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Preface 

This book is based on a course I have given five times at the University of 
Michigan, beginning in 1973. The aim is to present an introduction to a 
sampling of ideas, phenomena, and methods from the subject of partial 
differential equations that can be presented in one semester and requires no 
previous knowledge of differential equations. The problems, with hints and 
discussion, form an important and integral part of the course. 

In our department, students with a variety of specialties-notably differen­
tial geometry, numerical analysis, mathematical physics, complex analysis, 
physics, and partial differential equations-have a need for such a course. 

The goal of a one-term course forces the omission of many topics. Everyone, 
including me, can find fault with the selections that I have made. 

One of the things that makes partial differential equations difficult to learn 
is that it uses a wide variety of tools. In a short course, there is no time for the 
leisurely development of background material. Consequently, I suppose that 
the reader is trained in advanced calculus, real analysis, the rudiments of 
complex analysis, and the language offunctional analysis. Such a background 
is not unusual for the students mentioned above. Students missing one of the 
"essentials" can usually catch up simultaneously. 

A more difficult problem is what to do about the Theory of Distributions. 
The compromise which I have found workable is the following. The first 
chapter of the book, which takes about nine fifty-minute hours, does not use 
distributions. The second chapter is devoted to a study of the Fourier trans­
form of tempered distributions. Knowledge of the basics about .@(O), 0"(0), 
9&'(0), and 0"'(0) is assumed at that time. My experience teaching the course 
indicates that students can pick up the required facility. I have provided, in . 
an appendix, a short crash course on Distribution Theory. From Chapter 2 
on, Distribution Theory is the basic language of the text, providing a good 
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setting for reinforcing the fundamentals. My experience in teaching this course 
is that students have less difficulty with the distribution theory than with 
geometric ideas from advanced calculus (e.g. dq> is a one-form which annihi­
lates the tangent space to {q> = O}). 

There is a good deal more material here than can be taught in one semester. 
This provides material for a more leisurely two-semester course and allows 
the reader to browse in directions which interest him/her. The essential core 
is the following: 

Chapter 1. Almost all. A selection of examples must be made. 
Chapter 2. All but the U theory for p ¥- 2. Some can be left for students to 

read. 
Chapter 3. The first seven sections. One of the ill-posed problems should 

be presented. 
Chapter 4. Sections 1, 2, 5, 6, and 7 plus a representative sampling from 

Sections 3 and 4. 
Chapter 5. Sections 1, 2, 3, 10, and 11 plus at least the statements of the 

standard Elliptic Regularity Theorems. 

These topics take less than one semester. 
An introductory course should touch on equations of the classical types, 

elliptic, hyperbolic, parabolic, and also present some other equations. The 
energy method, maximum principle, and Fourier transform should be used. 
The classical fundamental solutions should appear. These conditions are met 
by the choices above. 

I think that one learns more from pursuing examples to a certain depth, 
rather than giving a quick gloss over an enormous range of topics. For this 
reason, many of the equations discussed in the book are treated several times. 
At each encounter, new methods or points of view deepen the appreciation of 
these fundamental examples. 

I have made a conscious effort to emphasize qualitative information about 
solutions, so that students can learn the features that distinguish various 
differential equations. Also the origins in applications are discussed in con­
junction with these properties. The interpretation of the properties of solu­
tions in physical and geometric terms generates many interesting ideas and 
questions. 

It is my impression that one learns more from trying the problems than 
from any other part of the course. Thus I plead with readers to attempt the 
problems. 

Let me point out some omissions. In Chapter 1, the Cauchy-Kowaleskaya 
Theorem is discussed, stated, and much applied, but the proof is only in­
dicated. Complete proofs can be found in many places, and it is my opinion 
that the techniques of proof are not as central as other things which can be 
presented in the time gained. The classical integration methods of Hamilton 
and Jacobi for nonlinear real scalar first-order equations are omitted entirely. 
My opinion is that when needed these should be presented along with sym-
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plectic geometry. There is a preponderance oflinear equations, at the expense 
of nonlinear equations. One of the main points for nonlinear equations is 
their differences with the linear. Clearly there is an order in which these things 
should be learned. If one includes the problems, a reasonable dose of nonlinear 
examples and phenomena are presented. With the exception of the elliptic 
theory, there is a strong preponderance of equations with constant coefficients, 
and especially Fourier transform techniques. The reason for this choice is that 
one can find detailed and interesting information without technical complex­
ity. In this way one learns the ideas of the theory of partial differential 
equations at minimal cost. In the process, many methods are introduced which 
work for variable coefficients and this is pointed out at the appropriate places. 

Compared to other texts with similar level and scope (those of Folland, 
Garabedian, John, and Treves are my favorites), the reader will find that the 
present treatment is more heavily weighted toward initial value problems. 
This, I confess, corresponds to my own preference. Many time-independent 
problems have their origin as steady states of such time-dependent problems 
and it is as such that they are presented here. 

A word about the references. Most are to textbooks, and I have system­
atically referred to the most recent editions and to English translations. As 
a result the dates do not give a good idea of the original publication dates. 
For results proved in the last 40 years, I have leaned toward citing the original 
papers to give the correct chronology. Classical results are usually credited 
without reference. 

I welcome comments, critiques, suggestions, corrections, etc. from users of 
this book, so that later editions may benefit from experience with the first. 

So many people have contributed in so many different way to my apprecia­
tion of partial differential equations that it is impossible to list and thank them 
all individually. However, specific influences on the structure ofthis book have 
been P.o. Lax and P. Garabedian from whom I took courses at the level of 
this book; Joel Smoller who teaches the same course in a different but related 
way; and Howard Shaw whose class notes saved me when my own lecture 
notes disappeared inside a moving van. The integration of problems into the 
flow of the text was much influenced by the Differential Topology text of 
Guillemin and Pollack. I have also benefited from having had exceptional 
students take this course and offer their criticism. In particular, I would like 
to thank Z. Xin whose solutions, corrections, and suggestions have greatly 
improved the problems. Chapters of a preliminary version of this text were 
read and criticized by M. Beals, lL. Joly, M. Reed, J. Smoller, M. Taylor, and 
M. Weinstein. Their advice has been very helpful. My colleagues and co­
workers in partial differential equations have taught me much and in many 
ways. I offer a hearty thank you to them all. 

The love, support, and tolerance of my family were essential for the writing 
of this book. The importance of these things to me extends far beyond 
professional productivity, and I offer my profound appreciation. 
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CHAPTER 1 

Power Series Methods 

§1.1. The Simplest Partial Differential Equation 

It takes a little time and a few basic examples to develop intuition. This is 
particularly true of the subject of partial differential equations which has 
an enormous variety of technique and phenomena within its confines. This 
section describes the simplest nontrivial partial differential equation 

ut(t, x) + cuAt, x) = 0, t, x E~, C E IC. (1) 

The equation is of first order, is linear with constant coefficients, and involves 
derivatives with respect to both variables. The unknow~ is a possibly complex 
valued function u of two real variables. This example reveals one of the 
fundamental dichotomies of the subject, the equation is hyperbolic if c E ~ 

and elliptic otherwise. The equation is radically different in these two cases in 
spite of the similar appearance. 

The use of "t" is meant to suggest time. One can use the equation to march 
forward in time as follows. Given u at time t, u(t, .), one can compute the value 
of 

and then advance the time using 

u(t + M, .) ~ u(t, .) + ult, . )Llt = (1 - cMox)u(t, '). (2) 

This marching algorithm suggests that the initial value problem or Cauchy 
problem is appropriate. Thus, given g(x) we seek u satisfying (1) and the initial 
condition 

u(O, .) = g(- ). (3) 

For g E C()(~) and n EN we may choose a time step Llt = lin and find 
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approximate values 

(4) 

Since the approximation (2) improves as ~t decreases to zero it is not un­
reasonable to think that as n, k ---+ r:JJ with kin = t fixed, the approximations 
on the right approach the values u(t, .) of a solution. 

With t = kin, (4) reads 

( tco )k 
u(t, .) ~ 1 -k-X. g(.). 

Letting k tend to infinity suggests the formal identity 

u(t, .) = exp( - ctox)g. 

(5) 

(6) 

For polynomial g, formally expanding the exponential and using Taylor's 
Theorem yields 

( _ ct)ngn(.) 
u(t, .) = I , = g(- - ct}. 

n. 
(7) 

It is easy to verify that for polynomial g, g(x - ct) is indeed a solution of the 
initial value problem and is also the limit of the approximations (4). In fact, 
if g is the restriction to IR of an analytic function on 11m xl < R, then one has 
convergence for It I < R/lcl to the solution g(x - ct). 

If c is real, then the formula g(x - ct) still provides a solution even when g 
does not have an analytic continuation to a neighborhood of the real axis. 
However, the approximations (5) will not converge if the derivatives of g grow 
faster than those of an analytic function. 

Finally, if c is complex then the formula suggests that g must have a natural 
extension from real to complex values of x in order for there to be a solution. 

The ideas suggested by the formal computations are next verified by ex­
amining the initial value problem (1), (3) following a different and easier route. 

For real c, the differential equation (1) asserts that the directional derivative 
of u in the direction (1, c) vanishes (Figure 1.1.1). Thus u E C1 (1R2) is a solution 
if and only if u is constant on each of the lines x - ct = constant. These lines, 
integral curves of the vector field a/at + co/ax, are called characteristic lines 
or rays. This observation yields the following result. 

Theorem 1. If c is real and g E C1(1R), there is a unique solution u E Cl(~2) to 
the initial value problem (1), (3). The solution is given by the formula u(t, x) = 

g(x - ct). If g E Ck(lR) with k > 1, then u E Ck(IR). 

The solution u represents undistorted wave propagation with speed c. The 
characteristic lines have slope dt/dx equal to l/c and speed dx/dt equal to c. 
The value of u at t, x is determined by g at x - ct. This illustrates the ideas of 
domain of determinacy and domain of irifluence. The domain of determinacy 
of t, x is the point (0, x - d) on the line t = 0. The domain of influence of the 
point (0, ~) on the initial line is the characteristic x - ct = ~ (Figure 1.1.2). 
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x - ct = const. 
a characteristic 
curve, or ray. 

c 

1 IL_ Direction of the V- derivative dl + Cdx 

------------~L----------f~------------------~x 

C 

domain of determinacy 
of (t, x) 

Figure 1.1.1 

(t, x) x - ct = x, the domain 
of influence ~ x 

------------~~------4_------~~----------~x 
x 

Figure 1.1.2 

3 
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Nearby initial data g yield nearby solutions u. A precise statement is that 
the map from g to u is continuous from Ck(JR) to Ck(JR 2 ) for any k ~ 1. The 
topology in the spaces Ck are defined by a countable family of seminorms. To 
avoid this complication at this time, consider data g which belong to BCk(JR), 
the set of Ck functions each of whose derivatives, of order less than or equal 
to k, is bounded on JR. This is a Banach space with norm 

BCk(JRd ) is defined similarly with 

For the solution of the initial value problem (1), (3) 

( d )i+k 
olo~u(t, x) = (-c)i dx g(x - ct). 

An immediate consequence is the following corollary. 

Corollary 2. For c E JR and k ~ 1 in N, the map from the Cauchy data g to the 
solution u of the initial value problem (1), (3) is continuous from BCk(JR) to 
BCk (JR 2 ). 

The case of imaginary c is quite different. In particular, the initial value 
problem is no longer well set. We analyze the case c = - i, leaving the case of 
general c E C\JR to the problems. 

Suppose 0 c JR2 is open and u E C1 (0) satisfies U t = iux . Identify 0 with a 
subset of C by 

x, tl-+X + it. 
The corresponding subset ofC is denoted O~> Define a functionf: Oc ~ C by 

f(x + it) == u(t, x). 

With z == x + it, we have 
of au 
ax - ax' 

of au .ou 
-=--=1-
at at ax' 

so 
of .of 
at = 1 ax· (8) 

Equation (8) is called the Cauchy-Riemann equation. In elementary function 
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theory one shows that the solutions, called holomorphic or analytic functions 
of Z = x + it, are infinitely differentiable. Moreover, if p E nc, then f is equal 
to the sum of a convergent power series in z - p, 

GO 

f = I an(z - p)n, Iz - pi < dist(p, and· 
n=O 

Differentiating term by term shows that the converse is also true, that is, 
convergent power series in z - p are solutions. 

Theorem 3. u E CI(n) satisfies u, - iux = ° if and only if it defines a holo­
morphic function on nco 

Next consider the initial value problem u, - iux = 0, u(O, .) = g. If there is 
a solution on a neighborhood of (0, J), then u is holomorphic. Thus 

u = I an(z - ~)n, 

so 
9 = I a.(x - ~)., 

is given by a convergent power series. Such a function is called real analytic. 
Conversely, if 9 is real analytic at ~ then the above formula defines u holo­
morphic near J + iO. 

Warning. If the an are complex, such real analytic functions need not be real 
valued. They are defined on a real domain, hence the name. 

Theorem 4. The initial value problem 

u(O, .) = g(- ), 

has a C 1 solution on a neighborhood of (0, ~) if and only if 9 is the restriction 
to IR of a holomorphic function defined on a neighborhood of ~, that is, if and 
only if 9 is real analytic at ~. 

As a consequence, we see that if 9 is COO but not real analytic at ~, then the 
approximation scheme 2, 4 cannot converge to a solution of the initial value 
problem on a neighborhood of (0, ~). It is not difficult to show that one does 
have convergence for real analytic g. 

Summary 

(i) For c E IR, the initial value problem is nicely solvable. 
(ii) For c E C\IR, u, + cUx = 0 has only real analytic solutions. The initial 

value problem is not solvable unless the data are real analytic. 
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(iii) For c E IR the equation is hyperbolic. For c E C\IR, it is elliptic. These 
terms will be defined later and describe two of the most important classes of 
partial differential equations. 

PROBLEMS 

1. If C E C\IR, 9 E C1(1R), then the initial value problem 

u, + cux = 0, u(O, x) = g(x), 

has a C1 solution on a neighborhood of the origin if and only if 9 is real analytic 
on a neighborhood of the origin. 

2. Prove that if C E IR and u is a C1(1R2) solution of the equation O,U + cOxu = 0, then 

{(t, x) E 1R2: u E Ck on a neighborhood of t, x} 

is a union of rays. 
DISCUSSION. This elementary result is typical. Solutions of partial differential equa­
tions inherit a great deal of structure from the equation they satisfy. This result 
asserts propagation oj singularities and propagation oj regularity along rays. 

3. Prove that if u E C"(1R2 ) satisfies O,U + cOxu = 0 with C real, and k is a nonnegative 
integer, then 

{(t, x): u vanishes to order k at (t, x)} 

is a union of rays. For any closed set r c 1R2 which is a union of rays, prove that 
there is a u as above such that r is exactly the set where u vanishes. 
DISCUSSION. Contrast this to the case where c is not real. Then, if a solution vanishes 
on any open set it must vanish identically. 

4. Show that for C E IR and J E C 1 (1R2) there is one and only one solution to the initial 
value problem 

u, + cUx =J, u(O, x) = o. 

Find a formula for the solution. Find an JE C 1(1R2) such that the solution is not in 
C2(1R2 ). 
DISCUSSION. This may be surprising since "first derivatives in C 1 indicate u E C2". 

However, the partial differential equation contains only a linear combination of 
first derivatives. Nevertheless, when C E C\IR the equation is elliptic and, in a sense, 
controls all derivatives. In that case, u, + cUx E COO implies that u E COO. Also u has 
one more derivative than u, + cUx , but not in the sense of the classical spaces Ck 

(see Propositions 2.4.5 and 5.9.1, and Problem 5.9.3). 

5. For the nonlinear initial value problem, 

u(O, x) = g(x), C E IR, 

show that if 9 E Co(IR), 9 not identically zero, there is a local solution u E COO 
( { - b < t < .5} x IR) but that the solution does not extend to a C" solution on all 
of 1R2. 
DISCUSSION. This blow-up of solutions is just like that for the nonlinear ordinary 
differential equation dy/dt = y2. Nonlinear partial differential equations have more 
subtle blow-up mechanisms too. See the formation of shocks discussed in §1.9. 
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§1.2. The Initial Value Problem for 
Ordinary Differential Equations 

7 

Many of the first steps in studying the initial value problem have direct 
ancestors in the theory of ordinary differential equations. For that reason, we 
begin with a quick review. Consider an ordinary differential equation of order 
m solved for the derivative of highest order 

dm ( duet) dm-1U(t») 
dt m U(t) = G t, U(t)'-di , ... , dtm=r- . (1) 

Simple examples from applications are the equation du/dt = au modeling 
radioactive decay if a < 0 and the Malthusian population explosion if a > o. 
Equally elementary is the equation of the damped spring 

mu" + au ' + k2u = 0, m, k > 0 and a z o. 
More generally, Newton's second law of motion reads 

mu" = G(t, u(t), u'(t», 

where we have supposed that the force on the particle at time t is determined 
by t and the position and velocity of the particle. A complicated example is 

u" = ((1 + t2)(U ')2)1/2. 

The equation for population growth or radioactive decay has solution u = 
u(O) exp(at) which is uniquely determined once the initial state is known. For 
Newton's law initial position and velocity are required. More generally, the 
correct initial value problem is the following. 

Cauchy Problem. Given un' u1, ... , Um - 1 E IR find a solution u to the ordinary 
differential equation (1) which satisfies the initial conditions 

dju 
dtj(O) = Uj' j = 0, 1, ... , m 1. (2) 

That it is reasonable to expect to determine u is indicated by the following 
calculation of Cauchy. Given the initial conditions one computes 

dmu 
dim (0) = G(O, uo, ... , Um - 1 ), 

thus, dVu/dt V(O) is determined for v :s:; m. Inductively, we determine all deriva­
tives at t = 0 as follows. 

Differentiate (1) k - m + 1 times to find 

dk+1u (d )k-m+l 
dtHT = dt G(t, u, ... , u(m-l). 

Using Leibniz' rule shows that the right-hand side is a function Gk(t, u, ... , U(k). 
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Suppose u(V)(O) is determined for v s k, k 2 m - 1. Setting t = ° determines 
U(k+l)(O) = Gk(O, u(O), ... , U(k)(O» completing the induction. 

Once u(V)(O) is determined for all v, then 

f (u(V)(O)) tV 

° v! 

is a good candidate for a solution if the series converges. At any rate, it is the 
Taylor series of any infinitely differentiable solution. 

EXAMPLE. Consider the initial value problem for a hard spring 

u" - u3 = 0, u(o) = 1, 

To find the Taylor series at t = 0, compute 

U(4) = (3u 2u')' = 6U(U ' )23u2U", 

t 2 3t4 

u;;::; 1 +- +- + .... 
2! 4! 

u'(O) = 0. 

@t=o, 

@t=O, 

@t=O, 

u"(O) = 1. 

ufll(O) = 0. 

u4 (0) = 3. 

Recall that a COX) function defined on an open set in [Hd is called real analytic, 
if on a neighborhood of every point it is equal to the sum of its Taylor series. 
We denote by CW(Q) the class of real analytic functions on Q. Since the Taylor 
expansion of a COO solution is uniquely determined, we have the following 
uniqueness result in the real analytic category. 

Theorem 1. !f G is infinitely differentiable, then the initial value problem (1), (2) 
can have at most one real analytic solution. 

EXAMPLE. If m = 1, G = G(t) E Co, but is not real analytic at t = 0, then 

du 
dt = G(t), u(O) = Uo, 

does not have a solution given by a convergent power series, since if it did 
then G(t) = du/dt would be given by a convergent power series. An example 
is given by 

{ 
-lit 

G(t) = e , 
0, 

t > 0, 

t S 0. 

Cauchy's algorithm yields u(v)(O) = ° for all v 2 0, so the Taylor series con­
verges but not to a solution. If one chooses G E COO with divergent Taylor 
series, then Cauchy's recipe will construct a divergent power series for u. For 
real analytic data, we state Cauchy's positive result. 
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Theorem 2 (Cauchy). If G is real analytic on a neighborhood of (0, uo, ... , um - l ), 
then the Taylor series computed above converges on a neighborhood of t = ° to 
a real analytic solution to the initial value problem (1), (2). 

A second approach to constructing a solution is to march forward in time 
in steps i1t == h, and then take the limit h -+ 0. More precisely, given h > 0, let 

n = 0,1, .... 

With h fixed we construct an approximation to u(nh). At the same time, we 
construct approximations to the derivatives u(v)(nh) for v = 1, 2, ... , m - 1. 
The notation U; is used for the approximation to uV(nh). The values of U;+1 
are computed from the values of U; according to Euler's scheme: 

v:O;; m- 2, 

The last expression comes from the approximation 

u(m)(nh) = G(tn, uO(nh), ... , um- 1 (nh)) ~ G(tn, UnO, ... , U:;-l). 

Note that to continue this process one needs to know that tn' Uno, ... , U:;-l 
remains in the domain of definition of G. Thus, the U may only be defined for 
a finite set of n. For h = i1t fixed, let gh(t) be the piecewise linear function which 
is linear on each interval [tn' tn+1]' and is equal to G(tn' Uno, ... , U:;-l) at time 
tno Then gh is an approximation to um(t). Let I: q[O, a) [ : IR) -+ CI([O, a) [ : IR) 
be the integration operator 

(If)(t) == I f(s) ds. 

A reasonable approximation for u is then 

m-l u(v)(O)t v 

uh(t) == I t + r(gh)' ° v. 

One hopes or expects that, as h tends to zero, lim uh(t) exists and gives a 
solution. Note that Uh is defined on an h-dependent interval, so part of this 
expressed optimism is that the interval does not shrink to {OJ as h decreases. 
In fact, all goes well. 

Existence Theorem 3 (Peano). If G E qO), then there exists T> ° and a 
sequence hn -+ ° such that, as n -+ a), uhJt) converges in Cm([O, T] : IR) to a 
solution of the initial value problem (1), (2). 

To guarantee uniqueness of solutions, G must be more regular. Lipshitz 
continuity as a function of its arguments is sufficient. 

Uniqueness Theorem 4 (Picard). Suppose 0 is an open neighborhood of 
(0, Uo, ... , um- l ) in IRm+1 and G E C l (0). If u and v E Cm( [0, T] : IR) are solutions 
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of the initial value problem (1), (2), then u = v provided that (t, u, u(l!, ... , u(m-1» 
and (t, v, v(l), ... , v(m-1» lie in Ofor 0 :$; t :$; T. 

Picard proved both existence and uniqueness in this setting by recasting 
the initial value problem in the form of a fixed point equation, Mu = u, where 
M is the operator 

m-1 UV(O)t V 
Mv(t) == L --+ ]m(G(t, v(t), ... , vrn - 1(t))). 

o v! 

Picard's proof marked a watershed in the theory of differential equations as 
it established existence and uniqueness in cases where no reasonable formula 
for a solution exists. His argument is a model for all later results. Existence is 
proved by demonstrating the convergence of a sequence of approximate 
solutions, called "Picard iterates". These are defined by Un+! == Mun. This idea, 
called fixed point iteration, is an effective numerical method, though for this 
initial value problem there are much better techniques. Picard's proof is now 
the industry standard and can be found in many texts on ordinary differential 
equations as well as in Picard's elegant Traite d'Analyse [P]. 

Euler's method relies on a finite difference replacement of the differential 
equation based on 

urn - 1(tn+!) - Urn - 1(tn) -1 
h ~ Um(tn) ~ G(tn' U(tn), ... , Um (t.», 

Ui(tn+1) - Ui(tn) ~ i+!(t) 
h - Un' j = 0, 1, ... , m - 2. 

Experience from §1.1 should have left you wary of such algorithms, but in this 
circumstance, it converges to a solution (see Problem 2). 

When G E et, the error in Euler's method is O(h) in em norm. Proofs can 
be found in texts on numerical analysis which address the approximate 
solution of ordinary differential equations. The best approximate methods are 
refinements of Euler's method. One can also find in such texts a discussion of 
fixed point iteration, as a method for solving linear and nonlinear equations. 

PROBLEMS 

1. Show that the initial value problem (U')2 - u2 = 0, u(O) = 1, has exactly two real 
analytic solutions on a neighborhood of t = O. 
DISCUSSION. This sort of problem, in the partial differential equations category, is 
the subject of § 1.4. 

2. For the two simple initial value problems 
(i) u' = g(t), u(O) = 0, 9 E C(IR), 

(ii) u' = u, u(O) = 1, 
verify that the approximations defined by Euler's scheme converge uniformly on 
[0, 1J to a solution. 
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§1.3. Power Series and the Initial Value Problem 
for Partial Differential Equations 

Our goal is to investigate through two examples the partial differential equa­
tion analogue of Cauchy's Theorem. The upshot is the theorem of Cauchy~ 
Kowaleskaya. 

EXAMPLE. Consider the initial value problem 

u(O, .) = g( . ), (1) 

which we know from §1.1 cannot be solved unless g is real analytic. Neverthe­
less, for any solution, the differential equation and initial condition determine 
%;u(O, 0) and therefore the Taylor series 

To see this, observe that 

'" %;u(O, 0) j k 
L., ., k' t x . J. . 

urt = ioxo,u = iOxiOxu, 

%;u = (iOJjo;u, 

( d )j+k 
%;u(O, 0) = ij ([;; g(O), 

ijgU+k)(O) . k 

u ~ L ., k' tJx. 
J. . 

The Taylor series for g is Igj(O)xj/j!. If it converges for Ixl s;; R, then 
Igi(O)IRj/j! s;; C. Thus, the series for u is dominated by 

(j + k)! I ~ Ij I :: Ik CI j! k! R R' 

In Problem 2, you are asked to prove that this series converges on a neighbor­
hood of (0,0), reproving the existence part of Theorem 1.1.4. 

Proposition 1. If g is real analytic at X, then the initial value problem (1) has a 
unique real analytic solution on a neighborhood of (0, X). 

Virtually the same argument works for u, + cUx = ° for any c E C. 
For partial differential equations there is a wide variety of "mixtures" of 

orders corresponding to the large number of distinct partial derivatives. Here 
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are some examples: 

u,x = 0, 

Utt + Uxxxx = 0, 

U, - Uxx = 0, 

Utt - Ux = 0, 

Laplace's equation, 

45° wave equation, 

linearized beam equation, 

heat equation, 

sideways heat equation. 

To make it easier to manage the bookkeeping of the possible partial deriva­
tives we use the multi-index notation of L. Schwartz. For a ENd, 

where O! == 1, 

EXAMPLES. 1. The most general partial derivative of order m is aa, lal = m. 
Equality of mixed partials is assumed here. 

2. The most general linear partial differential operator of order m with 
constant coefficients is 

The principal part, consisting ofterms of order exactly m, is the sum over terms 
with lal = m. 

3. Taylor's series in several variables takes the elegant form 

v'f(~)(x - ~)" 
f(x) '" I ~------. 

a! 

4. The most general partial derivative of order m in t and x is via: with 
j + lal = m.Equivalentiy,itis(o" vx )P withfJanN 1 +dmulti-indexwithlfJl = m. 

For a partial differential operator of order m in t, the derivatives which 
occur are vi a:, j s m. The highest time derivative possible is v,m. In analogy 
with equation (1.2.1), we begin by considering a partial differential equation 
which is solved for this highest derivative. The equation then takes the form 

V,m U = G(t, x, via:u;j s m - 1). (2) 

The notation means that G is a function of the variables t, x and the partial 
derivatives of order s m - 1 in t. 
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EXAMPLE. The operator u,x = ° is not of the form (2), but Ur = Uxx is. 

Proposition 2. If u is a smooth solution of a partial differential equation (2), then 
knowing 

a,'u(o, ·)=gv(·), v = 0, 1, ... , m - 1, 

on a neighborhood of ° E IR~ determines all the derivatives of u at (0, 0). 

PROOF. From the initial data compute a,Va;u(o, .) = a;g(·) for ° :s; v :s; m - 1. 
If k z m and or' a;u(O, .) is known for v :s; k - 1 and all a, then 

a,ka;u = ark-ma;(G(t, X, a!a;u;j:S; m - 1)) 

== Gka(t, X, a/O;u; j :s; k - 1). 

When t = 0, the arguments of Gka are known on an IR~ neighborhood of ° by 
the inductive hypothesis. D 

We have seen by example that: 

(1) For real analytic ordinary differential equations with real analytic data 
the Taylor series converges (Cauchy's Theorem). 

(2) For the same class of equations, the series need not converge if the data 
are not real analytic. 

(3) For (0, - iOJu = 0, real analytic data yields a series which converges. 

This leads naturally to the question: Does the Taylor series of u always 
converge if G and gv are real analytic? 

EXAMPLE (The Heat Equation). This is one of the fundamental partial differ­
ential equations of mathematical physics. In addition, it is the equation which 
guides our intuition about the class of parabolic equations. 

We begin by presenting a derivation based on physical arguments. Suppose 
Q c 1R3 is occupied by homogeneous (== local physical properties translation 
invariant), isotropic (== local physical properties invariant under rotations), 
materials like air, water, jello, steel, etc. Let u(t, x) denote the temperature at 
time t and place x E Q. The second important physical quantity is the heat 
current, l(t, x), which gives the direction and speed at which heat is flowing 
at the point (t, x). The interpretation of 1 is that the flux per unit time through 
a piece of surface I: is t l·n dA. 

Thus, the rate, per unit time, at which heat leaves a volume V is Jav 1· n dA. 
Using the Di',ergence Theorem yields 

Flux out of V = f 1· n dA = f div 1 dx. 
av v 
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Two simple physical laws lead to an equation of motion for u. 
The first fundamental law asserts that heat flows from hot to cold at a rate 

proportional to the temperature gradient. Thus the vector heat current is given 
by 

1 == heat current = - k gradx u. 

The proportionality constant is called the heat conductivity. 
The second law expresses the idea that a small volume, bV, of material heats 

up by an amount proportional to the quantity of heat which flows into it 

c ou IbVI '" rate at which heat flows into bV, ot 
where c is called the heat capacity per unit volume. The error in this approxima­
tion is no larger than 

c( o~c ~~}bVI = o(1)lbVI 

as the size of the b V tends to zero. Summing over small volumes comprising 
V yields 

-Iv c ~~ dx = rate at which heat flows out of V. 

Using our expression for the flux out of V yields 

Iv ( div 1 + c ~~) dx = ° 
for all nice subsets V c Q. It follows that we must have cotu = -div 1 
throughout Q. Using the formula for 1 yields 

c ~~ = div(k grad u). 

If k is constant this simplifies to 

02U 
CUt = k L !l2 == kAu. 

UXj 

Thus with v == klc, we have Ut = vAu. 
In many problems the hypothesis that c and k are constant is quite good. 

In others they may depend on t, x, u or even the derivatives of u or the values 
of u in the past (materials with memory). In any event, the case v = constant 
is the starting point for any analysis. 

The heat equation is not only of intrinsic interest but it serves as a test case 
for the question raised above. Consider the one-dimensional heat equation 
which is the equation for solutions u which do not depend on y, z, namely, 
Ut = vUxx , X E lit The initial condition is u(O, .) = g. The derivatives of u at 
t = ° are computed as follows: 

u t = vUxx , 

Utt = vUxxt = V2uxxxx, 

@t=o, 

@t=O, 

= vgxx' 
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The Taylor expansion is 

u ~ L (va;~t(a~)hg(~tit(x - xY2 • 

h!)Z! 

This will usually not converge even if 9 has convergent Taylor series. The cause 
of the problem is that the coefficient of the jth power of t contains a derivative 
of order 2j of g. Problem 4 gives an example. 

We have seen two "obstructions" to convergence: 

(1) If either G or gj is not real analytic, then the series need not converge. 
(2) If the partial differential equation is not of highest order in ap that is, arm 

is not the highest-order derivative that occurs, then the series may not 
converge. 

If neither obstruction is present, the series does converge. This is the celebrated 
theorem of Cauchy-Kowaleskaya. The theorem concerns the initial value 
problem 

{a,~u = G(t, x, a/a;u; ° ~j ~ m - l,j + lal ~ m), 

a/u(O, :) = g)"), ° ~ j ~ m - 1. 
(3) 

Theorem 3 (Cauchy-Kowaleskaya). Suppose that gj is real analytic on a 
neighborhood of ~ E IR~ and that G is real analytic on a neighborhood of 

(O,~, a/a;g)x);j ~ m - l,j + lal ~ m). 

Then there is a real analytic solution to (3) defined on an IR, x IR~ neighborhood 
of (0, ~). The solution is unique in the sense that if u and v are real analytic 
solutions of (3) defined on a connected neighborhood of (0, ~), then u = v. 

PROOF. We have seen that (3) determines all the derivatives at (0, ~) of any 
solution. Thus, two real analytic solutions must agree to infinite order at (0, ~, 
and therefore must agree on any connected open set containing (0, ~) on which 
they are real analytic. 

For the existence proof, one shows that the Taylor series computed above 
converges. Cauchy's method of majorants yields an elegant though lengthy 
proof. See the texts of Folland [Fo], Garabedian [Gara] , or John [J] for 
details. The method of proof is, in my opinion, atypical within partial differ­
ential equations and if one is forced to omit things from a short introduction 
here is one place to start. 0 

EXAMPLES. The theorem applies to the first four equations but not to the last 
two: 

u, + iux = 0, 

Utt + Au = 0, 

U tt - Au = 0, 

Cauchy-Riemann equation, 

Laplace equation, 

wave equation, 
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sideways heat equation, 

heat equation, 

linearized beam equation. 

PROBLEMS 

1. Prove the following elegant identities involving multi-index notation: 

2. For Ut - iu x = 0, ufO, .) = g('), 9 real analytic at zero, the Taylor series for u was 
dominated by 

c L: SL~_~t (Bt)i(Bx)k. 
j! k! 

Show that this power series converges on a neighborhood of (0, 0). Prove that u, 
given by its convergent Taylor series, solves the initial value problem. 

3. Consider the heat equation, ut = vU xxo V > 0, with initial value g(x), a polynomial 
in x. Show that the Taylor series solution u has radius of convergence R = 00. Show 
that for each t, u is a polynomial in x. Is u polynomial in t? 

4. For the heat equation, u, = vuxxo V > 0, with real analytic initial data g(x) = 1/(1 - ix), 
show that the Taylor series 

L: (at. x)"u(O, 0)( t, x)" 
~---- ~-~---, rJ.E N x N, 

converges for no t, x with t # 0. 

5. Suppose that p(a" aJ = a,m + L:Aiax)a,m-i where the A's are constant coefficient 
differential operators of any order. Generalizing Problem 3, show that if gix) is a 
polynomial in x for ° s, j s, m - 1, then the initial value problem Pu = 0, 
a/ufO, .) = g)'), j s, m 1, has a unique real analytic solution u defined on all of 
IR, x IR~. Is u polynomial in t? 
DISCUSSION. If P is of order higher than m, then this solution will not be unique in 
the CX) category (see Problems 1.7.1 and 1.7.2, and §3.9). This is in contrast to 
Holmgren's Theorem to be studied shortly. 

6. Use the Cauchy~Kowaleskaya Theorem to show that the initial value problem 

u,ux =f(t, x, u), ufO, x) = g(x), 

has a real analytic solution on a neighborhood of (0, 0), provided that f is real 
analytic on a neighborhood of (0, 0, g(O)) and 9 is real analytic on a neighborhood 
of 0, and g' (0) # 0. 

Construct an example with g'(O) = 0, g"(O) # 0, 9 and f real analytic, and such 
that the initial value problem does not have even a C1 solution on a neighborhood 
of (0,0). 
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7. Show that if the initial value problem u" + uxx = 0, u(O, .) = 0, u,(O, .) = f('), has 
a C2 solution on a neighborhood of (0,0), then f and u must be real analytic on a 
neighborhood of (0,0). Hint. Use the Schwarz reflection principle and the fact that 
harmonic functions are real analytic. For harmonic functions on [R2, this can be 
proved by constructing a harmonic conjugate v satisfying dv = u, dx - Ux dt. Then 
u + iv is a holomorphic function of x + it, so its real part is CWo 

§1.4. The Fully Nonlinear Cauchy-Kowaleskaya 
Theorem 

The previous section was devoted to the Cauchy problem for nonlinear 
equations of order m which are solved for atm in the sense of(1.3.2). The general 
case presents some additional phenomena. 

EXAMPLE. For t, x E IR x IR, consider the initial value problem 

u; + u~ = 1, u(O, .) = g(' ) real valued. 

First, observe that at t = ° 
u,(O, Y = 1 - g~(- ). (1) 

If one seeks a real valued solution one must have Ig'l s 1. For complex 
solutions this constraint is not needed. 

Second, note that (1) does not determine Ut. For ut(O,O) there are two 
possibilities 

U/o, 0) = ±(1 - gx(0)2)1/2. 

Once the value of ut(O, 0) is chosen the rest follows, since near (0, 0) one solves 

u; + u~ = 1, 

uniquely by 

Ut = ±(l - U~)1/2, ± following the choice at (0, 0). 

Then the Cauchy-Kowaleskaya Theorem of the last section applies pro'loided 
(gx)2 #- 1. One finds two solutions. They are real if Ig'(O)1 < 1. 

Consider next the general nonlinear equation of order m, where the deriva­
tive arm plays a distinguished role 

F(t, x, atu, a/a;u;j s m - 1,j + IIXI s m) = 0. (2) 

Once a/u(O, ~) = gj(i) for j S m - 1 are known, atu(i) must be determined 
by solving the nonlinear equation 

F(t, x, atu, a;gj) = 0. 

As in the above example, there may be several solutions. Suppose that y is a 
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solution at (0, ~) 
(3) 

To solve (2) for o,mu with o,mu ~ y near (0, S, the Implicit Function Theorem 
shows that if 

(4) 

then for t, x ~ 0, ~ and o,mu ~ y, (2) is equivalent to 

OtmU = G(t, x, o!o;u;j:::;; m - l,j + lal :::;;m) 

with G real analytic if F is. The result of the last section immediately gives the 
fully nonlinear version of the Cauchy-Kowaleskaya Theorem. 

Theorem 1 (Cauchy-Kowaleskaya). Suppose that F and gj are real analytic 
near (o,~, y, o;gj(~)) and ~, respectively, and that y is a solution of (3). If in 
addition (4) is satisfied, then, on a neighborhood of (0, S, there is a real analytic 
solution u to (1) with 

O/u(O, .) = g(.), O:::;;j:::;;m-l, 

and 
(5) 

Two such solutions defined on a connected neighborhood of (0, ~) must be equal. 

The condition of/o(otmu) (0, x, Otmu(O, x), O/Ot\u(O, x)) -# ° is very impor­
tant. When it holds we say that the surface t = ° is noncharacteristic at (0, x) 
on the solution u of the partial differential equation F = 0. 

The rest of this section is devoted to discussing several interpretations of 
this condition. 

EXAMPLES. 1. For the equation xUt = u~, the surface t = ° is noncharacteris­
tic at all points (0, x), x -# 0. 

2. For the equation u; = u~, the surface t = ° is noncharacteristic on the 
solution u at all x such that ut(O, x) -# 0. 

3. For the equation uUt = u~, the surface t = ° is noncharacteristic at (0, x) 
on the solution u if and only if u(O, x) -# 0. 

4. If F is a linear partial differential operator 

F = L aj.a(t, x)o;o!u - f(t, x). 
lal+ j,;m 

Then of/o(o,mu) = am.o(t, x) the coefficient of 0tm, and 

F = am.o(t, x)o,m + terms lower order in at. 
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non characteristic 

characteristic at x 

Figure 1.4.1 

The noncharacteristic condition is then that am. 0(0, x) #- 0, in which case it is 
obvious that one can solve for ot. In the linear case, the condition depends 
only on the equation and not on the solution. No Implicit Function Theorem 
is needed. 

5. Even more special is when F is linear and of order m = 1, 

F = aOotu + L aAu + bu - f(t, x). 

The noncharacteristic condition is ao #- O. If ao, ai are real, this is equivalent 
to the condition that the vector field aoot + Laioi is transverse to {t = O} 
(Figure 1.4.1). 

In the real noncharacteristic case, we can find Ck solutions of the initial value 
problem 

F = aootu + L aioiu + bu - f(t, x) = 0, 

u(O, .) = g(-), 

for arbitrary f, g E Ck, k :2': 1. The proof is by integrating along the integral 
curves of aoot + L aA. These are the characteristic curves and this is a simple 
case of the method of characteristics, generalizing the analysis of §1.1. 

In the complex case, for example, Ot - iox , we have seen in §1.1 that real 
analyticity is indispensable for the solution of the initial value problem. 

The surface t = 0 is characteristic at (0, x) if and only if ao = O. In that 
case, the partial differential operator involves only differentiations par­
allel to the initial surface. The differential equation, restricted to t = 0, 
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yields 
L aioig + bg = f, 

which is a condition on the initial data for solvability. The partial differential 
equation together with the Cauchy data do not determine Otu(O, .), so that 
you cannot march forward in time. 

The noncharacteristic condition takes an elegant form in terms of the 
linearization of Fat u. For simplicity of notation incorporate the time variable 
in x, thus x = (Xo, Xl' ... , Xd) with Xo == t. The differential equation (2) takes 
the form F(x, ofJu; IPI s m) = O. Seek a solution u + c5u close to a given solu­
tion u. Taylor's Theorem yields 

of 
F(x, ofJ(u + c5u» = F(x, oliu) + I o(oau) oa(c5u) + O((c5U)2). 

Let 
_ of Ii 

aa(x) = o(oau) (x, 0 u(x)). (6) 

We are led to the equation P(c5u) = 0, where P = Laa(x)oa is the linear 
operator with coefficients aa' 

Definition. If F(x, oPu; IPI s m) = 0, the linearization of F at u is the linear 
partial differential operator P(x, 0) == L aa(x)oa. 

If P(x, o)v = 0, then 

and 

Thus u + eV satisfies the equation F = 0 to first order. Equivalently, u + ev 
is a solution in first-order perturbation theory (see also Problem 1). The 
equation Pv = 0 is sometimes called the equation of variation or perturbation 
equation. 

These ideas are now illustrated with the in viscid Burgers equation 

This equation, for real valued u, arises in the study of the motion of fluids of 
very small viscosity. Air and water have small viscosity compared to honey 
and molasses. The linearization is the partial differential operator P defined 
by Pv = (at + uOx + ux)v (Problem 2). 

Suppose that g is a solution of the in viscid Burgers equation, and consider 
the perturbed initial value problem 

u(O, x) = g(O, x) + ecp(X), 

then a first approximation is given by g + ev where v satisfies the pertubation 
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sound wave U + E<.p(X - et) 
on background 
field y. = e 

equation 

u 

Figure 1.4.2 

v(O, x) = <p(x). 

21 

~ x 

This linear equation is much simpler than the nonlinear Burgers equation. In 
fact, along each integral curve of the vector field, Ot + uOx , it is a linear ordinary 
differential equation for v. 

F or example, if ./"/ = c E 1R1, then the perturbation equation is exactly the 
simple equation P, + cVx = 0 from §1.1 and v = <p(x - et). To first order in 
[;, small perturbations of real constant solutions are rigidly propagated at 
speed e. These small linearly propagating disturbances are called sound waves 
(Figure 1.4.2). Eventually, nonlinear effects predominate and this Iineared 
approximation is inappropriate. 

If u is a solution of the inviscid Burgers equation, then a C 1 curve r is 
characteristic at pEr if and only if the vector field or + uOx is tangent to r at 
p. r is called a characteristic curve if it is characteristic at all points. These are 
the same curves along which v, from the previous paragraph, satisfied an 
ordinary differential equation. They will reappear in § 1.6. 

F or such a curve, the differential equation Ut + uUx = 0 implies that u is 
constant on all components of r. Suppose that r is connected. The vector 
field Ot + uax is then constant along r and also tangent to r which implies 
that r is a straight-line segment. These remarks will permit us to describe 
nonlinear effects alluded to two paragraphs back (see § 1.9). . 

The last two conditions of the next theorem give coordinate invariant 
versions of the non characteristic condition. 

Theorem 2. The fol/owing are equivalent: 

(i) {t = O} is noncharacteristic at (0, i)for the solution u to F(x, oPu; IPI :-::; m) = O. 
(ii) {t = O} is noncharacteristic at (0, ~) for the linearization of Fat u. 
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(iii) For any junction I/I(t, x) with 1/1(0, x) = 0, for x near ,x; and a(I/I(O, ,x;) -# 0, the 
linearization P(x, a) satisfies p(l/Im) -# 0 at (0, ,x;). 

(iv) For any 1/1 as in (iii) 
e-iAl/Ip(x a)(e iAlji ) 

lim ----~-;'m~----- (0, ,x;) -# O. (7) 
).-.-.Jo+oc' A 

PROOF. Since the coefficient of at in the linearization is am,o = aFja(atu), the 
equivalence of (i) and (ii) is immediate. 

Since 0/(1/1(0, . t) = 0 ifj S m - 1, we have 

pl/lm = m! am,o(l/It(O, . »rn. (8) 

The equivalence (ii) <0> (iii) follows. 
Finally, 

P( iAI/I)_('O)miAI/l" _I,i(_I, _I,)~ o('rn-l) e - Iii. e L.. aj,a'!'t '!'x,' ••• , '!'Xd + 1'. • 

i+I~I=m 

For our 1/1 all the I/IXi = 0 at (0, ,x;), whence 

P(ei).I/I)(O, x) = (iATeiAl/lam,o(O, x)l/It(O, x)m + O(A m-l). (9) 

The equivalence of the previous conditions with (iv) follows. 0 

The formulas (8), (9) show that if (iii) or (iv) holds for one such 1/1, then it 
holds for all of them. 

PROBLEMS 

1. Suppose that I is an interval in IR, ° E I, and that u(a, x) is a smooth one-parameter 
family of solutions of F(x, il!u; 1131 S m) = 0, that is, F(x, atu(a, xl) = ° for all a E I. 
Let P be the linearization of Fat ufO, .) and let v = ilu/ ila(O, '). Prove that Pv = 0. 
DISCUSSION. Since u(a, x) = ufO, x) + av + 0(0'2), we see for the second time that 
the linearization describes first-order changes in solutions of F(x, il!u) = 0. 

2. Show that the linearizations of u, + uUx = ° and Ut + (ux)2 = ° are Pv = il,v + 
uilxv + uxv and Pv = a,v + 2uxaxv, respectively. 

3. Consider again the initial value problem u, + uUx = 0, u(O, x) = C + Ecp(X). We 
found !:! + f,V which satisfied the initial condition and u, + uUx = o(e). Find a 
corrected expansion!:! + LV + c2w which improves the error to 0(£2). Hint. Plug 
!:! + ev + e2w into the equation and set leading terms in E equal to zero. This gives 
an independent derivation of the perturbation equation at the same time. 
DISCUSSION. This is an example of higher order perturbation theory. 

§1.5. Cauchy-Kowaleskaya with 
General Initial Surfaces 

In many situations, initial value problems are natural but a distinguished time 
variable t is not available. For example, the wave operator 05 - of - oi - o~ 
is Lorentz invariant (§4.6 begins with a discussion of invariant operators). 
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Here, planes 2: aixi = 0 are candidates for initial hypersurfaces with corre­
sponding time variable t = 2: aixi. All planes with a~ - ai - a~ - a~ > 0 are 
equivalent by Lorentz transformations. The principle of special relativity 
implies that all such time functions should be treated on an equal footing. 
For nonlinear t(xo, ... , x 3 ), the condition becomes (oot)2 - (01t)2 - (02t)2-
(03 t)2 > 0, and the equivalence of all such is in the spirit of general relativity. 

Another example arises in searching for isometric embeddings M2 --+ [R3 

of a Riemanian two-manifold M of negative scalar curvature (Spivak, [Sp]). 
One solves an "initial" value problem on the manifold but there is no natural 
time variable or initial curve. These examples suggest the importance of the 
following. 

Problem. For a partial differential equation of order m 

F(x, oau; I~I s m) = 0, (1) 

and a smooth hypersurface, L in [R~ study the Cauchy problem with initial 
data given on L. 

As one no longer has a time, t, it is no longer reasonable to prescribe oiu, 
o s j s m - 1. If there were a distinguished variable t, the data oiu(O, .) = 

gj( . ), 0 s j s m - 1, would determine all derivatives of u of order s m - 1. 
Thus one could hope to give as data all derivatives of u up to order m - 1 
along the surface L. However, the functions oaulI: = ga are not independent. 
There are compatibility conditions. For example, if L = {Xl = O} and ~ = 

(0, ~2' •.. , ~n) and I~ + PI s m - 1, then oa(opu II:) = oa+Pu II:' 
A common formulation of the Cauchy problem involving the "normal 

derivatives" (%nYu I I: is not correct (see Problem 1). 
A good way to account automatically for the compatibility relations among 

the derivatives is to ask that the derivatives of u be equal to the derivatives of 
a given function. 

Given an m - 1 times differentiable function v defined on a neigh­
borhood of L, find a solution u to (1) such that 

oau = oav on L for alll~1 s m - 1. (2) 

Knowing all the derivatives of order s m - 1 determines all but one of 
the derivatives of order sm. If L = {Xl = O} the missing derivative is o;'u. 
For nonlinear problems, one must supply that additional derivative at one 
point ofL as in the Cauchy-Kowaleskaya Theorem (1.4.1). The general case 
follows that pattern once the notion of noncharacteristic is defined. 

Definition. The linearization of F at a solution u to F(x, oPu; IPI s m) = 0 is 
the linear operator 

_ of P 
aa(x) = o(oau) (x, a u(x». 

Definition. If F(x, aPu(X); IPI s m) = 0, then the hyper surface L is nonchar­
acteristic for F on u at X, if and only if the following equivalent conditions hold: 
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(A) For any real valued C OCl function t/J defined on a neighborhood of x with 
t/JII; = 0, dt/JII; i= 0, we have pt/Jm(X) i= O. 

(B) For any t/J as in (A) 

Remarks. 1. dt/J = iJat/J/ax) dXj is the differential oft/J. 

2. If (A) or (B) holds for one t/J it hold for any such (exercise). 

3. To check if Lis noncharacteristic at x it is sufficient to know a"u(X), for 
allial ~ m. One does not need to know u on a neighborhood of x. 

4. In the special case L = {t = O}, (A) and (B) become conditions (iii) and 
(iv) of Theorem 1.4.2. 

Theorem 1. Suppose that: 

(1) x E L C [R~ and L is a real analytic hypersurface; 
(2) v is real analytic on a neighborhood of X E [Rd, and that F(x, apv(x» = 0 

for x in L; . 
(3) L is noncharacteristic for F on v at x; 
(4) F is real analytic on a neighborhood of (x, aPv(X). 

Then there is a u, real analytic on a neighborhood n of x, such that 

F(x, a"u(x» = 0 in n, 
a"uiI:nn = a"vl Inn for all lal ~ m - 1, 

a"u(X) = o"v(X) for all lal = m, 

Two such solutions defined on a connected neighborhood of x must be equal. 

PROOF. Introduce new real analytic variables so that L = {t = O}. Theorem 
1.4.1 immediately implies the above result, once one notes that the hypotheses 
of Theorem 1 are expressed in a coordinate independent way, and that they 
reduce to the hypotheses of Theorem 1.4.1 incoordinatessothatL = {t = O}. 

PROBLEMS 

It is common to pose the Cauchy problem as follows: 

Find a function u such that 

F(x, apu) = 0, (~)ju = g. on L, 
an ) Osjsm-l, 

where gj are given functions on L, and a/an = I ni(x) a/ax, is the derivative 
in the direction of the unit normal to L. 

o 
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There are two serious problems with this formulation. First, in order to choose a 
normal along I:, one needs a Riemannian metric. More telling is that, even in the 
Riemannian case, (ajan)2 is not meaningful. To see this, note that 

(I ni(x)ajax;)(I ni(X)ajaxi)u 

involves all of the partials of n(x). As n is defined only on I:, only tangential derivatives 
exist. Thus for some j, anjaxj is not meaningful. One solutions is to extend the nix) so 
as to define a vector field on a neighborhood ofI:. The results depend on the extension. 

1. Construct an example showing that the value of (ajan)2u may be different for 
different extensions. 

A way to avoid both difficulties is to drop the idea of normal derivatives and settle 
for differentiations transverse to I: (that is, nowhere tangent to I:). This leads to the 
following formulation of the Cauchy problem. 

Given V, a smooth vector field defined on a neighborhood of (and transverse 
to) I:, find a function u such that 

F(x, apu) = 0, O:O:;j:o:;m-1. 

The next problem shows that this formulation is equivalent to prescribing consistently 
all derivatives of order :0:; m - 1. The present formulation is more appealing geometri­
cally, but requires a choice of V which is not canonical. 

2. Given x E I: and gj E COO (w), 0:0:; j :0:; m - 1, weI: a neighborhood of x, prove that 
there is a smooth v defined on a an [Rd neighborhood of x so that (VYv = gj 

on I: (\ a, 0 < j < m - 1. Show that the gj determine all the derivatives of v up to 
order m - 1 by proving that if w is a second such function, then a·(v - w) = 0 on 
I: (\ a whenever lal :0:; m - 1. 

3. Suppose that P(x, a) is a linear partial differential operator with coefficients a.(x) 
real analytic on a neighborhood of ~. Suppose, in addition, that the principal part 
at ~, II.I~m a.(~)a·, is nonzero. Prove that for any f(x) real analytic on a neighbor­
hood of ~, there is a possibly smaller neighborhood a of ~ and U E CW(a) such that 
Pu = fin a. Hint. Show that there is a hyperplane which is noncharacteristic at~, 
then solve an initial value problem. 
DISCUSSION. This result shows that linear P are locally solvable in the real analytic 
category. In particular, this shows that there is no obstruction to the solvability of 
Pu = f comparable, for example, to the condition dy = 0 as the solvability condition 
of dw = y. 

It came as a surprise to the mathematical community when H. Lewy found, in 1956, 
a P as above, such that Pu = f is not locally solvable at ~ for most f E cro (see 
Garabedian [Gara] or Folland [Fo]). 

§1.6. The Symbol of a Differential Operator 

Given a solution of a nonlinear partial differential equation F(x, aPu; IPI s 
m) = 0, we have seen how to associate an mth order linear operator, the 
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linearization of F at u. The recipe is 

P(x, a) = L a~(x)a~, 
_ aF fJ 

aa(x) - a(aau) (x, a u(x». 

To P(x, a) we associate a function P(x, i~) of x and ~ E Cd, by replacing 
(a1> ... , ad) by (i~ 1, ... , i~d)' 

P(x, iO = L aa(x)(i~)~. 
The function P(x, i~) is called the complete symbol of the differential operator 
P(x, a). It is a polynomial in ~ of degree m whose coefficients depend on x. The 
regularity of the coefficients depends on the regularity of F and u. The reason 
for the i will be clear later. Let 

Definition. The principal symbol of P = L a~(x)Da is the function 

Pm(x, ~) == L aa(x)~~, 
lal=m 

Pm is a homogeneous polynomial of degree m in ~. One of the basic themes in 
partial differential equations is to associate properties of the operator P(x, D) 
with algebraic/geometric properties ofthe symbols of P which can in principle 
be verified. 

Examples of Symbols 

Operator 

0, + COx 

ll.x 
011 -ll.x 
0, -ll.x 

Principal symbol 

it + ic~ 
-~i - ~~ - ... - ~~ 
_,2 + ~i + ... + ~~ 
~i + ... + ~~ 

In proving Theorem 1.4.2(iv), we evaluated D~ei)'"" noting that to get highest 
order in A the derivatives must all fall on the exponent. Thus, for smooth real cp, 

D~ei)'", = AI~lei)'", (-~cp , ... ,~!)~ + O(AI~I-l). 
UX 1 aXd 

This yields the fundamental asymptotic expansion. 
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Theorem 1 (Fundamental Asymptotic Expansion). If qJ is a smooth real valued 
function, then as 1)01 ~ 00 

-iAtpP( D) iAtp _ 1 mp (OqJ OqJ) O( 1 m-l) e x, e - /!. m x, OX
l 

' .•• , OX
d 

+ /!. 

= ;.mPm(X, dqJ) + o(;.m-l). 
(1) 

This result shows that the principal symbol is particularly important when 
considering highly oscillatory functions. 

In new coordinates, y = Y(X) with inverse x = X(y), a linear partial differen­
tial operator in Ox is transformed to a linear partial differential operator in oy­
Precisely, if u is a function of x, then u(y) == u(X(y)) is the corresponding 
function of y. Similarly, (Pu) 0 X is the function of y corresponding to Pu. Thus 
the operator P viewed in the y coordinates is the map sending u 0 X to 
(Pu) 0 X. For example, the operator OJ viewed in the y variables is given by 
the familiar law 

o _ L 0Yk 0 
oXj - oXj °Yk· 

It follows that the map P viewed in the y variables is a differential operator 
which we denote by P(y, Dy). 

EXAMPLE. d == of + oi in polar coordinates r, :; is equal to 

1 1 
-Orror +2:°:;,9. 
r r 

The relation between P and P is 
(P(x, Dx)u) 0 X = P(Y, Dy)(u 0 X). (2) 

Many interesting analytic properties of P have expressions which are in­
dependent of coordinates. For example, 

"The Cauchy problem with data on I: is solvable." 
"All solutions of Pu = 0 are CCO." 

If we expect that these correspond to properties of the symbol, then the symbol 
itself should have reasonable transformation properties under change of co­
ordinates. A natural question is What is the relation between the symbol of 
the transformed operator and that of the original? Using formula (1) for 
Pm(x, dqJ) yields 

. e-iAtp(x) P(x, D)eiAtp(x) 
p (x d qJ) = ltm . . . ..... -

m 'x ..\-00 A. m ' 
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Equation (2), applied with u = eiJ.."" shows that the right-hand sides are equal at 
corresponding points x and Y(x). We next interpret this important conclusion. 

The differential dcp = I (ocp/oxj ) dXj is a one-form. Equivalently, 
(ocp/ox 1 (x), ... , ocp/oxAx)) transforms as a covector, that is, an element of the 
dual, T/(lRd ), of the tangent space TAlRd ). This part of advanced calculus is 
sometimes unfamiliar. Here is a brief exposition (see Spivak [Sp] or Loomis 
and Sternberg [LS] for detailed treatment). The goal is a geometric foundation 
for differential calculus so that invariants under nonlinear coordinate changes 
are easily recognized. 

A tangent vector v to IRd at x (i.e. v E TAlRd )) is visualized as a vector with 
tail at x and/or as the tangent vector to a curve passing through x. The set of 
all tangent vectors at x is called the tangent space at x and is denoted TAlRd ). 

The set of all pairs x, v with v E TAlRd ) is the tangent bundle T(lRd ). Under a 
change of coordinates, y = Y(x), v is transformed to the vector Y*v = Y'(x)v 
with tail at Y(x), that is, Y*v E Yy(x)(lRd ). Here Y' is the Jacobian matrix oyjOXj 
of Y. The map x, v I--> y, Y* v is the transformation law for tangent vectors. If 
y(t) is a curve with y(O) = x, y'(O) = v, then Y(y(t))' 1,=0 = Y*v is tangent to the 
curve Yo y corresponding to y (Figure 1.6.1). 

x 

1(1) Y = Y(x) 
~ 

~ 
x= X(y) 

x·space 

Figure 1.6.1 

y-space 

The differential of cp acts on tangent vectors by dcp(x)(v) = '2)ocp(x)/dx)vj = 

dcp(y(t))/dt I 1=0' One can think of this as measuring the rate at which y(t) or 
the vector v at x cuts the level surfaces of cp (Figure 1.6.2). The fact that dcp 
transforms as a one-form means that computing dcp in x coordinates on v 
gives the same answer as computing dcp in y coordinates on Y*v. This is clear 
from the level surface interpretation. More formally, one has dcp(x)(v) = 
dq>(y(x))(Y*v) where q> == cp 0 X denotes the function corresponding to cp in 
the y coordinates. Written out, the identity is 

This can be verified by brute calculation using the chain rule. Alternatively, 
note that cp(y(t)) = q>( Y(y(t)). Differentiating with respect to t aU = 0 proves it. 

The set of all points ~ in the dual of the vector space TAlRd ) is called the 
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Figure 1.6.2 

d'P(x)(w) >d'P(x) v. in fact 

d'P(x)(w) ~ 0.25 

d'P(x)(w) ~ 0.7 

'P = 1 

'P = .5 

29 

'P = 2.5 

cotangent space at x and is denoted Tx*(~d). An element ~ E Tx*(~d) can be 
visualized by imagining the level sets of ~ which are a family of parallel 
hypersurfaces in TA~d) given by the equations ~(v) = const. Then ~(v) "counts 
the number oflevel surfaces cut by v." The set of all pairs x, ~ with ~ E J:*(~d) 
is called the cotangent bundle T*(~d). The computations of the previous 
paragraph show that the pair x, dcp(x) transforms as an element of the 
cotangent bundle. 

Just as the functions u, l~ take the same value at corresponding points x and 
y, we have shown that the principal symbols of P and P take on the same 
values at x, dxcp(x) and y, d/p(y) which are corresponding points of the 
cotangent bundle T*(~d). This proves the following theorem. 

Theorem 2. If P = P(x, D) is a linear partial differential operator defined in n, 
then its principal symbol Pm is a well-defined function on the cotangent bundle, 
T*(n). 

To find Pm(x, ~) for X, ~ E T*(n), one need only choose a real valued cp with 
dcp(X) = ~. Then 

Note that this recipe does not depend on the particular coordinate system. 
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Problem 4 shows that the full symbol, P(x, 0, is not a function on the 
cotangent bundle, T*(Q). 

The condition for a hypersurface l: to be noncharacteristic takes an elegant 
form in this invariant setting. Toward this end, recall a little geometry. If l: is 
a smooth hypersurface in /Rd, then Txl: c TA/Rd ) is the set of vectors tangent 
to l: at x. It is a d - 1 dimensional subspace called the tangent space to l: at 
x. Unless one chooses a scalar product, there is no natural notion of normal 
vector. On the other hand, there is a canonically defined conormal space. 

The idea is the following. If W is a linear subspace of a vector space V then 
the conormal space to W, denoted N*(W), is defined by 

N*(W) == {t E V': trw) = ° for all WE W}. 

N* is the annihilator of W in the dual space V'. From the definition it follows 
that dim(N*(W» = dim(V} - dim(W) == codim(W). 

The conormal variety to l: at x, denoted Nx*(l:), is the annihilator in Tx*(/Rd ) 

of the tangent space TAl:). Thus dim(N*(l:)) = 1. The conormal variety to l: 
is the union of these spaces 

N*(l:) == {(x, ~) E T*(Q): x E l:, ~ E N*(Txl:}}. 

Thus Nx*(l:) is a one-dimensional subspace of T/(l:). N*(l:) is a vector bundle 
over l: with one-dimensional fiber. A non vanishing element of N:(l:) is 
called a conormal to l: at x. If <p E COO (Q : /R) and <p I E = 0, then for x E l:, 
d<p(x) E N:(l:). 

Recall that l: is noncharacteristic at x if for such a <p with d<p(x) of- 0, 
lim e-;;'·"'PeiA"'j).m of- ° at x. That is, l: is noncharacteristic if and only if 
Pm(x, d<p(x» of- O. As (x, d<p(x)) generates N:(l:), this proves the following 
result. 

Proposition 3. The hypersurface l: is noncharacteristic at x E l: for P(x, D) if 
and only if Pm of- 0 on N:(l:)\O. 

Definition. A smooth hypersurface is characteristic at x if and only if Pm(x, ~) = 0 
for all ~ E Nx*(l:). A surface which is characteristic (resp. noncharacteristic) at 
all points is called a characteristic surface (resp. noncharacteristic surface). 

In case d = 2, hypersurfaces have dimension 1 and the name characteristic 
curves is natural. We met such a situation in §1.1 and §1.4. 

If a surface is given by <p(x) = 0 with <p real valued and satisfying d<p(x) of- 0, 
then l: is characteristic at x if and only if Pm(x, d<p(x)) = O. This is called the 
eikonal equation for <po 

For solutions of nonlinear equations, whether or not a surface is character­
istic, depends not only on the surface but also on the solution. One applies 
the above criteria with P equal to the linearization of F at u. 

EXAMPLES. 1. Find all the characteristic lines for at + cax ' 
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Solution. For r, ~ E 1R 2 \O the line L = {(t, x): rt + ~x = constant} has co­
normal variety 

N*(L) = {(t, x, ).r, ).~): t, x ELand A E IR}. 

In order to be characteristic the principal symbol of P must vanish at these 
points, thus 

that is, r = - c~. 

If C E C\IR, no real solution exists and therefore all lines are noncharacteristic. 
Otherwise, (r, ~) = constant( - c, 1) is the general solution, so the characteris­
tic lines have equation, x - ct = constant. Note that this recovers the same 
lines which played such an important role in the analysis of §l.l. 0 

2. Find all characteristic hyperplanes for the wave operator 

C E IR+. 

Solution. The hyperplane with equation rt + (~, x) = constant has co­
normal r, (. The equation P(r,~) = 0 reads, _r2 + c21~12 = 0, which has 
general solution, r = ±cl~l. Multiplying ~ and r by the same nonzero con­
stant leaves the hyperplane unchanged. Since there are no nontrivial solutions 
with ~ = 0, it suffices to consider those ~ with I ~ I = 1. The most general 
characteristic hyperplane has equation 

constant = (x, 0 ± ct, 

Planes are noncharacteristic if and only if r2 =1= c21 ~ 12. o 
3. Find all the characteristic curves at a real solution u of the inviscid 

Burgers equation. 

Solution. The linearized operator is at + uOx + U x which has principal symbol 
equal to ir + u(t, x)i~. If r is a curve which is characteristic at t, x, then its 
conormal r, ~ at t, x must satisfy r + u(t, x)~ = O. It follows that the tangent 
to rat t, x is parallel to the vector with components (1, u(t, x)). Thus at + uOx 

must be tangent to r, so the characteristic curves are exactly the integral 
curves ofr which played an important role in the perturbation theory in § 1.4. 

o 
Definition. A linear partial differential operator P(x, D) is called elliptic at x 
if and only if Pm(x, ~) =1= 0 for all ~ E IRd\O. It is elliptic on n c IRd if it is elliptic 
at each point of n. 

EXAMPLES. 1. If c(x) Ij; IR, then at + cox is elliptic at x. 

2. A is elliptic. 

3. at + c(t, x)ox is not elliptic at t, x if c(t, x) E IR. 

Definition. For ~ fixed the set of real ~ -:f- 0 with Pm(~' ~) = 0 is called the 
characteristic variety of P at ~. If P is defined on a open set n, then the 
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characteristic variety of P is the set 

char(P) == {(x, ~) E T*(Q)\O: Pm(x, ~) = O}. 

Here T*(Q)\O denotes the set of x, ~ with ~ -# O. 
The characteristic variety at x is invariant under multiplication by nonzero 

constants and is closed in Tx*\O. If the coefficients of P are continuous, char(P) 
is a closed subset of T*(O)\O invariant under multiplication by nonzero 
constants in the second, or fiber, variable. An operator is elliptic in (} if and 
only if its characteristic variety is the empty set. 

A point ~ ~ is in the characteristic variety if and only if Pm~ D)eiX~ = O. 
Here the "i" convention in D is convenient and by P~ D) we mean the 
constant coefficient operator whose coefficients are a<l(~). 

PROBLEMS 

1. For each ofthe following partial differential operators on 1R2, find all characteristic 
lines: 
(a) a,; (b) ax; (c) a,ax; (d) a,2 + a,ax; (e) a,2 + a,ax + a;; 
(f) ia, - a;; (g) all + 8xx. 

2. If P(D) is a nonzero partial differential operator of degree m, show that the set of 
~ E IRd such that P(~) = 0 is a closed set of measure zero. Applied to Pm' this shows 
that most planes are noncharacteristic. Hint. Choose 11 E IRd with Pm(I1) -# O. Choose 
V a linear subspace of IRd complimentary to 1RI1. Show that for each v E V, 
{s E IR: P(Sl1 + v) = O} is a set of measure zero. Then apply Fubini's Theorem. 
DISCUSSION. The set {P(O = O} is a real algebraic variety, the intersection of an 
algebraic variety with the real space IRd. As such, one can say a good deal more than 
that it is of measure zero. However, the intersection with IRd renders the description 
far less detailed than the known properties of complex algebraic varieties. 

The variety, {Pm(e) = O}, is conic in the sense that it is invariant under ~ --+ a~ for 
all a E IRW. 

3. If P is a homogeneous partial differential operator, prove that the intersection of 
the characteristic variety with any sphere, {I~I = R}, is a subset of the sphere with 
d - 1 dimensional measure equal to zero. 

4. The principal symbol Pm(x, ~) is a well-defined function on the cotangent bundle. 
The same is not true of the complete symbol P(x, n Construct an example of a 
linear partial differential operator P(x, D), a change of variable y = y(x), and corre­
sponding points x, ~ and y, 11 in T*, such that P(x, ~) -# P(y, 11) where P(y, Dy) is 
the expression for P in the new coordinates. Hint. Almost any P and any nonlinear 
change of coordinates works. 

The next sequence of problems concerns the solvability of the Cauchy problem up 
to errors which vanish to infinite order at :E = {Xl = O}. This is the Infinitesimal 
Cauchy Problem. The problem is equivalent, as we will see, to solving the Cauchy 
problem on the level of formal power series. The latter question can even be raised for 
operators whose coefficients are formal power series. The resulting circle of ideas yield 
another perspective on the noncharacteristic condition in the Cauchy-Kowaleskaya 
Theorem. 
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Let x = (x I' x'), x' == (x 2 , ••• , x d ). For OJ open in [R~;-I, let -:§(x i : OJ) be the ring of 
formal power series in XI with coefficients in C"'(OJ). Equivalently, -:§ is the ring of germs 
of smooth functions on a neighborhood of {O} x OJ C [Rd. If P(x, D) is a linear differ­
ential operator with coefficients smooth on a neighborhood of OJ, construct a formal 
operator 2l'(x, D) with coefficients in -:§(x 1 : OJ) by replacing the coefficients of P by their 
Taylor expansions in x I' By definition, a formal operator with coefficients in -:§(x I : OJ) 
maps -:§(XI : OJ) to itself. The plane {XI = O} is noncharacteristic at (0,0) for P if and 
only if the coefficient of (a/ax I)m in 2l' does not vanish at (0, 0). 

5. Prove 

Theorem. The following are equivalent: 
(i) {x I = O} is noncharacteristic at (0, 0) for P. 

(ii) There is an open neighborhood OJ of 0 in [R~, such that for any f E -:§(x i : OJ) and 
gj E C"'(OJ), 0 5, j 5, m - 1, there is a unique u E -:§(x I : OJ) solution of 
2l'(x, D)u =f, a{u(o, .) = gj(' ),j 5, m - 1. 

(iii) For any f and gj, j 5, m - 1, smooth on a neighborhood of 0 in [Rd and [R~;-I, 
respectively, there is a neighborhood Q of 0 E [R~;-I and a function u smooth on 
a neighborhood of {O} x Q C [Rd, such that for j 5, m - 1, a/u(O, .) = g).) on Q 
and Pu - f vanishes to infinite order on Q. 

Hints. Prove (i) =0> (ii) =0> (iii) =0> (i). To prove (ii), use Borel's Theorem which asserts 
that for any element y of -:§(XI : OJ) there is a smooth function on a neighborhood 
of {O} x OJ which has y as Taylor series in XI' 

6. Find necessary and sufficient conditions on the real constants a, b, c so that 
aa; + ba l az + cai is elliptic on [Rz. 

7. (a) Prove that if the coefficients of P are continuous then the set of points x, such 
that P is elliptic at x, is open. 

(b) Prove that P(x, D) is elliptic at ~ if and only if there are constants C I > 0 and 
Cz such that 

§1.7. Holmgren's Uniqueness Theorem 

If U 1 and U z are two local solutions of the mth order linear Cauchy problem 

Pu =f, 

for all IIXI:::; m - 1, v given, 

then the difference is a solution of 

for all IIXI:::; m - 1. 
(1) 

Thus, to prove local uniqueness one must show that solutions to (1) on a 
neighborhood of x E L must vanish on a neighborhood of x. When L is 
noncharacteristic, solutions of (1) must vanish to infinite order at L. Thus, if u 
is real analytic it must vanish on a neighborhood of L. Holmgren's Theorem 
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asserts that the same conclusion is valid if the coefficients of P are real analytic, 
L is noncharacteristic, and u is only supposed to be cm. 

The strategy of the proof is motivated by an abstract result. Suppose that 
X and Yare normed linear spaces and that T: X ~ Y is a continuous linear 
map. The transpose T': Y' ~ X' of Tis a linear map, defined on the dual spaces 
by 

(Tty', x) == (y', Tx) for all y' E Y' and x E X. 

Proposition 1. If range(T') is dense in X', then ker(T) = {O}, that is, u = 0 is 
the only u E X satisfying Tu = O. 

PROOF. For all y' E Y', (y', Tu) = O. The definition of transpose gives 
(T'y', u) = 0 for all y'. 

Since {T'y': y' E Y'} is dense in X', we conclude that (x', u) = 0 for all 
x' E X'. The Hahn-Banach Theorem implies that u = O. 0 

The point is that existence of solutions of the transposed equation Ttv = g, 
for a dense set of right-hand sides g, proves uniqueness for solutions of Tu = J. 
The idea of Holmgren is to use the Cauchy-Kowaleskaya Theorem for the 
existence part, the real analytic functions being dense. 

Motivated by this idea, we begin by defining the transpose of a linear partial 
differential operator on Q 

If U E Cm(Q) satisfies Pu = 0 in Q, and v E C;;'(Q), then 

In (Pu)v = O. 

One then integrates by parts passing the operator P to the function v. The 
resulting operator is called the transpose of P and is denoted pt. To see the 
form of pt consider the individual terms 

Thus if 

then 

In (Pu)v dx = In uptv dx, for all u E Cm(Q), v E C;;'(Q). 

Note that the principal symbol of pt satisfies 

(2) 

so L is noncharacteristic at x for P if and only ifit is noncharacteristic for pt. 
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dJS :-n2do 

Figure 1.7.1 
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n 

Next consider the boundary terms which appear when the supports of u 
and v reach an. We suppose u, v, a~ E Cm(n) and n is sufficiently regular so 
that the Fundamental Theorem of Calculus is valid. That is, 

r aju dx = f nju d(J, 
In an 

(3) 

where n = (n l , n2 • .•• , nd ) is the unit outward normal to ~ and d(J is the 
element of d - 1 dimensional surface area on ~. In the language of differential 
forms, the right-hand side is the integral of the d - 1 form 

(factor dXj omitted), (4) 

over ~ with ~ oriented as the boundary of n. This means that VI' ..• , Vd - I is 
an oriented basis for the tangent space to ~ if and only if n, VI' •.• , Vd - I is an 
oriented basis for the tangent space to /Rd. These two observations for d = 2 
are illustrated in Figure 1.7.1 and Figure 1.7.2. Note that 

au 
dw = ~ dX I /\ ... /\ dXd aXj 

so (3) follows from Stokes' Theorem. Similarly, (3) is a consequence of the 
Divergence Theorem applied to the vector field (0, 0, ... , u, ... , 0) with u in 

Figure 1.7.2 

(n, Ii) is positively 
oriented. 
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the jth slot. Conversely, knowing (3) for all u and j yields the general Stokes 
and Divergence Theorems. 

EXAMPLES OF GOOD DOMAINS. 1. Equation (3) holds if n c IRd is a smooth 
submanifold with boundary. 

2. Equation (3) holds if n = n1 n n2 , where the nj are as in the previous 
example with boundaries which intersect transversely. 

To investigate the boundary terms from our integrations by parts, write 0" 
as a product of partial derivatives of first order 

1"1 
0" = I1 Ok' 

j~l J 

Then moving Ok, from u to av by an integration by parts yields 

r o"u av dx = - r (0 Ok;) U (Ok, av) dx + f (0 Ok}) U nk , av d(J. In In J~2 on J~2 
Next move the second derivate, 0k 2 ' to find 

- r (0 Ok;)U(Ok,aV)dX = r (OOk;)U(OkA,aV)dX In J~2 In J~3 

Continuing in this fashion yields an identity 

r (Pu)v - u(ptv) dx = L f apy(x)ofluoYv d(J. (5) In IPI+lylsm-l an 
The following lemma is a consequence. 

Lemma 2. If u and v belong to em(Q), and for each x E on either oYu(x) = 0 
for all\'Y\ :$; m - lor o"v(x) = 0 for all\lX\ :$; m - 1, then 

In (pu)v - uWv) dx = O. 

The strategy is to use this identity in the lens-shaped region, bounded on 
one side by ~ and on the other by a smooth hypersurface, which is nearly 
parallel to and quite close to ~ (Figure 1.7.3). Since f is nearly parallel to ~, 
it is noncharacteristic for P and therefore noncharacteristic for pt. If v is a em 
solution of 

for \IX\:$; m - 1, (6) 

and u satisfies (1), then 

In ugdx = O. 
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Figure 1.7.3 

If we s.olve (6) for many g, this identity is sufficient to show u = 0 in n. For 
example, Weierstrass' Approximation Theorem shows that it is sufficient to 
solve for all polynomials g, since one could then choose gn converging uni­
formly to Ii in n so 

L lul 2 dx = lim L ugn dx = lim 0 = O. (7) 

Theorem 3 (Holmgren Uniqueness Theorem). Suppose that P(x, D) is a linear 
partial differential operator with coefficients real analytic on a neighborhood of 
X E [Rd, and L is a em embedded hypersurface noncharacteristic at X. If u is a 
em solution of (1) on a neighborhood of x, then u vanishes on a neighborhood 
ofx. 

PROOF. The first step is to normalize L. Choose real analytic coordinates so 
that L = {Xl = O} and x = (0, 0, ... ,0). Next let 

t == Xl + (x~ + ... + xJ), 

y == (Y2' ... , Yd)' 

Then in t, y coordinates, L = {t = IYI2}. 
For B > 0, let ~, be the surface {t = B} in t, y space. Let w, be the region 

lyl2 < t < B between L and ~,(Figure 1.7.4). 
Since L is noncharacteristic 

with am,o(O,O) i= O. 

Choose rl > 0 so that am,o(t, y) i= 0 for It I + Iyl ::; fl and the coefficients of 
P are real analytic on It I + Iyl < 2rl • Divide P by Qm,O so that 

P = a,m + ... (8) 

in It I + lyl ::; r j • Then there are constants e, B so that the coefficients Q p of pt 
satisfy 

for all rJ. and It I + Iyl ::; r j . (9) 
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-
-------",----+---f-------- If = {t = E} 

-------~~-------~y 

Figure 1.7.4 

Choose eo > 0 so that we" c {I tl + Iyl :s; rd. Consider the Cauchy problem 
with initial data at t = e :s; eo, that is, 

ptv = g(t, y), for all locl:S; m - 1, (10) 

With 9 real analytic at (e, 0). Then the derivatives of 9 satisfy estimates 
analogous to (9) 

I at~y:~e, 0) I :s; C(B)lal for all oc. (11) 

For linear P satisfying (8) the method of majorants yields a solution of (10) 
with estimates for the derivatives aau(e, 0) depending only on C, B, C, ll. As 
P is linear, the domain of convergence ofthe power series solution to (10) does 
not change if 9 is multiplied by a constant, so one gets a uniform domain of 
convergence for e E [0, eo] and 9 with II uniformly bounded. For 9 a poly­
nomial, the estimate (11) holds for any II < 00. Thus, (10) has a solution in 
It - el + Iyl :s; p with p independent of the polynomial 9 and e E [0, eo]. 

Figure 1.7.5 
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X 
Figure 1.7.6 

Choose e1 E ]0, eo] so that (Figure 1.7.5) 

{It - el + Iyl s p} ~ ~ Wet' 

39 

The argument in (7) shows that u = 0 in Wet' In the original coordinates, 
the set Wet is a one-sided neighborhood of x (Figure 1.7.6). 

A similar argument works for the opposite side, and the proof is complete. 
D 

Corollary 4. The same result is true if 1: is supposed to be only em 11 e2 instead 
of ew. 

PROOF. For r small, the ball Br(X} is divided cleanly in two by 1:, which is 
noncharacteristic at all points in B2r . Thus Br = B+ U B- u (1: 11 Br)' Define it 
to be equal to u in B+ and identically zero in B- (Figure 1.7.7). Since 1: is 
noncharacteristic and aau Il: = 0 for allllXl S m - 1, the same identity is true 
for IIXI = m and therefore 

Pit = O. 

For p small let i: be the sphere of radius p tangent to 1: at x and lying entirely 
in B- u {x} (Figure 1.7.8). For p fixed, apply Holmgren's Theorem to it with 
vanishing Cauchy data on i:. Conclude that it = 0 on a neighborhood of x, 
so that u = 0 on a neighborhood of x in B+ u 1:. A similar argument works 
for B-. D 

Corollary 5 (Semiglobal Holmgren). Suppose that P(x, D) is an mth order 
linear partial differential operator with coeffiCients real analytic on a neighbor-

B-

Figure 1.7.7 
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Figure 1.7.8 

hood of L, a em noncharacteristic embedded hypersurface. If u E em on a neigh­
borhood of L satisfies 

P(x, D)u = 0, for lal:O;; m - 1, 

then u vanishes on a neighborhood of L. 

PROOF. For each x E L, Holmgren's Theorem asserts that there is an an open 
neighborhood, w(X), of x with u = 0 on w(X). Then u vanishes on the neighbor­
hoodUxE1:w(X)ofL. 0 

For linear equations with C'X) instead of eeo coefficients one may have 
nonuniqueness in the noncharacteristic Cauchy problem. The constructions 
of Plis and P. Cohen are deservedly famous (see [H2, Vol. 3J). 

On the other hand, it is easy to find examples of nonuniqueness for the 
characteristic Cauchy problem. Consider, for instance, the operator P = 

O2 and L = {x E 1R2: Xl = O}. Then u = f(x l ) is a good example, provided 
f E C'X)(IR) has support in Xl 20 (see also Problems 1-3). 

PROBLEMS 

The next problems give further examples of nonuniqueness for the characteristic 
Cauchy problem. This topic is taken up again in §3.9 where it is seen to be related to 
some ill-posed "inverse problems." 

1. Suppose that P(x, D) is a first-order operator with smooth real coefficients. Then 
the principal part of P is a smooth vector field. Suppose that ~ is an embedded 
hypersurface which is everywhere characteristic for P. Prove that for any x E ~ with 
P1 (x, D) =1= 0, there is a smooth nonzero solution, u, of Pu = 0 on a neighborhood 
of x such that u vanishes identically on one side of ~. 
DISCUSSION. In particular, the Cauchy data vanish on ~. 

2. Suppose that P(D) = Pm(D) is a homogeneous constant coefficient partial differ­
ential operator, and that H is a half-space with characteristic boundary. Prove 
that there are smooth nontrivial solutions, u, to Pu = 0 which have support in H. 
Hint. Write the half-space as <x, 0 ~ 0 and try functions of the form f«x, 0). 



§1.8. Fritz John's Global Holmgren Theorem 41 

DISCUSSION. Such solutions are called null solutions. They exist without the homo­
geneity assumption but the construction is harder (see Problem 3 and §3.9). 

3. In §4.2 the function 
u(t, x) == (4nt)-1/2 e-x2 /4, 

is shown to be a smooth solution of the heat equation u, = Uxx in t > O. Verify this 
by direct computation. Extend u to vanish in t :;; O. Prove that the resulting function 
is c oo (1R2\0) and satisfies the heat equation on 1R2\0. In addition, show that u does 
not vanish on a neighborhood of any point (0, ~) with ~ of. O. 
DISCUSSION. At such points (0, ~, u is a counterexample to local uniqueness for the 
characteristic Cauchy problem. 

§1.8. Fritz John's Global Holmgren Theorem 

Suppose that Pu = 0 and the Cauchy data of u vanish on a noncharacteristic 
surface!:. It is natural to ask on how large a neighborhood of!: must u vanish? 
The content of John's Global Holmgren Theorem is that u vanishes on any 
set swept out by deforming!: through noncharacteristic surfaces whose ends 
stay in !: (Figure 1.8.1). The precise description is somewhat long. The result 
was proved in 1948, though the methods were all available since the last 
century. 

Suppose that Q c ~d is open and P(x, D) is an mth order linear partial 
differential operator on Q with coefficients in eW(Q). In addition, suppose that 
!: c Q is a noncharacteristic immersed em hypersurface. 

We must define precisely what is meant by a continuous deformation 
through noncharacteristic surfaces!:l whose ends lie in!:. The surfaces!:l will 
be images of a fixed set (1J c ~d by a map (J depending on A E [0, 1 ]. We 
suppose that: 

(i) (1J c C ~d-l is open and (J: [0, 1] x cl((1J) -+ Q C ~d is continuous. 
(ii) For each A E [0, 1], (J(A, .): (1J -+ IRd is a em immersion of a noncharacter­

istic hypersurface, !:l' 

Figure 1.8.1 
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(iii) The initial surface, Lo, is a subset of L. 
(iv) a([O, IJ x a(9) C L which expresses the fact that the edge a(A., a(9) of L;. 

lies in L. 

Theorem 1 (John's Global Holmgren Theorem). If u E em(n), Pu = ° in nand 
aau I ~ = ° for lal ~ m - 1, then for lal ~ m - 1, aau = ° on a([O, 1] x cl«(9». 

PROOF. Let A C [0, 1 J be defined as 

{A. E [0,1]: for allial ~ m - 1, aau = ° on a([O, A.] x cl«(9»}. 

Since a and aaufor lal ~ m - 1 are continuous, A is a closed subset of [0, 1]. 
By hypothesis, ° E A. 

By connectedness of [0, IJ, it suffices to show that A is open in [0, 1]. 
If A. E A, then aau I~, = ° for I a I ~ m - 1, so by Corollary 1.7.5, u vanishes 

on a neighborhood of LA. Since a(A., a(9) C Lo, u vanishes identically on a 
neighborhood of a(A., a(9). Thus u vanishes on an open neighborhood .AI of 
the compact set a( {A.} x cl( (9». 

Since a is continuous we may choose, for each p E {A} X cl( (9), a relatively 
open neighborhood OJp C [0, IJ x cl«(9) of p such that a(OJp ) c.AI. Then 
OJ == U OJp is a relatively open neighborhood of {A.} x cl«(9) whose image lies 
in .AI. 

For ° < e < 1, let '1. == ([A. - e, A. + eJ (\ [0, IJ) x cl«(9). Denote by ~ com­
plement in [0, IJ x cl«(9). The decreasing family of compact sets (~OJ) (\ '1E 
have empty intersection. It follows that ( ~ OJ) (\ '1. is empty for all e sufficiently 
small. 

Thus for e small, '1. C OJ, so a('1.) C .AI an open set on which u vanishes. 
Thus, for lal ~ m - 1, aau vanishes on a('1.) and therefore [A. - e, A. + e] (\ 
[0, 1 J C A, proving that A is open. D 

Application 1. The unique continuation principle for real analytic elliptic 
partial differential equations. 

Theorem 2. Suppose that P(x, D) is an mth order linear elliptic partial differ­
ential operator whose coefficients are real analytic on a connected open set n, 
and L is a piece of em hypersurface in n. If u E em(n) satisfies Pu = ° and for 
all I a I ~ m - 1, aau = ° on L, then u == ° in n. 

The hypothesis is satisfied if u vanishes in an open subset OJ En. 

PROOF. Let L be the piece of surface and choose x E L. For YEn, choose an 
embedded smooth arc transverse to L and connecting x to y (Figure 1.8.2). 

The small patch of surface is deformed following the idea indicated in Figure 
1.8.3. All the deformed surfaces are noncharacteristic, thanks to the ellipticity 
of P. Global Holmgren implies that u vanishes on a neighborhood of y. 
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y 

Figure 1.8.2 

To describe precisely such a deformation, the first step is to change co­
ordinates in a tubular neighborhood of the curve y connecting x to y so that 
in the new coordinates z = (z l' ... , Zd) == (z 1, z'), 

y = {(s, 0, ... ,0): o:-s; s:-S; I} and L::::J {(O, z'): Iz'l < 2r}. 

Then take (r) = {z': Iz'l < r} and a(A, z') == (aA cos 2 Iz'ln/2r, z') with a> 1. 

o 

Remarks. 1. It is true but not easy to prove that, for elliptic P(x, D) with 
real analytic coefficients, all solutions of Pu E CO) are real analytic. This gives 
a second proof of unique continuation since u vanishes to infinite order on L 
since L is noncharacteristic. 

2. Sketched deformations are easier to understand than the precise for­
mulas. For later examples we will give the sketch and leave the construction 
of precise a's to the reader. 

Application 2. Domains of influence and determinacy for the wave operator 
and D' Alembert's formula. 

In the next sequence of results the Global Holmgren Theorem is applied to 
the partial differential operator P(OI' ax) = Ot2 - C2~ == O. P is called the wave 
operator or the D'Alembertian. The equation Pu = 0 is called the wave 
equation. 

Theorem 3. If u E C2 (lRt x IR~) satisfies Ou = 0 and u I t~O = Ut I t~O = 0 on 
Ixl < R, then 

u=o in {(t, x): Ixl < R - cltl}. 

Figure 1.8.3 
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(0, Ric) 

speed c 
\+-- 1 

slope c 

(0, -Ric) 

Figure 1.8.4 

1. Power Series Methods 

PROOF. The domain is a double cone of revolution (Figure 1.8.4). To treat the 
upper half, the noncharacteristic initial disc is deformed through the surfaces 
of revolution with section sketched in Figure 1.8.5. The deformed surfaces are 
noncharacteristic provided their conormals satisfy Irl > cl~l. Thus the curves 
must have shallower slopes than the side of the triangle. This can be achieved 
without difficulty. D 

(0, Ric) 

..... (I:-_-=R:-, o::-')'------'--.L.----L--t--'L---->----->----'-(R..,.,-O--1) ~ X1 

Figure 1.8.5 
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K 

t = 0 

Figure 1.8.6 

Corollary 4. Suppose that u E C2 ([R 1 +d) is a solution of the wave equation, 
Du = O. and that K is the support of the initial data 

K == supp u( I (=0 U supp u I (=0 C [R:. 

Then 
supp u c {it, x): dist(x, K):S; cltl}. (1) 

PROOF. If t, .x satisfies dist(x, K) > cltl, choose R E Jcltl, dist(x, K)[ so the 
initial data of u vanish on the ball of radius R with center x (Figure 1.8.6). 
Then Theorem 3 suitably translated shows that u = 0 on the double light cone 
with center at (0, xl and radius R. The point t, xlies in the interior of this set. 0 

This corollary asserts that waves propagate at speeds less than or equal to 
c. The set on the right-hand side of (1) is called the domain of inj7uence of K. 
It is the set of points in space-time influenced by the Cauchy data in K. It 
consists exactly of those points which can be reached by curves starting in K 
at time t = 0 and never exceeding the speed c. 

Restating the corollary we have: 

If u E C2([R, x [R:) satisfies Du = 0 and u I /=0 = u( I '=0 = 0 on the open subset 
(! c [Rd, then u = 0 on {it, x): dist(x, [Rd\0) > cltl}. 

Thus, if the Cauchy data of two solutions u and v agree on the set e, then u 
and v agree on {it, x): dist(x, [Rd\0) > cltl}. This set is called the domain of 
determinacy of (!;!, since the values of solutions are determined in this set by 
the values of Cauchy data in e. It consists of those points in space-time which 
cannot be reached by curves starting at t = 0 in the complement of (0 and 
never exceeding the speed c (Figure 1.8.7). 

The boundaries of the domain of determinacy move inward at speed c. The 
boundaries of the domain of influence move outward at speed c. 
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Domain of determinacy of 0 Domain of influence of 0 

Figure 1.8.7 

These last results are sharp. In the case of x E 1R1, this is an immediate 
consequence of D'Alembert's formula for the solution of the Cauchy problem 

u(O, .) = f(- ), ut(O, .) = g. (2) 

The derivation of the formula has two ingredients. First, one produces a 
solution of the Cauchy problem by a clever computation. That it is the only 
solution follows from the Global Holmgren Theorem. 

The construction of a solution begins with the observation that 

Ot2 - c2o; = (at + coJ(Ot - cox) = (at - cotHot + cox), 

so that if (at ± cOx)V = 0, then v satisfies the 1 - d wave equation. Theorem 
1.1.1 shows that the general solution of (at ± cOx)v = ° is a function of x + ct. 
Thus, for any <p, 1/1 E C2(1R), 

u == q;(x + ct) + I/I(x - ct) (3) 

is a solution of 01 +1 U = 0. 
Our strategy is to find <p, 1/1 so that u, given by (3), solves (1). The Cauchy 

data of such a u are given by 

u(O, x) = <p(x) + I/I(x), 

ut(O, x) = c<p'(x) - cl/l'(x). 

Differentiating the first of these equations gives the system 

q;' + 1/1' =/" 

Thus 
, /' + glc 

q; = 2 ' 
,/.' = /' - glc 
'I' 2' 
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Choose G with G' = g. Then with constants a and b 

f + G/c 
q>= 2 +a, 

1/1 = f - G/c + b 
2 . 

The equation q> + '" = f forces a + b = 0. Note that adding a to q>, while 
subtracting a from 1/1, does not affect the value of u defined by equation (3). 
This leads to the formula for u 

f(x + ct) + f(x - ct) 1 
u = -~--------2~--------- + 2c(G(x + ct) - G(x - ct)). (4) 

To get an expression in terms of the data, note that 

j x+ct 

G(x + ct) - G(x - ct) = x-ct g(s) ds. 

Theorem 5 (D'Alembert's Formula). If f E C2 CR) and g E C 1(iR.), there is exactly 
one solution u E C 2(iR. t x iR. x ) of the Cauchy problem (2). The solution is given 
by the formula 

u(t, x) = f(x + C!L~£~~~-:-_ ct) + ]_ jx+ct g(s) ds. (5) 
2 2c x-ct 

PROOF. Since this u has the form (4) it satisfies the wave equation. Formula (4) 
was derived exactly so that the initial conditions are satisfied. This establishes 
existence and the formula. Uniqueness is a consequence of the Global Holm­
gren Theorem. 0 

Corollary 7. If u E Ck(iR.; x iR.~), k ~ 2, satisfies Du = 0, then there exist q>, 

'" E Ck(iR.) such that u is given by equation (3). 

PROOF. Let u I t=O = f, ut I t=O = g E Ck-t, and choose G E Ck with dG/dx = g. 
Then 

do the trick. o 

Examining (5) shows that our estimates for the domain of dependence and 
domain of influence are exact. The values of u at t, x depend on the values of 
f at the end points of the interval [x - cltl, x + cltlJ and on the integral of g 
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u>o 

supp g 

U<O 

Figure 1.8.8 

over the whole interval. Thus the domain of dependence of t, x is exactly the 
interval predicted by Holmgren's Theorem. 

Similarly, if we consider the case f = 0 and g ~ 0, we find that supp u is 
exactly equal to the set on the right-hand side of(1). The data influence all the 
points which they could possibly influence. The case where supp g is an 
interval is sketched in Figure 1.8.8. 

Application 3. The walls have ears. 

Consider a wave propagating in x ~ 0, and an observer at x = 0 who 
measures u(t, 0) and ux(t, 0) as functions of time. If he observes for 0 :s; t :s; T, 
what part of the wave field can he determine from his measurement? The 
formulation in equations is 

in x ~ 0, t E !R, 

u(t, 0) = f and ux(t, 0) = g known for O:S; t :s; T 

Thanks to the linearity of the wave equation, this is equivalent to asking at 
what points must u vanish if f and g vanish for 0 :s; t :s; T Thus, given 

Du=O in !Rt x {x ~ O} (6) 

and 
u(t, 0) = uAt, 0) = 0 for O:S; t :s; T, (7) 

it suffices to determine where u is forced to be zero. 

Solution. The Cauchy data of u vanish on the segment {x = 0 and 0 < t < T}. 
Apply Fritz John's Global Holmgren Theorem with surfaces sketched in 
Figure 1.8.9. Conclude that u vanishes in the triangle swept out, namely 
o :s; x :s; c(T12 - It - T121). 0 

There are several multi-dimensional generalizations. Here is one. For x E !Rd, 

an observer in the d - 1 plane {Xl = O} measures u(t, 0, x') and uAt, 0, x') for 
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(l el) 
2, 2 

Figure 1.8.9 

all x' == (x 2 , ••• , xd ) and 0 ~ t ~ T. The analysis is similar. Take surfaces as 
above, and almost independent of X2' ••• , X d . Precisely, if the deformation 
above is given by LA = {Xl = F()., t)}, then fOf[; > 0 define multi-dimensional 
deformed surfaces by 

LA == {Xl = F(A, t) - eA(X~ + ... + X~-l)}' 
Then let 8 ~ O. One finds that u must vanish in the cylinder which is the 
product of the triangle from the one space dimension problem and IR~;-l. 

for 0 ~ t ~ T, 

then 

Application 4. What can a single snoop hear? 

To observe wave motion along the entire strip [0, T] x 1R~;-1 requires many 
observers when d > 1. We next ask what can be observed from a neighbor­
hood of a single point. 

Suppose u E C2(IR, x IR~), D1+du = 0, and u = 0 on a neighborhood of' 
[0, T] x {x = O}. Where must u vanish? 



50 1. Power Series Methods 

t = T - f 

Figure 1.8.10 

Solution. Choose t: > 0 so that u(t, x) vanishes if dist((t, x), [0, TJ x {x = 

o}) < 310. Apply the Global Holmgren Theorem with noncharacteristic surface 
L equal to ] -t:, T + t:[ x {Ix I = t:}. The deformed surfaces are surfaces of 
revolution about the t-axis with cross section sketched in Figure 1.8.10. 0 

Corollary 9. Suppose u E C 2 (lRt x IR~), 0 1 +dU = 0, and u = ° on a neighbor­
hood of [0, T] x {x = O}, then u = ° on Ixl :::; c(T12 - It - T121). 

This result determines precisely the time of arrival at a point y ¢ K of a 
wave which begins at t = ° in K. Toward this end consider 

u E C2 (lRt x IR~), 0 1 +dU = 0, 

K == supp ult=o U supp utlt=o. 

For y ¢ K let b == dist(y, K). Then Corollary 4 shows that] -blc, blc[ x {y} 
is disjoint from supp u. This result is sharp. 
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S· I' 8 Igna arrives at t = c 

Signal arrives at t = - ~ 
Figure 1.8.11 
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• y 

• y 

Corollary 10. With the above notation, one of the two points (±6jc, y) lies in 
supp u. 

Remark. A signal cannot reach y in time less than b/c, but it reaches in time 
exactly b/c in either forward or backward direction of time (or both). A wave 
moving away from you will arrive in the past. 

EXAMPLE. With d = 1, consider a forward-moving blip u = l/I(x - ct) which 
at t = 0 has support in {x ::::; O} and {x = O} lies in the support. Then the signal 
arrives at t = b/c. A backward-moving blip, u = l/I(x + ct), arrives at b = - tic 
(Figure 1.8.11). 

PROOF OF COROLLARY 10. If (±6jc, y) ¢ supp u, then [-b/C, fJlc] x {y} is 
disjoint from supp u. Thus, for some 6 > 0, 

[ - bc - 6, b ; 6] x {Ix - yl ::::; 6} 

is disjoint from supp u. Apply Corollary 9 to conclude that at t = 0, u vanishes 
on the ball of radius b + 6 with center y. This contradicts the definition of b. 

o 

PROBLEMS 

1. Prove 

Theorem. If u E Cm((R4) satisfies P(D)u = 0 on x' ~ ::;; Tz and u = 0 on x' ~ ::;; Tl 
where Pm(~) # 0, then u = 0 on x' ~ ::;; Tz . 

DISCUSSION. This result is false if Pm(~) = 0 as you showed in Problem 1.7.2. 
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2. (i) Prove 

Theorem. If H is a half-space of (Rd and u E CO"«(Rd) sati~fies supp P(D)u c H, then 
supp u c H. 

Hint. First, observe that Problem 1.6.2 can be used to show that g: Pm(e) of. O} is 
dense in (R~. Then use the previous problem in half-spaces converging to H. This 
result is not true without the hypothesis u E CO", as you have shown in Problem 1.7.2. 
(ii) Prove 

Corollary. If u E CO"(fRd) then the convex hull of supp (u) is equal to the convex hull 
of supp(P(D)u). 

3. Suppose that u(t, x) E C2«(R2) satisfies u, + cUx = 0 with C E (R and u(O, x) = 0 for 
x E [a, b]. Use the Global Holmgren Theorem to find the largest set on which u 
must vanish. Show by example that your result is sharp. 
DISCUSSION. This is another example of a domain of determinacy. 

In all the examples discussed a description is given of the deformed noncharacteristic 
surfaces, but only for Theorem 2 did we make an effort to give a precise construction 
of a map a as in Theorem 1. 

4. For Theorem 3 or Corollary 8 give a precise explicit description of a mapping a 

satisfying the conditions of the Global Holmgren Theorem and sweeping out the 
desired region. 

5. Suppose that P = n (0, + cjox )' with real constants C 1 < C2 < ... < Cm· 

(i) Prove that if gj E cm - j«(R) for 0 ~ j ~ m - 1, then the Cauchy problem 

Pu = 0, o/u(O, .) = gk), j ~ m - 1, 

has a Cm«(R2) solution of the form LfPj(x - cJ). 
(ii) Show that u is Ck if the gj are Ck - j with k ~ m. 

(iii) Prove that the general Ck solutions of Pu = 0 is a sum of this form with fPj in Ck • 

(iv) Describe the domain of influence of an interval [a, b] in {t = O}. 
Hint. Imitate the proof of D'Alembert's Theorem. 

§1.9. Characteristics and Singular Solutions 

The explicit solution formulas of§1.1, D'Alembert's formula, and the perturba­
tion theory of § 1.4 all involve characteristic curves. In the last section, char­
acteristic curves and surfaces (for d > 2) played an important role in describing 
the propagation of zeros. In this section, we examine their role in the construc­
tion of simple singular (== not infinitely differentiable) solutions. 

Consider first the equation u, + cUx = 0 with c E IR. The general C1 solution 
is u = g(x - ct) with g E C1(1R). If g E C1(1R) is piecewise smooth on IR, with 
jumps at points a1 < a2 < ... < aM with jumps in derivatives kl' ... , kM' then 
u will be piecewise smooth on 1R2 with jumps in derivatives of order kj ;;::: 2 
along the curves x - ct = aj • 
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More generally, consider the variable coefficient equation 

Ur + crt, x)ux + d(t, x)u = 0, c, d E ex (!R 2 : !R). (I ) 

This is an ordinary differential equation for u along the integral curves of the 
vector field cr + dt, x)ax ' These integral curves are the characteristic curves 
for this operator. So long as the integral curves do not escape to infinity in 
finite time one has an explicit representation of the solution. The escape time 
to infinity wiII be infinite provided c does not grow too fast as Ix I tends to 
infinity, for example, if 

(VT> 0)(3K) (It I ~ T= Ic(t, x)1 ~ K(I + Ixl). 

If g is piecewise smooth as in the previous paragraph, the solution u will be 
piecewise smooth with jumps in derivatives of order kj across the characteristic 
curves Ij passing through the points (0, a). These two examples suggest that 
characteristics are the carriers of singularities of piecewise smooth solutions. 
This is true is great generality. 

Consider an mth order linear operator P(x, a) with coefficients in Coo (!Rd ). 

Suppose that L is an infinitely differentiable embedded hypersurface in !Rd. 
Piecewise smooth functions singular across L are defined as follows. Since L 
is an embedded hypersurface, for each x E L there is small open ball B centered 
at x so that B is diffeomorphic to {Ixl < I} by a diffeomorhism which carries 
B n L to {Xl = O} n {Ixl < I} (Figure 1.9.1). 

Definition. A function u defined on a neighborhood of L is piecewise smooth 
if, for each .x E L, there is a ball B as above such that u is C' on both 
components, B±, of B\L, and the restriction of each derivative a"u to B± 
extends to a continuous function on 13±. 

Theorem 1. If P and L are as above and there is a piecewise smooth u defined 
on a neighborhood of L sati.ifying u E em, Pu E CX", and u is not C X' on a 
neighborhood of .x, then L must be characteristic at ,.x. 

PROOF. If L is noncharacteristic at.x, choose B as in Figure 1.9.1 such that L 
is noncharacteristic at all points of L n 13. 

Write the equation Pu E CUrB) in coordinates with L = {Xl = O}. The 
coefficient of (a/ex dm is nonzero on L since L is noncharacteristic. Shrinking 
B if necessary, we may suppose that the coefficient is nonzero on 13. Dividing 
by this coefficient yields a relation 

a;nu = L A)x, a2, ... , ad)a~- ju + f, (2) 
15cjS;m 

where Aj is a linear differential operator of degree j. The coefficients of Aj and 
the function f belong to ex (B). 

Let a' == (az , ... , ad) and x' == (x 2 , ... , Xd)' By hypothesis, u E em(B) and u is 
C" on c1(B+l and c1(B_). Thus a'u(o+, x') = a"u(O -, x')for all (X with I(XI ~ m. 
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I 

Image of B 

Figure 1.9.1 

1. Power Series Methods 

The theorem is proved by showing that u E C""(B). This is done by proving, 
for all k ;::c: m, that aau(O +, x') = aau(O -, x') for allfl. E Nd with fl.! S; k. 

Applying (i3')p to the identity a{u(o+, x') = a{u(O-, x') for j S; m, shows 
that the result is true for k = m. 

Differentiating (2) yields 

~k+1 _ "k+l-m~m _ :'lk+l-m( " A (" "),,m- j +f) ('1 U-01 (IU-U1 L.. jX,u2, .. ·,ud u l U . 
15,J~m 

By the inductive hypothesis the limits of the right-hand side on the two sides 
of ~ n B are equal. Therefore i3;+IU(O+, x') = a;+lu(O-, x'). Applying (a')p 
to this identity proves the assertion for k + 1. 0 

We conclude that the only possible carriers of singularities of piecewise 
smooth solutions are the characteristic surfaces. 

In particular, elliptic equations which have no characteristic surfaces can 
have no such singular solutions. In fact, solutions of Pu E C'" with P elliptic 
must themselves be CD. For P of order 2 this Interior Elliptic Regularity 
Theorem is proved in §5.9. 

D'Alembert's formula (1.8.3) shows that all the characteristic curves, 
x ± ct = constant for the 1 - d wave operator 0 1 +1 , are carriers of such 
singular solutions. In Problem 1 you extend this result to all homogeneous 
constant coefficient operators. It is not difficult to show that if r is simply 
characteristic, in the sense that V ~Pm(x, ~) =I 0 for all x, ~ E N*(r), then there 
are many piecewise smooth solutions with jumps along r (see John's chapter 
in Bers, John, and Schecter [BJS]). 

We next turn to a different phenomenon involving singularities and for 
which the characteristics playa crucial role. namely, the formation of shock 
waves. 

For eq uation (1) in regions of space- time, where c is an increasing function 



§ 1.9. Characteristics and Singular Solutions 55 

of x, the characteristic curves spread apart as t increases. The domain of 
influence of an interval [a, b] in {t = O} is bounded by the characteristic curves 
through a and b and is therefore an expanding region where e is increasing. 
These are expanding waves. Conversely, where e is decreasing the characteris­
tics approach each other as t increases and one has compressive waves. 
Theorem 1.2.4 implies that integral curves of at + e(t, x)ax cannot cross, so 
that even though they may grow closer together they will never meet. The 
expansion and compression just described is caused by the fact that the speed 
of propagation c depends on t, x. 

Consider next the in viscid Burgers equation 

(3) 

Writing the second term as (u 2 j2)x expresses the equation as a conservation 
law, that is, an expression of the form 

f(x, u)t + get, x, u)x = O. 

The name is explained for the Burgers equation as follows. Consider the 
integral of u from a to b as the amount of u in [a, b]. The rate of change of 
this quantity is given by 

d fb fb dt a u(t, x) dx = a u,(t, x) dx 

= fb (U2(~~) dx = ~2(b) =_~~. 
a 2 x 2 

The last expression involves only the values of u at the boundary of [a, b], 
and is called the flux of u. The function u2 j2 is called the flux density. The 
quantity u2 (b)j2 (resp. u2 (a)j2) is interpreted as the amQunt of u flowing in at 
b (resp. out at a). If u is equal to a constant u( 00) outside a (possibly time­
dependent) compact set, one sees that S u - u( (0) dx is independent of t. Thus 
the amount of u is conserved. For the general form, it is Sf(x, u) - f(x, u( 00» dx 
which is conserved. Most of the laws of continuum mechanics are conservation 
laws for physical quantities like energy, mass, and momentum. 

Consider next the initial value problem for the Burgers equation (3) with 
data 

u(O, x) = g(x). (4) 

Suppose that a C1 solution u exists on an as-yet unspecified region of space­
time. In §1.6 we showed that u is constant on the integral curves of the vector 
field at + uax which are straight lines. These lines are precisely the characteris­
tic hypersurfaces (dimension d - 1 = 1 in this case). This gives a simple 
formula for the solution. At the point (0, a) on the initial line we know the 
value of u(O, a) = g(a). The characteristic through this point is then the line 
(t, a + tg(a», so long as it lies within the region where u is C1 . The solution 
must have value g(a) on this line. 
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speed =g(a) ---l~ 

r+--- speed =g(b) > g(a) 

a b 

Figure 1.9.2 

Consider the behavior of the characteristic lines through (0, a) and (0, b) 
with a < b. If g(a) < g(b), the lines diverge from each other as t increases. If 9 
is monotone increasing in the interval [a, b], then characteristics starting in 
{o} x [a, b] fan apart and simply cover an expanding wedge-shaped region 
(Figure 1.9.2). Such a solution is called an expansion wave or a rar~faction wave 
or a fan. The amount of u in the fan at time t is given by 

fb+rg(b) 

u(t, x) dx. 
a+rg(a) 

Its rate of change with time is equal to 

f b+rg(b) 

ur(t, x) dx + g(b)u(t, b + tg(b» - g(a)u(t, a + tg(a)). 
a+rg(a) 

Using the differential equation converts the first term to a boundary term 
which exactly cancels the last two. Thus the amount of u in the fan is conserved 
and is spread over an ever-widening interval. This explains the origin of the 
name rarefaction wave. 

A more striking phenomenon is produced if g(a) > g(b). The two character­
istic lines approach and cross (Figure 1.9.3). The fact that u has different values 
on the two lines is contradictory at the crossing point. The lines cross at 
t = -(b - a)j(g(b) - g(a)). This proves the following estimate on the time of 
existence of C 1 solutions. 

Theorem 2. If the initial value problem (3), (4) has a solution in C1([0, T] x IR) 
and 9 is not monotone increasing, then 

T:::;; inf{- '-, ~=~: a < band g(a) > 9(b)} 
g(b) - g(a) 

= -ljinf{g'(x): x E IR}. 

The last equality is a simple consequence of the Mean Value Theorem. An 
alternate proof is presented in Problem 2. The estimate of Theorem 2 is sharp. 



§1.9. Characteristics and Singular Solutions 

u=g(a)--"" 

speed =g(a) --0/ 

a b 

Figure 1.9.3 

~--u= g(b) 

~--speed =g(b)< g(a) 

Theorem 3. If 9 E Cl(~) and inf g' is finite, then with 

T == 00 if (inf g') ;::: ° and T == -(inf gTl otherwise, 
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there is a unique solution u E Cl([O, T[ x ~) of the initial value problem (3), (4) 
given implicitly by the formula 

u(t, x) - g(x - t(u(t, x)) = 0. (5) 

If k ;::: 2 and 9 is Ck on a neighborhood of ~, then the solution u is Ck on a 
neighborhood of the characteristic (t, ~ + tg(~), ° ::=:;; t < T. 

PROOF. If u E Cl([O, T[ X ~2) is a solution, then u is constant on charac­
teristics, so the value of u at (1, ~ is equal to the value at all points (1, ~ + 
(t - 1)(1, u(1, ~)), the characteristic line through.b ~. Setting t = ° yields (5). 

The Implicit Function Theorem shows that this equation is uniquely 
solvable for u(t, x) while ° ::=:;; t < T. The key estimate is that if G(t, x, u) == 
u - g(x - tu), then fJG/fJu > ° as long as t E [0, T[. This proves both existence 
and uniqueness. 

The final regularity assertion follows from the regularity part, as opposed 
to the existence part, of the Implicit Function Theorem. D 

As an example, consider data, 9 E Cl , which is piecewise smooth with 
singularities at al < a2 < ... < aM' Then the construction of the solution u 
using characteristics shows that the solution is piecewise smooth with singu­
larities propagating along characteristics. These singularities travel with the 
local speed of propagation u. Such signals are called sound waves. Note that 
the same name is used for the solutions in first-order perturbation theory in 
Figure 1.4.2. The common feature is the speed of propagation. 
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Figure 1.9.4 

The formation of singularities at time T, starting with COO initial data, is a 
purely nonlinear phenomenon. The cause is the fact that the speed of propaga­
tion, equal to u, depends on the amplitude u of the solution. We have seen 
that if the speed depends only on space and time, solutions exist globally. 

Examining the formula for the solution, the behavior as the breakdown 
time approaches is not difficult to describe. Between the approaching char­
acteristics in Figure 1.9.3, the solution u must decrease from g(a) to g(b) on 
an ever-decreasing interval. The curve steepens and at time T, the curve has 
steepened so much that a vertical tangent arises. The wave steepens and then 
breaks (Figure 1.9.4). 

There is an even more explicit example of breakdown. Its construction is 
based on the observation that solutions of (3) are mapped to solutions by the 
scaling law 

u(t, x) 1--+ U(At, Ax). 

We seek solutions which are invariant under this transformation law (called 
self-similar solutions). A function is self-similar in this context if and only if it 
is positive homogeneous of degree 0 in t, x, that is, u(t, x) = u(l, x/t) == ljJ(x/t) 
for t > O. Then 

ut = IjJ'G)( ~2X), Ux = 1jJ' G) G)' 
Ut + uUx = 1jJ' (n(1jJ (n -nCD· 

Thus u satisfies the Burgers equation in t > 0 if and only if ljJ(s) satisfies 

1jJ'(s)(ljJ(s) - s) = O. 

Thus the graph of IjJ consists of two horizontal plateaus, where 1jJ' = 0, con­
nected by a segment of the line IjJ = s (Figure 1.9.5). The graph of IjJ is also the 
graph of u I 1=1' so u is not C 1 but Lipshitz continuous uniformly in each set 
t ~ e > O. As t decreases to zero the graph of u(t, x) = ljJ(x/t) is IjJ simply scaled, 
so the connecting segment steepens to slope l/t. 

The function vet, x) == u( - t + 1, - x) is a solution which is Lipshitz contin­
uous in t < 1 and which steepens as t increases toward t = 1. 

The last paragraph is only informative to the extent that one is willing to 
accept a solution v which is not C 1• A similar situation arises if one accepts 
g(x - ct) as solution of u, + cUx = 0 when 9 is only Lipshitz continuous. The 
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Figure 1.9.5 

Theory of Distributions systematizes such so-called weak solutions. One good 
reason to accept generalized solutions is if they are limits of genuine classical 
solutions. For example, if gn is a sequence of smooth functions converging 
uniformly to g, then the solutions gn(x - ct) converge to g(x - ct). Similarly, 
if I/In is a sequence of smooth increasing functions converging uniformly to 1/1 
and satisfying I/I~ < 1, then the solutions of the Burgers equation with 
un(O, x) = I/In( - x) will exist for 0 ::;; t ::;; 1, and for any E; > 0 converge uni­
formly on 0 ::;; t ::;; 1 - E; to v. Thus, v is a reasonable generalized solution. 

Surprisingly, solutions of the Burgers equation can be extended past the 
blow-up at t = T to be discontinuous solutions which are still important for 
the physical interpretation. The discontinuities lie along shock waves, which 
are important in the modeling of combustion and supersonic flight (see [La], 
[Sm]). We have just been studying spontaneous shock formation. 

PROBLEMS 

1. Suppose that P(3) = Prn(3) is a homogeneous constant coefficient partial differential 
operator and that L is a characteristic hyperplane. Find a piecewise smooth solution 
u to Pu = 0 which is singular at every point ofL. Hint. Use the hint of Problem 1.7.2. 

2. The following steps provide an alternate proof of Theorem 2: 
(i) Derive a partial differential equation satisfied by Ux(l, x). Hint. Apply the result 

of Problem 1.4.2 to u(t, x + Il). Alternatively, differentiate (3) with respect to x. 
(ii) Let y(tj == (t, a + g(a)t) be the characteristic through (0, a) and y(t) == uAy(t)). 

Show that y' + y2 = 0 and y(O) = g'(a). 

(iii) Show that y blows up at t = -ljg'(a). Prove Theorem 2 by choosing a appro­
priately. 
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DISCUSSION. Comparison with y' + y2 = 0 is a common method for demonstrating 
blow-up. Problem 1.1.5 is another example. 

3. Suppose that p(s) is a strictly convex function of s, that is, p"(s) > 0 for all s. Study 
shock formation (at t = 0) for the conservation law, 

u, + p(u)x = 0, 

by constructing all self-similar Lipshitz continuous solutions in t < O. Hint. Find 
an analogue of Figure 1.9.5. 



CHAPTER 2 

Some Harmonic Analysis 

§2.1. The Schwartz Space Y{lRd) 

The space !/ consists of smooth functions which together with all their 
derivatives decay rapidly to zero as x - 00. It is very useful in Fourier analysis, 
as it forms an easily manipulated family of functions which is mapped iso­
morphically onto itself by the Fourier transform. From this starting point, the 
classical theorems of Planche rei and Hausdorf - Young follow by straightfor­
ward completion arguments. This convenient formulation was exploited by 
S. Bochner. It was the inspired idea of L. Schwartz that an extension by 
duality, rather than continuity, gives a far-reaching generalization of the 
Fourier transform which has been crucial in modern analysis ever since. It is 
the goal of this chapter to give a brief description of these ideas. At the same 
time we review the basic techniques of the Theory of Distributions. It is 
assumed that the reader has a modest familiarity with the elementary Theory 
of Distributions. A brief introduction is presented in Appendix A. 

Definition. 

!/(lRd) = {u E C"'(lRd ) : Va, f3 ENd, sup Ixaapu(x)1 < oo}. 
XE [Rd 

!/(lRd) is a vector space. Membership is tested by the countable family of 
seminorms 

(1) 
x 

Functions in ,C/' are smooth and all derivatives tend to zero faster than any 
power of Ixl as x - 00. 
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EXAMPLES. 1. CO"([Rd) C 9'([Rd). 

2. e- 1x12 E Y'([Rd). Similarly, e-(1+lx I2 )112, and for e > 0, e-(1+ lx I2)' belong to 
9'([Rd). 

3. No matter how large N is, (1 + IxI 2)-N is not in 5P([Rd). 

4. Not all members of 9'([Rd) decay exponentially (Problem 1). 

Definition. A sequence gn E 9' is convergent to g in 9' if and only if (Va, fJ) 
(1lgn - glla,p -+ 0 as n -+ 00). 

Convergence, like membership in 9', is tested by a countable set of semi­
norms. It is easy to show that gn converges to g in 9' if and only if p(gn' g) 
tends to zero where p is the metric 

( f) == ~ 2-lal-IPI .. Ilg - flla,p 
p g, L. 1 + Ilg - flla,p' 

(2) 

This metric endows 9'([Rd) with the structure of a metric space. 

Proposition 1. If g E 9'([Rd), g(O) = 1, then for any f E 9'([Rd), 

9'-lim g(ex)f = f as e -+ O. 

The reason for this is that for e small, g(eX) is a long flat plateau of height very 
close to 1 (Figure 2.1.1). Multiplying by g is close to multiplication by 1. The 
proof of Proposition 1 is Problem 2. 

Corollary 2. CO"([Rd) is dense in 9'([Rd). 

PROOF. Choose g E CO"([Rd) with g(O) = 1. Then CO"([Rd) 3 g(x/n)f -+ f, by 
Proposition 1. 0 

9 

Figure 2.1.1 
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Proposition 3. ,Cf'(lRd), p is a complete metric space. 

PROOF. If gn is a Cauchy sequence, it follows that for any compact set K c IRd 
and any IX, aagn is uniformly bounded on K. The Arzela-Ascoli Theorem 
implies that the gn converge to a limit g E coo(lRd), the convergence of all 
derivatives being uniform on compact sets. 

For any compact K and IX, f3 

sup IxaaPgl = lim (sup Ixaalignl) slim supllgnlla,p. 
K n-+oo K 

As the right-hand side is independent of K we find that II gil a,1i is bounded by 
the right-hand side, so g belongs on Y'. 

Finally, 

sup Ixaap(gm - g)1 = lim (sup Ixaap(gm - gn)l) slim Ilgm - gnlla,p' 
K n-+oo K n-+oo 

Given e > 0, choose N so that if n, m > N, II gm - gn II a,p < e. It follows that 
for m > N, II gm - gil a,li < e, proving convergence in Y'. 0 

A vector space like ,Cf'(lRd), which is a complete metric space whose topology 
is defined by a countable family of seminorms, is called a Frechet space. The 
basic principles of functional analysis; the Closed Graph Theorem, the Uni­
form Boundedness Principle, and the Hahn-Banach Theorem are valid in 
Frechet spaces. We will not need these results. 

Proposition 4. If FE COO(lCk : IC) with F(O) = 0 and jj E ,Cf'(lRd) for 1 s j s k, 
then F(fl (x), ... , j~(x» E Y'(lRd). The map from Y'(lRdt to Y'(lRd) so defined is 
continuous. 

Warning. The hypothesis on F does not mean that F is holomorphic. It means 
that (ax, ay)a F(x + iy) exists and is continuous for any IX. Holomorphic func­
tions are those with (ax + iay)F = O. 

EXAMPLES. 1. sin(J(x» E Y' whenever fEY'. Here Jis the complex conjugate 
off. 

2. The map qJ, t/J H qJt/J is a contino us bilinear map of Y' x Y' to Y'. 

PROBLEMS 

1. Construct a U E Y(IR) which is not exponentially small at infinity. That is, for all 
a> 0, e"lxl"u ¢ VD(IR). 

2. Prove Proposition 1. 
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3. Prove 

Proposition. 
(i) If M E Ca:J(lRd) and 

(V'iX)(3N, c) (lc"MI :::;; c(1 + Ixlt), 

then the map fl-> Mf is a continuous linear transformation of Y(lRd ) into itself. 
(ii) rf in addition 

(3n, c > 0) (I M(x)1 ~ c(1 + Ixl("), 

then the mapping is one-to-one and onto with continuous inverse. 

4. Prove Proposition 4. 

§2.2. The Fourier Transform on Y'{[Rd) 

The Fourier transform and its inverse serve to express a function u as a 
superposition of oscillatory exponential functions e-i(x. O , ~ E (Rd, according 
to the formula 

u(x) = (2n)-dIZ f ei(x,Ou(~) d~. (1) 

The goal of this section is to present the basic properties of the Fourier 
transform and, in particular, to prove the inversion formula (1). 

Definition. For u E .~(lRd), the Fourier transform of u is the function defined by 

,3"u(O == 11(0 == (2n)-d/Z f e-i(x.Ou(x) dx. 

Here <x, 0 == L Xi~i' We will often abbreviate <x, 0 as x~. 

EXAMPLES. 1. For u = e-xll2 E 9'(IR) 

u(~) = (2n)-1/Z f~w e-ix~e-x2!2 dx. 

Complete the square in the exponent to find 

x2 
2 + ix~ = ~(X2 + 2ix~) = 1((X + i~)z + ~2). 

Thus 

J2nu = e-~2!2 f~cu e-(x+i~)2!2 dx 

= e-~lIZ fr e- z2/2 dz, 

(2) 
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Figure 2.2.1 

where r is the contour 1m z = ~ traversed from left to right. Let r R be the 
segment on r running from - R + i~ to R + i~ (Figure 2.2.1). Since the 
integrand decays exponentially fast as Izl goes to infinity along r, the integral 
is equal to the limit 

By Cauchy's Theorem, the integral over r R is equal to the integral over AR , 

where rR - AR is equal to the boundary of the rectangle whose side opposite 
rR is the interval [ - R, R] on the x-axis. Thus our Fourier transform is 

= lim f e-z2/2 dz. 
R 4 00 AR 

As R -> 00, the integrals over the vertical sides of the rectangle tend to zero 
exponentially rapidly and we find 

u():) = e-~212 __ ~_ e- x2/2 dx = e-~2/2. 1 foo 
" (2n) 1/2 -00 

2. To compute the Fourier transform of the multi-dimensional analogue, 
u = e-lx12/2 E Y([Rd), note that u = Il j e- X ]!2. Fubini's Theorem yields 

u(~) = (2n)-dI2 f Il e-ixj~je-xJ/2 d~ 1'" d~d 

= Il (2nf1/2 f e-ixj~je-xJ/2 d~j = If e-~}/2 = e-I~12/2. 

For any u E .'1'([Rd), U is bounded, and 

lIuIlLro(ild)::;; (2nfd/2I1ullL'(ild)::;; cll(1 + IXj)d+luIILOO(lRd). (3) 
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Differentiation under the integral (Problem 1) shows that a E Coo (/Rd) and 

D~a = ff (( - x)au). (4) 

Integrating by parts lexl times in the definition of ffu yields (Problem 2) 

ff(D~u) = (2nfd(2 f e-jX¢D~u(x) dx 

= (2nfd!2 f (( -DSe-iX¢)u(x) dx = ~a.'1'u. (5) 

Thus, if P(D) is a partial differential operator with constant coefficients, then 

ff(P(D)u) = p(oa. (6) 

This simple formula is the main reason for introducing D = - iD. 
The computation of the Fourier transform of e- 1xI2(2 will playa central role 

in the analysis of ff. We next present a second derivation starting from the 
fact that the function u = e- x2 / 2 E .9'(/R) satisfies the ordinary differential equa­
tion u' = - xu. Since this equation is homogeneous, linear, and first order, the 
general solution is a constant multiple of u. 

Take the Fourier transform of the differential equation to find 

hence (8¢ + ~)a = o. 

Thus the transform satisfies the same equation as u, so 

The constant is evaluated using 

c = a(O) = f e- x2
/2 dx )2; = 1. 

Proposition 1. For any u E 5P(/Rd ), a E 5P(/Rd ), and the map u ~ a is a continuous 
tran~formation of 51' to itself. 

PROOF. Estimate the .9°(/R~) seminorms of a as follows: 

Ilalla,P = II~a8gall L~(lRt) = Ilff(8~(xfJu))IIL"(lRt) 

:::; (2n)-d/2118~(xfJu)b(IR~) :::; c 11(1 + Ixl)d+18~(xfJu)11 L'C(IR~) < :x: . 

If un """"* u in 51', apply this estimate to Un - U to show that Ilan - a II a,p converges 
to zero. 0 

The Fourier transform behaves well with respect to dilations and translations 

(O".l.u)(x) == u(h), is called the dilation by). E /R, 

('hU)(X) = u(x - h), is the translation by h E /Rd. 
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Proposition 2. If U E .'I'([Rd), then for any h E [Rd, A E [R\O: 

(i) Y(thu) == Y(u(· - h)) = e-ih~y(u) = e-ih~u(¢). 

(ii) Y(eihxu) = thY(U) == u(· - h). 
(iii) Y(a",u) = 1),I-d(a1/",Y(u)), that is, Y(a;.u)(¢) = I).I-d(.~u)(¢/A). 
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PROOF. (i) In S e-i(x,ou(x - h) dx make the change of variable y == x - h to 
find Se-i(y+h,Ou(y) dy. Assertion (i) follows. 

(ii) Left to the reader. 
(iii) In S e-i(x,ou(J.x) dx make the change of variable y == h with Jacobian 

Idet dy/dxl = 1).1 d. This yields S e-i(y/;',Ou(y)I).I-d dy, and (iii) follows. 0 

Finally, we require a simple duality identity, Denote by (',' ) the pairing 
f, g f-> JIg dx from Y' x .'1' to C Then 

for all ep, tjI E Y, (Yep, tjI) = (ep, YtjI). (7) 

PROOF. K(¢, x) == (2nrdI2e-ix~ is the kernel of the integral operator Y. Note 
that K is symmetric under interchange of x and ¢. Then 

(.~ep, tjI) = I tjI(¢<I K(¢, x)ep(x) dX) d¢. 

Since K(¢, x)tjI(¢)ep(x) E e([R2d, dx d¢) Fubini's Theorem justifies an inter­
change of order of integration giving 

= II ep(x)K(¢, x)tjI(¢) d¢ dx = I ep(x) (I K(x, ¢)tjI(¢) d¢) dx 

o 
Virtually the same proof yields an identity involving the scalar product in 

L 2([Rd : IC) 

which is linear in the first slot. One finds 

(,~ep, tjI) = (ep, ,~*tjI), (8) 

where c~*, called the Inverse Fourier Transform, is the integral operator with 
kernel (2nrd/2eiX~. The difference between y* and Y is the minus sign in the 
exponent. 

In the proof of the Fourier Inversion Formula, we need a simple result about 
approximate £5 functions, £-dj(X/£) (Figure 2.2.2). 

The next proposition is more than sufficient. 

Proposition 3. If j ELI ([Rd), S j(x) dx = 1, and u E L oc ([Rd) is continuous at 0, 
then 

lim IU(X)6-dj(x/e) dx = u(O). 
£:-0+ 
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Figure 2.2.2 

PROOF. Replacing u by u - u(O), it is sufficient to consider the case u(O) = O. 
Given a challenge number, 1'/ > 0, choose R > 0 so that lu(x)1 < '1/ IU II L' for 
Ixl ~ R. Then 

For the rest 

= lIullLoo r Ij(x)1 dx = 0(1). J Ixl>R/. 

Thus 

Theorem 4 (The Fourier Inversion Formula). For all u E Y'(lRd) 

u(x) = (2n)-d/2 f eix~u(O d~ = :!7*:!7u. 

o 
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PROOF. First consider the case x = O. Let vex) = e-lxI2/2. Since f v dx = (2n)d/2 
and :F v = v, Proposition 3 shows that 

(2ntd/2u(0) = lim <u, S-dV(X/S) = lim <u, S-dUl /tV ) 
t~O t~O 

= lim<u, e-du1/t(:Fv) = lim<u, :F(utv) 

= lim<:Fu, u,v). 

Now, u,v(~) = v(e~) ...... v(O) = 1 pointwise, and luevl S; 1. Furthermore, 
:Fu E Y(lRd) C Ll(lRd). Lebesgue's Dominated Convergence Theorem shows 
that the right-hand side converges to f (:F u)(~) d~. The proof of the special 
case, x = 0, is complete. 

For the general case, note that 

u(x) = (LxU)(O) = (2n)-d/2 f :F(LxU)(~) d~ 
= (2ntd/2 f eix~u(~) d~ (by Proposition 2 (i)). o 

This proof rests on little more than the identity :F v = v. The explanation 
why this is sufficient is that the elementary properties of.fF and :F* imply that 
{u E 9'(lRd): /#'*:F u = u} is a closed linear subspace which is invariant under 
translation and dilation. It is not hard to show that the span of the translates 
and dilates of our v form a dense subset of .'l'(lRd) (Problem 4). 

That :F*:F = Id on .Cf? implies that :F is one-to-one and :F* is onto. 
However, :F* differs from :F by a simple sign change x 1-+ - x in the kernel, 
so we have :F* = &£:F where PIl is the reflection operator (PIlu)(x) == u( - x). 
Then :F = PIl2:F = PIl:F* is also onto. Summarizing, we have proved the 
following corollary. 

Corollary 5. The Fourier transform, :#', is a linear bijection of 9'(lRd) to itself 
with inverse equal to :F*. 

There is a parallel theory of Fourier series of smooth 2n multiply periodic 
functions whose Fourier expansion is 

u(8) = (2ntd/2 L unei (n,8), 
neZd 

un = (2ntd/2 [ u(e)e- i (n,8) de. 
J[0.21t]" 

The transform u 1-+ {un} is a bijection of smooth multiply periodic u to the 
space J of rapidly decreasing complex sequences. That is, sequences such that 
InlkUn E lCO for all k. The analogue of Plancherel's identity (2.3.2) is called 
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Bessel's identity 

(9) 

An elegant derivation of these results, using the framework of §2.S, can be 
found in Donoghue [Don]. 

PROBLEMS 

1. Carefully justify the differentiations leading to the formula Djff(u) == ff( -xju). 
Then prove that D·ff(u) = ff« -x)·u). Hint. Induction on IIXI. 

2. Carefully justify the integration by parts leading to the formula ff(Dju) = ~jffu. 

Then prove ff(D·u) = ~·ffu. Hint. Induction. 

3. If A is an invertible linear map of [Rd to itself and u E 9'([Rd), define UA by UA(X) == 
u(A-1 x). Compute a formula for the Fourier transform of uA • Prove that ff(uA ) = 

(,~U)A for all U if and only if A is an orthogonal transformation. 
DISCUSSION. The special case of A equal to a reflection was used in the discussion 
of the Fourier Inversion Formula. A simple consequence of this special case is that 
the Fourier transform of an odd (resp. even) function is odd (resp. even). 

4. Prove that the linear span of the translates and dilates of exp( -I x 12/2) are dense 
in 9'([Rd), thereby giving an alternate derivation of the Fourier Inversion Formula. 
Hint. For U E C~([Rd) consider 

5. Show that if U E Y' satisfies ff(u) = inu, then v == (OJ + Xj)u satisfies ff(v) = in+lv. 
DISCUSSION. Thus w == (0 + x)·(exp(-lxI2/2) satisfies .~(v) = v provided IIXI is a 
multiple of four. The Gaussian is by no means the only function which is its own 
Fourier transform. 

The function w is an eigenfunction of ff for all IX. These eigenfunctions form an 
orthogonal basis for L2([Rd). This gives the spectral decomposition of the unitary 
operator ff from L 2([Rd) to itself (Theorem 2.4.4). These eigenfunctions were well 
known in the nineteenth century and give yet another approach to the Fourier 
Inversion Formula. In fact, this is the derivation in Weiner's text on the Fourier 
transform. 

§2.3. The Fourier Transform on LP(lRd ): 1 < P < 2 

The Fourier transform, defined on 9'(jRd) can be extended to more general 
classes of functions and distributions. Linear maps are commonly extended 
using one of two algorithms. The first is extension by continuity. 

Proposition 1. Suppose that X is a normed linear space, E c X is a dense linear 
space, and Y is a Banach space. If T: E -+ Y is a continuous linear map, that is, 
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(3c > O)(Ve E E), II Tell y ~ c II ell x' 

then there is one and only one continuous linear map T.:xt: X ~ Y with T.:xtlE = T. 

As an example, we extend the Fourier transform as a continuous linear 
map of L 1 (lRd) to L 00 (lRd) and from L2(lRd) to itself. Toward this end, we need 
a simple approximation theorem. 

Proposition 2. CO"(lRd) is dense in U(lRd) for 1 ~ p < 00. 

PROOF. The set of finite linear combinations of characteristic functions 
of bounded measurable sets is dense. Thus we need only prove that if A 
is bounded and measurable, then for any e > 0, there is a q> E CO" with 
II q> - XA II p < e. 

Given e > 0, choose compact K and open 0, with K cAe 0 and 
J1(0\K) < eP. Choose q> E CO"(lRn) with 0 ~ q> ~ 1, supp(q» c 0, and q>IK = 1 
(Problem 1). Then 

11q> - XAII~ = IIq> - XAIP ~ I 1 < eP. 0 
(';\K 

Basic Estimates. Iff E 9'(lRd), then 

IlfffllL~ ~ (2n)-d/21Ifll£" 

Ilfffll£1 = Ilfll£1 = Ilff*fll£1· 

(1) 

(2) 

PROOF. The first estimate is immediate and was already observed in (2.2.3). 
For the second compute 

Ilff fll £2 = (ff j~ ff f) = (f, ff* fff) = (f, f) = II f II £2. 
The estimate for ff* f follows in the same way from the identity .'F ff* = Id 
(Corollary 2.2.6). 0 

Definition. C(lRd) denotes the set of u E C(lRd) such that limx~oo u(x) = O. 

Such functions are said to vanish at infinity. C(lRd) is a closed subspace of 
L 00 (lRd), so is a Banach space in the supremum norm. C is the closure of 9'(lRd) 
in L ~(lRd). 

Theorem 3 (Riemann~Lebesgue Lemma). ff: 9'(lRd) ~ 9'(lRd) extends uniquely 
to a continuous linear map Ll(lRd) ~ C(lRd) with norm equal to (2nfd/2. For 
u E Ll(lRd) the value of (ffu)(O is equal to the absolutely convergent integral 
(2nfd/2 S e-ix~u(x) dx. 

PROOF. The existence follows from the density of 9' in L 1 together with 
basic estimate (1). The upper bound for the norm is achieved at U(O) for 
any positive u E if'. To prove the formula, choose Un E Y', Un ~ u in L 1. Then 



72 2. Some Harmonic Analysis 

ffun -t ffu in C. In particular, ffu.(e) -t ffu(~). Now 

(2n)d/2ffu.(O = f e-ix~Un(X) dx -t f e-ix~u(x) dx, 

since the difference of the two integrals is dominated by II Un - U II u· 0 

Theorem 4 (Plancherel). The Fourier transforms ff and ff* on g extend 
uniquely to unitary maps of L 2 to itself satisfying ff* ff = ff ff* = 1. 

PROOF. The existence of isometric extensions for ff and ff* follows from the 
basic estimates (2). 

That ff ff* = ff* ff = I follows since both sides are continuous on L 2 and 
they are equal on the dense subset, Yo Unitarity follows. D 

A typical u in L 2 is not in L I (e.g. (1 + Ixl)-I E L 2(1R» so J e-iX~u(x) dx is 
not absolutely convergent. Thus, the Fourier transform of a typical element 
of L 2 is not given by the usual integral formula. 

For u E LIn L2 we have given two meanings to ffu. Thinking of u as 
an element of LI (resp. L2), ffu is defined as an element of C (resp. L2). It is 
important to know that the two results are equal. Equality is interpreted as 
either equality in the sense of distributions or equality almost everywhere. To 
prove the latter, fix R > 0 and B == {Ixl < R}. Choose Un E g with U. -t U in 
both U and L2. Simple plateau cutoff, followed by convolution with an 
approximate delta, achieves this goal. Then 

and 

In particular, ffun converges in L2(B) to both (ffL 2u)IB and to (ffuu)IB' Thus 
ffuu = ffuu almost everywhere on B. 

If u belongs to L2 we obtain classical formulas for the Fourier transform 
by choosing Un with Un -t U in L2. Then ffu = L2-limn-->oo ffu •. For example, 
if one takes Un == X{lxl<RjU or Un == e-e1x1u, one finds 

ffu = L2-lim (2n)-d/2 r e-iX~u(x) dx 
R-->oo Jlxl<R 

= L2-lim (2n)-d/2 fe-'IXle-iX~u(X) dx . 
• -->0 

Note that these are L2 limits, not limits almost everywhere. 
ff maps LI to L 00 with norm (2n)-d/2 and L2 to L2 with norm l.1t follows, 

by interpolation, that ff maps the LP spaces "between" L1 and L2 to those 
"between" L 00 and L 2. The precise result is given by the Riesz-Thorin Con­
vexity Theorem. This result asserts that if K is bounded from v o to Vo and 
bounded from L" to V,, then K is bounded from V' to V, for 0 ~ () ~ 1, 
where rll , Sll are defined by 

1 1··· 1 
- == ()- + (1 - (})-, 
rll ro r1 

1 1 1 
- == ()- + (1 - (})-. 
Sll So S1 

(3) 
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Two conventions are in force here. First, rand s are between 1 and infinity, 
and second, in (3) we take 1/00 = 0,1/0 = 00. 

Definition. A linear map K: 9'([Ra) --+ 9'([Rd) is of type (r, s) if and only if 

(3c ~ 0) (V <p E 9'([Rd», II K<p II U(l\ld) :s; c II <p II U(l\ld). 

If r < 00, then 9' is dense in L r and K has a unique extension to a bounded 
linear map of L r to U. For r = 00, the extension maps C([Rd) to U. 

Theorem 5 (Riesz-Thorin Convexity Theorem). Suppose that for i = 0, 1, 
1 :s; ri, Si :s; 00, and K is a linear map which is of type (ri, sJ Then for all 
e E [0,1], K is of type (r6, S6) where r6 and S6 are defined in (3). Furthermore, if 

(Vu E L'i), i = 0,1, 

the for all e E [0, 1], u E L", 

IIKulls.:S; BgBt-6 1I u llr,. 

An elegant proof using Hadamard's Three Circle Theorem from complex 
analysis can be found in many functional analysis texts. 

The above theorem shows that the set of points (l/r, l/s) E [0,1] x [0,1], 
such that K is of type (r, s) in a convex set, and the norm of K from L' to U 
is a convex function on that set. 

Corollary 6 (Hausdorff-Young Inequality). The Fourier transform :Ii': 9' --+ 9' 
extends uniquely to a bounded linear map from LP to U for 1 :s; p :s; 2, 
l/q + l/p = 1. Furthermore, for such p and any fEU, 

lI:Ii'ull Lq :s; (2nf d(2- P)/2P lluIlLP' 

PROOF. Apply the Riesz-Thorin Theorem with ro = 1, So = 00, r1 = 2, Sl = 2. 
o 

The type of:li' thus contains the segment sketched in Figure 2.3.1. 

Figure 2.3.1 



74 2. Some Harmonic Analysis 

PROBLEMS 

I. If :f is a compact subset of the open set <9 in IRd, construct a ({J E CO'(<9) with 
o :$ ({J :$ 1 and ({J equal to 1 on a neighborhood of :f. 

2. Let u == e-xx]o.oo[ E Ll(IR). Compute the Fourier transform of: 
(a) u; (b) the reflection iJ,fu; (c) 'hU; 
(d) eiXhu; (e) (sin x)u. 

3. For C E C\IR and k = 2, 3, ... , use the calculus of residues to compute the Fourier 
transform of 1/(x - C)k ELI (IR). 

4. For the functions v == e- ixi and u == (1 + x2r 1 E L 1(1R) verify the Fourier Inversion 
Formula by computing the Fourier transforms and then applying directly g;*. 
DISCUSSION. This special case can be used as the keystone of the proof of the 
inversion formula in the same way that we used the Gaussian, exp( - x l I2). 

§2.4. Tempered Distributions 

The three spaces in which ff acts most naturally are Y([Rd), L 2([Rd), and 
Y'([Rd). The last, the dual of Y([Rd), is called the space of tempered distributions. 
The extension of ff from ,c;:' to Y' is by a duality argument quite different 
from the extension process in §2.3. This section is an introduction to ,c;:" 
including a discussion of the extension. 

Recall that the distributions T E ~'([Rd) are linear functionals on £C([Rd) = 

ego ([Rd) (see Appendix A). The tempered distributions are those distributions 
which extend to continuous linear maps from Y([Rd) to IC. Since ~([Rd) is dense 
in ,'I)([Rd) the extension is uniquely determined. 

Definition. A tempered distribution is a continuous linear functional on Y([Rd), 
that is, a continuous linear map from Y'([Rd) to IC. The space of tempered 
distributions is denoted Y'([Rd). 

It is not difficult to verify the following criterion analogous to bounded ness 
in the normed linear context. 

Proposition 1. A linear map T: Y([Rd) -> C is continuous if and only if there 
exist n E Nand C E [R such that for all cP E ,c;:'([Rd) 

I<T, cp)1 :S c L Ilx~afJcpIILP(~d). (1) 
1~15n.IPI5n 

Denoting the sum on the right as Pn( cp), the sequenct of norms Po :S PI :S P2 
... define the topology for ,C;: 

Corollary 2. A distribution T E ~'([Rd) extends uniquely to an element of ,c;:"([Rd) 
if and only if there exist n E Nand c E [R such that (l) holds for all cp E ~([Rd). 
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In particular, we have 

£&([Rd) c $'([Rd) C 9"([Rd) C £&'([Rd). 

EXAMPLES. 1. Iff is a Lebesgue measurable function on [Rd such that for some 
M, (1 + IxI2)-M f E Ll([Rd), then the distribution defined by fis tempered since 

<f, q» = <(1 + Ixl 2 r M f, (1 + IxI2)Mq» 

S 11(1 + Ixl 2 r MfllL' 11(1 + IxI 2 )Mq>IILoc. S Cj P2M(q»· 

In particular, .9'([Rd) c .7' ([Rd). 

2. If 11 is a Borel measure such that for some M, (1 + IxlzrMI1 is a finite 
measure, then the distribution defined by 11 is tempered. Reason as in Example 
1 to show that 

<11, q» s 1!(1 + IxI 2)-MI1 IIToLvar.II(1 + IxI2)Mq>llv~(~d) S CI1 PZM(q»· 

3. If f E U([Rd), 1 s P s 00, then f E .9" since these functions satisfy the 
condition of Example 1, if one chooses M so large that (1 + Ixl 2r M E U([Rd) 
and then uses Holder's inequality. 

Definition. A sequence T" E .9"([Rd) converges to TE .9"([Rd) if and only if for 
all U E .9'([Rd) 

as n ~ 00. 

We write T" --'"-Tor .9" -lim T" = T. 

EXAMPLE. If q> E £&([Rd), q>(0) = 1, then 

.9" -lim q> (::) T = T. (2) 
n-oo n 

Note that .7'([Rd) c £&'([Rd) so if T E .9", then q>T is a well-defined element of 
£&'([Rd) for q> E COO([Rd). If q> E CO', then q>T E $' c .9", so the assertion makes 
sense. 

To prove (2), note that for IjJ E.9', <q>(x/n)T, 1jJ) == <T, q>(x/n)ljJ) and 
q>(x/n)1jJ ~ IjJ in.9'. Thus < T, q>(x/n)ljJ) ~ < T, 1jJ), thanks to the continuity of T. 

o 

The topology in.9" associated with this convergence is called the weak-star 
topology defined by the (uncountable) family of seminorms 

We will have no need for topological subtleties but note in passing that this 
topology in .9" is not metrizable. 

Our next, and principal, concern will be to extend to .9" the basic linear 
operators of analysis, for example, aa and :$F. The extensions will be proved 
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to be sequentially continuous and it is important to know that such extensions 
are uniquely determined by their values on Yo This follows from the density 
of gin g'. 

Proposition 3. CO(~d) is sequentially dense in g'(~d). 

PROOF. Choose qJ E .@(~d) with qJ(O) = 1. Then for n = 1, 2, ... , qJ(x/n)T E 

C'(~d) C g'(~d). 

Choosej E .@(~d) with Jj(x) dx = 1 andj( -x) = j(x). Letj.(x) == ndj(nx), so 
that j. ->. b. Then qJ(x/n) T has compact support so Proposition 4 of the 
Appendix implies that 

T" == j. * ( qJ (~) T) E .@(~d) C g(~d). 
It remains to show that for all IjI E Y', <T", IjI) ~ <T, IjI). Now <T", IjI) = 

<T, (qJ(x/n)(j. * IjI). Thus it suffices to show that qJ(x/n)(jn * IjI) ~ IjI in Yo 
Toward that end, compute 

For IX ENd, PENd, apply x"a~ to this difference to obtain a finite sum of terms 
of the form 

C(IX, P, Y) f ;:la~qJ(~){a~-YIjI(x +~) - a~-YIjI(x)}j(y) dy, 

the sum over those Y E Nd with 0 :::;; Yi :::;; Pi for i = 1, ... , d. The difference of 
IjI's is estimated using the mean value theorem and the fact that the derivatives 
of IjI decrease faster than any power 

la~-YIjI(x +~) - a~-YIjI(x)l:::;; 1~ICM(l + Ixj)-M. 

Performing the y integral yields the estimate 

Ixl"(l + Ixj)-M 
c--= ...... · 

nlyl+1 

Choosing M > IIXI the result follows. o 

Given a continuous linear operator L: g ~ Y', the transpose L' maps 
g' ~ g'. For T E g'(~d), L'T E g' is defined by 

<L'T, qJ) == <T, LqJ) for all qJ E Yo (3) 

The next proposition shows that the identity can sometimes be used to extend 
L. 
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Proposition 4. Suppose that L: 9'(lRd) -+ 9'(lRd) is a continuous linear map and 
that the restriction of the transposed operator to g; L'I.'I" is a continuous map 
of 9' to itself Then L has a unique sequentially continuous extension to a 
linear map L: 9"(lRd) -+ 9"(lRd) defined by 

(LT, cp) == (T, L'cp), for all T E 9", cp E Y'. 

PROOF. If L is such an extension, T E 9", and cp E g; choose 1'" E g; converging 
to T in //" (lRd ). Then 

(L1'", cp) = (1'", L'cp). 

Passing to the limit n -+ 00 yields 

(LT, cp) = (T, L'cp). (4) 

Conversely, defining L by this identity yields a sequentially continuous 
linear extension. 0 

This proposition identifies when passing the operator to the test function 
yields a good extension. 

The extension is continuous for the weak-star topology on Y", a fact we 
will not need. 

For general L, one will not even have L' cp E 9' for cp E y: The hypothesis 
on L' is very restrictive. However, the following list shows that many oper­
ators are included. The translation and dilation operators were defined before 
Proposition 2.2.2 and the multiplication operators M were defined in Problem 
2.1.3. 

L L'I.'I' 

iJ" (- 0)" 
Th T-h 

(Ik k-d(Il(k 

ff ff 
M(x) M(x) 

As the demonstrations of the assertions in the table follow a single pattern 
we consider only the formulas for (13")'1.'1' and ff'I.'I" 

For T E g" and cp E g; we have 

«(a")'T, cp) == (T, (a")cp). 

If T E g; the right-hand side is equal to 

f T(x)a~cp(x) dx = f ( -aJ" T(x)cp(x) dx = «( - ay T, cp). 

Thus, for such T, (a"),T = (-ayT. 
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Similarly, for T E 51" and <p E g; 

(ff'T, <p) == (T, ff<p). 

For T E 9"fonnula(2.2.7) shows that this isequalto (ffT, <p), whence 3"'1 y = ff. 

Theorem 5. Each of the operators M, a·, Th, (Jk"? from.Cf' to itself has a unique 
extension to a sequentially continuous map of 9'" to 9"'. The extensions are 
defined for T E .Cf", <p E g; by 

(MT, <p) == (T, M<p), 

(a·T, r/J) == (T, (-a·<p), 

(TnT, <p) == (T, Lh<P), 

«(Jh T, <p) == (T, k~d(Jl/k<P), 

(ffT, <p) == (T, ff<p). 

All the operators except ff are well defined as maps of f0'(lRd ) to itself. Thus, 
for T E 9'" c f0', the action on T yields a well-defined element of f0'. The 
expressions above show that the two definitions agree for test functions in f0'. 
What is asserted is that the expressions are still meaningful and continuous 
for test functions in !.I'. 

EXAMPLE. The smooth function u = sin(eX ) is uniformly bounded and so 
defines a tempered distribution. The distribution derivative of u must be equal 
to its classical derivative, namely, v = eX cos (eX), which grows exponentially 
as x tends to infinity. Thus S v<p dx is not an absolutely convergent integral 
for all <p E 9"(lRd). Nevertheless, v is a tempered distribution since it is the 
derivative of a tempered distribution. This seemingly paradoxical result is 
resolved by observing that the map f0 '3 <p f---> S v<p does extend to a tempered 
distribution as one sees immediately from the identity, valid for <p E f0, 

f <PV dx = f <pau dx = - f ua<p dx. 

Thus IS v<pl ::;; 11()<Pllv ::;; CPd+2(<P)· 

Most basic identities involving these operators in //' extend to //", since .Cf' 
is sequentially dense in 9"'. For example, the Fourier transform on .Cf' satisfies 

ff*ffT= T, (5) 

To prove the first note that ff D· and ~'.'#' are sequentially continuous on .Cf" 
and they agree in .Cf', thus for any T E 9'" choose T" E .Cf' with T" ----" Tin 9"', then 

The other identities in (5) are proved in the same way. These identities allow 
for elegant manipulation of ff as the following examples illustrate. 
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EXAMPLE. Compute the Fourier transform of 1. 
Using the definition of:F on Y" the Fourier Inversion Formula yields 

<.~I, cp) = <I, :Fcp) = f :Fcp(~) d~ = (2n)d/2cp(0) = «2n)d/2 b, cp). 

Thus 
(6) 

Formula (6) is equivalent to the identity (2n)-d/2 J :F cp(~) d~ = cp(O) which 
implies the Fourier Inversion Formula. 

We next give an alternate derivation of (6) without using the Fourier 
Inversion Formula, thereby giving Laurent Schwartz's elegant proof of 
Fourier's Theorem. 

For a i= 0, Dill = O. Thus, for a i= 0, 

~a:Fl = :FDal = O. 

In particular, (I ~f):Fl = O. Thus, supp:Fl c {O}, so there are constants 
cp E C such that 

To evaluate the Ca for a i= 0, use the fact that ~a.~l = O. Choose cp E .'I'(lRd), 
cp(O = 1 for I~I :::;; 1. Then for a i= 0, <-~l, ~acp) = 0, but 

0= <:Fl, ~acp) = I <CpOPb, ~acp) = I Cp( -iJ)PWcp)I~=o. 

Since cp is constant on a neighborhood of the origin the summands vanish at 
~ = 0 unless f3 = a. In that case, the sum is equal to a! Ca' so Ca vanishes unless 
a = O. 

Thus:Fl = cb. To evaluate the constant C apply cb to e-~2/2 to find 

c = <cb, e-~2/2) = <:F1, e-~2/2) 

= (1, :F e-~2/2) = f e-~2/2 d~ = (2n)d/2. 

A third computation of :FI starts with 1 = .'1" -lim e-lx/nI2/2. Applying :F 
yields 

This argument is only a slight variant of the proof of Theorem 2.2.5. 

EXAMPLE. Compute :F b. 
The definition of:F yields 

<:Fb, cp) == <b, :Fcp) = (:Fcp)(O) = (2nrd'2 f cp(x) dx = «2nrd'2, cp). 

Thus :F b = (2nrd/2. 
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The next example illustrates how analytic continuation can be used in 
computing Fourier transforms. The result is needed in our study of initial 
value problems. 

EXAMPLE. For Re(a) ~ 0, a i= 0, compute 3"'(e-ax2 /2 ). 

For any t{I E g; <e-ax2/2 , t{I) is holomorphic in Re(a) > ° and continuous in 
Re(a) ~ 0. Thus 

is holomorphic and continuous in the same half-space. 
For a E IR+ the Fourier transform of exp( -ax2/2) is computed by writing 

it as exp( - (a 1/2x)2 /2) and using the dilation identity in Proposition 2.2.2 (iii) 
with u = exp( - x 2 /2) and A. = Ja to find 

Thus 

for a E IR+. 

Furthermore, the two sides are holomorphic in Re(a) > 0, continuous in 
{Re a ~ ° and a i= O}, and equal on IR+. The unique continuation principle 
for analytic functions implies that the two sides are equal for all Re(a) > 0. By 
continuity this extends to Re(a) ~ 0, a i= 0. Thus 

Re a ~ ° and a i= 0, (7) 

where a1/2 is defined as the branch with Re(a) > 0. In particular, 11/2 = 1. 

We give two simple but striking applications of the Fourier transform on 
//'. 

First consider the solvability of the equation 

(1 - l1)u = f. (8) 

For u, f in /7' this is equivalent to 

(l + lel 2 )u = 3"'f, (9) 

hence 
(10) 

Proposition 6. For any f E /7' (lRd) there is exactly one solution u E ,'/" (lRd) to (8). 
The solution is given by formula (10). In particular, iff E g; then u E !I'. Iff E L 2, 

then for aUlal ::s; 2, Dau E U{lRd ). 

The conclusion means that the distribution derivatives Dau of the tempered 
distribution u are equal to L 2 functions. 
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PROOF. Only the last assertion must be proved. Compute 

ff(D"u) = ~~-.'J'I E U([Rd). 
. I +1~12 

By Plancherel's Theorem, this proves that D"u E L 2. 

81 

o 

We have seen that the equation (at + ox)U E L 2 does not imply that all first 
derivatives of u are in Lfoc. The regularity in the above proposition is typical 
of elliptic equations. Note that the equation asserts that one linear combina­
tion of {D"u: IIXI ~ 2} lies in L2 and the proposition shows that all of the D"u 
with IIXI ~ 2 are in L 2. In this sense the result is surprising. It is false (and not 
obviously so) that if f E CO([Rd), then u E C2 ([Rd) (Problem 5.9.3). The gain of 
two derivatives is correct if one measures differentiability using L 2 derivatives 
from the Theory of Distributions and is false for the classical partial deriva­
tives of second-year calculus. 

The second application is to a Liouville-type theorem. 

Theorem 7 (Generalized Liouville Theorem). Suppose that P(D) is a constant 
coefficient partial differential operator such that P(~) #- 0 for ~ #- O. If u E Y'([Rd) 
satisfies Pu = 0, then u is a polynomial in x. 

EXAMPLES. 1. P = Pm is a homogeneous elliptic operator. In particular, if P 
is the Cauchy-Riemann operator ax + iOy or the Laplace operator.:1. 

2. P = at - .:1, the heat operator. 

3. The wave operators at - ax and at2 - .:1 do not satisfy the hypothesis. 

4. In Problem 1.3.3 many such polynomial solutions were constructed for 
the heat equation. The real and imaginary parts of (x + iyt are polynomials 
on [R2 which satisfy Laplace's equation. 

PROOF. Take the Fourier transform of the equation to obtain 

ff(P(D»u = P(Ou = O. 

Since P(O #- 0 if ~ #- 0 it follows that supp u c {O}. 
Thus ffu must be a finite linear combination of derivatives of the delta 

function 

Apply the inverse Fourier transform to obtain 

u = L ca''#'* Dall = L c.( - x)".'#'*1l = L ca( - x)"(2n)-d/2, 

a polynomial in x. o 

Corollary 8. The only bounded harmonic (resp. holomorphic) functions on [R" 
(resp. IC) are the constants. 
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Another classical example which is easily understood is the operator 
(d/dx)". Contrast this with the constant coefficient nonhomogeneous operator 
d2/dx 2 + 1 which has sin x as a non polynomial bounded solution. 

PROBLEMS 

1. Prove Proposition 1 and its corollary. 

2. Compute the Fourier transform of the following tempered distributions. 
(a) Ij(x - c), C E C\[R. Hint. Use Problem 2.3.3. 
(b) The Heaviside function h == X]O,oo[' Hint. Consider the derivative of h. Find all 

distribution solutions of xT = 1 (there are infinitely many). 
(c) 0-3 E Y"([Rd). 
(d) x- E ,'1" ([Rd). 

There are situations where the Fourier transform has been defined in more than one 
way as an element of .r/". For example, if u E U for all p E [1, 2], then .'Fu is defined 
by a different extension process for each such p, and in addition ffi' u is defined in yet 
another process as an element of :/'. To show that all the extensions agree, the simplest 
algorithm is to show that they all define the same element of ,'1". 

3. Prove. 

Proposition. Suppose that X and Yare topological spaces with ,'I' c X c ,'1", 

,'I' eYe ,'1", where each inclusion is continuous and sequentially dense. If K: ,'I' ...... ,'I' 

is continuous and has sequentially continuous extensions K 1: X ...... Yand K z: ,'1" ...... ,'1", 

then the restriction of K z to X is equal to K 1 . 

EXAMPLES. 1. (Fourier Transform of U). Here K z = :F, X = U, with p E [1,2], and 
Y = U and K 1 is the Fourier transform as defined in §2.3. The proposition shows that 
the two definitions of the Fourier transform of an element of U define the same 
tempered distribution. 

2. (Fourier Transform of Measures). Let A([Rd) denote the set of finite Borel 
measures on [Rd. A is a Banach space with norm given by the total variation. For 
11 E .4t, there is an elementary definition of a Fourier transform 

(K11l)(O == (2nf dlz f e-ix~ dll(x). (11) 

Then K 1: X ...... Y == L "'([Rd) n C([Rd) has norm 2n-dlZ (exercise). However, Y'([Rd) is not 
dense in .4t. On the other hand, ,'I' is sequentially dense in A if A([Rd) = C([Rd)' is 
given the weak-star topology. The proposition applies with Kl = ffi' showing that the 
two definitions of the Fourier transform of a measure yield the same tempered distribu­
tion. That is, the Distribution Theory Fourier Transform of 11 is equal to a continuous 
function of ~ given by the absolutely convergent integral (11). 

It is also true that ,'I' is not dense in L 00 = (Ll)' but is dense in the weak-star topology. 
Here, as for measures, it is often useful to use this weaker topology. 

4. (a) For Re a ~ 0, a * 0, and bE C compute the Fouriertransform of e-(ax2 +Zbx)/Z. 

(b) Discuss the limit as a converges to zero. 



§2.S. Convolution in .'!'(lRd) and .Y"(lRd) 83 

§2.5. Convolution in 9'(jRd) and 9" (jRd) 

In this section the extension process is applied to the operator convolution 
by <p E ,,/(JRd). For l/J E Y'(JRd) 

(<p * l/J)(x) == f <p(x - y)l/J(y) dy. (1) 

The integral is absolutely convergent and Lebesque's Dominated Conver­
gence Theorem shows that <p * l/J is continuous and vanishes at infinity, that 
is, belongs to C(JRd). Differentiating under the integral sign (Problem 1) shows 
that <p * l/J E COO(JRd) and 

D~(<p * l/J) = (D~<p) * l/J = <p * Dal/J. (2) 

If lip + 1/q = 1, Holder's inequality implies 

11<p * l/JIIL~ S 11<pIILq Ill/Jlb· (3) 

To estimate the L 1 norm of <p * l/J one integrates to find 

II <p * l/J II L' s f (f I <p(x - y)l/J(y)1 dY») dx = f (f I <p(x - y)l/J(y)1 dX) dy, 

The last equality using Fubini's Theorem. The integral on the right is exactly 
equal to the product of the L 1 norms of <p and l/J proving that 

(4) 

Estimates (3) and (4) form the heart of the U extensions for <p * discussed in 
Problems 2~4. 

For the ,9", Y" theory we need to show that <p * is continuous from .'/ to 
itself. An elegant proof uses the Fourier transform of <p * l/J. Since <p * l/J is in 
L 1 its transform is computed as the absolutely convergent integral 

ff(<p * l/J) = (2n)-d!2 f e-ix~ (f <p(x - y)l/J(y) dY) dx. 

Fubini's Theorem justifies reversing the order 

= f <p(y) ((2n)-dI2 f e-ix~<p(x - y) dY) dx. 

The inner integral is ff(ry<p) = e-iY~~(O, so 

ff(<p * l/J) = f ~(~)e-iY~l/J(y) dy = (2n)dI2~~. (5) 

Thus 
(6) 

Since ff and .Jl'* are continuous maps of Y' to itself and multiplication is a 
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continuous map from Y x Y to Y (see Example 2 at the end of§2.1), it follows 
that cp, r/J 1-+ cp * r/J is a continuous bilinear map from Y x Y to [/. 

Formula (6) also gives a short proof of the Y convergence of mollification. 

Proposition 1. If cp E Y with f cp = 1 and CP. == e-dcp(x/e), then for all u E Y 

Y -lim CP. * u = u . 
• -+0 

PROOF. 

§'(cp.*u) = (2n)d/2§'cp.(~)§'u(~) = (2n)d/2(§'cp)(e~)§'u(~). 

Since §' cp(O) = (2nrd'2 f cp dx = (2n)-d/2, Proposition 2.1.1 shows that 
Y-lim§'(cp.*u)=a(~). D 

The map cp * is a continuous linear map with transpose computed from 

«cp*)'T, r/J) == <T, cp*r/J). 

For T E Y this is an integral 

f f T(x)cp(x - y)r/J(y) dy dx = f (f cp(x - y) T(x) dX) r/J(y) dy, 

and the inner integral is the convolution of Twith the reflection, 9tcp, defined 
by 9tcp(x) == cp( -x). Thus (cp *)'1 y = (9tcp)*. 

Proposition 2. For cp E Y, the operator cp * extends uniquely to a sequentially 
continuous operator of Y' to itself. This operator satisfies 

<cp * T, u) = (T, (9tcp) * u), 

§'(cp * T) = (2n)d/24>t 

DIZ(cp* T) = (DlZcp) * T = cp*DIZT. 

PROOF. All the identities continue from the sequentially dense subset of all 
TE Y(lRd ). D 

For any distribution TE~' the convolution T* cp E C""(lRd ) is defined for 
all cp E ~(lRd) by < T, !yCP). Thus T * maps ~ to Coo. For TE Y', we extend the 
map T* to a map of Y to Y'. 

Proposition 3. For TE Y'(lRd), the map ~(lRd) 3 cp 1-+ T * cp extends uniquely to 
a sequentially continuous map of Y(lRd ) to Y'(lRd ) which satisfies 

(7) 

PROOF. For cp and r/J in~, the identity (7) is known. As we have observed, the 
map cp, r/J 1-+ cp * r/J is a continuous bilinear map of Y x Y to Y. T* can 
therefore be extended using formula (7). D 
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EXAMPLES 

1. ih = Id, 

2. (D'b) * = D'. 

3. (P(D)b) * = P(D). 

4. The unique tempered solution of (1 - il)u = f E ,c;:' is given by 
,?'u = (I + 1¢1 2r 1,?'l Define a tempered distribution K by 

,?'(K) == (2n)-d/2(l + 1¢1 2 )-1, 

Then, for f E .c;:', the solution u is given by 

u = K *f"=" f K(x - y)f(y) dy. 

K is the unique Y"(lRd) solution of 

(1 - il)K = b. 

(8) 

(9) 

( 10) 

Formulas (8)-( 10) are typical of Green's functions. The identity (10) says that 
K is a fundamental solution. Equation (9) expresses the solution of the problem 
"find a tempered solution of (1 - ~)u = In as an integral involving the data 
f The kernel of the integral expression is called the Green's function. For 
d = 1, K is computed in Problem 2.3.4 (see also Problem A,3(vii». The 
computation for d = 3 is outlined in Problem 5, 

We next use convolution to prove that the Fourier transform of a distribu­
tion with compact support is a smooth function. 

Theorem 4. If u E 8'(lRd) then the Fourier transj()rm of u is the restriction to IRd 
of the entire holomorphic function 

(11 ) 

PROOF. Choose j E C~L(lRd), j(x) = j( -x), Sj dx = t, and let je == 13-'1(X/C), 
u, == j, * U E Cg- (lRd), Then u, -> U in ,c;:" (lRd), so a, ~ a in Y', Therefore 

a,~a in.@'(lRd ), 

Now, a, is entire analytic with 

a,(n = <u" (2n)-d/2e-i~.:xJ(j) 

= <j, * u, (2nrd!2e-i~.:xJ'J) 

= <u,j, * (2n)-d/2 e-iI.xj'J), 

(12) 

As f; -> 0, j, * (2n)-d/2 e-ix\ converges to (2nr d!2 e-ix( in C"(IR~), uniformly for' 
( in compact subsets of e. Thus, uniformly in compacts in e, a,(n--> 
<u, (2n)-d/2 e-ix,), In particular, the limit is entire analytic, and restricting to 
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IRd , 
.@'(lRd) - lim .'i'u, = <u, (2n)-d/2e-ix~>. (13) 

Equating the limits in (12) and (13) yields 

u(e) = <u, (2n)-d/2e-ix~ >, 
and the right-hand side is the restriction to IRd of the entire function (11). 0 

This result is typical of Paley- Weiner Theorems which establish connec­
tions between the support properties of distributions and analyticity prop­
erties of their Fourier transforms. As a second example, we mention that 
tempered distributions with support in Xl ~ 0 have Fourier transforms which 
are analytic in Im(~d < O. The construction in §3.9 relies on this idea. 

PROBLEMS 

1. Justify the differentiations leading to (2). 

U Theory of Convolutions 
The basic estimates (3), (4) show that * extends uniquely from.Cf1 x .Cf1 to a continuous 
bilinear map L 1 ([Rd) X L 1([Rd) --> L 1 ([Rd) and U([Rd) x U([Rd) -> L oc([Rd). As in the proof 
of the Riemann-Lebesgue Lemma, the image of the first map is in C([Rd). 

2. Prove that for p E [\,00] the map * defined on //' x if' extends uniquely to a 
continuous bilinear map from L 1 ([Rd) X U([Rd) -> U([Rd). Hint: Interpolation, or 
use Holder's inequality. 

3. For lip + \Iq = \ and r E [I, q], find S E [\,00] so that * extends uniquely to a 
continuous bilinear map U(lRd) x U([Rd) -> U(lRd). Express the continuity in the 
form of an inequality. Hint: Interpolation in the first slot. This result is called the 
Hausdorf- Young Inequality. 

4. For j ELI (lRd) with Sj(x) dx = 1, letj.(x) ;: r.-dj(x/r.). Prove that for any p E [1, xl[ 
and U E LP([Rd), j, * u converges to u in LP as e -> O. For p = 00, show that the 
convergence is valid in the weak-star topology for L oc, = (L 1 Y, but not in the norm 
topology. 

Computation ofthe Green Kernel for (a2 - ,:\)-1, d = 3 
For a> 0, the Green's function, K, for a2 - ~ is the inverse Fourier transform of 
(2n)-dI2/(a2 + 1~12). Then K E 5"'(lRd ) and (a 2 - MK = (5. The next problem leads you 
through a computation of K for d = 3. The case d = 1 is contained in Problem 2.3.4. 
See also Problem A.4(vii). 

5. (i) Show that K E L 2 ([R3) and is rotation invariant, that is, KA = K for any 
orthogonal transformation A (see Problem 2.2.3). 

(ii) Conclude that K(x) = g(lxl) for agE L 2([R+, r2 dr). Warning: K is in L2([R.l) 
so evaluating at points is risky, be careful. 

(iii) Show that in .0i'([R+), (a 2 - r- 2orr2 or)g = O. Hint: Consider <K, (a 2 - ~)I/I> = 
o for suitable radial test functions on 1R3 

(iv) Conclude that g = (Be- ar + Ce+ar)/r with B, C E IR. 
(v) Show that C must vanish. Thus supp(K - Be-arjr) c {O}, so K - Be-ar/r = 

L c.o'(j a finite sum. 
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(vi) Show that c. = 0 for all or.. 
(vii) Determine Busing ff K = (2nfd'2 j(a2 + lel2 ). Hint: ,; = O. 
DISCUSSION. For even d, K involves higher transcendental functions (see Courant 
and Hilbert [CH, Vol. II]). Having kernels often allows one to find supplementary 
estimates as in the next problem. 

6. (i) For which p E [1,00] is K in LP(1R3). 
(ii) Use Problem 3 to find an interval I c [1, 00] such that if f E U(1R3), then 

(a2 - llflf E V(1R3) for all S E I. Is your I as large as possible? 
DISCUSSION. Such results can be proved directly from the Fourier transform formula, 
but not nearly so simply. It is also true that if f E LP, and p 0/: 1, 00 then, for all 
I or. I ~ 2, D·(a2 - llr1f E LP. The case p = 2 is Proposition 2.4.5. For po/: 2, this is a 
special case of the Calderon-Zygmund inequality and lies considerably deeper. 

§2.6. L 2 Derivatives and Sobolev Spaces 

The regularity of a function is often clearly expressed by saying that its 
distribution derivatives up to some order lie in one of the classical spaces LP. 
For example, if 1 = ]a, b[ is an interval in IR, then for fE P}'(1): 

(1) f E C1 (1) if and only if Df E C(1). 
(2) f E Lip(1), if and only if Df E L 00 (1). Here 

Lip(1) == {fE C(1): sup If(~) =fiY)' < oo}. 
x#y X Y 

(3) f is absolutely continuous in 1 if and only if Df ELl (1). 
(4) f is of bounded variation in 1 if and only if Df E vIt(1), the finite Borel 

measures on 1. 

Caution. Changing f on a set of measure zero does not effect the distribution 
defined by f, so the inclusion f E C1 (1) must be interpreted as meaning that f 
is equal almost everywhere to an element of C1(1). Similar interpretations 
apply for f E AC, f E BV, and f E Lip. 

There are many ways of defining the notion of a function with derivative 
in L2(1). Most are equivalent and useful. One which is not good is that there 
exists gEL 2 such that 

f(x + h) - f(x) 
h --+ 9 pointwise a.e. 

To see the inadequacy of this notion, note that the Cantor function satisfies 
the above with 9 = O. However, the Cantor function is strictly monotone. Its 
distribution derivative is not equal to zero but is equal to a measure singular 
with respect to Lebesgue measure. The conclusion is clear, pointwise differ­
entiation is not the correct notion. 
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A second example is u = (1 - /'jrlJ for f E L2(lRd). Here u has distributional 
second derivatives in U, showing that such things arise for partial differential 
equations. Our first result shows that, with the exception of pointwise con­
vergence of difference quotients, most natural ways of defining "of/ax! E 

U(lRd)" are equivalent. 

Proposition 1. For fE L2(lRd) the following are equivalent: 

(1) (Schwartz). The distribution derivative ~f/oxl E L2(lRd). 
(2) (Fourier). ~JE L2(lRd). 
(3) (Newton). As h ~ 0, (f(x! + h, X2' ... , x) - f(xj»)jh converges in L2(lRd). 
(4) (Friedrichs). There exists a sequence fn E 9'(lRd) such that fn ~ fin L 2(lRd) 

and afn/ox! converges in L2(lRd). 

Remark. Each of the conditions provides a natural candidate for of/ax!. For 
(2) it is ?*(i~ J) and for (3) and (4) it is the U limit asserted to exist. The 
proof below establishes the equivalence and the equality of the four candidates 
for of/ax!. 

PROOF. (l)¢>(2) Since ?(Dd) = ~d, the equivalence is an immediate con­
sequence of the Plancherel Theorem. 

(2) = (3) Introduce the notation 

c5? = h-!(Lh(1.0 ..... 0) - J) 

for the forward difference operator converging to a/ax!. We must show that 
15U converges in L 2(lRd ). By Plancherel's Theorem, it suffices to prove that 
{/h == ?(c5?f) converges in L2(lRd). 

Compute 

gh = [(eih~l - 1)/h~!]~J 

The factor in square brackets converges to i = de i8/d() 18~O for all ~ E IRd. Since 
I de i8/d() I ::;; 1, the Mean Value Theorem implies that the factor in square 
brackets has modulus less than or equal to one. Thus gh ~ i~! J pointwise and 
Ighl ::;; I~dl. Lebesgue's Dominated Convergence Theorem yields gh ~ i~J 
in L 2(lRd). 

(3) =(1) For any fE .'IJ'(lRd ), 15U ~ of/ax! in 9"(lRd) (Problem 1). Let g be 
the L 2 limit of 15? f. Then c5; f ~ g in 9" (lRd). Equating the two 9" limits yields 
of/ax! = g E L2(lRd). 

At this stage (1)¢>(2)¢>(3) is proved. 
(4) => (1). Since fn ~ fin U we have fn ~ fin 9", so ofn/ox! ~ of/ax! in 9" 

since a/ax 1 is sequentially continuous on 9". 
Let g be the U(lRd) limit of ofn/ax!. Then ofn/ox! ~ gin //'. Equating the 

two 9"(lRd) limits yields of/ax! = g E L2(lRd) . 
• A _" -. 2 d 

(2) => (4). Wntef = h + k, h =fXI~tI<::l' Choose hn E 9', hn ~ h m L (IR ),and 
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supp hn C {I~II ::;; 2}. This can be done by mollifying by a compactly sup­
ported approximate delta function of sufficiently small width. 

Similarly, choose a sequence In C [I' converging in L 2([Rd) to ~ 1 k with 
supp In C {I ~ II ~ t}. Define J" by ff J" == hn + lnl ~ I· Then lnl ~ I converges to k 
in e([Rd) since 11/~11 ::;; 2 on supp In. 

Thus ffJ" - h + k in L2 and ff(ofnloxI) = i~lfffn = i~lhn + iln - i~IJ in 
L 2 ([Rd). 0 

For s E 7L+, the Sobolev space HS([Rd) is defined to be the set of all u E [l'1([Rd) 
with the property that for aliial ::;; s, D"u E e([Rd). The analogue of Proposi­
tion 1 requires difference operators converging to 0". For h i= 0 define the 
vector of difference operators c5 h == (c5?, ..• , bj), where bjh == (r -he) - J)/h and 
ej == (0, ... , 1, ... ,0) with 1 in the jth component. As with multi-index notation 
for derivatives, let 

Note that the operators bjh commute so the order of factors in the above 
product does not matter. 

Proposition 2. For u E [1" ([Rd) and s E 7L+, the following are equivalent: 

(1) For all a E Nd with lal ::;; s, D"u E L 2([Rd). 
(2) For any a with lal ::;; s, ~"u E e([Rd). 
(3) u E L 2 and, for any a with lal ::;; s, (bh)"u converges in e([Rd) as h - o. 
(4) There exists a sequence un E [I'([Rd) such that Un - u in L 2([Rd) and, for all 

I a I ::;; s, D"un converges in L 2 ([Rd). 

The proof is Problem 2. 
The characterization (2) can be rewritten as w(~)luI2 ELI where 

w(~) == L 1~"12, the sum over lal ::;; s. The condition also suggests introducing 
the norm 

With this norm, ff establishes an isomorphism between HS([Rd) and 
L2([R~, w(~) d~). In particular, H' is complete. One defines the same set of 
distributions using any other weight Wi such that C1 w ::;; Wi ::;; C2 w with posi­
tive constants cj • A convenient and nearly universal choice is Wi = (1 + 1~12)' 
== <02s. Here <0 == (1 + 1~12)1/2 is a smooth strictly positive function which 
grows like I~I as ~ - CfJ. One advantage of this choice of weight function is 
that it suggests a generalization of H S to arbitrary real s. 

Definition. For s E [R, HS([Rd) = {u E [l'1([Rd): <0'11 E L 2([Rd)}. The norm in H' 
is defined by IlullHs == II<osaIIL2o~d). 
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EXAMPLES. 1. Since <OS:#,"[) = (2n)-d/2<OS is square integrable if and only if 
s < - d/2, we see that [) E W(lRd) if and only if s < - dj2. 

2. The spaces H S consist of distributions which are in a sense square 
integrable at infinity. For example, the distribution 1 whose Fourier transform 
is (2n)d/2[) belongs to no W. 

The Fourier transform:#'" is an isometric isomorphism (== unitary map) of 
W onto L2(lRd, <02s d~). In particular, W is a separable Hilbert space. 

Proposition 3. For any - 00 < s < t < cx::, g c Ht C H S c g', each inclusion 
being (sequentially) continuous. 

PROOF. If un converges to zero in g, then (1 + IxI2)d(l - d)MUn converges 
uniformly to zero. Thus (1 - d)MUn converges to zero in e. Taking Fourier 
transform yields < 0 2MUn ---+ 0 in L 2. Thus un converges to zero in all the HS 

spaces. This proves the continuity of the first inclusion. 
For the second note that the Ht norm is greater than or equal to the H S 

norm. 
For the final inclusion, note that for u E H S and q> E g 

I<u, q»1 = 1<12, ¢) ~ I f <osU<O-sq>d~1 ~ IluIIHsllq>lIu-s , (1) 

the last estimate following from the Schwartz inequality. Thus if Un converges 
to zero in HS, then g' -lim Un = O. D 

The converse Schwartz inequality applied in L2(1R~) shows that 

Ilullw = sup{f uq> dx: q> E g, 11q>IIH-s = 1}. 

Inequality (1) shows that <u, q» extends uniquely to a bilinear map 
HS x H-S ---+ C satisfying (1) for all u E HS, q> E H-S. We continue to denote this 
pairing by < , ). Inequality (1) is then called the generalized Schwartz in­
equality. Note that for u, q> E H S x H-s, u¢ ELl (IR~), and 

<u, q» = f u(~)¢(~) d~. 
The pairing < , ) gives a representation of the dual of HS called Lax's 
Duality Theorem (Problem 3.5.1). Note that u(x)q>(x) is not necessarily locally 
integrable. 

EXAMPLE. For q> E Hd/2 +1+t and 1/1 = O[)/OXl E H-d/2 - l - t we have 

<q>, 1/1) = -Olq>(O) = -(2nrd/2 f ¢(~)i~l d~. 
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Here cp(x)I/!(x) = cpob/ox1 is not a locally integrable function even if cp E Y. 
Nevertheless, many authors use the formal expression S cpl/! dx for < , ), just 
as one can write formally S T(x)I/!(x) dx for <T, I/!) when TE Y' and I/! E Y. 

If P(D) is a constant coefficient partial differential operator of order m, then 
IP(~)I ::; c(om and it follows that P(D) maps H S to w-m continuously. The 
operator (1 - .1)m is a unitary map of H S to H s- 2m. More generally, if 
Am == ff*<omff, then Am is unitary from H S to H s - m• 

Proposition 4. If cp E ,<J'(lRd) and S E IR, then the map u I-> cpu is a bounded linear 
map of HS(lRd) to itself. Moreover, 

IlcpuIIH'(lRd)::; c(s, d)ll<Olslcp(~)IIL'(lRd)lluIIH'(lRd). 

PROOF. The Fourier transform of ({JU is given by 

ff(cpu) = (2n)d/2 f cp(~ - 17)U(17) d1'/. 

Then 

<OSff(qJU) = (2n)d/2 f ~~~:cp(~ _1'/)<1'/)5U(1'/) d1'/. 

We need the following simple estimate for <.)<1 

<0" :s; 21"V2<1'/)<1<~ -17)1<11. (18) 

To prove (18) begin by noting that grad<w) = W<W)-1 is of length at 
most 1. Thus 

On the other hand, for any positive c, 

(1 + C)2 = 1 + 2c + c2 ::; 2(1 + c2 ). 

Apply with c = I~ -1'/1 to find <0 ::; 21!2<1'/)<~ -1'/). Estimate (19) for (I ~ 0 
follows. 

The case of (I < 0 then follows from 

~~!: = ~~21~ < 21<1li2<~ - 1'/)1<11 
<1'/)<1 <~)~I- . 

Using (19) in (18) yields 

1<05ff(cpu)1 ::; c f I<~ 1'/)15Icp(~ - 1'/)1 I <1'/)5U(1'/) I d17· 

Then Young's inequality implies 

II < Os ff (cpu) Ilu( IRd) ::; ell < Olslcp( 0 II L'(IRd) II <1'/ )SU(1'/) II V( IRd), 

which is the desired estimate. o 
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It is important to know that every compactly supported distribution lies in 
some HS • 

Proposition 5. If T E ce"(lRd), then there is an s E IR such that T E 

W(lRd ). 

PROOF. There are constants c, R and an integer N so that, for all qJ E 

coo(lRd), 

1<T,qJ)1 ~c( L sup IDlXqJ(X)I). 
IIXI~N Ixl~R 

Thus using Theorem 2.5.4 yields 

For s so negative that s + N < -d/2, it follows that TE W(lRd ). D 

In dealing with function spaces the most usual method is to prove assertions 
on a conveniently chosen dense subset and then pass to the limit through 
approximations from that subspace. The limit is justified using appropriate 
inequalities. For example, in U(lRd ), p =1= 00, a convenient dense set is the 
simple functions L CiXE, with Ei bounded measurable. Equally important is 
the dense set Cg"(lRd). 

Proposition 6. For any s E IR, Cg"(lRd) is dense in W(lRd ). 

PROOF. Since 9'(IR~) is dense in L2(lRd, Gis d~), it follows that 9'(lRd) is dense 
in HS(lRd). 

Choose X E CO'(lRd) with X(s) = 1. Then for f E 9'(lRd), x(x/n)f ..... fin HS(lRd), 

and x(x/n)f E CO'(lRd). D 

Since the integral is supported in I ~ I ~ 1 + R, the integral in (2) is estimated 
by 

~ (1 + (1 + R)2)S [ Ij. * uR - uRI2 d~. 
JI~I~l+R 

Problem 2.5.4 implies that the right-hand side converges to zero, so we may 
choose n so that IIvn - uRlls < e/3. 

Choose X E Cg"(lRd) with X(O) = 1. Since Vn E 9', x(x/m)vn ..... Vn in 9' as m 
tends to infinity. This implies convergence to Vn in HS • Thus we may choose 
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m so that II x(x/m)vn - Vn lis < £/3. Then x(x/m)vn is within e of U in s-norm and 
the proof is complete. 0 

The next result asserts that if U E H S with s large, then U has classical 
derivatives. Roughly the number of classical derivatives is equal to the number 
of Sobolev derivatives minus one-half the dimension. There is a "loss" of 
one-half of a derivative per dimension. 

Theorem 7 (Sobolev Embedding Theorem). If kEN and U E W{lRd) with 
s > d/2 + k, then for all rx E Nd with Irxl :::; k, Dau E C([Rd). In addition, there is 
a constant c = c(s, rx, d) so that for all U E HS([Rd) 

(3) 

PROOF. If suffices to show that (3) holds for all U E 9'([Rd), since given any 
U E HS([Rd) we may choose Un E 9', Un - U in H S • Then, for lal :::; k, 

IID·un - D·urnllc = :::; cllun - umllHs, 

so D·un is a Cauchy sequence in C hence convergent in C to a function g •. 
Then Daun~ga in 9" ([Rd). 

However, since Un - U in 9" we have D"un - D"u in 9". Equating the two 
9" limits yields D"u = ga E C. Finally, passing to the limit n - 00 in 

yields (3) for u. 
To prove (3) for U E ,,/, observe that 

D"u(x) = (2nrd/2 f <~;s (OSu d(. 

Now ("/(OS E L2([R~) if (and only if) s > d/2 + lal. The Schwartz inequality 
yields (3) with c = (2nrd/2 11("(0-Sllu(ITId). 0 

PROBLEMS 

2. Prove Proposition 2. 

3. (i) For which values of s is X[o. 1) in H'(~)? 
(ii) For which values of sis X[O.I) x[O.l) in H'(~2)? 

(iii) If K E y"(~d) is the tempered solution of (1 - /I.)K = D, for which s is K E Hs(~d)? 

In the next two problems you will show, by explicit construction, that the Sobolev 
Embedding Theorem is sharp. 

4. Using functions of the form ra(ln r)b near x = 0, construct a U E HI (~2) n g'(~2) 
which is not bounded near (0, 0). 
DISCUSSION. If u were in HI +, for any c; > 0, then Sobolev's Theorem would imply 
that U E C. 



94 2. Some Harmonic Analysis 

5. Construct a U E H1/2(/R) such that u ¢ L 00([ -1, 1]). Hint. Choose f E L2(/R), f~ 0, 
(0-1/2N L1(/R). Define u == !F-1«0-1/2f). Formally, u(O) = (211:)-1/2 J (O-l/2f d~ 
= 00. To show that u is not bounded on a neighborhood of 0, show (using (2.2.7» 
that as n --+ 00, lim J u(x)ne-(nX)2/2 dx = 00. Why is this sufficient? 
DISCUSSION. It is not hard to generalize this last construction to show that if s :s d/2, 
then there is an unbounded element of HS(/Rd). Similarly, if s :S k + d/2, kEN, and 
IX E Nd with IIXI = k, then there is a u E W(/Rd) with a"u unbounded. 

The list of equivalent conditions in Proposition 1 is far from exhaustive. Two interest­
ing additions are to include approximate derivatives j. * ad = a1 (j. * f) and to replace 
convergence in L2([Rd) by boundedness. 

6. Prove that the following conditions are equivalent to those in Proposition 1. 
(5) As h --+ 0, bU is bounded in L2([Rd). 
(6) As e --+ 0, a1(j. * f) converges in L 2 (/Rd). 
(7) As e --+ 0, a1 (j. * f) is bounded in L2(/Rd). 



CHAPTER 3 

Solution of Initial Value Problems 
by Fourier Synthesis 

§3.1. Introduction 

This chapter describes a method for solving and/or analyzing partial differen­
tial equations using the Fourier transform. The key ingredient is that constant 
coefficient equations have explicit exponential solutions. Both the power series 
method and the Fourier analysis method have as point of departure explicit 
exact solutions. This is a severe limitation. Some more recent developments, 
for example, pseudodifferential and Fourier integral operator methods depend 
on explicit approximate solutions which exist in more general situations. 

The goal of this chapter is to find formulas which are sufficiently informa­
tive to at least distinguish between good and bad initial value problems for 
constant coefficient linear equations such as at + ax and at + iax' 

The idea has a predecessor for ordinary differential equations. If P(Dt ) is a 
constant coefficient ordinary differential operator, then 

P(Dt)e irt = P(,)e irt , 

so that eirt is a solution if and only if P(r) = 0. If this equation has simple roots 
r l' '2, ... , then the functionsexp(i,/) span the solution set of the homogeneous 
equation Pu = 0. The recipe is only slightly more complicated if there are 
multiple roots. 

For a constant coefficient linear partial differential operator, P(D), we have 

P(D)eiX~ = P(~)eiX~, 

so there are solutions for any ~ E en satisfying P(~) = 0, that is, any point in 
the complex characteristic variety. For initial value problems, one separates 
t and x, 
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In many problems from applications the solutions tend to zero when Ixl ~ (jJ 

corresponding to the fact that the phenomena described take place near the 
observer. If ( is real the exponential solutions are bounded as x tends to 
infinity while for ( E C\IR they explode exponentially. When constructing 
solutions which decay at infinity, one takes a superposition of exponential 
solutions with ( E IR n, 

f a«()eir(~)t+ix~ d(. 
G;ln 

We will be studying the consequences of this simple idea for a while. It is 
surprisingly rich. 

PROBLEMS 

1. For the Cauchy~Riemann operator, Oy - iOx , show that the exponential solutions 
are exactly the functions eaz for a E C and z == x + iy. 

2. Are there any operators P(D) which have no exponential solutions? 

§3.2. Schrodinger's Equation 

The first example which we discuss in detail is the Schrodinger equation for a 
particle of mass equal to 1, 

(1) 

Here the units of length and time have been chosen so that Planck's constant 
is equal to l. The particle is moving in the absence of external forces. This is 
the quantum analogue of Galileo's particle moving in a straight line at 
constant speed. The text of Messiah [Me] is a standard introduction to 
quantum mechanics including motivation for the above equation. 

In the traditional classification of partial differential operators, the Schro­
dinger equation is neither elliptic, parabolic, nor hyperbolic. The equation is 
an example where the precise existence and regularity results require Sobolev 
spaces. It is used here as a model problem to develop generally applicable 
techniques. The resulting formulas are somewhat simpler than those for the 
other natural candidate, the wave equation, which is presented in §3.7. 

The physical interpretation, in quantum mechanics, is that the square of 
the modulus, I u(t, x)1 2, is the probability density for finding the particle at time 
t and place x. Precisely, for a Lebesgue measurable subset E c IRd, 

Probability(particle is in E at time t) = L lu(t, xW dx. (2) 

The probability density for the particle's momentum is given by the Fourier 
transform of u(t, .) 

Probability(momentum is in E at time t) = f lu(t, ()1 2 d(. (3) 
E 
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This is definitely not obvious. For some motivation the reader is referred to 
texts of quantum mechanics (e.g. Messiah, [Me]). There is no simple, clear, 
and convincing derivations, just as one cannot derive Newton's laws. How­
ever, Examples 1 and 2 of§3.3, Theorems 4.4.4, 4.4.6, and Corollary 4.4.5 show 
that (3) is reasonable. 

The probability interpretation requires that 

fIU(t,X)12dX= 1 forall t~O, (4) 

for physically relevant solutions. One is immediately led to think that L 2([Rd) 

will playa distinguished role. Note that if (4) holds, then the Plancherel 
Theorem shows that ffu also has L2 norm equal to 1, so the interpretation 
of 1 ff U 12 as a probability density is consistent. 

To derive (4), note that if a solution U is small enough, as x -> 00, to justify 
differentiation under the integral and neglecting terms at infinity from inte­
grations by parts, we have 

Ot f'U, 2 dx = Ot f UU dx = f uUt + utu dx 

= L fuiiJ}~ + (io}u)u dx = L i fOjUOjU - OjUOjU dx = O. 
j j 

The integration by parts can be viewed another way. Writing the steps out 
shows that solutions of (1) satisfy a conservation law 

(5) 

Integrating this identity over [Rd yields OtSluI2 dx = O. Alternatively, inte­
grating over [0, T] x [Rd yields S 1 u( T, x) 12 dx = S 1 u(O, x W dx. All roads lead 
to the conclusion that (4) is satisfied if S 1 u(O, X)12 dx = 1. 

As a final remark on the physical interpretation, we describe Heisenberg's 
uncertainty principle. Note that the probability interpretation (2) implies that 
the expected position x av is given by 

xav = f xluI 2 dx. 
u;ld 

Similarly, (3) implies that the expected momentum, ~a" is equal to 

~av = f ~Iu(t, ~W d~. 
u;ld 

The dispersions are 

(6xy = f (Xj xj')2IuI2 dx, 1 ::::;j ::::; d, 

(6~j)2 = f (~j - ~r)2IuI2 d~, 1 ::::;j::::; d. 

(6) 

(7) 

(8) 

(9) 
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These quantities are related by the Heisenberg uncertainty relation (!5Xj)2 
(!5ej )2 ;:::-: * (Problems 1, 2, 3) which, given the present perspective, is a theorem 
in Fourier analysis. 

In spite of the probabilistic interpretation, the Schrodinger equation is a 
deterministic physical theory in the sense that, given the initial state, u(O, .) = 
/( .), the solution u is determined for all t. The evolution is determined by 
solving the initial value problem 

u, = iAu, u(O, .) =/. (10) 

We already know a certain amount about this problem. Since (t = 0) is 
characteristic, we do not expect the Taylor series for u to converge, even if / 
is real analytic (Problem 1.3.4). However, if / is polynomial all goes well 
(Problems 1.3.3 and 1.3.5). The physical requirement (4) renders such poly­
nomial solutions uninteresting. We will see in §3.9 that since the initial plane 
is charateristic there is not uniqueness for the initial value problem in the 
category of all smooth solutions. There are nonzero u E C <Xl(~, X ~~) with 

u, = iAu, u=O for t < O. 

Though disconcerting at first glance, this is not terrible since the physical 
solutions must be square integrable in x. The null solutions above grow 
rapidly as Ixl ..... 00. 

Holmgren's Theorem shows that if u = 0 on a neighborhood of]t l' t2 [ X 

{x}, then u vanishes on ]t1' t 2[ x ~d (Problem 4). This result leads to the 
quantum mechanical way to catch a lion: If there exists a lion, then putting a 
cage anywhere, there is a strictly positive probability that the lion is in the 
cage. It also shows that it is not reasonable to look for solutions campactly 
supported in x. 

The physical interpretation of fE lul2 dx, as the probability of finding the 
particle in E, suggests that we want solutions for which this quantity is 
continuous in t. We will look for solutions such that t 1--+ u(t, .) is continuous 
on ~ with values in L 2 (~d). This also forces related measurements of momenta 
to be continuous. 

PROBLEMS 

In these problems you will prove Heisenberg's uncertainty inequality. 

1. For u E Y(lR d ) with J lul 2 dx = 1, let v == e-W'xu(x + xav). Show that the average 
position and average momentum for v are both equal to zero. Show that the 
dispersions (chj)2 and (c5~j)2 are the same for v as for u. 

2. With v as in Problem 1, let Q == J xjv8j v dx. 
(i) Show that IQI2 ~ (c5Xj )2(b';j)2. 

(ii) Perform an integration by parts in the definition of Q, to show that Re Q = -!. 
(iii) Conclude that (c5Xj)2(c5~y ~ i. 
This is Heisenberg's Theorem. 
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Theorem 1. If u E Y([Rd) with Jlulz dx = 1, then (bxy(b~y :?: t where the dispersions 
are defined in equations (6), (7), (8), and (9). 

DISCUSSION. (1) The case of equality occurs when ajv = CXjv, These are exactly the 
Gaussians. (2) Crucial in the derivation is the Heisenberg Commutation Law 
[Xj, aj ] = Id. 

In the next problem, the Heisenberg inequality is extended to its natural domain. 
Define a Hilbert space Hj by 

Hj == {u E L 2([Rd): J(I + xJ)lul2 dx + J(I + ~nl%"u(~W d~ < C(J}. 

The square of the norm in Hj is the sum of the integrals in brackets. 

3. (i) Prove that Y is dense in Hj • 

(ii) Prove that the uncertainty relation is true for all u E Hj with J lul 2 dx = 1. 
DISCUSSION. The space Hj is the natural space on which both (xJ)av and (~fr 
are defined. Equivalently, it is the natural space on which the dispersions in the 
Heisenberg relation are finite. 

4. Suppose that u E C2([Rl+d) satisfies u, = vL'1u with v E C\O. Prove that if t1 < t z 
and u vanishes on a neighborhood of]t j , tz[ x {x}, then u vanishes identically on 
]t j , t2 [ x [Rd. Hint: Use Fritz John's Global Holmgren Theorem. 

§3.3. Solutions of Schrodinger's Equation 
with Data in g(lRd) 

The exponential solutions of the Schrodinger equation satisfy, = - il ¢ 12. The 
exponential solutons are 

which is a function of x - ¢t. The exponential solution offrequency ¢ evolves 
by a translation at velocity ¢. For the equation u, = icflu, the solutions are 
ei~(x-c~t) and the velocity is c¢. The hypersurfaces of constant phase translate 
at speed cl¢1 in the direction ¢!I¢I. Consequently, c¢ is called the phase velocity 
at frequency ¢. As we will see, the group velocity, equal to 2c¢ for the equation 
Ut = icflu, is a more important quantity. A hint at why this is so is provided 
by the thought experiment of trying to send a message at velocity ¢ using the 
plane waves above. 

One would like to say something of the sort, "When this maximum of the 
real part reaches you, turn on switch number three". As the maxima of the 
real parts translate at velocity ¢ this sounds like a good strategy. However, 
the maxima are indistinguishable. The remedy is to consider a localized 
solution which has initial data equal to the product of a plane wave of 
frequency ¢ » 1 and a cutoff function of width ~ 1. The resulting solution 
does not travel with speed ¢ but with speed ~2c¢, as we will see in Example 2 
below. 

Returning to the case c = 1, and taking linear combinations of exponential 
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solutions, yields the solutions 

f a(~)e-itl~ll+iX~ d~. 

To solve the initial value problem 

Ut = idu, u(O, .) = f( . ), (1) 

set t = 0 and equate the resulting expression to f. This suggests a = (2nfd/2 :Ff, 
leading to the formula 

u(t, x) = (2nfd/2 f e-itl~12eix~:Ff(~) d~. (2) 

An alternate derivation of the same formula starts by taking the Fourier 
transform of Ut = idu with respect to x to obtain OtU = ~il~12U. This is an 
ordinary differential equation in time with ~ as parameter. Solving yields 

u(t, ~) == e-itl~12j(~). 

Equivalently 

(3) 

which is the same as (2). 
Next we show that formula (2), (3) yields solutions of (1). Rather than justify 

the steps in the derivations we give a direct verification. For f E !f?, the integral 
(2) can be differentiated arbitrarily often with respect to t and x. The differ­
entiation is justified by the rapid decrease of :F f since the t, x derivatives of 
the integrand are expressed as a finite linear combination of terms of the form 

polynomial(t, ~)e-itl~12eiX~:F f(~). 

Thanks to the rapid decay of :Ff, these are dominated by CN,T<O-N on 
[ ~ T, T] x IR~ x IR~. We find that u E C'X)(IR X IRd) and satisfies the initial 
value problem (1). In addition, the Fourier transform of D~xu(t, .) has Fourier 
transform equal to a finite linear combination of terms of the form 

polynomial(t, ~)e-itl~12:Ff(~). 

For t fixed, these lie in !f?(IR~). Thus t H u(t) is a map from IR to !f?(lRd ). 

To show that this is continuous, it is sufficient to show that ~IXO!:F Dl,Au(t + 
h) ~ u(t)) converges to zero in L OO(IR~) as h tends to zero. This difference is a 
finite sum of terms of the form 

(p(t + h, ~)e-i(t+h)I~12 ~ pet, ~)e-i(t)I~12)ot:F f, 

where p is a polynomial. The Mean Value Theorem bounds the difference in 
parentheses by a multiple of h«O + <t) t. The rapid decay of ot:Ff more 
than compensates for the polynomial growth. 

We want to show that u is a differentiable function of time with values in 
!f?(lRd ). There are two reasonable definitions of this notion and they are 
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equivalent. That is, the content of the next proposition whose proof is left to 
Problem 1. 

Proposition 1. Suppose that u E C(IR : 9"(lRd)). Then thefollowing are equivalent: 

(1) Y'-limh_o(u(t + h) - u(t»/h exists uniformly on bounded subsets l?flRt. 
(2) The partial derivative au/at exists at all t, x, (ou/ot)(t, .) E 9" for all t, and 

the map t f---> (au/at)(t, .) is a continuous map of IR to 9"(IR~). 

Taking the Fourier transform of 

I. u(t + h) - u(t) 
//'- 1m = ut 

h-O h 

shows that u E C1(1R: 9")=--!Fu E C1(1R: 9"). In that case, Ot!Fu = !Fat II. 

Definition. For k ;?: 1, Ck(lR: Y'(IR~)) is defined inductively as the set of func­
tions u E Ck- 1(1R : .'I') such that a~-lu E C1(1R : 9"), C OO(IR : 9") == nkCk(1R : 9"). 

I t is not hard to show that Ck(1R : 9") is exactly the set of u E Ck(1R X IRd ) such 
that for 0 ::s; j ::s; k, t f---> o!u(t) E C(IR : .'I'). In particular, the solution u con­
structed above belongs to CW(IR: 9"). 

COO(IR : .'1') is a complete metric space, the metric derived from the sequence 
of norms 

Finally, note that u E COO(IR: .'I')=--!Fu E COO(IR: 9"). 

Theorem 2. For any f E 9"(lRd), there is a unique u E C""(IR: .'I'(lRd» satisfying 
(1). The solution u is given by formula (2). 

PROOF. The existence is proved in the previous paragraphs. It remains to prove 
uniqueness. If u E C1(1R : 9"(lRd» satisfies Ut = iLiu, then taking the Fourier 
transform of both sides yields OtU = -il¢1 2u, whence at(eitl~12U) = 0.1t follows 
that U = e-itl~12!Ff(¢). 0 

Note that I!F u(t, 01 2 = I!F f(¢W is independent of t. Thus the probability 
density for momentum is independent of t, a very strong form of conservation 
of momentum. Integrating over ¢ E IRd shows that the L2(1R2) norm of u(t) is 
independent of time. Thus the requirement (3.2.4) is satisfied as soon as 
it is satisfied at t = O. The conservation of total momentum states that 
S ¢ I!F U 12 d¢ is independent of t. This is a weaker assertion. 

EXAMPLE 1. Find the solution of the initial value problem (1) when .r(x) = 

e-alxI2/2, a > 0, a Gaussian with "width" l/Ja and height 1. 
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u(t) = e-it'~12'?f(e) = a-d/2e-(1/a+2it)I~12/2, 

again a Gaussian. As u is even, U = ,?-lU = '?u, and (2.4.7) yields 

U = a-d/2(1/a + 2it)-d/2e- 1x l'/(2(1/a+2it)) 

(4) 

(5) 

This is one of the few explicit solutions of the Schrodinger equation. A good 
deal of intuitive content is hidden in the long formula. As t -+ 00, the width of 
U grows like tJa. The physical interpretation is that (bx) ~ tJa. Similarly, 
the momentum distribution is Gaussia~ with width bp ~ J a. The momentum 
of order Ja causes a spread like t~a explaining the behavior of bx. This 
reasoning, based on the physical interpretations (3.2.2)-(3.2.3), should give 
you a little faith in these interpretations. 

As t -+ 00, the amplitude of u decays like (at)-d/2. The geometric explanation 
is that the wave spreads over Ixl ::;; tJa. If a typical amplitude is M, then the 
square of the L 2 norm is like M 2(tJa)d which must be independent oft, whence 

M2(tj~)d ~ f e-alxI2/2 dx - a-d!2, 

which yields M2 ~ (at)-d. These last phenomenological estimates are very 
useful in understanding some of the features of solutions of partial differential 
equations. They are not intended to be rigorous proofs. 

EXAMPLE 2. A closely related example illustrates the propagation of oscilla­
tory pulses. Take f(x) = eixqe-lxI2/2 with '1 E [Rd. Then !i' f(e) = e-I~-qI2/2 and 

u(t) = e-itl~12 e-I~-qI2/2 

Then 

The factor e-i2t~q also corresponds to translation 

v = '2qtW 

Since the w is even, w = ,?-lW = '?w is given by formula (2.4.7). 

w = e- itq'(l + 2it)-d/2e-x2/(2(1+2it)). 

Then 

(6) 

(7) 

Let g(t, x) be the solution with '1 = 0, so that g is an expanding Gaussian of 
Example 1. Then u = eiq(X-qt)g(x - 2'1t) is the product of the plane wave 
solution with phase velocity '1 and an expanding pulse translating with the 
group velocity 2'1t. For '1 » 1, this justifies the description at the beginning of 
the section. Note that the phase velocity is slower than the group velocity so 
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the pulse appears to overtake the plane wave. Note also that the speed of 
propagation depends on the frequency of the pulse. This gives another insight 
into the spreading of Gaussian pulses from Example 1. The "parts" of different 
frequencies move at different speeds which pulls the wave apart. Analogous 
phenomena explain the spliting, by a prism, of a beam of white light into 
colors. The pulling apart of localized waves and separation according to 
frequency are signatures of the phenomenon called dispersion. 

The momentum interpretation (3.2.3) suggests that the momentum ~ '1, 
since the Fourier transform is localized near '1. If momentum is to equal the 
product of mass and velocity then the mass must equal!, since the velocity is 
equal to 2'1. This again supports the physical interpretations of the intro­
ductory paragraphs. The equations for a mass m particle is u, = (i/2m)flu. 
The relations in the last two paragraphs will be analyzed in more detail in 
§4.4. 

The operator I I--> u(t, .) is called the propagator, and is denoted Set) where 
S stands for solution. It is defined for all t E fR. For each t, Set) is a continuous 
linear map of Y' to itself given by the formula Set) = ~-le-i'I~12~. It is a 
simple multiplication operator in the Fourier transformed unknowns. Phy­
sicists call the transformed unknowns the momentum representation. 

From the definition of S, it follows that S(t)a:I = a;(S(t)f). Using our 
Gaussians, it is then easy to compute, by induction on letl, formulas for 
S(t)(xae-alxI2/2) (Problem 3). 

PROBLEMS 

1. Prove Proposition 1. 

2. Prove that the map f f-+ U from initial value to solution of the Schrodinger equation 
is a continuous map of Y(lRd ) to C"(IR:Y'(lRd )). Hint. If suffices to show that for 
every n, there is a c and N so that 

Pn(U)::::; (' L Ilxpa.J'IIL'(Uld). 
I-I+IPI sN 

DISCUSSION. This second result asserts that the solution depends continuously on 
the initial data. For COO regularity, one is forced out of the simple category of normed 
linear spaces into the category of countably normed spaces. 

3. Following the hint in the last sentence of this section, compute Set) (x"e- a1xl'12) for 
lal = 1. 

§3.4. Generalized Solutions of Schrodinger's Equation 

In this section we construct solutions of the initial value problem 

u(O, .) = I(') E W(lRd), (1) 

by approximating I by data in /7, To justify the passage to the limit requires 
W estimates for solutions. The special case of IE L 2(fRd) = HO(fRd) is espe-
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cially important from a physical point of veiw thanks to (3.2.4), while the case 
f = (j E H-d/2-, is called the fundamental solution since it provides a formula 
in the general case (see §4.2). 

For any t > 0, let Set): Y'(lRd) -+ Y'(lRd) be the map which sends f to u(t). 
Then ff(S(t)f) = e-itl~I':Ff, so for any tb t2 E IR, the identity S(tl + t2) = 

S(tl )S(t2) holds. This identity captures a part of Huygen's ideas about second­
ary wavelets. To progress tl + t2 units of time, one can first go t2 units and 
then use the result as "source" for the next step of tl units. 

The construction of generalized solutions amounts to extending the oper­
ators Set), by continuity, to larger spaces than //. 

Proposition 1. For any s E IR, t E 1R,f E Y'(lRd), 

II S(t)fIIHs = IIfIIHs. (2) 

The case s = ° is the conservation of probability in the physical interpretation. 

PROOF. II S(t)fllB' = II e- itl¢12 <osfff 1IL2(11~d) is independent of t since e- itlW is of 
modulus 1. 0 

Corollary 2. For any s E IR, t E IR, the operator Set) extends uniquely to a unitary 
map of HS(lRd ) to itself. The extended operator satisfies ff(S(t)f) = e-itl¢12fff 
for any f E H S • 

PROOF. That S extends uniquely to an isometry is immediate. The identity 
S(tl + t2 ) = S(tI)S(t Z ) remains true since the two sides are continuous and 
are equal on the dense subset Y' of H', Thus S( - t) is an inverse to Set) proving 
that Set) is unitary. 

That Set) = ff*e-itl¢12ff on H S follows from the fact that both sides are 
bounded operators on H S and they are equal on the dense subset Y'. 0 

If f E HS' n HSz, then S(t)f is defined as an element of HS ' if we view f as 
an element of H S ', and it is a well-defined element of H S ' viewing f as an 
element of H". The Fourier transform formula shows that both ways yield 
the same answer. This leads to the following definition. 

Definition. Iff E UN', then the function u: IR -+ UH'(lRd ), defined by ff u(t) = 

e-itl¢I'/~ f, is called the generalized solution of the Schrodinger equation with 
initial value f. 

If s is not sufficiently large the derivatives, 8t u, 82u/8xJ, which occur in the 
Schrodinger equation will not exist in the classical sense, whence the name 
generalized solution. In the next section, several equivalent characterizations 
of the generalized solution are given. 

EXAMPLE. Find the generalized solution of the initial value problem (1) with 
f = (j E ns< _dj2N'(lRd ). 
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By definition, 

The right-hand side is even in e, so §'(rhs) = §'*(rhs), so using formula (2.4.7) 
with a = 2it yields for t :f:. O. 

(3) 

Note than the H'(lRd) regularity of u(t) is independent of t but u(O) = J and 
u(t) E COO for all t :f:. O. The fact that the initial disturbance is localized at x = 0 
and propagates immediately to a solution of amplitude 1 uniform in space 
reflects one aspect of the uncertainty principle. Initially, IJxl = 0 so IJpl = 00, 

and momenta of all sizes are present. This makes the instantaneous dispersion 
reasonable. 

We have already mentioned that the initial value problem (1) has many 
solutions, a consequence of the fact that the hyperplane t = 0 is characteristic. 
The extension process described above singles out one of these. As Ixl tends 
to infinity the generalized solutions tend to zero and are square integrable in 
a weak sense, tested by measuring with devices moving to infinity. 

Proposition 3. Iff E H'(R) for some s E Rand rP E C~(Rd), then g(y) := (f, T:yrP > 
is a continuous function which tends to zero as y -+ 00. Moreover, g is square 
integrable. 

PROOF. The generalized Schwartz inequality implies that for any y 

Ig(y)1 S;; IlfIIH.IIT:yrPIIH-s = IlfIIHsllrPlln- s. 

Thus if fn E C~(Rd) converges to f in the H' norm, then the associated func­
tions gn converge uniformly to g on Rd. Since gn(Y) = (in * g)( - y) this repre­
sents g as the uniform limit of elements of C~(R), proving the first assertion. 

Since g( -~) = c!(~)~(~) the last assertion follows from the Plancherel 
identity and the fact that IrP(~)1 s;; c/O'. D 

The basic estimate (2) shows that for f E H', u(t) is a bounded function with 
values in H'(lRd). Thinking of the path t 1-+ u(t) as the dynamics of our system 
it is important to have regularity in time. It is a general principle in linear 
analysis that boundedness estimates like (2) are often sufficient to prove 
continuity. 

Proposition 4. If f E H'(lRd), the generalized solution with initial value f is a 
continuous function of time with values in H'(lRd). 

PROOF. Choose In E [1', with f,. -+ f in H'. Let Un be the solution with initial 
value fn. Estimate (2) applied to Un - Um shows that II un(t) - um(t) IIH' = 
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IIIn - j~ II H" Thus, for any T > 0, Un is a Cauchy sequence in the Banach space 
C([ - T, TJ : HS([Rd)). It follows that Un converges in C([ - T, TJ : HS(lRd)) to a 
limit v. The generalized solution is defined by u(t) = W-lim un(t), and this limit 
is equal to v(t). Thus u = v E e([ - T, T] : HS([Rd)). D 

Proposition 4 describes exactly the H S regularity of the generalized solution 
u with respect to x. Regularity in time is found by expressing time derivatives 
as spatial derivatives .using the differential equations. 

Proposition 5. Suppose that IE HS and u is the generalized solution oI(1). Then, 
for any j ~ 0, U E eJ(1R : W-2J(lRd)), and for all t E IR, 

Ila/u(t)llw 2j $; IIIIIHs, (4) 

PROOF. For lEY we have 

II a/u(t)IIHs-2j = II(i~YuIIJlS2j $; Ilu(t)IIHs = IIIIIHs, (5) 

Choose .r.;" E f" --I in H S and let Un be the solution with initial data In­
Then for any T > 0 and N E N, estimate (5) applied to Un - Urn shows that Un 

is a Cauchy sequence in the Banach space n7=1 e J([ - T. TJ : Hs-2J([Rd)). 
Thus, Un converges in this space to a limit v. As in Proposition 4, we must have 
u = v E n7=1 e J([ T. T]: W- 2J([Rd)). Since this holds for all T and N, the 
proof is complete. D 

Corollary 6. Suppose that u and f are as above, then: 

(i) a/a;u E C([R: w- 1a l -2J(lRd)). 

(ii) II s - 2k > d12, then u E ek(lR, x [R~) and if letl $; k then as Ixl-- 00, 

lim D;u(t, x) = 0 uniformly on compact subsets ol IR,. 

Remark. If k ~ 2, we find a classical solution. Naively, one might hope that 
the solution will be classical if IE e2 or if IE e 2 n L 2 . These conditions are 
not sufficient. Neither is the stronger condition, aff! E en L 2 for I pi $; 2. This 
insufficiency is demonstrated in Problem 3. A similar weakness of the spaces 
C k for the Poisson equation is patched by working in the Holder spaces e fJ 

with 0 < {J < I. This fix is effective for elliptic and parabolic equations but 
does not work for the Schrodinger equation. The H S Sobolev space regularity 
results are the only sharp ones in the latter case. 

PROBLEMS 

For any f E W(lRd), S(t)f is a continuous function of t E IR with values in W. This 
property is called strong continuity of S(t). Together with the property S(/! + (2 ) = 
S(tdS(t2)' this shows that S is a strongly continuous group of unitary operators on 
Jr. An even stronger notion of continuity is that the map t f--t S(t) is continuous from 
IR to Hom(Jls, W), the bounded operators on W. If this were true, then as h -+ 0, 
;is(1 + h) - S(I)IIHom(H,.H') would tend to O. 
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1. Prove that S(t) is not in C(1R: Hom(H" H') by showing that for any t I oF- t 2 , II S(t tl -
S(t 2) IIHom(W.W) = 2. 
DISCUSSION. The only groups which are norm continuous are solution operators of 
the equations u, = Au with A a bounded operator. The solution operator is e'A in 
this case and A is called the generator. Strongly continuous groups may have 
unbounded generators (e.g. the Schrodinger equation where i~ is unbounded on 
H'). Unitary groups are generated by anti-self-adjoint operators. In our case S(t) = 

e'il1. The interested reader may consult texts on functional analysis. Semigroup 
methods have been particularly useful for parabolic equations. See, for example, the 
book of D. Henry [He]. 

In the next problem, you are asked to show that the Schrodinger propagator is 
continuous on U if and only if p = 2. 

2. For p oF- 2 and t oF- 0 show that 
IIS(t)<p Ilu 

sup = 00. 
</,E'I'\O II <p Ilu 

Hint. Consider <p = e-(a+ib)lx l'/2 with a > 0 and b E R Let a tend to zero or infinity 
depending on the value of p. 

DISCUSSION. There is a general principle. Suppose that S is an operator which 
respects the L' norm in the sense that 

cll<pllu S IIS<pllu s C1i'Pllu· 

If there are functions such that 'Pn and S<Pn are spread regularly over their support 
and the supp(S'Pn) is incomparably smaller than supp( <Pn), then S cannot be bounded 
in U for any p> r. The reason is that if Mn (resp. mn) is a typical magnitude for 'Pn 
(resp. S'Pn), then respect for L' yields M~ vol(supp <Pn) - m~ vol (supp S'Pn). Thus 
mn/Mn ---> 00, so S is not bounded on L''". Similarly, IIS'Pnllu/il'PnIILP -> 00 for any 
p > r. 

If there are functions whose support is compressed, one finds that S is not 
bounded on LP for any p < r. In our case r = 2, the L2 norm is conserved and 
Gaussians of size a- 1/2 are spread by S(t) over a region of size a l/2 t which, letting a 
tend to infinity (resp. 0), is incomparably larger (resp. smaller) than the original 
spread. The conclusion is that S is unbounded on U for all p oF- 2. 

The test functions of the hint are suggested by the solutions 

S(t)b = (4nit)-dI2e i Ixl'14' 

and 
S(t)(( _4nit)-dI2e-i1x l'/4,) = b, 

which spread from a point to all of IRd and contract from all of IRd to a point. These 
are extreme examples of dispersion. 

The operator S(t) is the Fourier mutiplier g;-*e-i'I~12g;- and the multiplier e-i'I~12 is 
smooth and bounded but gives an operator which is unbounded on LV for p oF- 2. 
This discontinuity is not obvious. Viewed from the point of view of the multiplier, 
the problem comes from the fact that e -itl~I' oscillates faster and faster as I ~ I tends 
to infinity. 

3. (i) Use the case p = 00 of Problem 2 to show that for any t oF- 0 there is an f E L co 

such S(t)f =0 g;*e-i'I~12.'F.r ¢ L 00. Hint. If S(t)f E L co for all such f, use the Closed 
Graph Theorem to show that S(t) is continuous from Lex) to itself. Then use 
Problem 2. 
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(ii) Modify Problem 1 and part (i) to prove that for any t =I- 0 there is an.f E L ~ n L 2 

such that S(t).f ¢: V". 
(iii) Show that for any t =I- 0 there is an.f E C2([Rd) with derivatives up to order 2 in 

LaC n L 2 and S(t).f ¢: C2([Rd). Hint. To the above ingredients add [S, Da ] = O. 

4. Prove Corollary 6. 

§3.S. Alternate Characterizations of 
the Generalized Solution 

The propagator Set) = 3"-le-itl~123" E Hom(HS) is characterized in terms of 
the Fourier transform. Such methods are not available for problems with 
variable coefficients, for example, the Schrodinger equation with potential 
Ur = i(~ + V(x))u. This section contains several ways of identifying the gen­
eralized solution u by looking at its action on test functions. 

Regarding the test functions note that if IjJ E 9'(fRr x fR~), then it is easy to 
verify that the map t f-> ljJ(t, .) is CXl(fRr : 9'(fR~». In particular, for any s E fR, 
IjJ E COO(fRt : HS(fR~)). 

A related remark is that if u E C(fR : HS(fR~)) for some s E fR, then u defines 
a distribution on fR t x fR~ by 

u(ljJ) = f <u(t), ljJ(t, .» dt, 

Here IjJ E COJ(fR: 9'), so <u(t), ljJ(t, .» E Co(fR) hence integrable. 
A better estimate of the behavior of this u E S1'(fRt x fR~) rests on the 

generalized Schwartz inequality which yields 

1 <u(t), ljJ(t, '»1 ~ Ilu(t)IIHS(~~)IIIjJ(t, ')IIH-S(~~)' 

Integrating yields 

for all IjJ E Co(I X fRd). (1) 

Theorem 1. Suppose that s E fR, f E W(fRd), and u E C(fR : W(fRd» with u(O) = f. 
The following are equivalent: 

(i) u = S(t)f for all t E fR. 
(ii) u(t) = e-itl~l? for all t E fR. 

(iii) For any q> E Co(fRn ), the function t f-> <u(t), q» is continuouslydifJerenti­
able and (d/dt) <u, q» = <u(t), (iMq>(x». 

(iv) For any IjJ E CO(fR 1+d), the function tf-> <u(t), ljJ(t, .» is continuously dif­
ferentiable with 

d dt <u(t), ljJ(t, .» = <u(t), (at + i~)IjJ(t, . ». (2) 

(v) For any IjJ E Co(fR x fRd), <u, (-at - iMIjJ) = O. 
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(vi) For any t/J E CO"(IR X IRd) and t1 < t2 

f2 (u(t), (-at - iL1)t/J(t» dt = (u(t), t/J(t» [~. 

Remarks. 1. Formal calculations from Ut = iL1u yield (ii), (iii), (iv), (v), and (vi) 
immediately. 

2. Part (v) is equivalent to the equation (at - iL1)u = 0 in the sense of distri­
butions. Note that all derivatives have been passed to the test function t/J, and 
that the transpose of at - iL1 is equal to - at - iL1. 

PROOF. (i) <0> (ii) is the definition of generalized solutions. 
(ii) => (iii) For <p E CO"(lRd) C 9'(lRd) 

(u(t), <p) = (a, cp) = f e-itl~I?(Ocp(O d~. 
Call the integrand F(t, ~). Then 

latF(t, 01 = (1~12(O-slcp(01)(osIJ(~)I). 

Since <p E /f, the first term is square integrable and the second is in L 2(lRd) 
since fEW. Thus atF(t, .) has an L 1 (lRd) upper bound uniformly for t E IR. It 
follows that differentiation under the integrand is justified and 

~ (u(t) <p) = f -il ~12e-itIWJ(Ocp(~) d~ 
dt ' 

= (:#'u, ff(iL1<p» = (u, iL1<p). 

The right-hand side is continuous since u E C(IR : W) and the proof of (iii) is 
complete. 

(iii) => (iv) With the goal of differentating (u(t), t/J(t, .» at t = T E IR, write 

(u(t), t/J(t, .» = (u(t), t/J(f, .» + (u(t), t/J(t, .) - t/J(f, . ». 

(iii) implies that (d/dt) (u(t), t/J(t) = (u(t), iL1t/J(T». The second term is equal 
to 

(u(t), t/J(t, .) - t/J(f, .» + (u(t) - u(T), t/J(t, .) - t/J(f, . ». 

Since t/J E C1 (IR : H-S(IR~» and u(i) E W(IR~), the first term is C1 (IR) with 
derivative equal to (u(t), att/J(t». The second term is estimated, using the 
generalized Schwartz inequality, 

I(u(t) - u(T), t/J(t) - t/J(t»1 ~ Ilu(t) - u(t)llwllt/J(t) - t/J(t)IIH-" 

Since u E C(IR : W), the first factor is 0(1) as t ..... T. Since t/J E C1 (IR : H-S(lRd», 
the second factor is O(lt - TI). Thus the product is o(lt - TI) so its derivative 
at t = T exists and is equal to zero. 

Adding the two contributions yields (iv). Since (at - iL1)t/J E ffJ c 
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.L. ~ t 

Figure 3.5.1 

C(IR : H~s(lRd», the right-hand side of (iv) is continuous which completes the 
proof that (iii) => (iv). 

(iv) => (v) Since t/J has compact support integrating (iv) from t = - CfJ to 
t = + CfJ yields S (u(t), (at + it1)t/J(t}) dt = 0, which is the desired identity. 

(v) => (iv) Fix t/J and t 1 < t 2 • Choose <Pn E Cg' (IRt ) approximating the char­
acteristic function of [t 1 , t 2 ] (see Figure 3.5.1). Apply (v) to get 

It2 
(u(t), (-a, - it1)(<Pnt/J» dt = O. 

t1 

Performing the differentations yields 

I
t2 It2 

0= (u(t), <Pn(t)( -at - it1)t/J) dt + (u(t), -<p~(t}t/J) dt == II + 12, 
(1 II 

The integrand in I I is dominated by 

Ilu(t)llu((t"t2HfS) II( - at - it1}t/J(t, . )llv((t1,t2),H S) < CfJ 

and converges pointwise to (u(t), ( - at -- it1)t/J), so by Lebesgue's Dominated 
Convergence Theorem yields 

1'2 
II ---> (u(t), (- at - it1)t/J(t}) dt 

t, 

as n ---> CfJ. 

For 12, note that g(t) == (u(t), t/J(t» is continuous since u E C(IR: H~S) and 
t/J E C(IR: H~S). The integrand is supported in [tl' tl + lin] u [t2 - lin, t2l 
The contribution of the first interval is 

I
'1+ l/n I'1+l/n 

-<p~(t)g(t) dt = -g(ttl + cp~(t)(g(ttl- g(t» dt. 
t l '1 

The integral on the right is dominated by 

( ) I
t1+l/n 

max Ig(t) - g(t 1)1 <p~(t) dt. 
[/1"1 +lln] '1 

The maximum is 0(1) and the integral equals 1. Thus 

I'1+ 1In 

- <p~(t)g(t) dt = - g(t tl + 0(1) 
'1 

as n ---> CfJ. 

Treating [t 2 - I In, t 2] similarly yields the desired result. 



§3.5. Alternate Characterizations of the Generalized Solution 111 

(v) = (i) Suppose that u satisfies (vi) and let v == S(t)f so v also satisfies (vi). 
Using (vi) with t1 = 0 < T and subtracting the identities for u and v yields 

LT «u - v)(t), ( - 0, - ill)!/J(t» dt = «u - v)(T), !/J(T» (3) 

for all !/J E C<f(1R X IRd). More generally, if !/J E C"'(IR: 9'(lRd», choose 
X E C<f(IR~) with XeD) = 1. Then X(BX)!/J has compact support in x, so applying 
(3) to X!/J E C<f(lRl +d) yields 

LT «u - v)(t), (-0, - ill)(!/J(t)x(Bx») dt = «u - v)(T), X(Bx)!/J(T». 

As B -+ ° 
(- 0, - ill)x(Bx)!/J -+ (0, + ill)!/J in C(IR : W) 

and 
X(Bx)!/J(T) -+ !/J(T) in H- S • 

Thus, passing to the limit B -+ 0, using Lebesgue's theorem yields (3) for 
!/J E C"'(IR : 9'(lRd». 

For any h E 9'(lRd), !/J(t) == ff*e+i('-T)I~12h satisfies !/J E COO(IR : 9') and 

(0, + ill)!/J = 0, !/J(T) = h. (4) 

Plugging this into (3) yields «u - v)(T), h) = ° for all hE 9'. Thus u(T) = v(T). 
This is true for all T > 0, and a similar argument works for T < 0. Thus 
u = v = S(t)f proving (i). 0 

Remark. The proof that (vi) = (i) is like the proof of Holmgren's Theorem. 
The key is an existence theorem for the adjoint problem (4). 

Corollary 2. For f E HS(lRd ), 3! u E C(IR : W(lRd» such that u(O) = f, and 
(a, - ill)u = 0 in the sense of distributions. 

Remark. The condition u E C(IR : HS(Rd» has in it an L2 growth condition as 
Ixl -+ 00 which avoids the null solutions. Without such a condition there 
would be nonuniqueness. 

PROBLEM 

The generalized Schwartz inequality plays a central role in the proofs of this section. 
In this problem we examine another aspect of that inequality. Any t/J E H- S defines a 
linear functional <', t/J >: H' -> C of norm at most II t/J II W" In fact, every linear func­
tional on HS arises in this way. 

1. Prove 

Lax's Duality Theorem. For any continuous linear functional I: H'([Rd) -> C, there is 
a unique t/J E H-'([Rd) so that 1(') = C t/J>. In addition, IIIII = Iit/Jllw'. 
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Hint. First use the Riesz Representation Theorem to show that there is a unique 
hEW so thatl(·) = (., h)Hs, Show that", = .9"--1 <0 28.9"(11) does the trick. Alternate 
Hint. Use the isomorphism of W ~ L2([R~: <0 28 d~) and duality in that U space. 
Second Alternate Hint. It is easy to show that the range of the map'" H I has closed 
range in (W)'. Show that the range is dense by a duality argument. 
DISCUSSION. This theorem yields an algorithm for defining so-called negative norms 
when the Fourier transform is not available, for example, H-S(Q) when Q "# [Rd. 

The reader is warned that the Riesz Representation Theorem asserts that 
(Hs), ~ H S• The above result asserts that (Hs)' ~ H- S • Clearly, the mappings from 
H S and H- S into (Hs)' are different. They come from the bilinear forms ( , )Hs and 
< , ), respectively. 

§3.6. Fourier Synthesis for the Heat Equation 

The methods of §3.1 to §3.3 yield existence and uniqueness results for a variety 
of initial value problems. The strength of the technique is this generality, 
together with the fact that it distinguishes well-posed from ill-posed initial 
value problems. To appreciate the distinctions between the various well-posed 
problems requires some experience. This section is devoted to studying the 
heat equation 

v> 0, 

for u(t, x), t, x E ~ X ~d. Formal Fourier transformation yields 

ut = -vl~12U, 

U = e-vtl~ly(~), 

(1) 

(2) 

(3) 

where u(O, .) = f(·). Note that for f E.'/' and t > ° one has u(t) E .'/' but not 
necessarily for t < 0. For example, if J= e-<O, then u for t < ° yields a 
function which is not even in y}I(~d). Thus, for f E f/', one has a reasonable 
recipe for u(t) only for t ~ 0. With that change, the theory proceeds exactly as 
for the Schrodinger equation. In particular, the proof of the following theorem 
is just like the proof of Theorem 3.3.2 and so is omitted. 

Theorem 1. If fE f/'(~n), then there exists one and only one u E CO([O, 00[: 
f/'(~d)) such that 

u(O) = f. (4) 

For t ~ 0, u is given by formula (3). 

EXAMPLE. Find the solution of (4) when f = e-ax2!2, a > 0. 

Use formula (2.4.6) for the transform of f to find 
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This is an even function of~, so u = ff- 111 = ffl1. Formula (2.4.7) yields 

( 1)-d/2 
U = a-d/2 2vt + a e-lxI2/2(2vt+l/a) 

= (2avt + 1)-d/2e- 1xI2/2(2vt+l/a). 
(5) 

Note that the width of the heat distribution grows like ~~t. In contrast, the 
Schrodinger equation leads to growth of order tJv. Clearly, for heat prop­
agation, 11 cannot be interpreted as a probability density for velocity or 
momentum, otherwise the spread would be linear in t. 

The rate of decay as t tends to infinity is C d/2 as it was for the Schrodinger 
equation. Since the solution is spread over a much smaller region one finds 
that the L 2 norm tends to zero like t- d/2 • On the other hand, the integral of u 
is equal to ffu(O) = fff(O) so is independent of time. This is the law of 
conservation of energy. 

To extend the solution operator to a more general class of data requires 
some estimates. To avoid confusion with the Schrodinger propagator we will 
denote the operator u(O) t-+ u(t) by SH(t), which we know is continuous from 
if' to itself for t ~ O. Fourier methods yield a host of Sob ole v space estimates 

Ilu(t)ll~s = Ile-vtl~I\Osfffllu ~ II(011Iu = Ilu(O)IIHs. (6) 

These HS estimates imply that SH(t) extends to a continuous map of HS([Rd) 
to itself, and u = SH(t)f for fEW defines a generalized solution u to the initial 
value problem. As for Schrodinger's equation, u E C([O, 00 [: H'([Rd», and 
more generally, 

Theorem 2. If f E HS([Rd), then the generalized solution satisfies a!u E 

C([O, 00 [ : w-2 j(lRn». 

EXAMPLE. Find the solution of (4) when f = b. 

Formula (3) yields 11 = e-vtl~12 (2n)-d/2 which is again the transform of a 
Gaussian. Computing the inverse Fourier transform yields 

(7) 

Note that an initially localized solution spreads over all of [Rd. The principle 
of Problem 3.4.2 shows that if SH were defined for all t and conserved the L 2 

norm, then the propagator SH would not be bounded in any U for p i= 2. The 
same argument would show that if the L r norm were conserved for some r, 
then SH would be unbounded in LP for all p i= r. For SH no L' norm is 
conserved, but positivity is preserved as is the L 1 norm of positive solutions. 
Nevertheless, SH is bounded on all U. The failure of "reversability" explains 
the failure of the argument. 

The solution with b as initial data can be obtained from the solution, ua , 
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with data (2na(d/2 exp( -alxI2 ) from the first example upon letting a decrease 
to zero, noting that the initial data converges to f> in W for s < - d/2 and, 
therefore, SH(t)Ua -> SH(t)f> in the same H S spaces. 

As in the last section, the generalized solution has a variety of equivalent 
characterizations. 

Theorem 3. If f E W(lRd), U E C([O, 00 [ : W(lRd)), and u(O) = f, then the follow­
ing are equivalent: 

(i) u is the generalized solution with initial data f 
(ii) ff(u(t)) = e-fVl~12fff, t ~ 0. 

(iii) For any qJ E CO"(lRd), (u(t, x), qJ(x) E Cl([O, wD and 

d 
dt (u, qJ) = (u, vAqJ), for all t ~ 0. 

(iv) For any IjI E CO"(lRr x IRd), (u(t, .), ljI(t, .) belongs to Cl([O, ooD and 

d 
dt (u(t, .), ljI(t, .) = (u(t), IjIr(t) + vAIjI(t). 

(v) (or - vA)u = ° in ~'(JO, w[ x IRd. 
(vi) For any IjI E CO"(lRr x IRd) and 0 :s; tl < t2 

It2 <u(t), (-IjI, _ vAIjI)(t) dt = <u, 1jI) 1'2. 
t1 t 1 

There are many estimates which are valid for the heat propagator which 
are false for the Schrodinger propagator. We derive some of these by what is 
called the energy method, though the inequalities obtained in this case are more 
closely associated with entropy increase than with energy balance. 

The inequalities are proved by multiplying the equation by suitable, cleverly 
chosen, functions and then integrating by parts. For Schrodinger's equations, 
mUltiplication by uleads to conservation of the U norm. Here multiplication 
by uleads to the estimate Ilu(t)llu :s; lIu(O)lIu. For Schrodinger's equation one 
cannot avoid complex numbers. In contrast, u solves the heat equation if and 
only if the real and imaginary parts of u satisfy the heat equation. Real initial 
data f yield real solutions (exercise). Physical temperatures are real. The next 
computations are a little easier for real solutions and we omit the modifica­
tions needed in the complex case. 

As a first example, note that if f E Re g and u is the solution of Theorem 
1, then multiplying the heat equation by u and integrating over IRd yields 

or f U2~~ x) dx = V f uAu dx = - V f IV xu(t, xW dx :s; 0, 

the last equality following upon integration by parts. In particular, the L 2 
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norm of u(t) is a nonincreasing function of t on [0, ex:: [. This gives an in­
dependent proof of the H S estimate for s = 0. The s = I estimate can be derived 
by the energy method, upon multiplying the equation by du to find 

f f "cu CUt 2 ° = du(u, - vdu) = - L. a a- - v(du) dx. 
Xj .xj 

Thus 

so S l\lul l dx and S u2 dx are nonincreasing. Adding proves that the HI norm 
is nonincreasing. For any SE N+, multiplying by t,Ju,j = 0, 1,2, ... , sand 
adding the results yields the H S estimate. 

We obtain new estimates by multiplying by 1/I'(u) where 1/1 E C2(1R) is a 
convex function satisfying 

1/1(0) = 1/1'(0) = 0. (8) 

Then 1/I'(u) is rapidly decreasing as x ---+ ex:: and 

Ot f 1/I(u) dx = f 1/I'(u)u, dx = + v f 1/I'(u) I aAu dx, 

using the differential equation for the last equality. The crucial step is to 
integrate by parts to find 

= -v f ifJ"(u) I (;~)l dx so, 

so S ifJ(u) dx is nonincreasing. 

Theorem 4. If u E C'''([O, ex:: [ : Re Y(lRd)) is a solution of the heat equation (1), 
then for any convex 1/1 E C2 (1R) satisfying (8), S 1/I(u(t, x)) dx is a nonincreasing 
function of t. 

EXAMPLES. 1. If 1/I(s) = s2/2, this yields the energy method proof of the de­
crease of the L 2 norm. 

2. Taking ifJ(s) = IslP for 2 s p < ex:: we find that II U(l) II LP is nonincreasing. 

3. Passing to the limit p ---+ ex:: and noting that u(t) E /1' yields 

Ilu(t)llu. = lim Ilu(t)IILp S lim Ilu(O)llu = Ilu(O)III .. , 
p-tlX) 

so the sup norm, Ilu(t)llu, is also nonincreasing. 

4. For p E [1, 2[, Iluli LP is also nonincreasing. The technical difficulty here 
is that IslP is not twice differentiable so the integration by parts above is 
not trivial to justify. We regularize IW and pass to the limit. Let 1/I,(s) == 
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(e + IsI2)P/2 - eP/2 , then 

f t/I.(u(t, x» dx ~ f t/I.(u(O, x» dx. 

Passing to the limit e -+ 0 using Lebesgue's Dominated Convergence Theorem 
yields the desired result. 

5. If u ~ 0 and t/I(s) = s In(s) - s, then again t/I ¢: C2 [O, 00[, but a simple 
regularization as above shows that J t/I(u) dx is nonincreasing. The integral 
- J t/I(u) dx is the entropy at time t. 

6. If t/I(s) = s, the method reduces to simply integrating the equation over 
IR~ and yields J u dx = constant, the conservation of energy. 

The above multiplier or "energy" methods are very flexible, working for 
variable coefficient and nonlinear problems. The present case suggests multi­
pliers to try in the more complicated cases. 

PROBLEMS 

1. Using the U estimates proved by the energy method, show that the heat propagator, 
SHIt) with t z 0, extends uniquely to a continuous linear operator on Re U for 
1 :s; p < 00. Show that for f E Re U, (1.-+ SH(t)U is continuous on [0, 00 [with values 
inReU. 
DISCUSSION. Thus SHIt) is a strongly continuous semigroup on LP. For p = 00, this 
is no longer true. Using the L 00 estimate and the fact that the closure of!/ in L 00 is 
C, one finds that SIt) is a strongly continuous operator on C. The next problem 
discusses L'''. 

2. (i) Show that for t z 0, there is a unique extension of SIt) to a continuous linear 
operator from L 00 to itself. Hint. Duality (L 00 is the dual of L I). Prove and use 
an identity (Su, f) = (u, Sf) and the fact that Y' is sequentially dense in L 00 

with the weak-star topology. 
(ii) For ufO) = X[O.I] E L OO(IRI) show u(t) is not continuous with values in L 00 at 

t = O. Hint. Show that for t > 0, u(t) E C(IR). Conclude that SIt) is not a strongly 
continuous semigroup on L 00. 

(iii) Show that SIt) is weakly continuous in the sense that for every f E L 00, S(t)f is 
continuous on [0, oo[ with values in L 00 endowed with the weak-star topology. 

DISCUSSION. Such strong continuity in C, together with weak-star continuity in L 00, 

is quite common as p = 00 replacements for LP continuity. 

3. Find and prove a complex analogue of Theorem 4. 

4. Consider the initial value problem for Burgers' equation, ut + 2uux = 0, UfO, .) = 
f('), which was analyzed using the method of characteristics in §1.9. Here we use 
the energy method and the "quasi-linear trick" to prove uniqueness. Precisely prove 
that ifu and v are real C1 ([0, T] x IR) solutions which vanish for Ixl > R, then u = v. 
Hint. Subtract the equations for u and v to prove an equation of the form (u - v), + 
aft, x)(u - v)x + bIt, x)(u - v) = 0 with a, D,.xa, b in L OO . Multiply by (u - v), inte­
grate by parts, and apply Gronwall's inequality to conclude that J (u - V)2 dx 
vanishes for all 0 :s; t :s; T. 
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§3.7. Fourier Synthesis for the Wave Equation 

This section follows the same path as for the Schr6dinger and heat equations, 
namely: 

(i) solve in C'J(IR : Y(lRd)); 
(ii) derive estimates; and 

(iii) extend to generalized solutions. 

The initial value problem is 

UtI - c2!lu = 0, 

u(O, .) = j, 

c> 0, (1) 

(2) 

Note that this is a noncharacteristic initial value problem and that a good 
deal of information has already been found in § 1.8 concerning finite speed of 
propagation and domains of influence and determinacy. In addition, the case 
d = 1 was solved explicitly. 

The wave equation arises in many different areas of science. Each compo­
nent of the electric and magnetic fields in free space is a solution with c equal 
to the speed of light. Small amplitude waves in a gas (acoustic waves) and 
small amplitude vibrations of an elastic medium (e.g. a membrane or jello) are 
also modeled by the wave equation. In the latter application f pu~ dx repre­
sents the kinetic energy and f KIVul 2 dx represents the potential energy where 
p is the density and K is a physical constant. Then c2 = K/p (see [WhJ). The 
principle of conservation of energy is that 

f u~ + c2 IVul 2 dx is independent of t. 

The corresponding conservation law for the electric field 

flEtl 2 + c2 1Vx EI2 dx 

does not have a straightforward physical interpretation. The energy in that 
case is f IEI2 dx. 

Fourier transformation in x yields 

Uti = _c21~12U, (3) 
A A A sin(cIW) 
u(t, ~) = j(~) cos(cl ~ I t) + g(~) - c I ~I-' (4) 

Note that cos(cIW) and sin(cl~lt)/cl~1 are smooth bounded functions of~, as 
are all their ~ derivatives. Their time derivatives grow polynomially in ~ at 
most. Note the possible singularity at ~ = ° does not occur since 

sin(::L~l~ = LL=1tic~t2~n. 
cl~1 n (2n + 1)! 

This yields 
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Theorem 1. If f, g E 9'(lRd), then there is a unique u E COO(IR : 9'(lRd» solving 
the initial value problem (1), (2). The solution is given by formula (4). 

Theorem 1.8.3 is a stronger uniqueness result. The evolution operator or 
propagator, Sw(t), sends Cauchy data at time 0 to Cauchy data at time t, that is, 

Sw(t)(f, g) == (u(t), ut(t», 

so Sw(t): 9' x 9' -+ 9' x Y'. The first component of Sw(t) (f, g) is the solution 
of the Cauchy problem. 

The verification of the conservation of energy for these solutions is not 
difficult. For f, g E Re(9') compute 

at f u; + c21Vul 2 dx = 2 f UtUtt + c2VuVut dx. 

Integrate by parts in the second integral to find 

= 2 f ut(utt - c2 L1u) dx = O. 

Thus the multiplier U t is appropriate for deriving this energy law. It can also 
be used to give an alternate proof of the theorems of finite speed and domain 
of influence (Problem 1). Such multiplier methods have the advantage of 
adaptability to variable coefficients and nonlinear problems. 

Another derivation of the energy law is to note that 
/'.. A 

Ut = cos(tcl~l)g - sin(tcIWcl~lf, 

cl~lu = sin(tclWg + cos(tcl~I)CI~I! 
Take real parts, square, and add to find 

/'.. A 

(Re Ut)2 + c21~12(Re W = (Re 9)2 + c21~12(Ref(m2. 

A similar identity is valid for the imaginary parts. Adding yields 

1-;;;12 + c21~1211W = Igl2 + c21~12IJ(~W. (5) 

The left-hand side is the "energy at frequency ~". It is the energy of the spring 
equation (3) satisfied by u(·, O. Equation (5) shows that there is conservation 
at each ~. Integrating d~ yields the global conservation of energy. More 
generally, one can multiply by <02(s-1) to find that 

IIUt II~s-l + c2 11V xull~s-l is independent of t. (6) 

These estimates suggest the following extension of Sw. 

Definition. DS (D for Dirichlet) is the closure of 9'(lRd) in the norm lIuliDs == 
IIVxuIIHs-l. 

Then DS is a decreasing scale of Hilbert spaces with DS ::::> HS, and for any (j :s; s, 
DSnH" = H S • 
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Theorem 2. For any s E IR and t E IR, the map Sw extends uniquely 
to a unitary map of DS x Hs - 1 to itself. The corresponding generalized 
solution u == (SwU, g))firstcomponcnt satisfies u E C(IR : DS) and for I ex I ~ 1, 
a,~xu E C(IR : W-lol(lRd)). 

The spaces D S are naturally associated with the wave equation. The case 
5 = 1 is the IRd analogue of the natural norm in the variational approach to 
the Dirichlet problem (see §5.2). 

To estimate the H S norm of the solution u(t) in Theorem 2, note that, since 
<Os::::; cs(I~IS + XI~I<d, 

IluI11s(l~d)::::; Cs(llullbs(I~d) + r lu(t, ~W d~). J 1~1<1 
Next use formula (4) for g; u together with the estimates 

Icos(ctIWI::::; 1 and 
Isin(ctlWI 
~~cr~r-' ::::; I t I 

to show that for any a ::::; 5 there is a constant C(5, a) so that 

r lu(t, ~W d~ ::::; C(5, a)(ltlllgllHo + Ilfll8") J 1~1<1 
Thus 

Ilu(t)ll~s::::; c(s, a)(llgll~s' + Ilf111. + Itlllgll~o). (7) 

Thus u may grow linearly in time, but the growth depends only on very weak 
norms of the data. 

Therefore, if f, g E H S X H S - 1 , then u E C(IR : H S ) and satisfies (7). As in 
previous sections, the generalized solutions have many equivalent character­
izations. 

Theorem 3. If fE DS, g E W- 1 , and u E C(IR: DS ) (\ C1(1R: W-1) with ufO) = f 
and u,(O) = g, then the following are equivalent: 

(1) u is the generalized solution with Cauchy data f, g. 

, ,sin(ctIW, y 

(2) u = g-~~~I-- + fcos(ctl~lJ· 

(3) For any cp E C~(lRd), <u(t, .), cp(.» E C2 (1R,) and 

d 2 

;1t2 <u(t, x), cp(x» = <u(t, .), c26cp(' ». 

(4) For any t/f E C~(1R1+d), <u(t, .), t/f(t, .» E C2(1R,) and 

d 2 

di2 <u(t, .), t/f(t, .» = <u(t, .), (t/f" - c26t/f)(t, .» + <u,(t, .), t/f,(t, '». 

(5) (l,2 - c26)u = 0 in the sense of .9C'(1R 1 +d). 
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(6) For any t/l E Cg'(lR X [Rd) and tl < t2 

1'2 <u(t), t/l,,(t) - L1t/l(t) dt = «u(t), t/l,(t) > - < t/l(t), u,(t) » 1'2. 
tt t1 

PROBLEMS 

Let r be the dunce cap region {(t, x) E IRl x IRld: t 20 and Ixl :s; R - et}. Using the 
Global Holmgren Theorem, we have shown that any U E C2(r) satisfying the wave 
equation, u" - e2 11u = 0, and whose Cauchy data vanish on r n {t = O} must vanish 
in r. The same result can be proved by the energy method, which works for problems 
with nonanalytic coefficients and even for nonlinear problems. This type of calculation 
is very important and this problem is strongly recommended. Given such a U define 

e(t) == r (3,u(tW + e2 1gradx u(tW dx. J IxlsR-ct 

1. Prove that if u E C2(r : 1Rl) satisfies UtI - c2 11u = 0, c 2 0, then e(t) is a nonincreasing 
function of t. If u = u, = 0 at t = 0, conclude that u vanishes in r. Hint. For 
any T> 0, multiply the differential equation by u, and integrate by parts in r n 
{O < t < T} motivated by the proof after Theorem 1. 

In the next problem you are asked to analyze the wave equation with an elastic term 
bu, b 2 0, and a viscous friction term au" a 2 O. The initial value problem is 

3tt u -llu + au, + bu = 0 in 1Rl 1+d, 

u(O, .) = f( . ), u,(O, .) = g(' ). 

2. Prove that for fE HS(lRld ), 9 E W- 1 (lRld), there is a unique u E n}:::~ Cj(lRl: w-j(lRld» 
solving the initial value problem. 

3. Prove that if a > 0, then the solution satisfies 

lim 113/u(t)IIH,-j(~d) = O. 
t~oo 

Hint. Express the desired quantity as an integral in ~ space and apply Lebesgue's 
Dominated Convergence Theorem. 
DISCUSSION. This problem shows that the solution is driven to zero by the friction. 
The cases j = 0, 1 show that the classical energy tends to zero. The energy does not 
decay exponentially fast. The reason is that low frequencies are damped slowly. This 
is a general principle. Systems whose lowest frequency is strictly positive tend to be 
driven to zero exponentially fast by dissipative mechanisms (see Problem 5.7.5). 

4. Prove that for f E Coo (lRld), 9 E COO(lRld), there is a unique u E C"(1Rl X IRld) solving the 
initial value problem UtI - e2 11u = 0, u(O) = f, u,(O) = g. Hint. Uniqueness follows 
from Problem 1. For existence choose a locally finite partition of unity, {<Pi}, for IRld 

with <Pi E Ctf(lRld). Let Ui solve DUi = 0, ui(O) = hi' 3,ui(0) = <Pig. Show that the series 
I Ui is locally a finite sum, and therefore is a solution of the initial value problem. 
DISCUSSION. The same sort of patching argument can be used to prove solvability 
for f, 9 E ~'(lRld). 

5. If U En Cj(lRl: w-j) satisfies Du = 0 and u(O, .) = 0 on Ixl < R, then u = 0 in 
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{(t, x): Ixl < R - eltl}. Hint. Consider the solution u, to Du, = 0, u,(O) = j, * u(O), 
8,u,(0) = j, * u,(O). Be careful to justify the passage to the limit. 

6. Use Problem 5 to show that iff E HS,g E Hs - 1 , and u E n cj(lR: w-j) is the solution 
to Du = 0, u(O) = f, u,(O) = g, then 

supp u c {(t, x): (3y E S)(lx - yl set)}, S == suppfu supp g. 

§3.8. Fourier Synthesis for the 
Cauchy-Riemann Operator 

In §1.1 we showed that the initial value problem 

u(O, .) = f( . ), (1) 

is badly set, in the sense that there exists a solution only if f is real analytic, 
in which case the solution is the holomorphic extension of f. The Fourier 
transform gives us complementary information and gives precise assertions 
concerning general ill-posed initial value problems. The first goal is to show 
that the set f E Y'(lRd) for which a solution exists is "thin". After that, following 
Hadamard, we prove a strong version of discontinuous dependence on initial 
data. 

Suppose that for some s, perhaps very negative, u E C(IR : HS(lRd)) satisfies 
(1), then in the sense of Et"(1R 1 +d ), Ut = iux , and the right-hand side is contin­
uous with values in Hs - 1 (lRd), It follows (Problem 1) that u E C1 (IR : Hs - 1 (lRd)). 
Taking the Fourier transform yields a,u = - ~u. View this as an identity in 
.@'(lRt x IRd). It follows that in Et"(IR, x IR~), al(el~u) = 0, so u(t) = e-1o/. The key 
observation is that J is multiplied by a factor which is exponentially large as 
~ ...... (sgn t)oo. Since f E :7, polynomial growth is tolerable, being compensated 
by the rapid decrease of j. If J is not exponentially small, for example, 
J = e-<ol!2, thene-I~g;fis not the Fourier transform of an element of Y"(lRd). 

In order that e-T~g;f lie in HS it is necessary and sufficient that 

f <02S(e-2T~ + 1)IJ(~)12 d~ < 00. (2) 

Proposition 1. If f E g'(lRd) and there is an s E IR and a solution u E C([O, T] : 
HS(IR~)) of (1), then (2) holds. Conversely, if f satisfies (2), then u(t) = e-'~g;f 
defines a C( [0, T] : W) solution. 

PROOF. The first statement is proved above and the converse IS 

straightforward. D 

If one views u as a holomorphic function of x + it, the above result identifies 
the set of HS functions of x which are boundary values of holomorphic 
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functions in the strip 1m z < T, and such that the map t ~ u(· + it) is contin­
uous on [0, TJ with values in H S • This is a result of Paley-Weiner type. 

EXAMPLES. 1. If j has compact support K, then u E CCO(lRt : Y'(lRx)) and.? u(y) 
is a smooth function with support in K for all y. The set of such data is dense 
in Y'(IRJ. Nevertheless, the set is thin as shown in Theorem 2. 

2. If j = e - <0 112
, then (2) holds for no s E IR. The point is that (2) is rarely 

satisfied for fE//'. In fact, using the Baire Category Theorem one can show 
that 

{J E .'I'(lRd): (3s E IR and T > 0) such that (2) holds} 

is of first category in the complete metric space //' (Problem 2). 

Theorem 2. The set of f E Y'(lRd), such that there is aT> ° and an s E IR so 
that (1) has a solution U E C([O, T] : W) or C([ - T, OJ: W), is a set of first 
category in Y'. 

Next turn to the construction of examples showing strongly discontinuous 
dependence on initial data. The Fourier transform construction yields solu­
tions as linear combinations of the exponential solutions e-'~ei~x, ~ E IR. The 
idea is that as ~ ~ - 00 the initial values of e-t~eix~ are bounded but the 
solutions explode exponentially for any t > 0. For kEN fixed, the value of 
the solutions, < 0 -ke-t~eix~ == u~ at (t, 0), t > 0, grow exponentially as ~ tends 
to - 00, but their initial data converge to zero in the sense that the derivatives 
of u~ of order less than or equal to k - 1 converge uniformly to zero in IR. This 
is Hadamard's construction. 

A skeptic might think that the source of this problem is that the data do 
not converge to zero as Ixl ~ 00. By taking a superposition over a range of~, 
one vitiates this criticism and proves a much stronger discontinuity theorem. 

Theorem 3. There is a family u. E CCO(IR : Y'(lRd)) of solutions to (at - iax)u, = ° 
and a ffJ E Y'(lRd), so that as e ~ 0, 

,'!'-lim u.(O) = 0, (3) 

and 
for all t #. 0, (4) 

The explosive behavior (4) implies that for any s E IR, no matter how nega­
tive, lIu.(t)IIHs ~ 00 as e ~ 0. 

PROOF. Define v E CGO(IR: Y'(lRd)) by .?v.(t) == e-(·~)2e-'~e-<0112. Then 
(a, - iOJv. = 0, and as e ~ 0, v. converges formally to the misbehaved solution 
with data .?* exp( - < 0 1/2 ). Define ffJ by .? ffJ == exp( - < 0 1/4 ). Then 

<vAt), ffJ) = f e-'~e-(·~)2e-<0314 d~. 
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The integrand is strictly positive and integrable. For t > 0, the integral is larger 
than the integral over the interval of length one with center at -l/e. In this 
interval the integrand is bounded below by cel/', c > 0, as 8 tends to zero. Thus 

<v,(t), cp) ;;::: cell'. 

For t < 0, an interval about l/e yields the same lower bound. Let u, == ev, to 
complete the proof. 0 

PROBLEMS 

1. Suppose that u E Etl'(IR, x IR~) n C(IR : W(lRd)) and the distribution derivative au/at 
lies in C(IR: HS(lRd)). Prove that U E C1(1R: W(lRd). 

2. Prove that for any S E IR and t E IR\O 

{jEY(lRd): f <O-2s(e-2'~ + l)IJ(~W d~ < oo} 

is of first category in the sense of Baire. Hint. Use the uniform boundedness principle 
as sketched in the next paragraph. 

Suppose that E and F are complete countably normed vector spaces (== Frechet 
spaces). A subset is called bounded if and only if it is bounded with respect to each 
of the countable number of defining seminorms. This is equivalent to requiring that 
the set be bounded in the natural metrics defining the topology. A sequence of 
continuous linear maps An: E --t F is called uniformly bounded if and only iffor any 
bounded subset BeE, the set U An(B) is bounded in F. The Uniform Boundedness 
Theorem asserts that if An is not uniformly bounded, then the set of x E E such that 
{An(x)}.%1 is bounded in F is a set of first category. Apply this result to the family 
of maps fi--> <0 -'(e-'¢ + l)J(~)X[-n,nl(O from Y(lRd ) to L 2(lRd ). 

DISCUSSION, Call the set in Problem 2, B,.I' Then B is increasing in s and decreases 
as t moves away from O. Thus 

U Bs,1 = U (B-n.1/n u B-n,-l/n) 
seR,t#O l:::;n<a;J 

is a countable union of sets of first category, hence of first category. This proves the 
conclusion of Theorem 2. 

§3.9. The Sideways Heat Equation and Null Solutions 

Sometimes initial value problems arise with a time parameter which is not the 
physical time. Consider, for example, the following inverse problem for the 
heat equation. An observer at the origin x = 0 in IR! observes the temperature 
u(t, 0) = f(t) and the heat flux uAt, 0) = g(t) of a solution to the heat equation 
UI = Uxx in x ;;::: O. The problem is to recover the full temperature field u(t, x). 
The boundary value problem is then 

u(t,O) = f, uAt, 0) = g. 

(1) 

(2) 
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This is a noncharacteristic Cauchy problem with "time" variable x and "space" 
variable t. Since the initial line x = ° is noncharacteristic the observations 
determine all the derivatives of u at x = 0, so that the observer has all the 
information which could possibly be obtained at x = 0. 

The exponential solutions are given by the roots of ~2 = ir, that is, 
~ = ±(r/i)1!2. The solutions exp(irt ± (ir)1/2x) for r real are bounded on 
x = ° and grow exponentially like exp(± Irll!2x) suggesting that the initial 
value problem (1), (2) is not well-posed since the rate of growth increases 
without bound as r ~ 00. 

To analyze further, take the Fourier transform in the "space variable" t to 
obtain 

uxx = iru(r, x), (3) 

where r denotes the transform variable associated to t. Equation (3) has the 
solution 

sin ~x A r::. A 

u(r, x) = r::. g(r) + (cos V irx)f(r). 
vIr 

(4) 

Here za for a E JO, 1[ is defined for z E C\J - 00, OJ as the branch with 1a = 1. 
Note that the amplification jactors, sin ~x/~ and cos Ji~x, grow like 

exp(lrll!2x) as r ~ ± 00. Thus, for typicalf, g E!/', the products in (4) will not 
belong to !/"([Rd) which yields nonexistence and discontinuous dependence 
results as in the last section. 

Theorem 1 

(a) The set of f, g E !/' X /fl
, with the property that for some,! > ° and s E [R 

there is a u E C([O,'!J : W(lRm satisfying (1) for ° < x < ,! and (2), is a set 
of first category in !/' x ,,/. 

(b) For any,! > 0, there exists a sequence of solutions Un E COO([R~ : !/'(lRt» to 
(1) and q> E !/'(lRt) such that un(t, 0), oxun(t, 0) converge to zero in !/,([Rd) and 

lim f un(t, ,!)q>(t) dt = 00. 

Part (b) shows that in spite of the unique determination of u (Holmgren) the 
determination is so discontinuous as to be practically useless. 

For the Cauchy-Riemann operator, the amplification factors grow expo­
nentially in the Fourier variables, so only Cauchy data whose transform decay 
exponentially have a chance for existence. These data are real analytic and 
therefore possess unique continuation properties. In the present situation data 
whose transform decays more rapidly than e- lltl suffice. For example, 

yields the solution 

(5) 
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As I -r I --* 00 the first factor in the integrand decays like exp( -I -rIa) and the 
second grows at most like exp( I x II -r 11/2), so the integral is absolutely conver­
gent for all t, x since rJ. > 112. As $'u(t, 0) = (2n)1/2 exp( -(i"tY), u is not 
identically equal to zero. 

Let ra denote the contour Re(z) = a ~ ° oriented in the direction of the 
increasing imaginary part. Then 

u(t, x) = f ex (z)1/2 e-z'e zt dz. (6) 
Jro 

The integrand is holomorphic in Re(z) > ° and continuous in Re(z) ~ 0. 
Starting from (6) we prove that u vanishes in t < 0. To do this, shift the contour 
toward the right. 

Denote by F(t, x, z) the integrand in (6). Since e-z' :::; ce- 1zl' for Re z ~ ° and 

MR == sup le X (Z)1/2e- z'/2 1 < 00. 
Ixl:o;R,O:o;Re(z)< 00 

it follows that F = O(exp( -11m zlal2) uniformly for 0:::; Re(z) < 00. This suf­
fices to justify a contour shift using Cauchy's Theorem to show that 

u(t, x) = f ex(Z)1i2e-z'ezt dz. (7) 
ra 

For any a > 0, R > 0, the derivatives of the integrand in (7) satisfy 

lata! FI :::; c(R, a, rJ., P)(I + IzI N(a'P»)e- 1z l"f2, for all It, xl :::; R. 

Thus differentiation with respect to t, x under the integral sign in (7) is justified 
and proves u E C"(IR x IR). 

For Ixl :::; R estimate 

lu(t, x)1 :::; eatMR f le-z'/21Idzl. 
Jra 

The integral is largest for a = 0, so I u I :::; c(R)eat. If t < 0, pass to the limit 
a --* 00 to show that u == ° for t < 0. This proves the following theorem. 

Theorem 2. There is a nontrivial u E C"(lRt x IRx) satisfying the heat equation, 
ut = Uxx , and vanishing identically for t < 0. 

Such solutions are called null solutions. This result is typical of characteristic 
initial value problems. In Problem 3 you are asked to construct similar null 
solutions for Schrodinger's equation. The reason that such solutions do not 
violate the uniqueness theorems of§3.6 is that the solutions are not continuous 
functions of time with values in HS(lRd ). They grow exponentially fast as 
Ixl --* 00 and are not tempered distributions in x. The interested reader is 
encouraged to study the asymptotics of the solution (5) when x grows with t 
fixed. 
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PROBLEMS 

In the first problem you are asked to prove a result about the time T 2': 0, when 
a null solution of the heat equation, as in Theorem 2, ignites. Suppose that 
U E coo(IR,l X IR~) satisfies 

Ut = uxx , U=o for t < O. 

Define the ignition time T by 

T == sup{s: U = 0 for t < s}. 

1. Prove that all points (T, x), x E IR, lie in the support of u. Hint. Use the Global 
Holmgren Theorem. 
DISCUSSION. This shows that the solutions ignite at all points simultaneously. 

It is a nontrivial theorem of Widder [W] that there are no nonnegative solutions 
vanishing for t < O. 

2. For any rx E]1, 1[, show that T = 0 for the solution (5). 

3. Construct null solutions for Schrodinger's equation. Hint. Consider the sideways 
problem. 

§3.10. The Hadamard-Petrowsky Dichotomy 

The previous sections present examples of a dichotomy between initial value 
problems with a satisfactory existence theory and those without. The idea is 
simple. Consider a constant coefficient operator, 

m 

P(Dp DJ = L Aj(Dx}D/, (1) 
j=l 

of degree m with respect to t. The initial value problem we consider is 

Pu = 0 in t;::: 0, 

OSjsm-l. 

(2) 

(3) 

In all the examples we have discussed so far, Am was constant, but there are 
examples in mathematical physics with Am(D) nonconstant. For example, the 
linearized BBM (Benjamin~Bona~Mahoney) operator 

(4) 

arises in a model of long waves. 
We assume throughout this section that 

(5) 

The Seidenberg~ Tarski Theorem (see Hormander II, Appendix 2, Ex. A.2.7) 
shows that there is a c > 0 and f3 E I[j) such that 

as p --+ 00. (6) 
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In particular, there is a c > ° and N E N such that 

IAm(~)1 z C(O-N for all ~ E IRd. (7) 

Thus ff-> Am(D)f is a 1-1 onto map 0[,'1' to itself(Problem 2.1.3). In examples, 
(7) is usually obvious. For example, the BBM operator has Am(O = I + 1~12. 

In an attempt to construct a solution, take the Fourier transform in x to find 

P(D" Ou(t, ~) = 0, 

D/u(O,~) =.~(~), js;m-l. 

(8) 

(9) 

For each ~ this is a Cauchy problem for an mth order ordinary differential 
equation in time, thanks to (5). Solving determines u(t, 0 E C)(IR, x IR~). 

To perform an inverse Fourier transform we need to know that u does not 
grow too fast as I~I-> 00. As the :#'.fj are rapidly decreasing as I~I-> 00, we 
must look at how large solutions of P(D" ~)v = ° can be compared to the size 
of their Cauchy data. The key is that the general solution is a linear combina­
tion of exponential solutions e irt where P(r, ~) = ° (if there are multiple roots, 
polynomials in t appear as factors). Now, for such an exponential solution 
and t > 0, the solution is of magnitude e-(Imr)' times the magnitude at time 
zero. As the ff f decay faster than (0 -n for all n we can tolerate polynomial 
growth in ~ for t fixed. This leads us to the following condition. 

Definition 1. The differential operator satisfies the Hadamard-Petrowsky con­
dition for forward evolution if and only if there exists c, n such that 

P(r,O = ° => e-(Imr) S; c(on. (10) 

We call this the H- P condition for brevity. Taking logarithms shows that 
(10) is equivalent to 

P(r, 0 = ° => -Im(r) S; (> In(2 + 1(1). (10)' 

That is, - 1m r can grow at most logarithmically in I ~ I. As the r are roots 
of algebraic equations only power law growth is possible. Precisely, the 
Seidenberg-Tarski Theorem shows that 

max{ -Im(r): P(r, 0 = ° for some ~ E IRd with I~I = p} = cpa(1 + 0(1» 
(11 ) 

as p -> 00. Thus the only way that (10)' can be satisfied is if a S; 0, in which 
case Im(r) is bounded above. 

The sufficiency of the logarithmic bound for solvability was proved by 
Petrowsky. That at most logarithmic growth implies boundedness was proved 
by Garding [GardJ in the case that t = ° is noncharacteristic. In that 
case operators satisfying the Hadamard- Petrowsky condition are called 
hyperbolic. The utility of the Seidenberg--Tarski Theorem in this and other 
contexts in the theory of partial differential equations was discovered by 
Hormander. 
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Theorem 2. Suppose that Am(O # ° for all ~ E IRd and that the H-P condition 
for forward evolution is satisfied. Then, for any Jj E !/' (lRd), ° ::;; j ::;; m - 1, 
there is a unique solution u E CX) ([0, co [ : !/'(lRd» of (2), (3). The map 
(fO,fl, ... ,fm-J -4 U is continuous from !/'(lRdr to croCCO, 00 [ : Y'(lRd». 

The natural backward and forward-backward versions are true. For evolu­
tion into the past, t < 0, the H-P condition is Im(r) ::;; c'. For evolution 
forward and backward in time, the condition is 11m rl ::;; e". 

PROOF OF THEOREM 2. If u E CoCCO, 00[: !/'(lRd» is a solution, we have shown 
that aCt, ~) E CX)([O, oo[ x IRd) must satisfy (8), (9). Since /lFu is determined, 
this proves uniqueness. 

For 0::;; j ::;; m - 1, define Mit, ~) E COO(IR X IRd) to be the solution of 

Then we have 

if k #j, 

if k = j. 

(12) 

(13) 

(14) 

Ifwe can show that the right-hand side of(14) belongs to COO([O, 00[: !/'), then 
the inverse Fourier transform yields a solution u E Coo ([0, 00 [ : !/'). Thus, it 
suffices to show that for any IX E N 1 +d and T > ° there is a c = c( IX, T) and 
N = N(IX, T) such that 

on [0, T] x IR~. 
The first step is to observe that all the Mj can be expressed in terms of M m - 1 . 

Toward that end, note that for j < m - 1 and t = 0, 

if k = j, 

if k # j and k < m - 1, 

if k = m - 1. 

The last identity follows from (12) upon solving for the D;" term and using 
(13). Thus 

M j = 8t Mj +1 + AmW-1Aj+1(~)Mm_l' 
m 1 - j applications of this yields an expression for Mj in terms of M m - 1 

which shows that it suffices to prove (14)j for j = m - 1. 

For Mm - 1 we use an explicit solution formula. 

Lemma 3. The solution of the constant coefficient initial value problem 

° = P(Dt)u == (amD;" + am- 1 D;"-l + ... + ao)u, 

. {O D/u(O) = 1 
for 0::;; j ::;; m - 2, 

for j = m - 1, 
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is given by 
a l eirt 

u = 2:i J r P(r) dr, 

where r is any rectifiable arc in IC which winds once about each root of P(r) = O. 

PROOF. Differentiating under the integral defining u yields 

am ~ P(r)e itt 
P(D )u = - ----- dr = 0 

t 2ni r P(r) , 

by Cauchy's Theorem. 
The same theorem shows that if all the roots of P(r) lie in the disc Irl < R, 

then 

Forj::S; m - 1, 

a l eitt 

u == 2:i Jltl=R P(rj dr. 

Dju(O) = am l rj/P(r) dr. 
2m Jltl=R 

For j::S;m - 2, the integrand is O(R-2), so the integral is O(R-l). Letting 
R ~ 00 yields Dju(O) = o. On the other hand, as R ~ OJ, 

The integrand is equal to (am rr l + O(R-2). Thus, as R ~ -00, the right-hand 
side converges to 1. 0 

The lemma yields the following explicit formula 

Am(~) l eitt 

Mm - 1 (t, ~) = 2ni J r P(r, ~) dr, 

where r = r(O is a contour in IC enclosing all the roots, r, of P(r, ~) = O. A 
good choice ofr is needed. We take r to be equal to the boundary ofn~ where 
n~ is the union of the discs of radius 1 with centers at the roots rj = ri~) of 
P(r, 0 = o. 

The length of r is at most 2mn since there are at most m circles. The H - P 
condition shows that - 1m r ::s; c on r, which implies that for r E r(~), 
lettl ::s; ect. Finally, on r, 

which bounds the denominator of the integrand away from zero. It follows 
that 

I M m - l (t, ~)I ::s; c' ect< ON, 

which is the tt = 0 case of (14)m-l. 
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Differentiating under the integral sign yields 

" I Q,,(r, ~)ei<t 
Dt.~M = 'f r P(r~Olal+l dr 

with a polynomial Q. Since the coefficients of P are polynomial in ~ and 
IAml :2: C<O-N, the roots of Pare O«ON,) for some N'. Thus, for r E r, 
Irl s C<ON·. This together with our previous estimates yields (14)m-l' 0 

If the H - P condition is violated, then (11) shows that suitable exponential 
solutions ei<teix~, ~ E [Rd, I ~I ~ 00, explode like etl~la for some a> O. This yields 
discontinuous dependence and general nonexistence theorems in the style of 
Theorems 3.8.2, 3.8.3, and 3.9.1. 

Theorem 4. Suppose that Am(~) i= 0 for all ~ E [Rd and that the H-P condition 
for forward evolution is not satisfied. Then: 

(a) Generic Nonexistence. The set of (10' ... Jm-l) E Y([Rd)m, such that there 
is aT> 0, s E [R, and u E Cm([O, T] : W([Rd)) satisfying (2), (3), is a set of 
first category in .'I'([Rd)m. 

(b) Discontinuous Dependence. There is a sequence of solutions Un E CXl([R : 

Y([Rd)) to PUn = 0 and a cp(t) E CC1J([O, 00[: Y) such that the Cauchy data, 
8/un(0, .), 0 s j s m - 1, converge to zero in .t/" and as n ~ 00, 

lim<un(t), cp(t» = 00 uniformly on compact time intervals in ]0, 00[. 

PROOF. (a) If u E Cm([O, T] : HS([Rd)) is a solution with dataf, then!#'u is given 
by (14). Thanks to (11) we have 

max I MiT, ~)I :2: c' ecpar 

1~I=p 

Then u(T) E W yields 

with a> O. 

IlL Mj(T, O!#,ij(~f <02s d~ < 00. 

(15) 

As in Problem 3.8.2, (15) implies that the set of suchij is of first category in Y. 
(b) The Seidenberg-Tarski Lemma implies that -1m r s C<Ob for some 

b E Q. Define Un by 

s == lin, 

with c > b and a as in (15). Define cp by 

cjJ = e-ma/3Mm_l(t, ~)/(1 + IMm-1(t, ~)12)1/2. 

To show that <u(t), cp(t» explodes compute in ~ variables, noting that 
the integrand in <u(t), cjJ(t» is nonnegative. Equation (11) shows that the 
integrand is bounded below by sc' exp(ct 1~la) exp( _lel- 2a/3 ) at points ~(s) on 
the spheres lei = lis. Using the bound (11) and the formula for 8~Mm-l one 
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estimates, 

la~M(t, ~)I ~ c"<~l exp(ctl~la). 

It follows that the lower bound for the integrand holds, with new constants, 
on a ball Br(~(e)) with radius r decreasing as a negative power of I~I. This 
bounds the integral below by a multiple of ek ' exp(ct/eaI3 ). 0 

The criterion of H - P is easily and broadly applicable. It is one of the main 
recipes of the theory of partial differential equations. 

Summary. To check if the initial value problem for P(D" Dx) is well-posed in 
t ~ 0, find the roots of P(r, 0 = 0 for ~ E [Rd. The good problems are those for 
which - 1m r is bounded from above. 

EXAMPLES. 1. P = at + I aA + b. Then P(r, 0 = ir + iI aj~j + b. The root 
r is given by r = - I aj~j - b/i. If at least one of the a, say aj' is not real, then 
by choosing ~k = 0 for k =I j, the imaginary part of r can be forced to be 
arbitrarily large, positive, and negative. Thus the H·- P condition is violated 
for both forward and backward evolution. On the other hand, if the aj are real 
then 11m rl ~ Ibl, and the condition is satisfied in both directions. In this case, 
the initial value problem is explicitly solvable by integrating along the integral 
curves of the vector field at + I aA as in § l.l. The same method works when 
the coefficients aj are smooth real-valued functions of (c, x), and is called the 
method of characteristics. 

2,3,4. The heat equation, with it = _1~12, satisfies H-P for forward 
evolution and not backward evolution, while the wave and Schrodinger 
equations satisfy H-P for forward and backward evolution. For the wave 
equation, r = ±I~I, and for the Schrodinger equation, r = _1~12. In both 
cases 1m r = O. This is typical of conservative equations. 

5,6. The Laplace equation Utt + Uxx = 0 yields r = ± il~1 with imaginary 
parts large in both directions, so violates H - P both forward and backward. 
In fact, if d ~ 2, no elliptic operator can satisfy the H - P condition (Problem 
4). On the other hand, for d = 1, P(Dt ) is elliptic and satisfies the H-P 
condition (there are no ~ =I 0 so the condition is automatic). 

7. For any m ~ 1, a,m satisfies H-P forward and backward since roots are 
r = O. For m ~ 2, this example is unstable, being destroyed by lower-order 
perturbations. For example, a,z - ax is the sideways heat equation of §3.9. The 
roots are r = ± (iOl/2 and the H - P condition is violated in both directions. 

The example e,m also illustrates a phenomenon of weak well-posedness or 
loss of derivatives. To estimate derivatives of a solution up to order k requires 
more than k derivatives at t = O. To see this note that the solution of the initial 
value problem is given by 

m-l 

U = I (tW)fj(x). 
o 
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Thus 
Ilu(t)IIHs ::; c(t) L IIJjllHs = c(t) L Ilo/u(O)IIHs, 

To show that u(t) E H S , one needs o/u(O) E W for j ::; m - 1. One needs 
s + m - 1 derivatives at t = 0 to guarantee s derivatives at time t. The estimate 
reflects a loss of m - 1 derivatives. In analogy with Du = 0, set 

es(t) == L Ilo/ull~s- j' 
j,;m-l 

Then eAt) ::; c(t)es+m - 1 (0), and no better. Here the loss of m - 1 derivatives is 
clear. The initial value problem is said to be weakly well-posed. Such weak 
well-posedness is often destroyed by small perturbations. For example, if 
m Z 2, Otm + ROx does not satisfy the H-P condition (Problem 1). Similarly, 
variable coefficient problems whose "frozen" problems are weakly well-posed 
often do not inherit the well-posedness. Ditto for nonlinear problems whose 
linearization have frozen problems only weakly well-posed. For this reason, 
it is important to identify, among the H - P good problems, those which 
are more stably well-posed. The heat, Schr6dinger, and wave equations are 
examples. 

A variety of ill-posed initial value problems appears in the descriptions of 
instabilities in physical systems. The ill-posedness is then desirable and is used 
to study the modes of explosion. Sometimes nonlinear problems with well set 
initial value problems have ill-posed linearizations. The linear theory then 
predicts the manner in which solutions grow until the linearization hypothesis 
is no longer appropriate. The simplest example is the ordinary differential 
equation of Van der Pol which models self-excited periodic oscillations. 

PROBLEMS 

1. For each of the following operators determine whether the H-P condition for 
forward/backward evolution is satisfied: 
(i), (ii) at! ± (~f. 
(iii), (iv) at ± (~)2. 
(v) at + (axlm, mEN. 

(vi) The linearized BBM equation (4). 
(vii) a;n + Eax , m ::::: 2, E E IR\O. 

2. Find necessary and sufficient conditions on the real coefficients, a and b, so that 
at! + aatx + baxx satisfies the H-P condition for forward evolution. 
DISCUSSION. It is interesting to take this as a first step in finding the most general 
homogeneous operator of order 2 on IR 1 +d satisfying the H - P condition. 

3. For the wave operator at! - ~x with x E IRd, consider the sideways Cauchy problem: 
(all - ~)u = 0, u I x, =0 = J, UXI I x, =0 = g, where J and g belong to S/'(IR, x 1R~~.1 .. . x.). 
This corresponds to reconstructing the solution from observations at XI = O. Prove 
that for d = 1, the sideways Cauchy problem satisfies the H-P condition for both 
forward and backward evolution. Prove that for d > 1, the condition is violated in 
both directions. 
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DISCUSSION. Analogous inverse problems are very common in geophysics where one 
observes, for example, seismic waves, at the surface of the Earth (x 1 = 0) and tries 
to find out what is going on below the surface. There are many very good algorithms 
for d = 1. Unfortunately, d = 2 is more reasonable and the ill-posed ness from 
Problem 3 renders this case extremely difficult. Current methodology is not very 
good. 

4. Prove that if dim(x) == d 2: 1 and P(D" Dx) is elliptic, then it can satisfy the H - P 
condition for neither forward nor backward evolution. 

§3.ll. Inhomogenous Equations, Duhamel's Principle 

If P(D" Dx) satisfies the Hadamard-Petrowsky (H-P) condition for forward 
evolution, then we can also solve the inhomogeneous initial value problem, 

Pu = FE COO([O, w[: 9'«(R~)), 

o/u(O, .) = 0, O~j:::;;m-1. 

(1) 

(2) 

In many practical problems, the F in Pu = F(t, x) represents external sources 
or stimuli while the homogeneous, F = 0, problem is free motion. 

EXAMPLES. 1. u, - vAu = F(t, x) represents heat flow with external source of 
heat F(t, x) calories per unit volume per unit time. 

2. The wave equation uti - c2Au = F(t, x) with x E (R2 models the small 
vibrations of a membrane with external force F(t, x) per unit mass per unit 
time. For example, a membrane in the presence of a constant gravitation field 
yields u" - c2 Au = g/ p (p == density). 

If u E CCD([O, w[ : 9'«(Rd)) is a solution of (1), (2), then Fourier transforma­
tion in x yields an inhomogeneous ordinary differential equation for u(t, ~), 

P(D" ~)u(t,~) = .'FF(t, ~), 

o/u(O, ~) = 0, O~j:::;;m-1. 

(3) 

(4) 

Lemma 1 (ODE Duhamel). If P(D,) == amD;" + am- 1 D;,,-l + ... + ao is a con­
stant coefficient ordinary differential operator, am i= 0, and F(t) E COO([O, w[), 
then the solution w E C" ([0, 00 [) to 

Pw=F, a/w(o) = ° ~j ~ m - 1, 

is given by 

wet) = f: G(t - s)F(s) ds, 

where G is the solution to 

PG=o, D/G(O) = ° for j ~ m - 2, 
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PROOF. Define H to be G for t ~ 0 and zero in t < O. Then H E cm-2(~) 
and D;,-l H(O) has a jump discontinuity with jump [Dt- 1 H] = i/am 

at t=O. Then in ~'(~), a!H=(a!G)x[O,oo[ forjsm-l, and atH= 
(atG)X[O,OCJ[ + [atm- 1 H]J. Thus 

P(Dt)H = ar: [D;"-l H]J = J. 
I 

Choose !/J E COO(~) with !/J(t) = 0 for t < 1 and !/J = 1 for t > 2. Let 
Fn == !/J(nt)F. 

Then P(Dt)(H * }~) = J * Fn = Fn. In addition, H * Fn converges to 
H * (FX[o, Xl[) in Cm - 1 (IR) (exercise). Passing to the limit n -+ 00 yields the 
desired result. 0 

Apply the lemma to aCt, ~), recalling the definition (3.10.11), (3.10.12) of 
M m - 1 to find 

aCt, ~) = I Mm - 1 (t - s, ~)~ F(s, () d~. (5) 

One finds that a E croCCO, 00[: Y'(lRd» and that a is a solution of the initial 
value problem (3), (4). For this, the estimates (3.10.14) for Mm - 1 suffice to justify 
differentiation under the integral sign (exercise). 

Theorem 2. If P satisfies the Hadamard-Petrowsky condition for forward 
evolution, then for any FE croCCO, w[: Y'(lRd» there is a unique solution 
u E COO([O, w[: Y'(lRd» to (1), (2). The solution is given by formula (5). 

Formula (5) has several alternate descriptions. For example, in the last 
section we saw that ~* M m - 1 (t, ~)~f == Sp(t)f is the value at time t of the 
solution of the initial value problem 

Pv =0, . {O a/vex) = f 
if j s m - 2, 
if j=m-l. 

Sp is a propagator for the evolution equation Pv = O. Then (5) becomes 
Duhamel's formula 

u(t) = I Sp(t - s)F(s) ds. (6) 

As a typical example of how Duhamel's formula can be used to solve 
inhomogeneous equations with less regular F, consider P = at - vLl, Re(v) ~ 0, 
thereby treating the heat and Schrodinger equations simultaneously. 

For F E crocCO, w[ : .'I') the solution to 

(at - vLl)u = F, ult=o = 0, (7) 

is given by (6). Let Sv denote the propagator of at - vLl. The HS norm of u is 
estimated by 

lIu(t)IIHS::; I IISv(t - (J )F«(J)IIHS d(J s I 11F«(J)liHS d(J. (8) 
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This suggests that for F E L~c([O, 00[: H') the initial value problem (7) has a 
solution in C([O, 00[: H'). Before proving this we show that several ways of 
defining the notion of solution to (7) are equivalent. 

Proposition 3. For F E L~c([O, 00[: H') and u E C([O, 00[: H') with u I t=O = 0, 
the following are equivalent: 

(i) For all t ;:::0, Duhamel's formula (6) holds. Here the integrand is in 
Ll([O, t]: H'). 

(ii) For any function q> E CO'([Rd) the function t f-+ <u(t), q» is absolutely con­
tinuous on [0, 00 [ and 

<u(t), q»' = v<u(t), Aq» + <F(t), q». 

(iii) For any t/J E CO'([R X [Rd) and tl < t2 , 

it2 It2 
<u(t), (-Ot - vA)t/J) - <F(t), t/J(t» dt = -<u(t), t/J(t» . 

tl tl 

(iv) (Ot - vA)u = F in the sense of distributions on ]0, oo[ x [Rd. 

(9) 

This result is like Theorems 3.5.1, 3.6.4, and 3.7.3. The proof is omitted. When 
the equivalent conditions are satisfied we say that u is a solution of (7). 

Theorem 4. If Re(v) ;::: 0, s E [R, and FE L!;,c([O, 00[: H'), then there is a unique 
solution u E C([O, 00[: H') to the initial value problem (7). The solution satisfies 
the estimate 

lIu(t)IIHS::;; I IIF(O')IIHS dO'. 

PROOF. Choose Fn E COO([O, 00[: 9') such that Fn -+ F in LI~c([O, 00[: H'). The 
estimate (8) applied to Un - Urn shows that Un is a Cauchy sequence in 
C([O, oo[ : HS). Let u == lim Un' 

Then for q> E CO'([Rd), <un' q» -+ <U, q» in C([O, oo[), and 

d 
dt <un, q» = <un, vAq» + <Fn(t), q» -+ <u, vAq» + <F(t), q» 

in Lloc([O, oo[). It follows that <u, q» is absolutely continuous and that (9) 
holds. This completes the proof of existence. 

Uniqueness is a consequence of uniqueness for the homogeneous equation 
since the difference of two solutions is a solution of the homogeneous equation 
with zero initial value. 0 

Remark. If v E ilR then [0, 00 [ can be replaced by [R, that is, the solution exists 
in both the forward and backward directions of time. 

Theorem 3 gives an adequate response to the question "What is the reg­
ularity of a solution with respect to x?". For regularity in t, one uses the 
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differential equation to express the time derivatives of u in terms of x deri­
vatives of u and derivatives of F. The equalities are as distributions on 
JO, oo[ x [Rd. The first such identity is the equation itself 

Ut = v.1u + F. (10) 

For the next, differentiate with respect to t to find 

Utt = v.1ut + F; = v.1(v.1u + F) + Ft = (v.1fu + v.1F + F;. (11) 

To use (10) note that with F as in Theorem 4, we know that U E C([O, 00[: HS ), 

so .1u E C([O, oo[ : Hs - 2 ). If F lies in the same space we conclude that 
OtU E C([O, 00[: W- Z ). 

Similarly, in (11) the first two terms on the right belong to C([O, 00 [ : W- 4 ). 

Thus, if F; belongs to this space we find that 

and 
Ft E C([O, 00[: W- 4 )} 

FE C([O, 00[: W- 2 ) , 
imply u" E C([O, 00[: W- 4 ). 

Continuing in this manner one derives the regularity of all the time derivatives 
of u in terms of the regularity of F. 

Theorem 5. If for O~j~N, O!FEC([0,00[:W- 2 j), then O!UE 
C([0,00[ : Hs - 2 j) for ° ~j ~ N. The derivatives satisfy the estimate (12) below. 

PROOF. The key is an estimate for the derivatives i3!u 
CX) ([0, 00 [ : 9") 

sup 11i3!u(t)llw2i ~ Cj,T L It IIi3tkF(0')IIHS2i dO', 
OStsT ksj 0 

of solutions U E 

j~N. (12) 

To prove the estimate withj = lor 2 use (10), (11) and estimate the right-hand 
sides crudely. The general case is similar. 

Given (12) one retraces the proof of Theorem 4 using (12) to control the 
convergence. 0 

PROBLEMS 

1. Find an explicit formula for the solution of the initial value problem v" + 4v = j, 
v(O) = v'(O) = O. 

2. Show that Lemma 1 in the special case P = D~ implies Taylor's Theorem with 
remainder. 

3. Give a detailed proof of Theorem 5. 

4. Formulate and prove analogues of Theorems 3, 4, and 5 for the inhomogeneous 
wave equation Du = F. 



CHAPTER 4 

Propagators and x-Space Methods 

§4.1. Introduction 

This chapter continues the use of the Fourier transform but the point of view 
is different. The main estimates in the last chapter were in .; space. This section 
concentrates on behavior in x. 

One method which works explicitly in the x variables is the energy method. 
This technique was applied several times in the last chapter, for example, to 
derive U estimates for the heat equation. As membership in LP for p =f. 2 is 
not easily read from the Fourier transform, such results are often clearer in 
the x variables. For example, the fact that the Schrodinger propagator 
.~-le-ill~122T is not bounded in LP is not obvious in .; space but becomes so 
upon studying the Gaussians in x space (Problem 3.4.2). 

The methods of this chapter are analogous to the latter success. The Fourier 
transform is used to derive formulas in x space which are then analyzed. 

§4.2. Solution Formulas in x Space 

Consider the propagator for the heat equation 

2T{SH{t)f) = e-V11~122Tf, f E Y{[Rd). (I) 

Let KH(t) E Y([Rd) be the function defined by 

2T(KH(t)) = (21CrdI2e-VII~12 E Y([Rd), (2) 

then (I) is equivalent to 

SH(t)f = KH(t) * f = f KH(t, x - y)f(y) dy. (3) 
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Happily, KH is a Gaussian already computed in §2.2, 

KH(t, x) = (4nvtfd/2e-lxI2/4vt. 

Thus, for t > 0, SH(t)j is given by the explicit formula 

u(t, x) = (4nvtfd/2 f e-lx-YI2/4V1(y) dy. 

A similar argument for the Schrodinger equation yields 

Ss(t)j = Ks(t) * j, 
g;(Ks(t)) = (2nfd/2e-itl~12. 

(4) 

(5) 

(6) 

(7) 

In this case, Ks E Y', and the convolution is that between an element of Y' 
and an element of Y. Ks is given by formula (2.4.7) 

Ks(t, x) = (4nit)-d/2e- 1xI2/4it. (8) 

It is the same formula as the heat propagator with v = i, 

u(t, x) = (4nitfd/2 f eilx-YI2/41(y) dy. (9) 

For the wave equation one has 
0;; A A sin(ctl W 
.?'(Sw(t)(j, g)) =jcos(ctIW + g--cm--' (10) 

Define Kw(t) by 

g;(K (t» == (2nfd/2 sin(ctlW 
w cl~1 ' 

(11 ) 

then Kw(t) E Y' and 
(12) 

The computation of Kw for d = 1, 2, 3 is postponed to §4.5-§4.8. For d 2 3, 
Kw is not locally integrable. As d increases, Kw is a distribution of increasing 
order. 

Formulas (3), (6), and (12) extend to generalized solutions with data j, 
9 E t&"'([Rd). To prove this, choose approximate data In, gn with support in a 
fixed compact set and converging to j, 9 in HS([Rd) for s « 0. Then consider 
the formulas with j, 9 replaced by In, gn' For fixed t, the left-hand sides 
converge in HS for s very negative (and therefore in Y'([Rd» to the generalized 
solution at time t. Since Y'([Rd) * t&"'([Rd) C Y'([Rd), the right-hand sides con­
verge in Y'([Rd). Equating the Y' limits yields the desired identity. 

Taking j = <5 in (3) and (6), or j = 0, 9 = <5, in (12), identifies KH , Ks, and 
Kw as the generalized solutions of 

(at - VL\)KH = 0, 

(at - iL\)Ks = 0, 

(0,2 - c2L\)Kw = 0, 

KH(O) = <5, 

Ks(O) = <5, 

Kw(O) = 0, 

(13) 

(14) 

(15) 
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In particular, 
(16) 

for any e > 0, which serves to justify the differentiation in (12). 
The distributions K are sometimes called fundamental solutions, propaga­

tors, or Green's functions. The representations, (3), (6), (12), sometimes reveal 
information which is not obvious from the formulas involving the Fourier 
transform. 

Each of the three equations has a natural scaling property. For example, 
u(t, x) satisfies the heat equation if and only if uA(t, x) == u(,1. 2t, AX) is a solution 
forA > 0. The same scaling works for the Shrodinger equation. For the wave 
equation UA == u(,1.t, A.x) is the corresponding transformation. A solution is 
called self-similar if for every ,1. > 0, UA is a multiple of u. Each of the three 
fundamental solutions is self-similar. For example KH(A. 2t, A.x) is a solution of 
the heat equation which belongs to C([O, 00[: H-d/2 - e(lRd)) and whose initial 
value is c5(h) = A.-dc5. Thus by uniqueness of solutions KH(,1.2t, h) = ,1.-dKH. 
Another expression of self similarity is the scaling laws 

KH(t, x) = C d/2KH( 1, It). (17) 

Ks(t, x) = C d/2 Ks (1, It). (18) 

-d/2 (x) Kw(t, x) = t Kw 1, t . (19) 

The precise versions of the right-hand side use the dilation operator from §2.2 
but are harder to read, for example, KH(t) = Cd/2ur-lIzKH(I). These formulas 
show that the values of the functions K at t = 1 are sufficient to determine K 
everywhere. 

PROBLEMS 

The next problems introduce you to the propagator for the Airy equation 

u, + Uxxx = O. 

The root of p(-r, ~) = 0 is r = ~3, so the Hadamard-Petrowsky condition is satisfied 
for forward and backward evolution. The evolution operator is given by the Fourier 
multiplier 

SA(t) = !F*ei~3'!F. 

1. Use the energy method and the Fourier transform to give two proofs of each of the 
following two conservation laws for solutions u E COO(IR : .9') to Airy's equation 

f u(t, x) dx is independent of t, 

f lu(t, x)1 2 dx is independent of t. 

DISCUSSION. More generally, SA(t) is unitary on W for all s, t. 

The fundamental solution, KA(t) = SA(t)t5 has Fourier transform equal to 
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(2n(I/2 expUet). For t = 1, KA is a multiple of the special function called the Airy 

function, Ai(x). 

2. (i) Find a complex number c such that 

( d)2 . . a;; Al + cx Al = ° 
in the sense of .'I" (IR). 

(ii) Prove that KA(t) = t~I;\1,'!3KA(1). 
(iii) Find the scaling law u f-> U,\ so that the identity in (ii) expresses the fact that KA 

is self-similar. 
DISCUSSION. The ordinary differential equation for Ai suggests that Ai is a smooth 
function. This is true and all the derivatives of Ai are bounded on IR. The general 
principle in Problem 3.4.2 suggests that for t "# 0, SA is unbounded on U for p "# 2. 
This is correct and as for the Schr6dinger equation gives a Fourier multiplier which 
is unbounded on U and is not obviously so. 

Self-similar solutions provide many important examples for nonlinear equations, 
for example, the rarefaction waves at the end of §1.9. 

3. (i) Find a power (X such that if u satisfies the inviscid Burgers equation 
u, + (u 2 )x = 0, then u,\ = A"u(At, AX) is also a solution. 

(ii) Find the analogous scaling law U; = Abu(A2t, i,x) for the viscous Burgers equa­
tion u, + (u 2 )x = uxx ' 

DISCUSSION. For linear problems such multiplicative prefactors are inessential. In 
the nonlinear case they are essential. 

§4.3. Applications of the Heat Propagator 
Our first applications rest on the fact that for t > ° 

for all t > 0, X E IRd, 

and 

f KH(t, x) dx = 2n d12 ,,#, KH(t, 0) = 1. (1) 

Young's inequality for convolutions implies that for IE 9"(lRd) and P E [1, 00] 

(2) 

which is an inequality derived by the energy method in §3.6 and applied in 
Problem 3.6.1 to generalized solutions with data in U. 

In the same vein, the solution formula (4.2.5) extends to general fEU as 
follows. 

Theorem 1. If P E [1, 00] and f E U(lRd), then the solution u = SH(t)f belongs 
to CX'(]O, oo[ X IRd). The derivatives are given by the absolutely convergent 
integrals 

t > 0. (3) 
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PROOF. If 1 ::;; p < CfJ, choose In E Y(JRd) with fn -> f in U. Then Un == SHfn 
converges to u in C([O, 00[: U(JRd». In particular, Un converges to U in 
0)'(]O, oo[ x JRd). For p = CfJ, the convergence of fn is taken in the weak-star 
topology. Then Un converges to U uniformly on compact sets in ]0, CfJ [ X JRd 
and therefore in .0)' (]O, CfJ [ x JRd). 

The solutions Un are smooth with 

D:'xun(t, x) = f (D:'xKH)(t, x - y)fn(Y) dy. 

For any G > 0, the functions D:'xKH(t, .) are uniformly bounded in U(JRd) for 
t ~ G where llq + lip = 1. 

Holder's inequality shows that the right-hand side converges uniformly to 
the right-hand side of(3), which is therefore bounded and continuous on t ~ G. 

The left-hand side converges in .0)'(t > 0) to D:'xu, which proves the desired 
result. D 

In §3.6, the operator SH(t) was extended so that SH(t)f is well defined iff E W 
for some s E JR, or if fEU for some p E [1, 00]. For fEY', we say that f ~ ° 
if for all q; E Y with q; ~ 0, <f, q;) ~ 0. For fEU, this is equivalent to f ~ ° 
a.e. For fEY' it implies that f is a nonnegative Radon measure. 

Theorem 2. Suppose that f E HS(JRd) for some s or that f E U(JRd) for some 
p E [1, CfJ]. If f ~ 0, then for all t ~ 0, SH(t)f ~ 0. 

PROOF. Let je ~ ° and Xe be the usual nonnegative mollifiers and plateau 
functions. Then 

j~ ==je*(XJ) ~ 0, 

and for q; E Y, q; ~ 0, 

<SH(t)f, q;) = lim <SH(t).!e, q;). 
e~O 

This follows since SH(t).!e -> SH(t)f in HS or in U. 
Now SH(t)Ie = KH(t) * Ie ~ ° since KH E Y and j~ E C[;' are nonnegative, so 

the convolution is equal to an integral with nonnegative integrand. 
It follows that the limit in nonnegative. D 

Corollary 3 (Comparison Theorem). 1f X = W(JRd ), S E JR or X = U(JRd ), 

p E [1, CfJ], and f, 9 E X with f ~ g, then SH(t)f ~ SH(t)g. 

PROOF. SH(t)(f - g) ~ ° by Theorem 2. D 

For f E L r>C we may take 9 to be the constant function ess inf(f) for which 
SH(t)g is independent of t, x. Similarly, ess sup(f) is an upper bound for u. 
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Corollary 4. Iff E L OO(lRd : IR) and u = SH(t)f, then for all t ~ 0 

ess inf(u(O» s u(t) s ess sup(u(O)). (4) 

Thus the temperature is always between its initial extremes, consistent with 
the intuition that heat flows from hot to cold. 

An alternate derivation of the corollary goes as follows. Let 'P(s) == 
[max(s - M, 0)]4. Then 'P is C2 and convex, so by the energy method 
(Theorem 3.6.4), J'P(u(t, x» dx is a nonincreasing function of t. Iff E fI' and 
f s M, this proves that u s M for all t ~ O. Approximating a bounded f by 
elements fn E fI' with fn s ess sup f yields an independent proof. 

Next we examine the large time behavior of u = SH(t)f when f ELI. Recall 
that the L 1 norm of nonnegative solutions is the physical energy. We have 

lu(t, x)1 = If KH(t, x - y)f(y) dy I 
s II KH(t) II vn IlfllL' 
= (4nvtr d/2 1IfllL" 

Thus finite energy solutions decay uniformly as t- d/2 , the same rate of decay 
as Gaussian solutions. More generally, we have a sharp rate of decay for the 
LP norm for any 1 s P s 00. 

Theorem 5. If fE LI(lRd), P E [1, 00], l/q + lip = 1, and u(t) = SH(t)f, then 

(5) 

PROOF. For p = 1, (5) expresses the decrease of the U norm proved in (2) and 
by the energy method in §3.6. The estimate for p = 00 was proved immediately 
before the statement of the theorem. The Riesz-Thorin Theorem completes 
the proof. 0 

The behavior as t ~ 00 can be described even more precisely if f decays 
sufficiently rapidly as Ixl ~ 00. For this, the argument is simpler using the 
Fourier transform, where u(t, ~) = e-vll~ly(O decays exponentially fast as 
t ~ 00, except at the origin, ~ = O. This suggests replacing / by a Taylor 
expansion at ~ = 0 

The case N = 0 is the most interesting, 

u = /(O)e- vI1W + e-vtl~12(/(~) - /(0). 

Taking the inverse Fourier transform yields 

u = (2n)d/2/(0)KH (t) + ff-l(e-vtl~12(/ - /(0))). (6) 
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To estimate the last term note that 
A A A dl2 

If(~) - f(O) 1 ::; 1~IIIVdIIL~(~~ ::; (2nr 1~llIxfllL'(~~)' 

the last estimate following from vd = ff(ixf). The L'Xl(IR~) norm of the 
second term in (6) is therefore dominated by 

Ile-vtl~12(j _ j(O))IIL'(~~::; (2n)-dI21IxfllL'(~~)II~e-vtl~1211L'(~~' 

Compute the L 1 norm on the right using polar coordinates 

f,~,e-vt'~'2 d~ = Wd teo re-vtr2rd-1 dr. 

The change of variable p = (vt)1/2r yields 

= wAvt)-(d+1)/2 t.o pde- p2 dp = c(vt)-(d+1)/2. (7) 

This proves the following theorem. 

Theorem 6. If <x>f E L1(1R~) and u = SH(t)f, then there is a c = c(d) such that 
for t > 0 

II u(t) - (ff(X) dx )KH(t) tOO(~~) ::; c(vt)-(d+1)/21IxfllL'(~~)' 
Note that the error on the right decays faster, by a factor t- 1/2, than the 
solution itself. We known that the energy, J u(t, x) dx, is independent of time. 
The above theorem shows that for t large u is close to the Gaussian with the 
same energy. For large time, solutions with the same initial energy are essen­
tially indistinguishable. Thus for t large, there is only one observable, the 
energy. 

This is a rather striking degradation of information. For example, one could 
code the Encyclopaedia Britannica as a sequence ofO's and 1 's and encode that 
as a step function 

... =f 
'------

o o o 
Then asymptotically, all one could measure is the number of bits of informa­
tion rather than the information itself. This is a strongly irreversible process. 
Time's arrow is clearly visible. 

Our next observations concern the smoothing property of the solution 
operator SH' Theorem 1 shows that in the Ck categories the solutions are 
immediately smoothed. Looking in Fourier we sill show that the same is true 
for W regularity. Write 
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If f E H I1 ([f;£d) for some (J E [f;£ and s is any real number, perhaps much larger 
than (J, then 

<OSu(t) = «Os<O-l1e-vtl~12)«0l1j). 

The last factor belongs to L 2 ([f;£V and the first factor is uniformly bounded 
on [1J, oo[ x [f;£~ for any 1J > o. Thus u(t) E Wand 

ffu(t)IIH' :-:::; c(s - (J, t)fffffHa, 
c(r, t) = max <Ore-vtl~12. 

~E ~d 

This is used together with the estimate 

ffa/a:u(t)ffLoo = ffa:(vA)iu(t)fb :-:::; cffu(t)ffH2i+.+di2+" 

to prove the following theorem. 

Theorem 7. If f E H I1 ([f;£d) for some (J and u = SHf, then for any s, u E 

COO(]O, 00[: W([f;£d)) and for any j, IX, and 1J > 0, there is a c > 0 so that for all 
t ?:. 1J 

This regularizing illustrates again the degradation of information and non­
reversability in heat propagation. 

Actually, much more is true than that u E ex,. Using the propagator KH we 
show that u is real analytic. 

Theorem 8. If f E U([f;£d) for some 1 $; p $; 00 and u = SH(t)f, then u(t, x) E 
CW(]O, 00 [ X [f;£d). In fact, u is the restriction to ]0, 00 [ x [f;£~ of the holomorphic 
function u(r, 0 on {Re(r) > O} x en from (8) below. 

PROOF. Let 

U(T,O == 1 fe-D(j-YY/4Vtf(y) dy. 
(4nvr) 1/2 

(8) 

Since Re(r) > 0, the integrand decays exponentially as fyf -> 00, uniformly for 
r, ( in compact subsets of {Re(T) > O} x en. The square root in the prefactor 
is the branch, in Re(r) > 0, which is real for r positive and real. 

That (8) defines a holomorphic function is verified by differentiation under 
the integral sign (justify!). This shows that u satisfies the Cauchy-Riemann 
equations in T, ( since the integrand does. 

Theorem 1 shows that (8) is an extension of u(t, x). D 

The same conclusion is valid if f E HS([f;£d) for s < 0, even if f is not locally 
integrable so the formula using integration is not valid. 

Instead, observe that the function exp( - D(j - yY/4vr) E ,9"([f;£d), so if 
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< , > denotes the pairing of /7 and g' we can define u(r, 0 by 

u(r, 0 == _~1 _If, exp(_L(C - l'lr)). (9) 
(4nvr)1/2 \ 4vr 

In Problem 4, you are asked to prove that this is holomorphic. This suffices 
to extend Theorem 8 to HS data. These arguments also show that SH extends 
naturally to g' and that the conclusion is valid for any data from /1". 

Corollary 9. If u = SH(t)f and there is at> 0 and an open set w c IR~ so that 
u(t, x) = 0 for x E w, then u == o. 

PROOF. u is smooth in {t > o} X IRd and a! a;u = a;( vft.yu vanishes on {t} X w. 
The unique continuation property for holomorphic functions implies that 
u(r, 0 is identically zero on {Re(r) > o} x Cd. D 

In general, u will not be real analytic at t = O. In order that u be real analytic 
at (0, ~), a necessary condition is that fbe real analytic at~. Tn §1.3 we observed 
that this condition is not sufficient, since the time derivatives of u of order k 
grow like the space derivatives of order 2k. The result is that the regularity 
in t, for real analytic f, is described by the Gevrey class G2 defined in [H2, 
p.281]. 

As a final application, consider the decay of the derivatives of SH(t)f as 
t ~ 00. The formula u(t) = exp( -vtl~12)f shows that the high frequencies 
decay faster than the low frequencies. This suggests that derivatives of u may 
decay faster than u itself. 

The rate of decay of the L 2 norm of derivatives of order k is estimated as 
follows: 

IID~u(t)II£1 = 11~·e-vtl~12fll£1 ::; (s~p 1~lke-vtl~12) Ilfll£1. 

The change of variable, IJ == (vt)1/2~, shows that 

sup 1~lke-vtl~12 = sup 1~lke_~2 = . C~2. 
~E a;jd ~E a;jd (vt) / (vt) / 

Thus, if lal = k 
IID~ull£2 ::; Ck(vtrk/21Ifll£1. 

Note that the higher the order of the derivative is, the faster the decay is. 
For estimates based on the energy, Ilfllu, and for sharp rates of decay in 

U for p other than 2 (e.g., Lao) use the fundamental solution KH . For fEe 
and t > 0, the derivatives of u = SH(t)f are given by 

D~u = (D~KH(t)) * f. 
For t > 0, D~KH(t) E g, and 

IID~u(t)IILP ::; IID~KIILP Ilfllu· 
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Lemma 10. IID~KH(t)IILP(G;!d) = c(a, p)/t(laI+d/q)/2 where l/p + l/q = 1. 

The lemma implies the basic estimate for the decay of derivatives. 

Theorem 11. For a ENd and p E [1, ooJ, there is a constant c such that jor all 
t>OandjEU(lRd) 

PROOF OF LEMMA 10. Differentiating K = (4nvt)-d/2e- 1X I2/4vt yields ojK =:= 
(x)2vt)K. Continuing, we see that a; K is a linear combination of terms of the 
form (xP/t')K. 

More precisely, notice that when one differentiates (x Y /tk)K, if the derivative 
falls on K, then Iyl increases by 1 and Ikl also increases by 1. If the derivative 
falls on xY, then Iyl decreases by 1 and k remains the same. In both cases, 
2k - Iyl increases by 1. Thus a;K is a linear combination of terms (xP/t')K 
with 21 - IPI = lal. 

Write such terms in the form 

(jrY (~rle-(X/(4vt)112)2. 
The change of variables y = x/(4vt)1/2 in the integral for II(xP/t')Kllfp yields 
the desired result. 0 

PROBLEMS 

1. Prove that iff E L 00 (jRd) is uniformly continuous on jRd, then u = SH(t)f is uniformly 
continuous on [0, w[ x IR~. 
DISCUSSION. This is a good addition to the information in Problem 3.6.2. 

2. For fE U(lRd) and p > r, find the rate of decay as t tends to infinity of 
IISH(t)fIILP(Hld)/llfllu(Hld). Hints. Start with the inequality IISH(t)fIILP(Hld) S Ilflb. 
Then derive IISH(t)fIlLw(Hld):S IIKH(t)IILQllfIlLP' Finally, compute IIKH(t)llu and use 
interpolation. 

3. If <x)2fE LI, use the degree one Taylor polynomial of :iFf at 0 to compute the 
asymptotic behavior of SH(t)f as t tends to infinity up to errors 

O«vt)(-d-2)/211<x)2 fllu). 

Find a statement analogous to that of Theorem 6 in the sense that the principal 
terms and error estimate are given by simple expressions involving f(x). 

4. Show that for any f E 9"(jRd), the function u(r, ') defined on {Re(r) > O} x Cd by 

u(r,O == (4nvrfl/2<f, e-DVYj)2/4v,) 

is holomorphic. 

5. In analogy with Problem 2, estimate the rate of decay as t -> W of Ila;SH(t)fIILP for 
fEU and p > r "? 1. 

6. Prove that if f E U(lRd) with p > 1, then lim t _ oo IISH(t)fIILP -> O. 
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§4.4. Applications of the Schrodinger Propagator 

The solution formula for the Schrodinger equation is 

u(t, x) = (4nit)-d/2 f e-lx-YI2/4i1(y) dy. (1 ) 

Note that conservation of the L 2 norm is anything but obvious from this 
expression. Even boundedness in L 2 is not clear. 

Our first estimate relies on the fact that IIKs(t)IILw = 14ntl-d/2, the same as 
the L 00 norm of the heat propagator. 

Theorem 1. If f ELl ([Rd) and u(t) = Ss(t)f, then for all t E [R 

Ilu(t)IILw S 14ntl-d/21Iu(O)llu· (2) 

Though this is the same rate of pointwise decay as the heat equation, other 
LP norms behave differently. For example, the L 2 norm is conserved for the 
Schrodinger equation and decays for the heat equation as in Theorem 4.3.5 
and Problem 4.3.6. 

Corollary 2. If f E U([Rd), I ::;; q ::;; 2, lip + llq = 1, and u = Ssf, then 

Ilu(t)llp::;; 14ntl-d(1/2-1/P)/21Iu(O)IILq· 

PROOF. Interpolate between the cases q = I and 2. 

(3) 

o 

Corollary 3. If f E L 2([Rd), u(t) = Ss(t)f, and Q c [Rd has finite Lebesgue mea­
sure, then 

lim Prob(x E Q) --+ O. 

PROOF. Given f. > 0 choose cp E g, Ilcp - fll£2 < f.. Then 

(L ISsfl 2 dx r2 
::;; (L ISsfl2 dx y/2 + (L ISs(cp - f)1 2 dxr2 

::;; O(ltl-d/2) + 6. D 

A better idea of the behavior as t --+ 00 comes from expanding the exponent 
III 

For f of compact support, e-W /4it is close to 1 on supp(f) and 

f e- ixy/21(y) dy = (2n)d/2J(xI2t). 
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This suggests that 
-lxI2(4it e A 

Y'(t)f == Tiit)di'lf(x/2t) (4) 

is an approximation to u = Ss(t)f 

Theorem 4. For fE L 2([Rd) and u(t) = Ss(t)f we have 

II 
e-lxI2(4it A(x)11 

lim u(t) - ----;[f2 f - I = O. 
It I ~co (2it) 2t I U(H~~) 

(5) 

Note that e- lxI2(4it is of modulus 1, so the relative probability of being at t, x 
is approximately proportional to 1(x/2t), which is consistent with the inter­
pretation of 1112 as a momentum density if we recognize that m = t for our 
equation. 

The asymptotics (5) give a physical intuition into the decay rates for the U 
norms. If the momentum density decays rapidly at infinity, then the solution 
u is concentrated over a regions which dilates linearly with time, so has volume 
growing like Itld• The amplitude decays like IWd(2, which is to be expected 
given conservation of the L2 norm and is verified in formulas (2) and (5). 
Amplitude C d(2 over a region of size t d yields the rates of decay (3). Exactly 
such spread is present in the explicit Gaussian solutions computed in §3.3. 

PROOF OF THEOREM 4. Since e- lxI2(4it is of modulus 1, the change of variable 
( == x/2t shows that 1IY'(t)llu~u = 1 for all t =I 0. 

For f E L 2([Rd) and any £ > 0, choose g E CO'([Rd) with IIg - fIIu < £. Then 

Y'(t)g = S(t)(e+lyI2(4itg(y» 

= S(t)g + S(t)«e+IYI'/4it - l)g). 

Now II(e-lyI2/4if - 1)g1lL2 = O(l/ltl}. Thus 

IIS(t)f - Y'(t)fllL2 ~ IIS(t)g - Y'(t)gllu + IIS(t)(f - g)llu + 1IY'(t)(f - g)llu 

= oC~I) + 2£. 

Thus 

lim sup II(S(t) - Y'(t»fII ~ 2£, 
Itl~oo 

and the proof is complete. D 

Corollary 5 (Dollard). If f E L 2, r c [Rd is a measurable cone, and u(t) = Ss(t)f, 
then 

lim r lu(t, xW dx = r 11(~)12 d~. 
t-oo Jr Jr 
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PROOF. For any t > 0 

Then since 

L lu(t, x) - g(t)fI2 dx -> 0 

as t -> 00, the proof is complete. o 

This corollary shows that for large positive time the probability that a 
particle lies in r converges to the probability that its momentum lies in r. 
Similarly, the probability that a particle lies in - r for large negative time 
converges to the probability that the momentum lies in r. The fact that these 
two probabilities are equal shows that there is no change in direction of 
motion in the scattering of particles by the Schrodinger equation. 

Dispersive phenomena like those for Schrodinger's equation can also be 
studied directly from the Fourier representation. From that point of view, one 
is lead to oscillatory integrals which are estimated using integration by parts 
in what is called the method of (non)stationary phase. Consider the solution 
with data f E COO ([Rd) 

u(t, x) = (2n)-d/2 f eix~e-ill~ll(O d~ = (2n)-d/2 f eiojJj(~) d~, 
with phase If; == x~ - tl~12. Where V~1f; of. 0, the integral is oscillating and one 
expects cancellation, so a special role is played by the points where V~1f; 
vanishes. These are the points of stationary phase and are given by x = 2~t. 
Thus the values of j near ~ are expected to play an important role where 
xlt = 2~, that is, the points observed by an observer moving with velocity 2~. 
Note that this is the group velocity at frequency ~ encountered in Example 2 
of §3.4. Theorem 4 is a precise result capturing part of this idea. Using the 
method of nonstationary phase, we will show that if j vanishes on a neighbor­
hood of Z, then an observer moving with speed 2Z will make observations 
decaying faster than any power of lit as t -> 00. 

Theorem 6. Suppose that f E g([Rd) and A c [Rd sati~ries c5 == dist(A, 2 supp j) 
> O. Then for any n EN, u(t, x) = O((t + Ixlrn) as t -> 00 in the set {(t, x): 
x/t E A}. 

PROOF. For such x, t and ~ E suppj, IVdl = 12~ - x/tit;::: tc5. Let L be the 
differential operator 
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which satisfies the crucial identity Lei>/! = ei>/!. Then integration by parts yields 

u = (2nfdi2 f L"(ei>/!).f d~ = (2nfdl2 f ei>/!(L')".f d~, 

where L' is the transpose of L (V might lead to confusion with the time variable 
t). The proof is completed by showing that for x/t E A and ~ E supp.f 

(L')" = L a,(t, x, oat and 

as t -> 00 in {(t, x): x/t E A} (Problem 1). 

PROBLEMS 

(6) 

o 

1. Complete the proof of Theorem 6. Hint. Show that the coefficients of (L')" are 
homogeneous of degree - n in x, t. 

2. Prove Corollary 5 without using the explicit formula (1) but starting from Theorem 
6 instead. 

3. Prove that iff E W([Rd) has compact support, then u = Ss(t)fbelongs to C"( {l "# O}). 
DISCUSSION. This is an example of dispersive smoothing. The fact that different 
frequencies correspond to distinct velocities "tears apart" singularities of compactly 
supported data. 

Consider the solution of Airy's equation u, + uxxx = ° (see the problems in §4.2) 

u(t, x) = (2n)I/2 f eh~+;'~J(O d~ = (2nfl!2 f e;<p!(~) d~ (7) 

with phase qJ = x~ + t~3. The points of stationary phase satisfy x/t = - 3e :s; 0. This 
suggests that the frequency ~ is associated with the group velocity equal to - 3~2 Since 
all these velocities are non positive there is a phenomenon of one-way propagation. 
Prove the following precise version. 

4. Theorem. Suppose that f E Y'([Rd) and u is the solution (7) of Airy's equation with 

u(O, .) = f(·). Then for any c > ° and n > 0, u(t, x) = O«t + Ixlrn) as t ->XJ in the 
region {(t, x): x/t ;::- I;}. 

DISCUSSION. The Schrodinger equation has exponential solutions ei(x~-w(~)t) with 
w(~) = 1~12. The Airy equation has w(~) = _~3. The initial value problem is solved 
by 

qJ == x~ - w(~)t. 

Points of stationary phase satisfy xlt = V~(J). Such real-valued OJ are called dispersion 
relations. The velocity V~(J) giving the points of stationary phase is called the group 
velocity at frequency~. There are formulas analogous to (5) asserting that for t large 
u(t, x) is approximately equal to mit, ~).!(~), where the group velocity at ~ is equal 
to xlt and the factor m is determined by the method of stationary phase (see 
[Whitham]). 
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§4.S. The Wave Equation Propagator for d = 1 

Recall that the solution of 

Du=O, u(O, .) = f, (1) 

is given by 
(2) 

where 

for all s < - d/2. 

When d = 1, the fact that (sin x)/x = sin Ixl/lxl yields 

eicI~ _ e-icI~ 

c~.?(Kw(t)) = (2n)-1/2 sin ct~ = (2n)-1/2 2i . 

Thus 

OxKw(t) = (Lct2~ OCI. 

Happily, there is a simple distribution whose derivative is equal to the right­
hand side. Note that oxh(x - a) = oa, take a = ± ct and subtract to find 
OXX[-CI.CI] = O-CI - OCI' For t fixed, this shows that K - X/2c has distribution 
derivative equal to zero, so must be independent of x, 

1 
Kw(t) - 2C X[-C',C'] = constant(t). 

However, Plancherel's Theorem shows that the left-hand side is in L2(lRx) so 
the constant must vanish and we have 

1 
Kw(t) = 2c X[-CI,CI] when d = 1. (3) 

Then, for CfJ E Y(lRx), 

d< () )_ d 1 f+ c1 d _CfJ(ct) + CfJ(-ct)_ <ocI+omCfJ) 
dt Kw t, CfJ - dt 2c -cl CfJ X - 2 - 2 ' 

Thus formula (2) becomes 

_ f(x - ct) + f(x + ct) 1 f X +c, 
u(t, x) - 2 + 2 g dx, 

C x-cl 

(4) 

which is D'Alembert's formula. An independent proof was given in §1.8 where 
a variety of consequences were analyzed. The reader is invited to give the 
generalizations made possible by using the language of Distribution Theory. 
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In particular, the results on domains of determinacy and domains of de­
pendence are true when the data j, g belong to HS(lRd ) x Hs- 1 (lRd) for some s. 

PROBLEM 

L Find the propagator K for the equation O,U + cOxu = 0, C E IR, by Fourier transform 
techniques. 

The next problems use D' Alembert's formula to study the reflection of waves at a 
boundary. Examples modeled by differential equations in x > 0, supplemented by 
boundary conditions at x = 0, are a semi-infinite string fixed at one end (the boundary 
condition is u(t, 0) = 0) or free at one end (uAt,O) = 0), and acoustic waves in a 
semi-infinite narrow pipe closed at one end (ujt, 0) = 0, where u is the pressure). 

Suppose that in the half-space x > 0, waves satisfy 

for t E IR and x > O. (5) 

Suppose that for t < 0, u represents a wave approaching the boundary, that is, 

for t < 0, u = cp(x + ct) with cP E Co(]O, oo[). (6) 

2. (i) Find a function u(t, X)E C"'(IR, x [0, wD satisfying (5), (6) and the boundary 
condition u(t, 0) = 0 for t E IR. Hint. Look for u as in formula (1.8.3). 

(ii) Solve the same problem with boundary condition ux(t, 0) = O. 
(iii) Sketch solutions with incoming wave consisting of a single bump. 
DISCUSSION. The solution u is uniquely determined by these conditions. This is 
proved, as in Problem 3.7.1, with integration by parts over r n {x ~ OJ. Because of 
the boundary conditions, the {x = O} boundary terms from integration by parts 
vanish. See also Problem 5.7.5. 

The term tjJ(x - ct) is called the reflected wave. For reasons which should be clear 
from the answers, the reflection coefficient is equal to one for the boundary condition 
Ux = 0 and equal to minus one for the condition u = O. 

§4.6. Rotation-Invariant Smooth Solutions 
ofD 1+ 3 u=O 

The strategy for computing Kw(t) when d = 3 is to approximate by the 
solutions to 

OUt = 0, U,(O, .) = 0, (1) 

wherej, is a rotation-invariant smooth approximant to b. Such a u, is smooth 
and rotation-invariant. Sincej, ~ bin H- d/2 -'(lRd ) for any £ > 0, it follows that 
u, ~ Kw in C(IR: H 1 - d/2 -,). 

When d = 3, explicit formulas for spherically symmetric solutions allow a 
painless passage to the limit £ ~ 0. 

Definition. If U E CCO(lRd) and A E GL(lRd ), then UA E CCXJ(lRd) is defined by 
uA(x) == u(A -1 x). The function U is called A invariant if and only if UA = U. 
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The definition of UA asserts that the value of UA at Ax is equal to the value 
of U at x. 

Definition. A mapping P: Cg' ([Rd) -+ Coo ([Rd) is called A invariant if and only 
if for all U E Cg', P(uA) = (Pu)A-

EXAMPLE. Problem 2.2.3 asked you to show that :l': .9"([Rd) -+ Y'([Rd) is A 
invariant if and only if A is orthogonal. 

Proposition 1. If P = P(D) is a constant coefficient partial differential operator, 
the following are equivalent: 

(i) P(D) is A invariant. 
(ii) P(O is At invariant. 

(iii) P«() = L)j«(), 1) homogeneous of degreej, and each 1)(0 is At invariant. 

PROOF. The equivalence (ii) =- (iii) is immediate. 
To prove (i) =- (ii), take U = eix~ and compute 

P(uA) = P(D)ei(x.WI)tO = P«A-ln)ei<X.WI)'O, 

(PU)A = (P(~)ei<X.O)A = P(Oei(X.(AI),o. 

That (i) => (ii) follows immediately. 
On the other hand, if (ii) holds, then P(uA) = (PU)A holds for U = eix~. 

For U E Y'([Rd) the identity then follows by superposition upon writing U = 
S eiX~u«() d~/(2n)d/2. 0 

EXAMPLES. 1. A E GL([Rd) is orthogonal if and only if A is A invariant. 

2. LE GL([Rl +d) is a Lorentz transformation (e.g. preserves the bilinear form 
c2 t - Ix12) if and only if 0 is L invariant. 

3. No nonzero first-order scalar operator, L a/7j , is orthogonal invariant. 

Next we extend the map .Cf :3 U ~ UA E .9". To show that A extends uniquely 
to 51" we use Proposition 2.4.4. For TE 51", <NT, q» == < T, Aq» for all q> E .~. 

Thus, if TE 51', 

<NT, q» = f T(x)q>(A-IX) dx. 

Make the change of variable, y = A-lX, dx = Idet(A)1 dy, to find 

<NT, q» = f T(Ay)ldet(A)Iq>(y) dy, 

whence NT = Idet(A)1 TAl belongs to .~. Thus A extends, and for any V E 51", 
q> E Y, 

<AV, q» = <V, Nq» = <V, Idet(A)Iq>A-I). 
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EXAMPLES. 1. bA = Idet(A)lb, so b is A invariant if and only if Idet(A)1 = 1. 
For proof, compute 

<bA, ((J) == <b, Idet(A)I({JA-I) = Idet(A)I({JA-I(O) = Idet(A)I({J(O). 

2. If A is orthogonal on IR~ and if u satisfies (4.5.1), then UA satisfies 

u(O) =fA' 

In particular, if fA = f and gA = g, then UA = u. Thus if J, g e U H S are 
rotation-invariant, then the solution to (4.5.1) is rotation-invariant. Thus 

(KW(t))A = Kw(t) for all orthogonal A. 

Similarly, the approximations u' defined in (1) are rotation-invariant when­
ever j. is. Thus u' is a smooth rotation-invariant solution to Du = O. 

If w(x) is a smooth rotation-invariant function, then w(x) depends only 
on r = Ixl ~ O. Thus w(x) = W(lxl) = W(r), We C<Xl(]O, roD. Since W(r) = 
w(r, 0, 0, ... , 0), it follows that Wextends uniquely to a smooth even function 
of r e IR. Thus, the map w(r, 0, ... , 0) = W(r) establishes a one-to-one corre­
spondence between the smooth rotation-invariant functions on 1R4 and the 
smooth even functions on IR. This identification is usually taken for granted 
and we write w = w(r) and abuse notation by writing Or W or wr. 

For r > 0 and w rotationally symmetric 

1 4-1 d - 1 
Aw = 4-1 0r(r Or W) = Wrr + --Wr· r r 

(2) 

When d = 3, multiplication by r yields 

rAw = rWrr + 2wr = (rw)rr when d = 3. 

Thus, if u is a smooth rotation-invariant solution of D1+3u = 0, then 
v == ru(t, r) satisfies VII - c2vrr = ° for r ~ O. Since the left-hand side is a 
smooth odd function of r the equation holds on all of IRt x IRr . Thus v is a 
smooth odd solution of the one-dimensional wave equation. 

Conversely, if v is a smooth odd solution of 0 1 +1 V = 0, then 

( ) = {V(t, Ixl)/Ixl 
u t, x - (0) 

Vr t, 

if x 0# 0, 

if x = 0, 
(3) 

is a smooth spherically symmetric solution of D1+3u = 0. That u solves the 
wave equation in x 0# 0 is a simple calculation. On the other hand, u is smooth 
on 1R 1+3 so Du is a smooth function vanishing on x 0# 0 and therefore 
identically zero. This proves the following proposition. 

Proposition 2. The correspondence v(t, r) = ru(t, r) defines a one-to-one corre­
spondence between smooth rotationally symmetric solutions u to 0 1 + 3 U = 0 and 
smooth odd solutions to 01+1 V = O. 
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The most general such v is easily described. First, it must be a solution of 
01+1 v = ° whence 

v = cp(ct + x) + I/I(ct - x), cp, 1/1 E C<Xl(IR). 

Since v is odd, v must be equal to the odd part of the right-hand side 

2v = [cp(ct + x) - cp(ct - x)] + [I/I(ct - x) -I/I(ct + x)]. 

Let F == (cp -1/1)/2, then 

v = F(ct + x) - F(ct - x). (4) 

Conversely, for every F E COO(IR), (4) defines a smooth odd solution. Note that 
adding a constant to F does not change the value of the right-hand side. The 
function v is determined by F in the equivalence class of Fin C'J(IR)/IR. 

Proposition 3. The map F H v given by (4) defines a one-to-one correspondence 
between COO(IR)/IR and the smooth odd solutions of 01+1 v = 0. 

PROOF. It remains to show that the map is injective. Equivalently, it suffices 
to show that if v defined by (4) vanishes, then F must be constant. If v vanishes, 
differentiate (4) with respect to x and set x = ° to find that F' = 0, whence F 
is constant. 0 

Combining the last two results yields the main result of this section. 

Theorem 4. The map F H u 

{
F(ct + Ixl) - F(ct=:I.x] 

u(t, x) == Ixl ' 

2F'(ct), 

x i= 0, 
(5) 

x =0, 

defines a one-to-one correspondence between COO(IR)/IR and the rotation­
invariant smooth solutions to 0 1 + 3 U = 0. 

The rotationally symmetric solutions of the theorem are key examples in 
forming an intuition into the behavior of multi-dimensional wave equations. 

As a first example, consider the behavior of smooth radial solutions 
with Cauchy data supported in the ball Ixl < p. Let f(r) == ru(O, r) and 
g(r) == rut(O, r), both smooth odd functions of r. The Cauchy data for u defined 
by (5) yield the equations 

F(r) - F( - r) = f(r) and F'(r) - F'( -r) = g(r). 
c 

Differentiating the first with respect to r and adding yields F' = l' + g/c. As 
F is only determined up to a constant, we may take 

Ir g(s) 
F(r) = 1'(s) + - ds. 

-00 c 
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Since g is odd and f has compact support the integral vanishes for r > p. Thus 
F is supported in [ - p, p]. 

Consider formula (5) with r :;::: O. For t large, et + r > p, so F(et + r) = O. 
Then u(t, r) = - F(et - r)lr is an outgoing spherical wave with profile - Fir. 
In particular, it decays like C 1 . 

In the distant past, et - r < - p so F(et - r) = O. Then u(t, r) = F(et + r)lr 
is an incoming spherical wave with cross section like Fir. The big picture is an 
incoming spherical wave which emerges as an outgoing spherical wave with 
profile changed only by a factor of - 1. 

Finally, notice that u vanishes unless at least one of et ± Ixl belongs to 
[ - p, p]. The set of such t, I x I is sketched in Figure 4.6.1. For the support of 
u, this yields 

supp u c {(t, x): -p ~ Ixl- eltl ~ p}. (6) 

For t > 0 this is the region between the two light cones Ixl - et = ± p 
sketched in Figure 4.6.2. 

The derivative F' in formula (5) causes an interesting loss of regularity in the 
classical Ck spaces. If F E C~(lR) with k :;::: 3 and F vanishes on a neighborhood 
of the origin, then the corresponding solution is Ck- 1([Rl+3) because of the 
derivative F' in (5). On the other hand, the Cauchy data satisfy u(O) E Ck , 

~~"--- -p :; ct - Ixl :; p 

~~--p:; ct+ Ixl:; p 

Figure 4.6.1 
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(-p, 0, 0) 

Figure 4.6.2. The support of u is between the two light cones 

u,(O) E Ck - 1, that is, the Cauchy data have the natural regularity for a solution 
of class Ck . In the Ck category there is a loss of one derivative. In the spaces 
H' there was no such loss. The loss of regularity in the Ck category is due to 
focusing. 

A bound on the number of continuous derivatives which may be lost in 
dimension d can be found as follows. If the data lie in C~ x C~-l, then they 
lie in Hk x H k - 1 • Then Theorem 3.7.2 implies that o/u E C(\R: Hk-i(\Rd)). The 
Sobolev Lemma implies that u E Cm(\Rl+d) provided m < k - d/2. Thus there 
is a loss of no more than d/2 + e derivatives. This indicates that we might 
expect more loss as d increases and that is the case. The rule of thumb is 
one-half of a derivative per space dimension above 1. 

For FEe'" the presence of the derivative in (5) causes no loss of regularity 
but is felt in the phenomenon of amplification due to focusing. A wave initially 
supported away from the origin will have amplitudes of size F' at later times 
and F' may be much larger than sup IFI. This can happen even if the initial 
data for o,u vanish. Thus, measured in sup norm the map from data at time 
zero to data at time t is not continuous. This discontinuous dependence and 
the loss of derivatives are two aspects of the same physical phenomenon. The 
theme is discussed again in Problem 4.7.1. 

PROBLEMS 

The next problems consider rotationally symmetric solutions of the Laplace equation. 

1. Find all rotationally symmetric smooth harmonic functions on IPld\{O}. 

2. In Problem 2.5.5 you showed that when d = 3, (a 2 - L\)(e-ar/r) = c(a)b. Compute 
L\(ljr) by passing to the limit a ~ O. 
DISCUSSION. Problems 3 and 5.10.3 give independent proofs. 

From Problem I you know that for d ~ 3, r 2 - d is harmonic on IPld\O. Since r 2 - d is 
locally integrable it follows that L\(r2-d) is a well-defined distribution with support at 
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the origin. Therefore there are constants c. such that 

.1(r2 - 4 ) = I c.O·(j a finite sum. (7) 

3. (i) Prove that c. = 0 if ex -:p O. Hint. Apply identity (7) to the test function t/I(h) and 
consider the dependence on A. 

(ii) Evaluate Co by applying (7) to an appropriate test function in Y'([Rd). 
DISCUSSION. The distribution r2 - d is homogeneous of degree 2 - d. It follows that 
.1(r2 - d ) is homogeneous of degree -d. The hint in (i) amounts to showing that the 
only way that the right-hand side can be homogeneous of degree - d is if all c. = 0 
for IX -:p O. 

§4.7. The Wave Equation Propagator for d = 3 

To compute the solution Kw to 

K(O, .) = 0, o,K(O, .) = b, (1) 

we analyze the limit e -+ ° in (4.6.1) where 

j E C<f'(lxl < 1), fj dx = 1, . _ _ d'(X) 
Je = e J e ' (2) 

and j is rotationally symmetric. Since je -+ b in HS(lRd ) for all s < - d/2, we 
have for any t 

W-lim ue(t) = Kw(t). (3) 

In particular, ue(t) -+ Kw(t) in 9"(IR~). The results of the last section yield 
explicit formulas for Ue and thereby an evaluation of the limit. 

By Theorem 4.6.4, there is an Fe E C"(IR) with 

( ) _ {(Fe(ct + r) - Fe(ct - r))/r, 
Ue t, X - 2 '( ) Fe ct, 

r = Ixl i= 0, 
(4) 

r = Ixl = 0. 

Setting t = ° yields F.(r) - Fe( - r) = 0, so Fe is an even function of r. Com­
puting o,ue(O, .) yields 

F' = rje(r) 
e 2c 

(5) 

Note that any solution of (5) is automatically even in r since rje(r) is odd. F is 
only determined modulo an additive constant, so we may take 

Fe(r) = f' rj2e(r) dr. 
-00 c 

To compute lim Ue the following properties are important: 

supp ue c {(t, x); cltl - e < Ixl < cltl + e}, 

(sgn t)u.(t, x) ~ 0, 

(6) 

(7) 

(8) 
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and 

f ue(t, x) dx = t. (9) 

PROOFS. Property (7) follows from formula (4.6.6). 
To prove (8), note that for t > 0 and x E [Rd 

fc, +r rj (r) 
Ixlue(t, x) = Fe(et + r) - Fe(et - r) = -2e dr. 

cl-r e 

If et - r :;::: 0, this is nonnegative since j :;::: O. If et - r < 0, the integral from 
et - r to r - et vanishes so 

f r+c, rje(r) 
Ixlue =.-~ dr:;::: O. 

r-cl 2e 

This proves (8) for t > O. The solution of (4.6.1) is odd in t since u( - t, x) 
solves the same initial value problem, so (8) for t < 0 follows from the case 
t > O. 

For (9) note that since Ue is smooth and supported in Ixl ::;; el tl + c, differ­
entiation under the integral sign is justified to give 

012 f Ue(t, x) dx = f O(Ue(t, x) dx = f c2~xUe dx. 

The last equality uses the equation Du = O. Integrating by parts shows that 
the last integral vanishes. Thus, J Ue dx = at + b with a, b E C. Evaluating at 
t = 0 yields b = O. Differentiating with respect to time yields a = J 0IUe dx. 
Evaluating this at t = 0 shows that a = 1. 0 

We now compute the Y"(1R3) limit of the ue(t). For t/J E Y'(R 3 ), use polar 
coordinates to write, for t > 0, 

<Ue(t), t/J) = [ foo ue(t, r)t/J(rw)r2 dr dw. J S2 0 

Here dw is the element of surface area on the unit sphere S2. Now ue vanishes 
if r is more that e units form ct. This suggests writing 

<uAt), t/J) = [ foo ue(t, r)t/J(ctw)r2 dr dw + error, J S2 0 

error == ff ue(t, r)(t/J(rw) - t/J(ctw))r2 dr dw. 

In the support of Ue, Irw - etwl < e, so 

I error I ::;; cIIVxt/JIILw ff,ue,r2 dr dw = eIIVxt/Jllv" f Ue dx = eIIVxt/JIILoot. 
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The integral with t/J(ctw) is computed explicitly using Fubini's Theorem 

f fCX. u,(t, r)t/J(ctw)r2 dr dw = lcx, uc(t, r)r2 dr f t/J(ctw) dw. (10) 
S2 0 0 S2 

The last term is the integral of t/I over the surface of the sphere of radius ct, on 
which the element of surface area is given by da = (ct)2 dw. The integral of Uc 
in (10) is equal to t/4n, since it is equal to (4n)-1 times the integral of u over 
[R3. Thus 

<U,(t), t/J) =t __ Lz r t/J da + OrB). 
4n (ct) J Ixl=ct 

This completes the proof of the following important formula when t > O. 

Theorem 1. For d = 3 and t i= 0 

(11 ) 

PROOF. We have just proved the identity for t > O. It follows for t < 0 since 
both sides are odd functions of t. 0 

Formula (4.2.6) shows that for I, g E Y([R3), the solution to the initial value 
problem for the wave equation is given by 

u(t, x) = ~ r g(y) da(y) + ~ (_.I T r I(y) da(y)). (12) 
4nc t J Irxl=ct at 4nc t J Ix-yl=ct 

The rest of this section is devoted to studying this formula. 
The Cauchy data of Kw are supported at {O}, so the finite propagation 

speed (Problem 3.7.5) implies that 

ilKw(t) 
supp Kw(t) u supp 0 c {Ixl :s; cltl}. 

ct 

This is clearly visible in formula (11). 
Since Kw is compactly supported, formula (5) extends immediately to all I, 

g E CO([Rl+3), the corresponding solution belonging to c oo ([Rl+3). The exis­
tence part of this assertion, but not the formula for the solution, is valid in all 
dimensions (Problem 3.7.4). 

(i) Huygens' Principle, II u E CXl([Rl+3) sati~fies D 1+ 3 u = 0 and 3(t) == 
{supp u(t) u supp ut(t)}, then 

3(t) c {(t, x): dist(x, 3(0)) = cltl}. 

The set 3(t) is the set occupied by the wave at time t. The result is an 
immediate consequence of formula (12). It expresses the fact that signals 



§4.7. The Wave Equation Propagator for d = 3 161 

travel with speed no less than 1, in addition to the already known fact that 
they propagate no faster than 1. The lower bound on the speed is most clearly 
seen for data supported in Ixl < p. In that case, the solution is supported in 
- p < I x I - cit I < p. When t > 0, this is the region between the two light 
cones Ixl - ct = ±p sketched in Figure 4.6.2 There is a hole in the support 
of radius cltl - p corresponding to the fact that signals cannot travel slowly. 

In the next section we show that the conclusion of (i) is not correct when 
d = 2. It holds precisely when d is odd and greater than 1. For d = 1 it is nearly 
correct, an analogous result is correct for the support of Vt.xu. 

(ii) The result (i) is true for any u E ~'(1R1+3) which sati,'ifies Du = 0. 

SKETCH OF PROOF. Let j, be a standard approximate identity in 1R1+ 3 and 
apply (i) to j, * u. Then pass to the limit e --+ 0. 0 

The assertion (i) can be expressed in another way in terms of domains of 
influence and determinancy. 

(iii) Sharp Domain of Influence/Dependence. Suppose that u E C(IR : W(1R3» 
sati.'ifies Du = 0. Then values of the Cauchy data in an open set 0 influence 
the solution only on ret, x): dist(x, 0) = cltl}. The values of the solution u in 
an open set U in space-time depend only on the values of the Cauchy data in 
{x E 1R3: 3(t, y) E U, dist(x, y) = cltl}. 

(iv) Monotonicity. If U E c oo (IR1+3) satisfies Du = ° and 

u(O, .) = 0, ut(O, .) ;:::: 0, 

then (sgn t)u ;:::: 0. 

This is an immediate consequence of the formula. The analogous result is 
false when d > 3 (see Treves [Tr], Folland [Fo], Courant and Hilbert [CH], 
or Garabedian [Gara] for the propagator Kw when d > 3). Using Duhamel's 
formula together with an approximation argument as in (ii), one finds the same 
conclusion under the weaker hypotheses, u E C2 (1R: .@'(1R3 ), (sgn t)Du ;:::: 0, 
u(O) = 0, ut(O) ;:::: O. Here;:::: 0 is interpreted in the sense of distributions. 

(v) If u is a solution of the wave equation on 1R1 +3 and the Cauchy data satisfy 
u(O) E c\ ut(O) E ck-l, then u E Ck- i (1R 1+ 3). 

We have seen that this loss of one derivative actually occurs for spherically 
symmetric solutions. The above result shows that one never looses more than 
one classical derivative when d = 3. If one measures regularity in the HS sense 
there is no loss of derivatives in any dimension. 
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PROBLEMS 

We have seen that the regularity u, u, E ca X Ca - 1 is not propagated while u, u, E HS X 

H,-l is. The latter regularity is called continuable. One might think that the difference 
is that, in the second case, the norms are defined by integrals. Littman's Theorem 
asserts that norms based on LP for p =I' 2 are not propagated by the wave operator in 
dimensions d > 1. This is the wave equation analogue of Problem 3.4.2. For d = 3, a 
simple proof is available. 

Consider the solutions to (0,2 - C2~)U = 0 with initial data 

u(O, .) = 0, u,(O, .) = g. 

Then the map u,(O)f->U,(t) is the Fourier multiplier sin(ctIW. If gEL2, then 
u, E C(!R : L 2 ). It is reasonable to ask whether g E LP yields a solution with u, E C 
(!R: LV). The next problem shows that for t =I' 0, the set of g in LV with the property 
that u,(t) E LV is a set of first category in LP. 

1. Littman's Theorem for d = 3. Prove that for d = 3, p =I' 2, and t =I' 0 

Ilu,(t)lb 
sup = 00, 

lIu,(O)IILP 

the supremum over all g E Y'(!Rd)\O. 

Hint. Consider rotationally symmetric g and the corresponding explicit spherical 
wave solutions. Solutions with small support at t = 0 spread over an annular region 
of much larger volume at time t. The general principle described in Problem 3.4.2 
is in operation. 

For g E Y'(!Rd) the Radon transform of g is a function in COO(!R x Sd-l) defined by 
h(s, w) == fx.w=,g da. Thus h encodes the integrals of u over the hyperplanes of !Rd. 

2. Let u be the solution of the wave equation with u(O) = 0, u,(O) = g E Y'(!R3). Prove 
that lim,_oo tu(t, y + ctw) = h(y' w, w)/4nc2, the limit being uniform for WE Sd-l 

and y in compact subsets of !Rd. 
DISCUSSION. It follows that for t» 1, u(t, x) ;;;; h(lxl - ct, x/lxll/4nc2t. If h did not 
depend on w this would be an outgoing spherical wave as in §4.6. The general case 
is an outgoing wave whose cross section depends on the direction w = x/Ix!. A 
similar formula holds for initial data, u(O) = 0, u,(O) =I' 0 (exercise). The correspond­
ing description of u for t » 1 is due to Friedlander [Fr]. The map Uf-> h gives the 
translation representation which is central to the Scattering Theory of Lax and 
Phillip [LP]. The Radon transform, h, also yields an elegant proof of Huygen's 
principle in all odd dimensions (see Folland [Fo]). 

Note that Theorem 4.3.6 shows that the asymptotic state for the heat equation 
is described by one scalar quantity, S u(O, x) dx. For the Schrodinger equation, 
Theorem 4.4.2 shows that all of ff u(O) is needed, that is, a function of three variables. 
For the wave equation we need h(s, w), a function on !R x S2. Again there is a 
function of three variables. In the last two examples, the asymptotic states have as 
much variety as the initial data. 

Many partial differential equations have wave-like solutions. Hyperbolic equa­
tions are peculiar in having such a wide variety of waves. This is important for 
nondigital transmission of information. It is no accident that hearing and sight rely 
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on acoustic and light waves both governed by linear hyperbolic equations. Informa­
tion in the nervous system is transmitted in digital form and the governing equations 
are parabolic. 

§4.8. The Method of Descent 

Knowing Kw in dimension d yields a formula for Kw in dimension d' for all 
d' < d. The method is called Hadamard's method of descent and rests on the 
simple observation that if one has a function of f of Xl' ... , Xd• and d > d', 
then there is a naturally defined function F of d variables obtained by ignoring 
the values of xd' +1' ... , x d , that is, F(x 1, .. , , X d ) == f(x l' ... , xd,). If n: !Rd --'> !Rd' 

is the canonical projection X ~ Xl' ... , Xd" then this relation is simply that 
F =fo n. 

Proposition 1. If d > d' and f, 9 E C)(!Rd') and F, G E COO(!Rd) are defined by 
F == f 0 n, G = 9 0 n, then the unique solution W E Coo (!R I +d) to 

Ol+dW = 0, 

and the solution u to 

W(O, .) = F, 

u(O, .) = f, 

w,(O, .) = G, 

u,(O, .) = g, 

are related by w(t, Xl' ... , X d ) = u(t, Xl' ... , x d,), that is, W = u(t, n(x». 

(1) 

(2) 

PROOF. Define WE coo(!R l +d) by wet, x) = u(t, n(x». Then w solves the initial 
value problem (1) and uniqueness of solutions completes the proof. 0 

Take d = 3, d' = 2, and f = O. Then 

u(t, .) = K d=2(t) * g. 

Since K(t, x) = K(t, -x), formula (3) for (Xl' X 2 ) = 0 yields 

u(t, 0) = <Kd=2(t), g). 

On the other hand, 

u(t, 0) = wet, 0) = <Kd =3(t), g) 

(3) 

(4) 

As 9 is independent of X 3 , the latter integral is twice the integral over the 
hemisphere in X3 > O. On the hemisphere, X I, X 2 can be chosen as coordinates 
with X3 = «ct)2 - xi - XDI/2. The unit upward normal is n = (Xl' X2, x3)jcl tl. 
The element of surface area is 
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Thus 

u(t, 0) = _2cl~L f g(Xl' X2 ) dX 1 dX2' 
4nc t J(ct)2 - xi - x~ 

Comparing with (4) we have proved the following tneorem. 

Theorem 2. For d = 2 and t i= ° 
{ 

sgn t 

Kw(t, x) = 2ncJ(ct)2 - xi - x~' 

0, 

Ixl < cltl, 

Ixl ~ cltl· 

(5) 

Kw is a smooth function except when Ixl = Ictl. There K diverges like 
(cltl - Ixl)-1/2. Thus, for t i= 0, Kw(t, .) E Ll(IR;). This is more regular than 
Kw in dimension d = 3, where K is a measure, and less regular than in d = 1, 
where Kw is a bounded function. Measured in the scale HS(lRd), 

Kw(t, .) E H-d/2+1-e(IR~) for all e) 0. Kw loses one-half a derivative for each 
dimension. 

As in the previous section, finite speed is reflected in the fact that Kw(t) is 
supported in Ixl ::;; cltl. However, for d = 2, (sgn t)K > ° on Ixl < cltl, the 
support fills the interior of the forward and backward light cones. Thus one 
cannot improve upon the general inclusion 

supp u c {(t, x): 3y E supp u(o) u supp ulO), Ix - yl ::;; cltl}, (6) 

which follows from the finite speed of propagation. For example, if g ~ 0 and 
f = 0, then (sgn t)u is strictly positive on the interior of the set on the right­
hand side of (6). 

For an initial disturbance supported near the origin, the solution in d = 2 
decays like 1/1 tl as I tl -> 00 in {(t, x): Ixl < (c - e)ltl}. For d = 3 a similar initial 
disturbance leads to a wave which, for t large, vanishes identically in such a 
shrunken forward light cone. This is a manifestation of the fact that for d = 3, 
K is supported on the surface of the light cone while when d = 2 the support 
fills the entire insides of the cone. We say that Huygens' principle is valid 
when d = 3 and not when d = 2. I can offer no persuasive physical intuition 
to explain the failure of Huygens' principle in dimension 2. The principle is 
true for odd d ~ 3 and not for other dimensions. Even for d ~ 3 and odd, the 
Huygens' principle is destroyed if the wave operator is slightly perturbed, 
say to 0 + e. The historical association with Huygens is unconvincing. 

There is a strong vestige of Huygens' principle, namely, singularities propa­
gate with speed exactly equal to c. 

Corollary 3. Suppose that f, g E H S X H s - 1 and that u is the solution of OU = ° 
with Cauchy data equal to f, g. Let 

r == sing supp(f) using supp(g), 
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then 

sing supp u(t) v sing supp u,(t) c {x: (3y E r), Ix - yl = cltl}. (7) 

PROOF. Write f and g as a sum of two terms, one in eX! and the other supported 
in the set of points at distance 0/2 from sing supp(.f) v sing supp{g). The 
contribution from the smooth part is smooth, so we may suppose that f and 
g are supported in such an e/2 neighborhood of the singular support of the 
Cauchy data. 

The key observation is that 

sing supp Kw(t) c {x: Ixl = cltl}. (8) 

This is valid in all dimensions though we have proved it only for d = 1,2,3. 
A general proof is outlined in Problem 2. 

If t -# 0 and x does not belong to the right-hand side of (7), choose 0 > 0 so 
that the [Rd ball of radius 0 with center x is disjoint from the set on the 
right-hand side. Choose cP E CO'(lxl < cltl) with cp equal to 1 at all points in 
the cl t I - 13/2 disk. 

Write u = K * g + OtK * f and Ut = o,K * g + K * Af. Write K(t) as a sum 
cpK + (1 - q»K. Then q>K(t) and q>o,K(t) are smooth and compactly sup­
ported so the contributions from q>K are smooth on [Rd. The contributions 
from (1 - q»K are supported in an B neighborhood of the right-hand side of 
(7). It follows that the singularities of u belong to this B neighborhood. Since 
this is true for all B, the theorem is proved. 0 

The sharp propagation speed (7) for singular supports is sometimes called 
the generalized Huygens principle. It is valid in all dimensions (problem 2). The 
natural generalization is true for variable coefficient hyperbolic equations as 
well. The generalized H uygcns principle is of much wider utility than the strict 
Huygcns principle. 

The fact that (sgn t)Kw 2. 0 when d = 1,2,3 shows that 0 1 +1, 01+2, and 
0 1 + 3 share the mono tonicity property. On the other hand, if d > 3, it is no 
longer true that (sgn t)Kw 2. O. 

PROBLEMS 

The singular support can be criticized because it treats discontinuities in a function 
on an equal footing with discontinuities in the ten millionth derivative. This weakness 
is overcome by introducing the H' singular support as follows. 

If x E 0 C IRd and U E £0'(0) we say that U is H' at x, and write U E H'(x) if there is a 
qJ E cg'(O) with qJ identically equal to 1 on a neighborhood of x and qJU E H'(lRd). Note 
that this makes sense since qJU E ,g"(Q) so extends naturally to an element of 
J"(lRd) c 9"(lRd) with support in Q. 

Definition. For U E £0'(0) and S E IR 

sing sUPPs U == {x E 0: U is not 11' at x}. 



166 4. Propagators and x-Space Methods 

Sing sUPPs is closed and increasing with sand 

sing supp(u) :::J Using sUPPs u. (9) 

Since the singular support is closed, it follows that 

sing supp(u) :::J cI ( V sing sUPPs U ). (10) 

1. Construct an example where the inclusion (9) is strict. Show that the inclusion (10) 
is an eq uali ty. 

In the next problem you will prove (8) using the method of nonstationary phase 
described at the end of §4.4. The strategy is as follows. Use the representation 

K (t) = ff-1 (sin(ctIW) 
w cl'" 

and write sin(O) as (ei6 - e- io)/2i to show that formally 

f +eiq>±(,.x.~) 2icKw(t, x) = ~ - lei de, cp± = xe ± etlel· 

Fix t, x with Ixl -=I- cltl. Then the phase is nonstationary, that is, V~cp -=I- O. As in §4.4, 
construct first-order partial differential operators L± with L±eiq>± = eiq>±. Dropping 
the ±, K w is a sum of terms of the form 

f (L meiq» (~1) de = f eiq>(L')m C-~) de. 

For m = m(k) large the resulting expression can be shown to be Ck on a neighborhood 
of t, x. 

2. Fill in the details in the above proof as follows: 
(i) Choose X E C<f(ll~~) with X identically equal to 1 on a neighborhood of e = O. 

Write ffKw = XffKw + tjJffKw with tjJ == 1 - X. Prove that the first term has 
smooth inverse transform. 

(ii) For the second term show that 

ff-1(tjJffK w) = (1 - ~jff-l«l + leI 2 r dtjJffKw), 

so it suffices to show that ff- 1«1 + lel 2r dtjJffKw ) is smooth near t, x. Show 
that this inverse Fourier transform is an absolutely convergent integral. 

(iii) Analyze the absolutely convergent integral following the nonstationary phase 
ideas sketched above. 

3. Suppose j, 9 E U (Hs(~d) X W-1 ~d)) and u is the solution of 0 1 +dU = 0 with 
Cauchy data equal to j, g. Let 

ra == sing sUPPaj using sUPPa-l g. 

Prove that 

sing sUPPa u(t) using SUPPa-l u,(t) c {x: (3y Era)' Ix - yl = cit\}. (11) 

Hint. Use the result of Problem 2. 



§4.9. Radiation Problems 167 

§4.9. Radiation Problems 

Consider the radiation from an antenna which begins to radiate at a time to. 
One finds an initial value problem 

D 1 +dU = F, u=F=O for t < to. (1) 

If FE L}oc([O, 00[: W(lRd)) for some S E IR, Duhamel's formula yields 

u(t) = roo R(t - o)F(o) do = roo Kw(t - 0) * F(o) do, (2) 

where Kw is given by formulas (4.5.3), (4.8.5), and (4.7.11) for d = 1,2,3. For 
t> 0 we have 

d = 1, R(t - o)F(o) = 21 f F(o, y) dy, 
c J Ix-yISc(t-a) 

d = 2, R(t - o)F(o) 

= _1_ If F(o, y)(c2(t - 0)2 - Ix - yl2r1/2 dy, 
2nc J Ix-yISc(t-a) 

d = 3, R(t - o)F(o) = (4nc2)-1 If F(o, y)_I_d~(y). J Ix-yl=c(t-a) t - 0 

Using the expression for d = 1 in (2) yields 

u(t, x) = 21 I f F(o, y) do dy. 
c J Ix-yl Sc(t-a) 

(3) 

The double integral is over the backward light cone from (t, x). For d = 2 we 
find 

1 IIi F(o, y) u(t, x) = - 2 2 2 1/2 do dy. 
2nc Ix-yISc(t-a) (c (t - 0) - Ix - yl ) 

(4) 

Here we have a triple integral over the solid backward light cone dropped 
from (t, x). For d = 3 we find 

( ) - (4 2)-1 IIi F(o, y) dA u t, x - nc -- 2 1 ' 
Ix-yl=c(t-a) (t - 0) (1 + c ) 

(5) 

where dA is the element of three-dimensional area on the surface of the 
backward light cone from (t, x). The Pythagorean factor at the end comes from 
the relation dA = (1 + C2)1/2 do d~ which is explained in Figure 4.9.1. 

Typically, an observer is at a distance which is large compared to the 
dimensions of an antenna. This implies that Ix - yl varies little for x an 
observation point and y E supp(F). 

With this in mind, suppose that supp(F) c {Iyl < r}, r« Ixl. Let 
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Ixl ~ ct 

c do 

da 

--H+----------------------------------~~Ixl 

Figure 4.9.1 

f(t) == S F(t, y) dy. We obtain the following approximations: 

1 f'-IXI/C 
d = 1, u(t, x) ~ 2c -ex) f(er) der, 

d = 2, 

d = 3, 

u(t, x) ~ . f(er)(c 2 (t - er yz - Ix12) 112 der, 
1 f'-IXI/C 

2nc -x 

f(t - lxi/c) 
u(t, x) ~ 4nclxl . 

This sort of approximation is common. One has a function <1>(x) supported 
near 0 and one must approximate <<1>, t/I> when t/I varies little over supp <1>. 
Replacing t/I by its Taylor polynomial of degree N yields 

<<1>, t/I> ~ L iJ"t/I(O/ <1>, ~~). 
lal.;N \ Ct.. 

The approximations above correspond to N = O. From the point of view of 
distribution theory, this amounts to replacing <1> by 

L \ <1>, :;) cab. 

This is called the multipole approximation to <1> and the coefficients of cab, the 
multipole moments. From this point of view, the approximate solution of the 
radiation problem comes from approximating F(t, y) by 

F(t, y) ~ f F(t, y) dy bey) = f(t)b(y). 
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Thus it is not surprising that the approximations are exact solutions to 

o l+d U = f(t) <5 (y), u(t, .) = 0 and f(t) = 0 for t < to. (6) 

This is called the radiation problem with point source of strength f(t). If 
f E C'")(IR) 

f(t)<5 E COO(IR : H') for all s < - d/2. 

The general theory implies unique solvability of the radiation problem 
with 

for all s < - d/2. 

We next verify that the exact solution of the radiation problem (6) is equal 
to the approximation determined above. In all d 

u(t) = foo K(t - O')f(o)<5 dO'. 

The values of the integrand for d = 1, 2, 3 are 

d = 1, 

d = 2, 

d = 3, 

f(O') 
K(t - O')f(O')<5 =-2--- Xlxl<c(t-u), e-

f(O') 
K(t - O')f(O')<5 = ~4 ~I~ d:Elxl=c(t-U)' 

ne xl 

Integrating dO' from - 00 to t gives the solution to (6). For d = 1, and t, x fixed, 

{
f(O') 

K(t - O')f(O')<5 = 02e 
if Ixl ~ e(t - 0'), 

otherwise. 

Integrating yields It-,X'/C dO' 
u(t, x) = f(O')-. 

-00 2e 

Similarly, for d = 2 

if Ixl ~ e(t - 0'), 

otherwise, 

It-,X'/C f(O') 
u(t, x) = -00 2;~(e2(t _ 0')2 _ IxI2)1/2 dO'. 

Both cases give the approximation formulas from our first calculations. 

(7) 

(8) 
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Both computations are formal since they deal with point values. We know 
that a H K(t - a)f(a)b belongs to C(IR : W) for s < -dI2. Thus the integral 
is a Riemann integral of an H S valued function. We have performed natural 
pointwise integrals. To show that the distribution u(t) is given by the function 
u(t, .) in formula (7) or (8), one must show that for t/J E CQ"(lRd) 

I u(t, x)t/J(x) dx = foo <K(t - a)f(a)b, t/J) da. 

This is not difficult to do. The justification for d = 1, 2 is analogous to, but 
simpler than, the case d = 3 which follows. When d = 3 we have for all 
t/J E CQ"(1R3) 

I t/J(x)f(a) 
<K(t - a)f(a)b, t/J) = 4~(~-) dLlxl~c(t-<T)' 

nc t - a 

Thus the formula for u as an integral yields 

It (I t/J(x) ) <u(t), t/J) = -00 4nc2(t _ a/(a) dLlxl~c(t-<T) da. 

Introduce spherical coordinates, x = rw, r E ]0, 00 [, W E S2, dx = r2 dr dw, to 
find 

I t/J(x) I t/J(rw) ( r) 2 
4---y-( ~)f(a) dLlxl~c(t-<T) = -4~'f t - - r dw, 

nc t - a ncr c 

where we have used the fact that r = c(t - a) in the region of integration. Then 
a = t ~ r = ° and a = - 00 ~ r = 00, so 

<u, t/J) = ~-f t - - r2 dw dr foo I t/J(rw) ( r) 
o 4ncr c 

= / f(t - ric), t/J), 
\ 4ncr 

which proves the expected result, u = f(t - Ixl/c)!4nclxl. 
An observer at a fixed position x 

Must differentiate the observed field to measure f if d = 1. 
Observes an average of f weighted heavily at t - Ixl/c if d = 2. 
Observes f(t - lxI/c) exactly with l/lxl decay if d = 3. 

Happily for us, our environment is three-dimensional and electromagnetic or 
acoustic signals transmitted from an antenna are received without any need 
of decoding. This makes the technology of radio, television, radar, and sonar 
much simpler than they would be if d were any dimension other than 3. To 
the question, "Why is space-time four-dimensional?", this yields the facetious 
reply, "For the sake of better TV reception". 
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PROBLEMS 

1. The digital signal 010100 ... is transmitted via the sourcefunction f = X]!, 2[u]4, 5[(t). 
Let x = (20,0, ... , 0) E IRd and sketch roughly the form of the signal received at 
IR, x {x} when d = 1,2,3. 

2. Iff E Ck(IR), estimate the smoothness of the solution u to the radiation problem (6) 
at points x i= O. Hints, Using the Sobolev regularity f(t) 8 E Ck(lR: HS ) for s < -d/2 
gives a lousy estimate. Use the formulas of this section. The answer depends on d, 



CHAPTER 5 

The Dirichlet Problem 

§5.1. Introduction 

This chapter is devoted to studying boundary value problems for second­
order elliptic equations. The variational (also known as Hilbert space) ap­
proach to the Dirichlet problem is emphasized. Maximum principles are 
discussed in §5.1O and §5.l1, which are independent of the preceding sections 
and are essential reading along with §5.1, §5.2, and §5.3. Sections 5.8 and 5.9 
address the technically difficult question of the regularity of the weak solution 
constructed in §5.3. Sections 5.4-5.7 treat a variety of topics which rely solely 
on the Hl variational approach to the Dirichlet problem. It is interesting that 
this straightforward argument propels one so far. 

Elliptic boundary value problems arise in a striking number of distinct 
settings in science and geometry. For a first example, consider the flow of heat 
in a bounded regular subset 0 c [Rd. The dimensions d S; 3 are the most 
important in practice. The temperature vet, x) satisfies the heat equation 

(1) 

with v> O. 
Suppose that a fixed-temperature distribution at the boundary is main­

tained by a heating and refrigeration system. Then there is a function g on ao 
such that 

vet, x) = g(x) for all x E a~. (2) 

Heat flowing from hot to cold will smooth out irregularities in an initial 
temperature distribution v(O, '). Given the fact that the boundary tempera­
tures are kept at a steady state, it is plausible that the system will evolve toward 
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an equilibrium state u(x), that is, 

lim v(t, x) - u(x) = o. 

Put another way, as A -> ro the functions v 2(t, x) == v(t + A, x) converge to u(x) 
on [0, ro[ x O. Since each of the V 2 satisfies the boundary value problem (1), 
(2), one expects that u is also a solution. Since u does not depend on time this 
yields 

flu = 0 in 0 and u = g on 00. (3) 

This boundary value problem for u is the classical Dirichlet problem. It is 
not clear that we have extracted all the necessary physical information to 
determine the asymptotic state of the heat equation. Thus it is reasonable to 
expect existence of solutions to (3), but there may be many such solutions. 
Note also that the boundary condition gives u and not aujtJv, while Cauchy 
data for the second-order operator fl consists of both functions. This might 
lead one to believe that u is not completely specified. If there were many 
solutions, that would show that additional properties would have to be given 
to determine which is the equilibrium state to which v converges. In fact there 
is uniqueness, so that there are no additional physical constraints on the state. 
The first indication that (3) is uniquely solvable comes from explicitly solvable 
problems with exceptionally simple geometry. 

The very simplest example is the case n == Ja, b[, an open interval in [Rl. 

The Dirichlet problem is then 

Cl~Y u = 0 in ]a, b[, uta) = g(a) and u(b) = g(b). 

The unique solution is the linear function u(x) = g(a) + (x - a)(g(b) - g(a))j 
(b - a). More complicated examples are given in Problems 1, 2, and 5. 

An entirely different problem leading to (3) is the construction of a con­
formal mapping, <p(z) from a simply connected domain, 0 c IC ~ [R2, to the 
disc {Izl < I}. Translating 0 if necessary, suppose that 0 E O. Using a Mobius 
transformation in the disc we see that if such a <p exists, then there is one with 
<p(O) = O. Then <p(z)jz is nonzero, so can be written as eh+ ik with hand k real 
and harmonic. Then 

10gl<p(z)1 = loglzl + h(z). 

Thus h is a solution of the Dirichlet problem 

flh = 0 in 0 and It = -loglzl on an. 
Riemann's idea for a proof of existence for this Dirichlet problem is described 
in the next sections. 

A third example is the problem of finding the equilibrium position of a 
membrane stretched over a domain 0 c [R2, whose height above points in the 
boundary of n is known. This problem occurs if the membrane is attached to 
a fixed support surrounding n. 
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Seek the equilibrium position as a minimum of the potential energy func­
tion. If u(x) is the height of the membrane above the point x E n, then a 
reasonable candidate for the potential energy is the surface area of the surface 
z = u(x) since energy is stored in the membrane when it is stretched, that is, 
when its area is increased. This leads to the following nonlinear variational 
problem called Plateau's problem 

minimize In (1 + IVuI 2 )l/2 dx dy (4) 

the minimum taken over all functions u with u I an = g, the given height of the 
membrane at the boundary. The functional to be minimized in (4) is the surface 
area. If one ;,ncludes gravitational effects there is an additional contribution 
to the potential energy leading to the variational problem 

~~~~~~~e In (1 + IVuI 2)l/2 + cu dx dy, (5) 

where c is constant. 
The minimum principle leads to a differential equation for u in the standard 

fashion. Denote by J the functional to be minimized. Then if cP E Cl(O), 
cP I en = 0, then u + 8cp is a competing function. If J is minimized at u, then 
J(u + 8cp) is minimized at 8 = O. Thus (d/d8)J(U + 8cp)I.~o = O. This equation 
is called the Euler or Euler-Lagrange equation. For many problems it is a 
partial differential equation. In the present case, a straightforward computa­
tion yields 

Integrate by parts' to move the derivative from cp to the u terms. Since cp 
vanishes at on, the boundary term vanishes. This yields 

This can vanish for all cp with cp I an = 0 if and only if the function in square 
brackets vanishes. Thus, for u we find the boundary value problem 

" a (axu) 0 . r. 
1... Xi (1 + IVuI2 )l/2 + c = III u, u = g on an. (6) 

The differential equation in (6) asserts that the mean curvature ofthe surface 
z = u(x) is equal to - c/d. If c == 0, the surface is a minimal surface, the name 
coming from the fact that it minimizes area as in (4). 

A connection between the nonlinear problem (6) with c == 0 and the classical 
Dirichlet problem is that the latter is a good approximation of the former 
when the surface is nearly horizontal. To see this, note that for nearly flat 
surfaces, the derivatives of u are small. If we drop higher-order terms in these 
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derivatives, the boundary value problem (6) becomes the classical Dirichlet 
problem t..u = 0 in 0, and u lau = g. Essentially the same observation is that 
t.. is the linearization of the differential equation in (6) at the solution u = O. 
A third way to view this approximation is to note that Taylor expansion of 
the integrand in (4) about IVul = 0 shows that 

L (1 + IVuI 2 )1/2 dx dy = 101 + L lVul 2 dx dy + O(IVuI 4 ). 

Dropping the higher-order terms is essentially the same approximation as 
above so should lead to the classical Dirichlet problem. Dropping those terms 
yields the minimum principle 

minimize 
u=goncJn 

L IVul 2 dx dy. 

Thus, one should not be surprised to find that this minimization problem 
is equivalent to the classical Dirichlet problem. Exploiting this, or similar, 
minimum principles is called the variational approach to the Dirichlet problem. 
It is the path that we follow. 

In the problems, we will study some examples where the Dirichlet problem 
is solvable more or less explicitly. These examples are important since they 
illustrate in concrete cases the general principles to be proved later, and they 
also serve as a testing ground for conjectures. 

PROBLEMS 

The simplest multi-dimensional Dirichlet problems are those where the domain 11 
has spherical symmetry. For example, if 11 is the region between two balls, 
11 = {x: r1 < Ixl < rz} and the boundary data are spherically symmetric. The Dirichlet 
problem becomes 

~u = 0 in 11, u(x) = g(r) for Ixl = rj , j = 1,2. 

1. Find the unique rotationally symmetric solution to the above annular Dirichlet 
problem. Hint. First solve Problem 4.6.1. Then match the boundary data. 

Next turn to the case 11 = {x E ~z : Ixl < I}. Use polar coordinates, u = u(r, 0) with 
u periodic in 0 with period 2n. Fourier series expansion in 0 yields 

u(r, 0) = I un(r)e inO, 
ne Z 

with coefficients rapidly decreasing in n if u is smooth. The boundary condition at 
r = 1 implies that 

where g(O) = I gn einO 

with gn rapidly decreasing if g E C'Xl(a11). 

2. Show that for boundary data g E C"'(a11), the Dirichlet problem in the disc has 
exactly one solution u E Cro(c1(11)). Hint. Show that the un(r) are uniquely and 
explicitly determined and the resulting series can be differentiated termwise. 
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3. In the spirit of Chapter 4, we analyze the explicit formula in Problem 2. 
(i) Use the formula to show that u(O, 0) = S g(O) dO/2n. This is the case d = 2 of 

the mean value property, Corollary 5.10.3. 
(ii) For 0 < r < 1, define a smooth function K,(O) on the unit circle by 

K,(O) = I rlnleinO. 
n E ;z 

Show that the formula for u is equivalent to u(r, .) = K, * g, the convolution 
performed in SI. 

(iii) Use the formula for the sum of a geometric series to find an explicit expression 
for K,. 

DISCUSSION. The function K is called the Poisson kernel. 

4. Consider the Dirichlet problem in n == {x E [Rd: Ixi < R} for the equation of con­
stant mean curvature equal to H, 

u = 0 on an. 

(i) If 0 ::s; H < 1/ R, use spheres to find an explicit solution. 
(ii) If H > l/R, show that there can be no solution in C2 (cl(n» as follows (see Finn, 

[Fi] for a discussion of this result of Bernstein and related results): (1) Integrate 
the equation over n. The right-hand side is equal to dWdHRd where Wd is the d 
volume of the unit ball in [Rd. (2) Perform an integration by parts to express the 
left-hand side as a boundary integral and show that that integral is less than or 
equal to dwd Rd - l • 

DISCUSSION. The linearization of this boundary value problem at H = 0, u = 0, 
is the classical Dirichlet problem. Thus, for H small, one expects the two problems 
to behave similarly. For large u the nonlinear aspects dominate leading to 
nonsolvability. 

5. Let n == {x E [Rd: 0 < Xd < I}. Use the Fourier transform with respect to the vari­
ables (XI"'" xd-tl == x' to prove that for go, gl E Y([R~;-J) there is exactly one 
solution u E C"([O, 1] : y([R~.) to the Dirichlet problem 

Au = 0 in n, 

Find an explicit expression for the solution. 
DISCUSSION. This example is sometimes used to explain why one boundary condi­
tion is sufficient, in contrast to the two functions which comprise the Cauchy data. 
The reasoning is that there are really two functions, one for the bottom of the 
boundary and one for the top. However, considering the square region 0 < Xi < 1 
for i = 1, 2, one finds four boundary functions corresponding to top, bottom, and 
two sides. The region 0 < Xi < 1 for i = 1, 2, ... , k yields 2k boundary functions. 
Thus, this explanation should not be taken too seriously. 

The fact that the boundary conditions are given on a boundary which surrounds 
n, in contrast to the Cauchy problem where the initial plane is on one side of {t > O}, 
is at least part of the explanation. 
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§5.2. Dirichlet's Principle 

In the last section a variational equivalent of the Dirichlet problem was 
motivated by linearizing the principle of minimum potential energy for a 
nonlinear membrane. We begin this section by giving an independent motiva­
tion based on an analogy between the heat equation and gradient flows in 
finite dimensions. These are the flows of ordinary differential equations 

x = - grad <1> (x). (1) 

The integral curves of this equation move in the direction of most rapid 
decrease of <1>, in particular, <1> decreases along orbits. Precisely 

d<1>(x(t» 
dt = <grad <1>(x(t», x(t» = - Igrad <1>(X(t))12. (2) 

Flowing along such integral curves is a reasonable way to seek minima for <1>. 

This is called the method of steepest descent. The flow is also a centerpiece in 
Morse Theory. The ordinary differential equation (1) is equivalent to 
<x, t/t) = < - V<1>, t/t) for all t/t E [Rd. This in turn is equivalent to 

d d 
dt <x(t), t/t) = dB - <1>(x(t) + Bt/t) I .=0' for all t/t E [Rd. (3) 

The heat equation with Dirichlet boundary condition 

Vt = vL\v on [0, oo[ x n, vet, x) = g(x) for x EOn, (4) 

has an analogous structure. Note that since the heat equation does not satisfy 
the Hadamard-Petrowsky condition for backward evolution we only expect 
a solution in t ?: 0. Suppose that n is a nice boounded open subset of [Rd. The 
role of the function <1> is played by the Dirichlet integral 

J(w) == ; In IVx wl2 dx. 

Begin by considering J as a functional defined on the set of WE Cl(O) whose 
restrictions to an are equal to g. Call such w admissible. If w is admissible and 
(P E C l (0) with ip Ion = 0, then W + Bip is admissible and computing as in the 
last section yields 

dd J(w+Bip)I.=o=v r Vip'Vwdx= -v r ipL\Wdx+vf ipaaWda. (5) 
B In In an n 

The boundary term in the integration by parts vanishes since ip is equal to 
zero on an. Thus for solutions of (4) 

dd r ipvdx= r ipvtdx= r ipVL\vdx=dd -J(v+Bip)I.=o. (6) 
t In Ju Ju e 

The analogy with (3) is clear. 



178 5. The Dirichlet Problem 

This analogy suggests that J(v(t» is a decreasing function of time. To verify 
this, differentiate to find 

dd J(v(t» = v r Vv,' Vv dx = - v r v,~v dx + v f v, ~v da. 
t J n J n an un 

The boundary term in the integration by parts vanishes since v, = a,g(x) = 0 
on an. Using the differential equation yields 

'~J(V(t» = _v2 In (~V)2 dx :s; O. 

For the gradient system (1) on [Rd, it is easy to show that if I <I> (x) I -> 00 as 
Ixl-> 00, then as t tends to infinity, orbits tend to critical points of <1>. Recall 
that critical or stationary points are points x E [Rd such that grad <I>(x) = O. By 
analogy, it is reasonable to expect that the solution of the heat equation tends 
to a critical point of the functional J. Since J is strictly convex there is only 
one such critical point, a global minimum (Proposition 1 (iii». In the previous 
section, we argued that the asymptotic state for v is the solution of the Dirichlet 
problem. These arguments suggest two things: 

(1) the approach to equilibrium for the heat equation can be studied using 
this gradient structure; and 

(2) the solution of the Dirichlet problem minimizes the functional J taken 
over all functions equal to g at an. 

Both of these ideas are correct. We pursue the second. 

Proposition 1 (Dirichlet's Principle). Suppose that u E C2(n) and u I an = g. 
Then the following are equivalent: 

(i) ~u = 0 in n. 
(ii) u is a critical point of J in the sense that 

for all cP E C2(n) with cp I an = O. 

(iii) urninirnizesJinthesensethatJ(u):s; J(w)forallw E C2(n)withwl an = g. 

PROOF. The equivalence (i) ~ (ii) is an immediate consequence of (5). 
To implication (ii) => (iii) is proved by using (ii) with cp == w - u to show that 

J VuV(w - u) dx = O. Then since J is quadratic 

J(w) = J(u + (w - u» = J(u) + 2f VuV(w - u) dx + J(w - u). 

The middle term vanishes and the last is nonnegative so J(w) ~ J(u). 
Conversely, assuming (iii), the function J(u + 8cp) has a minimum at 8 = 0 

for any cp as in (ii). Thus (d/d8)J(U + 8cp)I.=o = 0 proving (ii). 0 
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Riemann concluded that the Dirichlet problem was solvable, reasoning that 
J is nonnegative and so must have a minimum value. Choosing a function u 
with J(u) = min(J) solves the problem. 

Brought up as we are, on the rigorous analysis of the end of the nineteenth 
century, the flaw in this proof is apparent. A function which is bounded below 
has an infimum, but there is no guarantee that the infimum is a minimum. 
There may be no point where the infimum is achieved. 

The first rigorous proofs that the Dirichlet problem is solvable followed 
other lines. Poincare's method of balayage, Perron's method of subharmonic 
functions, and Neumann's method of integral equations are described in many 
texts (e.g. [CHJ). Hilbert, as a part of his study of the Calculus of Variations, 
showed that Riemann's original strategy is valid. This is the path that we take. 

For technical reasons, it is easier to treat the inhomogeneous differential 
equation with homogeneous boundary conditions rather than the other way 
around. Thus we will solve 

~u =f in 0 and u = 0 on ao. (7) 

If we know how to solve this problem for smooth data, and are given a smooth 
g on ao, then, to find a harmonic function with boundary values equal to g, 
simply choose aGE C) (0) with G I an = g, let f == - ~G, and solve (7). The 
sum u + G does the trick. 

A variational formulation of problem (7) is given in the next proposition 
whose proof parallels that of Proposition 1. 

Proposition 2 (Dirichlet's Principle). Suppose that u E C 1 (0), u I on = 0, and 
f E L 2(0). Then the following are equivalent: 

(i) ~u = fin Et1'(O). 
(ii) J(u) ::; J(w) for all WE C1 (0) with w I an = 0, where J is the functional 

defined by 

J(w) == f IVw(xW + 2w(x)f(x) dx. 

(iii) u is a critical point of J in the sense that 

(8) 

for all cP E C1(0) with cp I an = O. (9) 

Computing the left-hand side of (9) yields 

:/(U + Bcp)I.=o = 2 In VCP'Vu + fu dx. 

When the right-hand side vanishes for all cp as in (9), we say that u is a 
variational solution of the Dirichlet problem. This formulation is the starting 
point of the Galerkin method in numerical analysis. 
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PROBLEMS 

We give a third motivation for Dirichlet's principle following an analogy with classical 
mechanical systems with damping. 

In the presence of damping, a vibrating membrane tends to an equilibrium state as 
t tends to + CfJ. A mechanical analogue is the system of ordinary differential equations 

mx + ax = - grad <1>(x), m, a E ]0, CfJ[. (10) 

The energy for solutions is a decreasing function of time 

d (mlxl2 ) di -2- + <1>(x) = x(mx + grad <1>(x» = -alxl2 :::; 0, 

where <1> is the potential energy. If<1> tends to + CfJ as Ixl tends to infinity, then as t ~ CfJ, 

each orbit converges to a critical point of <1>. 
The differential equation (10) is equivalent to 

(d)2 d d 
m di (X,qJ>+adi(x,qJ> = -~<1>(x+EqJ)I£=o for all qJ E [Rd. (11) 

The damped wave equation on n is 

Dv + av, = ° on [0, CfJ[ x n, vi an = g(x). (12) 

1. Show that v E C2 ([0, CfJ[ x 0) with vi on = 9 satisfies (12) if and only if for all qJ 
vanishing at an, 

(.~.)2i VqJ dx + a~ i VqJ dx = - .~J(v + EqJ)I,=o, 
dt n dt n dE 

where J(w) == f IVwl2 dx/2. By analogy with the mechanics case, find and prove a 
law of energy decay. 
DISCUSSION. These computations suggest that one can study the approach to 
equilibrium by analogy with the finite-dimensional case. If one supposes that there 
is approach to equilibrium, that is, VA == V(t + l) approaches a limit u(x) as l ~ CfJ, 

then, as in §S.l, u is a solution of the Dirichlet problem (5.1.3). This is a third path 
leading to the idea that one should look for solutions of the Dirichlet problem 
among the critical points of J. 

2. Prove an analogue of Proposition 2 relating the solution of the boundary value 
problem 

,1u + cu = f in n, u = ° on an, (13) 

and extrema of the functional 

J(w) == In IVwl2 - cw2 + 2fw dx. 

Here C :::; ° is a nonpositive real number. 

3. For n fixed show that there is a Co > 0, so that for all c > Co the functional J in 
Problem 2 is not bounded below, that is, the infimum of J over Corn) is equal to 
minus infinity. 
DISCUSSION. This shows that the mere existence of a variational formulation is not 
a panacea. Using the results of §S.7, one can show that the largest Co with this 
property is the largest eigenvalue of,1 on n with Dirichlet boundary conditions. 
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§5.3. The Direct Method of the Calculus of Variations 

Proposition 5.2.2 shows that to solve the Dirichlet problem (5.2.7), it is 
reasonable to look for a function u which minimizes the functional 

J(w) == r I\lwl2 + 2wf dx, In (1 ) 

in the class of functions vanishing at the boundary of Q. We suppose that 
f ERe L 2(Q). The strategy we follow is a standard procedure called the direct 
method of the calculus of variations. It was used by Hilbert not only to solve 
the Dirichlet problem, but also to prove the existence of length minimizing 
geodesics on complete Riemannian manifolds and for a variety of other 
minimization problems. The method consists of five steps. 

Step 1. Show that inf J > -XJ. 

Step 2. Choose a minimizing sequence un' That is, choose a sequence un such 
that lim J(un ) = inf 1. Sometimes one can arrange additional special properties. 

Step 3. Derive estimates for the Un' Usually, the key fact is that for n large 
J(un ) S; [; + inf J. 

Step 4. Based on the estimates in Step 3, extract a subsequence of the Un 
which converges. This step is a compactness argument. The topology is 
dictated by the estimates. The better the estimates, the stronger the con­
vergence, and the easier is the next step. 

Step 5. Show that if u is the limit of the subsequence, then J(u) is equal to 
inf 1. This step is often achieved by showing that J is lower semicontinuous 
with respect to the convergence in Step 4. 

In the present case, Steps 1 and 3 are performed siTl).ultaneously and rep­
resent the heart of the analysis. The functional J has two terms, one of which 
is nonnegative. To show that J is bounded below amounts to showing that 
the other term cannot by very negative without the positive term being just 
as positive. The set of functions over which we are minimizing is taken, 
provisionally, as the set of (P E C1 (Q) with cp I c'Q = O. The class will be enlarged 
(completed) for Step 4. The second term in J is estimated using the Schwartz 
inequality 

To bound this in terms of the nonnegative part of J, we use a lower bound 
for the latter. 

F or any W E Sd-l, the width of Q in the direction of W (see Figure 5.3.1) is 
equal to 

w(w) == sup (x, w> - inf (x, OJ>. 
XEH 

The function w is a positive continuous function on the compact sphere Sd-l. 
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/ 

Figure 5.3.1 

The minimum width of n, denoted 15 = 15(n), is defined as 

15(n) == min {w(w): W E Sd-l } > o. 

If the minimum is attained at a direction w, then the domain n is contained 
between and touching two parallel hyperplanes in IRd with normals equal to 
wand at a distance 15 from each other. 

Assuming this for the moment, we show that J is bounded from below. 
Estimate 

f 1 2 1 2 
21IcpIIL2(0)1IfIIU(rl) = 2vellcpIIL2(rl)j-C Ilfllu(O)::; ell<pIIL2(rl) + IlfIIU(rl)· 

e e 

This trick of estimating a product as a small factor times the square of the first 
factor, plus a large factor times the square of the second is sometimes called 
the Peter-Paul inequality and is very useful. Theorem 1 then yields 

Choosing e = 15- 2/2, we find that 

J(<p) ~ ~11V<PIII2(m - 21521IfIII2(rl). (2) 

In particular, inf J > - CfJ. 

PROOF OF THEOREM 1. It suffices to prove the theorem for real valued <p, since 
the complex case follows upon applying the real result to Re(<p) and Im(<p) 
and adding the squares of the results. 

Choose Cartesian coordinates such that n c { - a < Xl < a} with a = 15/2. 
Let x == (x l' x'), x' == (x 2 , ... , Xd). Extend <p and VIP to vanish outside n. Then 
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The right-hand side is independent of Xl' Integrate dX 1 from -a to 0 to find 

f o (fO fO )1/2 
-a q>2 dX 1 :$; 2a -a q>2 dX 1 -a (£11 q»2 dX 1 

Square to find 

Integrating dx' yields 

11q>11£2(]-a,0[x Rd-I) :$; (2a)21Ia1 q>11£2(]-a.0[x Rd-I). 

Adding this to the corresponding result for O:$; Xl :$; a, and noting that 
2a = b, proves the theorem. 0 

For Q = ]0, b[, using Fourier sine series shows that 

1Iq>llu(]o.<l[) :$; ~ Ilddq> II 
n Xl U()O,<l[) 

with equality holding if and only if q> is a multiple of sin(nx/b). Using this in 
place of the Fundamental Theorem of Calculus and the Schwartz inequality 
in the proof above improves the constant in Theorem 1 to b/n. 

Having proved that J is bounded below, let i == inf(J), the infimum taken 
over those q> E Re C 1 (n) with q> I 00 = O. Choose q>n from this set with J (q>n) -+ i, 
corresponding to Step 2 of the direct method. 

Step 3 is to find estimates for the q>n' Inequality (2) implies that 

(3) 

Theorem 1 yields 

lim sup II q>n Ilu(o) :$; b(2i + 4b2I1fllu(o»)1/2. (4) 

These estimates show that the derivatives of order less than or equal to 1 
of the minimizing sequence are bounded in L 2 (Q). This bound recalls the norm 
in HI, and the next lemma shows that the q>n is naturally a bounded sequence 
in HI ([Rd). 

Lemma 2. Suppose that Q c Rd is a bounded open set and r/J E C1(Q). Define a 
distribution T E .@'(Rd) by extending rP by zero, that is < T, t/I> := Io rPt/I dx. 



184 5. The Dirichlet Problem 

(i) If rP I en = 0, then T E HI (Rd), in fact T belongs to the closure of Cg'(O) in 
HI(Rd). 

(ii) Conversely, if 0 is sufficiently regular that integration by parts as in (1.7.3) 
is valid, then T E HI (0) implies that rP I ()n = O. 

PROOF. (i) Let K(f;) == {x E 0: dist(x, (0) ;:::: s} be the standard exhaustion of 
n. Choosej E Cg'(lxl < t) withj;:::: 0 and S j dx = 1, and define approximate 
delta functions j,,(x) == e-dj(x/s}. Let Xf. == j" * XK(e/2)' Then Xe E Cg'(O), 0 ~ X ~ 
1, X = 1 on K(e), and for 0 < e < 1, 

Let CPe == X"cP E C6(0). Then cp" converges to Tin L2(lRd) and we next show 
that V cPf. converges to VT E e(lRd). This is equivalent to V cPf. -> V cP in L2(0). 

Now VCPe = X" Vcp + qNXe. Lebesgue's Dominated Convergence Theorem 
implies that the first term converges to Vcp in L2(0). For the second term, note 
that in the support of V Xe, cP is no larger than s times the sup norm of V cpo 
Thus the product cpVXf is bounded independent of e. Since the product 
vanishes outside O\K(e) and the measure of O\K(e) tends to zero, the second 
term tends to zero in L2(0). 

As IJ -> 0, the functionj~ * (X"cp) E Cg'(O) converges to x"cp in HI(lRd ). 

(ii) The definition of distribution derivative yields 

<oJ, tf;) = r rPOjtf; dx = r (OjrP)tf; dx - f njrP dO'. 
In In <,n 

Thus 0 T + njrP dO' E L2 (Rd ). If T E H 1(R d ) then oJ E L2(Rd) and it follows 
that njrP dO' E e(Rd) which can hold only if njrP = O. Multiply by nj and sum 
to find that rPlan = O. 0 

The lemma shows that the estimates (3), (4) for the minimizing sequence can 
be interpreted as saying that {CPn} is a bounded sequence in HI (lRd ). It also 
shows that we may replace our minimizing sequence with another, still de­
noted CPn' with CPn E Cg'(O). This suggests the introduction of the following 
space which should be thought of as the set of elements in HI (lRd) which vanish 
on 00 and on the exterior of O. 

Definition. Iii (0) is the closure in Hl(lRd) of Cg'(O). 

Elements of Iii (0) belong to H1(lRd ) and have support in Q. 

EXAMPLE. If 0 = JO, 1 [ c IR, then Sobolev's Theorem implies that 
HI (IR) c C(IR). The elements of Ii I (0) are continuous on [0, 1J and, as uniform 
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limits of elements of C~(]O, 1[), must vanish at the endpoints. In this simple 
case one sees immediately that membership in HI implies that homogeneous 
Dirichlet boundary conditions are satisfied. 

The closed subspace HI(D) of HI([Rd) is a Hilbert space in the HI([Rd) norm. 
Since H 1([Rd) is separable so is HI (D). Theorem 1 implies that on H1(D), 
(Sn IVul 2 dX)I/2 is a norm equivalent to the HI([Rd) norm. Because ?fits close 
relation to the functional J, this is the norm we will use for HI (D). The 
functional J is continuous from ii 1 (D) to [R. In particular, the infimum of J 
on Re Hl(D) is equal to its infimum on Re C~(D). For regular D, Lemma 2 
shows that HI(D) n CI(Q) coincides with those C I functions which vanish at 
the boundary. 

The compactness required in Step 4 of the direct method is provided by the 
fact that a bounded sequence in a Hilbert space has a weakly convergent 
subsequence. We recall some of the basic results concerning weak convergence 
in Hilbert spaces. Let.te denote a Hilbert space. A sequence hn in.te converges 
weakly to a limit h if and only if for all k E .te, (hn , k) ~ (h, k), where (., .) 
denotes the scalar product in .te. Weak convergence is denoted hn -"- h. 

Weak convergence is equivalent to the pointwise convergence of the contin­
uous linear functionals, In(·} == (., lin) to l(·} == (., h). The Uniform Bounded­
ness Principle shows that for weakly convergent sequences, {In} and therefore 
hn are bounded independent of n. 

If hn-"-h, then IIhll slim infllhnll. That is, 11·11 is lower semicontinuous with 
respect to weak convergence. The proof is simple. One need only consider 
h i= O. Then 

IIhl1 2 = (h, h) = lim(hn , h) slim infl(hn, h)1 slim infllhnllllhil. 

Dividing by II h II yields the result. 
Every bounded sequence in a separable Hilbert space has a weakly con­

vergent subsequence (Problem 2). Therefore the minimizing sequence has a 
subsequence, still denoted CPn' which converges weakly in iil(D) to a real 
valued limit u. 

The final step in the direct method is to show that J(u} = i. Write J(w) = 

IIwl12 + 2S wf dx. The lower semicontinuity of norm with respect to weak 
convergence shows that IIul1 2 slim infll CPnll 2. For the second term, note that 
the map wr-+2Sfw dx is a continuous linear functional on HI(D). Weak 
convergence of the CPn is equivalent to the convergence l(CPn} ~ l(u) for all 
l E iii (DY. In particular, 

2 In cPnf dx ~ 2 In uf dx. 

Thus J(u) slim inf J(CPn) = i. 
This completes the proof of all but the uniqueness part of the next theorem. 

Theorem 3. Suppose that D is an open subset of [Rd which is contained between 
a pair of parallel hypersurfaces. If f E Re L 2(D), then the functional 
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J(w) = Jo IVwl2 + 2wf dx is continuous and bounded below on Re Hl(n). It 
achieves its minimum value at one and only one u ERe Hl(n). 

PROOF. The existence of a minimizer is proved above. If U 1 and U 2 are both 
minimizers, we prove equality by a convexity argument. In the next computa­
tion 11'11 denotes the norm (J IVul2 dx)l/Z on Hl(n) 

IIu1 ; uzr = (11u111 2 ~JuzIIZ) +! In VU 1 ' VU2 dx, 

1 r \7 d 11 I IIu111 2 + II uzll 2 
"2 Jo VU 1 'VUZ x:S:2lu l llluzll :S:-~-4----' (5) 

Thus J((u l + uz)/2):S: (J(u 1 ) + J(uz»/2. Since J(Uj) = i for j = 1,2, and i is 
the minimum value of J, we must have equality in the inequalities in (5). 

Equality in the first implies that VUl = aVuz or VU2 = aVu l with a E IR+. 
From the second we conclude that lIulll = Iluzll. Recall that the norm is 
the L2 norm of the gradient. Thus a = 1 and therefore Ilul - u211 = 

IIVu1 - Vu 2 I1L2(O) = O. 0 

The uniqueness proof above shows that J is a strictly convex function on 
Hl(n). 

I t is natural that we had to enlarge the class of admissible functions in order 
to produce a minimum. This is entirely analogous to enlarging the rationals 
to the reals in order to gain completeness. Here the set of C l functions 
vanishing at the boundary was completed in a norm which was suggested by 
the estimates for the minimizing sequence. Whenever one admits more candi­
dates into competition there is a danger that there may be too many solutions. 
The uniqueness in Theorem 3 is therefore reassuring. 

To show that u solves the Dirichlet problem we would like to show that in 
some sense Au = f and u I 00 = O. The first is not hard to justify. The second 
is hidden in the fact that u E HI(n). The latter relation will be examined in 
more detail in §5.5. For the differential equation, we have a result analogous 
to Proposition 5.2.2. 

Proposition 4. Suppose that u E ~'(n), fE L2(n), and Vu E L2(n). Then the 
following are equivalent: 

(i) Au = f in the sense of ~'(n). 
(ii) For all t/J E ~(n) 

In VU'Vt/J + ft/J dx = O. 

(iii) The identity in (ii) holds for all t/J E Hl (n). 
(iv) For all t/J E Hl(Q), dJ(u + el/!)/dele=o = O. 
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PROOF. To show that (i) <0> (ii) note that for any IjJ E ~(n), < - Llu, 1jJ) = 
L < OjU, OjljJ) from the definition of distribution derivative. Since OjU E L 2, we 
find that 

<f - Llu, 1/1) = L VU'VIjJ + N dx, 

which yields the equivalence of (i) and (ii). 
It is obvious that (iii) => (ii). That (ii) => (iii) follows from the fact that the 

integral in (ii) is continuous on Bi(n), and ~(n) is dense in Bl(n). 
The equivalence of (iii) and (iv) follows from the fact that the derivative in 

(iv) is equal to the integral in (iii). 0 

The direct method of the calculus of variations usually yields solutions 
which satisfy the differential equations in a sense weaker than the classical 
sense. Historically, this was one ofthe motivations for the idea of distribution 
derivatives. 

Corollary 5. If fE Re L 2 (n), then there is exactly one U E Re Bi(n) such that 
Llu = f. 

PROOF. Proposition 4 shows that the minimizer of Theorem 3 is such a 
solution. Conversely, if Ui and U2 are solutions, then the difference w == Ul - Uz 
belongs to Bi(n), and part (iii) of Proposition 4 shows that S VW' VI/I dx = 0 
for all 1/1 E B1(n). Take IjJ = w to find that Ilwll = 0 so w = O. 0 

This ends an important first step in studying the Dirichlet problem. The 
notion of solution has been extended and for this notion there is unique 
solvability. It is natural to ask whether one gets classical solutions when the 
data are sufficiently regular. For example, if n is regular and f E e Xl (0) we 
will show that U E COC(O) and is a solution in the classical sense. The next 
sections are devoted to showing just how much can be done in the Bl (n) 
context. The proof of the Regularity Theorems will be given in §5.8 and §5.9. 
The main results assert that U has two more derivatives than f at any point 
x E 0 when the derivatives are measured in the sense of H S • 

Definition. If U E ~'(n), sEN, and x E 0, then we say that U E HS(x) if there is 
an r > 0 so that for allial S; s, Dilu E LZ(n n Br(x». 

The Interior Elliptic Regularity Theorem 5.9.2 asserts that if x E nand 
f E HS(x), then U E HS+Z(x). The Boundary Regularity Theorem 5.9.3 asserts 
that the same conclusion is true for x E on, provided that 0 c:... IRd is a smooth 
embedded manifold with boundary. In either case, the Sobolev Embedding 
Theorem allows us to conclude that U is Ck on an 0 neighborhood of x 
provided that k < s - dj2. The cro regularity asserted in the previous para­
graph then follows. 
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PROBLEMS 

1. Use the steps from the Dircet Method of the Calculus of Variations to prove the 
following abstract result: 

Theorem. Suppose that H is a separable Hilbert space and J: H -> IR satisfies: 
(i) inf J > - 00. 

(ii) J is sequentially lower semicontinuous with respect to weak convergence in H. 
(iii) limllwll_oo J(w) = 00. 

Then there is a u E H such that J(u) S J(w) for all w E H. 

DISCUSSION. To apply this result to the J in (1), one needs to verify (i), (ii), (iii) which 
is the heart of the argument presented in this section. 

The weak compactness of the unit ball in Hilbert space is sometimes proved as a 
corollary to the Banach~Alouglu Theorem asserting the weak-star compactness of the 
unit ball in the dual of a Banach space. The latter result is proved using Tychonov's 
Theorem and therefore uses a strong version of the axiom of choice. The next problem 
presents a proof which uses minimal set-theoretic subtlety. 

2. Suppose that {h n } is a bounded sequence in the separable Hilbert space ff. Prove 
that there is a weakly convergent subsequence by carrying out the following steps. 
Choose an orthonormal basis e1 , e2 , ... for ff. 

(i) Prove that there is a subsequence {hnJ with the property that for all j, 
lim(ej , hnJ exists. Hint. Cantor diagonal process. Call the subsequence km , and 
the limits aj • 

(ii) Prove that L lajl l converges. Hint. Show that the sum of the first N terms is 
the limit of (k m , L~ aje) as m -> 00. Estimate the limit using the Schwartz 
inequality. 

Since {aj} E 12 , define h == L ajej E ff. 
(iii) Prove that km ~ h. 

§5.4. Variations on the Theme 

In this section the proof in §5.3 is generalized in several directions. The changes 
are small and the domain of applicability of the method is shown to be very 
wide. Among the extensions considered are more general second-order oper­
ators, more general boundary conditions including the Neumann problem, 
and the Laplace~ Beltrami operator on Riemannian manifolds. 

First, the method is extended to symmetric divergence form operators 
generalizing A. The key observation here is that the Dirichlet integral, 
S IVwl2 dx, can be replaced by any other quadratic form which is equivalent 
to the norm in Hl(O). Toward that end, let 

a(v, v) == In L aij(x)oiVOjV + a(x)v2 dx. (1) 

Assume that 
au = aji and a all belong to L 00 (0 : IR), (2) 
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(3/1 > 0), (\I ~ E [Rd, X E Q), (3) 

The constant /1 in (3) is called an ellipticity constant. 

a(u, U)I/2 is equivalent to the norm in Re HI (Q). (4) 

Hypothesis (4) is equivalent to the existence of a c > ° such that 

a(u, u)?: c(L IVul2 + u2 dX) for all u E Re CO'(Q). (5) 

Condition (3) is necessary for the validity of (4) and then /1 ?: c (Problem 1). 
When inequality (5) is satisfied, a(u, u) is called coercive. 

Proposition 1. Suppose that (2) and (3) are satisfied. 

(i) If inf{a(x): x E Q} > 0, then (4) is satisfied. 
(ii) If Q lies between two parallel hyperplanes at distance 6 < 00, then (4) is 

satisfied so long as inf{a(x): x E Q} > -/1/62. 

PROOF. The first assertion is immediate. For the second, choose /1' < /1 so that 
inf a ?: - /1'/62. Then for all u E CO'(Q) 

L a(x)luI 2 dx?: (inf a)llulli2(rl)?: r~ Il ulli2(rl)?: -/1'II Vu lli2(rl)' 

the last inequality using Theorem 5.3.1. Then a(u, u) ?: (/1 - /1') IIVul1 2 which, 
together with Theorem 5.3.1, proves the desired estimate (5). 0 

EXAMPLE. If aij and a and Q are fixed, then for sufficiently small r, Q' == Br(x) c Q 
satisfies hypothesis (4). 

What was needed ofthe term 2S wf dx in J is that the linear map w H 2S wf dx 
was continuous from Re HI to R This was used in showing that J was 
bounded from below, and in showing that J was low~r semicontinuous with 
respect to weak convergence in HI. Suppose that 

I: Re HI(Q) -> [R is a linear and continuous map. (6) 

Equivalently, IE .@'(Q) and 

(3c), (\lcp E Re CO'(Q», (6') 

Clearly (6) implies (6'). Conversely, if (6') is satisfied, then since CO' in dense in 
HI, I has a unique extension satisfying (6). 

The proof of the last section yields the following result. 

Theorem 2. Under hypotheses (1), (2), (4), and (6) the functional J(v) == a(v, v) + 
21(v) is a strictly convex continuous function from Re HI(Q) to R J is bounded 
below and achieves its infimum at a unique u E Re HI. The minimizing u is 
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characterized by 
a(u, q;) + l(q;) = O. (7) 

The above theorem is valid in an arbitrary open set. No regularity or bounded­
ness is required. 

The left-hand side of (7) is equal to dJ(u + eq;)/de 1 ,~o' Equations derived 
by setting such directional derivatives equal to zero at stationary points of a 
functional J are often called Euler equations. The interpretation in terms of 
differential equations is the following exact analogue of Proposition 5.3.3. 

Proposition 3. The minimizer u in Theorem 1 is the unique u E Re Hl(n) such 
that 

(8) 

Note that for u E Hl (0.), aiAu is square integrable on 0. so the distribution 
derivative 0i(aijaju) is meaningful. On the other hand, the individual terms in 
the expression aijOijU + (aiaij)oju from the product rule do not have a simple 
interpretation unless 0iaij is square integrable. It is wise to leave L in the 
divergence form (8). The next proposition shows that L is not only well defined 
but continuous. 

Proposition 4. If Q(x, D)u == L:))qj(x)u) with qj E L 00(0.), then Q is a continuous 

map from L2(n) to the dual of Hl(n). 

PROOF. For u E L2(n), 1/1 E Ccf(n) compute 

(Qu, 1/1> = - L (qix)u, Ojl/l> = - L f qix) u(x) aj 1/1 (x) dx 

1 (Qq;, I/I>I:-s; L 1Iq;llullqjIILoollajl/lllu:-S; cllq;lluIiI/lIIHI' 
Since the set of 1/1 are dense in Hl (0.), the result follows. o 

This proposition implies that L is a continuous map of Hl(n) to Re Hl(n)' 
whenever (2) is satisfied. 

Corollary 5. The map L in (8) is an isomorphism from Re Hl (0.) to the dual 
Re Hl(n)'. 

PROOF. We have established that L is a continuous bijection between these 
spaces. To prove that the inverse is continuous is equivalent to finding an 
estimate for the Hl (0.) norm of the solution of Lu = I in terms of the Hl (0.)' 
norm of I. To do this, take q; = u in the Euler equation (5) to find that 

a(u, u):-S; clluIlHII1111(lft)·. 

Since a(u, u) is equivalent to the square of the Hl norm, this shows that 
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IlullHI ..:::; cllfll(Hl)" 
which is equivalent to the continuity of the inverse of L. 
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(9) 

o 

One could have concluded that L -1 is continuous by applying the Open 
Mapping Theorem. It is a general principle that if one has done so much 
analysis that an inequality follows by applying the Baire Category Theorem, 
then one has actually proved the inequality earlier. In our case, it is the lower 
bound (5.2.2) which is an alias for (9). 

It is also useful to recall the derivation of (9) since one step is hidden in 
Proposition 3. What one does is apply Lu = I to u. An integration by parts 
and (5) yields the estimate. Briefly, the estimate is proved by multiplying the 
equation by u, then integrating by parts. This is an example of the energy 
method with multiplier u. 

In analogy with the Lax duality proved in Problem 3.5.1, we make the 

Definition. H-1 (n) is the dual of Hl(n). That is, H-1 (n) is the set of distribu­
tions IE ft'(n) satisfying (6') for all qJ E cO"(n). 

The Riesz Representation Theorem gives an isometry between HI (n) and 
H-I (n). In particular, H- 1 (n) is a separable Hilbert space. 

Under the hypotheses which imply coerciveness, Corollary 5 asserts that 
L: Re HI -+ Re H-1 is an isomorphism. Estimate (9) takes the elegant form 

(10) 

Such an estimate giving a gain of two derivatives is typical of elliptic equations 
(recall Proposition 2.4.5 and contrast Problem 1.1.4). 

The technique for the Dirichlet problem also solves a variety of other elliptic 
boundary value problems which arise in applications. As an example, conside 
heat flow in n with a constant source f(x) and insulated boundary. The 
equations of motion take the form 

v, = vAv + f(x), 

av 
- = 0 at an an and 

t, x E IR, x n, (11) 

v(O, .) given. (12) 

The Neumann boundary condition (12) asserts that there is no flow of heat 
through the boundary. This is the meaning of perfect insulation. One finds, as 
t -+ 00, vet, x) -+ u(x), a solution to the Neumann problem 

vAu = f in n, 
au 
a~ = 0 at an. (13) 

These conditions are insufficient to determine u. Any two solutions differ by 
a constant function. The constants are the elements of the null space of A with 
Neumann boundary conditions. To complete the determination of u use the 
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conservation of energy 

f vet, x) dx is independent of time (14) 

for solution of (11), (12). To prove this, integrate the equation over 0 and note 
that Sn,1v dx = S cnov/on d(J = 0, thanks to (12). Thus OtS v dx = S Vt dx = ° 
proving (14). Therefore, Sn u(x) dx = Sn v(O, x) dx. This additional condition 
together with (13) identifies u. Here the initial condition contributes to the 
determination of the steady state u. This is in contrast to heat flow in a domain 
whose boundary is kept at a time-independent temperature. 

Corresponding to the fact that there is nonuniqueness of solutions to (13) 
there is also nonexistence. Integrating the equation over 0 yields 

r f(x) dx = v r ,1u dx = v f ~u d(J = 0, In In on un 

which is a necessary condition on f for solvability. 
If one attempted to solve (11) by Laplace transform in time 

£'v(,) == LXl e-rtv(t) dt, 

one finds the boundary value problem 

(, - v,1)£'v = f(x) in 0, o(£'v) = ° at 00. 
on 

For, E ]0, 00 [(more generally, E 1[:\] - 00, 0]), this is uniquely solvable. The 
key is to show the solvability of the Neumann problem 

au 
(a(x) - v,1)u = ° in 0, an = ° on a~, (15) 

where v > ° and a E U)(O: IR) and inf a(x) == ("J. > 0. The solution is obtained 
by the variational method with a basic Hilbert space different from BI(O). 

Definition. If 0 c IRd is open, then the Sobolev space HI (0) is the set of 
distributions u E g~'(O) such that for IPI ::;; 1, aPu E L2(0). 

Proposition 6. Hl(O) is a separable Hilbert space with norm given by 

Ilull;{I(Q) == In IVul 2 + lul 2 dx. 

PROOF. To verify completeness suppose that Un is a Cauchy sequence. Then, 
for alllPi ::;; 1, aPu is a Cauchy sequence in L 2(0). By completeness of L 2, aPUn 
converges in U(O) to a limit gp for alllPI ::;; 1. 

Since L 2 convergence implies convergence in the sense of distributions and 
a is continuous for distribution convergence, aflgo = afllim Un = lim oflun = 

gp E L2(0). Thus go belongs to HI(O) and by construction Un converges to go 
in HI(O) proving completeness. 
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The map U f--+ (U, 01 u, ... , Ddu) is an isometry from Hl(O) into L 2(O)d+1. The 
separability of the target implies the separability of the source. 0 

The Neumann problem (15) is solved by minimizing 

J(u) == In vlVul 2 + a(x)u2 - 2f(x)u(x) dx, (16) 

where the minimum is taken over all u E Re HI (0). The key fact in construct­
ing a minimum is that the bilinear form 

a(u, u) == In vlVul 2 + a(x)u2 dx 

defines a norm equivalent to the HI (0) norm. This is the requisite coerciveness. 
Even a trusting reader should be skeptical that this minimum solves the 

boundary value problem since the boundary condition appears nowhere in 
the description. lfthe minimum is achieved at v, the Euler equations show that 

r vV cp' Vv + a(x)qJV - cpf dx = 0 for all cp E Ht(O). (17) In 
Choosing cp E C~(O) shows that the differential equation is satisfied in the 
sense of distributions. However, the boundary condition ov/Dn = 0 is not 
hidden in the condition that v E Hl(O). For example, the restriction of an 
arbitrary member of C"'(lRd) to 0 lies in the space Hl(O) and in no sense 
satisfies homogeneous Neumann conditions. 

However, the equation of variation, (17), holds for a large class of test 
functions cp. For the Dirichlet problem, Proposition 5.3.4 showed that the 
equation of variation was satisfied if and only ifit was satisfied for all cp E C~(O). 

This is not the case for the Neumann problem. To see the difference suppose 
that Q is smooth and v E C2(O) satisfies (17). An integration by parts yields 

i f vcpov 
cp( - v~v + a(x)v - cpf) dx + -;"l- da = 0 

n an on 
for all cp E HI (0). 

(IS) 

For cp E C;'(O) the boundary term vanishes and we recover the differential 
equation, (a - v~)v =.f This implies that the integral over 0 vanishes for all 
cp E HI (0). Thus the boundary integral vanishes for all cp E HI (0), in particu­
lar, for all cp E eDen). Then cp I an is an arbitrary smooth function on the 
boundary of 0 and it follows that Dv/on = 0 on the boundary. For irregular 
sets 0 or nonsmooth v the equation of variation gives a weak sense to the 
homogeneous Neumann boundary condition which is still strong enough to 
imply uniqueness. When the data are regular the solutions are regular and 
satisfy the boundary condition in the classical sense. Elliptic regularity of the 
sort fE HS(x) => U E H s+2 (x) can be proved by the same methods as those 
employed for the Dirichlet problem in §5.S and §5.9. Boundary conditions 
which are hidden in the equation of variation, rather than being imposed 



194 5. The Dirichlet Problem 

directly on the admissible functions in a variational argument, are called 
natural boundary conditions. 

Another example amenable to analysis as above is the Laplace-Beltrami 
operator. Suppose that M is a compact smooth Riemannian manifold. We use 
the standard notation Tx(M) for the tangent space to M at x. It is identified 
with equivalence classes of curves yet) with yeO) = x with Yl ~ Y2 if and only 
if their first derivatives are equal in any coordinate system. The dual space to 
TAM) is denoted Tx*(M) and is the fiber of the cotangent bundle T*(M). For 
a qJ E Coc (M : IR) the exterior derivative dqJ is a section of the cotangent bundle. 
The Riemannian metric on TAM) induces a correspondence between TAM) 
and Tx*(M) and thereby a metric on Tx*(M). Thus if WE Tx*(M), its length Iwi 
is well defined as is the scalar product <w, .;) of two elements of Tx*(M). The 
Laplace-Beltrami operator 11M is the differential operator associated to the 
Dirichlet integral D(qJ) == SM IdqJI2 dV, where IdqJ(x)1 is the length of dqJ(x) and 
dV is the Riemannian volume element on M. Thus, for qJ E Cg'(M), 
I1 M qJ E Cg'(M) is defined by the relation 

fM t/JI1MqJ dv = - fM <dt/J(x), dqJ(x» dv = l(djde)D(qJ + Bt/J)I.=o· 

Computing in local coordinates shows that 11M is a second-order differential 
operator like those considered in this section. Hl(M) is defined as the set of 
elements of u E L 2(M) such that in any local coordinates, 8uj8xi E Lfoc. If t/Jj 
is a finite partition of unity subordinate to a coordinate atlas (Vj , /3), then 
Hl(M) is a Hilbert space with norm 

lIull~'(M) == L L IW((t/Jju) 0 /3j)IIE.2(fild). 
j lalsl 

Then the functional 

fM U(X)2 + Idu(xW dV 

is coercive, that is, defines a norm equivalent to the norm on Hl(M), which 
shows that 1 - 11M is an isomorphism of Hl(M) to HI (M)'. If Q c M is a 
bounded open set and jjl(Q) is defined to be the closure of Cg'(Q) in H 1(M), 
then the functional D(u) is coercive on jjl(Q) and one finds that 11M is an 
isomorphism of jjl(Q) to jjl(Q)'. If fE C)(M) and x E M, we can take Q to 
be a small neighborhood of x and thereby solve the equation I1M u = f on a 
neighborhood of x. In §5.8 we will show that U E COO (Q). This local solvability 
of 11M is a crucial step in the construction of isothermal coordinates on 
Riemannian 2-manifolds. This in turn is how they are given a complex struc­
ture and are identified as Riemann surfaces. 

In the same vein, the Hodge Theory is associated with the quadratic form 

fM Idw(xW + Id*w(x)1 dv, 
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where d: N(M) ~ N+l(M) is the exterior derivative and d*: Ak+l(M) ~ N(M) 
(and therefore N ~ N-I) is the transposed differential operator based on the 
natural L2 scalar products in N(M) and Ak+l(M). The associated second­
order differential operator from N to itself is equal to d* d + dd* and is called 
the Hodge Laplacian. The difficult part of the classical Hodge Theorem is an 
Elliptic Regularity Theorem which can be proved as in §5.8. 

PROBLEMS 

1. Prove that if inequality (5) holds, then (4) must be satisfied and c s inf{I aij(x)~i~j: 
x E Q and ~ E IRd with I~I = I}. Hint. Consider highly oscillatory test functions eiAx~ 
with A -> 00 localized by a cutoff x(n(x - ~», with n = nU) tending to infinity. 

The existence theorems of the last two sections can be proved using the Riesz 
Representation Theorem for elements of the dual of a Hibert space. That theorem is 
proved by a variational argument, and one can view what we have done as repeating 
the proof. 

This is not a wasted exercise since there are many other problems which can be 
attacked by the Direct Method of the Calculus of Variations, including many nonlinear 
problems. Problem 2 describes the Riesz Representation Theorem proof. We take 
the opportunity to give a generalization to complex equations and solutions. The 
hypotheses on the coefficients are 

aij = iiji and a;::: 0 belong to L 00 (Q). (19) 

In this case 
(20) 

and we assume coercivity, that is 

a(v, V)1/2 is equivalent to the norm in HI(Q). (21) 

The Riesz Representation Theorem then shows that every continuous linear functional 
on Hl(Q) is of the form a(', u) for appropriate u E HI (Q). 

As in Problem 1, (21) can hold only if there is a J.l > 0 such that 

for all x E Q and ~ E Cd. 

If the aij are real and satisfy (3), then this holds since in that case one has 

I aij(x)~i~j = I aij(x)(Re ~;)(Re ~j) + (1m ~;)(Im ~). 

(22) 

(23) 

In the real case, if L is a second order and elliptic, then either L or - L satisfies (3). In 
the complex case, the analogous result is not true, for example, L = (ox + iOy)2 is elliptic, 
but neither L nor - L is positive in the sense of (22). 

2. Use the Riesz Representation Theorem to show that if L satisfies (19), (20), (21), then 
L is an isomorphism of Hl(Q) to H-l(Q). Warning. Beware of complex conjugates. 

3. Prove 
(i) If Q = JO, b[, then IE H-1(Q) if and only if there is a U E L 2(Q) such that 

1= du/dx (derivative in the sense of distributions). 
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(ii) Let r = kernel(d/dx) be the linear subspace of constant functions in L 2. Prove 
that the map u f--> du/dx is an isomorphism of L 2(]O, b[)/r to H- I (]O, b[). 

4. Prove that if Q c ~d is bounded and open, then IE H- I if and only if there are 
functionsij E L 2(Q) such that u = L ajij. Is this an isomorphism of L2(Q)d/constants 
to H-I(Q)? 

5. CO"(Q) c... H- 1 (Q) by the usual identification ffJ f--> I 

<I, r/I> == t l/t(x)ffJ(x) dx 

Prove that C;'(Q) is dense in H-1(Q). 

6. Show that the natural boundary condition associated to the variational problem 

minimize over v E Re HI(Q): f L aij(x)OjVajv + v2 dx In 
is 

(n l , .•. , nd ) = outward conormal to oQ. (24) 

DISCUSSION. The derivative on the left is called the normal derivative associated to 
the operator with principal symbol L aiAj' It arises in a variety of problems in 
geometry and mechanics. 

The next problem treats the so-called third boundary value problem which has the 
Robin boundary condition 

AU 
an + !X(x)u = O. 

One origin is the study of heat flow in a region Q surrounded by a temperature bath 
at temperature T. The outward heat flux at the boundary is proportional to the 
difference between the temperature at the boundary and T 

OV - a~ = a(v - T), !X> O. 

Thus v - T satisfies the heat equation in Q and a homogeneous Robin condition at 
the boundary. Equilibrium solutions with a source f satisfy 

Au =f in Q and 

This is equivalent to the variational problem 

au -_.- + au = 0 on aQ. an 

minimize J(u) == f IVul2 + 2uf dx + f !Xu 2 da, In on 

(25) 

The fact that u I an makes sense and is square integrable for u E HI(Q) is called a Trace 
Theorem. A model is Theorem 5.5.3. 

1. Prove that if Q is regular and u E C2(O) satisfies J(u) :::; J(w) for all WE C2 (O), then 
, u is a solution of (25). 

DISCUSSION. The Robin condition is a natural boundary condition associated to the 
functional J on HI(Q). The variational approach to a variety of elliptic boundary 
value problems can be found in the books of Agmon [A] and Lions [Lio]. 
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§5.5. Hl and the Dirichlet Boundary Condition 

Our solutions of the Dirichlet problem satisfy the differential equation in the 
sense of distributions and the homogeneous Dirichlet boundary condition in 
the sense that U E HI (0). In this section we examine more closely the structure 
of HI In the process, we prove several ways in which the condition ul dl = 0 
is satisfied. 

Theorem 1. If Q =. IRd is a compact smooth submanifold with boundary, then 
HI (0) is equal to the set olal/u E HI(lRd ) with support in n. 
PROOF. If U E HI(O), choose Un E CO'(O) with Un -+ U in HI(lRd ). Then Un van­
ishes on IRd\Q and Un converges to u in Ci'(lRd). It follows that U vanishes on 
lReI,n. so supp U c O. 

Conversely, if U E HI (lRd) with supp(u) c Q and I: > 0, we will construct 
u, E HI(lRd ) with supp(u,) c 0 and Ilu - u,li[fl(J-ld) < f;. Then, for '1 sufficiently 

small . .i'l * 11, E C(f (0) and II u - .iry * u, II [flO,d) < ". 
To construct u, we push U inward using the flow of a vector field. Choose 

a smooth compactly supported vector field Von IRd which is transverse to ao 
and points out of 0 at points of a~. Let <1>, be the flow generated by the vector 
field V. Since V is compactly supported the flow is globally defined and <1>, is 
equal to the identity map outside supp V. 

The transversality hypothesis implies that there is a c > 0 such that for 
O:S: t :S: I, <1>~,(h) c {x E n: dist(x, an) ~ ct}. The function UE is defined to be 
U 0 <1>, for t small positive so supp(u 0 <1>,) c <1>~,(n). It suffices to show that 
u 0 <1>, converges to u in Hl(lRd). 

Lemma 2. Suppose that V is a smooth compactly supported l'ector field on IRd 
and <1>, is the .flow generated by V. For allY w E L2(lRd), IV 0 <1>, -+ IV in L2(lRd) as 
t -+ O. 

PROOF. For IV belonging to the dense subset CO(lRd) c L2(lRd), the conclusion 
is immediate. In fact, one has uniform convergence and support contained in 
a compact set independent of t E [ -I, 1]. 

The maps Ii' -+ W 0 <1>, are linear maps. To prove the lemma it is sufficient 
to prove that for It I :S: 1 the maps are uniformly bounded in Hom(L 2 (lRd)). 

Compute for It' E CO(lRd) using the change of variable y = <1>,(x) 

Ld Iw 0 <1>,(xW dx = Ld IwCrW det D<1>~,():) dy, 

where we note that det D<1>, > 0 since det D<1>, is continuous in t, non vanishing, 
and equal to 1 at t = O. The uniform boundedness is a consequence of the fact 
that det D<1> ~,C\') is bounded independent of Y E IRd and t E [ - 1.1]. D 

For diffeomorphisms <1> of IRd, which equal the identity outside a compact 
set, the map 5'~( IRd ) :3 U -+ U 0 <1> extends uniquely to a sequentially continuous 
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map of g"(~d) to itself. The transpose of the map is given by 
v~(detD<1>rl(vo<1>-l) and takes.'/ to itself. Thus, for UE.'1"(~d), uo<1> is 
given by <u 0 <1>, t/J) = <u, (det D<1»-1 (t/J 0 <1>-1 ». The chain rule for the partial 
derivatives of u 0 <1> follows by continuity from its validity on the sequentially 
dense subset .'I' c .'1". Therefore 

" O<1>k oiu 0 <1» = L.. ((OkU) 0 <1» ax. , 
J 

(1 ) 

so II u 0 <1> II HI ::;; c II u II HI and it follows that 0 <1> maps HI (~d) to itself. Lemma 
2 together with formula (1) imply that u 0 <1>, converges to u in HI (~d) as t ~ O. 
This completes the proof of Theorem 1. 0 

When d = 1, the elements of HI(~d) are continuous functions. Thus 
supp u c n implies that ul an = O. When d > 1, u does not have well-defined 
values at points. However, ul an is a well-defined element of E&'(on) and for 
u E i/l(n) this distribution vanishes. 

Theorem 3. Suppose that L c ~d is an smooth embedded compact d - 1 dimen­
sional manifold. Then the map C~(n) '3 qJ ~ qJl!: ~ Y(qJ) has a unique contin­
uous extension to a linear map of HI (~d) to L 2(L). In addition, there is a constant 
C = C(L) such that for all u E Hl(~d). 

(2) 

The norm in L2(L) is that with respect to any smooth volume element, for 
example, the volume element da induced by the Euclidean metric in ~d. 

For u E HI(~d) the value of y(u) is called the trace of u on L and is also 
denoted ul!:. A more careful estimate shows that ul!: belongs to the fractional 
Sobolev space HI/2(L) (see Hormander, [H2, Vol. I]). 

PROOF OF THEOREM 3. Since C~(~d) is dense in Hl(~d), it suffices to prove the 
estimate (2) for elements t/J of C~(~d). 

Choose a compactly supported smooth vector field, V, which is transverse 
to L. Let <1>, be the flow generated by V Then there is an e > 0 such that the 
map '7: (t, a)~<1>,(a)is a diffeomorphism from] -c, c[ x L to an ~dneighbor­
hood, 0/1, of L. The Euclidean volume element in 0Ji is equal to wet, a) dt da 
with w smooth on ] - c, c[ x L. 

Choose X(t) E C~(] -c, cD with X(O) = 1. Integrate o,(x(lt/J 0 '712) over 
- c ::;; t ::;; 0 to find 

I t/J I 2.(0, a) = f x,It/J1 2 dt + 2 Re f Xt/Jt/f, dt. 

Integrate d(J and then apply the Schwartz inequality in the second term to 
prove (2) for t/J. 0 

The next result shows that the traces at on of elements of HI (n) vanish. In 
this sense they satisfy the Dirichlet boundary condition. 
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Corollary 4. If n is as in Theorem 1 and U E iii (n), then ul en = O. 

PROOF. Choose Un E C(f' (n) converging to u in HI (lRd ). Then un I an converges 
to u I en in L 2(n). The result follows since unl an = O. 0 

The traces defined in the previous theorem enter in the formula for inte­
gration by parts. 

Theorem 5. Suppose that n is as in Theorem 1. Then, for all u, v E Hl(lRd) and 
1 :5, j :5, d, 

r uajv dx = - r vaju dx + f UV dX I A ... A ;hj A .. , dxd . (3) In In M 

/'.. 
The integrand of the last term is u I ,on v 1m ELI (an). The dXj means tha~this 

factor is omitted. The formula is often written noticing that dX I A ... A dXj A 

... dXd = nj d(J, where d(J is the element of Euclidean area on an and (n l , ..• , nd ) 

is the Euclidean outward unit normal to an. 

PROOF. Formula (3) is true for u, v in COD (lRd) which is a dense subset of HI (lRd). 
Thanks to Theorem 4, both sides of (3) define continuous bilinear forms on 
HI (lRd) X HI (lRd ). The identity follows since continuous functions which are 
equal on a dense subset are everywhere equal. 0 

The next result expresses a sense in which u vanishes at the boundary 
without passing through the intermediary of traces at the boundary. It asserts 
that the average value oflul 2 in a band of width I: about an tends to zero with 1:. 

Theorem 6. Suppose that n is as in Theorem 1 and ~ == {x E n: dist(x, an) < [;}. 
Then there is a constant c and 60 > 0 so that, for all u E ii 1(n) and I: < 1:o, 

f'/,; lul 2 dx :5, ce21IVull£2(~. (4) 

PROOF. Introduce 'l': IR x an ~ IRd by 'l'(t, (J) = (J + tn«(J) where n«(J) is the 
unit outward normal to an. Then there is an Eo > 0 so that 'l' is a diffeomor­
phism of J -£0' £o[ x an to a neighborhood of an and t is the distance of 
'l'(t, (J) to an. 

lt is sufficient to prove (4) for qJ in the dense subset C~(n). For t E [ - £0/2, OJ 
and such qJ integrate at(qJ 0 'l') over [t, OJ to find 

IqJ(t,(J)1 = 11° qJ, dt l:5, ItI1/2(1° IqJtl 2dtrZ
, (5) 

where the last estimate uses the Schwartz inequality. 
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Square (5) and integrate d() to find 

In lep(t, ())1 2 d() :s; cltlllVep 0 'Plli2o-a ,0[Xvn)' 

For any 0 < 8 :s; Bo/2, integrate dt over [ - 8, 0] to find 

fo f lep(t, ()W dt d() :s; c'82 11Vep 0 'Plli 2o-e,0[X an) 
-< an 

and the theorem follows, 

(6) 

o 

Since the volume of:Y. is of order 8 and the integral of u2 over :Y. is 0(82), 
the theorem shows that the average of lul 2 over:Y. is 0(8), which is best possible 
(Problem 2), 

Corollary 7. With 0 and .~ as above and u E RI(O) 

1 f 2 - lui dx = 0(8) 
Vol (.Y,J .7, 

as 8-+0+, (7) 

PROBLEMS 

1. Suppose that n c... [Rd is a smooth compact submanifold with boundary and 
U E C"([Rd), Let v == uXn E L2(n). Prove that v E HI ([Rd) if and only if u Ion = O. In 
this case, show that v E HI(n). 
DISCUSSION. This is an HI version of Lemma 5.3.2. 

2. Show that the o(e) in Corollary 7 cannot be strengthened to O(e·) for any rx > 1. 
Hint. Consider n = ]0, I[ c [R and u = xl/2(ln xV near x = 0 with p suitably 
chosen. 

3. Let t, (J be the coordinates on a tubular neighborhood of an as in the proof of . 
Theorem 3. Prove that there is an f. > 0 such that for U E HI ([Rd) the map t f-+ (u 0 lP) 
(t, .) is continuous on [ e, e] with values in L2(an). 
DISCUSSION. This result shows that the traces of u on the hypersurfaces "parallel" 
to an depend continuously on the distance to an. 

§5.6. The Fredholm Alternative 

In §5.3 and §5.4 we proved unique solvability of the Dirichlet problem for 
coercive divergence form operators, L aiaij(X)aj + a(x). In this section we show 
how this can be used to study operators which are not in divergence form, for 
example, Ll + a/aX I ,and operators which are not coercive, for example, Ll + A­
for A- large positive. The final results assert that the null spaces are finite 
dimensional and the ranges are equal to the annihilators of the null spaces of 
the transposed operators. 
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Suppose that Q is a bounded open set and consider a second-order operator 

L(x, 0) = L aij(x)oA + L aix)oj + a(x), (1) 

aij , aj' a belong to COO(Q: ~) and aij = aji , (2) 

(3~ > 0), (\Ix E Q, ~ E ~d), 

The transposed operator is 

(3) 

(4) 

Vex, o)v == L cA(aij(x)v) + L - Ciaj(x)v) + a(x)v. (S) 

Note that to form V the coefficients must be differentiable. L is of divergence 
form precisely when L = V, that is, when L is symmetric. For all <p, tf; E Co(Q) 
we have Green's identity 

In <pLtf; - tf;V<p dx = O. 

Both L and V are continuous maps of HI(Q) to H-I(Q) and Green's identity 
extends by continuity to all <p, tf; E HI (Q) if one interprets the integral of Ltf; 
times <p as the value of Ltf; E HI(Q)' at <p E HI and similarly for the second 
term. Thus 

(6) 

In particular, if <p belongs to the kernel of V, then <p is annihilated by every 
element of the range of L. The goal of this section is to show that this is an 
exact description, that is, the range of L is equal to the set of elements of H- I (Q) 
which annihilate the kernel of V. At the same time, we show that kernel(L) 
and kernel(V) are finite dimensional with the same dimension. In particular, 
L is surjective if and only if it is injective. The Elliptic Regularity Theorems 
of §S.9 show that the kernels belong to COO(Q) and that when Q is regular the 
kernels lie in CO(Q). 

EXAMPLES. 1. Q = ]0, n[ c ~ and L = d2 jdx2 - A. Here L = V and the ker­
nel is empty except when ). = - n2 , n = 1, 2, .... In that case the kernel is 
spanned by sin(nx). The operator is an isomorphism of HI to H- l except for 
those values of ).. The operator satisfies the coerciveness inequality (S.4.S) if 
and only if A> -1, so one has an isomorphism in many noncoercive cases. 
When A = _n2 , the range of L is the set of elements.f of H-I(Q) such that 
<.f, sin(nx) = O. In this case solutions are nonunique, if u is a solution then 
so is u + c(sin(nx)) for any c E C. The eigenvectors sin(nx) for the eigenvalues 
). = - n2 form the basis for Fourier sine series. Note that the eigenfunctions 
are determined by the eigenvalue equation d2ujox 2 = ).u and the boundary 
condition ul en = O. Analogous eigenfunction expansions for general sym­
metric L are discussed in §S.7. 

2. L = ~ + L aj(x)oj' In §S.ll we use the maximum principle to show that 
the kernel of L is empty. This implies that the kernel of V is empty and we 
find that L is an isomorphism for any real valued aj • 
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One of the advantages of considering inhomogeneous equations with 
homogeneous boundary conditions is that the Fredholm alternative has a 
simple description in this context. 

The proof of the basic result is not hard. The idea is to consider L as a 
perturbation of the symmetric operator 

L(1 == -1 + L 8i aij('J()8j . 

Then L(1 is equal to its own transpose and is coercive. Thus L(1 is an isomor­
phism of HI (n) to H- l (n). In addition 

L = L(1 + Q(x, 8), 

where Q is a differential operator of order 1 with smooth coefficients. Since Q 
is lower order, it is in a sense small compared to L(1' 

To solve the Dirichlet problem 

(7) 

we take as a first approximation the solution with L replaced by L(1' That is, 
write u = v + w where w E HI(n) and L(1 W = f. The equation for v E H! (n) is 
then (L(1 + Q)(v + w) = f which simplifies to (L(1 + Q)v = - Qw. Applying 
(Lo-)-l shows that this equation in H- l (n) is equivalent to an equation in Hl (n) 

(8) 

To summarize, U E Hl (n) solves (2) if and only if u - (Lo-)-lf == V E H!(n) 
solves (8). 

Turning to equation (8) note that Proposition 5.4.5 shows that Q is a 
continuous map of LZ(n) to H- l (n), so (Lo-)-lQ is a bounded linear map of 
U(n) to HI (n). If VEL Z(n) solves (8), then v = - (Lo-flQ(V + w) belongs to 
Hl (n). Thus it suffices to study solutions v to (8) in the space L Z(n). 

The key observation is that (Lo-flQ is a smoothing operator. It maps L Z to 
HI so it gains one derivative. This implies that it is a compact operator on 
LZ(n) thanks to the following criterion of Rellich. Recall that a linear map 
from one Banach space to another is called compact if the image of any 
bounded set is precompact. 

Theorem 1 (Rellich Compactness Theorem). If s > t, c E IR, and K is a compact 
subset of IRd, then 

{U E Ht(lRd): lIuIIH'(Q) ~ c and supp(u) c K} 

is precompact in Ht(lRd). 

(9) 

EXAMPLE. The case s = 1, t = 0, and K = n shows that bounded sets in 
Hl(n) are precompact in U(n). This shows that bounded linear maps (e.g. 
(Lo-)-IQ) from L l(n) to Hl(n) are compact operators from L Z(n) to itself. 

PROOF OF THEOREM 1. Suppose that Un is a sequence in the set (9). We must 
show that Un has a subsequence which converges in H'(lRd). Since the Un are 
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bounded in H'(lRd), we may pass to a subsequence Vn = uk(n) such that Vn 
converges weakly in H'(lRd) to a limit v. 

Choose a <(J E Cg'([Rd) with <{J identically equal to 1 on a neighborhood of 
K. Then <(JVn = Vn and compute 

ffvn(~) = <<{Jvn, (2n:)-d/2e-iX~> = (2n:fd/2<Vn, <{Je-ix~>. 

Now <(Je-ix~ belongs to H-'(lRd) with norm bounded by a multiple of <Olsl 
(exercise). Thus Ivn(OI ::; c<Olsl and the weak convergence of the Vn implies 
that vn(O --+ v(~) for all ~ E IRd. Lebesgue's Dominated Convergence Theorem 
implies that for any R > 0 

r IVn(~) - V(~W<02t d~ --+ O. 
JI~15R 

On the other hand, 

r Ivn(O - V(~W<02t d~::; r IVn(~) - V(~W<02S<02(t-') d~ 
JI~I>R JI~I>R 

::; (1 + R2)(t-,)/2 sup Ilvn - vI11s(~d), 

since <02(t-') ::; (1 + R 2)(t-S)/2 when I~I 2: R. The sup is bounded thanks to 
the weak convergence Vn ......>. v. 

Given I: > 0 we may choose R > 0 so that the integral over I ~ I > R is smaller 
than 1:/2 for all n. Then choose N so that for n > N the integral over I~I ::; R 
is less than 1:/2. Then for n > N the Ht([Rd) norm of Vn - v is less than or equal 
to 1:. This proves that Vn converges to v in H1([Rd). D 

Theorem 2 (Fredholm Alternative for the Dirichlet Problem). The mapping 
L: Hl (0) --+ H-l (0) has finite-dimensional kernel and closed range equal to the 
annihilator of kernel(V). Moreover, kernel(L) and kernel(V) have the same 
dimension. 

It follows that the index of L, which is equal to the difference of the 
codimension of the range of L and the dimension of kernel of L, is equal to 
zero. 

PROOF OF THEOREM 2. Let K == (L"flQ so that K is a compact operator on 
U(O). The strategy is simply to study the equation (I + K)v = 9 and use the 
fact (see (8)) that Lu = f is equivalent to (I + K)v = 9 with 9 == - K(L,,)-lf 
and u == v + (L,,)-lf 

For I + K we use the Fredholm Alternative for Compact Operators which 
was invented by Fredholm to solve the Dirichlet problem by the method of 
integral equations. Thus there is justice in using the result to solve the Dirichlet 
problem, albeit by a different method. 

Theorem 3 (Fredholm/Riesz Theory of Compact Operators). If B is a Banach 
space and K: B --+ B is a compact linear transformation then: 
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(i) the kernel of I + K is finite dimensional; 
(ii) the range of I + K is equal to the annihilator of kernel(I + Kt); 
(iii) I + K and I + Kt have kernels of equal dimension. 

Note that Kt is a map of B' to itself. This result is proved in most functional 
analysis texts, for example, Reed and Simon [RS] or Riesz and Sz-Nagy 
[RSzN]. 

To apply this result we must identify the transpose of K == L;;tQ. Formally, 
compute 

(10) 

the last since L" is equal to its transpose. As L" and Q are unbounded operators 
and there are at least two dualities involved in this computation (that between 
HI and B-1 and between L 2(0) and itself) we present a careful derivation. 

Lemma 4. Identify the dual of L2(0) with L2(0) by the mapping L2(0) '3 qJf-. 
M(q» E e(o)' by M(q>)(IjI) == Snljlq> dx Then Kt = MQt(L"flM-l. 

Note that the right-hand side is a continuous map of L 2(0)' to itself, as it 
should be. Note also that the identification of L 2 with its dual is linear rather 
than antilinear as is the case with the standard Riesz Representation Theorem. 
The difference is a complex conjugate in the integral. The formula for Kt is 
identical with that derived in (10) except that the identification M is made 
explicit. 

PROOF OF LEMMA 4. The goal is to show that for all f E L 2(0) and IE L2(0)' 

(11) 

It suffices to prove (11) for f, I chosen from dense subsets of L 2(0) and its dual. 
Suppose that fE CoCO) and I = Mg with g E CoCO). Then the left-hand side 
is equal to So. gQt(L,,)-lf dx. 

Since both g and (L"flf belong to Bl(O) an integration by parts shows 
that the left-hand side is equal to Sn(Qg)(L,,)-lf dx. 

Let w == (L"flf and v == (L,,)-IQg, both in Hl(O). The integral is then equal 
to SQ(L"v)(L"f~f) dx = (L"v, (L,,)-lf). Green's identity (6) for L" = L~ 
shows that this is equal to 

(v, L,AL,,)-lf) = (v, f) = «L"flQg, f) = f f(L,,)-1 Qg dx. (12) 

The last expression in (12) is equal to the right-hand side of (11). 0 

Returning to the proof of Theorem 2 we identify the kernels of I + K and 
I + Kt. The equivalence of Lu = f and (I + K)v = g from the first paragraph 
of the proof of Theorem 2 shows that ker(I + K) = ker(L). 

Next note that I E ker(I + Kt) if and only if 1= Mh with (I + QtL;;t)h = O. 
Let v == L:;l h, to see that this holds if and only if (L" + Qt)v = O. The operator 
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on the left is equal to V so we have shown that the mapping L:;l M-l is an 
isomorphism from ker(I + Kt) to ker(V). 

Since dim ker(I + Kt) = dim ker(I + K) < 00 the above identifications 
show that ker(L) and ker(V) have equal finite dimensions. 

Finally, note that / E Rg(L) if and only if - KL:;l / is in the range of I + K 
hence if and only if KL:;l / is annihilated by ker(I + Kt). By the above calcula­
tion ker(I + Kt) = MLAker V). Thus / is in the range of L if and only if 

In (KL:;l /)(Lu v) dx = 0 for all v E ker(V). (13) 

Note that L"v = - Qtv since v E ker(V) and therefore that L"v E L 2. Since 
K = L:;l Q, Green's identity (6) for L" shows that (13) holds if and only if 

r (QL:;1 f)v dx = 0 for all v E ker(V). In 
Since v E Hl(O), an integration by parts yields 

In (QL:;l f)v dx = In L:;1/QtV dx = - In L:;1 /Lu v dx 

the last equality since v E ker(V). Relation (6) shows that the right-hand side 
is equal to - Sn/v dx. Thus / is in the range of L if and only if this integral 
vanishes for all v E ker(V) which is the desired result. 0 

EXAMPLE. For p sufficiently large and positive, the operators L - p and V - p 
are isomorphisms of H1 (0) to B-1 (0). 

Thanks to the Fredholm Alternative, it suffices to prove that ker(L - p) = 

{a}. Since L is real, it suffices to show that if u is a real-valued element in 
ker(L - p) then u = O. 

For such a u one has <u, (p - L)u) = O. Write L = Lu + Q as above. For 
the L" contribution estimate 

<u, (p - L,,)u) ::?: J-lIIVuIIZ2(!l) + p IluIIZ2(Q). 

For the Q contribution, the Schwartz inequality shows that 

I<Qu, u)1 ::;; cllullu(Q)(llullu(n) + II Vu Il L 2(!l)' 
The Peter-Paul inequality yields 

I<Qu, u)1 ::;; (J-l/2)IIVuIII2(!l) + c'll uIII2(n)' 

Combining the two estimates yields 

<u, (p - L)u) ::?: (J-l/2)llVuIII2(Q) + (p - c')IIuIII2(n)' 

If p ::?: c' it follows that (p - L)u = 0 implies u = o. o 

The method of this section is to view L as a perturbation of L" which is 
invertible. A similar argument is a standard tool in considering nonlinear 
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perturbations of L. As an example suppose that 0 is open and that 
L: Re Hl(O) ~ Re H-1(0) is an isomorphism. Suppose that fE C(~) is uni­
formly LipshitziaiJ. so that 

A == sup {If(a~ = ~(b) I: a i= b} < 00. 

Then u~f(u) is a uniformly Lipshitz continuous map of Re L2(0) to itself 
with Lipshitz constant A. The goal is to solve the semilinear (== linear in its 
highest-order terms) Dirichlet problem 

Lu + feu) = g ERe H-1(0) (14) 

Apply L -1 to show that this is equivalent to the fixed point equation 

r(u) = u, r(u) == L -lg - L -1 (f(u». (15) 

Theorem 5. The nonlinear Dirichlet problem (14) has exactly one solution 
provided that 

(16) 

The crucial hypothesis (16) says that f is sufficiently small. In particular, it 
is satisfied for 181 < eo if f = eF with F Lipshitzian. 

PROOF. First note that r maps Re U(O) to Re Hl(O), so solving (14) is 
equivalent to finding a u E Re U(O) solving (15). 

The map r from Re L2(0) to istelf is Lipshitzian with Lipshitz constant 
dominated by the left-hand side of (16). By hypothesis this is strictly less than 
1 so Banach's Contraction Mapping Theorem implies that r has a unique 
fixed point u E Re L 2(0). D 

PROBLEMS 

For the variational approach of §5.3 and §5.4, Q could be bounded or unbounded. 
The key was coercivity. The compactness arguments of this section require Q to be 
bounded. The first example provides counterexamples for unbounded Q. 

I. Suppose that Q = jRd. 
(i) For L =,i show that L: HI(jRd) -+ Ho.l(jRd) has kernel equal to {O} and dense 

range which is not closed. In particular, the Fredholm alternative is violated. 
(ii) Show that (,i - Itl is not a compact operator on L2(Q) by exhibiting a 

bounded sequence Un E L 2(jRd) such that (1 - M-Iu. has no L 2 (jRd)-convergent 
s u bseq uences. 

DISCUSSION. An argument like that in (ii) shows that the embedding iiI (jRd) c:... L 2(jRd) 

is not compact. 

With two alterations, the methods of this section extend to the Neumann problem, 
and other boundary conditions. For the Dirichlet problem, we were able to integrate 
by parts with vanishing boundary contribution because the functions involved belong 
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to HI (Q). For the Neumann problem, that is not the case. The replacement for 
integration by parts in HI(Q) is the variational form of the boundary value problem, 
for example, equation (5.4.17). The second change is the compactness criterion. For 
the Dirichlet problem, (L.r l maps H'-I(Q) into HI(Q) c... Hl(lRd) so Theorem 1 applies 
directly. For the Neumann problem the range of (L,,)" 1 is in HI(Q). It is not true that 
the inclusion map Hl(Q) c... L2(Q) is compact for arbitrary bounded open sets Q. 
Fortunately, it is compact for moderately regular sets, for example, sets with Lipshitz 
boundaries. 

EXAMPLE. Let In be the open interval of diameter 20-n and center at the point Tn, 
n ~ 1. Then the In are disjoint subsets of ]0, 1[. Let Q == U In" Then the inclusion 
HI(Q) c... L2(Q) is not compact since if Un is equal to 20n/2 times the characteristic 
function of In' then the Un have HI(Q) and L2(Q) norms equal to 1 and they have no 
L 2-convergent subsequence. 

A skeptical reader should think that this is because the set Q is infinitely connected. 
A finitely connected bounded open set in IR is a finite union of intervals and it is not 
hard to show that the inclusion is compact in that case. The next problem dashes the 
naive hope that this example inspires. 

2. Find a bounded open connected subset Q c 1R2 such that the inclusion Hl(Q) c... 
L 2(Q) is not compact. Hint. Think first of a disjoint union of open squares. Then 
connect them. The crux is to give a proof that the inclusion is not compact for the 
resulting set. 

There is a good strategy for proving that HI (Q) is compactly included in L 2(Q). 
One constructs a possibly nonlinear extension operator E: Hl(Q) ..... Hl(lRd) with two 
properties 

(17) 

and 
Eu = u on n. (18) 

If an extension operator exists it follows that HI(Q) c... U(Q) is compact. To prove 
this, choose IjJ E CQ"(lRd) with IjJ equal to 1 on a neighborhood of Q. Then if {un} is 
bounded in HI (Q), then ljJu has an L2([Rd)-convergent subsequence by Theorem 1. 
The same subsequence is L z"(Q) convergent which completes the proof. 

If Q c... IRd is a smooth submanifold with boundary, such extension operators are 
constructed in Theorem 5.9.6. A celebrated theorem of Calderon shows that extension 
operators exist for Lipshitz domains (see Agmon [A]). 

§5.7. Eigenfunctions and the Method of 
Separation of Variables 

In this section we will show that the natural unbounded operator L on L 2 (O), 
defined by a real elliptic operator with Dirichlet boundary conditions, has 
adjoint equal to the unbounded operator defined by V with the same bound­
ary condition. In particular, if L = V, the operator is self-adjoint. When 0 
is bounded the spectrum is discrete and converges to - 00. The resulting 
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eigenfunction expansions generalize Fourier series and the eigenfunction ex­
pansions associated with regular Sturm-Liouville problems. They can be used 
to solve a variety of boundary value problems, justifying the method of 
separation of variables. Tn particular, we justify many of the heuristic ideas 
about heat flow and damped wave motion which motivated the variational 
approach to the Dirichlet problem. This section supposes some familiarity 
with elementary spectral theory. Good references are the first volume of Reed 
and Simon [RS] and the classic text of Riesz and Sz-Nagy [RSzN]. 

Suppose that 0 is a possibly unbounded open subset of IRd and that Land 
V are as in (5.6.1)-(5.6.5). For the sake of simplicity restrict attention to 
operators with real coefficients. The changes for complex coefficients are 
minimal. The ellipticity condition is (5.4.22) in the complex case. 

EXAMPLE. L = Ll - Vex) on 0 = IRd is particularly important in quantum 
mechanics. For example, periodic V model crystalline structures while V 
which tend to zero at infinity lead to scattering theory. 

Define an unbounded operator on L 2(0) to be the restriction of L, defined 
in the sense of distributions, to the domain 

E&(L) == {u E Rl(O): Lu E U(O)}. (1) 

In the same way, an operator V is the restriction of the differential operator 
L! to the domain 

E&(V) == {u E Rl(O): Vu E L2(0)}. (2) 

Note that Dirichlet boundary conditions are hidden in both domains. 

Theorem 1. Land L! are densely defined closed operators on L2(0) and each is 
the adjoint of the other. 

Note that for elliptic operators with complex coefficients the adjoint would 
be the restriction of the operator 

v ~ L aJWiijv) - L a/ajv) + al}. 

PROOF. The domains contain CoCO) so are dense. 
Since the adjoint of any densely defined operator is closed it suffices to show 

that the operators are adjoints of each other. 
Since (V)! = L, it is sufficient to show that the adjoint of L, denoted L *, is 

equal to the operator V. 
Since (L - )"J* = L* - A for any A E IR it is sufficient to show that 

(L - )")* = V - )" = (L - )")!. Thus without loss of generality L may be re­
placed by L - A. 

Lemma 2. If A is sufficiently large and positive, then L - A is an isomorphism 
of Rl(O) to H-l(O). 
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This assertion is proved in the example following the proof of Theorem 
5.6.2. 

Thus, without loss of generality, we may suppose that L and V are isomor­
phisms from HI(O) to H-I(O). Then L is a bijection from f0(L) to L 2(0). 

A function v satisfies L *v = 9 if and only if for all u E f0(L), (Lu, v) = (u, g) 
where (', .) denotes the scalar product in U(O). Taking u E CO'(O) yields 
Uv = ?l in the sense of distributions. Since V is real we have Vv = 9 in the 
sense of distributions. 

Choose W E HI (0) solving Vw = g. Then a complex version of (5.5.6) shows 
that (Lu, w) = (u, g). Thus (Lu, w - v) = 0 for all u E f0(L). Since L maps f0(L) 
onto L 2(0), we conclude that v = w so V E f0(V) and Vv = g. The proof is 
complete. 0 

Corollary 3. If L = V, then L with domain defined by Dirichlet boundary 
conditions as in (1) defines a self-adjoint operator on L 2(0). The spectrum of L 
is a subset of] - 00, sup a]. 

PROOF. For U E f0(L), the identity (5.6.6) reads 

(u, Lu) = L -aiAuop + alul 2 dx. (3) 

The terms in Vu are nonpositive so the form (3) is bounded above by sup(a) 
times the L 2 (0) norm of u. 0 

Theorem 4. If 0 is bounded, then the spectrum of L is discrete in R In particular, 
in L 2(0) there is a complete orthonormal set of eigenfunctions. 

PROOF. If p > sup a, then ker(L - p) = {O} and the Fredholm alternative 
implies that L - p is an isomorphism of HI (0) to H- I (0). The restriction of 
(L - p)-I to L2(O) is the inverse of the operator L - p with domain equal to 
f0(L). This inverse maps bounded sets in L 2(0) to bounded sets in HI (0), in 
particular, the inverse is a compact operator on L 2(0). 

Thus (L - pfl is a negative compact self-adjoint operator on L 2(0). Thus 
the spectrum of(L - p)-I is discrete except for possible accumulation at {O}. 

Since the range of(L - p)-I is f0(L), which is dense in L2(O), the point 0 is 
not an eigenvalue. Thus 0 must be an accumulation point of eigenvalues, since 
L 2 is not finite dimensional. Label the eigenvalues as VI :5 v2 :5 ... --+ 0 with 
each eigenvalue repeated according to its multiplicity which must be finite. 

Choose an orthonormal basis of eigenfunctions <Pj in L 2(0), (L _ p)-I<pj = 

vj<Pj. Since Vj of. 0, the eigenvalue equation implies that <Pj belongs to Range 
(L - pfl = f0(L) c HI (0). In addition 

L<pj = (L - p)<pj + P<Pj = (L - p)«L - p)-IVj-1 <Pj) + P<Pj = (p + 1/vj)<pj. 

Thus the eigenfunctions are also eigenfunctions of L with eigenvalues 
p + l/vj == )'j converging to - 00. Each eigenvalue has finite multiplicity. 0 
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EXAMPLES. 1. If 0 = ]0, n[ and L = d2ldx2, then the normalized eigenfunc­
tions are (2In) sin(nx) for n = 1,2, ... with eigenvalues )~n = _n2 • The asso­
ciated eigenfunction expansions are called Fourier sine series. 

2. Let L = Ll and the minimum width b(O) < (f). Then Theorem 5.3.1 
shows that b2 (Lcp, cp)::;; -(cp, cp) for all cP E Rl so )~j::;; _b- 2 < 0 for allj. 

For u E L2(0) the Fourier series Lrl.jCPj converges to u in the L2 norm and 
the L2(0) norm of u is equal to L IrI.)2. Note that the Fourier coefficients 
rl.j == (u, CPj) = <u, (ji) are meaningful for any u E H-l(O) since (jij belong to 
Rl(O). The next result complements the information from Bessel's identity. 

Theorem 5. 

(i) If u E RI(O), then the eigenfunction expansion of u converges in RI(O) and 
(L(IA) + 1)Irl.j I2)1/2 is equivalent to the RI(O) norm of u. 

(ii) !f u E H-I(O), then the eigenfunction expansion of u converges in H-I(O) 
and (L(IAjl + 1)- l lrl.j I2)1/2 is equivalent to the H-I(O) norm of u. 

(iii) If kEN and u E f2!(Lk), then the eigenfunction expansion of u converges in 
f2!(L k) and (L (IAjl + 1)2k lrl.j I2)1/2 is equivalent to the graph norm in f2!(Lk) of 
U. 

The third assertion is valid for any self-adjoint operator with discrete 
spectrum. It suggests that (i) and (ii) are the cases k = t and k = -t, respec­
tively. In fact, (i) proves that f2!(ILI I /2) = RI(O). 

It is interesting to note that the precise description of f2!(L) for regular 0 
given in equation (5.9.15) was not known until about 1950. The characteriza­
tion of f2!(L k) in (5.9.15), together with the Sobolev Embedding Theorem, allow 
one to translate the convergence results above to uniform convergence. For 
example, one has Cj(O) convergence provided u E f2!(L k) with j < 2k - d12. If 
o is regular this extends to 0(0) convergence. 

PROOF OF (i). Choose p > sup(a). For u E f2!(L) the Spectral Theorem implies 

«p - L)u, u) = L (p - Aj)lrl.j I2. 

The right-hand side defines a norm equivalent to (L(IAjl + 1)lajI2)1/2. On the 
other hand, (3) shows that the left-hand side defines a norm equivalent to the 
RI(O) norm. 

For u E RI(O) choose Un E CoCO) c f2!(L) converging to u in RI(O). Then 
the Fourier coefficients aiun) of Un converge to the corresponding coefficients 
of u. Fatou's Lemma implies that 

L (p - )~)laj(uW ::;; lim infL (p - Aj)laj(unW. 

Since the sum on the right is equivalent to the square of the RI(O) norm of 
Un' the lim infis dominated by a multiple of the RI norm ofu, hence is finite. 

Let sn == Li.5naj(U)CPj be the partial sums of the Fourier expansion ofu. Then 
Sn converges to u in L2(0). To show that Sn is a Cauchy sequence in RI(O) 
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notice that the s. belong to £t)(L), so for n ::;; m 

m 00 

Iisn - Smll~I(!l) = L (p - Aj )l()(iu)1 2 ::;; C L (p - Aj)l()(j(uW = 0(1) 
n n 

as n -t 00. It follows that the Sn converge to U in Hl(o.) and 

lIulI~I(!l) = lim Ilsnll~I(!l) ~ L (p - Aj)l()(j(uW, 
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D 

PROOF OF (ii). For U E H-l(o.) let v be the solution of (p - L)v = u. Then 
()(j(v) = (p - Aj)-l()(j(U), Let Sn be the partial sum of the Fourier series of U and 
let Vn be the partial sum of the Fourier series of v. The result follows since Vn 

converges to v in Hl, so Sn = (p - L)vn converges to U = (p - L)v in H-l since 
p - L is an isomorphism from Hl to H-1• D 

With Land 0. as in Theorem 5 consider the mixed initial boundary value 
problem 

Ut = Lu in [0, oo[ x 0., U = ° on [0, 00 [ x ao., and u(O,' ) = f. 
(4) 

This is a parabolic equation in 0. which generalizes the heat equation. If ({Jj is 
an eigenfunction of L with Dirichlet boundary conditions, then uj(t, x) == 
((Jj(x) exp(Ajt) solves the boundary value problem with initial data ({Jj. The 
eigenfunction expansion f = L ()(j({Jj suggest U = L ()(jUj as the solution of the 
initial value problem. The solutions uj are products of functions of t and a 
function of x. Seeking such product solutions is called the method of separation 
of variables. It is ofvery limited utility but when it works it is very informative. 

The analysis of (4) is almost identical to the analysis in §3.6 with n HS(lRd) 

replaced by n £t)(L k) and £t)(L k) playing the role of H2s. Note that fEn £t)(L k) 
if and only if the Fourier, coefficients of f decay faster than IAjl-N for any N. 
It is not hard to show that IAjl grows like //d (Problem 3), so that this is 
equivalent to decay faster than lil-N for any N. 

Theorem 6. (i) If fEn £t)(I}), then there is one and only one 
U En C'Xl([O, 00[: £t)(Lk)) solving (4). The solution is given by the formula 
U = L ()(j({Jj exp(Ajt) where f = L ()(j({Jj is the eigenfunction expansion of f The 
series converges in COO([O, 00[: £t)(Lk)) for all k. 

The solution U E C([O, 00[: Hl(o.)), and it is in this sense that U satisfies the 
Dirichlet boundary condition. If 0. is nice, Theorem 5.9.3 shows that £t)(L k) c 
H2k(o.) C Cj(O) if 2k > i - dl2 and it follows that U E COO([O, oo[ x 0) and 
satisfies (4) in the classical sense. 

PROOF. If U is a solution, let u(t) = L cj(t)({Jj be the eigenfunction expansion. 
Then 

c; = (u t , ({J) = (Lu, ({J) = (u, L({Jj) = (u, Aj({Jj) = Aiu, ((J) = AjCj. 

Therefore cit) = const· exp(Ajt). Setting t = ° shows that the constant must 
equal ()(j. This proves uniqueness and the formula of the theorem. 
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Conversely, if u is defined by the formula, then u E n C<Xl([O, 00[: £0(U)), 
and differenting the formula for u shows u solves the initial value problem (4). 

o 

Define the evolution operator Set) from n £0(L k) to itself by 

S(t)f == L aj exp(A}) = u(t) where f = L a/Pj' 

Theorem 7. 

(i) For t ;:::: 0, the operator S extends uniquely to a continuous map of L 2 (Q) 
to itself. For fE L2(Q), the resulting function u(t) == S(t)f is called the 
generalized solution of (4). 

(ii) For t > 0, the generalized solution belongs to cj(]O, 00 [ : £0(L k)) for all j, 
kE N. 

(iii) If fEHl(Q), the solution belongs to C([O, oo[:Hl(Q))nCl ([O, 00[: 
H- 1(Q)). 

(iv) If f E £0(U) and Os, j s, k, then the solution belongs to Cj([O, 00[: 

£0(L k- j». 

This is a nearly immediate consequence of Theorem S. The generalized 
solution is characterized by a variety of equivalent condition as in Theorem 
3.6.3. For brevity we omit the discussion. 

The strong regularity (ii) in t > ° is the smoothing property of the heat 
equation in this context. 

For unbounded Q the operator L is self-adjoint and bounded above and 
the Spectral Theorem solves the initial value problem via the functional 
calculus, u(t) = elLf. This gives an analogue of Theorem 6. Theorem 7 is valid 
without modification. 

Note that if f E L 2(Q) it need not satisfy the boundary condition at t = 0. 
For example, one could have Q = ]0, 1[ and f == 1. Since u is continuous with 
values in Hl in t > 0, the boundary conditions will be satisfied for t positive. 
In the case Q = ]0, 1[, f = 1, this shows that the generalized solution must 
be discontinuous at the corners (0, 0) and (0, 1). 

Next consider L = A and the initial boundary value problem (S.1.1) and 
(S.1.2). Suppose that Q and g are smooth. Then the argument following (S.2.7) 
shows that there is a v E £0(L) (actually C"'(Q), see §S.9) solving (S.1.3). Then 
W == u - v satisfies 

WI = Aw in [0, 00 [ x Q, w = ° on [0, 00 [ x <iQ, w(O) E e. 
Thus w = L aj exp()"/) with {aJ E 12. By Example 2 above we have Aj s, _ (j2 

and it follows that wet) converges exponentially fast to zero in in £0(Lk) for all 
k. This proves that u(t) converges exponentially to v as t tends to infinity. This 
shows that the heuristic argument at the start of §S.1 is correct. 

One can study the Schrodinger equation, wave equation, and damped wave 
equation on Q with Dirichlet condition on oQ in the same way. This requires 
a simple blend of the above ideas with those of Chapter 3. The details are left 
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to the interested reader. We remark that the damped wave equation associated 
to L = .1 with Dirichlet boundary conditions yields a justification for the 
discussion in Problem 5.2.1 (see Problem 5). 

PROBLEMS 

1. Suppose that L1 and L2 are self-adjoint second-order elliptic operators on bounded 
domains Q 1 and Q 2 in dimensions d l and dz. Consider L == L1(x, Dxl + L 2 (y, Dy) 
on functions u(x, y) in Q 1 x Qz with Dirichlet boundary conditions on o(Q 1 x Q2)' 

Prove that the eigenfunctions of L are the products of the eigenfunctions of the L; 
and that the eigenvalues are the sums of the eigenvalues of the L;. Hint. It is easy 
to see that the products are eigenfunctions. You must show that these are all of 
them. Use completeness. 
DISCUSSION. This is another example of the separation of variables. 

2. (i) Use Problem 1 and Example 2 following Theorem 4 to compute the eigenvalues 
and eigenfunctions of the Laplace operator on a rectangle n [0, n/j ] c [Rd with 
Dirichlet boundary conditions. Hint. For all parts first do the case Ij = 1. 

(ii) Show that the number of eigenvalues greater than - A 2 is equal to the number 
of points in the lattice n ((I)-1,Z) which lie inside the ball of radius A in [Rd. 

(iii) Conclude that as n ...... 00, Ann- Zld converges to a limit and compute the limit. 
(iv) Observe that the limit depends only on d and the d-dimensional measure of 

the rectangle. 
DISCUSSION. Part (iv) is a special case ofWeyl's Theorem on the asymptotic distribu­
tion of the eigenvalues which was motivated by Plank's law for black body 
radiation. 

The next problem shows that the algebraic growth n2/d is valid for all of our 
self-adjoint elliptic eigenvalue problems. The key is the minimax principle for the nth 
eigenvalue (see Reed and Simon [RS1] and Courant and Hilbert [CHI]) 

An= max min{(Lv,v):vEV} 
dim(V)"""n 

the maximum being over n-dimensional linear subspaces of Ji1(Q). 

3. (i) Suppose that Q 1 c Q C Q 3 are bounded open subsets of [Rd and L satisf:es 
(5.6.1)-(5.6.4) and L = L' on the large set Q3' Prove that 

)n(L, Q3) ::; An(L, Q) ::; )n(L, QIl, 

where I.n (L, (9) denotes the nth eigenvalue of L on C with Dirichlet boundary 
conditions on O(~i. 

(ii) Prove that if Land K are symmetric, they satisfy (5.6.1)-(5.6.4) on Q, and 
(Lu, u) 2 (Ku, u) for all u E Ji1(Q), then )'n(L, Q) 2 )'n(K, Q). 

(iii) By comparing L to Pi\. + Yj on rectangles Qj contained in and containing Q, 

show that there are constants C 1 > ('2 > ° such that for n large 

-c1 n 2ld < ;'n(L, Q) < -C2 n2/d• 

4. Suppose that L is a self-adjoint operator on an open set Q defined by an operator 
satisfying (5.6.1)-(5.6.4). In addition, suppose that }'j+1 < )'j are successive eigen­
values of L. Prove the following theorem: 
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Theorem 8 (c. Dolph). If f E C1(1R) and 

Aj+1 < inff'(t) ::;; sup f'(t) < Aj, (5) 

then for any g E H-1 (0) there is a unique solution to the semilinear Dirichlet problem 

Lu - f(u) = g, 

Hint. Apply Theorem 5.6.5. 
DISCUSSION. The hypothesis (5) is called a nonresonance condition. In a rough sense, 
it says that the nonlinear term does not interact with the spectrum. The term 
resonance comes from the study of nonlinear oscillations. This is the special case of 
o = [0, I] with periodic boundary conditions, where one is seeking I-periodic 
solutions of second-order ordinary differential operators. 

See [N] for a nice exposition of problems at resonance. 

The next problem discusses waves propagating in IR, x 0 according to the damped 
wave equation 

(6) 

Interaction with the boundary is described by the Dirichlet boundary condition (see 
also Problems 3.7.2, 3.7.3, and 5.2.1) 

5. Prove 

Theorem 

u = 0 on IR x a~. (7) 

(i) If f E 111(0) and g E L2(0), then there is a unique generalized solution 
u E C(IR: 111(0)) ("\ C1(1R: L2(0)) satisfying (6) and (7). 

(ii) Show that the energy is exponentially decreasing as t ~ 00 in the sense that there 
are positive constants c, IX such that for all such u and all t ~ 0 

f u;(t, x) + IVxu(t, xW dx ::;; ce- 2ot f u;(O, x) + IV xu(O, x)1 2 dx. 

DISCUSSION. Since the au, term represents frictional resistance it is reasonable 
to expect that IX would be an increasing function of a. In fact, as friction tends 
to infinity, one finds that IX tends to zero. This counterintuitive result should be 
revealed by your analysis. The cause, overdamping, is also present for the simple 
damped spring, y" + ay" + ky = 0, y'(O) = 0, for which the energy, (y')2 + ky2, 
decays slowly if a is large. 

§5.8. Tangential Regularity for the Dirichlet Problem 

This and the next section are concerned with the differentiability of solutions 
of the Dirichlet problem when the data are regular. The goal is to show that 
the solutions u have two more derivatives than the right-hand side f, provided 
that the operator L and domain n are smooth. In particular, if f E coo (0) then 
u E COO (0), so u is a classical solution ofthe Dirichlet problem. Starting in §1.1, 
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we have emphasized that a gain of m derivatives for an operator of order m 
is peculiar to elliptic equations. 

This regularity property is related to the origins of elliptic equations as 
equations describing steady states of dissipative physical processes. These 
processes have the effect of smoothing out irregularities. By the time the steady 
state is reached the solution is as smooth as the data permits. The easiest 
example of this sort is steady states for the heat equation, where the solutions 
are regular thanks to the smoothing property of the heat equation. The 
smoothing property is one aspect of its dissipative character. 

Suppose that 0 lies on one side of its Coo boundary, precisely 

Q =. IRd is a compact submanifold with boundary. (1) 

This is equivalent to compactness together with the existence of a defining 
function P E CO (lRd : IR) with p = 0 and V p -=f. 0 on 00. A coordinate patch is 
an open set (7) in IRd and a diffeomorphism 1]: (7) ~ IR~ such that 1]«(7) nO) = 
1]«(7) n {Yl > O}, 1]«(7) n 00) = tl«(7) n {Yl = O}. If I](x) = (YI(X), ... ,yix)), the 
Yi are called local coordinates in (7) n Q. Q is covered by a finite set of 
coordinate patches. 

Suppose, in addition, that L satisfies (5.6.1)-(5.6.4) so 

(2) 

The proof of regularity has two steps. First, we show that u is differentiable 
in directions tangent to the boundary. A vector field V = L ViX) OJ is a tangen­
tial vector field if Vj E COO(Q), and for all x E 00, V(x) E TAoO). That is, V is 
tangent to the boundary. Two equivalent descriptions are, 00 is characteristic 
for the partial differential operator V, and Vp = 0 for defining functions p. 
These vector fields playa crucial role. The next result gives some important 
properties. 

Proposition 1 

(i) If VI and V2 are tangential fields, then so is the commutator [VI' V2]. 

(ii) If 1]: (7) ~ IR~ is a coordinate patch and V is a tangential vector field 
supported in (7) n Q, then in local coordinates, V is a linear combination of 
the fields Y 10 I' O2 , ... , Od with coefficients smooth in {y I ~ O} n 1]«(7). 

(iii) There is a finite set of tangential fields, VI' ... , VM , such that V is 
tangential if and only if V is a linear combination of the Vj with coefficients 
in COO(Q). 

PROOF. (i) A vector field is tangential if and only if for any 1/1 E C')(Q) with 
1/11 an = 0 one has VI/II an = O. Using this characterization one sees that 
V; Vj(I/I) 1 an = 0, and therefore that [VI' V2 ] 1/1 1 an = o. 

(ii) In local coordinates Y flattening the boundary to Yl = 0, write 
V = L vj(y)a;oYj. It suffices to show that VI (y) = 0 whenever Yl = O. Since the 
function Yt vanishes on the boundary and V is tangent to the boundary it 
follows that VYI = 0 when Yl = 0, which is the desired relation. 
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(iii) Any vector field can be written as a finite sum, L {j)j V, where {{j)j} is a 
finite partition of unity subordinate to a covering { (i)j} by coordinate patches. 

If is c Q, {j)j V is a combination of the fields {j)j(I1- 1 )*%Yk> k = 1,2, ... , d, 
where 11: (i) -> [Rd is the coordinate map. I These fields are supported in the 
interior of Q, so are tangentiaL 

If (i)j is a boundary patch with the boundary flattened to {YI = O}, then for 
tangential V, {j)j V is described in local c~ordinates as in (ii). Write VI = YI W 

with w supported in the same subset of (I) as w. Then {j)j V is a combination of 
the tangential fields 

(j)'(I1- I ) (YI ,~) ) * °YI 
and 2:0;; k:o;; d. D 

Definition. Suppose that SEN and B is either HI(Q), L2(Q), or H-I(Q). Then 
Bf.n is the set of U E B such that whenever N :0;; S and VI' ... , VN are tangential 
vector fields then VI Vz, ... , VNu E B. 

Aside. Spaces of distributions whose regularity is unchanged by the applica­
tion of tangential vector fields are called conormal. They play an important 
role in a variety of problems in linear and nonlinear partial differential equa­
tions. They are a special case of what are called Lagrangian distributions. The 
associated Lagrangian submanifold of the cotangent bundle is the conormal 
variety of aQ. The wavefront set (in the sense of Hormander) of conormal 
distributions belong to this submanifold (see [H2]) . 

. EXAMPLES. 1. Let 0 = ]0, 1 [ c iR. Then u == In(x) belongs to L 2 (O):.n for all 
s. Note that u is smooth in the interior corresponding to the fact that tangential 
derivatives are, in fact, all derivatives at interior points. However, u is not 
smooth up to the boundary. The key is that applying xd/dx leaves u 
unchanged. 

2. With the same 0, U, the function x(x - l)u belongs to HI (O):.n for all s. 
Thefunctionxa(1 - xtu belongs to HI (Q)t1an ifand only if a > t(Problem I). 

3. In the interior of 0 all derivatives are tangential so that if u E L 2 (O):.n 
and x E 0, th~ u E W(x) (see §5.3 for definition). 

4. Analogous definitions work on M, a smooth compact manifold with 
boundary. If aM = ify, then all vector fields are tangential and L 2 (M):.n = 

HS(M). Thus tangential regularity is full regularity. This is relevant for the 
Laplace-Beltrami operator and Hodge Laplacian described in §5.4. The 
proofs of this section work with only minor modifications in these contexts. 

, If 'l': (1;1 -> (')2 is a smooth map from an open set in IR~(') to an open set in 1R~(2) and W = 

I wj(x)iJ/iJXj is a vector field on en" then the push forward 'l' * W is a vector field on '62 defined by 
choosing a curve y: IR -> 6, with "y(0) = x and itO) = W(x). Then 'l' * W('l'(x)) '" ('P 0 y)'{O). 
Equivalently, ('l' * W)u '" W(u 0 'P). The expression in coordinates is 

iJ'P. a 
('P * W)I'I'(x) = I wj(x)a(xl;;'" 

j.' Xj uY. 
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Let "f' == (Vl' ... , VM ) be a generating set as in Proposition 1 (iii). For 
13 E NM, let 1/"/3 == vt, V:f2 ... V1}M. Proposition 1 (i) implies that taking the 
products in a different order results in a differential operator which differs 
from 1'/3 by a sum of terms, each a product of fewer than 1131 tangential fields. 
Thus u belongs to B~.n if and only if "f'Pu belongs to B for all 13 with 1131 S s. 
It follows that B~an is a Hilbert space with norm 

(3) 

The proof of completeness is left as an exercise. 

Lemma 2. 

(i) If Q(x, D) is a differential operator of degree 1 with smooth coefficients on 
n, then Q maps Hl (O)~.n continuously to L 2(0)~an and L 2(0)~.n continuously 
to H-1 (0):an' 

(ii) If P(x, D) is a differential operator of degree 2 with smooth coefficients on 
n, then P maps Hl(O):an continuously to H-l(O)~an' 

PROOF. Assertion (ii) is an immediate consequence of (i). The latter is proved 
by induction on s. 

Suppose that s = O. That Q maps L2 to H- 1 is Proposition 5.4.5. The other 
half is elementary. 

Suppose next that s ;::: 1 and that the result is known for s - 1. If loci = s, 
write "f'a = "f'fiVj with 1131 = s - 1. It suffices to show that "f'"Q maps Hl(O):an 
to L 2(0) and L 2(0)~an to H- 1 (0). Write 

"f'"Q = "f'/3VjQ = "f'fiQVj + "f'/3[Vj, Q]. 

For the first term notice that Vj maps Hl (O):.n to Hl (O):::nl and L 2 (O):.n to 
L2(0):::n1 . By the inductive hypothesis, "f'/3Q maps the target spaces to L2(0) 
and H- 1 (0), respectively. 

Consider next the second term. Since the commutator [Vj, Q] is a first-order 
operator, the inductive hypothesis shows that the second term maps Hl(On;;,l 
to L2(0) and L2(0):::nl to H-1(0), which is more than we need since 

D 

The main result of this section is the following. 

Theorem 3 (Tangential Regularity Theorem). If u E Hl(O), sEN, and 
Lu E H-1 (0):an, then u E Hl(O):an' In addition, there is a constant c = c(s) such 
that for all such u 

(4) 

This theorem shows that if u is the solution of a Dirichlet problem and 
f = Lu has s tangential derivatives in H- 1(0), then u has s tangential deriva­
tives in Hl(O). Note the gain of two derivativGs. In the next section we show 
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that both the interior and boundary Elliptic Regularity Theorems are con­
sequences of this basic result. 

PROOF. The first step of the proof is to derive (4) as an a priori estimate. 

Lemma 4. For any sEN there is a constant c so that for all u E Hl(O)~an' (4) 
holds. 

The difference between this and the desired result is that we assume 
0 1 

U E (H ):an. 

PROOF OF LEMMA 4. It suffices to show that the slightly weaker inequality 

lIuIlHl(Q)f.n :s; cs( IluIIU(Q)f.n + IILuIlH-'(Q)f) 

holds. Given (5) for all s, one estimates 

lIullu(Q)f.n :s; c lIuIIHl(Q)~.;.l :s; Cs- 1 (IIuIIL2(Q)f.;,' + IILullwl(Q)~.;'l). 
Repeating this process s times shows that (5) implies (4). 

(5) 

The proof of (5) is by induction on s beginning with s = O. Let L" == 
-1 + L cH(aij + aj;)/2)oj' so L - L" == Q is a differential operator of order 1 
with coefficients smooth on Q. In §5.4 we showed that L" is an isomorphism 
of Hl(O) to H-1 (O). Thus 

IlullHl :s; cllL"ullwl :s; c(llLullwl + IIQuIlH-'):S; c(IILullwl + Ilullu), 

the last inequality follows from Lemma 2 since Q is of order 1. This proves 
(5) when s = O. 

Next suppose that the result is known for s - 1 with s z 1. For 1 :s; k :s; M, 
apply the inductive hypothesis to ~u E (HI )::..1 to find 

II ~Ull(lil)f.;'l :s; cs - 1 (1ILVkUII(Hl)~.;'l' + II ~ull(u)f.;.l). (6) 

Now 
Lv,.u = v,.Lu + [L, v,.]u, (7) 

and the commutator is a differential operator of order 2 with smooth coeffi­
cients. Therefore Lemma 2 implies that 

II[L, v,.]UIl(Wl)f.;.' :s; c Ilullai'Jf.;.' :s; c( lIullu(Q)f.;.' + IILuIlH-l(Qg;.,), (8) 

the last estimate using the inductive hypothesis. 
The first term on the right of (7) has (H- 1 )::..1 norm dominated by a 

constant times the (H- 1 ):an norm of Lu. This combined with (6) and (8) 
completes the inductive proof. 0 

Theorem 3 is also proved by induction on s. Lemma 4 proves the case s = o. 
For s z 1, suppose the result known for s - 1. The elegant idea of Nirenberg 
is to apply Lemma 4 to difference quotients c5/u approaching lju. In this way, 
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one derives (H 1 )::n1 estimates for (jjhu which are uniform in h as h tends to zero. 
That J.ju E H1 (o.)f;"l follows. The details ofthis argument are presented in the 
next paragraphs. The proof is long because there are many technical results 
which must be developed. The ideas are useful in a variety of other contexts. 

If V is a tangential vector field, let <I>t be the one-parameter group of 
diffeomorphisms of Q generated by V The fact that V is tangential implies 
that Q and 00. are invariant under the flow of V 

Example 4 following Proposition 2 of the Appendix shows that for any 
diffeomorphism <I>: 0. -+ 0., the map Ccf(o.) 31/1 H 1/1 0 <I> extends uniquely to a 
sequentially continuous map of £&'(0.) to itself given by 

(9) 

Lemma 5. Suppose that <I>: Q -+ Q is a diffeomorphism. 

(i) For any sEN, the map TH To <I> is a bounded linear map of Bfan to itself 
where B is either H1(0.), L2(0.), or H- 1 (0.). 

(ii) For the same sand B, if <I>t is the j70w of a tangential field V, then for 
u E B:an , u 0 <I>t is a continuous function of t with values in Bfan· 

PROOF OF (i). The proof is by induction on s. Suppose first that s = O. 
For B = L2(0.), the result follows from the boundedness of D<I>-l. 
For B = H 1(0.), choose gn E Ccf(o.) converging to T in H1(0.). Then 

gn 0 <I> E C;?(o.) and converges to To <I> in £&'(0.). The desired result then 
follows from the estimate 

for all g E Ccf(o.). 

This estimate is an immediate consequence of the formula for a(g 0 <I» given 
by the chain rule. 

For B = H- 1 (0.), reason by duality. If TE H- 1(0.) and ({J E Ccf(o.) 

1< T 0 <I>, ({J) I = 1< T, I det D<I> -1 I ({J 0 (<I> -1 ) I 

s II Tllw1(n) Illdet D<I>- l l ({J 0 (<I>-1 )111:l"1(!1) 

Explicitly computing the derivatives ofl det D<I>- l l ({J 0 (<I>-1) yields the bound 

S cllTllw' II cp II 1:l"'(!1)' 

This proves the desired estimate for To <I> in H- 1 (0.). 
Next consider s ~ 1 assuming the result for s - 1. For any u E Band 

tangential field W = L wj(x)aj 

au a<I>k 
W(u 0 <I>)(x) = L Wj(x)a}u(<I>(x)) = L wj(x)-a (<I>(x))-a-(x) = (Zu)(<I>(x», 

Xk Xj 

(10) 
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where Z is the vector field on Q defined by 

a<1>k(X) a 
Z(<1>(x)) = L Wj(x)-a~ -a == <1>* WI<l>(x), 

Xj X k 

Z is the push forward of W by <1>. 

(11) 

Since W is tangential and <1> maps aQ to itself, <1>* W == Z is also tangential, 
and so Zu E B:;.,l with norm bounded by a multiple of the B:an norm of u. By 
induction, the B::n1 norm of(Zu) 0 <1> is bounded by a multiple of the B:;.,l norm 
of Zu. Combining these two assertions yields the desired boundedness. 

For use in the proof of (ii), note that an induction on lal starting with (10) 
for lal = 1 proves 

("YY(u 0 <1» = (<1>* y)au I <l>(x) , <1>* y == (<1>* VI' ... , <1>* VM ). (12) 

PROOF. (ii) By induction again. 
For s = 0 and B = L 2 or Ht, the proof is almost identical to the proof of 

Lemma 5.5.2. The proof for s = 0 and B = H-I(Q) is by a duality argument 
to show that the H-I(Q) norm of To <1>, - To <1>r' is O(lt - t'l) (Problem 2). 

For s > 0 note that (<1>,)* l'j is a smoothly varying family oftangential vector 
fields. The proof of Proposition 1 (iii) shows that there are smooth functions 
ajk(t, x) on IR x n such that 

M 

(<1>t)* l'j = L ajk(t, x) v". 
k=l 

Using this in identity (12) with <1> = <1>, shows that (y)a(u 0 <1>t) is a combina­
tion of tangential derivatives of u 0 <1>t with smooth coefficients. The continuity 
for s > 0 is then a consequence of the s = 0 continuity. 0 

Definition. If <1>r is the flow of a tangential field V let btu == (u 0 <1>-h - u)/h be 
the associated difference operator. 

The difference operator converges to V in the sense that for all u E !Z1(Q) 
(resp. $(Q), !Z1'(Q)), btu converges to Vu in !Z1(Q) (resp. $(Q), !Z1'(Q» as h tends 
to zero. 

Lemma 6. Suppose that N 3 s ;:::: 1 and B = HI(Q) or L2(Q) or H-1(Q), and 
u E B::nl. Then u E B:an if and only if the set of distributions {b~kU: 0 < h < 1 
and 1 s k s M} is a bounded subset of B::nl. 

PROOF. For the if part (which is the half needed in the sequel) note that for 
u E B:an , V tangential, and any a, "f~abhu -'>. yavu in !Z1' (Q). If I a Iss - 1, the 
distributions on the left are bounded in the Hilbert space B. Thus there is a 
subsequence which converges weakly in B to a limit b. This implies that the 
subsequence converges to b in !Z1'(Q) and therefore that "f"avu = bE B. Thus 
u E B:an . 

To prove the only if part, compute using the chain rule 

d 
dt u 0 <1>r = L (aju) 0 <1>t)(Vj 0 <1>r) = (Vu) 0 <1>,. (13) 



§5.8. Tangential Regularity for the Dirichlet Problem 221 

The right-hand side is a continuous function of t with values in B::n1 . Inte­
grating yields 

h u 0 $-h - u -1 fO d -1 fO 
b u = ----------- = - -(u 0 $,) dt = (Vu) 0 $, dt. (14) 

h h -h dt h -h 

Use (12) to show 

Since u E B:an , the integrand is a continuous function of t with values in B 
provided IPI :::; s - 1. Furthermore, the B norm of the integrand is bounded 
by a constant times the B:an norm of u, the constant independent of 0 < h < 1. 
This shows that the left-hand side is bounded in B. 0 

To prove Theorem 3 we estimate b~u in H1(Q)::n1 for tangential fields V. 
The strategy is to use the case s - 1 of Lemma 4. It suffices to show that for 
o < h < 1, Lb~u is bounded in (H-1 )~;:;.l and b~u is bounded in L 2(0.). 

The second assertion follows from the fact that u E H1(Q) C L2(Q)fan. 
Since Lu E H- 1 (Q):an' Lemma 6 shows that b~ Lu is bounded in H- 1 (Q)::n1 . 
The key step is to show that the commutators [L, b~Ju are bounded in 

H-l(Q)::nl. For each h, the difference operator b~ is bounded from Hl(Q)::nl 
(resp. H-1 (0.):;:;.1) to itself, and L maps HI (0)::n1 to H-1 (0)::n1 continuously so 
each term of the commutator maps HI (Q)::n1 -+ H-1 (Q)::n1 continuously. In­
dividually, they converge to L V and VL which are not bounded as maps 
(HI )~:; -+ (H-1 )::n1 . Thus, the individual terms in the commutators are not 
bounded independent of 0 < h < 1. 

The arguments above and to follow are presented globally in n in a 
coordinate free way. One could equally well have used partitions of unity and 
local arguments where the fields y 101' O2 , ... , ad would playa central role. 
Those more comfortable with computations in local coordinates should have 
little difficulty translating to that form. 

The next lemma is the crucial commutator estimate. 

Lemma 7. If P(x, D) is a differential operator of degree 2 with smooth coeffi­
cients on n and V is a tangential vector field, then for any SEN the commutators 
{[P, b~]: Ihl < 1} are uniformly bounded as maps of HI (O):an to H-1(0):an' 

So as not to lose the thread of the argument we complete the proof of 
Theorem 3 assuming Lemma 7. 

END OF PROOF OF THEOREM 3. Recall that the strategy is to prove that 
u E HI (Q):an by showing that b~u is bounded in HI (Q)::n1 for 0 < h < 1 and 
V E {VI' ... , VM }. Using the case s - 1 of Lemma 4, this was reduced to 
estimating the H-l(Q):;:;.l norm of L(b~u). Lemma 6 estimates b~Lu and 
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Lemma 7 estimates the commutator [(j:, L]u. One obtains 

II (j:u II Hl(U)f,;,l ~ const. times the right-hand side of (4) (15) 

for 0 < h < 1. Lemma 6 implies that u E IiI (Q):an' 
The proof of Lemma 6 shows that there is a subsequence hn --+ ° such that 

Wn == (j:"u->o- Vu in IiI(Q):::n1. Using (15) and the lower semicontinuity of norm 
with respect to weak convergence yields 

II VuIIHl(U):.-"l ~ lim infll(j:uIlHl(u):.;'l ~ c(right-hand side of (4». 

Summing over all V E {VI' ... , V M} and adding the estimate from the s - 1 
case of the theorem yields estimate (4). 0 

Lemma 7 is proved using the next two lemmas. 

Lemma 8. Suppose that sEN, a E CQ"((Rd), V is a smooth compactly supported 
vector field on (Rd, and <l>, is the one-parameter group of diffeomorphisms 
generated by V For h =1= 0, let (jhU == (u 0 <l>-h - u)/h be the associated difference 
operators. 

(i) The maps u I--> u 0 <l>h, Ihl < 1 are uniformly bounded from HS((Rd) to itself. 
(ii) The commutators {[a, (jh]: I hi < I} are uniformly bounded from WeIRd) to 

itself· 
(iii) For any 1 ~j ~ d, the commutators {[aj , (jhJ: Ihl < I} are uniformly 

bounded from WeIRd) to w-1 ((Rd). 

PROOF. (i) For u E CQ"((Rd) compute, suppressing h momentarily, 

au 0 <l> au a<l> 
-_.- = L --(<l>(X»-i' 

aXj ax; aXj 

By induction one shows that for lal ~ s, aa(u 0 <l>h) is a finite sum of terms, 
each of which is a product of a';Su(<l>(x» times a finite product of derivatives 
of the components of <l>h' As these derivatives of <l>h are uniformly bounded 
for Ihl < 1 

for all u E CQ"((Rd) and Ihl < 1. 

The desired result is then a consequence of the density of CQ"((Rd) in HS((Rd). 
(ii) Compute for u E .'I'((Rd) 

h[a, (jhJU = a(u 0 <l>-h - u) - ((au) 0 <l>-h - au) 

= a(u 0 <l>-h) - (au) 0 <l>-h = (a - a 0 <l>_h)(U 0 <l>-h)' 

Since the maps u I--> u 0 <l>h are uniformly bounded from HS((Rd) to itself, it 
suffices to show that multiplication by (a - a 0 <l> -h)/h is uniformly bounded 
on HS((Rd). These difference quotients converge to - Va uniformly together 
with all derivatives. In addition, for Ihl < 1, the supports are contained in a 
compact set independent of h so that the difference quotients converge to - Vu 
in .'I'((Rd). The desired result is then a consequence of Proposition 2.6.4. 
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(iii) Compute for u E .'I'(lRd) and 0 == OJ 

and 

Thus 

Now 

so 

(16) 

where i5k,j is the Kronecker delta. 
Note that since <l>o(x) = x, o(<I>hh/oxj = i5k ,j when h = O. Thus the Funda­

mental Theorem of Calculus yields 

(17) 

The e derivatives inside the integral are equal to h times t derivatives of <1>" 
so the above expression shows that for I h I < 1, the q>'s belong to CO" (lRd), have 
support in a fixed compact set, and have partial derivatives bounded in­
dependent of h. Proposition 2.6.4 shows that multiplication by the <p's is 
uniformly bounded from HS(lRd ) to itself. Then the expression (16), together 
with the fact that the family 0 <l>h is uniformly bounded from W to itself, 
completes the proof of Lemma 8. 0 

Lemma 9. Suppose that V and Ware tangential vector fields on Q, <1>, is the 
flow of V, and i5t is the associated difference operator, and B is either Hl (0.), 
L 2 (n), or H-l(n). Then,forany 1:2: sEN, the operators {[w, i5tl Ihl < 1} are 
uniformly bounded from B:.n to B::n1 • 

PROOF. The definition of i5t yields 

h (Wu) 0 <I>-h - Wu 
i5v (Wu) = --'-h -'---, 

h W(uo<l>_h)- Wu ((<I>_h)*WU)o<l>_h- Wu 
W(i5vu) = --.. -/i----- = --'-'-ii' . 

Subtracting the first from the second yields 

[w, i5t]u = h-l(((<I>_h)* Wu) - Wu) 0 <I>-h' 

Now (<I>-h)* W is a smoothly varying family of tangential vector fields. Thus 
(<I>-h)* W = L a)h, x) J!j with aj E COO(IR x Q). Then 
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[W, 6~] = (1: h-l(aih, x) - a}O, x)) Jj) 0 <D-h· 

For Ihl ::;; 1, the coefficients h-l(aj(h, .) - aiO, .)) belong to a bounded set 
in C'(n). Thus the family in paraentheses is a bounded family of maps from 
B:an to B::nl . Since 0 <D -h is a bounded family from B:;:nl to itself the desired 
result follows. 0 

Finally, we can combine the above ingredients to prove Lemma 7. 

PROOF OF LEMMA 7. It suffices to show that for letl::::; s the family 
{l"a[p, 6~]: Ihl < 1} is uniformly bounded from if1(O):an to H-I(O). 

The proof is by induction on s. To prove the case s = 0 extend the coeffi­
cients of P and V to elements in C;{' ([Rd). Then Lemma 8 shows that the family 
{[P, b~]: Ihl < I} is bounded from H1([Rd) to H-1([Rd) = HI([Rd)'. Restricting 
to the closed subspace RI(O) yields the desired result. 

Next suppose that s 2: 1 and the result is known for s - 1. For letl = s, write 
"//"" = 'YPJj with IPI = s - 1 and 1 ::;;j ::::; M. Then 

'Ya[P, 6~] = 'f"PJj[P, 6~] = 'YP[P, 6~] Jj - 'YP[[P, 6~], Jj]. (18) 

For the first term on the right, note that Jj is bounded from Rl(O):an to 
RI(O)::nI, and by induction 'YP[P,~] is uniformly bounded from Rl(O):;:n1 

to H-l(O). Thus, to complete the proof, it suffices to show that [[P, b~], Jj] 
is uniformly bounded from R1(O):an to H-l(O)s-l. 

Use Jacobi's identity to write 

[[P, 6~], Jj] = - [[6~, Jj], P] - [[Jj, P], 6t]. (19) 

Lemma 9 shows that [6~, Jj] is uniformly bounded from B:an to B:;:n1 with 
B = Rl(O) and B = H-l(O). This, together with the fact that P is bounded 
from Rl(OXan to H-1(OXan for r = sand r = s - 1, suffices to show that each 
term in the commutator of[6~, Jj] with P is uniformly bounded from R 1 (O):an 
to H-l(O)S-l. 

Since [Jj, P] is a differential operator of order 2 with smooth coefficients 
on n, the inductive hypothesis shows that the second term on the right in (19) 
is uniformly bounded from Rl(O):;:n1 to H-1 (O)S-I, which is a stronger conclu­
sion than needed. 0 

This completes the proof of Theorem 3. 

The same sort of Tangential Regularity Theorem is true for the Neumann 
problem, that is, Lu E H-1(O):an implies u E H 1(O):an' Note that one has HI 
and not Rl and that the boundary condition is expressed as in (5.4.17). The 
proof must be modified since u 0 <Dh need not satisfy the Neumann condition 
o(u 0 <Dh)/on = O. What one does is, take as a test function cp 0 <Dh in (5.4.17) 
and subtract the resulting expression from (5.4.17). After some manipulation 
and estimation of commutators as in this section, one ends up with uniform 
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estimates for a c5 hu in Hl(n). In this way, one gets the case s = 1. The general 
case is an inductive argument (see Agmon [A]). 

Other methods for deriving elliptic regularity do not rely on the use of 
coercive quadratic forms but rest more on Fourier analysis. The reader is 
referred to the treatises of Taylor [Ta] and Hormander [H2] for these 
methods. 

PROBLEMS 

1. For! ~ S E N,prove that x"(1 - x)" In(x)belongstoRI(JO, I [)Sifand only if IX > t. 
2. Give a detailed proof of the s = 0 case of Lemma 5(ii). 

3. Suppose that Q = ]0, I[ c ~. Prove that CO'(]O, I[) is dense in B:an for B = U(Q), 
RI(Q), R-I(Q). 
DISCUSSION. The same result is valid for any nice subset Q of ~d. The proof of that 
more general case should be clear upon combining your solution of this problem 
with the methods of §5.5. 

4. Suppose that p E C)(n), p I an = 0, and V p(x) # 0 for x E aQ. 
(i) Prove that U E L 2 (Q)lan if and only if pu E R1(Q). 

(ii) If I ~ sEN, prove that U E L 2 (Q):.n if and only if pSu E W(Q). 
(iii) Formulate and prove RI(Q) and R-1(Q) versions of parts (i) and (ii). 

§5.9. Standard Elliptic Regularity Theorems 

In this section we continue the study of the differentiability of solutions of the 
Dirichlet problem. In the last section differentiability tangent to the boundary 
was proved. The results of this section require some simple definitions, moti­
vated by Proposition 2.6.2. 

Definition. If w c ~d is open and sEN, then 

W(w) == {u E L2(W): (Vial s s), o"u E L 2(w)}, 

W(w) is a Hilbert space with norm 

IlulI~s(w) == L IlC"ulli2(w)' 
lal,;s 

(1) 

(2) 

In these definitions, oau is the distribution derivative. The completeness of 
H S is proved as follows. If Un is a Cauchy sequence then for lal s S, oaun is a 
Cauchy sequence in L 2(W). Since L 2(W) is complete these derivatives converge 
to limits fa in L 2(W). Then 0"[0 = fa E L 2(W) so fo E HS(w) and o"'u -+ fa in e(w) 
so Un -+ fo in HS(w). 

Definition. If sEN, n c ~d, X E n, and U E .@'(n), then u belongs to H S at x, 
denoted U E W(x), if there is an r > 0 such that U E W(n n Br(x)). 
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Thus U E HS(x) means that there is an r> 0 such that the distribution 
derivatives of u of order less than or equal to s are square integrable on 
Q n Br(x). 

Consider L satisfying (5.6.1)-(5.6.4) and Q c IRd a smooth submanifold with 
boundary. The main results of this section show that if u satisfies the Dirichlet 
boundary condition, that is, u E Jl1(Q), then u is in H s+2(x) at any x where 
Lu E HS(x). The results are straightforward consequences of the Tangential 
Regularity Theorem proved in the last section. 

We begin with a simple result which explains why we expect a gain of two 
derivatives. An even more special case is Proposition 2.4.6. 

Proposition 1. Suppose that P(D) is a constant coefficient elliptic operator of 
order m and s E IR, 

(3) 

Conversely, if P(D) is an mth order operator such that (3) holds for some s E IR, 
then P is elliptic. 

A similar result is true for variable coefficient operators and local regularity. 
An mth order P(x, D) is elliptic at x if and only if u is in w+m(x) whenever u 
and Pu belong to HS(x). 

PROOF OF PROPOSITION 1. If P is elliptic, Problem 1.6.7 shows that there are 
positive constants cj such that 

IP(~)I ~ C1 <om - c2 <om-l. 

Estimate <om-1 ~ e<om + Ce to see that 

Then 

C1 <om 
IP(~)I ~ ~2- - C3' 

By hypothesis the right-hand side is finite and it follows that the left-hand side 
is finite. 

Conversely, suppose that P is not elliptic. For s E IR let r == s + m - 1. It 
suffices to show that there is a u in H" such that Pu E HS, but u is not in H"+I. 

Since P is not elliptic there is an wEIRd with Iwi = 1 and Pm(w) = O. Then 
Pm vanishes on the ray {rw: r > 1}. Since V Pm is a polynomial of degree m - 1, 
it follows that IPm I ~ c < om-1 on the set of points within unit distance of that 
ray. Thus IP(OI ~ c' <Om-IOn the same set. 

Suppose q> a nonzero element of CO"(I~I < 1). Define a to be a sum of 
translates of this function in the direction of w weighted so that u belongs to 
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H" but not to H,,+e for any e > O. For example, take 

u(O == L cp(¢ - nw)(n,,+1/2 In(n»-l. 

227 

Since P(¢) is O( < om-l) on the support of u we have Pu E H,,-m+l = W. The 
proof is complete. 0 

The next result concerns the regularity of a function at an interior point ~ 
of an open domain Q. The differential operator is 

Here Coo(~) means Coo on a ball centered at~. 

(4) 

(5) 

(6) 

Theorem 2 (Interior Elliptic Regularity Theorem). Assume that ~ E Q and that 
(4), (5), and (6) hold. If u E f0'(Q) belongs to Hl(~ and Lu belongs to W(~ for 
some 0 ::; SEN, then u E Hs+2(~. 

PROOF. We show that if (5 EN, 1 ::; (5 ::; s + 1, and u E H"(~), then u E H"+l(~). 
Applying this result s times beginning with (5 = 1 yields the desired conclusion. 

For u E H"(~), choose r > 0 such that the coefficients of L are smooth on 
jjr(~)' the derivatives of u (resp. Lu) up to order (5 (resp. s) are square integrable 
on the ball, and L is elliptic on the ball in the sense that 

(7) 

Choose cp E Co(Br(~» with cp identically equal to 1 on a neighborhood of ~. 
The strategy is to apply Theorem 5.8.3 to the function cpu in the set Br(~)' 

By construction cpu E H"(Br(~» and cpu is compactly supported in the 
interior so cpu E Hl(Br(~»' The crux is to show that L(cpu) belongs to 
H-l(Br(~»fan' Compute 

L(cpu) = cpLu + [L, cp]u. (8) 

By the choice of r, the first term belongs to HS(lRd ) n ,3'''(Br~»' The operator 
[L, cp] is of order 1 and has coefficients supported in supp cp hence strictly in 
the interior of the ball. Thus the second term belongs to H,,-l (lRd) n ,3''' (Br(~»' 
Since (5 ::; s + 1, both terms belong to H"-l(lRd ) n ,g"(Br~»' which is included 
in H-l(Br(~»fan' 

Theorem 5.8.3 implies that cpu E Hl(Br~»fan' Choose t/I E Co(Br(~» with t/I 
identically equal to 1 on a neighborhood of supp cp. Then for 1 ::; j ::; d, t/li3;i3xj 

is a tangential derivative in Br(~)' Thus, for IPI ::; (5 + 1, (t/li3)P(cpu) E L2(Br(~»' 
These derivatives are equal to i3 P(cpu) and the proof is complete. 0 

EXAMPLES. 1. If Lu E Coo(~), then u E Coo(~). To see this note that one can 
choose cp independent of s to find that cpu E n W(lRd), and the result follows 
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from the Sobolev Embedding Theorem. Note that the regularity of u near ~ 
is not influenced by singularities of Lu outside a neighborhood of~. Similarly, 
irregularities in the coefficients of L outside a neighborhood of ~ do not 
influence the regularity of u at ~. This is in sharp contrast to hyperbolic 
equations were singularities propagate. 

2. If 0 C ~d is open and L satisfies (4), (5), and (6) at each ~ in 0 and if Lu 
belongs to COO (0), then so does u. Note that one requires neither regularity of 
the boundary nor uniformity of (5), (6) as one approaches the boundary. 

3. The Hodge Decomposition Theorem of differential geometry is a 
straightforward consequence of the Interior Regularity Theorem applied to 
the Hodge Laplacian described in §5.4. 

4. While Lu E H"~)::;. u E H·+2~) and Lu E COO~) => u E COO~), it is not 
true that Lu E Ck~)::;. U E Ck+2~) (Problem 3). 

Remark. A simple partition of unity argument shows that if (4), (5), and 
(6) hold at all ~ E 0, Wi CC W2 CC 0, U E H 1(W2), and Lu E HS(W2)' then 
U E Hs+2(wd. Moreover, there is a constant c = c(s, Wi' W2' L) so that, for all 
such u, 

lIuIIH.+2(W,) ~ c(IILuIIH'(W2) + lI uIlH'(W2»)' 

The next result allows one to prove regularity up to the boundary, for 
example, COO(Q). For that one needs to assume that the boundary is smooth 
and that the coefficients are regular up to the boundary. In addition, one needs 
to know that boundary conditions are satisfied. 

EXAMPLE. Let 0 = B1(0) C ~2. Then u = Re(1/(z - 1)1/2) is harmonic on 0, 
square integrable on 0, but certainly not regular at (1, 0). One needs appropri­
ate boundary conditions to force regularity. For this u, the Dirichlet data 
Ulan E COO(aO\(1,0)) and regularity at all points other than (1,0) is forced. 

As in Theorem 2, regularity of solutions near x is influenced only by local 
behavior of L, Lu, and a~. 

Definition. A point ~ E ao is called regular if there is an r > ° and a diffeomor­
phism x: B,~) -+ ~~ such that X(B,(x) n 0) C {Yl > O} and X(B,~)\Q) C 

{Yl < O}. 

EXAMPLES. 1. Q c.... ~d is a smooth submanifold with boundary if and only if 
every boundary point is regular. 

2. If 0 is a square in ~2, then the vertices are not regular and the other 
boundary points are regular. 

Definition. If u E £')'(0) and x E a~, then u E Hl(X) if and only if there is a 
qJ E C[f' (~d) such that qJ is identically equal to 1 on a neighborhood of x and 
qJU E Hi (0). 
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The hypothesis of the next result is that (5) holds with ;If a regular point of 
an. The precise meaning is that there is an r > 0 such that the coefficients 
belong to Coo(Q n Br(lf)). 

Theorem 3 (Elliptic Regularity at the Boundary). Suppose that ;If is a regular 
point of an and that (4), (5), and (6) hold. If u E Hl (If) and Lu E W(;If), 0 ::::; sEN, 

then u E Hs+2 (lf). 

PROOF. Choose r so small that on Br(;If) n Q the coefficients of L are COO and 
satisfy an ellipticity condition analogous to (7), the derivatives of Lu up to 
order s are square integrable, and there is a local coordinate change on Br(lf) 
as in the definition of regular boundary point. Choose cp E Cg'(Br(lf)) such that 
cp is identically equal to 1 on a neighborhood of;lf and cpu E Hl(n). 

The strategy is to apply the Tangential Regularity Theorem 5.8.3 to cpu. To 
do that, we need that cpu is defined on a smooth submanifold with boundary 
on which Lis a smooth elliptic operator. Choose r' < r so that supp(cp) cc 

Br,(;If). All boundary points of the open set n n Br,(lf) are regular except those 
on an n aBr,(lf) which lie outside the support of cp (Figure 5.9.1). Smooth the 
boundary near those points to obtain a smooth embedded submanifold w 
such that w c Br(lf) n n, and for some t: > 0 

ow n supp(cp) c an n Br,(lf). 

In particular, cpu E Hl(w), 
The Tangential Regularity Theorem is next used to prove that cpu E Hl(W)::;'l. 

To do that, it suffices to show that if 1 ::::; (J ::::; s and cpu E Hl(w)~an' then 
cpu E Hl(w)~a~l. 

To show that cpu E Hl(w)~a~l using the Tangential Regularity Theorem, it 

Br, (x) 

-.-+---11---- supp p 

Figure 5.9.1 
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suffices to verify that L(cpu) E H- 1 (w)f.:1• Use equation (8) for L(cpu). The first 
term belongs to HS(w) by construction. The commutator [L, cp] is a smooth 
differential operator of order 1 with coefficients supported in supp(cp). Choose 
IjJ E Cg'(Br~» with IjJ equal to I on a neighborhood of supp(cp). Since 
ljJu E H1 (w)fan it follows that [L, cp]u = [L, cp] ljJu E L 2(w)fan. Thus both terms 
on the right of (8) belong to L2(w)~an C H-1(w)fa:l , since if one applies (J + I 
tangential derivatives, the first (J maps L 2 (w)fan to L 2(W) and the last maps 
L2(W) to H-1(w). This completes the proof that cpu E H1(w)::nl . 

This regularity has the correct number of derivatives, namely s + 2, but 
s + 1 of them are restricted to be tangential derivatives. The proof is com­
pleted by using the differential equation to express arbitrary derivatives in 
terms of tangential derivatives. This idea bears the intimidating name partial 
hypoellipticity at the boundary. It is little more than the calculation of the 
Cauchy-Kowaleskaya Theorem. We perform the calculation in the local 
coordinates y provided by the mapping X in the definition of regular point. 
Without loss of generality suppose that X~) = 0. Choose p > ° so small that 
Bp(O) cc x(int( {cp = 1}). Let B+ == Bp(O) n {Y1 > OJ. The tangential regular­
ity proved above shows that 

provided I ex I :; s + 1. (9) 

The strategy from here is to prove, for k = 0, ... , s + 2, 

if I ex I + k :; s + 2. (10) 

This suffices to show that u 0 X- 1 E H S +2 (B+). However, since X is a diffeomor­
phism on a neighborhood of the closure of B+, the e(X-1(B+» norms of the 
derivatives of u up to order s are bounded by a multiple of the H S +2(B+) norm 
of u 0 X-I. Thus u E H s+2 (X- 1(B+». It remains to prove (10). 

The proof of (10) is by induction on k. The cases k = 0, 1 have already been 
proved in (9). Suppose next that (10) is known for some ° :; k :; s + 1. To 
prove (10) for k + I let v == u 0 [1, and write the differential equation for v as 

i(y, Oy)V = (Lu) 0 X-I E H'(B+), (11) 

where i is the expression for L in the y coordinates (see § 1.6 where 1] = X-I). 
Separate the 01 derivatives in L 

i= all of + 2 I aljOl j + alo l + P(y, O2 ,,,,, 0d)' (12) 

where P is of order 2. Since all is the value of the symbol of L evaluated at 
(1,0, ... , 0) and L is elliptic, a 11 is never zero. Thus (11\ can be solved for olv 
to give 

orv = -(alll-l(I aljOlj + alo1 + P(y, O2, . .. , Od)V) + H'(B+). (13) 

Differentiate k - 1 times with respect to Y1 to find 

j:; k, j + 1f3l :; k + 1, 

where cj,p E COO(jj+). Since j :; k in the sum, the inductive hypothesis shows 
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that the right-hand side belongs to H S +1- k(B+). Thus, if lal s s + 1 - k, then 
(132"", ad)aa~+lv E L 2(B+). This proves the case k + 1 of (10) which completes 
the inductive argument. D 

Corollary 4. Suppose that 0 SSE N, 0 c IRd is a smooth embedded submani­
fold with boundary, and L satisfies (5.6.l)~(5.6.4). Then u E W+2(Q) whenever 
u E f{1 (0.) and Lu E HS(o.). Moreover, there is aCE IR so that for all such u 

Ilull H'+2(Q) S c( IILul1 H'(Q) + Il uII Hl(U»), 

PROOF. Theorem 3 shows that for each ~ E 0 there is an open ball Br~)(~) such 
that u E H S+2 (Br ). Cover the compact set 0 by a finite number of such balls 
to prove that u E Hs+2(Q). 

The estimate (13) can be proved by retracting the proof of Theorem 3, 
keeping track of the estimates at all steps. However, it is worth noting that 
the estimate (13) is a consequence of the regularity result proved in the first 
paragraph. Define a normed linear space X by 

X == {u E HI(Q): Lu E W(Q)}, 

X is complete since if Un is a Cauchy sequence in X, then LUn is a Cauchy 
sequence in H S and Un is a Cauchy sequence in HI. By completeness of these 
two spaces it follows that Un converges to a limit u in HI and LUn converges 
to a limit f in HS • Then Lu = f, so U E X and Un -> U in X. 

The first part of the corollary shows that X y Hs+2. Call the inclusion map 
I. The inequality (13) is equivalent to the continuity of I. 

Since X and Hs+2 are complete and 1 is everywhere defined, continuity 
follows if we show that the graph of 1 is closed. Thus, it suffices to show that 
if Un -> U in X and /Un = Un -> v in Hs+2 , then /U = v. Note that in L2, Un 

converges to both u and v. Thus u = v. Since IU = u, this ends the proof. 0 

If U E HI and Lu E CCXl(O), this corollary proves that u E HS(Q) for all s E IR. 
One would like to know that u is smooth up to the boundary in the sense that 
u E COO(O). This follows from a smooth bounded set version of the Sobolev 
Embedding Theorem. 

Theorem 5 (Sobolev Embedding Theorem). Suppose that 0 y IRd is a compact 
smooth submanifold with boundary. If N '3 S > k + d12, then every element of 
HS(Q) is equal to a function in Ck(O). In addition, there is a constant c = c(s, k, Q) 
such that 

for all U E W(o.). (14) 

The equality of this theorem is in the sense of distributions, that is, there is 
an element of Ck(O) which defines the same distribution. 

EXAMPLES. In these examples suppose that Q and the differential operators 
satisfy the hypotheses of Theorem 5. 
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1. If f E COO(O), then the Rl(n) solution of the Dirichlet problem con­
structed in §5.3 belongs to coo (0). In particular, it satisfies the differential 
equation and boundary condition in the classical sense. 

2. The eigenfunctions ({Jj of self-adjoint operators L, as in §5.7, belong to 
coo (0). 

3. The unbounded operator defined on L 2(n) by the differential operator 
in §5.7 has 

~(L) = Bi(n) n H 2(n), 

~(Lk) = {u E H2k(n): Lju E Rl(n) for 0 ~j ~ k - I}. (15) 

Thus convergence in the graph norm of ~(L k) is equivalent to H 2k(n) con­
vergence and stronger than Cm(O) convergence whenever m < 2k - d12. These 
results complement the conclusions of Theorems 5.7.5-5.7.7. 

There are two distinct strategies for proving inequality (14). The first is to 
use the Fundamental Theorem of Calculus to express u as an integral of 
suitable derivatives of u and then use Holder's inequality or a variant (see, e.g. 
Courant and Hilbert [CH, Vol. 2]). The second is to extend u to an element of 
HS(lRd ) and then apply Theorem 2.6.7 to the extension. Following this strategy, 
Theorem 5 is an immediate consequence of the next result which is of in­
dependent interest. 

Theorem 6. If 0 y IRd is a smooth compact submanifold with boundary and 
sEN, then there is a bounded linear operator E: HS(n) ~ HS(lRd ) such that 
Eu = u on n. 

The proof of this result has two steps. COO (0) is proved to be dense in W(O), 
then the operator E is constructed on CD(O). 

Theorem 7. !f 0 y IRd is a smooth compact submanifold with boundary and 
sEN, then COO(O) is dense in Wen). 

PROOF OF THEOREM 7. Choose Va compactly supported smooth vector field 
on IRd which is transverse to an and points toward the interior of n at an. Let 
<1>, be the flow generated by V and let n, == <1>,(n). The proof of Lemma 5.8.5(i) 
shows that 0 <1>, is an isomorphism from HS(n,) to HS(n) with inverse given by 
0<1>_,. The norm bounded uniformly for It I ~ 1. 

For u E L2(n) 
Iluo<1>,-ullL2(Q)~O as t~O+. 

This is obvious if u E qO). The density of qO) in L 2(n), together with the 
uniform boundedness, completes the proof. 

Identity (5.8.13) shows that 

a"'(u 0 <1>,) = (((<1>,).a1 , (<1>,).a2 , ••• , (<1>,).ad )"'u) 0 <1>,. 
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It then follows from the L 2(0) case that for u E W(O) 

Iluo<l>t-uIIHs(!.l)---+O as t---+O+. 

Since 0 cc O-t> dist(O, aO_t ) == <5 > O. Let jq == '1- dj(x/'1) be a standard 
smooth approximate delta supported in Ixl s '1. Then for any WE L 2(O_t) and 
'1 < <5, the values of jq * W on 0 are determined by the values of W in 0 -t and 
jq * W ---+ win L2(O) as '1---+ O. Differentiating, it follows that for WE W(O_t), 
jq * W ---+ W in W(O). 

Given u E HS(O) and e > 0, choose t > 0 such that the u 0 <l>t - u has HS(O) 
norm less than 13/2. Then choose '1 > 0 so that jq * (u 0 <l>t) - u 0 <l>t has W(O) 
norm less than e/2. Then (jq * (u 0 <1>,»11.1 is the desired COO(n) approximation 
ofu. 0 

PROOF OF THEOREM 6. Decomposing u with a finite partition of unity for n, it 
suffices to extend elements of W(O) which have support in a fixed compact 
set K in a coordinate patch x: Br(~) ---+ IRd with K E 00. 

It suffices to extend u 0 X- 1 from HS(YI > 0) to HS(lRd), for if v is such an 
extension we may choose tjJ E Cg'(X(Br» with tjJ identically one on a neighbor­
hood of X(K). Then (tjJv) 0 X extends u to an element of W(lRd) supported in 
Br{K}. 

The extension operator on {Yl > O} is given by 

(EW)(YI' y') == L ajw( -jYI' y') for Y1 sO. 
osrss 

The real coefficients aj are chosen so that E maps CS(YI ~ 0) to CS(lRd ). This 
is achieved by forcing equality of the derivatives a~ Ew(O ±, y') for k S s. This 
holds if and only if 

for 0 s k s s. 

This set of s + 1 equations for the s + 1 unknowns aj has as coefficient the 
Vandermonde matrix which is invertible, so the aj are uniquely determined. 

The extension operator E so defined maps CS(YI ~ 0) n HS(YI > 0) to 
CS(lRd) n HS(lRd) and 

for all WE CS(YI ~ 0) n HS(YI > 0). 

The proof of Theorem 7 with V = a/aYI shows that C(;:;) (Yl ~ 0) is dense 
in HS (Y1 ~ 0), so the set of was above is dense and E extends uniquely to the 
desired operator. 0 

The next examples show that some regularity is required of 0 in order for 
the above results to be true. 

EXAMPLES. 1. Let 0 = ] -1, O[ u ]0, 1[ in IR. Every element of HI(IR) is contin­
uous at x = 0 but the function u == sgn x belongs to H1(O). Clearly, there is 
no extension of u to an element of H1(1R). 



234 5. The Dirichlet Problem 

2. In §5.6 it was shown that Hl(n) is compactly embedded in L 2(0.) when­
ever 0. is bounded and an extension operator as in Theorem 6 exists. Thus the 
examples in and before Problem 5.6.2 are sets 0. without extension operators. 

Example 1 suggests that very narrow inward pointing spikes pose an 
obstruction to the existence of extension operators. A celebrated theorem of 
Calderon shows that if every point of the boundary can be touched from the 
exterior with an open cone of fixed size in the exterior then an extension 
operator exists (see Agmon [A]). A theorem of Meyers and Serrin shows that 
coo (0.) n HS(n) is dense in HS(n) for any open n. These approximants need 
not be well-behaved near an, so are markedly less useful than the C'''(Q) 
approximants which need not exist for wild domains. 

PROBLEMS 

1. Prove (15) and (16) and the assertions about f0(Lk) convergence from that example. 
Hint. Use Corollary 4 and Theorem 5. 

When Q is not regular, solutions of the Dirichlet problem need not be smooth up 
to the boundary. The next problem gives an important example. 

2. Suppose that 0 < () < 2n and w is the wedge {z E C\O: 0 < arg z < O}. Then u = 

Im(zn/6) E C(w) is harmonic in wand satisfies Dirichlet boundary conditions at ow. 
(i) For what values of sis U E HS(O)? 

(ii) For which () is u E Jf1(O)? 
(iii) Construct an example ofa bounded open Q and a u E Jfl(Q) with Au E COO(Q) 

such that u if: C"(Q). Hint. Truncate u away from 0 and close the open end of w. 
DISCUSSION. For such wedge-like regions an analogue of the Tangential Regularity 
Theorem is valid where the fields V must be tangent to the boundary even at 
the singular point. This implies that the fields vanish at the singular point 
(e.g. xCx + yOy). 

3. Verify that u = xy(ln r)P with r == (x 2 + y2)1/2 and 0 < f3 < 1 satisfies Au E C(~2) 
and u if: C2(~2), showing that the "gain of two" regularity theorem are false in the 
Ck category. 
DISCUSSION. Elliptic gain of two is correct in the Holder spaces Ck+· for et: E ]0, 1[ 
(see Bers, John and Schecter [BJS] and Gilbarg and Trudinger [GT]). 

§5.10. Maximum Principles from Potential Theory 

The study of elliptic equations in the previous sections was based almost 
exclusively on L 2 methods. The basic estimates were proved by integration 
by parts. This section is devoted to pointwise estimates which rest on so-called 
maximum principles. These methods are very powerful and flexible but are 
nevertheless useful almost exclusively for scalar equations of second order. 
Their failure for systems and higher-order equations renders the analysis of 
such problems more difficult. We begin by describing two classical results 
which are the precursors of the general maximum principle of E. Hopf. 
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When x E IR, functions with nonnegative second derivative are convex 
(thumb down). This shows that 

Proposition 1 

(i) If u E C2 (]a, b[) and d 2u/dx2 > 0, then u can have no local maximum. 
(ii) If d 2 u/dx2 ~ 0 and there is an .X E ]a, b[ such that u(x) ~ u(x) for all 

x E ]a, bL then u is constant. 

The convexity of u in Proposition 1 asserts that for any interval I == 
{Ix - xol < r} cc ]a, bL u at the center Xo is smaller than the average of u 
on 01, that is, 

) u(xo + r) - u(xo r) 
u(xo :s;;-

This subaverage property has a generalization to functions with nonnegative 
Laplacian. Such functions are called subharmonic. 

Theorem 2. If u E C2 (B,(xo» n C(Br(xo» is subharmonic, that is, Au ~ 0 in 
Br(xo), then the value of u at the center of the ball is less than or equal to the 
average value of u over the boundary of the ball. That is, 

loBI == f 1 da. 
oB 

PROOF. For 0 < p < r, let Bp == {Ix - Xo I < p}. Greens' identity reads 

vAu - uAv dx = -v - u--da. f f ou av 

Bp cB, an an 

Take v == 1 so Av = 0 = av/on to conclude that JiiBp au/on da ~ o. 
For P > 0, let I(p) == J(JBp u da. Then 

iV(p) = op f u da = op f u(xo + pW)pd-l dw 
i1'lp 5 d - 1 

f OU f d-2 =- da + (d - 1) up dw 
iiBp on Sd-l 

d - 1 f d-l d 1 ~ ----- up dw = ---I(p). 
P Sd-1 P 

Thus the derivative of! with respect to p satisfies l' ~ (d - l)I/p. 
Multiply this differential inequality by the integrating factor pl-d to find 

(pl-dI)' = pl-dl' + (1 _ d)p-dI = pl-d(1' _ (d ~ 1)/) ~ o. 

Thus pl-d I(p) is an increasing function of p for 0 < p < r. 
Let Wd denote the d - 1 dimensional area of the unit sphere in IRd so 



236 5. The Dirichlet Problem 

pd-1 Wd = loBpl. Then the quantity pl-dI(p)/Wd is equal to the average value 
of u over oBp • By continuity of u, pl-d I(p)/wd -+ u(xo) as p -+ O. 

We conclude that u(xo) ~ pl-dI(p)/Wd' Let p increase to r to prove the 
theorem. 0 

Corollary 3 (Mean Value Property). If u E C2 (Br(xo)) n C(Br(xo)) is harmonic 
in Br, then the value of u at the center of the ball is equal to the average value 
of u over the boundary of the ball. These values are also equal to the average 
value of u over the ball. 

PROOF. To prove the first assertion, apply the previous theorem to u and -u. 
Alternatively, retrace the steps of the proof to see that pl-d I(p)/wd is in­
dependent of p. 

For the second, express the integral over the ball as an integral of integrals 
over spheres 

Application 1. Newton's Theorem on the attraction of spheres. 

This corollary can be used to show that the gravitational field in the exterior 
of a homogeneous spherical shell is equal to the field of a point charge located 
at the center with mass equal to the mass of the spherical shell. This is one of 
the important results of Newton's Principia. It allows one to replace spherical 
planets by point masses without committing any error. The field of the 
spherical shell of radius R with center ~ is equal to 

<p(x) = f _c ___ d(J(Y), 
8BR (x) Ix - yl 

where the constant c is the product of the mass per unit surface area and the 
gravitational constant. Letu(y) == c/lx - YI. Then if x is in the exterior of the 
ball the function u is a harmonic function of y E BR(~) (Problem 4.6.1). Then 
<p(x)/loBRI is equal to the average of u over the boundary ofthe ball. The mean 
value property asserts that this is equal to u at the center. Thus <p(x) = 
clcBRI/lx - ~I which is the desired result. 

Application 2. Derivative estimates. 

It is typical of elliptic equations that one can bound the size of derivatives 
in terms of the size of the solution. The classical example is holomorphic 
functions for which the formula 

du(z) = (=2) l u(O dC 
dz 2ni Jlz-~I=r (z - 0 2 
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shows that if u is a bounded holomorphic function on a, then 

I '()I < 1. lIuIIL",(o) 
U z - 21t dist(z, aa)' (1) 

Corollary 4. If u E C2(a) (\ qn) is harmonic, that is, au = 0, then for 1 :S j :S d 
and all x E a 

I au (x) I < d IluliLoo(o) 
aXj - dist(x, aa) . 

PROOF. Suppose that r < dist(~, aa). Then aju is harmonic so 

aju(x) = I~ I r aju(y) dy = I~ I f u(y)nj(Y) da(y). , J Br(x) , oBr(x) 

Since Injl :S 1 and laB,1 = dIB,I/r, this yields 

I au(X) I :S d"uIIL"'(o). 
aXj r 

Since this is true for all r < dist(x, aa), (2) follows. 

Application 3. A maximum principle. 

(2) 

o 

Corollary 5. Suppose that a is a connected open subset of ~d and u E C2(a) is 
subharmonic, that is, au :;::: O. 

(i) If there is an X E a such that u(x) :;::: U(X) for all x E g, then u is constant. 
(ii) If g is bounded and u is continuous on n, then u :S maxoo u. 

PROOF. Let m == u(x). Then {x E a: u(X) = m} is closed in a since u is 
continuous. 

If u(xo) = m, choose r > 0 such that B,(xo) c:c: g so u :S min B,(xo)' Theo­
rem 2 and the local maximality yield the two inequalities 

m = u(xo) = Lr ~:; :S Lr 7:~ = m. 

Thus u must equal m almost everywhere in B,. By continuity u == m in B,. 
Thus {x E a: u(X) = m} is both open and closed in g and we conclude that 

u == m, since a is connected. 
Assertion (ii) is an immediate consequence of (i). 0 

A physical example reveals how reasonable this result is. Consider the 
equilibrium position of a membrane stretched over a and maintained at height 
g(x) at aa. If the only forces acting push downward, the height v(x) at 
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equilibrium satisfies 

Av ~ 0 in 0 and u = g on 00. 

The corollary implies that u ~ max g throughout O. Thus with such forces the 
highest point is a point of support at the boundary. 

EXAMPLE. If u E C2 (0) !l qO) is harmonic, then 

min u ~ u ~ max u. (3) 
00 00 

This follows upon applying part (ii) to u and to - u, both of which are 
subharmonic. 

Using the corollary we can solve the classical Dirichlet problem when the 
boundary data are continuous. 

Theorem 6. If 0 c.. ~d is a smooth compact embedded manifold with boundary 
and g E qaO), then there is one and only one harmonic function U E COO (0) !l 
qO) such that u = g on 00. 

PROOF. Choose gn E COO(aO) with gn --+ g uniformly on 00. Let Un E CX)(O) 
be the harmonic functions with Un = gn on 00. Estimate (3) applied to Un - Urn 

shows that 
lIun - Urn II LOO(i'i) ~ IIgn - grnIILoc(co), 

so {un} is a Cauchy sequence in qO). Let U E C(O) be the limit. 
On 00, U is equal to the uniform limit of the gn, so U = g on 00. 
Estimate (2) applied to Un - Urn shows that 

In () _ n ()I < c Ilgn - grnIlLOO(oQ) 
v Un X V Urn X - dist(x, 00) 

so Un is a Cauchy sequence in CI(O). It follows that the limit U belongs to 
CI(O). In particular, U E Hl(x) for all X E O. 

Since Un converges to U in .@'(O) we have Au = .@'-lim AUn = O. The Elliptic 
Regularity Theorem implies that U E COO(O). This proves existence. 

Uniqueness follows from (3) applied to the difference U l - U2 of two 
solutions. 0 

PROBLEMS 

The next two problems give alternate proofs of the mean value property of harmonic 
functions. 

1. If ~u = 0 and Br(y) cc Q C 1R2, we may translate coordinates reducing to the case 
y = O. Define vq> by vq>(r, 8) = u(r, 8 + cp) (polar coordinates). By rotation invariance 
of ~, vq> is harmonic. Let v be the harmonic function Hn vq> dcp. 
(a) Prove that v is rotation invariant. Conclude that for 0 < Ixl s r, v = a In r + b 

for a, b E IR (see Problem 4.6.1). 
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(b) Prove that a = 0 and b = 2nu(O), thereby proving that u(O) = Ju(r, cp) dcp/2n 
which is the mean value property. 

DISCUSSION. To make this work in dimensions higher than 2 one must sum the 
rotates of u over all rotations. The measure is Haar measure on the orthogonal 
group. 

2. The "standard" proof of the mean value property considers JuAv - vAu dx over the 
domain B,(y)\B,(Y), with v = ,2-d when d i= 2 and v = In , when d = 2. Prove the 
mean value property by performing this computation and passing to the limit e -> O. 

The function r2 -d in the above proof is a centerpiece of potential theory (In r 
when d = 2). The reason is that it is a fundamental solution of the Laplace equation. 

3. Prove that for d c: 3, Ar2 - d = i5/wd , where i5 is the Dirac measure and Wd is the d - 1 
area of the sphere Sd-l. Hint. r2 - d is locally integrable, so for ljI E CO'(lRd), 

(r 2 - d, AljI) = lim f \X\2-dAI/J(x) dx. 
,-0 IId \8,(0) 

Then compute as in the previous problem. 
DISCUSSION. The functions r2 - d and In(r) appear in the solution of Problem 4.6.1. A 
different proof of /':,.r2-d = i5/wd is given in Problem 4.6.3. Yet another proof, valid 
only for d = 3, is given in Problem 4.6.2. 

4. Prove that there is a constant c = c(cx, d) such that if u E COO(n) is harmonic, then 

c\lUI\P(l1) 

\ o'u(x) \ ::::; (dist(x, on»I.I· (4) 

The estimate from this problem gives an alternate proof of the Interior Elliptic 
Regularity Theorem for harmonic functions. 

5. Prove that if u E L 00 (n) satisfies Au = 0 in the sense of distributions then u E Coo (n). 
Hints. Let j, be a standard approximate delta function. Show that u, == j, * u is a 
well-defined harmonic function on the set of points in n whose distance to the 
boundary is at least e. Apply estimate (4) to the restriction of u, to compact subsets 
of n and then use Arzela-Ascoli. 

§5.11. E. Hopf's Strong Maximum Principles 

This section presents a far-reaching generalization of the maximum principles 
of the last section. We find results for second-order elliptic operators of the 
form 

a2 a 
L = L aiix)~ + I bi(X)~ + c(x) == M + c(x). (1) 

uXi uXj uXi 

Thus, M denotes the terms of order 1 and 2. Thanks to the equality of mixed 
partials, we may suppose without loss of generality that aij = aji' For the first 
result, we suppose that 

aij' bi E L 00 (0 : !R) and aij = aji , 

L aij(x)~i~j :e: 0, for all ~ E !Rd, X E O. 

(2) 

(3) 
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Proposition 1. Suppose that (1), (2), and (3) hold and that 0 c !Rd is open. Then, 
if u E C 2(O) satisfies Mu > 0, then u cannot have a local maximum in O. 

PROOF. If u had a local maximum at x the first derivatives of u would vanish 
at x and the matrix [a 2u(X)/ax i ax]] of second derivatives would be negative 
semidefinite. We then use the following algebraic lemma. 

Lemma 2. If Ai} and Bij are both positive semidefinite symmetric matrices, then 
Li.j AijBij ;::: o. 

PROOF. The key observation is that 

so Li.jAijBij = tr(AB). 

L AijBij = (ABI)i.i = (AB)i.h 
j 

Choose an orthogonal transformation, (f), so that (f)A(i)-l = diag(J.J with 
Ai;::: O. Then 

where Pi is the ith diagonal element of (f) B(i)-l. Then Pi ;::: 0 since (i) B{f)-l is 
positive semidefinite. 0 

Returning to the proof of Proposition 1, we see that the lemma implies that 
Mu(:x) :::;; 0 if u has a local maximum at X. 0 

Corollary 3. Suppose that (1), (2), and (3) hold and that 0 c !Rd is a bounded 
open set. If u E C 2(O) n C(Q) satisfies Mu > O. then maxn(u) :::;; maxrn(u). 

The next results and proofs are due to E. Hopf. We follow the exposition 
of Bers, John, and Schechter [BJS]. For the remainder of the section hypothe­
sis (3) is strengthened to 

aijEC(Q)and3J1>0, Lai}(xK~j;:::J11~12, forall xEQ, ~E!Rd. (4) 

This implies that M is uniformly elliptic. o 

Theorem 4. Suppose that (1), (2), and (4) hold and that 0 is a connected open 
subset of !Rd. If u E C2 (O) n C(Q) satisfies Mu ;::: 0 in 0 and there is an X EO 
such that u(x) ;::: u(x) for all x E 0, then u is constant. 

This theorem asserts that if u is not constant then u achieves its maximum 
value in Q on ao and not in the interior. The next result shows that if x is a 
boundary point where the maximum is attained, then the outward normal 
derivative at x is strictly positive. The fact that u(x) is maximal implies that 
the derivative is nonnegative. 
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Figure 5.11.1 

Theorem 5. Suppose that u E C2(0) n CI(ft) satisfies Mu ~ 0 in 0 and attains 
its maximum value at a point x E ao and there is a Euclidean ball, B c 0 with 
jj n 00 = x, then either u is identically constant or ou(x)/on > O. 

Figure 5.11.1 (a) shows that if 0 is regular at x according to the definition 
in §5.9, then there is such a Euclidean ball. The derivative %n in the conclu­
sion is the directional derivative in the direction from the center of the ball to 
X. This agrees with the standard definitions when 0 is regular at X. Figure 
5.11.1 (b) shows that 0 can have inward pointing irregularities and still satisfy 
the hypothesis. Note that when 0 is irregular, as in Figure 5.11.1 (b), choosing 
different balls yields a cone of outward normal directions and u must be strictly 
increasing in all of those directions. 

PROOF OF A WEAKENED VERSION OF THEOREM 5. We first prove Theorem 5 
under the additional hypothesis 

u(x) < u(x), for all x E O. (5) 

Choose concentric balls B1 cc Bo c 0 such that Bo n ao = x (Figure 
5.11.2). Translate coordinates so that the center of the balls is the origin and 
let r == Ix!. 

Consider the function 

Then 

rx > 0, ro == radius of Bo. 

v> 0 in Bo, and 
av 
- < 0 on oBo. 
on 
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Q 

Figure 5.11.2 

To find Mv = Me- ocr2 , compute the derivatives 

and 

Thus 
Mv 2 (41X2(L aijxixj ) - CIX)e-.,2. 

Since the sum is at least as large as fllxl2, which is bounded below on the 
complement of Bl , it follows the Mv > 0 in Eo \Bl if IX is sufficiently large. Fix 
such an IX. 

Since u is strictly less than u(x) on OBl we may choose e > 0 so that 

ev + u < u(x) on OBl' 

Then hypothesis (5) shows that max(ev + u) occurs in Bo \El or at x. 
Since M(ev + u) > Mu 2 0 in Eo \Bl' Proposition 1 implies that the 

maximum of ev + u in Eo \Bl must occur on the boundary. 
The maximum at the boundary must occur at x, so %n(ev + u)(x) 2 O. 

Thus at x, au/on 2 - e ov/on > O. D 

PROOF OF THEOREM 4 FROM THE WEAKENED THEOREM 5. If m is the maximum 
of u on Q and u(xo) = m for some Xo E n, we must show that u is constant. 
Let S == {x E n: u(x) = m} 3 xo' Then S is closed since u is continuous. It 
suffices to prove that S is open. 

If Xl E S let d == dist(x l , on). It suffices to show that B(Xl' d/2) c S. If 
X2 E B(x l , d/2), then 

b == dist(x2 , S) ::; dist(x2 , Xl) = ~. 

It suffices to show that b = O. 
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If 6 > 0, consider the restriction of u to B(X2' 6). Since B is contained in the 
interior of n, u is twice differentiable on the closure of B. By definition of 6 
there is an X E OB(Xb 6) n S, so u(x) = m and u < m on B(X2' 6). By the 
weakened form of Theorem 4, ou/ov > 0 at X. However, x is an interior point 
ofn at which u is maximal so Vu(x) = O. This contradiction shows that 6 must 
vanish. 0 

PROOF OF THEOREM 5. Theorem 4 implies that if u is not constant, then uln is 
strictly less than max {u(x): x E Q}. The hypotheses of the weakened Theorem 
5 are satisfied and it follows that ou(x)/ov > o. 0 

Theorem 5 required u to be differentiable on the closure of n. However, the 
proof works for u E C2 (n) n C(Q), provided that the conclusion is interpreted 
in the sense 

( 0)-, .. u(x + hn) - u(x) o < ~ u(x) == hm mf ---'-'~-'-. an h~O- h 

The maximum principles have an enormous variety of applications. Several 
are given below. The book of Protter and Weinberger [PW] is devoted to 
them and is highly recommended as easy and enjoyable reading. 

Our first application is a comparison theorem. Note that terms of order 0 
are allowed provided that they have the right sign. To keep track of the signs 
remember that M, with positive definite coefficient matrix like A, acts like a 
negative operator. The differential operator (1), with 

C E C(Q) and c(x) S 0 for all x E Q, (6) 

is then expected to be negative. This is borne out both by the sign of the 
eigenvalues of L as part of a self-adjoint boundary value problem and the 
next theorem. 

Theorem 6 (Comparison Theorem). Suppose that hypotheses (1), (2), (4), and (6) 
hold. If u, v E C2 (n) n C(Q) satisfy Lu S Lv and u 2: von an, then u 2: v in Q. 

PROOF. If w == {x En: u < v}, it suffices to show that w is empty. In w 

M(u - v) = L(u - v) - c(u v) S 0 and u - v 2: 0 on ow. 
If w is nonempty, Theorem 5 implies that u - v 2: 0 in w contradicting the 
definition. 0 

EXAMPLES/ApPLICATIONS. 1. If Au s 0 in nand u 2: 0 on an, then u 2: 0 in n. 
Proof. v = 0 is a lower comparison function. 

In this way we recover Corollary 5.10.4. A physical interpretation of this 
result, complementing the one after Corollary 5.10.4, is the following. The 
equilibrium temperature in a domain n, subject to a nonnegative time­
independent heat source and kept at nonnegative temperature at the bound­
ary, is strictly positive in the interior. 
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Let u+ := max{u, O} and u_ := min{u, O}. Then using min u_ as a lower 
comparison and max u+ as a upper comparison yields the following 
corollary. 

Corollary 7. If hypotheses (1), (2), (4), and (6) hold and u E C2(0) n C(O) satisfies 
Lu = 0, then for all x in 0, 

min u_ :::;; u(x) :::;; max u+. (7) 
an an 

2. The Fredholm alternative proved in §5.6 shows that to prove the solv­
ability of Dirichlet's problem it is sufficient to prove a uniqueness theorem. 
The maximum principle is one of the best tools for that purpose. 

For example, if c :::;; 0 in 0, Lu = 0 in 0, and u = 0 on 00, then Corollary 
7 applies and shows that u == 0, proving the desired uniqueness and therefore 
unique solvability of the Dirichlet problem, provided c :::;; O. 

3. In the same way, uniqueness of solutions of the Neumann problem 
follows from Theorem 5. Suppose again that (6) is satisfied and that Lu = 0 
in ° and ou/on = 0 at the boundary. Then a nonconstant u cannot have a 
positive maximum at the boundary, since in a neighborhood of such a point 
one would have Mu = Lu - cu ~O, so Theorem 5 would imply that ou/on > 0 
at such a maximum point. Applying the same reasoning to - u shows that a 
nonconstant solution u cannot have a negative minimum at the boundary. 
The conclusion is that u is constant. There can be nonzero constant solutions 
only if c(x) is identically zero. This proves uniqueness when c :::;; 0 and is not 
identically zero. The Fredholm alternative then proves solvability. The N eu­
mann problem is uniquely solvable provided c(x) :::;; 0 and c(x) is not identically 
equal to zero. If c :::;; 0 and a ~ 0 are not both identically zero, the same 
argument proves uniqueness for the Robin Problem with boundary condition 
ou/on + a(x)u = O. 

4. If u is a solution of the nonlinear Dirichlet problem 

du - u3 = f :::;; 0 in ° and u ~ 0 on 00, 

then u > 0 in 0. 
Proof Let c(x) = - u2 (x) :::;; 0 and apply the Comparison Theorem with v = O. 

5. Find upper and lower bounds for the solution u of the Dirichlet problem 

a(x)u - du = f in 0, u = g on 00, 

where A ~ a(x) ~ a > O. 
Solution. To estimate u from above use a comparison function w which is 
constant, w == f3 ~ O. Then 

a(x)w - Aw ~ af3 in 0. 

If f3 ~ sup f+ / a and f3 ~ sup g + , the Comparison Theorem shows that u :::;; w. 
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Thus 

u ~ max {s~y-=), sup g+}. 
Similarly, 

. {inf(j~) . f } 
mIll -a- --, III g ~ u. 

In particular, 
IlulIL~ ~ min{a-llljIIL~(m' Ilglb}· 

6. Derive analogous estimates when a(x) ~ ° but is not necessarily strictly 
positive. Here the comparison functions are more tricky. Use constants to 
dominate the boundary values. For the inhomogeneous term, j, we take 
advantage of the fact that Alxl2 = 2d. 

Choose Xo E 0 and R > ° so that 0 c BR(XO)' Let 

w == IX(R2 - Ix - XOI2) + 13, IX ~ 0, 13 ~ 0. 

Take 13 = sup g + , so that v ~ u on a~. Then 

(a(x) - A)w = a(x)w + 2ad ~ 2ad, 

so if IX = sup(f+ )!2d, the Comparison Theorem shows that w ~ u. In this way, 
we find 

. f( ) inf(f_) i 2 sup(f+ ) 2 2 
III g- +-2d(R - Ix - xol ) ~ u ~ sup(g+) + ---U-(R - Ix - xol ). 

7. The example 

d2 

dX2 u + u = 0, u = sin x, 0= JO, n[, 

which has a positive strict local maximum at x = n12, shows that the hypoth­
esis c ~ ° cannot be dropped from Corollary 7. 

8. The example , 

d4 
--u=O 
dX 4 ' 

u = x(x - l)(x + 1), 0= JO, 1[, 

which has a positive strict local maximum at x =1, shows that the theory of 
this section does not extend to higher-order elliptic operators. 

9. The solution u = cosh x of d2uldx2 - u = ° with u( ± 1) = cosh 1 and 
0:= J -1, 1 [, shows that the conclusion (7) cannot be strengthened to 
minen u ~ u(x) ~ max an u. 

PROBLEMS 

The maximum principle is one of the most incisive tools for studying nonlinear 
problems. Here we give three standard applications. 
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1. Theorem. If f is a bounded continuous function on ~, there is a constant c depending 
only on IlfIILro(~) and 0, so that any u E C2(0) n C(Q) sati~rying ~u + feu) = 0 in 0 
and u = 0 on ao satisfies liuIIL"'(Q) :$ C. 

2. Theorem. If f: ~ -> ~ is nondecreasing and continuously differentiable and u, 
v E C2(0) n C(Q) satisfy 

-~u + feu) 2 -~v + f(v) in 0, u 2 v on a~, 

then u 2 v in O. If equality holds at an interior point, then u == v. 

Hint. Subtract the equations for u and v and write feu) - f(v) = c(x)(u - v) with 

c(x) = L f'(v(x) + O(u(x) - v(x))) dO. 

DISCUSSION. This idea of subtracting then using the mean value theorem to get a 
linear equation for the difference of two solutions to nonlinear problems is surpris­
ingly useful. It also appears in the hint for Problem 3.6.4. Note that the coefficients 
of the linear problem depend on u. A related method is to differentiate nonlinear 
equations to obtain linear equations for the derivatives of the unknown. The 
coefficients of the resulting linear equation depend on the unknown function. 

3. Prove that if u E COO (0) n C(Q) satisfies the equation of constant mean curvature H 
(see Problem 5.1.4) with H :$ 0, and u attains its maximum or minimum value at 
an interior point, then u is constant. In particular, minimal surfaces cannot have 
interior local extrema. 
DISCUSSION. Many other applications to quasi-linear problems from mechanics and 
geometry can be found in the books ofProtter and Weinberger [PW] and Gilbarg 
and Trudinger [GT]. 



APPENDIX 

A Crash Course in Distribution Theory 

This appendix presents some of the elementary notions of distribution theory. 
Beginning in Chapter 2 these ideas will be used extensively. More detailed 
brief introductions can be found in [HI, pp. 1-17J, [R, pp. 135-162], and 
[Sc2, pp. 71-140]. More complete treatments are [Don, Scl, GS, H2], though 
that level of coverage is not needed. 

The Theory of Distributions grew from many disparate sources. One is the 
treatment of impulsive forces. Newton's second law asserts that the rate of 
change of momentum is equal to the force applied, dp/dt = F. Consider an 
intense force which acts over a very short interval of time 1 < t < 1 + M. An 
example is the force exerted by the strike of a hammer. The impulse, I, is 
defined as I == S F(t) dt so 

pu + M) = pW + I. 
The exact shape of F(t) does not enter. In the limit, as L'lt tends to zero, we 
arrive at an idealized force which acts instantaneously to give rise to a jump 
I in the momentum p. Formally, the force law satisfies 

F = 0 for t i= 0 and f F(t) dt = I. (1) 

This idealized impulsive force is denoted I b f' and b1 is called Dirac's delta 
function though no function can satisfy (1). The idealized equation of motion 
is dp/dt = Ib1 . The solution satisfies p(t + ) - p(t -) = I. Such idealizations 
are quite successful in a variety of problems of mechanics and electricity. 

The mathematical framework developed by L. Schwartz in the 1940s has 
an additional motivation from mechanics. It has long been realized that if u(x)· 
is a physical observable that depends on x, then it is impossible to measure 
point values of u since any measuring device has finite size. This is true even 
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in classical physics but the problem becomes more serious in Quantum Field 
Theory where the point values of the field may not exist. The Ehrenfests 
suggested that smeared or averaged fields, S u(x)cp(x) dx, with regular weight 
functions cp are well defined and meaningful. Both observations about the 
measurement process suggest the importance of averages S u(x)cp(x) dx. The 
observable u is "observed" as a linear functional 

cp ~ f u(x)cp(x) dx. (2) 

An example is the impulsive force field F = ]151 of (1) which corresponds to 
the functional 

cp~]cpW = "f F(t)cp(t) dt". 

This example suggests that the test functions cp must at least be continuous. 
Examples of dipoles and more general multipoles, cp ~ o~cp(:s), suggest that 
the test functions be infinitely differentiable to permit commonly considered 
observables. In order for observables which are large at infinity to give finite 
answers, it is reasonable to impose that the test functions be required to have 
compact support, that is, supp(cp) == d{x: cp(x) # O} is compact. In summary, 
we are led to the idea that an observable u on an open subset Q c [Rd is a 
linear functional on C;'(Q). Following Schwartz, C;'(Q) is denoted '@(Q) and 
CXl(Q) is denoted c&"(Q). 

Only those functionals which give nearby results for nearby tests can 
represent reproducible measurements. Thus we are led to assume that the 
linear functionals are continuous. 

Definition. A distribution on an open Q c [Rd is a linear map I: '@(Q) ~ C, 
which is continuous in the sense that if {CPn} c .@(Q) satisfies 

and 

there is a compact K c Q such that for all n, sUPP(CPn) c K, (3) 

there is a cp E .@(Q) such that for all rJ. E Nd, o~CPn . 
converges uniformly to o~cP, (4) 

then I(CPn) ~ I(cp). The set of all distributions on Q is denoted .@'(Q). When 
CPn' cP satisfy (3), (4) we say that CPn converges to cP in '@(Q). 

The action of a distribution 1 E .@'(Q) on a test function cP E .@(Q) will often 
be denoted <I, cp). The set .@'(Q) is clearly a complex vector space. 

EXAMPLES. 1. If u E Ltoc(Q), then there is a natural distribution lu defined by 
<Iu , cp) == S u(x)cp(x) dx. In this sense, the distributions are generalizations of 
functions and are sometimes called generalized junctions. Two locally integra­
ble functions define the same distribution if and only if the functions are equal 
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almost everywhere. We say that a distribution I is a locally integrable function 
and write I E Lloc(o.) if I = lu for some u E L~c(o.). Similarly, we say that I 
is a continuous (resp. C"") function if I = 1u for a u E C(o.) (resp. C"(o.». 
For example, the distribution defined by the characteristic function of the 
irrationals, X n;l\ Q, is a COO function. In fact, this distribution is equal to the 
function 1. 

2. If J1 is a Radon measure on 0., then <I", <p> == J cp(x) dJ1(x) defines a 
distribution. If M is an embedded k-dimensional submanifold in 0. and da is 
the k-dimensional area in M, then <p f--+ JM cp da is a distribution. 

3,4. If ~ E 0., then <1, cp) == cp(~) is a distribution denoted b~ and called the 
Dirac delta at~. When ~ is not mentioned it is assumed to be the origin. More 
generally, <1, cp) == a"cp(~) is a distribution. 

The fact that an infinite number of derivatives are needed in (4) might seem 
excessive. In fact, for any fixed distribution and compact K c 0., a finite 
number suffice. 

Proposition 1. A linear map I: .@(o.) -+ C belongs to .0)'(0.) if and only if for every 
compact subset K cO. there is an integer n(K, I) and aCE IR such that for all 
(.0 E .0/(0.) with support in K 

Ilcplb == I maxlo"cpl· (5) 
l"lsn 

PROOF. The "if" part is clear. To prove "only if" suppose that (5) is violated 
for a compact K. For each integer n, choose CPn E .0)(0.) with support in K such 
that 

and II CPn II en < lin. 

Then CPn satisfy (3), (4) with <p = 0, but <I, CPn) does not converge to zero so I 
is not a distribution. 0 

Definitions. If there is a C such that (5) holds, 1 is said to be of order n on K. 
If I is of order n on every compact K c 0., then that I is of order n on o.. The 
set of distributions of order n is naturally identified with the dual of Co(o.). It 
is sometimes denoted C-n(o.). A distribution is of finite order on 0. if it is of 
order n on n for some n. 

EXAMPLES. 1-4. The examples above are of order 0, 0, 0, and I al. 

5. The functional on .0)'(IR), defined by 

I(cp) == lim r If>!~) dx == P.V. f~!~ dx, 
e~oJlxl>e x x 

is called the principal value of I/x. It is a distribution of order I on IR (Problem 
14). 
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6. The functional 

defines a distribution on ]0, 1 [ which is not of finite order. It follows that there 
is no distribution on lR whose restriction to ~(]O, 1 [) is equal to 1. 

Definition. A sequence of distributions In E ~'(O) converges to I E ~'(O) if and 
only if for every test function cP E~(O), In(CP) ~ I(cp). This convergence is 
denoted In ->-{ or ~'-lim In = l. 

EXAMPLES. 1. Ifj E £tl(lRd) with fj dx = 1, letj,(x) = e-nj(X/e). Thenj,-,-bo. A 
more general result is proved in Proposition 2.2.3. 

2. We will show in Proposition 4 that every distribution is the 9&'(0) limit 
of a sequence of elements in ,@(O). This suggests again the interpretation as 
generalized functions. 

3. The definition of P.V.(1/x) shows that ~'-lim Xnlxl> 1 (l/x) = P.V.(l/x). 

The great utility of distributions rests largely on the fact that the standard 
operations of calculus extend to ~'(O). In particular, one can differentiate 
distributions. For the study of differential equations that fact is particularly 
important. 

The recipe for defining operations on distributions. is nearly always the 
same: pass the operator onto the test function. For example, for I E £tl'(lRd) the 
translate of I by the vector y, denoted Tyl, is defined as follows. If ( were equal 
to the function u, then 

<Tyl, cp) = f u(x - y)cp(x) dx = f u(z)cp(z + y) dz = <I, LyCP)· 

This motivates the definition, <-ryl, cp) == <I, LyCP). It is easy to verify that Tyl 
so defined is a distribution and that the definition agrees with TyU when I = {u. 

To differentiate a distribution Ion lRd, form the difference quotients which 
should converge to ol/oxj • Let ej == (0, ... , 0, 1, 0, ... , 0) be the jth standard 
basis element in lRd. The difference quotients are given by 

(Lh=~ ~~, cp) == \1, ~~e/Ph~-~)' (6) 

The test functions on the right converge to - ocp/oxj , so the continuity of I 
implies that the right-hand side of(6) converges to <I, - ocp/oxj ). This suggests 
that <ol/axj , cp) be defined by <I, -ocp/oxj ). This defines a distribution and if 
u E C1 (0) and 1 = lu, then the derivatives of I are equal to the distributions 
Iru!i'xj' Thus the operator a/oxj on ~' is an extension of %xj on ~. 

As an example consider H(x) == X[O, ",[(x), the Heaviside function on lR. The 
difference quotient (LhejH - H)/h is equal to the function h- 1 X[O,h[ which 
converges to b in the sense of distributions. Thus dH/dx = b. Note that the 
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difference quotients converge to zero almost everywhere. Since H is not a 
constant, zero is surely not the desired derivative. The pointwise limit gives 
the wrong answer and the distribution derivative is the right answer. 

The operations on distributions discussed above are special cases of a 
general algorithm. The following version appears in unpublished notes of P.D. 
Lax. 

Proposition 2. Suppose that L is a linear map from £Zl(01) to £Zl(02)' which is 
sequentially continuous in the sense that <Pn --+ <p implies L(<Pn) -+ L(<p). Suppose, 
in addition, that there is an operator L', sequentially continuous from £Zl(02) to 
£Zl(01)' which is the transpose of L in the sense that <L(<p), tjJ) = < <p, L'(tjJ» for 
all <p E £Zl(01)' tjJ E £Zl(02)' Then the operator L extends to a sequentially contin­
uous map of £Zl'(Od to £Zl'(02) given by 

<L(l), tjJ) == <I, L'(tjJ» (7) 

The uniqueness of the extension is proved in Proposition 8. 

PROOF. The sequential continuity of L' shows that L(/) defined in (7) is a 
distribution. If I = I", for some <p E £Zl(Od, then 

<L(l), tjJ) == <I, L'(tjJ» = r <p(x)L'(tjJ)(x) dx = r L(<p)(x)tjJ(x) dx, (8) Jo, J02 
the last equality from the hypothesis that L' is the transpose of L. Thus L(/) 
is the distribution associated to L( <p) which proves that L defined by (7) extends 
LI",,· 

Finally, if In-'-I in £Zl'(Od, it foHows immediately from (7) that L(/n)-'- L(l), 
proving the sequential continuity of L. 0 

EXAMPLES. 1. If a(x) E C'XJ(O), (== 8'(0», then the map L(<p) == a<p is equal to 
its own transpose. This statement is equivalent to the identity 

<L(<p), tjJ) = f (a(x)<p(x»(tjJ) dx = f (<p(x»(a(x)tjJ) dx = <<p, L(tjJ». 

Thus for IE .@'(O),a/isa well-defined distribution given by <ai, <p) == <I, a<p). 

2. If O2 = Y + 0 1 and L = Ty is translation by y, then L' = Ly is sequen­
tially continuous, so for IE £Zl'(Ol) the translates of I are well defined by 
<Tyl, <p) == <I, Ly<p). Similarly, the reflection operator (~u)(x) == u( -x) is its 
own transpose, so ~l is a well-defined distribution on the reflection of O. 

3. If L = a' (see §1.3 for this notation), then integration by parts shows that 
the transpose is L' = ( - 1 )1'la" which is sequentially continuous on £Zl, so the 
derivatives of distributions are defined by 

Notice that since ajak = akaj on £Zl, it follows from the definition of distribu­
tion derivative that for any I, ajakl = aka). 
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Having defined multiplication and derivative we can compute a product 
rule for aj(al). Omitting the subscript we find 

(a(al), 1/1> == (I, -aal/l> = (I, -a{al/l» + (I, {aa)l/I> = (aal + (ca)/, 1/1>. 

Thus we have the familiar rule a(al) = aal + (aa)1 and, by induction, the usual 
Leibniz formula for aa(al) is valid 

The derivatives combined with Example 2, show that if P(x, D) = I. aa(x)aa 
is a linear partial differential operator with coefficients in C(Q), then P maps 
£!l'(Q) to itself with (PI, cp> == (I, P'cp>. The transpose of P is given by 

P'I/I = L (-lyaa(aal/l)· 

The transpose is also denoted pI in this text. 

4. If 11: Q2 -> Q 1 is a diffeomorphism and L(cp) == cp 0 11, then L is sequen­
tially continuous and 

(L(cp), 1/1> = In2 CP(I1(y»l/I(y) dy = In, cp(x) 1/1 (11-1 (x» I~~ I dx, 

where I Dy/Dx I is the Jacobian determinant of the transformation y = 11-1(x). 
Thus the transpose of L is the map 1/11-+ 1/1(11-1 (x»IDy/Dxl· Therefore, for any 
IE £!l'(Q2), 1011 is well defined by 

(/011,1/1> == (I, Idet DI1-111/1 0 11-1 >. 
This example is important if one wants to define distributions on a manifold. 

5. Convolution 1. Suppose that Q = ~d and cp E £!l(~d). Let L be the oper­
ator L(I/I) = cp * 1/1. Leibniz' rule for differentiating under the integral implies 
that L maps £!l(~d) continuously to itself. Fubini's Theorem shows that the 
transpose of L is convolution with ~cp (exercise). Thus cp * I makes sense 
for any I E £!l'(~d) and is given by (cp * 1,1/1> == (I, (~cp) * 1/1>. As an example, 
we compute cp * b, 

(cp * b, 1/1 > == (b, (~cp) * 1/1> = «~cp) * 1/1)(0) = f cp(y)l/I(y) dv = (cp, 1/1>. 

Thus cp * b = cpo The definitions yield 

(aa(cp * I), 1/1> == (cp * I, ( _a)al/l> == (I, (!J€cp) * (- a)al/l > = (I, ( - a)a«~cp) * 1/1». 

A similar sequence of computations shows that the last term is equal to 
(cp * aal, 1/1 >. On the other hand, applying the derivative in the last term to the 
~cp term ofthe convolution, and then unraveling, yields «aacp) * 1,1/1>. In this 
way, we prove that in the sense of distributions 

aa(cp * I) = cp * aal = (aacp) * I. 
Applied when I = b, we find that cp * cab = aacp. 

Convolution on the right, L(I/I) = 1/1 * cp, is equal to cp * 1/1 and also extends. 
In particular, 1* cp = cp * I. 
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Proposition 3. If IE g'(lRd ) and cp E@(lRd ), then 1* cp is equal to the COO function 
whose value at x is (I, TA~cp». 

PROOF. First observe that if Xn -> x, then Tx (.~cp) -> TA911cp) in g(lRd), which 
suffices to show that the function y(x) == (I, ~A~cp» is continuous on IRd. 

Similarly, if L1~ is the forward difference operator ('-hej - l)/h approximat­
ing OJ, then 

and 
as h -> O. 

This suffices to show that y E C 1 (lRd) and Ojy = (I, TA(~cp». By induction on 
n it follows that for all n E N, y E C"(lRd), and oay = (I, Txaa(~cp» for all 
letl ~ n. 

Next we show that the distribution defined by y is equal to the convolution 
1* cp. Toward that end, write (y, t/J) as a limit of Riemann sums 

(y,t/J)=lim L t/J(~)(I'Taln(.~cp»n-d=lim L 11,t/J(et)TalnUJfCP»)n-d. 
n~':.tJ IlEld n n"'"'""""OO aeLd \ n 

Note that n-d L t/J(!Xln)Taln(~CP) -> (.!Jicp) * t/J in g(lRd) (exercise), so the 
limit on the right is equal to (1,(~cp)*t/J)=(cp*I,t/J). Thus, y=cp*1 
as distributions. 0 

Proposition 4. Suppose that x,j E g(lRd ), fj(x) dx = 1, x(O) = 1,jeCx) == !'.-dj(xlF.), 
and Xe(x) == X (F.x). Then for any 1 E 0;I'(lRd), Xel,je * I, and XeUe * I) converge to I 
in g' (lRd) as [; tends to zero. In particular, any such 1 is the limit in 0;1' (lRd) of 
elements of 0;I(lRd). 

The function Xe is a vast plateau of height very close to lover a diameter 
of order lie. Thus multiplication by Xe is nearly the identity operator. Convolu­
tion by je is close to convolution with the Dirac delta which is the identity 
operator. These two approximation processes, plateau multiplication and 
convolution with an approximate delta, are simple but remarkably useful 
methods in analysis. 

PROOF OF PROPOSITION 4. We treat only XeUe * I). The definitions yield 
(XeUe * I), cp) == (I, (~je) * (XeCP» for any cp E g(lRd). The result is then a con­
sequence of the fact that (.~je) * (X,cp) -> cp in f0(lRd). The verification of that is 
an exercise in advanced calculus which is left to the reader. 0 

If 1 is a distribution on 0 and w is an open subset of 0, then 1 is equal to 
zero on w means that for all cp E E:0(w), (I, cp) = o. 

Definition. The support of lEg' (0) is the complement of {X E 0: I is equal to 
zero on a neighborhood of x}. The support is denoted supp(l). The set of all 
IE E:0'(O) such that supp(l) is compact in 0 is denoted 0'''(0). 
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EXAMPLES. 1. The support of every I is a closed subset of O. 

2. supp (5~ = {~}. 

3. If I is equal to a continuous function f, then supp(l) = cl {x:f(x) i= O}. 

4. supp(aal) c supp(l). 

Proposition 5. If I E £0'(0) and <p E £0(0) have disjoint supports, then < I, <p) = o. 

PROOF. For each y in supp(<p) choose an open Wy c 0 containing y and on 
which I is equal to zero. Choose a nonnegative hy E £0(0) with supp(hy) C Wy 

and hy(Y) > O. The sets {x: hy(x) > O} are an open cover of the compact set 
supp(cp). Thus there is a finite subcover. 

Call the corresponding functions hI" .. , hrn. Define t/lj == <ph)(h 1 + ... + hrn) 
on U {hj > O}, and t/lj == 0 otherwise. 

Since the sum ofthe h's is positive on supp(<p), t/lj is smooth and is supported 
in the union of the Wj containing supp(hj)' 

Since I is equal to zero on wi' <I, t/lj) = O. 
Since cp = L t/lj the result follows. 0 

Recall that 1&'(0) is a complete metric space whose topology is defined as 
follows. Let K I C K 2 C ... be an exhaustion of 0 by compact sets. For each 
n, define a seminorm 11'11. on 10"(0) by 

Ilcpli. == L max W<pl· 
lal s. Kn 

A metric for 1&'(0) is given by 

d' ( ./,) ~2-·11<p-t/l1i. 
1St cp, 'I' == L., 1 + Ilcp - t/l11~' 

A sequence converges in 1&'(0) if and only if each partial derivative converges 
uniformly on compact subsets of O. An argument like the proof of Proposition 
1 shows that a linear functionall: 1&'(0) -+ IC is continuous if and only if there 
is an n and a c such thatfor all cpEI&'(O), l<l,cp)1 ~cllcpll •. In particular, 
continuous linear functionals on 1&'(0) are distributions of compact support. 
The converse is also true. 

Proposition 6 

(i) If a distribution I E £0' (0) has compact support in 0, then u has finite order. 
(ii) IE £0'(0) has compact support if and only if I extends uniquely to a contin-

uous linear functional on 1&'(0). 

This result explains the notation 1&"(0) for the distributions of compact 
support. 

PROOF. (i) Given IE £0'(0) with compact support, choose t/I E £0(0) with t/I 
equal to 1 on a neighborhood of supp(l). Then Proposition 5 implies that for 
any cp E £0(0), <I, <p) = <I, t/lcp). Let K = supp(t/I), and choose n(K, I) and c 
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such that (5) holds. Then, for any cP E ~(Q), 

1(1, cp)1 = 1(/, t/lcp)l:::; cllt/lcpllcn :::; c'llcplb· 

(ii) The map cp E 6"(Q} H (I, t/lqJ) is then a continuous extension of I to 6"(Q}. 
Since ~(Q) is dense in 6"(Q} (exercise), the extension is unique. 0 

Distributions of compact support extend to distributions on iRd • The exten­
sion by zero is uniquely determined. 

Proposition 7. ~f IE 6"'(Q) there is one and only one 1 E £0'([Rd) such that I = 1 
on .S?(Q) and supp 1 c Q. 

PROOF. If I is such an extension, choose t/I E Cg'(Q} with supp(t/I} c Q and t/I 
equal to 1 on a neighborhood of supp(l}. Note that suppa) contains supp(l). 
For any cp E 0)([Rd) 

(I, cp) = (I, t/lcp) = (I, t/lcp). 

Thus I is uniquely determined. Furthermore, defining I by (7, cp) == <I, t/lcp) 
proves existence. 0 

It is common practice to take this extension for granted and, therefore, to 
consider 6"(Q} as a subset of 6"'([Rd). The next propositions use the notions 
developed above to prove useful results about distributions. 

Proposition 8. £0(Q) is sequentially dense in 0)'(Q). In particular, the extensions 
of the operators L in Proposition 2 are uniquely determined. 

PROOF. Choose an exhaustion Q j cc Q2 cc ... of Q. Choose t/lk E .'Z (Qk+ 1 ) 
with t/lk = 1 on Qk' For I E q'(Q}, t/lk/~ I (exercise). Denote by Ik E 8"([Rd), the 
extension by zero of t/lkl. 

Choose f.k -> 0 with f.k < dist(Qk> aQk+1)' Then j,. * Ik E 0)(Qk+l)' As in the 
proof of Proposition 4, j,. * Ik -'-I in 0)' ([Rd) and therefore in £0' (Q). 0 

Proposition 9. The only distributions on Q, with support equal to the single point 
~, are finite linear combinations of the derivatives of the Dirac delta at ~. 

PROOF. Without loss of generality we may suppose that I E 6"'([Rd). Translating, 
if necessary, we may suppose that ;~ = O. Then (I, cp) = 0 for all qJ E 6'([Rd) 
which vanish on a neighborhood of O. 

Choose an integer n such that I is of order n. For qJ E 6"([Rd), express cp as a 
sum of its Taylor polynomial of order n at 0 plus a remainder 

Then 

(I, cp) = <I, r) + L c~aacp(O} 
lol,;n 

The proposition follows with I = L ca( - a)"(j if we can show that (I, r) = O. 
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Choose a function ( E C(IRd) such that ( vanishes on a neighborhood of 
o and ( is identically equal to 1 for Ixl?: 1. Then, for m = 1, 2, ... , 
(I, (mx)r(x» = O. 

The difference (mx)r(x) - rex) is supported in Ixl ::;; 11m. To show that 
(I, r) = 0, it is sufficient to show that (I, (mx)r(x) - r(x» tends to zero as m 
tends to infinity. To do that, it suffices to show that for all a with lal ::;; n, 
maxloa«((mx)r(x) - r(x)) I tends to zero as m -> 00. 

The derivative of the difference is equal to a sum 

(nmx) - 1)oar (x) + L cpmliJWnmx)oYr(x). 
p+y~a.liJl > 0 

Since the derivatives of r up to order n vanish at 0 the first term is Oem -n-l +Ial). 

The summands of the second term are O(mliJl)O(m-n-l+IYI). Sincc 
1131 + Iyl = lal::;; n the result is O(m-l) and the proof is complete. 0 

Proposition 10. If n is connected then the only distributions on n, all of whose 
partial derivatives vanish, are the constants. 

PROOF. It suffices to show, for any connected open wee n, that I is constant 
on w (exercise). 

Given such an w, choose X E cO"(n) such that X is equal to 1 on a neighbor­
hood of w. 

Then Xl extends naturally to an element of C'(IRn) with support in nand 
with derivatives vanishing on a neighborhood of w. 

Withj. as in Proposition 4,j. * (Xl) converges to Xl in ~'(IRd). Therefore, as 
elements of ~'(w),j. * (X/)--'-l. 

On the other hand, for small e, j. * (xl) is a smooth function whose deriva­
tives vanish in w. Thus j. * (xl) is equal to a constant c. in f2'(w). Choose 
cp E ~(w) with S cp dx = 1. Then, as e tends to zero, 

c. = G. * (Xl), cp) -> (Xl, cp) == c. 

Since c. = j. * (Xl) I 2t(w) this suffices to show that I = c in w. o 

Finally, we take a second look at convolutions to show that C'(IRd) * ~'(IRd) 
makes sense. From the definitions it is not difficult to show that supp(cp * I) c 

supp(cp) u supp(l). Thus cp * I E f2(IRd) when IE C'(IRd). 
For such an I consider the map L(cp) == cp * l. This is a sequentially contin­

uous map of f2(IRd) to itself and it has transpose L'(t/J) = t/J * (Bll) (exercise). 
The transpose being sequentially continuous, it follows that L extends to an 
operator from ~'(IRd) to itself. For u E !Zl'(IRd) and 1 E C'(IRd), u * 1 is given by 
(u*l, cp) == (u, cp*(BlI». 

Symmetrically, left convolution 1* u is defined as an extension of I *. One 
has 1* u = u * I for all I E C'(IRd) and u E E0'(IRd). 

PROBLEMS 

Many details in this Appendix were left as exercises. Working them out is good practice. 
There are two things one needs to do to learn distributions. One must manipulate the 



Appendix. A Crash Course in Distribution Theory 257 

definitions in simple proofs and one must gain familiarity with computations with 
simple distributions. The previous pages provide many exercises of the first sort. The 
next problems have the second skill as goal. 

1. Compute (d/d4Ixl j for j, k = 1,2, 3 ... . 

2. Compute (d/d4Isin xl for k = 1,2, 3 ... . 

3. (i) Let u(x) be the function which is equal to In(x) for x > 0 and zero for x :5: o. 
Then u is locally integrable. Compute the distribution derivative du/dx. Answer. 
<du/dx, tjJ) = g(tjJ(x) - tjJ(O»/x dx + H'tjJ(x)/x dx. 

(ii) Compute the distribution derivative of the function In(lxlJ E Ltoc(lR). 

4. Find the most general solution T E E0'(IR) of the following equations: 
(i) xT = 0; (ii) x dT/dx = 0; (iii) X Z T = b; (iv) x dT/dx = b; 
(v) dT/dx = b; (vi) dT/dx + T = b; (vii) T - (d/dx)Z T = b. 
Hint. For the problems with b on the right hand side, find a form for T in x> 0 
and in x < O. This computes candidates for T which are correct up to a distribution 
supported at (0). 

5. Let /1 be the distribution which integrates a test function over the unit ball in 
IRd. Compute 
(i) o,t/OXj; (ii) 1l/1 where Il == L (%xf 

6. For j E E0(lRd), j ;::: 0, j, == e-dj(x/e), sketch j, * /1 with /1 as in Problem 5, and e 
converging to zero. 

7. With n = 1, define f by f(x) = sin I/x if x > 0 and zero otherwise. Sketch j, * f 
discussing the behavior as e tends to zero. 

8. Letf be the characteristic function of the positive quadrant, {x E IRz: Xj > 0, i = 1,2}. 
Compute (i) oxf; (ii) ox! ox,!. 

9. Let f be the characteristic function of the set XI Xz > O. Perform the same calcula­
tions as in Problem 8. 

10. Define f E L "'(lRz) by f = X I xz/(xi + xD for x "# O. Perform the calculations 
as in Problem 8. Hint. Be careful about x = O. The answer must identify the 
distribution derivative on all of IRz. Away from x = 0 the derivatives are given by 
elementary calculus. The formal second derivatives are not even locally integrable 
near the origin. Problems 12 and 13 have similar difficulties. 

11. Let f be the characteristic function of a nonempty infinite wedge in IR x IR with 
vertex at the origin. Find a constant coefficient second-order partial differential 
operator P(D) such that P(D)f = b. 

12. Prove that (!j(O!ox + i%y)(l/z) = nb. Hint. Write (l/z, Pt(D)q» = 
limJlzl>,z-1 Pl(D)q> dx dy. Use Green's Theorem for the integral on Izl > e. 
DISCUSSION. The differential operator appearing,here is denoted %z. The fact that 
h-1/oz = 0 for z "# 0 expresses the fact that Z--l is holomorphic away from the 
origin. The formula of this problem is equivalent to the Cauchy integral formula. 
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13. Take an example from a calculus text illustrating the inequality of mixed partials 
and compute the distribution derivatives showing how the mixed partials end up 
being equal. 

14. Prove that the principal value of I/x is a distribution of order 1. 

15. Show that the functional 

I(lp) = ~ ~(lp G) -lp(O») 

defines a distribution of order 1. Find supp(I). Show that there does not exist a 
constant c such that 

1(1, lp)1 :s; c max (llp(x)1 + IIp'(x)l) . 
• upp(l) 

DISCUSSION. This example of L. Schwartz shows that a reasonable conjecture 
connecting support and order of distributions of compact support is not true. 
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