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to Niki, Todd, and Stuart



Preface to the Second Edition

The 20 years since the publication of this book have been an era of continuing
growth and development in the field of algebraic topology. New generations
of young mathematicians have been trained, and classical problems have
been solved, particularly through the application of geometry and knot
theory. Diverse new resources for introductory coursework have appeared,
but there is persistent interest in an intuitive treatment of the basic ideas.

This second edition has been expanded through the addition of a chapter
on covering spaces. By analysis of the lifting problem it introduces the funda-
mental group and explores its properties, including Van Kampen’s Theorem
and the relationship with the first homology group. It has been inserted after
the third chapter since it uses some definitions and results included prior to
that point. However, much of the material is directly accessible from the same
background as Chapter 1, so there would be some flexibility in how these
topics are integrated into a course.

The Bibliography has been supplemented by the addition of selected books
and historical articles that have appeared since 1973.

vii



Preface to the First Edition

During the past twenty-five years the field of algebraic topology has experi-
enced a period of phenomenal growth and development. Along with the
increasing number of students and researchers in the field and the expanding
areas of knowledge have come new applications of the techniques and results
of algebraic topology in other branches of mathematics. As a result there has
been a growing demand for an introductory course in algebraic topology
for students in algebra, geometry, and analysis, as well as for those planning
further work in topology.

This book is designed as a text for such a course as well as a source for
individual reading and study. Its purpose is to present as clearly and con-
cisely as possible the basic techniques and applications of homology theory.
The subject matter includes singular homology theory, attaching spaces and
finite CW complexes, cellular homology, the Eilenberg—Steenrod axioms,
cohomology, products, and duality and fixed-point theory for topological
manifolds. The treatment is highly intuitive with many figures to increase the
geometric understanding. Generalities have been avoided whenever it was
felt that they might obscure the essential concepts.

Although the prerequisites are limited to basic algebra (abelian groups)
and general topology (compact Hausdorff spaces), a number of the classical
applications of algebraic topology are given in the first chapter. Rather than
devoting an initial chapter to homological algebra, these concepts have been
integrated into the text so that the motivation for the constructions is more
apparent. Similarly the exercises have been spread throughout in order to
exploit techniques or reinforce concepts.

At the close of the book there are three bibliographical lists. The first
includes all works referenced in the text. The second is an extensive list of
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books and notes in algebraic topology and related fields, and the third is a
similar list of survey and expository articles. It was felt that these would
best serve the student, teacher, and reader in offering accessible sources for
further reading and study.
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CHAPTER 1

Singular Homology Theory

The purpose of this chapter is to introduce the singular homology theory of
an arbitrary topological space. Following the definitions and a proof of
homotopy invariance, the essential computational tool (Theorem 1.14) is
stated. Its proof is deferred to Appendix I so that the exposition need not be
interrupted by its involved constructions. The Mayer—Vietoris sequence is
noted as an immediate corollary of this theorem, and then applied to com-
pute the homology groups of spheres. These results are applied to prove a
number of classical theorems: the nonretractibility of a disk onto its bound-
ary, the Brouwer fixed-point theorem, the nonexistence of vector fields on
even-dimensional spheres, the Jordan—Brouwer separation theorem and the
Brouwer theorem on the invariance of domain.

If x and y are points in R”, define the segment from x to y to be {1 —1)x+
tyl0 <t < 1}. A subset C = R" is convex if, given x and y in C, the segment
from x to y lies entirely in C. Note that an arbitrary intersection of convex
sets is convex. If A = R", the convex hull of A is the intersection of all convex
sets in R" which contain A.

A p-simplex s in R" is the convex hull of a collection of (p + 1) points
{X0s+-.X,} in R"in which x, — x,, ..., x, — X, form a linearly independent
set. Note that this is independent of the designation of which point is Xo-

1.1 Proposition. Let {x,,...,x,} < R". Then the following are equivalent:

(@) xy — xq, ..., X, — X, are linearly independent;

(b) if Ysix; =Y t;x;and Yy s; =Y t;, thens, = t, fori =0, ..., p.
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Proof. (a) = (b): If )_s;x; = Y t;x;and Y s; = Y t;, then

0:

1

(s; — t)x; = .Zplo (si — t)x; — [:0 (s; — ti):| Xo

e

S

(8; — ) (x; — xo).

i

I
—_

By the linear independence of x; — X, ..., X, — X, it follows that s; = t; for

i=1,..., p. Finally, this implies s, = t, since Y s; = Y ;.
(b) = (a): If 3°2_; (t;)(x; — Xo) = 0, then Yo tix; = (3 F=; )X, and by (b)
the coefficients ¢, ..., t, must all be zero. This proves linear independence.
O

Let s be a p-simplex in R" and consider the set of all points of the form
toXo + 11X, + - + 1,x,, where Y t; = 1 and t; > 0 for each i. Note that this
is the convex hull of the set {x,,...,x,} and hence from Proposition 1.1 we
have the following:

1.2 Proposition. If the p-simplex s is the convex hull of {x,,...,x,}, then every
point of s has a distinct unique representation in the form Y t;x;, where t; > 0
foralliandy t;=1. O

The points x; are the vertices of s. This proposition allows us to associate
the points of s with (p + 1)-tuples (t,¢,,...,t,) with a suitable choice of the
coordinates ¢;.

EXERCISE 1. Let y be a point in s. Then y is a vertex of s if and only if y is not an interior
point of any segment lying in s.

If the vertices of s have been given a specific order, then s is an ordered
simplex. So let s be an ordered simplex with vertices xq, X, ..., X,. Define g,
to be the set of all points (to,¢y,...,t,) € R?** with Y z; =1 and t; > 0 for
each i. If a function

fio,—>s

is given by f(to,...,t,) = Y t;x;, then f is continuous. Moreover, from the
uniqueness of representations and the fact that ¢, and s are compact
Hausdorff spaces it follows that f is a homeomorphism. Thus, each ordered
p-simplex is a natural homeomorphic image of o,. Note that o, is a p-simplex
with vertices x; =(1,0,...,0), x; =(0,1,...,0), ..., x,=(0,...,0,1). g, is
called the standard p-simplex with natural ordering.

Let X be a topological space. A singular p-simplex in X is a continuous
function

.0, X.
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Figure 1.1
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A |
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Xg 2 X1
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Note that the singular O-simplices may be identified with the points of X,
the singular 1-simplices with the paths in X, and so forth.

If ¢ is a singular p-simplex and i is an integer with 0 < i < p, define 0,(¢), a
singular (p — 1)-simplex in X, by

0:0(to,. .. t,y) = Ptostys st 00ty t, ).

0;¢ is the ith face of ¢.

For example, let ¢ be a singular 2-simplex in X (Figure 1.1). Then, 8,4 is
given by the composition shown in Figure 1.2. That is, to compute 0,¢ we
embed g,_, into ¢, opposite the ith vertex, using the usual ordering of ver-
tices, and then go into X via ¢.

If f: X — Y is a continuous function and ¢ is a singular p-simplex in X,
define a singular p-simplex f, (#)in Y by f,(¢) = f o ¢. Note thatifg: Y - W
is continuous and id: X — X is the identity map,

(G00)4@)=9,(f4(¢) and  (id),(¢) = ¢

An abelian group G is free if there exists a subset 4 = G such that every
element g in G has a unique representation

g: Z nx'X,'

xeA
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where n, is an integer and equal to zero for all but finitely many x in 4. The
set A is a basis for G.

Given an arbitrary set A we may construct a free abelian group with basis
A in the following manner. Let F(A) be the set of all functions f from A into
the integers such that f(x) # O for only a finite number of elements of A.
Define an operation in F(4) by (f + g)(x) = f(x) + g(x). Then F(A) is an
abelian group. For any a € A4 define a function f, in F(A4) by

1 ifx=a
J) = {0 otherwise.

Then {f,|a € A} is a basis for F(A) as a free abelian group. Identifying a with
f, completes the construction.

For example, let G = {(n,,n,,...)|n; is an integer, eventually 0}. Then G is
an abelian group under coordinatewise addition, and furthermore it is free
with basis

(1,0,...),(0,1,0,...),(0,0,1,0,...),....
For convenience we say that if G = 0, then G is a free abelian group with
empty basis.

Note that if G is free abelian with basis 4 and H is an abelian group, then
every function f: A — H can be uniquely extended to a homomorphism f:
G — H.

If X is a topological space define S,(X) to be the free abelian group whose
basis is the set of all singular n-simplices of X. An element of S,(X) is called a
singular n-chain of X and has the form

Zn¢‘¢,
4

where n, is an integer, equal to zero for all but a finite number of ¢.

Since the ith face operator 0; is a function from the set of singular n-
simplices to the set of singular (n — 1)-simplices, there is a unique extension
to a homomorphism

02 8,(X) = §,-1(X)

given by 0,3 n, @) =3 n, 0:¢. Define the boundary operator to by the
homomorphism

0: 5,(X) = §,-1(X)
given by
0=0yg—0,+0,+ -+ (—-1)0o,= Z (— 1o,

1.3 Proposition. The composition ¢ o 0 in
Su(X) 58, 1(X) 5 8, 5(X)

is zero.
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EXERCISE 2. Prove Proposition 1.3. |

Geometrically this statement merely says that the boundary of any n-chain
is an (n — 1)-chain having no boundary. It is this basic property which leads
to the definition of the homology groups. An element ¢ € S,(X) is an n-cycle
if 0(c) = 0. An element d € S,(X) is an n-boundary if d = d(e) for some e €
S, +1(X). Since 0 is a homomorphism, its kernel, the set of all n-cycles, is a
subgroup of S,(X) denoted by Z,(X). Similarly the image of d in S,(X} is the
subgroup B,(X) of all n-boundaries.

Note that Proposition 1.3 implies that B,(X) < Z,(X) is a subgroup. The
quotient group

H,(X) = Z,(X)/B,(X)

is the nth singular homology group of X. The geometric motivation for this
algebraic construction is evident; the objects we wish to study are cycles in
topological spaces. However, in using singular cycles, the collection of all
such is too vast to be effectively studied. The natural approach is then to
restrict our attention to equivalence classes of cycles under the relation that
two cycles are equivalent if their difference forms a boundary of a chain of
one dimension higher.

This algebraic technique is a standard construction in homological alge-
bra. A graded (abelian) group G is a collection of abelian groups {G,} indexed
by the integers with componentwise operation. If G and G’ are graded groups,
a homomorphism

[iG-G
is a collection of homomorphisms { f;}, where
fii G~ Gy,

for some fixed integer r. r is then called the degree of f. A subgroup H < G of
a graded group is a graded group {H;} where H; is a subgroup of G,. The
quotient group G/H is the graded group {G,/H,}.

A chain complex is a sequence of abelian groups and homomorphisms

@
n-1

Cn+t Cn
o Cn > Lpay

in which the composition ¢,_; o d, = 0 for each n. Equivalently a chain com-
plex is a graded group C = {C;} together with a homomorphism é: C — C of
degree —1 such that ¢ o ¢ = 0. If C and C’ are chain complexes with bound-
ary operators 0 and ¢’, a chain map from C to C’ is a homomorphism

. C->C

of degree zero such that 0" o @, = @, _, o d for each n. (Note that the require-
ment that ® have degree zero is unnecessary. It is stated here only as a
convenience since all chain maps we will consider have this property.)
Denoting by Z,(C) and B, (C) the kernel and image of 0, respectively, the
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homology of C is the graded group
H,(C) = Z,(C)/B,(C).
Note that if ® is a chain map,
O(Z,(C) = Z,(C) and  B(B,(C)) < B,(C)).
Therefore, ® induces a homomorphism on homology groups
®,:H,(C)—> H,(C).

In this sense the graded group S, (X) = {S;(X)} becomes a chain complex
under the boundary operator 0, so that the homology group of X is the
homology of this chain complex. If f: X — Y is a continuous function and ¢
is a singular n-simplex in X, there is the singular n-simplex f,(¢) = fo ¢in Y.
This extends uniquely to a homorphism

S S(X) - S,(Y) foreach n.

To show that f,, is a chain map from S, (X) to S,(Y) it must be checked that
the following rectangle commutes:

S,(X) —L s,(Y)

S, (X) —2 S, ()

First note that it is sufficient to check that this is true on singular n-simplices
¢, and second, observe that it is sufficient to show 0, f.(¢) = [, 0;(#). Now

40 @) o5 tu—y) = f(Pltos- - 11,085, 1))

and
0if4@) o, tu1) = [r(A) o, 11, 0,8 1)
= f(¢(t0""’ti—l’o’ti""’tn—l))'

Thus, f,: S,(X) - S,(Y) is a chain map and there is induced a homomor-
phism of degree zero

St H(X) = H(Y).

Note that this is suitably functorial in the sense that for g: Y — W a continu-
ous function and id: X — X the identity, (g o f), = g4 © f, and id, is the
identity homomorphism.

As a first example take X = point. Then for each p > 0 there exists a
unique singular p-simplex ¢,: 6, » X. Note further that for p >0, 0,4, =
#,-1- So consider the chain complex

= 8,(pt) > S, (pt) = So(pt) = 0.
Each S,(pt) is an infinite cyclic group generated by ¢,. The boundary opera-
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tor is given by

6¢n = ‘ZO (— 1)iai¢n = Z (_ 1)i¢n—1'
Thus, 0¢,,_, =0 and d¢,, = ¢,,_, for n > 0. Applying this to the chain
complex it is evident that

Z,(pt) = B,(pt) for n>0.

However, Z(pt) = Sy(pt) is infinite cyclic, whereas By(pt) = 0. Therefore, we
conclude that the homology groups of a point are given by

H (pt) = Z ifn=0
“PY = itn>o.

A space X is pathwise connected if given x, y € X, there is a continuous
function

W:[0,1] > X

such that (0) = x and (1) = y. Note that instead of [0, 1] we could have
used .

Suppose that X is a pathwise connected space, and consider the portion of
the singular chain complex of X given by

S,(X) 5 54(X) - 0.

Now Sy(X) = Z,(X), which may be viewed as the free abelian group gener-
ated by the points of X. That is Z,(X) = F(X). Hence, an element y of Z,(X)
has the form
y= Z n,-Xx,
xeX
where the n, are integers, all but finitely many equal to zero.
On the other hand, S;(X) may be viewed as the free abelian group gener-

ated by the set of all paths in X. If the vertices of g, are v, and v, and ¢ is a
singular 1-simplex in X, then

0p = $(v,) — $(vo) € Zo(X).

Define a homomorphism a: S5(X) — Z by a(} n,-x) = Y n,. Note that if
X is nonempty, then « is an epimorphism. Since for any singular 1-simplex ¢
in X, a(0¢) = a(¢(v,) — ¢(vy)) = 0, it follows that B,(X) is contained in the
kernel of a.

Conversely, suppose that n;x; + -+ + nyx, € Zo(X) with Y n; = 0. Pick
any point x € X and note that for each i there is a singular 1-simplex ¢,: ¢, —
X with d4(¢;) = x;and 9, (4;) = x. Taking the singular 1-chain ) n;¢,in S,(X)
we have 0() m;¢,) = > n;x; — (Y. n)x = Y n;x;. Therefore, the kernel of « is
contained in By(X). This proves that the kernel of « equals By(X) and we
conclude the following:
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1.4 Proposition. If X is a nonempty pathwise-connected space, then

Ho(X) ~ Z. O

Let A be a set and suppose that for each a € A there is given an abelian
group G,. Define an abelian group Y ,. 4 G, as follows: the elements are all
functions

fia4-1 G,
aeA
such that f(x) € G, for each a, and f(x) = O for all but finitely many elements
o € A; the operation is defined by (f + g)(«) = f(«) + g(a). Setting g, = f(2) €
G, we write f = (g,: « € A) and call the g, the components of f. The group
Y G, is the weak direct sum of the G,’s. If the requirement that f(«) = 0 for all
but finitely many « is omitted, then the resulting group is the strong direct
sum or direct product of the G,’s, denoted [ [, 4 G,

Note that if G is an abelian group and {G, },. 4 is a family of subgroups of
G such that g € G has a unique representation

g=> g, with g,eG,

ae A

and g, = 0 for all but finitely many «, then G is isomorphic to ) ,. 4 G,.
Now for each o € A suppose we have a chain complex C*

Sl S
Define a chain complex Y ,.,C* by taking (},C*), =) C; and setting
0(cy: € A) = (0%, o € A).
1.5 Lemma. H,(}. C*) = ), H,(C*).

Proof. Note that by the definition of the chain complex Y C* we have
Z(Y. C)=Y(Z(C)) and B} (CY) =Y (B(C).
Therefore
Hk(Z )= Zk(Z C“)/Bk(z )
=Y (Z(CH)/Y (B(C*)
X ) (ZW(C*)/B(CY)
=Y HJ(C). O
Let X be a topological space and for x, y € X, set x ~ y if there exists a
path in X from x to y. It is evident that ~ is an equivalence relation, that is,

(1) x ~ x,
(2) x ~yand y ~ z implies x ~ z,
(3) x ~ yimplies y ~ x,
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for all points x, y, and z in X. Such a relation decomposes X into a collection
of subsets, the equivalence classes, where x and y are in the same equivalence
class if and only if x ~ y. For this specific relation on X the equivalence
classes are called the path components of X. Note that if x € X the path
component of X containing x is the maximal pathwise-connected subset of X
containing x.

1.6 Proposition. If X is a space and {X,: o € A} are the path components of X,
then

H(X)~ z Hi(X,).

xe A

Proof. There is a natural homomorphism

Y Z Si(X,) = Si(X)

axe A

(s res)- 2 (gne)

Since the groups involved are free abelian, ¥ must be a monomorphism. To
observe that ¥ is also an epimorphism, note first that if

prop > X

given by

is a singular k-simplex, then ¢(o,) is contained in some X, because o, is

pathwise connected. Hence, to any such ¢ there is associated a unique ¢, €

Si(X,) with W(¢,) = ¢. Therefore, ¥ is an isomorphism for each k.
Moreover, ¥ is a chain map between chain complexes so that

H(X) =~ Hk< ZA S*(Xa)).
Finally, it follows from Lemma 1.5 that

Hk< ZA S*(Xa)> ~ ZA H(X,),

which completes the proof. O

This proposition establishes the intrinsic “additive” property of singular
homology theory. Since the homological properties of a space are completely
determined by those of its path components, and the homological properties
of any path component are independent of the properties of any other path
component, we may restrict our attention to the study of pathwise-connected
spaces.

Note that it follows from Propositions 1.6 and 1.4 that H,(X) is a free



10 Homology Theory

abelian group whose basis is in a one-to-one correspondence with the path
components of X.

1.7 Theorem. If f: X — Y is a homeomorphism, then
Jit Hy(X) > H,(Y)
is an isomorphism for each p.
EXERCISE 3. Prove Theorem 1.7. O
The fact that this theorem, the topological invariance of the singular
homology groups, is quite easy to prove is one of the major advantages of

using singular homology theory.

1.8 Theorem. If X is a convex subset of R", then
H,(X)=0 for p>0.

Proof. Assume X # ¢J and let x € X and ¢: 6, - X be a singular p-simplex,
p > 0. Then define a singular (p + 1)-simplex 0: 6,,; — X as follows:

ty lp+1
(l—t)'<¢< yerer 2 ))+tx for to,<1
O(to,...,tp+1)= 0 1—[0 l_to 0 0

X for t,=1.

That is, we are setting
00,t,....tp01) = Pty,..stp4) and 0(1,0,...,0) = x

and then taking line segments from ¢, to the face opposite ¢, linearly into the
corresponding line segment in X (Figure 1.3). This construction is possible
since X is convex.
From its definition 0 is continuous except possibly at (1,0,...,0). To check
continuity there we must show that
lim ||6(to,...,t,41) — x|l = 0.

to—1

to
0(r3)
0(1y)

t 153

Figure 1.3



1. Singular Homology Theory 11

Now
im0t ty1) = X1
to~
— lim u—%(¢<t1,m,5“>)—u—%u
101 1 —1t, 1 —1t,

t
<lim(l—t¢ AL )‘4— x)
o 0<H¢< i " T—1g x|

Since ¢(o,) is compact, (¢(¢; (1 — to),..., 1,41 /(1 — to))Il + [Ix]|) is bounded.
Thus, the final limit is zero because lim, _; (1 — t,) = 0, and it follows that ¢
is continuous.

It is evident from the construction that d,(8) = ¢. Since this procedure may
be applied to any singular k-simplex, k > O, there is a unique extension to a
homomorphism

T: Si(X) = Sy (X)

such that 0,0 T = identity. More generally we have for ¢ a singular
k-simplex,

O(T(P)(to,---» )
=T@)(tos---ti—1,0, 815, 1)

t t; ti t
=(1—1t r o, toX.
( 0)<¢<1—t0 1=ty 1=t "1 —1, +lox

On the other hand,
T(0:-1 ()0, -5 1)

:(1_%)( ) 1¢< b )

Ly L Iy
[ L ,O> sy +t X.
°)¢< T—t 71—t 1 —t, 1—%> 0

Thus,for 1 <i<k+ 1,

0;T¢ = T(0; -, 9).

Now let ¢ be any singular k-simplex

k+1

0T =00Th+ 3. (= 1/6,T(9)

—%w+§—4mw [i—wmlw i—Wmﬂ

i=1

= ¢ —Tag.
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So we have constructed a homomorphism T: S;(X) — S, +;(X) with the prop-
erty that 0T + T0 is the identity homomorphism on S,(X), whenever k > 1.

Now let z be an element of Z,(X). From the above, for p >0,
(0T + Td)z = z. Now since z is a cycle, Tdz = 0. Thus, z = 0(Tz) and z is in
B,(X). This implies that H,(X) = 0 for all p > 0. g

The construction used in proving Theorem 1.8 is a special case of a chain
homotopy between chain complexes. Suppose C = {C;,0} and C' = {C},0'}
are chain complexes and

T:C->C

is a homomorphism of graded groups of degree one (but not necessarily a
chain map). Then consider the homomorphism

0T+ To:C-C
of degree zero. This will be a chain map because
O@T+To)=00T+dTo=0Td=0Td+ Tdo = (0'T + Td)o.
This chain map (0'T + T0) induces a homomorphism on homology
(0T + T0),: H,(C)—> H,(C) for each p.
Now if z € Z,(C),
(@T + To)(z) =0'T(2)
which is in B,(C’). Thus, (0'T + T0), is the zero homomorphism for each p.

Given chain maps f and g: C —» C', f and g are chain homotopic if there
exists a homomorphism T: C — C’ of degree one with 6'T + Td = f — g.

1.9 Proposition. If f and g: C - C' are chain homotopic chain maps, then
S« = 9y as homomorphisms from H,(C) to H,(C').

Proof. This follows immediately since if T: C —» C’ is a chain homotopy be-
tween f and g, then

0=0@T+T0y=(—9s=/Ss— 9u O

As a special case, suppose that f and g: X —» Y are maps for which the
induced chain maps

Sy and g, S, (X)— S,.(Y)

are chain homotopic. If T is a chain homotopy between f, and g, then T
may be interpreted geometrically in the following way.

Let ¢ be a singular n-simplex in X. Then T(¢) may be viewed as a continu-
ous deformation of f,(¢#) into g,(¢). From Figure 1.4, T(¢) appears as a
prism with ends f,(¢) and g ,(¢) and sides T(d¢). Thus, it is reasonable that
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£49)

8,(®) J

Figure 1.4

0T(9) = f4(9) — g 4(¢) — T(39),

which is the algebraic requirement for T to be a chain homotopy.

If the chain ¢ = ) m;¢; is an n-cycle in X, then f(c) and g4 (c) are n-cycles
in Y. T(c) is a collection of integral multiples of such prisms and the algebraic
sum of the sides must be zero since dc = 0. Thus, the boundary of T(c) is the
algebraic sum of the ends of the prisms, which is f,(c) — g,(c), so that f,(c)
and g,(c) are homologous cycles in Y.

Given spaces X and Y, two maps fo, f;: X — Y are homotopic if there exists
a map

F:X xI-Y, I=[0,1],

with F(x,0) = fo(x) and F(x, 1) = f;(x), for all x in X. The map F is a
homotopy between f;, and f,. Equivalently a homotopy is a family of maps
{fi}o<i<1 from X to Y varying continuously with t. It is evident that the
homotopy relation is an equivalence relation on the set of all maps from X
to Y. It is customary to denote by [ X, Y] the set of homotopy classes of maps.

1.10 Theorem. If f,, f;: X > Y are homotopic maps, then Jox = fix as
homomorphisms from H,(X) to H,(Y).

Proof. The idea of the proof is quite simple: if z is a cycle in X, then the
images of z under f, and f; will be cycles in Y. Since f; may be continuously
deformed into f;, the image of z under f, should admit a similar continuous
deformation into the image of z under f;. This should imply that the two
images are homologous cycles. We now proceed to put these geometric ideas
into the current algebraic framework.

In view of Proposition 1.9 it will be sufficient to show that the chain maps
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Jows f14: 84(X) = S,(Y) are chain homotopic. Let
F:XxI->Y
be a homotopy between f,, and f,. Define maps
9o, g1: X > X x 1
by go(x) = (x,0) and g,(x) = (x, 1):
X

9o Jo
XxI —— Y

J1

X

Then in the diagram each triangle is commutative, that is, f, = F o g, and
Ji=Foy,.

Now suppose that g,, and g, , are chain homotopic as chain maps from
S,(X) to S, (X x I). This would mean that there exists a homomorphism

T:S,(X)—> S (X x 1)
of degree one with 0T + T0 = g, — ¢, - Applying F, to both sides gives
Fy@T 4+ T0) = Fy(gos — 914) or OF,T)+ (FyT)0 = fou — f14-

Then F, T is a homomorphism from S,(X) to S.(Y) of degree one and is a
chain homotopy between f,, and f, ,. Therefore, it is sufficient to show that
Jdos and g, . are chain homotopic.

For g, the standard n-simplex denote by z, € S,(0,) the element represented
by the identity map. Note that if ¢: o, > X is any singular n-simplex in X,
then the induced homomorphism

¢#: Sn(on) - Sn(X)

has ¢,(z,) = ¢. It is evident that every singular n-simplex in X can be ex-
hibited as the image of 7, in this manner. Our technique of proof then will be
to first give a construction involving 7, and then extend it to all of S,(X) by
the above approach.

We construct a chain homotopy T between ¢, , and g, , inductively on the
dimension of the chain group. To do the inductive step first, suppose that
n > 0 and for all spaces X and integers i < n there is a homomorphism

T:5:(X)—> S (X x 1)

such that 0T + T0 = go» — g,14. Assume further that this is natural in the
sense that given any map h: X — W of spaces, commutativity holds in the
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diagram
SiX) —2 S,y (X x I)
hy (hxid) ,
SW) — S, (W x )
foralli < n.

To define T on the n-chains of X, it is sufficient to define T on the singular
n-simplices. So let ¢: g, - X be a singular n-simplex and recall that ¢, (z,) =
¢. Thus, by defining T, : S,(a,) = S,+,(g, x I), the naturality of the construc-
tion will require that

T(@) = Tx(¢4(1,) = (¢ x 1d) (T, (z,)).

So to define Ty it is sufficient to define T, on S,(s,).
Let d be a singular n-simplex in o, and consider the chain in S,(o, x I)
given by

¢ =gos(d) — g14(d) — T; (2d),

which is defined by the induction hypothesis since dd is in S, _,(5,). Note that
from the preceding discussion, ¢ corresponds to the boundary of a certain
prism in o,. Then

0c = 0go4(d) — 0914(d) — 0T, (0d)
= go#(0d) — g1 4(0d) — [go4(0d) — g,,(0d) — T, 0(0d)]
=0.

Thus, ¢ is a cycle of dimension » in the convex set g, x I. From Theorem 1.8
it follows that c is also a boundary. So let b€ S, (s, x I) with 6b = c. Geo-
metrically b is the solid prism of which ¢ is the boundary. Then define

T,d)=b
and observe that
0T(d) + To(d) = go4(d) — g14(d).
Now for any singular n-simplex ¢: 6, — X define, as before,
Tx(¢) = (¢ x id), T, (z,,).
So defined on the generators there is a unique extension to a homomorphism

TX: Sn(X)_) n+1(X X I)

This inductive construction indicates the proper definiton for T on 0-chains.
Recall that g, is a point and consider the chain ¢ in So(c, x I) given by

€ =gox(to) — g14(10)-
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Take a singular 1-simplex b in o, x I with boundary g, 4(to) — g14(t,) and
define T, (to) = b. This defines T on O-chains by the same technique.
Finally it must be noted that in the definition given for Ty on n-chains of X,

0Ty + T40 = goy — 914

and that the construction is suitably natural with respect to maps h: X — W.
Note that if ¢ is a singular n-simplex in X,

Go#(9) = Gos 94 (t,) = (¢ x 1d) 4 go 4 (7,)

and similarly

914(0) = 91404(t,) = (¢ x 1d) 4 g, 4(z,).

Now consider
0T(¢) + To(9) = 0Tpy(1,) + T4 (x,)
=0(¢ x id), T(z,) + T, (z,)
= (¢ x id), 0T(z,) + (¢ x id), Td(z,)
= (¢ x 1) (go+(tn) — g14(7,))
=gox($) — 914 (9).

The naturality follows similarly.
Therefore, Ty gives a chain homotopy between gy, and g,., and we have
completed the proof that fy, = fi,. O

Note that this generalizes the approach in Theorem 1.8. There we used the
fact that, since X was convex, the identity map was homotopic to the map
sending all of X into the point x. Thus in positive dimensions the identity
homomorphism and the trivial homomorphism agree, and the positive di-
mensional homology of X is trivial.

Let /: X —» Y and g: Y — X be maps of topological spaces. If the composi-
tions f o g and g o f are each homotopic to the respective identity map, then
f and g are homotopy inverses of each other. A map f: X — Y is a homotopy
equivalence if f has a homotopy inverse; in this case X and Y are said to have
the same homotopy type.

1.11 Proposition. If f: X — Y is a homotopy equivalence, then f,: H,(X) —
H,(Y) is an isomorphism for each n.

Proof. 1f g is a homotopy inverse for f, then by Theorem 1.10 f, o g, =

(f o g), = identity and g, o f, = (g o f), = identity so that g, = f,"! and f,
is an isomorphism. O

Suppose that i: 4 — X is the inclusion map of a subspace 4 of X. A map
g: X - A such that g o i is the identity on A is a retraction of X onto A. If
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furthermore the composition i o g: X — X is homotopic to the identity, then
g is a deformation retraction and A is a deformation retract of X. Note that in
this case the inclusion i is a homotopy equivalence.

1.12 Corollary. If i: A— X is the inclusion of a retract A of X, then i,:
H,(A) — H,(X) is a monomorphism onto a direct summand. If A is a deforma-
tion retract of X, then i, is an isomorphism.

Proof. The second statement follows immediately from Proposition 1.11. To
prove the first, let g: X — A be a retraction. Then

gy 0 iy = (g 0 i), = (id), = identity on H_(A).
Hence, i, is a monomorphism.
Define subgroups of H,(X) by G, = image i, and G, = kernel g,. Let
a € G; N Gy, so that o = i (p) for some f € H,(A) and g,(«) = 0. However
0= g*(a) = g*l*(ﬁ) = ﬁ
so that « = i (f) must be zero. On the other hand, let y € H,(X). Then

7 =i,0, () + (v — i,9,()

expresses y as the sum of an element in G, and an element in G,. Therefore,
H,(X) =~ G; ® G, and the proof is complete. O

A triple C L, D% E of abelian groups and homomorphisms is exact if
image f = kernel g. A sequence of abelian groups and homomorphisms

..._«)Gli,Gzﬁ,G:aﬁ,...fL;Gni,“.

is exact if each triple is exact. An exact sequence
0-C f-» DLESO

is called short exact. This is a generalization of the concept of isomorphism
in the sense that h: G; — G, is an isomorphism if and only if

05G,5G,-0

is exact.

Note that in a short exact sequence as above, f is a monomorphism and
identifies C with a subgroup C’ = D. Also g is an epimorphism with kernel C".
Thus up to isomorphism the sequence is just

0->C 5D5D/C' 0.

Suppose now that C = {C,}, D = {D,} and E = {E,} are chain complexes
and

0—>C£>D-€->E—>0

is a short exact sequence where f and g are chain maps of degree zero. Hence,
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for each p there is an associated triple of homology groups,
H(C) 5 H (D)% H(E).

We now want to examine precisely how this deviates from being short exact.
So we are assuming that we have an infinite diagram in which the rows are
short exact sequences and each square is commutative.

Let z € Z,(E), that is, z € E, and dz = 0. Since g is an epimorphism, there
exists an element d € D, with g(d) = z. From the fact that g is a chain map we
have

g(0od) = d(g(d)) = 0z = 0.

The exactness implies that dd is in the image of f, so let ¢ € C,_; with f(c) =
dd. Note that

f(9¢) = 9f(c) = 0(dd) = O,

and since f is a monomorphism, dc must be zero, and c € Z,_,(C).

The correspondence z — ¢ of Z,,(E) into Z,_(C) is not a well-defined func-
tion from cycles to cycles due to the number of possible choices in the con-
struction. However, we now show that the associated correspondence on the
homology groups is a well-defined homomorphism.

Let z, z' € Z,(E) be homologous cycles. So there exists an element e € E,
with d(e) = z — z". Let d, d’ e D, with g(d) =1z, g(d')==z,and ¢, c'e C,_,;
with f(c) = ad, f(c') = dd'. We must show that ¢ and ¢’ are homologous
cycles.

There exists an element a € D, ., with g(a) = e. By the commutativity

g(0a) = dg(a) = de =z — Z/,

so we observe that (d — d’) — 0a is in the kernel of g, hence also in the image
of f. Let b € C, with f(b) = (d — d’) — 0a. Now we have

f(0b) = of(b) = 0(d — d' — da) = 0d — od’
= flo) = fl¢') = fle = ¢).
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Since f'is one to one, it follows that ¢ — ¢’ = b and ¢ and ¢’ are homologous
cycles. Therefore, the correspondence induced on the homology groups is
well defined and obviousty must be a homomorphism.

This homomorphism is denoted by A: H,(E)— H,_,(C) and called the
connecting homomorphism for the short exact sequence

0-C->D->E-O.
f g

1.13 Theorem. [f 0 — C L D% E—0isashort exact sequence of chain com-
plexes and degree zero chain maps, then the long exact sequence

L HMD)S H(E)S H,_ (OB H,_,(D)S

is exact.
EXERCISE 4. Prove Theorem 1.13. O

It is important to note that the construction of the connecting homomor-
phism is suitably natural. That is, if

0 C ) E 0
0 c 2L .p 2, F 0

is a diagram of chain complexes and degree zero chain maps in which the
rows are exact and the rectangles are commutative, then commutativity holds
in each rectangle of the associated diagram

s H(D) —2— H,(E) —2— H,_,(C) —— H,_,(D) — -

Jﬂ* lh l“t lﬂ*

+ s H,(D') — H(E) —— H,_,(C') —— H, (D) —— -~

Let X be a topological space and A = X a subspace. The interior of A
(Int A) is the union of all open subsets of X which are contained in A4, or
equivalently the maximal subset of A4 which is open in X. A collection % of
subsets of X is a covering of X if X < ( J,. » U. Given a collection %, let int %
be the collection of interiors of elements of % We will be interested in those
% for which int % is a covering of X.

For % any covering of X, denote by S,*(X) the subgroup of S,(X) generated
by the singular n-simplices ¢: g, —» X for which ¢(a,) is contained in some
U € %. Then for each i

image J;¢ < image ¢
so that the total boundary
0: SY(X) - S¥,(X).
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So associated with any covering % of X there is a chain complex Sy (X) and
the natural inclusion

i: SX(X) > S, (X)

is a chain map. Note that if ¥~ is a covering of a space Y and f: X - Yisa
map such that for each U € %, f(U) is contained in some V of ¥/, then there
is a chain map

[ SE(X) = 8(Y)

and f, oix =iyo f,.
We are now ready for the theorem which will serve as the essential compu-
tational tool in studying the homology groups of spaces.

1.14 Theorem. If % is a family of subsets of X such that Int% is a covering of
X, then

iyt Hy(8 (X)) > H,(X)

is an isomorphism for each n.
Proof. See Appendix L. O

The proof is deferred to an appendix to avoid a lengthy interruption of the
exposition. It should not be assumed that this implies the proof is either
irrelevant or uninteresting. Indeed this argument characterizes the basic dif-
ference between homology theory and homotopy theory. Intuitively the ap-
proach to proving this theorem is evident. Given a chain ¢ in X we must
construct a chain ¢’ in X such that ¢’ is in the image of i and dc = dc’.
Moreover, if ¢ is a cycle we will want ¢’ to be homologous to c. This is done
by “subdividing” the chain ¢ repeatedly until the resulting chain is the desired
¢’. The technique of subdivision is possible in homology theory because an
n-simplex may be subdivided into a collection of smaller n-simplices. How-
ever, the subdivision of a sphere does not result in a collection of smaller
spheres. It is the absence of such a construction, that makes the computation
of homotopy groups extremely difficult for spaces as simple as a sphere.

To see the requirement that Int % covers X is essential, let X = § 1 x, €St
and % = {{x,},S' — {xo}}. Then any chain ¢ in SY(S') may be uniquely
written as the sum of a chain ¢, in {x,} and a chain ¢, in §* — {x,}. More-
over, since the image of ¢, is contained in a compact subset of ' — {x,}, ¢
will be a cycle if and only if each of ¢, and ¢, are cycles. Now both ¢, and ¢,
must then also be boundaries; hence, H(S¥(S")) = 0. However, it will soon
be shown that H,(S') ~ Z.

The first application of Theorem 1.14 will be the development of a tech-
nique for studying the homology of a space X in terms of the homology of
the components of a covering # of X. In the simplest nontrivial case the
covering % consists of two subsets U and V for which Int U uIntV = X. For
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convenience let 4’ be the set of all singular n-simplices in U and A" be the set
of all singular n-simplices in V. Then

Si(U) = F(4'),  Sy(V)=F(A"),
S(UnV)y=F(A nA"), SH(X)=F(A uvA").
Note that there is a natural homomorphism
h: F(A)@ F(A"y—> F(A' v A")
given by
h(aj,a]) = a; + a;.

It is not difficult to see that k is an epimorphism. On the other hand, there is
the homomorphism

g:F(A nA")> F(A)® F(4")
given by
g(b;) = (b;, —by).

It follows immediately that g is a monomorphism and hog = 0. Now
suppose

h(Y ma;,y maj) = 0.
That is
Y nmai + Y maj =0.

Since these are free abelian groups, the only way this can happen is for each

nonzero n;, a; = a; for some j and furthermore m; = —n;. All nonzero coeffi-
cients m; must appear in this manner. This implies that all a; are in A’ A"
and if x = ) na;, then ) m;a; = —x. Hence,

xeF(AnA") and  g(x) = (Y ma,y ma),

This proves that the kernel of h is contained in the image of g, and inter-
preting these facts in terms of the chain groups gives for each n a short exact
sequence

0-8,(UnV)3S,U)@®S,(V)5 s (X) 0.

Define a chain complex S,(U)@® S, (V) by setting (S, (U)® S, (V)), =
S.(U) @ S,(V) and letting the boundary operator be the usual boundary on
each component. Then the above sequence becomes a short exact sequence
of chain complexes and degree zero chain maps.

By Theorem 1.13 there is associated a long exact sequence of homology
groups,

B HUAV) B HS,(U) @S, (V)3 H(SHX) S H, (U~ V)>-.
From the definition of the chain complex it is evident that H,(S,(U)®
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5,(V)) =~ H,(U)® H,(V), and by Theorem 1.14 we have H,(S(X)) ~ H,(X).
Incorporating these isomorphisms into the long exact sequence, we have
established the Mayer—Vietoris sequence

ASHUASHU)@H,(V)SHX)SH,_(UnV)—>-.
Note that if we define by

U
unv UuV=X
14

the respective inclusion maps, then g,(x) = (i (x), —j,(x)) and h,(y,z) =
k. (y) + 1,(2). The connecting homomorphism A may be interpreted geomet-
rically as follows: any homology class w in H,(X) may be represented by a
cycle ¢ + d where c is a chain in U and d is a chain in V. (This follows from
Theorem 1.14.) Then A(w) is represented by the cycle dc in U n V.

The construction of the Mayer— Vietoris sequence is natural in the sense
that if X" is a space, U’ and V' are subsets with Int U’ uInt V' = X', and
f: X = X' is a map for which f(U) € U’ and f(V) < V’, then commutativity
holds in each rectangle of the diagram

=5 HUAV) B HU)® Hy(V) 5 Hy(X) S H, (U V) -
Is FRCY Is £y
S HU V) S HU) @ H(V) S Hy(X) 5 Hy (U V) -
ExaMPLE. Let X = S! and denote by z and z’ the north and south poles,
respectively, and by x and y the points on the equator (Figure 1.5). Let

U=S!'—{z'}and V = S' — {z}. Then in the Mayer—Vietoris sequence as-
sociated with this covering we have

Figure 1.5
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Figure 1.6

H,(U)@® H,(V) ™ H,(S") S Ho(U V) 5 Ho(U) @ Hy(V).

The first term is zero since U and V are contractible. Thus, A is a mono-
morphism and H,(S') will be isomorphic to the image of A = the kernel of
ds- An element of Hy(U n V) & Z @ Z may be written in the form ax + by,
where a and b are integers.

Now

gilax + by) = (i, (ax + by), —j,(ax + by)).

Since U and V are pathwise connected, i, (ax + by) = Oif and only ifa = —b
and similarly for j,. Thus the kernel of g, is the subgroup of Hy(U n V)
consisting of all elements of the form ax — ay. This is an infinite cyclic sub-
group generated by x — y. Therefore, we conclude that

H(SY)~ Z.

To give geometrically a generator « for this group, we must represent o by

the sum of two chains, ¢ + d, where c is in U and d is in V, for which d(c) =

X — y = —add. The chains ¢ and d may be chosen as shown in Figure 1.6.
For any integer n > 1 the portion of the Mayer—Vietoris sequence

H,(U)® H,(V) > Hy(S") S H,_,(Un V)

has the two end terms equal to zero; hence, H,(S!) = 0.
This completes the determination of the homology of S'. We now proceed
inductively to compute the homology of S" for each n. Recall that

S"={(x1,.., X)X, € RY xF =1} c R"™L

In the usual fashion consider R” = R"*! as all points of the form (x;, ..., x,,0).
Under this inclusion "7 = S" as the “equator.” Denote by z = (0,...,0,1)
and z! =(0,...,0, — 1) the north and south poles of §”. Then by stereographic
projection S" — {z} is homeomorphic to R", and similarly for S" — {z'}. Fur-
thermore, $" — {z U z'} is homeomorphic to R" — {origin}.

EXERCISE 5. Show that $" ! is a deformation retract of R" — {origin}.

NowletU = 8" — {z},V =8"— {z'}sothat Un V = §" — {zUz'}. Then
by the observations and the exercise above, the Mayer-Vietoris sequence for
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Figure 1.7

this covering becomes
hy - * n
H,(R") @ H,(R") S H,,(S") > Hy,(S"") 5 H,, _,(R") @ H,,_, (R")

For m > 1, the end terms are zero so that A is an isomorphism. For m =1
and n > 1, g, and A must both be monomorphisms so that H,(S") = 0. This
furnishes the inductive step in the proof of the following:

1.15 Theorem. For any integer n > 0, H,(S") is a free abelian group with two
generators, one in dimension zero and one in dimension n. g

1.16 Corollary. For n # m, S" and S™ do not have the same homotopy type. [

ExEeRrcIsk 6. Using only the tools that we have developed, compute the homology of a
two-sphere with two handles (Figure 1.7).

Define the n-disk in R" to be
D" = {(x1,..,x,) €RYY x? < 1}

and note that $"~! = D" is its boundary.
1.17 Corollary. There is no retraction of D" onto S"*.

Proof. For n = 1 this is obvious since D! is connected and S° is not. Suppose
n>1and f: D"— S""' is a map such that f o i = identity, where i is the
inclusion of §" ! in D"
This implies that the following diagram of homology groups and induced
homomorphisms is commutative:
id

H, (S"™") —— H,(s"™")

i Ix

Hn—l(Dn)

However, this gives a factorization of the identity on an infinite cyclic group
through zero which is impossible. Therefore, no such retraction f exists. []
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Figure 1.8

1.18 Corollary (Brouwer fixed-point theorem). Given a map f: D" — D", there
exists an x in D" with f(x) = x.

Proof. Suppose f: D" — D" without fixed points. Define a function g: D" —
"1 as follows: for x € D" there is a well-defined ray starting at f(x) and
passing through x. Define g(x) to be the point at which this ray intersects
$"7! (Figure 1.8). Then g: D" — $" ! is continuous and g(x) = x for all x in
$"~!. But the existence of such a map g contradicts Corollary 1.17. Therefore,
f must have a fixed point. O

EXERCISE 7. Show that Corollary 1.18 implies Corollary 1.17.

Let n > 1 and suppose that f: S" — S" is a map. Choose a generator a of
H,(S") ~ Z and note that the homomorphism induced by f on H,(S") has
Si(a) = m-o for some integer m. This integer is independent of the choice of
the generator since f (—a) = —f (@) = —m-a = m-(—a). The integer m is
the degree of f, denoted d(f). This is often referred to as the Brouwer degree
as a result of the work of L.E.J. Brouwer. The degree of a map is a direct
generalization of the “winding number” associated with a map from the circle
into the nonzero complex numbers.

The following basic properties of the degree of a map are immediate conse-
quences of our previous results:

(a) d(identity) = 1;

(b) if fand g: S" > §" are maps, d(fog)=d(f)d
(c) d(constant map) =

(d) if f and g are homotoplc then d(f) = d(g);
(e) if f is a homotopy equivalence then d(f) =

A slightly less obvious property (a future exercise) is that there exist maps of
any integeral degree on S” whenever n > 0. All these properties are results of
homology theory, and as such are easily obtained. A much more sophisti-
cated property is the homotopy theoretic result of Hopf, which is the con-
verse of property (d), if d(f) = d(g) then f and g are homotopic. Thus, the
degree is a complete algebraic invariant for studying homotopy classes of
maps from S" to S".
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1.19 Proposition. Let n > 0 and define f: S" — S" by

f(x19x2""axn+1) = (_xl’xz""7xn+1)'

Thend(f)= —1.

Proof. First consider the case n = 1 (Figure 1.9). As before let z = (0,1), z' =
(0, —1) and x = (—1,0), y = (1,0). The covering U =S' —{z'} and V =
S* — {z} has the property that f(U) € U and f(V) = V.

Thus, by the naturality of the Mayer— Vietoris sequence the diagram

0 —— H,(S') —25 Hy(UnV)

S S3*

0 —— H,(S!) —2 Ho(UnV)

has exact rows, and the rectangle commutes where f3 is the restriction of f.
Recall that a generator o of H,(S') was represented by the cycle ¢ + d where
0c = x — y = —ad, and A(«) is represented by x — y. Now

Af (@) = f3:A(x) = fruelx = y) =y — x = —A0) = A(—0).

Since A is a monomorphism, d(f) = —1.

Now suppose the conclusion is true in dimension n — 1 > 1 and consider
S"~! < S" as before. Taking U and V to be the complements of the south pole
and the north pole, respectively, in S, the inclusion

STt UnV
is a homotopy equivalence. Since n > 2, the connecting homomorphism in
the Mayer—Vietoris sequence is an isomorphism. Thus, in the diagram
H,(S") —2— H,,(UnV) e H,_(5"™")
lf* lf;* Jh

H,(S") —2— H, ,(UAV) —— H, (5"
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each rectangle commutes and the horizontal homomorphisms are isomor-
phisms. If o is a generator of H,(S"),

Sulo) = AT 3 A (@) = A7 [ ' A(e) = — AN i Ale) = —o

This gives the inductive step and the proof is complete. O

For a given map f: S" — S", n > 0, there is associated a map g: S"*' —» §"*!
called the suspension of f and denoted by ) f. Intuitively, the idea is that the
restriction to the equator (S") in S"*! should be f and each slice in S"*!
parallel to the equator should be mapped into the corresponding slice in the
manner prescribed by f (Figure 1.10). Specifically consider S"*' < R**? =
R"*! x R! so that the points of $"*! are of the form (x,t), where x € R"*?,
te R! and || x|/ + |t|* = 1. Then define

_Jx0) ifx=0
Zﬂ&”‘ﬂuwﬂvwmn ifx %0,

It is not difficult to see that ) f is continuous and has the desired
characteristics.

The technique used in proving Proposition 1.19 may be applied to estab-
lish the following:

1.20 Proposition. If f:S" — 8", n > 1 is a map, then d(}_ f) = d(f). O

Note that lf f(xla---axn+1)=(—xls'~"xn+1) and g(xls---’xn+2)=
(—X{,...,X,4,), theng = Y fand Proposition 1.19 is a special case of Propo-
sition 1.20.

1.21 Corollary. If f: S" — S" is given by
Sy X)) = (Xqoeves = Xie o5 X 11 )y

thend(f)= —1.

Proof. Let h: S" — S" be the map that exchanges the first coordinate and the
ith coordinate. Then h is a homeomorphism (k™! = h), so d(h) = +1. Let
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g(x1,. .y Xp41) =(—Xq,...,%,41) s0 that d(g) = — 1. Then
d(f) = dh o g o by = d(hd(g) = (£ (~1) = 1. -

1.22 Corollary. The antipodal map A:S"— S" defined by A(x,,...,x,) =
(—X15-.., —X,) has d(A) = (= 1)

Proof. From Corollary 1.21 A is the composition of (n + 1)-maps, all having
degree — 1. O

EXERCISE 8. Show that for n > 0 and m any integer, there exists a map f: S" —
S" of degree m.

1.23 Proposition. If f, g: S" — S" are maps with f(x) # g(x) for all x in S", then
g is homotopic to A o f.

Proof. Graphically the idea is as follows: since g(x) # f(x), the segment in
R"*! from Af(x) to g(x) does not pass through the origin. Thus, projecting
out from the origin onto the sphere yields a path in $" between Af(x) and g(x)
(Figure 1.11). These are the paths which produce the desired homotopy. In
particular we define a function

F:§8"x1-8"
by
(1 —0Af(x) + t-g(x)
F(x,t) =
S0 =T =040 + 1900l
which gives the homotopy explicitly. O

1.24 Corollary. If f: 52" — S?" is a map, then there exists an x in S*" with
f(x) = x or there exists a y in S*" with f(y) = —y.

Proof. If f(x) # x for all x, then by Proposition 1.23 f is homotopic to A.
On the other hand, if f(x) # —x = A(x) for all x, then f is homotopic to
A o A = identity.

g(x) 1(x)

Af(x)

Figure 1.11
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Figure 1.12

When both of these conditions hold, we have
d(A) = d(f) = d(identity).

However, d(A) = (—1)*"*! = —1 and d(identity) = 1, and the two conditions
cannot hold simultaneously. O

1.25 Corollary. There is no continuous map f: S*" — S>" such that x and f(x)
are orthogonal for all x. O

Although these ideas have not been defined, S" is a manifold of dimenion
n. That is, it is locally homeomorphic to R". As such it has a tangent space
T(S" x) at each point x in S". With S$” identified with the unit sphere in R"*,
T(S", x) is the n-dimensional hyperplane in R"*! which is tangent to S" at x
(Figure 1.12). We may translate this hyperplane to the origin where it be-
comes the n-dimensional subspace orthogonal to the vector x. Of course, as
x varies over S", these subspaces will vary accordingly. A vector field on S" is
a continuous function assigning to each x in S* a vector in the corresponding
linear subspace. A vector field ¢ is nonzero if ¢(x) # O for each x in S".

1.26 Corollary. There exists no nonzero vector field on S*".

Proof. If ¢ is a nonzero vector field on $2", then ¥/(x) = ¢(x)/|¢(x)| is a vector
field on $2" of unit length. Thus, ¥: S*" — §2" is a map for which y(x) is
orthogonal to x for each x. But this is impossible by Corollary 1.25. Hence,
no such vector field exists. O

Nonzero vector fields always exist on odd-dimensional spheres. A collec-
tion of vector fields ¢, ..., ¢, on 5" is linearly independent if for each x in "
the vectors ¢;(x), ..., ¢,(x) are linearly independent. A famous problem in
mathematics is the determination of the maximum number of linearly inde-
pendent vector fields which exist on §2"*! for each value of n. The work of
Hurwitz and Radon [see Eckmann, 1942] gives a strong positive result; that
is, a specific number of linearly independent vector fields (varying with the
dimension of the sphere) is shown to exist. The solution of the problem was
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completed by Adams [1962] who showed that these positive results were the
best possible.

Before proceeding with further applications, we digress in order to intro-
duce some necessary algebraic ideas. A directed set A is a set with a partial
order relation < such that given elements a and b in A there eixsts an
element ¢ in A with a < c and b < c. A direct system of sets is a family of sets
{X,}aca» Where A is a directed set, and functions

fr:X,—» X,  whenever a<b,
satisfying the following requirements:

() £ = identity on X, for each a in A;
(ii) ifa < b < ¢, then ff = fif o f).

The particular case of interest to us is where the X, are abelian groups and
the £ are homomorphisms. So let {X,,f?} be a direct system of abelian
groups and homomorphisms. Define a subgroup R of Y, X, as follows:

R = {i X,
i=1

Then the direct limit of the system {X,, f} is the group
lim X, = Z X,/R.

there exists a c € A, ¢ > g, for all i, and ), Jalxa) = 0}.
i=1

Note that if x, is in X, and x, is in X, then they will be equal in the direct
limit if for some cin A, ¢ > a and ¢ > b and f(x,) = f(x,).

1.27 Lemma. Let X be a space and denote by {X,} the family of all compact
subsets of X, partially ordered by inclusion. Then the family of groups
{H,(X,)} forms a direct system where the homomorphisms are induced by the
inclusion maps. Then

Proof. For each X, let the homomorphism
ga*: H*(Xa) - H*(X)
be induced by the inclusion map. Then set

g =2 ga: 2, Hy(X,) > H(X).

Now suppose that Y 7_, x, is in R; that is, there exists a compact subset
X, € X such that X, < X, for each i and

Y ha(a) =0 in Hy(X,)

Then from the commutativity of the diagram
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i gp*

it follows that g(}_7_, X,,) = 0 and R is contained in the kernel of g. Thus, g
induces a homomorphism

ZH /R—hmH(X)—»H(X)

For any homology class x in H,(X), represent x by a cycle Yon ;. Since o,
is compact, ¢;(g,) is compact in X for each j. Then the chain anﬁ is
“supported” on the set quﬁ (0,), which is compact since the sum is finite.
Thus

U ¢,0,) =X, forsome aq,
7

and ) n;¢; must represent some homology class x, in H,(X,). Moreover, it is
evident that g,.(x,) = x; hence, x is in the image of § and § is an epimorphism.

Now suppose that ) 7_, x,, is in ), H,(X,) with g(}'1_; x, ) = 0. Each x,
may be represented by a cycle Y iniéi;in X, . Then g(} 7., x, ) is represented
in X by the cycle ) ; jnijéi;- Since we have assumed that thls cycle bounds,
there exists an (n + 1)-chain ), m, in X with o). my,) = ¥, ;n;;4,;. Once
again define a subset of X by

Xy = [U wk(oﬁn} U [u XJ

and note that X,, is compact. Since Y m,y, is an (n + 1)-chain in X, with
O m) =Y, inydy, it follows that

n

Z o 4 (Z nuq},J) is a boundary in  S,(X,)

and
Z gh.(x,) = in H,/(X,)
Thus, Y7, X4, 1s in R, R = kernel of g, and g is an isomorphism. O

1.28 Lemma. If A < S"is a subset with A homeomorphic to I*,0 < k < n, then
VA for j=0
0 for j>0.

Proof. Proceeding by induction on k, if k = 0 then A is a point and S" — A is
homeomorphic to R” from which the conclusion follows. Assume then that
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the result is true for k < m and let
h:A->I™

be a homeomorphism. Split the m-cube I" into its upper and lower halves by
setting

I ={(x{,...,x,) € I"|x; >0} and Im ={(xy5..., X,) € IMx; <0}

so that I* n I~ is homeomorphic to I™ !, For the corresponding decomposi-
tion of A denote by A* = h™*(I")and A~ = h™*(I"). The set " — (A" N A7)
may be written as the union of two sets (S" — A7) U (S" — A7) satisfying the
requirements of the Mayer—Vietoris sequence. So there is an exact sequence

H, (8" — (A* A A7) — Hi(S" — A) > H(S" — A" ) @ H)(S" — A7)
— H/(S"— (4" 1 A7)).

By the inductive hypothesis, for j > 0 the end terms are both zero. This yields
an isomorphism

fuy—mé%mm—Aﬂ@mm—An

So if x € Hy(S" — A) and x # 0, then either i (x) # 0 or i, (x) # 0. Suppose
if(x) # 0. Now repeat the procedure by splitting 4™ into two pieces whose
intersection is homeomorphic to I™~!. In this manner a sequence of subsets
of §" may be constructed 4 = 4, 2 A, 2 A; = - having the property that
the inclusion

S"—ACS,— A

induces a homomorphism on homology taking x into a nonzero element of
H,(S8" — A,), and furthermore that ﬂ ; A; is homeomorphic to I™ .

Now every compact subset of (S" — ﬂ,.A,.) will be contained in some
(S" — A,). Thus the isomorphism of Lemma 1.27 factors through the direct
limit

ll_’I‘l’l H;(S" — Ay),

so that this direct limit must also be isomorphic to H;(S" — (: A;). By the
construction, the element of this direct limit represented by x is nonzero;
however, by the inductive hypothesis the group H;(S" — (); 4;) = 0. This
contradiction implies that no such element x exists and H;(S" — 4) = 0.

For the case j = 0, the Mayer—Vietoris sequence yields a monomorphism
rather than an isomorphism. If x and y are points in $* — 4 with (x — y) # 0
in Hy(S" — A), then the above argument may be duplicated to imply that
(x — y) must be nonzero in Hy(S" — (); 4;), a contradiction. dJ

1.29 Corollary. If B = S" is a subset homeomorphic to S* for 0 <k <n—1,
then H,(S" — B) is a free abelian group with two generators, one in dimension
zero and one in dimensionn — k — 1.
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Proof. Once again inducting on k, note that for k = 0, S* is two points and
S™ — B has the homotopy type of S"~'. Since H,(S" ") satisfies the descrip-
tion, the result is true for k = 0. Suppose the result is true for k — 1 and write
B = B* U B~, where B* and B~ are homeomorphic to closed hemispheres in
S* and B* n B™ is homeomorphic to §¥~!. The Mayer—Vietoris sequence of
the covering

S"—(B*"nB)=(S"—B")u(S"—B")
has the form
Hyoi(S"— B*) @ H,,y(S" — B7) > Hy 1y (S" — (B 0 B"))
- HiS" — B)
- Hy(S"— B")@ H,(S"— B").

For j > 0, both of the end terms are zero by Lemma 1.28. The resulting
isomorphism furnishes the inductive step necessary to complete the proof.
O

This result may now be applied to prove the following famous theorem.

1.30 Theorem (Jordan—Brouwer Separation Theorem). An (n — 1)-sphere im-
bedded in S" separates S" into two components and it is the boundary of each
component.

Figure 1.13

<& G

Figure 1.14
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Proof. Let B < S" be the imbedded copy of S"~!. Then by Corollary 1.29,
H,(S" — B) is free abelian with two basis elements, both of dimension zero.
So §" — B has two path components. B is closed, so S” — B is open and hence
locally pathwise connected. This implies that the path components are com-
ponents.

Let C, and C, be the components of " — B. Since C, U B is closed, the
boundary of C, is contained in B. (Here we mean by the boundary of C,, the
set 0C, = C, — C9). The proof will be complete when we show that B < 0C,.
Let x € B and U be a neighborhood of x in S§". Since B is an imbedded copy
of S"7!, there is a subset K of U n B with x € K and B — K homeomorphic
to D" ! (Figure 1.13).

Now by Lemma 1.28 H,(S" — (B — K)) = Z with generator in dimension
zero. Thus, " — (B — K) has one path component. Let p, € C;, p, € C, and
y a pathin " — (B — K) between p, and p,. Since C, and C, are distinct path
components in §" — B, the path y must intersect K. As a result, K contains
points of C, and C,.

We have shown that an arbitrary neighborhood of x contains points of
both C, and C,, hence x is in the boundary of C, and the proof is complete.

O

One final application is the Brouwer theorem on the invariance of domain.

1.31 Theorem. Suppose that U, and U, are subsets of S" and that h: U, - U,
is a homeomorphism. Then if U, is open, U, is also open.

Note. It should be observed that this is a nontrivial fact. Of course, it is
obviously true if “open” is replaced by “closed,” or if the homeomorphism is
assumed to be defined over all of $”. This need not be true in spaces in general.
For example, let W, = (3,1] and W, = (0,3] be subsets of [0, 1]. If h: W, —
W, is given by h(x) = x — }, then h is a homeomorphism, W, is open, but W,
is not. It should be evident that there is no extension of 4 to a homeomor-
phism of [0, 1] onto itself.

Proof. Suppose x, = h(x;) is some point in U,. Let V; be a neighborhood of
x, in U, with ¥, homeomorphic to D" and 8V, homeomorphic to $"*. Set
V, = h(V;) and denote by oV, = h(dV;), so that 0V, is a subset of S"
homeomorphic to S"~! (Figure 1.14).

Then by Lemma 128 S"— V, is connected, while by Theorem 1.30
S" — 0V, has two components. So §" — dV, is the disjoint union of §" — V,
and V, — dV,, both of which are connected. Hence, they are the components
of 8" — 8V,. This implies that V, — 0V, is open, contained in U,, and x, €
V, — dV,. Hence, U, is open. O



CHAPTER 2

Attaching Spaces with Maps

The purpose of this chapter is to develop the basic theory of CW complexes
and their homology groups. An equivalence relation on a topological space
is seen to produce a new space whose points are the equivalence classes. This
gives a means of attaching one space to another via a mapping from a sub-
space of the first to the second. The case of particular interest is that of
attaching a cell to a space via a map defined on the boundary. This leads
naturally to the definition of CW complexes. To serve as tools in the study of
these spaces, relative homology groups are introduced and the excision theo-
rem is proved. It is shown that the relative groups of adjacent skeletons
produce a finitely generated chain complex whose homology is the homology
of the space, and this is applied to compute the homology of real projective
spaces.

Recall that a relation ~ on a set A is an equivalence relation if the following
are satisfied:

(i) a~a,
(i) a~b=b~a,
(i) a~b,b~c=a~c,

for all a, b, and ¢ in A. Such a relation on A4 gives a decomposition of A into
equivalence classes. On the other hand, a decomposition of 4 into disjoint
subsets defines an equivalence relation on 4 (a ~ b<>a and b are in the
same subset) under which these subsets are the equivalence classes. Denote
by A/~ the set of equivalence classes under ~. By the quotient function
n: A > A/~ we mean the function which assigns to a € A the equivalence
class containing a.

More generally, if f: A - B is a function of sets, there is naturally asso-
ciated an equivalence relation on A. Specifically, a, ~ a, if and only if f(a,)=

35
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f(a,). In particular if B = A/~, for some equivalence relation ~, and f = =,
then we recover the original relation ~ in this way.

Now suppose ~ is an equivalence relation on a topological space X. The
quotient space X/~ may be topologized by defining a subset U < X/~ to be
open if and only if #7!(U) is open in X. Note that under this topology, =
becomes a continuous function.

Since our main interest is in Hausdorff spaces, we will want to restrict our
attention to those equivalence relations on a Hausdorff space X for which the
quotient space X/~ is Hausdorff. For example define an equivalence relation
on[—1,1]bya~ —aif|a] < l and a ~ afor all a. Then the images of 1 and
— 1 in the quotient space cannot be separated by mutually disjoint open sets.

If X is a topological space define

D={xx)xeX}csXxX

the diagonal in X x X. Recall that X is Hausdorff if and only if the diagonal
is a closed subset of X x X. Now let ~ be an equivalence relation on X
and denote by A the diagonal in (X/~) x (X/~). Note that the continuous
function

TxmX xXo(X/~)x(X/~)

has
(m x m)7H(A) = {(x,y)|x ~ y}.

This subset of X x X is the graph of the relation. The relation ~ on X is
closed if and only if its graph is a closed subset of X x X. It is evident from
the above that if X/~ is a Hausdorff space, then ~ is a closed relation on X.
We now show that the converse is true whenever X is compact.

2.1 Proposition. If ~ is a closed relation on a compact Hausdorff space, then
X/~ is Hausdorff.

Proof. Recall that a subset of a compact Hausdorff space is closed if and only
if it is compact. Denote by p, and p, the projection maps of X x X onto the
first and second factors, respectively. Let C be a closed subset of X and
G < X x X the graph of ~. Then

P(pr1(C)nG) = {ye X|y ~ x for some x € C}
= 17 Y(=(C)).

Now p;*(C) n G is closed, hence compact, and so p,(p; ' (C) N G) is compact,
hence closed. Thus, for any closed C < X, n~!(n(C)) is closed in X; hence,
7(C) is closed in X/~.

If x and y € X/~ are distinct points, then they are closed in X/~ since
they are images of single points in X. Thus, n'(X) and n~'(¥) are disjoint
closed subsets of X. Since X is compact Hausdorff, it is normal, and there
exist open sets U, V, in X containing n~*(X) and = ~!(J), respectively, with



2. Attaching Spaces with Maps 37

UnV = Let U and V' be the complements of U and V, so that n{(U’) and
n(V') are closed subsets of X/~. Then their complements X/~ — n(U’) and
X/~ — n(V') are open, disjoint and contain X and y, respectively. Thus, X/~
is Hausdorff. O

EXERCISE 1. (a) Give an example of a closed relation ~ on a Hausdorff space X such
that n: X — X/~ is not a closed mapping.

(b) Give an example of a closed relation ~ on a Hausdorff space X such that
X/~ 1s not Hausdorff.

If a partial relation ~'is given on a space X, it is possible to associate with
~' a specific equivalence relation on X. Define an equivalence relation ~ on
X by x ~ yif there exists a sequence Xx,, ..., X, in X with x, = x, x,, = y, and

(i) x4y =x; or
(ii) x;y ~'x; OF
(iii) x; ~" X4y

for each i. Then ~ is the equivalence relation generated by ~'. It is the least
equivalence relation that preserves all of the relations from ~'.

For example, let X = §", n > 1, and define ~ to be the least equivalence
relation on S" for which x ~ —x for all x. The graph of ~ in §” x S" is the
union of the diagonal D and the antidiagonal D’ = {(x, —x)|x € §"}. This is
obviously closed; hence, "/~ is a compact Hausdorff space called real pro-
Jective n-space, RP(n).

Suppose A4, X, and Y are spaces with A < X and X nY = . Let f: 4 -
Y be a continuous function. We consider X U Y as a topological space in
which X and Y are both open and closed, carrying their original topologies.
Let ~ be the least equivalence relation on X U Y such that x ~ f(x) for all
x € A. The identification space X U Y/~ is the space obtained by attaching X
to Y via f: A — Y. It is customary to denote X U Y/~ by X u, Y.

EXERCISE 2. Suppose in the above that X and Y are Hausdorff spaces and A is closed
in X. Then show that ~ is a closed relation.

2.2 Corollary. If X and Y are compact Hausdorff spaces, A is closed in X and
S+ A— Y is continuous, then X U, Y is a compact Hausdorff space. O

It is not difficult to see that there is a homeomorphic copy of Y sitting in
X v, Y. We denote by i: Y - X U, Y the homeomorphism onto this sub-
space; i may be thought of as the composition of the inclusionof Yin X v Y
followed by the quotient map 1: X U Y - X U, Y.

A case of particular importance is when X = D"and 4 = §""! = 0D". The
space D" U, Y is called the space obtained by attaching an n-cell to Y via f.
When it may be done without causing confusion, we will denote D" U, Y
by Y.
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D2

Figure 2.1

ExAMPLE. Let X = D%, 4 = S' = dD? and Y be a copy of S* disjoint from X.
Let f: A - Y be the standard map of degree two given in complex coordi-
nates by f(e”) = e*. The identification space X U, Y is then the real projec-
tive plane, RP(2).

The homology groups of this space may be computed by applying the
Mayer- Vietoris sequence. In the interior of D? pick an open cell U and a
point p contained in U (see Figure 2.1). Setting V = RP(2) — {p}, consider
the Mayer— Vietoris sequence of the covering {U, V}. U n V and V both have
the homotopy type of S!, whereas U is contractible. In the portion of the
sequence given by

H,(U V)5S Hy(U)® H,(V) 5 H,(RP(2))
1% &

V4 Z

it is easy to check that f is an epimorphism. A generating one-cyclein U n'V,
when retracted out onto the boundary, is wrapped twice around S* since f
has degree two. Thus, « is a monomorphism onto 2Z, and H,(RP(2)) =
ZRZ =2Z,.

Moreover, the connecting homomorphism

H,(RP(2)) 5 H,(U V)

is a monomorphism whose image is the kernel of o, so H,(RP(2)) = 0. All
higher-dimensional homology groups are easily seen to be zero, and RP(2) is
pathwise connected, so its homology is completely determined.

The technique used in this example may easily be adapted to prove the
following proposition:

2.3 Proposition. If f: S""! — Y is continuous where Y is Hausdorff, then there
is an exact sequence
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o Hy (S B H(Y) S Hy(Y) S Hy (87 -
= Ho($"™) = Ho(Y) ® Z > Ho(Y)). O

This exact sequence shows how closely related are the homology groups
of Y and Y,. If an n-cell has been attached to Y, then H(Y)5 H,(Y;) is
a monomorphism with cokernel either zero or infinite cycle. In this sense
we may have created a new n-dimensional “hole.” On the other hand,
H,_ (V)5 H,_,(Y;) is an epimorphism with kernel either zero or cyclic, so
the effect of this new n-cell may have been to fill an existing (n — 1)-dimen-
sional “hole” in Y. Away from these dimensions, the addition of an n-cell does
not affect the homology.

Let (X, A) be a pair of spaces and Y = point. Then there is only one map
AL Yiora# . The space X U, Y is then denoted by X/A because it can
be pictured as the spaced formed from X by collapsing 4 to a point. Note
that if X is compact Hausdorff and A4 is closed in X, then X/4 is compact
Hausdorff.

2.4 Proposition. If X and W are compact Hausdorff spaces and g: X - W is a
continuous function onto W such that for some wy e W, g *(w,) is a closed
set A< X, and for w # wqy, g~ '(W) is a single point of X, then W is homeo-
morphic to X/A.

This follows immediately from the following more general fact.

2.5 Proposition. Suppose X, Y, and W are compact Hausdorff spaces and A is
a closed subset of X. Let f: A — Y be continuous and g: X U Y - W continu-
ous and onto. If for each w € W, g~'(w) is either a single point of X — A or the
union of a single point y € Y together with f ~'(y) in A, then W is homeomor-
phic to X U, Y.

Proof. If m: X UY - X U, Y is the identification map, g may be factored
through = to give a commutative triangle

where k is induced by g. Then k is one to one and onto by the properties of
g. To see that k is continuous, let C be closed in W. Then k~!(C) is closed if
and only if n7'k7(C) is closed. But n 'k ~1(C) = g ~!(C), which is closed
since g is continuous. Since X U, Y and W are compact Hausdorff spaces, k
is a homeomorphism. O
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ExaMPLE. Consider $"~! as the boundary of D" and let h;: D" — S"™' — R" be
a homeomorphism. Let z € $” and set h,: §" — {z} - R" to be the homeomor-
phism given by stereographic projection. Now define a function

if xesS"!

4
DS b =
g2 y o) {h;‘h,(x) xeD"— S,

Then checking that g satisfies the hypothesis of Proposition 2.4 with 4 =
S"~! we conclude that D"/S"™! is homeomorphic to S". Thus, S" may be viewed
as the space given by attaching n-cell to a point.

Many of the spaces which concern algebraic topologists may be con-
structed in a similar fashion, that is, by repeatedly attaching cells of varying
dimensions to a finite set of points. Before giving a formal definition, we
consider a number of important examples.

ExaMPLE. Recall that RP(n) = §"/~, where ~ is the least equivalence rela-
tion on S" having x ~ —x for all x. Denote by 7n: S* — RP(n) the quotient
map. What space is produced by attaching an (n + 1)-cell to RP(n) via n?

Regard §" = S"™! by identifying (x,,...,X,.;) € 8" with (x;,...,X,4;,0) €
S"*! This induces an inclusion map i: RP(n) —» RP(n + 1), of a closed subset.
Write S"*! as the union of two subsets E%™' U E"™! which correspond to the
upper and lower closed hemispheres, that is, E1*' n E™*! = S,

There is a homeomorphism g: D"*! - E"™*. Denote by f;: D"*' >RP(n+1)
the composition of the maps

Dn+1 _g) E'_:_+1 c Sn+1 _h> RP(" + 1)’

where h is the quotient map on $"*.
Thus, we have a mapping of the union

D™ U RP(n) — RP(n + 1).

It is not difficult to check that f, Ui is onto; in fact, f; is onto. Note that for
ze RP(n + 1), f{"'(z) is either a single point of D"*! — §” or a pair {x, —x} in
S", the latter being true if and only if z lies in the subspace RP(n). Thus, the
hypotheses of Proposition 2.5 are satisfied and we conclude that RP(n + 1) is
homeomorphic to D"*! U, RP(n), the space given by attaching an (n + 1)-cell to
RP(n) via .

Suppose X and Y are topological spaces and x, € X, y, € Y are base
points. In X x Y there are the subsets {xo} x Y and X x {y,}. Define X v
Y, the wedge of X and Y, to be the union of these two subsets,

X x {yo}vixo} x Y.

ExaMpLE. Denote by I the unit interval in R, I = {0, 1}. The n-cube
I"c R" has oI"= {(x,,...,x,)| some x; =0 or 1}.

SoI™ x I"=I"*"and
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o™y = (0I™ x I"yu (I™ x oI™).

Let z,eS8™ and z,eS" be base points. There exists a map of pairs
fam, oIy — (8™, z,,), which is a relative homeomorphism; similarly there is
ag:(I",I") > (S", z,). Taking cartesian products gives a map

fxg:I"xI"> 8" x S"
To see what happens on d(I™ x I") note that
e — o™ty = (I™ — aI™) x (I" — oI).
From the properties of f and g, f x g maps this one to one onto
(8" —z,) x(8"—2,)=8"xS"— (8" x {z,} U {z,,} x S")
=§"x§-S"v§".

Furthermore, f x g maps é(I"*") onto S™ v S", so by Proposition 2.5, S™ x
§" is homeomorphic to the space obtained by attaching an (m + n)-cell to
§™ v §" via the map

AUty & ST 8™y S,

S™ x §" is called a generalized torus.

ExaMPLE. For each integer n identify R*" with C" and denote the points by
(zy,...,2,). Then $2"~! = C" is given by

S = {2l Ylzil = 1.

Define an equivalence relation on $**! by (z,,...,2,) ~ (z},...,2,) if and
only if there exists a complex number 4 wth |4| = 1 such that z| = iz, ...,
z, = Az,. This is a closed relation, and the space S?*"!/~ is denoted
CP(n — 1), (n — 1)-dimensional complex projective space. [This because its
complex dimension is (n — 1), real dimension (2n — 2).] Recall that in the
case of real projective space, a point on the sphere determined a unique real
line through the origin and the point was set equivalent to all other points on
that line, that is, the antipodal point. In the complex case, a point on the
sphere determines a unique complex line through the origin and the point is
identified with all other points on that line.

Exercisk 3. Let f: §2"™! - §2""!/~ = CP(n — 1) be the identification map. Show that
the space formed by attaching a 2n-cell to CP(n — 1) via f is homeomorphic to CP(n).

For the case n = 1, any two points in S are equivalent; hence, CP(0) is a
point. Now CP(1) is formed by attaching D? to CP(0), which must yield S2.
Thus, CP(1) is homeomorphic to S%. A matter of particular interest is the
identification map

§$3 > 83/~ =CP(l) = 52,
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This map
h: §3 - §2

is called the Hopf map and is of particular importance in homotopy theory.

ExaMpPLE. In the same manner as for the complex number field, we may
identify R* with the division ring of quaternions by (x,, x,, X3, X,) = X; +
ix, + jx; + kx,. This identifies R*" with H", and the sphere

St = {(oty, ... 0,) € HY Y Joy|? = 1}

On S*" 1 set («;,...,2,) ~ (a},...,o,) if there exists a y € H with |y| = 1 such
that o} = ya,, ..., &, = y&,. Then $*"7'/~ is HP(n — 1), (n — 1)-dimensional
quaternionic projective space. As before we find that HP(0) = pt, HP(1) ~ §*
and HP(n) is the space given by attaching a 4n-cell to HP(n — 1) via the
identification map $*"~! ->HP(n — 1). The identification map h: S’ >HP(1)=
S*is once again called the Hopf map.

We now want to compute the homology groups of some of these examples.
Leaving the real projective spaces for later in this chapter, first consider the
generalized torus S™ x S" and assume m, n > 2.

Recall that S™ x S"is given by attaching an (m + n)-cell to S™ v §". Denote
by —z, and —z, the antipodes of the base points z, € S™ and z, € S" (see
Figure 2.2). Define

U=S"vS —{—z) and V=5"vS—{-z,}

Then {U, V} gives an open covering of §” v §", U admits a deformation
retraction onto S™, and V admits a deformation retraction onto S". Finally,
note that U n V has the homotopy type of a point. Thus, in the Mayer—
Vietoris sequence for this covering we have

H/(S™) @ H/S") ~ H(S" v §")  for j>0.

Therefore, H,(S™ v S") is a free abelian group of rank three having one basis
element of dimension zero one of dimension m and one of dimension n.
Now by Proposition 2.3 there is an exact sequence

o H(S™Y) L HY(S™ v S") > Hi(S™ x S") = Hyy (S™ 7)o

Figure 2.2
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Since m,n>2,m+n—1>mand m+n— 1> n It follows that f, is the
zero map in positive dimensions. On the other hand, if i = m + n, the con-
necting homomorphism

Hi(S™ x §") — Hi—l(Sm_Hl“l)

must be an isomorphism. This information may be combined with special
arguments for dimensions zero and one to prove the following:

2.6 Proposition. H, (S™ x S"), m, n > 0, is a free abelian group of rank four
having one basis element of each dimension 0, m, n, and m + n. O

Note. This is our first encounter with a nonspherical homology class.
Let « € H,(S*) ~ Z be a generator. An homology class § € H,(X) is spherical
if there exists a map f:S*— X such that f,(x) = B. Specifically, if e
H,(S' x S') is a generator, then B is not spherical. Although we are not
equipped to prove this at the present time, the basic reason is that § is a
product of two one-dimensional homology classes, while « € H,(S?) is not.

Next consider complex projective space CP(n). For n =0, 1 we know
H,(CP(0)) = H,(pt) and H,(CP(1)) = H,(S?).

2.7 Proposition

Zz for i=0,2,4,...,2n
H. CP z b > b El
{EP) {0 otherwise.
Proof. We proceed by induction on n. From the remarks above, the result is
true for n = 0 or 1. So suppose it is true for n — 1 > 1 and recall that CP(n)
may be constructed by attaching a 2n-cell to CP(n — 1) via the identification
map f: §*""' > CP(n — 1). By Proposition 2.3 this yields an exact sequence

<o H(S* )5 H(CP(n — 1) 53 H(CP(m) S H,_, (S ) -

for i > 0. For strictly algebraic reasons the homomorphism f, must be zero
in positive dimensions. So for i > 1, this gives a collection of short exact
sequences

0—- H(CP(n—1)) 7 H/(CP(n)) H,_(§*" ") —>0.

These, together with the induction hypothesis, the fact that j, is an epimor-
phism in dimension one and the fact that CP(n) is pathwise connected, com-
plete the inductive step and the result follows. |

2.8 Proposition

Z for i=0,4,8,...,4n
0 otherwise.

Hi(HP(n) ~ {
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Proof. The proof of this is entirely analogous to that for Proposition 2.7. [J

With these examples in mind we now develop some of the basic properties
of spaces constructed in this way. To do so it is necessary to introduce the
relative homology groups, a useful generalization initiated by Lefschetz in the
1920s. The concept is entirely analogous to that of the quotient of a group by
a subgroup. If 4 is a subspace of X then we set two chains of X equal modulo
A if their difference is a chain in A. In particular a chain in X is a cycle
modulo A if its boundary is contained in 4. This reflects the structure of
X — A and the way that it is attached to A4. In a sense, changes in the interior
of A, away from its boundary with X — A, should not alter these homology
groups.

To introduce the necessary homological algebra, let C = {C,, 0} be a chain
complex. D = {D,,0} is a subcomplex of C if D, < C, for each n and the
boundary operator for D is the restriction of the boundary operator for C.
Define the quotient chain complex

C/D = {C,/D,,0'},

where 0'{c} = {dc} for {c} the coset containing c. For convenience the prime
will be omitted and all boundary operators will continue to be denoted by @.
There is a natural short exact sequence of chain complexes and chain maps

0-D5C3C/D-0,

where i is the inclusion and = is the projection. From Theorem 1.13 this leads
to a long exact sequence of homology groups

- H,(D) % H,(C) 5 H,(C/D) S H,_ (D)5 -+

For clarity denote by { } the equivalence relation in C/D and by ¢ ) the
equivalence relation in homology.

To see how the connecting homomorphism A is defined let {c} be a cycle
in Z,(C/D). To determine A({{c} )), represent {c} by an element c € C, having
dceD,_,. Of course, dc € Z,_,(D) and hence represents a class in H,_;(D).
Thus, we have

A({{c})) = <ac).

More generally, if E < D < C are chain complexes and subcomplexes,
there is a short exact sequence of chain complexes and chain maps

0-D/E->C/E->C/D->0
In the corresponding long exact homology sequence
- > H,(D/E) ~ H,(C/E) ~ H,(C/D) > H, ,(D/E) — -

the connecting homomorphism is given by A'({{c})) = {{dc} >, which may
be viewed as the composition

H,(C/D)5 H,_,(D)™ H,_,(D/E).
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This is natural in the sense that if E' € D’ = C’' are chain complexes and
subcomplexes and f: C — C’ is a chain map for which f(D) = D’ and f(E) =
E’, then the induced homomorphisms on homology groups give a transfor-
mation between the long exact homology sequences in which each rectangle
commutes.

By a pair of spaces (X, A) we mean a space X together with a subspace
A < X.If (X, A) is a pair of spaces, S,(4) may be viewed as a subcomplex of
S(X). The singular chain complex of X mod A is defined by

Su(X, A) = §,(X)/S,(A).

The homology of this chain complex, the relative singular homology of X
mod 4, is thus given by

H,(X, 4) = H,(S(X)/S,(4)).

From the previous observations any pair (X, A) has an exact homology
sequence

o Hy(A) S H(X) 53 Hy(X, A) S H,_,(4) > .

In this sense H,(X, A) is a measure of how far i,: H,(4) » H(X) is from
being an isomorphism. That is, i, is an isomorphism of graded groups if and
only if H¥(X, A) = 0. Thus, we have immediately the following:

2.9 Proposition. If (X, A) is a pair for which A is a deformation retract of X,
then H,(X,A) = 0. O

More generally if (X, 4, B) is a triple of spaces, that is, B< A < X, there
results a short exact sequence of chain complexes

0 — S,(4, B) > S,(X, B) > S,(X, 4) - 0

which yields the corresponding long exact sequence of relative homology
groups. It is conventional to define S, (&) = 0 so that H, (X, &) = H,(X) and
all homology groups may be viewed as groups of pairs.

Given pairs (X, A) and (Y, B) a map of pairs f:(X,A)—(Y,B) is a con-
tinuous function f: X — Y for which f(4) = B. Note that for such a map
f4(8,(A4)) € S,(B), so that there is associated a homomorphism

which is a chain map, hence also a homomorphism on the relative homology
groups. Note that the homomorphisms of degree zero in the exact sequence
of a triple are induced by the inclusion maps of pairs.

Two maps of pairs f, g: (X, A) — (Y, B) are homotopic as maps of pairs if
there exists a map of pairs

F:(X x LA x I) > (Y,B)

such that F(x,0) = f(x)}and F(x, 1) = g(x). Note that this says that in contin-
uously deforming f into g, it is required that at each stage we map A into B.
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2.10 Theorem. If f, g: (X, A) — (Y, B) are homotopic as maps of pairs, then
Jx = g4 as homomorphisms from H, (X, A) to H,(Y, B).

Proof. As before define iy, i;: (X, 4) > (X x I, A x I) by iys(x) = (x,0) and
i;(x) = (x, 1) and note that it is sufficient to show that iy, and i, , are chain
homotopic.

Using the same technique as for the absolute case of Theorem 1.10 we
construct a natural homomorphism

T:5,(X) = S, (X x 1)

having
OT + TO=1igy —i14

and observe that the restriction of T has T(S,(A4)) € S,+:(A x I). Thus, there
is induced the desired chain homotopy

T:S,(X,A) > S, (X x I, A x I). O

ExamPLE. To illustrate the difference between maps being absolutely homo-
topic and homotopic as maps of pairs, consider the following example. Let
X =[0,1], A ={0,1},and Y = S, B = {1}. Define

9. f: XY

by f(x) = e®™* and g(x) = 1. Then f and g are maps of pairs (X, A) — (Y, B)
and f and g are absolutely homotopic as maps from X to Y but they are not
homotopic as maps of pairs.

EXERCISE 4. (The five lemma) Suppose that

ay ay a3 ay

G G, G Cy Cs
lfx jfz \fs {/‘4 lfs
D1 By DZ B2 D3 133 D4 Ba DS

is a diagram of abelian groups and homomorphisms in which the rows are exact and
each square is commutative. Then show

(i) if f5, f, are epimorphisms and f5 is a monomorphism, then f; is an epimorphism;
(i) if f,, f, are monomorphisms and f; is an epimorphism, then f; is a mono-
morphism.

Note that, as a special case of this exercise, if f;, f5, fa, and f5 are isomorphisms, then
f3 is an isomorphism.

As pointed out before it seems that those points of 4 which are not close
to the complement of 4 in X (see Figure 2.3) make no contribution to the
relative homology group of the pair (X, A). This property is formally set forth
in the following excision theorem.
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X

Figure 2.3

2.11 Theorem. If (X, A) is a pair of spaces and U is a subset of A with U
contained in the interior of A, then the inclusion map

(X -U,A-U)->(X,4)
induces an isomorphism on relative homology groups
iy H(X —UA—U)-> HJX, A).

That is, such a set U may be excised without altering the relative homology
groups.

Proof. Denote by % the covering of X given by the two sets X — U and Int 4.
By assumption their interiors cover X; thus, their interiors also cover A and
we set %’ to be the covering of A given by {4 — U, Int A}. Then by Theorem
1.14 the inclusion homomorphisms of chains

it SY(X)—> S,(X) and i1 8 (A) > S,(A)

both induce isomorphisms on homology.
Considering S,/ (A4) as a subcomplex of S;(X) there is a chain mapping of
chain complexes

Jr SEX)/S(A) = 5,(X)/S,(A) = S,(X, A).

The chain mappings i, i’, and j give rise to the following diagram of homol-
ogy groups

= H,(57(A) = HS{(X)) > H(S{(X)/S (A)) > H,-1 (S (A) — -+

-

> HJ(A) - H/(X) - H,(X,A) - H, (4) -

Je it

Since i, and i, are isomorphisms, it follows from the five lemma (see Exercise
4) that j, is an isomorphism.
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Now we can write S7(X) as the sum of two subgroups
SHX) =S, (X — U)+ S, (Int 4),
but not necessarily as a direct sum. Similarly
Sy (A) =S4 — U) + S, (Int A).
Then by elementary group theory
SHX)/SY(A) = S(X — U)/S(A - U)=S (X — U, 4 — U).

Composing this isomorphism with the chain map j there is induced on hom-
ology the desired isomorphism

Hy(X —U,A—-U)-> H/X, A). O
A short exact sequence of abelian groups and homomorphisms
0-45B5Cc—0

is split exact if f(A)is a direct summand of B.

EXERCISE 5. Suppose 0 — 4 L B5C=0 s short exact. Then the following are
equivalent:

(i) the sequence is split exact; ~ B
(i) there exists a homomorphism f: B — A with f o [ = identity;
(iii) there exists a homomorphism g: C - B with g o § = identity.

Let X be a space and y a single point. Denote by a: X — y the map of X
into y. Then there is the induced homomorphism on homology

o, Ho(X) — H, ()

Denote the kernel of «, by FI*(X). This subgroup of H,(X) is the reduced
homology group of X. Note that since H,(y) = 0 for i # 0, ﬁ,.(X) = H,(X) for
i # 0. Furthermore, if X # (7, then «, is an epimorphism so that Hy(X) is
free abelian with one fewer basis element than Hy(X). Note thatif f: X - Y
is a map, then f: H*(X ) — H*(Y). For example, H*(S") is free abelian with
one basis element in dimension n.

2.12 Proposition. If x, € X, then H (X, x,) ~ H(X).

Proof. In the exact homology sequence of the pair (X,x,) the homomor-
phism H;(x,) - H/{X)is a monomorphism for each i. Thus, the long sequence
breaks up into a collection of short exact sequences:

0 — Hi(x,) 3 Hi(X) if’ Hy(X,xq)— 0.

The map a: X — x4 induces o,: H(X) — Hi(x,) which splits the sequence.
Thus there is a homomorphism f: Hi(X,xo) = Hy(X) with j,f = identity.
This f is then an isomorphism onto the subgroup H;(X). 0O
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A
Figure 2.4

A subspace A4 of a space X is a strong deformation retract of X if there exists
amap F: X x I - X such that

(i) F(x,0)=xforall xe X;
(i) F(x,1)e Aforall xe X;
(i) F(a,t)=aforallae Aandtel.

EXERCISE 6. Let X be the space given by the unit interval together with a family of
segments approaching it as pictured in Figure 2.4. If A is the unit interval, show that
A is a deformation retract of X but not a strong deformation retract.

2.13 Proposition. Let (X, A) be a pair in which X is compact Hausdorff, A is
closed in X and A is a strong deformation retract of X. Let m: X — X /A be the
identification map and denote by y the point n(A) in X/A. Then {y} is a strong
deformation retract of X/A.

Proof. Denote by F: X x I - X the map given by the fact that 4 is a strong
deformation retract of X. We must exhibit a map F:(X/A4) x I > X/A4
having F(%,0) = %, F(X,1) =y for all e X/A and f(y,t) =y forall tel
Thus, it would be sufficient to define a map so that the following diagram is
commutative:

xx1 —fF, x

(X/A) x I —2— X/4
So define F = o F o (7 x id)™". To see that this is single valued, let (X,t) €
(X/A) x I. Then

(m x id)™'(%,1)

isjust(x,t)if x ¢ Aandis A x {t} if x € A. Soif x ¢ A, this is obviously single
valued. If x € A4, note that F(4 x {t}) € 4 and n(4) = y. Hence, F is single
valued.

To show that F is continuous, let C < X /A be a closed set. Then
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X

Figure 2.5

F™'on™!(C)isclosed in X x I, hence compact. Thus, (n x id) o F~* o n7}(C)
is compact in X/A x I, hence closed. Therefore, F is continuous. O

2.14 Theorem. Let (X, A) be a pair with X compact Hausdorff and A closed in
X, where A is a strong deformation retract of some closed neighborhood of A
in X. Let m: (X, A) = (X/A, y) be the identification map. Then

m, H (X, A) > H (X/A,Y)

is an isomorphism.

Proof. Let U be a compact neighborhood of 4 in X which admits a strong
deformation retraction onto A (see Figure 2.5). Applying Proposition 2.13 to
the pair (U, A) we observe that {y} is a strong deformation retract of n(U).
Thus, in the exact sequence of the triple (X/A, n(U), y),
= Hy(n(U),y) > H(X/A,y) » H,(X/A4,n(U)) - H,_, (n(U), y) > -
it follows that H,(n(U), y) = 0. Hence, the inclusion map of pairs induces an
isomorphism
H(X/A,y) = H(X/A,n(U)).

Recall that since X is compact Hausdorff, it is also normal. Now Int U is
an open set containing the closed set A4, so there exists an open set I with
A< Vand V < IntU. Thus, V may be excised from the pair (X, U) to induce
an isomorphism

H(X — V.U - V)~ H/(X,U).

Since A is a strong deformation retract of U, it follows from the exact se-
quence that

Hy(X,A) ~ H,(X,U).

These two isomorphisms may be combined to give
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H (X, A~ H(X — V,U — V).

In similar fashion the set 7(V) may be excised from the pair (X/A4, n(U)) to
give an isomorphism

H,(X/A4,y) = H(X/A4,7(U))  H(X/A — n(V),n(U) — n(V)).

Now note that since ¥ is a neighborhood of the set 4 which was collapsed,
the restriction of the map = gives a homeomorphism of pairs

(X =VU—-V)->(X/A - n(V),n(U) — n(V)),

and so an isomorphism of their homology groups. All of these combine to
give the desired isomorphism

H(X,A) = H(X/A,y). O

2.15 Corollary. If (X, A) is a compact Hausdorff pair for which A is a strong
deformation retract of some compact neighborhood of A in X, then

H (X, A) ~ H(X/A). 0

If f: (X, A) - (Y, B) is a map of pairs such that f maps X — 4 one to one
and onto Y — B, then f is a relative homeomorphism. Under certain condi-
tions on the pairs a relative homeomorphism will induce an isomorphism of
relative homology groups.

2.16 Theorem (Relative homeomorphism theorem). If f: (X, 4) - (Y,B) is a
relative homeomorphism of compact Hausdorff pairs in which A is a strong
deformation retract of some compact neighborhood in X and B is a strong
deformation retract of some compact neighborhood in Y, then

Jfw H(X, A) - H, (Y, B) is an isomorphism.

Proof. Consider the diagram of spaces and maps, where n and =’ are the
identification maps and f' = n'o fon !:

x 1, vy

x/4a -2 ymB

As in the proof of Proposition 2.13 it is easy to see that f” is single valued and
continuous. Since f is a relative homeomorphism, f’ is one to one and onto.
But X/A and Y/B are compact Hausdorff spaces, so f” is a homeomorphism.

Denoting x, = n(A4) and y, = n'(B) there is the corresponding diagram of
relative homology groups and induced homomorphisms:
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H X, 4A) —— HLY,B)

I
H*(X/A’ xO) I H*(Y/B’YO)
By Theorem 2.14 the homomorphisms n,, and n, are isomorphisms. Also f,
is an isomorphism since f” is a homeomorphism. Thus

fei H(X, A) — H,(Y,B) is an isomorphism. O

ExaMPLE. (1) There is a relative homeomorphism
f1(D", 8" - (8", 2),

where z is any point in S". Both pairs satisfy the hypotheses of Theorem 2.16,
so there is an isomorphism

S Hy(D",S"™") - H,(S",z) ~ H(S").

(2) To see that the hypotheses of the theorem are actually necessary, con-
sider the following example. Using the curve sin(1/x) construct a space as
shown in Figure 2.6a, where X is the curve together with those points “in-
side,” and A is the boundary. Let Y = D? and B = dD? = S! (Figure 2.6b).
Then (X, A) and (Y, B) are compact Hausdorff pairs. By flattening the patho-
logical part of 4 it is possible to define a map of pairs f: (X, A) — (Y, B) which
is a relative homeomorphism. However, it cannot induce an isomorphism on
homology because H,(X, A) = 0 and H,(Y, B) ~ Z. The result fails because 4
is not a strong deformation retract of some compact neighborhood of A in X.

The fact that H,(X, A) = 0 is an easy consequence of the exact sequence of
the pair (X, A4),

= Hy(4) = Hy(X) = Hy(X, A) > Hy(A) > -

Now X is contractible, so H,(X)= 0. On the other hand, if ) n;¢; is a
1-chain in A, the sum must be finite. Since the curve A4 is not locally connected,
the union of the images of these singular simplices cannot bridge the gap in

(@) (b)
Figure 2.6
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the sin(1/x) curve. Thus, the chain is supported by some contractible subset
of A, so that if it is a cycle, it is also a boundary. Therefore, H,(4) = 0 and by
exactness H,(X,4) = 0.

2.17 Lemma. Let f:S* ' - Y be a map, where Y is a compact Hausdorff
space. If Y, is the space obtained by attaching an n-cell to Y via f, then Y is a
strong deformation retract of some compact neighborhood of Y in Y;.

Proof. Let U < D" be the subset given by U = {x € D"|||x| > 3}, and observe
that U is a compact neighborhood of $"! in D". Define a map F: (U U Y) x
I-UuYby

x if xeY

i IR, S S
[l x]]
Then F is continuous, F(x,0) = x and F(x,1)eS"*u Y for all x, and if
x e S" ' U Y, then F(x,t) = x for all t. Thus, F is a strong deformation retrac-
tion of U u Y onto S" 1 U Y.
Now let n: D" U Y — Y, be the identification map and consider the dia-
gram

UuY)yxI —— Uuy

rUuY)xI ——25 n(UuY)
As before define
F =noFo(nxid)™.

Then F' is well defined, continuous and gives a strong deformation retraction
of the compact neighborhood n(U u Y) of #(Y) onto n(Y). O

Note. Denote by h the composition
L puySy,
Then h gives a map of pairs h: (D", ") — (Y}, Y), which is a relative homeo-
morphism. The hypotheses of Lemma 2.17 and Theorem 2.16 are satisfied, so
we may conclude that

hy: Hy (D", 8"y~ H(Y,,Y)

is an isomorphism. Therefore, H (Y, Y) is a free abelian group on one basis
element of dimension #.

Suppose that Di, ..., Df is a finite number of disjoint n-cells with bound-
aries S77!, ..., S¢"'. Foreachi= 1, ..., k let f: S*™' - Y be a map into a
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fixed space Y. Define ~ to be the least equivalence relation on D} u--- U
Dy U Y for which x; ~ f(x;) whenever x; € S*!.
Then D} U --- U D{ U Y/~ may be denoted Y
attaching n-cells to Y via f,, ..., f;.
Conversely, if (X, Y) is a compact Hausdorff pair for which there exists a
relative homeomorphism

F:D{u-—-uDL ST U US> (X,Y),

then X is homeomorphicto Y,  where f; = F|s}™'.
A finite CW complex is a compact Hausdorff space X and a sequence
X°<c X' <+ < X" = X of closed subspaces such that

1, the space obtained by

.....

(i) X° is a finite set of points;
(i) X* is homeomorphic to a space obtained by attaching a finite number of
k-cells to X* 7,

Note that X* — X*~! is thus homeomorphic to a finite disjoint union of open
k-cells, denoted E%, ..., E . These are the k-cells of X. Using the convention
that D° = point and dD° = S~ = (¥, the requirements (i) and (ii) may be
replaced by the condition that for each k there exist a relative homeomor-
phism

f:(DYu---uDf,

SEThU U S - (X xR,
It is easy to verify that the cells of X have the following properties:
(@) {E¥fk=0,1,...,n;i=1,...,r.} is a partition of X into disjoint sets;

(b) for each k and i the set E¥ — E¥ is contained in the union of all cells of
lower dimension;

(€ X*= Uk’sk Ef ;

(d) for each i and k there exists a relative homeomorphism

i (D $4°) — (E%, EY — EX)

These properties characterize finite CW complexes and will be used as an
alternate definition whenever it is convenient. The closed subset X* is the
k-skeleton of X. If X" = X and X" ! # X, then X is n-dimensional.

ExaMPLE. It should be evident that for a given space there may be many
different decompositions into cells and skeletons (see Figure 2.7). For exam-
ple, let X = S2. If z is a point in S?, then S? may be described as the space
obtained by attaching a 2-cell to z. This gives S? a cell structure in which
there is one O-cell and one 2-cell (Figure 2.7a).

If z' is another point in S? and « is a simple path from z to z’, we have a
cell structure with two 0-cells, a 1-cell, and a 2-cell (Figure 2.7b). Why was it
necessary to include the 1-cell « when two vertices were used?

Further cells may be included as shown in the third figure, in which there
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@ (b) ©
Figure 2.7

are two O-cells, three 1-cells, and three 2-cells (Figure 2.7c). While there is
considerable freedom in assigning a cell structure to a finite CW complex,
it is apparent that any change in the number of cells in a certain dimen-
sion dictates some corresponding change in the number of cells in other
dimensions.

Note that one apparent advantage CW complexes have over simplicial
complexes is that considerably fewer cells are generally necessary in the de-
composition of a complex.

2.18 Proposition. If X and Y are finite CW complexes, then X x Y is a finite
CW complex in a natural way.

Proof. Suppose the cellular decompositions of X and Y are given by {E*} and
{E}'}. The obvious candidate for a cellular decomposition for X x Y is the
collection {E¥ x EJ}. First note that this is a partition of X x Y into a finite
number of sets homeomorphic to open cells. Also
Ef x E} — E¥ x E}' = Ef x E} — E¥ x E}/
= (Ef — E}Y) x E] UE} x (E] - E})),

which is contained in the union of all cells of dimension less than k + 1.

To check the third requirement we may assume that there are relative
homeomorphisms

fiU*oI%y - (EX,E¥ — EY)  and  g:(I'0l'))>(E},E} — E}).

Then f x g: (I*"!,0I**") > (E¥ x E}, Ef x E} — E¥ x E}') gives the desired
relative homeomorphism. ]

ExaMPLEs. (1) Taking the decomposition of S! into one 0-cell (z) and one
I-cell (x) as in Figure 2.8a, the torus S' x S! is naturally given the decompo-
sition into one O-cell (z x z), two 1-cells (z x & and a x z) and one 2-cell
(2 x 2) (Figure 2.8b).

(2) Recall that RP(0) = pt and RP(k) is obtained by attaching a k-cell to
RP(k — 1). Thus, RP(n) is an n-dimensional finite CW complex with one cell
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S! St X St
@ (b)

Figure 2.8

in each dimension 0, ..., n. Moreover, the k-skeleton of RP(n) under this
structure is just RP(k).

(3) Similarly CP(n) is a finite CW complex of dimension 2n with one cell in
each even dimension, 0, 2, 4, ..., 2n. Also CP(k) = the 2k-skeleton of CP(n) =
the (2k + 1)-skeleton of CP(n) for 0 < k < n. An anologous structure may be
given to quaternionic projective space.

If X is a finite CW complex with cells {E}}, then a subset 4 of X is a
subcomplex of X if whenever A N E¥ # ¢ then E¥ < A. Note that if A is a
subcomplex of X, then A is a closed subset of X and inherits a natural CW
complex structure.

2.19 Theorem. If A is a subcomplex of a finite CW complex X, then A is a
strong deformation retract of some compact neighborhood of A in X.

Proof. Denote by N the number of cells in X — 4. We proceed by induction
on N. If N =0 the result is trivial and if N = 1 we may adapt the proof of
Lemma 2.17 to give the desired result.

So suppose the result is true for any finite CW pair (Y, B) where the number
of cellsin Y — Bis N — 1. Let E? be a cell of maximal dimension in X — A,
and define X; = X — E". Note that X, must be a finite CW complex since
any cell in X — E7 either lies in 4 so that its boundary must also lie in 4 or
has dimension less than or equal to m. In either case its boundary does not
meet EP. Moreover, A is a subcomplex of X ;.

Now the number of cells in X; — A is N — 1, so by the inductive hypothe-
sis there exists a compact neighborhood U, of 4 in X, such that A is a strong
deformation retract of U, .

There is a relative homeomorphism

¢: (D™, S"71) - (ET, E" — ET)

given by the structure of X as a finite CW complex (Figure 2.9). Define the
radial projection map
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Dm

Figure 2.9

r: D™ — {0} > s™7!

by r(x) = x/[1x|.
Since U, is a compact subset of X,, ¢ "}(U,) is a compact subset of S™*.
Now define

V={¢x)|xeD"|Ix| >} and r(x)es (U}

Then V is a compact subset of X which admits a strong deformation retrac-
tion onto U; n V. Thus, VU U, is a compact subset of X which admits a
strong deformation retraction onto 4.

We must now make certain that the interior of ¥V L U, contains A. Let y be
in the interior of U, in X,. If y is not in V, y must also be in the interior of U,
in X, hence also in the interior of V'L U,. So suppose y is in V or, in other
words, y in (E" — E™"). Now ¢! of the interior of U, in X, is an open subset
of $™! containing the compact set ¢ ~'(y). By the description of V it follows
that ¢ 7' (y) is contained in the interior of ¢ *(V) in D™. Thus, y must be in the
interior of V in E7".

Therefore, we have shown that any point in the interior of U, in X, lies in
the interior of V' U U, in X. So V u U, gives the desired compact neighbor-
hood of 4 in X. O

Note that as an immediate consequence of this result, the conclusions in
Theorem 2.14, Corollary 2.15, and the relative homeomorphism theorem,
Theorem 2.16, will hold whenever the spaces involved are finite CW pairs.
These have some very useful applications.



58 Homology Theory

2.20 Proposition. If X is a finite CW complex and X* is the k-skeleton of X,
then H(X* X*™') =0 for j # k and H,(X* X*"") is a free abelian group with
one basis element for each k-cell of X.

Proof. X*~! is a subcomplex of X* so by Theorem 2.19 it is a strong deforma-
tion retract of a compact neighborhood in X*. Since X is a finite CW com-
plex, there is a relative homeomorphism

$: (D U---UDE SO U ST o (XK XETY),

Then applying Theorem 2.16 yields the desired result from the corresponding
fact about

H (DY¥u---uDk S U - UST). O

For any finite CW complex X define
C(X) = H(X", X*™).

Then C,(X) =) C/(X) is a graded group which is nonzero in only finitely
many dlmensmns moreover it is free abelian and finitely generated in each
dimension. The connecting homomorphism of the triple (X*, X*~!, X*~2) de-
fines an operator

0: G(X) = Gy (X).
Recall that these connecting homomorphisms may be factored in the follow-
ing way:

H_ (X%

/ I

H(X5 X)) ——  H_,(X*.,x*%) —2, H_,(X*%X"3),

N

He, (X*)

where 0’ and 0" are boundary operators for the respective pairs and i and j
are inclusions of pairs. So 0 o 0 = j, 00" o i, o d". But 9" o i, is the composi-
tion of two consecutive homomorphisms in the exact sequence of the pair
(X*~', X*~2) and hence must be zero. Therefore, d o d = 0 and {C,(X),0} is a
chain complex. Of course, the obvious question is then to ask how the hom-
ology of this chain complex is related to the singular homology of X.

2.21 Theorem. If X is a finite CW complex, then
H,(C (X)) = H(X) for each k.
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Note: This is an extreme simplification. The chain complex used in defining
H,(X) was, in general, a free abelian group with an uncountable basis. Here
we have reduced the chain complex, not only to a finite basis, but these
generators are in one-to-one correspondence with the cells of X.

Proof. We must analyze the composition
P 8
Hk+1 (Xk+19 Xk) _; Hk(Xk: Xk_l) _2) Hk—l(Xk-l3 Xk_z)

and show that kernel 8,/image d, ~ H,(X).
First consider the diagram

~

Hk(Xk+1,Xk_2)
Jx
Hipt (X1, X9—2 s H (X% X*1) —2 1y H(X**1,X51) 50

P
& }

Hk—l(Xk—ls Xk—2)

in which i, and j, are induced by inclusion maps of pairs. The row and
the column are exact sequences of triples in which the zeros appear by
Proposition 2.20. The triangle commutes by the naturality of the boundary
operators.

Let xekernel ¢,. Then 03i,(x) =0 and i(x)= j.(y) for some ye
H, (X**1,X*72). Note that since j, is a monomorphism, this y is uniquely
determined. Thus, we define a homomorphism

#: kernel 9, - H (X**!, X*2)

by ¢(x) = y.

If y" € H(X*!, X*72) then j,(y') is in the image of i, because i, is an
epimorphism. So there exists an x" € H,(X*, X*7!) with i (x") = j,()). Then
02(x") = 031 (x") = 03j,(y") = 050 x is in the kernel of J, and ¢(x’) = y’. We
conclude that ¢ is an epimorphism.

Since i, o 0, =0, it is apparent that the image of ¢, is contained in the
kernel of ¢. On the other hand, let x € kernel 9, with ¢(x) = 0. But the fact
that j, is a monomorphism implies that i (x) = 0. Then by exactness x is in
the image of d,. Hence, we have shown that ¢ is an epimorphism with kernel
given by the image of 9, and we conclude that

é: ker d,/im 9, > Hy(X*+!, X*72).
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In the remainder of the proof we show that

H (X**', X*"%) ~ Hy(X).

Suppose that X is n-dimensional, so that
H(X) = H(X", X").
Consider the sequence of homomorphisms
H(X) = H(X", X™") > H/(X", X°) > --- > H (X", X*7?),
each induced by an inclusion of pairs. In general, a homomorphism in this
sequence is a part of the exact sequence of a triple
Hy(X, X' = H(X", X' > Hy(X", XY) S Hy_, (X', X',

where i < k — 2. But by Proposition 2.20 for this range of values of i the first

and last group must be zero. Hence, each homomorphism in the sequence is
an isomorphism and

H(X) ~ H (X", X*"2).
Similarly the homomorphisms
Hy(X 1, X*72) o H(X**2, X*72) > o H (X", X*~2)
induced by inclusion maps are all isomorphism, so that
H (X", X*"2) ~ H(X**!, X*72)

and the proof is complete. O

A map f: X — Y between finite CW complexes is cellular if f(X*) = Y* for
each integer k. If f: X — Y is cellular, then f defines a map of pairs
F: (X5 XK o (YK YR
for each k, and hence a chain mapping

Sy C(X) > C(Y).

One should check that the homomorphism induced by f, on the homology
of the chain complex C,(X) corresponds with the homomorphism induced
by f on H,(X) under the isomorphism of Theorem 2.21.

We now want to compute the homology of RP(n). To do this, give S” the
structure of a finite CW complex so that the k-skeleton is S*. That is

ScSicsSfe 28
so that there are two cells in each dimension, denoted by EX and E*. Simi-

larly give RP(n) the structure of a finite CW complex so that RP(k) is the
k-skeleton. Thus
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RP(0) € RP(1) < --- = RP(k) < - < RP(n)

and there is one cell in each dimension.

With these structures, the identification map n: S" - RP(n) is cellular. By
Proposition 2.20 the group C,(RP(n)) is infinite cyclic for 0 < k < n and we
denote a generator by e;. In order to compute the homology of RP(n) we
need to know what the boundary operator d: C,(RP(n)) —» C,_,(RP(n)) does
to the element ;.

To answer this question we first study the situation in S". Recall that the
antipodal map of §", A: S" — S", is cellular and furthermore maps E% homeo-
morphically onto E* and vice versa for each k. Denote by F* the composition
of maps of pairs

(Dk Sk 1) (Ek Sk 1) incl (Sk, Sk_l).
If we choose a generator i, of H,(D* S¥7!), then FL(i,) = e, is a basis element

in H,(S*, S*" ') = C,(S"). We view ¢, as the basis element corresponding to the
cell E% . Since the following diagram commutes

(D587 —— (B4, 5¢7") — (84,57

A A

(EX,5%71) — (8,847

we may take the element A4,(e,) to be the basis element corresponding to the
cell EX . Thus, C,(S") is the free abelian group with basis {e,, 4,(e;)}-

To determine the boundary operator d: C,(S") - C,_,(S") consider the fol-
lowing diagram:

Hk(Sk,Sk 1) 'Hk 1 Sk 1 Sk 2)

N

He (871

A, A, A,

H,_,(8*™")

NN

Hk(Sk S" h > H,_ 1(Sk ) , 52y

in which each triangle and rectangle is commutative. The homomorphism 4,
in the center has been previously computed, specifically it is multiplication by
(— DX Starting with e, € H,(S*,§*7!) = C,(S") we have
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aA:k(ek) = i*a,A*(ek) = i*A*a’(ek)
= (—14,0'(ex) = (— 1)*d(ey).

Thus, e, + (—1)**'4,(e,) is a cycle in C,(S").

In fact, the set of cycles in C,(S") is an infinite cyclic subgroup generated by
e, + (— 1)1 4,(e,). Before proceeding with the proof, note that this algebraic
fact is entirely reasonable from a geometric viewpoint. Since e, and A4,(e,)
correspond to the upper and lower halves of the sphere S¥, and they are being
combined in such a way that the respective boundaries will cancel each other,
geometrically we see this generating cycle as the sphere S* itself. So suppose

0 =0(nye, + nyA,(e))

= n,0e, + n,0A4,.¢,

=n,0e, + (—1)n,de,

=(n, + (- l)"nz)@ek.
Since C,_,(S") is free abelian, it must be true that either de, =0 or (n; +
(— 1)*n,) = 0. Suppose de, = 0. Then also 04 e, = 0and d: C,(S") - C,—,(S")
is identically zero. But we have observed that there are nontrivial cycles in
C,_1(8"), so if k > 1, these cycles must bound because H,_,(S") = 0 in this
range. [It is also easy to see that d: C,(S") —» C,(S") cannot be identically zero

because every element of Cy(S") is a cycle.] This contradiction implies that
de, # 0and we conclude that n, + (—1)*n, = 0 or n, = (—1)**'n,. Therefore

nie, +n,Age,=n(e + (— l)kHA*ek)

as desired.
Since H,(S") = 0 for 0 < k < n, we must have

Aegsy) = Elee + (— 1! 1A ley)

Once again, this formula may be shown to hold as well for kK = 0. We may as
well suppose the sign is +.

The identification map =:(S* S*!) - (RP(k), RP(k — 1)) is a relative
homeomorphism on the closure of each k-cell. The generator e; could have
been chosen so that e, = m(e,). Then

”*(A*ek) =(mo A)*(ek) = ”*(ek) = e
Therefore, the boundary operator in the chain complex C,(RP(n)) is given by
Olex+1) = Omylensy) = T, 0(exs1)
= myle, + (=11 4,¢)
= e+ (~ 1)

_ J2e for kodd
o for keven.
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This completely determines the boundary operator in the chain complex
C.(RP(n)) so that we may apply Theorem 2.21 to conclude the following:

2.22 Proposition. The homology groups of real projective space are given by
VA for i=0

Z, for iodd, 0<i<n

VA for iodd, i=n

0 otherwise. O

H(RP(n)) =

Recall that the rank of a finitely generated abelian group A is given by

rank A = lub{n| there exists a free abelian subgroup B = A with
basis having exactly n elements}.

If A and B are isomorphic abelian groups, then rank A = rank B. If H is a
subgroup of a finitely generated abelian group G, then

rank G/H = rank G — rank H.

2.23 Proposition. If (X, A) is a finite CW pair, then H (X, A) is a finitely
generated abelian group.

Proof. By Corollary 2.15 we know that H.(X,A4) ~ I:I*(X/A), and since
H (X/A) = H*(X/A) @ Z, it is sufficient to show that H,(X/A) is finitely gen-
erated. X/4 may be given the structure of a finite CW complex directly from
the structure of X and A. The cells of X/A4 correspond to the cells of X which
are not in A together with one O-cell corresponding to A4, thus dim(X/A4) <
dim X. It follows from Theorem 2.21 that H,(X/A) is the quotient of a finitely
generated abelian group by a subgroup, and is nonzero for only finitely many
values of k. Therefore, H,(X/A) is finitely generated and the result follows.
O

For a space X the ith Betti number of X, b,(X), is the rank of H;(X). From
Proposition 2.23 we see that if X is a finite CW complex, b,(X) is finite for all
i, and nonzero for only finitely many values of i. It was noted previously that
bo(X) is the number of path components in X. In a corresponding sense the
number b;(X) is a measure of a form of higher-dimensional connectivity of X.
The Euler characteristic of X is given by

2(X) =3 (= 1)b(X).

i

2.24 Proposition. If X is a finite CW complex with «; cells in dimension i, then
2 (= Do, = x(X).

Proof. Exercise 7. O
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EXERCISE 8. If X and Y are finite CW complexes, show that
A(X x Y) = x(X) x(Y).

There are a number of important questions related to attaching cells, CW
complexes, and maps that have not been addressed in this chapter. When
examining the Hopf invariant in the context of products in Chapter 5, we will
show that, if f, and f, are homotopic as maps of $" into X, then the iden-
tity map of X extends to a homotopy equivalence between X U, D"*! and
X u;, D""'. A matter of broader significance is whether a mapping between
finite CW complexes can be approximated by a cellular map. In this setting
the word “approximation” refers to homotopy rather than the more tradi-
tional notion of distance in some metric. A proof of the following important
result may be found in Brown [1988].

2.25 Theorem (Cellular Approximation Theorem). If X and Y are finite CW
complexes, A is a subcomplex of X, and f: X — Y is a map that is cellular on
A, then [ is homotopic to a cellular map via a homotopy that does not change
the restriction of f to A. O



CHAPTER 3

The Eilenberg—Steenrod Axioms

Following the necessary algebraic preliminaries, we introduce the homology
of a space with coefficients in an arbitrary abelian group. Combined with the
results of the previous chapters this establishes the existence of homology
theories satisfying the Eilenberg—Steenrod axioms for arbitrary coefficient
groups. The corresponding uniqueness theorem is proved in the category of
finite CW complexes. Finally, the singular cohomology groups are intro-
duced and shown to satisfy the contravariant analogs of the axioms.
If A, B, and C are abelian groups, a mapping

¢9:AxB->C
is bilinear (or is a bihomomorphism) if

#la, + a,,b) = ¢(a,,b) + #(a,,b)
and
¢(a’ bl + b2) = ¢(a’ bl) + ¢(a’ bZ)

Note that if 4 x B is given the usual product group structure, ¢ will not be a
homomorphism except in very special cases.

Denote by F(A x B) the free abelian group generated by 4 x B. An ele-
ment of F(A x B) has the form

Z n(a; by),

where the sum is finite, a; € A, b; € B and n; is an integer. Let R(A x B) be the
subgroup of F(A4 x B) generated by elements of the form

(ay + a3, b) — (ay,b) — (a3, b)
or
(a,by + by) — (a,by) — (a,b,),
65
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where a, a,, a, € A and b, b, b, € B. Then the tensor product of A and B is
defined to be

A® B =F(A x B)/R(A x B).

Note that if ¢: 4 x B — C is any function, there exists a unique extension
of ¢ to a homomorphism

¢':F(A x B)— C.

Moreover, if ¢ is a bihomomorphism, then ¢’ is zero on the subgroup
R(A x B), so that there is induced a homomorphism

¢ A®B-C,

which is uniquely determined by ¢.
This universal property with respect to bilinear maps can be used to char-
acterize the tensor product. There exists a bilinear map

T:AXB->AXB

defined by taking (a,b) into a ® b, the coset containing (a,b). Given a bi-
homomorphism ¢: A x B — C we have seen that there exists a unique hom-
omorphism ¢”: A ® B — C such that commutativity holds in

AxB—5 ¢

N/

A®B

On the other hand, if G is abelian and t": A x B — G is a bihomomorphism
whose image generates G, such that any bihomomorphism ¢: A x B — C can
be lifted through G, then G is isomorphic to 4 ® B.

Since the elements (a, b) generate F(4 x B), it follows that the elements
a ® b generate A ® B. Note that in 4 ® B we have

nla® b) = (na) ® b = a ® (nb) for any integer n;
0®bhb=0=a®0 for all a and b;
(a; +a3) ®(by + b)) =(a; + a,) ® by + (a; + a,) ® b,
=a, ®b +a,®b, +a, ®b, + a, ®b,.

3.1 Proposition. There is a unique isomorphism
0:A®B~B®A
such that 8(a ® b) = (b ® a).
Proof. Define u: A x B—>B® A by p(a,b) = b® a. This is a well-defined

bihomomorphism. Thus, there exists a unique homomorphism 6: A ® B -
B® A with (a® b) =b® a. Similarly there exists a homomorphism
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0: B® A— A® Bsuch that §'(b ® a) = a ® b. Then the compositions § o §’
and 6’ o 6 are the identity on respective generating sets, and it follows that 0
is an isomorphism with inverse 0'. O

3.2 Proposition. Given homomorphisms f: A - A’ and g: B —> B', there exists a
unique homomorphism

f®g:A®RB->A®B
with
S ®gla®b) = fla)® g(b).

Proof. Define a mapping u: A x B— A'® B’ by u(a,b) = f(a) ® g(b), and
observe that u is well defined and bilinear. Thus, there exists a unique homo-
morphism 6: A ® B> A’ ® B’ with 0(t(a, b)) = pu(a,b) or Ha® b) = f(a) ®
g(b). This 6 is the desired f ® g. O

3.3 Propositions. (a) If f: A —> A',f': A'—> A" and g: B— B',g": B > B", then
(f"e)®Gog)=(["®g)e(f®g)

(b) If AxY A, then A® Bx Y (4; ® B);

(c) if for each j in some index set J there is a homomorphism f;: A — A’ such
that for any a € A, f{(a) is nonzero for only finitely many values of j, then
we can define Y f;: A— A'. For any homomorphism g: B— B' it follows
that

QY HOg=) (i ®g)

(d) for any abelian group A, Z ® A ~ A;
(e) if Ais a free abelian group with basis {a;} and B is a free abelian group
with basis {b;}, then A ® B is a free abelian group with basis {a; ® b;}.

Proof. We prove only Part (d). Note that Part (e) follows from Parts (d) and
(b) and Proposition 3.1.

Define u: Z x A — A by u(n,a) = na. Then u is bilinear, so there exists a
unique lifting 0: Z® A - A with8(n ® a) =n-a. Nowdefine 0: 4 > Z® A
by 6'(a) = 1 ® a and observe that

00'(a)=01®a)=a
and
00n®a)=0'na)=1®na=n®a.
Thus, 0 and 0" behave as inverses on generating sets and 6 is an isomorphism.

O

Now suppose that A" and B’ are subgroups of A and B, respectively. We
want to describe the tensor product 4/4' ® B/B'. Denote by n,;: A — A/A’
and n,: B— B/B’ the quotient homomorphisms. Then by Proposition 3.2
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there is a homomorphism
T, ®n, A® B> A/A’® B/B'.

If a’e A" and be B, then n;, ® n,(a’ ® b) = n,(a’) ® 7,(b) = 0. Similarly if
acAand b’ e B, n, ® m,(a ® b’) = 0. Thus, if we denote by

itA> A and i, B— B,
the inclusion homomorphisms
H=im(i;, ®id) + im (id ® i,) < ker n; ® 7,.
This means that n; ® n, induces a homomorphism
®: A® B/H—-» A/A' ® B/B.
We now want to show that @ is an isomorphism. Define a function
¥: A/A’ x B/B' > A® B/H

by W({a},{b}) = {a ® b}, where { } denotes the respective coset. It is evident
that this is well defined, since if a’ € A’, then

¥({a'}), {b}) = {a'®b} =0,

and similarly for b’ € B'. ¥ is also bilinear, so there exists a unique homo-
morphism

0: 4/A' ® B/B' - A® B/H.
The homomorphisms @ and 0 are easily seen to be inverses of each other, so
we have proved the following.
3.4 Proposition. If i;: A" — A and i,: B' — B are inclusions of subgroups, then

A®B
im(i, ® id) + im(id ® i,)

A/A' ® B/B ~ O

EXAMPLE. Z,® Z, ~ Z, ,, Where (p,q) is the greatest common divisor of p
and q. To see this, let (p,q) = r so that p = r-s,q = r-t with (s,t) = 1. Denote
by pZ = Z the subgroup divisible by p and identify Z, = Z/pZ and Z, =
Z/qZ.
Therefore
Z,02,=Z2[pZ®Z/qZ
- Z®Z
~im(i, ® id) + im(id ® i,)
Z N Z

Timi, +imi, rsZ +rtZ

=Z,=Zyy.

~ Z/rZ
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Specifically then
Z2,0Z,~Z,, Z,®Zy,=0, Zs® Z,s~Z;, and so forth.

3.5 Proposition. If A 5 B L € > 0is an exact sequence, then for any abelian
group D

a®id B®id
_>

A®D B®D ——— C®D-0

is exact.

Proof. Define a function
¢:C x D> B® D/im(o ® id)
as follows: for (¢,d) € C x D let b € B with (b) = c. Then set
$(c,d) = {b®d},

where { } denotes the coset in the quotient group. If b’ is another element of
B with f(b’) = c, then b — b’ € kernel § = image «, so there exists an a € A
with a(a) = b — b’. Then note that

b®d} —{b'®d} ={(b-b)®d}
= {o(a) ® d}
= {(x®id)(a ® d)}
= (.

This implies that ¢ is independent of the choice of b and so is well defined.

Since ¢ is also bilinear, there is associated a unique homomorphism
B®D

0:C®D » ———.

®D- im(x ® id)

On the other hand, ( ® id) is zero on the image of (« ® id) so we have a
homomorphism
f®id: B® D/im(x ® id) - C ® D.

It is evident that § ® id and 6 are inverses. This isomorphism establishes the
desired exactness. M

Note: If we had added a zero to the left of A in Proposition 3.5, the corre-
sponding conclusion would not have been true. That is, in general, tensoring
with D does not preserve monomorphisms. For example, let u: Z — Z be
given by pu(n) = 2n, so that y is a monomorphism. However

URIAZ®Z,-2Z®Z,

is zero because (u ® iId (1 ® 1) = (2® 1) = 1 ® 2 = 0. For this reason we say
that tensoring with D is a right exact functor. In trying to measure the extent
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to which this fails to be left exact, we introduce a useful idea which will be
employed in later results.

Recall that every abelian group A is the homomorphic image of a free
abelian group and denote by F the free abelian group generated by the
elements of A. Then let n: F — A be the natural epimorphism. If R < F is the
kernel of m, then R must be a free abelian group since it is a subgroup of F.
(The proof that any subgroup of a free abelian group is free is definitely
nontrivial. See Spanier’s book for a proof of this fact.)

Thus, there is a short exact sequence

0—>R——i+F—n->A—>0.

This is an example of a free resolution of the group A. In general, a free
resolution of an abelian group 4 is a short exact sequence
056G, 5Gy5A4-0

in which both G, and G, are free abelian groups. Given a free resolution of A
and an abelian group D we know by Proposition 3.5 that exactness holds in
Jj®id ®id

G,®D % G,9D 24, 4®D 0.

Then define Tor(A, D) = kernel(j ® id). In a sense, this measures the extent
to which j ® id fails to be a monomorphism.

ExERcISE 1. (a) Compute Tor(Z,,, Z,) for any integers p and q.
(b) Show that if A is free abelian, Tor(B, A) = 0 for any abelian group B.
(c) Show Tor(A, B) is independent of the resolution chosen for A.

EXERCISE 2. Show that for any abelian groups 4 and B,

Tor(A, B) = Tor(B, A).

Suppose that C = {C,,d} is a free chain complex. That is, each C, is a free
abelian group. For any abelian group G define a new chain complex C ® G
by

C®G={C,®G,IJ®id}.
It is evident that (0 ® id) o (0 ® id) = 0.
If f: C — C'is a chain map, the associated homomorphism
fRIECRG-CRGC
has
(f®id)o(0®id)=fod®id=0"°f®id = (0'®id) o (f ®id)
so that f ® id is also a chain map. Suppose T is a chain homotopy between
chain maps f, and f;, that is,
0T+ To=f; — fo
Then
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(@ RINTRID)+(TRIdO®Id)=0TIid + TOI®id
=@T+TH®id
=(/i—f)®id
=fi®id — f,®id.

Hence, T ®1id is a chain homotopy between the chain maps f; ® id and
fo®id.

Now fix the abelian group G. For each pair of spaces (X, A) we may use the
free chain complex S,(X, A) to construct a new chain complex S,(X,4) ® G.
This chain complex, denoted S,(X, 4;G), is the singular chain complex of
(X, A) with coefficients in G. Since there is a natural isomorphism

S(X,A)® Z = 5,(X, A),

we refer to S,(X, A) as the singular chain complex with integral coefficients.
The homology of S,(X,A4;G) is denoted by H,(X,A;G). Note that if
f:(X,A)—> (X', A") is a map of pairs, it follows from the preceding comments
that there is an induced homomorphism

fu H(X,A;G) - H (X', A';G).

In some applications it is desirable to have additional structures on these
homology groups. For example suppose that R is an associative ring and G
is a right R-module. Then S,(X, 4; G) may easily be given the structure of a
right R-module in such a way that the boundary operators and induced
homomorphisms are all homomorphisms of R-modules. In particular, if R is
a field, then each H,(X, A; G) is a vector space over R. Note that for any R we
know that R is a free module over itself, so that S,(X, 4;R) is the free R-
module generated by the singular n-simplices of X mod 4.

Suppose that (X, 4, B) is a triple of spaces. We have observed previously
that there is a short exact sequence of chain maps

0 S,(A, B) - 5,(X, B) > S,(X, 4) - 0.

Since each chain complex is free, it follows from Exercises 1 and 2 that the
exactness is preserved when we tensor throughout with G. Thus

0— 85,(4,B;G) = S(X,B;G) — S,(X,4;G) -0

is a short exact sequence of chain complexes and chain maps. There resuits
the long exact sequence of the triple (X, 4, B) for homology with coefficients
in G.

As in the case of integral coefficients it is easy to show that

G for n=0
H,(pt;G) ~ .
(Pt G) {0 otherwise.

Returning to the general case of a free chain complex C, we now consider
the problem of relating the homology of C ® G to the homology of C. For
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example, suppose that x € C, such that px is a boundary for some integer p.
Since C is free, this implies that x must be a cycle, so x represents a homology
class of order p. Let b € C,,, with db = px. Note that b is not a cycle unless
x = 0. If we now tensor C with G = Z,, the element b® 1 in C,,; ® Z, has

RO N)=0bRX1=pxR®1=xQRp=0.

Thus, b ® 1 is a cycle in C,,; ® Z,, where b had not been a cycle previously.
In this way we see how torsion common to H,(C) and G produces new
homology classes in H,,;(C ® G).

Before proceeding we note the easily proved algebraic fact thatif f: G — G’
and g: G’ —» G are homomorphisms of abelian groups with g o f = identity,
then

=im f @ ker g.

As usual we denote by B, = Z, = C, the subgroups of boundaries and
cycles, respectively. If C is a free chain complex, then each B, and Z, will be a
free abelian group. Fix an abelian group G and consider the short exact
sequence

d
0-2,-C, ==2 B,_, —>0.
Y
First note that since B,_, is free, the sequence splits. That is, if {x;} is a basis
for B,_,, for each i there exists an element ¢; € C, with dc; = x;. Define y(x;) =
¢; and note that y extends uniquely to a homomorphism which splits the
sequence.

Now since B,_, is free, Tor(B,_,,G) = 0 and the short exact sequence is
preserved when tensored with G,

0-Z,®6-C,Q06C === <—(§—— B,_,®G-0.

This sequence is also split by the homomorphism y ® id.
On the other hand, the short exact sequence

0B, 527, - H(C)=0
is a free resolution of H,(C); hence, it yields the exact sequence
0 Tor(H,(C),6) 5 B,® G -2 2 ® G » H,(C)® G — 0.

We want to compute the homology of C ® G, given by kernel 0 ® id/
image 0, ® id in the following diagram:

B®G 2% 2®G

63®id{ lk@id

C,®G6 2% co6 24, ¢ _,®GC

0,®id i®id

Zn—l ® G
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Note that by the above remarks both i ® id and k ® id are monomorphisms
and d, ® id is an epimorphism. Thus, kernel 0 ® id = kernel d, ® id and
image ¢, ® id may be identified with image j ® id.
Now consider the groups and homomorphisms
g j®id

0— Tor(H,_,(C),G)> B,_,®G -5 Z,_,®G—H, (C)®G—0

¢3®id y®id

-—-—--=-Z

C,®G

where the horizontal row is exact. As we have observed, the cycle group in
C,® G is the kernel of (j ® id) o (9; ® id). Since 0; ® id is an epimorphism
and kernel j ® id = image g, we have
ker(j ® id) o (0; ® id) = (0; ® id)"}(g(Tor(H,_,(C), G))).
Thus, there are homomorphisms
o ¢3®id
(0; ®id)"'g(Tor(H,-,(C), G)) —a g(Tor(H,-,(C), G))

Y®i

for which the composition (d; ® id) o (y ® id) is the identity. Combining
these observations we have the cycle group expressed as a direct sum

ker(j ®id) o (¢; ® id) = ker(d; ® id) @ (y ® id)g(Tor(H,_,(C), G)).

Note that the first direct summand may be identified with Z, ® G, while in
the second, both g and 7y ® id are monomorphisms. Thus, we may identify the
groups of cycles in C, ® G with the direct sum

Z,® G @ Tor(H,_,(C),G).

Furthermore, the group of boundaries, which has been identified with the
image of

B,®G-Z,®C,

is contained entirely in the first summand.
Finally, recalling the exactness of

B®G-Z,®G-H,(C)®G-0,

we conclude that the homology of the chain complex C ® G is given by
H,(C® G)~ H,(C)® G ® Tor(H,_,(C), G). This completes the proof of the
universal coefficient theorem:

3.6 Theorem. If C is a free chain complex and G is an abelian group, then

H,(C® G) = H,(C)® G @ Tor(H,-,(C),G). O

3.7 Corollary. For any pair of spaces (X, A),
Hn(X’ A,G) =~ Hn(X’ A)® G@Tor(Hn—l(X’ A), G) D
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ExampLE. Recall that the integral homology groups of real projective space
are given by

Z fork=0 or for koddand =n
H,(RP(n) ~ < Z, forkodd, O0<k<n
0 otherwise.

Applying Corollary 3.7 to compute H,(RP(n);Z,) we first note that
Tor(Z,,Z,) ~ Z, and Tor(Z,Z,) = 0 were results from an earlier exercise.
We are thus able to conclude that

Z, for 0<k<n

H(RP(n);, Z,) = {0 otherwise

where H,(RP(n); Z,) results from H,(RP(n))® Z, for k =0 or for k odd,
0 < k < n, and H,(RP(n); Z,) results from two-torsion in H,_,(RP(n)) for k
even0 < k <n.

We are now in a position to characterize singular homology in terms of a
set of axioms. Each of these axioms has been established previously as an
intrinsic property of singular homology theory. Our main purpose here is
to show that when restricted to a suitable category of spaces and maps,
these axioms uniquely determine a homology theory. The formulation of the
axioms and the proof of the uniqueness are due to Eilenberg and Steenrod
[1952].

Suppose # is a function assigning to each pair of spaces (X, 4) and integer
n an abelian group #,(X, A), and to each map of pairs f: (X, A) - (Y, B)
a homomorphism f,: #,(X, A) » #,(Y, B). Suppose further that for each n
there is a homomorphism d: #,(X, A) —» #,_,(A). This operation gives a
homology theory if the following axioms are satisfied:

(1) ifid: (X, 4) — (X, A) is the identity map, then
id,: # (X, A) > H#,(X, A)

is the identity homomorphism;
(2) if f1(X,4)> (X, A"),g: (X, A") > (X", A") are maps of pairs, then

(9o fa=0x0°fi
(3) if f: (X, A) - (Y, B) is a map of pairs, then
0o fo=(fla)yo0;

4) if i: (4, D) - (X, &) and j: (X, F) — (X, A) are inclusion maps, then the
following sequence is exact:

S A DS HX) D AKX A S A ()

(5) if f, g: (X, A) — (Y, B) are homotopic as maps of pairs, then f, =g, as
homomorphisms;
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(6) if (X,A) is a pair and U < A has U < Int A, then the inclusion map
(X —-UA-U)-(X,A) has i #(X—-UA—-U)-H#(X,A) an
isomorphism;

(7) #,(pt) = 0 for n # 0 [A#(pt) is called the coefficient group].

3.8 Theorem (Existence). Given any abelian group G, there exists a homology
theory with coefficient group G.

Proof. Let #,(X, A) = H,(X, A; G), singular homology with coefficients in G.
Then each of the axioms has been proved previously. O

3.9 Theorem (Uniqueness). On the category of finite CW pairs and maps of
pairs, homology theories are determined, up to isomorphism, by their coefficient
groups. That is, if #, and #, are homology theories and h: ¥, — #, is a
natural transformation (that is, it commutes with induced homomorphisms and
boundary operators) such that h: #,(pt) > #5(pt) is an isomorphism, then h:
H(X, A) = A, (X, A) is an isomorphism for each integer n and each finite CW
pair (X, A).

Proof. First note that the proofs of Theorems 2.14 and 2.16 (the relative
homeomorphism theorem) only require that singular homology theory sat-
isfy these axioms. So the analogs of these results will hold for any homology
theory.

Denote the zero-sphere S° as the union of two points S® = x U y, and
consider the diagram

Hly) —— Hlx0y,x)

H(Y) —— H(x0y,x)
which commutes by the naturality of h. The horizontal maps are excision
maps, so both horizontal homomorphisms are isomorphisms by Axiom 6.

Since the first vertical homomorphism is an isomorphism by the hypothesis,
we conclude that

h: H(S°, x) = A (S, x)
is an isomorphism for each k. Now consider the diagram
Hii(8°,%) — = Hylx) —— H(S®) —— H4(8%, %) —— A4y (x)
X jh x lh jh E3 lh x lh
A (8%, %) —— H(x) —— H(S°) —— HS,x) —— AL, ()

where the rows are exact by Axiom 4. By the five lemma (Exercise 4, Chapter
2), h: #,(S°) — #,(S°) is an isomorphism.
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We now prove inductively that h is an isomorphism for spheres of all
dimensions. Suppose h: #,(S" ') —» #,/(S""!) is an isomorphism, n > 0. The
n-disk D" has the homotopy type of a point, so by using Axiom 5 we have an
isomorphism h: #,(D") —» #,(D"). In the commutative diagram

H (DS —s A (S, X)

h h

A DS — A )

the horizontal homomorphisms are isomorphisms since they are induced by
relative homeomorphisms, while the vertical homomorphism on the left is an
isomorphism by the five lemma (Exercise 4, Chapter 2). So we conclude that
h: (8", x) - #,(S", x) is an isomorphism, and again apply the five lemma to
see that h: #,(S") —» #/(S") is an isomorphism. This completes the inductive
step.

We are now ready to prove the theorem by inducting on the number of
cells in the finite CW complex, X. Of course the conclusion is true if X has
only one cell, so suppose that h is an isomorphism for all complexes having
less than m cells. Let X be a finite CW complex containing m cells. If dim
X = n, pick a specific n-cell of X and denote by 4 the complement of this top
dimensional cell. Then A is a subcomplex of X having m — 1 cells and there
is a relative homeomorphism

n: (D" S"1) > (X, A).
In the commutative diagram
HD" S — H(X, A)
x Jh lh
H(D" S —— H(X,A)
the horizontal homomorphisms are induced by relative homeomorphisms, so

they are isomorphisms. The first vertical homomorphism is an isomorphism
by the inductive argument above. Hence

h: H(X, A) - H(X, A)

is an isomorphism for each k. Finally, the five lemma together with the induc-
tive hypothesis imply that

h: H(X) > HU(X)

is an isomorphism. This establishes the theorem for any finite CW complex,
and the similar result for pairs follows by another application of the five
lemma. O
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Note: During recent years, many theories have been developed which sat-
isfy all of the axioms except Axiom 7. These have been called “generalized
homology theories” and include stable homotopy, various K-theories, and
bordism theories. Some of these theories are able to detect invariants which
cannot be detected by ordinary homology. As a result, problems have been
solved by these techniques whose solutions in terms of singular homology
were either extremely difficult or impossible. Certainly any thorough study of
modern methods in algebraic topology should include a significant segment
on generalized homology and cohomology theories.

We now want to introduce singular cohomology theory. If 4 and G are
abelian groups, denote by Hom(A, G) the abelian group of homomorphisms
from A to G, where (f + g)(a) = f(a) + g(a) foreachain A. If ¢p: A > Bisa
homomorphism, there is an induced homomorphism

¢*: Hom(B, G) » Hom(4, G)

defined by ¢*(f) = f o ¢. Note that if y: B— C is a homomorphism, then
(Yo @)* =¢7oy”.

For a chain complex {C,, @} and an abelian group G, define abelian groups
C" = Hom(C,, G).
Then the boundary operator 0: C,,, — C, has
o*: C" - C!

and the composition §* o ¢* = (¢ o d)* = 0. So this resembles a chain com-
plex except that the indices are increased rather than decreased. This leads us
to define a cochain complex to be a collection of abelian groups and homo-
morphisms {C",5} where 6: C" » C"*! and & o 6 = 0. The homomorphism
0 is the coboundary operator.

Note that if {C",d} is a cochain complex and we define D, = C™" and
¢ =90:D,— D, ,, then {D,,d} becomes a chain complex. So the two notions
are precisely dual to each other and the use of cochain complexes is mainly a
convenience.

The basic definitions for chain complexes may be duplicated for cochain
complexes. If {C", 6} and {D", '} are cochain complexes, a cochain map f of
degree k is a collection of homomorphisms

f: Cn N Dn+k
such that o 6 = ¢’ o f. Two cochain maps f and g of degree zero are cochain
homotopic if there is a collection of homomorphisms
T:C"—> D!
such that 0'T 4+ T0 = f — g. T is a cochain homotopy.
Note that if {C,,d} and {D,,0'} are chain complexes and f, g: {C,,0} —
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{D,, 0"} are chain homotopic chain maps, then for any abelian group G the
cochain maps

f*,9%: {Hom(D,,G),0'*} - {Hom(C,, G),3*}
are cochain homotopic.

Let C = {C",0} be a cochain complex and define Z"(C) = kernel §: C" —
C"*1, the group of n-cocycles, and B"(C) = image §: C"! — C", the group of
n-coboundaries. The nth cohomology group of C is then the quotient group

H"(C) = Z"(C)/B"(C).
If A ={A"}, B={B"}, and C = {C"} are cochain complexes and
0-A4A->B->C-0

is a short exact sequence of cochain maps of degree zero, then there exists a
long exact sequence of cohomology groups

o H'(A) > H'(B) > H'(C) S H™ () > -,

where the connecting homomorphism A is defined in a fashion analogous to
the connecting homomorphism for homology.
Now let (X, 4) be a pair of spaces and G be an abelian group. Define

S"(X, A; G) = Hom(S,(X, A), G)
as the n-dimensional cochain group of (X, A) with coefficients in G. Let
5:S"(X,A;G) - S""(X, 4;G)

be given by 6 = 0%. This defines the singular cochain complex of (X, 4)
whose cohomology is the graded group

H*(X, 4;G)

as the singular cohomology group of (X, A) with coefficients in G. Each of the
covariant properties of singular homology becomes a contravariant property
of singular cohomology. In particular, if f: (X, A) - (Y, B) is a map of pairs,
than there is induced a homomorphism

f* HX*(Y,B;G) - H*(X, 4; G).

If g: (Y, B) = (W, C) is another map of pairs, then (gf)* = f* o g*.
Let

0—>F—i>H—1E>K—>0

be a short exact sequence of abelian groups and homomorphism which is
split by a homomorphism y: H — F. If G is an abelian group and f is a non-
zero element of Hom(K, G), then n*(f) = fon is a nonzero element of
Hom(H, G) since 7 is an epimorphism. It is evident that i* o n* = (w0 i)* =
0. On the other hand, let h: H — G be a homomorphism such that i*(h) =
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hoi=0. Since h is zero on the image of i = kernel of 7, h may be factored
through K. The resulting homomorphism h: K — G will have n*(h) = h.
Thus, the kernel of i* is equal to the image of n*.

Finally, since y o i is the identity on F, (y o i)* is the identity on Hom(F, G).
But this implies that i* is an epimorphism. Therefore, we have completed the
proof of the following.

3.10 Proposition. If 0 —» F LHEK-0isa split exact sequence and G is an
abelian group, then

0 — Hom(K, G) 5> Hom(H, G) > Hom(F, G) — 0

is exact. O

For example, if (X, A) is a pair of spaces, the sequence
0 S(A4) > S (X)> S (X, 4)=>0
is split exact since S, (X, A4) is a free chain complex. Thus, by Proposition 3.10
0 - 5*X,4;G) > S¥X;G) > S*4;G) -0

is a short exact sequence of cochain complexes and cochain maps. By the
previous remarks, this produces a long exact sequence in singular cohom-

ology,
- H"(X,A;G) - H"(X;G) » H(A;G) » H"" (X, A;G) — -~ .

It is important to note the necessity of the hypothesis in Proposition 3.10
that the original sequence be split exact. For example, if i: Z — Z is the
monomorphism given by i(1) = 2, then

i*: Hom(Z,Z,) » Hom(Z, Z,)

is zero and thus fails to be an epimorphism. The other conclusions of exact-
ness will hold in general since they were established without using the fact
that the sequence was split. As in the case of the tensor product, this failure
to preserve short exact sequences may be measured.

Let E be an abelian group and take a free resolution of E,

0-R5FSE-O
Then for any abelian group G the sequence
0 - Hom(E, G) it Hom(F, G) e Hom(R, G)
is exact by the proof of Proposition 3.10. Define
Ext(E, G) = coker i* = Hom(R, G)/im i*.

The basic properties of Ext are dual to those of Tor and may be established
in the following exercises:
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EXERCISES 3. (a) If E is free abelian, Ext(E, G) = 0.

(b) Ext(E, G) is independent of the choice of the resolution for E.

(c) Ext(E,G) is contravariant in E and covariant in G; that is, given homomor-
phisms f: E — E’ and h: G — G’ there are induced homomorphisms f*: Ext(E', G) -
Ext(E, G) and h,: Ext(E, G) —» Ext(E, G").

(d) If0->A5B % € - 0is a short exact sequence, then exactness holds in

0 - Hom(C, G) > Hom(B, G) 5> Hom(4, G) — Ext(C, G)
* Ext(B, G) 5 Ext(4, G) - 0.

Since we have defined S"(X, 4; G) = Hom(S,(X, A), G), it is useful to adopt
the following notation: if ¢ is in S"(X, 4; G) and c is in S,(X, A), then the value
of ¢ on ¢ is the element of G denoted by {¢,c)>. Note that this pairing is
bilinear in the sense that

{P1 + $2.0) =Lp1, 0> + (43,0
and
{Poey + 30 ={d,c;) +{dc3).
In particular, for any integer n we have {(¢,nc) = {n¢,c). Thus the pairing
produces a homomorphism
S"(X,4;G)® S, (X,A)—> G

for each n. This homomorphism will be studied in more detail in the next
chapter.
In this notation the boundary and coboundary operators are adjoint; that is,

{@,0c) = {4, c).
(In a somewhat different setting this is called the fundamental theorem of
calculus.) Furthermore, if f: (X, A) — (Y, B) is a map of pairs, ¢ € S*(Y, B; G)
and c € S,(X, 4), then
(@, f4le)> = {f*(4). 0
The cochain ¢ € S"(X, 4; G) is a cocycle if and only if
{op,c'> =0 forall ¢ €8S,.,(X,A),
or equivalently, if
(¢,0c") =0.
Thus, ¢ is a cocycle if and only if ¢ annihilates B,(X, A).
On the other hand, suppose that ¢ = 6¢’ is a coboundary, where ¢’ €
S§"1(X, A4; G). Then
{p,c) =<6¢',c) =<¢',0c)
so that if ¢ is a coboundary, then ¢ annihilates Z,(X, A).
Now let x € H"(X, A; G) be represented by a cocycle ¢ and y € H,(X, A) be
represented by a cycle c. Then we define a pairing
(, H"(X,A;G)® H\(X,4)—> G

by {x,y> = {@,c). To see that this is well defined, let ¢ + d¢" and ¢ + dc’ be
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other choices for representatives of x and y. Then
(P +dd',c+ dc’> ={d,c) +{d¢',c + 0c’) + ¢, 0c’)
= ($,c) + {$',0c + 30c') + {(d¢,c’)
=<{¢,c).

This pairing is called the Kronecker index and may be viewed as a homo-
morphism

a: HY(X, A;G) » Hom(H,(X, A), G).

For example, consider the zero-dimensional cohomology of a space X.
S°(X;G) = Hom(Sy(X), G) and S,(X) may be identified with the free abelian
group generated by the points of X. Since any homomorphism defined on
So(X) is determined by its value on the basis, we may identify S°(X; G) with
the set of all functions from X to G.

Of course, B°(X;G) = 0, so the cohomology may be determined by iden-
tifying the group of O-cocycles. Note that ¢ will be a 0-cocycle if and only
if (b¢,c> =<¢,dc) =0 for all ¢ in S;(X). This will be true if and only
if ¢(a(1)) = ¢(a(0)) for every path ¢ in X. Therefore, we have identified
H°(X;G) = Z°(X;G) with the set of all functions from X to G which are
constant on the path components of X. From this description we have the
following.

3.11 Proposition. If X is a topological space and {X,}, 4 is the decomposition
of X into its path components, then
H(X;G)~ [] G,
aeA
the direct product of copies of G, one for each path component of X. O
There is a natural embedding of G in H°(X; G) defined by sending g € G

into the function from X to G having constant value g. If p is a point and
n: X — pis the map of X to p, then

n*: H%(p; G) » H°(X; G)
maps H°(p; G) ~ G isomorphically onto this embedded copy of G. As for the
case of homology we define
H*(X;G) = H¥(X; G)/im n*,
the reduced cohomology group of X with coefficients in G.

Essentially all of the results we have established previously for homology
carry over in dual form to cohomology. For example, we have the following,.

3.12 Theorem. Let (X, A) be a pair of spaces and U < A a subset with U <
Int A. Then the inclusion map of pairs

X -UA-U)>(X,A)
induces an isomorphism
i* H¥X,A;G)-> HXX — U,A — U;G).
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Proof. We have observed that
408X —U,A—-U)->S,(X,A)

induces an isomorphism on homology groups (Theorem 2.11). The following
exercise implies that i, is a chain homotopy equivalence. Thus,

i*: SX(X,A;G) > S¥X — U,A — U;G)

is a cochain homotopy equivalence and i* is an isomorphism. O

EXErcises 4. If f: C — D is a chain map of degree zero between free chain complexes,
such that f induces an isomorphism of homology groups, then f is a chain homotopy
equivalence. [Hint: Take the algebraic mapping cone C; of f (see page 167). Use the
fact that C; has trivial homology to construct the homotopies.]

3.13 Theorem. If f, g: (X, A) — (Y, B) are homotopic as maps of pairs, then the
induced homomorphisms

f* g* H¥Y,B;G) > H*(X, A;G)

are equal.

Proof. We showed in Theorem 2.10 that
are chain homotopic. Therefore
f7,9%: SXY,B;G) - SXX, A; G)

are cochain homotopic, and it follows that f* = g*. ]

EXERCISES 5. Formulate and prove the Mayer—Vietoris sequence for singular cohom-
ology.

EXERCISE 6. State the Eilenberg—Steenrod axioms for cohomology and prove the
uniqueness theorem in the category of finite CW complexes.

ExaMPLE. We want to compute H*(S", x,; G). First note that H*(S°, x4; G) is
isomorphic by excision to

G for k=0
H*(pt;G) ~ .
(Pt G) {0 otherwise.

As usual (Figure 3.1) we decompose the n-sphere irto its upper cap E". and
lower cap E" with x, € S"™' = E% nE". Let z be a point in the interior of
E".

Note that since the inclusions x, — E” and x, — E" are homotopy equiva-
lences, the relative cohomology groups H*(E"., xo; G) and H*(E" , x; G) are
both zero. Thus, in the exact cohomology sequence of the triple (S", E, x,)
we have an isomorphism
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Sn

Figure 3.1

HX(S", E";G) > H*(S", x4; G).
The point z may be excised from the pair (S", E” ) to give an isomorphism
H*(S" E";G) > H*(S" — z,E" — z;G).

Now the pair (S" — z, E* — z) may be mapped by a relative homeomorphism
to the pair (E%, S"!) so that we have an isomorphism

H*(S" — z, E" — z,G) ~ HYE",5" %, G).
Finally, the exact sequence of the triple (E%,S" !, x,) yields an isomor-
phism
H* (8", x0; G) > HX(E", S"%; G).
Thus
HY(S", x0; G) = H*1(S"™", x0; G),
which completes the inductive step to prove that

G for k=n

H*(S", x; G) = )
(5%, %03 G) {O otherwise.

All of these similarities between homology and cohomology might lead
one to ask: why bother? There may be many answers to this question; we
briefly cite only three:

(i) When the coefficient group is also a ring, the cohomology of a space may
be given a natural ring structure. (This is not true for homology groups.)
This additional algebraic structure gives us another topological invariant.

(i) Cohomology theory is the natural setting for “characteristic classes.”
These are particular cohomology classes, arising in the study of fiber
bundles, which have many applications, particularly to the topology of
manifolds.
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(iii) There are “cohomology operations,” naturally occurring transforma-
tions in cohomology theory, which have many applications in homotopy
theory.

In Chapter 5 we will define the ring structure in (i) while studying the
relationships between homology and cohomology theory. The topics in (ii)
and (iii) are more advanced and will not be dealt with here. Perhaps the best
source for topic (ii) is Milnor [1957]. The original source for topic (iii) is
Steenrod and Epstein [1962]; see also the book by Mosher and Tangora
[1968].

We close this chapter with an extension of the universal coefficient theo-
rem which establishes the first basic connection between homology and co-
homology groups.

3.14 Theorem. Given a pair (X, A) of spaces and an abelian group G, there
exists a split exact sequence

0 — Ext(H,_,(X, A), G) » H'(X, A; G) > Hom(H,(X, A), G) - 0.

EXERCISE 7. Prove Theorem 3.14. O



CHAPTER 4

Covering Spaces

The concept of a covering space is a valuable source of examples, applica-
tions, and problems, as well as a basis for new ideas. Our analysis begins with
an exploration of the lifting problem for a map into the base space. When the
mapping is restricted to be a closed loop, the resulting structure is seen to be
the fundamental group, and this provides a framework within which the
lifting properties may be recast in algebraic terms. Continuing with this
connection, the relations among the covering spaces over a given base are
expressed in terms of the subgroups of the fundamental group of the base.
The chapter closes with an examination of the relationship between the fun-
damental group and the first homology group and a discussion of Van
Kampen’s Theorem, a useful computational tool.

A space X is said to be locally pathwise connected if given any x € X and
any open set U about x, there exists a pathwise connected V with x € Int V
and V = U. Figures 2.4 and 2.6a give examples of spaces that are pathwise
connected but not locally pathwise connected. For the remainder of this
chapter the spaces considered will all be pathwise connected and locally path-
wise connected, unless it is stated otherwise or apparent from the context.

If X is a topological space, a covering space of X is a space X and a
continuous function p: X — X such that

(a) pis onto, and
(b) given any x € X there is a connected open set U about x such that p maps
each component of p~!(U) homeomorphically onto U.

X is the total space, p is the covering projection or covering map, X is the
base space, and U is a fundamental neighborhood of the covering.

85
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ExampLES. (1) Consider S* as the complex numbers of modulus one, S =
{z € C||z| = 1}. The function exp: R' - S* given by exp(t) = e*"" forms a
covering space. Given any x € S, a connected open set U about x that is
properly contained in S has p~!(U) a countable disjoint union of open inter-
vals in R, each mapped homeomorphically onto U by exp (Figure 4.1).

(2) Recall from Chapter 2, the equivalence relation x ~ — x on S” gives rise
to a quotient map n: S* — RP(n). This is a covering space in which a funda-
mental neighborhood U about x in RP(n) can be taken to be the image under
7 of an open disk V about a point of #7!(x) such that V is contained in an
open hemisphere of $”. ¥ and — V will then be the two components of ! (U).

(3) One can view the torus T? as a quotient of R? under the equivalence
relation that sets (x, y) ~ (x + m,y + n) for any m, n € Z. The quotient map

q:R* > T?
maps each unit square in the plane onto the torus (Figure 4.2).

The image of the x-axis under g is homeomorphic to S'. For intuitive
purposes we will call this the “horizontal” circle S, in T2, and the orientation

Figure 4.1

0.1y (L1 q

0.0) L0y

Figure 4.2
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of the x-axis determines a “positive horizontal” direction around T?2. Simi-
larly, the image of the y-axis yields a “vertical” circle S, in the torus and a
“positive vertical” direction, once g has been specified. If we set L = {(x, ) €
R?|x or y € Z} to be the lattice in R?, then ¢ maps L onto the union of these
two circles, S, v S,, which intersect in a single point. Both g: R* —» T2 and
ql.: L — S, v S, are covering spaces.

EXERCISE 1. Explain why the following functions are not covering spaces:

(a) p:[—1,1]1-[0,1] by p(x) = x|
(b) h: L — Sl by h(X, y) — e2m(x+y)
(c) ¢:R*—{(0,0)} » T, the restriction of ¢ to the punctured plane.

The strength of a covering space p: X > X lies in the facts that X and X
are locally identical, and the preimages in X of fundamental neighborhoods
in X are systematically combined to produce the space X. It is clear from the
examples that the total space and the base space may be significantly differ-
ent in a global sense.

Now let p: X - X be a covering space, and f: Y — X be a continuous
function. A fundamental question that arises in many applications is the
lifting problem: Does there exists a continuous function g: Y — X such that

pg = f?

’

Y/—f> X
The local properties of the covering space provide some hope. Specifically,
start with y € Y, and consider x = f(y) € X. Let U be a fundamental neigh-
borhood of x, and select a component V of p~!(U) < X. The continuity of f
provides an open set W about y with f(W)< U. Since p|,:V->U is a
homeomorphism, the composition

(ply) Sl WX

gives a lift of f,. In other words, there will always be a lifting on some open
set about any given point of Y. However, the global structure of the spaces
makes it clear that a lifting over all of Y need not exist.

EXERCISE 2. (a) Show that the function f: §' — S! given by f(z) = z° cannot be lifted
to R in the covering space exp: R — S'.

{b) Show that the inclusion map i: RP(2) » RP(3) cannot be lifted to S* in the
covering space m: S* — RP(3).

(c) Show that the identity map id: S, v S, = S, v S, cannot be lifted to L in the
covering space g: L - S, v S,.
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We now restrict Y to be a closed interval. For this simple case a lifting will
always exist, and the analysis of the resulting properties will lead us to a new
algebraic tool for solving topological problems.

4.1 Proposition. If p: X > X isa covering space, and f [0,1] — X is a path in
X, then there exists a lifting g: [0,1] »> X for p;i.e. g is a continuous function
and pg = f.

Proof. The preceding discussion shows that if z € p~!(f(0)), then there is an
open set W about {0} and a lift g of f|, with g(0) = z. Moreover, once z is
selected, and W is chosen so that its image under f lies in a fundamental
neighborhood of f(0), this lifting is uniquely determined.

Define D = {t € [0,1]|f: [0,£] - X can be lifted to a path in X beginning
at z}. Since W contains an interval about 0, D is nonempty. D is bounded
above by 1, so let d € [0, 1] be the least upper bound of D. We will show that
de D and, in fact,d = 1. i

Take a fundamental open set U’ about f(d) in X. Since f is continuous,
there exists an open set W’ about d with f(W’) < U’. Furthermore, there is a
point z’e W' with 0 <z’ ' <d and z'eD. The lifting of f:[0,z']—> X
determines a point g(z') in X, and this point in p~!(f(z')) together with the
fundamental neighborhood U’ permit a lifting of f: [z’,d] — X. Since these
liftings agree at z’, they may be combined to produce a lifting over the entire
interval [0, d], establishing that d € D.

Suppose d < 1. Then using the same W', there would be point z” € W' with
d < z” < 1. The same argument shows z” € D, and consequently that d is not
the least upper bound of D, contradicting the original choice of d. Thus d = 1,
D = [0, 1], and the lifting exists. O

It is clear from the above argument that once the initial point f(0) is lifted,
the remainder of the lift is uniquely determined. In fact, a more general
proposition is true:

4.2 Proposition. Let p: X — X be a covering space, and f Y — X be a continu-
ous function with Y connected. If g,, g,: Y = X are liftings of f with g,(y) =
g,(y) for some y in Y, then g, = g,.

EXERCISE 3. Prove Proposition 4.2. O

For a covering space p: X — X, fix a point x, in the base space X, and
consider paths in X that begin at x,, i.e., functions f: [0,1] — X with f(0) =
Xo. If X, is a selected element of p~*(x,), there is unique lift of f to a path in
X beginning at %,. Note that if the original path f in X is a loop, it need not
be the case that the lift of £ is a loop in X. In fact it is this variation in the
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«0.1) (1.1)

0.0 (1,0)

S 0

Figure 4.3

lifted path that carries information on the loop in the base, and through it,
the topological properties of the base itseif.

In the previous example (3), q¢: R —» T2, let X, be the origin in R? and
Xo = q(%,) in T?. Let f be the loop in T? that wraps once around the torus
in the “positive horizontal” direction and twice around the torus in the “posi-
tive vertical” direction. This loop lifts to a path in R? from %, = (0,0) to (1,2),
another point in ¢~'(x,) (Figure 4.3).

On the other hand, in example (2) consider RP(2) as S* with a 2-cell at-
tached via a map of degree 2 from 6D? — S'. What is the result of lifting the
loop in RP(2) that wraps once around this 1-skeleton?

To understand this question, it helps to specify a pre-image of the 1-skele-
ton of RP(2) under the quotient map S? — RP(2). One way to express it is as
a closed semicircle at the equator; the equivalence relation identifies the two
endpoints to produce the 1-skeleton. While RP(2) cannot be drawn as an
imbedded surface in R?, an open “collar” about the 1-skeleton can be ex-
pressed as a Mobius band M < RP(2), with the 1-skeleton along the midline.
Under the quotient map, M arises from a collar extending above and below
the semi-circle in S2; the identification of x with — x provides the twist on the
ends of the collar to produce M (Figure 4.4).

In the expression of RP(2) as a 2-cell attached to S, M arises as the image
of an open collar along the boundary of D?. The map of degree 2 wraps ¢D?
twice around the 1-skeleton, producing the entire band M. From this repre-
sentation, it is clear that a loop traversing the 1-skeleton once lifts in S? to a
path from %, to —X,. Note that if the loop is repeated to produce a loop that
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Figure 4.4

wraps twice around the 1-skeleton, then the lift becomes a loop with terminal
point back at X,. This was not the case in the first example; repeating the
loop in T? would lift to a path with endpoint (2, 4), etc., and the lifts of succes-
sively composed loops in T2 would never return to X, = (0,0).

EXERCISE 4. To prove the next proposition, it will be necessary to use the important
concept of the Lebesgue number. If Y is a metric space and U is an open covering of
Y, a Lebesgue number for U is a positive number p such that any subset of Y with
diameter less than y is contained in some open set in U. Prove that if Y is a compact
metric space and U is an open cover of Y, then U admits a Lebesgue number.

4.3 Proposition. If p; X > X is a covering space and F: 1 xI-> X is a
homotopy between paths f, and f,, then for any lift of f,(0) = F(0,0) to a point
in X, there is a unique lifting of the homotopy F to a homotopy G: I x I » X
between paths g, and g, which are lifts of f, and f,; that is, pG = F.

Proof. Using the continuity of F, there is about each (s,t) in I x I an open set
U whose image under F is contained in a fundamental open set in X. The set
of all such U forms an open cover of the compact set I x I. Let u be a
Lebesgue number for this covering, and select points 0 = t, <t;, < - <t, =
1 so that each rectangle [¢;,t;,,] x [t;,t;+,] has diameter less than p.

Now consider [to,t;] x [to,¢,]. Its image in X under F is contained in a
fundamental open set. Thus the lift of F(t,,t,) = F(0,0) to X uniquely
determines a lifting G on [t,,t,] % [to,t,] into X. The rectangle [o,,] X
[t;,t,] likewise is mapped by F into a fundamental open set. Along the edge
[t0,£,] x {t;} alift G has already been defined. There exists a lift of F that
agrees with G along this edge, and by 1.2, it must be unique.

Continuing in this manner, G may be extended to [t,,t,] x I, then in the
same manner to [,,t,] x I, always using the previous lifting along one or
more edges of the small rectangle. The end result is a unique map

GIxI-X
such that G(0,0) agrees with the lift of F(0,0) and pG = F. O
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Note that if the homotopy F between the paths f, and f; keeps the initial
and terminal points of the paths fixed, then the same must be true of G in X.
In particular, for loops at x, there is the following corollary.

4.4 Corollary. Let p: X — X be a covering space with p(%,) = x, and f be a
loop in X at x,. If g is the lift of f with initial point X, the terminal point of g
. _1 . . . .

in p~'(x,) is an invariant of the homotopy class of the loop f, under homotopies
that keep the endpoints fixed. |

This relationship between based homotopy classes of loops at x, and the
discrete set p~!(x,) in X is very important. Assuming X is pathwise con-
nected, for any point w in p~'(x,), there is a path g in X from %, to w. Then
pg is a loop at x, that clearly lifts to g. In other words, the correspondence

{based homotopy classes of loops at xo} = p~"(x,),

sending the class of f into the terminal point of the lift of f with initial point
%o, has its image precisely the set of points in p~!(x,) lying in the path
component containing X.

A natural question to ask is whether this correspondence is one-to-one.
Suppose f and f' are loops at x, lifting to paths g and g’ leading from %, to
the same point W in p~!(x,). Note that if there exists a homotopy G in X from
g to g’, fixing the endpoints of the paths, then pG is a based homotopy
between f and [, hence f and f’ would lie in the same class. So the question
may be recast: Given two paths in X from %, to W, does there exist a
homotopy between them, fixing the endpoints? Spaces that have this prop-
erty for any pair of points are said to be simply connected. In our previous
examples the answer to this question is affirmative for

exp: R — S,
n: 8" - RP(n),if n > 1, and
g R*> T2

However, the restriction of ¢ to the lattice L does not have this property.
In L there are paths from X, = (0,0) to (1, 1) that are not homotopic. In other
words, there are distinct based homotopy classes of loops in Sy, v S, that lift
to produce the same terminal point in ¢~ (x,).

For a simpler example of this phenomenon, consider the covering space
given by the mapping

o, S' > §!

where w,(z) = z¢% for some positive integer q. Taking g = 3, consider the two
loops « and B in the base, where a traverses S* once in a counterclockwise
direction and B traverses S' four times in the same direction. Then « and f
lifted to the same initial point in the total space will produce the same
endpoints, but the original loops « and § are not homotopic in the base.
This correspondence also helps in understanding a new algebraic struc-
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ture. In the covering space exp: R — S!, a loop f traversing S! once in a
counterclockwise direction lifts to produce the integer 1 as its terminal point,
if we choose %, to be 0 € R. Composing the loop f with itself k times in S*
forms a loop that produces the integer k € R. Similarly, reversing the direc-
tion along f gives a loop f’ that produces — 1 € R, and the composition of f
and f’ is a loop that produces 0 = X, as its terminal point.

For the covering space q: R?> — T2, we previously described a loop f in T2
that lifts to a path in R? from X, = (0,0) to (1,2). Now let g be a loop at x,
wrapping once around T? in the “horizontal” direction, but with the negative
orientation, and let h be a loop at x, wrapping twice around T2 in the
“negative vertical” direction. The loop in T? produced by traversing f, then
g, then h lifts to a path in R? from (0,0) to (1,2) to (0,2) to (0,0). Since this
loop in R? is homotopic to the constant loop at (0,0), the composed loop in
T? must be homotopic to the constant loop at x,. Note that this conclusion
remains valid if the order of the composition of f, g, and A is changed.

A final example shows that this commutative relationship is not always the
case. The restriction of g to the lattice L may be described in the same
intuitive terms. Let f be a loop in §,, v S, that wraps once around S, in the
positive direction and g be a loop that traverses S, once in the positive
direction (Figure 4.5).

The loop in §,, v S, formed by traversing f first and then g lifts in L to a
path from (0,0) to (1,0) to (1, 1), while the path formed by traversing g first
and then f lifts to a path from (0,0) to (0, 1) to (1, 1). These two paths in L are
not homotopic; consequently, the two composed loops in S, v S, are not
homotopic.

To summarize these observations and examples, the based homotopy
classes of loops at x, in the base space X may be represented by the effect
each class has on p~!(x,). Composition of loops in X provides a product
whose effects may be observed, to some degree, on p~!(x,) in X. From the
last example it is clear that the product operation on homotopy classes of
loops need not be commutative.

We now make this structure more formal. Let X be a space and x, € X.
The fundamental group or Poincaré group m,(X,x,) is the set of based

.1 (L1 q

0.0) (1,0

Figure 4.5
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homotopy classes of loops at x, in X, with product structure given by the
composition of loops. That is, if «: [0,1] — X and g: [0,1] — X are loops at
Xo, then (o> and (B, the respective homotopy classes, are elements of
7,(X, xq). Their product {a>-<{fB) is the class in 7n,(X,x,) represented by
o B:[0,1] » X where

a(2t) for 0<t<1/2

a-Bt) = {ﬂ(Zt -1) for 12<t<1.

Note that « - f§ is indeed a loop at x,.

To see that {a)-<{B) is well defined, we must show that the homotopy
class of o - f does not vary with the choice of representatives in the classes ()
and {f). So suppose &’ ~ « and ' ~ f are other representatives of (o) and
(B>, respectively. Then there exists a based homotopy

F:[0,1] x [0,1] = X

such that F(¢,0) = a(t) and F(t,1) = o'(t). Likewise, there exists a based
homotopy

G:[0,1] x [0,1]-> X
with G(z,0) = B(¢) and G(¢, 1) = B'(t). Then define
H:[0,1]1 x [0,1]- X
_JF(@2t,s) if0 <t <1/2and
by H{z.s) = {G(Zt 1,5 ifl2<i<l,

The two definitions agree along the segment t = 1/2, so H is continuous.
H(t,0) = a-f(t)and H(t,1) = o’ - f'(¢). Clearly, H(0,s) = x, = H(1,s) for all s.
So «-f is homotopic to o -, and the product {a) B> = {a B is well
defined.

To see that this product is associative, let o, f, and y be loops based at x,,
in X. We must show

(Ko {BD)- <y = Kad - (KB~ <))

Restating this in terms of the representing loops, we must show that («- 8) 7y
is homotopic to o (-y) as loops based at x,,. Here

a(4r) ifo<t<1/4
@ B)yt)=< Bt —1) ifld<t<1)2
Y2t — 1) ifl/2<t<1
and
(21) ifo<t<1/2
a(fy))=<p@r—-2) ifl2<r<3/4
y(4r—3)  if34<i<l
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Formulating a based homotopy between these two loops becomes easier if
viewed geometrically (Figure 4.6).

o((4/(s + 1)1) ifs >4t — 1
H(s,t)= < p(4t —s— 1) if4t —1>s5>4t-2
A2 =)t —(s+2)/4) ifdr—2>s

Along the segments where the definitions change, the function H takes each
point into x,. Consequently, H is continuous and («- )y is homotopic to
a (B

The identity element of the group 7, (X, x,) is the class of loops homotopic
to the constant loop e at x,, that is, e(t) = x, for 0 < ¢t < 1. For any element
{a) in 7, (X, x,) there is an inverse {(a)!, the class represented by &, where

a(t) = a(l — 1).

Note that & is just the loop o traversed in the opposite direction. To see that
&y = {a>~!, we must establish based homotopies between a-& and e, and
between & - o and e (Figure 4.7).

s=1

a g Y

Figure 4.6

Rl

a

Figure 4.7
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On [0,1] x [0, 1] define

a(2t) ifs<1—2t
G(s,t) = < a((1 — 5)/2) ifs>1-2t and s>2t—1
a2t — 1) ifs<2t—1.

Note that if a value of s is selected and the loop at level s produced by G is
traced, it will proceed along « to the point a((1 — s)/2), remain at that point
until t = (s + 1)/2, and then retrace that portion of a back to x,. When s = 0,
this yields «-&; when s =1, this yields e. The verification that Z-a is
homotopic to e is similar.

If (Y, yo) is another space with designated basepoint, and f: X - Y is a
continuous function having f(x,) = y,, then we define

f*3 (X, x0) = (Y, o)

by f,.({x)) = { fa), i.e,, the homotopy class represented by the loop at y, in
Y given by composing f with the loop «. If &' is another representative of {a),
then a homotopy in X from « to o’ may be composed with f to produce a
homotopy in Y from fx to fa'. Thus f ({a>) is a well defined element of

71 (Y, yo)-

4.5 Proposition. If f:(X,xo) = (Y, yo), is a map of pairs, then
f*: TEI(X’XO) - nl(Y’yO)

is a homomorphism of groups.

Proof. The verifications above show that 7,(X, x,) and n,(Y, y,) are in fact
groups. For elements () and () in 7, (X, x,) represented by paths o and f,
it is clear from the definitions that f, (<a>-<{f>) = f . ({a>) [ .({BD). O

ExaMPLE. Let {«) be a class in 7, (S", x,), where x, is chosen to be the point
(1,0)in S*. Using the covering space exp: R — S, we lift « to a path in R with
initial point 0. The terminal point of this lift is an integer which we denote
d(«). Since any loop homotopic to « must lift to a path with the same terminal
point, d(x) depends only on the class of « in n,(S!,x,). Consequently, d
defines a function from n,(S!, x,) to Z. Note that if the initial point of the lift
of  is taken to be the integer k, then the terminal point of the lift will be
k 4 d(«). Consequently, if « and f§ are loops at x,, then d(a- ) = d(«) + d(p).
In other words, we have produced a homomorphism

d: (S, x0) > Z,

called the degree of the loop.

For any integer m in Z there is a path 7 from 0 to m in R. Projecting this
path down to the base, y = exp 7 is a loop at x,, for which d(y) = m; hence d
is an epimorphism. On the other hand, let « and B be loops in S' with
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d(a) = k = d(p). So the lifts & and f are paths in R with initial point 0 and
terminal point k. Define a function

H:[0,1] x [0,1]-R

by H(t,s) = (1 — s)d(t) + s[i(t), 0 < s < 1. Since R is convex, this is well de-
fined and continuous. This homotopy from & (s = 0) to f (s = 1) fixes the
endpoints at 0 and k throughout the deformation. Then exp H is a based
homotopy from a to f. Therefore (o) = {f), and d is a monomorphism.
This completes the proof of the following proposition.

4.6 Proposition. The degree of a loop defines an isomorphism

d: . (S', x0) = Z. O

For the next two calculations, we need an important property of maps
between finite CW complexes: If X is a k-dimensional finite CW complex, 4
is a subcomplex, and f: (X, A) — (Y, B) is a map of finite CW pairs, then f is
relatively homotopic to a map taking X into the k-skeleton of Y. This is a
consequence of the Cellular Approximation Theorem (Theorem 2.25).

Now suppose {a) is an element of 7,(S", x,), n > 2. If w is a point in the
interior of an n-cell of S”, the preceding property may be applied to produce
a representative o’ of {a) such that w does not lie on the loop «’. Removing
w from S" and projecting stereographically from that point identifies {S" — w}
with R". Since R" is convex, the loop in R" resulting from o’ may be deformed
into the constant loop. Translating the homotopy back to {S" — w} estab-
lishes that o is homotopically trivial, and {(a) = {e)>. So the fundamental
group of §" is trivial for n > 2.

Note that this same argument may be used to show that if & and § are
paths from y, to z, in 8", n > 2, then & is homotopic to f§ via a deformation
keeping the ends fixed at y, and z,. This observation may be applied to
calculate the fundamental group of real projective space.

Suppose () € n,(RP(n), x,), represented by the loop p. Using the
covering space

7. (8", yo) = (RP(n), x,)

we lift § to a path f in S” with initial point y,. The terminal point of § will be
either y, or — y, since ©71(xo) = {yo, — Yo }. Define a function

o: 1, (RP(n), xo) > Z, = {1, — 1} by

1 ifthe terminal point of § is y,
1 if the terminal point of §is — y,.

o((By) = {_

For clarity we are writing the group Z, multiplicatively. As before, the func-
tion ¢ is a homomorphism, and the existence of a path in S" from y, to —y,
shows ¢ is an epimorphism.

Given two loops 8 and y in RP(n) that lift to paths § and § with the same
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terminal point, the observation above establishes a homotopy from § to 7 in
§", and subsequently from f to 7 in RP(n). Therefore ¢ is also a mono-
morphism. We now summarize these observations.

4.7 Proposition. For n > 2,

nl(S"»YO) = 1’
and

n(RP(n),xo) = Z,. O

EXERCISE 5. Use the covering space q: R?> - T2 to prove that

n(T%xo)x Z x Z.

Some of the results expressed previously in terms of covering spaces may
now be reformulated in the framework of fundamental groups and induced
homomorphisms.

4.8 Proposition. If p: X — X is a covering space, then the induced homomor-
phism

p*: 7‘1()?,320) - 751(X,x0)
is a monomorphism.
Proof. Suppose § is a loop at X, in X with p.({F>) trivial in 7, (X, x,). That
is, there exists a homotopy in X from pj to the constant loop. By Proposition

1.3, this homotopy lifts to a homotopy in X between 7 and the constant loop
at X,. Thus {7 is trivial in (X, X,), and p, is a monomorphism. O

4.9 Theorem. If p: X — X is a covering space, Y is pathwise connected, and
f: Y > X is a continuous_function, then a necessary and sufficient condition
for the existence of a lift f: Y — X is that f,(n,(Y, o)) S p,(n,(X, X¢)).

Proof. The necessity of the condition is evident, since the existence of a lift f
means the following diagram is commutative.

(X, %)

/

S
(Y, yo) — (X, x,).

Px

Since f, = p*f*, the image of f, is contained in the image of p,,.

Now suppose that f,(n,(Y, y,)) p*(nl().(', Xy)), and let y be a point of Y.
Pick a path w in Y with »(0) = y, and w(1) = y. Then fw is a path in X from
Xo to f(y). Lift this path in X to a path & in X with initial point %,. Define
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f(y) = @&(1). This is our candidate for a lifting of the map f. As it is defined, it
is clear that f = pf (Figure 4.8).

We must show that the function f is well defined and continuous. First we
show that the definition of f(y) is not dependent on the choice of the path w.
Suppose that o’ is another path from y, to y. Then (o) w is a loop at y,.
The image under f,, of this loop is a loop f at x,. Thus there is a loop B at %,
with p,({f>) = (B, that is, pf and f are homotopic.

Take a homotopy between these loops in X, and lift the homotopy to X
with initial point %,. Since the loop f is closed, the lift of # must also be
closed. Another way of expressing this is that, the lifts of f(w) and f(®’),
which begin at X, must both end at the same point in X. This means that
@(1) = @'(1), so the image of y under f is well defined.

To see that f is continuous, let y and w be as above, and take an open set
U about f(y) in X.Since pis a covering map, we may assume that p maps U
homeomorphically onto a connected open set p(U). Then f~!(p(U)) is an
open set about y. Y is locally pathwise connected, so there is a pathwise
connected open set V about y contained in f ~!(p(U)). If z is any other point
of V, there is a path in V from y to z. Composing this path with v produces
a path from y, to z. Since the definition of f (z) does not depend on the choice
of path from y, to z, we may use this composition; hence it is clear that
f(z) € U. This proves that f is continuous, so we have established the exis-
tence of a lifting. |

This theorem is remarkable in that it describes an algebraic condition that
is sufficient for the existence of a lifting of f. Practically all of the applications
we have encountered have involved necessary algebraic conditions for the
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existence of certain topological features. This theorem is appealing in that it
not only describes a sufficient condition for the existence of a lift, but also
provides a concise description of the lift itself.

ExaMPpLE. For any positive integer g, we earlier defined w, to be the standard
map of degree g on S!

Wy St st

given in complex coordinates by taking z € S* into z4% For this covering space
the image of wg.: m,(S', xo) = 7, (S', x,) is the subgroup gZ. Consequently, if
g > 1, no map

w,: St - St

lifts through w, unless g divides r. In particular, taking r = 1, w, is the iden-
tity and there is no “cross section” of the map w, for g > 1, i.e., there is no
map s: $* — S' such that w,s = the identity.

An obvious question that must be considered is how the choice of the
basepoint x, in X affects the fundamental group. Clearly, 7, (X, x,) can carry
information only on the path component containing x,. So assume that X is
pathwise connected, and let x; be another point of X. Select a path « in X
with 2(0) = x, and x(1) = x, (Figure 4.9).

Given a loop f based at x,, we produce a loop at x, by taking the compo-
sition o~ ! Ba. Note that if § is modified to §’ via a homotopy based at x,, then
composing this homotopy with « and a~! as above shows that the loops
2~ ' f'a and 27! o are homotopic, based at x,,. The correspondence f — o ~* fu
therefore defines a function

h1: Tcl(szl) - nl(XaxO)'

4.10 Proposition.

(@) h, is an isomorphism of groups.

(b) If o is another path from x, to x, which is homotopic to o via a homotopy
fixing the endpoints, then h, = h,,.

(¢) If a7V is defined by a™'(t) = a(1 — ¢t), then (h,)™" = h,..

frd

Figure 4.9
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Proof. We prove only that h, is one-to-one, leaving the remaining parts as an
exercise. Suppose f is a loop at x, with k() homotopically trivial at x,. So
there exists a homotopy based at x, between a~* S and e, the constant path
at x,. To see that f§ is homotopic to e,, we modify f§ through several steps.

First note that as loops at x,, # is homotopic to (xo™*)B(xec™*). This com-
position may be reassociated as a(a ' fa)a~! within the same homotopy class
at x,. Now apply the homotopy from (¢! ) to e, to show the composition
is homotopic to a(ey)a~!. Finally, note that a(ey)a™" as a loop at x, is
homotopic to e, .

In summary, if h,({f>) = 1, then {f) = 1 in 7, (X, x,). O

EXERCISE 6. Prove the remaining parts of Proposition 4.10 (a), (b), and (c).

We look briefly at an example to see that if a path y from x, to x, is not
homotopic to «, then h, need not be the same isomorphism as h,. Consider
X = 8§, v S, with its covering space q: L - S, v S,. Let x, be the point of
intersection of the two circles, and let x, be antipodal to x, on the horizontal
circle (Figure 4.10).

Let « be the horizontal path from x, to x; which lifts in L to the segment
from (0,0) to (1/2,0). Let y be the path from x, that traverses the vertical
circle once and then follows o from x, to x, lifting in L to the segment from
(0,0) to (0, 1) to (1/2,1).

Now take f to be the loop at x, traversing S, once in the positive direction.
Note that h,(B) = «~!fa, as a loop at x,, lifts in L to a path from (0,0) to
(1/2,0) to (3/2,0) to (1,0). On the other hand, h,(8) = y~' By, as a loop at x,,
lifts in L to the path from (0,0) to (0,1) to (1/2,1) to (3/2,1) to (1, 1) to (1, 0).

Although these paths in L have the same endpoints, they are not
homotopic. If h,(f) and h,(B) were homotopic as loops at x,, the homotopy
between them could be lifted to L. So for this example the isomorphisms h,
and h, are not the same.

Note that if we take x,; = x4, then h, becomes an inner automorphism of
7,(X, X,), that is

- - : -
—_——
0,0) (1,0)

Figure 4.10
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ho(KBY) = <adyTH B Ca).
Of course, if 7, (X, x) is abelian, then any such isomorphism is the identity.
Now suppose p: X — X is a covering space in which X is pathwise
connected. The lifting theorem (4.9) was concerned with the image of the
homomorphism
Dy- 751()?7)20) - (X, Xg).

Is this subject to change with the choice of %, in p~'(x,)? In general the
answer is yes, but the variation can be precisely characterized.

4.11 Proposition. If p: X > X isa covermg space with X pathwise connected,
then as y ranges over the points of p~ Y(xo), p*(nl(X y)) ranges over all conju-
gates of p, (m,(X, %) in 7y (X, x,).

Proof. Let y € p~!(x,) and select a path & in X from %, to y. Then « = pais a
loop at x,, and

Py (X, 9)) = py(ha(my (X, %)
= ha(p*(nl(g’ 20))
shows that p*(nl()?,y)) is a conjugate of p*(nl()?,io)).

On the other hand, let {¢) e n,(X,x,) and consider the conjugate
P> Py (X, %)) {@. Lift the loop n = ¢~ to a path 7 in X with initial
point %,. Taking y = 7(1), we see that

Pa(mi (X, ) = pylhym, (X, %0))
= h,,(P*(m(X, Xo)))
= Py (X, %)) 7!
= (> pulmy (X, %0)) (9.
So each conjugate of p*(nl()‘?, Xy)) in 7, (X, x,) is an image for some choice
of y. O

This result allows us to state the lifting theorem (Proposition 4.9) in a more
general form:

4.12 Corollary. If p: X » X isa covering space, Y is pathwise connected, and
f: Y > X is acontinuous Junction, then a necessary and sufficient condition for
the existence of a lift f Y > X is that S(@ (Y, 90)) be contained in some
conjugate of p,(m,(X, %)) O

Note that two choices for y in p~'(x,) may yield the same conjugate in
7;(X,X0). In fact, all y will yield the same conjugate in the case that
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(7 (X, %,)) is normal in 7, (X, x,). In particular, this is the case if 7, (X, x)
is abelian.

From our examples we have seen a family of connected covering spaces
with base space S*:

(a) For each positive integer m, the m-fold covering
W, ST —> St and
(b) The exponential map
exp: R — S

It is natural to ask how these are related, or, more specifically, when does
there exist a mapping of covering spaces that preserves the covering relation-
ship? The answer will rely on the lifting theorem, but first we consider the
more general setting.

Suppose q: W — X and p: X — X are covering spaces over the same base
space X. A homomorphism_of covering spaces (or a map of covering spaces) is
a continuous function f: W — X, such that pf(W) = q(W) for every w in W. In
other words, the following triangle is commutative

The homomorphism f is an isomorphism if there exists a homomorphism
h: X - W with fh and hf the respective identity maps.

It will supplement our understanding of covering spaces if we can establish
how such mappings arise and how they are related to the subgroups of the
fundamental group of the base, X. For this analysis we will consider only
covering spaces in which X is pathwise connected.

413 Lemma. If ¢ W - X and p: X — X are covering spaces over a pathwise
connected base X, and f: W — X is a mapping of covering spaces in which f
maps W onto X, then f itself is a covering space.

Proof. Given % in X, we must produce a fundamental open set for f about X.
Since both ¢ and p are covering maps, there exist about p(%) fundamental
open sets V; for g and V, for p. Let U be the component of V; n V, contaning
p(%), and consider p~*(U). Each component of p~*(U) is mapped homeomor-
phically onto U via p. let U be the component of p~*(U) containing .

Now f~}(p~}(U)) = g }(U), and each component of this set is mapped
homeomorphically onto U via g. Since f is onto, at least one of these compo-
nents must contain a point of f ~(%). By composing homeomorphisms we see
that each component of f ~1(U), i.e., those components of ¢! (U) that contain
a point of f 7!(%), is mapped homeomorphically onto U. Thus f is a covering
map. O
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p(3) = q(W)
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Figure 4.11

4.14 Lemma. If g: W — X and p: _X — X are covering spaces over a pathwise
connected base X in which both W and X are pathwise connected, then any
mapping of covering spaces f: W — X is itself a covering space.

Proof. By the previous lemma it suffices to show that f is onto. Given % in X,
select a point w in ¢~'(p(%)) (Figure 4.11). Since X is pathwise connected,
there is a path ¢ in X from f(W) to %. Projecting this path down into X gives
a path based at g(W) = p(X). There is a unique lift of this path to W with
initial point w. Call this path {. Now f{ and ¢ are paths in X with initial point
f(W), projecting via p into the same path in X. By the uniqueness of lifts, 1
and ¢ must be the same path. Thus X = ¢(1) = f({(1)) is in the image of f, and
f is onto.

We conclude that f: W — X is a covering space. O

Note that these two results place significant limitations on the continuous
maps from W to X that can be homomorphisms of covering spaces. The
following propositions provide further restrictions, as well as specific con-
ditions for the existence of a homomorphism.

4.15 Proposition. If g: W > X and p: X — X are covering spaces with W and
X pathwise connected, and fg: W — X are homomorphzsms of covering spaces
for which g(W) = f(W) for some point W in W, then f = g.

Proof. Since f and g are both “liftings” of ¢ to X, and since W is pathwise
connected, we may apply Proposition 4.2. In other words, if f and g agree at
a point, they are identical on W. O

In the special case that W = X, an isomorphism of the covering space is
called an automorphism. The following observation is an immediate conse-
quence of Proposition 4.15:
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4.16 Corollary. If 1 XX is an automorphism of a pathwise connected
covering space p: X — X, and f is not the identity, then f is fixed-point free.
(|

4.17 Proposition. Let q: W — X and p: X — X be covering spaces with W
pathwise connected. 1If g, (m, (W, W) is contained in a conjugate of
p*(nl(X %0)), then there exists a homomorphism f: W —> X.

Proof. This follows directly from the Lifting Theorem (4.9). Note that we may
not be able to require that the homomorphism take w, into X,. O

A covering space p: X - X is regular if, for each closed path o in X, either
all lifts of o« to X are closed or no lift of « is closed.

EXERCISE 7. (a) Let p: X->Xbea covering space with X pathwise connected. Then
prove that (X, p) is regular if and only if for any points £, and X, in p~!(xo) there is an
automorphism of (X, p) taking %, into X,

(b) Show that the covering space p: X - X, with X pathwise connected, is regular
if and only if p*(nl(X X0)) = pyl(m (X %)) for every %, and %, in p~ Y(xo).

(c) Find an example of a covering space, with X pathwise connected, which is not
regular.

4.18 Proposition. Let q¢: W > X and p: X - X be covering spaces with w
pathwise connected. There is a homomorphism f: W — X with f(Wo) = X, if
and only if q,(n,(W,W,)) is contained in p,(n,(X, X,)). OJ

We can summarize these results in the following theorem:

4.19 Proposition. Two pathwise connected covering spaces q: W — X and p:
X > X are _isomorphic if and only if for any two points W, and %, lying above
Xgs G4 (4 W, Wo)) and p*(nl(X Xg)) are conjugate in (X, x).

Proof. If the image subgroups are conjugate in 7, (X, x,), then using Proposi-
tion 4.11, we can change the basepoint in W to W, so that the images of g,
and p, are equal. Applying Proposition 4.18, there exist homomorphisms
f:W > X and h: X > W with f(W,) = %, and h(%X,) = w,. Now by Corollary
4.16 each composition must be the respective identity, since hf(W,) = w, and

Fh(%o) = %o. o
Conversely, an isomorphism f: W — X implies the images of p, and g, are
equal for one choice of basepoints. By Proposition 4.11, varying the base-
points within ¢~ (x,) and p~!(x,) will produce conjugate subgroups as images.
O

At this point we have established that isomorphism classes of pathwise
connected covering spaces of (X, x,) give rise to conjugacy classes of sub-
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groups of n,(X,x,). Furthermore, homomorphisms of pathwise connected
covering spaces (which are themselves covering spaces) correspond to “inclu-
sion” of conjugacy classes, i.e., one conjugacy class is “included” in another if
each subgroup in the first is contained in some subgoup in the second.

There is one remaining piece of the puzzle that is more difficult to resolve:
Given a conjugacy class of subgroups of m,(X, x,), does there exist a covering
space p: X > X with p*(nl(X X)) in this class? We will outline the answer to
this question; for more details see Massey [1967].

The simplest nontrivial case is associated with the conjugacy class of the
subgroup {1}. That is, since Sk is a monomorphlsm we seek a pathwise
connected covering space s: E — X with n,(E,&,) = {1}. Such a covering
space is called a universal covering space because it exhibits the following
universal mapping property: For any covering space p: X — X, there exists a
homomorphism f: (E,s) — (X, p). This holds for (E,s) since s, (n,(E,&,)) =
{1} is a subgroup of every image.

Now suppose 7,(E, &,) = {1}, and let U be a fundamental open set about
X, and V a component of s !(U) mapped homeomorphically onto U by s.
The diagram

~ i ~4 ~
m,(V, &) — n,(E, &)
Glv)s | = Sk

(U, xo) — (X, xo)

is commutative, where i and j are inclusion maps. Now (s]y), is an
isomorphism, and 7,(E,&,) = {1}, so any nontrivial element of 7,(U,X,)
must be in the kernel of j,.. In other words, any nontrivial loop in U, based at
X,, must be homotopically trivial in X. A space with this property at each
point is said to be semilocally simply connected. Put more directly, a space Y
is semilocally simply connected if for each y in Y there exists an open set V
about y such that any loop in ¥, based at y, is homotopic in Y to the constant
loop at y.

ExERrCISE 8. Find an example of a space Y that is not semilocally simply connected.

The preceding discussion shows that if X fails to be semilocally simply
connected, then X will not have a simply connected covering space. How-
ever, there are examples of universal covering spaces, i.e., covering spaces
with the universal mapping property, in which the total space is not simply
connected. See Spanier [1966] for a specific example.

For our purposes we will assume the space X is semilocally simply con-
nected; this is the case for all manifolds and finite CW complexes. So given a
pathwise connected base (X, x,), consider the set of all paths in X with initial
point xo. For any point x, in X, the paths from x, to x, fall into distinct
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homotopy classes (with endpoints fixed). The homotopy classes of paths be-
come the points of the space E. Take &, to be the class of the constant loop
at x,. The function s: E — X assigns to a homotopy class the endpoint x,
in X.

Our assumptions regarding the local properties of X allow a topology to
be introduced in E so that s is continuous and is, in fact, a covering space. To
see why E will be simply connected, take a nontrivial loop at x, in X. This
represents a homotopy class, hence a point in E lying above x,, but not equal
to &,. Thus any nontrivial loop at x, lifts to a nonclosed path in E. Since Sy
is a monomorphism, there can be no nontrivial loops at &, in E. Therefore
E is simply connected.

Now suppose s: E — X has ,(E,&,) = {1} and let G be a subgroup of
7,(X, Xo). Each element g in G produces, via lifting the path to &;, a point ge,
in s7'(x,), and consequently an automorphism of E. This action of G on E is
particularly nice, due to Corollary 4.16 and the properties of E. The quotient
space E/G admits a map

r: E/G—»X

that is a covering space, and r, (7, (E/G, {&,})) is equal to the subgroup G. For
example, start with a loop « in G. Lift « to a path in E from &, to &,. These
two points are identified in the quotient E/G, and the resulting loop is
mapped via r, to a.

We summarize these observations in the following theorem. Again, for a
complete proof, see Massey [1967].

4.20 Theorem. For a semilocally simply connected space (X, x,) the isomor-
phism classes of pathwise connected covering spaces of (X, x,) are in one-to-
one correspondence with the conjugacy classes of subgroups of m,(X,x,). [

ExaMpLE. We return to the connected covering spaces of S'. Writing
n,(S', xg) & Z multiplicatively with generator 0, for each positive integer n
there is a subgroup nZ = {6"|k € Z}. Together with {1}, this is the complete
set of subgroups of 7, (S?, x,), and each is its own conjugacy class. For m > 0,
w,,: S' — S, the m-fold covering, has

image(w,.«) = mZ < n,(S!, x,).

Of course, exp,, has image {1}. Consequently, as m ranges over all positive
integers, we produce all isomorphism classes of connected covering spaces of
S!. Furthermore, there is a homomorphism of covering spaces

f1(8Y ) = (8 o)
if and only if k divides m.
Exercist 9. If p: X - X is a covering space with X pathwise connected, define the

multiplicity of p (or the number of sheets of p) to be the cardinality of {p~H{xo)}. Prove
that the multiplicity of p is the index of p,(m,(X, %,)) in m (X, x,).
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There is a clear relationship between the fundamental group and the first
singular homology group for a pathwise connected space. As we have seen,
both assign a group to a space and a homomorphism of groups to a continu-
ous map of spaces. Furthermore, homotopic maps are seen to induce the
same homomorphism. For certain familiar spaces, e.g., spheres, projective
spaces, and the torus, the fundamental groups are isomorphic to the homology
groups, so one might begin to believe there is little new information con-
tained in the fundamental group. The first major distinction lies in the obser-
vation that fundamental groups need not be abelian. Indeed, a space as
simple as the join of two circles readily produced a product of loops that do
not commute.

A less obvious distinction lies in the absence of a process in the fundamen-
tal group that is analogous to the subdivision procedure in singular
homology. While a loop in a space bears a striking resemblance to a singular
1-simplex, it cannot be subdivided into smaller loops the way a simplex may
be decomposed into smaller simplices. This difference means we can expect
no Mayer—Vietoris sequence as an aid to making computations. However,
there is an analogous theorem for the fundamental group that will be
discussed later in this chapter.

For now let us focus attention on the specific connections betwen 7n,(X, x)
and H,(X). Given a loop a at x, in X, we think of « as a map of pairs
a:(1,01) = (X, xq), where I = [0, 1]. Then o induces a homomorphism on the
first relative homology groups

o, Hy(I,e1) > H, (X, X,).

If o denotes a chosen generator for H, (I, ¢I), corresponding to an orientation
for the interval I, then the element « (o) in H, (X, x,) suggests a function from
loops at x, into H, (X, x,). Note that if o’ is a loop at x,, based homotopic to
o, then a, = o}, and a,(0) = o, (0).

Thus we have a function

h:m (X, x4) = H (X, x)

called the Hurewicz homomorphism. To see that h actually carries the product
in 7, into the sum in H,, we return to the level of singular cycles and chains.
Note that h({x)) may be represented by the singular 1-simplex a: I — X, a
relative 1-cycle in the pair (X, x,). Similarly, for () in (X, x,) we think of
p as a relative 1-cycle. The product (o) () is assigned by h to the homology
class represented by the relative 1-cycle dictated by « on the first half of the
interval and by f on the second half. To establish that this cycle is homolo-
gous to the sum of the cycles representing h(<a>) and h({B)), consider the
relative singular 2-simplex depicted in Figure 4.12.

Along the edge from v, to v, the value is (o> (). The segment, A, from the
midpoint of this edge to the vertex v, is mapped into x,. The edge from v, to
v, is mapped via «, suitably parameterized, as is each ray emanating from v,
to a point on A. Similarly, the edge from v, to v, is mapped via B, as is each
ray starting at a point of 4 and ending at v,. The resulting singular 2-simplex
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Figure 4.12

has as its boundary a relative 1-cycle representing h({a) {f>) — h({a)) —
h({B>). Thus

h: 7y (X, x0) = Hy (X, x,)

is a homomorphism of groups.

4.21 Proposition. The Hurewicz homomorphism
h: 7y (X, x0) = Hy (X, x0)

is an epimorphism with kernel the commutator subgroup of n,(X, x,).

Proof. To see that h is an epimorphism, suppose 7 is a relative 1-cycle in
(X, x¢). Then 7 is a finite sum of singular 1-simplices

T= Zmi¢i

where dt = 0. Note that, for each i, d¢;, is the difference of two 0-simplices, i.e.,
the algebraic difference of two points in X. The fact that ot = 0 in the relative
chain group means the algebraic sum of all points outside of {x,} is zero.

Consider the set of all 0-simplices arising from the relative 1-chain 7. We
think of each of these as a point in X. For each 0-simplex y; in this finite set,
choose a path w; from x, to y;. This can be done since X is pathwise con-
nected. If y, happens to be x,, we choose the path to be constant. Call this the
collection of “vertex paths” from x, to the 1-chain 1 (Figure 4.13).

Now suppose ¢; is a 1-simplex in 7, with d¢; = y, — y,,. The composition
w;'¢;w, is a loop at x, that traverses ¢; in the positive direction. Let f in
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&
Figure 4.14

7,(X, xo) be the product of all such loops arising from 1-simplices in 7, taken
with multiplicity dictated by the coefficients in the associated sum. Let us
intuitively examine h({f>). Since dr = 0, each O-simplex outside x, sums
algebraically to 0. Consequently, the path w,; occurs in § the same number of
times as w; '. Therefore, when viewed as singular 1-simplices, all the vertex
paths in A({f)) sum to 0, and the remaining paths produce 7. Hence
h({B>) = 1, and h is an epimorphism.

To analyze the kernel of h, suppose « is a loop at xy with A(<a)>) = 0. In
other words, when considered as a relative cycle, o is a boundary. So there
exists a relative 2-chain 6 = ) m;¢; in X with 06 = o. As before, we select a
finite family of “vertex paths” from x, to the O-simplices of . Denote the
0-simplices of @ by {z,} and the corresponding vertex paths by {(,} (Figure
4.14). Suppose 0@, = {to,ty) + Lty t,) + {ty,ty) =09 + 0, + 0,. Then
consider the composition

A = (Calazéyz)(glﬂC1)(C1_100C0)-

Note that since this loop arises as the boundary of a 2-simplex, it is
homotopically trivial. The orientation of d¢, dictates a direction along each
edge, and hence a direction along each bracketed loop in the composition 4,.
Reversing the orientation of an edge replaces the loop in the composition
with its inverse.

Now since 00 = «, one of the loops described above must be « itself, with
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the vertex paths constant at x,. We want to consider the product of all such
loops produced in 06, and for clarity we assume that the first loop in the
product is a. Write the product of the loops from 36 in the form

NiN2h3" "N

and note that the composition is trivial in 7,(X, x,). So

O =0y nny 0,

The algebraic sum of the 1-simplices other than « must be 0 since 960 = .
Hence each singular 1-simplex that occurs is expressed in equal numbers
with each orientation. This means that #,%,75--#, is a product of loops in
which a loop and its inverse appear an equal number of times. Consequently,
N1M2M3° 1, must lie in the commutator subgroup, and so must .

Therefore the kernel of 4 is contained in the commutator subgroup. Con-
versely, since H,(X, x,) is abelian, the commutator subgroup of 7,(X, x,) is
contained in the kernel of h. O

As a final topic in this chapter, we consider the problem of computing the
fundamental group of the union of two spaces in terms of the fundamental
groups of each space individually and of their intersection. It has already
been observed that the lack of a process analogous to simplicial subdivision
makes this problem more difficult than the same question for homology
groups. However, the approach we use does involve decomposing a loop into
segments contained in one subspace or the other.

So let X = X, u X, be the union of two open sets with X;, X, and X, =
X, n X, all nonempty and pathwise connected, with x, € X; n X,. The in-
clusion maps of subspaces give rise to the following commutative diagram

(X o Xo) ——— 7;(X 1, %)

(4.22) 2 Jx

Jo*

(X2, X0) (X, X0) .

The first step is to show that m,(X,x,) satisfies a “universal mapping”
property with respect to diagrams of this type.

4.23 Proposition. If G is a group and k, and k, are homomorphisms so that the
following diagram is commutative

m1(X ¢, Xo) s (X 1,X0)

(4.24) o ky
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Figure 4.15

then there exists a unique homomorphism
w:my (X, x0) > G
such that pj . = ky and uj,. = k.

Proof. Let o be a loop in X at x,. Since X, and X, are open, we can find a
finite set of points x4 = yg, 1, .-, ¥m = Xo along o with the property that
each y; lies in X, and the segment 1, ,, from y; to y;,, lies in either X, or X,.
For each point y; select a path §;in X, = X, n X, from x, to y; (Figure 4.15).

Note that for each integer i, 0 < i < m, there is a loop at x, given by
traversing f8;_, from x, to y;,_,, 7; from y,_, to y;, and then 8! from y, back
to x,. Call this loop 0; = B;'7,8,_,. It is clear that 0, lies entirely within either
X, or X,, hence 6, represents an element of the respective fundamental
group.

Define a function

wm(X,x0) > G

by p(2) = k(0,) k,(8,) - k,(0,), where it is understood that k, means either
k, or k, depending on whether 6, lies within X, or X,. Note that there is
some potential ambiguity if ; lies in both X, and X,, but this means 6,
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Figure 4.16

arises from X ,, and the commutativity of (4.24) implies that, in this case, both
choices yield the same result.

Although our intuition strongly supports this definition of u, there are
several questions that must be resolved:

(1) Is this definition of ux independent of the choices of the points y; and the

paths f,?
(2) If @ and o’ are homotopic loops, is u(x) = u(e')?
(3) Is 4 a homomorphism? Does yj,.« = k; and yj,. = k,?
(4) Is p unique with regard to these properties?

First consider a single point y; along «, and suppose another path 7, is
chosen in X, from x, to y; (Figure 4.16). Note that

k*(ﬂi_lf;‘ﬁiﬂ) = k*(ﬁi_l)’iyi_lfiﬁi—l) = k*( i—IVi)'k*(Vi_lfiﬂiﬂ)-
On the other hand
k (ﬂl+lrl+lﬁ)_k (ﬂl+1‘cl+1y yl 1ﬁl *(ﬂl+lrl+ly lﬂ)
= k*(ﬁi+1 T 7)) Lk (B 'Yi)] L

Since 7'y, is a loop in X, and since the diagram (4.24) commutes, the
value of k,, on this loop will be the same, whether k, is k; or k,. Thus

k*(ﬁi_-&lri-klﬁi)'k*(ﬁi—ltiﬂi—l) k (ﬁ;ﬂﬂﬂ?;) k*(Vi—lfiﬁiﬂ)-

So the product will not change when v; is used in place of ;. Repeating this
argument at each y; shows that the product defining u(x) is independent of
the choice of the paths ;.

To see that u is independent of the choice of the points y;, consider once
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Figure 4.17

again the loop B;'t;B;_;. Suppose another point z € X, is added along t,,
separating t; into ¢; and ¢, _,, and ¢ is a path in X, from x, to z (Figure 4.17).

Note that if ;7;8;_, lies in X, then B ¢4 and ¢~ ¢;_, B;_, are both
contained in X;, and

k*(ﬁi_lﬁoiﬂb)‘k*(¢—1¢i—1ﬁi—1) = k*(ﬁi—l(pi¢¢_l(pi—1ﬁi—1) = k*(ﬁi—lfiﬁi—1)-

Thus adding an additional point to the set of {y;} does not change the
value of u(x). More generally, adding a finite number of points to the set, i.e.,
refining the {y;}, leads to the same result. Now given two distinct sets of
choices for the points {y;}, we can consider the mesh of the two sets,
producing a refinement of both. The corresponding definitions of u(x) must
agree since they are both equal to the value computed using the refinement.
Therefore the definition of u(«) is independent of the choice of the points {y;}.

Suppose o« is a loop at x, homotopic to a.

If F: [0,1] x [0,1] — X is a homotopy between « and o', we can subdivide
the unit square so that each small rectangle is mapped by F into either X, or
X, (Figure 4.18). Proceeding one small rectangle at a time, we deform « into
o' through a finite sequence of paths such that each step involves a homotopy
in which the only change occurs within either X, or X,. For such a restricted
deformation, the points {y;} may be chosen so that the value of x is unchanged.
Hence p(a) = p(a'), and p is well defined on 7, (X, x,).

It is clear that uj,. = k; and pj,+ = k,. The verification that y is a homo-
morphism of groups and that u is unique with regard to these properties is
left as an exercise. O
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Figure 4.18

This result should be put in more conventional terms. Given a category C
and a diagram

C —— 5 4
(4.25) fl

B

of objects and morphisms, a solution is an object D and morphisms r and s
making the following diagram commute

C — 5 4
jl rl
B —— D.

A pushout of (4.25) is a solution with the universal mapping property de-
scribed in Proposition 4.23. In other words, it is a solution that admits a
unique, compatible morphism to any other solution.

ExampLEs. (1) In the category of topological spaces and continuous functions,
a space X written as the union of two open subsets X, and X, will produce
a diagram of inclusion maps

X, nX, —— X,
J

X2

whose pushout is X, U X,.
(2) Similarly, if Y is a space and f: S"~! — Y is a map, the pushout of the
diagram
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Sn-l i pr

is the space Y U, D" = Y}.
(3) In the category of groups and homomorphisms, for any groups 4 and
B there is a diagram

{1} —— 4

B

The pushout of this diagram is called the free product of A and B, written
A = B. One must establish the existence of such a group and of the homo-
morphisms A - A* Band B — A = B. An element of A « B can be thought of
asaword(g,,9,,.--,g,) in A and B, a finite sequence of elements, alternating
from one group or the other, with no g; equal to the identity. The product is
defined by juxtaposition followed by coalescence, when appropriate. The
identity element in A % B is the empty word. With this characterization the
homomorphism r assigns an element a € 4 to the word (a), likewise for the
homomorphism s.
More generally, if

C —— A

B

is a diagram of groups and homomorphisms, there exists a pushout G which
is the amalgamated free product (A = B)/H, where H is the normal subgroup
of A B generated by the elements (i(c), [ j(c)]™!), where ¢ € C. For details see
Gray [1973], Massey [1967], or Spanier [1966]. Note that this characteriza-
tion of 4 * B and its amalgamation tracks closely the argument used in prov-
ing Proposition 4.23.

These observations, together with Proposition 4.23, provide a basic tool
for computing fundamental groups.

4.26 Van Kampen Theorem. If X = X, U X, is written as the union of two
pathwise connected open sets with X, n X , pathwise connected, then

T (X, x0)*xm (X5, x
ﬂl(X,Xo)z 1 1 OH 1( 2 O)
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where H is the normal subgroup generated by the words (i,.(2), [i,+(2)] ") for
ainm (X, N X,,Xxg).

Proof. Within a given category, once a pushout is shown to exist, it will be
unique up to isomorphism. This is a direct result of the existence and
uniqueness of a compatible morphism from a pushout to any solution.

The conclusion of Proposition 4.23 may be restated in this setting: A
pushout of the diagram

T (X N X5, %) — (X4, Xo)

ix*

(X2, X0)

is m, (X, x,). Applying the observations in the preceding discussion, this must
be isomorphic to the amalgamated free product of n,(X,, x,) and 7, (X5, x,).
g

4.27 Corollary. If X = X, U X, is the union of pathwise connected open sets
and X, N X, is both pathwise connected and simply connected, then

(X, Xo) & T (X 1, Xo) * 1, (X5, Xo). O

ExaMPLES. (1) Let X = S, v S, be the join of two circles with common point
Xo, and let X', and X, be S, and S, each expanded to include a connected
open set about x, in the other circle (Figure 4.19). Then X; n X, is con-
tractible, and (4.27) may be applied to conclude

nl(szO) ~ 7ILI(SWXO)*7t1(Sh’xO)
rZx*xZ,

the free group on two letters. Denote these generating elements by a and b.

(2) Write the torus T2 as X, U X, where X, is an open disk on T2 and X,
is the complement of a smaller closed disk D < X, (Figure 4.20). Then
(X, x0) & {1}, and X n X, has the homotopy type of a circle. Suppose «
is aloop in X, n X, generating its fundamental group.

Figure 4.19
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Figure 4.20

Figure 4.21

The space X, may be retracted onto S, v S, (Figure 4.21). Note that the
deformation of X, onto S v §, carries the generating loop « onto the prod-
uct aba 'b™' in n,(X 5, x,). Thus in the isomorphism

T (X 15 X0) * (X5, Xo)

nl()(,xo)z H

the resulting group is

nl(Xz,xO) ~Z*Z
H ~ H

where H is the normal subgroup generated by aba™'b~!. Note that
(aba b ™Y)ba = ab,

in fact H is precisely the commutator subgroup of Z * Z. Consequently,
1, (X, x0) = Z®DZ

as we determined previously.
(3) Write RP(2) as S U, D?, where f: S' — S is a map of degree 2. Let X,
be the interior of D%, and let X, be the complement in RP(2) of the center of
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D? (Figure 4.22). Then X, is contractible, and X, retracts onto S'; a
generating loop fin X, n X, is wrapped twice around S* during this retrac-
tion. Hence 7, (RP(2), x,) = ({1} x Z)/H where H is generated by the square
of the generator of the fundamental group of S'. Therefore n,(RP(2), x,) is
cyclic of order 2.

EXERCISE 10. Determine the fundamental group of the Klein Bottle.
ExEeRCISE 11. Describe the universal covering space of the Klein Bottle.

EXERCISE 12. For any positive integer k, find a topological space whose fundamental
group is cyclic of order k.

EXERCISE 13. Determine the fundamental group of CP(n) for each n > 1.

EXERCISE 14. If n > 1, prove that any continuous function g: S" — S' is homotopically
trivial.

EXERCISE 15. Suppose X is a finite CW complex with no cells of dimension 1. What
can you say about the fundamental group of X?

EXERcCISE 16. If X is a finite CW complex of dimension k > 2, with one O-cell, one
1-cell, and no 2-cells, show that 7, (X, x,) is infinite cyclic.

EXERCISE 17. A knot is a simple closed curve imbedded in R*. Two knots K, and K,
are said to be equivalent if there exists an orientation-preserving homeomorphism

s

Figure 4.22

Figure 4.23
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h: {R* — K,} - {R® — K,}. A knot equivalent to an ordinary Euclidean circle in a
plane in R? is said to be unknotted. The group of the knot K is the fundamental group
of R® — K. Clearly, two equivalent knots have isomorphic groups.

(a) Considering S* as the one point compactification of R3, show that for any knot K,
the inclusion {R® — K} < {S® — K} induces an isomorphism of fundamental
groups.

(b) Consider S? as the unit vectors in C2 & R*, and take K to be the unit circle in the
complex plane determined by the first coordinate

K ={(zy,2,) € $*|Iz,| = 1}.

This is, by definition, unknotted. Show that the group of this knot is infinite cyclic.
This unknotted circle K is the core of a solid torus

Tx = {(z1,2,) € 83|z, > = &}
There is an analogous circle
L={(z;,2;)€ S3||22| =1}
at the core of the solid torus
T, ={(z\,2)) € S"'||22|2 =3}
These solid tori intersect in a torus
T=TinT, ={(z1,2,) € $*||z,|* = fand |z,> = }}.

It may help to picture T as a standard torus in R3, with core K the unit circle in the
(x, y)-plane. In this representation, L would lie along the z-axis (Figure 4.23). Now let
N be a knot lying on the torus T that traverses m times in the horizontal (K) direction
and n times in the vertical (L) direction. This is a torus knot of type (m, n).

(c) Use Van Kampen’s Theorem to show that the group of this knot is isomorphic to
(Z «Z)/H, where H is the normal subgroup generated by (a™ b"), a and b the
generators arising from K and L.



CHAPTER 5

Products

In this chapter we introduce the theory of products in homology and
cohomology. Following the Kiinneth formula for free chain complexes, we
state and prove the acyclic model theorem. This is applied to establish the
Eilenberg—Zilber theorem and the resulting external products in homology
and cohomology. When the coefficient group is a ring R, it is shown that the
cohomology external product may be refined to the cup product, giving the
cohomology group the structure of an R-algebra. This structure is computed
for the torus by introducing the Alexander-Whitney diagonal approxima-
tion. Also, a cup product definition of the Hopf invariant is given. Finally, the
cap product between homology and cohomology is defined in anticipation of
Chapter 6.

Suppose that C = {C,,d} and D = {D,, 8} are chain complex. In Chapter 3
we discussed the formation of a new chain complex by tensoring a given
chain complex with an abelian group. We now want to generalize this to give
a procedure for tensoring two chain complexes to form a new chain complex.

Define a chain complex C ® D by setting

(C®D), = z C®D,.
k
The boundary operator on a direct summand
0:C,®D,»C,_,®D,®C,®D,_,
is given by the formula

0(c®d)=0c®d + (—1)’c®dd.

To check that this gives a chain complex, note that

120
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0(c®d)=00c®d + (—1)Pc® 0d)
=00c®d+(—1)"'0c® dd + (—1)0c ® od
+ (= 1)*P(c ® 80d)
=0.

Since the elements (¢ ® d) generate C ® D, it follows that d 0 ¢ = 0.
Note that if f: C - C’ and g: D — D’ are chain maps between chain com-
plexes, there is an associated chain map

f®g:CRD->C' QD

characterized by f ® g(c ® d) = f(c) ® g(d).
Now suppose that C is a free chain complex. The exact sequence

0-Z,(C)>C,-5B,_,(C)—0,

where « is the inclusion, must split because B,_(C) is free. Thus, there exists
a homomorphism

¢: C,— Z,(C)

which is just projection onto a direct summand, that is, ¢ o « = identity on
Z,(0).

We consider the graded groups Z,(C), B, (C), and H,(C) to be chain com-
plexes in which the boundary operators are all identically zero. Denote by ®
the composition ® = 1 o ¢,

c, % 7,05 H,(0),

where 7 is the quotient map. Then @ is a chain map between chain complexes
because

®(dc) = n(dc) = 0 = 0D(c).
5.1 Theorem. If C and D are free chain complexes, the chain map
P®id:C®D->H(C)®D
induces an isomorphism

(¢ ®d),: H,(C® D)~ H,(H,(C)® D).

Proof. Recall the exact sequence of chain complexes and chain maps
0 Z,(C)5CS5B(C)—0,

where ¢ has degree — 1. Since the sequence splits, we may tensor with the
chain complex D and preserve exactness. This yields an exact sequence of
chain complexes and chain maps

0-Z,00®D2%CceDp- 2L B(C)®D -0
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and thus an exact homology sequence
> H,(Z,(C) ® D) =% H,(C® D) ~—%
> H, (Z,(C)® D) >

where (0 ® id), has degree —1 and A is the connecting homomorphism.
On the other hand, the short exact sequence

0-B,(C0)5 Z,(0)5 H(C)>0

(P®id), n_l(B*(C) ® D)

of chain complexes need not split. However, since D is free, exactness will be
preserved in
0-B,(O)®D % Z,(0)® D=5

IO H (C)® D 0.
Passing to the homology groups of these complexes we have the long exact
sequence

(ﬁ@ld)* (1!®ld)*

= H,(B,(C) ® D) — H,(Z,(C) ® D) — H,(H,(C) ® D)
% H,1(B,(C)® D) »

These two long exact sequences
H(B,(O)®D) —— H(Z,(O)®D) ~==% H(C®D)

T R

H,(B,(C)® D) 2% H,(Z,(C)® D) ~2% H,(H,(C)® D)
L H,_(B,(C)® D) —2— H,_,(Z,(C)® D)

A (lf®ld)*

— H,,(B,(O)® D) —— H,(Z,(C)® D)

may be related in such a way that each rectangle commutes up to sign (see
the following exercise). Now the proof of the five lemma (Exercise 4, Chapter
2) only required commutativity up to sign; hence, we apply the five lemma to
conclude that

(® ®id),: H,(C ® D) > H,(H,(C)® D)

1s an isomorphism. This completes the proof. O

EXERCISE 1. Show that in the diagram in the preceding proof each rectangle commutes
up to sign.

This proposition reduces the problem of computing the homology of the
chain complex C ® D to computing the homology of the simpler complex
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H,(C)® D. Note thatif c ® d € H,(C) ® D,, then d(c ® d) = (—1)"c ® dd, so
that up to sign the boundary operator is just

id®d: H,(C)® D, » H(C)®D,_,

Therefore, for p fixed H,(C) ® D is a subcomplex of H,(C)® D, in fact a
direct summand, and we conclude that

H,(H,(C)® D)= ZH »(C)® D).

Now if two boundary operators differ by sign only, it is evident that they
produce the same homology groups. Thus, we may assume that the bound-
ary operator in the chain complex H,(C)® D is id ® 0. Note that the n-
dimensional component of this complex is H,(C) ® D,_,.

Since D is a free chain complex, we are in a position to apply the universal
coefficient theorem, Theorem 3.6, to the chain complex H,(C) ® D. Thus

H,(H,(C) ® D) ~ H,(C) ® H,_,(D) ® Tor(H,(C), H,_,; (D))

Summing these over all values of p, we have completed the proof of the
Kiinneth formula for free chain complexes:

5.2 Corollary. If C and D are free chain complexes, then
H(C®D)~ ¥ HO®HMD® Y Tor(H(CLH(D). O

ptq=n r+s=n—1

ExaMPLE. Suppose c € Z,(C) but ¢ is not a boundary. Suppose further that
r-c = oc’ for some ¢ € C,,, and some minimal integer r > 0, so that ¢ repre-
sents a homology class of order r. Similarly let d € Z,(D) represent a homol-
ogy class of order r so that rd = dd’ for some d’ € D,..,. Then in (C ® D), 4+,
the element (¢’ ® d — (— 1)Pc ® d') is a cycle because

' ®d —(—1)Pe®d)=0c'@d+ (—1\"e’' ®0d — (—1)Poc ®d’

—(=1D*c®od'
=rc®d—c®rd
=r(c®d—-—c®d)

=0.

In this way torsion common to H,(C) and H (D) produces homology classes
inH,,,.;(C®D).

Given spaces X and Y, the Kiinneth formula of Corollary 5.2 may be
applied to the singular chain complexes S.(X) and S, (Y) to give the
isomorphism

H(S(X)®S(Y))x Y HX)®@H,(Y)® ) Tor(H(X),H(Y)).

p+q n r+s=n—1
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We turn now to the problem of relating H,(S,(X) ® S,(Y)) to H,(X x Y), the
homology of the cartesian product of X and Y.

The solution of this problem will be stated in terms of the acyclic model
theorem, a useful tool in homological algebra. To put this result in its proper
setting we require a number of definitions. A category € is

(a) a class of objects,
(b) for every ordered pair of objects a set hom(X, Y), of morphisms viewed as
functions with domain X and range Y,

such that whenever f: X —» Y and g: Y — Z are morphisms, there is an ele-
ment g o f in hom(X, Z). These are required to satisfy the following axioms:

1. Associativity: (ho g)o f =ho(go f).
2. Identity: For every object Y there is an element 1, € hom(Y, Y) such that
if f: X > Yandg:Y— Z are morphisms, then lyo f = fand go 1, = g.

ExamPpLES. (i) The category whose objects are sets and whose morphisms are
functions.

(i) The category of abelian groups and homomorphisms.

(ili) The category of topological spaces and continuous functions.

(iv) The category of pairs of spaces and maps of pairs.

(v) The category of chain complexes and chain maps.

If ¢ and 2 are categories, a covariant functor T: € — & is a function that
assigns to each object X in € an object T(X) in £ and to each morphism
f: X - Y amorphism T(f): T(X)— T(Y) such that

(@) T(1y) = IT(Y)’
(b) T(fog)=T(f)o T(g)

A functor K is contravariant if for f: X - Y, K(f): K(Y) —» K(X) and

(@) K(ly) = ]K(Y)>
(b) K(fog)= K(g)o K(f).

ExampLEs. (1) The correspondence (X,A)— S,(X,A) and [f:(X,A)—
(Y,B)] = [ f4: S.(X,A4) - S.(Y,B)] is a covariant functor from Category (iv)
above to Category (v).

(2) The correspondence X - H"(X;G)and [f: X - Y] > [f*: H(Y;G) >
H"(X;G)] is a contravariant functor from Category (iii) to Category (ii).

Suppose that ¢ and & are categories and T,, T,: ¥ —,2 are covariant
functors. A natural transformation t: T; —» T, is a function which assigns to
each object X in ¥ a morphism 1(X): T;(X) » T,(X) in 2 such that com-
mutativity holds in
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T

LX) —— Ti(Y)

uX) oY)

TZ(X) Tf)
whenever f: X — Y is a morphism in €.

Now fix a category €. Suppose that .# = {M,},., is a specified collection
of objects in 6. .# will be called the models of €. A functor T from % to the
category of abelian groups and homomorphisms is free with respect to the
models ./ if there exists an element e, € T(M,) for each « such that for every
X in % the set

T,(Y)

{T(f)(e,)lo € A, f e hom(M,, X)}

is a basis for T(X) as a free abelian group. A functor T from € to the category
of graded abelian groups is free with respect to the models .# if each T, is,
where T, is the nth component of T.

5.3 Theorem (Acyclic Model Theorem). Let € be a category with models M
and T, T' covariant functors from € to the cateogry of chain complexes and
chain maps, such that T,=0=T, for n <0 and T is free with models /.
Suppose further that H{T'(M,)) = 0 for i > 0 and M, € /. If there is a natu-
ral transformation

©: Ho(T) - Ho(T'),
then there is a natural transformation
¢o: T->T

which induces ®, and furthermore any two such ¢ are naturally chain
homotopic.

Proof. By the hypothesis T,(M,) and T;5(M,) are the respective cycle groups
in dimension zero. Thus, there are epimorphisms 7 and 7' onto the homology
groups:

To(M,) —— Ho(T(M,))
°
Ty(M,) —=— Hy(T'(M,))

Since Ty is free with models .#, there is for each a a prescribed element
e) e Ty(M,). So for each « we choose an element #(el) € Ty(M,) such that
' o gleg) = © o n(e]).

Let f: M, — X be a morphism in 4. Then T(f)(e) is a basis element in
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To(X) and we define ¢(T(f)(e2)) = T'(f)(4(e?)). This defines ¢ on the basis
elements of the free abelian group Ty(X) so there is a unique extension to a
homomorphism

¢: To(X) - To(X).

To check that ¢ induces the original ® on zero-dimensional homology, we
must show that the front face of the followng diagram commutes:

The bottom face commutes by the naturality of ®@. The left and right faces
commute since T(f) and T'(f) are chain maps. The back face and the top
face commute by definition; thus, the front face must also commute.

Since T; is free with models .#, there is for each o a prescribed element
el e T,(M,). From the above, ¢(del) is a well defined element of Tj(M,).
Moreover, since ¢ induces ® on zero-dimensional homology, ¢(e!) must be a
boundary in T;(M,). So let ¢ € T{(M,) with dc = $(de!) and define ¢(el) = c.
Using the above technique we extend ¢ to a homomorphism ¢: T;(X) -
T,(X) for each object X in €.

Suppose ¢ is defined in dimensions less than n, and consider the set {ej|e} €
T.(M,)} given by the fact that T, is free with models .#. By the inductive
hypothesis ¢(de}) is a well-defined element of T,_,(M,). Since it is a cycle and
T' is acyclic in positive dimensions, it is also a boundary. So define ¢(e;) to
be an element of T, (M,) whose boundary is ¢(de;). Once again ¢ may be
extended using the fact that T is free with models .#. This defines ¢ on T(X)
for all objects X in .

EXERCISE 2. Show that for each X in %, ¢: T(X) —» T'(X) is a chain map, and for each
morphism f: X » Y, do T(f) = T'(f) o ¢.

This defines the natural transformation ¢: T — T'. Suppose now that
¢': T —> T' is another such natural transformation, inducing ® on zero-
dimensional homology. For each object X in ¥ we must construct a chain
homotopy 7 : T(X) — T'(X), which is natural with respect to morphisms in
%, having

0T +To0=¢—¢.
We define 7 inductively. Suppose that it has been defined in dimensions less

than n, and recall that T,(X) has basis {T(f)(e;)} as a free abelian group. For
n > 0 the element
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pleg) — #'(e;) — T (Oey)
is a cycle because
Ogle;) — Of'(ey) — 0T (Oey) = poe; — §'de; — (— T 0dey + Pde; — ¢'de;)
=0.

Since T’ is acyclic in positive dimensions, this cycle must bound, so define
T (e?) to be an element of T;,,(M,) whose boundary is (¢(e;) — ¢'(e;) —
F (éel)). Again we extend J to be defined on T(X) for all objects X in % by
using the fact that T is free with models 9. This same technique will work for
the case n = 0 because the cycle ¢(e°) — ¢'(¢?) must bound. This is a conse-
quence of the fact that ¢ and ¢’ induce the same homomorphism (®) on
zero-dimensional homology.

This J gives the desired chain homotopy and is natural with respect to

morphisms of €, so the proof is complete. O

Note: The technique in the proof of Theorem 5.3 is essentially the same as
that used in Theorem 1.10 and Appendix I, although the former is in a more
general context.

EXERCISE 3. Reprove Theorem 1.10 as a corollary to the acyclic model theorem.

We now want to apply this theorem to relate the homology of the chain
complex S, (X x Y)to the homology of S,(X) ® S,(Y). Let % be the category
of topological spaces and continuous functions. (This may easily be general-
ized to the category of pairs of spaces and maps of pairs.) Denote by ¢ x €
the category whose objects are ordered pairs (X, Y) of objects in ¢ and whose
morphisms are ordered pairs (f, f'} of morphisms in € with, f: X - X’ and
f1 Y > Y. Let .4 be the set of all pairs (¢7,6%), p, ¢ > 0in € x ¥ where o*
is the standard k-simplex. Define two functors from € x € to the category of
chain complexes and chain maps by

T(X,Y)=S,X x Y) and T'(X,Y)=S,(X)® S,(Y).

Both of these functors are free with models .#. Furthermore, both have
models acyclic in positive dimensions.

The path components of X x Y are of the form C x D, where C and D are
path components of X and Y, respectively. As a result there is a natural
isomorphism

Ho(X x Y) 3 Ho(S,(X) ® S,(Y))

because Hy(S,(X) ® S,(Y)) = Hy(X) ® Hy(Y) by the Kiinneth formula of
Corollary 5.2.

From the natural transformations ® and ®~! we apply the acyclic model
theorem, Theorem 5.3, in each direction to conclude that there exist chain
maps
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P 5(X x V)= S (X)®S,.(Y)

and B
$: S (X)® S, (Y) - S, (X x Y)

that induce ® and ® !, respectively, in dimension zero.

Thus, ¢ o ¢ is a chain map from Sx(X) ® S,(Y) to itself inducing the iden-
tity on zero-dimensional homology. But the identity chain map also has this
property, so by Theorem 4.3, ¢ o ¢ is chain homotopic to the identity. Simi-
larly the composition ¢ o ¢ is chain homotopic to the identity on S, (X x Y).
Therefore

byt Ho(X X Y) > H,(S,(X) ® S5,(Y))

is an isomorphism with inverse ¢,. This completes the proof of the
Eilenberg—Zilber theorem:

5.4 Theorem. For any spaces X and Y and any integer k there is an
isomorphism

$y: H(X X Y) = Hi($,(X) ® S,(Y)). O

By combining Theorem 5.4 and Corollary 5.2 we have established the
Kiinneth formula for singular homology theory:

5.5 Theorem. If X and Y are spaces, there is a natural isomorphism

H(X xY)~ ¥ H(X)®H® Y Tor(H(X),H/Y)

p+q=n r+s=n-1

for each n. O

Suppose now that we have fixed a natural chain map
$:5,(X x V) S (X)® S,(Y)

for any spaces X and Y with the above properties. The composition
ox'!
Hp(X) ® Hq(Y) - Hp+q(S*(X) ® S*(Y)) I Hp+q(X X Y)9

where the first homomorphism takes {x} ® {y} into {x ® y}, is called the
homology external product. The image of {x} ® {y} under the composition is
usually denoted {x} x {y}. From the Kiinneth formula we may conclude
that this is a monomorphism for any choice of p and q. In fact the Kiinneth
formula for singular homology may be restated as a split exact sequence

0- Y H(X)®H(Y)>H(X x Y)» ¥ Tor(H,(X),H(Y)) -0,

p+q=n r+s=n—1

where the monomorphism is given by the external product.

Our primary purpose now is to construct the analog of this in cohomol-
ogy, that is, a product



5. Products 129

HP(X;G,)® H(Y;G,) » H"* (X x Y;G, ® G,).

If «eS”(X;G,) and feSUY;G,), then a:S,(X)— G, and B:S,(Y)— G,
are homomorphisms. Denote by « x § the homomorphism given by the
composition

SyeqlX x V)5 5,(X)®5,(1) 2256, ® G,,

where « ® f is defined to be zero on any term not lying in S,(X) ® S,(Y).
Thus, o x f e SP*9(X x Y;G, ® G,). This defines an external product on
cochains

SP(X;G) ® SUY;G,) > SPHX x Y;G; ® Gy).
5.6 Proposition. If « € S?(X;G,) and € SU(Y;G,) are cochains and a x f <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>