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This book is dedicated to Alain Bensoussan, Ivar Ekeland, Pierre-Marie Larnac 
and Francine Roure, in memory of the adventure which brought us together 
more than twenty years ago to found the U.E.R. and the Centre de Recherche 

de Mathematiques de la Decision (CEREMADE). 
Jean-Pierre Aubin 

Doubtless you have often been asked about the purpose of 
mathematics and whether the delicate constructions which we 
conceive as entities are not artificial and generated at whim. 
Amongst those who ask this question, I would single out the 
practical minded who only look to us for the means to make money. 
Such people do not deserve a reply. 

Henri Poincare 
La Valeur de La Science 
Chapter V 

In his use of mathematical techniques to study general economic 
phenomena relating to countries or individuals Mr. Leon Walras 
has truly instituted a science. 

Charles Peguy 
Un economiste socialiste, Mr. Leon Walras 
La Revue Socialiste, no. 146, 1897 

It may be that the coldness and the objectivity for which we 
often reproach scientists are more suitable than feverishness and 
subjectivity as far as certain human problems are concerned. It 
is passions which use science to support their cause. Science does 
not lead to racism and hatred. Hatred calls on science to justify 
its racism. Some scientists may be reproached for the ardour with 
which they sometimes defend their ideas. But genocide has never 
been perpetrated in order to ensure the success of a scientific theory. 
At the end of this the XXth century, it should be clear to everyone 
that no system can explain the world in all its aspects and detail. 
Quashing the idea of an intangible and eternal truth is possibly not 
the least claim to fame of the scientific approach. 

Fran~ois Jacob 
Le Jeu des possibL(~s 
Fayard (1981) p. 12 

I enjoy talking to great minds and this is a taste which I like to instil 
in my students. I find that students need someone to admire; since 
they cannot normally admire their teachers because their teachers 
are examiners or are not admirable, they must admire great minds 
while, for their part, teachers must interpret great minds for their 
students. 

Raymond Aron 
Le Spectateur engage 
Julliard (1981) p. 302 



Foreword 

By Way of Warning 

As in ordinary language, metaphors may be used in mathematics to explain a 
given phenomenon by associating it with another which is (or is considered to 
be) more familiar. It is this sense of familiarity, whether individual or collective, 
innate or acquired by education, which enables one to convince oneself that one 
has understood the phenomenon in question. 

Contrary to popular opinion, mathematics is not simply a richer or more 
precise language. Mathematical reasoning is a separate faculty possessed by all 
human brains, just like the ability to compose or listen to music, to paint or 
look at paintings, to believe in and follow cultural or moral codes, etc. 

But it is impossible (and dangerous) to compare these various faculties 
within a hierarchical framework; in particular, one cannot speak of the superi
ority of the language of mathematics. 

Naturally, the construction of mathematical metaphors requires the au
tonomous development of the discipline to provide theories which may be substi
tuted for or associated with the phenomena to be explained. This is the domain 
of pure mathematics. The construction of the mathematical corpus obeys its 
own logic, like that of literature, music or art. In all these domains, a tem
porary aesthetic satisfaction is at once the objective of the creative activity 
and a signal which enables one to recognise successful works. (Likewise, in all 
these domains, fashionable phenomena - reflecting social consensus - are used 
to develop aesthetic criteria). 

That is not all. A mathematical metaphor associates a mathematical the
ory with another object. There are two ways of viewing this association. The 
first and best-known way is to search for a theory in the mathematical corpus 
which corresponds as precisely as possible with a given phenomenon. This is the 
domain of applied mathematics, as it is usually understood. But the association 
is not always made in this way; the mathematician should not be simply a pur
veyor of formulae for the user. Other disciplines, notably physics, have guided 
mathematicians in their selection of problems from amongst the many arising 
and have prevented them from continually turning around in the same circle by 
presenting them with new challenges and encouraging them to be daring and 
question the ideas of their predecessors. These other disciplines may also pro-
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vide mathematicians with metaphors, in that they may suggest concepts and 
arguments, hint at solutions and embody new modes of intuition. This is the 
domain of what one might call motivated mathematics from which the examples 
you will read about in this book are drawn. 

You should soon realize that the work of a motivated mathematician is 
daring, above all where problems from the soft sciences, such as social sciences 
and, to a lesser degree, biology, are concerned. Many hours of thought may 
very well only lead to the mathematically obvious or to problems which cannot 
be solved in the short term, while the same effort expended on a structured 
problem of pure or applied mathematics would normally lead to visible results. 

Motivated mathematicians must possess a sound knowledge of another dis
cipline and have an adequate arsenal of mathematical techniques at their fin
gertips together with the capacity to create new techniques (often similar to 
those they already know). In a constant, difficult and frustrating dialogue they 
must investigate whether the problem in question can be solved using the tech
niques which they have at hand or, if this is not the case, they must negotiate 
a deformation of the problem (a possible restructuring which often seemingly 
leads to the original model being forgotten) to produce an ad hoc theory which 
they sense will be useful later . They must convince their colleagues in the other 
disciplines that they need a very long period for learning and appreciation in 
order to grasp the language of a given theory, its foundations and main results 
and that the proof and application of the simplest, the most naive and the 
most attractive results may require theorems which may be given in a number 
of papers over several decades; in fact, one's comprehension of a mathematical 
theory is never complete. In a century when no more cathedrals are being built, 
but impressive skyscrapers rise up so rapidly, the profession of the motivated 
mathematician is becoming rare. This explains why users are very often not 
aware of how mathematics could be used to improve aspects of the questions 
with which they are concerned. When users are aware of this, the intersection 
of their central areas of interest with the preoccupations of mathematicians is 
often small - users are interested in immediate impacts on their problems and 
not in the mathematical techniques that could be used and their relationship 
with the overall mathematical structure. 

It is these constraints which distinguish mathematicians from researchers 
in other disciplines who use mathematics, with a different time constant. It 
is clear that the slowness and the esoteric aspect of the work of mathemati
cians may lead to impatience amongst those who expect them to come up with 
rapid responses to their problems. Thus, it is vain to hope to pilot the math
ematics downstream as those who believe that scientific development may be 
programmed (or worse still, planned) may suggest. 

In Part I, we shall only cover aspects of pure mathematics (optimisation 
and nonlinear analysis) and aspects of mathematics motivated by economic 
theory and game theory. It is still too early to talk about applying mathematics 
to economics. Several fruitful attempts have been made here and there, but 
mathematicians are a long way from developing the mathematical techniques 
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(the domains of pure mathematics) which are best adapted to the potential 
applications. 

However, there has been much progress in the last century since pioneers 
such as Quesnais, Boda, Condorcet, Cournot, Auguste and Leon Walras, despite 
great opposition, dared to use the tools of mathematics in the economic domain. 
Brouwer, von Neumann, Kakutani, Nash, Arrow, Debreu, Scarf, Shapley, Ky 
Fan and many others all contributed to the knowledge you are about to share. 

You will surely be disappointed by the fact that these difficult theorems 
have little relevance to the major problems facing mankind. But, please don't 
be impatient, like others, in your desire for an overall, all-embracing explanation. 
Professional mathematicians must be very humble and modest. 

It is this modesty which distinguishes mathematicians and scientists in gen
eral from prophets, ideologists and modern system analysts. The range of sci
entific explanations is reduced, hypotheses must be contrasted with logic (this 
is the case in mathematics) or with experience (thus, these explanations must 
be falsifiable or refutable). Ideologies are free from these two requirements and 
thus all the more seductive. 

But what is the underlying motivation, other than to contribute to an ex
planation of reality? We are brains which perceive the outside world and which 
intercommunicate in various ways, using natural language, mathematics, bodily 
expressions, pictorial and musical techniques, etc. 

It is the consensus on the consistency of individual perceptions of the en
vironment, which in some way measures the degree of reality in a given social 
group. 

Since our brains were built on the same model, and since the ability to 
believe in explanations appears to be innate and universal, there is a very good 
chance that a social group may have a sufficiently broad consensus that its 
members share a common concept of reality. But prophets and sages often 
challenge this consensus, while high priests and guardians of the ideology tend 
to dogmatise it and impose it on the members of the social group. (Moreover, 
quite often prophets and sages themselves become the high priests and guardians 
of the ideology, the other way round being exceptional.) This continual struggle 
forms the framework for the history of science. 

Thus, research must contribute to the evolution of this consensus, teach
ing must disseminate it, without dogmatism, placing knowledge in its relative 
setting and making you take part in man's struggle, since the day when Homo 
sapiens, sapiens . .. But we do not know what happened, we do not know when, 
why or how our ancestors sought to agree on their perceptions of the world 
to create myths and theories, when why or how they transformed their faculty 
for exploration into an insatiable curiosity, when, why or how mathematical 
faculties appeared, etc. 

It is not only the utilitarian nature (in the short term) which has motivated 
mathematicians and other scientists in their quest. We all know that with
out this permanent, free curiosity there would be no technical or technological 
progress. 
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Perhaps you will not use the techniques you will soon master and the results 
you will learn in your professional life. But the hours of thought which you will 
have devoted to understanding these theories will (subtly and without you being 
aware) shape your own way of viewing the world, which seems to be the hard 
kernel around which knowledge organizes itself as it is acquired. At the end of 
the day, it is at this level that you must judge the relevance of these lessons and 
seek the reward for your efforts. 



Table of Contents 

Part I Nonlinear Analysis: Theory 

1 Minimisation Problems: General Theorems 
1.1 Introduction 
1.2 Definitions ... 
1.3 Epigraph.... 
1.4 Lower Sections. 
1.5 Lower Semi-continuous Functions 
1.6 
1.7 

1.8 

Lower Semi-compact Functions 
Approximate Minimisation of Lower Semi-continuous Func
tions on a Complete Space . . . . . . 
Application to Fixed-point Theorems ............ . 

2 Convex FUnctions and Proximation, Projection and Separa-

9 
9 
9 

10 
11 
11 
13 

15 
17 

tion Theorems . 21 
2.1 Introduction........................... 21 
2.2 
2.3 
2.4 
2.5 
2.6 

Definitions . . . . . . . . . . . 
Examples of Convex Functions 
Continuous Convex Functions 
The Proximation Theorem 
Separation Theorems . . . . . 

21 
24 
25 
27 
31 

3 Conjugate FUnctions and Convex Minimisation Problems 35 
3.1 Introduction.......................... 35 
3.2 
3.3 
3.4 
3.5 
3.6 

Characterisation of Convex Lower Semi-continuous Functions 
Fenchel's Theorem ....... . 
Properties of Conjugate Functions 
Support Functions. . . 
The Cramer Transform . . . . . . 

4 Subdifferentials of Convex FUnctions 
4.1 
4.2 
4.3 

Introduction ............ . 
Definitions . . . . . . . . . . . . . . 
Sub differentiability of Convex Continuous Functions 

37 
39 
43 
48 
52 

57 
Ei7 
61 
64 



XII Table of Contents 

4.4 Subdifferentiability of Convex Lower Semi-continuous Func-

4.5 
4.6 

tions ............ . 
Sub differential Calculus. . . 
Tangent and Normal Cones. 

5 Marginal Properties of Solutions of Convex Minimisation 

66 
67 
70 

Problems . . . . . 75 
5.1 Introduction........... 75 
5.2 
5.3 
5.4 
5.5 

Fermat's Rule ......... . 
Minimisation Problems with Constraints 
Principle of Price Decentralisation 
Regularisation and Penalisation . . . . . 

6 Generalised Gradients of Locally Lipschitz Functions 
6.1 Introduction ..... . 
6.2 
6.3 
6.4 
6.5 
6.6 

Definitions . . . . . . . 
Elementary Properties 
Generalised Gradients. 
Normal and Tangent Cones to a Subset 
Fermat's Rule for Minimisation Problems with Constraints 

76 
80 
82 
84 

87 
87 
87 
91 
95 
97 
99 

7 Two-person Games. Fundamental Concepts and Examples 101 
7.1 Introduction..................... 101 
7.2 Decision Rules and Consistent Pairs of Strategies 102 
7.3 Brouwer's Fixed-point Theorem (1910) . 104 
7.4 The Need to Convexify: Mixed Strategies 105 
7.5 Games in Normal (Strategic) Form 106 
7.6 Pareto Optima .... 108 
7.7 Conservative Strategies llO 
7.8 Some Finite Games . . ll2 
7.9 Cournot's Duopoly .. 

8 Two-person Zero-sum Games: 
Theorems of Von Neumann and Ky Fan 
8.1 Introduction ............. . 
8.2 Value and Saddle Points of a Game . 
8.3 Existence of Conservative Strategies . 
8.4 Continuous Partitions of Unity. 
8.5 Optimal Decision Rules . . . . . . . . 

9 Solution of Nonlinear Equations and Inclusions. 
9.1 Introduction ............... . 
9.2 Upper Hemi-continuous Set-valued Maps 
9.3 The Debreu-Gale-Nikai"do Theorem 
9.4 The Tangential Condition ....... . 

ll6 

125 
125 
125 
130 
135 
137 

143 
143 
144 
148 
149 



Table of Contents XIII 

9.5 The Fundamental Theorem for the Existence of Zeros of a 
Set-valued Map . . . . 150 

9.6 The Viability Theorem . . . . . . . . 152 
9.7 Fixed-point Theorems. . . . . . . . . 154 
9.8 Equilibrium of a Dynamical Economy 155 
9.9 Variational Inequalities . . . . 157 
9.10 The Leray~Schauder Theorem . . . . 159 
9.11 Quasi-variational Inequalities. . . . . 160 
9.12 Shapley's Generalisation of the Three-Poles Lemma 162 

10 Introduction to the Theory of Economic Equilibrium 
10.1 Introduction ....... . 
10.2 Exchange Economies ............. . 
10.3 The Walrasian Mechanism .......... . 
10.4 Another Mechanism for Price Decentralisation 
10.5 Collective Budgetary Rule .... 

11 The Von Neumann Growth Model. 
11.1 Introduction........... 
11.2 The Von Neumann Model ... 
11.3 The Perron~Frobenius Theorem 
11.4 Surjectivity of the M matrices 

12 n-person Games 
12.1 Introduction 

167 
167 
168 
169 
173 
174 

179 
179 
179 
184 
187 

189 
189 

12.2 Non-cooperative Behaviour. . . . . . . . . . . . . . . . 189 
12.3 n-person Games in Normal (Strategic) Form . . . . . . 190 
12.4 Non-cooperative Games with Constraints (Metagames) 192 
12.5 Pareto Optima ................ 193 
12.6 Behaviour of Players in Coalitions . . . . . . 196 
12.7 Cooperative Games Without Side Payments 197 
12.8 Evolutionary Games ............. 205 

13 Cooperative Games and Fuzzy Games .. . . . . . . . . . .. 211 
13.1 Introduction........................... 211 
13.2 Coalitions, Fuzzy Coalitions and Generalised Coalitions of n 

Players . . . . . . . . . . . . . . . . . . . . 211 
13.3 Action Games and Equilibrium Coalitions . 216 
13.4 Games with Side Payments. . . . . . . . . . 218 
13.5 Core and Shapley Value of Standard Games 226 



XIV Table of Contents 

Part II Nonlinear Analysis: Exercises and Problems 

14 Exercises . . . . . . . . . . . . . . . . . . . . . 237 
14.1 Exercises for Chapter 1 - Minimisation Problems: General 

Theorems ............................ 237 
14.2 Exercises for Chapter 2 - Convex Functions and Proximation, 

Projection and Separation Theorems ............. 242 
14.3 Exercises for Chapter 3 - Conjugate Functions and Convex 

Minimisation Problems . . . . . . . . . . . . . . . . . . . .. 247 
14.4 Exercises for Chapter 4 - Subdifferentials of Convex Functions 256 
14.5 Exercises for Chapter 5 - Marginal Properties of Solutions of 

Convex Minimisation Problems ................ 263 
14.6 Exercises for Chapter 6 - Generalised Gradients of Locally 

Lipschitz Functions . . . . . . . . . . . . . . . . . . . . . .. 270 
14.7 Exercises for Chapter 8 - Two-person Zero-sum Games: The-

orems of Von Neumann and Ky Fan. . . . . . . . . . . . .. 277 
14.8 Exercises for Chapter 9 - Solution of Nonlinear Equations and 

Inclusions . . . . . . . . . . . . . . . . . . . . . . . . . . .. 282 
14.9 Exercises for Chapter 10 - Introduction to the Theory of Eco-

nomic Equilibrium ....................... 287 
14.10 Exercises for Chapter 11 - The Von Neumann Growth Model 292 
14.11 Exercises for Chapter 12 - n-person Games. . . . . . . . .. 292 
14.12 Exercises for Chapter 13 - Cooperative Games and Fuzzy 

Games. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 299 

15 Statements of Problems .................. 303 
15.1 Problem 1 - Set-valued Maps with a Closed Graph . 303 
15.2 Problem 2 - Upper Semi-continuous Set-valued Maps 303 
15.3 Problem 3 - Image of a Set-valued Map. . . . . 304 
15.4 Problem 4 - Inverse Image of a Set-valued Map 304 
15.5 Problem 5 - Polars of a Set-valued Map. . . . . 305 
15.6 Problem 6 - Marginal Functions . . . . . . . . . 305 
15.7 Problem 7 - Generic Continuity of a Set-valued Map with a 

Closed Graph . . . . . . . . . . . . . . . . . . . . . . . . .. 306 
15.8 Problem 8 - Approximate Selection of an Upper Semi-continuous 

Set-valued Map . . . . . . . . . . . . . . . . . . . . . . . .. 306 
15.9 Problem 9 - Continuous Selection of a Lower Semi-continuous 

Set-valued Map . . . . . . . . . . . . . . . . . . . . . . . .. 307 
15.10 Problem 10 - Interior of the Image of a Convex Closed Cone 307 
15.11 Problem 11 - Discrete Dynamical Systems . . . . . . . . . 310 
15.12 Problem 12 - Fixed Points of Contractive Set-valued Maps 312 
15.13 Problem 13 - Approximate Variational Principle 313 
15.14 Problem 14 - Open Image Theorem. . . . . . . . . . . 313 
15.15 Problem 15 - Asymptotic Centres . . . . . . . . . . . . 315 
15.16 Problem 16 - Fixed Points of Non-expansive Mappings 316 



Table of Contents XV 

15.17 Problem 17 - Orthogonal Projectors onto Convex Closed Cones 317 
15.18 Problem 18 .- Gamma-convex functions . . . . . . . . . . .. 318 
15.19 Problem 19 -- Proper Mappings ....... . . . . . . . .. 319 
15.20 Problem 20 - Fenchel's Theorem for the Functions L(x, Ax) 321 
15.21 Problem 21 - Conjugate Functions of x -+ L(x, Ax) . . . .. 322 
15.22 Problem 22 - Hamiltonians and Partial Conjugates . . . .. 323 
15.23 Problem 23 -- Lack of Convexity and Fenchel's Theorem for 

Pareto Optima ......................... 324 
15.24 Problem 24 - Duality in Linear Programming ........ 325 
15.25 Problem 25 - Lagrangian of a Convex Minimisation Problem 326 
15.26 Problem 26- Variational Principles for Convex Lagrangians 327 
15.27 Problem 27 - Variational Principles for Convex Hamiltonians 328 
15.28 Problem 28- Approximation to Fermat's Rule 329 
15.29 Problem 29 - Transposes of Convex Processes 329 
15.30 Problem 30- Cones with a Compact Base . . 331 
15.31 Problem 31 - Regularity of Tangent Cones . . 331 
15.32 Problem 32 - Tangent Cones to an Intersection 332 
15.33 Problem 33 - Derivatives of Set-valued Maps with Convex 

Graphs. . . . . . . . . . . . . . . . . . . . . . . . . 333 
15.34 Problem 34 - Epiderivatives of Convex Functions ...... 334 
15.35 Problem 35 ---- Sub differentials of Marginal Functions . . . .. 335 
15.36 Problem 36 - Values of a Game Associated with a Covering. 335 
15.37 Problem 37 Minimax Theorems with Weak Compactness 

Assumptions . . . . . . . . . . . . . . . . . . . . . . . . 336 
15.38 Problem 38- Minimax Theorems for Finite Topologies . . 337 
15.39 Problem 39 -- Ky Fan's Inequality . . . . . . . . . . . . . . 338 
15.40 Problem 40 - Ky Fan's Inequality for Monotone Functions 339 
15.41 Problem 41 - Generalisation of the Gale-Nikaldo-Debreu The-

orem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340 
15.42 Problem 42 - Equilibrium of Coercive Set-valued Maps . .. 341 
15.43 Problem 43 Eigenvectors of Set-valued Maps . . . . . . .. 341 
15.44 Problem 44 - Positive Eigenvectors of Positive Set-valued Maps 342 
15.45 Problem 45 - Some Variational Principles. . . . . 34:3 
15.46 Problem 46 Generalised Variational Inequalities . . . . .. 34:3 
15.47 Problem 47 - Monotone Set-valued Maps. . . . . . . . . .. 345 
15.48 Problem 48 Walrasian Equilibrium for Set-valued Demand 

Maps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 346 

16 Solutions to Problems. . . . . . . . . . . . . . . . . . . . . . .. 349 
16.1 Problem 1 - Solution. Set-valued Maps with a Closed Graph 349 
16.2 Problem 2- Solution. Upper Semi-continuous set-valued Maps 349 
16.3 Problem 3 _.- Solution. Image of a Set-valued Map . . . . 350 
16.4 Problem 4 - Solution. Inverse Image of a Set-valued Map 350 
16.5 Problem 5 - Solution. Polars of a Set-valued Map 352 
16.6 Problem 6 - Solution. Marginal Functions ........ 352 



XVI Table of Contents 

16.7 Problem 7 - Solution. Generic Continuity of a Set-valued Map 
with a Closed Graph . . . . . . . . . . . . . . . . . . 353 

16.8 Problem 8 - Solution. Approximate Selection of an Upper 
Semi-continuous Set-valued Map . . . . . . . . . . . . . . .. 353 

16.9 Problem 9 - Solution. Continuous Selection of a Lower Semi-
continuous Set-valued Map. . . . . . . . . . . . . . . . . .. 354 

16.10 Problem 10 - Solution. Interior of the Image of a Convex 
Closed Cone . . . . . . . . . . . . . . . . . . . . . . . . . .. 354 

16.11 Problem 11 - Solution. Discrete Dynamical Systems . . . .. 358 
16.12 Problem 12 - Solution. Fixed Points of Contractive Set-valued 

Maps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360 
16.13 Problem 13 - Solution. Approximate Variational Principle 361 
16.14 Problem 14 - Solution. Open Image Theorem ....... 362 
16.15 Problem 15 - Solution. Asymptotic Centres. . . . . . . . . 364 
16.16 Problem 16 - Solution. Fixed Points of Non-expansive Map-

pings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 365 
16.17 Problem 17 - Solution. Orthogonal Projectors onto Convex 

Closed Cones .................... 367 
16.18 Problem 18 - Solution. Gamma-convex Functions .. . . .. 368 
16.19 Problem 19 - Solution. Proper Mappings . . . . . . . . . .. 369 
16.20 Problem 20 - Solution. Fenchel's Theorem for the Functions 

L(x, Ax) . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 370 
16.21 Problem 21 - Solution. Conjugate Functions of x -+ L(x, Ax) 371 
16.22 Problem 22 - Solution. Hamiltonians and Partial Conjugates 371 
16.23 Problem 23 - Solution. Lack of Convexity and Fenchel's The-

orem for Pareto Optima .................... 372 
16.24 Problem 24 - Solution. Duality in Linear Programming . .. 374 
16.25 Problem 25 - Solution. Lagrangian of a Convex Minimisation 

Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 375 
16.26 Problem 26 - Solution. Variational Principles for Convex La-

grangians. . . . . . . . . . . . . . . . . . . . . . . . . . . .. 376 
16.27 Problem 27 - Solution. Variational Principles for Convex 

Hamiltonians ........................ 376 
16.28 Problem 28 - Solution. Approximation to Fermat's Rule 377 
16.29 Problem 29 - Solution. Transposes of Convex Processes 378 
16.30 Problem 30 - Solution. Cones with a Compact Base. . . 379 
16.31 Problem 31 - Solution. Regularity of Tangent Cones. . . 380 
16.32 Problem 32 - Solution. Tangent Cones to an Intersection 381 
16.33 Problem 33 - Solution. Derivatives of Set-valued Maps with 

Convex Graphs . . . . . . . . . . . . . . . . . . . . . . . .. 383 
16.34 Problem 34 - Solution. Epiderivatives of Convex Functions. 384 
16.35 Problem 35 - Solution. Sub differentials of Marginal Functions 385 
16.36 Problem 36 - Solution. Values of a Game Associated with a 

Covering . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 386 



Table of Contents XVII 

16.37 Problem 37- Solution. Minimax Theorems with Weak Com-
pactness Assumptions . . . . . . . . . . . . . . . . . . . . .. 387 

16.38 Problem 38- Solution. Minimax Theorems for Finite Topolo-

16.39 
16.40 

gies ......................... . 
Problem 39- Solution. Ky Fan's Inequality ... . 
Problem 40- Solution. Ky Fan's Inequality for Monotone 

388 
389 

Functions ............................ 390 
16.41 Problem 41 Solution. Generalisations of the Gale-Nikaido-

Debreu Theorem ........................ 391 
16.42 Problem 42 Solution. Equilibrium of Coercive Set-valued 

Maps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 392 
16.43 Problem 43· Solution. Eigenvectors of Set-valued Maps. .. 393 
16.44 Problem 44 - Solution. Positive Eigenvectors of Positive Set-

valued Maps . . . . . . . . . . . . . . . . . . . . . . . . . . 393 
16.45 Problem 45 - Solution. Some Variational Principles . . . . 393 
16.46 Problem 46 - Solution. Generalised Variational Inequalities 395 
16.47 Problem 47- Solution. Monotone Set-valued Maps 397 
16.48 Problem 48 - Solution. Walrasian Equilibrium for Set-valued 

Demand Maps . . . . . . . . . . . . . . . . . . . . . . . . .. 399 

Appendix 

17 Compendium of Results . . . . . . . . . . . . . . . . . . 403 
17.1 Nontrivial, Convex, Lower Semi-continuous Functions 403 
17.2 Convex Functions . . . . . . . . . . . . . . . 405 
17.3 Conjugate Functions . . . . . . . . . . . . . 406 
17.4 Separation Theorems and Support Functions 401' 
17.5 Subdifferentiability . . . . . 410 
17.6 Tangent and Normal Cones. 411 
17.7 Optimisation......... 4B 
17.8 Two-Person Garnes . . . . . 41b 
17.9 Set-valued Maps and the Existence of Zeros and Fixed Points 417 

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 42:1 

Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 429 



Introduction 

This is a book on nonlinear analysis and its underlying motivations in economic 
science and game theory. It is entitled Optima and Equilibria since, in the final 
analysis, response to these motivations consists of perfecting mechanisms for 
selecting an element from a given set. Such selection mechanisms may involve 
either 

• optimisation of a criterion function defined on this set (or of several 
functions, in the case of multi-criterion problems in game theory), 
or 

• searching in this set for an equilibrium of a given undelying dynam
ical system, which is a stationary solution of this dynmical system. 

The mathematical techniques used have their origins in what is known as 
nonlinear analysis, and in particular, in convex analysis. 

Progress in nonlinear analysis has proceeded hand in hand with that in the 
theory of economic equilibrium and in game theory; there is interaction between 
each of these areas, mathematical techniques are applied in economic science 
which, in turn, motivates new research and provides mathematicians with new 
challenges. 

In the course of the book we shall have occasion to interrupt the logical 
course of the exposition with several historical recollections. Here, we simply 
note that it was Leon Walras who, at the end of the last century, suggested 
using mathematics in economics, when he described certain economic agents 
as automata seeking to optimise evaluation functions (utility, profit, etc.) and 
posed the problem of economic equilibrium. However, this area did not bIos·· 
som until the birth of nonlinear analysis in 1910, with Brouwer's fixed-point 
theorem, the usefulness of which was recognised by John von Neumann when 
he developed the foundations of game theory in 1928. In the wake of von Neu
mann came the works of John Nash, Kakutani, Aumann, Shapley and many 
others which provided the tools used by Arrow, Debreu, Gale, Nikaido et al. 
to complete Walras's construction, culminating in the 1950s in the proof of the 
existence of economic equilibria. Under pressure from economists, operational 
researchers and engineers, there was stunning progress in optimisation theory, 
in the area of linear programming after the Second World War and following the 
work of Fenchel, in the 1960s in convex analysis. This involved the courageous 
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step of differentiating nondifferentiable functions by Moreau and Rockafellar at 
the dawn of the 60's, and set-valued maps ten years later, albeit in a different 
way and for different reasons than in distribution theory discovered by Lau
rent Schwartz in the 1950s. (see for instance (Aubin and Frankowska 1990) and 
(Rockafellar and Wets 1997)). These works provided for use of the rule hinted at 
by Fermat more than three hundred years ago, namely that the derivative of a 
function is zero at points at which the function attains its optimum, in increas
ingly complicated problems of the calculus of variations and optimal control 
theory. The 1960s also saw a re-awakening of interest in nonlinear analysis for 
the different problem of solving nonlinear, partial-differential equations. A pro
fusion of new results were used to clarify many questions and simplify proofs, 
notably using an inequality discovered in 1972 by Ky Fan. 

At the time of writing, at the dawn of the 1980s, it is appropriate to take 
stock and draw all this together into a homogeneous whole, to provide a con
cise and self-contained appreciation of the fundamental results in the areas of 
nonlinear analysis, the theory of economic equilibrium and game theory. 

Our selection will not be to everyone's taste: it is partial. For example, 
in our description of the theory of economic equilibrium, we do not describe 
consumers in terms of their utility functions but only in terms of their demand 
functions. A minority will certainly hold this against us. However, conscious of 
the criticisms made of the present-day formalism of the Walrasian model, we 
propose an alternative which, like Walras, retains the explanation of prices in 
terms of their decentralising virtues and also admits dynamic processing. 

Our succinct introduction to game theory is not orthodox, in that we have 
included the theory of cooperative games in the framework of the theory of 
fuzzy games. 

In the book we accept the shackles of the static framework that are at the 
origin of the inadequacies and paradoxes which serve as pretexts for rejection 
of the use of mathematics in economic science. J. von Neumann and O. Mor
genstern were also aware of this when, in 1944, at the end of the first chapter 
of Theory of Games and Economic Behaviour, they wrote: 

, Our theory is thoroughly static. A dynamic theory would unquestionably be 
more complete and, therefore, preferable. But there is ample evidence from other 
branches of science that it is futile to try to build one as long as the static side 
is not thoroughly understood . .. ' 

'Finally, let us note a point at which the theory of social phenomena will 
presumably take a very definite turn away from the existing patterns of math
ematical physics. This is, of course, only a surmise on a subject where much 
uncertainty and obscurity prevail . .. ' 

, Our static theory specifies equilibria . .. A dynamic theory, when one is found 
- will probably describe the changes in terms of simpler concepts.' 

Thus, this book describes the static theory and the tool which may be used 
to develop it, namely nonlinear analysis. 
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It is only now that we can hope to see the birth of a dynamic theory calling 
upon all other mathematical techniques (see (Aubin and Cellina 1984), (Aubin 
1991) and (Aubin 1997)). But, as in the past, so too now, and in the future, 
the static theory must be placed in its true perspective, even though this may 
mean questioning its very foundations, like March and Simon (who suggested 
replacing optimal choices by choices that are only satisfactory) and many (less 
fortunate) others. Imperfect yet perfectible, mathematics has been used to put 
the finishing touches to the monument the foundation of which was laid by 
Walras. Even if this becomes an historic monument, it will always need to 
be visited in order to construct others from it and to understand them once 
constructed. 

Of course, the book only claims to present an introduction to nonlinear 
analysis which can be read by those with the basic knowledge acquired in a first
level university mathematics course. It only requires the reader to have mastered 
the fundamental notions of topology in metric spaces and vector spaces. Only 
Brouwer's fixed-point theorem is assumed. 

This is a book of motivated mathematics, i.e. a book of mathematics moti
vated by economics and game theory, rather than a book of mathematics applied 
to these fields. We have included a Foreword to take up this issue which deals 
with pure, applied and motivated mathematics. In our view, this is important 
in order to avoid setting too great store by the importance of mathematics in 
its interplay with social sciences. 

The book is divided into two parts. Part I describes the theory, while Part II 
is devoted to exercises, and problem statements and solutions. The book ends 
with an Appendix containing a Compendium of Results. 

In the first three chapters, we discuss the existence of solutions minimising a 
function, in the general framework (Chapter 1) and in the framework of convex 
functions (Chapter 3). Between times, we prove the projection theorem (on 
which so many results in functional analysis are based) together with a number 
of separation theorems and we study the duality relationship between convex 
functions and their conjugate functions. 

The following three chapters are devoted to Fermat's rule which asserts that 
the gradient of a function is zero at any point at which the function attains its 
minimum. Since convex functions are not necessarily differentiable in the cus
tomary sense, the notion of the 'differential' had to be extended for Fermat's 
rule to apply. The simple, but unfamiliar idea consists of replacing the con
cept of gradient by that of subgradients, forming a set called a subdifferential. 
We describe a sub differential calculus of convex functions in Chapter 4 and in 
Chapter 5, we exploit Fermat's rule to characterise the solutions of minimisa
tion problems as solutions of a set-valued equation (called an inclusion) or as 
the sub differential of another function. 

In Chapter 6, we define the notion of the generalised gradient of a locally 
Lipschitz function, as proposed by F. Clarke in 1975. This enables us to ap
ply Fermat's rule to functions other than differentiable functions and convex 
functions. It will be useful in the study of cooperative games. 
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Chapters 7 and 8 are devoted to the theory of two-person games; here, we 
prove two fundamental minimax theorems due to von Neumann (1928) and 
Ky Fan (1962). 

In Chapter 9, we use Ky Fan's inequality to prove the existence theorems 
for solutions of the inclusion 

a E C(1') 

(where C is a set-valued map) together with the fixed-point theorems which 
we shall use to prove the existence of economic equilibria and non-cooperative 
equilibria in the theory of n-person games. 

In Chapter 10, we provide two explanations of the role of prices in a decen
tralisation mechanism which provides economic agents with access to sufficient 
information for them to take their decisions without knowing the global state 
of the economic system or the decisions of other agents. The first explanation 
is provided by the Walrasian model, as formalised since the fundamental work 
of Arrow and Debreu in 1954. The second explanation is compatible with dy
namic models which go beyond the scope of this book and for which we refer 
to (Aubin, 1997). 

Chapter 11 is devoted to a study of the von Neumann growth model and 
provides us with the opportunity to prove the Perron-Frobenius theorem on the 
eigenvalues of positive matrices. . 

In Chapter 12 we adapt the concepts introduced in Chapter 7 for 2-person 
games to study n-person games. 

Chapter 13 deals with standard cooperative games (using the behaviour of 
coalitions of players) and fuzzy cooperative games (involving fuzzy coalitions of 
players). 

The collection of 165 exercises and 48 problems with solutions in Part II 
has two objectives in view. Firstly, it will provide the reader of Part I with the 
wherewithal to practise the manipulation of the new concepts and theorems 
which he has just read about. 

Whilst, once assimilated, the mathematics may appear simple (and even 
self-evident), a great deal of time (and energy) is needed to familiarise oneself 
with these new cognitive techniques. 

If a passive approach is taken, the assimilation will be difficult; for, strange 
as it may seem, emotional mechanisms (or, in the terminology of psycholo
gists, motivational mechanisms) playa crucial role in the acquisition of these 
new methods of thinking. This mathematics book should be read (or skimmed 
through) quickly when the reader is looking for a piece of information which is 
indispensable to the solution of problem which is occupying his mind day and 
night! 

Thus, it is best to approach this work as dispassionately as possible. You will 
then realise how easy it is to acquire a certain mastery of the subject. You will 
also see that old knowledge takes on a new depth, when it is replaced in a new 
perspective. You will improve (or at least modify) your understanding of aspects 
you thought you had already understood, since there is no end to understanding, 
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either in the theory of mathematics or in other areas of knowledge. That is 
why we advise the reader to skim through the book to determine what it is 
about. You will then begin to understand it in a more active way by proving 
for yourself the results listed for each chapter of Part I at the beginning of 
the relevant section of the Exercises (Chapter 14). Both the pleasure of success 
and the lessons of partial failure will help you to overcome the difficulties you 
encounter. The pleasure of discovery is not a vain sentiment; the more ambitious 
is the challenge, the more intense is the pleasure. 

These exercises (and above all the solutions) were also designed to provide 
the reader with additional information which could not be given in an introduc
tory text. The results which the reader will discover will convince him of the 
richness of nonlinear analysis. 

The exercises (Chapter 14) are grouped according to chapters and follow the 
order of Part I. Except for certain exceptions (which are explicitly mentioned), 
they only use results that have already been proved. However, some exercises 
do assume that one or two immediately preceding exercises have been solved. 

The problems (Chapter 15) use a priori all the material in Part I and are 
largely grouped according to topic. 

The first nine problems concern various topological properties of set-valued 
maps. The description of the notion of set-valued maps and their properties 
given in Part I is a bare minimum and is insufficient for profound applications 
of nonlinear analysis. The tenth problem generalises Banach's theorem (closed 
graph or open image) either to the case of continuous linear operators defined on 
a closed convex cone or to that of set-valued maps (Robinson-Ursescu theorem). 
It goes together with Problem 14 which extends the inverse function theorem 
to set-valued maps and which thus plays an important role in applications. 
Problem 11 returns to the proof of Ekeland's theorem in the very instructive 
context of discrete dynamical systems. Problems 12, 13, 14 and 28 provide 
applications of Ekeland's theorem, which turns out to be the most manageable 
and the most effective theorem in the whole family of results equivalent to the 
fixed-point theorem for contractions. This is complemented by a fixed-point 
theorem for non-expansive mappings (Problem 16) which uses an interesting 
notion (the asymptotic centre of sequences, which is a sort of virtual limit) 
which is the subject of Problem 15. 

The solution of Problem 17 on the properties of orthogonal projectors 
onto convex closed cones (discovered by Jean-Jacques Moreau, co-founder with 
R.T. Rockafellar of convex analysis) is indispensable. Problem 18 studies a class 
of functions with properties analogous to those of convex functions. 

A continuous mapping is 'proper' if it transforms closed sets to closed sets 
and if its inverse has compact images. As one might imagine, such functions play 
an important role. Their properties are the subject of Problem 19. Problems 
20, 21, 23 and 26 are designed to extend the results of Chapters 3 to 5 for the 
functions x --t f (x) + g( Ax) to the functions x --t L( x, Ax); they will help the 
reader to assimilate the above chapters properly. Problem 24 is devoted to the 
application of Chapter 5 to linear programming. Variational principles form the 
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subject of Problems 26, 27, 45 and 46; these last two problems use Ky Fan's 
inequality. 

The graph of a continuous linear operator is a closed vector subspace. The 
set-valued maps analogous to continuous linear operators are set-valued maps 
with graphs a convex closed cone. These are known as 'closed convex processes' 
and inherit numerous properties of continuous linear operators, as Problems 10 
(closed graph) and 29 (transposition) show. 

Since the derivatives of differentiable mappings are continuous linear oper
ators, we might expect to look for candidates for the role of the derivative of 
a set-valued map among such closed convex processes. It is sufficient to return 
to the origins, that is to say to Pierre de Fermat who introduced the notion of 
the tangent to a curve. This idea is taken up in Problem 33, which provides an 
introduction to the differential calculus of set-valued maps. Over recent years, 
this latter has become the subject of intense activity, because of its intrinsic 
attraction and its numerous potential applications. This 'geometric' view of the 
differential calculus is taken up again in Problem 34 to complete the study of 
subdifferentials of convex functions, whilst Problem 35 leads to a very elegant 
formula for calculating the sub differential of a marginal function. This differ
ential calculus of set-valued maps is the topic of (Aubin and Frankowska 1990) 
which contains a thorough investigation of set-valued maps. Problems 36, 37, 
38, 39 and 40 describe refinements of the minimax inequalities of von Neumann 
and Ky Fan which are very useful in infinite-dimensional spaces. Problems 41 
and 48 provide variants and applications of the Gale-Nikaldo-Debreu theorem, 
whilst Problem 42 shows how to trade the compactness of the domain of a 
set-valued map for 'coercive' properties. The existence of eigenvectors of set
valued maps forms the subject of Problems 43 (general case) and 44 (positive 
set-valued maps). 

Problem 47 provides an introduction to maximum monotonic set-valued 
maps and their numerous properties. 

We could have included many other problems, but forced ourselves to make 
a difficult selection. One area of applications of nonlinear analysis, namely the 
calculus of variations and optimal control, is not touched on by this collection 
of problems, although it is a most rich and exciting area which remains the 
subject of active research. 

This requires a reasonable mastery of topological vector spaces (weak 
topologies) and of function and distribution spaces (Sobolev spaces) which is 
not demanded of the reader (Aubin 1979a). If the latter has a knowledge of the 
basic tools of convex analysis, non-regular analysis and nonlinear analysis, he 
will be well equipped to tackle these theories effectively. 

It remains to wish the reader (in fact, the explorer) deserved success in 
mastering this exciting area of mathematics, nonlinear analysis. 



Part I

Nonlinear Analysis: Theory



1. Minimisation Problems: General Theorems 

1.1 Introduction 

The aim of this chapter is to show that a minimisation problem: 

find x E K such that f(x) ::::; f(x) Yx E K 

has a solution when the set K is compact and the function f from K into lR is 
lower semi-continuous. 

This leads us to define semi-continuous functions and to describe some of 
their properties. 

1.2 Definitions 

First, we shall study minimisation problems in a general framework: we assume 
we have 

• a subset K of X 
• a function f from K to R 

and we seek a solution x of the problem 

( i) 

( ii) 

xE K 

f(x) = inf f(x). 
xEK 

(1) 

For ease of notation, we begin by introducing a convenient method which 
avoids explicit mention of the subset K on which the function f is defined. We 
set 

JK(x) := {f(X) if x E K 
+00 if x ~ K 

(2) 

where fK is no longer a real-valued function but a function from X to 
lR U { +oo} such that 

K = {x E Xih(x) < +oo}. (3) 

Moreover, any solution of (1) is a solution of the problem 
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h(x) = inf h(x) 
xEX 

(4) 

and conversely. 
We are thus led to introduce the class of functions f from X to IR U { +00 } 

and to associate them with their domain 

Domf:= {x E Xlf(x) < +oo}. (5) 

Equation (3) may thus be written as K = Dom (h). In order to exclude the 
degenerate case in which Dom f = 0, that is to say where f is the constant 
function equal to +00, we shall use the following definition. 

Definition 1.1. We shall say that a function f from X to IR U {+oo} is non
trivial if its domain is non-empty, that is to say if f is finite at at least one 
point. 

We shall often use the indicator function of a set, which characterises the 
set in the same way as characteristic functions in other areas of mathematics. 

Definition 1.2. Let K be a subset of X. We shall say that the function 'l/JK : 
X --t IR U {+oo} defined by 

'l/JK(X) = { ~oo 
is the indicator function of K. 

if x E K 
if x ~ K 

(6) 

Note that the sum f + 'l/JK of a function f and the indicator function of 
a subset K may be identified with the restriction of f to K and that the 
minimisation problem (1) is equivalent to the problem 

f(x) + 'l/JK(X) = inf (f(x) + 'l/JK(X)). 
xEK 

(7) 

We shall see that this new formulation of the problem will enable us to derive 
interesting properties of its possible solutions in a convenient and fast way. 

1.3 Epigraph 

We may characterise a function f from X to IR U { +oo} by its epigraph, which 
is a subset of X x R. 

Definition 1.3. Let f be a function from X to IR U {+oo}. We shall call the 
subset 

Ep (f) := {(x,,\) E X x IRlf(x) S '\} (8) 

the epigraph of f. 

The epigraph of f is non-empty if and only if f is nontrivial. 
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The following property of epigraphs will be useful. 

Proposition 1.1. Consider a family of functions fi from X to lR U { +oo} and 
its upper envelope SUPiEl k Then 

Ep (sup fi) = n Ep (fi). 
lEI iEI 

(9) 

Proof. Exercise. o 

1.4 Lower Sections 

Definition 1.4. Let f be a function from X to lR U {+oo}. The sets 

S(f, A) := {x E Xlf(x) SA} (10) 

are called sections (lower, wide) of f. 

Let a := infxEx f(x). By the verry definition of the infimum of a function, 
the set M of solutions of problem (1) may be written in the form 

M = n S(iK, A). 
A>Ct 

Thus, the set of solutions M 'inherits' the properties of the sections of f 
which are 'stable with respect to intersection' (for example, closed, compact, 
convex, etc.). 

Proposition 1.2. Consider a family of functions fi from X to lR U {+oo} and 
its upper envelope SUPiEI k Then 

S (sup fi' A) = n S(fi, A). 
lEI iEI 

(11) 

Proof. Exercise. o 

1.5 Lower Semi-continuous Functions 

Let X be a metric space. 
We recall that a function f from X to lR U { +oo} is continuous at a point 

Xo (which necessarily belongs to the domain of f) if, for all E > 0, there exists 
T) > 0 such that \/x E B(xo, T)) we have both A := f(xo) - E S f(x) and 
f(x) S f(xo) + EO' Demanding only one of these properties leads to a notion of 
semi-continuity introduced by Rene Baire. 

Definition 1.5. We shall say that a function f from X to lRu {+oo} is lower 
semi-continuous at Xo if for all A < f(xo), there exists T) > 0 such that 
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Vx E B(xo, 7]), A:::; f(x). (12) 

We shall say that f is lower semi-continuous if it is lower semi-continuous 
at every point of X. A function is upper semi-continuous if - f is lower 
semi-continuous. 

We begin by proving the characteristic properties. We recall that, by defi
nition, 

liminf f(x) := sup inf f(x). (13) 
X-+XQ 1»0 XEB(xQ,1)l 

Proposition 1.3. A function f from X to lRu {+oo} is lower semi-continuous 
at Xo if and only if 

f(xo) :::; liminf f(x). 
x-+xo 

(14) 

Proof. 
a) Suppose that f is lower semi-continuous at Xo. For all A < f(xo), there exists 
7] such that 

A:::; inf f(x):::; liminf f(x). 
xEB(xQ,1)l X-+XQ 

Inequality (14) now follows. 

b) Conversely, given any A < sUP1»o infxEB(xQ,1)l f(x), by definition of the supre
mum, there exists 7] > 0 such that A :::; infxEB(xQ,1)l f(x). Thus, condition (14) 
implies that f is lower semi-continuous at Xo. D 

Proposition 1.4. Let f be a function from X to lR U { +00 }. The following 
assertions are equivalent 
a) f is lower semi-continuous; 
b) the epigraph of f is closed; 
c) all sections S(j, A) of f are closed. 

Proof. 
a) We assume that f is lower semi-continuous and show that its epigraph is 
closed. For this, we take a sequence of elements (xn' An) E Ep (j) converging to 
(x, A) and show that (x, A) belongs Ep (j), whence that f(x) :::; A. But Propo
sition 1.3 then implies that 

f(x) :::; liminf f(xn) :::; liminf An = lim An = A, 
n-+oo n---+oo n--+oo 

since f(xn) :::; An for all n. 

b) We now suppose that Ep (j) is closed and show that an arbitrary section 
S(j, A) is also closed. For this, we consider a sequence of elements Xn E S(j, A) 
converging to x and show that x E S(j, A), whence that (x, A) E Ep (j). But 
this is a result of the fact that the sequence of elements (xn' A) of the epigraph 
of f, which is closed, converges to (x, A). 

c) We suppose that all the sections of f are closed. We take Xo E X and 
A < f(xo). Then (xo, A) does not belong to S(j, A), which is a closed set. Thus, 
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there exists 7) > 0 such that B(xo, 7J) n S(f,'\') = 0, that is to say that ,\. :S f(x) 
for all x E B(xo, 7)). Thus, f is lower semi-continuous at Xo. 0 

Remark. If a function f is not lower semicontinuous, one can associate with it 
the function 1 the epigraph of which is the closure of the epigraph of J:Ep(f) := 
Ep(f). It is the largest lower semicontinuous function smaller than or equal to 

f. 
We deduce the following corollary 

Corollary 1.1. A subset K of X is closed if and only if its indicator function 
is lower semi-continuous. 

Proof. In fact, Ep ('ljiK) = K x IR+ is closed if and only if K is closed. 0 

Proposition 1.5. The functions f, g, fi from X to IR U {+oo} are assumed to 
be lower semi-continuous. Then 
a) f + 9 is lower semi-continuous; 
b) if a> 0, then af is lower semi-continuous; 
c) inf(f, g) is lower semi-continuous; 
d) if A is a continuous mapping from Y to X then f 0 A is lower semi-

continuous: 
e) SUPiEI fi is lower semi-continuous. 

Proof. The proof of the first four assertions is elementary. The fifth results from 
the fact that Ep (SUpiEI fi) = niEI Ep (fi) is closed (see Proposition 1.1). 0 

We shall see how to generalise the third assertion (see Proposition 1. 7). 

Remark. If f : X ---+ IRU {+oo} is lower semi-continuous, the same is true of the 
restriction to Dom f, fo : Dom f ---+ IR, when Dom f has the induced metric. 

There is no exact converse. Only the following theorem holds. 

Proposition 1.6. Suppose that K is a closed subset of X and that f is a lower 
semi-continuous function from the metric subspace K to IR. Then the function 
fK from X to IR U {+oo} is lower semi-continuous. 

Proof. In fact, the sections S(/K,'\') and S(f,'\') are identical. Since S(f''\') is 
closed in K, and since K is closed in X, it follows that S(/K,'\') = S(f,'\') is 
closed in X. 0 

1.6 Lower Semi-compact Functions 

Study of the minimisation problem suggests that we should distinguish the 
following class of functions. 

Definition 1.6. We shall say that a function f from X to IR U {+oo} is lower 
semi-compact (or inf-compact) if all its lower sections are relatively compact. 

We then have the following theorem. 
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Theorem 1.1. Suppose that a nontrivial function f from X to IRU{ +oo} is both 
lower semi-continuous and lower semi-compact. Then the set M of elements at 
which f attains its minimum is non-empty and compact. 

Proof. Let cy = infxEx f(x) E IRu {+oo} and Ao > CY. For all A Ejcy,AO]' there 
exists X,X E SU, A) C SU, AO). Since the set SU, AO) is compact, a subsequence 
of elements XN converges to an element x of SU, Ao). Since f is lower semi
continuous, we deduce that 

f (x) ::; lim inf f (x N) ::; lim inf A = CY ::; f (x). 
X.v--+xo ..\>0 

Thus, f(x) = CY, which implies that CY is finite. Moreover, M = na<'x<'xQ SU, A) 
being an intersection of compact sets, is compact. D 

Corollary 1.2. Any lower semi-continuous function from a compact subset 
K C X to IR is bounded below and attains its minimum. 

Proof. We apply Theorem 1.1 to the function iK defined by iK(x) = f(x) if 
x E K and fK(X) = 00 if x 1:- K, noting that fK is lower semi-continuous (since 
K is closed and f is lower semi-continuous) and that fK is lower semi-compact, 
K being relatively compact. D 

Remark. This very simple theorem is a rare general theorem for the existence 
of solutions of an optimisation problem. 

The difficulty essentially arises in the verification of the assumptions. For 
instance, when the vector space E is infinite dimensional, we can supply it with 
topologies which are not equivalent, contrary to the case of finite dimensional 
vector spaces (supplied with topologies for which the addition and the multipli
cation by scalars are continuous) are all equivalent. In this case, since compact 
subsets remain compact when the topology is weaker, supplying E with weaker 
topologies increases the possibilities of having flower semicompact. But contin
uous or lower semicontinuous functions remain continuous or lower semicontin
uous respectively whenever the topology of E is stronger, so that strengthening 
the topology of E is advantageous. Hence, for applying Theorem 1.1, we have 
to construct topologies on E satisfying opposite requirements. 

We shall see another existence result which does not use compactness, but 
instead requires stronger assumptions on the regularity of the function to be 
minimised. 

Proposition 1. 7. Suppose that K is a compact topological space and that g is 
a lower semi-continuous function from X x K to IR U { +00 }. Then the function 
f : X -+ IR U { +oo} defined by 

VxEX, f(x) := inf g(x, y) 
yEK 

(15) 

is also lower semi-continuous. 

Proof. We take A E IR and consider a sequence of elements Xn E SU, A) 
converging to an element Xo. We shall prove that Xo E SU, A). Because 
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Y ---+ f(xn, y) is lower semi-continuous, and since K is compact, there exists 
Yn E K such that f(xn) = g(xn' Yn) (Corollary 1.2). Thus, the sequence Yn 
contains a subsequence of elements Yn' which converges to an element Yo of 
K. Then, the sequence of pairs (xn" Yn') of S(g,..\) converges to (xo, Yo), which 
belongs to S(g,..\) since 9 is a lower semi-continuous function. Consequently, 
Xo E S(j, ..\), since f(xo) :S g(xo, Yo) :S ..\. 0 

Finally, we note the following interesting result. 

Proposition 1.8. Consider n lower semi-continuous functions fi from X to 
IR U { +oo} and suppose that one of these is lower semi-compact. We associate 
them with the mapping F from K := n~l Dom fi to IRn defined by 

\Ix E K, F(x) := (h(x), ... , fn(x)). (16) 

Then 

the set F(K) + IR~ is closed in IRn. (17) 

Proof. We consider a sequence of elements Xn E K and elements Un E IR~ such 
that the sequence of elements Yn := F(xn) + Un converges to an element y of 
IRn, and show that y belongs to F(K) + IR~. 

Let fio be the function which is both lower semi-continuous and lower semi
compact. Since fio(Xn) +Unio converges to Yio' there exists no such that IYio -
fio (xn) - Unio I :S 1 whenever n 2: no· Since fio (xn) :S Yio - Unio + 1 :S Yio + 1, 
we deduce that for n 2: no, the Xn belong to S(jio' Yio + 1), which is compact. 
Thus, there exists a subsequence of elements X n ' which converges to an element 
x. We take an index i = 1, ... ,n. Since fi is lower semi-continuous, we deduce 
that 

!i(i:) ::;; lim inf !i(Xn) = lim inf(Yn" - Un") :S lim inf Yn" = Yi. 
n---+CXl n---+oo ~ t n--+CXl t 

Thus, setting Ui := Yi - fi(X), which is positive or zero, we have shown that 
Y = F(x) + 'U where x E K and U E IR~. 0 

1. 7 Approximate Minimisation of Lower 
Semi-continuous Functions on a Complete Space 

In the statement of Theorem 1.1, and its Corollary 1.2 on the existence of a 
solution to a minimisation problem, compactness plays a crucial role. However, 
it is remarkable that simply with the condition that the set over which f is 
minimised is complete, we nonetheless obtain an existence result for an approx
imate minimisation problem. 

Theorem 1.2 (Ekeland). Suppose that E is a complete metric space and 
that f : E ---+ IR+ U {+oo} is nontrivial, positive and lower semi-continuous, 
Consider Xo E Dom (j) and f > O. There exists x E E such that 
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( i) 

( ii) 

f(x) + Ed(xo, x) :::; f(xo) 

\:Ix -I- x, f(x) < f(x) + Ed(x,x). (18) 

The first property is a localization property stating that x belongs to a ball 
centered around Xo and of radius at least equal to i(;o). The second property 
states that x minimizes the function x H f(x) +Ed(x,x) (which depends upon 
the unknown solution x !) 

Before proving this theorem, we state a corollary which clarifies the notion 
of approximate solution. 

Corollary 1.3. The assumptions are as in Theorem 1.2. Suppose E, A> 0 and 
that Xo is a point with f (xo) :::; inf f (x) + EA. Then there exists x E E such that 

( i) 

( ii) 

( iii) 

f(x) :::; f(xo) 

d(xo, x) :::; A 

\:Ix E E, f(x) :::; f(x) + Ed(x,x). 

Proof of Theorem 1.2. We may naturally take E = 1. 

(19) 

We shall associate the function f with the correspondence F of E into itself 
which associates a point x with the set F(x) defined by 

F(x) := {Ylf(y) + d(x, y) :::; f(x)}. (20) 

The sets F(x) are closed and the correspondence F has the following prop
erty: 

( i) 
( ii) 

Y E F(y) 
if Y E F(x), then F(y) c F(x) 

(reflexivity) 

(transitivity) . 

Condition (21)(ii) is evident if x tJ- Domf, since in this case F(x) = E. 

(21) 

Thus, we suppose that f(x) is finite. Take y E F(x) and z E F(y). Adding 
the inequalities: 

f(z) + d(y, z) :::; f(y) and f(y) + d(x, y) :::; f(x) 

and using the triangle inequality, we obtain the inequality 

f(z) + d(x, z) :::; f(x), 

which implies that z E F(x). 
We associate the function f with the function v defined on Dom f by 

v(y):= inf f(z). 
ZEF(y) 

(22) 

It is clear that 
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'Iy E F(x), d(x, y) ::; f(x) - v(x), (23) 

which implies the following upper bound on the diameter of F(x) 

Diam (F(x)) ::; 2(f(x) - vex)). (24) 

Next, we define the following sequence beginning with Xo: we take Xn+l in F(xn) 
such that f(xn+l) ::; v(xn) + 2-n (this is possible by definition of the infimum). 
Since F(xn+d c F(xn), by virtue of (21)(ii), we have 

V(xn) ::; v(xn+d· (25) 

On the other hand, since we always have v(y) ::; fey), we obtain the inequalities 

V(Xn+l) ::; f(xn+l) ::; V(Xn) + Tn::; V(Xn+l) + Tn (26) 

and thus the inequalities 

0::; f(.1:n+l) - V(Xn+l) ::; Tn. (27) 

Consequently, formula (24) implies that the diameter of the closed sets F(xn) 
converges to o. As these closed sets are nested and since the space is complete, 
it follows that 

n F(xn) = {x}. (28) 
n2:0 

Since x belongs to F(xo), the inequality (18)(i) is satisfied. On the other hand, 
x belongs to all the F(xn); it follows that F(x) c F(xn) and consequently that 

F(x) = {x}. (29) 

Thus, we deduce that if x # x then x ~ F(x), whence f(x) + d(x, x) > f(x). 
Thus, we have proved (I8)(ii). C 

1.8 Application to Fixed-point Theorems 

If G is a correspondence of E into itself, a solution x of the inclusion 

x E G(x) (30) 

is called a fixed point of G. 

Theorem 1.3 (Caristi). Let G be a nontrivial correspondence of a complete 
metric space E into itself. We suppose that there exists a proper, positive, lower 
semi-continuous function f from E to IR+ U {+oo} such that 

'Ix E E, ::Jy E G(x) such that fey) +d(x,y)::; f(x). (31) 

Then the correspondence G has a fixed point. 
If f is linked to G by the stronger relationship 
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\Ix E E, \ly E G(X), f(y) + d(y,x) s:: f(x), (32) 

then there exists x E E such that G(x) = {x}. 

Proof. Suppose that x satisfies (IS)(ii), with c < 1 and that y E G(x) satisfies 
f(y) + d(x, y) s:: f(x). If y is not equal to x, inequality (IS)(ii) with x := y 
implies that d(x, y) s:: cd(x, y), which is impossible since c < 1. Thus, y is 
equal to x. There is at least one such if condition (31) is satisfied, whilst all the 
y E G(x) are equal to x if condition (32) is satisfied. D 

Since we are discussing fixed-point theorems, we shall prove another result 
in which f is no longer assumed to be lower semi-continuous; however the corre
spondence G must have a closed graph. The graph of a correspondence G from 
E to F is defined by 

Graph (G) := {(x, y) E E x FlY E G(x)}. (33) 

Theorem 1.4. Let E be a complete metric space. We consider a correspondence 
G from E to E with a closed graph. If there exists a nontrivial positive function 
f from E to IR+ U { +oo} satisfying condition (31)! then the correspondence G 
has a fixed point. 

Proof. We take a point Xo E Dom f and use a recurrence to calculate a sequence 
of elements Xn E E such that, by virtue of condition (31), we have 

Xn+l E G(xn), d(xn+1' xn) :::; f(xn) - f(Xn+l)' (34) 

This implies that the sequence of positive numbers f(x n ) is decreasing; thus, it 
converges to a number Q. Adding the inequalities (34) from n = p to n = q - 1, 
the triangle inequality implies that 

q-l 

d(xp, xq ) s:: L d(xn+1' xn) s:: f(xp) - f(xq ). (35) 
n=p 

Since the term on the right tends to Q - Q = 0 as p and q tend to infinity, we 
deduce that the sequence of the Xn is a Cauchy sequence which thus converges 
to an element x E E since the space is complete. 

Since the pairs (xn' Xn+1) belong to the graph of G, which is closed, and 
converge to the pair (x, x) which thus belongs to the graph of G, the limit x is 
a fixed point of G. D 

As a corollary we obtain the Banach-Picard fixed point theorem for con
tractions. 

Theorem 1.5 (Banach-Picard). Suppose that E is a complete metric space 
and that g : E ---+ E is a contraction: 

::Jk EjO, 1[ such that \Ix, y E E, d(g(x),g(y)) s:: kd(x,y). (36) 
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Then 9 has a unique fixed point x. 
Proof. We associate 9 with the function f from E to IR+ defined by 

00 

f(:r) := L d(gn(x), gn+l(x)). (37) 
n=O 

Condition (36) implies that 

d(gn(x),gn+1(X)):S kd(gn-l(x),gn(x)) :S knd(x,g(x)). 

Thus, the function f satisfies the condition: 

1 
O:S f(x):S 1- kd(x,g(x)) < +00. (38) 

On the other hand, note that 

00 

f(x) = d(x,g(x)) + L d(gn(x),gn+l(x)) = d(x,g(x)) + f(g(x)). 
n=1 

Thus, the assumptions of Theorem 1.4 are satisfied, and so there exists a fixed 
point for the contraction g. Moreover, we also have uniqueness; if x and yare 
fixed points of g, the inequality 

d(x, y) = d(g(x), g(y)) :S kd(x, y) 

implies that d(x, y) = 0 since k < 1, whence that x = y. D 



2. Convex Functions and Proximation, 
Projection and Separation Theorems 

2.1 Introduction 

Convexity plays a crucial role in the study of minimisation problems. After 
defining convex functions and describing their elementary properties, we show 
that continuous convex functions are locally Lipschitz (Lipschitz in a suitable 
neighbourhood of each point). We then prove the theorem for the existence and 
uniqueness of a solution of the minimisation problem 

~llx - xol1 2 + f(x) = inf (~llx - xol1 2 + f(x)) 
2 xEX 2 

when f is a nontrivial convex lower semi-continuous function from X to 
IR U {+oo}. 

As a particular case, we derive the theorem for the best approximation of 
Xo by elements of a convex closed set. It is known that this theorem has very 
important consequences. Amongst these, we mention the separation theorems 
which we shall use to prove the fundamental theorems of duality theory in 
convex analysis. 

2.2 Definitions 

Let X be a vector space. 

Definition 2.1. We shall say that a function f from X to IRu {+oo} is convex 
if for any convex combination x = L;~l AiXi of elements Xi E X we have the 
inequality 

f (~AiXi) ~ ~Ad(Xi)' (1) 

We shall say that f is concave if - f is convex, and that f is affine if f 
is both convex and concave. 

We begin by characterising convex functions. 
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Proposition 2.1. Let f be a function from X to IR U {+oo}. The following 
conditions are equivalent 
a) f is convex 
b) 'Ix, y E X, Va EjO, 1[ 

f(ax + (1- a)y) ::; af(x) + (1- a)f(y) 

c) the epigraph of f is convex. 

Proof. Clearly a) implies b). 
We show that b) implies c). We let (x,,\) and (Y,fJ) be two points of the 

epigraph of f and a EjO, 1[ and show that 

a(x,'\) + (1 - a)(y, fJ) = (ax + (1 - a)y, a'\ + (1 - a)fJ) 

belongs to this epigraph. In fact, the inequalities f (x) ::; ,\ and f (y) ::; fJ imply 
that af(x) + (1 - a)f(y) ::; a'\ + (1 - a)fJ, since a and (1 - a) are positive. 
Consequently, f(ax + (1- a)y) ::; a'\ + (1- a)fJ, from b). 

Lastly, we show that c) implies a). Since the 2-tuples (Xi, f(Xi)) belong 
to Ep(f) , which is convex, then L:~l '\i(Xi, f(Xi)) = (L:~l '\iXi, L:7=1 '\;j(Xi)) 
belongs to Ep(f), which means that f (L:7=1 '\iXi) ::; L:7=1 '\;j(Xi). D 

We deduce the following corollary. 

Corollary 2.1. A subset K of X is convex if and only if its indicator function 
zs convex. 

Proof. In fact, Ep( 'l/JK) = K x IR+ is convex if and only if K is convex. D 

Proposition 2.2. We suppose that the functions f, g, fi from X to IR U {+oo} 
are convex. Then 
a) f + g is convex; 
b) if a> ° then af is convex; 
c) if A is a linear mapping from a vector space Y to X, then f 0 A is convex; 
d) if ¢ : IR -+ IR is convex and increasing then ¢ 0 f is convex; 
e) SUPiEI fi is convex. 

Proof. The first four assertions are evident, whilst the last one results from the 
equality Ep(SUpiEI fi) = niE1Ep(fi)' D 

We mention the following obvious property. 

Proposition 2.3. If f is a convex function from X to IR U {+oo}, then its 
sections S(f,'\) are convex. 

Remark. The converse is not true. A function all of whose sections are convex 
is said to be quasi-convex. 

Definition 2.2. A nontrivial function f : X -+ IR U {+oo} is strictly convex 
if for any two distinct points x and y E Dom f 
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f C; Y) < f(x) ~ f(y). (2) 

This condition enables us to give a sufficient condition for the uniqueness 
of a solution of an optimisation problem. 

Proposition 2.4. Let f be a nontrivial convex function from X to IR U {+oo}. 
Then the set M of solutions x E X of the problem f(x) = infxEX f(x) is convex. 
If f is strictly convex then M contains at most one point. 

Proof. Let a : = inf xEX f (x). The first assertion follows from the equality M = 

n)..>oB(j, a), which implies that M is an intersection of convex sets. If f is 
strictly convex and if Xl and X2 are two solutions of the problem a = infxEx f (x), 
we would have 

a = f CI ; X2) < f(xd + f(X2) = a 

which is impossible. c 

Proposition 2.5. Let g be a convex function from X x Y to IR U { +oo}. Then 
the function f from X to IR U { +oo} defined by 

f(x) := inf g(x,y) 
yEY 

(3) 

is convex. 

Proof. Fix c > 0, A EjO, 1[ and xi(i = 1,2) in X. Equality (3) is true when at 
least one of the Xi does not belong to the domain of f. Consider the case in 
which Xl and X2 belong to Dom f. Then there exist YI and Y2 such that 

g(:1:i' Yi) :S f(Xi) + c (i = 1,2). (4) 

Since g is convex, we deduce that 

g(axi + (1 - a)x2' aYI + (1 - a)Y2) :S af(xd + (1- a)f(x2) + c. 

But f(axi + (1- a)x2) is less than or equal to g(axi + (1-a)x2' aYI + (1-a)Y2). 
Whence 

f(axi + (1 - a)x2) :S af(xI) + (1 - a)f(x2) + c 

and simply letting c tend to ° completes the proof. [I 

Proposition 2.6. Consider n convex functions fi from X to IRu {+oo}. Then 
the mapping F from K := n~l Dom fi to IR U { +oo} defined by 

\/x E K, F(x) := (h(x), ... , fn(x)) (5) 

satisfies the following properties: 
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the sets F(K) + IR~ and F(K) + lk: are convex. (6) 

Proof. We prove only the second assertion. The cone lk:, the interior of the 
cone IR~, is formed from vectors U with strictly positive components Uj. 

Fix two elements Yi = F(Xi) + Ui (i = 1,2) of F(K) + lk:, where Xi E K 
and Ui Elk:. If a EjO, 1[, we may write 

y = aYl + (1 - a)Y2 = F(x) + U 

where X = aXl + (1 - a)Y2 and 

U = aUl + (1 - a)u2 + aF(xl) + (1 - a)F(x2) - F(axl + (1 - a)x2)' 

The convexity of the functions fi then implies that the components Ui of this 
vector U are strictly positive. Thus y belongs to F(K) + lk:. D 

2.3 Examples of Convex Functions 

The norms and seminorms on a vector space are convex functions. 
More generally, any subadditive positively homogeneous function is a posi

tively homogeneous convex function and conversely. 
Let ((x, y)) be a scalar semipro duct on the vector space X and set 

1 1 2 
f(x) := 2((x,x)) = 211xII (7) 

where Ilxll := V(x, x) is the seminorm associated with this scalar semi prod
uct. Then f is convex and strictly convex if Ilxll is a norm. If we now take 
a, f3 E [0, 1], f3 = 1 - a, then 

Ilx - ay - f3z112 = a211x - YI12 + f3llx - zl12 - 2af3IIY - z112. (8) 

In fact, the member on the left may be written as 

Ila(x - y) + f3(x - z)112 = a211x - Yl12 + f3211x - zl12 + 2af3((x - Y,x - z)). 

Multiplying the equality 

Ily - zl12 = Ily - x + x - zl12 = Ilx - YI12 + Ily - zl12 - 2((x - y,x - z)) 

by af3 and adding it to the previous equality, we obtain the desired result. 
Taking x = 0, we obtain 

f(ay + f3z) = af(y) + f3f(z) - af3lly - zl12 :S af(y) + f3f(z) 

and, if a = ~ and if 11.11 is a norm, then 
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( 1 ) 1 1 2 1 
J 2(y + z) ~ 2(f(y) + J(z)) - =lIly - zll < 2 (f(y) + J(z)) 

when y # z. o 

We recall that a continuous scalar semiproduct ((x, y)) on X corresponds 
to a continuous linear operator L from X to X* which satisfies 

(i) 
(ii) 

L = L* 
\;fx E X, (Lx,x) 2: 0 

It is defined by the formula 

\;fx,y E X 

(L is self-conjugate) 
(L is positive semi-definite) 

(Lx,y) = ((x,y)). 

2.4 Continuous Convex Functions 

(9) 

(10) 

We shall show that a convex function continuous at a point is actually Lipschitz 
in a neighbourhood of that point. 

Definition 2.3. A function J from an open subset D to IR is locally Lipschitz if 
for each point xED there exists a neighbourhood oj x on which J is Lipschitz. 

Theorem 2.1. Let J : X -t IR U {+oo} be a nontrivial convex function. The 
following conditions are equivalent 
a) J is bounded above on an open subset (necessarily contained in Dom J ). 
b) J is locally Lipschitz on the interior of Dom f. 
Proof. a). Clearly condition b) implies condition a). 

b). Suppose then that J is bounded on a ball Xo + TlB C Dom J by a constant 
Xo - (1 - O)x 

a < +00. We associate with each x E X the element y := . where 

Ilx - xoll 
0:= II II < l. Then Ily - xoll = TI and consequently, J(y) ~ o. The 

TI + x - Xo 
convexity of J implies that 

f(xo) = J(Oy + (1 - (j)x) ~ ea + (1 - e)J(x). 

Whence 

o 
J(xo) ~ 1 _ e(a - J(xo)) + J(x) 

and consequently, replacing e by its value 

\;fxEX, 
a - J(xo) 

J(xo) - J(x) ~ Ilx - xoll· 
TJ 

(11) 

x - (1 - O)xo Ilx - xoll 
Now take x E Xo + TlB and y := e where e := TI ~ 1. Then 

Ily - xoll ~ TI and consequently, J(y) ~ a. The convexity of J implies that 
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f(x) = f(8y + (1 - 8)xo) ::; 8a + (1 - 8)f(xo) 

and consequently, replacing 8 by its value, that 

\Ix E Xo + 7]B, 
a - f(xo) 

f(x) - f(xo) ::; Ilx - xoll· 
7] 

(12) 

Inequalities (11) and (12) imply that 

\Ix E Xo + 7]B, 
a - f(xo) 

f(x) - f(xo) ::; IIx - xoll 
7] 

(13) 

and consequently, that f is continuous at Xo· 

c) We now prove that f is Lipschitz on the ball Xo + {3B where {3 < 7]. Fix an 

integer n larger than IIXI - ;011. Take Xl and X2 in the ball Xo + (3B and divide 
7]-

the segment from Xl to X2 into n parts, using the points Yj ;= Xl + I(XI - X2), 
n 

(j = 0, ... , n). Note that Yo = Xl, Yn = X2 and that the points Yj belong to the 
ball Xo + {3B. It is clear that the balls Yj + (7] - (3)B are then contained in the 
ball Xo + 7]B, so that f is bounded by a on the balls of radius Yj + (7] - (3)B. 
Inequality (13), with Xo replaced by Yj and 7] replaced by 7] - (3, implies that 

a - f(y) 
If(Yj+I) - f(Yj)1 ::; (/ IIYj+1 - Yjll 

7]-

. IIXI - xoll 
smce IIYj+1 - Yjll = ::; 7] - (3. 

n 
On the other hand, inequality (13) implies that 

a - f(xo) 
f(xo) - f(Yj) ::; IIYj - xoll ::; a - f(xo). 

7] 

Then 

2(a - f(xo)) 
If(Yj+d - f(Yj)1 ::; Q IIYj+1 - Yjll· 

7]-

Since IIXI - xoll = ~r~lIlYj+1 - Yjll, we now have 

n-l 2(a - f(xo)) 
If(XI) - f(X2)1 ::; L If(Yj+l) - f(Yj)1 ::; .. a IIXI - x211· 

j=l 

Thus, f is Lipschitz on the ball Xo + (3B. 

d). Lastly, we shall show that f is Lipschitz on a suitable neighbourhood of 
each point Xl in the interior of the domain of f. By virtue of the above, it is 
sufficient to show that f is bounded above on a neighbourhood of Xl. Let I > ° 
be such that Xl + ,B is contained in Dom f. Set A = II I "' which is 

I + Xl - Xo 
strictly less than 1. It is easy to see that the element 
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1 Xl - AXo 
X2 := Xo + (1 _ A) (Xl - xo) = 1 , (14) 

belongs to Xl + "(B, and that f is bounded above on the ball Xl + A1]B by 
Aa + (A - l)f(x2). In fact, if y belongs to the ball Xl + AryB, then the element 
z := ±(y - (1 - A)X2) belongs to the ball Xo + ryB. Then f(z) ::; a and, by 
convexity, 

f(y) = f(AZ + (1 - A)X2)) ::; AJ(z) + (1 - A)f(X2) ::; Aa + (1- A)f(X2)' 

This completes the proof of the theorem. o 

Corollary 2.2. If the interior of the domain of a convex function f from lRn 

to lR U { +oo} is non-empty, then f is locally Lipschitz on Int Dam f. 
Proof. Consider a ball Xo + ryB contained in the domain of f. We may then find 
n points Xi E Xo + ryB such that the vectors Xi - Xo are linearly independent. 
Thus, the set S of convex combinations L7=1 AiXi, where Ai > 0 for all i, is open 
and contained in the domain of f. Consequently, f is bounded above on the 
open set S by maXi=l..n f(Xi) since 

f (t AiXi) ::; t AiXi ::; i!R~n f(Xi)' 
1=1 1=1 

Theorem 2.1 now applies. [J 

Remark. Baire's theorem (see (Aubin 1977) page 189) implies the following 
corollary. 

Corollary 2.3. If the interior of the domain of a convex lower semi-continuous 
function f from a Hilbert space X to lR U { +oo} is non-empty, then f is locally 
Lipschitz on Int Dam f. 

Proof. Baire's theorem now implies that any lower semi-continuous function 
defined on an open set (here, lnt Dom f) is bounded above on a non-empty 
open set. Theorem 2.1 then applies. [J 

2.5 The Proximation Theorem 

We shall consider minimisation problems of the form 

f>..(x) := inf [f(Y) + ~IIY - x112] 
yEX 2A 

(15) 

where f is a function from a Hilbert space X to lR U {+oo}, II . II is the Hilbert 
norm of X and A is a positive parameter. 

Theorem 2.2. Suppose that f : X --+ lR U {+oo} is a nontrivial, convex, lower 
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semi-continuous function from a Hilbert space X to lR U { +00 }. There exists a 
unique solution (denoted by J)..(x)) of the problem (15): 

1 2 
J>-.(x) = f(J)..x) + 2'\ IIJ)..x - xii· (16) 

This solution is characterised by the following variational inequalities 

VyEX, 
1 
~(J)..x - x, J)..x - y) + f(J)..x) - f(y) :::; O. (17) 

Before proving this theorem, we shall apply it to the case where f = 7/JK is 
the characteristic function of a set. This leads to the projection theorem, since 
in this case 

1 2 
J>-.(x) = 2,\ d(x,K) 

where d(x, K) := infYEK Ilx - yll is the distance from x to K. 

Theorem 2.3 (Best Approximation). Let K be a closed convex subset of 
a Hilbert space X. The minimisation problem 

(i) 
(ii) 

Jx E K 
Ilx - Jxll = d(x, K) (18) 

has a unique solution J x which is characterised by the variational inequalities 

(i) 
(ii) yEK, 

JxEK 
(lx - x, Jx - y) :::; O. (19) 

Definition 2.4. The mapping J of X onto K is called the projector of best 
approximation of X onto K. 

Proof. a) If f is positive or zero, then J>-. is also positive or zero. This is the case, 
for example, of the Best Approximation Theorem (where f = 7/J K)' If f is not 
positive, then we use a consequence of the projection theorem (Theorem 3.1) 
which implies that f is bounded below by an affine function: there exist p E X* 
and a E lR such that: 

VyEX, f(y) ;::: (p, y) + a. 

Since the Cauchy-Schwarz inequality implies that 

1 ,\ 2 1 2 
(p, x - y) :::; ~11'\pllllx - yll :::; "2llpll + 2,\ Ily - xii, 

this inequality implies that 

( 12 
fY)+2,\lly- x ll > 

1 2 
(p,y - x) + a + (p,x) + 2,\lly - xii 

,\ 2 
> a + (p, x) - "2llpll 
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and thus that 

.\ 2 
h.(x) 2 a + (p, x) - "2llpll > -00. 

b) We show that any solution x of the problem 

1 
f>,(x) = f(x) + 2.\ Ilx - xl1 2 (20) 

satisfies 

'Vy E X, 
1 
>:(x - x, x - y) + f(x) - f(y) :S O. (21) 

We take z = x + B(y - x) = By + (1 - B)x where B EjO, 1[. Then we obtain the 
inequality 

f>,(x) + 2\ Ilx - xl1 2 :S f(x + B(y - x)) + 2\ Ilx + B(y - x) - xl1 2 

1 
< (1 - B)f(x) + B f(y) + 2.\ Ilx - xl1 2 

B B2 
+>: (x - x, y - x) + 2.\ Ily - xl1 2 

which implies that 

1 B 
f>,(x) - f(y) + >:(x - x, x - y) :S 2.\ Ily - xf 

It is now sufficient to let B tend to O. 

c) Suppose, conversely, that x satisfies the variational inequalities (21). We recall 
that 

1 1 211x - xl1 2 - 211y - xl1 2 :S (x - x, X - y) 

and that consequently 

1 1 1 
f(x) + 2,\ Ilx - xl1 2 - f(y) - 2,\ Ily - xl1 2 :S f(x) - f(y) + >:(x - x, x - y) 

< 0 

for all y E X. 

d) There exists a solution x of the problem f>,(x). To prove this, we consider a 
minimising sequence of elements Xn E X satisfying 

1 2 1 
f(x n ) + 2.\ Ilxn - xii :S f>,(x) + ;:. (22) 

We shall show that this is a Cauchy sequence. In fact, the so-called median 
formula implies that 
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IIXn - xml1 2 = 211 xn - xI12 + 211 xm - xI12 _ 411 Xn ~ Xm - x112. (23) 

Consequently, by virtue of (22) and (23), we have 

2 (1 1 ) Ilxn - xmll ::; 4>. ;;; + m + 2f)..(x) - f(xm) - f(xn) 

+8>' (f Cn ~ Xm) - h(x)) 

4>'(~+ ~ +2fCn~Xm) -f(xn)-f(Xm)) 

< 4>. (~+ ~) 
since f is convex. 

Thus, Xn converges to an element x of X, since X is complete. 
The lower semi-continuity of f implies that 

f(x) + \ Ilx - xI12 ::; limillf (f(xn) + I, Ilxn - x112) 
2/\ Xn-+X 2/\ 

::; h(x). 

Whence h(x) = f(x) + ~llx - x112. 
e) We now prove the uniqueness. If x and x are two solutions to the prob
lem of minimising h(x), we deduce from the variational inequality (21) that 
f(x) - f(x) + ~(x - x, X - x) ::; O. Interchanging the roles of x and x we obtain 
the inequality f(x) - f(x) + ±(x - x, x - x) :S o. Adding these inequalities, we 
deduce that ±llx - xl1 2 ::; o. Whence x = x. 0 

We note that the mappings J).. and 1 - J).. are both continuous, indeed 
Lipschitz with constant l. 

Proposition 2.7. The mappings J).. and 1 - J).. are Lipschitz with constant 1 
(independent of >.) and 'monotone' in the sense that: 

(i) 
(ii) 

(l)..X - J)..y, X - y);::: IP)..x - J)..y112 
((1- J)..)x - (1- J)..)y,x - y);::: 11(1- J)..)x - (1- J)..)YI12. 

Proof. The variational inequality which characterises J)..x implies that 

1 
f(J)..x) - f(l)..y) + ")..(l)..x - x, J)..x - J)..y) ::; O. 

Switching the roles of x and y, we have 

1 
f(l)..y) - f(J)..x) + ")..(l)..y - y, J)..y - J)..x) ::; O. 

Adding these two inequalities, we find that 

(l)..x - J)..y - (x - y), J)..x - J)..y) ::; O. 

(24) 

(25) 
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The inequalities (24)(i) and (ii) follow from this inequality. 
This being so, we write 

Ilx - YI12 Ilx - JAx - (y - JAY) + (JAx - JAy)11 2 

11(1 - h)x - (1 - JA)y11 2 + IIJAx - JAyI1 2 

+2((1 - h)x - (1 - JA)y, JAx - JAY)' 

Following (25), we deduce that 

Ilx - YI12 2 11(1- JA)x - (1- JA)y11 2 + IIJAx - JAy11 2 . 

This completes the proof of Proposition 2.7. o 

Remark. We shall study this question further to show, amongst other things, 
that 

lim JAx 
A-+O 
lim fA(x) 
A-+O 
lim fA(x) 

A-+OO 

x if x E Dom f 
f(x) 

inf f(x) 
xEX 

and that fA is a convex differentiable function with \l fA (x) = X -JAx. This is 

the reason why fA is called the Moreau approximation of f. 

2.6 Separation Theorems 

We shall use the Best Approximation Theorem to deduce one of the most useful 
analytical results, known as the Separation Theorem. 

Theorem 2.4 (Separation Theorem). Consider a non-empty, convex, closed 
subset K of a Hilbert space X. If Xo does not belong to K, there exist a contin
uous linear form p E X* and E > 0 such that 

sup(p, y) :::; (p, xo) - E. (26) 
yEK 

Proof. We consider the projection Jxo of best approximation of Xo onto K. 
The variational inequality which characterises J Xo implies that 

(Jxo-xo,Jxo-Y) :::;0 'Vy E K. 

We deduce that 

2 
IIJxo - :roll :::; (xo - Jxo, Xo - y) 'Vy E K. 

Since Xo tt K, IIJxo - xol1 2 is strictly positive, and the linear form p = Jxo - Xo 
satisfies the conclusion of the theorem (26). D 



32 2. Convex Functions and Proximation, Projection and Separation Theorems 

a a 
Remark. Set a := (p, xo) - SUPyEK (p, y) and b = (p, xo) - -2 = sup(p, y) + -2· 

yEK 

The hyperplane 

H = {x E X!(p,x) = b} 

separates Xo from K, since (p, xo) > band (p, y) ::::: b for all y E K . 

• 

• 
Fig. 2.1. 

If X is a finite-dimensional space, we obtain a Large Separation Theorem, 
without assuming that the set K is closed. This is very useful, since it is often 
difficult to prove that a set is closed. 

Theorem 2.5 (Large Separation). Let K be a non-empty convex subset of a 
finite-dimensional space X. If Xo does not belong to K, there exists a linear 
form p E X* such that 

p -=f. 0 and sup(p, y) ::::: (p, xo). (27) 
yEK 

Proof. Although K is not closed, all the convex hulls of finite families of points 
of K are however closed convex subsets of K which we may separate from Xo 
by virtue of the above theorem. We shall use this idea. 

Next, with any x E K we associate the subset Px of the unit sphere defined 
by 

Px := {p E X' !!!p!!. = 1 and (p, x) ::::: (p, xo)} . (28) 

We note that the set of the solutions (of norm one) of (27) is the intersection 
nXEK Px of the sets Px . Thus, we need to show that this intersection is non
empty. For this we use the fact the unit sphere S := {p E X' !!!p!!. = I} is 
compact, since X is finite-dimensional. As the subsets Px are clearly closed, it 
is sufficient to show that they satisfy the finite-intersection property: for any 
family Xl, ... ,Xn , the intersection ni=l PXi -=f. 0. To prove this, we consider the 
convex hull of the Xi, M := U=i=l AiXi!Ai 2': 0, ~i=l Ai = I}. Since K is convex, 
M is contained in K, and consequently Xo f/:. M. On the other hand, M is 
convex and closed (compact even). Thus, the Separation Theorem implies that 
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there exists a linear form (which may always be taken to have norm 1) such 
that SUPYEM(P, y) < (p, xo)· Since the Xi belong to M, then (p, Xi) ::: (p, xo), 
whence p belongs to FXi for each i = 1, ... ,n. 

Thus, the finite-intersection property is satisfied, whence the set nxEK Fx , 

being non-empty, contains a linear form p which therefore satisfies (27). 0 

K 
X2 XIPllll/A 

f!IIK X3 

Xs X4 

Fig. 2.2. 

There are numerous corollaries to the separation theorems but we find it 
preferable to use one or other of the previous results. We shall, however, show 
how these results may be used to 'separate' two disjunct subsets M and N. To 
say that two subsets IvI and N of a vector space are disjunct is equivalent to 
the statement that 0 does not belong to M - N. 

MnN=090~M-N. (29) 

We also note that 

sup (p,z) = sup(p, x) - inf(p,y). 
zEM-N :rEM yEN 

(30) 

Having established these two remarks, we obtain the following corollary. 

Corollary 2.4. Consider two non-empty, disjunct subsets of a Hilbert space 
X. 
a) If we assume that 

the set !vI - N is convex and closed, (31) 

then there exist a continuous linear form p E X* and E > 0 such that 

sup(p, x) ::: inf(p,y) -E. 
xOvl yEN 

(32) 

b) If we assume that 

X is finite dimensional and M - N is convex, (33) 

then there exists a linear form p E X' such that 
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p:;i 0 and sup(p, x) :s; inf (p, y). 
xEM yEN 

(34) 

Proof. It is sufficient to apply the Separation Theorem and the Large Separa
tion Theorem to the case in which K = M - N with Xo = 0, using properties 
(29) and (30). 0 

We may now give examples of properties implying the assumptions of this 
corollary. 

For example, we recall that 

if M and N are convex, then M - N is convex (35) 

and that 

if M is compact and N is closed, then M - N is closed. (36) 

But, be warned, we shall use examples in which M - N is convex and M is 
not closed and in which M - N is closed although neither M nor N is compact 
(see Propositions 2.6 and 1.8). 

The first separation theorems and the foundations of what was to become 
functional analysis are due to the mathematician Minkowski (1910). The exten
sion of these theorems to Banach spaces and the equivalence to the problem of 
extending continuous linear forms is due independently to Hahn (the founder 
of the famous Vienna Circle) and Banach. The Hahn-Banach theorem is one 
of the three fundamental theorems of linear functional analysis all of which 
carry the name of Banach (the two other theorems, the Banach Closed Graph 
Theorem and the Banach-Steinhauss Theorem, deal with continuous linear op
erator and are based on the Baire Theorem.). In 1922, Banach published his 
first discoveries about liles operations dans les ensembles abstraits et leurs ap
plications aux equations integrales". In 1932, he published his masterpiece, the 
monograph Theorie des Operateurs Lineaires, which had and continues to have 
a determining influence on the course of the history of mathematics. 

Note that, whilst integral equations were the principal motivation which 
drove Banach, Hilbert and other mathematicians at the beginning of this cen
tury to build the foundations of functional analysis, the latter has been applied 
in very different areas of mathematics and, by ricochet, in numerous disciplines. 

It is this universality of mathematical results, having their origin in one 
discipline and finding applications in others, which makes mathematics so fas
cinating. 



3. Conjugate Functions and Convex 
Minimisation Problems 

3.1 Introduction 

The power and the beauty of convex analysis stem from the existence of a one-to
one correspondence between the convex lower semi-continuous functions on X 
and those on its dual X*. This correspondence plays a role analogous to that of 
transposition, which is also a one-to-one correspondence between the continuous 
linear operators from X to Y and those from y* to X*. In associating a convex 
lower semi-continuous function with its conjugate, we in some way double the 
number of properties since we will have the option of using the properties of 
the function or its conjugate. 

This transformation also shows that the cone of convex lower semi-continuous 
functions, which is stable on passage to the upper envelope, is in fact obtained 
by saturation of the space of affine functions continuous under this operation. 
In simple terms, this means that any convex lower semi-continuous function 
is the upper envelope of the continuous affine functions which minorise it. To 
make this more precise, let us consider the minimisation of a nontrivial function 
f from X to IR U {+=}. In fact, since the function f is never known exactly, 
it is wise to study not only the minimisation of the function f, but also that of 
a family of perturbed functions. 

For simplicity and efficiency, we restrict ourselves to simple perturbations. 
In our given context, this means that we shall perturb f by continuous linear 
functions and study the family of minimisation problems 

-j*(p):= inf[f(x) - (p,x)] 
xEX 

(*) 

and the variation of this infimum as a function of p. In particular, 

- j*(O) := inf f(x). 
xEX 

The formula (*) may be rewritten in the form 

j*(p) = sup[(p, x) - f(x)] 
xEX 

which immediately shows that the function j* : p E X* --7 j*(p) E lR U {+oo}, 
which is the upper envelope of the continuous affine functions p --7 (p, x) - f (x) 
on X*, is a convex lower semi-continuous function. 
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The result mentioned above is explained by this assertion: a function f is 
convex, lower semi-continuous and nontrivial if and only if f is equal to its 
biconjugate (1*) * . 

The second important result is known as Fenchel's Theorem. We consider 

(i) two Hilbert spaces (or reflexive Banach spaces) X and Y; 

(ii) a continuous linear operator A from X to Y; 

(iii) two nontrivial, convex, lower semi-continuous functions 
f : X -+ IR U { +oo} and 9 : Y -+ IR U { +oo} satisfying 

(a) 0 E lnt (A Domf - Domg) 
(b) 0 E lnt (A* Domf* + Domg*) 

We shall prove that there exist solutions x E X and q E y* of the minimi
sation problems 

v := inf [f(x) + g(Ax)] = f(x) + g(Ax) 
xEX 

and 

v* := inf [f*( -A*q) + g*(q)] = f*( -A*q) + g*(q) 
qEY' 

and that, in addition, the two minimisation problems are linked by the equation 

v + v* = o. 

In the next section, we shall establish the connections between the solutions of 
the v problem and those of the v. problem (known as the dual of the v problem). 

We shall formulate a calculus of conjugate functions which will enrich the 
field of applications of these two theorems. Since a closed convex subset K 
of X is characterised by its indicator function 7/JK, which is convex and lower 
semi-continuous, it is consequently equivalently characterised by the conjugate 
function 7/Jk of 7/J K defined on X* by 

(JK(p) := 7/J"K(p) = sup(p, x). 
xEK 

This function, called the support function of the subset K, is very useful 
in that it enables us to replace the manipulation of closed convex subsets by 
the more familiar manipulation of convex lower semi-continuous functions. The 
discovery and use of this fact is due to Minkowski. 

This will lead us naturally to the notion of polarity between closed convex 
cones of X and of X*. If K is a closed convex cone we denote its (negative) 
polar cone by 

K-:= {p E X*IVx E K, (p,x) ~ O}. 

This is also a closed convex cone. We shall prove that K = (K-f. 
As discovered by Steinitz from 1912, this relationship extends the orthogo

nality relationships between vector subspaces to closed convex cones. 
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3.2 Characterisation of Convex Lower Semi-continuous 
Functions 

Following the Danish mathematician Fenchel, who introduced this concept in 
1949, after a long history beginning with Young's inequality in 1912, we intro
duce the following definition 

Definition 3.1. Let f be a nontrivial function from X to IR U { +00 }. Then the 
function 1* from X* to IR U { +oo} defined by 

I;fp E X*, 1*(p) := sup[(p, x) - f(x)] E IRu {+oo} (1) 
xEX 

is called the (Fenchel) conjugate of f and the function 1** : X --+ IR defined 
by 

I;fx E X, j**(x):= sup[(p, x) - 1* (p)] (2) 
pEX 

is the biconjugate of f. 

Note that the so-called Fenchel inequality 

I;fx E X, I;fp E X*, (p, x) :S f(x) + j*(p) (3) 

always holds and that 

I;fXEX, j**(x) :S f(x). (4) 

Remark. If we interpret the vector space X as a space of commodities, its dual 
X* as the space of prices (continuous linear functions associating a commodity 
with its value) and f as a cost function, then (p, x) - f (x) is a profit and the 
conjugate function is the maximum-profit function, which associates every price 
p with the maximum profit which it may obtain. 

If a function f coincides with its biconjugate, then f is necessarily convex 
and lower semi-continuous. The converse is also true. 

Theorem 3.1. A nontrivial function f : X --+ IR U {+oo} is convex and 10weT 
semi-continuous if and only if f = 1**. In this case, 1* is also nontrivial. 

Remark. Since in this case 

f(x) = sup [(p, x) - j*(p)], (5) 
pEX' 

we deduce that any nontrivial convex lower semi-continuous function is the 
upper envelope of the affine functions which minorise it. 

Proof. The idea of the proof is very simple. Since the epigraph of f is a closed 
convex set, any point (:r, a) which does not belong to it is separated from Ep(f) 
by a hyperplane which is the graph of a continuous affine function minorising f· 
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We shall now substantiate this idea. 

a) Suppose that a < J(x). Since the pair (x, a) does not belong to Ep(f), which 
is convex and closed, there exist a continuous linear form (p, b) E X* x lR and 
E > 0 such that 

Vy E DomJ, V)" 2: J(y), (p,y) - b)":::; (p,x) - ba - E (6) 

by virtue of the Separation Theorem (Theorem 2.4). 

Fig. 3.1. Graph of an affine function minorising f. 

b) We note that b 2: o. If not, we take y in the domain of J and)" = J(y) + J-L. 
We would have 

-bJ-L:::; (p,x - y) + b(f(y) - a) - E < +00. 

Then we obtain a contradiction if we let J-L tend to +00. 
c) We show that if b > 0, then a < f**(x). In fact, we may divide the inequality 
(6) by b; whence, setting p = plb and taking).. = J(y), we obtain 

Vy E DomJ, (p,y) - J(y) :::; (p,x) - a - Elb. 

Then, taking the supremum with respect to y, we have 

This implies that 

(i) 
(ii) 

f*(p) < (p, x) - a. 

p belongs to the domain of f* 
a < (p,x) - f*(p):::; f**(x). (7) 

d) We consider the case in which x belongs to the domain of f. In this case, b is 
always strictly positive. To see this, it is sufficient to take y = x and)" = J (x) 
in formula (6) to show that 

b 2: EI(f(x) - a) 
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since f (x) - a is a strictly positive real number. Then, from part b), we deduce 
the existence of 15 E Dom1* and that a ::; 1**(x) ::; f(x) for all a < f(x). Thus, 
1**(x) is equal to f(x). 

e) We consider the case in which f (x) = +00 and a is an arbitrarily large 
number. Either b is strictly positive, in which case part b) implies that 
a < 1**(x), or b = O. In the latter case, (6) implies that 

'iy E Domf, \P, Y - x) + E ::; O. (8) 

Let us take 15 in the domain of 1* (we have shown that such an element exists, 
since Domf is non-empty). Fenchel's inequality implies that 

\p,y) - 1*(15) - f(y)::; O. (9) 

We take JL > 0, multiply the inequality (8) by JL and add it to the inequality 
(9) to obtain 

\15 + JLP, y) - f(y) ::; 1*(15) + JL\P, x) - JLE. 

Taking the supremum with respect to y, we obtain: 

1* (15 + JLp) ::; 1* (15) + JL\P, x) - JLE 

which may be written in the form 

\P, x) + JLE - 1*(15) ::; \15 + JLP, x) - 1*(15 + JLp) ::; 1**(x). 

Taking JL = a+f*(f5:-(f5,x), which is strictly positive, we have again proved that 
a ::; 1** (x). Thus, since 1** (x) is greater than an arbitrary finite number, we 
deduce that 1**(x) = +00. 

3.3 Fenchel's Theorem 

We shall now prove Fenchel's duality theorem which, in conjunction with the 
previous theorem, provides the framework for convex analysis. 

Suppose we have two Hilbert spaces (or reflexive Banach spaces) X and Y, 
together with 

(i) a continuous linear operator A E L(X, Y); 
(ii) two nontrivial, convex, lower semi-continuous functions 

f : X --+ lR U { +oo} and 9 : Y --+ lR U { +00 }. 

We shall study the minimisation problem 

v := inf [f(x) + g(Ax)]. 
xEX 

(10) 

(11) 

Note that the function f + goA which we propose to minimise is only nontrivial 
if A Domf n Dom 9 # 0, that is to say, if 
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o E ADomf - Domg. (12) 

In this case, we have v < +00. 
Now we introduce the dual minimisation problem 

v* := inf [f*( -A*q) + g*(q)] 
qEY* 

(13) 

where A * E L(Y*, X*) is the transpose of A, f* : X* -+ IR U {+oo} is the 
conjugate of f and g* : Y* -+ IR U { +oo} is the conjugate of g. This only makes 
sense if we assume that 

o E A* Domg* + Domf* (14) 

and in this case, v* < +00. 
Note that we still have the inequality 

v + v* 20 (15) 

since, by virtue of Fenchel's inequality, 

f(x) + g(Ax) + f*(-Aq) + g*(q) 2 (-A*q,x) + (q,Ax) = O. 

Consequently, conditions (12) and (14) imply that v and v* are finite. 
By way of a slight reinforcement of condition (12), guaranteeing that the 

function f + goA is nontrivial, we shall show that v + v* is equal to zero and 
that the dual problem has a solution. 

Theorem 3.2 (Fenchel). Suppose that X and Yare Hilbert spaces (or reflexive 
Banach spaces), that A E L(X, Y) is a continuous linear operator from X to 
Y and that f : X -+ IR U {+oo} and 9 : Y -+ IR U {+oo} are nontrivial, 
convex, lower semi-continuous functions. We consider the case in which 0 E 

ADorn f - Dom 9 and 0 E A * Dom g* + Dom f* (which is equivalent to the 
assumption that v and v* are finite). 

If we suppose that 

o E lnt (ADomf - Domg), 

then 

v + v* = 0 (i) 
(ii) ::3 ij E Y* such that f* ( - A * ij) + g* (ij) = v*. 

If we suppose that 

o E Int (A* Domg* + Dom f*), 

then 

v + v* = 0; (i) 
(ii) ::3 x E X such that f(x) + g(Ax) = v. 

(16) 

(17) 

(18) 

(19) 
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Proof. 
a) We shall begin by proving the theorem for the case in which the space Y is 
finite dimensional. 

We introduce the mapping ¢ from Dom f x Dom g to Y x lR defined by 

¢(x, y) = {Ax - y, f(x) + g(y)} (20) 

together with 

(i) the vector (0, v) E Y x lR 
(ii) the cone Q = {O}x]O, oo[e Y x lR (21) 

In a proof analogous to that of Proposition 2.6, it is easy to show that the 
linearity of A and the convexity of the functions f and g imply that 

¢(Domf x Domg) + Q is a convex subset of Y x lR. (22) 

Furthermore, if we suppose that (O,v) belongs to ¢(Domf x Domg) + Q, we 
may deduce the existence of x E Dom f and y E Dom g such that Ax - y = ° 
and v > f(x) + g(y) = f(x) + g(Ax), which would contradict the definition of 
v. Thus, 

(0, v) t/-c ¢(Domf x Domg) + Q. (23) 

Since Y is a finite-dimensional space, we may use the Large Separation Theorem 
to show that there exists a linear form (p, a) E y* x lR such that 

(i) 
(ii) 

(p, a) i= ° 
av = ((p,a), (O,v)) 

< inf [a(f(x) + g(y)) + (p, Ax - y)] + inf aB. 
xEDorn! 8>0 
YEDorng 

(24) 

Since the number infe>o aB is bounded below, we deduce that it is zero and that 
a is positive or zero. We cannot have a = 0, since in that case, the inequality 
(24)(ii) would imply that 

0:::; inf (p,Ax-y) inf (p,z). 
xEDomf zEADomf-Domg 
YEDomg 

(25) 

Since the set A Domf - Dom g contains a ball of radius 7] and centre 0, by 
virtue of (16), we deduce that ° :::; -7]llpll and thus that p = 0. This contradicts 
(24)(i). 

Consequently, a is strictly positive. Dividing the inequality (24)(ii) by a and 
taking p = p / a, we obtain 

v < inf [(A*p,x) - (p,y) + f(x) + g(y)] 
J:EDomj 
yEDoffig 

- sup[(-A*p,x) + (p,y) - f(x) - g(y)] 
:rEX 
!-leY· 

- f*( -A*p) - g*(p). 
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Whence, f*( -A*p) + g*(p) = -v ::; V*' which proves that p is a solution of the 
dual problem and that v* = -v. 

The second assertion is proved by replacing f by g*, 9 by f* and A by - A * . 

b) We now give a proof in the case of infinite-dimensional spaces. 
In this case, we consider the mapping 1jJ from Domf* x Dom g* to lR x X* 
defined by 

1jJ(p, q) = (f*(p) + g*(q),p + A*q) (26) 

together with the set 

1jJ(Dom1* x Domg*) + lR+ x {o}. (27) 

CY) It is easy to prove that this set is convex. We show that it is closed. For this, 
we consider a sequence of elements (Vn, Tn), belonging to this set, converging to 
(v*, T *) in lR x X*. Thus, there exist elements Pn E X* and qn E y* such that 

Vn ;::: 1*(Pn) + g*(qn) Tn = Pn + A*qn- (28) 

We shall deduce from the assumption (16) that the sequence of elements qn is 
weakly bounded. 

In fact, the assumption (16) implies the existence of a ball of radius "y > 0 
contained in Dom 9 - ADorn f. Thus, for all z E Y, there exist x E Dom f and 

"y 
y E Dom 9 such that W z = y - Ax. Consequently, 

"y 
w(qn,Z) (qn, y) - (A*qn' x) 

(qm y) + (Pn, x) (Tn' X) 

::; g(qn) + 1* (Pn) + g(y) + f(x) - (Tn' X) 

< g(y) + f(x) + Vn - (Tn'X), 

Since the sequences Vn and (Tn' X) are convergent, they are bounded and thus 
we have shown that 

Ic/z E Y, sup(qn, z) < +00. 
n?:O 

(29) 

The Banach-Steinhauss theorem then implies that the sequence of elements 
qn is weakly compact; whence, it has a subsequence qn' which converges weakly 
to an element q* of y* and consequently, the subsequence Pn' - Tn' - A * qn 
converges weakly to P* = T - A*q* (see Schwartz 1970). 

Since the functions 1* and g* are weakly lower semi-continuous, we deduce 
that 

1* (P*) + g*( q*) ::; lim inf 1* (Pn) + lim inf g* (qn) 
n---+oo n---+oo 

< liminf(f*(pn) + g*(qn)) ::; lim Vn = V. 
n-+oo n--+oo 

Thus, we have shown that 
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v:::: j*(p*) + g*(q*), r = p* + A*q*, 

whence, that (v, r) belongs to 7j;(Dom j* x Dom g*) + ffi+ x {o}. 

,6) Next we shall show that 

(-v,O) E 7j;(Domj* x Domg*) + ffi+ x {O}. (30) 

This assertion implies the theorem, since there exists ij E Dom g* such that 
-Aij E Domf* and -v :::: f*( -A*ij) + g*(ij) :::: v* :::: -v. 

Consequently, 

-v = v* = j*( -A*ij) + g*(ij). 

We shall now suppose that assertion (30) is false. Since the set 
7j; (Dom f* x Dom g*) + ffi+ x {O} is convex and closed and since ffi x X is 
the dual of ffi x X*, the pair (-v, 0) may be strictly separated from this set; 
thus, there exist (a, -x) E ffi x X and c > 0 such that 

-av::; inf [a(J*(p) + g*(q)) + (p + A*q, x)] + inf aB - c. 
(p,q) e>o 

Since infe::o:o aB is bounded below, it follows that infe::o:o aB = 0 and that a is 
positive or zero. It cannot be zero, for in that case we would have 

0::; inf (p + A*q, -x) - C. 
(p,q)EDom!* xDomg* 

Since (14) implies the existence of p E Domf* and q E Domg* such that 
p + A*q = 0, we would have 0 ::; -c, which is impossible. 

Dividing by a > 0 and setting x := x/a and T/ = c/a, we obtain 

-v < inf[j*(p) + g*(q) - (p,x) - (q,Ax)]- T/ 
(p,q) 

-sup[(p, x) + (q,Ax) - j*(p) - g*(q)]- T/ 
(p,q) 

-(J(x) + g(Ax)) - c ::; -v - T/. 

This is impossible. Thus, assertion (30) is true and the proof of the theorem is 
complete. 0 

3.4 Properties of Conjugate Functions 

Firstly, we note the following elementary propositions. 

Proposition 3.l. 
a) If f ::; g, then g* ::; f*. 
b) If A E L(X, X) is an isomorphism, then 

(JoA)*=j*oA*-l. 
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c) If g(x) := f(x - xo) + (Po, x) + a, then 

g*(p) = j*(p - Po) + (p, xo) - (a + (Po, xo)). 

d) If g(x) := f()..x) , then g*(p) = 1* (X) and if h(x) := Af(x), then h*(p) = 

)..1* (X)· 
Proof. The first assertion is evident. The second assertion may be proved by 
showing that 

sup [(p, x) - f(Ax)] = sup[(A*-lp, y) - f(y)] = j*(A*-lp). 
xEX yEX 

For the third assertion, we observe that 

sup[(p, x) - g(x)] sup[(p - Po, x) - f(x - xo)]- a 
xEX xEX 

sup[(p - Po, y) - f(y)]- a + (p - Po, xo) 
xEX 

j*(p - Po) + (p, xo) - a - (Po, xo)· o 

Proposition 3.2. Suppose that X and Yare two Hilbert spaces and that f is a 
nontrivial convex function from X x Y to IRU{ +oo}. Set g(y) := infxEx f(x, y). 
Then 

g*(q) = j*(0, q). (31) 

Proof. 

g*(q) = sup[(q,y) - inf f(x,y)] 
yEY xEX 

supsup[(O, x) + (q,y) - f(x,y)] = j*(O,q). o 
yEYxEX 

Proposition 3.3. Suppose that X and Yare two Hilbert spaces, that 
B E L(Y, X) is a continuous linear operator from Y to X and that 
f : X -t IR U {+oo} and g : Y -t IR U { +oo} are two nontrivial functions. 
Set h(x) := infYEy(J(x - By) + g(y)). Then 

h*(p) = j*(p) + g*(B*p). (32) 

Proof. 

sup[(p, x) - inf(J(x - By) + g(y))] 
xEX yEY 

sup[ (p, x) - f(x - By) - g(y)] 
xEX 
yEY 

sup[(p, X + By) - f(x) - g(y)] 
xEX 
yEY 

j*(p) + g*(B*p). 0 
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When X = Y and B = I is the identity, the function h := J EBt 9 defined 
by h(x) := infYEy(f(x - y) + g(y)) is called the inf-convolution of the functions 
J and g. The above proposition states that the conjugate of the inf-convolution 
of two functions is the sum of the conjugates. 

Next we shall calculate the function conjugate to 1* + g* 0 B*. We shall 
not recover the function h, since we do not know if the latter is lower semi
continuous. For this, we need a slightly more restrictive assumption, namely 

o E Int (B* Domj* - Domg*). (33) 

In fact, this is a consequence of the following proposition: 

Proposition 3.4. Suppose that X and Yare two Hilbert spaces, that 
A E L(X, Y) is a continuous linear operator and that J : X -+ IR U {+oo} 
and 9 : Y -+ IR U {+oo} are two nontrivial, convex, lower semi-continuous 
functions. Suppose further that 

o E Int (ADomJ - Domg). (34) 

Then, for all pEA * Dom g* + Dom j*, there exists q E Y* such that 

(f + 9 0 A)*(p) j*(p - A*q) + g*(q) 

inf (f*(p - A*q) + g*(q)). 
qEY' 

(35) 

Proof. We may write 

sup[(p, x) - J(x) - g(Ax)] = - inf[J(x) - (p, x) + g(Ax)]. 
xEX 

We apply Fenchel's Theorem with f replaced by J(.) - (p, .), the domain of 
which coincides with that of J and the conjugate function of which is equal to 
q --+ 1* (q + p). Thus, there exists q E Y* such that 

sup[(p, x/ - J(x) - g(Ax)] j*(p - A*q) + g*(q) 
xEX 

inf[j*(p - A*q) + g*(q)]. D 
qEY 

It is useful to state the following consequence explicitly: 

Proposition 3.5. Suppose that X and Yare two Hilbert spaces, that 
A E L(X, Y) is a continuous linear operator from X to Y and that 
9 : Y --+ IR U {+oo }is a nontrivial, convex, lower semi-continuous function. 
We suppose further that 

o E Int (1m A - Dorng) (36) 

Then, for all pEA * Dom g*, there exists q E Dom g* satisfying 
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A*q = p and (g 0 A)*(p) = g*(q) = min g*(q). 
A*q=p 

Proof. We apply the previous proposition with f = 0, where the domain is the 
whole space X. Its conjugate function f* is defined by f*(p) = {O} if p = 0 and 
f*(p) = +00 otherwise. Consequently, f*(p - A*q) is finite (and equal to 0) if 
and only if p = A*q. D 

The following result will be used later; in the meantime, it may be considered 
as an exercise. 

Proposition 3.6. Suppose X and Yare two Hilbert spaces, that A E L(X, Y) 
is a continuous linear operator from X to Y and that f : X --+ IR U { +oo} and 
9 : Y --+ IRU{ +oo} are two nontrivial, convex, lower semi-continuous functions. 

We suppose further that 

o E Int (Domg - ADorn!) 

We set e(x, y) := f(x) + g(Ax + y). Then, for all (p, q) E X* x Y* 

e*(p, q) = f*(p - A*q) + g*(q). 

Proof. We may write 

e(x, y) = f(x) + g(Ax + y) = h(C(x, y)) 

(37) 

(38) 

(39) 

where h is a function from X x Y to IR U {+oo} given by h(x, y) = f(x) + g(y) 
with domain Domh = Domf x Domg and where C E L(X x Y,X x Y) is 
defined by C(x,y) = (x,Ax + y). Its transpose C* E L(X* x Y*,X* x Y*) is 
defined by C*(p, q) = (p + A*q, q). We shall apply Proposition 3.1 to calculate 
the function conjugate to hoC, since the operator C is clearly an isomorphism 
of X x Y onto itself. D 

Corollary 3.1. The assumptions are as in Proposition 3.6, above. We set 
h(y) := infxEx(f(x) + g(Ax + y)). Then 

h*(q) = f*( -A*q) + g*(q). (40) 

Proof. We apply Propositions 3.2 and 3.6 D 

Example. Conjugate functions of quadratic functions. 

Proposition 3.7. Suppose that X is a Hilbert space and that L is a continuous 
linear operator from X to X* satisfying 

(i) L = L* 
(ii) (Lx, x) 2 0 \:Ix EX 
(iii) 1m L is closed in X*. ( 41) 
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Let f be the function from X to lR+ defined by 

1 
f(x) = 2(Lx, x). 

Then its conjugate function is equal to 

( 42) 

j*( ) = { !(p,x) where x E L-l(p) whenp E ImL (43) 
p +00 when p 1:. ImL 

Proof. 
a) First we take p 1:. 1m L. Since the image of L is closed, it follows that 1m L = 
(KerL)~ 

(see Theorem 3.4, below) and thus there exists an element Xo E KerL such 
that (p, xo) is strictly positive. Whence, 

j*(p) 2 sup( (p, AxO) - f(Axo)) = (sup A) (p, xo) = +00 
A>O A>O 

since f(Axo) = !(AL(xo), AXo) = o. 
b) Now we take p E 1m L with x a solution of p = Lx. Then l(x, y) = (Lx, y) is 
a scalar semipro duct and the Cauchy-Schwarz inequality implies that 

(Lx,y) :S V(Lx,x)V(Ly,y) :S ~(LX,x) + ~(LY,y). 

Whence 

( 1 ) 1 1 j*(15) = s~p (Lx,y) - 2(Ly,y) :S 2(Lx,x) = 2(P,x). 

On the other hand, 

1 1 
2(P, x) = (p, x) - 2(Lx, x) :S j*(p). 

Thus, we have shown that 1* (p) = (p, x) for all solutions x of the equation 
Lx=p. D 

Corollary 3.2. Let X be a Hilbert space and L E L(X, X*) the duality operator. 
The conjugate function of the function f defined by f (x) = ! II X 112 is the function 
1* defined by 

j*(p) = ~llpll: where Ilpll* = sup (PII'xll ) = V(L-lp,p). (44) 
2 xEX x 

Proof. The duality operator L satisfies the properties (41), is surjective and 
is associated with the norms Ilxll and Ilpll* by the relationships IIxl12 = (Lx, x) 
and Ilpll: = (L-1p,p). 0 
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Corollary 3.3. Let X be a Hilbert space and f : X -t lR U { +oo} a nontrivial, 
convex, lower semi-continuous function. Then, for all A > 0, 

}rl (f(x) + 2~llxI12) + p~~. (j*(P) + ~llpll:) = O. (45) 

Proof. We apply Theorem 3.2 with g(x) = 2\ Ilx11 2, where the conjugate func

tion is defined by g*(p) = ~llpll:. D 

3.5 Support Functions 

We have already mentioned that it is possible to characterise a subset K c X by 
its characteristic function 7/JK defined by 7/JK(X) = 0 if x E K and 7/JK(X) = +00 
otherwise. 

Its conjugate function is defined by 

7/J'K(p) = sup(p,x). (46) 
xEK 

Definition 3.2. The conjugate function 7/J'K of the indicator function of a subset 
K is called the support function of K and is often denoted by 

aK(p) := a(K,p) := sup(p, x). ( 47) 
xEK 

The domain of aK(.) is called the barrier cone K and is often denoted by 
b(K) := DornaK. 

Examples. 
a) If K = {xo} then aK(p) = (p, xo). 
b) If K = B then aK(p) = Ilpll*. 
c) If K is a cone then 

aK(p) = 7/JK-(P) and b(K) = K- (48) 

where 

K- = {p E X* IV x E K, (p, x) ::; O} is the negative polar cone of K. ( 49) 

d) If K is a vector subspace then 

aK(p) = 7/JK1-(P) and b(K) = KJ. (50) 

where KJ. = {p E X*IVx E K, (p,x) = O} is the orthogonal subspace corre
sponding to K (the orthogonal for short). 
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We note that 
if 0 E K then aK :::;. 0 (51) 

and that 
if K is symmetric then aK is even. (52) 

Proposition 3.8. Any support function aK of a non-empty subset K c X is 
a convex, lower semi-continuous, positively homogeneous function from X* to 
lRu {+oo}. 

Conversely, any function a : X* ~ lR U {+oo} which is convex, lower 
semi-continuous and positively homogeneous is the support function of the set 

KeY := {x E XI\ip E X*, (p, x) :::; a(p)}. (53) 

Proof. The first assertion is evident. To establish the second assertion, we 
calculate the conjugate function of a. 

If x belongs to KeY, then a*(x) = 0, since 

a*(x) = sup((p, x) - a(p)):::; 0 = (O,x) - a(O):::; a*(x) 
pEX 

If x does not belong to KeY, then there exists Po with (Po, x) - a(po) > O. 
Thus, 

a*(x) :::;. SUp((APo, x) - a(APo)) :::;. SUpA((Po,X) - a(po)) = +00 . 
. \>o .\>0 

Thus, we have proved that a* is the support function of KeY' 

Theorem 3.3. If K is a convex closed subset of X, then 

K = {x E XI\ip E X*, (p,x):::; aK(p)}, 

If K is a closed convex cone then 

K = (K-)-. 

If K is a closed vector subspace then 

K = (K.L).L. 

o 

(54) 

(55) 

(56) 

Proof. If K is convex and closed then 'l/JK is convex and lower semi-continuous 
and consequently 'l/JK = ('I/J"K)* = a"K. Thus, 'l/JK is the indicator function of the 
set K eYK , which is nothing other than the right-hand side of formula (54). 

Formulae (55) and (56) follow from the above together with the fact that 
aK = 'l/JK- if K is a cone and aK = 'l/JKl. if K is a vector subspace. 0 
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The following result is known as the bipolars theorem. 

Theorem 3.4. Suppose that A E L(X, Y) is a continuous linear operator and 
that K is a subset of X. Then 

A(Kf = A*-l(K-) (57) 

and if A(K) is a closed convex cone, then A(K) = (A*-l(K-)f. 
In particular, 

Ker A* = (ImA)l. (58) 

and ifImA is closed, ImA = (Ker A*)l..Proof. In fact, p belongs to A(Kf if 
and only if 

\/x E K, (p, Ax) = (A*p, x) :::; 0, 

that is to say, if and only of A*p belongs to K-. The second assertion follows 
from Theorem 3.3. The equality (58) is the particular case in which K = X, 
K- = {O}. 0 

Since the restriction of a function f to a subset K is the sum of f and the 
indicator function of K, we obtain the following formula. 

Proposition 3.9. Let f be a nontrivial, convex, lower semi-continuous func
tion from X to IR U {+oo} and let K be a closed, convex subset of X. If 
o E Int(Domf - K) and p E Domf* + b(K), then there exists ij E b(K) such 
that 

(fIK)*(P) = f*(p - ij) + aK(ij). (59) 

Since the barrier cone is the domain of the support function of K, which is 
convex and positively homogeneous, it is a convex cone, which is not necessarily 
closed. 

It is clear that K is simply bounded if and only if b(K) = X, since to say 
that K is simply bounded is equivalent to the statement that 

\/p E X*, aK(p) = sup(p,x) < +00. (60) 
xEK 

The 'uniform-boundedness' theorem says that, in fact, the simply bounded 
sets are the bounded sets (as simple as that!). 

It follows that barrier cones in some way measure the 'lack of boundedness' 
of sets. The smaller the barrier cone of a set, the more 'unbounded' this set, if 
we dare to use this ill-sounding neologism. 

Proposition 3.10. Let K be a closed convex subset. Then, for all Xo E K, 

b(Kf = n J..(K - xo). (61) 
>'>0 
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Definition 3.3. The negative polar cone of the barrier cone of K is called the 
asymptotic cone of K. 

Proof of Proposition 3.10. Provisionally, we set L := n.\>o'\'(K - xo). 
a) We take x E L. For all .\. > 0, there exists y.\ E K such that x = .\.(y.\ - xo). 
Thus, (p,x) = '\'((p,Y.\) - (p,xo)) :::; .\.(O"K(P) - (p,xo)) < +00 if P belongs to 
the barrier cone. It suffices to make .\. tend to zero to see that (p, x) :::; 0 for all 
P E b(K), that is to say that L is contained in b(Kt. 
b) Conversely, we take :[ in b(Kf and .\. > O. Since ~ belongs to b(Kf, we 
deduce that for all P E b(K), 

(p,xo +~):::; (p,xo) + (p,~):::; (p,xo):::; O"K(P)' 

Since K is convex and closed, Theorem 3.3 implies that ~ + Xo belongs to K, 
whence that x belongs to L. 

Formulae relating to support functions and barrier cones 

of The following formulae relating to support functions and barrier cones may 
be deduced from the properties of conjugate functions. 

Remark. If f is a proper, convex, lower semi-continuous function, then 
O"Ep(f)(P, -1) = f*(p). 

• If K c L then 
b(L) c b(K) and O"K :::; O"L. 

• If Ki C Xi (i = 1, ... , n), then 

( n ) n n 
b g Ki = g b(Ki) and O"K(Pl, ... ,Pn) = ~ O"K,(Pi). 

• b (co U Ki) en b(Ki) and 0" (co (U o"Ki) (p)) = SUPO"Ki(P), 
iEI iEI iEI lEI 

• If B E L(X, Y), then 

b(B(K)) = B*-lb(K) and 0" B(K)(P) = O"K(B*p). 

(62) 

(63) 

(64) 

(65) 

• b(Kl + K2) = b(Kl) n b(K2) and O"Kl+K2(P) = O"KI (p) + O"K2(P)· (66) 
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• If P is a convex closed cone then 

{ (JK(p) if P E P-
b(K + P) = b(K) n P- and (JK+P(X) = +00 otherwise (67) 

• b(K + {xo}) = b(K) and (JK+xo(P) = (JK(P) + (p,xo). (68) 

• If A E L(X, Y), if LeX and M c Yare closed convex subsets and if 
o E Int(A(L) - M) then 

b(L n A-I(M)) = b(L) + A*b(M) 

and Vp E b(K), :3 ij E b(M) such that 

(JLnA-l(M)(P) = (JL(P - A*ij) + (JM(ij) = inf ((JL(p - A*q) + (JM(q)). (69) 
qEY* 

• If A E L(X, Y), if Me Y is convex and closed and if 0 E Int(Im(A) - M), 
then 

b(A-I(M)) = A*b(M) 

and 'lip E b(A-l(M)), Jq E b(M) satisfying 

A*ij = P and (JA-l(M)(P) = (JM(ij) = inf (JM(q). (70) 
A*q=p 

• If KI and K2 are convex closed subsets of X such that 0 E Int(KI - K2), 
then b(KI n K2) = b(KI) + b(K2) and for all P E b(KI n K2), there exist 
Pi E b(Ki) (i = 1,2) such that P = PI + P2 and 

(JK,nK2(P) = (JK, (PI) + (JK2(P2) = inf ((JK, (pd + (JK2(P2))' (71) 
P=P'+P2 

3.6 The Cramer Transform 

The Cramer transform G associates with any nonnegative measure dJ.1 on a 
finite dimensional vector space IRn the nonnegative extended function GI" 
IRn f-t IR+ U {+oo} defined on IRn (identified with its dual) by : 

GI"(p) := sup ((p, x) -log (r e(X'Y)dJ.1(Y))) 
xEIRn JIRn 
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In other words, it is the product of the Laplace transform /1 H r e(x'Y)d/1(Y), of JIRn 

the logarithm and of the Fenchel transform (conjugate functions) g(.) H g*(.). 
This Cramer transform plays an important role in statistics, and in particular, 
in the field of large deviations. Since GIL is the supremum of affine functions 
with respect to p, this is a lower semicontinuous convex function. It satisfies 

GIL(p) ~ (p,O) -log (fIR" e(O'Y)d/1(Y)) -log (flRn d/1(Y)) 

so that when d/1 is a probability measure, its Cramer transform GIL is nonneg
ative. 

We may regard nontrivial nonnegative extended functions as membership 
cost functions of "toll sets", following a suggestion of Dubois and Prades. In
deed, they provide another implementation of the idea underlying "fuzzy sets" 
exposed in chapter 13, since the set [0, oolE of nonnegative extended functions f 
from E to IR+ U { +00 } is the closed convex hull of the set {O, OO}E of indicators: 

Definition 3.4 We shall regard an extended nonnegative function f : X H 

IR+ U { +oo} as a toll set. Its domain is the domain of f, i. e., the set of elements 
x such that f (x) is finite, and the core of f is the set of elements x such that 
f (x) = O. The complement of the toll set f is the complement of its domain 
and the complement of its core is called the toll boundary. 

We shall say that the toll set f is convex (respectively closed, a cone) if 
the extended function f is convex (respectively lower semicontinuous, positively 
homogeneous) . 

We observe that the membership function of the empty set is the constant 
function equal to +00. 

The Cramer transform provides a mathematical reason for which toll sets 
furnish a sensible mathematical representation of the concept of randomness, 
but different from the r-epr-esentation by probabilities. This is justified by the 
following observations. 

The indicatorslP{a} of singleta a are images of Dirac measures 6a : Indeed, 
if 6a is the Dirac measure at the point a E IRn , then 

{ 
0 if p = a 

G8 (p) = sup ((p, x) - (a, .x)) +00 if p # a 
a xEIRn 

= 'ljJa(P) 

The Cramer transform of the Gaussian with mean m and variance a is the 
quadratic function Ga. Tn defined by 

Ga.m(x) := ~llx~mI12 
which we can regard as a Gaussian toll set with mean m and variance a. Such 
toll sets play the role of Gaussians in probability theory. 

The function x H log (flRn e(x,y) d/1(y)) is 
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1. convex 

Indeed, applying Holder inequality with exponents ~, we obtain 

/m,n e(a1X1 +a2x2,y) dp,(y) = /IRn (e(XI,y))"'l (e(X2,y))"'2 dp,(y) 

:::; (/IR
n 

e(X1,Y) dp,y) a1 (/IR
n 

e(X2,Y) dp,y) a2 

By taking the logarithms, we get the convexity of this function with re
spect to x. 

2. and lower semicontinuous 

Since the measure dp, is nonnegative, Fatou's Lemma implies that if xp 
converges to x, then 

r e(x'Y)dp,(y) :::; liminf r e(xP'Y)dp,(y) 
iIRn p-+oo iIRn 

Hence the lower semicontinuity of the Laplace transform of dp, is estab
lished. Since the logarithm is increasing and continuous, it is continuous 
and nondecreasing. 

Therefore 

C:(x) = log (/IRn e(X'Y)dp,(y)) 

It is actually differentiable and its gradient is equal to 

\7C:(x) = fIRn ye(x'Y)dp,(y) 
fIRn e(x,y) dp,(y) 

When dp, is the probability law of a random variable, then its mean is equal 
to \7C;(O), which is centered if and only if its Cramer transform vanishes at O. 

Inf-convolution plays the role of the usual convolution product of two inte
grable functions J and 9 defined by 

(f*g)(x) := r J(x-y)g(y)dy 
iIRn 

We thus deduce that the Laplace transform of a convolution product is the 
product of the Laplace transforms because 

r e(x,y) r J(y-z)g(z)dydz = r r e(x,z)g(z)e(x,y-z)g(y-z)dydz 
iIRn iIRn iIRn iIRn 
= r e(x,z)g(z)dz r e(x,u)g(u)du 

JJRn JJRn 

Therefore, taking the logarithm, we obtain 

{
log (fIRn e(x,y) (f * g) (y )dy ) 

= log UIRn e(x,y) J (y )dy) + log UIRn e(x,y) g(y )dy ) 
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The Fenchel conjugate of this sum being the inf-convolution of the Fenchel 
conjugates, we infer that the Cramer transform of a convolution product is the 
inf-convolution of the Cramer transforms: 

Cf*g Cf EBt Cg 

The Proximation Theorem implies that inf-convolution by a quadratic func
tion maps a lower semicontilluous convex function to a continuously differen
tiable convex function, in the same way that the convolution product by a 
Gaussian maps a function to an indefinitely differentiable function: 

fJ(x) := ~~1 [f(Y) + ~r ~ Yin 
The Cramer transform thus maps the convolution by a Gaussian into inf

convolution by quadratic functions. 
The quadratic functions 

GJ,m(X) := ~llx~mI12 
are regarded as Gaussian toll sets with mean m and variance u. They form a 
class stable by inf-convolution: 

Proposition 3.11 The Gaussian toll sets are stable under inf-convolution: 

(G J ]. m] EB GeT2 . m2) (x) G vJi+J~, m] +m2 

Proof - One must compute the solution to the minimization problem 

i~f 0 Ilx -~: mll12 + ~ IIY ~2m21n 
From Fermat's Rule, this problem achieves its minimum at 

_ u~(x - ml) + uim2 
Y :- ur + u? 

Consequently, 

{ 
(GeTl,mlEBGeT2,ffi2)(x)2= ~r-~:mlI12 +~IIY~2m2112 
= ~ x - (ml + m2) II 

2 " =G 2 2 0 VUf + u~ VeTl+eT2,ml+m2 

Remark. The Cramer transfoT'TTI justifies a striking formal analogy between 
optimizat'lon and probability theory. We shall only sketch it without entering 
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details which may lead us too far. When f is a nonnegative extended function 
from X to IR U {+oo}, we can regard the "set-defined map" K H Mf(K) := 

infYEf(Y) as a Maslov measure whose "density" is f on the family F(X) of closed 
subsets, i.e., a "set-defined map" satisfying 

{
i) 
") 
~~ .) zn 

Mf(X) = infyEX f(y) 
Mf(0) = +00 
Mf(K U L) = min(Mf(K), Mf(L) 

Maslov measures are analogous to usual nonnegative measures, which are set
defined maps from the a-algebra A on a measured space D to IR+. Maslov 
probabilities are those satisfying 

Mf(X) = inf f(y) = 0 
yEX 

To the integral 

x(·) H in x (w)dJ-l(w) 

of a nonnegative measurable function defined on a measured space (D, A, dJ-l) 
corresponds the infimum of a lower semi continuous function g : E H IRU{ +oo} 
on a metric space E defined by 

gO H inf(g(x) + f(x)) 
xEE 

To the Dirac measure Ja : xC) H x(a) corresponds the indicator 1/la because 

g(.) H inf(g(x) + 1/la(X)) = g(a) 
xEg 

To the integral l dJ-l( w) of the characteristic function of a measurable set A E A 

providing the measure dJ-l of a subset A corresponds the minimization problem 
of a function g(.) on the closed subset A 

g(.) H inf(1/lA(x) + g(x)) = inf g(x) 
xEE xEA 

Consequently, to the measure dJ-l, which is a function from the a-algebra A to 
the half-line IR+ supplied with the operations + and x, corresponds the Maslov 
measure M f , function from the family of compact subsets of E to [0, +00]. 

The analogy then becomes algebraic, because (IR+, +, x) supplied with the 
usual addition and multiplication and neutral elements 0 and 1 on one hand, and 
(IR+, inf, +) supplied with the infimum and the usual addition and the neutral 
elements +00 and 0 on the other hand, are two instances of "dioids, which are 
kind of rings supplied with two operations which do not have inverses. 



4. Subdifferentials of Convex Functions 

4.1 Introduction 

The crucial discovery of the concept of differential calculus is due to Pierre de 
Fermat (1601-1655), who was one of the most important innovators in the his
tory of mathematics. It is to him that we owe a rule for determining extrema, 
described, without proof, in a short treatise Methodus ad disquirendam Maxi
mam et Minimam written in 1637. The importance of his discoveries in number 
theory has eclipsed the contributions which this exceptional and modest man 
made to other areas of mathematics. Fermat also was the first to discover the 
"principle of least time" in optics, the prototype of the variational principles 
governing so many physical and mechanical laws. He shared independently with 
Descartes the invention of analytic geometry and with Pascal the creation of the 
mathematical theory of probability. His achievements in number theory over-· 
shadowed his other contributions, as the Last Fermat Theorem which remained 
a challenge for such a long time, and still is a challenge if indeed the simple proof 
of Piere de Fermat did exist. Not to mention his compositions in French, Latin, 
Italian and Spanish verse and his Grecian erudition. It is also notable that he 
was able to find time for these occupations in the midst of his duties as coun·· 
sellor to the parliament of Toulouse (even taking into account Fermat's genius, 
this makes us reflect on the leisure activities offered by a lawyer's career). 

But Fermat never knew the concept of the derivative which was only formu
lated later by Newton (in 1671) and by Leibniz in his publication on differential 
calculus entitled Nova methodus pro maximis et minimis in 1684. However, New
ton himself recognized explicitly that he got the hint of the differential calculus 
from Fermat's method of building tangents devised half a century earlier. 

Fermat was also the one who discovered that the derivative of a (polynomial) 
function vanishes when it reaches an extremum. (This is Fermat's Rule, which 
remains the main strategy for obtaining necessary conditions of optimality, from 
mathematical programming to calculus of variations to optimal control). 

The analogy between Fermat's method (restricted to algebraic functions) 
and that of Leibniz is remarkable, since, as you know, this rule involves searching 
for the extrema of a function f among the solutions of the equation f'(x) = 0, 
a problem much more familiar to mathematicians. 

This rule has been applied, justified, improved, adapted and generalised 
in the course of three centuries of work on optimisation theory, the theory of 
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the calculus of variations and (now) optimal control theory. Three centuries of 
intensive work by numerous mathematicians, punctuated by important stages 
and bearing the seal of the works of Euler (XVIIIth century), Lagrange, Jacobi 
(XIXth century), Poincare and Hilbert (at the dawn of this century) are con
tinued even today, since the results which we shall describe are recent (which 
does not necessarily mean complicated, since scientific progress also involves 
simplification) . 

The concept of functions of several differentiable variables has been known 
since Jacobi and that of differentiable functions on normed spaces since Frechet 
and Gateaux. The rule due to Fermat and Leibniz remains valid. If the function 
f attains its minimum with respect to x, the gradient of f is zero at that point. 
There are many reasons why we should not stop there. 

Firstly, we may seek to minimise so-called nondifferentiable functions. Op
timisation theory, game theory, etc., involve such functions since the operations 
of supremum and infimum destroy the usual differentiability properties; for ex
ample, we mention the function x -t Ixl, which is not differentiable at the 
point x = 0, but which is obtained as the upper envelope of the differentiable 
functions x -t ax when a ranges over [-1, +1]. 

We may wonder (like others before us) why there should be so much fuss in 
the case of nondifferentiability at a single point. All the more so since we shall 
see that any convex lower semi-continuous function may be approximated by 
differentiable functions; for example, the function x -t Ixl may be approximated 
by the functions f>.. defined by: 

j,(y) ~ { 

\ 'f -y - 2" 1 Y:S::-A 
1i 2\ if Iyl :s:: A 

\ 'f y-2" 1 y?A 

However, if we are interested in the minimum of x -t Ixl which is attained 

at 0, we note that it is at this point that the function is not differentiable and 
thus that Fermat's rule cannot be applied. What can we do? In fact, we may 
retain Fermat's rule, modifying the concept of gradient and generalising it ap
propriately. Examination of the function x -t Ixl may put us on the right track. 
Since x -t Ixl is the upper envelope of the functions x -t ax the derivatives of 
which at ° are a, when a ranges over [-1, + 1] why not consider the set [+ 1, -1] 
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of these derivatives as a candidate? Clearly, we must overcome our hesitation 
at the multi-valued nature of this solution, which simply results from a lack of 
familiarity (and our conservatism). But, to convince ourselves of the importance 
of this stroke of daring, we need only note that Fermat's rule remains true for 
this example. since 

o belongs to [-I, +1]. 

Since we have seen that any convex lower semi-continuous function is the 
upper envelope of the continuous affine functions x ---+ \P, X) - 1* (x) which 
minorise it, we thus consider the set of the gradients p of those affine functiom; 
which pass through the point (xo, f(xo)), in other words, the set of p such that: 

\P, XO) - f*(p) = f(xo). 

In the context of this theory, we shall choose this set (convex, closed, pos
sibly empty), called the subdifferential 8 f (xo) of f at Xo as a candidate for a 
generalisation of the concept of gradient. In the context of other theories (for 
example, partial differential equations), other strategies such as distribution 
theory will be more appropriate. 

If there is only one affine function (the tangent) then 8 f (xo) reduces to the 
usual gradient of fat ;r:o: 8f(xo) = {V'f(xo)}. 

We shall show that Fermat's rule remains true: x minimises a nontrivial, 
convex, lower semi-continuous function f if and only if 0 E 8f(x). 

In order to exploit this result, we need to develop a sub differential calculus, 
analogous to the usual differential calculus. We shall establish conditions under 
which formulae such as 
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8U + g)(xo) 
8U 0 A)(xo) 

8 C:~.~,n fi) (xo) 

8f(xo) + 8g(xo) 
A*8f(Axo) 

co ( u 8fi(xo)) , 
iEI(xo) 

where J(xo) := {i = 1, ... , nlfi(xo) = SUPi=l n j;(xo)} and 'co' denotes the " .. , 
closed convex hull, are true. 

One important class of convex nondifferentiable functions consists of the 
restrictions fK = f +WK of convex functions to closed convex subsets K. When 
the interior of K is empty, we cannot talk of either the derivative or the gradient 
in the usual sense. 

However, we can apply the formula 

8JK(x) = 8f(x) + 8WK(X) 

which, when f is differentiable, gives 

8JK(x) = V' f(x) + 8WK(X). 

A simple calculation shows that the sub differential 8WK of the indicator 
function of K is the closed convex cone 

8WK(X) = {p E X*IVy E K, (p, y - x) :S O}. 

The elements p E X* of this set play the role of normals to K at x. This is why 
8W K (x) is called the normal cone to K at x and is denoted by N K (x). 

Since we have already replaced the notion of orthogonality for vector sub
spaces by the notion of polarity for cones, it is natural to consider the negative 
polar cone TK(X) := NK(x)- of the normal cone to K at x as the tangent cone 
to K at x. This will be all the more justified when it is shown that 

TK(X) = closure (u ~(K - X)) . 
h>O 

In fact, this formula shows that a vector is tangent to K at x if it is the limit 
of vectors v E X such that x + tv belongs to K for all t E [0, hol. Such vectors 
are the derivatives (right) of the curves t ---+ x + tv passing through x and lying 
in K. 
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4.2 Definitions 

We shall begin by exhibiting an important property of convex functions from 
XtolRU{+oo}. 

Proposition 4.1. Let f be a nontrivial convex function from X to lRU{ +oo}. 
Suppose Xo E Domf and v EX. Then the limit 

Df(xo)(v) = lim f(xo + hv) - f(xo) 
h-tO+ 

(1) 

exists in lR (:= {-oo} U lR U {+oo}) and satisfies 

f(xo) - f(xo - v) :S Df(xo)(v) :S f(xo + v) - f(xo). (2) 

Moreover, 

v -+ Df(xo)(v) is convex and positively homogeneous. (3) 

Proof. 
a) The function h -+ f(xo+h~)-f(xo) is increasing. In fact, if hI :S h2' then 

f(xo + hIV) - f(xo) = f (~~ (xo + h2V) + (1 - ~~) xo) - f(xo)· 

Since f is convex and hJ / h2 is less than one, it follows that 

hI (hI) f(xo + hIV) - f(xo) :S h/(xO + h2V) + 1 - h2 f(xo) - f(xo); 

whence, that 

f(xo + hIv) - f(xo) f(xo + h2V) - f(xo) '----'---'-----'---'----'- < . 
hI - h2 

Thus, these differential quotients have a limit in lR as h -+ 0+: 

Df(xo)(v) = inf f(xo + hv) - f(xo) 
h>O - . (4) 

b) Taking h = 1, equation (4) implies that 

Df(xo)(v) :S f(xo + v) - f(xo)· 

Writing Xo = I~h (xo + hv) + I~h (xo - v) and using the convexity of f, we obtain 

1 h 
f(xo) < --hf(xo + hv) + --hf(xo - v). 

- 1 + 1 + 
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This inequality implies that for all h > ° 
f(xo) - f(xo - v) ::; f(xo + h~) - f(xo) 

and consequently, by virtue of (4), that f (xo) - f (xo - v) is less than or equal 
to Df(xo)(v). 

c) Clearly, v ---+ D f (xo) (v) is positively homogeneous. We show that it is convex: 

f(xo + h(>.VI + (1 - >')V2)) - f(xo) 

f(>.(xo + hvd + (1 - >')(xo + hV2)) - Af(xo) - (1 - >.)f(xo) 

::; >.(f(xo + hVI) - f(xo)) + (1- >.)(f(xo + hV2) - f(xo)). 

Dividing by h > 0, and letting h tend to 0+, we deduce that 

Df(xo)(>'Vl + (1- >')V2) ::; >.Df(xo) (VI) + (1- >.)Df(xo)(V2)' D 

In general, v ---+ D f (xo) (v) is not lower semi-continuous. 

Definition 4.1. We shall say that D f(xo)( v) is the right derivative of f at 
Xo in the direction v and that v ---+ D f (xo) ( v) is the right derivative of f at Xo. 

Ifv ---+ Df(xo)(v) is a continuous linear function, we say that f is Gateaux 
differentiable at xo, and the continuous linear form '\l f(xo) defined by 

Vv EX, ('\If(xo),v) = Df(xo)(v) (5) 

is called the gradient of f at Xo. 

Whilst the right derivative is not necessarily linear and continuous, it is 
always convex and positively homogeneous. If it is nontrivial and lower semi
continuous, Proposition 3.8 tells us that the right derivative is the support 
function of the convex closed set 

{p E X*IVv E X, (p,v)::; Df(xo)(v)}. 

Nothing prevents us from considering this set in the general case. 

Definition 4.2. Let f : X ---+ lR U {+oo} be a nontrivial convex function. We 
call the subset 8 f (xo) defined by 

8f(xo) := {p E X*IVv E X, (p,v) ::; Df(xo)(v)} (6) 

the sub differential of f at Xo· The elements p of 8f(xo) are often called sub
gradients. 

The subdifferential 8 f(xo) is always a convex closed set and may be empty 
(this is the case if D f (xo) ( v) = - 00 for at least one direction v). 

The concept of sub differential generalises the notion of gradient in the sense 
that, when f is Gateaux differentiable at xo, the sub differential reduces to the 
set consisting simply of the gradient '\l f(xo) of f at Xo: 



4.2 Definitions 63 

8f(xo) = {V' f(xo)} when V' f(xo) exists. (7) 

If the right derivative Df(xoK) is nontrivial and lower semi-continuous, 
Proposition 3.8 implies that 

Df(xo)(v) = 0"(8f(xo),v). (8) 

We shall characterise the subgradient of f at Xo. 

Proposition 4.2. Let f be a nontrivial convex function from X to IRu {+oo}. 
Suppose that 8f(xo) # 0. 

a) 
b) 
c) 

The following assertions are equivalent 

P E 
(p, x) 

f(x) - (p, :E) ~ 

8f(x) 
f(x) + j*(p) 
inf(f(y) - (p,y)) 
xEX 

'Vy E X. (9) 

Proof. The inequality (2), where v = y - x proves that a) implies c), whilst 
c) and b) are clearly equivalent. We show that c) implies a). Firstly, taking 
y = x + hv, c) implies that (p, v) ~ f(x+h~- f(x) and consequently, that (p, v) ~ 
Df(x)(v) for all v E X. Thus, p belongs to 8f(x). D 

Remark. Property b), which characterises the sub differential using the conju
gate function will be very useful, since it is very simple to use. 

Moreover, it has the following consequence 

Corollary 4.1. Suppose f : X ~ IR U { +oo} is a nontrivial, convex, lower 
semi-continuous function. Then 

P E af(:r) q x E aj*(]J). (10) 

This may be expressed in another way, by defining the inverse of the set-valued 
map x ~ 8f(x) to be the set-valued map p ~ (8f)-1(p) given by 

x E 8rl(]J) q p E 8f(x). (11) 

Then Corollary 4.1 states that: the inverse of the subdifferential x ~ 8f(x) 
is the subdifferential ]J ~ 8j*(p) of the conjugate function of f. Whence, by 
abuse of terminology, it is again convenient to call the set-valued map x ~ 8 f(x) 
the sub differential. 

It was Fenchel who recognised the analogue of the Legendre transformation 
which associates a function f with a function g such that 

p = V'f(x) B x = V'g(p). 

It is easy to see the advantageous consequences of such a property. 
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Since, at that time, no one dared to talk of set-valued maps, it was assumed 
that the mapping x ---+ \7 f (x) was a homeomorphism from an open subset Q I 
of lRn onto an open subset Q2 of lRn (that is, a bijective and bicontinuous 
function). 

Then the solution is given by the function g defined on Q2 by 

g(p) = (p, (\7 f)-I(p)) - f((\7 f)-I(p)). 

Setting x = (\7ffl(p), we obtain the identity 

(p,x) = g(p) + f(x) 

analogous to the property (9) b). 
The function 9 is called the Legendre transformation of f. When f is also 

convex, 9 coincides with the conjugate f*. 
Next we suppose that p E Q2 and x E af*(p). Following (9) a), x maximises 

the function y ---+ (p, y) - f(y). Since f is differentiable at x, we deduce that 
0= \7((P,.) - f(·))(x) = p - \7f(x). Thus, p = \7f(x) and 

f*(p) = (p, x) - f(x) = (p, (\7 f)-I(p)) - f((\7 f)-Ip) = g(p). 

In summary, in the context of convex analysis, the conjugate function of a convex 
function plays the same role as that played by the Legendre transformation in 
classical (regular) analysis. 

4.3 Sub differentiability of Convex Continuous 
Functions 

Theorem 4.1. Suppose that a convex function f is continuous on the interior 
of its domain. Then f is right differentiable on lnt Dom f and satisfies 

Df(x)(u) = lim sup f(y + hu) - f(y) 
hY~: h 

(12) 

Moreover, 

(i) (x,u) E lnt Domf x X ---+ Df(x)(u) is upper semi-continuous 
(ii) :Jc > 0 such that I::/u E X, ID f(x) (u) I ::; cllull. (13) 

Proof. Since f is bounded above on a neighbourhood of x, there exists Ct > 0 
such that x - CtU and x + CtU belong to the domain of f. The inequalities (2) 
of Proposition 4.1 imply that D f (x)( u) is finite. Thus f is right differentiable. 
Since f is Lipschitz on a neighbourhood of x by virtue of Theorem 2.1, there 
exists a constant c > 0 such that 

Df(x)(u) < f(x + hu) - f(x) _ , ::; cllull (14) 
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which implies that D f(x)(-) is Lipschitz, whence lower semi-continuous. Provi
sionally, we set 

Dc!(x)(u) = lim sup f(y + hu) - f(y) 
hY::a~r h 

The inequality Df(x)(u) ::; Dc!(x)(u) is clear and we show that the inverse 
inequality holds. Since the function 

(1 ) f(y+hu)-f(y) 
I,y -t h 

is continuous at (A, x), there exists a > 0 such that 

f(y + hu) - f(y) < f(x + AU) - f(x) 
h - A +E 

when Ih - AI ::; a and Ily - xii::; a. This implies, in particular, thanks to the 
(y+hu)-f(y).. . 

fact that h -t . IS mcreasmg, that 

f(y + hu) - f(y) f(x + AU) - f(x) 
sup sup < +E. 

Ily-xll'S<> O<h9+<> h - A 

Taking the infimum with respect to A and a, we obtain 

Dc!(x)(u) ::; Df(x)(u) + E. 

Thus, it is sufficient to let E tend to O. 
Finally, the function (x, u) -t D f (x, u) is upper semi-continuous as the 

f(x + hu) - f(x) 
lower envelope of the continuous functions (x, u) -t . D 

We now state Theorem 4.1 in subdifferential terms. 

Theorem 4.2. Suppose that a convex function f is continuous on the interior 
of its domain. Then, 

\Ix E Int Domf, 8f(x) is non-empty and bounded. (15) 

Moreover, 

(x,u) E Int Domf x X -t cr(8f(x),u) is upper semi-continuous. (16) 

Proof. Since the function u -t D f (x) (u) is nontrivial and lower semi-continuous, 
it is the support function of the sub differential 

8f(x): Df(x)(u) = cr(8f(x),u). 

The inequality (14) may be written as cr(8f(x), u) ::; ellull = cr(eB, u), which 
implies that 8f(x) is contained in the ball eB of radius e > O. D 

Corollary 4.2. Suppose that a convex function f is continuous on the interior 
of its domain. Then f is Gateaux differentiable at x E Int Dom f if and only if 
8 f (x) contains only one point (which is the gradient of f). 
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4.4 Sub differentiability of Convex Lower 
Semi-continuous Functions 

When the convex function f is only lower semi-continuous we can nevertheless 
show that f is sub differentiable on a sufficiently large set, since it is dense on 
the domain of f. 

Theorem 4.3. Let f : X ---+ IR U { +oo} be a nontrivial, convex, lower semi
continuous function. Then 
a) f is subdifferentiable on a dense subset of the domain of f; 
b) for all'\ > 0, the set-valued map x ---+ x+'\of(x) is surjective and its inverse 
J), := (1 + '\of(·))-l is a Lipschitz mapping with constant equal to 1. 

Proof. a) This is a consequence of Theorem 2.2. We begin by proving the second 
assertion. For all ,\ > 0, the unique solution J),x of the minimisation problem 

J>.(x) := ~~1 [f(Y) + 2\ Ily - x112] 

satisfies the inequality 

l::/yEX, f(J),x) - f(y) :::; \~(x - J),x) , J),x - y) 

which says precisely that J),x is the (unique) solution of the inclusion 

x E J),x + '\Of(JAX) = (1 + '\oJ(·))(JAx). (17) 

Thus, J), is the inverse of the set-valued map 1 + ,\of(·) and Proposition 2.7 
implies that h is Lipschitz with constant 1. In particular, f is subdifferentiable 
at JAx. 

b) For x belonging to the domain of J, we shall show that J),x converges to 
x, which proves the first part of the theorem. We take p in the domain of 1* 
(which is non-empty, by virtue of Theorem 3.1). Since 

1 2 
2'\ IIJ),x - xii + f(J),x) = J>.(x) :::; f(x) 

and since 

- f(J),x) :::; f*(p) - (p, J),x) 

we deduce that 

2\ IIJ),x - xl1 2 :::; f(x) + f*(p) - (p, x) + (p, x - J),x) 

< 4\ IIJ),x - xl1 2 + f(x) + f*(p) - (p, x) + '\llpl12 

(since ab :::; a2 /4,\ + b2 '\). Thus, since ,\ converges to 0, 
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Ill"x - xl12 -s: 4>.(f(x) + f*(p) - (p,x) + >.llpI12) --+ O. 0 

Remark. The single-valued nonlinear operators J" := (1 + >.af(·)r1 are often 
called the Moreau-Yosida approximation of the set-valued map of: x --+ of (x) 
for the following reason. When f is convex, the subdifferential map of is mono
tone, i.e., that its graph is monotone in the sense that for all pairs (x, p) and 
(y, q) of Graph( (1), 

(p - q, x - y) 2: o. 
Indeed, it is sufficient to add the inequalities 

f(x) - f(y) -s: (p, x - y) 

and 
f(y) - f(x) -s: (q, y - x) 

When f is convex and lower semicontinuous, one can prove that the subdiffer
ential is maximal monotone in the sense that its graph is maximal among the 
monotone graphs. For maximal monotone set-valued maps A : E f-7 E, one can 
prove that J" := (1 + >'Ar 1 i the Yosida approximation of A. 

4.5 Sub differential Calculus 

Theorem 4.4. We consider two Hilbert spaces X and Y, a continuous lin
ear operator A E L(X, Y) and two nontrivial, convex, lower semi-continuous 
functions f : X -t lR U { +oo} and 9 : Y --+ lR U { +00 }. 

We assume further that 

o E Int(ADomf - Domg). (18) 

Then, 
a(f + 9 0 A)(x) = af(x) + A*ag(Ax). (19) 

Proof. It is easy to check that of (x) + A * ag( Ax) is contained in a(f + goA) (x). 
The inverse inclusion follows from Proposition 3.4. We take p E a(f + 9 0 A)(x). 
There exists q E Y* such that (f + 9 0 A)*(p) = f*(p- A*q) + g*(q). Thus, from 
equation (9) b), 

(p,x) f(x) +g(Ax) + (f+goA)*(p) 

(f(x) + f*(p - A*q)) + (g(Ax) + g*(q)). 

Consequently, 

0= ((p - A*q, x) - f(:r) - f*(p - A*q)) + ((q,Ax) - g(Ax) - g*(q)). 

Since each of these two expressions is negative or zero, it follows that they 
are both zero, whence that q E ag(Ax) and p - A*q E af(x). Thus, we have 
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shown that p = p - A*q + A*q E 8f(x) + A*8g(Ax). D. 

Corollary 4.3. If f and 9 are two nontrivial, convex, lower semi-continuous 
functions from X to IR U { +oo} and if 

° E Int (Domf - Domg) (20) 

then 
8(f + g)(x) = 8f(x) + 8g(x). (21) 

If 9 is a nontrivial, convex, lower semi-continuous function from Y to IR U 
{+oo} and if A E L(X, Y) satisfies 

° E Int (1m A - Domg) (22) 

then 
8(g 0 A)(x) = A*ag(Ax). (23) 

Proposition 4.3. Let 9 be a nontrivial convex function from X x Y to IR U 

{ +00 }. Consider the function h : Y --+ IR U { +oo} defined by 

h(y) := inf g(x, y). 
xEX 

(24) 

If x E X satisfies h(y) = g(x, y), then the following conditions are equivalent: 

(a) 
(b) 

q E 8h(y) 
(O,q) E 8g(x,y). (25) 

Proof. Since h*(q) = g*(O, q), following Proposition 3.2, we deduce that q be
longs to 8h(y) if and only if (q, y) = h(y) + h*(q) = g(x, y) + g*(O, q), that is, if 
and only if (0, q) E 8g(x, y). 0 

Proposition 4.4. We consider a family of convex functions x --+ f(x,p) in
dexed by a parameter p running over a set P. We assume that 
(i) P is compact 
(ii) There exists a neighbourhood U of x such that, for all y in U, 

p --+ f(y,p) is upper semi-continuous. 
(iii) Vp E P,y --+ f(y,p) is continuous at x. (26) 

Consider the upper envelope k of the functions f("p), defined by 
k(y) = SUPpEP f(y,p). Set 

Then 

and 

P(x) := {p E Plk(x) = f(x,p)}. 

Dk(x)(v) = sup Df(x,p)(v) 
pEP(x) 

(27) 

(28) 
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8k(x) = co ( u 8 f (X,P)). (29) 
pEP (x) 

Proof. Since when P belongs to P( x) we may write 

f(x + hv,p) - f(x,p) < k(x + hv) - k(x) 
h - h ' 

letting h tend to 0 we obtain 

sup Df(x,p)(v) ::; Dk(x)(v). (30) 
pEP (x) 

We must establish the inverse inequality. Fix c > 0; we shall show that there 
exists p E P(x) such that Dk(x)(v) - c ::; Df(x,p)(v). Since the function k is 
convex we know that 

Dk(x)(v) = inf k(x + hv) - k(x) 
h>O h 

Then, for all h > 0, the set 

Bh:={PEPlf(X+hV:)-k(X) 2: Dk(X)(V)-c} (31) 

is non-empty. Consider the neighbourhood U mentioned in assumption (26)(ii). 
There exists ho > 0 such that x + hv belongs to U for all h ::; ho. Since 
p -t f (x + hv, p) is upper semi-continuous, the set Bh is closed. On the other 
hand, if hI ::; h2' then Bh! C Bh2 ; if p belongs to Bh]) the convexity of f with 
respect to x implies that 

1 [( hI) hI ] Dk(x)(v) - c ::; hI 1 - h2 (f(x,p) - k(x)) + h2 (f(x + h2v,p) - k(x)) 

1 
< h2 (f(x + h2v,p) - k(x)) 

since x + hiv = (1-~) x + ~(x + h2V) and since f(x,p) - k(x) ::; 0 for all 
p. Consequently, since P is compact, the intersection nO<h<:hoBh is non-empty 
and all elements p of this intersection satisfy 

h(Dk(x)(v) - c) ::; f(x + hv,p) - k(x). (32) 

Letting h tend to 0, we deduce that f(x,p) - k(x) 2: 0, whence p belongs to 
P(x). Dividing the inequality (32) by h > 0, replacing k(x) by f(x,p) and 
letting h tend to 0, we obtain the inequality 

Dk(x)(v) - c:S: Df(x,p)(v)::; sup Df(x,p)(v). 
pEP(x) 
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~~ 
o TK(X) x X+TK(X) 

Fig. 4.3. 

Thus, it is sufficient to let E: tend to O. 
Since y -+ f(y,p) is continuous at x, we know that Df(x,pK) is continuous 

for each p, whence that Dk(x)(·) is lower semi-continuous. Equation (28) may 
be written as 

a(8k(x), v) = sup a(8f(x,p), v) 
pEP(x) 

which, by virtue of equation (64) of Chapter 3, implies equation (29). D 
Corollary 4.4. Consider n convex functions fi continuous at a point x. Then 

8 (.!UP fi) (x) = co ( u 8fi(X)) 
'-l, ... ,n iEI(x) 

(33) 

where I(x) = {i = 1, ... ,nlfi(x) = SUPj=l, .. ,nfj(x)}. 

4.6 Tangent and Normal Cones 

We consider a convex subset K. If x E K, it is easy to check that 

87/iK(X) = {p E X'I (p, x) = aK(p)}. (34) 

Definition 4.3. If K is a convex subset and if x E K, 87/iK(X) is called the 
normal cone to K at x and is denoted by 

NK(x) := 87/iK(X) (35) 

The cone defined by 

TK(X) := closure (u ~(K - X)) 
h>O 

(36) 

is called the tangent cone to K at x. 
These two cones are polar to each other. 
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Proposition 4.5. The tangent and normal cones to K are linked by the rela
tionship 

\Ix E K, NK(x) = TK(xf· (37) 

Proof. Since K - x is contained in T K (x), when p belongs to T K (x) -, we have 
\P, y - x) ::; 0 for all y E K and consequently P belongs to the normal cone to 
Kat x. 

Conversely, we fix pin NK(x), choose v E TK(X) and show that \P, x) ::; O. 
But v = limn -+oo h1n (Yn - x) where hn > 0 and Yn E K. Since \P, Yn - x) ::; 0, 
we deduce that \P, v) is the limit of a sequence of negative or zero numbers 
h1n \P, Yn - x) and thus is itself negative or zero. 0 

We note that 

if x E lnt K, then N K (x) = {O} and T K (x) = X (38) 

and that 
if K = {xo}, then NK(xo) = X and TK(xo) = {O}. (39) 

It is also easy to show that if K := B is the unit sphere, if Ilxll = 1 and if 
L denotes the duality operator, then 

NK(x) = {ALxh2:o and TK(X) = {v E XI\v,x) ::; O}. (40) 

This follows from the Cauchy-Schwarz inequality, which implies that 

\>'Lx, Y - x) ::; >'llxll(llyll - Ilxll) = >'(Ilyll - 1) ::; 0 

when Ilyll ::; 1. Thus, >.Lx E NK(x). Conversely, if p E NK(x), we deduce 
that Ilpllllxll = Ilpll = SUPiiyii"Sl \P, y) ::; \P, x) and consequently, that p = >'Lx. 
Similarly, if K := lR~ and if.1: E lR~, then 

(i) 
(ii) 

NK(x) = {p E -lR~IPi = 0 when Xi> O} 
TK(x) = {v E lRnlVi ~ 0 when Xi = O} ( 41) 

This follows from the fact that SUPYEffi+ \P, y) = \P, x) = affi+ (p) = 'ljJffi"- (p). 
Thus, p E NK(x) if and only if p E lR~ and if (P,x) = L;ixi>OPiXi = O. The 
second formula is obtained by polarity. 

We denote 

M n := {x E lR~ IE Xi = 1 } . (42) 

We shall deduce the formulae 

N}\;fn(x) = {p E lRnlPi = max Pj when Xi> O} 
]=l, ... ,n 

(43) 

and 
n 

T}\;fn(X) = {v E lRnl LVi = 0 and Vi ~ 0 when Xi = O} (44) 
i=l 

from formula (49), below. 
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Formulae Relating to Normal and Tangent Cones 

By applying the subdifferential calculus to set indicator functions, we obtain a 
number of formulae which enable us to calculate normal and tangent cones. 

• If K eLand x E K then TK(X) c TL(X) and NL(x) C NK(x). (45) 

• If Ki C Xi (i = 1, ... , n) then 

Tn~=l Ki (Xl, ... ,xn ) 

Nn~=l Ki (X1, ... , Xn) 

• If B E L(X, Y) then 

n 

IITKi(x;j 
i=l 

n 

II NKi(x;) 
i=l 

and 

( 46) 

TB(K)(Bx) = closure(BTK(x)) and NB(K)(Bx) = B*-lNK(x). (47) 

• TK, +K2 (X1 + X2) 
NK, +K2 (X1 + X2) 

closure (TKI (Xl) +TK2 (X2)) 
NKI (xd n NK2 (X2). 

and 
( 48) 

• If A E (L(X, Y)) and if LeX and M C Yare convex closed subsets 
satisfying 0 E Int(A(L) - M), then 

TLnA-l(M) (x) 

NLnA-l(M) (x) 

Tdx) n A-1TM(Ax) 

NL(x) + A* NM(Ax). 

and 

( 49) 

• If A E L(X, Y) and if M c Y is a convex closed subset satisfying 
o E Int (1m A - M), then 

TA-l(M)(X) = A-1TM(Ax) and NA-l(M)(X) = A*NM(Ax). (50) 

• If K1 and K2 are convex closed subsets of X such that 0 E Int (K1 - K 2), 
then 

TK,nK2(X) 

NK,nK2(X) 

TKl(X)nTK2(X) and 

NKI (x) + NK2 (X). (51) 

Proof of formulae (45)-(51). Formulae (45), (46), (47) and (48) are trivial 
to check for normal cones and follow by polarity for tangent cones. 

Since the indicator function 'lj;LnA-l(M) of L n A-1(M) is equal to 
'lj;L + 'lj;M 0 A, formula (49) for normal cones follows from Theorem 4.4, and may 
be deduced for tangent cones by polarity. Formulae (50) and (51) are corollaries 
of formula (49). 
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Since Mn := {x E IR~ I I:~=1 Xi = I}, formula (49) may be applied with 
X = IR~, Y = IR, L = IR~, M = {I} and A equal to the operator defined by 
Ax = I:~=1 Xi· Thus, we derive formulae (43) and (44). D 

Remark. There are closed relations between tangent and normal cone to convex 
subsets and right-derivatives and sub differentials of a convex function. First, the 
normal cone to K at x was defined by NK(x) := (Jt/JK(X). One can check easily 
that 

D't/JK(X) = 't/JTK(X) 

so that the concepts of normal and tangent cones can be derived from the 
concept of sub differential and right-derivative of a convex function. Conversely, 
one can also observe that 

\j x E E, Ep(Df(x)) = TEp(f) (x, f(x)) 

and that p E of (x) if and only if 

(p, -1) E NEp(f) (x, f(x)) 

so that the concepts of right derivative and subdifferential of a convex function 
can be derived from the concepts of tangent and normal cones. 



5. Marginal Properties of Solutions of Convex 
Minimisation Problems 

5.1 Introduction 

Fenchel's Theorem has already given us sufficient conditions for the existence 
of solutions of convex minimisation problems. As a consequence of Fermat's 
rule, suitably adapted, instead of searching for solutions of the minimisation 
problem, 

~ f* ( 0) = inf f ( x ) 
xEX 

(*) 

we may seek to solve the inclusion (or set-valued equation) 

o E 8f(X). (**) 

Moreover, Fenchel's transformation shows that the set of solutions of the 
minimisation problem (*) is the sub differential 

8f*(O) = {x E Xlf(x) = ~ f*(O)} 

of the conjugate function f* at O. 
We shall call this property (which is a very simple property in convex anal

ysis) a marginal property of the solutions x, to underline the use by neoclassical 
economists of adjective 'marginal' instead and in place of the adjective 'differ
ential' used by mathematicians. 

The sub differential calculus which we described in the previous chapter will 
enable us to exploit this double characterisation for more specific minimisation 
problems. We have chosen a class of problems with a structure which is strong 
enough for us to acquire sufficiently useful information, but general enough to 
cover numerous examples. (This compromise is a matter of taste - that is, it is 
subjective. ) 

We shall consider a family of minimisation problems of the form 

h(y) := inf [f(x) ~ (p, x) + g(Ax + y)] 
xEX 

where 

f : X --t IR U { +oo} and 9 : Y --t IR U { +00 } 
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are nontrivial, convex and lower semi-continuous and where A E L(X, Y) is a 
continuous linear operator. We shall show that there exists a solution x of this 
problem under the assumption 

P E Int (Domj* + A* Domg*) 

which provides an additional justification for the introduction of conjugate func
tions. 

We shall then show that if 

Y E Int (Domg - ADorn!), 

then the set of such solutions is the set of solutions of the inclusion (or set-valued 
equation) 

P E of (x) + A*og(Ax. + y) 

That is not all: we may associate the problem h(y) with its dual problem 

e*(p) = inf [j*(p - A*q) + g*(q) - (q, y)] 
qEY* 

We shall then prove that the set of solutions x of the problem h(y) is the 
subdifferential oe* (p) of the function p --+ e* (p). 

This more precise result (which describes the set of solutions of a minimi
sation problem as the sub differential of the function e*) plays a very prominent 
role in economic theory: a minimal solution x of h(y) measur'es the rate of 
variation of the marginal function e* as the parameter p is varied. 

Moreover, the same assumptions also imply the same results for the dual 
problem e* (p): the set of solutions is non-empty, it is the sub differential of the 
marginal function h : y --+ h(y) and it is the set of solutions of the inclusion 

Y E og*(q) - Aoj*(p - A*q). 

5.2 Fermat's Rule 

As previously mentioned, the set of solutions x of the minimisation problem 

- j*(0) := inf f(x) 
xEX 

(1) 

is the set of solutions of 0 E of (x) since x belongs to oj*(O) if and only if 

f(x) = (0, XI - j*(0) = inf f(x). 
xEOX 

Consequently, when f is nontrivial, convex and lower semi-continuous 

oj*(O) is the set of solutions of the minimisation problem (1). (2) 
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To exploit this result, we shall use the properties of conjugate functions and 
subdifferentials, as established above. 

The following structures provide a framework which is sufficiently general to 
be the source of numerous examples and sufficiently specific that the technical 
difficulties are limited: 

(i) two Hilbert spaces X and Y; 
(ii) two nontrivial, convex, lower semi-continuous functions 

f : X ---+ lR U { +oo} and 9 : Y ---+ lR U { +00 }; 
(iii) a continuous linear operator A E L(X, Y). (3) 

We shall choose elements y E Y and p E X* as parameters of the optimisa
tion problems 

h(y) := inf (f(x) - (p, x) + g(Ax + y)) 
xEX 

(4) 

and 
e*(p) := inf (j*(p - A*q) + g*(q) - (q, y)) 

qEY* 
(5) 

which we shall solve simultaneously. 
We shall say the minimisation problems h(y) and e* (p) are dual and that 

the (convex) functions h : y ---+ h(y) and e* : p ---+ e*(p) are the marginal 
functions which describe the variation of the optimal values as a function of the 
parameters y E Y and p E X*. 

The study of these marginal functions and above all of the properties of 
their gradients (or failing that their su bgradients) is a subject of interest to 
economists. 

Theorem 5.1. a) We suppose that the conditions (3) are satisfied. If 

P E lnt (Dom j* + A* Domg*), (6) 

then there exists a solut,ton x of the problem h(y) and 

h(y) + e*(p) = o. (7) 

b) If we suppose further that 

Y E lnt (Domg - ADorn!) (8) 

then the following conditions are equivalent 

(i) x is a solution of the problem h(y); 
(ii) x belongs to the subdifferential oe*(p) of the marginal function eo; 
(iii) x is a solution of the inclusion p E of (x) + A*og(Ax + y), (9) 
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c) Similarly, assumption (8) implies that there exists a solution ij of the problem 
e* (p) and the two assumptions imply that the following conditions are equivalent: 

(i) ij is a solution of the problem e*(p); 
(ii) ij belongs to the subdifferential oh(y) of the marginal function h; 
(iii) ij is a solution of the inclusion y E og* (ij) - Ao 1* (p - A * ij). (10) 

d) The two assumptions imply that the solutions x and ij of the problems h(y) 
and e* (p) are solutions of the system of inclusions 

(i) 
(ii) 

P E of (x) + A*(ij) 
y E -Ax + og*(ij). (11) 

Remark. An optimal solution of one of the minimisation problems h(y) or e* (p) 
is usually called a Lagrange (or Kuhn-Tucker) multiplier, the inclusion (9)(iii) 
is usually called the Euler-Lagrange inclusion and the inclusion (lO)(iii) is the 
Euler-Lagrange dual inclusion. The system of inclusions (11) is usually called 
the Hamiltonian system. 

The mapping (x, q) -+ (of (x) + A*q) x (-Ax + og*(q)) from X x y* to its 
dual X* x Y may be written symbolically in matrix form by 

( of A*) 
-A og* . (12) 

The set of solutions (x, ij) of the minimisation problems h(y) and e*(p) may be 
written in the form 

( of A*) -1 ( P ) . 
-A og* y 

This notation highlights the variation of the set of solutions as a function of the 
parameters p E X* and y E Y. 

Proof of Theorem 5.1. a) The existence of solutions of the problems h(y) 
and e*(p) and the equality h(y) +e*(p) = 0 follows from Theorem 3.2 (Fenchel's 
Theorem) with f replaced by x -+ f(x) - (p, x) and g replaced by z -+ g(z +y), 
since in this case v = h(y) and v* = e* (p). 

b) We may write 

where 

h(y) = inf cp(C(x,y)) 
xEX 

cp(x, y) := f(x) - (p, x) + g(y) 

C(x, y) := (x, Ax + y). 
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Since the operator C is clearly an isomorphism of X x Y onto itself, Proposi
tion 3.1 implies that 

o(zp 0 C)(x, y) C* ozp( C(x, y)) 
C*((of(x) - p) x og(Ax + y)) 

{(o f(x) - p + A*q) x {q}} qE&g(Ax+y)' 

Proposition 4.3 implies that if x is a solution of the problem h(y), then ij 
belongs to oh(y) if and only if (0, ij) belongs to o( zp 0 C) (x, y), in other words, 
if ij E og( Ax + y) and 0 E of (x) - p + A * ij, by virtue of the previous formula. 
Thus, we have shown that if x is a solution of h(y), then the following conditions 
are equivalent 

(i) 
(ii) 

ij E oh(y) 
o E of (x) - P + A*ij and q E og(Ax + y). 

Eliminating ij from these two inclusions, we find that 

P E of (x) + A*og(Ax + y). 

This last property implies that 

o E oU(-) - (p,') + g(A(-) + y))(x) 

(13) 

(14) 

(15) 

which shows that any solution x of the inclusion (14) is a solution of the minimi
sation problem h(y). Conversely, assumption (8) and Theorem 4.4 imply that 
any solution of h(y) which is a solution of the inclusion (15) is a solution of the 
inclusion (14). This latter implies that there exists ij E og(Ax + y) such that 
p E 0 f(x) + A*fj, in other words, such that fj E oh(y). Thus, we have proved that 
properties (9)(i) and (9)(iii) are equivalent. Similarly, replacing the functions f 
and g and the operator A by g*, 1* and -A*, respectively, properties (10)(i) 
and (lO)(iii) may be shown to be equivalent. 

The system of inclusions (11) is clearly equivalent to the systems of inclu
sions (9)(iii) and (lO)(iii): this proves the last part of the theorem. The equiv
alence of (13)(i) and (13)(ii) then implies the equivalence of (9)(i) and (9)(ii) 
and, replacing f, g and A by g*, 1* and -A*, the equivalence of (10)(i) and 
(lO)(ii). D 

Remarks. When assumptions (6) and (8) of Theorem 5.1 are satisfied, solu
tion of the problem h(y) is equivalent to solution of the inclusion ( set-valued 
equation) 

P E of (x) + A*og(Ax + y). (16) 

Theorem 5.1 indicates another way of solving this problem. This involves 
first solving the inclusion 

Y E og*(q) - Ao1*(p - A*q) (17) 
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and then choosing x in the set 

aj*(p - A*q) n A-l(ag*(q) - y). (18) 

This procedure is only sensible if the second inclusion is easier to solve than 
the first. This clearly depends on the functions f and g. If g is differentiable, 
it may be better to solve the inclusion (16). If, moreover, j* is differentiable it 
may be easier to solve the inclusion (17) which, in this case, may be written as 

AV7 j*(p - A*q) + Y E ag*(q) 

or as 

\/q E Y, (-AV7j*(p - A*q) - y,q - q) + g*(q) - g*(q) :::; O. 

5.3 Minimisation Problems with Constraints 

Let us consider 

(i) two Hilbert spaces X and Y; 
(ii) a continuous linear operator A E L(X, Y); 
(iii) a convex closed subset Me Y; 
(iv) a nontrivial, convex, lower semi-continuous function 

(19) 

(20) 

f: X -+ lRu {+oo} and two elements y E Y and p E X*. (21) 

We consider the minimisation problem 

h(y):= inf (f(x)-(p,x)) 
AXEM-y 

(22) 

with its associated dual problem 

e*(p) := inf (f*(p - A*q) + O"M(q) - (q, y)). 
qEY* 

(23) 

Corollary 5.1. If we suppose that 

P E Int (Domj* + A*b(M)) (24) 

then there exists a solution x (satisfying Ax E M - y) of the problem h(y). If 
we suppose further that 

Y E Int (M - ADorn!) (25) 

then the solutions x of the problem h(y) are the solutions of the inclusion 

P E af(x) + A* NM(Ax + y) (26) 

and the set of solutions x of h(y) is the subdifferential ae* (p) of the marginal 
function e*. 
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The following solutions are then equivalent: 

(i) ij E oh(y); 
(ii) ij is a solution of the problem e* (p); 
(iii) ij is a solution of the inclusion y E OO"M(ij) - Aof*(p - A*ij). (27) 

The optimal solutions x and ij of the problems h(y) and e* (p) are related by 

P E of (x) + A*ij and ij E NM(Ax + y). (28) 

The minimisation problem 

h(y):= inf (J(x)-(p,x)) 
Ax+y=O 

(29) 

which is a minimisation problem with 'equality constraints' is obtained as the 
particular case in which M = {O}. Its dual problem is 

e*(p) := q~nj.(j* (p - A*q) - (q, y)). 

Corollary 5.2. If we suppose that 

P E lnt (Domj* + ImA*) 

then there eX'ists a solution:r of the problem h(y), 
If we suppose further that 

-y E lnt (ADorn!) 

then the solutions x of the problem h(y) are the solutions of the inclusion 

P E 8f(x) + ImA*, Ax+y=O 

and the set of solutions x is the subdifferential oe*(p). 
The following conditions are equivalent 

(i) ij E oh(y); 
(ii) ij is a solution of the problem e*(p); 
(iii) ij is a solution of the inclusion y E -Aof*(p - A*ij). 

(30) 

(31) 

(32) 

(33) 

(34) 

The optimal solutions x and ij of the problems h(y) and e* (p) are related by 

P E of (x) + A*ij. (35) 

Suppose that P c Y is a convex closed cone and denote its negative polar 
cone by P-. 
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The cone P defines an order relation 2: by 

Yl 2: Y2 if and only if Yl - Y2 E P 

and the cone P- defines the order relation 

ql :::; q2 if and only if ql - q2 E P-. 

The minimisation problem 

h(y):= inf (J(x) - (p,x)) 
Ax+y2:0 

(36) 

(37) 

(38) 

which is a minimisation problem with 'inequality constraints' is obtained in the 
special case in which M = P. Its dual problem is 

e*(p):= inf (J*(p - Aq) - (q, y)). 
qEP-

Corollary 5.3. If we suppose that 

p E Int (Dom 1* + A * P-) 

then there exists a solution x of the problem h(y). 
If we suppose further that 

y E Int (P - ADorn 1) 

then the solutions x of the problem h(y) are the solutions of the inclusion 

P E 8f(x) + A* Np(Ax + y) 

and the set of solutions x is equal to 8e* (p). 
The following conditions are equivalent 

(i) ij E 8h(y),. 
(ii) ij is a solution of e*(p),. 

(39) 

(40) 

( 41) 

(42) 

(iii) ij is a solution of the inclusion y E Np - (ij) - A8f*(p - A*ij). (43) 

(i) 
(ii) 

The solutions x and ij of the problems h(y) and e* (p) are related by 

p E 8f(x) - A*ij 
Ax + y 2: 0, ij:::; 0 and (ij, Ax + y) = o. 

5.4 Principle of Price Decentralisation 

We consider 

(i) n Hilbert spaces Xi (i = 1, ... , n); 

( 44) 

(ii) n nontrivial, convex, lower semi-continuous functions fi : Xi --+ IR U {+oo}; 
(iii) a Hilbert space Y; 
(iv) continuous linear operators Ai E L(Xi' Y); 
(v) a convex closed subset Me Y. (45) 



5.4 Principle of Price Decentralisation 83 

We shall now solve the minimisation problem 

h(y):= n. inf (fJfi(Xi) - (p, x))) . 
~i=l AiXi+yEM i=l 

(46) 

This is a particular case of problem (22), in which 

n n n 

X:= LXi, f(x):= Lfi(x;) and Ax = LAixi. 
i=l i=l i=l 

The dual problem is 

e.(Pl, ... ,Pn) = inf, (t ft(Pi - A;q) + O"M(q) - (q, y)) . (47) 
qEY i=1 

Corollary 5.4. If we suppose that 

(PI, ... ,Pn) E lnt {IT Domft + A;q} 
,=1 qEb(M) 

( 48) 

then there exists a solution (Xl, ... ,xn) of the problem h(y). 
If we suppose further that 

Y E lnt (M - ~AiDomfi) (49) 

then the solutions (XI, ... ,xn) and q of the problems h(y) and e. (PI, ... ,Pn) are 
the solutions of the system 

(i) 

(ii) 

Xi E 8 ft (Pi - A; q) (i = 1, ... , n) 

q E NM (~A;Xi+Y) (50) 

where q is a solution of the dual problem e. (PI, ... ,Pn) and the set of solutions 
(XI, ... , Xn) is the subdifferential 8e. (PI, ... , Pn). 

The following conditions are equivalent 

(i) q E 8h(y); 
(ii) q is a solution of e.(PI, ... ,Pn); 
(iii) q is a solution of the inclusion y E 80"M(q) - ~r=l Ai8ft(Pi - A;q). (51) 

When the conjugate functions it are differentiable, the solutions (XI, ... , xn) 
are obtained using the Lagrange multipliers q (the solutions q of e.(Pl, ... ,Pn)) 
from the formulae 

Xi = V' ft(Pi - A;il) (i = 1, ... , n). 
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In other words, once we know a Lagrange multiplier q, we may obtain an optimal 
solution (Xl' ... ' Xn) by solving n independent minimisation problems 

inf (fi(Xi) - (Pi, Xi) + (q, AiXi)) 
xiEXi 

(52) 

which are obtained by adding a 'cost of violating the constraints' (q, AXi) to 
the initial loss function fi(·) - (Pi, .). 

It is this result which justifies the role of prices q (subgradients of the 
marginal function h(y)) in economic models as a means of decentralising deci
sions; in other words, a means of solving the n problems (52) independently. 
We shall return to this fundamental problem of decentralisation in Chapter 10, 
in the context of the theory of economic equilibrium. 

5.5 Regularisation and Penalisation 

Consider a nontrivial, convex, lower semi-continuous function f from a Hilbert 
space X to 1R U { +00 }. With any A > 0 we associate the function f>.. defined by 

f>..(X) := inf [f(Y) + \ Ily - x112] . 
yEX 2/\ 

(53) 

We shall show that the functions f>.. are convex differentiable functions which 
are simply convergent to the function f as y tends to O. This provides us with a 
regularisation procedure which enables us to approximate f by a more regular 
function. 

When y tends to infinity, we may interpret the minimisation problem (53) 
as a penalised version of the minimisation problem 

-1*(0) = inf f(x). 
xEX 

(54) 

We recall that the minimisation problem f>.(x) has a unique solution denoted 
by J)..x (see Theorem 2.2 (Proximation Theorem)). 

Theorem 5.2. Suppose that f : X --+ 1R U {+oo} is a nontrivial, convex, lower 
semi-continuous function. Then the functions f>.. are convex and differentiable 
and 

1 
V'f)..(x) = :x: (x - J)..x) E 8f(J)..x). (55) 

Moreover, when A tends to 0, 

'r/x E Domf, f>.(x) --+ f(x) and J)..x --+ x (56) 

and when A --+ 00, 

f>.(x) tends to - 1*(0) = inf f(x). 
xEX 

(57) 
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Proof. a) In the proof of Theorem 4.3, we showed that II/xx - xii converges to 
O. Moreover, f>.(x) ::; f(x)+~llx - xl1 2 = f(x). Since f(x) ::; liminf.\-+o f(J.\x) 
(because f is lower semi-continuous) and since 

1 2 
f(J.\x) = f>.(x) - 2,\ IIJ.\x - xii ::; f>.(x), 

it follows that f(x) ::; lirninf.\-+o f>.(x). Thus, f(x) = lim.\-+o f>.(x). 

b) Provisionally, we set A.\(x) := ±(x - J.\x). In Theorem 4.3, we showed that 
A.\(x) belongs to 8!(J.\x). Thus, 

f>.(x) - f>.(y) 
,\ 2'\ 2 

f(J.\x) - f(J.\y) + 21IA.\(x)11 - 21IA.\(y)11 
,\ 2'\ 2 

< (A.\(x), J.\x - J.\y) + 21IA.\(x)11 - 21IA.\(y)11 

(because A.\(x) E (]f(J.\x)) 

,\ 2'\ 2 
::; (A.\(x), x - y) - '\(A.\(x), A.\(x) - A.\(y)) + 21IA.\(x)11 - 21IA.\(y)11 

(because J.\ = 1 - ,\A.\) 

( 1 2 1 2 ) (A.\(x), x - y) -,\ 21IA.\(x)11 + 21IA.\(y)11 - (A.\(x), A.\(y)) 

,\ 2 
(A.\(x),X - y) - 21IA.\(x) - A.\(y)11 

< (A.\(x), x - y). 

Thus, we have shown that 
A.\(x) E 8f.x(x). (58) 

Moreover, since A.\ (y) belongs to (] f>. (y) for all y, we obtain the inequalities 

f>.(x) - f>.(y) :;;. (A.\(y),x - y) 
(A.\(x),x - y) + (A.\(y) - A.\(x),x - y) 

> (A.\(x),x - y) -IIA.\(y) - A.\(x)llllx - yll 
1 2 

> (A.\(x),x-y)->;llx-yll 

since IIA.\(x) - A.\(y)11 ::; ±llx - yll (see Proposition 2.7, since A.\ = ±(1- J.\)). 
Thus, 

1

f>.(X) - f>.(y) - (A.\(x),x - y) I ::; ~llx - yll, 
Ilx - yll ,\ 

whence A.\(x) = V' f>.(.7:). 
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c) From Fenchel's Theorem, we know that 

f>..(x) + inf (1*(-q) + ~llql12 - (q,X)) = o. 
qEX* 2 

In other words, we may write 

f>..(x) + (1* - X)l/>.(O) = O. (59) 

Consequently, when A -t 00, (f* - X)l/>.(O) tends to (f* - x)(O) = 1*(0) = 

- infYEx j(y) from the above. 

d) From Theorem 5.1, we know that l>,x and the optimal solution ih/>. of the 
problem (f* - X)l/>. are related as follows: 

(i) 
(ii) 

o E 8j(J>.x) - fh/>. 
x = -J>.x + Arh/>.. (60) 

This shows that \l f>.. (x) is the unique solution ofthe problem (f* - x )1/ >.. Thus, 
if 0 belongs to the domain of 81* (in other words, if there exists a minimum 
of 1), then \l f>..(x) converges to 0 as A tends to infinity. Consequently, if the 
limit of J>.x as A tends to infinity exists, it belongs to 81*(0); in other words, 
it generates the minimum of j. D 



6. Generalised Gradients of Locally Lipschitz 
Functions 

6.1 Introduction 

Since both continuously differentiable functions and convex continuous func-
tions are locally Lipschitz functions, it is natural to wonder if the latter are 
'differentiable' in some weak sense. In 1975, Frank H. Clarke introduced the 
concept of the generalised gradient of a locally Lipschitz function which is a 
convex, closed, bounded subset. The generalised gradient reduces to the gra·
dient of the function if the function is continuously differentiable and is equal 
to the sub differential of the function if the function is convex and continuous. 
Since the upper envelope of Lipschitz functions is Lipschitz, this upper enve·· 
lope also has a generalised gradient. Finally, Fermat's rule applies: if x is a local 
minimum of a locally Lipschitz function, 0 belongs to its generalised gradient 
at x. 

Furthermore, the concept of generalised gradient will enable us to define 
the normal cone at x for an arbitrary non-empty subset; we shall show that this 
coincides with the normal cone at x for a convex closed subset. 

6.2 Definitions 

The concept of differentiation plays such an important role that it has been 
generalised and extended in many directions, according to specific applications_ 
We shall only describe the concepts which one meets when trying to define 
directional derivatives for locally Lipschitz functions. 

Definition 6.1. Let f be a function from X to lR U {+oo} with a non-empty 
domain. We shall call the following limit (when it exists), the Clarke right 
directional derivative of f at :r in the direction v: 

Dc!(x)(v) := lim sup f(y + hv) - f(y) 
h---+O+ 
y---+x 

(1) 

We shall say that f is Clarke right differentiable at x if for all v EX, the 
limit Dc! (x) (v) exists and is finite. 
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We recall that (when it exists) the limit 

Df(x)(v):= lim f(x + hv) - f(x) 
h-+O+ h 

(2) 

is called the right derivative of f at x in the direction v, and that f is right 
differentiable at x if D f (x) (v) exists for all v. 

We shall say that f is Giiteaux differentiable at x if f is right differentiable 
and v -7 Df(x)(v) = Pf(x),v) is linear and continuous. 

We shall call \1 f (x) E X* the gradient of f at x. We shall say that f 
is continuously differentiable if for all v E U, the function y -7 (\1 f(y), v) is 
continuous at x. We shall say that f is Frechet differentiable at x if 

lim 1 f(x + v) - f(x) - (\1 f(x), v) 1 = 0 
v-+o Ilvll (3) 

and that f is strictly Frechet differentiable at x if 

lim 1 f(y + v) - f(y) - (\1 f(x), v) = 01. 
~::::~ Ilvll 

We note that the function v -7 DcJ(x)(v) is positively homogeneous and 
that, when the limits below exist, we have 

Df(x)(v) :s:: DcJ(x)(v). (4) 

We also note that a Gateaux-differentiable function f is not necessarily 
Clarke differentiable. However, we do have the following result. 

Proposition 6.1. Suppose that f is continuously differentiable at x. Then f is 
Clarke differentiable and 

(\1f(x),v) = DcJ(x)(v). (5) 

Proof. Since f is continuously differentiable at x, then for every E > 0, there 
exists TJ > 0 such that 

1(\1f(z),v) - (\1f(x),v)1 :s:: E when liz - xii :s:: TJ· (6) 

If IIYII :s:: TJ/2 and if 0 < t < TJ/21Ivll, we set g(t) = f(y + tv). Then g is 
differentiable and 

. f(y + tv + 8v) - f(y + tv) = (\1 f(y + tv), v). g'(t) = hm 8 
11-+0 

Thus, if 8 :s:: TJ/21Ivll, we have 

f(y + 8v) - f(y) _ (\1 f(x), v) g(8) ~ g(O) _ (\1f(x),v) 

1 {II 
(j Jo ((\1 f(y + tv), v) - (\1 f(x), v) )dt 

(7) 
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and consequently, since Ily + tv - xii :s; T), 

I f(y + ei - f(y) - (V f(x), V)I :s; c 

when 

Ily - xii :s; T)/2 and e:s; T)/21Ivll· 

This implies that if a :s; r)/2 and /3 :s; T)/21Ivll, 
f(y + ev) - f(y) 

sup sup 11 :s; (V f(x), v) + c. (8) 
Ily-xll:Sn Og3 

Taking the infimum with respect to a and /3, we have 

Dc!(x)(v) :s; (V f(x), v) + c, (9) 

which, taken with (4), implies (5). [I 

We recall that any convex function continuous at a point x is Clarke differ·· 
entiable (Theorem 4.1); we restate this result. 

Proposition 6.2. Suppose that a function f : X --+ lR U {+oo} is continuous 
at a point x in the interior of its domain. Then f is Clarke differentiable and 

\:Iv E X, Df(x)(v) = Dc!(x)(v). (10) 

We recall that continuously differentiable functions and convex continuous 
functions are locally Lipschitz (see Theorem 2.1). 

We shall show that not only continuously differentiable functions and convex 
continuous functions but also, more generally, locally Lipschitz functions are 
Clarke differentiable. 

Theorem 6.1. Any locally Lipschitz function f : X --+ lR U { +oo} is Clarke 
differentiable on the interior of its domain. For all x E lnt Domf, 

v --+ D cf (x) (v) is positively homogeneous, convex and continuous. (11) 

Moreover, 

{x,v} E lnt Domf x U --+ Dxf(x)(v) is upper semi-continuous. (12) 

Remark. Propositions 6.1 and 6.2 show that the Clarke derivative of locally 
Lipschitz functions provides a natural generalisation of the concepts of Fn§chet 
and right derivatives in convex analysis. 
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Proof of Theorem 6.1. Suppose x E lnt DomJ. Since J is locally Lipschitz, 
there exist 7) > ° and L > 0, such that 

Vy,ZEX+7)B, IJ(y) - J(z)1 ::; LilY - zll· 
Then, for all a ::; 7)/2 and f3 ::; 7)/21Ivll, 

-Lllvll ::; J(y + e~ - J(y) ::; Lllvll 

when y E x + aB and e ::; f3. It follows that 

-Lllvll ::; DcJ(x)(v) = inf sup J(y + ev} - J(y) ::; Lllvll, 
a,{3>O Ily-xIlS<> 

o<eSil 

whence, J is Clarke differentiable; in particular, we obtain the inequality 

IDcJ(x)(v)1 ::; Lllvll· 

(13) 

(14) 

We already know that v -t DcJ(x)(v) is positively homogeneous. We shall show 
that this function is convex. Writing 

J(y + e()..v + (1 - )..w)) - J(y) 
e 

(1 _ )..) J(z + aw) - J(z) ).. J(y + f3v) - J(y) 
a + f3 ' 

where z = y + e)..v converges to x, and a = (1 - )..)e and f3 = )..e converge to 0, 
and taking the upper limits of the two sides, we obtain 

DcJ(x)()..v + (1 - )..)w) ::; DcJ(x)(v) + (1 - )..)DcJ(x)(w). (15) 

It remains to show that {x, v} -t D cJ (x) (v) is upper semi-continuous. From 
the definition of DcJ(x)(v), given E > ° there exists aD such that 

J(z + )..v) - J(z) < DcJ(x)(v) + E/2. sup , _ (16) 
Ilz-xll<:2<>o 

.\.::;0:0 

If liz - yll ::; aD and Ily - xii::; aD, then since J is locally Lipschitz, we obtain 

J(z + )..w) - J(z) < J(z + )..v) - J(z) LII _ II ( ) ).. _ ).. + v w. 17 

Consequently, if y E x + aoB, a ::; aD and f3 ::; f30, then 

J(z + )..w) - J(z) 
sup < 

IIz-yIIS<> ).. 

J(z + )..v) - J(z) + Lllv _ wll sup ).. 
ASil 

when Ilv-wll::; 2~' 

Ilz-x ll<:2<>o 
>'::;0:0 

::; DcJ(x) (v) + E/2 + Lllv - wll 
< DcJ(x) (v) + E 

Letting a and f3 tend to 0, we deduce that 
E 

DcJ(y)(w)::; DcJ(x)(v) + E when Ily - xii::; aD and Ilv - wll ::; 2L; 

whence, DcJ(x)(v) is upper semi-continuous at {x,v}. o 
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6.3 Elementary Properties 

Next we shall establish certain elementary properties of Clarke derivatives. 

Proposition 6.3. Suppose that f and 9 are two locally Lipschitz functions from 
X to lR U {+oo} and that x E lnt Dom f n lnt Domg. Then 

Dc(af + /Jg)(x) (v) :S aDci(x)(v) + pDcg(x)(v) (18) 

if a, p > O. If x E lnt Dom 1, then 

Dc( - 1)(x)(v) = Dcf(x)( -v). (19) 

Proof. Formula (18) is self evident. To prove (19), we write 

- f(y + AV) - (- f(y)) f(z + A( -v)) - f(z) 
A A 

(20) 

where z = y + AV converges to x when y converges to x and A > 0 tends to O. 
Taking the upper limits as y and z converge to x and A converges to 0, the term 
on the left converges to Dc ( - 1) (x )(v) and that on the right to D ci (x) ( -v ). 0 

Proposition 6.4. Let f be a locally Lipschitz function from X to lR U { +00 } 
with a non-empty domain. Let P be a closed convex cone in X. If f is increasing 
on P in the sense that 

f(·7:) :S f(x + v), \;/v E P, 

then 
\;/v E X, Dci(x)(v):S a(P+,v) 

where a(P+, v) is the support function of the positive polar cone P+ of P. 

Proof. For all v E P, we have the inequality 

f(y+f)v+f)(-v))-f(y+f)v) 0 
- :S . 

(21 ) 

(22) 

Taking the limit of the supremum as y tends to x and f) tends to 0, we de·· 
duce that Dci(x)(-v) :S 0, \;/v E P. Moreover, a(P+,v) = 0 if v E -P and 
a(P+, v) = +00 if v ~ -P. Whence inequality (22) holds. [] 

Proposition 6.5. Let f : X -+ lR U {+oo} be a locally Lipschitz function. 
Suppose that x E lnt Domf is a local minimum of.f. Then, for all v E X, 
Dci(x)(v) :2 O. If:r is a global minimum of f on a convex set X then 

\;/yE K, Dci(x)(y - x) :2 O. (23) 
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Proof. Suppose that x minimises f on the ball x + 7]B with centre x and radius 
7]. Then, if,\ ::::: 7]/2 and (3::::: 7]/21Ivll, we have, if B ::::: (3 

f(x + Bv) - f(x) f(x + Bv) - f(x) 
0< < sup . 

- B - e~{3 B 

Taking the limit as (3 tends to 0, we obtain Dci(x)(v) 2: O. If K is convex, we 
may take v = y - x, since x + Bv = (1 - B)x + By E K if B is sufficiently small. 

D 

Proposition 6.6. Suppose that a nontrivial function f : X --+ IR U { +oo} is 
positively homogeneous and locally Lipschitz. Then, for all x E lnt Dom f, 

Proof. We note firstly that 

f(x) 

Dcf(x)(x) = f(x). 

f(x + hx) - f(x) 
h 

< lim sup f(y + hx) - f(y) 
hY:O~ h 

Dci(x)(x). 

Suppose L is the Lipschitz constant of f at x. We may write 

f(y + hx) - f(y) 
h 

f(y) + f(y + hx) -:- f(y + hy) 

< f(y) + Lily - wll· 

(24) 

(25) 

(26) 

Whence, taking the upper limit as h --+ 0+ and y tends to x, we obtain 
Dci(x)(x) ::; f(x). D 

Next we shall study the differentiability of the composition 9 = foG where 
G maps an open subset f2 of a Hilbert space Y into Dom f, the domain of f. 

Definition 6.2. We shall say that G is Gateaux differentiable at x E f2 if there 
exists V'G(x) E L(Y, X) such that 

G(x + By) - G(x) . 
Vv E Y, B converges to V'G(x) . v zn X as B --+ O. (27) 

We shall say that G is Frechet differentiable if 

lim IIG(x + v) - G(x) - V'G(x) . vii = O. 
Ilvll-+O Ilvll 

(28) 

G is said to be strictly Fnichet differentiable if 

lim IIG(y + v) - G(y) - G(x) . vii = 0 
lIy-xll-->O Ilvll . 

IIvll-+O 

(29) 
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Proposition 6.7. Suppose that J is locally Lipschitz. IJ G is strictly Frechet 
differentiable at x then 

Dcg(x)(v) :S (Dcf)(G(x))(VG(x) . v). (30) 

Proof. Since J is locally Lipschitz, given c > 0 and u EX, there exist numbers 
0', f3 such that 

J(z + ew) - J(z) :S DcJ(G(x))(u) + c (31) 

when liz - G(x)11 :S 0', e :S f3 and Ilw - ull :S 2EL· We take u = VG(x)· v. There 
exists 'r/ :S f3 such that if Ily - xii :S'r/ and e :S 'r/, then IIG(y) - G(x)11 :S 0' and 

IIV(X) . v - G(y + ei - G(y) II :S 2~ 

since G is strictly differentiable. Taking z = G(y) and w = G(Y+O~)-G(y), it 
follows from (31) that 

Dcg(x)(v):S sup g(y + ev) - g(y) 
Ily-xll"" e 

8'5,17 

< DcJ(G(x))(VG(x)· v) + c. D 

Corollary 6.1. Let A E L(Y, X) be a continuous linear operator. Then 

DcUA)(x)(v) :S (DcJ)(Ax) (Av). (32) 

IJ A E L(Y, X) is surjective, then 

DcU A)(x)(v) = (DcJ) (Ax)(Av). (33) 

Proof. In this case, Banach's theorem (see Theorem 4.3.1 of (Aubin 1979a)) 
implies that A(x + O'By) contains a ball Ax + ,,/(O')Bx. Consequently, 

J(z + eAv) - J(z) J(Ay + eAv) - J(Ay) 
sup < sup 

Ilz-Axll"-y(Q) e - lIy-xll"o e 
q~A e~p 

which implies that DcJ(Ax)(Av) :S DcU A)(x)(v). [] 

Suppose that J is a Lipschitz function from X to lR U {+oo} and that 
B E L(X, Y) is a continuous, linear, surjective operator from X to Y. We 
define 

O'(y) = inf J(x), 
Bx=y 

(34) 

setting O'(y) = +00 if Y l' BDom J. 
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Proposition 6.8. Suppose that f is Lipschitz and that B E L(X, Y) is sur
jective. Then a is Lipschitz if its domain is non-empty. If a(y) = f(x) where 
Bx = y, then 

VUEX, 0:::; Dca(y)(Bu) + Dcf(x)(u). (35) 

Proof. a) We pick arbitrary y and z in Y and E > O. There exists YE E X such 
that f(ys) :::; a(y)+E and BYE = y. Since B is surjective, Banach's theorem (see, 
for example, Theorem 4.3.1 of (Aubin 1979a)) implies that there exist a constant 
c > 0 and a solution ZE of the equation BZE = z satisfying IIYE - ZE II :::; clly - zll· 
Whence, 

a(z) :::; f(zs) :::; f(YE) + LIIYE - zE11 :::; a(y) + E + Lclly - zll· 

This implies that a is Lipschitz with constant Lc, where L is the Lipschitz 
constant of f. 
b) Consider the inequality 

o < 
a(y + BBu - BBu) - a(y + BBu) f(x + Bv) - f(x) 

B + B 
a(z - BBv) - a(z) f(x + Bv) - f(x) 

sup + sup . 
Ilz-YII~" B OS}3 B 

< 
e~(3 

Passing to the limit as a and f3 tend to 0, we obtain the inequality (35). D 

We consider m functions fi : X -4 IR U {+oo} and their upper enve
lope 9 defined by g( x) = maxiEI fi (x) where I = {I, ... , n}. We shall denote 
I(x) = {i E Ilg(x) = fi(X)}. 

We note that if the functions fi are locally Lipschitz, the same is true of 
their upper envelope. (If Ifi(y) - fi(Z)1 :::; Lilly - xii and y, z E x + TJiB, then 
Ig(y) - g(z)1 :::; LilY - zll if y, z E x + TJB where TJ = miniEI TJi > 0 and L = 

maxiEI Li > 0.) Whence, the functions fi and 9 are Clarke differentiable. 

Proposition 6.9. Suppose that the m functions fi are locally Lipschitz and that 
x E niEIlnt Dom fi. Then, 

Dcg(x)(v) :::; maXiEI(x)Dcfi(X)(V). (36) 

Proof. a) We first note that there exists al > 0 such that if Ilx - yll :::; al 
then I(y) C I(x). (Suppose a = g(x) - maXj\i'I(x) fj(x) > 0, E = ~ and al > 0 
are such that for all i E I If;(y) - f;(x)1 :s; E whenever Ily - xii :s; al. Then if 
j E I(y) 

fj(x) ~ fj(Y) - E = g(y) - E ~ g(x) - 2E 

a - 2E + maxi\i'I(xd;(x) > maxi\i'I(x)J;(X). 
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Thus j E I(;r;).) 

b) If a <::: aI/2 and (3 <::: aI/21Ivll, we obtain the inequality 

g(y + Ov) - g(y) fi(Y + Ov) - fi(Y) fi(Y + Ov) - fi(V) 
"--'-'--------'--------=---"'-'-- < max < max . o - iEI(y+Bv) 0 - iEI(x) 0 

Whence, 

Dcg(x)(v) <::: ipJ maxiE/(x) sup fi(Y + Ov) - fi(Y) 
G.!3>0 Ily-xll <'x ~ . 

A ",.B-

Moreover, for all c > 0, and for all 'i E I, there exist ai > ° and (3i > Osuch 
that 

fi(Y + Ov) - fi(Y) < max DcJi(X)(V) + c. 
sup () - iEI(x) 

Ily-xll"'''i 
eSI3i 

Taking a = miniEI(x) ai > ° and (3 = miniEI(x) (3i > 0, it then follows that: 

Dcg(x)(v) <::: max. sup fi (y + Ov) - f· (y) 
ZEI(x) z Ily-xllSn 0 

eSt) 

J(y + Ov) - J(y) 
< max sup Z 0 Z <::: max DcJi(X) (v) + C. 

iEI(x) Ily-xll",,, iEI(x) 
eS3 

Letting c tend to ° completes the proof of the proposition. D 

Remark. If the functions fi are continuously differentiable at x, then their 
upper envelope 9 satisfies Dg(x)(v) = maxiEI(x)('Vfi(X),V). If I(x) consists of 
a single index. then 9 is Gateaux differentiable and 'V g( x) = 'V fio (x) where 
g( x) = fio (;r;). 

6.4 Generalised Gradients 

Definition 6.3. Suppose that the function f : X --+ lR U {+oo} is Clarke 
differentiable at x. Then the subset of (x) of X defined by 

af(x) = {p E X*I(p,v) <::: DcJ(x)(v), Vv E X} (37) 

is called the generalised gradient of f at x. 

Theorem 6.2. Suppose the function f : X --+ lR U {+oo} is locally Lipschitz. 
Then it has a non-empty generalised gradient of (x) at any point x in the interior 
of Dom f, which 'is convex, closed and bounded and has a support function 
(J(af(x), v) := sup{ (p. v)lp E af(x)} which satisfies 

(J(af(x), v) = Dcf(.T)(V). (38) 
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Moreover, the set-valued map x E Int Dom f -+ 8c!(x) E X* satisfies 

(x,v) E IntDomf x X -+ a(8f(x), v) is upper semi-continuous. (39) 

Proof. The theorem follows from Definition 6.1 and Theorem 6.1. Since 
Dc!(x)(·) is convex, positively homogeneous and continuous, it is the sup
port function of the convex closed subset of elements p E X* such that 
(p, v) :::; Dc!(x)(v) for all v E X; in other words, of the generalised gradi
ent 8f(x) of f at x. Thus, 8f(x) is non-empty, convex and closed and (38) 
applies. Since a(8f(x),v) :::; Lllvll = La(B*,v) (where B* is the unit ball of 
X*), it follows that 

8f(x) c LB* 

This completes the proof of Theorem 6.2. 

( 40) 

D 

Proposition 6.10. If f is continuously differentiable then the generalised gra
dient 8f(x) = {\7f(x)} reduces to the usual gradient \7f(x). If f is convex and 
continuous at x, then the generalised gradient is equal to the subdifferential of 
fat x. 

Proof. Proposition 6.1 shows that if f is continuously differentiable, then 
a(8f(x),v) = Dc!(x)(v) = (\7f(x), v). Thus, 8f(x) = {\7f(x)}. Propo
sition 6.2 shows that if f is convex and continuous, then a(8c f(x), v) = 

Dc! (x) ( v) = D f (x) (v). Now, the right derivative of a convex continuous func
tion is the support function of the subdifferential 8f(x) (see Theorem 4.1). 

D 

Propositions 6.3 to 6.7 translate as follows in terms of the generalised gra
dient. 

Proposition 6.11. Suppose f and g are two locally Lipschitz functions. If 
x E Int Domf n Int Domg, then if 0: and (3 > 0, 

8(o:f + (3g)(x) C 0:8f(x) + (38g(x). ( 41) 

If x E Int Domf, then 
8c ( - f)(x) = -8c f(x). (42) 

If f is increasing on a convex closed cone P, then 

8c!(x) C P+. (43) 

If x is a local minimum of f, then x is a solution of the inclusion 

o E 8f(x) (Fermat's rule). ( 44) 

If f is positively homogeneous, then 

Vp E 8f(x), (P,x) = f(x). (45) 
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If A E L(Y,X) and if A* E L(X*, YO) denotes its transpose, then 

oc(f A)(J;) C A*oc!(Ax) (46) 

with equality if A is surjective. 

Proof. It suffices to note that since the generalised gradients of (x) are convex, 
closed and bounded, they are weakly compact; whence of (x) + A is convex and 
closed when A is convex and closed (see (Schwartz 1970)). 0 

Proposition 6.8 translates in the following way. 

Proposition 6.12. Suppose that f is a Lipschitz function from X to 
lRU {+oo} and that BE L(X, Y) is a surjective operator. If y E Int(B· Dom!) 
and if x is the solution of the minimisation problem 

a(y) = inf f(x) = f(x) where Bx = y, 
Bx=y 

( 47) 

then there exists p E V* satisfying 

P E oa(y) with B*p E of (x). (48) 

Proof. Following Proposition 6.8, 

OS; Dca(y)( -Bv) + Dc!(x)(v) = 0"( -B*oa(y) + of (x) , v). 

Whence 0 E of (x) - B*oa(y). o 

Remark. An element p E y* satisfying (48) is called a Lagrange multiplier for 
the problem of minimisation of a Lipschitz function f under the linear equality 
constraints Bx = y. 

Proposition 6.9 may be restated as follows: 

Proposition 6.13. Suppose that the m functions fi are locally Lipschitz and 
that x E niEIlnt Domfi' Then 

og(x) c co U Oc!i(X). 
iEI(x) 

6.5 Normal and Tangent Cones to a Subset 

( 49) 

Suppose that K is an arbitrary non-empty subset of X. We let dK denote the 
distance function measuring the distance from K, defined by 

dK(y) = inf Ilx-yll. 
yEK 

(50) 
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This is clearly Lipschitz with constant 1: 

IdK(Y) - dK(z)1 ~ Ily - zll 

Consequently, it is Clarke differentiable. 

Definition 6.4. Suppose x E K. We shall say that the set 

TK(X) := {v E XIDcdK(X)(V) ~ O} (51) 

is the tangent cone to K at x and that 

NK(x) = TK(xf = {p E X*I(P, v) ~ 0, \Iv E TK(X)} (52) 

is the normal cone to K at x. 

Since v ---+ DcdK(X)(V) is convex, positively homogeneous and continuous, 
T K (x) is a convex closed cone. Since the normal cone is the negative polar cone 
of TK(X), NK(x) is a convex closed cone. 

Whence 
TK(X) = NK(x)-. (53) 

It is useful to define the normal cone in terms of the generalised gradient of 

dK · 

Proposition 6.14. The normal cone NK(x) is the closed convex cone generated 
by the generalised gradient of dK at x 

NK(x) = (8dK(x))--. (54) 

Proof. We show that 8dK(x) is contained in the normal cone NK(x). If 
p E 8dK(x) and if v E TK(X), then (p, v) ~ DcdK(X)(V) ~ O. Thus, the convex, 
closed cone generated by 8dK(x) is contained in the normal cone NK(x). To 
prove the inverse inclusion, it is sufficient to show that (8dK(x)f C TK(x). 
Suppose then that Vo E (8dK(x)f. Then DcdK(X)(VO) = a-(8dK(x),vo) = 

sup{(p,vo)lp E 8cdK(x)} ~ O. Thus Vo belongs to TK(X). D 

Next we state certain elementary properties of tangent and normal cones. 
First we mention the following fact 

If Int K -=I- 0 and if x E IntK, then TK(x) = X and NK(x) = O. (55) 

Indeed, if x + 7]E c K, then, for all v EX, Y + ev belongs to K if Ily - xii -S a 
and e ~ {3 whenever a ~ 7]/2 and (3 ~ 7]/21Ivll. Thus, 

DCdK(X)(V) = inf sup dK(y + ev) - dK(y) 
<>,11>0 Ily-xll~Q e ~ O. 

6~{3 
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6.6 Fermat's Rule for Minimisation Problems with 
Constraints 

Proposition 6.15. Let f be a locally Lipschitz function. Suppose that x E K 
minimises f over K. Then, there exists L > 0 such that 

't/y EX, f(x) + LdK(x) :s; f(y) + LdK(y) (56) 

and consequently, 0 E af(x) + NK(x) (or -af(x) n NK(x) i 0). 

Proof. Since f is locally Lipschitz, there exists a neighbourhood x + T)B on 
which f is Lipschitz with constant L. We take a < T)/2 and E < 1]-220. which is 
destined to tend to O. Let Y E x + oB. Then, we may associate Y with some 
YE E K such that IIY - YEll :s; dK(y)(l + E). Moreover, Ilx - yll :s; a :s; T), 
dK(y) :s; Ilx - yll :s; a and Ilx - xcii :s; Ilx - yll + Ily - YEll :s; 0 + 0(1 + E) = 

0(2 + E) :s; T). Consequently, f(YE) :s; f(y) + Lily - YEll :s; f(y) + L(l + E)dK(y). 
Since dK(x) = 0 (because x E K) and since f(x) :s; f(YE) (because YE E K) we 
obtain f(x) + LdK(x) :s; f(y) + L(l + E)dK(y) for all Y E x + aB. Letting E tend 
to 0, we deduce that x is a local minimum of the function y --t f(y) + LdK(y). 
Whence, by virtue of Propositions 6.3, 6.5 and 6.14, we obtain the inequality 

o :s; DcU + LdK)(x)(v) :s; DJ(x)(v) + LDcdK(X)(V) 

< (J(acf(x) + LadK(x),v) 

for all vEX. 
This implies that 0 E of (:r) + Lad K (x) c of (x) + N K (x), following Propo-

sition 6.15. D 

Remark. The first assertion is very important in the sense that it allows us 
to replace a minimisation problem with constraints by a minimisation problem 
without constraints. 

Remark. If K is convex, N K (x) is the normal cone of convex analysis (see 
Definition 4.3). We note that the function dK is convex. Take p E NK . If Y E K, 
we have 

(p, Y - x) :s; DcdK(X)(Y - x) = DdK(x)(y - x) :s; dK(y) - dK(x) = O. 

Conversely, if x maximises y --t (p, y) over K, Proposition 6.15 implies that 
o E -p + N K (x). Thus, the two concepts of normal cones coincide. 



7. Two-person Games. Fundamental Concepts 
and Examples 

7.1 Introduction 

Let us consider two subsets E and F. Our aim is to choose pairs (x, y) E Ex F 
using various optimisation techniques motivated by so-called decision theory. 
This means that we shall provide mechanisms for selecting elements (called 
decisions or strategies) of sets (decision sets, strategy sets) which should reflect 
real decision-taking techniques as closely as possible. 

The history of science shows us that parlour games have presented math
ematicians with numerous problems. Thus, the chevalier de Mere consulted 
Blaise Pascal about the problems of dice games. This led to a correspondence 
between Blaise Pascal and Pierre de Fermat; the six letters they exchanged 
served as a departure point for modern probability theory (which proves that 
mathematicians may also profit from immoral company!) 1. 

The terms players and strategies have been used since the start and tradition 
(conservatism) has led to their retention. The current status of the theory of 
games as a mathematical theory is due to John von Neumann who, between 
1928 and 1941, proposed a general framework, with a view to applications in 
the social sciences, within which conflicts and cooperation of players may be 
taken into account. This fundamental work formed the skeletal structure of the 

)' ... My best teacher of this worldly science was Antoine Gombaud, chevalier de Mere .... 
He was a strong little man, very elegant and scented, who voluntarily established himself as 
a judge of etiquette and graces. After several sea campaigns, he limited his gallantry to the 
conquest of the salons and gave up the sword for the pen. He was very friendly with Pascal, 
Balzac, Menage, Clerambault and other men of letters of his time and himself perpetrated 
a number of treatises on 'true honesty', 'eloquence', 'the delicacy of expression' and 'worldly 
intercourse' .... However, I was taken by the idea of passions and the feelings which engender 
them stole into my mind with no specific object in view. It is true that they could have 
settled on the chevalier himself and that it was not because of him they did not rest there. 
In fact, Monsieur de Mere was enamoured of his fourteen year old school girl; he told me 
as much in poems in which. because of my journeys to the islands, he referred to me as the 
'beautiful Indian' .... For my part, Monsieur de Mere was not to my liking .... However, I was 
flattered that he took a liking to me: the first and the last conquests are those for which one is 
most grateful.' FRANQOISE CHANDERNAGOR. L'Alll§e du Rai. Recollections of Frangoise 
d' Aubigne, marquess of Maintenon, wife of the King of France. 
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book Theory of Games and Economic Behaviour, which he published in 1944 
in collaboration with the economist O. Morgenstern. 

In fact, this change of direction is due to Leon Walras, who introduced the 
description of a consumer as an automaton seeking to maximise a utility func
tion subject to various types of constraints imposed by its environment. In this 
case, the strategies are commodities and prices and the players are consumers, 
manufacturers and other economic agents. The individuals who adopt this be
haviour of an automaton are said to be "rational". This should not be taken 
as the definition of the adjective 'rational' in the philosophical context (in the 
sense of natural knowledge, as opposed to that which comes from myths or from 
faith). Anyway, the concept of reason is the subject of cognitive psychology and 
little is known about this topic except that most of the time a rational individ
ual cannot maximise his utility function, assuming that he has one. Some ten 
years ago, H. Simon and others questioned the universality of this behaviour 
and proposed replacing the notion of optimality by a less nontrivial notion of 
satisfactoriness. 

Whilst we await the psychologists' findings about knowledge, one way of 
resolving the dilemma is to realise that the first point of view is static, whilst 
the second is dynamic. Taking into account evolutionary phenomena, we need 
no longer assume that an individual is looking for a permanent optimum but 
may suppose that he seeks to increase his utility as he goes along. The second 
point of view is less unrealistic in this sense. 

We shall restrict ourselves here to the static case (anyway, investigations 
of the dynamic framework are now under course). Even with these limitations, 
game theory has provided economists with useful tools for clarifying concepts. In 
order to avoid being distracted, one must always remember that these are only 
imperfect and perfectible tools and that one should beware of all dogmatism 
when using them. 

Curiously enough, the mathematical problems which have been motivated 
by game theory have led to major contributions to nonlinear analysis which 
have ultimately been useful in very many areas; this is another example of the 
universality of mathematical results which we mentioned when talking about 
Banach at the end of Chapter 2. 

7.2 Decision Rules and Consistent Pairs of Strategies 

Let us christen our two players Emil and Frances. Emil's task is to choose a 
strategy x in the set E and that of Frances is to choose a strategy y in the set 
F. The pair (x, y) E E x F is also called a bistrategy. 

One elementary mechanism which allows Emil and Frances to select their 
respective strategies involves providing them with decision rules. 

Definition 7.1. A decision rule for Emil is a set-valued map GE from F to 
E which associates each strategy y E F of Frances with the strategies x E GE(y) 
which may be played by Emil when he knows that Frances is playing y. 
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E x F, set of bistrategies 

- Graph of the decision rule 
C F for Frances 

- Graph of the decision rule 
L ___ ,;-____ --L_--1! C E for Emil 

I 
L ___ - - - - _ - __ Set of coherent pairs of 

E, set of strategies for Emil 
bistrategies 

- - Graph of the decision rule 
CF for Frances 

-- Graph of the decision rule 
'---_________ ~, _ ___J! CE for Emil 

E, set of strategies for Emil 

Fig. 7.1. Examples of one-to-one and discontinuous decision rules where there are no 
consistent strategy pairs. 

Similarly, a decision rule for Prances is a set-valued map C p from E to F 
which associates each strategy x E E played by Emil and known to Frances with 
the strategies y E C p (x) which Frances may implement. 

Once the players Emil and Frances have been described in terms of their 
decision rules CE and CF , we may distinguish pairs of strategies (x, y) which 
are in static equilibrium, in the sense that 

X E CE(y) and Y E Cp(x) (1) 

Definition 7.2. A pair of strategies (x, y) which satisfies condition (1) for the 
decision rules CE of Emil and Cp of Frances is called a consistent pair of 
strategies Or a consistent bistrategy. 
The interest of this concept of consistent bistrategies naturally depends on the 
choice of decision rules. 

The most simple example of a decision rule is that of a constant decision 
rule. A strategy :r E E of Emil may be identified with the constant decision rule 
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Y E F -+ x E E, which describes obstinate behaviour by Emil, who plays the 
strategy x irregardless of the strategy chosen by Frances. 

Consequently, when Emil and Frances play the strategies x and y, respec
tively, the pair (x, y) forms a consistent pair. 

The set of consistent pairs may be empty or very large or it may reduce to 
a small number of bistrategies. A mechanism will only be of interest to a game 
theorist if, firstly, the set of consistent pairs is non-empty and, secondly, this 
set is small (in the best case consisting of a single pair). 

We note that the problem of finding consistent strategy pairs is a so-called 
fixed-point problem. We use C to denote the set-valued map of E x F into itself 
defined by 

V(x,y) E E x F, C(x, y) := GE(y) x GF(x). (2) 

The inclusions (1) which define the consistent pairs may clearly be written in 
the form 

(x, y) E C(x, V)· (3) 

This is a primary motivation behind the derivation of fixed-point theorems. 
We shall quote (and admit without proof the prototype of these theorems, the 
Brouwer Theorem) the most famous of these theorems. 

7.3 Brouwer's Fixed-point Theorem (1910) 

Theorem 7.1. Let K be a convex compact subset of a finite-dimensional space. 
Any continuous mapping of K into itself has a fixed point. 

We shall discuss the consequences of this theorem, which turn out to be conve
nient and easy to handle, above all in applications to game theory. 

The Dutch mathematician Brouwer (1881-1966) is famous for his contri
butions to mathematical logic and was one of the founders of combinatorial 
topology, where he innovatively introduced the important notion of a simplex 
and the triangulation technique which he used to prove this famous theorem 
which is at the root of nonlinear analysis. 

Thus, we obtain the following corollary. 

Corollary 7.1. Suppose that the behaviours of Emil and Frances are described 
by one-to-one continuous decision rules and that the strategy sets E and Fare 
convex compact subsets of finite-dimensional vector spaces, then there is at 
least one consistent strategy pair. 

Proof. We take K := Ex F which is convex and compact. Then the set-valued 
map C defined by (2) is a continuous mapping and thus has a fixed point. 0 

We shall generalise this theorem to the case of multi-valued decision rules. 
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7.4 The Need to Convexify: Mixed Strategies 

Brouwer's Theorem which, in practice, is the fundamental tool for finding consis
tent strategies together with the Separation Theorem which, as we have already 
seen, is at the root of optimisation theory, both assume that the strategy sets 
are convex. This is an exorbitant assumption which excludes, for example, the 
use of finite stmtegy sets. 

What then should we do'? As so often in mathematics, starting from a 
situation which appears hopeless because of the absence of desirable properties, 
one boldly invents another situation in which the validity of these properties is 
re-established. 

We shall follow this course, beginning with a finite strategy set. Suppose 
that E = {I, ... , n} is a set of n elements. 

We associate E with the subset 
n 

M":= {A E IR~ILAi = I} (4) 
i=l 

called the (n - 1) simplex of IRn. 
This is clearly a convex compact subset of IRn. We can embed E in Mn by 

the mapping S which associates the ith element of E with the ith element ei of 
the canonical basis of IR": 

S : i E {L. .. , n} -+ S(i) := ei := (0, ... ,1, ... ,0) (5) 

We also note that 
M n = co{ e1, ... , en} (6) 

Interpretation 

J. von Neumann proposed interpreting the elements A E Mn as mixed strategies. 
In this framework, a player does not choose a single strategy as before but plays 
all the strategies and chooses only the probabilities with which he plays them. 

One important justification for a player's use of mixed strategies is the 
protection which he obtains by disguising his intentions from his partners. By 
playing the different strategies randomly, in such a way that only their proba
bilities are determined, he prevents his partners from discovering the strategy 
which he is going to play, since he does not know it himself. 

We must not hide the fact that, in 'convexifying' strategy sets, we are moving 
away from our original static framework, since random play assumes that the 
game will be repeated! 

However, one might reason that there is a 'game' if there is uncertainty in 
the choices of the players and, thus, taking this uncertainty into account we 
may rejoin the static framework. 

Psychologists and sociologists suggest that this uncertainty which enables 
the players (actors) to take a detached view of the decisions with which they 
are faced should be considered as a component of the notion of power. 
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We shall also have recourse to this convexification process later in the context 
of cooperative games, where we convexify the set of coalitions oj players (see 
Chapter 13). 

In fact, this is a mathematical necessity which provides a palliative improve
ment of the static case bringing it halfway towards the dynamic framework 
which has just been invented. 

Any set-valued map C from E = {I, ... , n} to a vector space X may be ex
tended to a set-valued map 0 from lRn to X as follows 

n 

V)" E lRn , O()"):= L )..iC(i) (7) 
i=l 

If 6 is the mapping from {I, ... , n} to Mn defined by (5), we have the following 
scheme 

C=06 

{l, ... ,n} 

If C is a one-to-one mapping, it is clear that its extension 0 is a linear 
mapping from lRn to X. 

The process which associates the mapping C : {l, ... , n} ~ X with the 
linear mapping 0 : Mn ~ X may be thought of as a linearisation process 
associated with the convexification process which associates the convex compact 
set Mn with the finite set {I, ... ,n}. 

7.5 Garnes in Normal (Strategic) Form 

The traditional way of modelling game theory is to assume that each player 
classifies the bistrategies using an evaluation junction j. This function has 
several names, for example, criterion junction, utility junction , gain junction, 
loss junction, cost junction, etc. The terminology is a matter of taste. Whatever 
terminology is used, such a function may be associated with a partial order 2: 
(called the partial order of preferences) as follows 

(Xl> Y1) E E x F is preferred to (X2' Y2) E E x F 

if and only if j(X1' Y1) :S j(X2' Y2) (8) 
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(for loss functions or cost functions; for utility functions and gain functions, the 
direction of the inequality is inverted). 

A player behaves so as to minimise his losses as far as possible. 

Remark. We have associated a partial order with a loss function f. We note 
that the partial order remains unchanged (in fact this is the only thing that 
matters) if we replace the function f by any function cp 0 f where cp is a strictly 
increasing bijection from IR to IR. 

In particular, if a > 0 and b E IR are given, the function af + b defines the 
same partial order as f. 

The inverse question then arises: can we represent any partial order by an 
evaluation function? Sadly, the most common partial order on IRn , the lexico
graphic partial order cannot be represented by a continuous utility function. 
This led to a debate lasting several decades between supporters and adversaries 
of utility functions, until Gerard Debreu derived a theorem showing that a large 
class of partial orders may be represented by continuous functions (for a simple 
version of this theorem, see Theorem 5.4.1 of (Aubin 1977)). 

We shall not become embroiled in this debate, especially since considerations 
of cognitive psychology seem to indicate that the mechanisms of choice do not 
obey (globally) rules for classification according to a partial order. Moreover, 
this notion is of little meaning in a dynamic framework. 

Nonetheless, this is still a source of intrinsically interesting mathematical 
problems. The relevance of the assumption that the behaviour of the players is 
based on evaluation functions is a concern of economics, which is not an exact 
science. 

None of this is very serious since, whilst the use of utility functions may 
legitimately be rejected, it is more difficult to take issue over the use of decision 
rules at this level of generality. 

Let us return to our problem. We now suppose that the players Emil and 
Frances choose (separately) their strategies using their loss functions !E and h 
from E x F to IR. 

We set 
f(x, y) := (!E(x, y), h(x, y)) E IR2. (9) 

Definition 7.3. A two-person game in normal (strategic) form is defined 
by a mapping f from E x F into IR2 called a biloss mapping. 

We have described a natural way of associating decision rules with the 
players of a game in strategic form. Let us now consider Emil's loss function 
!E. If he happens to know the strategy y E F played by Frances, he may be 
tempted to choose the strategy x E E which minimises his loss x --+ f(x, y), 
assuming Frances's strategy is fixed. In other words, he may choose a strategy 
in the set GE(y) defined by 
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GE(y) := {x E Elh(x, y) = inf h(x, y)}. 
{xEE} 

(10) 

This enables us to define a decision rule C E : F --+ E for Emil. Similarly, we 
define the decision rule C F : E --+ F for Frances by the formula 

GF(x) := {y E 1!F(x, y) = inf !F(x, y)}. 
{yEF} 

(11) 

Definition 7.4. The decision rules G E and C F associated with the loss functions 
by formulae (10) and (11) are called the canonical decision rules. 

A consistent pair of strategies (x, y) based on the canonical decision rules 
is called a non-cooperative equilibrium (or a Nash equilibrium) of the 
game. 

(i) 

(ii) 

Thus, a pair (x, y) is a non-cooperative equilibrium if and only if 

h(x,y) 

!F(x,y) 

inf h(x, y) 
xEE 
inf !F(x, y). 
yEF 

(12) 

Consequently, a non-cooperative equilibrium is a situation in which each player 
optimises his own criterion, assuming that his partner's choice is fixed. This is 
called a situation with individual stability. 

One convenient way of finding non-cooperative equilibria is to introduce the 
functions 

(i) 

(ii) 

f1(y) .~ 

f}(y) .~ 

inf h(x, y) 
xEE 
inf !F(x, y) yEF 

h flat 

!F flat. (13) 

Thus, we note that a pair (x, y) E E x F is a non-cooperative equilibrium if 
and only if 

(i) 
(ii) 

7.6 Pareto Optima 

h(x,y) 
!F(x,y) 

f1(y) 
f}(x) (14) 

Does the concept of non-cooperative equilibrium provide the only reasonable 
scheme for solution of a game in strategic form? This is not necessarily the case, 
particularly if we assume that the players communicate, exchange information 
and cooperate. In this case, they may notice that there exist strategy pairs (x, y) 
satisfying 

h(x, y) < h(x, y) and !F(x, y) < !F(x, y) (15) 

where the two players Emil and Frances have losses strictly less than in the case 
of non-cooperative equilibrium (x, y). When this situation occurs, it betrays a 
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lack of collective stability, since the two players can each find 'better' strategies 
for themselves. 

Definition 7.5. A strategy pair (X., y*) E Ex F is said to be Pareto optima12 

if there are no other strategy pairs (x, y) E Ex F such that h (x, y) < h (X., y*) 
and fF(X,y) < fF(X*,y*). 

The idea is that there exist non-cooperative equilibria which are Pareto 
optimal. Regrettably, there are few examples of such equilibria and no general 
theorem is known. 

We denote the set of losses of each player by lRE = lR and lRF :- lR 
(respectively) and the set of the players' bilosses by lR2 := lRE x lRF . 

IRF 

fF(X,y) 

-~ 
OF I----~~------------~--~ 

°E fE(X,y) 

Fig. 7.2. 

lRE 

Figure 7.2 shows the set f(Ex F) C lR? ofbilosses f(x, y) = (!E(x, y), h(.T, y)) 
suffered by the two players. The bilosses corresponding to the Pareto optima 
are shown by thick lines. We note that the selection of the Pareto optima is not 
a very precise mechanism. 

Suppose, for example, that there exists a pair (x, j)) which minimises Emil's 
loss function .fE on E x F: 

h(!i:, j)) = inf h(x, y) =: (JOE· 
.rEE 
yEF 

(16) 

Clearly, such a pair is Pareto optimal. For Frances to accept this situation, we 
must assume that her only goal in life is to please Emil. Similar comments apply 
to any Pareto-optimal strategy pair (x, f)) which minimises jp on E x F 

jp(i;, f)) = inf jp(x, y) =: (JOF· 
xEE 
.liEF 

(17) 

2In fact, to be exact, we should use the term 'weakly Pareto optimal'. We commit this 
abuse of terminology consciously. 
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We observe that if a strategy pair (x, fj) minimises both !E and fp simultane
ously on Ex F, then it is the best candidate for a solution scheme. In this case, 
we would have 

CXE = fE(X, fj) and CXF = fp(x, fj) 

which only happens in exceptional cases. This is why the vector 

0::= (CXE,CXF) E lR2 (18) 

is called the virtual or 'shadow' minimum of the game. 
We also note that the bistrategy (x, y) of (16) (or the bistrategy (x, fj) of 

(17)) is not a propitious choice if one takes into account sensible psychological 
considerations. It is reasonable to think (or rather to expect) that the players 
will agree to replace a given strategy pair by another strategy pair which will 
result in lower losses for each of them. One cannot sensibly imagine that one 
player would let the other player be the sole beneficiary of this operation. 

In fact, one of the objectives of the theory of cooperative games is to provide 
mechanisms for selecting Pareto optima. One example of this selection process 
is the case in which Frances's behaviour consists of pleasing Emil without taking 
her own interest into account (devoted behaviour); this leads to the strategy 
pairs (x, y) of (16). 

7.7 Conservative Strategies 

If behaviour of this type exists, it is not universal. There is also the contrary 
behaviour, in which Frances's only goal is to annoy Emil and where Emil is 
aware of this (we assume that Emil is convinced of Frances's dark designs, or 
that he is paranoic, etc.). In this case, Emil evaluates the loss associated with 
a strategy x using the function f1 (fE sharp) defined by 

f1(x) := sup fE(x, y). (19) 
yEF 

f1 is said to be Emil's worst-loss function. In this case, Emil's behaviour consists 
of finding strategies x~ E E which minimise the worst loss, namely solutions of 

f1(x~) = ~~tf1(x). (20) 

We shall say that Emil's strategy x is conservative. We set 

v~ = inf SUpfE(X,y) =: inf f1(x) 
xEE yEF xEE 

(21) 

and call v~ Emil's conservative value. 
This conservative value may be used as a threat. Emil may always reject a 

strategy pair (x, y) E E x F satisfying 
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fe(x,y) > vk (22) 

since, by playing a conservative strategy x~ E E, Emil ensures that his loss 
fe(x~, y) is strictly less than fE(X, y) since fl(x~, y) :S fe(x~) =: vk < fE(X, y). 

Consequently, if he cannot reach agreement with his partner, he can always 
threaten to playa conservative strategy x~ so as to limit his loss to vk. 

In a symmetric fashion, Frances's conservative value is defined by 

v~ := inf sup fF(X, y) =: inf f}(y) 
yEF xEE yEF 

where we have set 

f~(y) := sup h(x, y) 
xEE 

We shall call the vector 
v~:= (vk,v~) 

the conservative vector for the game. 

(iF sharp). 

Thus, the only strategy pairs of any interest are those which satisfy 

f(x, y) :S v~. 

(23) 

(24) 

(25) 

(26) 

Thus, the set of bilosses of the strategies of interest is contained in the 
rectangle raE, vkl x [aF, v~l (see Fig. 7.3). Here we have a first selection process. 

lRF 

vI 
F 

-I .............. QFI--~~--r 

QE v~ 

Fig. 7.3. 

lRE 

The idea is to find non-cooperative equilibria which are Pareto optimal or 
pairs of conservative strategies which are Pareto optimal. Games in which the 
conservative vector is Pareto optimal are usually called 'inessential games. We 
shall show that certain zero-sum games are inessential. 
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7.8 Some Finite Games 

We shall give examples of games to illustrate the concepts described above. 
In all these games, Emil and Frances have strategy sets consisting of two 

elements E := {I, II}, F = {I, 2}. The biloss mapping is represented by bima
trices 

Frances 
1 2 

Emil 
I (a, b) (c, d) 
II (e, f) (g,h) 

For example, if the strategies {I, 2} are played, Emil's loss is equal; to c and 
that of Frances is equal to d. 

We begin with the well-known game of the prisoner's dilemma. 

Prisoner's dilemma 

Emil and Frances are accomplices to a crime which leads to their imprisonment. 
Each has to choose between the strategies of confession (strategies I and 1, 
respectively) or accusation (strategies II and 2, respectively). 

If neither confesses, moderate sentences (a years in prison) are handed out. 
If Emil confesses and Frances accuses him, Frances is freed (0 years in prison) 
and Emil is sentenced to c > a years in prison. If both confess, they will each 
have to serve b years in prison, where a < b < c. 

Frances 
1 (peaceable) 2 (aggressive) 

Emil 
I (peaceable) (a,a) (c,O) 

II (aggressive) (0, c) (b,b) 

Many authors have embroidered on this game. The original interpretation may 
also be modified in favour of diplomatic or military illustrations. 

For example, strategies I and 1 may be interpreted as being peaceable whilst 
strategies II and 2 are aggressive . 

Figure 7.4 shows the losses incurred in each case. We illustrate this game in 
the space of bilosses. We have 

f1(1) = c, f1(11) = b, f~(l) = c, f~(2) = b 

whence 

v~ = f1(II) = b, v~ = f~(2) = b 

and the strategy pair (11,2) is conservative. It follows that the pairs (1,2) and 
(II, 1) are useless, since, for example, by playing I, Emil risks a loss of c and by 
playing II, Emil limits his loss to b < c. 
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In addition, we have 

fk(1) = 0, f~(2) = b, f}(I) = 0, f}(II) = b 

whence the strategy pair (II, 2) is also a non-cooperative equilibrium, since 

(i) 
(ii) 

h(II,2) = b < h(I, 2) = c 
fF(II, 2) = b < fp(II, 1) = c. 

The strategy pairs (1,1), (II, 1) and (1,2) are Pareto optimal. 

c I~------------------------------~ 
f(II, 1) 

I-------"?I'x f(II, 2) = v tt 

a I Xf(I,1) 

f(J,2) 

a b c 

Fig. 7.4. 

If there is no cooperation or communication between the players, aggressive 
strategies will be chosen, whilst an examination of the situation and a minimum 
of cooperation will enable the players to choose peaceable strategies. However, 
when playing a peaceable strategy, a player runs a large risk if he allows his 
partner to play an aggressive strategy. 

The paradoxes which arise en masse stem from the elementary and simplistic 
nature of this game, which it is improper of us to have interpreted in terms of 
war and peace. 

The fact that it is impossible to propose a strategy pair as a candidate 
for a 'solution to the game' is due, amongst other things, to the static nature 
of the game and the obligation to choose once and for all between polarised 
strategies with no room for compromise, etc. But this game does provide a 
direct illustration of some of the difficulties one meets. 
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Game of Chicken 

If a < b < c, this game is represented by the matrix 

Frances 
1 2 

Emil 
1 (a,a) (b,O) 
II (0, b) (c, c) 

The bilosses are shown in Fig. 7.5: 

f(II,2) 
c + A 

b 

a I ,., 

a c 

Fig. 7.5. 

This may be interpreted as follows. Emil and Frances are driving and reach 
a crossroads with no signals and no rules of priority. The strategies in each case 
are to stop (strategies 1 and 1) or to cross (strategies II and 2). If both cross, the 
cost to each player of the subsequent accident is c. If both stop, they are only 
penalised by a slight delay, represented by a loss a < c. If one crosses and the 
other stops, the one who crosses loses nothing, while the one who stops incurs 
a delay and a loss costing b Eja, cr. 

We have 

11(1) = b, 11(11) = c, 1~(1) = b, 1~(2) = c 

whence the strategies 1 and 1 are conservative and v~ = (1,1). The game is 
inessential since (1,1) is Pareto optimal as are the pairs (1,2) and (11,1). 

Since 

11(1) = 0, 11(2) = b, /p,(I) = 0 and 1~(II) = b 

we note that the pairs {1,2} and {II, I} are non-cooperative equilibria which 
are Pareto optimal. However, they are not interchangeable. 
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Battle of the Sexes 

The strategies of Emil and Frances consist of going to a football match or going 
shopping. Emil prefers the match, Frances prefers window-shopping; however, 
they both prefer to be together. This game is represented by 

Frances 
1 2 

Emil 
I (a,a) (b, b) 
II (b, b) (a,a) 

where a < a < b. 

b I .. f(I, 2) = f(II, 1) = vtt 

a f(I, 1) 

a b 

Fig. 7.6. 

We note that the pairs (1,1) and (II,2) are Pareto optimal, that 

f1(I) = f1(II) = f}(l) = f}(2) = b 

and that 

v~ = (b, b). 

Whence, the four strategy pairs are conservative. We also note that the pairs 
(1,1) and (II,2) are the non-cooperative equilibria for the game. 

Coordination Game 

Emil and Frances have to open a door to escape from a fire. The strategies of 
the players are, respectively, to go through the doorway (strategies 1, 1) or to 
push the door open (strategies II, 2). If no one opens the door, they stay in the 
fire, incurring a loss of c. If Emil pushes the door open (strategy II) and Frances 
passes through (strategy 1), she escapes 

first (zero loss) and Emil escapes second with a loss a < c. 
If they both push the door open at the same time, it takes longer and both 

come out with slight burns (loss b Eja, c[). This game is represented by the 
matrix 
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c I • f(II, 2) 

b 1 f(I,I) = v~ 
• 

a' f(I, 2) 

f(II, I) 

a b c 

Fig. 7.7. 

Frances 
1 (go through) 2 (push) 

Emil 
I (go through) (b, b) (O,a) 
II (push) (a,O) (c, c) 

and the bilosses are as shown in Fig. 7.7: 
The Pareto-optimal pairs are the strategies (1,2) and (II, 1), where one of 

the players pushes the door open and the other passes through the doorway. 
Since 

f1(I) = b, f1(II) = c, f~(l) = b, f~(2) = c, 

we deduce that 

v rt = (b,b) 

and that the conservative strategies involve both players pushing the door open. 
Since 

f1(1) = a, f1(2) = 0, f}(I) = a, f}(II) = ° 
we deduce that the pairs (1,2) and (II,l) are the non-cooperative equilibria of 
the game, which are Pareto optimal. 

7.9 Cournot's Duopoly 

We next describe the fundamental example of the duopoly, where the two players 
are each manufacturers of the same single commodity. In this case, the loss 
functions are cost functions which depend on the production of the two players. 
This game and the concept of non-cooperative equilibrium were introduced 
by Antoine Cournot in 1838. He was the first to propose the concept of non
cooperative equilibrium, which he introduced in the framework of an economic 
model. This model has played an important historical role in explaining the 
behaviour of competing manufacturers in the same market. 
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Description of the Model 

We suppose that Emil and Frances manufacture the same single commodity. We 
denote the quantities of this commodity produced by our players by x E IR+ 
and Y E IR+. 

We assume that the price p( x, y) is an affine function of the total production 
x+y 

p(x, y) := a - (3(x + y) (a 2 0, (3 > 0) (27) 

and that the cost functions CE and CF of each manufacturer are affine functions 
of the production 

CE(:r) := ,x + 6, CF(y) := ,y + 6, (r> 0,620). (28) 

Emil's net cost is equal to 

( ,- a) h(x,y):=,x+6-p(x,y)x=(3x x+ Y +-(3- +6 

and that of Frances is 

( ,-a) h(x,y):=,x+6-p(x,y)y=(3y x+ Y +-(3- +6. 

Taking (3 = 1 and 6 = ° does not modify the game. Then, setting u = 0'-" 
the duopoly may be viewed as a two-person game, where 

E := [0, u], F := [0, u], (29) 

with loss functions defined by 

h(x, y) := x(x + Y - u), h(x, y) := y(x + y - u). (30) 

The biloss mapping is then defined by 

f(x, y) := (x(x + y - u), y(x + y - u)). (31) 

This maps the upper triangle 

T+ := {(x, y) E [0, u]2lx + y 2 u} (32) 

into the rectangle S+ = [0, 1L2]2, the diagonal 

To:= {(x,y) E [0,u]2Ix+y=u} (33) 

onto {O} and the lower triangle 

T_:= {(x,y) E [0,u]2Ix +y:::; u} (34) 

onto the triangle 
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u2 ,r---------------------_, 

u ~~------------------_, 

o 

F 

---------.. 
"-
" -u2/4 

Pareto I - ---- --, 
minima a L __ 

u 

Fig. 7.8. 

0= vtt 

-u2/4 

{ [ U2 ] 2 u2} 
S_:= (j,g) E -4,0 If+g ~ -4 . 

We observe that the set 

P := {(x, y) E [0, u]2lx + y = ~} 

is mapped into the subset 

{ [ U2 ] 2 u2} f(P):= (j,g)E -4,0 If+g=-4 

(see Fig. 7.8). 
We then note that the subset P of (36) is the set of Pareto strategies. 
The strategy pair: 

(35) 

(36) 

(37) 

u u 
xp := 4' YP := 4 (38) 

results in a loss to each player of - ~. Thus, if the manufacturers agree to 
cooperate, this Pareto-optimal strategy pair is a reasonable compromise. 

It is clear that Emil's worst-loss function f1 

f1(x) = sup x(x+y-u)=x2 
O:C;y:C;u 

(39) 

attains its minimum at x" = 0. In a symmetric fashion, f}, defined by f}(y) = y2 
attains its minimum at y" = 0. Consequently the conservative strategies of Emil 
and Frances are equal to 0, whence the production of each player is zero. 

The conservative vector v" for the game is equal to (0,0). 
We note that the virtual minimum is equal to a = [-~, - ~]. 

u2 



U ~K------------------------------------------~ 

Set of bistrategies 

u/2 

u/3 I '.. ~. - - - - - - - - -

I' .......... , 
o u/3 u 

Fig. 7.9. 

Non-cooperative Equilibria 
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- Graph of the..gptimal 
decision rule C E for Emil 

- Non-cooperative equilibrium 

- Set of Pareto optima 

- Graph of the ..gptimal 
decision rule C F for Frances 

Suppose that Frances produces y units. In this case, Emil will produce x units 
to minimise his cost function x ---+ x(x + y ~ u) on [0, u], where 

x = GE(y) = ~(u ~ y). ( 40) 

Thus, G E : Y ---+ ~ (u ~ y) is Emil's canonical decision rule. Similarly, Frances's 
canonical decision rule is given by G F : x ---+ ~ (u ~ x). Consequently, the non
cooperative equilibrium of the duopoly (also called Cournot's equilibrium) is 

the fixed point of the mapping (x,y) ---+ (GE(y),CF(x)); in other words, this is 
the strategy pair 

u u 
Xc := 3' Yc := 3 (41) 

which results in a cost of ~ f to each player. We note that, in this game, the 
non-cooperative equilibrium is not Pareto optimal. 

We also note that the non-cooperative equilibrium may be attained algo
rithmically. Consider the following scenario. We suppose that the players play 
alternately, Emil in the even periods and Frances in the odd periods. When 
Frances produces Y2n-l in the period 2n ~ 1, Emil produces X2n := GE (Y2n-l) 

in the period 2n. Frances then changes her production rate and produces 
Y2n+l := GF (X2n), and so on. 

The sequences of elements X2n and Y2n-l are subsequences (indexed by the 
even and odd indices, respectively) extracted from a sequence of elements Zk 

which satisfies the recurrence relation 

2Zk+1 + Zk = U. 
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Multiplying each of these equalities by (-1 )k+12k and adding them, we 
obtain 

Z _ u 1 + 2~n 
n-21+2-1 +(-lr+1Te~1z 1· 

Whence, the sequence Zn, and thus also the subsequences X2n and Y2n+1, con
verge to ¥. 

Unfortunately, this algorithm does not converge in general games. 

Associated Game Relating to the Decision Rules 

A duopoly may be associated with another game, which involves choosing not 
the strategies but the decision rules. 

Let us consider Emil's point of view. He may decide to play an affine decision 
rule ca of the form 

CE(y) := a(u - y) where a EjO, 1[. ( 42) 

This means that he does not produce anything when Frances produces the 
maximum u and that he decides to produce u if Frances produces nothing. 

When, in turn, Frances decides to behave according to an affine decision 
rule Cj" defined by 

C~(x) := b(u - x) where b EjO, 1[, 

the subsequent consistent strategy pair is equal to 

( a(1 - b)u b(1 - a)u) 
1 - ab ' 1 - ab . 

This subjects the players to the following costs: 

(i) 

(ii) 

gE(a, b) := _ a(1 - a)(1 - b)2U2 

(1 - ab)2 

gF(a, b) := _ b(1 - b)(1 - a)2u2 

(1 - ab)2 

( 43) 

(44) 

( 45) 

Thus, we have constructed a new game, the strategies of which are the slopes 
of the affine decision rules. In this new game, if Frances plays a slope b, Emil 
will play the slope Ii = aE(b) which minimises the function a -+ gE(a, b). We 
obtain 

1 
a=aE (b)=2_b· ( 46) 

Similarly, Frances's canonical decision rule aF in this new game is given by 

1 
aF (a)=2_a· ( 47) 
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The non-cooperative equilibrium of this game is formed by the pair of slopes 

(ii=l,b=l) ( 48) 

Adopting this concept, Emil and Frances implement the decision rules 

Ci(y) = u - y and C:(x) = u - x. ( 49) 

The set of consistent strategy pairs associated with these decision rules is 
equal to: 

A:= {(x,y) E [0,u]2Ix + y = u}. (50) 

These consistent strategy pairs result in a zero cost to the players. 

Stackelberg Equilibrium 

As in the initial game, the non-cooperative equilibrium (ii, b) = (1,1) may be 
obtained algorithmically, as follows. Frances, who starts, plays the slope~, which 
is just her canonical decision rule OF. If Emil knows (or guesses) that Frances 

will play OF = CF 1/ 2 , in the new game, he will play the slope O"E G) = ~. 
The associated decision rule CE 2/ 3 is called Emil's Stackelberg decision rule. 
The consistent strategy pair associated with the decision rules C;j3 and cif2 is 
equal to 

u 
Xs = 2' 

u 
Ys:= 4". (51 ) 

This pair is called Emil's Stackelberg equilibrium after the economist 
H. von Stackelberg who described this behaviour in 1933 in a review of price 
theory. 

The associated costs are given by the formulae 

u2 

fe(xs, Ys) = -8' 
u2 

fF(XS, Ys) = -16· (52) 
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Set A of strategy pairs 

- - - - .... - - - Stackelberg equilibrium for Frances 

--- Stackelberg disequilibrium 

- - Non-cooperative equilibrium u/3 
u/4 - - Stackelberg equilibrium for Emil 

o u/2 u/3 
X 

- - Set P of Pareto optima 

u IRy 
IRx 

2 I • -u /4 '\ -u2/sl u2 /16 0 vI f(A) 

Stackelberg - .,.'\ l-u2/16 
equilibrium for Emil \: 

Stackelberg - - - ." l-u2 /25 
disequilibrium \: 

Non-cooperative '" 2/ 
equilibrium - - - - - -~~ I u 9 
Stackelberg equilibrium - - - -u2 /8 
for Frances 

Pareto optima - - - - - - - - - -

Fig. 7.10. 
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By playing his Stackelberg equilibrium, Emil achieves a cost better than that 
provided by the non-cooperative equilibrium, -'? as against -~, whilst Frances 
loses. 

Suppose now that Frances follows the same reasoning as Emil. In this case. 
both will play their Stackelberg decision rules cir and diP. The consistent 
strategy pair associated with these two decision rules is 

2u 
XD:= 5 ' 

2u 
YD:=5 

This is called the Stackelberg disequilibrium, since the costs incurred 

2u2 

!E(XD, YD) = -2"5' 
2u2 

fp(XD' YD) = 2"5 

are greater than those in the case of the non-cooperative equilibrium! 

(53) 

(54) 

We are in the paradoxical situation where unilateral use of the Stackelberg 
decision rule is advantageous for the player who uses it, whilst simultaneous 
use of the Stackelberg decision rule is unfavourable to both players. We have 
rediscovered the prisoner's dilemma: 

Frances 
Emil 

canonical (1/2) I Stackelberg (2/3) 

u 2 u 2 

-9'-9 (-~, ~¥) canonical (1/2) 

Stackelberg (2/3) u~ 
-8' -16 ( _2u2 _2u2) 

25' 25 

The algorithm associated with the new game yields the series of slopes 
1 2 (1) 3 (2) 1] . '2' 3" = (J E '2 ' 4" = (J F 3 ' ... , -;;:, ... , smce 

( 1) 1 1 (J 1-- - -1---
n -2-1+ 1 - n+1 

n 

These clearly converge to the slope l. Thus, Emil will successively play the 
slopes 1 - ~, 1 - i, ... , 1 - 2n~] in the even periods, whilst Frances will play 
the slopes ~, 1 - ~, 1 - i, ... , 1 - 2~ in the odd periods. 

In the even periods, the consistent pairs are 

U 

X2n := 2' 
(2n - 2)n 

Y2n := 2(2n - 1) 

and in the odd periods they are 

(2n - l)u 
.- , 

X2 n +l .- 4n 

They converge to the pair (~, ~) E A. 

U 

Y2n+] := 2' 



8. Two-person Zero-sum Games: 
Theorems of Von Neumann and Ky Fan 

8.1 Introduction 

It is in the context of two-person zero-sum games (called duels) that we shall 
prove the two fundamental theorems of this book, theorems which have appli
cations in many other domains outside game theory. The first statement and 
proof of the minimax theorem are due to John von Neumann in 1928. Since 
then, many different proofs and variations on this theorem have been given. 
The proof we describe here is in our opinion the most elementary. 

In 1972, Ky Fan proved another minimax inequality, which is stronger since 
it has been shown to be equivalent to Brouwer's fixed-point theorem. 

This inequality also plays a crucial role, not only in game theory, but also as 
a useful tool for proving many theorems of nonlinear analysis. Experience shows 
that it is better to use Ky Fan's Inequality than the fixed-point theorems due to 
Brouwer or Kakutani, although all these results are equivalent (see Chapter 9). 

8.2 Value and Saddle Points of a Game 

We now consider the important class of two-person zero-sum games, which by 
definition satisfy 

Vx E E, Vy E F, fe(x, y) + fp(x, y) = o. (1) 

In other words, Frances's loss is Emil's gain and vice-versa. Since f(E x F) is 
contained in the second bisectrix of lR?, any strategy pair is Pareto optimal, so 
that this concept is not of interest here. Condition (1) enables us to set 

f(x, y) := fe(x, y), 

and consequently 

f~(x ) 

l(y) 

sup f(x, y), 
yEP 

inf f(x, y), 
xEE 

-f(x,y):= fp(x,y) 

v~ := inf sup f(x, y) 
xEE yEP 

vb := sup inf f(x, y). 
yEP xEE 

(2) 

(3) 

(4) 
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{(x,y)lv' :$ f(x,y) :$ vU} 

Fig. 8.1. 

We set 

E~ := {x E Elf~(x) = v~} 

F" {yO E FIJ"(y") = v"}. (5) 

Then we have 
f1(x) = f~(x), f~(Y) = - J"(y) (6) 

and 
v~ = v~ v~ = -v" v~ = (v~ -v") (7) E 'F , ,. 

The subsets E~ and F" consist of the conservatives strategies of Emil and 
Frances, respectively. 

Since 

'v'x E E, 'v'y E F, J"(y):s; f~(x) 

we deduce that 
v" :s; v~ (8) 

in other words that 
v~ = (v~, -v") (9) 

lies above the second bisectrix. 
We shall call [v", v~l the duality interval. The set K of strategy pairs 

K:= {(x,y) E E x Flv":s; f(x,y):S; v~}, (10) 

which is equal to the set of strategy pairs (x, y) E Ex F such that f(x, y) :s; v~, 
contains E~ x F". There are situations in which v" is strictly less that v~. 

Example. In November 1713, in a letter to Nicoli Bernoulli, Remond de Mont
mort proposed the following game of 'pure reason': 

A father wishes to give his son a Christmas present and says to him: I shall 
take an odd or an even number of tokens in my hand, as I think fit. 
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• If you guess that the number is even and the number in my hand is odd, 
1 shall give you two ecus. 

• If you guess that the number is odd and the number in my hand is even, 
you will give me one ecu. 

• If you guess that the number is odd and the number in my hand is odd, 
you shall have one ecu. 

• If you guess that the number is even and the number in my hand is odd, 
you will give me one ecu. 

1 wonder 

1. What rule should one prescribe for the father, so that he saves as much 
money as possible? 

2. What rule should one prescribe for the son, so that he turns the situation 
to his advantage? 

3. Determine the advantage that the father gives his son, and calculate the 
value of the gift, assuming that each behaves in the way which is most 
advantageous to himself. 

R. de Montmort's intuition is that 'it would be absolutely impossible to prescribe 
any rule for such a game between equally astute and perceptive players'. 

Let us call the father Emil and the son Francis. This moving family scene 
translates into the finit.e game 

Francis 
Emil 

even (1) odd (2) 

even (I) 2 1 
odd (II) -1 1 

where Francis plays the columns and Emil plays the rows. 
The coefficients of this matrix represent Emil's losses or Francis's gains. 
Let us calculate the conservative values. 
Since Emil's worst losses are 2 and 1, respectively, his conservative value is 

given by vP = 1, which he obtains by taking an odd number of tokens in his 
hand. 

Francis's worst gain is -1 in both cases and, consequently, his conservative 
value is given by v' = -1 < vrt . The strategy pairs (odd, even) and (odd, odd) 
belong to the set K. 

Let us now analyse the different ways of playing. Suppose that Francis plays 
the odd strategy (2), which is conservative. Anticipating this choice and using 
his canonical decision rule, Emil would be well advised to play the strategy even 
(I), which gives him a loss of -1. But, at that moment, Francis, guessing this 
ruse, actually announces an even strategy (1), which causes Emil to lose two 
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ecus. He should have been satisfied with his conservative strategy (odd) which 
would have limited his loss to one. 

This situation illustrates the consequences of the absence of non-cooperative 
equilibria. In fact, Emil's canonical decision rule G E is given by 

Cd1) = {II} and CE (2) = {I} 

and that of Francis is given by 

GF(I) = {I} and CF(II) = {2}. 

We note that the mapping C := (CF x GE ) is defined by 

C(1,1) 

C(1I,1) 

(11,1), 
(11,2), 

C(1,2) = (1,1) 

C(1I,2) = (1,2) 

which we represent by the following scheme 

Francis 
Emil 

even (1) odd (2) 

even (I) + +-
graph of C 

odd (II) ---+ t 

This scheme illustrates not only the absence of fixed points, but also the 
circular nature of the evolution of the 'natural' algorithm. If Emil plays I, Francis 
plays CF(I) = {I}, Emil plays GE (l) = {II}, Francis plays GF(II) = {2}, Emil 
plays C E(2) = {I} and so on. 

We note that we have only left the static framework to illustrate R. de Mont
mort's intuition. 

It was two centuries before Emile Borel suggested the notion of mixed strate
gies and von Neumann proved the theorem mentioned above and the determin
istic framework was left behind. 

Example. Let us consider the finite game where E := {I, 2}, F := {I, 2, 3} and 
f is described by the matrix 

1 2 3J 
Frances 

Emil 

61 2 3~ 
,---

1 

l 2 4 51 4_ 

where Emil plays the rows and Frances plays the columns. 
The coefficients of this matrix represent Emil's losses and Frances' gains. 
Let us calculate the conservative values. Emil's worst losses are 2 and 4, 

respectively, his conservative value is given by vrt = 2 and his conservative 
strategy is 1. Frances's worst gains are -6, -5 and -4, respectively, it follows 
that v" = -4 and that Frances's conservative strategy is strategy 3. The strategy 
pairs (1,2), (1,3) and (2,3) belong to the set K. 
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Here again, there are no non-cooperative equilibria. Emil's canonical deci
sion rule G E is given by 

GE(l) = {I}, GE(2) = {2}, GE(3) = {2} 

and Frances's canonical decision rule G F is given by 

GF(l) = {2}, GF(2) = {I}. 

We note that the mapping C := (GF x GE ) has no fixed points. 

The absence of non-cooperative equilibria when v' is strictly less than v~ is 
a general fact. 

Proposition 8.1. The following conditions are equivalent: 

(a) (x, y) is a non-cooperative equilibrium; 
(b) \f(x, y) E E x F, f(x, y) :::; f(x, y) :::; f(x, y); 
(c) v~ = v' and x E E~, Y E F' are conservative strategies. (ll) 

Proof. The equivalence of properties (ll) (a) and (11) (b) clearly follows from 
(2) and (l1)(b) evidently implies (l1)(c). The converse is also easy. We let v 
denote the common value v~ = v'. If x E Eti and y E F' are conservative 
strategies, then v = J'(y) :::; f(x, y) :::; jti(x) = v, which implies the inequalities 
(l1)(b). 0 

Definition 8.1. When v' = v ti , the common value v = v ti = v' is called the 
value of the game and the non-cooperative equilibria are called saddle points. 

IR 

x E 

Fig. 8.2. 
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Example of a saddle point. We take E := {l, 2}, F := {I, 2, 3} and f described 
by the matrix 

Frances 
3 

Emil 
1 -4 
2 -6 

We note that v = -1 and that the pair (1,2) is a non-cooperative equilib
rium or saddle point of the game. 

8.3 Existence of Conservative Strategies 

To find non-cooperative equilibria, we must first find the conditions which imply 
the equality of vU and v p• To this end, we introduce an intermediate value vQ (v 

natural) and prove successively that vQ = vU (under topological assumptions) 
and that vQ = vP (under convexity assumptions). 

We denote the family of finite subsets K of F by K. We set 

vk := inf sup f(x, y) 
xEE yEK 

(12) 

and 
vQ := sup vk = sup inf sup f(x, y). 

KEK KEK xEE yEK 
(13) 

Since every point y of F may be identified with the finite subset {y} E K, we note 
that vL} = P(y) and consequently, that vP = SUPYEFV~y} ::; SUPKEKVk =: vQ. 

Since SUPYEK f(x, y) ::; SUPYEF f(x, y), we deduce that vk ::; vU, whence, that 
vQ ::; vU• In summary, we have shown that 

vP ::; vQ ::; v U• (14) 

We shall now prove that reasonable topological assumptions imply that 
vQ = vU. 

Proposition 8.2. We assume that 

E is compact (15) 

and that 
Vy E F, x --+ f(x, y) is lower semi-continuous. (16) 

Then, there exists x E E such that 

sup f(x, y) = vU (17) 
yEF 

and 
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vq=v~. (18) 

Remark. Since the functions X -+ f(x, y) are lower semi-continuous, the same 
is true of the function P (see Proposition 1.5). 

Since E is compact, Weierstrass's theorem implies the existence of x E E 
which minimises p. Following (3), this may be written as 

supf(x,y) = f~(x) = inf f~(x) = inf supf(x,y) = v~. (19) 
yEP xEE xEE yEP 

Proposition 8.2 gives a stronger result with the same assumptions, which 
are the reasonable assumptions for obtaining conservative strategies (solutions 
of (17)). 

Proof. It suffices to show that there exists x E E such that 

sup f(x, y) ::; vq. (20) 
yEP 

Since vtt ::; SUPYEP f(x, y) and vq ::; vP, we shall deduce that vq = vtt . 

We set 

Sy := {x E Elf(x, y) ::; vq}. 

The inequality (20) is equivalent to the inclusion 

x E n Sy. (21 ) 
yEP 

Thus, we must show that this intersection is non-empty. 
For this, we shall prove that the Sy are closed sets with the finite-intersection 

property. 
The set Sy is closed since Sy is a lower section of the lower semi-continuous 

function x -+ f(x, y). 
We show that for any finite sequence K := {Yl,"" Yn} E JC of P, the finite 

intersection 

n SYi"l 0 
i=L .. ,n 

is non-empty. In fact, since E is compact, and since 

x -+ max f(x, Yi) = max f(x, y) 
,=l .... ,n yEK 

is lower semi-continuous, it follows that there exists x E E which minimises this 
function. Such an x E E satisfies 

maxf(x,y) = inf,maxf(x,y)::; sup infmaxf(x,y) =vq. 
yEK xcE yEK KEK xEE yEK 

Since E is compact, the intersection of the closed sets Sy is non-empty and 
there exists x satisfying (21) and thus (20). 0 

We shall now show that convexity assumptions imply the equality vb = v q. 
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Proposition 8.3. Suppose that E and F aTe convex sets and that 

(i) "iy E F, x -+ f(x, y) is convex, and 
(ii) "ix E E, y -+ f(x, y) is concave 

then v' = vq• 

(22) 

Proof. We set Mn := {A E lR~I2::~=1 Ai = 1}. With any finite subset K := 

{YI, ... , Yn} we associate the mapping rPK from E to lRn defined by 

rPK(X) := (f(x, YI), ... ,f(x, Yn)). (23) 

We also set 
WK:= sup inf (A, rPK(X)). 

AEMn xEE 
(24) 

We shall prove successively that 

a) rPK(E) + lR~ is a convex subset (Lemma 8.1); 

b) "iK E K, vk :S WK (Lemma 8.2); 

c) "iK E K, WK :S v' (Lemma 8.3). 

Whence, the inequalities 

vq := sup vk :S sup WK :S v' :S vq (25) 
KEK KEK 

will imply the desired equality v' = vq. 

Lemma 8.1. If E is convex and if the functions x -+ f(x, y) aTe convex, then 
the set rPK(E) + lR~ is convex. 

Proof. Any convex combination al(rPK(xI) + UI) + a2(rPK(x2) + U2) where 
al,a2;::: 0, al +a2 = 1 (XI,X2 E E,UI,U2 E lR~) may be written in the 
form rPK(X) + U where x := alxl + a2x2 belongs to E (since E is convex) and 
U := alul +a2u2+alrPK(xl)+a2rPK(x2)-rPK(X). Since the functions x -+ f(x, y) 
are convex, alrPK(xl) +a2rPK(x2) - rPK(alxl +a2x2) is a vector in lR~. Thus, U 
belongs to lR~ and consequently, al(rPK(xI)+uI)+a2(rPK(x2)+U2) = rPK(X)+U 
belongs to rPK(E) + lR~. D 

We recall that Mn := {A E lR~I2::~=1 Ai = 1} is convex and compact and 
that we set 

WK:= sup inf (\ rPK(X)). 
AEMn xEE 

Lemma 8.2. If E is convex and if the functions x -+ f(x, y) aTe convex, then 
fOT any finite set K, we have the inequality 

vk :S WK· (26) 
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Proof. Let E > 0 and denote 1:= (1, ... ,1). We shall show that 

(WK + E)l E ¢K(E) + IR~. (27) 

Suppose that this is not the case. Since ¢K(E) + IR~ is convex, following 
Lemma 8.1, we may use Theorem 2.5 (Large Separation Theorem). There exists 
A E IRn , A # 0, such that 

n 

L \(WK + E) 
i=! 

(\ (W K + E) 1) :S inf (\ v) 
vE¢K(E)+IR+ 

inf (A, ¢K(X)) + inf (A,U). 
xEE uEIR+ 

Then infuEIR+ (A, u) is bounded below and consequently, A belongs to IR~ and 
infuEIR+ (\ u) is equal to O. Since A is non-zero, then L7=1 Ai is strictly positive. 

We set ,\ = AI L~'=1 Ai E M" and deduce that 

WK + E :S inf (A, ¢K(X)):S sup inf (A, ¢K(X)) = WK· 
xEE ),EM" xEE 

This is impossible and thus we have established the property (27). 
This implies that there exist X E E E and u£ E IR~ such that (w K + E) 1 = 

¢K(X£) + Uc · 

From t.he definit.ion of ¢K, we deduce that 

\Ii = 1, ... , n, f(XE' Yi) :S WK + E. 

Whence, 

Vk :S max f(x E , Yi) :S WK + E. 
7=lj ... ,n 

We complete the proof of the lemma by letting E tend to o. o 

Lemma 8.3. Suppose that F is convex and that the functions Y --+ f(x, y) are 
concave. Then, for any .finite subset K of F, we have WK :S v'. 

Proof. With each A E M", we associate the point y), := L7=1 AiYi which belongs 
to F, since the latter is convex. The concavity of the functions Y --+ f(x, y) 
implies that 

n 

\Ix E E, L A;J(X, Yi) :S f(x, Y),)· 
i=1 

Consequently, 

n 

inf LA;J(:I:,Yi):S inf f(x,y),):S sup inf f(x,y):= v'. 
xEE i=1 xEE yEF xEE 

The proof of Lemma 8.3 is completed by taking t.he supremum over Mn. 0 

Lemmas 8.1 to 8.3 may now be applied, as indicated, to complete the proof of 
Proposition 8.3. 0 

Propositions 8.2 and 8.3 imply the existence of a value. 
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Theorem 8.1. Suppose that 

(i) E is convex and compact 
(ii) \/y E F, x --t f(x, y) is convex and lower semi-continuous (28) 

and that 

(i) F is convex 
(ii) \/x E E, y --t f(x, y) is concave. (29) 

Then f has a value: 
v := v~ = v' (30) 

and there exists x E E satisfying: 

sup f(x, y) = v. (31) 
yEF 

Applying Theorem 8.1 to f and to - f, we obtain the minimax theorem. 

Theorem 8.2 (von Neumann). Suppose that 

(i) E is convex and compact 
(ii) \/y E F, x --t f(x, y) is convex and lower semi-continuous (32) 

and that 

(i) F is convex and compact 
(ii) Vx E E, y --t f(x, y) is concave and upper semi-continuous. (33) 

Then there exists a saddle point (x, y) E E x F. 

Corollary 8.1. Consider a zero-sum game defined on finite strategy sets 
{1, ... , n} and {1, ... ,p} by a matrix {aij} 1 <::i<::n (aij is Emil's loss and Frances's 

l::;j:S;p 

gain). 
We associate this with the game defined on the mixed strategy sets Mn and 

MP by 
n P 

j(>\,J-L) = LL>'iJ-Ljaij. (34) 
i=1 j=1 

Then there exists a saddle point formed from mixed strategies. 

This provided an answer to R. de Montmort's question. In this case, identifying 
>. with ()., 1 - >.) and J-L with (J-L, 1 - J-L), the function j(>., J-L) may be written as 

j()"J-L) := 2>'J-L - >'(1- J-L) - J-L(1- >.) + (1- >')(1- J-L) 

5>'J-L - 2>' - 2J-L + 1. 

Thus, we see that the value of the game is equal to v = ! and that the saddle 

point is formed by the pair (~, ~), which involves playing the even strategies 

with probability ~ and the odd strategies with probability ~. 



8.4 Continuous Partitions of Unity 135 

8.4 Continuous Partitions of Unity 

In the following paragraphs, we shall use convex combinations f(x) E Mn which 
depend continuously on a parameter x E E. This will enable us to cover the 
convex hull of n points in a continuous fashion. Even better than this, we shall 
construct these functions f (x) so that the components fi are zero outside open 
sets Ai covering the space E. Such functions are called continuous partitions of 
unity. 

Definition 8.2. Let f be a real-valued function defined on a metric space E. 
The smallest closed set S such that f (x) = 0, x rt S is called the support of f 
and is denoted by supp(f). 

In other words, the support of f is the closure in E of the set of elements 
x E E such that f (x) " O. It is also the set of elements x E E such that any 
neighbourhood V of x contains a point y with f(y) " O. 

Definition 8.3. Consider an open covering {Ai};=l n of E. A family {jihEI 
of continuous functions from E to [0, 1] such that: ' '" 

(i) 
(ii) 

\Ix E E, 2..:~=1 fi(x) = 1 
\Ii = 1, ... ,n, suppfi C A; 

is called a partition of unity subordinate to this covering. 

(35) 

Before we prove the existence of a partition of unity subordinate to a finite 
open covering, we shall need the following propositions. 

Proposition 8.4 (separation of two closed sets by a continuous func
tion). Let M and N be two non-empty, disjoint, closed wbsets of a metric space 
E. Then there exists a continuous function 9 from E to [0,1] such that 

g(x) = 0 \Ix E M, g(x) = 1 \Ix E N. (36) 

Proof. Since M and N are disjoint, d(x, M) + d(x, N) > 0 for all x E E. Thus, 
the function 9 defined by 

g(x) = .. d,(x, M) (37) 

is a continuous function from E to [0,1] which takes the value 0 on M and is 
equal to 1 on N. 0 

Proposition 8.5. Suppose that E = AU B is the union of two open sets. Then 
there exists an open set W such that 

W c A and E = W U B (38) 
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Proof. If A = E, we take W = E, and if B = E we take W = 0. Suppose now 
that A -I E and that B -I E. The non-empty closed sets [A and [B are disjoint. 
Thus, we consider a continuous function f which takes the value 0 on [A and 
1 on [B and we take W := {x E Elf(x) > n. This is an open set. Since W is 
contained in {x E Elf(x) ;::: n, and since [A is contained in [W, it follows that 
W is contained in A. If x does not belong to B, f (x) = 1 and thus x belongs 
to W. Thus, E is covered by Wand B. 0 

Proposition 8.6. Let {A;};=l, .. ,n be a finite open covering of E. Then there 
exists an open covering {Wi };=l, ... ,n such that 

Vi = 1, ... ,n, Wi C Ai' (39) 

Proof. We construct the covering Wi recursively, using Proposition 8.5. 
Setting B1 = Ui=2A;, we obtain E = A1 U B 1· 
Proposition 8.5 implies. that there exists an open set W1 C A1 such that 

n 

W 1 CAl and E = W1 U B1 = W1 U U Aj . 
j=l 

Suppose that we have constructed the open sets Wj (1 :S j :S k - 1) such that 

k-1 n 

Wi C Aj if 1:S j :S k - 1; E= U WiU U Aj . ( 40) 
i=l j=k 

We introduce the open set 

k-1 n 

Bk = U WiU U Aj 
i=l j=k+1 

such that E = Ak U Bk following (40). Proposition 8.5 implies that there exists 
an open subset Wk C Ak such that W k C Ak and E = Wk U B k • Thus, we have 
constructed k open subsets Wi such that 

k n 

Wi C Ai if 1 :S i :S k; E= UWiU U A j . 

i=l j=k+1 

Thus, the recurrence may be continued and the proof of the proposition is 
complete. 0 

Theorem 8.3. Given any finite open covering of a metric space E, there exists 
a continuous partition of unity which is subordinate to it. 

Proof. Suppose that E = Ui=lAi for some open sets A;. 
Following Proposition 8.3, there exist n open sets Wi C Ai such that Wi C 

Ai and E = Ui=l Wi' 
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Since n~1 [Wi = 0, the function 2::7=1 d(x, [Wi) is strictly positive. The func
tions fi defined by 

d(x, [Wi) 
fi(X) := 2::7=1 d(x, [Wi) ( 41) 

form a continuous partition of unity. If fi(X) > 0, it follows that x t/: [Wi (which 
is closed), whence x E Wi' Thus, the support of fi is contained in Wi, which is 
itself contained in A;. D 

8.5 Optimal Decision Rules 

What should we do when the convexity assumptions are missing? As in Corol
lary 8.1, we could embed the strategy sets in other sets of mixed strategies (we 
did this for finite sets). There is another approach which involves considering a 
strategy as a constant decision rule. 

Let us consider, for example, the case of Frances. What value could she 
attribute to a decision rule CF : E ---+ F. Since she plays CF(x) whenever Emil 
plays x, the worst gain than she may incur is 

l(Cd := inf f(x, CF(x)) 
xEE 

( 42) 

when she has no means of knowing Emil's choice in advance. 
We note that this definition is consistent with the definition of the worst 

gain incurred by a strategy Yo considered as a constant decision rule x ---+ Yo, 
smce 

l(yo):= inf f(x,yo) = inf f(x,yo(x)). 
:rEE xEE 

Consequently, if C F is a set of decision rules which contains the set F (of constant 
decision rules) we have: 

v' := sup inf f(x,y):::; sup l(CF):::; inf supf(x,y) =: vU• (43) 
yEF xEE GFECF xEE yEF 

Proposition 8.7. We denote the set of all the decision rules of E in F by FE. 
Then 

sup l(CF)=vU. (44) 
GFEFE 

Proof. By definition, we may associate any c > ° and any x E E with a strategy 
DE(X) E F such that 

sup f(x, y) :::; f(x, DE(X)) + C. ( 45) 
yEF 
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It then follows that 

v~ = inf sup f(x, y) ::; l(Dc) + E::; sup inf f(x, GF(x)) + E. 
xEE yEF CFEFE xEE 

Since this inequality holds for all E > 0, we obtain the inequality v~ ::; 
SUPCFEFE infxEE f(x, GF(x)) which, taken with the inequalities (43), implies the 
desired equality (44). D 

We shall show that, under additional assumptions, the equation (44) remains 
true if Frances is forced to use only continuous decision rules (this enables us 
to model a regular behaviour for Frances). 

Theorem 8.4. Suppose that 

(i) E is compact 
(ii) \:Iy E F, x -+ f(x, y) is lower semi-continuous 

and that 

(i) F is a convex subset 
(ii) \:Ix E E, Y -+ f(x, y) is concave. 

( 46) 

(47) 

Then if C(E, F) denotes the set of continuous mappings from E to F, we 
have 

sup inf f(x,D(x)) = infsupf(x,y). 
DEC(E,F) xEE xEE yEF 

( 48) 

Proof. We already know that SUPDEC(E,F) infxEE f(x, D(x)) ::; v~, from (43). 
Thus, it remains to prove the opposite inequality. Firstly, we may associate 
any E > 0 with a mapping (not necessarily continuous) Dc from E to F which 
satisfies (45). 

In addition, since the functions x -+ f (x, y) are lower semi-continuous, there 
exist neighbourhoods B(x,7](x)) of x such that 

\:Iz E B(x,7](x)), f(x, Dc(x)) ::; f(z, Dc(x)) + E. ( 49) 

Since E is compact, it can be covered by n balls B(Xi' 7](Xi))' Let {gi};=l, .. ,n be 
a continuous partition of unity subordinate to this covering. We introduce the 
function D defined by 

n 

D(x) = L9i(X)Dc(Xi), 
i=1 

which is continuous since the functions 9i are continuous. Finally, since the 
functions y -+ f(x, y) are concave, since 9i(X) 20 for all i and 2::7=19i(X) = 1, 
we have: 

f(x, D(x)) 2 L 9i(X)f(x, Dc(Xi)) (50) 
iEI(x) 
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where I(x) is the set of integers i = 1, ... , n such that gi(X) > O. This set is 
non-empty since 2:::7=1 gi(X) = l. 

Moreover, if gi(X) > 0, x belongs to the support of gi, which is continuous on 
the ball B(Xi, T)(Xi)). It follows from (49) that f(x, DE(Xi)) 2: f(Xi, DE(Xi)) - c 
and from (45) that f(Xi,Dc(x;)) 2: SUPyEFf(Xi,Y) - c 2: v~ - c. 

Thus, if i E I(x), we have f(x, Dc(Xi)) 2: v~ - 2c. Then (50) implies that 

f(x, D(x)) 2: L gi(X)(V~ - 2c) = v~ - 2c. 
iEl(x) 

It follows that infxEE f(x, D(x)) 2: v~ - 2c, whence that 
sUPDEC(E,F) infxEE f(x, D(x)) 2: v~ - 2c. 

We obtain the desired inequality by letting c tend to O. 

We shall now establish another expression for vU. 

o 

In the game-theory context, we now suppose that Emil has information 
about Frances's choice of strategy and that he has the right to choose continuous 
decision rules C E C(F, E). Thus, he may continuously associate any strategy 
Y E F played by Frances with a strategy C(y) E E. 

Theorem 8.5. We retain the assumptions of (46) and (47) of Theorem 8·4· If 
C (F, E) denotes the set of continuous decision rules of F in E, then 

inf supf(C(y),y) = inf supf(x,y). 
CEC(F.E) yEF xEE yEF 

(51) 

Proof. We shall use the convex compact set 
n 

AI":= {A E IR~ILAi = I}. 
i=1 

The inequality infcEC(F,E) sUPyEF f (C (y), y) -s: v ti is clearly always true. 
Since E is compact and the functions x -+ f(x, y) are lower semi-continuous, 

Proposition 8.2 implies that there exists x E E such that 

sup f(x, y) = v~ = sup inf max f(x, Yi) 
yEF K={Yl, ... ,Yn}EIC xEE z=1, ... ,n 

(52) 

Thus, it is sufficient to prove that for any finite set K = {Y1, ... , Yn} and any 
continuous mapping C E C(F, E), we have 

inf max f(:r, Yi) <:::: sup f(C(y), y). 
xEE z=1, ... ,n yEF 

(53) 

Firstly, we note that 
n 

inf max f(x, Yi) 
xEE 1=1, ... ,72 

inf sup L A;j(x, Yi) 
xEE AEMn i=1 

(54) 

n " 

< inf sup LA;j(C(LJLjYj),Yi) 
/1EMn AEMn i=1 j=1 

inf sup ¢(JL, A) 
/1EM" AEMn 
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where the function ¢ is defined on Mn x Mn by 

n n 

¢(f-L,)...) = L)...d(C(Lf-LjYj),Yi)' (55) 
i=1 j=1 

Since C is continuous and since the functions x --+ f(x, Yi) are lower semi
continuous, it follows that the functions f-L --+ ¢(f-L,)...) are lower semi-continuous. 
The functions)... --+ ¢(f-L,)...) are linear, whence concave. The set Mn is convex 
and compact. 

Thus, Theorem 8.4 implies that 

inf sup ¢(f-L,)...) = sup inf ¢(f-L, D(f-L)). 
j.tEMn AEMn VEC(Mn,Mn) j.tEMn 

(56) 

But, Brouwer's Theorem implies that any mapping DE C(Mn, Mn) has a fixed 
point f-Lv E Mn. Thus, 

inf ¢(f-L,D(f-L)):::; ¢(f-Lv,D(f-Lv) = ¢(f-Lv,f-Lv)):::; sup ¢(f-L,f-L). (57) 
~~ ~~ 

This then implies that 

sup inf ¢(f-L, D(f-L)):::; sup ¢(f-L, f-L). 
VEC(Mn,Mn) j.tEMn j.tEMn 

(58) 

Moreover, since the functions Y --+ f(x, y) are assumed to be concave we have 

m n 

¢(f-L,f-L) Lf-Ld(C(Lf-LjYj),Yi) 
i=1 j=1 

n n 

< f(C(Lf-LjYj),Lf-LjYj) 
j=1 j=1 

< sup f(C(y), y). (59) 
yE,F 

Thus, the inequalities (54), (57), (58) and (59) imply the desired inequality 
(53). D 

In particular, we deduce the following important inequality. 

Theorem 8.6 (Ky Fan's Inequality). Suppose that E is a convex compact 
subset of a Hilbert space and that f is a function from E x E to lR satisfying 

(i) 
(ii) 

'iy E E, x --+ f (x, y) is lower semi-continuous 
'ix E E, Y --+ f(x,y) is concave. 

Then there exists x E E such that 

supf(x,y):::; supf(y,y). 
yEE yEE 

(60) 

(61) 
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Proof. Theorem 8.5 implies that there exists x E E such that 

supf(x,y):S vj:s . inf supf(C(y),y):S supf(y,y) 
yEE CEC(E,E) yEE yEE 

since the identity mapping is continuous from E to E. D 

Remark. We have deduced Ky Fan's Inequality from Brouwer's Fixed-point 
Theorem. In fact, these two results are equivalent and we can deduce Brouwer's 
Fixed-point Theorem from Ky Fan's Inequality. 

Let D be a continuous mapping of a convex compact subset K of a finite
dimensional vector space lRn into itself. Set 

f(x,y):= (x-D(x),x-y) (62) 

where (.,.) is the Euclidean scalar product on lRn. 
This function clearly satisfies the assumptions of Theorem 8.6 (Ky Fan's 

Inequality); thus, there exists an element x E K such that 

(x - D(x), x - y) :S 0 (63) 

for all y E K. Taking y = D(x), we have Ilx - Dxl12 :S 0, whence x = D(x). 

Remark. We can provide a direct proof of the Ky Fan inequality based on the 
Brouwer Fixed-Point Theorem by deriving a contradiction from the negation of 
the conclusion: 

I;f x E K, :=J y E K such that f(x, y) > 0 

Hence K can be covered by the subsets 

Vy := {J: E K I f(x,y) > O} 

which are open since f is lower sernicontinuous with respect to x. Since K 
is compact, it can be covered by n such open subsets Vyi ' Let us consider a 
continuous partition of unity (CXi)i=L,n subordinate to this open covering of K 
and define the map c : K H X by 

n 

I;fx E K, c(x) := LCXi(X)Yi 
i=1 

It maps K to itself because K is convex and the elements Yi belong to K. It is 
also continuous, so that Brouwer's Fixed Point Theorem implies the existence 
of a fixed point y = c(y) E K of .f. Since f is concave with respect to y, we 
deduce that 

n n 

f(y,y) f(y,Lcxi(y)y;) ~ LCXi(y)f(Y,Yi) 
;=1 ;=1 
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Let us introduce 
I(y) := {i = 1, ... , n I ai(Y) > O} 

It is not empty because I:~=1 a;('!J) = 1. Furthermore 

n 

L ai(Y)!(y, Yi) = L ai(Y)!(y, Yi) > 0 
i=l iEI(Yl 

because, whenever i belongs to I(y), a;('j}) > 0, so that y belongs to VYil and 
thus, by the very definition of this subset, !(y, Yi) > O. Hence, we have proved 
that !(y, y) is strictly positive, a contradiction of the assumption that !(f), f)) ::; 
O. 



9. Solution of Nonlinear Equations and 
Inclusions 

9.1 Introduction 

Ky Fan's Inequality (which is equivalent to Brouwer's Fixed-point Theorem) im
plies a whole series of existence theorems for the solutions of nonlinear equations 
or inclusions. Such theorems are very useful in many applications, particularly 
in mathematical economics and game theory, as we shall see in the following 
chapters. 

We shall begin by indicating how to adapt the concepts of continuity to the 
case of set-valued maps; we shall consider only upper semi-continuous set-valued 
maps with convex closed values. 

Then we shall describe sufficient conditions for the existence of a solution 

n 

X E M" = {x E IR~I LXi = I} 
i=l 

of the problem 

C(x) n lR~ = '" (where 0 E C(x) - lR~) 

when C is a set-valued map from Mn to IRn. In addition to certain technical 
assumptions, we shall assume that the condition 

is satisfied. 

'Vx E lvr, sup \V, x) ;::: 0 
vEC(x) 

Then we shall study the existence of zeros x of the inclusion 

o E C(x) 

when C is a set-valued map from a convex compact subset K c X to X. 
In addition to technical conditions, we assume that the tangential condition 

'Vx E K, C(x) n TK(X) cJ 0 

is satisfied, where (we recall) T K (x) denotes the tangent cone to K at x which 
we studied in detail in Chapter 4. 
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This result has a number of consequences. Firstly, there is the famous fixed
point theorem due to Kakutani, which generalises Brouwer's Fixed-point The
orem to the case of set-valued maps. This says that any upper semi-continuous 
set-valued map from a convex compact subset into itself, with convex closed 
values, has a fixed point. 

We shall then describe another consequence which will be very useful in 
economic models (viability theorem). 

We assume we have convex closed subsets LeX, M c Y and P c Y*, 
a continuous linear operator A E L(X, Y) and a continuous mapping c from 
L x P to Y which is affine in its second argument. 

We also suppose that 

Vx E L, Vp E P, (p, Ac(x,p)) ::; 0 

together with certain technical assumptions. We shall then prove that there 
exists (x, p) satisfying 

(i) 
(ii) 

x E L, Ax E M, pEP 
c(x,p) = O. 

We shall also prove other theorems which will be useful in game theory. The 
implications of these results are summarised in a diagram at the end of the 
chapter. 

9.2 Upper Hemi-continuous Set-valued Maps 

We shall study a whole class of nonlinear problems which reduce to an inclusion 
of the following form 

find x E K such that 0 E C(x) (1) 

where C is a set-valued map from K to a Hilbert space Y which associates 
x E K with a subset C(x) ofY which is always non-empty, convex and closed. 
If C is an ordinary pointwise mapping, problem (1) may be written in the more 
familiar form of the solution of an equation: 

find x E K such that C(x) = O. (2) 

A solution x of (1) is called a zero of C or an equilibrium or stationary point. 
The use of set-valued maps is mainly motivated by problems in optimisation 

theory, game theory and mathematical economics. 
In fact, we only use a few elements of the general theory of set-valued maps. 

We use the fact that the images C(x) are convex closed sets to represent them 
by their support functions 

Vp E yo, we set CJ(C(x),p) = sup (p,y) 
YEC(x) 

(3) 
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(since Y E C(x) if and only if \P, y! S O"(C(x),p) for all p E Y*). 

Definition 9.1. We shall say that a set-valued map C is upper hemi
continuous at Xo E K if and only iffor all p E Y*, the function x --+ 0"( C (x), p) 
is upper semi-continuous at Xo. It is upper hemi-continuous if it is upper hemi
continuous at all points Xo E K. 

Any continuous mapping C from K to Y clearly defines an upper hemi
continuous set-valued map (it is even sufficient if the functions x --+ \P,C(x)) 
are continuous for any p E Y*). 

Let B be the unit ball of Y. 

Definition 9.2. We shall say that a set-valued map C from K to Y is upper 
semi-continuous at Xo if, for all c > 0, there exists a neighbourhood N(xo) of 
Xo such that C(x) C C(:1:o) + cB for all x E N(xo). It is upper semi-continuous 
if it is upper semi-continuous at all points Xo E K. 

Thus, we see that upper semi-continuity is a generalisation of the notion of 
continuity to set-valued maps. 

First we indicate the link between these two notions. 

Proposition 9.1. Any upper semi-continuous mapping is upper hemi-continuous. 

Proof. For fixed c > 0 and p E Y*, there exists a neighbourhood N(xo) such 
that 

'7:1: E N(xo), C(x) C C(xo) + cB (4) 

whence also 

'7:1; E N(xo), O"(C(x),p) S O"(C(xo),p) + cllpll* (5) 

since O"(cB,p) = cllpll*. Thus, :r --+ O"(C(x),p) is upper semi-continuous at Xo. 
D 

Theorems 4.2 and 6.2 state that the sub differentials of convex continuous func
tions and, more generally, the generalised gradients of locally Lipschitz func
tions, are upper hemi-continuous. 

Theorem 9.1. Consider a nontrivial function f : X --+ lR U {+oo} which is 
locally Lipschitz on the interior of its domain (in particular, a convex continu
ous function on Int Domf). Then the set-valued map x E Int Domf --+ [} f(x) is 
upper hemi-continuous. 

We now note a useful property of upper hemi-continuous set-valued maps. 

Definition 9.3. The graph of a set-valued map C from K to X is the subset 

Graph (C) := {(x, y) E K x Yly E C(:r)} (6) 

and the inverse C- 1 of the set-valued map C is the set-valued map from Y to 
K defined by 

x E C- 1(y) if and only if y E C(x). (7) 
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We note that the graph of a set-valued map characterises the set-valued map 
C and its inverse. We also note that by inverting one-to-one mappings that are 
not injective, we obtain examples of set-valued maps. 

Lastly, we recall that if f : X --+ lR U { +oo} is a nontrivial, convex, lower 
semi-continuous function, then the inverse of the set-valued map x --+ 8 f(x) is 
the set-valued map p --+ 8j*(p) where j* is the conjugate function of f (see 
Corollary 4.1). 

Proposition 9.2. The graph of an upper hemi-continuous set-valued map with 
convex closed values is closed. 

Proof. Consider a sequence of elements (Xn, Yn) E Graph (C) converging to 
the pair (x,y). Since the functions:1; --+ (J(C(x),p) are upper semi-continuous, 
the inequalities 

(p, Yn) ::::: (J(C(xn),P) 

imply, by passing to the limit, that 

(p,y) = lim (P,Yn) ::::: lim sup (J(C(xn),P) ::::: (J(C(x),p). 
n--+oo n-too 

These inequalities imply that 

Y E co(C(x)) = C(x). o 

Remark. We recall that if C is a one-to-one mapping from K to Y then the 
following conditions are equivalent 

(a) 'Vs, :3N(xo) such that 'Vx E N(xo), C(x) E C(xo) + sB; 
(b) whenever a sequence Xn converges to XO, C(xn) converges to C(xo). (8) 

If C is a set-valued map from K to Y, the notion of upper semi-continuity 
is the natural generalisation of condition (8) (a). 

Generalisation of (8)(b) leads to the following definition. 

Definition 9.4. We shall say that a set-valued map C from K to Y is lower 
semi-continuous at Xo E K if for any sequence Xn converging to Xo E K, for 
all Yo E C(xo), there exists a sequence of elements Yn E C(xn) converging to 

Yo· 

In the case of set-valued maps, the concepts of upper and lower semi
continuity are no longer equivalent, as the examples of Figs. 9.1 and 9.2 show. 

Definition 9.5. We shall say that a set-valued map C is continuous (at xo) if 
it is both lower and upper semi-continuous (at xo). 
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t 

c(x)={ {O} ifxfO 
{ -1, + 1 } if X = 0 

Fig. 9.1. Example of a set-valued map which is upper semi-continuous at 0, but not 
lower semi-continuous. 

~.~~ 
C(X)={ {-1,+1} ifxfO 

{O} ifx=O 

Fig. 9.2. Example of a set-valued map which is lower semi-continuous at 0, but not 
upper semi-continuous. 

Remark. R.T. Rockafellar and R. Wets suggest to say that F is outer semi
continuous at x if Limsupx'-->xF(x') C F(x) and inner semicontinuous at x 
if F(x) C Liminfx'-->xF(x'). The above proposition led several authors to 
call upper semicontinuous maps the ones which are outer semicontinuous in 
the Rockafellar-Wets terminology. Naturally, these two concepts coincide for 
compact-valued maps. 

We shall need the following property of lower semi-continuous set-valued 
maps. 

Proposition 9.3. Suppose that 

(i) f: X x Y -+ IR is lower semi-continuous; 
(ii) the set-valued map C from X to Y is lower semi-continuous. (9) 
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Then the function a : x -t a(x) := SUPYEC(x) f(x,y) is itself lower semi
continuous. 

Proof. We must show that if a sequence of elements Xn E X converges to xo, 
then a(xo) :::; liminfn--+ooa(xn)' We fix c > O. 

From the definition of a(xo), there exists y E C(xo) such that, a(xo) :::; 
f(xo,Y) +c/2. 

Since C is lower semi-continuous at xo, there exists a sequence of elements 
Yn E C(xn) converging to y. 

Since f is lower semi-continuous, it follows that there exists N(c) such that, 
for all n 2: N(c), 

f(xo, y) :::; f(xn, Yn) + c/2. 

Since Yn E C(xn), we have f(x n , Yn) :::; a(xn). Thus, the above inequalities 
imply that a(xo) :::; a(xn) + c whenever n 2: N(c). 0 

9.3 The Debreu-Gale-Nikaido Theorem 

We shall begin with a theorem which is used to prove the existence of solutions 
of many problems in mathematical economics. 

Consider the simplex 

M n := {x E ffi~ I~Xi = I}. 

Theorem 9.2 (Debreu-Gale-Nikai'do). Let C be a set-valued map from Mn 
to ffin with non-empty values. If 

(i) C is upper hemi-continuous 
(ii) Vx E Mn, C(x) - ffi~ is convex closed 
(iii) Vx E Mn, (j(C(x), x) 2: 0 (Walms's law) 

then there exists x E Mn such that C(x) n ffi~ 1= 0. 
Proof. We introduce the function ¢ defined on Mn x Mn by 

¢(x, y) = -(j(C(x), y). 

(10) 

This function is concave in Y (since Y -t (j(C(x),y) is convex) and lower 
semi-continuous in x (since, as C is upper hemi-continuous, x -t dC(x),y) is 
upper semi-continuous). Since Mn is convex and compact, Ky Fan's Theorem, 
implies that there exists x E Mn such that SUpyEMn ¢(x, y) :::; SUpyEMn ¢(y, y) :::; 
o (following (10)(iii)), in other words that 

0:::; dC(x), y) for all y E Mn. 

This condition is equivalent to 
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O:::;(J(C(x)-IR~,y) for ally E IRn (11) 

since (J(-IR~,y) = 0 if y E IR" and (J(-IR~,y) = +00 if y tic IR~. Since 
C(x) - IR~ is convex and closed, (11) implies that 0 E C(x) - IR~, whence that 
C(x) n IR~ =1= 0. 0 

9.4 The Tangential Condition 

Let us suppose once and for all that we have: 

(i) two Hilbert spaces X and Y; 
(ii) a continuous linear operator A E L(X, Y); 
(iii) a convex compact subset K c X; 
(iv) an upper hemi-continuous set-valued map C : K -+ Y with 

non-empty, convex, closed values. (12) 

X 

U~ 
K~Y 

In order to solve the inclusions 

o E C(x) where x E K 

and 
Y E Ax - C( x) where x E K 

(13) 

(14) 

we shall impose a condition which interrelates the objects given in (12). We 
recall that the tangent cone to K at x is defined by: 

TK(x:) := closure (u ~(K - X)) . 
h>O 

(15) 

Definition 9.6. We shall say the set-valued map C satisfies the tangential 
condition with respect to A if 

Vx E K, C(x) n closure(ATK(x)) =1= 0. (16) 

We note also the dual version of the tangential condition. 

Proposition 9.4. The tangential condition (16) implies the dual tangential 
condition 
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\:Ix E K, \:Ip E A*-1 NK(x), a(C(x), -p) 2: o. (17) 

The converse is true if the images C(x) of the set-valued map C are compact 
(and convex). 

Proof. a) Suppose x E K and v E C(x) n closure(ATK(x)) are fixed. Then 
v = limn-too AUn where Un belongs to TK(X). Let us take p such that A*p 
belongs to N K (x). Then 

a(C(x), -p) 2: (-p, v) = lim (-p, Aun) = lim (-A*p, un) 2: 0 
n-roo n--+oo 

since (A*p, Un) :S 0 for all Un E TK(X) = NK(xf· 

b) Let us now suppose that C(x) is convex and compact and that the tangential 
condition is false. 

o ~ C(x) - closure(ATK(x)) (18) 

(since this is equivalent to C(x) n closure (ATK (x)) = 0). 
The Separation Theorem (Theorem 2.4) implies that there exist p E Y* and 

E > 0 such that 

a(C(x),-p):S inf (-p,AV)-E. 
vETK(X) 

Since TK(X) is a cone, this inequality implies that A*p belongs to TK(xf 
NK(x) and that infvETK(x) (-p, Av) = o. Consequently, a(C(x),p) :S -E < 0, 
which contradicts the dual tangential condition. 0 

The properties of tangent cones to convex closed sets which we described in 
Chapter 4, in many cases enable us to check whether the tangential condition 
is satisfied. The following self-evident proposition is very useful. 

Proposition 9.5. If two set-valued maps C1 and C2 satisfy the tangential con
dition (or the dual tangential condition, respectively), so do the set-valued maps 
0!1 C 1 + 0!2C2 where 0!1 and 0!2 are positive. 

We shall use this property as follows: 

Corollary 9.1. If a set-valued map C from K to Y satisfies the (dual) tangential 
condition and ify belongs to A(K), then the set-valued map x -+ C(x)-A(x)+y 
also satisfies the (dual) tangential condition. 

9.5 The Fundamental Theorem for the Existence of 
Zeros of a Set-valued Map 

Theorem 9.3. We suppose that the assumptions (12) are in force (X and Y 
are Hilbert spaces, A belongs to L(X, Y), K c X is convex and compact and 
C : K -+ Y is upper hemi-continuous with non-empty, convex, closed values). 

If the tangential condition (16) 

\:Ix E K, C(x) n closure(ATK(x)) =I 0 

is satisfied, then 
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(a) 3x E K, a solution of the inclusion 0 E C(x) 
(b) I;/y E A(K), 3i: E K, a solution of the inclusion y E Ai: - C(i:). (19) 

Proof. (a) We shall prove a slightly stronger result, assuming that the dual 
tangential condition (17) is satisfied (instead of the tangential condition (16)). 

(b) Corollary 9.1 implies that the second conclusion of the theorem follows from 
the first conclusion applied to the set-valued map x -+ C(x) - Ax + y. 

(c) To prove the existence of a zero of C, we shall argue by reduction to the 
absurd. Suppose therefore that for all x E K, 0 does not belong to C(x). Since 
the sets C (x) are convex and closed, the Separation Theorem (Theorem 2.4) 
implies that 

I;/x E K, 3p E Y* such that O"(C(x), -p) < O. (20) 

We set 
.dp := {x E KIO"(C(x), -p) < O}. (21) 

The non-existence of zeros of C thus translates into the following: 

K c U .dp . (22) 
pEY* 

d) Since C is upper hemi-continuous, the sets .dp are open. Since the set K 
is compact, it can be covered by n open subsets .dpi ' Let {gi}i=l, ... ,n be a con
tinuous partition of unity subordinate to this covering. We define the function 
¢ : K x K -+ IR as follows 

n 

¢(x, y) := - L gi(x)(A*p, x - y). (23) 
i=l 

¢ is continuous in x, affine in y and satisfies 

¢(y, y) = 0 for all y E K. (24) 

The assumptions of Ky Fan's Theorem (Theorem 8.6) are satisfied; whence, 
there exists x E K such that 

I;/y E K, ¢(x,y) = (-A*p,x - y):S 0 (25) 

where we have set p := L~=1 gi(X)Pi. In other words, A*p belongs to the normal 
cone NK(x). 

The dual tangential condition implies that 

(J(C(x), -p) ~ o. (26) 

But this inequality is false. To see this, we let I be the subset of the indices i 
such that gi(.i) > O. I is non-empty since 2:7=1 gi(X) = 1. If i belongs to I, then 
x belongs to .dPi and consequently 
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cr(C(x), -p) = cr (C(x), - ~9i(X)Pi) ::; ~9i(X)cr(C(X), -Pi) < O. 

Thus, we have obtained a contradiction and proved our theorem. 0 

This theorem has many corollaries and we shall state those which we shall 
use directly in our theorems. 

Remark. By taking C(x) := {c(x)} where c is a differentiable map and A(x) = 

-c'(x) in Theorem 9.3, we derive the existence of a solution to the equation 
c(x) = 0 where the solution x must belong to a compact convex subset K: 
Let X and Y be Hilbert spaces, K c X be a compact convex subset, S? ::) K 
be an open neighborhood of K and c : S? N Y be a continuously differentiable 
single-valued map. Assume that 

't/ x E K, -c(x) E c'(x)TK(x) 

Then there exists a solution x E K to the equation c(x) = O. In particular, when 
Xo E K is given, there exists a sequence of elements Xn E K satisfying 

't/ n 2: 0, c'(xn)(xn - Xn-l) = -c(xn) 

i.e., the implicit version of the Newton algorithm. 

The most important particular case is that in which X and Yare equal and 
A is the identity. 

Theorem 9.4. Suppose we have a Hilbert space X, a convex compact subset 
K c X and an upper hemi-continuous set-valued map C : K -+ X with non
empty, convex, closed values. If the tangential condition 

't/x E K, C(x) n TK(X) -=I- 0 (27) 

is satisfied, then 

(a) 3x E K such that 0 E C(x) 
(b) 't/y E K, 3£ E K such that y E £ - C(£). (28) 

9.6 The Viability Theorem 

Since the velocity of a constant function t -+ x is equal to zero, we can regard 
a zero x E K of the set-valued map C : K -+ X as an equilibrium x (or a rest 
point) of the differential inclusion 

x'(t) E C(x(t)) 

governing the evolution of a time dependent function t -+ x(t) starting from an 
initial state x(O) = Xo at the initial time t = O. 
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Hence an equilibrium is a particular solution to this differential inclusion, 
so that it requires stronger assumptions than the mere existence of a solution. 

The viability theorem states that when K is (only) compact (but not neces
sarily convex) and C is upper- hemicontinuous with non-empty, convex, compact 
values, the tangential condition (21) is necessary and sufficient for K to be vi
able under C, in the sense that for any initial state xo, there exists at least one 
solution to the differential inclusion x' E C (x) starting from Xo and viable in 
K: 

\/ t 2 0, x(t) E K 

We emphasize now this basic and curious link between the existence of the 
general equilibrium theorem 9.4 and the 'viability theorem': the General Equi
librium Theorem - which is an equivalent version of the 1910 Brouwer Fixed 
Point Theorem, the cornerstone of nonlinear analysis - states the existence of 
an equilibrium x of the set-valued map C : K -t X when the dynamics of the 
uncertain dynamical sy::;tem described by the set-valued map C confronted to 
the 'viability constraints' described by K are related by the tangential condition 
(27) and when K is furthermore assumed to be convex and compact. 

Both the general equilibrium theorem 9.4 and the 'viability theorem' find 
here a particularly relevant formulation: viability implies stationarity. 

Viability implies also stationarity not only when the convexity of K is traded 
with the convexity of the image C(K): If C is upper hemicontinuous with non
empty, convex, compact values, if K C X is a compact subset such that C(K) is 
convex and if there exists at least one viable solution to the differential inclusion 
x' E C(x), then there exists a viable equilibrium ofC in K. 

Indeed, assume that there is no equilibrium. Hence, this means that 0 does 
not belong to the closed convex subset C(K), so that the Separation Theorem 
implies the existence of some p E X* and c > 0 such that 

sup (v, -p) CJ(C(K), -p) < -c 
xEK,vEC(x) 

Hence, let us take any viable solution x(·) to differential inclusion x' E C(x) 
which exists by assumption. We deduce that 

\/t20. (_p,X'(t)) < -c 

so that, integrating from 0 to t, we infer that 

ct :s (p, x(t) - x(O)) 

But K being bounded, we thus derive a contradiction. D 

We can even relax the assumption of the convexity of C(K): If C is upper 
hemicontinuous with non-empty, convex, compact values, if K c X is a compact 
subset and if there exists a solution x(·) to the differential inclusion x' E C(x) 
viable in K SItch that 
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Ilt inf - Ilx'(T)lldT = 0 
t>O t 0 

then there exists a viable equilibrium x, i. e., a state x E K solution to the 
inclusion 0 E C(x). 

The proof starts as in the proof of Theorem 9.3: We assume that there is no 
viable equilibrium, i.e., that for any x E K, 0 does not belong to C(x). Since 
the images of C are closed and convex, the Separation Theorem implies that 
there exists pEE, the unit sphere, and Ep > 0 such that O"(C(x), -p) < -Ep. 

In other words, we can cover the compact subset K by the subsets 

Llp := {x E K I O"(C(x) , -p) < -Ep } 

when p ranges over E. They are open thanks to the upper hemicontinuity of 
C, so that the compact subset K can be covered by q open subsets Llpj . Set 
E := mini=l, ... ,q EPi > O. 

Consider now a viable solution to the differential inclusion x' E C(x), which 
exists by assumption. Hence, for any t 2: 0, x(t) belongs to some Llpj' so that 

-llx'(t)11 ::::; (-Pj,x'(t») ::::; O"(C(x(t», -Pj) < -E 

and thus, by integrating from 0 to t, we have proved that there exists E > 0 
such that, for all t > 0, 

1 lt 
E < - Ilx'(T)lldT 

t 0 

a contradiction of the assumption of the theorem. 0 

9.7 Fixed-point Theorems 

The above in turn implies the famous fixed-point theorem due to Kakutani. 

Theorem 9.5 (Kakutani). Suppose that K C X is a convex compact subset 
and that D : K -7 K is an upper hemi-continuous set-valued map with non
empty, convex, closed values. Then there exists a fixed point x. E K of the 
set-valued map D. 

Proof. Since D(x) - x c K - x c TK(x), we note that the set-valued map 
x -7 D(x) - x satisfies the assumptions of Theorem 9.4 (above). Thus, it has a 
zero x. E K, which is a fixed point of D. 0 

In fact, the above proof implies a more general result. 

Definition 9.7. We shall say that a set-valued map D : K -7 X is re-entrant if 

\Ix E K, D(x) n (x + TK(x» # 0 (29) 

and that it is salient if 

\Ix E K, D(x) n (x - TK(X» # 0. (30) 
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Theorem 9.6 (Kakutani-Fan). Suppose that K c X is a convex compact 
subset and that D : K -'t X is a re-entrant, upper hemi-continuous, set-valued 
map with non-empty, convex, closed values. Then the set-valued map D has a 
fixed point x* E K. 

Theorem 9.7. Suppose that K C X is a convex compact subset and that D : 
K -'t X is a salient, upper hemi-continuous, set-valued map with non-empty, 
convex, closed values. Then 

(a) there exists a fixed point x* E K 
(b) I::/y E K, :3:r E K such that y E D(x) (whence K C D(K)) (31) 

Proof. We apply Theorem 9.4 to the set-valued map x -'t x - D(x), which 
satisfies the tangential condition since D is salient. The zeros of this set-valued 
map are the fixed points of D and the solutions of y E x - (x - D(x)) are the 
elements of D-1(y). D 

A fixed-point x of a set-valued map D can be regarded as an equilibrium (or 
a rest-point) of the discrete dynamical system Xn+l E D(xn ) because, starting 
from X, we may remain (or rest) at X forever. 

9.8 Equilibrium of a Dynamical Economy 

We can describe a dynamical economy (P, c) governing the evolution of an 
abstract commodity and an abstract price. The commodities evolve according to 
the laws 

{ .) 
;i) 

x'(t) = c(x(t),p(t)) 

p(t) E P 

where the commodity .r(·) ranges over a finite dimensional vector-space X, the 
price p(.) ranges over Y*. c : X X y* 1--7 X describes the dynamics and where 
P C y* is the set of feasible prices. 

Here, the first equation describes how the price - regarded as a message, 
or regulation control (in short, regulee), or again an input to the system - yields 
the commodity of the dynamical economy (once the initial commodity is fixed) 
- regarded as an output. 

A solution to this system is a function t -'t x(t) satisfying this system for 
some time dependent price t -'t p(t) and an equilibrium (x,p) is a zero of c. 
Next we shall prove a theorem which is very useful for proving the existence 
of an equilibrium of a function c(· . . ), which is constrained to satisfy additional 
conditions of the form 

AxEM 

known as viability conditions. The choice of such a parameter p (which may be 
interpreted as an adaptive control) constitutes the so-called viability problem. 
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In other words, each p is associated with the set Z (p) of zeros of x -+ c( x, p). 
Does there exist a parameter p such that AZ (p) belongs to M? 

To be more precise, we introduce: 

(i) two Hilbert spaces X and Y; 
(ii) two convex closed subsets LeX and M c Y; 
(iii) a continuous linear operator A E L(X, Y); 
(iv) a convex compact subset P c YO; 
(v) a continuous mapping c : L x P -+ X. 

We shall solve the following problem: find x ELand pEP such that 

(i) 
(ii) 

c(x,p) = 0 
Ax E M (viability condition) 

(32) 

(33) 

Theorem 9.8. We suppose that conditions (32) are in force, together with the 
following assumptions: 

(i) 
(ii) 

(i) 
(ii) 
(iii) 

and 

"Ix E L, p -+ c(x,p) is affine 
"Ix E L, Vp E P, c(x,p) E Tdx) 

L n A-l(M) is compact 
o E lnt (A(L) - M) 

Vy E M, NM(y) C U )"P 
'\20 

"Ix E L, Vp E P, (p, Ac(x,p)) ::; o. 
Then there exists a solution (x,p) E L x P of the problem (33). 

(34) 

(35) 

(36) 

Proof. This is again a consequence of Theorem 9.4. We introduce the convex 
compact subset K := L n A-1(M) and the set-valued map C from K to X 
defined by 

"Ix E K, C(x):= {c(X,P)}PEP' (37) 

Since P is convex and compact and p -+ c(x,p) is affine, the images C(x) are 
convex and compact. Since c : L x P -+ Y is continuous and P is compact, the 
set-valued map C is upper semi-continuous. In fact, if Xo ELand E > 0 are 
fixed, we may associate any pEP with neighbourhoods Np(xo) and N(p) of Xo 
and p (respectively), such that 

"Ix E Np(xo), Vq E N(p), c(x, q) E c(xo,p) + EB c C(xo) + EB. (38) 

Since P is compact, it can be covered by n neighbourhoods N(Pi) (i = 1, ... , n). 
Thus, N(xo) := n7=lN(Pi) is a neighbourhood of Xo. 

The properties (38) imply that 

"Ix E N(xo), C(x) c C(xo) + EB. (39) 
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Whence, C is upper hemi-continuous. 
We shall prove that the dual tangential condition 

'Vx E K, 'Vp E NK(x), sup (-p, v) 2: 0 
vEC(x) 

( 40) 

is satisfied. In fact, since 0 belongs to lnt (A(£) - M), we know from formula 
( 49) of Chapter 4 that 

NK(x) = Ndx) + A* NJ\1(Ax). 

Thus, any element P of NK(x) may be written as P = Po + A*q where 
Po E N£(x) and q E NJ\1(Ax). There exists PI E P such that q = API where 
A 2: o. Then we introduce v := C(X,PI) E C(x). Since C(X,PI) belongs to 
Tdx) = Ndx)-, by assumption, we have (-Po,C(X,PI)) 2: o. Moreover, 

(-A*q,c(x,pd) = -A(PI, Ac(x,pd) 2: o. 

Whence, 

u((Cx), -p) 2: (-Po - A*q, C(X,PI)) 2: o. 

Thus, we may apply Theorem 9.4. There exists x E K, in other words x E L 
satisfying Ax E M, such that 0 belongs to C(x); whence, there exists pEP 
such that 0 = c(x,p). [] 

9.9 Variational Inequalities 

We shall consider 

(i) a convex compact subset K c X; 
(ii) an upper semi-continuous set-valued map C from K to X 

with convex compact values. (41) 

which does not necessarily satisfy the tangential condition. The problem now 
is how to modify C in such a way that the new set-valued map satisfies this 
condition. 

We note that this modification need only be carried out on the boundary 
oK of K, since for all x E Int(K), TK(X) is equal to the whole space. 

For this, it is sufficient to subtract the set-valued map x --+ NK(x) (which 
associates each :r: with the normal cone to K at x) from the set-valued map C 
and to find the zeros of the set-valued map C - NK : 

i E K such that 0 E C(x) - NK(x). (42) 

By definition of the normal cone to K at x, NK(x), the inclusion (42) is 
equivalent to 
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(i) x E K 
(ii) 3v E C(x) such that (v, x - y) ;:::: 0 I::/y E K. (43) 

Definition 9.8. The equivalent problems (42) and (43) are called variational 
inequalities. 

Remark. We saw that the solutions x E K which minimise a nontrivial, convex, 
lower semi-continuous function f : X -+ IR U {+oo} such that 0 E Int(K -
Dom!) over K, are the solutions of the inclusion 0 E 8f(x) + NK(x), whence 
solutions of the variational inequality (43) with C(x) := -8f(x). 

Remark. Since TK(X) is the negative polar cone of NK(x), Theorem 5.1 of 
(Aubin 1979a) implies that any element v E C(x) decomposes into the form 
v = t + n where t E TK(x), n E NK(x) and (t, n) = o. Thus, for any v E C(x), 
the element v - n = t belongs to (C(x) - NK(x)) n TK(x), which shows that 
the set-valued map (C - N K) satisfies the tangential condition. 

We also note that any zero x of C - N K which belongs to the interior of K 
is a zero of C and that if 

I::/x E K, C(x) C TK(x) ( 44) 

then any zero x of C - N K is a zero of C, since in this case, there exists v E C (x) 
which belongs to the intersection of TK(X) and NK(x), which is zero. 

We could use this remark to apply Theorem 9.4 to deduce the existence of 
solutions of variational inequalities. But we can give a direct proof based on 
Ky Fan's Inequality. 

Theorem 9.9. Suppose that K is convex and compact and that C is an upper 
semi-continuous set-valued map from K to X with non-empty, convex, compact 
values. Then there exists a solution x E K of the variational inequality (43). 

Proof. We set 
¢(x,y) = -a(C(x),x - y). ( 45) 

The function ¢ is concave in y and clearly satisfies ¢(y, y) = O. Since C is upper 
semi-continuous with compact values, a variant of Proposition 9.1 shows that 
x -+ a(C(x), x - y) is upper semi-continuous. In fact, since C(xo) is bounded, 
IIC(xo)11 := SUPVEC(xo) Ilvll is finite and the inclusion 

I::/x E N(xo), C(x) c C(xo) + ryE 

implies that 

I::/x E N(xo) : 

a(C(x), x - y) :S a(C(xo), x - y) + 1Jllx - yll 
:S a(C(xo), Xo - y) + a(C(xo), x - xo) + ryllx - yll 
< . a(C(xo), Xo - y) + IIC(xo)llllx - xoll + ryllx - xoll 

+ryllxo - yll· 
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Thus, taking 7J :S 21Ix(~-YII and replacing N(xo) by its intersection with the ball of 

radius 2(1)+II~(xo)II)' it follows that x --t O"(C(x), X - y) is upper semi-continuous, 
whence x --t <1>(:1:, y) is lower semi-continuous. Ky Fan's Inequality may then be 
applied (Theorem 8.6). Thus, there exists x E K such that 

vy E K, O"(C(x), X - y) ?: 0 

in other words. such that 

inf sup (v, x - y) ?: O. 
yEK VEC(X) 

Since K and C(x) are convex compact sets, it follows that there exists iJ E C(x) 
such that (following Theorem 9.8) 

inf (iJ, x - y) ?: O. 
yEK 

Thus, this element i: E K is a solution of the variational inequality (43). D 

9.10 The Leray-Schauder Theorem 

From Theorem 9.4, we may derive other theorems for the existence of zeros 
using the continuation technique due to Poincare. 

Consider the boundary oK of the convex compact set K (which is different 
from K if X is finite dimensional and the interior of K is non-empty). 

Theorem 9.10. Consider a convex compact set K with a non-empty interior, 
together with an upper hemi-continuous set-valued map C from K x [0,1] to X, 
with non-empty, convex, closed val'ues. 

Suppose that 

(i) the set-val-ued map x --t C (x, 0) satisfies the tangential condition; 
(ii) VA E [0,1[, v:J: E oK, 0 tJ. C(x, A). (46) 

Then 
3x E K such that 0 E C(x, 1). ( 47) 

Proof. We shall suppose that the conclusion (47) is false and derive a contra
diction. 

We set A := oK, which is a closed subset of K and introduce the subset 

B := {1' E KI3A E [0,1] satisfying 0 E C(.1:, A)}. ( 48) 

The set B is non-empty, since it contains the equilibria of x --t C(x,O). It 
is closed (since C is upper hemi-continuous) and disjoint from A (if x E A and 
t E [0,1[, assumption (46)(ii) implies that x tJ. B; if x E A and t = 1, then 
x tJ. B, since C(·, 1) has no zeros). 
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Next we introduce a continuous function 4> from X to [0,1], which is equal 
to 0 on A and 1 on B 

4>(x):= d(x,A) 
T I A \ , 1/ ~\ , 

together with the set-valued map D defined by 

D(x) := C(x, 4>(x)). (49) 

D is clearly upper hemi-continuous with non-empty, convex, closed values. It 
coincides with C(x, 0) on A and consequently satisfies the assumptions of The
orem 9.4. Thus, the set-valued map D has a critical point x E K such that 
o E D(x) = C(x,4>(x)). This now implies that x E B, whence that 4>(x) = 1 
and so 0 E C(x,1). It follows that C(·,1) has a critical point, which is the 
desired contradiction. 0 

In particular, we obtain the following result: 

Theorem 9.11. Suppose that K is a convex compact subset with a non-empty 
interior and that C and D are two upper hemi-continuous set-valued maps from 
K to X with non-empty, convex, closed values. 

Suppose that 

C satisfies the tangential condition (50) 

and that 
Vp::::: 0, Vx E oK, 0 ¢. C(x) + pD(x). (51) 

Then the set-valued map D has a zero x E K. 

Proof. We apply the previous theorem with C(x, t) = (1 - t)C(x) + tD(x). 0 

Let us take a finite-dimensional space X and Xo E Int K. Then the mapping 
C(x) = x - Xo satisfies the tangential condition. Thus, we have the following 
theorem: 

Theorem 9.12. Suppose that Xo is a point in the interior of a convex compact 
subset K of X and that D is an upper hemi-continuous set-valued map from K 
to X with non-empty closed values. Suppose further that 

\lp 2: 0, \Ix E oK, Xo 1. x + pD(x). (52) 

Then D has a zero x E K. 

9.11 Quasi-variational Inequalities 

We shall now prove a theorem which reconciles Ky Fan's Inequality and Kaku
tani's Fixed-point Theorem. This result will be useful in the theory of non
cooperative games. 
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Theorem 9.13. We suppose that 

K is a convex compact subset of a Hilbert space X (53) 

and that 

C : K --+ K is an upper hemi-continuous set-valued map 

with non-empty, convex, closed values. 

We consider a function ¢ : K x K --+ IR satisfying 

(i) Vy E K, x --+ ¢(:T, y) is lower semi-continuous 
(ii) Vx E K, Y --+ ¢(:r,y) is concave 
(iii) SUPYEK ¢(y, y) :S o. 

(54) 

(55) 

We suppose further that the set-valued map C and the function ¢ are related by 
the property 

{:£ E Kla(x):= sup ¢(x,y) :S O} is closed. (56) 
YEC(x) 

Then there exists a solution 1 E K of the quasi-variational inequality: 

(i) 1 E C(1) 
(ii) sup ¢(.r, y) :S O. (57) 

yEC(x) 

Remark. Assumptions (53) and (54) are those of Kakutani's Theorem and 
assumptions (53) and (55) are those of Theorem 8.6 (Ky Fan's Inequality). 
Assumption (56) is an assumption of consistency between C and ¢. 

Proof. We shall argue by reduction to the absurd. If the conclusion is false, for 
all x E K we would have either a(:r) > 0 or x rf. C(x). To say that x rf. C(x) 
implies that there exists p E X* such that (p,x) ~ CJ(C(x),p) > O. We set 

(i) Va:= {:r E Kln(x) > O} 
(ii) V(p):= {x E KI(p.x) - CJ(C(J:),p) > O}. (58) 

The negation of the conclusion may be expressed in the form 

K c Vo U U V(p). (59) 
pEX* 

Assumptions (54) and (55)(i) imply that the sets Va and V(p) are open. 
Since K is compact, it follows that there exist PI, ... ,Pn such that 

n 

K c Va U U V(p;) (60) 
;=1 

and that there exists a contin'uous partition of unity {go) gl, ... ) gn} subordinate 
to this covering. 

Next we introduce the function 1jJ : K x K --+ IR defined by 
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n 

'ljJ(x, y) = go(x)¢(x, y) + Lgi(X)(Pi, X - y). (61) 
i=1 

This function 'ljJ is lower semi-continuous in x (by virtue of (55)(i)) and 
concave in y (by virtue of (55)(ii)). Since K is convex and compact (by 
virtue of (53)) and since SUPy 'ljJ(y, y) ::; 0 (by virtue of (55)(ii)), Theorem 8.6 
(Ky Fan's Inequality), implies that there exists x E X satisfying 

sup'ljJ(x,y) ::; o. (62) 
yEK 

We shall contradict this inequality by proving that there exists f) E K such 
that 

'ljJ(x, f)) > o. (63) 

We take: 

(i) any f) E C(x) if a(x) ::; 0; 
(ii) f) E C(x) satisfying ¢(x, f)) 2: a(x)/2 if a(x) > 0 (64) 

(the choice of f) is free). 
Since go, gl, ... ,gn is a partition of unity, gi(X) > 0 for at least one index 

i = 0, 1, ... ,n. The inequality (63) then follows from the following assertions: 

(i) go(x) > 0 implies that ¢(x, f)) > 0 
(ii) gi(X) > 0 implies that (Pi, x - y) > O. (65) 

Let us now prove these assertions. If go(x) > 0, then x E Va and consequently, 
a(x) > o. Thus, ¢(x, f)) 2: a(x)/2. If gi(X) > 0, then x E V(Pi) and consequently, 
(Pi'X) > (}(C(X),Pi) 2: (Pi'Y)' since Y E C(x). Thus, (Pi,X - y) > o. D 

Remark. It is useful to give sufficient conditions implying assumption (56). 
One such is that the function a : x --t a(x) = SUPyEC(x) ¢(x, y) be lower semi
continuous. For, Proposition 9.3 implies that if the set-valued map C is lower 
semi-continuous then so too is a. 

Theorem 9.14. Suppose that C is a continuous set-valued map from a convex 
compact subset K into itself, with non-empty, convex, closed values. Suppose 
that ¢ is a function satisfying assumptions (55) which is lower semi-continuous 
in both variables. Then there exists a solution x E K of the quasi-variational 
inequality (57). 

9.12 Shapley's Generalisation of the Three-Poles 
Lemma 

We know that the story began in 1910 with the Brouwer Fixed Point Theorem. 
It was proved later in 1926 via the Three Polish Lemma, the three Poles being 
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Knaster, Kuratowski and Mazurkiewicz, which allowed them to derive the Fixed 
Point Theorem in a simpler way. Knaster saw the connection between Sperner's 
Lemma and the fixed point theorem. Mazurkiewicz provided a proof corrected 
by Kuratowski. The extension to Banach spaces was proved in 1930 by their 
colleague Schauder. 

Von Neumann did need the set-valued version of this Fixed Point Theorem 
in game theory, which was proved by Kakutani in 1941. 

Lemma 9.1 (Three-Poles or K-K-M lemma). Consider n closed sub
sets Fi of the simplex Mn : = {:c E lR~ I ~~1 Xi = I} satisfying the condition 

Then 

v:r E M n , x E U Fi · 

{ilXi >O} 

n n Fi 7" 0. 
i=1 

(66) 

(67) 

At the time, this lemma was proved from Sperner's lemma on the simplicial 
decomposition and thus stemmed from the area of combinatorics. Shapley gen
eralised it in 1973 and we shall deduce the Three-Poles Lemma from his theorem. 

However, before we do so, some indications as to how to prove Brouwer's 
Theorem from this lemma would not go amiss. 

Proof of Brouwer's Theorem. Let D be a continuous mapping of the simplex 
Mn into itself. We associate this with the sets Fi defined by 

Fi := {x E Mnlxi :;:: Di(X)} (68) 

which are closed since D is continuous. Condition (66) is satisfied, otherwise 
there would exist x E 1\IJn such that for all indices i, Xi < D;(x). Since x 
and D (x) belong to 1\IJn. we obtain the contradiction 1 < 1 by summing these 
inequalities. 

The Three-Poles Lemma then implies that there exists a point x E Mn 
belonging to the intersection of the Fi , in other words satisfying 

vi = 1, ... ,n, Xi:;:: Di(X). (69) 

The inequality cannot be nontrivial since, otherwise, taking the sum, we would 
again obtain the contradiction 1 < 1. Thus, Xi = Di(X) for all i, and conse
quently, X is a fixed point of the continuous mapping D. 0 

Let us now denote the set of n elements by N := {I, ... ,n}. With any subset 
T of N, we associate the sub-simplex MT defined by 

MT := {:r E A1"lvi E T, Xi 7" o}. (70) 

The characteristic functions CT E {O, I} n of the subsets TeN are defined by 

cT(i) = 1 ift E T, cT(i) = 0 if i rt T. (71) 
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Theorem 9.15 (K-K-M-S Theorem). Every non-empty subset TeN 
is associated with a closed subset (possibly empty) FT C Mn in such a way that 
the condition 

VT =I- 0, MT C U Fs 
SeT 

is satisfied. Then there exist non-negative scalars m(T) such that 

(i) 

(ii) 

CN = L m(T)cT 
TcJ0 n FT =I- 0. 

{Tlm(T»O} 

(72) 

(73) 

Proof of Lemma 9.1. We apply Theorem 9.15 with Fs := Fi when S = {i} 
and Fs = 0 if lSI := card(S) 2: 2. Condition (66) implies assumption (72), 
whilst the conclusion (73) (i) implies that m( i) = 1 for all i = 1, ... ,n and the 
conclusion (73)(ii) implies that the intersection of the Fi is non-empty. 0 

Proof of Theorem 9.15. This is a consequence of Theorem 9.4 applied to the 
set-valued map G : Mn -+ lRn defined by 

G(x) := I~ICN - co{ 1~lcS LS3X' (74) 

It is easy to prove that G is upper semi-continuous with convex compact values. 
It remains to show that it satisfies the tangential condition: 

Vx E Mn, G(x) n TMn(X) =I- 0. (75) 

We denote the set of indices i such that Xi > 0 by T. Assumption (72) implies 
that there exists a subset ReT such that X belongs to FR. Thus, 

1 1 
Y := INTCN -IRTCR E G(x). (76) 

But y also belongs to the tangent cone to Mn at x, which is described by 
formula (44) of Chapter 4. In fact, 2:7=1 Yi is equal to zero, and for all i such that 
Xi = 0, we have Yi = I~I CN( i) - 111 CR( i) = I~I 2: 0, since i does not belong to T. 
Thus, the tangential condition (75) is satisfied. Whence, Theorem 9.4 implies 
that there exists x E Mn such that 0 E G (x), in other words, such that 

A(T)INI _ 
CN = L ITI CT and X E n FT' 

{TIFT3x} FT 3x 

(77) 

o 

Remark. We note that property (73)(i) may be written in the form 

Vi, 1, ... ,n, L m(T) = 1. (78) 
T3i 
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Definition 9.9. A family B of non-empty subsets TeN such that 

CN = 2: m(T)cT where m(T) > 0 'VT E B 
TEB 

(79) 

is called a balanced family and the vector m = (m(T) hEB satisfying (78) or 
(79) is called a balancing. 

Theorem 9.15 may be reformulated by saying that assumption (72) implies 
that there exists a balanced family B such that nTEB FT -=I- 0. 



10. Introduction to the Theory of Economic 
Equilibrium 

10.1 Introduction 

We shall describe two ways of explaining the role of prices in the problem of 
decentralisation of consumer choice (in the static framework only). This is taken 
to mean that knowledge of prices enables each consumer to make his own choice, 
in accordance with his own objectives, without knowing the global state of the 
economy and in particular, without knowing the choice of other consumers, all 
the while respecting the scarcity constraints. 

It was Adam Smith who, more than two centuries ago, originated this con
cept of decentralisation. He introduced this paradoxical and mysterious prop
erty in a poetic way. Here is the famous quotation from his book, The Wealth 
of Nations, published in 1778. 

'Every individual endeavours to employ his capital so that its produce may 
be of greatest value. He generally neither intends to promote the public interest, 
nor knows how much he is promoting it. He intends only his own security, only 
his own gain. And he is in this led by an invisible hand to promote an end which 
was no part of his intention. By pursuing his own interest, he frequently thus 
promotes that of society more effectually than when he really intends to promote 
it. ' 

But Adam Smith did not state what this famous hand manipulated and a 
fortiori put forward a rigorous argument to justify its existence. 

It was a century later that Leon Walras suggested that this invisible hand 
acted on prices via the demand functions, using them to provide economic agents 
with sufficient information to guarantee the consistency of their actions whilst 
respecting the scarcity constraints. 

This concept of economic equilibrium which we owe to Walras is not the only 
thing we owe to him. For, it was Leon Walras who, from his first publication 
in 1859, which refuted the ideas of Proudhon, suggested that mathematical 
methods could be useful in economic theory. Originality often consists of a new 
way of viewing the world rather than of discoveries and inventions which arouse 
the interest of contemporaries. Walras introduced mathematical rigour into an 
area which at that time had not benefitted from detailed work for a number 
of centuries. He did this outside of (and against) all customs, despite major 
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difficulties, alone and unaided, without the encouragement and moral support 
of his colleagues, whether mathematicians or economists. He did it, because 
in his heart, he was able to recognise the perspectives involved before he even 
started. It should also be noted that the Parisian scientific community at that 
time (like that of today), guided by snobbism, custom and prestige, did not 
allow Leon Walras to take root. It was the University of Lausanne which was 
recompensed by having offered him the chair of economics in which he was 
succeeded by Vilfredo Pareto who shared with Walras the conviction of the 
applicability of mathematics to the social sciences. 

It was in 1874 that Leon Walras introduced his concept of economic equi
librium in Elements d'economie politi que pure, as the solution of a system of a 
nonlinear equations. The fact that there were the same number of unknowns as 
equations gave him sufficient optimism about the final outcome to affirm the 
existence of a solution. 

But this required the tools of nonlinear analysis, which were developed fol
lowing the proof of Brouwer's theorem in 1910. It took another century of mat
uration before the works of Wald and von Neumann (in the 1930s), Arrow 
and Debreu (1954), Gale, Nikaldo and many others, produced the rigorous re
sults which we shall describe in the greatly-simplified framework of exchange 
economies 

10.2 Exchange Economies 

We begin by describing an economy by introducing 1 types of elementary com
modities, each with a unit of measurement, so that it is possible to talk about 
x units of an elementary commodity. An elementary commodity is described 
not only by its physical properties, but also by other characteristics such as its 
location and/or the date when it will be available and, in case of uncertainty, 
the event which will take place, etc. 

Services may also be viewed as elementary commodities as long as they can 
be quantified by units of measurement. 

A commodity (or a 'complex' or 'basket' of commodities) consists of a vector 
x E IRI which describes the quantity Xh of each elementary commodity h = 

1, ... ,1. 
The description of an exchange economy involves 

a subset M c IRI of available commodities (1) 

together with n consumers. We shall describe two consumer models, the first of 
which could be called the classical Walrasian model. In both cases, the descrip
tion of the ith COnSumer involves 

the consumption set Li C Rl (2) 
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This is interpreted as the set of commodities which the ith consumer needs. 
If x belongs to L i , then the hth component Xh represents the consumer's demand 
for the elementary commodity h if Xh > ° and IXhl represents the supply of this 
elementary commodity if Xh is negative. 

The fundamental question then arises: can consumers share an available 
commodity? 

This leads us to introduce the following concept of allocation. 

Definition 10.1. An allocation .£ E (IRlf is a sequence of n commodities 
Xi E Li such that their sum ~~l Xi 'is available. 

We denote the set of allocations by: 

{ 
n n } 

K:= X E gLil~:r;i E M (3) 

Assuming that the set of allocations K is non-empty, we must describe reason
able mechanisms which enable consumers to choose allocations. 

The two mechanisms which we shall describe are decentralised mechanisms. 
By this, we mean mechanisms which do not require each consumer to know 

the set !'vI of available commodities and the behaviour and the choices of the 
other consumers, but which only require each consumer to know his own par
ticular environment and to have access to common information about the state 
of the economy. 

In the two models to be described, this common information will take the 
form of a pr'ice (or price system) which is perhaps best viewed as an adaptive 
control. 

As far as we are concerned, a price is a linear form p E IRI* which associates 
a commodity :r; E IRI with it" value (p, x) E IR, expressed in monetary units. 

Since an elementary commodity h is represented by the hth vector eh := 

(0, ... , 0, 1,0, ... , 0) of the canonical basis of IRI, the components ph := (p, eh) 
of the price p represent what is usually called the price of the commodity h. 

We denote the price s'implex by 

Ml := {p E IR~*I tPh = I} 
h=l 

(4) 

We could have taken a different normalisation rule, for example, by taking a 

reference commodity w E lR~, called the currency whose value is always 1; this 
amounts to only considering prices p E IRI* such that (p, w) = 1. For simplicity, 
we shall take w : = t 1. 

10.3 The Walrasian Mechanism 

In the case of the \Valrasian mechanism, we view the consumer i as an automa
ton which associates a subset of consumptions Di(p, r) C L; with each price 
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system P E lRh and each income r. In other words, a consumer is described by 

a correspondence Di : Ml X IR ---+ Li 

We interpret the support function 

CTM(P) := sup(p,y) 
yEM 

(5) 

(6) 

of the set M of available commodities as the collective-income function which 
is the maximum value of the commodities available for each price p. 

The essential assumption of this mechanism is that the collective income is 
shared between the n consumers: 

there exist n functions ri : Ml ---+ IR such that ~~1 ri(p) = CTM(P)' (7) 

With this in place, for each price P E IRI, the income of each consumer is ri(p) 
and he is thus led to choose a consumption Xi in the set Di(p, ri(p)), This choice 
is decentralised; it depends only on the price P (via ri) and is independent of 
the choice of other consumers. 

There is clearly a consistency problem. 
Is there a price P such that the sum of the consumptions ~~=1 Xi E 

~~=1 Di(p, ri(p)) is available (in other words belongs to M) or such that the 
consumptions Xi E Di(p, ri(p)) form an allocation? 

Definition 10.2. We shall say that a price p E Ml is a Walrasian equilib
rium price if it is a solution of the inclusion 

n 

o E L D;(p, ri(p)) - M. (8) 
i=1 

We shall call the correspondence E from Ml to IRI defined by 
n 

E(p) := L Di(p, ri(p)) - M (9) 
i=1 

the excess-demand correspondence. 

Consequently, the Walrasian equilibrium prices are the zeros of the excess
demand correspondence. These are the prices which Adam Smith's invisible 
hand should be able to propose to the market ~ by solving the inclusion (8). 

Remark. To avoid misunderstandings, it is useful to stress that the partition 
~~=1 ri(p) = CTM(p) of the collective income is given in the model and is not 
a solution. In other words, there are as many Walrasian equilibrium prices as 
partitions r(p) = ~~=1 ri(p). This model is neutral as far as any question of the 
justice of the partition of the collective income between the players is concerned. 

We can solve the existence problem for Walrasian equilibrium prices using 
one of the many theorems for the existence of zeros of correspondences. In 
addition, we have to find such a theorem with assumptions which are susceptible 
to a reasonable economic interpretation. This is possible. We shall show that 
simple (decentralised) budgetary rules guarantee the existence of an equilibrium. 
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Collective Walras Law 

The demand correspondences Di should satisfy the condition 

\:Ip E Ml, \:Ix; E Di(p,ri), (P'~Xi) S ~ri' (10) 

In other words, this law forbids the set of consumers from spending more (in 
terms of monetary units) then their total income. 

The collective Walras law provides for transfer of income between con
sumers. A stronger, clecentralised law is given below. 

Walras Law 

Every correspondence Di satisfies the condition 

\:Ip E Ml, \:Ix E Di(p,r), (p,x) Sr. (11) 

We note that the Walras law is independent of the set M of available commodi
ties. 

Theorem 10.1. We make the following assumptions: 

The consumption set !vI is convex and may be written as AI = Mo - lR~, where 
Mo is compact. (12) 

The demand correspondences Di : Ml x lR -+ Li are upper hemi-continuous 
with convex, compact values and satisfy the collective Walms law. (13) 

The income functions ri are continuous. 

Then there exists a Walmsian equilibTium. 

(14) 

Proof. We apply Theorem 9.2 (Debreu-Gale-Nikaido) to the correspondence 
C : Ml -+ lRl defined by 

n 

C(p) := Mo - L Di(p, ri(p)) (15) 
i=l 

which is clearly upper hemi-continuous. 
It follows from (12) and (13) that C(p) -lR~ is convex and closed. Since 

n 

\:Ip E MI, Lri(P) = u(Mo -lR~,p) = u(Mo,p), (16) 
i=l 

it follows from the collective Walras law (10) that 

m 

u(C(p),p) u(Mo,p) - sup L(-P,Xi) 
xiEDi(p,ri(p)) i=l 

n 

> u(Mo,p) - Lri(P) 
i=l 
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n 

(J(M,p) - Lri(p) 
i=l 

o. 

Thus, there exists p E Ml such that 0 E C(p) -lR~ = -E(p), in other words, 
a Walrasian equilibrium price. D 

One important particular case is that in which 

M:= w-lR~ (17) 

is the set of commodities less than the available commodity W E lRl. 

Corollary 10.1. We suppose that assumptions (13) and (14) are in force and 
that 

n 

W = L Wi is allocated to the n consumers 
i=l 

(18) 

Then there exists a Walrasian equilibrium price p and consumptions Xi E 

Di(p, (p, Wi)) such that L:r=l Xi :::; z=r=l Wi· 

In fact, Leon Walras, and the neoclassical economists following him assumed 
that the demand functions and correspondence arose from the maximisation of 
a utility function under the budgetary constraints: 

Di(p,r) = {x ELi, (p,x) :::; rlui(x) = sup ui(Y)} 
(p,y)Sr 

(19) 

Of course, these demand correspondences satisfy the Walras law. Assump
tions needed to return to the case of Theorem 10.1 are imposed on the utility 
functions. So as not to overload the description with technical complications 
and above all because it is not clear that the maximisation of utility functions 
according to Homo economicus is compatible with the teachings of cognitive 
psychology, we shall not develop this point of view any further. 

We have seen that the Walrasian equilibrium prices are the zeros of the 
excess-demand correspondence E. 

It is tempting (as in physics) to consider these zeros as the stationary solu
tions 

o E E(p) (20) 

of the dynamical system (multi-valued) 

p'(t) E E(p(t)) (21) 

(again called a differential inclusion). 
The algorithm thus defined (called Walras tatonnement) cannot be im

plemented outside the stationary state, since in this case, 0 does not belong 
to E(p(t)) and the sum of the corresponding demands Xi(t) E Di(p(t),ri(p(t)) 
does not necessarily belong to the set M of available commodities. 
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We shall introduce another mathematical description of the consumers and 
another concept of equilibrium which may be viewed as a stationary state of 
a dynamical system. Although dynamic considerations are beyond the limited 
scope of this book, the mechanism which we shall describe avoids the criti
cisms made of the Wah'asian equilibrium. These criticisms (which were made 
too quickly) do not relate to the concept of price decentralisation, but to an 
excessively-specific mathematical translation which has become a dogma. The 
fact that this attempt to respond to criticisms has been called the theory of 
disequilibrium has added a great deal of confusion to an already complicated 
situation. The notion of equilibrium is very specific, its converse could be almost 
anything! 

10.4 Another Mechanism for Price Decentralisation 

We consider an exchange economy described by a subset M of available com
modities together with n consumers whose consumption sets Li C lR are given. 

Here, we represent each consumer i, not by a demand function or correspon
dence, but by a continuous function 

Ci : Li xlvII -+ lRt (22) 

called a change function 
This function associates the commodity x E Li and the price p E lvII with 

the change Ci (x. p) that the automaton consumer wishes to make to the com
position of the commodity x. If the hth component Ci(X,P)h is positive, he will 
increase his consumption of the elementary commodity h and if ci(x,ph = 0 he 
will conserve his elementary commodity h. 

Definition 10.3. In this context, an equilibrium is defined by an allocation 
x E K and a pTice 15 E Ml such that 

Vi = 1, .... n, Ci(Xi,15) = o. (23) 

In other words, the equilibrium price 15 is such that it stimulates each con
sumer i to conserve his consumption Xi. 

The choice of such an equilibrium allocation is again decentmlised; it depends 
only on the price p and the personal consumption Xi E Li of each consumer, 
and does not depend either on the choice of the other consumers or on the set 
M of available commodities. 

To solve the equations (23), we must chose an existence theorem with as
sumptions which are susceptible to a reasonable economic interpretation. As in 
the case of the Walrasian mechanism, we shall show that simple (and decen
tralised) budgetary rules guarantee the existence of an equilibrium. 
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10.5 Collective Budgetary Rule 

The change functions Ci : Li x Ml --+ lRl satisfy 

Vx E g Li, Vp E Ml, (p, ~Ci(Xi'P)) ::; o. (24) 

In other words, this rule states that for each price p, the total value of the 
deficits (P,Ci(Xi,P)) incurred by each agent should not be negative or zero. 

The collective budgetary rule allows for transfers of deficits between the 
consumers. It is possible to forbid such transfers and to require consumers to 
obey the following more restrictive (but decentralised) rule: 

Vx ELi, Vp E Ml, (P,Ci(Xi,P))::; O. 

We obtain the following existence theorem. 

Theorem 10.2. We make the following assumptions: 

(25) 

The consumption set M is convex and may be written as M = Mo -lR~, where 
Mo is compact. (26) 

Vi = 1, ... ,n the consumption sets are convex, closed, bounded below and satisfy 
o E Int (Lr=l Li - M). (27) 

For each i = 1, ... ,n, the change functions satisfy 

(i) 
( ii) 

Vx ELi, P --+ Ci(X,P) is affine 

'Vx ELi, 'Vp E Ml, Ci(X,P) E TLi(X) 

together with the collective budgetary rule 

Vx E !! Li, Vp E Ml, (p, ~C;(Xi'P)) ::; O. 

(28) 

(29) 

Then there exists an equilibrium allocation x = (Xl' ... ' Xn) E K and price 
pEMI. 

Proof. We apply Theorem 9.8 with 

n 

( l)n I '"""' I X :- lR , Y = lR, Ax:= ~ Xi, P:= M , 
i=l 

n 

L := II Li and c(x,p) = (Ci(Xi,P))i=l, .,n 

i=l 

Assumptions (34) of Chapter 9 follow from assumptions (28). 
Since M = Mo - lRl , where Mo is compact, and since the sets Li are 

contained in cones ~i + lR!, it follows that the set of allocations 

K:= {x E gLil~Xi E M} (30) 
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is compact. In fact, since M is contained in a cone w - ffi~, the set K is 
contained in I1~=d~i' w - L#i ~j] where [y, z] denotes the set of x E ffil such 
that y 'S x 'S z. 

Clear ly 0 belongs to lnt (A (L ) - M). Since M = Mo - ffi~, it follows that for 
all y E M, the normal cone NM(y) is contained in ffi~, which is generated by 
MI. Thus, assumptions (35) of Chapter 9 are satisfied. The collective budgetary 
rule clearly implies assumption (36) of Chapter 9. It remains to check that the 
solutions x E K := L n A-l(M) and p E MI of the equation c(x,p) = 0 are the 
desired equilibria. 0 

Example. The functions of the form 

c(x,p) := B(:r)( (p, f(x))g(x) -lIf(x)llllg(x)llp - h(x)) (31) 

where 

( i) 

( ii) 

B : L --+ ffi+ and h : L --+ R~ are positive 

f and 9 are defined from L to ffi~ (32) 

are affine with respect to p and satisfy the budgetary rule, since the Cauchy
Schwarz inequality implies that 

(p, c(x,p)) 'S -B(x)(p, h(x)) 'S 0 (33) 

when p runs through MI. 
If we also suppose that 

\Ix E L, f(x) E -ffi~ (34) 

we obtain the inequalities 

'Vx E L, 'lip E Ml, (f(x), c(x,p); :2 0 (35) 

again by virtue of the Cauchy-Schwarz inequality. 
If we take 

f = 9 and (1, h) = 0 (36) 

we obtain 
\Ix E L, \lp E MI, (1(x),c(x,p)) = o. (37) 

If for the mapping f we take the gradient V'u of a utility function, the 
conditions (36) (or (37)) express the fact the changes c(x,p) are directions 
which change (or leave invariant) the level of utility. 

Example. Another example of a change function may be constructed from: 

a twice-continuously-differentiable function Wi defined on a neighbourhood of 
Li (38) 

by setting 
I iJ2Wi(X) 

- " Pk· c;(x,P)h - ~ iJXhiJ.Tk 
k=l 

(39) 
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If we assume that 

n 

L Wi is concave (or Vi, Wi is concave) 
i=1 

( 40) 

the collective budgetary rule (or the budgetary rule, respectively) is satisfied. 
An equilibrium is defined by the conditions 

( i) 

( ii) 

xEK 

• _ _ 1 82wi(xL = o. 
Vz - 1, ... ,n, Vh - 1, ... , L fJ 8 Pk 

k=1 Xh Xk 
( 41) 

Remark. Since the equilibrium allocations are the zeros of the correspondence 
C defined by 

Vx E L, C(x):= {c(X,P)}PEMI ( 42) 

it is tempting to view them as the stationary points of the differential inclusion 

dx E C(x(t)) 
dt 

which may be written explicitly as the system of differential equations 

X;(t) = Ci(Xi(t),P(t)), i = 1, ... ,n 

in which the price P appears as a control. 

( 43) 

(44) 

The problem then is to know if there exists a function t -+ p(t) with values 
in the set of prices Ml, such that the trajectories of the differential system (44) 
at any given time form allocations of the set M of available commodities, in 
other words they satisfy 

( i) 

( ii) 

Vt 2: 0, Vi = 1, ... ,n, Xi(t) E Li 
n 

Vt 2: 0, LXi(t) E M 
i=1 

(45) 

It can be shown that, under the assumptions of Theorem 10.2 there exists such 
a function p(.). If we set 

Vx E K, II(x1"" ,xn ) := {p E Mll ~Ci(Xi'P) E TM (~Xi) } (46) 

the price p( t) is linked to the allocations X (t) by the feedback relation 

Vt 2: 0, p(t) E II(x1(t), ... , xn(t)) ( 47) 

It is at this level that one can put one's finger on the difference between the 
two concepts of equilibrium. The Walrasian equilibrium price is the stationary 
state of a dynamical system p'(t) E E(p(t)) involving prices, which cannot be 
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implemented; whilst the second concept for equilibrium allocation is the sta
tionary state of a dynamical system x'(t) E C(x(t)) involving the commodities 
consumed, which is viable, in the sense that at any given time, the x( t) are allo
cations. In this case, the price evolves according to the feedback law (46). This 
being the case, the two models translate the same idea of price decentralisation 
allowing each consumer to find an allocation. 

Remark. In this context, one could equally well propose a decentralised planning 
model which would allow one to move around in the set of allocations. 

Suppose there exists a continuous mapping x E K --+ P(Xl, ... , xn) E Ml 
such that 

Vx E K, p(:rj, ... , xn) E II(Xl,"" xn). ( 48) 

Such a mapping is called a continuous selection of the correspondence II. 
In the language of planning, this is interpreted by surmising that the plan

ning office knowing the allocation x E K is able to associate it with a price 
p(Xj, ... ,xn ) which is an element of II(xl,"" xn). 

Knowing this price system, the consumers modify their consumption by 
solving the system of differential equations 

X;(t) = Ci(Xi(t),P(Xl(t), ... Xi(t), ... , xn(t))) (i = 1, ... , n) (49) 

the solutions of which at any given time satisfy the viability conditions 

( i) 

( ii) 

Vi = 1, ... ,n, vt ~ 0, Xi(t) ELi 
n 

\:It ~ 0, L Xi(t) E M. 
i=1 

(50) 
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Table 10.1. Comparison between Walrasian and viable equilibrium 

II Pmc,", W'k':~ _ V;,:,----
--- -- -_ .. --

Description of demand functions change functions I 

the behavior of di(p, r) Ci(Xi,P) I 

consumers Xi = di(p,ri(p)) x;(t) = Ci(Xi(t),P(t)) J 
Demand map X E Di(P) := 

I derived from if and only if 
change function Ci(X,P) = 0 
Derivation di(p,r) Ci(X,P) 
from utility maximizes Ui under = UI(x) - p 
function (p,x):S: r = a (Uil(p,x)<:r) (x) 
Equilibrium: V i, Xi = di(p, ri(p)) Vi, Ci(Xi,P) = 0 
stationarity and such that such that 

n n 
(static) viability LXi EM LXi EM 

i-I i-I 

Budget rule (p, di(p, r)) :s: r (p, Ci(X,P)) :s: 0 
(dynamic) :3 p(t) such that 

n 
Viability V t 2: 0, L Xi(t) E M 

i=1 

Characterization Y (XI, ... ,xn), 
of the viability II(Xl"" ,xn) -=I- 0 

i Regulation law p(t) E II(Xl(t), ... , xn(t)) 



11. The Von Neumann Growth Model 

11.1 Introduction 

In 1945, J.von Neumann proposed a general economic-equilibrium model. This 
model is of historical interest, because at that time it was the only economic 
model which could be used to prove existence theorems for economic equilib
rium. Another remarkable aspect of this model is that it was aimed at growth 
models. At any rate, a whole area of the economic literature has developed the 
points of view discovered by von Neumann. This will also provide us with the 
opportunity to prove the Perron-Frobenius theorem on the existence of positive 
eigenvectors of positive matrices and to study the surjectivity properties of M 
matrices. 

11.2 The Von Neumann Model 

We shall begin by studying von Neumann's model, which is largely concerned 
with the production sector. We suppose that there are m commodities to pro
duce and consume and that for this there are n production processes which 
consume these commodities as inputs and produce them as outputs. 

Each production process is implemented with a certain level of activity. The 
state of the economy is then described by a vector x E lRn the component Xi of 
which denotes the level of activity at which the ith production process operates. 
These levels of activity are positive or zero and are normalised, for example, by 
imposing that x belongs to 

Jlv1n := {x E lR~1 tXi = I} 
,=1 

We assume that we are dealing with an economy with constant yields, in 
which inputs and outputs depend linearly on the levels of activity. In other 
words, the economy is described by a pair of matrices F and G from lRn to lRm. 
The coefficient jij of the matrix F represents the quantity of the commodity 
i consumed by the producer j operating at the unit level of activity, whilst 
the coefficient gij of the matrix G represents the quantity of the commodity 1 

produced. 
Let us consider the commodity i. Its total consumption is 
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and its total production is 

n 

(PX)i = L fijXj 
j=l 

n 

(GX)i = LgijXj 
j=l 

(1) 

(2) 

Suppose that the production process is implemented over a period of time. 
Thus, we assume that the consumption of the commodity i at the end of the 
period of production is lower than the production of this commodity at the 
beginning of the period: 

pX1 :s; Gxo (3) 

We shall say that there is balanced growth if the levels of activity increase 
at the same rate, in other words, if there exists a such that 

Xl = (1 + a)xo. (4) 

If such an a exists it is called the balanced-growth rate. Conditions (3) and 
(4) imply that XO is a solution of the inequalities 

(1 + a)fxO :s; Gxo. (5) 

We now consider the transposes of the matrices P and G. We interpret the dual 
IRm* (identified with IRm) as the space of prices p = (pI, ... ,pm), where the 
component pi represents the unit price of the commodity i. These unit prices 
are assumed to be non-negative and are normalised with the assumption that 

P E M m := {p E IR~I 'fpi = I} 
t=l 

Thus, the images P*p and G*p denote the value of the consumptions (inputs) 
and the productions (outputs). The problem is now to find prices such that the 
value of the outputs at the beginning of the period does not exceed that of the 
inputs at the end of the period: 

p*p1 2': G*po. 

We assume that the price pI is related to the price po by 

1 1 ° - - p p - 1 +p 
PI ° 

where p= ~ 
po 

(6) 

(7) 

where p is interpreted as the interest rate. Conditions (5) and (6) imply that po 
is the solution of the inequalities 

(1 + P )P*po 2': G*po. (8) 

We shall solve problems (7) and (8) and show that the interest rate p and 
the balanced-growth rate coincide. 
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Theorem 11.1 (von Neumann). Consider two matrices F and G from IRn 

to IRm satisfying 

(i) the coefficients gij of G are non-negative, but not all zero; 
(ii) 'Ii = 1, ... ,m, E';=I.% > 0; 
(iii) Yj = 1, ... ,n, EZ~1 fij > O. 

Then there exist x E Mn, p E 1\Jm and 0 > 0 such that 

( i) 

( ii) 

( iii) 

oFx:S; Gx 

oF*- > G*p- p 

o(p, Fx) = (p, Gx.) 

(9) 

(10) 

Moreover, 0 is maximal in the sense that if i: E Mn is a solution of AFi: :s; Gi: 
then A :s; O. Also, for all /1 > 0 and all y E IntIR';', ther'e exists i: E IR~ such 
that 

/1Fi: - Gi: :s; y. (11 ) 

We shall deduce this theorem from a more general result due to Ky Fan, in 
which the linearity assumptions are replaced by convexity assumptions. 

We recall that we have previously described the n - 1 simplex of IRn by 

Ain := {x E IR~I tXi = I} 
,=1 

Theorem 11.2. Consider two mappings F and G from Mn to IRm satisfying 

(i) the components fi of f aTe convex and lower semi-continuous; 
(ii) the components gi of g are concave, positive and lower semi-continuous; 
(iii) 3p E kIm such that 'Ix E Mn, (p, F(x)) > 0; 
(iv) 3i: E Mn such that 'Ii = 1, ... , n, gi(i:) > O. (12) 

(a) Then there exist 0 > 0, X E Mn and p E Mm such that 

( i) 

( ii) 

( iii) 

'Ii = 1, ... , n, Ofi(X):S; gi(X) 

'Ix E Mn, (G(x) - of(x),P) :s; 0 

Vi = 1, ... ,n, Pi(ofi(X) - gi(X)) = 0 

(b) The number 0 > Ois defined by 

1 

o 
. f (p, F(x)) 

sup III 
pEMm xEMn (p, G(x)) 

. f (p, F(x)) 
m sup . 

xEMn pEMm (p, G(x)) 

(13) 

(14) 

If A > 0 and x E Mn satisfy thp inpqualities Afi (x) :s; gi (x), 'Ii = 1, ... ,n, then 
A :s; o. 
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(c) For all J.l > 0 and for all y E lnt (IR~), there exist (3 > 0 and x E lyfn such 
that 

Vi = 1, ... , n, J.lfi(x) - 9i(X) ::; {3Yi (15) 

Proof. We begin by defining the number 0 by 

1 . (p, F(x)) 
-:= sup mf o pEMm xEMn (p, G(x)) 

(16) 

which is positive and finite by virtue of assumptions (12)(ii)-(iv). 
Next we consider the mapping of - G from Mn to IRm the components 

o fi - 9i of which are convex and lower semi-continuous. Propositions 1.8 and 
2.6 imply that 

the subset (oF - G)(Mn) + IR~ is closed and convex. (17) 

(a) We note that 
o E (oF - G)(Mn) + IR~ (18) 

Otherwise, following the separation theorem (Theorem 2.4), there would exist 
Po E IRm and c > 0 such that, Vx E Mn, 

o(po, F(x)) - (Po, G(x)) + inf (Po, v) ~ c. 
vElR+, 

This implies that Po E IR~; whence, after dividing by L~l POi and setting 
Po = Pol L::1 POi, we obtain the inequality 

Vx E Mn , O(po, F(x)) - (Po, G(x)) ~ c / ~POi 

But the definition of 0 in (16) implies that 

Vx E M n , o(po, F(x)) - (Po, G(x)) ::; O. 

Thus we have obtained a contradiction. 

(b) Consequently, the inclusion (18) implies that there exists x E Mn such that 

of(x) ::; G(x). (19) 

Taking the scalar product of this inequality in IRm with p E Mm, we obtain 

sup (p, F(x)) < ~ 
pEMm (p, G(x)) - 0 

whence we deduce the minimax equation (14). 

Since Mm is compact and p -+ ~~: ~~:~~ is continuous, there exists p E Mm 

such that 
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1 

6" 
(p, F(x)) 
(p, G(x)) 

. f (p, F(x)) 
m ( . 

xEM" p, G(X)) 

Next we consider x E Mn and A > 0 such that AF(x) :S G(x). Since, for all 
P E Mm, A(p, F(x) (:S)p, G(x)), we obtain 

1 (p,F(x)) 1 - < sup < -
6" - pEM'" (p, G(x)) - A 

(c) Suppose now that IL > 6" and that Y E lnt (IR';'). We define the number (3 by 

(3:= sup inf (P,ILF(x) - G(x)) 
pEM'" xEM" (p, y) 

which is strictly positive since the inequality 

implies that 

We shall prove that 

~ < ~ = inf (p, F(x)) 
IL (\ xEM" (p, G(x)) 

(3 ~ inf (p, ILF(x) - G(x)) 
xEM" (p, y) > o. 

(3y E (ILF - G) (Mn) + IR';' (20) 

If this is not the case, then, since this set is convex and closed, the separation 
theorem (Theorem 2.4) implies that there exist PI E IRm and E > 0 such that 

(3 (PI , y) + E :S (PI, ILF(x) - G(x)) + inlRt (PI, v). 
vE + 

This implies that PI E IR';' and that PI := PI! 2::1 Ph satisfies the inequality: 

(3+E< inf (Pl,ILF(x)-G(x)) <(3 
- rEm" (PI' y) -

which is a contradiction. 
The inclusion (20) implies that there exists x E Mn such that 

ILF(x) - G(]) :S Y 

from which we deduce the minimax equation 

(3 = inf sup (P,ILF(x) - G(x)) 
xEM" pEAt'" () P,Y 

and the existence of ij E Mm such that 

{3 = (ij, ILF(x) - G(x)) 
(ij, y) 

This completes the proof of Theorem 11.2 

(21 ) 

(22) 

(23) 

[J 

Proof of Theorem 11.1. We note that the assumptions (9)(ii) and (iii) imply 
assumptions (12)(iii) and (iv) with p = ~(1, 1, ... ,1) and x = ~(1, 1, ... ,1). [J 
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11.3 The Perron-Frobenius Theorem 

When the dimensions nand m are equal, boundary conditions on F imply that 
the solutions x and x of the inequalities 

8F(x) :s:: G(x) 

and 

J-lF(x) - G(x) :s:: (3y 

are in fact equalities 

8F(x) = G(x) 

and 

J-lF(x) - G(x) = (3y. 

Theorem 11.3. Suppose that F is a mapping from Mn to lRn satisfying 

(i) the components Ii of F are convex and lower semi-continuous; 
(ii) ::Jp E Mn n lnt (lR~) such that Vx E Mn, (p, F(x)) > 0; 
(iii) if Xi = 0 then J;(x) :s:: O. (24) 

Suppose also that G is another mapping from Mn to IRn satisfying 

(i) the components gi of G are concave and upper semi-continuous; 
(ii) Vx E Mn, Vi = 1, ... ,n, gi(X) > O. (25) 

Consider the number /j defined by (14). Then there exist x E Mn n lnt (lR~) 
and p E Mn n lnt (lR~) such that 

( i) 

( ii) 

/jF(x) = G(x) 

Vx E M n , (p, G(x) - 8F(x)) :s:: O. (26) 

If J-l > 8 and y E lnt(lR~) are given, there exist (3 > 0 and x E Mn n lnt(lR~) 
such that 

J-lF(x) - G(x) = (3y (27) 

Proof. We let ej denote the jth element of the canonical basis of lRn. The 
boundary condition (24) (iii) implies that 

Vk t i, fk(e i ) '5:.0 

which, together with the positivity condition (24)(ii), implies that 

Vi = 1, ... ,n, J;(e i ) 2: 0 

(28) 

(29) 
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since, because fJ E Int(lR~), 

fJ;ji(e i) + LfJddei) = (fJ, F(ei) 2 O. 
kli 

(a) Let us now consider the solutions x E 1'.1" and P E Mn of the system 

( i) 

( ii) 

( iii) 

bF(x) ~ G(x) 

\/x E M n , (p, G(x) - bF(:r) ~ 0 

(p, G(x) - bF(x) = 0 

which exist by virtue of Theorem 11.2. 

(30) 

We note firstly that p belongs to the interior of ]R~. Taking x :- ei in 
(30)(ii) and using the fact that gk(ei ) > 0 for all k, it follows that 

bpJ;(ei ) + bLPdk(ei) 2 (p, G(ei) > O. 
kli 

Inequalities (28) and (29) show that Pi > O. We set z := G(x) - bF(x) which 
belongs to lR~ by virtue of (30)(i). Property (30)(iii) may now be written as 
(p, z) = O. 

Since the components Pi are strictly positive, it follows that z = 0 and 
consequently that bF(x) = G(x). Finally, since the components gi(X) are strictly 
positive, the same is true of the components fi(x) of F(x) (since b > 0). The 
boundary condition (24)(iii) then implies that Xi > 0 for all i = 1, ... , n. 

The proof of the second part of the theorem is completely analogous. [] 

The mapping F := 1 clearly satisfies the conditions (24). Thus, we obtain 
the following corollary on the eigenvalues of concave, positive operators. 

Corollary l1.1.Suppuse G is a mapping from A1n to Int(IR:;') the components 
of which are concave and upper semi-continuous. The number b defined by 

1 (p x) 
-. sup inf --'-
b pEcMn xEMn (p, G(x) 

(31) 

is strictly positive and if there exist i E M" and A > 0 such that AX ~ G(x) 
then A ~ b. 

There exist x E M" n Int(lR~) and p E Mn n Int(lR~) such that 

( i) 

( ii) 

bx = G(x) 

\/x E M n , (p, Gx - bx) ~ O. (32) 

If J.L > band y E Int(lR~) are given, there exist (3 > 0 and x E Mn n Int(lR~) 
which are solutions of the equation 

J.Lx - Gx = (3y. (33) 
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When G is a positive matrix we obtain the Perron-Frobenius theorem. 

Theorem 11.4 (Perron-Frobenius). Let G be a matrix with strictly positive 
coefficients. 

(a) G has a strictly positive eigenvalue 15 and an associated eigenvector x the 
components of which are strictly positive. 

(b) 15 is the only eigenvalue associated with an eigenvector of Mn. 
(c) 15 is greater than or equal to the absolute value of any other eigenvalue of 

G. 
(d) The matrix p, - G is invertible and (p, - Gr 1 is positive if and only if 

p,>r5. 

Proof. (a) The existence of 15 > 0, x E Mn n Int(lR~) and '15 E Mn n Int(lR~) 
such that r5x = Gx and G*p - 15'15 ::; 0 follows from Corollary 11.1. In fact, we 
have the equality G*p - 15'15 = 0, since 

(G*p - 15'15, x) = ('15, Gx - r5x) = 0 

and since the components Xi of x are strictly positive. 

(b) Suppose x E Mn and p, are such that Gx = p,x, It follows that 

p,(p,x) = (p,Gx) = (G*p,x) = r5(p,x). 

Since ('15, x) is strictly positive (because x belongs to Mn and '15 E Int(lR~)), the 
previous equality implies that p, = 15. 

(c) Suppose that A is an eigenvalue of G and that Z E lRn is an associated 
eigenvector. The equalities 

imply the inequalities 

n 

AZi = L%Zj 
j=l 

(i=I, ... ,n) 

n 

IAllzil ::; L%lzjl· 
j=l 

If Izi denotes the vector with components IZil, it follows that IAlizl ::; Glzl, 
which implies that IAI ::; 15. 

(d) We know that when p, > 15 the matrix p, - G is invertible, since 15 is the largest 
eigenvalue. We also know that for all y E Int(lR~), the solution (p, - Gr1y 
belongs to Int(lR~), by virtue of the second part of Corollary 11.1. This implies 
that (p, - Gr1 is positive. 

Conversely, suppose that (p,-G) is invertible and that (p, - Gr1 is positive. 
The inequality p, ::; 15 cannot hold, since this would imply the inequalities 

p,x :::; r5x = Gx where x E M n 

and thus also 

-x = (p, - Gr1(Gx - p,x) E lR~ 

since Gx - p,x is a positive vector. Thus p, is strictly larger than 15. D 
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11.4 Surjectivity of the M matrices 

We shall use the following more general result to show that the M matrices 
which we define below are surjective. 

Theorem 11.5. We consider a mapping H from lR~ to lRn satisfying 

(i) the components hi of H aTe convex, positively homogeneous and lower semi·· 
continuous: 

(ii) 3b E lR such that \h E lR~, bXi > hi(x),-
(iii) \Ix E AI", 3q E AI" such that (q, H(x)) > O. (34) 

Then 

\ly E Int(lR~), 3x E IntlR~ such that H(x) = y. (35) 

Proof. We choose a number fL strictly larger than the number b used in as-
sumption (34)(ii). We associate H with the mapping G := fL - H. Corollary 
11.1 implies that there exist 8 > 0 and x E AIn satisfying 

8x = Gx = fLx - H(x), x E l\!r n Int(lR~). 

Since (fL- 8)x = H(x), assumption (34)(iii) implies that 

(11 - 8) (7]. x) = (q, H(x)) > O. 

Since (q, x) is strictly positive, it follows that fL > 8. Again by virtue of Corollary 
11.1, we can associate any y E lnt (lR~) with a strictly positive number (3 and 
i: E AIn n Int (lR~) such that 

Hi: = (11 - G)i: = (3y 

Then x := 5:/13 is the desired solution. [J 

We now deduce the surjectivity theorem for the M matrices. 

Definition 11.1. A matrix H := (hi]) from lR" to itself is called an M matrix 
if the following two conditions are satisfied 

\Ii cI j, hij :::; 0 

\I:r E A1", 3q E AIn such that (q,AIx) > O. 

(36) 

(37) 

Theorem 11.6. Suppose H is a matTix from lRn to lR" satisfying (36). The 
following conditions are eq-uivalent: 

(a) H is an M matrix,-
(b) H is invertible and H- 1 is positive,
(c) H* is invertible and H*-l is positive. 
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Proof. The implication (a)::::} (b) follows from the previous theorem and the 
implication (b)::::}(c) is clear. It remains to show that (c) implies (a). 

Suppose p E Int(1R~) is the solution of the equation H*p = 1 where 1 is the 
vector with components all equal to 1. Then, for all x E Mn, 

n 

(p,Hx) = (H*p,x) = LXi = 1. 
i=l 

Property (37) is satisfied and this implies that H is an M matrix. o 
Remark. There is another criterion for the surjectivity of a matrix: any positive
definite matrix satisfying 

\/x #- 0, (Hx, x) > 0 

is invertible. 



12. n-person Games 

12.1 Introduction 

The fundamental concepts of two-person games extend to n-person games. 
The ith player is denoted by i = 1, ... ,n. Each player i may playa strategy 

Xi in a strategy set Ei. 
We denote the set of multistrategies x := (Xl, ... , xn) by 

n 

E:= II Ei (1) 
i=l 

12.2 Non-cooperative Behaviour 

Let us put ourselves in the place of the ith player. From his point of view, the 
set of multistrategies is considered to be the product of the set Ei of strategies 
which he may choose and the set 

Ei := II Ej 
Hei 

(2) 

of strategies xi = (Xl, ... ,:z;n) of the other players, over which he has no control 
in the absence of cooperatio~. Thus, from the ith player's point of view, the set 
of multistrategies x := (xi, Xi) may be written as the set 

E:= Ei X g (3) 

The choice of the players' strategies may be determined using decision rules. 

Definition 12.1. A decision rule of the ith player is .a correspondence Gi from 
Ei to Ei which associates the f!1ultistrategies Xi E Ei determined by the other 
players with a strategy set Gi(Xi ). 

Once each of the n players i has been described in terms of the decision 
rules G i , as in the case of two-person games, we single out the consistent mul
tistrategies . 

Definition 12.2. Consider an n-person game described by n decision rules c i 

from Ei to Ei. We shall say that a multistrategy x E E is consistent if 
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Vi = 1, ... ,n, Xi E Ci(Xi) (4) 

In other words, the set of consistent multistrategies is the set of fixed points 
of the correspondence C from E to E defined by 

n 

C(x) := II Ci(x1) (5) 
i=1 

Thus, Kakutani's fixed-point theorem immediately provides an existence 
theorem for consistent multistrategies. 

Theorem 12.1. Suppose that the n stmtegy sets are convex, compact subsets 
and that the n decision rules Ci are upper semi-continuous. with non-empty, 
convex, closed values. Then there exists a consistent multistmtegy. 

Proof. We apply Kakutani's theorem (Theorem 9.5) to the correspondence C 
defined by (5) from the convex, compact set E into itself, which is clearly upper 
semi-continuous with non-empty, convex, closed values. 

12.3 n-person Games in Normal (Strategic) Form 

We shall suppose now that the decision rules of the n players are determined 
by loss functions. 

Definition 12.3. A game in normal (stmtegic) form is a game in which the 
behaviour of the ith player is defined by a loss function fi : E -+ lR that 
evaluates the loss r(x) inflicted on the ith player by each multistmtegy x. 

A game described in strategic form may be summarised by the multiloss 
mapping f : E -+ lRn defined by 

Vx E E, f(x):= (f1(X), ... , r(x)) E lRn. (6) 

The associated decision rules are defined by 

-i ': . . .. ': , . ': 
C (x') := {x' E E'If'(x', x') = inf f'(y', x')}. 

y'EE' 
(7) 

Definition 12.4. The decision rules cf associated with the loss functions fi 
by (7) are called the canonical decision rules, A multistmtegy x E E which is 
consistent for the canonical decision rules is called a non-cooperative equi
librium (or Nash equilibrium). 

This definition leads to the following characterisation. We introduce the 
function ¢ : E x E to lR defined by 

n 

¢(x,y):= ~]f'(xi,x1) - fi(yi,x1)). (8) 
i=1 
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Proposition 12.1. The following assertions are equivalent: 

(a) x E E is a non-cooperative equilibrium; . 

(b) 'Vi = 1, ... ,71, 'Vyi E E i , rCf',xi ) S P(yi,xi ); 
(c) 'Vy E E, ¢(x, y) SO. (9) 

The equivalence of (9)(a) and (9)(b) follows immediately from the definitions. 
The implication (9)(b)=}(9)(c) is obtained by adding the inequalities 

!,(xi,xi ) - !,(y', xi) < leqO. 

To prove that (9)(c) implies (9)(b), we fix i and take y:= (yi,T). 
The inequality ¢(x, y) S 0 may be written as 

(10) 

fi(x\xi) - fi(yi,xi) + Lfj(xJ,Xl) - fj(yj,x1) S O. (ll) 
#i 

Now, x = {xj,xl } = {yj,xl } whenever j cI i. Thus, (ll) implies that 

'Vyi E Ei, fi(xi,Xi) S fi(yi,xi). 

Theorem 12.2 (Nash). We suppose that 

and that 

'Vi E N, the sets Ei are convex and compact 

'Vi E N, the functions fi are continuous 

and the functions yi --+ fi(yi, Xi) are convex 

Then there crists a non-cooperative eq1Lilibrium. 

Proof. The theorem follows from Ky Fan's theorem (Theorem 8.6). 
We have introduced the set E and the function ¢ defined by 

n 

( i) E = IT Ei 
;=1 

n 

( ii) ¢(x,y) = ITUi(xi,Xi ) - fi(y\xi)). 
i=1 

(12) 

(13) 

(14) 

The set E is convex and compact, since it is the product of convex, compact 
sets Ei (by assumption (12)). Moreover, assumptions (13) clearly imply that 
the functions x --+ ¢(x,y) are continuous and that the functions y --+ CP(x,y) 

are concave. Thus, Ky Fan's theorem implies that there exists x = {T, Xi} E E 
such that 

sup¢(x,y) S sup¢(y,y) = 0 (15) 
yEP' yEE 

since ¢(y, y) = 0 for all y. 
Proposition 12.1 may then be applied. [] 



192 12. n-person Games 

12.4 Non-cooperative Games with Constraints 
(Metagames) 

Here, we consider a game defined by both decision rules Ci : Ei -+ Ei and loss 
functions P : E -+ IR. 

We associate these with the canonical decision rules defined by 

c1(xi) := {Xi E Ci(xi)lt(xi, xi) = inf. P(yi, Xi)} (16) 
yiEC'(xi ) 

We shall say that the consistent multistrategies are social equilibria of the 
metagame. It is easy to adapt the proof of Theorem 12.1 to this new game. 

For this, we set 

n 

( i) E:= II Ei 
i=l 

n 

( ii) ¢(x,y) := '2Jfi (xi ,Xi ) - t(yi,Xi )) 
i=l 

n 

( iii) C(x) := II Ci(xi). 
i=l 

Proposition 12.2. The following assertions are equivalent 

(a) x E E is a social equilibrium; 
(b) \:Ii = 1, ... , n, :z;i E Ci(xi) and \:Iyi E Ci(xi), ftf, xi) ~ P(y\ xi); 

(17) 

(c) x E C(x) and \:Iy E C(x), ¢(x, y) ~ O. (18) 

Proof. The proof is left as an exercise. The existence of a social equilibrium 
then follows from Theorem 9.14. 

Theorem 12.3 (Arrow-Debreu-Nash). We suppose that 

\:Ii E N, the sets Ei are convex and compact (19) 

and that 

\:Ii E N, the correspondences C i from I1#i Ej to Ei 

are continuous with non-empty, convex, closed values. (20) 

Lastly, we assume that 

\:Ii E N, the functions fi are continuous 

and the functions yi -+ fi(yi, Xi) are convex. 

Then there exists a social equilibrium. 

(21) 

Proof. The set E is convex and compact. The correspondence C is clearly 
continuous with non-empty, convex, closed values. 
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The function ¢ is continuous and for all x E E, the function y -+ ¢(x, y) is 
concave. Moreover, ¢(y, y) = 0 for all y E E. 

( i) 

( ii) 

Theorem 9.14 implies that there exists x E X such that 

n 

- {-I -n} C(-) II Ci(-i) ;Y = .r, ... ,x E x = x 
i=1 

C/J(x, y) SO, Vy E C(x) 

Proposition 12.2 may then be applied. 

12.5 Pareto Optima 

(22) 

D 

As in the case of two-person games, we single out Pareto optima when the 
players are permitted to exchange information and to collaborate. 

Definition 12.5. A multistrategy x E E is said to be Pareto optimal if there 
are no other multistrategies x E E such that 

Vi = 1, ... , n, r(x) < r(x). (23) 

We also saw in the case of two-person games that there may be a number 
of Pareto optima. There thus arises the problem of choosing these optima. For 
example, one might attribute a weight Ai ;::: 0 to each player. 

If the players accept this weighting, they may agree to collaborate and to 
minimise the weighted function 

n 

J>,(:r;) := L Xir(x) (24) 
i=1 

over E. If the vector A with components Ai is not zero, we note that any mul
tistrategy x E E which minimises f>,(x) 'is a Pareto minimum. For, if this were 
not the case, there would exist x satisfying the inequalities (23). Multiplying 
these by Ai ;::: 0 and summing them, we obtain the contradiction f>,(x) < f>,(x). 

If the n players could be made to agree on a weighting A, we would no longer 
have a game problem proper but a simple optimisation problem. However, it 
is interesting to know the conditions under which any Pareto optimum may be 
obtained by minimising the function f:,., associated with a weighting A which is 
borne in some way by this Pareto optimum. This question has a positive answer 
if we apply convexity assumptions. 

Proposition 12.3. Suppose that the strategy sets Ei are convex and that the 
loss functions .t : E -+ IR are convex. Any Pareto optimum x may be associated 
with a non-zem weighting A E IRn such that x minimises the function f>, over 
E. 

Proof. Proposition 2.6 implies that 
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f(E) + lk: is convex (25) 

We then note that an element x E E is a Pareto minimum if and only if 

f(x) ~ f(E) + lk: (26) 

Thus, we may use the large separation theorem (Theorem 2.5) to see that there 
exists A E IRn, A =I 0, such that 

(A,f(x)) = inf ((A,f(x)) + (A,U)). 
xEE uElk: 

It follows that A is positive and that x minimises x ---+ f>..(x) = (A, f(x)) on E. 
o 
Remark. A Pareto minimum also minimises other functions. 

For example, we introduce the virtual minimum Q defined by its components 

exi := inf ji(X). 
xEE 

(27) 

We shall say that the game is bounded below if Vi = 1, ... ,n, ex i > -00. 

In this case, we take (3i < exi for all i and set (3 := ((31, ... ,(3n) E IRn. 

Proposition 12.4. Suppose that the game is bounded below. 
An element x E E is a Pareto minimum if and only if there exists A E ill: 

such that x minimises the function g).. defined by 

1· . 
g)..(x) := i2i~~n AJf'(x) - (3') (28) 

over E. 

Proof. (a) If x E E minimises g).. on E and is not a Pareto minimum, we could 
find x E E satisfying the inequalities (23). Subtracting (3i, and multiplying 
by fr and taking the maximum of the two terms, we obtain the contradiction 
g)..(x) < g)..(x). 

(b) If x is a Pareto minimum, we take Ai = fi(x) - (3i > 0 such that 
g)..(x) = 1. If there were an x E E such that g)..(x) < g)..(x), then we would 

have maxi=1, ... ,n (j:~;~=~:) < 1 which would imply the inequalities (23). 0 

We can also define conservative strategies for the players. We set 

f'~(Xi) := sup f'(x i, xi) (29) 
xiEEi 

We shall say that xi" E Ei is a conservative strategy for the ith player if 

f'~(Xi~) = inf. sup t(xi, xi). 
xtEEZ xiEEi 

(30) 
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and we shall say the number vf defined by 

v;:= inf sup f(xi, xi). 
x1EEt xiEE,7 

(31) 

is the conservative value of the game. As in the case of two-person games, 
this conservative value may be used as a threat, by refusing to accept any 
multistrategy x such that 

f(:E) > vr (32) 

since by playing a conservative strategy Xi~ the loss fi(Xi~, Xi) is strictly less 
than P(x). 

Suppose that 
\-I' - 1 ~ i vZ - , ... , n, Vi > a . 

(the conservative value is strictly greater than the virtual minimum). 
Consider the function go : E ---+ lR defined by 

go(x) = max fi(X) - a i 

z=l •.... n v~ i. -a 

Proposition 12.4 (with (P = a i and ,\i = v; - ail implies that 

(33) 

(34) 

if J:o E E minimises go on E, then Xo is a Pareto minimum. (35) 

If d:= minxEE go(x), it follows that Xo minimises go on E if and only if 

Vi, ... ,n, f(J:b)::; (1 - d)vf + dai' (36) 

This property suggests that such choices of Pareto optima should be viewed 
as best compromise solutions. 

Other methods of selection by optimisation involve minimising functions 

x ---+ 8 (fl~X) - a 1
, ... , r~x) - an) 

VI - (tl Vn - an 
(37) 

on E, where the function .5 satisfies the following increasing property 

if ai > bi for all i, then 8(0.) > s(b). (38) 

It is easy to show that any x E E which minimises (37) is a Pareto mini
mum. We also note that the function (37) remains invariant whenever the loss 
functions f are replaced by functions adi + bi , where ai > O. 

We also say that by replacing the functions f by the functions gi 

g'(x) = f(x) - a i 

~ 
Vi - a i 

(39) 

we have 'normalised' the same game. For the normalised game the virtual min
imum is zero and the conservative value is 1. 
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12.6 Behaviour of Players in Coalitions 

We denote the set of n players by N and write SeN to denote a coalition of 
players. As a member of a coalition S, a player i E S will modify his behaviour. 
For example, we suppose that he cooperates with the players of the coalition 
S and that he does not cooperate with the players of the adverse coalition 
S := N\S. In other words, the player i E S, as a member of the coalition S, 
assumes that the players j E S of the adverse coalition will maximise his loss. 

For this, we set 

ES := II E i , ES := II Ej ( 40) 
iES jrt.S 

and it is convenient to make the following identifications: 

(i) E = ES x ES, x = (xS,xS) where (ii)x s E ES , xS E ES 

(ii) t(x) = t(xs,xS). (41) 

Thus, the behaviour of the player i as a member of the coalition S is described 
by the loss function f~ : E S --+ IR by 

f~(xS):= sup F(xS, yS). ( 42) 
ySEES 

When S reduces to a single player i, this definition is compatible with that of 
fi~ given in (29). 

We let cs denote the operator from IRn to itself defined by 

{ ri if i E S 
(cs . r)i:= 0 if i rt. S ( 43) 

and set 
IRs .~ IRn IRs.~ IRn Ths.~ IRo n 

.~cS· , +.~cs· +, m+.~cs· +. ( 44) 

Thus, the behaviour of the players i of the coalition S is described by the 
multiloss mapping r1 from ES to IRs defined by 

r~(xsy := { f~(xS) if i E S 
o if i rt. S 

( 45) 

Consider now a multistrategy x E E and a player i. As a member of the 
whole coalition, he incurs a loss P (x). As a member of the coalition S, his loss 
is f~(xS) in the worst case. 

If all the players i of the coalition S can find a strategy yS E E S such that 

Vi E 5, f~(Ys) < t(x) ( 46) 

they will reject the multistrategy x, form a coalition S and choose the mul
tistrategy yS. Consequently, for the multistrategy x to be accepted by all the 
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players, it must be the case that whatever the coalition S, there is no multi
strategy yS E E S such that the inequalities (46) are satisfied. 

This leads us to make the following definition. 

Definition 12.6. We shall say that the core of the game is the set of multi
strategies x E E which are accepted by all non-empty coalitions SeN, in 
the sense that 

VS, it is not the case that (3 ys E ESIVi E S, f~(yS) < t(x)). (47) 

This concept is not void, since we shall prove the following theorem due to 
Scarf (1971). 

Theorem 12.4. We suppose that the strategy sets Ei are convex and compact 
and that the loss functions P : E -+ IR are convex (with respect to all the 
variables) and lower semi-continuous. Then the core of the game is non-empty. 

In fact, for clarity, we shall get rid of the strategy sets and loss functions 
and retain only their images in the space of multilosses. 

For this. we set 

VS c N, W(S):= f~(ES) c IRs. ( 48) 

It then follows that x belongs to the core of the game if and only if its multiloss 
r:= f(x) satisfies 

( i) 

( ii) 

r E W(N) 
o S 

V SeN, Cs' r if W (S) + IR+ 

We then note that the problem (49) is equivalent to the problem 

( i) 

( ii) 

r E W(N) + IR~ 
o S 

VS c N, Cs' r if W(S) + IR+ 

( 49) 

(50) 

Any solution of (49) is clearly a solution of (50), let us consider a solution r 
of this latter problem. Then r may be written as ro + rl where ro E W(N) 
and rl E IR~ and we note that ro satisfies the conditions (49)(ii); for otherwise, 
there would exist Sand 7'2 E W(S) + IR! such that Vi E s, ri = rOi + rli > 

• 0 S 
7'2i + rli > r2i, III other words 7' E W(S) + IR+. 0 

By setting V(S) := W(S) + IR.!, we may thus assume that the sets V(S) 
satisfy the property V (S) = V (S) + IR!. 

12.7 Cooperative Games Without Side Payments 

In 1971, Scarf deduced the above theorem from a famous theorem which he 
proved in 1963 on the non-emptiness of a game defined solely by the multiloss 



198 12. n-person Games 

sets V(S) of each coalition S. With Nash's theorem (1951), this is one of the 
two major theorems of game theory. For a long time it remained a very difficult 
theorem to prove, until, in 1973 Shapley gave a simple proof based on Theorem 
9.15, which he conceived and proved just for that purpose. 

Thus, you will appreciate that the discovery of these theorems and their 
original proofs required considerable effort on the part of their authors (Nash, 
Scarf, Shapley) not to mention originality and intelligence. If they now feature 
in this master's level book it is because, little by little, over two decades, work to 
understand these results and developments in nonlinear analysis have enabled 
us to unravel Ariane's threads and to find direct approaches. Much exploration 
of unknown territory was needed to find better signposted paths leading with
out excessive difficulty to an understanding of these theorems. 

Definition 12.7. A cooperative n-person game without side payments is de
scribed by the introduction for every non-empty subset S of N of a non-empty 
subset V(S) of IRS satisfying 

V(S) = V(S) + IR! (51) 

A multiloss r E IRN is said to be accepted if, for any coalition S, there is no 
rS E V(S) such that rf < ri for all players i in S. The core of the game is the 
set of multilosses of V(N) accepted (by all the coalitions). 

We denote the set of multilosses r accepted by all coalitions by A. Since 

V(S) + tR! is the set of multilosses which are not accepted (thus rejected) by 
the coalition S, we note that the set A of accepted multilosses may be written 
in the form 

A:= n comp(cs·)-l(V(S) + tR!) (52) 
SeN 

This is a closed set. Thus, the core of the game is equal to 

C(N) := V(N) n A (53) 

We must show that this intersection is non-empty. The idea is to consider the 
sub cores 

C(T) := (crTIV(T) n A (54) 

of the multilosses of the coalition T accepted by all the others. We shall prove 
the following theorem: 

Theorem 12.5. Suppose that the subsets V(T) are closed and bounded below. 
Then there exists a balanced family T3 of coalitions such that 

nrEBC(T) f 0 (55) 

We shall prove a theorem to show that the core is non-empty under the 
following assumptions. 
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Definition 12.8. We shall say that a game is balanced, if for any balanced 
family H, we have n (cr-)-IV(T) c V(N). (56) 

TEB 

Theorem 12.6 (Scarf). Suppose that the game is balanced and that the subsets 
V(T) are closed and bounded below, Then the core of the game is non-empty. 

Proof of Theorem 12.5. The idea is simple, namely to apply Theorem 9.15. 
We cannot do this directly since the subsets C(T) are not contained in the 

simplex. But C(T) is contained in V(T) n comp(V(T) + lR~) which is the 
Pareto surface of V(T) and which is intuitively isomorphic to the simplex MT. 
We shall explain all this. 

First we note that 

" A c IIl- oo,vil where Vi:= infV({i}) (57) 
i=1 

since, for coalitions with one player 

comp(C{irrl(V( {i}) + lR+) = {r E IRrlri -s: Vi}' 

Normalising by the condition 

Vi E N, Vi:= infV({i}) = 0 (58) 

so that A c - IR~ changes nothing in the game. 
Then, since the sets V(T) are bounded below, there exists a finite number 

O'i ;::: 0 such that 
-(ti := inf inf ri 

S3i rEV(S) 
r::;O 

Consequently, the set A of the accepted multilosses is bounded: 

n 

A c III - 00, -ad 
i=1 

We set 
p := n sup O'i > O. 

i=l, ... ,n 

We change nothing in the game by taking p = 1. 

(59) 

(60) 

(61) 

Let us now consider an element x of the simplex and the straight line x+ IRl. 
Since the sets V (S) satisfy the condition 

V(S) = V(S) + IR~ 

it follows that 

if (J -s: 7 then {x - (J1 E A c=} x - 71 E A}. (62) 
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Fig. 12.1. 

Moreover, we note that if x - T1 belongs to A, then T is positive. 
Thus, we may associate every x E Mn with the number T(X) 20 defined by 

T(X) := inf{Tlx - T1 E A}. (63) 

Let us for the moment accept the following lemma, 

Lemma 12.1 The mapping T from Mn to lR+ is continuous. 

We then define the subsets 

FT := {x E MnlcT' (x - T(x)l) E V(T)}. (64) 

Since V(T) is closed and T is continuous, the subsets FT are closed. Suppose 
for a moment that there exist a balanced family B and x E Mn such that 

xE n FT 
TEB 

(65) 

Then, by the construction of T and the FT we have proved Theorem 12.5, since 

x - T(x)l E n C(T) (66) 
TEB 

Thus, we must prove (65), for which we must apply Theorem 9.15, that is 
to say verify the assumption 

\IT c N, MT C U Fs 
SeT 

Consider firstly the case where T = N. We have 

M n c U Fs 
SeN 

(67) 

(68) 
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In fact, we may write 

T(X) = ~~~TS(X) (69) 

where 
TS(X) ;= inf{TI(:r - TI) E compcs -I. (V(S) + lk!)} (70) 

Thus, we may associate any element x E Nf" with a coalition S such that 
T(X) = TS(X). whence such that x - T(x)l = x - Ts(x)l E (Cs-)-I(V(S)). 

Consider now the case when T cJ N. Since MT c Af" C USCN Fs , it is 
sufficient to prove that 

if MT n Fs cJ 0, then SeT (71) 

to verify that the assumption (67) is satisfied. 
Thus, we take x in AfT n Fs. We shall show that Vi E S, Xi > 0, which 

will imply that SeT. Since .1; belongs to MT and since T cJ N, there exists a 
player io E T for which 

1 
(72) X;o > -

n 

Moreover, since x - T( x) 1 belongs to A, then 

Vi = 1, ... , n, Xi - T(X) ::; O. (73) 

These two inequalities imply that 

1 
- < T(X) 
n 

(74) 

Since x also belongs to Fs, then Cs . (x - T(x)l) belongs to V(S) , whence, 
following the definition of Ct; in (59), we obtain the inequalities 

1 
Vi E S, -ni::; Xi - T(X) < Xi - -. 

n 

Since n sup Qi = 1, it follows that 

Vi E S, Xi> 0 

(75) 

(76) 

and thus that S n comp T = 0, in other words, SeT. Assumption (67) is 
satisfied, there exist 1; and 13 such that (65) is satisfied and Theorem 12.5 holds 
and has been proved. 0 

Proof of Lemma 12.1. We let n denote the complement of A which satisfies 
the property n + lk: = n. We consider the cone x - T(x)l + lk:, which is 
contained in n and the cone :r - T(:r) 1 - lR~ which is contained in A. 

Consider a sequence X'I converging to x. 
We set 

( i) 

( ii) 

tn ;= sup{tlxn - t1 E :r - T(x)l + lR:} 
8" ;= inf{slxn - sl Ex - T(x)l -lR~} (77) 
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Xn 

Fig. 12.2. 

It then follows that 
tn :=; T(Xn) :=; sn (78) 

It suffices now to note that Sn and tn tend to T( x) as Xn tends to x. 0 

Proof of Theorem 12.6 (Scarf). Following Propositions 1.8 and 2.6, we know 
that the subsets V(S) := f~(ES) + lR! satisfy 

V(S) is closed, convex and bounded below. (79) 

Thus, Theorem 12.5 applies to the V(S). o 
To prove Theorem 12.4 from Theorem 12.6, we must show that this game 

is balanced. 
This will follow from Proposition 12.5, below. We recall that we defined 

balancings (Definition 9.9) as vectors m = (m(S))SCN satisfying 

m(S) ~ 0, Vi = 1, ... ,n, Lm(S) = 1 (80) 
SOli 

or alternatively 

m(S) ~ 0, CN:= L m(S)cs (81) 
ScN 

where Cs denotes the characteristic function of the coalition S. 

Proposition 12.5. Suppose that the strategy sets Ei and the loss functions 
Ji are convex. Then ,for any balancing m = (m(S))SCN and any family of 
multistrategies xS E E S, we have the inequalities 

Vi E N, t ( L m(s)xs) :=; L m(S)f~(xS). 
ScN SOli 

(82) 

Proof of Theorem 12.4. It is sufficient to show that the game is balanced. 
For this, we take r E nsEs(cs·)-lV(S) where B is a balanced family associated 
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with the balancings m(S) > O. Thus, we may associate every SEE with a 
multistrategy J;s E E S such that 

VS E E, Cs' r 2: fl(xS ). (83) 

We take xN := LSCN m(s )XS, which is a multistrategy in E. Since LS3i m(S) = 
1, it follows from Proposition 12.5 that, for all i E N, 

ri = L m(S)ri 2: L m(S)f~(xS) 2: F(xN) (84) 
S3i S3i 

whence that r E f(x N ) + lR~ c V(N). D 

Proof of Proposition 12.5. Consider a balancing m = (m(S))SCN and two 
players i and j. We observe firstly that 

since 

L m(T) = L m(S) 

1 Lm(S) = Lm(S) + L m(S) 
S3i S:::J{ i,j} 

L m(T) = L m(T) + L m(T) 
T)] T~] 

T75i 
T:::J { i,j} 

(85) 

N ow we consider !llultistrategies X S E E S . We shall associate these with 
multistrategies y; E Ei defined by 

'11.1 i't, y;:= ( L m(T)XT,j) / ( L m(s)). (86) 
T3j,T15i S)i,S15j 

From equation (48) y! belongs to Ej since the latter is convex. If S :3 i and 
j i' i we set ' 

We note that for j i'i, 

. j 
Lm(S)(xS,yf) 
S3i 

s· . 
y; = (yDjES E ES. 

L m(S)xS,j + L m(S)y~ 
S:::J0J} ~~ 

S~j) m(S)xH! + ~ (~m(T)XT! / ~ m( S) ) 

L m( S)xS,j + L m(T)xT,j 
S:::J{i,j} T3J 

Tt" 

Lm(T)xT,j 
T3j 

(87) 
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if j = i, then, clearly, 
, i 

Lm(S)(xS,yr) = Lm(S)xS,i. 
S3i S3i 

Thus, we have established the equality 

'Vi E N, L m(S)(xs, yf) = L m(S)xs. (88) 
S3i SeN 

Since l:S3i m( s) = 1, the convexity of the loss functions fi implies that 

fi( L m(S)xS) t(L m(S)(xS, yf)) 
SeN S3i 

< L m(S)t(xS, yf) 
S3i 

< L m(S)ft(xS) 
S3i 

o 
Suppose that the players in the coalition S decide to combine their losses. 

The best worst-loss of the coalition S is then defined by 

w(S):= inf, L ft(xS). (89) 
xSEES . 'ES 

Corollary 12.1 We suppose that the assumptions of Proposition 12.5 are in 
force. Then 

w(N) <::; L m(S)w(S). (90) 
SeN 

Proof. Following Proposition 12.5 

L fi( L m(S)xs) :S L L m(S)ft(xS) 
~N SeN ~NS~ 

L m(S) L ft(xS). 
SeN iES 

Next we choose x S E E S such that 

L ft(xS) :S w(S) + C / L m(S). 
~s ~N 

Then xN := l:seN m(S)xS E E and we have 

w(N) :S L fi( L m(S)xs)) 
iEN SeN 

< L m(S) L ft(x S ) 

SeN SeN 
< L m(S)w(S) + c 

SeN 
o 



12.8 Evolutionary Games 205 

12.8 Evolutionary Games 

We regard the probability simplex 

AI" := {X E IR~ I ~ Xi = 1 } 

as the set of mixed strategies of the evolutionary game. Such games provide 
equilibria of dynamical systems which we shall built. We begin with systems for 
which we know the growth rates gi (.) of the evolution without constraints (also 
called "specific growth rates"): 

V i = L ... , n, x;(t) = Xi(t)gi(X(t)) 

We set g(x) := (gl(xd, ... ,gn(Xn )) and x 0 g(x) := (Xlgl(Xl), ... ,xngn(xn)). If 
the map x E Mn -+ x 0 g(x) E IRn does not satisfy the tangential condition 

v x E Mn, x 0 g(x) E TMn(x) 

which boils down to 
n 

V,rEM", LXigi(X) 0 
i=1 

thanks to formula (44) of chapter 4, we cannot us theorem 9.4 for obtaining the 
exitence of an equilibrium. But we can correct this situation by subtracting to 
each initial growth rate the common "feedback control u(·)" (also called "global 
flux" in many applications) defined as the weighted mean of the specific growth 
rates 

because 

n 

V x E Mn,u(x) := L :r:jgj(x) 
j=1 

n 

V x E Mn, L:ri(gi(x) -u(x)) := 0 
i=1 

Hence, we replace the initial dynamical system by 

{
Vi =. 1, ... , n, x;(t) = Xi(t)(gi(X(t)) - u(x(t))) 

= Xi(t)(gi(X(t)) - Lj'=l Xj(t)gj(x(t))) 

called replicator system (or system under constant organization) by the biolo
gists who introduced these games. 

Remark. There are other methods for correcting a dynamical system to make a 
given closed subset a viability domain. A general method consists in projecting 
the dynamics onto the tangent cone (see variational inequalities of chapter 9.) 
Here, we have taken advantage of the particular nature of the simplex. 
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An equilibrium 0: of the replicator system is thus a solution to the system 

'V i = 1, ... , n, O:i(gi(O:) - u(o:)) = 0 

Such an equilibrium does exist, thanks to Theorem 9.3. These equations imply 
that either O:i = 0 or gi( 0:) = u( 0:) or both, and that gio (0:) = u( 0:) holds true 
for at least one i o. We shall say that an equilibrium 0: is nondegenerate if 

'V i = 1, ... , n, gi(O:) = u(o:) 

Equilibria 0: which are strongly positive (this means that O:i > 0 for all i = 

1, ... , n) are naturally non degenerate. 
We shall say that an equilibrium 0: is evolutionary stable if and only if the 

property 

n 

::I T/ > 0 such that x E B(O:,T/), x =I- 0:, Lgi(X)(O:i - Xi) > 0 
i=l 

holds true in a neighborhood of 0:. Let us consider the function V" defined on 
the simplex Mn by 

n 

V,,(x) :- II Xfi :- II Xfi 
i=l iE1a 

where we set 00 := 1 and I" := {i = 1, ... ,n I O:i > O}. Such an equilibrium is 
called evolutionary stable because 

1. 0: is the unique maximizer of V" on the simplex Mnl, 

2. starting from an equilibrium 0: E Mn, the solution x(·) to the replicator 
system satisfies 

t -+ V" ( x ( t )) is increasing 

since 
d n 

dt V,,(x(t)) = V,,(x(t)) t;(O:i(t) - Xi)gi(X(t)) > 0 

in a neighborhood of 0:. 

IThis follows from the concavity of the function 'P := log: Setting 0 log 0 = 0 log 00 = 0, 
we get 

t CYi log :i = L CYi log :' ::; log (L Xi) ::; log 1 = 0 
i=l 7, Cti>O '/, Qi>O 

so that 
n n 

LCYilogxi ::; LCYilogCYi 
i=l i=l 

and thus, Va(x) ::; Va(cy) with equality if and only if X = CY. 
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Therefore, whenever the equilibri'um is evolutionary stable, x(t) converges to the 
equilibrium a. Indeed, the Cauchy-Schwarz inequality implies that 

( 
n )2 (n ) ( n ) E Xigi(X) <::: E Xi j; Xigi(X)2 

n 

L Xigi(X)2 
i=1 

and thus, 
n 

\I t :;, 0, Lgi(X(t))X;(t) :;, 0 
i=1 

Therefore, whenever a ElvIn is a nondegenerate equilibrium, 

{ 
1t V,,(x(t)) = LiE!" &.~i Va(x(t))x;(t) 

( )) x/(t) 
= V", x(t LiE!" ait{t) 

and 
n X;( t) n E ai Xi(t) = E(ai - Xi(t))gi(X(t)) 

Example: Replicator systems for linear growth rates. The main class 
of examples is provided by linear growth rates 

n 

\li=l, ... ,n, gi(X) :- LaijXj 
j=1 

Let A denote the matrix the entries of which are the above aij's. Hence the 
global flux can be written 

n 

\I X E M n , u(x) L aklXkXl = < Ax, x> 
k.l=l 

Therefore, first order replicator systems can be written 

n n 

\Ii = 1, ... ,n, x;(t) = xi(t)(LaijXj(t) - L aklxk(t)XI(t)) 
j=1 k,I=1 

Such systems have been investigated independently in population genet
ics (allele frequencies in a gene pool) theory of prebiotic evolution of 
self replicating polymers (concentrations of polynucleotides in a dialysis reac
tor) sociobiological studies of evolutionary stable traits of animal behav
ior (distributions of behavioral phenotypes in a given species) population 
ecology (densities of interacting species). In population genetics, Fisher- Wright
Haldane's model regards the state x E Mn as the frequencies of alleles in a gene 
pool and the matrix A := (aiJ)i,j=L .. ,n as the fitness matrix, where aij repre
sents the fitness of the genotype (i,j). In this case, the matrix A is obviously 
symmetric and we denote by 

u(X) :=< Ax,x > the avemgefitness 
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In the theory of prebiotic evolution, the state represents the concentrations of 
polynucleotides. It is assumed in Eigen-Schuster's "hypercycle" that the growth 
rate of the ith-polynucleotide is proportional to the concentration of the pre
ceding one: 

Vi = 1, ... , n, gi(X) CiXi-l where X-I := Xn 

In other words, the growth of polynucleotide i is catalyzed by its predecessor by 
Michaelis-Menten type chemical reactions. The feedback u(x) = L~l CiXiXi-l 
can be regarded as a selective pressure to maintain the concentration. The 
equilibrium Cl: of such a system is equal to 

1 n 1 
( )

-1 

Vi = 1, ... , n, Cl:i - L - where Cn+l := Cl 
CHI j=l Cj 

First order replicator systems also offer a quite interesting model of dynamic 
game theory proposed in 1974 by J. Maynard-Smith to explain the evolution 
of genetically programmed behaviors of individuals of an animal species. We 
denote by i = 1, ... ,n the n possible "strategies" used in interindividual com
petition in the species and denote by aij the "gain" when strategy i is played 
against strategy j. The state of the system is described by the "mixed strategies" 
X E Mn, which are the probabilities with which the strategies are implemented. 
Hence the growth rate gi(X) := L']=1 aijXj is the gain obtained by playing strat
egy i against the mixed strategy x and u(x) := L~j=l aijXiXj can be interpreted 
as the average gain. So the growth rate of the strategy i in the replicator system 
is equal to the difference between the gain of i and the average gain (a behavior 
which had been proposed in 1978 by Taylor and Jonker.) In ecology, the main 
models are elaborations of the Lotka- Volterra equations 

Vi = 1, ... ,n, x;(t) = Xi(t) (aiD + f aijXj(t)) 
)=1 

where the growth rate of each species depend in an affine way upon the number 
of organisms of the other species. A very simple transformation replaces this 
system by a first order replicator system. We compactify IR~ by introducing 
homogeneous coordinates. We set Xo := 1 and we introduce the map 

X· 
Vi = 0, ... ,n, Yi:= ~ 

Lj=1 Xj 

from IR~ onto sn+l, the inverse of which is defined by Xi :- y;jyo. We set 
aOj = 0 for all j, so that Lotka-Volterra's equation becomes 

Vi = 1, ... ,n, y; Yi (f aijYj - f aklYIYk) 
yo j=O k,l=l 
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because 

I x; Xi 2.= X' ( n ) ( n ) 
Yi 2.=:rj ~(2.=X); Xi '2;aijXj YO~Xi LaklXlXk Y6 

J J-O kJ=O 

This is, up to the multiplication by l..., i.e., up to a modification of the time 
Yo 

scale, a (n + 1 )-dimensional first order replicator system. So, first-order replica-
tor systems appear as a common denominator underlying these four biological 
processes. 



13. Cooperative Games and Fuzzy Games 

13.1 Introduction 

Let us consider a set N of 11 players and the set V(N) of subsets of players S. 
Cooperative games are those which take into account not only the behaviour of 
the players but also that of coalitions of players. Thus, we require a completely 
different formalism from that used for non-cooperative games. From the be·· 
ginning, theorists of cooperative games have wrestled with difficulties resulting 
from the finite nature of V(N). The structure of this set is too weak and the 
results relating to it are either trivial or very difficult. Several attempted ap-· 
proaches have involved increasing the number of players by various means. For 
example, one such approach involved taking the interval [0, 1] as the set of play-· 
ers (the interval is called the continuum of players). This technique, which was 
first used by R. Aumann, is one which physicists have used since the invention 
of differential calculus. 

13.2 Coalitions, Fuzzy Coalitions and Generalised 
Coalitions of n Players 

We denote the set of 11 players by N. 
The first definition of a coalition which comes to mind is that of a subset of 

players SeN. Thus there are 2n coalitions. However, although the number of 
coalitions rapidly becomes important, it remains finite which prevents us from 
using analytical techniques. 

In defining mixed strategies, we saw a first example of the 'convexification' 
of a finite set. 

We shall study a natural way of 'convexifying' the set V(N) of coalitions of 
11 players. For this, we identify the set of coalitions V(N) with the set {O, 1 V' 
with the aid of the set characteristic functions 

S E V(N) --t Cs E {O, IV' 

where Cs, the characteristic function of S, is defined by 

{
I ifiES 

cs( i):= ° if i ~ S 

(1) 

(2) 
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Since {O,lr is a subset of lRn , we can take its convex hull, which is the 
cube [0, It. We shall call any element c of [0, It which is defined by 

c: i E N -+ c(i) E [0,1] (3) 

a fuzzy subset of N. The number c( i) E [0, 1] is called the level of membership 
(of i) of the fuzzy subset c. 

This concept of the fuzzy set was introduced in 1965 by L.A. Zadeh. Since then, 
it has been wildly successful, above all in many areas outside the mathematical com
munity. In this age of anti-scientific reaction, the adjective 'fuzzy' must have raised 
some people's hopes of being able to escape from the constraints of rigour to which 
mathematicians are subjected. Whilst the latter are wary of fuzziness could this not 
offer a way of avoiding the punishing logical consistency of scientific reasoning, with
out a bad conscience? Did not the author of Caroline cherie and Les corps tranquilles 
(J. Laurent) recently entitle his last novel Les sous-ensembles fious (Fuzzy Subsets)? 

Beyond such anecdotes - and the rather unkind reflections on snobbery which they 
may evoke - it is useful to reflect on the power of words and the harm which may 
result from word play. The success of catastrophe theory outside mathematics must 
be associated with this phenomenon. At this time of collective pessimism and end-of
the-world atmosphere, was not scientific support for this made even more legitimate 
when the originator of catastrophe theory won the Fields medal, the mathematician's 
equivalent of the Nobel prize? However, all this is as nothing compared with the 
alarming word play around the concept of entropy, which takes a cowardly advantage 
of the difficulty of this notion. Must pervading ideologies be no longer viable for the 
second law of thermodynamics to be raised to a quasi-religious statute? 

That this is no exaggeration is proved by J. Rivkin's book, the title of which, 
Entropy, is repeated three times in flamboyant colours. To see this, we need only read 
the titles of the last paragraphs: 

Entropy: a new world in view, Toward a new economic theory, Third world de
velopment, Domestic redistribution of wealth, A new infrastructure for the solar age, 
Values and institutions in an entropic society, Reformulating science, Reformulating 
education, A second Christian education, Facing the entropy crisis, From despair to 
hope. 

This is so scandalous that a famous professor of mathematics at the Ecole Poly
technique has formulated the third law of thermodynamics: "Any sophistical expla
nation of the second law of thermodynamics is a foolish affirmation" . 

Since we have interpreted any subset of N as a coalition of players, we shall 
interpret any fuzzy subset c of [0, It as a fuzzy coalition of players and each 
number c( i) as the level of participation of player i in the fuzzy coalition c. 
Player i participates fully in c if c( i) = 1, does not participate at all if c( i) = ° 
and participates in a fuzzy way if c(i) E]O, 1[. 

The interest of the concept of fuzzy coalitions in political games is clear for 
all to see! 

Since the set of fuzzy coalitions is the convex hull of the set of coalitions 
any fuzzy coalition may be written in the form 

c = L m(S)cs where m(S) ~ 0, L m(S) = 1. (4) 
SEV(N) SEV(N) 
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The levels of participation of the players are then defined by 

c(i) = Lm(S) (i=l, ... ,n). (5) 
S3; 

Thus, if m(S) is interpreted as the probability of the formation of the coalition 
S, the level of participation of player i is the sum of the probabilities of the 
formation of the coalitions S to which i belongs. 

But why stop there? Why not model non-cooperative behaviour of the ith 
player by a negative level of participation? 

2 3 C 2,3 C N 
C2 1:>777777))7A CN I ~ 2 C3 I C1,3 

I ...-
I ...-

C2J.. 
...-

...- ---:;,?C1,2 
./ ...-

lI::..-

Co C1 Co C1 

N = (1,2). Coalitions and fuzzy 
coali tlOns of 2 players 

N = (1,2,3r Coalitions and fuzzy 
coali tlOns 0 3 players 

Fig.13.I. Coalitions and fuzzy coalitions of players. (a) N (1,2), 2 players, 
(b) N = (1, 2, 3),3 players. 

Definition 13.1 A generalised coalition of n players is defined to be any 
element of the cube [-1, + 1 r of functions c : N --+ [-1, + 1] which associate 
each player i with his level of participation c(i) E [-1, +1]. 

A positive level of participation is interpreted as cooperative participation of 
the player i in the coalition, whilst a negative level of participation is interpreted 
as non-cooperative participation of the ith player in the generalised coalition. 

We can also enrich the description of the players by representing each player 
i by what psychologists call his 'behaviour profile'. Let us explain this. 

We consider g 'behavioural qualities' k = 1, ... , g, each with a unit of mea·· 
surement. For example, k 1: intelligence, k 2: patience, 
k = 3: creativity, etc. vVe also suppose that a behavioural quantity can be mea .. 
sured (evaluated) in terms of a real number (positive or negative) of units. A 
behaviour profile is a vector a = (a], ... , aq ) E IRq which specifies the quantities 
ak of the g qualities k attributed to the player. Thus, instead of representing 
each player by a letter of the alphabet, he is described as an element of the 
vector space IRq. 

We then suppose that each player may implement all, none, or only some 
of his behavioural qualities when he participates in a social coalition. For ex .. 
ample, suppose that we have retained the two qualities k = 1: intelligence and 
k = 2: patience. A player may implement these two qualities in different ways, 
according as to whether he is participating in the Fraternal Society for Social 
Psychology, the Anglers' Association or the Association of Belote Players. In 
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the first case, we assume that he implements the two qualities in full, while in 
the second case he does not use his intelligence at all but proves his patience 
to the full and in third case he uses half of the potential of each of these two 
qualities. 

This translates to the statement that the level of participation (or, in the 
terminology of social science 'the degree of actualisation') of his behaviour pro
file is (1,1) in the first case, (0,1) in the second case and (1/2,1/2) in the third 
case. 

We note (and this is important) that the level of participation is independent 
of the behaviour profile. 

More precisely, we introduce the following concept: 

Definition 13.2 Consider n players represented by their behaviour profiles in 
IRq. Any matrix C = (Cik ) describing the levels of participation Cf E [-1, +1] 
of the behavioural qualities k for the n players i is called a social coalition. 

qualities 
quality 1 quality k quality q 

players 
.. . ... 

player 1 C1 
1 Cf Ci 

player i C1 , Cf cq , 

player n C1 
n Ck 

n 
cq 

n 

The q rows represent the levels of behavioural participation of the q players. 
The set of all social coalitions which it is possible to construct is the 

qn-dimensional hypercube [-1, +l]qn. 
If the players are described by their behaviour profiles ai = (ai, ... , ai, ... a~) 

E IRq, the qualities brought into play by a social coalition C E [-1, + 1 Fn are 
equal to 

Vi = 1, ... ,n, (CikaUk=1 E IRq. , ... ,q (6) 

For example, let us consider three players and two qualities (intelligence and 
patience) and the social coalition: 

1 2 
Xavier 1/6 1 
Yvette 3/4 1/4 
Zoe 1 0 

Xavier brings 1/6 of his intelligence and all his patience to bear. Yvette uses 
3/4 of her intelligence and 1/4 of her patience. Zoe shows all her intelligence 
but is not patient (nor is she impatient). 
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aX 

aY 

aZ 

Suppose that the behaviour profiles of our three players are: 

(6, -3) 
(4,4) 
(-3,11) 

(Xavier is intelligent and quick tempered) 
(Yvette is intelligent and patient) 
(Zoe is not very smart but has the patience of an angel) 

The behaviour profiles effectively implemented by this social coalition will 
be: 

bX (1, -3) = G ·6,1· (-3)) 

Y (3 1 ) b (3,1)= 4.4'4.4 

bZ (-3,0) = (1· (-3),0 ·11). 

We note that a social coalition of n players is simply a generalised coalition 
of nq subplayers (i, k) formed by the kth quality of player i. 

Patience 

Zoe 

aZ 

I 
I 

I 
/ 

/ 

I bz 

-3 

-3 

/ 
/ 

r Profile of Zoe implemented in 
/ the social coalition 

/ 

Yvette l aY 
.... .- Profile of Yvette implemented in 

_,.., the social coalition 

~""bY 

Intelligence 

bX aX 
_ 4 

.~, Xavier-
"-
'- Profile of Xavier implemented in 

the social coalition 

Fig. 13.2. 
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13.3 Action Games and Equilibrium Coalitions 

Consider n players i = 1, ... ,n. We suppose that the behaviour of the ith player 
entails acting on the environment to transform it. 

The environment is described by: 

a convex closed subset L of a finite-dimensional vector space X (7) 

and the action of the ith player is described by 

a continuous mapping fi from L to X. (8) 

We also suppose that 

the action of a generalised coalition c E [-1, + 1 r on the environment 

is described by the continuous mapping L~=l cdi from L to X. (9) 

Definition 13.3. We shall say that a state of the environment x ELand a 
generalised coalition c E [-1, +lr form an equilibrium if 

n 

Lcdi(x) = o. (10) 
i=l 

Such a state of the environment i; is not modified by the action of the 
generalised coalition c E [-1, + 1 r. 
Theorem 13.1. Suppose that L is compact and that 

n 

't/x E L, 3c E [-I,+lt such that LCifi(x) E TL(X). (11) 
i=l 

Then there exists an equilibrium state i; and coalition c E [-1, + 1 t . 
Proof. We apply Theorem 9.4 to the set-valued map C defined on the convex 
compact set L by 

C(X) := {tCdi(X)} 
,=1 cE[-l,+lr 

(12) 

which is clearly upper semi-continuous with convex compact values. The as
sumption (11) says that the tangential condition is satisfied. There exists a 
state of the environment x E L such that 0 E C(x) which, by virtue of (12), 
implies the existence of a generalised coalition c satisfying (10). D 

We shall complicate this model slightly by assuming that any state of the 
environment x E L inflicts a loss (Pi, x) on each player i = 1, ... , n, where 
Pi E X* is a linear form on X. 
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By interpreting ffin as the space of multilosses of the n players, we suppose 
that the survival of the n players requires that the multilosses be confined to a 
set M. 

Thus, we require that a state of the environment should obey the additional 
constraints: 

((Pi, x) )i=l n E M. (13) 

Theorem 13.2. We suppose that assumptions (7) and (8) are satisfied and that 

K := {x E LI(13) holds} is compact. (14) 

We also suppose that 

\/x E L, the matrix of coefficients (Pi, h(x)) is negative semi-definite. (15) 

Then there exists an equilibrium state of the environment x E L satisfying the 
constraints (13) and a generalised (equilibrium) coalition 15: 

(i) 
(ii) 

x ELand ((Pi, x) )i=l"n E M 
2::?=1 Cdi(X) = O. (16) 

Proof. We use Theorem 9.8, where Y = ffin and the operator A is defined by: 

AI; := ((Pi, x) )i=L,n (17) 

and where the role of the parameters P is played by the generalised coalitions 
c E [-1, +W =: P. Assumption (36) of Chapter 9 in Theorem 9.8 follows from 
assumption (15) since 

\c,A (ECdk(X))) = i~l(Pi,fk(X))CiCk S; O. 

The other assumptions of Theorem 9.8 are clearly satisfied. Thus, we deduce 
the existence of x and c satisfying the conditions (16). ::J 

Remark. (Pi,.!k (x)) may be interpreted as the marginal loss inflicted on the 
player i by the action of the player k on the state of the environment x. As
sumption (15) implies that for each player i, the marginal loss (Pi, j;(x)) which 
follows from his own action is not positive. 

Remark. These models may be given a dynamic interpretation by considering 
the equilibrium states i E L as the stationary points of the differential equation 

n 

Xl (t) = L Ci(t )fi(x( t)) (18) 
i=l 

where the generalised coalitions c( t) play the role of control parameters. 
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13.4 Games with Side Payments 

A game with side payments is described by a loss function v (called a charac
teristic function) defined on the set of coalitions: 

v: D(N) -+ lR. (19) 

The problem here is how to partition the loss v(N) of the set of players 
amongst all the players, 

n 

find s = (S1,"" Sn) E lRn such that LSi = v(N). (20) 
i=1 

We interpret the elements s E lRn as multilosses. 
The goal which game-theory specialists gave themselves was to find a fair 

distribution of the loss v(N) taking into account the results of the cooperation 
of the players as described (a priori) by the characteristic function of the game. 
We shall of course give examples of cooperative games with side payments. 

But, before that, we shall define the notions of fuzzy games and generalised 
games with side payments which are described by loss functions defined on the 
sets [0, It and [-1, +It of fuzzy and generalised coalitions, respectively. 

Since the number + 1 which we have chosen to define set characteristic func
tions and fuzzy coalitions is arbitrary, it is clear that this function should depend 
only on the relative levels of participation; in other words, it should be positively 
homogeneous. 

Definition 13.4. A generalised sharing game with side payments is defined to 
be a function v from lRn to lR U { +oo} satisfying 

(i) v is positively homogeneous; 
(ii) v is Lipschitz in the neighbourhood of CN = (1, ... ,1); 
(iii) v(cs) < +00 for any coalition SeN. 

We shall say that the subset 

M := {s E lRnlVc E lRn, (c, s) ::; v(c)} 

(21) 

(22) 

is the set of multilosses accepted by all the coalitions of players since, for any 
generalised coalition c, the loss L~=1 SiCi = (c, s) imputed to the coalition c in 
a pro rata fashion, based on the levels of participation of the players does not 
exceed the loss v(c) attributed to this coalition a priori. 

The conjugate function v* defined by 

v*(s) = sup ((c,s) -v(c)) (23) 
cEIRn 

is the indicator function of the set M of accepted multilosses. 
We shall impose a number of axioms, which must be respected by any rule 

for sharing out V(CN) with a priori knowledge of the losses inflicted on any 
generalised coalition c. 
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A share-out rule is, by definition, a set-valued map which associates with 
any game v a subset S(v) of multi losses in lR". 

Efficiency (Pareto) Axiom. This simply says that the multi losses s of S( v) 
form a partition of v (CN ): 

" 
Vs E S(v), L S; = V(CN)' (24) 

;=1 

Symmetry Axiom (or Axiom of A Priori Justice). Consider a permuta
tion 8 : N -+ N of the set of n players, which defines the order in which these 
players play. The action of 8 on the function v is defined by: 

(8 * v)(c) := V(CO-1(1),"" CO-1(n)) (25) 

and the action of 8 on the multiloss 8 E lRn is defined by 

(8*8);=80(;) Vi=1, ... ,n. (26) 

The symmetry axiom states that the share-out rule does not depend on the 
order in which the players are called to play, in the sense that 

for any permutation 8, S(8 * v) = 8 * S(v). (27) 

Atomicity Axiom. If P := (Sl,"" Sm) is a partition of the set N of n players 
into m non-empty subsets of players Sj, any game v with n players may be 
associated with the game PDv of m players defined by 

(PD1,)(d1 , ... , dm ) := V(C1"'" Crt) where Ck = dj when k E Sj. (28) 

Any n-loss s E lR" is associated with the m-loss P08 E lRm by the formula 

(POS)j:= L Sk j = 1, ... ,m. (29) 
kES] 

The atomicity axiom states that 

S(POv) = PDS(v). (30) 

Dummy Player Axiom. Consider a superset M :=l N of m players and an n
person game v. This is associated with an m-player game 7rM Llv by the following 
formula. If C denotes the projection of lRm onto lRn, we set 

(7r.1\1Llv)(d) := v(C· d), Vd E lRm (31) 

and 
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(7l'M Lls). '= {Sj if j E N J . . o if j ~ N J = 1, ... ,m. (32) 

In other words, the players in M who do not belong to N are dummy. 
The dummy player axiom ensures that the redundant players receive noth-

ing: 
S(7l'MLlv) = 7l'MLlS(v). (33) 

Before we introduce a share-out rule in the general case (which demands a 
knowledge of the generalised gradients described in Chapter 6), we shall begin 
with two special cases which extend the concepts of the Shapley value and the 
core to the case of generalised games. 

Example 1. Shapley Value of Regular Games. If v is continuously differ
entiable at CN = (1, ... ,1), we shall say that the game described by v is regular 
and we define the Shapley value of the regular game v to be the gradient of v 
at CN: 

S(v) := V'V(CN) E lRn. (34) 

The loss Si := S (V)i attributed to the ith player is the marginal loss which 
he incurs by belonging to the coalition of all the players. It in some way measures 
the role of the player i as a pivot. 

The Shapley value defines a share-out rule. In fact, since v is positively 
homogeneous, we know that, setting s := S(v), 

n 

LSi = (s,c) = (V'V(CN),CN) = V(CN)' 
i=l 

It is easy to check that the symmetry, atomicity and dummy player axioms 
hold for the Shapley value. In fact, we associate a permutation e with the matrix 
A = (an defined by 

aI = 1 if j = e-1(i) and aI = 0 if j #- e-1(i). (35) 

Since 
e*v=voA, e*s=A*s and ACN=CN, (36) 

it follows that 

s(e * v) = V'(v 0 A)(CN) = A*V'v(AcN) = e * S(v). (37) 

Similarly, we associate any partition P = (Sl, ... , Sm) with the linear oper
ator B from lRm to lRn defined by 

(Bd)i = dj whenever i E Aj • (38) 

Since 
PDv = v 0 B, PDs = B*s and BCM = CN (39) 
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it follows that 

S(PDV) = \7(v 0 B)(CM) = B*\7v(BcM) = B*S(v). (40) 

Finally, we associate any superset 1\;1 =::J N with the matrix G from ffim to ffin 
which is the projection of ffiTn onto ffin. Since 

7rMLlv = v 0 G, 7rMLls = G*s and GCM = CN, ( 41) 

it follows that 

S(7rMLlv) = \7(v 0 G)(cAd = G*\7V(GCM) = 7rMLlS(v). (42) 

Example 2. Weighting Game. We associate any weighting k = (k1, ... , kn ) E 

ffin with the function Ik defined by 

( 
n ) l/Ikl 

Ik(C):= g C~i where Ikl := kl + ... + kn ( 43) 

(where, by convention, 00 = 1). We note that 

( ki ) 
Shk) = IkI i=l, .... n 

(44) 

since a~i Ik(C) = Tkrlk(C)C;l whenever Ci > O. 
In this weighting game, the Shapley value leads us to share v( CN) = 1 

proportionally according to the weight of each player. 

We are now in a position to characterise the Shapley value by a system of 
axlOms. 

Proposition 13.1. Let V be the set of games with side payments generated by 
the weighting games Ik as k runs through the set Nn of integer vectors. 

Then the mapping S : v E V -+ S (v) E ffin is the unique linear operator 
which satisfie8 the efficiency, symmetry and atomicity axioms. 

Proof. Suppose ¢ is a linear mapping from V to ffin which satisfies the efficiency, 
symmetry and atomicity axioms. 

Consider an integer vector k = (k1, ... , kn) E Nn and the games Ik and lik' 
with nand Ikl players, defined respectively by 

n ) l/Ikl ( Ikl ) l/Ikl 
Ik(C) = (g C~i and likl(d) = II dj (45 ) 

The efficiency and symmetry axioms imply that 

Ikl 1 
vj = 1, ... , k, ¢hl )J = 1kI' 
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If P is the partition of the set of k players into n subsets Sl of kl players, 
... , Sn of kn players, we note that "Ik = PD"Iikl. The atomicity axiom then 
implies that 

'" Ikl '" 1 ki 
¢("(k)i = D ¢("(l )j = D -Ikl = -Ikl = S("(k)i· 

JESi JESi 

Since Sand ¢ are linear and coincide on the basis of M formed by the games 
"Ik, they are equal. D 

Example 3. Core of Subadditive Games. We shall say that the generalised 
game described by a function v is subadditive if 

VC1, C2, V(Cl + C2) ::; V(Cl) + V(C2). ( 46) 

Since v is positively homogeneous, this is equivalent to saying that 

the loss function is convex. ( 47) 

We note that such games are a translation of the idea that unity makes for 
strength. In fact, if Sand T are two disjoint coalitions, CS+CT is the characteristic 
function of S U T and inequality (46) leads to the inequality 

V(CSUT)::; v(cs) +V(CT) ( 48) 

which states that the loss incurred by the union of two disjoint coalitions is less 
than or equal to the sum of the losses incurred by each coalition separately. 

Proposition 13.2. Suppose that the function v which describes the game is 
subadditive. Then the subdifferential av( CN) is the set (non-empty) of accepted 
multilosses s E M into which v( CN) may be partitioned. 

aV(CN) = {s E MI ~Si = V(CN)}. ( 49) 

Proof. To say that s belongs to av( CN) is equivalent to saying that for all 
C E IRn , 

V(CN) - v(c) ::; (s, CN - c). (50) 

Taking C = ;'CN, this inequality implies that 

(1- ;')(V(CN) - (S,CN))::; O. 

Choosing).. = +1/2 and)" = -1/2, it follows that, on the one hand, 

n 

V(CN) = (S,CN) = LSi (51) 
i=l 

and, on the other hand, taking into account (50), 
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Vc E IRn , (S, c) S; V(C) (i.e. S EM). (52) 

Conversely, (51) and (52) clearly imply (50). o 

We define the core of the subadditive game v to be the subdifferential of v 
at CN 

S(V) := 8V(CN) C IRn. (53) 

This defines a natural share-out rule. If the game is both regular and subaddi
tive, then the core consists of the single Shapley value, since in this case 

S(V) = 8V(CN) = {\7V(CN)}' (54) 

We note that the Shapley value and the core of a generalised game are two 
special cases of a single concept, which we shall now define. 

Definition 13.5 Suppose we have a generalised game with side payments defined 
by a function v. We define the solution of the game to be the generalised 
gradient of v at the characteristic function eN of the set of all the players 

S(V) := 8V(CN) C IRn. (55) 

Thus, this coincides with the Shapley value when the game is regular and 
with the core when the game is subadditive. 

The solution S(v) defines a share-out rule. 

Theorem 13.3. The solution S( v) satisfies the efficiency, symmetry and 
dummy player- axioms, together with the pmperties 

(i) 
(ii) 

VA 2: 0, S(Av) = AS(v) 
5(v) + V2) c 5(v)) + 5(V2)' (56) 

Proof. This follows from the properties of generalised gradients. The efficiency 
axiom follows from the fact that v is positively homogeneous (see Proposi
tion 6.11, formula (45)). Since the matrices A associated with the permutations 
e by (35) and the projections C from IRm onto IRn associated with the extensions 
M :=> N are surjective, llsing properties (36) and (41) we obtain 

s(e * v) = 8(v 0 A)(CN) = A*8v(AcN) = e * S(v) (57) 

and 
S(JrNLlv) = 8(v 0 C)(CN) = A*8v(CCN) = JrMLlS(v). (58) 

Formulae (57) and (58) now imply the symmetry axiom and the dummy player 
axiom. o 

Remark. The properties (39) and Proposition 6.11 imply that 

S(PDV) C PDS(v). (59) 
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Equality (the atomicity axiom) only occurs under additional regularity assump
tions. For example, when v is subadditive, Corollary 4.3 implies that the core 
of a game satisfies the atomicity axiom 

S(PDV) = PDS(v) for all partitions P (60) 

together with the additivity property 

S(VI + V2) = S(Vl) + S(V2)' (61) 

The solution scheme also satisfies all the properties of the generalised gra
dient described in Chapter 6. 

The notion of the solution S( v) := ov( CN) makes the coalition of all players 
CN playa privileged role. We note that for any coalition c E Int Dom v, the gen
eralised gradient ov(c) provides a subset of multilosses s E IRn which partition 
the losses of the coalition c, since 

Vs E ov(c), (c, s) = v(c). (62) 

The converse question then arises. Does a given multiloss s belong to the 
generalised gradient OV (c) of a coalition c? 

Theorem 13.4. Suppose P is a convex compact subset contained in the inte
rior of the domain of the junction v. Any accepted multiloss s E M may be 
associated with a generalised coalition c E P such that 

s E ov(c) + P-. (63) 

Proof. We apply Theorem 8.6 (Ky Fan) to the function ¢ defined by 

¢(c, d) := (d, s) - Dcv(c) (d) (64) 

which is concave in d and lower semi-continuous in c (see Theorem 6.1) and 
which satisfies ¢(c, c) = (c, s) - Dcv(c)(c) = (c, s) - v(c) ::; 0 when s belongs 
to the set M of accepted multilosses. Since the set P is compact, Ky Fan's 
Inequality implies that there exists c E P such that 

Vd E P, (d, s) ::; Dcv(c)(d) = u(ov(c), d). 

This implies that s E ov(c) + P-. o 

Example 4. Core of Market Games. Consider a (Hilbert) strategy space X 
and 

n nontrivial, convex, lower semi-continuous 

loss functions from X to IR U { +00 }. (65) 
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Suppose we have 
n vectors Yi EX. (66) 

Suppose that c E IR~ is a fuzzy coalition. We define the set K(c) of allocations 
of the fuzzy coalition c by 

{ 
n n n } 

K(c):= x E II 10xi = 0CiYi . 
,"-1 I-I ,-1 

(67) 

This means that in participating in the fuzzy coalition with a level of participa
tion Ci, the ith player (consumer) offers CiYi. The loss function of the coalition 
c will be defined by 

f(c, x) := L cdi (Xi) . 
Ci>O Ci 

Thus, the minimum los8 function of the fuzzy coalition C is defined by 

v(c):= inf L cdi (Xi) . 
J:E'K(c) Ci>O Ci 

We shall say that v describes a fuzzy market game. 

Lemma 13.1. Suppose that 

\Ii = 1, ... , n, Yi E Int (Domfi). 

Then we may write 

v(c:) := sup (L Ci( (p, Yi) - ft(P))) 
pEX* (;i>O 

and the supTemurn is attained at a point Pc E X* . 

Proof. We apply Corollary 5.2 with X = X", Y := X, 

n n n 

Acx = L CiXi, J}e = - L CiYi, !c'(x):= L cdi(xi) and M = {O}. 
iccl 1=1 i=1 

Assumptions (70) imply that 

-Yc E lnt (Ac Dom fe) 

for any fuzzy coalition c. 
Thus, we have 

v(c) - inf U;( -A~p) - (p, Ye)) 
pEX' 

- inf (L cdt( -p) + (p, L CiYi)) 
pEX' 

Ci>O Ci>O 

sup L Ci( (p, Yi) - ft(p)) 
pEX* Cj>O 

(68) 

(69) 

(70) 

(71) 
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and there exists if at which the maximum of this problem is attained. 0 

Whence, it follows that the function v is convex. Proposition 4.4 enables to 
calculate 8v( eN ); in other words, the core of the fuzzy market game. 

Proposition 13.3. Suppose that the assumptions (70) are in force, whence 

Vi = 1, ... ,n, Yi E Int (Dom fi)' 

We set 

P(N):= {p E Plv(CN) = ~fi(Xi) = ~(-(P'Yi) - fi*(-P))} . (72) 

Then the core of the fuzzy market game is equal to 

S(v) = co{((P,Xi - Yi) + fi(Xi))i=l, ... ,nhEP(N). (73) 

13.5 Core and Shapley Value of Standard Games 

Consider a standard game with side payments defined by a function w from 
D(N) to IR. 

We may associate this with a solution scheme whenever we have a means 
associating w with a fuzzy game or with a generalised game 7rW by taking S(7rw). 

Thus, there are as many solution schemes as methods of extending a game 
to a fuzzy game. We shall introduce two methods which will lead to the concepts 
of the core and the Shapley value. 

Core of a Standard Game 

Consider a game defined by a function w from {O, 1 r to IR. We associate this 
with the set M of accepted multilosses defined by 

M := {s E IRnlVS c N, LSi:::; w(S)}. (74) 
iES 

Definition 13.6. We define the core C( w) of the game w to be the set of 
accepted multilosses s E M such that L~=l Si = w(N). 

This notion is compatible with that of Definition 12.2. The game with side 
payments w described by the function w is associated with the game without 
side payments defined by the sets 

V(S) := {r E IRS I L ri ;::: w(S)}. 
iES 
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This suggests associating W with a fuzzy subadditive game which has the same 
set of accepted multilosses. 

We shall say that the generalised game JrW defined by 

JrW(C) := sup(c, s) (75) 
sEM 

is the 'subadditive covering' of the game w, which is the support function of the 
set of accepted multi losses of the game w. 

We always have the inequalities Jrw(cs) ::; w(S) for any coalition S. 
We shall say that a game is balanced if 

w(N) = JrW(CN)' (76) 

Proposition 13.4. The core C (w) of a game is non-empty if and only if it is 
balanced. In this case, 

C(W) = S(Jrw). 

Proof. (a) If.5 E M belongs to C(w), then 

JrW(CN) 2: (CN, 05) = w(N). 

Thus, the game is balanced since we know that Jrw(CN) ::; w(N). 

(b) If the game is balanced, the set S(Jrw) is non-empty and clearly coincides 
with C(w). D 

We note that the set M is of the form A-1(w - P), where A : lRn --+ lR2n- 1 

is defined by As = ((cl',s)hCN' w := (W(T))yCN and P := lR!n-l. Then 
formula (70) of Chapter 3 allows us to write the support function JrW of the set 
/1.1 in the form 

JrW(C) = inf ((rn,w) - (rn,u)). 
A*nl=C 

uEP 

Since A'rn = LTCN rn(T)cT, we obtain 

mil (c) inf L m(T)w(T) 
m(T)20 TCN 

C L rn(T)cT. 
TcN 

In particular, taking C = eN, the formula becomes 

JrW(CN) = inf{ L rn(T)w(T), rn is a balancing} 
TcN 

(see Definition 9.9). 
To say that the game is balanced is then to say that 

w(N) ::; L m(T)w(T) for all balancings m. 
TcN 
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Example. The following corollary may be deduced from Theorem 12.1 

Corollary 13.1. Consider a game defined in strategic form by n convex strategy 
sets and n convex loss functions and associate it with the cooperative game 
defined by 

w(T):= inf L f~(xT). 
xTEET iET 

Then its core is non-empty. 

Shapley Value of a Standard Game 

We shall use an extension X which associates every standard game w with a 
regular game XW. We associate every coalition 8 c N with its characteristic 
function Cs E {O, 1 r and the weighting function 

( ) 
1/ISI 

"is(c) := "ics(c):= IT Ci where 181 = card(8). 
zES 

(77) 

We associate every coalition 8 with the functionals 

o:s(w) := L (_l)lsHTlw(T). (78) 
TcS 

We define the extension operator X by 

xw(C) = L o:s(whs(c). (79) 
ScN 

Lemma 13.2. The 2n functions "is satisfy 

C = { 1 if T => 8 
"is ( T) 0 if 8 n comp T "10 (80) 

and XW interpolates w in the sense that 

\/8 c N, xw(cs) = w(8). (81) 

Proof. Formula (80) is self-evident. We calculate 

XW(CT) L o:s(WhS(CT) 
ScN 

L o:s(w) 
SCT 
L L(-l)ISHRlw(R) 
ScT RcS 

L ( L (_l)ISHRI) w(R). 
RcT RcScT 
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Since there are C~i=i~i) coalitions S between Rand T with lSI elements, it 
follows that 

L (_l)IS I-IRI 
ReSeT 

L (ITI-IRI) 
IRI"SISI"SITI lSI - IRI (_l)ISI-IRI 

L (ITI-IRI) 
O"Sk"SITI-IRI k (_l)k 

(1 - l)ITI-IRI 

{ 0 if IRI < ITI 
1 if IRI = ITI. 

Thus, we have shown that xw( CT) = w(T). D 

Since xw is continuously differentiable, it follows that ¢ = SoX is a linear 
mapping from the space W := RV(N) of standard games into lRn. 

Definition 13.7. We shall say that the mapping ¢ defined by 

'VW E W, ¢(w):= S(xw) E lRn (82) 

is the Shapley value. 

We saw that SbT)i = 1/1TI if i E T and 0 otherwise and we thus deduce 
that the ith component of the Shapley value of a game w is defined by 

1 
¢(W)i = L -I 100T(w). 

niT 

The following two propositions are independent. 

Proposition 13.5. The Shapley value is given by the following formulae: 
'Vi = 1, ... ,n, 

¢(W)i L (ITI - l)!~n - ITI)! (v(T) - v(T - {i})) 
T3i n. 

~ L(v(Te(i)) - v(T~(i))). 
n. e 

where, when 8 is one of the n! permutations of the set of players N, 

(83) 

(84) 

Te(i) = {j18(j) :S 8(i)} and T~(i) = {jI8(j) < 8(i)}. (85) 

Proof. Formulae (78) and (83) imply that 

¢(W)i L ~ L (_l)ITI-ISl w (S) 
ni ITlseT 

( 
(_l)ITI-ISI) L w(S) L . 

SeN T:::JSU{i} ITI 
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We set 

J-Li(S):= L 
T:JSU{i} 

( _l)ITI-ISI 

ITI 
(86) 

If S does not contain i, then R = S u {i} does contain it. Thus, it is easy to see 
that 

J-Li(S) 
L (-1 )ITI-IRI+1 

T:JR ITI 

Whence, we may write 

L 
T:JR=RU{i} 

-J-Li(R) 

( _l)ITI-IRI 

ITI 

-J-Li(S U {i}). 

q;(W)i L J-Li(S)W(S) 
SeN 

L J-Li(S)W(S) + L J-Li(S)W(S) 
S3i S~i 

L J-Li(S)W(S) - L J-Li(S U {i} )w(S) 
S3i S~i 

LJ-Li(W(S) - w(S - {i})) 
S3i 

since, for any coalition S which does not contain i, we may write SU{ i} = T-{ i} 
where T does contain i, and vice versa. 

Next we must calculate J-Li(S) when S :3 i. There are exactly C~i=,'~D coali
tions T between Sand N. Thus, we obtain 

J-Li (S) L ( -1) ITHsl 

SeTeN IT 
L (_l)ITI-lsl (INI-ISI) r1 xlT1-1dx 

ISISITISINI ITI - lSI io 

l L (_l)t-S(n-s) rlxt-ldx 
o sStSn t - s io 

[XS- 1 L (_l)t-S(n-s)Xt - sdX 
oSt-sSn-s t - s t xS- 1(1 - xt-Sdx. 

But we know how to calculate this integral: 

J-Li(S) = l x ISI - 1(1 - xt-IS1dx = (lSI - l)!(n - lSI)! 
o , . n. 
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This gives the first formula. To derive the second formula, we fix a coalition 
T and i E T. The number of permutations n! such that T = Te(i) is equal to 
(ITI-1)!(n -ITI)!, since the members of T - {i} and N - T may be arbitrarily 
permuted. 0 

This formula may be interpreted by the following scenario. We fix one of 
the n! permutations of the players at random (with probability 1,). For a per-n. 
mutation B, we consider the difference between the losses v(Te(i)) - v(T~(i)), 
which we interpret as the loss of the ith player in this ordering. Then, the ith 
component of the Shapley value is the mathematical expectation of these losses. 

As in the case of generalised games, the Shapley value may be justified by 
a system of axioms, which we define below: 

Efficiency Axiom 
n 

L ¢(W)i = w(N). (87) 
i=l 

Symmetry axiom If B is a permutation, and if B * w is defined by (B * w) (S) = 
w(B(S)), then 

¢(B*w)=B*¢(w). (88) 

Redundant-players axiom A player i is said to be redundant if'VS C N, v(S) = 

v (S u {i} ). The axiom states that 

for any redundant player, ¢( W)i = O. (89) 

Proposition 13.6 The Shapley value is the unique linear operator from W to 
IR" which satisfies the efficiency, symmetry and redundant-players axioms. 

Proof. Lemma 13.2 shows that X is an isomorphism from W to the space 
generated by the 2" functions IS. Thus, the functions Ws = X-l,S form a basis 
for W. They are defined by 

Ws T = { 1 if T:J S 
c () 0 if S n comp T yf 0 (90) 

and any function w may be written in the form 

w = L as(w)ws. (91) 
SeN 

Firstly, the Shapley value dearly satisfies the three axioms. Suppose that 
7jJ is another linear operator from W to IR" which also satisfies these axioms. 
It is sufficient to show that ¢ and 1/) coincide on the elements of the basis of 
W formed by the Ws. Let us consider Ws. If i does not belong to S, then i is 
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a redundant player for the game Ws; in fact, if T => S, then T U {i} => Sand 
ws(T) = ws(TU{i}) = 1. If SncompT -=J 0, then Sncomp(TU{i}) -=J 0 since 
i does not belong to S. Thus, ws(T) = ws(TU {i}) = O. Whence, 

if i t4 S, then 'lj!(WS)i = O. (92) 

Suppose now that i and j belong to S and that 8 is a permutation which 
interchanges i and j and leaves the other players unchanged. Then 8(S) = S, 
whence 8 * Ws = Ws. The symmetry axiom implies that 

'lj!(WS)i = 'lj!(8 * WS)i = 8 * 'lj!(WS)i = 'lj!(ws)j. 

Lastly, the efficiency axiom implies that 

n 

L 'lj!(WS)i = L'lj!(WS)i = ws(N) = 1. 
i=1 

It then follows that 

iES 

1 
if i E S, then 'lj!(WS)i = lSI. 

Whence, we have obtained 

\fi=l, ... ,n, 'lj!(WS)i=¢(WS)i 

This completes the proof of Proposition 13.6. 

(93) 

(94) 

o 
Example: Simple Games. A game W is simple if for any coalition SeN we 
have w(S) = 1 (winning coalition) or w(S) = 0 (losing coalition) and any 
coalition of winning coalitions is again a winning coalition. In this case, the 
terms v(T) - v(T - {i}) either have value 0 (if T and T - {i} are both losing 
coalitions or if T - i is a winning coalition) or value 1 if T is winning coalition 
and T - {i} is a losing coalition. 

We shall denote the set of winning coalitions S such that S - {i} is a losing 
coalition by G(i). Then, for a simple game we obtain 

¢(W)i = L (ISI- l)!(n -lSI)! 

SEC(i) lSI 
(95) 

Remark. Many authors have suggested that the Shapley value of simple games 
should be interpreted as a power index. It is a matter of definition. Consider, 
for example, a game with three players. Each of these players is attributed side 
weights: 1, 48 and 49. The winning coalitions are those for which the sum of 
the weights is greater than 50 (electoral game). 

The process which consists of attributing to each player the power index 
proportional to his weight would give 160' 1~0 and 1~0. This partition is ob
tained by applying the fuzzy Shapley value to the weighting game defined by 
v(c) := (C1C~8C~9)1/100. But this fuzzy game v is not a good description, since it 
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does not use the rule defining the winning coalitions. This shows that the win
ning coalitions are {I, 3}. {2, 3} and {I, 2, 3}. If power means participating in a 
winning coalition then we see that player 3, who may participate in three win
ning coalitions, is more powerful than the other two players and that these two 
players have the same power of participation in two winning coalitions. Thus, 
we may think of attributing the power indices ~, ~ and ~ to these players. (The 
Shapley value of the associated simple game attributes the players with indices 

i, i, n 
Do we have enough information to define a power index? 
The first two players have the same probability of participating in a winning 

coalition and are reliant on the choice of the third player. Thus, we see that this 
last player may use an optimisation mechanism; for example, the third player 
may pay the other players to participate. 

This leads us to a very common paradox. Since he has a very low weight the 
first player may be less demanding as regards the compensation which he claims 
from the third player; thus, he may well participate in a winning coalition. We 
see that the definition of power indices depends on the information available to 
describe the game. 
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14. Exercises 

14.1 Exercises for Chapter 1 - Minimisation Problems: 
General Theorems 

The proofs of the following results are left as an exercise: 

• Proposition 1.1 

• Proposition 1.2 

• Proposition 1.5 

• Proposition 1.6 

• Proposition 1. 7 

• Proposition 1.8 

Exercise 1.1 

We consider the problem 

A sequence Xn such that 

a = inf f(x). 
xEX 

1 
\In f(J;) < 0: + -

,. 17, - n 

is called a minimising sequence. 

(a) Say why such a sequence exists. 

(b) Give a proof of Theorem 1.1 using minimising sequences. 
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Exercise 1. 2 

Suppose f : IRn --+ IR U { +oo} is a nontrivial function satisfying 

lim f(x) = +00. 
Ilxll-+oo 

Show that f is lower semi-compact. Prove that this is in particular the case for 
functions satisfying 

lim f(x) > O. 
Ilxll-+oo Ilxll 

Exercise 1.3 

Suppose that X and Yare two sets and that A is a mapping from X to Y. 
Suppose in addition that we have two functions f : X --+ IR U {+oo} and 
9 : Y --+ IR U {+oo}. We associate f with the function Af : Y --+ IR defined by 

Af(y):= inf f(x) 
Ay=y 

where, by convention, we set Af(y) = +00 if Y ~ A(Domf). Thus, 

DomAf = f(DomA). 

(a) Note that 

Dom (gA) = A-1Domg. 

(b) Prove that if M c Y, then 

inf (f(x) + g(Ax)) = inf (Af(y) + g(y)). 
AxEM yEM 

(c) Deduce that the following assertions are equivalent 

(i) x minimises f(x) + g(Ax) on A-l(M). 

(ii) Y = A(x) minimises Af(y) + g(y) on M and x minimises f(x) on 
A-1(y). 

(d) If B is a mapping from Y to Z, deduce that (BA)(f) = B(A(f)). 

Exercise 1.4 

Uses Exercise 1.3. 
Suppose that Y is a Hilbert space and that iI, ... , fn are n nontrivial functions 
from Y to IRu {+oo}. 
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We set 
n 

II Dh D ... Dfn(x) := inf _ L fi(Xi) 
Xl + ... +Xn-X i=l 

(lID ... Dfn is said to be the inf convolution of the functions fi)' 
We also define B E L(yn, Y) by 

n 

B(Yll'" 1 Yn) = LYi' 
i=l 

(a) Let fl + ... fn be the function defined on yn by 

(II + ... fn)(Y) := II(Yl) + ... + fn(Yn). 

Show that 

lID ... Dfn = B(fl + ... + fn). 

(b) Suppose that we have n Hilbert spaces Xi and n mappings Ai from Xi to 
Y. Show that 

inf fi(X;} = (Adl DAd2D ... DAnfn)(Y)· 
2::'=1 Ai(Xi)=Y 

Deduce that x = (Xl 1 '" 1 Xn) minimises Z=~l fi(Xi) with the constraint 
that Z=;'=l Ai(Xi) = Y if and only if 

(i) Y = WI"'" Yn) minimises Z=~l (Adi) (Yi) with the constraint that 
Z=;'=I Yi = Y; 

(ii) for all i, Xi minimises fi(Xi) with the constraint that A(Xi) = Vi. 

Remark. This a decentralisation principle. First we divide the resource Y 
amongst the Yi and then, for each i, we solve independent (decentralised) min
imisation problems. 

Exercise 1.5 

Suppose that f and 9 arc two functions from the Hilbert space X to lRu {+oo}. 
We define 

fDg(X):= inf (f(y) + g(z)) 
y+z=x 

(inf convolution of f and g). 

(a) Show that 

fDg(x) = inf(f(x - y) + g(y)) = inf(f(z) + g(x - z)). 
yEX zEX 

(b) Prove that 

Ep(f) + Ep(g) C Ep(fDg) C closure(Ep(f) + Ep(g)). 
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Exercise 1.6 

Suppose X and Yare two Hilbert spaces. Consider a nontrivial function 
g : X x Y ---+ IR U { +oo} and its marginal function J defined by 

J(x) := inf g(x, y). 
yEY 

We let 7r denote the mapping from X x Y x IR to X x IR defined by 

7r(X,y,A) = (X,A). 

Show that 

7r(Epg) c Ep(f) c closure (7r (Ep g)). 

Exercise 1. 7 

Suppose that J is a nontrivial function from X to IR U {+oo}. We associate J 
with the function J defined by 

J(x) := liminf J(y) 
y-+x 

where we suppose that for all x, /(x) > -00. Show that 

Ep(J) = Ep(j). 

Exercise 1.8 

Uses Exercise 1.3. 
Suppose that X, Y and Z are three Hilbert spaces, where A E L(X, Z) and 
B E L(Y, Z) are two continuous linear operators and J : X ---+ IR U {+oo} 
and g : Y ---+ IR U { +oo} are two nontrivial functions. 

( a) Show that 

inf (f(x) + g(y)) = inf(AJ(z + By) + g(y)). 
Ax=By+z Y 

(b) Deduce that the following two assertions are equivalent 

(i) (x, y) minimises J(x) + g(y) with the constraint Ax = By + z. 
(ii) y minimises Af(z + By) + g(y) and x minimises the function f(x) 

with the constraint Ax = By + z. 

(c) Suppose we have 

• n Hilbert spaces Xi, m Hilbert spaces Yj 
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• n operators Ai E L(Xi' Z), m operators Bj E L(Yj, Z) 

• n functions fi : Xi --t lR U { +00 }, m functions gj : Yj --t lR U { +00 }. 

Show that 

n .. 2nf m . (tfi(Xi)+fgj(YJ)) 
Li=l A~x'(-z+ L j =l BJy} i=l J=1 

= inf ((Adl D ... DAnfn) (z + f BjYj) + f gj(yj)) 
YJ E}j j=l j=l 

and deduce a decomposition principle analogous to that of the previous 
question. 

(d) Find an economic interpretation of this decomposition principle. 

Exercise 1. 9 

Show that if K and L are compact, then K + L is compact. 
Show that if K is compact and L is closed, then K + L is closed. 
Give a counter-example to show that if K and L are closed, then K + L is 

not necessarily closed. 

Exercise 1.10 

Show that 

7/JK + 1/JL = 7/JKnL 

and that 

~)L 0 A = 1/JL-l(A)' 

Exercise 1.11 

Suppose that f : X --t lRu { +00 } is a nontrivial lower semi-continuous function. 
Show that 

sup f(x) = sup f(x). 
xEK xEK 

Exercise 1.12 

We associate a function f : L x M --t lR with the mapping F from L to the 
space lRM of all continuous real-valued functions on M by 
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F(x)(y) := f(x,y). 

We denote the cone of non-negative functions on M by IR~. We assume that 
the space IRM has the topology of simple convergence (or the product topology) 
which makes IRM a separate locally convex space. 

Show that if L is compact and if 

\/y E M, x --+ f(x, y) is lower semi-continuous 

then 

F(L) + IR~ is closed in IRM 

(see Proposition 1.8). 

14.2 Exercises for Chapter 2 - Convex Functions and 
Proximation, Projection and Separation Theorems 

The proofs of the following results are left as an exercise: 

• Proposition 2.1 

• Proposition 2.2 

• Proposition 2.3 

• Proposition 2.4 

• Proposition 2.5 

• Proposition 2.6 

• Theorem 2.4 

• Corollary 2.4 

Exercise 2.1 

(*) 

(** ) 

Show that the image and the inverse image of a convex set under a linear 
operator are convex. 

Exercise 2.2 

Show that any intersection of convex sets is convex. 

Exercise 2.3 

Show that any product of convex sets is convex. 
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Exercise 2.4 

Show that if K and L are convex, then K + L is convex. 

Exercise 2.5 

Let K be a convex subset of a Hilbert space. Suppose that 

:1:0 E lnt(K), Xl E K (*) 

Show that 

'VA EjO, 1], AXo + (1 - A)XI E lnt(K). (** ) 

Hint: show that if B(xo, c) c K and y E B(XI' I~J, then B(Axo+(l-A)Y, AC) C 

K and contains AXo + (1 - A)XI. 

Exercise 2.6 

Follows ExeTcise 2.5. 
Let K be a convex subset of a Hilbert space. Show that K and lnt K are convex, 
that the interiors of K and K coincide and that if lnt K -=F 0, then K = lnt K. 

Exercise 2.7 

Show that co(K) (the smallest convex set containing K) is the set of convex 
combinations Lfinite Ail'i of elements Xi of K. 

Exercise 2.8 

Show that co(K) (the smallest convex closed set containing K) is the closure 
of co(K). 

Exercise 2.9 

Show that the convex hull CO(U?=1 Ki) of the union of n compact sets Ki IS 
compact (whence, equal to its closure). 

Deduce that the convex hull of a finite set is compact. 

Exercise 2.10 (Caratheodory's Theorem) 

Let K be a non-empty subset of mn. Show that the convex hull co(K) of K is 
the set of convex combinations of (n + 1) elements of K 
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:r: = ~ AiXi where A E Mn+1 := { A E lR:+II ~ Ai = I} . 

Hint: show that if x = L~=o AiXi for k > n, then x = L;~t f.LjXj, using the fact 
that the Xl - XO, ... ,Xk - Xo are linearly dependent. 

Exercise 2.11 

Follows Exercise 2.10. 
Show that the convex hull of a compact subset of lRn is compact. 

Exercise 2.12 

Let p be a linear form on X. Show that 

sup(p,X) = sup (p,x). 
xEK xEco(K) 

Exercise 2.13 

Let K be a convex closed subset. Show that the functions x -t dK(x) and 
!dK(x)2 are convex functions. 

Exercise 2.14 

Let K be a convex subset of X x lR and suppose that f is the continuous 
function from X to lR U { +oo} defined by 

f(x) := inf{Al(x, A) E K}. 

Show that f is convex. 

Exercise 2.15 

Let 9 be a nontrivial function from X to lR (not necessarily convex). We asso
ciate 9 with the function f defined by 

f(x) := inf{Al(x, A) E co(Ep(g))}. (*) 

Show that 

f(x):= inf_ (L: Ai9(Xi))' 
Lfinite AtXt-X finite 

(** ) 

Deduce that f is the largest convex function minorising g. 
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Exercise 2.16 

Let f and 9 be two nontrivial convex functions from X to IR U {+oo}. Show 
that the function fOg from X to IR U {+oo} defined by 

fOg(x) = inf(f(x - y) + g(y)) 
yEX 

is convex. 

Exercise 2.17 

Suppose that fi are n nontrivial convex functions from X to IR U { +oo} (i = 

1, ... , n). Show that 

f(x):= )nf fi(Xi) 
Li=l Xi=X 

is convex. 

Exercise 2.18 

Suppose that 9 and h are two convex functions and that f is the function defined 
by 

f(x) := (g(X))2 + h(x). 

Let M be the set of :r which minimise f. Show that 9 and h are constant 
functions on !v! (use the fact that a -t a2 is strictly convex). 

Exercise 2.19 

Suppose that f : X -t IR U {+oo} is a nontrivial convex function and that 
A : X -t Y is a linear operator. Show that the function Af : Y -t IR U { +00 } 
defined by 

Af(y):= inf f(x) 
Ax=y 

is also convex. 

Exercise 2.20 

With any function f : L x M -t IR. we associate the mapping F from L to IRM 
(the vector space of all real-valued functions on M) defined by 

F(x)(y) := f(x,y). 

Show that if K is convex and if \ly EM, .J: -t f (x, y) is convex, then F (L ) + IR~l 
is convex (see Proposition 2.6). 
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Exercise 2.21 

Suppose that f : X -+ IR U { +oo} is nontrivial and convex and that 

'<Ix E Dom(f), 3~ E Dom(f) such that f(~) < f(x). 

Show that if K c Dom f and if x E K minimises f over K, then x belongs to 
the boundary of K. 

Exercise 2.22 

Suppose that f : X -+ IR U {+oo} is a nontrivial convex function and Xo E 
Dom(f). Show that f is lower semi-continuous at Xo if and only if for all E > 0, 
there exists 7] > 0 such that 

(i) 
(ii) 

Exercise 2.23 

f(xo)::; f(x) + E if Ilx - xoll < 7] 
f(xo)::; f(x)+~llx-xoll ifllx-xoll2:7]· 

Suppose that f : X -+ IR U {+oo} is a nontrivial convex function and Xo E 
Dom(f). Show that f is continuous at Xo if and only if there exist constants 
c > 0 and 7] > 0 such that 

(i) 
(ii) 

Exercise 2.24 

f(xo)::; f(x) + cllx - xoll '<Ix E X 
f(x)::; f(xo) + cllx - xoll if Ilx - xoll ::; 'T/. 

Suppose that f : X -+ IR U {+oo} is convex and continuous at a point Xo. 

Suppose also that A E L(X, Y) is a continuous linear operator and that Af is 
the function defined on Y by 

Af(y):= inf f(x). 
Ax=y 

Show that Af is convex and continuous at Axo. 

Exercise 2.25 

Suppose that f(x) := ~llx - ul1 2 where u E X and K is a convex subset of X. 
We set 

v := inf f(x) 
xEK 

and 

B(f, >.) := {x E Klf(x) ::; >.}. 
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Show that for all ), > v. 

DiamS(j,),) ~ /S()' - v). 

Deduce that if K is closed, then f admits a unique minimum x on K (which is 
the projection of u onto K). Hint: prove that the S(j, v +~) form a decreasing 
sequence of closed sets the diameter of which tends to O. 

Exercise 2.26 

Let 9 : X -7 IRu {+oo} be a nontrivial, convex, lower semi-continuous function. 
Adapt Exercise 2.25 for the functions 

Exercise 2.27 

( 12 
f>..(x) := 9 x) + 2), Ilx - ull . 

Show that if K is a convex subset of the finite-dimensional vector space IRr, 

which is dense in IRn , then K = IRn (use the Large Separation Theorem, The .. 
orem 2.25). 

Exercise 2.28 

Let P be a closed cone in a Hilbert space X. Show that if X = P + EB ( E > 0, 
B is the unit ball), then X = P (apply the separation theorem for a closed set 
and a point separated by a neighbourhood). 

14.3 Exercises for Chapter 3 - Conjugate Functions 
and Convex Minimisation Problems 

The proofs of the following results are left as an exercise: 

• Proposition 3.1 

• Proposition 3.2 

• Proposition 3.3 

• Proposition 3.4 

• Proposition 3.5 

• Proposition 3.6 

• Corollary 3.1 
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• Proposition 3.7 

• Corollary 3.2 

• Corollary 3.3 

• Proposition 3.8 

• Theorem 3.3 

• Theorem 3.4 

• Proposition 3.9 

Derive the formulae for support functions (formulae (62) to (71) of Chapter 3). 

Exercise 3.1 

Let {f;} iEl be a family of nontrivial functions from X to lR U { +00 }. Show that 

(inf fi)' = sup ft 
,Ei iEi 

and that 

(sup fi)' ::; inf 1*. 
iEI iEi ' 

Exercise 3.2 

Suppose that r.p : lR -+ lRu {+oo} is a nontrivial, convex, lower-semi-continuous 
function with conjugate r.p*. Show that 

r.p(II·II)' = r.p*(II·11J 

where II . 11* is the dual norm of II '11· 

Exercise 3.3 

If a > 1, calculate the conjugate of the function r.p defined by 

1 
r.p(x) := -Ixl"'. 

a 

Hint: use Holder's inequality ab < laG + ~ba' where 1 + ~ = l. 
-0: 0: a a 



14.3 Exercises for Chapter 3 249 

Exercise 3.4 

Uses Exercises 8.2 and 8.8. 
Suppose that X is a Hilbert space with norm II . II and dual norm II . II * on X*. 
Show that 

1 * 1 n' 1 1 
(-11'11) (p) = -llpll* where - + - = l. a n* a a* 

Exercise 3.5 

Let f : X ----+ IR U { +oo} be a nontrivial function. Show that 

j*(p) = (JEp(f)(P, -1). 

Exercise 3.6 

Show that if f : X ----+ IR U { +oo} is a convex lower semi-continuous function 
satisfying 

j*(p) <::: a(llpll') 

where a : IR ----+ IR U { +oo} is nontrivial, then f satisfies the inequality 

Vx E X, f(x)::::: a*(llxll). 

Exercise 3.7 

Show that if the conjugate 1* of a nontrivial function f : X ----+ IR U { +oo} is 
continuous at 0, then 

VA E IR. {xlf(x) <::: A} is bounded. 

Exercise 3.8 

Suppose that f is a nontrivial, convex, lower semi-continuous function from X 
to IR U {+oo}. Show that 

j*(p) <::: a, Vp E Po + ryE 

if and only if 

f(x) ::::: ryllxll + (Po, x) - a. 
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Exercise 3.9 

If f : X --+ IR U { +oo} is nontrivial, convex and lower semi-continuous, show 
that there exist p E X* and a E IR such that 

\Ix E X, f(x) 2: (p,x) +a. 

Exercise 3.10 

Calculate the conjugate functions of the functions x ---+ f(x) + ~llxl12 and x ---+ 
f(x) + f>:llx - uf 

Exercise 3.11 

Calculate the conjugate functions for x ---+ f(x) + Ilxll and x ---+ f(x) + Ilx - ull· 

Exercise 3.12 

Suppose that f : X ---+ IRu {+oo} is a nontrivial, convex, lower semi-continuous 
function. Calculate 

JA(x) + (f*)J1-(q). 

For what values of).. and M is this sum zero? 

Exercise 3.13 

Consider n functions fi : X ---+ IRu {+oo} and the function f : X ---+ IRu {+oo} 
defined by 

f(x):= )nf fi(Xi)' 
Li=l Xi=X 

Show that 

n 

f*(q) = L f;'(q)· 
i=l 

Exercise 3.14 

We consider n Hilbert spaces Xi, n functions fi : Xi ---+ IR U {+oo} and n 
continuous linear operators Ai E L(Xi' Y) from Xi to the same Hilbert space 
Y. We define 

f(x):= n inf fi(Xi)' 
Li=lAiXi=X 
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Show that 
n 

j*(q) = L ft(A;q). 
i=l 

Exercise 3.15 

Suppose that f and 9 are two nontrivial functions from X to IR U { +oo} and 
that 

h(x):= inf(f(x-y)+g(y)). 
yEX 

Show that h*(q) = j*(q) + g*(q). 

Exercise 3.16 

Suppose g(y) := infxEX f(x, y) where f is a nontrivial function from X x Y to 
IRu {+oo}. Show that g*(q) = f*(O,q). 

Exercise 3.17 

Let K be a convex closed subset of a Hilbert space X. Show that 

\/)., E IR, {:r E X[(Po,xj :::;).,} is bounded 

if and only if the support function p --+ CJK(P) is continuous at Xo (use Exer
cise 3.7). 

Deduce that the support function of a bounded set is continuous. 

Exercise 3.18 

Let A E L(X, Y), LeX andlvI c Y. Show that if L andlvI are cones, the 
following conditions are equivalent 

(i) 
(ii) 

Exercise 3.19 

o E Int(A(L) -lvI) 
A(L) -lvI = Y. 

Prove that the Slater' condition 

3:1:0 E L such that A(xo) E Int(lvI) 

implies the condition 

o E Int(A(L) -lvI). 
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Exercise 3.20 

Let M be a subset of lRl. Show that 

Int(M + lR~) = M + Int lR~ 

(use balls of the form [-c-, +cT). 

Exercise 3.21 

Suppose that f : X -+ lR U { +oo} is a nontrivial, convex, lower semi-continuous 
function, that A E L(X, Y) and B E L(X, Z) are two continuous linear op
erators and that M c Z is a non-empty, convex, closed subset. Consider the 
problem 

v := inf{f(x)IAx = 0 and Bx EM}. 

(a) Show that the condition 

o E Int (ImA* + B*b(M) + Domj*) 

implies that there exists a solution of the problem v. 

(b) Write down the dual problem. 

(c) Show that the condition 

'Vy, z E 7)B, ::Jx such that Ax = y and Ex E M + z (*) 

implies that there exists a solution of the dual problem. 

Exercise 3.22 

Suppose that 9 : X X Y -+ lR U {+oo} is a nontrivial, convex, lower semi
continuous function. Consider the minimisation problem 

v = inf g(O, y). 
yEY 

Characterise the associated dual problem and give sufficient conditions which 
imply the existence of solutions of the primal and dual problems. 

Exercise 3.23 

Suppose that 9 : X X X -+ lR U {+oo} is a nontrivial, convex, lower semi
continuous function. Characterise the dual problem of the minimisation problem 

v:= inf f(x,x) 
xEX 

and give sufficient conditions for these problems to have solutions. 
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Exercise 3.24 

Let K be a subset. We set 

KO := {p E X*IO"K(p) s:: I} 

(KO is called the (negative) polar set associated with K). 

(a) Show that KO is a convex closed subset with ° E KO c b(K). 

(b) Show that KOO = co(K U {o}). 

(c) If K is a cone, show that KO = K-. 

Exercise 3.25 

Suppose that P c X is a cone and that K C X is a subset. Show that 

(P+K)o=p-nKo. 

Exercise 3.26 

(1) 

Let X and Y be two Hilbert spaces, A E L(X, Y) a continuous linear operator 
from X to Y and P E X* fixed. We suppose that 

1m A * is closed (*) 

and that 

(p, x) = 0, 'Ix E X satisfying Ax = 0. (** ) 

(a) Show that there exists q E Y* with P = A*q. Deduce that if A is surjective, 
then q is unique. 

(b) Show that if 1m (A) is not dense in Y, then (a) implies that there exists 
q E yo, q oF 0, such that A*q = 0. 

Exercise 3.27 

Suppose that X is a Hilbert space, that Y is a finite-dimensional space, that 
A E L(X, Y) and that K C Y* is a closed subset. We also suppose that 

ImA + b(K) = Y. 

Consider a sequence of elements qn E Y* satisfying 

A * qn converges to P in X*. 

(*) 

(**) 

(a) Show that there exists a subsequence of qn which converges to an element 
q E K. Hint: use (*) to show that for all y E Y, (qn, y) is bounded. 

(b) Deduce that A * (K) is closed in X*. 

(c) Deduce that the sets {q E KIA*q = p} are compact. 
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Exercise 3.28 

Suppose that K is a closed cone in X x Y. 

(a) Show that A(O) := {y E YI(O, y) E K} is a convex closed cone. 

(b) We set A(x):= {y E YI(x,y) E K}. Show that for all x, A(x) is a convex 
closed set with asymptotic cone A(O). 

Exercise 3.29 

Uses Exer-cise 2.17. 
Let X be a Hilbert space, which is identified with its dual. Suppose that P 
is a convex closed cone and that K is a convex closed subset. We denote the 
orthogonal projector onto the convex closed cone P by 7rp. 

(a) Show that 7rp(K) C K - P~. 

(b) If A is a convex closed subset, we set 

m(A) := 7rA(O) 

(the projection of best approximation of 0 by the elements of A). 

Show that m(7rp(K)) = m(K - P~). 

(c) Show that the element x = 7rp(K) is characterised by 

(i) 
(ii) 

Exercise 3.30 

XEP 
aK( -x) + IIxI12 ::::; O. 

(2) 

Suppose that X and Yare finite-dimensional spaces, that LeX and M c Y 
are non-empty, convex, closed subsets and that A is a continuous, injective, 
linear operator from X to Y. 

(a) Show that the operator A~ E L(Y, X) defined by A~y :- (A* Ar1 A* 
satislies A ~ A = 1 and prove that 

Ilylly := IIA~yllx (*) 

is a norm. 
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(b) Show that for all y E Y, the solution Xy E L which minimises IIAx ~ yll 
over L is given by 

Xy = 7rL(A-y) 

where 7rL is the projection of best approximation by the elements of L 
when Y has the norm of (*). 

(c) We denote the projection of 0 at K by rn(K). Show that 

rn(A(L) ~ M) = rn((A7rdA-) ~ l)(M)). 

Exercise 3.31 

Let K be a convex closed subset of a Hilbert space. Show that Xo E Int(K) if 
and only if 

{pIO"K(p) 'S (p, xo) + I} 

is bounded. 

Exercise 3.32 

Suppose that K is a convex compact subset. Consider the family MK of non
empty closed subsets M of K satisfying 

'tiy, Z E K, if AY + (1 ~ A)Z E then y, Z E M (*) 

(a) Show that K belongs to M K . 

(b) If f : K --7 IR is convex and upper semi-continuous and if M E M K , show 
that 

{x E Mlf(x) = sup f(y)} E M K . ( **) 
yEM 

(c) Consider a decreasing sequence of non-empty closed subsets Mi E M K . 

Show that 

M := niE1Mi belongs to M K . 

( d) Show that any minimal set Mo E M K reduces to a point. Hint: if not, there 
would exist two distinct points Xo and Xl of Mo and a continuous linear 
form p E X* separating them; whence {x E Mo I (p, x) = O"Mo (p)} "I Mo· 

(e) A point :ro E K such that {xa} E MK is called an extremal point of K. 
Characterise such points. 
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(f) Use Zorn's lemma to deduce that any set M E MK contains an extremal 
point and in particular, that if f is convex and upper semi-continuous, 
then {x E Klf(x) = SUPYEK f(y)} contains an extremal point. 

(g) Use the Separation Theorem to deduce that any convex compact set is 
the convex hull of its extremal points. 

14.4 Exercises for Chapter 4 - Sub differentials of 
Convex Functions 

The proofs of the following results are left as an exercise: 

• Proposition 4.2 

• Corollary 4.1 

• Theorem 4.2 

• Corollary 4.2 

• Theorem 4.4 

• Proposition 4.3 

• Corollary 4.4 

Derive the formulae for calculating tangent and normal cones (formulae (45) to 
(51) of Chapter 4). 

Exercise 4.1 

Let X be a Hilbert space. We denote its duality operator by L E L(X, X*). 
Suppose \O(x) := Ilxll. Show that 

D\O(x)(v) = { (LII~II' v) 

Ilvll 

if x # 0 

if x = o. 

Deduce that \0 is not differentiable at 0, but that it has a right derivative and 
that 

8\O(x) = {LII~II if x # 0 
B* if x = 0 

where B* is the unit ball of the dual. 
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Exercise 4.2 

Let X be a Hilbert space. We denote its duality operator by L E L(X, X*). We 
set 

<p2(:r) := Ilx11 2. 

Prove that 

D<p2(X)(V) := 2(Lx, u) 

and show that <p2 is Frechet differentiable and that its derivative is the duality 
operator 2L. 

Exercise 4.3 

Suppose that K is a convex closed subset and consider the function d'k(x) = 
. 2 
mfYEK Ilx - yll . 

( a) Show that 

and that 

d'k(x + v) - d'k(x) - 2(x - 1iK(X), v) :::: IIvl1 2 

d'k(x) - d'k(x + v) + 2(x - 1iK(X), v) 

:::: (111iK(x + v) - 1iK(x)11 + Ilvll)llvll· 

(b) Deduce that x -7 4 (x) is Frechet differentiable and that 

Vd'k(x) = 2(x - 1iK(X)) 

where 1if( is the projector of best approximation onto K. 

(c) Show also that this result is a consequence of Theorem 5.2. 

Exercise 4.4 

Suppose that K is a convex closed subset and consider the function dK defined 
by dK(x) := infYEK Ilx - yll. Suppose that TK(X) is the tangent cone to K at x. 

(a) If y E K, show that for all w E TK(y), we have 

DdK(y)(v) :::: Ilv - wll· 

(b) If Z ~ K, deduce that for all w E TK(1if((Z)) , we have 

DdK(z)(v) :::: Ilv - wll, 
whence also 

DdK(z)(v) :::: d(v, TK(1iK(Z))). 
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(c) If x E K and v E X, show that the convex function f(t) := dK(x + tv) 
has a right derivative f~ (t) satisfying 

f~(t) ::; d(v, TK(JrK(x + tv))). 

Exercise 4.5 

Let f : X -t lR U { +oo} be a nontrivial (not necessarily convex) function. Show 
that the following conditions are equivalent: 

and 

(i) 
(ii) 

Xo minimises x -t f(x) - (Po, x) 

Xo E 8j*(po) 
f(xo) = j**(xo). 

Deduce that the set of x which minimise x -t f(x) - (Po, x) is 

M := {x E 8j*(p)lf(x) = j**(x)}. 

Exercise 4.6 

(*) 

(**) 

Consider a continuous strictly increasing function , : lR+ -t lR+ such that 
,(0) = 0 and limt->oo,(t) = 00. We associate this with a convex function cP 
defined by 

cp(t) := { J~,(T)dT if t ~ 0 
+00 if t < O. 

Let f be the function defined on X by 

f(x) := cp(llxll)· 

(a) Show that 

8f(x) = {p E X*I(p, x) = Ilpll*llxll and Ilpll* = cp(llxll)}· 

Hint: Use the fact that j*(p) = cp*(llpll*). 
(b) Show that if p E 8f(x) and q E 8f(y), then 

(p - q, x - y) ~ (r(llxll) -,(llyll))(llxll-llyll)· 

Exercise 4.7 

Suppose that the function f is subdifferentiable at Xo. Show that 

'l:/x E X, f(xo)::; f(x) + a(8f(xo), Xo - x). 
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Exercise 4.8 

Suppose that f is differentiable in the neighbourhood of a convex closed set K. 

(a) Show that if x E K rmnlllllses f over K, then x is a solution of the 
variational inequality 

(i) 
(ii) 

x E K 
(\7 f(x), x - x) :S 0 Yx E K. (*) 

(b) Prove that if a minimum ;7; belongs to the interior of K, the variational 
inequality becomes the equation 

x E lnt (K) and \7 f(x) = 0 (**) 

(Fermat's rule). 

Exercise 4.9 

Show that if a nontrivial function f : X --+ IR U { +oo} is both differentiable 
(Gateaux differentiable) and sub differentiable at a point Xo E Dom f, then 

af(;r:o) = {\7 f(xo)}. 

In this case, any solution Xo of the variational inequality 

( i) 
(ii) 

minimises f over K. 

Exercise 4.10 

:r:o E K 
(\7 f(xo), Xo - xl :S 0 Yx E K 

Let 9 and h be two functions such that 

(i) 9 is convex and differentiable in the neighbourhood of K; 

(ii) h is convex; 

(iii) K is convex and closed. 

Then x E K minimises f := 9 + hover K if and only of x is a solution of 

(i) 
(ii) 

i: E K 
Yx E K. (\7g(:7;),;7; - x) + h(x) - h(x):S O. 

(*) 

(*) 
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Exercise 4.11 

If the function f is nontrivial, convex and subdifferentiable at Xo, show that f 
is right differentiable and that 

a(8f(xo),v):S; Df(xo)(v). 

Under what conditions is there equality? 

Exercise 4.12 

Consider n convex functions fi all continuous at a point Xo. Set 

f(x) := max fi(X) 
t=l , ... ,n 

and 

I(x) := {i = 1, ... , nlf(x) = fi(X)}. 

Show that 

Df(xo)(u) = max Dfi(XO)(U) 
'EI(xo) 

and deduce that 

8f(xo) = co ( u 8J;(Xo)). 
iEI(xo) 

Exercise 4.13 

Let K be a convex closed subset. Show that 

"Ix E K, NK(x) C b(K) 

and deduce that 

"Ix E K, TK(x) contains the asymptotic cone. 

Exercise 4.14 

Suppose that the function f : X --+ lR U { +oo} is nontrivial and convex. Show 
that for any finite sequence of points Xl, . .. ,Xn of Dom f and any sequence 
Pi E 8f(x:i), (i = 1, ... , n), we have 

(PI, Xl - X2) + (P2, X2 - X3) + ... + (Pn, Xn - Xl) ::::: o. 

The set-valued map F from X to X* is said to be cyclically monotone if 

V(Xi' fi) E Graph(F), 1 :s; i :s; n, (PI, Xl - X2) + ... + (Pn, Xn - Xl) ::::: O. (1) 
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Exercise 4.15 

Consider a cyclically monotone set-valued map F from X to X* (satisfying 
equation (1) of Exercise 4.14). We fix (xo,Po) E Graph(F) and construct the 
function f : X ---+ IR U { +oo} defined by 

f(x) := sup{ (Pn, x - Xn) + (Pn~l' Xn - Xn~l) + ... + (Po, Xl - XU)} 

where the supremum is taken over all finite sequences of points (Xi, Pi) of the 
graph of F (i = 1, ... , n). 

(a) Show that f is convex and lower semi-continuous. 

(b) Show that f(xo) = ° (whence, that f is nontrivial). 

( c) Show that 

VX E Dom(F), F(x) c 8f(x). 

Hint: take P E F (x) and show that 

vy E X, f(:c) - f(y) S; (p,x - y) 

by associating any E. > ° with a finite sequence of (Xi,Pi) E Graph(F) 
such that f(x) S; (Pn,x - :cn ) + ... + (PO,Xl - xu) + E.. 

(d) We say that a cyclically monotone set-valued map F from X to X* is 
maximal if there is no other cyclically monotone set-valued map G cJ F 
with Graph(G) ~ Graph(F). 

Deduce that any maximal, cyclically monotone, set-valued map is the sub
differential of a nontrivial, convex, lower semi-continuous function (Rock
afellar's Theorem). 

Exercise 4.16 

Consider the Sobolev space 

Hl(O, T; IRn) = {.T(·) E £2(0, T; X)lx'(t) E £2(0, T; X)} 

and the Hilbert subspace 

H = {x E Hl(O, T; X)lx(O) = XO}. 

Suppose that f : X ---+ IRu { +oo} is a nontrivial, convex, lower semi-continuous 
function. Let ¢ be the functional defined on H by 

¢(x) = ['T(f(x(t)) + r(-:1:'(t)))dt + ~llx(T)112 - ~llxoI12 . . k 2 2 
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(a) Show that 

"Ix E H, ¢(x) ~ o. 

(b) Show that the following conditions are equivalent 

¢(x) = 0 (*) 

and 

-x'(t) E 8f(x(t)) and x(O) = Xo. (** ) 

Deduce that any solution x(·) of the differential inclusion (**) minimises ¢ and 
note that the converse is not necessarily true. 

Exercise 4.17 

Suppose that the function f : X --+ IR U { +oo} is nontrivial, convex and lower 
semi-continuous. Let Xo E Dom( 8 f). Consider a solution of the differential 
inclusion 

-x'(t) E 8f(x(t)), x(O) = Xo. (*) 

(a) Show that t --+ f(x(t)) is a decreasing function satisfying 

!f(x(t)) + Ilx'(t)112 = O. (** ) 

Hint: find upper bounds for f(x(t)) - f(x(t + h)) and f(x(t + h) - f(x(t)), 
divide by h > 0 and let h tend to O. 

(b) Deduce that there exists at most one solution of the differential in
clusion (*). Hint: if Xl and X2 are two solutions, differentiate t --+ 
~llxI(t) - x2(t)11 2. 

(c) Deduce from (**) that the solution xC) of H is in fact the solution of the 
differential equation 

-x'(t) = 7r&f(x(t)) (0), x(O) = Xo· (*** ) 

Remark. This involves showing that there exists a (unique) solution of 
the differential inclusion (*) (Crandall~Rabinowitz Theorem) even though 
the second term of the differential equation is not continuous. 

(d) By integrating (**) from s to t, show that 

lim rt Ilx'(T)112 = 0 
s)t-----+oo Js 

and deduce from the Cauchy criterion that 

roo 2 
Jo Ilx'(T)11 dT < +00. (****) 
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(e) Let Ac be the set of t > 0 such that Ilx'(t)11 < E. Deduce from 
(****) that meas(AE) = 00. Hint: suppose that meas(AE) is finite and 
obtain a contradiction to (****). 

(f) Deduce that for all y E X 

inf f(x(t)) S f(y)· 
t>O 

Hint: show that f (x(t)) S f(y) - (x' (t), x( t) - y), use question (e) and let 
E tend to O. 

(g) Deduce that any limit point of x(t) as t --+ 00 minimises f. 

14.5 Exercises for Chapter 5 - Marginal Properties of 
Solutions of Convex Minimisation Problems 

The proofs of the following results are left as an exercise: 

• Corollary 5.1 

• Corollary 5.2 

• Corollary 5.3 

• Corollary 5.4 

Exercise 5.1 

Let X and Y be two Hilbert spaces and A E L(X, Y) a continuous linear 
operator. Suppose that II E X and w E 1m A are given. We also suppose that 
we have a semi-scalar product .\(x, y) associated with a self-transpose positive 
semi-definite operator L E L(X, Y) by the formula 

.\(x. y) = (Lx, y) (1) 

(see the section of Chapter 1 entitled 'Examples of Convex Functions'). We 
suppose that 

We set 

(i) 
( ii) 

1m (L) is closed. (2) 

.\2(X) := .\(x, x), 
if p E Im(L), .\;(p) = (p,x) where Lx = p. (3) 
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We recall that 
1 * { p\;(p) if P E Im(L) 

(2,\2) (p) = 

+00 if p~lm(L) 

and that 
O,\2(X) = 2Lx. 

We consider the minimisation problem 

(i) 
(ii) 

Show that if 

Ax = 

,\2(X - u) = 

w 
inf ,\2(X - u). 

Ax=y 

ImA* + ImL = X* 

then there exists a solution of the problem (6). 

Exercise 5.2 

We assume the framework of Exercise 5.1 and that 

A is surjective and Im( L) = X*. 

(a) Write down the dual problem associated with (6). 

(b) Show that (x, q) is a solution of the Hamiltonian system if and only if 

(i) 
(ii) 

Lx +A*q = Lu 
Ax = w 

(c) Show that q is a solution of the equation 

(AL -1 A*)q = Au - w 

and deduce that this problem has a unique solution equal to 

q = (AL- 1 A*rl(Au - w). 

(d) Show that x is equal to 

x = u - L-1A*(AL-1A*r1(Au - w). 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 
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Exercise 5.3 

We assume the framework of Exercise 5.2. 

(a) Show that 

~(q) :=u-L-1A*q 

minimises :r: ---t P2(:r: - u) + (q, Ax) over X. 

(b) If A is surjective, show that the solution q of the dual problem minimises 

1 
q ---t 2.,\2(~(q)) + (q, w) 

over Y* and that the solution :r of the problem (6) is equal to x = ~(q). 

Exercise 5.4 

We assume the framework of Exercise 5.2. Prove that x = ~(q) := u - L-1A*q 
is a solution of the problem (6) if and only if A~(q) = w. 

Exercise 5.5 

We assume the framework of Exercise 5.2. Show that the solution x of the 
problem (6) is the solution of the problem 

(i) 
(ii) 

Exercise 5.6 

(A*q, x) 
.,\2(X -u) 

(q, w) 
min .,\2(X - u) . 

(A'q,x)=(q",.) 

We assume the framework of Exercise 5.2. We set 

ip(w) = inf .,\2(X -- u). 
Ax=w 

Show that ip is differentiable (Fn§chet differentiable) and that 

\1ip(w) = q 

where q = (AL-1A*)-I(Au - w). 
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Exercise 5.7 

Suppose that A E L(X, Y) is surjective, that B E L(X, Z) is injective, that 
u E Z and w E Yare given and that we have a scalar product ). on Z. We 
consider the minimisation problem 

(i) 
(ii) 

Ax = 

).2(Bx - u) = 

w 
min ).2(Bx - u). 
Ax=w 

Show that there exists a unique solution x of this problem, which is given by 

(i) 
(ii) 
(iii) 

x w - M-1 A*p, where M := B* LB, where 
p (AM-1 A*f1(Av - w), where 
v:- M-1 B* Lu. 

Exercise 5.8 

We assume the framework of Exercise 5.2. We set 

Jr(A) := (AL-1 A*r1(Au - w). 

(a) Show that if BE L(X, Y), then 

(b) We set 

r Jr(A + hB) - Jr(A) 
h!:,W+ h 

= (AL-1A*)-1(B(uL-1A*Jr(A)) - AL-1B*Jr(A)). 

A+ := L-1A*(AL-1A*r1EL(Y,X) 

S(A) := (1 - A+ A)L -1 E L(X, X) 

and we denote by Ll(A) the solution 

Ll(A):= u - L-1A*Jr(A) = u - L-1A*(AL-1A*r1(Au - w) 

of the problem 

'ljJ(A) = inf ).2(X - u). 
Ax=w 

Deduce from (a) that 

r Ll(A + hB) - Ll(A) = -A+ BLl(A) _ S(A)B*Jr(A). 
h~W+ h 
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Exercise 5.9 

We assume the framework of Exercise 5.2. 

( a) Show that 

A+ := L-1A*(AL-1A*r l E L(Y, X) 

satisfies 

AA+y = Y 

(A + is a right inverse of A) and 

.\2(A+y) = min .\2(X). 
Ax=y 

(b) Prove that 

(AL-1A*r l = (A+)*LA+ 

is the duality operator associated with the scalar product f..L(Yl, Y2) defined 
on Y by 

f..L(Yl, Y2) := .\(A+Yl' A+Y2). 

(c) Show that the scalar product 11., the dual of f..L on Y', is defined by 

f..L*(Ql,q2) = .\*(A*Ql,A*Q2)' 

(d) Prove that the solution x of the problem (6) is defined by 

x = A+w + (1 - A+ A)u. 

Exercise 5.10 

We assume the framework of Exercise 5.9. Suppose that Al E L(X, Yi) and 
A2 E L(Yi, Y2 ) are two continuous, surjective, linear operators. Show that 

(A2 Ad+ = At At 

where At = Lll A~(A2Lil A~) -1 and Ll := (AIL -1 AiTl. 
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Exercise 5.11 

Suppose that B E L(X, Z) is a continuous linear operator satisfying 

B is injective and its image is closed. (*) 

Suppose that JL(Zl, Z2) is the scalar product on Z and that M E L(Z, Z*) is its 
duality operator. We set 

B- := (B* M Brl B* M E L(Z, X). 

( a) Show that 

B-Bx = x 

(B- is a left inverse of B) and that 

(b) Show that 

(i) 
(ii) 
(iii) 

( c) Show that 

JL2(BB- lu - u) = inf JL2(Bx - u). 
xEX 

(B-)* 
(B*MB)-l 

B 

(B*)+ 
(B-)M-l(B-)* 
(B-t· 

JL2(Bx - U)2 = JL2(B(x - B-u)) + JL2(U) - JL2(BB-u) 

and deduce that minimising the distance from Bx to u is equivalent to 
minimising the distance from Bx to BB-u. 

Exercise 5.12 

We assume the framework of Exercises 5.7, 5.9 and 5.11. Show that x is a 
solution of the problem 

(i) 
(ii) 

Ax 
),,2(Bx - u) 

w 
min ),,2(Bx - u) 
Ax=w 

if and only if x = B- 2 where 2 is the unique solution of the problem 

),,2(2 - u) = min ),,2(Z - u). 
AB-z=w 
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Exercise 5.13 

We consider 

• 4 Hilbert spaces X. U, Y and Z; 

• a nontrivial, convex, lower semi-continuous function 
f : X x U -+ lR U {+oo}; 

• 3 continuous linear operators A E L(X, Y), B E L(U, Y) and 
C E L(X, Z); 

• non-empty, convex, closed subsets LeY and M c Y. 

We consider the minimisation problem 

v:= inf{f(x,u)IAx + Bu ELand Cx E Z}. 

(a) Write down the dual problem of this problem. 

(b) Show that the surjectivity condition: :3, > 0 such that 

't:/y, z E ,B, :3(x, u) E Dom(f) satisfying 
A:r + Bu E L + Y and Cx E M + z, 

implies the existence of a solution of the dual problem. 

(c) Show that (*) is satisfied if we assume that 

(i) 't:/x EX, :3u such that f(x, u) < +00; 
(ii) A x C E L(X, Y x Z) is surjective. 

(*) 

(d) We suppose that (*) is satisfied and that there exists a solution (x, u) in 
Dom f of the problem v. Show that there exists a solution (p, ij) satisfying 

(i) 
(ii) 

j5 E NL(Ax + Bu), ij E NM(Cx) 
(-A*p - C*ij, -B*p) E 8f(x, u). 

(e) We now assume that 

f(x,u) = g(x) + h(u) 

(+ ) 

where g : X -+ lR U {+oo} and h : U -+ lR U {+oo} are nontrivial, convex 
and lower semi-continuous. 
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Show that (+) may be written the form: there exists a solution p of 

(i) 
(ii) 

P E NL(Ax + Bu) 
-A*p E og(x) + C* NM(Cx) 

(adjoint equation) satisfying 

u minimises u -t H ( u, p) 

where H ( u, p) is defined by 

H(u,p) = h(u) + (p, Bu) 

(maximum principle). 

(f) Show that if there exists b > 0 such that 

V7f EbB, Vw EbB, :Jp E b(L) and q E b(M) such that 

(++) 

(+++) 

f*(7f - A*p - C*q,w - B*p) < +00 (**) 

then there exists a solution (x, u) of the problem v. 

(g) Deduce in particular that this solution exists if we suppose that there 
exist Po E b( L) and go E b( M) such that 

(-A*po - C*qo, B*po) E Int(Dom!*). 

14.6 Exercises for Chapter 6 - Generalised Gradients 
of Locally Lipschitz Functions 

The proofs of the following results are left as an exercise: 

• Proposition 6.3 

• Proposition 6.4 

• Proposition 6.5 

• Proposition 6.6 

• Proposition 6.7 

• Corollary 6.1 

• Proposition 6.8 



14.6 Exercises for Chapter 6 271 

Exercise 6.1 

Let f : X -+ IR U {+oo} be a nontrivial function. If x E Dom(f) and v E X, 
we set 

D+f(x)(v) := liminf f(x + hv') - f(x) -
h->O+ • E IR (1) 
1,1 __ )-1' 

(D+f(x)(v) is called the contingent epiderivative of f at x in the direction v). 

(a) Show that v -+ D+f(x)(v) is positively homogeneous and that if for all 
v, D+f(x)(v) > -00, it is lower semi-continuous. 

(b) Show that if f is Lipschitz (with constant L) in the neighbourhood of 
x E Int (Dom f), then 

D+f(x)(v) = liminf f(x + hv) - f(x) 
h--+O+ h 

and 

-Lllvll ::; D+f(x)(v) ::; Dc!(x)(v) ::; Lllvll· 

(c) Show that if f is convex, then 

D+f(x)( v) = lim inf D f(x)( v). 
v' -'tv 

Exercise 6.2 

Suppose that f : X -+ IR U { +oo} is a nontrivial function and that x E Dom f. 
Show that if x is a local minimum of f, then 

Vv E (X), 0::; D+f(x)(v). 

Compare with Proposition 6.5. 

Exercise 6.3 

Suppose that f and 9 are two nontrivial functions from X to IR U { +00 }. Show 
that if x E Dom f n Domg, then 

D+f(x)(v) + D+g(x)(v) ::; D+(f + g)(x)(v). 

Compare with Proposition 6.3. 
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Exercise 6.4 

Suppose that A E L( X, Y) and that 9 : X -t lEW { +oo} is a nontrivial function. 
Suppose we have x E X such that Ax E Domg. Show that 

D+f(Ax)(Av) :::; D+U 0 A)(x)(v). 

Compare with Corollary 6.1. 

Exercise 6.5 

We consider n nontrivial functions fi : X -t IR U { +oo} and x E nr=l Dom k 
We set 

I(x) := {i = 1, ... , nlJ;(x) = j~~~n fj(x)} . 

Show that 

max D+fi(X) :::; D+ (.max fj) (x)(v) . 
• EI(x) J=l, ... ,n 

Compare with Proposition 6.9. 

Exercise 6.6 

Suppose that A E L(X, Y) and that f : X -t IRu {+oo} is a nontrivial function. 
We set 

g(y):= inf f(x) 
Ax=y 

and we suppose that there exists a solution x of the problem Ax = y and that 
g(y) = f(x). Show that 

\:Ix EX, D+g(y)(Av):::; D+f(x)(v). 

Deduce that if 9 is differentiable (Gateaux differentiable) at y and f is differ
entiable at x, then 

'1f(x) - A*'1g(y) = O. (*) 

In other words, "V g(y), the gradient of the marginal function, is a Lagrange 
multiplier. Compare with Proposition 6.8. Hint: use the inequality 

g(y + hAv) - g(y) :::; f(x + hv) - f(x). 
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Exercise 6.7 

Consider a function f : X --+ IR U { +oo} and x E Dom f. We define 

Df(x)(v):= limsup f(y+hv')-A 
~,~~ h 

(a) Show that 

(y,A)--,>(X.f(x» 
(y,A)EEp(f) 

Dcf(x)(v) S Df(x)(v). 

(b) Show that (x,v) --+ Df(;r;)(v) is upper semi-continuous and that 

{vID(x)(v) E IR} 

is open. 

(c) Show that 

Df(x)(-v) = D(-f)(x)(v). 

Exercise 6.8 

Let K be a non-empty subset of X. Consider the normal cone to K at x, NK(x) 
(Proposition 6.14). 

(a) Show that if p E X* satisfies 

then p E NK(xo). 

(p, XO! = max(p, y! 
yEK 

(b) Show that if y 1. K and if x E K satisfies 

Ily - xii = inf Ily - xii = dK(y), 
xEK 

then y - x belongs to NK(x). Hint: use Proposition 6.15 applied to the 
functions x --+ (-p, xI and x --+ Ily - xii· 

Exercise 6.9 

Let K be a closed subset of a finite-dimensional vector space X. Consider the 
tangent cone to K at x (Definition 6.4). Show that the following assertions are 
equivalent. 

(i) v E TK(x). 
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(ii) lim h-+O+ dK(y+hv) - 0 
y--1-X h -. 
yEK 

(iii) VE > 0, 317 > 0 such that Vh EjO, 17[ and Vy E BK(x, 17), 3u E v + EB such 
that x + hu E K. 

(iv) For any sequences hn --t 0+ and Xn E K converging to x, there exists a 
sequence Vn converging to v such that Xn + hnvn E K for all n. 

Hint: derive the inequalities 

sup dK(y + hv) 
lIy-xliSa h < 

yEK 

< 

sup 
Ily-xllSa 

sup 
liz-xii S2a 

xEK 

dK(y + hv) - dK(y) 
h 

dK(z + hv) 
h 

by taking z E K such that Ily - zll = dK(y) ::; Ily - xii when y ~ K and deduce 
the equivalence of (i) and (ii). 

Exercise 6.10 

Let K be a subset of X and x E K. Show that the following assertions are 
equivalent. 

(i) D __ dK(x)(v) = O. 

(ii) Ve > 0, Va > 0, 3h EjO, a], 3u E v + eB such that x + hu E K. 

(iii) For any sequence hn --t 0+, there exists a sequence Vn converging to v 
such that x + hn Vn E K for all n. 

The closed cone T}«(x) of the elements v of X satisfying one of these equivalent 
conditions is called the contingent cone to K at x. 

Exercise 6.11 

Show that for all x E K, we have 

TK(X) C T}«x). 

If A E L(X, Y), show that 

AT}«(x) C TA(K)(Ax). 
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Exercise 6.12 

Let X be a finite-dimensional space. Let K be a closed subset of X. 

(a) Suppose that y E K. Show that for all wE Tj{(x) (see Exercise 6.10), 

D+dK(y)(v) ~ Ilv - wll· 

(b) Suppose that Z ~ K and take y E K such that Ily - zll = dK(z). Show 
that for all w E TX-(y) 

and thus, that 

DdK(z)(v) ~ Ilv - wll 

DdK(z)(v) ~ inf d(v, Tk(Y)). 
lIy- z ll=dK(z) 

yEK 

(c) We now suppose that for all v E Tj{(x) 

the function OIl --+ d( v, Tj{ (y)) is upper semi-continuous at x. ( *) 

Show that for all E > 0, there exists TI > 0 such that, for all y E BK(x, TI), 
h ElO, Til, we have 

dK(y + hv) < E 

h 

Hint: set f(t) := dK(y + tv), deduce from the previous inequalities that 
for almost all t, in a neighbourhood of 0, f'(t) ~ d(v, TK(Z)) ::; E when 
z E K satisfies dK(y + tv) = Ily + tv - zll and integrate from 0 to h. 

(d) Deduce that if the regularity condition (*) is satisfied at x, then 

TK(x) = Tk(x). 

Exercise 6.13 

Let 7/JK be the indicator function of K. Show that 

D+7/JK(X) = 7/JTk(x)' 

Exercise 6.14 

Suppose that f : X --+ IR U { +oo} is a nontrivial function. Show that 

EpD+f(·T) = T~p(f)(x,f(x)). 
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Exercise 6.15 

Suppose that f : X -+ lR U {+oo} is a nontrivial function, Lipschitz in the 
neighbourhood of a point x E Int(Domf). Show that 

Ep Dcf(x) = TEp(f) (x, f(x)) 

and that 

P E 8f(x) {:} (p, -1) E NEp(f) (x, f(x)). 

Note that these properties may be used to extend Dcf(x) and 8f(x) to any 
nontrivial function f : X -+ lR U { +oo} and deduce that in this case we have 
the formula 

Dc'lf;K(X) = 'If;TK(X)' 

Exercise 6.16 

A set K is said to be pseudo convex at x if 

T}((x) = closure (Uh>O t(K - x)). 

(a) Prove that any convex set is pseudo convex at any point x E K. 

(b) If K is pseudo convex at x and if A E L(X, Y), show that 

AT}((x) = T!(K) (Ax). 

Compare with Exercise 6.11. 

Exercise 6.17 

(*) 

A nontrivial function f X -+ lR U {+oo} is said to be pseudo convex at 
x E Domf if and only if 

Vy E X, D+f(x)(y - x) ::; f(y) - f(x). (*) 

a Show that any convex function is pseudo convex at all x E Domf. 

(b) Show that f is pseudo convex at x if and only if 

Ep(f) is pseudo convex at (x, f (x)). (** ) 

See Exercise 6.16. 
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Exercise 6.18 

Suppose that X and Yare two Hilbert spaces. We consider a nontrivial function 
g : X x Y -7 ill U { +oo} and its marginal function f defined by 

f(x) := inf g(x, y). 
yEY 

Let fj be a point at which the minimum is attained: f(x) = g(x, fj). 

(a) Show that we have 

D+f(x)(u) ~ inf D+g(x, fj)(u, v). 
vEY 

(b) Show that if g is pseudo convex at (x, fj) and that if the problem f(x' ) 
has a solution for all x' in a neighbourhood of x, then 

D+f(x)(u) = inf D+g(x, fj)(u, v). 
vEY 

Hint: use Exercise 6.17. 

Exercise 6.19 

We say that K is star shaped around x E K if and only if 

'IIyEK x+B(y-x)EKfor BE[O,l]. 

Show that K is pseudo convex at x. 

14.7 Exercises for Chapter 8 - Two-person Zero-sum 
Garnes: Theorems of Von Neumann and Ky Fan 

The proofs of the following results are left as an exercise: 

• Lemma 8.1 

• Lemma 8.3 

• Corollary 8.1 

Exercise 8.1 

Show that in Proposition 8.2 and its consequences (Theorems 8.1, 8.2 and 8.5) 
the assumption 

E is compact (*) 

may be replaced by 

:JYl, ... ,Yn E F such that x -7 maxi=l . .. ,n f(x, Yi) is lower semi-compact. (**) 
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Exercise 8.2 

We now consider n Hilbert spaces Xi, n subsets Ei C Xi and n functions 
fi : Ei x F -+ JR. We set 

n 

f(x,y) := Lfi(Xi,y). 
i=l 

We assume that 

Vi = 1, ... ,n, 3Yi E F such that Xi -+ fi(Xi, Yi) is lower semi-compact 
and such that infxjEEj h(Xj, Yi) > -00 Vj i- i (*) 

and that 

Vy E F, Vi = 1, ... ,n, Xi -+ fi(Xi,y) is lower semi-continuous. (**) 

Show that there exist Xi E Fi such that 

n 

sup L fi(Xi, y) = vQ 
yEF i=l 

where 
n 

vQ = sup inf max L fi(Xi, y). 
KES xiEEi yEK i=l 

Hint: use Exercise 8.1. 

Exercise 8.3 

We consider a metric space E, a subset F of a Hilbert space Y and a function 
f : Ex F -+ JR. We use D to denote the canonical set-valued map from F to 
E defined by 

D(y) := {x E Elf(x, y) = inf f(x, y)}. 
xEE 

We suppose that 

(i) F is convex and compact 
(ii) Vx E E, y -+ f(x, y) is concave and upper semi-continuous (*) 

and that 

(i) E is compact 
(ii) Vy E F, X -+ f(x, y) is lower semi-continuous. (**) 

(a) Show that there exists y E F such that 

i"(Y) := inf f(x, y) = v· := sup i"(y). 
xEE y 
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(b) We take any xA in D'((l- A)Y + AY), Use the fact that f is concave with 
respect to y to deduce that 

VA E [0,1]' f(x A, y) ::; J'(y). 

(c) Suppose that, in addition, D is one-to-one and continuous. Deduce that 
there exists x E E such that: 

Vy, f(x,y)::; J'(y) = v' 
and thus that (x, :y) is a saddle point of f. 

(d) Show that we obtain the same conclusion if we simply assume that y ---+ 
D'(y) is lower semi-continuous with non-empty values. 
Note that we have proved another minimax theorem where the convexity 
assumptions on E and on x ---+ f(x, y) are replaced by the assumption 
that D is lower-semi continuous. 

Exercise 8.4 

Suppose that f is a nontrivial convex function from X to lR U { +oo} and that 
K is a convex, closed, bounded subset of X* such that 

Vx E X, f(xo)::; f(x) + cy(K, Xo - x). 

Show that 8f(xo) is non-zero. 
Hint: consider the function cp(x,p) := f(x) + (p, Xo - x) on Domf x K and 

the fact that when X is not finite dimensional, convex, closed bounded sets are 
weakly compact. 

Compare with Exercise 4.7 

Exercise 8.5 

Let X be a Hilbert space. Consider the family K of non-empty, convex, closed 
subsets of X. We define the Hausdorff semi-distance by 

dL(K,L):= supinf Ilx -yll = supd(x,L). 
xEKyEL xEK 

( a) Show that 

dL(K, L) ::; dL(K, M) + dL(M, L). 

(b) Show that 

dL(K,L) = ° ¢:} K c L. 

( c) Prove that 

sup (CYK(P) - CYL(P)) = dL(K, L). 
Ilpll*'S 1 

Hint: if X is infinite dimensional, use the weak topology. 
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Exercise 8.6 

Consider two convex compact subsets E c X and FeY and a function 
f : E x F ---+ JR. Suppose that p E X* and q E Y* are two continuous linear 
forms on X and Y, respectively. We set 

vrt(p, q) := inf sup(f(x, y) - (p, x) + (q, y)) 
xEE yEF 

and 

vb(p,q):= sup inf(f(x,y) - (p,x) + (q,y)). 
yEF xEE 

(a) Suppose that Yo is a max inf: 

inf (f(x, Yo) - (Po, x) + (qo, Yo)) = vrt(po, qo). xEE 

Show that 

vU(Po, qo) - vrt(po, q) ::; (qo - q, Yo). (*) 

(in other words that Yo E 8vrt (po, ·)(qo)) and that 

infxEE(f(x, Yo) - (Po,x)) = infqEy*(vrt(po,q) - (q,yo)). (**) 

(b) Show that if Yo satisfies (*) and (**), then Yo is a max inf. 

(c) Suppose that \Ix E E, y ---+ f(x, y) is concave and upper semi-continuous. 
Show that the condition (**) is satisfied and thus deduce from (b) that if 
Yo satisfies (*) (Yo E 8vU (Po, .) (qo)) then Yo is a max info 

(d) Similarly, show that Yo is a conservative strategy for Frances if and only 
if 

(i) Yo E 8vb(po, ·)(qo) 

(ii) infxEE(f(x,yo) - (Po,Y)) = infq(vb(PO,q) - (q,yo)). 

Exercise 8.7 

Suppose that K is a subset of a Hilbert space X defined by a family of con
straints 

K := {x E XI\lp E P, ,(x,p) s: a}. 

Suppose also that 

(i) P is a convex closed cone in a Hilbert space Z, 
(ii) ,: X X P ---+ JR is positively homogeneous in p. (*) 
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We set 

and 

{ f(x) if x E K 
fK(X):= +00 otherwise 

f'(X,p) := f(x) + 'Y(x,p) 

(the Lagrangian for the problem). 

(a) Show that 

JK(x) := supf'(x,p) 
pEP 

and that 

inf f(x) = inf supf'(x,p). 
xEK xEX pEP 

(b) pEP is said to be a Lagrange multiplier if and only if 

inf supf'(x,p) = inf f'(x,p) 
xEX pEP xEX 

(p is a max inf of the Lagrangian). 

Show that pEP is a Lagrange multiplier and that x E X minimises f 
over K if and only if 

(i) \Ix E X, f(:f;) + 'Y(::r,p) :s; f(x) + 'Y(x,p) 
(:r minimises x -+ f(x) + 'Y(x,p) over X). 

(ii) \lp E P, 'Y( x. p) :s; 0 (x belongs to K), and 

(iii) 'Y(x,p) = o. 

Exercise 8.8 

Suppose that X and Yare two Hilbert spaces and A E L(X, Y) and that 
f : X -+ IR U { +oo} and 9 : Y -+ IR U { +oo} are two nontrivial, convex, lower 
semi-continuous functions such that 0 E ADomf - Domg. 

( a) Show that 

inf (J(:1:) + g(Ax)) = inf sup f'(x, q) 
,rEX xEX qEY* 

where 

£(x,q) := f(x) + (q,y) - g*(q). 

(b) Deduce that the following conditions are equivalent 

inf (J(x) + g(Ax)) = inf f'(x, q) 
xEX xEX 

and 

inf (J(X) + g(Ax)) + j*( -A*q) + g*(q) = O. 
:rEX 



282 14. Exercises 

14.8 Exercises for Chapter 9 - Solution of Nonlinear 
Equations and Inclusions 

The proofs of the following results are left as an exercise: 

• Proposition 9.1 

• Proposition 9.2 

• Proposition 9.3 

• Proposition 9.4 

• Proposition 9.5 

• Corollary 9.1 

• Theorem 9.5 

• Theorem 9.6 

• Theorem 9.7 

Exercise 9.1 

Let C be a set-valued map which is upper hemi-continuous at Xo and bounded 
in a neighbourhood of Xo in the sense that 

sup sup Ilvll < +00. 
xEB(xo,ry) vEC(x) 

Show that 

(X,p) --+ O"(C(x),p) 

is upper semi-continuous at (xo,Po) for all Po. 

Exercise 9.2 

Suppose that C is a set-valued map from K to lRn which is upper seml
continuous at Xo. Show that if C(xo) is bounded, then (x,p) --+ O"(C(x),p) 
is upper semi-continuous at (xo,Po) for all Po. 
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Exercise 9.3 

Consider three metric spaces X, Y and U and a mapping f : X x U -+ Y with 
an associated set-valued map F from X to Y defined by 

F(:r;) := {f(x, u)Lw' 

( a) Show that if 

Vu E U, x -+ f(x, u) is continuous 

then F is lower semi-continuous. 

(b) Show that if 

(i) U is compact 

(ii) f is continuous from X x U to Y 

then F is upper semi-continuous. 

Exercise 9.4 

Consider a metric space K, two Hilbert spaces X and Y, set-valued maps x -+ 
L(x) c X and x -+ M(x) c Y with convex closed values and a mapping 
x -+ A(x) E L(X, Y). We define the set-valued map 

R(x) := {u E L(x)IA(x)u E M(x)}. 

(a) Show that if 

Vx E K, 0 E Int(A(x)L(x) - M(x)), 

then 

a(R(x),p) = inf (a(L(x),p - A(x)*q) + a(M(x), q)). 
qEY' 

(b) Deduce that if x -+ A(x) E L(X, Y) is continuous, if the set-valued maps 
are upper hemi-continuous and if L is bounded in the neighbourhood of 
each point, then R is upper hemi-continuous. 

Exercise 9.5 

Suppose that X is a finite-dimensional space and that C is a set-valued map 
from the unit ball B c X to X with non-empty, convex, closed values. We 
suppose that 

Vx E X, Ilxll = 1, a(F(x), x) 2: O. 

Show that there exists a solution .1: E B of 0 E F(x) . 
Hint: apply Theorem 8.5 to the function r.p defined on B x Y by r.p(x, y) := 

-a(C(x), y) and for the continuous mapping r : Y -+ B defined by 

r(y) := y if Y E B, r-(y) := Y/llyll if Y ~ B. 
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Exercise 9.6 

Suppose that K is a convex compact subset of a Hilbert space X and that C 
is a set-valued map from K to X which is upper hemi-continuous with convex 
closed values. Suppose that 1fK is the projector of best approximation onto K. 
Show that if 

't/x E X, U(C(1fK(X)),X) 2: 0 

then there exists a unique solution x E K of the inclusion 0 E F(x). Hint: the 
proof is similar to that of Exercise 9.5. 

Exercise 9.7 

We define the zone of support of a convex closed subset K c X at p E X* to 
be the set 

OUK(p) := {x E KI(P,x) = UK(p)}. 

Suppose that C is a set-valued map from K to X which is upper hemi-continuous 
with convex closed values. Show that the condition 

't/p E X*, 't/x E OUK(p) , u(C(x), -p) 2: 0 (*) 

is equivalent to 

\Ix E K, \lp E NK(x), u(C(x), -p) 2: o. (** ) 

Exercise 9.8 

Suppose that X and Yare metric spaces. Let F : X -+ Y be a lower semi
continuous set-valued map. Show that x -+ F(x) is also lower semi-continuous. 

Exercise 9.9 

Suppose that X is a metric space and that Y is a normed space. Let F : 
X -+ Y be a lower semi-continuous set-valued map with convex values. Show 
that 't/E > 0, there exists a continuous function f from X to Y such that 

't/x E X, d(J(x), F(x)) ::; E. 

Hint: use continuous partitions of unity. 

Exercise 9.10 

Show that the graph of an upper semi-continuous set-valued map with closed 
values is closed. 
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Exercise 9.11 

Show that if F is upper semi-continuous with compact values, then the image 
of any compact set under F is compact. 

Exercise 9.12 

Suppose that K is a convex compact subset of a Hilbert space X and that Cis 
a set-valued map from K to X with non-empty, convex, closed values. 

(a) Show that a necessary and sufficient condition for the existence for all 
x E K of an 'explicit' solution of the dynamical system 

(i) 
(ii) 

Xo = X 

X n+l - Xn E C(xn ), n = 0, 1, ... 

which is 'viable' in the sense that 

\/n 2 0. Xn E K 

is that 

\/X E K, O"(C(x), -p) 2 (p, Xl - O"K(P)' 

Hint: use the Separation Theorem. 

(b) Note that the condition 

\/x E K, \/p E b(K), O"(C(x), -p) 2 ° 
implies both the condition (*) and the condition 

Vx E K, Vp E NK(x), O"(C(x), -p) ?: O. 

Exercise 9.13 

(*) 

Let K be a convex compact subset of a Hilbert space X and C an upper hemi
continuous set-valued map from K to X with non-empty, convex, closed values. 
We suppose that 

\/X E K, \/p E NK(x), 0" (C(.T), -p) 20. 

Show that for all x E K it is possible to construct an 'implicit' solution of the 
dynamical system 

(i) 
(ii) 

Xo = X 

xn +! - Xn E C(xn ), n = 0, 1, ... 

which is 'viable' in the sense that 

\/n 2 0, Xn E K. 

Compare with Exercise 9.12. Hint: use Theorem 9.4. 
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Exercise 9.14 

Consider a convex compact subset K of X and an upper hemi-continuous set
valued map from K to Y with convex closed values. Consider also a continuous 
mapping x E K --+ A(x) E L(X, Y). We suppose that 

'r/x E K, C(x) n closure(A(x)TK(x)) =:J 0. 

Modify the proof of Theorem 9.3 to show that 

(i) 
(ii) 

Exercise 9.15 

3x E K, 0 E F(x) 
'r/y E K, 3x E K such that A(x)(x - y) E F(x). 

Let K be a convex closed subset of lRn. Let C be an upper hemi-continuous set
valued map from K to lRn with non-empty, convex, closed values. We suppose 
that 

C(K) := UXEKC(X) 

is contained in a compact subset M of K. Show that C has a fixed point. Hint: 
consider the restriction of C to the convex closure of M. 

Exercise 9.16 

Suppose that C is a set-valued map from the unit ball B to itself satisfying 

Show that 

(i) 
(ii) 

'r/x E B, Ilxll = 1, -x E C(x). 

3x E B, x E C(x) 
Be C(B). 

Hint: apply Theorem 9.4 to C(x) - x and C(x) - y. 
If C is one-to-one, we obtain Borsuk's Antipodal Theorem. 

Exercise 9.17 

Suppose that K is a convex compact subset of X. Consider an upper hemi
continuous set-valued map C from K to X with convex closed values satisfying 

Show that 

(i) 
(ii) 

'r/p E X*, 'r/x E aaK(p), C(x) n aaK(p) =:J 0. 

3x E K such that x E C(x) 
'r/y E K, 3x E K such that y E C(x). 

Hint: apply Theorem 9.4 to the set-valued map x --+ x - C(x). 
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Exercise 9.18 

Let X be a Hilbert space, A E L(X, X*) an X-elliptical operator satisfying 

3c> 0 such that \/x E X, (Ax, x) 2: cjjxjj2 (*) 

and K a non-empty, convex, closed subset of X. We consider the following 
problem: if p E X*, find x such that 

(i) 
(ii) 

xE K 
\/y E K, (Ax - p, x - y) S O. 

(a) Show that there is at most one solution x of (**). 

(** ) 

(b) If 1fK denotes the projector of best approximation onto K, show that (**) 
is equivalent to 

x = 1f K (x + '\L -1 (Ax - p)) (*** ) 

where L is the duality operator and .\ is an arbitrary positive scalar. 

( c) Show that 

jj(l- .\L-1A)xjj 2 S (1 + .\2jjAjj2 - 2.\c)jjxjj2. 

(d) For a judicious choice of ,\ > 0, deduce from the Banach-Picard Theorem 
(Theorem 1.5) that (***) has a fixed point and thus that there exists a 
unique solution of the variational inequality (***). 

(e) If G (p) denotes this unique solution, show that 

jjG(p) - G(q)jj S c- 1 jjp - qjj*. 

(f) Deduce that A E L(X, X*) is an isomorphism. 

14.9 Exercises for Chapter 10 - Introduction to the 
Theory of Economic Equilibrium 

The proof of the following result is left as an exercise: 

• Corollary 10.1 
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Exercise 10.1 

Consider n companies j described by production sets Zj. We suppose that each 
consumer has a vector Wi of initial resources and 'shares' Bij of the yield for the 
company j such that I:?=1 Bij = 1 for all j. Show that the set M of available 
commodities is 

and that 

Exercise 10.2 

n m 

M := L Wi + L Zj - IR~ 
i=l j=l 

m 

ri(p) = (p, Wi) + L BijO"(Zj,p). 
j=l 

We assume the framework of Exercise 10.1. We consider a Walrasian equilibrium 
p E Me and the vector fj :- I:?=1 Xi of associated demands, which may be 
written as 

n m 

fj = L Wi + L Zj where Zj E Zj. 
i=l j=l 

Show that for each company j = 1, ... ,m, 

(p, Zj) = max(p, z) 
zEZj 

or, in other words, that each production Zj associated with the Walrasian equi
librium price maximises the profit (p, z) over the net production set Zj. 

Exercise 10.3 

The space of commodities IRe has a scalar product '\(x, y) and we consider 
the associated quadratic function ,\2 (x ) := '\(x, x) and its duality operator L. 
We suppose that each consumer i tries his utmost to approximate to an ideal 
consumption Ui subject to the financial constraint (p, x) = r. Show that the 
demand is then equal to 

(p, Ui) - r L ~lp. 
Di(p,x):=Ui- '\.(pf 

Exercise 10.4 

We assume the framework of Exercise 10.3. We denote the initial resources of 
each consumer by Wi E IRe and their ideal consumptions by Ui E IRe. Show that 
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there exists a Walrasian equilibrium price, which is unique up to a non-zero 
scalar a, given by 

p = aL (t Uj - Wj) 
J=1 

and that the associated demands are equal to 

) m m u. -w· A(Ui- Wi,LJ=1 J J "I)Uj-Wj). 
;ri = Ui - A2(Lj~I(Uj - Wj)) j=1 

Exercise 10.5 

\Ve assume the framework of Exercise 10.4, where an appropriate institution 
wishes to redistribute the yields so that the Walrasian equilibrium mechanism 
provides consumptions &'3 close as possible to (VI, ... , vn ) chosen in advance. In 
other words, if W := L;~1 Wi and liW is the new yield attributed to consumer i, 
find T E ffin such that 

n 

(i) LTi = 1 
i=1 

n 

(ii) L A2(Di(P, Ti(P, w)) - Vi) = )nf A2(Di(p, li(P, w)) - Vi) 
i=l Li=l T'i=l 

where P = L(L;'=l(Uj - Wi))' Show that 

_ (p. Vi) - ~ (p, L~=1 (Vi - Wi)) 
Ii = . 

(p, L~=1 Wi) 

Exercise 10.6 

Suppose we have a consumption set L and a set of resources M such that 

M = !vIa - lR~ where Ma is compact. 

(a) Show that p --+ T(p) = SUPYEAl(P, y) is continuous on lR~. Deduce that 
the graph of the budget set-valued map (p, x) --+ B(p, x) defined by 

B(p,T) := {x E LI(p,x) :S I(pn 

is closed. Deduce from Problem 1 (Chapter 15) that if 

L is compact (*) 

then B is upper semi-continuous. 
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(b) We suppose that 

(i) L is convex 
(ii) \/p E IR~, :3x E L such that (p,x) < r(p). (** ) 

Show that the set-valued map (p,x) -+ B(p,r) is upper semi-continuous. 

( c) We consider a continuous function f from L to IR and we construct the 
following set-valued demand map 

D(p, r) := {x E B(p, r)lf(x) = inf f(x)}. 
xEB(p,r) 

Deduce from Problem 6 (Chapter 15) that the set-valued demand map 
D(p, r) is upper semi-continuous when the assumptions (*) and (**) are 
satisfied. 

Exercise 10.7 

We suppose that each consumer is described by 

(i) a convex compact consumption set L i ; 

(ii) a convex continuous loss function fi : Li -+ IR; 

(iii) a set of initial resources Mi which is convex, compact, has a non-empty 
interior and satisfies Li n IntMi # 0. 

We consider the yield functions ri(p) := (J(Mi'P) and the set-valued demand 
maps 

Di(p,r):= {x E Bi(p,x)lfi(X) = inf J;(x)} 
xEBi(p,r) 

where 

Bi(p,r):= {x E Lil(P,x) ::; r}. 

Let M := Z=~=1 Mi - IR~. Deduce from Exercise 10.6 and Theorem 10.1 that 
there exist p E M£ and Xi E Di (p, ri (p)) such tha:t 

n 

LXi EM. 
i=1 
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Exercise 10.8 

We assume the framework of Theorem 10.2. Let h > O. Show that we may 
associate any initial allocation Xo with a sequence of allocations (xi, ... x~) and 
prices pt E Mf such that. for alli = 1, ... ,n, 

t . . t-I _ h ( .. t t) Xi -.Ii - Ci :Li,p , t = 1, ... , (1) 

which are 'viable' in the sense that 
n 

Vt = 1, ... , x; E Li and LX; E M. (2) 
;=1 

Exercise 10.9 

We assume the framework of Exercise 10.8. Show that if (xi ... , x~,pt) is a 
solution of the problem (1), (2), then 

n ( n ) ECi(X;,pt)ETM EX;-l , t=I, ... , 

Exercise 10.10 

We assume the framework of Theorem 10.2, with the assumption (28)(ii) re
placed by 

Vq E b(Li), Vp EM, (q, Ci(X,P)) ~ O. 

Let h > O. Show that we may associate any initial allocation Xo with a sequence 
of allocations (.Ti ... ,x~,) and prices pt E Me such that, for all i = 1, ... ,n, 

t t--l I (t-l t) Xi-Xi = !Ci:r i ,p, t = 1, ... ,n 

which are viable in the sense that 
n 

Vt = 1, ... , n. x; E Li and L xl E M. 
i=1 

(3) 

(4) 

Hint: use Exercise 9.12 or prove this exercise directly from the Separation The
orem. Compare with Exercise 10.8. 

Exercise 10.11 

We assume the framework of Exercise 10.10. Show that if (xL ... , x~,pt) is a 
solution of the problem (3), (4), then 

n ( n ) ~Ci(X;-I,l) E TM ~x;-l . (5) 
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14.10 Exercises for Chapter 11 - The Von Neumann 
Growth Model 

The proofs of the following results are left as an exercise: 

• Corollary 1l.1 

• Theorem 11.5 

• Theorem 1l.6 

See also Problem 44. 

14.11 Exercises for Chapter 12 - n-person Games 

The proofs of the following results are left as an exercise: 

• Proposition 12.1 

• Theorem 12.2 

• Proposition 12.2 

• Theorem 12.3 

• Proposition 12.3 

• Proposition 12.4 

Exercise 12.1 

Show that Proposition 12.1 remains true if we replace the function <p defined 
by (8) by the function 

1jJ(X,y):= sup (fi(Xi,Xi) - fi(yi,Xi)). 
i=l, ... ,n 

Find other examples of functions <p for which Proposition 12.1 remains true. 

Exercise 12.2 

We consider n nontrivial functions fi : rrr=l Xi -+ lR U { +oo} such that 

'Vi, Yi -+ fi(Yi, Xi) is convex and lower semi-continuous. 

Show that X = (Xl, ... , Xn) is a non-cooperative equilibrium if and only if 

'Vi = 1, ... ,n, 0 E Dfi(·,Xi)(Xi) 
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or, if and only if 

n 

o E II 8!l,Xi)(Xi) 
i=l 

(Fermat's rule). Here, 8!i(-, Xi)(Xi) denotes the sub differential of Yi --+ !i(', Xi) 
at Xi. 

Deduce that t.he non-cooperative equilibria are the fixed points of the set
valued map 

n 

X --+ II Of;'(', Xi)(O). 
i=l 

Exercise 12.3 

We assume the framework of Exercise 12.2. We consider n convex closed subsets 
Ei C Xi such that 

'Vi, 'VXi, 0 E Int(Ki -Dom!i(·,xi)). 

Show that X = (Xl,'" ,Xn ) E TI~l Ei is a non-cooperative equilibrium if and 
only if 

'Vi = 1, ... , n, 0 E 8!i(', Xi)(Xi) + NEi(X;). 

Deduce that if Yi --+ !i(Yi, x;) is differentiable (Gateaux differentiable) at all 
Xi E Ei for all Xi E Ei , then the non-cooperative equilibria are the solutions of 
the variational inequalities 

(i) 

(ii) 

'Vi = 1, ... ,n, Xi E Ei 
Tl 

I.J'Vdi(Xi,Xi),Xi - Yi)::; 0 
i=l 

where 'Vdi(Xi, Xi) denotes the gradient of Yi-t !i(Yi, Xi) at Xi· 

Exercise 12.4 

We assume we are in the framework of Exercise 12.2. We introduce n other 
Hilbert spaces Yi, n continuous linear operators Ai E L(Xi' Yi) and n nontrivial, 
convex, lower semi-continuous functions gi : Yi --+ IR U { +00 }. We consider the 
dual problem 

Vi.(Xi) := inf* (t !;'( -A;q, Xi) + g;(q)). 
qEYi i=l 

(*) 

( a) Show that 

Vi. (Xi) + !i(Yi, Xi) + gi(AiYi) ?:: O. 
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(b) Show that if qi is a solution of the dual problem Vi.(Xi) for all i and if 

Vi = 1, ... ,n, Vi.(Xi) + Ji(Xi, Xi) + gi(AiXi) = 0 (**) 

then (XI,"" xn) is a non-cooperative equilibrium for the loss functions 
X ~ Ji(X) + gi(AiX). 

(c) Show that in this case, we have the relations 

Vi = 1, ... , n, 0 E 8Ji(', Xi)(Xi) + A;8gi(AiXi) 

and that (Xl"'" xn,jh, ... ,Pn) is a solution of the system 

(i) 
(ii) 

Exercise 12.5 

o E 8Ji(', Xi)(Xi) + Atpi 
o E -AXi + 8gt(Pi)' 

We consider n finite-dimensional spaces Xi, their product X = rr~=l Xi, an op
erator M E L(X,X) defined by (Mx)j = L,k=lMjkXk where Mjk E L(Xk,Xj ), 
Mii = Id, n scalar products Ai(X, y) and their duality operators Li E L(Xi' X;), 
an operator A E L(X, Y) defined by Ax = L,']=l Ajx where Aj E L(Xj, Y) and 
u = (UI, ... ,un) EX. We make the following assumption 

n n 

Vx =J 0, (Lx, Mx) = L L(LjXj, MjkXk) > O. 
j=lk=l 

(a) Show that (*) implies that M is invertible. 

(b) Show that if A is surjective then AM -1 L -1 A' is invertible. 

(c) Prove that x = (:1\, ... ,xn ) E X defined by 

x = M-l(u - L-lA*p), 

where 

P = (AM-lL-lA*rl(AM-lu - w), 

is the solution of the following problem 

n 

(i) LAixi = W 

i=l 

t A; (Xj + L MjkXk - uj) 
j=l k#j 

= n inf_ tA; (Xj+ LMjkXk-Uj). 
L,i=l A,x,-w ;=1 k#; 

(ii) 

H 
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Exercise 12.6 

We assume we are in the framework of Exercise 12.5. We consider n convex 
closed subsets Ki C Xi' Show that (*) implies that there exists a unique non
cooperative equilibrium x E IT Ki for the functions 

x ---+ A; (Xj + L MjkXk - Ui) . 
kij 

Hint: use Exercise 9.18. 

Exercise 12.7 

We consider 

(i) n convex compact subsets Li C IRi 

(ii) n convex compact subsets Mi C IRi 

such that 

• 0 R 
\:h=I, ... ,n,OELi-Mi+IR+. 

We consider n continuous functions 

!i : II Xi X IR+ ---+ IR 

such that 

\:Ip, \:lXi, Xi ---+ !i(Xi,Xi,P) is convex. 

We set ri(p) := a(Mi,p) and r(p) :- 2::7=1 ri(p). Show that there exist 
Xl, ... , Xn , P such that 

n n 

(i) LXi E LMi 
i=l i=l 

(ii) \:Ii = 1, ... , n, Xi E Bi(P, ri(p)) 
(iii) \:Ii = 1, ... ,n, !i(Xi, Xi, p) = min{!i(Yi, Xi, p) IYi E Bi(P, ri(p) n· 
Hint: use Theorem 12.3 applied to an (n + I)-person game where the (n + I)th 
player is the 'market' which has loss function 

fo(x,p) = r(p) - \P'~Xi)' 



296 14. Exercises 

Exercise 12.8 

We consider 

(i) n subsets Li C Xi; 

(ii) a convex subset M C Y, where Y is finite dimensional; 

(iii) n continuous linear operators Ai E L(Xi, Y); 

(iv) n functions Ii : Li ---+ JR. 

Suppose we have 5. E Mn, p E b(M) (barrier cone of M) and x E I1~=1 Li 
satisfying 

(i) 'Vi = 1, ... , n, 5.di(Xi) + (p, AiXi) = inf{5.di(xi) + (j5, AiXi)lxi ELi} 
n 

(ii) 2]p,AiXi) = (JM(P). 
i=l 

We set 

K := {X E g Lil ~ AiXi EM} . 
(a) Show that (*) implies that x E K is a Pareto optimum for the Ii on K. 

(b) We set 

¢(X,y):= (11(X)' ... 'ln(x),~AiXi -y) 

where ¢ : Li x M ---+ IRn x Y. 

Show that x is a Pareto optimum on K if and only if 

(f(x),O) tJ- ¢ (il Li x M) + lk: x {O}. 

(c) We now suppose that 

(i) the sets Li and M are convex; 

(ii) the functions Ii are convex. 

Show that there exist 5. E JR: and p E Y* such that 

(i) (5.,p) -I- 0 

(ii) ~5.di(Xi) = inf (~5.di(Xi) + (p,AiXi) - (JM(P))' 

(d) Show that the condition 

o E lnt (E Ai(Li) - M) 
enables us to take 5. E Mn and thus to show that (*) holds. 
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Exercise 12.9 

We consider a cooperative game without side payments (see Definition 12.2) 
defined by subsets V(S). For all A E lR~, we set 

We also set 

and 

W(S,A):= inf (A,V). 
vEV(S) 

MT := {A E MnlAi = 1 Vi ~ T} 

a(r) := sup inf ((A, Cs' r) - w(S, A)). 
SEN )..EMs 

(a) Show that T is in the core of the game if and only if 

r E V(N) and a(r) :S O. 

(b) Consider the set 

0:= {r E V(Nlla(r) = i~f{a(rl,r E V(N)}}. 

Show that if 

V(N) is closed and bounded below, (*) 

then 0 is non-empty and compact. Show that 0 is always contained in 
the set of Pareto optima and in the core when the latter is non-empty. 

Exercise 12.10 

We assume we are in the framework of Exercise 12.9. We set 

8(r):= inf sup((A,CS·T)-W(S,A)). 
)..EM" SeN 

We say that r E V(N) is an 'equilibrium' of the game if there exists 5. E Mn 
such that 

'IS. (5., Cs . r) :S w(S, 5.) (*) 

(a) Show that any equilibrium r belongs to the core of the game. 
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(b) Show that we may write 

where 

f3(r):= inf sup ((.>.,c·r)-w(c,.>.)) 
>'EMn cE[O,l]n 

w(c,.>.) := inf (2:: m(S)w(S, .>.)) 
Lm(S)cs=c 

m(S)2:0 

Hint: write 

(c) We set 

Show that 

SUp((,\,C5 ·r) -w(S,r)) 
5 

sup ((,\, (2:: a(S)c5) . r - 2:: a(S)w(S, .>.)) 
a(5)2:0'L a(5)=1 

sup sup ((,\,c'r)-2::a(s)w(S,.>.)) 
cE[O,l]n La(5)cs=c 

V:= co U (2:: m(s)V(S)). 
Lm(S)cs=c 5 

m(S)2:0 

w(c,.>.):= i~f (,\, r). 
>'EV(c) 

(d) Deduce that any equilibrium r associated with a ). E lk: is contained in 
the 'fuzzy core' of the game, namely the set of multi losses r E V(N) such 
that 

VCE[O,It, c.r~V(c)+c.lR~. 

(e) Conversely, deduce from Theorem 8.1 that any element of the fuzzy core 
is an equilibrium. 

Hint: show that if r belongs to the fuzzy core then 

&(r):= sup inf ((.>., c· r) - w(c, .>.)) s:; O. 
cE[O,l]n >'EMn 

Exercise 12.11 

We assume we are in the framework of Exercise 12.10. We suppose that the game 
is strongly balanced, in the sense that for any balancing m (see Definition 9.9), 
we have 

2:: m(S)V(S) C V(N). 
5 
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(a) Show that if the game is strongly balanced then it is balanced. 

(b) We set 

Q(A) := {r E V(N)I(A, c· r) :::: w(c, A) 'v'c E [a, W}. 

Show that Q(A) has convex compact values and that 

O"(Q(A),A)::::> U;(CN,A) = V(N,A) = -O"(-V(N),A). 

(c) Deduce from Theorem 9.2 (Gale-Nikaido-Debreu) that if A -t Q(A) is 
upper semi-continuous, then there exists 5. E Mn such that 

C(5.) n V(N) 10. 

Show that the elements of this intersection are equilibria. 

14.12 Exercises for Chapter 13 - Cooperative Games 
and Fuzzy Games 

The proofs of the following results are left as an exercise: 

• Theorem 13.1 

• Theorem 13.2 

• Proposition 13.2 

• Theorem 13.4 

• Proposition 13.4 

Exercise 13.1 

We assume we are in the framework of Theorem 13.1. Show that we may asso
ciate any XO E L with a sequence of xt ELand fuzzy coalitions d E [0, It such 
that 

n 

XH1 _ Xi = LC;+lfi(Xt+l). 

i=l 

Deduce a law of evolution for fuzzy coalitions. 
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Exercise 13.2 

We consider a 'continuum of players' identified with an interval f? of the straight 
line. The 'fuzzy coalitions' of players are identified with the measurable functions 
from f? to [0,1]. 

We associate each player with its action f(w,') where f : f? x L --+ ffin and 
each fuzzy coalition c(w) with its action J.o f(w, x)c(w)dw. We suppose that 

(i) \Ix E L, w --+ f(w, x) E £1; 

(ii) x --t f(w,x) is continuous for almost all w; 

(iii) sUPxELsuPi=l, ... ,n If;(w,x)1 :S go(w) where go ELI. 

If L c ffin is convex and compact, show that there exist x ELand C E 
U)O(f?, [0, 1]) such that 

In f(w, x)c(w)dw = 0. 

Exercise 13.3 

We consider a compact set L C ffi£, n operators Ai E L(ffiC, ffik), n closed sets 
Mi C ffik and n continuous mappings fi from L to ffi£. We suppose that \Ix E L, 
::Ic E [0, It such that 

n n 

(i) L ciAx E L CiMi 
i=l i=l 

n 

(ii) Lcdi(X) E TL(X). 
i=l 

(a) Show that there exists x ELand C E [0, It such that 

n n 

(i) L CiAiX E L CiMi 
i=l i=l 

n 

(ii) Lcd;(x) = 0. 
i=l 

(b) Show that for any XO ELand CO such that 2: c? Axo E 2: c? M;, there 
exists a sequence of xt and d such that 

(i) 

(ii) 

n n 

Lc!Aixt E Lc!M; 
;=1 ;=1 

n 

XH1 _ xt = LC!+lfi(XH1 ). 
i=l 

Hint: use the set-valued map C defined by 

{ n n n} 
C(x) = ECdi(x)IEc;A;x E EciMi . 
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Exercise 13.4 

A share-out game v is said to be inessential if 

VS, w(S) = L ai· 
iES 

Show that the core of such a game consists of a single vector a = (al,"" an). 

Exercise 13.5 

Suppose that the fuzzy game v may be written as 

where 

(i) P is compact; 

Vc E ffi~, v(e):= supw(e,p) 
pEP 

(ii) Ve E IR~, p ---7 w(c,p) is upper semi-continuous; 

(iii) Vp E P, C ---7 w( c, p) is convex, positively homogeneous and finite. 

We consider the core C of the game v and the cores C(p) of the games w(·,p). 
Let 

P(N) := {p E PIV(CN) = W(CN,p)}. 

Show that 

C=co( u C(P))' 
pEP(N) 

Hint: use Theorem 4.4. 

Exercise 13.6 

We consider the space vn of functions v : [0, l]n ---7 IR which are zero at 0 and 
continuously differentiable at all points of the diagonal. {tcN} tE[O,I]' We let CJ( v) 
denote the vector with components 

11 [) 

CJ( V)i = -;:;-v( t, t, ... , t)dt. 
o Uei 

(a) Show that for any operator A E L(IRm, IRn) such that ACN = eN, we have 

CJ(V 0 A) = A*CJ(v). 
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(b) Show that if v is positively homogeneous 

iT(v) = S(v) := \7v(cN ). 

( c) Show that the efficiency axiom 

n 

I>(V)i = V(CN) 
i=l 

is satisfied (calculate -/1;;V(tcN) and integrate from 0 to 1). 

(d) Show that the symmetry axiom 

iT( () * v) = () * iT( v) for any permutation () 

is satisfied (for A use the operator defined by formula (35) of Chapter 13). 

( e) Show that the atomicity axiom is satisfied (for A use the operator defined 
by formula (38) of Chapter 13). 

(f) Show that the redundant-players axiom is satisfied (for A use the projec
tion operator from IRm onto IRn). 

(g) The space vn is assigned the scalar product 

n r1 ov ow 
((v,w)) = t;Jo aCi(t, ... ,t)aCi(t, ... ,t)dt. 

Show that iT(v) is the projection of v onto the space of linear functions 
IRn c V n . 



15. Statements of Problems 

15.1 Problem 1 - Set-valued Maps with a Closed 
Graph 

(a) Show that the graph of any upper semi-continuous set-valued map F from 
X to Y with closed values is closed. 

(b) Show that the converse is true if the codomain Y is compact. 

15.2 Problem 2 - Upper Semi-continuous Set-valued 
Maps 

We consider two set-valued maps F and G from X to Y such that 

F is upper semi-continuous at Xo 

F(xo) is compact 

the graph of G is closed 

\;/x E X, F(x) n G(x) leO. 

Let N be an open neighbourhood of F(xo) n G(xo). 

(1) 
(2) 
(3) 
(4) 

(a) If F(xo) eN, deduce that x --+ F(x) n G(x) is upper semi-continuous at 

Xo· 

(b) Otherwise, set K := F(xo)nN and show that we may associate any y E K 
with neighbourhoods Uy(xo) of Xo and W(y) of y such that 

\;/x E Uy(xo), G(x) n W(y) = 0. (5) 

(c) Deduce that there exists a neighbourhood U(xo) of Xo and an open subset 
M of Y such that 

\;/1; E U(xo), F(x) eMu Nand G(x) n M = 0. (6) 

(d) Now show that x --+ F(x) n G(x) is upper semi-continuous at Xo under 
assumptions (1 )~( 4). 

(e) Deduce that if the graph of a set-valued map G from X to a compact set 
Y is closed, then G is upper semi-continuous. 
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15.3 Problem 3 - Image of a Set-valued Map 

Consider three metric spaces X, Y and U and 

• a set-valued map G from X to U 

• a continuous mapping from Graph( G) to Y. 

We define the (set-valued) image map F from X to Y by 

F(x):= U(X,U)}UEG(X)' (1) 

(a) Show that if 
G is lower semi-continuous (2) 

the same is true of F. 

(b) Show that if 

G is upper semi-continuous with compact values (3) 

the same is true of F. 

15.4 Problem 4 - Inverse Image of a Set-valued Map 

We consider a metric space K, two set-valued maps T and F from K to vector 
spaces Y and U and a mapping f from Graph(F) to Y. We define the associated 
set-valued map R by 

R(x):= {u E F(x)lf(x,u) E T(x)}. (1) 

(a) Suppose that f is continuous, that the graph of T is closed and that F is 
upper semi-continuous with convex compact values. Show that R is upper 
semi-continuous. Hint: use Problem 2. 

(b) Suppose that 

F is lower semi-continuous with convex closed values (2) 
Ic/x E K, T(x) is convex and closed, IntT(x) =I 0 and the graph of 
x ---+ IntT(x) is open in K x Y (3) 
f is continuous and affine. (4) 

Show successively that 

(i) The set-valued map S defined by 

S(x):= {u E F(x)lf(x,u) E IntT(x)} (5) 

is lower semi-continuous. 
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(ii) 'Vx E K, S(x) = R(x). 

(iii) The set-valued map R is lower semi-continuous. 

(c) Show that if assumptions (2), (4) together with the following 

T is lower semi-continuous with convex values, 
3, > 0 such that 'Vx E K, ,E c f(x, F(x)) - T(x), 
the images F(x) are contained in a bounded set, 

are satisfied, then R is lower semi-continuous. 

15.5 Problem 5 - Polars of a Set-valued Map 

(6) 
(7) 
(8) 

Let Y be a finite-dimensional space. Consider a set-valued map T from a metric 
space X to Y. 

(a) Show that if T is lower semi-continuous, then the set-valued map x --t 

T(xr has a closed graph. 

(b) Show that if the images T (x) are convex closed cones, then the converse 
is true. Hint: use the theorem relating to projections onto convex closed 
cones (Problem 17, below). 

15.6 Problem 6 - Marginal Functions 

Consider two metric spaces X and Y, a function 9 : X x Y --t IR and a set-valued 
map F from X to Y with the marginal function f defined by 

f(x) = sup g(x, y). (1) 
YEF(x) 

(a) Suppose that 9 and F are lower semi-continuous and prove that f is then 
lower semi-continuous. 

(b) Suppose that 9 is upper semi-continuous and that F is upper semi
continuous with compact values; prove that f is upper semi-continuous. 

(c) Suppose that 9 is continuous and that F is continuous with compact values 
(then the marginal function is continuous). Using Problem 2, prove that 
the marginal set-valued map M defined by 

M(x) := {y E F(x)lf(x) = g(x, y)} (2) 

is upper semi-continuous. 

(d) Suppose that 9 is Lipschitz and that F is Lipschitz in the sense that 

'VXI, X2, sup d(YI' F(X2)) :s; clixi - x211· (3) 
Yl EF(xtl 

Prove that the marginal function is also Lipschitz. 
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15.7 Problem 7 - Generic Continuity of a Set-valued 
Map with a Closed Graph 

Consider a set-valued map F from X to a compact set Y. 

(a) Consider a countable family of open sets Un such that for any open set 
U and for any x E U, there exists Un with x E Un C U (this is possible, 
because, since Y is compact, there exists a countable dense sequence in 
Y). Set 

Kn := {x E XIF(x) n Un -I- 0}. (1) 

Show that if F is lower semi-continuous at x, then there exists Kn such 
that x E Int Kn, the interior of Kn. 

(b) Deduce that the set of points of discontinuity of F is contained in 
U~=l()Kn. 

(c) Deduce from Baire's theorem that F is lower semi-continuous (whence 
continuous) on a dense subset of X. 

15.8 Problem 8 - Approximate Selection of an Upper 
Semi-continuous Set-valued Map 

(a) Consider the set-valued map F from lR to lR defined by 

F ( x) = { -1 } if x < 0 
F(O) = [-1, +1] 
F(x)={+l} ifx>O 

• +1 

o 

-1~.---------------

(1) 

Verify that this set-valued map is upper semi-continuous and has no con
tinuous selection, in other words there is no continuous mapping f such 
that f(x) E F(x), I::/x. 

(b) Suppose that F is a convex-valued upper semi-continuous function from a 
compact metric space X to a Hilbert space Y. Show that given any s > 0, 
there exists a continuous mapping fe from X to Y such that 

I::/x E X, fE(X) E F(x) + sB. (2) 

Hint: use continuous partitions of unity to construct fE' 
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15.9 Problem 9 - Continuous Selection of a Lower 
Semi-continuous Set-valued Map 

Consider a lower semi-continuous set-valued map F from a compact metric 
space X to a Hilbert space Y with convex closed values. 

(a) Show that given any c > 0, there exists a continuous mapping fe from X 
to Y such that 

Vx E X, d(fe(x), F(x)) :; c. (1) 

Hint: use continuous partitions of unity to construct fe. 

(b) Prove inductively that there exist continuous mappings fn X ---+ Y 
satisfying 

(i) 

(ii) 

1 
Vx E X, d(fn(x) , F(x)) :; 2n 

1 
VJ: E X, IIfn(x) - fn-l(X)11 :; 2n- 2 (2) 

(c) Deduce that the fn converge uniformly to a continuous mapping f from 
X to Y satisfying 

Vx E X, f(x) E F(x) 

(continuous selection of F). 

15.10 Problem 10 - Interior of the Image of a Convex 
Closed Cone 

(3) 

Suppose that X and Y denote Hilbert (or Banach) spaces and that B denotes 
the unit ball of X or Y. 

(a) We consider a convex closed subset K c X containing 0 and a continuous, 
linear operator A E L(X, Y) from X to Y. We suppose that 

o E Int(A(K)). (1) 

Using Baire's theorem (if the interior of the union of a countable family of 
closed subsets of a complete metric space is non-empty then the interior 
of one of the closed sets is non-empty), show that 

o E Int (closure(A(Kn B))). (2) 
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(b) We set 

T:= A(KnB). 

Show that this set has the property 

! fTkTCT. 
2 k=O 

(3) 

Hint: use the fact that K n B is bounded, convex and closed and the fact 
that X is complete. 

(c) Show that if T is a set satisfying property (3) and that if 

o E Int (closure (T)) 

then 

o E Int (T). 

Deduce that assumption (1) implies 

:J')' > 0 such that ')'B C A(K n B). 

What is the corresponding result when K = X? 

(d) We now suppose that 

(i) K is a convex closed cone 
(ii) A(K) = Y. 

(4) 

(5) 

(6) 

(7) 

Deduce that there exists a constant c > 0 such that for all Xl E K and 
Y2C Y, there exists a solution X2 E K of the equation AX2 = Y2 satisfying 
the inequality 

IIx2 - xIII::; cllAxl - Y211 
or, more concisely, for all YI, Y2 E Y 

K n A-I(yd c K n A-I(Y2) + cllYI - Y211B 

(the set-valued map Y --+ K n A-I(y) is Lipschitz). 

(8) 

(9) 

(e) We take convex closed cones P C X and Q C Y and a continuous linear 
operator L c L(X, Y) from X to Y. With any y E Y, we associate the set 

M(y) := {x E PILx E Q + y}. (10) 

Deduce from (d) that there exists c > 0 such that for all Xo E P and 
yEo Y, 

d(xo, M(y)) ::; cdQ(Lxo - y). (11) 

Hint: set K := P X Q and A(x, y) := Lx - y. 
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(f) We consider a set-valued map F from X to Y the graph of which is a 
convex closed cone (F is said to be a convex closed process). We suppose 
that F is surjective: 

1m (F) = Y. 

Deduce from (d) that there exists a constant c > 0 such that 

VYI E Y, VXI E F~I(yd, VY2 E Y, ::lX2 E F~I(Y2) 

such that 

IlxI - x211 :S cllYI - Y211 
or, such that 

F~I(yd C F~I(Y2) + cllYl - Y211. 

(12) 

(13) 

(14) 

Hint: set K := Graph(F) and A := 7ry, the canonical projection from 
X x Y onto Y; note, moreover, that the properties (d), (e) and (f) are 
equivalent. 

(g) We suppose that 

(i) K is a convex closed set containing 0 
(ii) 0 E Int(A(K)). (15) 

Show that there exists a constant "f > 0 such that for all Xo E K and all 
Y E "fE, there exists a solution :z; E K of the equation Y = Ax such that 

(h) We consider 

1 
11:[ - xoll :S -(1 + Ilxoll)lly - Axoll· 

"f 

(i) convex closed subsets P c X and Q C Y 
(ii) a continuous linear operator L E L(X, Y) 

satisfying 

o E Int(L(P) - Q). 

We set 

M(y) := {:r: E PILx E Q + y} 

and we choose x E 2\11(0). 

(16) 

(17) 

(18) 

(19) 

Deduce from (g) that there exist "f > 0 and c > 0 such that, for all Xo E K 

and Z E "fE, 

d(xo, M(z)) :S c(llxo - xii + l)dQ{Lxo - z). (20) 

Hint: Set K := P x Q - (x, Lx) and A(x, y) := Lx - y. 
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(i) We consider a set-valued map F from X to Y the graph of which is a 
convex closed cone. We suppose that 

Y E Int (1m (F)) (21) 

and we take x E F-1(y). Deduce from (g) that there exists a constant 'Y 
such that for all (xo, Yo) E Graph(F) and for all y E Y + 'YB we have 

1 
d(xo, F-1(y)) ::; -(1 + max(llxo - xii, Ilyo - yll)lly - yoll· (22) 

'Y 

Note that the inequality 

1 
d(x,F-1(y))::; -Ily - YII 

'Y 
(23) 

is a direct consequence. Hint: take K := Graph(F) - (x, y) and for A take 
the canonical projection of X x Y onto Y. 

15.11 Problem 11 - Discrete Dynamical Systems 

Suppose that X is a complete metric space and that 9 is a continuous mapping 
from X to X. 

We suppose that there exists f : X --t IR+ U { +oo} with the property that 

"Ix E X, f(g(x)) + d(x,g(x)) ::; f(x). (1) 

We consider a solution (xt), xt E X, t = 0,1,2, ... of the discrete dynamical 
system 

X H1 = g(xt), Xo = Xo (2) 

the equilibria of which are the fixed points of g. 

(a) Show that assumption (1) implies that if f(xo) is finite, then the solution 
of (2) converges to an equilibrium. 

(b) Show that if there exists a function f satisfying (1), then the function fg 
defined by 

00 

fg(x):= 2.: d(gHl(x), gt(x)) E [0,00] (3) 
t=O 

is the smallest function f : X --t IR+ U {+oo} satisfying (1). Deduce that 
the domain of fg contains an equilibrium point. 

(c) Deduce the Banach-Picard Fixed-point Theorem for contractions. 
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(d) Let G be a set-valued map from X to X. We suppose that there exists a 
function f : X --+ IR+ U { +oo} satisfying 

'Vx EX, =:Jy E G(x) such that f(y) + d(x, y) :::; f(x). (4) 

Show that if the graph of G is closed, then for all Xo E Dom f, there exists 
a solution (in X) of the dynamical system 

xt+l E G(xt), xO = Xo (5) 

which converges to an equilibrium point of G, in other words a fixed point 
x E G(x). 

(e) We consider the set T(x) of solutions (xt) of (5) based on x and the set 
H (x), the orbit based on x defined by 

H(x):= U U{xt}. (6) 
(xt)ET(x) C>O 

Show that the relation 'y ~ x if and only if y E H(x)' is a preorder. 

(f) With any solution (xt) of (5) we associate the set 

K(xt) := n H(xt) (7) 
t2':O 

(i) Show that the accumulation points (limit points) of the sequence xt 
belong to K(xt). 

(ii) Show that if G is lower semi-continuous, then G(K(xt)) c K(xt). 

(g) We now suppose that there exists a function f : X --+ IR+ U {+oo} 
satisfying 

'Vx E X, 'Vy E G(x), f(y) + d(x, y) :::; f(x). (8) 

For a given x E Dom(f), construct a solution (xt) of (5) based on x, 
satisfying 

Xn+l E H(xn ) and f(xn+d :::; v(xn) + Tn (9) 

where 

v(x) := inf{f(y)ly E H(x)}. (10) 

(i) Show, by adapting the proof of Theorem 1.2, that the sequence xt 
converges to a limit x. 

(ii) Deduce that if G is also lower semi-continuous, then G(x) = {x}. 
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15.12 Problem 12 - Fixed Points of Contractive 
Set-valued Maps 

\Ve consider a nontrivial set-valued map G from a metric space E to itself. We 
denote by T(x) the set of sequences Xn such that Xn+l E G(xn), Xo = x (the set 
of solutions of the discrete dynamical system defined by G beginning at x). We 
set 

00 

fe(x) = inf L d(xn' xn+d E lR+ U {+oo} 
T(x) n=O 

(1) 

(minimum length of trajectories based on x). 

(a) Show that if f : E --+ lR+ U { +oo} satisfies 

't:/x E E, ::Jy E G(x) such that f(y) + d(x, y) ~ f(x), (2) 

then 

't:/X E E, fe(x) ~ f(x). (3) 

(b) We associate any E > 0 with the function fE defined by 

fE(X) = inf {~ d(xn' xn+l)lxo = x and Xn+l E B( G(Xn), E) } . (4) 

Show that if E2 ~ El, then 

fE' (x) ~ fE2(X) ~ fc(x) (5) 

and that 

't:/:r E E, ::JxE E B(G(x), E) such that fE(XE) + d(x, xE) ~ f£(x) + E. (6) 

(c) We now suppose that 

G is upper semi-continuous with compact values. (7) 

Show that there exists a subsequence XEk converging to an element x E 

G(:r) such that, for all 6 > 0, ::Jk8 such that 't:/k :::: k8, 

h(x) + d(x, XEk ) - d(x, Xq) ~ fq(x) + Ek. (8) 

(d) We set 

fo(x) = limfE(x). 
E-+O 

(9) 

Show that fo = fe satisfies the property (2). 

(e) We now suppose that the set-valued map G is a contraction from E to E, 
in the sense that there exists ,\ E ]0, 1 [ such that 

't:/X, y E E, G(y) c B(G(x), ,\). (10) 

If G has compact values, show that G has a fixed point. Hint: use Theo
rem 1.4. 
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15.13 Problem 13 - Approximate Variational Principle 

Suppose that X is a Hilbert space and that f : X -+ IR is a nontrivial, positive, 
lower semi-continuous. Gateaux-differentiable function. 

(a) Fix 10 > 0, A > 0 and Xo E Domf such that 

f(xo) :S inf f(x) + cA. 
xEX 

Show that there exists x such that 

f(x) :S f(xo), Ilxo - xii :S A and IIDf(x)11 :S c. 

(b) Deduce that there exists a sequence xn E X satisfying 

(i) 
(ii) 

(c) We also suppose that 

f(x n ) -+ infxEX f(x) 
D f(xn ) -+ 0 in X* 

. f(x) 
hm -=+00. 

11:c11--;00 Ilxll 
Show that D f (X) is dense in X*. 

15.14 Problem 14 - Open Image Theorem 

(1) 

(2) 

(3) 

(4) 

Consider a Hilbert (or Banach) space X, a finite-dimensional space Y, a non
empty closed subset K of X and a continuous linear operator A from X to 
Y. 

We consider the tangent cone TK(XO) and the normal cone NK(xo) to K 
at Xo (in the sense of Definition 6.4). Alternatively, we may suppose that K is 
convex and closed and take the tangent and normal cones of convex analysis 
(Definition 4.3). 

The aim of the problem is to show that the condition 

ATK(xo) = Y (1) 

implies that 

Axo E IntA(K), (2) 

in other words, that there exists, > 0 such that 

vy E A(xo) + ,E, 3x E K solution of, A(x) = y (3) 

(Frankowska's theorem). 
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(a) Suppose that A(xo) ~ Int A(K). Using Ekeland's Theorem (Theorem 1.2), 
show that there exist sequences Yn ~ A( K) and Xn E K such that Xn 
converges to Xo and 

1 
Vx E K, IIA(xn) - Ynll ::; IIA(x) - Ynll + -llxn - xii. (4) 

n 

(b) Calculate the Frechet derivative of the function z -t IIA(xn + z) - Ynll 
and show that it may be written in the form A* Pn, where Pn is in the unit 
sphere of Y. 

(c) Deduce from (a) and (b), that there exists P in the unit sphere of S such 
that 

Vu E TK(xo), 0::; (p, Au). 

(d) Deduce that (1) implies (2). 

(5) 

(e) More generally, suppose that A is a continuously differentiable mapping 
from a neighbourhood of K to Y. Show that the condition 

A'(xo)TK(xo) = Y (6) 

implies that 

A(xo) E IntA(K). (7) 

(f) Show that if LeX is a closed subset of a Hilbert space, M a closed 
subset of a finite-dimensional space, B E L(X, Y) and Xo E L n B- 1 (M), 
then the condition 

BTL(XO) - TM(BxO) = Y (8) 

implies that 

o E Int(B(L) - M). (9) 

Verify that this extends to the case in which B is continuously differen
tiable and (8) is replaced by 

B'(xo)TL(xo) - TM(B(xo)) = Y. (10) 

(g) Suppose that 

K is a closed subset of X (ll) 

and consider a continuously differentiable mapping F from a neighbour
hood of L to IRn with components 1;. Show that if Xo is a Pareto optimum 
(see Definition 12.5), then there exists A E IR~, Ai- 0 such that 

n 

L Ad{(xo) E NK(xo). (12) 
i=1 



15.15 Problem 15 315 

15.15 Problem 15 - Asymptotic Centres 

Let E be a finite-dimensional vector space (the problem also holds for Hilbert 
spaces, provided we use weak convergence). We consider a bounded sequence of 
elements Xt of E with which we associate: 

1. The function v defined by 

v(y) := lim sup IIXt _ Yl12 (= inf sup IIXt _ YI12). 
s:CO t:Cs 1--'>00 

2. The set N (attractor for the sequence) defined by 

N := {y E Elv(y) = lim IIXt _ YI12}. 
t--'>oo 

3. The set C which is the convex closed hull of the limit points of the se
quence. 

(a) Show that v is a finite strictly convex function satisfying 

lim v(y) = +00. 
Ilyll--'>CXJ 

Deduce that the function v has a unique minimum X, which is called the 
asymptotic centre of the bounded sequence Xt. 

(b) Let y E C be the best approximation of the asymptotic centre x by the 
elements of C. Show that 

v(y) + Ilx - Yl12 ::: v(x). 

Hint: expand IIXt - y + y - x11 2, pass to the limit of a suitable subse
quence. 

Deduce that the asymptotic centre x of a bounded sequence Xt always 
belongs to the set C and that if a sequence converges, its asymptotic centre 
is its limit (the asymptotic centre may be viewed as a virtual limit). 

(c) We take yEN n C, z E E and w a limit point of the sequence Xt. Show 
that 

v(y) + Ily - zl12 + 2(w - y, y - z) ::: v(z). 

Deduce that 

v(y) + Ily - zl12 ::: v(z) I;jz E E. 

Thus, show that either N n C 0 or N n C {x} (reduces to the 
asymptotic centre). 
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15.16 Problem 16 - Fixed Points of Non-expansive 
Mappings 

Let K be a convex, closed, bounded subset of a Hilbert space E and f a mapping 
from K to K, which is non-expansive in the sense that 

'</X,y E K, Ilf(x) - f(y)11 ::; Ilx - YII· (1) 

Let Xo E K. 

(a) Show that the mappings ft defined by 

ft(x) := ~xo + (1 -D f(x) (2) 

are contractions from K to K. 

(b) Deduce that there exists a sequence of points Xt E K such that 

lim Ilxt - f(xt)11 = o. 
t-+oo 

(3) 

(c) We now suppose that E is finite dimensional. If not, use weak convergence. 

Let w be a limit point of the sequence Xt. Set X.x := (1- )..)w +)..j( w) and 
show that 

(X.x - f(x.x), X.x - w) 2 o. (4) 

Deduce that any limit point w of the sequence Xt is a fixed point of f. 

( d) Show that the set of fixed points of f is convex and closed. 

(e) We assume the solution of Problem 15 on asymptotic centres. We now 
consider the sequence Xt := ft(xo). 

(i) Show that any fixed point 1; of f belongs the attractor set N for this 
sequence Xt. 

(ii) Deduce from question (c) of Problem 15 that if a limit point w of this 
sequence Xt is a fixed point then this limit point is the asymptotic 
centre of P(xo). 

(iii) Deduce from all the above that if 

lim IIP(xo) - P+l(xo)11 = 0 
t-+oo 

(5) 

then P(xo) converges to a fixed point of f. 
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15.17 Problem 17 - Orthogonal Projectors onto 
Convex Closed Cones 

Suppose that K is a convex closed cone of X and consider the projector of best 
approximation defined in Theorem 2.3, which we shall denote by 7rK. 

(a) Show that the variational characterisation of 7rK in the case of convex 
closed cones becomes 

(i) 
(ii) 

(X-7rK(X),7rK(X)) =0 
(x - 7rK(X), z) ::; 0 Vz E K. (1) 

(b) Use (1) to show that 7rK is positively homogeneous (in the sense that 
7rK(AX) = A7rK(X) for all A > 0). 

( c) Show that 

IIxl1 2 = II7rK(X)11 2 + Ilx - 7rK(x)112 (2) 

(Pythagoras's equation) and deduce that 

II7rK(:r)11 ::; Ilxll, Ilx - 7rK(x)11 ::; Ilxll· (3) 

(d) If K- = {y E XIVx E K, (y, x) ::; O} denotes the negative polar cone of 
K, show that 

1 - 7r K is the projector of best approximation onto K - . ( 4) 

(e) Show that 

K- = {x E XI7rK(X) = O} 

and 

K = {x E Xix - 7rK(X) = O}. 

(f) Deduce that any element x E X may be uniquely written as 

x = y + z, y E K, Z E K- and (y, z) = 0 

and that in this case, y = 7rK(X) and z = (1- 7rK)(X). 

(5) 

(6) 

(g) Show that if K is a closed vector subspace, then 7rK is the orthogonal 
projector onto K, which is linear, has norm 1 and is self-adjoint 

(7rKX, y) = (X,7rKY) Vx, y E X. (7) 

When K is a convex closed cone, by convention, the projector of best 
approximation 7r K is also called the orthogonal projector onto K. 
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15.18 Problem 18 - Gamma-convex functions 

Consider a set E and denote the set of finite sequences m := {(ai, Xi)} i=l, ... ,n 
where Xi E E, ai 2: 0 and 2::7=1 ai = 1 by M(E). 

If f is a nontrivial function from E to lR U { +oo} we set 

n 

r(m):= La;!(xi) where m:= {(ai,xi)}i=l, ... ,n· 
i=l 

(1) 

(a) We suppose that E is a subset of a vector space X and define the mapping 
(3 from M(E) to X by 

n 

(3(m) := Laixi' (2) 
i=l 

(i) Characterise the sets E such that (3M(E) C E. 

(ii) Characterise the functions f : E --+ lR U {+oo} such that 

f((3(m)) ~ r(m) Ifm E M(E). (3) 

(b) We let E denote the family of convex compact subsets of a Hilbert space 
X and define the mapping a from M (E) to E by 

n 

o:(m):= LaiKi where m:= {(ai,Ki)}i=l, ... ,n 
i=l 

(4) 

Let g be a nontrivial, convex, lower semi-continuous function from X to 
lR U { +00 }. We associate this with a function f from E to lR defined by 

IfK E E, f(K):= inf f(x). 
xEK 

(5) 

Show that 

Ifm E M(E), f(a(m)) ~ r(m). (6) 

More generally, we have 

a set-valued map ry from M(E) to E with non-empty values. (7) 

We say that a nontrivial function f from E to lR U { +oo} is ry-convex if 

Ifm E M(E), Ifx E ry(m), f(x) ~ r(m). 

( c) Show that if n functions fi from E to lR are ry-convex, then the set 

F(E) + lR~ is convex 

where F is the mapping from E to lRn defined by 

F(x) := (!I(x), ... , fn(x)). 

(8) 

(9) 

(10) 
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(d) Conversely, show that if n functions fi from E to lR have the property 
(9), then there exists a set-valued map, from M(E) to E for which the 
n functions fi are ,-convex. 

(e) Consider n functions fi from E to lR. We set 

(i) v:- inf sup fi(X) 
xEE i=l, ... ,n 

n 

(ii) v":- sup inf LAdi(X). 
AESn xEE i=1 

1. Show that v" :S v. 

(11) 

2. Conversely, suppose that the n functions Ii are ,-convex. Show that 
for all c > 0, 

v :S v" + c. (12) 

Hint: set 1 = (1, ... ,1) and show that 

(v" + c)l E F(E) + lR~. (13) 

(f) Suppose that the n functions Ii from E to lR are ,-convex. Consider 
a Pareto optimum x (such that there does not exist y E E such that 
Ii (y) < Ii (x) for all i = 1, ... , n). Show that there exists 5. E sn such that 

n n 

L 5.di(X) = min L 5.di(X). 
i=1 xEE i=1 

(14) 

Remark. Questions (a). (b) and (d) are independent. Questions (e) and (f) are 
independent of each other and depend only on (c). 

15.19 Problem 19 - Proper Mappings 

(a) We consider two metric spaces X and Y and a continuous mapping I from 
X to Y. Show that the following two conditions are equivalent: 

Given any sequence Xn E X such that f(xn) converges in Y 
we may extract a convergent subsequence of Xn. (1) 
f maps closed sets to closed subsets and for all y E Y, 
f- 1 (y) is compact. (2) 

We shall say that a continuous mapping which satisfies one of these equiv
alent. properties is a proper mapping. 

(b) Let f be a proper mapping. Show that: 
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(i) for any compact subset K of Y, f-1(K) is compact; 

(ii) if X is compact, then any continuous mapping is proper; 

(iii) the composition of two proper mappings is proper. 

(c) Let X and Y be Hilbert spaces, A E L(X, Y) a continuous linear operator 
and K a convex closed subset of X. Suppose that 

b(K) := {p E X*I sup(p,x) < +oo} (3) 
xEK 

is the barrier cone of K (Definition 3.2). Show that if 

ImA* + b(K) = X* (4) 

then the mapping A : K -7 Y is proper and consequently that A(K) is 
closed and K n A-l(y) is compact for all y E Y (suppose that X is finite 
dimensional if you do not wish to use the weak compactness of weakly 
closed bounded sets). 

(d) Suppose X and Yare two Hilbert spaces, L E L(X, Y) is a continuous 
linear operator from X to Y and P c X and Q C Yare convex closed 
cones. Deduce from the previous question that if 

L*Q-+P-=X* (5) 

then the mapping (x, y) E P x Q -7 Lx - Y E Y is proper. Deduce in 
particular that 

(i) L(P) - Q is a convex closed cone 
(ii) 'Vy E Y, {x E PILx E Q + y} is compact. 

(e) Consider n subsets Li C IRe satisfying 

'Vi = 1, ... ,n Li is closed and bounded below 

(in the sense that Li CUi + IR~ where Ui EIRe). 

Show that the mapping 

n n 

X = (Xl, ... ,Xn ) E II Li -7 LXi EIRe 
i=l i=l 

is proper. 

(6) 

(7) 

(8) 

(f) Suppose that the subset L of IRe is closed and bounded below and that 
M is a subset of IRe satisfying 

(i) M is convex and closed 
(ii) 3w E M such that (M - w) n IR~ = {O}. (9) 
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Show that 

{x. y} E L x M -+ x - Y E IRl (10) 

is proper. Hint: first show that if Xn - Yn E L - M converges, the sequence 
Yn is bounded, by eliminating the case in which IIYnl1 -+ 00 using (9). 

Deduce that the assumptions (7) and (9) imply that the mapping 

n n 

{Xl, ... ,Xn,y} E IlLi X M -+ LXi - Y E IRe 
i=l i=l 

is proper and that, in particular, the set 

K := { X E }] L;I E Xi E M + Y} 
is compact. 

15.20 Problem 20 - Fenchel's Theorem for the 
Functions L( x, Ax) 

Suppose that 

(i) X is a Hilbert space and Y is a finite-dimensional space. 

(ii) A is a continuous linear operator A E L(X, Y). 

(11) 

(12) 

(iii) L is a nontrivial, convex, lower semi-continuous function from X x Y to 
IR U {+oo}. 

We set 

v :- inf L(x, Ax) 
rEX 

v* :- inf L*(-~A*q, q). 
qEY* 

(a) Show that v < +00 if and only if 

o E ((A EB -l)DomL) 

(1) 

(2) 

(3) 

where A EB -1 E L(X, Y) is defined by (A EB -l)(x, y) = Ax - y. Show 
also that v* < +00 if and only if 

o E (1 EBA*)DomL*. (4) 

Show that 

11 + 11* :2: 0 (5) 

and deduce that conditions (3) and (4) imply that 11 and 11* are finite. 
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(b) We define ¢ : X X Y --+ Y x IR by 

Show that 

(i) 
(ii) 

¢(x, y) := (Ax - y, L(x, y)). 

¢(DomL) + {O} x ]0, oo[ is convex 
(O,v) ~ (DomL)+{O} x ]0,00[. 

(6) 

(7) 

(c) Deduce that there exist p E Y* and a 2 0 such that (p, a) -=I- (0,0) and 

(aL)*( -A*q, q) ::; -avo (8) 

(d) Show that the assumption 

o E Int((A EB -l)DomL) (9) 

implies that a is positive and deduce that there exists q E Y* such that 

L*( -A*q, q) = v* = -v. (10) 

(e) We set 

f(x) := L(x, Ax). (11) 

Deduce from (d) that assumption (10) implies that ifp E (lEBA*)DomL*, 
there exists q E Y* such that 

j*(p) = L*(p - A*q, q) = min L*(p - A*q, q). 
qEY* 

15.21 Problem 21 - Conjugate Functions of 
x -+ L(x, Ax) 

Let X be a Hilbert space, Y a finite-dimensional space, A E L(X, Y) and 
L : X x Y --+ IR U { +oo} a nontrivial, convex, lower semi-continuous function. 

(a) Show that if 

o E Int((AEB -l)DomL) (1) 

then the functions q --+ L*(p - A*q, q) are lower semi-compact when q E 

(1 EB A*) Dom L*. 

(b) Deduce that the function 

p --+ inf L*(p - A*q, q) 
qEY* 

is convex, nontrivial and lower semi-continuous. 

(c) Calculate the conjugate of this function and deduce the expression for the 
conjugate function of x --+ L(x, Ax). 
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15.22 Problem 22 - Hamiltonians and Partial 
Conjugates 

We consider two Hilbert spaces X and Y and a nontrivial, convex, lower semi
continuous function L : X x Y -+ IR U { +00 }. We set 

H(x,q) := sup((q,y) - L(x,y)). (1) 
yEY 

Note: by convention, we set H(x, q) := -00 on 

K:= {x E XI\ly E Y,L(x,y) = +oo}. 

( a) Verify that 

(i) \Ix E X, q -+ H(x, q) is convex and lower semi-continuous 
(ii) \lq E Y*, x -+ H(x,q) is concave. (2) 

Deduce that 

(i) 

(ii) 

L(x, y) 

L*(p, q) 

sup((q,y) - H(x,q)) 
qEY' 

sup( (p, x) + H(x, q)). 
xEX 

(b) Show that if we suppose that 

\lq E Y*, x -+ L(x, q) is upper semi-continuous 

then 

H(x,q) = inf (L*(p.q) - (p,x)). 
pEX' 

(c) Show that the following conditions are equivalent 

(i) 
(ii) 

(p, q) E oL(x, y) 
p E ox( -H)(x, q) and y E oqH(x, q) 

(3) 

(4) 

(5) 

(6) 

where ax ( - H) and oqH denote the sub differentials of the functions x -+ 
-H(x, q) and q -+ H(x, q). 

(d) Show that the following conditions are equivalent 

(i) 0 E ox(-H)(x,ij) and 0 E oqH(x,ij) 

(ii) (x, ij) is a saddle point of the function (x, q) -+ H(x, q). 
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15.23 Problem 23 - Lack of Convexity and Fenchel's 
Theorem for Pareto Optima 

We consider two finite-dimensional vector spaces X and Y together with 

(i) a linear operator A from X to Y 

(ii) two nontrivial functions 1 : X -+ IR U {+oo} and g : Y -+ IR U {+oo}. 

We set 

L:= Doml, M:= Domg 

and we suppose that 

(i) L is convex (but 1 is not necessarily convex) 

(ii) g is convex. 

We set 

v := inf(f(x) + g(Ax)) 
xEL 

and 

W:= inf (2.: o:d(Xi) + g (A (2.: O:iXi))) 
finIte finIte 

(1) 

(2) 

where in w, the infimum is taken over all (finite) convex combinations of points 
Xi of L (with positive coefficients O:i such that Lfinite O:i = 1). We associate 1 
with the number 

p(f) := sup (I (2.: O:iXi) - 2.: O:d(Xi)) 
finite finite 

(3) 

where the supremum is taken over the (finite) convex combinations of elements 
of L. 

(a) (i) Show that p(f) 2: o. 
(ii) What are the functions 1 such that p(f) = 07 

(iii) Show that 

(b) We set 

(i) 
(ii) 

V:::: w + p(f). 

¢(X,y):= {Ax-y,l(x)+g(y)}EYxIR 
Q:= {o} x ]0, oo[e Y x IR. 

(4) 

(5) 
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Show that 

(O,w) ~ co(¢(L x A1)) +Q (6) 

where 'co' denotes the convex hull. 

(c) Deduce (carefully, but concisely) from (6) that there exist c > 0 and 
q E Y* such that 

cw <; inf (cf(x) + cg(y) + (q, Ax - y)). 
xEL.yEM 

(7) 

(d) Assuming that 

o E Int(A(L) - M) (8) 

show that c > O. 

(e) Deduce from (a), (c) and (d), that there exists ij E Y* such that 

v <; - j*( -A*ij) - g*(ij) + p(f). (9) 

(f) Deduce that if we set 

v* := inf (j*( -A*q) + g*(q)) 
qEY* 

(10) 

then 

o <; v + v* <; p(f). (11) 

Do you recognize something when f is convex? 

(g) Show that assumption (8) is satisfied if we suppose that 

::Jxo E L such that g is continuous at Axo. (12) 

(h) What does (e) become if we take g defined by 

( ) '= { 0 if Y = 11, 11 given in IRn 

g y. +00 otherwise. (13) 

15.24 Problem 24 - Duality in Linear Programming 

We consider Hilbert spaces X and Y, a continuous linear operator E E L(X, Y), 
two convex closed cones P c X and Q C Y and two elements 110 E Y and 
Po E X*. We introduce the linear program 

V(110) := inf (Po, x) 
xEP 

(1) 
BxEQ+uQ 

where we suppose that 

{x E PIEx E Q + uo} f 0. (2) 
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(a) Show that the dual problem is 

v*(po) = inf 
qEQ

-B*qEP-+PQ 

(q, uo). 

(b) Show that v(uo) and v*(po) are finite if and only if (2) and 

{q E Q-I- B*q E P- + Po} 1= 0 

are satisfied. 

(c) Show that 

U o E Int(BP + Q) 

(3) 

(4) 

(5) 

implies that there exists a solution if of the dual problem v*(po) and that 
the condition 

-Po E Int(P- + B*Q-) (6) 

implies that there exists a solution x of the primal problem v( uo). Deduce 
that (5) and (6) imply that 

(i) av(uo) is the set of solutions of the dual problem v*(po) 
(ii) av*(po) is the set of solutions of the primal problem v(uo). (7) 

15.25 Problem 25 - Lagrangian of a Convex 
Minimisation Problem 

Suppose that X and Yare two Hilbert spaces and that 9 is a nontrivial, convex, 
lower semi-continuous function from X x Y to IR U {+oo}. We introduce the 
marginal function 

g(y) := inf f(x, y) 
xEX 

(1) 

together with the partial conjugate 

h(x,q) := sup((q,y) - f(x,y)). (2) 
yEY 

The function 

.cy(x, q) := (q, y) - h(x, q) (3) 

is called the Lagrangian of the family of minimisation problems g(y). 
We fix a parameter y and suppose that there exists a solution x: 

g(y) = f(x, y). (4) 
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(a) Show that the following conditions are equivalent 

(i) 
(ii) 
(iii) 

q E og(y) 
(0, q) E of (x, y) ° E ox( ~h)(x, q) and y E oqh(x, q). 

Hint: use Problem 22. 

(b) Show that 

g(y) = inf sup ey(x, q) 
xEX qEY' 

and that 

g*(q) = sup h(x, q) = j*(0, q). 
xEX 

(5) 

(6) 

(7) 

(c) Deduce that the marginal function g is lower semi-continuous if for all 
y E Y, 

inf sup ey(x, q) = sup inf ey(x, q). 
.rEX qEY* qEY* xEX 

(8) 

(d) We say that q E Y* is a 'Lagrange multiplier' for the minimisation problem 
g(y) if and only if 

g(y) = inf ey(x, q). 
xEX 

(9) 

Show that the set of Lagrange multipliers is the sub differential og(y) of 
the marginal function g. 

15.26 Problem 26 - Variational Principles for Convex 
Lagrangians 

Suppose that we have 

(i) two Hilbert spaces X and Y, 
(ii) a continuous linear operator A E L(X, Y), 
(iii) a nontrivial, convex, lower semi-continuous function 

L : X x Y --+ IR U { +00 } 

We set 

H(x,q) := sup((q,y) ~ L(x,y)) 
yEY 

and 

(1) 

(2) 
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A(x, q) = L(x, Ax) + L*( -A*q, q). 

We say that q is a Lagrange multiplier for the problem 

v = inf L(x, Ax) 
xEX 

if and only if 

(i) 

(ii) 

v*:= inf L*(-A*q,q) = L*(-A*q,q) 
qEY' 

v + v* = O. 

(a) Show that the following conditions are equivalent 

(i) x minimises x --+ L(x, Ax) and q is a Lagrange multiplier for v 
(ii) A(x,q) =0 (=minA(x,q)) 
(iii) (-A*q, q) E oL(x, Ax) 
(iv) x is a solution of the inclusion 0 E (1 EEl A*)oL(x, Ax) 

(3) 

(4) 

(5) 

(v) q is a solution of the inclusion 0 E (-A EEl 1)0£*( -A*q, q). (6) 

(b) Using the results of Problem 22, show that each of these conditions is 
equivalent to 

A*q E oxH(x, q) and Ax E oqH(x, q). 

15.27 Problem 27 - Variational Principles for Convex 
Hamiltonians 

We consider 

(i) two Hilbert spaces X and Y, 

(ii) a nontrivial, convex, lower semi-continuous function 
H : X x Y* --+ IR U { +00 }. 

We associate these with the function L from X x Y to IR defined by 

L(x, y) := sup (q, y) - H(x, q). 
qEY' 

We define the function B on X x y* by 

(7) 

H 

(**) 

B(x, q) = H(x, q) - (q, Ax) + H*(A*q, Ax) - (A*q, x). (***) 

(a) Deduce from the results of Problem 22 that the following conditions are 
equivalent 

(i) 
(ii) 
(iii) 

B(x,q) = 0 (= minB(x,q)) 
o E -ox( -L)(x, Ax) + A*oyL(x, Ax) 

(A*q, Ax E oH(x, q). (1) 
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(b) Show that any solution (x, q) of the 'law of least action' 

1U = inf (H(x, q) - (q, Ax)) 
(x,q)EXxY' 

is a solution of (1). 

(c) We suppose that 

o E Int (1m (A* x A) - DomH*). 

Show that one solution (x, q) of the 'law of least action dual problem' 

w* = inf (H*(A*q, Ax) - (A*q, x)) 
(x,q)EXxY' 

is a solution of the dual problem (1). 

15.28 Problem 28 - Approximation to Fermat's Rule 

(2) 

(3) 

(4) 

Suppose that X is a Hilbert space and that f : X -+ IR+ U { +oo} is a nontrivial, 
convex, positive, lower semi-continuous function. 

(a) Fix E > 0, A> 0 and Xo E Domf such that 

f(xo) .-:::: inf f(x) + EA. 
xEX 

Show that there exist X E E Dom f and Pc E of (xc) such that 

f(x£) .-:::: f(:1:o) , Ilxo - xcii .-:::: A and IIp£11 .-:::: E 

(use Ekeland's Theorem, Theorem 1.2). 

(b) Suppose now that f : X -+ IR U { +CXl} is nontrivial, convex and lower 
semi-continuous. Show that for any x E Dom f, there exists a sequence of 
elements Xn E X such that 

xn -+ x, f(xn) -+ f(x) and of(xn ) =f 0. 

Deduce that the set of points at which f is sub differentiable is dense in 
Dom f. Compare with Theorem 4.3. 

15.29 Problem 29 - Transposes of Convex Processes 

We consider a set-valued map F from a Hilbert space X to a Hilbert space Y 
and suppose that 

the graph of F is a convex closed cone 

(F is said to be a convex process). 
Consider the set-valued map F* from Y* to X* defined by 

P E F*(q) {:? sup sup ((p, x) - (q,y)) = O. 
;rEX YEF{x) 

(1) 

(2) 
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(a) Show that the graph of F* is a closed convex cone and that F = F**. 

(b) Suppose that B E L(X, Z) is a continuous linear operator. Show that 
Graph(BF) = (1 x B)Graph(F) and deduce that 

(BFr = F* B*. (3) 

(c) Let U be a Hilbert space and A E L(U, X). Suppose that 

ImA - DomF = X. (4) 

Show that Graph(AF) = (A x l)-IGraph(F) and deduce (using formula 
(70) of Chapter 3) that 

(FAr=A*F*. (5) 

(d) Suppose that X, Y and Z are three Hilbert spaces and that F : X ---+ Z 
and G : Y ---+ Z are set-valued maps the graphs of which are convex closed 
cones. Show that the assumption 

ADomF - DomG = Y (6) 

implies that 

(F + GAr = F* + A*G*. 

(e) Suppose that F : X ---+ Y is a set-valued map satisfying (1) and that 
K c X is a convex closed cone. Show that the assumption 

K -DomF=X 

implies that (FIK)*(q) = F*(q) + K-. 

(f) Show that 

1m (F)- = _F*-1(0). 

(7) 

(8) 

Deduce that the image of F is dense in Y if and only if F*-1(0) = {O} 
and that F is surjective if and only if Im(F) is closed and F*-I(O) = {O}. 

(g) Deduce from the previous two questions that if K is a convex closed cone 
of X and that if (7) is satisfied, then 

F(Kf = _F*-l( -K-). 

(h) We consider a set-valued map F from X to X* satisfying (1) and 

::Jc> 0 such that V(Xi, Yi) E Graph(G), i = 1,2 
(YI -- Y2, Xl - X2) 2: cllXI - x2112. (9) 

Show that Im(F) is closed and that its inverse F-I is one-to-one and Lips
chitz with constant c- l . Deduce that if Dom(F) = X then F is surjective. 
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15.30 Problem 30 - Cones with a Compact Base 

Let P be a convex closed cone of a Hilbert space X and P+ its positive polar 
cone. 

(a) Show that if Po E lnt P+ then 

\/x E P, :r i= 0, (Po,x) > 0 (1) 

and deduce that the set 

S:= {x E PI(po,x) = I} (2) 

generates the cone S in the sense that 

P= U AS. (3) 
.\2'0 

(b) Deduce that S is a convex, closed, bounded set (which does not contain 
zero). 

(c) Conversely, if K is a convex, closed, bounded set which does not contain 0 
and which generates P in the sense that P = U.\2'oAK, show that lnt P+ i= 
0. 

( d) Show that 

Ts(x) := {v E Tp(x)I(Po, v) = O} (4) 

that 

Tp(x) = closure(P + lRx) and Np(x) = P- n {x}.l (5) 

and that 

P E Np(x) {o} x E Np-(p) {o} x E P, 

P E P- and (p,x) = o. 

15.31 Problem 31 - Regularity of Tangent Cones 

(6) 

Suppose that K c X is a convex subset of a Hilbert space X and that x E K. 

(a) Set 

1 
Sdx) := U -(K - x). 

h>O h 
(1) 

Show that 

\/v E SK(X), ~h > 0 such that vt E [0, h], x + tv E K. (2) 
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(b) Consider the set 

CK(x):= nun 
6>0 "',/3>0 hEID,,,[ 

yEB K (x,{3) 

(~(K-Y)+EB) 

where BK(x, a) := K n (x + aB). Show that 

CK(x) = TK(X) (:= closure(SK(x))). 

(3) 

(c) Let 7rK be the projector of best approximation onto the set K, which we 
assume to be closed (Problem 17). Show that 

(i) 
(ii) 

NK(x) = 7rj(l(x) - X 
v E TK(X) ¢} \ly E 7rj(l(X), (y - x, v) ~ O. (4) 

(d) Suppose that K is closed and show that the graph of the set-valued map 
x -+ NK(x) is closed. Deduce from Problem 5 that if X is finite dimen
sional then x --+ TK(X) is a lower semi-continuous set-valued map. 

(e) Suppose that lnt K i= 0 and show that 

1 
lnt TK(X) = U h(lnt K - x). 

h>O 

(f) Deduce that x --+ lnt TK(X) has an open graph. 

15.32 Problem 32 - Tangent Cones to an Intersection 

(a) Take 

KI = (-1,0) + B, K2 = lR!. 
Verify that (0,0) r:J. Int(Kl - K 2 ) and calculate 

TK,(O, 0) nTK2 (0,0) and TK,nK2(0, 0). 

(5) 

(b) Take Kl = [-1,0] x [-1, +1], K2 = [0,1] x [-1, +1], verify that (0,0) r:J. 

Int(Kl - K 2 ) and calculate 

TK,(O, 0) nTK2 (0,0) and TK,nK2(0,0). 

(c) Consider n convex closed subsets Ki (i = 1,2, ... , n) and take x E nr=lKi . 

Suppose that there exists 'I > 0 such that 

\lVi E 'IB (i = 1, ... ,n), n7=1(Ki - Vi) i= 0. 
Show that 

\Ix E n7=lKi , TK(X) = n7= 1 TKi (x). 

Hint: consider A := x E X --+ (x,x, ... ,x) E xn. Show that K 
A-I (IT7=1 K i ) and apply formula (50) of Chapter 4. 

(1) 

(2) 
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15.33 Problem 33 - Derivatives of Set-valued Maps 
with Convex Graphs 

Suppose that F : X -t Y is a set-valued map. 

(a) Show that the graph of F is convex if and only if 

'i.r, y E Dom(F), 'ia E [0,1], 

aF(x) + (1 - a)F(y) c F(ax + (1 - a)y). (1) 

(b) Let (xo, Yo) be an element of the graph of F. We define the set-valued 
maps DF(xo, Yo) from X to Y and DF(xo, Yo)' from Y* to X* by 

v E DF(xo,yo)(u) <=} (u,v) E TCraph(F) (xo, Yo) (2) 

and 

P E DF(xo, Yonq) <=} (p, -q) E NCraph(F) (xo, Yo). (3) 

Show that the following conditions are equivalent 

(i) 
(ii) 
(iii) 

P E DF(:ro, Yonq) 
'i:r E X, 'iy E F(x), (q, Yo - y) 'S- (p, Xo - x) 
'iu E X, 'iv E DF(xo, yo)(u), (p, u) 'S- (q, v). 

(c) Show that if Pi E DF(l:i, Yi)*(qi) , (i = L 2), then 

(ql - q2, Yl -lJ2) 'S- (Pl - P2, Xl - X2). 

(4) 

(5) 

(d) Suppose that K is a closed convex subset of X and that ¢ K is the set
valued map from X to Y defined by 

¢K(X) = {O} if :r E K and ¢K(X) = 0 if X 1:. K. (6) 

Prove that 

'i:1" E K. D¢K(X,O) = ¢TK (x). (7) 

(e) Show that h -t d(l', F(x+~u)-y) is increasing and deduce that Vo E 
DF(xo, yo)(uo) if and only if 

liminf inf d (v F(xo + hu) - yo) 
u--+tio h--+O+ 0, h = O. 

(f) Show that if xo, l' E Dom (F), Yo E F(xo), then 

F(:1") - Yo C DF(xo, Yo)(x - :1"0). 

(8) 

(9) 
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(g) Suppose that P is a convex closed cone of X. Show that the following 
conditions on (xo, Yo) E Graph(F) are equivalent: 

(i) 
(ii) 
(iii) 

'Vx E K, F(x) c Yo + P 
'Vuo E X, DF(xo, Yo)(uo) c P 
'Vq E P+, 0 E DF(xo, yo)*(q). 

Hint: show that (ii) =} (i) =} (iii) =} (ii). 

(10) 

(h) Suppose that X and Yare two Hilbert spaces, that LeX and M c Y 
are two convex closed subsets and that A E L(X, Y) is a continuous linear 
operator. We associate A with the set-valued map F defined by 

{ Ax-M if xEL 
F(x):= 0 if x tt L. (11) 

Show that the graph of F is convex and closed, that 

F~l(y) = L n A~l(M + y) 

and that 

{ Au - TM(Ax - y) if u E TL(x) (12) 
DF(x, y)(u) = 0 if u tt TL(X). 

Deduce that 

* { A*q + NL(x) if q E NM(Ax - y) 
DF(x, y) (q) = 0 if q tt NM(Ax - y). 

15.34 Problem 34 - Epiderivatives of Convex Functions 

We consider a function f : X ---+ IRu {+oo} with which we associate a set-valued 
map F+ from X to IR defined by 

F+(x) = f(x) + IR+ if f(x) < +00, F+(x) = 0 if f(x) = +00. (1) 

(a) Prove that Domf = DomF+, that Graph(F+) = Ep(f) and that 
F.;:-l(>.) = S(f, >.). Deduce that f is lower semi-continuous (respectively 
convex) if and only if the graph of F+ is closed (respectively convex). 

(b) We recall (see Problem 33) that the set-valued maps DF+(x, A) : X ---+ IR 
and D F + (x, >.)* : IR ---+ X are defined by 

(i) 
(ii) 

v E DF+(x,>.)(u) {o} (u,v) E TGraph(F+)(X,>.) 
p E DF+(x, >.)*(q) {o} (p, -q) E NGraph(F+) (x, >.). (2) 
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We set 

D+f(x)( 7).0) := lim inf D f(x)( u) 
u--+uo 

(the epiderivative of f at x in the direction uo). Show that 

(i) 

(ii) 

Deduce that 

(i) 
(ii) 

DF+(x, f(x))(uo) = D+f(x)(uo) + lR+ 

DF+(x, f(x))*(q) = {~Of(X) :~ ~ ~ ~. 

Ep (D+f(;r;)) = TEp(J) (x, f(x)) 
p E of (x) {=} (p, -1) E NEp(J)(x, f(x)). 

15.35 Problem 35 - Sub differentials of Marginal 
Functions 

(3) 

(4) 

(5) 

We consider a nontrivial, convex, lower semi-continuous function f : X ---+ 
lR U { +oo} and a set-valued map F from X to Y with a convex, closed graph. 
The marginal function h is defined on Y by 

h(y):= inf f(x). 
xEF-l(y) 

(1) 

We also suppose that 

o E Int(Domf - Dom(F)). (2) 

(a) If x E F-1(y) is a solution of h(y) (h(y) = f(x)), show that q E oh(y) if 
and only if there exists 15 E o.f(x) such that 

(-15,q) E NCraph(F)(X,y). 

(b) Deduce from the definition of DF(x,y)* (Problem 33 (b)) that 

oh(y) = -DF(x,yr-1(-of(x)). 

15.36 Problem 36 - Values of a Game Associated with 
a Covering 

(3) 

(4) 

Suppose.f X x Y ---+ lR. Consider a covering of A by subsets K, L of F 
satisfying 

if K and LEA, then K U LEA. (1) 

We associate this covering A with the 'value' 

l,q(A) := sup inf sup f(x, y). 
KE'AxEEYEK 

(2) 
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(a) Show that if A c B, then 

vq ::; vq(A) = vq(B) (3) 

(we recall that vq = vq(S), see formula (18), Chapter 8). 

(b) If U is the family of all the subsets of F, show that for all A, 

vq(A) ::; vq(U) = v~ (:= inf sup f(x, y)). 
xEE yEF 

(4) 

(c) We consider the order relation on A x IN given by (Kl,nd::; (K2,n2) {:} 
Kl C K2 and nl ::; n2. Show that there exists a generalised sequence 
(K, n) -c> XK,n E E such that 

'VKo E A, lim sup (sup f(XK,n, y) ::; vq(A)) . (5) 
(K,n)2(Ko,1) yEKo 

(d) If the covering A is countable, show that there exists a sequence of ele
ments Xp E E such that 

'VKo E A,3po such that 'Vp::::: Po,limsupsupf(xp,Y)::; vq(A). (6) 
p2Po yEK 

(e) We suppose that 

(i) 'Vy E F, x -c> f(x, y) is lower semi-continuous 
(ii) 3Ko E A such that {xl SUPYEKo f(x, y) ::; vq(A)} is compact. (7) 

Show that there exists x E E such that SUPYEK f (x, y) ::; vq (A) ::; v~. 

15.37 Problem 37 - Minimax Theorems with Weak 
Compactness Assumptions 

(a) Let f be a function from X x Y to IR := IRu {-oo} U {+oo}. We suppose 
that the sets 

E := {x E XI sup f(x, y) < +oo} (1) 
yEY 

and 

F:= {y E YI inf f(x,y) > -oo} 
xEX 

(2) 

are non-empty and that X is finite dimensional (if not, use the weak 
topology). We introduce the family A of subsets 

Kn:= {y E Fillyll ::;pand inxf f(x,y)::::: -p} 
xE 

(3) 

and use the definition of vq(A) given in formula (2) of Problem 36. Show 
that if 
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(i) vy E E, I -+ f(I, y) is convex 
(ii) VI E E, Y -+ f(.r:, y) is concave and upper semi-continuous (4) 

then 

1"(A) = 1" (:= sup inf f(x,y)). 
yEP xEE 

Hint: nsf' the minimax theorem, Theorem 8.1. 

(b) We suppose further that 

vy E F, I -+ f(:1:, y) is lower semi-continuous 

and that if we set 

f;(p): = sup( (p, x) ~ f(x, y)) 
xEX 

then 

o E lnt (UYEPDom f;) . 
Prove that there exists :r E E such that 

sup f(x, y) = vq(A). 
yEF 

Hint: use Problem 36 (d). 

Deduce that under the assumptions (3), (6) and (8), we have 

(5) 

(6) 

(7) 

(8) 

(9) 

supf(X,Y)=VD=V~. (10) 
yEF 

Thus, Theorem 8.1 remains true if the compactness of E is replaced by 
the weaker assumption (8). 

15.38 Problem 38 - Minimax Theorems for Finite 
Topologies 

Suppose that F is a convex subset of the infinite-dimensional vector space Y. 
We associate any finite subset I( = {Y1,"" Yn} of F with the mapping (3K from 
the simplex AI" to F defined by 

Il 

VA EMil, j3K (A) = "L AiYi' (1) 
i=l 

The 'finite topology' on F is the 'ultimate' topology, the strongest of all 
topologies, in which the mappings (3K from !vln to F as I( ranges over the 
family S of finite subsets I( c F are continuous. We recall that a mapping f 
from F to a topological space G is continuous if and only if 

vI( E S, f!3K: Ar -+ G is continuous. (2) 
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(a) Show that the finite topology on a convex subset F is stronger than any 
vector-space topology. 

(b) Show that any affine mapping A from F to a vector space Z is continuous 
when F and Z have the finite topology. 

(c) Show that in the proof of Theorem 8.4, we may give F the finite topology 
and thus reduce the space C(F, F) of continuous decision rules; whence, 
we may obtain a stronger version of equation (48) of Chapter 8. 

(d) Do the same for Theorem 8.5. 

15.39 Problem 39 - Ky Fan's Inequality 

We consider a convex compact subset K of a finite-dimensional vector space and 
a function 'P : K x K -+ IR. 

(a) We set 

T(y) := {x E KI'P(x, y) > O} 

and we suppose that 

Yy E K, x -+ 'P(x, y) is lower semi-continuous. 

Show that the negation of the property 

:3x E K such that sUP'P(x,y):s; 0 
yEK 

implies the existence of Y1, ... ,Yn E K such that 

n 

K = U T(yJ 
i=l 

(b) We suppose further that 

Yx E K, y -+ 'P(x,y) is concave. 

(1) 

(2) 

(3) 

(4) 

(5) 

Deduce from Brouwer's Fixed-point Theorem that there exists x E K 
such that 

'P(x, x) > O. (6) 

Hint: use a continuous partition of unity subordinate to the covering of 
K by the T(Yi). 
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(c) Deduce that Brouwer's Theorem implies the Ky Fan Inequality, namely 
that assumptions (2) and (5) together with 

Vy E K, <.p(y, y) ::; 0 (7) 

imply assertion (3). 

(d) Prove that the Ky Fan Inequality remains true if K is a convex compact 
subset of a Hilbert space. Hint: use Proposition 8.2. 

(e) Prove the converse, namely that the Ky Fan Inequality implies that any 
continuous mapping from a convex compact subset of a Hilbert space to 
itself has a fixed point. 

15.40 Problem 40 - Ky Fan's Inequality for Monotone 
Functions 

Suppose that 

K is a convex compact subset 

and that <.p : K x K -+ IR is a function satisfying 

(i) Vy E K, x -+ <.p(x, y) is lower semi-continuous for the 
finite topology (see Problem 38) 

(ii) Vx E K, y -+ <.p(x, y) is concave and upper semi-continuous 
(iii) 'Vy E K,cp(y,y)::; O. 

We suppose further that <.p is monotone in the sense that 

Vx,y E K, cp(x,y) + <.p(y, x) ;::: o. 

(a) Verify that 

v1 := sup inf sup<.p(x,y)::; O. 
KESXEEyEK 

(b) Assuming that x E K satisfies 

0< sup<.p(x,y) 
yEK 

show that there exist fj and l EjO, 1[ such that 

0< <.p(x + l(fj - x), fj). 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 
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(c) Problem 36 (c) and the compactness of K imply that there exists a gen
eralised sequence of elements x" of K converging to an element x and 
satisfying 

\ly E K, :lJ.L(Y) such that lim sup <p(x",y) :::; vq. 
"'2,,(y) 

Use the fact that <p is monotone to show that 

o < <p(x + f(y - x), x + f(y - x)). 

(d) Deduce from this inequality and the fact that <p is monotone that 

:lx E K such that sup <p(x, y) :::; o. 
yEK 

15.41 Problem 41 - Generalisation of the 
Gale--Nikaldo-Debreu Theorem 

We consider 

(i) a compact metric space K, 

(7) 

(8) 

(9) 

(ii) a set-valued map F from K to a Hilbert space Y (identified with its dual), 

(iii) a convex closed cone P of Y and its negative polar cone P-. (1) 

(a) We suppose that 

F is upper hemi-continuous with convex compact values (2) 

and that there exists a continuous mapping C from P- to K such that 

O"(F(C(y),y)):::: 0 \ly E P-. (3) 

Show that there exists x E K such that 0 E F(x) + P. Hint: adapt the 
proof of Theorem 9.2. 

(b) Show that we may weaken the assumptions by supposing only that 

(i) \ly E P-, x --+ O"(F(x),y) is upper semi-continuous, 

(ii) \Ix E K, F(x) + P is convex and closed, 

(iii) \IE > 0, :lCe, a continuous mapping from P- to K such that 
O"(F(CE(y),y)) ~ -E, \ly E P-. (4) 

(c) We now suppose that 

K is a convex compact subset of Y (5) 

and that F satisfies (2) and 

\ly E Y, dF(7rK(y), y)) ~ 0 (7rK is a projector onto K). (6) 

Deduce that there exists x E K such that 0 E F(x). 
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(d) Consider the unit ball B of a finite-dimensional vector space Y and a 
set-valued map F from B to Y satisfying (2) and 

\Ix E B, O"(F(x), x) -2: o. (7) 

Deduce that there exists :r E B such that 0 E F(x). 

15.42 Problem 42 - Equilibrium of Coercive Set-valued 
Maps 

We consider 

(i) a convex closed subset K of a finite-dimensional space X, 

(ii) an upper hemi-continuous function with convex closed values, (1) 

satisfying the tangential condition 

\Ix E K, F(x) n TK(X) i- 0. (2) 

(a) Show that the condition 

lim 0" ( F ( x ), x) < 0 
Ilxll--too,xEK 

(3) 

implies the existence of an equilibrium of F, x E K. 

(b) Show that the condition 

lim O"(F(x), x) = -00 

!ixll--too,XEK Ilxll (4) 

implies that 

Vy E K 3i: E K, solution of y E i: - F(i:). (5) 

15.43 Problem 43 - Eigenvectors of Set-valued Maps 

Suppose that P is a convex cone of a finite-dimensional space X such that 
lnt P+ i- 0. Suppose that F is a set-valued map from P to X which is upper 
semi-continuous with convex compact values and satisfies 

\Ix E P, F(x) n Tp(x) i- 0. (1) 

(a) We take Po E IntP+ and 5:= {x E PI(po,x) = I} which is convex, closed 
and bounded (whence compact, see Problem 30). Show that the set-valued 
map G from 5 to X defined by 

G(x) := {v - (Po,V)X}VEF(x) 

satisfies the tangential condition 

\Ix E 5, G(x) nTs(x) i- 0. 

(2) 

(3) 
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(b) Deduce that there exists an eigenvector x E P of F, in other words a 
solution of 

XES, ~x E F(x). 

Hint: apply Theorem 9.4 to the set-valued map G. 

15.44 Problem 44 - Positive Eigenvectors of Positive 
Set-valued Maps 

We consider 

• a mapping F : Mn ~ IRm with convex lower semi-continuous 
components Ii (1) 

and 

• an upper semi-continuous set-valued map G from Mn to IR-:;' with 
non-empty compact values and a closed graph (2) 

We suppose that 

(i) 315 E Mn such that 'Ix E Mn, (15, F(x)) > 0 
(ii) 3£ E Mn such that Vp E Mm, IJ(G(£),p) > o. 
We set 

!:= sup inf (p, F(x)) . 
<5 pEMm xEMn IJ(G(x),p) 

(a) Show that the set (G - <5 F) (Mn) - IR-:;' is convex and closed. 

(b) Deduce that there exists x such that 

<5F(x) E G(x) - IR-:;'. 

(c) Deduce that there exists p E Mm such that 

! = inf (p, F(x)) = sup (p, F(x)) . 
8 xEMn IJ(G(x),p) pEMm IJ(G(x),p) 

( d) Show that if there exist £ E Mn and f.1, > 0 such that 

f.1,F(x) E G(x) - IR~, then f.1, 2: 8. 

(e) Take f.1, > 8 and y E Int(IR-:;') and set 

!3:= sup inf f.1,(p, F(x)) + IJ( -G(x),p) 
pEMm xEMn (p, y) 

Show that !3 > 0 and that there exists x such that 

!3y E f.1,F(x) - G(x) + IR-:;'. 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 
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15.45 Problem 45 - Some Variational Principles 

We consider a nontrivial, convex, lower semi-continuous function f from X to 
lR U {+oo} and a mapping A from Dom f to X. We set 

¢(y) := f(y) + j*( -Ay) + (A(y), y). 

(a) Show that Vy E Domf, ¢(y) ~ o. 

(b) Show that the following problems are equivalent 

(i) 3x E Domf such that 0 E A(x) + 8f(x) 
(ii) 3p E Domf* such that 0 E P + A8f*(p) 
(iii) 3x E Dom f such that 

Vy E Domf, (A(x),x - y) + f(x) - f(y)::; 0 
(iv) 3x E Domf such that ¢(x) = 0 (= minYEDom/¢(Y)). 

(1) 

(2) 

(c) Identify these problems when f = 'l/JK is the indicator function of a non
empty, convex, closed set K. 

(d) Suppose now that A is a set-valued map from Domf to X with convex 
compact values. We set 

¢(y) := f(y) + inf (1*( -u) + (u, y)). 
UEA(y) 

(3) 

Show that Vy E Dom f, ¢(y) ~ 0 and (b) remains true if we replace (2) (iii) 
by 

Vy E Dom f, -O"(A(x), y - x) + f(x) - f(y) ::; O. (4) 

(e) Show that a necessary condition for the existence of a solution to one of 
the equivalent problems (2) is that 

o E Domj* + ADomf. 

15.46 Problem 46 - Generalised Variational 
Inequalities 

We consider a finite-dimensional vector space X together with 

(5) 

(i) a nontrivial, convex, lower semi-continuous function f : X ~ lR U { +00 }, 

(ii) a nontrivial, convex, lower semi-continuous function (3 : X ~ lR+ U { +00 }, 



344 1.5. Statements of Problems 

(iii) an upper semi-continuous set-valued map A : Dom f -+ X with compact 
values, which is ,6-monotone in the sense that 

V(x,p), (y, q) E Graph(A), (p - q, x - y) 2: ,6(x - y). (1) 

We recall the results of Problem 45, namely that the problems 

(i) 
(ii) 

o E A(x) + 8f(x) 
Vy E Domf, -CT(A(x), y - x) + f(x) - f(y) :S 0 (2) 

are equivalent and that a necessary condition for the existence of a solution is 
that 

o E Domf* + ADomf. (3) 

(a) Show that 0 E Dom,6*. Calculate Dom,6* when ,6 is equal to one of the 
following three functions 

,60(z) == 0, ,61(Z):= cllzll, and if a> 1, ,62(Z) := ~llzl12 (4) 

and characterise the following sets 

Int (Domf* + ADomf + Dom,6i*) (i = 0,1,2). (5) 

Describe these sets explicitly when f is the indicator function of a convex 
closed set K. 

(b) Set 

Kn := {x E Domflf(x) :S nand Ilxll :S n}. (6) 

Show that there exists Xn E Kn such that 

Vy E Kn , -CT(A(xn), y - xn) + f(xn) - f(y) :S O. (7) 

(c) Suppose that 

o E Int(Domf* + ADomf + Dom,6*). (8) 

Show that a subsequence of the sequence Xn is bounded. 

(d) Deduce that assumption (8) implies the existence of a solution of problem 
(2)(i). Deduce sufficient conditions for the existence of a solution of the 
variational inequality 

x E K and Vy E K, (A(x),x - y) :S O. (9) 
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15.47 Problem 47 - Monotone Set-valued Maps 

Let X be a Hilbert space (identified with its dual). A set-valued map A from 
X to X is said to be monotone if 

V(x,p) E Graph(A), V(y, q) E Graph(A), (p - q, x - y) ~ O. (1) 

More generally, if .3 : X -+ IR+ U {+oo} is a nontrivial, convex, lower semi
continuous function, A is set to be (3-monotone if 

V(x,p) E Graph(A), V(y, q) E Graph(A), (p - q, x - y) ~ (3(x - y). (2) 

(a) Show that if F is non-expansive in the sense that 

V(x,p), (y, q) E Graph(F), lip - qll :S Ilx - yll 

then A := 1 - F is monotone. 

(b) Show that A is monotone if and only if 

VA> 0, V(x,p), (y, q) E Graph(A), 

Ilx - yll :S Ilx - y + A(p - q)ll· 

(3) 

(4) 

(c) Suppose that f : X -+ IR U { +oo} is a nontrivial convex function. Show 
that A := of is monotone. 

(d) Set 

-1 1 
.1:>.. := (1 + AA) , A,\:= :.\(1 - J,\). (5) 

Show that if A is monotone then J,\ and A,\ are (one-to-one) mappings 
from Im(l + AA) to X satisfying 

A,\(x) E A(J,\(x)) 

and 

11.1:>..(yd - J,\(Y2) II < 

IIA'\(Yd - A,\(Y2) II < 

(e) Show that A,\ is monotone. 

(f) Suppose from now on that 

IIY1 - Y211 
1 
:.\IIY1 - Y211· 

VA> 0, (1 + AA) is surjective. 

Show that A satisfies the property 

(6) 

(7) 

(8) 

V(y, v) E Graph(A), (u - 11, X - y) ~ 0 '* u E A(x). (9) 
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(g) Deduce that 

the images of A are convex and closed (10) 

and that 

the graph of A is closed. (11) 

(h) We denote the element of A(x) with minimum norm by m(A(x)) (the 
projection of 0 onto the convex closed subset A(x)). Show that for all 
x E Dom(A), 

IIA\(x) - m(A(x))112 :::: Ilm(A(x))112 - IIAx(x)112 (12) 

and deduce that 

Ilx - J,),(x) II :::: Allm(A(x))II· (13) 

(i) Show that 

AJL+,),(x) = (AJL),),(x) (14) 

and deduce that 

(J)..(x) , A,), (x)) converges to (x, m(A(x)) as >. -+ O. (15) 

(j) If f : X -+ lR U {+oo} is nontrivial, convex and lower semi-continuous, 
show that A = of satisfies (8) and that (afUx) = '\If,),(x) and complete 
Theorem 5.2 by showing that '\l!A(x) converges to the element af(x) of 
minimum norm. 

15.48 Problem 48 - Walrasian Equilibrium for 
Set-valued Demand Maps 

We consider a convex closed set L (consumption set) and a continuous function 
r from the price simplex Me to lR (yield function) and we suppose that 

'tip E Me, :Jx E L such that (p, x) < r(p). (1) 

(a) Show that the set-valued budgetary map p -+ B(p, r(p)) defined by 

B(p, r(p)) := {y E LI (p, y) :::: r(p)} (2) 

has a closed graph and is lower semi-continuous. 
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(b) Suppose that f is a (loss) function from L X Me to lR. Suppose further 
that 

L is compact and f is continuous. (3) 

Using Problem 6, show that the set-valued demand map defined by 

D(p,r(p)):= {x E B(p,r(p))lf(x) = min f(y)} (4) 
YEB(p,r(p)) 

is upper semi-continuous. 

(c) We suppose that there are n consumers such that 

(i) the n consumption sets are convex and compact 
(ii) the n loss functions fi : Li X Me --+ lR 

are continuous and convex in Xi 

and we consider 

(5) 

n compact sets M? such that Mi = M? -lR~ is convex (6) 

and such that 

vi = 1, ... ,n, 0 E Int(Li - Mi). (7) 
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16.1 Problem 1 - Solution. Set-valued Maps with a 
Closed Graph 

(a) Consider a sequence of elements (xn' Yn) of Graph(F) converging to (x, y). 
Since F is upper semi-continuous, given any r:: > 0 there is an integer N (r::) such 
that 

\:In 2> N(r::) , Yn E F(xn) C F(x) + r::B. (1) 

It follows that Yn E F(x) = F(x). 

(b) Let V be an open neighbourhood of F(xo) and K its complement which is 
compact and disjoint from F(xo). Since for all Y E K, the pair (xo, y) does not 
belong to the graph of F, which is closed, there exist neighbourhoods Uy(xo) of 
Xo and W(y) of Y such that 

Graph(F) n (Uy(xo) x W(y)) = 0. (2) 

Since the set. K is compact, it is covered by n neighbourhoods W(Yi). Then the 
neighbourhood U(xo) := nr=l UYi (xo) is such that 

\:Ix E N(xo), F(x) n (U~=l W(Yi)) = 0. 

It follows that 

\:Ix E N(xo), F(x) c V 

whence that F is upper semi-continuous at Xo. 

16.2 Problem 2 - Solution. Upper Semi-continuous 
set-val ued Maps 

(a) The proof for part (a) is self-evident. 

(3) 

(4) 
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(b) If Y E K, then (xo,y) does not belong to Graph(G). Since the latter is 
closed, there exists neighbourhoods Uy(xo) and W(y) such that 

Graph(G) n (Uy(xo) x W(y)) = 0. 

Thus (5) holds. 

(c) We cover K by n open sets W(Yi) and set M := Ui=l W(Yi) and Uo(xo) := 

n~py,(xo), so that 

\Ix E Uo(x), G(x) n M = 0. (*) 

Since F is upper semi-continuous at Xo, there exists a neighbourhood U1 (xo) 
such that 

\Ix E U1(xo), F(x) c MnN, an open neighbourhood of F(xo). (**) 

Consequently, (*) and (**) imply that 

\Ix E U(xo) := U1(xo) n U2(xo), F(x) n G(x) eN. (*** ) 

16.3 Problem 3 - Solution. Image of a Set-valued Map 

(a) We consider a sequence Xn converging to Xo and take Yo = f(xo, uo) E F(xo) 
where Uo E G(xo), Since G is lower semi-continuous, there exists a sequence 
Un E G(xn) converging to Uo· The sequence Yn :- f(xn, un) converges to Yo 
since f is continuous. 

(b) We take Xo E Dom(G) and c > 0 consider the neighbourhood V of F(xo). 
It is a neighbourhood of each of the points f(xo, u) where u E G(xo). The 
continuity of f implies that there exist 7/u > 0 and Ju > 0 such that 

f(x,v) E V when x E B(xo,7/u) and v E B(u, Ju). 

Since G(xo) is compact, it can be covered by p balls B(Ui,Ji ) (i = 1, ... ,p). 
Since G is upper semi-continuous, there exists 7/0 > 0 such that 

p 

\Ix E B(xo, 7/0)' F(x) c U B(Ui' JuJ 
i=l 

We take 7/ := min( 7/0, mini=l, ... ,p 7/i) > O. Then 

\Ix E B(xo, 7/), F(x) c V. 

16.4 Problem 4 - Solution. Inverse Image of a 
Set-valued Map 

(a) The proof for part (a) is easy. 
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(b) 

(i) We take Xn --+ Xo and U E S(xo). From (2), there exists Un E F(Xn) such 
that Un --+ u. Since (xn,f(xn,un)) converges to (xo,f(xo,u)) and, since 
the graph of x --+ lnt T (x) is open, it follows that f (Xn' un) E lnt T (Xn) 
for n sufficiently large. Thus Un belongs to S(xn) and converges to u. 

(ii) Since S(x) c R(x), we have S(x) C R(x). Conversely, we take u E R(x). 
Since there exists Uo E S (x), it follows that euo + (1 - e)u belongs to S (x) 
for all e > 0 since 

f(x,euo + (1- e)u) = ef(x,uo) + (1- e)f(x,u) 

belongs to the interior of T(x) because f(x, uo) does. Letting e tend to 0, 
it follows that u belongs to S (x). 

(iii) Since x --+ S (x) is lower semi-continuous, the same is true of x --+ S (x) = 
R(x). 

(c) We consider a sequence Xn --+ Xo and u E R(xo). Since F and T are lower 
semi-continuous, there exist sequences Un E F(xn) and Yn E T(xn) which con
verge to u and f(x, u), respectively. Since f is continuous 

Cn := Ilf(xn, un) - Ynll 

converges to 0 and 

I en := -- EjO, 1[ 
1+ Cn 

converges to 1. 
Since encn = (1 - en)r, it follows that 

en(f(xn, un) - Yn) E cenB 
(1 - en)rB 

c (1 - en)(f(xm F(xn)) - T(xn)) 

by virtue of assumption (7). Thus, there exist Un E F(xn) and Yn E T(xn) such 
that 

en(f(xn, un) - Yn) = (1 - en)(f(xn, Un) - Yn). 

This implies that Vn := enun + (1 - en)un belongs to R(xn) since 

f(xn, vn) = enYn + (1 - en)Yn E T(xn)· 

Moreover, Un - Vn = (1- en)(un - Un). Since Un - Un E F(xn) - F(xn) belongs 
to a bounded set by virtue of (8), it follows that Un - Vn tends to O. Thus, u is 
the limit of Un E R(xn). 
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16.5 Problem 5 - Solution. Polars of a Set-valued Map 

(a) We consider a sequence (xn,Pn) converging to (x,p) such that Pn E T(xnf 
for all n. We take an arbitrary Y E T(x). Since T is lower semi-continuous, there 
exists a sequence Yn E T(xn) which converges to y. Since (Pn, Yn) :::; 0, it follows 
that (p,y) :::; O. This is true for all Y E T(x) and consequently P E T(x)-. 

(b) We consider a sequence Xn converging to x and take Y E T(x). Suppose 
that 7rT(xn) is the orthogonal projector onto T(xn ). It is sufficient to show that 
Yn := 7rT(xn )(Y) converges to y. Then Pn := Y - Yn is the projector of Y onto 
T(xnf· Thus, (Pn,Yn) = 0 and IIPnl1 :::; Ilyll· Consequently, a subsequence (again 
denoted by) Pn converges to p, since Y is finite dimensional. This element p 
belongs to T(xf, since the graph of T(T is dosed, and satisfies (p, Y - p) = 

limn-+oo(Pn, Yn) = O. Thus, IIpl12 = (p, y) :::; 0 since p E T(xf and Y E T(x). 
Consequently p = 0 and Yn converges to Y = Y - p. 

16.6 Problem 6 - Solution. Marginal Functions 

(a) See Proposition 9.3. 

(b) We take E > 0 and Xo EX. Since 9 is upper semi-continuous, for any 
Y E Y, there exist neighbourhoods V(y) and Uy(xo) such that 

'l/z E V(y), 'l/x E Uy(xo), g(x, y) :::; g(xo, y) + E. (*) 

Since F(xo) is compact, it is covered by n neighbourhoods V(Yi). Let N := 

U?=l V(Yi) denote a neighbourhood of F(xo) and Uo(xo) := n?=l UYi (xo) a neigh
bourhood of Xo. Since F is upper semi-continuous at Xo, there exists a neigh
bourhood U1(xo) of Xo such that 

'l/x E U1(xo), F(x) eN. ( **) 

Then (*) and (**) imply that 'l/x E U(xo) := UO(x)nU1(xo) and for all Y E F(x), 
there exists an element Yi such that 

g(x, y) :::; g(xo, Yi) + E :::; f(xo) + 2E. (*** ) 

Consequently, f(x) :::; f(xo) + 2E for all x E U(xo). 

(c) The set-valued map M is the intersection of the set-valued map F and the 
set-valued map G defined by 

G(x) := {y E Ylf(x) = g(x, y)}. 

Since f and 9 are continuous, the graph of G is dosed. We now apply Problem 2. 
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(d) Fix c > 0, Xl, X2 E X and YI E F(XI) such that f(XI) :S g(XI' YI) +c. Since 
F is Lipschitz, there exists Y2 E F(X2) such that IIYI - Y211 :S d(YI' F(X2)) + c :S 
clixi - x211 + c. Whence. since g(X2' Y2) :S f(X2), we have 

f(xd - f(X2) :S g(Xl' YI) -- g(X2' Y2) + c 

:S f!(llxl - x211 + IIYI - Y211) + c 
< f!(c + 1)II:r1 - x211 + (f! + 1)c. 

It now suffices to let c tend to O. 

16.7 Problem 7 - Solution. Generic Continuity of a 
Set-valued Map with a Closed Graph 

(a) The proof for part (a) is easy. 

(b) Since F is upper semi-continuous (see Problem 1), the points of disconti
nuity of F are those where F is not lower semi-continuous, in other words those 
such that 

if Kn :1 x. t.hen X E oKn := Kn n compInt (Kn) 

(c) Since Kn is closed, the interior of oKn is empty. Then, Baire's theorem 
implies that the interior of U~=l oKn is empty. Thus, the interior of the set of 
points of discontinuity is empty. 

16.8 Problem 8 - Solution. Approximate Selection of 
an Upper Semi-continuous Set-valued Map 

(b) We may associate any X with neighbourhoods U (x) of x such that 

vy E U(X), F(y) c F(x) + cB. (*) 

Since X is compact, it is covered by n neighbourhoods U(x;). We introduce a 
continuous partition of unity {a;};=1. .. ,n associated with this covering, we choose 
points YXi E F(x.;) and define fE by 

fc(x):= L ai(x)yc" I(x):= {ila;(x) > O}. (**) 
if-I(r) 

If i E I(x), then x E U(.ri) and consequently, F(Xi) C F(x) + cB. Thus, 
fc(x) c co(F(x) + cB) = F(:r) + cB. 
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16.9 Problem 9 - Solution. Continuous Selection of a 
Lower Semi-continuous Set-valued Map 

(a) Given any x E X and Yx E F(x) there exists an open neighbourhood V(x) 
of x such that 

VXI E V(x), (Yx + EB) n F(xd -I- 0. (*) 

Since X is compact, it is covered by n neighbourhoods V(Xi)' We associate a 
continuous partition of unity {a;(-)} i=I, ... ,n with this covering and define f" by 

Vx E K, f,,(x):= L ai(x)Yxi 
iEI(x) 

(** ) 

where I(:r) = {i = 1, ... , nlai(x) > O} -I- 0. If i E I(x), then x E V(Xi) and, by 
virtue of (*), YXi E F(x) +EB. Multiplying these inclusions by ai(x) and taking 
the sum, we obtain 

f,,(x) E co(F(x) + EB) = F(x) + EB. 

(b) We begin the induction with n = 1, by applying (a) with E = 1/2. We 
suppose assumption (2) holds for n and prove it holds for n + 1. We set 

Fn+l(x) := (fn(x) + f,; B) n F(x). (*** ) 

By virtue of (2)(i) , F n+1(x) is non-empty. It is easy to show that Fn+1 is lower 
semi-continuous. Applying (a) to Fn+1 and taking E = 2nl+1 , we deduce that 
there exists a continuous mapping fn+1 from X to Y with 

1 
d(fn+l(x),Fn+l(x)):::; 2n +I ' 

This implies (2) for n + 1. 

(c) The inequalities (2) (ii) imply that the sequence of the fn is a Cauchy se
quence in the space of continuous mappings from X to Y. This space is complete, 
since Y is complete. Thus, the sequence converges uniformly to a continuous 
mapping f from X to Y and property (3) follows from (2)(ii), since the images 
F(x) are closed. 

16.10 Problem 10 - Solution. Interior of the Image of a 
Convex Closed Cone 

(a) We set 

Kn := K n nB and T:= A(Kd = A(K n B). 
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Since K is convex and 0 E K, it follows that 

whence that 

Since 

1 
-Kn C Kl 
n 

A(Kn) C nA(Kd := nT. 

o E IntA(K) = Int (U~=lA(Kn)) C Int (U~=lnT) . 

Baire's theorem implies that the interior of one of these closed sets nT is non
empty, and thus that the interior of T is non-empty. Consequently, there exists 
Yo E T and t5 > 0 such that 

Yo + t5B cT. (*) 

Moreover, since there exists, > 0 such that ,B C A(K) = U~=lA(Kn)' there 
exists n > 0 such that -,~ E A(Kr,). Whence, 

Yo .-
-, nllYol1 E A(K1) = T c T. (** ) 

We set A := ,/(r + nllYoll) EjO, 1[ and multiply (*) by A and (**) by (1 - A). 
Then the convexity of T implies that 

,Yo - --
At5B = AYo - (1 - A) IIYol1 + At5B c AT + (1 - A)T c T. 

Thus, 0 E Int(T). 

(b) We take Y := ~ L~o 2-k A(Xk) E ~ L~o 2-kT, where Xk E K 1. We 
set an := 1/ Lk=O 2-k Thus, an -7 ~ and Yn := an Lk=O 2-k A(Xk) = 

A(an Lk=O 2-kXk) converges to y. But, since Kl is contained in B, the sequence 
of the Un := an Lk=O 2-A'Xk is Cauchy and so converges to an element u. Since 
Kl is convex and closed, the Un (and thus also u) belong to K1. Since A is 
continuous, Y = Au belongs to A(Kd = T. Thus, 

1 00 

2 LTkTC T. 
k=O 

(c) We suppose that T satisfies property (3) and that 0 E Int(T). Thus, there 
exists, > 0 such that 2,B cT. Then for all k > 0 we have 2· 2- k,B c 2-kT. 
We take Y E ,B. Then there exists Vo E T such that 

2y - Vo E 2· Tl,B c TIT 
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since 2y E Y. We suppose that we have constructed a sequence of Vk E T such 
that 

n-l 

2y - LTkvk E 2· Tn'lE. 
k=O 

Since 2· 2-n'lE C 2-ny, we can find Vn E T such that 

n-l 
2y - LTkvk - Tnvn E 2· T(n+1)'IE C T(n+l)y. 

k=O 

Thus, we have constructed a sequence of Vk E T such that 

1 00 1 00 

y E - LTkvk E - LTkT. 
2 k=O 2 k=O 

Consequently, 'IE C T and 0 E Int(T). We have proved that assumption (1) 
implies that there exists 'I > 0 such that 

'IE c A(K n E) (*) 
If K = X this is just Banach's Theorem for the open image. 

(d) If K is a convex closed cone, the statement A( K) = Y implies that 0 E 

Int(A(K)). Thus, there exists 'I > 0 such that 'IE C A(K n E), in other words, 
for c := 1, we obtain 

'Y 

'\Ix E Y,::Jx E K such that y = Ax and Ilxll ::; cllyll. (*) 

This shows that A-I is Lipschitz, in the sense that: '\IXI E K, and all Y2 E Y, 
there exists X2 E X, a solution of Y2 = AX2, such that Ilxl - x211 ::; cllAxl - Y211. 

In fact, we associate Y := Y2 - AXI with the solution x E K given by (*). 
Thus, 

X2 := Xl + x E K + K c K is such that 

AX2 

IIx2 - xIII 

AXI + Ax = Y2 and 

Ilxll ::; c11Y11 = cllAxl - Y211· 

(e) Suppose that A E L(X x Y, Y) is the operator defined by 

A(x,y):=Lx-y 

and that K = P x Q. Since A(K) = L(P) - Q is the whole space, it follows 
from (d) that for fixed Xo in P, Y in Y and Yo := 7rQ(Lxo - y), there exists a 
solution (Xl, yd E P x Q of the equation A(XI' YI) = Y such that 

Ilxl - xoll ::; max(llxl - xo!!, !!YI - Yo!!) ::; c!!y - A(xo, Yo)!! 
= cddLxo - y). 

To say that (Xl, YI) E P x Q is a solution of A(xl, YI) = LXI - YI = Y implies 
that Xl E M(y). 
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(f) We take K := Graph(F) a convex closed cone in X X Y and A := 7ry the 
canonical projection from X x Y onto Y. Since A(K) := 7ry(GraphF) = Im(F) 
is the whole space, there exists I> 0 such that, for all (Xl, yd E Graph(F) and 
all Y2 E Y, there exists a solution (X2, fh) E K of the equation Y2 := 7ry(X2, Y2) = 

Y2 satisfying the inequality 

IIX2-xlli ::; max(ll x2- xIII,IIY2-YIII) 

< cll7ry(XI,YI) - Y211 = cllYl - Y211· 

Thus, F- I is Lipschitz. 

(g) In the case where K is not a cone, but only a convex closed set (containing 
0), the condition 0 E ImA(K) implies that there exists I> 0 such that 

2,B c A(K n B). 

Suppose that J;o E K and Y E ,E are given, where Y i= Axo. Then 

I Y + " A ,,(y - Axo) E 2,B c A(K n B) 

and thus there exists u E K n B such that 

I 
Y + Ily - Axoll (y - Axo) = Au. (*) 

We take A:= 1!11~~~~~11 EjO, 1[ so that A~ = (I-A). Multiplying (*) by A, 
we obtain Ay+(I-A)(y-Axo) = A(AU). Thus, Y = Ax, where X = (I-A)xo+Au 
belongs to K (since Xo and 11 belong to K). Furthermore 

Ilx - :r:oll A(lIu - uoll) 

lIy - Axoll (liu - xoll) 
1+lIy-Axoll 

IIxoll + 111 A . II < Y - Xo· 
I 

(h) Suppose that A E L(X x Y, Y) is the operator defined by 

A(x,y):=Lx-y 

and that K := P X Q - (x, Lx) is a convex closed set containing (0,0) (since 
x E P and Lx E Q). Since A(x, Lx) = 0 E Int(L(P) - Q) = Int A(K), we 
may apply the results of (g). Suppose that I > 0 is the constant such that for 
all (uo, vo) E K, z E I B, there exists a solution (u, v) E K of the equation 
A( u, v) = z satisfying 

1 
max(lIu - uoll, IIv - vall) ::; -(1 + max(lIuoll, IIvoll) liz - A( uo, va) II· 

I 
(*) 
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Fix Xo in K and z in 'YE. We take Uo := Xo - x and Vo := 7rdLxo - z) - Lx 
so that (uo, vo) E K. We set x := x + u E P, y = Lx + v E Q and prove 
that Lx = Lx + Lu = Lx + v + A( u, v) = Lx + v + z = Y + z E Q + z. Thus, 
x E M(z). Since Ilz-A(uo,vo)11 = IILxo-Z-7rdLxo-z)11 = dQ(Lxo-z), since 

Iluoll = Ilxo-xll, Ilvoll:::; IILxo-z-Lxll:::; IILllllxo-xll+llzll:::; IILllllxo-xll+'Y, 
inequality (22) follows from (*). 

(i) We take the canonical projection try from X x Y onto Y as the operator 
A and consider the convex closed set K := Graph(P) - (x, y) which contains 
(0,0). Since 0 E Int(ImP - y) = Int(7ry(K)), it follows from (g) that there 
exists a constant 'Y > 0 such that for all (uo,vo) E K and v E 'YE, there exists 
a solution (u, v) E K of the equation v =: 7rY( u, v) = v, satisfying 

1 
max(llu - voll, Ilv - voll) :::; -(1 + max Iluoll, Ilvoll)llv - voll· H 

'Y 

If (xo, Yo) E Graph(P), we take Uo := Xo - x, Vo := Yo - y, v = y - y and we set 
x := x + u. Since (u, v) E Graph(P) - (x, V), then (x, y) E Graph(P), in other 
words, x E p-1 (y) and 

max(llx - xoll, Ily - Yoll) max(llu - uoll, Ilv - voll) 
1 

< -(1 + max(lluoll, Ilvoll)(llv - voll) 
'Y 

Whence 

1 
-(1 + max(llxo - xii, Ilyo - yll)lly - Yoll· 
'Y 

1 
d(xo, P-1(y)) :::; -(1 + max(llxo - xii, Ilyo - yll)lly - yoll· 

'Y 

16.11 Problem 11 - Solution. Discrete Dynamical 
Systems 

(a) See Theorem 1.4. 

(b) If f (x) is finite, the assumption implies that 

d(g{t+ll(x),i(x)) :::; f(i(x)) - f(g(t+ll(x)). 

Taking the sum from t = 0 to T, we obtain 

T 

2:d(g(t+ll(X),i(x)):::; f(x) - f(g(T+ll(x)) S; f(x) 
t=o 

(since f(y) ;::: 0). Letting T tend to infinity, we deduce that fg(x) S; f(x). 



16.11 Problem 11 - Solution 359 

Moreover, 

00 

fg(x) d(g(x),x) + 'Ld(g(t+1)(x),gt(x)) 
t=l 

d(g(x), ::c) + fg(g(x)). 

If there exists Xo such that fg(xo) < +00, then there exists an equilibrium to 
which the solution based on Xo converges. 

(c) See Theorem 1.5. 

(d) See Theorem 1.4. 

( e) It suffices to show that x E H (x) (reflexivity) and that if y E H (x), then 
H(y) c H(x) (transitivity). This is self-evident. 

(f) 

(i) The set of limit points of xt is the set 

L(xt) := n (~) . 
t20 s2T 

Since Us>tXS C H(xt), it follows that L(xt) c H(x). 

(ii) Since G(H(x)) c H(x), it follows that when G is lower semi-continuous, 
G(H(.r)) c H(x). Suppose that U = limn-tooun, where Un E H(x) and 
that v E G(u). Since G is lower semi-continuous, there exist Vn E G(un ) C 
H(x) such that Vn converges to v. Consequently, v belongs to H(x). It then 
follows that G(L(xt)) C L(xt). 

(g) 

(i) Assumption (8) implies that 

Vy E H(x), d(x,y)::; f(x) - f(y). 

Actually, y = xt, where xt E G(xt - 1), ... Xl E G(x). Thus, 

t 

d(x,y) ::; 'Ld(xS,xS-1) 
s=l 
t 

< 'L(f(XS) - f(x s- 1)) 
s=l 

< f(x t) - f(xO) 

f(y) - f(x). 
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From the definition (10) of the function f, it follows that 

Vy E H(x), d(x, y) :::; f(x) - v(x), 

whence that 

diameter(H(x») :::; 2(f(x) - v(x»). 

We now choose the sequence Xn satisfying (9) and show that 

v(xn+d :::; f(xn+d :::; v(xn) + Tn:::; V(Xn+l) + Tn. 

Thus, the decreasing sequence of sets H(xn), the diameter of which tends 
to 0, reduces to a single point x. Since x E H(xn), whence H(x) c H(xn), 
it follows that 

H(x) c nn20H(xn) = {x} c H(x). 

(ii) Since G is lower semi-continuous, whence, by virtue of (f)(ii) G(H(xn») C 

H(xn ), it follows that 

G(x) c nn2oH(xn) = {x}. 

16.12 Problem 12 - Solution. Fixed Points of 
Contractive Set-valued Maps 

(a) We suppose that f satisfies (2) and construct a solution (xn) based on x, 
satisfying 

Xn+l E G(xn) and d(xn' xn+d :::; f(xn) - f(Xn+I). 

It follows that, for all k, 

k 

L d(xn' Xn+l) :::; f(x) - f(xk+d :::; f(x), 
n=O 

whence that fc(x) :::; f(x). 

(b) Inequality (5) is trivial. Moreover, for all c > 0, there exists a solution (xn) 
based on x of the set-valued map x -+ B(G(x),c) such that 

00 

L d(xn' xn+d :::; ff(X) + c. 
n=O 

Now, 

00 

d(x, Xl) + fE(XI) :::; d(x, Xl) + L d(xn' Xn+l) :::; fE(X) + c. 
n=l 

Thus, we take X£ := Xl. 
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(c) We fix x. Since G(x) is compact, there is a subsequence xCk E B(G(X),Ek) 
which converges to x E G(l:). Since G is upper semi-continuous, for any <5 > 0, 
there exists an integer k6 > ° such that 

B(G(Xtk)' Ek) C B(G(x), 5). 

Consequently, any solution (1',,) of B(G(X),Ek) based on xCk may be associated 
with the trajectory X,XEk,Xj, ... which is a trajectory of B(G(x), <5) based on 
x. Thus, taking into account (6), 

fs(x) :S: d(:r, l:£k) + fCk(XEJ 

< d(.r,x£k)-d(x,xck)+fEk(x)+Ek. 

(d) Letting k tend to infinity, we obtain 

fs(i) :S: -d(x, x) + fo(x) 

and letting <5 tend to 0, we obtain fo(x) + d(x, i) :S: fo(x) with x E G(x). Thus, 
fo satisfies (2) and following (a) and (5), we have fc(x) :S: fo(x) :S: fc(x). 

Since G is upper semi-continuous with compact values, it follows that the 
function fc defined by (1) satisfies property (2). We show that fc is a finite 
function. Since G(x) has compact values, we construct a trajectory Xn E T(x) 
satisfying 

d(Xn+l' xn) = d(xn' G(xn)). 

Since G is a contraction we observe that 

OC 00 1 
fc(x) :::: L d(xn' Xn+l) :::: L )./'d(x, Xl) = 1 _ A d(x, Xl) < +00. 

n=O n=O 

We then apply Theorem l.4 to deduce that G has a fixed point. 

16.13 Problem 13 - Solution. Approximate Variational 
Principle 

(a) By virtue of Ekeland's Theorem (Corollary l.3), there exist E > 0, .\ > 0, 
Xo E X and x E X, such that 

f(·TO) :S: inxf f(x) + EA, f(x):s: f(xo), d(xo, x) :S: .\ 
xE 

and 

f(x) :S: f(x) + Ellx - xii \Ix E X. 
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Taking x = x + hv, we obtain 

f(x + hv) - f(x) II II OS , +cv. 

Since f is Gateaux differentiable, it follows that, letting h tend to 0, 

o S (D f(x), v) + cllvll· 

Taking the infimum with respect to v on the unit circle 

IIDf(x)ll* S c. 

(b) We take c = A = ~. The previous question provides Xn such that 
f(xn) S infxEx f(x) + ~ and xn such that f(xn) S f(xn), d(xn' xn) S ~ 
and IIDf(xn)ll* S ~. 

(c) Since limllxll-+oo iW = +00, we may associate any p E X* with a constant 

c> 0 such that 'v'llxll 2 c, f(x) 2 Ilpllllxll· Let m := infllxll:Sc(f(x) - (p,x)), 
which is a finite number since f is lower semi-continuous. Then the function g 
defined by 

g(x) := f(x) - (p, x) 2 inf(m,O) 

is bounded below. From the previous question, there exists a minimising se
quence i'n for 9 such that Dg(xn) = D f(xn) - p converges to O. Thus p may be 
approximated by the D f(xn). 

16.14 Problem 14 - Solution. Open Image Theorem 

(a) The proof follows by reduction to the absurd, assuming that A(xo) does 
not belong to the interior of A(K), in other words, assuming that 

1 
'v'n 2 0, Yn ~ A(K) such that IIA(xo) - Ynll < 2"' 

n 

We apply Ekeland's Theorem (Theorem 1.2) with c = ~ to the function x ~ 
IIA(x) - yll on the closed subset K of X. Thus, there exists Xn E K such that 

1 1 
IIA(xn) - Ynll + -llxn - xoll S IIA(xo) - Ynll :S 2" n n 

and 

'v'xE K, 
1 

IIA(xn) - Ynll S IIA(x) - Ynll + -llxn - xii· 
n 

(*) 
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(b) Since A(xn) -Yn cf 0 and since the function z -+ Ilzll is Frechet differentiable 
at any point z cf 0, given any n, there exists a number "In > 0 

such that \;fz E "InE, 

where 

1 
IIA(xn + z) - Ynll - IIA(xn) - Ynll - (Pn, Az) ::; -llzll 

n 

A(:rn) - Yn . 
Pn:= II _ II E S, the umt sphere of Y. 

Xn Yn 

(** ) 

(c) We take U E TK(XO)' Following problem 31, we may associate the sequence 
Xn which converges to Xo with a sequence of elements hn EjO, "In/(llull + 1) [ and 
a sequence of elements Un converging to U such that 

\;fn 2: 0, X11 + hnvn E K. 

Since Ilhnunll ::; "Inllunll/(llull + 1) ::; "In, the inequalities (*) with x = Xn + hnvn 

and (**) with z = Un imply that 

o ::; hn ((Pn, Aun ) + ~) . 

Since Y is a finite-dimensional space, its unit sphere is compact and there exists 
a subsequence (again denoted by Pn) which converges to pES. Dividing by 
hn > 0 and letting n tend to infinity, we obtain 

o ::; (p, Au) \;fu E TK(XO)' 

(d) Since A(TK(XO)) = Y, it follows that 

0::; (p,v) \;fv E Y. 

This implies that P = 0, although P is an element of norm 1. Thus, we have a 
contradiction to the assumption that A(xo) ~ lnt A(K). 

(e) If A is no longer linear, but continuously differentiable, the function z -+ 
IIA(xn + z) - Ynll is differentiable and we have 

\;fz E "InE, IIIA(xn + z) - Ynll-IIA(xn - Yn)ll- (Pn,A'(xn)z)1 ::; .!.llzll. 
n 

We obtain the inequality 

0::; hn(Pn,A'(xn)un) + 3. 
n 

which implies that, after passing to the limit, 

0::; (p, A'(xo)u) 'iu E TK(xo). 



364 16. Solutions to Problems 

(f) We apply the result (d) to the mapping A from X x Y to Y defined by 
A(x, y) = Bx - y and to the set K = Lx M. It is easy to check that TK(x, y) = 

TL(X) X TM(y). We take Xo E L n B-1(M) such that A(xo, Bxo) = 0. 

(g) We consider the mapping A from X x lRn defined by A(x, y) = F(x) - y, 
the set J( x lR~ and the point (xo, 0). Suppose that condition (12) is false. Thus, 
we may write 

if A E lR~ is such that F'(Xo)'A E NK(xo), then A = 0. (***) 

Since lR~ = NIR'fJO) , since A'(xo,O)(u,v) = F'(xo)u - v and thus, since 
A'(xo, 0)' A = (F'(xo)' A, -A), this condition may be written as 

A'(XO,O)'-lNKXIR+(xo,O) = {a} 

which is equivalent to 

A'(xo, O)TKXIR+ (xo, 0) is dense in lRn 

and thus identical (since the dimensions are finite). This would then imply that 

o 

A(xo, 0) := F(xo) E Int(F(K) + lR~) = F(K)+ lR~, 

which contradicts the fact that Xo is a Pareto optimum. 

16.15 Problem 15 - Solution. Asymptotic Centres 

(a) The proof for part (a) is easy. 

(b) Since the sequence is bounded in a finite-dimensional space E, it is rela
tively compact and thus has limit points. Thus, the set C is non-empty, convex 
and closed. By definition of the function v, there exists a subsequence Xs such 
that 

v(f}) = lim Ilxs - yf 
.'3---+00 

Whence, 

lim sup Ilxs - xl1 2 ::; lim sup Ilxt - xl1 2 = v(x). 
8--+00 t--+oo 

Furthermore, there exists a subsequence Xn of Xs which converges to a limit 
point Z E C. Thus. 

limsup(y - x,y - xn ) = (y - x,y - z) ::; ° 
n-+oo 

since y is the projection of x onto C. 
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Since 

II:fn - xl1 2 = Ilxn - 17112 + 1117 - xl12 + 2(xn - 17,17 - x) 

it follows that 

vex) ::::. v(y) + 1117 - xl1 2 + 2(z - 17,17 - x) 

::::. v(y) + 1117 - xl1 2 
> v(y). 

Thus, 17 = x (since there is a unique minimum). 

(c) The limit point w of Xt is the limit of a subsequence Xt. Passing to the limit 
as s tends to infinity in 

Ilx, - zl12 = Ilx, - Yl12 + Ily - zl12 + 2(xs - y, y - z) 

we obtain 

v(z) ::::. v(y) + Ily - zl12 + 2(w - y, y - z) 

since as y belongs to the attractor N, v(y) = lims-+oo Ilxs - yf Since this 
inequality holds for all the limit points w of the sequence Xt, it holds for all 
wEe and in particular for w = y which is assumed to belong there. Thus, 

1'(z) ::::. v(y) + Ily - zl12 ::::. v(y). 

This implies that the unique minimum of v is attained at y, which coincides 
with the asymptotic centre of the sequence. 

16.16 Problem 16 - Solution. Fixed Points of 
Non-expansive Mappings 

(a) We have 

Ilft(x) - ft(y)11 ::; (1 -D Ilf(x) - f(y)11 ::; (1 -D Ilx - YII· 

By virtue of the Banach-Picard Fixed-point Theorem for contractions (The
orem 1.5), there exists .ft E K, such that :ft = ft(xtl = (1 - t)J(Xt) + tXa. 
Whence, 

1 1 . 
Ilxt - f(xt)11 = tllxa - f(xa)11 ::; id1am(K) 

and, since K is bounded. 

lim IIXt - f(xt)11 = O. 
t-+CXl 
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(b) Since Xt E K, which is bounded and thus (weakly) relatively compact, a 
subsequence Xs converges weakly to w E K. Since f is not expansive, it follows 
that 

(x,X - f(x,X) - (xs - f(x s)), X,X - xs) 

= Ilx'x - xs l1 2 - (f(x,X) - f(xs),x,X - xs) 

:::: Ilx'x - xsl1 2 -llf(x,X) - f(xs)llllx,X - xsll 
:::: Ilx'x - xsl1 2 -llx'x - xsl1 2 = o. 

Letting s tend to infinity and since Xs - f(x s) is known to tend (strongly) to 0, 
we obtain 

(x,X - f(x,X), X,X - w) :::: o. 

Replacing X,X by its value and dividing by A > 0, we obtain 

(1- A)W + Af(w) - f(w + A(f(W) - w)), f(w) - w) :::: o. 

Letting A tend to 0, we obtain 

Ilf(w) - wl12 :s 0 

whence w is a fixed point of f. 

(c) Since f is continuous, the set of its fixed points is closed. Suppose that Xo 
and Xl are two fixed points of f and show that X,X := (1 - A)Xo + AXI is also a 
fixed point. We have 

Ilf(x,X) - xoll = Ilf(x,X) - f(xo)11 :S Ilx'x - xoll = Allxo - xIII 

and similarly, 

Ilf(x,X) - xtll :S (1 - A)llxo - x& 

Thus, 

Ilf(x,X) - xoll + Ilf(x,X) - xtll :S Ilxo - xIII 
< Ilxo - f(x,X) II + Ilf(x,X) - xtll 

in other words, 

Ilf(x'x) - xoll = .\llxo - xtll and Ilf(x,X) - xtll = (1 - .\)llxo - x& 

Since E is a Hilbert space, it follows that 

f(x,X) = (1 - .\)xo + .\Xl = X,X. 
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(d) 

(i) If X is a fixed point of j then it belongs to the attractor N of the sequence 
jt (xo), since 

IIP(xo) - xii = IIP(xo) - j(x)11 ::::: IIP-l(XO) - xii· 

Thus, the sequence of the Iljt(xo) - xl1 2 is decreasing and bounded below, 
whence convergent. 

(ii) Consequently, if a limit point w of the sequence P(xo) is a fixed point of 
j, it belongs to Nne and is thus equal to the asymptotic centre of this 
sequence. 

(iii) The proof of (b) shows that condition (5) implies that all the limit points 
of the sequence Jf(xo) are fixed points of j and that, consequently, they 
are all equal to the asymptotic centre of jt(xo), which is thus the limit of 
the sequence jt (xo). 

16.17 Problem 17 - Solution. Orthogonal Projectors 
onto Convex Closed Cones 

(a) It is clear that (1) implies the variational inequality (19) of Chapter 2. 
Conversely, taking y = 0 and y = 2x (which belong to K, since K is a cone) in 
the inequality (19) of Chapter 2, we obtain (l)(i) from which we deduce (l)(ii). 

(b) We write 

(AX - 7rK(Ax ), 7rK(AX)) 

(AX - 7rdAX), z) ::::: 0 

2 1 1 
A (x - >;:7rK(AX), >;:7rK(AX)) = 0 

1 
=? (x - >;:7rK(AX) , z) ::::: 0 

for all z E K. Then the characterisation of (1) shows that t7rK(AX) = 7rK(X). 

(c) (2) follows from (1) (i). 

(d) Set y = x - 7rKX. Then y E K- (following (l)(ii)) and (x - y,y) = 

(7rK(X), X - 7rK(X)) = 0 and (x - y, z) = (7rK(X) , z) ::::: 0, Vz E K-, since 
7rK(X) E K. Thus (1) applied to K- shows that y = 7rK- (x). 

(e) If 7rK(X) = 0, then x = x - 7rK(X) E K-. Conversely, if x E K-, then 
II7rKXII = (7rKX,7rKX) = (7rKX, x) ::::: 0 (following (l)(i)), whence 7rK(X) = O. 

(f) Clearly, Jj = 7rK(X) and z = 7rK-(X) are solutions of (6). Conversely, (6) 
implies that y = 7rK(X), following the characterisation of (1). 
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(g) If K is a closed vector subspace, then K- = K -L is the orthogonal subspace 
and 1rK is characterised by 

(x -1rk(X),Z) = 0 Vz E K (or x -1rK(X) E K-L). 

It follows from (*) that 1rK is linear. Moreover, 

(1rK(X), Y) (1rKX, 1rKY + 1rKJ.Y) 

(1rKX,1rKY) 

(x - 1rK J.X, 1rKY) 

(X,1rKY)· 

(*) 

16.18 Problem 18 - Solution. Gamma-convex Functions 

(a) 

(i) They are the convex sets. 

(ii) They are the convex functions. 

(b) We have 
n 

f(a(m» f(LaiKi) 
i=l 

n 

inf 9(L aixi) 
xiEKi i=l 

n 

< inf L aig(xi) 
xiEKi i=l 

n 

L ai inf g(Xi) 
i=l xiEKi 

n 

Lad(Ki) 
i=l 
j"(m). 

(c) The proof is analogous to that of Proposition 2.6. 

(d) We take m:= {(ai,xi)}i=l, ... ,n E M(E). Then 
n n 

LaiF(Xi) L ai(F(xi) + 0) E co(F(E) + lR~) 
i=l i=l 

F(E) + lR~ (from assumption (9)). 

Thus, there exist x E E and p E lR~ such that 
n 

L F(Xi) = F(x) + p. (*) 
i=l 
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We denote the set of such x by ,(m) and check that the n functions fi are 
,-convex. 

(e) The proof is analogous to that of Lemma 8.2. 

(f) The proof is analogolls to that of Proposition 12.3. 

16.19 Problem 19 - Solution. Proper Mappings 

(a) (1) clearly implies (2). Conversely, we assume (2) and consider a sequence 
Xn such that f(xn) converges to y. The set L of limit points of Xn is: 

L:= n {xn}n;:>N" 
N;:>O 

Since f is continuous and transforms closed sets into closed sets, we obtain 

f( {:r: n} n;:>N) = {f(Xn)}n;:>N" 

Since {y} = nN;:>o{f(Xn)}n;:>N, it follows that 

\IN 2> 0, Ln := {Xn}n;:>N n r1(y) ic 0. 

Since f-l(y) is compact and since the Ln form a sequence of closed decreasing 
sets, their intersection L is non-empty. 

(b) The proof for part (b) is easy. 

(c) Suppose we have a sequence Xn E K such that AXn converges to y in Y. 
Since any p E X* may be written as p = A*q + r, where q E y* and r E b(K) 
by virtue of (4), it follows that 

(p,:r:n) = (A*q,xn) + (r,.Tn) = (p,Ax n ) + (r,xn) < +00 

(since the convergent sequence AXn is bounded and since r E b( K)). If X is 
finite dimensional, it follows that the sequence Xn is bounded and that it has 
limit points in K, which is assumed to be closed. If X is infinite dimensional, it 
follows that the sequence Xn is weakly bounded and thus that it has weak limit 
points belonging to K which, being convex and closed, is weakly closed. 
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(d) We apply the previous question with A E L(X x Y, Y) defined by A(x, y) = 
Lx-y and K = P x Q. Since A*q = (L*q, -q) and b(K) = P~ x Q~, we need to 
check that for all (p, q) E X* x Y*, there exist qo E Y* and (PI, qd E P~ x Q~ 
such that (p, q) = (L*qo, -qo) + (PI, qI). However, by virtue of (5), p + L*q E 
L*Q~ + P~ may be written in the form 

p - L* q = L * qI + PI where qI E Q~, PI E P~. 

Thus, it is sufficient to check that qo = qI - q, where qI and PI satisfy the 
question. 

Since L(P) - Q = A(P x Q), it follows that this convex cone is closed. 
Moreover, A~I(y) = {(x, z) E P x QILx - Z = y} is compact and its projection 
onto X, which is the set {x E PILx E Q + y}, is also compact. 

(e) Suppose that yP = Lr=I xf is a sequence converging to y, which is therefore 
bounded. Since Li is bounded below, 

~~~~if-E~~if-E~~v-E~ 
ji.i ji.i ji.i 

where yP ~ v. Thus, the sequences xf lie in compact sets and subsequences xf' 
converge to elements Xi of Li . In particular, it follows that Lr=I Li is closed. 

(f) Suppose that Zn = Xn -yn is a sequence converging to z. We shall show that 
Yn is bounded. If this is not the case, then there exists a subsequence (again 
denoted by) Yn such that IIYnl1 ~ 00. Thus, Vn := Yn/IIYnll belongs to the unit 
sphere, which is compact. Thus, there exists a subsequence (again denoted by) 
Vn which converges to an element v. Since Zn converges, there exists an element 
w such that Zn ~ a. Thus, Yn 2: Xn - Zn 2: u - a. Whence, the inequalities 
Vn 2: ~~~ imply that v 2: 0, in other words, that v E IR~. Moreover, since M is 
convex, 

II:nIIYn + (1- lI:nll) wE M. 

Letting n tend to infinity, we obtain v+w E M. Thus, v E (M -w)nIR~ = {O} 
(by virtue of (9)(ii)). Thus, we have obtained a contradiction. 

16.20 Problem 20 - Solution. Fenchel's Theorem for 
the Functions L(x, Ax) 

The proofs for parts (a) to (d) follow the proof of Theorem 3.2 (Fenchel's The
orem) for this particular case. 

Subsidiary Question. Generalise the proof of Theorem 3.2 in the case of 
Hilbert spaces to the minimisation problem (1) stated in Problem 20. 
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16.21 Problem 21 - Solution. Conjugate Functions of 
x -+ L(x, Ax) 

(a) We set f(g) := L*(p - A*g, g) and K).. = {glf(g) :s: >.}. It suffices to show 
that K).. is bounded, whence, that there exists "t > ° such that for all z E "tB, 

sup (g, z) < +00. 
qEKA 

Fenchel's inequality implies that (g, z) :s: f(g) + J*(z) and since SUPqEKA f(g) :s: 
A, it is sufficient to show that 

\jz E "tB, J*(z) < +00. 

Take"t > ° such that "tB C (A EB -l)DomL. Then z may be written as z = 

Yo - Axo where (xo,Yo) E DomL, whence 

j*(z) = sup((g,z)-L*(p-A*g,g)) 
qEY' 

sup inf inf ((g, z) - (p -- A*g, x) - (g, y) + L(x, y)) 
qEY' xEX yEY 

< sup ((g, z) - (p - A*g, xo) - (g, Yo) + L(xo, Yo))· 
qEY' 

Since (g,z) - (-A*g,xo) - (g,yo) = (g,z - (Yo - Axo)) = 0, it follows that 

j*(z) :s: -(p, xo) + L(xo, Yo) < +00. 

(b) Set g(p) := infqEy, L*(p - Ag, g). This is convex following Proposition 2.5. 
When p E (1 EB A*)Dom L*, there exists (r, g) E DomL* such that p = r + A*g. 
Thus, L*(p-A*g, g) < +00 and g(p) < +00. Take A> g(p). Since K).. is compact 
and since g(p) = infqEKA L*(p - A*g, g), Proposition 1.7 implies that 9 is also 
lower semi-continuous and finite on (1 EB A*)Dom L*, which, by assumption, is 
non-empty. 

(c) We may apply Proposition 3.3 or use direct calculations, as follows: 

g*(x) sup ((p, x) - inf L*(p-A*g,g)) 
pEX' qEY' 

sup( (p - A*g, x) + (g, Ax) - L*(p - A*g, g)) 
p,q 

L(x, Ax). 

Thus, g(p) = g**(p) = L(·,A)*(p). 

16.22 Problem 22 - Solution. Hamiltonians and Partial 
Conjugates 

(a) We note that H(x,·) is the conjugate function of L(x, .), whence that (2)(i) 
and (3)(i) follow from Theorem 3.1. Since the function (x, y) ---+ (g, y) - L(x, y) 
is concave, Proposition 2.5 implies (2)(ii). 
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Lastly, 

L*(p, q) sup((p,x) + (q,y) - L(x,y)) 
x,Y 

sup((p,x) +sup((q,y) - L(x,y))) 
x y 

sup( (p, x) + H(x, q)). 
x 

(b) Since p -t L*(p, q) is the conjugate function of x -t -H(x, q) (by (3)(ii)) 
and since this function is convex and lower semi-continuous (by (4)), Theo
rem 3.1 implies that 

-H(x,q) = sup ((p, x) -L*(p,q)). 
xEX* 

(c) We begin by noting that (6)(i) is equivalent to 

(p, x)(q, y) = L*(p, q) + L(x, y) 

which may be written as 

((p, x) - (-H(x,q)) - L*(p,q)) + ((q,y) - L(x,y) - H(x,q)) = O. 

(*) 

Since p -t L*(p,q) is the conjugate function of x -t -H(x,q) (by (3)(ii)) and 
since 9 -t H(x, q) is the conjugate function of y -t L(x, y) (by (1)), each term 
of this sum is negative, whence (*) is equivalent to 

(i) 
(ii) 

(p,x) - (-H(x,q)) - L*(p,q) = 0 
(q, y) - L(x, y) - H(x, q) = O. 

We end by noting that (**) is equivalent to (6)(ii). 

(d) By virtue of the characterisation of the subdifferential, we have 

° E ox( -H(x, q)) {:} \Ix E X, -H(x, q) + H(x, q) :S (0, x - x) 

{:} \Ix E X, H(x, q) :S H(x, q) 

and 

° E oqH(x, q) {:} \lq E Y*, H(x, q) - H(x, q) :S (0, q - q) 

{:} \lq E Y*, H(x, q) :S H(x, q). 

16.23 Problem 23 - Solution. Lack of Convexity and 
Fenchel's Theorem for Pareto Optima 

(a) 

(i) Clearly p(f) 2:: f(x) - f(x) = 0, where x E Dom(f). 

(** ) 
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(ii) ! is clearly convex if and only if p(f) = O. 

(iii) For any convex combination, we have 

v ::; !(Lnd(Xi)) -I- g(A(Lnixi)) 

< Lnd(xo) -I- g(A(Lnixi)) -I- p(f). 

We obtain the inequality (4) by taking the infimum over the convex com
binations. 

(b) If (6) is false, there would exist finite sequences of Xi E L, Yi E M and 
ni ~ 0 with I; ni = 1 satisfying 

(0, 11)) (~niAXi - L niYi, L nd(xi) -I- L nig(Yi) -I- p) 
E co(¢(L x M)) -I- Q (where p > 0). 

Thus, I; (tiYi = A(I; niJ.·i) and 

which is impossible. 

11) > L nd(xi) -I- L nig(Yi) 

~ L nd(xi) -I- g(L niYi) 

~ w 

(c) Since Y is finite dimensional, we may use the Large Separation Theorem 
(Theorem 2.5). There exists a non-zero linear form (c, g) E IR x Y*, such that 

C:W::; inf. (c:I(:£) -I- g(y) -I- (q, Ax - y») -I- inf pc. 
xEL.yE'M p>O 

It follows that c: ~ 0, whence inequality (7) holds. 

(d) Suppose that c: = 0, Then (7) implies that 

o < 

< 

inf (g, Ax - y) 
XEL,yEM 

inf (g,z) 
zEA(L)-M 

inf (g, z) 
zeyB 

-{llgll· 

This would give g = 0, which contradicts the fact that (c, g) # (0,0). 

(e) Thus, c: > 0 and, dividing by c and setting ij = g/ c:, we deduce from (7) 
that 11) ::; - 1* ( - A * ij) - g* (ij). This inequality, together with (4) implies the 
inequality (9). 
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(f) Since v* :::; j*(-A*q) + g*(q) :::; -w :::; -v + p(f) (from (4)), we obtain a 
majoration of v+v* by p(f). If f is convex, p(f) = 0 and we rediscover Fenchel's 
Theorem (Theorem 3.2). 

(g) The proof for part (g) is easy. 

(h) In this case, 

v = inf f(x). 
Ax=u 

Assumption (8) may be written as 

u E IntA(L) 

and the conclusion (9) implies that there exists an approximate Lagrange mul
tiplier q such that 

v:::; - f*( -A*q) + p(f). 

16.24 Problem 24 - Solution. Duality in Linear 
Programming 

(a) The linear programme may be written in the form 

v = inf(Po,x) + 1/!PXQ-(O,uo) ((1 x B)x). 

We apply Fenchel's Theorem with 

It follows that 

Thus, 

f(x) := (Po, x), 

g(x, y) := 1/!PxQ-(O,uo) (x, y), 
Ax := (1 x B)x. 

f*(p) 
g* (p, q) 
A*(p, q) 

1/!{po} (p) 
1/!P- (p) + 1/!Q- (q) + (q, uo) 
p+ B*q. 

v* inf( 1/!{po} (-p - B* q) + 1/!p- (p) + 1/!Q- (q) + (q, uo)) 
inf (q, uo) 

qEQ
~B*qEP-+qO 

sup (q, uo). 
qEQ+ 

B*qEP-+qo 
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(b) The proof for part (b) is easy. 

( c) The condition 

(0,0) E lnt(A Dom f - Domg) = lnt (lmA - P x Q - (0, uo)) 

is equivalent to the statement that 

Uo E lnt(B(P) + Q) 

and the condition ° E lnt(A*Domg* + Domf*) may be written as 

-Po E lnt(B*Q- + P-). 

The first of the above statements implies the existence of a solution of the dual 
problem, whilst the second implies the existence of a solution of the primal 
problem. 

(d) This is a consequence of Theorem 5.1. 

16.25 Problem 25 - Solution. Lagrangian of a Convex 
Minimisation Problem 

(a) The equivalence of (5)(i) and (5)(ii) is simply Proposition 4.3. The equiv
alence of (5)(ii) and (5)(iii) follows from Problem 22. 

(b) Formula (2) implies that 

f(x,y) = sup«(q,y;- h(x,q)) 
qEY' 

(since f is lower semi-continuous), whence 

g(y) = inf sup «(q, y; - h(x, q)). 
xEX qEY' 

Moreover, 

g* (q) sup«(q,y;- inf f(x,y)) 
y xEX 

SUpSUp«(q,y;- f(x,y)) 
xEX yEY 

sup h(x, q). 
xEX 

We also know that this is equal to f*(0, q) (Proposition 3.2). 
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(c) As a consequence of the above, 

g**(q) sup((q,y) - g*(q)) 
qEY* 

sup inf((q,y) - h(x,q)). 
qEY* xEX 

Thus, the marginal function g is lower semi-continuous if and only if g = g**; 
in other words, if and only if the minimax equality (8) holds. 

(d) We know from (7) that q E og(y) if and only if 

(q, y) g*(q) + g(y) 
sup h(x, q). 
xEX 

This inequality may be rewritten in the form 

g(y) inf ((q, y) - h(x, q)) 
xEX 

inf Cy(X, q) 
xEX 

Thus, q E og(y) if and only if q is a Lagrange multiplier. 

16.26 Problem 26 - Solution. Variational Principles for 
Convex Lagrangians 

(a) We note firstly that 

A(x, q) = L(x, Ax) + L*( -A*q, q) 
2: (-A*q,x) + (q,Ax) = 0 

and that the condition A(x, q) = 0 implies that 

A(x, y) = min A(x, q). 
(x,q) 

The implications (i) =} (ii) =} (iii) =} (i) are self-evident. (6)(iii) is equivalent to 
(6)(iv) eliminating q and (6)(iii), which is equivalent to (x, Ax) E oL*( -A*q, q) 
is equivalent to (6)(v) eliminating x. 

(b) The equivalence of (6)(iii) and (7) follows from Problem 22. 

16.27 Problem 27 - Solution. Variational Principles for 
Convex Hamiltonians 

(a) We note that Fenchel's inequality implies that B(x, q) 2: 0 for all x, q. The 
statement that B (x, 15) = 0 is equivalent to (1) (iii). The equivalence of (1) (ii) 
and (l)(iii) follows from Problem 22. 
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(b) It is easy to check that if (x, g) is a solution of (2), then 

\;1(:]:, q) E X x Y*, (A*g, x) + (q, Ax) ~ DH(x, g)(x, q). 

This means that (A*q, At) belongs to 8H(x, q). 

(c) Suppose that (x, ij) is a solution of (4). It follows that 

\;I(x, q) E X x Y*, (A*ij, x) + (q, Ax) ~ DH*(A*ij, A*x)(A*q, Ax). 

Theorem 4.4 and assumption (3) then imply that 

(Ax, A*ij) E (A x A*)8H*(A*ij, Ax). 

Thus, there exists (x, y) E 8H*(A*ij, Ax) such that 

(Ax, A*ij) = (Ax, A*g). 

Consequently, (x, g) E 8H*(A*g, Ax), which is equivalent to (1)(iii). 

16.28 Problem 28 - Solution. Approximation to 
Fermat's Rule 

(a) By Ekeland's Theorem (Corollary 1.3), there exist E > 0, >. > 0 Xo E Domf 
and Xc such that 

f(xo) ~ inxf f(x) + d, f(x c ) ~ f(xo), Ilxo - xcii ~ >. xE 

and 

f(x£) ~ f(x) + Ellx - xcii 

Fermat's rule then implies that 

o E 8(1 + Ell· -x,ll)(xc). 

Since Domll . -xcii = X, Corollary 4.3 implies that 

o E 8f(xc ) + E8(11 . -xcll)(xc) = 8f(xE ) + EB. 

(b) By Theorem 3.1, there exists Po E Domf. We set 

g(:r) := f(x) + j*(po) - (Po,x) ~ O. 

Suppose that Xo E Domf = Domg. Since 9 is convex, lower semi-continuous 
and positive, we may apply the previous question to it with En = n(g(xo) -
infxEx g( x)). Taking ,\ = 1/ n, we find points Xn E Dom 9 = Domf such that 
g(xn) ~ g(xo), Ilxo - J;nll ~ ~ and points qn E 8g(xn ) with Ilqnjl ~ En. This 
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implies that f is subdifferentiable at xn, since 8 f(xn) = 8g(xn) + Po. Moreover, 
the inequality g(xn) :::; g(xo) may be written as 

f(xn) :::; f(xo) - (Po, Xo - xn) 'tin. 

Since Xn converges to xo, we obtain 

lim sup f(xn) :::; f(xo). 
n-+oo 

Since f is lower semi-continuous at xo, we have f(xo) :::; liminfn-+oo f(xn). Thus, 
Xo is the limit of a sequence of points Xn at which f is subdifferentiable. This 
restates the first part of Theorem 4.3, with a proof that is valid for Banach 
spaces. 

16.29 Problem 29 - Solution. Transposes of Convex 
Processes 

(a) We have p E F*(q) {:} (p, -q) E Graph(Ff, which is a convex closed cone. 
Since Graph(F) = Graph(Ff-, we have y E F(x) {:} (p,x) - (-q,y) :::; 0 for 
all (p, q) E Graph(Ff, in other words 

sup sup ((p,x)-(q,y)):::;O. 
qEY' pEF' (q) 

(b) This follows from formula (65) of Chapter 3. 

(c) It suffices to show that the assumption (4) implies that 

:3')' > 0 such that ')'(B x B) c Im(A x 1) + Graph(F) 

so that we may apply formula (70) of Chapter 3. Since Graph(F) is a cone, it 
suffices to show that Im(A x 1) + Graph(F) = X x Y. Then, x = Axo - xl, 
where Xo E U and Xl E DomF and we may write (x, y) = (Axo, Yo) - (Xl, YI) E 

Im(A x 1) - Graph(F) where YI E F(xd and Yo = Y + YI· 

(d) We may write 

F + GA = B(F x G)(A x A) 

where (1 x A)(x) = (x, Ax), (F x G)(x, y) = F(x) x G(y) and B(y, z) = y + z. 
Assumption (6) implies assumption (4) where A is replaced by (1 xA). If (u, v) E 

X x Y, there exist x E DomF and y E DomG such that Au - v = -Ax + y, 
so that we may write 

(u,v) = (z,Az) - (x,y) E Im(l x A) - Dom(F x G) 

taking z = u + x. Questions (b) and (c) imply that 

(F + GAr = (1 x Ar(F x Gr B* = F* + A*G*. 
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(e) We apply the previous question with X = Y, A = 1 and G(x) = 0 if x E K 
and G(x) = 0 if x tt K. 

(f) Now q E Im(Fr is equivalent to the statement that (0, q) E Graph(Fr 
or that (0, -q) E Graph(F*). Consequently, if Im(F) is dense, then Im(Fr = 

X- = {o}. Conversely, suppose that Im(Fr = {o} and that Im(F) is not 
dense. Then there would exist Yo tt Im( F) and the Separation Theorem would 
then imply the existence of q E Y* such that q E Im(Fr and (q, Yo) > O. But 
then, we would have q = 0, which is a contradiction. Consequently, Im(F) = Y 
if and only if Im( F) is dense and closed. 

(g) We apply question (f) to the set-valued map FIK' which has image F(K). 
Then 

F(Kr = Im(FIKr = -(FIKr-\O). 

But, from (e), -q E (FIKr-I(O) if and only if 0 E (FIK)*(q) = F*( -q) + K-; 
in other words, if and only if -q E F*-l(-K-). 

(h) The fact that F- I is one-to-one follows from the inequality (9), taking 
Y = YI = Y2 and Xl, X2 in F- I (y). This inequality also implies that 

cIIF-I(Yl) - F-I(Y2)11 2 ::; cllYI - Y21111F- I(YI) - F- I (Y2)11 

for all YI,Y2 E Irn(F). 
To show that Im(F) is closed, take a sequence of Yn E Irn(F) converging to y. 

Now, the inequality (9) implies that Xn := F-I(Yn) is a Cauchy sequence in X, 
which converges to an element x since X is complete. Since (xn' Yn) E Graph(F), 
which is closed, it follows that Y E F(x) c Im(F). 

To show that F is surjective, it is sufficient to show that if Xo E F*-I(O), 
then Xo = O. We take Yo E F(xo), Since (0, -xo) E Graph(Fr, it follows that 
(0, xo) - (.TO, Yo) ::; O. The inequality (9) then implies that 

cllxol1 2 = cll- Xo - 011 2 ::; (-xo - O,Yo - 0) = -(xo, Yo) ::; O. 

16.30 Problem 30 - Solution. Cones with a Compact 
Base 

(a) Suppose that Po E IntP+ is fixed. There exists E > 0 such that Po + EB c::: 
P+, whence 

\/x E P, x i- 0, (Po, x) > O. 

If not, there would be an Xo E P, Xo i- 0, such that (Po, xo) = 0, whence 
\/p E X*, (Po + II;IIP, Xo) = 11;11 (p, xo) ~ 0 and we would then have Xo = O. The 
set S generates P, since if x E P and x i- 0, then (Po, x) > 0 and x = (Po, x)y 
where Y := Pol (Po, x) E S. 
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(b) Since Po + EB c P+, then for all xES 

1 - Ellxll = (Po, x) + E inf (p, x) 2: inf (p, x) 2: 0 
pEB pEP+ 

whence Ilxll ::::; ~. Thus, S c ~B is a closed bounded set. 

(c) Since 0 ~ K, the Separation Theorem implies that there exists Po such that 

o ::::; inf (Po, x) - 7]. 
xEK 

Suppose that IIKII := SUPzEK Ilzll and set "f = 7]/IIKII· Then, for all p E "fB, we 
have 

(Po + p, x) 2: 7] - Ilpllllxll 2: 7] - "fIIKII = 0 

which implies that Po + p E P+ for all p E "f B. Thus, Po is in the interior of P+. 

(d) We consider the convex compact set S which may be written as 5 = 

pnpol{l} where Po E L(X, 1R). Since Po(P) - {I} = 1R+ - {I} has a non-empty 
interior, formula (49) of Chapter 4 implies that 

Ts(x) = Tp(x) npolT{l}({l}) = Tp(x) nKerpo. 

Moreover, if P is a convex closed cone, then p E Np(x) if and only if (p, x) = 
ap(p), in other words, if p E P- and (p, x) = O. The formulae of (6) now follow. 
Consequently 

Tp(x) = Np(xf = (P- n {x} r = closure(P + xIR). 

16.31 Problem 31 - Solution. Regularity of Tangent 
Cones 

indextangent cone--( 

(a) We write x + tv = (1- i)x + t(x + hv) where h is such that x + hv E K 
and use the convexity of K. 

(b) It is clear that for an arbitrary Xo E K, 

CK(xo) C TK(XO)' 

Suppose that Uo E closure(Uk(K - xo)) and E > 0 are fixed. There exist y E K 
and 0: > 0 such that Uo - ~(y - xo) E ~B. Take (3 = m/2, x E BK(xo, (3) and 
h E]O, 0:] and set u := 7' Then x + hu = (1 - ~)x + ~y belongs to the set K, 
since x and y = x + (3u belong to K and ~ ::::; 1. Consequently, 

Ilu - uoll ::::; Ilx ~ xoll + Iluo - y ~ Xo II ::::; (3/0: + E/2 = E. 

Thus, uo belongs to CK(xo). 
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(c) We have 

yEJri/(x) q (y-x,z--x):S;O VzEK 

q (y - x,v):s; 0 'Iv E SK(X) 

q (y - X,V) :s; 0 'Iv E TK(X) 

q Y - x E NK(x). 

(d) Suppose that (xn,Pn) E GraphNK(·) is a sequence converging to (x,p). 
Then, for all y E K, we have (Pn, y) :s; (Pn, xn) and, passing to the limit, 
(p,y):S; (p,:x:). Thus, P E Nrdx). 

(e) It is clear that Uh>ok(lntK - x) C IntTK(x), Since SK(X) is convex, then 
lnt TK(X) = IntSK(x), whence v E IntSK(:r) and there exists h > 0 such that 
v E k(lntK - x). Suppose that T/ > 0 is such that v + T/E C SK(X), If x + v E 

Int(K), the question is proved. Otherwise, take Xo E Int(K) and va := Xo - x. 
Then v - ~vo belongs to SK(X), whence, there exists T/l > 0 such that x + 

h(v - ~vo) belongs to K. Take a := h1)1;11,,01l and note that 

x + (1- a)hu = axo + (1- a) (x + h (v - 11:~llvo)), 
Since Xo E IntK and x-+-h(v-~vo) E K, it follows that x+(l-a)hv E Int(K) 

and that v E Uk>oi(lnt(K) - x). 

(f) Suppose that va E lnt TK(XO)' Then there exists ho > 0 such that Vo E 
ta(lnt(K - :r:o)) , whence, there exists E > 0 such that 

Thus, 

E 
Xo -+- hovo -+- EE = Xo -+- ho(vo -+- -E) c Int(K). 

ho 

E 
(xo -+- E/2E) x (vo -+- -h E) c Graph(lntTK('))' 

2 0 

16.32 Problem 32 - Solution. Tangent Cones to an 
Intersection 

(a) 

Tf(1 (0,0) 

Kl nK2 

TK1 (0,0) n TK2 (0, 0) 

{XIXI :s; O}, TK2 (0,0) = lR! 
{O,O}, TK1nK2(0,0) = {O, O} 
{XIXl =, 0,X2 = O} 1= TK1nK2(0,0). 
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Fig. 16.1. 

(b) 

K1 n K2 = {o} X [-1, +1] and K1 - K2 = [-2,0] x [-2, +2]. 

Thus, 

(0,0) 

TK,nK2(0,0) 

TK2 (0,0) 

E K1 - K2, (0, 0) ~ Int(K1 - K2) 

{O} x IR, TKI (0,0) = ] - 00,0] x IR 

[O,oo[xIR and TK,nK2(0,0) = TK,(O, 0) x TK2 (0,0). 

Kl KJ 

I 
, 

Kl l-K2 

~-- -

Fig. 16.2. 

(c) The statement that x E K means that Ax E n~=1 JKi . Assumption (50) of 
Chapter 4 implies that in X n , 

n ° E Int(ImA - II Ki). 
i=1 

Thus, formula (50) of Chapter 4 implies that 

TK(X) = A-1(Tn~, Ki (X1, ... , xn)) 
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and formula (46) of Chapter 4 implies that 

n 

TK(X) = A-l(II TKi(Xi))' 
i=l 

indextangent cone-) 

16.33 Problem 33 - Solution. Derivatives of Set-valued 
Maps with Convex Graphs 

(a) The proof for part (a) is self-evident. 

(b) The equivalence of (i) and (ii) follows from the definition of the normal 
cone and that of (i) and (iii) from the fact that the normal cone is the polar 
cone of the tangent cone. 

( c) From the characterisation (ii), we have 

(qlJ Yl - Y2) :::; (PI, Xl - X2) 

(q2, Y2 - Yl) :::; (P2, X2 - Xl) 

and we add these inequalities. 

( d) It is sufficient to observe that Graph ((PK) = K x {O} and that T Graph¢ K = 
TK X {O} = Graph¢TK . 

(e) Suppose that hI :::; h2. The convexity of the graph of F implies that if 
y E F(x), then 

hI (hI) (hI (hI) ) h2 F(x + h2U) + 1 - h2 Y C F h2 (x + h2U) + 1 - h2 X 

F(x + hu). 

Thus, 

F(x+h2U)-Y F(x+hlU)-Y 
----'----=---'----...:::. c ----'----=---'----...:::. 

h2 hI 

whence 

d (v, F(x + hlu) - Y) :::; d (v, F(x + h2U) - Y) . 
hI ~ 

Thus, 

r d ( F(:r + hu) - Y) . f d ( F(x + hu) - Y) 
h!t6~ v, h = h~o v, h 



384 16. Solutions to Problems 

exists in JR. 
The definition of the tangent cone to the graph of Fat (xo, Yo) E Graph(F) 

implies that Vo E DF(xo,yo)(uo) if and only if for all (Sl,S2) > 0 we have 

inf inf d (v F(xo + hu) - yo) 
Ilu-uoll:O;Cl h>O 0, h ::; S2 

which is the desired formula. 

(f) Take y E F(x). The convexity of the graph of F implies that 

(1 - h)yo + hy c F(xo + h(x - xo)) 

whence that 

F(xo + h(x - xo)) - Yo 
Y - Yo E h . 

It suffices to let h tend to 0+. 

(g) We show that (ii) =} (i). From the previous question, we have F(x) - Yo c 
DF(xo, yo)(x - xo) C P for all x E Dom(F). We now show that (i) =} (iii). 
From (b) we have, for all q E P+, \Ix E X and \ly E F(x), y E Yo + P, whence 
(q, Yo - y) ::; 0 = (0, Xo - x), in other words, 0 E DF(xo, yo)*(q). Finally, we 
show that ifvo E DF(xo,Yo)(uo), then Vo E P = P++, since, by virtue of (iii), 
because (0, -q) E NGraph(F) (xo, Yo) = TGraph(F) (xo, Yof, we have 

(O,-q),(uo,Vo)) = -(q,vo)::; 0 \lq E p+ 

in other words, Vo E P. 

(h) Take v E DF(x,y)(u). There exist sequences Un --+ U, Vn --+ v and hn > 0 
such that y + hnvn E F(x + hnun) for all n. This implies that x + hnun E L 
for all n (and thus that u E TL(X» and that Ax - y + hn(Aun - vn) E M for 
all n (and thus that Au - v E TM(Ax - y». Conversely, take u E TL(X) and 
v E Au - TM(Ax - y). There exist sequences Un --+ U, Wn --+ Au - v, h; > 0, 
h;, > 0 such that x + h;un ELand Ax - y + h;,wn E M for all n. We set 
hn := min(h;, h;,) and Vn := AUn - Wn, which converges to v. We then observe 
that y + hnvn E F(x + hnun). The last formula is then clear. 

16.34 Problem 34 - Solution. Epiderivatives of Convex 
Functions 

(a) The proof for part (a) is self-evident. 
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(b) We note that Va E DF+(x, f(x))(ua) if and only if for all CI, C2 > 0, there 
exist u E Ua + cIB, V E Va + c2B and h > 0 such that f(x) + hv ;::: f(x + hu), 
in other words, that v ;::: infu(uo+E"lB DF(x)(u), or again that 

1'0;::: sup inf DF(:r;)(u). 
'I >0 UEUO+E1B 

Moreover, DF+(x, f(x))* is a positively homogeneous set-valued map from lR. 
to X*. It is sufficient to identify DF+(x, f(x))*( -1) and DF+(x, f(x))*(l). But, 
p E DF+(x, f(x))*( -1) if and only if 

(p, 1) E NEp(f) (x, f(x)) 

which is impossible. However, p E DF+(x, f(x))*(l) if and only if (p, -1) E 

NEp(f) (x, f(1:)): 

Vy E X, (p,y) - f(y)::; (p,x) - f(x) 

in other words. if and only if pEa f (x). 

Graph «(e,') + f*(p)) 

-f*(p Graph «(2,') - f*(p)) 

7k I '>.. '>.. x ......... ......... X 

(E,-l)(p,-I) -1 (p, -1) 

a f( x) 

p E af(x) {::} (p, -1) E NEp(f)(x,f(x)) 

Fig. 16.3. 

{' Graph «p,) - 0) 
where a '2: *(p) 

16.35 Problem 35 - Solution. Subdifferentials of 
Marginal Functions 

(a) We identify f with the function j defined on X x Y by j(x, y) := f(x). 
Thus, 
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h(y) := inf(j(x, y) + 7PCraph(F) (x, y)) = f(x) 

where x E F-I(y). 
We know from Proposition 4.3 that 

q E ah(y) {:} (0, q) E a(j + 7PCraph(F)) (x, y). 

Assumption (2) implies that 

(0,0) E Int(Domj - Dom7Pcraph(F)) 

Int(Domf x Y - Graph(F)). 

In fact, by virtue of (2), there exists '"'( > 0 such that any U E '"'(Bx may be 
written as U = Xl - X2 where Xl E Domf and X2 E DomP. We take v E ,",(By 
and Y2 E F(X2) and set YI = V + Y2· Thus, (u,v) = (Xl - X2,YI - Y2) E 
Domj - Dom7Pcraph(F). Following Corollary 4.3, we obtain 

q E ah(y) {:} (0, q) E a f(x) x {O} + NCraph(F) (x, y). 

Thus, there exists pEa f (x) such that 

(-p,q) E NCraph(F)(X,y). 

(b) From the definition of DF(x,y)" (3) may be written as 

-p E DF(x, y)*( -q) 

and formula (4) now follows. 

16.36 Problem 36 - Solution. Values of a Game 
Associated with a Covering 

The proofs for parts (a) and (b) are easy. 

(c) From the definition of vQ(A), the inequality 

inf sup f(x, y) ::::; vQ(A) 
xEEyEK 

holds for all K E A. Thus, given any integer n, there exists an element XK,n E E 
such that 

1 
sup f(XK,n, y) :::; vQ(A) + -
yEK n 

(definition of the infimum). Taking (L,m) 2': (K,n), we obtain: 

1 1 
sup f(XL,m, y) :::; sup f(XL,m, y) :::; vQ(A) + - ::::; vQ(A) + -. 
yEK yEL m n 
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Thus, if we fix Ko E A and K :=> Ko, it follows that 

sup. (sup f(XL,m,Y)) :::; vq(A) + ~ 
(L,m)2:(K.n) yEKo n 

whence, 

limsup (sup f(XK,m,Y)) .-
(K,n)2:(Ko,l) yEKo 

inf sup (sup f(XK,m,Y)) 
(K,n)2:(Ko,l) (L,m)2:(K,n) yEKo 

< vq(A). 

(d) if A is countable, the same is true of Ax IN and the sequence (K, n) ---+ X K,n 
is a standard sequence. 

(e) From (7)(ii), 3Ko E A such that the (generalised) sequence of the XK,n lies 
in a compact set. Thus, a generalised subsequence converges to an element x. 
and since x ---+ f (x, y) is lower semi-continuous, it follows that 

"Iy E K, f(x., y) :::; vO(A). 

16.37 Problem 37 - Solution. Minimax Theorems with 
Weak Compactness Assumptions 

(a) Since Y ---+ infxEE f(x, y) is concave and upper semi-continuous, the sets 
Kn are convex, closed and bounded (whence compact). Applying the minimax 
theorem (Theorem 8.1) to - f, we obtain, for all n 

inf sup f(x, y) = sup inf f(x, y) 
xEE yEK" yEK" xEE 

so that, since F = UnKn, we have 

vq(A) sup sup inf f(x,y) 
n yEKn xEE 

sup inf f(x, y). 
yEF xEE 

(b) Assumption (8) implies that there exists I > 0 such that 

IE C UYEFDomf;· 

Thus, for all pEl E, there exists YP E F such that f;p (p) < +00. From question 
(d) of Problem 36 with Ko = Knp ' there exists Np such that 

"In'.;:> Np, (p,xn ) :::; f(xn,yp) + f;p(p) 

< vq(A)+l+f;p(p) 
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(Fenchel's inequality). Since the sequence Xn is countable, it follows that 

sup(p, xn) < +00 
n2:0 

which implies that the sequence of the Xn is bounded. Thus, there exists a 
subsequence Xn which converges to x and, since x -t f(x, y) is lower semi
continuous, it follows that 

f(x,y):S:; limillfJ(Xn,y):S:; v~(A). 
Xn-----7X 

Since v~(A) = vb (from the previous question), we have proved the minimax 
equality. 

16.38 Problem 38 - Solution. Minimax Theorems for 
Finite Topologies 

(a) We take f = I, the identity mapping from F to Y. For all K E S the 
mapping I(JK = (JK : Mn -t Y is continuous for all vector-space topologies on 
Y (under which addition and scalar multiplication are continuous). Thus, I is 
continuous from F (with the finite topology) to Y. 

(b) Suppose that A is an affine mapping from F to Z. We have to show that 
for all K E S, A(JK is continuous from F to Z. But, A(JK = (JA(K) is associated 
with the finite subset A(K) of Z and is thus continuous when Z has the finite 
topology. 

Remark . . The weak topology on a Hilbert space Y is the initial topology, the 
weakest topology under which linear forms f E y* or linear operators from Y 
to finite-dimensional spaces are continuous (for the Hilbert space topology). 

(c) In the proof of Theorem 8.4, the mapping D from E to F defined by 
D(x) = 2:~=1 9i(X)D£(Xi) is continuous when F has the weak topology, since D 
may be written in the form (JK9 where K = {D£(Xl)," . ,D£(xn )} and where 
g : x -t g( x) = (91 (x), ... , gn (x» is continuous. Thus, if Fo denotes F with 
the finite topology and Fl denotes the set F with a vector-space topology, then 
C(E, Fo) C C(E, Fl ), whence 

sup inf f(x, D(x»:S:; sup inf f(x, D(x» :s:; vU. 
DEC(E,Fo) xEE DEC(E,F,) xEE 

Thus, equation (48) of Chapter 8 is stronger with Fo than with Fl. 
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(d) In the proof of Theorem 8.5, we may write ip(u, A) = 2:7=~ /\;f(C(3K(JL) , Yi) 
in formula (55) of Chapter 8. The continuity of C from F to E when F has 
the finite topology implies the continuity of JL --t C (3 K (JL) and the lower semi
continuity of the functions JL --t ip(JL, A). Thus, in Theorem 8.5, we may replace 
the space FI (F with a vector-space topology) by the space Fa (F with the 
finite topology). Since C(F],E) c C(Fa, E), we obtain 

inf supf(C(y),y) <::: inf supf(C(y),y) <::: v~. 
CEC(f(),E) yEP CEC(F1 ,E) yEF 

Thus, equation (51) of Chapter 8 is stronger with Fa than with Fl' 

16.39 Problem 39 - Solution. Ky Fan's Inequality 

(a) The negation of (3) may be written as 

v.r, 3y such that ip(x, y) > 0 

or as 

K C UyEKT(y). 

Since K is compact, and since the sets T(y) are open, (4) now follows using (2). 

(b) We consider a continuous partition of unity {ai (.)} which is subordinate to 
the covering of K by the open sets T(Yi). We set 

n 

f(x) := Lai(X)Yi' 
i=l 

Thus, f is a continuous set-valued map with values in K, since K is convex 
and the Yi are in K. Brouwer's Fixed-point Theorem (Theorem 7.1) implies the 
existence of a fixed point i = f(x) = 2:7=1 ai(x)Yi. Thus, 

n 

ip( X, x) ip( x, L ai (X)Yi) 
i=l 

" > L ai(x)ip(X, Yi) (from (5)) 
i=1 

L ai(x)ip(X, Yi) 
iET(.i') 

where 

l(x) := {i = 1, ... ,nla;(:r) > o} -10. 

But, wheni E l(x), a,(x) -I 0 and x belongs to the support of ai, which is 
contained in T(Yi). Thus i E l(x) implies that ai(x) > 0 and ip(x, Yi) > O. Thus 
(6) is satisfied. 
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(c) Thus, Brouwer's Theorem shows that the negations of (3), (2) and (5) imply 
the negation of (7) and that (2), (5) and (7) imply (3). 

(d) We use Proposition 8.2 to extend Ky Fan's Inequality to the case in which 
K is a convex compact subset of a Hilbert space (or a general topological vector 
space). There exists x E K such that 

suprp(x,y) ~ v~:= sup inf max rp(x,yJ 
yEK {Yl , ... ,Yn} xEK '=l, ... ,n 

But, for any fixed x E K, 
n 

max rp(x, Yi) sup L Airp(X, Yi) 
t=1, ... ,n )..EMn i=l 

n 

< sup rp(x, L AiYi) 
AEMn i=l 

sup rp(x, y). 
yECO(Yl, .. ·,Yn) 

Since K is convex, 

CO(Y1,'" ,Yn) C K 

and (c) implies that 

inf sup rp(x,y) ~ O. 
XECO(Yl,· .. ,Yn) yECO(Yl, ... ,Yn) 

Thus, 

inf max rp(x, Yi) < inf max rp(x, Yi) 
xEK z=l, ... ,n XECO(Yl,,,.,Yn) z=l, ... ,n 

< inf sup rp(x, y) ~ 0 
XECO(Yl, .. ·,Yn) yECO(Yl, ... ,Yn) 

whence vQ ~ O. 

(e) See the remarks following the proof of Theorem 8.6. 

16.40 Problem 40 - Solution. Ky Fan's Inequality for 
Monotone Functions 

(a) We may write 

vQ ~ sup inf sup rp(x, y) 
KES XEco(K) yEco(K) 

since co(K) c E and K C co(K). Applying Ky Fan's Theorem (Theorem 8.6) 
in finite-dimensional spaces (since K = {Y1, ... ,Yn} is finite, co(K) is in a finite
dimensional space) we know from (2)(iii) that there exists x E co(K) such that 
SUPYEco(K) rp(x, y) ~ SUPYEco(K) rp(y, y) ~ O. Thus, vQ ~ O. 
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(b) Thus, there exists fj E K such that 

0< 'P(x,fj) (*) 

and since, from assumption (2)(i), the function t ---+ 'P(x + t(fl - x), fj) is lower 
semi-continuous, there exists [ E ]0, 1 [ satisfying the desired inequality. 

(c) We set Y : = x + [(fj - x). The fact that 'P is monotone implies that 

0 < limsup('P(xJt , Y) + 'P(Y, xJt)) 
Jt';>Y(y) 

< lim sup 'P(xJt , y) + lim sup 'P(Y, xJt) 
Jt?Jt(y) Jt 

< 'P(Y, x) 

because lim SUP,t?'Jt(y) 'P(xJt , y) ::; vQ ::; 0 from Problem 36 and 

lim sup 'P(Y, xJt) ::; 'P(Y, x) 
Jt?I'(Y) 

(** ) 

since z ---+ 'P(Y, z) is upper semi-continuous. Since this function is also concave, 
the inequalities (6) and (**) imply that 

o < ['P(x + f(fl - x), fj) + (1 - t)'P(Y, x) 
::; 'P(x + [(fl, x), (1 -- t)x + [fj). (*** ) 

The inequality (***) contradicts the assumption of monotonicity (3). It follows 
that assumption (5) is false, whence (9) is true. 

Remark. In other words, the assumption of monotonicity (3) allowed us to 
replace the assumption of lower semi-continuity of x ---+ 'P( x, y) for the initial 
topology with that of lower semi-continuity for the finite topology, which is 
stronger. This is very useful since, despite appearances, there are many inter
esting examples in which it is not possible to assume that x ---+ 'P( x, y) is lower 
semi-continuous for the topology of an infinite-dimensional space. 

16.41 Problem 41 - Solution. Generalisations of the 
Gale-Nikaldo-Debreu Theorem 

(a) We introduce the function 'P, defined on K x P- by 

'P(X, y) := -a(F(x), y) 

which satisfies the assumptions of Theorem 8.5. Thus, there exists x E K such 
that 

sup 'P(x,y) ::; sup 'P(C(y),y) 
yEP- yEP-
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where, from (3), the second term is negative or zero. Thus, 

'rIy E P-, 0 :S a(F(x), y) = a(F(x), y) + a(P, y), 

whence 

'rIy E Y, O:S a(F(x) + P, y). 

Since F(x) + P is closed, it follows that 0 E F(x) + P. 

(b) The proof for part (b) is self-evident. 

(c) We take C = IrK and P = {O} (whence P- = Y). 

(d) We take P = {O}, K = B (which is compact, since Y is finite dimensional) 
and C to be the function defined by C(y) = y if Y E B, C(y) = trr if Y ~ B. 
Then a(F(C(y), y» = Ilylla(F(C(y), y» ;::: 0 if y ~ Band a(F(C(y), y» = 

a(F(y), y) ;::: 0 if y E B. 

16.42 Problem 42 - Solution. Equilibrium of Coercive 
Set-valued Maps 

(a) Condition (3) implies that 'ric> 0, 3a > 0 such that 

sup a(F(x), x) :S -10 < O. 
Ilxll:;'a,xEK 

This implies that F(x) C TaB(X) , where aB denotes the ball of radius a. Taking 
a sufficiently large that aB n K -I- 0, and since 

TKnaB(X) = TK(x) n TaB(x) 

we see that F satisfies the tangential condition on the convex compact subset 
K naB. Theorem 9.4 then implies that F has a zero x E K naB. 

(b) We replace the set-valued map F by the set-valued map G defined by 

G(x) := F(x) + y - x 

and note that 

a(G(x), x) a(F(x), x) -llxl1 2 + (y, x) 

:S a(F(x),x) + Ilyllllxll· 

Condition (4) implies that for all A> 0 there exists a such that for allllxli ;::: a, 
a(F(x), x) ::; -Allxll. Taking A > Ilyll, it follows that 

a(G(x),x):S -(A -llyll)a < 0 

whenever Ilxll ;::: a. Thus G satisfies condition (3) and we may apply the previous 
question. 
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16.43 Problem 43 - Solution. Eigenvectors of 
Set-valued Maps 

(a) From Problem 30 we have 

Ts(:r) = {v E Tp(x)l(Po, x) = a}. (*) 

We see that each element U E G(x) satisfies (Po, u) = O. Let v be an element 
of F(x) n Tp(x). Thenu := v - (Po, v)x belongs to G(x). Since v E Tp(x) = 

closure(P + IRx), the same is true of v - (Po, v)x. Thus, 11 E Tp(x) n G(x). 

(b) G is clearly upper hemi-continuous, since because F is upper semi-continuous 
with compact values, for :r in a neighbourhood of Xo we have: 

CJ(G(x),p) CJ(F(x),p - (p, x)Po) 

:::; CJ(F(xo),p - (p, x)Po) + E(llpll + I(p, x)IIIPoll) 
< CJ(F(xo),p - (p, xo)Po) + IIF(xo)lll(p, Xo - x)1 

+ dllpll + (p,x)IIPoll)· 
The images G (x) are clearly convex and compact since they are images of the 
convex compact set F(.r) under v --7 v - (Po, v)x. Thus, we may apply Theo
rem 9.4; there exists xES such that 0 E G(x). Thus, there exists v E F(x) 
such that 

0= v - (Po, v)x. 

16.44 Problem 44 - Solution. Positive Eigenvectors of 
Positive Set-valued Maps 

(a) The graph of the set-valued map x --7 G(x) - 15F(x) - IR~ is clearly convex; 
whence, the set (G - 8 F) (M") - IR';' is convex. To show that it is closed, we take 
a sequence of elements Zk E G(Xk) - 15F(xk) .- IR';' converging to z. Then, for all 
p E IR';', we have (p, Zk) :::; CJ(G(Xk),p) - 15(p, F(Xk)) and, since M" is compact, 
a subsequence Xk' converges to :r EM". Since x --7 CJ(G(x),p) - 15(p, F(x)) is 
upper semi-continuous, it follows that 

(P. z) :::; CJ(G(J'),p) - 15(p, F(x)). 

Since this inequality holds for allp E IR';', it follows that Z E G(x)-15F(x)-IR';'. 
The proofs for the remaining parts are similar to those of Theorem 11.2. 

16.45 Problem 45 - Solution. Some Variational 
Principles 

(a) This follows trivially from Fenchel's inequality. 
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(b) 

(i) If 0 E Ax + 8f(x), then p = -Ax belongs to 8f(x) or again x E 8j*(p). 
Thus, 

0= p - pEp - A8j*(p). 

Conversely, if P E A8 j* (p), there exists x E 8 j* (p) such that p = Ax and 
so 0 E Ax + OJ(x). 

(ii) -Ax E 8f(x) if and only if, following Proposition 4.2, we have 

f(x) - f(y) ::; (-Ax, x - y) 'v'yEX 

or again if 

f(x) + j*( -Ax) + (Ax, x) = ¢(x) = o. 

(c) If f(x) = 'l/JK(X), any solution x of (2)(iii) is a solution of 

x E K and 'v'y E K, (A(x),x - y)::; 0 

in other words a solution of a variational inequality. 

(d) We consider the case in which A is a set-valued map with convex compact 
values. Question (b)(i) is the same. Suppose that x is a solution of 0 E A(x) + 
8f(x). Then, there exists U E A(x) such that -u E 8f(x), whence, such that 
'v'y E Domf, 

f(x) - f(y) ::; (-u, x - y) ::; a(A(x), y - x). 

Conversely, the inequality (4) may be written in the form 

sup inf (f(x)-f(y)+(u,x-y))::;O. 
YEDomf UEA(x) 

Since Domf is convex, A(x) is convex and compact and (u, y) -+ f(x) - f(y) + 
(u, X - y) is lower semi-continuous and convex in u and concave in y. The 
minimax theorem (Theorem 8.1) then implies that there exists U E A(x) such 
that 

'v'y E Domf, f(x) - f(y) + (u, x - y) ::; 0 

in other words u such that -u E 8f(x). Thus, 0 = u - u E A(x) + OJ(x). 
Finally, if u E A(x) is such that -u E 8f(x), in other words, such that 

f(x) + j*( -u) + (u, x) = 0, then ¢(x) = O. Conversely, if ¢(x) = 0, there exists 
an element u E A(x) such that 

0= ¢(x) = f(x) + j*( -u) + (u, x) 

since A(x) is compact and u -+ j*( -u) + (u, x) is lower semi-continuous. Thus, 
-u E 8f(x) and u E A(x). 
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(e) From (2)(iii), there exists P E Domf* such that 

o E p + A8f(p) c Domj* + Ax c Domj* + ADomf 

since x E 8j*(p) c Domf. 

16.46 Problem 46 - Solution. Generalised Variational 
Inequalities 

(a) Since (3(z) 2: 0, (3*(0) = suPz((O, z) - (3(z)) = - infz (3(z) is finite. Thus 
o E Dom (3*. We recall that 

(30 1/i{O} , Dom(3o {O} 

(3; 1/il.B , Dom(3; ~B* 
c • c 

1 2 
(3; 2c II . 11*, Dom(3; X*. 

Consequently 

Int(Domj* + ADomf + Dom(3~) Int(Dom j* + ADorn f) 
Int(Domj* + ADomf + Dom(3~) :) Domj* + ADomf 

Int(Dom j* + ADorn f + Dom (3;) = X*. 

If f = 1/iK, then Domf = K, Domf* = b(K) and 

{ 
Int(b(K) + A(K)) if i = 0 

Int(b(K) + A(K) + Dom(3;,):) b(K) + A(K) if i = 1 
X* if i = 2 

(b) The subset Kn ;= {x E Domflf(x) ~ nand Ilxll ~ n} is clearly compact. 
The function 'P defined by 

'P(x,y) = -cr(A(x),y - x) + f(x) - f(y) 

is concave in y and satisfies 'P(Y, y) = O. The first part of the proof of Theo
rem 9.9 shows that x -+ cr(A(x),y - x) is upper semi-continuous. Thus, 'P is 
lower semi-continuous in x and Ky Fan's Inequality (Theorem 8.6) implies that 
there exists a solution Xn E Kn such that 

\/y E K n , 'P(xn , y) ~ O. 

( c) Following (8), there exists rl > 0 such that 

'r)B C Domj* + ADomf + Dom(3*. 

Thus, for all p E X*, there exist q E Dom f*, y E Dom f, U E A(y) and 
r E Dom (3* such that 
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TJP 
TIPIT = r + q + u. 

We choose n(p) such that y E Kn. Thus, 

TJ TIPIT (p, xn) (r, Xn - y) + (q, xn) + (u, Xn - y) + (r + u, y) 

< (3*(r) + (3(xn - y) + j*(q) + f(xn) + (u, Xn - y) + (r + u, y). 

Since A is (3-monotone, it follows that for all v E A(xn), 

(3(Xn - y) :s; (xn - y, V - u) 

whence that 

(T(A(xn), y - xn):= sup (v, y - xn) :s; -(u, Xn - y) - (3(xn' y). 
vEA(xnl 

Adding these inequalities, we obtain: 

TJ TIPIT(p, xn) :s; -(T(A(xn), y - xn) + f(xn) - f(y) 

+((3*(r) + j*(q) + f(y) + (r + u, y)) 

and following (7) 

(p, xn) :s; M((3*(r) + j*(q) + f(y) + (r + u, y)) < +00. 
TJ 

It follows that the sequence Xn is bounded. 

(d) Since X is finite dimensional, there exists a subsequence (still denoted by) 
Xn which converges to x. We fix y E Dom f and choose n large enough so that 
y belongs to Kn- Then since A is upper semi-continuous with convex compact 
values, the first part of the proof of Theorem 9.9 shows that x ---+ O"(A(x) , y - x) 
is upper semi-continuous. Thus, 

-(T(A(x), y - x) + f(x) - f(y) :s; limiIlf( -(T(A(xn), y - xn) + f(xn) - f(y)) 
Xn-+X 

:s; O. 

This implies that x E Domf and that x is a solution of (2)(iii) and thus also 
of (2)(i). 

Taking f = 1/JK, the problem (2) is equivalent to the variational inequality 
(9). In this case, assumption (8) may be written as 

o E Int(b(K) + A(K) + Dom(3*). (*) 

If K is bounded (b(K) = X*), if A is surjective (A(K) = X*) or if A is 
(32-monotone (Dom(32 = X*), then there always exists a solution x of the vari
ational inequality (9). If A is (3rmonotone, it is sufficient to assume that 

o E b(K) + A(K), 

while if A is only monotone, it is sufficient to assume that 

o E Int(b(K) + A(K)). 



16.47 Problem 47 - Solution 397 

16.4 7 Problem 47 - Solution. Monotone Set-valued 
Maps 

(a) We have 

(x - p - (y - q), x - y) Ilx - YI12 - (p - q, x - y) 

< Ilx - YI12 - lip - qlllix - YII :::: o. 

(b) We note that 

2 2 2 2 Ilx - Y + ),(p - q)11 = Ilx - YII +), lip - qll + 2)'(p - q, x - V)· 

Thus, if A is monotone we obtain the inequality (4). Conversely, the inequality 
(4) together with the above equation imply that 

2 2 ), lip - qll + 2)'(p - q, x - y) :::: O. 

We obtain the monotonicity by dividing by ), > 0 and letting), tend to O. 

(c) Suppose that pEa f (x) and q E a f (y) are given. The inequalities 

f(x)-f(y) ::; (p,x-y) 

f(y) - f(:r) ::; (q, y - x) 

imply that a f is monotone. 

(d) Suppose that Xi E J),(Yi) , i = 1,2. Then there exist Vi E A(Yi) such that 
Yi = Xi + ),v; E Xi + )'A(.I;;). It follows that 

IIY1 - Y211 2 IIXI - X2 + ),(VI - V2)11 2 

It follows that 

(i) 

(ii) 

222 Ilxl - X211 +), Ilvl - v211 + 2),(vI - V2, Xl - X2) 

> IIXI - x2112 + ),211vl - v2f 

IlxI - :c211::; IIYI - Y211 
1 

11'111 - v211::; -:\IIYI - Y211· 

If YI = Y2, then Xl = X2, which shows that J), is one-to-one. Then Xi = h(Yi) 
and Vi = ±(1 - J),)(y;). The previous inequalities imply that J), and A), are 
Lipschitz with constants 1 and 1/ A, respectively. 
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(e) We take Yl and Y2· 

(A.x(Yl) - A.x(Y2), Yl - Y2) 
= (A.x(Yl) - A.x(Y2), J.x(Yl) - J.x(Y2) + '\(A.x(Yl) - A.x(Y2))) 
= (A.x(Yl) - A.x(Y2), J.x(Yl) - J.x(Y2)) + .\IIA.x(Yl) - A.x(Y2)112. 

The first term is positive since A is monotone and (J.x(Yi), A.x(Yi)) belongs to 
the graph of A for i = 1,2. Thus, 

(A.x(Yl) - A.x(Y2), Yl - Y2) 2: O. 

(f) We suppose that the pair (x, u) satisfies 

V(y, v) E Graph(A), (u - v, x - y) 2: O. 

For y, we take the solution Yo of the inclusion u + x E Yo + A(yo) (this choice is 
possible by virtue of (8)). Let Vo E A(yo) be such that u + x = Yo + Vo. Then 

(u - Vo, x - Yo) = -llx - Yol12 2: 0 

since A is monotone. Then x = Yo and u = Uo E A(yo) = A(x). 

(g) If A satisfies (9), then A(x) is the intersection of the closed half spaces 
{u E XI (u - v, x - y) 2: O} for (y, v) in the graph of A. Thus, it is a convex 
closed set. 

We consider a sequence Xn converging to x and a sequence Un E A(xn) 
converging (weakly) to u. We take (y, v) in Graph(A). The inequalities 

(un - v, Xn - y) 2: 0 

imply, after passing to the limit, that 

(u - v, x - y) 2: O. 

It follows from (9) that u E A(x). 

(h) We calculate 

IIA.x(x) - m(A(x))112 = IIA.x(x)112 + Ilm(A(x))112 - 2(A.x(x), m(A(x))). 

In addition, since A is monotone and since (x, m( A( x))) and (J.x (x), A.x (x)) 
belong to the graph of A, we obtain the inequality 

(m(A(x)) - A.x(x),x - J.x(x)) = .\(m(A(x)) - A.x(x),A.x(x)) 2: O. 

These two inequalities imply that 

IIA.x(x) - m(A(x))112 :::; Ilm(A(x))112 -IIA.x(x)11 

whence that 

Ilx - J.x(x)11 :::; .\llm(A(x))II· 
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(i) Let y = AI'+'\ (x) be a solution of the inclusion y E A( x - AY - I1Y), which 
shows that Y is a solution of the equation y = AI'(x - AY) and is thus equal 
to (AILUx). Since AI' is monotone and rn(AIL(x)) = AI'(x), the inequality (12) 
implies that 

IIAI'+'\(x) - AI'(x)11 ::; IIAI'(x)112 -IIAA+IL(X)112. 

This inequality shows that the sequence 11-+ IIAIL(x)11 is an increasing sequence 
bounded by Ilrn(A(x))II. Thus, it converges to a limit a. The same inequality 
shows that 

lim IIAI'+'\(x) - AI'(:1:) 112 = 0 
'\.1'--+0 

whence, the Cauchy criterion implies that A,\(x) converges strongly to an el
ement v. Since (J,\ (x), A,\ (x)) belongs to the graph of A, which is closed, it 
follows that v E A(x). Moreover, since IIA,\(x)11 ::; Ilrn(A(x))II, it follows that 
Ilvll ::; Ilrn(A(x))II· Since rn(A(x)) is the unique projection of 0 onto the convex 
closed subset A(x), it follows that v = rn(A(x)). 

(j) If f : X -+ IR U { +oo} is a nontrivial, convex, lower semi-continuous func
tion, Theorems 2.2 and 4.3 show that the set-valued map A := 8 f satisfies the 
assumption (8). Thus, we complete the proof of Theorem 5.2 by showing that 
\7 h (x) = A,\ (x) converges to the element 8 f (x) of minimum norm. 

Remark. Conversely, 1,Iinty's theorem shows that any monotone set-valued 
map satisfying (9) also satisfies (8). Condition (9) says that the graph of A is 
maximal over all monotone set-valued maps. This is why monotone set-valued 
maps A satisfying (8) and (9) are called maximum monotone set-valued maps. 

16.48 Problem 48 - Solution. Walrasian Equilibrium 
for Set-valued Demand Maps 

(a) The graph of B is clearly closed. To show that B is lower semi-continuous 
at Po E M i , we take fixed Xo E B(po, r(po)) and c > O. Suppose that x E L 
satisfies 

-c := (Po, x) - r(po) < O. 

It follows that there exists () such that Xo := ()x + (1 - ())x E Xo + cB. Since 
(Po, xo) - r(po) ::; 0, we have 

(Po, xe) - r(po) ::; -c() < O. 

Take T) = ~c(). Since r is lower semi-continuous, there exists a neighbourhood V 
of Po such that 
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Vp E V, (p, x) - r(p) :::; (Po, xO) - r(PO) + f + (p - Po, xo) 
1 

< --cB < O. 
2 

This implies that Xo belongs to B(p, r(p) for all p E V, whence that p --+ 
B(p, r(p)) is lower semi-continuous. 

(b) If L is compact, the sets B(p, r(p)) lie in a fixed compact set. Since its graph 
is closed, B(., r(·)) is upper semi-continuous whence continuous (see Problem 2). 
It follows that D(p, r(p)) is an upper semi-continuous set-valued map. 

(c) We apply Theorem 9.2 (Gale-Nikaldo-Debreu) to the set-valued map C : 
Me --+ IRe defined by 

n 

C(p) := MO - L Di(p, ri(p)) (*) 
i=l 

where the functions ri(p) are continuous since they are the support functions of 
compact sets. 
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17. Compendium of Results 

17.1 Nontrivial, Convex, Lower Semi-continuous 
Functions 

Definitions. A function f : X -+ IR U { +oo} is said to be: 

• nontrivial if there exists Xo E X such that f(xo) < +00; 

• lower semi-continuous at Xo if 

VA < f(xo), ::37] > 0 such that Vx E B(xo,7]), A::; f(x); 

• lower semi-compact if VA E IR, the sets S(j, A) := {x E Xlf(x) ::; A} are 
relatively compact; 

• convex if for any convex combination x := E~=l AiXi 

( 
n ) n 

f ~ AiXi ::; ~ A;!(Xi); 

• strictly convex if for all x, y such that f(x) < +00, f(y) < +00 we have 

f c; Y) < ~(j(x) + f(y)); 

• locally Lipschitz on an open set S? if for all Xo E S?, there exist 7] > 0 and 
c > 0 such that 

Vx,y E B(xo,7]), If(x) -- f(y)1 ::; cllx - YII· 

We make the following definitions: 

• Domf:= {x E Xlf(x) < +oo} is the domain of f. 

• Ep f := {(x, A) E X x IRlf(x) ::; A} is the epigraph of f. 

• S(j, A) := {x E Xlf(x) ::; A} are the sections of f. 
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• W K defined by 

{ 
0 if x E K 

WK(X):= +00 if x ~ K 

is the indicator function of K. 

We note that 

Ep (sup fi) = n Ep (ji) 
,EI iEI 

and 

S (sup fi'..\) = n S(ji, ..\) 
'EI iEI 

and that 

{ X E Xlf(x) = inf f(x)} = n S(j, ..\). 
xEX ,binfx f(x) 

Suppose that f : X -+ lR U { +oo} is a nontrivial function. 

A function f is lower semi-continuous at Xo if and only if 

f(xo) ::; liminf f(x) = sup inf f(x) 
x-txo 7»0 xEB(xo.7)) 

The following properties are equivalent 

(a) f is lower semi-continuous; 
(b) the epigraph of f is closed; 
(c) all the sections S(j,..\) of f are closed. 

(1) 

(2) 

(3) 

(1.4) 

If f, g, fi (i E 1) are lower semi-continuous functions then following are lower 
semi-continuous: 

• f + g; 
• af, I::/a > 0; 
• inf(j, g); 
• SUPiEI fi; 
• f 0 A, where A is a continuous mapping from Y to X. (1.5) 

If K c X is closed and if f : K -+ lR is lower semi-continuous, then 
h : X --+ lR U { +oo} defined by 

is lower semi-continuous. 

h (x) = { f (x ) ~f x E K 
+00 If x ~ K 

(6) 
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If KeY is compact and if 9 : X x K ---+ IRu { +00 } is lower semi-continuous, 
then f : X ---+ IR u { +oo} defined by 

f(x) := inf g(x,y) 
yEK 

is lower semi-continuous. 

If f is both lower semi-continuous and lower semi-compact, then the 
set M of elements at which f attains its minimum is non-empty and 
compact. In particular, this is the case if K c X is compact and if 

(7) 

f : K ---+ IR is lower semi-continuous. (1.8) 

Suppose that E is complete and that f : E ---+ IR+ U { +oo} is nontrivial, 
positive and lower semi-continuous. 

(i) 
(ii) 

Consider :£0 E Dom f and E > O. There exists x E Dom f such that 

f(x) + Ed(xo, x) :::; f(xo) 
Vx cI x, f(x) < f(x) + Ed(x, x). 

17.2 Convex Functions 

A function f is convex if and only if the epigraph of f is convex. In this 

(1.9) 

case, all the sections BU,,\,) are convex. (2.1) 

If f, g, fi(i E 1) are convex, then: 

• f + 9 is convex; 
• Va > 0, af is convex; 
• if A : Y ---+ X is affine, then f 0 A is convex; 
• SUPiEI j; is convex; 
• if 9 : X X Y ---+ IR U { +oo} is convex then f : X ---+ IR U { +00 } 

defined by f(x) := infyEY g(x,y) is convex. (2.2) 

If K is convex, then f : K ---+ IR is convex if and only if fK is convex. (2.3) 

If the functions Ii : X ---+ IR U { +oo} are convex, and if we set 

n 

F(x) := (h(x), ... , fn(x)) E IRn , K:= n Domfi (4) 
i=l 

o + 
then the sets F(K) + IR~ and F(K) + IRn are convex. 

If f is convex, the set M of elements at which I att.ains its minimum 
is convex. If f is strictly convex, this set contains at most one point. (2.5) 
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If f is convex, the following conditions are equivalent: 

(a) f is bounded above on an open subset 

(b) f is locally Lipschitz (whence continuous) on the interior of its domain. 

In particular: 

• if X is finite dimensional, any convex function is continuous on the 
interior of its domain; 

• if X is a Hilbert space, any convex lower semi-continuous function 
is continuous on the interior of its domain. (2.6) 

17.3 Conjugate Functions 

Definitions. The function f* : X* -+ IR U { +oo} associated with a nontrivial 
function f : X -+ IR U { +oo} by the formula 

\/p E X*, f*(p):= sup((p,x) - f(x)) (1) 
xEX 

is called the conjugate function of f. The function f** : X -+ { -oo} uIRu {+oo} 
defined by 

\/x E X, f**(x):= sup ((p, x) - j*(p)) 
pEX* 

is called the biconjugate function of f. 

We note that 

\/x EX, \/p E X*, (P,x) ~ f(x) + j*(p) 

that 

\/x E X, j**(x) ~ f(x) 

and that 
- j*(0) = inf f(x). 

xEX 

(Fenchel's inequality) 

A nontrivial function f : X -+ IR U { +oo} is convex and lower semi-

(2) 

continuous if and only if f = f*. In this case, j* is also nontrivial. (3.3) 

• If f ~ 9 then g* ~ f*. 
• If A E L(X, X) is an isomorphism, then (f 0 A)* = f* 0 A*-I. 
• If g(x) := f(x - xo) + (Po, x) + a, then 

g*(p) = f*(p - Po) + (p, xo) - (a + (Po, xo)). 

• If g(x) := f(Ax), then g*(p) = f*(1D and if h(x) := V(x), then 
h*(p) = Af*(1}). 

• If f: X x Y -+ IRu {+oo} and if g(y):= infxEx f(x,y), then 
g*(q) = f*(0, q). (3.4) 
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If ! : X -+ IR U { +oo} and 9 : Y -+ TIl U {+oo} are nontrivial, convex, 
lower semi-continuous functions and if A E L(X, Y) satisfies 0 E Int (ADorn! -
Domg), then \lp E A*Domg* + DomJ*, :3q E Y* such that 

(J + go A)*(p) = .f*(p - A*q) + g*(q) = inf (.f*(p - A*q) + g*(q)) (5) 
qEY' 

If, in particular, we suppose that 0 E Int (1m A - Dom g), then \lp E A *Dom g*, 
:3q E Dom g* satisfying 

A*q = p and (g 0 A)*(p) = g*(q) = min g*(q). 
A'q=p 

If K c X is convex and closed and satisfies 

o E Int (Dom! - K) 

then \lp E Dom(JIK)*' :3q E b(K) such that 

(JIK)*(P) = J*(p - q) + CJK(q). 

If 

o E Int (Dom! - Domg) 

then \lp E Dom J* + Dom g*, :3q E Dom g* such that 

(J + g)*(p) = J*(p - q) + g*(q) = inf (J*(p - q) + g*(q)). 
qEX' 

17.4 Separation Theorems and Support Functions 

Suppose that K is a convex closed subset of a Hilbert space. Then \Ix E X, 
there exists a unique solution 1fK(X) E K of the best-approximation problem 

Ilx - 1fK(X) II = inf Ilx - YII· 
yEK 

This is characterised by the variational inequality 

(i) 
(ii) 

1fK(X) E K 
\ly E K, (1fK(X) - x, 1fK(X) - y) ::; O. 

The mapping 1fK : X -+ K is continuous and satisfies 

II1fK(X) - 1fK(y)11 ::; Ilx - yll 
II(l-1fK)(x) - (l-1fK)(y)11 ::; Ilx - YII· 

The mapping 1fK is called the 'projector of best approximation' onto K. 

(1) 

(4.2) 
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The function (JK : X* -t IR U {+oo} defined by 

Vp E X*, (JK(p):= sup(p,x) E IRu {+oo} (3) 
xEK 

is called the support function of K and its domain 

b(K) := Dom(JK:= {p E X*I(JK(p) < +oo} 

is called the barrier cone of K. 

If K is a convex closed subset of a Hilbert space X and if Xo ~ K, then 
there exist p E X* and c > 0 such that 

(JK(p) := sup(p, y) ~ (p, xo) - c. (4) 
yEK 

If K is a convex subset of a finite-dimensional space X and if Xo ~ K, then 
there exists p E X* such that 

p -=I- 0 and (JK(P) := sup(P, y) ~ (P, xo). (5) 
yEK 

Vp E X*, (JK(P) (Jco(K) (p) (6) 

(JK 'I/J'K 

• If K = B is the unit ball, (JK(P) = Ilpll*. 

• If K is a cone, (JK(P) = 'l/JK-·(P) and b(K) = K-. 

• b(1()- = nA>o),(K - xo) (for all Xo E K). 

Any support function (JK is convex, positively homogeneous and lower 
semi-continuous. (4.7) 

Conversely, any function (J from X* to IRU{ +oo} which is convex, positively 
homogeneous and lower semi-continuous, is the support function of the set 

Ku := {x E XIVp E X*, (p,x) ~ u(p)}. (8) 

• If K is a convex closed subset, then 

K = {x E XIVp E X*, (p,x) ~ (JK(P)}. (9) 

• If K is a convex closed cone, then 

K = (K-r 

~ If K is a closed vector subspace then K = (K.l).l. 



17.4 Separation Theorems and Support Functions 409 

• If A E L(X, Y) is a continuous linear operator and K c X, then 

A(Kf = A*-I(K-). 

In particular, (ImA).L = Ker A*. 

• If K c L, then b(L) C b(K) and UK ::; UL. 

• If Ki C Xi (i = 1, ... , n), bmr=1 Ki) = rrr=1 b(Ki) and 

n 

UK(PI, ... ,Pn) = LUK,(P;). 
i=I 

• b(co UiEL K i) c niE1b(Ki) and UCi5(UiEIK,J(P) = sup UKi (p). 
iEI 

(4.10) 

• If BE L(X, Y), then b(B(K)) = B*-lb(K) and U B(K)(P) = uK(B*p). 

• b(KI + K 2) = b(KI) n b(K2) and UK,+K2(p) = UK, (p) + UK2(P). 

• If P is a convex closed cone, then 

b(K + P) = b(K) n P-

and 

{ UK(p) if P E P-
UK+P(X) = +00 otherwise. 

• b(K + {xo}) = b(K) and UK+xo(p) = UK(P) + (p,xo). 

• If A E L(X, Y), if LeX and M C Yare convex closed subsets and if 
o E Int(A(L) - M) then 

b(L n A-1(M)) = b(L) + A*b(M) (11) 

and 'Vp E b(K), ::Jq E b(M) such that 

ULnA-l(M)(P) UL(P - A*q) + UM(q) 
= inf (udp - A*q) + UM(q)). 

qEY* 

• If A E L(X, Y), if Me Y is convex and closed and if 0 E Int (1m (A)-M), 
then b(A-I(M)) = A*b(M) and 'Vp E b(A-I(M)), ::Jq E b(M) satisfying 

A*q = P and UA-l(M)(P) = UM(q) = inf UM(q). 
A*q=p 

• If KI and K2 are convex closed subsets of X such that 0 E Int(KI - K 2 ), 

then b(KI n K 2 ) = b(KI) + b(K2) and for all P E b(KI n K 2), there exist 
Pi E b(Ki) (i = 1,2) such that P = PI + P2 and 

UK,nK2 (P) = UK, (PI) + UK2 (P2) = inf (UKl (PI) + UK2(P2))' P=Pl+P2 
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17.5 Sub differentiability 

Definition. Suppose that f : X -+ IR U { +oo} is a nontrivial convex function. 
Suppose also that Xo E Domf and vEX. Then the limit 

Df(xo)(v):= lim f(xo + hv) - f(xo) 
h--+O+ 

(1) 

exists in IR and is called the right derivative of f at Xo in the direction v. 

It satisfies the properties 

f(xo) - f(xo - v) ::; D f(xo)(v) ::; f(xo + v) - f(xo) (2) 

and 

v -+ Df(xo)(v) is convex and positively homogeneous. 

Definition. f is said to be Gateaux differentiable at Xo if v -+ D f (xo) ( v) : = 

(V f(xo), v) is linear and continuous. Then the subset 

8f(xo):= {p E X*I\fv E X, (p,v) ::; Df(xo)(v)} (3) 

is called the subdifferential of f at Xo. The sub differential is a convex closed set 
(which may be empty, for example, if there exists v such that D f(xo)( v) = -00). 

If V --+ Df(xo)(v) is a nontrivial lower semi-continuous function from X to 
IRu {+oo} then 

a(8f(xo), v) = Df(xo)(v). (4) 

Suppose that f is a nontrivial convex function which is sub differentiable at 
x. Then, the following assertions are equivalent: 

(a) p E 8f(x); 
(b) (p, ;r) = j*(p) + f(x); 
(c) \fy E X, f(x) - (p, x) ::; f(y) - (p, y). (5.5) 

If in addition f is lower semi-continuous, then 

P E 8f(x) «=? x E 8j*(p). (6) 

If f is a convex function which is continuous on the interior of its domain, 
then f is right differentiable and subdifferentiable on Int Dom f and satisfies 
the following properties: 
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(a) (x,u) E IntDomf x X -+ Df(x)(u) is upper semi-continuous; 
(b) ::Jc> 0 such that Df(x)(u) = CJ(8f(x),u)::; cllull; 
(c) Vx E IntDomJ, 8f(x) is non-empty and bounded; 
(d) the set-valued map x E IntDomf -+ 8f(x) is upper hemi

continuous. 

If f is a nontrivial, convex, lower semi-continuous function, then 

(a) f is sub differentiable on a dense subset of the domain of f; 
(b) V)" > 0, the set-valued map x -+ x + )"8f(x) is surjective and 

its inverse J>, := (1 + )"8f(·))-1 is a Lipschitz mapping with 

(5.7) 

constant 1. (5.8) 

If f : X -+ IR U { +oo} and 9 : Y -+ IR U { +oo} are nontrivial, convex and 
lower semi-continuous, if A E L( X, Y) and if 0 E lnt (ADorn f - Dom g), then 

8(f + 9 0 A)(x) = 8f(x) + A*8g(Ax). (9) 

In particular, if 0 E lnt (Domf - Domg), then 8(f + g)(x) = 8f(x) + 8g(x). 
If 0 E lnt (ImA - Domg), then 8(g 0 A)(x) = A*8g(Ax). 
If K c X is convex and closed and if 0 E lnt (K -Dom!), then 8(fIK)(x) = 

8f(x) + NK(x). 

If fl,"" f n are n convex lower semi-continuous functions and if Xo E 

n7=1 lnt Dom fi' then 

8 (!UP fi) (xo) = co U 8fi(XO) 
,-l. ... ,n iEI(xo) 

(10) 

where J(xo) := {i = 1, ... , nlfi(xo) = SUPj=I"n fj(xo)}. 

Suppose that f : X x Y -+ IR U { +oo} is a nontrivial convex function and 
that 9 : Y -+ IR U { +oo} is defined by 

g(y) := inf f(x, y). 
xEX 

(11) 

If x E X satisfies g(y) = f(x, y), then q E 8g(y) if and only if(O, q) E 8f(x, y). 

17.6 Tangent and Normal Cones 

Definition. Suppose that K is a convex subset. If x E K then: 

1 
(i) TK(X):= closure (U -(K - x)) is the tangent cone to K at x; 

h>O h 
(ii) NK(x) = {p E XI(p,x; = CJK(p)} is the normal cone to K at x. (6.1) 
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We observe that 

NK(x) = 8WK(X) = TK(x)-, TK(X) = NK(x)-. 

If x E Int(K), then NK(x) = {O} and TK(X) = X. 

If K == {xo} then NK(xo) = X and TK(xo) = {O}. 
If K == B (the unit ball) and if Ilxll = 1, then 

N K (x) = {Ax h20 and T K (x) = {v E X I (v, x) :::; O}. 

If K = lR~ and if x E lR~, then 

NK(x) {p E -lR~IPi = 0 when Xi> O} 

TK(X) {v E lRnlVi 2: 0 when Xi = O}. 

If Mn:= {x E lR~1 L~=l Xi = I}, then 

NMn(X) {p E lRnlPi = max Pj when Xi > O} 
)=I, ... ,n 

n 

TMn(X) {v E lRnl:L Vi = 0 and Vi 2: 0 when Xi = O}. 
i=l 

Formulae. 

• If K eLand x E X, then TK(X) C TL(X) and NL(x) C NK(x). 

• If Ki C Xi (i = 1, ... , n), then 

n 

Tn;~l Ki (Xl, ... ,xn ) = IT TKi (Xi) 
i=l 

and 

n 

Nnn K.(Xl, ... ,Xn ) = ITNK(Xi). 
'!-=1 t t 

i=l 

• If B E L(X, Y), then 

TB(K)(Bx) = closure (BTK(X)) 

and 

NB(K)(Bx) = B*-l NK(x). 

• TK, +K2 (Xl + X2) = closure (TKI (Xl) + TK2 (X2)) 
and 

NK, +K2 (Xl + X2) = NKI (Xl) n NK2 (X2). 

(2) 

(6.3) 

(6.4) 
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• If A E L(X, Y), and if LeX and Me Yare convex closed sets satisfying 
o E Int(A(L) - M), then 

hnA-l(M)(X) = TL(X) n A-1TM(Ax) 

and 

]\hnA-l(M)(X) = NL(x) + A* NM(Ax). 

• If A E L(X, Y) and if M c Y is a convex closed subset satisfying 0 E 
Int (1m A - M), then 

TA-l(M) (x) = A-1TM(Ax) 

and 

NA-l(M)(X) = A* NM(Ax). 

• If K] and K2 are convex closed subsets of X such that 0 E Int (Kl - K2), 
then 

TKlnK2(X) = TKI (x) n TK2 (X) 

and 

NKlnK2(X) = NKI (x) + NK2 (X). 

17.7 Optimisation 

We consider the minimisation problem 

v := inf f(x) = - j*(0) 
xEX 

(*) 

where f is a nontrivial function from X to IR U { +00 }. We denote the set of 
points at which f attains its minimum by M:= {x E Domflf(x) = v}. 

If f is both lower semi-continuous and lower semi-compact, there exists 
at least one solution of (*). (7.1) 

If f is strictly convex, there exists at most one solution of (*). (7.2) 

If f is convex, the solutions of (*) are solutions of the inclusion 

o E 8f(x) (Fermat's rule) (3) 

If f is convex and lower semi-continuous, then 

M = EJj*(O). 
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If f is convex and lower semi-continuous, and if 

o E Int (Dom j*) (4) 

then there exists a solution of (*). 

If f is nontrivial, convex and lower semi-continuous and if A > 0, for every 
x> 0, there is a unique solution J;,.(x) of the proximation problem 

f>..(x) inf (f(Y) + 1, Ily - x112) 
yEX 2/\ 

- inf (j*( -q) + ~21Iqll: - (q, x)) . 
qEX* 

The mapping J\ satisfies 

(a) IP\x - J\yll ::::: Ilx - yll 
(b) 11(1 -- J\)x - (1 - J\)yll ::::: Ilx - yll 
(c) J\ =, (1 + Aof(·)r1. 

The functions f>.. are convex and continuously differentiable and we have 

1 
\1f>..(x) = :x(x - J\x) E of(J\x). 

In addition, we have the regularisation property 

\Ix E Domf, f(x) = lim f\(x) and x = lim J\x 
A-->O A-->O 

and the penalisation property 

(a) inf f(x) = lim f\(x) 
xEX \-->00 

(b) If oj*(O) i= 0, lim \1f>..(x) = O. 
\-->00 

Suppose we have: 

• two Hilbert spaces X and Y; 

• two nontrivial, convex, lower semi-continuous functions 
f: X --t IRu {+oo} and g: Y --t IRU {+oo}; 

• a continuous linear operator A from X to Y. 

We consider the two minimisation problems 

h(y) := inf (J(x) - (p, x) + g(Ax + y)) 
xEX 

and 

e*(p) := inf (J*(p - Aq) + g*(q) - (q, y)). 
qEY* 

(5) 

(7.6) 
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(a) If 
P E Int (Domj* + A*Domg*) 

then there exists a solution x of the problem h(y) and 

h(y) + e*(p) = o. 

(b) If we also suppose that 

Y E Int (Dom g - ADorn 1) 

then the following conditions are equivalent: 

(i) x is a solution of the problem h(y). 

(ii) x belongs to the sub differential oe*(p) of the marginal function e •. 

(iii) x is a solution of the inclusion p E of (x) + A*og(Ax + y). 

(7) 

(8) 

(c) Similarly, the assumption (7.8) implies that there exists a solution q of the 
problem e* (p) and the two assumptions together imply the equivalence of the 
following conditions 

(i) q is a solution of the problem e*(p)j 

(ii) q belongs to the sub differential oh(y) of the marginal function hj 

(iii) q is a solution of the inclusion y E og*(q) - Aoj*(p - A*q). 

(d) The two assumptions together imply that the solutions x and q of the prob
lems h(y) and e* (p), respectively, are the solutions of the system of inclusions 

(i) 
(ii) 

P E of (x) + A*(q) 
y E -Ax + Og*(q). 

17.8 Two-Person Games 

Suppose that f : E x F --+ IR is a function of two variables. 

and 

(i) 

(ii) 

(iii) 

The following conditions on (x, y) E E x F are equivalent 

\f(x, y) E E x F, f(x, y) :s; f(x, y) 

inf sup f(x, y) 
xEE yEF 

sup inf f(x, y) 
yEF xEE 

sup f(x, y) 
yEF 

inf sup f(x, y) 
xEE yEF 

inf f(x, y) 
xEE 

sup inf f(x, y). 
yEF xEE 

(1) 
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The pair (x, y) is then called a saddle point of f. 

If we suppose that 

(i) E is compact 

(ii) 'Vy E F, x -+ f(x, y) is lower semi-continuous 

then, there exists x E E such that 

sup f(x, y) = inf sup f(x, y) = sup inf sup f(x, y) 
yEF xEE yEF KEK xEE yEK 

where K is the set of finite subsets K of Y. 

If we suppose that 

(i) E is compact 

(ii) 'Vy E F, x -+ f(x, y) is convex and lower semi-continuous 

(iii) 'Ix E E, y -+ f(x, y) is concave 

then, there exists x E E such that 

sup f(x, y) = inf sup f(x, y) = sup inf f(x, y). 
yEF xEE yEF yEF xEE 

If we suppose that 

(i) E and F are convex and compact 

(ii) \:Iy E F, x -+ f(x, y) is convex and lower semi-continuous 

(iii) \:Ix E E, y -+ f(x, y) is concave and upper semi-continuous 

then f has a saddle point. 

If we suppose that 

(i) E is compact 

(ii) \:Iy E F, x -+ f(x, y) is lower semi-continuous 

(iii) F is convex 

(iv) \:Ix E E, y -+ f(x, y) is concave 

then there exists x E E such that 

(2) 

(3) 

(8.4) 

supf(x,y) = sup inf f(x,D(x)) = inf supf(C(y),y). (5) 
yEF DEC(E,F) xEE CEC(F,E) yEF 
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Ky Fan's Inequality. If we suppose that K and ¢ : K x K -t lR satisfy 

(i) K is convex and compact 

(ii) 't/y E K, x -t ¢(x. y) is lower semi-continuous 

(iii) 't/x E K, y -t ¢(x, y) is concave 

(iv) 't/y E K, ¢(y, y) ~ 0, 

then there exists x E E such that 't/y E K, ¢(x, y) ~ o. 

17.9 Set-valued Maps and the Existence of Zeros and 
Fixed Points 

(8.6) 

Definitions. A set-valued map C from K to Y is upper semi-continuous at Xo 

if 
't/c > 0, 3TJ > 0 such that 't/x E EK(xo, TJ), C(x) c C(xo) + cE. (1) 

C is upper hemi-continuous at Xo if 

't/p E Y*, X -t (J(C(x),p) is upper semi-continuous at Xo. (2) 

C is lower semi-continuous at Xo if, for any sequence Xn converging to Xo and 
for all Yo E C(xo), there exists a sequence of elements Yn E C(xn) converging to 

Yo· 

Any upper semi-continuous set-valued map is upper hemi-continuous. (9.3) 

If f : X -t lR U {+oo} is convex and lower semi-continuous and 
if IntDomf # 0, then x E IntDomf -t 8f(.T) C X* is upper hemi-
continuous. (9.4) 

Banach-Picard Fixed-Point Theorem. If K is a complete metric 
space and the mapping D is a contraction (3k < 1 such that 't/x, y E K, 
d(D(x), D(y)) ~ kd(x, y)) from K to itself, then D has a unique fixed 
point. (9.5) 

Suppose that C is a set-valued map from a complete metric space K to itself. 
Suppose that there exists a nontrivial positive function f from K to lRu {+oc} 
such that 

't/X E K, 3y E C(x) such that f(y) + d(x, y) ~ f(x). 

Then one of the two assumptions 

(a) f is lower semi-continuous 

(b) the graph of C is closed 

implies that C has a fixed point. 

(6) 
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Three-Poles Lemma. We consider n closed subsets Fi of the simplex 
Mn:= {x E lR~IL~=lXi = 1}. If'v'x E Mn, x E U{ilxi>O}Fi then 
n~l Fi =I- 0. (9.7) 

Brouwer's Fixed-Point Theorem. If K is a convex compact subset of 
a Hilbert space and if D is a continuous mapping from K to itself, then 
D has a fixed point. (9.8) 

Gale-Nika'ido-Debreu Theorem. Suppose that C is a set-valued map from 
Mn = {x E lR~ I L~=l Xi = 1} to lRn satisfying 

(i) C is upper hemi-continuous 

(ii) 'v'x E Mn, C(x) = C(x) -lR~ is convex and closed 

(iii) 'v'x E Mn, o-(C(x) , x) 2': o. 

Then there exists x E Mn such that 0 E C(x). (9.9) 

Brouwer--Ky Fan Theorem. Suppose that K is a convex compact subset of 
X and that C is an upper hemi-continuous set-valued map from K to X with 
convex closed values. If we suppose that 

'v'X E K, C(x) nTK(x) =I- 0 

then 

(a) ::Ix E K such that 0 E C(x) 
(b) 'v'y E K, ::Ix E K such that y E x - C(x). (9.10) 

Fixed-Point and Surjectivity Theorem. Suppose that K c X is a convex 
compact subset and that D : K ---+ X is an upper hemi-continuous set-valued 
map with convex closed values. 
(a) If D is re-entrant in the sense that 

'v'x E K, D(x) n (x + TK(X)) =I- 0 

(in particular any D : K ---+ K is re-entrant) then D has a fixed point x* E K. 
(b) If D is salient in the sense that 

'v'x E K, D(x) n (x - TK(X)) =I- 0 

then 

(i) D has a fixed point x* E K 
(ii) 'v'y E K, ::Ix E K such that y E D(x). (9.11) 
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Suppose we have: 

• two convex closed subsets LeX and M c Y; 

• a convex compact subset Pc Y*; 

• a continuous mapping c : L x P -+ Y, 

satisfying the following conditions: 

(i) 
(ii) 

and 

(i) 
(ii) 
(iii) 

together with 

\::h; E L, p -+ c(x,p) is affine 
Vx E L, Vp E P, c(x,p) E T£(x) 

L n A-l(M) is compact 
o E lnt (A(L) - M) 

Vy E M, NM(y) c UA;>O >"P 

Vx E L, Vp E P, (p, Ac(x,p)) ::; O. 

Then there exist x ELand pEP satisfying 

Ax E M and c(x,p) = o. (12) 

Leray-Schauder Theorem. We consider a convex compact subset KeIRn 
with a non-empty interior and a set-valued map C from K x [0,1] to IRn which 
is upper hemi-continuous with convex closed values. We suppose that 

(i) 
(ii) 

Vx E K, C(x, 0) n TK(X) i= 0 
V).. E [0,1[, Vx E EJK, 0 ~ C(x, >..). 

Then there exists x E K such that 0 E C(x, 1). (9.13) 

Suppose that K C X is a convex compact subset and that C : K -+ X' 
is an upper semi-continuous set-valued map with non-empty, convex, compact 
values. Then: 

::Jx E K such that 0 E C(x) - NK(x). (14) 

Suppose that K C X is a convex compact subset and that C : K -+ K is an 
upper hemi-continuous set-valued map with non-empty, convex, closed values. 
We consider a function ¢ : K x K -+ IR satisfying 

(i) 
(ii) 
(iii) 

Vy E K, .1: -+ ¢(x, y) is lower semi-continuous 
Vx E K, y -+ ¢(x, y) is concave 

Vy E K, ¢(y, y) ::; O. (9.15) 
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Suppose that the set-valued map C and the function ¢ are linked by the 
property 

{x E KI sup ¢(x, Y) :::; o} is closed. 
yEC(x) 

Then there exists a solution x E K of 

(i) 
(ii) 

x E C(x) 
sup ¢(x, Y) :::; O. 

YEC(x) 

We consider a finite covering {AL=l n of a metric space E. There exists a 
continuous partition of unity subordinat~'to this covering, in other words, there 
exist n continuous functions ai : E ---+ [0, 1] such that 

(i) 

(ii) 

n 

Vx E E, Lai(X) = 1 
i=l 

Vi = 1, ... , n, support (ai) cA. 

where support(ai):= closure {x E Elai(X) # O}. 

We consider two mappings F and G from Mn to lRm satisfying 

(i) the components !i of F are convex and lower semi-continuous; 

(9.16) 

(ii) the components gi of G are concave, positive and upper semi-continuous; 

(iii) 3p E Mm such that Vx E Mn, (p, F(x)) > 0; 

(iv) 3x E Mn such that Vi = 1, ... ,n, gi(X) > O. 

(a) Then there exist <5 > 0, x E Mn and p E Mm such that 

(i) 
(ii) 
(iii) 

Vi = 1, ... ,n, <5!i(X) So gi(X) 
Vx E Mn, (G(x) - <5F(x),p) So 0 

Vi = 1, ... , n, pi(<5!i(X) - gi(X)) = O. 

(b) The number <5 > 0 is defined by 

~ = sup inf (p,F(x)) = inf sup (p,F(x)). 
<5 pEMm xEMn (p, G(x)) xEMn pEMm (p, G(x)) 

(9.17) 

(*) 

If A> 0 and x E Mn satisfy the inequalities Aj;(X) So gi(X), Vi = 1, ... , n, then 
A :::; <5. 

(c) For all J.L > <5 and for all Y E Int(lR';'), there exist (3 > 0 and x E Mn such 
that 

Vi = 1, ... , n J.L!i(X) - gi(X) So {3Yi' 
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We consider two matrices F and G from IRn to IRm satisfying 

(i) the coefficients % of G are non-negative; 

(ii) Vi = 1, ... ,m, L7=1 gij > 0; 

(iii) Vj = 1, ... ,n, L7=1 fij > O. 

Then there exist x E Mn, p E Mm and 0 > 0 such that 

( i) 
(ii) 
(iii) 

oFx S Gx 
of' - > G'p- p 

o (p, Fx) = (p, Gx). 

Moreover, for all fL > a and all y E lnt IR~, there exists x E IR~ such that 

ILFx - Gx S y. (18) 

Suppose that F is a mapping from Mn to IRn satisfying 

(i) the components fi of F are convex and lower semi-continuous; 

(ii) ::Jp E Mn n lnt(lR~) such that Vx E Mn, (p, F(x)) > 0; 

(iii) if Xi = 0 then fJr) S O. 

Suppose that G is another mapping from Mn to IRn satisfying 

(i) the components gi of G are concave and lower semi-continuous; 

(ii) Vx E lVr, Vi = 1, ... ,n, gi(X) > O. 

We consider the number 0 > 0 defined by (*) (above). Then there exist 
x E Mn n lnt(IR~) and p E Mn n lnt(IR~) such that 

(i) 
(ii) 

of(x) = G(x) 
Vx E Mn, (p, G(x) - of(x)) SO. 

If fL > 0 and y E lnt(IR~) are given, then there exist (3 > 0 and x E Mn 
such that 

fLF(x) - G(x) = (3y (19) 
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Perron-Frobenius Theorem. Suppose that G is a positive matrix. 

(a) G has a strictly positive eigenvalue J and an associated eigenvector 
i; with strictly positive components. 

(b) J is the only eigenvalue associated with an eigenvector of Mn. 
(c) J is greater than or equal to the absolute value of all other eigen

values of G 
(d) The matrix JL - G is invertible and (JL - Gr1 is positive if and 

only if JL > J. (9.20) 

We consider a mapping H from IR~ to IRn satisfying 

(i) the components hi of H are convex, positively homogeneous and lower 
semi-continuous; 

(ii) 3b E IR such that 'Vx E IR~, bXi > hi(x); 

(iii) 'Vx E Mn, 3q E Mn such that (q, H(x)) > O. 

Then 'Vy E lnt IR~, 3x E lnt IR~ such that H (x) = y. (9.21 ) 

Theorem (Surjectivity of the M Matrices). Suppose that H is a matrix 
from IRn to IRn satisfying 

'Vi =I j, hij:o::: o. 
The following conditions are equivalent 

(a) 'Vx E Mn, :3q E Mn such that (q, Hx) > 0; 

(b) H is invertible and H-1 is positive; 

(c) H* is invertible and H*-l is positive. 

(22) 
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-, epiderivative 271 
continuous partition of unity 135-137, 

141 
continuously differentiable 88 
contraction 18 
convex function 21-34, 242-247, 403, 

405-406 
convexification strategy 105-106 
cooperative game 197-209, 211-233, 

299-302 
coordination game 115 
core 197, 198, 223, 224, 226-233 
core (of a toll set) 53 
Cournot's Duopoly 116-123 
Cournot's equilibrium 119 
cyclically monotone set-valued map 

260 

Debreu-Gale-Nikaldo Theorem 148-
149 

decentralisation, price 82-84, 167, 173 
decentralised, price 169 
decision rule 102-104, 120, 189 
-, canonical 108, 192 
-, optimal 137-142 
-, Stackelberg 121 
demand map 170, 346, 400 
derivative 
-, Clarke directional 87 
-, right 62, 88, 410 
differentiable 
-, Frechet 88, 92 
-, Gateaux 62, 92 
Dirac measures 53 
disjunct 33 
domain 10, 403 
domain (of a toll set) 53 
dual problems 36, 77 
duality 325, 374 
duality interval 126 

economic equilibrium 167-179, 
287-291 

efficiency axiom 219, 231, 302 
Eigen-Schuster's hypercycle 208 
Ekeland's Theorem 15 
epigraph 10-11, 403 

equilibrium 
-, coalition 216 
-, Cournot 119 
-, economic 167-179, 287-291 
-, Nash 108, 190 
-, non-cooperative 108, 119, 190 
-, social 192 
-, Stackelberg 121-123 
-, state 216 
-, static 102 
-, Walrasian 170, 346, 399 
equilibrium of replicator systems 206 
Euler-Lagrange inclusion 78 
evaluation function 106 
evolutionary stable equilibrium 206 
exchange economy 168 
existence of zeros of set-valued map 

150-152,417-422 
extremal point 255 

Fenchel's Theorem 39-43, 321, 370 
Fermat 57 
Fermat's rule 58, 76-80, 99, 329, 377 
finite game 112-116 
Fisher-Wright-Haldane's model 207 
fitness matrix 207 
fixed-point theorem 154-155 
-, Banach-Picard 18, 417 
-, Brouwer's 104, 141, 143, 162, 418 
-, Caristi 17 
-, Kakutani 154 
-, Kakutani-Fan 155 
Frechet differentiable 88, 92 
function 
-, change 173 
-, conjugate 37, 43-48, 247-256, 

406-407 
-, convex 21-34, 242-247, 403, 

405-406 
-, evaluation 106 
-, gamma-convex 318, 368 
-, indicator 10, 404 
-, locally Lipschitz 87-99, 270-277, 

403 
-, loss 106 
-, lower semi-compact 13-15, 403 
-, lower semi-continuous 11-13,37-39, 

403 



-, marginal 240, 305, 352 
-, support 36, 48-52, 407409 
-, upper semi-continuous 12 
-, utility 106 
-, worst-loss 110 
fuzzy 
-, coalition 212 
-, game 211-233,299-302 
-, set 212 

Gateaux differentiable 62, 88, 92, 410 
Gale-NikaYdo-Debreu Theorem 340, 

391, 418 
game 
-, action 216 
-, balanced 199, 227 
-, Chicken 114 
-, cooperative 197-209, 211-233, 

299-302 
-, coordination 115 
-, finite 112-116 
-, fuzzy 211--233, 299-302 
-, inessential 301 
-, market 224 
-, n-person 189-209, 292-299 
-, non-cooperative 192-193 
-, regular 220 
-, simple 233 
-, sub additive 222 
-, two-person 101-123, 415-417 
--, two-person zero-sum 125-142, 

277-281 
-, weighting 221 
gamma-convex function 318, 368 
Gaussian toll sets 55 
generalised 

gradient 270 
-, coalition 213 
-, gradient 87-99, 223 
gradient 62, 88 
-, generalised 87-99, 223, 270 
graph 18, 145, 303 
growth rate 180 

Hamiltonian system 78 

inclusion 75, 76, 143-166, 282-287 
indicator function 10, 404 
indicators 53 

individual stability 108 
inequality 
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-, Ky Fan's 140, 277-281, 339, 
390-391 

-, quasi-variational 160-162 
-, variational 157-159, 344 
inessential game 301 
inf-compact 13 
inf-convolution 45, 239 
inner semicontinuous 147 
inverse of set-valued map 145 

Kakutani's Fixed-point Theorem 154 
Kakutani-Fan Fixed-point Theorem 

155 
Knaster-K uratowski-Mazur kiewicz 

lemma 163, 418 
Ky Fan's inequality 140, 277-281, 

339, 390-391 
Ky Fan's Theorem 277-281 

Lagrange multipliers 78, 83-84, 97, 
272 

Legendre transformation 64 
Leray-Schauder Theorem 159-160, 

419 
locally Lipschitz function 87-99, 

270-277, 403 
loss function 106 
Lotka-Volterra equation 208 
lower section 11 
lower semi-compact function 13-15, 

403 
lower semi-continuous function 11-13, 

37-39,403 
lower semi-continuous set-valued map 

146,417-422 

Maintenon (marquess of) 101 
marginal function 240, 305, 352 
marginal properties 75-86, 263-270 
market game 224 
Maynard-Smith' dynamic game 208 
measure Maslov 56 
membership 212 
membership cost functions 53 
Mere (Antoine Gombaud, chevalier de) 

101 
metagame 192--193 



432 Index 

minimax theorem 134, 279, 337-339, 
388-390 

-, Ky Fan 140, 277-281, 339, 390-391 
-, von Neumann 277-281 
minimisation problem 9-19, 35-56, 

75-86, 99, 237-302, 413-415 
minimising sequence 237 
minimum, virtual 110, 194 
Minkowski 34, 36 
mixed strategy 105, 134 
monotone set-valued map 344, 397 
Moreau transform 55 
multilosses 
-, accepted 198, 218 
multistrategies 
-, accepted 197 
-, consistent 189 

n-person game 189-209, 292-299 
Nash equilibrium 108, 190 
Nash's Theorem 191 
negative polar cone 48, 317 
non-cooperative 
-, behaviour 189-190 
-, equilibrium 108, 119, 190 
-, game 192-193 
nonlinear equations 143-166, 282-287 
normal cone 60,70-73,97-98,411-413 
normal form (of game) 106-108, 

190-191 

open covering 135 
open image theorem 313, 362-364 
optimal decision rule 137-142 
optimisation 413-415 
orthogonal 
-, projector 317, 367-369 
-, subspace 48 
outer semicontinuous 147 

pareto optima 108-110, 193-195 
partial order 107 
participation 212 
partition of unity 
-, continuous 135-137 
peaceable strategy 112 
penalisation 84-86, 414 
Perron-Frobenius Theorem 184-186, 

422 

population genetics 207 
prebiotic evolution 208 
price 
-, decentralisation 82-84, 167, 173 
-, decentralised 169 
-, simplex 169 
Prisoner's dilemma 112-113 
probability simplex 205 
projector of best approximation 28, 

407 
proper mapping 319, 369-370 
Proximation Theorem 27-31, 84 
pseudo convex 276 

quasi-convex 22 
quasi-variational inequality 160-162 

re-entrant 154, 418 
redundant-players axiom 220, 231, 

302 
regular game 220 
regularisation 84-86, 414 
replicator system 205 
replicator systems for linear growth 

rates 207 
restriction 10 
right derivative 62, 88, 410 

saddle point 125-130, 134, 415 
salient 154, 418 
Scarf's Theorem 199 
section 11, 403 
Separation Theorem 31 
-, Broad 31 
set-valued map 144, 303-305, 349-352 
-, cyclically monotone 260 
-, existence of zeros 150-152, 417-422 
-, inverse 145 
-, lower semi-continuous 146, 417-422 
-, monotone 344, 397 
-, upper hemi-continuous 145, 

417-422 
-, upper semi-continuous 145, 303, 

417-422 
Shapley 
-, (K-K-M-S)Theorem 162-166 
-, value 220, 229, 232 
share-out rule 219 
side payments 218-226 



simple game 233 
Slater condition 251 
Smith, Adam 167 
social 
-- , coalition 214 
--, equilibrium 192 
solution (of the game) 223 
stability 
--, collective 109 
-, individual 108 
Stackelberg 
-, disequilibrium 123 
-, decision rule 121 
-, equilibrium 121-123 
static equilibrium 102 
strategic form (of game) 190-191 
strategy 
-, aggressive 112 
-, conservative 110-11 L 126, 130-134, 

194 
-, mixed 105, 134 
-, pair 102 
-, peaceable 112 
strict 10 
strictly convex 22, 403 
strictly Frechet differentiable 88, 92 
subadditive games 222 
subdifferentiability 410-411 
subdifferential 57--73, 256-263 
subgradient 58, 62 
support 135, 284 
-, function 36, 48-52, 407-409 
surjectivity of the M matrices 187-

188,422 
symmetry axiom 219, 231, 302 
system under constant organization 

205 

tangent cone 60, 70--73, 97-98, 332, 
411-413 

tangential condition 149 150 
Three-Poles Lemma 162 
toll boundary 53 
toll set 53 
two-person game 101-123, 415-417 
two-person zero-sum game 125-142, 

277-281 

upper hemi-continuous 144 -148 
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upper hemi-continuous set-valued map 
145,417-422 

upper semi-continuous function 12 
upper semi-continuous set-valued map 

145,303,417-422 
utility function 106 

value (of a game) 125-130,336 
value, conservative 110 
variational inequality 157-159, 344 
viability 152-154 
virtual minimum 110, 194 
von Neumann model 179-188, 292 
von Neumann's Theorem 134, 181, 

277-281 

Walras Law 171 
-, collective 171 
-, tatonnement 172 
Walras, Leon 167 
Walrasian 
-, equilibrium 170, 346, 399 
-, mechanism 169-173 
weighting game 221 
worst-loss function 110 
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