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Preface to the Second Edition 

The 20 years since the publication of this book have been an era of continuing 
growth and development in the field of algebraic topology. New generations 
of young mathematicians have been trained, and classical problems have 
been solved, particularly through the application of geometry and knot 
theory. Diverse new resources for introductory coursework have appeared, 
but there is persistent interest in an intuitive treatment of the basic ideas. 

This second edition has been expanded through the addition of a chapter 
on covering spaces. By analysis of the lifting problem it introduces the funda
mental group and explores its properties, including Van Kampen's Theorem 
and the relationship with the first homology group. It has been inserted after 
the third chapter since it uses some definitions and results included prior to 
that point. However, much of the material is directly accessible from the same 
background as Chapter 1, so there would be some flexibility in how these 
topics are integrated into a course. 

The Bibliography has been supplemented by the addition of selected books 
and historical articles that have appeared since 1973. 
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Preface to the First Edition 

During the past twenty-five years the field of algebraic topology has experi
enced a period of phenomenal growth and development. Along with the 
increasing number of students and researchers in the field and the expanding 
areas of knowledge have come new applications of the techniques and results 
of algebraic topology in other branches of mathematics. As a result there has 
been a growing demand for an introductory course in algebraic topology 
for students in algebra, geometry, and analysis, as well as for those planning 
further work in topology. 

This book is designed as a text for such a course as well as a source for 
individual reading and study. Its purpose is to present as clearly and con
cisely as possible the basic techniques and applications of homology theory. 
The subject matter includes singular homology theory, attaching spaces and 
finite CW complexes, cellular homology, the Eilenberg-Steenrod axioms, 
cohomology, products, and duality and fixed-point theory for topological 
manifolds. The treatment is highly intuitive with many figures to increase the 
geometric understanding. Generalities have been avoided whenever it was 
felt that they might obscure the essential concepts. 

Although the prerequisites are limited to basic algebra (abelian groups) 
and general topology (compact Hausdorff spaces), a number of the classical 
applications of algebraic topology are given in the first chapter. Rather than 
devoting an initial chapter to homological algebra, these concepts have been 
integrated into the text so that the motivation for the constructions is more 
apparent. Similarly the exercises have been spread throughout in order to 
exploit techniques or reinforce concepts. 

At the close of the book there are three bibliographical lists. The first 
includes all works referenced in the text. The second is an extensive list of 
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x Preface to the First Edition 

books and notes in algebraic topology and related fields, and the third is a 
similar list of survey and expository articles. It was felt that these would 
best serve the student, teacher, and reader in offering accessible sources for 
further reading and study. 
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CHAPTER 1 

Singular Homology Theory 

The purpose of this chapter is to introduce the singular homology theory of 
an arbitrary topological space. Following the definitions and a proof of 
homotopy invariance, the essential computational tool (Theorem 1.14) is 
stated. Its proof is deferred to Appendix I so that the exposition need not be 
interrupted by its involved constructions. The Mayer-Vietoris sequence is 
noted as an immediate corollary of this theorem, and then applied to com
pute the homology groups of spheres. These results are applied to prove a 
number of classical theorems: the nonretractibility of a disk onto its bound
ary, the Brouwer fixed-point theorem, the nonexistence of vector fields on 
even-dimensional spheres, the Jordan-Brouwer separation theorem and the 
Brouwer theorem on the in variance of domain. 

If x and yare points in IR", define the segment from x to y to be {(I - t)x + 
tylO ::; t ::; I}. A subset C ~ IR" is convex if, given x and y in C, the segment 
from x to y lies entirely in C. Note that an arbitrary intersection of convex 
sets is convex. If A ~ IR", the convex hull of A is the intersection of all convex 
sets in IR" which contain A. 

A p-simplex s in IR" is the convex hull of a collection of (p + 1) points 
{xo, ... ,xp} in IR" in which Xl - XO, ••• , xp - Xo form a linearly independent 
set. Note that this is independent of the designation of which point is xo. 

1.1 Proposition. Let {xo, ... , x p} ~ IR". Then the following are equivalent: 

(a) Xl - XO , .•• , xp - Xo are linearly independent; 
(b) if L SiXi = L tixi and LSi = L ti, then Si = ti for i = 0, ... , p. 



2 Homology Theory 

Proof. (a) = (b): If I SiXi = L tixi and LSi = L ti, then 

p 

= I (Si - t;)(Xi - Xo)· 
i=l 

By the linear independence of Xl - XO, ••• , Xp - Xo it follows that Si = ti for 
i = 1, ... , p. Finally, this implies So = to since LSi = L ti. 

(b) = (a): If Lf=l (t;)(Xi - xo) = 0, then Lf=l tixi = (Lf=l t;)xo and by (b) 
the coefficients t 1, ... , tn must all be zero. This proves linear independence. 

D 

Let S be a p-simplex in [Rn and consider the set of all points of the form 
toxo + tlxl + ... + tpxp, where Iti = 1 and ti ~ ° for each i. Note that this 
is the convex hull of the set {xo,"" xp} and hence from Proposition 1.1 we 
have the following: 

1.2 Proposition. IJ the p-simplex s is the convex hull oj {xo,"" xp}, then every 
point oj s has a distinct unique representation in the Jorm L tixi, where ti ~ ° 
Jor all i and Iti = 1. D 

The points Xi are the vertices of s. This proposition allows us to associate 
the points of s with (p + I)-tuples (to, t 1, ... ,tp) with a suitable choice of the 
coordinates t i• 

EXERCISE 1. Let y be a point in s. Then y is a vertex of s if and only if y is not an interior 
point of any segment lying in s. 

If the vertices of s have been given a specific order, then s is an ordered 
simplex. So let s be an ordered simplex with vertices xo, Xl' ... , xp' Define up 
to be the set of all points (to,tl, ... ,tp) E [Rp+l with Lti = 1 and ti ~ ° for 
each i. If a function 

J:up~s 

is given by J(to,"" tp) = L tixi, then J is continuous. Moreover, from the 
uniqueness of representations and the fact that up and s are compact 
Hausdorff spaces it follows that J is a homeomorphism. Thus, each ordered 
p-simplex is a natural homeomorphic image of up- Note that up is a p-simplex 
with vertices xb = (1,0, ... , 0), x~ = (0,1, ... ,0), ... , x~ = (0, ... ,0,1). up is 
called the standard p-simplex with natural ordering. 

Let X be a topological space. A singular p-simplex in X is a continuous 
function 
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Note that the singular O-simplices may be identified with the points of X, 
the singular I-simplices with the paths in X, and so forth. 

If </J is a singular p-simplex and i is an integer with ° ~ i ~ p, define oM), a 
singular (p - I)-simplex in X, by 

Oi</J(tO,···,tp- 1) = </J(tO,t1,···,ti-1,O,ti,···,tp-d· 

Oi</J is the ith face of </J. 
For example, let </J be a singular 2-simplex in X (Figure 1.1). Then, 01 </J is 

given by the composition shown in Figure 1.2. That is, to compute Oi</J we 
embed (Jp-1 into (Jp opposite the ith vertex, using the usual ordering of ver
tices, and then go into X via </J. 

If f: X --+ Y is a continuous function and </J is a singular p-simplex in X, 
define a singular p-simplex f# (</J) in Y by f# (</J) = f 0 </J. Note that if g: Y -+ W 
is continuous and id: X -+ X is the identity map, 

and 

An abelian group G is free if there exists a subset A <;; G such that every 
element g in G has a unique representation 

g = L nx·x, . 
XEA 
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where nx is an integer and equal to zero for all but finitely many x in A. The 
set A is a basis for G. 

Given an arbitrary set A we may construct a free abelian group with basis 
A in the following manner. Let F(A) be the set of all functions f from A into 
the integers such that f(x) =I 0 for only a finite number of elements of A. 
Define an operation in F(A) by (f + g)(x) = f(x) + g(x). Then F(A) is an 
abelian group. For any a E A define a function fa in F(A) by 

fa(x) = g if x = a 
otherwise. 

Then {tala E A} is a basis for F(A) as a free abelian group. Identifying a with 
fa completes the construction. 

For example, let G = {(n1,n2, ... )lni is an integer, eventually O}. Then G is 
an abelian group under coordinatewise addition, and furthermore it is free 
with basis 

(1,0, ... ), (0, 1,0, ... ), (0,0, 1,0, ... ), .... 

For convenience we say that if G = 0, then G is a free abelian group with 
empty basis. 

Note that if G is free abelian with basis A and H is an abelian group, then 
every function f: A --t H can be uniquely extended to a homomorphism f: 
G --t H. 

If X is a topological space define Sn(X) to be the free abelian group whose 
basis is the set of all singular n-simplices of X. An element of Sn(X) is called a 
singular n-chain of X and has the form 

Ln~'r/J, 
~ 

where n,p is an integer, equal to zero for all but a finite number of r/J. 
Since the ith face operator 0i is a function from the set of singular n

simplices to the set of singular (n - I)-simplices, there is a unique extension 
to a homomorphism 

0i: Sn(X) --t Sn -1 (X) 

given by Oi(L n~' r/J) = L n~' Oir/J. Define the boundary operator to by the 
homomorphism 

given by 
n 

0= 00 - 01 + O2 + ... + (-INn = L (-l)ioi · 
i=O 

1.3 Proposition. The composition 0 0 0 in 
i' i' 

Sn(X) --t Sn-l(X) --t Sn-2(X) 

is zero. 


