

because </3, a) = - 2 and tj = e. Then: 

(14) (nanp)3 na = (nanZa+pn; l)(natatpn; 1)ta 
= nptatpta -("p> ta = nptatp. 

Finally, (14) implies that (npna)4 = ta = (nanp)4. 0 

33.5. Type G2 

Proposition. Let <PaP be of type G2, with positive roots a, /3, a + /3,2a + /3, 
3a + /3, 3a + 2/3. Set XdP = Ad np(xa), X2a+p = Ad n.{xa+p), X3a+p = - Ad na(xp), 
X3a+2p = Ad np(X3a+p), Then: 

(a) tap = (O"aO"p)6 = e = (O"PO"a)6 = tpa' 

(b) For all x, Y EGa, 

cp(y)c.{X) = c.{X)cp(y)ca+ P(XY)C2a+ p(X2Y)C3a+ p(X3Y)C3a+ 2P(X3/); 

ca+ p(y)ca(X) = C.{X)Cd p(Y)c2a+p(2xY)C3a+p(3x2Y)C3a+ 2P(3x/); 

C2a+P(Y)ca(X) = Ca(X)C2a+P(Y)C3a+p(3xy); 

B3a+p(Y)BP(X) = Bp(X)B3a+p(y)B3a+2P( -xy); 

B2a+p(y)BdP(X) = Ba+p(X)B2dP(y)B3a+2P(3xy). 

(c) Ad na(X2a+P) = -Xa+p, Ad na(x 3a +p) = Xp, Ad na(X3a+2P) = X3a+2p, 
Ad np(Xa+P) = -x., Ad np(X2a+P) = X2a+p, Ad np(X3a+2P) = -X3a+p, 

Proof. Since <a, /3) = -1, </3, a) = - 3, we have /3(ta) = a(tp) = -1. 
From the definitions we deduce that: 

(1 ) 

(2) 

(3) 

(4) 

Ad np(xdP) = a(tp)xa = -x., 
Ad na(x2dp) = a(ta)/3(ta)xa+p = -xa+p, 

Ad n.{x3d p) = - /3(ta)xp = xp, 

Ad np(X3a+2P) = a(tp)3/3(tp)X3dP = -X3dP' 

Since (3a + 2/3) ± a, (2a + /3) ± /3 ¢ <P, we also get: 

(5) 

(6) 
Ad n.(X3a+2P) = X3a+2p, 

Ad np(X2a+P) = X2a+p, 

Statements (1)-(6) dispose of (c). 
Turning next to (b), we use Lemma 32.5 to obtain scalars a, b, c, d, e, f, 

g, h, i (independent of x, y) such that the following formulas hold: 

(7) Bp(Y)Ba(X) = ca(x)cp(Y)Bd p(axY)B2a+ p(bx2y)C3a+ p(CX 3Y)B3d 2p(dx 3y2), 
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(8) C,+ ,iy)eix) = C,(X)Cd p(y)C2d p(exy)e3d ,ifx2Y)C3d 2P(gxl), 

(9) C2d p( y)c,(x) = C,(X)C2d P(y)C3d p(hxy), 

(10) C3dP(y)Cp(x) = Cp(X)C3a+p(y)C3d2P(ixy). 

Letting Int np act on both sides of (7), (9), (l0), we obtain (respectively): 

(11) Lp( - y)CdP(X) 
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= G,+p(X)Lp( - Y)E,( -axY)GzdP(bx2Y)G3d2P(CX 3Y)G3dP( _dx3y2), 

(12) E2dP(y)EdP(X) = ca+P(X)C2dP(y)C3d2P(hxy), 

(13) G3a+2p(y)Lp( -x) = Lp( -X)C3d2p(y)C3a+P( - ixy). 

Similarly, let Int n, act on both sides of (7): 

(14) G3,+P( - Y)L,( -x) 

= L,( - X)G3a+P( - y)E2dP(axY)CdP( - bX2Y)GP(CX 3Y)C3dP(dx3l)· 

Because IY. + 2[3 ¢ <1>, the equation npca(x)ni 1 = Ga+P(x) simplifies to: 

(15) 

Using first (7) and then (10), the left side of(15) can be written: 

(16) cp(1)c,(x)cp( - 1) 

= Ga(x)CP(1)CdP(ax)G2a+p(bx2)C3a+p(CX3)C3a+2p(dx3)cp( -1) 

= c,(x)cp(1)Ed P(ax)C2dP(bx2)cp( -1)C3dP(CX3)C3d2P((d - Ci)X3) 

= c,(x)ca+p(ax)G2a+p(bx2)C3dP(CX3}c3d2P((d - ci)x3). 

Using first (11) and then (13), the right side of(15) can be written: 

(17) L p(1)Cd p(X)L p( -1) 

= GdP(X)Lp(1)c,(ax)G2a+P( -bXZ)C3a+2P( -CX3)G3a+P( -dX3)Lp( -1) 
= Ea+p(X)ca(ax)Eza+p( -bx2)C3d2P( -CX3)C3a+p((ci - d)X3). 

In turn, (8) transforms the right side of (17) into: 

(18) ca(ax)Cd P(X)C2d p(aex2)C3a+ p(a2 fx 3)C3,+ 2p(agx3) 

C2a + p( - bx2)C3a +2P( - CX3)C3d p( (ci - d)X3) 

= c,(ax)ca+p(X)C2a+p((ae - b)x2)C3a+p((a2f + ci - d)X3) 

C3a+2P((ag - c)x3). 

Comparison of (16) and (18) yields: 

(19) a = 1, e = 2b, c + d = f + ci, f = g. 

Because 41Y. + [31 <1>, the equation nacp(y)n; 1 = C3a+P( - y) can be simplified 
to: 

(20) 

Apply (7) to the left side to obtain: 

(21) ca(1}cp(y)ca( -1) = cp(y)ca+p( -ay)c2,+p(bY)C3a+P( -CY)C3,+2P( _dy2). 
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Apply (14), (12), (10) successively to the right side of (20) to obtain: 

(22) L~(1)C3a+P( - Y)Li -1) 

= e3a+p( - Y)C2a+p(ay)c~+p( -bY)ep(CY)c3a+2P(dyZ) 

= C3~+P( - y)ca+p( -bY)C2~+p(aY)C3~+2{l-abhy2)ep(cy)e3~+2p(dyZ) 

= cp(cy)c3a+p(-y)ca+p(-bY)C2a+p(aY)C3a+2P«d - ci - abh)y2) 

= cp(cy)ca+ p( - by)C2~+p(ay)C3a+ p( - y)C3a+ 2P( (d - ci - abh)yZ). 

Comparison of (21) and (22) yields: 

(23) c = 1, a = b, d - ci - abh = - d. 

Together with (19), this implies: 

(24) a = b = c = 1, e = 2, ! = g, d + 1 = ! + i, 2d = h + i. 

Next we use the equation npc3a+ p(x)ni 1 = C3a+ 2P(X), which becomes: 

(25) Cp(1)c3a+P(X)Cp( -1) = Lp(1)C3a+2P(X)Lp( -1). 

Transform the left side by (10) and the right side by (13) to obtain: 

(26) C3~+P(X)C3a+2P( - ix) = e3a+2P(X)C3a+P( - ix), 

whence i = -1. Finally, use the equation n~c~+p(y)n; 1 = C2a+P(y), in the 
form: 

(27) ca(1)ca +p(y)ca( -1) = La(1)ca( -1)C2~+p(y)ei1)L~( -1). 

Transform the left side by (8) and the right side by (9) to obtain: 

(28) ca+P(y)C2~+P( -eY)C3a+p(fy)e3a+2P( _gy2) 

= L~(1)C2a+P(Y)C3a+p(hY)Li -1). 

Moving L~( -1) to the left, past c3a+p(hy) and then past C2a+P(Y)' introduces 
no further C3a+p term in the right side of (28). Accordingly, the right side of 
(28) has the form: 

(29) 

the missing parameters being of no consequence. Comparison with the left 
side of (28) shows that! = h. Combined with (24) and the fact that i = -1, 
this shows that 

(30) a=b=c=d=1 e=2 !=g=h=3 i=-1 " " 
thus proving the first four formulas in (b). The fifth formula in (b) follows 
from (12), since h = 3. 

It remains to prove (a). We proceed as before: 

(31) n~npn~ = n~npna-lta = ni/+pta. 

(32) np(n~np)2 = npni/+pni l(npt~ni 1 )tp = ni~\- 2pt~tptp = ni~l+ 2pt~. 
(33) ( )3 - 1 - 1 - 1 

n~ npna = nan3a + 2pna = n3a + 2p· 
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(34) np(nanp)4 = npn3a1+2pnji ltp = n3o+ptp. 

(35) na(npnY = nan3o+ pn;; l(natpn; 1 )tp = nptptata = nji 1. 

Finally, (nanp)6 = (npna)6 = e. 0 

33.6. The Existence Problem 

Together with the discussion in (33.1), Propositions 33.2-33.5 dispose of 
assumptions (A), (B), (C), thereby completing the proof of Theorem 32.1. 

It is natural to ask whether semisimple groups of all possible types exist. 
The answer is yes, but we shall not attempt to give a complete proof, only 
an outline of the methods involved. First consider the simple types A-G. 

Some groups of type AI, B/, CI , O{ are already known (cf. Exercise 27.1). 
It is not too hard to verify that SL( f + 1, K) and Sp(2f, K) are simply con
nected, of respective types AI, Ct. In turn, the image of SL( f + 1, K) (resp. 
Sp(2f, K)) in PGL( f + 1, K) (resp. PGL(2f, K)) is an adjoint group of the 
same type, denoted PSL( f + 1, K) (resp. PSp(U, K)). (Since K is algebraically 
closed, PSL( f + 1, K) in fact equals PGL( f + 1, K), but over arbitrary fields 
these groups can differ.) For the root system CI , [A:ArJ = 2, so there are 
no further groups to be found. For the root system At, [A :ArJ = f + 1, and 
each divisor of f + 1 corresponds to a possible intermediate group X(T). In 
case K has f + 1 distinct f + pt roots of unity (i.e., in case pte + 1, p = 

char K), the corresponding scalar matrices form the center of SL( e + 1, K), 
and one gets distinct groups of all desired types by factoring out the various 
subgroups ofthis center. This approach is not quite adequate if pie + 1, since 
then we get too few distinct groups. The problem is that isomorphic abstract 
groups need not be isomorphic as algebraic groups. To make a systematic 
construction of the groups of type A (, it is probably best to utilize exterior 
powers of the natural f + 1 dimensional representation of SL( f + 1, K), cf. 
Chevalley [8J, expose 20. 

Turning to types B(, Of, one can show that SO(U + 1, K) = PSO(U + 1, K) 
is an adjoint group of type BI , while SO(2e, K) is of type Dc and has funda
mental group of order 2, the corresponding adjoint group being PSO(2C, K). 
The only missing groups are the simply connected ones, which turn out to 
be the "spin" groups associated with certain Clifford algebras. 

A group of type G2 (resp. F 4) can also be constructed explicitly, as the 
automorphism group of the 8-dimensional Cayley algebra (resp. the excep
tional 27-dimensional Jordan algebra). In these cases there is only one dis
tinct group of each type, since the roots span the full lattice of abstract 
weights. Groups of type E6 , E7 , Es can also be treated in similar (but more 
elaborate) ways. 

Chevalley [7J gave a uniform construction of the groups of adjoint type 
(which also yields related groups over arbitrary fields). First he showed how 
to select an especially good basis for the semisimple Lie algebra over C 
having root system cP; in particular, all structure constants are integral. (This 
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of course presupposes the existence theorem for such Lie algebras.) Next he 
introduced a group of Lie algebra automorphisms, generated by those of the 
type "exp ad x/, which leaves stable the Z-span of the Chevalley basis. This 
group can be viewed as a matrix group "over Z", whose entries may then be 
specialized to elements of an arbitrary field. 

The construction of Chevalley groups is also described in Carter [1], 
Humphreys [6], Steinberg [10]. To show that the groups so constructed over 
K are simple algebraic groups of respective types A - G, one has to develop 
structural information leading to the Bruhat decomposition. In effect, one 
has to show that the groups are simple as abstract groups, cf. Theorem 29.5. 
The problem here is mainly group-theoretic, since the Chevalley groups 
over K are by construction connected algebraic groups, being generated 
by I-dimensional unipotent subgroups. 

It still remains to pass from the existence of adjoint groups to a general 
existence theorem. In Chevalley [8], expose 23, there is a construction of a 
simply connected group of any given type, provided some group of that type 
already exists. The construction is based on the existence of "projective 
representations", which we have not discussed here. From this the existence 
of semisimple groups having all possible fundamental groups can be estab
lished by arguments like those stated above. 

There is another method, based on the use oflinear representations, which 
also leads to a construction of all possible types. By imitating Chevalley's 
original construction, with the adjoint representation of the Lie algebra re
placed by other representations, one can construct matrix groups over K for 
which X(T) occupies any desired position between A and Ar • This method is 
described in Humphreys [6], Steinberg [10]. It utilizes Kostant's Z-form of 
the universal enveloping algebra. 

Exercises 

1. Assuming that simple algebraic groups of all possible types exist, discuss 
how to prove that semisimple groups of all types exist. 

2. Formulate explicit generators and relations for a semisimple group G 
(viewed as an abstract group). 

Notes 

The calculations in (33.3)-(33.5) are reproduced from SGAD, expose 
XXIII. The method of Chevalley [8] is entirely different: he gives an ex
plicit classification of the groups of rank 2 via their projective and linear 
representations. 



Chapter XII 

Survey of Rationality Properties 

This chapter summarizes, with examples but without proof, many of 
the known properties of algebraic groups relative to fields of definition. 
As before, K denotes an algebraically closed field. If k is an arbitrary subfield 
of K, we are interested in the closed subgroups of GL(n, K) which are defined 
by polynomials with coefficients in k. Some general theory is developed in 
§34, to be followed by a discussion of special fields (finite, real, p-adic) in 
§35. 

34. Fields of Definition 

34.1. Foundations 

A closed set X in An is said to be k-closed if X is the set of zeros of some 
collection of polynomials having coefficients in k. It is easy to check that 
the k-closed sets are the closed sets of a topology on An, called the Zariski 
k-topology. So far, so good. But there is a subtle difficulty with this notion. 
To say that X = cor(I) for some ideal I generated by its intersection with 
k[T 1, ... , Tn] is not to say that .J'(X) has this property. (Recall from (1.1) 
that J(X) is the radical of I, which may be larger than I.) In case J(X) 
does happen to be generated by k-polynomials, we say that X is defined 
over k. 

The property of being defined over k turns out to be more valuable than 
the weaker property of being k-closed. It is also more difficult (as a rule) 
to verify. For example, the matrices in M(n, K) commuting with a given 
matrix in M(n, k) obviously form a k-closed set, but the full ideal vanishing 
on this set is not readily described, so that its generation by k-polynomials 
remains uncertain. The problem here is brought into focus by the following 
result: 

Lemma. If X is k-closed in An, then X is defined over a finite, purely 
inseparable extension ofk. 

When k is perfect (e.g., of characteristic 0), the two notions therefore 
coincide. Quite a lot of the theory to be summarized below becomes appre
ciably simpler in the perfect case; then one can frequently verify that a 
group or other variety is defined over k by showing that it is stable under 
the galois group of K/k. However, most of the interesting results remain 
valid for arbitrary k, so it is rather unsatisfying to limit oneself to perfect 
fields. And imperfect fields do arise naturally in the arithmetic applications 
of algebraic groups. 

217 
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The definitions given above are adequate so long as one deals only 
with closed subsets of affine spaces. To say what it means for an arbitrary 
variety to be defined over k, one has first to make this notion more intrinsic 
in the affine case, i.e., one has to look directly at the affine algebra K[ Xl 
When X is defined over k,f(X) is generated by fk(X) = f(X) n k[Tb"" Tn], 
so we obtain a k-algebra k[X] = k[T]/fk(X). Then K[X] = K (8\ k[Xl 
This k-structure on K[X] is the intrinsic feature to emphasize. With its 
aid one can then formulate the general idea of "variety defined over k", 
via affine open coverings. We shall not enter into the details, but shall 
assume that the notion is well founded. 

If X is a closed subset of An defined over k, we let X(k) = X n kn be 
its set (possibly empty) of k-rational points. This subset of X is in fact intrin
sically defined and can be introduced for any variety defined over k. In the 
affine case, when X c An and Y c Am are defined over k, we say that a 
morphism cp: X --+ Y is defined over k (or is a k- morphism) if the coordinate 
functions all lie in k[T b ... , T nl This notion too can be made intrinsic 
and then generalized to arbitrary varieties. 

Once the foundations are well established, it is fairly easy to fill in the 
"relative" aspects of the earlier chapters (aspects relative to fields of defini
tions). However, it would have been somewhat distracting to do this from 
the outset, since the rationality proofs are usually unrelated to the group
theoretic arguments. 

34.2. Review of Earlier Chapters 

Here we shall indicate, section by section, some of the rationality asser
tions which can be established in the framework of Chapters II -IV, VI. 

(7.l) Let G be an algebraic group. If G, along with p:G x G --+ G and 
I: G --+ G, are defined over k, we say that G is defined over k, or is a k-group. 
Examples: Ga, Gm , GL(n, K), SL(n, K), T(n, K) (etc.) are defined over the prime 
field of K. A direct product of k-groups is a k-group. If G is a k-group, the set 
G(k) of its k-rational points is a subgroup of G. For example, GL(n, K)(k) = 

GL(n, k). 
(7.3) If G is a k-group, so is GO. 
(7.4) Let cp: G --+ G' be a k-morphism of k-groups. Then the image of 

cp is a k-subgroup of G' (but the kernel need not be defined over k). 
(7.5) In the proposition, let G be a k-group, and let the/; be k-morphisms 

from varieties Xi defined over k. Then d(M) is defined over k. In the corollary, 
G is therefore defined over k if all r; are. 

(8.2) Given cp: G x X --+ X, say that G acts k-morphically on X if cp, 
G, X are all defined over k. In the proposition, let G act k-morphically on X. 
If Y c X(k) and Z is k-closed, then TranG(Y, Z) is k-closed, as is CG(Y). 
Also, XG is k-closed. 

(8.3) When a k-group G acts morphically on X, its orbits are varieties 
defined over k, and the orbit maps are k-morphisms. 
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(8.6) In the proposition, let G be a k-group acting k-morphically on X. 
Given F, the subspace E in (a) can be chosen to be defined over k (relative 
to the k-structure on K[X]). In the theorem, if G is a k-group, then there 
exists a k-isomorphism of G onto a k-subgroup of GL(n, K). 

(9.1) If G is a k-group, its Lie algebra has a natural k-structure, with 
9 ~ K <8\ g(k). 

(10.3) If G is a k-group, Ad is a k-morphism. 
(11.2) In the theorem, let G and H be defined over k. Then V may be 

chosen with a k-structure so that L is defined over k and so that q> is a 
k-morphism. 

(11.5) In the theorem, let G and N be defined over k. Then t/I may be 
taken to be a k-morphism, GL(W) being given the structure of k-group. 

(12.1) When G, Hare k-groups, the variety Yand the morphism n: G ---+ Y 
can be taken to be defined over k. 

(15.1) In Lemma B, let GL(V) be a k-group, where V and hence End V 
has been given a k-structure. If x E GL(V)(k) (or GL(n, k) in matrix form), 
and k is perfect, then x" Xu are also k -rational; but in general a purely 
inseparable extension of k is required. 

(15.3) If G is a k-group and x E G(k), then x" Xu E G(k) provided k is 
perfect. A similar statement holds for elements of g(k). The set Gu is k-closed 
if G is a k-group. 

34.3. Tori 

A torus T defined over k is referred to simply as a k-torus. Let X(T)k 
denote the subgroup of X(T) consisting of characters T ---+ Gm which are 
k-morphisms. We call T k-split in case X(T)k spans k[T]. Equivalently, 
T is k-isomorphic to Gm x ... x G m (d copies, d = dim T); then 
T(k) ~ k* x ... x k*. At the opposite extreme, T is called k-anisotropic in 
case X(T)k = O. 

Theorem. Let T be a k-torus. 
(a) There exists a finite galois extension of k over which T becomes split. 
(b) There exist unique subtori T, Til of T defined over k, such that: 

T = TT", T is k-split, Til is k-anisotropic. Here T is the largest k-split 
subtorus of T, Til the largest k-anisotropic subtorus. Til is the identity com
ponent in the intersection of kernels of the characters of T defined over k. 

What do k-anisotropic tori look like? When k = R the answer will be 
given in (35.3). 

34.4. Some Basic Theorems 

The main theme of this book has been the structure of reductive groups. 
In order to "relativize" the results on root systems, Bruhat decomposition, 
etc., we have to see which of the subgroups of a reductive group G defined 
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over k are themselves defined over k. Let us call G k-split if G has a maximal 
torus T which is k-split (34.3) and if in addition the associated admissible 
isomorphisms Ga : Ga ~ U a can be taken to be k-isomorphisms (U a being 
required to be defined over k). In this case the entire structure theory of G 
adapts quite satisfactorily to the group G(k). For example, GL(n, K) is 
split over any subfield of K, so that GL(n, k) has a "Bruhat decomposition" 
of its own. Call G k-anisotropic if it has no k-split tori of positive dimension. 

The first deep results of the relative theory are summarized in the 
following theorem. 

Theorem. Let G be a connected k-group. Then: 
(a) G has a maximal torus defined over k. 
(b) If G is reductive, G is k-split if and only if some maximal torus of G 

is k-split. In particular (cf (34.3)), G splits over a finite galois extension ofk. 
(c) If G is reductive, S a k-torus in G, then CG(S) is reductive and defined 

over k. Moreover, S is contained in some maximal torus defined over k. 
(d) If G is reductive and k is infinite, G(k) is Zariski-dense in G. (This is 

true for any G if k is perfect, but can fail otherwise.) 
These results, which take quite a bit of labor to prove, suggest already 

that tori and their centralizers will playa large role in the structure theory 
of a reductive group over k. By contrast, G need not possess any Borel 
subgroups defined over k (cf. (35.1)). 

34.5. Borel-Tits Structure Theory 

G denotes a reductive group defined over k. Choose a k-split torus S 
in G of largest possible dimension (which may be 0). Its dimension is an 
invariant of G (thanks to the following theorem), called the k-rank. The 
k-rank is 0 if and only if G is k-anisotropic. Define the k-roots kf./J of G to 
be the nonzero weights of Ad S. (In case S is a maximal torus, these are just 
the usual roots.) Let Z = CG(S), N = NG(S); the finite group kW = NjZ 
is called the k-Weyl group. 

Theorem A. (a) The maximal k-split tori of G are all conjugate under 
G(k). 

(b) Z is a reductive k-group and its derived group is k-anisotropic. 
(c) kf./J is a (possibly nonreduced) abstract root system in a suitable euclidean 

space, whose Weyl group is isomorphic to k W. 
It has to be explained that by removing axiom (R2) in (A.1) we obtain 

a slightly more general notion of abstract root system in which a, 2a can 
both be roots. When this happens, the root system is called nonreduced. 
But the only irreducible system of this type is the union of types Be and Ct , 

long roots in B( being identified with short roots in C(. (This is called the 
system of type BCc.) So no "new" Weyl groups occur. 
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The proof of Theorem A is closely tied up with the study of parabolic 
subgroups of G defined over k, among which the Borel subgroups mayor 
may not occur. 

Theorem B. Let P be minimal among the parabolic k-subgroups of G. 
(a) All other minimal k-parabolics are conjugate to P under G(k). 
(b) P contains a maximal k-split torus S, and Z = CG(S) is a Levi factor 

(30.2) of P. Moreover, Ru(P) is defined over k, and the k-roots occurring in 
Ru(P) form a positive subsystem of kCP. 

This theorem shows that minimal k-parabolic subgroups play the role 
of Borel subgroups in the relative theory, while maximal k-split tori play 
the role of maximal tori. 

Theorem C. Let P be a minimal k-parabolic subgroup of G, S cPa 
maximal k-split torus of G, U = RiP), N = N G(S), Z = CG(S). Then: 

(a) N = N(k) . Z, so G(k) contains a full set of representatives of kW. 
(b) G(k) is the disjoint union over kW of double cosets U(k)N(k)U(k) 

(relative Bruhat decomposition). Indeed, G(k) has a Tits system (29.1) deter
mined by P(k) and N(k) along with canonical generators of kW. 

There is also a precise normal form in G(k), analogous to (28.4). But it 
should be pointed out that "root groups" are now no longer I-dimensional 
(or even commutative) in general, so the internal structure of U(k) is not 
completely transparent. It should also be pointed out that the preceding 
theorems tell us nothing at all about the structure of G(k) when G is k
anisotropic. Examples show that this can vary considerably, depending 
on the nature of k. However, it is known when k is perfect that G(k) must 
consist of semisimple elements. 

If G is not k-anisotropic, let G+ be the subgroup of G(k) generated by 
all U(k), where U runs over the unipotent radicals of the minimal k-parabolic 
subgroups of G. When G is semisimple and simply connected, k arbitrary, 
Kneser and Tits have conjectured that G(k) = G +. This is known to be true 
in many cases, e.g., when G is k-split. 

34.6. An Example: Orthogonal Groups 

Some of the preceding theorems can be illustrated effectively by means 
of an example. Let char K #- 2, and let G = SO(q), the special orthogonal 
group of a nondegenerate quadratic form q over k. If the form is defined 
on an n-dimensional vector space, and if its "Witt index" (= dimension 
of a maximal totally isotropic subspace) is r, the matrix of the associated 
bilinear form relative to a suitable basis becomes: 

[0 ° J] lO .1] ° Qo ° , J = .. 1' . 
J 0 0 1 0 
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Here Qo is the matrix of an "anisotropic" quadratic form qo on a space of 
dimension n - 2r (a form not taking the value 0 except at 0). 

Then a maximal k-split torus S of G consists of block diagonal matrices 
diag (A, B, C), where A = diag (a1o ... , ar), C = diag (ar-l, ... , all), and 
B is the identity matrix. In turn, the group Z = CG(S) is the direct product 
of Sand SO(qo), the latter group being k-anisotropic. For a minimal k
parabolic subgroup P containing S we can take the group of matrices: 

[~l ;~ ;:], 

o 0 P6 

where P 10 P 6 are r x r upper triangular matrices, P 4 E SO(qo), and 
det Pl' det P 6 = 1. (P 6 depends on P 1 and P 3, while P 5 depends on P 10 

P 2, P 4') The unipotent radical U of P then consists of matrices (with U 10 

U6 unipotent): 

[ ~l ~2 ~:], 
o 0 U6 

subject to similar dependence requirements. 
Closer study leads to an explicit description of the corresponding 

positive k-roots; e.g., send a typical matrix in S (as described above) to 
aiai-+\ (1 :::;; i < r). In case n - 2r = 0 or 1, G is k-split (of respective type 
Dr or Br)' In case n - 2r = 2, Z is actually a maximal torus (defined over 
k but not k-spIit), while P is a Borel subgroup. This is the so-called "quasisplit" 
case, to be discussed in (35.1). 

Notes 

General foundations for the theory of affine algebraic groups over 
arbitrary fields are laid in Rosenlicht [1] [2] [4] [6], Weil [2] [3] (cf. also 
Borel [1]), using an older language of algebraic geometry. The scheme 
approach is used in SGAD and in Demazure, Gabriel [1]. Borel [4, AG] 
attempts to provide a foundation adequate for the theory outlined in this 
section, without the full generality of schemes. For algebraic groups over 
perfect fields, cf. Godement [1], Satake [1] [5]. The theorems in (34.4), 
(34.5) are proved in Borel [4, Chapter V], Borel, Tits [1]; cf. also Borel, 
Tits [2] [3] [4], Borel, Springer [1] (and its predecessor in AGDS). Borel [3] 
treats the example in (34.6) in more detail. 

35. Special Cases 

In this section G denotes a semisimple group defined over k. We shall 
give some indications as to how the structure of G(k) varies when special 
choices are made for k, then conclude by discussing the classification problem. 
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35.1. Split and Quasisplit Groups 

According to (34.4), G is k-split if and only if some maximal torus T of 
G is k-split. Then the structure theory of (34.5) reduces to that of Chapter X, 
with kcP = cP, kW = W, etc. In turn, Chapter XI provides a classification 
of all such groups (modulo the existence theorem). The construction in 
Chevalley [7] may be viewed as providing for arbitrary k a concrete model 
of G(k), when Gis k-split of adjoint type. However, in Chevalley's framework 
the emphasis is placed not on G(k) but on what is usually a proper subgroup, 
generated by unipotent elements, because the latter group is almost always 
simple. For example, in type A" G(k) = PGL( f, + 1, k), while the "Chevalley 
group" of this type is PSL( f, + 1, k). Nowadays it is common to mean by 
Chevalley group any of the groups canonically associated with a k-split 
group G (not necessarily of adjoint type): the group G(k), its derived group, 
the quotient of either by its center, etc. 

Call G k-quasisplit if G has a Borel subgroup defined over k. The example 
in (34.6) indicates that this can happen even when G fails to be k-split. We 
can describe more precisely what is known; say G is of simple type and 
k-quasisplit but not k-split. Then a maximal k-split torus S has as centralizer 
a larger k-torus T, which is maximal in G and lies in a Borel k-subgroup B. 
Certain roots relative to T become "dependent" when restricted to S, the 
k-rank being smaller than the absolute rank. It is known that this can happen 
only when cP admits a nontrivial graph automorphism (A.8), therefore only 
when cP is of type A, (f, ~ 2), Dc, E6 . 

Consider A3, for example, with simple roots !Xb !X2, !X3 and remaining 
positive roots !Xl + !X2, !X2 + !X3, !Xl + !X2 + !X3. On restriction to S, !Xl and 
!X3 become identical (call the common value f3 d, while !X2 becomes a character 
f32' It turns out that f31 and f32 form a base for kcP, the other positive roots 
being f31 + f32 (occurring with multiplicity 2) and 2f31 + f32' Thus kcP is of 
type C2 • In this case G(k) can be described as a type of special unitary group. 

Given a field k and a root system of type At (f, ~ 2), Of, or E6 , there 
does exist a k-quasisplit (but not k-split) group of this type. The relative 
root system kcP is of type Cr {resp. BCr ) when cP is of type A2r - l (resp. A 2r), 

of type F 4 when cP is of type E6 , of type Br when cP is of type Dr+ 1 (with 
yet another possibility when cP is of type 04 , namely G2). For example, the 
six simple roots of E6 lead to the four simple roots of F4 as indicated by 
loops around the nodes in the Dynkin diagram: 

Over a finite field k these quasi split groups yield new families of finite 
simple groups (often called "twisted" to distinguish them from the original 
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Chevalley groups). This was first appreciated by Hertzig, Steinberg, and 
Tits, who approached these groups independently from several directions. 
When char k = 2, 3, some further twisted groups were obtained by Ree 
and Suzuki from the root systems of types 8 2, G2, F 4, where graph auto
morphisms would exist if root lengths were ignored. Carter [1 J and Steinberg 
[1OJ give rather thorough expositions of all these constructions. 

35.2. Finite Fields 

We have mentioned the importance of the k-split and k-quasisplit groups 
in the theory of finite simple groups. Indeed, the finite simple groups of 
"Lie type" along with the alternating groups account for all but a handful 
of the presently known simple groups. It is natural to ask whether other 
groups G(k) can be exploited, apart from those already discussed. The 
answer IS no. 

Theorem. If k is finite, G is automatically k-quasisplit. 
The proof rests on a theorem of Lang [1 J, which asserts that the morphism 

G ~ G defined by x f--+ X-I x[q) is surjective. Here q = Card k and [q J 
indicates, in case G is taken to be a matrix group, the operation of raising 
all matrix entries to the qth power. (This operation can be described more 
intrinsically. Note that it does map G into G when G is defined over k.) 
The criterion for a subgroup H of G to be defined over k is just that H = H[q). 
Using this, we deduce the theorem as follows. Let B be any Borel subgroup 
of G. Then B[q] is another such, so there exists x E G with xBlq)x- 1 = B. 
Using Lang's result, x = y-lylq) for some y E G, or yBy-l = yxB[q)X-1y-l = 

ylq)B[q)(ylq))-l = (yBy-l)[q). So yBy-l is defined over k. 
This same argument yields part (a) of Theorem 34.4 when k is finite, 

and leads as well to some conjugacy results. 

35.3. The Real Field 

When k = R, the theory of semisimple k-groups is very closely related 
to the theory of semisimple Lie groups. Indeed, G(R) is a Lie group of this 
type, but is not necessarily connected in the real topology (or "usual 
topology"), by which we mean the euclidean topology on R n2 relativized 
to subgroups of GL(n, R). It is not true, however, that every semisimple 
Lie group can be realized as a linear group (e.g., the universal covering 
group of SL(n, R) has no such realization). 

We can summarize some of the salient facts as follows. 

Theorem. (a) If G is a closed subgroup of some GL(n, K), then G(R) 
is a closed subgroup of GL(n, R) in the usual topology, and is therefore a Lie 
group. If H is any closed subgroup of G, H(R) is similarly a Lie group. 

(b) The connected component of the identity ofG(R) in the usual topology 
has finite index in G(R). 
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(c) When G is of simply connected type, G(R) is connected in the usual 
topology (but need not be simply connected in the topological sense). 

(d) If G' is reductive and lR-anisotropic in the sense of (34.4), then G'(R) 
is connected and compact in the usual topology. 

(e) If H is a compact subgroup of GL(n, R), then H = G'(R) for some 
reductive R-subgroup G' of GL(n, K), i.e., all compact linear Lie groups are 
"algebraic" . 

It is worth remarking also the behavior of tori defined over lR. At one 
extreme, if T is an R -split torus of dimension d, then T(R) ::::=: R* x ... x R* 
(in particular, the identity component of T(R) in the usual topology has 
index 2d ). At the other extreme, if T is R -anisotropic, then T(R) is compact 
and connected, according to part (d) of the theorem. When dim T = 1, it can 
be shown that T is R -isomorphic to SO(2, K), hence that T(R) = SO(2, R), 
which is topologically just a I-torus. In higher dimensions, T(R) is then a 
d-torus. This helps to explain the terminology introduced in (16.2). 

35.4. Local Fields 

When k is the completion of some field relative to a discrete nonarchi
medean valuation, we may refer to it as a "local field". (Terminology varies 
quite a bit; for example, sometimes one also refers to Rand C as local 
fields.) An elaborate theory of simple algebraic groups over local fields has 
been developed in recent years, beginning with Iwahori, Matsumoto [1] and 
culminating in the work of Bruhat, Tits [1] - [6]. Since this theory is rather 
formidable, we shall try to introduce the reader to it by means of the simplest 
example, SL2 . 

Let v be the given valuation on k, R the corresponding ring of integers, 
P = nR its unique maximal ideal, k = RIP the residue class field. For ex
ample, k might be Up, the p-adic completion of Q (p some rational prime); 
then R is Zp, the ring of p-adic integers, n may be taken to be p, and k is the 
field of p elements. 

Let '1 = SL(2, k). As a simple algebraic group, split over the prime field 
of K, SL(2, K) has a Tits system (§29) which adapts readily to each sub field 
ofK. In particular, G already has a Tits system of rank 1, with Weyl group of 
order 2, etc. But G also has another Tits system (with infinite Weyl group) 
which reflects more strikingly the special properties of the field k. Let us 
introduce the various constituents f:j, .K, :7, 1f/ of this system. 

For AI' we take the "usual" one, the group of all monomial matrices in 

'1. But for f:j we take the group of all matrices (: ;) for which a, d E R - P, 

bE R, c E P. Notice that f:j is the inverse of the upper triangular group in 
SL(2, k) under the natural homomorphism SL(2, R) ~ SL(2, k). Now §' = 

f!J n AI' just consists of the matrices diag (a, a-I), a E R - P, and is readily 
seen to be normal in .K. The quotient group 1f/ is generated by a set:7 of 

two elements so, Slo each of order 2, where So is the coset of (~ - ~) and Sl is 
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the coset of ( 0 n- 1
). It is not hard to verify that s~ = e = sI gives a com

-nO 
plete set of defining relations for 1Y, so 1Y is the infinite dihedral group. 

Theorem. (~, f!J, fl,9') is a Tits system in ~. 
Only axiom (Tl) requires any labor. The idea of the proof is to exploit 

the usual Bruhat decomposition in SL(2, k) by "lifting" it to SL(2, R). Some 
inductions on length in 1Y are also involved. 

Since 9' has cardinality 2, (29.3) implies that there must be four "para
bolic" subgroups containing flJ. Besides f!J and ~, there is one obvious 
candidate: [1/0 = SL(2, R). The other one is less obvious. Take [1/ 1 to be the 

group of all matrices (::) with a, d E R, b E n- 1R, C E nR = P. Notice that 

[1/0 n [1/1 = f!J. 
When k is a locally compact field, ~ acquires from its embedding in k4 

the structure of locally compact topological group. Then [1/0, [1/1 are two 
types of maximal compact subgroup of ~, and one can proceed in this 
framework to do some harmonic analysis. One can also exploit the "building" 
(here a tree) attached to the Tits system to prove that any discrete subgroup 
of ~ having no elements =F e of finite order must be free. 

35.5. Classification 

Given an arbitrary field k, how can one hope to classify all possible semi
simple k-groups? The group G is already "known" over K (or even over a 
finite galois extension of k, according to (34.4)). To compare the behavior 
over k and K, it is useful to "align" the root systems. As in (34.5), choose a 
maximal k-split torus S lying in a minimal k-parabolic subgroup P. Then 
find a maximal torus T of G containing S, contained in P, and defined over 
k (cf. (34.4)). If the choices are made carefully, one can arrange for the base 
k,1 of kCP determined by P to consist of all the nontrivial restrictions to S of 
roots relative to T in a base ,1 of CPo 

If G is k-anisotropic, one cannot hope to say much in this context 
(k arbitrary), so the classification proceeds modulo the determination of all 
anisotropic groups. (As mentioned earlier, the latter will depend heavily on 
the nature of k.) The structure theory of (34.5) yields in general a maximal 
reductive k-anisotropic subgroup M of G: take the product of the derived 
group of Z = CG(S) and the maximal anisotropic k-torus in the center of Z 
(the latter being complementary to S). We call M the anisotropic kernel of 
G; it is well determined by G (up to k-isomorphism). 

The classification theorem of Tits says (roughly) that G is defined (up to 
k-isomorphism) by the giving of its anisotropic kernel (or just the derived 
group), its K-isomorphism class, and its "index". Without attempting a more 
precise statement, let us indicate what the index is. Certain roots rx E ,1 have 
trivial restriction to S. If ,10 is the set of these, ,10 forms a base for the root 
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system of the derived group of Z. The giving of L1 and L10 (via the Dynkin 
diagram of cP) constitutes part of the index. The remaining information in
volves a certain galois group action on L1 (or on the Dynkin diagram), whose 
orbits are shown by enclosing the corresponding nodes of the diagram in a 
common loop. Simple roots in the same orbit have the same restriction to S, 
determining therefore a single element of kL1. 

A couple of examples may be helpful. When G is k-quasisplit (35.1), 
L10 = 0 and all nodes are circled; then Gis k-split if and only if each galois 
orbit in L1 consists of a single root. (Cf. the picture of E6 in (35.1).) For E7 , 

the diagram indicates that L10 has three elements (not circled), while kL1 has 
four elements; here kcP turns out to be of simple type F 4 . 

• • • 
Tits has made a determination of all "admissible" diagrams of this sort, 

i.e., those which really do correspond to some group G over some field k. 
The diagram just discussed occurs, for example, when k = R or when k is a 
p- adic field, but of course not when k is finite (35.2). 

Notes 

Quasisplit groups over finite fields are treated in Hertzig [2], Steinberg 
[2] [6], Tits [2] [6]. Theorem 35.2, due to Lang [1], was generalized by 
Steinberg· [11]. For finite groups of Lie type, cf. Carter [1], Curtis [3], 
Steinberg [10]. Results summarized in (35.3) are scattered throughout the 
literature, cf. Borel [3], Borel, Tits [1, §14] [3, §4], Chevalley [2] [4] [5, 
VI §5, no. 2], Matsumoto [1], and the papers of Hochschild, Mostow. For 
simple groups over local fields, see I wahori, Matsumoto [1], Bruhat, Tits 
[1]-[6]. The example SL2 is worked out in more detail in Humphreys 
[ 4, § 15]; cf. Ihara [1]. The classification problem over a perfect field is dealt 
with by Satake [1] [5], and in full generality by Tits in an article in AGDS 
(cf. Tits [1]). 



Appendix. Root Systems 

Here we summarize, without proof, some basic properties of root systems. 
For fuller details consult, e.g., Bourbaki [1, Ch. VI], Humphreys [6, Ch.III], 
Serre [2, Ch. V], Steinberg [10, Appendix], SGAD, expose XXI. 

(A. 1 ) Let E be a finite dimensional vector space over R Define a reflection, 
relative to a nonzero vector IY. E E, to be a linear transformation which sends 
IY. to -IY. and fixes pointwise a subspace of codimension 1. Such a trans
formation (which might more accurately be dubbed a "prereflection") is 
clearly its own inverse, but is not uniquely determined by IY.. Nevertheless, 
if lJ' is a finite set of nonzero vectors spanning E, and if a reflection r relative 
to IY. E lJ' maps lJ' into itself, then r is uniquely determined by IY.. 

(A.2) An (abstract) root system in the real vector space E is a subset 
lJ' of E satisfying: 

(RI) lJ' is finite, spans E, and does not contain 0. (The elements of lJ' 
are called roots.) 
(R2) If IY. E lJ', the only mUltiples of IY. in lJ' are ± IY.. 

(R3) If IY. E lJ', there exists a reflection ra relative to IY. which leaves lJ' 
stable. 
(R4) If IY., [3 E lJ', then r,([3) - [3 is an integral multiple of IY.. 

If lJ" is an abstract root system in E', then lJ" is said to be isomorphic 
to lJ' if there exists an isomorphism of vector spaces from E' onto E which 
maps lJ" to lJ' and preserves the integers which occur in (R4). 

Thanks to (A.I), ra in (R3) is uniquely determined by IY., so (R4) is un
ambiguous. Call f = dim E the rank of lJ'. 

(A.3) Let 'P be a root system in E. Since 'P spans E, and is finite, the group 
W('P) c GL(E) generated by the ra is also finite; it is called the Weyl group 
of lJ' and abbreviated as W. There is an inner product (IY., [3) on E relative 
to which W consists of orthogonal transformations. The formula for ra 
becomes: ra([3) = [3 - <[3, IY. > IY., where <[3, IY.> = 2([3, IY.)/(IY., IY.). 

(A.4) A subset ,1 of lJ' is called a base if ,1 = {1Y.1,' .. , IY.(} is a basis of E, 
relative to which each IY. E 'P has a (unique) expression IY. = LCilY.i, where 
the Ci are integers of like sign. Bases exist; W permutes the collection of 
bases simply transitively, and every root lies in at least one base. Bases 
correspond 1-1 to Weyl chambers in E, which are the connected components 
in the complement of the union of hyperplanes orthogonal to roots. Elements 
of a base L1 are called simple roots. The roots which are nonnegative (resp. 
nonpositive) combinations of L1 comprise the set lJ'+ (resp. lJ'-) of positive 
(resp. negative) roots. If IY., [3 are linearly independent, then there exist y, 
bE L1 and (J E W such that (J(IY.) = y, while (J([3) is a Z+ -linear combination 
of y, b. If IY., [3 E lJ'+ but IY. + {l $ lJ', then flY. + s[3 $ lJ' (r, s ;:, 1). 

(A.S) Let ,1 be a base of 'P. Then W is generated by {rallY. E L1}. The 
length fer) of T E W (relative to ,1) is defined to be the smallest t for which 
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, = '1 ... 't ('i reflection relative to some simple root). Then C(,) equals 
the number of positive roots rt. for which ,(rt.) is negative. In particular, 
'a (rt. E.,1) permutes '1'+ - {rt.}. 

(A.6) Let .,1 be a base of '1', .,1' a subset of .,1. The roots which lie in the 
subspace E' of E spanned by .,1' form an abstract root system in E' having 
.,1' as a base; its Weyl group may be identified with the subgroup of W 
generated by all 'a (rt. E .,1'). 

(A.7) '1' is called irreducible if it (or equivalently, a base .,1) cannot be 
partitioned into the union of two mutually orthogonal proper subsets. Every 
root system is the disjoint union of (uniquely determined) irreducible root 
systems in suitable subspaces of E. Up to isomorphism, the irreducible root 
systems correspond 1-1 to the following Dynkin diagrams: 

AI (C ~ 1): ... --•• ------. • . . . . .. • 
8( (C ~ 2): ... ---e.>----e •• . . .. • ) • 
C( (C ~ 3): •• --•• --. •• . .. • < • 

•• --< De (£ ~ 4): •• --•• --• 

I • • 
I • • 

• I • • 

• 

The nodes in the diagram correspond to the simple roots. Nodes belonging 
to rt., f3 are joined by (rt., f3)(f3, rt.) bonds, with an arrow pointing to the 
shorter of the two roots if they are of unequal length. The order m(rt., f3) of 
carp in W is 2, 3, 4, or 6, according to whether rt. and f3 are joined by 0, 1, 
2, or 3 bonds (rt. =1= f3). The giving of the Dynkin diagram is equivalent to 
the giving of the matrix of Cartan integers (rt., f3) (rt., f3 E .,1). 

In rank 2 there are just four distinct root systems, having the indicated 
Cartan integers: 

Al X AI: (~ ~) ( 2 -2) -1 2 (rt. long, f3 short) 

A2 : (-~ -~) ( 2 -1) 
-3 2 

(rt. short, f3 long). 
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(A.S) The automorphism group of '1' is the semidirect product of W 
(which is normal) and the group r of graph (or diagram) automorphisms. 
When '1' is irreducible, r is trivial except for types Ac (t ~ 2), Dc, E6 . 

(A.9) A vector )0 E E is called an abstract weight provided all <A, rx) E Z 
(rx E P). These vectors form a lattice A, in which the lattice Ar spanned by 
'1' is a subgroup of finite index. If ,1 = {rxl, ... , rx(} is a base of P, A has 
a corresponding basis of fundamental dominant weights {AI,' .. , Ac} for 
which <Ai, rx) = bij (Kronecker delta). The fundamental group A/Ar has the 
following structure for the irreducible types: 

A(: 'I.,,/(C + I)Z 
Bf, GI , E7: Z/2Z 
D( (C even): Z/2Z x Z/2Z 
D( (C odd): Z/4Z 

E6: Z/3Z 
Es, F4 , G2 : 0 

(A.10) Given ,1 = {rxl,""rxf} and Al, ... ,A( as in (A.9), call A = 

LCiAi dominant if all Ci E Z +. Each A E A is W-conjugate to one and only 
one dominant weight. E is partially ordered by: A > f.1 if A - f.1 is a sum 
(possibly 0) of positive roots. (This ordering depends on ,1.) If A E A is 
dominant, then A > cr(A) for all cr E W. 

(A.11) The vectors rx* = 2rx/(rx, rx) (rx E '1') form a root system in E, called 
the dual of P. The Cartan integer <rx*, f3*) is equal to <f3, rx). The Weyl group 
of '1'* is canonically isomorphic to W (via (5a* ~ (5,,). If E is identified with 
its dual space by means of the inner product, rx* (rx E ,1) becomes identified 
with the (unique) linear function on E taking value 2 at rx and value 0 at all 
fundamental dominant weights Ap (A.9) corresponding to simple roots f3 =F iJ(. 
(The uniqueness of this linear function follows from the fact that iJ( along 
with these Ap form a basis of E.) 

(A.12) The following lemma due to Tits is needed in (32.4). Since it is 
not so well known as the preceding results, we reproduce here the proof 
given in SGAD, expose XXI, 5.6. 

Lemma. Let iJ(, f3 E ,1 and suppose (5(iJ() = f3 ((5 E W). Then there exist 
Yo = rx, 1'1,"" Yk = f3 in ,1 and elements (50, crl,"" (5k-l E W satisfying 
the following conditions: 

(a) (5 = (5k-l ... (50' 
(b) (5i(yd = Yi+ 1(0 ~ i ~ k - 1). 
(c) Let 0 ~ i ~ k - 1. If Yi =F Yi+ 1, (5i E W,'I'+I' while if Yi = Yi+ b there 

exists bi E ,1 for which (5i E W,k 

Proof. Let n((5) = Card(P+ n _(5-l(p+)). According to (A.5), n((5) = 

number of positive roots I' for which cr-l(y) is negative = C(cr- l) = C(cr). In 
particular, n(cr) = 0 implies (5 = e, in which case there is nothing to prove. 
Proceed by induction on n(cr). 
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Ifn(lT) > 0, there exists Y E ,1 with IT(Y) < ° (otherwise IT = e). Set Yo = rt. 

and consider the subsystem P,o,' one of whose possible sets of positive roots is 
IT- 1(p+) n PYoy,callit 8. Thanks to (A.4),(A.6), thereexistslTo E l¥yoy such that 
lTo( 8) = Pi!,. Set r = lTlTo 1. Now each of IT,/o' lTy stabilizes 8' = P + -

P/;y (A.5), so lTo E WyDy does likewise. It follows that 8' n _IT- 1(P +) = 
8' n _r- 1(p+). On the other hand, p,/:, n _r- 1(p+) = pY:Y n -lTo(8) = 

P l ':' n -Pi:; = 0,whileYEP i : y n _IT- 1(p+). This shows that n(r) < n(lT). 
Define Y1 = lTo(Yo) (= lTo(rt.))· By assumption, Yo E IT-1(L1), so Yo belongs 

to the base IT- 1(L1) n PM of PM' which lies in 8 = lTo l(Py:y). Therefore 
Yo E lT01(L1 n py~) c lT01(L1). So Y1 is simple and lies in Py~. Ify1 =1= Yo, this 
forces Y1 = Y, so f3 = r(yd. The proof of the lemma may now be completed 
by induction. D 



Bibliography 

The following list of articles and books includes the essential source ma
terial on linear algebraic groups as well as a broad sampling of related work. 
This sampling is somewhat arbitrary and tends to ignore those articles whose 
primary emphasis is on Lie groups, arithmetic groups, finite groups, etc. In 
spite of this limitation, the listing may help to orient the reader to the rather 
extensive literature of the last two decades. 

The articles in the volume Algebraic Groups and Discontinuous Sub
groups (abbreviated AGDS), edited by A. Borel and G. D. Mostow, are not 
listed individually here. They give a good indication of the state of the subject 
in 1965, although some are now superseded by newer developments. 

One further note: If an article in Russian is not available in translation, 
a reference to Mathematical Reviews (MR) is added. 

E. Abe, T. Kanno, [1] Some remarks on algebraic groups. Tohoku Math. J. 11,376-384 (1959). 
AGDS = A. Borel, G. D. Mostow [1] 
L. Bai, C. Musili, C. S. Seshadri, [I] Cohomology of line bundles on G/B. Ann. Sci. Ecole 

Norm. Sup. (4) 7, 89-138 (1974). 
P. Bala, R. W. Carter, [I] The classification of unipotent and nilpotent elements. Indag. Math. 

36,94-97 (1974). 
H. Behr, [1] Zur starken Approximation in algebraischen Gruppen iiber globalen Korpern. 

J. Reine Angew. Math. 229, 107~116 (1968). [2] Endliche Erzeugbarkeit arithmetischer 
Gruppen iiber Funktionenkorpern. Invent. Math. 7, 1-32 (1969). [3] Explizite Priisentation 
von Chevalleygruppen iiber Z. to appear. 

A. Bialynicki-Birula, [I] On homogeneous affine spaces of linear algebraic groups. Amer. J. 
Math. 85, 577 -582 (1963). [2] Some theorems on actions of algebraic groups. Ann. of Math. 
98, 480-497 (1973). 

D. Birkes, [1] Orbits of linear algebraic groups. Ann. of Math. 93, 459-475 (1971). 
A. Borel, [1] Groupes lineaires algebriques. Ann. of Math. 64, 20-~0 (1956). [2] Some finiteness 

properties of adele groups over number fields. Ins!. Hautes Etudes Sci. Publ. Math. 16, 
101-126 (1963). [3] Introduction aux groupes arithmetiques. Paris: Hermann 1969. [4] Linear 
Algebraic Groups, notes by H. Bass. New York: W. A. Benjamin 1969. [5] On the auto
morphisms of certain subgroups of semi-simple Lie groups. In: Algebraic Geometry, ed. S. 
Abhyankar, pp. 43-74. London: Oxford Univ. Press 1969. [6] Properties and linear repre
sentations of Chevalley groups. In: Seminar on Algebraic Groups and Related Finite Groups, 
Leet. Notes in Math. 131, pp. I-55. Berlin-Heidelberg-New York: Springer 1970. [7] Co
homologie reelle stable de groupes S-arithmetiques c1assiques. C. R. Acad. Sci. Paris 274, 
1700-1702 (1972). [8] Linear representations of semi-simple algebraic groups. Proc. A. M. S. 
Summer Inst. (Arcata), to appear. 

A. Borel, Harish-Chandra, [I] Arithmetic subgroups of algebraic groups. Ann. of Math. 75, 
485-535 (1962). 

A. Borel, G. D. Mostow, ed., [I] Algebraic Groups and Discontinuous Subgroups. Proc. Symp. 
Pure Math. IX. Providence: Amer. Math. Soc. 1966. 

A. Borel, J. -Po Serre, [1] Theon':mes de finitude en cohomologie galoisienne. Comm. Math. 
Helv. 39,111-164 (1964). [2] Adjonction de coins aux espaces symetriques. Applications a 
la cohomologie des groupes arithmetiques. C. R. A cad. Sci. Paris 271, 1156-1158 (1970). 
[3] Cohomologie a supports compacts des immeubles de Bruhat-Tits. Applications a la 
cohomologie des groupes S-arithmetiques. C. R. A cad. Sci. Paris 272, 110-113 (1971). 
[4] Corners and arithmetic groups. Comm. Math. Helv. 48, 436-491 (1973). 

A. Borel, T. A. Springer, [1] Rationality properties of linear algebraic groups II. Tohoku Math. 
J. 20, 443-497 (1968). 

A. Borel, J. Tits, [l] Groupes reductifs. Inst. Hautes Etudes Sci. Publ. Math. 27, 55-150 (1965). 
[2] Elements unipotents et sous-groupes paraboliques de groupes reductifs I. Invent. Math. 
12, 95-104 (1971). [3] Complements a l'article "Groupes reductifs". [nst. Hautes Etudes 
Sci. Publ. Math. 41, 253-276 (1972). [4] Homomorphismes "abstraits" de groupes algebriques 
simples, Ann. of Math. 97, 499-571 (1973). 

233 



234 Bibliography 

N. Bourbaki, [I] Groupes et algebres de Lie. Paris: Hermann. Ch. I (2nd ed.), 1971; Ch. 2-3, 
1972; Ch. 4-6,1968; Ch. 7-8,1974. 

E. Brieskorn, [I] Singular elements of semi-simple algebraic groups. In: Actes, Congres Intern. 
Math. 1970, t. 2, pp. 279-284. Paris: Gauthier-Villars 1971. [2] Die Fundamentalgruppe des 
Raumes der reguliiren Orbits einer endlichen komplexen Spiegelungsgruppe. Invent. Math. 
12,57-61 (1971). 

F. Bruhat, J. Tits, [I] Groupes algebriques simples sur un corps local. In: Proceedings of a 
Conference on Local Fields, pp. 23-36. Berlin-Heidelberg-New York: Springer 1967. 
[2] BN-paires de type affine et donnees radicielles. C. R. Acad. Sci. Paris 263,598-601 (1966). 
[3] Groupes simples residuellement deployes sur un corps local. C. R. Acad. Sci. Paris 263, 
766-768 (1966). [4] Groupes algebriques simples sur un corps local. C. R. A cad. Sci. Paris 
263, 822-825 (1966). [5] Groupes algebriques simples sur un corps local; cohomologie 
galoisienne, decompositions d'Iwasawa et de Cartan. C. R. Acqd. Sci. Paris 263, 867-869 
(1966). [6] Groupes reductifs sur un corps local. Inst. Hautes Etudes Sci. Publ. Math. 41, 
5-252 (1972). 

R. W. Carter, [I] Simple Groups of Lie Type. London-New York: Wiley 1972. 
R. W. Carter, G. B. Elkington, [I] A note on the parametrization of conjugacy classes. J. Algebra 

20, 350-354 (1972). 
R. W. Carter, G. Lusztig, [I] On the modular representations of the general linear and symmetric 

groups. Math. Z. 136, 193-242 (1974). 
P. Cartier, [I] Groupes algebriques et groupes formels. In: Colloq. Theorie des Groupes Alge

briques (Bruxelles, 1962), pp. 87-111. Paris: Gauthier-Villars 1962. 
P. J. Cassidy, [I] Differential algebraic groups. Amer. J. Math. 94, 891-954 (1972). 
C. Chevalley, [I] A new relationship between matrices. Amer. J. Math. 65, 521-531 (1943). 

[2] Theory of Lie Groups. Princeton: Princeton Univ. Press 1946. [3] Algebraic Lie algebras. 
Ann. of Math. 48, 91-100 (1947). [4] Theorie des groupes de Lie. Tome II, Groupes algebriques. 
Paris: Hermann 1951. [5] Theorie des groupes de Lie. Tome Ill, Theoremes generaux sur les 
algebres de Lie. Paris: Hermann 1955. [6] On algebraic group varieties. J. Math. Soc. Japan 
6, 303-324 (1954). [7] Sur certains groupes simples. Tohoku Math. J. 7, 14-66 (1955). [8] 
Semina ire sur la classification des groupes de Lie algebriques. Paris: Ecole Norm. Sup. 1956-
1958. [9] La theorie des groupes algebriques. In: Proc. Int. Congress Mathematicians (Edin
burgh 1958), pp. 53-68. Cambridge Univ. Press 1960. [10] Fondements de la geometrie 
algebrique. Paris: Secretariat Mathematique 1958. [II] Certains schemas de groupes semi
simples. Sem. Bourbaki (/960-61), Exp. 219. New York: W. A. Benjamin 1966. 

C. W. Curtis, [I] Representations of Lie algebras of classical type with applications to linear 
groups. J. Math. Mech. 9, 307-326 (1960). [2] The classical groups as a source of algebraic 
problems. Amer. Math. Monthly 74, Part II of No. I, 80-91 (1967). [3] Chevalley groups 
and related topics. In: Finite Simple Groups, ed. M. B. Powell, G. Higman, pp. 135-189. 
London-New York: Academic Press 1971. 

M. Demazure, [I] Schemas en groupes reductifs. Bull. Soc. Math. France 93,369-413 (1965). 
[2] Sous-groupes algebriques de rang maximum du groupe de Cremona. Ann. Sci. Ecole 
Norm. SuP .. (4) 3, 507 -588 (1971). [3] Desingularisation des varietes de Schubert generalisees. 
Ann. Sci. Ecole Norm. Sup. (4) 7, 53-88 (1974). 

M. Demazure, P. Gabriel, [I] Groupes Algebriques. Tome I: Geometrie algebrique, generalites, 
groupes commutatifs. Paris: Masson, Amsterdam: North-Holland 1970. 

M. Demazure, A. Grothendieck, [I] Schemas en Groupes. Lect. Notes in Math. 151, 152, 153. 
Berlin - Heidelberg - New York: Springer 1970. 

V. V. Deodhar, [I] On central extensions of rational points of algebraic groups. To appear. 
J. Dieudonne, [I] Sur les groupes de Lie algebriques sur un corps de caracteristique p > o. 

Rend. Cire. Mat. Palermo 1, 380-402 (1952). [2] Sur quelques groupes de Lie abeliens sur 
un corps de caracteristique p > O. Arch. Math. 5, 274-281 (1954); correction, ibid. 6, 88 
(1955). [3] Groupes de Lie et hyperalgebres de Lie sur un corps de caracteristique p > O. 
Comm. Math. Helv. 28, 87-118 (1954). [4] Lie groups and Lie hyperalgebras over a field of 
characteristic p > o. II. Amer. J. Math. 77, 218-244 (1955). [5] Groupes de Lie et hyper
algebres de Lie sur un corps de caracteristique p > O. III. Math. Z. 63, 53-75 (1955). [6] Lie 
groups and Lie hyperalgebras over a field of characteristic p > O. IV. Amer. J. Math. 77, 
429-452 (1955). [7] Groupes de Lie et hyperalgebres de Lie sur un corps de caracteristique 
p > O. V. Bull. Soc. Math. France 84, 207-239 (1956). [8] Lie groups and Lie hyperalgebras 
over a field of characteristic p > O. VI. Amer. J. Math. 79, 331-388 (1957). [9] Groupes de 
Lie et hyperalgebres de Lie sur un corps de caracteristique p > O. VII. Math. Ann. 134, 
114-133 (1957). [10] Les algebres de Lie simples associees aux groupes simples algebriques 
sur un corps de caracteristique p > o. Rend. Circ. Mat. Palermo 6, 198-204 (1957). [II] Lie 
groups and Lie hyperalgebras over a field of characteristic p > O. VIII. Amer. J. Math. 80, 
740-772 (1958). [12] Remarques sur la reduction mod. p des groupes lineaires algebriques. 
Osaka J. Math. 10,75-82 (1958). [13] La geometrie des groupes classiques. 3rd ed. Berlin
Heidelberg-New York: Springer 1971. 

J. Dieudonne, 1. B. Carrell, [I] Invariant theory, old and new. Advances in Math. 4,1-80 (1970). 



Bibliography 235 

G. B. Elkington, [I] Centralizers of unipotent elements in semisimple algebraic groups. 
J. Algebra 23, 137-163 (1972). 

1. Fogarty, [I] Invariant Theory. New York: W. A. Benjamin 1969. 
H. Freudenthal, H. de Vries, [I] Linear Lie Groups. New York-London: Academic Press 1969. 
H. Garland, [I] p-adic curvature and a conjecture of Serre. Bull. Amer. Math. Soc. 78, 259-261 

(1972). [2] p-adic curvature and the cohomology of discrete subgroups of p-adic groups. 
Ann. of Math. 97, 375-423 (1973). 

R. Godement, [I] Groupes linea ires algebriques sur un corps pariait. Sem. Bourbaki (1960-61), 
Exp. 206. New York: W. A. Benjamin 1966. 

F. Grosshans, [I] Orthogonal representations of algebraic groups. Trans. Amer. Math. Soc. 
l37, 519-531 (1969). [2] Representations of algebraic groups preserving quaternion skew
hermitian forms. Proc. Amer. Math. Soc. 24, 497-501 (1970). [3] Semi-simple algebraic 
groups defined over a real closed field. Amer. 1. Math. 94, 473-485 (1972). [4] Observable 
groups and Hilbert's fourteenth problem. Amer. J. Math. 95, 229-253 (1973). [5] Open sets 
of points with good stabilizers. Bull. Amer. Math. Soc. 80, 518-521 (1974). 

W. J. Haboush, [1] Deformation theoretic methods in the theory of algebraic transformation 
spaces. J. Math. Kyoto Univ. 14, 341-370 (1974). 

G. Harder, [1] Uber einen Satz von E. Cartan. Abh. Math. Sem. Univ. Hamburg 28, 208-214 
(1965). [2] Uber die Galoiskohomologie halbeinfacher Matrizengruppen. l. Math. Z. 90, 
404-428 (1965). II. ibid. 92, 396-415 (1966). [3] Halbeinfache Gruppenschemata iiber 
Dedekindringen. Invent. Math. 4,165-191 (1967). [4] Halbeinfache Gruppenschemata iiber 
vollstandigen Kurven. Invent. Math. 6, 107 -149 (1968). [5] Bericht iiber neuere Resultate der 
Galoiskohomologiehalbeinfacher Gruppen. Jber. Deutsch. Math.- Verein 70,182-216 (1968). 
[6] Eine Bemerkung zum schwachen Approximationssatz. Arch. Math. 19,465-471 (1968). 
[7] Minkowskische Reduktionstheorie iiber Funktionenkiirpern. Invent. Math. 7, 33-54 
(1969). [8] A Gauss-Bonnet formula for discrete arithmetically defined groups. Ann. Sci. 
Ecole Norm. Sup. (4) 4,409-455 (1971). [9] Chevalley groups over function fields and auto
morphic forms. Ann. olMath. 100,249-306 (1974). 

S. 1. Haris, [1] Some irreducible representations of exceptional algebraic groups. Amer. J. Math. 
93,75-106 (1971). 

D. Hertzig, [I] The structure of Frobenius algebraic groups, Amer. 1. Math. 83, 421-431 (1961). 
[2] Forms of algebraic groups. Proc. Amer. Math. Soc. 12,657-660 (1961). [3] Cohomology of 
algebraic groups. J. Algebra 6, 317 -334 (1967). [4] Fixed-point-free automorphisms of alge
braic tori. Amer. J. Math. 90, 1041-1047 (1968). [5] Cohomology of certain Steinberg groups. 
Bull. Amer. Math. Soc. 75, 35-36 (1969). 

H. Hijikata, [I] A note on the groups of type G2 and F4 . J. Math. Soc. Japan 15,159-164 (1963). 
G. Hochschild, [1] Algebraic Lie algebras and representative functions. Illinois J. Math. 3, 

499-523 (1959); supplement, ibid. 4, 609-618 (1960). [2] On the algebraic hull of a Lie algebra. 
Proc. Amer. Math. Soc. 11, 195-199 (1960). [3] Cohomology of algebraic linear groups. 
Illinois J. Math. 5, 492-519 (1961). [4] Cohomology of affine algebraic homogeneous spaces. 
Illinois 1. Math. 11, 635-643 (1967). [5] Coverings of pro-affine algebraic groups. Pacific 
J. Math. 35, 399-415 (1970). [6] Algebraic groups and Hopf algebras. Illinois J. Math. 14, 
52-65 (1970). [7] Note on algebraic Lie algebras. Proc. Amer. Math. Soc. 29,10-16 (1971). 
[8] Introduction to Affine Algebraic Groups. San Francisco: Holden-Day 1971. [9] Automor
phism towers of affine algebraic groups. 1. Algebra 22, 365-373 (1972). [10] Lie algebra 
cohomology and affine algebraic groups. Illinois J. Math. 18, 170-176 (1974). 

G. Hochschild, G. D. Mostow, [1] Pro-affine algebraic groups. Amer. J. Math. 91, 1127-1140 
(1969). [2] Automorphisms of affine algebraic groups. J. Algebra l3, 535-543 (1969). [3] 
Analytic and rational automorphisms of complex algebraic groups. J. Algebra 25, 146-151 
(1973). [4] Unipotent groups in invariant theory. Proc. Nat. Acad. Sci. U.S.A. 70, 646-648 
(1973). 

R. Hooke, [1] Linear p-adic groups and their Lie algebras. Ann. of Math. 43, 641-655 (1942). 
1. E. Humphreys, [1] Algebraic groups and modular Lie algebras. Mem Amer. Math. Soc. 71 

(1967). [2] Existence of Levi factors in certain algebraic groups. Pacific 1. Math. 23, 543-546 
(1967). [3] On the automorphisms of infinite Chevalley groups. Canad. J. Math. 21, 908-911 
(1969). [4] Arithmetic Groups, mimeographed lecture notes. New York: Courant Institute of 
Mathematical Sciences 1971. [5] Modular representations of classical Lie algebras and semi
simple groups. J. Algebra 19, 51-79 (1971). [6] Introduction to Lie Algebras and Representation 
Theory. Berlin-Heidelberg-New York: Springer 1972. 

1. E. Humphreys, D. -N. Verma, [1] Projective modules for finite Chevalley groups. Bull. Amer. 
Math. Soc. 79, 467-468 (1973). 

1. Igusa, [I] On certain representations of semi-simple algebraic groups and the arithmetic of the 
corresponding invariants. 1. Invent. Math. 12,62-94 (1971). 

Y. Ihara, [I] On discrete subgroups of the two by two projective linear group over p-adic fields. 
J. Math. Soc. Japan 18, 219-235 (1966). 

B. Iversen, [1] A fixed point formula for action of tori on algebraic varieties. Invent. Math. 16, 
229-236 (1972). 



236 Bibliography 

N. Iwahori, [1] On the structure of a Hecke ring of a Chevalley group over a finite field. J. Fac. 
Sci. Univ. Tokyo 10, 215-235 (1964). 

N. Iwahori, H. Matsumoto, [I] On some Bruhat ejecomposition and the structure of the Hecke 
rings of p-adic Chevalley groups. Inst. Hautes Etudes Sci. Publ. Math. 25, 5-48 (1965). 

K. Iyanaga, [I] On certain double coset spaces of algebraic groups. J. Math. Soc. Japan 23, 
103-122 (1971). 

N. Jacobson, [I] Lie Algebras. New York: Interscience 1962. 
J. C. Jantzen, [l] Darstellungen halbeinfacher algebraischer Gruppen und zugeordnete kontra

variante Formen. Bonner Math. Schri/ien 67. Bonn: Math. Inst. der Universitiit 1973. [2] Zur 
Charakterformel gewisser Darstellungen halbeinfacher Gruppen und Lie-Algebren. Math. 
z., 140, 127-149 (1974). 

W. L. J. van der Kallen, [I] Infinitesimally Central Extensions ofChevalley Groups. Lect. Notes 
in Math. 356. Berlin-Heidelberg-New York: Springer 1973. 

T. Kambayashi, [l] Projective representations of algebraic linear groups of transformations. 
Amer. J. Math. 88, 199-205 (1966). 

I. Kaplansky, [I] An Introduction to Differential Algebra. Paris: Hermann 1957. 
H. Kimura, [1] Relative cohomology of algebraic linear groups. II. Nagoya Math. J. 26, 89-99 

(1966). 
M. Kneser, [I] Starke Approximation in algebraischen Gruppen. I. J. Reine Angew. Math. 218, 

190-203 (1965). [2] Galois-Kohomologie halbeinfacher algebraischer Gruppen iiber p
adischen Korpern. I. Math. Z. 88, 40-47 (1965); II. ibid. 89, 250-272 (1965). [3] Semisimple 
algebraic groups. In: Algebraic Number Theory, ed. J. W. S. Cassels, A. Frohlich, pp. 250-265. 
Washington, D.C.: Thompson 1967. [4] Normal subgroups of integral orthogonal groups. In: 
Algebraic K-Theory and its Geometric Applications. Lect. Notes in Math. 108. Berlin
Heidelberg-New York: Springer 1969. [5] Lectures on Galois Cohomology of Classical Groups. 
Bombay: Tata Inst. of Fundamental Research 1969. 

E. R. Kolchin, [l] Algebraic matric groups and the Picard - Vessiot theory of homogeneous 
linear ordinary differential equations. Ann. of Math. 49, 1-42 (1948). [2] On certain concepts 
in the theory of algebraic matric groups. Ann. of Math. 49, 774-789 (1948). [3] Differential 
Algebra and Algebraic Groups. New York-London: Academic Press 1973. 

J. Kovacic, [I] Pro-algebraic groups and the Galois theory of differential fields. Amer. J. Math. 
95,507-536 (1973). 

S. Lang, [I] Algebraic groups over finite fields. Amer. J. Math. 78, 555-563 (1956). [2] Abelian 
Varieties. New York: Interscience 1959. 

R. P. Langlands, [l] Euler Products. Yale Math. Monographs 1. New Haven-London: Yale 
Univ. Press 1971. 

M. Lazard, [I] Sur Ie nilpotence de certains groupes algebriques. C. R. A cad. Sci. Paris 241, 
1687-1689 (1955). [2] Groupes analytiques p-adiques. Inst. Hautes Etudes Sci. Publ. Math. 
26,1-219 (1965). 

B. Lou, [I] The centralizer of a regular unipotent element in a semisimp1e algebraic group. 
Bull. Amer. Math. Soc. 74, 1144-1147 (1968). 

D. Luna, [I] Sur 1es orbites fermees des groupes algebriques reductifs. Invent. Math. 16, 1-5 
(1972). 

D. Luna, T. Vust, [I] Un theoreme sur les orbites affines des groupes algebriques semi-simples. 
Ann. Scuola Norm. Sup. Pisa (3) 27, 527-535 (1973). 

I. G. Macdonald, [l] Spherical functions on a p-adic Chevalley group. Bull. Amer. Math. Soc. 
74, 520-525 (1968). [2] Spherical Functions on a Group ofp-adic Type. Madras: Ramanujan 
Inst. 1971. 

L. Markus, [1] Exponentials in algebraic matrix groups. Advances in Math. 11, 351-367 (1973). 
R. Marlin, [l] Anneaux de Chow des groupes algebriques SU(n), Sp(n), SO(n), Spin(n), G 2 , F 4' 

C. R. Acad. Sci. Paris 279,119-122 (1974). 
J. G. M. Mars, [l] Les nombres de Tamagawa de certains groupes exceptionnels. Bull. Soc. 

Math. France 94,97-140 (1966). [2] Solution d'un problt!me pose par A. Weil. C. R. A cad. 
Sci. Paris 266,484-486 (1968). [3] The Tamagawa number of 2 An" Ann. of Math. 89, 557-574 
(1969). [4] Les nombres de Tamagawa de groupes semi-simples. Sem. Bourbaki (1968-69), 
Exp. 351. Lect. Notes in Math. 179. Berlin-Heidelberg-New York: Springer 1971. 

H. Matsumoto, [1] Quelques remarques sur les groupes de Lie algebriques reels. J. Math. Soc. 
Japan 16, 419-446 (1964). [2] Generateurs et relations des groupes de Weyl generalises. 
c. R. A cad. Sci. Paris 258, 3419-3422 (1964). [3] Un theoreme de Sylow pour les groupes 
semi-simples p-adiques. C. R. Acad. Sci. Paris 262,425-427 (1966). [4] Sur les groupes semi
simples deployes sur un anneau principal. C. R. A cad. Sci. Paris 262, 1040-1042 (1966). 
[5] Sur les sous-groupes arithmetiques des groupes semi-simples deployes. Ann. Sci. Ecole 
Norm. Sup. (4) 2,1-62 (1969). [6] Fonctions spheriques sur un groupe semi-simple p-adique. 
C. R. Acad. Sci. Paris 269,829-832 (1969). 

Y. Matsushima, [I] Espaces homogenes de Stein des groupes de Lie complexes. Nagoya Math. J. 
16,205-218 (1960). 

F. Minbashian, [I] Pro-affine algebraic groups. Amer. J. Math. 95,174-192 (1973). 
M. Miyanishi, [I] On the algebraic fundamental group of an algebraic group. J. Math. Kyoto 

Univ. 12, 351-367 (1972). 



Bibliography 237 

C. Moore, [I] Group extensions of p-adic and adelic linear groups. Inst. Hautes Etudes Sci. 
Pub I. Math. 35, 5-70 (1968). 

G. D. Mostow, [I] Self-adjoint groups. Ann. of Math. 62, 44-55 (1955). [2] Fully reducible 
subgroups of algebraic groups. Amer. J. Math. 78, 200-221 (1956). 

D. Mumford, [I] Geometric Invarianl Theory. Berlin-Heidelberg-New York: Springer 1965. 
[2] Abelian Varieties. London: Oxford Univ. Press 1970. [3] Introduction to Algebraic Geome
try, preliminary version of Chapters I Ill. Cambridge: Harvard Univ. Math. Dept. [4] 
Inlroduction to Algehraic Geometry. Berlin-Heidelberg-New York: Springer, in preparation. 

M. Nagata, [l] Complete reducibility of rational representations of a matric group. J. Math. 
Kyoto Univ. 1, 87-99 (1961). [2] Invariants ofa group in an affine ring. J. Math. Kyoto Univ. 
3, 369-377 (1964). [3] Lectures on the Fourteenth Prohlem of Hilhert. Bombay: Tata Inst. 
of Fundamental Research 1965. 

T. Nakamura, [1] A remark on unipotent groups of characteristic p > O. Kodai Math. Sem. 
Rep. 23,127-130 (1971). [2] On commutative unipotent groups defined by Seligman. J. Math. 
Soc. Japan 23,377-383 (1972). 

T. Ono [1] Arithmetic of orthogonal groups. 1. Math. Soc. Japan 7, 79-91 (1955). [2] Sur les 
groupes de Chevalley. J. Math. Soc. Japan 10, 307 -313 (1958). [3] Sur la reduction modulo p 
des groupes linea ires algebriques. Osaka J. Math. 10,57 -73 (1958). [4] Arithmetic of algebraic 
tori. Ann. of Math. 74, 101-139 (1961). [5] On the field of definition of Borel subgroups of 
semi-simple algebraic groups. J. Math. Soc. Japan 15, 392-395 (1963). [6] On the Tamagawa 
number of algebraic tori. Ann. of Math. 78, 47-73 (1963). [7] On the relative theory of Tama
gawa numbers. Ann. of Math. 82, 88-111 (1965). [8] On algebraic groups and discontinuous 
groups. Nagoya Math. J. 27, 279-322 (1966). [9] A remark on Gaussian sums and algebraic 
groups J. Math. Kyoto Univ. 13, 139-142 (1973). 

F. Oort, [1] Commutative Croup Schemes. Lect. Notes in Math. 15. Berlin-Heidelberg-New 
York: Springer 1966. [2] Algebraic group schemes in characteristic zero are reduced. Invent. 
Math. 2, 79-80 (1966). 

B. Parshall, [I] Regular elements in algebraic groups of prime characteristic. Proc. Amer. Math. 
Soc. 39, 57-62 (1973). 

V. P. Platonov, [l] Automorphisms of algebraic groups. Dokl. Akad. Nauk SSSR 168, 1257-
1260 (1966) = Soviet Math. Dokl. 7, 825-829 (1966). [2] Theory of algebraic linear groups 
and periodic groups. /zv. Akad. Nauk SSSR Ser. Mat. 30, 573-620 (1966) = Amer. Math. 
Soc. Transl. Ser. 2, Vol. 69, 61-110 (1968). [3] Invariance theorems and algebraic groups with 
an almost-regular automorphism. Iz1'. Akad. Nauk SSSR Ser. Mat. 31, 687-696 (1967) = 
Math. USSR-/z1'. 1,667-676 (1967). [4] Proof of the finiteness hypothesis for the solvable 
subgroups of algebraic groups. Sihirski Mat. Z. 10, 1084-1090 (1969) = Siberian Math. 1. 
10, 800-804 (1969). [5] The problem of strong approximation and the Kneser-Tits conjecture 
for algebraic groups. Izv. Akad. Nauk SSSR Ser. Mat. 33, 1211-1219 (1969) = Math. 
USSR-/zv.3, 1139-1147 (1969). Addendum. Izr. Akad. Nauk SSSR Ser. Mat. 34, 775-777 
(1970) = Math. USSR-Izr. 4, 784-786 (1970). [6] The congruence problem for solvable 
integral groups. Dokl. Akad. Nauk BSSR 15, 869-872 (1971). [Russian] MR 44 #4009. 

V. P. Platonov, V. I.Jancevski r, [Il The structure of unitary groups and the commutator group 
of a simple algebra over global fields. Dok/. Akad. Nauk SSSR 208,541-544 (1973) = Soviet 
Math. Dok/. 14, 132 136 (1973). 

V. P. Platonov, M. V. Milovanov, [I] Determination of algebraic groups by arithmetic sub
groups. Dok/. Akad. Nallk SSSR 209,43 46 (1973) = Soriet Math. Dok/. 14, 331-335 (1973). 

V. L. Popov, [1] Criteria for the stability of the action of semis imp Ie group on a factorial variety. 
/zv. Akad. Nauk SSSR Ser. Mat. 34, 523-531 (1970) = Math. USSR-Izv. 4, 527- 535 (1970). 
[2] On the stability of the action of an algebraic group on an algebraic variety. Izv. Akad. 
Nallk SSSR Ser. Mal. 36, 371385 (1972) = Math. USSR Izv. 6, 367 -379 (1972). 

G. Prasad, M. S. Raghunathan, [I] Cart an subgroups and lattices in semi-simple groups. Ann. 
of Math. 96, 296-317 (1972). 

M. S. Raghunathan, [I] Cohomology of arithmetic subgroups of algebraic groups. 1. Ann. of 
Math. 86, 409-424 (1967). II. ibid. 87, 279-304 (1968). [2] A note on quotients of real algebraic 
groups by arithmetic subgroups. Invent. Math. 4, 318-335 (1968). [3] Discrete Subgroups of 
Lie Croups. Berlin Heidelberg-New York: Springer 1972. [4] On the congruence subgroup 
problem. To appear. 

R. Ree, [1] On some simple groups defined by C. Chevalley. Trans. Amer. Math. Soc. 84, 
392-400 (1957). [2] Construction of certain semi-simple groups. Canad. J. Math. 16, 490-508 
(1964). [3] Commutators in semi-simple algebraic groups. Proc. Amer. Math. Soc. 15,457 -460 
(1964). 

R. W. Richardson, Jr., [I] Conjugacy classes in Lie algebras and algebraic groups. Ann. of Math. 
86, 1-15 (1967). [2] Principal orbit types for algebraic transformation spaces in characteristic 
zero. Invent. Math. 16, 6-14 (1972). [3] Conjugacy classes in parabolic subgroups of semi
simple algebraic groups. Bull. London Math. Soc. 6, 21-24 (1974). 

C. Riehm, [1] The congruence subgroup problem over local fields. Amer. J. Math. 92, 771-778 
(1970). 

M. Rosenlicht, [1] Some basic theorems on algebraic groups. Amer. J. Math. 78, 401-443 (1956). 
[2] Some rationality questions on algebraic groups. Ann. Mat. Pura Appl. 43, 25-50 (1957). 



238 Bibliography 

[3] Toroidal algebraic groups. Proc. Amer. Math. Soc. 12, 984-988 (1961). [4] On quotient 
varieties and the affine embedding of certain homogeneous spaces. Trans. Amer. Math. Soc. 
101,211-223 (1961). [5] On a result of Baer. Proc. Amer. Math. Soc. 13,99-101 (1962). 
[6] Questions of rationality for solvable algebraic groups over non perfect fields. Annali di Mat. 
(IV) 61, 97-120 (1963). 

I. Satake, [1] On the theory of reductive algebraic groups over a perfect field. J. Math. Soc. 
Japan 15, 210-235 (1963). [2] Theory of spherical functions on reductive algebraic groups 
over p-adic fields. Inst. Hautes Etudes Sci. Pub!. Math. 18,5-69 (1963). [3] Symplectic repre
sentations of algebraic groups satisfying a certain analyticity condition. Acta Math. 117, 
215-279 (1967). [4] On a certain invariant of the groups of type E6 and E7 • J. Math. Soc. 
Japan 20, 322-335 (1968). [5] Classification Theory of Semi-Simple Algebraic Groups. New 
York: Marcel Dekker 1971. 

D. Schattschneider, [1] On restricted roots of semi-simple algebraic groups. J. Math. Soc. Japan 
21,94-115 (1969). 

C. Schoeller, [1] Groupes affines, commutatifs, unipotents sur un corps non parfait. Bull. Soc. 
Math. France 100, 241-300 (1972). 

G. B. Seligman, [I] Algebraic Groups, mimeographed lecture notes. New Haven: Yale Univ. 
Math. Dept. 1964. [2] Modular Lie Algebras. Berlin-Heidelberg-New York: Springer 1967. 
[3] Algebraic Lie algebras. Bull. Amer. Math. Soc. 74, 1051-1065 (1968). [4] On some com
mutative unipotent groups. Invent. Math. 5, 129-137 (1968). [5] On two-dimensional algebraic 
groups. Scripta Math. 29, 453-465 (1973). 

J. -Po Serre, [1] Groupes algebriques et corps de classes. Paris: Hermann 1959. [2] Algebres de Lie 
semi-simples complexes. New York: W. A. Benjamin 1966. [3] Groupes de congruence. Sem. 
Bourbaki(J966-67), Exp. 330. New York: W. A. Benjamin 1968. [4] Groupes de Grothendieck 
des schemas en groupes reductifs deployes. Inst. Hautes Etudes Sci. Publ. Math. 34, 37-52 
(1968). [5] Le probleme des groupes de congruence pour SL2 . Ann. of Math. 92, 489-527 
(1970). [6] Cohomologie des groupes discrets. In: Prospects in Mathematics, Ann. of Math. 
Studies 70, pp. 77-169. Princeton: Princeton Univ. Press 1971. 

C. S. Seshadri, [1] Mumford's conjecture for GL(2) and applications. In: Algebraic Geometry, 
ed. S. Abhyankar, pp. 347-371. London: Oxford Univ. Press 1969. [2] Quotient spaces 
modulo reductive algebraic groups. Ann. of Math. 95, 511-556 (1972). [3] Theory of moduli. 
Proc. A. M. S. Summer Inst. (Arcata), to appear. 

SGAD = M. Demazure, A. Grothendieck [1] 
I. R. Shafarevich, [1] Foundations of algebraic geometry. Russian Math. Surveys 24, No.6, 

1-178 (1969). [2] Basic Algebraic Geometry. Berlin-Heidelberg-New York: Springer 1974. 
A. -M. Simon, [1] Structure des groupes unipotents commutatifs. C. R. A cad. Sci. Paris 276, 

347 -349 (1973). , 
T. A. Springer, [1] Some arithmetical results on semi-simple Lie algebras. Inst. Hautes Etudes 

Sci. Publ. Math. 30, 115-141 (1966). [2] A note on centralizers in semi-simple groups. Indag. 
Math. 28, 75-77 (1966). [3] Weyl's character formula for algebraic groups. Invent. Math. 5, 
85-105 (1968). [4] The unipotent variety of a semisimple group. In: Algebraic Geometry, ed. 
S. Abhyankar, pp. 373-391. London: Oxford Univ. Press 1969. [5] Jordan Algebras and 
Algebraic Groups. Berlin-Heidelberg-New York: Springer 1973. 

T. A. Springer, R. Steinberg, (1] Conjugacy classes. In: Seminar on Algebraic Groups and Related 
Finite Groups, Lect. Notes in Math. 131, pp. 167 -266. Berlin-Heidelberg-New York: Springer 
1970. 

R. Steinberg, [1] Prime power representations of finite linear groups. I. Canad. J. Math. 8, 
580-591 (1956). II. ibid. 9, 347-351 (1957). [2] Variations on a theme of Chevalley. Pacific J. 
Math. 9, 875-891 (1959). [3] The simplicity of certain groups. Pacific J. Math. 10, 1039-1041 
(1960). [4] Automorphisms of finite linear groups. Canad. J. Math. 12,606-615 (1960). [5] 
Automorphisms of classical Lie algebras. Pacific J. Math. ll, 1119-1129 (1961). [6] Genera
teurs, relations et revetements de groupes algebriques. In: Colloq. Theorie des Groupes 
Algebriques (Bruxelles, 1962), pp. 113-127. Paris: Gauthier-Villars 1962. [7] Representations 
of algebraic groups. Nagoya "'fath. J. 22, 33-56 (1963). [8] Regular elements of semisimple 
algebraic groups. Inst. Hautes Etudes Sci. Publ. Math. 25, 49-80 (1965). [9] Classes of elements 
of semisimple algebraic groups. In: Proc. Inti. Congress of Mathematicians (Moscow 1966), 
pp. 277-284. Moscow: Mir 1968. (10] Lectures on Chevalley Groups, mimeographed lecture 
notes. New Haven: Yale Univ. Math. Dept. 1968. [II] Endomorphisms of linear algebraic 
groups. Mem. Amer. Math. Soc. 80 (1968). [12] Algebraic groups and finite groups. Illinois 
J. Math. 13,81-86 (1969). [13] Conjugacy Classes in Algebraic Groups. Leet. Notes in Math. 
366. Berlin-Heidelberg-New York: Springer 1974. [14] Abstract homomorphisms of simple 
algebraic groups. sem. Bourbaki (1972-73), Exp. 435. Leet. Notes in Math. 383. Berlin
Heidelberg-New York: Springer 1974. 

U. Stuhler, [1] Unipotente und nilpotente Klassen in einfachen Gruppen und Liealgebren vom 
Typ G 2 . Indag. Math. 33, 365-378 (1971). 

J. B. Sullivan, (1] Automorphisms of affine unipotent groups in positive characteristic. J. Al
gebra 26, 140-151 (1973). [2] A decomposition theorem for pro-affine solvable algebraic 
groups over algebraically closed fields. Amer. J. Math. 94, 221-228 (1973). 



Bibliography 239 

M. E. Sweedler, [I) Conjugacy of Borel subgroups, an easy proof. To appear. 
M. Takeuchi, [I) A note on geometrically reductive groups. J. Fac. Sci Univ. Tokyo 20,387 -396 

(1973). 
T. Tasaka, [I) On the quasi-split simple algebraic groups defined over an algebraic number field. 

J. Fac. Sci. Univ. Tokyo 15,147-168 (1968). [2) On the second cohomology groups of the 
fundamental groups of simple algebraic groups over perfect fields. J. Math. Soc. Japan 21, 

244-258 (1969). 
J. Tits, [I) Sur la classification des groupes algebriques semi simples. C. R. A cad. Sci. Paris 249, 

1438-1440 (1959). [2) Sur la tria lite et certains groupes qui s'en deduisent. Inst. Hautes Etudes 
Sci. Publ. Math. 2, 13-60 (1959). [3] Theoreme de Bruhat et sous-groupes paraboliques. 
C. R. A cad. Sci. Paris 254, 2910-2912 (1962). [4] Groupes semi-simples isotropes. In: Colloq. 
Theorie des Groupes Algebriques (Bruxelles, 1962), pp. 137 -147. Paris: Gauthier-Villars 1962. 
[5] Groupes simples et geometries associees. In: Proc. Inti. Congress of Mathematicians, pp. 
197 -221. Stockholm 1962. [6] Algebraic and abstract simple groups. Ann. of Math. 80, 
313-329 (1964). [7] Structures et groupes de Weyl. Sem. Bourbaki (1964-65), Exp. 288. New 
York: W. A. Benjamin 1966. [8] Normalisateurs de tores. I. Groupes de Coxeter etendues. 
J. Algebra 4, 96-116 (1966). [9] Lectures on Algebraic Groups, mimeographed lecture notes. 
New Haven: Yale Univ. Math. Dept. 1967. [10] Representations lineaires irreductibles d'un 
groupe reductif sur un corps que1conque. J. Reine Angew. Math. 247, 196-220 (1971). 
[II] Free subgroups in linear groups. J. Algebra 20, 250-270 (1972). [12] Buildings of Spherical 
Type and Finite BN-pairs. Leer. Notes in Math. 386. Berlin-Heidelberg-New York: Springer 
1974. 

B. Ju. Veisfeiler, [I] A certain property of semisimple algebraic groups. Funkcional. Anal. i 
Prilozen. 2, no. 2, 84-85 (1968) = Functional Anal. Appl. 2, 257-258 (1968). [2] Certain 
properties of singular semisimple algebraic groups over non-closed fields. Trudy Moskov. Mat. 
Obsc. 20, 111-136(1969) = Trans. Moscow Math. Soc. 20,109-134(1971). [3] A remark on 
certain algebraic groups. Funkcional. Anal. i Prilozen. 4, no. 1,91 (1970) = Functional Anal. 
App!. 4, 81 -82 (1970). [4] Semisimple algebraic groups which are split over a quadratic 
extension. Izv. Akad. Nauk SSSR Ser. Mat. 35, 56-71 (1971) = Math. USSR-Izv. 5, 57-72 
(1971). [5] Hasse principle for algebraic groups split over a quadratic extension. Funkcional. 
Anal. i Prilozen. 6, no. 2, 21-23 (1972) = Functional Anal. Appl. 6,102-104 (1972). 

B. Ju Veisfeller, V. G. Kac, [1] Exponentials in Lie algebras of characteristic p. Izv. Akad. Nauk 
SSSR Ser. Mat. 35, 762-788 (1971) = Math. USSR-Jzv. 5, 777-803 (1971). 

F. D. Veldkamp, [1] Representations of algebraic groups of type F4 in characteristic 2. J. Algebra 
16, 326-339 (1970). [2] Th~ center of the universal enveloping algebra of a Lie algebra in 
characteristic p. Ann. Sci. Eco!e Norm. Sup. (4) 5, 217-240 (1972). [3] Roots and maximal 
tori in finite forms of semisimple algebraic groups. Math. Ann. 207, 301-314 (1974). 

D. -N. Verma, [I] Role of affine Weyl groups in the representation theory of algebraic Chevalley 
groups and their Lie algebras. In: Lie Groups and their Representations, ed. I. M. Gel'fand. 
Budapest: Akad. Kiado 1974. 

V. E. Voskresenskil, [I] Two-dimensional algebraic tori. Jzv. Akad. Nauk SSSR Ser. Mat. 29, 
239-244 (1965) = Amer. Math. Soc. Trans!. Ser. 2, Vol. 73, 190-195 (1968). [2] On two
dimensional algebraic tori. II. Izv. Akad. Nauk SSSR Ser. Mat. 31, 711-716 (1967) = Math. 
USSR-Izv. 1, 691 -696 (1967). [3] Picard groups of linear algebraic groups. In: Studies in 
Number Theory, No. 3,pp. 7-16. Saratov: Izdat. Saratov. Univ.1969 [Russian]. MR42 #5999. 
[4] On the birational equivalence of linear algebraic groups. Dok/. Akad. Nauk SSSR 188, 
978-981 (1969) = Soviet Math. Dok/. 10, 1212-1215 (1969). [5] Birational properties of 
linear algebraic groups. Izv. Akad. Nauk SSSR Ser. Mat. 34, 3-19 (1970) = Math. USSR-Izv. 
4, 1-18 (1970). [6] Rationality of certain algebraic tori. Izv. Akad. Nauk SSSR Ser. Mat. 35, 
1037-1046 (1971) = Math. USSR-Izv. 5,1049-1056 (1971). 

B. A. F. Wehrfritz, [I] Infinite Linear Groups. Berlin-Heidelberg-New York: Springer 1973. 
A. Weil, [1] Varietes abf>liennes et courbes algebriques. Paris: Hermann 1948. [2] On algebraic 

groups of transformations. Amer. J. Math. 77, 355-391 (1955). [3] On algebraic groups and 
homogeneous spaces. Amer. J. Math. 77, 493-512 (1955). [4] Algebras with involutions and 
the classical groups. J. Indian Math. Soc. 24, 589-623 (1961). [5] Adeles and algebraic groups. 
Princeton: Inst. Advanced Study 1961. 

H. Weyl, [1] The Classical Groups. Princeton: Princeton Univ. Press 1946. 
D. J. Winter, [I] On automorphisms of algebraic groups. Bull. Amer. Math. Soc. 72, 706-708 

(1966). [2] Algebraic group automorphisms having finite fixed point sets. Proc. Amer. Math. 
Soc. 18, 371-377 (1967). [3] Fixed points and stable subgroups of algebraic group automor
phisms. Proc. Amer. Math. Soc. 18, 1107-1113 (1967). [4] On groups of automorphisms of 
Lie algebras. J. Algebra 8, 131-142 (1968). 

Z. E. Zalesskii, [I] A remark on the triangular linear group. Vesci Akad. Navuk BSSR Ser. 
Fiz.~Mat. Navuk 1968, no. 2, 129-131. [Russian]. MR 38 #5944. 



Index of Terminology 

Abelian variety, 51 
Abstract root system, 163,229 
Abstract weight, 189,231 
Abstract Weyl group, 163,229 
Action of a group, 58 
Acts k-morphically, 218 
Acts morphically, 59 
Additive group, 51 
Adjoint representation, 66, 74 
Adjoint type, 189 
Admissible, 161 
Affine algebra, 10 
Affine coordinates, 12 
Affine criterion, 19 
Affine n-space, 4 
Affine open set, 13, 18 
Affine variety, 4 
Algebraic group, 51 
Algebraic Lie algebra, 87 
Algebraic transformation space, 58 
Algebraically independent, 2 
Almost simple, 91, 168 
Anisotropic, 219, 220 
Anisotropic kernel, 226 
Automorphism of algebraic group, 51 

Base of abstract root system, 165, 229 
Big cell, 174 
Birational morphism, 20 
Birationally equivalent, 20 
Borel Fixed Point Theorem, 134 
Borel subgroup, 134, 176 
Bracket operation, 65 
Bruhat decomposition, 172 
Burnside's Theorem, 113 

Canonical morphism, 83 
Cartan integer, 230 
Cartan subgroup, 137 
Center of a group, 57, 58 
Center of a Lie algebra, 74 
Centralizer, 58,59, 76 
Character, 81, 102 
Character group, 102 
Chevalley group, 216, 223 
Closed set, 6, 12 
Codimension, 26 

241 

Commutative Lie algebra, 89 
Commutator, 109 
Commutator morphism, 71 
Comorphism, 11, 19 
Complete variety, 45, 133 
Completely reducible, 92 
Conjugacy class, 58 
Connected algebraic group, 53 
Constructible set, 33 
Contragredient, 60 
Convolution, 66 
Coxeter group, 179 

d-group, 102 
Defined over k, 217, 218 
Derivation, 4 
Derived series, 110 
Descending central series, III 
Diagonal, 23 
Diagonalizable, 99 
Diagonalizable group, 101 
Diagram automorphism, 166,231 
Differential of a morphism, 42 
Dimension of a variety, 25 
Direct product of algebraic groups, 52 
Directly spanned, 169 
Distant Borel subgroups, 175 
Dominant morphism, 30 
Dominant weight, 189,231 
Dominates, 30 
Dual numbers, 69 
Dual representation, 60 
Dual root system, 209, 231 
Dynkin diagram, 230 

e-group, 127 
Equivariant, 60 
Exchange condition, 180 
Exponent, 127 
Extension Theorem, 2 
Exterior algebra, 14 

Fibre of a morphism, 29 
Finite morphism, 31 
Fixed point, 58 
Flag, 15 



242 

Flag variety, 15 
Frobenius map, 24 
Full flag, 15 
Function field, 10, 18 
Fundamental dominant weight, 189,231 
Fundamental group, 189,231 

G-equivariant, 60 
G-module, 60 
General linear algebra, 65 
General linear group, 7, 51 
Generalized ring of quotients, 3 
Going Up Theorem, 2 
Graph automorphism, 166,231 
Graph of a morphism, 23 
Grassmann variety, 15 
Group algebra, 105 
Group closure, 55 

Hausdorff axiom, 23 
Highest weight, 190 
Hilbert Basis Theorem, 1 
Hilbert Nullstellensatz, 5 
Hilbert's Fourteenth Problem, 92 
Homogeneous coordinates, II 
Homogeneous ideal, 12 
Homogeneous polynomial, 12 
Homogeneous space, 83 
Hopf algebra, 57 
Hypersurface,26 

Ideal of a Lie algebra, 74 
Identity component, 53 
Infinitesimal centralizer, 76 
Inner automorphism, 58 
Integral closure, 2 
Integral element, 2 
Integral ring extension, 2 
Integrally closed, 2 
Invariant, 77 
Irreducible components, 8 
Irreducible prevariety, 18 
Irreducible representation, 190 
Irreducible root system, 168, 230 
Irreducible topological space, 7 
Irreducible Weyl group, 181 
Isogeny, 196 
Isomorphism of algebraic groups, 51 
Isomorphism of prevarieties, 19 
Isomorphism of root systems, 229 
Isotropy group, 58 

Index of Terminology 

Jacobi identity, 74 
Jordan decomposition, 95 

k-anisotropic, 219, 220 
k-closed, 217 
k-group, 218 
k-morphism, 218 
k-quasisplit, 223 
k-rank,220 
k-rational points, 218 
k-roots, 220 
k-split, 219, 220 
k-torus, 219 
k-Weyl group, 220 
Krull dimension, 3,41 

Left invariant derivation, 65 
Left translation, 58, 62 
Length in Weyl group, 177,229 
Levi decomposition, 184 
Levi factor, 184 
Lie algebra, 65 
Lie-Kolchin Theorem, 114 
Lie p-algebra, 70 
Linear variety, 6 
Local ring, 3, 16 
Locally closed, 18 
Liiroth Theorem, 2 

Maximal vector, 189 
Minimal weight, 193 
Module for algebraic group, 60 
Monomial matrix, 57 
Morphically, 59 
Morphism of affine varieties, 10 
Morphism of algebraic groups, 54 
Morphism of prevarieties, 18 
Multiplicative group, 51 
Multiplicative set, 3 
Multiplicity of a weight, 188 

Nakayama Lemma, 3 
Negative root, 229 
Nilpotent endomorphism, 95 
Nilpotent group, III 
Nilpotent part, 99 
Noether Normalization Lemma, 2 
Noetherian ring, I 
Noetherian topological space, 8 
Nonreduced root system, 220 
Nonsingular variety, 39 



Index of Terminology 

Norm, 2 
Normalizer, 59 
Nullstellensatz, I, 5 

One parameter multiplicative subgroup, 
103 

Opposite Borel subgroup, 160 
Orbit, 58 
Orbit map, 58 

p-polynomial, 129 
Parabolic subgroup, 135, 179 
Point derivation, 38 
Polynomial function, 9 
Positive root, 166, 229 
Prevariety, 18 
Principal open set, 7, 10 
Principal part, 130 
Product, 20 
Projections, 20 
Projective n-space, 11 
Projective variety, 12 
Purely transcendental, 2 

Quasicompact, 7 
Quasiprojective variety, 18 
Quasisplit, 223 

Radical ideal, 5 
Radical of an algebraic group, 125 
Radical of an ideal,S 
Rank of abstract root system, 163,229 
Rank of algebraic group, 135 
Rank of Tits system, 176 
Rational function, 10 
Rational representation, 55 
Reduced, 177 
Reduced algebra, 10 
Reductive group, 125 
Reductive rank, 154 
Reflection, 229 
Regular function, 17, 18 
Regular local ring, 3, 41 
Regular one parameter subgroup, 150 
Regular semisimple element, 142 
Regular torus, 147 
Relative Bruhat decomposition, 221 
Restricted Lie algebra, 70 
Right convolution, 66 
Right translation, 58, 62 

Rigidity, 105 
Root, 107, 229 
Root system, 229 

Saturated Tits system, 183 
Schur's Lemma, 114 
Semidirect product, 61 
Semi-invariant, 81 
Semireductive, 190 
Semisimple algebraic group, 89, 125 
Semisimple endomorphism, 95 
Semisimple Lie algebra, 89 
Semisimple part, 96, 99 
Semisimple rank, 154 
Separable field extension, 3, 43 
Separable morphism, 43 
Separably generated, 3, 40 
Sheaf of functions, 17 
Simple algebraic group, 168 
Simple Lie algebra, 91 
Simple point, 39 
Simple root, 166, 229 

243 

Simply connected algebraic group, 189 
Singular torus, 147 
Smooth variety, 39 
Solvable group, 110 
Special linear group, 52 
Special orthogonal group, 52 
Split, 219, 220 
Stabilizer, 58 
Stalk, 17 
Standard parabolic subgroup, 183 
Subprevariety, 18 
Subvariety, 23 
Symplectic group, 52 

Tangent bundle, 70 
Tangent space, 38 
Tensor product representation, 60 
Tits system, 176 
Torus, 104 
Transcendence basis, 2 
Transcendence degree, 2 
Transitive action, 58 
Translation of functions, 61 
Transporter, 59 
Trigonalizable, 99 

Unipotent endomorphism, 95 
Unipotent group, 112 
Unipotent part, 96, 99 



244 

Unipotent radical, 125 
Universal type, 189 

Valuation ring, 47 
Variety, 23 
Vector group, 127 

Weight, 81,107,188 

Index of Terminology 

Weight space, 188 
Weylchamber, 157,229 
Weylgroup, 147, 176,229 

Zariski k-topology, 217 
Zariski product topology, 9 
Zariski tangent space, 38 
Zariski topology, 6 



Index of Symbols 

Aee ascending chain condition 1 
UFD unique factorization domain 1 
tr. deg. KL transcendence degree 2 
NEfF norm 2 
S-lR generalized ring of quotients 3 
An affine n-space 4 
F(I) zero set of ideal 1 4 
§(X) ideal vanishing on X 4 
.JT radical of ideal 1 5 
Dee descending chain condition 6 
GL(n, K) general linear group 7,51 
K[X] affine algebra of X 10 
K(X) function field of X 10 
X J principal open set 10,20 
qJ* comorphism 11, 19 
pn projective n-space 11 
P(V) projective space associated to V 11 
iliA V) Grassmann variety 14 
~(V) flag variety 15 
(ex, mxl local ring at x 16 
((jx(U) regular functions on U 17 
F(f) zero set of f 20 
LJ(X) diagonal of X 23 
TI{! graph of qJ 23 
dim X dimension of X 25 
codimxY co dimension of Y in X 26 
Tan(X)x geometric tangent space of X at x 37 
§'(X)x tangent space of X at x 38 
dqJx differential of qJ at x 42 
PGL(2, K) GL(2, K)/K* 48 
Gil additive group 51 
Gm multiplicative group 51 
T(n, K) upper triangular group 52 
D(n, K) diagonal group 52 
Urn, K) upper triangular unipotent group 52 
SL(n, K) special linear group 52 
Sp(n, K) symplectic group 52 
SO(n, K) special orthogonal group 52 
GO identity component of G 53 
si(M) group closure 55 
Z(G) center of G 57 
Int x inner automorphism 58 
XC fixed points of G in X 58 
ee(Y) centralizer of Y in G 59 
Ne(H) normalizer of H in G 59 
Trane(Y, Z) transporter 59 
NAG semidirect product 61 
)x left translation 62 

Px right translation 62 

245 



246 Index of Symbols 

2'(G) Lie algebra of G 65 
9 tangent space of G at e 65 
g[(n, K) general linear algebra 65 
Ad adjoint representation of G 66 
*x right convolution by x 66 
t(n, K) Lie algebra of T(n, K) 69 
b(n, K) Lie algebra of D(n, K) 69 
n(n, K) Lie algebra of Urn, K) 69 
sI(n, K) Lie algebra of SL(n, K) 69 
ad adjoint representation of 9 74 
3(9) center of 9 74 
n~lI») normalizer of I) in 9 75 
(!l(x) fixed points of Ad x in 9 76 
(9(1)) centralizer of I) in 9 78 
X(G) character group of G 81 
CG(n) centralizer of n in G 89 
Xs semisimple part of x 96,99 
Xu unipotent part of x 96, 99 
exp n exponential 96 
log x logarithm 96 
*Xs semisimple part of x 99 
*Xn nilpotent part of x 99 
Gs semisimple elements of G 99 
Gu unipotent elements of G 99 
I-psg one parameter multiplicative subgroup 103 
Y(G) group of I-psg's of G 103 
<X, }.) pairing ofX(D) and Y(D) 103 
cP(G, D) roots of G relative to D 107 
gciG ith term of derived series 110 
(G,G) derived group of G 110 
cgiG ith term of descending central series III 
CIG(s) conjugacy class of s in G 116 
R(G) radical of G 125 
Ru(G) unipotent radical of G 125 
!B variety of Borel subgroups 145 
W(G, S) Weyl group of G relative to S 147 
I(T) identity component in intersection of Borel subgroups 

containing T 149, 158 
T, (Ker 0:)0 150 
Z. CG(T.) 150 
Y(T)reg regular I-psg's 150 
rankssG semisimple rank of G 154 
rankredG reductive rank of G 154 
B(A) Borel subgroup associated with Ie 156 
[(B) Wcyl chamber of B 157 
cP roots of G relative to T 160 
B- opposite Borel group 160 
Va root group 161 
Sa admissible isomorphism 161 
Ll base of cP 165 
CP;;,CP;; sets partitioning cP + 171 
Q big cell 174 
C(IJ ) length 177 
n(G) fundamental group of G 189 



Index of Symbols 

A,Ar 
ViA) 
k<P 

kW 

<1J.,p> 

weight and root lattices 
irreducible module of highest weight A 
k-roots 
k-Weyl group 
Cartan integer 

247 

189 
193 
220 
220 
229 




