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Preface to the English edition 

This English edition is almost identical to the German original Lineare 
Operatoren in Hilbertriiumen, published by B. G. Teubner, Stuttgart in 
1976. A few proofs have been simplified, some additional exercises have 
been included, and a small number of new results has been added (e.g., 
Theorem 11.11 and Theorem 11.23). In addition a great number of minor 
errors has been corrected. 

Frankfurt, January 1980 J. Weidmann 
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Preface to the German edition 

The purpose of this book is to give an introduction to the theory of linear 
operators on Hilbert spaces and then to proceed to the interesting applica
tions of differential operators to mathematical physics. Besides the usual 
introductory courses common to both mathematicians and physicists, only 
a fundamental knowledge of complex analysis and of ordinary differential 
equations is assumed. The most important results of Lebesgue integration 
theory, to the extent that they are used in this book, are compiled with 
complete proofs in Appendix A. I hope therefore that students from the 
fourth semester on will be able to read this book without major difficulty. 
However, it might also be of some interest and use to the teaching and 
research mathematician or physicist, since among other things it makes 
easily accessible several new results of the spectral theory of differential 
operators. 

In order to limit the length of the text, I present the results of abstract 
functional analysis only insofar as they are significant for this book. I 
prove those theorems (for example, the closed graph theorem) that also 
hold in more general Banach spaces by Hilbert space methods whenever 
this leads to simplification. The typical concepts of Hilbert space theory, . 
"orthogonal" and "self-adjoint," stand clearly at the center. The spectral 
theorem for self-adjoint operators and its applications are the central 
topics of this book. A detailed exposition of the theory of expansions in 
terms of generalized eigenfunctions and of the spectral theory of ordinary 
differential operators (Weyl-Titchmarsh-Kodaira) was not possible within 
the framework of this book. 

In the first three chapters pre-Hilbert spaces and Hilbert spaces are 
introduced, and their basic geometric and topologic properties are proved. 
Chapters 4 and 5 contain the fundamentals of the theory of (not neces-

ix 



x Preface to the Gennan edition 

sarily bounded) linear operators on Hilbert spaces, including general 
spectral theory. Besides the numerous examples scattered throughout the 
text, in Chapter 6 certain important classes of linear operators are studied 
in detail. Chapter 7 contains the spectral theory of self-adjoint operators 
(first for compact operators, and then for the general case), as well as some 
important consequences and a detailed characterization of the spectral 
points. In Chapter 8 von Neumann's extension theory for symmetric 
operators is developed and is applied to, among other things, the Sturm
Liouville operators. Chapter 9 provides some important results of perturba
tion theory for self-adjoint operators. Chapter 10 begins with proofs of the 
most significant facts about Fourier transforms in L2(Rm), applications to 
partial differential operators, in particular to Schrodinger and Dirac opera
tors, follow. Finally, Chapter 11 gives a short introduction to (time depen
dent) scattering theory with some typical results; to my regret, I could only 
touch upon the far reaching results of recent years. 

Exercises are not used later in the text, with a few exceptions. They 
mainly serve to deepen understanding of the material and give opportunity 
for practice; however, I often use them to formulate further results which I 
cannot treat in the text. The level of difficulty of the exercises varies 
widely. Because I give many exercises with detailed hints, they can be 
solved in general without much difficulty. 

Now I want to very heartily thank all those who helped me with the 
production of this book. Mrs. Hose turned my notes into an excellent 
typed manuscript with infinite diligence. Messrs. R. Hollstein, D. Keirn 
and H. Klich spent much time reading the whole manuscript and discuss
ing with me their suggestions for improvement. Messrs. R. Colgen and W. 
Stork helped me with the proofreading. I thank the publisher and the 
editors for their pleasant cooperation. 

My teacher Konrad Jorgens inspired me to study this subject; he 
influenced the present exposition in several ways. I dedicate this volume to 
his memory. 

Hattersheim am Main, the summer of 1976 Joachim Weidmann 
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Vector spaces with a scalar product, 1 
pre-Hilbert spaces 

In what follows we consider vector spaces over a field 11(, where II( is either 
the field C of complex numbers or the fieldlR of real numbers; accord
ingly, we speak of a complex or a real vector space. For every cEil( let c* 
be the complex conjugate of c; so for c E IR the star has no significance. 

As a rule, we assume the most important notions and results of linear 
algebra to be known. 

1.1 Sesquilinear forms 

Let H be a vector space over II<. A mapping s : H X H~ IK is called a 
sesquilinear form on H if for all f, g, h E H and a, bEll( we have 

s(j, ag + bh) = as(j, g) + bs(j, h), 

s(af+ bg, h) = a*s(j, h) + b*s(g, h). 
(Ll) 
(1.2) 

If (1.2) holds without stars, then s is called a bilinear form on H; in 
particular every sesquilinear form on a real vector space is a bilinear form. 

Property (1.1) is obviously equivalent to the two properties 

sU, g+ h) = sU, g) + sU, h), 
sU, ag) = as(j, g). 

Similarly, (1.2) is equivalent to 

sU+ g, h) = sU, h) + s(g, h), 
s(af, g) = a*sU, g). 

( 1.1') 

(1.1") 

(1.2') 

(1.2") 



2 1 Vector spaces with a scalar product, pre-Hilbert spaces 

If s is a sesquilinear form on H, then the mapping q : H-+ II( that is defined 
by q(j) .. s(j, f) for each f E H is called the quadratic form on H generated 
or induced by s. For each quadratic form q we obviously have 

q(aj) = laI2q(J) for all f E H, a E K; (1.3) 

so we have, in particular, q(af) = q(j) for every a E K with lal- 1. 
The following theorem shows that in a complex vector space the generat

ing sesquilinear form is uniquely determined by the quadratic form; for 
real vector spaces this is not necessarily true in general; see Exercise 1.2. 

Theorem 1.1 (Polarization identity). Let H be a complex vector space, s a 
sesquilinear form on H, and q the quadratic form generated by s. Then for a/l 
f, g E H we have 

s(J, g) - H q(J+ g) - q(J - g) + iq(J - ig) - iq(J + ig)}. (1.4) 

The proof of this identity may be given by calculating the right side of 
(1.4) according to the rules (1.1) and (1.2). 

Theorem 1.2 (Parallelogram law). Let s be a sesquilinear form on a vector 
space H, and let q be the corresponding quadratic form on H. Then for all 
f,gEHwe have 

q(J+g) + q(J-g) = 2[ q(J)+q(g»). (1.5) 

PROOF. For every f, g E H we have 

q(J+ g) + q(J - g) = s(J,j) + s(J, g) + s( g,j) + s( g,g) 

+ s (j,j) - s (j, g)- s(g,f)+ s (g, g) 

- 2q(j)+ 2q(g). 0 

A sesquilinear form s on H is said to be Hermitian provided that for every 
f, gE H we have 

s(J, g) = s(g,j)·. (1.6) 

A Hermitian bilinear form on a real vector space is said to be symmetric. 
If s is a Hermitian sesquilinear form, and q the quadratic form generated 

by s, then we obviously have q(j) E R for allf E H; we say briefly that q is 
real. The following theorem shows, among other things, that Hermitian 
sesquilinear forms can be characteri}ed by this property of their associated 
quadratic forms. We also obtain that symmetric bilinear forms are 
uniquely determined by the corresponding quadratic forms. 

Theorem 1.3. Let H be a vector space over 11<, s a sesquilinear form on H, and 
q the quadratic form generated by s. 



1.1 Sesquilinear forms 

(a) If II( = C, then the following statements are equivalent: 
(i) s is symmetric, 

(ii) q is real, 
(iii) for all f, g E H we have 

3 

Res(j,g) - Hq(j+g)-q(j-g)}, (1.7) 

(iv) for all f, g E H we have 

1m s(j, g) ... H q(j - ig) - q(j + ig)}. (l.7') 

(b) If II( - A, then the following statements are equivalent: 
(i) s is symmetric, 

(ii) for all f, g E H we have 

s(j, g) = H q(j+ g) - q(j- g)}. (1.8) 

PROOF. 

(a) (ii) follows from (i): q(f). - s(f, 1). - s(f, 1) = q(f), i.e., q(f) is real. 
(iii) follows from (ii): Because q(h) E R for all hE H, it follows from 
(1.4) that 

Re s(j, g) ... *Re{ q(j+ g) - q(f- g) + iq(j- ig) - iq(j + ig)} 

... Hq(j+g)-q(j-g)}· 

(iv) follows from (iii): Because of (iii) we have 

1m s(j, g) = - Re{ is(j, g)} 

... Res(j, -ig) - Hq(j-ig)-q(j+ig)}. 

(i) follows from (iv): 

s(g,j)· ... Re s(g,f) - i 1m s(g,j) ... 1m s(g, if) - i 1m o$(g, f) 

= t { q( g + j) - q( g - f) - iq( g - if) + iq( g + if) } 

... Hq(j+ g) - q(j- g) + iq(j- ig) - iq(j+ ig)} - s(j, g); 

here we have used (1.3) with a" - I, a" i, and a'" - i. 
(b) (ii) follows from (i) by calculating the right side of (ii) while using the 

symmetry of s. 
(i) follows from (ii): 

s(g,1) - Hq(g+f)-q(g-f)} 

== Hq(j+g)-q(j-g)} ... s(j,g). 0 

A Hermitian sesquilinear form is said to be non~negative when 

s(j,f) > 0 for all f E H; (1.9) 
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it is said to be positive when 

J) 0 for all f with =I' 10) 

Since have s(O, = every positive sesquilinear form non-negative. 
We also say that the corresponding quadratic forms are non-negative, 
respectively (Because of Theorem 1.3, the word "Hermitian" may 
be omitted from this definition in the complex case; this does not hold in 

real case, cf. Exercise 1.3.) 

Theorem 1,4, If s is a non-negative sesquilinear form on H, and q denotes the 
l?entera'ted by s, then lor every E we have Schwarz 

inequality 

(1.11) 

If s is positive, then the equality sign in (1. I) holds if and and are 
linearly dependent; the equality s(f, g) = [q(f)q(g)]1/2 holds if and only if 
there exists a c ;;;. such that 1 = cg or g cJ. 

PROOF. Let g E For all R have 

o " q(j + tg) = q(j) + 2t Re (j, g) + t2q( g). 

This second degree polynomial in t has either no root or a double root. 
Since this holds a polynomial + + and only if b2 ac 0, it 
follows that 

[Re s(j, g) Y " q(j)q( g). (U2) 

one chooses a II< that lal I and as(f, g) Is(f, holds, then it 
follows from (1.12) with h = ag that 

Is(j, g)1 2 = [Re as(j, g)]2 = [Re s(j, h)]2 

q(j)q(h) q(j)q(ag) = g); 

this is the Schwarz inequality. 
Let now be positive and let s(f,g} [q(f)q(g)]1/2 true. If =0, 

then the equality g = Of proves the assertion. Consequently, let g =I' O. 
Because of equality g)f q(f)q(g) 0, the polynomial consid
ered above has a double root to; hence we have q(f+ tog)=O i.e., f= 

tog. From - toS{g, g) = g) it follows that - to O. we have 
Is(f,g)I=[q(f)q(g)]l/2 and choose a and h as above, then s(f,h)= 
[q(f)q(h)]'/2 foHows. According to the part proved then have 
either g = 0 = Of, or there exists a c > 0 such that f = ch = acg. In both cases 
f g are linearly One can verify the converses of the last 
two assertions by simple calculation. 0 

EXAMPLE 1. For each mE I\J (I\J denotes the set {I, 2, 3, ... } of positive 
integers) let be the complex vector space of the 



1.1 Sesquilinear forms 5 

(f1,f2'" . ,fm), g=(gl' g2" .. , gm)' ... of complex numbers with the 
addition 

f + g = UI + gl,j2 + g2' ... ,jm + gm) 

and multiplication by a E e 
af === (afl' af2' ... , afm)' 

If (ajk)j, k-I"", m is a complex m x m matrix, then 
m 

sU, g) = ~ ajJJgk for j, g E em 
j,k-I 

defines a sesquiIinear form on em. s is Hermitian if and only if the matrix 
(ajk) is Hermitian, i.e., if for every j, k = I, 2, ... , m we have fl.jk = a~. s is 
non-negative (positive) if, for example, (fl.jk) is a diagonal matrix with 
non-negative (positive) entries in the diagonal. An important special case 
of a positive sesquilinear form on em occurs when (ajk) is the unit matrix. 
Then 

m 

sU, g) = ~ f/8j. 
j-I 

EXAMPLE 2. On the real vector space IIlm (symmetric, non-negative, posi
tive) bilinear forms can be given accordingly. 

EXAMPLE 3. Let C[O, I] be the complex vector space of complex-valued 
continuous functions defined on [0, I] with the addition 

(j+g)(x) = f(x) + g(x) 

and multiplication by a E e 
(aj)(x) = af(x). 

If r : [0, I]~e is continuous, then by 

sU, g) = fo1f(x)*g(x)r(x) dx f, g E C[O, 1] 

a sesquilinear form is defined on CrO, I]. It is Hermitian if and only if r is 
real-valued; it is non-negative if and only if r(x) :> ° for all x E [0, 'I]; it is 
positive if and only if r(x):> ° for all x E [0, 1] and r does not vanish 
identically on any non-trivial interval. 

EXAMPLE 4. Let CR[O, I] be the real vector space of real-valued continuous 
functions defined on [0, I]. For each continuous function r : [0, 1]~1Il the 
bilinear form 

s(j, g) = fo1f(x)g(x)r(x) dx f, g E C[O, 1] 
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is symmetric. Concerning non-negativity and positivity the same assertions 
hold as in Example 3. 

EXAMPLE 5. If k:[O, 1] X [0, 1]-).C is continuous, then by 

sU, g) = L1L1k(x,Y)J(x)*g(y) dy dx 
o 0 

a sesquilinear form is defined on C[O, 1]. This is Hermitian if and only if 
the kernel k is Hermitian, i.e., if for every x,y E[O, 1] we have k(x,y)= 
k(y, x)*. 

EXERCISES 

1.1. Prove the assertions given in Examples 1-5. 

1.2. The matrix 

generates a non-zero sesquilinear form on 1Il2 (cf. Example 2), the quadratic 
form of which vanishes. Consequently, in a real vector space sesquilinear 
forms are not determined uniquely by the corresponding quadratic forms. 

1.3. Let s be the sesquilinear form on R2 generated by the matrix 

(b ~). 
If lal<2 (lal<2), then we have s(f,f) >0 for all fER2 such that f=l'O 
(s(f, f) ;;. 0 for all f E 1Il2). If a =F 0, then s is not symmetric. 

1.4. Let s be a non-negative sesquilinear form on H, q the quadratic form gener
ated by s, and N- {fE H: q(f)=O}. Show that 
(a) N is a subspace (sub-vectorspace) of H. 
(b) If fEN and g E H, then we have s(f, g) = 0 and q(f + g) ~ q(g). 
(c) In the Schwarz inequality the equality sign holds if and only if f and g are 

linearly dependent modulo N, i.e., if there are numbers a, b E Knot 
vanishing simultaneously and such that af + bg E N. 

(d) We have s(f, g) = [q(f)q(g»)1/2 if and only if there is a c ;;. 0 such that 
f - cg E N or g - cf E N. 

1.5. Prove the Cauchy inequality 

Ij~lllg{ < j~II.fj12 j~l 1 gjl2 

with the aid of Example 1 and the Schwarz inequality. 

1.2 Scalar products and norms 

A positive sesquilinear form on H is called a scalar product (or inner 
product) on H. In what follows scalar products will be denoted mostly by 
<. , .) and occasionally they will be given an index in order to distinguish 
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between them. A non-negative sesquilinear form is called a semi-scalar 
product. Examples for (semi-) scalar products may be obtained from the 
exercises in Section 1.1. 

The mapping s : H X H~ II< is a scalar product if and only if for all 
f, g, hE H and a E II< we have 

(i) s(j, g + h) = s(j, g) + s(j, h), 
(ii) s(j, ag) = as(j, g), 

(iii) s(j, g)= s(g,f)*, (1.13) 
(iv) s(j, f) > 0, 
(v) s(j, f) > 0 if f:f= O. 

For the proof we only have to observe that the properties (1.1) and (1.2) 
follow from (i), (ii) and (iii). Similarly, a mapping s : H X H~II< is a 
semi-scalar product if and only if s satisfies properties [(1.13) (i-iv)]. 

A mapping p : H ~ R is called a norm on H if for all f, g E H and a E II< 
we have 

(i) p(j) > 0, 
(ii) p(af) = lalp(j), (1.14) 

(iii) p(j + g) <. p(j) + peg) (triangle inequality), 
(iv) p(j) > 0 provided f:f= O. 
A mappingp : H~R is called a seminorm on H if it satisfies the properties 
[(1.l4) (i-iii)]. In what follows norms will mostly be denoted by II . II and 
for more precise distinctions they will occasionally be given different 
indices. 

REMARK. If P is a seminorm on H, then for all f, g E H we have 

p(J± g) ;;;. Ip(J) - p(g)l· 

PROOF. The triangle inequality implies 

p(J) = p(J- g+ g) <. p(J - g) + peg), 
thus 

p(J) - peg) <. p(J - g). 

Similarly, peg) = peg - f + f) <. peg - f) + p(j); thus 

- (p(J) - p( g» <. p(J - g). 

From these two inequalities p(j - g) ;;;. Ip(j) - p(g)1 follows. One can show 
the inequality p(j + g);;;' Ip(j) - p(g)1 in a similar way. D 

EXAMPLE 1. In em (or Rm) let us define two norms by 
m 

IIflll = ~ I.tl and IIflloo = max{Ltl : j = 1, ... , m}. 
j-I 

If cj > 0 for j = 1, 2, ... , m, then by 
m 

p,(J) = ~ cJtl and Poo(J) = max{ cJtl : j = 1, ... , m} 
j-I 
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two seminorms are defined. These seminorms are norms if all the cJ are 
positive. 

EXAMPLE 2. If r is a non-negative continuous function on [0, 11, then by 

PI(j) = loJ r(x)lf(x)1 dx 

and 

Poo(j) = max(r(x)lJ(x)l: O~x ~ l} 

two seminorms are defined on e[O, I]. These are norms if r does not 
vanish identically on any non-trivial interval. For r(x) = I these norms will 
be denoted by II . III and II . 1100' respectively: 

IIflll = follf(x)1 dx, 

IIfll oo = max{lf(x)1 : 0 or>;; x or>;; 1}. 

A large number of norms can be generated with the aid of scalar products 
because of the following theorem. 

Theorem 1.5. If s is a semi-scalar product on H, then p(j) = [s(1, !)11/ 2 

defines a seminorm on H. 
If <. , .) is a scalar product on H, then IIfll = <f,f)1/2 defines a norm on 

/-t. 

PROOF. Property [(l.l4) (i)1 follows immediately from [(l.l3) (iv»); [(1.14) 
(iv)1 follows from [(1.13) (v)]. It is sufficient to prove the remaining 
properties for the first case. Because of [(1.13) (ii)1 and [(1.13) (iii)] we have 

pea!) = [s(af, aj) r/2 = [laI2s(j,j) r/2 = lal[ s(j,j) r/2 = lalp(j), 

which is [(1.l4) (ii)]. With the aid of the Schwarz inequality it follows that 

p(f+ gi = p(f)2 + 2 Re s(j, g) + p(g)2 

<; p(j)2 + 2Is(j, g)1 + p(g)2 ~ p(j)2 + 2p(j)p(g) + p(g)2 

= (p(j)+p(g»2, 

which is the t-riangle inequality [(1.14) (iii)1. o 
From the Schwarz inequality for non-negative sesquilinear forms we 

obtain for the norm II . II (seminorm p) induced by a scalar product (. , .) 
(semi-scalar product s) that 

I<f, g)1 ~ IIflili gil, 
Is(j, g)1 ~ p(j)p( g). 

(U5) 
(l.lS') 
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Proposition. If (. , .) is a scalar product on H and II . II denotes the norm 
generated by it (cf. Theorem 1.5), then IIf+ gil = I/fl/ + 1/ gl/ if and only if 
there exists an a ;> 0 such that f == ag or g = af. 

PROOF. If f= ag with a;> 0, then we have 

IIf+ gil = 11(1 + a)gll = (1 +a)lIgl1 = lIagll + II gil = IIfl/ + I/gl/ 
(this part of the assertion holds for any norm). Conversely, if IIf + gil = IIfl/ 
+ II gil then 

IIfll2 + 211fllllgll + IIg112 = IIf+ gW = IIfll2 + 2 Re <1, g) + IIg112, 

thus Re (f, g) == IIfllll gil· Using (1.15) this implies <J. g) = /lflill gil. Now 
Theorem 1.4 gives the assertion. 0 

For a norm 1/ • II (seminormp) induced by a scalar product (semi-scalar 
product) the parallelogram identity 

respectively 

p(j + g)2 + p(j _ g)2 == 2(p(j)2 + p( g)2). 

follows from Theorem 1.2. 

(1.16) 

(1.16') 

If one considers a (semi-)norm as the length of a vector, then these 
equalities have the following geometric meaning: In a parallelogram the 
sum of the squares of the diagonals equals the sum of the squares of the 
sides. According to (1.4) [respectively (1.8)J the scalar product (.,.) 
(respectively semi-scalar product s) which we started with is given by the 
polarization identity 

= {Hllf+ qIl2_lIf- g1l2+ illf- igll2- illf+ igIl2}, II< =C, 

<f,g) Hllf+gIl2-IIf-gIl2}, IK==R, 

respectively 
(1.17) 

{ 
~ {p(j + g)2 _ p(j _ gl + ip(j - ;g)2 - ip(j + ig)2}, K == C, 

s(j, g) == I { 2 2 
4 p(j+g) -p(j-g) },IK=R. 

(1.17') 

The following theorem enables us to decide if a given (semi-)norm is 
generated by a (semi-)scalar product. 

Theorem 1.6 (Jordan and von Neumann). A norm 1/ • II on a vector space H 
is generated by a scalar product (. , .) in the Sense of Theorem 1.5 if and only 
if the parallelogram identity (1.16) is satisfied. If this is so then the scalar 
product (. , .) is given by (1.17). A corresponding statement holds true for 
seminorms and semi-scalar products. 
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norm II . II is induced scalar product (. , 
the scalar recaptured from 
It remains to that if II . II satisfies 

gram and (. , .) is then (. , .) is 
and generates the norm II . II. We restrict ourselves to the proof in the 
complex case; the real case goes analogously and is even a little simpler. 

Let (. , .) be defined by (1.17). We show that (. , .) is a scalar product. 
[(1.13) (iv-v)]: For all I E H by virtue of the definition of (. , .) we have 

(f, f) - ~ {I/f + flI2 _110112 + illf - ifll2 - il/f + if1l2} 

= ~ {411/112 2illfll2} ... 11/111, 

[(1.13) (iv-v)] follow from the corlresplomUng 
the norm II . II. time we obtain is 
, .). 

[(1.13) (iii)]: For all I, g E H we have 

(g,/)* = Hllg+ 1112-l/g-1112+ ;I/g- i/1l2- il/g+ ifIl2}. 

= ~ {III + gll2 -1/1 - gl/2 - illl + igll2 + illf - igll2} 
= (f,·g)· 

For allf, g, hE (1.16) we have 

h) 

{III + gll2 -III - igl12 - illl + igW;: 

+11/+ h1l2-1I1 - hl1 2 + illl - ihl12 - ill/+ ih112} 

_ i { II (I + g; h ) + g; h 112 + II (! + g; h ) _ g; h 112 

-11(/- g; h) + g; h 112-II(f- g; h) _.8;h W 

+ill(!_i 8;h ill(!-ig;l! 

ill(/+ig;h ill(!+ig;~ 

-=.! {1I/+ g+ h 112+ II g-h 112-11/- g+h 112_11 g- h 112 
22222 

+ ill/- i g+ h 112+ ill g- h 112-illf+i g+ ~1I2_ ill g- h 112} 
2 2 2 2 

g+h = 2<1, -2-)' (1.18) 

Since by (1.17) 
substituting h 

have <1,0) 

2(f, !g) = <I, 

.18) it follows 

(1.19) 
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From (US) and (1.l9) it follows that 

<f,g)+<f,h)=2{f, g;h) =<f,g+h), 

which is the required property. 

11 

[(1.13) (ii»): We already know that (f, g) -2(f, g/2). From this and 
from property [(1.13) (i)] we obtain by induction that 

2- nm(f, g) = <J, 2- llmg) for all n, m E "'0 
("'0 is the set of non-negative integers {O, 1, 2, ... }). If a ;> 0, then there 
exist numbers ak =2- n(k)m(k) such that ak--'loa as k--'looo. By the proposi
tion preceding Example 1 we have 

IlIf± akgll-lIf± aglll <;; lak - alII gil, 
IIf± iakgll-lIf± iaglll <;; lak - alllgll, 

therefore because of (1.17) 

(f, akg) --'10 <f, ag) as k --'10 00. 

From this it follows that 

Furthermore, we have 

<f, -g) -= Hllf-gIl2-lIf+gll2+ illf+;gIl2-lIf-igI12} 

=-(f,g); 

consequently (f, ag) = a(f, g) for all a E R. As we also have 

(f, ig) = ~ {lif + igll2 -lif - igll 2 + illf + gll2 - illf - g1l2} 
= ;(f, g). 

The equality (f. ag) = a<f. g) follows for all a E e. The proof for semi
norms is completely analogous. 0 

If H is a (complex or real) vector space and <. , .) is a scalar product on H, 
then we call the pair (H, (. , .» a vector space with scalar product or a 
pre-Hilbert space. If it is clear which scalar product is meant on H, then we 
shall briefly write H for the pair mentioned. If II . II is a norm on H. then 
we call the pair (H, II . II) a normed space. Here we shall also only write H 
in most cases. By Theorem 1.5 the norm 11111 = (f. f>I/2 is defined in a 
natural way on every pre-Hilbert space. Therefore in what follows we shall 
consider every pre-Hilbert space as a normed space. 

EXAMPLE 3. On em respectively Rm by 
m 

(f, g) = L Jjgj 
j-I 
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a scalar product is defined. The corresponding norm 

{ 
m } 1/2 

IIfll = j~1 1/;12 

is the Euclidean length of the vector f, thus II f - gil is the Euclidean distance 
of the points f and g. 

EXAMPLE 4. On C[O, 1] by 

a scalar product and the corresponding norm are defined. 

EXAMPLE 5. Let 12 be the Hilbert sequence space, i.e., the set of (real or 
complex) sequencesf= Un) = UI,j2' ... ) for which }";~_llfnI2 < co. Then 12 
will be a (real or complex) vector space if one defines addition and 
multiplication as follows: 

f + g = Un + gn)' af = (aj,,) for f, g E 12 and a E II<. 

It is clear that this definition of multiplication is meaningful since along 
with }";~_ t!.t,,12 < co we also have }";~_llafnI2 < co. If f and g are in ' 2, then 
for every N EN we have 

consequently we also have 

n~llfn + gnl2 ~ 2L~IIj,,12+ ~llgnI2} < co, 

i.e., f + g E 12 , It is easy to see that by 

00 

<1, g) = ~ .t:gn' f, g E 12 
n-I 

a scalar product is defined on '2; the series converges, because I.t:gnl <; 
(lfnl2 + I gnI2)/2. The induced norm is 

Unless otherwise stated, in what follows '2 will always denote the complex 
sequence space. 
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EXERCISES 

1.6. The norms in Examples 1 and 2 are not generated by scalar products. 

1.7. The proposition after Theorem 1.5 does not hold true in general for norms 
that are not generated by scalar products. 

1.8. Let p be a seminorm on H generated by a semi-scalar product and let 
N-{fEH :p(/)=O}. We havep(f+g)=p(f)+p(g) if and only if there 
exists an a ;;. 0 such that f - ag E N or g - af E N. 

1.9. (a) Let A2 be the set of functions f holomorphic on C1 = {z E C : Izl < I} for 
which 

llf(x + iy)12 dx dy < 00 
c, 

(the integral can be understood as an improper Riemann integral or as a 
Lebesgue integral). A2 is a vector space. By 

<f, g)1 - 1 f(x + (y)*g(x + iy) dx dy, IIflll = llf(x + (y)12 dx dy 
c, c, 

a scalar product and the corresponding norm are defined on A2. 
(b) Let H2 be the set of functions f holomorphic on C1 for which the limit 

lim (2"'IJ(re ilW dt 
,-+1 )0 

is finite. H2 is a vector space (Hardy-class). By 

{ 12", . }1/2 
IIfl12 = lim lJ(re")12 dt 

,-+1 0 

a norm is defined on H2. This norm is generated by the scalar product 

<f, g)2 = Jim f(re'/)*g(re ') dt. 12",. I 

,-+1 0 

(c) If f(z) = 'i.':_ofnzn, g(z) = 'i.':_ognzri are the Taylor series of f and g, then 
we have 

00 I 00 

<1, g)1 "" 7T L n + I.t:gn' <f, g)2 = 27T L .t:gn· 
n-O n-O 

(d) H2 is a subspace of A2 and we have "f"~ .;;; i 11f"~ for f E H2. 
(e) For allfE H2 we have 

IIfll~ = sup {fo2"'lf(re il )12 dt : 0.;;; r < t}. 

1.10. Let A be an arbitrary set, let,.,. : A~(O, (0), and let /z(A ; ,.,.) be the set of 
functionsf: A~C that vanish outside a countable set (that may vary with/) 
and for which 'i.aEA,.,.(a)lf(aW < 00. 

(a) (/2A ; ,.,.) is a subspace of the space of all complex valued functions on A. 
(b) By 

<f, g) = L ,.,.(a)f(a)*g(a), f, g E /2(A ; }!), 
aEA 

a scalar product is defined on /2(A ; ,.,.). 
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1.11. Let A be an arbitrary set; for each IX E A let (Ha' <. , .)a) be a pre-Hilbert 
space. Then 

fa ~ 0 for at most countably many IX E A, L IIfall! < oo} 
aEA 

is a vector space (with componentwise addition and multiplication). By 

«fa), (ga» = L <fa' ga)a, (fa), (ga) E H, 
aEA 

a scalar product is defined on H, i.e., (H, (., .» is a pre-Hilbert space. 



Hilbert spaces 2 

2.1 Convergence and completeness 

Let (H, II . II) be a normed space. A sequence (f,,) in H is said to be 
convergent if there exists an f E H such that II f" - fll ~O as n ~ 00. There 
exists at most one f E H with "!,, - fll ~O; since from II f" - fll ~O and 
II!" - gll~O it follows that Ilf - gil..;; IIf- f,,11 + II!" - gll~O, thusf= g. We 
say that the sequence (f,,) tends to f and call f the limit of the sequence U,,). 
In symbols we write f= lim"->oof,, or !"~f as n~oo. If no confusion is 
possible, we shall occasionally abbreviate these by writing f= lim!", or 
f"~l· 

Proposition. 
(a) From !"~1 it follows that IIl"II~IIfll; the sequence (IIf,,11) is bounded. 
(b) If (H, <. , .» is a pre-Hi/bert space, then we also have that f,,~f and 

gn~g imply <1", g,,)~<l, g). 

PROOF. 

(a) By the proposition preceding Example I of Section 1.2, we have 
'"f" II - IIfll''';; II!" - fll; from this the assertion follows. 

(b) We have 1<1", g,,) - <1, g)l..;; ,<1", g") - <f", g)1 + 1<1", g) - <1, g)l..;; 
II!" II II g" - gil + II!" -/11 II gil ~O, since the sequence (II f" II> is bounded 
on account of (a). 0 

A sequence (!,,) in H is called a Cauchy. sequence if for each f > 0 there 
exists an no EN such that for n, m > no we have Ill" - 1m II ";;f. In what 
follows, we shall briefly write for this II!" - lmll~O as n, m~oo. Every 
convergent sequence is a Cauchy sequence: if 1 is the limit of the sequence 
Un)' then II!" - 1m!! <. !!f" - fll + 111 - lmll~O as n, m~oo. Conversely, in an 

15 
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arbitrary normed space (or pre-Hilbert space) not every Cauchy sequence 
is convergent, as Example 1 below shows. 

Proposition. 
(a) If (J,,) is a Cauchy sequence, then the sequnce (IIJ"ID is convergent (thus 

it is bounded). 
(b) If (H, <. , .» is a pre-Hilbert space and (J,,), (gn) are Cauchy sequences, 

then the sequence «J", gn» is convergent. 

PROOF. 

(a) As 11IJ,,1I-lIfmlllo;; IIJ" - fmll, the sequence GlfnlD is a Cauchy sequence 
in Ill, thus it is convergent and bounded. 

(b) By (a) there exists a c > 0 such that IIfnll" c and II gmll "C for all 
n, mEN. Since 

I<fn, gn> - <fm, gm>I" I<fn' gn - gm>1 + I<fn - fm, gm>1 

< c(1I gn - gmll + IIfn - fml!), 

the sequence «J", gn» is also a Cauchy sequence. o 
EXAMPLE 1. Let (C[O, I], <. , .» be the pre-Hilbert space introduced in 
Section 1.2, Example 4. We show that not every Cauchy sequence is 
convergent. For this let the sequence (J,,) in C[O, IJ be defined in the 
following way: fl(x) = 1 for all x E [0, 1], and 

fn(x) = l-(x-I)n 

o 

1 
for 0 <X" '2 

f I 1 1. 
or -<X<-+--

2 2 n' 
I 1 

for I+n"x" 1, 

for n = 2, 3, .... This sequence is a Cauchy sequence, since for 2 "n .;;;; m 
we have 

Ilfn - fmll 2 "jl/2+1/nlJ,,(x) - fm(xW dx " !. 
1/2 n 

To prove that the sequence (J,,) is not convergent let us assume that there 
exists an f E C[O, 1] such that J" ~ f, i.e., "fn - fll ~O. Then for 2 "n "m 
we have 

11/ 2If(x) - 112 dx + fl If(x)j2 dx 
o (1/2)+(I/n) 

= 11/ 2If(x) - fm(xW dx + II If(x)- fm(xW dx 
o (1/2)+(I/n) 

.;;;; !ailf(x) - fm(xW dx. 
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Since the right-hand side tends to 0 as m-"oo, we have 

LI/21J(X) - W dx + fl lJ(xW dx = 0 
o (t/2)+(I/n) 

Since f is continuous, it follows from this that 

f (x) = 1 for x E [0, t J, 
f(x) = 0 for x E(4, 1]. 

17 

for n' > 2. 

However, this contradicts the continuity of f. Therefore the sequence Un) 
cannot be convergent in C[O, 1]. 

A normed space (H, II . II) is said to be complete if every Cauchy 
sequence is convergent. A complete normed space is called a Banach 
space; a complete pre-Hilbert space is called a Hilbert space. 

EXAMPLE 2. The space C[O, 1] becomes a Banach space with the norm 
(cf. Section 1.2, Example 2) 

Ilflloo = max {If(x)1 : O';;;x';;; l}. 

(By Exercise 1.6 it is not a Hilbert space.) For suppose Un) is a Cauchy 
sequence, i.e., assume that for every € > 0 there exists an no EN such that 
for all n, m > no and for all x E [0, 1] we have U;,(x) - fm(x)l .;;; €. Then 
Un(x» is convergent for every xE[O, 1]; letf(x)=limfn(x). First we show 
that this f is continuous. For t: > 0 let no be chosen as above and for this no 
let 8 > 0 be chosen so that for IXI - X2! .;;; 8 we have !/"/x I) - fno(x2)1 .;;; €. 

From this it follows for IXI - x21 .;;; 8 that 

If(xI) - f(X2)1 .;;; If(x l ) - fno(xl)1 + I/"o(x l ) - fno(x2)! + !fno(X2) - f(X2)! 

= lim Ifm(x l ) - fn (xl)1 + Ifn (Xl) - fn (X2)! 
m-i>OO 0 0 0 

This proves the continuity of f. Now we show thatfn-"f. For t: >0 let no be 
chosen again as above. Then for n > no we have 

II/" - fll oo = max {lfn{x) - f{x)1 : O';;;x';;; I} 

= max { lim Ifn{x) - fm{x)1 : O';;;x';;; I} .;;; t:, 
m~oo 

consequently /" -"f. 

EXAMPLE 3. em and Rm are Banach spaces with the norms II . III' II . 1100 
and II . " from Section 1.2, Examples 1 and 3. This follows easily from the 
fact that a sequence Un) is a Cauchy sequence (convergent sequence) in em 
or Rm if and only if it converges componentwise. (The proof can also be 
obtained as a special case of Example 4.) em (respectively Rm) is therefore 
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a Hilbert space with the scalar product 
m 

<f. g) = "'2. f!8j. 
)-1 

EXAMPLE 4. Let the scalar product and the norm in 12 be defined by 

~ {~ }1/2 <f. g) == ~ 1:g". IIfll = ~ f: . 
n-1 11-1 

as in Section 1.2. Example 5. We show that 12 is complete. therefore it is a 
Hilbert space. Let (f (n» be a Cauchy sequence. f (,,) = (it. n' A n' A n' ... ). 
As 

I~. n -~. ml oe;; Ilf (n) - f (m)ll, 

the sequence (~. n)neN is a Cauchy sequence for eachj EN, i.e., there are 
numbers ~ E C such that ~. n ~ ~ as n ~ 00. It remains to prove that 
f=(~) E /2 andf (n)~f as n~oo. For t: >0 let noE N be chosen so that for 
n. m ;;'no we have IIf(n)- f(m)1I <t:o Then for all kEN we have 

k k 

~ I~. n - ~12 = 2~~ ~ I~, n - ~. ml2 ..; lim sup IIf (n) - f (m)1I 2 < E2, 
)-1 )-1 m-->~ 

therefore also 
~ 

"'2. Iii." - ~12 oe;; t:2 for n;;' no' 
)-1 

It follows from this thatf (n) - f E 12, thus f E 12, also. and IIf (n) - fll < E for 
n ;;. no, i.e .• f (n)~f. 

EXAMPLE 5. The Lebesgue space L2(M) for a Lebesgue measurable subset M 
of Rm : For the concepts and results of this example a knowledge of 
Lebesgue's integration theory is needed (cf. Appendix A). This will be 
assumed in what follows. The notions of "measurable," "almost every
where," and "integrable" refer to Lebesgue measure in Rm. 

Let M be a measurable subset of Rm. First we treat the function space 

~(M) = {f: fmeasurable complex-valued on M. fMlf(xW dx < oo}. 

~(M) is a vector space, since withf, g E ~(M), a E C the functions af and 
f + g are also measurable and because of 

laf(x)1 = lallf(x)1 and If(x) + g(x)12 .;;; 2lf(xW + 2Ig(x)12 

we have 

fMlaf(xW dx < 00 and fM1f(x) + g(x)12 dx < 00. 
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It is obvious that by sU, g) = f"J ·(x)g(x) dx, I, g E f;(M) a semi-scalar 
product is defined on f;(M). Let 

'.')L( M) = {I: I measurable complex-valued function on M, 

I (x) = 0 almost everywhere on M}. 

Then '.')L(M) is a subspace of f;(M) and we have 

'.')L(M) = {J E f;(M) : sU, f) = OJ. 
Now we define 

L2(M) = f;(M)/'.')L(M); 

Thus we build equivalence classes in f;(M) by placing two functions in the 
same class if they coincide almost everywhere. Addition of these classes 
and multiplication by a complex number are defined via representatives: If 
j and g are the equivalence classes of I and g and a E C, then 

aj= (air, aj+bg = (al+bgr. 

The scalar product of two equivalence classes j and g is defined by 

<j, g) = sU, g) = fj ·(x)g(x) dx, 

where I and g are representatives of j and g. It is evident that this 
definition does not depend on the choice of I and g. From <j,j) = 0 it 
follows that the representatives of j vanish almost everywhere, i.e., j is the 
zero element of f;(M)/'.')L(M). Therefore (. , .) is actually a scalar prod
uct, and L2(M) is thus a pre-Hilbert space. In what follows we shall denote 
the functions IE f;(M) and the corresponding equivalence classes j E 
L2(M) by the same symbol f. The function I is then always an arbitrary 
representative of the corresponding equivalence class. 

Theorem 2.1. (L2(M), (. , .» is complete, thus it is a Hilbert space. II In~/, 
then there is a subsequence Un) 01 Un) such that , 

!,,(x)~/(x) as )-+00, almosteverywherein M , 
(here In ( . ) and I( . ) are arbitrary representatives ol!", respectively f). , , 
PROOF. Let Un) be a Cauchy sequence in L2(M). For each) EN there exists 
an nJ such that 

Without loss of generality we may assume that nJ+ 1 >"l for aU) EN. Then 
we have in particular 11/~+1 - In" or;;; rJ. In what follows let In( . ) be an 
arbitrary (however, in the rest ot the proof fixed) representative of!". 
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For all kEN let gk : M~R be defined by the equality 

k 

gk(X) = .L linj+,(x) - fn/ x )I· 
J=t 

The sequence (gf( . » is non-decreasing, and 
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for all kEN. By B. Levi's theorem (Theorem A 7) the sequence gl, and 
thus also the sequence (gk)' is convergent almost everywhere. Then the 
sequence of the functions 

also converges almost everywhere to a measurable functionf( .). We show 
thatf( . ) E f;(M) and that in the sense of L2(M) we have fn~f as n~oo. 
For each e > 0 let nee) andiCe) be chosen so that for n > nee) and) > )(e) we 
have 

The functions lin ( . ) - fn( . Ware non-negative, their integrals are 
~ 

bounded by f and for )~oo we have 

If" (x) - f,,(xW ~ If(x) - f,,(xW almost everywhere in M. 
~ 

By Fatou's lemma it follows from this that If( . ) - fn( . W is integrable and 
that we have 

f.lf(x) - fn(x)j2 dx ,,;;; ( for n > nee). 
M 

Therefore f( . ) - fn( . ) E ~(M) and, consequently, f( . ) E ~(M). Besides, 
we have II f - fn 112 ,,;;; £ for n > n( f), Le., fn ~ f in the sense of LlC M). The 
second part of the assertion is proved by the fact that fn (x)~f(x) almost 

~ 

everywhere. 0 

If we look only at real valued functions in this example, then we obtain 
the real Hilbert space L2• R( M). 

EXAMPLE 6. All the reasoning of Example 5 can be carried out analogously 
if p is a measure generated by a regular interval function on Rm (cf. Ap
pendix A), M is a p-measurable subset of Rm and L2(M; p) is the 
corresponding space of square integrable functions with respect to p. 
Theorem 2.1 holds true for L2(M ; p) also. We omit the details here. 
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EXERCISES 

2.1. Let Un) be a sequence in the normed space (H, II . II) with ~~-dl.{"11 < 00. 

(a) In-O and the sequence (~j-I!J) is a Cauchy sequence. 
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(b) If H is a Banach space, then the sequence (};j-I!J) is convergent; we write 
}; j.. I!J for the limit of this sequence. 

2.2. (a) In Exercise 1.11 H is a Hilbert space if and only if all Ha are Hilbert 
spaces. 

(b) The space liA ; fL) of Exercise 1.l0 is a Hilbert space. 
(c) The spaces A2 and H2 of Exercise 1.9 are Hilbert spaces. 

Hint: This can be proved with the aid of Exercise 1.9(c) or the mean value 
property of holomorphic functions. 

2.3. (a) Let Ck[O, I] be the vector space of k times continuously differentiable 
complex (or real) valued functions defined on [0, 1]. By 

k 

(i, g)k = ~ f/(j)(x)·g(j)(x) dx 
j-O 0 

a scalar product is defined on Ck[O, I]. The space (Ck[O, I], (., ')k) is not 
complete. 

(b) Let W2• k(O, I) be the space of those complex-valued functions on [0, 1) 
that are k - 1 times continuously differentiable, whose (k - I)th derivative 
is absolutely continuous (cf. Appendix A 5) and whose kth derivate is in 
L2(0, I). By 

a scalar product is defined on W2, k(O, I). The pair (W2, k(O, I), (. , ')k) is a 
Hilbert space. 

(c) Ck[O, I] is a subspace of W2,k(O, I). For each 1 E W2,k(O, I) there exists a 
sequence (j,,) from Ck[O, I] such thatin-i in the sense of W2,k(O, I). 

2.2 Topological notions 

Let (H, II . II) be a normed space. A subset A of H is said to be open if for 
each f E A there exists an t: > 0 such that the ball 

K(j,t:) = {gEH: IIg-fll<t:} 

lies in A. 

EXAMPLE 1. For each r;> 0 and each hE H the ball K(h, r) = {g E H : 
II g - hll < r} is open. It will be called the open ball around h with radius r. 
The assertion is obvious for r = 0, as K(h, r) is then empty (the empty 
set is open). Now let r> 0, g E K(h, r), then we have 

t: = r -II g - hll > 0 



22 2 Hilbert spaces 

and for eachiE K(g, () 

IIh -111 ;;;; IIh - gil + Ilg - 111 < IIh - gil + (= r, 

i.e., K(g, t':) < K(h, r). 
A subset A of H is said to be closed if CA = H\A, the complement of A, 

is open. 

EXAMPLE 2. For each 1 E H and each r > 0 the ball K(j, r) = { g E H : 
II g - 111 ;;;; r} is closed, because for g E CK(j, r) we have II g - 111- r > 0 
and K(g, II g - 111- r) c CK(j, r). The set K(j, r) is called the closed ball 
around 1 with radius r. 

Closed sets can be characterized in another way. For this we mention 
another definition. An element 1 E H is called a contact point of the subset 
A of H if for each t': > 0 there exists agE A such that II g - 111 <t:. The set 
of all contact points of A will be denoted by A. We obviously have A cA. 

Proposition. 
(I) A C S implies A C B. 
(2) We have 1 E A ii and only ii there exists a sequence (jn) in A such that 

I,,~j. 
(3) We have A = A. 

PROOF. (I) and (2) are clear. 
(3) Let f E A, E > O. Then there exists agE A such that II g - 111 < E/2 and 
for this g there exists an hE A such that IIh - gil <£/2; consequently 
II h - 111 < £. Therefore f E A holds, i.e., A c A. Since A C A, it follows that 
A=A. 0 

Theorem 2.2. A is closed. A is closed if and only if A = A. The set A is the 
smallest closed subset oj H that contains A. 

PROOF. First we show that A is closed, i.e., CA is open. Let 1 E CA. Since 
A =:4, then we have 1 E CA, i.e., f is not a contact point of A. Therefore 
there is an £ > 0 such that K(j, €) n A = 0 and consequently K(f, t':) C CA. 
lf A = A, then A is closed by the first part of our theorem. If A is closed, 
then CA is open, i.e., for each 1 E CA there exists an t: > 0 such that 
K(j, to) n A = 0. However, this means that no element J of CA is a contact 
point of A, therefore A c A and thus A = A. 

If B cHis closed and A C S, then it follows that A c B = S, therefore 
Ac& 0 

On the basis of Theorem 2.2 it is justified to call A the closure (closed hull) 
of A. 
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EXAMPLE 3. For r > 0 the closed ball K(f, r) is the closure of K(f, r). For if 

g E K(f, r), then for all n E N the element g" = ~ - * )( g - f) belongs 

to K(f, r) and we haveg,,---;.g. Hence K(f, r)CK(j, r). As K(f, r) is closed, 
we also have K(j, r)c K(f, r). 

Theorem 2.3. The closure of a subspace of H is a subspace. 

PROOF. Let T be a subspace of H, let f, gET and let a, bE K. Then there 
are sequences (J,,) and (gn) in T such thatJ,,---;.J, gn---;.g. It follows that 

af + bg = a limJ" + b lim gn = lim (aJ" + bg,,). 

As afn + bgn E T, it follows that af + bg E T. o 
If (H, /I . IJ) is a normed space and T is a subspace of H, then the 

restriction of II . II to T defines a norm on T. Thus T becomes a normed 
space (T, II. II) in a natural way. Analogously, if (H, <. , .» is a pre-Hilbert 
space, then we can consider T as a pre-Hilbert space (T, <. , .». 
Theorem 2.4. A subspace T of a Banach space (H, < . » (respectively a 
Hilbert space (H, <. , .») is closed if and only if (T, II . II) is a Banach space 
(respectively (T, (. , .» is a Hilbert space). 

PROOF. If T is closed, and (J,,) is a Cauchy sequence in T, then there exists 
an f E H such that fn ---;. f; therefore f E T = T, i.e., T is complete. If T is 
complete and f E T, then there exists a sequence (f,,) from T such that 
fn ---;. f; as (fn) is a Cauchy sequence, (fn) is convergent in T, i.e., f E T. 0 

Let A and B now be subsets of a normed space H. The set A is said to 
be dense relative to B if B c A holds. If, in addition, A C B, then we say 
that A is a dense subset of B (or briefly A is dense in B). If A is dense 
relative to H, then we say briefly that A is dense. 

Proposition. If AI is dense relative to Az and Az is dense relative to A3, then 
AI is dense relative to A3• 

-
PROOF. From A3 C A2 and A2 C Al it follows that A3 C AI = AI' o 
EXAMPLE 4. A sequence of complex numbers f = (fn) is said to be finitary if 
only finitely many members J" are different from zero, i.e., f = 
(fl,I2, ••• ,In' 0, 0, ... ). The set of finitary sequences is a subspace /2,0 of 
I . We show that '2 0 is dense (in (2)' Let 1= (fn) be an arbitrary element of 
l~. Then for each/E N we have f (j) = (fl' .•. ,Jp 0, 0, ... ) E 12,0 and 

00 

Ilf - f (J)1I 2 = L I1nl2 ---;. 0 as j ---;. 00. 
n=j+1 

Consequen tly I (j) ---;.1, i.e., I E /2, o· 
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EXAMPLE 5. Let P be the vector space of polynomials in one variable. P 
can be considered as a subspace of the pre-Hilbert space (C[O, I], <. , .» 
from Section 1.2, Example 4. P is dense in C[O, 1]: By Weierstrass' 
approximation theorem (d. Hewitt-Stromberg [18], (7.31» for each con
tinuous f and for every E > 0 there exists a polynomial p such that 
max {If(x)-p(x)1 : x E[O, In <E. We also have then that IIf-pll <E, i.e., 
f is a contact point of P. 

EXAMPLE 6. Let M be a measurable subset of Rm. Let 

L2,o(M) = {J E L2(M): there exists a K > 0 such that 

If(x)1 <K almost everywhere in M, 

andf(x)=O almost everywhere in {xEM: Ixl>K}}. 

L2, o( M) is dense in L2( M). For let f be an element of L2( M) and for each 
n E N let 

if Ixl..;n and f(x) <n 
otherwise. 

Then we have If,,(x)1 < If(x)1 for all n E N and all x E M, andf,,(x)~f(x) 
as n~oo. By Lebesgue's dominated convergence theorem it now follows 
that 

IIf" - fll2 = fM1f,,(x) - f(xW dx ~ 0 as' n ~ 00. 

Therefore f" ~ f· Since f" E L2, o( M), the assertion follows. 

EXAMPLE 7. A subset J of Rm of the form 

J= {x = (Xl' ••• , xm ) E Rm : aj ~ Xj ~bpj = 1, 2, ... , m} 

with ap bj E IR, is called an interval in Rm; here any combination of the 
signs < and ..; is permitted. A function f: Rm~c is called a step 
function if there are finitely many intervals J l , •.. , J" and complex 
numbers Cl> ••• , c" such that 

,., 
f(x) = ~ cjxAx), 

j-I ~ 

where XA denotes the characteristic function of A, i.e., 

for X EA 
otherwise. 

The set T(Rm) of step functions on Rm is obviously a vector space (the 
linear operations are defined as usual). We show that T(Rm) is a dense 
subspace of L 2(Rm). To prove this it is enough to show that T(Rm) is dense 
in L2,o(Rm). It is obvious that T(Rm) c L2,o(Rm ). Let f E L2, o(Rm). Then f is 
integrable and there exists (cf. Theorem A6) a sequence (i,,) from T(Rm) 
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such thatf,,(x)--)of(x) almost everywhere in IRm and 

flJ;,(x) - f(x)1 dx --)0 0 as n --)0 00. 

(Integrals for which no domain of integration is given are always taken 
over the whole space IRm.) If for K;;;. 0 we have If(x)l< K almost every
where, then we may assume that 1f"(x)l< K for all x E IRm , and for all 
n E N. Consequently, we have 

IIf" - fll2 < 2K flfn(x) - f(x)1 dx --)0 0 as n --)0 00, 

i.e.,f,,~f· 

EXAMPLE 8. Let CoOO(lRm) be the space of infinitely many times differentia
ble complex-valued functions with compact support (i.e., for every f E 
Cooo(lRm) there exists a compact subset Kin IRm such that f vanishes outside 
K; the smallest set K of this kind is called the support of f. in symbols 
supp 1). We show: Cooo(lRm) is a dense subspace of L2(lRm). For the proof it 
is enough to show that Cooo(Rm) is dense relative to T(lRm). To prove this it 
is enough to show that for every interval J the characteristic function XJ is 
a contact point of Cooo(lRm). For this, let us define 8. E Cooo(lRm) by 

and 

for Ixl <f, 
for Ixl ;;;Of, 

8. = {fS.(x) dX} -I S •. 

The reader can verify himself that 8. E Cooo(lRm) and supp 8. = {x E 
Rm : I xl " f} hold. If J is now an interval in R m and for n E N we define 

{
I for 

f,,(x) = 
o for xERm 

I 
with d(x. CJ);;;' -, 

n 

with 
I 

d(x. J);;;'-, 
n 

and 0 <; ],,(x) <; I for all x E Rm (here d(x. A) stands for the Euclidean 
distance of the point x from the set A). We have ],,(x)~xix) for all x that 
do not lie on the boundary of J. Therefore f,,(x)--)oxix) almost every
where. Thus by the, Lebesgue dominated convergence theorem it follows 
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that 

i.e., J,,--+XJ in the sense of L2(Rm). 

A subset A of a normed space is said to be separable if there exists an at 
most countable subset B of A which is dense in A. If T is a subspace of H 
and a is a subset of H, then a is said to be total with respect to T if the 
linear hull L(a) (the set of finite linear combinations of elements of a, or, 
in other words, the smallest subspace of H that contains a) is dense 
relative to T. We use the concept total in if acT, and total if T= H. 

EXAMPLE 9. The spaces em and Rm are separable, as the set of elements 
with rational components (in em this means that the real and imaginary 
parts of the components are rational) is enumerable and dense. 

Theorem2.5. Let (H, II . 10 be a normed space. 
(a) If A is a separable subset of H, then A is separable, also. 
(b) If A is separable and Al C A, then Al is separable, too. 
(c) A subspace T of H is separable if and only if there exists an at most 

countable subset A of H that is total with respect to T. 

PROOF. 

(a) Let a be at most countable and dense in A. Since A is dense in A, the 
set a is also dense in A. 

(b) Let a = {J" : n E~} be an at most countable set that is dense relative 
to A. Let J be the set of those pairs (n, m) E ~ X ~ for which there 
exists an f E Al such that Ilf - f,,11 <;; 11m. For every n, mE J let us 
choose a gnm E A\ such that IIgnm - fnll <;; 11m. The set 8\ = 
{gnm : (n, m) E J} is then at most countable. We show that it is dense 
with respect to AI' Le., A\ is separable. Letf E A\. As a is dense in A, 
8 is also dense relative to AI' Therefore for every k E 1\1 there exists an 
n(k) such that II flIck) - fll ..;; I I k. Hence (n(k), k) E J and we have 

2 
II g,,(k). k - fll ..;; II g,,(k), k - fn(k)11 + IIfn(k) - fll ..;; k' 

i.e., g,,(k), k --+ f as k --+ 00. Hence 8 1 is a dense subset of A \. 
(c) If T is separable, then there exists an at most countable subset a which 

is dense in T. Since L(a) ~ a, the set L(a) is dense in T, too. Let a 
now be at most countable and let T C L(a). Then L(a) is separable, for 
the set Lr(B) of finite linear combinations of elements of a with 
rational coefficients is dense in L( a) and Lr( a) is countable. Since 
T c L(a), the subspace T is separable, also. 

EXAMPLE 10. 12 is separable, as the set of unit vectors {en = (81!f)jEN : n E 
~) is total in 12: the linear hull of the unit vectors is 12, O. 



2.2 Topological notions 27 

L2(Rm ) is separable. 7 it is enough 
separable. Let So be characteristic functions 

end points. The countable and III 

the characteristic functions intervals, therefore L( S). 
Because L( S) = T(Rm), it follows from this that L( So):J T(Rm), i.e., T(Rm) 
is separable. 

EXAMPLE 12. For every measurable subset M of Rm the space L2(M) is 
separable. The space L2( M) may be considered as a subspace of L2(Rm) 

identify each j the element j defined 

j(x) xEM, 
xflM. 

EXAMPLE 13. Let p be a measure on Rm (cf. Appendix A) and let M be a 
p-measurable subset of Rm. The HUberl space LiM, p) (d. Section 2.1, 
Example 6) is separable. This can be proved for M = Rm as in Example II 
(in the course of the proof of S C So one has to notice that the boundaries 
of intervals in general have measures different from zero). For a general M 

assertion by LiM, p) as a subspace , p). 
oj step junctions in L2(Rm, p). 

2.4. A subset A of a normed space H is separable if and only if its closed linear 
hull L(A) is separable. 

2.5. Prove that the function 8. from Example 8 is infinitely many times differen
tiable. 

2.6. Let G be an open subset of Rm, let p be a measure on Rm, and let L2(G, p) be 
in Section 2.1, ~n.~u,,"V 

o(G, p) is the L1(G, p) consisting 
'""""'UV1A" with compact then L2• o( G, p) is 

is the space of whose supports 
are then compact then T(G) is p). 

(c) Co""(G), the space of infinitely many times continuously differentiable 
functions with compact support in G, is dense in L2(G, p). 

2.7. The spaces A2 and Hl of Exercise 1.9 are separable (cc. also Exercise 2.2c). 

2.8. (a) Prove the separability of Lia, b) for - 00 <a <b < 00 with the aid of the 
Weierstrass approximation theorem (cf. Example 5). 

(b) With the prove the separability 
(c) Prove of L2(Rm ) analogously. 

2.9. (a) A subset 
ana> 

only if there exists 
for all!. g E B. 
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(b) If a subspace T is not separable, then for each a > 0 there exists such' a set 
B. 

(c) /2(A ; p.) is separable if and only if A is at most countable. 

2.10. Let H be a pre-Hilbert space and let T be a dense subspace of H. 
(a) The closures of (f E T : 11111 .;;; l) and of {f E T: II /11 < I} are equal to 

1(0, I). 
(b) For every / E H we have II/II = sup {I</, g)1 : gET, II gil ..; I} = 

sup W/, g>1 : gE T, II gil < I}. 
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3.1 The projection theorem 

Let (H, <. , .» be a pre-Hilbert space. Two elements /, g E H are said to be 
orthogonal (in symbols /1. g) if <1, g) ... O. If /1. g, then we obviously have 
1//+ gl/2 = 1//1/2 + 1/ g1/2; this formula often is referred to as the Pythagorean 
theorem. An element / E H is said to be orthogonal to the subset A of H (in 
symbols /1. A), if /1. g for all g E A. Two subsets A and B of H are said to 
be orthogonal (in symbols A...L B) if (j, g) = 0 for all / E A, g E B. If A is a 
subset of H, then the set A J. = {/ E H : /1- A} is called the orthogonal 
complement of A. 

Proposition. 
(a) We have {O} J. = H, H J.. = {O}, i.e., 0 is the only element orthogonal to 

every element. 
(b) For every subset A 0/ H the set A J.. is a closed subspace 0/ H. 
(c) A C B implies BJ. C A..L. 
(d) We have A..L = L(A)..L =L(A)..L. 

PROOF. 

(a) For every /E H we have <0,/) =0. If /~O, then (j,j) ~O, i.e., / is 
not orthogonal to H. 

(b) If /, g E A..L and a, bE K, then for all hE A it follows that 

<a/ + bg, h) = a*(j, h) + b*<g, h) = 0, 

i.e., a/ + bg E A..L. Therefore A..L is a subspace. It remains to prove that 
A..L C A..L. Let / E A..L, and let Un) be a sequence from A..L such that 

29 
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fn~f. Then we have for all hE A that 

<f, h) = lim<fn, h) = 0, 

consequently f E A.L . 
(c) If fEB.L, then we have <f, h) = 0 for all hE B, therefore also for all 

hE A, and thusfE A.L. 
(d) Since A C L(A) C L(A), from (c) it follows that 

L(A/ cL(A).L cA.L. 

It remains to prove that A.L cL(A).L. If f E A.L, then we have (j, h) = 

o for all hE A, and therefore for all hE L(A), as well. If hE L(A), then 
there exists a sequence (hn) from L(A) such that hn~h. Consequently, 
we have 

(j, h) = lim<f, hn ) = O. 

i.e.,! E L(A).L . o 
In order to prove the projection theorem we need an approximation 

theorem, which we prove with somewhat more generality than we actually 
need. A subset A of a vector space is said to be convex if from x, yEA and 
0< a < 1 it follows that ax + (1 - a)y E A. Any subspace is obviously 
convex. 

Theorem 3.1. Let H be a Hilbert space and let A be a non-empty closed 
convex subset of H. Then for each f E H there exists a unique g E A such that 

IIf- gil = d(j, A) = inf{llf-hll: hEA}. 

PROOF. There always exists a sequence (gn) of elements of A such that 
II gn - fll~d= dU, A). If we replace f by gn - f and g by gm - f in the 
parallelogram identity (1.16), then on account of the inequality IIf - hll > d 
for all hE A, we have 

II gn - gmll2 = 211 gn - fl12 + 211 gm - fl12 - 411f - i(gn + gm)1I 2 

" 211 gn - fll2 + 211 gm - fll2 - 4d2 ~ 0 

as n, m~oo (here we have used the fact that (gn + gm)/2lies in A, since A 
is convex). Hence (gn) is a Cauchy sequence. As H is a Hilbert space, there 
exists agE H such that gn ~ g. We have g E A, since A is closed. Moreover, 
we have 

II g - fll = Iimll gn - fll = d. 

It remains to prove that g is uniquely defined. If g, hE A are such that 
IIf - gil = IIf - hll = d, then for the sequence (gn) = (g, h, g, h, g, ... ) we 
obviously have II gn - fll = d. By the above reasoning (gn) is a Cauchy 
sequence, i.e. we have g = h. n 
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Theorem 3.2 (Projection theorem). Let H be a Hilbert space, and let T be a 
closed subspace of H. Then we have T 1. 1. = T. Each f E H can be uniquely 
decomposed in the lorm 1 = g + h with gET and h E T 1.. This g is called the 
(orthogonal) projection 011 onto T. 

PROOF. As T is convex and closed, by Theorem 3.1 there' exists agE T 
such that III-gil = dU, T). Let us set h = 1 - g. 

hE T1.: We have to prove that for all wET we have (w, h) = O. For 
w = 0 this is clear, so let wET, W:f= O. Then for all a E IK the element 
g + aw also belongs to T. Therefore 

d2 = dU, T)2 < 111 - (g+ aW)1I2 = IIh - awll2 

= IIhl12 - 2 Re(a(h, w» + lal211wll2 

= d 2 - 2 Re(a(h, w» + lafllwll 2• 

With a= IIwll-2(w, h) it follows from this that 

IIwll-21(w, hW < 0, 
so (w, h) =0. 

In order to prove the uniqueness of the representation 1= g + h let us 
assume that 1 = g + h = g' + h' with g, g' E T, and h, h' E T 1.. Then we have 
g - g' E T and h' - h E T1., therefore 

g - g' = h' - hE Tn T1. = {o}. 
It follows from this that g = g' and h = h'. 

lt remains to prove that T = T 1. 1. . 
T C T 1. 1.: If 1 E T, then by the definition of T 1. we have (J, g) = 0 for 

all gET 1., i.e., 1 is orthogonal to T 1. ,IE T 1. 1. . 
T 1. 1. C T: Let 1 E T 1. 1.. On the basis of what we have already proved 

the element f may be represented in the form 1 = g + h with gET C T 1. 1., 
h E T 1.. From this it follows that h = 1 - gET 1. n T 1. 1., hence h = 0, i.e., 
l=gE T. 0 

Proposition. 
(a) Let H be a Hilbert space. For every subset A 01 H we have A1. 1. = L(A), 

i. e", A 1. 1. is the smallest closed subspace containing A. 
(b) In a Hilbert space H we have A1. = {OJ if and only if L(A)= H holds, 

i.e., if A is total. 

PROOF. 

(a) Since A1. =L(A)1., the projection theorem shows that L(A)= 
L(A) 1. 1. = A 1. 1.. 

(b) If A1.={O}, then we have L(A)=A1.1.={O}1.=H. If A1.1.=H, then 
we have A1. = A 1. 1. 1. = H 1. = {OJ, as A 1. is a closed subspace. 0 

If T\ and T2 are subspaces of a vector space such that T\ n T2 = {OJ, 
then 
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is a direct sum (consequently we write T\ -i- T2), i.e., each element from 
T) + T2 has exactly one representation of the form f + g with f E T) and 
g E T2• If T) and T2 are subspaces of a pre-Hilbert space with T)l. T2, then 
we have T) n T2 = {O}. In this case we call the direct sum T\ -i- T2 an 
orthogonal sum and we denote it by T\ EB T2• 

Theorem 3.3. 
(a) Let H be a pre-Hilbert space, and let T\ and T2 be orthogonal subs paces. 

If T\ EB T2 is closed, then TI and T2 are closed. 
(b) If H is a Hilbert space and T\> T2 are closed orthogonal subs paces, then 

T\ EB T2 is closed. 
(c) If H is a Hilbert space and T and T\ are closed subs paces such that 

T\ c T, then there exists exactly one closed subspace T2 such that T2 c T, 
T21. T) and T= T\$ T2. 

For the subspace T2, defined uniquely by part (c) of this theorem, we write 
briefly T2 = T e T\. The subspace T2 is called the orthogonal complement 
()f TI with respect to T. For T= H we obtain that He T) = Til.. 

PROOF. 

(a) We show that T\ is closed (the proof for T2 goes the same way). Let 
f E T) and let (fn) be a sequence from T\ such that fn -f. Since 
TI C T\ $ T2, we have TI C T) $ T2= T) $ T2• Hence f E TI $ T2 and 
thus we have f= g) + g2 with g\ E T\> g2 E T2. On the other hand, it 
follows from In E T\ that fn 1. T2 and so f 1. T2, and, consequently, 
g2 = f - g \ E T2 n Ti". Therefore g2 = O. From this it follows that f = g 

ETI • 

(b) We have to prove that T) EB T2c TI $ T2• Let f E T\ $ T2; then there 
exists a sequence (fl, n + An) E TI $ T2 with fl. nET\> An E T2 and 
fl, n + f2, n ~ f. Since 

the sequences (fl. n) and (f2, n) are Cauchy sequences. Consequently 
fl. n ~ fl E T\> A n ~ f2 E T2. From this it follows that 

f = lim (fl n + f2 n) = f\ + f2 E T\ $ T2· 

(c) By Theorem 2.4 T is a Hilbert space, Without loss of generality we 
may assume that T = H. In this case let us set T2 = T\.l. Then by the 
projection theorem (Theorem 3.2) we have H= TI $ T2• In order to 
prove uniqueness, let us choose an arbitrary subspace T2 such that 
H = T\ $ n Then we surely have T2 C T\.l. If f E TiL, then f = f\ + f2 
with fl E T"f2 En Here we must have f, =0, since 0= (fl,f) = 
<f\,fl) = IIf11l2. Therefore we have f= f2 E T5., i.e., T\.l C T2 and thus 
TI.l= n 0 
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EXAMPLE 1. Let - 00 <;; a <;; c <;; b <;; 00. In Lz{ a, b) by 

T. = {jEL2(a,b) :j(x)=O almosteverywherein (a,c)} 

T2 = {jEL2(a,b) :j(x)=O almosteverywherein (c,b)} 

two subspaces are defined, and we have Lz{a, b) = T. $ T2 : For 8 E T. 
and hE T2 we obviously have < g, h> = O. Moreover, for each j E L2(a, b) 
we have g=X(a,c)fE T .. h = Xc,,}'E T2 andf= g+ h, 

EXAMPLE 2. In L2( - a, a) by 

T± = {JEL2(-a,a) :j(x)=±j(-x) almosteverywherein (-a,a)} 

two subspaces are defined and L2( - a, a) = T + $ T _: For gET + and 
hE T_ we have 

<8, h> = fa g(x)*h(x) dx = fO g(x)*h(x) dx - fO g(x)*h(x} dx = O. 
-0 -0 -0 

Let us setj±(x) = Hj(x} ± j( - x». Then for eachj E L2( - a, a) we have 
f ± E T ± and j = j + + j _. The subspace T + is the space of even junctions. 
T _ is the space of odd junctions. 

If T .. ... , Tn are mutually orthogonal subspaces of H, then we call the 
(direct) sum of these spaces an orthogonal sum and we write 

n 
$ 7j = T. $ T2 ED • . . ED Tn. 
j~1 

Parts (a) and (b) of Theorem 3.3 can be extended to this case. For 
infinitely many subspaces see Exercise 3.3. 

If A is an arbitrary set and (Ha, < . , . > .. ) is a pre-Hilbert space for each 
0: E A, then by Exercise 1.11 the space 

H= {j=u',)aEAE II Ha: 
aEA 

ja 7'= 0 for at most countably many 0: E A, and ~ Ilfa 112 < 00 } 
aEA 

is a pre-Hilbert space with the scalar product 

<(fa)' (8a» = L <ja' ga>a for (fa)' (8a) E H. 
aEA 

By Exercise 2.2a the space H is a Hilbert space if and only if all Ha are 
Hilbert spaces. If we identify Ha with the subspace of elements (ffJ)fJ EA 

such that jfJ = 0 for p 7'=0:, then the spaces Ha become pairwise orthogonal 
subspaces of H. Therefore (H, (. , . >) is called the orthogonal sum of the 
spaces (H", (. ">a) in symbols H= $aEAHa (if A is finite, then H= 
IIaE Ha)· 
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Theorem 3.4. Let H be a Hi/bert space. If T is a closed subspace and S is a 
finite dimensional subspace, then T + S is closed. 

PROOF. The problem can be reduced by induction, to the case where Sis 
one dimensional; S = L(f). If we write f = 1\ + 12 with 11 E T and 12 E T J., 
then we have T + S = T E9 L(f2)' Therefore T + S is closed by Theorem 
3.3(b). [J 

EXERCISES 

3.1. Let H be the pre-Hilbert space {f E C(O, 1) : f(l) = O} with the scalar product 
<f,g) = f6f(t)·g(l) dt. The subspace T= {fE H: f6f(t) dt=O} is closed, 
T=I' H, and TJ. = (OJ. 

3.2. Let H be the pre-Hilbert space C[ -I, I) with the scalar product <1, g) ... 
J ~ tf(t)·g(t) dt. The subspaces T\ = {f E H : f(/) = 0 for t.;;; O} and T2 ... 

{f E H : f(/)'" 0 for 1 ;;. O} are closed and such that T\.L T2• The orthogonal 
sum T\ EB T2 is not closed (cf. Theorem 3.3(b». 

3.3. Let H be a Hilbert space, and let {Ta : a E A} be a family of pairwise 
orthogonal subspaces of H. 
(a) If (fa)EITaEA To, and fa *0 for at most countably many a, and 

l:aEA II fa 112 < 00, thenf= l:aEAfa can be defined. The subspace T of allf 
of this form is called the orthogonal sum of To, in symbols T= EBaEA Ta. 
Hint: Build a sequence (an) from those a for which fa *0 and define 
l:aE,J'a as l:::'-tfa". This definition is independent of the choice of the 
sequence (an). 

(b) T is closed if and only if all T" are closed. 
(c)" If all T" are different from (OJ, then T is separable if and only if A is 

countable and all T" are separable. 

3.4. Let H be a pre-Hilbert space, let D be a dense subspace of H, and let N be a 
finite dimensional subspace of H. Then D n N J. is dense in N J.. 
Hint: By induction on n = dim N we can reduce the problem to the case n = I, 
i.e., N = L( g), g =I' O. Then there exists an h E D such that < g, h) = I. If 
fE NJ., then there exists a sequence (fn) from D such that fn~f. For the 
sequence f~ = fn - < g, fn) h we then have f~ E D n N J. and f~ -+ f. 

3.5. Let H be a pre-Hilbert space and let T\ and T2 be subspaces of H such that 
T\.L T2• Then we have T\ EB T2::J 1'\ EB 1'2' If H is a Hilbert space, then we have 
T\ EB T2- 1'\ EB 1'2' 

3.2 Orthonormal systems and orthonormal bases 

Let (H, <. ,.» be a pre-Hilbert space. A family M = {e" : a E A} of 
elements from H is called an orthonormal system (ONS) if we have 
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(8ap denotes the Kronecker delta, Le., 8aa = I for all a E A and 8ap = 0 for 
a =1= P). An orthonormal system M is called an orthonormal basis (ONB) of 
the subspace T if M is total in T (i.e., MeT and L(M):J T). If M is an ONB 
of H, then M is called an orthonormal basis. 

Proposition. 
(a) Each ONS is linearly independent (i.e., every finite subsystem is linearly 

independent). 
(b) Each ONB M is a maximal ONS (i.e., if M' is an ONS such that 

Me M/, then we have M' = M). 
(c) If H is a Hilbert space, then each maximal ONS is an ONB. 

PROOF. 

(a) If {e l, . .. , en} is a finite subsystem of an ONS, then {el" .. , en} is 
also an ONS. If l:j_l~~ = 0, then it follows that 

Therefore aj = 0 for all j. 
(b) Let M be an ONB. If M were not maximal, then there would be an 

e E H such that e J.. M; consequently e J.. L(M), this contradicts L(M) 
=K . 

(c) Let M be a maximal ONS in the Hilbert space H. If M were not total, 
i.e., if we had L(M)1. =1= {OJ, then there would be an e E L(M)1. such 
that II ell = 1. Hence M' = M U {e} would be a larger ONS which 
contradicts the maximality of M. 0 

EXAMPLE 1. The set of unit vectors {e1, ••• , em} is an ONB in II(m (ej is the 
vector with I at the jth place and zero otherwise). 

EXAMPLE 2. The set of unit vectors {ek = (8kn)neN : kEN) is an ONB in 12, 

EXAMPLE 3. An ONB in A2 is {en: nENo} with en(z)=[(n+I)/'IT]1/2z n. 
An ONB of H2 is Un : n E No} with fn(z) = [2'ITr 112 zn. This follows 
immediately from Exercise 1.9, in particular part (c). 

EXAMPLE 4. In L2(O, I) the set M= {en: n E l} with en(x) = exp (2i'ITnx) is 
an ONS, as one can verify by a simple calculation. We show that M is an 
ONB, i.e., that M is total. For this let 6[0, IJ = U E C[O, IJ : f(O) = f(l)}. 
For each f E 6[0, IJ by Fejer's theorem there exists a sequence (fn) of 
trigonometric polynomials Un E L(M» such that fn uniformly tends to f. 
We also have then that fn~f in the sense of L:z(O, I), i.e., M is total in 
6[0, I]. If we also prove that 6[0, I] is dense in C[O, I], then everything 
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will be proved. For f E C[O, I] and n E I\J let us define 

If(X) 
fn(x) = I 

f(O) + (1- x)n(!( 1- -;;) - f(O») 

Then we obviously have fn E C[O, I] and fn ~ j. 

for O<x < I-..! 
n 

for I -..! <x < 1. 
n 

EXAMPLE 5. Let Fo = L{ e~ : A E~} with e~ : ~~C, e~(x) = exp (i>..x). On 
Fo by 

. I fT <f, g) = hm 2T f(x)*g(x) dx 
T->oo - T 

a scalar product is defined. For the proof of the existence of this limit it is 
sufficient to treat f = e~ and g = e,.. For these we have 

<1, g) = lim _1_ f T el(p.-~)x dx = lim _1_ ~ [el(P.-~)T - e -i(P.->.)T] 
T-HYJ 2T -T T->oo 2T I1-A 

= 0 for 11 ¥= A. 

<1, g) = lim 21TfT dx = I for 11 = A. 
T->oo - T 

The properties [(1.l3)(i-iv)] of scalar products are obviously satisfied. If 

n n 

f = ~ ake"" then <f, f) = ~ lakl2• 
k=l k=l 

Therefore we have <f, f) = 0 if and only if f = 0, which is property 
[(1.l3)(v)]. By construction, M = {e~ : A E~} is total in Fo, i.e., M is an 
ONB in Fo. The space Fo is not a Hilbert space. For if (Ak ) is a sequence of 
mutually distinct real numbers and (ak ) is a sequence of complex numbers 
such that ak ¥= 0 for all k and ~lakl2 < 00, then the sequence Un) with 
fn = ~k_lake,,* is a Cauchy sequence that is not convergent. 

The following theorem, known as the Gram-Schmidt orthogonalization 
process enables us to generate orthonormal systems and (in separable 
spaces) orthonormal bases. 

Theorem 3.5. Let H be a pre-Hilbert space. For each finite or countably 
infinite set F = {fn} from H there exists a finite or countably infinite 
orthonormal system M = { en} such that L( F) = L( M). If F is linearly indepen
dent, then we can also insure LUI' ... ,In) = L(el' ... , en) for all n. 1 If we 
require that in the representation en = ~j_Ia)j the coefficient an is positive, 
then M is uniquely determined. 

lIn the sequel we write L(e, • ...• en) in place of L({ el' ...• en})' 
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(In what follows we shall always use the Gram-Schmidt orthogonaliza
tion process with this additional requirement.) 

PROOF. It is obviously enough to prove only the last part of the assertion. 
Every normed element from LU,) has the form bdll,II-1, with ,bll = 1. 
The additional condition a, = bdll,ll-' >0 gives bl = 1. That is, e l = 
IIldl-11' So we obviously have L(el)=LUI ), as well. Let us now suppose 
that e" ... , en are determined in such a way that L(e" ... , ell) 
== LUI' ... , I,,). For every 

" 
g = ~ bjej + b,,+I!"+1 E L(e" ... , en'!,,+I) =L(j" . .. ,jn+l) 

j-I 

such that g..L L(el, ... , en) we then have 

0= (e;, g) = b; + b,,+,(e;,ln+,), i = 1, ... , n, 

thus b; = - bn + 1< e;, !" + I ). Consequently, ell +, necessarily has the form 

From the requirement, 

a,,+1 = ,::::,llln+l- ;~I (e;,I,,+I)e;r
l 
> 0 

it follows that b,,+ I> 0, therefore bll+ ,Ib,,+ 11-' = 1. Consequently, 

By construction, we have e,,+, E L(I" ... ,!,,+ I)' hence L(e" ... , en+ ,) 
C LUI' ... ,!,,+ I)' From the formula for e,,+, it follows that 1,,+ IE 

L(el, ... , en+I), therefore we also have LUI"" ,In+l)cL(el, ... , e,,+I)' 
o 

EXAMPLE 6. In L2( - I, I) the set F= Un : n E No} with !,,(x) = xn is a 
linearly independent system. The application of Schmidt's process provides 
an ONS M= {Pn : n ENol, where Pn(x) = ~j_oanjxj holds with ann> 0; i.e., 
Pn is a polynomial of degree n with a positive leading coefficient. These 
polynomials are called the Legendre polynomials. As F is total, the 
Legendre polynomials constitute an ONB in L2( - I, I). The polynomial Pn 

can be given explicitly: 

( ) _ (2n 1)_1(2n+1 )1/2 dn (2 I)" "'. p" x - n. -2- dx" x - ,n E ''Ilo' 

In order to prove this formula it is sufficient to show that the expression 
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for Pn is a degree n whose leading coefficient is 
positive and that <Pn, Pm> = 13nm• The first assertion is obvious. For j <m 

obtain a (j I)-fold integration parts (the terms 
that 

d'+ I 
= em ( -IY+II _l,_(Xj ) , (x2 _I)m dx = O. 

-I dx1+ I dX m - 1- 1 , 

implies that > = n =l=m. remains to prove that II 1. 
By integration by parts we obtain that 

Iff dx 

n 
=(2n)!n+1 1(- 1+ dx 

- I n(n-I) II 
- (2n). (n + I)(n 2) _ 

= (2n)! n(n-I) ... I II (l+x)2n dx 
(n+I)(n+2) ... 2n _I 

2 I = (n!)--
2n+ I 

this follows that II Pn = 1. 
can in an entirely analogous 

polynomials 
that 

b, n(X) (b- - I [ 2n + 1 ] 1/2 dn 

] [(x 
a 

constitute an ONB in L2(a, b). 

Theorem Let H pre-Hilbert 

122n+ . 

generalized Legendre 

a)(x - n n 

(a) If {e p ••• , en} is a (finite) ONS in H, then for eachfE H there exists a 
g E L(e l , ••• , en) such that II g - fll = d(j, L(e l , • , • , en»; we have 

(b) Let {ea : a be 
many of the numbers 
Bessel inequality 

n 

g = ~ <epf)ep 
j-I 

ONS in 

f> 
and let H. 
different from 

IIfll2 I <e", 12. 
EA 

at most countably 
and have 
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(c) An ONS {ea : a E A} is an ONE if and only if for 0/1 f E H the Parseval 
equality 

IIfll2 = ~ l<ea ,J)12 

aEA 

holds. Then we also have 

f = ~ <ea,f)ea for 0/1 f E H. 
aEA 

PROOF. 

(a) For all c" ... , Cn E II< we have 

n n 

= IIfll2 - ~ I<Ej,J>1 2 + ~ ICj - <ej>f)r 
)=1 )-1 

Therefore IIf-~j_lcjejll is minimal if and only if cj=<ej>f). 
(b) For every finite set {a" ... , an} C A we have 

by part (a). Hence 

" ~ l<eaj ,J>12 t;; Ilfll2. 
)=1 

From this the assertion follows because for every f > 0 only finitely 
many j E 1\1 exist with the property l<ea,JW ;;;. f. . ~ 

(c) Let us assume the Parseval equahty for allfE H. LetfE H, and let (aj ) 

pe the sequence of those a for which <ea,J) '1=0. Then we have 

as n-'HXJ. Consequently, f E L(M), i.e., {ea : a E A} is an ONB. More
over, it follows that 

00 

f = L <eal,J>e~ = L <ea,J>ea· 
)=1 aEA 

Let {ea : aEA} now be an ONB, i.e., let H=L(M). For every fEH 
and for every f > 0 there exist n E 1\1, a" ... , an E A and C,' ••• , Cn E 
II< such that 
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By parts (a) and (b) it follows from this that 

n 

o < IIfl12 - L l<e",J)12 < IIfll2 - ~ l<e~,f)12 
"EA j-I 

=lIf-j~1 <e"J'f)e~r <IV-j~1 C)e"r <~. 
and consequently that 

IIfl12 = ~ I<e",f)( 
"EA 

Theorem 3.7 (Expansion theorem). Let H be a pre-Hilbert space and let 
M- {ea : a EA} be an ONS in H. 

(a) If (an) is a sequence of pairwise different elements from A, (cn) a 
sequence from IK, and the series ~cnea" is convergent (i.e., 
limm_ oo ~~_lCA. exists), then we have (cn) E 12 , If H is a Hi/bert space, 
then this series is ~onvergent if and only if (cn) E 12, 

(b) If g = ~cnea,,' then we have 

Cn = <ea,,' g) for all n EN, 

II gl12 = ~ Icnl2 

and 

< g, f) = ~ < g, ea)<ea,,' f) for all f E H. 

(c) The set of all elements from H which can be represented by a convergent 
sum ~c"ea" equals L(M). 

PROOF. 

(a) The sequence (~~-lcnea,,)mEN is a Cauchy sequence if and only if we 
have 

II f c"ea" - f cn ea,,112 ~ 0 for m < k and m, k ~ 00. 
n=1 n= I 

This holds true if and only if ~lc,,12 < 00. 

(b) We have 

II gll2 = lim II f c"ea,,11
2 

= lim f Icnl2 = ~ Icnl2 
m-""oo n- I m~oo n= 1 

and 
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In the same manner, it follows for all f E H that 

(g.J) = lim / f c"ea",f) = lim f (g, ea")(ea,,.J) 
m ...... oo \ n = ] m-H)IJ n = I 

= ~ (g, ea")(ea,,.J). 

(c) Each element ~c"ea" is in L{M), by construction. The converse follows 
from Theorem 3.6(c), as M is an ONB in L{M). D 

Proposition. Let H be a Hilbert space, and let M= {ea : a E A} be an ONS. 
For each fEH the vector ~aEA(ea,f)ea is the orthogonal projection of f 
onto L(M). 

PROOF. If ~j-1Cje"t is an arbitrary element from L(M), then by Theorem 
3.6(a) we have 

Ilf- L (ea,f)eaI12 = IIfll2 - L l(ea,f)12 

aEA aEA 

" ~ IIfll2 - L l(ea/f)1 2 

)=\ 

= Ilf - j~1 (e"t,f)e"tr ~ Ilf - )~I cjeaJr 

consequently 

lv- a;A (ea.J)ealr = inf {lif-gIl2 : gEL(M)} = inf {lif-gll z : gEL(M)}. 

Theorem 3.8. Let MI and M2 be measurable subsets of ~p and ~q, respec
tively and let {en : n EN} and {fm : mEN} be orthonormal bases of L2( M\) 
and L2(M2), respectively. If we define gnm E L2(M. X M2) by g"m(x,y)= 
en(x)fm(Y) for x EM., Y E M2, then {gnm : (n, m) E N X N} is an orthonor
mal basis of Ll M. X M2)' 

PROOF. It is obvious that the functions g"m are in Lz(M. X ~) and they 
form an orthonormal system. It remains to prove that {gnm : (n, m) E N X 
N} is total. Let h be an element of LiM. X Mz) such that hl..gnm for all 
n, m. For all x EM. let h/y) = hex, y). By Fubini's theorem we have 
hx E L2(M1) for all x E M. \ N with some set N of measure zero, and we 
have (Parseval's equality) 

00 

II h ll2 = f. IIhxll 2 dx = 1. L I(fm' hx)l z dx 
M, M,m=\ 

= fM'm~llfM2h(X'Y)fm(Y)* dyl
Z 

dx 

= i: f.lf. h(x,y)fm(Y)* dyl2 dx. 
m-I M, M2 
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Let us define km by 

Then km also belongs to L2(MI ). Another application of Parseval's equality 
shows that 

I. II. h(x,y)fm(y)* dyl2 dx = IIkm ll2 = f I(en , km)12 
MI M2 n-I 

~ II. km(x)eAx)* dxl2 = f II. I. h(x,y)fm(y)*en(x)* dy dxl2 
n-l ~ n-l ~ ~ 

By summing up, it follows that IIhll = o. o 

EXERCISES 

3.6. If T= $"EA T" and M" are orthonormal bases in T", then M= U"EAM" is an 
ONB in T. 

3.7. Let H be an infinite dimensional Hilbert space, and let M be an ONB of H. 
The cardinality of every dense subset of H is at least that of M. There exists a 
dense subset of H with cardinality equal to that of M. 

3.3 Existence of orthonormal bases, dimension of a 
Hilbert space 

Up to now we have always assumed the existence of orthonormal bases; 
only in examples did we see that in certain spaces orthonormal bases exist. 
The question is then whether all Hilbert spaces or pre-Hilbert spaces have 
orthonormal bases. It is relatively easy to show that each separable 
pre-Hilbert space has an ONB. For non-separable spaces it is a little 
harder to answer this question. 

Theorem 3.9. Let H be a separable pre-Hilbert space. 
(a) H possesses an ONB. 
(b) If MI is a finite ONS in H, then there exists an ONB in H such that 

M-::>MI • 

(c) If H is a Hilbert space and MI is an ONS in H, then there exists an 
ONB Min H such that M:l MI' 

(d) His m-dimensional (m < 00) if and only if there exists an ONB contain
ing m elements. Then each ONB in H has exactly m elements. 
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(e) H is infinite dimensional (i.e., not finite-dimensional) if and only if there 
exists an ONB containing a countable infinity of elements. Then each 
ONB in His enumerably infinite. 

PROOF. 

(a) follows from (b) if we choose MI =0. 
(b) Let H"I'= {OJ and let MI = {e l , ••• , en} be an ONS. As H is separable, 

there ¢xists a countable dense subset A = Un : n EN} in H. We define 
the elements gl' g2' .••• from A recursively in the following way: let 
gl = f", where)1 is the smallest index for which {ej, .•• , en' hi} is 
linearly independent. If gl' ... ,gk are defined, then let gk+ 1 = h.d 
where jk+1 is the smallest index for which {e l,···, em' gl' ... ,gk' 
j, } is linearly independent. We obviously haveA+I >A. With B= 
Jk+1 

{el' ... , ell' gl' g2' ... } we then have L(A) c L(B), i.e., B is total. If 
we apply Gram-Schmidt's orthogonalization method to B, we obtain 
an ONS M, the first n elements of which coincide with e l , ••• , en (as 
these are already orthonormal). We have L(M)=L(B)= H, i.e., M is an 
ONB in H with MI c M. 

(c) Let H be a separable Hilbert space and let MI be an ONS. Then 
L(MI)l.. is also separable. Therefore, by part (a), there exists an ONB 
Mz of L(MI).l. The set M= MI U M2 is then an ONS, and L(MI U M2) 

= L(MI) EEl L(M2). Consequently, by Exercise 3.5 

L(MI U M2) = L(MI) EEl L(M2) = L(MI)EElL(M2 ) = I
hence M is an ONB of H such that MI c M. 

(d) Let H be m-dimensional, i.e., assume that the maximal number of 
linearly independent elements equals m. As every ONS is linearly 
independent, it consists of at most m elements. If M = (e l , ••• , ed is 
an ONS with less than m elements, then we have dim L(M) < dim H, 
therefore L( M) =1= H. Thus there exists an f E H such that {el>"" 
ek , f} is linearly independent. The Schmidt orthogonalization process 

provides an ONS M' = {e l , ••• , ek' ek + I} such that M C M', i.e., M is 
no ONB. Hence every orthonormal basis has exactly m elements. 

(e) If H is infinite dimensional, then every ONB has at least a countable 
infinity of elements, for otherwise H would be finite dimensional by 
part (d). It remains to prove that each ONB M ... {ea : a E A} is 
countable. Let N= {/,. : n EN} be a countable dense subset. For each 
a E A there exists an n(a) E N such that IIf,,(a) - e,,11 < i. Because 

lie" - epll"" V2 for a "I'=p, we have 

II/"(a) - fn(p)11 ;;. Ilea - epll- IIfn(a) - e,,11 -liep - fn(p)11 

;;. v'2 - I > 0 for a "1'= p. 
This means that the mapping a~n(a) : A~N is injective. Conse
quently A is countable. Conversely, if an orthonormal basis in H is 
infinite, then H is not finite dimensional. 0 
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Proposition. Every finite dimensional pre-Hilbert space is complete; in partic
ular, every finite dimensional subspace of a pre-Hilbert space is a closed 
subspace. 

PROOF. Let H be an m-dimensional pre-Hilbert space. Then there exists an 
orthonormal basis {e], ... , em}. Let Un) be a Cauchy sequence in H with 
fn = ~j!.]ajnej. Then we have 

m 

1If.. - .1;,11 2 = ~ lajn - ajpl2. 
j=] 

thus for each j the sequence (ajn)nEN is a Cauchy sequence as n-:,oo. 
Therefore ajn-:,aj as n-:,oo with some aj . Putting 

we have 

m 

f = L aj l1, 
j=1 

as n-:,oo. Consequently, Un) is convergent in H. D 

Proposition. A pre-Hilbert space is separable if and only if it possesses an at 
most countable ONB. 

PROOF. By Theorem 3.9 each separable pre-Hilbert space possesses an at 
most countable ONB. If M is an at most countable ONB in H, then the set 
L,(M) of linear combinations of elements of M with rational coefficients is 
dense in L(M), and thus it is also dense in H. As L,(M) is at most 
countable, H is separable. D 

Theorem 3.10. Let H be a Hilbert space. 
(a) H possesses an ONB. 
(b) If Mo is an ONS. then there exists an ONB Min H such that M:J Mo. 
(c) All ONB of H have the same cardinality. 

REMARK. Theorem 3.IO(a) and (b) do not hold for (non-separable) pre-Hil
bert spaces; cf., for example. N. Bourbaki [2]. Chapter 5, §2. Exercise 2. 

PROOF. Part (a) follows from part (b) by choosing Mo=0. 
(b) Let Wl be the set of all those ONS which contain Mo. un is partially 

ordered by the inclusion "c" (i.e., we have M C M for all ME un; from 
M] C M2, M2 C M3, it follows that M] C M3 ; from MI C M2, M2 C M] it 
follows that M] = M2). If 91 is a linearly ordered subset of un (i.e., for 
M], M2 E 91 we have M] C M2 or M2 eM]), then 91 has an upper bound 
ME Wl (Le., for every M' E 91 we have M' eM); for the upper bound 
M we may take the union of all N E91. 
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This M is an ONS: If fl' f2 E M, then there exist MI, M2 E 9l such 
that fl E MI, f2 E M2. Since MI C M2 or M2 C MI holds, we have I" 12 E 

M2 or II' 12 E MI' Therefore 11.1./2' 
As M contains all N E 9l, M is an upper bound of 9l. By Zorn's 

lemma this implies the existence of at least one maximal element 
Mmax E IDl (i.e., for each MEIDl such that Mmax C M we have Mmax 
=M). 

This Mmax is an ONB: If we had L(Mmaxh'~ H, then, as H is a Hilbert 
space, there would be (cf. part (b) of the proposition preceding Theo
rem 3.3) an I E L(Mmax).l such that IIfll = I, i.e., Mmax U {f} would be 
an ONS such that Mmax C Mmax U {f} and Mmax =t= Mmax U {f}; this 
would contradict the maximality of Mmax. The requirement Mo C Mmax 
is obviously satisfied. 

(c) Let M" M2 be ONB of H. If IMII == m < 00 (we write IMI for the 
cardinality of M), then by the proposition preceding Theorem 3.10, the 
space H is separable and by Theorem 3.9(d) we have dim H= m = 

IM21· 
Now let I Md > INI· For each f E MI let K(f) = {g E M2 : < g, I> :f= 

OJ. By Theorem 3.6(b) we have IK(f)1 ~ INI for all I E MI' We have 
U {K(f) : I E M.} = M,. since if g E M2 \ U {K(f) : f E Md we would 
have g.1. M" therefore g = 0 (as MI is total); however, this is impossible 
because all elements of M2 have norm 1. Consequently, it follows that 

IM21 ~ ~ IK(f)1 ~ 1M" INI ~ IMII· 
JEMI 

On the other hand, IM21 > INI is true, for otherwise MI would be finite, 
also. We can therefore prove that 1M" ~ IM21 in the same way. 0 

The algebraic dimension of a vector space is the cardinality of a maximal 
set of linearly independent elements (algebraic basis). In Hilbert spaces it is 
useful to introduce another notion of dimension. The dimension (more 
precisely, the Hilbert space dimension) of a Hilbert space H is the cardinal
ity of an ONB of H. By Theorem 3.1O(c) this dimension does not depend 
on the choice of the ONB. By Theorem 3.9(d) for finite dimensional 
Hilbert spaces the two definitions of dimension coincide; for infinite 
dimensional spaces this is not the case, cf. Exercise 3.8. 

Proposition. There exist Hilbert spaces 01 arbitrary (Hilbert space) dimen
sion. 

PROOF. Let /( be an arbitrary cardinal num\:Jer, and let A be a set of 
cardinality /(. Let liA) be the Hilbert space 12(A; p.) with p.(a) = 1 for all 
0: E A (cf. Exercise 1.10 and 2.2(b». The dimension of i2(A) equals /( = IAI, 
as M = {f" : a E A}, where j,,( {3) = 8,,{3' is an ONB. 0 
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Theorem 3.11.1J H is a Hilbert space and Sand T are closed subs paces oj H 
such that S n T.L = {OJ, then we have dim S ~ dim T (dim = Hilbert space 
dimension ). 

PROOF. Let us distinguish between two different cases. 
(a) dim T = k < 00: Assume that dim S > dim T holds. If {e), ... , ek } is 

an ONB of T and {fr, ... ,Jk+ d is an ONS in S, then the system of 
homogeneous equations (k equations, k + 1 unknowns) 

k+1 

~ c/em,h) = 0, m = I, ... , k 
i-I 

has a non-trivial solution. Therefore there exists a non-zero element 
J = ~J!: r'cih of S n T.L, which contradicts the assumption. 

(b) dim T ;;.1"'1. Let M) and M2 be orthonormal bases of T and S, 
respectively. For each e EM) let K(e) = {f E M2 : (e, f) ~O}. We have 
UeEM,K(e)= M2, because forJE M2\ UeEM,K(e) we would haveJ...LM" 
thus J...L T; which would contradict the assumption. Since for each 
e EM) the set K(e) is at most countable, it follows that IM21 <; 

l"'IIMr! = IMr!. 0 

EXERCISES 

3.8. Let H be a Hilbert space and let A be a countable subset of H such that 
L(A) = H. Then H is finite dimensional, i.e., no Hilbert space of algebraic 
dimension INI exists. 
Hint: Apply the Schmidt orthogonalization process to A; for the resulting 
ONB M we have L(M) = H. (It can actually be proved that no infinite 
dimensional Hilbert space can have an algebraic dimension smaller than the 
cardinality of the continuum; cf. N. Bourbaki [2], Chap. 5, §2, Exercise 1.) 

3.9. (a) Let (H, (., .» be a pre-Hilbert space. For any n elementsf" ... ,fn of H 
the Gram determinant is defined by DUI,' .. ,jn)"'det «Jj,A». We 
have DUI' ... ,fn) ;;. 0; the equality sign holds if and only if the elements 
fl' ... ,fn are linearly dependent (in the case n = 2 this is Schwarz' 
inequality.) 
Hint: Use induction on n. In going from n - I to n use the fact that the 
value of the determinant does not change if the first column is replaced 
by (Jj,j) - PnUI», where Pig) denotes the orthogonal projection of g 
onto LU2, ... , fn)· 

(b) Prove the same assertion by using the fact that the matrix 
«h, fk) )j. k _ I, ... , n is the product of the matrices 

«Jj,e/»j_I, ... ,n and «e/,A»/_I, ... ,m, 
I-I, ... ,m k-I, ... ,n 

where {el' ... , em} is an ONB of LUI>" . ,fn}' 
(c) Prove an analogous statement for semi-scalar products. 
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3.10. Part (c) of the proposition preceding Example I of Section 3.2 does not hold 
in pre-Hilbert spaces. 
Hint: In 12 let f= (1/ n), H = 12• 0, HI = 12•0 n {f) 1.. By Exercise 3.4 we have 
HI - {f) J.. If M is an ONB of H, then M is a maximal ONS in 12,0, without 
being an ONB in 12,°' 

3.4 Tensor products of Hilbert spaces 

Let HI and H2 be vector spaces over K We denote by F(HI' Hz) the vector 
space of formal linear combinations of the pairs (f, g) with f E HI' g E H2• 

i.e., 

F(HI' Hz) = { .f cifp~) : cj E 'K.,h E HI' gj E H2,} = I, 2, ... ,n; n E r\I}. 
)-1 

The quotient space 

HI ® H2 = F(HI' H2)/ N 

is called the algebraic tensor product of HI and Hz. 
The product HI X H2 can be considered 'as a subset of F( H .. H2), if one 

identifies (f, g) E HI X H2 with 1(f, g) E F(H .. H2)' The equivalence class 
from HI ® Hz defined by (f, g) will be denoted by f® g; these elements are 
called simple tensors. Each element of HI ® Hz is representable as a finite 
linear combination of simple tensors. Such a linear combination of simple 
tensors is equal to zero if and only if it is a finite linear combination of 
elements of the form 

f f ajb~ ® gk - ( f a;t) ® ( f bkgk). (3.2) 
j-Ik=1 j=1 k~1 

In particular, we have 

( f a)j) ® ( ~ bkgk ) = f ~ ajbk./.i ® gk' (3.3) 
)-1 k-I )-1 k-I 

If (H .. (. , ')1) and (H2, (. , .)2) are Hilbert spaces over IK, then 

s( f cih. g), f c"Uk' gk») = f f ctc" (/.i,fDI(gp gk>z 
)-1 k-I )-1 k-I 

defines a sesquilinear form on F(H., H2)' For arbitrary fEN and g E 
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F(H., H2) we have s(f, g)= s(g,f)=O, as one can verify by simple calcula
. tion. Consequently, by 

/ ~ cj/i9 gj' ~ c;J//iJ gk) = s( ~ cifj, g), f Ck(j~, gk») 
\)-1 )=1 )-1 k-I 

a sesquilinear form is defined on HI ® H2• 

We show that <. , .) is a scalar product on HI ® Hz. In order to prove 
this it is enough to show that (f, I) > 0 holds for all I E HI ® Hz, 1"1= O. 
Indeed, let I = ~j-l c)fj ® ~ "1= O. If {ed and {ek} are orthonormal bases of 
LUI"" ,J,,} and L{gl"'" gn}' respectively, then 

1= '2, ck1ek ® e; with Ckl = "2»<ek,fj)<e;, ~), (3.4) 
k. I ) 

and thus 

(f,j) = ~ ICk/ 1
2 > O. 

k,l 

Therefore (HI ® Hz, (. , .» is a pre-Hilbert space. The completion of this 
pre-Hilbert space (cf. Section 4.3) will be denoted by HI ® H2 and called 
the (complete) tensor product of the Hilbert spaces HI and H2. 

From (3.4) for each/=~j_lc.IJ®~EH(®H2 it follows by means of 
(3.3) that 

(3.5) 

where {ed and {el} are orthonormal systems in LUI"" ,jn} and 
L{ g(, ... ,gn}' respectively; the elements If and gk are contained in 
LUI' ... .In} and L{ gl' ... , gn}, respectively. 

EXAMPLE I. Let PI and P2 be measures on R, and let HI = L2(R, PI)' 
Hz = L2(JR, pz). By (3.1) an element ~j-Iclfj, g) from F(H(, Hz) is in N if 
and only if the function 

n 

(x,y) ~ L c)fj(x)~(y), (x,y) E R2 
)-1 

vanishes almost everywhere with respect to the product measure PI X P2' 
The algebraic tensor product HI ® H2 is thus composed of equivalence 
classes of functions, square integrable on JR2 with respect to PI X P2' For 
I, g E HI ® H2 we have 

(I, g) = f I(x,y)*g(x,y) dpI(x) dp2(y)· 

As HI ® H2 obviously contains all step functions on R2, the space HI ® H2 
is isomorphic to L2(R2, PI X P2)' 
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lbeorem 3.11. Let HI and Hz be Hilbert spaces. 
(a) If MI and Mz are total subsets of HI and Hz, respectively, then the set 

U ® g : f E M» g E Mz} is total in HI ® Hz. 
(b) If {ea : a E A} and Ull : {J E B} are orthonormal bases of HI and H2, 

resp"ectively, then {eer ® f/1 : a E A, fJ E 8) ;s an orthonormal basis of 
H,®Hz· 

PROOF. 

(a) Let ~j-lh®8j E HI ® H2 , E >0. For eachj E {I, 2, ... , n} there exist 
elements h' E L(MI ) and gi E L(M2) such that IIjj - 1;'11 IIBjIl <e/2n and 
118j - gill IIjjll <E/2n. Then we have 

1I..fj ® 8j - jj' ® gjll = lIet - jj') ® gj + ..Ii' ® (8j - ~)II < e/ n 

and consequently 

Because 
n 

~..fj' ® g; E L(M,) ®L(M2) =L{J®g: fEMt>gEM2}, 
j-I 

the assertion is proved, since HI ® ~ is dense in HI ® H2 • 

(b) By part (a) the set {ea ®fp : a E A, fJ E B} is total in HI ® H2• More
over, we have 

< e .. ® fll' ea' ® ffJ' > = 8a",,8fJ{J' for all a E A, fJ E B, 

i.e., {e .. ® fp : a E A, P E B} is an orthonormal basis. 

EXERCISES 

o 

3.11. Two non-zero tensors!1 ®gl andfl®gz are equal to each other if and only if 
there exists acE K, c oF 0 that satisfies!2 == ef" g2 = C -Igl• 

3.12. Let HI and H2 be Hilbert spaces. 
(a) We have dim [HI ~ H2] .. (dim HI)(dim H2) (Hilbert space dimensions). 
(b) If HI and Hz are different from {O}, then HI ~ H2 is separable if and only 

if HI and Hz are both separable. 
(c) (HI ® H2, <. , .» is complete if and only if HI or H2 is finite dimensional. 



4 Linear operators 
and their adjoints 

4.1 Basic notions 

Let HI and H2 be vector spaces over II<. A linear operator T from HI into 
H2 is. by definition. a linear mapping of a subspace DCT) of HI into H2• 
The subspace DCT) is called the domain of T. The image RCT) = TCDCT» 
= { Tf : f E DC T)} is called the range of T. Since we only treat linear 
operators here. we shall speak only about operators from HI into H2• If 
HI = H2 = H. then T is called an operator on H. A linear operator from H 
into II( is called a linear functional. The range of an operator T from HI 
into H2 is a subspace of H2• An operator is injective if and only if Tf = 0 
implies f = O. In this case the inverse T - I of T is defined by 

D(T- I) = R(T). T-Ig = f for g = Tf E R(T). 

T- I is a (linear) operator from H2 into HI' For an operator T from HI into 
H2 and for a E II( the operator aT is defined by 

D( aT) == D( T) and (aT) ... a( Tj) for f E D( aT). 

For two operators Sand T from HI into H2 the sum S + T is defined by 

D(S + T) = D(S) n D(T). (S + T)f = Sf + Tf for f E D(S + T). 

If T is an operator from HI into H2 and S is an operator from H2 into H3• 

then the product ST is defined by 

D(ST) = {JED(T): TfED(S)},(ST)f= S(Tf) for fED(ST). 

If D is a subspace of HI. then the set of those operators from HI into H2 
whose domain is D is a vector space over 11(; the zero element is the 
operator whose domain is D and which sends all elements of D to O. Let S 

50 
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and T be operators from HI into H2• An operator T is called an extension 
of S (or S is a restriction of T) if we have 

O(S) cD(T) and Sf = Tf for f E O(S). 

For this we write SeT or T:J S. 

EXAMPLE l. Let M be a measurable subset of Am and let t : M-+C be a 
measurable function on M. The maximal operator of multiplication by t on 
L2( M) is defined by 

O(T) = {j E L2(M) : tf E L2(M)}, Tf = if for f E D{T). 

The set D(T) is obviously a subspace of L2(M) and T is an operator on 
L2(M). 

(4.1) OCT) is dense. 

PROOF. For each n E '" let M,. = {x EM: !t(x)! <: n}. ThenM,. C M,,+ I and 
U :_1 M" .. M. For each f E L2( M) the function f,,'" XM"f belongs to 
D( T) and we have f" -+ f. 0 

(4.2) The following statements are equivalent: 
(a) R(T) is dense, 
(b) t(x):F 0 almost everywhere in M, 
(c) T is injective. 
If one of these assumptions is satisfied, then T - I is the multiplication 
operator defined by the function 

for x EM such that t(x):FO 
for x EM such that t(x) .. O. 

PROOF. (b) follows from (a): Each f E L2(M), that vanishes outside the set 
MI == {x EM: t(x) = OJ, is orthogonal to R(T). Therefore L2(M I ) = {OJ, 
i.e., MI has measure O. 

(a) follows from (b): Let M" = {x EM: !/(x)l;;. lin}; then M,. C M,.+I 
and M \ U :"1 M,. has measure zero. For every g E L2( M) the function 
gIl - XM g belongs to R( T) and gIl -+ g holds. 

(c) f~l/ows from (b): If Tf= 0, then t(x)f(x) -= 0 almost everywhere in M. 
Therefore f(x) ... 0 almost everywhere, too, and thus f= O. 

(b) follows from (c): If MI = {x EM: I(x) = OJ, then for all f E L2(M), 
vanishing outside MI, we have Tf= 0; therefore f= O. From this it follows 
that MI has measure zero. 

If one of the above conditions is satisfied, then T is injective and l(x):FO 
almost everywhere in M. Hence we have 

D(T- I ) ==R(T) = {gEL2(M): there exists anfEL2(M) such thatg= if} 

... {gELiM): IlgEL2(M)}, 
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and for g E O(T -I) and f E L2(M) such that g = tf we have 

T-Ig = f = tlg; 

consequently T -I is the multiplication operator induced by t I' 0 

(4.3) We have OCT) = L2(M) if and only if a C exists for which I/(x)1 "C 
almost everywhere in M. We have R( T) = L2( M) if and only if a c > 0 exists 
for which I/(x)1 ;) c almost everywhere in M. 

PROOF. If I/(x)I" C almost everywhere, then If E L2(M) for all f E L2(M). 
Therefore OCT) = L2(M). Conversely, let OCT) = L2(M). Let us assume that 
no C exists for which I/(x)l..; C almost everywhere. For n E N set Mn = {x 
EM: I/(x)l>n}, Nn=Mn-I\Mn with Mo=M. Then all Mn have positive 
measures, and the intersection n:'_ I Mn has measure zero. Therefore there 
exists a subsequence (nk ) of N such that all N". have positive measures. We 
have I/(x)l;) nk - 1 for x E Nnk . For all kEN let us choose fk E L2(M) in 
such a way thatfk vanish outside Nn• and II All = 11k. Since the functions 
fk are mutually orthogonal, we have 

00 

f = ~ A E L2(M)· 
k-I 

However, If is not in L2(M), i.e., f f/. OCT), this contradicts the fact that 
O( T) = L2( M). (A simpler proof of this can be found in Exercise 5.5.) 

If I/(x)1 ;) c > 0 almost everywhere, then T -I exists, and for the inducing 
function II we have 1/1(x)1 <':c- I almost everywhere. Therefore R(T) 
= O(T- I)= L2(M). If R(T) = L2(M), then by (4.2) the operator T is 
injective and O(T- I)= L2(M). For the inducing function II we have 
1/1(x)l..; C almost everywhere, thus I/(x)1 ;) C -I almost everywhere. 0 

If t, s are measurable functions on M and T, S are the multiplication 
operators induced by I, s, then T+ S is a restriction of the multiplication 
operator induced by t + s, as from tfE L2(M) and sfE L2(M) it obviously 
follows that (/+ s)fE L2(M). 

EXAMPLE 2. If '" : R~C is continuous, then by 

Tf = J ",(x)f(x) dx,f E L2•0(R) 

a linear functional is defined with O( T) = L2•o(R). If '" E L2(R), then T can 
be defined on the whole space L2(R). 

The subset N(T) = (fE D(T) : Tf=O} is called the kernel of T. For 
every operator T from HI into H2 the set N(T) is a subspace of OCT) 
(consequently of HI> as well). 
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Theorem 4.1. Let be vector over and I_ ••• _ T 
linear functionals such that O(TI)= ... = O(Tn) = D(T)= H. If we have 
N(T) 7_IN(~), then exist ... , II( such that 

PROOF. We prove this by induction on n. be to TI = 
then N( T) :J N( T I) = H, therefore T = O. If TI:F 0, then there exists an 
fo E H such that TI fo = 1. For every f E H we then have f - T\U)fo N(T1) 

c N(T). Consequently, TUo)TI i.e., TUo)T1• 

Let us now assume that the assertion is true for n - 1 (n > 1). Assume 
that N(T):Jn7_IN(1';). If N(Tn):Jn7::\IN(1';), then it follows that 
N(T) 7::\1 Therefore by the induction hypothesis we have 
T=~7: 1';. So this the assertion holds. If N(Tn);zj i_l N(1';), 
then there exists anfoE n7::lN(1';) such that TJo= 1. Let 

T(Jo) 

For allfE n7::1 N(T;) we have 

1;(J - Tf/(J)fo) Ti(J) 1~(J) =0 = 0, 1,2, .. , n-

and 

Le., 

f - Tn(J)fo E n N(Ti) cN(T), 
i= I 

and 

To(J) = T(J) - T(JO)Tn(J) = T(J- Tn(J)fo) = O. 
Therefore we have 

the induction hypothesis it follows from that 

n-

T - T(JO)Tn = To = ~ ciTi, 
i= \ 

Le., T linear combination of Tp , .. , T". 

Let HI and H2 now be normed spaces. An operator T from HI into Hl is 
said to be continuous the f E O( if for every sequence U,,) from 
O(T) such that fn~f we have Tf. The operator T is continuous by 
definition if T is continuous at each point of OCT). The operator T is said 
to bounded if exists C > such that II Tfll Cllfll all 
f T). such called bound T. 
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Theorem 4.2. Let T be an operator from HI into H2• Then the following 
assertions are equivalent: 
(a) T is continuous, 
(b) T is continuous at 0, 
(c) T is bounded. 

PROOF. (b) obviously follows from (a). 
(c) follows from (b): Let us assume \hat T is not bounded. Then for every 

n E fill there exists an 1" E D(T) such that II Tf,,11 >nll1"lI. From this it 
follows that, in particular, fn "I=- 0; without loss of generality we may assume 
that IIf,,1I = lin. Consequently we have fn~O and II Tfnll >n(lln)= 1, 
which contradicts the continuity of T at zero. 

(a) follows from (c): Assume II Tfll -< Cllfll for all f E OCT). If f E OCT) 
and Un) is a sequence from OCT) such thatfn~f, then we have 

II Tfn - Tfll = IIT(jn-j)1I -< Cllfn-fll~O. 

i.e., Tf,,~ Tf, which proves the continuity of T. D 

For a bounded operator T from HI into H2 the norm II Til is defined by 

IITII = inf {C;>O: IITfil <Cllfll forall fEO(T)} (4.4) 

(in Section 4.2 we shall justify the word "norm"). Since for every 10 > 0 we 
have 

II Tfll -< (II Til + e)IIfil for all f E D(T), 

the norm II Til is a bound for T, thus 

II Tfll < II TIl IIfil for all f E D(T). (4.5) 

EXAMPLE I (Continued). A function s : M~~ is said to be essentially 
bounded from above if there exists aCE ~ such that sex) < C almost 
everywhere in M. Each C of this kind is called an essential upper bound of 
s. The greatest lower bound of all essential upper bounds is called the 
essential supremum of s, in symbols ess sup s. It is itself an essential upper 
bound for s. Indeed, if Co denotes this greatest lower bound, then for every 
n E fill the number Co + (1 In) is an essential upper bound, i.e., sex) - Co-
(II n)" 0 holds almost everywhere. By letting n~oo it follows that s(x)
Co" 0 almost everywhere. Analogously, we may define the concepts of 
essentially bounded from below, essential lower bound, and essential infimum. 
A complex-valued function s is said to be essentially bounded, if lsi is 
essentially bounded from above. 

(4.6) The operator T from Example I is bounded if and only if t is 
essentially bounded. We have II Til = ess sup Itl. 
PROOF. If t is essentially bounded, and C = ess sup I tl, then we have 
I/(x)1 " C almost everywhere. Therefore 
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i.e., T is bounded and 1/ TI/ <; c. If C = 0, then we have 1/ TI/ = O. If C > 0, 
then for every € E (0, C) the set M. = {x EM: II(x)1 ;;. C - €} has a positive 
measure and for all f E L2( M), that vanish outside M., we have 

1/ Tfll2 = f.lt(x)f(xW dx ;;. (C - fl f. /f(x)J2 dx = (9 - £)2I1fI12. 
M M, 

Therefore II Til ;;. C - E, and thus II Til = c. 
If t is not essentially bounded, then for every n E N the set Mn = {x E 

M : I(X);;' n} has a positive measure and for every f E OCT), that vanishes 
outside Mm we have 

IITJII ;;. nllJII· 

Therefore T is not bounded. o 
EXAMPLE 2 (Continued). The functional T of Example 2 is bounded if 
1/1 E Lz(R), since then 

ITfl < I/I/II/lifi/· 
From Theorem 4.8 (theorem of Riesz) it will follow that T is continuous if 
and only if 1/1 E Lz(R). 

EXAMPLE 3. Let M, and M2 be measurable subsets of RP and Rm, respec
tively. Then Mz x M, is a measurable subset of Rm+p. The points of Rm+p 
can be written in the form (x, y) with x E Rm, y E RP. Assume k E L2(M2 x 
M,). By Fubini's theorem 

f. Ik(x,y)IZ dy < 00 almost everywhere in Mz, 
MI 

i.e., we have k(x, .) E L2(M.) almost everywhere in M1• Consequently, for 
all f E L2( M,) we can define 

(KJ)(x) = f. k(x,y)f{y) dy almost everywhere in Ml · 
MI 

Then we have 

{ } 
1/1 

I(Kf)(x)1 < IIfll fMllk(x,Y)ll dy . (4.7) 

For every g E Ll(M2) the function h defined by h(x,y) = k(x,y)f(y)g(x) is 
integrable on M2 X MI' Therefore by Fubini's theorem the function 

g(x)(Kf)(x) = g(x) f. k(x,y)f(y) dy = f. h(x,y) dy 
MI MI 

is a measurable function on M2. If we put M2• n = {x E M2 : Ixl < n} and 
6" = XM , then we can see that XM KJ is measurable for every n E N. 

2,11 2.n 

Consequently, Kj is measurable. 
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Because of (4.7) we have Kf E L2(M2) and 

{ } 
1/2 

IIKfll <: f. f. Ik(x,yW dy dx Ilfll· 
M2 MI 

Since the mapping f ~ Kf is obviously linear, we have defined a continu
ous operator K from L2(MI ) into L2(M2) such that D(K) = L2(MI) and 

{ }
1/2 

IIKII <: f. f. Ik(x,y)12 dy dx 
M2 MI 

Such an operator is called a Hilbert-Schmidt operator (cf. also Section 6.2). 

EXERCISES 

4.1. (a) The reasoning of Example 1 can be carried out completely analogously if 
M is replaced by an arbitrary a-finite measure space (X, IB, IL). (A measure 
space (X, lB, IL) is said to be a-finite if X can be written as the union of 
countably many subsets of finite measure.) 

(b) In Example 3 replace MI and M2 by two arbitrary a-finite measure spaces 
(XI' lBl' ILl) and (X2• lB2• IL0. 
Hint: Observe that the set X2,o={xEX2 : flk(x.y)12dlLl(Y»O} is the 
union of the countably many sets X2, n = {x E X2 : f Ik(x. y)12 dILI(Y);;' 
1/ n} (n E 1\1) with finite measures, and XX2, " E Ll X2, lB2• ILl). 

4.2. Let (XI. lBl' MI) and (X2• !H2' IL2) be a-finite measure spaces. Let k : X2 X XI~ 
C be ILl X MI-measurable and let k(x • . ) E LiXI • lBl• ILl) almost everywhere in 
X2• Then for each f E LiXI , !HI' MI) the function Kof defined by 

Kof(x) = f k(x,y)f(y) dMI(Y) 
XI 

is ILl-measurable and we have IKof(x)1 <; IIk(x, .)11 IIfli. By 

D( K) = (J E L2(X" !H., MI) : Kof E LiX2, !H2. IL2)} 
Kf = Kof for f E D(K) 

an operator is defined from L2(XI , !HI. ILl) into L2(X2, !H2. M2) (such an operator 
is called a Carleman operator; cf. also Section 6.2). There are functions k of 
this kind for which D(K) = to}. 

4.2 Bounded linear operators and functionals 

Theorem 4.3. Let HI and H; be normed spaces. Let T be an operator from HI 
into H2• 

(a) We have 

sup {II Tfll : fE D(T), IIfll <: l} = sup {II Till: fE D(T). Ilfll = I} 
= sup {IITfll :fED(T), IIfll < l} 
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(where the value 00 is allowed). T is bounded if and only if one of these 
values is finite; if one is finite then the others are finite, also, and they are 
equal to II Til. 

(b) If H2 is a pre-Hilbert space and M is a subspace of H2 such that 
R( T) c M, then T is bounded if and only if 

sup (I<Tf, g)1 : f E D(T), gEM, IIfll = II gil = I} 
is finite. This number is then equal to II Til. 

(c) If T is an operator on a pre-Hilbert space Hand D(T) is dense, then Tis 
bounded if and only if 

sup {I<Tf, g)1 : f. g ED(T), IIfll = II gil = l} 
is finite. This number is then equal to II Til. 

PROOF. 

(a) If we define II Til to be equal to 00 if T is unbounded, then we only 
have to prove that the three values, which we denote by c l ' C2' C3' 

respectively, are all equal to II Til. As II Til is a bound for T, we surely 
have II Til> cl • The inequality c i ~ C2 is obvious. If f = 0, then II Tfll = 0 
EO;c2• If 0< IIfll < 1, then with g= Ilfll-~ we have 

II gil = 1 and II Tgil = IIfll-IIITfll ~ II Tfll· 

Consequently C2 ~ C3. What remains is to prove that C3 ~ II Til. This is 
evident if II Til = O. Therefore suppose II Til> O. For every £ E (0, 1) 
there exists an f E D(T) such that II Tfll > (1- ()II Til Ilfll. Hence /76 0 
and for g =[(1 + £)llflir ~ we have 

1- £ 
IIgll < 1 and II Tgil ~ -1 -II T II· +£ 

From this it follows that C3 > (1- £)/(1 + £)11 Til for all £ E (0, I) and 
thus c3 > II Til· 

(b) By (a) we have IITII=sup (IITfll :fED(T), IIfll=l}. On the other 
hand, 

IITfll = sup {1<Tf, g)1 : gEM, II gil = I}. 

Indeed, if Tf= 0, this is obvious. If Tf=l=O, then II Tfll ~ 11< TJ, g)1 for all 
gEM such that II gil = 1, and there exists a sequence (gn) from M such 
that II gnll = I and gn~1I Tfll-IT!, therefore <Tf, gn)~11 Tfll. These 
arguments together give the assertion. 

(c) follows from (b) if we choose M= D(T). 0 

An operator T is said to be densely defined if OCT) is dense. An operator T, 
which is densely defined on a pre-Hilbert space H, is said to be symmetric 
if for allj, gE D(T) we have <Tj, g) = <1, Tg). 
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Theorem 4.4. Let T be a densely defined operator on a complex pre-Hilbert 
space, or a symmetric operator defined on an arbitrary pre-Hilbert space. Tis 
bounded if and only if 

e = sup {I(f, Tf)1 :fED(T), Ilfll CO; l} < 00. 

If T is bounded, then we have 
(a) II Til <: 2e, if H is a complex Hilbert space, 
(b) II Til = e, if T;s symmetric. 

PROOF. Let us set II Til == 00 for an unbounded T. Then we only have to 
prove inequality (a) and equality (b). 
(a) For all f, g E O(T) such that IIfll CO; 1 and II gil CO; 1, from (1.4) with 

sU, g) == (f, Tg) and from (1.16) it follows that 

2e ;> te{4I1fI12 +41IgI12 } 

... te {11f+ g112+ Ilf- g112+ IIf+ igll2 + IIf- igll2} 
;> tl(f+ g, T(j+ g» - (f - g, T(j- g» - i(f + ig, T(J+ ig» 

+i(f- ig, T(J- ig»1 = I(f, Tg)l· 

The assertion follows from this by Theorem 4.3. 
(b) By (1.7) and (1.8) with sU, g) == (f, Tg), it follows for all f, g E O(T) 

such that IIfll CO; 1 and II gil CO; 1 that 

e ;>4e{lIfIl2 +lIgI12 } =te{III+gIl2 +llf-gIl2 } 

;> tl(f+ g, T(j+g» - (f- g, T(j-g»1 = IRe (f, Tg)l· 

If we choose a E IK so that lal == 1 and a(f, T;g) = 1(1, Tg)1 hold, then 
it follows (with h == a*f) that 

I(f, Tg)J == (h, Tg) == IRe (h, Tg)1 CO; e. 
By Theorem 4.3(c) it follows from this that II Til CO; e. The inequality 
e CO; II Til is evident by Theorem 4.3(c). 0 

Theorem 4.5. Let T be a bounded operator from a normed space HI into a 
Banach space H2• Then there exists a unique bounded extension S of T such 
that O(S)==O(T). We have IISII=IITII. 

PROOF. Uniqueness: Assume S is a continuous extension of T such that 
O(S) == O(T). If 1 E O(S), then there exists a sequence (j,,) from O(T) such 
that J" -+ f. As S is continuous, we have Sf = lim Sf" ... lim TI", i.e., S is (if it 
exists at all) determined by T uniquely. 

Existence: Assume thatfE D(T) and U,,) is a sequence from O(T) such 
that f,,-+I. Then (j,,) is a Cauchy sequence. Since T is bounded, the 
sequence (TJ,,) is a Cauchy sequence, also, for we have II TIll - Tfmll CO; 

II Til Ilf" - fmll· Therefore there exists agE H2 such that TIII-+g. This g is 
independent of the choice of, the sequence (j,,) from O(T) with f,,-+f. 
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Indeed, if (f~) is another sequence of this kind, then the sequence 
(f,. f •• f2' f~ • ... ) converges to f, also. Hence the sequence 
(Tf,. Tfl' Tf2• Tf2 ... ) is also convergent; the limit has to be equal to g. 
Consequently, (Tf~) tends to g. as well. Let us define Sf= g. 

S is linear: Iff" f2 E D(T) and (f" ,,), (A,,) are sequences in D(T) such 
thatf""-"fl,f2,,,-,,f2' then for all a, bEIK it follows that 

S(af, + bf2) = lim T(afl, n + bA,,) = lim (aTf,. n + bTA n) = aSfl + bSf2• 

S is bounded and II S II = II TIl: For f E D( T) and (],,) from D( T) such 
that]"-,,fwe have 1I]"1I-"lIfll and 

IISfll = lim II Tfnll ~ lim IIT1l1lfn11 = IITlillfll· 

Therefore II S II ~ II TIl. As II S II > II I'll obviously holds, the assertion 
~~ 0 

The set of those bounded operators from H, into H2, whose domain is 
HI, will be denoted by B(H" H2). By Section 4.1 the set B(HI' H2) is a 
vector space. 

Theorem 4.6. Let II . II be defined as in (4.4). Then (8(H" H2), II . II) is a 
normed space. If H2 ;s a Banach space, then (8(H" H2). II . II) ;s a Banach 
space, too. 

PROOF. It is clear that II . II is a semi-norm. If II Til = 0, then II Tfll = 0 for all 
f E HI such that II fll '" I; therefore Tf = 0 for all f E H .. and thus T = 0, 
the zero element in 8(H" H2). Consequently, II . II is a norm. Assume now 
that H2 is a Banach space. If (Tn) is a Cauchy sequence in 8( HI> H2), then 
for every f E HI the sequence (Tn!) is a Cauchy sequence and, conse
quently, a convergent sequence. Let us define: Tf=lim T"J. Then T is 
linear, because for f, g E HI and a, b E IK we have . 

T(af+bg) = lim Tn(af+bg) = lim (aT"i+bT"g) = aTf+ bTg. 

As (Tn) is a Cauchy sequence, (II Tn I!) is convergent, say II T"II-"C. For all 
fE HJ we have 

II Tfll = lim II T "ill ~ lim II Tnllllfil = Cllfll, 

i.e., T E 8(H" H2)' What remains is to prove that Tn-" T. For every e > 0 
there exists an n(t)EN such that IITn- Tmll ~t for n, m >n(e). Therefore, 
for n ;;. n( E) and for all f E HI we have 

i.e., II Tn - Til '" E for n ;;. n( £). Hence Tn -" T. o 
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Theorem 4.7. 
(a) Let HI and H2 be normed spaces. If T E B(H., H2), then N(T) is a closed 

subspace of HI' 
(b) Let T be a linear functional on a Hilbert space H such that OCT) = H. 

Then T is continuous if and only if N( T) is closed. 

PROOF. 

(a) LetfE N(T). Then there exists a sequence Un) from HI such thatfn~f 
and TJ,,= 0. Since T is continuous, it follows that Tf= lim Tfn= 0, i.e., 
fE N(T). 

(b) If T is continuous, then N(T) is closed by part (a). Let N(T) now be 
closed. If N( T) = H, then T = 0; consequently T is continuous. If 
N(T)* H, then N(T).!. * {OJ. Therefore there exists agE N(T).!. such 
that g*O. Because <g,j) =0 for allfE N(T), we have N(Tg)~ N(T) 
for the functional T J = < g, f). By Theorem 4.1 this implies that 
T = cTg with some cEil<. Consequently T is continuous. (The proof 
can also be carried out analogously to the second part of the proof of 
Theorem 4.8, without using Theorem 4.1.) 0 

REMARK. If HI and H2 are pre-Hilbert spaces, one may expect that 
(B(HI' H2), II . II) is a pre-Hilbert space, also, i.e., the norm is induced by a 
scalar product. This holds true if HI = II< or H2 = II<. However, this is not 
the case if dim HI ;> 2 and dim H2 ;> 2; cf. Exercise 4.3. 

For T E B(HI' H2) and S E B(H2' H3) the product ST is in B(H" H3), 

since we have 

O(ST) = {JEHI : Tf EO(S)=H2} =Hl 

and 

IISTfll" IISIlIITfll" liS II II TIl IIfll foraH fEH., 

i.e., we have ST E B(H .. H3) and 

IISTII " IISIlIITII· (4.8) 

We write B(H) for B(H, H). For S, T I, T2 E B(H) we have 

S(T, + T2 ) = STI + ST2, (TI + T2)S = TIS + T2S. 

The operator I with 0(/) = H and If = f for all f E H obviously belongs to 
B(H) and we have 

11111 = 1, (4.9) 

and IT= TI = T for all T E B(H). The operator I is called the identity 
operator on H. The set B(H) is thus an algebra with an identity element. As 
the norm on B(H) satisfies relations (4.8) and (4.9), the algebra B(H) is a 
normed algebra with an identity element. If H is a Banach space, then B(H) 
is complete; we call B(H) a Banach algebra (with an identity element). 
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Now we shall study the set of continuous linear functionals defined on a 
Hilbert space H, i.e., the set 8(H, K) for a Hilbert space Hover IK. Every 
element g E H defines a linear functional Tg such that D(Tg) = H by the 
formula 

Tg(f) = <g,!). 

As I Tif)1 " II g/l 11f/l, the functional Tg is bounded, and /I Tg/l " II gil. Since 
for!= g we have I Tig)1 = /I g1l2, it follows that /I Tgli = /I g/l. Every continu
ous linear functional defined on H is actually of this form. 

Theorem 4.8 (F. Riesz). Let H be a Hilbert space. Every g E H induces a 
continuous linear functional on H by Tg(f) = (g,j). We have 1/ Tgil = /I gil. 
This mapping of H onto 8(H, IK) is bijective and antilinear, i.e., we have 
Tag+bh = a*Tg + b*Th· 

PROOF. The first part has already been shown. The antilinearity follows 
from 
Tag+bh(f) = (ag + bh,J) = a*<g,f) + b*<h,f) = a*Tg(f) + b*Th(f). 

As II Tgil = II gil, the mapping g~ Tg is injective. What remains is to prove 
that it is also surjective. Let T E 8(H, 11<); we construct agE H such that 
T= Tg. 

If T = 0, then we can choose g = O. If T *" 0, then the kernel N( T) = {f E 
H : T(f) = O} is a closed subspace of H, different from H, i.e., N(T).L *" 
{OJ. Let g E N(T).L such that II gil = 1. Let a = T(g). For every! E H we 
obviously have T(f)g - T(g)! E N(T). Therefore T(f)g - T(g)f is or
thogonal to g, i.e., 

and thus 
0= <g, T(f)g - T(g)f) = T(f) - a<g,j), 

T(f) = T(g)(g,f) = (a*g,f). 

Consequently, we have T= Taog. ~e can also prove this last part with the 
aid of Theorem 4.1, cf. the proof of Theorem 4.7(b).) 0 

EXAMPLE I (Continuation of Example 2 from Section 4.1). We can now 
show that the continuous function I{I : R~C induces a continuous func
tional on L2• o(R) by T(f) = J l{I(x)f (x) dx if and only if t/l E L2(R). If Tis 
continuous, then it can be extended uniquely to a continuous functional on 
L2(R) (which we denote by T, as well). By Theorem 4.8 we have T= Tg 
with some g E L2(R). Therefore, we have for all f E L2•o(R) that 

0= T(f) - Tg(f) = f (l{I(x) - g*(x»f(x) dx. 

For an arbitrary n E N let us define 

fn{x) = {r(X) - g(x) for Ixl" n, 
for Ixl >n. 
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Then for all n it follows that 

hence 

Jlt¥(x) - g*(xW dx = O. 

From this we can infer that t¥ = g* E LilR). 

EXERCISES 

4.3. (a) If H is a Hilbert space, then the norm in B(H, 11<) is defined by a scalar 
product (i.e., B(H, 11<) is a Hilbert space). 
Hint: If T I • T2 are the functionals induced by gl. g2 E H, then let < T I , T2 ) 

= <g2' gl)' 
(b) If HI and H2 are (pre-) Hilbert spaces, then the norm in B(HI• H2) is 

induced by a scalar product if and only if dim HI = 1 or dim H2 = 1. 
Hint: If dim HI ;;. 2 and dim Hl ;;. 2. then let fl' f2 E HI' gl' g2 E H2 be such 
that <It,b) = <g" g,) = 8ij and T;f=<b.!)gj for fE HI,j= 1, 2. For these 
two operators the parallelogram identity does not hold. 

4.4. For each Xo E [0, 1) there exists exactly one g E W2• 1(0, 1) such that for all 
f E W2• 1(0, 1) we have 

f(xo) = 10 1 (g*(x)f(x) + g'*(x)f'(x)} dx 

(cf. Exercise 2.3(b». 
Hint: The functional Tf= f(xo} is continuous on W2• 1(0, 1). 

4.5. The set of Hilbert-Schmidt operators on L2( M) (cf. Section 4.1. Example 3) is 
a sub-algebra of B(L2(M». It is a Banach algebra with the Hilbert-Schmidt 
norm 

IIIKIlI = {tfM1k(x,Y)12 dx dY } 1/2. 

Hint: If the Hilbert-Schmidt operators K and H are induced by the kernels k 
and h, then L= HK is induced by the kernel 

l(x.y) = th(x. z)k(z,y) dz. 

4.6. (a) Theorem 4.4 does not hold true for non-symmetric operators in real (pre-) 
Hilbert spaces. There are non-vanishing operators T such that the 
quadratic form qr(f) = <f, Tf) vanishes on D(T). 

(b) Show that the constant 2C in Theorem 4.4(a) is optima\. 
(c) In a complex (pre-) Hilbert space H the quantity II Tllq = sup {I<i. Tf)1 : f 

E D(T). IIfll " I} is a norm on B(H). We have II Til " 211 Tllq " 211 Til. 
4.7. Let T be a bounded operator from a Hilbert space HI into a Banach space H2• 

Then there exists an extension S E B(HI , H2) of T such that IISII = II Til. 
Hint: Define Sf= 0 for f E D(T).1. 
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4.8. If H is an infinite dimensional Hilbert space, then B(H) is not separable. 
Hint: Let {en : n EN} be an ONS in H; for every sequence a - (a,,) from 
{O, I} let T"EB(H) be defined by TJ""''2.a"<e,,,f)en ; this is an uncountable 
set of operators such that II T" - Til II = I for a 'F p. 

4.9. Let H be a Banach space. There are no operators A, B E B(H) such that 
AB-BA =/. 
Hint: From AB-BA=/ it follows that (n+l)B"=AB,,+l_B"+IA for all 
n E 1'1, therefore liB" II ..;: 2/(n + I)IIA II liB II IIB"II, i.e., Bn =0 for large n; this 
implies. that 0= B" = B n - I = ... = BO= I. 

4.3 Isomorphisms, completion 

Let HI and H2 be normed spaces. An operator V from HI into H2 is called 
an isometry, if D( V) = HI and II Vflb = IIflll for all f E HI' An isometry V 
from HI into H2 is called an isomorphism of HI onto Hz if R( U) = Hz. Every 
isomorphism V of HI onto Hz is injective and U -I is an isomorphism of 
H2 onto HI' 

If HI and Hz are pre-Hilbert spaces and V is an isomorphism of HI onto 
Hz, then it follows from the polarization identity that < Vf, Ug)z = <f, g)1 
for all f, g E HI' (The subscripts of the norms and scalar products will be 
omitted in the sequel, as it will be always clear from the context, to which 
spaces the elements belong.) Two normed spaces HI and Hz are said to be 
isomorphic (or equivalent) if there exists an isomorphism of HI onto Hz. 

Theorem 4.9. Let HI and H2 be isomorphic normed spaces. HI is a Banach 
space (Hilbert space) if and only if Hz is a Banach space (Hilbert space). 

PROOF. Let HI be a Banach space and let U be an isomorphism of HI onto 
Hz. If (in) is a Cauchy sequence in Hz, then (V - '1,,) is a Cauchy sequence 
in HI; hence there exists agE HI such that V - '1,,-g. With f = Vg E Hz we 
have fn - f, i.e., Hz is complete. If HI is a Hilbert space, then H2 is complete 
and since II V - '111 = II fll for all f E H2, the parallelogram identity holds in 
H2, i.e., the norm of Hz is defined by a scalar product. As V - I is also an 
isomorphism, we can prove analogously the reverse direction. 0 

Theorem 4.10. Let H be a Hilbert space, and let A be a set, the cardinality of 
which equals the (Hi/bert space) dimension of H. Then H is isomorphic to 
Iz(A). In particular, all infinite dimensional separable Hilbert spaces are 
isomorphic to '2' Hilbert spaces having the same dimension are isomorphic to 
each other. 

PROOF. Let {e" : ex E A} be an ONB of H. For every f = "i.fA. E H let Vf 
be the function A_C with (Uf)(a) = fa' It is easy to see that U is an 
isomorphism of H onto 'iA). All the other assertions are obvious con
sequences of this. 0 
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It is often useful to know that every normed space (pre-Hilbert space) 
can be considered as a dense subspace of a Banach space (Hilbert space). 
If H is a normed space (pre-Hilbert space), and A is a Banach space 
(Hilbert space), then A is called a completion of H provided that H is 
isomorphic to a dense subspace of A. 

Theorem 4.11. For each normed space (pre-Hilbert space) H there exists a 
completion A. Two arbitrary completions are isomorphic. 

PROOF. We construct a completion A. For this let % be the set of all 
Cauchy sequences in H. Two Cauchy sequences (f,,) and (g,,) from % are 
considered equivalent (in symbols (fn)-(gn»' if IIfn - gnll~O. This obvi
ously defines an equivalence relation (since we have (f,,)-(fn)' from 
(f,,)-(g,,) it follows that (g,,)-(f,,), and (f,,)-(gn) and (g,,)-(hn) imply 
(f,,)-(hn». Let A be the set of all equivalence classes. The elements of A 
will be denoted by j, g, .... We shall write in particular j=[(!,,») if (f,,) 
belongs to the equivalence class j and j = [j] if j is the equivalence class of 
the sequences that converge to f E H (notice that fn ~ f and (fn) -( gn) 
imply gIl ~ 1). 

With a[(!,,)] + b[(g,,)] = [(af" + bg,,») the set A becomes a vector space; 
the zero element is 0 = [0). We show that a norm can be introduced on A 
by putting 

II[Un)]1I = lim IIf"lI· 
For this, we have to notice that the sequence (jlfnll) is convergent (cf. the 
proposition preceding Example I of Section 2.1) and the limit does not 
depend on the choice of representatives, since for (f,,)-(g,,) we have 
IIIInIl-11 g"III" UIn - g"II~O. The properties of a semi-norm obviously 
hold. If 1I[(f,,»)1I = 0, then f,,~O, i.e., we have [Un)] = 0; consequently, we 
have defined a norm. 

If H is a pre-Hilbert space, then we define a scalar product by 

This is obviously a semi-scalar product; since it induces the above norm, it 
is a scalar product. Therefore A is a normed space or a pre-Hilbert space, 
respectively. 

N ow let [H] = ([f) E A : f E H}. The set [H] is obviously a subspace of 
A. The space H is isomorphic to [H), since by Uf = [f) an isomorphism of 
H onto [H] is defined. 

[H] is dense in A: Let j = [(f,,)] E A. For each £ > 0 there exists an 
n(£) E N such that Ilf" - fmll ,,£ for n, m;;;' n(£). Therefore for m;;;' n(£) we 
have 

IIj - [fm] II = ,,1i~ IIf" - fmll " £, 

i.e., j is a contact point of [H]. 
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It remains to prove that A is complete. Let (k) be a Cauchy sequence in 
A. Since [Hl is dense in A, for every n E N there exists a gn E H such that 
IIln -[gnlll CO;; lin. Since we have 

II gn - gm II = II [ gn] - [ gm] II 

..; II[ gn] -],,11 + Ill" - 1m II + 111m - [gm]1I ~ 0 

as n, m~oo, the sequence (gn) is a Cauchy sequence. We have 

Ilk -[(gn)JII ..; Illk -[gkJII + lI[gd -[(gn)]11 

< -kl + lim II gk - gnll ~ 0 "-.00 

as k~oo; consequently, k~[(gn»). 
Now let A and R be two completions of H and let 0 and V be the 

corresponding isomorphisms of H onto the dense subspaces O(H) and 
V(H) of A and R, respectively. Then Vo= (;V- I is an isomorphism of 
V'(H) onto (;(H). By Theorem 4.5 Vo can be extended to an element .v of 
S(R, A). For every j E ii there exists a sequence (1,,) from V(H) such that 
J,,~I We have 

II vlII = Jim II V.!,. II = Jim II Vo'!"l1 = Jim 11.1..11 = 11111, 
i.e., V is an isometry. In order to prove that V is an isomorphism of R onto 
A we have to show that R( V) = A. Let 1 E A. Then there exists a sequence 
(J,.) from D( H) such that 1" ~ j. If we put 1" = vO -Yn, then (.1..) is a 
Cauchy sequence in R. Therefore there exists an j E R such that.1.. ~ I 
Then we have 

1 = lim J" = lim (;V - % = lim v.1.. = vi 
Thus 1 E R( V), i.e., A and R are isomorphic. o 
Proposition. Let HI and H2 be normed spaces (pre-Hilbert spaces) and let HI 
be isomorphic to a dense subspace of H2. If AI and A2 are completions of HI 
and H2, respectively, then AI and A2 are isomorphic. 

PROOF. Let V be an isomorphism of HI onto the dense subspace V(HI ) of 
H2, and let V be an isomorphism of H2 onto the dense subspace V(H2) of 
fl2• Then VV(HI) is a dense subspace of fl2' hence HI is isomorphic to a 
dense subspace of A2, i.e., A2 is a completion of HI and, consequently, it is 
isomorphic to AI' 0 

Theorem 4.12. Let H be a pre-Hilbert space, and let T I , .•• , Tn be linear 
functionals such that O(1j) = Hand L(TI , ••• , Tn) n B(H, K) = {D}. Then 

n 

M= n N{TJ = {JEH: Tj=D for j= 1, ... , n} 
)-1 
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is a dense subspace of H. In particular, the kernel of an unbounded functional 
is dense. 

PROOF. Without loss of generality we may assume that H is a dense 
subspace of a Hilbert space (Ho, <- , . ». (If A is a completion of Hand U 
is an isomorphism of H onto a dense subspace of A, then we replace H by 
. U( H) and 1j by ~ U - I; the following proof shows that U( M) is dense in 
U(H); consequently M is dense in H.) 

Since M is surely a subspace, it is enough to show that M is dense in Ho, 
i.e., M.l. = {O}. Let g E M.l.. Then for the continuous functional Tg : H-. 
11<, Ti=<g,f> we have McN(Tg)' Hence by Theorem 4.1 we have 
Tg E L(Tl' ... , Tn)' By assumption Tg = 0; consequently g = O. 0 

EXERCISES 

4.10. Let H be a pre-Hilbert space with an orthonormal basis {ea : IX E A}. Then 
12(A) is a completion of H. (In particular, we obtain that 12 is a completion of 
any infinite dimensional separable pre-Hilbert space; in proving this we do 
not need Theorem 4.11). 

4.11. Let H be a pre-Hilbert space over IK. A mapping A : H-+IK is said to be an 
antilinear functional, if for allf, g E H and a, bE IK we have A (af + bg) =- a* Af 
+ b* Ag. The functional A is said to be bounded, if there exists a C ;;:. 0 such 
that IIAfll..; C IIfll for all f E H. Let H + be the set of bounded antilinear 
functionals on H. 
(a) An antilinear functional is continuous if and only if it is bounded. 
(b) H+ becomes a Banach space with the norm IIAII=sup {IAfl :fEH, 

IIfll < l}. 
(c) To each gEH there corresponds an AgEH+ defined by Asf=(f,g). 

The mapping E : H-+H +, gl-+Ag is isometric. 
(d) E(H) is a completion of H. 
(e) We have E(H)- H +. 

Hint: Use Theorem 4.5 and 4.8. (This exercise provides a completion for 
all pre-Hilbert spaces without reference to Theorem 4.11.) 

4.12. (a) Let HI and H2 be isomorphic normed spaces. Then HI is separable if and 
only if H2 is separable. . 

(b) A normed space H is separable if and only if one (and then each) of its 
completions is separable. 

(c) Every infinite dimensional separable pre-Hilbert space is isomorphic to a 
dense subspace of 12 (cf. also Exercise 4.10). 

4.13. Let HI be a normed space, H2 a Banach space and fli a completion of HI' 
Then 8(H" H2) and B(AI, H2) are isomorphic. 

4.14. Let HI and H2 be Hilbert spaces. If U is an isomorphism of HI onto H2, then 
for every subset M of HI we have U(M.l.)=(UM).l.. 

4.15. Let G c IRm be open and let L2• o( G) be as in Exercise 2.6(a). Assume that 
1/-1' ... ,I/-n : G-+C are locally square integrable (i.e., square integrable on 
each compact subset of G) and that L(I/-I"",o/n)nL2(G)={O}. Then 
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M-{jEL2,o(G): fG'Mx)f(x)dx=O forj=I, ... ,n} is a dense sub
space of L2( G). 

4.16. Let T be a bounded operator from a pre-Hilbert space HI into a Banach 
space H2• Then there exists an extension S E B(HI , H2) of T such that 
IISII = II Til· 
Hint: Use Exercise 4.7. 

4.17. Let Om = {x E Rm : Ixl = l} be the unit sphere in Rm and let C(Om) be the 
space of continuous functions on Om. 
(a) By <1, g) = f rlf(w)g(w) dom(w) a scalar product is defined on C(Om) 

(here dom{w) denotes the surface element of Om). Let this pre-Hilbert 
space be denoted by C2(Om)' 

(b) Let the measure Pm (cf. Appendix A) be defined for every interval J c Rm 

by Pm(J) = the surface of that part of Om which lies in J. The space 
L2(Rm, Pm) is a completion of C2(Om); we shall denote it simply by 
L2(Om)' 

(c) L2(Om) is separable. 
(d) The space of infinitely many times continuously differentiable functions 

(i.e., the set of the restrictions of infinitely many times continuously 
differentiable functions defined on Rm) is dense in L2(Om)' 

4.4 Adjoint operator 

Assume that HI and H2 are Hilbert spaces, T is an operator from HI into 
H2, and S is an operator from H2 into HI' The operator S is called aformal 
adjoint of T if we have 

(g, Tf) = (Sg,f) foraB fEO(T),gEO(S). 

T is then a formal adjoint of S, also. We say that Sand T are formal 
adjoints of each other. The operator So such that O(So}'" {D} is a formal 
adjoint of every operator from HI into H2• 

If S is a formal adjoint of T, then for every g E O(S) the linear 
functional Lg with 

O(Lg) =D(T),Lsf= (g, Tf) 

is continuous, since for all f E D(Lg } we have 

Lgf = (g, Tf) = (Sg.!), 

i.e., Lg is the restriction, to O( T), of the continuous functional TSg induced 
by Sg. 

If O(T) is dense, and the functional Lg is continuous, then by Theorem 
4.5 this functional can be extended to HI = D( T) in a unique way, i.e., 
there exists an element hg E H .. uniquely determined by g and T via 

(g, Tf) = Lgf = (hg .!) for all f E OCT). 
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If S is a formal adjoint operator of T, and g E D(S), then we surely have 
Sg = hg • Therefore in this case every formally adjoint operator of T is a 

. restriction of the adjoint operator T* to be defined below. 
Let T be a densely defined operator from HI into H2• and let 

D* = {g E H2 : the functional f~( g, Tf) is continuous on D( T) } 

= {g E H2 : there exists an hg E HI such that (hg, f> = (g, Tf) 

for all f E D( T) } . 

The element hg is uniquely determined: If (hi' f) = (g, Tf) = (h2• f) for all 
f E D(T), then hi - h2 E D(T).L = {O}. consequently. hi = h2• 

D* is a subspace of HI and the correspondence D*~Hh g~hg is a linear 
transformation. since for gl' g2 E D* and a, bE K we obviously have 

hag, +bg, = ahg, + bhg, . 

Thus by D( T*) = D*, T* g = hg for g E D( T*) a linear operator T* from HI 
into H2 is defined. The operator T* is a formal adjoint of T and is an 
extension of all formal adjoints of T. 

Theorem 4.13. Let T be a densely defined operator from HI into H2. 
(a) If T* is also densely defined, then T** is an extension of T. 
(b) We have N(T*) = R(T).L. 

PROOF. 

(a) As T and T* are formal adjoints of each other, T is a restriction of the 
adjoint operator T** of T*. 

(b) We have g E N(T*) if and only if g E D(T*) and T*g = 0 hold. Since 
D( T) is dense. this is equivalent to the relation 

(Tf, g) = (f. T*g) = 0 for all f E D(T). 

This holds if and only if g E R(T).L. 

Theorem 4.14. Let T be a densely defined operator from HI into H2• 

(a) T is bounded if and only if T* E B(H2> HI)' 
(b) If T is bounded. then II Til = II T*II. 

o 

(c) If T is bounded. then T** is the (by Theorem 4.5 uniquely determined) 
continuous extension of T to the whole space HI' For T E B(Hh H2) we 
have T** = T. 

PROOF. 

(a) and (b): Let T be bounded. Then for all g E H2 andf E D(T) we have 

ILsil = I(g. Tf)1 <; IlglllITlillfll. 

i.e .• Lg is continuous for all g E H2. Therefore D(T*) = H2. 
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By Theorem 4.3(b) we have 

IIPII = sup {I<T·g,f)1 :fED(T),gEH2, Ilfll=l, IIglI=l} 

= sup {I(g, Tf)1 :fED(T),gEH2, IIfll=l, IIglI=l} = II Til· 

If T· E 8(H2' HI), then T" belongs to 8(HI' H2). Hence the restriction 
T of T" is also bounded. 

(c) By Theorem 4.13 (a) we have T C T". By part (a) we have p. E 
8(HI' H2)' As T is densely defined and continuous, the assertion 
follows from Theorem 4.5. 

EXAMPLE 1. Let MI and M2 be measurable subsets of IRm and IRn, respec
tively. Let K denote the Hilbert-Schmidt operator from L2(MI ) into L2(M2), 

induced by k E L2(M2 x M,). (cf. Section 4.1, Example 3): 

(Kf)(x) = f. k(x,y)f(y) dy for f E L2(M I ). 
M, 

For allf E L2(M,) and g E L2(M2) the function g(x)k(x, y)f(y) is integrable 
on M2 X MI' Therefore by Fubini's theorem we have 

(g, Kf) = f. g(X).{f. k(x,y)f(y) dY} dx 
M2 M, 

= f. f(Y){f. k(x,y)·g(x) dX}. dy = <Hg,f), 
M, M2 

where H is the Hilbert-Schmidt operator induced by the kernel hey, x) = 
k(x,y)·. If we define the atijoint kernel k· of the kernel k by 

k·(y, x) = k(x,y)·, 

then K· is the operator induced by k·. 

EXAMPLE 2. Let T be a continuous linear functional on a Hilbert space H, 
i.e., a continuous operator from H into II{, We want to compute T·. There 
exists a uniquely determined g E H such that 

Tf = (g,f) for all f E H. 

Hence for all z ElK and all f E H we have 

z·Tf = (zg,J) , 

i.e., T· z = zg for all z E II{, 

EXAMPLE 3. This example shows that D(T·) = {O} may be true. To prove 
this, for every kEN let the sequence (nk,')'EN of positive integers be 
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chosen in a way that 

{nk,/: I EI\J} n {nj,/: I EI\J} = 0 for j:/= k, 

U / : I } = 
kEN 

leave the construction of such sequences to the reader). With these 
sequences us define the operator T 12 by 

O(T) = /20 

Tf = fll •. ,) = ( fill,,' .. , 
1=1 kEN I-I 

Let us observe that here all the sums occurring are finite. Moreover, we 
Tf E Therefore the operator well-defined. 

We show that g D(T*) implies g = Let g = (gn) E O( and (h,,) 
= T*g. Then for all f E OCT) = 12,0 we have 

L 
k I 

Tf) T*g, = L 
n 

= L II~ ,Ink I 
k 1 . . 

(here one should notice that all sums are finite). If we choosefequal to the 
vector (thus = 1 fn = 0 n :/=n", then follows 

hll." = gk for all / E I\J, k E I\J. 

is only possible = 0 .. From this follows that g = 

Let T be an operator from HI into H2. The graph of T is the subset 

T) {(f, Tf)' E O( 

of HI X H2, where HI X H2 can be considered as a Hilbert space in the 
sense of Section 3.1: HI X H2 = HI EEl H2• 

Tbeorem A subset G of X H2 tile graph of an operator HI 

into H2 if and only if G is a subspace possessing the following property: 
(0, EGg = O. Each subspace of a graph is a graph. 

If is an operator HI H2, G( T) a 
subspace, as for (1;, gi) E G(T), a j E II< (i = I, 2) we have 

al(f!. + g2) al(fl' a2(f2' 

= (adl + a2f2' T(adl + ad2» E G(T). 

If (0, G( T), then it follows that = TO = O. 
Let now a of X H2 having the above mentioned 

property. We construct an operator T for which G = G(T) holds. For this, 
let 

T) E HI' there exists g E such that g) E 
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For every f E D(T) there exists exactly one g E Hz such that (1, g) E G, as 
(1, g,) E G and (1, gz) E G imply (0, g, - gz) E G (by G being a subspace), 
consequently, g, - gz = O. Therefore we can define a mapping T from D(T) 
into Hz by 

Tf = g for (f, g) E G. 

T is linear: If fl.!2 E D(T) and ai' az ElK, then we have (./;, T./;) E G for 
i = I, 2. Hence (as G is a subspace) (adl + a2f2, a l Tf, + a2Tf2) E G. By the 
definition of T we have 

T(ad, + adz) = at Tf, + a2 Tf2' 

By construction, we also have G = G(T). The last assertion can be ob
tained from this immediately. 0 

In the sequel we shall use the mappings 

U: HI x Hz ~H2 X HI> U(f'.!2) = (f2' - j,) 

V : H, X H2 ~H2 X HI, V(f" f2) = (fz, j,). 

U and V are obviously isomorphisms of HI Ee Hz onto H2 Ef) HI' The inverse 
operators U -, and V - I are given by 

U -) : H2 x H, ~HI X Hz. U -1(f2.!1) = ( - fl.!2) , 

V-I: H2 X H, ~H, X Hz, V-'(jz.!,) = (j"fz)' 

Theorem 4.16. Let T be a densely defined operator from HI into Hz. Then we 
have 

G(T*) = U(G(T)i) = (UG(T»i 

(here the symbol ..1 has to be understood in the sense oj HI Ef) H2> respectively 
HzEf) HI)' 

PROOF. By the definition of T* we have 

G(T*) = {(g,h)EH1XHI : (g, Tf)2 = (h.!), forall fED(T)} 

= reg, h) EHz X HI : «g, h), (Tj, - j» =0 for all (j, Tj) E G(T)} 

= (UG( T»i = U( G( T)i). 

The last equality follows simply from the definition of U (cf. Exercise 
4.14). 0 

Theorem 4.17. Let T be a densely dejined i,yective operator jrom HI into H2• 

(a) We have G(T- I)= VG(T). 
(b) Ij R(T) is dense, then T* is also i,yective, and we have T*-I = T- 1*. 

PROOF. Part (a) is obvious. 
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(b) By Theorem 4.13(b) we have N( T"') = R( T)~ = {O}, i.e., T'" is injective. 
As G(T- I)= VG(T), it follows (cf. Exercise 4.14) that 

G(T- I",) = U-I(G(T-I)~) = U-IV(G(T)~) 

= V-IU(G(T)~) = V-IG(T"') =G(p-I). 0 

An operator T on a Hilbert space H is said to be Hermitian, if it is a 
formal adjoint of itself, i.e., jf we have 

(Tf, g) = (f, Tg) for all f, g E D(T). 

An operator Ton H is symmetric (cf. Section 4.2) if it is Hermitian and 
densely defined. Since a densely defined operator T is Hermitian jf and 
only if it is a restriction of T*, we have: an operator T is symmetric if and 
only if T is densely defined and T c P. An operator T on H is said to be 
self-adjoint, if T is densely defined and T= T"'. 

REMARK. For operators from B(H) the notions of Hermitian, symmetric, 
and self-adjoint are equivalent. 

Theorem 4.18. An operator T on a complex Hilbert space H is Hermitian if 
and only if the quadratic form q(f) = (f, TJ> defined on D( T) is real. 

PROOF. By definition, T is Hermitian if and only if the sesquilinear form 
s(j, g) = (f, Tg) is Hermitian on D( T). The assertion follows from this by 
Theorem 1.3(a). 0 

A characterization of symmetric and self-adjoint operators may be 
obtained immediately from Theorem 4.16; where U is defined by U(f, g) 
=(g, - f) on HEB H. 

Proposition. Let T be a densely defined operator on the Hilbert space H. 
(a) T is symmetric if and only if 

G(T) C U(G(T)~) or UG(T) CG(T)l. 

(b) T is self-adjoint if and only if 

G(T) = U(G(T)~) or UG(T) =G(T)~, 
i.e., 

G(T) 1- UG(T) and G(T) EB UG(T) =HEBH. 

Proposition. If T and S are densely defined operators from HI into Hz· and 
T C S, then we have S'" C T"'. 

Theorem 4.19. Let TI and T2 be densely defined operators from HI into Hz 
and from H2 into H3, respectively. 
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(a) If T2T. is densely defined, then we have TTTi c(T2T,)*. 
(b) If T2 E B( H2, H3), then we have (T2 T.)* = TT Ti. 

PROOF. 
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(a) We have to show that the operators TTl1 and T2 T, are formal 
adjoints of each other. Let f E O(n Tn and g E O(T2 T.). Then f E 
O(T!), 11fEO(Tt), gEO(T.), and T1gEO(T2). Consequently, from 
the definition of the adjoint operator it follows that 

(TtTil, g) = (Til, T1g) = <1, T2T 1g)· 

(b) Because of part (a) we only have to prove that O«T2 T.)*) C O(TTTi). 
Letf E O«T2 T.)*). As Ti E 8(H3' H2), for all g E O(T2 T.) = O(T1), we 
have 

«T2 T I )*f, g) = (f, T2 T lg) = <Ti!, Tlg)· 

By the definition of the adjoint operator it follows from this that 
TilE O(Tn, i.e.,jE O(TTTt). 0 

Theorem 4.20. Let Sand T be operators from HI into H2• 

(a) If T is densely defined, then we have (aT)* = a* T* for all a E IK such 
that a '1=0. 

(b) If T+ S is densely defined, then (T+ S)*::J T* + S*. 
(c) If S E 8(HI> H2) and T is densely defined, then we have (T+ S)* = T* 

+S*. 

PROOF. 

(a) is evident (it follows from Theorem 4.19). 
(b) Letf E O(T* + S*) = O(T*) n O(S*). Then for all g E O(T+ S) = OCT) 

n O(S) we have by the definition of the adjoint operator that 

«T* + S*)f, g) = (T*f, g) + <S*f, g) = <f, Tg) + (f, Sg) 

= <1, (T+ S)g), 

i.e.,fE O«T+ S)*) and (T+ S)*f= T*f+ S*j. 
(c) Because of part (b) we only have to prove that O«T+ S)*) c O(T* + 

S*)= O(T*). Let fE O«T+ S)*). Then for all gE O(T+ S)= OCT) 
we have 

<[(T+ S)* - S*]f, g) = <1, (T+ S)g) - (f, Sg) = <f, Tg). 

From this it follows thatf E O(T*). o 
Theorem 4.21. Let T be self-adjoint and i,yective. Then T - I is self-adjoint, 
too. 

PROOF. R(T) is dense, since we have {O} = N(T) = N(T*) = R(T)J.. Thus 
the assertion follows from Theorem 4.17(b). 0 
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EXERCISES 

. 4.18. Let Sand T be densely defined operators from HI into H2• and from H2 into 
H3• respectively. Assume that TS is densely defined. S is injective and 
S -I E B(H2• HI)' Then we have (TS)* = S* T*. 
Hint: By Theorem 4.19(a) we only have to show that D«TS)*) c D(S*T*) 
holds; for all 1 E D« TS)*) and g E D(TS) = S -I D(T) we have <1, TSg) .,. 
«S -I)*(TS)*I. Sg). 

4.19. Let T E B(HI• H2). 

(a) We have T*T E B(H I ). TT* E B(H2) and IIT*TII = IITT*II = IITII2. 
(b) T*T and TT* are self-adjoint. 

4.5 The theorem of Banach-Steinhaus, 
strong and weak convergence 

We first prove the theorem of Banach-Steinhaus. which is also known as 
the uniform boundedness principle. 

Theorem 4.22. Let HI and H2 be Banach spaces. and let M be a subset of 
B(H I • H2). If M is pointwise bounded (i.e., for each f E HI there exists a 
C(f) ~ 0 such that II Tfll ~ C(f) for all T EM), then M is bounded (i.e .• 
there exists a C ~ 0 such that II T II ~ C for all T EM). 

PROOF. 1. step. It is enough to show that there exist anfo E HI' a p > 0, and 
a C' ;> 0 such that II Tfll ~ C' for all f E K(fo. p) and for all T E M. Indeed, 
if fo. p, C' have these properties, then for all g E K(O, p) and for all T EM 
we have 

II Tgil = II T(fo+ g -fo)11 ~ II T(fo+ g)11 + II Tfoll ~ c' + C(fo) = C", 

sincefo + g E K(fo, p). Consequently, for all g E K(O, 1) and T E M we have 

II Tgil ~ p-IC" = C, 

i.e .• II Til "C for all T E M. 
2. step. What. remains is to prove the existence of fo' p, and C' with the 
above properties. We assume that no such elements exist, i.e., for each 
foE HI and for each p>O the set {IITfll: TEM, fEK(fo'p)} is un
bounded. In particular, the set {II TfI1 : T E M. f E K(O, I)} is unbounded. 
Therefore there exist an fl E K(O, 1) and a TI E M such that II Tdlll > 1. 
Since TI is continuous, there exists a PI' 0 < PI < 2 -I such that 

R(fl' PI) C K(O, 1) and II Tdll > 1 for all f E R(fl' PI)' 

Since {I\ Tfll : T E M, f E K(fl' PI)} is unbounded, there exist an f2 E 
K(fl' PI) and a T2 EM such that II Tzf211 > 2. As T2 is continuous, there 
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exists a P2' 0 < P2 < 2 -2 such that 

K(j2' P2) C K(jl' PI) and II T2fll > 2 for all f E K(j2' P2)' 

In this way, by induction we obtain a sequence Un) from HI, (Tn) 
from M, and (Pn) from (0, I) such thatK(fn+\l Pn+l)cKUn' Pn)' Pn<2- n, 
and II Tnill > n for all f E KUn' Pn)' In particular, we have 

IIfn - fmll < Pno for n, m > no· 

Since Pn < 2- n, it follows from this that (fn) is a Cauchy sequence. Thus 
there exists an f E HI such that fn -f. Since for n > m we have fn E 
KUm, Pm)' it follows that f E RUm' Pm) for all mEN. Consequently II Tmfll 
> m is true for mEN, which contradicts II Tmfll ...: CU)· 0 

Let HI and H2 be normed spaces. A sequence (Tn) from B( HI> H2) is said 
to be strongly convergent to T E B(H\> H2), if for all f E HI we have 
Tf= lim Tnf. For this we shall write T= s -lim Tn or Tn ~ T. The operator 
T is called the strong limit of the sequence (Tn)' It is obvious that every 
sequence (Til) in B(Hh Hz) has at most one strong limit. A sequence (Tn) 
from B(Hh H2) is said to be a strong Cauchy sequence, if for every f E HI 
the sequence (T,j) is a Cauchy sequence in H2.Every strongly 
convergent sequence is a strong Cauchy sequence. 

Theorem 4.23. Let HI and H2 be normed spaces. 
(a) If (Tn) is a strongly convergent sequence in B(HI> H2) and T= s

lim Til' then II Til ...: lim inf II Til II· 
(b) If the sequence (Tn) from 8(HI' H2) is bounded and (Tng) is a Cauchy 

sequence for every g in a dense subset M of HI> then (Tn) is a strong 
Cauchy sequence. 

(c) If HI is a Banach space, then every strong Cauchy sequence in 8(HI' H2) 
is bounded. 

(d) If HI and H2 are Banach spaces and (Tn) is a strong Cauchy sequence in 
s 

B(Hh H2), then there exists aTE 8(H\I H2) such that Tn _ T. 

PROOF. 

(a) Let C=lim inf II Tn II· Then there exists a subsequence (Tn) of (Tn) 
such that II Tn.II-C as k-HX). Hence for aUfE HI we have 

II Tfll = lim II TnJIl ...: lim II Tn.lll1fll = Cllfll, 

i.e., II Til ...: C. 
(b) Letf E HI> E > O. We have to show that there exists an no E N such that 

II T,,j - Tmfll ...: E for all m, n > no' As M is dense, there exists agE M 
such that IIf-gll"':E/3C (with C=suP{IITnll :nEN». If we now 
choose no in such a way that II Tng - Tmgll ...: E/3 for aU n, m > no, then 
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we have 

/IT,J- T"JII..; II TnU-g)11 + IITng- Tmgll + II Tm(g-j)1I 

..; f for n, m > no' 

(c) For every fE HI the sequence (Tn!) is a Cauchy sequence and thus it 
is bounded. Consequently, by Theorem 4.22 there exists a C such that 
IITnll";C for all nEN. 

(d) For every f E HI the sequence (Tn!) is a Cauchy sequence, so it is 
convergent in H2. Let us define T by Tf= lim Tnf. Then O(T)= HI' 
The operator T is linear, since for all f, g E HI and a, bEll( we have 

T(af+bg) = lim TAaf+bg) = Iim(aT,J+bTng) = aTf+ bTg. 

By part (c) there exists a C > 0 such that II Tn II ..; C for all n E N. 
Consequently, we have 

IITfll = lim IIT,JII ..; Cllfll· 

i.e., T E 8(HI' H2)' By construction, we obviously have Tn ~ T. 0 

EXAMPLE 1. Let the operators Tn E 8(12) be defined by 

TnUI,f2,j3' ... ) = Un+I,J,,+2' ... ). 

Then for all f E 12 we obviously have Tnf~O, i.e., Tn ~ O. For all f E 12 we 
have /I Tnfll ..; IIfll, consequently II Tnll ..; 1. Moreover, for ej = (6j , n) we have 
1jej + 1= e l • Therefore II Tn II = 1. From this it follows that strong conver
gence does not in general imply convergence in the norm of 8(HI> H2)' 

Let H be a pre-Hilbert space. A sequence (fn) from H is said to converge 
weakly to f E H if for all g E H we have <In' g)~<f, g). For this we write 

w 
f = w - lim J" or fn ~ f. The element f is called the weak limit of the 
sequence (fn)' Every sequence has at most one weak limit. A sequence (fn) 
from H is called a weak Cauchy sequence, if for every g E H the sequence 
«f", g) ) is a Cauchy sequence in K Every weakly convergent sequence is 
a w;;ak Cauchy sequence. 

Theorem 4.24. Let H be a pre-Hilbert space. 
(a) If (f,,) is a weakly convergent sequence in H, and f = w -limfn, then we 

have Hfll..; lim inf IIfnll. 
(b) If the sequence (J,,) is bounded in Hand (<I", g» is a Cauchy sequence 

for all g from a dense subset M of H, then (f,,) is a weak Cauchy 
sequence. 

(c) If H is a Hilbert space, then every weak Cauchy sequence is bounded in 
H. 

(d) If H is a Hilbert space and (fn) is a weak Cauchy sequence in H, then 
w 

there exists an f E H such that fn ~ J. 
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The proof immediately follows from Theorem 4.23, if we notice that the 
weak convergence of (fn) is equivalent to the strong convergence of the 
sequence (1j,) of the linear functionals induced by fn' In part (d) we have 
to use Riesz' theorem (Theorem 4.8). The details are left to the reader. 

Theorem 4.25. Let H be a Hilbert space. Every bounded sequence (J,,) in H 
contains a weakly convergent subsequence (J" ). 

. k 

PROOF. Let M= L{fn : n EN}. Then MfB M1. is dense in H. For every 
kEN the sequence «J", fk) )nEN is bounded. Consequently, by induction 
we can find, for all j E N, a subsequence (J" )/EN of (J,,) such that 

~., 

(f~+.)/EN is a subsequence of (fnj)/EN and «f~."h»)/EN is convergent. 
With the diagonal sequence (fn)=(fn,) the sequence (<In,,h))IEN is then 
convergent for all j E N. Since for all f E M 1. we have <fn" f) = 0 for all 
1 E N, the sequence «fn" f») is convergent for all f from the dense 
subspace M fB M 1.. Therefore by Theorem 4.24(b) and (d) (fn) is weakly , 
convergent. 0 

EXAMPLE 2. Every orthonormal sequence (J,,) weakly converges to zero. 
This follows from the Bessel inequality IIf1l2:> ~I<fn' f)12. In particular, 
the sequence of unit vectors (e; = (Sjn» in 12 tends to zero weakly. This 
example also shows that weak convergence does not imply strong conver
gence in general. 

EXAMPLE 3. For every f = ~ j.. I he; E 12 let the sequence (f(n» be defined by 
j<n) = ~j.1 ht.i+n' Then (f(n» converges weakly to zero, since for all g = 
~ gjej E 12 we have 

1 
00 12 00 

1<ln), g) IZ = j~l.t;gj+" < IIfll Z j=~+ II ~l ~ 0 

as n~oo. 

EXAMPLE 4. In the pre-Hilbert space Iz,o the sequence (kek) (with ek = (Snk» 
weakly converges to O. However, it is unbounded. 

Let HI and Hz be pre-Hilbert spaces. A sequence (Tn) from B(H1, H2) is 
said to converge to T E B(HI' Hz) weakly, if for all f E HI the sequence 
(Tn!) in Hz weakly converges to Tf, i.e., < Tnf, g) ~< Tf, g) for all f E HI 
and g E Hz. In this case we shall write T= w -lim Tn or Tn ~ T, and call T 
the weak limit of the sequence (Tn)' A sequence (Tn) from B(HJ> H2) is said 
to be a weak Cauchy sequence if (Tn!) is a weak Cauchy sequence in H2 for 
eachfE HI' 

Theorem 4.26. Let HI and H2 be pre-Hilbert spaces. 
(a) If (Tn) is a weakly convergent sequence in B(H .. H2) and 

T= w -lim Tn' then we have II Til < lim inf 1/ Tnl/· 
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(b) If the sequence (Tn) from B( HI> H2) is bounded and ( T,J, g» is a 
Cauchy sequence for every f E MI and every g E M2, where MI and M2 
are dense subsets of HI and H2, respectively, then (T,,) is a weak Cauchy 
sequence. 

(c) If HI and H2 are Hilbert spaces, then every weak Cauchy sequence (T,,) 
from B(HI' H2) is bounded. 

(d) If HI and H2 are Hi/bert spaces, and (Tn) is a weak Cauchy sequence in 
• w 

B(H" H2), then there eXIsts aTE B(HI' H2) such that Tn ~ T. 

PROOF. 

(a) Let C = lim inf II T"II and let (T,,) be a subsequence such that II T".II~ 
C. Then for all f E HI and g E H2 we have 

I(Tf, g)1 = lim I(T".1, g)1 " lim II T".11l1fllll gil = Cllflill gil· 

The assertion follows from this by Theorem 4.3. 
(b) We have to prove that for arbitrary f E HI, g E H2, and € > 0 there 

exists an no such that 

I«T" - T,.,)f, g)1 ,,€ for n, m > no' 

Let C = I + (I + 11111 + II gil) sup {II T"II : n E I\I}. Since the sets ~ are 
dense in H; (j = I, 2), there exist fo E MI and go E M2 such that 

€ € 

Ilf - foil " 5C' II g - goll " 5C' IIfoll " IIfll + 1. 

If we choose no E 1\1 in such a way that for n, m > no we have I«T,,
Tm)Jo, go)1 "€/5, then for n, m >no it follows that 

1«(Tn - Tm)f, g)1 " I(T"U - fo), g)1 

+ I(T ,Jo, g - go)1 + 1«(Tn - Tm)fo, go)1 

+ I(T"Jo' go- g)1 + I(TmUO- f), g)1 

" €. 

(c) For every f E HI the sequence (T,,!) is a weak Cauchy sequence in H2• 

Since H2 is a Hilbert space, the sequence (T,.1) is bounded by Theorem 
4.24(c). The boundedness of the sequence (II T"ID follows from this via 
Theorem 4.22, as HI is also a Hilbert space. 

(d) For every fE HI the sequence (Tn!) is a weak Cauchy sequence, 
therefore by Theorem 4.24(d) it is weakly convergent in H2• We define 
T by Tf= w -lim T"f for allf E HI' We can prove the linearity of T, as 
in the proof of Theorem 4.23(d). By part (c) there exists a C > 0 such 
that 1\ T"II "C for all n E 1\1. It follows that 

I(Tf, g)1 = lim I(T,J, g)1 " Cllflill gil for all f E H" g E H2• 

Consequently T is bounded. By construction, we obviously have 
w 

~~~ 0 
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Proposition. 
ssw 

(a) T" -+ T implies T" -+ T; T" --+ T implies T" -+ T. 
w W 

(b) If HI and H2 are Hilbert spaces, then T" -+ T is equivalent to T: -+ T*. 

EXAMPLE 5. Let us consider the operators Tn from Example I. The adjoint 
operators T: are obviously defined by 

T:( i: j;ej ) = ~ j;e"+j for all ~ j;ej E '2' 
j-I j= I j-I 

W s 
By Example 3 we have T: --+ O. However, we do not have T: -+ O. 

Therefore, strong convergence does not imply the strong convergence of 
the adjoint operators. 

Theorem 4.27. Let HI' H2 be Hilbert spaces, and let T be an operator from 
HI into H2 such that D( T) = HI' Then the following assertions are equivalent: 
(i) T ~ bounded (i.e., /j.-+f implies Tf,,-+ Tj), 

(ii) f" -+ f implies Tf" -+ Tf, 
(iii) f" -+ f implies Tf" ~ Tj. 

w 
PROOF. (i) implies (ii): If f" -+ f, then for every g E H2 (notice that T* exists 
and T* E B(H2' HI» we have 

<g, TJ,,) = <T*g,fn) --+ <T*g,f) = <g, Tf), 

Le., T1" ~ Tf· 
w 

(ii) implies (iii): This is obvious, as fn -+ f implies fn -+ f. 
(iii) implies (i): Let us assume that T is not bounded, i.e. there exists a 

sequence (1,,) from HI such that IIf,,1I < I and II T1"II "> n2• Then we have 
(l/n)J,,-+O. Therefore from (iii) it follows that (I/n)Tfn~O. By Theorem 
4.24(c) the sequence «I/n}Tf,,) is thus bounded. This contradicts the fact 
that 

I I 
II-Tfnll = -II Tf,,11 "> n. 

n n o 

Theorem 4.28. Let H be a Hilbert space and let (T,,) be a bounded sequence 
of symmetric operators from B( H). 

W 

(a) If Tn -+ T for some T E B(H), then T is also symmetric. 
(b) If the sequence «f, T.J)} is non-decreasing for every f E H, then there 

exists aTE B( H) such that Tn ~ T. The same holds true if the sequence 
(<1, T.J)} is non-increasing for every f E H. 

PROOF. 

(a) For all f, g E H we have 

<1, Tg) = lim <f, T"g) = lim <T.J, g) = <Tf, g). 

Therefore, T is symmetric. 
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(b) The sequence «I, T,J» is non-decreasing and bounded for every 
1 E H, consequently it is convergent. If C= 2 sup {II T"II : n EN}, then 
II T" - Tmll <; C for all n, mEN. The Schwarz inequality applied to the 
non-negative sesquilinear form s(g,!)=<g,(T,,-Tm)f) shows that 
for all f E H we have 

II(T,,- Tm)jll = «T,,- Tm)f, (T,,- Tm)I)'/2 = {s«T,,- Tm)f,J)} 1/2 

<; {s« Tn - Tm)l, (Tn - Tm)j)s(f,J)} 1/4 

{ . 2 . } 1/4 
= «Tn - Tm)f, (Tn - Tm) f)<J, (Tn - Tm)f) 

<; II(Tn - Tm)III'/411(Tn - Tm)2flll/4<J, (T" - Tm)f)I/4 

<; C 3/411 111'/2<1, (Tn - Tm)j)'/4 ---+ 0 as n, m ---+ 00. 

So (Tn!) is a Cauchy sequence for every 1 E H, consequently (Tn) is 
strongly convergent. 0 

EXERCISES 

4.20. Let HI' H2 and H3 be normed spaces, and let S", S E B(H2, H3), Tn> T E 
s s 

B(H .. H2). Sn -'> S, Tn -'> T. 
(a) If the sequence (Sn) is bounded, then SIt Tn ~ ST. 
(b) If Hz is a Banach space, then Sn Tn ~ ST. 

w 
4.21. (a) Let H be a Hilbert space. If 1,,-'>1 in Hand 11111 ;;0 lim sup 111,,11, then 

1,,-'>/· 
Hint: Treat III" - 1112. 

(b) Let HI and H2 be Hilbert spaces, and let Tn and T be isometries from HI 
. w s 
mto H2 such that Tn -'> T. Then we have Tn -'> T. 

4.22. Let HI. Hz and H3 be Hilbert spaces, and assume Sm S E B(Hz• H3). Tn' T E 
B(HIo Hz). 
wsw 

(a) Sn -'> S, Tn -'> T imply SIt T" -'> ST. 
s w . w 

(b) SIt -'> S, Tn -'> T do not Imply Sn Tn -'> ST. 
Hint: Let HI = Hz = H3 = Iz, Tn("i:.hej) = "i:.hej+n. Sn = T:. Then we have 

s w 
. Sn-'>O, Tn-,>O, SnTn-,>I. 

w w 
(c) Sn -'> S, Tn -+ T imply Sn T" -+ ST. 

4.23. Let HI and H2 be Hilbert spaces. and take An' A, from B(HI' Hz} and B 
w s • 

from B( H2, HI)' Then An -+ A, A: -+ B imply B ... A ... , therefore that A: -'> A"'. 
w 

4.24. (a) If H is a finite dimensional Hilbert space, then In -'>1 is equivalent to 
1,,-'>1. 

(b) If HI and Hz are Hilbert spaces, and Ha. is finite dimensional, then for 
Tn' T from B(HI' H2) the statements Tn -'> T and T" ~ T are equivalent; 
this holds true in particular for linear functionals on a Hilbert space. 

(c) If HI and H2 are finite dimensional, then for Tn> T from B(HI • H2) the 
w S • I statements T" -'> T, T" -'> T, T,,-'> Tare eqUiva ent. 
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4.25. Let H be a Hilbert space. 
(a) If M is a closed subspace of H and (in) is a sequence in M such that 

in ~ i, then we have i E M (we say that M is weakly closed). 

(b) If (I.) is a sequence in H such that in ~ i, then there exists a subsequence 
Un.) of (j,,) such that (I / m)~'J:_ Jink --'>i as m--'>oo. . 
Hint: Treat the case in ~ 0 first and choose the subsequence (in) such 
that for k <j we have l<fn • .!,,)1 <F). 

(c) A convex subset M of H is cl~sed if and only if it is weakly closed. 

4.26. Let H), Hz be Hilbert spaces and let H) be separable. If (Tn) is a bounded 
sequence from S(H), Hz), then there exists a weakly convergent subsequence 
(Tn)· 

4.27. Let H be a complex Hilbert space and assume that (Tn) is a sequence in 8(H) 
such that «i, T,,1» is bounded for every i E H. Then the sequence (Tn) is 
bounded in 8(H). (For symmetric operators Tn this holds also in real Hilbert 
spaces.) 

4.28. Let H) and Hz be Hilbert spaces. Assume that (Tn) is a bounded sequence 
from S(H), Hz), T E 8(H), Hz), and M) and Mz are dense subsets of HI and 
Hz, respectively. [f T"i--,>Tifor aJIiEM) (respectively, <g, Tni)--'><g, TJ> 
for all i EM) and g E M2), then it follows that Tn':" T (respectively Tn ~ T). 

4.6 Orthogonal projections, isometric and unitary 
operators 

Let H be a Hilbert space and let M be a closed subspace of H. By Theorem 
3.2 every f E H can be uniquely represented in the form f = g + h with 
gEM and hEM J.; g is called the orthogonal projection of f onto M. If we 
define the mapping PM by D(P M) = Hand P,.J = g, then PM is a linear 
operator on H such that D( PM) = H, since for fl = g I + hI and f2 = g2 + h2 
with lJ.; E M and hj E M J. we have af) + bf2 = (agl + bg2) + (ahl + bh2) with 
ag l + bg2 E M, ah) + bhz E MJ., therefore PM(afl + bf2) = ag l + bg2 = aP,.J) 
+ bP ,.J2' The operator PM is called the orthogonal projection onto M. 

Because IIfll2 = II gll2 + IIh1l2, we have IIP,.JII = II gil' IIfll for all f E H, 
i.e., we have lIP Mil ,1. If M = {O}, then it is obvious that PM = O. If 
M* {O}, andf EM, f*O, then P,.J= f, hence IIPMII = 1. As P,.J= f for all 
f E M, it follows that P~ = P MP M = PM' i.e., PM is idempotent. We have 
P,.J EM for all f E Hand P,.J= f for all f EM, therefore R(P M) = M. As 
P,..,J = 0 if and only if f E M J., we see that N( PM) = M.L. An operator P on 
H is called an orthogonal projection if there exists a closed subspace M such 
that P= PM' 

Theorem 4.29. For an operator P E 8(H) the following statements are 
equivalent: 

0) P is an orthogonal projection, 
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(ii) 1- P is an orthogonal projection, 
(iii) P is idempotent and R(P) = N(P) 1.. , 

(iv) P is idempotent and self-adjoint. 

4 Linear operators and their ad joints 

We have R(P) .. N(I - P) and N(P) = R(I - P). 

PROOF. (i) and (ii) are equivalent: From the definition of orthogonal 
projections it follows immediately that P is the orthogonal projection onto 
M if and only if 1- P is the orthogonal projection onto M 1... From this it 
also follows that R(P) - M == M 1.. 1.. ... N(I - P), N(P) ... M 1.. = R(I - P). 

(i) and (iii) are equivalent: Using the above reasoning we only have to 
show that (iii) implies (i). As R(P) = N(P) 1.. , the range R(P) is a closed 
subspace. For all g E R(P) we have Pg = g, as P is idempotent. If we write 
f E H in the form f= g + h, where g E R(P) and hE R(P) 1.. = N(P), then 
we have Pf= Pg + Ph == g, Le., P is the orthogonal projection onto R(P). 

(iv) follows from (i): P is idempotent, as (iii) follows from (i). For all 
fl == gl + hi' f2 = 82 + h2 with gj E R(P), hj E R(P)1.. we have . 

<Pfl.J2) = < gl' g2 + h2) = < gl' g2) ... < gl + hI' g2) 

= <fl' Pf2)' 

i.e., P is self-adjoint. 
(iii) follows from (iv): We only have to prove that R(P) = N(P) 1.. • If 

f E R(P), f== Pg, then (I - P)f= 0, consequently f E N(I - P). Iff E N(I
P), thenf- Pf=O, consequently fE R(P). Therefore we have R(P) ... N(I 
- P) and thus R(P) is closed. From this it follows that R(P) = R(P) 1.. .L 

== N(P*)1.. == N(P).L. 0 

Theorem 4.30. Let M and N be closed subs paces of a Hilbert space H, and let 
PM and P N be the orthogonal projections onto M and N, respectively. 
(a) p ... P MP N is an orthogonal projection if and only if P MP N = P NP M holds; 

then we have P=PMnN. We have M.lN if and only if PMPN=O (or 
PNPM=O). 

(b) Q = PM + P N is an orthogonal projection if and only if M.l N, then we 
have Q .. PMtIlN . 

(c) R - PM - P N is an orthogonal projection if and only if N eM; we then 
have R .. PM9N. 

PROOF. 

(a) If P - P MP N is an orthogonal projection, then P is self-adjoint. Conse
quently, PMPN ... P = p* = (PMPN)*';" P~P~ = PNPM. Let PMPN = 
PNPM hold. Then it follows that p2=(PMPNi"'PMPNPMPN"'P~P~ 
= PMPN = P and P* ... (PMP N)* = (PNPM)* ... p~p~ ... PMPN .. P. 
Therefore P is an orthogonal projection by Theorem 4.29. Since 
P=PMPN=PNPM, we have R(P)cR(PM)nR(PN)-MnN. On the 
other hand, iffE M n N, then we have Pf- PMPJ- PMi- f, therefore 
M nNe R(P). Consequently, M n N= R(P). It is obvious that PMPN 
... 0 if and only if g E R(P M)1.. = M 1.. holds for all g E R(P N) = N, i.e., if 
N 1- M. The other assertion follows similarly. 
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(b) If Q = PM + P N is an orthogonal projection, then 11/112;> II Qfll2 = 
<Qj, I) = <P,.J, I) + <P,J, f) = IIP,.J1I2 + IIP,Jf For f= PMg it 
follows that IIPMgIl2 ;> IIPMgIl2 + IIPNPMgII1. Therefore PNPMg=O for 
all g E H, i.e., P NP M = O. It follows analogously that P MP N = O. Conse
quently, by part (a), M1.. N holds. We obviously have R(Q) C R(PM) + 
R(PN)=M$N. Conversely, if l=g+hEM$N with gEM, hEN, 
then Qj=Qg+Qh=PMg+PNh=g+h=l. Therefore R(Q)=M$N. 
If M 1.. N, then by part (a), we have P MP N'" P NP M = 0, consequently 
Q2=(PM+PN)2=p'it+P~=PM+PN"'Q. As the operators PM and 
P N are self-adjoint, Q is also self-adjoint, consequently it is an orthogo
nal projection. 

(c) If R ... PM - PN is the orthogonal projection onto the subspace L, then, 
because of the equality PM = P L + P N' by part (b) we have L 1.. Nand 
M = L $ N ~ N. Therefore L = MeN, i.e., R is the orthogonal projec
tion onto MeN. Conversely, if N C M and L = MeN, then by part (b) 
we have PM = P L + P N' hence R = PM - P N = P L is an orthogonal . 
projection. 0 

F or two symmefric operators A, B E B( H) we write A <: B (or B ;> A) if 
for all IE H we have <AI, I) 0;;; <BI, I) (by Theorem 4.18 <AI,/) and 
<B/, I) are real). A is said to be non-negative if A ;> O. 

Theorem 4.31. Let M and N be closed subs paces of the Hilbert space H, and 
let PM and P N be the orthogonal projections onto M and N, respectively. 
(a) We have 00;;; PM 0;;; f. 
(b) The lollowing statements are equivalent: 

(i) PM .... P N' (iii) P NP M = PM' 
(ii) MeN, (iv) P MP N = PM' 

PROOF. 

(a) For all IE H we have <01,/) = 00;;; IIPMI1I 2 = <P,.J, I) <: 11/112 = 
(II.!)· 

(b) (i) implies (ii): If PM <:PN' then IIP"J1I 1 "'<P"J,J)<:.<PJ,J)= 
II P N/lil for all IE H. Therefore N(P N) C N(P M) and thus M ... R(P M) 
... N(PM).L c N(PN).L ... R(PN) = N. 
(ii) implies (iii): By Theorem 4.20 (a) and (b), with L = N e M we have 
PNPM =(PM+ PL)P'it= PM= PM' 
(iii) implies (iv): As P NP M is an orthogonal projection (namely PM)' by 
Theorem 4.30 (a) we have P MP N = P NP M = PM' 
(iv) implies (i): Because of the equality P MP N = PM we have, for all 
IE H, that 

<P"J,J) = II P"J1I 2 = IIPMPJII 2 <: II PJII 2 = <PJ,j). 0 

A sequence (Tn) of symmetric operators Tn E 8(H) is said to be mono
tone (non-decreasing or non-increasing, respectively) if for every f E H the 
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sequence « Tnf. f» is monotone (non-decreasing or non-increasing. re
spectively). Theorem 4.28(b) says that any bounded non-decreasing 
sequence of symmetric operators is strongly convergent. For sequences of 
orthogonal projections we have 

Theorem 4.32. 
(a) If (Pn) is a monotone sequence of orthogonal projections acting on the 

Hilbert space H, then there exists an orthogonal projection P acting on H 
s 

such that Pn ~ P. 
(b) If (Pn) is non-decreasing (i.e., Pn < Pn+ I)' then P is the orthogonal 

projection onto U nENR{Pn). 
(c) If (Pn) is non-increasing (i.e., Pn ;;;' Pn+ I)' then P is the orthogonal 

projection onto nnENR(Pn). 

PROOF. 

(a) Because of Theorem 4.28(b) there exists a self-adjoint operator P E 

8(H) such that Pn ~ P. As <p 2f, g) = <Pf, Pg) = lim <Pnf, Png) = 
lim <Pnf. g) = <Pf. g) for all f, g E H, the operator P is idempotent 
and thus it is an orthogonal projection. 

(b) Iff..i UnENR(Pn). then Pnf=O for all n EN, consequently Pf= lim Pnf 
=0. If fE UnENR(Pn), thenfE R(PnJ for some noEN. Since R(PnJ 
C R(Pn} for all n ;;;. no, we have Pnf= PnJ for n;;;' no' Therefore Pf= f, 
i.e., UnENR(Pn)cR(P). As R(P) is closed, it follows that UnENR(Pn) 
= R(P). 

(c) The sequence (Qn) with Qn = 1- Pn is non-decreasing; Q = lim Qn is 
therefore the orthogonal projection onto U nENR( Qn)= U nENN(Pn). 
Then P = 1- Q is the orthogonal projection onto U nENN(Pn)l. = 
n nENN(Pn)l. = n nENR(Pn )· 0 

In the calculation of the norm of the difference of two orthogonal 
projections the following theorem is often useful. 

Theorem 4.33. Let PI and P2 be orthogonal projections acting on the Hilbert 
space H. Then we have 

where 

PROOF. 

(a) By the definition of the norm of an operator we have (notice that 
R(Pk)l. = N(Pk» 

IIPI - P2 11 = sup {II(PI - P2)fll :fEH, Ilfll< I} 
;;;. sup {II(PI - P2)fll : f E R(PI)l., Ilfll< I} 

= sup {IIP2fll :fER(PI).L, Ilfll< I} = P21' 
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The inequality IIPI - P2 11 ;> PI2 follows in a similar way. 

(b) We have PI - P2 = P,(J - P2) - (/ - P,)P2• As (J - P2)f E R(P2)J.. for 
all f E H it follows that 

IIP,(I - P2)fll < P 1211 (I - P2)fll· 

Moreover. since (J - P,)Pd E R(PI)J.. we have 

11(1 - P I)PdIl2 = <(I - P I)P2 f. (I - PI)Pd) = <Pi! - PI)Pd. Pd: 

< IIPiI - P I )P2 fll IIPdll < P2111(1 - P I)P2fIlIJPdll. 

consequently 

This implies for all f E H 

II(PI - P2 )f1l2 = IIP,(I - P2)f - (J - P ,)PdIl2 

therefore 

= IIP,(I - P2)f1l2 + 11(1 - P ,)PdIl2 

< pM(I - P2)f1l2 + p~tl1P2f112 
< max {pi2' p~,}(II(J- P2)fIl2+ II PdIl2) 

= max {P!2' P~I} IIf112. 

o 
Let HI and H2 be Hilbert spaces. An operator V from HI into H2 such 

that D( V) = HI is called an isometry if II Vfll = IIfll for all f E HI' If V is an 
isometry and R( V) = H2• then V is an isomorphism of HI onto H2• In this 
case V is called a unitary operator. An operator V from HI into H2 such 
that D( V) = HI is called a partial isometry if there exists a closed subspace 
M of HI such that 

II Vfll = IIfll for f E M, Vf = 0 for f E MJ.. 

We have R( V) = VM; this shows immediately that R( V) is closed (if 
Vf .. -'; g E H2, then (P ~n) is a Cauchy sequence in M; therefore we have 
P r.d" -'; f E M, and thus V!,. -'; Vf = g E R( V». The closed subspaces M and 
R( V) are called the initial and final domains of V, respectively. 

Theorem 4.34. Let HI and H2 be Hilbert spaces and let V be an operator 
from HI into H2 such that D( V) = HI' 
(a) The following assertions are equivalent: 

(i) U is a partial isometry with initial domain M and final domain N, 
(ii) R(U)=N and <Vf, Ug)=<PMJ,g) Jorall f,gEHI, 
(iii) V" V = PM and VV" = P N' 

(iv) V" is a partial isometry with initial domain N and final domain M. 
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(b) The following assertions are equivalent: 
(i) U is unitary, 

(ii) R( U) = H2 and < Uf, Ug) = <f, g) for all f, g E HI> 
(iii) U·U=IH and UU·=IH , i.e., U·= U-I, 

I 2 

(iv) U· is unitary. 

PROOF. 

(a) The equivalence of (i) and (ii) follows by (1.8) in the real case and by 
(1.4) in the complex case: 
(i) implies (iv): We have N( U·) = R( U)1. = N 1. and (because (i) implies 
(ii» II U· Ufll = II P Mfll = II Ufll for all f E HI> therefore II U· hll = II h II for 
all h E R( U) = N. Hence the operator U· is a partial isometry with 
initial domain N. If we interchange the roles of U and U· in this 
reasoning, then it follows that the final domain of U· is equal to the 
initial domain of U·· = U, and, consequently, it is equal to M. 
(iv) implies (i) for the same reason. 
(i) implies (iii): As (i) implies (ii), it follows that U· U = PM. As (i) 
implies (iv), it follows similarly that UU· = P N. 

(iii) implies (ii): We have R( U):J R( UU·) = R(P N) = N. Since II U·f11 2 

= <UU·f, f) = IIPNfIl 2, we have N(U·) = N1. and thus R(U) 
c N( U·) 1. = N .. Summing up, it follows that R( U) = N. Moreover, we 
have <Uf, Ug) = <U· Uf, g) = <PMf, g) for allf, gE H. 

(b) This is a special case of part (a). D 

Theorem 4.35. If P and Q are orthogonal projections on the Hilbert space H 
such that IIP- QII < 1, then we have 
(a) dim R(P)=dim R(Q), dim R(l-P)=dim R(/-Q), 
(b) P and Q are unitarily equivalent, i.e., there exists a unitary operator U in 

H such that Q= UPU- I and P= U-1QU. 

PROOF. 

(a) We have R(P) n R(Q)1. = {O}, because for f E R(P) n R(Q)1.,f=l= 0 we 
would have II(P - Q)fll = IIPfll = IIfll, consequently liP - QII :.> 1 
would hold. By Theorem 3.11 it follows from this that dim R(P)";; 
dim R(Q). The opposite inequality follows by symmetry. Hence 
dim R(P) = dim R(Q). Replacing P and Q by 1- P and [- Q, respec
tively, we obtain that dim R(l- P) = dim R(l- Q). 

(b) By part (a) of Theorem 4.10 there exist unitary operators V and W 
from R(P) onto R(Q) and from R(l- P) onto R(/ - Q), respectively. 
Then the operator U = VP + W(l- P) is a unitary operator on H such 
that U- I = V-1Q + W-I(l- Q). We have 

UPU- I = (VP+ W(I - P»p(V-1Q+ W-I(I - Q») 

= VPV-1Q = Q, 

since for gER(Q) we have VPV-1g=g. From this P= U-1QU 
follows immediately. 0 
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EXERCISES 

4.29. (a) Let HI and H2 be Hilbert spaces. If there exists a surjective mapping 
T E 8(HI' H2), then dim H2 .;; dim HI. 
Hint: See Exercise 3.7. 

(b) Give another proof for Theorem 4.35(a). 
Hint: From IIP-QII<1 it follows that R(PQ)=R(P) and R(QP) 
= R(Q). 

4.30. (a) If (Um) is a sequence of isometric operators and Um ~ U, then U is 
isometric. 

(b) The strong limit of a sequence of unitary operators is not necessarily 
unitary. 
Hint: Consider the unitary operators Um on 12 defined by 

Um(fn)nEN == (fm,fl,12,fJ, ... ,fm-l,fm+l,fm+2,···) for (fn)nEN E 12• 

s 
We have Um _ U, where 

U(J,.)nEN = (0, fl,f2, 12, ... ) for (J,.)nEN E 12• 

4.31. Let M and N be closed subspaces of the Hilbert space H such that dim M < 
dim N. Then we have MJ.. n N~ {O}. 
Hint: If PN denotes the orthogonal projection onto N, then we have MJ.. n N 
=N9PN M. 

4.32. Let H be a Hilbert space. 
(a) If M and N are closed subspaces of H, then M+ N is not necessarily 

closed. 
(b) If M is a closed subspace and P is an orthogonal projection, then PM is 

not necessarily closed. 
Hint: Choose, for example, H= 12, for M the subspace of the elements 
(XI' XI' X2, 2X2' X3. 3X3' ••. ), for N the subspace of the elements (0, Yl' 0, 
Y2' 0, Y3, ... ), and for P the projection onto N J... 



5 Closed linear operators 

5.1 Closed and closable operators, 
the closed graph theorem 

In what follows H, HI and Hz will always be Hilbert spaces. As long as no 
adjoint operators (in particular no symmetric or self-adjoint operators) are 
treated, we could also consider Banach spaces; the proofs may be some
what harder, in this case. An operator T from HI into Hz is said to be 
closed if its graph G(T) (cf. Section 4.4) in HI X Hz is closed. An operator 
T is said to be closable if G( T) is a graph. From the proof of Theorem 4.15 
we know that there exists then a uniquely determined operator T such that 
G(T) = G(T); T is closed and is called the closure of T. 

Let T be a closed operator. A subspace D of D(T) is called a core of T 
provided that for S = TID we have T= S. One should notice that by 
Theorem 4.15 the operator S is surely closable, since we have G(S)c G(T). 
If T is a closable operator, then D(T) is obviously a core of f. 

Proposition. 
(a) T is closed if and only if the following holds: If Un) is a sequence in D(T) 

that is convergent in HI and the sequence (Tf,.) is convergent in Hz, then 
we have lim fn E D(T) and T(lim fn) = lim Tfn' 

(b) T is closable if and only if the following holds: If Un) is a sequence in 
D(T) such that fn-+O, and the sequence (Tf,.) in Hz is convergent, then we 
have lim Tfn = O. 
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(c) If T is closable, then 

D( T) = {f E HI: there exists a sequence (fn) from O( T) such that 

fn ~ f and for which (Tfn) is also convergent}, 

Tf = lim Tfn for f E O(T). 

(d) If T is closed, then N(T) is closed. 

(e) If T is injective, then T is closed if and only if T -I is closed. 

89 

Parts (a), (b) and (c) are reformulations of the definitions. Part (d) follows 
immediately from Part (a). Part (e) follows from the equality G(T- I )= 
VG(T). 

Theorem 5.1. Let T be an operator from HI into H2. On OCT) by 

a scalar product and the corresponding norm (T-norm or graph norm) are 
defined. T is closed if and only if (O(T), <. , ')T) is a Hilbert space. 

PROOF. The properties of a semi-scalar product are obviously satisfied. 
Because of the inequality <I,J)T). <I, f) the semi-scalar product <. , ')T 
is positive, thus it is a scalar product. 

If T is closed and (fn) is a T-Cauchy sequence in O( T) (i.e., a Cauchy 
sequence with respect to the T-norm), then (fn) and (Tfn) are Cauchy 
sequences in HI and H2, respectively; therefore there exist f E HI and 
g E H2 such that fn~f, Tfn~g. By part (a) of the above proposition we 
have f E OCT), Tf= g. We also have 

II!" - fll T = {Ilfn - fll2 + II Tf" - g1l2} 1/2 ~ 0 

as n~oo, i.e.,fn is convergent in (O(T), <., ')T)' 
Suppose now that (O(T), <. , ')T) is complete. If (fn) is a sequence in 

OCT) and !"~fE HI, Tfn~gE H2, then (fn) and (Tfn) are Cauchy 
sequences. Consequently, (!,,) is a T-Cauchy sequence, i.e., there exists an 
foED(T) such that IIf,,-foIlT~O. It follows from this that IIfn-foll~O, 
liT!" - Tfoll~O, thereforef=foE O(T) and Tf= Tfo=g· 0 

Theorem 5.2. Every bounded operator is closable. A bounded operator Tis 
closed if and only if O( T) is closed. If T is bounded, then we have 
O(T} = OCT); the closure f is the bounded extension of Tonto D(T), 
constructed in Theorem 4.5. 

PROOF. 
1. Let (fn) be a sequence in OCT) such that fn~O and Tfn~g. Then we 

have II T!"II " II Til IIfnll ~O. Therefore g = O. 
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2. For aUfE OCT) we have 

11111 <; IlfliT ..;; (1 + IITII2)1/2I1fll· 

Therefore (1n) is a Cauchy sequence (converging to f E D(T» if and 
only if (J,,) is a T-Cauchy sequence (T-converging to 1). Consequently, 
(D(T), II . II) is complete if and only if (D(T), II . liT) is complete. From 
this the assertion follows via Theorems 2.4 and 5.1. 

3. The equality O(f)=O(T) immediately follows from part (c) of the 
above proposition. Part (c) also says that f is the extension occurring in 
Theorem 4.5. 0 

Proposition. Let T be closable and injective. The operator T -I is closable if 
and only if f is injective. We then have T -1 ... f -I. If T - I is continuous, 
then we have R(f) = R(T). 

PROOF. If f.is injective, then f - I is a closed extension of T - I. If T - I is 
closable, then VG(f) = VG(T)= G(T -I) is a graph, i.e., T is injective, and 
we have f -I = T - I ~f - I is continuous, then by Theorem 5.2 we have 
R(f) = O(T-I) = O(T-I) == O(T- I)= R(T). 0 

Theorem 5.3. Let T be a densely defined operator from HI into H2• 

(a) T* is closed. -
(b) T is closable if and only if P is densely defined; we then have T= P*. 
(c) If T is closable, then (f)* = T*. 

PROOF. 

(a) By Theorem 4.16 we have G(T*)=(UG(T».L. Therefore G(T*) is 
closed. 

(b) Since 

G(T)=G(T).L.L = (U-IG(T*».L 

= {(J,g)EHI XH2 : <f, T*h)-<g,h)=O forall hED(T*)}, 

we have (0, g) E G(T) if and only if g E O(T*).L. Therefore 
(0, g) E G( T) implies g = 0 if and only if D( T*)= H2• Consequently, 
G( T) is a graph if and only if T* is densely defined. If 
O( T*) is dense, then we have G( T**) = U - I( G( T*).L) = 
U-IU(G(T).L.L)= G(T)= G(T). 

(c) If T is closable, then we have G(T*) = U(G(T).L) = U(G(T).L) = 
U( G( f».L = G« T)"'). Therefore T* = (f)*. 0 

EXAMPLE 1. The operator T from Section 4.4, Example 3 is not closable, as 
O(T*) = {OJ. 
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Theorem 5.4. 
(a) An operator T from HI into H2 is closable if and only if there exists a 

closed extension of T. 
(b) Every symmetric operator T on the Hilbert space H is closable; T is also 

symmetric. 

PROOF. 

(a) If T is closable, then we have T c T. Therefore T is a closed extension 
of T. If S is a closed extension of T, then we have G(T) c G(S) 
-G(S), hence G(T)cG(S), and thus G(T) is a graph (cf. Theorem 
4.15). 

(b) By part (a) the <?'perator T is closable, since T c T* and T* is closed. 
For all f, g E D( T) there exist sequences (J,,) and (g,,) from O( T) such 
thatf,,-f, g,,-g, Tf,,_Tf and Tg,,_Tg. As T is symmetric, we have 

(TI. g) = lim (TI". g,,) - lim (I", Tg,,) == (I, Tg). 

Since O( T) is dense, the operator T is symmetric. o 
EXAMPLE 2. Let us consider on L2(M) the maximal operator T of multi
plication by a measurable function t : M_C (cf. Section 4.1, Example 1). 
This is the operator defined by 

OCT) ... {J E L2(~) : if E LiM)} and Tf == if for f E OCT). 

(5.1) T* is the maximal multiplication operator induced by the function t* 
(where t*(x) = t(x)*), in particular, we have O(T*) == OCT). 

PROOF. It is obvious that D(T) is also the domain of the maximal 
multiplication operator induced by t*. Since for all f, g E O( T) we have 

<g, Tf) ... fMg(x)*t(X)f(x) dx == fM(t*(x)g(x»*/(x) dx .... <t*g,f), 

the maximal operators of multiplication by t and t* are formal ad joints of 
each other. What remains is to prove that for g E O(T*) we have t*g E 
L2(M). Let g E O(T*). Then for allf E OCT) we have 

(T*g,/) =- (g, TI) ... fMg(x)*t(x)f(x) dx, 

thus 

fM(T*g(x) - g(x)t(x)*)*f(x) dx = 0 for all f E D(T). (5.2) 

Let us define, for all n E N, the subsets M" of M by M" = {x EM: !t(x)! " 
n}. Then we obviously have M= U:_tM". For every fE L2(M), XM,.! 
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belongs to D( T), consequently we have 

f. (T*g(x) - g(x)t(X)*)*XM (x)f(x) dx = 0 for all f E L2(M). 
M • 

Since XM (T*g - t*g) E L2(M), it follows that T*g(x) = t*(x)g(x) almost 
everywhe"re in M". Since this holds true for all n EN, we have T*g = t*g, 
therefore t* g E L2( M). ' 0 

(5.3) T is closed. 

PROOF. T is the adjoint of the maximal multiplication operator induced by 
t*, hence T is closed by Theorem 5.3(a). 0 

(5.4) The following assertions are equivalent: 
(a) T is self-adjoint, 
(b) T is symmetric, 
(c) t is real-valued (i.e., t(x) is real almost everywhere in M). 

PROOF. (b) obviously follows from (a). 
(b) implies (c): If t is not real, then at least one of the sets M\ = {x E 
M : 1m t(x) > O} or M2 = {x EM: 1m t(x) < O} has positive measure. If M\ 
is of positive measure, then for all f E OCT), different from zero and 
vanishing outside MI , we have 

1m <f, Tf) = f. If(xW 1m t(x) dx > O. 
MI 

By Theorem 4.18 the operator T is therefore not symmetric. We can argue 
similarly if M2 has positive measure. 
(c) implies (a): Since t= t*, we have T= T* by (5.1). 0 

(5.5) If M is an open subset of RM and t is locally bounded on M (i.e., t is 
essentially bounded on any compact subset of M), then Co""(M) and L2• o(M) 
are cores of T. 

PROOF. We obviously have CoOO(M) C L2• oeM) C OCT). We prove the asser
tion for CoOO(M); the other assertion follows from this. We have to prove 
that for each f E D( T) and for each ( > 0 there exists an 1. E Co""( M) such 
that II!. - fll + II T!. - Tfll .;;; E. If (M,,) is a sequence of open bounded 
subsets of M such that M" c M,,+\ and M= U Mno then for all n E N let us 
define 

We obviously have gn E L2. oeM), g,,~f, and Tg,,~ Tf. Therefore there 
exists an no E N such that II gno - fll + II Tg"o - Tfll .;;; E /2. On the other 
hand, there exists a sequence' fm E COOO( M"J c C?OO( M) such that fm ~ g"o' 
Then we also have that Tfm~Tg"o' So there eXIsts an moEN such that 
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IIfmo - gnoll + II Tfmo - Tgnoll "(/2. The assertion follows from this by taking 
1. = fmo' D 

Let T and S be operators from HI into H2 and from HI into H3, 

respectively. The operator S is said to be T-bounded if D( T) c D(S) and 
there exists a C;> 0 such that IISfll" CllfllT for allfE D(T), i.e., if S, as 
an operator from (D(T), <. , .)r) into H3, is bounded. Then for all f E 
D(T) we have 

IISfl1 .;;; COIfIl + II Tfll)· 

If S is T-bounded, then the infinum of all numbers b ;> 0 for which an 
a ) 0 exists such that 

118fll "allfll + bllTfll foraH f E D(T), 

is called the T-bound of 8. One should notice that if e is the T-bound of S, 
then in general there exists no a;> 0 such that for all fED( T) we have 
II Sf II <; allfll + ell Tfll (cf. Exercise 5.4). 

Proposition. If T is an arbitrary operator from HI into H2 and 8 E B( HI> H3), 

then 8 is T-bounded with T-bound O. 

Theorem 5.5. Let T and S be operators from HI into H2, and let S be 
T-bounded with T-bound less than 1. Then T+ 8 is closed (closable) if and 
only if T is closed (closable); we have D(T + S) = D(T). 

PROOF. As the T-bound of S is less than I, there exist a b < 1 and an a ;> 0 
such that 118fll" allfll + bll Tfll for all f E D(T). Consequently, for all 
fE D= D(T)= D(T+ 8) we have 

- allfll + (1- b)1I TJII ..;; II Tfll - 118fll " II(T+ 8)j1l 
..;; IITfll + 118fll " allfll + (1 + b) II Tfll· 

From this it follows with a properly chosen C ;> 0 that 

II Tfll " c(lIfll + II(T+ S)fll) 

II(T+ 8)fll " c(lIfll + II Tfll) 

for all fED. Hence there exists a K ;> 0 such that 

IIfliT <; Kllfllr+s and IIfIlT+s" KllfliT' 

(5.6) 

(5.7) 

From this it follows that (D, (. , ')T+S) is complete if and only if (D, 
(. , ')r) is. Let T be closable. If (J,,) is a sequence from D(T+ 8) = D(T) 
such that f" ~O and for which « T + S)fn) is convergent in H2, then by (5.6) 
the sequence (Tfn) is a Cauchy sequence. Hence Tfn~O, because T is 
closabie. Because of (5.7) from this it follows that (T+ S)fn~O, so T+ S is 
also closable. One can show in an analogous way that T is closable 
provided that T+ S is closable. By part (c) of the proposition preceding 
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Theorem 5.1 we have f E D( T + S) if and only if there exists a sequence 
(J,,) from D(T+ S) = D(T) for which fn~f and «T+ S)fn) is convergent 
Since because of (5.6) and (5.7) «T+ S)f,J is convergent if and only if 
(Tfn) is convergent, we have D(T + S) = D(T). 0 

Theorem 5.6 (Banach; closed graph theorem). Let HI and H2 be Hilbert 
spaces and let T be an operator from HI into H2• Then the following 
statements are equivalent: 
(a) T is closed and D(T) is closed, 
(b) T is bounded and D( T) is closed, 
(c) T is bounded and closed. 

PROOF. (a) implies (b): We have to show that T is bounded. Without loss 
of generality we may assume that D( T) = D( T)= HI (otherwise we could 
consider T as an operator from the Hilbert space D(T) into H2)' Conse
quently, T* is defined. For all g E D( T*) such that II gil < 1 we have 

I(T*g,J)1 =I(g, Tf)l< IITfll for all f E HI' 

For the linear functionals {Lg : g E D(T*), II gil' I} on HI. where LJ= 
(T*g,f), we therefore have 

ILiJ)1 ' II Tfll for all f E HI; 

consequently they are pointwise bounded. By Theorem 4.22 there exists a 
C .., 0 such that 

II T*gll = IILgll < C for all g E D(T*) such that II gil , 1. 

Therefore T* is bounded and II T*II ,C. As T is closed (consequently 
closable), D(T*) is dense and, by Theorem 5.2, closed. We therefore have 
D(T*) = H2• i.e., T* E 8(H2' HI)' Since T is closed. this implies that T= T 
= T** E B(H" H2). 

The assertions "(b) implies (c)" and "(c) implies (a)" are contained in 
Theorem 5.2. 0 

Theorem 5.7. Let HI and H2 be Hilbert spaces and let T be an operator from 
HI into H2 such that D(T) = HI and D(T*) is dense in H2• Then T belongs to 
B(H .. H2)' In particular, every symmetric operator T on the Hilbert space H 
such that D( T) = H is bounded (Hellinger-Toeplitz). 

PROOF. By Theorem 5.3 the operator T is closable. Because D(T) = HI' we 
have D( T) = D( T), Le., T = f. Therefore T is closed and D( T) = HI' Then 
T is bounded by Theorem 5.6. 0 

Theorem 5.S. Let HI and H2 be Hilbert spaces and let T be an injective 
operator from HI into H2 such that R(T) = H2• The operator T is closed if 
and only if T- I E B(HI , H2)' 
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PROOF. By Part (e) of the proposition preceding Theorem 5.1 the operator 
T is closed if and only if T - I is closed. The assertion follows immediately 
from this and from Theorem 5.6. 0 

Theorem 5.9. Let H .. H2 and H3 be Hilbert spaces, let T be a closed operator 
from HI into H2, and let S be a closable operator from HI into H3 such that 
O(S)::> OCT). Then S is T-bounded. 

PROOF. On account of Theorem 5.6 it is enough to show that the operator 
So from (O(T), (. , '>r) into H3, defined by O(So) = OCT) and Sof= Sf for 
fE OCT), is closed. As O(So) = OCT), it is enough to show that So is 
closable. Let Un) be a sequence in OCT) for which IIfnIlT~O and (So'/") is 
also convergent. Since II fn II T~O implies Ilfn II ~O and since S is closable, 
we obtain from this that So'/" = S./" ~O, thus So is closable. 0 

EXERCISES 

5.1. (a) Every Carleman operator (cf. Exercise 4.2) is closable. 
(b) Any Carleman operator, defined on the whole of L2(M), is bounded. 

5.2. (a) Any densely defined operator T on the Hilbert space H such that 
Re (f, Tf) ;;;. 0 for all f E D( T) is closable. 
Hint: If (0, g) E G( T), then Re <f, Tf + zg) ;;;. 0 for all fED( T) and 
z E K One infers from this that (f, g) = 0 for all fED( T). 

(b) The numerical range of an operator T on H is defined by W(T)= 
{<J, Tf) : f E D(T), IIfil = I}. The set W(T) is convex (cf. for example, 
P. R. Halmos [14], Problem 166). If D(T) is dense and W(Th06. K, then T 
is closable. 

5.3. (a) Let H be a Hilbert space, and let T be a densely defined operator from H 
into em. The operator T is bounded if and only if it is closable (this holds 
true for linear functionals in particular). 

(b) In the Hilbert space 12 let the functional T be defined by D( T) = 12,0> 

Tf = 'i.nf" for f E D( T). Then T is not closable. 

5.4. Let T and S be on L2(1R) the maximal operators of multiplication by I(x) =- x 2 

and s(x) = x 2 + x, respectively. The operator S is T-bounded with T-bound I. 
However, there exists no a;;;. 0 such that IISfll.;;; II Tfll + allfll for aIlfE D(T). 

5.5. Prove the results of (4.3) with the aid of the closed graph theorem, 
(4.1), (4.2), (4.6), and (5.3). 

5.6. Let HI' H2 and H3 be Hilbert spaces, let S E B(HI , H2), and let T be a closed 
operator from H2 into H) such that R(S) C D(T). Then we have TS E 
B(HI , H3)' 
Hint: Show that TS is closed, and D(TS) = HI' 

5.7. Assume that HI' H2 and H) are Hilbert spaces, T is a closable operator from 
HI into H2, and S is a T-bounded operator from HI into H3• If the seauence 

w w tv 
(f,,) from D( T) is such that fn ~ 0 and Tf" ~ 0, then we also have Sfn ~ o. 
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5.S. Let H be a Hilbert space. An operator P on H is an orthogonal projection if 
and only if P is symmetric, D(P)= H, and p2= P. 
Hint: Use Theorem 5.1 (Hellinger-Toeplitz). 

5.9. Let H be a vector space, and let (. , .>, and (. , '>2 he scalar products on H 
such that (H, (. , .>,) and (H, (. , '>2) are complete. If there exists a C such 
that II . lit <; GIl . Ib, then there also exists a C' such that II . 112 <; C'II . II,. 

5.10. Let the vector space H be endowed with two scalar products, consequently 
with two norms II . II, and II . lb. These norms are said to be coordinated if we 
have: (k'2) from IIxnll,-O and IIxn-xlh-O it follows that x=O, or (k2 ,) 

from IIxnlb-O and IIxn - xllt-O it follows that x =0. 
(a) The assumptions (k'2) and (k2 ,) are equivalent. 
(b) If the norms II. II, and II· Ib are coordinated, and (H, II . II,) and 

(H, II . 112) are complete, then there exist c" C2 > 0 such that II· lit .;;; 
ctll·lb<c211·11,· 

Hint: The identity map from (H, II . II,) into (H, II . IIv is closed. 

5.11. (a) Let H, and H2 be Hilbert spaces. Assume that H, is finite dimensional. 
Every operator T from H, into H2 is continuous. 
Hint: If {e" ... , em} is an ONB of D(T), then Tf= "£ }(e pf> Te j for all 
fE OCT). 

(b) If (. , .>, and (. , '>2 are scalar products on a finite dimensional vector 
space H, then there exist constants c" C2;;' 0 such that II . II, .;;; ctll . Ih < 
c211 . II, (II . IIj denotes the norm defined by (. , . >j)' 

5.12. Let T be an operator from H, into H2, and let S be a continuously invertible 
operator from H2 into H3• If Sand T are closed (closable), then ST is also 
closed (closable). 

5.13. If S is T-bounded with T-bound b, then for any £ > 0 there exists an a ;;. 0 
such that II Sfll2 <; a2 11 fll2 + (b2 + £)11 Tfll2 for all fED( T). If we have II Sfll2 <; 

a2 11f1l2+ b211Tf1l2, then we also have IISfll <allfll + bIITfll·· 

5.2 The fundamentals of spectral theory 

In what follows an operator T from HI into H2 will be said to be bijective if 
T is injective and R( T) = H2• 

Theorem 5.10. Let Sand T be bijective operators from HI into H2• If 
O(S) c OCT), then 

If O(S) = OCT), then 

T- I - S-I = T-I(S- T)S-I = S-I(S-T)T-I. 

PROOF. It is enough to prove the first assertion. We shall prove that 
T-I=S-I+T-I(S-T)S-I. Since T-'Tf=f for all fEO(T) and 
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SS - Ig = g for all g E H2, it follows that 

S-I + T-I(S- T)S-I = T-ITS- I + T-I(S- T)S-I 

= T-I(T+ S- T)S-I = T-ISS- I = T- I. 0 

Now we show that a closed bijective operator remains bijective even 
after the addition of a "not too big" operator. 

Theorem 5.11. Assume that HI and H2 are Hilbert spaces, T is a closed 
bijective operator Jrom HI into H2, S is an operator Jrom HI into H2 such that 
D(S)=> D(T), and liST-III < 1. Then T+ S is also bijective, and we have 

00 00 

(T+ S)-I = L (-ItT-I(ST- I)" = L (-I)n(T-IS)"T- I; (5.8) 
n=O n=O 

the series are convergent in the norm oj B( H2, HI)' 

PROOF. For all J E D(T) we have 

IISJII = IIST-'TJII ..;; II ST - IIIIITJII, 

i.e., S is T-bounded with T-bound less than l. By Theorem 5.5 the 
operator T + S is closed, too. Moreover, T + S is injective, because 

II(T+ S)JII ;> IITJII -IISJII ;> (1- II ST - I II)II TJII > ° 
for allJE D(T+ S)= D(T),J*'O. 

The two occuring series are obviously identical term by term. Let us 
define 

p 

Ap = L (-ltT-I(ST- I)", pEN. 

Then for q >p we have 

IIAq - Apll =11 f (- ItT-I(ST-I)nll 
n-p+1 

q-p-I 
"IIT- IIIIIST- lllp+1 ~ IIST- Ill n 

n=O 
00 

" IIT-IIIIIST-IIIP+I L IIST - ' lln ..;; CIiST-III P + ' , 

where C= IIT-III~::"_oIIST-llin. From this it follows that (Ap) is a Cauchy 
sequence in B(H2' Hd, consequently there exists an A E B(H2' HI) such 
that Ap~A asp~oo. 

We have (T+ S)A = I: 
p 

{T+ S)Ap = L {-I)n{T+ S)T-I(ST-It = 1+ (-IY(ST-1y+1 ~ I, 
n-O 
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as p-+oo. Therefore for all g E H2 we have 

Apg -+ Ag and (T+ S)Apg -+ g as p -+ 00. 

As (T+ S) is closed, Ag E D(T+ S) and (T+ S)Ag = g, i.e., (T+ S)A = I. 
In particular, R(T+ S)= H2, hence T+ S is bijective and we have A ... 
(T+ S)-I. 0 

Corollary. The statements of Theorem 5.11 hold in particular if S is bounded 
and liS II < liT-Ill-I (then we have liST-III" liS II liT-III < 1). 

Corollary. Let HI and Hz be Hilbert spaces and let T and Tn (n E N) be 
linear operators from HI into Hz such that D(T) C D(Tn) for all n E N. 
Assume that T is closed, bijective, and II(T- TII)T-JII-+O as n-+oo. Then 
there exists an no E N such that Til is bijective for n > no and II TII- J - T -III 
-+0 as n -+ 00. (The assumptions on Til hold in particular if the operators 
T- Til are bounded and IIT- Tnll-+O as n-+oo.) 

PROOF. With Sn = Tn - T we have IISIIT-III-+O as n-+oo. Therefore there 
exists an no E N such that II Sn T - III < 1/2 for n > no' Hence by Theorem 
5.11 the operator Til ... T + Sn is bijective for n > no and we have 

00 00 

IITII- I - T-Ill" ~ IIT-I(SIIT-Itll " IIT-JIlIISnT-JIl ~ 21- m -+0 
m-I m-I 

as n-+oo. o 

In what follows let H be a Hilbert space over K and let T be an operator 
on H. The number z E K is called an eigenvalue of T if there exists an 
f E D( T), f -:f:: 0 such that Tj = zj, i.e., if the operator z - T = zl - T is not 
injective, N(z - T):;I= {O). The subspace N(z - T) is called the eigenspace of 
z, the dimension of N(z - T) is called the multiplicity of the eigenvalue. 
The element j is called an eigenelement or eigenvector oj T belonging to the 
eigenvalue z. If z is not an eigenvalue (i.e., (z - T) is injective), then the 
operator 

R(z, T) = (z - T)-J 

is well-defined. The set 

p(T) = {z E K : z - T is injective, and R(z, T) E B(H)} (5.9) 

is called the reso'lvent set of T. If T is not closed, then z - T and R(z, T) 
are not closed, consequently p( T}= 0. This is why in most of the following 
cases we shall assume the closedness of T. For a closed operator T on 
H we have by the closed graph theorem that 

p(T) = {zEK:z-T is bijective}. (5.10) 
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The function 
R(., T) : p(T)-+B(H), z R(z, T) 

is called the resolvent of T. For any z Ep(T) the operator R(z, T) is called 
the resolvent of T at the point z. The set 

aCT) == K \ p(T) ... CKP(T) (5.11) 

is called the spectrum of T. The set ap(T) of all the eigenvalues of T is 
obviously contained in aCT). The set ap(T) is called the point-spectrum of 
T. 

Theorem 5.12. Let T be a densely defined operator on H. Then a(T')
a(T)* and p(T*) == p(T)* (here for any subset M of the complex numbers 
M*={z*: zEM}). 

PROOF. Because of (5.11) it is enough to prove that p(T):ap(T')*. To 
prove this it is enough to show that p( T) C p( T*)*, since because of the 
equality T**= Twe also have p(T*)Cp(T)*, and thus p(T*)*cp(T). 

Let z E p(T). Then z - T is densely defined and bijective. By Theorem 
4.17(b) the operator z*- T*==(z- T)* is therefore injective, also, and we 
have (z* - T*) -I = «z - T) - 1)* E B( H). Hence z* - T* is bijective, i.e., 
z* Ep(T*), and thus z Ep(T*)*, 0 

Theorem 5.13. Let Sand T be closed operators on H. 
(a) For all z, z' Ep(T) we have the first resolvent identity 

R(z, T) - R(z', T) = (z' - z)R(z, T)R(z', T) 

= (z' - z)R(z', T)R(z, T); 

in particular, R(z, T) and R(z', T) commute. 
(b) If O(S) C OCT), then for all z E peS) n p( T) we have 

R(z, T) - R(z, S) = R(z, T)(T- S)R(z, S). 

(c) If O(S)=O(T), then for all zEp(S)np(T) we have the second re
solvent identity 

R(z, T) - R(z, S) = R(z, T)(T- S)R(z, S) 

= R(z, S)(T- S)R(z, T). 

PROOF. The first resolvent identity follows from Theorem 5.10 if in there 
we replace T by z - T and S by z - T. The second resolvent identity 
follows similarly if T and S are replaced by z - T and z - S, respectively. 

o 
Theorem 5.14. If T is a closed operator on the Hilbert space H, then p(T) is 
open, consequently a( T) is closed. More precisely, if Zo E p( T), then z E p( T) 
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all z E such that -' zol R(zo, -I these we have 

00 

If T E B( H), then we have {z ElK: Izl > II Til} c p( T); the spectrum a( T) is 
compact. Furthermore, 

R(z, T) = ~ zn-ITn for Izl > II Til; (5.12) 
n=O 

series called the von Neumann series. 

PROOF. Let Zo E peT), and let Iz - zol < IIR(zo, T)II-I. If in Theorem 5.11 
we replace T by Zo - T and S by (z - zo)I, then it follows that Z - T= zo-

(z - bijective, consequently z peT). Moreover,. Theorem 5.11 
we have 

R(z, = «zo T) + 

Now let T E B(H) and let Izl;> II Til. If in Theorem 5.11 we replace T by zI 
by , then i~ follows - T bijective, therefore Ep(T), and 

(z - T)-I = ~ z-n-ITn. 
n-O 

Hence a( T) C { z ElK: I z I ..;; 1\ Til}. As a( T) is closed, the compactness of 
a( T) follows from this. 0 

'l'heorem Let be a operator on Hilbert space The 
resolvent R(. , T) : p(T)~B(H) is a continuous function (i.e., for any ZoE 

and any sequence (zn)from peT) sitch that zn~zO we have IIR(zll' T)-
T)U If a(T) non-empty, then every Ep(T) have 

IIR(z, T)II ;> d(z, a(T»-I. 

For every sequence (zn) from peT) such that zn~zO' Zo E a( we therefore 
have IIR(zn' T)1I~oo. 

Let z E p( such Iz- IIR(zo' T)II-I. Then by Theo-
rem 5.14 we have 

00 

IIR(z, - R(zo, T)II 

As the right side is small when z is close to zo' the continuity at Zo follows 
from for any Ep(T). If z E then Theorem 5.14 point z' 
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also belongs to p(T) for all z' E K such that Iz' - zl < IIR(z, T)II-I. Conse
quently, Iz' - zl ;> II R(z, T)1I- 1 for all z' E a(T), and thus 

IIR(z, T)II-I < inf (lz'-zl: z'Eo{T)} = d(z, o(T». 0 

Let G be an open subset of C, and let X be a Banach space. A function 
F: G--,;X is said to be holomorphic if for every Zo E G there exist an r > 0 
and a sequence Un) from X such that 

00 

F(z) = ~ (z - zo)nfn for Iz - zol < r; 
n-O 

where the convergence has to be understood in the sense of the norm of X. 
As in function theory, one can prove that the quantity 

ro=[limsup IIfnlll/n]-1 
n--.oo 

(5.13) 

is the radius of convergence of the above series and that the series is 
uniformly convergent on each disc around Zo of radius less than ro, while it 
is divergent for all z such that Iz - zol >ro (cf., for example, K. Jiir
gens [191, §4.4). Every holomorphic function is continuous (cf. the proof of 
Theorem 5.15). 

Theorem 5.16. Let T be a closed operator on the complex Hilbert space H, 
and let f, g E H. Then the functions 

R(. , T) : p(T)--,;B(H), 

R{. , T)f: p{T)--,;H, 

<g, R(. , T)f> : p(T)--,;C, 

are holomorphic. 

z~R(z, T) 

z~R{z, T)f 

z~<g, R(z, T)f) 

PROOF. Let Zo E p(T), and let r = II R(zo, T)II- I • Then for all z E C such 
that Iz - zol < r we have 

00 

R(z, T) = ~ (zo-zfR(zo, Tf+1 
n=O 

in the sense of the norm convergence in B(H), 

00 

R(z, T)f = ~ (zo- zfR(zo, Tf+lf , 
n-O 

in the sense of the norm convergence in H, and 

00 

<g, R(z, T)f> = ~ (zo-zf<g, R(zo, Tf+lf ). 
n=Q 
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According to the above definition, these three functions are therefore 
holomorphic. 0 

Theorem 5.17. Assume that H is a Hilbert space and T E B(H), r(T)= 
lim sup IIrlil/". 
(a) We have r(T)'" II Tmil i / m for all mEN, and thus r(T)=lim IIT"II I /". 

(b) We have r(T) '" II Til and o(T) C {z Ell(: Izl '" r(T)}. For all z E II( such 
that Izl >r(T) the operator R(z, T) is given by the Neumann series 
(5.12). 

(c) If H is complex, then o(T) is non-empty and there exists a z E o(T) such 
that Izl=r(T), i.e., we have r(T)=sup {Izl: zEo(T)}. 

(d) The statement in part (c) holds for any self-a4Joint T in a real Hilbert 
space, as well. 

r(T) is called the spectral radius of T. 

REMARK. Theorem 5.17(c) does not hold for real Hilbert spaces, as the 

example of the operator defined by the matrix (~ 1 ~) on 1R2 shows. 

PROOF. 

(a) Let mEN. Every n E N can be uniquely represented in the form 
n = mPn + qn with Pn' q" E Nand qn < m. If we denote C = 
max p, II Til, IIT211, ... , IITm-lll}, then it follows that 

IITnll '" IITmIl Pn IITQ.1I '" CIITmIlP., 
and thus 

r(T) '" lim sup cl/nIlTmU<l/m)-(I/"m)q. = II Tmll i / m. 
n-->O() 

For every nEN we therefore have r(T)'" II Tnll l/n, and thusr(T)<; 
lim inf IITnlll/n, i.e., lim IIT"II I/ n exists and r(T)=lim II Tnil i / n• 

(b) The radius of convergence of the series ~~=oun+ ITn, U E II( is obvi
ously equal to r( T) - I, because of (5.13). Therefore for all z E II( such 
that Izl >r(T) the operator A(z) = ~~_oz -,,-IT" E B(H) is defined; the 
series is absolutely convergent in the norm of B(H) (i.e., for every t: > 0 
there exists an no E N such that ~':=klz -,,-III/Tn II < f for no <; k <; m). 
One can verify easily that 

0() 0() 

(z - T)A{z) = A(z)(z - T) = L z-nTn - L z-,,-ITn+1 = I, 

i.e., A(z) = (z - T)-I and z Ep(T). The Neumann series is therefore 
convergent for all z E II( such that Izi >r(T) and it represents the 
operator (z - T) -I. 

(c) Let us assume that o(T)=0. Then p(T)=C, and by Theorem 5.16 the 
function Ffg : z~<J, R(z, T)g> is an entire function for all f, g E H. 
Because of the inequality lI(z - T)fll ;;;. (11zll -II TIDllfl1 we have 
IIR(z, T)II"'(llzll-IiTID-1 for Izl>IITII, and thus Ffg(z)~O as Izl~ 
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00. Consequently, Fjg is bounded, and by Liouville's theorem it is 
constant. Since Fjiz)~O as Izl~oo, we have Fjg = 0 for all f, g E H, 
therefore R(z, T) = O. This is a contradiction. It remains to be proved 
that reT) = sup{lzl : z E aCT)} = roo As aCT) is closed and we already 
know the inequality ro ~ r(T), it remains to show that reT) ~ roo For 
arbitrary f, gE H the function zl-+<f, R(z, T)g> is holomorphic in 
{z E C : Izl > ro} and can be uniquely expanded in a Laurent series 
there. By (5.12) this Laurent series has the form 

00 

<J, R(z, T)g> = ~ z-m-I<f, T"'g>. 
m-O 

Let s >ro. Then the sequence (s-m-I<J, Tmg» is bounded for all 
f, g E H. By applications of the Banach-Steinhaus theorem (Theorem 
4.22), first to the functionals induced by s - m -ITmg and then to the 
operators s-m-1Tm, we obtain a C ;;. 0 such that 

Is-m-11IITmll '"' C foraH mE~. 

This implies that limllTmlll/m ,",s. Since this holds for all s>ro, it 
follows that reT) ~ roo 

(d) If T is self-adjoint, then by Theorem 4.4(b) there exists a sequence Un) 
from H such that II In II = I and <Jn' Tfn>~11 Til or <In, Tfn>~ -II Til· 
In the first case it follows that 

11(11 TII- T)fnll 2 = II Til 2 II fn 112 - 211 TII<Jn' Tfn> + II Tfnl1 2 

~ 1/ TI/ 2 - 21/ TII(t", Tin> + II TII2 ~ 0 as n ~ 00. 

Analogously, in the second case it follows that 

11(11 Til + T)InIi ~ 0 as n ~ 00. 

Consequently, "Til E aCT) in the first case, and -II Til E oCT) in the 
second case. 0 

EXAMPLE 1. Let M be a measurable subset of Hm , let I: M~C be 
measurable, and let T be the maximal operator of multiplication on LlM) 
by t. 

(5.14) We have o/T) = {z EC : I-I(Z) has positive measure}, here rl(z) 
denotes the sel {x EM: t(x) = z}. (See also Exercise 5.23.) 

PROOF. This can be obtained immediately from the results of (4.2) if we 
notice that z - T is the multiplication operator generated by z - t. 0 

(5.15) We have z E oCT) if and only if for every t: > 0 the sel 
1-1({wEC: Iw-zl<t:})={XEM: It(x)-zl<t:} is of positive measure. 
In particular, if M is open and t is continuous, then oCT) is the closure of the 
range of t. . 
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. PROOF. Let X = {z E C : {X EM: I t(x) - zl < I;} have positive measure for 
every I; > O}. 

We show that p(T)=CX. We have zEp(T) if and only if z- Tis 
bijective, thus if and only if z - T is injective and R(z - T) = L2(M). By 
(4.3) this holds if and only if there exists a c > 0 such that Iz - t(x)1 :> c 
almost everywhere on M, i.e., if and only if r I( {w E C : Iw - zl <c}) has 
measure zero. Consequently, z E p( T) if and only if z fl.1:. 0 

The corresponding results hold if we consider the real Hilbert space 
L2• R( M) and a real function t. 

EXAMPLE 2. If U is a unitary operator on H, then a( U) c {z E C : Izi = I}. 

PROOF. By Theorem 5.14 we have {z E C : Izl> I} c p( U). Since U is 
bijective and U- I is unitary, we have OEp(U), and thus by Theorem 5.14 
{z E C : Izl < I} C p( U). The assertion follows. 0 

EXERCISES 

5.14. Let HI and H2 be Banach spaces. An operator T from HI into H2 has a 
continuous inverse (not necessarily defined on the whole space H2) if and 
only if 

'( .. inf {IITxll : xED(T).lIxll > I} > O. 

We have then that liT-III = ,(-I. 

5.15. Let (a,,) be a sequence from C. On 12 by 

D(T) = {J- (J;,) E 12 : (a..!,,) E 12 }. 

Tf = (a..!,,) for f = (f,,) E D(T) 

a closed operator is defined. T is self-adjoint if and only if the sequence (a,,) 
is real. We have aiT) = {a" : n EN}. a(T) = ap ( T). Determine ,R(z, T) for 
z fI. aiT). 

5.16. If Sand T are from B(H). then r(ST) - r(TS). 

5.17. Assume that HI and H2 are Hilbert spaces, and T is a bijective operator from 
HI onto H2• 

(a) If S is an operator from HI into H2 such that D( S) ::> D( T). ST - I E 
B(H2). r(ST- I) < I. and T+ S is closed. then T+ S is also bijective. 

(b) If S E B(HIo H2) and r(T-IS) < I. then T+ S is bijective. 
In both cases we have 

co co 
(T+ S)-I = ~ (-l)"T-I(ST- I)" - ~ (-I)"(T-IS)"T- I, 

,,-0 ,,-0 
where the series converge in the norm of B(H2• HI)' 
Hint: After showing the convergence of the series, denote the sum by A. and 
prove that (T+ S)A -A(T+ S)= I. Compare with the proof of Theorem 
5.1I, as well. 
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5.18. Let HI and H2 be Hilbert spaces, let A, An E B(HI' Hl ), and let An be bijective 
for all n E N. If An ~ A and IIAn-11i < C for all n E N, then A is also bijective 
and we have An-I~A -I. 
Hint: Use Theorem 5.11. 

5.19. Assume that HI and Hl are Hilbert spaces; Tn(n EN) and T are closed 
bijective operators from HI onto H2 ; the sequence (II Tn-III) is bounded, and 
for some core D of T the following holds: For every xED there exists an 
n(x) E N such that x E D(Tn) for n;;;. n(x) and also Tnx-) Tx for n~oo. Then 
r -I S T- I 

n ~ • 

Hint: From Theorem 5.10 it follows that Tn-lg~T-lg for all gET(D); 
T(D) is dense in Hz; since (II Tn-III) is bounded, it follows that Tn-Ig~ T-Ig 
for all g E H2• 

5.20. Prove that in Exercise 5.19 no assumptions can be removed. 
s • 

(a) If T, Tn are bijective and Tn ~ T, then we do not necessarily have 
r -t S T- I 

n ~ . 

Hint: Consider, on 12 , the operators T = I and T,J == (fl' ... ,/n' 
(1/ n)J" +l> (1/ n)fn + 2, ..• ); (the sequence II Tn- III is not bounded). 

S 

(b) If T is bijective and Tn ~ T, then Tn is not necessarily bijective for large 
n. 
Hint: Consider the operators T = I and T,J ... (fl' ... ,j", 0, 0, ... ) on 
12, 

(c) If the Tn are bijective, (II Tn-III) is bounded and Tn ~ T, then T is not 
necessarily bijective. 
Hint: Consider the operators T,J-( ... ,/-n-2'/-n-I'/0'/-I'/t'/-2, 
fl" .. , f-n>fnJn+l,fn+2' ... ) on /2(1). 

5.21. Assume that H is a Hilbert space over IK, U is an open subset of IK, and 
R : U~B(H) satisfies the properties (i) R(zt) - R(zz)'" (Z2 - zt)R(zt)R(zz) 
for ZI' Zz E U, (ii) N(R(z» = (OJ for all z E U. Then we have 
(a) R(zt)R(zz) == R(zz)R(zt) for all Zt> Zz E U, 
(b) With K(z)==R(z)-t(zEU) we have K(zt)-zl=K(zz)-zz for all zt>zz 

E U; i.e., we can define T= z - K(z). 
(c) T is dosed; we have U cp(T) and R(z)= (z - T)-I for z E U. 

5.22. Assume that HI and Hz are isomorphic Hilbert spaces, M is a dense subspace 
of Hz. and M* H2• Then B(HI' M)* B(HI' Hz). (From this it follows that 
B(HI' H) is in general not a completion of B(HI' H) if H is a completion of 
the pre-Hilbert space H.) 
Hint: Let U be an isomorphism from Ht onto H2• Assume that there exists a 
sequence (Un) from B(Hl> M) such that Un~ U. Then R( Un) = Hz for large n. 

5.23. Let T be the operator of multiplication by a measurable function t on Lz(M) 
(cf. Example I). Every eigenvalue of T has infinite multiplicity. 

5.24. Let T E B( H), let NT = (/ E H : T"f ~O as n -) 00 }, and let BT == (/ E H : the 
sequence (T"f) is bounded}. 
(a) If r(T) < 1, then NT = H. 
(b) If BT = H, then r(T).;; 1. 
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Hint: Use Theorem 4.22. 
(c) From NT - H it does not follow in general that r(T) < 1. 

Hint: Consider the operator Tf(x) - xf(x) on L2(O, I). 

5.25. If T E 8(H), ~ E II( such that I~I-II Til, and u E H is such that Tu - ~u, then 
T·u-~·u. 

Hint: Show that II T·u - ~·uIl2 co: 01 

5.26. Let A E 8(HI' H2) and B E 8(H2. HI)' 
(a) For ~~O we have ~Ep(AB) if and only if ~Ep(BA). In this case we 

have (A - BA)-I. *(f + B(A-AB)-IA). 

(b) Assertion (a) does not hold for ~ - O. 
Hint: Let A be an isometric operator such that R(A)=FH2, and let 
B-A·. 

(c) Assertion (a) holds for ~ .. 0, as well, provided that at least one of the 
operators is bijective. 
Hint: AB-A(BA)A- I. 

5.27. Let T be an operator on H with non-empty resolvent set, and let ~oEp(T). 
We have AEa(T) if and only if (~_~O)-I Ea(R(Ao, T»; for all ~Ep(T) we 
have R(A, T) - R(Ao, T)(I - (Ao - A)R(Ao, T»-I - (l - (Ao - A)R(Ao, 
T»-IR(Ao, T). In particular, a(R(Ao, T» - {(A -Ao)-I : A E a(T)}. 
Hint: Use the first resolvent identity. 

5.28. An operator T E 8(H) is said to be nilpotent if there exists an n E N such that 
Tn_o. The operator T is said to be quasi-nilpotent if II Tn II I/n ..... o, i.e., 
r(T)-O. 
(a) Every nilpotent operator is quasi-nilpotent. 
(b) If T is a quasi-nilpotent operator on a complex Hilbert space, then we 

have a(T)'" {O}. 
(c) If k(x, y) is continuous on 0 co: y co: x co: 1, then the Volterra integral 

operator K defined on L2(0, I) by D(K) ... Ll(O, I) and (Kf)(x)
f 3k(x, y)f(y) dy is quasi-nilpotent. 
Hint: Put k(x,y) ... 0 for x <y and M - max {lk(x,y)1 : 0 co:y co: x co: I}; 
then Ik(II)(X, y)1 co: (Mn/(n - 1)!)lx - yl,,-I for the kernel k(") of K", con
sequently 11K" II co: (M" /(n - I)!). 

5.29. Let H be a complex Hilbert space, let T E 8(H), and let p(t) - Ii_oa }t} be a 
polynomial with p(T) ... Ii_oa }T}'" 0 (TO ... f). 
(a) If p(z)~O, then zEp(T) and R(z. T)=[p(z)]-lq(Z, 7') with q(z, T) .. 

Ij.:Jz}I~_}+ lak Tk-}-I. 

(b) If p i~ a polynomial of minimal degree, then a(T) is the set of zeros of p. 

5.30. Let T be a closed operator on the Hilbert space H. Then the function 
zl-+R(z, T) is holomorphic on p(T) as a function with values in 8(H, D(T», 
where D( T) is equipped with the T-norm. 
Hint: Use the inequality II[R(zo, T)]n+ IIIS(H. D(T» .;;; IIR(zo. T)IIB(H. D(T» X 
IIR(zo, T)II" and Theorem 5.14. 
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5.3 Symmetric and self-adjoint operators 

Theorem 5.18. Let T be a Hermitian operator on the pre-Hilbert space H. 
Every eigenvalue 0/ T is real; eigenvectors belonging to different eigenvalues 
are orthogonal. If H is comple:,c, then for any z E C\R the operator z - Tis 
continuously invertible. and we have IIR(z. T)II < 11m zl-I (this holds true in 
particular for symmetric and se/f-a4joint operators). 

PROOF. Let z be an 'eigenvalue of T and let /E N(z - T). /=FO. Then 
z*llIlIl = (T/.f> == (f. T/> = zllflil. thus z == z*. i.e., z E R. If z •• z2 ~re two 
distinct eigenvalues and fl' fl are corresponding eigenelements of T, then, 
as the Z j are real. we have (z I - zJ(/I' fl> = (T/I.Jl > - (fl' T/l > = O. 
Therefore (fl' /l> -= o. With z ... x + Qi (x, y E R) we have for all f E OCT) 
that 

lI(z - T)flll - lI(x - T)/ + Qifll2 

- lI(x - T)f1l2 + IY1211/lll ;> I 1m zI211/112. 

For z E C' R it follows from this that (z.- T) is i~ective and that for 
g - (z - T)f E O(R(z. T» we have 

IIR(z. T)gll = II/II < I Imzl-llI(z- T)/II = I Imzl-lligli. 
therefore 

o 
Now we prove a simple criterion for the self-adjointness of a symmetric 

operator. 

Theorem 5.19. Let T be a symmetric operator on the Hilbert space H. If 
H ... N(s - T) + R(s - T) for some s E R. then T is se/f-a4joint and H = 
N(s - T) e R(s - T). Special case: If R(s - T) = H, then T is se/f-a4joint 
and N(s - T) ... {O}. 

PROOF. From T ... T" and T c T* it follows that N(s - T) C N(.s - T) 
= R(s - T*).l C R(s - T).L, thus that N(s - T)J. R(s - T) and H= N(s
T)E9 R(s - T). Therefore we have 

N(s - T) = R(s - T).l 

and 

R(s - T) = N(s - T).l ~ N(s - T).l :J R(s - T*). 

We show that D(T·) c OCT). This together with the inclusion T C 1'* 
implies T - 1'*. Let fED( T*), g = (s - 1'*)f. Because of the inclusion 
R(s- T·)cR(s- T) there exists an fnE D(T)cD(T*) such that (s
T*)fa'" (s - T)fa = g = (s - T*)f. We therefore have f - /a E N(s - 1'*) 
= R(s- T).l ... N(s- T)cO(T) and thusfE D(T). 0 
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A symmetric operator T on a Hilbert space is said to be essentially 
self-adjoint provided that f is self-adjoint. 

Theorem 5.20. A symmetric operator T on a Hilbert space is essentially 
self-adjoint if and only if T* is symmetric. We then have T= P. 

PROOF. If T is essentially self-adjoint, then T* =(f)* = f= T**, conse
quently T* is self-adjoint (therefore symmetric) and we have f= T*. If T* 
is symmetric, then since f is symmetric by Theorem 5.4(b) and (f)* = T* 
holds, we have f c(f)* = T* c T** = f, hence f= (f)*. 0 

Theorem 5.21. Let T be a symmetric operator on a complex Hilbert space H. 
The operator T is self-adjoint (essentially self-adjoint) if and only if R(z ± -

T) = H (R(z ± - T)= H) for some z + with 1m z + > 0 and some z _ with 
1m z _ < 0 (this then holds for all z + with 1m z + > 0 and z _ with 1m z _ < 
0). 

PROOF. Let R(z ± - T) = H for some z+ such that 1m z + > 0 and some z_ 
such that 1m z_ < O. As T is symmetric, the operators z ± -- T are injective, 
therefore bijective, and by Theorem 5.18 we have lI(z+ - T)-III-< 
I 1m z ± I-I. By Theorem 5.11 the operator z - T is also bijective for all z 
such that Iz - z+1 < 11m z+1 or Iz - z_1 < 11m z_l· Since lI(z - T)-III-< 
I 1m Zl-I for all z such that 1m z =1= 0, we can iterate this procedure and· 
obtain that (z - T) is bijective for all z E C \~, in partic;ular for z = ± i 
(cL also Exercise 5.33). 

As T is symmetric, we have T C T*. To prove that T= T*, it is enough 
to prove that D( T*) C D( T). To this end, let f E D( T*) and let fo = 
(i- T)-I(i- T*)f. Then we havefoED(T)cD(T*), Tfo= T*fo, and (i
T*)(f - fo) = (i - T*)f - (i - T*)fo = (i - T)fo - (i - T)fo = O. Therefore 

f - fo E N(i - T*) = R( - i - T) 1- = H 1- = {O}, 

thus f = fo E D( T). _ 
If R(z ± - T)= H, then R(z ± - T) = H by the proposition following 

Theorem 5.2. As f is also symmetric by Theorem 5.4(b), the self-ad joint
ness of f follows from the part already proved. 

Let T now be self-adjoint and let z E C\R. Then R(z, T) is closed and 
bounded, therefore D(R(z, T» = R(z - T) is closed. Consequently, it is 
enough to show that R(z - T)1- = {OJ. To this end, let h.L R(z - T). Then 
by Theorem 4.13(b) we have hE N«z - T)*) = N(z· - T). Since T is 
self-adjoint, T has no non-real eigenvalue, thus h = O. 

If T is essentially self-adjoint, i.e., f is self-adjoint, then by the proposi
tion following Theorem 5.2 we have 

o 
Theorem 5.22. If T is a symmetric operator on the complex Hilbert space H 
and for some n E N, n ;;;. 2 we have R(i - Tn)= H or R( - i -- Tn)= H (respec-
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lively R(i - Tn) = H or R( - i-Tn) = H), then T is essentially self-a4/oint 
(respectively self-a4/oint). 

PROOF. 
--,----,..,-

(a) Let R( i - m)= R( Tn - i)= H. There are numbers y ± E C such that 
1m y + > 0, 1m y _ < 0 and y~ = i. We then have 

(Tn-i) = (T-y±)(Tn- I+Tn- 2y±+'" +Ty~-2+y~-I), 

hence R( T - y ±)~ R( Tn - i)= H. Therefore T is essentially self
adjoint. 

(b) If R(m + i) = H, then we choose y ± E C so that y~ = - i. 
The proof of self-adjointness is similar. 0 

Theorem 5.23. 
(a) The symmetric operator T on the complex Hilbert space H is self-a4/oint 

if and only if a( T) C Ill. 
(b) If T is self-a4/oint on the (real or complex) Hilbert space H, then 

s E a/T) if and only if R(s - T)* H. For z ff. ap(T) we have R(z, T)'" = 
R(z"', T). 

PROOF. 

(a) By Theorems 5.18 and 5.21 the operator T is self-adjoint if and only if 
z - T is surjective and continuously invertible for all z E C\ Ill, i.e., if 
and only if C\lIlcp(T), or, equivalently, a(T) cIll. 

(b) Assume that T is self-adjoint and z ff. ap(T). As a/T) c n, we also have 
z'" ff. ap(T). Therefore R(z -:- T)J. = N(z'" - T"') = N(z'" - T) = {O}, i.e., 
R(z - T)= H. Now let R(z - T)= H. Since R(z - T) = H for all z E C\ 
Ill, we also have R(z'" - T)= H, and thus N(z - T) = N(z - T"') = R(z* 
- T)J. = {O}, i.e., z ff. ap(T). If z ff. ap(T), then z - T* = z - T is 
densely defined, injective and R(z - T)= H. Therefore R(z, T)* = 
«z - T)-I)* = «z - T)",)-I = (z'" - T)-I = R(z"', T) by Theorem 
4.17(b). 0 

Now we obtain an especially simple characterization of the spectrum (or 
the resolvent set) of a self-adjoint operator. 

Theorem 5.24. If T is self-adjoint, then the following statements are equiv
alent: 

(i) z Ep(T), 
(ii) there exists a c > 0 such that lI(z - T)fll ~ cllfll for all f E OCT) (i.e., 

(z - T) is injective and IIR(z, T)II <c- I ), 

. (iii) R(z - T) = H. 
(This theorem is in general false for symmetric operators.) 

PROOF. If z E p(T), then (z - T) is injective and R(z, T) is continuous. If 
(z - T) is injective and R(z, T) is continuous, then z ff. aiT) and thus by 
Theorem 5.23(b) the set O(R(z, T» = R(z - T) is dense in H; as R(z, T) is 
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closed, we have R(z - T) = D(R(z, T» = H. If R(z, T) = Hand z E~, then 
N(z - T) = N(z· - T*) = R(z - T)l. = {o}; therefore z - T is bijective, i.e., 
z Ep(T). If 1m z¥oO, then z Ep(T) by Theorem 5.23(a). 0 

For the proof of any further criteria for self-adjointness we need some 
auxiliary results. In complex Hilbert spaces the theorem of Rellich-Kato 
(Theorem 5.28) can be proved directly somewhat more rapidly (cf. Exer
cise 5.35). Here we obtain it (also for real Hilbert spaces) as a special case 
of more general results. The auxiliary results gathered hem will be used at 
other places, as well. 

Theorem 5.25. Assume that HI and H2 are Hilbert spaces, A and Bare 
operators from HI into H2 such that 

D(A) C D(B) and IIBfll.;;; CIIAfll for f E D(A) 

with some C;;;' 0. For every K E IK let PK denote the orthogonal projection 
(from H2) onto R(A + KB). Then IIPK - PolI~O as K~O. 

PROOF. For IKI < (ti2C) and for all f E D(A) we have 

II Bfll .;;; CIIAfll .;;; C{II(A + KB)fll + IKIIIBfll} .;;; CII(A + KB)fll + tllBfll, 

therefore 

IIBfll .;;; 2CII(A + KB)fIl· 

For hE R(Po)l. = R(A)l. = R(A)l. we thus have 

IIP.hll = sup (I<h, g)l: gER(A + KB), II gil .;;; l} 
= sup {I<h, (A + KB)f)1 : f E D(A), II(A + KB)fll .;;; I} 

= sup (I<h, KBf) I : fED(A), II(A + KB)fll.;;; 1} 
.;;; IKI IIhil sup (IIBfll : f E D(A), II(A + KB)fll .;;; l} 
.;;; 2CjKlll h ll· 

We can prove in a completely analogous way that for all hE R(P.)l. = 
R(A + KB).1 

IlPohll .;;; CjKlllhll· 

Via Theorem 4.33 we obtain that liP. - Poll .;;; 2CjKI. This proves the 
theorem. 0 

Theorem 5.26. Assume that HI and H2 are Hilbert spaces, T and S are 
operators from HI into H2 ; T is closed, and S is T-bounded. Furthermore, 
denote by a the set 

a= {z ElK: T+ zS is closed} 

and for every z E a let Qz denote the orthogonal projection from HI X H2 onto 
G(T + zS). Then a is open and the function z~ Qz is continuous on a (with 
respect to the norm topology of B(HI X H2»' 
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PROOF. If zoE 0, then T+zoS is closed and D(T+zoS)=D(T). The 
operator S is therefore (T+ zoS)-bounded by Theorem 5.9. Hence T+ zS 
is closed for z sufficiently near zoo Thus 0 is open. Let us define the 
operators A and B from HI into HI X H2 by 

D(A) = D(T), 

D(B) = D(T), 

Af= (j, (T+ zoS)f), 

Bf=(O, Sf). 

Then the assumptions of Theorem 5.25 are obviously satisfied and the 
equalities R(A) = G(T+ zoS) and R(A + ICB)= G(T+(zo+ IC)S) imply the 
continuity of z~ Qz at the point zoo 0 

With this we can now obtain a general theorem on the perturbation of a 
closed operator and its adjoint. 

Theorem 5.27. Assume that HI and H2 are Hilbert spaces, T and S are 
operators from HI into H2. Let T be densely defined, let S be T-bounded. let 
S* be T*-bounded, and let 

0= {zEII<: T+zS and T*+z*S* arec/osed}, 
0 0 = the connected component of 0 that contains zero. 

Then (T+zS)*= T*+z*S* for all zEOo' 

PROOF. Let Q. be the orthogonal projection (in HI x H2) onto G(T + zS) 
and let Q; be the orthogonal projection onto U-IG(T*+z*S*). where U 
is defined as in Section 4.4. By Theorem 5.26 the operators Qz and Q; 
depend continuously on z for z E 0 and Qo+ Qo= I H,xH2 = I (as we have 
G(T)teU- IG(T*)=HI XH2). For every zEII< we have T*+z*S*C 
(T+ zS)*, i.e., 

U-IG(T*+z*S*) c U-IG(T+zS)* =G(T+zS).l. 

By Theorem 4.30(a) we therefore have Q. Q; = Q; Qz = 0, i.e., 1- Q. - Q; 
is an orthogonal projection for any z E O. Consequently, III - Qz - Q;II 
assumes only the values 0 and 1. Since, on the other hand, 111- Qz - Q;II 
depends continuously on z E 0, it follows that III - Qz - Q;II = III - Qo
QolI=O for all zEOo• therefore G(T*+z*S*)= UG(T+zS).!.=G«T+ 
zS)*). and thus T* + z*S* = (T+ zS)* for all z E 0 0 , 0 

If the relative bounds of S with respect to T and of S* with respect to 
T* are less than J, then it follows that (T+ S)* = T* + S* (Hess
Kato [42]), since in this case {z Ell<: Izl ~ I} c 0 0 by Theorem 5.5. If we 
specialize this result for self-adjoint operators T and symmetric operators 
S, then we obtain the following important result. 

Theorem 5.28 (Rellich-Kato). If Tis self-at/ioint (essentially self-at/ioint) on 
the Hilbert space 4, the operator S is symmetric and T-bounded with 
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T-bound less than 1, then T + S is self-adjoint (essentially self-a4joint with 
T + S= T + 8 and DC T + S) = O( T». 
PROOF. 

(a) If T is self-adjoint (T= T*), then because of the inclusion S C S* the 
operator S* is T*-bounded with T*-bound less than 1. In Theorem 
5.27 we therefore have {z ElK: Izl" I} cOo' and thus (T + S)* = 
T*+ S*= T+S. 

(b) Let T now be essentially self-adjoint, i.e., let T be self-adjoint. First we 
show that 8 is T-bounded with T-bound less than 1 (more precisely, 
equal to the T-bound of S). To this end, letf E O(T). Then there exists 
a sequence (f,,) from OCT) such that fn---+f, Tf,,---+ 1:,(. From the T
boundedness of S it follows that (S/,,) is a Cauchy sequence, therefore 
/E 0(8), Sfn---+8/ and 

II 8fll = lim II S/"II " lim (a II fn II + bll Tfnl!) = allfll + bll Tfll· 

By part (a) the operator T+ S is therefore self-adjoint. From the 
inclusion T + SeT + 8 and from the closedness of 'r + 8 it follows 
that T+ ScT+8. By Theorem 5.5 and by the equality 0(T+8) 
= D(T) it follows that O(T + S) = O(T + S), and therefore 
T+s=f+~ 0 

Theorem 5.29 (Wtist [58]). Let T be a self-a4joint operator on the Hi/bert 
space H, let S be symmetric and T-bounded, and let 

n= {zEIK: T+zS and T+z*S are closed}, 

no = the connected component of n containing zero. 

For every z E IR n no the operator T+ zS is self-adjoint. Special case: If 
T + t S is closed for all t E [0, 1], then T + S is self-adjoint. 

PROOF. We have (T+ zS)* = T+ zS* = T+ zS for every z ElRn no by 
Theorem 5.27, 0 

Theorem 5.30 (Wtist [57]). Let T be essentially self-adjoint on the complex 
Hilbert space H, let S be symmetric with D(T) C O(S) and let IISfll "allfll 
+ II Tfll for all f E O( T) with some a ~ O. Then T + S is essentially self
aqioint. 

PROOF. Let A = T + S. We show that R( JL - A).1 = {O} for JL E {i, - i}. For 
this, let (In) be a sequence from (0, 1) such that In---+1. By Theorem 5.28 the 
operator An = T + In S is essentially self-adjoint for any n E N, and we have 

II(A - An)fll = (1- In) II Sfll " allfll + II Tfll - 1.11 Sfll 

" allfll + II(T+ tnS)fll = allfll + IIA,JII. (5.16) 
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Now let hE R( P. - A).L. As An is essentially self-adjoint, there exists an 
fn E D(An} = D(A) such that 

Therefore 

I 
1I(p.-An)Jn - hll < -, n E N. 

n 

h = lim (p.-An)Jn' (5.17) 

Because of the inequality 1I(p.-An)-'II" I we have IIfnll < 1I(p.-An)fnll. 
Consequently, 

lim sup IIfnll < IIhl!. 
By (5.17) it follows from this that 

lim sup /lA,Jnll < 2/1hll 
and thus because of (5.16) 

lim sup II(An - A)J"II < lim sup [all!nll + II Anin II ] <:; ellhll, 

with c = a + 2. As D( T) is dense, for every t: > 0 there exists an h. E D( T) 
such that IIh - h./I < t:. Because of the relation hE R( P. - A).L, it follows 
that 

/lh/l2 = lim (h, (p. - An)fn) = lim (h, (A - An)Jn) 

= lim [ (h - h., (A - An)J,,) + (h., (A - An)!n) ] 

< Ilh - h./llim sup II(A - An)J,,1I + lim supll(A - An)h.1I IIfnll 

<:; cllhllt: + Jim sup (1- In)I/Sh.IIIIJ,,1/ = cllhl/t:. 

Since this holds true for all t: > 0, we have h = O. 

EXERCISES 

5.31. Let T be a symmetric operator on the Hilbert space H. 

o 

(a) If His complex, then T is essentially self-adjoint if and only if aiT*) c rio 
(b) If H=N(s-T)+R(s-T) for some sER, then T is essentially self

adjoint and we have N(s - T) = N(s - T) and R(s - T) = R(s - T) 
(c) If s - T is continuously invertible and R(s - T)= H for some s E fR, then 

T is essentially self-adjoint. 

5.32. Let H be a real Hilbert space, and let T be an operator on H. 
(a) The space He = H X H, with the addition (f" gIl + (f2g2) =(f, + f2' g, + 

g2), multiplication by a scalar (a + ib)(f, g) = (af - bg, ag + bi) and scalar 
product «(f" g,), (f2' g2» = <f"h) + i<f" g2) - i(g.,f2) + <g" g2)' is a 
complex Hilbert space, the complexijicalion of H. 

(b) By setting D(Td={(f,g)EHe :f,gED(T)} and Te(f,,J~=(Tfl' Tf2) a 
linear operator Te is defined on He. We have: 

(i) Te is bounded (respectively belongs to B(Hd) if and only if T is 
bounded (respectively belongs to B(H». We have II Tell-II Til. 
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(ii) O(TC> is dense if and only if OCT) is dense. 
(iii) Tc is symmetric if and only if T is symmetric. 
(iv) Tc is (essentially) self-adjoint if and only if T is (essentially) self

adjoint. 
T c is called the complexification of T. 

5.33. Let T be a closed symmetric operator on the complex Hilbert space H, and 
let p. denote the orthogonal projection onto R(z - T) for 2 E C\R. 
(a) The mapping z~p. is continuous on C\R with respect to the norm 

convergence in B(H). 
(b) If R(zo - T) =0 H for some Zo E C such that 1m Zo > 0 (respectively 1m Zo 

< 0), then R(z - T) =- H for all z E C such that 1m z > 0 (respectively 
1m z <0). 
Hint: Use Theorem 5.25. 

5.34. Let T be (essentially) self-adjoint on the Hilbert space H, and let S be 
symmetric such that D(T) c D(S) and Re <TI, SI> ;> - (a1l/1l 2 + 
bllTIlIlIS/l1) for all/ED(T) with some b<l. Then T+IS is (essentially) 
self-adjoint for all t ;;. O. 
Hint: For t;;. 0 we have II 1'111 + 11111 "C.(II(T+ IS)f1l + 11/11)" C2<117111 + 
11/11>· 

5.35. (a) Let T be a self-adjoint operator on a complex Hilbert space, and let S be 
T-bounded with T-bound < l. If c > 0 is large enough, then II Sill " 
bll( ± ic - T)/II for all IE D(T) with some b < l. Using this, prove the 
theorem of RelIich-Kato (Theorem 5.28) for complex Hilbert spaces. 

(b) Using part (a) and Exercise 5.32, prove the theorem of RelIich-Kato for 
real Hilbert spaces. 

5.4 Self-adjoint extensions of symmetric operators 

If S is a symmetric operator, then S c S*. For every symmetric extension 
T of S we have (cf. the proposition preceding Theorem 4.19) SeT c T* c 
S*. It seems plausible that there exists a sufficiently "large" extension T of 
S that is self-adjoint. For this we would have 

SeT = T* c S*. (5.18) 

In this section we begin with some simple investigations concerning the 
problem of the existence of a self-adjoint extension of a symmetric opera
tor (cf. also Sections 5.5 and 8.1 to 8.3). 

Theorem 5.31. 
(a) If T. C T2 are self-adjoint operators, then T. = T2. 
(b) If S is a symmetric operator and T. and T2 are self-adjoint extensions of 

S such that D(T.) C D(T2), then T. = T2• 

(c) If S is essentially self-adjoint, then S is the only self-aa,'ioint extension of 
S. 
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PROOF. 

(a) It follows that TI C T2 = T1 c Tr = T I• thus T I '" T2• 

(b) For allf E D(TI) C D(T2) and for all g E D(S) C D(TI) C D(T2) we have 

(Td. g) - (f. T2g) = <1. Sg) == (f. Tlg) == (Td, g). 

Since D(S) is dense, it follows that Td= Td for all j E D(T1), i.e., 
TI C T2• From part (a) it follows that TI == T2. 

(c) If T is a self-adjoint extension of S, then we have SeT, since T is 
closed. The equality S == T now follows from part (a). D 

The following theorem ensures the existence of self-adjoint extensions for 
two large classes of symmetric operators. A symmetric operator S on the 
Hilbert space H is said to be bounded from below if there exists a "( E R 
such that (J. Sf) ;;. "(IIfll 2 for all f E D(S). Every"( of this kind is called a 
lower bound of S. The least upper bound of all lower bounds is also a lower 
bound. If 0 is a lower bound of S. then S is said to be non-negative. The 
concepts bounded from above, upper bound. and non-positive are defined 
similarly. If an operator is bounded from either below or above, then it is 
said to be semi-bounded. Besides the semi-bounded operators. the following 
simple theorem also treats the continuously invertible symmetric operators. 
i.e .• those symmetric operators S. for which II Sf II ;;. yllfll with some y > 0 
(cf. Exercise 5.14). 

Theorem 5.32. Let S be a symmetric operator on the (real or complex) 
Hilbert space H. and assume that (f. Sf) ;;. yllfW with some y E III (respec
tively II Sfll ;;. y II fll with some "( > 0) for all f E D(S). Then for each "E 
(- 00. y) (respectively" E (- y. y» there exists a self-adjoint extension T« of 
S such that (f. T J) ;;. "IIfll 2 (respectively liT JII ;;. 1"llIfll) for all f E 
D(TK }. We have N(" - TK) = N(K - S"') = R(K - T.).l.. 

PROOF. The operator S is closable and S obviously satisfies the same 
assumptions. also. Therefore we can assume without loss of generality that 
S is closed. In the first case we have for all "E (- 00. y) and f E D(S), 
f"f: 0 that 

II(S-,,)fll;;' I«S-K)f.f)llIfll- 1 

;0. (Sf. f) Ilfll- 1 - ""fll ;;. (y - ")lIfll· 

In the second case we have for all "E (- y. y) and f E D(S) that 

II(S - ")fll > IISfll-I"111f1l > (y -1"Dllfll· 
Consequently. in both cases S -" is continuously invertible. The range 
R(S - ,,) = D«S - K) -1) is therefore closed. From this it follows that 

R(S - ,,) + N(S* - ,,) = R(S - ,,) + R(S - ,,).L = H. (5.19) 
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Because of the equality N(S* - K)n O(S)= N(S- K)= {O}, the sum O(S) 
+ N(S* - K) is a direct sum. Hence we can define 

O(TK) =O(S) + N(S* - K), 

TK(JI + 12) = S11 + K12 for 11 E 0(S),j2 E N(S· - K). 

We obviously have N(K - T K ) = N(K - S*). The operator 1: is symmetric, 
because D(TK) is dense (since O(TK):J O(S» and for all 11' gl E D(S), 
12' g2 E N(S* - K) = R(S - K).l we have (observe that (TK - 1()12 = (TK - K)g2 
=0) 

<11 + 12' (TK - K)(gl + g2» = <11 + 12' (S - K)gl) 

= <11' (S - K)gl) = «S·- K)II' gl) 

= «S - K)II , gl + g2) 

= « TK - K )(JI + 12)' gl + g2)' 

By Theorem 5.19 the operator T" is self-adjoint, since because of (5.19) we 
have H= R(S- K)+ N(S* - K)= R(T,,- K)+ N(T,,- K). Besides, for all 11 
E D(S), 12 E N(S* - K) we have 

<11 + 12' T,,(JI + 12» = <11> SII) + <S*12,11) + K[ <11,12) + 1112112] 

;;;. yllldl2 + K[ <12,11) + <11,12) + 1112112] ;;;. Kllli + 12112 

in the first case, and 

II T,,(JI + 12)112 = <S11 + 42' S11 + 42) 

= IISldl2 + 1«11' S*12) + K<S*f2,j1) + K211f2112 

;;;. y2111dl 2 + 1(2[ <11,12) + <12,11) + 1112112] ;;;. K21111 + 12112 

in the second case. D 

In order to sharpen the results of Theorem 5.32, we: first prove an 
extension theorem for bounded Hermitian operators. 

Theorem 5.33. If A is a bounded Hermitian operator on the Hilbert space H, 
then there exists a self-acfjoint extension B E B( H) 01 A !.uch that II B II = 
IIA II. II R(A) is dense, then every self-adjoint extension 01 A is injective. 

PROOF. If IIA II = 0, then B = 0 is the required extension. Therefore let 
IIA II *' O. Without loss of generality we may assume that IIA II = I. Since 
along with A its closure A is also Hermitian and IIA II = IIXII, we may also 
assume that A is closed, i.e., D(A) is closed. Let P be the orthogonal 
projection onto O(A). Then we have 

A = Al +A2 with Al = PA, A2 = (I-l')A. 
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We consider AI as an operator from H into the Hilbert space D(A) with 
D(AI) = D(A) and A2 as an operator from H into the HilbeEt space_ D(A)i 
with D(A2) = D(A). First we show: There exist extensions A I and A2 of A I 
and A2, respectively, such that D(AI) = D(A2) = H, R(AI) C D(A), R(A0 
c D(A)i and 

IIA.1112 + 1I12fll2 "lIfll2 for all f E H. 

We define the operator AI by 

AI = (AP)". 

Then we have IIAIII = IIAPII" IIAII and R(AI)cN(AP)i cD(A). More
over, for all f E Hand g E D(A) we have 

<f,Alg) = <APf, g) = <Pf,Ag) = <1,A lg). 

Therefore AI g = A I g, and thus A I c AI' Because of the relation IIA.1I1 " 
III III II fll " IIA II Ilfll = II fll the equality 

[f, g] = <f, g) - <Ad, Alg) 

defines a semiscalar product on H. The set 

N= {fEH: [f.J] =o} 

is a closed subspace of H. (If f, g E N, a E K, then af E Nand [j + g, 
f+g]=2Re[j,g]';;;2{[j.J][g,g]}l j 2=O, thereforef+gEN. If (i,,) is a 

sequence from N such that f,,~f E H, then [j.J] = <f,f) - <Ad, 1.1) = 
limn-oo{ <1",j,,) - <Ad", Ad,,) =0, therefore fEN). Let Ho= N i and let 
Po be the orthogonal projection onto Ho. By construction, we have [j,fJ* 
o for all non-zero f E Ho, i.e., [. , .J is a scalar product on Ho. For every 
fE H we have 

[Pof, Pof] = [f - (/ - Po)!,j - (/ - Po)!] 

= [f, f] - 2 Re [f, (I - Po) f] + [ (I - Po) f, (I - Po) f] = [ f, f]. 

For fE D(A)n N we have 

IIA2fll2 = 11(/ - P)AfIl 2 = IIAfll2 - IIPAfll 2 

= IIAfll2 -IiA l f1l 2 .;;; IIfll2 -IiAl f1l 2 = [f,f] = o. 

Therefore Ad= A2 g for f - g E D(A) n N. Consequently, the equalities 

D(A2) = PoD(A), 

A2 g = Ad for g = Pof E D(A2) 
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define a linear operator from Ho into O(A).L, and for all g = Pof E 0(.42) 

we have 

11.42 gll2 = IIAdll2 = <(I - P)Af, Af) = <Af, Af) - (A d, A I f) 

"<f.J)-<A.1,A.1) = [f,f] = [Pof, Poi] =[g,g]. 

From this it follows that A2 can be extended to an operator C from Ho into 
D(A).L such that D(C) = Ho and 

II Cfl12 " [f, f] for all f E Ho 

(cf. also Exercise 4.16), Let us now define A2 by 

.42 = CPo' 

Then for all f E H 

IIAdll2 = IICPofll 2 "[ Pof, Pof] = [f,f], 

consequently 

11.4.1112 + 1I.42f1l2 ..;; IIf1l2. 
Since for allfE D(A) we have 

Ad = CPof = A 2Pof = Ad, 

the operator A2 is an extension of A 2. Therefore .4 = Al + A2 is an exten
sion of A = A 1+ A2 and IIAII ..;; 1. Since for all f E D(A) and all g E H we 
have 

<A*f, g) = <f, (AI + A2)g) = <f, A,g) + <f, ·,42 g) 

.. <1, Alg) = <f, (AP)*g) = <Af, g), 

the operator A * is also an extension of A. Hence 

B =4(A+A*) 

is a self-adjoint extension of A such that liB II = 1. 
Now let R(A) be dense and let B be a self-adjoint extension of A. Then 

R(B) is also dense, consequently N(B) = N(B*) = R(B).L = {O}. 0 

Theorem 5.34. Let S be a symmetric operator on the (real or complex) 
Hilbert space H. 
(a) If II Sfll ;:. 'YII fll for all f E D(S) with some 'Y > 0, then there exists a 

self-a4joint extension T of S such that II Tfll ;:. 'Y II fll for all fED( T). 
(b) If S is bounded from below, then there exists a self-adjoint extension T of 

S with the same lower bound (cf. also Theorem 5.38, friedrichs' exten
sion). 

PROOF. 

(a) The operator A = S -I is Hermitian «ASf, Sg) =<f, Sg) = <Sf, g) = 
< Sf, A Sg) for all Sf, Sg E D(A) = R( S»and bounded, IIA II " 'Y - '; A is 
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injective and R(A) = D(S) is dense. Therefore by Theorem 5.33 there 
exists an injective self-adjoint extension B of A such that liB II = IIA II " 
1'-1. Then T= B -I is a self-adjoint extension of S and II Tfll ;;. 1'llfll 
for all f E D( T). 

(b) Without loss of generality we may assume that l' = O. As in the proof of 
Theorem 5.32, we can show that 1+ S is continuously invertible. Let us 
define A by 

A = (/ - S)(/ + S)-I. 

Then A is Hermitian, because for aIlf= (I + S)fo' g = (I + S)go E D(A) 
= R(I + S) we have 

(Af, g> = «(/ - S)fo, (/ + S)go> 

= <10' go> - (Sfo, go> + <10' Sgo> - (Sfo, Sgo> 

= (fo' go> - <10' Sgo> + (Sfo' g) - (Sfo' Sgo> 

= «(/ + S)fo, (/ - S)go> = (f, Ag>. 

It follows from the definition of A that 

I - A = (/ + S)(/ + S)-I - (I - S)(/ + S)-I = 2S(/+ S)-I, 

I + A = 2(/ + S) - I. 

Consequently, I + A is injective and 

S = (/ - A)(1 + A) - I. 

A is bounded with norm IIA II < I, since for all f E D(A) we have 

IIfll2 - IIAfll2 = «(I - A)f, (/ + A)f) 

= «(I-A)(I+A)-I(I+A)f,(/+A)f) 

= (S(I + A)f, (/ + A)f) ;;. O. 

Therefore by Theorem 5.33 there exists a self-adjoint extension B of A 
such that II B II = IIA II· By the same theorem 1+ B is injective, since 
R(I + A) = D(S) is dense. The operator 

T = (/-B)(I+B)-I 

is therefore an extension of S. For all f=(I+B)fo' g=(I+B)goE 
D(T) = R(I + B) we have 

(Tf, g) = <(/ - B)fo, (I + B)go> = «(I + B)fo, (I - B)go) = (J, Tg), 

<1, Tf> = «(I + B)fo, (/ - B)fo> = Ilfoi/2 - I/ Bf oll 2 > 0, 

i.e., T is symmetric and bounded from below with lower bound O. We 
have 1+ T=2(J + B)-I and /- T= 2B(I+ B)-I, hence B=(I- T)(1 
+T)-I. From this it follows that R(I+T)=D(B)=H, thus Tis 
self-adjoint (cf. Theorem 5.19). 0 
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EXERCISE 

5.36. Let A be symmetric and semi-bounded. 
(a) If A has only one semi-bounded self-adjoint extension, then A is essen

tially self-adjoint. 
(b) If the lower bound of A is positive and A has only one positive extension, 

then A is essentially self-adjoint. 

5.5 Operators defined by sesquilinear forms 
(Fiedrichs' extension) 

In what follows H will always be a Hilbert space. A sesquilinear form s on 
H is said to be bounded if there exists a C;;> 0 such that Is(f, g)1 ~ 
C IIfIl II gil for all f, g E H. The smallest such C is called the norm of s. It 
will be denoted by IIsli. If T E 8(H), then the equality t(f, g) = <Tf, g) 
defines a bounded sesquilinear form on H. We obviously have II til = II Til· 
Conversely, every bounded sesquilinear form induces an operator on 8(H). 

Theorem 5.35. If t is a bounded sesquilinear form on H, then there exists 
exactly one T E 8(H) such that t(f, g) = < Tf, g) for all f, g E H. We then 

have liT II = II til· 

PROOF. For every fE H the function g~t(f, g) is a continuous linear 
functional on H, since we havelt(f, g)1 ~ 1I11I11f111i gil. Therefore for each 
f E H there exists exactly one j E H such that l(f, g) = <j, g:>. The mapping 
f~ j is obviously linear. Let us define T by the equality Tf= j for allf E H. 
By Theorem 4.3(b) the operator T is bounded with norm 

IITII = sup {1<Tf,g)1 :f,gEH, IIfll=lIglI=l} 

= sup {1/(j,g}1 :f,gEH, IIfll=lIgll=l} =: II til· 

If TI and T2 are from 8(H) and (Td,g)=t(f,g)=(Td,g) for all 
f, g E H, then it follows that TI = T2, i.e., T is uniquely determined. 0 

For unbounded sesquilinear forms the situation is much more com
plicated. We consider only a special case. 

Theorem 5.36. Let (H, (. , -» be a Hi/bert space and let HI be a dense 
subspace of H. Assume that a scalar producl <. , ')1 is defined on HI in such a 
way that (HI' <. , ')1) is a Hi/bert space and with some" >0 we have 
"lIfI12 " IIfll~ for all f E HI' Then there exists exactly one self-adjoint opera
tor T on H such that 

D(T} CHI and (Tf, g) = <1, g)1 for f E D(T},g E HI' (5.20) 
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T is bounded from below with lower bound K. The operator T can be defined 
by the equalities 

D( T) = {f E HI : there exists an j E H such that <f, g)1 

= <j, g) for all g E H.}, (5.21) 

Tf=j 

D(T) is dense in HI with respect to the norm 11.111' 

PROOF. Existence: The element j in (5.21) is uniquely determined, since HI 
is dense. Since the mapping f~ j is also linear, (5.21) defines a linear 
operator. We can also consider T as an operator from HI =(HI, (. , ')1) 
into H. This operator will be denoted by To. If J denotes the operator from 
H into HI defined by 

D(J) =HI cH, Jf = f for f E O(J), 

then by (5.21) we obviously have 

To = J*. 

J is closed, since for any sequence (f,,) from D(J) = HI such that./" ~ f [in 
H] and fn~h [in H.J we have fn~h [in H] because of the inequality 
11.112 (;,,-III.llf, i.e.,j= h E D(J). Therefore To=J* is densely defined. Thus 
D(T) = D(To) is also dense in HI (with respect to 11.111) and, consequently, 
in H (with respect to 11.11), as well. By (5.21) we have for al1f, g E D(T) that 

<Tf, g) = <f, g)1 = [<g,f)d* = [<Tg,f) J* = <f, Tg), 

i.e., T is symmetric. The seif-adjointness of T will fol1ow from Theorem 
5.19 if we prove that R(T) = H. For this let f E H be arbitrary. Then 
g~<f, g) is a continuous linear functional on HI> since we have 

l<f,g)l, Ilfllllgil 'K- I / 21Ifllllglll' 
Consequently, there exists an J E HI such that 

<f,g) = <j,g)1 foraH gEHI· 

By (5.21) this means, however, that J E D(T) and f = Tj The semi
boundedness fol1ows from the inequality 

T obviously satisfies (5.20), as well. 
Uniqueness: Every operator S that satisfies (5.20) is obviously a restriction 
of the operator T defined by (5.21). Since T is self-adjoint, it follows that 
SeT c S*. If S is self-adjoint, then we necessarily have S = T. 0 

In what follows let D be a dense subspace of H and let s be a 
semi-bounded sesquilinear form on D, more precisely, let the inequality 
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sU, f);;' yllfl12 be satisfied by some y E IR for all fED. Then the equality 
<f. g). = (1 - y)<f, g) + s(j, g) defines a scalar product on D such that 
IIfll.;;' IIIII for all fE D. Moreover, we assume that II. II. is compatible 
with II . II in the following sense: If (jll) is a II . II.-Cauchy sequence from D 
and IIfllll~O. then we also have IIfnlls~O (cf. Exercise 5.37; in the theory 
of sesquilinear forms such a sesquilinear form s is said to be closable). Let 
Hs now be a II. II.-completion of D (for example the one that was 
constructed in Section 4.3). It follows from the compatibility assumption 
that H. may be considered as a subspace of H if the embedding of H. into 
H is defined as follows: Let (jll) be a II . II.-Cauchy sequence in D. Then 
(In) is a Cauchy sequence in H. Let the element limfll from H correspond 
to the element [(In)] of H •. On the basis of the compatibility assumption, 
this correspondence is injective and the embedding is continuous with 
norm ( 1. The spaces Hand H. are related the same way as H and HI were 
in Theorem 5.36 (with K = 1). Let 

sU. g) =0 <f, g). - (1- y)<f, g) for f, g E H •. 

Therefore s(j. g) = s(j. g) for f, g ED. The sesquilinear form s is called the 
closure of s. 

Theorem 5.37. Assume that H is a Hilbert space. D is a dense subspace of H 
and s ;s a semi-bounded symmetric sesquilinear form on D with lower bound 
y. Let II . II. be compatible with II . II. There exists exactly one semi-bounded 
self-a4joint operator T with lower bound y such that 

D(T) cHs and <Tf, g) = sU, g) for a/l f E Dn D(T), g E D.(5.22) 

We have 

D( T) = {f E Hs : there exists an i E H such that 

sU, g) = <i, g) for all g ED}, (5.23) 

Tf = j for f E D( T). 

PROOF. If we replace (Hit <. , ')1) by (H., < ... ).) in Theorem 5.36, then we 
obtain exactly one self-adjoint operator To such that D(To) C H. and 

< Tof, g) = <f, g). for all f E D(To), g E H •. 

To is semi-bounded with lower bound 1. The operator T= To-(l- y) 
obviously possesses the required properties. The uniqueness follows from 
the uniqueness of To. Formula (5.22) implies (5.23), since D is dense (in Hs 
and in H). [] 

If S is a semi-bounded symmetric operator with lower bound y, then the 
equality 

sU, g) = <Sf, g), f, g E D(S) 
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defines a semi-bounded sesquilinear form s on D(S) with lower bound y. 
In this case 

(f, g). - (Sf, g) + (1- Y)(f, g) and Ilfll~ - (Sf,!) + (1- y)lIfl1 2 

for f, g E D(S). The norm II . II. is compatible with II . II: Let (fn) be a 
II . II.-Cauchy sequence from D(S) such that fn-+-O. Then for all n, mEN 
we have 

IIfnll; = (fn,fn). a I(fn,fn - fm). + (f",fm>'1 

" IIfnll.llfn - fmll. + II(S+ 1- y)fnllllfmll. 

The sequence Olfnll.) is bounded, IIfll -fmll. is small for large nand m and 
for any fixed n we have 11(8 + 1- y)fnll'lIfmll-+-O as m-+-oo. Consequently it 
follows that IIfllll.-+-O as n-+- 00. This fact makes the following construction 
of a self-adjoint extension (Friedrichs' extension) of a semi-bounded sym
metric operator possible, where the lower (upper) bound remains un
changed. 

Theorem 5.38. Let S be a semi-bounded symmetric operator with lower bound 
y. Then there exists a semi-bounded selj-acfjoint extension of S with lower 
bound y. If we define s(f, g) = < Sf. g) for f, g E D( S), and H. as above, then 
we have: The operator T defined by 

OCT) =D{S·) n H. and Tf = S·f for f E O(T) 

is a selj-acfjoint extension of S with lower bound y. The operator T is the only 
selj-acfjoint extension of S having the property O(T) C Hs. 

PROOF. By Theorem 5.37 there exists exactly one self-adjoint operator T 
with O( T) c H. and 

(Tf, g) =sU, g) = (Sf, g) for f E D(S) n D(T), g E O(S). 

y is a lower bound for T. By (5.23) we have 

O( T) = {f E H. : There exists an j E H with sU, g) 

=(j,g) forall gED{S)} (5.24) 

Tf = j for fED{ T) 

We can replace s(f, g) by (f, Sg) in (5.24): If we choose a sequence (f,,) 
from O(S) such that 11111 - fll.-+-O, then we obtain 

sU, g) = lim sUn' g) = lim (fn. Sg) = (f. Sg). 

Consequently, it follows that D(T) = O(S·)n H. and T= S·lo(T)' Because 
of the inclusions S c S· and O(S) c H. it follows from this that T is an 
extension of S. Let A be an arbitrary self-adjoint extension of S such that 
O(A) c H". Then A C S· and O(T) = O(S·) n H. imply that AcT, conse
quently A = T. 0 
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Our arguments so far enable us to study the operator product A * A, as 
well. If A E 8( H), H2), then we already know from Exercist: 4. I 9 that A * A 
is self-adjoint. 

Theorem 5.39. Let (HI> <. , .»)) and (Hz, <. , ')2) be Hilbert spaces and let A 
be a densely defined closed operator from H) into H2• Then A * A is a 
self-adjoint operator on HI with lower bound 0 (A * A is non-negative). 
D(A * A) is a core of A. We have N(A * A) = N(A). 

PROOF. As A is closed, D(A) is a Hilbert space with the scalar product 
<f, g)A = <Af, Ag)z + <f, g)I' and IlfilA ~ IIflll for allf E D(A). Therefore 
by Theorem 5.36 there exists a self-adjoint operator T with lower bound 1 
for which 

D( T) = {J E D(A) : there exists an j E HI such that 

<f,g)A=<j,g)1 forall gED(A)}, 

Tf=j for fED(T). 

On account of the equality <f, g) A = <Af, Ag)2 + <f, g»), this definition 
says that f E D(T) if and only if Af E D(A *) (i.e., f E D(A * A» and Tf= j 
=A*Af+ f. Hence it follows that T=A*A + 1, A*A = T-l, i.e., A*A is 
self-adjoint and non-negative. From Theorem 5.36 it follows tl'\at D(A * A) 
is dense in D(A) with respect to II . IIA' i.e., D(A * A) is a core of A. If 
f E N(A), then Af= 0 E D(A *) and A * Af= O. Therefore N(A) C N(A * A). If 
f E N(A * A), then II Afll2 = <A * Af, f) = O. Therefore N(A * A) c N(A), and 
thus N(A*A)= N(A). 0 

Theorem 5.40. Let A I and A2 be densely defined closed operators from H into 
HI and from H into H2, respectively. Then A r A I = A t A 2 if and only if 
D(A 1)= D(A 2} and IIA)fll = IIA2fll for all fE D(A I )= D(A 2}· 

PROOF. Assume that D(A)=D(A 2} and IIAtIli = IIAzfl1 for allfED(AI)' 
It follows from (1.4) in the complex case and from (1.8) in the real case 
that 

<A1f,AIg) = <A 2f,A 2 g) forall f,gED(A 1) =D(A 2). 

Then the construction of Theorem 5.39 provides the same operator for 
A =A 1 and A = A 2, consequently ArA 1 = AtA2' If this equality holds, then 
for aIlfE D(ArAI)= D(AtA2) we have 

IIAlfl12 = <ArAlf,f) = <AtA2f,f) = II A,JII2 

(here we have used the inclusions D(Ar AI)c D(AI) and D(AtA 2)c D(A 2»· 
By Theorem 5.39 the subspace D(A r A I) = D(At A 2) is a core of A I and A 2· 
As the A I-norm and the A 2-norm coincide on D(A r A I) = D(At A 2), it 
follows finally that D(A I) = D(Al) and IIA till = IIAzfll for all f E D(A I) 
= D(A 2). 0 
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EXERCISE 

5.37. Let H= L2(O, I). Then D= CI[O, I] (the space of continuously differentiable 
functions on [0, I]) is a dense subspace of H. The equality sU, g) = <I, g> + 
f'G)*g'G) defines a sesquilinear form on D such that 11111. ;;. II/II. The norm 
II . II. is not compatible with II . II· 

5.6 Normal operators 

A densely defined operator T on a Hilbert space H is said to be normal if 

OCT) =O(P) and IITfll = IIT*fll forall fED{T). 

Every self-adjoint operator is obviously normal. 

EXAMPLE I. Let Me Rm be measurable and let t : M~C be a measurable 
function. The maximal multiplication operator T induced by t (cf. Section 
4.1, Example 1 and Section 5.1, Example 2) is normal. By (5.1) we have 
OCT) = O(T*) and for f E OCT) we obviously have 

II Tfll2 = jlt(x)f(xW dx = f.lt(x)*f(x)12 dx = II T*fIl2. 
M M 

EXAMPLE 2. According to Section 4.6 an isomorphism U of a Hilbert space 
H onto itself is called a unitary operator on H. We have O( U) = O( U*) = H 
and II Ufll = II U*fll = IIfll for all f E H, i.e., every unitary operator on a 
Hilbert space H is normal. 

Proposition. 
(I) Every normal operator T is closed and maximal normal (i.e., for every 

normal operator N the inclusion TeN implies T';' N). 

(2) LeI T be densely defined and closed. Then the following assertions are 
equivalent: 

(i) T is normal, 
(ii) T* is normal, 

(iii) T* T = TT*. 
(3) If T is normal, then z + T is also normal for every z E K 

PROOF. 
(I) The T-norm and the T*-norm coincide on D(T). Since T* is closed, 

that T is closed follows from Theorem 5.1. If N is normal and TeN, 
then OCT) C DeN) = O(N*) c O(T*) = OCT). Therefore D(T) = O(N), 
and thus T= N. 

(2) The equivalences (i)~(iii) and (ii)~(iii) immediately follow from The
orem 5.40 with AI = T, A2 = T* and from Proposition (1). 
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(3) We have O«z + T)*) = O(z* + T*) = O(T*) = OCT) = O(z + T) and for 
all f E OCT) 

lI(z + T)f1l 2 = Izl211fll 2 + 2 Re <zf, Tf) + II Tflf 

= Iz*1211f1l2 + 2 Re <z*f, T*f) + II T*f1l2 

= lI(z* + T*)fIl2. 0 

Theorem 5.41. Let T be a normal operator. 
'(a) For every z E II< we have N(z - T) = N(z* - T*). 
(b) If Zl' Z2 are distinct eigenvalues of T and fl,f2 are corresponding eigen-

vectors, then f l 1..f2' 

PROOF. 

(a) The statement is evident, as z - T is normal. 
(b) By part (a) we have 

(Zl - z2)<fl,J2) = <Zt!I,J2) - <iI' z2f 2) 

= <T*fl,J2) - <fl' Tf2) == o. 
Consequently <fl,f2) =0. 

Theorem 5.42. Let T be normal and injective. Then we have: 
(i) R(T) is dense, 
(ii) T* is injective, 

(iii) T -I is normal, 
(iv) R(T) = R(T*). 

o 

PROOF. R(T) is dense because of the equalities R(T).!. = N(T*) = N(T) = 
{OJ. Consequently, T* is injective, and we have (T*)-I=(T- I)*. There
fore it follows that 

(T-I)*T- I = (T*)-IT- 1 = (TT*)-I = (T*T)-l 

= T-1(T*)-1 = T-1(T- 1)*. 

i.e., T - I is normal. It also follows that 

Corollary. If T is a normal operator, then R(z, T) = (z - T)-I is normal for 
all z t1. alT). This holds in particular for a self-adjoint T. 

Theorem 5.43. If T is normal, then 

p( T) = {z Ell<: (z - T) is continuously invertible} 

= {z Ell<: R( z - T) = H}, 

(Jp(T) = {ZEII<: R(z- T)~H}. 

(Compare with Theorems 5.23 and 5.24 for self-adjoint operators.) 
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PROOF. If z E peT), then (z - T) -I E B(H) (in particular, z - T is continu
ously invertible). If z - T is continuously invertible, then (as T is closed) 

R( z - T) = D( (z - T) - 1) = D( (z - T) - I) = R( z - T), 

and 
R{z - T)..l = N(z* - T*) = N(z - T) = {O}. 

Consequently R(z - T) = H. If R(z - T) = H, then 

N(z - T) =N(z* - T*) =R{z - T)..l = {O}, 
i.e., z - T is injective. As T is closed and R(z - T) = H, it follows that 
(z - T)-I E B(H), i.e., z E p(T). 

If zEo/T), then R(z-T)..l=N(z*-T*)=N(z-T)*{O}. Therefore 
R(z - T)* H. If R(z - T)* H, then N(z - T) = R(z - T)..l =1= (O}. There
fore z E op(T). 0 

Theorem 5.44. If T E B( H) is normal, then the spectral radius r( T) equals 

II Til· 
PROOF. By Theorem 4.46 we have for all T E B(H) 

IIT*TII = sup {1<T*Tf,f) :fEH,·lIfll ~ l} 

= sup {II Tfl12 :fEH, IIfll ~ I} = IITlf 
In particular, II T211 = II T112 for a self-adjoint T. We obtain by induction 
that for a self-adjoint T 

II T2"11 = II T1I2" for all n E N. 
Let T now be normal. Since reT) ~ II Til always holds, we only have to 
prove that reT) > /I T/I. Because of the equality reT) = r(T*) and the 
self-adjointness of TT* we have 

r(T)2 = r(T)r(T*) = lim {IIT2"IIII(T*tll}I/2" 
n ..... oo 

;;;. lim IIT2"{T*(1I1/2" = lim II(TT*)2"U I / 2" 
n~oo n~~ 

= IITT*U = IITII2. 0 

EXERCISES 

5.38. If T E B(H), then there exist uniquely determined self-adjoint operators 
T., T2 E B(H) such that T= T. + iT2. We have T. = HT+ T*), T2 = (1/2i) 
(T - T*). T, is called the real part of T and T2 is called the imaginary part of 
T. The operator T is normal if and only if T. and T2 commute, i.e., if and 
only if T1T2= T2T •. 

5.39. Let T be an operator on the Hilbert space H and let M be a closed subspace 
of H. The subspace M is said to be invariant under T if T(M n D(T» c M. If 
M and M1. are invariant under T and D(T)=[MnD(T»)+[M..lnD(T»), 
then M is called a reducing subspace of T. 
(a) If M is a reducing subspace, then M 1. is a reducing subspace, also. 
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(b) If T E B(H), then M is a reducing subspace of T if and only if M is 
invariant under T and T*. 

(c) M is a reducing subspace of T if and only if TP:) PT for the orthogonal 
projection Ponto M. 

(d) If T is densely defined, D(T)= O(T*), and M is a reducing subspace of T, 
then M is a reducing subspace of P. 

5.40. Let T be a normal operator on H. 
(a) If M is a reducing subspace of T, then M is also a reducing subspace of 

T*. 
(b) We have R(T)": R(P). The restriction of Tonto N(T)..L n O(T) is an 

injective normal operator on N( T)..L. 
Hint: Theorem S.42. 

5.41. Let T be a bounded normal operator on H. 
(a) If 'A E o( T), then there is a sequence (jn) from H such that IIfnll = I and 

('A - T)f,,-+O. 
(b) In complex case we have II Til = sup Wf Tf)1 : f E 0(1'), IIfll = I}. 

5.42. If T" and T are bounded normal operators such that Tn":~ T, then we also 
have r:~ T*. 

Hint: T: ~ P and II T:fll-+ II P fll for all f. 

5.43. Assume that H= $nENHn> Pn is the orthogonal projection onto H", and Tn is 
an operator on Hn. The orthogonal sum T= $"ENTn of the operators T" is 
defined by 

D(T) = {fEH: P"JED(T,,), ~ IIT"PJII2< oo}, 
nEN 

Tf = ~ TnP"J for f E D(T). 
nEN 

(a) If all Tn are self-adjoint (normal, closed), then T is also self-adjoint 
(normal, closed). 

(b) If On is a core of Tn(n E 1\1), then L{ On : n E I\I} is a core of T. 
(c) If each Tn is bounded and sup {II Tn II : n E I\I} < 0<:', then T is also 

bounded and II Til = sup {II Tn II : nEI\I}. 
(d) If all Tn are non-negative, then T is also non-negative. The Friedrichs 

extension of T is the orthogonal sum of the Friedrich!: extensions of Tn. 

5.44. (a) Let A be a bounded self-adjoint operator and P an orthogonal projection 
in a Hilbert space H. Then PAP is self-adjoint. (See also exercise 6.13 for 
unbounded A.) 

(b) A corresponding result for normal operators does n(H hold in general. 
Counterexample is 

H= C3 : N = U o I) (0 o 0, P = 0 
I 0 0 

o 
1 
o 

N is unitary with Nel = e2, Ne2 = e3 and Ne3 = el; P is the projection onto 
L(e2' e3). For dim H=2 such an example cannot exist. 

(c) If N is normal and P is an orthogonal projection with PN c NP, then 
P N P is also normal. 
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6.1 Finite rank and compact operators 

Let HI and H2 be Hilbert spaces. An operator T from HI into H2 is said to 
be of finite rank (of rank m) if R(T) is finite-dimensional (m-dimensional). 

Theorem 6.1. Let T be an operator from HI into H2 such that D(T) = HI' The 
operator T is a bounded operator of rank m if and only if there are linearly 
independent elements fl' ... ,fm from HI and linearly independent elements 
g" ... ,gm from H2 such that 

Then 

m 

Tf = ~ <t,j)~ for all f E HI' 
)-1 

m 

T*g = '"i. <~, g)t for all g E H2, 
)-1 

(6.1) 

(6.2) 

and II Til "~j!..,lltll II gjll. The operator T is of rank m if and only if T* is of 
rank m. There is no loss of generality in assuming that either {fl' ... , fm} or 
{g" ... , gm} is an orthonormal system} 

PROOF. If T has the form (6.1), then R(T)c L(gl" .. , gm). For every 
Jo E {l, ... , m} there exists an hjo E LUI' ... ,fm) such that "io =I: 0, and 
"iol.t forj=l:Jo' Since <to' hjo ) =1:0 and Thjo=<to' "io)8}o' it follows that all 
8} are contained in R(T). This implies R(T) = L(g" ... , gm); hence R(T) 

IFrom Theorem 7.6 it follows that both {fl' ... ,fm} and {81' ... ,8m} may be chosen to be 
orthonormal if suitable scalar factors are added, i.e., Tf = 'i.j_ISj<Jj,f>~. 

129 
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is m-dimensional. Because of the inequality 

m 

IITfll oro; ~ l<jj,J)llIgjll oro; 11111 ~ Iljjllllgjll, 
1 j-1 

T is bounded and II Til oro; ~j_ .lljjll II ~II. 
Assume T bounded, dim R(T) m, gl"'" gm} is ONB of 

R(T), andjj= T"'~ forj= 1, ... , m. Then for allfE HI we have 

m m 

Tf = ~ gp TJ>~ = ~ <jj, f)gr 
j- j-

remains show that the elements fl' ' .. , are linearly independent 
Let us assume that this does not hold. There is no loss of generality in 
assuming fl Then 

m m 

f)gj ~<jj,f>(alg,+~), f HI' 
j-2 

would follow from this that R(T) is at most (m I)-dimensional, which 
contradicts the assumption. If T has the form (6.1), then for all f E HI> 

H2 
m m 

<g, TJ) = ~ <Jj,J)< gj) = < ~ <~, g)Jj, f). 
I I 

Hence (6.2) ho14s for T"', If is of rank then (6,2) implies that T'" of 
rank m, too. The opposite direction follows the same way. Our construc
tion shows that { . , , ,gm} can be chosen to be an ONS. If the same 
reasoning is applied to T", then we obtain that {fl' ... ,fm can be chosen 

be ONS. 0 

EXAMPLE 1. If Ul' ' .. ,jm} and { .. , , gm} are orthonormal systems in 
and H2, respectively, and ttl' . , . , J.tm IK, then 

defines an operator T E B(HI , H2) of rank m with TIl max 1 J.tA : 
... , m}. We only have to prove the last statement For allJE H 

m 

II T1112 = L 11LJ121<'~, 1)12 OS;; 111112max {I ILl : j = 1, ... , m }. 
)-1 

Therefore II Til max {II;I : j = m}, If jo {I" ., is chosen 
such that 11101 = max {I J.tjl : j = , ... , m}, then 11 1hoil 11-;01; thus Til 
lJ.tjJ 

Let HI and H2 be Hilbert spaces. An operator T from HI into H2 is said 
to compact if every bounded sequence (fn) from D(T) contains 
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subsequence Un ) for which (Tfn ) is convergent (Le., T maps bounded sets 
k k 

onto relatively compact sets; cf. Exercise 6.1). 

Theorem 6.2. Every compact operator is bounded. If T is compact, then f is 
also compact. 

PROOF. Assume that T is not bounded. Then there exists a sequence (fn) 
from D( T) with the properties 1If" II "I and II Tfn II ;;;. n for all n EN. 
Therefore, no subsequence Un ) has the property that (Tfn ) is convergent; 

• k 

thus T is not compact. Let T be compact. If (fn) is a bounded sequence 
from D( T) = DC T), then there exists a sequence (gn) from D( T) such that 
II gn - In II "n -). Since T is compact, there_exists a subsequence (gn) of 
(gn)' for which (Tgn) is convergent. Then (Tfn) is also convergent because 

of the inequality II fin. - Tgnk II "n -)11 Til· 0 

On the basis of Theorem 6.2, together with Exercise 4.7, there is no loss 
of generality in assuming that compact operators from H) into H2 always 
belong to B(HIt H2). 

Theorem 6.3. Let HI and H2 be Hilbert spaces. An operator T E B(HIt H2) is 
compact if and only if Tfn _0 for every weak null-sequence (!,.) from HI' 

PROOF. Let T be compact. It is sufficient to prove that every weak 
null-sequence (!,.) from HI has a subsequence (fn) such that Tin. _0. Let 
(fn) be a weak null-sequence from HI' As T is compact, there exists a 
subsequence (fn ) such that (Tf" ) is convergent; say g = lim T1.n . As 1.n ~ 0, 

k k k If 

by Theorem 4.27 (ii) and Theorem 6.2 it follows that Tfn ~ 0, and thus 
g = lim Tf "" w - lim T' = 0. k Jnk Jnk 

Let T now send every weak null-sequence from HI to a null-sequence. 
Consider a bounded sequence (fn) from H). By Theorem 4.25 there exists a 
weakly convergent subsequence (fn) of (fn); say fn• ~f. Then fn• - f~O 
and T(!,.. - f)_0, by assumption. Therefore (Tfn) is convergent. Conse
quently, T is compact. 0 

Proposition. Let H be an infinite dimensional Hilbert space. If T E B(H) is 
compact, then ° E aCT). 

PROOF. If (en) is an arbitrary orthornormal sequence in H, then Ten_O. 
Consequently, T is not continuously invertible. 0 

Theorem 6.4. Let H .. H2 and H3 be Hilbert spaces. 
(a) If S E B(H2' H3) and T E B(HI' H2), and one of these operators is 

compact, then ST is compact. 
(b) If T), T2 E 8(H), H2) are compact and a, bEll<, then aTI + bT2 is com

pact. 
(c) T E B(H), H2) is compact if and only if T* T is compact. 
(d) T E B(HI' H2) is compact if and only if T* is compact. 
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sequence of compact "",,"'rf""n' from B( HI> H,) Til 
some T E B( HI> H1), 

be compact. If weak null-sequence by 
Theorem 4.27 (ii) the sequence (Tfn) is also a weak null-sequence. As S 
is compact, then STfn ~O; hence ST is compact. Now let T be 
compact. Then Tfn~O for every weak null-sequence (jn) from HI' Since 
S is continuous, we also have STJ" ~O. Therefore ST is compact in this 
case, also. 

HI> then TI 
compact, then the 

compact. If (J,,) is 

Consequently, T is compact. 

Hence (aTI 
is also compact 

nun-sequence in HI, 

(d) If T is compact, then (T*)* T* = TT* is also compact by part(a). Hence 
T* is also compact by part(c). 

(e) Let (jn) be a weak null-sequence from HI' The sequence (jn) is then 
say Ilf"II"; C for We show that for 

there exists an that II Tf,,1i < ~ Let 
given. Since II T" exists an mo 

II C - I 
~ . 

Since Tmo is compact, there exists an no E N for which 

II TmJnll ..; i~ for all n > no' 

It follows from this that for all n > no 

by Boo(Hh H2) 

will be justified 
Boo(H). 

o 

Proposition. It follows from Theorem 6.4 that Boo(H) is a closed two-sided 
ideal of B( H). 

Every rank I bounded operator from HI into H2 is compact (because T 
has the form Tf = < g, f)h with g E HI' hE H2; for every weak null-
sequence (j,,) have TJ" = < g, Theorem 6.4(b) 
then every finite is also compact, Theorem 6.4(e) 
is every operator limit, with respect of B(HI> H2), 

a sequence of operators. Actually, all the compact 
operators. 
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Theorem 6.5: An operator T E B(H), H2) is compact if and only if there 
exists a sequence (Tn) of finite rank operators from B(HJ, H2) for which 
II Tn - TII~O. For every compact operator T the subs paces N(T).!. and R(T) 
are separable. 

PROOF. One direction has already been proved. Let T now be compact. 
First we show that N(T).!. is separable. Let {ea : a E A} be an ONB of 
N( T).!.. As T is compact, Tea" ~O for every sequence (a,,) from A such that 
a" =foam for n =l=m. It follows from this that for every E > 0 there exist only 
finitely many a E A such that II Tea II > E. Consequently, the set A is at most 
countable, i.e., N(T).!. is separable. 

Let {e" : nEI'\I} be an ONB of N(T).!. (if N(T).!. is finite dimensional, 
then the following reasoning is simpler), and let Pm be the orthogonal 
projection onto L( e I' ... ,em)' Then Pm ~ P, the orthogonal projection 
onto N(T).!.. The operators Tm = TP m are of rank at most m (T mf = ~'::_)< 
e",J)Te,,); thus they are compact. For every m there exists anfm E H such 
that Ilfmll=1 and I/(T-Tm)fmll>IIT-TmIl/2. As «P-Pm)fm,g)=< 
fm' (P - Pm)g)~O, it follows that (P - Pm)fm ~O. Therefore (T- Tm)fm = 
T(P - Pm)fm~O, since T is compact. Hence 1/ T- Tmll ..; 211(T- Tm)fmll~ 
0, i.e., Tm~T. If {g,,: nEI'\I} is a countable dense subset of N(T).!., then 
{Tg" : n E I'\I} is dense in R( T). Therefore R( T) is also separable. 0 

Now we want to study the spectrum of a compact operator. For this we 
need the following theorem. 

Theorem 6.6. Assume that H is a Hilbert space, T E Beo( H), A ElK, A =1= O. 
Then R(A - T) is closed. 

PROOF. Let g E R(A - T). Then there exists a sequence (f~) from H such 
that gIl = (A - T)f~~g. If /" is the orthogonal projection of f~ onto 
N(A - T).!., then gIl = (A - T)f". If the sequence (fn) is not bounded, then 
we can assume that 1/ fn II ~ 00 (since this holds for some subsequence of 
(f,,». For hn = IIfnll- % we then have II hn II = I and (A - T)hn~O. As Tis 
compact, there exists a subsequence (h"t) of (h,,), for which (Th,,) is 
convergent. Then the sequence hn• = A - (I//". II-)g". + Thn) tends to an 
element h E H. Because of the relations h" E N(A - T).!. and II h" II = I we 
have hE N(A - T).!. and Ilhll = l. On the other hand, (A - T)h = Jimk~oo ('A 
- T)h". = 0; thus h E N('A - T). This is a contradiction. 

The sequence (f,,) is therefore bounded. Since T is compact, there exists 
a subsequence (f,,) of (f,,) for which (T/,,) is convergent. Then the 
sequence In. = 'A -I( gn. + Tfn) also tends to an element f E H, and we have 

g = lim ('A- T)fn = ('A- T)f E R('A- T). 
k-4OO • 

o 

Theorem 6.7. Let H be a Hilbert space over IK, and let T E Boo(H). We have 
a(T)n (K\{O}) = a/T) n (K\ {O}). If H is infinite dimensional, then aCT) = 
ap(T)u {OJ. The operator T has at most countably many eigenvalues that can 
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cluster only at O. Every non-zero eigenvalue has iinite multiplicity. The 
number A =1= 0 is an eigenvalue oi T if and only if A * is an eigenvalue oi T*. 

PROOF. 0 E (J(T) by the proposition following Theorem 6.2, if H is infinite 
dimensional. To prove (J( T) n (IK \ {O}) = (Jp n (IK \ {O}), it is sufficient to 
show that if A =1= 0 is not an eigenvalue of T, then Af£a(T). For this,let us 
assume that A =1= 0, N(A - T) = O. Since R(A - T) is closed, A - T is a 
bijective mapping from H onto the Hilbert space R(A - T). In what follows 
we show that R(A - T) = H. From this we can infer that A E p( T), i.e., 
A f£ (J(T). 

Let us now assume that R(A - T) =1= H. Define Ho, and Hn for n ;.. I by 
the equalities Ho = Hand HII = R«A - T)"). Then for n E N the subspace 
H,,+I is a closed subspace, strictly smaller than H" (the subspace H,,+I is 
closed, because (A - T) - I is continuous and H" is closed; from Hllo = HIIO+ I 
it would follow that H= (A - T)-"OH"o =(A - T)-"oH"o+1 = HI)' If for every 
n E N we choose an element i" E Hn _ I e Hn such that II ill II = I, then (f,,) is 
an orthonormal sequence. Since T is compact, Tin ~o. On the other hand, 
for all n E N 

Tin = Ain - (A - T)f". 

Here (A - T)in belongs to H,,; consequently it is orthogonal to in' There
fore, 

II Tf,,11 ;.. IAllli,,1I = IAI· 

This contradicts the fact that Ti,,~O. Hence R(A - T) = H. 
N ow we show that the multiplicity of every non-zero eigenvalue A is 

finite. If we had dim N(A - T) = 00, then there would exist an orthonormal 
sequence (f,,) from N(A - T). Since T is compact, we would then have 
Tf,,~O, which contradicts the equalities II Ti,,11 = IAlllill1l = 1.\1. 

In the next step we show that the eigenvalues can cluster only at O. It 
also follows from this that there are at most countably many eigenvalues. 
Let us assume that there exists a sequence (>-..,) of pairwise different 
eigenvalues of T such that A" ~A =1= O. Then there exists a sequence (1n) 
from H such that lif" II = 1 and (An - T)in = O. We know from linear algebra 
that the family Un : n E N} is linearly independent. Let Hn = LUI' ...• in) 

w 
(Ho = {O}). gn E Hn e H,,_I such that II gnli = I for n E N. Then gn ~ 0; 
hence Tg,,~O. On the other hand, for all n E N 

Tgn = >-..,gn - (An - T)gn. 

where (>-.., - T)gn E Hn - I, since it follows from the equality gn = ~j_Ia,,/j 
that 

11 n-I 

(>-.., - T)gn = ~ anj(An - T)h = ~ a,iAn -A)h E Hn- I· 
.I-I j~1 
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Because of the relation g" 1- H" _) we therefore have "Tg" II ;> IA"I, which 
contradicts the fact that Tgn ~O. 

The last assertion follows from the equalities a( 7'*) = a( T)* and (I( 1'*) n 
(K\{O}) = (lp(T*)n (K\{O)) (the last equality holds, as T* is also com
pact). 0 

Theorem 6.8. Let H be a Hilbert space and let T E Boo(H). If A~O is an 
eigenvalue of T (hence A* is an eigenvalue of T*) then N(A - T) and 
N(A* - T*) = R(A - T)l. have the same dimension. 

PROOF. We have dim N(A - T)" dim N(A* - T*) or dim N(A* - T*)" 
dim N(A - T). We treat the first case. There exists then an isometric 
mapping V of N(A - T) into N(A * - T*) = R(A - T)l.. Let P denote the 
orthogonal projection onto N(A - T). The operator P is of finite rank, 
hence compact. For the compact operator T) = T + VP we then have 
N(A - T) = to}, i.e., A is not an eigenvalue for T). By Theorem 6.7, A* is 
then not an eigenvalue for Tr, i.e., to} = N(A* - Tn= R(A- T)l. = 
(R(A - T) ED R( V» 1. • Consequently, R( V) = R(A - T)l., and thus 
dim N(A - T) = dim R( V) = dim R(A - T)l. = dim N(A * - T*). The other 
case can be treated similarly. 0 

EXERCISES 

6.1. Let H be a Hilbert space. A subset A of H is said to be compact provided that 
every sequence (In) from A has a subsequence that is convergent in A. The 
subset A is said to be relatively compact if A is compact. 
(a) A is compact if a!1d only if every open cover of A contains a finite cover of 

A. 
(b) An operator T from HI into Hz is compact if and only if the set 

T A = { Tf : f E A} is relatively compact for every bounded subset A of 
D(T). 

(c) A subset A of Iz is relatively compact if and only if it is bounded and for 
every E > 0 there exists an no E N such that for all f = (fn) E A we have 
I~_nolJnlz.;;; (. 

(d) Let A be a set of continuous functions defined on IRm, having the following 
properties: A is bounded in the sense of L2(lRm ), A is equicontinuous on 
every compact subset of IRrn, and for every £ > 0 there exists an r ;;;. 0 such 
that f Ixl;;.,I!(x)lz dx .;;; ( for all f E A. Then A is a relatively compact 
subset of L2(lRm). 

6.2. (a) Let (tn) be a null-sequence from C. The equalities D(T) = 12 and Tf= (tnfn) 
for all f = Un) E 12 define a compact operator T E B( 12), 

(b) Let t : [0, I} X [0, 1 )~C be continuous. The equalities D( T) = L2(0, 1) and 
Tf(x) = fbt(x,y)f(y)dy for all fELz(O, 1) define a compact operator 
T E B(LiO, I». 

6.3. If T is a compact operator on the Hilbert space H, then the set T {f E H : Ilfll 
.;;; I} is compact. 
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6.4. A sesquilinear form s(. , .) defined on a Hilbert space is said to be compact if 
w w 

fn ~ 0 and gn ~ 0 imply s(fn' gn)~O. 
(a) Every compact sesquilinear form is bounded. 
(b) A sesquilinear form is compact if and only if the operator induced by it 

(cf. Theorem 5.35) is compact. 

6.5. (a) Let T be a compact operator on H. For every X E 11<, X * 0 we have the 
Fredholm alternative: Either the equations (X - T)f = g and (X· - T·)h = k 
are uniquely solvable for all g, k E H or the homogeneous equations 
(X - T)f = 0 and (X· - T·)h = 0 have nontrivial solutions. 

(b) The spaces of solutions of the two homogeneous equations have the same 
dimension, and (A - T)f = g is solvable if and only if g is orthogonal to 
every solution h of the equation (A· - T·)h = O. 

6.6. Let H be a separable Hilbert space. 
(a) If (fn) is an increasing sequence of finite rank projections on H sUfh that 

Pn ~ I, then Pn TPn ~ T for every compact operator T 011 H. 
(b) Boo(H) is a separable subspace of B(H) (cf. Exercise 4.8). 

s . 
6.6. Let An' A E 8(H2' H3) and BE 8(HI' H2)' If An ~A and B IS compact, then 

AnB~AB. 

6.2 Hilbert-Schmidt operators and Carleman 
operators 

We begin by studying one of the most important classes of compact 
operators, the class of Hilbert-Schmidt operators. Let HI and H2 be Hilbert 
spaces. An operator T E B(H .. H2) is called a Hilbert-Schmidt operator if 
there exists an orthonormal basis {ea : a E A} of HI such that 

Theorem 6.9. An operator T E B(H .. H2) is a Hilbert-Schmidt operator if 
and only if r is a Hilbert-Schmidt operator. Then 

( ) 1/2 ( )1/2 IITII..;; L IITfal1 2 = L IIT·ep1l2 < 00 
aEA ~EB 

(6.3) 

for arbitrary orthonormal bases {fa : a E A} of HI and {ep : {J E B} of H2• 

The common value of the square roots in (6.3) is called the Hilbert
Schmidt norm of T and is denoted by III Till. We have: II Til ..;; III TIll = 
IIIT*III, because of (6.3). The set of Hilbert-Schmidt operators is denoted 
by Bz(HI , H2) or B2(H) (for the justification of the index 2, cf. Section 7.1). 
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It is not hard to show that ~(Hh Hz), equipped with the Hilbert-Schmidt 
norm, is a Hilbert space (d. Exercise 6.11). 

PROOF. Let T E 8(HI' H2) be a Hilbert-Schmidt operator and let {ea : 

a E A} be an ONB of HI such that LII Tea 112 < 00. If {eb : f3 E B} is an 
arbitrary ONB of Hz, then 

~ II T*epW = ~ ~ 1<T*eb, eu )1 2 = ~ ~ I<ep, Tea)l z 
PES PES uEA aEA PES 

i.e., T* is a Hilbert-Schmidt operator. One can prove the converse in the 
same way and obtain the equality sign in (6.3) at the same time. If 
{eb : {3 E B} is an ONB of Hz, then for aIlfE HI 

II Tfll2 = ~ I<eb, Tf)l z ~ IIfll2~ IIT*ebll 2• 
P p 

Consequently II TII2 ~ ~f.lll T*epll2. Hence, (6.3) is completely proved. 0 

Theorem 6.10. An operator S from HI into Hz is the restriction of a 
Hilbert-Schmidt operator T if and only if S is closable and D(S) contains an 
orthonormal basis {ey : y E r} such that LyErilSeyll2 < 00. Every Hilbert
Schmidt operator is compact. 

PROOF. Let T E B(HI' Hz) be a Hilbert-Schmidt operator and let SeT. 
Then S is bounded, hence D(S) = D(S). Consequently, D(S) is a Hilbert 
space, so it contains an ONB {ey : y E F}. Since {ey": y E r} is contained 
in an ONB of H .. it follows by Theorem 6.9 that LIiSeyf = ~II TeyliZ < 00. 

Let S now have the given property. We show that S is compact (the 
compactness of an arbitrary Hilbert-Schmidt operator follows from this). 

- w 
Let (J,,) be in D(S) and assume that /" ~O, I': > O. The subset {ey : <ey,fn) 
*0 for some n E N} of {ey : y E r} is at most countable; we denote it 
simply by {el' e2' ... }. We have 

fn = ~ <11,fn)ej and ~ IISI1112 < 00. 
j j 

Because of the inequality 

1 1<ep 1,,)IIISeJ II ~ { 71<ep/")121 II S I1W r/2 
= /11,,/1 { 1 II Se)12 r/2, 

the series ~/ty,fn)SI1 is convergent. Since S is closed, it follows that 

Sfn = ~ <ep fn)SI1' 
j 
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It follows from this that for all N E Nand n E N, 

IISf,.1I <; ~ l(ep f,.)IIISe;1I 
J 

<; ~ l(eJ,f,.)IIISe;1I + { ~ l( ep f,.)1 2 ~ II seJ11 2} 1/2 
J<N J>N j>N 

<; ~ l(epf,.)IIISeJII + II f,. II { ~ IIseJ1I2} 1/ 2, 
J<N J>N 

Because of the inequality ~JII St111 2 < 00 and the boundedness of (1If,.lI) 
there exists an No EN such that 

Ilf,.ll{ ~ IIseJ1I2 } 1/2 < 4( forall n E N. 
J>No 

Since fn ~ 0, there exists an no E N such that 

~ l(epfn)IIISeJIl < t( for all n:> no' 
j<No 

It follows from this that II Sfn II « for n ;;;a no, hence that Sj,1~0, i.e., that S 
is compact. 

Since the compact operator S is continuous, we have D(S)=D(S). We 
define an extension T of S by the equalities D(T) = HI and 

T(j + g) = Sf for f E D(S), g E O(S)l .. 

T is a Hilbert-Schmidt operator, since TEB(HI' H2) with IITII=IISII 
(cf. Exercise 4.7) and if {gp : f3 E B} is an ONB of D(S)L, then {ey : 'Y E 
T} U {gp : f3 E B} is an ONB of HI such that 

~ II Teyl12 + ~ II Tgp ll 2 = ~ II Seyl1 2 < 00. 0 
Y fJ Y 

Corollary. Let T E B(HI' H2). S E B(H2• H3). and let one of these operators 
be a Hilbert-Schmidt operator. Then ST is a Hilbert-Schmidt-operator. 
B( H2) is therefore a two-sided ideal of B( H). 

PROOF, Let T be a Hilbert-Schmidt operator and let {e" : a E A} be an 
ONB of HI' Then 

aEA aEA 

If S is a Hilbert-Schmidt operator. then T* S* is a Hilbert-Schmidt 
operator using Theorem 6.9 and what we have just proved. Hence ST = 
(T* S*)* is also a Hilbert-Schmidt operator. 0 

Now we return to our earlier definition of a Hilbert-Schmidt operator 
(cf. Section 4.1. Example 3). 
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'Theorem 6.11. Let MI and ~ be measurable subsets of RP and IR', 
respectively2. The operator T E B(L2(M1). L2(~» is a Hilbert-Schmidt oper
ator if and only if there exists a kernel K E L2(M2 X MI ) such that 

Tf(x) - J. K(x,y)f(y) dy almost everywhere in M2,f E L2(M1). (6.4) 
M. 

The a4/o;nt operator T* ;s then induced by the aefjo;nt kernel K+(x,y)
K(y, x)'. 

PROOF. If T is of this form, then T E B(L2(M.), ,L2(M2», by Section 4.1, 
Example 3. If {en: n EN} and {1m : mEN} are orthonormal bases of 
L2(M1) and ~(~), respectively, then {gnm : (n, m) E N X N} is an OND of 
L2(M2 X M1), where gnm(x, y) - fm(x)enCy)' (ct. Theorem 3.8). Hence 

~ II Ten 112 - bnl(Ten,fm>12 - ,tm!fM3fM.K(X,y)·ell(Y)· dyfm(x) dXr 
- ~ I(K, gllm>12 ... IIKII2 < 00, 

lI,m 

i.e., T is a Hilbert-Schmidt operator. 
Let T now be a Hilbert-Schmidt operator, and let ell' fm and gllm be 

defined as above. Let us define cllm by 

Cllm - (fm. Tell) for (n, m) E N X N. 
Then 

so there exists a K E L2( M2 X M1) such that 

(gllm' K) - cllm for all (n, m) E N X N. 

If To denotes the operator induced by K in the sense of (6.4), then with 
h(x,y)-g(x).r(y) we have for allfE L2(M.), gE L2(M2) that 

<g, To!) - J. g(x)* J. K(x,y)!(y) dy dx 
M3 M. ' 

lI,m lI,m 

Hence T- To. o 
2 M. and M2 can be replaced by arbitrary measure spaces in most cases. Sometimes we have 
to assume that the ~ are a-finite. 
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Theorem 6.12. Let T be an operator from a Hilbert space H into L2(M). 
Then the following assertions are equivalent: 

(i) T is the restriction of a Hilbert-Schmidt operator, 
(ii) there exists a function k : M~ H such that II k( . )11 E L2( M) and 

Tf(x) = <k(x),f> almost everywhere in M, f E D(T), 

(iii) there exists a function K E L2( M) such that 

I Tf(x)1 < IIfIlK(x) almost everywhere in M, f E D(T) 

(of course, the sets of exceptional points in (ii) and (iii) depend on f and on the 
choice of the representative of Tf.) 

PROOF. (i) implies (ii): Let T C S and let S E Bz(H, L2(M». We show (ii) 
for the operator S. Since S is compact, N(S).L is separable (Theorem 6.5). 
Let {e l , e2, ••• } be an ONS of N(S).L. Then 

L !.ISe,,(x)12 dx = L IISe,,1I2 < 00; 
" M n 

consequently, by B. Levi's theorem, L n ISen(x)1 2 < 00 almost everywhere in 
M and f M~nISen(x)12 dx < 00. Hence we can define the function k : M~H 
by the formula 

k(x) = {o~ (Sen(x»'"en if 

otherwise. 

With this function k we have for all f E H that 

<k(x),f> = L <en,J)Se,,(x) = Sf(x) 

" 
almost everywhere in M. Because of the equality IIk(x)1I2 ,= L"ISe,,(xW, the 
function IlkOIl belongs to L2(M). 

(ii) implies (iii) by taking K(X) = IIk(x)lI. 
(Iii) implies (i): It follows from (iii) that 

for all f E D( T). So T is bounded. f also satisfies (iii). This can be seen in 
the following way. For every f E o(f) = D( T) there exists a sequence (fn) 
from D( T) such that fn ~ f; therefore also Tfn ~ ff. By Theorem 2.1 there 
exists a subsequence (f,,) such that Tf".(x)~ ff(x) almost everywhere. 
Hence 

Iff(x)1 = lim ITf" (x)1 < lim IIf" IIIC(x) = IlfIlIC(x). 
k-+oo· k-+oo· 
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almost everywhere. This holds also for the operator S E B(H, L2(M» 
defined by 

S(f+g) = TJ for JED(T),gED(T).L. 

We show that S is a Hilbert-Schmidt operator and IIISII12 < J MIK(XW dx. It 
is obviously sufficient to show that 

n 

L II Sej ll2 < !.IK(X)12 dx for every finite ONS {e" ... , en} 
i_I M 

in H. Let Sty( • ) be an arbitrary (however, in what follows fixed) representa
tive of Sej . Let us define A : L(e\> ... , en)~L2(M) by the equality 

(A(~ ajej))(x) = ~ aiS~(x), 

Then A = SIL(el .. "", en) in the sense of L2(M). Since the set Lr(el , ••• , en) of 
linear combinations of el> ... , en with rational coefficients is countable, 
there exists a subset N of M of measure 0 for which 

/AJ(x)/ < IIJIIK(X) for all x E M\N,j E L,.(e l , , •• , en)' 

If J= "2.'J_laj~ E L(e\, ... , en)' and we choose rational sequences (ajk)kEN 
so that ajk~aj as k~oo, then withJk =~j-l ajkej it follows that 

for all x E M\ N. Consequently, 

/AJ(x)1 < IIJIIK(X) for all x E M\N,j E L(el' ... ,en)' 

For every x E M\ N the mappingJl-i-AJ(x) is a continuous linear functional 
on L(e\, ... , en) whose norm is not greater than K(X). Hence there exists a 
k(x)E L(el"'" en)c H such that IIk(x)1I <K(X) and 

AJ(x) = <k(x),j) for x E M\N,J E L(el" .. ,en)' 

It follows that 

f II Aej l1 2 = f. f I<k(x), ~)12 dx = !.lI k (x)1I 2 dx < !.IK(XW dx. 0 
j-I Mj_1 M M 

A linear operator T from a Hilbert space H into L2(M) is called a 
Carleman operator if there exists a function k : M~H such that for all 
IE D(T) 

TJ(x) = <k(x),j) almost everywhere in M. (6.5) 

By Theorem 6.12 every Hilbert-Schmidt operator from H into L2( M) is a 
Carleman operator. " 

A function k: M-+H is said to be measurable if the function 
<k(·), I) : M~ IK, xl-i-<k(x),j) is measurable for every f E H. If T is a 
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Carleman operator and k is an inducing function of T (in the sense of 
(6.5», then the function < k( . ), f) is measurable for all f E D( T). This 
obviously also holds for all f E D( T). If P denotes the onhogonal projec
tion onto D(T), then <Pk(' ),j) = <k('), Pf) is therefore measurable for 
every f E H, i.e., Pk(·) is measurable, and for all f E D(T) 

Tf(x) = <Pk(x),j) almost everywhere in M. 

Consequently, there is no loss of generality in assuming that k is measur
able. 

If k : M~H is measurable, then the equalities 

D(Tk ) = {J E H : <k(· ),f) E L2(M)}, 

TJ(x) = <k(x),j) almost everywhere in M,J E D(Tk ), 
(6.6) 

define an operator Tk from H into L2(M). The operator Tk is called the 
maximal Carleman operator induced by k. An operato:r is a Carleman 
operator if and only if it is the restriction of a maximal Carleman operator. 

Theorem 6.13. 
(a) Every Carleman operator is closable. The closure of a Carleman operator 

is a Carleman operator. Every maximal Carleman operator is closed. 
(b) If Tp T2 are Carleman operators (with inducing functions kl' k;) and 

a, bE C, then aTI + bT2 is a Carleman operator (with inducing function 
ak l + bk2)· 

(c) If T is a (maximal) Carleman operator from HI into L2(M) (induced by 
k) and S E B(H2' HI), then TS is a (maximal) Carleman operator from 
H2 into L2(M) (induced by S*k). 

(d) Let T be an operator from H into L2(M), and let P be the orthogonal 
projection onto D( T). The operator T is a Carleman operator if and only 
if TP is a Carleman operator. 

(e) If H is separable and kl' k2 are inducing functiom of a Carleman 
operator T, then Pkl(x) = Pk2(x) almost everywhere in M, where P 
denotes the orthogonal projection onto D( T). 

PROOF. 

(a) Since an operator is a Carleman operator if and only if it is a 
restriction of a maximal Carleman operator, it is suffident to show that 
every maximal Carleman operator is closed. Let k : M~ H be measur
able, and let Tk be defined by (6.6). Take a sequence (in) from D(Tk) 
for whichfn~fE H, TJn~gE L2(M). Since <k(x),fn>~<k(x),f) (for 
all x EM), we have 

<k(x),f) = g(x) almost everywhere in M. 

HencefED(Tk) and TJ=g, i.e., Tk is closed. 
(b) This assertion is obvious. 
(c) Again, it is sufficient to show the statement for maximal Carleman 

operators. Let Tk be the maximal Carleman operator induced by k. 
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Then 

O(TkS) = {JEH2: SfEO(Tk)} = {fEH2: <k(·), Sf)EL2(M)} 

= {JEH2: <S*k('),J)EL2(M)}, 
TkSf(x) = <k(x), Sf) = <S*k(x),f) almost everywhere in M, 

i.e., TkS is the maximal Carleman operator induced by S*k. 
(d) By part (c), along with T the operator TP is also a Carleman operator. 

Since T is a restriction of TP (we have O(TP) = OCT) + O(T)-L and 
T= (TP)ID(T»' along with TP the operator T is also a Carleman 
operator. 

(e) If {e l• e2, ... } is an ONB of OCT) that is contained in D(T), then it 
follows that 

(kl(x) - k 2(x), ell) = 0 almost everywhere, for all n E N, 

and thus 

IIP(k,(x) - kix»1/2 = ~ I<k,(x) - k2(x), ell )12 
II 

= 0 almost everywhere. o 
Theorem 6.14 (Korotkov [46]). An operator T from H into L2(M) is a 
Carleman operator if and only if there exists a measurable function K : M~ R 
such that for all f E O(T) 

I Tf(x)1 -< IIfIlK(X) almost everywhere in M. (6.7) 

PROOF. If T is a Carleman operator induced by k, then (6.7) holds with 
K(X) = I/k(x)ll. Let (6.7) now be satisfied. Then there exists a bounded 
function g : M~(O, 00) for which gK E L2(M); for example we can choose 
the function 

g(x) = [(I + Ixl)m(l ~ K(X» r \ x EM (for Me Rm). 

If G E B(L2(M» is the operator of multiplication by g, then for all 
fE OCT), 

IGTf(x)1 -< IIfll g(X)K(X) almost everywhere in M. 

By Theorem 6.12 the operator GT is therefore the restriction of a Hilbert
Schmidt operator and there exists a function k' : M_H such that GTf(x) 
= <k'(x), f) almost everywhere in M. With k(x) = g(x) -Ik'(x) we there
fore have for all f E OCT) that 

Tf(x) = g(x)-'(k'(x),f> = (k(x),f> almost everywhere in M. 0 

Theorem 6.15. Let H be a separable Hilbert space, and let T be an operator 
from H into L2( M). The operator T is a Carleman operator if and only if the 
series ~"I Te,,(x)1 2 converges almost everywhere for every orthonormal system 
{ } . n/7" el' e2, • •• In ..... \~ ). 
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PROOF. If T is a Carleman operator, then, as in the proof of Theorem 6.14, 
we can find a g : M~(O, 00) for which GT is the restriction of a Hilbert
Schmidt operator. Then for every ONS {el> e2, ••• } from OCT) 

Consequently, by B. Levi's theorem, 

g(X)2L iTen(xW = L iGTen(xW < 00 almost everywhere in M. 
n n 

Division by g2 gives the assertion. 
Now suppose the series ~n i Ten(xW is almost everywher,e convergent for 

every ONS {e" e2' ... } in O( T). First we show: If {e" e2' ... } is an 
arbitrary ONS in OCT), then TiL(e" e2 •••• ) is a Carleman operator. For this, 
let Mo = {x EM: ~ni Ten(x)i 2 = oo}. Mo is of measure zero by our assump
tion. The function 

k(x) = { ~ (TeAx»*en for x E M\Mo, 

o otherwise, 

induces TiL(e,. e, ... ,), since for f E L(e" e2, ... ) 

Tf(x) = L <en' f) Ten (x) = <L (Ten(x»*en.!) 
n n 

= <k(x),f) almost everywhere in M. 

Let {e" e2, ... } now be an ONB of OCT), let k be an inducing function of 
To = TiL(e,. e, . ... ) and let Tk be the maximal Carleman operator induced by 
k. We show that T C Tk. For this, let f E OCT), let {j'.!2' ... } be the 
ONS that arises from {j, e., e2, ••• } by orthogonalization, and let k' be 
an inducing function of r; = TiL(f,,j, .... ). Because of the inclusion L(e., 
e2, ••• ) c L(f., J2' ... ) we have To C T.; hence k and k' are inducing 

functions of To. If P is the orthogonal projection onto D( T) = 
D( To) = L( e •• e2' ... ), then by Theorem 6.l3(e) we have Pk'(x) = Pk(x) 
almost everywhere. Since f E O( T), it follows from this that 

<k(x).!) = <Pk(x),f) = <Pk'(x),J) = <k'(x),f) = Td(x); 

soJ E O(Tk) and TJ= Td= TJ. o 
Theorem 6.16. An operator T Jrom a separable Hilbert space H into L2(M) is 
a Carleman operator if and only if TJ,,(x)~O almost everywhere in M for 
every null-sequence Un) Jrom O(T). 

PROOF. It is evident from the definition that every Carleman operator has 
this property. It remains to prove the reverse direction. By Theorem 6.15 it 
is sufficient to show that the series ~ni Ten(x)i 2 is almost everywhere 
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convergent for every ONS {e l • ez, ... } from O( T). Let {el' ez, ... } be an 
ONS in O( T). Assume that there exists a measurable subset N C M such 
that A(N»O and ~"ITe,,(x)lz=oo for xEN (A stands for Lebesgue 
measure). For all m, lEN let us define Nm• 1 by the equality 

Nm,/ = {XEN: ± ITen(XW>m2 }. 
n=1 

Then N= UIENNm., for every mEN, and there exists an./(m)EN such 
that 

Consequently, for No= nmENNm,l(m) we have 

A(No) > (1- ~ rm)A(N) > O. 
m-I 

For all mEN we have 
f(m) 

~ ITe,,(xW > m 2 for x E No' 
,,=1 

By Exercise 6,9, for every mEN there exist finitely many elements (xm,) = 
(~m,j, I' •.. , ~m.), f(m» E cl(m), j = I, 2, ... ,p(m) for which we have: Ixm,l 
= ~~:>tI~m,}, ,,12 <;; 2m -2 and for every x = (~I' •.• , t'(m» E cl(m) with Ixl2 > 
m2 there exists ajE {I, ... ,p(m)} for which 

Let us set 

I(m) 

gm,j = ~ Em.}. "e". 
n=1 

Then for every mEN and for every x E No there exists aj E {I, ... ,p(m)} 
such that 

Thus, for the sequence 

(g,,) = (gl. I' gl, 2' ... , gl,p(l)' g2, I' ... , g2,p(2), g), I' ... ) 

we have: gn -+0 and for every x E No there exists an arbitrarily large n EN 
such that Tg,,(x) > 1. This contradicts the assumption. 0 
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Theorem 6.17. An operator T from Lz(M.) into L2(M2) is a Carleman 
. operator if and only if there exists a measurable function K : M2 X M.-loC 
such that K(x, .) E L2(M.) almost everywhere in M2 and 

Tf(x) == f. K(x,y)f(y) dy almost everywhere in M1,f E D(T}. (6.8) 
MI 

Such a kernel K is called a Carleman kernel. 

PROOF. If T is induced by a Carleman kernel K in the sense of (6.8), then 
the assumption of Theorem 6.14 (Korotkov) is fulfilled with IC(X)'" 
IIK(x, .)11: so T is a Carleman operator. If T is a Carleman operator, then 
we proceed as in the proof of Theorem 6.14. GT is then a Hilbert-Schmidt 
operator from Lz(M1) into Lz(M2); therefore, by Theorem 6.11, it is 
induced by a kernel K' E L1(Mz x M1). The kernel K(x, y) == g(x)-IK'(x, y) 
is then a Carleman kernel and it induces T. 0 

Let K: M-loH be a measurable function, and let Mn == {x EM: IIk(x)1I 
..; nand Ixl ..; n}. Let 

D(Tk • O) - {g E L2(M): there exists an n E N such that 

g(x) = 0 almost everywhere in. M\Mn}. 

For every gE D(Tk•O) the equality 

<Tk • og, f) = J. g"'(x)<k(x), f) dx for all .f E H 
Mn 

uniquely defines an element Tk og, since because of the inequalities . . 
IfMng"'(X)<k(X),f) dxl" nllfllfMnlg(x)1 dx ..; nX(Mn)I/2I1gllllfll 

the function ft-+ f M g"'(x)<k(x), f) dx is a continuous line:ar functional on 
H. The mapping g~ Tk. 0 g i~.,obviously linear. Tk,o is therc:fore an operator 
from L2(M) into H; D(Tk • O) is dense in L2(M). The operator Tk,o is called 
the semi-Carleman operator induced by k. 

Theorem 6.18. We have (Tk • 0)* == Tk • (In what follows we write Tt, 0 for 
(Tk,o)"'·) 

PROOF. By the definition of Tk. O we have for all f E D(Tk) and g E D(Tk. 0) 

<g, TJ) - <g, <k('),f» = fMg(x)"'<k(x),f) dx =: <Tk.Og.!), 

i.e., the operators Tk and Tk • O are formal adjoints of each other; therefore 
Tk c T:'o' It remains to prove that D(T:.o)cD(Tk ). LetfE D(1f:.o). Then 
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for every g E L2(M,,) and all n E N we have 

J. g*(x)(k(x),f) dx =(Tk.Og,j) = (g, Tt,of) = J. g*(x)Tt.of(x) dx. 
~ ~ 

Consequently, 

{g*(x){(k(x),f)-Tt,of(x)}dx=O forall gEL2(M,,). 
" 

Because of the relation {(k(·), f) - Tt, of(' )}I~ E L2(M,,) it follows from 
this that 

T: of (x) = (k(x),j) almost everywhere in M". 

As this holds for all n, it follows that (k(· ),j) = Tt, of E L2(M), i.e., 
fED(Tk }· 0 

If K: M2 X M,-loC is a Carleman kernel and k denotes the mapping 
k: M2-loL2(M,), k(x) = K(x, .), then we write TK= Tk and TK.O= Tk.O' It 
follows from the definition of Tk• O (by Fubini's theorem) that for all 
fE D(TK• O) we have 

TK.of(x) = f K(y, x)*f(y) dy almost everywhere in M,. 
M2 

Theorem 6.19. Let T be a densely defined Carleman operator from L2(M,) 
into L2( M2) that is induced by the Carleman kernel K. The acfjoint T* is a 
Carleman operator if and only if K+ is a Carleman kernel (K+(x,y)= 
K(y, x)* for (x, y) EM, X M2) and f -::J TK+, o. Then T* is induced by K +. 

PROOF. By assumption, T C TK. As T is closable, D(T*) is dense. If T* is 
defined by the Carleman kernel H : M, X M2-loC, then T* c TH • Conse
quently, f. T**-::J Tk= TH,o-::J TH,o' It remains to prove that H(x,y)
K +(x, y) almost everywhere in MI X M2• Let 

\ 

MI,,, = {XEMI: fM2IH(x,Y)12dy<.n and 1~I<.n}, 

Then HIM XM E L2(MI "X M2) and H+IM XM E L2(M2X MI II)' Hence I.,. 1: I :il I." ' 
the function H +, as a kernel on M2 X M" II> is a Carleman kernel. There-
fore, for every n E N, T H. 0IL1(M1•n } is a Carle man operator induced by H + 
and K, Consequently, by Theorem 6.l3(e) we have H+(x,y)-K(x,y) 
almost everywhere in M2 X MI ,,, for every n E N. Hence H +(x, y)
K(x,y) almost everywhere. In particular, K+ is a Carleman kernel and 
f:; TK+,o' If K+ is a Carleman kernel and f:; TK+. O' then T*= f*c 
(TK +. O)* = TK +; so T* is a Carleman operator induced by K+. 0 
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Corollary. If T is a symmetric Carleman operator on L2(M) with inducing 
kernel K, and T* is also a Carleman operator, then the kernel K is 
Hermitian, i.e., K(x,y)= K+(x,y) almost everywhere. In particular, the 
kernel of a selj-acijoint Carleman operator is Hermitian. 

EXERCISES 

6.7. Let HI and H2 be Hilbert spaces and let HI be separable. A dosable operator 
T from HI into H2 is the restriction of a Hilbert-Schmidt operator if and only 
if there exists an orthonormal basis {el' e2, ... } of D(T) such that ~nll Ten 112 
< 00 (cf. Theorem 6.10). 

6.8. Let HI be a separable Hilbert space and let T be an operator from HI into 
L2( M). Assume that 
(i) If Un) is a null-sequence from D(T) and (Tfix» is convergent almost 

everywhere in M, then Tfn(x)-'>O almost everywhere, 
(ii) there exists an orthonormal basis of D(T) such that ~nITen(x)12 < 00 

almost everywhere in M. 
Then T is a Carleman operator. 
Hint: cf. Theorem 6.15. Remark: (i) cannot be replaced by the assumption 
of the closability of T. 

6.9. For every mEN and C > 0 there are finitely many elements Xj = 
(~j. I' ... , ~. m) E em,j = I, ... , p = p(rn, C), for which Ixjl < 2C -I and for 
which we have: for every x = (~I' ... , ~m) E em with Ixl;;.· C there exists a 
jE{l, ... ,p} such that 

I(x, xj>1 =1 f ~;~j.kl;;. 1. 
k-I 

6.10. If K is a Hermitian Carleman kernel over M x M and T K. 0 is bounded, then 
TK is from B(L2(M» and TK is self-adjoint. 

6.11. Let HI and H2 be Hilbert spaces. 
(a) The equality (T, S> =~"EA(Te", Sea> defines a scala.r product on the 

space B2( HI, H2) (here let {e" : a E A} be an arb*ary orthonormal basis 
of HI)' The corresponding norm is the Hilbert-Schmidt norm. 

(b) Sz(HI , H2) is a Hilbert space with this scalar product. 
(c) With this norm, I3z(H) is a Banach algebra (without identity element in 

the case dim H is infinite). 
(d) We have (S, T> = ('r, S·> for all S, T E B2(H I , H2). 

6.12. Let T be an operator on L2(M), and let (zo- T)-I be a Carleman operator 
for some Zo E p( T). 
(a) (z - T) -I is a Carleman operator for all z E p( T). 
(b) If T is self-adjoint and kz(x,y) is the kernel of (z - T)-I for some 

z E peT), then kz.(x, y) = kz(Y, x)·. 
Hint: Notice that [(z - T) ~ II· = (z· - T) ~ 1, and use 'Theorem 6.19. 
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6.3 Matrix operators and integral operators 

Let HI and H2 be infinite dimensional Hilbert spaces over IK, let {en : n E 
N} and {e~ : n EN} be orthonormal bases of HI and H2, respectively, and 
let (ajk)j, kEN be an (infinite) matrix with ajk E II(. (If HI or H2 is finite 
dimensional, then some simplifications arise.) First we show that the 
formulae 

DCA) = {fEHI: lim f ajk(ek,f> exists for all jEN, and 
m-+oo k-I 

~ I ~ ajk(ek,J> 12 < (0), (6.9) 
j=1 k-I 

Af = j~1 (k~l ajk<ek,f) )e; for f E DCA) 

define a linear operator from HI into H2: Iff, g E D(A) and a, bEll(, then 
the limit 

lim f ajk(ek' af + bg> = lim {a f ajk(ek,J> + b f ajk(ek, g)} 
m-+oo k = I m--+oo k _ I k = I 

00 00 

= a ~ ajk(ek,f) + b ~ ajk(ek, g) 
k-I k-l 

obviously exists, and we have 

..; 2{ lal2j~11 k~l ajk(ek,f>1
2 

+ Ibl2 ~ I ~ ajk(ek, g>12} < 00. 
j-I k-I 

Therefore, it follows that af + bg E D(A) and A(af + bg) = aAf + bAg. 

Theorem 6.20. Let HI> H2, {en: n EN}, and {e~ : n EN} be as above. If 
(~k) is a matrix such that ~;: tlajkl2 < 00 for all kEN, and A is the operator 
from HI into H2 defined by (6.9), then the following holds: D(A) is dense in 
HI, A * is a restriction of the operator A + from H2 into HI induced by the 
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a4ioint matrix (a;t) = (a~) analogously to (6.9): 

m 
: lim L + 

m .... oo k-I 
g> exists for all E and 

+g = L ( L ajt<e~, g»)ej 
j-I k=1 

g D(A + 

If we also have ~ k _ II ajk 12 < 00 for all j E N, then A is dosed and A * is 
densely defined. 

PROOF. For all n N we have 

00 

L ajk(ek, e,,) = ajn 
k-I 

00 

=L 
)=1 

00. 

Consequently, L({e,,: n N}) D(A); so is dense. Let 
A 11.(( e. : "e Nl)' We show that At = A +; this then implies that A * C A +. It is 
easy to see that Ao and A are formal adjoints of each other, i.e., that we 
have A C What remains to prove that D(At) C D(A Let g E 

D(Ati). Then, because of the relation ek E D(Ao), we have for every kEN 
that 

(ek, Atig) = (AOek, g) = C~ ajkej, g) 

Consequently, 

i.e., g E D(A +). 

00 

~ aJ(ej, g). 
)= 

we also have ~k_,lajkI2 < 00, then A = (Ao+)*, where 
A +IL({e~ : "EN))' Hence A is closed, and A is densely defined. 

At = 
o 

Theorem 6,21, Let and be separable Hilbert spaces, and let be a 
densely defined operator from HI into H2. The operator T is closable if and 
only if there exist orthonormal bases {e,,: E HI and 

: E oj and matrix (ajk ) with the properties: ~;:'llajkI2< 00 

for all kEN, ~k_llajkll < 00 for all j E N, and T is a restriction of the 
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operator A deJined by (6.9). The orthonormal bases can be chosen Jrom D(T) 
and D( T*), respectively. 

PROOF. If T has this form, then it is closable by Theorem 6.20. If T is 
closable, then there are orthonormal bases {ell : n EN} of. HI in D( T) and 
(since O(T*) is dense) {e~ : n EN} of H2 in O(T*). With 

ajk = (ej, Tek) = (T*eJ; ej ), (j, k) E N X N 

we then have 

00 00 

L lajk l2 = II Tek ll 2 < 00, 
)=1 

L lajk l2 = II T*e;II 2 < 00, 
k=1 

for all kEN and for all j E N, respectively. For every f E OCT) 

f I f ajk(ek,f)1
2 

= f I f (T*ej, ek )(ek,f)\2 
)=1 k-I )-1 k-I 

00 00 

L I(T*eJ,f)12 = L I(ej, Tf)12 

)=1 i-I 

= II Tfl12 < 00. 

Therefore f E D(A). Moreover, we have 

Tf = f (ej, Tf)ej = f (T*ej,f)ej = f ( f (T*e;, ek)(ek,f»)e; 
)=1 )=1 i-I k-I 

= f ( f ajk(ek,f»)e; = Af· 
i=1 k-I o 

Proposition. If T is a symmetric operator on a separable Hilbert space H, 
then there exists an orthonormal basis {ell: n E N} and a Hermitian matrix 
(ajk ) such that ~k- .Iajkl2 < 00 for all j E N, and 

PROOF. In the proof of the preceding theorem choose for {ell: n E N} and 
{e~ : n EN} the same orthonormal basis in O( T) c D( T*). The series of 
equalities 

shows this matrix is Hermitian. o 
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Corollary. If T is a symmetric operator on 12 and 12.0 C D{ T), then there 
exists a Hermitian matrix (~k) such that }:f_llajkI2 < 00 for all j E Nand 

Tf = TUn) = ( f anJk ) for all f E D( T). 
k-I nEN 

This can be deduced from the previous proposition if we choose the 
basis {en: nEN} so that en = (8";)jEN' 

Now we prove some simple criteria for the boundedness of the operators 
that are induced by matrices in the sense of (6.9). 

Theorem 6.22. If }:j, klajkl2 = c 2 < 00, then the operator A defined by (6.9) is 
a Hilbert-Schmidt operator, and IliA III = c. 
PROOF. By Theorem 6.20, A is densely defined and closed. For the basis 
{en: nEN} we have 

Therefore, by Theorem 6.10, A is a restriction of a Hilbert-Schmidt 
operator. Since A is densely defined and bounded, we have D(A) = D(A)= 
HI' and thus A E 8(HI> H2). Hence A is a Hilbert-Schmidt operator, and 
IIIAIII=C. 0 

Theorem 6.23. Let ajk = !J.ikCjk; furthermore, let 

and 

L Ibjk l2 0;;;; c~ for a/l j E N, 
k 

L ICjkl2 <: cf for all kEN, 
j 

<: C? L !cjkI21(ek.J)12 
j,k 

0;;;; C?CfL l(ek.J)12 

k 

= C?CfllfIl 2• 
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It follows from this that HI = D(A) and IIAfll .-;;; C I C211fll for allf E D(A) = 

HI· 0 

Proposition. The assumptions of Theorem 6.23 are satisfied in particular if 

and 

L lajkl .-;;; CI2 for all j E N 
k 

L lajkl .-;;; ci for all kEN. 
j 

For the proof, in Theorem 6.23 let us take bjk = lajk ll / 2 and cjk = 
l'7kll/2 sgn '7k' where sgn a =0 for a = 0 and sgn a = lal-Ia for a ~O. 

EXAMPLE 1. The matrix 

for k '-;;;j, 
for k >j 

defines a bounded operator A by (6.9) and we have IIA II .-;;; Y6 . For the 
proof, let us define bjk = cjk = 0 for j < k and 

bjk =j-I/4k- I/ 4,Cjk =j-3/4k l / 4 for k '-;;;j. 

Then we have 

and 

~ Icjk l2 = kl/2.~ j-3/2 .-;;; kl/2{ k- 3/ 2 + foo X- 3/ 2 dX} 
J J=k k 

= k- I + 2 .-;;; 3, 

for all j E Nand kEN, respectively. The assertion (ol1o'fs from this with 
the aid of Theorem 6.23. 

Similar arguments can be made for operators T from L2(MI ) into L2(M2), 

that are induced by a measurable function (kernel) K : M2 X MI ~C. Let K 
be such a kernel. The equalities 

D(TK ) = {1 E L2(MI ) : K(x, .)1 is integrable over MI almost 

everywhere in M2 , and 1. K(. ,y)f(y) dy is in L2(M2)}, 
M, 

TKf(x) = f K(x,y)f(y) dy almost everywhere in M2 (6.10) 
M, 
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define a linear operator from L2(MI ) into L2(M2) (notice that the notation 
TK is compatible with that of Section 6.2). Special cases of such operators 
(Hilbert-Schmidt operators and Carleman operators) have: already been 
studied in Section 6.2. Now we want to give a further criterion for the 
boundedness of an integral operator (formally this is an exact analogue of 
Theorem 6.23 for matrix operators). 

Theorem 6.24. Let k : M2 X MI-j>C be measurable, and let KI and K2 be 
measurable functions defined on M2 X MI such that K(x, y) = 
K I(x,y)K2(x,y) and 

J. IK I (x,y)1 2 dy "ct almost everywhere in M2, 
M. 

J. IK2(x,y)1 2 dx "ct almost everywhere in MI , 
M2 

Then the operator TK is in B(L2(MI ), L2(M2», and II TKII .;;; CI C2• The adjoint 
T; is equal to the operator TK+ induced by the adjoint kernel K+, 

PROOF. For every r > 0 let Mir) ... {x E M2 : Ixl "r}. The Lebesque 
measure of M2(r) is finite. For every f E L2(MI ) Fubini's theorem implies 
that 

J. IK(x,y)f(y)ldx dy " J. {I + [J. IK(x,y)f(y)1 dy ]2} dx 
M2(r) X M. M2(r) M. 

= X(M2(r» + J. [J. IK,(x,y)IIKix,y)f(y)1 d.v]2 dx 
M2(r) M. 

" X(M2(r» + J. [J. IK,(x,y)1 2 dy J. IK2(x,y)f(yW dY] dx 
Ml(r) M. M. 

" X(M2(r)) + Cl2 J. If(Y)1 2 [ J. IK2(x, y)12 dX] dy 
M. M2 

" X(M2(r)) + clcillfl12 < 00. 

By Fubini's theorem again, the integral J M K(x, y)f(y) dy exists almost 
everywhere in M2(r) and defines a measurable function there. Since this 
holds for all r> 0, the equality 

TKf(x) = 1. K(x,y)f(y) dy almost everywhere in M2 
, M. 

defines a measurable function on M2 for every f E L2(M,). For all those 
x E M2, for which this integral exists, we have 
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and thus 

Hence, for every f E L1( M1) the function T Kf belongs to L1( M1), and 
II TKfll "Ct C211fll· Since the mapping f~ TKf is obviously linear, we then 
have TK E B(L1(Mt ), L2(M1» with II TKII "C\C1. The corresponding argu
ments show that K+ induces an operator TK + E B(L1(M2), L2(Mt» and 
that for all f E L2(Mt> and g E L2(M2) the integral 

f. Ig(x)lj IK(x,y)f(y)1 dy dx 
M2 MI 

exists. Therefore, it follows from Fubini's theorem that 

<g, TKf) = J. g(x)'" J. K(x,y)f(y) dy dx 
M2 MI 

= J. f<y){ J. K+(y, x)g(x} dX} '" dy = <TK+g,j)· 
MI M2 

Hence, TJ: = TK +· 

Corollary. If K : M2 X Mt~C is measurable, and 

f. IK(x,y)1 dy "Ct almost everywhere in M2, 
Ml 

J. IK(x,y)1 dx "C{ almost everywhere in Mt, 
M2 

o 

then the operator TK defined by (6.10) is from B(L2(M), L2(M2», and 
IITKII <;Ct C2· 

This follows from Theorem 6.24 if we take K\(x, y) = IK(x, Y)lt/2 and 
K2(x,y) = IK(x,y)l tj2 sgn K(x,y). 

It is important to observe that the operators occurring in Theorem 6.24 
are not necessarily compact (cf. the following example). 

EXAMPLE 2. Let M) = M2 = R The kernel K(x, y) = exp (-Ix - yl) satisfies 
the assumption of the above corollary. Assume that f E L2( Mt),j '=F 0, and 
f(x) > 0 almost everywhere. Then TKf'=FO. Let us setfn{x) = f(x - n). Then 

w 
fn~O, and 

TKfn(x) = f exp ( -Ix - y/)f(y - n) dy 

... f exp (-I(x - n) - yl)f(y) dy = (TKf)(x - n). 
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Consequently, II TKf,,1I = II TKfl1 for all n. So we do not have TKf"--,,,O, i.e., 
T K is not compact. 

Theorem 6.25. Let K: M2 X MI--",C be measurable, and let Kp K2 be 
measurable such that K(x,y) = KI(x,y)K2(x,y). Let (MI) and (M2) be 
increasing sequences of measurable subsets of MI and M2 such that MI = 
U }~ I MIj and M2 = U'f'.. I M2), respectively. Assume that for all j E N 

J. IK(x,y)1 2 dx dy < 00, 
M2j XM'j 

and for every ( > ° there exists a Jo = joe () EN for which 

J. IKI(x,y)12 dy .;,;; ( almost everywhere in M:! \ M2}o' 
M, 

J. IKI(x,y)1 2 dy .;,;; ( almost everywhere in Ml , 
M,\Mljo 

f. IK2(x, y)12 dx .;,;; ( almost everywhere in MI' 
M 2\M2jo 

Then TKE B(LiM\), L2(M2», and TK is compact. 

PROOF. Let us set 

H;(x,y) = {K(X,y) for (X,y)EMVXMlj' 
° otherwise 

and ~. = K - H;. Then THJ is a Hilbert-Schmidt (hence compact) operator, 
and II TL II .;,;; ( provided that J ;.. Jo( (). The operator T K is therefore the limit 
of a seq~ence of Hilbert-Schmidt operators, so that it is compact (Theorem 
6.4(e». [] 

EXAMPLE 3. Let M c IRm be measurable and let 

where fl and f2 are bounded measurable functions defined on IRm and 
h(x)--",O as Ixl--",oo(j = I, 2); f3 is measurable and fIi3(X)1 dx < 00. With 
MI} = Mv = {x EM: Ixl ';';;j} and 

K.(x,y) =fl(X)lfix-y)II/2 

K2(x,y) = f2(y)lf3(X-y)II/2 sgnfix-y), 

the above theorem is applicable; hence TK is compact. 



6.4 Differential operators on L1(a, b) with constant coefficients 

EXAMPLE 4. Let M be a bounded measurable subset of 81m, and let 

K(x,y) = {lx-Yla-mH(x,y) for (x,y)EMXM,x~y, 
o for x=y EM; 

IS7 

where a > 0, and H is a bounded measurable function on M X M. If we set 

_ {K(X'Y) for Ix-YI>';, 
Kn(x,y) - 1 

o for Ix - y I < -
n 

and Ln = K - Kn, then the Kn induce Hilbert-Schmidt operators, and the 
operator induced by L" converges to 0 as n-HlO. Hence TK is compact. 

6.4 Differential operators on L2(a, b) with 
constant coefficients 

In the following let (a, b) be an arbitrary (non-empty) open interval in R, 
i.e., let - 00 "a < b " 00. Furthermore, let 

A,,(a, b) = {J: (a, b)-+C : f,f', ... ,fn - 2) are 

continuously differentiable on (a, b) and 

fn-I) is absolutely continuous on (a, b)}. 

Hence, for f E A,,(a, b) there exists an "nth derivative" fn) for which the 
following holds: fn) is integrable over every compact subinterval of (a, b), 
and for a <a <P <b and every functbn g, absolutely continuous on (a, b), 
we have (cf. Appendix AS) 

ffJg(x)fj)(x) dx = g(P)fJ- I)({3) - g(a)f(j-I)(a) 
a 

- fPg'(x)fJ-I)(x) dx 
a 

forjE{1, ... , n}. 

Theorem 6.26. For every n EN, every interval (a, b), and every f > 0 there 
exists a C > 0 such that lor all j E {O, 1, ... , n - I} and all 1 E An(a, b) 

fblfJ)(xW dx " £fblfn)(xW dx + C fblf(xW dx. 
a a a 

Here we have to consider an integral to be eqllal to 00 in case the integrand is 
not integrable. The relations f E A,,(a, b) n L2(a, b) and f n) E L2(a, b) there
fore imply that fJ) E L2(a, b) for j E {I, ... , n - I}. 
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PROOF. We prove this by induction on n. For n = I we only have to treat 
the case j = O. Then for every f > 0 we may choose C = I. The assertion is 
just as obvious for n = 2 and j = O. Therefore, let n = 2, j = I. 

Let (a, {J) be an arbitrary bounded subinterval of (a, b), kt L = {J - a> 
0, and let J1=(a,a+1L), J2=[a+1L,{J-1L1, J3=({J-1L,{J). For 
arbitrary s E J 1 and 1 E J3, by the mean value theorem there exists an 
xo= xo(s, t)E(a, {J) such that 

J'(xo) = (/-s)-I[1(/)-I(s)]. 

With this Xo it follows for all x E(a, {J) that 

1J'(x)1 = 1J'(xo) + ~:f"(Y) dyl 

.;;; 3L -1(ll(s)1 + 11(t)!) + fiJlf"(Y)1 dy. 
IX 

This holds for all s E J1 and t E J3• The inequality can be itntegrated over 
J I with respect to s and over J3 with respect to t. We obtain that 

3- 2L 21J'(x)1 .;;; f 11(s)1 ds + f 11(t)1 dl + r 2L2jiJ1f"(Y)1 dy 
~ ~ IX 

.;;; jiJI1(Y)1 dy + 3-2L 2 jiJlf"(Y)1 dy 
IX IX 

.;;; {L ~iJlJ(Y)12 dy} 1/2 + r2L2{ L ~iJlf"(Y)12 dy} 1/2. 

It follows from this that 

1J'(x)12 .;;; 2L{ 34L -4~iJll(Y)12 dy + ~iJlf"(Y)12 dy}, 
and thus by integration over (a, /3) that 

jiJlf'(xW dx .;;; 162L -2 jiJI1(Y)12 dy + 2L2 jiJlf"(YW dy. 
a a IX 

If we divide (a, b) into (finitely or infinitely many) disjoint intervals of 
length L, then we obtain 

f blJ'(x)12 dx .;;; 162L -2 f bll(xW dx + 2L2 fblf"(xW dx. 
a a a 

As L can be chosen arbitrarily small, the assertion follows for n = 2 and 
j= 1. 

Let us now assume that the assertion holds for n';;; k (k;;" 2). Let 
f E ~+ I(a, b). Since the theorem holds for n = 2 and) = 1, for every 11 > 0 
there exists a C 1 ;;.. 0 such that 

fblfk)(xW dx .;;; clj\r<k-I)(XW dx + 11jblfk + n(xW dx. 
a a a 
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By the induction hypothesis there exists a C2 > 0 for which 

jb1lk-I)(xW dx <; c2 jb1f(xW dx + 4CI-ljbllk)(XW dx; 
a a a 

consequently, 

jb1lk)(x)12 dx <; 4 jb1lk)(xW dx + C1C2 jblJ(XW dx 
a a a 

+'lJjb1lk+I)(xW dx, 
a 

and thus 

jb1lk)(xW dx < 2CI C2 fblf(xW dx + 2'IJjb1/k+1)(xW dx. 
a a a 
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This is the assertion for n = k + 1 and j = k. For j <k the assertion now 
follows easily with the aid of the induction hypothesis. 0 

In what follows we shall use the notation 

W2,n(a, b) = {JEAn(a, b)nL2(a, b) :In)EL2(a, b)}. 

W2, n(a, b) is called the Sobolev space of order n over (a, b). 

Theorem 6.27. Let (a, b) be an arbitrary open interval in R, and let 
f E W2, n( a, b). If - 00 < a, then I;) can be extended continuously to a for all 
jE {O, I, ... , n - I}; if a = - 00, then limx->_oo/J)(x)=O. The correspond
ing assertion holds for the point b. 

PROOF. Let c E (a, b). If a> - 00, then 

~CIIJ+I)(x)1 dx <; {(c-a) ~cIIJ+I)(xW dX} 1/2 < 00, 

because f(J+ I) E L2(a, b) (Theorem 6.26). Hence the limit 

lim IJ)(x) = lim {f})(c)-jCIJ+1)(s) dS} 
x~a X~Q x 

= IJ)(c) - jCIJ+I)(s) ds 
a 

exists. 
Now let a = - 00. For all x E( - 00, c) we have 

jCIJ)(s)IJ+I)(s) dx = HI})(c)2- IJ)(xi}. 
x 

The integral here converges as x -,) - 00, therefore the limit 
limx->_ 00 IJ)(xi also exists. If this limit were different from zero, then IJ) 
could not be in L2(a, c); which would contradict Theorem 6.26. 0 
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Now we shall study differential operators on Lia, b) that are induced 
by the differential form 7'n = ( - in dn / dx "). The minimal operator Tn.o 
induced by 7'n is defined by 

D(Tn.O) = Co""(a, b) and Tn. of = T"f for f E D(Tn.o), 

The maximal operator Tn induced by 7'n is defined by 

D(Tn) = W2• n(a, b) and Tnf = Tnf for f E D(Tn)' 

The maximal operator is obviously defined on the largest possible sub
space on which Tn can act meaningfully. Below we shall show that 

T:' 0 = Tn; if A c Tn. 0 and A*- Tn.O' then A * ~ r:. 0 = Tn' i.e., A * is not a 
differential operator induced by ~this is why Tn. 0 is called the minimal 
operator (it is also usual to call Tn 0 the minimal operator). For n = 0 we 
obviously have To. 0= To = I. . 

Theorem 6.28. We have k E R(T". 0) if and only if k E Co""(a, b) and 

f b . 
x1k(x) dx = 0 forall j E {O, I, ... , n-l}. 

a 

PROOF. If k = T".og for some g E D(Tn. 0) = CoOO(a, b), thell we obviously 
have k E Co ""(a, b), and for j E {O, I, ... , n - I} 

fbxJk(x)dx = fbXJ(T"g)(x)dx = (-l)"fb(7'nxJ)g(x)dx = O. 
a a a 

Conversely, assume now that k E Co""(a, b) has this property, and [a, fl] 
is a compact subinterval of (a, b) that contains the support of k. Set 

Then we obviously have g E C""(a, b) and g(x) = 0 for x E(a, a]. For 
. xE[fl,b) we have 

g(x) -= (i)n fX fX ... fX k(x l) dXn ... dx , 
a XI Xn-l 

= (W~xk(XI){~~'" ~~_ldXn ••• dx2 } dx , 

= (i)n jbk(xl)P(x,) dx, = 0, 
a 

because p(x,) is a polynomial of degree n - 1. Hence, g E Co""(a, b) and 
k=Tn.og. 0 

Theorem 6.29. We have T:' 0 = Tn' 
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PROOF. Let i E D( Tn)' g E D( Tn. 0) = COOO( a, g), and let [a, ,8) be a compact 
subinterval of (a, b) that contains the support of g. It follows via integra
tion by parts that 

< Tni, g) = f\Tnf)*(x)g(x) dx = f\Tni)*(x)g(x) dx 
a a 

= ff3(Tni)*(x)g(x) dx = j f3f*(X)(Tng)(X) dx 
a a 

= fbf*(x)(Tng)(X) dx = <I, Tn.og) 
a 

(the integrated terms vanish, since g, together with all of its derivatives, 
vanishes at a and ,8). Consequently, Tn.O and Tn are formal adjoints of 
each other. What remains is to prove the inclusion T:' 0 C Tn' Let i E 
D(T:'o) and hEA,.(a,b) such that T"h=T:'oi. Such an h exists; for 
example we can define h in the following way: 

f Xfxn fX2 h(x) = (if . . . (T:'oi)(x l ) dX I ... dXn 
c c c 

with some cE(a, b). Then it follows by integration by parts (let [a.,8) be 
chosen as above) that for all g E D(Tn• 0) 

<i. T",og) = <T:'oi. g) = jf3(T:' oi)*(x)g(x) dx 
a 

= jf3h*(X)Tng(X) dx = jbh*(x)Tn.og(x) dx. 
a a 

Hence, for all k E R(Tn• o) we have 

fb(J(x) - h(x))*k(x) dx = O. 
a 

The null space of the linear functional F: CoOO(a, b)~C defined as 

F(k) = f\i(x) - h(x»*k(x) dx for k E CoOO(a, b) 
a 

contains therefore R(TI1 • o)' By Theorem 6.28 we have 
11-1 

R( Tn. 0) = n N( Fj); 
j~O 

where the Fj are the linear functionals 

f b . 
Fj : CoOO(a, b) ~ C, Fj(k) = x1k(x) dx. 

a 

By Theorem 4.1 there exist complex numbers CO' C I' •.. , C,,_I such that 
n-I 

11-1 

F = L cjFj. 
j=O 

Hence, with p(x) = L cl xi we have 
i=O 

fb(J(x) - h(x) - p(x»*k(x) dx = 0 for all k E CoOO(a. b). 
a 
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For every compact subinterval [a, ,8] we have (f - h - p)l[a.P) E L2(a, ,8) 
and (f - h - P )I[a. P)l. CoOO( a, ,8), and thus (f - h - P )I[a. PI = O. Since this 
holds for every compact subinterval [a, ,8], it follows that 

f(x) = h(x) + p(x) almost everywhere in (a, b). 

It follows from this that f E An(a, b) n L2(a, b) and 7'nf= T:' of E L2(a, b). 
HencefE O(Tn)· 0 

Theorem 6.30. III the case (a, b) = R we have Tn. 0= Tn = T:; thus Tn.O is 
essentially self-adjoint and Tn is self-adjoint. 

PROOF. The relations T:' 0 = Tn and Tn. 0 C Tn imply that T: C or:. 0 = Tn' 
We show that Tn is symmetric; then it will follow that T: C Tn C T:; hence 
Til = T: = T:'~ = Tn, o. For f, g E O(Tn} we have 

<I, Tng) = )i.~ J:/*(X)(7'ng)(X} dx 

= )i.~ {R(c) + J:,,< 7'nf)*(x)g(x) dX} 

- }~ f:}7'nf)*(x)g(x} dx = (T,J. g), 

because R(e) is a linear combination of terms of the form 
. f(f)(± C)*g(k)(± c) withj + k = n - I, and so R(c)~O as C4·00, by Theorem 
6E. 0 

Theorem 6.31. In case (a, b) '1= R we have 

_ { f(a}=f'(a)=·· ·=fn-I)(a)=O ifa>-oo,} 
D(Tn•o)'" fE W2• n(a, b}: . 

f(b)=f'(b)=·· . =f"-I)(b} =0 if b<oo 

In this case Tn, 0'1= Tn (for n > 0), and none of these operators are self-adjoint. 

PROOF. We write W£ n(a, b) for the subspace given in the theorem. Let Sn 
be the operator induced on Wf lI(a, b) by 7'11' Then one verifies easily that 
Sn and Til are formal adjoints ~f each other. Therefore Sn C r: ... Tn. o. Let 
f E D(r:), and let a> - 00. For every j E {O, 1, ... , n - II} there exists a 
~ E O(Tn) such that gJk)(a) = 8jk for k E {O, I, .... , n ,- I} and gj(x) 
vanishes identically in some neighborhood of b (we choose an arbitrary 
smooth function ~ such that g}k)(a) = 8jk• and set gj =: cp~l(a. b)' where 
cp E CoOO(R) and cp(x)'" I in some neighborhood of a, cp(x) - 0 in some 
neighborhood of b). With these ~ we have 

II-I 

0 ... <f, TII~) - <T:f,~) = (_i)n ~ (-I)"-k-If"-k .. I)(a)*gJk)(a) 
k-O 

... (- i)n( _ l)n-j - If"-j - I)(a}*. 
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As this holds for alljE {O, I, ... , n -l}, it follows that 

f(a) = 1'(a) = ... = I,,-I)(a) = O. 

It follows analogously that 

f(b) = f'(b) = ... = I"-I)(b) == 0, 

in case b < 00. Consequently D(T".o) = D(T!) c W£ ,,(a, b), and thus 
S" = T" 0= r:. 

On the basis of our reasoning so far, it is clear that (for n >0) D(T" 0) 
-:1= D(T,,), thus T", 0-:1= T", Because of the equality T", 0*= T", none of th~se 
operators are self-adjoint. 0 

The question of whether T",o has self-adjoint extensions in the case 
(a, b)-:I= IR, will in general be answered in Chapter 8, For even n we can 
now give the following theorem. 

Theorem 6.32. The operator T2",o is non-negative. The Friedrichs extension 
T2n, F of T2n, 0 is given by the formulae 

{ 
f(a)=f'(a) = ... =/"-I)(a)=O, if a> -OO'} 

D(T2n, F) = f E D(T2n): 

f(b) =1'(b) = , .. =In-I)(b)=O, if b<oo 

= W2,2n(a, b) n Wf,,,(a, b), 

T2".Ff = 'T'2,,! for f E D(T2n, F)' 

PROOF. For allfE D(T2n, 0) = CoOO(a, b) we obviously have 

(j, T2n, of) = (_I)n f bf(x)*j<2n)(x) dx = f\rn)(xW dx :> O. 
a a 

In this case the sesquilinear form s used in Theorem 5,38 is 

sU, g) = <In), g<n», f, g E CoOO(a, b). 

Therefore the s-norm II . lis is equal to the T",o-norm II . II T •. o 
(cr, Theorem 5.1). Hence, the completion of CoOO(a, b) with respect to 
II . lis is equal to the completion of D(Tn 0) = CoOO(a, b) with respect to 
II . II r...o' and thus it is equal to D(Tn,o)' Con'sequently, by Theorem 6.31 

Hs =D(Tn.o) = W£,,(a, b) 

{ 
f(a) =1'(a) = ... =/,,-I)(a)=O if a> -OO'}. 

= fE W2.,,(a, b): 

f(b) =1'(b) = ... =/,,-I)(b)=O if b<oo 
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The assertion follows from this, because of the equalities D(T2n F) = . . 
D(Tin.o)n Hs= D(T2n )n Hs· 0 

In some cases we can explicitly calculate the spectrum of the self-adjoint 
operators induced by 'T". 

Theorem 6.33. 
(a) If (a, b) = IR, then 

a(T2n )=[0,00) and a(T2n _ I )=1R forall nEN. 

(b) If (a, b) is a half-line «a, 00) or (- 00, b», then for every self-adjoint 
extension A of T2n.O we have 

a(A) ~[O, 00). 

For the Friedrichs extension T2n. F of T2n. 0 we have 

a(T2n. F) = [0, 00). 

PROOF. 

(a) T2n = T2n.O is non-negative. Hence for every s < 0 we have 

lI(s - T2n )j1l2 = Isl 211fll 2 - 2 Re sU, T2nf) + II T2nfl12 > Is1211f1l2, 

i.e., s - T2n is continuously invertible. Therefore, (.- 00,0) Cp(T2n)' 
Now we show that every s > 0 lies in a(T2n)' To this end, let cp : IR-')IR 
be infinitely often differentiable and let 

{
I for x < 0, 

cp(x) = 
o for x>l, 

Furthermore, for all mEN let 

° <cp(x) < 1 for O<x<l. 

CPm(x) = cp(lxl- m), x E IR. 

Let us set (with s 1/2n > 0) 

Then fm E COOO(IR), Ilfmll-') 1 as m-)oo and (s - T2n)fm = (s - 'T'2n)jm-')0, 
as a simple calculation shows. Consequently, s - T2n is not continu
ously invertible, and thus [0, 00) C a( T2n ). 

We can show analogously that IR C a(T2n - l ) if for every s E IR we 
define the sequence (fm) of functions by the equalities 

fm(x) = (2m)-1/2cpm(x) eisl/(2"-I>x, x E IR 
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(here the root s 1/(211-1) has to be taken in such a way that s 1/(2" - I) < 0 
for s < 0 and SI/(211-1);;;. 0 for s;;;' 0). 

(b) Without loss of generality we may assume that (a, b) = (0, 00). Then 
the inclusion [0, 00) C I7(A) follows as in part (a) if <Pm is replaced by 

I/Jm(x) = fPm(x - m - 2) 

(notice that I/Jm E CoOO(O, 00». Since the Friedrichs extension T211• F is 
non-negative, it follows that 0(T2", F) C [0, 00) (cf. the beginning of the 
proof of part (a»; consequently, 0(T2n, F) = [0, 00). 0 

Theorem 6.34. Let T be a self-adjoint operator on L2(a, b) induced by Tn 
{i.e., T",oC T= T* C T,,), Let 

n d1'(x) 
(of)(x) = L aix )--. 

)=0 dxJ 

be a differential expression such that sup {ia,,(x)i : x E(a, b)} < 1 and 
sup {ia;(x)i : x E (a, b), j = 0, I, ... , n -l} < 00. Assume that the operator 
S defined by the equalities 

D(S) =D(T) and Sf = of for f E D(S) 

is symmetric. Then T+ S is self-adjOint. 

PROOF. If c = sup {ian(x)i : x E (a, b)}, then by Theorem 6.26, the operator 
S is obviously T-bounded with T-bound c < 1. The assertion follows from 
this by Theorem 5.28. D 

EXERCISE 

6.13 Let A be an (unbounded) self-adjoint operator in a Hilbert space Hand P an 
orthogonal projection with P D(A) c D(A). Then the operator PAP is in 
general not self-adjoint. Counterexamples may be constructed along the 
following lines: Let H= Ho$ Ho, B self-adjoint in Ho, C symmetric with 
B-bound < I and P(fl,fl) = (fl, 0) for (f .. f2) E H- Ho$ Ho· 

(a) The operator Ao( ~ g) with D(Ao) = D(B)$ D(B), Ao(fl,fv = (Bf2' Bfl) 

is self-adjoint. 

(b) The operator A = ( ~ ~) = Ao + ( ~ ~) is self-adjoint. 
(c) If C is not (essentially) self-adjoint on D(B), then PAP is not (essentially) 

self-adjoint. If C has no self-adjoint extension, then PAP has no self
adjoint extension. 

(d) Possible examples for Band C are as follows: 
(a) C essentially self-adjoint, but not self-adjoint: B = - d2/ dx 2, C = 

id/dx in L 2(R) with D(B) ... D(C) = W2,2(R), 
(fJ)C not essentially self-adjoint: B= -d2/dx 2, C=id/dx in L2(0, I) 

with D(B) = D( C) = {f E W2,2(0, 1) : 1(0) = j(l) = O}, 
(y) C has no self-adjoint extension: B= -d2/dx2, C=id/dx in LiO, 00) 

with D(B)=D(C)= {fE W2.iO, (0) : j(O) =O} (see also Section 8.2, 
Example 1). 



7 The spectral theory of self-adjoint 
and normal opera tors 

7.1 The spectral theorem for compact operators, 
the spaces Bp( HI' H2) 

We studied the spectrum of compact operators thoroughly in Section 6.1. 
For compact normal operators the results obtained there: may be shar
pened. 

Theorem 7.t. (The spectral theorem for compact normal operators.) 
(a) Let T be a compact normal operator on a complex Hilbert space Hand 

let {AI' A2, ... } be the non-zero eigenvalues 'of Tj furthermore let 
{PI' P2, ••• } be the orthogonal (finite rank) projections onto the corre
sponding eigenspaces (cf. Theorems 6.7 and 5.41), then 

T = LAjIJj 
j 

(7.1) 

this series converges in the norm of 8(H). If T is self-ac:fioint, then this 
holds in real Hilbert spaces, as well. 

(b) If (~) is a null-sequence (or a finite sequence) from &1:\{O} such that 
~ -:l=Ak for j-:l=k, and the IJ are non-zero orthogonal projections of finite 
rank such ,that IJPk=Ofor j-:l=k, then the series (7.1),is convergent in 
8(H), and T='i.jAjIJ is compact and normal. Furthermore, {AI' A2"" } 
is the set of non-zero eigenvalues of T and the R(IJ) are the correspond
ing eigenspaces. The representation (7.1) is therefore unique in this sense. 
If the Aj are real, then Tis self-ac:fioint. 

PROOF. 

(a) Let M be the closed linear hull of {R(lj) : j = I, 2, ... }, and let P be 
the orthogonal projection onto Mol. 

166 
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If MJ... =1= {O}, then for all 1 EM J..., g E H, and j = I, 2, ... we have 

< Tl, ~g > = <1, T* Pjg > = >'-/<1, Pjg> = 0, 

i.e., TM J... eM J...; we can prove in just the same way that T* M J. eM J.... 
Hence it follows that the restriction S of T to M J... is a normal operator 
on the Hilbert space M J.... Every eigenvalue of S is an eigenvalue of T, 
every corresponding eigenvector of S is an eigenvector of T contained 
in M J...; therefore it follows that S can only have the eigenvalue 0 (since 
M is the closed linear hull of all eigenvectors of T that belong to 
non-zero eigenvalues). Therefore (cf. Theorem 6.7), a(S) = {O}, and 
thus r(S)=O by Theorem 5.17(c) and (d). Hence S=O by Theorem 
5.44, i.e., T vanishes on M J.... 

Consequently, it follows for 1 E H (whether M J... = {O} or M J. =1= {O}) 
that 

Tl = TPl + T}."; ~1 = }."; TPjl = }.";"A;P;f. 
j j j 

If the sequence ("A;) is infinite, then for every 1 E Hand mEN 

00 

}."; IAlIIPj!12.;; sup {lAY :»m+ Qllll12• 
j=m+1 

Since the sequence ("A;) is a null-sequence (cf. Theorem 6.7), this 
implies the norm convergence of (7.1). 

(b) We can show the convergence of the series just as in part (a). For every 
mEN the operator ~;"IAj~ is of finite rank, consequently compact. 
The compactness of T follows by Theorem 6.4(e). It is easy to verify 
that T is normal. All the Aj are obviously eigenvalues of T, and every 
1 E R(~) is an eigenelement of T belonging to the eigenvalue Ai" If 
A=I=O is an eigenvalue of T and 1=1=0 is a corresponding eigenvector, 
then 

0= II(A- T)1112 = 11A - Alll~1112 + IA12111-7 Pjr 

i.e., IA-Ajl II~ll1 =0 for aU) and l=~jPj. Since f=l=O, there is a)o 
such that ~J=I=O. Hence A = Ajo' Consequently, A#Aj for allj=l=)o, and 
thus ~f = 0 for) =1=)0' It follows from this that f E R( Pj ). 0 

Theorem 7.2. (The expansion theorem for compact normal operators). /1 T 
is a compact normal operator on a complex Hilbert space, then there exists a 
zero-sequence (or a linite sequence) ( IL) from C and an orthonormal sequence 
(D from H such that 

Tl = }."; JJy<t,J>.t lor all 1 E H. 
j 

(7.2) 
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Conversely, every operator deJined by (7.2) is compact and normal; the 
numbers J1.} are eigenvalues oj T; the elements Jj are corresponding eigenvec
tors. IJ T is selj-a4ioint, then this is true in real Hilbert spaces, as well. 

PROOF. Let T="i.j~1j be the representation from Theorem 7.1. For every) 
let {gj, I' gj, 2' ••• ,gj,k) be an orthonormal basis of ROj); furthermore, 
let Il j, k = 'Aj for k = I, 2, ... , kj' Then by Theorem 7.1 and Theorem 3.7 

TJ = ~'}''JP/ = ~'Aj~ <gj,k' P/)gj,k = ~ ~ Ilj,k<gj,k,J)gj,k' 
j ) k j k 

(7.2) follows from this by changing the indices. We leave: the rest of the 
proof to the reader. 0 

Theorem 7.3. Let T be a compact normal operator on a complex Hilbert 
space, and let ('Jy) be the sequence oj non-zero eigenvalues oj T; every 
eigenvalue counted according to its multiplicity, and I~I > I~+d Jor all n. 
Then 

I'AII = IITII 

I~+II = inf sup{1I TJII : J E H,J l.gl' ' .. ,g"" IIJII = I} (7.3) 
81"" ,8. EH 

Jor n E N (cJ. also Exercise 7.2). IJ Tis selj-a4ioint, then this holds in real 
Hilbert spaces, as well. 

PROOF. It follows from the relations r(T) = II Til and a(T)\{O} C a/T) that 
I'A.I = II Til (cf. Theorem S.l7(c) and (d». Let (Jj) be .an orthonormal 
sequence such that TJj ='AjJj. If we choose gj = Jj for) = I, ... , n, then for 
every J l.gl' ... ,gil we have 

II TJII2 = II ~ 'A/Jj,J)JjI12 = .~ 1~121<JjJ)12: 
J>n J>" 

<; 1'A..+d2 ~ I<Jj,J)12 <; 1'A,,+112I1Jf· 
j>n 

It follows from this that 1~+tI;> inf sup { ... }. If gl' ... ,gn are arbitrary, 
then there exists an J E LUI' ... ,JII+ I) for which IIJII = 1 and 
J l.gl' ... , gil' We have for this J that 

It follows from this that I~+II <; inf sup { ... }. Consequently, the theorem 
is proved. 0 
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If T = ~j'f.ylj is the representation of the compact normal operator T, 
given in Theorem 7.1, then for all n EN the equalities 

obviously hold. If A)/n is chosen in some way, then the operator 

A = ~ A,I/np, 
n ~] } 

j 

has the property (An)" = T. The roots 'A)ln can be chosen in a unique way 
if we require that, for example, 0.;;; arg A)ln < 2 'IT / n. Therefore, we have 
the following theorem. 

Theorem 7.4. Let n EN, n >- 2. Every normal compact operator T on a 
complex Hilbert space has exactly one normal compact I nth root whose 
eigenvalues all lie in {z E C : 0'" arg z < 2 'IT / n). Every non-negative self
acYoint compact operator has exactly one non-negative compact nth root. 

PROOF. The operator An = ~j'AFnlj with 0.;;; arg 'A)/n < 2 'IT / n has the re
quired property. Let B = ~kfJ.kQk be an operator having the same property. 
Then we have in particular that 

L fJ.:Qk = B n = T = LAjlj. 
k j 

The uniqueness statement of Theorem 7.1 assures that J1:;n = Aj and Qj = Pj 

(this is true perhaps only after an appropriate reindexing). The inequalities 
0<; arg 17 < 2 'IT / n imply that J1:; = A)ln; consequently, B = An' If T is non
negative, then ~ >- 0 for all j; the condition 0", arg 'A)ln < 2 'IT / n then 
implies that ~I/n >- O. 0 

If T is a compact operator from HI into H2, then T* T is compact, 
self-adjoint, and non-negative. Hence we can define the absolute value of 
T by the equality I TI = (T* T)1/2, where (T* T)I/2 is the uniquely de
termined non-negative square root of T* T (a definition for arbitrary 
densely defined and closed operators will be given in Section 7.3). I TI is 
obviously compact. The term "absolute value" is justified by the following 
theorem. 

I Actually, the compactness of the nth root does not have to be assumed. Every norm~l nth 
root An of a normal compact operator T is compact: If (An)n = T, then (A: An)n = 1'* T; 
consequently, (A: An)n is compact. The compactness of A: An follows from this by Theorem 
7.20 (for n =2 this follows from Theorem 6.4(c) because of the equality (A!A2)2 = 
(A!A~·(A!A~). The compactness of An follows from Theorem 6.4(c). 
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Theorem 7.5. Let T be compact. Then III Tlfll = II Tfll for all f E H. There 
exists an isometric operator U from R(I TI) onto R( T) such that T = UI TI, 
and ITI = U-IT. The representation T= UITI is called the polar decom
position of T. 

PROOF. For allfE H we have 

IIITlfliz = (ITlf, ITlf) == (ITI1",J) = (T*IJ,f) 

= (Tf, Tf) = II Tf1l2. 

If for every f E H we set 
V(I Tlf) = TJ, 

then V is obviously a linear isometric mapping of R(I TI) onto R( T). Then 
U= V is an isometry from R(ITI) onto R(T) (cf. the proof of Theorem 
4.11), and we have T= UITI· 0 

If T is a compact operator, then the non-zero eigenvalues of I TI are 
called the singular numbers or singular values or s-numbers of T. In the 
following let (~(T» denote the (possibly finite) non-increa.sing sequence of 
the singular numbers of T; every number counted according to its multipl
icity as an eigenvalue of I TI. For 0 <p < 00 we denote by B,(HI, Hz) the 
set of all compact" operators T out of B(HI' Hz) for which 

~ [siT)Y < 00. 
j 

We write B..:.(HI> H2) for the set of compact operators belonging to 
B(HJ> H2) (cr. Section 6.1). For BP(H, H) we briefly write Bp(H). 

Theorem 7.6. Let T E B..:.(Hh Hz), s) = siT). Then there exist orthonormal 
sequences (h) from HI and (g) from H2 (these sequences can be finite) for 
which 

Tf = ~ sj(h,f)8j for all f E HI> 
j 

T*g = ~ ~(8j, g)h for all g E H2, 
j 

I Tlf = ~ ~(h, f)h for all f E HI> 
) 

1T*lg ... ~ sl8j, g)8j for all g E Hz. 
j 

The elements f; and 8j are eigenelements of I TI and I T·I, respectively. In 
particular, T, I TI, T* and I T·I have the same singular values, and the 
following assertions are equivalent: 

T E B,(HI' Hz), ITI E BiHI)' T* E S,(Hz, HI), IT·I E S,(Hz)' 

PROOF. By Theorem 7.2 the compact operator I TI has a :representation of 
the above form. Since I TI is non-negative, all the ~ are positive. Conse-
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quently, with the operator V from Theorem 7.5 it follows for allf E HI that 

Tf = VITlf = V( ~ S;<~,f)~) = ~ S;<~,f)Uij' 
J J 

Along with (1.J), the sequence (Vi.J) is also an orthonormal sequence; 
therefore, we have the required representation of T. For all f E HI and 
gE H2 we have 

<i, T*g) = <Ti, g) = ( 7 Sj<1.J,j)~, g) 

= (i' ~:S/~, g)jj ); 

the required representation of T* follows from this. We can deduce from 
these identities that 

for all g E H2• Consequently, we have the required representation of 
I T*I r= (T** T*)1/2. The remaining assertions are now clear. 0 

With the aid of Theorem 7.3 we have the opportunity of determining the 
singular numbers. 

Theorem 7.7. Let Sand T be from B.,.(H, HI)' Then 

sl(T) - II TIl, 

3;+ I(T) ... inf sup {II Tfll : f E H,f 1.gl , .•. ,g1' IIfll = I} (7.4) 
8,,··· .8J EH 

for all j E N, and 

SJ+k+I(S+T) <;sJ+I(S)+Sk+I(T) forall j,kENo' (7.5) 

(7.6) 

-!I(ST) ... siT*S*) <; IISlisi T ) ... IIS*lIsiT*). (7.7) 
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PROOF. The formulae (7.4) follow from (7.3), since the ~(T) are the 
. eigenvalues of I TI and since II Tfll = II I Tlfll for all f E H. For S, T E 
Boo(H, H,) and}, kENo 

S j+k+ ,(S + T) 

= inf sup {II(S + T)fll : f E H,f J..g, •... , gj+k' llill = I} 
gil' .. ,8j+k 

<: inf sup {IISfll + IITfll : f E H,f J..g" ... , g)+k' IIfll = I} 
8h'" ,gj+k 

<: inf [sup{IISfll:fEH,fJ..g" .•. ,gpllfll=I} 
gl' ... 18j+k 

+sup {II Till :fEH,fJ..gj +, •... , gj+k, IIfll = I}] 

= inf sup {IISfll :fEH.fJ..g,,··· ,~, Ilfll=I} 
Bit··· 18j 

+ inf sup {II Till : fEH,fJ..g j +" .. . , gj+k' IIfll = I} 
8j+.' ... ,8j+k 

= S j+'(S) + sk+,(T). 

For T E Boo(H, H,), S E Boo(H" H2) and }. kENo we have (set 
II Tfll-'IISTfll =0 if Tf=O) 

Sj+k+,(ST) = inf sup {IiSTfll :fEH,iJ..g,,··· .gj+k' IIfll=I} 
8 ..... ,8j+k EH 

<: inf sup {IiSTfll :fEH,fJ..g,.··· ,gk' T*gk+" 
8., ... ,8k EH 

... , T*gk+P IIfll = I} 

= inf sup { IIISI:llIII1I1Tfll :IEH,fJ..g,,···, gk:; 
8 ..... ,8k EH . 

Tf J..gk+ " ... , gk+j; 11111 = I} 
inf 

!:i"" ,8k EH 
8k+ ..... ,8k+jEH. 

[sup {IIShll : hE H" hJ..gk+,,·· ., gk+j' IIhll = 1} 

x sup {II Tfll : f E H,I J..g" ... , gk' IIfll = l}] 
= ~+,(S)sk+,(T). 
If T E Boo(H, H,) and S E B(H" H2), then for allj E No 

sj+,(ST) = inf sup {IISTIII : f EH,f J..g" ... , gj' IIfll = I} 
8p •• . 8j EH 

<: IISII inf sup {II TIll : ... } = IISlIsj+,(T). 
8., ... ,8jEH 

The remaining equalities follow from the equalities siA) = ~~(A *). D 
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In what follows we write 

IITllp = { L Is)T}IP riP 
J 

for T E Bp(H, HI) (0 <p < 00). 

Theorem 7.8. 
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(a) If S, T E BiH, HI) (0 <p < 00), then S + T also belongs to Bp(H, HI), 
and 

IIS+ Tllp ~ 211p (1I S lip + IITllp) for p ~ 1,2 

liS + TII~ ~ 2(IISII~ + II TII~) for p ~ 1. 

The sets Bp(H, HI) are therefore vector spaces. 
(b) If TEBp(H, HI), SEBq(HI, H2) (O<p,q<oo) and (l/r)=(I/p)+ 

(I/ q), then ST E Br(H, H2) and 

IISTlir ~ 211rllSllqll Tllp·2 

(c) If T E Bp(H, HI) and S E B(Hl' H2), then ST E Bp(H, H2), and we have 

IISTll p ~ IISIIIITllp' 

The corresponding assertions hold for T E B( H, HI) and S E Bp( H .. H2)' 

REMARK. Theorem 7.S(a) and (c) imply that the sets Bp(H) are two-sided 
ideals of B(H) and we have IISTll p ~ IISlllITllp and II TSli p ~ IISllliTilp 
for S E B(H) and T E BiH). 

PROOF. 

(a) By virtue of (7.5) we have 

L siS + TY = L {S2j_I(S + TY + S2j(S + TY} 
j j 

~ L {(Sj(S) + s)T)y + (Sj(S) + Sj+ I(T)Y}. 
j 

If p ~ I, then it follows by the Minkowski inequality for the ~-norm 
that -

IIS+ TiI~ ~[(1SiSYfIP +(1S)TyfIPr 

+ [( 1 s)Syr
lP + (~:Sj+I(TYrlpr 

~ 2[ IISllp + II TllpY· 

2 More accurate studies show that the II . lip are norms for p ;;. I (cf. Theorem 7.12 for p = I). 
and that IISTI!." IISlIqllTllp for (l/p)+(I/q)= I; d. (5). Lemma XI. 9.14 or (10). Theorem 
111.7.1. 
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If p" I, then we can use the elementary inequality lalP + I/lIP > 
la + I1IP (proof: it is sufficient to prove the case lal + 1111 = 1). With the 
aid of this inequality we obtain that 

liS + Til; " ~ {2~(SY+sj(TY+sj+I(TY} 
j 

" 2 ~ (Sj(sY + ~(TY) = 2(IISII; + II Til;). 
j 

(b) As (r/p) + (r/q) = I, it follows from (7.6) with the aid of HOlder's 
inequality that 

( )
1/, 

IISTII, = ~ sj(ST)' 
J 

" {~SiS)'Si T)' + ~ siS)'Sj+ I( T)' } 1/, 

." {(~Sj(str/q(~Sj(TYr/p +(~SiS)qr/q(7Sj+I(TYr/p}I/' 
" 21/'II S lI qIlTli p' 

Assertion (c) follows from (7.7). D 

Theorem 7.9. Let p,q,r>O with (I/p)+ (l/q) ={I/r}. We have TE 
B,{ H, HI) if and only if there exist operators TI E Bp( H, H2) and T2 E 
BiH2' HI) (with an arbitrary Hilbert space H2) for which T= T2T I; the 
operators TI and T2 can be chosen such that II Til, = II Tilip II T211 q' 

PROOF. By Theorem 7.8(b) we have T2TI E B,(H, HI) for TI E Bp(H, H2) 
and T2 E Bq(H2' HI)' Now let T E B,(H, HI) and let (cf. 1beorem 7.6) 

Tf = ~ ~(T)(Jj, f)gj, f E H, 
j 

where (Jj) and (~) are orthonormal sequences in H and HI> respectively. If 
{hi' h2' ... } is an ONS in a Hilbert space H2 and we define TI and T2 by 
the equalities 

Td = ~ siTY/P(Jj,f)hj> f E H, 
j 

T2h = ~ siTy/q(hj, h)gj> hE H2, 
j 

then obviously T= T2 T\. The numbers siT),/p and siTy/q are the singu
lar numbers of TI and T2, respectively. Therefore, T) E Bp(H, H2) and 
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( )
t/P 

II Ttllp = ~ s;(T)('/P)P = II TII'/P 
J 

consequently, II Til, = II Tilipil T211 q • D 

Theorem 7.10. 
(a) The set ~(H, HI) coincides with the set of Hilbert-Schmidt operators. 

For T E ~(H, HI) we have II Till = III Till· 
(b) We have T E BI(H, HI) if and only if there exist operators TI E 

B2( H, H2) and T2 E B2( H2, HI) (with an arbitrary Hilbert space H2) such 
that T = T2 T I; the operators TI and T2 can be chosen such that II Till = 

II T.lbll T21b· 

PROOF. 

(a) Let T E ~(H, HI)' If fl' f 2, . .. are the orthonormalized eigenelements 
of I TI that belong to the non-zero eigenvalues sj(T) and if {ga : a E 
A} is an ONB of N(lT!) = N(T), then UI,J2' ... } U ega : a E A} is an 
ONB of H. and we have 

~ II Tijl12 + ~ II Tgall 2 = ~ III Tlijll2 = ~ Sj(T)2 = II TII~ < 00. 
j a j j 

Consequently. T is a Hilbert-Schmidt operator with III Till = II Tlb· If T 
is a Hilbert-Schmidt (therefore compact) operator from H into HI and 
fl' f2' . .. are chosen as above, then 

~ Sj( T)2 = ~ II Tijll2 ..;; III TIW < 00. 
j j 

i.e., T E B2(H, HI)' 
(b) This follows from Theorem 7.9 for r = I and p = q = 2. D 

The set BI(H, HI) is also called the trace class of operators from H into 
HI' This term originates from the fact that for T E Bt(H) a trace can be 
defined by 

tr (T) = ~ <ea , Tea>, (7.8) 
a 

where {ea : a E A} is an ONB of H. This is so, because then T = T2 TI with 
appropriately chosen Hilbert-Schmidt operators T I , T2 and 

( )
1/2 

~ I<ea• Tea> I = ~ I<T!ea, Tlea>l..;; ~ II T!ea ll 2 ~ II Tlea ll2 < 00. 
0: a a a 

For matrices the trace does not depend on the choice of the basis with 
respect to which the matrix is determined. Analogously, the definition of 
the trace does not depend on the choice of the ONB in the above case. 



176 7 The spectral theory of self-adjoint and normal operators 

Theorem 7.n. 
(a) Definition (7.8) of the trace of an operator T E BI(H) is independent of 

the choice of the orthonormal basis. 
(b) If TI E BiHI> H2) and T2 E B2(H2, HI) or TI E BI(HI , H2) and T2 E 

B(H2' HI)' then tr (TI T2) = tr (T2T I). (This also holds for TI E 
Bp(HI' H2) and T2EBq(H2, HI) with (l/p)+(I/q)=:I; cf.Exercise 
7.6(c).) 

PROOF. 

(a) By Theorem 7.IO(b) there exist operators TI E B2(h', H2) and T2 E 
Bz.(H2,H) such that T=T2 T I. If {e,,:aEA} and {fp:f3EB} are 
arbitrary orthonormal bases of Hand H2, respectively, then 

= L Up, TITdp), (7.9) 
p 

where all sums have at most count ably many summands and the sums 
are absolutely convergent. If we choose another ONB {e~ : a E A} of 
H, then it follows from this that 

This is the required independence. 
(b) The first assertion has been proved in part (a). If TI E: BI(HI> H2) and 

T2 E B(H2' HI), then there exist operators BE B2(HI, H3) and A E 
Bz.(H3, H2) such that TI = AB. Thus it follows from (7.9) that 

tr (T2T I) = tr «T2A)B) = tr (B(T2A» 

= tr «BT2)A) = tr (A(BT2» = tr {TIT2), 

since T2A, B, BT2, and A are Hilbert-Schmidt operators. o 
Theorem 7.12. An operator T from HI into H2 such that D(T) = HI is in 
BI(HI, H2) if and only if there are sequences (CPn) from HI and (tPm) from H2 
such that IICPnll = IItPnll = I, and there is a sequence (zn) from II{ for which 
~Iznl < 00 and 

(7.10) 

The norm II Till is the infimum of those sums ~Iznl for which there are 
normed sequences (cpn)from HI and (tPn) from H2 such that (7.10) holds. II . III 
is a norm on BI(HI , H2), the so-called trace norm. 
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BI (HI> H2), then 
moreover, it follows the 

lUU",1\U ... If (7.10) holds, the 
finite operators Tm, T,J= Iz,,(rpn,J)1fn in the norm 
of B(HI' H2) (because II T- Tmll ..; ~n>mlznD. Hence, we obtain with the 
notation of Theorem 7.6 that 

thus, T E BI(HI> H2)' As this holds for every representation of the form 
(7.10), the equality given for II Till follows. The fact that II . III is a norm 
follows immediately from this. 0 

exactly 

7.2. In (7.3) and (7.4) we can replace "inf sup" by "min max". 

7.3. Theorems 7.1 and 7.2 do not hold for normal operators on real Hilbert 
spaces. As an example, one can consider the operator induced by the matrix 

( _ ~ ~) on H2; this operator has no eigenvalue. 

normal operator on 
",Ullll"""'. then R(z, T) 

seq,uellce (Aj) from K such 
projections 

< oo}, and 

exists a Zo E p(T) 
every Z EP(T), 

asj--?oo and a sequence 
that ~Pk = 8jk~' 

D(T). 

T) 

7.5. Let {A,.: aEA} be a family in IK\{O} for which J..,..,.Ap for a.,.p, and let 
{Pc< : a E A} be a family of orthogonal projections on the Hilbert space H 
such that PaPp = 8apPa for a, PEA. 
(a) The equalities 

D(T) = {fEH: ~ IAaI2I1Pa1112<OO} and 
aEA 

define 
(b) Every 

~ J..,.Pa1 for 
aEA 

operator on H • 
.,. 0 is an eigenvalue N(J..,. - T) = R(Pa). 
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(c) T is compact if and only if we have: 
(i) dim R(P",) < 00 for all a E A. 
(ii) for every t: > 0 there are only finitely many a E A such that I~I ;;. t: 

and P",'f=O. 

7.6. (a) Let 0 <p < 00. For every T E BiHI' H2) there exists a sequence (T,,) of 
finite rank operators such that II T"lIp -< II Tllp and II T- T"lIp~O as n~ 
00. 

Hint: Theorem 7.6. 
(b) For every TE BI(H) we have Itr (T)I -< II TIll' 

Hint: If Tf= ~l\}<Ii,j)$i. then define the trace of l' by means of an 
OND that contains {fl. f2 • ... }. 

(c) For TEB/HI • H2). SEBq(H2• HI). where (l/p)+(I/q)=l. we have 
tr (ST) - tr (TS). 
Hint: Without loss of generality we may assume that q < 2. Let (T,,) be 
chosen as in part (a). Then T" E B2(HI • H~. S E B2(H2• HI); conse
quently. by Theorem 7.1l(b) we have tr (ST,,) = tr {T"S). Moreover. 
Itr (ST) - tr (ST,,)I -< 211SIIqll T - T"lIp and Itr (TS) - tr (T"S)I -< 
2I1SlIqIlT- T"lIp~O. 

7.7. Prove Theorem 7.2 without reference to Theorem 6.7: 
(a) There is an eigenvalue tJ.1 of T such that I tJ.11 == II Til. 

Hint: By Theorem 5.17(c) and (d) and Theorem 5.43 there exist a tJ.1 E K 
and a sequence (g,,) from H for which I tJ.11 == II Til. II g"II-I. and (tJ.I
T)g,,~O. The sequence (g,,) has a convergent subsequence (g"k); the 
element fl -lim g"k is an eigenvector of T belonging to the eigenvalue tJ.1' 

(b) Let the eigenvalues tJ. ...... J.In (I tJ.11 ;;. I tJ.21 ;;. •.• ;;. I J.lnD and the eigenele
mentsf ..... • f" be determined. The restriction T" of T to LU .. ... • f,,)J. 
is a normal operator on LUI' ... • f,,)J.. J.In+1 and f,,+1 are obtained by 
using (a) for T". 

(c) Prove (7.2). 

7.8. Let T and S be operators on H such that p(T)np(S),,=0, and let 10.0 Ep(T) 
n peS). 0 <p -< 00. If R(1o.o. T) - R(7\o. S) E ~(H). then R(A. T) - R(A. S) E 
Bp(H) for all AEp(A)np(B). 
Hint: We have 

(A- TI)-I - (A- T2)-1 

- (AO- TI)(A- TI)-I[(1o.o- T1)-I-(>.o- T2)-IJO.o- T2)(A- T2)-I. 

7.9. Give a proof. independent of Theorem 7.12. that II . III is a norm on 
BI(HI• H~. 
Hint: Let Af- ~s;<Jj. f)g;. Bf- ~S1'<Ii". f)g1'. and (A + B)f- ~s) 
<Ii. f)g} as in Theorem 7.6. Then 

IIA + BII! - ~«A +B)!J.g}) 

- ~ ~ <Ii. A*gD<gk' $i) + ~ ~ <h. B*gk><g;:. gl) 
j k j k 

-< IIAIII + IIBII 1• 
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7.10. (a) If Tn E B",,(HI• H2), TE B(HI, H2), and II Tn - TII~O as n~oo. then for 
every kEN we have sk(Tn)~Sk(T) as n~oo. 
Hint: Use (7.5). 

(b) If Tn E ~(Hl> H2). T E B(HI• H2). IIT- Tnll~O as n~oo, and 
lim infn ..... oo 1/ Tnl/p < 00, then T E Bp(HI' H2), and II Tllp .;; 
lim infn ..... oo II Tnllr 

(c) If (Tn) is a sequence from Bp(HI' H2) such that 1/ Tn - Tml/p~O as n, m~ 
00, then there exists aTE Bp(HI' H~ such that 1/ T- Tnl/p~O as n~oo. 
(Consequently, BI(HI, H2) is a Banach space.) 

7.11. Let S, T E B(HI, H2) be bijective. Then S - T is in Bp(HI' H2) if and only if 
S-I- T- I is in Bp(H2, HI)' 
Hint: S-I- T- I == S -I(T_ S)T- I. 

7.12. Let S, TE B(H), S- TE BP(H). 
(a) We have S" - Tn E 8p(H) for all n E N. 

Hint: S"- T"="ij:JTj(S- T)S"-j-I. 
(b) We have peS) - peT) E BP(H) for every polynomial p. 

7.13. If TEBp(H.,H2) for somep<oo, then T*TEBp/2(HI) and (T*T)"E 
~/2iH)c BI(H) for n >p/2. We have II Til =lim" ..... oo [tr (T·T)"]1/2n. 
Hint: {"ij_dajl"}I/"~max {laA :j= 1, ... , k} as n~oo. 

7.14. Let HI and H2 be Hilbert spaces, and let T E B",,(HI, H2). For every (> 0 
there exists a finite-dimensional subspace M. of HI such that 1/ TJII .;; (I/JII for 
allJE M.l.. . 
Hint: Use the representation in Theorem 7.6. 

7.15. Let HI and H2 be Hilbert spaces. Let Hi = B(HI, IK) be the Hilbert space of 
continuous linear functionals on HI (cf. Exercise 4.3(a». 
(a) HI ® H2 is isomorphic to the space of bounded finite rank operators from 

HI into H2; we can make the element "ij_ICj~®~ from H,®H2 corre
spond to the operator T for which D(T) = HI and Tf= "ij.lcjLJ(f)~. 

(b) We havell"ij.lcjLj®gjll""IITlh; the space Hl~H2 can be identified with 
the space ~(HI' H2) of Hilbert-Schmidt operators from HI into H2. 

(c) A norm II . liT on H{®H2 is called a "cross"-norm if IIL®gIlT
IIL1I1I811. The completion H;~TH2 of H;®Hl with respect to 11.11. can 
be identified with a subspace B.(HI, H2) of B",,(HI, H2). The spaces 
B.(HI, H2) are two-sided ideals of B(HI, H2). 

(d) For every "cross"-norm II . liT we have BI(HI• H~ C B.(HI• H2). Further
more. B.(HI' H2) - BI(HI• H2), if we choose 
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Integration with respect a spectral family 

1) A Hi/bert space H function E: R_B(H) 
Ihe following nrnnprllp.< 

(a) E(t) is an orthogonal projection for every IE R, 
(b) E(s) <; E(/) for s "t (monotonicity), 

E(I ~ E(t) all as + (continuity the 
(d) E(/)_O as 1_ - 00, E(/) _ I as 1_00. 

REMARK. Property (7,1l(c» is not essential, it is needed only m the 
uniqueness statement of Theorem 7.17, Right continuity be replaced 
by left continuity; then we have to replace limB->o+ by lima ... o_ in Theorem 
7.17. 

EXAMPLE Let M measurable of and let M_R be a 
measurable function. For every t E R let 

M{/) {XE " 
M(t) is obviously a measurable subset of M. 

The equality XM{I)f Jor f L2(M) ER a 
on 

PROOF. Properties (7.11(a» and (7.1l(b» are evidently satisfied. We show 
l(c»: E R, E and (En) be null-sequence of nn"iti.rp 

numbers. Then 

II(E(t + £,,) - E(/»JII2 = f. (XM(t+<,,)(x) - XM(/)(x»If(xW dx. 
M 

Because the relations 0 XM(I + <,,)(x) XM(t)(x) " 1 XM(/+<,,)(X)
XM(t)(x)_O as n_ 00 for all x E M, it follows by Lebesgue's theorem that 

+ £,,) E(t»J as 00. 

As this holds for every zero-sequence (£,,), property (7.11{c» follows. We 
can show (7.11(d» similarly, since we have 

XM(/)(X) - 1 all M, as 00. 

XM(t)(x) - 0 for all x EM, as t - - 00. 0 

EXAMPLE Let {Pa E A} family of right continuous non-decreas-
ing functions defined on 1Ft 

(7.13) The equalities 

E(t)(fa} X(- IlUa) 

= (X( - 00, td .. ) for (fa) E $ L2(R, Pa), I E R 
.. EA 

define spectral family on EDaEA P .. ). 
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PROOF. It is clear that the E(t) are orthogonal projections. The increasing 
character follows from the equality 

f If .. {xW dp,,{x) ~ 0 for all a E A. 
(s, I) 

Because 

1 /f .. (xW dp,,(x) .;; 1 /f,,(xW dp,,(x) for all s, t and all a 
(s, I) R 

and 

it follows from this that 

II(E(t) - E(s»(!,.)11 2 = L 1 11a(x)12 dp,,(x) ~ 0, t ~ s+, 
a (s,l) 

i.e., E is right continuous. The remaining assertions E(t)~l as t~ + 00 

and E(t)-+O as t~ - 00 are clear. 0 

EXAMPLE 3. Let (iy) be a sequence of pairwise different real numbers, and 
let (P) be a sequence of orthogonal projections on H such that ljPk = 0 for 
j=l=k and ffijR(lj) = H. 

(7.14) The equalities 

E{t)f = L ljf for f E Hand t E ~ 
{J: Aj';l} 

define a spectral family on H. 

PROOF. Properties (7. Il(a», (7.11(b» and (7.II(d» are clear; we leave their 
proof to the reader, and only prove the right continuity here. For every 
tE~ and t:>0 

\I(E(t + t:) - E(t»fIl2 = ~ Illjfll2• 
U: I<Aj';I+<) 

The sum converges to zero as t:~O+ (since the series ~)lljfIl2 is conver
gent and for every noE N there exists an t:>0 such that }y~(t, 

t+e]forj<.no)· 0 

Let E be a spectral family on the Hilbert space H. For every f E H 
define 

pit) = <f, E(t)f> = IIE(t)fI12, t E~. (7.15) 
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The function PI : R~R is obviously bounded, non-decreasing, and right 
continuous; limt->_ 00 pit) = 0, lim t .... oo pit) = Ilfll2. 

A function u : R~K is said to be E-measurable if it is PI -measurable for 
every f E H (cf. Appendix A). Non-trivial examples of E-measurable func
tions (for every spectral family E) are all continuous functions, all step 
functions, and all functions that are pointwise limits of step functions; all 
Borel measurable functions are E-measurable. The function Uo with uo(t) = 
1 for all t E R is in L2(R, Pj) for every f E H. Consequently, by Theorem 
A 14, every bounded E-measurable function u : R~K belongs to L2(R, PI) 
for allfE H. 

For a step function u we can define the integral fu(t) dE(t) by the 
equality 

where 

n n f L cjxAt) dE(t) = L cyE(0), 
)=1 J j=1 

E(a, b]) = E(b) - E(a), E«a, b» = E(b -) - 1\(a), 

E([a,b]) = E(b)- E(a-), E([a,b)) = E(b-)-- E(a-) 

(here let E(t - ) = s -lim ...... o+ E(t - t:); this limit exists by Theorem 4.32 
and is an orthogonal projection). For any step function U : R~K and for 
every f E H we obviously have 

2 Ilf u{t) dE{t)~1 = fl u(t)1 2 dpjt), (7.16) 

as a simple calculation shows. If f E Hand U E LlR, Pj)' then by Section 
2.2, Examples 7 and 13, there exists a sequence (un) of step functions for 
which un~u in L2(R, PI).3 Then 

2 Ilf ull{t) dE(t)! - f um{t) dE(t)~1 = f IUII{t) - Um(t)12 dpjt) 

~ () as n, m ~ 00, 

i.e., the sequence (fun dE(t)f) is a Cauchy sequence in H. Therefore, we 
can make the definition 

f u(t) dE(t)f = lim fUII(t) dE{t)f· 
n->oo 

(7.17) 

This definition is obviously independent of the choice of the sequence (un)' 
and we have 

2 II! u(t) dE(t)~1 = !lu{tW dpjt). (7.18) 

] Here and in the sequel Ll(R, Pf} is meant to be the real or the complex Lrspace according 
as H is real or complex. . 
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For u, v E L2(R, PI) and a, bEll( it follows from (7.17) immediately that 

f (au(t) + OO(t» dE(t)f = a f u(t) dE(t)f + b f vet) dE(t)f· (7.19) 

The integral just defined is therefore linear. 0 

In our further studies we shall use the following auxiliary theorem; for 
functions that are pointwise limits of step functions (all functions explicitly 
occurring in the following are of this kind) this auxiliary theorem is not 
needed. 

Auxiliary Theorem 7.13. Let E be a spectral family on H and let u : R~IK 
be an E-measurable function. If {f" ... ,,,fp} is a finite set in H, then there 
exists a sequence (un) of step junctions that converges to u almost everywhere 
with respect to Ph for j = I, ... ,p. If u is bounded, then the sequence can be 
chosen to be bounded. 

PROOF. It is enough to show that there exists an h E H for which every 
Ph-null set is also a PJi-null set forj= 1, ... ,p (then we choose a sequence 
of step functions th~t converges to u Ph-almost everywhere). In order to 
prove this, it is enough to find, for any two elements f, = f and f2 = g, an 
element h E H for which every set of Ph -measure zero is of PI - and 
Pg-measure zero; the rest is simple induction. 

For this, set M = L{ E( t)f: t E R}. Let us introduce th~ notations: P is 
the orthogonal projection onto M, g, = Pg, g2 = (I - P)g = g - g" and 
h = f + g2' Then for arbitrary intervals II and '2 in R we obviously have 
E(1I)f 1. E(l2)g2 and E(lI)g, 1. E(l2)g2 (since E(lI)f EM, E(1,)gl EM, and 
E(12)g2 E M.l). 

Let N be a set of Ph-measure zero. Then there exists a sequence (8n) for 
which N C 8m and 8n = U m Jnm , where the Jnm are at most countably many 
mutually disjoint intervals for fixed n E N, and 

~ Ph(Jnm ) ~ 0 as n ~ 00. 
m 

Because of the equalities 

for all n, m, it follows from this that 

~ PiJnm) ~ 0 and L Pg,(Jnm ) ~ 0 as n ~ 00. 
m m 

Consequently, N is a set of Prmeasure zero. 
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For all t E IR we have 

II ~ E(Jnm)E(t)~r = IIE(t) ~ E(Jnm)~12 < II ~ E(Jnm)~( 
=LIIE(Jnm)!1I2=LPiJnm)~0 as n~oo. 

m m 

Since the set {E(t)f: t E IR} is total in M and the norms of the operators 
k~};mE(Jnm)k are less than or equal to 1, Theorem 4.23 implies that 
ImE(Jnm)k~O for all k E M. As gl E M, it follows from th:IS that 

~ Pg,(Jnm ) = ~ IIE(Jnm )gtlI2 = II ~ E(Jnm)gl\r -~ 0, 

consequently, 

as n~oo. Therefore, the Pg-measure of N equals zero. o 
For f, g E H and a bounded E-measurable function u : IR~IK, according 

to the polarization identities (1.4) and (1.8), respectively, we define 

fu(t) d<g, E(t)f) 

= ~ {fU(/) dpg+j(/) - fu(t) dpg-it) + ifu(/) dPg_ij(/) 

-if u( I) dpg+ii t)} if IK = C, 

= {{fu(t) dpg+it)- fu(t) dpg_it)} if IK = IR. 

With this definition we obtain for any bounded E-measurable functions u 
and v that 

fv(t)*u(t) d<g, E(t)f) = <fv(t) dE(t)g, fu(t) dE(t)!). (7.20) 

For step functions u and v this is evident. In the general (;ase this follows 
by Lebesgue's theorem if, according to Auxiliary theorem 7.13, we choose 
bounded sequences (un) and (vn ) of step functions that converge 
Pj-' pg-, P;+!' Pg-_j' Pg-+ij' Pg----ij almost everywhere to u and v, respectively. 

Now we are in a position to generate linear operators by means of 
integrals with respect to a spectral family. 

Theorem 7.14. Let E be a spectral family on the Hilbert space H, and let 
u : IR~IK be an E-measurable function. Then the formulae 

D(E(u» = {JEH: UEL2(R Pj}} 

£(u)f = fu(t) dE(t)f for f E D(£(u») 

define a normal operator £(u) on H. For (7.21) we briefly write 

feu) = fu(t) dE(t). 

(7.21) 



7.2 Integration with respect to a spectral family 

If u, V : IR~IK are arbitrary E-measurable functions, a, bE IK, and 

cp,,{x) = {I if lu(x)1 ""n, I/;,,(x) = {I if Iv{x)1 <n, 

o otherwise, 0 otherwise, 

then it follows: 
(a) For all f E D(£(u» and g E D(£(v» we have 

(£(v)g, £(u)f) = lim Nn(t)v(t)*cp,,(t)u(t) d(g, E(t)!); 
"--+00. 

for the latter we briefly write fv(t)*u(t) d(g, E(t)f). 
(b) For all f E D(£(u» we have 

1I£(u)fIl2 = Jlu(tW dpit). 

(c) If u is bounded, then feu) E B(H) and 

1I£(u)1I < sup{lu(t)1 : t E IR}. 

(d) If u(t) = I for all t E IR, then feu) = I. 
(e) For every f E D(£(u» and all g E H we have 

(g, £(u)f) = fU(/) d(g, E(/)f). 

(f) If u(t) ;> c for all t E IR, then 

(f, £(u)f) ;> cllfll2 for all f E O(£(u». 

(g) Beau + bV):J a£(u) + bE(v), D(£(u) + E(v» = D(£(jul +'Ivl». 
(h) ~(uv):J ~(u)£(v), P(£(u)£(o») = D(£(v» n D(£(uv». 
(i) E(u*) = E(u)*, D(E(u*» = D(E(u». 
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PROOF. The mapping £(u): D(£(u»~H is well-defined, because of 
(7. 1])-(7.2 I). We show that this mapping is lin!ar. It is cl~ar that f E 
D(E(u» and a E K imply that af E D(E(u» and E(u)(a1) = aE(u)f. 

First assume that u is bounded. Then D(£(u» = H. By Auxiliary theo
rem 7.13, for arbitrary f, gE H there is a bounded sequence (u,,) of step 
functions that converges to u almost everywhere with respect to Pi' PI and 

Pi+1f Then~un~u in~ L2(1R, Pi)' L~(IR, Pg) and L2~(IR, Pi+g); therefore~ E(u,,)f 
~E(u)f, E(un)g~E(u)g and E(u,,)(f + g)--.E(u)(f+ g). Since E(u,,) is 
obviously linear, it follows that 

B(u)(f + g) = lim E(u,,)(J + g) 
"->00 

= lim (E(u,,)! + B(u,,)g) = £(u)f + £(u)g. 
"-->00 

Now let u be an arbitrary E-measurable function, and let f, g E D(B(u». 
Then (IIP,,(t)U(/)j) converges to lu(t)1 monotonically for all t E IR. Using the 



186 7 The spectral theory of self-adjoint and normal operators 

identity we have just proved and on the basis of (7.18) we obtain that 

{J1'P,,(t)u(t)12 dpj+g(t)} 1/2 

= 1I£(IPnu)(f+g)1I 

« 1I£('P"u)fll + 1I£('P"u)gll 

= (JIIP,,(t)u(t)12 dpj(t)} 1/2 + (JIIP,,(t)u(tW d,Pg(t)} 1/2 

« (Jlu(t)12 dpit)} 1/2 + (Jlu(tW dpg(t)} 1/2 

= 1I£(u)fll + 1I£(u)gll < 00. 

It follows from thls by B. Levi's theorem that u E LllFt, Pj+g); conse
quently, f + g E D(E(u» and 

£(u)(f+g) = lim £('P"u)(f+g) 
" ..... 00 

= lim (£(IP"u)f+£('P"u)g) = E(u)f+ £(u)g. 
" .... 00 

So B(u) is linear. We obtain from the proof of (i) that B(u) is normal. 
(a) This equality is clear for step functions u and v. For bounded E

measurable functions u and v the equality follows by means of Aux
iliary theorem 7.13. In both cases the passage to the limit does not 
actually take place, as '11" = til" = I for large n. If u and v are arbitrary 
E-measurable functions, then we have for f E D(B(u» and g E D(B(v» 
that 

<B(v)g, B(u)f) = lim <B(tiI"v)g, E(IP"u)f) 
" ..... 00 

= J~~ J tiI,,(t)v(t)*'P,,(t)u(t) d< g, E(t)f). 

(b) follows from (7.18) with v = u, g = f. 
(c) Since u is bounded, we have u E L2(1R, Pj) for all f E hi. Consequently, 

D(B(u»'" H. The estimate of the norm immediately follows from (b). 
(d) By (c) we have B(u) E B(H). Furthermore, X<_II.III(t)-.u(t) - 1 for all 

t E IR; therefore, 

B(u)f ... lim B(X<_" "I)f'" lim (E(n)f - E( - n)f) - f. 
n-+oo ' n-+oo 

(e) follows from (a) with v'" 1, by taking (d) into account. 
(f) immediately follows from (e). 
(g)4 Iff E D(B(u) + B(v»..., D(B(u» n D(B(v», then u, v E L2(1R, PI); conse

'luently. au + b£ E L2(1R, PI). i.e., f E D(B(au + bv». The ~quality 
E(au + bv)f- aE(u)f + bE(v)f therefore follows from (7.19). Smce for 
E-measurable functions u, v we have u, v E L2,(IR, Pf) if and only if 
lui + Ivl E L2(1R, PI)' we have D(E(u) + E(v» - D(B(lul + Ivl». 

4 Properties (g), (h). and (i) follow more easily from Theorem 7.16. 
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(h) By (a) and (d) we have for all bounded E-measurable functions cp, If; 
and all f, E H that 

(g, E(cp)f) = (E(l)g, E(cp)f) = (E(cp*)g, EO)!) = (E(cp*)g,f); 

conseq uen tly, 

(g, E(cp)E(If;)f) = (E(cp*)g, E(If;)f) = f cp(t)If;(t) d(g, E(t)f) 

= (g, E(W)!)' 

For bounded E-measurable If; therefore have E(cp)E(If;) 

= E(W). " " A A A 

Let fE D(E(u)E(v», i.e., let f E D(E(v» and E(v)f E D(E(u». As 
function cp"U is bounded for fixed n E it follows cp"ulj;mv--+ 

cp"uv in L2(IR, Pj) as m--+oo. Consequently, 

E(u)E(v)f = E(cp"u){ lim 
n-+oo m~oo 

= lim E(cp!lu)E(If;mv)f 
1'1-+00 

The existence this means the sequence (cp"uv) is a Cauchy 
sequence in L2(1R, Pj)' Since, moreover, cp,,(t)u(t)v(t)--+u(t)v(t) for all 

~, follo~s th,!it uv ~elongs to Pj); '" con~equently, J E 
D(E(uv» and E(u)E(v)f= E(uv)f. Therefore, D(E(u)E(v» c D(E(v» 
n D(E(uv» and E(u)E(v) C E(uv). Iff E D(E(v»n D(E(uv», then 

E(uv)f- lim lim E(cp"uIf;mv)] = lim lim E(cp"u)E(If;mv)f 
n~oo m~oo n-+oo m~oo 

= E(cp" u) E(v)f. 

1he existen£e of this limit means" tha~ u E L2(1R, Pi(I))j); consequently, 
E(v)f D(E(u», and thus f D(E(u)E(v». 

(i) We first show that D(E(u» is dense. For this we prove that for every 
fE H and every mEN we have E(CPm)fE D(E(u»; because of the limit 
relation]- lim E(CPm)fit follows from this that D(E(u» dense. Let 

m-tooo A 

f E H, mEN and g = E( CPm)!' Then by (h) we have for all n ;> m that 

!lcp/l(t)u(t)j2 dpg(t) = IIE(cp"u)E(CPm)!1I 1 ... IIE(CPmu)fIl2 < 00. 

Therefore, E L2(R, Pg)' i.~, E(CPm)f-JI E D(E(u» all mEN. 
We obviously have D(E(u*» = D(E(u». By (e) we have for f, g E 

D(E(u» == D(E(u*» that 

(g, E(u)f) = f u(t) d(g, E(t)f) = {f u(t)* d(f, E(t)g)}* 

= (J, E(u*)g)* = <E(u*)g,j), 
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i.e., E(u) and E(u*) are formal adjoints of each other. It remains to 
prove that D(E(u)*) c D(E(u*». Let g E D(E(u)*). Then for all f E 
D(E(u» 

(E(u)*g,f) = (g, E(u)f) = lim (g, E(fPnu)f) = lim (E(fPnu*)g,f). 
n---+oo n-+oo 

In particular, for every f E Hand mEN 

(E(fPm)E(u)*g,f) = (E(u)*g, E(fPm)J) 

= lim (E( fPnu*)g, E( fPm)J) = lim (E( fPmfPnu*)g, f) 
n-+oo n--+oo 

= <E(fPmu*)g,f). 

Consequently, for all g E D(E(u)*) and all mEN 

E(fPm)E(u)*g = E(fPmu*)g, 
and thus 

E(u)*g = lim E(fPmu*)g = lim !<Pm(t)u(t)" dE(t)g. 
m--+oc m ....... oo 

The existence of this limit means that the sequence (fPmu*) converges in 
L2(R, Pg)' i.e., u* E L2(R, Pg), llnd thus g ~ D(E(u*». .. 

We have in particular D(E(u)*) = D(E(u», and (by (b» IIE(u)fll = 

IIE(u)*fll for alifE D(E(u», i.e., E(u) is normal. 0 

EXAMPLE 1 (continued). Let E be the spectral family of Example 1. If 
u : R~C is a step function, u(t) = Lj_l CjX~(t), then 

(f u(t) dE(t)f)(x) = .± cJx~(g(x»f(x) 
J=l 

= u(g(x»)J(x), f E L2(M). 

Therefore, it follows for every E-measurable function u that 

D(E(u» = {J E L2(M) : (u 0 g)f E L2(M)} 

and 
(E(u)J)(x) = u(g(x»f(x) for f E D(E(u», 

i.e., E(u) is the maximal operator of multiplication by u 0 g. For u = id we 
obtain the operator of multiplication by g. 

EXAMPLE 2 (continued). If E is the spectral family of Example 2 on 
EEl aEA L2(R, Pa) and u : R~C is an E-measurable function (cf. Exercise 
7.18), then 

D(.E(u» = {(fa) E EEl L2(R, Pa) : (uJa) E EEl L2(R, Pa)} 
aEA aEA 

and 
E(u)(fa) = (uJrJ f~r f E D(E(u». 
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We call this operator the maximal multiplication operator induced by u on 
EB a EA L2(1R, Pa ). The proof is along the same lines as in Example I. 

EXAMPLE 3 (continued). Let E be the spectral family of Example 3. Then 
every function u: IR~IK is E-measurable, since for all tE{A,- :j= 
1, 2, ... } 

as R\{Aj :j= I, 2, ... } is a set of Prmeasure zero for allfEH, we have 
found a sequence of step functions that converges to u Pralmost every
where for all f E H. It is now easy to see that for all u : 1R41K 

D(E(u» = {f E H: ~ IU(A)I ZllljfIl 2 < 00 }, 
J 

i(u)J = ~ u(A,-)PjJ for J E D(E(u». 
j 

For u = id we obtain in particular that 

and 

i(id)J = ~ AjljJ for J E D(i(id». 
j 

Theorem 7.15. Let HI and H2 be Hilbert spaces, let U be a unitary operator 
Jrom HI onto Hz, and let E be a spectral family on HI' Then by the formula 

F(t) = UE(t)U- I , t E III 

a spectral Jamily is deJined on Hz. A Junction u : 1Il~1K is F-measurable if 
and only if it is E-measurable. If ft is defined analogously to i, and u is 
E-measurable, then 

PROOF. It is clear that F is a spectral family on H2• If pfit) = IIE(t)JII 2 and 
O'it) = II F(t)gIl2, then pIt) = O'ult) obviously holds. Consequently, u is 
E-measurable if and only if it is F-measurable, and L2(1R, Pj) = L2(R, O'Uj)' 
The equality F(u) = UE(u)U- 1 is evident for any step function u. The 
assertion follows from this fact immediately. 0 

Theorem 7.16. Let E be a spectral family on the Hilbert space H. Then there 
exists a Jamily {Pa : a E A} of right continuous non-decreasing Junctions (the 
cardinality of A is at most the dimension of H) and a unitary operator 



190 7 The spectral theory of self-adjoint and normal operators 

V: H~e"EAL2(R, p,,)jor which 

E(t) = V-1F(t)V for a/l t E R 

with the spectral family F from Example 2. For every E-measurable function 
u 

E(u) = V-1F(u)V, 

where F(u) is the maximal operator of multiplication by u on 

ffiaEALiR, Pa)' 

PROOF. For any fE H, f=l=O let H.J=L{E(t)j: t ER} and let pJ.t)= 
IIE(I)fI1 2• Then the formula 

vj • O( ~ Cj E(0)J) = ~ cjX(-oo.t,l 
j-I j=1 

defines an isometric mapping of L{ E(t)f : t E R} into L2(R, Pj)' as can be 
verified easily. For all gEL{ E(t)f: t E IR} 

Vj,o(E(t)g) = X(-oo.I)u"og· 

The range of u"o contains the space of left continuous step functions, thus 
it is dense in L2(R, Pj) (observe that the left continuous ~ep functions are 
dense in the space of step functions). The closure 0= ~1.0 is therefore a 
unitary operator from H.r onto L2(R, Pj)' and for all g E Ii-

Vj(E( t)g) = X( - 00, II ll.rg. 

With the aid of Zorn's lemma we see immediately that there exists a 
maximal system {H.t. : IX E A} such that H.ra.i H.r" for IX =F f3 (partial ordering 
= inclusion, upper bound = union). We write Ha for Hr., and show that 
H= eaEAHa • If we had H=I= ffiaEAHa , then there would be agE H, g=l=O 
such that g.i H" for all IX E A. Then we would also have E( t)g..L Ha for all 
IX E A, and thus Hg.i eaEAHa ; this contradicts maximality. 

Let Pa = PIa' let Va : H" ~ L2(R, p,,) be the corresponding unitary opera
tors, and let P" be the orthogonal projections onto H", then 

is a unitary operator from H onto ffi aEA L2(1R, p,,). For all g E H we have 

VE(t)g = (VaPaE(t)g) = (V"E(t)Pag) 

= (X(-OO,I)V"Pag) = F(t)Vg. 

E(u) = V-1F(u)V follows by Theorem 7.13. The rest of the assertion 
follows from Example 2. 0 
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EXERCISES 

7.16. Let E be a spectral family, and let u : R~D< be a continuous function. For 
- 00 < a < b < 00 we can define the integral f ~ u(t) dE(t) as a Riemann
StieJtjes integral, i.e., the integral is the limit in B(H) of the sums 

n 

~ u(l;) =F (E(I;)-E(I;_I» 
)-1 

with a = 10 < II < . . . < In = b, provided that the maximal length of the 
intervals tends to O. 

7.17. Let E be a spectral family on H. 
(a) For every sequence (!,.) from H there is an hE H for which we have: 

Every set of Ph-measure zero is of p~-measure zero for allj E N. 
(b) If H is separable, then there exists an hE H for which we have: Every set 

of Ph-measure zero is of Prmeasure zero for all f E H. 
(c) If H is separable, and u : R~IK is an E-measurable function, then there 

exists a sequence (un) of step functions that converges to u Pralmost 
everywhere for all f E H. 

7.18. Let E be the spectral family of Example 2. A function u : R~C is E-measur
able if and only if it is p,,-measurable for every a E A. 

7.3 The spectral theorem for self-adjoint operators 

If u is a real-valued E-measurable function on R, then the operator E(u) is 
self-adjoint by Theorem 7.14(i). We show in this section that every self
adjoint operator can be represented in this way and there exists exactly one 
such representation with u = id. 

Theorem 7.17 (Spectral theorem). For every selj-atijoint operator T on the 
Hilbert space H there exists exactly one spectral family E for which T= 
E(id), or in another notation, T= Jt dE(t) (cf. Theorem 7.14). In the com
plex case the spectral family E is given by 

I fb+8 (g, (E(b)-E(a»f> = lim lim -2 . (g, (R(t-iE, T) 
8 .... 0+ < .... 0+ 'IT I 0+6 

- R(t + iE, T»f> dt . (7.22) 

for all f, g E Hand - 00 < a ..;;;; b < 00. We stry that E is the spectral family of 
T. 

PROOF. First we assume that H is complex. 
Uniqueness: If T= E(id), then z - T= E(z - id) by Theorem 7.14(g). 

Then for all z E C such that 1m z =1=0 we have by Theorem 7.14(h), with the 
notation uz(t) = (z - I)-I, that 

(z - T)E( uz)f = E«z - id)uz)f = f for all f E H, 

E(uz)(z - T)J = E(uAz - id»)J = f for all f E D(T). 
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. Consequently, E(uz) = R(z, T) for all z E C such that 1m z .pO. This im
plies via Theorem 7.14(e) that 

(f, R(z, T)f> = f (z - I) -I dPj(/) for all f e:: H. 

The functions PIt) = II E(/)fIl2 and F(z) = (f, R(z, T)f> therefore satisfy 
the assumption of Theorem B I of the Appendix, and thus for all t E R 

-I fl+8 IIE(t)fIl2 = (f, E(t)f> = lim lim - Im(f, R(s + if, T)f> ds 
8--+0+ .--+0+ 'TT - 00 

= lim lim 21. f'+B(f, (R(s-if, T)-R(s+if, T»f> ds. 
8 .... 0+ ..... 0+ 'TTl - 00 

(7.22) follows from this with the aid of the polarization formula (1.4). Since 
(7.22) holds for all f, g E H, the uniqueness has been proven. 

Existence: If there exists a spectral family E such that T = E(id), then 
(7.22) must hold. Therefore we study whether (7.22) defines a spectral 
family E with the property E(id) = T. -For every f E H Ithe function Fj 
defined by the equality Flz) = (f, R(z, T)f> satisfies the assumptions of 
Theorem B3 (Appendix), since Fj is holomorphic for 1m z > 0 by Theorem 
5.16 and we have 

1m Fj(z) = Im(f, R(z, T)f> ... Im«z - T)R(z, T)f, R(z, T)f> 

= IIR(z, T)f112 1m z* < 0 for 1m z > 0 
and (by Theorem 5.18) 

IFj(z) 1m zl <; 11m zl-llIfll21lm zl = IIf1l2. 
Consequently, 

<1, R(z, T)f> = Flz) = f (z - 1)-1 dw(j, t), (7.23) 

where 

- . 1 fl+8 - . w(j, I) = 11m 11m -2' (f, (R(s -If, T) - R(s + If, T»f> ds. 
8 ..... 0+ ...... 0+ 'TT I -00 

w(j, t) is a non-decreasing and right continuous function of t, and w(j, I) 
--+0 as t--+ - 00, w(j, t) <; IIfll2 for all t E R. Equation (7.23) holds for all 
z E C\R since <1, R(z*, T)f> = (f, R(z, T)f>*. Furthermore, we define 

1 f'+8 . . w(g,j,t) = lim lim -2' (g,(R(s-u,T)-R(s+lf,T»f>ds; 
8-+0+ ...... 0+ 'TT 1 - 00 

the existence of this limit follows by means of the polarization identity for 
the sesquilinear form (g, j)"""'( g, (R(s - if, T) - R(s + if, T»f>. 

The mapping (g,j)....."w(g,f, I) is a bounded non-negative sesquilinear 
form on H for every t E R. The sesquilinearity is clear from the definition; 
moreover, w(j, f, t) = w(j, t) > 0 for all 1 E R. The Schwarz inequality and 
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the inequality w(f, I) " 111112 imply for all 1, g E Hand t E R that 

Iw(g,l, tW " w(g, l)w(J, I) " IIg1l2111112. 
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Therefore, by Theorem 5.35 there exists, for every t E IR, an operator 
E(t) E 8(H) for which IIE(I)II " I and 

(g, E(t)l> = w(g,l, t) for all 1, g E H. 

It is obvious that E(t) is self-adjoint and E(/) > O. 

Now we show that E is a spectral family. For this we first show that 
E(s)E(t) = E(min(s, I» for all s, 1 E R. For all z E C\R and for all 1 E H 

(g, R(z, T)J> = f (z - 1)-1 dw(g,l, I) = ! (z - 1)-1 d(g, E(t)I>. 

(7.24) 

This follows from (7.23) using the polarization identity. Consequently, the 
first resolvent identity implies for all z, z' E C \ R with z =l=z' 

! (z - 1)-1 d(R(z'·, T)g, E(t)l) = (R(z'·, T)g, R(z, T)J) 

= (g, R(z', T)R(z, T)J) 

= (z'-z)-t{(g, R(z, T)I> -(g, R(z', T)I)} 

= (Z'-Z)-I![(Z-/)-I_(Z'-t)-I] d(g, E(t)l) 

= !(z-t)-I(z'-t)-I d(g,E(t)f) 

= ! (z - 1)-1 d,f~}z' - S)-I d(g, E(s)I). 

It follows from this by Theorem B2 (Appendix) that 

!(Z'-S)-I ds(g, E(s)E(t)l) = (g, R(z', T)E(/)I> 

= (R(z'·, T)g, E(t)l) 

f ' -I = (z' - s) d(g, E(s)I>. 
-co 

Therefore it follows for all 1, g E Hand s, 1 E R again by Theorem 
B2 (Appendix) that 

(g, E(s)E(/)I) = {(g, E(s)1> 
(g, E(t)1) 

This means that for all s, 1 E R 

for s "t, 
for 1 "S. 

E(s)E(/) = E(min(s, t». 
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E(ti E(t). E( t) orthogonal projections 
for all t E IR, and E(s) "- E(t) for s "- t (cf. Theorems 4.29 and 4.31). Thus 
(7.1 I (a» and (7. 11 (b») are satisfied. The right continuity (7.11(c» follows 

the formula 

t + () w(J, o as ...... 0 

since w(j, . ) is right continuous. Moreover, IIE(I)1112 = wU, t) ...... O as t ...... 

Therefore, ~ 0 t ...... - It only remains prove that 
~ I 00. E( .) monotone, E(/) strongly wnverges an 

orthogonal projection E(oo) as t ...... oo (cf. Theorem 4.32). We have 

<j, E( 00 )1) = <1, E(t)j>. 

Consequently, E( 00) > E(t) for all t E IR. Let F- 1- E( 00), Then 

- E(t) = 0, R 

It follows from this for all j, g E H, 1m z =F 0 that 

g, R(z, T)Fj) J (z - d<g, E(t)Fj) 

Hence R(z, T)Fj= for all H, and thus F= i.e., = I. Conse-
have that is a spectral 

R(z, T) = E(uz) by (7.24) and Theorem 7.14. This implit:s that E(z - id) 
= z - T and E(id) = T (Theorem 7.14(h) and (g) respectiv,ely). Hence, the 
theorem is proved in the complex case. 

T is a self-adjoint operator on real Hilbert spnce H, we 
consider the self-adjoint operator T c on the complex Hilbert space Hc 

Exercise 5.32). what have T c exactly one 
Ec which Edid) = The restriction Ec to is a 

spectral family on H such that E(id) = T. If F were another spectral family 
on H with the property that F(id) = T, then the compl(:xification of F 
would be another Fe such that F did) = T c' There
fore, Fc = Ec' and thus F= E. The details are left to the reader (cf. Exer
cise 7.25). 0 

EXAMPLE 1. If T is the operator of multiplication by a real function g on 
E9 aEA L2(1R, Pa) (cf. Section 7.2, Example 2 (continued», then E(t) is the 
operator of multiplication by the characteristic function of {s E IR : g(s) "
t}. We also write briefly E(t) X{SER : g($) < I}' The corresponding result 
holds for multiplication operators on L2(M). The proofs are contained in 
Examples I and 2 of Section 7.2. 
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EXAMPLE 2. Let P be an orthogonal projection on H. Then 

{o for 1<0, 
Ep(/) = [-P for 0<1<1, 

[ for I> 1 

is the spectral family of P, since for this spectral family we have 

f u(t) dE(t) = u(O)(I - P) + u(l)P; 

consequently, 

f t dE(t) = P. 

In particular, the spectral family of the zero operator is given by 

Eo(t) = {O[ for t < 0, 
for t > 0, 

and that of the identity operator by 

EAt) = {OJ for t<l, 
for t> 1. 
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EXAMPLE 3. Assume that T is a compact self-adjoint operator on H, (A.i) is 
the sequence of non-zero eigenvalues of T, (lj) is the sequence of the 
orthogonal projections onto the eigenspaces N(A.i - T) and Po is the or
thogonal projection onto N(T). Then the equality 

{ 

~ Pj for t<O, 

( ) {J : ".I "',} 
Etf= 

~ Pj+Pof for t>O 
{J: Aj""} 

defines the spectral family of T, since 

E(id)f = ~ AjP) + OPoJ = TJ for all f E H 
j 

by Theorem 7.1. 

Theorem 7.18 (Spectral representation theorem). Let T be a se/j-ac(joint 
operator on H. Then there exist a family {Pot : a E A} of right continuous 
non-decreasing Junctions and a unitary operator U from H onto 
EB .. eA L2(R, Pot) for which 

T= U-1TidU, 

where Tid denotes the maximal operator of multiplication by the function id 
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on fD et E A L2(R, Pet)' For the spectral family E of T we have E(t) = 
U -IX<_ 00. tJU. 

REMARK. In place of the assertion of Theorem 7.18 we can briefly say the 
following: Every self-adjoint operator is unitary equivalent to a multiplica
tion operator by the function u = id; these are operators that we already 
know quite well. The cardinality of the set A is at most equal to the 
dimension of H. The spaces L2(R, Pet) have to be chosen to be real when H 
is real. One disadvantage of this theorem compared to Theorem 7.17 is that 
this representation is not unique. 

PROOF. If E is the spectral family of T, and fD etEA L2(R, p,,), U, and Fare 
constructed as in Theorem 7.16, then by Theorem 7.16 and Theorem 7.17 

T = E(id) = U - Ift(id) U = U - I Tid U, 

E(t) = U-IF(t)U = U-IX(-oo.tlU, o 
If E is the spectral family of the self-adjoint operator T, and u is an 

E-measurable function, then we write u(T) for E(u). We already know that 
uz(T) = (z - T) - I for uz(t) = (z - t) - I. The following theort!m gives further 
justification for this notation. 

Theorem 7.19. If u(t) = "i}_Ocjt), then u(T) = "i}=oc) Tj, where we set TO = I. 

PROOF. The assertion obviously holds for n = 0 (cf. Theorem 7.14(d». Let 
us assume that it holds for polynomials of degree < n - l. Then veT) = 
"i} _ I c) T) - I for v( t) = "i.j. I clj - I. Because of the equality u = v' id + CO' it 
follows from Theorem 7.14(h) that 

u(T) :::) v(T)T+ col. 

Since for n;;;' 1 we moreover have OCT) = O(E(id»:::) O(u(T», it follows 
from Theorem 7.14(h) that 

O(u(T» = D(T) n O(u(T» = D(v(T)T), 

and thus 

u(T) = v(T)T+ Col = (f CjTj-I)T+ Col = :~ ciT). 0 
)=1 . )·-0 

Let E be a spectral family on H. A subset M of Ill! is said to be 
E-measurable if its characteristic function XM is E-measurable. We write 
E(M) for E(XM)' We have E(R\M) = E(l- XM) = I - E(XM) = 1- E(M). If 
E is the spectral family of T, then E(M) = XM(T). The operators E(M) are 
orthogonal projections. 

Proposition. Let T be a self-adjoint operator on H, and let E be its spectral 
family. 
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(1) For any E-measurable subset M oj R the subspace R(E(M» is a reducing 
subspace oj T, i.e., E(M)T C TE(M). 

(2) Let OeM, T)= E(M)O(T). We have <J, TJ) <y1lJ1I2 Jor all JE 
0« - 00, y), T), J:I=O, and <J, TJ) < yllJII2 Jor all J E 0( - 00, y], T). 
Similar statements holdJor (y, 00) and [y, 00). 

(3) We have <1, Tf) < yllf1l 2 Jor all J E OCT) if and only if E(t) = I Jor all 
t .,. y. We have <1, TJ) .,. yllJII2 Jor all J E OCT) if and only if E(t) = 0 
Jor a/l t <y. 

(4) For every bounded interval J the subspace R(E(J» is contained in OCT) 
and TE( J) = E(id XI) E B( H). 

(5) Assume that / E Rand s > O. We have J E OCT) and II(T- t)JII<sIlJII 
Jor every J E R(E(t + s) - E(t - s». 

(6) IJ u is a real-valued E-measurable Junction, then we have Jor the spectral 
Jamily F oj u(T) that F(t) = E({s E R : u(s) < t}) Jor every t E Rand 
F(M) = E({ s E R : u(s) EM}) Jor every Borel set M. 

The prooJs are obvious when T is the operator Tid on $aEAL2(R, Pa). In 
the general case we use the spectral representation theorem 7.18. As to Part 
6, observe that F(M) = X",(u(T» = (X", 0 u)(T), X", 0 u = X{.EN: u(.)E"'} and 
use Section 7.2, Example 2. 

Now we are in a position to define the nth root of an arbitrary 
non-negative self-adjoint operator and give the polar decomposition of 
unbounded operators. 

Theorem 7.20. 
(a) Every non-negative self-adjoint operator T possesses exactly one non

negative self-adjoint nth root TI/n. IJ E is the spectral Jamily oj T, then 
Tl/n = Jtlln dE(t) (here t lln ., 0 Jor t" 0; Jor t < 0 the value oj t lln is 
immaterial, as the ~-measure oj ( - 00, 0) vanishes Jor every J E H). IJ T 
is compact, then T In is also compact. 

(b) Let T be a densely deJined closed operator Jrom HI into H2. The operator 
T can be uniquely represented in the Jorm T = US, where S is a 
non-negative self-adjoint operator on HI and U is a partial isometry with 
initial domain R{S) andJinal domain R{T). We have S=(T*T)1/2; we 
again write 1 TI Jor (T* T)1/2. 

PROOF. 

(a) By Theorem 7.14(f), (h) and (i) the given operator T lin is a non-nega
tive nth root of T. By Part 6 of the last proposition the spectral family 
of Tl/n is 

If S is an arbitrary non-negative nth. root of T with spectral family F, 
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then the spectral family of T= sn is 

F ( ) {O for t < 0, 
n t = F(t l / n ) for t > O. 

The equality E = Fn follows because of the uniqueness of the spectral 
family of T. Consequently, F= E 1/ n, and thus s= TI/n. 

If T is compact, then there exists a compact non-negative nth root of 
T by Theorem 7.4. The operator TI/n constructed here is then com
pact, because of the uniqueness of the nth root. 

(b) If T= US is such a representation, then T*T=S*U*US=SU*US= 
S2, since U* U is the orthogonal projection onto R(S). The equalities 
S = (T* T)I/2 = I TI follow from part (a). This proves the uniqueness, 
since U is uniquely determined by the equality UITll=,Tl. It remains 
to prove the existence of such a representation. By 1beorem 5.40 we 
have 0(1 TI) = OCT) and II I Tllll = II Tll1 for all 1 E OCT). The mapping 
V: R(ITD~R(T), ITll~Tlis therefore isometric, and T= VITI. The 
operator V can be uniquely extended to an isometric mapping V acting 
from R(I TI) onto R( T). The equality U(J + g) = Vl for 1 E R(I TI) and 
g E R(I TI).1 proves the assertion. D 

The boundedness and the norm of self-adjoint operators can be seen 
from their spectral family. 

Theorem 7.21. A self-acijoint T on H is bounded if and only if there exist real 
numbers YI and Y2 lor which 

E(t) = {O lor t <y., 
I lor t >h 

We can then choose 

YI = m = inf{ <1, Tl) : 1 E O(T), 11111 = l},. 
Y2 = M = sup{ <1, Tl) : lEO(T), 11111 = I}. 

For m <t <M we have E(t)=FO and E(t)=FI. 

PROOF. By Theorem 4.4 the operator T is bounded if and only if m and M 
are finite. By Part 3 of the last proposition this is equivalent to the 
assertions that E( t) = 0 for t < m and E(I) = I for t > M. If we had E(lo) = 0 
for some to>m, then we would have <1, Tl) > toll 1112 for alllE D(T), on 
account of Part 3 of the last proposition. This contradicts the definition of 
m. The relation E(I)9I= I for t < M follows similarly. D 

EXERCISES 

7.19. Assume that T is a self-adjoint operator, E is its spectral family, and M is a 
closed subspace of H. We have M= R(E(t» if and only if M is a reducing 
subspace of T and <f. Tf) <; tllfll 2 for f E O(T) n M and <I, Tf) > tllfll 2 for 
fE O(T)n M.1. 
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7.20. Suppose that T is self-adjoint with spectral family E, a, bE p(T) n IR, and r 
is a positively oriented Jordan curve for which (a, b) n o(T) lies inside rand 
all other points of the spectrum of T lie outside r. Then E(b) - E(o) = 
(2'1T i)-I f rR(z, T) dz in the sense of the Riemann integral. 

7.21. Assume that T is self-adjoint, 0 < p < I, and 1 E D(T), TP = f IP dE(t) with 
an arbitrary choice of the branch of the function IR-+C, I~ IP. Then 
II TPlll <IITII1P llll1 l - p • 

Hint: Holder's inequality for II TP1112 = f 1/12p dIlE(/)1112• 

7.22. Let T be a non-negative self-adjoint operator, and let>.. > O. Then (>.. + T)-l 
= (1/>") f O'e-' cos (>.. -1/2STI/2) ds, in the sense of the improper Riemann
Stieltjes integral. 

7.23. (a) Let TI and T2 be densely defined and closed. Assume that D(TI) = D(T ~ 
and II Ttfll = II Tdll for all 1 E O( TI)' Then I Til = I T21· If TI and T2 are 
self-adjoint and non-negative, then TI = T2• 

(b) A densely defined closed operator is normal if and only if D(1'*T) 
= D( TT*) and II 1'* TIll = II TT* 111 for 1 E D( 1'* T). 

7.24. If T is self-adjoint and u, v: IR-+IR are Borel functions, then u(v(T»= 
(u 0 v)(T). 
Hint: Use the spectral representation theorem 7.18. 

7.25. Assume that H is a real Hilbert space, T is a self-adjoint operator on H; He 
and Te are the complexifications of Hand T, respectively (cf. Exercise 5.32). 
(a) The mapping K : He-+ He, (j, g)~(j, - g) for 1, g E H has the properties 

KK = I and K(ahl + bh2) = a* Khl + b* Kh2 for all hi' h2 E He (K is called 
a conjugalion; cf. also Section 8.1). We have H={hEHc: Kh=h}. 

(b) We have KTe = TeK and K(z - Td- I = (z* - Td-IK for all z Ep(Td. 
(c) If Ec is the spectral family of Te, then KEd/) = Ed/)K for all IE IR. 

Hint: Use (7.22). 
(d) The formula E(I) = Edt)IH' 1 E IR defines a spectral family on H such that 

T= £(id). 
(e) E is the only spectral family for which T= E'(id). (This proves Theorem 

7.17 for real Hilbert spaces.) 

7.26. Let T be a densely defined closed operator on H and let T= UITI be its 
polar decomposition. 
(a) We have N(JTJ) = N(T) and R(jTj)=R(1'*). 
(b) We have 1'* = ITIU* and 11'*1 = UITIU*. 

Hint: T1'* ... (VI TIU*)( VI TI V*), and UI TI V* is non-negative and self
adjoint. 

(c) Prove, furthermore, that T= VITI ... IT*IV= V1'*V, 1'* = V*I1'*1 = 
ITIU* = V*TV·, ITI = V·T= 1'*V= V*I1'*IU, 11'*1 = UT* = TV· = 
UITIV·. 

(d) If T is normal, then ITI=I1'*I, UITI=ITIU, V·ITI=ITIV·, and 
R(T)=R(T*)= ROT!). 

(e) If T is normal, then the operators T}(T*)k are normal for all j, kENo; 
furthermore, O(T}(T*)k) = D(T}+k), (Ti(T*)k)* = Tk(T*Y and 
II T}(T*i'fll = II Ti+ kll1 for 1 E D(T}+k). 

7.27. Let S be closed and symmetric but not self-adjoint, and let T-ISI. Then· 
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T + AS is self-adjoint for ,\ E( -I, I), closed and not self-adjoint for IAI> I, 
and not closed for IAI = 1. (S is T-bounded with T-bounded 1.) 

7.28. Let T be a self-adjoint operator on L2(M) and let (zo- T)--n be a Carleman 
operator for some Zo E p( T). 
(a) (z - T)-n is a Carleman operator for every z Ep(T). 
(b) E(b) - E(a) is a Carleman operator for all a, bE IR. 
Hint: (z - Tnzo - T)-" and (z - Tt(E(b) - E(a» are bounded. 

7.29. (a) If T is a non-negative self-adjoint operator, then D(T) is a core of TI/2. 
(b) If A is symmetric and non-negative, T is the Friedrichs extension of A, 

and S is an arbitrary non-negative self-adjoint extension of A, then 
D(TI/2) C D(S 1/2). 

Hint: D(TI/2) is the completion of D(A) with respect to the norm 
{lIfll2 + <f, Af)} 1/2. 

7.30. Let Sand T be non-negative self-adjoint operators. We write T, S if 
0(SI/2)C 0(TI/2) and IIT'/~II' IIS'/~II for aBfE 0(SI/2). 
(a) If OEp(T), then T,S if and only if S-I,T- 1 (i.e., <f,S-'J)<

<f, T - 'J) for all f E H). 
Hint: Show that T,S~IIT'/2S-'/211' 1~{IIS-I/2Tl/~1I <- 11111 for all 
fED(TI/2)}~S-1 ,T- I. 

(b) If A is symmetric and non-negative, T is the Friedrichs extension of A, 
and S is an arbitrary non-negative self-adjoint extension of A, then S, T. 

7.30' Let T be self-adjoint on a complex Hilbert space, and let A be T-bounded. 
(a) The relative bound of A equals lim,-+_ooIlA(it - T)-'II. 
(b) If T is bounded from below, then the relative bound of A equals 

limt-+oollA(t + T)-'II· 

7.4 Spectra of self-adjoint operators 

We know from Section 5.3 that the spectrum of a self-adjoint operator is a 
closed subset of the real axis (of course, this is a non-trivial statement only 
in the complex case). In this section we want to study how the spectral 
points of a self-adjoint operator may be characterized by means of its 
spectral family. . 

Let T he a self-adjoint operator on H. The spectrum aCT) and the point 
spectrum a/T) are defined as in Section 5.2. 

Theorem 7.22. Let T be a selj-amoint operator on H, let E be the spectral 
family of T, and let To be a restriction of T for which 1~ = T. Then the 
following statements are equivalent: 

(i) s E aCT); 
(ii) there exists a sequence (i,,) from D( T) for which lim inf II J" II > 0 and 

(s - T)fn~O; 

(iii) there exists a sequence (gn) from D( To) for which lim inq gn II > ° and 
(s - TO)gn~O; 

(iv) E(s+f.)-E(s-f.)'i=Ofor every f.>O. 
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PROOF. The equivalence of (i) and (ii) immediately follows from Theorem 
5.24. 

(ii) implies (iii): Since OCTo) is a core of T, for every n EN there exists a 
gnEO(TO) for which IIgn-fnll<n-: 1 and IITogn-Tfnll<n- l • Hence, 
lim inf II gnll > ° and (s - TO)gn- O. 

(iii) implies (ii): This is clear because of the inclusion OCTo) C OCT). 
(ii) implies (iv): Assume that (iv) does not hold, i.e., that there exists an 

e > 0 such that E(s + e) - E(s - e) = 0. If (J,,) is the sequence from (ii), then 

lI(s - T)fnll 2 = fls - 112 dIlE(t)fnIl 2 ;;. (2 f dIlE(t)J,.1I2 

= e2 11fnll 2 

(here we have used the fact that Is - tl ;;. f almost everywhere relative to the 
measure induced by p/" = II E( . )fn 11 2). This is a contradiction because 
(s - T)fn -0 and lim inf II fn II > 0. 

(iv) implies (ii): We have E(s + n -I) - E(s - n -I) ~ ° for every n E N, 
i.e., there exists an fn E R(E(s + n -1) - E(s - n -I» such that IIfnll = l. For 
this sequence we have lim inf IIfnll = 1 and 

lI(s - T)fnll 2 = fls - 112 dIlE(/)jnIl2 < n- 2 f dIlE(t)jnIl 2 

= n- 2 I1fnIl 2 _ O. o 

Corollary 1. Let a <b. If E(b) - E(a) ~O then (a, b] n aCT) ~0. We have 
(a, b) n a(T)~0 if and only if E(b -) - E(a)~O. 

PROOF. 
(a) Assume that (a, b] c p( T). Then by Theorem 7.22 the spectral family E 

is constant in some neighborhood of s for every s E (a, b]. Conse
quently, E is constant in (a, b], and thus E(b) - E(a) = s -
lim ..... o+(E(b) - E(a + f» = 0. 

(b) If (a, b)n a(T)=0, then we can prove, as in part (a), that E is 
constant in (a, b), i.e., that E(b - ) - E(a) = s -lim<->o+(E(b - f) - E(a 
+e»=O. If AE(a, b)na(T), and £>0 is so small that (A-e, A+e]c 
(a, b), then E(A + f) - E(A - e) ~ 0, so that E(b - ) - E(a) #0. 0 

Corollary 2. A self-acijoint operator T is bounded from below if and only if its 
spectrum is bounded from below. The greatest lower bound of T is equal to 
min aCT). 

PROOF. By Part 3 of the proposition preceding Theorem 7.20, we have 
(f, Tf);;' yllfll 2 for allf E OCT) if and only if E(t) = 0 for t <Yo If E(t) = 0 
for I <y, then by Theorem 7.22 no spectraipoint of T can lie in (- 00, y). 
Therefore, min aCT) ;;'y. If aCT) is bounded from below, then E is con
stant in (- 00, min aCT»~. Consequently, E(/) = 0 for t < min aCT), and 
thus y ;;. min a( T). 0 
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Theorem 7.23. Let T, To and E be as in Theorem 7.22. Then the lollowing 
. assertions are equivalent: 

(i) s E ap(T); . 
(ii) there exists a Cauchy sequence (f,,) Irom D(T) lor which lim II In II >0 

and (s - T)ln ..... O; 
(iii) there exists a Cauchy sequence (gn) Irom D(To) lor which limll gnll > 0 

and (s - To)g" ..... O; 
(iv) E(s) - E(s - ) =1= O. 

We have N(s - T) = R(E(s) - E(s - ». 
PROOF. (i) implies (ii): If I is an eigenelement of T belonging to the 
eigenvalue s, then we can choose the constant sequence In = I. 

(ii) implies (iii): Since D(To) is a core of T, for every n E: N there exists a 
gn E D(To) for which IIgn - 1,,11 <:n- I and II Togn - Tlnll <:n- I • Everything 
follows from this. 

(iii) implies (i): Let/= lim gn' Then (s - T)/= lim(s - 10)gn =0. 
(i) implies (iv): Let I be an eigenelement of T belonging to the eigen

value s. Then 

i.e., Is - tl = 0 almost everywhere with respect to the measure induced by 
p,=IIE(.)/1I2• Therefore, E(t)/is constant in (-oo,s) and in (s, 00), and 
thus E(s - )/=0, E(s)/- E(s + )/= I. Hence, E(s) - E(s - )=1=0. 

(iv) implies (i): For every IE R(E(s) - E(s -» we obviously have 
lI(s - T)fl1 2 = Jls - tl2 dll E(t)/1I2 = O. 

It follows from the last two steps that N(s - T) = R(E(s)- E(s - ». 0 

Proposition. Any isolated point A 01 the spectrum 01 a self-a4ioint operator T 
is an eigenvalue 01 T. 

PROOF. There is an f:>0 such that [A-f:, A+f:]n a(T)=' {A}. Hence, by 
Corollary I to Theorem 7.22, E is constant in [X - e:, X) and in (X, X + f:]. 

. Since X E a( T), by Theorem 7.22 we have 

E(X) - E(X -) = E(X + e:) - E(X - f:) =1= 01, 

i.e., X is an eigenvalue of T. o 
The essential spectrum ae(T) of a self-adjoint operator T is the set of 

those points (of a(T» that are either accumulation points of aCT) or 
isolated eigenvalues of infinite multiplicity. The set aiT)- a(T)\ae(T) is 
called the discrete spectrum of T. By the last proposition ad( T) is the set of 
those eigenvalues of finite multiplicity that are isolated points of a(T). We 
say that T has a pure discrete spectrum if a.( T) is empty. 
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Theorem 7.24. Let T, To and E be as in Theorem 7.22. Then the following 
statements are equivalent: 

(i) sEae(T); 
w 

(ii) there exists a sequence (f,,) from D(T) for which fll ~ 0, lim inf Ilfllll > 0 
and (s- T)fll~O; 

W 
(iii) there exists a sequence (gil) from D( To) for which gil ~ 0, lim inf II gil II 

> 0 and (s - T O>gll~O; 
(iv) for every t: > 0 we have dim R(E(s + t:) - E(s - t:» = 00. 

PROOF. (i) implies (ii): If s is an eigenvalue of infinite multiplicity, then 
there exists an orthonormal sequence (f,,) in N(s - T); this sequence has 
the properties required in (ii). If s is an accumulation point of aCT), then 
there exists a sequence (Sll) from aCT) such that Sll +s, Sll +sm for n +m, 
and Sn~S as n-+oo. Let us now choose t:1I > 0 so small that the intervals 
(SII - €", Sll + t:1I) be mutually disjoint. Since Sll E aCT), we have E(sll + £n)
E(sll - (11) + O. Let us choose a normed element.l,. from R(E(s" + (11)

E(sll - (11»' Then we obviously have <fll,fm) = 811m and (s - T).I,.~O. 
(ii) implies (iii): For every n E N there exists a g" E D(To) for which 

II gil - .1,.11 "n - 1 and II To gn - Tfn II "n - I. All the properties required in (iii) 
follow from this. 

(iii) implies (iv): Assume that we have dim R(E(s + £) - E(s - f»~ < 00 

for some t: > 0, i.e., that the projection E(s + t:) - E(s - £) is compact. For 
the sequence (gn) from (iii) we then have (E(s + £) - E(s - £»gll~O. Con
sequently, 

lI(s - T)g1l1l2 = jls - tl2 dIlE(t)gnIl 2 

and thus 

:> t;2[ j dll E(t)gnIl 2 - j X(s-<, S+<j(t) dIlE(t)gnIl 2 ] 

= t: 2 [ II gnll 2 -1I(E(s + £) - E(s - £»g,,1I 2 ], 

This is in contradiction with (iii). 
(iv) implies (i): If dim R(E(s) - E(s - » = 00, then s is an eigenvalue of 

infinite multiplicity (Theorem 7.23). Therefore, s E a.(T). Let R(E(s)
E(s -» be finite-dimensional, but let dim R(E(s + £) - E(s - t:» ... 00 for 
all t: > O. Then the set (3 - (, 3) U (3, 3 + (1 contains at least one spectral 
point for every t: > 0 by Corollary 1 to Theorem 7.22; hence s is an 
accumulation point of aCT). 0 

Theorems 7.22 and 7.24 provide natural characterizations of aiT). We 
will not give these explicitly here. They are partly contained in the 
following propositions. 
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Proposition. If a < b and dim R(E(b - ) - E(a» = m (m E I~), then aCT) n 
(a, b) consists of only isolated eigenvalues of finite multiplicity. The sum of 
the multiplicities of these eigenvalues equals m. 

PROOF. By Theorem 7.24 we have (a, b)n ae(T) =0, i.e., (a, b)n a(T)c 
ad(T). Let AI' A2, ••• be the eigenvalues of T in (a, b) (there are at most 
countably many of these, since they cannot accumulate ill the interior of 
(a, b». Then 

n 

E(b-)-E(a) > ~(E(Aj)-E(Aj-)) forall nEN. 
j-I 

Therefore, only finitely many eigenvalues AI' A2' ... , Ak <:an lie in (a, b), 
and 

k 

dim R(E(b -) - E(a» = ~ dim (E(Aj) - E(~i - )). 
j=1 

The right-hand side equals the sum of the multiplicities of the eigenvalues 
AI"" ,Ak • 0 

Proposition. If dim R(E(b» = m < 00 for some bE IR, then T is bounded 
from below. 

PROOF. By the previous proposition the interval (a, b) contains at most m 
spectral points for any a < b; hence (- 00, b) contains at most m spectral 
points. The smallest of these finitely many eigenvalues is a lower bound for 
T by Corollary 2 to Theorem 7.22. 

Proposition. If dim R(E(b) - E(a» = 00, then ae(T) n [a, b] *0. 

PROOF. If we had 0e(T)n[a, b]=0, then for every sEra, b] there would 
be an € > 0 such that dim R(E(s + to) - E(s - f»~ < 00. The interval [a, b] 
could be covered by finitely many intervals of this kind. This implies that 
dim R(E(b) - E(a» < 00, which is a contradiction. 0 

Theorem 7.25. Let T be a self-adjoint operator on H, and let H= HI ED H2ED 
H3 with dim H3 = m < 00. Assume that the orthogonal projE'ction Pj onto H.J 
maps OCT) into itself for j = I, 2.5 If 

then (a, b) n aCT) consists of only isolated eigenvalues; the sum of the 
mUltiplicities of these eigenvalues is at most m. 

5Then P3 also maps D(T) into itself. 
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PROOF. Let us assume that dim R(E(b -) - E(a»;;' m + l. Then there 
exists anf E R(E(b -)- E(a»n H/- such thatf*O. Hence,f= Pd + Pd, 
and. putting c = (a + b)/2, we have 

II(T-c)fI1 2 = !X<Q.b)(t)(t- cf d Il E(t)fI1 2 < (b;afllfI12. 

With properly chosen ~ E 11<. lajl = I it follows from this that 

I«T- c)f, Pd)1 + I<P2 f. (T- c)f)1 

= ai<Pd. (T- c) f) + a!<Pd. (T- c)f) 

= <aIPlf+ a2 P2f. (T-c)f) ~ lIalPd+ a2Pdllll(T-c)fll 

= {II PdIl 2 + IIP2fln 1/2 11 (T_ c)fll = Ilfllll(T- c)f\l < b; a IIf1l2. 

Consequently. 

bllPdll2 ~ <Pd. TP2 f) = <Pd, Tf) - <Tf, Pd) + <Pd, TPd) 

~ c(IIP2 fIl 2-\l PdIl 2) + <Pd, (T- c)f) 

-«T- c)f. Pd) + allPdll2 

~ bllPdll2 - b; a IIfll2 + I<P2f, (T- c)f)1 

+I«T- c)f. Pd)1 

< bllPdll2• 

This is a contradiction. Therefore, dim R(E(b -) - E(a» <m. and the 
assertion follows from the first proposition after Theorem 7.24. 0 

A corresponding theorem holds in the case when (a. b) is a half-line. 

Theorem 7.26. 
(a) Let T be a self-adjoint operator on H, and let HI be a closed subspace of 

H such that dim H).L = m < 00. Assume that PI D(T) C D(T) for the 
orthogonal projection PI onto HI> and that 

<f. Tf) ;;. bllfl12 for f E P)D(T). 

Then (- 00, b) n oCT) consists of only isolated eigenvalues; the sum of 
the multiplicities of these eigenvalues is at most m. The operator T is 
bounded from below. 

(b) Let T be self-adjoint on H, and let HI be an m-dimensional subspace of 
D(T). Assume that <f, Tf) -< allfll2 for all f E H). Then dim R(E(a»:.> 
m. 

PROOF. 

(a) With H2 = {OJ and H3 = HI.L the assumptions of Theorem 7.25 are 
fulfilled for every a <b. Consequently, (- 00, b)n oCT) contains only 
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isolated eigenvalues of finite multiplicity, with total multiplicity less 
than or equal to m. In particular, aCT) n (- 00, b) is a finite set; 
therefore, So = min a( T) exists. Hence, T is bounded from below by 
Corollary 2 to Theorem 7.22. 

(b) If we had dim R(E(a» <m, then there would be an f E HI for which 
f;j:.O andf.lR(E(a». For thisf 

(f, Tf> " allfl12 < <f, Tf>, 

by assumption and by part (2) of the proposition preceding Theorem 
7.20. This is a contradiction. 0 

In some investigations another partition of the spectrum is useful. For 
that we first need some definitions. Let T again be a self-adjoint operator 
on H with spectral family E. Let fi, denote the closed linear hull of all 
eigenelements of T. We call fi, = fi,(T) the discontinuous subspace of H 
with respect to T. The orthogonal complement of Hp is called the continu
ous subspace of H with respect to T. This is denoted by He = He(T). The 
singular continuous subspace Hse = H.,e( T) of H with respect to T is the set of 
those f E He for which there exists a Borel set N C II;t of Lebesgue measure 
zero (briefly: a Borel null set) such that E(N)f= f. The subspace Hse is 
closed. This can be seen in the following way. If (jn) is a sequence from 
Hse, ]" ~ f, and the Nn are Borel null sets such that E( Nn)!n = fn' then 
N= U nNn is also a null set and E(N)f= lim E(N)]" = lim E(Nn)!n = limfn 
= f. Since He is closed, f lies in He' hence in Hse. The orthogonal comple
ment of Hse relative to He (i.e., He e Hse) is called the absolutely continuous 
subspace of H relative to T. This is denoted by Hac = HacCT). The singular 
subspace Hs of H with respect to T is defined by the equality Hs = Hs(T) 
= Hp $ Hsc. Let Pp' Pc' Psc' Pac' and Ps denote the orthogonal projections 
onto these subspaces. 

Theorem 7.27. Let T be a self-acfjoint operator on H with spectral family E. 
Denote, for every f E H, by Pi the measure induced on IR by means of 
IIE( . )f112. 
(a) fi, equals the set of those f E H for which there exists an at most 

countable set A c II;t such that pllI;t\ A) = 0, i.e.,for which the measure Pi 
is concentrated on (at most) countably many points. 

(b) He is the set of those f E H for which p/{ t}) =0 for eve~y t E 1I;t, i.e., for 
which the function t~ II E(1)fIl 2 is continuous. (For f E He we obviously 
have pIA) = 0 for every at most countable set A c R) 

(c) Hs equals the set of those f E H for which there exists a Borel null set N 
such that pllI;t\ N) = 0, i.e., for which Pi is singular with respect to 
Lebesgue measure. 

(d) Hac equals the set of those f E H for which pi N) = 0 for every Borel null 
set N, i.e., for which Pi is absolutely continuous with respect to Lebesgue 
measure. 
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PROOF. 

(a) If h is an eigenelement for the eigenvalue Aj> andf= ~~ IC~, then we 
obviously have E({Aj :jEp"J})f=j. If A={Aj :jEp"J} and E(A)f=f, 
then 

00 00 

f= L E({Aj})f= L (E(Aj)-E(Aj-»f. 
)=1 )-1 

Since (E(A) - E(A) - »f (when it is different from zero) is an eigenele
ment belonging to the eigenvalue Ai' the element f lies in the closed hull 
of the eigenvectors. 

(b) We have E({t})fE Ii, and <1, E({t})f) = IIE({t})fIl 2 for every fE H 
and every fER. If fEHc=Ii,1., then we have pJ{t})=IIE({t})fIl2= 
(f, E({t})f) = 0 for every t E R. Let pJ{t}) = 0 for every t E R. Then 
pJA)=O for every at most countable set AcR; hence IIE(A)fIl2= 
pJA) = O. If g E Ii. and A is an at most countable set such that 
E(A)g=g, then (f,g)=(f,E(A)g)=(E(A)f,g)=(O,g)=O, i.e., 
fEH/=Hc· 

(c) We have Hs = Ji, + H$C" If f= ~ + isc with ~ E Ii, and fs< E Hsc' then 
there exist an at most countable set A c R and a Borel null set N for 
which E(A)~ =~, E(N)ise = ise' and thus E(A U N)f= f; the set AU N 
is a Borel null set. Conversely, let E(N)f= f for some Borel null set N. 
The set A of jump points of the non-decreasing function tH-IIE(t)fIl 2 is 
at most countable, and E(A)f Eli,. Let g E Ji, be arbitrary. Then there 
exists an at most countable set A' such that E(A') = g. Since E({ I})(f 
-E(A)j)=E({t})f-E({t}nA)f=O for every IER (as {t}={t}nA 
for lEA and E({/})f=E({t}nA)f=O for t=t=A), it follows that 
E(A')(f - E(A)j) = 0, and thus 

(g,f- E(A)f) = (E(A')g,f- E(A)f) 

= (g, E(A')(j- E(A)j» = 0, 

i.e., f - E(A)f Eli, 1. = He. Because of the equality E(N)(f - E(A)j) = 
f- E(A)f we have f- E(A)fE H.sc; therefore, f= E(A)f+(f- E(A)j) 
E Hp + Hsc = Hs. 

(d) We have Hac = He e H.c = H.1.. Assume that f E Hac = Hs1.. Then 
II E( N)f1l 2 = (f, E( N)f) = 0 for every Borel null set N, since E( N)f E 
Hs. Let us now assume that E(N)f= 0 for every Borel null set N. If 
g E Hs. then by part c) there exists a Borel null set N such that 
g = E(N)g. It follows from this that 

(f. g) = <1. E(N)g) = (E(N)f. g) = O. 

and thus f E H/ = Hac. o 
Let M be a closed subspace of H. and let P be the orthogonal projection 

onto M. We say that M reduces the operator T if PT c TP (this obviously 
implies POeT) c 0('1'). as well as (I - P)O(T) C D(T) and (J - P)T C. 
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T(J - P); d. also Exercise 5.39 and Section. 7.3, Proposition 1). The 
formulae O(T M) = M n OCT) and T ~= Tf for f E O(T M) define an opera
tor on M. The subspace M is a reducing subspace of T if and only if M.L is 
a reducing subspace of T. Then O(T) = O(T M) + O(T MJ.)· 

Theorem 7.28. Let T be a self-adjoint operator on H, with the spectral family 
E, and let M be a reducing subspace of T. Then T M and T M" are self-adjoint 
on M and MJ., respectively. We have o(T) = o(T M) U o(T MC). The subspace 
M reduces T if and only if PE(t) = E(t)P for every t E R, where P denotes 
the orthogonal projection onto M. 

PROOF. O(T M) is dense in M, since Me D(T M)= O(T)J. n M= {O} because 
of the equality O(T) = O(TM) + D(TMJ.). As a restriction of a self-adjoint 
operator, T M is surely Hermitian. Therefore, T M is symmetric on M. It 
remains to prove that O«T M)*) c O(T M)' Let g E D(T M)*)' Then 

«T M)*g,f) = «T M)*g,fl) = <g, T ~I) = <g, T ~I + TMd2) = <g, Tf) 

for all f= fl + f2 E O(T M) + O(T MJ.) = OCT); i.e., gEM n D(T*) = M n 
OCT) = O(T M)' We can show the self-adjointness of T MJ. analogously. We 
have 

lI(z- T)f11 2 = lI(z- T M)J11I2 + lI{z- T MJ.)f211 2 

for every z E IK and for f= fl + f2 E O(T M) + O(T MJ.) = OCT). It follows 
from this by Theorem 5.24 that z E peT) if and only if z E peT M) n peT MJ.), 
i.e., oCT) = oCT M) U oCT MJ.)· 

If M reduces the operator T, then R(z, T)P= R(z, T)P(z - T)R(z, T) 
c R(z, T)(z - T)PR(z, T) = PR(z, T). Therefore, R(z, T)P = PR(z, T), 
because O(R(z, T)P) = H. It follows, by formula (7.22) for the spectral 
family E, that E(t)P = PE(t) for all t E R Now let the equalities E(t)P = 
PE(t) (t E IR) hold true. Then 

Jltl2 dIlE{t)PfIl2 = JI/12 dIlPE{t)fIl 2 ~ JI/12 dIlE{/)fW < co 

for every f E OCT). Consequently, Pf E OCT). This implies that O(TP):J 
O(T) = O(PT). If f E OCT) and (un) is a sequence of step functions such 
that Un tends to id in L2(1R, Pj)' then un tends to id in ~2(1R, Ppj) also, and 

PTf = PE(id)f = P lim E(un)J = lim PE(un)J = lim E(un)Pf 

= E(id)Pf = TPj. 0 

Theorem 7.29. Let T be a self-adjoint operator on H. The subs paces 
Hp> Hc' Hsc, Hac' and Hs reduce the operator T. 

PROOF. It is obviously sufficient to show that Hp and Hs reduce the 
operator T. The remaining assertions follow from this, because He = H/, 
Hsc = Hse Hp' and Hae = H/. 

For any f E Hp there is an at most countable subset A of IR such that 
E(A)f= j. Consequently, E(t)f= E(t)E(A)f= E(A)E(/)f E Hp for all 1 E IR, 
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i.e., E(t)Pp = PpE(t)Pp. It follows from this that 

PpE(t) = (E(t)Pp)* = (PpE(t)Pp)* = PpE(t)Pp = E(t)Pp. 

We can show in an entirely analogous way that PsE(t) = E(t)Ps if we 
replace A by the null set N for which E(N)f= f. 0 

We denote by Tp' Tc' Tsc' Tac' and Ts the restrictions of T to 
Ji" Hc' Hsc' Hac, and Ha· These operators are called the (spectral) discon
tinuous, continuous, singular continuous, absolutely continuous, and singular 
parts of T. 

The continuous spectrum CJc(T), singular continuous spectrum CJac(T), ab
solutely continuous spectrum CJac(T), and the singular spectrum CJs(T) of T 
are defined as the spectrum of Tc' Tsc' Tac' and Ta, respectively. In contrast 
with this, the point spectrum CJ/T) is defined as the set of eigenvalues of T 
(these are also the eigenvalues of Tp; however, in general we only have 
CJ(Tp) = CJp( T); cf. Exercise 7.33). The sets CJe<T), CJsc(T), CJac(T), and CJ.(T) 
are closed (as they are spectra). We obviously have CJ(T)=CJp(T)UCJsc(T) 
U CJae< T) = CJs( T) U CJac( T) = CJ/ T)u CJc( T). 

We say that T has a pure point spectrum, pure continuous spectrum, pure 
singular continuous spectrum, pure absolutely continuous spectrum and pure 
singular spectrum if Hp = H, Hc = H, Hac = H, Hac = H, and Hs = H, respec
tively. We then have CJ(T)=CJp(T), CJ(T)=CJc(T), CJ(T)=CJsc(T),CJ(T)= 
CJaiT), and CJ(T)= CJs(T), respectively. 

EXAMPLE 1. Let Pp' Psc' and Pac be measures on IR. Let Pp be concentrated 
on a countable set (i.e., there exists a countable set A such that pilR \ A) = 
0), let Psc be singular continuous (i.e., there exists a Borel null set N such 
that Psc(1R \ N) = 0 and Psc( {t}) = 0 for every t E IR), let Pac be absolutely 
continuous (i.e., Pac( N) = 0 for every Borel null set N). Let T be the 
operator of multiplication by the function id on L2(R, pp) Ee LilR, Psc) Ee 
LilR, Pac)' Then fi, = L2(R, pp)' Hc = L2(1R, PsC> Ee L2(1R, PaC>, Hsc = L2(1R, Psc)' 
Hac = L2(R PaJ, and Hs = L2(1R, pp) Ee L2(R, PsJ. The proof will be left to 
the reader. We shall show in Exercise 7.34 that every self-adjoint operator 
is the orthogonal sum of operators of this type. 

EXERCISES 

7.31. If T is a self-adjoint operator on H with pure point spectrum, and {ea : a E 
A} is an orthonormal basis of eigenelements with corresponding eigenvalues 
{Aa : a E A}, then D(T) is equal to the set of those f E H for which 
~aIAa<ea,jW < 00; we have Tf= '2. aAa<ea,j)ea for f E D(T). 

7.32. Let T be a self-adjoint operator on the infinite-dimensional Hilbert space H. 
(a) If T is bounded, then ae(T) 7'= 0. 
(b) T is compact if and only if T is bounded and a.(T) ... {OJ. 
(c) If H is separable, then B<XJ(H) is the only closed ideal in B{H). 
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7.33. For any self-adjoint operator T we have the following: 
(a) ap(T) ... a(J;,): however, ap(T) is in general not closed, and thus ap(Th~' 

a( Tp) in general. 
(b) aCT) - ap(T) U aAT) ... ap(T) U a.c(T) U aac(T) = a.(T) U aac(T). 
(c) aiT)- ac(T)u(ap(T) \a.t<T». 

7.34. Every self-adjoint operator is unitarily equivalent to a maximal operator of 
multiplication by the function id on ($" EAL2(IIl, p,,»EB(EBpEsL2(IIl, ap»EB 
(EByErL2(R, 'Ty»: where the measures p", ap, 'Ty have the following properties: 
for every p" there exists a countable set A" such that 
p,,(R \.4,,) = 0: ap( {t}) ... 0 for every t E IR, and there exists a Borel null set Np 
such that ap (Ill \ Np) = 0 (f3 E B); all 'Ty are absolutely continuous with 
respect to Lebesgue measure. 
Hint: Apply Theorem 7.18 to Tp, Tsc , and Tac. 

7.35. Let T be a self-adjoint with spectral family E, and let u : IR-~IR be E-measur
able. Then we have the following: 
(a) a(u(T» c u(a(T»; if u is continuous on a(T), then o(u{T»'" u(a(T»: if 

T is bounded and u is continuous, then a(u(T» = u(a(T»: 
(b) fi,(T) c Hp(u(T», u(op(T» c ap(u(T»: 
(c) Hac(u(T» c Hac(T), oac(u(T» c u( oac(T». 

7.36. Let T be self-adjoint with spectral family E, and let u,v : IIl~C be E
measurable. 
(a) If u(t) = v(t) for all t E a(T), then u(T) - v(T). 
(b) If T has a pure point spectrum, then it is sufficient to assume that 

u(t) ... vet) for all t E ap(T) in (a). 

7.37. Let T be a self-adjoint operator with spectral family E, and let M be a 
subspace of D( T) such that II(;\. - T)/II "ell/il for all I EM. 
(a) dim R(E(;\' + c) - E(;\' - e - » ;> dim M. 
(b) If dim M ... 00, then o.(T) n [;\. - e, ;\. + e] ,,=0. 

7.38. Let T be a self-adjoint operator on H. The operator T hilS a pure discrete 
spectrum if and only if (;\. - T) -\ is compact for every ;\. E, p( T). If H is not 
separable, then a,(T),,= 0. 

7.39. Let A be a symmetric semi-bounded operator, let T be the Friedrichs 
extension of A, and let S be an arbitrary semi-bounded self-adjoint extension 
of A. 
(a) dim ET(t) " dim Es(t) for every t E Ill. 

Hint: Exercise 7.30c and Theorem 7.26b. 
(b) If S has a pure discrete spectrum, then T also has a pure discrete 

spectrum. 

7.5 The spectral theorem for normal operators 

We have shown in Section 7.3 that every self-adjoint operator can be 
represented in the form f Rt dE(t), where E is a (real) spectral family 
defined on iii. Here we show that every normal operator can be repre-
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sented in a corresponding way as an "integral" fez dG(z), where G is a 
spectral family defined on C. 

Let H be a Hilbert space. A function G : C_B(H) is called a complex 
spectral family if there are real spectral families E and F such that 

G(t + is) = E(t)F(s) = F(s)E(t) for all s, t E ~. 

Theorem 7.30. Let G be a complex spectral family on H with G(t + is) = 
E(t)F(s). 
(a) G(t + i s)G(t' + is') = G(min{t, t'} + i min{ s, s'D for all s, s', t, t' E R; 

in particular, G(z).;;; G(z') for all z, z' E C such that Re Z .;;; Re z' and 
1m z.;;; 1m z'. 

(b) zn-z, Re Zn >z, and 1m Zn >z imply G(zn)~ G(z). 
(c) If (zn) is a sequence from C for which Re Zn- - 00 or 1m zn- - 00, then 

s 
G(zn) - 0; if (zn) is a sequence from C for which Re zn-oo and 

s 
1m zn-oo, then G(zn)-I. 

(d) The spectral families E and F are uniquely determined by G; we have 
E(t) = s -Iims-."" G(t + is) and F(s) = s -Iim t .... "" G(t + is). 

(e) If we set G(J) ... E(J1)F(J2) for an arbitrary interval J= J 1 X J2 = {z E 
C : Re Z E J 1, 1m Z E J2}, then G(J)G(J') = 0 for J n J' = 0. 

(f) The equality "II. J) = II G( J)fll z for all intervals J in C defines a regular 
interval function on C for every f E H (cf. Appendix AI). 

PROOF. 

(a) For all s, s', I, I' E ~ 

G(t + is)G(t' + is') = E(t)F(s)E(t')F(s') 

= E(t)E(t')F(s)F(s') = E(min{t, t'})F(min{s, s'}; 

= G(min{ I, I'} + i min{ s, s'}). 

(b) Let (En) and ('I1n) be null-sequences from [0, 00). Then 

lim II( G(z + En + i'l1n) - G(z»)!11 2 
n->oo 

= lim (E(t + En)F(s + 'I1n)f - E(t)F(s)f,j) 
n .... "" 

= lim {(F(s + 'I1n)f, E(t + En)!) - (F(s)f, E(t)!)} = 0 
n->oo 

for all Z = t + is and f E H. 
(c) Assume that Zn = tn + isn, and In- - 00 or sn- - 00. Then for allf E H 

since in (F(sn)f, E(tn)!) at least one factor tends to zero, while the 
other remains bounded. If tn_oo and sn-oo, then it follows for all 
fE H that 

)i~ II! - G(zn)fIl2 = Ji~ {lIfll2 - (F(sn)!, E(tn)!)} ... O. 
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s 
(d) It follows from the formula F(s)--,>! as s--,>oo that 

E(t)J= lim F(s)E(t)J= lim G(t+is)f 
s~oo $--+00 

for all J E H. The assertion for F follows in a similar way. 
(e) If J=J\XJ2> J'=J;xJ2 and JnJ'=0, then J\nJ;=00r J2 nJ2 

=0, and thus 

G(J)G(J') = E(J\)E(J{)F(J2)F(J2) = 0, 

(f) If J) is an arbitrary interval in ~, then we can show easily that there 
exists a sequence (J\ II) of open intervals for which J\ c J\ " and s' , 
E(J1, II) --'> E(J1) (the sequence (J1.,,) has to be chosen so that we have 
XJ,)t)--'>XJ,(t) fOI all t E ~). Let J2." be a similar sequence with the 
property F( J2• ,,) --'> F( J2). Then 

y/(J1 X J2) = <F(J2)J, E(J1)J) = }i~ <F(J2.,,)J, E(J\, n)!) 

= }i~ IIG{J1,n X J2.,,)JI12 = }i~ yiJl.n xJ2.,,) 

for all J E H. Since the intervals J1." X J2." are open and J\ X J2 C J1." 

X J2• '" this proves the regularity of Y/' 0 

If for the step function u : C--,>IK, 

" 
u(z} = .L cj X1;(z) 

)-1 

we define the integral with respect to the complex spectral family G by the 
equality 

" J u(z) dG{z) = L cj G(0), 
)=1 

we can use the same arguments as we did in Section 7.2 whcm we discussed 
integration with respect to a real spectral family. Let us also denote by Y/ 
the measure that is induced by the interval function y,. We say that a 
function u : C--,>IK is G-measurable if it is Yrmeasurable for all J E H. If 
u E L2(C, y,), then we can define the integral 

Ie u(z} dG(z)J 

just as in Section 7.2. For every G-measurable function u: C--,>IK the 
formulae 

O( G(u» = {J E H : u E L2(C, Y,)}, 

G(u)J = L u(z) dG(z)J for JED( G(u» 
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define a normal operator on H. We also write 

G(u) = Ie u(z) dG(z). 

The assertions of Theorem 7.14 (and their proofs) remain valid and will be 
used in the following without further explanation. 

Tbeorem 7.31 (The spectral theorem for bounded normal operators). Let H 
be a complex Hilbert space, and let T E 8(H) be a normal operator. Then 
there exists exactly one complex spectral family G for which 

T = Lz dG(z). 

We have G(t + is) = E(t)F(s) = F(s)E(t) for s, t E R; where E and F are the 
spectral families of the self-adjoint operators A =(T+ 1'*)/2 and B=(T
T*)/2i,. respectively. G(z) = I for z E C such that Re z:> II Til and 1m z:> 
II Til, and G(z) = 0 for z E C such that Re z < -II Til or 1m z < -II Til. 
Moreover, T = A + iB and A B = BA. The operators A and B are called the 
real part and the imaginary part of T. 

PROOF. If A and B are defined as in the theorem, then it is obvious that 
A* =A, B* = B, T=A +iB, and 

AB = ~i (T2- TT*+ T*T- T*2) = ~i (T2_ r*2) = BA. 

Then we also have 

R(z,A)R(z',B) =[(z'-B)(z-A)r l =[(z-A)(z'-B)r l 

= R(z', B)R(z, A) 

for all z, z' E C\R For the spectral families E and F of A and B, 
respectively, it now follows with the aid of formula (7.22) that 

E(t)F(s) = F(s)E(t) for all s, t E R. 

Now we define the complex spectral family G by the formula 

G(t+is)=E(t)F(s) forall s,tER. 
Then 

G(t + is) = E(t)F(s) = I for t > II Til and s > II Til, 

since IIA II .;;; II Til and II B II .;;; II Til. Similarly, 

G(t+is) = E(t)F(s) = 0 for t < -IiTii or s < -IiTii. 

If for (un) we choose a bounded sequence of step functions defined on R 



214 7 The spectral theory of self-adjoint and normal operators 

which converges to id uniformly for It I ~ II TIl, then 

A = f. t dE(t) = lim f. Un(t) dE(t) = lim r un(Re z) dG{z) 
R n-HlO R n ..... oo Jc 

= fc Re z dG(z), 

where we have used the fact that G({zEC: RezEJ})='E(J). We can 
obtain similarly that 

B = fclm z dG(z). 

Consequently, it follows that 

T = A + iB = 1 Re z dG(z) + i rIm z dG(z) 
c Jc 

= fc(Rez+i Imz) dG(z) = fcz dG(z). 

It only remains to prove the uniqueness of G. Let G' be a complex spectral 
family for which 

T = Lz dG'(z) and G'(t + is) = E'(t)F'(s) = F'(s)E'(t). 

Then 

A = HT+ T*) = if. (z + z*) dG'(z) = f. Re z dG'(z) = 1 t dE'(t). 
c C R 

The unicity of the spectral family of self-adjoint operators gives that 
E = E'. We can show similarly that F= F'. Therefore, G = (i'. 0 

If G is the spectral family of the operator T in the sense of Theorem 
7.31, then we also write u(T) for G(u). Theorem 7.19 also holds for normal 
operators. 

EXAMPLE 1. Assume T is a compact normal operator on the complex 
Hilbert space H, P\I' A2, ••• } are its non-zero eigenvalues, P j is the 
orthogonal projection onto N(A j - T), AO = 0, and Po is the orthogonal 
projection onto N(T). Then the formula 

G(z)=~{Pj:jENo,ReAj~Rez,ImAj~Imz} for zEC 

defines a complex spectral family, and we have 

T = fc z dG(z). 

The proof goes as in the self-adjoint case. 
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Theorem 7.32 (The spectral theorem for normal operators). Let T be a 
normal operator on the complex Hilbert space H. Then there exists a unique 
complex spectral family G for which 

T= kzdG{z). 

The operators A = (T + T*) /2 and B = (T - T*) /2i are self-adjoint. For the 
spectral families E and F of A and B, respectively, we have 

G{t + is) = E{t)F{s) = F{s)E(t). 

We have T = A + iB and T* = A - iB. The operators A and B are called the 
real part and the imaginary part of T (cf. Exercise 7.49). 

PROOF. Since this theorem has little significance in the applications, we 
shall not work out its proof in detail. The operator S = T* T is self-adjoint 
by Theorem 5.39. Let Eo denote its spectral family. TS .. ST holds, 
because T is normal. Hence R(z,S)TcTR(z,S) for all zEC\R. It 
follows from this by (7.22) that Eo(t)T C TEo(t). This implies that the 
subspaces 

Hn = R( Eo« - n, - n + 1] U (n - I, n J»), n E N 

reduce the operator T (d. Section 7.4). The same holds for T*. Let 
Tn = TIIi,' We have Hn C O(T* T) c OCT) by Section 7.3, Proposition 4. 
Therefore, O(Tn} = H". For all f E Hn we have 

IITJII2 = <T*Tf,f) ~ nllfll 2, 

i.e., Tn E B(Hn). Similarly, (T,,)* E B(Hn), (T,,)* = T*11i, and II(Tn)*fll = 
II T* fll = II Tfll = II TJII for all f E Hn, i.e., Tn is a bounded normal operator 
on H". Consequently, by Theorem 7.31 there is a complex spectral family 
Gn such that 

Tn = J> dG..{z), 

where Gn(t + is) = E,,(t)Fn(s) = F,,(s)Eit) for s, t E R with the spectral 
families En and Fn of 

An = t(Tn + T,n = 4(T+ T*)11i. and Bn = ;i (T" - T:) = ;i (T- T*)IIi.' 

respectively. In what follows we consider the operators G,,(z), En(t), and 
Fn(s) to be defined on H (more precisely, we should write InGn(z)Pn, etc., 
where In is the embedding of Hn into Hand Pn is the orthogonal projection 
onto H,,). Since H= fBnEI'IlH", the sums 

"EN 

E(t) = ~ E..{t) and F(s) = ~ Fn(s) 
nEI'Il "EN 
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exist for all z E C and s. t E ~ in the strong sense. It is easy to see that E 
and F are (real) spectral families and G(t + is) = E(t)F(s) =: F(s)E(t). 

Now let Do = L{ Hn : n EN}. Then Do is a core of T. For every j E Do 
there exists an N E N such that j E $~ _ I Hn- Then 

N N 

TJ = L TnP,j = L L z dGn(z)J 
n=1 n-I C 

= L z d( ~ Gn(z»)J = L z dG(z)j = G(id)j. 
C n=1 C 

The restriction To of T to Do is therefore contained in the normal operator 
G(id). Then we also have T= To e G(id). and it follows by Section 5.6, 
Proposition 1 that T = G(id). 

Similarly, 

AJ = HT+ T*)J = J/ dE(t)j, BJ = ;i (T- T*)J = Ls dF(s)j 

for JE Do. As the restrictions of (T+ T*)/2 and (T- P)/2i to Do are 
essentially self-adjoint by Exercise 5.43, it follows from this that 

HT+ T*) = A = J t dE(t), ;i (T- T*) = B = Is dF(s). 

We have TeA +iB, by construction. In order to prove that T=A +iB, 
we therefore have to prove that D(A +iB) = D(A)n D(B) e D(T). If JE 
D(A)n D(B), then (observe that G({z EC : Re z E J}):= E(J), G({z E 

C: ImzEJ})=F(J» 

{lzl2 dIlG(z)JII2 = {(IRe Z12+ 11m Z12) dIlG(z)JI1 2 

consequently,] E D(T). D 

EXAMPLE 2. Let 'I be a measure on C( = ~2) and let T be th,e maximal 
operator of multiplication by the function id, i.e., let 

D(T) = {jEL2(C, 'I): idJEL2(C, 'I)}, 

TJ = idJ for J E D(T). 

Then T is normal, and the spectral family G of T is given by 

G(z)J = XzJ for J E L2(C. 'I), 

where Xz is the characteristic function of the set {w E C : Re w " Re z and 
1m w (; 1m z}. 
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We can show in an entirely analogous way as for self-adjoint operators 
that every normal operator is unitarily equivalent to an orthogonal sum of 
operators of the kind considered in Example 2. We give the theorem 
without proof. 

Theorem 7.33 (The spectral representation theorem for normal operators). 
If T is a normal operator on a complex Hilbert space, then there exist a 
family {Y .. : a E A} oj measures on C and a unitary operator U: H~ 
EB .. EA L2(C, Ya ) Jar which 

T = U-1TidU; 

where Tid is the maximal operator of multiplication by the Junction id on 
EB aEA L2(C, Y .. ), i.e., 

D(Tid) = {Ua)aEA E EB L2(C, Ya) : (idJ .. )aEA E ED L2(C, Ya)}, 
aEA aEA 

TidUa) .. EA= (i<JJ",)aEA for Ua)",EAED(Tid)· 

The spectral points of a normal operator can be classified similarly to 
those of a self-adjoint operator, and they can be characterized by means of 
the spectral family. We do not go into details and mention only the 
following result. 

Theorem 7.34. Let T be a normal operator on a complex Hilbert space, and 
let G be the spectral family of T. 
(a) z E o(T) if and only if 

G(z + f + if) + G(z - f - if) - G(z + f - if) - G(z - f + if) *- 0 

for every f > O. 
(b) IIR(z, T)II = d(z, O(T»-I Jar z Ep(T), where d(z,o(T» denotes the 

distance of the point z from o( T). 

For the proof: (a) The proof is analogous to that of Theorem 7.22. 
Observe that G(XM) = G(b l + ib2) + G(a J + ia2) - G(a l + ib2) - G(b l + ia2) 
for M={zEC: a\<Rez.;;b l ,a2 <Imz.;;b2 }. 

(b) /lR(z, T)/I >d(z, o(T»-J by Theorem 5.15. Since we have R(z, T)= 
uz(T) with uz{w) = (z - w)- t, and as luz(w)1 .;; d(z, o(T»-1 G-almost every
where, it follows that /lR(z, T)II ';;d(z, O(T»-I. 

Theorem 7.35. Assume that T" (n EN) and T are bounded normal operators 
on the complex Hilbert space Hand "T - T"II ~O as n ~ 00. Then 

o( T) = lim o( T,,) 
n->oo 

= {z E C: there exists a sequence (z,,) from C Jar which 

z" E oCT,,) and z,,~z}. 
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(This is an assertion about the continuity of the set-valued function T~ 
oCT) defined on the set of bounded normal operators. We I;annot allow all 
bounded operators here, and II T - Tnll ~O cannot be replaced by 

s • 
Tn ~ T; cr. Exerctses 7.41 and 7.42.) 

PROOF. If zf1.o(T), i.e., zEp(T), then (second Corollary to Theorem 5.11) 
zEp(Tn) for sufficiently large nand lI(z- T,,)-I_(Z- T)-III~O. Hence, 
lI(z- T,,)-III~II(z- T)-III as n~oo. Since d(z, o(T,,»=IIR(z, T,,)II- I, we 
have lim ..... oo d(z, o(T,,»=IIR(z, T)II- I>O. Consequently, the point z is 
not contained in lim oCT,,). 

Assume z E o( T). Then by Theorem 5.43 there is a sequence (i,,) from H 
for which IIfnll = I and (z - T)f,,-+O. Then 

(z - T")f,, = (z - T)f" - (T" - T)f" ~ 0; 

hence d(z,o(T,,»=IIR(z, Tn)II-I<II(z-TII)fnll-+O. It follows from this 
that z E lim oCT,,). 0 

Theorem 7.36. If U is a unitary operator on a complex Hilbert space, then 
there exists a real spectral family E for which E( t) == 0 for t <: 0, E( t) == I for 
t;> 2'1T and U= fe il dE(t) (cj. also Exercise 7.46). 

PROOF. By Section 5.2, Example 2 the spectrum of U is contained in 
{zEe: Izl=l}={eil : 0<t<2'1T}, i.e., G({eil : 0<t<2'1T}=I, where G 
denotes the complex spectral family of U. Then the formu!lae 

for t < 0, 
for 0<t<2~T, 

for t ~ 2'1T 

define a real spectral family. We can verify easily that U= Ieil dE(t). 0 

EXERCISES 

7.40. A function G : C~8(H) is a complex spectral family if and only if G(z) is an 
orthogonal projection for every z E C and properties (a), (b) and (c) of 
Theorem 7.30 are satisfied. 

7.41. We cannot replace norm convergence by strong convergence in Theorem 
7.35. 
Hint: Let the operators TT E 8(12) be defined by Tm(/,,)neN=(/),h,·· ., 
1m' 0, 0, 0, ... ). Then Tm ~ I, o(Tm) = {O, I} and o(I) = {I}. 

7.42. Let the operators Tm, mEN, and T from B(l2(l» be defined by the formulae 

{
/,,+) for n,.,-I, 

Tm(f"),,ez = (g")"EZ with gIl = !/o for n = -1, 

{ 1. for Ii'''' -I, 
T(f")"EZ = (g")"EZ with gIl = 0,,+1 for n=-1. 
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(a) We have II Til-II Tmll = 1. Therefore, a(T) C {z EC : Izl< I} and o(Tm) 
c{zEC:lzl<I}. 

(b) For every z E C such that Izl < 1, the vector (fn)nEZ defined by in = 0 for 
n < 0 and in = zn for n ;;. 0 is an eigenelement of T belonging to the 
eigenvalue z; hence a(T) = {z E C : Izl< I}. 

(c) T'; 1 E 8(12(1» for all mEN, and r(T'; I) = 1. Consequently, {z E C : Izl 
> I} cp(Tm- I ), and thus {z EC : Izl < I} cP(Tm) (cf. Exercise 5.27). 

(d) Theorem 7.35 does not hold in general if the operators Tm and T are not 
normal. 

7.43. Assume that T is a bounded normal operator on the complex Hilbert space 
H, r> II Til, and u is a function, holomorphic in {z E C : Izl < r} with 
u(z) = ~j..ou jzj for Izl <r. Then u(T) = ~j..ou jT), where the series con
verges in B(H). For self-adjoint operators this statement holds in real Hilbert 
spaces, as well. 

7.44. Let TI and T2 be similar bounded normal operators on the complex Hilbert 
space H, i.e., let there exist a bijective operator S E B(H) such that ST1 == 
T2S. Prove that TI and T2 are unitarily equivalent. 
(a) S = ezT,S e - zT, for all z E C. 

Hint: Exercise 7.43. 
(b) eizTiSe-izTf=ei(z1J+zOT,lS e-i(zTf+zoT,). Consequently, lIeiz1JS e-izTfil < 

IISII for all z E C. 
(c) S_eiz1JSe-izTfforallzEC. 

Hint: The Liouville theorem and part (b). 
(d) S11 = 11 S. 

Hint: Differentiate in (c) with respect to z and substitute z = O. 
(e) T1S·S"",S·ST1, TdSl=ISITI and T.JSI-1=ISI-ITI · 

(f) If S- UISI is the polar decomposition of S, then U is unitary, lSI is 
bijective, and U - SIS r I. 

(g) We have TI == U - IT2 U with the operator U from part (f). Hence TI and 
T2 are unitarily equivalent. 

7.45. Assume that H is a complex Hilbert space, S, T E 8(H), ST= TS, and Tis 
normal. 
(a) Then sr ... T*S. 

Hint: Use the reasoning of Exercise 7.44(b), (c) and (d) for T, - T2 - T. 
(b) If G is the spectral family of T, then SG(z)'" G(z)S for all z E C. 

7.46. Prove the uniqueness of the spectral family E in Theorem 7.36. 

7.47. If T is a normal operator on a complex Hilbert space and n E N, then there 
exists exactly one normal operator A for which A n = T and G( {z - rei'" : r ;;. 
0, 0 < cp < 2'17/ n}) == I for the spectral family G of A. 

7.48. If A and B are self-adjoint (not necessarily bounded) operators on a complex 
Hilbert space with spectral families E and F, and E(t)F(s) == F(s)E(t) for all 
s, t E iii, then T = A + iB is normal. 

7.49. Decomposition in real- and imaginary parts for arbitrary operators (cf. Exer
cise 5.38 and Theorem 1.32); 
(a) If T is a densely defined operator on H such that D(T) C D(r), then the 
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operators A=(T+T*)j2 and B=(T-T*)j2i are symmetric, D(A) 
= D(B), and T=A +iB. 

(b) If A and B are symmetric, D(A)=D(B), and T=A+iB, then A= 
(T+ T*)j2 and B=(T- T*)j2i. 

(c) Even if T is closed and D(T) = D(T*), we cannot expec1; that A and B in 
(a) are essentially self-adjoint. 
Hint: Choose T=ICI+(iCj2) or T=iICl+(Cj2), where C is a closed 
symmetric but not self-adjoint operator. 

(d) Even if A and B are self-adjoint, we cannot expect that T in (b) is closed. 
Hint: Take an unbounded self-adjoint operator C. Define A and B by 
the formulae D(A)= D(B) = D(C)ffi D(C), AU, g) = (Cg, Cf) and BU, g) 
= i( Cg, Cf) for j, g E D( C). 

7.6 One-parameter unitary groups 

One example of the significance of the theory of self-adjoint operators is 
shown by Stone's theorem (cf. Theorem 7.37 and Theorem 7.38). We shall 
learn more about this later in this section. 

Let H be a Hilbert space. A family {B(t) : t E iii} of operators out of 
8( H) is called a one-parameter group if 

B(O) = I and B(s)B(t) = B(s + t) for all s, t E iii. 

(This is then a "representation" of the additive group iii by operators on 
H.) The one-parameter group {B( t) : t E R} is said to be strongly continu
ous if the function 

is continuous for every f E H. 
Let {B(t) : t E iii} be a one-parameter group of operators on H. The 

operator A defined by the formulae 

D(A) = {f E H: lim.!. (B(t) - I)f exists}, 
1--.0 t 

Af=lim.!.(B(t)-I)f for fED(A) 
1-->0 t 

is called the infinitesimal generator of {B(t) : t E iii}. 
It can be proved that every strongly continuous one-parameter group 

possesses a densely defined infinitesimal generator. In the following we 
only consider (one-parameter) unitary groups (i.e., one-parameter groups of 
unitary operators). The situation is somewhat simpler in that case. 

Theorem 737. Let T be a self-adjoint operator on the complex Hilbert space 
H, let E be the spectral family of T, and let 

U(t) = eitT = f eits dE(s) for t E iii. 
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Then {U(t) : t E IR} is a strongly continuous (one-parameter) unitary group. 
The infinitesimal generator is iT. We have U(t)fE D(T) for all fE D(T) 
and t E IR. 

PROOF. By Theorem 7.14 we have 

U(t) E 8(H) and U(t)* = U( - t) = U(t)-I for all t E IR, 

i.e., U(t) is unitary for all t E IR (cL Theorem 4.34). For all x, y E IR 

leix - elY I = lei(x-y )/2 _ e- i(x-y )/21 = 21sin x~ y I. 

It follows from this that 

II V(t)f - V(t')fI1 2 = II j (ei/' - eit'S) dE(s)fI12 

= jleilS _ ei/'sl2 dIlE(s)fIl2 

= 4jlsin (1 -2t ')s r dIIE(s)fIl2 

for all f E Hand t, t' E IR. Because of the relations 

\ 
(t-t')S\ (t-I')s 

sin 2 .;;; 1 and sin 2 ~ 0 as I' ~ I, 

it follows by Lebesgue's theorem that 

II V(/)f - V(t')fll ~ 0 as t' ~ I. 

This proves the strong continuity of Vet). For all f E H and IE IR we have 

1 If' I(V(/)-1)1= 1 (ellS-I) dE(s)1· 

Because of the relations 

and 

1 . 
- (e'lS - I) ~ is as I ~ 0, s E IR, 
1 

1 + (e i/s -1)1.;;; lsi for s, I E R, t "1= 0, 

the right-hand side converges, as t~O, if and only if the function u(s) = lsi 
belongs to L2(IR, PI) (with pfis) = IIE(s)fIl 2), i.e., if and only if 1 E D(T). The 
limit equals j Tf. Consequently, iT is the infinitesimal generator of { V(t) : t 
E IR}. 

If 1 E D( T), then for every t E IR 

JIsl2 dsllE(s)U(t)fI12 = jlsl2 dsil U(t)E(s)1112 = jlsl2 dIlE(s)1112 < 00, 

i.e., V(t)f E D( T). 0 
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Actually, every strongly continuous (one-parameter) unitary group can 
be represented in this form. 

Theorem 7.38 (Stone). Let {U(t): t E JR} be a strongly continuous (one
parameter) unitary group on the complex Hilbert space H. Then there exists a 
uniquely determined self-a4ioint operator T on H for which 

U(t) = eitT for all t E JR. 

If H is separable, then strong continuity can be replaced by weak measura
bility, i.e., it is sufficient to require that the function 

<f, U(· )g) : JR --'» C, I ~ <f, U(t)g) 

is measurable (with respect to Lebesgue measure on JR) for all j, g E H. 

PROOF. The equality U( t) = eitT implies that iT is the infinitesimal genera
tor of {U(/) : t E JR}. This proves the unicity of T and, at the same time, 
provides an opportunity to construct T. In what follows let A be the 
infinitesimal generator of { U( t) : I E JR 1 and let T = - iA. We show that T 
is essentially self-adjoint and U(t) = eitT• Since iT is then the infinitesimal 
generator of {U(/) : t E JR}, it follows that T= T. First, let us assume that 
the group is strongly continuous. 

D(A) is dense: For every ({I E COOO(JR) and every f E H the equality 

f<p = J ({I(s) U(s)f ds 

defines an frp E H (the integral is extended only to the support of ({I and can 
be understood as a Riemann integral). We have 

I 1 J I( U(t) - J)f<p = I ((I(s)( U(s + t) - U(s»f ds 

= + f [ ((I(S) U(s + I) - ({I(S) U(s)]f ds 

= + J [ ({I(S - t) U(s) - ({I ( s) U( s) ] f ds 

= J +«({I(s-t)-({I(s»U(s)f ds --'» - J~D/(s)U(s)fds 

as I --,»0. The set Do = U<p : f E H, ({I E COOO(JR)} is therefore contained in 
D(A). If «((In) is a sequence from COOO(JR) such that 

I 
({In(s) = 0 for Isl;;.-, 

n 
({In(s) ;;. 0 for all s E JR, 

J ({In(s) ds = I for all n E ~, 
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thenf<p. ~f as n~oo, since 

IIf"", - fll = II! 'Pn(s)( U(s) - 1)f dsll 

..;; SUP{II(U(S)-I)fll: -;<s<;}. 

Hence Do, and thus D(A), too, is dense in H. 
T= - iA is symmetric: If f, g E D(T) = D(A), then 

<g, Tf) = -i<g,Af) = -lim i(g, !(U(t)-1)f) 
1--+0 t 

= -lim i(!(U(-/)-I)g,f) 
1--+0 1 

= lim i( _1 (U( - t) - 1)g, f) = i<Ag, f) 
1-+0 - t 

= <Tg,f)· 

R( ± i - T) is dense in H: Assume g E R(i - T).l = N(i + r). Since for 
every f<p E Do and all t E ~ 

U(/)f", = U(t) J 'P(s) U(s)f ds = J 'P(s - t) U(s)f ds E Do, 

it follows that 

d 
dt<g, U(/)f",) = <g, AU(t)f",) = <A*g, U(I)j",) 

= < - iT*g, U(t)f",) = -<g, U(t)f",). 

The function h(t) = < g, U(t)f<p) is therefore a solution of the differential 
equation h' = - h, i.e., we have h(t) = e-'h(O). Since U(t) is unitary, h is 
bounded; however this is possible only if < g,j",) = <g, U(O)f'9) = h(O) = O. 
Since this holds for all f", E Do, we have g = O. Consequently, R(i - T)= H. 
We can show similarly that R( -i- T)= H. Hence, T is essentially self
adjoint. 

We have U(t) = eilT: Let V(t) = eilT and f E Do. Because of the relation 
fE D(f) we also have V(t)fE D(i) by Theorem 7.37 and d/dt V(t)f= 
iTV(t)f. Since, moreover, U(t)f E Do C D(T) for all t E R it follows that 

:t (U( t)f - V( I)f) = i TU(t)f - i TV(t)! = i T( U( t)f - Vet)!). 

Consequently, because T is self-adjoint, 

d 2 -
dl IIU(/)f- V(t)fll = 2 Re<U(t)f- V(t)f, iT(U(t)f- V(t)f» = O. 

It follows from this that U(t)f = V(t)f for all t E ~ and all f E Do, because 
U(O)f = V(O)f. Since Do is dense, this implies that U(t) = V( t) = eilT• 
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It remains to prove that weak measurability implies strong continuity in 
·the separable case. Let IE H. As t~<U(t)/. g) is bounded (with bound 
11/11 II gil) and measurable for all g E H. the function 

g ~ loa < U(t)/. g) dt 

is a continuous linear functional with norm" all III for every a> O. By the 
Riesz representation theorem (Theorem 4.8) there exists an la E H for 
which 

<fa. g) = foa<U(I)/.g) dt. 

Therefore. 

< U(s)/a. g) = <Ia. U( - s)g) = loa < U(t)/. U( - s)g) dt 

ra f a + s 
= J, < U(t + s)/. g) dt = < U(t)/. g) d/. 

o s 

and thus 

!< U(s)/a• g) - <la' g)1 "Ifos < U(t)/. g) dtl + I£a+s < U(t)j. g) dtl 

" 21s1 11/11 II gil· 
Hence. 

< U(s)fa, g) -+ <la' g) as s -+ 0, 

i.e., U(· )/a is weakly continuous at the origin. Because of the equality 
"U(s)fall = llfall. the continuity of U(· )/a at the origin follows from this, 
since 

II U(s)fa - fa 112 = II U(s)lall 2 - 2 Re< U(s)fa, la) + II/all2 -+ 0 as s -+ O. 

We show, in addition, that the set of elements fa is dense in H. It follows 
from this that U(s) is strongly continuous at the origin, and thus every
where. Let h be orthogonal to all 101.' and let {e" : n EN} be an orthonor
mal basis of H. Then 

ra<U(t)e", h) dt = <ell a' h) = 0 )0 . 

for all n E N and all a > O. It follows from this that for all n EN we have 
<U(t)e", h) =0 almost everywhere in (0,00) (cf. Theorem AI6(c». Conse
quently, there is a to> 0 such that 

< U(to)e", h) = 0 for all n E N. 

As U(to) is unitary, {U(to)e" : n E N} is an orthonormal basis. Hence, we 
must have h = O. 0 
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Corollary. Let { U(t) : t E R} be a strongly continuous unitary group, and let 
iT be its infinitesimal generator. Then the initial value problem 

I d T dt u(t) == Tu(t), u(O) = f 

is uniquely solvable for every f E O( T) and the solution is u(t) == U( t)f. (A 
solution is a continuously differentiable function defined on R with values in 
OCT) that satisfies the differential equation.) 

PROOF. As U(t)fEO(T) for all fEO(T) and all tER, the function 
u(t) == U(t)f is a solution of the initial value problem. If u and v are 
solutions, then u(O)-v(O)=O, and dldt lIu(t)-v(t)1I2 =2 Re<u(t)-v(t), 
i T( u( t) - v(t» > = 0, i.e., u(t) = v(t) for all t E R. 0 

A few more words about the significance of Stone's theorem: In quan
tum mechanics the states of a system are described by the normalized 
elements of a Hilbert space. If u(t) is the state of the system at time t, then 
we write u( t) = U( t)u(O); for reasons derived from physics, U(t) has to be a 
linear operator. Of course, every state has to be possible at any time; since, 
moreover, U(t) has to preserve the norm of the states, it follows that U(t) is 
unitary. If, in addition, we require strong continuity (weak measurability in 
the separable case), which is quite plausible on a physical basis, then it 
follows that there exists a self-adjoint operator T such that U(t) = eilT; in 
particular, 

+ :t U(t)f = TU(t)f 

for all f E OCT). Since the time dependent Schrodinger equation is of this 
form, this implies that the Schrodinger operators must be self-adjoint. 

EXAMPLE l. Let H = L2(R). The formula 

U(t)f(x) = f(x + t), f E L2(R) 

defines a strongly continuous unitary group. The infinitesimal generator is 
A =iT, where 

OCT) = W2, J(R} and Tf = -if' 

(for W2,I(R) see Section 6.4). It is obvious that T contains the operator 
TJ,o defined by the equalities 

O(TJ,o) =Co""(R) and T1,of= -if'. 

As by Theorem 6.30 T"o is essentially self-adjoint, the assertion now 
follows. 
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EXAMPLE 2. Assume that H= L2(M) and g : M~R is a measurable func
tion. The equality 

U(t)f(x) = exp{itg(x))f(x), f E L2(M) 

defines a strongly continuous unitary group. It is easy to see that the 
infinitesimal generator is A = iT, where T is the maximal operator of 
multiplication by the function g. 

Theorem 7.39. Let T be a self-adjoint operator on the complex Hilbert space 
H, and let M be a closed subspace of H. If eisTf E M for all f E M and s E R, 
then M reduces T and eisT M = M, eisT M 1. = M 1. for all s E R. 

PROOF. We have eisT M = M for all s E R, since 

eisTMcM for all s E R 

by assumption, and because every f E M can be written in the form 

for every s E R 
For all f E M, gEM i and s E R we have 

<eiSTg,f) = <g, e-i.Tf) = o. 

Consequently, eisT M i C M i, and thus eisT M i = M 1.. If P is the orthogo
nal projection onto M, then 

P eisT = eisTp for all s E R, 

because of what we have just shown. We have to show that PT c TP. Let 
fE D(T). Then 

-i . -i . 
PTf = P lim - ( e'ITf - f) = lim - (ellTPf - Pf). 

1-.0 t 1-+0 t 

Hence, Pf E D( T) and TPf = PTf. o 
We next prove the following special case of a theorem of H. Trotter for 

unitary groups that are generated by the sum of two self-adjoint operators. 

Theorem 7.40. Let T, S, and T+ S be self-adjoint operators on the complex 
Hi/bert space H. Then 

eil(T+S) = s - lim [ei(I/")Tei(I/")S]" 

" ..... 00 

for all t E R. 
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PROOF. For every fE D(T+ S)= D(T)n D(S) 

r l(eilT ei/S - ei/(T+S»f 

= t -Ie eilT - 1)f + r 'eiIT( ei/S - 1)f - t -I( ei/(T+ S) - 1)f 

~iTf+iSf-i(T+S)f= 0 as I~O. 

In particular, for every f E D( T + S) there exists a C(f) ;;;. 0 for which 

IIt-'(eiITei/S-ei/(T+S»fll"; C(j) foraH IER\{O}. 

Since the space D(T+ S) is a Hilbert space with the (T+ S)-scalar 
product <. , '>T+S' by the uniform boundedness principle (Theorem 4.22) 
there exists a C ;;;. 0 such that 

1I1-'(eiITei/S-eit(T+S»)jIl"; CllfllT+s for fED(T+S),tER\{O}. 

If E is the spectral family of T+ S, then for fE D(T+ S) 

lIeis(T+S)f - eis'(T+S)fll~+s = f (t2 + 1)leiSI - eis'/12 dIlE(t)fW 

..; 4f(t2+1)lsinC~SI t)12dIlE(t)fIl2~O as S'~S, 

since the integrand is bounded by (t 2 + I) (because of fED( T + S) this 
function is integrable) and tends to 0 pointwise. Hence, for fixed f E D(T 
+ S) and r> 0 the family of functions 

<P,: [-r, r] ~H, I E R\{O}, 

<p,es) = t-l(eitT ei/S_ei/(T+S»eis(T+S)f 

is equicontinuous. Since eis(T+ slj E D( T + S), we moreover have q:>/(S)~O 
as t~O for an arbitrary S E [ - r, r). Consequently, <P, uniformly converges 
to 0 on [- r, r) as t~O. Let us now make the following estimates 

II[ (ei(l/n) Tei(l/n)S)n - ei/(T+S)]~1 

= II :~: (ei(I/II)T ei(I/II)S)k[ ei(//II)T ei(I/II)S - ei(I/")(T+S)](ei(l/I)(T+S»"-I-k11 

'" n max II[ ei(I/II)T ei(I/II)S - ei(l/n)(T+S)]eis(T+S)J11 
lsi c;; III 

= III max II(.!..) -I [ei(I/II)T ei(I/II)S - ei(//n)(T+ S) ]eis(T+ S)~I 
lsi c;; III n J I 

'" It I max{ !P1/n(S): S E [ -III, It I ]}. 
For fixed t the last expression tends to zero as n~oo, as we have already 
proved (choose [-r, r)=[-III, ItlD. This proves the convergence for fE 
D(T+ S). Since D(T+ S) is dense and all operators have norm 1, the 
required strong convergence follows (cf. Theorem 4.23). 0 
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If the operators Sand T are bounded from below, then an analogous 
result holds for e- 1T, e- 's and e-/(T+S) with t > O. 

Theorem 7.41. Let T, S, and T + S be selj-a4ioint operators on the Hilbert 
space H. Assume that these operators are bounded from below. Then 

e-/(T+S) = s - lim [e-(I/n)T e-(I/n)S]n 
n~oo 

for al/ t;;' O. 

The proof follows that of Theorem 7.40. We consider only nonnegative t 
and s; the details can be left to the reader. 

EXERCISES 

7.50. Let U be a unitary operator. 
(a) There exists a strongly continuous unitary group (U(t) : 1 E R} for which 

U(l) om U and whose infinitesimal generator has norm c;; 2'17". 
Hint: If G is the (complex) spectral family of U and we define z t = r' eiltp 

for z=rti'P (Oc;;r, 0c;;'P<2'17", and tER), then we can choose U(t)
f zt dG(z). 

(b) Prove Theorem 7.36 with the aid of part (a) and Stone's theorem. 

7.51. If T is seH-adjoint and V is a T-bounded operator, then 11-+ Ve1t7J is 
continuous for every f E D(T). 

7.52. Let TJ and T2 be seH-adjoint operators on H. and assume that the strong 
limit w- s -limt ... oo eitT2 e- ilTI exists (W is called a wave operalor; cf. Sec
tion ll.l). We have: 
(a) W is isometric. 
(b) R(W) reduces euT2• 

(c) R(W) reduces T2• 

(d) TI and T21R(w) are unitarily equivalent; TI = W- 1T21R(w) W. 



Self -adjoint extensions 8 
of symmetric operators 

In Sections 5.4 and 5.5 we have already learned that certain symmetric 
operators (the semi-bounded and continuously invertible ones) possess 
self-adjoint extensions. The question of whether all (or which) symmetric 
operators have self-adjoint extensions could not be answered there. The 
key to our studies was the fact that A - T was continuously invertible for 
some A E iii; however, this is not always the case. In this chapter we 
develop the von Neumann extension theory, which completely answers this 
question. Moreover, we shall prove certain theorems about the spectra of 
all self-adjoint extensions of a symmetric operator. 

8.1 Defect indices and Cayley transforms 

First let T be an arbitrary linear operator on a Hilbert space H. The set 

1"( T) = {z Ell{: there exists a k( z) > 0 such that 

II(z-T)fll>k(z)IIfil forall fED(T)} 

is called the regularity domain of T. 

Proposition. 
1. We have z E I'(T) if and only if (z - T) is continuously invertible. Then 

II(z- T)-lll <k(Z)-1 (observe that (z- T)-l need not belong to B(H». 
2. If H is complex and T is Hermitian, then C\ R c I'(T). 
3. If T is isometric, then II( \ {z Ell{: z = I} c I'( T). 
4. I'(T) is open. 

229 
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that from the inequality 
injective and II(z 

bounded, then 

;;;. k(z)lIfll for 
I. If (z- T) ,n,p'r.n.!p and 

lI(z- T)fll ;;;. lI(z- T)-III-III(z- T)-I(Z- T)fll 

= lI(z- T)-IIl-llIfli. 

Consequently, z E nT) and we can choose k(z)= II(z - T)-Ill-i. 
2. Forz=a+ib andfED(T) 

lI(z- T)f1l2 = 

r(T) and we can 
then 

b211fl12 ;;;. b21lf1rz. 

=Ibl· 

lI(z - T)fll ;;;. III Tfll -IzlIIfllI = 11 -Izlillfll· 

Consequently, z E nT) and we can choose k(z) = II-izil. 
4. Let Zo E nT). If z E K such that Iz - zol <k(zo), then 

II(z - T)fll ;;;. lI(zo - T)fll -Iz - zoillfil ;;;. (k(zo) -Iz - zoDllfll 

T). Therefore, 

R(z - T)l. 
I.".uu.a. number f3( T, z) = dim 

nT) is open. 

defect space of 
is called the 

o 

Theorem 8.1. The defect index f3(T, z) is constant on each connected subset 
of r(T). If T is Hermitian, then the defect index is constant in the upper and 
lower half-planes. 

sufficient to show that 
Zo E r( T) there 

with the nrnnPT!hl 

is locally constant 
o such that f3(T, 
t:. Replace A 

the orthogonal prOI!ecl:lOn 
Pz is the orthogonal 

IIPz - Pzoll = IIQz - QZoll ~ 0 as z ~ zoo 

If we choose t: > 0 such that II Pz - PZoll < I for Iz - zol < t:, then it follows 
from Theorem 4.35 that 

If T is Hermitian, 
subsets of I'(T) 
there. 

f3( T, zo) for 

upper and lower U""'-V""""_" are connected 
t'ropmiUl()ll 2); therefore, index is constant 
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1fT Hermitian on complex Hilbert then define 

y +(T) = peT, i), y -(T) = peT, -i) 

(of course, here can be Z E for which 1m Z > 
and - i by an arbitrary z E C for which 1m z < 0). The pair 
(y +(T), y _(T» = (y +, Y _) is called the defect indices of T. 

REMARK. We can reformulate the result of Theorem in of this 
definition: A symmetric operator is essentially self-adjoint if and only if its 
defect indices are equal to (0, 0). A closed symmetric operator is self-adjoint if 
and its indices are (0, 

Let T be a symmetric operator on a complex Hilbert space. The Cayley 
transform of T defined the 

v = (i - T)( - i - T) - = - (i - T)(i + T) - I. 

V is therefore a linear operator from R( - i - T) onto R(i - T). 

Theorem 8.2. Let T be a symmetric operator on the complex Hilbert space H. 
The Cayley transform of T is an isometric mapping of R( - i - T) onto 
R(i - The R(I is dense in H, T = V)(I V) - I. 

um,quelY determined V. 

PROOF. For every g=(-i- T)fER(-i- T)=D(V) we have 

II = 11(i 1')(-i -l g11 2 1I(i-

= IIfl12 + /I Tfll2 = lIe - i - T)f112 = II g1l2. 

Consequently, is isometric. It clear that R( = R(i since 
(-i-T)-l maps O(V)=R(-i-T) onto OCT) and (i-T) maps OCT) 
onto R(i - T). We have 

- V + (i T)(i + I = [ (i + (i ] (i 
-I + T)- , 

J + V = J - (i- T)(i+ T)-I = 2T(i+ T)-I. 

In particular, V)= is J- injective, and 

T = i(1 + V)(I - V) - I. o 
REMARK. We could define a Cayley transform 

Vz = (z - T)(z* - T)-I 

for every such that 1m O. Then Vz is isometric mapping of 
R(z* - T) onto R(z - T), and 

T= z* 
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In what follows V can be replaced by Vz • We use z = i, as this saves us 
from using unnecessary indices. 

Theorem 8.3. An operator Von the complex Hi/bert space H is the Cayley 
transform of a symmetric operator T if and only if V has the following 
properties: 
(i) V is an isometric mapping of D( V) onto R( V), 

(ii) R(I - V) is dense in H. 
The symmetric operator T is given by the equality T = i( I + V)( I - V) - I. 

PROOF. If V is the Cayley transform of T, then V has properties (i) and (ii) 
by Theorem 8.2. We also have then that T = i(l + V)(I - V) -I. Let V now 
be an operator with properties (i) and (ii). Then I - V is injective, since the 
equality Vg = g implies that 

<g,f - Vf) = (g,!) - <g, Vf) = <g,f) - < Vg, V!) 

=<g,f)-<g,f)=O forall jED(V), 

i.e., that g E R(I - V).l, and thus g = O. Therefore, we can define an 
operator T by the equality 

T = i(J + V)(J - V)-I. 

By assumption, D( T) = R(I - V) is dense. For all f = (I - V)jl and g = 
(I - V)gl from D(T) = R(l- V) we have 

<Tf, g) = -i<(J + V)(J - V)-Ij , g) = -i<(J + V)fl' (J - V)gl) 

= -i{<JI,gl)+<Vjl,gl)-<fl' Vg1)-<Vjl' Vg 1)} 

= -i{<Vfl' Vg1)+<Vfl,gl)-<fl' Vg1)-<J .. gl)} 

= i<(J- V)jl' (J+ V)gl) = i<J, (J+ V)(J- V)-Ig) 

= <f, Tg). 

Consequently, T is symmetric. 
It remains to prove that V is the Cayley transform of T. This im

mediately follows from 

(i- T) = i - i(J+ V)(J- V)-I = i[(J- V)-(J+ V)](J- V)-I 

= -2i V(J - V)-l, 

(-i- T).= -i[(J- V)+(J+ V)](J- V)-l = -2i(J- V)-l. 0 

Theorem 8.4. Let T be a symmetric operator on a complex Hi/bert space, and 
let V denote its Cayley transform. 
(a) The following statements are equivalent: 

(i) T is closed, 
(ii) V is closed, 
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(iii) D( V) = R(i + T) is closed, 
(iv) R( V) = R(i - T) is closed. 

(b) T is self-adjoint if and only if V is unitary. 

PROOF. 
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(a) (i) is equivalent to (iii) and to (iv): T is closed if and only if (± i
T) - I is closed. The bounded operator (± i - T) - I is closed if and 
only if its domain D«(I - T)-I) = R(i - T) = R( V) or D« - i
T) -I) = R(i + T) = D( V) is closed (Theorem 5.6). 

(ii) is equivalent to (iii): The bounded operator V is closed if and only 
if its domain is closed. 

(b) T is self-adjoint if and only if R(i - T) = R( - i - T) = H, i.e., if and 
only if D( V) = R( V) = H. This is equivalent to the statement that V is 
unitary. 0 

For the construction of symmetric or self-adjoint extensions of a sym
metric operator the following theorem is essential. The proof of this 
theorem is obvious. 

Theorem 8.5. Let TI and T2 be symmetric operators on a complex Hilbert 
space, and let VI and V2 denote their Cayley transforms. Then T, C T2 if and 
only if VI C V2• 

Consequently, we can obtain all symmetric extensions of a symmetric 
operator T if we determine all those extensions V' of the Cayley transform 
Vof T which possess property (I) of Theorem 8.3 (since V has property (ii), 
V' automatically does, too) and we calculate the corresponding symmetric 
operators T' = i(I + V')(I - V') - I (Theorems 8.5 and 8.3). We can obtain 
all self-adjoint extensions (provided that such exist) if we determine all 
unitary extensions V' (Theorems 8.5 and 8.4b). In particular, T has 
self-adjoint extensions if and only if V has unitary extensions. The follow
ing theorem makes it possible to explicitly construct the extensions V' of 
V. Here we assume, without loss of generality, that T is closed. 

Theorem 8.6. Let T be a closed symmetric operator on a complex Hilbert 
space, and let V denote its Cayley transform. 
(a) V'is the Cayley transform of a closed symmetric extension T' of T if and 

only if the following holds: There exist closed subs paces F _ of R(i - T)l. 
and F + of R( - i - T)l. and an isometric mapping Vof F + onto F _ for 
which 

D(V') =R(-i- T') =R(-i- T)$F+. 

V'(f + g) = Vf + Vg for f E R( - j - T), g E F +, 

R( V') = R(i - T') = R(i - T) $ F _. 

The spaces F _ and F + have the same dimension. 
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(b) The operator V' in part (a) is unitary (i.e., T' is self-adjoint) if and only 
if = F + R( i-

(c) T possesses self-adjoint extensions if and only if its defect indices are 
equal. 

PROOF. 

If has the given form, then is an isometric of 
R( - i - T) EEl F + onto R(i - T) EEl F _. Consequently, V' satisfies 
assumption of Theorem 8.3, Since R(I V) dense, is 
also dense, so that V' also satisfies (ii) of Theorem 8.3. Therefore, V'is 
the transform of symmetric extension of Since V an 
isomorphism of F + onto F _, we have dim F + = dim F _. If V'is the 
Cayley transform a extension T' of T, then put = 
R(i - T') e R(i - T), F + = R( - i - T') e R( - i - T), and V = V'k. 
Viis unitary if and only if V') H = V'), i.e., if only if 
F+ = R(-i- T).l. and F_ = R(i- T).l.. 
By (a) (b) the V possesses a extension and only 
if there exists an isometric mapping V of R( - i - T).l.. onto R(i - T).l... 
This happens and only dim - - T).l.. = dim R(i T).l.. 0 

Theorem 8.7. Let be operator on complex Hilbert space. The 
operator T is essentially self-adjoint if and only T has one 
self-adjoint extension. 
(For the real case, compare Exercise 8.4.) 

PROOF. If is essentially then f is the only self-adjoint 
extension of T by Theorem 5.31(c). We show: If T is not essentially 
self-adjoint, if f is not self-adjoint, then has either no infinitely 
many self-adjoint extensions. If the defect indices of f are different, then f 

thus T) has self-adjoint extension. If the defect are equal 
(> 0, as f is not self-adjoint), then there are infinitely many unitary 

Ii . R( - T).l.. ~R(i - T).l.. (proof!), and therefore infinitely 
many self-adjoint extensions. 0 

Now we are in a position to define certain classes of symmetric opera
tors that have self-adjoint extensions, 

Theorem S.S. Let T be a symmetric operator on a complex Hi/bert space. 
If (T) III T has self-adjoint extensions. 

(b) If T is semibounded, then T has self-adjoint extensions. 
(The statements of this theorem have been proved in another way 
in Sections 5.4 and 5.5.) 

PROOF. 

(a) I'( T) is connected, since r( T) n III *' 0. Then y + (T) = y _ (T) by Theo
rem 

(b) Let T be bounded, for example, from below, and let c be a lower 
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bound of T. Then 

II(A- T)fll ;> (f, (T-A)f)lIfll- 1 ;> (c-A)lIfll 

for A<C and all fE D(T), f~O. Consequently, in this case we also 
have ItT)n R~0. 0 

Let H be a complex Hilbert space. A mapping K of H onto itself is 
called a conjugation if 
(a) K(af + bg) = a* Kf + b* Kg for f, g E H, a, bE C, 
(b) K2=I. (S.I) 
(c) (Kf, Kg)=(g,f) for f,gEH. 
An operator Ton H is said to be K-real if 
(a) KO(T) c OCT), 
(b) TKf= KTf for f E D(T). (S.2) 

Theorem 8.9. Let H be a complex Hilbert space, and let K be a conjugation 
on H. If T is a K-real symmetric operator on H, then T possesses self-adjoint 
extensions. 

PROOF. It follows from (S.l(b» and (S.2(a» that D(T):J KD(T):J K 20(T) 
= D(T). Consequently, KD(T) = OCT). Iff E R(i - T)l., then 

(Kf, (-i- T)Kg) = (KJ, K(i- T)g) = «i- T)g,j) = 0 

for all g E D(T). Therefore, Kf E R( - i - T).L. We can show similarly that 
if f E R( - i - T)l., then Kf E R(i - T).L. As K2 = I, we have R( - i - T)l. 
= K R(i - T).L. Since {ea : 0: E A} is an orthonormal basis of R(i - T)l. if 
and only if {Kea : 0: E A} is an orthonormal basis of R( - i - T)l., it 
follows that dim R( - i - T).L = dim R(i - T)l.. 0 

EXAMPLE 1. The formula 

Kf(x) = f(x)*, f E L2(M) 

defines a conjugation (the natural conjugation) on L2(M). The conditions 
given by (8.1) are obviously satisfied. 

(8.3) Let GeRm be open and let T be defined on L2( G) by the equalities 

D( T) = COOO ( G), and Tf = - Af + qf for fED( T) 

(here A ... ~j_ I (a 2/ ax}) denotes the Laplace differential form). Assume that 
the function q is real-valued and measurable on G and belongs to L2, lac( G) 
(i.e., it is square integrable over every compact subset of G). Then T is 
obviously symmetric and K-real. Consequently, T has self-adjoint extensions 
by Theorem S.9. 

(8.4) Let K(. , .) : M X M_R, be a Hermitian Carleman kernel. Then the 
operator TK,o from Section 6.2 is symmetric and K-real. TK,o therefore 
possesses self-adjoint extensions. 
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EXAMPLE 2. The formula 

Kf(x) = f( - x)* 

defines a conjugation on L2(lllm ) and on L2{ x E Illm : - aj <Xj <aj}. 

(8.5) Let T be defined 011 L2(1ll) or on L2( - a, a) by the formulae 

O( T) = CoOO(Ol) or O( T) = COOO( - a, a) 

I 
Tf = -:-1' for f E OCT). 

1 

Then we obviously have Kf E O( T) and 

TKf(x) = + ddxf( - x)* = ~i 1'( - x)* = ~i (K1')(x) = KTf(x) 

for all J E OCT). Hence Tis K-real, and thus possesses selj-atijoint exten
sions. 
(In Section 6.4 we could prove this only for the case of LiOl).) 

EXAMPLE 3. The formula 

K(f .. J2) = (ft,N) for (f\,J2) E L2(M) E9 L2(M) 

defines a conjugation on LiM)E9 L2(M). The operator T defined by 

OCT) = Cooo(M) E9 CoOO(M), 

T(f\,J2) = (f2' - Jt) for (f1,J2) E OCT) 

is symmetric, since 

< T(f .. J2)' (gp g2» = ! J2*g\ dx - ! J;*g2 dx 

= - !Ng; dx+ !ft*gzdx = <(f},J~), T(g},g2» 

for all (f\, J2), (gl' g2) E OCT). Moreover, T is obviously K-real. Therefore, 
T possesses self-adjoint extensions. 

Theorem 8.10. Let T be a closed symmetric operator on the complex Hilbert 
space H with equal Jinite deject indices (m, m). IJ T} and T2 are selj-atijoint 
extensions oj T, then (z - T1)-1 - (z - T2) -, is oj rank at most m Jor every 
z E peT}) n p(T2). (ThereJore, it is in Bp(H) Jor all p > 0.) 

PROOF. Every z E peT,) n P(T2) obviously belongs to I'(T); consequently, 
R(z - T)1- is m-dimensional. Since (z - T})- '1= (z - T2)- '1= (z - T)- '1 
for J E R(z - T), we have 

(z- T,)-I - (z- T2)-1 = (z- T,)-'-(z- T2)-I)p, 
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where P denotes the projection onto R(z - T)l... Hence, dim R«z - T1)-1 
-(z-T2)-I)<m. 0 

EXERCISES 

8.1. For every self-adjoint operator T on a complex Hilbert space there exists a 
conjugation K for which T is K-real. 
Hint: Use a spectral representation of T (Theorem 7.18) and the natural 
conjugation on Ell" L2(1R, p",). 

8.2. Let K denote the natural conjugation on L2{M). If T is a K-real self-adjoint 
operator on L2(M) and (z- T)-l is a Carleman operator for all zEp(T) 
(cf. Exercise 6.12) with kernel kAx, y), then kz(x, y) = k.(y, x) almost every
where in M X M. 

8.2 Construction of self-adjoint extensions 

In this section we wish to give the explicit construction of the self-adjoint 
extensions of a symmetric operator with equal defect indices. For a closed 
symmetric operator T on the complex Hilbert space H we set 

N+ =N(i- T*) =R(-i- T)l.., 

N_ =N(-i- T*) =R(i- T)l... 

Theorem 8.11 (The first formula of von Neumann) .. Let T be a closed 
symmetric operator on a complex Hilbert space. Then 

O(T*) =O(T)';" N+ .;.. N_ (direct sum), 

T*Uo+g++g-) = Tfo+ig+ -ig_ for foEO(T),g+ EN+,g_ EN_. 

PROOF. Since N+ C O(T*) and N_ c O(T*), we obviously have OCT) + 
N+ + N_ c O(T*). We show that we have equality here, i.e., every 
f E O( T*) can be written in the form f = fo + g + + g _ with 10 E O( T), 
g + E N +, and g _ E N _. To this end, let f E O( T*). Then by the projection 
theorem we can decompose (-i - T*)f into its components in N+ and in 
N:/: = R( - i - T), 

(-i- T*)f = (-i- T)fo + g, (-i- T)fo E R( -i- T),g E N+. 

Since T*fo = Tfo and T*g = ig, we then have (with g + = ig/2) 

T*U - fo - g +) = T* f - Tfo + ~ g = - if + ifo - ~ g 

= -iU-fo)+ig+ = -iU-fo-g+). 

If we set g _ = f - fo - g +, then g _ E N _ and f = fo + g + + g _. 
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It remains to prove that the sum is direct, i.e., that the relations 
0= fo+ g+ + g-,fo E D(T), g+ E N+, and g_ E N_ imply J;)=g+ =g_ =0. 
It follows from the equality 0 = fo + g + + g _ that 

o = T*(Jo + g + + g _) = Tfo + ig + - ig _. 

We obtain from this that 

and 
( - i - T)Jo = 2ig + ; 

consequently, g _ E N_ n R(i - T) = {OJ, g + E N+ n R( - i - T) = {OJ. 
Therefore, g _ = g + = 0, and thus fo = 0, also. 0 

Theorem 8.12 (The second formula of von Neumann). U?t T be a closed 
symmetric operator on a complex Hilbert space. 
(a) T' is a closed symmetric extension of T if and only if the following holds: 

There are closed subspaces F + of N + and F _ of N _ and an isometric 
mapping V of F + onto F _ such that 

D(T') =D(T) + {g+ Vg : gEF+} 

and 

T'(jo+ g+ Vg) = Tfo + ig - iVg 

= T*(jo+g+Vg) for foED(T),gEF+. 

(b) T' is self-adjoint if and only if F + = N+ and F _ = N_. 

PROOF. This theorem immediately follows from Theorem 8.6 if we show 
that the operator T' of Theorem 8.6 can be represented in the above form. 
We have (with V as in Theorem 8.6) 

D( T') = R(I - V') = (I - V')D( V') = (I - V')(D( V) + F +) 

= (I - V)D( V) + (I - V)F + 

=D(T) + {g- Vg: gEF+}. 

The sum is direct, as {g - V g : g E F + } c F + + F _ c N + + N _. Since T' c 
T*, we have moreover that 

for all fo E D(T) and g E F +. The assertion follows by taking V = - V. 0 

As long as the subspaces N+ and N_ are known, this theorem enables 
us to determine all closed symmetric extensions (in particular, all self
adjoint extensions) of a symmetric operator. 
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Let T and T' be linear operators such that T C T'; then we say that T' is 
a finite-dimensional (m-dimensional) extension of T if the quotient space 
D(T')/ D(T) is finite-dimensional (m-dimensional). We also say that T is a 
finite-dimensional (m-dimensional) restriction of T'. 

Theorem 8.13. Let T be a closed symmetric operator on a complex Hilbert 
space, and let T' be a symmetric extension of T. 
(a) T' is an m-dimensional extension if and only if F + (defined in Theorem 

8.12) is m-dimensional. 
(b) If T has defect indices (m, m), then a symmetric extension T' of T is 

self-acfioint if and only if T' is an m-dimensional extension of T. 

PROOF. 

(a) As D(T') = D(T) + (J + V)F+ is a direct sum, we have 
dim D(T')/D(T) = dim(l+ V)F+. Since VF+=F_cN_, F+cN+ 
and N_ n N+ = {O}, we obviously have dim(I + V)F + = dim F +. 

(b) T' is an m-dimensional extension if and only if dim F + = dim F _ = m. 
Since F + C N+ and F _ C N_, this holds if and only if F + = N+ and 
F_=N_. 0 

An operator Ton H is said to be maximal symmetric if we have T= A 
for every symmetric operator A such that T CA. As the closure of a 
symmetric operator is symmetric, every maximal symmetric operator is 
closed. 

Theorem 8.14. 
(a) A closed symmetric operator T is maximal symmetric if and only if at 

least one of its defect indices is equal to O. 
(b) Every self-acfioint operator is maximal symmetric. 
(c) Let T be a closed symmetric operator with equal finite defect indices. 

Then every maximal symmetric extension of T is self-adjoint. 

PROOF. 

(a) By Theorem 8.12(a) we can construct proper symmetric extensions if 
and only if both defect indices are different from zero. 

(b) This follows from (a), since for every self-adjoint operator both defect 
indices are equal to 0. 

(c) An extension T' is maximal symmetric if and only if it has the form 
given in Theorem 8.12(a) with F+ =N+ or F_ =N_. Dimensionality 
arguments then show that F + = N+ and F _ = N_, so that T' is 
self-adjoint. 0 

EXAMPLE 1. Consider the operator T1• O of Section 6.4 (cf. Theorems 6.29 
and 6.31) defined on LiO, 00) by 

- - I -
D(Tl.O) = {jEW2. 1(O, 00) :f(O)=O} and T1.of= Tf' for fED{T1.o)· 



~40 8 Self-adjoint extensions of symmetric operators 

We have Tto= Tto= T t, where 

1 
O(Tt) = W2. 1(0, 00) and Ttl = -;-J' for f E O(TI). 

1 

Then N+ = N(i - T t ) is the set of those solutions of the differential equa
tion if - (f'/i) = 0, hence of the differential equation f + J' = 0, that lie in 
L2(0, 00). As the solutions of this differential equation are given by 
f(x) = ce- x , we have N+"" {O}. The subspace N_ = N( -1 - TI) is the set 
of those solutions of the differential equation - f + J' = 0 that lie in 
L2(O, 00). Consequently, N_ = {O}. Therefore, the defect indices of T t•o are 
different, and thus T t•o possesses no self-adjoint extension. 

EXAMPLE 2. Consider the operator T,.o from Section 6.4 (cf. Theorem 6.31) 
defined on L2(a, b), - 00 <a <b < 00 by the formulae 

~) = {J E W2• I(a, b) : f(a) = feb) =O} 

and 

- 1 0(-
TI.of = T J' for f E T 1• O)· 

We have Tt. 0= Tt 0 = Tt, where 

1 
O(T,) = W2, t(a, b) and Ttl .. -;-J' for f E D(TI). 

1 

We also have 

N+ = N(i - T t ) = L(e+) with e+(x) = exp(b - x), 
and 

N_ = N( -i - T t ) = L(e_) with e_(x) = exp(x - a). 

The defect indices are therefore equal, and thus T I• o has self-adjoint 
extensions. We want to construct these extensions. It is obvious that 
lIe+ II = lie_II, so that all unitary mappings of N+ onto N_ are given by 
formula 

V,,(ce+) = cei"e_ forall cEC (0 <,'} < 271'). 

Consequently, all self-adjoint extensions S" of T I • o are given by 

It is usual and convenient to describe the domains of differential 
operators as the restrictions of the maximal operators (here T\) with the 
aid of boundary conditions. 
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(8.6) We have 

D(SiJ) = {JED(TI) :f(a)=8(1'Jo)f(b)}, 

where 8(1'Jo)=(1 + eiiJeb-o)-I(eb-o + eiiJ). The mapping 8: [0, 2'11)~C is 
bijective as a map from [0,2'11) onto the unit circle. 

PROOF. For every f= fo+ ce+ + ceiiJe_ E D(SiJ) withfoE D(T1. a) we have 

f(a) ce + (a) + ceiiJe _ (a) e b - o + eiiJ 

f ( b) = ce + ( b) + ceiiJ e _ ( b) = I + eiiJ eb - 0 • 

Consequently,J(a)=8(1'Jo)f(b). Now letf(a)=8(1'Jo)f(b); then we have 

(J-ce+ -ceiiJe_)(a) = f(a) - c(eb-o+eiiJ) = 0, 

(J- ce+ - ceiiJL)(b) = 8(1')-lf (a) - e(l +eiiJeb- o) 

= 8(1')-lf (a) - f(a)8(1'Jo)-1 = ° 
with c = f(a)(eb - o + eiiJ)-I. Hence f - ce + - eeiiJe_ E D(T1. a), and thus f E 
D(S,,). It is clear that 8 is a bijective map of [0, 2'11) onto the unit circle. 0 

(8.7) The eigenvalues i\" and the normalized eigenelements J.. of S" are 
given by the formulae 

i\" = (a-b)-I(a+2'11n), 

fn{x) = Cn exp(i,\x), (n EZ) 

where a is chosen so that eia = 8( 1') and the cn are normalizing factors. 

PROOF. i\ and f are an eigenvalue and a corresponding eigenelement of S" 
if and only if 

i\f= ~f'. and f(a) = 8(1')f(b). 
1 

As aU solutions of the equation Aj= l' Ii have the form f(x) = ceiAx, we 
obtain from the boundary condition that eW, = 8(1'Jo )ei.\b. Therefore, eiA(o-b) 
= 8(1') = eia. It follows from this that 

i\(a - b) = a modulo 2'11; 
consequently, 

and 

J..(x) = cn exp(ii\"x) for n E Z. o 

In the reasoning of Section 8.1 K-real symmetric operators played an 
important role; they possess self-adjoint extensions. Now we can show that 
they also possess K-real self-adjoint extensions. 
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Theorem 8.1S. Let T be a K-real symmetric operator on the complex Hilbert 
space H. For every K-real self-adjoint extension T' of T there exists an 
orthonormal basis {e", : a E A} of N + such that 

V'( ~ c",e",) = ~ c",Ke", for ~ !c",12 < O:l 

holds for the Cayley transform v' of T. If {e", : a E A]- is an arbitrary 
orthonormal basis of N +, then the unitary operator 

V: N+ ~N_. V(~ c",e",) = ~ c",Ke", for ~ Ic",1 2 < 00 

induces a K-real self-adjoint extension of T in the sense of Theorem 8.12. 

PROOF. If {e", : a E A} is an orthonormal basis of N +, V is defined as in 
the theorem, and T' denotes the self-adjoint extension of T defined by V, 
then 

K(Jo + ~ c"'( e", + /(e",») = Kfo + ~ c;( e", + Ke",) E O( T') 

and 

T' K(Jo + ~ c"'( e", + Ke",») = TKfo + ~ c;(ie", - iKe",) 

= K(Tfo+ ~ c"'( -iKe .. +ie",») 

= KT'(Jo+ ~ ca(ea + Kea») 
for all fo + ~ ca(ea + Ke",) E O(T). Consequently, T' is K-real. 

Let T' now be a K-real self-adjoint extension of T, and let V' be the 
Cayley transform of T.l With the aid of Zorn's lemma we can show the 
existence of a maximal orthonormal system {e", : a E A} in N+ with the 
property 

V'( ~ cae",) = ~ caKe", for ~ !c",12 < 00. 

Then the formulae 

D(S) =O(T) + {~c",(e., + Kea ) : ~ !c.l<:lO}, 
Sf = T'f for f E D(S) 

define a K-real symmetric extension of T (this can be proved as above). If 
we assume that {e", : a E A} is not an orthonormal basis of N+, then there 
is a non-zero element f of R( -i - S).L. Then V'f E R(i - S).L, Kf E 
R(i - S).L, and KV'f E R( - i - S).L; consequently,J + KV'j E R( -i - S)J.. 
If f + KV'f = 0, then the orthonormal system {e", : a E A} can be enlarged 
by taking the element e = illfll-Y, since then Kf= - V'f and thus Ke = V'e. 
If f+'KV'f*,O, then we can choose e= IIf+ KV'fll-I(j+ KV'!). since 

V'(j + KV'f) = V'f + V' KV'f = V'f + Kf = K(j + KV'f). 

II am indebted to Dr. Jiirgen Voigt for the following proof. 
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Here we have used the fact that V' = (i - T')( - i - T') - I, K(i - T') r= 

(-i - T')K, and K(-i - T,)-I = (i - T,)-I(i - T')K(-i - T,)-I = 
(i - T,)-IK( -i - T')( - i - T,)-I = (i - T,)-IK, so that V' KV' = K. There
fore, in both cases we obtain a contradiction to the maximality of the 
system {eo : a E A}. 0 

EXERCISES 

8.3. Assume that T is a symmetric operator on a real Hilbert space H, the space He 
is the complexification of H, and K is the conjugation defined in He as in 
Exercise 7.25. 
(a) The complexification Te of T is symmetric and K-real; Te therefore 

possesses K-real self-adjoint extensions. 
(b) The K-real self-adjoint extensions S of Te have the form S-(T')c, where 

the T' are self-adjoint extensions of T. 
(c) Every symmetric operator on a real Hilbert space has self-adjoint exten

sions. 

8.4. A symmetric operator (on a real or complex Hilbert space) is essentially 
self-adjoint if and only if it has a unique self-adjoint extension. (The complex 
case was considered in Theorem 8.7.) 

8.5. Let T be a symmetric operator. If Tn is maximal symmetric for some n E 1'1, 
n> I, then Tm is essentially self-adjoint for mEN, m 0;; n, and Tm .. fm. 
Hint: First consider the complex case. f is self-adjoint by Theorem 5.22; the 
assumption and the inclusion Tnc f" imply that T"- fn; D(T") is a core of 
fm for m 0;; n; therefore, D(Tm) is a core of f m, too. 

8.6 (a) If T is a K-real operator, then T$ is also K-rea!. 
(b) If T' is a symmetric extension of a K-real operator T, then T' is K-real if 

and only if K D( T') c D( T'). 
(c) Let T be a K-real symmetric operator, and let {e" : a E A}. {fa: a E A} be 

orthonormal bases of N+. The operators i\ ~2 : N+~N_ defined by the 
formulae 

~I( ~ c"e,,) - ~ c"Ke", ~2{ ~ c.,ja) - ~ c"Kja for ~ Ical2 < 00 
are equal (i.e., the K-real self-adjoint extensions induced by VI and V2 are 
equal) if and only if <e",jfJ> is real for all a, fJ EA. 

8.7. Let T be a symmetric K-real operator with defect (I, I). Then every self
adjoint extension of T is also K-rea!. 
Hint: cf. Theorem 8.15. 

8.3 Spectra of self-adjoint extensions of 
a symmetric operator 

In this section we study what can be said about the spectra of the 
self-adjoint extensions of a given symmetric operator (with equal defect 
indices). 
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In what follows T will always be a closed symmetric operator. Let us set 
n(T, ;\.) = dim N(;\. - T). If ;\. is an eigenvalue of T, then n(T, A) is the 
multiplicity of ;\.. If ;\. is not an eigenvalue, then n( T, ;\.) = O. 

Theorem 8.16. If T' is an m-dimensional extension of T, then 

dim(N(;\.- T')8N(;\.- T» <; m. 

If, in addition, n( T, ;\.) < 00, then n( T', ;\.) - n( T, ;\.) <; m. 

PROOF. It is obvious that N(;\. - T) c N(;\. - T'). The fonnula 

(N(;\.- T')8N(;\.- T» n OCT) = {O} 
implies 

(N(;\.- T')8N(;\.- T» + OCT) cD(T'). 
Therefore, 

dim(N(;\. - T')8N(;\. - T» <; dim O(T')/O(T) = m. 

If n(T, ;\.) < 00, then the second assertion follows from this. o 
Let Hz = N(z - T).l. for every z E K. The operator T obviously maps 

N(z-T) into itself. We also have T(HznO(T»cHz, since for allfE 
Hzn O(T) and gE N(z- T) 

<g, Tf) = <Tg,j) = z*<g,f) = 0, 

i.e., Tf E N(z - T).l. = Hz. Consequently, Hz is a reducing subspace of T. 
We denote by Tz the restriction of T to Hz, i.e., 

O(Tz) =Hz n OCT) and TJ = Tf for f E O(Tz). 

It is obvious that z - Tz is injective (as we have excluded exactly the null 
space). Being a restriction of a symmetric operator, Tz is Hermitian. D(Tz ). 

is dense in Hz, since any f E Hz that is orthogonal to D(Tz) is also 
orthogonal to O(T) = O(Tz) + N(z - T). Therefore, Tz is a symmetric oper
ator on Hz. The operator Tz is closed. 

In the following we call S( T) = D< \ 1'( T) the spectral kernel of T. The set 

SeCT) = {ZED<: (z-Tz)-I is unbounded or n(T,z)=oo} 

is called the essential spectral kernel of T. 

Theorem 8.17. Lei T be a closed symmetric operator. 
(a) We have S .. (T) C S(T) c iii and S(T) C u(T). 
(b) If T' is a closed symmetric extension of T, then S(T) C S(T') and 

S,,(T) c SiT'). 
(c) If T' is a finite-dimensional symmetric extension of T, then SeCT') 

= SiT). 
(d) If T is self-adjoint, then S(T) = u(T) and Se(T) = ue(T). 
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PROOF. 

(a) If A E SAT), then dim N(A - T) = 00 or (A - T,>.T I is unbounded. It is 
clear that in both cases A does not lie in I'(T), i.e., A E SeT). It is also 
evident that SeT) c IR, since I'(T) contains the upper and lower 
half-planes. (A - T) is not continuously invertible for A E SeT); there
fore, SeT) c aCT). 

(b) The inclusion reT') c I'(T) is evident because of the definition of 
reT). Hence, SeT) c SeT'). We show that SeCT) C SeCT'). To this end, 
let A E SeCT). If neT', A.) = 00, then A. E SAT'). Consequently, we can 
assume without loss of generality that neT, A)" neT', A) < 00, i.e., that 
(A. - T>.) - I is unbounded. Then there exists a sequence Un) in D( T>.) for 
which 1/ J" 1/ = I and (A - T>.)fn ~o. The sequence (J,,) contains no con
vergent subsequence, since J". ~ f would imply II fll = I and T In. ~Af, 
i.e.,jE D(T>.) (as T>. is closed) and (A.- T>.)J=O; this would contradict 
the injectivity of A - T>.. Let· P now denote the orthogonal projection 
onto the finite-dimensional subspace N(A - T'), and let gn = (1- P)J". 
Since P is compact, there exist a subsequence Ut') of Un) and an h E H 
for which PJ". ~h. The sequence (gn) with gn. = (l- P)J". is therefore 
not convergent, and 

(A - T~)gn. = (A. - T')fn• - (A - T')PJ ... = (A - T)J ... ~ O. 

Hence, (A. - T~) - I is unbounded, and thus A E See T'). 
(c) It is sufficient to prove that SiT') C SeCT), since we already have 

SeCT) C SeCT'). Assume that A fI. SAT). Then we have to prove that 
A fI. SeCT'). It follows from n(T, A) < 00 by Theorem 8.16 that n(T', A) 
<; neT, A) + m < 00. The operator (A - T>.)-I is continuous and closed; 
therefore, R(A - T) = R(A - T>.) = D«A - T>.) -I) is closed. Since T' is a 
finite-dimensional extension of T, there are finitely many elements 
JI> ... ,iJ such that 

R(A- T') =R(A- T) + LUI"" ,iJ}. 
Therefore, D(A - TD - I = RCA - TD = R(A - T') is closed by Theorem 
3.4, and thus the closed operator (A - TD- 1 is continuous. Hence, 
A fI. See T'). 

(d) The equality SeT) = aCT) follows from the characterization of the 
spectral points of a self-adjoint operator given in Theorem 5.24. We 
show that See T) = oe( T). Let A E See T). If n( T, A) = 00, then A E ae( T). 
If (A - T,.,) - 1 is not continuous, then we show that A is an accumulation 
point of the spectrum of T. If this were not the case, then there would 
be an f > 0 for which (A - f, A + f) n a( T) c {A}, and with the spectral 
family E of T we would then have 

II (A - T>.)fIl 2 = II (A. - T)f1l 2 = 1 IA. '--- tl2 dIlE(t)fIl2 ;> f211f1l2 
It-AI", 
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for all fE N(>"- T)J. n D(T)= R(E({>"}»J. n D(T), which contradicts 
the discontinuity of (>.. - T,..) -I. Hence we have>.. E a,,( T) in this case, 
also, and thus SiT) C ae(T). 

Assume that>.. E a,,(T). If >.. is an eigenvalue of infinite multiplicity, 
then>.. E S~(T). If >.. is an accumulation point of aCT), then there is a 
sequence Un) for which 

f" ER(E(>..+;;)-E(>..)+E(>..-)-E(>..-*)), IIfnll = 1. 

We have fn E R(E({>"}))J. n OCT) = Hh n D(T) and (>.. - Th)fn = 
(>.. - T)fn~O; consequently, (>.. - Th)-I is not continuous, so that>.. E 

~(T). 0 

Theorem 8.18. Let T be a closed symmetric operator on a complex Hilbert 
space with equal finite defect indices. Then all self-a4ioint extensions of T 
have the same essential spectrum. If some self-a4ioint extension of T has a 
pure discrete spectrum, then all self-a4ioint extensions of T do, too. 

PROOF. The first assertion immediately follows from Theorem 8.17(c) and 
(d). The second assertion follows from the fact that the spectrum is discrete 
if and only if the essential spectrum is empty. 0 

Theorem 8.19. Let T be a closed symmetric operator on a complex Hilbert 
space with equal finite defect indices (m, m) and assume that 

II(>..-T)fll;;. cllfll forall fED(T) 

with some>.. E Rand c > 0. Then every self-a4ioint extension T' of T has the 
follOWing property: a( T') n (>.. - c, >.. + c) contains only isolated eigenvalues 
with total multiplicity ..; m. 

PROOF. By the first proposition after Theorem 7.24 we only have to prove 
that dim R(E(>.. + c -) - E(>.. - c»"; m for the spectral family E of T'. 
Assume that dim R(E(>.. + c -) - E(>.. - c» >m. Since 

dim D( T') / O( T) = m and R( E(A + c - ) - E(A - c» c O( T'), 

there exists an f E R(E(A + c -) - E(>.. - c» n O(T), fol=O. For this f we 
have 

{ } 
1/2 

cllfll"; II(A-T)fll = f IA- t I2 dIlE(t)fIl2 <cllfll, 
IX-tl<c 

which is a contradiction. o 
Corollary 1. Let T be a closed symmetric operator on a complex Hilbert 
space with finite defect indices (m, m), and let TI and T2 be self-adjoint 
extensions of T. If a(TI) n (a, b) = 0, then a(T2) n (a, b) consists of only 
isolated eigenvalues of total multiplicity ..; m. 
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PROOF. If - 00 < a < b < 00, then T satisfies the assumptions of Theorem 
8.19 with A = (a + b)j2 and c = (b - a)/2, since for all f E O(T) 

II(A.- T)fll2 = II(A.- T I )f1l2 = i IA.- tl2 dllE1(t)fIl 2 ~ c211fIl2, 
lA-II ;.c 

where EI is the spectral family of T I. The assertion therefore follows by 
taking T' = T2 • If (a, b) is unbounded, then Theorem 8.19 can be applied 
to every bounded subinterval (a', b') c (a, b). 0 

Corollary 2. If T is a closed symmetric operator on a complex Hilbert space, 
bounded from below with lower bound y and finite defect indices (m, m), and 
T' is a self-acfjoinf extension of T, then oCT') n (- 00, y) consists of only 
isolated eigenvalues with total multiplicity < m. 

PROOF. Theorem 8.19 can be applied with any A < Y and c = y - A., since 

II(A-T)fll ~ <f,(T-A)f)lIfll- 1 ~ (y-A)lIfll 

for all f E OCT), f =1= O. 

EXERCISE 

o 

8.8. Let T be a closed symmetric operator with equal finite defect indices (m, m), 
and let T. and T2 be self-adjoint extensions of T with spectral families EI and 
E2• Then 

dim R(E2(b -) - Eia» < m + dim R(E.(b -) - E.(a». 

Hint: Use Exercise 7.37. 

8.4 Second order ordinary differential operators 

In this section we would like to apply the results of'Sections 8.1 to 8.3 to 
second order ordinary differential operators. This way we obtain part of 
the theory of Sturm-LioviIle operators developed by Weyl, Titchmarsh, 
and Kodaira. For further results and examples we refer the reader to 
Hel/wig [15] and Jorgens-Rellich [20]. 

Let (a, b) be a bounded or unbounded interval in IR, and let r : (a, b)_ 
IR be a measurable and almost everywhere positive locally integrable 
function (i.e., let it be integrable over every compact subinterval of (a, b». 
In the following we consider the Hilbert space L2(a, b, r). This is the space 
of (equivalence classes of) measurable functions f defined on (a, b) for 
which J:lf(x)12r(x) dx < 00. The scalar product on L2(a, b, r) is 

<f, g) = fbf(x)*g(x)r(x) dx. 
a 

We denote the corresponding norm by II . II. The formula Ur : L2(a, b, r) 
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~L2(a, b), U,f= rl/'f defines an isomorphism of L2(a, b, r) onto L2(a, b); 
this shows, in particular, that L2(a, b, r) is a Hilbert space. 

First we consider differential forms L of the type 

Lf = 1. ( - (pf'), + is!, + i(sf)' + qJ}, 
r 

(8.8) 

where the coefficients p, q, r, s satisfy the following assumptions: 

(8.9) (a) p, q, r, and s are real-valued continuous functions defined on 
(a, b); moreover, p and s are continuously differentiable. 

(b) p(x) > 0 and rex) > 0 for all x E(a, b). 

L is said to be regular at a if a> - 00 and the coefficients p, q, rand s 
can be continuously extended to [a, b) withp(a) >0 and rea) >0. Regular
ity at b (b< 00) can be defined in a corresponding way. L is said to be 
regular if L is regular at a and b. L is said to be singular at a (singular at b, 
singular) if L is not regular at a (at b, at a or b). 

We now define operators on L2(a, b, r) with the aid of a differential 
form L such as the one given by (8.8). The maximal operator T induced by 
L is defined by the formulae 

O( T) = {J E L2(a, b, r): f is continuously differentiable, 

!' is absolutely continuous on (a, b), and Lf E L2(a, b, r)}2 
and 

Tf = Lf for f E D(T). 

The minimal operator To induced by L is defined by the formulae 

O( To) = {f E O( T): the support of f is compact and contained in (a, b)}, 

and 
Tof = Tf for fED( To)· 

Theorem 8.20. Let L be as in (8.8). The operator To is symmetric. If s = 0, 
then To has equal defect indices, i.e., To has self-adjoint extensions. 

PROOF. The Hermitian character of To follows by integration by parts. 
OCTo) is dense, because CoOO(a, b) c OCTo). Therefore, To is symmetric. If 
s = 0, then To is K-real for the natural conjugation on L2(a, b, r) (Kf= 1*). 
The assertion follows from this by Theorem 8.9. 0 

If z E C and g : (a, b)~C is a locally integrable function, then we say 
thatf: (a, b)~C is a solution of the equation (L - z)f= g if f is continu
ously differentiable, !' is absolutely continuous, and (L - z)f(x) = g(x) 

2 Since l' is absolutely continuous, P1' is also absolutely continuous. Let (P1')' be the 
derivative of P1' in the sense of Appendix AS. 
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almost everywhere in (a, b). Every solution! of the homogeneous equation 
(L - z)f= 0 is obviously twice continuously differentiable, since (pf')' is 
continuous in this case. 

The solutions of the homogeneous equation (L - z)f = 0 constitute a 
two-dimensional (complex) vector space.3 Two solutions U 1' u2 constitute a 
fundamental system (i.e., they are linearly independent) if the modified 
Wronskian determinant 

( UI(X) UiX») " 
W(u p U2' x) = p(x) det u,(x) u;(x) = p(x)(U I(X)U2(x) - ul(x)uix» 

does not vanish for some (and then for all) x E (a, b). 
If g : (a, b)~C is locally integrable and ul , U2 is a fundamental system 

for the equation (L - z)u = 0, then the solutions h of the equation (L - z)h 
= g are given by the formula 

hex) = CIU1(X) + C2U2(X) + ul(x) fXW(UI, uz,y)-I U2(y)g(y)r(y) dy 
c 

- U2(X) fX W(UI' u2,y)-lul (y)g(y)r(y) dy, (8.10) 
c 

where C E (a, b) and C1, C2 E C. 
For continuously differentiable functions f, g : (a, b)~C we define 

[f, g Jx = p(x)(J'(x)*g(x) - f(x)*g'(x» + 2is(x)f(x)*g(x) 

for x E (a, b). If, in addition, l' and g' are absolutely continuous, then 

fP {f(x)* Lg(x) - (Lf(x»*g(x) lr(x) dx = [f, g] f3 - [f, g]a (8.11) 
a 

for [a,,B]c(a,b). It follows from this that for f,gED(T) the limits 
[J. g]Q = limx--+a+[J, g]x and [j, gh = limx--.b_[j, g]x exist. We have 

<1. Tg) - <Tf, g) = [f. g]b - [f, gJa for all f, g E D(T). (8.12) 

Theorem 8.21. Let L2,0(a, b, r) be the subspace of those functions in 
L2(a, b, r) that vanish almost everywhere near a and b. Then 

R(To) = {kEL2,0(a, b, r): fbu(x)*k(x)r(x) dx=O 
a 

for every solution u of the equation Lu = O}. 

PROOF. We denote the subspace on the right hand side by R. For f E D(To) 
and for every solution u of the equation Lu = 0 we obtain via integration 

3 Concerning the results mentioned here about ordinary differential equations we refer to the 
textbooks on this subject, for example, Knobloch-Kappel [23], Chapter I. 
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by parts that 

fb u(x)*(Tof)(x)r(x) dx = fb(Lu)(x)*f(x)r(x) dx = O. 
a a 

Therefore, R(To) cR. Now let k E R, and let [a, ,8] be a compact subinter
val of (a, b) with the property that k vanishes outside [a, ,8]. For c E (a, a) 
and c. = C2 = 0 let h be the solution of the equation Lh = k given by (8.10) 
for z = O. Then hi is absolutely continuous, and h(x) = 0 for x E(a, a). For 
every solution u of the equation Lu = 0 and for every Xo E (a, a), x E (,8, b) 

[u, h Jx == [ u, h t - [u, h Jxo 
== fX {u(y)*k(y) - (Lu(y»*h(y)}r(y) dy = O. 

Xo 

As this holds for every solution u of the equation Lu = 0, it follows that 
h(x) = ° for all x E (,8, b) (if we choose the solution u for which u(x) = 0 
and u'(x) = 1). Therefore, h E D(To) and Toh = k. 0 

Theorem 8.22. We have Tti = T. The operator To is essentially self-adjoint if 
and only if T is symmetric. Then To = T. 

PROOF. Integration by parts shows that To and T are formal adjoints of 
each other. To prove that Tti = T, it remains to prove that D(Tti) C D(T). 
Letf E D(Tti). Then g = T6f is locally integrable. Let h be a solution of the 
equation Lh == g. Then 

f\f(x) - h(x»*(Tok)(x)r(x) dy 
a 

= f b«T6f)(X) - (Lh)(x»*k(x)r(x) dx == 0 
a 

for all k E D(To). Hence, N(F)::J R( To) for the functional 

F: L2,o(a, b,r)~C, l~ fbU(x)-h(x»*/(x)r(x)dx. 
a 

Consequently, by Theorem 8.21 and Theorem 4.1 we have F- ciF. + C2F2 
with appropriate c.' C1 E C and 

Fj: L2,o(a, b, r) ~ C, I ~ fb uix)*l(x)r(x) dx for j == 1,2, 
a 

where u.' U2 is a fundamental system of the differential equation Lu == O. 
This implies (compare with the proof of Theorem 6.29) that 

f(x) - h(x) = c.u.(x) + C2U1(X) almost everywhere in (a, b). 

Hence,f is a solution of the equation Lf= g. Sincef E L2(a, b, r), it follows 
that! E D(T). The rest follows from Theorem 5.20. 0 
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Theorem 8.23. The deject index 'Y + = 'Y +(To) (y _ = 'Y _(To» is equal to the 
number oj linearly independent solutions oj the equation (L + i)u 
= 0 «L - i)u = 0) that lie in L2(a, b, r). IJ L is regular, then the deject 
indices oj To are equal to (2, 2). 

PROOF. We have R(i - To).l = N(i + T) and R( -i - To).l = N( -i + T). 
Furthermore, N( ± i + T) is equal to the set of those solutions of the 
equation (L ± i)u = 0 that lie in L2(a, b, r). If L is regular, then every 
solution of the equation (L ± i)u = 0 is in L2(a, b, r). Consequently, 
dim N( ± i + T) = 2. 0 

Hence for the defect indices y + and y _ of To there are only three 
possible values: 0, I, and 2. If the defect indices are (0, 0), then To = T is 
self-adjoint. If the defect indices are equal and different from zero, then 
(y +' Y _) = (y, y) = (I, 1) or (2,2). Consequently, by Theorem 8.l3(b) every 
y-dimensional symmetric extension of To is self-adjoint. 

Theorem 8.18 and Corollary 2 to Theorem 8.19 immediately imply 

Theorem 8.24. Let L be a difJerential Jorm such as in (8.8). All self-adjoint 
extensions oj To have the same essential spectrum. IJ To is semibounded, then 
all self-adjoint extensions oj To are semibounded. 

Theorem 8.25. Let L be a regular difJerential Jorm oj the kind (8.8). Then we 
have the Jollowing: 
(a) For every J E O(T) the Junctions J and l' are continuously extendible to 

[a, b). For J, gE O(T) we have 

[J, gL = 

p(x)(f'(x)*g(x) - J(x)*g'(x)) + 2isJ(x)*g(x) Jor all x E [a, b] 

(b) We have 0(1'0) = {f E O(T) : J(a) = 1'(a) = J(b) = 1'(b) = OJ. 

PROOF. 

(a) If J E O(T) and g = TJ, then J can be represented in the form (8.10) 
with a fundamental system u1' U2 of the equation Lu = O. As the 
functions uj and u; are continuously extendible to [a, b), the same 
follows also for J from this representation. The rest can be obtained 
from the definitions of [. , .la and [. , .h. 

(b) There exists a cp E O(T) such that cp(a) = 0, cp'(a) = I and cp(x) = 0 for x 
near b (it is enough to choose cp twice continuously differentiable). 
Then for every J E O( To) it follows from part (a) that 

0= <cp, ToJ> - <Tcp,J> = [CP,J]b - [cp,JL = -p(a)J(a), 

and thus J(a) ... O. If we now choose cp such that cp(a) = I and cp'(a) - 0, 
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then we find thatf'(a)=O, too. We can show similarly thatf(b)==f'(b) 
= O. Since To C T, we therefore obtain that 

o(To) cOo = (JEO(T) : f(a)=1'(a)=f(b)=1'(b)=O}. 

Let To be defined by the formulae O( To) = Do and Tof = Tf for 
f E OCTo). Then by part (a) 

<f, Tg) - < Tof, g) = [I, g]b - [f, gt = 0 

for all f E O( To) and g E O( T), i.e., To and T are formal adjoints of 
each other. Hence, To C T* = To, and thus Do c o(ro)' 0 

We perform the construction of self-adjoint extensions only for the case 
s = O. Hence, in the following we only consider Sturm-Liouville differential 
forms 

I 
Lf = r { - (p1')' + qJ}, (S.13) 

where p, q, and r satisfy the assumptions (S.9(a» and (S.9(b». In this case 
To always possesses self-adjoint extensions by Theorem S.20. 

We have (djdx)W(u p u2,x)=0 for any two solutions u"u2 of the 
equation (L - z)u = 0, as can be easily verified. Therefore, W(u" u2, x) is 
constant in (a, b). We briefly write W(u" u2) for this value. 

For any two continuously differentiable functions f, g : (a, b)~C and 
x E (a, b) we have now 

[f, g t = p(x)(J'(x)*g(x) - f(x)*g'(x» = - W(J*, g, x). (S.14) 

Corresponding assertions hold in the regular case for x = a and x = b, 
respectively. 

Theorem 8.26. Let L be a regular Sturm- Liouville differential form as in 
(S.13). 
(a) The formulae 

{ f( a) cos a - l' ( a) sin (( = 0 ) 
O( Ta. (J) = f E OCT): feb) cos f3 - f'(b) sin I~ = 0 ' 

Ta. tJ = Tf for f E 0( Ta. (J) 

define a self-adjoint extension of To for arbitrary a, f3 E [0, 'IT).4 

4 The boundary conditions occurring here are called "separated boundary conditions", since 
every boundary condition affects only one boundary point. There are also "mixed boundary 
conditions" that define self-adjoint extensions of To (cr. Exercises 8.10 and 8.11). 
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(b) For every Z E p(Ta, p) the resolvent Rz = (z - Ta, p)-I has the form 

Rzg(x) = W(ua, ub)-J{ ub(x) ~xua<y)g(y)r(y) dy 

+ ua(x) ~b Ub(y)g(y)r(y) dy}, 
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where Ua and ub are non-trivial solutions of the equation (L - z)u = 0 that 
satisfy the boundary condition at a and b, respectively (hence, for 
example, ua(a) = sin a, u~(a) = cos a, ub(b) = sin /3, and u;'(b) = cos /3). 

(c) The operators Ta. p have pure discrete spectrum. Every eigenvalue is 
simp/e. 

PROOF. 

(a) We can verify easily that Ta,p is symmetric. Hence, it is su.!.ficient to 
show that Ta , p is an (at least) two-dimensional extension of To' To this 
end, let us choose fila and fIIb from O( T) in such a way that we have 

fIIa(a) = sin a, fII~(a) = cos a, fIIa(X) = 0 near b, 

fIIb(b)=sin/3,fII;'(b)=cos/3, fIIb(X) =0 near a. 

These elem~nts obviously lie in- O( Ta, p) and are linearly indep'~ndent 
modulo OCTo)' i.e., no non-trivial linear combination lies in OCTo). 

(b) The functions ua and ub are linearly independent, since otherwise ua 

would fulfill the boundary conditions at a and b, and z would be an 
eigenvalue of Ta , p, which would contradict the relation z E p( Ta , p)' 
Therefore, W( ua ' Ub) ~ O. Let K be the integral operator given in the 
theorem. If we define Ur as at the beginning of this section, then 
U,KUr - 1 is an integral operator on L2( a , b) with kernel ( ) ! W(u", ub)-lrl/2(x)Ub(X)u,,(y)rl/2(y) for x >y, 

k x y = , I 
W(ua, ub )- rl/2(x)ua(X)Ub(y)rl/2(y) for x <yo 

The function k obviously belongs to L2[(a, b) X (a, b)], i.e., K is a 
Hilbert-Schmidt operator. Hence, K belongs to B(L2(a, b, r». For all 
g E Lia, b, r) we have 

Kg(x) = cu,,(x) + W(u", Ub)-I { ub(x) ~x u,,(y)g(y)r(y) dy 

- ua(x) ~x ub(y)g(y)r(y) dy} (8.15) 

with c = W(ua, Ub)-IJ:Ub(y)g(y)~(y) dy. Therefore, by (8.10) Kg is a 
solution of the equation (z - L)u = g. We can infer from (8.15) that for 
g E LZ,o(a, b, r) the function Kg is a multiple of ua in a neighborhood 
of a and a multiple of Ub in a neighborhood of b. Consequently, 
Kg E O(Ta, p). The operator K therefore coincides with Rz on 
Lz.o(a, b, r). Since L2• 0(a, b, r) is dense and since the operators K and 
Rz are continuous, it follows that K = Rz • 
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(c) Rz is a normal and injective Hilbert-Schmidt operator (cf. the proof of 
part (b». Consequently, there exist an orthonormal basis {in : n E N} 
in Lla, b, r) and a null-sequence (zn) for which z" *0 (n EN) and 

RJ = L z"<J .. ,J)J,, for all f E Lia, b, r). 
"EN 

It follows from this that 

Ta.tJ= L (z-z,,-l)<f .. ,f)f .. forall fED(Ta.p)· 
.. EN 

Consequently, o( Ta. p) = {z - zn- 1 : n EN}. As every solution of the 
equation (A - Ta. p)u = 0 is determined by the boundary condition at 
one boundary point up to a constant factor, every eigenvalue is simple. 
Hence, o( Ta. p) = 0d( Ta. p). 0 

Let us now turn to the singular case (more precisely, the not necessarily 
regular case). 

Theorem 8.27 (The Weyl alternative). Let L be a Sturm-Liouville differen
tial form defined on (a, b), and let c E (a, b). Either every solution u of the 
equation (L - z)u = 0 lies in L2( c, b, r) for every z E C or for every z E C 
there exists at least one solution u of the equation (L - z) u = 0 for which 
u f/. L2(c, b, r). In the second case, for every z E C\ IR there exists (up to a 
factor) exactly one solution u of the equation (L - z)u = 0 for which u E 
L2(C, b, r). 

According to H. Weyl we say in the first case that we have the limit 
circle case (LCC) at b; in the second case we say that we have the limit 
point case (LPC) at b. The terminology can be explained from the original 
construction of Weyl (cf. H. Weyl [56]; cf. also Hellwig [15] and Jorgens
Rellich (20)). A corresponding theorem holds for the boundary point a. 
The limit circle case at a and limit point case at a are defined similarly. 

PROOF. In order to prove the alternative, it is sufficient to show the 
following: If there exists a Zo E C such that u E L2(C, b, r) for every solution 
u of the equation (L - zo)u = 0, then this holds for all z E C. Let VI' V2 be a 
fundamental system of the equation (L - zo)v = O. (We can assume, with
out loss of generality, that W( VI' V2) = I.) We have (L - zo)u = (z - zo)u 
for every solution u of the equation (L - z)u = O. It follows from this by 
(8.10) that 

u(x) = c\v\(x) + C2V2(X) 

+ (z - Zo) IX {V\(X)V2(y) - V2(X)V\(y)} u(y)r(y) dy. 
e 
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As V E L2( c, b, r), there exists a dE (c, b) such that 

~b v(x)2r(x) dx < (2M)-I. 

Consequently, for all XI E(d, b) 

f X, fX' 2 
d lu(xWr(x) dx .;;; 2c2 d v(x) r(x) dx 

and thus 

+ M ~Xlv(x)2r(x){ ~Xllu(YWr(y) dy} dx 

.;;; 2c2fb v(x)2r(x) dx + 4fX' lu(yWr(y) dy, 
d c 

fX'lu(xWr(x) dx < 4c2fb v(x)2r(x) dx + fdlu(yWr(y) dy. 
d d c 
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This implies that u E L2(d, b, r), and thus u E L2(c, b, r), as well, since u is 
continuous on (a, b). 

Let us now assume that we have the limit point case at b, i.e., that for 
every z E C there exists (up to a constant factor) at most one solution u of 
the equation (L - z)u = 0 such that u E L2(c, b, r). It remains to prove that 
for every z E C\ IR there exists at least one solution with this property. For 
this we consider the differential form L on the interval (c, b). The form L 
is obviously regular at c. Let To and T be the minimal and the maximal 
operators on L2(c, b, r) induced by L. It is sufficient to show that T is not 
symmetric, since this implies that To has positive defect indices, i.e., that 
N(z - T) =F {OJ for every z E C \ R In order to prove this we use two twice 
continuously differentiable functions CPI' CP2 : [c, b)~C for which 

CPI(C) = 1, cpi(c) = 0, CPI(X) = 0 near b, 

cpic) = 0, cp;(c) = 1, cpix) = 0 near b, 

Then CPI' CP2 E OCT) and 

<CPI' TCP2) - < TCPI' CP2) = - [CPI' CP2],. = p(c) =1= 0, 

i.e., T is not symmetric. o 
Auxiliary theorem 8.28. Let L be a Sturm-Liouville differential form on 
(a, b). 
(a) [j, g]" =Ofor fE OCTo) and gE OCT). 
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(b) Let us have the limit circle case at a. If u is a solution of the equation 
(L - z)u = 0 for some z E C, the function Uo is twice continuously dif
ferentiable on (a, b), a~d we have uo(x) = u(x) near a and uo(x) = 0 near 
b, then uoE D(T)\D(To)' 

(c) If we have the limit point case at a, then [J, g]a'" 0 for all f, g E D(T). 
Corresponding assertions hold for b. 

PROOF. 

(a) Assume f E D(To) and g E D(T). Then there is a go E D(T) such that 
go(x) = g(x) near a and go(x)'" 0 near b (proofl). Therefore, 

[f, g t ... [1, got ... - {<f, Tgo) - < Tof, go)} = O. 

(b) Uo obviously lies in D(T). If v is a further solution of the equation 
(L - z)u ... 0 such that W( u, v) + 0, and Vo is defined analogously to uo, 
then we also have v~ E D(T) and 

[uo, v3t ... [u, v*t ... - W(u*, v*) ... - W(u, v)* + O. 

Thus, Uo e D(To) by part (a). 
(c) We may assume without loss of generality that L is regular at b 

(otherwise we consider L on (a, c) with some cE(a, b». Then the 
defect indices of To are (I, I) by Theorems 8.27 and 8.23. Let u l ' u2 be 
linearly independent solutions of the equation Lu = 0, and let VI' V2 be 
twice continuously differentiable functions for which tJ(x)", uix) near 
band tJ(x)'" 0 near a. By part (b) the elements VI' V2 belong to D(T) 
and are linearly independent modulo D(To). Consequently, D(T)= 
D(To) + L{ VI' V2}' This implies that for arbitrary f, g E D(T) there are 
elements fo, go E D(To) that coincide with f and g, respectively, in a 
neighborhood of a. It follows by part (a) that [J, g]a ... [fo, gO]a ... O. 0 

We are now in a position to give self-adjoint extensions of To in the 
singular case, as well. 

Theorem 8.29. Let L be a Sturm-Liouville differential form (8.13). Moreover, 
let X E R, and let v and w be real solutions of the equation (L - X)u ... O. 
(a) The operator Tv. w defined by the formulae 

{ 
. [v, 1] a = 0 if we have the LCC at a } 

D(T w) = fED(T). , 
v. [w,f]b'" 0 if we have the LCC at b 

Tv . ..J... Tf for f E D( To. w)s 

define a self-adjoint extension of To. 

5 If we have the limit point case at a and/or b, then the index v and/or)l, has no significance. 
cr. also footnote 4. 
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(b) For z E C\~ the resolvent Rz = (z - T". w)-I is of the form 

Rzg(x) = W(ua, Ub)-l{ Ub(X)~xUa(y)g(y)r(y) dy 

+ ua(x) fb Ub(y)g(y)r(y) dy}, 
x 
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where ua and ub are the solutions of the equation (L - z)u =0, uniquely 
determined up to a factor by the conditions 

[v, uaL = 0 if we have the LCC at a, respectively 

ua E L2(a, c, r) if we have the LPC at a, 

[w, ub ] b = 0 if we have the LCC at b, respectively 

ub E L2(c, b, r) if we have the LPC at b. 

(c) If we have the limit circle case at both a and b, then Tv. w has a pure 
discrete spectrum. 

(d) All eigenvalues of Tv. ware simple. 

PROOF. 

(a) If we have the limit point case at both boundary points, then 

<f, Tg) - <Tf, g) = [1, g]b - [f, gL = 0 for all j, g E D(T) 

by Auxiliary theorem 8.28. Consequently, T is symmetric and thus 
self-adjoint by Theorem 8.22. This is the assertion in this case. 

If we have the limit circle case at a and the limit point case at b, then 
the defect indices are (1, I), as immediately follows from Theorem 8.27 
(the Weyl alternative). If Vo is a twice continuously differentiable 
function for which vo(x) = v(x) near a and vo(x) = 0 near b, then 
Vo E D(T)\ D(!sJ) by Auxiliary theorem 8.28(b). Moreover, we obvi
ously have D(To) + L{ vol c D(Tv, w)' If U is a solution of the equation 
(L - A)U = 0 that is linearly independent of v and if Uo is defined 
analogously to vo, then Uo fl D( Tv,~. Therefore Tv. w is a proper restric
tion of T, and thus -E( Tv, w) = D( To) + L{ vol (since T is a two-dimen
sional extension of To). With the aid of this representation of D(Tv. w) 
we can immediately see that T". w is symmetric. Hence, T". w is a 
one-dimensional symmetric extension of To, and thus it is self-adjoint. 

If we have the limit circle case at both boundary points, then the 
defect indices are (2, 2). We can show in an entirely analogous way as 
in the case just treated that Tv. w is a two-dimensional symmetric 
extension of To. Consequently, Tv. w is self-adjoint. 
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(b) If we have the limit point case at a (respectively at b), then ua 

(respectively Ub) is determined up to a factor. If we have! the limit circle 
case at a and UI, u2 is a fundamental system of the equation (L - z)u = 
0, then because of the equality [v, CUI + dU2]a = c[v, utla + d[v, u2]a' 
there is at least one non-trivial linear combination ua = CUI + dU2 for 
which [v, ua]a = O. On the other hand, we do not have [:0, uda = [v, u2]a 
= 0, since otherwise there would exist at least one non-trivial solution 
of the equation (Tv,w-z)f=O, which contradicts the relation zEC\!R 
C p(Tv, w)' We can handle the boundary point b in a similar way. 

Let Ko be the restriction, to L2,o(a, b, r), of the integral operator 
given in the formulation of our theorem. As in Theorem 8.26(b), we 
can show that Ko coincides with the restriction of Rz to L2,o(a, b, r). If 
K is the maximal integral operator defined by the formula in our 
theorem, then K is a closed operator (as UrKUr- 1 is a Carleman 
operator on L2(a, b». Since Ko is continuous and densely defined, K is 
also continuous, and K= Rz • 

(c) This can be proved in exactly the same way as in Theorem 8.26(c), 
because Ua ' Ub E Lia, b, r). 

(d) If we have the limit point case at at least one boundary point, then the 
assertion is clear, since the space of solutions of the equation (X - T)u 
= 0 is at most one-dimensional (Theorem 8.27). Let us now assume 
that we have the limit circle case at both boundary points. Assume that 
X is an eigenvalue of multiplicity 2 (the mUltiplicity cannot be greater), 
and let Up U2 be linearly independent eigenelements. Let uj , a and uj , b 

be twice continuously differentiable functions for which 

uj,a(x) = u/x) near a,uj,a(x) = 0 near b, 

Uj,b(X) = 0 near a, Uj,b(X) = uj(x) near b 

for j = 1, 2. These are four elements from D(Tv w) that are linearly 
independent modulo D(To). This is a contradicti~n to 

o 
EXERCISES 

8.9. Let L be a regular differential form of the form (8.8). The formulae D(TI )

{f E D(T) : f(a)-f(b) ... O} and Ttf ... Tf for f E D(T1) define a self-adjoint 
extension of To. 

8.10. Let Lf(x) - f"(x) + q(x) for x E (0, I). Assume that q is continuously extend
ible to [0, I]. 
(a) The operator Ta defined by the formulae 

D(T.) = (f E D(T) : f(O) ... ,'}f(I), 1'(0) -= 151'(I)}, 

T.f - Tf for f E D(T.) 

is a self-adjoint extension of To for every ,., E C such that I,'} 1- 1 (the 
boundary conditions are mixed). 
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(b) Prove, with the aid of (a) (for the case q - 0) that the eigenvalues are in 
general not simple in the case of mixed boundary conditions . 

. 8.11, Let L be a Sturm-Liouville differential form with limit circle case at a and b. 
(a) If A is real, and v, ware real linearly independent solutions of the 

equation (L - y)u - 0, then the formulae D( To, w) .. D( To) + L {v, w}, 
T(o, w)f- Tf for f E D(T(u, w) define a self-adjoint extension of To. 

(b) We have D(T(u, w» = (f E D(T) : [V,JJb - [v,JJa" [W,fJb -[w,na =O} 
(these are mixed boundary conditions), 

8.12. The representation of Rz given in Theorem 8.29(b) also holds for z ERn 
p(To, w)' 

8.13. (a) Let L be a Sturm-Liouville differential form on (a, b) such that 
(q(x)/ r(x»;;. y for x;;. xo. If g f£. L1,(xo, b, r) for g(x) ... f~op(S)-1 ds, 
then we have the limit point case at b. 
Hint: Consider that solution u of the equation (L - y)u = 0 for which 
u(xo)'" u'(xo)'" l. 

(b) Let L be a Sturm-Liouville differential form on (0, I) such that p(x) = 
rex) == I and q(x);;. cx- 2 with c;;. 3/4. Then we have the limit point case 
at O. 

8.14. Let L be a differential form of the form (8.8) with p == l. 
(a) Consider the unitary operator U defined on L2(a, b, r) by the formula 

(Uf)(x)=exp(-if~s(t) dt)f(x). Then 

ULU-1g(x) - r(~) (-g"(x)+(q(x)-s2(x»g(x)}. 

(b) To has equal defect indices. 

8.15. (a) The self-adjoint extensions of To given in Theorem 8.26 and Theorem 
8.29 are K-real (Kf-r). 

(b) The operators Tf from Exercise 8.10 are not K-real for f f£. R. 
(c) If we have the limit point case at at least one boundary point, then 

Theorem 8.29 provides all K-real self-adjoint extensions of To. (These are 
all self·adjoint extensions of To by Exercise 8.7.) 

8.5 Analytic vectors and tensor products of 
self-adjoint operators 

With the aid of the results of Section 8.1 we can also prove the criterion of 
Nelson for the essential self.adjointness of symmetric operators. For this 
we need the notion of analytic vectors. 

Let S be a symmetric operator on the Hilbert space H. Introduce the 
notation Coo(S)= n:.oD(S"). An elementfE Coo(S) is called an analytic 
vector of S if there exists a t(f) > 0 such that 

f ~ IIS'111 < 00 for It I < tU) 
11-0 n. 



260 8 Self-adjoint extensions of ,:ymmetric operators 

Theorem 8.30. If S is a self-adjoint operator and f is an analytic vector of S, 
then 

for every z E II( such that Izl < t(f). 

PROOF. Let E denote the spectral family of S. Then 

{f:lezSI2 dIlE(s)fIl 2 } 1/2 = Ilf:ezs dE(s)~1 

=llf:n~o (~r dE(S)~1 
..; ~ Izl,n IlfM sn dE(s) III 

n=O n. -M JI 

< i: Izl,n IIS'111 
O n. 

n-

for every M > 0 and z E II( such that Izl <t(f). Letting M tend to 00, we 
obtain that f E D( eZs). Furthermore, 

eZSf = f: ezs dE(s)f = f: n~o (~r dE(s)f 

= n~o :~ f:sn dE(s)f+ f:n=~+1 (~r dE(s)f 

m nOOn 

I, ~ z sn'f ~ Z S"j = 1m "-' --, = "-' --, , 
m ... oo n-O n. n-O n. 

since 

Ilf OO ~ (zs( dE(S)fll = lim IlfM ~ (zs( dE(S)fll 
-oon-m+1 n. M ... oo -Mn-m+1 n. 

= lim II ~ z; fM sn dE(S)fll 
M-+oo n-m+ I n. -M 

= i: Iz~nIlS'1I1~O as m~oo. 0 
n-m+1 n. 
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Theorem 8.31 (Nelson). Let T be a symmetric operator on the Hilbert space 
H. Assume that the set of analytic vectors of T is dense. Then T is essentially 
self-adjoint. 

PROOF. 

(a) First we consider the complex case. Introduce the notations R = H EB H 
and T = T EB ( - T) (i.e., D( T) = D( T) EB D( T) and T(j, g) = (Tf, - Tg) 
for (j, g) E D( T». If ('Y +, 'Y _) denote the defect indices of T, then the 
defect indices of Tare ('Y + + 'Y _, 'Y + + 'Y _). Therefore, f possesses 
self-adjoint extensions. We can also see from the defect indices of f 
that T is essentially self-adjoint if and only if f is essentially self
adjoint. Hence, it is enough to prove that T is essentially self-adjoint. 

The set of analytic vectors of T is dense: If f and g are analytic 
vectors of T, then (j, g) is an analytic vector of f. Consequently, it is 
sufficient to show the following (where we write T instead of T): If T 
is a symmetric operator with equal defect indices and a dense set of 
analytic vectors, then T is essentially self-adjoint. 

Let S be a self-adjoint extension of T. Iff is an analytic vector of T, 
then f is also an analytic vector of S. Because the formula II S" eissfll = 
lIeissS111 = II S111 = II T111, the element eis".! is also an analytic vector of 
S for every s E ~, and t(ei' S!) = t(j). Then for every s E ~, z E C such 
that Iz - sl < t(j) and for every g E H we have by Theorem 8.30 that 

f E D(ei(z-s)S) =D(eizS ) 

and 

Consequently, F is holomorphic in {z E C : 111m zl < t(f)}. 
If g E R(i - T).l. = N( - i - T*), then (T*yg = ( - ilg for all n E t\lQ. 

Therefore, (T1, g) = (-il(f, g). This implies for all n E t\lo that 

F(")(O) = (g, (is)''f) = (g, (iT)"!) = (-l)"(g,j) = (-I)"F(O). 

Hence, for all s E ~ 

(g, eissf) = F(s) = e-'F(O) = e-S(g,f). 

Since e- isS is unitary, the function F is bounded. Consequently, 
(g, f) = 0 for every analytic vector f of T. Hence, R(i - T).l. = {OJ. 
The equality R( - i - T).l. = {OJ follows similarly. 

(b) Let H now be a real Hilbert space. Then the set of analytic vectors of 
the complexification Tc is dense, namely it is equal to the complex 
linear hull of the analytic vectors of T (observe that the set of analytic 
vectors is a vector space). Tc is therefore essentially self-adjoint. Then 
T is also essentially self-adjoint by Exercise 5.32(b). 0 
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Corollary. A closed symmetric operator Tis self-acijoint if and only if the set 
of analytic vectors of T is dense. 

PROOF. If the set of analytic vectors of T is dense, then T is essentially 
self-adjoint by Theorem 8.31. As T is closed, it is self-adjoint. 

Let T now be self-adjoint, and let E denote the spectral family of T. 
Then all elements of R(E(t) - E( - t» are analytic vectors of T for every 
t> 0, since II T"l'1I "tNllfll for f E R(E(t) - E( - t». As U r>oR(E(t)
E( - t» is dense in H, the assertion follows. 0 

The above results enable us to prove the essential self-adjointness of 
tensor products of operators. Let HI and H2 be Hilbert spaces, and let us 
consider the space H= HI ® H2 (cf. Section 3.4). If TI and T2 are operators 
on HI and H2, respectively, then we define the operator TI (8) T2 on HI ® H2 
by the formulae 

and 

(TI ® T2)C~) c/./g;~) = j~l cjTtfj ® T2~' 
In order to prove that this is a linear operator, it is sufficient to prove that 
this definition is independent of the representation of the: elements from 
D(T)® D(T2) as linear combinations of simple tensors; the linearity then 
follows directly from the definition. In order to prove this, we have to show 
that };j_tc)j®gj=O implies };'J_tcjTtfj®T21J.i=O. By (3.3) we have 
};j_ I Cij ® IJ.i = 0 if and only if this sum can be written as a finite linear 
combination of elements of the form 

Then };j_tcjTtfj® T2gj is also a linear combination of I~lements of the 
same form, and thus it is equal to zero. 

In what follows we study, for two given operators T t and T2, the 
operators 

A = TI ® T2 and B = TI ® 12 + II ® T2• 

We have D(A) = D(B) = D(T)® D(T2). 

Theorem 8.32. Let HI> H2, T t, T2, A and B be as above. 
(a) A is different from zero (i.e., there exists an f E D(A) such that Af=l=O) if 

and only if T) and T2 are different from zero. If A is different from zero, 
then A is bounded if and only if T t and T2 are bounded. Then IIA" = 

II TtIlIl T211· 
(b) If D(B) =1= {OJ, then B is bounded if and only if T t and T2 are bounded. 

Then liB II "IITd' + IIT2 11. 
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(c) If TI and T2 are densely defined, then A and B are also densely defined, 
and A '" ~ Tt ® T! and B'" ~ Tt ® 12 + II ® Tr If TI and T2 are symmet
ric, then A and B are symmetric. 

PROOF. 

(a) If TI and T2 are different from zero, then there are elements 11 E D( T I) 
and f2 E D( T2) for which T.1I:I= 0 and Tzf2:1= O. Hence A (f, ® f0 * 0, 
i.e., A =1= O. If one of the operators T, and T2 is zero, then A UI ® f0 = 
T.1I ® Tzf2 = 0 for all fl E D(T,) and f2 E D(T2). Because of the equal
ity D(A) = LU, 0f2 : f, E D(T,), f2 E D(T2)}' it follows from this that 
Af=O for alllE D(A), i.e., that A =0. 

Assume now that A:I= 0 is bounded. Then for all 11 E D( T I ), f2 E 
D(T2) such that I If.! I = IIf211 = 1 we have 

II T.1.!1 II Tzf211 = II T.1, ® T2f211 = IIA (f, ® f2)11 " IIA II. (8.16) 

As T2:1= 0, there is an f2 E D( T2) such that II f211 = 1 and T212:1= O. 
Therefore, it follows that 

Consequently, T. is bounded. We can prove in just the same way that 
T2 is bounded. The left side of (8.16) assumes values arbitrarily close to 
II Till II T211; thus II T,IIII T211 " IIA II. 

Now let TI and T2 be bounded. We show that A is bounded and 
IIAII" II TtlIIIT211. Because of the formula A =(T.®I2)(II®T2) it is 
sufficient to prove that the operators TI 0 Iz and II ® T2 are bounded 
and II TI ® 1211 " II T.!I and 1111 ® T211 " II T211· We show the first inequal
ity. To do this, we use the fact that according to (3.5) every element 
fED(T1)®D(/2)=D(T1)®H2 can be written in the formf="i.'J_lh® 
tj with orthonormal elements fJ, j = 1, ... , n. For such an f we have 

II(T.®I2)1l1z =11 t T.Jj®fJI1
2 = ~ IITI/i1l 2 

J=I J-I 

n 

" II TtlI2 ~ IIhll2 = II Td1 211f1l2. 
j-I 

(b) If T. and T2 are bounded, then the bounded ness of T. ® 12 and I. ® T2 
follows as in (a). Therefore, liB II "II T .II+II TzlI· If TI is unbounded 
and D(T2 ) is different from zero, then there exist a sequence Un) from 
D(TI) for which IIJ"II = I and II Tlfnll~oo and agE D(Tz) for which 
II gil = l. Then 

IIB(J,,®g)1I ;;. IIT.1n ® gll-Ilfn ® Tzgll = IIT.J"II- IIT2 gli ~ 00 

as n~oo. Hence, B is unbounded. The same follows if T2 is un
bounded and D(TI ) is different from zero. 
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(c) We can easily verify that A and 'Ii ® 11 (respectively B and 'Ii ® 12 + 
I, ® TV are formal adjoints of each other. This implies that A *::> 
Tr ® 11 and B*::> 'Ii ® 12 + I, ® 11. The last assertion immediately 
follows from this. 0 

Theorem 8.33. Let T, and T2 be essentially self-acijoint operators on H, and 
H2, respectively. Then the operators A = T, ® T2 and B = T, ®I2 + I, ® T2 
are essentially self-acijoint on H = H, ® H2. 

PROOF. 

(a) First we assume that T, and T2 are self-adjoint. Then A and Bare 
symmetric according to Theorem 8.32(c). We construct total sets of 
analytic vectors for A and B. As the linear combinations of analytic 
vectors are again analytic vectors, the assertion follows from this by 
Theorem 8.31. 

First we consider the operator A. Let M, and M2 be the sets of 
analytic vectors of T't and Ti, respectively. We show that all f,®f2 
such that Ii E "1 are analytic vectors of A. If 

00 t" I ,1I1J2%1I < 00 for j = 1, 2 and 0.; t < to' 
"-0 n. 

then 
00 tn 
"~O n! IIA "U, ®f2) II 

00 t" 
= I ,II Trf, ® TU211 

n-O n. 
00 tn 

= n~o n! IITrJ,III1 T2'f2 11 

{ 
00 In 00 In } '/2 

.; n~o n! II TrJdl2 n~o n! IIT2'i2111 

{ 
00 In 00 In } II;! 

= I ,(Tr"f,,J,> I -nl (Ti"f2,f2> 
n-O n. n-O • 

.; IIfdl'/2I1f211 1/ 1{ ~o :~ IIT't"fdl n;o :~ II Ti"f211) '/2 < 00 

for 0 .; I < to' Consequently, f, ® f2 is an analytic vector of A. As the "1 
are dense subsets of H.J (j = I, 2), the set of these analytic vectors is 
total in H, ® H2• 

Now we consider B. Let M, and M2 now be the sets of analytic 
vectors of T, and T2, respectively. Assume that for Ii E: "1 we have 

00 tn 
I ,1I1J%1I < 00 for j = 1,2 and 0.; t <to' 
n-O n. 
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<00 
for 0 .;;; t < to' Consequently, fl 0 f2 is an analytic vector of B. The set of 
these analytic vectors is total in HI ® H2. 

(b) Let TI and T2 now be essentially self-adjoint, i.e., let i l and i2 be 
self-adjoint. The operators A and B are symmetric, and thus closable. 
We can verify easily that 

A = T I0 T2 -:J r; 0 r;, 
jj = T I®I2 +I10T2-:J fl 012 + 110 f 2. 

The essential self-adjointness of A and B now follows from part (a) of 
the proof. 0 

Theorem 8.34. Let TI and T2 be self-adjoint on HI and H2 with spectral 
families Eland E 2, respectively. Then 

<11 0f2' E(t)(gI0g2» = f: <11, EI(t-s)gl) ds <f2' Eis)g2) 

for the spectral family E of jj = TI 012 + 11 0 T2 and for all fl' gl E 

HI' f2' g2 E H2• 

PROOF. The formulae FI(t) = EI(t) 012 and F2(t) = 11 0 Ell), t E IR define 
spectral families on H= HI ® H2. We show this for F I : 

(a) Because of the formulae Ft = (EI 012)* -:J Et 012= EI 012 we have 
Ft = Fl' It is obvious that FI(t) FI (s)f = FI(s)FI(t)f = FI(t)f for f E 

HI 0 H2 and t ';;s. Due to continuity arguments (cf. Theorem 8.32(a» 
this holds for all f E HI ® H2. In particular, FI(t? = FI(f), i.e., all FI(f) 
are orthogonal projections. 
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(b) We have FI (t)F\ (s) = F\(s)F\(t) = F\(t) for I <;; s by part (a); this proves 
that F\ is increasing. 

(c) For f= f\ ®f2 we have 

IIFI(I + E)f - F\(/)fll = II(EI(t + E) - EI(t»flllllf211 --l> 0 as E -+ 0 + . 
This proves the right continuity of FI(/)f for .all f E HI ® H2 
(cf. Theorem 4.23(b». 

(d) For f= fl ®f2 we have F\(t)f= E\(t)fl ®f2-+0 as t-+ - 00 and 
F\ (t) f --l> f as t -+ 00. This implies the corresponding assertion for all 
f E HI ® H2 (cf. Theorem 4.23(b». 

The spectral families F\ and F2 commute, since 

FI(t)Fis)f = EI(t)fl ® E2(S)f2 = F2(s)FI(I')f 

for all f= fl ®f2. This then holds for all f E HI ® H2• Consequently, the 
equality 

G(t+is) = F\(t)F2(s), s, t E IR 

defines a complex spectral family on HI ® H2• We obviously have G(t + is) 
= E\(t) ® E2(S). We show that 

B = G(u) = f (Re Z + 1m z) dG(z), 

where u is the function defined by the formulae u : C-+Dl, u(z) .... Re z + 
1m z. As Band G(u) are self-adjoint (u is real-valued), it is enough to 
prove that Be G(u). It will follow from this that Be G(u), and thus 
B = G(u). For f= fl ®f2 E D(Tt)® O(T,.) we have 

jlu(z)12 dIlG(z)fI12 <;; 2f {(Re z)'- + (1m Z)2} dIlG(z)fIl2 

= 2{f(Rez)2 dIlG(z)fIl 2+ f(Imz)2 d IlG(Z)fIl2} 

= 2{ f t2 dIlEt (t)flI11Ilf2112 + f Sl dIlE2(s)f2111IlfdI2 } 

... 2{1I Tdtll211f2112 + IIfd1211T2f2112} <: 00. 

Consequently,! ED( G(u» and 

G(u)f = f (Re z + 1m z) dG(z)f = f Re z dG(z)f + JIm z dG(z)f 

= (ftdEI(t)ft)®f2+fl®(fsdE,.{S)fl) = Bf· 

If we consider linear combinations of such elements, then it follows that 
Be G(u). 

Now we can give the spectral family E of B ... G(u). We have 

E(/) = G( (z E C : Re z + 1m z <;; I» ... G(X{zec: Ru+lmz <I})' 
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E( . ) is obviously a spectral family. For every f E HI ® H2 we have 

ft2dIlE(t)fIl2 == f(Rez+lmz)2 dIlG(z)fIl 2• 

Consequently, D(E(id» =0 D( G(u» = D(ii). For all f E D(ii) 

J t dE(t)f = f u(z) dG(z)f = Bf. 

Hence, E(id) = ii, i.e., E is the spectral family of Ii. 
By Fubini's theorem we have for all fl ® f2 E HJ ® H2 that 

IIE(t)(fJ®f2)1I2 == i dll G(z)(fJ ®f2) 112 
Rez+lm z<t 

= fOOoof~:S d"IIEJ(u)fdI2 d.IIEis)f211 2 

= fOOoo"EJ(t - s)fdl2 d.IIE2(s)f2112. 
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The assertion follows from this by means of the polarization identity. 0 

Theorem 8.35. Let TJ and T2 be self-a4joint operators on complex Hilbert 
spaces, and let B = TJ ® 12 + II ® T2. Then 

exp(itii) = exp(itT.)®exp(itT2). 

PROOF. For all simple tensors f®g such that f E D(T.) and g E D(T2) we 
havef®gED(B), and thus 

:t [exp(itii)(f®g)] = iii exp(itii)(f®g). 

Hence, u(t) = exp(itii)(f® g) is a solution of the initial value problem 

d -
dt u(t) = iBu(t), u(O) = f ® g. 

On the other hand, it is easy to prove that 

u(t) = [exp(itTI)f] ® g + f ® [exp(itT2)g] 

is also a solution of this initial value problem. The solution is uniquely 
determined by the Corollary to Theorem 7.38. This proves the assertion. 0 

EXERCISES 

8.16. Let T be a self-adjoint multiplication operator on L2(R, p) (respectively ori 
EB" eA L2(R, Pa». Give a dense set of analytic vectors of T. 

8.17. There are essentially self-adjoint operators whose sets of analytic vectors are 
not dense. 
Hint: Let T be defined by the equalities O(T)-CoOO(R), Tf-(I/i)f'+qf, 
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where q(x) = 0 for x .;; 0, and q(x) = I for x > O. If f is an analytic vector of T, 
then f (0) = O. If the set of analytic vectors of T were dense, then the same 
would hold for the operator Toe Twith D(To) = (IE CoOO(R) :f(O)=O}; the 
defect indices of To are equal to (I, I). 

8.18. Let Tl and T2 be the operators of multiplication by the variables on 
EB aEA L2(1R, Pal and on EBIlEs L2(R, all)' respectively. 
(a) TI ® T2 is the operator of multiplication by XIX2 on EBaEA,IlESL2(1R2, 

Pa X on)· 
(b) TI ® 12 + II ® T2 is the operator of multiplication by Xl + X2 on 

EBaEA.IlESLiIR2, p" X all)' 
(c) Prove Theorem 8.34 with the aid of (b) and the spectral representation 

theorem. 

8.19. (a) If Tl ® T2 is different from zero, then Tl ® T2 is symmetric if and only if 
there exists a e E K, e -=1= 0 for which eTI and e - IT2 are symmetric. 

(b) Tl ® 12 + II ® T2 is symmetric if and only if there exists a e E IR for which 
TI - icJl and T2 + ieh are' symmetric; we have TI ® 12 + II ® T2 = 
(TI - ieII)® 12 + II ®(T2 + ieI2). (If HI and H2 are real Hilbert spaces, 
then Tl ® 12 + II ® T2 is symmetric if and only if TI and T2 are symmet
ric.) 

8.20. Let TI and T2 be self-adjoint. Then for B = TI ® h + II ® T2 we have 

o(B) = {AEIR: A=AI+A2,Aj Eo(1)}, 

op(B) = {AEIR: A=A. +A2, AjEOp(1)} 

The multiplicity n(A) of an eigenvalue A of B is equal to ~.\, +.\2_.\n.(AI)n2(A~, 
where ~(Aj) is the multiplicity of the eigenvalue Aj of 1). 

8.21. Assume that T 1, T2 and B are as in Exercise 8.20, T2 has a pure point 
spectrum, and Pa denotes the projection onto N( T2 - s). Then 

E(t) = ~ E.(t - s)®Ps , 

sEop (T2) 

where E and EI denote the spectral families of Band T., respectively. 

8.22. Let T. and T2 be self-adjoint operators with spectral families E. and E2. If 
l!.·.(t)E2(s)'" E2(s)E.(t) for all t, s E IR, then the operators T. + T2 and T. T2 
are essentially self-adjoint. 
Hint: For all bounded intervals J. and J2 the set R(E.(J.)E2(J2» consists of 
analytic vectors of TI + T2 and TI T2· 



Perturbation theory for 
self-adjoint operators 9 

Here we will deal almost exclusively with the perturbation theory for 
self-adjoint and essentially self-adjoint operators. Essentially two questions 
arise: 

(9.1) Let T be a self-adjoint or essentially self-adjoint operator on the 
Hilbert space H. Let V be a symmetric operator, a perturbation. Is T + V 
also self-adjoint or essentially self-adjoint? 

(9.2) Let T be a self-adjoint operator and assume that we know certain 
properties of its spectrum. Can we say anything about the spectral properties 
ofT+ V (or T+ V)? 

We already answered question (9.1) in Section 5.3. Now we tum our 
attention to question (9.2). We shall study the question of whether T and 
T + V have the same essential spectrum and whether the semi-bounded
ness of T implies that of T + V. Moreover, we obtain results concerning 
the perturbation of the discrete spectrum and concerning the continuous 
dependence, on the given operator, of the spectrum and the spectral 
family. Further results of this kind are also included in Section 7.5. For the 
absolutely continuous spectrum, see also Chapter 11. 

9.1 Relatively bounded perturbations 

First we consider the case where the unperturbed operator T is bounded 
from below. 

Theorem 9.1. Let T be self-adjoint and bounded from below with lower bound 
'IT' Let V be symmetric and T-bounded with T-bound < 1. Then T + V is 
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self-adjoint and bounded from below. If 

II Vfll .;; allfll + bllTfIl for all f E D(T) 

with some b < I, then 

'I = Yr - max{ I ~ b' a + blYrl} 

is a lower bound of T + V. 

PROOF. By Corollary 2 to Theorem 7.22 it is sufficient to show that 
(-00, 'I) is contained in p(T+ V), i.e., that the operator T+ V-A= 
(T - A) + V is bijective for every A < y. By Theorem 5.11, this is surely the 
case if II VR(A, T)II < 1. We obtain from the spectral theorem that 

II VR(A, T)II .;; aIlR(A, T)II + bll TR(A, T)II 

<: a(Yr-A)-1 + b sup{ltl(t-A)-1 : D'Yr} 

= a(Yr-A)-1 + b max{l, IYrl(Yr-A)-I} 

= max{ a(Yr-A)-1 + b, a(Yr-A)-1 

+ bIYrl(Yr- A)-I}. 

The last expression is obviously less than 1 for A <'I. o 

Theorem 9.2. Let T be self-adjoint and bounded from below, and let V be 
symmetric and T-bounded. If T + p. V is closed for all p. E [0, 11, then T + V is 
self-adjoint and bounded from below_ 

PROOF. The operator T+ V is self-adjoint by Theorem 5.27. For every 
p. E [0, 11 the operator V is relatively bounded with respect to T + p. V, i.e., 
there exist al-' > ° and bl-' > ° for which 

II Vfll .;; al'llfll + bl'lI(T+ p.V)fll· 

Consequently, for I p. - p./1 < (2b,,)-1 

and thus 

IlVfll .;; al-'llfll + bl'(II(T+/LIV)JII+I/L'-p.IIIVfll) 

< al'lIfll + bl-'II(T+ p.'V)fll + 411 Vfll, 

IlVfll < 2al-' II fll + 2b"II(T+ /L' V)fll-

The segment [0, I] is covered by the open intervals (p. - (2b,,) - I, P. + 
(2bl')-I), p.E[O, I]. Consequently, there are finitely many 1-'-1"'" P.n for 
which the corresponding intervals cover the whole interval [0, I]. The 
operator V is therefore (T + P. V)-bounded for all /L E [0, I] with relative 
bound b=max{2bllj :j= I,. _., n}. If we choose mEN such that b/m< 
I holds, then by successive applications of Theorem 9.1 we obtain the 
semi-bounded ness of T+(1/m)V, T+2(1/m)V, . .. , T+ V. 0 
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Theorem 9.1 also enables us to prove the following useful inequalities. 

Theorem 9.3 (Heinz). Assume that T is self-atijoint, non-negative, S is 
symmetric, D(T) C D(S), and IISfl1 ..;; II Tfll for all f E D(T). Then 

1<1, Sf) 1 .;,; <1, Tf) for all fED{ T). 

PROOF. Theorem 9.1 applies with V = KS for every K E (- 1, 1) if we take 
a = 0, b = IKI, and 'IT = O. Then 'I = O. Consequently, T + KS is self-adjoint 
and non-negative for every K E (-I, 1). For K~ ± 1 we get 

and thus 

<f, (T+ S)f) ;;;. O} for all f E D{T), 
<1, (T- S)f) ;;;. 0 

<f, Tf) ;;;. 1<1, Sf)1 for all f E D{T). 

Theorem 9.4. Let Sand T be self-atijoint and non-negative. 

o 

(a) D(T) C D(S) and II Sfll .so; II Tfll for all f E D(T) imply D(TI/2) 
C D(SI/2) and IISI/111 ..;; II T I/111for a/l f E D(T I/ 2). 

(b) D(T) c D(S) implies D(TI/2) C D(S 1/2). The equality D(T) = D(S) im
plies D(TI/2) = D(S 1/2). 

PROOF. 

(a) It follows from Theorem 9.3 that 

liS 1/1112 = <J,Sf)';'; <f, Tf) = IITI/1112 forall fED{T). 

Let f E D(T 1/2). Since D(T) is a core of TI/2, there is a sequence (f,,) 
from D(T) for whichf,,~f and Tl/1,,~Tl/1. Then (SI/1n) is also a 
Cauchy sequence. Therefore, f E D(S 1/2) and S 1/1= limn-+""S 1/1". 
Consequen tly, 

IIsl/111 = lim IISI/:t.1I .so; lim II Tl/:t. II = IIT I/111. 
n-.oo n n~oo n 

(b) Because of the inclusion D(T) C D(S), the operator S is T-bounded by 
Theorem 5.9, i.e., there exists a c ;;;. 0 such that 

IISfll .;,; c(lIfll + II Tfll) .;,; Y2 c(lIfll2 + II Tf1l2) 1/2 

< V2 c(lIfll2 + 2<f, Tf) + II Tf1l2) 1/2 = V2 cll(I + T)fll. 

By part (a), D«J + T)I/2) is therefore contained in D(S 1/2). We can 
immediately infer from the spectral theorem that D(TI/2) = D((l + 
T)1/2). Consequently, D(TI/2) C D(S 1/2). If D(T) = D(S), then it also 
follows that D(S 1/2) C D(Tl/2), and thus that D(SI/2) = D(TI/2). 0 

Now we prove a result concerning the continuous dependence, on the 
given operator, of !!:~ spectrum and the essential spectrum. 
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Theorem 9.5. Let T and Tn (n E N) be self-adjoint, and assume that 
OCT) = O(Tn)' Assume, furthermore, that there are null-sequences (an) and 
(bn) from R for which 

II(T- Tn)!11 <; anllfll + bnll Tfll for all f E ,D(T). 

Then u(T) = limn ... ",,u(Tn) and aiT) = limn-+ 00 ui Tn)' 

PROOF. We have to prove that A E ae(T) (respectively A E u(T» if and only 
if there is a sequence (~) for which ~ E ae(Tn) (respectively ~ E u(Tn» 
and An-A. There is no loss of generality in considering only the point 
A = 0. Let E and En denote the spectral families of T and. Tn' 
(a) If ° E a(T), then there is a sequence (J,,) from D(T) for which IIf,,1I = 1 

and Tfn _0. Then 

d(O, a(T,,» <; IIT"!nll <; II Tf,,11 + II(T- T,,)f,,11 

<; (I + b,,)11 Tf,,11 + a"lIfnll _ ° as n _ 00. 

Therefore, d(O, a(T,,»_O, i.e., ° E limn ... oou(Tn). 
If ° fI. u( T), then T is bijective. Since 

II(T- Tn+A)T-'1I <; a"IIT-'1I + b" + IAIIIT-'II, 

by Theorem 5.11 T" - A is also bijective for IAI < (211 T-'ID-' and 
sufficiently large n E N. Hence, ° f/.limn-+ooo(Tn)' 

(b) Assume that OEae(T). Then dim R(E(£)-E(-t:»=oo for every £> 
0, by Theorem 7.24. If no E N is such that an + bn £ <£ for all n ;;> no, 
then it follows for all n ;;>no andfE R(E(£)- E(-£)}.j=l=O that 

IIT"!II <; IITfll + II(T- Tn)fll <; £lIfll + a,,11111 + b"IITfll 

< 2£lIfll· 
It follows from this that dim R(E,,(2t:) - En( - 2£» = 0(>, since otherwise 
there would exist an 

f E R(E,,(2t:) - En( -2t:».L n R(E(t:) - E( -f»~, f "i= 0; 

for this f we would have 

2t:llfll <; II T"!II < 2t:llfll· 
By the proposition preceding Theorem 7.25 we have o~( T,,) n [ - 2£, 2£] 
"i= 0 for every n;;> no' As £ > 0 was arbitrary, it follows that ° E 

limn-+ooaiTn)' 
Let us assume that ° fI. oe(T), i.e., that there exists an £ > 0 such that 

dim R(E(£) - E( - (0» < 00. If no EN is such that a" <,,/3 and bn < 1/3 
for all n ;;> no, then 

IIT,JII ;;> IITfll-II(T- Tn)fll > IITfll- jt:llfll- jllTfli 

= ~II Tfll - jt:llfll ;;> j£llfll 
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for all n ;> no and f E R(E( f) - E( - f»1. ,f =1= O. It follows from this that 
dim R(En{ e/3) - En{ - f/3» < 00, since otherwise there would exist an 

f E R( EnOf) - En( - if)) n R(E(f) - E( - f»1., f =1= 0; 

for this f we would have 

~fllfll;> IIT,j1l >~fllfll. 

Consequently, (- f/3, f/3) n oe(Tn) = 0 for all n;> no, and thus 0 t;l: 
limn-+oooiTn)' 0 

Corollary. Assume that T is self-adjoint, V is symmetric and T-bounded, and 
a denotes the set of those real /L for which T+ /LV is self-adjoint. Then the 
set-valued functions /L~o(T+ /LV) and /L~oe(T+ /LV) are continuous on a 
(i.e., if /Lo,p."EO, and /Ln~/Lo, then o(T+/LoV)=limn-+ooo(T+/LnV) and 
0e(T+ /Lo V) = limn-+oo0eC T + /Ln V». 

PROOF. V is (T + Po V)-bounded for every 1'0 Ea. Therefore, 

1I[(T+/LoV)-(T+/LnV)]fU = l/Lo-ltnlllVfll 

< I Po - p."lallfll + I /Lo - IlnlbU(T+ JLoV)fll· 

Consequently, the operators T + Ito V and T + Itn V satisfy the assumptions 
of Theorem 9.5. 0 

EXERCISES 

9.1. The converse of Theorem 9.4(a) does not hold. If we consider the operators 
induced by the matrices 

S = 3U D and T = 4(6 ~) 
on C2 (with the usual scalar product), then S..; T, but not S2..; T2. 

9.2. Let the assumptions of Theorem 9.5 be satisfied. Assume that a, P E iii n p(T) 
and a <po Then a, p EP(Tn) for large nand II(En(P)- En(a»-(E(P)
E(o:»II_O as n_oo. 
Hint: The second resolvent identity, Exercise 7.20, and Theorem 9.5. 

9.2 Relatively compact perturbations and 
the essential spectrum 

By Theorem 7.24 the number A E R belongs to the essential spectrum of a 
self-adjoint operator T if and only if there exists a sequence Un) from D(T) 
for which 

J" ~ 0, lim inf II fn II =1= 0, (A - T)J" ~ O. n-+oo (9.3) 
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Such a sequence is called a singular sequence for T and 'A. With the aid of 
this characterization, we can prove the following theorem. 

Theorem 9.6. Let TI and T2 be self-adjoint operators with the spectral 
families E, and E2• 

(a) IJ R(EI(J» c D(T2) and (T, - T2)E1(J) is compact for every bounded 
interval J, then (JiT,) C (Je(T2). 

(b) If the assumptions oj (a) are satisfied and D(T,) C D(T2), then every 
sequence that is singular for TI and 'A is also singular for T2 and A. 

PROOF. 

(a) Assume that 'AE (Je(T,). As in the proof of Theorem 7.24 (part (i) 
implies (ii» we can show that there exists a singular sequence Un) for 
T, and 'A that is contained in R(E,('A + I) - E,('A - 1» (cf. also part (b) 
of this proof). As Un) tends to 0 weakly and as (T, - T2) (E,(A + 1)
E,('A-I» is compact, we have 

(T, - T2)Jn = (T, - T2)( E) ('A + 1) - E \ ('A - 1) )f" ~ 0 

as n~oo (cf. Theorem 6.3). We obtain from this that 

II(T2 - 'A)J"II <; II(T2 - T\)f" II + II(T) - 'A)fnll ~ 0 

as n~oo. Therefore, Un) is a singular sequence for T2 and 'A, and thus 
'A E (JiT2)' 

(b) Due to the inclusion D(T,)c D(T2), the operator T2 is relatively 
bounded with respect to T\ (cf. Theorem 5.9). Let (j~) be a singular 
sequence for T, and 'A. Then 

11(1 - E\('A+ 1) + E)('A-I»f,,112 = f + f 1 dIlE,(t)f,,1I 2 

(-00,.\-'] ('\+',0<:') 

<; foo I'll. - tl2 dIlE\(t)/nIl 2 
-00 

(9.4) 

and 

II T,(1 - E\('A + 1) + E\('A - 1»1,,112 

= 1 + f Itl2 dIlE\(t)1,,1I2 
(-oo,i\-I] (i\+I,oo) 

<; 21'A1211(1 - E1('A + I) + E,('A --1»1,,11 2 

+ 211 ('A - T\)1" 112 ~ 0 as n ~ 00. (9.5) 
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Hence, «E,(;\+ 1)- E,(;\-l»fn) is a singular sequence for T, and ;\ 
that is contained in R(E,(;\ + I) - E,(;\ - I». As in part (a), it follows 
that 

Since T2 is bounded with respect to T" we can derive from (9.4) and 
(9.5) that 

and thus 
(;\ - TZ)jn -l> 0 as n -l> 00. 

Consequently, (J,,) is a singular sequence for T2 and ;\. o 
If in Theorem 9.6 we make the assumptions symmetrical with respect to 

T, and T2, then we obtain a criterion for the coincidence of the essential 
spectra and for the coincidence of the singular sequences (in the following 
we say that T, and T2 have the same singular sequences if (J,,) is a singular 
sequence for T, and ;\ if and only if (J,,) is a singular sequence for T2 and 
;\). However, the result is not very useful in this form since too many 
properties of T, and T2 are explicitly assumed; usually only one of these 
operators (the unperturbed one) is known accurately. In what follows we 
give conditions that imply the assumptions of Theorem 9.6. First we need 
some preparation. 

Let H" Hz, and H3 be Hilbert spaces. Let A be an operator from H, into 
H2• An operator B from HI into H3 is said to be A-compact if D(A) c D(B) 
and B, as a mapping from (D(A), II . IIA) into H3t is compact. If A is 
bounded and D(A) = Hit then it is obvious that B is A-compact if and only 
if B is compact (since the norms II . 1/ and II . IIA are then equivalent). 

Proposition. If A is an AI-bounded operatorand B is A-compact, then B is 
also A ,-compact. If A is densely defined and closed, then B is A-compact if 
and only if B is IA I-compact. 

PROOF. Any II .IIA,-bounded set is also II. II A-bounded. Consequently, 
every II . IIA -bounded set is mapped by B onto a relatively compact set. , 
The second assertion follows from the equalities D(A) = D(IAI) and II . IIA 
=II·IIIAI· 0 

If B is an A -compact operator, then B, as an operator from 
(D(A), II . IIA) into H3, is bounded, i.e., B is A-bounded. In fact, much 
more is true. 

Theorem 9.7. Let A be an operator from H, into H2, and let B be an 
A-compact operator from H, into H3• If A or B is closable, then B is 
A-bounded with A-bound zero. 
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PROOF. Let assume that the A -bound B is there exists 
an f > 0 with the property that for every n E N there is an fn E D(A) such 

IIBJ,.II nil fn II t:IIAfnll can choose any positive number f that is 
than A-bound of B). we put liB!" then Bgnll and 

f(1I gnll + IIAgnll) < nil gnll + t:IIAgnll < II Bgn II == 1 

all n E such that ;> f. follows from this that gn~O and II < 
gn +IIAgnll I/f. 
First let B be closable. As B is A -compact, there exists a subsequence 

of for which Bgn• ~h E H3• The formula = 1 
l. This is a contradiction because gn~O and the c10sability 

Now let A be closable. Without loss of generality we can assume that 
D(B) = D(A). By Theorem 6.2 the operator B can be extended to an 
A-compact operator on D(A). Consequently, wc can assume without loss 
of generality that A is closed. Since IIAgnll < liE, there exists sub-

w 
sequence (gnt) of (gn) such that Agn• ~h E H2 (cf. Theorem 4.25). Hence, 

= w Agn) G(A )= and thus h It follows by 
Theorem that Bgnk -'i'0, which contradicts the equality II II = I, 0 

Corollary. Let B be closable. B -Nl'mnnrt if and only if it is (A + B)-

B be A -compact. Since D(A) c D( B), we have D(A + B) 
By Theorem 9,7 there a;> 0 such that Bfll <allfll + 

f E Consequently, all f D(A) 

IIAfll < 2(IIAfll-IIBfll + allfll) < 2(II(A + B)fll + allfll), 

is B)-bounded. The (A + of follows the 
above proposition. can prove similarly the other direction. 0 

Let A closed operator HI into H2, and let B be an 
HI into 

(i) B is A-compact. 
Then following assertions are equivalent, 

(ii) J,. E D(A),J,. ~O and Af" ~O imply that Bfn~O. 
If A self-adjoint on HI E denotes its spectral then these 
assertions are equivalent 

(iii) BE(J) is compact for every bounded interval J, and B is A-bounded with 
-bound zero. 

w 
PROOF. (i) implies (ii): If fn ~ 0 and ~o, then 

(J,., g)A = (fn' g) + (Af", Ag) ~ 0 

for all E D(A i.e., weakly tends zero in the: Hilbert space 
(D(A), (. , '),4). It follows from this by Theorem 6.3 that Bfn-O. 

(ii) implies (i): Let (J,.) be a weak null-sequence in (D(A), (. , ,),4)' i.e., 
assume that (fn' + (At" _0 all (g, E G(A). Theorem 6.3 
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is sufficient to show that (Bin) tends to zero as n-4oo. Since (in' g) + 
(Aln' h) =0 for all (g, h)E G(A).L, we have 

Un' g) + (Aln' h) -40 for all (g, h) E HI EB H2• 

It follows from this that J" ~ 0 and AJ" ~ 0, and thus BJ" -40 (because of 
(ii». 

(i) implies (iii): By Theorem 9.7 the operator B is A-bounded with 
A-bound zero. Let (J,,) be a bounded sequence in HI' Then the sequence 
(AE(J)J,,) is also bounded, because 

IIAE(J)J,,1I2 = ~t2 dIIE(t)inI1 2 < 11J,,1I 2 sup { t2 : t E J). 

Consequently, (E(J)J,,) is a bounded sequence in (D(A), (. , .)A)' and by 
(i) there exists a subsequence (f,n) for which (BE(J)ln) is convergent. . ~ 

Hence, BE(J) is compact. 
(iii) implies (i): Let (J,,) be a weak null-sequence from (D(A), (., ')A)' 

i.e., assume that (In' g) + (Ain' h) -40 for all (g, h) E HI EB HI (cr. the "(ii) 
II' 

implies (i)" part of the proof). Then in -40, and thus B(E(N) - E( - N»in 
-40 for all N > O. Since 'the A -bound of B is equal to 0, for every f > 0 
there is a C > 0 such that 

II BIll < ~ IIA/II + C II ill for all I E D(A). 

Therefore, for all n E N and sufficiently large N 

IIB(I - E(N) + E( - N»J"II < ~ IIAJ"II + CII(I - E(N) + E( - N»)Jnll 

€ C 
< illAJ,,1I + N IIAJ"II < fIlAJ"II, 

and thus 

lim sup IIBJ"II " f lim sup IIAJ"II. 
n-+oo n-.oo 

Since the sequence (AJ,,) is bounded and since f > 0 was arbitrary, it 
follows that Bln~O. Consequently, B is A-compact. 0 

Now we can prove an old result that is essentially due to H. Weyl. 

Theorem 9.9. Let T be a self-alijoint operator on the Hilbert space H, and let 
V be a symmetric T-compact operator. Then T+ V is self-alijoint, T and 
T+ V have the same singular sequences, and t:1e(T) = aeCT+ V). 

PROOF. By Theorem 9.7 the operator V is T-bounded with T-bound O. 
Therefore, T+ V is self-adjoint by Theorem 5.28. V is also (T+ V)
compact by the corollary to Theorem 9.7. Now it follows from Theorem 
9.8 that TI = T and T2 = T+ V satisfy the assumptions of Theorem 9.6(b), 
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just as T. = T+ V and T2 = T do. Consequently, T and T+ V have the 
same singular sequences, and 0e( T + V) = 0e(T). 0 

In applications (particularly to differential operators) it is important that 
the assumptions of Theorem 9.9 can be somewhat weakened. First we 
prove some preparatory theorems. 

Theorem 9.10. Let T be a selj-acijoint operator on H such that p(T) =1:0, and 
let p > O. An operator V is TP-compact (respectively TP-bounded) if and only 
if V(z - T)-P is compact (respectively bounded) for some (and then for all) 
z Ep(T). 

(The operators TP and (z - T)-P are defined with the aid of the spectral 
theorem by the formulae TP = ft P dE(t) and (z - T)-P = f(z - t)-P dE(t), 
where t~tP and t~(z - t)-P are chosen to be continuous on o(T).) 

PROOF. We obviously have D(TP)=D«z- T)P); the TP-norm and the 
(z - T)p-norm are equivalent. Consequently, V is TP-compact (TP
bounded) if and only if it is (z - T)p-compact «z - T)p-bounded). Since 
(z - T)P : D(TP)~H is continuous and continuously invertible, V: D(TP) 
~H is compact (bounded) if and only' if V(z- T)'-P is compact 
(bounded). 0 

Theorem 9.11. Let T be a selj-acijoint operator with spectral family E, and let 
V be a T-bounded operator. Then 
(a) V is TP-bounded with TP-bound zero for all p > 1. 
(b) If V is TP-compact for some p > 0, then VE(J) is compact for every 

bounded interval J. 
(c) If VE(J) ;s compact for every bounded interval J, then V is TP-compact 

for every p > I. 
(d) V ;s T-compact if and only if it is T 2-compact and T-bounded with 

T-bound zero. 

PROOF. 

(a) There are numbers a, b > b such that II Vfll "allfll + bl! Tfll for all 
f E D(T). We have D(TP) C D(T) for p > I, and thus 

II Vfll <; II V(E(N) - E( - N»1I1 + II V(I - E(N) + E( - N»fll 

<; all1l1 + bN IIfll + allfll + bll T(I - E(N) + E( - N»fll 

<; (2a + bN)llfll + bN I-p II TPfll 

for all f E D(TP) and N > O. Since N can be chosen arbitrarily large, 
the assertion follows from this. 

(b) Let Un) be a bounded sequence. Then (E(J)fn) is a bounded sequence 
in (D(TP), (. , ')T')' Since V is TP-compact, there exists a subsequence 
(E(J)J,,) for which (VE(J)fn.) is convergent. Hence, VE(J) is compact. 
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(c) The operator 

V(I+ITl)-P(E(N)-E(-N» = V(E(N)-E(-N»(l+ITI)-P 

is compact for every N ;.. 0, and 

II V(I + ITI)-P(I - E(N) + E( - N»II .;;; II V(I + ITI)-'II(I + N)I-p. 

Consequently, Vel + IT\) -P = limN .... co V(l + I Tj)-P(E(N) - E( - N», 
and thus Vel + I T\)-P is compact. V is therefore TP-compact by 
Theorem 9.10 and the proposition preceding Theorem 9.7. 

(d) This follows from Theorem 9.8 and parts (b) and (c) of this theorem. 0 

Theorem 9.12. Let TI and T2 be self-ac!Joint operators and assume that 
D(TI)=D(T2). Put V= T2- T 1• 

(a) V is T[-compact if and only if it is Ti-compact. 
(b) If V IS T[-compact (or Ti-compact), then (z - T I)-2 - (z - T2)-2 is 

compact for every zEp(TI)np(T2). 
(c) If V is T I2-compact, then for every TI-bounded operator W we have the 

following: W is T l2-compact if and only if it is T;-compact. 

PROOF. Write Rj = (z _1j)-1 for z E p(TI) n p(T2). Then the operators VRj 
are bounded for j = I, 2. (If H is real and o( T1) U o( T2) = IR, then H must 
be complexified in order that we may have p( T I) n P(T2) =1= 0.) 
(a) If V is T?-compact, then VR I2 is compact by Theorem 9.10. It follows 

from the resolvent identity R2 - RI = RI VR 2 = R2VR I that 

Ri = (RI + R2 VR I)(RI + RI VR2) = (I + R 2 V)R?(I + VR2), (9.6) 
and thus 

(9.7) 

It follows from this that VRi is compact. Therefore, V is Ti-compact. 
We can prove similarly the reverse direction. 

(b) Let V be T?-compact. (9.6) implies that 

Ri - R? = R[VR2 + R2VRf(I + VR2) 

=[(z*- T2)-I V(Z*- T I)-2]* + R2VR[(I+ VR2); 

here we have used the equality 

<f, (z*- T2)-I V(Z*- T 1)-2g ) = <RtVR2f,g) 

for all J, g E H. As V(z* - T I)-2 and VR? are compact, the compact
ness of Ri - RI2 follows. 

(c) Let W be TI2-compact. Then WRf is compact. It follows from (9.6) 
that 
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As WRt and VR 12 are compact, WRi is also compact, i.e., W is 
Tf-compact. We can prove similarly the other direction. 0 

Theorem 9.13. Let T be a self-adjoint operator on H, and denote its spectral 
family by E. Assume that V is symmetric, O(T) C O( V), and T+ V is 
self-adjoint. Assume, furthermore, that VE(J) is compact for every bounded 
interval J (this condition can be rep/aced by the following: V is TP-compact 
for some p > 0). Then T and T + V have the same singular sequences. In 
particular, (J.(T) = (Je(T+ V). 

PROOF. It follows from the assumptions that V is T2-compact, and thus 
also (T+ V)2-compact by Theorem 9.12. Therefore VE'(J) is also compact 
for every bounded interval J, where E' denotes the spectral family of 
T+ V. The assumptions of Theorem 9.6(b) are therefore satisfied for 
T( = T, Tz = T+ V and for T( = T+ V, Tz = T. If V is TP-compact for 
some p > 0, then the compactness of VE( J) follows from Theorem 9.1 I (b) 
for every bounded interval J. 0 

The assumptions of Theorem 9.13 do not guarantee that T + V is 
semi-bounded in case T is semi-bounded. 

EXAMPLE 1. Let T be a semi-bounded self-adjoint operator with discrete 
spectrum, i.e., assume that there exist an orthonormal basis {en: n E N} 
and a sequence (An) for which An ---) 00 and 

OCT) = {fEH: L 1~121<en,J)12<00}, 
nEI'IJ 

Tf = L An<en,J)en for f E D(T). 
nEI'IJ 

Furthermore, write V = - 2 T. Then V is T-bounded and - T = T + V is 
self-adjoint. Since the space R(E(J» is finite-dimensional for every 
bounded interval J, the operator VE(J) is compact. Consequently, all 
assumptions of Theorem 9.13 are satisfied, T is bounded from below, and 
T + V is not bounded from below. 

The following theorem studies the behavior of gaps in the essential 
spectrum of T in the case of a non-negative T2-compact perturbation. 

Theorem 9.14. Let T be a self-adjoint operator on H such that Ge(T) n (a, b) 
= 0. Assume that the point b is not an accumulation point of those eigenval
ues of T that belong to (a, b). Assume, furthermore, that V is symmetric, 
non-negative, TZ-compact and T-bounded with T-bound < 1. Then Ge( T + V) 
n (a, b) = 0, and b is not an accumulation point of those eigenvalues of 
T+ V that belong to (a, b). (If V <; 0, then a similar result holds for the point 
a.) 
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PROOF. We only have to prove the second assertion. We can assume, 
without loss of generality, that (a, b) = (-1, 1). We use Theorem 7.25. 

Since, by assumption, V is T-bounded with T-bound < 1, there exists a 
c ;> 0 for which 

IlVfll " c(lIfll + II(T+ sV)fll) for all f E OCT) and s E [0, 1]. 

Let So E [0, I] be chosen such that I is not an accumulation point of 
eigenvalues of T + So V belonging to ( - I, I). By assumption, this holds for 
So = 0 in any event. Let Eo denote the spectral family of T + So V. Since 
ae< T + So V) n ( - 1, 1) = 0 (cf. Theorem 9.13), Eo(l - ) - Eo(O) is of finite 
rank. 

For all f E OCT) we have 

liVfll" c(lIfll + II(T+soV)fll) " 2c ll(I+IT+soVi)fll· 

It follows from this by Theorem 9.3 that 

<J, Vf) " 2e<J, (1 + IT+ soVDf) for f E OCT), 
and thus 

<f, Vf) " 2c<J, (1- T- soV)f) for f E R(Eo(O» n OCT). 

If s>so and s-so"(l/4e), then T+sV=(T+soV)+(s-so)V is self
adjoint and 

<J, (T+ sV)f) = <J, (T+ soV)f) + (s - so)(-f, Vf) 

" <J, (T + So V)J) + (l / 4c )<J, VJ) 

" <J, (T+soV)J) +i<J, (1- T-soV)J) 

= ~<J, (T+soV)J) +~llfIl2 "!llfIl2 

for J E R(Eo(O» n O( T). It is obvious that 

<I, (T+ sV)f) ;;. <f, (T+ soV)f) ;;. IIfll2 

for f E R(/ - Eo(1- »n OCT). 
Since R(Eo(l-) - Eo(O» is finite-dimensional, Theorem 7.25 implies the 

following: The interval (~, I) contains at most finitely many points of the 
spectrum of T + s V, and thus 1 is not an accumulation point of the 
eigenvalues of T + s V from ( - I, I). 

If we choose mEN such that m ;;. 4c, and p. = 1/ m, then in this way we 
can prove the assertion step by step for T+ p.V, T+ 2p.V, ... , T+ mp.V= 
T + V, starting with So = o. 0 

REMARK. In Theorem 9.14 the T-boundedness of V with T-bound < 1 is 
not necessary. Instead, it is enough to assume that V is T-bounded and 
T + s V is self-adjoint for all s E [0, I]. For the proof see the technique used 
in Theorem 9.2. 
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EXERCISES 

9.3. Let TI and T2 be self-adjoint such that D(TI):J D(T2). 
(a) If TI has a pure discrete spectrum, then so does T2• 

(b) If {"11)} and {Al>} are the eigenvalues of TI and T2, respectively (each 
eigenvalue counted according to its multiplicity), then IAP>I ;;.aN'>1 + b for 
allj, with appropriate numbers a> 0 and b ;;. o. 
Hint: Use the equality (i - T2) -I ... (i - T2) -I(i - T1)(i - T I) -I, the 
boundedness of (i - T2)-I(i - TI ), and (7.3). 

9.4. Let T be self-adjoint, and denote by E its spectral family. If V is T-bounded, 
and VE(J) is compact for every bounded interval J, then V is I(T)-compact 
for every E-measurable function 1 such that limltl ... oolt- ~(t)l- 00. 

9.5. For a normal operator A let us define the essential spectrum c'e(A) to be the set 
of accumulation points of a(A) plus the set of eigenvalues of infinite multiplic
ity. (This definition extends the definition for self-adjoint operators.) 
(a) A E ae(A) if and only if there exists a sequence Un) from D(A) such that 

lim infn .... oo II In II > 0, In ~ 0 and (A - A)In~O (Un) is a singular sequence for 
A and A). 

(b) If AI and A2 are normal, D(A 1)=D(A2), and p(A 1)n,l(A21*0, and if 
A 1- A2 is Af-compact for some p > 0, then aiA I) C a,(A21. 

(c) Let TI and T2 be normal. If a.«z - TI)-I) = a,«z - T2)-I) for some 
z E p(TI) n p(T2), then a.(TI) = a.(T2). If (z - TI)-I - (,; - T 2l- 1 is com
pact for some z E p( TI) n p( T2), then ae( TI) - ai T 2l. 

(d) With the aid of (c) and Theorem 8.10 prove that all self-adjoint extensions 
of a symmetric operator with finite defect indices have the same essential 
spectrum. 

9.6. Let Tbe a self-adjoint operator such that (a, b)n a(T)-0 or (a, b)n ae(T)
O. If V;;. 0 is symmetric, D(T) C D(V), T+ V is self-adjoint, and <I. VI> <: 
- <1, TI> + (a + 'IJ)IIIII2 for all 1 E E(a)D(T) with some 'IJ < b - a, then (a + 

'IJ, b)n a(T+ V)-0 or (a+ 'IJ, b)n a.(T+ V)-0, respectively. This holds in 
particular if V is bounded, symmetric, and 0 <: V <: 'IJ. 
Hint: Use Theorem 7.25. 

9.7. Let H be a Hilbert space, and let A be an unbounded linear functional on H. 
(A is a non-closable operator from H into K.) A is A-compact; however, the 
A -bound of A equals 1. (In Theorem 9.7 the assumption that A or Bare 
closable cannot be dropped.) 

9.3 Strong resolvent convergence 

If Tn{n E 1\1) and T are self-adjoint operators on the complex Hilbert space 
H, then we say that the sequence (Tn) converges to T in the sense of the 
strong resolvent convergence if (z- Tn)-I~(z- T)-J for some zEC\!R. 
Then this holds for all z E C \ R on the basis of the following theorem. 
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Theorem 9.15. Let Tn (n E 1\1) and T be self-a4ioint operators on the complex 
Hilbert space H. /f (zo - Tn) - 1 ~ (zo - T) -I for some Zo E C \ R, then 
(z - Til) - 1 ~ (z - T) -I for all z E C \ R. 

PROOF. If z E C and Iz - zol < 11m zol, then by Theorem 5.14 we have 
00 

(z- TII)-If- (z- T)-If= ~ (ZO-Z)k[(ZO- Tn)-k-I_(zo- T)-k-I]f 
k-O 

for all f E H. Therefore, 
N 

lI(z-Tn)-'f-(z-T)-'fll';;; ~ IZo-zlkll(zo-TII)-k-lf 

- (zo- T)-k-'fll + 2 ~ Izo - zlklIm zol-k-II/fll 
k>N 

for every N E 1\1. The second sum will be arbitrarily small if N is chosen 
large enough. The first sum tends to 0 for fixed N as n- 00, since 
(zo - Tn)-k-I ~ (zo - T)-k-I. Consequently, the assertion follows for all 
z E C such that Iz - zol < 11m zol. An iterative application of this step 
provides the assertion for all z in the half-plane where Zo lies. The limit 
relation (z- TII)-I~(z- T)-I implies that (z*- TII)-I~(z*- T)-I and 
(as (z - TII)-I and (z - T)-I are normal) that 

lI(z* - T,,)-'fll = lI(z - TII )-lfll - lI (z - T)-'fll = I/(z* - T)-Ifll· 

Therefore, for all f E H 

lI(z* - Til) -If - (z* - T) -lfll 2 

- lI(z* - Til) -lfll 2 - 2 Re«z* - Til) -If, (z* - T) -If) + lI(z* - T) -lfll2 

-1I(z* - T)-lfI/2 - 2 Re«z* - T)-'f, (z* - T)-If) + lI(z* - T)- 'fIl 2 

- O. 
Hence, the assertion holds for all z E C \ R. o 

Now we prove a few sufficient conditions for strong resolvent conver
gence. 

Theorem 9.16. Let TII(n E 1\1) and T be self-a4ioint operators on the complex 
Hilbert space H. The sequence (Til) converges to T in the sense of the strong 
resolvent convergence if one of the following assumptions is satisfied: 
(i) There is a core Do of T such that for every f E Do there exists an no E 1\1 

with the properties that f E D( Tn) for n ;> no and T J - Tf. 
(ii) The operators Til and T are bounded and Tn ~ T. 

(iii) D(Tn} = D(T} for all n E 1\1 and there are null sequences (all) and (bn) 
such that 

II(T- T,,)fll " a"lIfll + bllil Tfli for all f E D(T). 
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(iv) G(T)=limn ..... ooG(Tn), i.e., G(T) is the set of those elements (f, g)from 
H EB H for which there exists a sequence (in) such that fn E D(Tn) and 
(fn, TJn)~(f, g) (graph convergence). 

PROOF. 

(i) We have 

(i- T,,)-'f- (i- T)-'f 

= (i-Tn)-'(Tn-T)(i-T)-'f--l'O as n~oo 

for all f E H such that (i - T) - ':! E Do. As Do is a core of T, the set of 
these f is dense in H. Therefore, (i - Tn) - , ~ (i - T) -, by Theorem 
4.23. 

(ii) or (iii) implies (i); these cases are therefore also proved. 
(iv) It obviously follows from the formula G(T)=limn ..... ooG(Tn) that 

G(i - T) = limn ..... oo G(i - T,,). Let g E H be arbitrary. Then there is an 
f E D( T) such that g = (i - T)f. Furthermore, there is a sequence (fn) 
for which /n E D(T,,), f,,~f, and (i - T,,)fn~(i - T)f== g. Due to the 
inequality 1I(i - Tn) -III (; 1 it follows from this that 

lI(i- T,,)-'g - (i- T)-Igil (; 1I(i- Tn)-Ig -f,,11 + 111. - (i- T)-'gll 

== 1I(i - Tn) -I( g - (i - T,,)/n)1I + IIf" - fll 
~o. 

o 
Theorem 9.17. Let T" (n EN) and T be self-adjoint operators on the complex 
Hilbert space H, and assume that (i - Tn)-' ~ (i - T)-I. Then u(Tn) ~ u(T) 
for every continuous bounded function defined on R. 

PROOF. First we assume that the limits lim,±oou(t) exist, and liml-+_oou(t) 
= lim, ..... oou(t). These are the functions that can be considered as continu
ous functions defined on the Alexandroff-compactification IR of R. We 
consider the space C(R) with the maximum norm. The polynomials in 
(i - t) - I and ( - i - t) -, can be considered as elements of C(R). The set P 
of these polynomials has the following properties: (i) the constant func
tions lie in P, (ii) the elements of P separate the points of R (i.e., for 
x, y E R such that x =FY there exists a u E P for which u(x) =Fu(y», and (iii) 
if u E P, then u* E P. By the complex form of the Stone-Weierstrass 
theorem (cf. Hewitt-Stromberg [18], Theorem (7.34» P is therefore dense in 
C(R). Consequently, for every u E C(R) there exists a sequence (um) from 
P such that max'€Rlu(t)- u",(t)I~O as rn~oo. 

Now let f E Hand £ > 0 be given. Then there is an rno E N such that 
lu(t) - u",(t)1 (; (E/31Ifll) for all t E IR and m;;;' mo. As U",(/) is a polynomial 
in (i- t)-I and (-i- t)-I, we have 

um(Tn) ~ um(T) as n ~ 00 
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for all mEN. Consequently, there exists an no EN such that 

lIumo(Tn)] - umJT)jll "i for Ii > no· 

Hence, it follows for n > no that 

II u( Tn)] - u( T)fll " II u( Tn)] - umo( Tn)]11 + II um/ Tn)] - umo( T)fll 

+ lIumo(T)f - u(T)fll " £, 
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since lIu(Tn) - u'.l'o(Tn)1I ,,(£/3I1fll) and lIu(T) - umo(T)1I " (£/3I1fll). 
Therefore, u(Tn) ~ u(T). 

Now let u be an arbitrary continuous and bounded function defined on 
R Let (IPm) be a sequence of continuous functions with compact supports 
that tends to I non-decreasing. Then 

IIIPm(T)f - fll2 = f IIPm(t) - W dIlE(t)fIl2 ~ 0 as m ~ 00 

for every f E H. Because of uIPm E C(R) we have 

u(Tn)IPm(Tn) ~ u(T)IPm(T) as n ~ 00 

for every mEN, by the first part of the proof. For all n, mEN 

II u( Tn)! - u( T)fll 

" lIu(Tn)] - u(Tn)IPm(T)fll + lIu(Tn)IPm(T)f - u(Tn)IPm(Tn)fll 

+ lIu(Tn)IPm(Tn)! - u(T)IPm(T)fll + lIu(T)IPm(T)f - u(T)fll 

.;;; lIu(T,,)1I11f - IPm(T)fll + lIu(T)lllIf - IPm(T)fll 

+ lIu(T,,)IIIIIPm(T)f - IPm(Tn)]1I + lIu(T,,)IPm(T,,)f - u(T)IPm(T)fll· 

The first two terms on the right side will be small for sufficiently large m 
(observe that Ilu(Tn)II" sup{lu(t)1 : t E R}). The last two terms will be 
small for fixed m if n is chosen sufficiently large. Consequently, the 
assertion is proved. D 

Now we can prove, in particular, that the unitary group induced by a 
self-adjoint operator depends on this operator continuously in the strong 
sense. 

Theorem 9.18. Let Tn (n E N) and T be selj-acijoint operators on the camp/ex 
Hilbert space H. Assume that (i - Tn) - I ~ (i - T) - 1. 

(a) eilT• ~ eilT for all t E R 
(b) If Til > Y and T > Y for some y E R, then we a/so have e - IT. ~ e - IT for 

all t > O. 

PROOF. 

(a) The function s~eils is continuous and bounded on R. The assertion 
therefore follows from Theorem 9.17. 
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(b) With u(s) = e- Is for s ~ y and u(s) = e- /y for s <y we have u(T) = e- IT 

and u(Tn)=e- IT •• As, on the other hand, u is continuous and bounded, 
Theorem 9.17 can be applied again. 0 

Now we shall investigate the influence of the strong resolvent conver
gence on the spectral family. 

Theorem 9.19. Let Tn(n E N) and T be self-adjoint operators on the complex 
Hilbert space H, and assume that (i'- Tn)-l ~ (i - T)-l. If En and E are the 
spectral families of Tn and T, respectively, then, as n~oo, 

En(t)~E(t) 
s for all t E R such that E(t) = E(t - ). 

En(t -) ~ E(t) 

PROOF. Assume that E(t) = E( t -). Let (<<Pm) respectively (o/m) be non
decreasing respectively non-increasing sequences of continuous functions 
such that «Pm(s)~X( _ 00, I)(S), o/m(s)~X( _ 00, 'Ies), l«Pm(s)l..;; t, and 100m(s)1 ..;; t 
for all s E R. Then for all f E H 

II( «Pm{ Tn) - En{ t - ) )J1I 2 

= fl«Pm(s)-X(-00,/)(sWdIlEn{s)fIl2~O as m~oo 
(Lebesgue's theorem). Therefore, 

«pm( T,,) ~ En( t - ). 

It follows similarly that 

o/m(T,,) ~ E,,(t), 
and (because E(t) = E(t - » 

«Pm(T) ~ E(t) and o/m(T) ~ E(t). 

Hence, for every f E H and every t: > 0 there are continuous functions 
«P " X( - 00, I) and 0/ ~ X{ - 00, I) for which 

1I00(T)f- «p(T)fll < ~; 

we can choose «P = «Pmo and 0/ = o/mo with a sufficiently large mo' By 
Theorem 9.17 there is an no E N such that 

E 
II «p( T)f - «p( T,,)fll < "5 

1I00(T)f-0/(T,,)fll <~ 
for all n ~ no' 

We therefore have 
t: II 0/( Tn)f - <pC Tn)! II < 3"5 for all n;;> nC). 
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Since 

{ } 
1/2 

IIE(t)j - cp(T)]1I = jlx<-oo./j(S) - cp(sW dIlE(s)]1I2 

{ } 
1/2 

..; jll/l(S)-cp(sW dIlE(S)]1I 2 

f: 
= 1Il/I(T)] - cp(T)]1I ..; '5 

and 
f: 

II En( 1 - )] - cp( Tn)jll ..; II En( I)] - cp( Tn)jll ..; 11"'( T,,)] - cp( T,,)jll < 3'5' 
we obtain that 

IIE(I)] - En(t)]11 

< IIE(t)j - cp(T)j1l + IIcp(T)] - cp(Tn)]1I + IIcp(Tn)] - En(I)]1I 

< II l/I( T)] - cp( T)]II + II cp( T)j - cp( Tn)]11 + II cp( T,,)] - l/I( Tn)]11 

< f: for all n;> no' 

It follows similarly that 

IIE(I)] - E,,(t -)jll ..; f: for all n;;;' no. 

o 
It is worth noting that the results of Theorems 9.5 and 9.19 are not 

comparable. It is clear that o(T) = limHOOo(T,,) does not imply E(t) = 
S -lim,,->ooEn(t). 

Conversely, from En(t) ~ E(t) (for all 1 E R) we cannot infer o(T,,)~ 
o( T), as the following example shows. 

EXAMPLE 1. Let H be a separable infinite dimensional Hilbert space, and 
let {em : mEN} be an orthonormal basis of H. For every n E N let Tn be 
the orthogonal projection onto L{em : 1 <m <n}. Then Tn~I as n~oo. 
The spectral family E" of T" is given by the equality 

{
o for t<O, 

En(l) = 1- Tn for 0<1< I, 
I for t;> l. 

Therefore, En( t) ~ E(t) for all t E R, where E denotes the spectral family 
of I, i.e., 

E(t)={O fort<l, 
I fori;> 1. 

On the other hand, o(T,,) = {O, I} for all n EN, while 0(/) = {I} (cf. Exer
cise 7.41). 
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EXERCISE 

9,8, real Hilbert T and Tn(n E 1'1) 
IISSllmtlU0I1S (i)-(iv) of 

(a) For the spectral families En and E of Tn and T, respectively, we have 
En( t) ~ E( t) for every t E R such that E is continuous at t, 

(b) If there exists ayE Ii such that T;;. y and Tn;;' y for all n E 1'1, then 
e-'T·~e-IT for all t;;. O. 
Hint: Complexify. 
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10.l The Fourier transformation on L2(lRm ) 

In what follows we shall use so-called multi indices. A multiindex (of m 
components) is an m-tuple a = (ai' ... , am) of non-negative integers a) E 
l\Io,j= 1, 2, ... ,m. The absolute value of a is defined by the formula 

We set, for every x E Rm, 

Correspondingly, we write 

m 

x a = II X/'i. 
j=1 

Da = IT (~~)aJ = (_i)lal IT ~. 
j=1 lOX) j-I ax? 

The space of rapidly decreasing functions (the Schwartz space) S(Rm) is 
the vector space of arbitrarily many times continuously differentiable 
functions f: Rm_c for which we have the following: For every multiin
dex a and for every p E 1\10 there exists a cap ;;;. 0 such that 

IxlPI D'Y'(x) I <;; cap for all x E Rm. 

It is obvious that this assumption can also be formulated in the following 
way: For every muItiindex a and for arbitrary p, q E 1\10 there exists a 
capq ;;;. 0 such that 

(I + IxlYI D'Y'(x) I <;; capq(l + Ixl)-q for all x E Rm. 
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This formulation shows that S{lRm) c t.,,(lRm) for all p E [1, 00]. In particu
lar, for all / E S(lRm) we can define the Fourier trans/ormation Fo by the 
integral 

where 

m 

xy = L :>c.JYj for X,Y E IRm. 
)-1 

Theorem 10.1. We have FoS(lRm) c S(lRm). For every / E S(lRm) and every 
multiindex a 

D"Fo! = (-I)'a'FoM,,/, M"Fo! = Fo D"'j, 

where (M"f)(x) = x "'j(x). 

PROOF. It is easy to see that the function 

(Fo!)(x) = (2'1T)-m/2 f e-ixy/(y) dy 

is arbitrarily many times continuously differentiable. The differentiation 
can be done under the integral sign, i.e., 

D"(Fo!)(x) ... (2'1T)-m/2( -I)''''f e-iXY[y"!(y)] dy. 

It follows from this for any multiindex {3 that 

x.8(D"Fof)(x) - (2'1T)-m/2( -l)''''+'.8'fDff(e-iX)')[y"'j(y)] dy 

= (2'1T)-m/2( -l)''''f e- ixy D.8[y"'j(y)] dy. 

Since D.8M,,! is in S(lRm), too, x.8(D"Fof)(x) is bounded for all a and {3. 
Therefore, Fo! E S(Rm), and 

MpD"Fo/ = (-l)''''FoD.8MJ. 

Both formulae follow from this. 

Theorem 10.2. The function {to : IRm _IR defined by the equality 

{to(x) = exp( -4IxI2) for all x E IRm 

is in S(lRm). We have Fo{to = {to. 

D 

1 If no domain of integration is indicated, then the integral always is to be taken over Rm. 
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PROOF. The reader can verify I} E To prove that Fol} = 
we first consider the case m = 1. In this case we obviously have the first 
order differential equation 

t'if(x) xt'i(x) 

It follows from this by Theorem 10.1 that 

+ 
i.e., Fol} satisfies the same differential equation as I}. Due to the equalities 

(Fot'i)(O) (27T)-1/2! I}(x) = 1 = 

we obtain that 
taking products. 

= I}. The result can be derived for an arbitrary m by 
o 

Theorem 10.3. Fourier transformation Fo bijective linear mapping 
S(lRm) onto itself. We have 

(FO-lg)(X) = -mI2! eiXYg(y) g S(lRm). 

Moreover, (Fof)(x) = (Fo 1){ - x) for every fE S{lRm), and we have F~-= [. 

PROOF. For all i, g E S(lRm) 

! g(Y)(Fof)(y)eixy = (2'1T) m/2 J g(y)eiXY J e-iy'j(z) 

= (2'1T)-m I 2 J J(z) J e-i(Z-x)Yg(y) dz 

= J i(z)(Fog)(z - x) dz 

= f (Fog)(z)f(z x) dz. 

With g.(x)'" g{ t:x) we have for g E S(lRm) and t: > 0 that 

(Fog.)(x) (2'77)-m/2 J e-iXYg(~) dy 

_ (2'77)- mI2t:- mJ e-ixy/cg(y) dy 

t:-m(Fog)( ~); 
therefore, 

f g(9'){FoJ)(y)eixy dy = 

= J (Fogc)(z)f(z + x) dz 

= t:- m f (Fog)( -; )i{z + x) dz 

f (Fog)(z)f(u x) dz. 



292 10 Differential operators on Lz(Rm) 

If we replace here g by the function f) from Theorem 10.2, then it follows 
for ~~O (as Fo1t=f) and f)(O) = I) that 

(27T) - m/2 f eiXY(FoJ)(y) dy = f)(O)(2'IT) -m/2 f eiXY(FoJ)(y) dy 

= lim (27T)-m/2feiXYf)(EY)(FoJ)(y) dy 
<-->0 

= lim (27T)-m/2ff)(y)f(ty + x) dy 
<-->0 

= (27T)-m/2f(x) f f)(y) dy = f(x). 

It follows from this that Fo is injective and Fo- 1 has the given form. 
Moreover, for all f E S(lRm) 

(FJf)(x) = (27T)-m/2 f e-iXY(Fof)(y) dy = f( - x), 

and thus F04f(x) = f(x), i.e., F~ = I. Since R(Fo):J R(F~) = R(I) = S(lRm), 
the mapping Fo is surjective. 0 

In what follows we consider Fo as an operator on L:!(lRm) such that 
O(Fo) = S(lRm). 

Theorem 10.4. We have II Fofll = II fll and II Fo- ~II = II fll for all f E S(lRm) 
(here II. II denotes the norm in L2(lRm». Fo and FO- 1 possess uniquely 
determined extensions F and F belonging to 8(L2(lRm». Th~ operators F and 
F are unitary, and F= F* = F- 1. We have F 4 = I. The operator F is called 
the Fourier transformation on L2(lRm). 

PROOF. For f, g E S(lRm) we have 

(f, g) = ff(x)*(F;IFog)(x) dx 

= f f(x)*(27T)-m {f eiXY [ f e-iyzg(z) dZ] dY} dx 

= f (2'IT)-m {f e-iy-'!(x) dx r {f e-V-Zg(z) dZ} dy = (Fof, Fog)· 

In particular, II Fofll = Ilfll, and thus IlFo-111 = IIfll· Since S(lRm) is dense 
in L2(lRm ) (as Cooo(lRm) c S(lRm», there exist uniquely determined exten
sions F and F of Fo and FO- 1 from 8(L2(lRm». We obviously have 
IIFfll = IIFfll = IIfll for all f E L2(lRm). If f, g E L2(lRm) and Un)' (gn) are 
sequences from S(lRm) such thatfn~f and g,,~g, then 

(Ff, g) = lim (Fof", g,,) = lim (fn. Fo-1g,,) = <f, fig), 
n---+oo n~oo 
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i.e., F* = F. Moreover, 

FFJ = lim FFo- '1" = lim FoFo- '1" = lim fn = j, 
n--+oo n~oo n---+oo 

i.e., FF= I. We can prove similarly that FF= I. Therefore, F= F-·, and 
thus F is unitary. From F~ = I1S(Rm) it follows that F4 = I. 0 

The mappings Fo and F.9-· can be extended to L.(lRm) in a natural way. 
These extensions F. and FI are defined for f E LI(lRm) by the formulae, 

(Ftf)(x) = (2'17') -m12 J e-ixYf(y) dy 

(Ftf)(x) = (2'lT)-m/2 J eixYf(y) dy. 

It is easy to see that FI f and PI f are continuous functions such that 
I(Ftf)(x)I"; (2'lT)-m/211flll and I(Ptf)(x)I"; (2'lT)- mI21Ifll l for all x E IRm. 

Theorem 10.5. The mappings FI and P, of L.(lRm) into the space Coo(lRm) of 
continuous bounded functions defined on IRm are injective. For fE L.(lRm)n 
L2(lRm) we have 

(Ftf)(x) = (FJ)(x) and (F.f)(x) = (F-1)(x) 

almost everywhere in IRm. 

PROOF. Take anJfrom L,(lRm ) for which FIJ=O (i.e., (Ftf)(x) = 0 for all 
x E IRm). We have to prove that J = O. It follows from the equality FI J = 0 
that 

J J(x)(Fog)(x) dx = (2'lT)-mI2 f f e-i"Yg(y)J(x) dy dx 

= J g(y)(Ftf)(y) dy = 0 

for all g E S(lRm). Since Fog runs over the whole space S(lRm), 

f f(x)h(x) dx = 0 

for all h E S(lRm). Then this holds also for all continuous functions h 
defined on IRm and having compact support. Define K(n) = {x E IRm : Ixl 
..; n} for n EN, let x" be the characteristic function of K(n), and define 

sgnJ(x) = {~(X)IJ(X)I-I for f(x) =1=0, 
for J(x)=O. 

Then Xn sgnJ is measurable, Ix,,(x) sgnJ(x)1 ..; 1, and there exists a 
sequence (h) of continuous functions with supports in K(n) such that 



294 10 Differential operators on L2(Rm ) 

~(x)-sgnf(x) almost everywhere in K(n). We can assume without loss of 
generality that Ihix)1 <; I for all x E K(n) (since we can replace h.i(x) by 
h.i(x)Ih.i(x)I-1 for those x E K(n) for which Ih/x)1 > I). Consequently, 

1 If(x)1 dx = .lim f. f(x)hJ"(x) dx = O. 
K(n) J-+OO K(n) 

Therefore,f(x) =0 almost everywhere in K(n). As this hoMs for all nEN, 
we have f(x) = 0 almost everywhere. FI is then injective. The injectivity of 
i l can be proved similarly. 

If f E LI(lIlm) n L2(Rm) and!" = xJ, thenfn-f in LI(lIlm) and in L2(lIlm). 
For every n EN there exists a IPn E Cooo(K(n» such that 

£(n)lfn(x) - IPn(xW dx <; nv(~(n»' 
and thus 

1 Ifn(x)-IPn(x)ldx<; {v(K(n»l Ifn(X)-IPn(.XWdX}1/2 
K(n) K(n) 

<; (* r/2, 
where V(K(n» denotes the volume of K(n). Consequently, lPn-fin LI(Rm) 
and in L2(Rm ). Therefore, 

and 

(FJ)(x) = l.i.m. (21T)-m/2je- iX)'IPn(Y) dy. 
n ..... oo 

Here "l.i.m. = limit in mean" stands for the limit in L2(lIlm). Hence, (Ff)(x) 
= (Ftf)(x) almost everywhere. We can prove in a similar way that 
(F-1)(x)== (itf)(x) almost everywhere. 0 

(Ff)(x) = 1.i.m.(21T)-m/21 e-iX)'f(y) dy. 
n-+oo K(n) 

A similar formula holds for F - I. 

PROOF. The functions xJ belong to LI(lRm)n L2(Rm), and xJ-f in 
L2(Rm). Therefore, F(xJ)- Ff in L2(Rm). Since by Theor,em 10.5 

(F(xJ»(x) = (21T)-m/21 e-iXYf(y) dy, almost eveIywhere in Rm , 

K(n) 

the assertion follows. D 
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For f. g E L2(~m) the convolution f * g is defined by the integral 

(f * g)(x) = (2'17)-m/2 J f(x - y)g(y) dy. 

The integral exists for all x E ~m. because f(x -. ) E L2(~m) and g( . ) E 
L2(~m) imply f(x - . )g( . ) E LI(~m). (For the convolution of LI-functions, 
see Exercise 10.1.) Moreover, 

(f*g)(x) = (2'17)-m/2Jf(x-y)g(y)dy 

= (2'17) -m/2 J g(x - y)f(y) dy = (g * f)(x). 

Theorem 10.7 (The convolution theorem). For f, g E L2(~m) 
(a) FI(Ff· Fg)=FI(F-Y' F-Ig)=f*g. 
(b) The following assertions are equivalent: 

(i) Ff . Fg E L2(~m), 
(ii) F-Y' F-IgEL2(~m), 

(iii) f * g E L2(~m). 
In this case 

PROOF. 

(a) FI(Ff· Fg)(x) = «Ff)*, hex, . » with 

h(x,y) = (2'17)-m/2e iXY(Fg)(y) 

= (2'17)-ml.i.m. J. e-iy(z-x)g(z) dz 
n->oo K(n) 

= (2'17)-ml.i.m. J. e-iyzg(z + x) dz = (2'17)-m/2(Fg)(y), 
n->oo K(n) 

where gAz) = g(z + x). Moreover, let us set f _(x) = f( - x). Then it is 
obvious that (Ff)* = F1*-, and thus 

FI(Ff· Fg)(x) = (2'17)-m/2<F1*-, Fgx) = (2'17)-m/\1*-, gx) 

= (27r)-m/2!f(-z)g(z+x)dz = (f*g)(x). 

We can prove analogously that FI(F-~ . F-Ig) = f * g. 
(b) If Ff . Fg E Li~m). then in the formula f * g = FI(Ff . Fg) we can 

replace the operator FI by F - I and obtain that f * g E L2(~m) and 
f * g -= F-I(Ff . Fg). If f * g E L2(~m), then with hi = Ff . Fg E 
LI(~m) and h2 = F(f * g) E L2(~m) we have 

(Flhl)(x) = (f*g)(x) = (F- 1h2)(x) almost everywhere. 
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We show that hl(x) = hz(x) almost everywhere, and thus Ff . Fg = hI 
E Lz(Rm). To prove this it is sufficient to prove that f(hl(x)
hz(x»tp(x) dx - 0 for all tp E S(Rm) (cf. the proof of Theorem 10.5). 
This follows from the equalities 

fhl(X)tp(X) dx = fhl(X)(Fo-1Fotp)(x) dx 

= f (Flh1)(x)(Fotp)(x) dx 

= f(F-1hz)(x)(Fotp)(x) dx 

= «F-1hz)"', Frp) -= <Fh~, Frp) = <h~ q» 

= f h2(x)q>(x) dx. 

The equivalence of (i) and (ii) and the second equality follow from the 
formula F(h)=(F-1h)_. 0 

EXERCISES 

10.1. The convolution U. g)(x) = (2'IT)-m/z f j(x- y)g(y) dy is defined almost 
everywhere for all j, g E LI(Rm), and is a function from Ll(R"'). We have 
FlU. g) = (Fd) . (F. g). 

10.2. If f and Fd are from L1(Rm), thenj .. P1(Fd). 

10.3. (a) For f E Lz(Rm) and a E Rm let fa be defined by the equality ja(x) = 
J(x + a). Then (FJa)(x)" eiJCtl(Ff)(x). 

(b) LetjE Lz(Rm) and let (Ff)(x) +0 almost everywhere in IRm. Then the set 
{fa : a E iii"'} is total in L2(Rm) (Wiener's theorem). 
Hint: If g..L {f" : a E Rm}. then F.(Ff . Fg) .. O. 

(c) Let {} be as in Theorem 10.2. Then the set {{}" : a E IRm} is total in 
Lz(lRm ). 

10.4. We have (Fd)(x)-,>O as Ixl-'>oo for every j E L.(lRm) (Riemann-Lebesque). 
Hint: S(IR"') is dense in L.(lRm), and /,,-'>j in L](IR"') implies Fdn-,>Fd 
uniformly in IR"'. 

10.2 Sobolev spaces and differential operators 
on L2(lRm) with constant coefficients 

In what follows, for all s :> 0 define 

k.(x) = (1 + Ixlzy/2 for x E Rm 

and 
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L2• s(IIl'") is obviously a dense subspace of L2(lIlm ). The equality 

defines a scalar product on L2 • • (lIlm). We denote the corresponding norm 
by II • 11(.). The space (L2 • • (IIl'"), (. , . )(.» is a separable Hilbert space, since 

U. : L2 •• (lIlm) -7L2(1Il'"), UJ = kJ 

is an isomorphism of L2 .• (lIlm) onto L2(lIim). 
The Soholev space of order s is defined by the equality 

W2 .• (Rm ) = {fEL2(lIlm): FfEL2 .• (lIlm)} = F- 1L2 •• (Rm ). 

W2 • • (IIl'") is therefore a dense subspace of L2(Rm ), and the equality 

<f, g). = <Ff, Fg)(.) for f, g E W2 •• (lIim ) 

defines a scalar product of W2 •• (Rm). We denote the corresponding norm 
by 1/ • " •. Since F is an isomorphism of W2 •• (lIim) onto L2, .(lIim), the space 
W2, .(Rm) is also a separable Hilbert space. 

First we show that the functions from W2, .(lIlm) are differentiable in a 
certain weak sense. 

Theorem 10.S. 
(a) Let s;;;' 1, ~ = (8jl , ~'2' ••. ,8jm), (Mjg)(x) = xjg(x) and h. ,(x) = 

f(x + fW) for j = 1, 2, ... ,m. Then for all f E W2, sCllim) and j = 
1,2, ... , m 

in L2(Rm ). If f E S(lIim), then this limit equals Dj with a = 
(8jl , 8j2, ... '~'m)' We write Dj for this limit in case f E W2,s(Rm), as 
well. 

(b) If a is a multiindex and lal ~s, then the derivative Dj can be computed 
by iteration. The order of differentiation is irrelevant. 

(c) If s E No. then II . II. is equivalent to the norms 

PROOF. 

(a) For all x E iii"' 

F(~(Jj, -f»)(x) = ~(ei-'j' -1)(Ff)(x), 
If • If 
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and 

It follows from this that F(I/itXb .• - f)~M.JFf. and thus 

(I/i€)(h .• - f) ~ F-1M.JFf as € ~ O. 

By Theorem 10.1 this limit is equal to D,,! for all f E S{Rm). 
(b) If lal = I, then it is obvious that F Daf= xaPf E L2 • • _I(Rm). Conse

quently. D,,! E W2• s_I(Rm). If s > 2. then by part (a) we can therefore 
differentiate further. The commutativity of the order oj[ differentiation 
follows from the equality D<y= p-1MaFj. 

(c) We have IIfll; = IIk.PfIl 2• 

IIfll;.o = ~ II MaFfll2 and IIfll;.1 = IIFfll2 + ~ II Ma Ff1l2. 
lal<s lal-s 

Since 

I + ~ Ix al2 " C1(I + Ixl2Y " C2 ~ Ix al2 

lal-s lal<' 

"C3(I+j_r.~~.mxls)" C3(I+I<t~slxaI2) 
with appropriate constants C1• C2• and C3 (that depend only on m and 
s), all three norms are equivalent. 0 

Theorem 10.9. SupposefE W2. s(Rm ) and a is a multiindex such that lal "s. 
(a) We have <D,,!. g) = <f. Dag ) for all g E W2.lal(Rm). 
(b) The element Daf E L2(Rm ) is uniquely determined by the equality 

<Daf. g) = <f. Dag) for all g E COCO(IR:"'). 

PROOF. 

(a) If g E W2.lal(Rm). then Fg E L2•lal(R"'), and thus Fg belongs to the 
domain of the operator of multiplication by xa .. There:fore. 

<D"!. g) = <F Daf. Fg) = <MaFf, Fg) = <Fl. MaFg) 

= <Ff. F Dag) = <I. Dag ). 

(b) By part (a) we have <Daf. g) == <I. Dag ) for evc~ry g E CoCO(R"') 
C W2.lal(Rm). If fa is a further element from L2(Rm) su(:h that <fa. g> == 
<I. D"'g). then <la - D,,!. g> = 0 for all g E Coco(Rm). Therefore, fa = 
Daf. since Coco(jRm) is dense in L2(Rm). 0 

Theorem 10.10. 
(a) For every s > 0 the set CoCO(R"') is dense in S(R"') with respect to the 

norm II . II.· 
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(b) For every s > 0 the set Cooo(lJilm) is dense in W2, .(lJilm) with respect to the 

norm II· lis' 

PROOF. 

(a) Suppose rE No and r >s. We show that Cooo(Rm) is dense in S(lJilm) 
with respect to II .lIr,o; since /I. II. ",CII· IIr,o' the assertion follows 
from this. In order to prove the former statement, let t't E CoOO(R) be 
such that t't(t) = 1 for t", 1, t't(t) = 0 for t> 2 and 0", t't(t)", 1 for all 
t E IR. For every n E N let t'tn E Cooo(Rm) be defined by the equality 
t'tix) = t't(n-tlxj) for all x E Rm. If fE S(Rm) and we define/" = t't,jE 
Cooo(lRm) for all n EN, then /lO"fn - 0'111 ...... 0 as n ...... oo for every multi
index a. It follows from this that II!" - fllr, 0 ...... 0 as n ...... oo. 

(b) Because of part (a) we only have to show that S(Rm) is dense in 
W2, .(lRm). Since F is an isomorphism of W2, .(lRm) onto L2, .(lRm) that 
maps S(Rm) onto itself, it is sufficient to prove that S(Rm) is dense in 
L2, .(Rm). This is surely true, as Cooo(Rm) is dense in L2, .(Rm) (we can 
prove this the same way as we did the corresponding assertion for 
L2(lJilm), cf. Section 2.2, Example 8). 0 

An m-variable polynomial P of degree r has the form 

P(x) = ~ cax", 
lal<' 

where ca E C and Ca ~O for at least one a such that lal = r. If P is a 
polynomial of degree r, then the formula 

m a"l 
P(O) = ~ c" 0" == ~ ca( _i)lal IT ~ 

1"1<' /a/<, j-1 ax) 

defines a differential form of order r. We always assume that r=l'O, i.e., we 
only consider non-trivial differential operators. In what follows let P be a 
(fixed) polynomial. The equalities 

D(To) = Cooo(lRm), To! = P(O)f for f E CoOO(lJilm) 

define a differential operator on L2(lJilm) with constant coefficients. If we 
denote by Mg the operator of multiplication by the function g, then the 
following theorem holds. 

Theorem 10.11. 
(a) To is closable. For T=ro we have T=F-IMpF. T is called the 

maximal differential operator with constant coefficients induced by P. The 
operator T3 is equal to the maximal differential operator induced by the 
conjugate polynomial p •. 

:r::,...:::.-..,~--=~ 
(b) We have a(T)={P(x): xElRm} and (A- T)-I=F-1M('A_p)-.F for 

A E p( T). The operator T has no eigenvalues. 
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If (1 + IE then - T)- is a Carleman operator for every 
;\Ep(T), and 

(;\-

with 

'(;\- ') E 

PROOF. 

First define by the equalities 

fE 

Then To C TI and TI = F - IMp 1 F, where denotes the restriction 
of Mp s(~m) Theorem 'to.1), Since (as restriction a 
closed operator) is closable, the operator TI that is unitarily equivalent 
to M P, 1 is also closable. Therefore, To is closable, also. Now we show 

that To and 1= It will follow from this 

T = To= TI = F-1Mp, IF= F-1Mp,IF = F--]MpF. 

To = : Since C T I , we have To C Com;equently, is 
sufficient to prove that O( = S(Rm) octo)' For every E let 
us construct, as in the proof of Theorem 10.to(a), a sequence Un) from 
Cooo(~m) such that IID'Jn oafll ~O for all a, It follows from this that 
II fn - -;,0 and Tofn - -;,0. f E and thus 
O(T]) C OCTo). __ 

M p, 1= Mp: For this it is sufficient to prove that NIp, 0= M p , where 
o denotes the restriction of Mp Cooo(~rn), In order to prove this 

we have to the following: For every f D(Mp) E 
L2(~m) : Pf E Li~m)} there exists a sequence Un) from Cooo(~m) such 
that and ~Mpf. 'rhis can also be tht: same way in 
Section Example 8 (cf. also the of Theorem lO(b». 

Finally, Tti = Tti = T* = F-1(Mp)* F= F-1Mp*F. (cf. Section 5.1, 
Example I, (5.1». 
Since and Mp unitarily equivalent, 

For;\ peT) 

(;\- T)-I = (;\- F-IMpFr l 

= 1(;\- Mp)Ffl F- 1(;\ Mp)-

Because of the assumption r>O, the set {xE~m: P(x)=s} is a null 
set for every sEC (proof!). By Section 5.2, Example I, (5.14) the 

M p therefore has no eigenvalue. Then the same for, 
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(c) Assume that (1 + IPI)-I E L2(Rm ) and A Ep(T), i.e., there is an 1J >0 
such that IA - P(x)1 > 1J for all x E Rm. For all x E Rm such that 
IP(x)1 > 21AI + 1 we have the estimate 

IA - P(x)1 > IP(x)I-IAI = (tIP(x)I-IAI) + 4IP(x)1 

> 4 + 4I P(x)1 = HI + IP(x)l). 

Consequently, 

IA - p(X)I-1 <:; 2(1 + IP(x)l)-1 

for x E Rm such that (1 + IP(x)l)-1 <:; t(l + IAI)-I. 

Since, besides, IA - p(X)I-1 <:; 1J -I for all x E Rm, it follows that (A
p)-IE L2(Rm). The convolution theorem (Theorem 10.7) therefore 
implies that 

(A - T) - If = F - I [ (A - P) - IFf] = h" * f, 

where h" = F-I«A - p)-I). Since h" E L2(Rm ), the operator (A - T)-I 
is a Carleman operator. 0 

REMARK. In Theorem 1O.I1(b) the closure is superfluous for m = I, as can 
be easily seen. This is not true for m> I, as the example of P(xp x 2) = 
(l-X 1x2)2+ X; shows; in this case we have {P(x): xER2}=(0, 00). 

Theorem 10.12. The following assertions are equivalent: 
(i) A II coefficients c" of P are real. 

(ii) To is symmetric. 
(iii) To is essentially self-adjoint. 
(iv) T is self-adjoint. 

The proof immediately follows from Theorem 1O.lI(a). 

Theorem 10.13. Let T be a self-adjoint differential operator with constant 
coefficients induced by P, and let E denote the spectral family of T. 
(a) For all sER 

E(s) = F-IMX(XERm : P(x)~s}F. 

(b) If IP(x)l~oo as Ixl~oo, then E(t) - E(s)is a Carleman operator for all 
s, t E R such that s <:; t, and 

(E(t) - E(s»f(x) = (277) -m12 J es,l(x - y)f(y) dy, 

where es,l = F-1X(XERm: s<P(x)<;t} E L2(Rm). 
(c) If P(X)-HIO as Ixl~oo, then E(s) is a Carleman operator for al/ s E R. 

The same holds for 1- E(s) provided that P(x)~ - 00 as Ixl~oo. 
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PROOF . 

. (a) The first assertion is clear, since 

F(s) = MX{XERm: P(x)..;s) for s E IR 

is the spectral family of M p. 

(b) We have 

E(t) - E(s) = F-1MX{XER":s<P(x)..;t)F. 

Since IP(x)I-HO as Ixl~oo, the set {x E IRm : s <P(x)·' t} is bounded. 
Therefore, X{xERm: s<P(X)</} belongs to L2(lRm). The assertion then 
follows from Theorem 10.7. 

(c) If P(x)~oo as Ixl~oo, then {xElRm: P(x)";;;;s} is compact, and thus 
X(xERm: P(x)<.s}E L2(lRm). If P(x)~ - 00 as Ixl~oo, then X{XER": P(x»s) 

E L2(lRm). The assertion follows from Theorem 10.7 in both cases. 0 

A polynomial P of degree r and the operators To and :r induced by P 
are said to be elliptic if there exists a C ;;. 0 such that 

1+ IP(x)1 ;;. cO + IxI2)'/2 = Ck,(x) for all x E IRm. 

(Observe that we always have 1+ IP(x)I";;;; C' k,(x) with an appropriate 
choice of C' ;;. 0.) The principal pari of P is given by 

P,(x) = ~ c"x". 
1,,1=, 

Correspondingly, the principal pari of P(O) is given by 

P,(O) = ~ c" 0". 
1,,1=, 

Theorem 10.14. Let P be a polynomial of degree r, and let T be the maximal 
differential operator induced by P. Then the following statE'ments are equi
valent: 

(i) P is elliptic. 
(ii) The principal part of P vanishes only for x = O. 

(iii) O(T) = W2• ,(lRm). 
In this case the norms II . II T and II . II, are equivalent. 

PROOF. (i) implies (ii): Let us assume that there is an Xo E IRm, xo :;6 0 such 
that P,(xo) = O. Then we also have P,(sxo) = 0 for all s E R. Therefore, 

IP(sxo)1 = I ~ c"sla1xol";;;; C(I+lsxoI2)('-I)/2, 
1,,1<' 

in contradiction with the ellipticity of P. 
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(ii) implies (i): Let 1J = min{IPAx)1 : x E Rm , Ixl = I}. Then for all x 
ERm 

IP(x)1 = Ipr(x) + ~ Caxal;> Ixlr1J - C(I + IxI2)(r-l)/2. 
lal<r 

The ellipticity of P follows from this. 
(i) implies (iii): We have 

D(T) = F-I{JEL2(Rm): PfEL2(Rm)} 

= Foo.l {J E L2(Rm) : krI E L2(Rm)} = W2, r(Rm). 

Since 

Ilfll~ = IIfll2 + II Tfll2 = II Ffll2 + IIMpFfIl2, 

the equivalence of the norms II . II T and II . II r follows. 
(iii) implies (i): We obtain from the equality D(T) = W2, r(Rm) that 

D(Mp) = FD(T) =L2•r(Rm ) =D(MkJ 

By Theorem 5.9 Mk is relatively bounded with respect to Mp , therefore 
with respect-to MI~I' as well (since D(Mp)=D(M1PI) and IIM1P1fll= 
IIMpfll). The bounded ness of Mk,(l + M1Pr l, i.e., the boundedness of the 
function kr(l + IPI)-I, follows from this by Theorem 9.9. Consequently, P 
is elliptic. 0 

Theorem 10.15. Let T be a self-adjoint elliptic differential operator with 
constant coefficients on L2(Rm). 
(a) If m > I, then Tis semibounded. 
(b) If T is bounded from below, then E(t) is a Carleman operator for every 

tER. 

PROOF. 

(a) Since T is self-adjoint, P is real-valued. As T is elliptic, IP(x)I-HX) as 
Ixl~oo. Consequently, IP(x)I>O for alllxl;>co. Because of the con
tinuity of P it follows (due to the assumption m> I) that P(x) > 0 for 
alllxl ;>co or P(x) < 0 for alllxl ;;;'co; hence P(x)~oo or P(x)~- 00 

as Ixl~oo. The boundedness from below or from above follows from 
this. 

(b) If T is elliptic and bounded from below, then we obtain (as in the 
proof of part (a» that P(X)-Hx) as IxI--HlO. The assertion follows by 
Theorem 10.13. 0 

Corollary. Let T be a self-adjoint differential operator on L2(Rm) with 
constant coefficients. Then 
I. O'(T) = R or O'(T) = [y, 00) or O'(T) = (-- 00, y). 
2. If T is elliptic and m> 1, then O'(T) = [y, 00) or O'(T) = (- 00, y]. 
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3. We always have Hp(T) = {O}, Hc(T) = L2(lRm), and o(TJ = oiT) = 0c(T) 
(cf, also Exercise 10.7). 

EXAMPLE l. m = I, P(x) = x, P(D) = (I/i)(d/dx). Then Tis elliptic and not 
semibounded; a(T) = IR. 

EXAMPLE 2. m~l, P(x)=~;"lx}=lxI2, P(D)=-~j_l(a2/ax])=-d. 
Then T is elliptic and bounded from below; o( T) = [0, (0). 

EXAMPLE 3. m = 2, P(x) = x; + x1, P(D) = - (a 2 lax?) + (a 4/ax1). Then T 
is not elliptic but is bounded from below; a( T) = [0, 00]. 

EXERCISES 

10.5. Let f belong to W2 •• (lIlm) with s >mI2. Then f is Lipschitz with exponent 
8 E (0, I] n (0, s - (mI2», i.e., there exists a C ;;. 0 such that If(x) - f(y)l..;; 
Cjx-yl6 for all x,yERm• 

10.6. For rENo such that r < m the set Cooo(lIlm \ (O}) is dense ill W2• ,(Rm). 
Hint: If {} E Cooo(ll~m) is such that {}(x) = I for Ixl.;; 112 and (}(x) = 0 for 

. w w 
Ixl ;;. I and Dn(x) = D(nx), then D,J ~ 0; therefore, (I - Dn)f·~ f in the sense of 
W2• ,(lIlm) (cf. Exercise 4.25). 

10.7. If P is a non-constant polynomial, then Mp and F-1MpF have a pure 
absolutely continuous spectrum. 

10.3 Relatively bounded and relatively compact 
perturbations 

In this section we first give conditions in order that an operator 
Mq : W2.,(lRm)~L2(lRm), fH>qf be bounded or compact. For the sake of 
simplicity, we only consider integers r; this is sufficient in most applica
tions to differential operators. (Corresponding results for arbitrary r can be 
found in M. Schechter [34], Chapter 6.) 

Theorem 10.16. Let 0, s < r (not necessarily integral). Then for every '11 > 0 
there exists a C'I ;;. 0 such that 

11111. ~ 'I111f1l, + C'IlIlll for all f E W2.,(lRm ). 

PROOF. The assertion is equivalent to the inequality 
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For all N > 0 we have 

IIfllt.) = Jlf(x)I2(1 + IxI2y dx 

0;;; (I + N 2)' I If(xW dx + (I + N 2y-r I If(xW(l + Ix12)' dx 
Ixl";N Ixl>N 

0;;; (I + N 2Yllfl12 + (I + N2y-rllfll~r)' 

Due to the inequality s - r < 0, the assertion follows from this if N is 
chosen large enough. 0 

A measurable function q : Rm~c is said to be locally square integrable 
if f)q E L2(Rm ) for every f) E Cooo(Rm). This holds if and only if Iql2 is 
integrable over every compact subset of Rm. The set of locally square 
integrable functions obviously constitutes a (complex) vector space. This 
space will be denoted by L2,loc(Rm). For every q E L2, loc(Rm) let us define 

Nq(x) = {I Iq(y)lldy }I/2 forall xERm. 
Ix-yl..;' 

Nq is obviously locally bounded, i.e., it is bounded on every compact 
subset. Nq is even continuous (proof!). 

For every measurable function q : Rm~c and every pER let us define 
(the value 00 is allowed) 

for p<m,2 

for p>m. 

We denote by Mp,loc(Rm) the vector space of measurable functions q : Rm 

~c for which Mq, / . ) is a locally bounded function. Mp(Rm) denotes the 
subspace of those q E Mp. loc(Rm) for which Mq, p( .) is bounded. For 
q E Mp(Rm) we set 

Mq,p = sup{Mq,p(x): XERm}. 

For all PI' P2 E R such that PI 0;;; P2 we have 

Mp"loc(Rm) C Mp" loc(Rm) e L2, loc(Rm), 

M (Rm) eM (Rm). 
p) P2' 

if q E Mp,(Rm ), then we obviously have 

M q , P2 ..;; M q, p,' 

2 This definition goes back to F. Stummel [52] for p < 4. 

(10.1) 

(10.2) 
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EXAMPLE 1. Every bounded measurable function belongs to Mp(lRm) for 
every p>O. 

EXAMPLE 2. Assume a E IRm, c ;> 0, and 0 < 8 < m /2. Assume, furthermore, 
that the function q : IRm ~C is measurable and Iq(x)1 ;;;; clx - al- 8 almost 
everywhere in IRm. Then q E Mp(lRm) for all p > 28. This is obvious for 
p > m, since q is locally square integrable and q(x)~O as Ixl~ 00. Now 
suppose that 28 < p < m. Then 

M;' p(x) "' c2{1 + 1 Iy - al- 26 lx - ylP-m dY} 
Ix - yl < I Ix - yl < I 
ly-al<lx-YI ly-al>lx-YI 

"' c2 { 1 Iy - a!p-26-m dy + 1 Ix - yIP-28-m dy } 
Iy-al< 1 Ix-YI< I 

= 2c21 lyIP-28-m dy = C < 00. 
Iyl < I 

Of course, sums of such functions also belong to Mp(lRm). 

Theorem 10.17. Assume that r E Nand p < 2r. 
(a) There is a constant C > 0 such that 

IIqfll"' CMq,pllfll, forall qEMp(lRm) andall jEW2.,(lRm). 

(b) For every q E Mp(lRm) and every '11 > 0 there is a C'1 such that 

IIqfll "' 1I11fll, + C'1l1fll for all f E W2.,(lRm). 

PROOF. Take a i} E Cooo(lRm) such that i}(0) == 1 and i}(x) = 0 for Ixl ;> 1, and 
let i}. E Cooo(lRm) be defined by the equality 

i}s(x) = i}(S-IX) for x E IRm and s E(O, 1]. 

Let Om denote the unit sphere in IRm. Then for all f E CoOO(lRm), s E (0, 1) 
and wEOm 

f(O) = i}s(O)f(O) = - los :t (i}s(tw)f(tw» dt == ••• 

== (-1)' (SfS ... fS aa', (i}s(t\w)f(t\w» dt\ ... dt,_\ dt, 
Jo I, 12 t 1 

== (-I)'Ia S :t~(i}s(t\w)f(t\W»{Ia'l . .. Ia'r-1 dt, .... dt2 } dt l 

(-I)' sa' 
= (r-I)! 10 Fr(i}s(tw)f(tw»t,-I dt. 
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With 
at 

g(y) == g(tw) == a? (D-.(Iw)f(tw» for y co tw,O < I < s 

we therefore obtain by integration over the unit sphere Om that 

= cll'tr-11Ig(,w)1 dw dl == eli lylr-mlg(y)1 dy, 
o Om Iyl<s 

where Vm denotes the area of Om and dw the area element on Om' Since 

I g(y)1 < C2( ~ ID'1(y)1 + s-t ~ ID'1(Y)I) = : hey), 
lal<r lal<r 

we obtain for all E > 0 that 

If(0)12 < e 3i Iyj<-m dy f Ih(y)J2lyI2r-<-m dy 
. Iyl <, Iyl <. 

< C4s<i lyI2r-<-m { ~ 10'1(y)12 + s-2r ~ 10'1(Y)12 } dy. 
Iyl < 1 lal <r lal <r 

It follows similarly that for all s E Rm 

If(xW <: C4s< {f Ix - yI2r-<-m ~ 10'1(y)12 dy 
Ix-yl<1 lal<r 

+s-2rf Ix-yI2r-<-m ~ 10'1(y)l2dY}. 
Ix - yl < 1 lal <t 

In order to estimate II qfll we distinguish between two different cases. 
First assume that 2r > m. In this case, without loss of generality we can 

assume on the basis of (10.1) and (10.2) that p >m. Furthermore, choose 
E=2r- m. Then 

jlq(x)f(xW dx < C4S 2r - m jlq(xW 

x {f ~ 10'1(y)12 dy + s-2r f ~ 10'1(y)12 dY } dx 
Ix-yl< llal<r Ix-yl< Ilal<r 

< c4s2r- mM;'pj{ L 10'1(y)j2+s-2r L 10'1(Y)12 } dy 
lal<r lal<r 

< esM;'p{ s2r- m llfl/; + s-mllfll;_d· 
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Now let 2r " m. Then p <m. Choose ~ = 2r - p. We have 

flq(x)f(xW dx " C4S 2r -P f,q(xW{ f. ylP-m 2: ID1(y)12 dy 
Ix-yl<; lal<;r 

+s-2r I Ix - ylP-m L ID1(yW dY} dx 
Ix- <; I l"l<r 

"C6Mq~ {s2r- P llfll;+s-Pllfll;_I}' 

In both cases we obtain assertion (a) for f E Cooo(~m) provided that we 
take, for example, s = 

Since by Theorem 10.16 for every J.L > 0 there exists a C ;;;. 0 such that 
I" 

IIfll;-1 " J.Lllfll; + C"lIfll 2, 

assertion (b) follows for all f E Cooo(~m) in both cases provided that first s 
and then J.L chosen small enough. 

f W2, r(~m), then there exists a sequence Un) from Cooo(~m) for 
which J" ~ f in the sense of W2.l~m). Since the sequence Un) then 
converges also in L2(~m), there a Un) that converges to 
f almost everywhere. Then this holds for (qfn.) and qf, as well. Since the 
sequences (111".11,) and 011".11> are bounded, (1lqfn.lD is also bounded and 
Fatou's lemma implies that qf E L2(~m) and 

{ } 
1/2 

lim inf f dx 
k-,>oo 

lim infllqfn "lim inf('ljll!" + C"IIfn,lI) 
k-,>oo k k-,>oo' A 

'I} C"lIfll· 

We can prove assertion (a) for f o 
Using this we can now give conditions for the relative bounded-

ness and relative compactness of the perturbations of a closed operator T 
such that D( T) W2• ,(~m). 

Theorem 10.lS. Assume r E ~ and T is a closed operator on Lz(W) such that 
D( T) c Let be an operator L2(nm ) such that 

Vf = ~ q"D"j for f E Wz, ,(R"'). 
lal<r 

Let the functions qa be measurable, and assume that qa bounded for = r, 
l':1"1_,sup{lq,,(x)l: E ~m} = c, q" M".<~m) with Pa < 2(r -Ial)for la <r. 

Then V is T-bounded. If IIfll, <dllTfil + ellfll for a/l ff=' D(T), then the 
T-bound V less or equal to dc. If = for r, then 
T-bound of V is equal to O. 
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PROOF. If Mk is the operator of multiplication by kr = (1 + I . 12)'/2 on 
L2CRm ) and T; = F -IMk F, then 1', is a self-adjoint operator on L2CRm) and 
D(Tr) = W2• rCRm). By Theorem 5.9 the operator Tr is T-bounded, i.e., there 
exist contants d and e such that II Trfll ,dll Tfll + ellfll for allfE D(T). Let 

v, = L qaO '" and Vo = L qa 0"'. 
1"'1-' lal<r 

We obviously have 

IIVJII ,cllfll, = cllTJII ,cdllTfll + cellfll· 
It is therefore sufficient to show that for every f > 0 there exists a C. ;;. 0 
such that 

II Vofll , fllfll, + C.llill for all f E W2• r(Rm ). 

Since oaf E W2• r_lal(Rm) (because MaFf E L2. '_lal(Rm», by Theorem 10.17 
for every '1/ > 0 there exists a C1j;;;' 0 such that for all lal <r and f E 
W2.,(Rm ) 

Ilqa D"'fll ' 'l/IIO"'1I1'-lal + C1jIlD"'fll ' 'l/lIfll, + C1j II filial' 
This gives, together with Theorem 10.16, the assertion. o 

In order to prove the relative compactness of perturbations, we need the 
following auxiliary results. 

Theorem 10.19. Let 0 ,s <r (not necessarily integral). The mapping 

4> : W2• r(Rm) ~W2.s(Rm), f~ ((Jf 

is compact for every q> E Cooo(Rm). 

PROOF. The operator 4> is compact if and only if the operator K defined on 
L2(Rm ) by the formula 

is compact, since the four operators at the ends are unitary (cf. Section 
10.2 for Us and Ur). By Theorem 10.7 we obviously have for f E L2(Rm) 
that 

(Kf)(x) = J (l + IxI2y/21f!(x - y)(1 + lyI2)-rI 2f (y) dy 

with 1f! = (27T)-m/2Fq> E S(Rm). The operator K is therefore an integral 
operator with kernel 
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Since 1/1 E S(Rm), for every I E ~ there is a BI such that 

1I/I(x)1 < BI(I + Ixl}-I for all x E Rm. 

For n E ~ let us set 

for 
for 

Iyl<n, 
Iyl>n, hll(x,y) = k(x,y) - k,,(x,y). 

We shall prove the assertion by showing that for the operators K" and H" 
induced by kll and h" the following holds: K" is a Hilbert-Schmidt operator 
and IIH"II-+0 as n-HtJ. 

For Iyl <.n and Ixl > 2n we have 

II/I(x - y)1 < BI(l + Ix - yl)-I < BI(I +4Ix lr"· 

It follows from this that for 1= m + I + s and an appropriate constant C 

1I/I(x-y)I<.C(I+lxl}-m-l-s for Iyl<n andall xERm. 

We therefore have 

Iyl <n, 
Iyl>n, 

and thus k" E L2(R'" x Rm), i.e., K" is a Hilbert-Schmidt opl~rator. 
To estimate the norm of H", we use the corollary to The:orem 6.24. We 

have 

1 1I/I(x-y)I(l+lyI2)-r/2 dy < C.(l+n)-rjll/l(x-y)ldy 
Iyl ;." 

< Cil+n)-r < Cil+lxl}-s(l+ny-r 

for Ixl <. n. Since 1/1 E S(Rm), we have 

1 1I/I(x-y)I(i+lyI2)-r/2 dy < c3j(l+lx-yl}-m-r(l+IYI}-rdy 
Iyl ;." 

< c3 { { (I + Ix - yl)-m-'(1 + Iyl)-r dy 
Ix - yl <: Ixl/2 

+{ (l+lx-yl)-m- rdY} 
Ix - yl > Ixl/2 

< Cil + Ixl)-r j (1 + Ix - yl)-m-r dy 

+C31 (l+lyl)-m-rdy 
lyl>lxl/2 
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for Ixl >n. Consequently, it follows for all x E ~m that 

Furthermore, 

J (1 + Ixl)sl1j;(x - y)ldx " C7 J (l + IxlY(l + Ix - yl) -m-s-I dx 

= c7 {1 + 1 (1 +lxI)S(1+Ix-yl)-m-s-I dX} 
Ixl <; 21yl Ixl> 21yl 

" C7 { (I + 21ylY J (l + Ix - yl)-m-s-I dx 

+ J (I + IxI)S(1 +4I xlr m - s- 1 dX) 

" Cg(I + Iyl)s. 

Hence, for all y E ~m such that Iyl >n (and thus for all y E ~m) 

It follows therefore from the Corollary to Theorem 6.24 that IIBnll <: 
C9 (1 + ny-r _0 as n_oo. 0 

Theorem 10.20. Assume that sEN, q E Mp(~m)for some p < 2s and Nix)
o as Ixl- 00. Then the mapping 

Q : W2.s(~m) _Li~m), f~ qf 

is compact. 

PROOF. Let Mk be the operator of multiplication by the function ks' and let 
~=F-IMkF:We have to prove the ~-compactness of Q. By Theorem 
1O.17(b) th~ operator Q is obviously ~-bounded with T,.-bound zero. 
Therefore, by Theorem 9.11 it is enough to prove the T,.2-compactness of 
Q. This, in turn, is equivalent to the compactness of 

We shall prove this in what follows. 
If p :> m, then set 'T = p. Then 

If p <m, then we choose a 'T for which p <'T < min(m, 2s). Then Holder's 
inequality with the exponents p = (m - p)/( 'T - p) and p' = (m - p)/(m - 'T) 
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gives 

Consequently, in each case we have found a T for which 

T < 2s and Mq,~(x) ~ 0 as Ixl ~ 00. 

Now let cp E Co""(lRm) be such that cp(x) = 1 for Ixl '" 1, cp(x) = 0 for Ixl ~ 2 
and 0", cp(x) '" 1 for all x E IRm. Let the functions CPn E Co""(lRm) be defined 
by the equality CPn(x) = cp(n -IX) for n E N and x E IRm. Then by Theorem 
10.19 the operator 

<l>n : W2,2r(lRm ) ~W2,s(lRm), ff-4 cP,J 

is compact for all n E N. Since the mapping Q : W2,.(lRm)~L2(lRm) is 
bounded by Theorem 10.17, the compactness of 

Q<I>n : W2. 2r(lRm ) ~L2(Rm), ff-4 qcp,J 

follows. As Mq,1'(x)~O when Ixl~oo, we obviously havc~ M(I-IJI.)q,1'~O 
when n~oo. It follows from this for the operators 

An : W2, 2r(lRm ) ~L2(lRm), ff-4 q(l - .pn)f 

that IIAnll~O (cf. Theorem 10.17). This implies that Q=limn--.""Q<I>n' 
Hence, Q is compact. 0 

Theorem 10.21. Let r, T, and V be defined as in Theorem lO.IS. 
(a) If qa = o for lal = rand 

NqJx) ~ 0 as Ixl ~ 00 for lal < r, 

then V is T-compact. 
(b) If T;s selj-a4ioint, D(TP) C W2,s(lRm) for some p > 1 and s >r, and 

qa(x)~O for 

Nq• (x)~O for 

then V is T'-compact for every t> l. 

PROOF. The mappings 

and lal = r, 

and lal <t, 

W2,,(lRm) ~W2.'_lal(lRm), ff-4 D~ 
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are hounded, and by Theorem 10.20 the mappings 

W2,'_lal(~m) ~L2(~m), g ~ qag 

are compact for lal < r. The compactness of the operators 

Va : W2,,(~m) ~L2(~m), fH qaDi 
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follows from this for all ex such that lal <r. This gives the T-compactness 
of V for part (a) of the assertion. 

We can show the compactness of 

Va : W2.s(~m) ~L2(~m), fH qaDi 

for lal = r in an analogous way. Since D(TP) C W2, s(~m), this gives the 
TP-compactness of V. As V is T-bounded by Theorem 10.18, we obtain the 
T'-compactness of V for every t> I by Theorem 9.11. This proves part (b). 

o 
EXERCISES 

10.8. (a) Assume that q E 4. loc(Rm) for some p ;;. 2 (i.e., q is measurable and IqlP 
is integrable over every compact subset of Rm). If p> 2ml p for p > 2 
and p ;;. m for p = 2, then q E Mp,lo.,(lRm). 

(b) Prove a corresponding result for Mp(Rm). 

10.9. Let T be defined by the equalities D(T)= W2,2(1R), Tf= -Aj+qf, where q 
is a continuous real-valued function with compact support. If fR q(/) dl < 0, 
then T has at least one negative eigenvalue. 
Hint: Theorem 6.33, 7.26(b) and 10.2 I (a). 

10.10. Let T be a self-adjoint operator on L2(Rm). 
(a) If D( T) C W2, ,(Rm) for some r > m 12, then (A - T) - 1 is a Carleman 

operator for every AEp(T). The operator E(b)- E(a) is a Carleman 
operator for all a, b E R. 

(b) If D(Tn) c W2, ,(Rm) for some r >m/2, then E(b)- E(a) is a Carleman 
operator for all a, bE IR. 

10.4 Essentially self-adjoint Schrodinger operators 

In this section we consider operators on L2(lijm) that are induced by 
differential forms 

m 

7f = L (Dj - bif + qf, 
j=1 

with Dj = (lji)(ajax.;) and with real-valued functions h.; E cl(lijm) and 
q E L2,loc(Rm) (we have used the notation (Dj - b)'2j= (Dj - bj)[(Dj -
bj)J]). The operator T defined on L2(lijm) by 

D(T) = Cooo(lijm) and Tf = 7f for f E D(T) (10,3) 
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is obviously symmetric. For f E D( T) 

m 

Tf - -df - 2 ~ bjDJ+ (bl+i divb+ q)f 
j-I 

with b-(b l • bl •...• bm) and bl-Ij_Ib}. 

(10.4) 

In non-relativistic quantum mechanics operators of this form occur as 
Schrodinger operators of systems consisting of finitely many charged par
ticles in an electromagnetic field. For m'" 3 we encounter the Schrodinger 
operator of one particle in an electric field with potential q and a magnetic 
field with the vector potential b-(b l • bl• b3). 

(lO.S) 

For m - 3N the Schrodinger operator of a system of N charged particles has 
this form: If in this case we write 

R3N 3 x = (XI. I' XI. 2' XI. 3' X2. I' .••• XN_I. 3' XN.I' XN.2' XN.3)' 

where JC.J - (JC.J. I' JC.J. 2' JC.J. 3) are the coordinates of the jth particle, then 

N 3 2 
Tf(x) = ~ ~ (Djk - ~k(Xj» f(x) + q(x)f(x) 

j-I k-l 
(10.6) 

with 
N I-I N 

q(x) ... ~ ~ qj,(Xj - x,) + ~ qix) 
1-2j-1 j-I 

(10.7) 

and 
bjk ... ~bk for j = 1.2, ... ,N and k ... 1,.2.3, ' 

where the factor ~ depends on the charge of the jth particle. (Here we have 
replaced by I all physical quantities that are irrelevant for the properties 
studied here.) 

Theorem 10.22. Let the operator T be defined as in (10.3). Assume that 
b l •••• , bm E C l(Rm) are bounded with bounded derivatiV!s, and q E Mp(R'") 
for some p < 4. Then T is essentially self-a4joint and D(T) .. W2 2(Rm). The 
operator T (and thus also T) is bounded from below. • 

The proof can be obtained immediately from Theorems S.28, 10.18. and 
9.1 if we consider - fl as the unperturbed operator (cf. the representation 
(10.4) of T). 

The operators under (10.S) and (10.6) satisfy the assumptions of Theo
rem 10.22 in almost all physically realizable cases. 

In this section we actually prove that under much more general assump
tions these operators still remain essentially self-adjoint, while D(T) is then 
generally no longer equal to W2• 2(Rm). The following theorem is due to 
T. Ikebe and T. Kato [44] in a somewhat more general form. Our presenta-
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tion relies on a proof of e.G. Simader [51] for a somewhat more general 
result. 

For r E N let W2, "loc(RnI) denote the space of (equivalence classes of) 
the functionsj: RnI_C for which iijE W2,,(RnI ) for all ii E Cooo(Rm), For 
every j E W2, "loc(Rm ) and j E {I, 2, .. , , m} there is exactly one i.J E 
W2, ,_I, loc(Rm) such that for all k > 0 

'XJci.J = limXk~(i.J.-j) in the sense of L2(RnI), 
.... 0 It: ' 

where .ti,. is defined as in Theorem 10,8 and Xk denotes the characteristic 
function of Mk = {x E Rm : Ixl <; k } (on Mk the function /i can be defined 
by the equality M/i = XkOi iij) where I} E CoOO(RnI) and I}(x) == 1 for x E 
Mk ; this definition of M/i is independent of ii). For j E W2, ,(Rm) we have 
.ti == OJ. Consequently, for j E W1, "loc(lRnI) we define OJ= /i. If I} E 
Co""(RnI) is such that ii(x) = I for x E Mk , then 

OJ(iij)(x) == O),(x) almost everywhere in Mk • 

Since OJ E W2, ,_I,loc(Rm), we can define successively all derivatives Oa.j 
for lal <;r; we have Oa.jE W2,r_lal,loc(Rm). The function hj belongs to 
W2, I, Joc(Rm) provided that h E C I(Rm) and j E W2, J,loc(Rm). In particular, 
the expression ~j-l(OJ - bit is meaningful for bj E C I(R"') and j E 
W2, 2, Joc(R"'). 

Theorem 10.23. Let the operator T be dejined as in (10.3). Let bl' b2, ••• , bm 
E C l(Rm) and let q belong to Mp, Joc(Rm) jor some P < 4. Moreover, assume 
that q = ql + q2 with 

ql E Mp(Rm) jor some p < 4, 

q2(X) > - Clxl2 jor some C > 0 and all x E Rm. 

Then T is essentially self-atfjoint. We have 

m 

fj = ~ (OJ - b)2j + qf jor j E D(f). 
)-1 

For the proof we need the following auxiliary theorems. 

Auxiliary theorem 10.24. Ij q EMiR"'), then Iqll/2 E Mer(R"') jor every 
a> p/2. (A similar result holds jor Mp,loc(Rm) and Mer,loc(Rm». 
PROOF. If p> 2m, then it follows by the Schwarz inequality that 

1 Iq(y)ldy <; {c 1 Iq(y)12 dY } 1/2 " C 1/2Mq, p 

Ix-yl<1 Ix-yl<1 

for all x E Rm, i.e., !qll/2 E Minm) for" > m, and thus for all " > p/2. 
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If m <. p < 2m and (J > pl2 ~ m/2, then 

f. Iq(y)"x - yla-m dy 
Ix-yl<J 

<. {f. Iq(y)1 2 dy f. Ix - ylla-2," dY } 1/2 <. CMq, p' 

Ix-yl< I Ix-yl < I 

because 20' - 2m > - m, 
If p <m and a> p/2, then it follows for E - 0' - (pI2) > (I that 

f. Iq(y)lIx - yla-," dy 
Ix-yl<1 

== f. Ix - yl,-(,"/2)[ Iq(y )Hx - yla-'-(,"/2)] dy 
Ix-yl<1 

Consequently, the assertion is proved in each case. o 
Auxiliary theorem 10.25. Let the functions bii = 1,2, ... , m) and qi be the 
same as in Theorem 10.23. For every TJ > 0 there exists a C1J ~ 0 such that 

m 

<lqllf, f) <: TJ ~ II(Oj - b)fll2 + C"lIfll2 

i-I 
for al/ f E Co""(IR'"). 

PROOF. Iqd I / 2 belongs to M..(R'") for some (J < 2 by Auxiliary theorem 
10.24. Take a If E CoOO(R'") such that If(X) == 1 for x E supp f. and set 
h=lgradlfl+llfl. Set, furthermore, cp,(x)=(lf(xW+E)I/2 for every £>0. 
Then by Theorem 10.17 

<Iqllf,f) = IlIqlj1/~12 <: Illqtl)/~.lfI12 <. t IIcp.lfll~ + C11ICP.lfli l 

m 

<. TJ ~ !IIf(x)OjCP.(xW dx + C2111grad Iflcp. + 'If'cpi 
i-I 

m 

= * .~ f CP.(x)-21 lf(xWlf(x)* OJ(x) - f(x)(Dj(x»*,2 dx 
J-l 

+ C211 hcp.1I2 

m 

= * ~ f cp.-2Ir(Oj - bj) - f(Oj - bj)*r! dx + C211 hCP.1I2 

J-I 

m 

<. TJ ~ f cp.-2IfI2IDj - bjl2 dx + C211hCP.1I 2 

i-I 
m 

<. TJ ~ fIDj(x) - bix)f(xW dx + C2I1hCP.112. 
j-I 

The assertion follows by letting £ tend to 0, because h(x) = 1 for x E supp f. 
r1 
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Auxiliary theorem 10.26. Let T be defined as in Theorem 10.23. For n E '" 
let 

R" = {x E Rm : n ..; Ixl..;; 2n} and Q" = {x E Rm : I or;;; Ixl or;;; 3n }. 

There exists a C ;;.. 0 such that for a/l f E Co""(Rm) and a/l n E '" 

and 
m 

~ 1 I(Dj - bj)fl2 dx ..; 21 I Tfl2 dx + Cn21 Ifl2 dx. 
j_ 1 Ixl.:" Ixl.: 2" Ixl.: 2n 

PROOF. Let 'II E Co""(Rm) be such that 

{
I for 

o " 'II(x) " I for all x E Rm, 'II(x) = 0 for 
I" Ixl" 2, 

Ixl " i and Ixl ;;.. 3. 

Moreover, for all n E '" set 'IIix) = 'II(n -IX). Since'll" E Co""(Rm) and 

supp 'II" C Qn> supp(grad 11,,) C Q" "R", 

by Auxiliary theorem 10.25 we have for all f E Co""(Rm) that 

1171" Tfll2 + 111I,J11 2 ;;.. 2Re<lInTf,'I/,J) = 2Re<Tf,'I/;.t) 

= 2ReL~1 «D) - bj)f, (D) - b)( 'I/;.t) + <qq,J, 'I/,J) } 

{ 
m m 

= 2Re ~ II'I/,,{Dj - bj~fll2 + 2 L <'1/,,(0) - b)f, (OJ'll,,)f) 
)-1 )=1 

+ <qt'l/,J, 1I,J) + <q211,J, 'I/,J) } 

{ 
m 1 m 

;;.. 2 )~tll'IJ,,(Oj-b)fIl2_4 ~ll1l1n(D)-b)fIl2 

- 4 ~ II (OJ'll,,)Jll z - ~ ~ 11(0) - b)'II,JIIZ 

)=1 )=1 

- Ctll'I/,Jllz - Czn21111JII2}. 
Since 

II(Oj - b)l1Jllz = II {D)'II,,)f + 'I/,,{Oj - b)fll2 

..;; 2{ II {OJ'll,,)fIl 2 + II '1/" (D) - b)fIl2 }, 

and 
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we can further estimate: 

1 m 
11'11 .. Tfll2 + 11'I1..f1l2 > 2" ~ II '11 .. (OJ - b)f11 2 - C4n2 i lJ(xW dx 

)=1 On 

I m 

> 2" ~ i I(Oj - bj(x»)f(xW dx - C4,,2 i If(x)j2 dx. 
j-I R. On 

The first assertion follows from this immediately. The second assertion 
can be proved analogously if we replace 11 .. by a function K .. E Cooo(lRm) 
such that K .. (x) = 1 for Ixl "n and KII(x) = 0 for Ixl > 2n. 0 

Auxlllary theorem 10.27. Let T be defined as in Theorem 110.23. For every 
f E Cooo(Rm) there is a C > 0 such that 

II~( fJ)11 " C {II Tfll + IIfll} for all f E Cooo(lRm). 

PROOF. By (10.4) and Auxiliary theorem 10.26 we have for f E Cooo(lRm) 
that 

1I~(fJ)1I = II T(fJ) + 2 )~l bj O/fJ) - (b2+ i div b + q)fJ11 

= ~1'}Tf- (~f)f +2)~1 (bjf + Djf) OJ- (b2+:, div b + q)f~1 

" IIfTfll + 1I(~f)fll + 2L~1 {bjf + Ojf) 0~1 
+ lI(b2 + i div b)ffll + IIq1'}fll 

"CI{IITfll+llfll} + IIq1'}fll, 

where C1 depends on * (more precisely, on the supremum of 1*1, Igrad *1. 
I~f I and on the supremum of b2 and Idiv bl on supp *). If we set 
qo(x) = q(x) for x E supp * and qo(x) = 0 for x f1. supp f, then qo obviously 
belongs to Mp(Rm) for some p < 4, and by Theorem 10.17 and by the 
inequality II gll2 " lI~gll + II gil 

II q(*J) II = IIqo(*f)1I ..;;; tll~(1'}J)1I + C2111'}fll, 

and thus 

The assertion follows from this. o 
PROOF OF THEOREM 10.23. 
(a) First we prove the essential self-adjointness of T. Take a cp E Cooo(lRm) 

such that . 

{ I for Ixl.;~ 1,· 
o " cp(x) ..;;; 1, cp(x) = 0 for Ixl ;.2. 
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For every n E N let <pix) -= <p(n -IX), and let T" be defined similarly to 
T provided that we replace the functions bj and q, by the functions 

bj,,,(x) = <P3"(X)~(x), q/,,,(x) = <P3,,(X)q,(x), 

Then it is obvious that for all n E Nand f E CoOO(Rm) 

<p" Tf = <p" T"J and T( <p,J) = T,,( <p,J), 

Now assume that g E R(i - T).l, We have to show that g ==0. Since the 
operators T" are essentially self-adjoint by Theorem 10.22, for every 
n E N there exists an f" E CoOO(lRm) for which 

1I<p"g - (i - T,,)f,,11 <; !. 
n 

Then we have in particular that (d. Theorem 5.1S) 

IIf,,1I <; lI(i - T,,)f,,11 <; Ii<p"gll +!. n 
Therefore, the sequence (in) is bounded. Auxiliary theorem 10.26 
implies that 

m 

~ f I(Dj - b) !"12 dx <; 2 f I T!n1 2 dx + C In 2 f 11,,12 dx 
j-1 R. Q. Q. 

= 2f IT,J,,12 dx + C,n2f 1!"12 dx 
Q. Q. 

= 2 f l(i- T")!,, - <p"g + (<p"g-if,,)jZ dx 
Q. 

<; 4n- 2 + 4f l<p"g - if,,12 dx+C,n 2 f 1!,,12 dx 
Q. Q. 

<; 4n -2 + SII<p"gIl2 + C2n211!,,112 

<; C3{ 1 + n211<PngIl2) <; C3(1 + nll<p"gll)2, 

and thus (because IDj<p,,1 <; Kn-' with K= sup (Igrad <p(x)1 : x E Rm}) 

IIj~1 {Dj<p,,)(Dj - bj, n)!"ll = L~, (Dj<p,,)(Dj - bj)!,,11 

= {f.I.f (Dj<p,,)(Dj - b)J,,12 dX} 1/2 
R. }-I 
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Consequently, because of the equality < g, (i - T,,)( f/J,J,,) > = < g, (i - T) 
(f/J,J,,» - 0 we obtain the estimate 

1I'P"gIl2 = <'Png, (i- Tn)Jn +['Png-(i- Tn)!,,]> 

<;; I<g, 'Pn(i- T,,)!,,>I + * 1I'P"gll 

= I<g, (i - T,,)('P"!,,) + 2 ~ (O)'P,,)(O) - b), ")!,, - (tlf/J,,)J ,,>1 
}-I 

I 
+ -;;1I'Pngll 

<; {~.I gl2 dX} 1/2 { 2t~1 (O)'Pn)(O) - bj • n)j"I1+ II (tlqJn)!n II } 

I 
+ -;; lIf/Jngll 

{ } 1/2 { I I} I 
<;; C6 ~.I gl2 dx -;; + lI'Pngll + n211!nll + -;; lI'Pngll· 

Since the left side tends to II gll2 and the right side tend:i to 0 as n~oo, 
it follows from this that g =: O. Hence, R(i - T).L = {O}. We can prove 
similarly that R( - i - T).L = {O}. The operator T is therefore essen
tially self-adjoint. 

(b) If JEL2(Rm)n W2• 2. loc(Rm) and ~j_I(Oj-b):r+qfEL2(Rm), then 
! E O(T·) = O(T) and 

m 

T· J = TJ = L (OJ - b/! + qf, 
)-1 

because for every g E Cooo(Rm) = O( T) with supp g c {x E Rm : I xl <; k} 
and for any {to E CoOO(Rm) with {J(x) = I for Ixl <;; k we have 

m 

<1, Tg> = < {toJ, Tg> = < L (0) - b))2( {Jj) + q{toJ, g> 
)-1 

m 

= < L (0)- bjfJ+ qf, g>. 
)-1 

Now letJ E O(T). There exists a sequence (fn) from C(r"(Rm) for which 
In ~ J and TJn -+ TJ. In particular, (fn) and (Tf,,) are Cauchy sequences. 
Then (tl( {toJ,,» is also a Cauchy sequence for every {J E Cooo(Rm) by 
Auxiliary theorem 10.27. Since IIhlb <; IItlhll + IIhll for hE C.f(Rm), the 
sequence ({JJ,,) is also a Cauchy sequence in W2• 2(R"'). Let g be the 
limit of the sequence ({JJ,,) in W2,2(Rm). Since {JJ,,-+l"if in L2(Rm), we 
then have {JJ= g E W2• 2(Rm ). 
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For an arbitrary r > 0 let ~ E Co""(/Rm ) be such that ~(x) = 1 for 
Ixl < r. Then for all g E Co""({x E /Rm : Ixl <r}) 

(ij, g) = (T*j, g) = (f, Tg) = (~j, Tg) 
m 

= ( ~ (Dj - b)2(~j) + qi}j, g) 
j-I 

As the set of these g is dense in L2({xE/Rm : Ixl <r}), it follows that 
m 

fj(x) = ~ (Dj - bix»2j(x) + q(x)j(x) 
j-I 

almost everywhere in {XE/Rffl : Ixl <r}. Since r was arbitrary, this 
equality holds almost everywhere in /Rm • In particular, ~j_I(Dj - b}1 
+ qf belongs to L2(/Rm ). 0 

REMARK. The operator T of Theorem 10.23 is still essentially self-adjoint if 
q= ql + q2 with 

ql E Mp(/Rm ) for some p < 4, q2 E L2, loc(/Rm), 

q2(X);> - Clxl2 for some C ;> 0 and aU x E /Rm. 

The above proof can then be employed without change if we first show 
that the corresponding operators Tn are essentially self-adjoint. A proof is 
given, for example, by CG. Simader (51). The reader can find further 
references concerning this circle of problems there. 

In order to apply the results of Section 9.2, it is useful to have criteria for 
the T-compactness and the T2-compactness of a perturbation of T. We 
shall prove such a criterion now. If A and B are operators on L2(/Rm), then 
we say that A is B-smal/ at injinity if A is B-bounded and for every t: > 0 
there exists an r(t:);> 0 such that 

IIAjll .;;; t:(11 Bfll + Ilfll) 

for alljE D(B) such thatj(x)=O for Ixl <r(t:}. 

Theorem 10.28. Let T be dejined as in Theorem 10.23. Ij V is closed and 
T-smal/ at injini!l, then V is f 2-compact. If, in addition, the T-bound oj V is 
zero, then V is T-compact. 

PROOF. If V is T-bounded with T-bound zero, then it is also f-bounded 
with f-bound zero. Consequently, the second statement follows from the 
first with the aid of Theorem 9.lld. It remains to prove the first statement. 
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First step: The operator A defined by the formulae 

OCA) -oCr) and Af = ~f for f E OCA) 

is T-compact for every ~ E CoOO(Rm). 
Proof of the first step. It is sufficient to prove that A is T-compact. Let tf 

be an element of CoOO(Rm) such that tf(x) = 1 for x E supp i/o. The operator 
B defined by the equalities 

DeB) =O(T) and Bf = ~(tff) for f E D(B) 

is T -bounded by Auxiliary theorem 10.27. Since Af = A (tff) and since A is 
~-compact by Theorem 10.21, the operator A is B-compact, and thus also 
T-compact (cf. the proposition preceding Theorem 9.7). 

Second step: The operator C defined by the equalities 

O(C)=O(T) and Cf=~Tf-T(~f) for fED(T) 

is T-compact for every 1') E Cooo(Rm). 
Proof of the second step. Again, it is sufficient to show that C is 

T-compact. Since C is a differential operator of the first order having 
continuous coefficients with compact support, the B-compactness and thus 
also the T-compactness of C follow as in the first step. 

Third step: V is T2-compact. 
Proof of the third step. It is clear that V is also T-small at infinity. Let 

t: > 0 be given, and let r( t:) be chosen according to the definition of 
T-smallness at infinity. Moreover, let ~ be an element of Cooo(Rm) such 
that ~(x)-l for Ixl<;r(t:) and O<;~(x)" I for all xERm. Since V is 
T-bounded by assumption, we have for all f E o(f) with appropriate 
a, b;;. 0 that 

IIVfl1 <; IIV( ~f)lI + IIV[ (I - 1')f] II 

<; all1')fll + bIlT(1')f)1I + t:{II(l-1')fll+IIT[(l-1')f]lI} 

" all,'}fll + bll~Tfll + (b + €)II1')Tf - T(~f)1I 

+t:{II(I -,'})ill + 11(1- 1')Till}. 

If we replace here i by a sequence Un) from D( T2) for which in ~ 0 and 
T'fn ~ 0, then we also have Tin ~ 0, and by steps 1 and 2 the first three 
terms of the ri~t side converge to zero. The fourth term is bounded by 
t: sup (lIfnll + II TfniD. Since € > 0 was arbitrary, it follows that II Vfnll~O, 
and thus V is T 2-compact. 0 

EXERCISE 

10.11. Let T be the self-adjoint Schrodinger operator from Theorem 10.23 for 
m<:3. Then (z-T)-I is a Carleman operator for every zEp(T). The 
operator E(b) - E(a) is a Carleman operator for all a, bE IR. 
Hint: M,(z - T)-I is a Carleman operator for i} E Co"'(Rm ). 
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10.5 Spectra of Schrodinger operators 

In this section we prove some properties of the spectra of self-adjoint 
operators of the form considered in the previous section. The results can be 
applied equally well to one particle and several particle Schrodinger 
operators (Theorems 10. 29{a), 10.30 and 10.33). 

In what follows let T always have the form 

m 

Tf = ~ (OJ - bYf + qf for f E D( T), 
j-I 

(10.8) 

where the coefficients satisfy the assumptions of Theorem 10.23. Therefore, 
T is essentially self-adjoint. We denote by S the closure of T (that is, the 
uniquely determined self-adjoint extension of T). Moreover, let the self
adjoint operator So be defined by (cf. Section 10.2) 

D(So) -=W2.2(Rm) and Sof= -aj for fED(So), (10.9) 

and let V be defined by the formulae 

D( V) ... D(S) n W2• 2(Rm), 

m 

Vf= Sf-Sof= -2~ bj OJ+ (b2 +idivb+q)f. 
j-I 

Theorem 10.29. 

(10.10) 

(a) If q _ E Mp(Rm) for some p < 4, then S is bounded from below (here 
q _(x) = max (- q(x), 0». If q > 0, then S ;s non-negative. 

(b) If b2 E Mp(Rm), div bE Mp(Rm), q E Mp(Rm) for some p < 4, and 

1 (b4(Y)+ldivb(Y)12+lq(Y)12)dy-+O as Ixl-oo, 
Ix->,1.,; 1 

then V is relatively compact with respect to So, and Pe(S) =[0, 00). 

PROOF. 

(a) By Auxiliary theorem 10.25 with "1 = 1 we have for allf E Cooo(Rm) that 
m 

<f, Sf) = ~ /I (OJ - b)fll2 + <f, qf) 
j-I 

m 

> ~ II(Oj-b)fIl 2 -<q_J,f) > -CdlfIl2. 
j-I 

This then holds for all J E D(S), since Cooo(Rm) is a core of S. If q ;;. 0, 
then q _ ... O. The above estimate then gives that S ;;. O. 

(b) We have bj E Ma(Rm) for some C1 < 2 (j = 1, 2, ... , m) by Auxiliary 
theorem 10.24. Consequently, the assertion follows from Theorem 
10.21 together with (10.10) and Theorem 10.11. 0 
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The spectrum of the operator So is [0, (0); the operator So has no 
. eigenvalue. We can actually prove for a large class of operators S of the 

form given above (without magnetic field) that no eigenvalues lie in [0, (0). 

Theorem 10.30. Assume that 0 = 0 fQr j = 1, 2, ... , m, q E M peRm) fQr SQme 
p<4, and 

q(ax) = a-1'q(x) fQr x E Rm,,{O} 

with SQme y E (0, 2). If f is an eigenelement .of S belQnging to the eigenvalue 
X, then 

2(f, - 6.f) + y(f, qf) = 0 (virial theQrem). 

The interval [0, (0) cQntains nQ eigenvalue .of S. (FQr a sQmewhat mQre 
general result we refer tQ J. Weidmann [55].) 

PROOF. If f is an eigenelement of S belonging to the eigenvalue X, then 

- 6.f(x) = Xf(x) - q(x)f(x). (10.11) 

It follows from this for every a> 0 using the notation f(J(x) = f(ax) that 

- 6.fa(x) = - a2(~f)(ax) = a2(Xj(ax) - q(ax)f(ax» 

= a2N'a(x) - aZ-1'q(x)fa(x). 

It follows from (10.11) and (10.12) that 

0= ( - ~f,Ja) - (f, -6.fa) 

= X(f,fa) - (qf,Ja) - a2X(f,Ja) + aZ-1'(qf,Ja) 

= (1- a2)X<J,fa) + (a2-1' -1)(qf,Ja)' 

For a =1= 1 we obtain by dividing by (a - 1) that 

a2-1' -1 
(a+ I)X(f,fa) = a-I (qf,Ja)' 

By letting a tend to 1, it follows from this that 

2Xllfl12 = (2- y)(f, qf). 

Since - ~f + qf = Xj, this implies 

2<J, -6.f) = -2<J, qf) + 2Xllfll2 = - y<J, qf) 

(this is the virial theorem) and 

yXIl fll2 = (2 - y)<J, qf - N') = (2 - y)(f, 6.f). 

(10.12) 

It follows from the last equality that A < 0 provided that f =1= O. 0 

REMARK. The assumptions of Theorem 10.30 are satisfied in particular by 
every Schrodinger operator without magnetic field with pure Coulomb 
interaction (this also holds for many-particle operators). 
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The operators of Theorem 10. 29(b ) also satisfy the assumptions of part 
(a); the negative part of the spectrum therefore consists of at most 
countably many eigenvalues of finite multiplicity that are bounded from 
below and can only cluster at O. The following theorem shows that in 
many interesting cases there actually exist infinitely many negative eigen
values. 

Theorem 10.31. Let S be as in Theorem 1O.29(b). Assume further that there 
exist constants C ;> 0, e > 0 and r ;> 0 such that 

q(x) < - Cixl-2+· for all x E Rm with Ixl;> r, 

and 

Then S has infinitely many negative eigenvalues accumulating at zero. 

PROOF. We only have to prove that S has infinitely many negative 
eigenvalues. According to Theorem 7.26(b) it is sufficient to find an 
infinite-dimensional subspace M of D(S) with <f, Sf) < 0 for every non
vanishing f EM. Let * E COO(Rm ) such that Ii* Ii = I and supp {} c 
{XERm: I <lxl<2}. Then for the function {}lx)=t m / 2{}(t- 1X) we have 
11*,11 = I and supp *, C {x E Rm : t < Ixl < 2t}. Therefore it follows for t >r 
that 

m 

< {}" S{},) = < {}" q{}, - Ll*, + (b 2 + i div b ){}, - 2 :L bjDi},) 
j=1 

< -0-2+<11*,112 + t- 2<{}, -Ll{}) + t- 2+p(t)II{},W 
m 

+2t- I+«/2)p(t)I/2 L <{}" Di},) 
j=1 

< - 0- 2+< + t- 2<{}, -Ll{}) + t-2+'p(t) 
m 

+2t-2+«/2)p(t)I/2 L <{}, Dj *). 
j=1 

(Here we have used that Iblx)l< t -I +«/2p(t)1/2 for Ixl ;> t, which follows 
from the definition of p.) Therefore there exists a to;> 0 such that 

<*" S{},) < 0 for t;> to' 

Let now In = {}2"to' n E No. These functions have mutually disjoint supports. 
Therefore M = LUll: n E No} is infinite-dimensional and <f, Sf) < 0 for 
all f E M, f =1= O. This implies the theorem. 0 

Now we want to show that the smallest eigenvalue of a Schrodinger 
operator (without magnetic field) is always simple, i.e., that the system has 
a uniquely determined ground state. The proof is essentially taken from a 
work of W. Faris [41]. We need some preparation. 
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following for an Lz(Rm) we write 
f is real and > 0) almost .. "","",:r"",r .. 

"""AU"""" are said to be (positive). A 
said to be if f ;;;. 0 implies 

said to be positivity improving if f ;> 0 and f =F 0 imply Af > O. 

Theorem 10.32. Let A E 8(Ll(Rm» be a real 3 positivity improving self
adjoint operator. Assume that IIA II is an eigenvalue of A. Then the multiplic
ity of the eigenvalue IIA II equals 1 and there is an f> 0 that spans the 

II-A). 

"""'YU'''' that 1 =F 0 and Since A is real, 
(otherwise we 1 by Re f or 

(j+Kf)/2= = (IIAlll+ = 
IIA A(Imf)= IIA From the inequality it 
follows that ±Al<Alfl. Therefore, IAfl<AIfI, and thus 

(f, AI) < <111, IAfl) < <If I, Alfl)· 
This implies that 

IIAlillfill = (f,Af) < <lfl,AIfI) < IIAlllllfll12 = II A llllfll2, 

Let 

<f, 

f + and f _ by the 

f+(x) = 

Then If I = 1+ + f _. Consequently, 

Ifl)· 

(f +, Af - > = H <111, Alii) - <f, Af)} = O. 

we have f+ =0 or 1- =0, 
thus that <1+, Af_ 
We can assume, 

and 1 =F 0, it then 
"""nnln\! improving. 

since f + =1= 0 and f _ =F 0 imply 
Consequently, we have 

or generality, 
we even havef 

will be proved that f spans the 
A). For every element g of NOlA 11- A) the functions Re g and 1m g do not 
change sign. Such an element can only be orthogonal to the positive 
elementf if g = O. Therefore, N(IIA 11- A) = L(f). 0 

Theorem 10.33. Let S be defined as above with 
q E Mp, loc(Rm) for some 
below. If the lowest o(S) is an eigenvalue, 

3 Here "real" refers 
8.1, Example I), 

conjugation K on 

=0 (j= 1, 2, ... , m), 
is bounded from 

is simple. 

= J (x)* (cf. Section 
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PROOF. By Theorem 1O.29(a) the operators S and So - q _ are bounded 
from below. The lower bound of So - q _ is, at the same time, a lower 
bound of the operators Sn and S - Qn used in steps 2 and 3. These 
operators therefore have a common lower bound, so that Theorem 9.18(b) 
can be applied. 

First step: Let So be defined as above. Then the operator exp( - tSO> is 
order improving for all t > o. 

Proof of the first step. With -t1"t(x) = exp( - tlxl2) for x E ~m we have 

exp( - ISo) = F - 1M" F, 
I 

where M;; denotes the operator of multiplication by lit' Hence, by the 
I 

convolution theorem (Theorem 10.7) the operator exp( - tSo) is equal to 
the operator of convolution by the function F -I{},. With {}(x) = 
exp( -lxI2/2) we obtain from Theorem 10.2 that 

( F - l{}J( x) = (2'7T) - m/2 J eiX)'{},(y) dy 

= (2 'IT ) - m/2 J eiX)'.n-( v'2i y) dy 

= (2/)-m/2(2'11rm/2 J exp(i vit z ){}(z) dz 

= (2t)-m/2(F-I{})(_X_) = (2/)-m/2{}(_X_) > 0 
v'2i V2i 

for all x E ~m and t > O. Since the operator of convolution by a positive 
function is obviously positivity improving, the assertion follows. 

Second slep: exp( - tS) is positivity preserving for all t;> O. 
Proof of the second step. For every n E N let qn be defined by the 

equality 
if Iq(x)l.;;; n 
if Iq(x)1 >n. 

Let S" be the operator defined by q" instead of q. By Theorem 7.41 

exp( - tS") = s - 2~n;, [exp( - I so) exp( - -f Qn) r 
for all I > 0, where Qn denotes the operator of multiplication by qn' Since 
every term on the right side is order preserving, it follows from this that 
exp( - tS") is also positivity preserving. Since by Theorem 9.16(i) (with 
Do=Coao(~m» we have (i-S")-I~(i-S)-l, it follows by Theorem 
9.l8(b) that 

exp( - tS") ~ exp( - IS) for all t > O. 

Therefore, exp( - IS) is also positivity preserving for all I;;' O. 
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Third slep: If f > 0, f 7'= 0, g > ° and g 7'= 0, then there exists a I > Osuch 
that <f, exp( - tS)g) > 0. 

Proof of the third slep. It is sufficient to prove that if f > ° and f 7'= 0, 
then 

KU) = {g EL2(~m) : g> 0, <g, exp( -IS)f) =0 for all t > O} 

contains only the zero element. The set K(f) is closed. It is mapped into 
itself by exp( - sS) for s> 0, since s, I> ° and g E K(f) imply that 
<exp( - sS)g, exp( - IS)f) = < g, exp[ - (s + t)S)f) = 0. This then holds 
for exp(sQn)' as well: It follows from f > 0, g > 0, < g, exp( - tS)f) = ° and 
exp( - tS)f > ° (d. step 2) that g(x)[exp( - tS)J](x) = ° almost every
where; we also have then that <exp(sQn)g, exp( - tS)f) = 0. Since 

exp( - t(S - Qn» = S - 1~~ [exp( - f s) exp( f Q,,) r. 
the operator exp( - t(S - Q,,» also maps the closed set K(f) into itself. 
Since, moreover, 

exp( - t( S - Q,,» ~ exp( - tSo) for all t > 0, 

this follows also for exp( - ISo). If g E K(f), then we therefore have 
< g, exp( - ISo)!) = ° for all I> 0. Because exp( - ISo) is positivity improv
ing, it follows from this that g = 0. 

Fourlh step: If X E ~ is smaller than the lower bound of S, then 
(S - X)-I is positivity improving. 

Proof of Ihe fourth step. If y is the lower bound of S, then 

lIe- I (S-X)1I '" e-I(Y-A) for t > 0. 

Consequently, the following integrals exist. For all f, g E L2(~m) 

foooeAt<g, e-,sf> dt = 1000 <g, e-I(S-X)f) dt 

= Loo 1 e-/(S-X) ds<g, E(s)f) dt 
o IA.oo) 

= 1 LOOe-I(S-A) dt ds<g,E(s)f) 
[A. 00) 0 

= 1 (S-X)-I ds<g, E(s)f) = <g, (S-X)-I f ). 
IA,oo) 

If f > 0, f 7'= 0, g > 0 and g 7'= 0, then the second and third steps imply that 
< g, e-ISf) > ° for all I> ° and <g, e-'oSf) > 0 for some to> O. Since the 
function t~<g, e-'Sf) is continuous on [0, 00), it follows from this that 
< g, (S - X) -1) > O. Therefore, (S - X) - I is positivity improving (if we had 
(S-X)-1}0 for somef>O such thatf7'=O, then there would be a g>O 
such that g7'=O and g(x)=O for all x with (S-X)-1(x)7'=0; we would 
therefore have <g, (S-X)-~> =0). 
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Fifth step: The smallest eigenvalue of S is simple. 
Proof of the fifth step. Since the lowest point y of o(S) is an eigenvalue, 

II(S-X)-lll =(y-X)-l is an eigenvalue of the positive operator (S-X)-·. 
This eigenvalue is simple by Theorem 10.32 and the fourth step. Conse
quently, the assertion follows for S. 0 

EXERCISE 

10.12. Let T be defined as in Theorem 10.23, and assume that q(X)-HX> as Ixl~oo. 
Then T has a pure discrete spectrum. 
Hint: The identity operator is T-small at infinity and its T-bound is equal 
to O. The compactness of (i - fr-· follows from this by Theorems 10.28, 
9.1 I (d) and 9.10. 

10.6 Dirac operators 

In this section we consider the Hilbert space 

L2(R3)4 = L2(R3) EB L2(R3) EB LiR3) EB L2(R3). 

The elements of this space are the 4-tuples f = (f.,J2,J3' f4) of elements 
Jj E L2(R3), and the scalar product is defined by the equality 

4 

<f, g> = ~ j /i(x)*8j(x) dx. 
j=l 

The elements of L2(R3t may also be considered as equivalence classes of 
functionsf: R3~C4; then 

<f, g) = jU(x), g(x» dx, 

where (. , .) is ihe usual scalar product in C4 «~, 11) = ~j-.~/1/.; for ~, 11 E 
C4; the corresponding norm in C4 will be denoted by 1 . I). For any 
continuously differentiable function f: R3 ~ C4, f(x) = (f. (x), fix), 
fix), fix» let us define 

I( a a a a ) 
(Dj)(x) = i 3x f .(x), ax f2(x), ax/ix), 3x/4(x) 

J J :J :J 

j = 1,2,3. 

For an arbitrary function f: R3 ~C4 and a 4 X 4 matrix-valued function y 
we define yf by the equality 

(yf)(x) = y(x)f(x) = ( ± Ylk(x)fk(x), ... , ± Y4k(X)fk(X»); 
k-l k=l 

we use a similar definition if y is a constant matrix. The operator norm of 
4 X 4 matrices corresponding to the norm 1 . 1 on C4 will be denoted by 1 . I, 
as well. 
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The free Dirac operator (which describes the free electron in relativistic 
quantum mechanics) is defined on L2(R3)4 by the differential form 

3 

Tf(x) = ~ (Xj Dj(x) + f3f(X) 
j-I 

with the matrices 

~) for j = 1, 2, 3, fJ = [6 ~ g g] 
g g -6 -~ 

6)' °2 = (~ -~), °3 = (6 _~) (the Pauli matrices). 

Here we have made all physical constants 1 again. Since the matrices (Xj 

and fJ are Hermitian, the operator To defined by 

D(To) = COOO(R3)" and Tof = Tf for f E D(To) 

is symmetric on L2(R3)4, as a simple computation shows. 

Theorem 10.34. The operator To defined above is essentially self-adjoint. For 
T= To we have: 

(i) D(T) = W2• I(R3)4 and II TJII = IIflll Jor J E D(T),4 
(ii) o(T) = (- 00, -1] u (1, 00), 

(iii) T has no eigenvalue. 

PROOF. 

(i) Let TI be defined by 

D(TI ) == S(R3)" and Td"" TJ for f E D(TI ). 

It is clear that TI c To (cf. the proof of Theorem 10. 11 (a», and thus 
T - To =- T I • On the other hand, 

FTIF- I == M p • I , 

where 

and 

0 X3 XI - i X2 

P(x) = 0 XI +i X2 -X3 

X3 XI - i x2 -1 0 

XI + i x2 -X3 0 -1 

4 In what follows we also write II • 111' and II • 11(1') for the norms in W2.p(Rm)4 and L1•p (R"')4, 
respectively. 
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(Here the Fourier transformation is applied to the elements of L l(1R3t 
component-wise.) Mp. 1- Mp, where Mp denotes the maximal operator of 
multiplication by the matrix-valued function P (cf. the proof of Theorem 
1O.1l(a»: 

D(Mp) - {iEL2(R3t: PjEL2(R3t}, Mpj- Pj. 

The reader can easily verify that the eigenvalues pix) and the correspond
ing orthogonal eigenelements ~(x) of the matrix P(x) are given by the 

formulae (observe that OJ Ok + Ok OJ = 2 8jk ( 6 ~) 

PI(X) - P2(X) = - P3(X) == - P4(X) - (1 + IxI2)1/2, 

(6) (~) 
et(x) - O'tXI + 0'2X2 + 0'3X3 ( 1) , ez{x)- O'IX, + 0'2X2 + 0'3X3 (0) , 

1 + (1 + IxI2)1/2 0 1 + (I + IxI2)t/2 I 

_ 0IXI + 0'2X2 + 03X3 ( I) _ 0IX, + 02X2 + 0'3X3 (0) 
lix)- 1 + (I + IxI2)'/2 0 , e4(x)= 

1+ (1 + IxI2)1/2 I 

(~) (~) 
The corresponding normalized eigenelements are 

e/x) - [2 + 21xI2 + 2(1 + IxI2)1/2]'/2[ 2 + IxI 2 + 2(1 + IxI2)'/2r '/2~(x). 
Consequently, 

4 

(MpJ)(x) == ~ p/x)(f1(x),j(x»eix) for all j E D(Mp). 
}-1 

It follows that 

D( M,) = {f E L,(R')' : [j;/;(x)'I( ~(x), f(x»)I' r E L,(R')} 

= {j E L2(Rl)4 : (I + I . 12)1/2f E L2(R3)4} = L2• 1(R3)4, 

D(T) ... F-'D(Mp) == F- 1L2• I(Rl )4 = W2• I(Rl t, 
Tf .. F-'MpFj for f E D(T), 

and 

IITfll = IIPFfl1 = 11(1 +1·12)'/2Ffll == IIFfll(l) = IIflll' 
(ii) If A> I, then there is an Xo E Rl for which p,(xo) == A. Since PI is 

continuous, for every £ > 0 there is a ball K. around Xo such that 
Ip,(x) - AI <; t: for all x E I{.. If ." E L2(R3) is such that 1/ "" 0 and 
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lJ(X) = 0 for x fI. K., then for f = lJel E L2{1R3)4 

II(X- Mp)fll2 = fiX - PI(xWllJ(xW dx <;; f211lJII2 = f21if1l2. 

Since f > 0 was arbitrary, X - Mp is not continuously invertible. If 
X <;; - 1, then we can prove this analogously if we use P3 and e3 instead 
of PI and e l • Therefore, (- 00, -l]u [1,00) c o(Mp) = oCT). 

If now X E ( - I, I), then 

4 

II(X- Mp)fli 2 = L fiX - Pj(xWI(ei x ),f(x»)j2 dx 
j-I 

4 

~ (t-IXI)2 L fl(ei x ),f(x»12 dx = (1-IAlillfIl2 

j=1 

for all j E LiIR3)4. Consequently, X - M p is continuously invertible. 
Hence, (- 1, I) C peT) = p(Mp), and thus oCT) = (- 00, -1] U [I, 00). 

(iii) If (X - Mp)f= 0, then we must have 

(X-pix»(ej(x),f(x» = 0 almost everywhere (j= 1, 2, 3, 4). 

As the set of zeros of X - Jlj(x) is a null set (it is either empty, consists 
of the origin, or is a sphere), we must have 

(eix),j(x» = 0 almost everywhere (j=1,2,3,4). 

It follows from this (as e/x) is a basis in C4) that f(x) = 0 almost 
everywhere; therefore, f= O. Consequently, no X can be an eigenvalue 
of M p (and hence of T). 0 

The Dirac operator of an electron in the electric field with potential q 
has the form 

S = T+ Q, 

where Q is the operator of multiplication by a function q : 1R3 --+ IR and 
Qf"" qj= (qjl' qj2' qj3' qj4)· Because of physical reasons, the Coulomb 
potential q(x) = c(l/Ix!) is particularly interesting. As this q does not 
belong to Mp(1R3) for p < 2, the results of Section 10.3 cannot be applied to 
it. The following auxiliary theorem enables us to treat such potentials. We 
prove it with somewhat more generality than we need. 

Auxiliary theorem 10.35. For f E Cooo(lRm) (m ~ 3) and for f E CoOO(R"- {O}) 
(m= 1) 

flxl- 21J(x)12 dx <;; 4 2 f f Iff(XW dx. 
(m-2) j=1 Xj 
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For f E CO""(R2" (O}) 

fl x l- 21f(x)12 dx <;; 4fllnlxW.f If,f(xW dx. 
}-I x} 

PROOF. Let Um denote the unit sphere in Rm and let dWm be the area 
element on Um' For m > 3 we have 

= lim foo r m - 3 ( If(rwW dWm dr 
.~o • Jam 

- _2_ foo r m - 2 Re ( f(rw)* ~ f(rw) dWm dr}. 
m-2 ( Jam vr 

Here the first term vanishes as £-+0, since the integral tends to f(O)! dWm 

as £-+0. Therefore, 

The assertion follows from this for m;;> 3. The case m = 1 can be proved 
similarly though with certain simplifications. In the case m = 2 a logarith
mic term arises after the integration by parts; everything else goes as 
above. [J 

Theorem 10.36. Assume that q = ql + q2' where ql and q2 are measurable 
Hermitian 4 X 4 matrix-valued functions such that 

1 
Iql(x)1 <;; C IxT and qi.) E Mp(R3) for some p < 2. 

Then Q is T-bounded with T-bound less than or equal to 2C. If C < 1/2, 
then S = T + Q is essentially self-a4Joint on CO""(R3t and self-a4Joint on 
W2• JCR3)4. 
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PROOF. By Auxiliary theorem 10.35 

3 4 

= 4C 2 ~ ~ flxk{F,~)(XW dx 
k-I j-I 

for aUfE Cooo(1R3)4. The operator QI induced by ql is therefore T-bounded 
with T-bound" 2C. The operator Q2 induced by q2 has T-bound 0, since 
D(T)= W2, 1(1R3)4 (cf. Theorem 10.18). Consequently, the T-bound of Q= 
QI + Q2 is not greater than 2C. The remaining assertions follow from 
Theorem 5.28. 0 

Theorem 10.37. Let q be as in Theorem 10.36. Assume, moreover, that 
Nlql(x)~O as Ixl~oo. Then Q is T 2-compact. If C< 1/2, then O'e(S)= 
O'e(T) = (- 00, - I]u [I, 00). If, in addition, q" 0, then the eigenvalues of S 
in (- I, 1) can only accumulate at I; if q ;) 0, then the eigenvalues of S in 
( - I, 1) can only accumulate at - 1. 

PROOF. We have T2= P-1M;P. Therefore, 

Since Iql = Iql + q21 E Mp(1R3) for some p < 4, the operator Q is T2-compact 
(cf. Theorem 10.21). (We can show in the same way that the operator Q2 
induced by q2 is T-compact.) The remaining assertions follow from Theo
rems 9.13, 9.14 and 10.36. 0 

In analogy with the viria) theorem (Theorem 10.30), we can now prove 
yet the following result. 

Theorem 10.38. Let q be as in Theorem 10.36 with some C < 1/2. Moreover, 
assume that q(ax) = q(x)/ a Jor all a> 0 and x E 1R3", {O}. Then S = T + Q 
has no eigenvalue in ( - 00, - 1) U (1, 00). I J q( x) is diagonal, then - I and 1 
are not eigenvalues oj S, either. 
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PROOF. If (;\- S)f=O, then the functionfa(x)= f(ax) obviously belongs to 
D(S) and 

3 

(Sfo)(X) = :L ajDl(ax) + (13 + q(x»f(ax) 
j=1 

3 

= a:L aAD))(ax) + (13 + q(x»f(ax) 
j=1 

= aL~l aj(Dl)(ax) +(13+ q(ax»f(ax) } + f3(l-a)f(ax) 

= a(Sf)(ax) + 13(1- a)fo(x) 

= aAf(ax) + f3(I - a)fa(x) = aAfaCx) + f3{l- a)1a(x). 

It follows from this that 

0= <Sf,Jo> - <1, Sfa> = ;\<f,fo) - a;\<f,fo> - (1- a)<f, f3fo> 

= (1- a)<1, (;\ - f3)fa>· 

For a =1= 1 we can divide by (I - a). Taking the limit as a~ 1 gives 

o = <f, (;\ - f3)f>. 

For ;\E(-oo, -I)u(l, 00) the matrix ;\-13 is strictly positive or 
strictly negative; this equality is therefore possible only if f = O. 

If ;\ = 1 and q is diagonal, then it follows first that i3 = f4 = O. The 
eigenvalue equality (l - S)f = 0 then gives 

This implies that il = f2 = 0, and thus f = O. We can argue similarly if 
;\= -I. 0 

To conclude this section, we give a general criterion for the essential 
self-adjointness of Dirac operators (cr. also Exercise 10.13). 

Theorem 10.39. Assume that q = ql + q2' where ql and q2 are measurable 
Hermitian 4 X 4 matrix-valued junctions such that 

I 
Iql(X)1 C;;; Cr;r jor some 

Iq2( . )1 E Mp, loc(R3) jor some 
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Then S = T + Q is essentially self-adjoint on Cooo(1R3t. The closure S is given 
by the formulae 

D(S) = {f E L2(1R3)4 n W2• 1.loc(1R3)4 : 7'f + qf E L2(1R3)4} , 

Sf = 7'f + qf for f E D(S). 

PROOF. Let epn be as in the proof of Theorem 10.23, let lin = CPJ"q, and let 
S" = T + Q", where Q" is the operator of multiplication by li". The function 
li" satisfies the assumption of Theorem 10.36 for every n E N; the operator 
S" is therefore essentially self-adjoint on Cooo(1R3)4. 

The rest of the proof follows the proof of Theorem 10.23; however, it is 
essentially simpler: Let g E R(i - S)1.. Since S" is essentially self-adjoint, 
for every n E N there exists an f" such that 

Hence, IIf,,11 .;;; lI(i - S,,)j,,11 ,;;;; lIep"gll + (lin). It follows from this that 

lIep"gl12 = < ep" g, (i - S")f,, + (ep"g - (i - S,,)f..] > 
.;;; I<g, ep,,(i - S,,)f,,>1 + ~ lIep"gll 

3 I 
.;;; I<g, (i - S)(ep"!,,»1 + CIII gil L Ilf" DJ'Pnll + -;; IIcp"gll 

j=l 

I 
.;;; C2 -(11 gil II f" II + Ilep"gll) ~ 0 as n ~ 00. 

n 

This implies that g = O. Consequently, R(i - S)= LiIR3)4. The equality 
R( - i - S)= L2(1R3)4 follows analogously. The rest of the proof is analogous 
to part (b) of the proof of Theorem 10.23. 0 

EXERCISE 

10.13. (a) In the first part of Theorem 10.36 the assumption on q. can be replaced 
by the assumption Iq.(x)l.;; ~7'_.cjlx - ajl-· with N different points 
aJ EA3• 

(b) In the second part of Theorem 10.36, in Theorem lO.37, and in Theorem 
10.39 the assumption on q. can be replaced by the assumption Iq.(x)1 <; 

~J_.c)x-ajl-' with N different points aj ER3 and O<;Cj<t for j .... 
I, ... , N. 

(c) In Theorem 10.39 we can allow an infinite sum of the above form for 
the bound of q. provided that the aj have no accumulation point. 
Hint: If " E Co""(R"'), "(x) = 1 for Ixl.;; s /2, "(x) = 0 for Ixl;;. s, and 
0.;; "(x) .;; 1 for all x E R3, then there is a C ;;. 0 such that 

3 

jlxl- 21"(x)!(xW dx .;; 41 L ID./(xW dx + C 1 1!(x)j2 dx. 
Ixl<s j_1 Ixl<s 
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11.1 Wave operators 

The theory of wave operators provides a useful means of studying the 
absolutely continuous spectrum. We wish to present this theory briefly in 
what follows. For any two self-adjoint operators TI and T2 on the complex 
Hilbert space H we define O±(T2, T I) by the equalities 

D(O±(T2' T I» = {fEH: lim eiIT'e-iIT'f exists}, 
I-+± 00 

It is obvious that O±(T2• T I) are linear operators. Since eilT'e-ilT, is 
unitary for all t E Ill. the operators O±(Tz' T.) are obviously isometric (as 
mappings from D(O±(T2' T I» into H). 

Theorem n.t. The subs paces D(O±(T2' T I» are closed and reduce T I. The 
subs paces R(O±(T2• T.» are closed and reduce Tz. We have R(O±(Tz' T I» 
= D(O±(TI• T2» and O±(TI• Tz)'" O±(T2• T.)-I. Moreover,for all s E III 

and 

where E. and Ez are the spectral families of T. and Tz• respectively. We have 
O±(Tz• TI)u(TI) = u(T z}O±(T2• T I) for every bounded continuous function 
u : III ~ III (" intertwining" property). 

337 
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PROOF. First we show that D(Sl+(T2, TI» is closed. LetfE: D(Sl+(T2, T.». 
We have to show that for every E > 0 there exists a 10 E R such that 

for all s, t > 10, In order to prove this, we take an fo E D(Sl+(T2, T I» such 
that IIf - foil <: E/3. Since lim, .... oo ei ITl e- ItT fo exists, there is a to E R such 
that 

for all s, I> to' Consequently, for all s, I> to 

lIeilTl e-iITi- eiaTl e-i.Till <: lIeilT2 e-iIT'(j_ fo)1I 

+lIeisT2 e-isT'(jo- f)1I + lIeilT2 e-itTio - eisT2 e-iSTioll <: E. 

We can show in a similar way that D(Sl_(T2' T.» is closed. As the 
operators Sl%(T2, T.) are isometric, the ranges R(Sl%(T2, T.» are also 
closed. 

If g == Sl+(T2, TI)f E R(Sl+(T2, T.» with some f E D(Sl+(T2, TI», then 

lIeitT, e-itT'g-fll"'lIg-eiIT2e-iITill~O 

as t~oo, i.e., g E D(Sl+(T., T2» and Sl+(T" T2) g- f. If g E D(Sl+(T., T 0) 
and f- Sl+(T., T2)g, then we can show similarly that f E D(Sl+(T2, T I» 
and g - Sl+(T2, T.)f. Therefore, R(Sl+(T2' T.» == D(Sl+(T., T 0) and 
Sl+(TI, T2)-Sl+(T2, T I)-·. We can show analogously that R(Sl_(T2' T,» 
-D(Sl_(T., T2» and Sl_(T., T2)=Sl_(T2, T I)-·. 

If f E D(Sl+(T2, TI» and g = Sl+(T2, T.)f, then for every s E R 

Consequently, ei.Ti E D(Sl+(T2' TI» for all s E R. By Theorem 7.39 the 
operator T. is therefore reduced by D(Sl+(T2, TI». We can prove this 
assertion for D(~L (T2' T,» similarly. Since R(Sl % (T2' T.» == 
D(Sl%(T" T2», the operator T2 is reduced by R(Sl%(T2' T,). 

For every s E R the operator eisT, maps the space D(Sl+(T2, T.» onto 
itself (cf. Theorem 7.39). Since for all f E D(Sl + (T2' T.» and all s E R 

Sl+(T2, T,) eisT'J = lim eilTl e-i(l-s)T'f 
, .... 00 

= eisTl lim ei(I-S)Tl e-i(l-s)T'f = eisT1Sl+(T2' T,)f, 
, .... 00 

it follows that Sl + (T2' T,) ei sT, = ei ST1Sl + (T2• Ti)' A corresponding ~quality 
holds for Sl_(T2' T,). 
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For j = I, 2, 1m z > 0, and all], g E H 

- ifooo ei ZI<1, e- i l7Jg ) dt = -i fooo ei zi {j e- i Is d<1, Ej(s)g) } dt 

Similarly, for 1m z < 0 

= -ij{foooei,(Z-S)dt} d<],E/s)g) 

= j(Z-S)-l d<], ~(s)g) 

= <1, (Z-1j)-lg ). 

i{Ooo eiZl<1, e- il7Jg) dt = <1, (z _1j)-Jg ). 

Together with the representation (7.22) of the spectral family, it follows 
therefore that O±(T2, TJ)EJ(s)=E2(s)O±(T2, TJ) for all sEIR. The last 
assertion follows from this, because U(1j) = fU(/) d~(t). 0 

REMARK. If ] is an eigenelement of TJ for the eigenvalue A. then] E 
D(O+(T2, TJ» if and only if] is also an eigenelement of T2 for the same 
eigenvalue. The same holds for O_(T2• T I). 

PROOF. If] E D(T2) and Td= Ai. then 

ei IT, e - i IT'i = ei IT, e - i I"J = ei IA e - i I"J = ] 

for all I E R Consequently,] E D(O ± (T2• TJ». If ] E D(O + (T2, TJ». then 
for every s E R 

lIeis(Tl-A)]_]II"'lIei(l+s)Tle-i('+s)A]_ei'Tle-i'''JII~O as t~oo 

(since ei('+s)T2e-i(,+s)~and eiIT2e-il~converge to O+(T2, TJ)!). Hence, 

ei s(T.-A) ] =] for all s E IR. 

This implies that] E D(T2 - X) = D(T2) and 

o 
In what follows we write M C T ,D(O±(T2, TJ» if M is a closed subspace 

of D(O:!:(T2, TJ» that reduces T J. If M c T ,D(O:!:(T2• TJ» and P denotes 
the orthogonal projection onto M, then we define 

W±(T2• TJ, P) = O±(T2, TJ)P. 

These operators are called generalized wave operators. In particular, we 
write W:!:(T2, TJ} for W:!:(T2, TJ, I) provided that D(O:!:(T2, TJ}} = H. The 
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operators W ±(T2 , T,) are called wave operators. In the sequel we say that 
W±(T2 , T I, P) exists if R(P)c T,D(Q.±(T2, T I». (Some of the following 
statements still hold when TI is not reduced by R(P).) The operators 
W ±(T2, T" P) are obviously partially isometric with initial domain R(P) 
and final domain R(W ±(T2, T I, P». Now we prove a few simple proper
ties of the generalized wave operators. 

Theorem 11.2. Assume that T, and T2 are self-a4ioint operators on the 
complex Hilbert space H, M, c T,D(Q.+(T2, T,», P, is the orthogonal projec
tion onto M,. and M2 = R(W +(T2, T" PI»' Then M2 cTP«(!+(T" T2», and 
with the notation W + = W +(T2, T" PI) we have 

eisT,W + = W + eisT, for all s E R 

and 

T2W+ = W+T,P,:> W+T,. 

If P2 is the orthogonal projection onto M2, then 

T, W! = W! T2P2 :> W! T2• 

The operators T,IM, and T21M, are unitarily equivalent. If M, C Hc(TI) or 
M, C Hac(T,), then M2 C Hc(T2) or M2 C Hac(T2)' respectively. A similar result 
holds for W _(T2• T" PI)' 

PROOF. Since M, is closed and is contained in D(Q.+(T2' T ,», the subspace 
M2 = Q.+(T2, T,)M, is also closed. By Theorem 11.1 

eisT,W+ = eisT'Q.+(T2' T,)P I = Q.+(T2, T,) eL,T,p, 

= Q. (T T)P eisT, = WeisT, + 2' , , + 

for all s ERIn particular, ei ST>g E M2 for all g = W + f E M2 and all s E R, 
i.e., M2 reduces Ticf. Theorem 7.39). The equality ei sT,W + = W + ei sT, 
implies that 

The restrictions of ei sT, and ei sT, to M, and M2, respectively, hence are 
unitarily equivalent. This then follows also for their infintesimal genera
tors, i.e., T2P2 = W + T,P, W!, and thus 

T2W+ = T2P2W+ = W+T\P,W!W+ = W+T\P,:> W+TI' 

By taking adjoints, we obtain via Theorem 4.19 that 

W! T2 = Wt. Ti C (T2W +)* C (W + T 1)* = Tr W! = T\ W'!. 

On the basis of what we have proved so far, T21M, and TdM, are unitarily 
equivalent. If M\ c Hc(T,) or M, C Hac(T\). then T1IM, has a pure continu
ous or a pure absolutely continuous spectrum, correspondingly. Then this 
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also holds for the operator T21M2' unitarily equivalent to TIIM" i.e., M2 

C HAT2) or M2 C Hac(T2), respectively. 0 

Theorem 11.3. Assume that TI and T2 are self-adjoint operators on the 
complex Hilbert space H, MI C T,D(Q+(T2, T I», PI is the orthogonal projec
tion onto M» M2 = R( W +(T2, Tp PI»' and P2 is the orthogonal projection 
onto M2. Then with the notation W + = W +(T2, T I, PI) we have, as t~oo, 
that 

e- i tT2W + _ e- i tT'P I ~O, (11.1) 

ei tT, e- i tT2W + ~ PI' ( 11.2) 

eitT, e-itT2P2~ W!, ( 11.3) 

( W + - I) e - i tT,p 1 ~ 0, ( 11.4) 

( W! - I) e - i tT,p 1 ~ 0, ( 11.5) 

eilT,W+ e-itT'~PI' (11.6) 

eitT,W* e-itT,~p + I' (11.7) 

(1 - P2) e- i tT'P I ~O. ( 11.8) . 
We have W +(T I, T2, P2) = W +(T2, T!, PI)*. Similar results hold for W _ = 
W _(T2, T I, PI) as t~ - 00. 

PROOF. (Il.l) follows from the definition of W + by multiplication by 
e -i tT2. (11.2) follows from (11.1) by multiplication by ei tT,. If we multiply 
(11.2) by W! from the right, then we obtain (11.3). Relation (11.4) follows 
from (ILl), because e- i tT.W + = W + e- i tT, = W + PI e- i tT, = 
W+ e-itTIPI' If we multiply (11.4) by W,!, then (11.5) follows, because 
W!W+ e-itTIPI =PI e-itT'PI =e-itT,p l • Relations (11.6) and (11.7) 
follow from (11.4) and (11.5), respectively, by multiplication by eitTI . 
Finally, (11.8) follows from the equalities 

11(1 - P2) e- i tT'Pdll = lIei tT'(I - P2) e- i tT'P.!1I 

= 11(1 - P2) ei tT. e -i tT'Pdll ~ 11(1 - P2 ) W + fll 0= o. 

The following chain rule is useful in many investigations. 

Theorem 11.4. Assume that Tp T2, and T3 are self-adjoint operators on the 
complex Hilbert space H, MI C T,D(Q+(T2, T I», M2 c T,D(Q+(T3• TJ),1j is 
the orthogonal projection onto '1 (j= I, 2), and R(W+(T2' T I• PI» C M2• 
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Then M, C D(0+(T3• T,» and 

W +(T3• T,. PI) = W +(T3• T2• P2) W +(T2• T,. 1'\). 

A similar result holds for W _ . 

PROOF. For f E M, 

eitT, e- itT'.! ... (eitT, e-UTl)(eitTl e-itT')f 

= eilT, e-itT'O+(T2' T,)f 

+ eitT) e- i tT, [ ei tT, e- i tT'.! - 0+(T2• T,)f] 

--+ 0+(T3• T2)0+(T2• T,)f as t --+ ex:l. 

since 0+(T2• T,)f= W +(T2• T,. P,)f E M2 and 

ei tT, e -i tT'.! - 0+ (T2• T,)f --+ o. 
Consequently. M, C D(0+(T3• T,» and 

0+(T3• T,)f = 0+(T3• T2)0+(T2• T,)f for f EM,. 

Because of the inclusion 0+(T2• T,)M, e M2 we have 

W +(T3• T,. PI) = 0+(T3• T,)P, = (0+(T3• T2)U+(T2• T,)P, 

=0+(T3• T2)P20+(T2• T,)P, 

= W+(T3• T2• P2)W+(T2• T,. PI). o 
Theorem 11.5. Assume that TI and T2 are self-adjoint operators on the 
complex Hilbert space H. M, and M2 are closed subs paces. J\ and P2 are the 
orthogonal projections onto MI and M2• respectively. If MI e rp(0+(T2• T I». 
M2 cT,D(O+(TI• T2». R(W +(T2• T I, P,» e M2 and R(W +(TI, T2, PJ) 
eM .. then 

and 
R(W+(T2• T I, PI» =M2' R(W+(TI• T2• P2» =MI • 

PROOF. We obviously have W+(TI, T I, PI)=P1 and W+(T2• T2, P2)=P2• 

It therefore follows from Theorem 11.4 that 

W+(TI, T2, P2)W+(T2, T I, PI) = PI' 

W+(T2, T"P,)W+(T" T2.P2) = P2-

Because of the formulae R( W +(TI, T2 , P 2» e MI and PI = 
W +(T2, T" P I)* W +(T2• T,. PI) it follows that 

W +(T" T2, P2 ) = P, W +(T" T 2, P2) 

W +(T2• T" P,)* W +(T2, T" PI) W +(T,. T2, P2) 

= W +(T2• T" P,)* P2• 
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Because W +(T2, Tp PI)· is a partial isometry with initial domain 
R(W+(T2' Tp P I»cM2, we have 

W +(TI, T2, P2) = W +(T2• T I• PI)· P2 = W +(T2, T I, P I)*. 

The equality R( W +(T2, T I , P2» = M2 follows from the fact that 
W +(T2, T I , PI) = W +(TI , T2, P2)* is a partial isometry with final domain 
M2. The equality R( W +(TI , T2, P~) = M) follows from W +(TI> T2• P~ = 
W +(T2, T I , PI)· correspondingly. 0 

On the basis of the remark after the end of Theorem 11.1, an eigenele
ment f of T) belongs to D(~+(T2' T I» only if f is also an eigenelement of 
T2 for the same eigenvalue. Consequently, it is unrealistic to expect that an 
eigenelement belongs to D(~+ (T2' T\». We shall therefore always assume 
in the sequel that M\ C Hc(T\). If M\ c Hc(T) n D(~+(T2' T I» and P J is the 
orthogonal projection onto M\> then R(W +(T2, Tp PI»~ c Hc(T~ by Theo
rem 11.2. Actually, for technical reasons we shall consider only subspaces 
M\ of Hac( T I). Particularly, we obtain from Theorems 11.2 and 11.5: 

Theorem 11.6. Let T\ and T2 be self-adjoint operators on the complex 
Hilbert space H, and let lJ, ac be the orthogonal projections onto Hac(T.J) for 
j= I. 2. If Hac(T\)CD(~+(T2' T I» and Hac(T~CD(~+(TJ' T~). then 

R(W+(T2, T I, PI,ac» = Hac(T2), R(W+(TJ' T2, P2,ac» =Hac(TJ) 

and 

W+(TI• T2, P2,ac) = W+(T2, T I, PI,oJ*; 

the absolutely continuous parts of T J and T2 are unitarily equivalent. The 
corresponding results hold for W _. (In the assertions of this theorem lJ, ac 
and Hac(T.J) can be replaced by Pi, c and Hc(1j).) 

Corollary. Assume that W +(T2, T" PI,ac) exists. Then R(W +(T2• T I • 

PI, ac» = R(P2, aJ if and only if W +(TI• T2, P2, ac) also exists. 

11.2 The existence and completeness of 
wave operators 

Useful existence results for W ±(T2, T I , P) are known only in the case 
where P = PI, ac (or P" PI, QC)' Consequently, we shall consider only this 
case in what follows. If, for example, TI is a (non-trivial) differential 
operator on L2(Rm ) with constant coefficients, then PI, ac = I. Therefore in 
many cases there is no loss of generality in assuming that P "PI, ac' 
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The wave operator W + (Tz' T I, PI, ac) is said to be complete if 
R( W +(Tz, T I, PI, aJ) = Hac(T Z}. By the Corollary to Theorem 11.6 this is 
the case if and only if W +(TI, Tz, Pz ac) also exists; this wave operator is 
then also complete, and the absolutely continuous parts TI. <Ie and T2, ae are 
unitarily equivalent. A similar result holds for W _ (Tz• T I• PI, ae) and 
W_(TI' Tz• P2• ae). If R(W_(Tz• T I• PI,ae»=R(W+(T2• T I , PI. ac». then 
the scattering operator S(Tz' T I)= W+(Tz• T I• P I. ac)*W_(T2, T I• PI,ac) is 
obviously a unitary operator on Hac(TI); this holds in particular if 
W +(Tz, T I• PI. ac) and W _(Tz' T I , PI • ac) are complete. 

The purpose of this section is to prove a few abstract criteria for the 
existence and completeness of W ± (Tz• TI, PI. ac)' These will then be ap
plied to differential operators in the next section. The r,eader can find 
further references, for example, in T. Kato [45]. 

Assertions similar to those occuring in the following theorem are known 
in the literature as Cook's lemma. 

Theorem 11.7. Let TI and Tz be selj-ar:fjoint operators on the complex 
Hilbert space H. If e - i IT'f E D( T I) n D( Tz) for all t E R. the function 

R -'J>H, t ~ (Tz - T I) e- i IT'f 

is continuous, and 

L:"(TZ - TI ) e-itT'fil dt < 00, 

then f E D(U±(Tz' TI»· 
PROOF. Since e- i IT'f E D(T2)n D(TI). the function U(t)I= ei IT, e- i IT'f is 
differentiable for all tEn. and its derivative is 

:t(U(t)f) = i eiIT2(T2- TI) e-iIT'f. 

This derivative is continuous by assumption. Therefore, 

O(t)f- O(s)f = if'eiUT2(Tz- TI)e-iuT'fdu, 
s 

IIU(t)f - O(s)fll ..;; f'II(T2 - TI) e- i uT'f1l duo 
$ 

Since the integral over (- 00, 00) is bounded, the limit:; U±(T2• TI)f
limH ± ooU(t)f exist. 0 

Theorem 11.S. Let TI and Tz be selj-ar:fjoint operators on the complex 
Hilbert space H, and let E be the spectral family of T I. If fE Hac(TI), 
H.,= L{ E(t)f : t E R}, PI is the orthogonal projection onto HI' H.,c D(TI) n 
D(Tz). and (Tz - TI}PJE BI(H), then H.,c D(U±(Tz. T I»· 
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PROOF. The proof is in three steps. 

First step: Without loss of generality we can assume that Hr= L2(J) with 
J a bounded interval and that the restriction T1,f of TI to the reducing 
subspace Hf = LlJ) is equal to the operator of multiplication by the 
variable. 

Proof of the first step. The subspace Hf reduces TI , because it obviously 
reduces E(t) for all 1 E R (cf. Theorem 7.28). The operator TI,f is self
adjoint on Hr and is defined on the whole of Hr. Therefore, Tl,f is bounded 
(Theorem 5.6). Hence there exists an interval (II' I~ such that IIE(t)fll =0 
for I";; II and IIE(I)fll = IIfl! for t > 12 , 

If we set Pjt)=IIE(/)fll for IER, then there exists (cf. the proof of 
Theorem 7.16) a unitary mapping Vf : Hr--~L2(R, Pf} for which VfTI,fVf - 1 

is the multiplication operator on L2(R, Pf): 

(J-jTI,fJ-j-lg)(X) = xg(x) for g E LiR, Pj)' 

Because f E Hac(T1), the function Pf is absolutely continuous, i.e., there 
exists a a E LI(R) such that 

pit) = fl o(s) ds = [Ia(s) ds for t E R. 
- 00 11 

Denote 5.t = (t E R : a(/) ~ O}, (Since a is uniquely determined only up to 
a Lebesgue null set, Sf is uniquely determined only up to a null set; the 
reader can verify that this plays no role in what follows.) The set 5.t is 
measurable and can obviously be chosen to be bounded. The formula 

w.r: L2(R, Pf) ~LiSf)' g ~ a l / 2g 

defines a unitary mapping. With the notation Uf = WjJ-j the operator 
UfTI,f~ - I is the multiplication operator on L2( Sf). Let us extend the 
operator Uj to the operator 

U : H~Hr.l. ffi L2(Sj), g ~ «(I - Pf)g, UfPfg)· 

U is obviously unitary; U maps Hr onto L2( 5.t) and transforms T\,j to the 
multiplication operator on Ll Sf}. The subspace Hr.l. and the restriction of 
TI to Hr.l. remain invariant under U. Consequently, we may assume 
without loss of generality that Hr = L2( S) with some bounded measureable 
subset S of R and that Tl,f is the multiplication operator on L2( S). 

Let J be a bounded open interval with S c J, and denote S= J \ Sand 
PI = H ffi L2( S) = Hi" ffi L2( J). The ",operators 1) on H (j = I, 2) will be 
extended to self-adjoint operators 1) on PI if we define 

O(i;) =0(1) $ L2(S), 

i;(g+ h) = 1)g + Mh for g E 0(1), hE L2(S), 
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M denotes the multiplication on L2( S). The restriction of 
to L2(J) is then equal to the multiplication operator on L2(J). We 

therefore have L2(J) Hae(TI ), If we choose anj E L2(J) such thatf<x) = I 
all x E then] Hae( TI ) 

Hj: = L{ F(t)]: t E IR} = L2(J), 

where F denotes the spectral of Since T\ vanishes on L1( S), 
the operator (T2 - TI)Pj belongs to 8 1(A), where Pi denotes the orthogo

projection onto If we prove that HjC D(n + CT2, TI», then it follows 
H.r C (T2' Since tTl e -- i tr'g = ei tT, tTIg g E we 

also have then that H.rcD(n±(T2, T I». 

Second Let T2 - . The assertion of theof,em holds VPj 

has the form 
n 

L g)0 for all EH, 
j-I 

where ~ E COOO( J), '1 E H and II bjll = II hjll = I. Then for all g E COOO( J) (with 
= ei IT, tTl) -

1.9) 

F is Fourier transformation L2(1R) and g/g taken be 
to outside J). A similar estimate holds for the integrals over 

(- 00, t) and (- 00, s). 

Proof of second step. e' tT'g E H.r D(T2) all g 
t E H. The function 

~( 

is therefore continuous for all g E H.r. Moreover, for g E H.r = L2(J) 

II VPr-ilTlgll = t- cj £gj"(x)e- i dx~11 
n 

~ ~1I(2'11)1/2IF( ~·g)(t)l. 
j-I 

If g E COOO(J), then the (extended) function ~.g belongs to CoOO(R), and 
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thus F( ~* g) E S(R). Hence, in this case 

f:IIVPje-iIT,glI dt < 00 forall gECooo(J). 

Therefore, CoOO(J) c D(Q±(T2' T I» by Theorem 11.7. Since the subspaces 
D(Q:!:(T2' T I» are closed by Theorem 11.1, it follows that H.t= LiJ) 
C D(Q:!:(T2' T\». 

With Q+ =Q+(T2' T I ) we have for gE COoo(J) that 

IIQ+ g - Q(t)gIl2 = IIQ+ gll2 - 2 Re<Q+ g, Q(t)g) + IIQ(t)gIl2 

= 211Q+ gll2 - 2 Re<Q+ g, Q(t)g) 

= 2 Re<Q+ g, Q+ g - Q(t)g) 

= 2 Re i foo <Q+ g, eiST'VPj e-isT1g) ds 
I 

= -21m foo<O+e-iST'g, Vp~-iST'g) ds (cf. Theorem ILl) 
I 

n 00 

= -2 1m ~ ejf <Q+e-isT'g, hj)<~' e-isT'g) ds 
j-I I 

..; 2.f Icjl{ {"'1<0+e-iST1g, 0)12 ds fool<~, e-iSTlg)12 dS} 1/2. 

J-1 I I 

Since e - i sTlg E H.t, we have 

fool<Q+ e-isT1g, 0W ds = fool<Q+Pj e-isT1g, 0)12 ds 
I I 

and 

= fool<e-iST,g, (Q+Pj )*0)12 ds 
I 

= fOOl! ei SXg(x)* [(Q+Pj )*hj](x) dX( ds 

..; 21TIIF- I(g*(Q+Pj )*hj }1I 2 = 21TlIg*(Q+Pj )*0112 

..; 21TlIglI!'II(Q+Pj )*0112 ..; 21TlIglI!, 

fool<g1' e- isT'g)1 2 ds = 21T fooIF(g/g)(s)12 ds. 
I I 

Consequently, we obtain that 

n {fOO } 1/2 110+ g - 0(t)gIl2 < 41T1I gil 00 ~ lsi IF(~*g)(sW ds , 
J=1 I 

and hence the assertion follows from the inequalities 

1I0(t)g - 0(s)gIl2 < {IIO(t)g - 0+ gil + IIQ+ g - 0(s)gll)2 

< 2(110+ g-0(t)gIl2+ 110+ g-0(S)gIl2}. 



348 II Scattering theory 

Third step: The assertion of the theorem holds in general. 
Proof of the third step. Let the operator Vo be defined by the equality 

Vo = (VPf )* + VPf - PfVPf · 

Vo is obviously self-adjoint and belongs to BI(H). For all g E ~ and hE H 

<h, Vog) = <h, (VPf)*g + Vg - PfVg) 

= <VPfh - VPfh, g) + <h, Vg) = <h, Vg), 
Le., VOPf = VPf . 

The operator Vo E BI(H) has the form 
00 

Vog = ~ cj<gp g)gj for g E H, 
)-1 

where ~ E H, h)1I = 1 and ~j_llcjl < 00. For allj E N we choose sequences 
(gj, "),, E N from H with the properties Pfgj . n E COoo( J). II gj. "i I .;;; 1 and gj,,, ~ 
gj as n~oo. With 

" V"g = ~ c/gj .", g)gj,n for g E H, n E r~ 
)=1 

it follows that II V,. - Voll ~O, since for every N E Nand n ~ N 

N 00 

II V" - Voll .;;; 2 ~ Icjlll gj,,. - gjl! + 2 ~ IcJ 
)=1 )=N+I 

If we now set T2,,. = T2 + (V,. - Vo), then by Theorem 9.16 and Theorem 
9.18. 

If we set ~,.(t) = ei IT2. ne -i IT" then 

~,,(t)~~(t) as n ~ 00, t E R 

The second step can be applied to T2,,, in place of T2, since 

(T2, II - T1)Pf = (V + V,. - VO)Pf = V,.Pf , 

and V,.Pj has the form required in the second step: 
n 

V"Pfg = L cj<Pfgj ,,,. g)~,n for g E H. 
)=1 

Therefore, (11.9) holds for all g E COOO ( J) with ~n( . ) in place of ~( . ) and 
with Pj~,,, in place of ~. We obtain from this for n~oo that 

1I~(t)g - n(s)gIl2 .;;; 8'17'11 gil 00 )~IIcA {J,ooIF«Pf g)*g)(u)12 du f/2 

+ {~ooIF«Pfg)*g)(uW du f/2]; (1l.l0) 
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for the proof we notice that F{(Pj~. n)*g) converges to F«Pjg)*g) in L2(R) 
as n~ 00. Since the right side of (l I. 10) tends to zero as t, s~oo, we have 
COCO(J) C o (fl+(T2' T I», and thus Hf =L2(J)cO(fl+(T2, T I». We can 
prove similarly that H.J C O(fl_ (T2• T I». 

This completes the proof of Theorem 11.8. 0 

Theorem 11.9. Let TI and T2 be self-adjoint operators on the complex 
Hilbert space H, and let E be the spectral family of T I. 
(a) If J is a bounded interval, R(E(J)P •. ac ) C O(T2),and (T2 -

TI)E(J)P I, ac E BI(H), then the wave operators W ±(T2, T •• E(J)P •. ac) 
exist. 

(b) If the assumption of (a) is satisfied for every bounded interval J, then the 
wave operators W ±(T2, T., P I. ac ) exist. 

PROOF. 

(a) If fER(E(J)PI,ac) then ~cR(E(J)P •. ac)' and thus (T2-TI)Pf E 
B.(H). By Theorem 11.8 Hj C O(fl±(T2' T I»; therefore, f E 
O(fl±(T2' T I». As this holds for all fE R(E(J)P •. ac )' we have 
R(E(J)PI.ac)cO(fl±(T2, T I», i.e., W±(T2' T I, E(J)PI. ac) exist. 

(b) R(E(J)P •. ac) C O(fl±(T2' T I» for every bounded interval J, by part 
(a). Since the linear hull of these spaces (for all bounded intervals J) is 
dense in R( P I, ac)' the assertion follows. 0 

Theorem 11.10. Let TI and T2 be self-adjoint operators on the complex 
Hilbert space H. The wave operators W ±(T2• Tp P I. ac ) and 
W ±(T\> T2, P2. ac) exist and are complete provided that R(EI(J» C O(T~, 
R{ElJ» C O{TI) and (T2 - TI)E;(J) E BI(H) for j= 1,2 and for every 
bounded interval J. This holds in particular if one of the following assump
tions is satisfied: 

(i) There is an operator V E BI{H) such that T2 = T. + V (Kato-Rosen-
blum). 

(ii) O(TI)= O(T2) and (T2 - T,)(z - T.)-2 E BI{H)for some z Ep(TI). 
(iii) O(T])= O(T2) and (T2 - TI)(z - T2)-2 E B](H) for some z Ep(T~. 
(iv) O(TI) = D(T2), and there exists an n E N such that (T2 - TI)(z - TI)-n 

E BI(H) for some z E p(TI) and (T2 - TI)(z - T2)-n E B](H) for some 
z Ep(T2). 

(v) There exists an nEN such that D(T2)-:JO(Tn-:JR(EiJ»for every 
bounded interval J and (T2 - T,)(z - TI)-n E B.(H)for some z Ep(T,). 

PROOF. If (T2 - TI)E;(J) E BI(H) for j = I, 2 and for every bounded inter
val J, then the wave operators W ±(T2, T I, PI. ac ) and W ±(TI, T2, P2.ac ) 
exist by Theorem 11.9(b). These wave operators are complete by the 
Corollary to Theorem 11.6. 

(i) obviously implies (iv) for all n E N. The assumptions (ii) and (iii) are 
equivalent according to (9.7) (observe that the assumptions of (9.7) are 
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fulfilled. (iv) follows from (ii) and (iii). In order to prove that (i), (ii), (iii), 
or (iv) implies the assertion, it is sufficient to prove that (iv) implies the 
assertion: For every bounded interval J 

(T2 - T.)E.(J) = (T2 - T.)(z - T.)-n(z - T.tE.(J) ,= B.(H). 

The formula (T2 - T.)E2(J) E B.(H) follows similarly. 
It remains to prove that (v) implies the assertion: For this, we prove 

(T2 - T.)E.(J) E B.(H) as above. Since R(E2(J» c O«z - 1'.)"), the opera
tor (z - T.tE2(J) is bounded, and thus 

(T2 - T.)E2(J) = (T2 - T.)(z - T.)-n(z - T.)"E2(J) E B.(H). 0 

In the case 0(T1) = 0(T2) Theorem 11.10 can be essentially sharpened. 

Theorem 11.11. Let T, and T2 be self-adjoint operators on the complex 
Hilbert space H. Assume that O(T.) = 0(T2) and (T2 - T,)E,(J) E B,(H)for 
every bounded interval J. Then the wave operators W ±(T2, T I) exist and are 
complete. 

I am indebted to Dr. R. Colgen for the proof given here. The case where 
0(T,,/2) = 0(TlI2) can be also treated without many changes. First we 
prove the following auxiliary theorem. 

Auxiliary theorem 11.12. Let T, and T2 be self-adjoint Gperators on the 
complex Hilbert space H. Assum~ that O(T,) = 0(T2). 
(a) 11(1 - E,« - n, n»)E2(J)II-+O as n-+oo for every bounded interval J. 
(b) If the limits s-liml-+±OOE1«-n, n»eiIT, e-iIT2E2(J)P2.ac exist for all 

n E N, then the limits 

s- lim eiIT'e-iIT2E(J)P 
2 2, ac 

t ........ ± 00 

also exist. 

PROOF. 

(a) It is obvious that (I - E I« - n, n»)E2(J) = (I - E 1« - n, n)))(TI + i)-I 
X (T1 + i)(T2 + i)-I(T2 + i)E2(J) for all n E N. Since (1; + i)E2(J) and 
(TI + i)(T2 + i)-I are bounded and since 11(1 - E I« - n, n»)(TI + i)-III 
<; (1/ n), the assertion follows. 

(b) This assertion immediately follows from 

lIei IT, e- i IT'E2(J)P2, ac - E,« - n, n»ei IT, e- i IT2E2(J)P2,acl! 
= lIei IT'(I - E,« - n, n»)E2(J) e- i IT'P2. aell 
;;; 1\(1 - E,« - n, n)))EiJ)II-'> 0 as n -+ 00. 

D 
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PROOF OF THEOREM 11.11. The existence of W ± (T2• T,) follows from 
Theorem 11.9(b), because R(E,(J» c D(T.) = D(T2) for every bounded 
interval J. It therefore remains to prove the existence of 

W ±(T •• T2• E2(J)P2 aJ = s - lim ei/T, e-i/T'E2(J)P2 ac 
I I~±OO • 

for every bounded interval J. 
Let J be a bounded interval. As (T2 - T.)E.(J) E B.(H). the operator 

Vo; = (T2 - T.)E.(J) + «T2 - T.)E.(J»* - E,(J)(T2 - T.)EJ(J) 

is a self-adjoint element of B.(H) and 

VoE.(J) = (T2 - T.)E,(J). 

E,(J) Vo = (VoE,(J»* :> E,(J)T2 - T,E,(J). 

Define T3 = T2 - Vo. Since R(EiJ» c O(T) = O(T2). we then have 

E.(J) VOE3(J) = (E.(J)T2 - T.EJ(J»EiJ). 
and thus 

T.E.(J)E3(J) - EJ(J)T3E3(J) = (T,E,(J) - E,(J)T2 + E,(J) VO)E3(J) = O. 

If we define.A : ~~B(H) by the equality 

A(t) = E (J)ei/T, e-i/T'E (J)P • ) 3. ac. 
then 

:t (u. A(t)v) = i(u. ei ,T'(T,E.(J)EiJ) - E,(J)T3E3(J» e- i/T,p3• acv) = 0 

for all u. v E H. A is therefore constant, i.e., A(t) = A (0) = E.(J)E3(J)P3, ac 
for all t E R. 

Since T3 = T2 - Vo with Vo E B.(H). the operators 

W±(T3• T2• E2(J)P2.aJ = s -lim ei/T, e-i/T2EiJ)P2,ac 

exist by Theorem 11.9(a). and 

W±(T3• T2• E2(J)P2,ac) = E3(J)P3,ac W±(T3• T2• E2(J)P2,aJ 

by Theorem 11.2. This implies 

s - lim (1- E (J)P ) ei/T, e- i1T2E (J)P = 0 
t ----. ± 00 3 3, ac 2 2. ac , 

and thus the existence of 

s - lim E,(J) eitT, e-iIT1EiJ)P2.ac 
t-+± 00 

= s - lim E (J) eilT, e- itT, eilT, e- i1T2E (J)P I-+±oo J 2 2.ac 

= S - lim E (J) eilT, e-iIT'E (J)P eilTJ e- i1T2E (J)P 
t_ ± 00 J 3 3, ac 2 2. ac 

= s - lim A(O) eitTJ e-iIT'E (J)P . 
t~±oo 2 2.QC 
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As this holds for all bounded intervals J (in particular, for J = ( - n, n), as 
well), the existence of 

s- lim E«-n,n»eitTte-itT2E(J)P 
t .... ±oo I 2 2,ac 

also follows for all n E N. Consequently, the assertion of the theorem is 
obtained by Auxiliary theorem 1l.12(b). 0 

In what follows we would like to prove a version of the so-called 
in variance principle for wave operators (d. also T. Kato [22), X.4). 

Theorem 11.13 (lnvariance principle). Let the assumptions of Theorem ll.S 
be satisfied (let H.r and PI be defined as there). Assume that the function 
-& : IR~IR is twice continuously differentiable and -&'(x) > 0 (respectively 
-&' (x) < 0) for all x E R Then HI C O(Q ± (-&( T 2), -&( TI))), and Q ± (-&( T2), 
-&(TI»g = Q±(T2' TI)g (respectively Q±(-&(T2)' -&(TI»g = Q:;:(T2' T1)g) for 
all g E HI' 

For the proof we need an auxiliary theorem. 

Auxiliary theorem 11.14. Let -& : R~IR be twice continuously differentiable. 
Assume that -&'(x) > 0 (respectively -&'(x) < 0) for all x E IR. Then for all 
g E L2(1R) 

IIgll 2 ;;> {,olF(e-iS"'(.)g)(uW du ~O 

as s~oo (respectively s~ - 00). (A similar result holds for f~oo if we 
exchange "s~oo" with "s~ - 00".) 

PROOF. The inequality is clear since F: L2(1R)~L2(1R) is unitary and 
lIe-i~(. )gll = II gil for all s E R It is therefore enough to prove the conver
gence relation for all g from a total subset of L2(1R), for example, for 
characteristic functions of bounded intervals. We consider the case -&' > O. 
Then for g = X(a. b), S > 0, and u > 0 

F( e- i s",(. )g)( u) = (217) -1/2 fb e - i ux e- i s-'(x) dx 
a 

= i(27T)-1/2f\u+s-&'(x»-I~e-i\lX-is-'(X) dx 
a aX 

{ [ 
e -i ux-i s-'(x) ]b 

- '(2 )-1/2 
- I 17 U + si}'(X) 

a 

+ fb s-&"(X) e- i ux-is",(x) dxl. 
a (U+s~'(x)f f 

There exist C. > 0 and C2 ;;' 0 such that -&'(x);;. C I and I~ "(x)l< C2 for all 
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x E [a, b). Consequently, for all u > 0 and s > 0 

IF(e-isD(.)g)(u)1 ..; CiU+S)-I, 
and thus 

l OOIF(e-isD(·)g)(uWdu..; C32S- 1 forall s > o. 
o . 
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The case {f' < 0 can be treated in a similar way if we consider u > 0 and 
s<O. 0 

PROOF OF THEOREM 11.13. As in the proof of Theorem 11.8, we can assume 
without loss of generality that H.r =- L2(J) with some bounded interval J 
and that the restriction of TI to L2( J) is equal to the operator of multi
plication by the variable. 

Let {f' > O. We consider n+: First we remark that (11.10) obviously 
holds for gE C(J), as well. If we replace g by e-i",<T1)g=e-isD(')g(.), 
then we obtain for s=-O and t ~ 00 that 

IIn+(T2, TI ) e-isD(T1)g - e- isD(T1)gIl2 

..; 8'1TlIg1i00 ,f ICjl{lOOIF(pjgj )* e- isD(.)g)(u)j2 dU} 1/2. 
,-I 0 

By Auxiliary theorem 11.14, the expressions in the braces are bounded by 
II gll~1I ~1I2 = II gll~ and tend to 0 as s~oo. Consequently, 

n+(T2, T.) e-isD(T')g - e-isD(T')g ~ 0 as s ~ 00 

for all g E COoo( J). Then this holds for all g E L2( J), as well. Hence, for all 
g E L2(J) 

e- isD(T2)n+(T2, TI)g - e-isD(T')g ~ 0 as s ~ 00 

(cf. Theorem 11.1). Multiplication by ei "'{T,) gives assertion in this case. 
The other cases can be handled similarly. 0 

Theorem H.tS. Let T. and T2 be selj-at/ioint operators on the complex 
Hi/bert space H, and let E denote the spectral family of TI . Assume that 
R(E(J)P •. ac) C D(T2) and (T2 - T1)E(J)P I. ac E BI(H) for every bounded 
interval J. Assume, furthermore, that the function {f : R~R is twice continu
ously differentiable and {f'(x) > 0 (or {f'(x) < 0) for all x E R Then 
Hac({f(TI»=- Hac(TI), the wave operators W ±({f(T2), {f(TI), PI,ac) exist, and 
W:t({f(T2), {f(TI), PI. ac) = W:!:(T2, T I , PI. ac} (or W ±({f(T2), {f(TI), PI. oC> 
= W +(TZ' TI , P I. ac ), respectively). 

PROOF. A subset N of IR is a null set if and only if {feN) is a null set. If F is 
the spectral family of {f( T I), then F( S) == E( {f -ie S» for every Borel set S 
(cf. Section 7.3, Proposition 6). It follows that Hac({f(TI» = Hac(TI)' The 
rest of the assertion follows from Theorem 11.13 (cf. the proof of Theorem 
11.9). 0 



354 11 Scattering theory 

Theorem 11.16. Let TI and T2 be self-adjoint operators on the complex 
Hitbertspace H.Assumethat TI~Y' T2~y,and(TI-'A)-P·-(T2-'A)-PE 
8 1 (H) for some 'A E iii such that 'A < Y and some pEN. Then the wave 
operators W±(T2' T l, Pl. at) exist and are complete. 

PROOF. Let 1'} : 1Ii~1Ii be a twice continuously differentiable function such 
that 1'}(t) = 'A + t - lip for t ~ (y - 'A) -p and 1'}'(t) < 0 for all t E iii (hence, 
1'}«1j - 'A)-P) = 1j for j = I, 2). The wave operators 

W±(T2, T l, Pl,aJ = W+(T2-'A)-P, (Tl-'A)-P, Pl,ac) 

and 

W ±(Tl, T2, P2,ac) = W:;:(TI-A)-P, (T2 -'A)-P,P2,aJ 

therefore exist according to Theorems 11.10 and 11.15. The assertion thus 
follows. 0 

11.3 Applications to differential operators on L2(~m) 

If Tl is a self-adjoint differential operator on L2(lIim) with constant coef
ficients, then in many cases the existence of W ±(T2, T 1) ,;;an be proved 
without using Theorem lI.S or any of its consequences. We only have to 
apply Theorem 11.7 and appropriate estimates of exp( - i tTI)f that can be 
proved with the aid of the Fourier transformation. Here we prove a special 
case of a result of K. Veselic and J. Weidmann [53], [54] (compare also with 
L. Hormander [43]). 

Auxiliary theorem 11.17. Let A C llim be a closed set. Assume that the 
function h : llim ~ iii is infinitely many times continuously differentiable in 
Rm"A and grad h(x)~O for x E llim"A. Then for eveIJ' function gE 
Cooo(lIim" A) and for every p ~ 0 there is a constant C such that 

jor a/l x E Rm and t E R" {OJ (here g is considered as a junction defined on 
Rm with g(x) .... 0 jor x E A). 

PROOF, For every y E Rm"A there is aj E {l, 2, ... , m} for which <ljh(y) 
- (3 /3Yj)h(y) ~ O. Since <ljh is continuous, there is a neighborhood Uy of y 
in Rm"A such that ajh(z)~O for all z E Uy • The compact set supp g can 
be covered by finitely many such neighborhoods UN ... , Uyn • Then there 
are functions 1'}j E CoOO(Rm) such that supp 1'}j c UYj and ~j-I1'}iY) = I for all 
y E supp g (partition of unity; cf. W. Rudin [33], Theorem 6.20). It is obvi
ously sufficient to prove the assertion for the functions 1'}jg in place of g, 
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i.e., we can assume that ajE {t, 2, ... , m} exists for which ajh(y)~O for 
all y E supp g. (In many concrete cases there is a j E {I, 2, ... , m} such 
that ajh(y)~O for all y E IRm"A; then the foregoing step of the proof is 
superfluous. ) 

Hence, let ajh(y)~O for ally Esuppg. Then by k-fold partial integra
tion with respect to Yj we obtain for all kEN and t =1= 0 that 

j eiXY-ilh(Y)g(y) dy = je-i1h(Y)a.h(y) eiXYg(y) dy 
J ajh(y) 

= (i t)-lje-i1h(y)a.[ eiXYg(y) 1 dy 
J Ojh(y) 

( ' )-kj -ilh(Y)a [ I 0 [ a [eixyg(y) 1 II d = . . . = 1 t e j Ojh(y) j ,., j Ojh(y) . , , y 

= (i t)-k j eiXy-ilh(Y)X(Xj>y) dy, 

where 
k 

X(~'Y) = L fJ/y)x! 
p-o 

and the supports of the functions fJp E CoOO(lRm\A) are contained in supp g. 
Therefore, 

We consequently obtain for every kEN that 

1 j ei xy-i Ih(Y)g(y) dYI ..; Ckltrk(1 + Ixl)k. 

This estimate evidently holds for k = 0, as well. 
Now let kENo be such that k..; p <k + l. Then 

Itl-P(I + IxlY > Itl-k(l + Ixl)k 

Itl-P(I + Ixl)p > Itl-(k+l)(I + Ixl)k+1 

for Itl-I(I + Ixl) > 1, 

for Itr 1(1 + Ixl) < 1. 

If we apply the above result with k and k - I, then we obtain the assertion. 
o 

In what follows, for a real-valued measurable function h defined on IRm 

let Mh denote the maximal operator of multiplication by h on L2(Rm), and 
let Th = F -IMhF. If h is a polynomial, then Th is a differential operator 
with constant coefficients. 
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Theorem 11.18. Let us assume that with a closed set A c Rm of measure zero 
we have 

hE C""(Rm\A) and grad h(x) =1= 0 for x f£. A. 

Let V be a symmetric operator on L2(Rm) such that S(IR/m) c D( V), and 
assume that there exist apE No, a e> 1, and a C :;;. 0 with the property that 
for all r:;;' 0 

IWfll < C(l + r)-sIIfIV for all f E S(Rm) such that f(x} = 0 for Ixl < r. 

Then for every self-adjoint extension T of Th + V (provided that any exist) 
the wave operators W ±(T, Th) exist. 

In the following we shall not prove this theorem but a somewhat more 
general one that also considers operators on L2(Rm)M (for example, Dirac 
operators). For this let H be a measurable function defined on Rm whose 
values are M X M Hermitian matrices (such a function is said to be 
measurable if the entries of the matrix are measurable functions). Let MN 
again be the maximal "operator of multiplication" by H on L2(Rm)M and 
let TN = F-JMNF. The operator TN is evidently self-adjoint. We denote by 
hJ(x), ... , hM(x) the M (not necessarily different) eigenvalues of H(x) and 
by eJ(x), ... ,eM(x) the corresponding normalized eigenelements. (There 
is a great deal of freedom [especially if multiple eigenvalues occur) in the 
choice of these functions; in what follows it will be possible to choose them 
in such a way that the functions hj and ej are infinitely many times 
differentiable.) The operator TN is a differential operator if all entries of 
the matrix function H are polynomials; however, the functions hj and l'l 
are in general then not polynomials (cf., for example, the Dirac operator, 
Section 10.6). 

A function H defined on Rm whose values are Hermitian M x M 
matrices is said to be permissible if the functions ~ and Ej can be chosen 
such that there exists a closed set A C Rm of measure zero for which 

hj E C""(Rm\A), ej E C""(Rm\A)M, 

grad ~(x) =1= 0 for x fI. A (j= 1, ... , M). 

Theorem 11.19. Let H be a permissible function. Let V be a symmetric 
operator on L2(Rm)M with the properties: S(Rm)M c D( V), and there exists a 
p E No, a e> 1, and a C :;;. 0 such that for all r:;;' 0 

II Vfll <: C(l + r)-8 I1 fll/ for all f E S(Rm)M such that 

f(x) = 0 for Ixl < r. 

111 • lip is the norm of W2,p(Rm ). 

2Here II . lip denotes the norm in W2•p(R",)M. 
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Then the wave operators W:!:(T, TH) exist for every self-adjoint extension T 
of TH + V. 

PROOF. We prove that if Ff E Cooo(lRm \ A)M, then f satisfies the assumptions 
of Theorem 11.7. Since Cooo(lRm\A)M is dense in LllRm)M=LllRm\A)M, 
this will prove the assertion. 

Let FfE CoOO(lRm\A)M. Then, in particular,jE S(lRm)M. The assumption 
on V (for r = 0) implies that 

IIV(e-i.TH-e-itTH)fll';; CII(e-i.TH_e-itTH)fllp 

= CII(e- isH(, l _ e- i tH(, ')Ffll(P' 

= C {jleiSH(Xl _ e- i tH(Xl I21(Ff)(xW{I + Ixl2Y dX} 1/2 

~ 0 as s ~ t. 

The function t~ Ve- i tTHf is therefore continuous on R 
Now let {f E COO(IR) be such that 0.;; {f(s) .;; I, D(s) = I for s .;; 0 and 

{f(s) = 0 for s> 1. With some J.L E(l/e, 1) let {ft E Co""(lRm) be defined by 
the equality {flx) = {f(lxl-ltll') for all x E IRm and t E R 

The assumption on V (for r = 0) implies (cf. Theorem 1O.8(c» that 

= C1 max {f (2'1T)-m/2IjeiXYe-i IH(Yly"'(Ff)(y) dyl2 dX} 1/ 2, 
lal';;p Ixl,;;W+l 

The operator induced on eM by the matrix e- i tH(Yl can be written in the 
form 

M 

e-itH(Yl~ = L e-it~(Yl(eiY), ~)eiY) for ~ E eM, 
j=1 

where (, , ,) is the scalar product in eM, Consequently, 
M' J ei "Ye- i tH(Yly"'(Ff)(y) dy = ~ J ei"Ye- i t~(Yl(eiy),Y"'(Ff)(y»eiY) dy, 

j-I 

Since FfE Co""(lRm\A)M, we also havey"'FfE Cooo(lRm\A)M, Therefore, the 
functions y~(eiY), y"'(Ff)(y»eiY) also belong to COOO(lRm\ A)M, Hence 
we can apply Auxiliary theorem 11.17 to the last integral. We thus obtain 
for all p > 0 and It I ;;;. 1 that 

IIV{fte-itT'i1i .;; c2{I (l +lx/)2Pltr2p dX}1/2 
Ixl<ltIP+ I 

.;; C31 tIP(I'-I)+(mI'12l. 
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We obtain similarly from the assumption on V (for r = Itl":> that 

II V(I-1'Jo,)e- i tTHf11 .r;;; C4(1 + ItI")-e max lIe- i tTHD'111 
lal<p 

.r;;; C4maxIlD'1l1ltl-"e = Csl'I-"e. 
a<p 

If we choose p so large that p( p. - I) + (mp./2).r;;; - p.9 < - I, then 

IIVe-itTHfll .r;;; IIV1'Jote-i1THfll + IIV(I-1'Jo,)e-itTHfll .r;;; C6ltr"e 

for It I > 1. Since t~ Ve- i ITHf is continuous, the integrability of t~ 
II V e-ilTHfll follows from this. 0 

Theorem 11.20. 
(a) Let T J be the self-adjOint operator defined by the formulae D(TJ) 

= W2, 2(lJim), TJ f = - Af for f E D( T J). Let V be defined by the equality 

VJ(x) = ~ c .. (x) D" f(x) for f E S(lJim), 
lal<k 

and assume that Ic .. (x)l.r;;; C(l + Ixl)-'-' for some C :> ° and some £ > 0. 
Then the wave operators W ± (T2, T J) exist for every se(f-adjoint exten
sion T2 of T J + Y. 

(b) A corresponding result holds if TI is the free Dirac operator on L2(1It3t 
and the c .. (x) are 4 X 4 matrices. 

PROOF. 

(a) We have TJ=Th with h(x)=lxI2• Since gradh(x)*O for x*O, the 
assumption of Theorem 11.18 is obviously satisfied with p = k. 

(b) The functions hj and ej are known from Section 10.6 and satisfy the 
assumptions of Theorem 11.l9 with A = {OJ. Theorem 11.19 is there
fore applicable if we choose p = k. 0 

The assumptions of Theorem 11.20 on the coefficients (~ can be essen
tially weakened (cf. Exercise 11.1). 

In Theorems 11.18 to 11.20 we showed the existence of W ± (T2, TJ) in 
many cases where T J is a· differential operator with constant coefficients. 
Since in these cases Hac(TJ) = H (cf. Exercise 10.7; this is clear for - A and 
the unperturbed Dirac operator), this is equivalent to the existence of 
W ±(T2, T J, PJ,ac)' We cannot expect that the completeness (i.e., the equal
ity R( W ± (T2, T J» = Hac( T2» can be proved under such general assump
tions. A few simple assertions can be proved with the aid of the results of 
Section 11.2. In order to be able to apply them we need the following 
auxiliary theorems. 

Auxiliary theorem 11.21. If r, s :> 0, r - s >m/2 and qJ E ~r(lItm), then the 
operator 
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belongs to B2( W2, r(Rm), W2, s(Rm», If r - s > m, then 4> E 
B I ( Ww, lRm), W2, iRm». 

PROOF. We recall the proof of Theorem 10.19. 4> is a Hilbert-Schmidt 
operator if and only if the integral ope~ator K on L2(Rm ) defined there is a 
Hilbert-Schmidt operator. The kernel of K is given by the fonnula 

k(x,y) = (I + IxI 2y/21/1(X -y){l + lyI2)-r/2 for X,y E Rm 

with 1/1 = Fcp E S(Rm). Because of the inequality 11/I(x)l,.;; C(I + IxI2)-1 we 
have 

1 CI{I + IxI2)-I+S/2{1 + lyI2)-r/2 

,.;; c1{I + Ix - YI2)-I{1 + lyI2)(s/2)-(r/2) 

for Iyl ~ -&Ix/, 

for Iyl > ilx/. 

If we choose I > (m/4) + (s/2), then kEL2(RmxRm); the operator K is 
therefore a Hilbert-Schmidt operator. 

Now assume that r - s >m, Sl = (r + s)/2 and CPI E Cooo(Rm) with cp\(x) = 
1 for x E supp cpo Then 4> can be considered the product of the mappings 

4>' : W2,r(Rm) ~W2,s,(Rm), ff-'; cpd, 

4>" : W2,s,(Rm) ~W2,s(Rm), ff-'; cpf. 

As both of these operators are Hilbert-Schmidt, <I> belongs to 
B,(W2,r(Rm ), W2,s(Rm» (cf. Theorem 7.9). 0 

Auxiliary theorem lI.22. Let T be a self-adjoint operator on L2(Rm). Assume 
that D(T") C W2, tCRm) for some n E ~ and some t >m. Let V be a symmet
ric operator on L2(Rm) such that D( V)::J W2, s(Rm) for some s E [0, 
t - m). Assume that there exist a C ;;;. 0 and a e >m such that for all r;;;' 0 

for all fE W2,s(Rm) such that f(x) =0 for Ixl <r. Then 

V(i- T)-" E B\(LiRm». 

(An analogous result holds in LiRm)M.) 

PROOF. Let 6 = 61 E Cooo(Rm) be defined as in Section 2.2, Example 8 (i.e., 
0", 6(x), 6(x) = 0 for Ixl;;;' 1 and f 6(x) dx = I). For all m-tuples Y = 
(YI"'" ym)E71.m let 

Qy = {x E Rm : Yj <:. Xj < Yj + 1, j = I, 2, ... , m }, 

CPy(x) = f 6(x - Y)Xa,(Y) dy. 
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Then we obviously have 

~ qiy(X) = 1 for all x E IIlm, 

yEl'" 

where the sum is finite for every x E Rm (with at most 3m summands). By 
Auxiliary theorem 11.21 the operator 

<l>y : W2. I(Rm) - W2jlllm), f 1--4 qiJ 

belongs to BI ( W2• ,(Rm), W2. s(lIlm» for every 'Y E zm, and the trace norm 
lI<I>ylls,(w, t' W2,,) does not depend on 'Y (we have <fly = 7'y<flo7' _y' where 7'y 
denotes the operator of translation by y : (7'J)(x) = f(x - y». 

The operator (i - T)-" is a continuous mapping from L2(lIlm) into 
W2,I(lRm ): As in the proof of Theorem 10.18 we can prove that II . II Tn> 
Cdl . III for some C I > 0, and thus 

lI(i- T)-"fIl7 ~ CI- 2{IIT"(i- T)-'Y1I2 + 1I(i- T)-'Y1I 2} ~ C211f112. 

Now let Oy={XElIlm :,(;-I<:'xj <'Yj+2 for j=I,2, ... ,m}, CPy= 
f8(x - Y)XQy(Y) dy, and 

4)y : W2.s(ll~m) _W2,s(Rm), fl--4 ipJ. 
Then 4)y<fly = <fly, and V4)y, as an operator from W2,iRm) into L2(Rm), is, 
by assumption, bounded by 

- e IIV<fIy llB(w2",L2) <:. C3(1+lyl)- . 

Observe now that (BI' II . III) is a Banach space by Exercise 7.10 and 
that by Theorem 7.8(c) IIABIII <:.IIAlldIBIl and IICAIII·~ IICIlIIAIiI for 
bounded Band C. It therefore follows that 

11V(i - T)-nll l = II L V4)y<fl)i - T)-nIl 1 <:. L IIV~y<fl)i - T)-nIl 1 
yEZ'" yEZ'" 

o 
From Auxiliary theorem 11.22 we can immediately derive criteria for the 

existence and completeness of wave operators with the aid of Theorem 
11.10. (These existence statements are weaker than those contained in 
Theorem 11.20). Here we only give a typical result. Actually, for m > 2 
much better results can be proved using entirely different methods. We 
shall not consider them here (compare with, for example, S. T. 
Kuroda [47, 48] and M. Schechter [49, SO] for further references). 
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TIleorem 11.23. Let T\ be equal to - A, with O( T\) = W2.2(~m). Let V be 
symmetric such that O( V)::J O(T\), and let T2 = T\ + V be self-adjoint. 
Assume that there exist an s > 0, a e > m and a C > 0 such that for all r ;> 0 

U Vfll " C(1 + r)-eUflls 
for a/l fE W2,s<~m)n O(V) such that f(x)=O for Ixl <r. Then the wave 
operators W ±(T2, T\) exist and are complete. 

PROOF. Since O(T\)'! = W2, 2n(~m), by Auxiliary theorem 11.22 V(i - T\)-n 
E B\(L2(~m» for every n E N such that 2n - s >m, and thus 

VE\(J) E B\(L2(~m» for every bounded interval J. 

The assertion therefore follows from Theorem 11.11. o 
REMARK. The assumptions of Theorem 11.23 hold in particular if V is a 
differential operator of order ,,2 whose coefficients decrease as Ixl-e for 
some e > m. An analogous result can be proved for Dirac operators. 

EXERCISES 

11.1. The assertion of Theorem 11.20 holds also if the functions ca are locally 
square integrable and Nc (x).;;; C(l + Ixl)-\-< for some C ;;. 0 and some (> O. 
Hint: Choose p >k + (';;/2) in the proof. 

11.2. Assume m .;;; 3, T\ == - A, D(TI) = W2, iRm) and q E L2(Rm) n LI(Rm). If V is 
the operator of multiplication by q, then V is TI-bounded with TI-bound 
zero; consequently, T2 = TI + V is self-adjoint and D(T2) = D(TI). The wave 
operators W;!:(T2' T I ) exist and are complete. 
Hint: (TI + S)-I - (T2 + S)-I = (TI + s)-IV(T2 + S)-I E BI(L2(Rm» for 
sufficiently large s, since 

IVII/2(TI +8)-1 and IVII/2(T2+s)-1 = IVII/2(TI +8)-I(TI +8)(T2+s)-1 

are Hilbert-Schmidt operators (Theorem 11.16). 



Appendix A 

Lebesgue integration 

In this appendix we shall compile and prove a few results of Lebesgue 
integration theory that are used in several places in this book. We essen
tially follow the presentation of F. Riesz and B. Sz.-Nagy [31]; but notice 
that only the measure induced by the volume function is :;tudied in detail 
there. For complete presentations of the theory of measure and integration 
we refer the reader to, for example, E. Hewitt and K. Stromberg [18] or W. 
Rudin [32]. 

A.I Definition of the integral 

Let t = t(Rm)1 be the set of bounded intervals J = J1 X ')2 X ... X Jm in 
Rm, where the ~ ar~ arl2itrary open, half-open, closed, OM-point or empty 
intervals in R. Let t = ~(Rm) be the set of finite unions of intervals from 
t. It is obvious that every M E i can be written as a union of finitely many 
mutually disjoint intervals from t. 

A mapping p : ~-+R is called a function of an inte1'1'Jal or a interval 
function on Rm if we have: 

(AI) Monotonicity: J(, J2 E t and J 1 C J2 imply p(J1) .. ; p(J-z). 
(A2) Additivity: J" J2 E~, J, n J2 = 0 and J, u J-z E t imply p(J1 U J2) 

= p( J,) + p( J2). 

The mapping p can be extended to i by the formulae 
n n 

p(M) == L p(~) for M= U ~ with ~ n Jk = (2:: for j oF k. 
j-I j-I 

tIn the following we omit Rm if no confusion is possible. 

362 



A.) Definition of the integral 363 

This definition is obviously independent of the choice of the representation 
M = U 1-10. This extended mapping is also monotone and additive. 

The monotonicity and additivity immediately imply that 

p(M) ;> 0 for all MEi; p(0) = O. (A3) 

An interval function p is said to be regular if we have: 
(A4) For every J E ~ and every E > 0 there exists an open interval j 

such that J c j and p(j) ( p(J) + E. 

It is easy to see that p is regular if and only if we have: 
(AS) For every J E ~ and every E > 0 there exists a closed interval J 

such that J c J and p(J);> p(J) - E. 

A regular interval function on IRm will be called a measure in the sequel. 

EXAMPLE I. The volume function 

m 

A(J) = II (b)-aj ) for J= {XElRm: aj~xj~0} 
j-I 

is a measure. A is called the Lebesgue measure. 

EXAMPLE 2. Iff: IR~IR is a right continuous non-decreasing function, then 
the formula 

!
f(b) - f(a) 

f(b)-f(a-) 

piJ) = feb -) - f(a) 

feb -) - f(a -) 

defines a measure. 

for J=(a,b], 

for J= [a, b], 
for J= (a, b), 
for J= [a, b) 

EXAMPLE 3. If PI is a measure on IRP and P2 is a measure on IRq, then the 
equality 

p(J. x J2) = PI(J1)P2(J2) for J. E HiRP), J2 E HIR'l) 

defines a measure on IRp+q. 

In what follows let p always be a measure on IRm. A set N C IRm is called 
a p-null set if for every E > 0 there exists a sequence (J,,) from ~ such that 

Nc U J" and ~ p(J,,) < E. 
"EN "EN 

Since p is regular, these intervals can always be chosen to be open. 

EXAMPLE 4. All finite and countable subsets of IRm are A-null sets. 
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EXAMPLE 5. Every subset of a p-null set is a p-null set. 

EXAMPLE 6. Countable unions of p-null sets are p-null sets: If the Nk(k E 

N) are p-null sets, then for every t: > 0 there are sequences (Jk.n)nEN from 
~ for which Nk C U nENJk. n and ~nENp(Jk, n) <t:2- n . This implies that 
U kENNk C Un, kENJk,n and ~n, kENp(Jk,n) <t:o 

In what follows we say that a certain assertion holds p-almost everywhere 
(or for p-almost all x) if there exists a. p-null set N such that the given 
assertion holds for all x E Rm \ N. In particular, we write f = g or J" -4 g if 

p p 
there exists a p-null set N such that f(x) = g(x) or fn(x)-4g(x) for all 
x E Rm \ N, respectively. 

A function f: Rm -4 C is called a step function if 

n 

f = L cjXJ. with J.J E ~ for j = 1, ... , n 
j-l ~ 

(here XM denotes the characteristic function of M). Of course, the intervals 
J.J are not uniquely determined by f. However, we can choose the intervals 
J.J to be mutually disjoint. We denote the set of step functions defined on 
Rm by T = T(Rm). The set T(Rm) is a complex vector spac,e. 

For an f E T we define the p-integral by the equality 

n n f f dp = f f(x) dp(x) = L cjp(J.J) for f = ~: cjXJ.· 
j-l j=l ~ 

This definition is independent of the choice of the representation of f as a 
linear combination of characteristic functions. 

The following properties of the p-integral of step functions are obvious: 
(A6) If f, gET are real-valued and f:r;;; g, then ff dp:r;;; Jg dp. 
(A7) IJjdpl:r;;; flfl dp for every fE T. 
(A~) The mapping T -4C, f~ If dp is linear. 
Concerning the extension of this notion of an integral to a wider class of 

functions we need a few preliminary remarks. First we consider only 
real-valued functions. 

Auxiliary theorem At. If ME i and (In) is a sequence from ~ such that 
Me U nEN/m then p(M):r;;; ~nENp(/n)' 

PROOF. Let M = U ;-1 J.J with pairwise disjoint interval:; J.J. Since p is 
regular, for every t: > 0 there exist closed intervals 0 for which 0 C J.J and 
p(0);;;' p(J.J) - t:/(2k) and open intervals Tn for which In C Tn and ~nENp(ln) 
:r;;;~nENp(ln)+t:/2. The set 1Cf= uj=10 is a compact subset of M and 
p(ICf);;;'p(M)-t:/2. Consequently, there is an NEN such that ICfc 
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U ~_I in> and thus 

As this holds for all f > 0, the assertion follows. o 

Auxiliary theorem A2. If (J,,) is a non-increasing sequence from T and J" ;;. 0, 
fn ~ 0, then ffn dp~O. 

p 

PROOF. Let No be the p-nuli set on which the sequence Un) does not 
converge to zero, let K E ~ be chosen such that we have K ;;. f, (then we 
also have K ;;. fn for all n EN), and let 10 be an interval such that f,(x) = 0 
for x E ~m \10 (then J,,(x) = 0 for x E ~m\ 10 and all n EN). 

For a given f > 0 let f' = f( K + p(lo» -I. Let ~n be the set of mutually 
disjoint intervals where J" assumes constant values not smaller than f'. 

Then with the notation Mn = U JE§J we have 

MI ::JM2 ~ .. , and n Mn eNo, 
nEN 

because of the mono tonicity of the sequence Un)' This implies that 
00 00 

Mk = U (Mn \Mn+l ) U n Mn e U (Mn \Mn+d UNo. (A9) 
nEN 

For every n E N let '5'n be a finite set of mutually disjoint intervals for 
which Mn \Mn+1 = U JE'5: J. Since MI ~ U~::(Mn \Mn+1) for kEN and 
(Mn \ Mn+ J) n (Mm \ Mm+ J)"= 0 for n =i=m, we have 

and therefore 
00 

L L p(J) , p(MJ) < 00. 
n-I JE~n 

Consequently, there exists a ko E N such that 

00 f' 

n~k J~~np{J) < '2 for k;;. ko· 

Since the p-null set No can be covered by countably many intervals of total 
measure <f' /2, by (A9) the set Mk can be covered by countably many 
intervals of total measure <f'. By Auxiliary theorem Al we therefore have 
p( Mk ) < f' for k ;;. ko' and thus 

fA dp '" Kp{Md + f'p{lO) '" f'{K+p{lo» = f for k;;. ko' 0 
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Auxiliary tbeorem A3. If Un) is a non-decreasing sequence from T and the 
sequence of integrals (fin dp) is bounded, then there exists a function 
f: Rm - R for which fn - f· 

p 

PROOF. Without loss of generality we may assume that the: functionsfn are 
non-negative (otherwise we would consider the sequence Un - fl»' Let No 
be the set of those x E Rm for which the sequence Un(x» diverges. We have 
to show that No is a p-null set. 

Let £ > 0 be given. Let C ;;. 0 be such that ffn dp .;;; C for all n E "'. Let 
Cj"n be the set of disjoint intervals on which fn assumes constant values not 
smaller than C / £, and define 

Nn = U J= {X E Rm : fn(x);;, C) for n E "'. 
JE~n £ 

If N= {x E Rm : fn(x);;' C/ €. for some n E "'}, then No C /1/= UnENNn and 
Nn C Nn+ I' We can therefore choose a sequence (Jk ) of disjoint intervals so 
that 

k(n) 00 

Nn = U Jk for all n E '" and thus N= U Jk ~No. 
k-I k-I 

It therefore follows for all n E '" that 

~n) C C 
~ p(Jk )- = ~ p(J)- .;;; J In dp .;;; C, 
k-I £ JE~n €. 

and hence 

i.e., No is a p-null set. o 

Auxiliary theorem A4. Let Un) and (gn) be non-decreasing sequences from T 
such that fn - f. gn - g and f < g. Assume that the sequences of integrals 

pep 
(f fn dp) and (f gn dp) are bounded. Then 

lim Jfn dp < lim Jgn dp. 
n-+oo n--+-OlO 

PROOF. For every mE'" the sequence Um - gn)nEN is non-increasing and 

p - lim (1. - g ) = 1. - g .;;; f - g .;;; 0 .. 
n-+oo m n p m p p 

Consequently, for every mE'" the sequence «fm - gn)+)nEN is non-in
creasing and p-converges to 0 (here h + = max{O, h}). By Auxiliary theorem 



A.I Definition of the integral 367 

A2 we therefore have fUm - gn)+ dp~O as n~oo, and thus 

.s;;: lim IUm - gn)+ dp = 0 for all mE 1\1. 
n ..... oo 

The assertion follows from this if we let m tend to 00. o 
In what follows let TI = TI(lRm, p) be the set of the functions f: Rm~R 

for which there exists a non-decreasing sequence (J,,) from T for which 
J" -+ f and the sequence of integrals is bounded. Since the sequence of 

p 

integrals (I fn dP) is non-decreasing and bounded, it is convergent and we 

can define . 

I f dp = lim If" dp. n ..... oo 

By Auxiliary theorem A4 this definition is independent of the choice of the 
sequence (J,,) (having the required properties). If f, g E TI and a, b > 0, 
then af + bg obviously also belongs to TI and 

I (af + bg) dp = a If dp + b f g dp. 

Now let T2 = T2(Rm, p) be the real vector space that is spanned by TI, i.e., 
T2 = {f = fl - f2 : fl'/2 E Td· On T2 let us define the p-integral by the 
equality 

If dp = I fl dp - f f2 dp for f = fl - f2 with 1j E TI· 

This definition is independent of the choice of the functions fl and f2' since 
f= fl - f2 = gl - g2 with fl' f2' g" g2 E TI implies fl + g2 = gl + f2' ff, dp + 
fg2 dp= fg, dp+ Jf2 dp, and thus 

If, dp - I f2 dp = f g I dp - I g2 dp. 

The elements of T2(Rm, p) are called p-integrable functions (observe that 
only real functions have been considered so far). 

Theorem AS. 
(a) The mapping T2-+R,f~Jfdp is linear. 
(b) f, g E T2 and f <, g imply ff dp.s;;: Jg dp. 

p 

(c) If fE T2, then Ifl'/+'/- E T2. 
(d) Iff dpl <, flfl dp for every f E T2. 
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PROOF. 

(a) This assertion is evident. 
(b) It is obviously sufficient to consider the case f = 0 (g ,:::an be replaced 

by g - f). Let g = gl - g2 with gl' g2 E T •. Then g2 <I; gl' and hence 
p 

Ig2 dp" IgI dp by Auxiliary theorem A4, i.e., Ig dp;;;' O. 
(c) Letf=fl- f2 withfl.J2E T •. Then max{f • .J2} E T. and min{fl,f2} E 

T. (proof!). The assertion then follows from the formulae 

If I = max{J.,f2} - min{JI,f2}' 

f + = max{J • .J2} - f2' f - = max{J.,f2} -- fl' 

(d) We have 

Iff dpi = Iff + dp - f f - dpl 

"ff+dp+ jf_dp= jU++f_)dp==jlfldp. 0 

Theorem A6. For every function f E T2 there exists a sequ,~nce (f,,) from T 
such that f" -)0 f and Iii" - fl dp-)oO. In particular, ff" dp-)o If dp. 

p 

PROOF. Let f= fl - f2 with fl> f2 E T •. Then there exist non-decreasing 
sequences (h, "),, E N from T such that Ii." -: hand n." dp-)o Iii dp for 
j= 1, 2. Forf,,=fl "-f2,, we havef,,-)ofand Ilf" dp- Ifdpi "/lf,,- fl dp •• p 

= flf •. " - A" - (f. - f2)1 dp " f(fl - fl.,,) dp + f(f2 - f2, ,,) dp~O as n-)o 00. 

o 

A.2 Limit theorems 

The following theorem asserts that the extension proceS!i of the previous 
section (which took us from T over TI to T2) does not lead from T2 to any 
wider class of functions. In the rest of this section we shall prove theorems 
which show, under which assumptions the passage to the limit and the 
integration are exchangeable. These theorems show the eS8ential advantage 
of the Lebesgue integral when compared with the RiemalID integral. 

Theorem A 7 (B. Levi). Let (f,,) be a monotone sequence (non-decreasing or 
non-increasing) from T2 for which the sequence of int/?grals (ffn dp) is 
bounded. Then there is an f E Tz for which 
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PROOF. We may assume without loss of generality that (!,,) is non-decreas
ing (otherwise we consider (- fn»' 

First step: There are non-decreasing sequences (gn) and (hn) from T. 
with bounded sequences of integrals for which !" = gn - hn (i.e., it is 
sufficient to prove the theorem for a sequence Un) from T.). 

Proof of the first step. Define k. = f. and's = fj - fj_. for j ;;;. 2. Then 
fn = ~'i_.kj and kn ;;;. 0 for all n EN. We have kj = kj, • - kj,2 with's, .' kj,2 

E TI • For ~very j EN tpere exists an ~ E ! such that ~ < 's, 2 l!nd I(kj , 2-

~) dp ~ 2-:. If ~e set kj, 2 = kj, 2 - ~ and's, I = kj, • -~, then kj, •• kj, 2 E TI 

and 's =, 's, • - kj ,2 for all j E N. The series ~;'.J IS, 2 dp is convergent 
(since I's, 2 dp < r j ). If C is a bound of the sequence (ffn dp), then 

n 

.~ J kj dp = J fn dp ~ C for all n E N. 
}=I 

Then the series ~j:. II kj, • dp is also convergent. The functions 
n n 

gn = ~ ~.. and hn = ~ ~. 2 
j-I j=1 

have the required properties. 

Second step: The theorem holds for any sequence (!,,) from T •. 
Proof of the second step. For every n EN there is a non-decreasing 

sequence (gn, m)mEN from T with a bounded sequence of integrals such 
that gn m ~ fn' Define gm = max {gn m : n ~ m}. Then (gm) is a non-decreas-, p , 

ing sequence from T. Since gn m "fn "fm for n "m, we have gm " fm and 
• p p p 

Igm dp ~ Ifm dp" C for all mEN. By Auxiliary Theorem A3 there exists 
an f E T. for which gn ~ f and I gn dp~ If dp. From the inequality 

p 

gn m ~ gm for all n <m we obtain, by letting m~oo, thatfn <f, and thus 
• p p 

gn ~ fn " f· Consequently,Jn ~ f and Ifn dp~ Jf dp. 0 
p p p 

Theorem AS (Lebesgue's dominated convergence theorem). Let Un) be a 
sequence from T2 for which fn ~ f. Assume that there exists agE T2 such that 

p 

IJ"I or.; g for all n E N. Then f also belongs to T2 and Ifn dp~ If dp. 
p 

PROOF. For all nE'" let gn=sup{J",fn+.""}' Then gn belongs to T2 : 

Since max {fn,Jn + d = (J" - fn+ .)+ + fn+ IE T2• it follows by induction that 
max{fn,fn+I , • •• ,fn+d E T2• Moreover, since 

J max{jn,fn+.' ... • fn+k} dp " J g dp for all k E '" 

and max{J",J,,+I" .. ,fn+k}~gn as k~oo, the function gn indeed belongs 
to T2 by B. Levi's theorem. The sequence (gn) is non-increasing and 
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I gn dp;> - I g dp. Therefore, f = p - lim gn E T2 and I gn dp~ If dp by B. 
Levi's theorem. 

If we define hn = inf{j", j,,+., ... }, then we can show analogously that 
hn ~ f and I hn dp~ If dp. The assertion then follows, because hn "j" " gn' 

p 

o 
Theorem A9. Let Un) be a sequence from T2 and assume that fn ~ f. If there 

p 
exists agE T2 such that If I " g, then f also belongs to T2• 

p 

PROOF. Let.in = mint g, max{j", - g}} for all n E N. Then.in E T2• l.inl " g 
for all n E N, and.in ~ j. The assertion therefore follows from Lebesgue's 

p 

theorem. 0 

Theorem AIO (Fatou's lemma). Let Un) be a non-negative sequence from T2 
for which the sequence of the integrals is bounded and fn ~ f. Then f E T2 and 

p 

J f dp " lim inf Jfn dp. n->oo 

PROOF. Let hn = inf{fn.Jn+.' ... } for all n E N. The sequence (hn) is 
non-decreasing and hn ~ f. The inequalities hn <: fn+k for all n, kEN imply 

p 

J hn dp <: lim inf Jfn+k dp = lim inf ffk dp, n EN. 
k->oo k->oo 

Consequently, B. Levi's theorem implies that f E T2 and 

J f dp = lim J hn dp " lim inC Jfn dp. 
n-+oo n---+oo 

o 

A.3 Measurable functions and sets 

In the sequel let p be a measure on Rm. A function f: R'" ~ C is said to be 
p-measurable if there exists a sequence Un) from T for which fn ~ j. It is 
obvious that every continuous function defined on Rm is p-me:surable. 
The sum, product, and quotient (if the denominator #: 0) of two p-measur-

p 
able functions are p-measurable. Along with f, the function g 0 f is also 
p-measurable for every continuous function g : C~C. In particular, If I is 
p-measurable if f is p-measurable. Every f E T2(Rm, p) is p-measurable 
(cf. Theorem A6). 
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Theorem All. 
(a) Iff: Rm~R is p-measurable and there exists agE T2 such that Ifl '"' g. 

then f also belongs to Tz. 
(b) If (J,,) is a sequence of p-measurable functions such that fn ~ f, then f is 

p 
p-measurable. 

PROOF. 

(a) This immediately follows from Theorem A9. 
(b) Let h E Tz be such that hex) > 0 for all x E Rm (the reader is advised to 

prove the existence of such a function). With gn = (h + Iinj)-tJifn for all 
n E N we have gn ~ g = (h + Ifl) -IJif. Since all gn are measurable and 

p 

since I gnl.;; h, we obtain that all gn belong to T2. Consequently, it 
follows from Lebesgue's theorem that g E Tz. The function g is there
fore p-measurable. This then holds for f= (h -I gj)-thg, as well. 0 

A subset M of Rm is said to be p-measurable if its characteristic function 
XM is p-measurable. If XM is p-integrable. then the measure p(M) of M is 
defined by the equality p(M) = fXM dp. If M is p-mea~urable and XM is not 
p-integrable, then we set p(M) = 00. All sets M E ~(Rm) are obviously 
p-measurable and have the finite measure p( M); for these M the definition 
coincides with the earlier one. Every p-null set N is p-measurable with 
p(N)=O. 

Theorem A12. Countable unions and intersections of p-measurable sets, as 
well as the complement of a p-measurable set are p-measurable. If 
MI, M20 .. , are disjoint p-measurable sets, then 

If Ml ~ M2 ~ ... are p-measurable sets and p(Mt) < 00, then 

The proof of this theorem can be left to the reader. One has to consider 
the characteristic functions XM and apply the previous theorems. The cases 
where infinite measures occur"have to be treated carefully. 

Theorem A13. A function f: Rm ~ R is p-measurable if and only if the set 
M. = {x E Rm : f(x) ;;. s} is p-measurable for every s E R. The same holds for 
the sets {xERm :f(x),",s}, {xERm :f(x»s} and {xERm : f(x)<s}. 
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PROOF. Let f be p-measurable. We can assume without loss of generality 
that s = 1 (otherwise we replace f by f - s + 1). Th~: function g = 
min{ 1, max{O, f}} is p-measurable and g"-X/4 as n-H.('. The function X/4 
is therefore p-measurable. 

Let II.(. now be p-measurable for all s E R. Then the sets 

{ x E IRm : f( x ) < I} = Rm \ M, and M( s, I) = {x E IR"' : s .;;; j( x) < I } 

are also p-measurable. The functions 

f,,(x) = {kn-.for~EM(k-l)n-.'kn-.)'k=-n2+1, -n2+2, ... ,n2 , 

o otherwIse 

are therefore p-measurable for all n E~. The assertion follows, because 

L~ 0 

The family of Borel sets in Rm is the smallest family of subsets of Rm 

that contains all intervals and is closed with respect to taking complements 
and countable unions and intersections. It is obvious that all open and all 
closed subsets of Rm are Borel sets. A function f : Rm.....,. R is said to be 
Borel measurable if the set {x E Rm : f( x) > s} is a Borel sell for every s E R 
(A functionf: Rm_c is said to be Borel measurable if Ref and Imf are 
Borel measurable.) 

If p is a measure on IRm, then every Borel set is p-measurable and every 
Borel-measurable function defined on Rm is p-measurabl(l. (The measures 
considered here are hence called Borel measures, as well.) 

Now we extend the notion of the integral to complex valued functions. 
A function f: Rm_c is said to be p-integrable if Ref, ImfE T2• We 
define 

J f dp = J Re f dp + i J 1m f dp. 

The set of p-integrable functions is a complex vector space. It will be 
denoted by E.(Rm , p). The mapping E.(lRrn , p)-C,f~ffdp is obviously 
linear. 

Theorem A14. 
(a) Iff: Rm_c is p-measurable and there exists a p-integrable function g 

such thai If I .;;; g, then f is p-integrable and Iff dpl.;;; fg dp. 
p 

(b) Iff dpl.;;; flfl dp for every f E E.(Rm , p). 
(c) For every f E E.(Rm , p) there exists a sequence U,,) from T for which 

fif,,-fldp>O. 
(d) For any p-measurable function f: Rm_c we have f ,= 0 if and only if 

p 

f E E.(lRm, p) and Jlfl dp = O. 
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PROOF. 
(a) The functions Re f and 1m fare p-measurable, and IRe fl " g and 

p 
IImfl " g. The functions Ref and Imf are therefore p-integrable by 

p 
Theorem All(a), i.e.,fE e.(Rm , p). The inequality follows from (b). 

(b) Let a = sgn(ff dp)*. Then by Theorem AS(d) 

Iff dpl = a f f dp = f Re( af) dp " f lafl dp = f Ifl dp. 

(c) This follows by applying Theorem A6 to Ref and Imj. 
(d) The equality f= 0 implies If I = 0, fE e.(Rm, p) (since the sequence 

p p 

whose members are all zero p-converges to 1), and fIJI dp = O. If 
flfl dp=O, then B. Levi's theorem can be applied to the sequence (g,,) 
with gIl = nlfl. Hence there exists agE T2 for which gIl = nlfl--+ g. This 

p 
is possible only if f= O. 0 

Theorem AIS (Lebesgue). Let (J,.) be a sequence from e.(Rm, p) such that 
f" --+ f. Assume that there exists agE e, (Rm, p) such that If"I" g for all 

p 
n E 1\1. Then f E e.(Rm, p) and ff" dp--+ ff dp. 

PROOF. We can obviously apply Theorem A8 to the sequences (Re f,,) and 
(lmf,,). This gives the assertion. 0 

Corollary. If (f,,) is a sequence from e1 (Rm, p) such that l:::'_ .Ilf,,1 dp < 00, 

then there exists an fEe.(Rm,p) such that l:j-l./i--+f and ffdp= 
p 

l:::'_.ff" dp. 

PROOF. We can apply B. Levi's theorem to the sequence (l:j-,I./iI)"EN and 
obtain a gET2ce.(Rm,p) for which l:j-tl./il--+g. Consequently, there 
exists a functionf: Rm--+C such that '2.'j-l./i--+J as n--+oo. Since l'2.j-,./i1 

p 

" g for all n E 1\1, the assertion follows from Lebesgue's theorem. 0 

Let M be a p-measurable subset of Rm. A functionf: M--+C is said to be 
p-measurable (p-;ntegrable) if the function 

for xEM 

for x f1. M 

is p-measurable (p-integrable). If f: M--+C is p-integrable, then we define 

J.fdp .. fjdp. 
M 

If f: Rm--+C is p-measurable (p-integrable),2en the restrictionflM of f to 

M is p-measurable (p-integrable), since flM= X,,/. If f: Rm--+c is p-
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measurable and flM is p-integrable, then we define 

fj dp = fjlM dp = f x"J dp. 

We denote the vector space of p-integrable functions f: M-+C by 
el(M, p). 

Theorem A16. 
(a) If f: M-+C is p-integrable, (M,,) is a sequence of mutually disjoint 

p-measurable subsets of R"', and M = U "ENM", then f Mf dp = 
"2"ENJ M"f dp. 

(b) If f: M-+R is p-integrable and J,J dp <.;ap(K) (J Kf dp ;>ap(K» for 
every p-measurable subset K of M, then f <.; a (f;> a). 

p p 
(c) If f: IR"'-+C is p-measurable, f E el(J, p), and J Jf dp= 0 for all 

bounded intervals J, then f = O. 
p 

PROOF. 

(a) Apply the above corollary to the sequence (xM"j). 
(b) Let K" = {x EM: f(x»a}. Then x~(f- a);> 0 and J MX~(f- a) dp= 

O. By Theorem A14(d) we therefore have x~(f - a) = O. This gives the 
• P 

assertion. 
(c) It is sufficient to consider real f. It is obvious that f gf dp = 0 for every 

gET. If I is a bounded interval and Mel is p-measurable, then there 
exists a sequence (g") from T such that 0 <.; g" <; I, g"( x) = 0 for x f/. I, 
and gIl -+ XM' Then it follows from Lebesgue's theorem for the sequence 

p 

(g"f) that J "J dp = J X"J dp == O. By part (b) we obtain that f = O. 0 
P 

A.4 The Fubini-Tonelli theorem 

In what follows let PI and P2 be measures on RP and IRq, respectively. Let p 
denote the product measure on Rp+q (cf. AI, Example 3). 

Auxiliary Theorem A17. If N is a p-null set in W+ q, then for PI-a/most al/ 
x E RP the set {y E IRq : (x, y) EN} is a Prnull set, i.e., 

NI = {xERP: {yElRq: (X,Y)EN} isnota p'}.-nullset) 

is a PI-null set. 

PROOF. Since N is a p-null set, there is a sequence (Jk ) of intervals for 
which Jk = Jl,k X J2, k' N C U kENJk' "2 kENP(Jk) < 00, and each zEN is 
covered by infinitely many Jk (we choose the union of infinitely many 
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covers by intervals with total measures 2 - I, 2 - 2, 2 - 3, • • . ). We have 

We can therefore apply B. Levi's theorem to the sequence of"step functions 

Consequently, there is a PI-null set FI such that 

~ XJ,,.{x) f XJ". dp2 < 00 for all x E RP \ Fl' 
keN 

It remains to prove that NI c Fl' Let Xo E RP \ Fl' Then 

For every y E Rq such that (xo, y) E N the element (xo, y) belongs to 
infinitely many Jk = J I, k X J2, k' The non-decreasing sequence 

is therefore divergent. Since the corresponding sequence of integrals with 
respect to y is bounded, it follows from B. Levi's theorem (or from 
Auxiliary theorem A3) that {y E Rq : (xo, y) EN} is a P2-null set. There
fore, Xo fl N .. and thus NI c Fl' 0 

Theorem AI8 (Fubini). Let PI' P2 and P be as above, and let f E el(RPTq, p). 
Then we have: For PI-almost a/l x E IRP the function f(x, .) belongs to 
el (IRq, P2)' The function F defined by the equality 

F(x) _ {! .. flX,Y) dp,(y) 

otherwise 

A similar result holds if we exchange the roles of x and y. To express the 
content of this theorem, we briefly write 

If dp = ~p {I,/(x, y) dp2(y) } dpl(x) 

= ~q{~!(x,y) dPI(X)} dP2(y), (AID) 
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PROOF. Since f= fl - f2 + if3 - if4 with t E h it is enough to study the 
case f E TI. Then there exists a non-decreasing sequence (f,,) from T and a 
p-null set N such that fll(z)~f(z) for all z E IRp+q\ Nand Ifll dp~ If dp. 
Formula (A 10) is evident for the step functions fll' Define gll(x) = 
ffll(x,y) dpiY). Then (gil) is a non-decreasing sequence from T(W) and 
IglI dpi "If dp. By B. Levi's theorem there hence exists agE el(W, PI) for 
which gil ~ g and I gil dpl~ I g dpl' Consequently, by AUKiliary theorem 

PI 
Al7 the set 

No = {XEW: {yElRq: (x,y)EN} is not ap2-null set} 

U {x E W : (gn(x» is not convergent} 

is a PI-null set. For x fl No the non-decreasing sequence Un(x, . ) has the 
properties 

By B. Levi's theorem f(x, . ) therefore belongs to el(lRq, P2) for all x fl No 
and 

Since g is PI-integrable and g = F, the function F is also PI-integrable and 
PI 

J F dpi = J g dpi = J~~ J gn dpi 

= lim f. {f. f,,(x,y) dP2(y)} dpl(x) = lim Jj" dp = Jfdp. 
"->00 RP R9 "->00 

o 

Theorem A19 (Tonelli). Let PI' P2 and P be as above, and letf: IRp+q~c be 
p-measurable. Assume that f(x, . ) E el(lRq, P2) for PI-almost all x E IRP and 
that the function F defined by the formula 

F(x) _ {t .. If(x.Y)1 dp,(y). 

otherwise 

belongs to el(RP, PI)' Then f E el(IRP+q, p). 

PROOF. For every n E N let 

M" = {(x,y)ElRp+q: If(x,y)1 <n, l(x,y)1 <n}, In = XM"f. 

Since f is p-measurable, every fn is p-integrable by Tht:orerns A13 and 
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A14(a). The sequence (Ifni) is non-decreasing and Ifnl~lfl. An application 
of Fubini's theorem to IJ"I gives 

fiJ"I dp = Lp {L)fn(x,Y)1 dP2(Y)} dpt(x) 

<; Lp{~)f(x,Y)1 dP2(Y)} dPt(x) < 00. 

Consequently, the p-integrability of Ifl follows from B. Levi's theorem. 
Sincefis p-measurable,jE et(RP+q, p) by Theorem AI4(a). 0 

A.S The Radon-Nikodym theorem 

Let p and p, be two measures on Rm. The measure p, is said to be absolutely 
continuous with respect to p (in symbols: p,«.p) if every p-null set is also a 
p,-null set. (Then every p-measurable set is p,-measurable, as well). 

Theorem A20 (Radon-Nikodym). Let p and p, be two measures on Hm. We 
have p,«.p if and only if there exists a p-measurable non-negative function 
h : Rm-+R such that XJh E et(Rm , p) for every bounded interval J and 
p,(M) = JXMh dp for every p-measurable set M (here weconsider the integral 
to be equal to 00 if XMh is not p-integrable). Every p-measurable function is 
also p,-measurable. Iff: Rm~c is p-measurable and p,-integrable, then 

f f dp, = f jh dp. 

PROOF. If IL has the above form, then p,«.p obviously holds. Now let p,«.p 
and let J be an arbitrary bounded interval in Rm. Let us consider the 
Hilbert space L2(J, 'T) with the measure 'T = P + p,. The mapping 

L2(J, 'T) -+ c, f~ Jf dlL 
J 

is a continuous linear functional, since 1f.J dp,1 <; J Jlfl d'T <; 'T(J)t/2I1fll. 
By the Riesz representation theorem (Theorem 4.8) there exists agE 

L2(J, '1") (more precisely, a gE ~(J, 'T» such that 

Jf dlL = f gf d'T for f E L2(J, 'T). 
J J 

(All) 

If here we replace f by XM' where M is an arbitrary p-measurable subset of 
J, then we obtain 

p,(M) = f XM dp, = fgXM d'T = f. g d'T. 
J J M 
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Since p.( M) ..;; '7"( M), it follows that 

o ..;; fM
g d'7" ..;; '7"(M). 

It follows from this by Theorem AI6(b) that 

o ..;; g(x) ..;; I for p-almost all x E J. 

We obtain from (A II) that 

f (1- g)i dp. = f gf dp for i E LiJ, '7"). 
J J 

(Al2) 

Now set N= {x E J: g(x) = I} and L= J\N. Then (AU) implies for 
i=XN that 

p(N) = f XN dp = f gXN dp = f (1- g)XN dp. = 0, 

and thus p.(N) = 0, as well, because p.«p. If in (AI2) we set i= (1 + g + g2 
+ . . . + gn)XN' then it follows for all n E N that 

f. (I-gn+l)dp.= f.g(l+g+'" +gn)d/l. 
M M 

The integrands of both sides constitute non-decreasing sequences the 
integrals of which are bounded by J-I.( M). The left integrand converges to 
XL' and hence the left side tends to p,(M n L). By B. Levi's theorem there 
exists an hEL,(J,p) such that g(l+g+'" +gn)~h as n~oo and 

p 
f Mg(1 + g + ... + gn) dp~ f Mh dp. Consequently, it follows that 

p.(M) = p,(Ln M) + p,(Nn M) = p.(Ln M) = {h dp. 

Since g ;) 0, we also have h ;;. o. Without loss of generality, we can choose 
p p 

h ;;.0. 
Now let (In) be a sequence of disjoint intervals for which IRm = U nENJn' 

Let hn be functions such that 

/L(M) = f. hn dp for every p-measurable set MCJn• 
M 

Let h : IRm~R be defined by the equalities h(x) = hn(x) for x E In• Then h 
has all properties required, since for every p-measurable subset M of IRm 

p.(M) = ~ p.(Mn I n ) = ~ f. h dp = f. h dp. 
nEN nEN Mn~ M 

If i is p-measurable, then there is a sequence (j,,) from T such that in ~ i. 
p 

Consequently, we also have in ~ i, and thus i is p.-measur,able. 
fl 
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It remains to prove the last assertion for non-negative functions f. For 
every n E N let 

M",k = {x E Rm ; (k - I)r" ';;;f(x) <kr"} for k = 1,2, ... , 22" 

and 
22• 

fro = ~ (k - 1)2-"Xfo(,.k· 
k-) 

22• 22• 

Jfn dJ-L = ~ (k-I)2-"J-L(M",k) = ~ (k-l)2-" J. h dp = ff"h dp. 
k= I k= I M •. k 

It follows from this by B. Levi's theorem that If dJ-L = ffh dp. D 

A function F : R~C is said to be absolutely continuous if there exists a 
A-measurable (i.e., Lebesgue measurable) function f: IR~C that is A-inte
grable (Lebesgue integrable) over every bounded interval and 

F(x) = F(O) + foxf(t) dA(t).2 

This function f is called the derivative of F. (It is possible to show that F is 
A-almost everywhere differentiable and F'(x) = f(x).) The derivative f is 

A 
uniquely determined by F. (This follows from Theorem A16(c).) 

If p is a measure on IR, then P«A if and only if the function 

{ p«O, x» for x>O 
f: R ~ IR, f(x) = 

-p(x,O]) for x.;;; 0 

is absolutely continuous, i.e., if p is induced by an absolutely continuous 
function f in the sense of Section AI, Example 2. 

Let F and G be absolutely continuous functions on R, and denote by f 
and g their respective derivatives. If F(O) == G(O) == 0, then we obtain by 
Fubini's theorem that 

fo\Fg + fG) dA = fox { get) folf(s) dA(s) + f(t) fo'g(s) dA(s)} dA(t) 

and thus 

= fox {f(s) ~Xg(t) dA(t) + g(s) ~xf(t) dA(t) } dA(s) 

== 2F(x)G(x) - foxUG+gF) dA, 

F(x)G(x) = fo\Fg+ fG) dA. 

lHere we set H- - J~ for x<O. 
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If we do not necessarily have F(O) = G(O) = 0, then 

F(x)G(x) - F(O)G(O) = fox(Fg+ JG) <lA. 

Consequently, for - 00 <a <b < 00 we have the formula of integration by 
parts 

fb Fg dX = F(b)G(b) - F(a)G(a) - fbfG dX. (Al3) 
a a 



Appendix B 

A representation theorem for 
holomorphic functions with 

values in a half -plane 

A function h : R~C is said to be of bounded variation when it can be 
written in the form h = hI - h2 + ih) - ih4' where the functions ~ : R~ R 
are non-decreasing bounded functions. (We can show that h is of this form 
if and only if there is a C ;> 0 such that ~"lh(bll) - h(all )1 "C for every 
sequence «a", b"]) of disjoint intervals. The smallest C of this kind is called 
the variation of h. We do not need this result here.) If h is a right 
continuous function of bounded variation, then the integral 

roo (z-t)-I dh(t) for z EC\R 
-00 

can be considered as a Riemann-Stieltjes integral. We will retain this 
notation in the sequel. We can also view this integral as a linear combina
tion of the corresponding integrals with respect to the measures p~ 
(cf. Section AI, Example 2). Consequently, the theorems of Appendix A 
are at our disposal. 

Theorem Bl. Assume that w : R~R is right continuous and of bounded 
variation, liml-+ _ 00 w( t) = 0, and 

f OO I 
f(z) = (z - t)- dw(t) for z E G= {z EC : 1m z >O}. 

-00 

(a) For a/l t E R we have the Stieltjes inversion formula 

-1 fl+8 wet) = lim lim - Imf(s+i t:) ds. 
8-->0+ <-->0+ 'TT - 00 

(b) If fez) = 0 for all z E G, then w(t) = 0 for all t E R 
381· 
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PROOF. Part (b) follows from part (a). Consequently, it is sufficient to 
prove (a). Since w is real-valued, 

Imf(s+if) = L:Im[(s+it:-U)-'] dW(u) 

= -fL:[(s-u)2+ f2r' dw(u) 

for every t: > O. It follows from this by Fubini's theorem that 

f' ImJ(s + if) ds = -foo f' t: 2 ds dw(u) 
-00 -co -00 (s- u) + t:2 

f OO[ r-u 'IT] 
= - -00 arctan-f-+I <ilw(u). 

Since 
r-u 'IT 

larctan-t:- + II <; 'IT for all r E!R 

and 

{

'IT 
r- U 'IT 'IT 

arctan--+-.....:.. -
t: 2 2 

o 

for r >u, 

for r= u, as f:""':"O, 

for r <u, 
Lebesgue's theorem implies that 

lim f' Imf(s + it:) ds 
( ..... 0. - 00 

= - 1 'IT dw( u) - f i d w( u) - 1 0 d w( u) 
(-00,,) {,} (r,oo) 

'IT 7T 
= -'lTw(r-)-I[w(r)-w(r-)] = -I[w(r)+w(r-)]. 

(In order to be able to apply Lebesgue's theorem, we write J ... dw = 
J . .. dw, - J ... dW2' where WI and w2 are non-decreasing right continu
ous functions, w = w, - W2' and lim ....... _""w,(u)= lim ....... _oc: w2(u)= 0.) If we 
set r = t + 6 with 6 > 0 and let 8 tend to zero, then the assertion follows. 0 

Theorem B2. Assume that w : IR.....:..C is right continuous, of bounded varia
tion, and lim, __ ""w(t) = O. If f~",,(z - 1)-1 dw(t) = 0 for all z EC\!R then 
w( I) - 0 for al/ 1 E R. 

PROOF. For z E G= {z EC : 1m z >O} we have 

f oo I 
-00 (z - t)- dw(t) = 0 

and 
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Therefore, 

J 00 (z - t) - 1 d [Re w( t)] = J 00 (z - t) - ~ d [1m w( t)] = 0 
-00 -00 

for all z E G. It then follows from Theorem B 1 (b) that Re w(t) = 1m w(t) = 
0, and thus w(t) = 0 for all t E R. 0 

lbeorem B3 (Herglotz). Let G .. {z E C : 1m z > O}, and let J: G-C be 
holomorphic such that ImJ(z) ~ 0 and IJ(z)lm zl ~ M Jor al/ z E G. Then 
there exists a unique right continuous non-decreasing Junction w : iii_iii Jor 
which w( 1)-0 as t _ - 00 and 

J(z) = foo (z - t)-I dw(t) Jor all z E G. 
-00 

For all t E iii we have w(t) ~ M and 

-I fl+6 
wet) = lim lim - ImJ(s + it:) ds. 

6-->0+ <--->0+ 'IT - 00 

PROOF. The last equality will follow from Theorem BI(a) if we prove the 
existence of a function w having the remaining properties. 

r,-II+N 
r~-N 
r .. -J+II+m 

y-Im z 

f .z*+2ie' x-Re z 
o r 

For O<t: <r let the paths 1',., r:, and r«J be defined as the above figure 
shows. For z = x + iy E G such that 1m z = y >t: and for r > Izl the point 
z* + 2i t: lies outside 1',.. Therefore, by the Cauchy integral formula 

J(z) = -21 . f. (!-z)-'J(r) d! 
'IT 1 r, 

== _1_. f. (z - z* - 2 i t:)[(! - z)(r - z* -2 i t:)rIJ(n d! 
2'IT 1 r, 

= .!.. f. (y - t:)[(r - z)(! - z* -2 i t:)] -'J(r) dC· 
'IT r, 
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For t E r; we have for fixed z that 

ij{nl" £-IM and l{y-£)I[(t-z)(t-z*-2i£)r l " Cr- 2• 

The integral over r; therefore tends to ° as r~oo, and there remains 

j{z) ="!'f. (y-£)[(t-z)(t-z*-2i£)rlf(nd~ 
7T roo 

= "!'foo (y-£)[(t+i£-z)(t-i£-z*)rlj(t+i£) dt 
7T - 00 

=..!. Joo (y-£)[(x-t)2+(y-£)2r lj{t+i£) dt. 
7T -00 

If we set v(z) = Imj(z), then it follows for 0 <£ < 1m z = y that 

v{z) = .; foooo (y - £)[ (x - t)2 + (y - £)zrlv(t + i £) dt. 

The inequalities lyv(z)1 " If(z) 1m zl <; M imply for 0<£ <y that 

!..!. foo (y - £)2[ (x - 1)2+ (y - £)zrlv(t +i £) d/l = I(y -- £)v(z)1 " M . 
." -00 

By 10ttingy~oo, we obtain from Fatou's lemma (observe that v <;0) that 
v( . +i £) is integrable over Rand 

-If 00 o " - vet + it:) dt <; M for all t: > 0. 
7T - 00 

Since 

for 0 < t: <y, 

it follows that 

foo {{y - t:)[(x - 1)2 + (y - £irl-y[ (x - 1)2+ yZrl}t>(1 +i £) dl ~ 0 
-00 

as t:~O + . Therefore, for all z E G 

v{z) = lim "!'fOO y[(x - 1)2+ y2rlv(/+i t:} dt . 
• ->0+ 7T - 00 

In what follows let 

".{t) = -} ft v(s+i t:) ds for 1 E R, t: > O. 
7T -00 

The functions ". are all non-decreasing and bounded, 0 "".( t) "M for all 
t E R.I Let us construct, with the aid of the diagonal process, a positive null 

IThe following steps can be much shortened if we make use of the fact that the family of 
measures induced by {". : 0 < ~ < I} is compact in the "vague" topology. 
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sequence (£11) in such a way that (,'Jo.,,(t» is convergent for all rational 
numbers t. If we set 

t'Jo(t) = lim ,'Jo .. (t) for rational t, 
11--+ 00 

then ,'Jo(s) <. ,'Jo(t) for all rational sand t such that s <. t. If we extend ,'Jo to a 
function t'Jo : III ~ III by defining 

,'Jo(t) = inf{ t'Jo(s) : s >1, s rational} for irrational I, 

then t'Jo is obviously non-decreasing, and limHOO(t'Jo(t) - t'Jo( - t» <. M. 
We show that in the sense of the Riemann-Stieltjes integral 

f OO 2 I 
v(z) = - Y[ (x - t) + y2r dt'Jo(t) for z E G. 

-00 

Since 

= - lim foo y[(x-t)2+ y 2r 1
d
d t'Jo.(t)dt 

€--+o+ _ 00 t 

- lim foo y[(x-t)2+ y2r l d,'Jo.(t), 
€--+o+ - 00 

this assertion is equivalent to the equality 

For the proof of this equality we notice that if we wish to approximate this 
Riemann-Stieltjes integral (with a continuous integrand) by Riemann 
sums, then it is enough to consider only partitions of (- 00, 00) with 
rational division points. For every such rational partition P and for fixed 
z = x + i y let Up, Lp, Up, n' and Lp, n be the upper and lower sums of the 
integrals 

respectively 

that correspond to P. For every rational partition P we obviously have 
UP,n~ Up and Lp,II~Lp, For every 8> 0 there exists a rational partition P 
for which Up - Lp <.8/2. For this P there is an no E 1\1 such that I Up, n -

Upl <.8/2 and ILp ,lI- Lpl <.8/2 for all n > no· Since Lp,lI <'JII <. Up ,lI and 
Lp <.J <. Up, it follows that IJ -Jnl <.8 for n > no' Therefore, JII~J as 
n~oo. 
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Consequently, we have shown that for z E G 

ImJ(z) = v(z) = - j'JO y[(x-t)2+ y 2rl dt'J(t) 
-00 

= 1m f_: (z - t)-I dt'J(t). 

Since J and z~ f~ ",,(z -- t) -I dt'J(t) are holomorphic in G and have the 
same imaginary part, it follows that 

J(z) = foo (z - t)-I dt'J(t) + C with some C 1= IR. 
-00 

Because IJ(z) 1m zl .;;; M and 

1(lm z) foo (z - t)-I dt'J(t)1 .;;; foo I dt'J(t) .;;; M for z E G, 
-00 -00 

we must also have I C 1m zl .;;; 2M, and thus C = o. 
If we now define 

5(t) = lim t'J(t+8) for t E R 
8 ...... 0+ 

and 

w(t) = 5(t) - lim 5(x) for t E R, 
$-+- 00 

then w has the required properties: The passage from t'J to 5 does not 
change anything in the integral formula we have just proved, since 5 has at 
most countably many points of discontinuity and they c:an be avoided 
during the formation of the partitions. The passage from {. to w does not 
influence the integral formula. 0 
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