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Preface 

This book is based on one-semester courses given at Harvard in 1984, at Brown in 
1985, and at Harvard in 1988. It is intended to be, as the title suggests, a first 
introduction to the subject. Even so, a few words are in order about the purposes 
of the book. 

Algebraic geometry has developed tremendously over the last century. During 
the 19th century, the subject was practiced on a relatively concrete, down-to-earth 
level; the main objects of study were projective varieties, and the techniques for the 
most part were grounded in geometric constructions. This approach flourished 
during the middle of the century and reached its culmination in the work of the 
Italian school around the end of the 19th and the beginning of the 20th centuries. 
Ultimately, the subject was pushed beyond the limits of its foundations: by the end 
of its period the Italian school had progressed to the point where the language and 
techniques of the subject could no longer serve to express or carry out the ideas of 
its best practitioners. 

This was more than amply remedied in the course of several developments 
beginning early in this century. To begin with, there was the pioneering work of 
Zariski who, aided by the German school of abstract algebraists, succeeded in 
putting the subject on a firm algebraic foundation. Around the same time, Wei! 
introduced the notion of abstract algebraic variety, in effect redefining the basic 
objects studied in the subject. Then in the 1950s came Serre's work, introducing the 
fundamental tool of sheaf theory. Finally (for now), in the 1960s, Grothendieck 
(aided and abetted by Artin, Mumford, and many others) introduced the concept 
of the scheme. This, more than anything else, transformed the subject, putting it on 
a radically new footing. As a result of these various developments much of the more 
advanced work ofthe Italian school could be put on a solid foundation and carried 
further; this has been happening over the last two decades simultaneously with the 
advent of new ideas made possible by the modern theory. 
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All this means that people studying algebraic geometry today are in the position 
of being given tools of remarkable power. At the same time, didactically it creates 
a dilemma: what is the best way to go about learning the subject? If your goal is 
simply to see what algebraic geometry is about-to get a sense of the basic objects 
considered, the questions asked about them and the sort of answers one can 
obtain-you might not want to start off with the more technical side of the subject. 
If, on the other hand, your ultimate goal is to work in the field of algebraic geometry 
it might seem that the best thing to do is to introduce the modern approach early 
on and develop the whole subject in these terms. Even in this case, though, you 
might be better motivated to learn the language of schemes, and better able to 
appreciate the insights offered by it, if you had some acquaintance with elementary 
algebraic geometry. 

In the end, it is the subject itself that decided the issue for me. Classical algebraic 
geometry is simply a glorious subject, one with a beautifully intricate structure 
and yet a tremendous wealth of examples. It is full of enticing and easily posed 
problems, ranging from the tractable to the still unsolved. It is, in short, ajoy both 
to teach and to learn. For all these reasons, it seemed to me that the best way to 
approach the subject is to spend some time introducing elementary algebraic 
geometry before going on to the modern theory. This book represents my attempt 
at such an introduction. 

This motivation underlies many of the choices made in the contents of the book. 
For one thing, given that those who want to go on in algebraic geometry will be 
relearning the foundations in the modern language there is no point in introducing 
at this stage more than an absolute minimum of technical machinery. Likewise, I 
have for the most part avoided topics that I felt could be better dealt with from a 
more advanced perspective, focussing instead on those that to my mind are nearly 
as well understood classically as they are in modern language. (This is not absolute, 
of course; the reader who is familiar with the theory of schemes will find lots of 
places where we would all be much happier if I could just say the words "scheme­
theoretic intersection" or "flat family".) 

This decision as to content and level in turn influences a number of other 
questions of organization and style. For example, it seemed a good idea for the 
present purposes to stress examples throughout, with the theory developed concur­
rently as needed. Thus, Part I is concerned with introducing basic varieties and 
constructions; many fundamental notions such as dimension and degree are not 
formally defined until Part II. Likewise, there are a number of unproved assertions, 
theorems whose statements I thought might be illuminating, but whose proofs are 
beyond the scope of the techniques introduced here. Finally, I have tried to main­
tain an informal style throughout. 
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Using This Book 

There is not much to say here, but I'll make a couple of obvious points. 
First of all, a quick glance at the book will show that the logical skeleton 

of this book occupies relatively little of its volume: most of the bulk is taken up by 
examples and exercises. Most of these can be omitted, if they are not of interest, and 
gone back to later if desired. Indeed, while I clearly feel that these sorts of examples 
represent a good way to become familiar with the subject, I expect that only 
someone who was truly gluttonous, masochistic, or compulsive would read every 
single one on the first go-round. By way of example, one possible abbreviated tour 
of the book might omit (hyphens without numbers following mean "to end of 
lecture") 1.22-,2.27-,3.16-,4.10-,5.11-,6.8-11,7.19-21, 7.25-, 8.9-13, 8.32-39, 
9.15-20,10.12-17,10.23-,11.40-,12.11-,13.7-,15.7-21, 16.9-11, 16.21-, 17.4-15, 
19.11-,20.4-6,20.9-13 and all of 21. 

By the same token, I would encourage the reader to jump around in the text. As 
noted, some basic topics are relegated to later in the book, but there is no reason 
not to go ahead and look at these lectures if you're curious. Likewise, most of the 
examples are dealt with several times: they are introduced early and reexamined in 
the light of each new development. If you would rather, you could use the index 
and follow each one through. 

Lastly, a word about prerequisites (and post-requisites). I have tried to keep the 
former to a minimum: a reader should be able to get by with just some linear and 
multilinear algebra and a basic background in abstract algebra (definitions and 
basic properties of groups, rings, fields, etc.), especially with a copy of a user-friendly 
commutative algebra book such as Atiyah and MacDonald's [AM] or Eisenbud's 
[E] at hand. 

At the other end, what to do if, after reading this book, you would like to 
learn some algebraic geometry? The next step would be to learn some sheaf theory, 
sheaf cohomology, and scheme theory (the latter two not necessarily in that order). 
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For sheaf theory in the context of algebraic geometry, Serre's paper [S] is the basic 
source. For the theory of schemes, Hartshorne's [H] classic book stands out as the 
canonical reference; as an introduction to the subject there is also Mumford's [M!] 
red book and the book by Eisenbud and Harris [EH]. Alternatively, for a discus­
sion of some advanced topics in the setting of complex manifolds rather than 
schemes, see [GH]. 
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PART I 

EXAMPLES OF VARIETIES AND MAPS 



LECTURE 1 

Affine and Projective Varieties 

A Note About Our Field 

In this book we will be dealing with varieties over a field K, which we will take to 
be algebraically closed throughout. Algebraic geometry can certainly be done over 
arbitrary fields (or even more generally over rings), but not in so straightforward a 
fashion as we will do here; indeed, to work with varieties over nonalgebraically 
closed fields the best language to use is that of scheme theory. Classically, much 
of algebraic geometry was done over the complex numbers 1[;, and this remains 
the source of much of our geometric intuition; but where possible we will avoid 
assuming K = IC. 

Affine Space and Affine Varieties 

By affine space over the field K, we mean simply the vector space Kn; this is 
usually denoted A~ or just An. (The main distinction between affine space and 
the vector space K n is that the origin plays no special role in affine space.) By 
an affine variety X c An, we mean the common zero locus of a collection of 
polynomials fa E K [Z 1, ... , ZnJ. 

Projective Space and Projective Varieties 

By projective space over a field K, we will mean the set of one-dimensional sub­
spaces of the vector space Kn+l; this is denoted iP'~, or more often just iP'n. Equiva­
lently, iP'n is the quotient of the complement K n+1 - {O} of the origin in K n+1 by the 
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action of the group K* acting by scalar multiplication. Sometimes, we will want to 
refer to the projective space of one-dimensional subspaces of a vector space V over 
the field K without specifying an isomorphism of V with Kn+1 (or perhaps without 
specifying the dimension of V); in this case we will denote it by IP(V) or just 1Pv. A 
point of IPn is usually written as a homogeneous vector [Zo, ... , Zn], by which we 
mean the line spanned by (Zo, ... , Zn) E Kn+l; likewise, for any nonzero vector 
v E V we denote by [v] the corresponding point in IPV ~ IPn. 

A polynomial FE K[Zo, ... , Zn] on the vector space Kn+1 does not define 
a function on IPn. On the other hand, if F happens to be homogeneous of degree d, 
then since 

F(AZO, ••• , AZn ) = Ad. F(Zo, ... , Zn) 

it does make sense to talk about the zero locus of the polynomial F; we define 
a projective variety X c IPn to be the zero locus of a collection of homogeneous 
polynomials Fa. The group PGLn+1 K acts on the space IPn (we will see in Lecture 
18 that these are all the automorphisms of IPn), and we say that two varieties X, 
Y c IPn are projectively equivalent if they are congruent modulo this group. 

We should make here a couple of remarks about terminology. First, the stan­
dard coordinates Zo, ... , Zn on K n+1 (or any linear combinations of them) are 
called homogeneous coordinates on lPn, but this is misleading: they are not even 
functions on IPn (only their pairwise ratios Z;/Zj are functions, and only where the 
denominator is nonzero). Likewise, we will often refer to a homogeneous poly­
nomial F(Zo, ... , Zn) of degree d as a polynomial on IPn; again, this is not to suggest 
that F is actually a function. Note that if IPn = IPV is the projective space associated 
with a vector space V, the homogeneous coordinates on IPV correspond to elements 
of the dual space V*, and similarly the space of homogeneous polynomials of 
degree don IPV is naturally identified with the vector space Symd(V*). 

Let Ui C IPn be the subset of points [Zo, ... , Zn] with Zj i= O. Then on Ui the 
ratios Zj = Z)Zi are well-defined and give a bijection 

Ui~ An. 

Geometrically, we can think of this map 
as associating to a line L c Kn+1 not 
contained in the hyperplane (Zi = 0) its 
point p of intersection with the affine 
plane (Zi = 1) c Kn+l. 

We may thus think of projective 
space as a compactification of affine 
space. The functions Zj on Ui are called 
affine or Euclidean coordinates on the 
projective space or on the open set Ui; 
the open sets Ui comprise what is called 
the standard cover of IPn by affine open 
sets. 

(Zi = 1) 

If X c IPn is a variety, then the intersection Xi = X n Ui is an affine variety: if X 
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is given by polynomials Fa E K[Zo, ... , Zn], then Xo, for example, will be the zero 
locus of the polynomials 

fa(z l' ... , Zn) = Fa(Zo, ... , Zn)/zg 

where d = deg(Fa). Thus projective space is the union of affine spaces, and any 
projective variety is the union of affine varieties. Conversely, we may invert this 
process to see that any affine variety Xo c An ~ Vo c [pn is the intersection of Vo 
with a projective variety X: if Xo is given by polynomials 

of degree da, then X may be given by the homogeneous polynomials 

Fa(Zo, ... , Zn) = zg·· fa(Zl/ZO, ... , Zn/ZO) 

Note in particular that a subset X c [pn is a projective variety if and only if 
its intersections Xi = X n Vi are all affine varieties. 

Example 1.1. Linear Spaces 

An inclusion of vector spaces W ~ Kk+l <=+ V ~ Kn+1 induces a map [PW <=+ [PV; 
the image I\. of such a map is called a linear subspace of dimension k, or k-plane, in 
[Pv. In case k = n - 1, we callI\. a hyperplane. In case k = 1 we callI\. a line; note 
that there is a unique line in [pn through any two distinct points. A linear subspace 
I\. ~ [pk C [pn may also be described as the zero locus of n - k homogeneous linear 
forms, so that it is a subvariety of [pn; conversely, any variety defined by linear forms 
is a linear subspace. 

The intersection of two linear subspaces of [pn is again a linear subspace, possibly 
empty. We can also talk about the span of two (or more) linear subspaces 1\., 1\.'; if 
I\. = [Pw, I\.' = [PW', this is just the subspace associated to the sum W + W' c Kn+1, 
or equivalently the smallest linear subspace containing both I\. and 1\.', and is 
denoted 1\., 1\.'. In general, for any pair of subsets r, «1> c lPn, we define the span of 
rand «1>, denoted r u «1>, to be the smallest linear subspace of [pn containing their 
union. 

The dimension of the space 1\.,1\.' is at most the sum of the dimensions plus 
one, with equality holding if and only if I\. and I\.' are disjoint; we have in general 
the relation 

dim(l\., 1\.') = dim(l\.) + dim(l\.') - dim(A n 1\.') 

where we take the dimension of the empty set as a linear subspace to be -1. Note, 
in particular, one of the basic properties of projective space [pn: whenever k + I ~ n, 
any two linear subspaces 1\., I\.' of dimensions k and I in [pn will intersect in a linear 
subspace of dimension at least k + I - n. 
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Note that the set of hyperplanes in a 
projective space IPn is again a projec­
tive space, called the dual projective 
space and denoted IPn*. Intrinsically, if 
IPn = IPV is the projective space asso­
ciated to a vector space V, the dual 
projective space IPn* = IP(V*) is the 
projective space associated to the dual 
space V*. More generally, if A ~ 
IPk C IPn is a k-dimensional linear 
subspace, the set of (k + 1)-planes 
containing A is a projective space 
IPn-k-l, and the space of hyperplanes 
containing A is the dual projective space 
(IPn- k- 1 )*. Intrinsically, if IPn = IPV and 
A = IPW for some (k + i)-dimensional 
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subspace We V, then the space of (k + i)-planes contammg A is the 
projective space lP(VjW) associated to the quotient, and the set of hyperplanes 
containing A is naturally the projectivization 1P((VjW)*) = IP(Ann(W)) c IP(V*) of 
the annihilator Ann(W) c V* of W 

Example 1.2. Finite Sets 

Any finite subset r of IPn is a variety: given any point q ¢ r, we can find a poly­
nomial on pn vanishing on all the points Pi of r but not at q just by taking a product 
of homogeneous linear forms Li where Li vanishes at Pi but not at q. Thus, if r 
consists of d points (we say in this case that r has degree d), it may be described by 
polynomials of degree d and less. 

In general, we may ask what are the smallest degree polynomials that suffice to 
describe a given variety r c IPn. The bound given for finite sets is sharp, as may be 
seen from the example of d points lying on a line L; it's not hard to see that a 
polynomial F(Z) of degree d - 1 or less that vanishes on d points Pi E L will vanish 
identically on L. On the other hand, this is the only such example, as the following 
exercise shows. 

Exercise 1.3. Show that if r consists of d points and is not contained in a line, 
then r may be described as the zero locus of polynomials of degree d - 1 and 
less. 

Note that the "and less" in Exercise 1.3 is unnecessary: if a variety X c IPn is 
the zero locus of polynomials Fil of degree dll ~ m, then it may also be represented 
as the zero locus of the polynomials {Xl. FIl }, where for each IX the monomial Xl 

ranges over all monomials of degree m - dll • 

Another direction in which we can go is to focus our attention on sets of 
points that satisfy no more linear relations than they have to. To be precise, 
we say that I points Pi = [v;] E IPn are independent if the corresponding vectors 
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Vi are; equivalently, if the span of the points is a subspace of dimension I - 1. 
Note that any n + 2 points in IPn are dependent, while n + 1 are dependent if 
and only if they lie in a hyperplane. We say that a finite set of points r c IPn 

is in general position if no n + 1 or fewer of them are dependent; if r contains n + 1 
or more points this is the same as saying that no n + 1 of them lie in a hyperplane. 
We can then ask what is the smallest degree polynomial needed to cut out a set of 
d points in general position in IPn; the following theorem and exercise represent one 
case of this. 

Theorem 1.4. If r c IPn is any collection of d ~ 2n points in general position, then r 
may be described as the zero locus of quadratic polynomials. 

PROOF. We will do this for r = {Pl' ... ' P2n} consisting of exactly 2n points; the 
general case will be easier. Suppose now that q E IPn is any point such that every 
quadratic polynomial vanishing on r vanishes at q; we have to show that q E r. To 
do this, observe first that by hypothesis, if r = rl U r2 is any decomposition of r 
into sets of cardinality n, then each r i will span a hyperplane Ai C IPn; and since 
the union Al U A2 is the zero locus of a quadratic polynomial vanishing on r we 
must have q E Al U A2. In particular, q must lie on at least one hyperplane spanned 
by points of r. 

Now let Pl' ... , Pk be any minimal subset of r such that q lies in their span; 
by the preceding, we can take k ~ n. Suppose that ~ c r - {Pl' ... , Pk} is any 
subset of cardinality n - k + 1; then by the general position hypothesis, the hyper­
plane A spanned by the points P2' ... , Pk and ~ does not contain Pl. It follows that 
A cannot contain q, since the span of P2' ... , Pk and q contains Pl; thus q must lie 
on the hyperplane spanned by the remaining n points of r. In sum, then, q must lie 
on the span of PI and any n - 1 of the points PHI' ... , P2n; since the intersection of 
all these hyperplanes is just Pl itself, we conclude that q = Pl. D 

Exercise 1.5. Show in general that for k ~ 2 any collection r of d ~ kn points 
in general position may be described by polynomials of degree k and less (as 
we will see in Exercise 1.15, this is sharp). 

As a final note on finite subsets of lPn, we should mention (in the form of 
an exercise) a standard fact. 

Exercise 1.6. Show that any two ordered subsets of n + 2 points in general position 
in IPn are projectively equivalent. 

This in turn raises the question of when two ordered subsets of d ;::: n + 3 points 
in general position in IPn are projectively equivalent. This question is answered in 
case n = 1 by the cross-ratio 

since 2(Zl, ... ,Z4) is the image of Z4 under the (unique)linear map of IPI to 
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itself carrying Zl' Z2' and Z3 into 1, 00, and 0 respectively, two subsets Zl' ••• , 

Z4 and z~, ... , z~ E 1P1 can be carried into one another in order if and only the 
cross-ratios A(Zl' ..• , Z4} = A(Z~, ••• , z~} (see for example [A]). We will give the 
answer to this in case d = n + 3 in Exercise 1.19; a similarly explicit answer for 
d > n + 3 is not known in general. 

Example 1.7. Hypersurfaces 

A hypersurface X is a subvariety of IPn described as the zero locus of a single 
homogeneous polynomial F(Zo, ... , Zn}-for example, a plane curve or a surface 
in 3-space 1P3. (We will see in Lecture 11 that in fact any variety of dimension n - 1 
in IPn is a hypersurface in this sense-but that will have to wait until we have 
defined the notion of dimension at least; see the discussion at the end of this lecture.) 

Note that any hypersurface X is the zero locus of a polynomial F without 
repeated prime factors. With this restriction F will be unique up to scalar multipli­
cation. (To see this we need the Nullstellensatz (Theorem 5.1). In particular, it 
requires that our base field be algebraically dosed; for example, we would not want 
to consider a single point like (0, 0, ... , O) E [Rn to be a hypersurface, even though 
it is the zero locus of the single polynomial L xl.} When this is done the degree of 
F is called the degree of the hypersurface X. In Lecture 15, we will define a notion 
of degree for an arbitrary variety X c IPn that generalizes the two cases mentioned 
so far; for the time being, note that our two definitions agree on the overlap of their 
domains, that is, hypersurfaces in IP 1. 

Example 1.S. Analytic Subvarieties and Submanifolds 

This is not so much an example as a theorem that we should mention (without 
proof, certainly) at this point. To begin with, observe that since polynomials 
f(z 1, ... , Zn} E C [Z 1, ... , Zn] with complex coefficients are holomorphic functions of 
their variables Z 1, ... , Zn' an algebraic variety X in A'C or IPc will be in particular a 
complex analytic subvariety of these complex manifolds (i.e., a subset given locally 
as the zero locus of holomorphic functions). Notably, this gives us an a priori 
notion of the dimension of an algebraic variety X c IPc, and likewise of smooth 
and singular points of X. These are not satisfactory definitions of these concepts 
from the algebraic point of view, so we will not rely on them, but we will occasion­
ally invoke them implicitly, as, for example, when we refer to a variety as a "curve." 

The theorem we should quote here is the famous converse to this, in the case of 
subsets of projective space. 

Theorem 1.9. (Chow's Theorem). If Xc IPc is any complex analytic subvariety then 
X is an algebraic subvariety. 

Note that this is certainly false if we replace IPc by A'C; for example, the subset 
71 c C ~ A~ of integers is an analytic subvariety. See [S2] for a thorough discus­
sion of this and related theorems. 
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Example 1.10. The Twisted Cubic 

This is everybody's first example of a concrete variety that is not a hypersurface, 
linear space, or finite set of points. It is defined to be the image C of the map 
v: !p1 ~ !p3 given in terms of affine coordinates on both spaces by 

v: x 1-+ (x, x 2 , x 3 ); 

or, in terms of homogeneous coordinates on both, as 

v: [Xo, Xl] 1-+ [XJ, XJX1, XoX;, xi] = [Zo, Zl' Z2' Z3]. 

C lies on the 3 quadric surfaces Qo, Ql' and Q2 given as the zero locus of the 
polynomials 

Fo(Z) = ZOZ2 - Z;, 

F1(Z) = ZOZ3 - ZlZ2, and 

F2 (Z) = Zl Z 3 - zi, 
respectively, and is equal to their intersection: if we have a point p E!p3 with 
coordinates [Zo, Zl' Z2' Z3] satisfying these three polynomials, either Zo or Z3 
must be nonzero; if the former we can write p = v([Zo, Zl]) and if the latter we can 
write p = V([Z2' Z3])' At the same time, C is not the intersection of any two of these 
quadrics: according to the following Exercise Qi and Qj will intersect in the union 
of C and a line iij. 

Exercise 1.11. a. Show that for any 0 ::; i < j ::; 2, the surfaces Qi and Qj intersect 
in the union of C and a line L. 

b. More generally, for any A = [,10' 
A1 , A2], let 

FA = ,10' Fo + ,11' Fl + ,12' F2 

and let QA be the surface defined by FA' 
Show that for fJ "# v, the quadrics Qv 
and QIl intersect in the union of C and 
a line L Il , V' (A slick way of doing this 
problem is described after Exercise 9.16; 
it is intended here to be done naively, 
though the computation is apt to get 
messy.) 

In fact, the lines that arise in this way form an interesting family. For example, 
we may observe that any chord of the curve C (that is, any line pq joining points of 
the curve) arises in this way. To see this, let r E pq be any point other than p and q. 

In the three-dimensional vector space of polynomials FA vanishing on C there will 
be a two-dimensional subspace of those vanishing at r; say this subspace is spanned 
by FIl and Fv' But these quadrics all vanish at three points of the line pq, and so 
vanish identically on this line; from Exercise 1.11 we deduce that QIl n Qv = C u pq. 
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One point of terminology: while we often speak of the twisted cubic curve and 
have described a particular curve C c 1P3, in fact we call any curve C' c 1P3 pro­
jectively equivalent to C, that is, any curve given parametrically as the image of the 
map 

where Ao, Al , A2, A3 form a basis for the space of homogeneous cubic polynomials 
in X = [Xo, Xl], a twisted cubic. 

Exercise 1.12. Show that any finite set of points on a twisted cubic curve are 
in general position, i.e., any four of them span 1P3. 

In Theorem 1.18, we will see that given any six points in 1P3 in general position 
there is a unique twisted cubic containing all six. 

Exercise 1.13. Show that if seven points Pl' ... , P7 E 1P3 lie on a twisted cubic, 
then the common zero locus of the quadratic polynomials vanishing at the Pi 
is that twisted cubic. (From this we see that the statement of Theorem 1.4 is 
sharp, at least in case n = 3.) 

Example 1.14. Rational Normal Curves 

These may be thought of as a generalization of twisted cubics; the rational normal 
curve C c IPd is defined to be the image of the map 

Vd: 1P1 --t IPd 
given by 

Vd: [Xo, Xl] 1---+ [xg, Xg-1Xl , ... , XtJ = [Zo, ... , Zd]. 

The image C c IPd is readily seen to be the common zero locus of the poly­
nomials Fi)Z) = ZiZj - Zi-l Zj+l for 1 ::; i ::; j ::; d - 1. Note that for d > 3 it may 
also be expressed as the common zeros of a subset of these: the polynomials Fi,i' 
1 = 1, ... , d - 1 and Fl,d-l, for example. (Note also that in case d = 2 we get the 
plane conic curve ZOZ2 = Z~; in fact, it's not hard to see that any plane conic curve 
(zero locus of a quadratic polynomial on 1P2) other than a union of lines is projec­
tively equivalent to this.) Also, as in the case of the twisted cubic, if we replace the 
monomials xg, xg-l Xl"'" xf with an arbitrary basis Ao, ... , Ad for the space of 
homogeneous polynomials of degree d on 1Pi, we get a map whose image is 
projectively equivalent to vAIP1); we call any such curve a rational normal curve. 

Note that any d + 1 points of a rational normal curve are linearly indepen­
dent. This is tantamount to the fact that the Van der Monde determinant vanishes 
only if two of its rows coincide. We will see later that the rational normal curve is 
the unique curve with this property. (The weaker fact that no three points of a 
rational normal curve are collinear also follows from the fact that C is the zero locus 
of quadratic polynomials.) 
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Exercise 1.15. Show that if Pl' .•• , Pkd+1 are any points on a rational normal 
curve in [p>d, then any polynomial F of degree k on [p>d vanishing on the points 
Pi vanishes on C. Use this to show that the general statement given in Exercise 
1.5 is sharp. 

Example 1.16. Determinantal Representation of the Rational 
Normal Curve 

One convenient (and significant) way to express the equations defining a rational 
normal curve is as the 2 x 2 minors of a matrix of homogeneous linear forms. 
Specifically, for any integer k between 1 and d - 1, the rational normal curve may 
be described as the locus of points [Zo, ... , Zd] E [p>d such that the rank of the 
matrix 

Zo Zl Z2 Zk-l Zk 

Zl Z2 Zk+l 

Z2 

Zd-l 

Zd-k Zd-l Zd 

is 1. In general, a variety X c [p>n whose equations can be represented in this 
way is called determinantal; we will see other examples of such varieties throughout 
these lectures and will study them in their own right in Lecture 9. 

We will see in Exercise 1.25 that in case k = 1 or d - 1 we can replace the 
entries of this matrix with more general linear forms L i • j , and unless these forms 
satisfy a nontrivial condition of linear dependence the resulting variety will again 
be a rational normal curve; but this is not the case for general k. 

Example 1.17. Another Parametrization of the Rational Normal Curve 

There is another way of representing a rational normal curve parametrically. It 
is based on the observation that if G(Xo, Xl) is a homogeneous polynomial of 
degree d + 1, with distinct roots (i.e., G(Xo, Xd = n (JliXO - viXd with [Jli'V;] 
distinct in [P>l), then the polynomials Hi(X) = G(X)/(JliXO - viXd form a basis for 
the space of homogeneous polynomials of degree d: if there were a linear relation 
LaiHi(XO, Xd = 0, then plugging in (Xo, Xl) = (Vi' Jl;)we could deduce that ai = O. 
Thus the map 

Vd: [Xo, Xl] ~ [Hl(XO, Xd, ... , Hd+l(XO, Xl)] 

has as its image a rational normal curve in [p>d. Dividing the homogeneous vector 
on the right by the polynomial G, we may write this map as 
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Note that this rational normal curve passes through each of the coordinate points 
of [pd, sending the zeros of G to these points. In addition, if all f.1i and Vi are nonzero 
the points 0 and 00 (that is, [1,0] and [0, 1]) go to the points [f.111 , ... , f.1i!l] and 
[v11 , ... , vi';l], which may be any points not on the coordinate hyperplanes. Con­
versely, any rational normal curve passing through all d + 1 coordinate points may 
be written parametrically in this way. We may thus deduce the following theorem. 

Theorem 1.18. Through any d + 3 points in general position in [pd there passes 
a unique rational normal curve. 

We can use Theorem 1.18 to answer the question posed after Exercise 1.6, 
namely, when two subsets of n + 3 points in general position in [pn are projectively 
equivalent. The answer is straightforward, but cute: through n + 3 points PI' ... , 
Pn+3 E [pn there passes a unique rational normal curve Vn([PI), so that we can 
associate to the points PI' ... , Pn+3 E [pn the set of n + 3 points qi = V;l(p;) E [pl. 
We have then the following. 

Exercise 1.19. Show that the points Pi E [pn are projectively equivalent as an ordered 
set to another such collection {p~, ... , P~+3} P; if and only if the corresponding 
ordered subsets ql' ... , qn+3 and q~, ... , q~+3 E [pI are projectively equivalent, that 
is, if and only if the cross-ratiosA.(ql, q2' q3' qi) = A.(q~, q2' q;, q;)foreachi = 4, ... , 
n + 3. (You may use the characterization of the cross-ratio given on page 7.) 

Example 1.20. The Family of Plane Conics 

There is another way to see Theorem 1.18 in the special case d = 2. In this case, we 
observe that a rational normal curve C of degree 2 is specified by giving a homo­
geneous quadratic polynomial Q(Zo, Zl' Z2) (not a product of linear forms); Q is 
determined up to multiplication by scalars by C. Thus the set of such curves may 
be identified with a subset of the projective space [PV = IPs associated to the vector 
space 

of quadratic polynomials. In general, we call an element of this projective space a 
plane conic curve, or simply conic, and a rational normal curve-that is, a point of 
PV corresponding to an irreducible quadratic polynomial-a smooth conic. We 
then note that the subset of conics passing through a given point P = [Zo, Zl' Z2] 
is a hyperplane in IPs, and since any five hyperplanes in IPs must have a common 
intersection (equivalently, five linear equations in six unknowns have a nonzero 
solution), there exists a conic curve through any five given points Pl' ... , Ps. If the 
points Pi are in general position, moreover, this cannot be a union of two lines. 

Exercise 1.21. Check that the hyperplanes in IPs associated in this way to five 
points PI' ... , Ps with no four collinear are independent (i.e., meet in a single point), 
establishing uniqueness. (In classical language, PI> ... , Ps "impose independent 
conditions on conics.") 
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The description of the set of conics as a projective space !p 5 is the first example 
we will see of a parameter space, a notion ubiquitous in the subject; we will 
introduce parameter spaces first in Lecture 4 and discuss them in more detail in 
Lecture 21. 

Example 1.22. A Synthetic Construction of the Rational Normal Curve 

Finally, we should mention here a synthetic (and, on at least one occasion, useful) 
construction of rational normal curves. We start with the case of a conic, where the 
construction is quite simple. Let P and Q be two points in the plane !P2 • Then the 
lines passing through each point are naturally parameterized by !p 1 (e.g., if P is 
given as the zeros on two linear forms L(Z) = M(Z) = 0, the lines through P are of 
the form AL(Z) + IlM(Z) = ° with [A,Il] E !P 1). Thus the lines through P may be 
put in one-to-one correspondence with 
the lines through Q. Choose any bijec­
tion obtained in this way, subject only 
to the condition that the line PQ does 
not correspond to itself, so that corre­
sponding lines will always intersect in 
a point. (Note that this rules out the 
simplest way of putting the lines through 
P and Q in correspondence: choosing an 
auxiliary line L and using it to parame­
terize the lines through both P and Q, 
that is, for each R E L making the lines PR and QR correspond.) We claim then 
that the locus of points of intersection of corresponding lines is a conic curve, and 
that conversely any conic may be obtained in this way. 

You could say this is not really a synthetic construction, inasmuch as the 
bijection between the families of lines through P and through Q was specified 
analytically. In the classical construction, the two families oflines were each param­
etrized by an auxiliary line in !p 2, which were then put in one-to-one correspon­
dence by the family of lines through an auxiliary point. The construction was thus: 
choose points P, Q, and R not collinear, 
and distinct lines Land M not passing 
through any of these points in !p2 and 
such that the point L n M does not lie 
on the line pq. For every line N through 
R, let SN be the point of intersection of 
the line LN joining P to N n L and the 
line MN joining Q to N n M. Then the 
locus of the points SN is a conic curve. 

Exercise 1.23. Show that the locus 
constructed in this way is indeed a 
smooth conic curve, and that it does 

R 

p 

L 

M 

Q 
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pass through the points P, Q, and L II M, and through the points RQ II Land 
RP II M. Using this, show one more time that through five points in the plane, no 
three collinear, there passes a unique conic curve. 

As indicated, we can generalize this to a construction of rational normal curves 
in any projective space pd. Specifically, start by choosing d codimension two linear 
spaces Ai ~ pd-2 C pd. The family {Hi(A)} of hyperplanes in pd containing Ai is 
then parameterized by A E pl; choose such parameterizations, subject to the condi­
tion that for each A the planes H 1 (A), ... , HAA) are independent, i.e., intersect in a 
point p(A). It is then the case that the locus of these points p(A) as A varies in pl is 
a rational normal curve. 

Exercise 1.24. Verify the last statement. 

We can use this description to see once again that there exists a unique rational 
normal curve through d + 3 points in pd no d + 1 of which are dependent. To do 
this, choose the subs paces Ai ~ pd-2 C H be the span of the points Pl , ... , Pi' ... , 
Pd' It is then the case that any choice of parametrizations of the families of hyper­
planes in pd containing Ai such that the hyperplane H spanned by Pl, ... , Pd 
never corresponds to itself satisfies the independence condition, i.e., for each value 
A E pi, the hyperplanes Hi(A) intersect in a point p(A). The rational normal curve 
constructed in this way will necessarily contain the d points Pi; and given three 
additional points Pd+ l , Pd+2 , and Pd+3 we can choose our parameterizations of the 
families of planes through the Ai so that the planes containing Pd + l , Pd + 2 , and Pd + 3 

correspond to the values A = 0, 1, and 00 E pl, respectively. 

Exercise 1.25. As we observed in Example 1.16, the rational normal curve X c pd 
may be realized as the locus of points [Zo, ... , Zd] such that the matrix 

( Zo Zl Z2 . . Zd-2 Zd-l) 
Zl Z2 . .. . Zd 

has rank 1. Interpret this as an example of the preceding construction: take Ai 
to be the plane (Zi-l = Zi = 0), and Hi(A) the hyperplane (A1Zi- l + A2 Zi = 0). 
Generalize this to show that if (Li) is any 2 x d matrix of linear forms on pd such 
that for any (A l , A2) =1= (0, 0) the linear forms {Al Ll,j + A2L2,j}, j = 1, ... , dare 
independent, then the locus of [Z] E pd such that the matrix LijZ) has rank 1 is a 
rational normal curve. 

Example 1.26. Other Rational Curves 

The maps Vd involve choosing a basis for the space of homogeneous polynomials of 
degree d on pl. In fact, we can also choose any collection Ao, ... , Am oflinearly 
independent polynomials (without common zeros) and try to describe the image of 
the resulting map (if the polynomials we choose fail to be linearly independent, that 
just means the image will lie in a proper linear subspace of the target space pm). 
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For example, consider the case d = 3 and m = 2 and look at the maps 

11, v: !pi --+ !p2 

given by 

and 

v: [Xo, Xl] H [XJ, xoxf - xJ, xi - XJX1]. 

The images of these two maps are both 
cubic hypersurfaces in !p2, given by 
the equations Zozi = zi and zozi = 

zi + zozf, respectively; in Euclidean 
coordinates, they are just the cuspidal 
cubic curve y2 = x3 and the nodal cubic 
y2 = x3 + x2. 

Exercise 1.27. Show that the images of 11 
and v are in fact given by these cubic 
polynomials. 

Exercise 1.28. Show that the image of 
the map v: !pi --+ !p2 given by any triple 
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of homogeneous cubic polynomials Ai(XO' X d without common zeroes satisfies a 
cubic polynomial. (In fact, any such image is projectively equivalent to one of the 
preceding two, a fact we will prove in Exercise 3.8 and again after Exercise 10.10.) (*) 

For another example, in which we will see (though we may not be able to 
prove that we have) a continuously varying family of non-projectively equiva­
lent curves, consider the case d = 4 and m = 3 and look at the map 

V",/I: !pi --+ !p3 

given by 

v",/I: [Xo, Xl] 

H [Xci - PXgXl' xgxl - pxJxf, exxJxf - xoxi, exxoxi - xiJ, 

The images C",/I C !p3 of these maps are called rational quartic curves in !p3 • The 
following exercise is probably hard to do purely naively, but will be easier after 
reading the next lecture. 

Exercise 1.29. Show that C",/I is indeed an algebraic variety, and that it may 
be described as the zero locus of one quadratic and two cubic polynomials. 

We will see in Exercise 2.19 that the curves C",/I give a continuously varying 
family of non-projectively equivalent curves. 
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Example 1.30. Varieties Defined Over Subfields of K 

This is not really an example as much as it is a warning about terminology. 

First of all, if L c K is a subfield, we will write An(L) for the subset 
U c K n = A K. Similarly, by p>n(L) c P>K we will mean the subset of points 
[Zo, ... , Zn] with ZJZj E L whenever defined-that is, points that may be written 
as [Zo, ... , Zn] with Zi E L. All of what follows applies to projective varieties, but 
we will say it only in the context of affine ones. 

We say that a subvariety X c AK is defined over L if it is the zero locus of 
polynomials h(Zl, ... , zn) E L[Zl' ... ' znJ. For such a variety X, the set of points of 
X defined over L is just the intersection X n An(L). We should not, however, 
confuse the set of points of X defined over L with X itself; for example, the variety 
in Ai defined by the equation x2 + y2 + 1 = 0 is defined over IR and has no points 
defined over IR, but it is not the empty variety. 

A Note on Dimension, Smoothness, and Degree 

We have, as we noted in the Introduction, a dilemma. Already in the first lecture 
we have encountered on a number of occasions references to three basic notions in 
algebraic geometry: dimension, degree, and smoothness. We have referred to 
various varieties as curves and surfaces; we have defined the degree of finite 
collections of points and hypersurfaces (and, implicitly, of the twisted cubic curve); 
and we have distinguished smooth conics from arbitrary ones. Clearly, these 
three ideas are fundamental to the subject; they give structure and focus to our 
analysis of varieties. Their formal definitions, however, have to be deferred until we 
have introduced a certain amount of technical apparatus, definitions, and founda­
tional theorems. At the same time, I feel it is desirable to introduce as many 
examples as possible before or at the same time as the introduction of this appara­
tus. 

The bottom line is that we have, to some degree, a vicious cycle: examples 
(by choice) come before definitions and foundational theorems, which come (of 
necessity) before the introduction and use of notions like dimension, smoothness, 
and degree, which in turn playa large role in the analysis of examples. 

What do we do about this? First, we do have naive ideas of what notions 
like dimension and smoothness should represent, and I would ask the reader's 
forbearance if occasionally I refer to them. (It will not, I hope, upset the reader 
if I refer to the zero locus of a single polynomial in p>3 as a "surface," even 
before the formal definition of dimension.) Secondly, when we introduce examples 
in Part I, I would encourage the reader, whenever interested, to skip around and 
look ahead to the analyses in Part 2 of their dimension, degree, smoothness, and/or 
tangent spaces. 
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Regular Functions and Maps 

In the preceding lecture, we introduced the basic objects of the category we will be 
studying; we will now introduce the maps. As might be expected, this is extremely 
easy in the context of affine varieties and slightly trickier, at least at first, for 
projective ones. 

The Zariski Topology 

We begin with a piece of terminology that will be useful, if somewhat uncom­
fortable at first. The Zariski topology on a variety X is simply the topology whose 
closed sets are the subvarieties of X, i.e., the common zero loci of polynomials 
on X. Thus, for X c An affine, a base of open sets is given by the sets 
VI = {p E X: f(p) i= O}, where f ranges over polynomials; these are called the 
distinguished open subsets of X. Similarly, for Xc /pn projective, a basis is given by 
the sets VF = {p E X: F(p) i= O} for F a homogeneous polynomial; again, these 
open subsets are called distinguished. 

This is the topology we will use on all the varieties with which we deal, so 
that if we refer to an open subset of a variety X without further specification, 
we will mean the complement of a subvariety. Implicit in our use of this topology 
is a fundamentally important fact: inasmuch as virtually all the constructions of 
algebraic geometry may be defined algebraically and make sense for varieties over 
any field, the ordinary topology on /Pc (or, as it's called, the classical or analytic 
topology) is not logically relevant. At the same time, we have to emphasize that the 
Zariski topology is primarily a formal construct; it is more a matter of terminology 
than a reflection of the geometry of varieties. For example, all plane curves given 
by irreducible polynomials over simply uncountable algebraically closed fields-
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whether affine or projective and whatever their degree or the field in question-are 
homeomorphic; they are, as topological spaces, simply uncountable sets given the 
topology in which subsets are closed if and only if they are finite. More generally, 
note that the Zariski topology does not satisfy any of the usual separation axioms, 
inasmuch as any two open subsets of pn will intersect. In sum, then, we will find it 
convenient to express most of the following in the language of the Zariski topology, 
but when we close our eyes and try to visualize an algebraic variety, it is probably 
the classical topology we should picture. 

Note that the Zariski topology is what is called a Noetherian topology; that 
is, if Y1 :::> Y2 :::> Y3 :::> ••• is any chain of closed subsets of a variety X, then for 
some m we have Ym = Ym+1 = .... This is equivalent to the statement that in 
the polynomial ring K[Zo, ... , Zn] any ideal is finitely generated, a special case of 
the theorem that K[Zo,"" Zn] is a Noetherian ring (cf. [E], [AM]). 

We should also mention at this point one further bit of terminology: an open 
subset U c X of a projective variety X c pn is called a quasi-projective variety 
(equivalently, a quasi-projective variety is a locally closed subset of pn in the Zariski 
topology). The class of quasi-projective varieties includes both affine and projective 
varieties and is much larger (we will see in Exercise 2.3 the simplest example of a 
quasi-projective variety that is not isomorphic to either an affine or a projective 
variety); but in practice most of the varieties with which we actually deal will be 
either projective or affine. 

By way of usage, when we speak of a variety X without further specifica­
tion, we will mean a quasi-projective variety. When we speak of a subvariety X of 
a variety Y or of "a variety X c Y", however, we will always mean a closed subset. 

It should be mentioned here that there is some disagreement in the literature 
over the definition of the terms "variety" and "subvariety": in many source varieties 
are required to be irreducible (see Lecture 5) and in others a subvariety X c Y is 
defined to be any locally closed subset. 

Regular Functions on an Affine Variety 

Let X c An be a variety. We define the ideal of X to be the ideal 

J(X) = {f E K[Zl' ... , zn]:f == 0 on X} 

of functions vanishing on X; and we define the coordinate ring of X to be the 
quotient 

A(X) = K[Zl' ... , zn]jI(X). 

We now come to a key definition, that of a regular function on the variety 
X. Ultimately, we would like a regular function on X to be simply the restriction 
to X of a polynomial in Z l' ... , Zn' modulo those vanishing on X, that is, an element 
of the coordinate ring A(X). We need, however, to give a local definition, so that 
we can at the same time describe the ring of functions on an open subset U c X. 
We therefore define the following. 
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Definition. Let U c X be any open set and p E U any point. We say that a function 
f on U is regular at p if in some neighborhood V of p it is expressible as a quotient 
glh, where g and hE K [z 1, ... , ZnJ are polynomials and h(p) =F 0. We say that f is 
regular on U if it is regular at every point of U. 

That this definition behaves as we desire is the content of the following lemma. 

Lemma 2.1. The ring of functions regular at every point of X is the coordinate 
ring A(X). More generally, if U = UJ is a distinguished open subset, then the ring of 
regular functions on U is the localization A (X) [1/f]. 

The proof of this lemma requires some additional machinery. In particular, 
it is clear that in order to prove it we have to know that a polynomial h(z1' ... , zn) 
that is nowhere zero on X is a unit in A(X), which is part of the Nullstellensatz 
(Theorem 5.1); we will give its proof following the proof of the Nullstellensatz in 
Lecture 5. Note that it is essential in this definition and lemma that our base field 
K be algebraically closed; if it were not, we could have a function f = glh where h 
was nowhere zero on An(K) but did have zeroes on A~ (for example, the function 
1/(x2 + 1) on A 1 (IR) and we would not want to call such a function regular. 

We should also warn that the conclusion of Lemma 2.1-that any function f 
regular on U is expressible as a quotient glh with h nowhere zero on U-is false for 
general open sets U c X. 

Note that the distinguished open subsets UJ are themselves naturally affine 
varieties: if X cAn is the zero locus of polynomials fa(z l' ... , zn), then the locus 
~ c An+1 given by the polynomials fa-viewed formally as polynomials in Z1' ... ' 
zn+1-together with the polynomial 

g(Z1'· .. , zn+d = 1 - Zn+1 ·f(z1' ... , zn) 

is bijective to UJ . (Note that the coordi­
nate ring of ~ is exactly the ring 
A(X) [1/f] of regular functions on UJ .) 

Thus, for example, if X = A 1 and UJ is 
the open subset A1 - {I, -I}, we may 
realize UJ as the subvariety ~ c A 2 

given by the equation W(Z2 - 1) - 1 = 

0, as in the diagram. 

Exercise 2.2. What is the ring of regular 
functions on the complement A 2 -

{ (0, O)} of the origin in A 2? 

We can recover an affine variety X 

J 

(though not any particular embedding X ~ An) from its coordinate ring A = A(X): 
just choose a collection of generators x l' ... , Xn for A over K, write 
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and take X c An as the zero locus of the polynomials fa. More intrinsically, 
given the Nullstellensatz (Theorem 5.1), the points of X may be identified with 
the set of maximal ideals in the ring A: for any p E X, the ideal mp c A of functions 
vanishing at p is maximal. Conversely, we will see in the proof of Proposition 5.18 
that given any maximal ideal m in the ring A = K[Xl' ... , xnJ/( {fa}), the quotient 
Aim will be a field finitely generated over K and hence isomorphic to K. If we then 
let ai be the image of Xi E A under the quotient map 

cp: A --+ Aim ~ K, 

the point p = (a l' ... , an) will lie on X, and m will be the ideal of functions vanishing 
at p. 

We will see as a consequence of the Nullstellensatz (Theorem 5.1) that in fact any 
finitely generated algebra over K will occur as the coordinate ring of an affine 
variety if and only if it has no nilpotent elements. 

One further object we should introduce here is the local ring of an affine variety 
X at a point p E X, denoted mx.p ' This is defined to be the ring of germs offunctions 
defined in some neighborhood of p and regular at p. This is the direct limit of the 
rings A(Vf ) = A (X) [1/f] where f ranges over all regular functions on X nonzero 
at p, or in other words the localization of the ring A(X) with respect to the maximal 
ideal mp' Note that if Y c X is an open set containing p then mx,p = my,p' 

Projective Varieties 

There are analogous definitions for projective varieties X c IfDn. Again, we define 
the ideal of X to be the ideal of polynomials FE K[Zo, ... , ZnJ vanishing on 
X; note that this is a homogeneous ideal, i.e., it is generated by homogeneous 
polynomials (equivalently, it is the direct sum of its homogeneous pieces). We 
likewise define the homogeneous coordinate ring S(X) of X to be the quotient ring 
K[Zo, ... , ZnJII(X); this is again a graded ring. 

A regular function on a quasi-projective variety X c IfDn-or more generally on 
an open subset V eX-is defined to be a function that is locally regular, i.e., if 
{Vi} is the standard open cover of IfDn by open sets Vi ~ An, such that the restriction 
of f to each V n Vi is regular. (Note that this is independent of the choice of cover 
by Lemma 2.1.) 

This may seem like a cumbersome definition, and it is. In fact, there is a simpler 
way of expressing regular functions on an open subset of a projective variety: we 
can sometimes write them as quotients FIG, where F and G E K[Zo, ... , ZnJ are 
homogeneous polynomials of the same degree with G nowhere zero in V. In 
particular, by an argument analogous to that for Lemma 2.1, if V = VG C X is the 
complement of the zero locus of the homogeneous polynomial G, then the ring of 
regular functions on VG is exactly the Oth graded piece of the localization S(X) [G-1 ]. 

Finally, we may define the local ring mx,p of a quasi-projective variety X c IfDn 
at a point p E X just as we did in the affine case: as the ring of germs of functions 
regular in some neighborhood of X. Equivalently, if X is any affine open subset of 
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X c,,~mtaining p, we may take (r)x,p = (!Ji,p, i,e., the localization of the coordinate ring 
A(X) with respect to the ideal of functions vanishing at p. 

Regular Maps 

Maps to affine varieties are simple to describe: a regular map from an arbitrary 
variety X to affine space An is a map given by an n-tuple of regular functions on X; 
and a map of X to an affine variety YeAn is a map to An with image contained 
in Y. Equivalently, such maps correspond bijectively to ring homomorphisms from 
the coordinate ring A(Y) to the ring of regular functions on X. 

This gives us a notion of isomorphism of affine varieties: two affine 
varieties X and Yare isomorphic if there exist regular maps 1'/: X -+ Yand cp: Y -+ X 
inverse to one another in both directions, or equivalently if their coordinate rings 
A(X) ~ A(Y) as algebras over the field K (in particular, the coordinate ring of an 
affine variety is an invariant of isomorphism). 

Maps to projective space are naturally more complicated. To start with, we say 
that a map cp: X -+ !pn is regular if it is regular locally, i.e., it is continuous and for 
each of the standard affine open subsets Vi ~ An c !pn the restriction of cp to 
cp-l(Vi ) is regular. Actually specifying a map to projective space by giving its 
restrictions to the inverse images of affine open subsets, however, is far too cumber­
some. A better way of describing a map to projective space would be to specify an 
(n + I)-tuple of regular functions, but this may not be possible if X is projective. If 
X c !pm is projective, we may specify a map of X to !pn by giving an (n + I)-tuple of 
homogeneous polynomials of the same degree; as long as they are not simultane­
ously zero anywhere on X, this will determine a regular map. It happens, though, 
that this still does not suffice to describe all maps of projective varieties to projective 
space. 

As an example of this, consider the variety C c !p2 given by X2 + y2 - Z2, and 
the map cp of X to !pI given by 

[X, Y, Z] 1-+ [X, Y - Z]. 

The map may be thought of as a 
stereo graphic projection from the point 
p = [0, 1, 1]: it sends a point r E C 
(other than p itself) to the point of inter­
section of the axis (Y = 0) with the line 
pro The two polynomials X and Y - Z 
have a common zero on C at the point 
p = [0, 1, 1], reflecting the fact that this 
assignment does not make sense at 
r = p; but the map is still regular (or 
rather extends to a regular map) at this 
point: we define cp(p) = [1,0] and 
observe that in terms of coordinates 

[0,-1,1] Y+Z= 0 
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[S, T] on JIl>l with affine opens Uo: (S =f. 0) and Ui : (T =f. 0) we have 

cp-i(UO) = C - {EO, -1, I]} 

and 

cp-i(Ud = C - {[O, 1, I]}. 

Now, on cp-i(Ui ), the map cp is clearly regular; in terms of the coordinate s = SIT 
on Ui , the restriction of cp is given by 

x 
[X, Y, Z] 1-+ ~-, 

Y-Z 

which is clearly a regular function on C - {EO, 1, I]}. On the other hand, on 
cp-i(UO), we can write the map, in terms of the Euclidean coordinate t = TIS, 
as 

Y-Z 
[X, Y, Z] 1-+ -y-' 

This may not appear to be regular at p, but we can write 

Y _ Z y2 _ Z2 

X X(Y + Z) 

_X2 

X(Y + Z) 

-X 
Y+Z' 

which is clearly regular on C - {[O, -1, I]}. We note as well that the map cp: 
C ~ JIl>l in fact cannot be given by a pair of homogeneous polynomials on JIl>2 
without common zeros on C. 

This example is fairly representative: in practice, the most common way of 
specifying in coordinates a map cp: X ~ JIl>n of a quasi-projective variety to projec­
tive space is by an (n + I)-tuple of homogeneous polynomials of the same degree. 
The drawback of this is that we have to allow the possibility that these homo­
geneous polynomials have common zeros on X; and having written down such an 
(n + I)-tuple, we can't immediately tell whether we have in fact defined a regular 
map. 

Just as in the case of affine varieties, the definition of a regular map gives 
rise to the notion of isomorphism: two quasi-projective varieties X and Yare 
isomorphic if there exist regular maps 1'/: X ~ Y and cp: Y ~ X inverse to one 
another in both directions. In contrast to the affine case, however, this does not 
mean that two projective varieties are isomorphic if and only if their homogeneous 
coordinate rings are isomorphic. We have, in other words, two notions of congru­
ence of projective varieties: we say that two varieties X, X' c JIl>n are projectively 
equivalent if there is an automorphism A E PGLn+i K of JIl>n carrying X into X', 
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which is the same as saying that the homogeneous coordinate rings S(X), S(X') are 
isomorphic as graded K-algebras; while we say that they are isomorphic under the 
weaker condition that there is a biregular map between them. (We will see an 
explicit example where the two notions do not agree in Exercise 2.10.) 

Exercise 2.3. Using the result of Exercise 2.2, show that for n ~ 2 the comple­
ment of the origin in An is not isomorphic to an affine variety. 

Example 2.4. The Veronese Map 

The construction of the rational normal curve can be further generalized: for any 
nand d, we define the Veronese map of degree d 

by sending 

where Xl ranges over all monomials of degree din Xo, ... , X n • As in the case 
of the rational normal curves, we will call the Veronese map any map differing 
from this by an automorphism of PN. Geometrically, the Veronese map is character­
ized by the property that the hypersurfaces of degree d in pn are exactly the 
hyperplane sections of the image vApn) c: pN. It is not hard to see that the image 
of the Veronese map is an algebraic variety, often called a Veronese variety. 

Exercise 2.5. Show that the number of monomials of degree d in n + 1 variables is 

the binomial coefficient (n ; d). so that the integer N is (n ; d) - 1. 

For example, in the simplest case other than the case n = 1 of the rational 
normal curve, the quadratic Veronese map 

V2: p2 --+ pS 

is given by 

The image of this map, often called simply the Veronese surface, is one variety 
we will encounter often in the course of this book. 

The Veronese variety vApn) lies on a number of obvious quadric hypersurfaces: 
for every quadruple of multi-indices 1, J, K, and L such that the corresponding 
monomials XIX I = KKXL, we have a quadratic relation on the image. In fact, it is 
not hard to check that the Veronese variety is exactly the zero locus of these 
quadratic polynomials. 
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Example 2.6. Determinantal Representation of Veronese Varieties 

The Veronese surface, that is, the image of the map v2 : [fIl2 -+ [fils, can also be 
described as the locus of points [Zo, ... , Zs] E [fils such that the matrix 

has rank 1. In general, if we let {Zi,j}O';;i';;j,;;n be the coordinates on the target 
space of the quadratic Veronese map 

v2 : [fIln -+ [fIl(n+1)(n+2)/2-1, 

then we can represent the image of V2 as the locus of the 2 x 2 minors of the 
(n + 1) x (n + 1) symmetric matrix with (i, j)th entry Zi-1,j-1 for i S j. 

Example 2.7. Subvarieties of Veronese Varieties 

The Veronese map may be applied not only to a projective space [fIln, but to any 
variety X c [fIln by restriction. Observe in particular that if we restrict Vd to a linear 
subspace A ~ [fIlk C pn, we get just the Veronese map of degree d on [fIlk. For 
example, the images under the map v2 : [fIl2 -+ [fils oflines in [fIl2 give a family of conic 
plane curves on the Veronese surface S, with one such conic passing through any 
two points of S. 

More generally, we claim that the image of a variety Y c [fIln under the Veronese 
map is a subvariety of [fIlN. To see this, note first that homogeneous polynomials of 
degree k in the homogeneous coordinates Z on [fIlN pull back to give (all) polyno­
mials of degree d· k in the variables X. Next, observe (as in the remark following 
Exercise 1.3) that the zero locus of a polynomial F(X) of degree m is also the 
common zero locus of the polynomials {XiF(X)} of degree m + 1. Thus a variety 
Y c [fIln expressible as the common zero locus of polynomials of degree m and less 
may also be realized as the common zero locus of polynomials of degree exactly 
k· d for some k. It follows that its image vAy) c [fIlN under the Veronese map is the 
intersection of the Veronese variety vA[fIln)-which we have already seen is a vari­
ety-with the common zero locus of polynomials of degree k. 

For example, if Y c [fIl2 is the curve given by the cubic polynomial 
XJ + Xf + X~, then we can also write Yas the common locus of the quartics 

~+~~+~~, ~~+~+~~, ~ ~~+~~+~. 

The image V2(Y) c [fils is thus the intersection of the Veronese surface with the 
three quadric hypersurfaces 

Z6 + ZlZ3 + Z2Z4, ZOZ3 + Z; + Z2ZS' and ZOZ4 + ZlZS + z1-
In particular, it is the intersection of nine quadrics. 
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Exercise 2.S. Let Xc [pn be a projective variety and Y = vAX) C [pN its image 
under the Veronese map. Show that X and Yare isomorphic, i.e., show that the 
inverse map is regular. 

Exercise 2.9. Use the preceding analysis and exercise to deduce that any projective 
variety is isomorphic to an intersection of a Veronese variety with a linear space 
(and hence in particular that any projective variety is isomorphic to an intersection 
of quadrics). 

Exercise 2.10. Let X c [pn be a projective variety and Y = vAX) C [pN its image 
under the Veronese map. What is the relation between the homogeneous coordi­
nate rings of X and Y? 

In case the field K has characteristic zero, Veronese map has a coordinate-free 
description that is worth bearing in mind. Briefly, if we view [pn = [p V as the space 
lines in a vector space V, then the Veronese map may be defined as the map 

Vd: [PV -+ [P(SymdV) 

to the projectivization of the dth symmetric power of V, given by 

Vd: [v] t----+ [vd]. 

Equivalently, if we apply this to V* rather than V, the image of the Veronese 
map may be viewed as the (projectivization of the) subset of the space SymdV* 
of all polynomials on V consisting of dth powers of linear forms. Note that this is 
false for fields K of arbitrary characteristic: for example, if char(K) = p, the locus 
in [P(SymPV) of pth powers of elements of V is not a rational normal curve, but a 
line. What is true in arbitrary characteristic is that the Veronese map Vd may be 
viewed as the map [PV -+ [P(SymdV) sending a vector v to the linear functional on 
SymdV* given by evaluation of polynomials at p. 

Example 2.11. The Segre Maps 

Another fundamental family of maps are the Segre maps 

0": [pn X [pm -+ [p(n+l)(m+1)-l 

defined by sending a pair ([X], [Y]) to the point in [p(n+1)(m+l)-l whose coordinates 
are the pairwise products of the coordinates of [X] and [Y], i.e., 

0": ([Xo, .. ·, Xn], [Yo,···, Ym]) t----+ [ ••• , X;lj, ... ], 

where the coordinates in the target space range over all pairwise products of 
coordinates Xi and Yj. 

It is not hard to see that the image of the Segre map is an algebraic variety, 
called a Segre variety, and sometimes denoted ~n.m: if we label the coordinates 
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on the target space as Zi,j' we see that it is the common zero locus of the quadratic 
polynomials Zi,j' Zk,l - Zi,l' Zk,j' (In particular, the Segre variety is another 
example of a determinantal variety; it is the zero locus of the 2 x 2 minors of the 
matrix (Zi,).) 

The first example of a Segre variety is the variety !:l,l = O'(IPI X 1P1) C 1P3, 
that is, the image of the map 

0': ([Xo, Xl]' [Yo, Yl ]) ~ [Xo Yo, Xo Yl , Xl Yo, Xl Yl ]. 

This is the locus of the single quadratic 
polynomial ZOZ3 - Z l Z2, that is, it is 
simply a quadric surface. Note that the 
fibers of the two projection maps from 
IP" x IPm to IP" and IPm are carried, under 
0', into linear subspaces of 1P("+1)(m+1)-l; 
in particular, the fibers of 1P1 x 1P1 
are carried into the families of lines 
{Zl = AZo, Z3 = AZ2} and {Z2 = AZo, 
Z3 = AZd. Note also that the description of the polynomial ZOZ3 - Z l Z2 as the 
determinant of the matrix 

displays the two families of lines nicely: one family consists of lines where the two 
columns satisfy a given linear relation, the other lines where the two rows satisfy a 
given linear relation. 

Another common example of a Segre variety is the image 

!:2,l = 0'(1P2 X 1P1) C 1P5, 

called the Segre threefold. We will encounter it again several times (for example, it 
is an example ofa rational normal scroll, and as such is denoted Xl,l,l)' For now, 
we mention the following facts. 

Exercise 2.12. (i) Let L, M, and N c 1P3 be any three pairwise skew (i.e., disjoint) 
lines. Show that the union of the lines in 1P3 meeting all three lines is projectively 
equivalent to the Segre variety!: 1,1 c 1P3 and that this union is the unique Segre 
variety containing L, M, and N. (*) 

(ii) More generally, suppose that L, M, and N are any three pairwise disjoint 
(k - I)-planes in 1P2k- 1. Show that the union of all lines meeting L, M, and N is 
projectively equivalent to the Segre variety !:k-l,l c 1P 2k-1 and that this union is 
the unique Segre variety containing L, M, and N. Is there an analogous description 
of Segre varieties !:a,b with a, b ~ 2? 

Exercise 2.13. Show that the twisted cubic curve C c 1P3 may be realized as the 
intersection of the Segre threefold with a three-plane 1P3 c 1P5. 
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Exercise 2.14. Show that any line I c 1:2 ,1 C 1P 5 is contained in the image of 
a fiber of 1P2 x 1P1 over 1P2 or 1P1 (*). (The same is true for any linear space 
contained in any Segre variety a(lPn x IPm), but we will defer the most general 
statement until Theorem 9.22.) 

Exercise 2.15. Show that the image of the diagonal 11 c IPn x IPn under the Segre 
map is the Veronese variety V2(lPn), lying in a subspace of IP n2 +2n; deduce that in 
general the diagonal I1x c X x X in the product of any variety with itself is a 
subvariety of that product, and likewise for all diagonals in the n fold product xn. 

Example 2.16. Subvarieties of Segre Varieties 

Having given the product IPn x IPm the structure of a projective variety, a natural 
question to ask is how we may describe its subvarieties. A naive answer is immedi­
ate. To begin with, we say that a polynomial F(Zo, . ,., Zn, Wo, .,., Wm ) in two sets 
of variables is bihomogeneous of bidegree (d, e) if it is simultaneously homogeneous 
of degree d in the first set of variables and of degree e in the second, that is, of the 
form 

F(Z, W) = L au' zbo ... Z!"' wdo ... W~m. 
I,J: 

ri(L=d, 
'!:.jp=e 

Now, since polynomials of degree d on the target projective space lP(m+l)(n+l)-l 
pull back to polynomials F(Z, W) that are bihomogeneous of bidegree (d, d), the 
obvious answer is that subvarieties of IPn x IPm are simply the common zero loci of 
such polynomials (observe that the zero locus of any bihomogeneous polynotnial 
is a well-defined subset of IPI! X IPm). At the same time, as in the discussion of 
subvarieties of the Veronese variety, we can see that the zero locus of a bihomo­
geneous polynomial F(Z, W) of bidegree (d, e) is the common zero locus of the 
bihomogeneous polynomials of degree (d', e') divisible by it, for any d' ~ d and 
e' ~ e; so that more generally we can say that the subvarieties of a Segre variety 
IPn x IPm are the zero loci of bihomogeneous polynomials of any bidegrees. 

As an example, consider the twisted cubic C c 1P3 of Example 1.10 given as the 
image of the map 

t f---+ [1, t, t2 , t 3 ]. 

As we observed before, C lies on the quadric surface ZOZ3 - Zl Z2 = 0, which 
we now recognize as the Segre surface S = tr(IPl X 1P1) c 1P3. Now, restrict to 
S the other two quadratic polynomials defining the twisted cubic. To begin with, 
the polynomial ZOZ2 - Z; on 1P3 pulls back to XOXl Y02 - X5 Yl, which factors 
into a product of Xo and F(X, Y) = Xl Y02 - Xo yr The zero locus of this polyno­
mial is thus the union of the twisted cubic with the line on S given by Xo = 0 (or 
equivalently by Zo = Zl = 0). On the other hand, the polynomial ZlZ3 - Z~ pulls 
back to XOXl Yl- X; Y02, which factors as -Xl' F; so its zero locus is the union 
of the curve C and the line Z2 = Z3 = O. In sum, then, the twisted cubic curve is the 
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zero locus of a single bihomogeneous 
polynomial F(X, Y) ofbidegree (1,2) on 
the Segre surface S = aWl x !P l ); the 
quadratic polynomials defining C restrict 
to S to give the bihomogeneous 
polynomials of bidegree (2, 2) divisible 
by F (equivalently, the quadric surfaces 
containing C cut on S the unions of C 
with the lines of one ruling of S). 

2. Regular Functions and Maps 

Exercise 2.17. Conversely, let C c !p l X !p l be the zerO locus of an irreducible 
bihomogeneous polynomial F(X, Y) of bidegree (1, 2). Show that the image of C 
under the Segre map 

is a twisted cubic curve. 

Exercise 2.18. Now let C = Ca,fl c !p3 be a rational quartic Curve, as introduced in 
Example 1.26. Observe that C lies on the Segre surface S given by ZOZ3 - Zl Z2 = 
0, that S is the unique quadric surface containing C, and that C is the zero locus of 
a bihomogeneous polynomial of bidegree (1,3) on S ~ !p l X !pl. Use this to do 
Exercise 1.29. 

Exercise 2.19. Use the preceding exercise to show in particular that there is a 
continuous family of curves Ca•fl not projectively equivalent to one another. (*) 

Exercise 2.20. a. Let X c !pn and Y c !pm be projective varieties. Show that the 
image a(X x Y) c a(!pn x !Pm) C !pnm+n+m of the Segre map restricted to X x Y is 
a projective variety. b. Now suppose only that X c !pn and Y c !pm are quasi­
projective. Show that a(X x Y) is likewise quasi-projective, that is, locally closed 
in !pnm+n+m• 

Example 2.21. Products of Varieties 

At the outset of Example 2.11, we referred to the product !pn x !pm; we can only 
mean the product as a set. This space does not a priori have the structure of an 
algebraic variety. The Segre embedding, however, gives it one, which we will adopt 
as a definition of the product as a variety. In other words, when we talk about "the 
variety !pn x !pm" we mean the image of the Segre map. Similarly, if X c !pn and 
Y c !pm are locally closed, according to Exercise 2,20, the image of the product 
X x Y c !pn x !pm is a locally closed subset of !pnm+n+m, which we will take as the 
definition of "the product X x Y" as a variety. 

A key point to be made in connection with this definition is that this is actually 
a categorical product, i.e., the projection maps 1tx: X x Y -+ X and 1ty: X x Y -+ Y 
are regular and the variety X x Y, together with these projection maps, satisfies the 
conditions for a product in the category of quasi-projective varieties and regular 
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maps. What this means is that given an 
arbitrary variety Z and a pair of maps 
tX: Z -+ X and [3: Z -+ Y, there is a 
unique map tX x [3: Z -+ X x Y whose 
compositions with the projections 1tx 
and 1ty are tX and [3, respectively. It is not 
hard to see that this is the case: to begin 
with, the map tX x [3 is certainly 
uniquely determined by tX and [3; we 
have to check simply that it is regular. 
This we do locally: say ro E Z is any 
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point, mapping via tX and [3 to points P E X and q E Y. Suppose p lies in the open 
set Zo # 0 in lPn, so that in a neighborhood of ro the map tX is given by 

tX: r f---+ [1, il (r), ... , f,,(r)J, 

with iI' ... , in regular functions of r on Z, and say [3 is given similarly by [3(r) = 
[1, 9 1 (r), ... , gm(r)]. Then in a neighborhood of ro the map tX x [3: Z -+ X x Y c 
IPnm+n+m is given by 

tX X [3: r f---+ [1, ... , /;(r), ... , gk), ... , };(r)gj(r), ... ] 

and so is regular. 

Exercise 2.22. Show that the Zariski topology on the product variety X x Y is not 
the product of the Zariski topologies on X and Y. 

Example 2.23. Graphs 

This is in some sense a subexample of Example 2.16, but it is important enough to 
warrant its own heading. The basic observation is contained in the following 
exercise. 

Exercise 2.24. Let Xc IPn be any projective variety and q>: X -+ IPm any regular 
map. Show that the graph r'l' c X x IPm c IPn x IPm is a subvariety. 

Note that it is not the case that a map 
q>: X -+ IPm is regular if and only if the 
graph r'l' is a subvariety. For example, 
consider the map Jl: IPI -+ 1P2 of Exam­
ple 1.26 and denote by X c 1P2 its 
image, the cuspidal curve ZoZ~ = zi. 
Inasmuch as the map Jl is one to one, we 
can define a set-theoretic inverse map 

q>:X-+IPI; 

as may be readily checked, this map is 

[p1 ------
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not regular, although its graph, being the same subset of X x /pI as the graph of jl, 
is a subvariety of X x /pl. 

Example 2.25. Fiber Products 

The notion of categorical product has a 
direct generalization: in any category, 
given objects X, Y, and Band morp­
hisms cp: X --+ Band Yf: Y --+ B, the fiber 
product of X and Y over B, denoted 
X x B Y, is defined to be the object Z 
with morphisms ct: Z --+ X and p: Z --+ Y 
such that for any object Wand maps 
!X': W --+ X and P': W --+ Y with cp 0 !X' = 
Yf 0 P', there is a unique map y: W --+ Z 

I~z 
l'l exl 

1 
x 

nl 
1 

_....:.4>_ ... , B 

with !x' = !X 0 Y and P' = po y. This property uniquely determines Z, if it exists. In 
the category of sets, fiber products exist; very simply, the fiber product is 

X X B Y = {(x, Y) E X x Y: cp(x) = Yf(y)}. 

What we may observe here is that the set-theoretic fiber product of two varieties 
may be given the structure of a variety in a reasonably natural way. To do this, let 
reX x B be the graph of cp and \}I c Y x B the graph of Yf. By Exercise 2.24, both 
r x Y and \}I x X are subvarieties of the triple product X x Y x B, and hence so 
is their intersection, which is set-theoretically the fiber product. We will in the 
future refer to X x B Yas the fiber product of X and Y over B. 

Exercise 2.26. Show that the variety X x B Y is indeed the fiber product of X 
and Y over B in the category of algebraic varieties. 

Example 2.27. Combinations of Veronese and Segre Maps 

We can combine the constructions of the Veronese and Segre maps to arrive at 
more varieties. To take the simplest case of this, let v: /pI --+ /p2 be the quadratic 
Veronese map, u: /pI x /p 2 --+ /ps the Segre map, and consider the composition 

cp: /pI x /pI ~ /pI X /p2 ~ /p5. 

The image of this map is again an algebraic variety (in particular, it is another 
example of a rational normal scroll and is denoted X 2,2)' 

Exercise 2.28. Find the equations of the variety X 2,2' Show that the rational 
normal curve in /p4 may be realized as a hyperplane section of X 2 ,2' 

Exercise 2.29. Realize /pI x /pI as the quadric surface in /p3 given by the polynomial 
ZOZ3 - Zl Z2, and let L c Q be the line Zo = Z1 = O. Show that the vector space 
of homogeneous quadratic polynomials in the Zi vanishing on L has dimension 7, 
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and show that the composite map qJ may be given as 

qJ: [Zo, Zl' Z2, Z3] 1--+ [Fo(Z), ... , Fs(Z)], 

where {Q, Fo(Z), ... , Fs(Z)} is a basis for this vector space. Show that this map 
cannot be represented by a sixtuple of homogeneous polynomials of the same 
degree in 1P3 with no common zero locus on Q. 

As with the Veronese map, there is a coordinate-free version of the Segre map: 
if we view the spaces IPn and IPm as the projective spaces associated to vector spaces 
V and W, respectively, then the target space lP(n+l)(m+l)-l may be naturally identified 
with the space IP(V ® W), and the map 

0": IPV x IPW -.IP(V ® W) 

given as 

0": ([v], [w]) 1--+ [v ® w]. 



LECTURE 3 

Cones, Projections, and More 
About Products 

Example 3.1. Cones 

We start here with a hyperplane 
1P,,-1 c IP" and a point p E IP" not lying 
on 1P,,-1; if we like, we can take 
coordinates Z on IP" so that 1P,,-1 
is given by Z" = ° and the point 
p = [0, ... ,0, 1]. Let Xc 1P,,-1 be any 
variety. We then define the cone X, p 
over X with vertex p to be the union 

X,p = U qp 
qeX 

of the lines joining p to points of X. (If p 
lies on the hyperplane at infinity, 

p 

X, p will look like a cylinder rather than a cone; in projective space these are the 
same thing.) X, p is easily seen to be a variety,ftowe choose coordinates as earlier 
and X c IPn-1 is the locus of polynomials FIJ = FiZo, ... , Z,,-1)' the cone X, p will 
be the locus of the same polynomials FIJ viewed as polynomials in Zo, ... , Z". 

As a slight generalization of the cone construction, let A ~ IPk C IPn and 
'II ~ 1P,,-k-1 be complementary linear subspaces (i.e., disjoint and spanning all of 
IPn), and let X c 'II be any variety. We can then define the cone X, A over X with 
vertex A to be the union of the (k + I)-planes q, A spanned by A together with 
points q E X. Of course, this construction represents merely an iteration of the 
preceding one; we can also construct the cone X, A by taking the cone over X with 
vertex a point k + 1 times. 
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Exercise 3.2. Let 'I' and A c pn be complementary linear subspaces as earlier, 
and X c 'I' and YeA subvarieties. Show that the union of all lines joining 
points of X to points of Y is a variety. 

In Lecture 8, we will see an analogous way of constructing a variety X, Y 
for any pair of varieties X, Y c pn. 

Example 3.3. Quadrics 

We can use the concept of cone to give a uniform description of quadric hyper­
surfaces, at least in case the characteristic of the field K is not 2. To begin with, a 
quadric hypersurface Q c P V = pn is given as the zero locus of a homogeneous 
quadratic polynomial Q: V --+ K. Now assume that char(K) #- 2. The polynomial Q 
may be thought of as the quadratic form associated to a bilinear form Qo on V, that 
is, we may write 

Q(v) = Qo(v, v), 

where Qo: V x V --+ K is defined by 

Q ( ) _ Q(v + w) - Q(v) - Q(w) 
o v, w - 2 . 

Note that Qo is both symmetric and bilinear. There is also associated to Qo 
the corresponding linear map 

Q: V --+ V* 

given by sending v to the linear form Q(v, .), i.e., by setting 

Q(v)(w) = Q(w)(v) = Qo(v, w). 

Now, to classify quadrics, note that any quadric Q on a vector space V may 
be written, in terms of a suitably chosen basis, as 

Q(X) = XJ + X~ + ... + Xr 

To see this, we choose the basis eo, ... , en for Vas follows. First, we choose eo such 
that Q(eo) = 1; then we choose e1 E (Keo).L (i.e., such that Qo(eo, ed = 0) such 
that Q(e 1 ) = 1, and so on, until Q vanishes identically on (Keo + ... + Kek).L. 
Finally, we may complete this to a basis with an arbitrary basis ek+l' ... , en for 
(Keo + ... + Kek).L. We say in this case that the quadric Q has rank k + 1; note that 
k + 1 is also the rank of the linear map Q. By this, a quadric is determined up to 
projective motion by its rank. 

Note that as in Example 1.20, we are led to define a quadric hypersurface 
in general to be an equivalence class of nonzero homogeneous quadratic polyno­
mials; two such polynomials are equivalent if they differ by multiplication by a 
scalar. The one additional object that this introduces into the class of quadrics is 
the double plane, that is, the quadric associated to the square Q = L 2 of a linear 
polynomial L. 
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If pi there are two types of quadrics: 

• • • 
two points (rank 2) one double point (rank 1) 

In p2, there are three: 

ox 
smooth conic 

(rank 3) 

In p3 there are four: 

pair oflines 
(rank 2) 

smooth quadric 
(rank 4) 

quadric cone 
(rank 3) 

pair of planes 
(rank 2) 

double line 
(rank 1) 

double plane 
(rank 1) 

In general, we will call a quadric Q c pn smooth if it has maximal rank n + 1, 
i.e., if the associated bilinear form Qo is nondegenerate (the reason for the term, if 
it is not already clear, will become so in Lecture 14). We have then the following 
geometric characterization: a quadric Q of rank k ;;::: 2 is the cone, with vertex 
A ~ pn-\ over a smooth quadric in Q in pk-i. To be specific, we can say that the 
vertex A is the subspace associated to the kernel of the map Q. 

Example 3.4. Projections 

We come now to a crucial example. Let the hyperplane pn-i C pn and the point 
p E pn - pn-i be as in Example 3.1. We can then define a map 

1tp: pn _ {p} ~ pn-i 

by 

1tp: q 1-+ qp Ilpn-i; 

that is, sending a point q E pn other than p to the point of intersection of the line 
pq with the hyperplane pn-i. 1tp is called projection from the point p to the 
hyperplane pn-l. In terms of coordinates Z used earlier, this is simple: we just 
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set 

Suppose now that X is any projective 
variety in I]J>n not containing the point 
p. We may then restrict the map np to 
the variety X to get a regular map 
np: X -+ I]J>n-l; the image X = np(X) of 
this map is called the projection of X 
from p to I]J>n-l. We then have the 
following basic theorem. 

Theorem 3.5. The projection X of X 
from p to I]J>n-1 is a projective variety. 

PROOF. The essential ingredient in this 
proof is elimination theory, which 
centers around the notion of the 
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resultant of two polynomials in a variable z. We will take a moment out here to 
recall/describe this. 

To begin with, suppose that f(z) and g(z) are two polynomials in a variable 
z with coefficients in a field K, of degrees m and n, respectively, and we ask whether 
they have a common factor. The answer is not hard: we observe simply that f and 
9 will have a common factor if and only if there is a polynomial h of degree 
m + n - 1 divisible by both, i.e., if and only if the spaces of polynomials of degree 
m + n - 1 divisible by f and 9 individually meet non trivially. This is equivalent to 
saying that the polynomials f, z· f, Z2. f, ... , zn-I . f, g, z· g, ... , zm-I . 9 fail to be 
independent, or in other words that the determinant 

0 0 ao 

bo bi 

0 bo b i 

0 0 bo 

a l 

bn 0 
bn 

b i 

0 

o 
o 

am 

0 

0 

bn 

of the (m + n) x (m + n) matrix of coefficients of these polynomials is zero. This 
determinant is called the resultant R(J, g) of f and 9 with respect to z, and we may 
express our analysis as the following lemma. 
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Lemma 3.6. Two polynomials f and g in one variable over a field K will have 
a common factor if and only if the resultant R(f, g) = 0. 

Note that if f and g are polynomials of degree strictly less than m and n, 
respectively-in other words, am = bn = O-then the determinant will also vanish. 
This corresponds to the fact that R really tests whether or not the homogenizations 
of f and g to homogeneous polynomials of degree m and n have a common zero in 
1P1. 

Generalizing slightly, suppose that f and g are polynomials in the variable 
z not over a field but over the ring K[x 1 , ... , xn]. We can still form the matrix 
of coefficients with entries a i and bj that are polynomials in Xl' ... , Xn; the deter­
minant will be likewise a polynomial R(f, g) E K[Xl' ... , xn], again called the 
resultant of f and g. It will have the property that for any n-tuple of elements y 1, ... , 

Yn E K, R(y) = ° if and only if either f(y, z) and g(y, z) have a common root as 
polynomials in z or the leading coefficient of both vanishes. 

Returning to the projection X of X from p, suppose the projection map 7tp 

is given as earlier by 

7tp: [Zo, ... , Zn] H [Zo, ... , Zn-l]. 

The key point is that for any point q = [Zo, ... , Zn-l] E IPn- 1, the line 1= pq 

will meet X if and only if every pair of polynomials F, G E J(X) has a common 
zero on 1= {[aZo, ... ,aZn- 1 ,p]}. To see this, observe that if I does not meet 
X, we can first find a polynomial F vanishing at finitely many points of 1, and 
since not all G E J(X) vanish at anyone of those points, we can find such a G 
nonzero at all of them. (Note that this statement would not be true if instead 
of taking all pairs F, G E J(X) we took only pairs of a set of generators.) 

Now, for any pair F, G of homogeneous polynomials in Zo, ... , Zn' we may 
think of F and G as polynomials in Zn with coefficients in K[Zo, ... , Zn-l] and form 
the resultant with respect to Zn accordingly (note that the degree of F and G in Zn 
will be less than their homogeneous degree if they vanish at p). We denote this 
resultant by R(F, G), noting that it is again homogeneous in Zo, ... , Zn-l. We have 
then for any point q = [Zo, ... , Zn-l] E IPn-l the sequence of implications 

the line 1 = pq meets X 

=- every pair F, G of homogeneous polynomials in J(X) has a common zero on 1 

=- the resultant R(F, G) vanishes at q for all homogeneous pairs F, G E J(X). 

In other words, the image X of the projection 7t: X --+ IPn- 1 is the common 
zero locus of the polynomials R(F, G), where F and G range over all pairs of 
homogeneous elements of J(X). D 

Exercise 3.7. Justify the first of the preceding implications, that is, show that 
if 1 is any line in IPn not meeting X we can find a pair of homogeneous polynomials 
F, G E J(X) with no common zeros on 1. 

Exercise 3.8. Find the equations of the projection of the twisted cubic curve from 
the point [1,0,0, 1] and from [0, 1,0,0]. (Note that taking resultants may not be 
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the most efficient way of doing this.) If you're feeling energetic, show that any 
projection of a twisted cubic from a point is projectively equivalent to one of these 
two. 

The notion of projection may be generalized somewhat: if A ~ pk is any sub­
space and pn-k-l a complementary one, we can define a map 

1l:A: pn - A --+ pn-k-l 

by sending a point q E pn - A to the intersection of pn-k-l with the (k + 1)­
plane q, A. Again, for any X c pn disjoint from A we may restrict to obtain a 
regular map 1l:A on X, whose image is called the projection of X from A to pn-k-l. 

Inasmuch as this map may also be realized as the composition of a sequence of 
projections from points Po, ... , Pk spanning A, Theorem 3.5 also implies that the 
projection 1l:A(X) c pn-k-l is a variety. 

Projection maps are readily expressed in intrinsic terms: if pn is the projective 
space PV associated to an (n + 1)-dimensional vector space V, A = PW corre­
sponds to the (k + 1)-plane W c Vand pn-k-l = PV for some (n - k)-plane V c V 
complementary to W, then 1l:A is just the map associated to the projection 
V = WEB V --+ V. In particular, note that if V' is another (n - k)-plane complemen­
tary to W, the projections to PV and to PV' will differ by composition with an 
isomorphism PV ~ PV'; thus the projection 1l:A(X) of X from A to pn-k-l will 
depend, up to projective equivalence, only on A and not on the subspace pn-k-l. 

Exercise 3.9. Show that the curves CIl•P of Exercise 1.29 may be realized as projec­
tions of a rational normal curve in p4 from points PIl.P E p4, and use these to 
illustrate the point that projections 1l:p (X), 1l:p '(X) of a variety X from different points 
need not be projectively equivalent. 

In fact, any regular map cp: pn --+ pm from one projective space to another 
may be realized, for some d, as the composition of the Veronese map Vd: pn --+ pN 
with a projection 1l:A: pN --+ pm' from a center A disjoint from the Veronese variety 
vApn) c pN and possibly an inclusion pm' c pm, though it would be difficult to 
prove that at this point. 

Example 3.10. More Cones 

We can also use projections to broaden our definition of cones, as follows. Suppose 
that X c pn is any variety and P E pn any point not lying on X. Then the union 

X,p = U qp, 
qeX 

which we will again call the cone over X with vertex p, is a variety; it is the 
cone, in the sense of Example 3.1, with vertex P over the projection X = 1l:p(X) 
of X from the point P to any hyperplane pn-l not containing p. Similarly, for 
any k-plane A c pn disjoint from X we can form the union of the (k + 1)-planes 
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A, q spanned by A and points q EX; this will be a variety called the cone over X 
with vertex A. 

Example 3.11. More Projections 

Consider for a moment a subvariety Xc Y X iP>1 where Y is an affine variety. Such 
a variety may be given as the zero locus of polynomials F(Wo, WI) homogeneous 
in the coordinates Wo, WI on iP>1, whose coefficients are regular functions on Y. The 
technique of elimination theory then tells us that the image X of X under the 
projection map n1 : Y x iP>1 --+ Y is the zero locus ofthe resultants of all pairs of such 
polynomials; in particular, it is a closed subset of Y. 

Next, suppose we have a subvariety X of Y x iP>2 and would like to make the 
same statement. We can do this by choosing a point p E iP>2 and first mapping 
Y x (iP>2 - {p}) to Y x iP>1, then projecting from Y x iP>1 --+ Y. This works 
except where X meets the locus Y x {p}, i.e., if we let V c Y be the closed subset 
{q E Y: (q, p) ¢ X} its shows that the image X = n1(X) c Y intersects the open set 
U = Y - V in a closed subset of U. But since X contains V, it follows that X is 
closed in Y. In general, this argument establishes the following theorem. 

Theorem 3.12. Let Y be any variety and n: Y x iP>" --+ Y be the projection on the 
first factor. Then the image n(X) of any closed subset X c Y X iP>" is a closed 
subset of Y. 

As an immediate consequence of this, we may combine it with Exercise 2.24 to 
deduce the following fundamental theorem. 

Theorem 3.13. If Xc iP>" is any projective variety and <p: X --+ iP>m any regular map, 
then the image of <p is a projective subvariety of iP>m. 

A regular function on a variety X may be thought of as a map 
X --+ Al C iP>1. Applying Theorem 3.13 to this map, we may deduce the following 
corollary. 

Corollary 3.14. If X c iP>n is any connected variety and f any regular function 
on X, then f is constant. 

"Connected" here means not the disjoint union of two proper closed subsets. 
This in turn yields the following corollary. 

Corollary 3.15. If X c [P>" is any connected variety other than a point and Y c iP>n is 
any hypersurface then X n Y #- 0. 

PROOF. Let F(X) be the homogeneous polynomial defining the hypersurface Y; say 
the degree of F is d. If X n Y = 0, we can apply Corollary 3.14 to the regular 
functions G/F, where G ranges over homogeneous polynomials of degree d on iP>n, 
to deduce that X is a point. D 
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Constructible Sets 

Naturally enough, Theorem 3.13 raises 
the question of what the image of an 
affine or quasi-projective variety X may 
be under a regular map f: X -+ iP'n. The 
first thing to notice is that it does not 
have to be a quasi-projective variety. 
The primary example of this is the map 
f: 1\2 -+ 1\2 given by 

f(x, y) = (x, xy). 

We note that under this map, horizontal 
lines are mapped into lines through • 
the origin, with every line through the 
origin covered except for the vertical; 
vertical lines are mapped into them­
selves, except for the y-axis, which is 
collapsed to the point (0, 0). The image 
is thus the union of the open subset 
{(z, w): z #- O} with the origin, a set that 
is not locally closed at the origin. 

Happily, this is about as bad as the 
situation gets; the images of quasi­
projective varieties in general form a 
class of subsets of iP'n, called con-
structible sets, which look pretty much 
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like what you'd expect on the basis of this example. A constructible set Z c: iP'n 
may be defined to be a finite disjoint union of locally closed subsets Ui C iP'n, 
that is, a set expressible as 

for Xl :::::l X 2 :::::l X3 :::::l ••• :::::l Xn a nested sequence of closed subsets of iP'n (to see the 
correspondence between the definitions, take Ul = Xl - X 2 , U2 = X3 - X4 and 
so on). Equivalently, we may define the class of constructible subsets of iP'n to be the 
smallest class including open subsets and closed under the operations of finite 
intersection and complementation. 

The basic fact is that images of quasi-projective varieties under regular maps in 
general are constructible sets. In fact, it is not harder to prove that images of 
constructible sets are constructible. 

Theorem 3.16. Let X c iP'm be a quasi-projective variety, f: X -+ iP'n a regular map, 
and U c X any constructible set. Then f(U) is a constructible subset of iP'n. 

PROOF. The key step in the proof is to establish an a priori weaker claim: that 
the image f(U) contains a nonempty open subset V c f(U) of the closure of f(U). 
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Given this, we set Vl = V n (X - f-l(V)) and observe that the theorem for V 
follows from the theorem for Vl . We then apply the claim to Vl and define a closed 
subset V2 ~ Vl and so on; since the Zariski topology is Noetherian (see page 18), 
a chain of strictly decreasing closed subsets of a constructible set is finite, and the 
result eventually follows. 

It remains to establish the claim. To begin with, we may replace V by an 
open subset, and so may assume that it is affine; restricting to a smaller affine 
open, we may assume the target space is also affine space. After replacing V by the 
graph of f we may realize the map f as the restriction to a closed subset V cAn of 
a linear projection An --+ Am, so that it is enough to prove the claim for a locally 
closed subset V cAn under the projection 

Finally, we can replace An-l by the Zariski closure Y = n(V) of the image of V 
and An by the inverse image n-l(y) = y x Al. It will thus suffice to establish the 
claim for a locally closed subset V of a product Y x A 1 (or, equivalently, a locally 
closed subset V c Y X pl) and the projection map n: Y x pl --+ Y on the first 
factor, with the further assumption that n(V) is dense in Y. In sum, we have reduced 
the proof of the Theorem to the following Lemma. 

Lemma 3.17. Let n: Y x pl --+ Y be projection on the first factor and let V c Y X pl 
be any locally closed subset such that n(V) is dense in Y. Then n(V) contains an open 
subset of Y. 

PROOF. Let X be the closure of V in Y x pl and write 

V=XnV 

for some open V c Y x p\ let T be the complement of V in Y x pl. Note that if 
X = Y X pl we are done, since the locus of points p E Y such that T contains the 
fiber {p} x pl is a proper subvariety of Y; we assume accordingly that X ~ Y X pl. 
By Theorem 3.12, n(X) is closed, and so by our hypothesis n(X) = Y; thus we just 
have to show that the closed subvariety n(X n T) does not equal Y. 

Now, after restricting to an open subset of Y, the ideals of X and T will be 
generated by polynomials F of the form 

F(Z, W) = aoZn + a l zn-l W + ... + an W n. 

What's more, not every pair of such polynomials F E J(X) and G E J(T) can have a 
common factor: if for example every G E J(T) had a factor H in common with a 
given FE J(X), it would follow that H was nowhere zero on V and hence that 
FjH E J(X) as well. But if FE J(X) and G E J(T) have no common factor, the image 
n(X n T) will be contained in the proper subvariety of Y defined by their resultant 
R(F, G). 0 



LECTURE 4 

Families and Parameter Spaces 

Example 4.1. Families of Varieties 

Next, we will give a definition without much apparent content, but one that is 
fundamental in much of algebraic geometry. Basically, the situation is that, given a 
collection {v,,} of projective varieties v" c [pn indexed by the points b of a variety 
B, we want to say what it means for the collection {v,,} to "vary algebraically with 
parameters." The answer is simple: for any variety B, we define a family of projective 
varieties in [pn with base B to be simply a closed subvariety l' of the product 
B x [pn. The fibers v" = (nd- 1(b) of l' over points of b are then referred to as the 
members, or elements of the family; the variety l' is called the total space, and the 
family is said to be parametrized by B. The idea is that if B c [pm is projective, the 
family l' c [pm X [pn will be described by a collection of polynomials Fa(Z, W) 
bihomogeneous in the coordinates Z on [pm and Won lPn, which we may then think 
of as a collection of polynomials in W whose coefficients are polynomials on B; 
similarly, if B is affine we may describe l' by a collection of polynomials Fa(z, W), 
which we may think of as homogeneous polynomials in the variables W whose 
coefficients are regular functions on B. 

There are many further conditions we can impose on families to insure that 
they do indeed vary continuously in various senses; we will discuss some of these 
further in Lecture 21. 

We should remark here that as a general rule a geometric condition on the 
members of a family of varieties v" c [pn will determine a constructible, and often 
an open or a closed subset of the parameter space B; for example, we use Theorem 
3.13 to show that for any point p E [pn the set of b E B such that p E v" will be a 
closed subvariety of B. More generally, we have the following. 

Exercise 4.2. Let Xc [pn be any projective variety and {v,,} any family of projective 
varieties in [pn with base B. Show that the set 
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{b E B: X n J.-b #- 0} 

is closed in B. More generally, if {Jv,,} is another family of projective varieties 
in [p>n with base B, show that the set 

{b: J.-b n Jv" #- 0} 

is a closed subvariety of B. 

Exercise 4.3. More generally still, if {J¥c} is another family of projective varieties in 
[p>n with base C, show that the set 

{(b, c): J.-b n J¥c #- 0} 

is a closed subvariety of the product B x C. Show that this implies the preceding 
exercise. 

In a similar vein, for any Xc [p>n and family {J.-b} we can consider the subset 

{b E B: J.-b eX}. 

This is always constructible, though we cannot prove that here. It is not, however, 
in general closed; for example, take "Y c A,2 X [p>l given in terms of Euclidean 
coordinates z on A,2 and homogeneous coordinates Won [p>l by Zl W2 = Z2 WI and 
X c [p>l any point. By contrast, we have the following. 

Exercise 4.4. For any Xc [p>n and any family {J.-b}, show that the subset 

{b E B: xcv,,} 
is closed in B. 

Example 4.5. The Universal Hyperplane 

If we think of the projective space [p>n* as the set of hyperplanes H c [p>n, we may 
define a subset of the product [p>n* x [p>n simply as 

r = {(H,p):PEH}. 

This is a subvariety of IPn* x IPn: in terms of coordinates Z on IPn and W on 
IPn* corresponding to dual bases for Kn+l and Kn+l *, it is given by the single 
bilinear polynomial 

L W;'Zi = O. 

In particular, it may be realized as a hyperplane section of the Segre variety 
IPn* x IPn c IPn2+2n. 

r is the simplest example of a family; inasmuch as the fibers of r over the 
first factor B = IPn* are all the hyperplanes in lPn, we think of r as the family 
of all hyperplanes in lPn, parameterized by IPn*. (Needless to say, the situation 
is symmetric; via projection on the second factor, we may view r as the family 
of all hyperplanes in IPn*, parameterized by IPn.) 
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The reason for the adjective "universal" is the following property of r: if 
1/ c B x [pn is any family of hyperplanes satisfying a technical condition called 
flatness (see page 267) then there is a (unique) regular map B -+ [pn* such that 1/ is 
the fiber product B x pn.r -in other words, 

'IT ----+ r 

I I 
B ----+ IP n * 

the map cp: B -+ [pn* sending a point b E B to the hyperplane J.-b E [pn* is regular. It 
is unfortunate that we have to throw in the presently undefined condition "flat" 
here (it will be defined in Lecture 21), but the statement is false without it, as the 
example following Exercise 2.24 shows. This is one of the many places where the 
language of schemes would be useful. 

Example 4.6. The Universal Hyperplane Section 

We can use the preceding construction to see that the set of hyperplane sections of 
a given variety X c [pn forms a family. Simply, with r c [pn* X [pn as in Example 
4.5, set 

Ox = {(H, p): P E H (\ X} 

= (1t2tl(X), 

where 'ltz: r -+ [p>n is projection on the second factor. From the second descrip­
tion, we see that Ox is a subvariety of [pn* x X, which we may view as the family 
of hyperplane sections of X. 

One question we may ask about any family of varieties 1/ c B x [pn is whether 
it admits a section, that is, a map u: B -+ 1/ such that 1tl 0 (J is the identity on B. 
Similarly, we define a rational section to be a section (J defined on some nonempty 
open subset U c B (the reason for the term "rational" will be made clearer in 
Lecture 7). The problem of determining whether a given family admits a section can 
be subtle; for example, even in the relatively simple case of the universal hyperplane 
section of a variety X c lPn, it is not known in general under what conditions Ox 
admits a rational section (even in case X is a surface). The following exercise 
will be simple enough to do after we have introduced some further machinery 
(specifically, it will be an immediate consequence of Theorem 11.14), but it may be 
instructive to try it now. 

Exercise 4.7. Show that the universal hyperplane section Ox of X does not admit a 
rational section in case (i) X c [pz is a smooth plane conic and (ii) X c [p3 is a 
twisted cubic. 
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Example 4.8. Parameter Spaces of Hypersurfaces 

The parametrization of the family of hyperplanes in IJln by IJln* is the first example 
of a general construction, which we will now discuss. We start with a family already 
discussed in Example 1.20: the set L of all conic curves C c 1Jl2. A conic C c 1Jl2 
may be given, in homogeneous coordinates Xi on 1Jl2, as the locus of a polynomial 

F(X) = a' X6 + b· xl + c' xi + d· XOXi + e' XOX2 + f· X i X 2 

with not all the coefficients zero. The conic C is determined by the 6-tuple (a, b, c, 
d, e, f) up to scalars, that is, (A.a, A.b, A.C, A.d, A.e, A.f) and (a, b, c, d, e, f) determine the 
same conic for any A. E K*. Thus, we see that the set L may be identified with a 
projective space IJls. (Without coordinates, if 1Jl2 = 1Jlv, then the homogeneous 
polynomials of degree 2 on V form the vector space W = Sym2 (V*), and we have 
an identification L = IJlW obtained by sending the zero locus of F to the point 
[F] E IJlW) 

Of course, in order for this to be completely accurate, we have to more or less 
define a plane conic to correspond to such a polynomial; thus, for example, we have 
to define loci such as pairs of lines-the zero locus of XoX i-and double lines­
the zero locus of X6-to be in the set L. (We will see in Lecture 22 another 
approach to defining the set of conics if we are too fastidious to include line pairs 
and double lines as conics.) 

The variety L = IJls parametrizing plane conics is an example of a parame­
ter space, a basic construction in algebraic geometry. It is peculiar to algebraic 
geometry in that in most geometric categories it is relatively rare to find the 
set of geometric objects of a given type naturally endowed with the structure 
of a geometric object of the same type; for example, the family of submanifolds 
of a given manifold is not even locally a manifold in the usual sense. Within 
algebraic geometry, though, this construction is ubiquitous; virtually every object 
introduced in the subject varies with parameters in the sense that the set of all such 
objects is naturally endowed with the structure of an algebraic variety. This is true 
not only for subvarieties of projective space, but for subvarieties of a given projec­
tive variety X c IJln; and, by applying this notion to their graphs, to maps between 
two given projective varieties. 

We lack at this point a number of the basic notions necessary to describe 
the general construction of these parameter spaces, and so will have to defer 
this discussion to Lecture 21. We can say, though, that the construction of the 
parameter space IJls for the set of plane conics generalizes immediately to the 
set of hypersurfaces in IJln of a given degree d: such a hypersurface X is given 
by a homogeneous polynomial 

F(Zo, ... , Zn) = L aio • ...• in' xbo ..... X!n 

SO that the set of hypersurfaces is parametrized by the points of a projective 
space IJlN with homogeneous coordinates aio . .... in' 
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Example 4.9. Universal Families of Hypersurfaces 

In the terminology we have introduced, to say that the set of hypersurfaces of 
degree d in P" is parametrized by a projective space p N suggests the existence of a 
family of hypetsurfaces with base B = pN. Such a family does indeed exist; for 
example, consider once again the equation of the general conic in p2 

a·X6 + b·Xt + c·x1 + d·XOX l + e·XOX 2 + f·X 1 X 2· 

If we think of [Xo, Xl' X 2] as coordinates on p2 and [a, b, c, d, e, f] as coordinates 
on p5, then we may view this equation as defining a hypersurface l: c p5 X p2, 
with the property that the fiber of l: over any point C E p5 is the conic curve 
C c p2 = p2 X {C} corresponding to the point C. l: is called the universal family 
of conics; as in the case of the universal hyperplane, it is called universal because 
any flat family of smooth conics reB x p2 may be realized as the fiber product 

r = B x I',l: 

for a unique regular map B --+ p5. (The specification "smooth conics" in the last 
sentence may be broadened to include line pairs, but things get trickier when we 
include double lines; see Lecture 21 for a discussion of these issues.) 

More generally, universal families exist for the parameter spaces of hyper­
surfaces of any degree d in projective space P" of any dimension. Note that if 
we had taken d = 1, the parameter space would be simply the dual projective space 
P"*, and the universal family just the universal hyperplane r c P"* X P" described 
in Example 4.5. 

The basic observation made earlier for families, that as a general rule geometric 
conditions on the members of a family determine constructible subsets of the base, 
applies to parameter spaces. For example, let L ~ p5 be the parameter space for 
plane conics, and consider the subset 'P c p5 corresponding to double lines. This 
may be realized as the image ofthe space p2* oflines in p2, under the map sending 
a line I to the "conic" 12; that is, the map taking a linear form 

I(X) = a·Xo + b·X l + c·X2 

and sending it to the quadratic polynomial 

I(X)2 = a2. X6 + b2. Xt + c2. x1 + 2ab· XOXl 

+ 2ac· X oX 2 + 2bc· X 1 X 2 

(each defined only up to scalars, naturally). In coordinates, then, this is the map 

given by 
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which we may recognize (if the characteristic of K is not 2) as the quadratic 
Veronese map. We see thus that the variety 'Pis the Veronese surface in IPs. 

We can similarly characterize the subset .1 c IPs of conics that consist of a 
union oflines (i.e., corresponding to quadratic polynomials that factor as a product 
of linear forms) as the image of the map 1P2* x 1P2* --. IPs sending a pair of linear 
forms ([I], Em]) to their product [I, m]. We may recognize this map as a composi­
tion of the Segre map 1P2* x 1P2* --. 1P8 followed by a projection (in intrinsic terms, 
this is the map IPV x IPV --.IP(V ® V) --.1P(Sym2V»; in any event, it is clearly a 
regular map and so its image is, as claimed, a subvariety of IPs. As we will see in 
Lecture 8, we can also realize .1 as the chordal variety of the Veronese surface. 

Exercise 4.10. Let IPN be as earlier the parameter space of hypersurfaces of degree 
d in IPn. Show that the subset I: of IPN corresponding to nonprime polynomials 
F(Xo, ... , Xn) is a projective subvariety of IPN. (I: corresponds to hypersurfaces X 
that contain a hypersurface Y of degree strictly less than d, though we will need 
Theorem 5.1 to establish this.) 

Exercise 4.11. Let X c IPn be any hypersurface of degree d given by a homoge­
neous polynomial F(Zo, ... , Zn). Show that the subset of hyperplanes H c IPn 
such that the restriction of F to H factors (i.e., such that H (\ X contains a hyper­
surface of degree < d in H) is a subvariety of IPn*. 

The question of the existence of sections may be raised in the case of the 
universal hyperfaces; in this case, the answer is known, as indicated later. 

Exercise 4.12. (a) For any n, find a rational section of the universal hyperplane 
r c IP"* x IPn. (b) For n odd, find a section of r. (c) For n even, show that there 
does not exist a section of r. (For part (c), you may want to use the fact, stated on 
page 37 following Exercise 3.9, that any regular map from IPn to IPm is given by an 
(m + I)-tuple of homogeneous polynomials.) (*) 

Exercise 4.13. Show that the universal plane conic X c IPs X 1P2 does not admit 
even a rational section. (*) 

It is in general true that the universal family of hypersurfaces of any degree 
d > 1 admits no rational sections 1. 

Exercise 4.14. (a) Let X c B X 1P3 be any family of twisted cubics. Show that 
X admits a rational section. (b) By contrast, exhibit a family of rational normal 
curves of degree 4 that does not have a rational section. (*) (The general pattern is 
that a family X c B X 1P2n+1 of rational normal curves of odd degree will always 

1 I don't know of a reference for this; a proof can be given by applying the Lefschetz hyperplane theorem 
to the universal family l: c pN X PR. 
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admit a rational section, but this is not the case for families of rational normal 
curves of even degree.) 

Example 4.15. A Family of Lines 

Our final examples of families are of linear spaces in !Pn. To start with the simplest 
case, we let U c !pn x !pn be the complement of the diagonal and consider the 
subset 

n = {(p, q; r): r E pq} c U x !Pn• 

We first observe that n is indeed a subvariety of U x !pn ; it is the family whose 
fiber over a point (p, q) E U is the line spanned by P and q. Since every line 
1 c !pn occurs as a fiber of 1t1 : n --+ U, we may think of this as a parameter space for 
lines; it is not optimal, however, because every line occurs many times, rather than 
just once. We will see how to fix this when we discuss Grassmannians in Lecture 6. 

Exercise 4.16. Show that n is indeed a subvariety of U x !Pn• More generally, 
show that for any k the subset U c (!pn)k of k-tuples (PI' ... , pd such that PI' ... , Pk 
are linearly independent is open, and that the locus 

n = {«PI' ... , Pk); r): r E PI' ... , Pk} c U x !pn 

is again a subvariety. What is the closure of n in (lPn)k X !Pn? 

Exercise 4.17. For another family of linear spaces, let V c (!Pn*t-k be the open 
subset of (n - k)-tuples of linearly independent hyperplanes, and set 

E= {«HI, ... ,Hn-d;r):rEHln ... nHn-d c V x !Pn. 

Show that E is a family of k-planes. In the case of lines in 1P 3, compare the family 
constructed in this exercise to that constructed earlier: are they isomorphic? 



LECTURE 5 

Ideals of Varieties, Irreducible 
Decomposition, and the Nullstellensatz 

Generating Ideals 

The time has come to talk about the various senses in which a variety may be 
defined by a set of equations. There are three different meanings of the statement 
that a collection of polynomials {Fa(Z)} "cut out" a variety X c pn, and several 
different terms are used to convey each of these meanings. 

Let's start with the affine case, where there are only two possibilities. Let X c An 
be a variety and {fa(ZI' ... , Zn)}a=l ..... m a collection of polynomials. When we say 
that the polynomials fa determine X, we could a priori mean one of two things: 
either 

(i) the common zero locus V(fl' ... , fm) of the polynomials fa is X or 
(ii) the polynomials fa generate the ideal J(X). 

Clearly, the second is stronger. For example, the zero locus of the polynomial 
x2 E K[x] is the origin 0 E AI, but the ideal of functions vanishing at 0 is (x), 
not (x 2 ). In general, the ideal of functions vanishing on a variety has the property 
that, for any polynomial f E K[ZI"'" zn], if a power fk E J then f E J. We formal­
ize this by observing that for any ideal J in a ring R, the set of all elements fER 
such that fk E J for some k > 0 is again an ideal, called the radical of J and denoted 
r(J). We call an ideal J radical if it is equal to r(J); as we have just observed, an ideal 
without this property cannot be of the form J(X). 

To put it another way, we have a two-way correspondence 

{SUbVarieties} ~ { ideals } 
of An +---y-- J C K[ZI"'" Zn] 

but this is not by any means bijective: in one direction, the composition of the 
two is the identity-the definition of a variety X c An amounts to the statement 
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that V(I(X)) = X -but going the other way the composition is neither injective nor 
surjective. We can fix this by simply restricting our attention to the image of the 
map J, and happily there is a nice characterization of this image (and indeed of the 
composition J 0 V). This is the famous Nullstellensatz: 

Theorem 5.1. For any ideal J c K[Zl, ... , zn], the ideal of functions vanishing on the 
common zero locus of J is the radical of J, i.e., 

J(V(I)) = r(I) 

Thus, there is a bijective correspondence between subvarieties X c An and radical 
ideals J c K[Zl, ... , znl 

We will defer both the proof of the Nullstellensatz and some of its corol­
laries to later in this lecture and will proce~d with our discussion now. 

Note that, as one consequence of the Nullstellensatz, we can say that a K-algebra 
A occurs as the coordinate ring of an affine variety if and only if A is finitely 
generated and has no nilpotents. Clearly these two conditions are necessary; if they 
are satisfied, we can write 

A = K[x 1 , ••• , Xn]/(fl' ... ,fm) 

so that we will have A = A(X), where X c An is the zero locus of the polyno­
mials f~. 

At this point we can take a minute out and mention one of the fundamental 
notions of scheme theory. Basically, if one is going to fix the correspondence on 
page 48 so as to make it bijective, there are naively two ways of going about it. We 
can either restrict the class of objects on the right or enlarge the class of objects on 
the left. In classical algebraic geometry, as we have just said, we do the former; in 
scheme theory, we do the latter. Thus, we define an affine scheme X c An to be an 
object associated to an arbitrary ideal J c K[Zl' ... , znl 

What sense can this possibly make? This is not the place to go into it in 
any detail, but we may remark that, in fact, most of the notions that we actually 
deal with in algebraic geometry are defined in terms of rings and ideals as well as in 
terms of subsets of affine or projective spaces. For example, if X c An is a variety 
with ideal J = J(X), we define a function on X to be an element of the ring 
A(X) = K[Zl' ... , zn]/J; the intersection of two such varieties X, YeAn is given 
by the join of their ideals; the data of a map between two such varieties X and Y 
are equivalent to the data of a map A(Y) -+ A(X), and so on. The point is that all 
these things make sense whether or not J is a radical ideal. The scheme associated 
to an arbitrary ideal J c K [z 1, ... , Zn] may not seem like a geometric object, 
especially in case I is not radical, but it does behave formally like one and it encodes 
extra information that is of geometric interest. 

Before going on, we will introduce some terminology. We say that a collection 
{fa} of polynomials cut out a variety X c An set-theoretically to mean just that 
their common zero locus V( {fa} ) = X; we say that they cut out X scheme-theoreti­
cally, or ideal-theoretically, if in fact they generate the ideal J(X). 
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Ideals of Projective Varieties 

The case of projective space is in one respect like that of affine space: we have 
a correspondence between projective varieties X c IfDn and homogeneous ideals 
Ie K[Zo, ... , Zn] that becomes almost a bijection when we restrict ourselves 
to radical ideals (the almost is because we have to exclude the radical ideal 
m = (Zo, ... , Zn)). There is, however, one other sense in which a collection of 
polynomials can cut out a variety. 

For example, suppose X c IfDn is any variety and I c K [Zo, ... , Zn] its ideal. 
Consider the ideal l' formed by simply intersecting I with the ideal (Zo, ... , Zn)k, 
that is, if we write I as the direct sum of its homogeneous pieces 

then 

Certainly the radical of l' is I, since any element of I, raised to a sufficiently high 
power, will lie in 1'. But the relationship between I and l' is closer than that: for any 
polynomial FE K[Zo, ... , Zn], F will lie in I if and only if the product of F with 
any homogeneous polynomial of sufficiently high degree lies in 1'. What this means 
is that if we restrict to the affine open subset (Zi =I 0) ~ An c IfDn-that is to say, 
we consider the Oth graded piece of the localization (1" K[Zo, ... , Zn, Zi- 1 ])0 in 
the coordinate ring (K[Zo, ... , Zn' Zi-1 ])0 ~ K[Zl"'" zn] of An-we get exactly 
the ideal of the affine open subset X n An c: An. We may say, in this case, that the 
ideal l' cuts out the variety X locally, even though it does not equal I. 

To formalize this, we introduce the notion of the saturation 1 of an ideal 
Ie K[Zo, ... , Zn]. This is given by 

1 = {F E K[Zo, ... , Zn]: (Zo,"" Zn)k. Fe I for some k}. 

Note that since K[Zo, ... , Zn] is Noetherian, 1/1 is finitely generated, so that 1 will 
agree with I in large enough degree. Indeed, we have the following. 

Exercise 5.2. Show that the following conditions on a pair of homogeneous ideals 
I and J c K[Zo, ... , Zn] are equivalent: 

(i) I and J have the same saturation. 
(ii) 1m = Jm for all m » O. 

(iii) I and J agree locally, that is, they generate the same ideal in each localization 
K[Zo, ... , Zo, Zi- 1 ] of K[Zo,···, Zn]. 

In the language of schemes, all three conditions of Exercise 5.2 amount to saying 
that I and J define the same subscheme of IfDn; we often say that a collection of 
functions cuts out a variety X c IfDn scheme-theoretically if the saturation of the 
ideal they generate in K[Zo, ... , Zn] is the homogeneous ideal I(X). In sum, then, 
the three statements we can make about a collection of polynomials Fa in relation 
to a variety X are, in order of increasing strength, that they 
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(i) cut out the variety X set-theoretically, if their common zero locus in pn is X; 
(ii) cut out the variety X scheme-theoretically, if the saturation of the ideal they 

generate is J(X); and 
(iii) generate the homogeneous ideal J(X) of X. 

By way of example, if J = (X) is the ideal of the line (X = 0) in the plane p2 with 
homogeneous coordinates X, Y, and Z, the ideal l' = (X2, XY, XZ) generates J 
locally, though it does not equal J; while the ideal (X2) does not even generate J 
locally, though its zero locus is the same. 

Exercise 5.3. Consider once again the rational normal curve C c pd given in 
Example 1.14. Show that the homogeneous quadratic polynomials 

F1,i(Z) = Zl Z i - ZOZi+1 

and 

Fi,d-1 (Z) = ZiZd-1 - Zi-1 Zd 

for i = 1, .,., d - 1 generate the ideal of the rational normal curve locally but do 
not generate the homogeneous ideal J(C). 

Exercise 5.4. Show that the polynomials Fi,iZ) = ZiZj - Zi-1 Zj+1 for 1 ::;; i ::;; j ::;; 
d - 1 do generate the homogeneous ideal of the rational normal curve C c pd. 
Similarly, check that the equations given earlier for the Veronese and Segre 
varieties in general do generate their homogeneous ideals. 

As a final example, note that if X E pn is a variety and p E pn - X a point, 
the equations we have exhibited that cut out the projection X = np(X) of a variety 
X from p-the pairwise resultants of the polynomials F, G E J(X)-do not in 
general generate its homogeneous ideal (see, for example, Exercise 3,8), In fact, they 
do generate the ideal of X locally, though our proof does not show this. 

Lastly, we should remark that there is a projective version of the Nullstel­
lensatz: the ideal of polynomials on pn vanishing on the common zero locus 
of a collection {Fa} of homogeneous polynomials is the radical of the ideal they 
generate (or the unit ideal, if the Fa have no common zeros). As a consequence, we 
deduce that any finitely generated graded algebra 

over K is the homogeneous coordinate ring of a projective variety if it has no 
nilpotent elements and is generated by its first graded piece A l' 

Irreducible Varieties and Irreducible Decomposition 

Definition. We say that a variety is irreducible if for any pair of closed subvarieties 
Y, Z c X such that Y u Z = X, either Y = X or Z = x. 
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Observe that an affine variety X c An is irreducible if and only if its ideal 
1(X) c K[Xb ... , xn] is prime. To see this, note first that if Y and Z are proper 
closed subvarieties of X, there exist f E 1(Y) not in 1(X) and g E 1(Z) not in 1(X); 
if X = Yu Z it follows that f· g E 1(X). Conversely, if f, g E K[x 1 , ... , xn] with 
f· g E 1(X), then the subvarieties of X defined by f and g-that is, the subvarieties 
Y = V(I(X), f) and Z = V(1(X), g)-have union X. More generally, we say that an 
ideal 1 c K[Xl' ... , xn] is primary if VI, g E K[x 1 , ••• , xn], f· g E 1 = fm E 1 for 
some m or g E 1; this implies that the radical of 1 is prime. The same argument then 
shows that for any 1, the variety V(I) will be irreducible if 1 is primary; moreover, 
if we use the Nullstellensatz, we can deduce that in fact V(I) will be irreducible if 
and only if the radical of 1 is prime. 

The analogous statements apply to projective varieties and their homogeneous 
ideals: a variety X c IPn is irreducible if and only if its homogeneous ideal 1(X) is 
prime, and the zero locus V(1) of a homogeneous ideal 1 c K [Xo, ... , Xn] is 
irreducible if 1 is primary. Note that if a projective variety X c IPn is irreducible 
then so is any nonempty affine open subset U = X n An, though the converse is 
true only in the sense that if the affine open subset X n An of X is irreducible for 
every hyperplane complement An c IPn (not just the standard Uo, ... , Un) then X 
must be irreducible. 

Exercise 5.5. Show that a variety X is irreducible if and only if every Zariski 
open subset of X is dense, i.e., every two Zariski open subsets of X meet. 

A basic theorem of commutative algebra is the following proposition. 

Proposition 5.6. Any radical ideal 1 c K[Xl' ... , xn] is uniquely expressible as a 
finite intersection of prime ideals Pi with Pi ~ Pj for j #- i. 

Given this equivalence, this implies the following. 

Theorem 5.7. Any variety X may be uniquely expressed as a finite union of irreducible 
subvarieties Xi with Xi ~ Xj for i #- j. 

The varieties Xi appearing in the expression of X as a finite union of irreducible 
varieties are called the irreducible components of X. 

A few notes: first, those familiar with commutative algebra will recognize Propo­
sition 5.6 as a very weak form of the general theorem on primary decomposition of 
ideals in Noetherian rings. We will prove this weak form in the section at the end 
of this lecture; for a proof of the full statement see [AM] or [E]. Second, observe 
that the uniqueness of the expression of a radical ideal as a finite intersection of 
prime ideals is formal; if we had 1 = n Pi = n qj then for each i we would have 
Pi ::J n qj = Pi ::J qk for some k and vice versa. The same argument (with inclusions 
reversed and intersections and unions exchanged) shows that the expression of an 
arbitrary variety as a union of irreducible components is likewise unique. 
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It is worthwhile to go through some of the varieties introduced earlier and 
verify that they are irreducible (one useful tool in this regard is the observation that 
the image of an irreducible projective variety under a regular map is an irreducible 
variety). We will not do much ofthis explicitly here, since it will become much easier 
once we have introduced the notion of dimension, and in particular Theorem 11.14. 
One example that is worth doing, and that will be useful shortly, is the following. 

Theorem 5.S. Let X c: [p>n be an irreducible variety, and let !lx c: [p>n* X X be its 
universal hyperplane section, as in Example 4.6. Then!lx is irreducible. 

PROOF. For each point p E X, let rp = (n2fl(p) be the fiber of !lx over p. We 
claim that for any irreducible component'll of !lx, the locus 

cp('¥) = {p E X: rp c: 'II} 

is a closed subset of X. The theorem follows from this claim: since rp is isomorphic 
to [p>n-l, which is irreducible, for any irreducible decomposition!lx = 'Ill U ... U'¥k 

of !lx we must have 
X = cp('¥ l) U ... U CP('¥k)' 

It will follow that X = cp('¥;) for some i and hence that !lx = 'IIi' 
To establish the claim, we may work locally, say over the open subset U c: X 

given by Zo # O. Now, for each oc = (oc l , ... , ocn), let <Da c: [p>n* X U be the locus 
given in terms of homogeneous coordinates Z on [p>n and dual coordinates W on 
[p>n* by the equations 

i = 1, ... , n. 

<Da is then a closed subvariety of [p>n* x U, meeting each fiber rp in exactly one 
point; moreover, the union of the <Da is the inverse image of U in !lx. It follows 
that cp('¥) n U may be written as the intersection 

cp(,¥)n U = n {pE U:<DanrpE'¥} 

= n 7t2('¥ n <Da); 

by Theorem 3.12, this is closed. o 

Exercise 5.9. By a similar argument, show that the product of two irreducible 
varieties is irreducible. 

General Objects 

Having introduced the notion of irreducible variety, we can also mention a fairly 
ubiquitous piece of terminology: the notion of a general object. Basically, when a 
family of objects {Xp}pel:-varieties, maps, or whatever-is parametrized by the 
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points of an irreducible algebraic variety L, the statement that "the general object 
X has property P" is taken to mean that "the subset of points PEL such that the 
corresponding object Xp has property P contains a Zariski open dense subset of 
L." Thus, for example, given a point Po E 1P2, we say that "a general line L c 1P2 
does not contain Po" to refer to the fact that the set of lines containing Po is 
contained in a proper subvariety of the dual plane 1P2*. As another example, we 
say that "the general conic has rank 3 (e.g., is projectively equivalent to the image 
of the Veronese map v2 : 1P1 --+ 1P2)." This refers to the fact that, as observed in the 
discussion preceding Exercise 1.21, the set of conics in 1P2 can be parametrized by 
the points of 1P5, and asserts that in this IPs the subset of those not projectively 
equivalent to V2(1P1) is contained in a proper subvariety. 

We should note that the word "generic" is sometimes used in place of "general." 
"General" is preferable, since in some sources the word "generic" is given a techni­
cal meaning (it is also sometimes the practice to use the phrase "the generic object 
X has property P" to mean that the set of pEL such that Xp does not have this 
property is contained in a countable union of proper subvarieties of L). Nonethe­
less, using "generic" and "general" interchangably is one of the more venial sins 
associated to the use of the word(s). 

Another remark to be made here is that there is also an adverbial usage of 
the term; for example, if X is an irreducible variety, we say that a map f: X --+ IPn 
is generically finite to mean that for a general point p E X the inverse image 
f- 1 (f(p)) is finite. 

The example of "the general conic" points up one possibly troublesome issue: 
every time we use this terminology we will be implicitly invoking the existence of a 
parameter space. In general, we will not refer explicitly to the construction of this 
parameter space; in some cases it may seem ambiguous. In fact, there are standard 
constructions of parameter spaces in algebraic geometry, which we will discuss in 
Lecture 21; it is these to which we implicitly refer. In practice, however, we can 
approach the matter on an ad hoc basis. We give some examples of this usage, 
starting with an exercise. 

Exercise 5.10. Consider the parameter space for lines in IPn introduced in Example 
4.15. Show that, given any linear space r c IPn of dimension n - 2 or less the 
general line in IPn does not meet r. Given a twisted cubic curve C c 1P3, show that 
the general line in 1P3 does not meet C. (As we noted at the time, the parameter 
space for lines introduced in Example 4.15 is not the standard one; but we will see 
when we do introduce the Grassmannian that the same statements apply.) 

Example 5.11. General Projections 

We have seen that projections of the twisted cubic curve C c 1P3 are projectively 
equivalent to one of two curves, the nodal cubic zozi = zi + zozl and the 
cuspidal cubic ZoZ~ = zi. We can further make the statement "the general projec­
tion of a twisted cubic curve to 1P2 is projectively equivalent to the nodal cubic." 
Implicit in this statement is the idea that the set of projections of a twisted cubic 
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c C /p3 is parametrized by the set of points in the complement /p3 - C of C in /p3; 

the content of the statement is that for all points p in an open subset U c /p3 - C, 
the projection niC) is projectively equivalent to the nodal cubic. We will see more 
statements about the general projections of varieties in Lecture 15. 

Example 5.12. General Twisted Cubics 

As another example, consider again twisted cubics. Any twisted cubic C can be 
written as the image of a map of the form 

t 1-+ [aO.3t3 +aO,2t2 +aO,lt+aO,O, ... , a3,3t3 +a3,2t2+a3,lt+a3,O]' 

where the determinant of the matrix (ai,i) of coefficients is nonzero, so that we 
can describe C by specifying a nonsingular 4 x 4 matrix. Of course, this does 
not give a bijection between the variety U c K16 of invertible 4 x 4 matrices 
and the set of twisted cubics, since the curve C does not determine this expression. 
Alternately, recall from Theorem 1.18 that any twisted cubic is determined by six 
points in general position in /p 3 . Thus we get a twisted cubic for any point in the 
open subset V c (/p3)6 corresponding to configurations in general position, though 
as in the previous case, this is not a bijection. 

The point is, we can take the statement that "the general twisted cubic has 
property X" to mean either that the set of C E U with property X contains an open 
dense subset, or the same for the analogous set of C E V This apparent ambiguity 
will be dealt with in Lecture 21, where we will see that a universal parameter space 
:Ye for twisted cubic curves in /p3 does exist and that the corresponding maps 
U -4 :Ye and V -4 :Ye are regular. It will follow that to say that a property holds for 
an open dense subset of C E U is equivalent to saying that it holds for an open 
dense subset of C E :Ye, which is in turn equivalent to saying that it holds for an 
open dense subset of V 

Two further variations on the theme of "general" objects: first, it is clear that if 
a family of objects is parametrized by a variety :E, the family of (ordered) pairs (or 
n-tuples) of these objects is parametrized by the product :E2 (or :En); when we talk 
about a property of a "general pair" of these objects, we mean a property enjoyed 
by the pairs corresponding to an open dense subset of this product. Thus, for 
example, "a general triple of points in /p 2 does not lie on a line." Sometimes the 
usage dictates using the fiber product rather than the regular product; for example, 
a "general pair of points on a general line in /p2" would refer to a point in an open 
subset of the (irreducible) variety r x 1'20 r, where r c /p2* X /p2 is the universal 
hyperplane (line) in /p 2, as in Example 4.5. Also, we say that an object X E :E arising 
in some construction is "general" if, given no further specification, X could be the 
object corresponding to any point in an open dense subset of :E. Thus, "a general 
point p on a general line 1 c /p2 is a general point of the plane," and "a general pair 
of points on a general line in the plane is a general pair of points in the plane," 
but "a general triple of points on a general line is not a general triple of points 
in the plane." This terminology may seem opaque at first but it is extremely 
useful; it becomes, if anything, too easy to use with a little practice. 
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Exercise 5.13. Show that for any d and n :::;; (d - l)(d - 2)/2, a general set of n points 
in 0:»2 imposes independent conditions on curves of degree d, in the sense that the 
space of polynomials vanishing at the points has codimension n in the space of all 
homogeneous polynomials of degree d on 0:»2. In case n:::;; 2d + 1, exactly what 
open subset of (0:»2 t is implicitly referred to? 

Exercise 5.14. Let C c 0:»2 be a curve of degree d, that is, the zero locus of a 
homogeneous polynomial F(Zo, Zl, Z2) of degree d without repeated factors. Show 
that a general line L c 0:»2 will intersect C in d points. 

Finally, here is an example of the usage "general" that we will need in the 
following example (and that is worthwhile in its own right). 

Proposition 5.15. Let n: X --+ Y be any regular map with Y irreducible, and let 
Z c X be any locally closed subset. Then for a general point p E Y the closure 
of the fiber Zp = Z n n-1(p) is the intersection of the closure Z of Z with the 
fiber Xp = n-1(p). 

We will defer the proof of this proposition until after the proof of Theorem 
11.12. 

Example 5.16. Double Point Loci 

One classic example of the decomposition of a variety into irreducibles is the 
definition of the double point locus associated to a generically finite map. We 
suppose that X is an irreducible projec­
tive variety and cp: X --+ o:»n a map; we 
also assume that cp is generically finite, 
that is, for a general point p E cp(X) the 
fiber cp-l(p) is finite. Recall from Exam­
ple 2.25 that the set Z of pairs of points 
p, q E X that map to the same point of 
o:»n, that is, the set-theoretic fiber pro­
duct X x pn X, is a subvariety of X x X. 
Now, to say that cp is generically finite 
implies in particular that the diagonal 
A c Z c X x X is an irreducible com­
ponent of Z (this follows from applying 
Proposition 5.15 to the subvariety W = 

Z - A c Z --+ X). In this case, we define 
the double point locus of the map cp to be 
the union of the remaining components 
of Z, or its image in X under projection. 

We should give one warning here: all 
we are really doing in this example is 

XxX 

• 
Cp,q) 

• 
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saying that the set of distinct pairs of points of X mapping to the same point of [pn 

is a quasi-projective variety-more precisely, a closed subset of the complement of 
the diagonal in the product X x X. To actually prove meaningful theorems about 
the double point locus in general requires a much more sensitive definition. To see 
why this is so, consider the simplest example, of a map cp of a curve to the plane [p2 

that is generically one to one but may be two to one over a finite collection of 
points-for example, the projection of a space curve C c [p3 from a point r in [p3 

described in Exercises 1.27 and 3.8. Clearly every chord pq of the curve C containing 
the point r contributes a pair of points (p, q) and (q, p) to the double point locus Z 
of cpo But what happens if, as we vary the point p of projection, one of the chords 
specializes to a tangent line? The points (p, q) and (q, p) both approach the point 
(p, p) on the diagonal in X x X, and we'd like to say that this point lies in the 
double point locus; but the preceding definition does not see it. In fact, to define 
the double point locus correctly we have to be both more imaginative and 
working in the category of schemes rather than varieties. Good references for this 
are [F1], [K]. 

A Little Algebra 

In this section we will give proofs of several of the algebraic lemmas: the Null­
stellensatz (Theorem 5.1); one of its corollaries (Lemma 2.1, which states that the 
ring of regular functions on an affine variety X is simply its coordinate ring A(X)); 
and Proposition 5.6, which asserts that every radical ideal is an intersection of 
primes. We will try to prove these statements with a minimum of algebraic 
machinery (in the case of the Nullstellensatz, we give two proofs, the now-classic 
proof of Artin and Tate and a "quick and dirty" alternative); for a more thorough 
treatment of these areas, the reader can read the standard sources [AM] and [E] 
on commutative algebra. One notion from commutative algebra that cannot be 
readily dispensed with, however, is that of a Noetherian ring; we will assume that 
the reader knows what this means and that the polynomial ring K [x l' ... , xn] is 
one. 

PROOF OF THE NULLSTELLENSATZ. We start with an arbitrary ideal in the ring 
K[x1 , ..• , xn ]; we let X be its zero locus V(J). We have a trivial inclusion 

r(l) c J(V(l)), 

and we have to establish the opposite inclusion. We will do this in two stages. 
We will first prove the result in the special case V(J) = 0, that is, we will prove the 
following. 

Theorem 5.17. (Weak Nullstellensatz). Any ideal J c K[x 1 , ... , xn] with no com­
mon zeros is the unit ideal. 



58 5. Ideals of Varieties, Irreducible Decomposition, and the Nullstellensatz 

We will then see that this implies the apparently stronger form. 

PROOF OF THEOREM 5.17. We have to show that any ideal I properly contained 
in the ring K[x l , ... , xn] must have nonempty zero locus. Since we know that 
such an ideal I must be contained in some maximal ideal, this will follow from 
the following proposition. 

Proposition 5.18. Any maximal ideal m in the ring K[x l , ... , xn] is of the form 
(Xl - al, ... , xn - an) for some al, ... , an E K. 

PROOF. The statement that m is of the form (Xl - al , ... , Xn - an) is equivalent 
to the statement that the quotient L = K[x l , ... , xn]/m is K itself; since K is 
algebraically closed, this in turn is equivalent to saying just that L is algebraic over 
K. The key step in showing this is the following lemma. 

Lemma 5.19. Let R be a Noetherian ring and S ::J R any subring of the polynomial 
ring R[xl , ... , xn]. If R[x l , ... , xn] is finitely generated as an S-module, then S itself 
is finitely generated as an R-algebra. 

PROOF OF LEMMA 5.19. Let Yl,"" Ym E R[x l , ... , xn] be generators of R[xl , ... , xn] 
as an S-module; we can write 

and likewise 

X· . x· = " b· . k • Yk , } ~ 'd, 

with ai,i' bi.i .k E S. Let So c S be the subring generated over R by the coefficients 
ai,i and bi.i .k; being finitely generated over R, So is again Noetherian. By virtue of 
these relations, the elements Yl,"" Ym generate R[x l , ... , xn] as an So-module. But 
a submodule of a finitely generated module over a Noetherian ring is again finitely 
generated; thus S is a finitely generated So-module and hence a finitely generated 
R-algebra. D 

PROOF OF PROPOSITION 5.18. Consider again our extension field L = K[x l ,···, xn]/ 
m of K. We can, after reordering the Xi' assume that Xl"'" Xk E L are algebraically 
independent over K, with Xk+l, ... , Xn algebraic over the subfield K (Xl' ... , X k ) c L. 
Since L is thus a finitely generated K (x l, ... , xk)-module, we can apply Lemma 
5.19 to deduce that the purely transcendental extension K(x l , ... , xd is a finitely 
generated K-algebra. 

This is where we finally run into a contradiction. Let Z l, ... , Z, E L be a collection 
of generators of K(x l , ... , x k ) as a K-algebra; write 

Pi(Xl,···,Xk) 
z· = --='-,---=----'-:-

I Qi(X l , ... , xd 

for some collection of polynomials Pi' Qi' Now let f E K [Xl' ••. , x k] be any irreduc-
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ible polynomial. By hypothesis, we can write 11f as a polynomial in the rational 
functions Zi; clearing denominators, we deduce that f must divide at least one of 
the polynomials Qi. This implies in particular that there can be only finitely many 
irreducible polynomials in K[x 1, ... , Xk ]. But for k ~ 1 the ring K[x1, ... , xk] 
contains infinitely many irreducible polynomials (this is true for any field K; in our 
case, since K is necessarily infinite, we can just exhibit the polynomials {x - a}aeK). 
We may thus deduce that k = 0, i.e., L is algebraic over K and hence equal to K. 

o 

Lastly, we want to deduce the Nullstellensatz from the a priori weaker Theorem 
5.17. Once more, suppose that Ie K[x1, ... , xn] is any ideal, and suppose that 
f E K[x 1, ... , xn] is any polynomial vanishing on the common zeros of I-that is, 
f E I(V(I)). We want to show that fm E I for some m > 0. 

To do this, we use what is classically called the trick of Rabinowitsch. This 
amounts to realizing the complement VI = {(x 1, ... , Xn): f(x 1, ... , XJ i= O} c A, n 
as an affine variety in its own right-specifically, as the variety 

~ = {(Xl' ... , Xn+1): Xn+1·f(x1, ... , Xn) = I} c A,n+1 

and applying the Weak Nullstellensatz there. In other words, we simply observe 
that the ideal J c K[X1' ... , xn+1] generated by I and the polynomial Xn+1· 
f(x 1, ... , Xn) = 1 has no common zero locus, and so must be the unit ideal. Equiva­
lently, if 

A = K[x1, ... , Xn] [f-1] = K[x 1, ... , Xn+1]/(xn+1 . f - 1) 

is the coordinate ring of VI' we must have I· A = (1). We can thus write 

1 = L: gi· ai 

with gi E I and ai E A; collecting terms involving X n+1 we can express this as 

1 = ho + h1·xn+1 + ... + hm·(xn+1)m 

with hi E I. Finally, multiplying through by fm we have 

fm = f m- 1 . ho + ... + hm; 

in particular, fm E I. o 

ALTERNATIVE PROOF OF THE NULLSTELLENSATZ. As promised, we give here a shorter 
proof of a marginally weaker statement (we have to assume that our ground field 
K is of infinite transcendence degree over the prime field iQ or IFp). 

To begin with, we may replace the ideal I in the statement of the Nullstel­
lensatz by its radical. This is then expressible as an intersection of prime ideals 

I = 1'1 (\ 1'2 (\ ... (\ Pk· 

On the other hand, we have X = U Xi where Xi = V(Pi), so 

I(V(I)) = I(V(P1)) (\ ... (\ I(V(pk))· 
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Thus, it suffices to establish the Nullstellensatz for a prime ideal 1', i.e., to establish 
the following. 

Lemma 5.20. Let l' c K[x l , ... , xnJ be a prime ideal. Iff E K[x l , ... , xnJ is any 
polynomial not contained in 1', then there exists aI' ... , an E K such that 

but f(a l , ... , an) #- 0, i.e., f ¢ (Xl - a l ,···, Xn - an)· 

PROOF. We will prove this only under one additional hypothesis: that K is of 
infinite transcendence degree of K over the prime field k = Q or 1Fp- Given this, we 
write f in the form 

f=Lc[·X I ; 

we suppose that l' is generated by polynomials ga, which we write as 

and let 

L = k[ ... , Cb ... , cI,a' ... J c K 

be the field generated over k by the coefficients of f and the gao Now set 

Po = l' n L[xl , ... , XnJ C K[x l , ... , xn]. 

Note that since all the generators ga of l' lie in the subring L[x l , ... , xnJ c 

K[x l ,···, xn], we have Po· K[Xb···' xn] = 1'; also, Po is again prime in 
L[xl , ... , xn], so that the quotient L[xl , ... , xnJ/pO is an integral domain. Let M 
be its quotient field; since M is finitely generated over k, there exists an embedding 

1: M c:...K. 

Let ai E K be the image under this map of the element Xi E L[xl , ..• , XnJ/ Po c M. 
It is not hard to see now that aI' ... , an fulfill the conditions of the lemma: 

by construction, the ideal Po is contained in the ideal (Xl - aI' ... , Xn - an) c 
L[XI, ... ,XnJ, and so p=Po·K[xl, ... ,xn] is contained in the ideal 
(Xl - a l ,· .. , Xn - an) c K[x l , ... , Xn]. On the other hand, f E L[xl , ... , xnJ, but 
f ¢ Po, so 1(f) = f(a l , ... , an) #- 0, i.e., f ¢ (Xl - al ,···, Xn - an)· 0 

Restatements and Corollaries 

We can reexpress the Nullstellensatz in the often useful form of the following 
theorem. 

Theorem 5.21. Every prime ideal in K[Xb ... , xn] is the intersection of the ideals of 
the form (Xl - at> ... , xn - an) containing it. 
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Note that the same statement for the ring K[x 1 , ••• , xnJII (i.e., that every prime 
ideal is the intersection of the ideals of the form (x 1 - a1 , ••• , Xn - an) containing it) 
follows immediately by applying Theorem 5.21 to the collection (f1' ... , he, gl' ... , gl) 
where 1 = (gl"'" gl)' In particular, note that if a polynomial f does not vanish 
anywhere in V(I), it must be a unit in K[x 1 , ••• , xnJ/I. 

As one corollary of the Nullstellensatz, we can now give a proof of Lemma 2.1. 
The circumstances are these: X c An is any affine variety, f E K[x 1 , ••• , xnJ any 
polynomial and UI = {p E X: f(p) "# O} c X the corresponding distinguished open 
subset. By definition, a regular function on UI is a function g such that for any point 
p E UI we can write 

f= hlk 

in some neighborhood of p with k(p) "# O. We claim that the ring of such functions 
is just the localization A(X) [l/f] of A(X). 

To prove this, note first that by the Noetherian property of the Zariski topology 
(page 18), if g is any regular function on UI then we can find a finite open cover {Ua } 

of UI such that in each Ua we can write 

g = halka 

with ka nowhere zero on Ua; we can further take the open sets Ua in this cover 
to be distinguished, i.e., we can assume Ua = UI nUl. for some collection fa. Now, 
since the open sets UI • cover UI and ka is nowhere zero on UI nUl.' the common 
zero locus of the ka must be contained in the zero locus of f; by the Nullstellensatz 
we must have fm E ( ... , ka' ... ) for some m, or in other words, we can write 

But now 

that is, 

g = L ;~ha E A(X) [l/f]. D 

We note one immediate corollary of this: that any regular function on An itself 
must be a polynomial. It follows in particular that any regular function on IPn must 
be a constant; this is a special case of Corollary 3.14. 

PROOF OF PROPOSITION 5.6. This proposition asserts that every radical ideal 1 c 

K [x 1, ... , xnJ is a finite intersection of prime ideals. 
We use here the property of Noetherian rings that every collection {Qi} of ideals 

contains maximal elements, that is, ideals Q i not contained in any other ideal of the 
collection. We apply this to the collection of radical ideals 1 c K [x 1, ... , xnJ such 
that 1 is not a finite intersection of prime ideals; we let 10 be a maximal such ideal. 
By construction, 10 is not itself prime; let a and b E K[X1' ... , xnJ be polynomials 
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not in 10 such that ab E 10, and let 

11 = r(Io, a) and 12 = r(/o, b) 

be the radicals of the ideals generated by 10 together with a and b. Since 11 and 12 
are radical and strictly contain 10 , by hypothesis each will be a finite intersection 
of prime ideals; Proposition 5.6 will thus follow once we establish that 

10 = 11 n 12 • 

To show this, suppose that f E 11 n 12. By definition, we will have fm E (/0' a) 
and fn E (/0' b) for some m and n, i.e., we can write 

fm = gl + h1·a and r = g2 + h2·b 

with gl' g2 E 10 . But then 

f m+n = glg2 + gl h2b + g2 h1a + h1h2 ·ab E 10 

and since 10 is radical it follows that f E 10. 



LECTURE 6 

Grassmannians and Related Varieties 

Example 6.6. Grassmannians 

Grassmannians are fundamental objects in algebraic geometry: they are simultane­
ously objects of interest in their own right and basic tools in the construction and 
study of other varieties. We will be dealing with Grassmannians constantly in the 
course of this book; here we introduce them and mention a few of their basic 
properties. 

By way of notation, we let G(k, n) denote the set of k-dimensional linear sub­
spaces of the vector space Kn; if we want to talk about the set of k-planes in an 
abstract vector space V without making a choice of basis for V we also write 
G(k, V). Of course, a k-dimensional subspace of a vector space K n is the same thing 
as a (k - I)-plane in the corresponding projective space lPn-I, SO that we can 
think of G(k, n) as the set of such (k - I)-planes; when we want to think of the 
Grassmannian this way we will write it lG(k - 1, n - 1) or lG(k - 1, IPV). 

In most contexts, Grassmannians are defined initially via coordinate 
patches or as a quotient of groups; it is then observed that they may be embedded 
in a projective space. Since our main objects of interest here are projective varieties, 
we will do it differently, describing the Grassmannian first as a subset of projective 
space. This is straightforward: if W c V is the k-dimensional linear subspace 
spanned by vectors VI' ... , Vk, we can associate to Wthe multi vector 

A = VI /\ ..• /\ Vk E N(V). 

A is determined up to scalars by W: if we chose a different basis, the corre­
sponding vector A would simply be multiplied by the determinant of the change of 
basis matrix. We thus have a well-defined map of sets 
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1/1: G(k, V) --+ iP'(NV). 

In fact, this is an inclusion: for any [wJ = I/I(W) in the image, we can recover 
the corresponding subspace W as the space of vectors v E V such that v 1\ w = 
o E N+1 V. This inclusion is called the PlUcker embedding of G(k, V). 

The homogeneous coordinates on iP'N = iP'(NV) are called PlUcker coordinates 
on G(k, V). Explicitly, if we choose an identification V ~ K n we can represent the 
plane W by the k x n matrix Mw whose rows are the vectors Vi; the matrix Mw is 
determined up to multiplication on the left by an invertible k x k matrix. The 
Plucker coordinates are then just the maximal minors of the matrix Mw. 

We have described the Grassmannian G(k, V) as a subset of iP'(NV); we should 
now check that it is indeed a subvariety. This amounts to characterizing the subset 
of totally decomposable vectors WE IV V, that is, products W = Vl 1\ ... 1\ Vk oflinear 
factors. We begin with a basic observation: given a multi vector WE /VV and a 
vector v E V, the vector v will divide w-that is, W will be expressible as v 1\ q> for 
some q> E N 7 l V -if and only if the wedge product W 1\ v = O. Moreover, a multi­
vector W will be totally decomposable if and only if the space of vectors v dividing 
it is k-dimensional. Thus, [wJ will lie in the Grassmannian if and only if the rank 
of the map 

q>(W): V --+ N+l V 

:VI--+WI\V 

is n - k. Since the rank of q>(w) is never strictly less than n - k, we can say 

[wJ E G(k, V)¢> rank (q> (w)) ~ n - k. 

Now, the map Nv --+ Hom(V, N+1 V) sending W to q>(w) is linear, that is, the entries 
of the matrix q>(w) E HoIIi(V, N+1 V) are homogeneous coordinates on iP'(NV); we 
can say that G(k, V) c iP'(NV) is the subvariety defined by the vanishing of the 
(n - k + 1) x (n - k + 1) minors of this matrix. 

This is the simplest way to see that G(k, V) is a subvariety of iP'(NV), but the 
polynomials we get in this way are far from the simplest possible; in particular, they 
do not generate the homogeneous ideal of G(k, V). To find the actual generators of 
the ideal, we need to invoke also the natural identification of Nv with the exterior 
power ;\n-kv* of the dual space V* (this is natural only up to scalars, but 
that's okay for our purposes). In particular, an element W E Nv corresponding to 
W* E ;\n-kv* gives rise in this way to a map 

I/I(w): V* --+ ;\n-k+1 V* 

: v* 1--+ v* 1\ w*; 

by the same argument W will be totally decomposable if and only if the map 
I/I(w) has rank at most k. What's more, in case w is totally decomposable, the 
kernel of the map q>(w)-the subspace W itself-will be exactly the annihila­
tor of the kernel of I/I(w); equivalently, the images of the transpose maps 

tq>(w): ;\k+l V* --+ V* 
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and 

tl/l(w): N- k +1 V --+ V 

annihilate each other. In sum, then, we see that [w] E G(k, V) ifand only iffor every 
pair a E I\k+i V* and P E I\n-k+i V, the contraction 

8 a,p(w) = <tcp(w)(a), tl/l(w)(P) = o. 
The 8 a,p are thus quadratic polynomials whose common zero locus is the Grass­
mannian G(k, V). They are called the PlUcker relations, and they do in fact generate 
the homogeneous ideal of G(k, V), though we will not prove that here. 

Exercise 6.2. In the special case k = 2, assuming char(K) # 2 show directly that a 
vector WE 1\2 v is decomposable if and only if w 1\ w = 0 and hence that the 
Grassmannian G(2, V) c P(N V) is a variety cut out by quadrics. (In fact, the 

equation w 1\ w = 0 represents (:) independent quadratic relations, which are '\ 

exactly the span of the Plucker relations.) 

Observe in particular that the first nontrivial Grassmannian-the first one 
that is not a projective space-is G(2, 4), and this sits as a quadric hypersurface in 
P(NK4) ~ pS. 

We can get another picture of the Grassmannian by looking at certain special 
affine open subsets. To describe these first intrinsically, let reV be a subspace of 
dimension n - k, corresponding to a multi vector WE N-kv = Nv*. We can think 
of was a homogeneous linear form on P(NV); let U c P(NV) be the affine open 
subset where w # O. Then the intersection of G(k, V) with U is just the set of 
k-dimensional subspaces A c V complementary to r. Any such subspace can be 
viewed as the graph of a map from vir to r and vice versa, so that we have an 
identification 

G(k, V) II U ~ Hom(v/r, n ~ Kk(n-k). 

To see this in coordinates, identify V with K n and say the subspace r is spanned 
by the last n - k basis vectors ek +1' ... , en E Kn. Then U II G(k, n) is the subset of 
spaces A such that the k x n matrix MA whose first k x k minor is nonzero. It 
follows that any A E G(k, V) II U is represented as the row space of a unique matrix 
of the form 

[

1 0 0 . 
o 1 0 . 

o 0 

o a1 • i ai .2 • • • ai .n- k 1 
o a2 • i a2 •2 • • • a2 •n- k 

o 1 ak•i ak•2 ak•n- k 

and vice versa. The entries ai•j of this matrix then give the bijection of U II G(k, V) 
with Kk(n-k). 

Note that the affine coordinates on the affine open subset of G(k, V) are just 
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the k x k minors of this matrix, which is to say the minors of all sizes of the 
(n - k) x k matrix (ai). In particular, expansion of any of these determinants along 
any row or column yields a quadratic relation among these minors; thus, for 
example, 

is a relation among the affine coordinates on IP>(NKn) restricted to G(k, n). In 
this way, we can write down all the PlUcker relations explicitly in coordinates. 

There is, finally, another way to describe the affine coordinates on the open 
subset U 11 G(k, n) of k-planes A complementary to a given (n - k)-plane r: we take 
vectors V l , .•• , Vk E K n that, together with r, span all of K n, and set 

vi(A) = A 11 (r + v;). 

The vectors vi(A) then give a basis for A, for all A E U; and the k-tuple of vectors 
vi(A) - Vi E r gives an identification of U 11 G(k, n) with rk. 

Subvarieties of Grassmannians 

To begin with, an inclusion of vector spaces W ~ V induces an inclusion of 
Grassmannians G(k, W) ~ G(k, V); likewise, a quotient map V --+ V/U to the quo­
tient of V by an i-dimensional subspace U induces an inclusion G(k -I, V/U) ~ 
G(k, V). More generally, if U eWe V, we have an inclusion G(k - 1, W/U) ~ 
G(k, V). The images of such maps are called sub-Grassmannians and are sub­
varieties of G(k, V) (in terms of the Pliicker embedding G(k, V) ~ IP>(NV), they are 
just the intersection of G(k, V) with linear subspaces in IP>(NV), as we will see in the 
following paragraph). 

If we view the Grassmannian as the set of linear subspaces in a projective 
space IP>v, the sub-Grassmannians are just the subsets of planes contained in 
a fixed subspace and/or containing a fixed subspace. We can also consider the 
subset l.:(A) c G(k, IP>V) of k-planes that meet a given m-dimensionallinear sub­
space A c IP>v, or more generally the subset 1.:,(A) of k-planes that meet a given 
A in a subspace of dimension of at least i. These are again subvarieties of the 
Grassmannian; 1.:,(A) may be described as the locus 

1.:,(A) = {[w]: w 1\ Vl 1\ ... 1\ Vm - Hl = 0 

from which we see in particular that it, like the sub-Grassmannians, is the intersec­
tion of the Grassmannian with a linear subspace of IP>(NV). These are in tum 
special cases of a class of subvarieties of G(k, IP>V) called Schubert cycles, about 
which we will write more later. 

There are also analogs for Grassmannians of projection maps on projective 
space. Specifically, suppose W c V is a subspace of co dimension i in the 
n-dimensional vector space V. For k :::;; i, we have a map n: U --+ G(k, V/W) defined 
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on the open set U c G(k, V) of k-planes meeting W only in (0) simply by taking the 
image; for k ~ 1 we have a map I}: U' --+ G(k - 1, W) defined on the open subset 
U' c G(k, V) of planes transverse to W by taking the intersection. Note that both 
these maps may be realized, via the Pliicker embeddings of both target and domain, 
by a linear projection on the ambient projective space P(NV)-for example, the 
map n is the restriction to G(k, V) of the linear map p(NV) --+ p(N(vIW)) induced 
by the projection V --+ VIW. 

Example 6.3. The Grassmannian G(1, 3) 

The next few exercises deal specifically with the geometry of the Grassmannian 
G = G(l, 3) parametrizing lines in p3, which as we have seen may be realized (via 
the Plucker embedding) as a quadric hypersurface in pS. 

Exercise 6.4. For any point p E p3 and plane He p3 containing p, let ~P.H c G be 
the locus of lines in p3 passing through p and lying in H. Show that under the 
Plucker embedding G --+ pS, ~p.H is carried to a line, and that conversely every line 
in pS lying on G is of the form ~P.H for some p and H. 

Exercise 6.5. For any point p E p3, let ~P c G be the locus of lines in p3 passing 
through p; for any plane He p3, let ~H c G be the locus oflines in p3 lying in H. 
Show that under the Plucker embedding, both ~P and ~H are carried into two­
planes in pS, and that conversely any two-plane A ~ p2 C G c pS is either equal 
to ~P for some p or to ~H for some H. 

Exercise 6.6. Let 11, 12 c p3 be skew lines. Show that the set Q c G of lines in 
p3 meeting both is the intersection of G with a three-plane p3 cps, and so 
is a quadric surface. Deduce yet again that Q ~ pI X pl. What happens if 11 
and 12 meet? 

Exercise 6.7. Now let Q c p3 be a smooth quadric surface. Show that the two 
families of lines on Q correspond to plane conic curves on G lying in comple­
mentary two-planes AI' A2 cps. Show that, conversely, the lines in p3 corre­
sponding to a plane conic curve C c G sweep out a smooth quadric surface if and 
only if the plane A spanned by C is not contained in G. What happens to this 
correspondence if either the quadric becomes a cone or the plane A lies in G? 

The next exercise is a direct generalization of the preceding one; it deals with 
Segre varieties other than pI x pl. 

Exercise 6.8. Let ~l.k ~ pI X pk C p2k+l be the Segre variety, and for each p E pI 
let Ap be the fiber of ~ 1,k over p. We have seen that Ap is a k-plane in p2k+l; show 
that the assignment p ~ Ap defines a regular map of pI to the Grassmannian 
G(k, 2k + 1) whose image is a rational normal curve lying in a (k + I)-plane in 
P(N+1 K 2k+2). 
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Before proceeding, we should mention here a generalization of Exercise 6.4, 
which will be crucial in the proof of Theorem 10.19. (The reader is encouraged to 
skip ahead and read this theorem, which does not require much more than what 
we have introduced already.) 

Exercise 6.9. Let G = G(k, V) c IPN = IP(NV). (i) Show that for any pair of points 
A, A' E G the line A, A' they span in IPN lies in G if and only if the corresponding 
k-planes intersect in a (k - I)-plane (equivalently, lie in a (k + I)-plane). Thus, any 
line LeG c IPN consists of the set of k-planes in V containing a fixed (k - I)-plane 
reV and contained in a fixed (k + I)-plane Q c V. 

(ii) Use part (i) to show that any maximal linear subspace <I> c G C IPN is either 
the set of k-planes containing a fixed linear subspace of V or the set of k-planes 
contained in a fixed linear subspace of V. 

Example 6.10. An Analog of the Veronese Map 

There is a somewhat esoteric analog of the Veronese map for Grassmannians. Let 
S = K[Zo, ... , Zn] be the homogeneous coordinate ring of projective space lPn, and 
denote by Sd the dth graded piece of S, that is, the vector space of homogeneous 
polynomials of degree d in Zo, ... , Zn. Now, for any k-plane A c lPn, let leA) be its 
homogeneous ideal, and let l(A)d c Sd be its dth graded piece. Then l(A)d is a 

subspace of codimension (k ; d) in Sd' and so we get a regular map 

or, dually, a map 

Exercise 6.11. Verify the preceding statements about the codimension of l(A)d 
in Sd and that the map Vd is a regular map. 

It is perhaps easier (at least in characteristic 0) to express this map in intrinsic 
terms: if we view IPn as the projective space IP V associated to a vector space V, and 
G(k, n) = G(k + 1, V) as the Grassmannian of(k + I)-dimensional subspaces of V, 
it is just the map sending a subspace A c V to the subspace Symd(A) c Symd(V). 
(In particular, in the case k = 0 we have the usual Veronese map.) 

Example 6.12. Incidence Correspondences 

Let G = G(k, n) be the Grassmannian of k-planes in IPn. We may then define a 
subvariety ~ c G x IPn by setting 

~={(A,X):XEA}. 
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~ is simply the subvariety of the product whose fiber over a given point A E G 
is the k-plane A c pn itself; in the language of Lecture 4, it is the "universal 
family" of k-planes. The simplest example of this is the universal hyperplane, 
the variety ~ c P V x P V* whose fiber over a point H E P V* is just the hyperplane 
H c P V, discussed earlier in Example 4.5. In general, this is the universal family 
referred to in Example 4.15 when we indicated that the family constructed there 
was not optimal. 

It's not hard to see that ~ is a projective variety; in fact, we may write 

~ = {(Vi 1\ ... 1\ Vb w): Vi 1\ ... 1\ vk 1\ W= O}; 

or in the case of the universal hyperplane, 

~ = {([v], [w*]): <v, w*) = O} c PV x PV*. 

The construction of ~ is just the paradigm for a general construction that 
will arise over and over in elementary algebraic geometry. One example of its 
usefulness is the following proposition. 

Proposition 6.13. Let <I> c G(k, n) be any subvariety. Then the union 

'I' = U A c pn 
AeCl> 

is also a variety. 

PROOF. Let 11: 1 , 11:2 be the projection maps from the incidence correspondence ~ to 
G(k, n) and to pn. We can write 

'I' = 11:2 (11:11(<1>)) 

from which it follows that 'I' is a subvariety of pn. 

Example 6.14. Varieties of Incident Planes 

o 

Let X c pn be a projective variety. We claim that the locus ~k(X) of k-planes 
meeting X is a subvariety of the Grassmannian G(k, n). To see this, we may use the 
incidence correspondence ~ c G x pn introduced in Example 6.l2: we write 

~k(X) = 11:1 (11:21 (X)) c G(k, n) 

where ~ is the incidence correspondence and 11: 1 : ~ -+ G(k, n), 11:2 : ~ -+ pn are the 
projection maps. This variety, called the variety of incident planes, will be useful in 
a number of contexts, most notably the construction of the Chow variety. Note that 
we have already seen that ~k(X) c G(k, n) is a subvariety in the special case of X a 
linear subspace of pn. 

Exercise 6.15. Now let X c P" be a locally closed subset. Show that the closure in 
G(k, n) of the locus of k-planes meeting X is the variety of k-planes meeting the 
closure X of X. 
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Exercise 6.16. (i) Let C c 1P2 C 1P3 be the plane conic curve given by Z3 = 

ZOZ2 - zf = O. Find the equations of the variety of incident lines ~1(C) c G(I, 3). 
(ii) Do the same for the twisted cubic given parametrically by t 1-+ [1, t, t 2 , t 3 ]. (*) 

Example 6.17. The Join of Two Varieties 

Let X, Y c IPn be any two disjoint projective varieties. We can combine Proposi­
tion 6.13 and Example 6.14 to deduce that the union J(X, Y) c IPn of the lines 
joining X to Y is again a projective variety. First, by Example 6.14, the set ,1(X, Y) 
of lines joining X and Y is a subvariety of the Grassmannian, since it is expressible 
as the intersection ~1 (X) n ~1 (Y); then by Proposition 6.13 the union of these lines 
is a subvariety of IPn. We call the variety J(X, Y) the join of X and Y. 

This construction generalizes that of the cone. We will give another proof 
that J(X, Y) is indeed a subvariety of IPn in Example 8.1; this alternate construction 
will in particular allow us to generalize the definition of J(X, Y) to the case where 
X and Y do meet (or even are equal). 

Exercise 6.18. Give another proof that J(X, Y) is a subvariety of lPn, as follows. 
First, show that in case X and Yare contained in complementary linear subspaces 
r, A c IPn the join J(X, Y) is simply the intersection of the cones r, Y and A, X. 
Second, reduce to this case by arguing that any pair of disjoint varieties X, Y c IPn 
can be realized as the images of varieties X, Y contained in complementary linear 
spaces of a larger projective space IPN under a linear projection from IPN to lPn, and 
that J(X, Y) is simply the image of J(X, Y) under 1t. Does this approach allow you 
to extend the definition to the case where X and Y meet? 

Example 6.19. Fano Varieties 

A fundamental type of subvariety of the Grassmannian G(k, n) is the Fano variety 
associated to a variety X c IPn. This is just the variety of k-planes contained in X, 
that is, 

Fk(X) = {A: A c X} c G(k, n). 

To see that Fk(X) is indeed a variety, observe first that it is enough to do this in case 
X is the hypersurface given by a polynomial G(Z): in general, the Fano variety 
Fk(X) will be the intersection in G(k, n) of the Fano varieties associated to the 
hypersurfaces containing it. To show it in this case, we work locally; we restrict our 
attention to the affine open subset U c G(k + 1, n + 1) of(k + I)-planes A c Kn+l 
complementary to a given (n - k)-plane Ao and exhibit explicitly equations for 
Fk(X) n U c U ~ K(k+l)(n-k). We start by choosing a basis vo(A), ... , vk(A) for each 
A E U by taking vectors Vo, ..• , Vk E V that, together Ao, span all of V, and setting 

Vi (A) = A n (Ao + vJ 

As we saw in the discussion of Grassmannians, the coordinates of these vectors are 
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regular functions on U. Now, we can view the homogeneous polynomial G as an 
element of Symd(Kn+1) c (Kn+1 )®d, and set, for each multi-index J = {i1, ... , id}' 

aI(A) = G(v;! (A), ... , v;)A» 

(to put it another way, the aI are the coefficients of the restriction of G to A, 
written in terms of the basis for A dual to the basis {vo(A), ... , vk(A)}). The aI(A) 
then provide a system of polynomials cutting out Fk(X) in U. 

For a more intrinsic version of this argument, recall from Example 6.10 that the 
map sending a k-plane A c [p>n to the dth graded piece J(A)d of its ideal, viewed as a 
subspace of the space Sd of homogeneous polynomials of degree d, is a regular map 

vj': lG(k, n) ~ G(I, N) 

where I = (n ; d). K = (n ; d) - C ; d). 

Now, the subset <I> c G(I, N) of I-planes in Sd containing the homogeneous 
polynomial G E Sd is a subvariety, and we can write 

Fk(X) = (vl}-1 (<I» 

so Fk(X) is indeed a subvariety of lG(k, n). 

Exercise 6.20. Carry this out in the case of the quadric surface Q c [p>3 given 
by the polynomial ZOZ3 - Z1 Z2, and show that the Fano variety F1 (Q) is a 
union of two conic curves. Compare this with the parametric description of F1 (Q) 
given in the discussion of the Segre map. 



LECTURE 7 

Rational Functions and Rational Maps 

Rational Functions 

Let X c An be an irreducible affine variety. Since its coordinate ring A(X) is 
an integral domain, we can form its quotient field; this is called the rational function 
field of X and is usually denoted K(X); its elements are called rational functions on 
X. Note that if Y c X is an open subset that is an affine variety in its own right (as 
in the discussion on page 19), the function field of Y will be the same as that of X. 

One warning: a rational function h E K(X) is written as a quotient fig, where f 
and 9 E A(X) are regular functions on X; but despite the name, h itself is not a 
function on X; even if we allow 00 as a value at points where 9 = 0, we cannot in 
general make sense of h at points where both f and 9 vanish. We will see shortly in 
what sense we can deal with these objects as maps. 

Next, consider an irreducible projective variety Xc pn. We can define its func­
tion field in two ways. We can either take the rational function field K(U) of any 
nonempty affine open U = X n An or we can form the field of fractions of the 
homogeneous coordinate ring S(X) and take the Oth graded piece of that field, that 
is, take expressions ofthe form h(Z) = F(Z)/G(Z) where F and G are homogeneous 
of the same degree. 

Exercise 7.1. Show that this all makes sense, i.e., that the first definition of K(X) is 
independent of the choice of affine open U and that the second agrees with the first. 

We can extend this discussion to reducible varieties; for example, we can form 
the quotient ring of the coordinate ring of any variety by inverting all non-zero 
divisors (though it won't in general be a field; indeed, by Theorem 5.7 it will be a 
direct sum of the fields K(Xi». Likewise, a rational function on a reducible variety 
X will be given by specifying (arbitrarily) a rational function on each irreducible 
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component of X, equivalently, by specifying a regular function on some dense open 
subset of X. 

Rational Maps 

Having introduced the notion of rational function, we can now discuss ratio­
nal maps. We will proceed in four steps. We will give a provisional definition, 
explain why the definition needs to be fixed up (this is essentially just a matter 
of abuse of terminology), indicate how we may fix it up, and then proceed with 
our discussion. 

Provisional Definition 7.2. Let X be an irreducible variety. A rational map <p from 
X to An is given by an n-tuple of rational functions, i.e., 

<p(X) = (hI (x), ... , hn(x)) 

where hi E K(X). Likewise, a rational map of X to [p>n is given by an (n + 1)-tuple 
of rational functions 

A rational map is usually represented by a dotted arrow: 

<p: X __ --+ [p>n. 

Note that if X c [p>m is projective, there is another way to represent a rational 
map to [p>n: we may write the rational functions hi (x) in the form Fi(x)/Gi(x), where 
Fi and Gi are homogeneous polynomials of the same degree di and then multiply 
the vector [ho(x), ... , hn(x)] by the product of the Gi to arrive at an expression 

<p(x) = [Ho(x), ... , Hn(x)] 

where the Hi are homogeneous polynomials of the same degree. The difference 
between this and the corresponding description of a regular map to [p>n, of course, 
is that we do not require that the Hi do not all vanish simultaneously at some points 
ofX. 

Lastly, note that, since the field of rational functions on a variety X is the 
same as the function field of an affine open U c X, there is essentially no difference 
between giving a rational map on X and giving one on U. In particular, every 
rational map on X is regular on some open subset of X, and conversely any regular 
map on an affine open subset of X extends to a rational one on all of X. 

What's wrong? Essentially the same objection as raised in connection with 
rational functions: a rational map, despite the name, is not a map, since it may not 
be defined at some points of X. But if a rational map is not a map, what sort of 
object is it? Definition 7.2, which says that a rational map is "given by" a collection 
of rational functions, but does not say what it actually is, is clearly unsatisfactory 
from a formal standpoint. For example, since a rational map <p: X ----+ Y cannot 



74 7. Rational Functions and Rational Maps 

be described simply as an assignment to each point p E X of a point of Y, it may 
not a priori be clear when two rational maps are to be considered the same. 

The solution to this problem lies in the preceding observations that a rational 
map <p: X ----+ Y should be defined on a Zariski open subset U c X; that con­
versely every regular map on an open U c X should extend to a rational one on 
X; and that a rational map should be determined by its values on any open subset 
U c X where it is defined. Combining these observations we are led to the follow­
ing definition. 

Definition 7.3. Let X be an irreducible variety and Y any variety. A rational 
map 

<p: X ----+ Y 

is defined to be an equivalence class of pairs (U, y) with U c X a dense Zariski 
open subset and y: U --+ Ya regular map, where two such pairs (U, y) and (V, 1]) are 
said to be equivalent ifylunv = I]lunv. 

Note that if Z c X is any open set, there is a natural bijection between the 
sets of rational maps from X to Y and of rational maps from Z to Y. Similarly, 
if We Y is any open subset, we have an inclusion of the set of rational maps 
X ----+ W into the set of rational maps X ----+ Y; the image of this inclusion 
is just the set of those rational maps [(U, y)] such that y(U) ¢ Y - W 

Let <p: X ----+ Y and 1]: Y ----+ Z be a pair of rational maps. In case there 
exist pairs (U, f) representing <p and (V, g) representing 1'/ such that 1-1 (V) 0/= 0, we 
define the composition I] 0 <p to be the equivalence class ofU-I(V), g 0 f). If <p is the 
inclusion of a subvariety Z c X, we also call this the restriction of I] to Z. Note that 
neither is defined in general: it may well be that for any (U, f) and (V, g) the image 
of I lies entirely outside V. 

If Definition 7.3 is the correct one, why start with a provisional definition? The 
answer is that Definition 7.2 is in fact much closer to the way we actually think 
about rational maps in practice, that is, as maps given by rational functions. For 
the most part, this is how we will work with them, being always careful not to 
assume formal properties they don't possess (such as restriction or composition). In 
any event, Definition 7.3 is what we may consider our first point of view on 
rational maps: a rational map <p: X ----+ Y is a regular map on an open dense 
subset of X. 

As in the case of rational functions, we can extend the preceding discussion 
to the case of reducible varieties, for example, by applying Definition 7.3. In 
particular, giving a rational map on a variety X with irreducible components Xl' 
... , X k will be the same as giving a rational map on each component separately, 
without any conditions coming from their intersections. For this reason, nothing is 
lost ifin discussing rational maps we restrict ourselves to the case where the domain 
is irreducible. By way of terminology, then, we will adopt this convention; for 
example, if we write "let <p: X ----+ pn be a rational map" we will be implicitly 
assuming that X is irreducible. 
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Example 7.4. 

The simplest example of a rational map that is not regular is the map 

<p: A2 __ -+ IPI 

given by 

<p(x, y) = [x, y]. 

Note that this map is defined exactly on 
A 2 - {(O, on, and sends lines through 

p 

the origin in A 2 to the points of [p> I they IP 1 

represent; in particular, there is no way 
it can be continuously extended to all 
of A2. Completing, we may think of <p as 
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a rational map from [p>2 to [p>l, which may then be described geometrically: it is just 
the projection from the point p = [0,0, 1] E 1P2 to a line. 

This has an obvious generalization: for any plane A ~ [p>k in [p>n, the projec­
tion map 'TtA from A to a subspace IPn- k- 1 c lPn, regular on the complement IPn - A, 
may be thought of as a rational map from IPn to IPn- k- l ; and similarly for any 
Xc IP" not contained in A the restriction of'TtA to X gives a rational map X ---+ 
[P>"-k-l, whether or not X meets A. 

Graphs of Rational Maps 

Let X be a projective variety and <p: X ---+ IPn a rational map; let U c: X be 
an open subset where <p is defined. The graph of <piu is as we have seen a closed 
subvariety of U x IPn; by the graph of the rational map <p we will mean the 
closure rq> in X x [p>n of the graph of <piu. Note that this is independent of the 
choice of open subset V c X (in particular, if <p is regular, this is just the ordinary 
graph). 

Since the graph rq> of the rational map <p is a closed subvariety of X x lPn, 
it is also a projective variety. It follows that the projection 'Tt2(rq» of the graph 
rq> to IPn is again a projective variety; we will define the image of the rational 
map <p to be the image of its graph rq>. 

We can also use the graph of <p to define the notion of image and inverse 
image for rational maps. With <p as earlier, for any closed subvariety Z c IPn 
we take the inverse image <p-I(Z) of Z in X to be the image 

<p-I(Z) = 'Ttl ('Tt;-I(Z)), 

where 'Ttl: rq> -+ X and 'Tt2: rq> -+ [p>n are the projections. Likewise, for any closed 
Y c X, we define the image, or total transform of Y under <p to be the image 

<p(Y) = 'Tt2('Tt;-I(y)). 



76 7. Rational Functions and Rational Maps 

One warning: as in the case of the terminology "rational map" itself, the terms 
"image" and "inverse image" may be misleading; for example, it is not the case that 
for any point p E !pn in the image of cp there exists a point q E X with cp(q) = p. It 
gets especially dangerous when we talk about the image under a rational map 
cp: X ---+ !pn of a subvariety Y c X; as Exercise 7.6 shows, the image of the 
restriction of cp to Y (even assuming this restriction exists) will not in general 
coincide with the image of Y under cp (the former is called the proper transform of Y). 

Exercise 7.5. Verify the statement that the graph rep is independent of the choice of 
open set U, and show that the image of the rational map cp is the closure of the 
image of cp(U). 

Exercise 7.6. Show that if cp: X ---+ !pn is a rational map and Z c X a sub­
variety such that the restriction of cp to Z is defined, the graph r~ c Z x !pn 
will be contained in the inverse image (nlfl(Z) = rep n (Z x !pn) C X x !pn, but 
may not be equal to it. 

Exercise 7.7. Show that the image of a rational normal curve C c !pn under projec­
tion from a point pEe is a rational normal curve C' c !pn-l. 

By way of notation, for any projective variety Y c !pn, we will now define 
a rational map cp: X ---+ Y to be a rational map from X to !pn whose image 
is contained in Y; by the preceding this is the same as requiring cp(U) c Y for 
any U c X on which cp is regular. 

We observed, following Exercise 2.24, that it is not the case that a map cp: 
X -+ !pm on a projective variety X c !pn is regular if and only if its graph rep is a 
subvariety of the product pn x pm. It is true, however, if we replace the word 
"regular" with "rational." 

Exercise 7.8. Let X c !pm be an irreducible quasiprojective variety. Assuming that 
the characteristic of the field K is 0, show that a set map cp: X -+ !pn is rational if 
and only if its graph is closed in X x !pn-in other words, a subvariety reX x !pn 
that meets the general fiber {p} x pn in one point determines a rational map from 
Xto!pn.(*) 

Exercise 7.8 is difficult, as is suggested by the fact that it is false in positive 
characteristic. For example, suppose char(K) = p and consider the graph ra c 

A 1 X A 1 of the map (X: A 1 -+ A 1 given by x 1--+ x p • ra meets the general (indeed, 
every) fiber A 1 x {p} in a single point, so that (X has an inverse cp as a set map 
and the graph of cp is closed in A 1 X A 1; but cp is clearly not rational. In any 
event, Exercise 7.8 gives us (at least in characteristic 0) our second point of view 
on rational maps: rational maps cp: X -+ !pn correspond one to one to irreducible 
closed subvarieties reX x !pn such that for general p E X the intersection 
r n {p} x!pn is a single point. 
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We can use this to extend Chow's theorem to rational functions. Let X c pn 
be any complex submanifold of pn, and f any meromorphic function on X. By 
Theorem 1.9, X is a subvariety of pn; we can use Theorem 1.9 to further deduce 
that f is rational. 

Exercise 7.9. Let cp: X ----+ pn be a rational map, r", its graph. Show that there is 
a unique maximal open subset U c X such that the projection 11:1 on the first factor 
induces an isomorphism between (1I:1f1(U) c r", and U, i.e. (harking back to 
Definition 7.3), there is a pair (U, f) in the equivalence class cp such that for all 
(V, g) E cp, V c U. 

The maximal open set U c X described in this exercise is called the domain of 
regularity of the rational map, and its complement X - U is called the indetermi­
nacy locus of cp. 

Birational Isomorphism 

As we have noted, among the ways in which rational maps fail to behave like 
ordinary maps, the composition of rational maps is not always defined. Given 
cp: X ----+ Y and y: Y ----+ Z, it may happen that the image of cp lies outside 
any open subset of Yon which y is defined, making the composition undefined even 
as a rational map. One circumstance in which this will not happen, though, is if the 
map cp is dominant-that is, if the image of cp is all of Y. (We do not use the word 
"surjective" because, of course, it is not necessarily true in case Im(cp) = Y that 
Vp E Y 3 q E X: cp(q) = p.) 

It is clear from the definitions that given a pair of rational maps 
cp: X ----+ Y and y: Y ----+ Z with cp dominant, the composition yo cp is a well­
defined rational map. In particular, if f E K(Y) is any rational function, cp* f is a 
well-defined rational function on X. Thus, a dominant rational map cp: X ----+ Y 
induces an inclusion offunction fields cp*: K(Y) c.. K(X) and is in turn determined 
by this inclusion. This in turn suggests the definition of an equivalence relation 
among varieties weaker than ordinary isomorphism. 

Definition. We say that a rational map cp: X ----+ Y is birational if there exists a 
rational map y: Y ----+ X such that cp 0 y and yo cp are both defined and equal 
to the identity. We say that two irreducible varieties X and Yare birationally 
isomorphic, or just birational, if there exists a birational map between them. 

By the characterization of rational maps in Exercise 7.8, in characteristic 0 a 
birational map is simply a rational map cp: X ----+ Y that is generically one to one, 
i.e., such that for general q E Y the graph r", intersects the fiber X x {q} in exactly 
one point, or equivalently the inverse image cp-1(q) consists of one point. We also 
have the following. 
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Exercise 7.10. Show that two varieties X and Yare birational if and only if 
either of the following equivalent conditions hold: 

(i) K(X) ~ K(Y) 
(ii) there exist nonempty open subsets U c X and V c Y isomorphic to one 

another. 

Observe that if <p: X ----+ IPn is any rational map, the projection n i of the 
graph r", of <p to X is a birational map. (In fact, every regular birational map 
is tautologously of this form.) This, in turn, we may take as our third point of 
view on rational maps: a rational map <p: X ----+ IPn is a regular map on a variety 
X' birational to X. 

A special case of the definition of a birational map is the case Y = IP"; we 
define the following. 

Definition. We say that a variety is rational if, equivalently, 
(i) X is birational to IPn; 
(ii) K(X) ~ K(x l , ... , x n ); or 
(iii) X possesses an open subset U isomorphic to an open subset of An. 

If these conditions do not hold, the variety is called irrational. 

Example 7.11. The Quadric Surface 

The simplest (nontrivial) example of a birational isomorphism is that between a 
quadric surface in 1P3 and the plane 1P2 given by projection. Specifically, let Q c 1P3 
be a quadric surface (e.g., the surface ZOZ3 - ZIZ2 = 0) and p E Q any point 
(e.g., [0,0,0, 1]). Let np: Q - {p} --+ 1P2 be the projection map; with the preceding 
choices, this is just the map 

np: [Zo, ZI' Z2, Z3] f--+ [Zo, ZI, Z2]. 

This then defines a rational map n: Q ----+ 1P2. Since a general line through p will 
meet Q in exactly one other point (you can check that this is true of any line 
not lying in the plane Zo = 0, which intersects Q in the union of the two lines 
Zo = ZI = 0 and Zo = Z2 = 0), the map is generically one to one, and so has a 
rational inverse; to be explicit, this is the map 

n-I: 1P2 __ --+ Q 

: [Zo, ZI' Z2] f--+ [Z5, ZOZI, ZOZ2, ZIZ2]' 

Thus the quadric surface Q is birational to 1P2. Needless to say, we could also see 
from the isomorphism Q ~ IPI X IPI that the function field of Q is K(x, y) (or that 
Q contains A 2 as a Zariski open subset). 

We will discuss this example further in Example 7.22. In the meantime, the 
following exercises give more examples of rational varieties. 
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Exercise 7.12. Consider the cubic curve 
C c jp2 given by the equation Zy2 = 

X 3 + X 2 Z. Show that the projection 
map 1tp from the point p = [0,0, 1] 
gives a birational isomorphism of C 
with jpl. 

Exercise 7.13. Show that for any m and 
n the product jpm x jpn is rational. Give 
an explicit birational isomorphism of 
jpm x jpn with jpm+n. 
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Exercise 7.14. Let Q c jpn be a quadric hypersurface and P E Q any point not 
lying on the vertex of Q. Show that the projection map 1tp: Q ----+ jpn-l is a 
birational isomorphism. 

Example 7.15. Hypersurfaces 

We should mention at this juncture a famous remark that every irreducible variety 
X is birational to a hypersurface. There are two ways to see this. The first relies on 
the statement that if X is not a hyper surface, a general projection 1tp: X --+ jpn-l 

gives a birational isomorphism of X with its image X. (This follows in characteristic ° from the characterization of birational maps as generically one to one, given that 
a general line meeting X meets it in only one point; but unfortunately, a proof of 
this seemingly obvious fact will have to be deferred to Lecture 11 (Exercise 11.23).) 
Iterating this projection, we arrive in the end at a birational isomorphism of X 
with a hypersurface (or with jp\ if X is a linear subspace of [pln). 

Alternatively, we can simply invoke the primitive element theorem to say that if 
Xl' ... ' x k is a transcendence base for the function field of X, then K(X) is generated 
over the field K(x l , ... , xk ) by a single element Xk+l' satisfying an irreducible 
polynomial relation 

F(xk+d = ad(x l ,···, x k )· xt+1 + ... + aO(x l ,···, x k ) 

with coefficients in K(Xl' ... , x k ). Clearing denominators, we may take F to be an 
irreducible polynomial in all k + 1 variables Xi; it follows that X is birational to the 
hypersurface in A,k+l given by this polynomial. 

Degree of a Rational Map 

Let f: X ----+ Y be a dominant rational map, corresponding to an inclusion 
f*: K(Y) --+ K(X) offunction fields. We can extend the preceding characterization 
of birational maps as generically one to one as follows. 
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Proposition 7.16. The general fiber of the map f is finite if and only if the inclusion 
f* expresses the field K(X) as a finite extension of the field K(Y). In this case, if 
the characteristic of K is 0, the number of points in a general fiber of f is equal to the 
degree of the extension. 

PROOF. To begin with, we may reduce (as in the proof of Theorem 3.16) to the 
affine case; we may replace X and Y by affine open subsets, and so realize the 
map f as the restriction to a closed subset of An of a linear projection An -+ Am. It 
is thus enough to prove the claim for a map f: X -+ Y of affine varieties given as 
the restriction of the projection 

In this case the function field K(X) is generated over K(Y) by the element 
Zn. Suppose first that Zn is algebraic over K(Y), and let 

G(z 1, ... , Zn) = ao(z l' ... , Zn-1)· Z~ 

+a1(Zl,···,zn_d·z~-1 + ... 
(with ai E K(Y)) be the minimal polynomial satisfied by Zn. After clearing denomi­
nators, we may take ai to be regular functions on Y, i.e., polynomials in Z 1, ... , Zn-1. 
Let A(z 1, ... , Zn-1) be the discriminant of G as a polynomial in Zn; since G is 
irreducible in K(Y) [znJ and char(K) = 0, A cannot vanish identically on Y. It 
follows that the loci (ao = 0) and (A = 0) are proper subvarieties of Y, and on the 
complement of their union the fibers of f consist of exactly d points. 

Conversely, if Zn is transcendental over K(Y), then for any polynomial 
G(z l' ... , Zn) E I (X), written as 

G(z l' ... , Zn) = aO(z 1, ... , zn-d . Z~ 

+a1(Zl,···,zn_d·z~-1 + ... 
the coefficient functions ai must all vanish identically on Y. It follows that X 
contains the entire fiber of n: An -+ An-lover any point p E Y, i.e., f is not generi­
cally finite. D 

A rational map satisfying the conditions of Proposition 7.16 may be called 
either generically finite or of finite degree; the cardinality of the general fiber 
is called the degree of the map. 

Blow-Ups 

We come now to what will probably be a fairly difficult topic: the construc­
tion of the blow-up of a variety X along a subvariety Y. This is a regular birational 
map n: X -+ X associated to a subvariety Y c X that is an isomorphism away from 
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Y but that may have nontrivial fibers over Y. It is a fundamental construction, and 
one that is, as we will see, easy to define. The difficulty is simply that we will not be 
able to give a very good description of what a blow-up looks like in general. 

Example 7.17. Blowing Up Points 

The simplest example of a blow-up is the graph r", of the rational map 
<p: A2 ---+ 1P1 introduced in Example 7.4. This graph, denoted A,2, together with 
the projection map n: A, 2 -+ A 2, is called 
the blow-up of A 2 at the point (0, 0). It's 
not hard to draw a picture of this map; 
it looks like a spiral staircase (with the 
stairs extending in both directions). In 
particular, observe that the map A, 2 -+ 

A 2 is an isomorphism away from the 
origin (0,0) E A 2, and that the fiber over 
that point is a copy of 1P1 corresponding 
to the lines through that point. 

To see this (slightly) differently, note 
that if [Wo, Wl ] are homogeneous 
coordinates on 1P1, the open subset 
Wo -# ° in A,2 c A2 X 1P1 is isomorphic 
to A 2 and that the restriction of n to this 
open subset is just the map f: A 2 -+ A 2 

given by 

f(x, y) = (x, xy), 

that is, the basic example in our 
discussion of constructible sets in 
Lecture 3, pictured again later. Recall 
that under this map horizontal lines are mapped into lines through the origin, with 
every line through the origin covered except for the vertical; vertical lines are 
mapped into themselves, except for the y-axis, which is collapsed to the point (0, 0). 

More generally, let <p: IPn -+ IPn-l be the rational map given by projection from 
a point p E IPn and iPn = r", c IPn x IPn- l its graph. The map n: iPn -+ IPn is called the 
blow-up of IPn at the point p. As in the case of A2 , the map n projects iPn iso­
morphically to IPn away from p, while over p the fiber is isomorphic to IPn- l . (The 
variety iPn is also sometimes referred to as the blow-up.) 

Still more generally, let Xc IPn be a quasi-projective variety and p E X any 
point; let X = r", c X x IPn- l be the graph of the projection map of X to IPn-l 
from p. The map n: X -+ X is then called the blow-up of X at p. The inverse 
image E = n-l(p) c X of the point p itself is called the exceptional divisor of 
the blow-up. 
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Another way to realize this is as a 
subvariety of the blow-up pn of pn at p. 
If n: pn --+ pn is the blow-up of pn at p, 
then for X c pn closed we can define 
the proper transform X of X in pn to be 
the closure in pn of the inverse image 
n-1(X - {p}) of the complement of pin 
X. (If X is only locally closed, we take 
the closure in the inverse image 
(nd- 1(X) c pn.) This-or rather the 
restriction of the map n to it-is the 
same as the blow-up of X at p. Thus, for 
example, if we wanted to draw a picture 
of the blow-up of the nodal cubic 
Xc A,2 given by y2 = x3 + x 2 , we 
could draw it in the picture of A,2. 

Example 7.18. Blowing up 
Subvarieties 

In general, let X c A, m be any affine 
variety and Y c X any subvariety. 
Choose a set of generators fo, ... , 
fn E A(X) for the ideal of Y in X (this 
doesn't have to be a minimal set) and 
consider the rational map 

cp: X __ --+ pn 

given by 
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cp(x) = [fo, ... , fn]. 

Clearly, cp is regular on the complement X - Y, and in general won't be on Y; thus 
the graph rq> will map isomorphically to X away from Y, but not in general over Y. 
The graph rq>, together with the projection n: rq> --+ X, is called the blow-up of X 
along Y and sometimes denoted Bly(X) or simply X. As before, the inverse image 
E = n-l(y) c X is called the exceptional divisor. 

Taking X affine is essentially irrelevant here: if X c pm is a projective variety 
and Y c X a subvariety, we can similarly define the blow-up of X along Y by taking 
a collection Fo, ... , Fn of homogeneous polynomials of the same degree generating 
an ideal with saturation J(Y) and letting Bly(X) be the graph of the rational map 
cp: X ----+ pn given by [Fo, ... , Fn]. 

Exercise 7.19. (a) Show that the construction of Bly(X) is local, i.e., that for X any 
variety, Ya subvariety and U c X an affine open subset, the inverse image of U in 
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Bly(X) is Blynu(U). (b) Show that the construction does not depend on the choice 
of generators of the ideal of Yin X. 

An alternate construction of the blow-up of a variety X along a subvariety Yin 
the category of complex manifolds is a priori local. To start with, we can define the 
blow-up of a polydisc .1 c en at the origin to be the inverse image of.1 in rep, where 
<p: en ----+ [pln-l is the rational map sending a point Z to [z], that is, the manifold 

X = {((z 1, ... , Zn), [Wl' ... , Wn]): Zi Wj = ZjWi Vi, j} c .1 x [pln-l. 

Then if M is a complex manifold and p E M any point, we may take U a neighbor­
hood of p isomorphic to the polydisc .1 c en, and define 

Blp(M) = (M - {p}) U~. X 
where .1* is the punctured polydisc .1 - {(O, O)}, which is isomorphic to its inverse 
image in X. 

More generally, we can define the blow-up of the polydisc .1 along the coordi­
nate plane r given by the equations Zl = Zz = ... = Zk = ° to be the manifold 

X = {((Zl' ... , zn), [Wi> ... , wk ]): ZiWj = ZjWi Vi, j} c.1 x [pln-l. 

Like the blow-up at the point, this maps isomorphically to the complement of r in 
.1, and over a point pEr has as fiber the projective space [plk-l of normal directions 
to rat p. Moreover, it satisfies the basic naturality property that if f: .1 --+ .1 is any 
biholomorphic map carrying r to itself, f lifts (uniquely) to a biholomorphic map 
j: X --+ X. 

This last property allows us to globalize the blow-up in this setting. If M 
is a complex manifold of dimension n, N c M a submanifold of dimension n - k, 
then we can find open subsets Ui c M covering N such that each Ui is isomorphic 
to a polydisc via an isomorphism carrying Ui II N to the coordinate plane r. We 
may then define the blow-up of M along N as the union 

BlN(M) = (M - N) u (U XJ, 
where Xi is the blow-up of Ui along Ui II N, Xi is glued to M - N along the 
common open subset Ui - (Ui II N), and Xi is glued to Xj along the inverse image 
of Ui II ~, via the induced map on blow-ups. 

Exercise 7.20. (a) Verify the naturality property of blow-ups described earlier and 
use it to show that the construction of BLN(M) makes sense. (b) Show that if the 
complex manifold M is a subvariety of en = Ac, the two notions of the blow-up 
BIN(M) of M along N coincide. 

Modulo the fact that we have not defined tangent spaces to varieties yet, this 
construction gives us a good way to describe the blow-up of a variety X along a 
subvariety Y, at least in case both the varieties in question are smooth: the blow-up 
map Bly(X) --+ X is an isomorphism away from Y, and the fiber over a point p E Y 
is the projectivization of the normal space Np = Tp(X)/Tp(Y) to Y in X at p. 

Blow-ups are just a special class of birational maps, but they play an important 
role in the study of rational maps in general. To say what this is, observe first that 
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by their very definition, for any blow-up X = Bly(X) -+ X of a variety X along a 
subvariety Y there is a rational map q>: X ---+ IPn that may not be regular, but that 
extends to a regular map on all of X. In general, we have the following fundamental 
theorem, which we state here without proof. 

Theorem 7.21. Let X be any variety and q>: X ---+ IPn any rational map. Then 
q> can be resolved by a sequence of blow-ups, that is, there is a sequence of varieties 
X = Xl' X 2 , ••• , X k , subvarieties Y; C Xi and maps ni: Xi+l -+ Xi such that 

(i) ni: Xi+l -+ Xi is the blow-up of Xi 
along Y; and 

(ii) the map q> factors into a composi­
tion ijJ 0 n;;l 0 ••• 0 nIl with ijJ: X k +1 -+ 

IPn regular. 

In other words, after we blow X up a 
finite number of times, we arrive at a 
variety X and a birational isomorphism 
of X with X such that the induced ratio­
nal map ijJ: X -+ IPn is in fact regular. In 
this sense, we can say that, in order to 
understand rational maps, we have only 

1 
X2 

1 \jJ 
X - - - -....... IP n 

to understand regular ones and blow-ups. In particular, we may take this as our 
fourth point of view on rational maps: a rational map q>: X -+ IPn is a regular map on 
a blow-up of X. 

One last bit of terminology: if n: Z = Blp(X) -+ X is the blow-up of a variety X 
at a point p and E = n-l(p) c Z the exceptional divisor, the process of passing from 
Z to X is called blowing down; thus, for example, we will say that the map n blows 
down E to a point, or that X is obtained from Z by blowing down E. 

Example 7.22. The Quadric Surface Again 

Consider again the map discussed in Example 7.11 

n: Q ---+ 1P2 

obtained by projecting the quadric surface Q c 1P3 given as the locus ZOZ3 -
Zl Z2 = 0 from the point p = [0,0,0, 1] E Q to the plane (Z3 = 0). We may describe 
this map in terms of blow-ups, as follows. First, let r c Q x /P'2 be the graph of n. 
Then since the homogeneous polynomials Zo, Zl, Z2 giving the map n generate the 
ideal of the point p, we see that n 1: r -+ Q is the blow-up of Q at the point p. Note 
that the exceptional divisor E c r of the blow-up maps isomorphically via the 
projection n 2 to the line given in homogeneous coordinates [Wo, Wl , W2 ] on 1P2 by 
Wo=O. 

On the other hand, the map r -+ 1P2 is one to one except over the two points 
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q = [0,0, 1J and r = [0, 1, OJ corresponding to the two lines on Q through the 
point p; over these two points the fiber of the projection n2: r -> [p2 is a line. Indeed, 
the inverse map n-1 is given by 

n-1 : [Wo, W1, W2J f-> [W02, Wo W1, Wo W2, W1 W2J; 

since the polynomials W02, Wo W1, Wo W2, and W1 W2 generate the homogeneous 
ideal of the set {q, r} c [p2, we may conclude that n2 : r -> [p2 is the blow-up of [p2 

at the points q and r. Finally, observe that the images in Q of the two exceptional 
divisors E1 and E2 are the lines on Q passing through the point p. 

r 

In sum, then, we can describe the map n as a map that blows up the point 
p E Q and blows down the lines on Q through p; we can describe the map n-1 

as a map that blows up two points q, r E [p2 and blows down the line joining 
them. 

Exercise 7.23. Show that the proper transforms in r of the two families of lines on 
Q (with the exception of the lines through p) are the proper transforms of the 
families of lines in [p2 through q and r (with the exception of the line qr). 

Example 7.24. The Cubic Scroll in [tD4 

Consider the rational map from [p2 to [p4 given by 

qJ([Zo, Zl' Z2J) = [ZJ, Zf, ZOZl' ZOZl' Z l Z2]. 

The image X of this map is called the cubic scroll in [p4; it is an example of a class 
of varieties called rational normal scrolls, which we will describe in Example 8.17. 

There are several ways to describe the cubic scroll. First, it is the image of 
the Veronese surface S c Ips under the projection np: S -> [p4 from a point PES; 
specifically, if the Veronese surface is given as the image of the map 

t/J([Zo, Zl' Z2J) = [ZJ, zf, zl, ZOZl' ZOZl' Z l Z2J 

then qJ is just the composition of t/J with the projection map 
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7tp: [Wo, ... , W5J ~ [WO' Wi' W3 , W4 , W5J 

from the point p = [0, 0, 1, 0, 0, OJ. 
Second, X is isomorphic to the blow-up of the plane 1P2 at the point q = 

[0, 0, 1J E 1P2 where <p is not defined. In fact, if r c 1P2 x 1P1 is the graph of the 
projection from q, then X is simply the image of r under the Segre embedding 
1P2 x 1P1 -+ 1P 5 (since r c 1P2 x 1P1 is defined by a bilinear form, its image under the 
Segre map will lie in a hyperplane 1P4 c 1P 5 ). To put it another way, <p is simply the 
composition of the inverse of the projection 7t 1: r -+ 1P2 with the Segre map. 

We can also describe the surface X in terms of the images of curves in 1P2 
under <p. To begin with, the image in 1P4 of the exceptional divisor E c r is a 
line L c 1P4 , called the directrix of the scroll. Next, observe that the images of 
the proper transforms in r of lines in 1P2 passing through the point q are again 
lines M;. in 1P4; these lines all meet L once. Lastly, the images under <p of lines 
in 1P2 not passing through q are conic curves in 1P4, disjoint from L (in fact, 
the plane containing C is complementary to L) and meeting each line M;. in 
one point. Thus, for example, picking one such conic curve C c X C 1P4 , we can 
describe X as a union of lines in 1P4 
joining a line L and a conic C in com-
plementary planes. This may seem like L 
a cumbersome way to describe X, but 
in fact, it generalizes nicely to give a 
uniform description of rational normal 
scrolls in general. 

Exercise 7.25. Verify the statements 
made in the preceding paragraph about 
the images in X of curves on r. 

Exercise 7.26. Let rEX be any point, 7t,: X ---+ 1P3 the projection from r, and 
Q c 1P3 the image of 7t,. Show that if r does not lie on the directrix of X then Q is 
a quadric of rank 4, while if r does lie on the directrix when the rank of Q is 3. 

Here are some more exercises involving blowing up and down. 

Exercise 7.27. As in Exercise 7.14, consider the projection of a quadric hyper­
surface Q c IPn from a point p E Q; assume now that Q is of rank n + 1 (see 
Example 3.3). Show that this is a birational isomorphism of Q with IPn-l and 
describe this map in terms of blowing up and blowing down. 

Exercise 1.28. As another generalization of Example 7.11, show that for any n the 
varieties IPm x IPn and IPm+n are birationally isomorphic via the map 

<p: IPm x IPn ---+ IPm+n 

given by 
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= [Zo Wo, Zl Wo, ... , Zm Wo, Zo Wl , ... , Zo w,,]. 

Describe the graph of this map and describe the map in terms of blowing up and 
down. 

Exercise 7.29. Consider the group law 

A: Kn x Kn --. Kn 

on the vector space Kn. This gives a rational map 

A: IP'n x IP'n - - --. IP'n; 

for n = 1 and 2 describe the graph of this map and describe the map in terms 
of blowing up and down. 

U nirationality 

In closing, we should mention one other related notion. We say that a variety 
X is unirational if, equivalently, there exists a dominant rational map 

q>: IP'n ----. X 

for some n or if the function field K(X) can be embedded in a purely transcen­
dental extension K(z l' ... , zn) of K. 

It was a classical theorem of Luroth that a curve is rational if and only if it 
is unirational; Castelnuovo and Enriques proved the same for surfaces. For over 
half a century after that, it was an open question whether or not the two notions 
coincided in general; then, in the 1970s, Clemens and Griffiths [CG] showed that 
most cubic threefolds X c 1P'4 are unirational but not rational and Iskovskih and 
Manin similarly analyzed quartic threefolds [1M]. (We will see in Example 18.19 
that a cubic threefold is unirational; the fact that it is not rational, however, is far 
beyond the scope of this book.) 

In fact, the notion of unirationality may be the better generalization. For one 
thing, the notion of rationality is in general a fairly quirky one. For example, while 
we have seen that all quadric hypersurfaces are rational, the general cubic hyper­
surface S c IP'n will be irrational for n = 2, rational for n = 3, irrational again for 
n = 4, and unknown in general; by contrast, it is pretty elementary to see (as in 
Exercise 18.22) that all cubic hypersurfaces X c IP'n are unirational for n ~ 3. Also, 
while it is hoped that unirationality may be characterized by discrete numerical 
invariants (though no such characterization is currently known), it seems unlikely 
that rationality could be. 



LECTURE 8 

More Examples 

Now that we have developed a body of fundamental notions, we are able to make 
a number of standard constructions. 

Example S.l. The Join of Two Varieties 

Let X, Y c IPn be any two irreducible projective varieties. In Example 6.17 we saw 
that if X and Yare disjoint, then the locus /(X, Y) c G(l, n) oflines meeting both 
is a subvariety of the Grassmannian, and hence the union J(X, Y) of these lines is 
a subvariety of IPn. We will now give another proof of this that will allow us to 
generalize the construction to the case where X and Y do meet (or even are equal). 
To do this, we first observe that if X and Yare disjoint, the map 

j: X x Y --+ G(l, n) 

defined by sending the pair (p, q) to the line pq, that is, by 

j: ([v], [w]) f--+- [v /I. w], 

is a regular map. More generally, even if X and Y meet, we get in this way a rational 
map j: X x Y ----+ G(l, n); the image of this map will be just the closure in G(1, n) 
of the locus oflines xy with x E X, Y E Y, and x "# y. We call this the variety of lines 
joining X and Y and denote it /(X, Y). In case X and Y meet at a point p, it is not 
at all clear which of the lines through p will lie in /(X, Y); we will see the answer 
to this in at least some cases in Example 15.14. 

Now, by Proposition 6.13, the union of all the lines L E /(X, Y) is again a 
variety; we call this variety the join of X and Y and denote it J(X, Y). If X and Yare 
disjoint, this will be exactly the union ofthe lines meeting both X and Y; if X meets 
Y, as the following exercise shows, we may get something less. 
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Exercise 8.2. To take the simplest nontrivial case, let Al and Az be two-planes 
in [pl4 meeting in one point p, and let Ci C Ai be conic curves. First of all, take 
the case where C1 and Cz are disjoint; for example, 

Al Wo = W1 = 1 

C1 wl = W3 W4 

Az : W3 = W4 = 0 

Cz : WOWl = wl· 
Show in this case that the join J(C1 , Cz) is a quartic hypersurface. To see what 
happens if one or both of the Ci pass through p, keep Al and Az the same but 
let C1 and Cz be given by 

Show that in this case J(C1 , Cz) is a cubic hypersurface. Note in particular that not 
every line passing through p lies in /(C1 , Cz) C 1G(1, 4). (*) 

In general, it is a natural question to ask: if X and Yare varieties meeting at a 
point p, what lines through p lie in the image of j: X x Y ---+ 1G(1, n)? We do not 
have the language, let alone the techniques, to answer that question here, but for 
those willing to take both on faith, here is a partial answer: if X and Yare smooth 
and meet transversely at p, lines through p lying in the span of the projective 
tangent planes to X and Y at p will be in /(X, Y). 

Note that for any subvariety Z c X x Y not contained in the diagonal of 
[pln x [pln we can likewise restrict the rational map j to Z to describe a subvariety 
j(Z) c /(X, Y); the union of the corresponding lines will again be a subvariety of 
[pln. This notion will be taken up again in Examples 8.14 and 8.17. 

Example 8.3. The Secant Plane Maps 

This is just the special case X = Y of the preceding construction: for any irreducible 
variety X c [pln (other than a point) we have a rational map 

s: X x X ---+ 1G(1, n), 

defined on the complement of the diagonal ~ in X x X by sending the pair 
(p, q) to the line pq. This is called the secant line map; the image 9'(X) of this 
map is, naturally, called the variety of secant lines to X. This is a point of potential 
confusion in the terminology: when we say a line L E 1G(1, n) is a secant line to X, it 
is meant that L E 9'(X), not necessarily that L is spanned by its intersection with X. 
We will see in Lecture 15 how to characterize such lines. 

Needless to say, there are analogues of this for any number k + 1 of points; 
for Xc [pln irreducible and not contained in any (k - I)-plane, we can define 
a rational map 

Sk: Xk+l ---+ lG(k, n) 

sending a general (k + I)-tuple of points of X to the plane they span. (Note that the 
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locus where this map fails to be regular need not be just the diagonal as it was in 
the first case. It is correspondingly harder in general to characterize the planes 
A E Sk(X) in its image other than those spanned by their intersection with x.) The 
notation is generalized in the obvious way: Sk(X) is called the secant plane map and 
its image 9k(X) the variety of secant k-planes to X. 

Exercise 8.4. Consider the case of the twisted cubic curve C c p3. Show that 
the image of the secant line map s: C x C ----+ G(I, 3), viewed as a subvariety of 
pS via the Plucker embedding G(I, 3) c... pS, is in fact just the Veronese surface. (*) 

Example 8.5. Secant Varieties 

As in Example 8.1, we can use Proposition 6.13 in combination with Example 8.3 
to create a new variety: we see that the union of the secant lines to a variety X is 
again a variety, called the chordal variety or secant variety of X, and denoted S(Xf. 
(Recall that a secant line to X is defined simply to be a point of the image of the 
secant line map s: X x X ----+ G(I, n).) Similarly, the union of the secant k-planes 
to X is again a variety, denoted Sk(X), 

Exercise 8.6. Let C c p3 be a twisted cubic curve. Show that any point p E p3 
not on C lies on a unique line L in the image of the secant line map (so that in 
particular S(C) = p3). (*) 

Exercise S.7. Now let C c p4 be a rational normal curve. Find the equation(s) 
of its chordal variety. (*) 

Exercise 8.S. Let S c pS be the Veronese surface. Find the equations of its chordal 
variety and compare this result with that of Exercise 8.7. 

Example 8.9. Trisecant Lines, etc 

Again, let X c pn be a variety, and let A c X x X x X be the big diagonal (that 
is, the locus of triples with two or more points equal). Then the locus V1 ,3(X) of 
triples of distinct points (p, q, r) E X x X x X such that p, q, and r are collinear is 
a subvariety of X x X x X - A, and hence so is its closure V1 ,3(X) in X x X x X. 

Exercise 8.10. Show that if X c pn is a hypersurface of degree d ;:::: 3 with n ;:::: 3 the 
small diagonal in X x X x X will be contained in the variety V1,3(X), (By contrast, 
the big diagonal will never be, as long as X is not itself a linear space. This is easy 

2 In general, we will try to follow the following convention: for varieties in IP'R, associated maps 
to Grassmannians will be denoted with lower-case letters, images of such maps with upper-case script 
letters, and the unions of the corresponding planes by upper-case Roman letters. We apologize in this 
case for the potential confusion (for example, we have already used S(X) for the homogeneous coordi­
nate ring of X c IP'R); it should be clear from the context what is meant in any case. 
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to see using the notion of projective tangent space introduced in Lecture 14; it is 
somewhat trickier, but still doable, with the techniques available to us now.) 

More generally, we can for any k and I define a variety l'l.k(X) c X k to be 
the closure of the locus in X k of k-tuples of distinct points of X contained in 
an I-plane. 

We define the variety "Y'l 3(X) c G(1, n) of trisecant lines to X to be the closure 
of the locus of lines pqr with (p, q, r) E V1,3(X); likewise we define the variety "Y'k,l 
of k-secartt I-planes to be the closure in G(l, n) of the locus of I-planes containing 
and spanned by k distinct points of X. 

Exercise 8.11. Let 'Pk,l c X k x G(/, n) be the incidence correspondence defined as 
the closure of the locus 

q, = {(Pl' ... , Pk; 0: r = Pl' ... , Pk; Pi distinct}. 

Show that the images of'P in X k and G (I, n) are l-lciX) and 11.,I(X), respectively. 

Exercise 8.12. Find an example of a variety X c pn and integers I and k ~ I + 1 
such that l-lc,I(X) is not the closure of the locus of distinct k-tuples Pl' ... , Pk E X 
lying in an I-plane. (*) 

Exercise 8.13. Consider the curves C",p c p3 of Example 1.26. Describe the union 
of the trisecant lines to these curves. (*) 

Example 8.14. Joins of Corresponding Points 

Once more, let X and Y be subvarieties of pn, and suppose we are given a regular 
map ((J: X --+ Y such that ((J(x) ¥ x for all x E X. We may then define a map 

k",: X --+ G(l, n) 

by sending a point x E X to the line x, ((J(x) joining x to its image under ((J. 
This is a regular map, so its image is a variety; it follows that the union 

K«((J) = U x, ((J(x) 
XEX 

is again a variety. As before, if the condition ((J(x) # x is violated for some (but 
not all) x E X, we can still define a rational map k"" and define K«((J) to be the 
union of the planes corresponding to its image; of course, we will no longer 
be able to describe K«((J) naively as the union of the lines x, ((J(x). 

Exercise 8.15. Let X and Y be skew lines in p3, take ((J: X --+ Y an isomorphism and 
describe the resulting K«((J). 

Exercise 8.16. Now let X = Y C p3 be a twisted cubic curve and ((J an auto­
morphism of projective space carrying X into itself. Again, what may K«((J) look 
like? 
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Example 8.17. Rational Normal Scrolls 

This is a case of the join of two varieties that represents a generalization of both 
rational normal curves and Exercise 8.15. Let k and I be positive integers with k :::; I 
and n = k + I + 1, and let A and A' be complementary linear subspaces of dimen­
sions k and I in [p'n (that is, A and A' are disjoint and span [p'n). Choose rational 
normal curves C c A and C c A', and an isomorphism <p: C -+ C; and let Sk / be 
the union of the lines p, <p(p) joining . 
points of C to corresponding points of 
C. Sk./ is called a rational normal scroll. 
The lines p, <p(p) are called the lines of 
the ruling of Sk,/; as we will see in 
Proposition 8.20 they are the only lines 
lying on Sk,/ unless k = 1. Observe 
that Sk,/ is determined up to projective 
isomorphism by the integers k and I: we 
can move any pair of planes A, A' into 
any other, any rational normal curves 
C, C into any others, and finally 
adjust <p by composing with an 

the scroll S2,1 C 1P4 

1\' 

automorphism of A or A' inducing an automorphism of C or C. Note also that we 
can think of the case where C is a point (and <p the constant map) as the degenerate 
case I = 0, so that a cone over a rational normal curve C C [p'n-1 may be thought 
of as the scroll So,n-1 in [p'n. In these terms, Exercise 8.5 simply says that the scroll 
Sl, 1 is a quadric hypersurface in /p 3 . 

Exercise 8.18. Let H c [p'n be any hyperplane not containing a line of the ruling of 
the scroll S = Sk,/. Show that the hyperplane section H n S is a rational normal 
curve in [p'n-1. 

Exercise 8.19. Show that the image of a Veronese surface S = vz([p'Z) C [p'5 under 
projection from a point PES is the cubic scroll S1,Z c [p'4. In particular, show that 
S1,2 is isomorphic to the plane [p'z blown up at a point (see also Exercise 7.24). 

The following exercises establish some basic facts about surface scrolls Sk,/; 

we summarize these facts in the following proposition. 

Proposition 8.20. (a) The scrolls Sk,/ and Sk', I' C [p'n are projectively equivalent if and 
only if k = k'. 

(b) In case k < I, the rational normal curve C c S = Sk,l of degree k appear­
ing in the construction of the rational normal scroll is the unique rational normal 
curve of degree < 1 on S (other than the lines of the ruling of S); in particular, 
it is uniquely determined by S (it is called the directrix of S). This is not the case 
for the rational normal curve C of larger degree I or for C itself in case k = I. 

(c) The image of the scroll S = Sk,/ under projection from a point PES is projec-
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tively equivalent to Sk-l.1 if p lies on the directrix of S; it is projectively equivalent to 
Sk,l-l otherwise. In particular, all scrolls Sk,l are rational. 

Exercise 8.21. Show that any k + 1 lines of the ruling of a scroll S = Sk.1 are 
independent (i.e., span a !p2k-l), but that any k + 2 lines are dependent (i.e., con­
tained in a !p2k+2). Deduce part (a) of Proposition 8.20. 

Exercise 8.22. In case k < 1, show that any 1 = n - k - 1 lines Li of the ruling of 
the scroll S = Sk,l span a hyperplane He !pn and that the intersection of H with S 
consists of the lines Li together with the curve C. Deduce part (b) of Proposition 
8.20. 

Exercise 8.23. A rational normal curve of degree 1 on the scroll S = Sk,I that 
lies in a linear subspace !pI complementary to the span of the directrix, and that 
meets each line of the ruling once will be called a complementary section of S. Show 
that any complementary section can play the role of C' in the preceding construc­
tion. In case k = 1, any rational normal curve C c S of degree 1 meeting each line 
of the ruling once is called a complementary section; show that any two lie in 
complementary linear subspaces and can play the roles of C and C' in the basic 
construction. 

Exercise 8.24. Show that any hyperplane H c !pn containing n - 1 = k + 1 or more 
lines of the ruling of S will intersect S in a union of lines of the ruling and the 
directrix C, while a hyperplane containing n - 1 - 1 = k lines of the ruling will 
intersect S in either a union of lines of the ruling and the directrix or in the given 
k lines and a complementary section. Deduce that any point of the scroll S not lying 
on the directrix lies on a complementary section and deduce part (c) of Proposition 
8.20. 

Exercise 8.25. Let S = Sk,I c !pn be a scroll, with k ~ 2. Show that projection from 
a line of the ruling gives a biregular isomorphism of Sk,I with Sk-l,l-l C !pn-2. (It is 
conversely the case if k, k' > 0 that Sk,l is abstractly isomorphic to Sk',I' if and only 
if 1 - k = I' - k', but we will not prove it here.) 

Example 8.26. Higher-Dimensional Scrolls 

A further generalization of this notion is to allow several rational normal curves; 
that is, for any collection a1 , ... , ak of natural numbers with a1 :$; ... :$; ak and 
L ai = n - k + 1 we can find complementary linear subspaces Ai ~ !pa, C !pn and 
rational normal curves Ci C Ai in each. Choose isomorphisms <Pi: C1 --+ Ci and let 

S = U p, <P2(P), .. ·, <Pk(P)· 
pee, 

S is called a rational normal k-fold scroll (or rational normal scroll of dimension 
k), and sometimes denoted Sa" ... , a.' As before, S is determined up to projec­
tive equivalence by the integers ai • 
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Exercise 8.27. Show that the Segre three­
fold, that is, the image L 2 , 1 of the Segre 
map 

is the rational normal threefold scroll 
Sl, 1, l' More generally, the Segre variety 
Lk - 1 ,1 C 1P2k - 1 is the rational normal 
k-fold scroll S 1, ... , 1 . 

8. More Examples 

Exercise 8.28. Let S = Sl, 1, 1 C IPS be the Segre threefold, HelPs any hyperplane 
not containing a two-plane of the ruling of S. Show that the hyperplane section 
H n S is the scroll Sl,2 in 1P4. (An interesting question to ask in general: what scrolls 
will appear as hyperplane sections of a given scroll Sal, ... , ak?) 

There are two special cases of this construction that are usually included in the 
class of rational normal scrolls. First, if some of the integers ai are zero-say, 
a1 = .. , = am = O-then the scroll we arrive at is the cone, with vertex the span 
of the points C1 , •.. , Cm , over a rational normal scroll Sam+I, ... ,ak' Also, if k = 1, we 
get simply a rational normal curve, which we will consider a one-dimensional 
rational normal scroll. With these provisos, we may state the following general 
theorem. 

Theorem 8.29. Let S c IPn be a rational normal k-fold scroll. 
(i) If PES any point, then the projection S = 1tp(S) from p is again a rational 

normal scroll and 
(ii) if H c IPn is any hyperplane not containing a (k - I)-plane of S, then the 

hyperplane section Y = S n H is again a scroll. 

The first part of this statement is relatively straightforward; it is simply a more 
elaborate version of Exercise 8.21. (In particular, if S = Sal,"" ak' it is possible to say 
which scrolls occur as images of projections of S.) The second part will need a 
further characterization of scrolls, either as determinantal varieties (as in the follow­
ing lecture) or by degree (as in Lecture 19). 

Example 8.30. More Incidence Correspondences 

There are a number of generalizations of the construction in Example 6.12. For 
instance, we can look in the product of two Grassmannians of planes in the same 
space IPn at the locus of pairs of planes that meet: for any k and I we set 

n = {(A, N): AnN =I- 0} c G(k, n) x G(l, n). 

That this is a variety is clear: we can write 

n = {([Vo /\ ... /\ VkJ, [Wo /\ ... /\ wtJ): 

Vo /\ ... /\ Vk /\ Wo /\ '" /\ WI = O}. 
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Similarly, we can for any k and I ;;::: k consider the locus of nested pairs: 

IF(k, I; n) = {(A, A'): A c A'} c G(k, n) x G(l, n). 

Note that both these constructions specialize to the construction of the incidence 
correspondence in Example 6.12 in case k = O. A common generalization of them 
both in turn is the variety 

'Pm = {(A, A'): dim(A (") A') ;;::: m} c G(k, n) x G(l, n), 

which gives n when m = 0 and IF(k, I; n) when m = k < I. 
Of course, over n, r, and 'Pm there are "universal families" that play with 

respect to 'Pm the same role as the original incidence correspondence ~ played 
with respect to G(k, n), i.e., we may set 

8 m = {(A, A'): pEA (") A'} c 'Pm X [pn. 

Exercise 8.31. Show that n, r, and 'Pm are indeed varieties. 

Exercise 8.32. Let <I> c G(k, n) be any subvariety of the Grassmannian of k-planes 
in [pn and for any I> k let 'P c G(/, n) be the locus of I-planes containing some 
plane A E <1>. Show that 'P is a variety. 

Exercise 8.33. Let Q c [p3 be a quadric surface. Describe the locus in [p3* of planes 
in [p3 containing a line of Q. More generally, if ~k, 1 = U([P1 X [Pk) C [p2k+1 is the 
Segre variety, describe the locus in ([P2k+1)* of hyperplanes in [p2k+1 containing a 
k-plane of ~k, l' 

Example 8.34. Flag Manifolds 

The incidence correspondence IF(k, I; n) introduced in Example 8.30 is a special case 
of what is called a flag manifold. Briefly, for any increasing sequence of integers 
a1 < a2 < ... < ak < n we can form the variety of flags 

IF(a 1 , 00., ak ; n) = {(A1' 00., Ak ): A1 coo. c Ad 

c G(a1 , n) x 00' x G(ak , n). 

That this is a subvariety of the product of Grassmannians is easy to see (in parti­
cular, it is the intersection of the inverse images of the flag manifolds IF(a;, aj ; n) c 
G(a;, n) x G(aj , n) under the corresponding projection map). 

Example 8.35. More Joins and Intersections 

In the preceding discussion, we considered the subvariety of the Grassmannian 
obtained by taking the joins of corresponding points on two subvarieties X, 
y c [pn. In fact, we can take the joins of arbitrary subspaces as well. Suppose now 
that X c G(k, n) and Y c G(l, n) are subvarieties of the Grassmannians of k- and 
I-planes in a projective space [pn and cp: X -+ Y is a regular map such that cp(A) is 
disjoint from A for all A. Then we obtiliT} a regular map 
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k",: X --+ G(k + 1 + 1, n) 

by sending a point A E X to the join of the planes A and <p(A); as usual the union of 
these (k + I + i)-planes is again a variety K(<p). We may define K(<p) similarly if A 
fails to be disjoint from <p(A) for some, but not all, A E X. 

Using this construction together with an isomorphism G(k, n) ~ G(n - k - 1, n) 
between Grassmannians, we can likewise construct a variety as the union of the 
intersections of corresponding planes in two families. Specifically, let X, Y, and <p 
be as earlier, but suppose now that k + 1 :?: n and that for each A E X the planes A 
and <p(A) intersect transversely, i.e., span IP'n. Then we can define a map 

1",: X --+ G(k + 1 - n, n) 

by sending x to the plane x n <p(x). The union 

L(<p) = U An <p(A) 
AEX 

is thus again a variety. As before, analogous constructions may be made for 
several subvarieties of Grassmannians G(k;, n) or in the case where A and <p(A) 
fail to meet transversely for all A. 

Example 8.36. Quadrics of Rank 4 

The simplest example of the construction described in Example 8.35 occurs in 1P'3; 
it is an analog of the construction given in Example 1.22 for conics (compare it also 
with Exercise 8.5). Start with two skew lines Land M c 1P'3. The family of planes 
containing each one is parameterized by 1P'1; choose such a parameterization for 
each (for example, introduce an auxiliary line N disjoint from each of Land M and 
to each point R E N let correspond the planes LR and MR). For each A E 1P'1, then, 
the two planes corresponding to A will meet in a line; the union of these lines will 
be a quadric surface. 

Note that this quadric will contain Land M and, if we use the parameterization 
suggested earlier, the auxiliary line N as well; in this way we may see again that 
through three mutually skew lines in 1P'3 there passes a unique quadric surface. Note 
also that we did not need to assume that Land M were skew (but if they are not, 
we do need to know that the plane LM does not correspond to itself). 

We can make this construction in projective spaces of higher dimensions as well, 
simply choosing two planes L, M ~ IP'n- 2 C IP'n, putting the families of hyperplanes 
through Land M in one-to-one correspondence, and taking the union of the 
intersections of corresponding planes. What we will get in general is a cone, with 
vertex L n M, over a quadric in 1P'3 (or over a conic in 1P'2, if Land M fail to span 
all of IP'n). These are called, in keeping with the terminology of Example 3.3, quadrics 
of rank 3 or 4; they may also be characterized as 

(i) quadrics obtained in the preceding construction; 
(ii) cones over irreducible quadrics in 1P'3; 
(iii) quadrics given, in suitable coordinates, as ZOZ3 = Z1Z2 or ZOZ2 = Zr; 
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(iv) quadrics that are also rational normal scrolls (they are isomorphic to the 
scroll Xl, 1,0, .. ., 0 or X2 ,0, ... , 0; or simply as 

(v) irreducible quadrics that contain a plane pn-2. 

Exercise 8.37. Verify that these conditions are indeed equivalent. 

Exercise 8.38. Recall the construction of a general rational normal curve through 
d + 3 points given in Example 1.22. For each i and j let Qi.j be the quadric obtained 
by applying the construction to the families of hyperplanes containing Ai and Aj . 

Show that the Qi,j span the space of all quadrics containing the rational normal 
curve and in particular that their intersection is the rational normal curve. 

Example 8.39. Rational Normal Scrolls II 

A variant of the preceding construction gives us the general rational normal scroll. 
It is not hard to guess what to do. To construct a rational normal curve-a 
one-dimensional scroll-we took n families of hyperplanes in pn and took the 
intersections of corresponding members, while to construct those quadric hyper­
surfaces that are scrolls we used two. In general, if we use an intermediate number, 
we will obtain a rational normal scroll. 

To be specific, suppose that AI, ... , An- k +1 are planes of dimension n - 2 in pn 
and as before we put the families of hyperplanes containing them in one-to­
one correspondence, that is, we write the family of hyperplanes containing Ai as 
{r;(.~.)} Ae 1'" Suppose moreover that for each value of A E pI, the corresponding 
hyperplanes are independent, i.e., intersect in a (k - I)-plane. Then the union 

X = U r 1 (A) (\ ... (\ rn-k+l (A) 
.I.e 1" 

of their intersections is a rational normal scroll. 
We will not justify this statement here; it follows from the description of rational 

normal scrolls as determinantal varieties given in Example 9.10. 



LECTURE 9 

Determinantal Varieties 

In this lecture we will introduce a large and important class of varieties, those 
whose equations take the form of the minors of a matrix. We will see that many of 
the varieties we have looked at so far-Veronese varieties, Segre varieties, rational 
normal scrolls, for example-are determinantal. 

Generic Determinantal Varieties 

We will start with what is called the generic determinantal variety. Let M be 
the projective space IP'mn-1 associated to the vector space of m x n matrices. For 
each k, we let Mk c M be the subset of matrices of rank k or less; since this is just 
the common zero locus of the (k + 1) x (k + 1) minor determinants, which are 
homogeneous polynomials of degree k + 1 on the projective space M, Mk is a 
projective variety. 

Note. More or less by definition, the (k + 1) x (k + 1) minors cut out the variety 
Mk set theoretically. The stronger statement-that they generate the homogeneous 
ideall(Mk) of Mk-is also true, but is nontrivial to prove. 

Example 9.1. Segre Varieties 

The simplest example of a generic determinantal variety, the case k = 1, is a variety 
we have already encountered. The basic observation here is that an m x n matrix 
(Zd will be of rank 1 if and only if it is expressible as a product Z = tu . W, where 
U = (UI , ... , Um) and W = (WI' ... , w,,) are vectors. We see from this that the 
subvariety MI eM = IP'mn-1 isjust the Segre variety, that is, the image ofthe Segre 
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map 

0": [pm-l X [pn-l ~ [pmn-l. 

(In intrinsic terms, a homomorphism A: K n ~ K m of rank 1 is determined up 
to scalars by its kernel Ker(A) E ([pn-l)* and its image Im(A) E [pm-I.) Thus, we can 
represent the quadric surface 1:1• 1 = 0"([P1 X [pI) C [p3 as 

and similarly the Segre threefold 1:z, 1 = O"([pz X [p 1) C [p5 may be realized as 

{ ( Zo ZI Zz) } 1:Z,l = [Z]: rank ~ 1 . 
Z3 Z4 Z5 

Example 9.2. Secant Varieties of Segre Varieties 

We can in fact describe the other generic determinantal vanetIes Mk c M in 
terms of the Segre variety MI' We may observe, for example, that a linear map 
A: K n ~ K m has rank 2 or less if and only if it is expressible as a sum of two maps 
of rank 1. This is immediate in case m = 2; in general we can factor a rank 2 map 

A: K n ~ Im(A) c.. K m 

and apply the case m = 2 to the first of these maps. We conclude from this that 
the generic determinantal variety Mz is the chordal variety of the Segre variety 
Ml eM; more generally, the variety Mk may be realized as the union of the secant 
(k - I)-planes to MI' 

Linear Determinantal Varieties in General 

Generalizing, suppose now that we have an m x n matrix of homogeneous linear 
forms Q = (Li) on a projective space [pI, not all vanishing simultaneously. The 
variety 

1:k(Q) = {[Zo, ... , Z/]: rank(Q(Z» ~ k} C !pI 

is also called a linear determinantal variety. Of course, this is just the pullback of Mk 
under the linear embedding !pI ~ M given by the linear forms (L i ). (Extending 
this definition, for any subvariety X c !pI the locus of points [Z] E X such that 
rank(LijZ» ~ k is likewise called a determinantal subvariety of X.) 

An m x n matrix Q of linear forms on a projective space !pI = !PV may be 
thought of as a linear map 

w: V ~ Hom(U, W) 

for U ~ K n, W ~ K m vector spaces over K; equivalently, it may be thought of as 
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an element of the triple tensor product 

OJE V* ® U* ® W 

In view of the number of variations on this representation-for example, we can 
equally well think of OJ as a map from U to Hom(V, W), or from Hom(U*, V) to 
W, etc.-we will abandon any attempt to give separate symbols to these incarna­
tions of the same object and call them all OJ. (This is in contrast to the case of a 
bilinear object cP E Hom(U, V) = U* ® V, whose one other representation as an 
element of Hom(U*, V*) may be called the transpose of cp and denoted tcp.) 

However we view the trilinear object OJ given by an m x n matrix Q of linear 
forms on IP'k = 1P'v, it is clear that three groups act on it: the automorphism groups 
GL(V), GL(U), and GL(W) of V, U, and W We say that two such matrices Q and 
Q' are conjugate if one can be carried into the other under the combined action of 
these three groups-in more concrete terms, if Q can be obtained from Q' by a 
sequence of row and column operations, followed by a linear change of variables 
in the Z;. 

Here we should draw a fundamental and important distinction between the 
cases of bilinear and tri- or multilinear objects: while a bilinear object cp E V ® W 
is completely determined (up to the action ofGL(V) x GL(W)) by its one (discrete) 
invariant, i.e., the rank, the situation with trilinear objects OJ E U ® V ® W is much 
more subtle. The action of GL(U) x GL(V) x GL(W) on U ® V ® W will not in 
general have a finite number of orbits (or even a single dense orbit), but rather (as 
we will see in Lecture 11) a continuously varying family of them, whose invariants 
are far from being completely understood. One exception to this is the special case 
where the dimension of one of the factors is 2; it is this special case that we 
will deal with in the examples that follow. We will also see in the final section 
of Lecture 22 an analysis of a related problem, the classification up to conju­
gation of elements of a product U ® Sym2 V in case dim(U) = 2. 

The action of GL(U) and GL(W) obviously do not alter the determinantal 
varieties ~k(Q) associated to Q; the action of GL(V) simply carries ~k(Q) into 
a projectively equivalent variety. The determinantal varieties ~k(Q) may thus be 
thought of as giving invariants under conjugation of the trilinear object Q. Indeed, 
in some cases, such as the rational normal curve in Example 9.3, a determinantal 
variety ~k(Q) will actually determine the matrix Q up to conjugation, so that 
understanding the geometry of determinantal varieties becomes equivalent to un­
derstanding trilinear algebra. 

Example 9.3. Rational Normal Curves 

In Example 1.16 we observed that the rational normal curve C c IP'" given as the 
image of the Veronese map v": 1P'1 --+ IP'" sending [X, Y] to [X", X"-l Y, ... , Y"] 
could be realized as the rank 1 determinantal variety ~ 1 (Q) associated to the matrix 
of linear forms 
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We would now like to expand on those observations, and in particular to show 
that conversely any 2 x n matrix of linear forms satisfying a nondegeneracy 
hypothesis is conjugate to Q. 

To begin with, recall the intrinsic description of the Veronese map v: [pI --+ [pn 

given on page 25: if [pI = [pV is the projective space associated to a two-dimen­
sional vector space V, we can realize [pn as the projectivization of the nth symmetric 
power W = Symnv, and the Veronese map as the map sending a point [v] E [PV to 
the hyperplane Hv c W* of polynomials vanishing at [v] (equivalently, to the linear 
functional on the space W* of polynomials given by evaluation at v). 

With this said, consider for any pair of positive integers k, 1 with k + 1 = n 
the ordinary multiplication map on polynomials on V 

SymkV* ® Sym'V* --+ SymnV* = W*. 

Dualizing, we get a map 

f{): W --+ SymkV ® Sym'V, 

or, equivalently, a (k + 1) x (1 + 1) matrix Q k oflinear forms on IPW We claim now 
that the rank 1 locus of the matrix Qk is the rational normal curve C c IPW This 
amounts to saying that for any linear functional f{): SymnV* --+ K on W*, the 
bilinear form B",: SymkV* x Sym'V* --+ K defined as the composition 

SymkV* x Sym'V* --+ SymnV* --+ K 

has rank 1 if and only if f{) is given by evaluation at a point p E [Pv. Certainly if f{) 
is evaluation at a point p, B", will have rank 1, with kernel in either factor SymkV* 
or Sym' V* the hyperplane of polynomials vanishing at p. Conversely, if B", has rank 
1, its kernel in SymkV* will be a subspace V such that the image of V x Sym'V* 
in SymnV* is contained in a hyperplane. By Lemma 9.8 below it follows that U 
must be the subspace of polynomials vanishing at p for some point p E IPI, that 
the image of V x Sym'V* in SymnV* is therefore the subspace of polynomials 
vanishing at p, and hence that f{) is evaluation at p. 

Note that the representations of C as the rank 1 loci of the matrices Q k are the 
various determinantal descriptions of the rational normal curve given in Example 
1.16; in particular, we see that C is the determinantal variety associated to the 2 x n 
matrix Q l dual to the multiplication map 

V* ® Symn - l V* --+ SymnV*, 

which is the matrix Q above. 

We also asserted in Exercise 1.25 that conversely any 2 x n matrix of linear 
forms 

satisfying the condition that for all [A, 11] E 1P1 the linear forms ALI + IlMl, ... , 
ALn + 11M. are independent has determinantal variety a rational normal curve. The 
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argument was simply that for each A E [pl the equations 

ALl + JlMl = ... = ALn + JlMn = 0 

determined a point P£,!./ll E [pn; and the map [pl -+ [pn sending [A, Jl] to P[A .• /ll was seen 
to be given by a basis of polynomials of degree n on [pl. Note that we can express 
the independence condition more simply by saying just that no matrix of linear 
forms conjugate to Q has a zero entry. This condition may be applied more 
generally to matrices of arbitrary size and is expressed by saying that the matrix is 
I-generic. By way of terminology, we define a generalized row of a matrix Q oflinear 
forms to be a row of a matrix conjugate to Q (that is, any linear combination of the 
rows of Q) so that, for example, the points of the rational normal curve C given 
earlier as the determinantal variety of the I-generic matrix Q are the zeros of the 
generalized rows of Q. 

We define a generalized column or a generalized a x b submatrix of a matrix 
similarly. In particular, the condition of I-genericity can be strengthened; we say 
that a matrix Q of linear forms is I-generic if every generalized I x I submatrix of Q 

has independent entries. The condition of genericity of a matrix defined in this way 
is closely related to the geometry of the associated determinantal variety; see, for 
example, [Ell 

Finally, suppose that Q is any I-generic 2 x n matrix of linear forms on [pn and 
C ~ [pl its determinantal variety. As we have observed, the generalized rows of Q 

correspond to the points of C; for any [A, Jl] E [pl the common zeros of the linear 
forms ALj + JlMj on [pn give a point Pp •• /ll E C. We claim now that the common zero 
locus of any generalized column of C is an (n - I)-tuple of points on C; or, more 
precisely, that the entries of a generalized column of Q are polynomials of degree n 
on C ~ [pl having n - I common roots. 

To see this, observe that an entry Lj of Q will be a linear form on lPn-that 
is, a polynomial of degree n on C ~ [Pl-and that the zeros of this polynomial 
will include the point P[1.0]' On the other hand, we see that the remaining n - 1 
zeros P[A./ll of L j with Jl =f. 0 must be zeros of the other entry Mj in the column of Lj 

as well, i.e., the two entries of any column of Q correspond to polynomials on C 
having n - I roots in common. (An additional argument is necessary in case P[l.O] 

is a multiple root of Lj .) 

In this way we see that the generalized columns of Q correspond bijectively 
to polynomials of degree n - I on C (up to scalars). In particular, if we are 
given coordinates [X, Y] on C ~ [pl we can take the rows of the matrix Q (after 
multiplying on the left by a 2 x 2 matrix of scalars) to correspond to the points 
X = 0 and Y = 0, and the columns (after multiplying on the right by an n x n 
matrix of scalars) to correspond to the polynomials x n-l, X n- 2 y, ... , yn-l. 

If we then choose our homogeneous coordinates Zo, ... , Zn on [pn to correspond 
to the polynomials X n, Xn- l Y, ... , yn, we see that the matrix Q will have the 
standard form L; = Zi-l' Mi = Zi above. We summarize this conclusion as the 
following proposition. 

Proposition 9.4. Any I-generic 2 x n matrix of linear forms on [pn is conjugate 
to the matrix 
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Exercise 9.5. Show that if a 2 x n matrix of linear forms on pn is not I-generic, 
but satisfies the weaker condition that not every generalized row is dependent 
then its determinantal variety is a union of a rational normal curve C contained in 
a proper linear subspace of pn and some lines meeting C. Use this description to 
show in particular that, despite the fact that by Proposition 9.4 an open subset of 
all 2 x n matrices of linear forms on pn are conjugate, it is not that case that there 
are only finitely many conjugacy classes of such matrices. 

Example 9.6. Secant Varieties to Rational Normal Curves 

We can generalize Example 1.16 to give a determinantal representation of the 
secant varieties to a rational normal curve. This will be very useful in Example 9.10. 

Proposition 9.7. For any I ~ 0(, d - 0( the rank I determinantal variety associated 
to the matrix 

Z2 ... Zd-~ 1 
Z3 ... Zd-a+l 

Zd 

is the I-secant variety SI-l(C) of the rational normal curve C c pd. 

PROOF. We will prove this in the case 1= 2, leaving the general case as Exercise 
9.9. A key ingredient is the following lemma. 

Lemma 9.8. Let Sd be the vector space of polynomials of degree d on pi, and 
V ~ Sd a proper linear subspace without common zeros. Let W = Sl' V be the space 
of polynomials of degree d + 1 generated by all products of FE V with linear forms. 
Then 

dim(W) ~ dim(V) + 2. 

PROOF. A basic observation is that if V c Sd is k-dimensional and p E pl any 
point and we let Ordp(V) be the set of orders of vanishing of (nonzero) elements of 
Vat p, then the cardinality of Ordp(V) is exactly k. In particular, if the dimension 
of W = Sl' V is less than k + 2, (and V has no common zeros) then since 

Ordp(W) => Ordp(V) u (Ordp(V) + 1), 

it follows that we must have 

Ordp(V) = {O, 1, ... , k - I} 

and 



104 9. Determinantal Varieties 

Ordp(W) = {O, 1,2, ... , k - 1, k} 

The first of these statements says that we can find a basis {Fl' F2, ... , Fd for 
V with ordp(Fa) = k - ()( for all ()(, where we take p to be the zero of X. But 
now the three polynomials Xfl' Yfl' and Xf2 E W all vanish to order at least 
k - 1 at p, so that by the second statement there must be at least one linear 
relation 

al'XFl + bl·YFl + a2'XF2 == 0 

among them. Since XFl and YFl are independent, the coefficient a2 must be 
nonzero; we deduce that Fl and F2 must have a common divisor of degree d - 1. 
Similarly, since XF1 , YF1 , XF2, YF2, and XF3 all vanish to order at least k - 2 at 
p there must be at least two linear relations among them, and since there can be at 
most one linear relation among X Fl , YF1 , X F2, and YF2, there must be a relation 

al ' XFl + bl ' YFl + a2' XF2 + b2' YF2 + a3' XF3 == 0 

with a3 # O. As before, we deduce that Fl , F2, and F3 must have a common divisor 
of degree at least d - 2. Proceeding in this way we deduce that Fl , ... , Fa will have 
at least d - ()( - 1 zeros in common; if V has no common zeros we conclude that V 
is the vector space of all polynomials of degree d. D 

Now suppose we have a point [Zo, ... , Zd] E [p>d such that the matrix 

Z2 ... Zd_a] 
Z3 ... Zd-a+l 

Zd 

has rank at most 2. If we realize [p>d = SymdV as the space of linear functionals 
on the space Sd of polynomials of degree d on [p>l = [P>v, [Zo, ... , Zd] is a linear 
functional 

on Sd such that the composition 

Sa X Sd-a~Sd~K 

(where m is multiplication) has rank 2. This means that there exists subspaces 
Vl C Sa and V2 C Sd-a, each of codimension 2, such that the products Vl ' Sd-a 
and Sa' V2 both lie in the kernel V c Sd of cpo If either Vl . Sd-a or Sa' V2 is equal 
to V, then by our lemma it follows that V has a common zero, i.e., cp is a point on 
the rational normal curve. On the other hand, if both Wl = Vl . Sd-a and W2 = Sa' V2 
have codimension 2 in Sd, then they must each have a common divisor Pi of degree 
2; indeed they must each be the space of polynomials of degree d divisible by Pi' 

Now, since the W; do not span Sd' either they are equal or their intersection 
is a subspace of co dimension 3 in Sd and they together span V. In the latter 
case, the polynomials Pi must have a common root, which is then a common 
zero of V, so that once more cp will be a point on the rational normal curve. 
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In the former case, cp will be a linear form on Sd vanishing on the space of 
polynomials divisible by P = P1 = P2 , which is to say, if P has distinct roots 
q and r, a linear combination 

cp(F) = a' F(q) + b· F(r) 

of the linear forms given by evaluation at q and r. cp is thus a point on the 
secant variety of the rational normal curve. Lastly, in case P has a double root 
q, it is not hard to check that cp lies on the closure of the linear combinations 
given earlier as r ranges over [pl. 0 

Note as a corollary that for any point [Zo, ... , Zd] E [pd, the rank 1 of the 
matrix 

Z2 ... Zd_a] 
Z3 ... Zd-a+1 

Zd 

does not depend on il(, as long as 1 S il( S d - 1: in general, 1 is simply one greater 
than the dimension of the smallest secant plane to the rational normal curve 
containing [Zo, ... , Zd]. 

Exercise 9.9. Give a similar argument to establish Proposition 9.7 in general. 

Example 9.10. Rational Normal Scrolls III 

Consider next a I-generic 2 x k matrix 

O(Z) = (L 1 (Z) ... Lk(Z») 
M 1(Z) ... Mk(Z) 

of linear forms on lPn, and the corresponding determinantal variety 

'I' = {[Z]: rank O(Z) = I}. 

To describe '1', note that for any homogeneous 2-vector [A, II] E [pi, the common 
zero locus of a generalized row of 0 

Ap"l'l = {[ZJ: AL1(Z) + IlM 1(Z) = ... = ALk(Z) + IlMk(Z) = O} 

is a linear space [pn-k in lPn, and that the variety 'I' is just the union, over all 
[A, II] E [pi, of these linear spaces. Given that in case k = n the determinantal 
variety is a rational normal curve and in case k = 2 it is a quadric of rank 3 or 4, it 
is not perhaps surprising that the variety 'I' is in general a rational normal scroll of 
dimension n - k + 1, a fact that we will now proceed to establish. 

We will focus on the case k = n - 1 in the following; the general case is only 
notationally more complicated. We start by showing that conversely every rational 
normal surface scroll is a determinantal variety. 
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Exercise 9.11. Show that the determinantal variety 

'P = {[Z]: rank (Zo ... Z,-l Zl+l 
Zl ... Z, Z,+2 

is the rational normal scroll X"n-,-l C pn. 

With this said, our main statement is the following proposition. 

Proposition 9.12. Any 1-generic 2 x n - 1 matrix n of linear forms on pn is conju­
gate for some I to the matrix 

no = (Zo ... Z,-l Z,+1 .. , Zn-l) 
Z I . . . Z, Zl+ 2 . . . Zn 

PROOF. We start by observing that if H ~ pn-l C pn is a general hyperplane, 
then the restriction of n to H will again be 1-generic; this is equivalent to saying 
that H will not contain any of the lines Ap.,ltl coming from the generalized rows 
of n. It follows, if H is given by the linear form W; that modulo W the matrix n can 
be put in the normal form of Proposition 9.4; i.e., n is conjugate to a matrix of the 
form 

( Zl + al,l W Z2 + al ,2 W ... Zn-l + al,n-l W). 
Z2 + a2,1 W Z3 + a2,2 W '" Zn + a2,n-1 W 

After simply relabeling the variables Zi' we can take this to be 

( Zl + al W Z2 + a2 W ... Zn-l + an- l W). 
Z2 Z3 ... Zn 

We now want to multiply this matrix on the left by an invertible (n - 1) x (n - 1) 
matrix B = (bi ) of scalars to put it in the desired form, i.e., so that the (k + 1)st 
entry in the first row equals the kth entry in the second row for all but one value of 
k between 1 and n - 2. Each such requirement imposes linear conditions on the bi,i; 
for example, the first says that 

bl,l = b2,2' b2,l = b3,2, ... , bn- 2,1 = bn- I,2 

b1,2 = bn-l,l = 0 and 

a2b2,2 + ... + an- Ibn- I,2 = 0 

and the kth that 

bl .k = b2,k+I' b2,k = b3,k+I, ... , bn- 2,k = bn-l,k+l 

bl ,k+1 = bn-l,k = 0 and 

a2b2,k+1 + .. , + an- l bn-l,k+l = O. 

The condition that the relations (*k) hold for all but one value I of k says that the 
matrix B is constant along diagonals (except between the lth and (l + 1)st columns), 
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zero on the top and bottom row (except in the first and (l + l)st entry of the top 
row and Ith and last entry of the bottom row), and its columns (except for the first 
and the (l + l)st) are orthogonal to (a l , ... , an- l ). The picture of B is thus 

b3 b2 bl 0 0 C3 C2 C l 

b4 b3 b2 bl 0 C4 C3 C2 

o b4 b3 b2 bl 

o 
o 
o 

o 
o 
o 

b4 b3 b2 C6 Cs C4 

o b4 b3 o 
o 0 b4 o o 

In particular, B will be determined by a pair of vectors b = (bl , ... ,bn- I ) and 
C = (c l , ... , cl+d appearing in the first and (I + l)st columns (in this example, 
n = 9 and I = 5). Now, for any m, let Am be the matrix 

a3 ... am+ l ] 

a4 ... am+2 

an- l . 

The relations (*k) then say that the vectors band C must lie in the kernels of the 
matrices An- I and Al+l ' respectively. Thus, we can take I to be the smallest integer 
such that Al+l has a kernel (by simple size considerations I will always be less than 
or equal to (n - 1)/2) and choose bE Ker(Al+d any nonzero vector; we can then 
take C a general element of Ker(An _ I), which for reasons of size will have kernel of 
dimension at least n - 21 - 1 ~ 2 (in the "balanced" case 1 + 1 = n - 1 we simply 
have to choose band C a basis for Ker(AI+1))' 

The question now is why the matrix B is nonsingular, given these choices. To see 
this, we go back to Proposition 9.7, which describes in more detail the ranks of the 
matrices Am in terms of the location of the point A = [a 2 , ••• , an- l ] in relation to 
the secant varieties to the rational normal curve 

C - {[I 2 n-3]. fIl)l} fIl)n-3 - , t, t , ... , t . t E It"" Cit"". 

Specifically, Proposition 9.7 identifies the integer I as the smallest integer such that 
A lies on an I-secant plane Pl' ... , PI to C; indeed the proof shows that the vector 
b is just the vector of coefficients of the polynomial P of degree 1 with roots at the 
points Pi' Now, for m between 1 and n - 2 - 1, we know that A can lie on no 
m-secant plane to C except one containing the plane Pl' ... , PI (consider the 
projection of C from the plane Pl' ... , PI-l: the image will again be a rational 
normal curve C in IPn- I- 2, with A mapping to PI' which we know cannot lie on any 
secant plane q 1, ... , qm to C for m ~ n - 1 - 2 unless qi = PI for some i). By the same 
token, however, for m = n - I - 1, A will lie on many m-secant planes ql' ... , qm 
with {ql' ... , qm} disjoint from {Pl' ... , PI}; so that the general element of the kernel 
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of the matrix A,,_I will be the vector of coefficients of a polynomial Q with roots q1' 
••. , Q,,-1-1 disjoint from {P1' ... , PI}' By Lemma 3.6, then, we see that the matrix B 
is nonsingular. 0 

Exercise 9.13. State and prove the analogs of Exercise 9.11 and Proposition 9.12 
for 2 x k matrices of linear forms on P" and rational normal scrolls in general. 

Exercise 9.14. Use Exercise 9.13 to verify the description of rational normal scrolls 
given in Example 8.39. 

Observe also that, inasmuch as all determinantal varieties '¥ c P" given by 
matrices of linear forms are intersections of the generic determinantal variety 
Mk c M with linear subspaces of M, Exercise 9.11 and Proposition 9.12 subsume 
Exercises 8.18 and 8.28. Indeed, the general statement we can make is that every 
rational normal scroll is the intersection of the Segre variety ~k 1 = q(pk X P 1) C 

p 2k+1 with a linear subspace P" c p2k+1. ' 

There is an alternative proof of Proposition 9.12 (or rather the generalization of 
it to 2 x k matrices for arbitrary k), communicated to me by Frank Schreyer. As 
before, we consider a I-generic 2 x k matrix 

O(Z) = (L 1(Z) ... Lk(Z») 
M 1 (Z) . . . Mk(Z) 

of linear forms on P". Assume that the entries of the matrix 0 together span the 
vector space W of linear forms on P". We claim that for some sequence of integers 
a1 , ••• , al (l = n - k) this will be conjugate to the matrix 

o = (Zo ... Za'-1\ Za, +1 •.. Za2-1\ Za2+1 ... Za'-1\ Za,+1 ... Z"-1) 
a Z1'" Za, Za,+2'" Za2 Za2+2'" Za, Za,+2'" Z" 

i.e., to a matrix consisting of I + 1 blocks of size 2 x a1' ... ,2 x aI' with each block 
a catalecticant, that is, a matrix A with ai,j+1 = ai+1,j for all i, j. (Note that as an 
immediate corollary in case the entries of 0 span a subspace of W of dimension 
m + 1 < n + 1 we can put 0 in the same form, with n replaced by m and I by m - k.) 

PROOF. Let U1 c W be the span of the entries in the first row of 0 and U2 

similarly the span of the entries in the second row; by the condition that 0 is 
I-generic the dimension of each Ui must be k. It follows that the intersection 
U1 n U2 will have dimension exactly 2k - n - 1, and multiplying 0 on the right by 
a suitable k x k matrix we can assume that this intersection U1 n U2 is exactly the 
span of the entries M l' ... , M 21-,,-1' Let 0' be the submatrix consisting of the first 
2k - n - 1 columns of O. 0' is again I-generic, and so by induction on k we can 
make a change of variables in the Zi and multiply 0 on the left and right by scalar 
matrices to put 0' in the form 

(Zo ... Zb'-1\Zb'+1 ... Zb2-1\Zb2+1 ... Zb,'-1\Zb,'+1 ... Z"'-1) 
Z1 ... Zb, Zb,+2 ... Zb2 Zb2+2 '" Zb,' Zb,'+2 ... Z", 

where n' is the dimension of the span ofthe entries of 0', and I' = n' - (2k - n - 1). 
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We now look at the remaining n + 1 - k columns of O. In particular, consider 
the variables Zb i ' i = 1, ... , l' and Zn': by construction, these are in the span UI of 
the upper-row entries of 0, but their span is visibly independent from the span of 
the first row of 0'. It follows that after multiplying 0 on the right by a suitable scalar 
matrix, 0' will be unchanged and these variables will appear as the upper entries in 
the next l' + 1 columns of O. 

What are the entries in the lower row ofthese columns? All we know is that they 
are independent modulo the span of the entries of 0', so that we can take them to 
be among the coordinates Z" with Il( > n'. We can then insert these columns at the 
right-hand ends of the corresponding l' + 1 blocks of 0'; after renumbering the 
variables the submatrix 0" consisting of the first (2k - n - 1) + (1' + 1) = n' + 1 
columns of 0 will have the form 

where ai = hi + i. 
Finally, we have k - (n' + 1) columns of 0 left. But the entries of the first 

n' + 1 span a space of dimension n' + l' + 2 in the (n + I)-dimensional space W, 
and by hypothesis the entries of 0 altogether span W. Since 

n + 1 - (n' + l' + 2) = n + 1 - (n' + (n' - (2k - n - 1)) + 2) 

= 2(k - (n' + 1)) 

it follows that the entries of these last columns are independent modulo the entries 
of 0". We can thus take them to be the coordinates Zn'+1'+2' ... , Zn' and thinking 
of these columns as 

1 - l' = k - (n' + 1) 

blocks of width 1 we see we have put 0 in the desired form. o 

To give a geometric interpretation to this argument, what we are doing here is: 
i. assuming the rank 1 locus associated to the matrix 0 is not a cone; ii. projecting 
this determinantal variety, which is swept out by a one-parameter family of (n - k)­
planes, from one of those planes; and iii. if the resulting variety turns out to be a 
cone, projecting from the vertex of that cone. 

Example 9.15. Rational Normal Scrolls IV 

The preceding description of rational normal scrolls gives rise to yet another 
classical construction of scrolls (in fact, it is equivalent to it). This is analogous to 
the description of a twisted cubic as the residual intersection of two quadrics 
containing a line L c 1P3. (Given a collection of varieties Xi C IPn containing a 
variety Z c IPn and such that Z is an irreducible component of their intersection, 
we call the union of the remaining irreducible components of the intersection the 
residual intersection of the Xi') 
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To start, suppose we have a rational normal k-fold scroll X c lPn, given to 
us as the determinantal variety associated to a matrix of linear forms 

r = (Ll(Z) ... Ln-k+l(Z») 
Ml(Z) ... Mn-k+l(Z) 

Let A c IPn be the (n - 2)-plane described by the vanishing of the first column 
ofthis matrix. Then for any [Z] E IPn - A, the matrix r will have rank 1 if and only 
if the remaining columns of r are dependent on the first, that is, if and only if the 
(1, j)th minor ofr vanishes for j = 2, ... , n - k + 1. Thus, ifwe let Qj be the quadric 
hypersurface defined by the (1, j)th minor, we see that 

Q2 (") Q3 (") ... (") Qn-k+l = AuX. 

In English, then, the scroll X is the residual intersection of n - k quadric hyper­
surfaces containing an (n - 2)-plane A c !Pn• 

We have a converse to this statement as well. Suppose now that A c IPn is 
a codimension 2 subspace, and Q2' ... , Qn-k+l quadric hypersurfaces containing A. 
Since the ideal of A is generated by two linear forms-call them Ll (Z) and M 1 (Z)­
we can write each Qj as a linear combination of Ll and Ml with homogeneous 
linear coefficients: 

QiZ) = Mj(Z)· Ll (Z) - Lj(Z)· M 1 (Z). 

It follows then that, away from A, the common zero locus of the Qj is the rank 1 
locus of the matrix 

( Ll(Z) ... L n- k+1(Z») 
Ml(Z) ... Mn-k+l(Z) ' 

which, as long as it satisfies the independence condition, will be a rational normal 
scroll. 

Exercise 9.16. Show that if Q2, ... , Qn-k+1 are general quadrics containing A, then 
the matrix r does satisfy the independence condition; conclude that the residual 
intersection of general quadrics containing an (n - 2)-plane A c IPn is a rational 
normal scroll. 

We can use a similar idea to give a cute solution to Exercise 1.11, that is, to show 
that conversely any two quadrics Ql' Q2 containing a twisted cubic curve C c !p3 

intersect in the union of C and a line. To see this, represent the twisted cubic as the 
zero locus of the 2 x 3 matrix 

(~: ~~ ~:). 
Now, each quadric Q" containing the twisted cubic can be written as a linear 
combination of the 2 x 2 minors of this matrix, that is, as the determinant of a 
3 x 3 matrix 
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(the coefficients Ili here do not correspond exactly to those of Exercise 1.11). The 
locus outside of C where two such both vanish is thus the rank ~ 2 locus of the 
4 x 3 matrix 

l Zo ZI Z2] 
ZI Z2 Z3 , 
III 112 113 

VI V2 V3 

which, if the vectors 11 and V are independent, is the same as the locus of the 
two 3 x 3 minors 

Zo ZI Z2 ZI Z2 Z3 

III 112 113 III 112 113 = 0, 
VI V2 V3 VI V2 V3 

which is a line. 

More General Determinantal Varieties 

To generalize one step further, suppose now that {Fi,j} is an m x n matrix of 
homogeneous polynomials on a variety X c [p>\ with deg(Fi) = di,j' and assume 
that for some pair of sequences of integers {e 1, ... , em} and {II, ... , In} we have 
di,j = ei - jj (as will be the case, for example, if the degrees of the Fi,j are constant 
along either rows or columns). The minor determinants of the matrix (Fi) are then 
homogeneous polynomials, and the subvariety Y c X they cut out is again called 
a determinantal subvariety of X. (For those familiar with the notion of vector 
bundles, this is still a special case of a more general definition; we can define a 
determinantal subvariety of X to be the locus where a map ((): E --+ F between two 
vector bundles E, F on X has rank at most k.) 

Exercise 9.17. Let S ~ [P>I X [P>I C [p>3 be the Segre surface ZOZ3 - ZIZ2 = O. Let 
C c S be the curve given as the locus of a bihomogeneous polynomial F(X, Y) of 
bidegree (m, m - 1) in the variables X, Yon [P>I x [P>I. Show that C c [p>3 may be 
described as a determinantal variety of the form 

C = {[Z]: rank (Zo ZI G(Z)) ~ I} 
Z2 Z3 H(Z) 

where G and H are homogeneous polynomials of degree m - 1; and 
conversely. 
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It may be that having generalized the notion of determinantal variety to this 
extent, the suspicion will enter the reader's mind that every variety X c IPn is 
determinantal. This is true in a trivial sense; if X is the zero locus of homogeneous 
polynomials Fl , ••• , Fk , then it is the determinantal variety associated to the 1 x k 
matrix (Fl' ... , Fk)' It is not, however, the case that every variety is non trivially 
determinantal, as the following example shows. 

Exercise 9.18. Show that for d sufficiently large not every surface of degree d 
in 1P3 is expressible as the determinant of a d x d matrix of linear forms. 

Symmetric and Skew-Symmetric Determinantal 
Varieties 

To mention one other class of determinantal varieties, there are analogous notions 
of symmetric and skew-symmetric determinantal varieties. We mention here a 
couple of such varieties we have already seen in other contexts. 

Exercise 9.19. Show that the quadratic Veronese variety v2 (lPn) c lP(n+l l(n+l l/2-1 is 
the locus where a certain symmetric (n + 1) x (n + 1) matrix of linear forms on 
lP(n+1)(n+1l/2-1 has rank 1. 

Exercise 9.20. Show that the Grassmannian G(l, n) c IPn(n+l l/2-1 is the locus where 
a certain skew-symmetric (n + 1) x (n + 1) matrix oflinear forms on [p>n(n+l j /2-1 has 
rank 2. 

Just as in the case of the Segre varieties, the determinantal descriptions of 
the Veronese varieties and the Grassmannians allow us to describe their secant 
varieties as determinantal. 

Note finally that Exercise 9.19, in combination with Exercise 2.9, allows us 
to conclude that any projective variety is isomorphic to a determinantal variety 
given by a matrix with linear entries. 

Example 9.21. Fano Varieties of Determinantal Varieties 

We come now to the interesting problem of describing linear spaces lying on 
determinantal varieties, in other words, vector spaces of matrices of low rank. To 
be precise, we let Mk be the variety of m x n matrices of rank at most k in the 
projective space M of all m x n matrices and we ask for a description of the variety 
F1(Md of i-planes on M k • 

Start with the simplest case, the variety Ml of matrices ofrank 1. As we saw, this 
is the Segre variety IPm- l x [p>n-l C [p>mn-l; under the Segre map the fibers of the 
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projections of IP'm-l x IP'n-l onto its two factors are carried into linear subspaces 
IP'n-l and IP'm-l c IP'mn-l, respectively. Call these families oflinear spaces the rulings 
of the Segre variety M 1; we then have the following theorem. 

Theorem 9.22. Any linear subspace 1\ c Ml C M ~ IP'mn-l is contained in a ruling of 

M 1 • 

PROOF. Translated into the language of linear algebra, this amounts to saying 
that if V c Hom(Km, Kn) is any vector space of matrices such that all A E V 
have rank at most 1, then either all nonzero A E V have the same kernel or 
all A i= 0 E V have the same image. To see this, note that if any two nonzero 
elements A, B E V had both distinct images and distinct kernels, we could find 
vectors v, W E K m with v E Ker(A) and W E Ker(B) but not vice versa; then B(v) and 
A(w) would be independent and any linear combination a' A + f3. B with nonzero 
coefficients a, f3 would have rank 2. Thus for any two elements A, B E V, either the 
kernel of La.p = a' A + f3. B is constant and Im(La.p) varies with [a, f3] or vice 
versa. In the former case, any third element C E V must have its kernel in common 
with all the La,p, since it can have its image in common with at most one; in the 
latter case, the image of C must be that of La,p 0 

If m> n, the theorem implies in particular that the Fano variety Fm-1(Md 
is isomorphic to IP'n-l and if m = n to two disjoint copies of IP'n-l. 

Exercise 9.23. Generalize Exercise 6.8 to show that if m > n the Pliicker embedding 
of the Grassmannian G(m - 1, mn - 1) into projective space carries the subvariety 
Fm - 1 (Md ~ IP'n-l into a Veronese variety. 

The linear spaces lying on Mk with k ~ 2 are less uniformly behaved, In M 2 , for 
example, there are linear spaces defined analogously to the rulings of M1 : we 
can choose a subspace K m - 2 c K m and look at the space of matrices A with 
Ker(A) :::J V, we can choose W ~ K2 C K n and look at the space of A with 
Im(A) c W, or we can choose a hyperplane V c K m and a line W c K n and look 
at the space of matrices A such that A(V) c W These all yield maximal linear 
subs paces of M 2' Unlike the case of M 1, however, these are not all the maximal 
linear subspaces: consider, for example, in the case m = n = 3, the space of skew­
symmetric matrices. The situation for k = 2, 3, and 4 is pretty well understood, but 
the general picture is not. 

Exercise 9.24. Consider the case m = n = 3 and k = 2, (i) Show that any linear 
space 1\ ~ IP'I C M2 of dimension I ~ 3 either consists of matrices having a common 
kernel or of matrices having a common image. (ii) Show that any linear subspace 
1\ ~ IP'2 C M2 is either one of these types or, after a suitable change of basis, the 
space of skew-symmetric matrices. 



LECTURE 10 

Algebraic Groups 

As with most geometric categones, we have the notion of a group object in classical 
algebraic geometry. An algebraic group is defined to be simply a variety X with 
regular maps 

m:X x X--+X 

and 

i: X --+ X 

satisfying the usual rules for multiplication and inverse in a group (e.g., there 
exists a point e E X with m(e, p) = m(p, e) = p and m(p, i(p» = e Vp E X). By the 
same token, a morphism of algebraic groups is a map cp: G --+ H that is both a 
regular map and a group homomorphism. 

The fundamental examples are the following classical groups. 

Example 10.1. The General Linear Group GLnK 

The set of invertible n x n matrices is just the complement, in the vector space A n2 

of all n x n matrices, of the hypersurface given by the determinant; it is thus a 
distinguished open subset of An2 and therefore an affine variety in its own right. 
The multiplication map GLnK x GLnK --+ GLnK is clearly regular; that the in­
verse map is so follows from Cramer's rule: for A an invertible n x n matrix, 

(A -1 )i,j = ( -1 )i+j det(Mj,;}/det(A) 

where Mj,i is the submatrix of A obtained by deleting the jth row and ith column. 

The subgroup SLnK c: GLnK is a subvariety, closed under the group operations, 
and so an algebraic subgroup; the quotient group PGLnK c: IPn2-1 (this is the 



10. Algebraic Groups 115 

quotient of GLnK by its center, the subgroup of scalar matrices) is seen to be an 
algebraic group the same way GLnK is. 

Example 10.2. The Orthogonal Group SOnK (in characteristic "# 2) 

This is a priori defined as a subgroup of SLnK. Specifically, assume that the 
characteristic of K is not 2 and let Q be a nondegenerate symmetric bilinear form 

Q: V x V-.K 

on an n-dimensional vector space V, and consider the subgroup of the group 
SL(V) given by 

SO(V, Q) = {A E SL(V): Q(Av, Aw) = Q(v, w) '<Iv, w E V}. 

This is clearly a subvariety of SL(V) closed under composition and inverse, and 
hence an algebraic group. Actually, the condition that A preserve Q implies that 
the determinant of A is ± 1, so that if we allow A E GL(V) rather than SL(V) we 
get a 71./2 extension of SO(V, Q), denoted simply O(V, Q). 

Note that we could equivalently have defined SO(V, Q) as the subgroup of 
SL(V) preserving the quadratic polynomial q(v) = Q(v, v) on V. To see this, observe 
that for any v, w E V 

Q( ) = q(v + w) - q(v) - q(w) 
v, w 2 

so that q determines Q. Thus, if A E SL(V) and q(Av) = q(v) for all v E V, then 
Q(Av, Aw) = Q(v, w) for all v, WE V, i.e., A E SO(V, Q). 

If we take V = Kn and the form Q to be given simply by dot product 

Q(v, w) = 'v· w, 

then the subgroup SO(V, Q) is denoted SOnK and may be described as 

SOnK = {A E SLnK: 'A· A = I}. 

As before, if we allow A E GLnK, we obtain a 71./2 extension of SOnK with two 
connected components, called OnK. Given any nondegenerate symmetric bilinear 
form Q on a vector space V we may find a basis for V-that is, an identification of 
V with Kn-in terms of which Q is given in this way. Thus, all groups SO(V, Q) with 
Q a nondegenerate symmetric bilinear form on the n-dimensional vector space V 
over K are in fact isomorphic to SOnK. 

SOnK has a nontrivial center {± I} if n is even; the quotient by this center is 
naturally a subgroup of PGLnK denoted PSOnK (if n is odd, PSOnK = SOnK). 
Similarly, we can for any n form the quotient POnK = OnK/{ ± I}; if n is odd this 
is irreducible, while for n even this still has two disjoint irreducible components. 
Lastly (though we won't establish it here), it is also the case that for any n there is 
an irreducible algebraic group, called SpinnK, that admits a map of degree 2 to the 
group SOnK. 
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Example 10.3. The Symplectic Group SP2nK 

This is defined in the same way as SOnK, except that the nondegenerate bilinear 
form Q is taken to be skew-symmetric rather than symmetric, and the dimension 
of the vector space must correspondingly be even. 

Group Actions 

By an action of an algebraic group G on an algebraic variety X, we mean a regular 
map 

<p: G x X ~X 

satisfying the usual rules of composition, that is, <p(g, <p(h, x)) = <p(gh, x). (Given 
such an action, we will often suppress the <p and write g(p) for <p(g, p).) By a 
projective action on a variety X c [pln we mean an action of G on [pln such that 
<p(g, X) = X for all 9 E G. An even stronger condition is to require that the action 
of G on X lift to an action of G on the homogeneous coordinate ring S(X) of X in 
[pln; in this case we say that the action of G on X is linear. 

Example 10.4. PGLn+1K acts on IPn 

Clearly, the basic group action of the subject is the action of PGLn+l K on [pln. 
We should remark here that this action is not linear. On the other hand, if 
X = vA[pln) c [plN is the image of [pln under the Veronese map of degree d, then the 
action of PGLn+1K on X is projective (we will see this explicitly in many of the 
following examples) and is linear iff n + 1 divides d. 

One other aspect of the action of PGLn+1 K on the projective space [pln (which 
we will prove in Lecture 18) is that PGLn+1 K is the entire group of automorphisms 
of [pln. 

Here is a classical and easy fact about the action of PGLn+l K on [pln. 

Exercise 10.5. Show that if {Pl' ... , Pn+ 2} C [pln is any set of n + 2 points in general 
position (i.e., with no n + 1 lying on a hyperplane) and {ql'"'' qn+2} any other 
such set, there is a unique element of PGLn+1 K carrying Pi to qi for all i. 

Exercise 10.6. Let X c [pln be any variety. Show that the subgroup 

Aut(X, [pln) = {A E PGLn+1 K: A(X) = X} 

is an algebraic subgroup of PGLn+1 K. This is called the group of projective motions 
of Xc [pln. 

Note. Aut(X, [pln) is a subgroup of the group Aut(X) of all automorphisms of the 
variety X. It's not hard to come up with examples where it's a proper subgroup, 
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i.e., where there exist automorphisms of X not induced by motions of the projective 
space, as in Exercise 10.7. There also exist varieties X such that Aut(X) is not an 
algebraic group at all, though examples of these are somewhat harder to come 
by given our limited techniques. (For those with the necessary background, the 
simplest I can think of is the blow-up X of the plane 1P2 at the nine points of 
intersection of two general cubic curves; X is then a family of elliptic curves with 
eight sections, generating a group 7L 8 of automorphisms of X.) 

Exercise 10.7. Give examples of projective varieties Xc IPn such that Aut(X, IPn) ~ 
Aut(X). (*) 

Group actions play an important role in algebraic geometry, for a number of 
reasons. At an elementary level (as we will see in later examples), many of the 
varieties we have encountered so far-Veronese and Segre varieties, Grassmannians, 
generic determinantal varieties, rational normal scrolls, for example-admit non­
trivial projective actions by subgroups of classical groups; an understanding of 
these actions is essential to understanding the geometry of the varieties in question. 
In fact, it would probably be fair to say that a characteristic of the sort of varieties 
we consider here-those that can be studied for the most part without the aid of 
modern tools such as sheaves or scheme theory-is the presence of a group action. 

On a somewhat deeper level, we have already referred to the existence of param­
eter spaces, that is, varieties whose points correspond to members of a family of 
varieties in a projective space lPn, such as the variety of hypersurfaces of a given 
degree d in IPn. Since PGLn+1K acts on lPn, it will act as well on these parameter 
spaces; this action is clearly central to the study of these families of varieties up to 
projective equivalence. This leads to the subject of geometric invariant theory, about 
which we can only hint at this stage (see Lecture 21 for a brief discussion of this 
topic). 

Example 10.8. PGL2 K Acts on [FD2 

Assume char(K) =1= 2. If we realize GL2 K as the group of automorphisms of a 
two-dimensional vector space V, then it also acts on the symmetric square Sym2 V; 
since the center of GL2 K still acts by 
scalar multiplication on Sym2 V, the 
quotient group PGL2 K acts on the 
projective plane IP(Sym2V) ~ 1P2. Alter­
natively (and equivalently) we may 
consider the action of PGL2 K on the 
dual space IP(Sym2 V*), which we think 
of as the space of quadratic polynomials 
on IPI up to scalars; the action of 
PGL2 K on pI naturally induces an 
action on this space. 

• [v·w] 
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Observe that this action preserves the subset in P(Sym2V) ~ p 2 of squares, that 
is, vectors of the form V' v. On the other hand, this subset is just the conic curve 
C = V2(P 1) given as the image of the quadratic Veronese map. If we accept the 
statement that Aut(P 1) = PGL2 K, we conclude that 

PGL2 K = Aut(C, P2), 

i.e., the group of projective motions of a plane conic is exactly the action of PG L( V) 
on P(Sym2V). 

Note also that any element of Sym2 V that is not a square is the product of two 
independent linear factors, and any such product can be carried into any other by 
an element of PGL2 K. There are thus exactly two orbits of the action of PGL2 K 
on p2, the conic curve C and the complement p 2 - C. 

Example 10.9. PGL2 K acts on [p>3 

Assume now that char(K) "# 2, 3. In the same vein as the preceding example, if 
V is a two-dimensional vector space then PGL(V) acts on the projective space 
P(Sym3 V) ~ p 3 (or equivalently, on the dual space of polynomials of degree 3 on 
p 1 modulo scalars). Analogously, it 
preserves the subset C c p 3 of cubes, 
which we have seen is the twisted cubic 
curve; the group of projective motions 
of the twisted cubic curve is thus the 
action of PGL2K on p3. 

p2 = P(Sym2V) 

As in the previous case, there are 
finitely many orbits of this action; the 
set C of cubes, the locus ~ of products of 
squares with linear factors (i.e., points 
[v2 • w], with v, w independent), and the set ~ of products of pairwise independent 
linear factors. 

Exercise 10.10. Show that the union ~ u C is a quartic surface (that is, a hyper­
surface of degree 4) in p3. (In fact, it is the tangential surface of C, that is, the 
union of the tangent lines to the twisted cubic curve C). 

Note that, armed with this description of the orbits of Aut(C, p3), the second 
half of Exercise 3.8 (that there are, up to projective equivalence, only two pro­
jections niC) c p2 of the twisted cubic from points p ¢ C) follows immediately. 

Exercise 10.11. Since PGL2 K acts on p3 preserving the twisted cubic curve C, it 
thereby acts on the space of quadric surfaces in p3 containing C, which we have 
seen is parametrized by p2. Show that this action of PGL2 K on p2 is the same as 
that described in Example 10.8, and identify the two orbits. (*) 



Group Actions 119 

Example 10.12. PGL2 K Acts on pn (and on p4 in particular) 

Assume that char(K) is either ° or greater than n. The action ofPGL2K = PGL(Y) 
on the projective space !P(Symny) ~ !pn may be described similarly as the group of 
projective motions of the rational normal curve C c !P(Symny) consisting of nth 
powers [v· ... · v]. What becomes much more interesting in the general case is the 
space of orbits of this action; we will describe this in the (relatively) simple 
case n = 4. 

To begin with, there are four orbits of PG L2 K on !p4 not consisting of products 
of four independent factors: we have the rational normal quartic curve 

C = {[v4 ], v E V}; 

in addition, there are the loci 

and 

~ = {[v 3 • w], v, w independent E Y} 

<II = {[v2 . w2 ], v, w independent E Y} 

'P = {[ v2 . U • w], v, U, w pairwise independent E Y}. 

Observe that C is the only closed orbit; ~ and <II contain C in their closure and are 
contained in turn in the closure of 'P. In terms of constructions we have not yet 
introduced, ~ is the tangential surface of C, 'P the union of the osculating 2-planes 
to C and <II the union of the pairwise intersections of distinct osculating 2-planes. 

Things get more interesting when we look at the orbits corresponding to pro­
ducts [v· u· w· z] of pairwise independent factors. The point is, these are not all 
conjugate: such an element of !P(Sym4y) corresponds to a fourtuple of distinct 
points on !pI (actually (!P l )*, if we're keeping track of these things), and not every 
collection of four points z I' ... , Z4 E !pI can be carried into any other four. What 
we can do is to carry three of the points Z2' Z3' and Z4 to 0,00, and 1 in that order; 
the remaining point will then be sent to the point A, where A is the cross-ratio 

Now, permuting the four points Zi has the effect of changing the cross-ratio from A 
to either 1 - A, I/A, 1/(1 - A), (A - 1)/A, or A/(A - 1). Thus, two fourtuples can be 
carried into each other if and only if the subsets {A, 1 - A, 1/ A, 1/(1 - A), (A - 1)/ A, 
A/(A - I)} c K - {O, I} coincide. To characterize when this is the case, we intro­
duce the celebrated j-function 

. (A 2 -A+l)3 
J(A) = 256· A 2. (A _ 1)2 

(the factor of 256 is there for number-theoretic reasons). We have the following 
exerCIse. 
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Exercise 10.13. Show that two subsets {a, 00, 1, A} and {a, 00, 1, A'} C IPI are con­
gruent if and only if the values j(A) = j(A.'). 

From this exercise it follows that we have one orbit OJ for each value of j in K, 
completing the list of orbits. 

We will mention here a few facts about the orbits OJ; they can all be worked 
out directly, though we will not do that here. To begin with, for most values of j, 
the closure of the orbit OJ is a hypersurface of degree 6. Indeed, this is true for all 
values except j = ° and 1728. As it turns out, the closure nl728 is a variety we have 
run into before: it is the chordal variety of the rational normal quartic, which is a 
cubic hypersurface in ifb4. The variety no is also an interesting one; it is a quadric 
hypersurface containing the rational normal quartic. This yields an interesting fact: 
there is a canonically determined quadric containing the rational normal quartic 
C c ifb4, i.e., one that is carried into itself by any motion of ifb4 carrying C into itself. 
This can also be seen by classical representation theory, which says that as repre­
sentations of SL2 K, 

Sym2 (Sym4 V) = Sym8 V E9 Sym4 V E9 K. 

In this decomposition, the last two factors correspond to the space J (C)2 of quadrics 
in the ideal J(C) of C, while the last factor corresponds to the quadric no. 
Exercise 10.14. Which orbits of the action of PGL2K on ifb4 lie in the closure 
of a given orbit OJ? (*) 

In general, an explicit description of the space of orbits of the action of PGL2 K 
on IP" was worked out classically for n up to 6 (this was known as the theory 
of "binary quantics"); a number of qualitative results are known in general. 

Example 10.15. PGL3 K Acts on [p>5 

Assume char(K) #- 2. We will consider next the action of the group GL(V) ~ 
GL3K of automorphisms of a three-dimensional vector space V on the space 
Sym 2 v. This induces an action of PGL3K on the associated projective space 
IP(Sym2 V) ~ IPs. Equivalently, we may look at the action on the dual space 
IP(Sym2 V*) ~ IPs, which we may view as the space of conics in 1P2; an auto­
morphism of 1P2 naturally induces an automorphism of the space IPs of conics in 1P2. 

The question of what orbits there are in this action was thus already answered 
in Example 3.3: there is a closed orbit <l> corresponding to double lines (i.e., squares 
v· v E Sym2 V), another orbit 'I' corresponding to unions of distinct lines (i.e., 
products v· w of independent linear factors), and finally an open orbit correspond­
ing to smooth conics (i.e., those projectively equivalent to the Veronese image 
V2 (1P 1 )). To describe these orbits, observe that the first-the locus of squares 
[v2J-is just the Veronese surface V2(1P2) in IPs. Next, it's not hard to see that a 
quadric polynomial on 1P2 factors if and only if it can be written as the sum of 
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two squares, x2 + y2 = (x + iy)(x - iy), while conversely vw can be written as 
((v + w)j2? + (i(v - W)j2)2. The closure 'Ii = 'II u $ is thus just the chordal variety 
of the Veronese surface. 

We can deduce from this that there are, up to projective equivalence, only 
two varieties in p4 obtained as regular projections 1tp(S) of the Veronese surface 
S = V2(p2) C p5 (that is, projections from a point p E p5 not lying on S). 

Example 10.16. PGL3 K Acts on 1P'9 

Assume now that char(K) # 2,3. As was the case when we passed from the action of 
PGL2K on p2 and p3 to its action on pn for n ~ 4, the situation changes dramati­
cally when we look at the action ofPGL3K on the space P(Sym3V) ~ p9 (or, 
equivalently, on the space of cubic polynomials on p2 up to scalars). We will simply 
state here some facts about this action, without going through the verifications. 

To begin with, there are a number of orbits of PGL3K corresponding to 
reducible cubics (or ones with multiple components): triple lines (i.e., tensors of the 
form [v 3 ]) form a single orbit, as do sums of double lines and lines ([u' v2 ] with u, 
v E V independent). There are two orbits corresponding to cubics that are unions 
of three distinct lines; one where the lines are not concurrent (i.e., [U" v . w] with u, 
v, and w independent) and one where they are ([u' V· w] with u, v, and w pairwise 
independent and spanning a two-plane in V). There are similarly two orbits consist­
ing of cubics that are unions of conics and lines, one where the conic meets the line 
in two points, and one where it is tangent at one. 

Among the irreducible cubics, there 
are first of all the two cubics described 
in Exercise 3.8; these form two more 
orbits. Finally, there are the smooth 
cubics. Any smooth cubic can be, after a 
projective motion, brought into a cubic 
CA of the form 

y 2Z = X '(X - Z)'(X - AZ), 

and two such curves CA, CA, are projec­
tively equivalent if and only if the two 
subsets {D, 1, 00, A} and {D, 1, 00, X} 
can be carried into one another by a 
projective motion of pI-that is, if and 
only if the j-invariants 

. (A 2 -A+1)3 
J(A) = 256· )_2'U_-l)2 

coincide. The situation is thus very 
similar to that of the action of PGL2K 
on p4. 
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The diagram above indicates some of the obvious closure relationships among 
the orbits, especially those corresponding to singular cubics. There are some rela­
tively subtle ones, however, that are not indicated; for example, for every value of 
j E K, the orbit consisting of smooth cubics with j-invariant j contains in its closure 
the locus of cuspidal cubics (i.e., the orbit of cubics projectively equivalent to 
y2Z - X 3 ), but not the locus of triangles. 

Example 10.17. POnK Acts on !P'n-l 

Suppose char(K) =1= 2. We will consider next the action of the orthogonal group 
OnK on Kn and the corresponding action of POnK on [p>n-i. The only point we have 
to make here is that the action of POnK preserves the quadric hypersurface 

x = {[v]}: Q(v, v) = O}; 

conversely POnK is the entire group of projective motions of X, i.e., POnK = 
Aut(X, [p>n-i). 

Note in particular that both PGL2 K and S03K may in this way be identified 
with the group of projective motions of a conic curve X c [p>2, showing that these 
two groups are isomorphic. Similarly, the isomorphism of a quadric surface 
X c [p>3 with [p>i x [p>i induces an isomorphism of PS04K with PGL2 K x 
PGL2 K. Note that the actual group of projective motions of a quadric surface X 
is in fact a Z/2 extension of PGL2 K x PGL2 K; PGL2 K x PGL2 K is the 
subgroup fixing the two rulings of the quadric (the automorphism of K4 preserving 
the quadratic form Q and interchanging the rulings of X has determinant -1, and 
so does not appear in S04K). 

As a final example, we look at the action of GLnK on NKn and the induced action 
on the associated projective space. Clearly, this action preserves the Grassmannian 
G(k, n) c [P>(NKn), that is, the locus of totally decomposable vectors [v! /\ ... /\ vk ]. 

In fact, except in case n = 2k, this is the entire group of automorphisms of the 
Grassmannian, i.e., we have the following theorem. 

Theorem 10.19. For k < n12, 

Aut(G(k, n)) = Aut(G(k, n), [p>(NKn)) = PGLnK. 

In case n = 2k we have 

Aut(G(k, n)) = Aut(G(k, n), [p>(NKn)) => PGLnK 

where the latter inclusion has index 2. 

(HALF-PROOF). The proof of these facts consists of two parts, the first of which 
is to verify the first equality in each case, that is, to show that every automorphism 
of G(k, n) is projective. This is not deep-it comes down to the assertion that every 
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codimension 1 subvariety of G(k, n) is the intersection of G(k, n) with a hypersurface 
in IP(NKn)-but is beyond our means at present. Instead, we will here assume it 
and prove the remaining equality. 

The key to seeing the second equality is the observation made in Lecture 6 that 
any linear space A ~ 1P' lying on the Grassmannian G(k, n) c IP(NKn) is a sub­
Grassmannian of the form G(I, I + 1) or G(l, I + I)-that is, either the locus of 
k-planes containing a fixed (k - 1)-plane and lying in a fixed (k + I)-plane, or the 
locus of k-planes contained in a fixed (k + 1)-plane and containing a fixed (k - 1)­
plane. In particular, if k < n12, then every linear subspace A ~ IPn-k c G(k, n) is of 
the former type; explicitly, it is the locus of k-planes containing a fixed (k - 1)-plane. 
In other words, as stated in Exercise 6.9, the Fano variety 

Fn-k(G(k, n)) ~ G(k - 1, n). 

A projective motion of G(k, n) thus induces an automorphism of G(k - 1, n); 
given the statement that such an automorphism is always projective, it in turn 
will induce one on G(k - 2, n), and so on. We arrive in this way at an auto­
morphism of G(1, n) = IPn- 1 ; this is given by an element of PGLnK that in turn 
induces the given projective motion of G(k, n) c:: IP(NKn). 

In case n = 2k the Fano variety of (k - 1)-planes on G(k, n) will consist of two 
disjoint copies of G(k - 1, n) (to be pedantic, one copy of G(k - 1, n) and one copy 
of G(k + 1, n)); the argument here shows that the subgroup fixing these components 
individually is PGLnK. It remains thus just to show that there is indeed an auto­
morphism of G(k, n) exchanging them; we leave this as an exercise. 0 

Given this last statement, we can give another identification along the lines of 
the note on page 122: the connected component of the identity in automorphism 
group of the Grassmannian G(2, 4) is PGL4 K. However, since the Grassmannian 
G(2, 4) is just a quadric hypersurface in IPs we deduce that 

PGL4 K ~ PS06 K. 

Quotients 

One natural and important question to ask in the context of an action of a group 
G on a variety X is about the existence of quotients. What a quotient should be, 
naively, is a variety Y whose points correspond one to one to the orbits of G on X, 
and such that the corresponding map X --+ Y is regular; or equivalently, a surjective 
map n: X --+ Y of varieties such that n(p) = n(q) iff there exists 9 E G with g(p) = q. 
In fact, we want to require something a 
little stronger, namely, a quotient should 
be a variety Y and map n: X --+ Y such 
that any regular map p: X --+ Z to 
another variety Z factors through n if 
and only if p(p) = p(g(p)) for all p E X 
and 9 E G. (This prevents us from doing 

x 

y 

p • z 

/~ 
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something stupid like composing the map n with a map <p: Y --+ Y' that is one to 
one but not an isomorphism, and in particular clearly makes the quotient unique 
if it exists.) When there is a variety Yand map n: X --+ Y satisfying this condition, 
we say that the quotient of X by the action of G exists. 

That such a quotient need not exist in general is clear, even in the simplest 
cases. For example, K* = GL I K acts on A I by multiplication, with only two 
orbits, {O} and Al - {O}; but there does not exist a surjective morphism from Al 
onto a variety with two points. 

In general, the first problem we face in constructing a quotient is exactly that of 
the example: one orbit of G may lie in the closure of another, so that the natural 
topology on the set X/G will be pathological. We see more serious instances of 
this in Examples 10.12 and 10.16. In the latter case, we would naturally like to have 
a variety parametrizing projective equivalence classes of plane cubic curves, and 
the most natural candidate for such a variety is the quotient of [p9 by PGL 3 K; 
but the quotient does not exist. As was stated there, for example, the orbit corre­
sponding to cuspidal cubics is contained in the closure of every orbit of smooth 
cubics. 

What we can do is restrict our attention to an open subset U of the variety 
X invariant under G and try to take the quotient of U by G. Thus, for instance, 
in Example 10.16 we could take U the union of the locus of smooth cubics together 
with the orbit corresponding to irreducible cubics with a node; as it turns out, the 
quotient of U by PGL 3 K would then exist and be isomorphic to [pl. The study 
of when such quotients exist and when they are compact is a deep one, called 
geometric invariant theory. 

One circumstance in which nice quotients always exist is the case of finite group 
actions, which we will now discuss. 

Quotients of Affine Varieties by Finite Groups 

We start with the case of a finite group G acting on an affine variety X, say the zero 
locus of polynomials {fa ( Xl' ... , xn)} in Kn; we claim that the quotient of X by G, 
in the sense above, exists. 

To see this, let I(X) be the ideal of X, and A(X) = K[x l , ... , xnJ/I(X) its coordi­
nate ring. By the basic requirement for a quotient applied to Z = AI, the regular 
functions on Y must be exactly the functions on X invariant under the action of G, 
i.e., the coordinate ring of Y must be the subring A(Y) = A(X)G c A(X). The first 
thing to check, then, is that the ring A(Y) is finitely generated over K; so we can 
write A(Y) = K[WI' ... , WmJ/(gl(W), ... , g,(w)) and take Y the zero locus of the 
polynomials ga(w) in Km. 

To prove that A(X)G is finitely generated over K, note first that we can write 
A(X) in the form K[XI' ... , xmJ/I, where G acts on the generators Xi by permuta­
tion; all we have to do is enlarge the given set {z;} of generators by throwing in the 
images of the Zi under all 9 E G. Next, we observe that we have a surjection 

K[XI' ... , xmJG -(K[XI' ... , xmJ/I(X))G: 



Quotients of Affine Varieties by Finite Groups 125 

an element iX E (K[x 1, ... , xm]/I)G corresponds to an element rx E K[x 1, .. ·, xm] 
congruent to each of its images g*(rx) mod I, and given such an element the average 

I~I JG g*(rx) E K[x1,···, xm] 

will be invariant under G and will map to iX. Thus it is enough to show that 
K [x 1, ... , xm]G is finitely generated. But this is sandwiched between two polyno­
mial rings: 

K[Xl' ... , Xmrlim C K[Xl' ... , xm]G C K[x 1 , ... , xm], 

where ffim is the symmetric group on m letters. Now, the ring of invariants 
K[Xl' ... , xm]l!im is just the polynomial ring K[Yl' ... , Ym], where the Yi are the 
elementary symmetric functions of the Xj; and since K[x 1 , ... , xm] is a finitely 
generated module over K[y!> ... , Ym] it follows that K[x 1 , ... , xm]G is as well. 

Next, we have to see that the points of Y correspond to orbits of G on X. This 
is not hard. For one thing, suppose that two points p and q E X are not in the same 
orbit under G. To see that n(p) #- n(q), observe that we can find a function f E A(X) 
on X vanishing at p but not at g(q) for any g E G; the product TI g*(f) of the images 
of f under G is then a function f E A(Y) vanishing at n(p) but not at n(q). To see 
that n is surjective, suppose that m = (hl' ... , hk) is an ideal in A(Y); we have to 
show that m' A(X) #- A(X) unless m = A(Y) is itself the unit ideal in A(Y). But now 
if m' A(X) is the unit ideal, we can write 

1 = a1 • hl + ... + ak' hk 

for some a1 , .•• , ak E A(X). Summing the images of this equation under all g E G, 
then, we have 

IGI = (Lg*(a1))·h 1 + ... + (Lg*(ak))'h k ; 

since the coefficients of the right-hand side of this equation are invariant under 
G-that is, lie in A(Y)-we deduce that indeed m = A(Y). 

We leave as an exercise the verification that the variety Y, together with the 
map X ---. Y, satisfies the universality property described earlier. We remark also 
that while the argument here seems to require that the field K have characteristic ° (or at least characteristic prime to the order of G), this is not necessary for the 
result. In fact, if we did this correctly, using the notion of integral extensions 
of rings, the "averaging" process would not be invoked; see [Sl] for a proper 
discussion. 

Exercise 10.20. Show that the action of the symmetric group on four letters on 
four-tuples of distinct points in [pl induces an action of 6 4 on A 1 - {O, 1}, with 
quotient Aland map A 1 - {O, I} ---. A 1 given by the j-function (cf. Exercise 10.13). 

Example 10.21. Quotients of Affine Space 

Probably the simplest examples come from linear actions on vector spaces. For 
instance, consider the involution (z, w) ~ (-z, - w) on A2. The subring of K[z, w] 
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invariant under this involution is generated by a = Z2, b = ZW, and c = w2, which 
satisfy the one relation ac = b2 ; thus the quotient of A2 by this involution is a 
quadric cone Q c A3. 

For another example, consider the action of 7L/3 on A 2 given by sending (z, w) 
to (Cz, Cw), where C is a cube root of unity. The ring of invariants is now generated 
by the monomials Z3, Z2W , zw2, and w3, from which we see that the quotient Y is a 
cone in A 4 over a twisted cubic curve in !p 3. By contrast, if the action of 7L/3 on A 2 

is given by sending (z, w) to (Cz, C2w), the ring of invariants is generated by a = Z3, 

b = zw, and c = w3 , which satisfy the equation ac = b3 , giving a very different 
quotient. 

Exercise 10.22. Show that the last two quotients are indeed not isomorphic as 
varieties. (*) 

Example 10.23. Symmetric Products 

Another example of finite group quotients is the symmetric product x<n) of a variety 
X with itself. This is defined to be the quotient of the ordinary n-fold product xn of 
X with itself by the action of the symmetric group on n letters, that is, the variety 
whose points are unordered n-tuples of points of X. For example, consider the 
simplest case, that of X = A 1. Here the ordinary n-fold product xn = An has 
coordinate ring K[Z1' ... , znJ, and the nth symmetric product has coordinate ring 
the subring of symmetric polynomials in z l' ... , Zn' But this sub ring is freely 
generated by the elementary symmetric polynomials 0'1' ... , O'n; so the symmetric 
product (A 1 )(n) is itself isomorphic to An. Put another way, the space of monic 
polynomials of degree n in one variable is the n-fold symmetric product of A 1 with 
itself. 

Exercise 10.24. Describe the symmetric product (A2)(2) of A2 with itself, and 
more generally, the symmetric square of An. 

Quotients of Projective Varieties by Finite Groups 

Just as the quotient of an affine variety by a finite group always exists and is 
an affine variety, the quotient of a projective variety X c !pn by a finite group 
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always exists and is a projective variety, though this requires slightly more work to 
establish. 

To begin with, observe that any action of a finite group on a projective variety 
X c IPn can be made projective; i.e., after reembedding X in a projective space IPN 
we may assume that G acts on IPN carrying X into itself. This is easy: to do this, 
simply embed the original projective variety X in a product of projective spaces 
IPn x IPn x '" x IPn indexed by the elements 9 E G of the group, by the map whose 
gth factor is the automorphism 9 of X followed by the inclusion of X in IPn. The 
action of G on X is then just the restriction to X of the action of G on (IPn)IGI given 
by permuting the factors; after embedding (IPn)IGI in projective space of dimension 
(n + 1)IGI - 1 by the Segre map, this will be a projective action. Finally, composing 
this embedding with a Veronese map, we can take the action to be linear. 

Now let SeX) be the homogeneous coordinate ring of X in IPn and consider 
the subring B = S(X)G C SeX) invariant under the action of G. B is again a graded 
ring, though it may not be generated by its first graded piece B I ; for that matter, 
Bl may be zero. This is no problem: we let 

00 

B(k) = EB Bnk 

n=O 

and give B(k) a grading by declaring Bnk its nth graded piece; since B is finitely 
generated, for some k S(Y) = B(k) will be generated by its first graded piece. Thus 
we can write 

where the F~ are homogeneous polynomials of the Zi' We claim, finally, the sub­
variety Y c IPm defined by the equations F~(Z) = 0 is the quotient of X by G, in the 
preceding sense. 

Exercise 10.25. Verify this last statement. (Hint: use the fact that the definition of 
quotient is local, in the sense that if U c X is an affine open subset preserved by G 
then the image of U in the quotient of X by G is the quotient of U by G.) 

The same argument, incidentally, shows the existence of finite group quotients 
of quasi-projective varieties in general. 

Exercise 10.26. Show that the nth symmetric product of IPI is IPn. 

Example 10.27. Weighted Projective Spaces 

Probably the most basic examples of quotients of projective varieties by finite 
groups, weighted projective spaces are quotients of projective space by the action 
of abelian groups acting diagonally. Specifically, let ao, ... , an be any positive 
integers, and consider the action of the group (?Llao) x ... x (?Llan ) on IPn generated 
by the automorphisms 

[Zo, ... , Zn] f-+ [Zo, ... , ,. Zi' ... , Zn] 
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where , is a primitive (a;)th root of unity. The quotient of iP'n by this action is 
called a weighted projective space and is denoted iP'(ao, ... , an). 

The simplest examples of weighted projective spaces (in view of Exercise 10.29) 
are the weighted planes iP'(1, 1, 2) and iP'(1, 2, 2). The first of these is just the quotient 
of iP'2 by the action of 7L/2 with generator 

[Zo, Z1> Z2] H [Zo, Zl' -Z2]. 

The subring of invariant polynomials is thus generated by the monomials Zo, 
Zl' and z1. We accordingly pass to the ring B(2), which is generated by the 
monomials 

and 

We conclude that the plane iP'(1, 1,2) is isomorphic to the surface in iP'3 with 
equation Wo W2 = W/-that is, a cone over a conic curve (it is interesting to 
compare this with Example 10.21). 

A less interesting example, as it turns out, is the weighted plane iP'(1, 2, 2). 
Here the ring of invariants is generated by Zo, Z;, and z1; passing to B(2) we 
see that it is generated by Z5, Z;, and z1 with no relations among them, and 
hence that the plane iP'(1, 2, 2) ~ iP'2. In fact, both of these examples are special 
cases of the following. 

Exercise 10.28. Show that any weighted projective space of the form 
iP'(1, ... , 1, k, ... , k) is isomorphic to a cone over a Veronese variety Vk(iP'I) (and in 
particular iP'(1, k, ... , k) ~ iP'n). 

Exercise 10.29. Show that any weighted projective line iP'(a, b) is in fact isomorphic 
to iP'1. 

As an example not covered by this, consider the weighted plane iP'(1, 2, 3). 
This is the quotient of iP'2 by the action of 7L/6 with generator 

[Zo, Zl' Z2] H [Zo, -Zl' O)Z2] 

where 0) is a cube root of unity. This is already a linear action; the subring 
Be K[Zo, Zl' Z2] invariant under 7L/6 is generated by the powers Zo, Z; and z1. 
We accordingly pass to the ring B(6), which is generated by the monomials 

We may thus conclude that the space iP'(1, 2, 3) is isomorphic to the projec­
tive variety X c iP'6 given by the equations 

WOW2 = W?, 

WoWs = Wl, 

W2 W6 = W3W4 ' 

WOW3 = WI W2 , WI W3 = wl, 
W2 Ws = Wi, WI Ws = W4 W6 ' 

WI W6 = W2 W4 , Wo W6 = WI W4 · 
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Exercise 10.30. Show that any weighted projective space is rational. Can you find 
an explicit birational isomorphism of !P(l, 2, 3) with !P2 ? (In fact, !P(l, 2, 3) C !p6 is 
a special case of a del Pezza surface; in particular, it is expressible as the image of 
a rational map from !p2 to !p6 given by cubic polynomials on !P2.) 

Exercise 10.31. Show that, just as ordinary projective space may be realized as 
the quotient of K n+1 - {O} by the action of K* acting by scalar multiplication, 
weighted projective space !P(ao, ... , an) may be viewed as the quotient of K n+1 -

{O} by K*, where;' E K* acts by 

(Zo, ... , Zn) H (;.aoZo, ... , ;.anZJ. 



PART II 

ATTRIBUTES OF VARIETIES 

Having now accumulated a reasonable vocabulary of varieties and maps, we are 
prepared to begin in earnest developing the tools for studying them, which at this 
stage means finding more of the invariants and properties that distinguish one 
variety from another. Of course, as these are introduced, we will be able to define 
and describe additional varieties as well. 

The characteristics of a variety that we shall introduce are its dimension; 
its smoothness or singularity, and in either case its Zariski tangent spaces (and in 
the latter case its tangent cones as well); the resolution of its ideal, with the attendant 
Hilbert function and Hilbert polynomial; and its degree. In each case, after giving 
the definitions, we will mention the main theorems describing the behavior of these 
invariants under some of the constructions introduced in the last section and then 
apply these to compute the invariants of the various varieties we know. 



LECTURE 11 

Definitions of Dimension and 
Elementary Examples 

We will start by giving a number of different definitions of dimension and we will 
try to indicate how they relate to one another. All of our definitions initially apply 
to an irreducible variety X; the dimension of an arbitrary variety will be defined to 
be the maximum of the dimensions of its irreducible components. 

The first definition is illegitimate on several counts, but is perhaps the most 
intuitive. Suppose that X is an irreducible variety over the complex numbers. If X 
is actually a complex submanifold of IPn then it is connected and we define the 
dimension of X to be the dimension of X as a complex manifold. More generally, 
it is the case (though we will not prove this until Exercise 14.3) that the smooth 
points of X are dense-in fact, a Zariski open subset U c X is a connected complex 
manifold. We define the dimension of X to be the dimension of this manifold. 

This is illicit for four reasons: it invokes the notion of smoothness, which we have 
not formally defined; it quotes an unproved theorem; it involves the complex 
numbers specifically; and it presumes a preexisting notion of dimension in a differ­
ent context. Illegitimate as it may be, however, it does represent our a priori concept 
of what dimension should be; our goal in what follows will be to find an algebraic 
definition that conveys this notion. 

Let's start with something we can agree on: the dimension of IPn is n. A second 
point we can go with is that if X and Yare irreducible varieties and cp: X -+ Y 
a dominant map all of whose fibers are finite, then the dimension of X should 
equal the dimension of Y. Combining these, we can give the following preliminary 
definition. 

Definition 11.1. The dimension of an irreducible variety X is k if X admits a 
finite-to-one dominant map to IPk. 

Clearly this definition needs some work; it is not immediately clear either that 
such a map can always be found or that if it can the dimension k of the target 
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projective space /pk is the same for all such maps. The latter problem will be rectified 
later, when we give other equivalent definitions; the former we can deal with now. 

To do this, begin by taking X c /pn projective. Given an irreducible variety 
X c /pn, the natural place to look for a finite map to projective space is among 
projections. Now, when we project X from a point P E /pn not on X, the fibers 
are necessarily finite-since p ¢ X, no line through p can meet X in more than 
a finite number of points. If the image X = np(X) is not all of /pn - 1, we can 
repeat the process, continuing to project X from points until we arrive at a finite 
surjective map of X to /P k• To put it another way, projection of X from any linear 
subspace I\. ~ /pI C /pn disjoint from X will be surjective if and only if no subspace 
strictly containing I\. is disjoint from X, so we have simply to find a maximal 
linear space disjoint from X. In particular, we may characterize the dimension 
of a projective variety X c /pn as the smallest integer k such that there exists an 
(n - k - I)-plane I\. c /pn disjoint from X. 

To extend this definition to nonprojective varieties requires one twist. To begin 
with, recall that for any 1 the variety of l-planes meeting X is a closed subvariety 
of the Grassmannian G(l, n), so we could equally well have characterized the 
dimension of a projective X c /pn as the smallest integer k such that the general 
(n - k - I)-plane I\. c /pn is disjoint from X. Now, by Exercise 6.15, for any quasi­
projective variety X c /pn the closure in G(l, n) of the variety of l-planes meeting X 
is the variety of l-planes meeting the closure X. We may therefore make the 
following definition. 

Definition 11.2. The dimension of an irreducible quasiprojective variety X c [pn is 
the smallest integer k such that a general (n - k - I)-plane I\. c /pn is disjoint from 
X, or if X is projective, such that there exists a subspace of dimension n - k - 1 
disjoint from X. 

Next, note that a general (n - k - I)-plane contained in a general (n - k)-plane 
is a general (n - k - I)-plane. It follows that in the preceding situation, the general 
(n - k)-plane in [pn will meet X in a finite set of points. Moreover, by the same 
reasoning the general (n - k + I)-plane will meet X in a variety consisting of more 
than finitely many points, since otherwise the general (n - k)-plane would be 
disjoint from X. Thus we make the following definition. 

Definition 11.3. The dimension of an irreducible quasi-projective variety X c /pn is 
that integer k such that the general (n - k)-plane in /pn intersects X in a finite set of 
points. 

Note that from either of these definitions a seemingly obvious fact follows: that 
if X is irreducible and Y c X is a proper closed subvariety, then dim(Y) < dim (X) 
(or, equivalently, a closed subvariety of an irreducible variety X having the same 
dimension as X is equal to X). 

Here is an observation that is just a restatement of what we have said but 
that is useful enough to merit the status of a proposition. 
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Proposition 11.4. If Xc pn is a k-dimensional variety and A ~ pi any linear space 
of dimension 1 ~ n - k, then A must intersect X. 

Note that this is a direct extension of Corollary 3.15. In Exercise 11.38 we will 
see how to generalize this to the statement: if X, Y c pn are any subvarieties of 
dimensions k and 1 with k + 1 ~ n, then X n y", 0. 

The arguments preceding the last two definitions certainly show that any variety 
admits a finite-to-one map to a projective space, but they do not imply that the 
dimension of that projective space is the same for all such maps. To see this, we 
need another characterization of dimension that depends only on an invariant of 
X (as opposed to the particular embedding in projective space)-the function field 
K(X). 

The key observation is Proposition 7.16, which says that for any generically 
finite dominant rational map cp: X --+ Y, the induced inclusion K(Y) <=-+ K(X) of 
function fields expresses K(X) as a finite algebraic extension of K(Y). In our present 
circumstances, this says that if a variety X has dimension k in the sense of any of 
the preceding definitions-i.e., if X admits a finite map n: X --+ pk--then we have 
an inclusion 

n*: K(pk) = K(x 1 , ••• , xk) <=-+ K(X) 

expressing K(X) as a finite extension of K(x 1 , ••• , xd. This gives us the following 
definition. 

Definition 11.5. The dimension of an irreducible variety X is the transcendence 
degree of its function field K(X) over K. 

This definition of course has the virtue of making dimension visibly an invariant 
of the variety X, and not of the particular embedding of X in projective space. It 
also says that dimension is essentially a local property, since the function field K(X) 
of an irreducible variety X is the quotient field of its local ring {fJx,p at any point 
p E X. (In particular, we can define the dimension of an irreducible quasi-projective 
variety X c pn in general in this way; observe that the dimension of X so defined 
coincides with the dimension of its closure.) We could also apply any of the other 
standard definitions of the dimension of a local ring to the ring {fJx,p (length of a 
maximal chain of prime ideals, minimal number of generators of an m-primary 
ideal, etc.) to arrive at a definition of the dimension of a variety; see [E] or [AM] 
for a thorough discussion of these various characterizations of the dimension of 
local rings. 

Note in particular that the length of a maximal chain of prime ideals in {fJx,p is 
the same as the length of a maximal chain of irreducible subvarieties 

{p} c Xl C X 2 C ... C X k - 1 C X k = X 

through p in X. This characterization of dimension can be directly seen to be 
equivalent to Definition 11.1, which provides another verification that the dimen­
sion k of that definition is unique. 
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To extend the definition of dimension to possibly reducible varieties, we define 
the dimension of an arbitrary variety to be the maximum of the dimensions of its 
irreducible components; we say that X has pure dimension k (or simply is of pure 
dimension) if every irreducible component of X has the same dimension k. We may 
also define the local dimension of a variety X at a point p E X, denoted dimp(X), 
to be the minimum of the dimensions of all open subsets of X containing p 
(equivalently, the maximum of the dimensions of the irreducible components of X 
containing p, or the dimension of the quotient ring of the local ring (9x,p)' Thus, for 
example, X is of pure dimension if and only if dimp(X) = dim (X) '</p E X. 

One basic fact worth mentioning is the following. 

Exercise 11.6. Using any of the characterizations of dimension, show that if X c iP'n 
is any quasi-projective variety and Z c iP'n any hypersurface not containing an 
irreducible component of X, then 

dim(Z n X) = dim (X) - 1. 

(Similarly, if f is any regular function on X not vanishing on any irreducible 
component of X, then the zero locus Y c X of f has dimension dim (X) - 1.) 
This will be used to prove the more general Theorem 17.24 on the subadditivity of 
codimensions of intersections. 

We will see one more characterization of dimension in Lecture 13; it is in some 
senses the cleanest, but also the least intuitive of all our definitions. For now, 
though, it's time to discuss properties of dimension and to give some examples. 

Example 11.7. Hypersurfaces 

In Lecture 1, we defined a hypersurface X in iP'n to be a variety expressible as the 
zero locus of a single homogeneous polynomial F(Z). By what we have said, X will 
be of pure dimension n - 1. It is worth pointing out the converse here: that a variety 
X c iP'n of pure co dimension 1 is a hypersurface. This follows from the fact that a 
minimal prime ideal in the ring K[Zo, ... , ZnJ is principal. It also follows that the 
homogeneous ideal of a hyper surface is generated by a single element. 

Example 11.8. Complete Intersections 

Definition. We say that a k-dimensional variety Xc iP'n is a complete intersection if 
its homogeneous ideal /(X) c K[Zo, ... , ZnJ is generated by n - k elements. 

Note that by Exercise 11.6, this is the smallest number of generators the ideal of 
a k-dimensional subvariety iP'n can have. 

Complete intersections are often studied simply because they are, in a sense, 
ubiquitous; as a consequence of Theorem 17.16, if Fa(Z) is a general homogeneous 
polynomial of degree da for IX = 1, ... , n - k, the common zero locus of the Fa will 
be a complete intersection. (We will implicitly use this fact in computing the 
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dimension of the family of complete intersections later.) It is thus easy to write down 
many complete intersection varieties. At the same time, we should counter this 
with the observation that complete intersections form a very small subclass of all 
varieties; though we cannot prove any of it here, there are numerous restrictions on 
the topology of complete intersections (e.g., if they have dimension two or more 
they must be simply connected) and on their numerical invariants. Even among 
varieties with given topology and numerical invariants, the complete intersections 
may form a small subfamily; for example, let r c 1P2 consist of three noncollinear 
points. Since the homogeneous ideal J(r) contains no elements of degree 1 but the 
dimension of J(rh is three, J(r) cannot have fewer than three generators; thus r is 
not a complete intersection. More generally, we have the following. 

Exercise 11.9. Let r c IPn be a general collection of d points. It is then the case that 
r is a complete intersection if and only if n = 1, d = 1 or 2, or d = 4 and n = 2. 
Prove this for n = 2 and d ~ 7. 

The example of three points in 1P2 illustrates the distinction between the notion 
of complete intersection and set-theoretic complete intersection. A subvariety 
Xc IPn of dimension k is said to be a set-theoretic complete intersection if it is 
the common zero locus of a collection of n - k homogeneous polynomials; for 
example, ifr = {p, q, r} c 1P2 is three noncollinear points, then r is the intersection 
of any irreducible conic containing it with the cubic curve pq u pr u 0/. Indeed, by 
contrast with Exercise 11.9, we have the following. 

Exercise 11.10. Let r c 1P2 be a general collection of d points. Show that r is a set­
theoretic complete intersection. 

Another famous example of this distinction is the twisted cubic, which is not a 
complete intersection (for the same reason as in the case of three noncollinear 
points in 1P2), but which is a set-theoretic complete intersection (this is harder 
to see than for three points in the plane). It is not known whether every space curve 
C c 1P3 is a set-theoretic complete intersection; it is not even known whether the 
curves Ca•p introduced in Example 1.26 are. 

Exercise 11.11. Find a homogeneous quadratic polynomial Q(Zo,"" Z3) and 
a homogeneous cubic polynomial P(Zo, ... , Z3) whose common zero locus is a 
rational normal curve C c 1P3. (Hint: think determinantal!) (*) 

It might appear, based on the discussion in Lecture 5, that there is a notion 
intermediate between complete intersection and set-theoretic complete intersec­
tion: what if X c IPn is a k-dimensional variety and Fl , ••• , Fn - k are homogeneous 
polynomials that generate the ideal of X locally? In fact, in this case it turns out 
that X is a complete intersection, with J(X) = (Fl , •.• , Fn - k ). To see this requires 
a little commutative algebra, though: it amounts to the assertion that because 
Fl , ... , Fn - k is a regular sequence in the ring K [Zo, ... , ZnJ, the ideal (Fl' ... , Fn- k ) 

cannot have any embedded primes; but if (Fl' ... , Fn- k ) were properly contained 
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in its saturation leX), it would have the irrelevant ideal (Zo, ... , Zn) as an associated 
prime. 

One further important notion is a local complete intersection. We say that a 
quasi-projective variety X c IPn having local dimension k at a point p E X is a local 
complete intersection at p if there is some affine neighborhood U of p in IPn such 
that the ideal of Un X in A(U) is generated by n - k elements; equivalently, if 
X u Y is a complete intersection for some variety Y c IPn of dimension knot 
containing p. (Interestingly, this is a property purely of the variety X and point p; 
it does not depend on the particular embedding.) We say that a variety X is a local 
complete intersection if it is so at every point p E X. The simplest example of a 
variety that is not a local complete intersection is the union of the three coordinate 
axes in A,3. 

Immediate Examples 

Next, there a number of varieties whose dimension is clear from one or more 
of the preceding definitions. For example, 

• The Grassmannian G(k, n) contains, as a Zariski open subset, affine space 
A,k(n-k), and thus has dimension ken - k). 

• The product X x Y of varieties of dimensions d and e has dimension d + e. 
• The cone pX with vertex p over an irreducible variety X c IPn of dimen­

sion d has dimension d + 1, unless X is a linear space and P E X. 
• The projection X = np(X) of a variety X c IPn of dimension d from a point 

p E IPn has dimension d again, unless X is a cone with vertex p. 
• The algebraic groups PGLnK, POnK, and PSP2nK have dimensions n2 - 1, 

n(n - 1)/2, and 2n2 + n, respectively. 

To find the dimensions of other varieties, we need to know a little more about 
dimension, for example, how it behaves in maps. The basic fact in this regard is the 
following. 

Theorem 11.12. Let X be a quasi-projective variety and n: X -+ [FD" a regular map; let 
Y be closure of the image. For any p E X, let Xp = n-1(n(p)) c X be the fiber of n 
through p, and let J.l(p) = dimp (Xp) be the local dimension of Xp at p. Then J.l(p) is an 
upper-semicontinuous function of p, in the Zariski topology on X -that is, for any m 
the locus of points p E X such that dimp(Xp) ~ m is closed in X. Moreover, if Xo c X 
is any irreducible component, Yo c Y the closure of its image and J.l the minimum value 
of J.l(p) on Xo, then 

The standard example of the upper semicontinuity of J.l(p) is the blow-up 
map [j'i>2 -+ 1P2, which has point fibers over each point of 1P2 except the point p 
being blown up, and fiber [FDl over that point. A simple example of the sort of 
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behavior that is to be expected in the 
context of riOO maps but that the 
theorem explicitly precludes in the 
category of varieties is the projection of 
the two-sphere S2 onto a line, where the 
fibers range from empty, to a point, to a 
circle, and back again. 

Note also that when X is projective 
we can express this in terms of the fiber 
dimension as a function on the image. 

Corollary 11.13. Let X be a projective 
variety and n: X ~ IPn any regular map; 
let Y = n(X) be its image. For any q E Y, 
let A(q) = dim(n-l(q)). Then A(q) is an 
upper-semicontinuous function of q in the 
Zariski topology on Y. Moreover, if 
Xo c X is any irreducible component, 
Yo = n(Xo) its image, and A the minimum 
value of A(p) on Yo, we have 

dim(Xo) = dim(Yo) + A. 
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The condition that X (and, correspondingly, its image Y) be projective can 
be weakened; X can be taken to be quasi-projective, as long as we add the 
assumptions that X is irreducible and 
that Y is a variety as well. The latter is 
not a serious restriction, since we can 
always find an open subset U eYe Y 
and replace X by n-I(U). The former is 
just to avoid such idiocies as taking X 
the disjoint union of A I x (A I - {O}) 
and a point p, with n: X ~ A I the 
projection on the second factor on 
Al x (AI - {O}) and n(p) = O. We can 
also extend the corollary to the case of 
rational maps f: X ~ Y by applying it 
to the graph of the map. 

Finally, before we prove Theorem 
11.12, note that as a consequence we 
have the following characterization of 
irreducibility. 

• 

+ • 
fiber dimension 0 

fiber dimension 1 

Theorem 11.14. Let n: X ~ Y be a regular map of projective varieties, with Y 
irreducible. Suppose that all fibers n-I(p) ofn are irreducible of the same dimension 
d. Then X is irreducible. 
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PROOF. Suppose on the contrary that X is the union of irreducible closed sub­
varieties Xi; for P E Y let Ai(P) be the dimension of the fiber of ni = nix,. For each 
p, we must have max(Ai(p» = d, and since each Ai is upper semicontinuous we 
conclude that for some i we have Ai = d. But then for each P E Y the fiber nil(p), 
being a closed subvariety of the fiber n-1(p) and having the same dimension, must 
equal n-l(p); we conclude that Xi = X. 0 

Exercise 11.15. Let X and Y be irreducible projective varieties, f: X --+ Z and 
g: Y --+ Z surjective maps. Show that the dimension of the fiber product satisfies 

dim(X X z Y) ;;::: dim (X) + dim(Y) - dim(Z). 

Find an example where strict inequality holds. Also, show by example that some 
irreducible components of X x z Y may have strictly smaller dimension. 

PROOF OF THEOREM 11.12. The proof consists of several reductions plus one rela­
tively trivial observation. First, it is enough to prove it for X irreducible. Secondly, 
since the statement is local, we may take X to be affine and the map n: X --+ An. 
Finally, by the Noetherianness of the space X, to establish the upper semicontinuity 
of the function J1 it is enough to show that it achieves its minimum J10 on an open 
set (i.e., there is an open U c X with J1 = J10 on U; we do not have to show that 
{p: J1(p) = J10} is open in X). Thus, it will be enough to establish the two statements: 

(i) J1(p);;::: dim (X) - dim(Y) everywhere and 
(ii) there is an open subset U c X such that J1(p) = dim (X) - dim(Y) Vp E U. 

The proof of the first statement is just a direct application of Exercise 11.6. 
Using this, we see that if dim(Y) = e then we can find for any p E X a collection of 
polynomials f1' ... , fe on An whose common zero locus on Y is a finite collection 
of points including n(p). Replacing Y by an affine open subset V including n(p) but 
none of the other zeros of fl' ... , fe' and X by the inverse image of V, we may 
assume that the common zero locus of the fa is exactly {n(p)}. But then the 
subvariety Xp c X is just the common zero locus of the functions n*f1' ... , n*fe, 
and using Exercise 11.6 again we deduce that J1(p) = dimp(Xp);;::: dim (X) - e. 

For the second statement, we apply a trick we have used before: we may 
assume that X is a closed subvariety of An+m, and the map n the restriction of 
the projection map n: An+m --+ An given by (Zl' ... , Zn+m) 1--+ (Zl' ... , zn). We may 
then factor the map n 

X=X~X ~···~X~X=YcAn m m-l 1 0 

where Xk C An+k is the closure of the image of X under the projection An+m --+ An+k 
given by (z l' ... , Zn+m) 1--+ (Z l' ... , Zn+k), and nk the restriction of the projection map 
An+k --+ An+k-l. 

Now, it is easy to see that Theorem 11.12 holds for the individual maps nk • 

Clearly the local fiber dimension J1k(P) of the map nk can be only 0 or 1; if Xk C An+k 
is given by a collection of polynomials fa, which we may write as 
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h(Z 1, ... , Zn+k) = L aa)Z 1, ... , Zn+k-l)' (zn+k)i 

then the locus of points p with fl(P) = 1 will be just the intersection of Xn+k 

with the common zero locus of the polynomials aa,i' Thus (bearing in mind that X k 

will be irreducible since X is), either all the coefficients aa,i are zero on Xk - 1 , flk is 
identically 1 on X k , and dim(Xk ) = dim(Xk - 1 ) + 1; or the common zero locus of the 
coefficients aa, i is a proper subvariety Zk-l of Xk - 1, flk is 0 outside the inverse image 
of this subvariety, the map nk is generically finite on X k , and dim(Xk ) = dim(Xd. 

Note that the number of values of k such that flk == 1 is exactly the differ­
ence in dimensions dim(X) - dim(Y). For each of the remaining values of k, let 
Uk c X be the inverse image of the open subset Xk - 1 - Zk-l; let U be the intersec­
tion of these open subsets of X. Let p E U be any point. Applying the succession of 
maps nk to Xp, we conclude that 

dim(Xp ) :::;; dim(X) - dim(Y) 

(we cannot deduce directly that we have equality, since the image of Xp may 
not be dense in the fiber of Xk over n(p)). But we have already established the 
opposite inequality at every point p; thus 

D 

Exercise 11.16. (a) Show by example that in general the function fl is not the 
sum of the pullbacks of the functions flk (so that we cannot deduce upper semi­
continuity of fl directly from the corresponding statement for the maps nd. (b) 
Justify the third reduction step: that in order to show that fl is upper semi­
continuous in general it is enough to show that for any map n there is an open 
subset U c X where it attains its minimum. 

To conclude this discussion, note that as a corollary to Theorem 11.12 we 
can prove Proposition 5.15: if n: X -+ Y is any morphism and Z c X a locally 
closed subset, then for general points p E Y 

(Zp) = XpnZ, 

i.e., the closure of the fiber Zp of nlz is the fiber Xp n Z of the closure Z over p. 
First, we can restrict the map n to the closure of Z, i.e., we can assume X = Z, 

or in other words, that Z is an open subset of X (we can also assume X is 
irreducible). Next, we can assume the image of n is dense, since otherwise both sides 
of the presumed inequality are empty. The result now follows immediately from 
applying Theorem 11.12 to the map n on X and on W = X - Z: if the dimensions 
of Y, X, and Ware k, n, and m < n respectively, then the local dimension of Xp 
is at least n - k everywhere, while for general p the dimension of Wp must be 
m - k < n - k. It follows that Wp cannot contain an irreducible component of Xp; 
thus Wp lies in the closure of Zp. D 

We will now use Theorem 11.12 (together with some common sense) to deter­
mine the dimension of some of the varieties introduced in Part I. 
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Example 11.17. The Universal k-Plane 

In Lecture 6, we defined the incidence correspondence ~ c G(k, n) x [pl" by setting 

~={(A,X):XEA}. 

As we said there, ~ is the "universal family" of k-planes; that is, it is simply 
the subvariety of the product whose fiber over a given point A E G(k, n) is the 
k-plane A c [pl" itself. We can thus apply Theorem 11.12 to the projection map 
1tl:~-+G(k,n) to deduce that ~ is 
irreducible of dimension 

dim(~) = k + dim(G(k, n)) 

= nk - k2 + n. 

Note that we could also compute its 
dimension (and establish its irreduc-

«l(k,n) (pn 

ibility) by looking at the projection map 1t2 to [pl". The fiber of 1t2 over a point 
p E [pl" is just the subvariety of G (k, n) of k-planes containing p, which is isomorphic 
to the Grassmannian G(k - 1, n - 1). Thus, the fibers of 1t2 are all irreducible of 
dimension k(n - k), and ~ correspondingly irreducible of dimension k(n - k) + n. 

Example 11.18. Varieties of Incident Planes 

Let X c pn be an irreducible variety, and for any k ~ n - dim (X) consider the 
subvariety ~k(X) c G(k, n) of k-planes meeting X, introduced in Example 6.14. We 
may compute its dimension by realizing ~k(X), as we did there, as 

where 1t 1, 1t2 are the projection maps on the incidence correspondence ~ introduced 
in Example 11.17. As in that example, the fibers of 1t2 over X are all isomorphic 
to G(k - 1, n - 1); that is, they are irreducible of dimension k(n - k), and 'P = 

(1t2fl(X) correspondingly irreducible of dimension k(n - k) + dim (X). Finally, 
since the map 'P -+ ~k(X) c G(k, n) is generically finite (in fact it is generi­
cally one-to-one; see Exercise 11.23), we conclude that ~k(X) is likewise irreducible 
of dimension k(n - k) + dim (X). To express the conclusion in English: the codimen­
sion of ~k(X) in G (k, n) is the difference between the codimension of X and k. 

The simplest example of this con-
struction already exhibits interesting 
behavior. This is the variety cI> c G(l, 3) 
of lines 1 c [pl3 meeting a given line 
X = 10 . Here, if we let 'P c ~ c 

G(l, 3) x [pl3 be the incidence corre­
spondence 

'P = {(l, p): pEl} c cI> x 10 
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we see that'll maps to 10 with fibers all isomorphic to p2; the map to <J>, on the other 
hand, is one to one except over the point 10 E <J>, where the fiber is isomorphic to pl. 

Exercise 11.19. For another view of the variety <J> of lines meeting a given line 10 
let 16 c p3* be the locus of planes H c p3 containing 10 and consider the incidence 
correspondence 

n = {(l, H): 1 c H} c <J> x 16. 
Show that, just as in the case of the incidence correspondence'll, the fibers of n 
over 16 are isomorphic to p2, while the map n 1: n ~ <J> is one to one except 
over 10, where the fiber is pl. Show that the two incidence correspondences'll and 
n are isomorphic (in fact, they are both isomorphic to the rational normal scroll 
X 2.2,1)' but not via an isomorphism commuting with the maps to <J>. (*) 

We will encounter the variety <J> a number of times and in various roles in this 
book. Indeed, we have in a sense already met in it Example 3.1; <J> is a quadric 
hypersurface in p4 of rank 4. (See also Example 6.3.) 

Exercise 11.20. Let X c pn be an irreducible nondegenerate k-dimensional variety. 
For 1 < n - k, find the dimension of the closure of the locus of 1-planes meeting X 
in at least two points. Show by example that no analogous formula exists if we 
replace "two" by "three," even if we require 1 ~ 2. 

Exercise 11.21. Let X c pn be an irreducible nondegenerate k-dimensional variety. 
Show that the plane spanned by n - k + 1 general points of X meets X in only 
finitely many points, and use this to compute the dimension of the closure of the 
locus of 1-planes spanned by their intersection with X when 1 ::;; n - k. 

Example 11.22. Secant Varieties 

In Lecture 8 we introduced the chordal, or secant variety of a variety X c pn; we 
consider here its dimension. To begin with, recall that we define the secant line map 

s:X x X-d~G(I,n), 

on the complement of the diagonal d in X x X by sending the pair (p, q) to the line 
pq; the chordal variety S(X) is defined to be the union of the lines corresponding 
to points of the image .9"(X) c G(I, n) of s. Now, unless X is a linear subspace of 
pn, the map s is generically finite; the fiber over a general point 1 = pq in the image 
will be positive-dimensional if and only if 1 c X and the only variety that contains 
the line joining any two of its points is a linear subspace of pn. Thus, the dimension 
of the variety .9"(X) of secant lines is always equal to the dimension of X x X, that 
is, twice the dimension of X. 

Exercise 11.23. Counting dimensions, show that the variety .9"(X) c G(I, n) of 
secant lines to a variety X c pn of dimension k < n - 1 is a proper subvariety of 
the variety ~l(X) of incident lines. Use this to deduce (in characteristic 0) that 
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the general projection 1tA: X -+ pk+l of X from an (n - k - 2)-plane A c P" is 
birational onto its image; and in particular that every variety is birational to a 
hypersurface (cf Lecture 7). 

Now, consider the incidence correspondence 

~ = {(t, p): pEl} c 9"(X) x P" c G(1, n) x P" 

whose image 1t2(~) c P" is the secant variety S(X). The projection map 1tl on 
the first factor is surjective, with all fibers irreducible of dimension 1; thus ~ 
is irreducible of dimension 2· dim (X) + 1. The following proposition then follows. 

Proposition 11.24. The variety 9"(X) c G(1, n) of secant lines to an irreducible 
k-dimensional variety X c pn is irreducible of dimension 2k. The secant variety 
S(X) c P" is irreducible of dimension at most 2k + 1, with equality holding if and 
only if the general point p E qr lying on a secant line to X lies on only a finite number 
of secant lines to X. 

(Note that in this statement we need only consider points p lying on honest 
secant lines, that is, secant lines actually spanned by points of X.) 

Exercise 11.25. Show that if X c pn is an irreducible curve then the chordal 
variety S(X) is three-dimensional unless X is contained in a plane. 

By way of contrast, let X = V2(2) C IPs be the Veronese surface. We claim that 
the chordal variety S(X) is only four-dimensional. Indeed, we can see this in two 
(apparently) different ways. To begin with, suppose that rEPs is a general point 
lying on a secant line to X; we may write the secant line as v(p), v(q) for some 
pair of points p, q E p2. Now, the line L = pq C p 2 is carried, under the Veronese 
map v, to a plane conic curve C c X c ps, and since r E v(p), v(q), r will lie on the 
plane A spanned by C. But then every line through r in A will be a secant line to 
C, and hence to X. In particular, it follows that a general point lying on a secant 
line to X lies on a one-dimensional family of secant lines to X. We may deduce 
from this that the dimension of S(X) is at most 4; since it is clear on elementary 
grounds that S(X) cannot have dimension less than 4 (for example, the cones p, S 
over S with vertex a point PES would all have to coincide), we conclude that 
dim(S(X)) = 4. 

11 
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Another way to show that dim(S(X)) = 4 is via the determinantal form of the 
equations of the Veronese surface. Recall that the equations of the Veronese surface 
may be expressed as the 2 x 2 minors of the matrix 

M = [~: ~: ~:l; 
Z4 Zs Zz 

in other words, in the space IPs of symmetric 3 x 3 matrices, the locus of rank 
1 matrices is a Veronese surface. But a linear combination of two rank 1 matrices 
can have rank at most 2, from which it follows that the chordal variety S(X) of the 
Veronese surface will be contained in the cubic hypersurface in IPs with equation 
det(M) = O. (To rephrase this, we have seen in Examples 1.20 and 4.8 that the set 
of conics in IPz is parametrized by 1P 5 , with the subset of double lines the Veronese 
surface; the chordal variety to the Veronese surface is then simply the locus of 
conics of rank 1 or 2.) 

In general, we call a variety X c IPn nondegenerate if it spans lPn, i.e., is 
not contained in any hyperplane. If X c IPn is an irreducible nondegenerate 
k-dimensional variety whose chordal variety S(X) has dimension strictly less than 
min(2k + 1, n), we say that X has deficient secant variety; in these circumstances we 
define the deficiency b(X) of X to be the difference 

b(X) = 2k + 1 - dim(S(X)). 

Here are some more examples of varieties with deficient secant varieties. 

Exercise 11.26. Let L = (J(lPz X IPZ) c IPs be the Segre variety. By arguments anal­
ogous to each of the preceding arguments, show (twice) that the chordal variety of 
L has dimension 7, so that L has deficiency 15(1:) = 2. 

Exercise 11.27. Let G = G(I, n) c IP(A,zKn+l) = IPn(n+1)(Z-l be the Grassmannian 
oflines in IPn. Again using arguments analogous to each of the preceding two, show 
that the chordal variety of G has dimension 4n - 7, so that b(G) = 4. 

Exercise 11.28. Let X c IPn be an irreducible nondegenerate variety with deficient 
secant variety. 

(i) Show that the cone X = p, X c IPn+1 over X has deficiency b(X) = b(X) + 1. 
(ii) Show that the general hyperplane section Y = X (\ H of X has deficiency 

b(Y) = b(X) - 1 (or simply has nondeficient secant variety in case b(X) = 1). 
(We will show in Proposition 18.10 that the general hyperplane section of an 
irreducible non degenerate variety of dimension at least 2 is again irreducible and 
nondegenerate.) 

The first part of the preceding exercise is in particular a source of examples of 
varieties with arbitrarily large deficiency. Here is another less trivial example. 

Exercise 11.29. Let M be the projective space of m x n matrices, and let Mk c M 
be the subvariety of matrices of rank at most k introduced in Lecture 9; take k so 
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that 2k < min(m, n). Show that the chordal variety S(Mk ) is equal to the subvariety 
M2k c M of matrices of rank at most 2k. Indeed, show that for a map A: K m -+ K" 
of rank 2k and any pair of complementary k-dimensional subspaces A, S c Im(A) 
the composition of A with the projections of A and S give an expression of A as a 
sum of two matrices of rank k. Deduce that in the case IP'" = M, X = Mk the fiber 
of the incidence correspondence ~ introduced in Example 11.22 over a general 
point S(X) has dimension 2k2 , and hence that 

dim(S(Mk» :5: 2· dim(Mk) + 1 - 2k2• 

A couple of remarks are in order here. First, it is known that the Veronese 
surface is the only example of a smooth surface with deficient secant variety. On 
the other hand, much less is known about the behavior of chordal varieties of 
varieties of higher dimension; for example, it is not even known whether the 
deficiency of smooth varieties is bounded (as we will see when we discuss smooth­
ness in Lecture 14, the examples in Exercise 11.29 are in general singular). 

Example 11.30. Secant Varieties in General 

We begin with a basic calculation. 

Exercise 11.31. Let X c IP'" be an irreducible nondegenerate variety of dimension 
k. Use Exercise 11.21 to deduce that for any I :5: n - k the general fiber of the secant 
plane map 

s,: Xl+l -+ G(l, n) 

is finite. 

From this we see that the variety of secant I-planes-defined to be the image 
9/(X) of s,-will always have dimension (l + l)k. By the incidence correspondence 
argument then, we may also deduce that the secant variety S,(X), defined to be the 
union of the secant I-planes to X, will have dimension at most Ik + I + k, with 
equality holding if and only if the general point P E S,(X) lies on only finitely many 
secant I-planes. 

Of course, we know even less about when this condition holds than we do in the 
case 1= 1 discussed in the preceding example. For example, while it is true that 
the secant variety S,(X) of an irreducible nondegenerate curve X c IP'" will have 
dimension 21 + 1 whenever this number is less than or equal to n, it is less elemen­
tary to prove this (this will be a consequence of exercises 16.16 and 16.17). One very 
special case where we do have an elementary proof is the case of the rational normal 
curve. 

Proposition 11.32. Let X c IP'n be a rational normal curve. The secant variety S,(X) 
has dimension min(21 + 1, n). 
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PROOF (in case 21 + 1 ~ n). Let U c 9;(X) be an open subset consisting of secant 
I-planes spanned by 1 + 1 distinct points of X (since the image of the complement 
of the diagonals L1 c X I+1 under Sl is dense and constructible, we can find such a 
U). It will suffice to show that for 1 ~ (n - 1)/2, a general point lying on a general 
secant I-plane spanned by points P1' ••• , PI+1 E X lies on no other secant I-plane A' 
to X with A' E U. But now the statement that any n + 1 ~ 2(1 + 1) points on a 
rational normal curve are independent (Example 1.14) implies that the intersection 
of A with any other A' E U is contained in the subspace of A spanned by a proper 
subset of the points Pi' 0 

Exercise 11.33. Give the proof of Proposition 11.32 in case 21 = n either by 
bounding the dimension of the family of secant I-planes containing a general point 
of S/(X) or by using the preceding and arguing that S/(X) strictly contains SI-1 (X) 
(and therefore has higher dimension). Either do the case 21> n similarly, or simply 
deduce it from the preceding. 

We mention this example largely because it has a nice interpretation in case 
char(K) = O. As we saw in the remark following Exercise 2.10 and again in Example 
9.3, if we view the space !pn as the projective space of homogeneous polynomials of 
degree n on !PI, then the set of nth powers is a rational normal curve. A general 
point of the secant variety is thus a polynomial expressible as a sum of 1 + 1 nth 
powers, and so we have established the first half of the following corollary. 

Corollary 11.34. Assume K has characteristic O. A general polynomial 

f(x) = anxn + an- 1 x n- 1 + ... + a1 x + ao 

is expressible as a sum of d nth powers 

if and only if 2d - 1 ~ n. Moreover, if 2d - 1 = n, it is uniquely so expressible. 

Exercise 11.35. (i) Verify the second half of this statement. (ii) what is the smallest 
number m such that every polynomial of degree n is expressible as a sum of m nth 
powers? (*) 

There is naturally an analog of this for polynomials in any given number of 
variables; you can, in similar fashion, work out the expected dimension of the secant 
varieties of the Veronese varieties in general, and so say when you expect to be able 
to express a general polynomial of degree n in 1 variables as a sum of m nth powers. 
It is not known (to me) when this number suffices, though there are cases when it 
doesn't. For example, a naive dimension count would lead you to expect that every 
quadratic polynomial in two variables (or homogeneous quadric in three variables) 
could be expressed as a sum of two squares; but the fact that the secant variety to 
the Veronese surface in !ps is deficient means it can't (you can see this directly by 
observing that a sum of two squares is reducible). 
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Example 11.36. Joins of Varieties 

In Examples 6.17 and 8.1 we introduced the join J(X, Y) of two varieties X, Y c [p>n 

(of which the secant variety may be viewed as the special case X = Y). We may 
observe that by the same computation, the expected dimension of the join J(X, Y) 
is dim (X) + dim(Y) + 1. Indeed, it is much harder for the join of two disjoint 
varieties to fail to have this dimension. We have the following. 

Proposition 11.37. Let X and Y c [p>n be two disjoint varieties. The join J(X, Y) will 
have dimension exactly d = dim (X) + dim(Y) + 1 whenever d ~ n. 

PROOF. This is immediate if X and Y lie in disjoint linear subspaces of [p>n; in this 
case no two lines joining points of X and Y can meet, so every point of the join lies 
on a unique line joining X and Y. 

To prove the proposition in general, we reembed X and Y as subvarieties 
X, Y of disjoint linear subspaces A o, A1 ~ [p>n C [p>2n+t, where Ao is the plane 
Zo = ... = Zn = ° and A1 the plane Zn+1 = ... = Z2n+1 = 0. Let J = J(X, Y) be 
the join of these two, so that we have dim(J) = dim (X) + dim(Y) + 1. Note that 
projection nL : [p>2n+1 --+ [p>n from the plane L ~ [p>n C [p>2n+1 defined by Zo = Zn+1, 

.•• , Zn = Z2n+1 carries X and Y to X and Y, respectively; moreover, the hypothesis 
that X n Y = 0 implies that the join J is disjoint from L, so the projection nL is a 
regular map from J onto J(X, Y). But it is a general fact that the projection nL of 
a projective variety from a linear space L disjoint from it is finite; if the fiber 
(nL)-l(p) contained a curve C, C would be contained in the plane p, L spanned 
by p and L and so would necessarily meet the hyperplane L c p, L. Thus 7tL: 

J --+ J(X, Y) is finite and dim(J(X, Y)) = dim(J) = dim (X) + dim(Y) + 1. D 

Exercise 11.38. Let X, Y, Ao, A1 , J, and L be as in the proof of Proposition 11.37, 
bllt do not assume X and Yare disjoint. Show that if dim (X) + dim(Y) ~ n, then 
J must meet L; deduce that any two closed subvarieties X, Y c [p>n the sum of whose 
dimensions is at least n must intersect. 

The following is an amusing and useful corollary of Exercise 11.38. 

Exercise 11.39. Show that for m > n there does not exist a nonconstant regular map 
cp: [p>m --+ [p>n. 

Example 11.40. Flag Manifolds 

We can think of the incidence correspondence of Example 11.17 as the special case 
IF(O, k, n) of the flag manifold 

IF = IF(k, I, n) = {(r, A): rcA} c G(k, n) x G(l, n) 

introduced in Example 8.34. The dimension of the more general flag manifolds may 
be found in the same way; for example, the projection 7t1 maps IF onto G(k, n) with 
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fibers 1G(l- k - 1, n - k - 1) of dimension (1 - k)(n - 1), so that IF is irreducible of 
dimension 

dim IF(k, 1, n) 

= dim lG(k, n) + (l- k)(n - 1) 

= (k + l)(n - k) + (l- k)(n - 1); 

equivalently, we could describe IF as 
mapping via 1(2 to 1G(1, n) with fibers 
1G(1 - k - 1, 1) and derive the same 
result. 

lG(k,n) IGU,n) 

Exercise 11.41. Find the dimension of the flag manifold IF(a 1 , .•• , a" n) in general. 

Example 11.42. (Some) Schubert Cycles 

We can use the preceding example to find the dimension of some of the subvarieties 
of the Grassmannian described in Lecture 6. As in Lecture 6, let A c IP'n be a fixed 
m-plane, and let 

~ = ~k(A) = {r: dim(r n A) ~ k} c 1G(l, n). 

We assume here that m + 1 - n < k, so that ~ =1= 1G(l, n). 

To find the dimension of~, we introduce the incidence correspondence 

'I' = {(r, 0): 0 c r} c lG(k, A) x IG(/, n). 

The projection on the first factor expresses 'I' as simply the inverse image of 
lG(k, A) c G(k, n) in the flag manifold IF(k, I, n) discussed earlier, and from the same 
argument as there we conclude that 'I' is irreducible of dimension (k + l)(m - k) + 
(1 - k)(n - 1); since the projection map 1(2: 'I' -+ ~ is generally one to one, we 
deduce the same thing about~. 

It may be more suggestive to express this by saying that the co dimension 
of 'I' in lG(k, n) is (k + 1)· (k - (m + 1 - n)); the first factor is the dimension of inter­
section of the vector spaces corresponding to r and A, the second the difference 
between k and the "expected" dimension m + 1 - n of intersection of an m-plane 
and an I-plane in IP'n. 

Exercise 11.43. Find the dimension of the more general incidence correspondence 

'I' = {(r, A): dim(r n A) ~ m} c lG(k, n) x 1G(l, n). 

Let X c IP'n be an irreducible k-dimensional variety. In Lecture 4, we defined the 
universal hyperplane section ilx c IP'n* x X and showed that it was irreducible. As 
another consequence of Theorem 11.14, we can verify this and extend the statement 
substantially. To start with, we make the following more general definition. 
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Definition. Let X c IP'" by any variety. We define the universal (n - I)-plane section 
(or universal I-fold hyperplane section) g(l)(X) of X to be the subvariety of the 
product G(n - I, n) x X defined by 

g(l)(X) = {(A, p): pEA}. 

Exercise 11.44. Let X c IP'" be an irreducible k-dimensional variety. Find the 
dimension of the universal (n - I)-plane section g(l)(X) and show that it is 
irreducible. 



LECTURE 12 

More Dimension Computations 

Example 12.1. Determinantal Varieties 

As in Lecture 9, let M be the projective space of nonzero m x n matrices up to 
scalars and M" c M the variety of matrices of rank k or less. To find the dimension 
of M", we introduce another incidence correspondence. We define 

\f c M x G(n - k, n) 

by 

'P = {(A, A): A c Ker(A)} 

(here, of course, we are viewing an m x n matrix A as a linear map K" -+ Km). The 
point is that if we fix A the space of maps A: K" -+ K m such that A c Ker(A) is just 
the space Hom(K"/A, K m ), so that fibers ofthe projection 7t2: \f -+ G(n - k, n) are 
just projective spaces of dimension km - 1. We conclude that the variety \f is 
irreducible of dimension dim(G(n - k, n)) + km - 1 = k(m + n - k) - 1; since the 
map 7t 1: \f -+ M is generically one to one onto M", we deduce that the same is true 
of M k • One way to remember this is as the following proposition. 

Proposition 12.2. The variety Mk c M of m x n matrices of rank at most k is 
irreducible of codimension (m - k)(n - k) in M. 

Exercise 12.3. Show that equality holds in Exercise 11.29. 

Exercise 12.4. Use an analogous construction to estimate the dimension of the 
spaces of (i) symmetric n x n matrices of rank at most k and (ii) skew-symmetric 
n x n matrices of rank at most 2k. 
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Example 12.5. Fano Varieties 

In Lecture 6 we described the Fano variety Fk(X) parametrizing k-planes lying on 
a variety X c pn. Here we will estimate its dimension, at least in the case of X a 
general hypersurface of degree d in pn. 

We do this by considering the space pN parametrizing all hypersurfaces of 

degree d in pn (N here is (n : d) - 1, though as we shall see that won't appear in 

the computation), and setting up an incidence correspondence between hyper­
surfaces and planes. Specifically, we define the variety <lie pN x G(k, n) to be 

<II = {(X, A): A c X} 

so that the fiber of <II over a point X E pn is just the Fano variety Fk(X). If the 
image of the projection map 11:1: <II --t pN is of the maximal possible dimension, 
then we would expect the dimension of Fk(X) for general X to be the dimension of 
<II less N. 

To find the dimension of <II we simply consider the second projection map 
11: 2 : <II --t G(k, n). The fiber of this map over any point A E G(k, n) is just the space 
of hypersurfaces of degree d in pn containing A; since the restriction map 

{polynomials of degree d on pn} --t {polynomials of degree d on A ~ Pk} 

. .. I· h· . . b f d· . M (k + d) IS a surjectIve mear map, t IS IS Just a su space 0 co ImenSlOn = d 

in the space pN of all hypersurfaces of degree d in pn. It follows that <II is irreducible 
of dimension (k + 1)(n - k) + N - M, and hence that the expected dimension on 
the general fiber of <II over pN is 

dim(Fk(X» = (k + 1)(n _ k) _ (k : d), 

a number we will call cp(n, d, k). Thus, for example, the expected dimension of 
the Fano variety of lines on a general surface S c p3 of degree d is 3 - d. In 
particular, we expect a general plane in p3 to contain a 2-parameter family of lines 
(this is of course true); we expect a general quadric surface to contain a one­
parameter family of lines (we have seen that this is also true); we expect a general 
cubic surface to contain a finite number oflines (this is also true, and will be verified 
in Exercise 12.7), and a general surface of degree d :?: 4 to contain no lines at all. 

Note that we have to keep using the qualifier "expect": the preceding argument 
does not actually prove that the dimension of the Fano variety of a general 
hypersurface is given by the preceding formula. To be precise, in case cp(n, d, k) < 0 
this argument does show that Fk(X) = 0 for a general X; but in cases where 
cp(n, d, k) :?: 0 we don't a priori know whether <II surjects onto pN as expected or 
maps to a proper subvariety (so that the general X will contain no k-planes, while 
some special X will contain more than a cp(n, d, k)-dimensional family). Indeed, this 
does occur: for example, consider the case n = 4, d = 2 and k = 2, that is, 2-planes 
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on quadrics in 1P4. Here the dimension of <I> equals the dimension N = 14 of the 
space of quadric hypersurfaces in 1P4; but, as we will see, the general quadric 
hypersurface Q c 1P4 does not in fact contain any 2-planes. (What happens in this 
case is that cones over quadrics in 1P 3 , which form a codimension 1 subvariety of 
the space of quadrics in 1P4 , generically contain a one-parameter family of 2-planes. 
In fact, this observation, together with a dimension count and the irreducibility 
of <1>, implies that a general quadric in 1P4 contains no 2-planes.) 

As it turns out, though, the only exceptional cases involve hypersurfaces of 
degree 2; when d ~ 3 the count is accurate. We will verify this explicitly in the case 
n = 3, d = 3, and k = 1 (i.e., lines on a cubic surface) and leave the general case, 
which is only notationally more difficult, as an exercise. 

In general, to show that <I> surjects onto IPN we have simply to exhibit a fiber 
of <I> having the expected dimension cp(n, d, k). In fact, by Theorem 11.12 it is 
enough to exhibit a point (X, L) E <I> such that the local dimension of the fiber 
(nl)-l(nl(X, L)) = Fk(X) at (X, L) is exactly cp(n, d, k). Thus, for example, in the 
case n = 3, d = 3, k = 1, in order to show that the general cubic surface S c 1P3 
contains a positive finite number of lines it suffices to exhibit a cubic surface S 
that contains an isolated line, i.e., such that Fl (S) has an isolated point Lo. In this 
particular case, we may construct such a surface S and line Lo synthetically. For 
example, let X = X!, z be the rational normal scroll constructed as in Lecture 8 as 
the union oflines joining corresponding points on a line L and a conic curve C lying 
in a complementary 2-plane in 1P4. It is not hard to see by the construction that the 
only lines on X are L and the lines joining L to C; in particular, L is an isolated 
line of X. Moreover, if S = n(X) is the image of X under projection from a general 
point P E 1P4 , the image Lo = n(L) is still isolated; any line on S is either the image 
of a line on X or the image of a plane curve of higher degree on X mapping multiple 
to one onto a line, and since n: X -+ S is birational there can be at most finitely 
many of the latter. 

Exercise 12.6. (i) Verify that the surface S of the preceding argument is indeed 
a cubic surface in 1P3. (ii) Verify in general the statement made there that a birational 
map n: X -+ S of surfaces can fail to be birational on only finitely many curves in X. 

Alternatively, we can simply write down a particular cubic surface S c 1P3 
and line L c S and verify that L is an isolated point of Fl (S) by writing down 
the local equations for Fl (S) near L. For this purpose, we choose the line 

Lo: Zz = Z3 = 0 

and the surface 

S: ZJZz + Z;Z3 = O. 

In a neighborhood of Lo in the Grassmannian G = G(1, 3), we can write a general 
line as the row space of the matrix 

a b). 
cd' 
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that is, given parametrically by 

[U, V] t--+ [U, V, aU + cv, bU + dV]. 

Restricting the defining polynomial of S to this line, we have the cubic 

U 2(aU + cV) + V2(bU + dV) = aU 3 + cU2V + bUV2 + dV 3• 

The coefficients a, c, b, and d of this polynomial are then the defining equa­
tions of the Fano variety Fl (S) in the open subset U c IG, from which we deduce 
that the point Lo is indeed an isolated point of Fl (S). 

In fact, the surface S we have written down is the surface described in the 
first approach, that is, it is the projection of a rational normal scroll from iP'4 
(though that was certainly not necessary). It is worth remarking that, in either 
approach, the surface S we used in fact had a one-dimensional Fano variety 
Fl(S), 

Exercise 12.7. Consider here general values of n, d, and k for which qJ(n, d, k) = 0, 
i.e., we expect a general hypersurface of degree din iP'n to contain a finite number 
of k-planes. In cases with d ~ 3, find a hypersurface Xo c iP'n of degree d whose 
Fano variety Fk(X) contains an isolated point Ao and deduce that every such 
hypersurface does indeed contain a k-plane. 

In the general case qJ(n, d, k) > 0, the situation is as in the case of the exercise, 
namely, with the exception of the case d = 2 of quadric hypersurfaces and some 
values of k, <I> always surjects. In sum, then, we have the following theorem. 

Theorem 12.S. Set 

(k + d) qJ(n, d, k) = (k + 1)(n - k) - d . 

Then for any n, k, and d ~ 3 the Fano variety Fk(X) of k-planes on a general 
hypersurface of degree d in iP'n is empty if qJ < 0, and of dimension qJ if qJ ~ O. 

The proof of this theorem follows exactly the lines of the preceding exercise, but 
is probably best left until after our discussion of the tangent spaces to Fano varieties 
in Example 16.21. Of course, we will have more to say later about the geometry of 
Fk(X) in the case qJ ~ 0, and for that matter there is more to be said in case qJ < 0 
as well; for example, we expect the locus in iP'N of hypersurfaces that do contain a 
k-plane to have codimension - qJ, and it does. We can ask further questions about 
the geometry of this locus. (For example, in the projective space of quartic surfaces 
in iP'3, the subvariety of those that do contain lines is a hypersurface; its degree is 
320.) 

In those cases where qJ(n, d, k) = 0 (and d ~ 3), the actual number of k-planes on 
a general hypersurface X c iP'n of degree d can be worked out; for example, there 
are 27 lines on a general cubic surface, 2875 lines on a general quintic threefold in 
iP'4, and so on. 
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Parameter Spaces of Twisted Cubics 

We will consider next the dimension of some parameter spaces of varieties. Classi­
cally, if the family of varieties X of a given type was parametrized by a variety :Yf 

of dimension k, we would say that a variety X of the family "varies with k degrees 
offreedom" or "depends on k parameters"; thus, for example, a plane conic C c !pz 
moves with five degrees of freedom. 

Of course, as we said before we will not actually describe the construction of 
parameter spaces or indicate how to prove their existence until Lecture 21; for the 
time being we will just assume that they behave in reasonable ways and try to 
determine their dimensions in some cases. 

Example 12.9. Twisted Cubics 

Consider for example the space :Yf of twisted cubics. There are several ways 
of estimating the dimension of :Yf. For one, we can use a trick: as we saw in 
Lecture 1, through any six points in general position in !p3 there passes a unique 
twisted cubic curve. Thus, we can let U c (!p3)6 be the open set consisting of six­
tuples (Pl' ... , P6) with no three collinear, and let ~ c U x :Yf be the incidence 
correspondence 

~ = {((Pl"'" P6), C): Pl"'" P6 E C distinct}. 

To see that ~ is indeed a variety, observe that it may be realized as an open 
subset of the sixth fiber product 

~ = C(j x.Jf' C(j x.Jf'··· X.Jf' C(j 

of the universal twisted cubic C(j c :Yf X !p3. By Theorem 1.18, ~ maps one to 
one onto U, and so dim(~) = 18. On the other hand, the fiber of ~ over any 
point C E :Yf is just the complement of the main diagonal L1 in C6 , and so has 
dimension 6; thus, the dimension of:Yf must be 12. 

Here is another way, taking advantage of the fact that all twisted cubic curves 
are congruent under the group PGL4 K. We simply fix a standard twisted cubic 
Co E:Yf and define a map PGL4 K ~:Yf by sending g E PGL4 K to g(Co). The fiber 
of this map over any C E :Yf is the subgroup of PGL4 K carrying C to itself, which, 
as we observed in Lecture 10, is the group PGLzK. We thus have 

dim(:Yf) = dim(PGL4 K) - dim(PGLzK) = 12. 

This approach is essentially equivalent to the following. Let 9R be the space of maps 
v: !p l ~!p3 mapping!p l one to one onto a twisted cubic. 9R is an open subset of the 
projective space !p lS associated to the vector space of 4-tuples of homogeneous 
polynomials of degree 3 on !PI, so that dim(9R) = 15; on the other hand, two maps 
v and Vi will have the same image if and only if they differ by composition Vi = V 0 A 
with an automorphism A E PGLzK of !PI, so again dim(:Yf) = 15 - 3 = 12. 
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Exercise 12.10. Find the dimension of the parameter space of rational normal 
curves C c /pn twice, by methods analogous to each of the preceding two 
approaches. 

Here is another, basically different, approach to determining the dimension of 
the space Jt' oftwisted cubics in /p3. We have observed already that a twisted cubic 
curve C c /p3lies on a family of quadric surfaces {Q.j parametrized by A, E /p2 and 
that the intersection of any two distinct quadrics of this family consists of the union 
of C and a line L; conversely, given a line L c /p3, if Q and Q' are general quadrics 
containing L then the intersection Q n Q' will consist of the union of L and a 
twisted cubic curve. This suggests introducing yet another incidence correspon­
dence: let /p9 be the space of quadric surfaces in /p3 and set 

'P = {(C, L, Q, Q'): Q n Q' = C u L} c Jt' x G(I, 3) x /p9 X /p9. 

By what was said earlier, the fiber of 'P over L E G(I, 3) is an open subset of 
the product /p6 x /p6, from which we may deduce that 'P has dimension 

dim('P) = dim(G(I, 3)) + 2·6 = 16. 

On the other hand, the fiber of 'P over C E Jt' is an open subset of the product 
/p 2 x /p 2 ; hence 

dim(Jt') = dim('P) - 4 = 12. 

Exercise 12.11. Find again the dimension of the parameter space of rational normal 
curves C c /pn using the construction of a rational normal scroll given in Example 
9.15 and a computation analogous to the one just given. (*) 

Example 12.12. Twisted Cubics on a General Surface 

Having determined that the space of twisted cubics is 12-dimensional, we may now 
mimic the computation of the dimension of the Fano variety of a general hyper­
surface to answer the question: when does the general surface of degree d contain 
a twisted cubic curve? To answer this, we let as before /pN be the projective space 
of surfaces of degree d in /p3, and let <I> be the incidence correspondence 

<I> = {(S, C): C c S} C /pN X :Yt'. 

To calculate the dimension of <1>, we consider the projection map 11:2: <I> -+:Yt'. The 
fiber of this map over a point C E Jt' is simply the subset of /pN consisting of surfaces 
of degree d containing C; since the restriction map 

{polynomials of degree d on /p3} -+ {polynomials of degree 3d on C ~ /Pi} 

is a surjective linear map, this is a linear subspace of /pN having dimension 
N - (3d + 1). We thus have 

dim (<I» = N - (3d + 1) + 12 = N - 3d + 11, 
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and in particular we may conclude that <II does not surject onto [p>N unless 3d ~ 11. 
In other words, a general surface S c [p>3 of degree d ~ 4 contains no twisted cubic 
curves. 

We may suspect a good deal more from this calculation: that the family of 
twisted cubic curves on a surface of degree d ~ 3 has dimension 11 - 3d, and that 
the codimension in [p>N of the subvariety of surfaces of degree d containing a twisted 
cubic curve is 3d - 11. In fact, both these statements are true for d > 1, though we 
do not have the technique to prove them without straining. It is worth mentioning, 
however, that one special case of this is of some significance: the fact that a general 
cubic surface S c [p>3 contains a twisted cubic curve may be used to prove that S is 
rational. Briefly, suppose S is a cubic surface and C c S a twisted cubic curve. Let 
Fo, F1, F2 be a basis for the space of quadric polynomials vanishing on C and 
consider the rational map q>: S -+ [p>2 given by 

[Z] H [Fo(Z), F1(Z), F2(Z)]. 

If P E [p>2 is a general point-say given by the vanishing of two linear forms 

ao Wo + a1 W1 + a2 W2 = bo Wo + b1 W1 + b2 W2 = 0 

on [P>2-then the inverse image of p in S will consist of the points of intersec­
tion with S of the corresponding quadric surfaces 

and 

away from C. But now we have seen that the intersection of A and B will consist of 
the union of C and a line L meeting C at two points q, r E C. The inverse image of 
p will thus consist of the third point of intersection of L with S, so that the map q> 
is generically one to one. 

Exercise 12.13. Find the dimension of the space of plane conic curves C c [p>3 

and show that for d ~ 4 not every surface of degree d in [p>3 contains a conic. 
What do you expect to happen in case d = 3? Show directly that it does. (*) 

Example 12.14. Complete Intersections 

It is not hard to describe in general the dimension of the space of complete 
intersections of hypersurfaces of given degrees in [p>n. As an example, we will 
consider the space Illtd •e of curves C c [p>3 that are complete intersections of surfaces 
of degrees d and e. 

Note. In what follows, we will be using the fact that if Sand T are general 
surfaces of degrees d and e then the intersection S nTis a complete intersec­
tion-that is, the defining polynomials F and G of Sand T together generate 
a radical ideal in K[Zo, Zl' Z2' Z3]. If this is not familiar to you from commutative 
algebra, it will be established in Proposition 17.18. 
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Suppose first that d < e. Then if C is a complete intersection of surfaces S 
and T of degrees d and e, S is uniquely determined by C c [p>3 as the zero locus 
of the unique (up to scalars) polynomial F in the dth graded piece of the homo­
geneous ideal J(C)d' T, by contrast, is only determined modulo surfaces of degree e 
vanishing on S, that is, as an element of the projective space associated to the space 
of polynomials of degree e modulo J(S)e' Thus, we consider the map of IJIId,e to the 
space [p>N of surfaces of degree d given by associating to C the surface S. 

Now, the space of polynomials of degree e has dimension (e ; 3) and the 

subspace of those vanishing on S-that is, divisible by F-may be identified 

with the space of polynomials of degree e - d, and so has dimension (e - ~ + 3). 
It follows that the fiber of IJIId,e over a general S E [p>N is an open subset of a 
projective space of dimension 

(e; 3) _ (e - ~ + 3) _ 1 = d3 
- 3d 2e - 6d 2 + 3;e2 + 12de + lId - 6 

=(d;1)+e.d.e-~+4, 

Thus, IJIId,e will have dimension 

( d + 3) (d - 1) d e - d + 4 -1+ +e' ,----
332 

d 3 + lld - 3 d e - d + 4 
3 + e" 2 

Now, if d = e, we can realize the space IJIId,d as an open subset of the Grass­
mannian of two-dimensional subspaces of the space of polynomials of degree d on 
[p>3; thus 

dim(lJIId,d) = 2, (d ; 3) - 4. 
Note that this differs by exactly one from the estimate for IJIId,e in the previous case, 
the difference being that S is not uniquely determined by C here. To see the 
difference clearly, set up an incidence correspondence of pairs (C, S) with C c S. 

Example 12.15. Curves of Type (a, b) on a Quadric 

One more example of a family of curves in [p>3 whose dimension we can compute is 
the family "Ya,b of curves C c [p>3 that are of type (a, b) on some smooth quadric 
surface Q c [p>3, (By "type (a, b)" we mean that in terms of the isomorphism 
Q ~ [p>i X [p>i C is given as the zero locus of a bihomogeneous polynomial of 
bidegree (a, b) with no multiple components,) Here, if we assume that either a or 
b ~ 3, then C will determine Q; Q will be just the union of the trisecant lines to C. 
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The space 1/",b will thus map to the open subset U of the space 1P9 of all quadric 
surfaces parameterizing smooth quadrics. The fiber over a given Q E U, moreover, 
will be just an open subset of the union of the two projective spaces associated to 
the vector spaces of bihomogeneous polynomials of bidegree (a, b) or (b, a) (given 
just Q, we don't have any canonical way of distinguishing one ruling from the 
other). This is a union of two projective spaces of dimension (a + l)(b + 1) - 1 = 
ab + a + b, and so we have 

dim(1/",b) = ab + a + b + 9. 

Note that it is not clear from this description whether ''fI".b has one irreduc­
ible component or two; in fact it is irreducible. 

Exercise 12.16. In case both a and bare :::;:; 2, set up an incidence correspon­
dence between curves and quadrics to compute the dimension of 1/",b' In particular, 
check that you get the same answer as before for the space "1/2,1 of twisted cubics. 

Exercise 12.17. Observe that a curve oftype (1, d - 1) on a smooth quadric Q c 1P3 
is a rational curve of degree d-that is, the image of IPI under a map to 1P3 given 
by a fourtuple of homogeneous polynomials of degree d on IPI, or equivalently a 
projection of the rational normal curve in IPd. Use a count of parameters to show 
that for d ~ 5 the general rational curve of degree d is not a curve of type (1, d - 1) 
on a quadric. 

Example 12.18. Determinantal Varieties 

Sometimes we can prove something about the general member of a family of 
varieties simply by counting dimensions. For example, recall that in Exercise 9.18 
we stated that for sufficiently large d a general surface of degree d in 1P3 could not 
be expressed as a linear determinantal variety, i.e., was not the zero locus of any 
d x d matrix oflinear forms on 1P3. In fact, as we can now establish, this is true for 
all d ~ 4. To prove this, we will count parameters, or in other words, estimate the 
dimension of the space of surfaces that are so expressible. 

To this end, let U be the space of d x d matrices of linear forms on 1P3 whose 
determinants are not identically zero (as polynomials of degree d on 1P 3 ), up to 
scalars. U is an open subset of a projective space of dimension 4d 2 - 1, mapping 
to the space IPN of all surfaces of degree d in 1P3. Now, for any matrix M = (Li,j) of 
linear forms, we can multiply M on either the left or the right by a d x d matrix 
of scalars without changing the zero locus of its determinant-in other words, 
PGLdK x PGLdK acts of the fibers of U over IPN. Moreover, we can check that for 
general M the stabilizer of this action is trivial; we conclude that the dimension of 
the subset of IPN of surfaces given as linear determinantal varieties is at most 

4d 2 - 1 - 2(d 2 - 1) = 2d 2 + 1. 
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Comparing this with the dimension N = (d ; 3) - 1 we conclude that for d ~ 4, 

the general surface of degree d in 1P3 is not a linear determinantal variety. 
In fact, the dimension of the set of determinantal surfaces of degree d is indeed 

exactly 2d 2 + 1. In particular, when d = 4 we get a hypersurface in the space 1P 34 

of all quartic surfaces. 

Exercise 12.19. Consider possible expressions of a surface S c 1P3 of degree d as a 
more general determinantal variety, for example, as the zero locus of the deter­
minant of a 2 x 2 matrix of polynomials; in the space IPN of all surfaces of degree d, 
let <l>a.b be the subset of those of the form 

S = {[Z]: I F(Z) G(Z) I = o} 
H(Z) K(Z) 

where deg F = a, deg G = b, deg H = d - b, and deg K = d - a. Estimate the di­
mension of <l>a.b and deduce again that a general surface of degree d ~ 4 does not 
lie in <l>a.b for any a and b. 

Note that in case d = 4, every admissible choice of a and b yields a hypersurface 
in the space 1P 34 of quartics. Indeed, some of these are hypersurfaces we have run 
into before; for example, a surface S given by the determinant 

I L(Z) M(Z) I 
H(Z) K(Z) = 0, 

where Land M are linear forms, certainly contains the line A in 1P3 given by 
L(Z) = M(Z) = 0. Conversely, if S contains this line, then its defining polynomial 
is in the homogeneous ideal I(A), and so may be expressed as a linear combination 
K(Z)' L(Z) - H(Z)' M(Z). Thus the hypersurface <1>1.1 is just the locus of quartics 
containing a line. Similarly, an irreducible quartic S is in <1>1,2 if and only if it 
contains a plane conic and may be given as the zero locus of a determinant 

Ll1 (Z) L 12(Z) L13(Z) 
L 21 (Z) L 22(Z) L 23 (Z) = 0, 

Q1 (Z) Q2(Z) Q3(Z) 

with Lij linear and Qi quadratic, if and only if it is in the closure of the locus 
of quartics containing a twisted cubic curve. 

Exercise 12.20. Verify the last statement. 

Exercise 12.21. Verify the preceding computation (Example 12.15) of the dimension 
of the family of curves of type (a, a-I) on a quadric surface by realizing such a 
curve C c 1P3 as a determinantal variety 
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c = {[Z]: rank (L ll (Z) L12 (Z) F(Z)) < 1} 
L21 (Z) L22 (Z) G(Z) -

with Lij linear and F and G of degree a - 1 (cf Exercise 9.17). 

Group Actions 
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As a final example of dimension computations, we consider the action of an 
algebraic group G on a variety X. In this context, Theorem 11.12, applied to 
the map G -+ X defined by sending g E G to g(xo) for some fixed Xo E X, says 
simply that the dimension of G is equal to the dimension of the orbit G· XO 

plus the dimension of the stabilizer of Xo in G. We will invoke here for the most part 
only a very crude form of this, the observation that the orbits of G can have 
dimension at most dim (G). This says in particular that the action of G on X can be 
quasi-homogeneous, that is, have a dense orbit, only if dim(G) ~ dim (X). 

Example 12.22. GL(V) acts on SymdVand Nv 

Consider first the action of the group GLnK on the space of homogeneous poly­
nomials of degree d in n variables. Comparing the dimensions n2 of GLnK and 

( d + n - 1) of Symd(Kn), we may conclude that the only cases in which there can 
n - 1 

be only a finite number of hypersurfaces of degree d in pn-l up to projective 
equivalence are d = 1 or 2 in general and n = 2, d = 3. That there are indeed only 
a finite number in each of these cases is easy to check. 

A similar pattern emerges when we look at the action of GLnK on N(Kn) with 

n ~ 2k; since the dim.ension of N(Kn) is (~), we see that the only cases in which 

there can be only a finite number of skew-symmetric k-linear forms on an n­
dimensional vector space V up to automorphisms of V are k = 2 in general and 
k = 3 with n = 6, 7, or 8. 

Exercise 12.23. Show that there are indeed only finitely many orbits of GL6K 
on N K6 (there are four, other than {O}). Try to relate these to the geometry 
of the Grassmannian G(3, 6) c P(N K 6 ). (*) 

Example 12.24. PGLn+1 K Acts on (IJJ>n)' and G(k, n)' 

Comparing the dimensions n2 + 2n of PGLnK and I· n of (pn)', we see that general 
I-tuples of points in pn can be carried into one another only when I :::; n + 2, a very 
weak form of the standard fact (Exercise 10.5) that there is a unique automorphism 
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of IPn carrying any n + 2 points in general position into any other. Note that the 
action of PGLn+1 K on (IPn)1 for 4 ~ 1 ~ n + 2 is an example of a group action that 
has a dense orbit, but not finitely many orbits. 

Things get substantially more interesting when we look at more general configu­
rations of linear spaces-for example, I-tuples of k-planes. Since dim(G(k, n)l) = 
1· (k + 1)· (n - k), we can of course conclude that general I-tuples of k-planes in IPn 
can be carried into each other only when 1· (k + 1)· (n - k) ~ n2 - 1. As the follow­
ing exercise shows, however, the action does not always behave as we'd expect. 

Exercise 12.25. Show that the stabilizer in PGL4K of a general point in G(1, 3)4 
is one-dimensional, despite the fact that dim(G(1, 3)4) > dim(PGL4K). Can you 
describe explicitly the set of orbits on the open set U c G(1, 3)4 consisting of 
fourtuples of pairwise skew lines? (*) 

Exercise 12.26. Show that general 4-tuples of lines in 1P4 can be carried into each 
other by an element of PGLsK, as a dimension count would suggest. Is the 
same true for 4-tuples of 2-planes in 1P6? In general, is there an example where 
dim(G(k, n)l) ~ n2 + 2n, but the action of PGLn+1K on G(k, n)1 does not have a 
dense orbit? (*) 

Exercise 12.27. Show that if we generalize the statement of the last problem further, 
the answer becomes no: for example, show that the action of PGL3 K on the space 
(1P2? x (1P2*? does not have a dense orbit. 



LECTURE 13 

Hilbert Polynomials 

Hilbert Functions and Polynomials 

Given that a projective variety X c IPn is an intersection of hypersurfaces, one of 
the most basic problems we can pose in relation to X is to describe the hyper­
surfaces that contain it. In particular, we want to know how many hypersurfaces 
of each degree contain X -that is, for each value of m, to know the dimension of 
the vector space of homogeneous polynomials of degree m vanishing on X. To 
express this information, we define a function 

hx: N -+ N 

by letting hx(m) be the codimension, in the vector space of all homogeneous 
polynomials of degree m on lPn, of the subspace of those vanishing on X; i.e., 

where S(X) = K[Zo, ... , Zn]/I(X) is the homogeneous coordinate ring and the 
subscript m denotes "mth graded piece." The function hx is called the Hilbert 
function of X c IPn. 

For example, to start with the simplest case, suppose X consists of three points 
in the plane 1P2. Then the value hx(l) tells us exactly whether or not those three 
points are collinear: we have 

_ {2 if the three points are collinear. 
hx(l) - 3 'f 

1 not. 

On the other hand, we claim that hx (2) = 3, whatever the position of the points. To 
see this, note that there exists a quadratic polynomial vanishing at any two of the 
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points Pi and Pi' but not at the third point Pk: take a product of a linear form 
vanishing at Pi but not at Pk with one vanishing at Pi and nonzero at Pk. Thus the 
map from the space of quadratic polynomials to K3 given by evaluation at the Pi 
is surjective\ and the kernel will have dimension 3. Similarly, we have hx(m) = 3 
for all m ~ 3, independent of the position of the points. 

Similarly, if X c jp2 consists of four points, there are two possible Hilbert 
functions. We could have 

hx(m) ~ {: 
for m = 1 

for m = 2 

for m ~ 3 

if the four points are collinear or 

if not. 

{3 for m = 1 
hx(m) = 4 

for m ~ 2 

More generally, we see that whenever X c jpn is a finite set of points, the 
values hx(m) for small values of m will give us information about the position 
of the points-hx(1), for example, tells us the size of the linear subspace of jpn 

they span-but in general, we have the following. 

Exercise 13.1. Let X c jpn be a set of d points. Show that for sufficiently large values 
of m relative to d (specifically, for m ~ d - 1), the Hilbert function hx(m) = d. 

To give an example involving a positive-dimensional variety, suppose X c jp2 is 
a curve, say the zero locus of the polynomial F(Z) of degree d. The mth graded piece 
I (X)m of the ideal of X then consists of polynomials of degree m divisible by F. We 
can thus identify I (X)m with the space of polynomials of degree m - d, so that 

dim(I(X)m) = (m - ~ + 2) 
and, for m ~ d, 

hx(m) = (m; 2) _ (m - ~ + 2) = d.m _ d(d;,- 3). 

One thing we may observe in all the cases so far is that hx is basically a 
nice function of m-in particular, for large values of m it is a polynomial in 
m. We will see now that this is indeed the general picture. 

1 Of course, homogeneous polynomials do not take values at points P in projective space. In general, 
what we will mean by "the map from the space of polynomials to K m given by evaluation at the points 
Pi' will be the map given by evaluation at vectors Vi E K"+1 lying over the points Pi; as far as the rank 
of the map is concerned it doesn't matter what Vi we pick. 
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Proposition 13.2. Let Xc pn be a variety, hx its Hilbert function. Then there 
exists a polynomial Px such that for all sufficiently large m, hx(m) = px(m); the 
degree of the polynomial Px is the dimension of X. 

The polynomial Px is called the Hilbert polynomial of X. From a strictly logical 
point of view, it might make sense to define the dimension of a variety to be 
the degree of its Hilbert polynomial and then to deduce the various other defini­
tions given earlier; since the Hilbert polynomial definition is perhaps the least 
intuitively clear, however, we chose to go in the other direction. 

PROOF. We will prove Proposition 13.2 modulo one assertion whose proof will be 
given as Exercise 17.19 (it is an immediate consequence of Bertini's theorem). To 
state this assertion, let X c pn be any irreducible variety of dimension k, and 
let A ~ pn-k C pn be a general linear space of complementary dimension, so 
that the intersection Y = X n A consists of a finite collection of points. We claim 
then that the ideals of X and A together locally generate the ideal of Y; i.e., the 
saturation 

(I(X), I(A)) = I(Y). 

(For the reader who is familiar with the notions of smoothness and tangent spaces 
to varieties, we can express this condition a little more geometrically: the claim 
amounts to saying that X and A intersect transversely at smooth points of X.) 

Assuming the claim, let A be a general (n - k)-plane in pn and L 1 , ... , Lk 
linear forms on pn generating the ideal of A. Introduce ideals 

I(X) = 1(0) c 1(1) c ... c I(k) c K[Zo, ... , Zn] 

defined by 

so that in particular the claim amounts to saying that the saturation of I(k) is 
I(Y). Let S(IZ) = K[Zo, ... , Zn]/I(IZ) be the quotient ring, and define functions h(lZ) by 

h(IZ)(m) = dim((S(IZ»)m) 

so that h(O)(m) = hx(m) and by the claim and Exercise 13.1, h(k)(m) is constant 
(equal to the number d of points of Y) for sufficiently large m. 

Now, since the dimension of Y is k less than the dimension of X, it follows that 
the dimension of the variety defined by I(IZ) must be exactly k - IX for all IX; in 
particular, the image of LIZ+! in S(IZ) is not a zero-divisor. Multiplication by LIZ +1 thus 
defines an inclusion (S(IZ»)m_l ~ (S(IZ»)m' with quotient (S(IZ+l»)m; we deduce that 

h(lZ+l)(m) = h(IZ)(m) - h(IZ)(m - 1), 

i.e., h(a+l) is just the successive difference function of h(IZ). 
Putting this all together, we see that for large values of m the kth successive 

difference function of the Hilbert function hx(m) = h(O)(m) will be a constant d; i.e., 
for large mhx(m) will be a polynomial of degree k in m. 0 
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In Remark 13.10 we will give another argument for the fact that the degree of 
hx(m) for large m is the dimension of X, given that it is a polynomial in the 
first place. 

Note that by this argument the leading term of the Hilbert polynomial px(m) is 
(d/k!)· m\ where d is the number of points of intersection of X with a general 
(n - k)-plane A. The number d is called the degree of X; it will be defined and 
discussed further in Lecture 18. 

Example 13.3. Hilbert Function of the Rational Normal Curve 

This is easy. Under the map 

Vd: IPI -+ IPd 

: [Xo, Xl] f-+ [xg, Xg-IXI, ... , XtJ, 

the homogeneous polynomials of degree m in the coordinates [Zo, ... , Zd] on IPd 
pull back to give all homogeneous polynomials of degree m· d in X ° and X I. If 
X C IPd is the image of this map, then S(X)m is isomorphic to the space of homo­
geneous polynomials of degree md in two variables; so 

hx(m) = px(m) = d·m + 1. 

Example 13.4. Hilbert Function of the Veronese Variety 

We can, in exactly analogous fashion, write down the Hilbert function of the 
Veronese variety X = vAiP'N) C iP'N. We observe that polynomials of degree m on 
IPN pull back via Vd to polynomials of degree d· m on IPn. The dimension of the space 
S(X)m is the dimension of the space of polynomials of degree d· m on lPn, and we 
have 

( m.d + n) 
hx(m) = px(m) = n . 

Exercise 13.5. Find the Hilbert function of a hypersurface of degree d in IPn and 
verify that the dimension of this variety is indeed n - 1. 

Exercise 13.6. Find the Hilbert function of the Segre variety ~n.m = O"(lPn X IPm) c 
lP(n+1)(m+I)-1 and verify that the dimension of this variety is indeed n + m. 

Example 13.7. Hilbert Polynomials of Curves (for those familiar with 
the Riemann-Roch theorem for curves) 

To see an example of what sort of information may be conveyed by the Hilbert 
polynomial, consider the case of a curve X c IPn; for the moment, suppose that 
K = C and that X is a complex submanifold of lPn, i.e., a Riemann surface. Suppose 
that the hyperplane (Zo = 0) intersects X transversely in d points PI' ... , Pd. Then 
to a homogeneous polynomial F(Z) of degree m we may associate the merom orphic 
function F(Z)/Z'; on X; this gives us an inclusion ofthe space S(X)m of homogeneous 
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polynomials modulo those vanishing on X in the space 5f(m· PI + ... + m· Pd) of 
meromorphic functions on X, holomorphic away from the points Pi and with a pole 
of order at most m at each Pi. Two things now happen for m large. First, the 
divisor m· Pl + ... + m· Pd on X becomes nonspecial, so that by the Riemann­
Roch formula, dim (5f(m . PI + ... + m· Pa)) = md - g + 1; and the map S(X)m ~ 
5f(m· Pl + ... + m· Pd) becomes an isomorphism. Thus, 

px(m) = md - g + 1. 

Note that the coefficient of the linear term is d, the degree of the curve, and the 
constant term is 1 - g, which tells us the genus. Indeed, we can use this to extend 
the notion of genus to arbitrary fields K and to singular curves as well as smooth 
ones; for any curve X c IPn with Hilbert polynomial px(m) = a· m + b, the quantity 
1 - b is called the arithmetic genus of X. 

Observe that this computation of the Hilbert function of a plane curve X c 1P2 

(d -1) of degree d shows that the genus of a smooth plane curve is 2 ' and more 

generally that this is the arithmetic genus of any plane curve of degree d. 

Exercise 13.S. Determine the arithmetic genus of (i) a pair of skew lines in 1P3; (ii) a 
pair of incident lines in either 1P2 or 1P3; (iii) three concurrent but noncoplanar lines 
in 1P3; and (iv) three concurrent coplanar lines in either 1P2 or 1P3. H 

Exercise 13.9. Consider a plane curve X c 1P2 of degree d and its image Y = 
v2 (X) c IPs under the quadratic Veronese map v2 : 1P2 --+ IPs. Compare the Hilbert 
polynomials of the two and observe in particular that the arithmetic genus is the 
same. 

It is in fact the case, as this exercise may suggest, that the constant term Px(O) of 
the Hilbert polynomial of a projective variety X c IPn is an isomorphism invariant, 
i.e., does not depend on the choice of embedding of X in projective space, though 
we would need cohomology to prove this. (One case is elementary: it is easy to see 
that it is invariant under Veronese reembeddings.) In general, we define the arith­
metic genus of a projective variety X of dimension k to be (_l)k(pX(O) - 1). 

Finally, one natural problem we may pose in regard to Hilbert functions and 
Hilbert polynomials is to give explicit estimates for how large m has to be to insure 
that px(m) = hx(m). Specifically, given a polynomial p(m), we would like to find the 
smallest value of mo such that for any irreducible variety X C ~Dn with Hilbert 
polynomial Px = p, we have 

hx(m) = p(m) 

for all m ~ mo. This is very difficult; it is already a major theorem that such an mo 
exists, and very little is known about the actual value of mo even in as simple a case 
as curves in 1P3. For example, though Castelnuovo showed that taking mo = d - 2 
sufficed for irreducible curves C c 1P3 with Hilbert polynomial p(m) = d· m + c 



168 13. Hilbert Polynomials 

(this is the best possible estimate for mo in terms of the leading coefficient d 
alone), and this was generalized by Gruson Lazarsfeld and Peskine [GLP] for 
curves and Pinkham [P] for surfaces, we are still miles away from understanding 
the general question. To see a situation where this is of crucial importance, look at 
the construction of the Hilbert variety parametrizing subvarieties of [p>", described 
in Lecture 21. 

Syzygies 

There is another way to see the existence of the Hilbert polynomial of a variety 
X c: [p>", which involves introducing a finer invariant. 

We start with some notation: first, to save ink, we will write simply S for 
the homogeneous coordinate ring K[Zo, ... , Z"] of [P>". Next, suppose that M 
is any homogeneous module over the ring S-that is, a module M with grading 

M= EBMk 

such that Sd· Mk c: Md+k. For any integer 1 we let M(l) be the same module as 
M, but with grading "shifted" by 1, that is, we set 

M(l)k = Mk+l 

so that M(l) will be isomorphic to M as S-module, but not in general as graded 
S-module; M(l) is called a twist of M. We introduce this notation so as to be able 
to make maps homogeneous of degree 0 (we say in general that a map cp: M -+ N of 
graded S-modules is homogeneous of degree d if cp(Mk ) c: Nk +d ). For example, the 
module homomorphism· F from S to S given by multiplication by a homogeneous 
polynomial F(Z) of degree d is clearly not homogeneous of degree 0; but the same 
map, viewed as a map from S( - d) to S, is. 

With this said, first consider the ideal J(X) of X. J(X) is generated by poly­
nomials F~ of degree d~, ex = 1, ... , r. We can express this by saying that we have a 
surjective homogeneous map of graded S-modules 

EBS( -d~) -+ J(X) 

or equivalently that we have an exact sequence of graded S-modules 

E8 S( -d~) ~ S -+ A(X) -+ 0 
~=l 

where CPl is given by the vector ( ... , . F~, ... ). 
Next, we want to describe the relations among the polynomials F~. We therefore 

introduce the module Ml of relations, defined to be simply the kernel of CPl, or, 
explicitly, the module of r-tuples (Gl , ... , Gr ) such that L G~· F~ = O. Note that Ml 
is indeed a graded module and that, except in the case r = 1 (i.e., X a hypersurface) 
it will be nonempty, since it will contain the relations F~· Fp - Fp· F~-that is, the 
vectors (0, ... , - Fp, ... , F~, ... , 0). 
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In any event, since Ml is a submodule of a finitely generated module it is again 
finitely generated; we let {Gp, l' ... , Gp,,}, f3 = 1, ... , s, be a set of generators2. Note 
that for each f3 we have 

deg(Gp,l) + d1 = ... = deg(Gp,,) + d, = ep 

for some ep. We can express all of this by saying that the exact preceding sequence 
may be lengthened to an exact sequence 

s , 

EB S( -ep) ~ EB S( -d~) ~ S ~ A(X) ~ 0 
P=l ~=l 

where ({J2 is given by the r x s matrix (Gp,~). 
We now just repeat this process over and over: we let M2 be the kernel of 

({J2' called the module of relations among the relations, which is again finitely 
generated. Choosing a set of generators we obtain a map ({J3 from another direct 
sum of twists of S to EB S( - ep) extending the sequence one more step, and so on. 
The basic fact about this process is the famous Hilbert syzygy theorem. This says 
that after a finite number of steps (at most the number of variables minus 1) the 
module Mk we obtain is free, so that after one more step we can terminate the 
sequence. We arrive then at an exact sequence 

o ~ Nk ~ Nk- 1 ~ ... ~ Nl ~ S ~ S(X) ~ 0 

in which each term Ni is a direct sum of twists S( -ai ) of S. Such a sequence is 
called a free resolution of the module S(X); if at each stage we choose a minimal set 
of generators for the module Mi (i.e., the kernel of the previous map), it is called 
minimal. 

One consequence of the existence of such a resolution is that we can use it to 
describe the Hilbert function of X. Explicitly, we have 

. . ( ) (m - a + n) dIm(S( - a)m) = dIm Sm-a = n 0 

where for n EN and C E 7L the binomial coefficient (:)0 is defined to be 

if C ~ n 

ifc<n. 

(Note that this differs from some definitions of the binomial coefficient when c < 0, 
which is why we append the subscript.) It follows that if the ith term Ni in the 
resolution of S(X) is EB S( - ai,j)' then the dimension of S(X)m is given by 

2 Note that we want these generators to be simultaneously homogeneous elements of the module M, 
and relations among the Fa; in order to know that we can indeed find such generators we have to check 
that the homogeneous parts of a relation are again relations. 
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dim(S(X)m) = (m + n) + ~ ( _1)i (m - ai,j + n) , 
n 0 t,j n 0 

In particular, we observe that since the binomial coefficient (:)0 is a polynomial 

in c for c ~ 0, for m ~ max(ai ) - n the Hilbert function hx(m) = dim(S(X)m) is a 
polynomial in m. 

Remark 13.10. It is worth pointing out that, given that the Hilbert function hx(m) 
of a variety X c IPn is equal to a polynomial px(m) for large m, one can see directly 
that the degree of this polynomial must be the dimension k of X. To do this, make 
a linear change of variables so that the plane A given by Zo = ... = Zk = ° is 
disjoint from X, and consider the projection 7th : X --+ IPk from A. Since this is sur­
jective, it gives an inclusion of the homogeneous coordinate ring S' = K [Zo, ' , , , ZkJ 
of IPk in S(X), respecting degrees; this shows that 

for all m, 
On the other hand, we claim that the map S' --+ S(X) expresses S(X) as a finitely 

generated S'-module. To see this, it is enough to project from one point at a time, 
say from [0, ... ,0, IJ to the plane Zn = 0. In this case we let X' be the image of X 
in IPn- 1 and write S(X) = S(X') [ZnJ/I(X); we observe that any homogeneous poly­
nomial P E I(X) not vanishing at p gives a monic relation for Zn over S(X'). 

Now, if the generators of S(X) as S' -module have degree di , we have a surjection 
EBS'( -dJ --+ S(X), and hence an inequality 

hx(m) ~ I(m + ~ - di)o' 
Given that hx(m) is polynomial for large m, these two inequalities imply that it must 
have degree k. 

Example 13.11. Three Points in 1P2 

Consider again the case of three points in the plane. First, if they are not collinear, 
we may take them to be the points [0, 0, IJ, [0, 1, OJ, and [1, 0, OJ, so that their ideal 
is generated by the quadratic monomials 

F2 = XZ, and 

The relations among these three are easy to find; they are just 

Z'F1 = Y'P2 = X'F3 , 

The minimal free resolution of r thus looks like 

° --+ S( - 3)2 --+ S( - 2)3 --+ S --+ S(r) --+ ° 
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and we see in particular that the Hilbert function of r is 

which for m ~ 1 is 

(m + 2)(m + 1) - 3m(m - 1) + 2(m - 1)(m - 2) 
2 = 3. 

If, on the other hand, the three points of r are collinear, then they are the 
complete intersection of a line and a cubic-for example, if the three points are 
[0,0, 1], [0, 1,0], and [0, 1, 1], then l(n is generated by Fl = X and F2 = 

YZ(Y - Z) (this can be checked directly or by applying Proposition 17.18). There 
is exactly one relation between these, the "trivial" relation YZ(Y - Z)· Fl = X' F2; 
so the resolution looks like 

0--+ S( -4) --+ S( -1) Ei7 S( - 3) --+ S --+ S(n --+ O. 

Of course, as you can check, this will also have Hilbert polynomial Pr(m) == 3; but 
here the Hilbert function will coincide with this polynomial only for m ~ 2. 

Example 13.12. Four Points in 1P'2 

We can likewise describe the free resolution of any configuration r of four points 
in the plane. To begin with the simplest case, if no three of the points are collinear, 
then they are the complete intersection of two conic curves-explicitly, if the 
points are the three coordinate points [0,0, 1], [0, 1,0], and [1,0,0] plus the 
point [1,1, 1] then the ideal of r will be generated by Fl = XY - XZ and 
F2 = XZ - YZ (again, this can be checked either directly or using Proposition 
17.18). The only relation between these will be the obvious one, (XZ - YZ)· Fl = 
(XY - XZ)· F2 ; so the free resolution will look like 

0--+ S( - 4) --+ S( - 2)2 --+ S --+ S(r) --+ O. 

At the other extreme, if all four points are collinear, then r is again a complete 
intersection, this time of a line and a quartic; the resolution will be 

0--+ S( - 5) --+ S( -1) Ei7 S( -4) --+ S --+ S(n --+ O. 

Finally, suppose that exactly three of the points are collinear-for example, say 
they are the three coordinate points and [0, 1, 1]. Now the ideal of r is generated 
by the two conics Fl = XY and F2 = XZ and the cubic F3 = YZ(Y - Z). The 
relations among these are 

and 

so we have a sequence 

0--+ S( - 3) Ei7 S( -4) --+ S( - 2)2 Ei7 S( - 3) --+ S --+ S(n --+ O. 
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Note one aspect of this example. While the first and third cases have the same 
Hilbert function, the terms of their minimal free resolutions differ. In other words, 
specifying the terms of the minimal free resolution of a variety-or giving the data 
ofthe integers ai,i in the general sequence-represents in general strictly more data 
than the Hilbert function, which of course is itself a refinement of the Hilbert 
polynomial. 

Exercise 13.13. Verify the assertions made in Example 13.l2-specifically, show 
that there are no further generators or relations beyond those listed. 

Exercise 13.14. Find the minimal free resolutions of r c [p3 in case (i) r consists of 
the four coordinate points; (ii) r consists of five points, no four coplanar. 

Exercise 13.15. Find the minimal free resolution of the twisted cubic curve. 

Example 13.16. Complete Intersections: Koszul Complexes 

The reader will have noticed that the free resolutions were of a relatively simple 
form in those cases that were complete intersections, involving only the automatic 
relations Fi ' Fj = Fj' Fi • In fact, this is the general pattern, though where more than 
two polynomials are involved the sequence will necessarily be longer. We will give 
here a description of the resolution of a complete intersection in general, but will 
not prove it; for details, see [El 

To describe the situation in general, suppose X c [p" is the complete intersection 
of hypersurfaces defined by polynomial equations F1 , ••• , Fk , with Fa. of degree da.. 
The first term in the minimal free resolution of X is then of course the direct sum 
Nl = EBS( -da.). Next, all the relations will be the tautological ones, so that the 
next term in the resolution will be 

N2 = EBS( -da. - dp), 

where the direct sum runs over all (IX, p) with 1 ~ IX < P ~ k and the map to Nl 
carries the generator ea.,p in the (IX, P)th factor to ( ... , - Fp, ... , Fa., ... ). 

Next, the relations among the generators of N2 are similarly easy to write down: 
the kernel of the map N2 --+ Nl is generated by elements of the form 

Fy·ea.,p - Fp·ea.,y + Fa.·ep,y 

for each IX < P < y. Thus, the third term 

N3 = EBS( -da. - dp - dy). 

The general statement is then what you'd expect on the basis of these first steps: the 
ith term Ni in the minimal free resolution of a complete intersection X c [p" with 
ideal J(X) = (Fl' ... , Fk ) is the module 

Ni = EBS( -da.l - da.2 -'" - da.), 
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the sum ranging over all IXl < ... < IXi and the map sending the generator ea, ..... ai 
to the sum L( -l)jFaj ' ea, .... ,dj, .... ai This sequence of modules is called the Koszul 
complex of X. 

We can give a more intrinsic description of the Koszul complex of a complete 
intersection in terms of the first module 

M = EBS( -da )· 

We observe that the k-tuple of polynomials (Fl' ... , Fk ) determines a map M ~ S, 
and so an element of the dual module M*. This in turn gives us a series of 
contraction mappings 

... ~1\3M ~1\2M ~M ~S 

and this is the Koszul complex. 

Exercise 13.17. Use the preceding and Exercise 13.1 to prove a weak form of 
the Bezout theorem in [pl2: if F and G are polynomials of degrees d and e on 
[pl2 without common factors such that F and G generate the ideal of their intersec­
tion, then that intersection consists of d· e points. Similarly, show that if r c [pl3 is 
a complete intersection of surfaces of degrees d, e, and f then r consists of d . e' f 
points. 

Exercise 13.18. Find the Hilbert polynomial of a complete intersection in [pl3 

of surfaces of degrees d and e. In case this intersection is a smooth curve, use 
this to say (based on Example 13.7) what the genus of the corresponding Riemann 
surface is. 

To summarize, in this lecture we have associated to a variety X c [pln three 
collections of data. The most detailed information is the collection of integers 
{ai,j}; these are sometimes called the Betti numbers of the variety X. The Betti 
numbers determine the Hilbert function, and this in turn determines the Hilbert 
polynomial. 

As you might expect, the finer the information the more difficult it is to obtain; 
in particular, while the Hilbert polynomial of most varieties is relatively accessible, 
there are relatively few varieties whose Betti numbers can be calculated. By way of 
an example, the Hilbert polynomial of an arbitrary collection of d points in [pln is of 
course trivial; the Hilbert function is easy to determine for d general points and 
quite difficult in general; we do not even know the Betti numbers of a collection of 
d general points in [pln for d ~ 2n. In particular, finding the resolution of the ideal 
of a variety X is not an effective way to find things out about X, except in the realm 
of machine calculation; for the most part it is more a source of interesting questions 
than of answers. 



LECTURE 14 

Smoothness and Tangent Spaces 

The Zariski Tangent Space to a Variety 

The basic definition of a smooth point of an algebraic variety is analogous to the 
corresponding one from differential geometry. We start with the affine case; suppose 
X c An is an affine variety of pure dimension k, with ideal J(X) = (fl' ... ,.M Let 
M be the I x n matrix with entries ofdoxj. Then it's not hard to see that the rank 
of M is at most n - k at every point of X, and we say a point p E X is a smooth point 
of X if the rank of the matrix M, evaluated at the point p, exactly n - k. Note that 
in case the ground field K = C, this is equivalent to saying that X is a complex 
submanifold of An = en in a neighborhood of p, or that X is a real submanifold of 
en near p. (It is not, however, equivalent, in the case of a variety X defined by 
polynomials f~ with real coefficients, to saying that the locus of the f~ in IRn is 
smooth; consider, for example, the origin p = (0,0) on the plane curve X3 + y3 = 0.) 

If X is smooth at p, we call the kernel of the matrix M at p the tangent space to 
X at p, denoted Tp(X) or just TpX. To be fastidious, this should be viewed as a 
subspace of the tangent space to An at p, which is naturally identified with Kn. In 
other words, it is the space of directional derivatives Dv = L ai • (%zJ such that 
(DJ)(p) = 0 for all f E J(X), or equivalently, 

TpX = {v E Tp(An) = K n: (df)(v) = 0 Vf E J(X)}. 

In general, whether or not X is smooth at p, we will call the subspace TpX c 

J;,(An) = K n defined in this way the Zariski tangent space to X at p; to rephrase our 
definition of smoothness, we have in general 

dim(TpX) ~ dim(X) 

and we say that X is smooth at p if equality holds. Note also that if X is smooth at 
p then TpX may also be realized as the set of tangent vectors v'(O) at v(O) = p to 
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analytic arcs 

There is of course some potential here 
for confusion, since we like to draw 
pictures like the one at right and call the 
line L in question "the tangent space to 
X at p." The line drawn is what we will 
call, when we are being careful, the 
affine tangent space to X at p; that is, the 
affine subspace of An through p parallel 
to Tp(X). 

Exercise 14.1. Prove the statement that 
(in case K = C) X is smooth at p ~ X is 
a complex submanifold of en at p ~ X is a real (~OO) submanifold of en at p. 
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Exercise 14.2. Show that the dimension of the Zariksi tangent space TpX is an 
upper-semi continuous function of p, in the Zariksi topology on X. 

Note that by this last exercise the locus of singular points of X is a 
subvariety of X; we will denote this subvariety Xsing and its complement 
X sm. We will see in Exercise 14.3 that in fact Xsing is a proper subvariety, i.e., if X 
is any variety then Xsm is an open dense subset of X. 

For those who want a more intrinsic definition of the Zariski tangent space (or 
just one that doesn't presuppose a definition of the tangent space to An), we can 
give one as follows. First, we define the Zariski cotangent space to X at p, denoted 
I;,*(X), to be the vector space 

T/(X) = m/m2 

where m c @x,p is the maximal ideal of functions vanishing at p. We then define 
the Zariski tangent space to be the dual vector space: 

Tp(X) = (m/m2)*. 

This description allows us to extend the definition of Zariski tangent space to 
arbitrary quasi-projective varieties. 

Note that any regular map f: X ---> Y induces maps 

f*: @Y,J(p) ---> @x,p 

and, correspondingly, maps 

df: I;,(X) ---> 'If(P)(Y). 

In particular, an embedding of a variety X into affine space An induces an inclusion 
of its Zariski tangent space at any point p in the tangent space to An at p; the image 
is the subspace of Tp(An) described earlier. 
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Exercise 14.3. (i) Show that if X is a hypersurface, then the locus of singular 
points of X is a proper subvariety of X. (ii) Use this, together with the fact 
that any variety is birational to a hypersurface (Exercise 11.23), to show that 
the singular points of any variety form a proper subvariety. 

We should mention here a related result for maps in characteristic O. Over the 
field C, given Exercises 14.1 and 14.3, it is just Sard's theorem (and may be deduced 
from this case by the Lefschetz Principle 15.1). It is not so easy to prove algebra­
ically, however; indeed, it is false over fields of characteristic p > O. 

Proposition 14.4. Let f: X -+ Y be any surjective regular map of varieties defined over 
a field K of characteristic O. Then there exists a nonempty open subset U c Y such 
that for any smooth point p E f- 1(U) (\ Xsm in the inverse image of U the differential 
dfp is surjective. 

Exercise 14.5. In positive characteristic, even the weaker statement that there 
is a nonempty open subset of points p E X such that dfp is surjective may be 
false. To see a simple example, take X c A,2 the plane curve (y - x P ), Y = A, 1 

the affine line with coordinate y, f: X -+ Y the projection (x, y) f-+ y, and K any field 
of characteristic p. Show that in this case X and Yare smooth and f surjective, but 
that d/q == 0 for all q E X. 

There is also a statement analogous to Exercise 14.2 for maps. 

Exercise 14.6. Let f: X -+ Y be any regular map of affine varieties. Show that 
the dimension of the kernel of the differential dfp is an upper-semicontinuous 
function of p. 

Note that this statement does not imply that the locus of smooth points of fibers 
of f -that is, the locus of p E X such that Xf(P) = f- 1 (f(p)) is smooth at p-is open 
in X, or that the dimension of Tp(Xf(p») is an upper-semicontinuous function of p, 
since the Zariski tangent space to Xf(p) may be smaller than Ker(dfp). (All this is 
better behaved in the category of schemes; ifby Xf(P) we mean the scheme-theoretic 
fiber, then in fact the Zariski tangent space to Xf(p) at p is Ker(dfp), and everything 
follows from this.) 

Exercise 14.7. For an example of this phenomenon, let Xc A,4 be the hyper­
surface (ax2 + y2 - b), Y = the affine plane with coordinates (a, b) and f the projec­
tion; assume char(K) #- 2. Show that X is smooth of dimension 3, and that every 
fiber of f has dimension 1. Find the locus of points p E X such that dfp has rank 
< 2, and verify Exercise 14.6 for this map. At the same time, find the locus of p E X 
such that the Zariski tangent space to Xf(P) at p has dimension greater than one, 
and show that this is not closed. 

The Zariski tangent space to a variety at a point p tells us more than just 
whether the variety is smooth at p or not; it may help to distinguish between 
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varieties that may appear isomorphic. For example, consider the curves X and Y 
defined as follows. Let X c A,2 be the cubic curve xy(x - y) = ° and Y c A,3 be 
the union of the three coordinate axes, that is, the locus of the polynomials xy, yz, 
and xz. X and Y each consists of a union of three concurrent lines, and indeed .the 
projection n: A,3 -+ A,2 from the point at infinity on the line {(t, t, t)} to the (x, y)­
plane gives a bijection between them. The two varieties are not isomorphic, how­
ever; for one thing, the Zariski tangent 
space to X at its singular point (0, 0) 
is two-dimensional, while the tangent 
space to Y at (0, 0, 0) is three-
dimensional. To express this differently 
(but equivalently), there is a regular 
function vanishing to order 2 on two of Y 

the three components of Y at the 
singular point of Y, but not on 
the third; on X no such function exists. 

It may be worthwhile at this point to 
recall Exercise 13.8. In it, we com­
puted the Hilbert polynomials of the 
closures X c p2 and Y c p3 of the 
curves X and Yand observed that the 
arithmetic genus of X (as defined in 
Example 13.7) is 1, while that of Y is 0. 
(Of course, to deduce from this that X 
and Yare not isomorphic we have to know that the constant term of the Hilbert 
polynomial is an isomorphism invariant of a projective variety, which is not proved 
in this text. On the other hand, as long as we are stating facts without proof, it is 
in fact the case that a projection np: X -+ Y of projective varieties from a point p not 
on X is an isomorphism if and only if the Hilbert polynomials Px and py coincide.) 

A Local Criterion for Isomorphism 

When we first introduced the notion of isomorphism, we said that a regular 
map n: X -+ Y between two varieties was an isomorphism if there existed an 
inverse regular map 1]: Y -+ X. This is a relatively cumbersome thing to verify, 
especially given the awkwardness of writing down regular maps on projective 
varieties in coordinates. In categories such as «500 manifolds or complex manifolds, 
there is a much easier criterion: we can invoke the inverse function theorem in either 
context to show that a map n: X -+ Y is an isomorphism if it is bijective and has 
non vanishing Jacobian determinant everywhere. In fact, we do have an analogous 
result in algebraic geometry and not just for smooth varieties. 

In order to state this result in its appropriate generality, we need to introduce 
one further definition. We say that a map n: X -+ Y is finite iffor every point q E Y 
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there is an affine neighborhood U of q in Y such that V = n-l(U) c X is affine, and 
the pullback map 

n*: A(U) --+ A(V) 

expresses A(V) as a finitely-generated module over A(U). Note that this condition 
is local in Y; it implies that the fibers of n are finite but is certainly not implied by 
this (for example, the inclusion of Ai - {O} in Ai certainly has finite fibers, but the 
coordinate ring K[x, x-1 ] of Ai - {O} is not a finitely generated K[x]-module.) 

What makes the notion of finite map useful in practice is that if X and Yare 
projective then in fact it is equivalent to the condition that the fibers of n are finite. 
In fact, we can say more: we have the following Lemma. 

Lemma 14.8. Let no: Xo --+ Yo be a regular map of projective varieties. Let Y c Yo be 
any open subset, X = (no)-l(y) its inverse image, and n the restriction of no to X. If 
the fibers of n are finite then it is a finite map. 

PROOF. We start with a series of reductions. First, since the question is local in Y, 
we can assume Y is affine. We can also assume that X is a closed subset of Y x IP'n 
for some n, with n the projection on the first factor. Next, (restricting if necessary 
to smaller affine opens in Y) we can factor n into a series of maps 

Xc Y X IP'n --+ Y x IP'n-l --+ ... --+ Y X 1P'1 --+ Y 

where each map is given by projection from a point in p\ since a composition of 
finite maps is finite it is enough to prove it for each of these maps. Finally, using 
the birational isomorphism of IP'k with IP'k-l x 1P'1 and again replacing the image 
variety by affine open subsets, we can take each of these maps to be of the form 

X c Y X 1P'1 --+ Y; 

we will prove the assertion for such maps. 

Now let q E Y be any point. The 
hypothesis that n: X --+ Y has finite 
fibers means simply that X does not 
contain the fiber {q} x 1P'1 over q; 
choose A. E pi such that (q, A.) ¢ X. 
Restricting to an affine open contained 
in the complement of n(X n (Y x {A.})), 
we can assume that X n (Y x {A.}) = 0. 
Let Z and W be homogeneous coordi­
nates on pi with A. the point (W = 0), 
and let z = Z/W be the corresponding 
affine coordinate on 1P'1 - {A.} ~ A 1. In 
some affine open subset of Y, the ideal of 

--+-+---+---'f---+- Y x {"'} 

x 

Y 
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X in Y x !p 1 will be generated by polynomials F of the form 

F(Z, W) = aoZn + a1 zn-l W + ... + an- 1 ZWn- 1 + an wn 

with ai E A(Y) in the coordinate ring of Y. Now, since (q, A) i X, there must be one 
such F with ao(q) #- O. Restricting (for the last time!) to the open neighborhood 
(ao #- 0) of q, we see that the coordinate ring 

A(X) = A(Y)[z] 

where z satisfies a monic polynomial with coefficients in A(Y); it follows that A(X) 
is a finitely generated A(Y)-module. D 

We can now state and prove our "inverse function theorem" for varieties. 

Theorem 14.9. Let n: X -+ Y be a finite map of varieties. Then n is an isomorphism 
if and only if it is bijective and the map 

dn: Tp(X) -+ T,,(p)(Y) 

is an injection for all p E X. 

This theorem will be applied for the most part in conjunction with Lemma 14.8, 
in other words as the following Corollary. 

Corollary 14.10. Let Xo be a projective variety and no: Xo -+ !pn any map. Let U c !pn 

be an open subset, X = (notl(U) its inverse image in Xo and n the restriction of no 
to X. If n is one-to-one and dnp: TpX -+ T,,(p)!Pn is an injection for all p E X, then n 
is an isomorphism of X with its image. In particular, a bijection n: X -+ Y of projec­
tive varieties with injective differential everywhere is an isomorphism. 

PROOF OF THEOREM 14.9. The proof involves somewhat more commutative algebra 
than we have been using; all of this may be found in [AM] or [El The key 
ingredient is just Nakayama's lemma. 

First, we may reduce to the case where X and Yare affine, so that the map n is 
given by a ring homomorphism n*: A = A(Y) -+ B = A(X). Note that since the 
map n is surjective, the map n* in an injection (so that for the future we will consider 
A as a subring of B); we want, of course, to say that it is an isomorphism. 

By the Nullstellensatz (Theorem 5.1), what the bijectivity of n tells us is this: we 
have a bijection between maximal ideals meA and ncB, given in one direction 
by sending the ideal ncB to its intersection m = n n A c A and in the other 
direction by sending a maximal ideal meA to the unique maximal ideal ncB 
containing the ideal mB generated by m in B. Indeed, to show that n is an iso­
morphism, it is enough to show it induces an isomorphism between the localiza­
tions Am and Bn for all meA and n ::::J mB; so we can assume A and B are local 
rings with maximal ideals m and n. 
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Note that the hypothesis of bijectivity does not insure that mB = n for such a 
pair (consider, for example, the projection map described on page 177 between the 
coordinate axes in A 3 and three concurrent lines in A 2 , or the map from the affine 
line to the cuspidal plane cubic given by t 1---+ (t 2 , t 3». The hypothesis that the 
differential of TC is injective, on the other hand, does imply this: it says that the map 

m/m2 -+ n/n2 

induced by the inclusion m ~ n is surjective, so that 

mB + n2 = n 

as B-modules. By Nakayama's lemma applied to the B-module n/mB it follows that 
mB = n. But now we have 

BIA ® Aim = BI(mB + A) = BI(n + A) = 0 

and applying Nakayama's lemma to the finitely-generated A-module BIA we de­
duce that BI A = O. 0 

To see why some condition like the 
finiteness of TC or the projectivity of X is 
necessary (apart from its use in the last 
sentence of the proof), consider the 
following example. Take X the disjoint 
union ofthe lines (x = z = 0), (y = z = 0) 
and the complement of the point (0,0, 1) 
in the line (y - x = z - 1 = 0) in A 3, Y 
the union of the lines (x = 0), (y = 0) 
and (y - x = 0) in A2, and TC the 
projection map (x, y, z) 1---+ (x, y). 

Finally, we should remark that the 
subtlety of Theorem 14.8-and the need 
for the commutative algebra in its 
proof-comes from the singular case. If 
X and Yare smooth, the result is 
intuitively clear, but in general it is far 

------

less so. For example, consider the three curves X, Y, and Z where X = A 1 with 
coordinate t; Y is the plane cubic y2 = x 3 ; and Z is the plane quartic curve y3 = X4. 

We have maps f: X -+ Y and g: X -+ Z defined by 

t 1---+ (t 2 , t 3 ) 

and 

t 1---+ (t 3 , t4 ) 

respectively; these are clearly not isomorphisms because X is smooth, while the 
Zariski tangent spaces to Y and Z at the origin are two-dimensional. But now 
observe that the map 9 actually factors through f to give a regular map h: Y -+ Z, 
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which is a bijection such that the Zariski 
tangent spaces to Y and Z at corre­
sponding points P E Y and q E Z have 
the same dimension; this map is also not 
an isomorphism, but it is less clear from 
the geometry of the curves why it 
cannot induce an isomorphism on 
tangent spaces at the origin. 

Exercise 14.11. (i) Verify directly that 
the map h does not induce an iso­
morphism between the tangent spaces 
to Y and Z at the origin (and in 
particular is not an isomorphism). (ii) 
Show that in fact Y and Z are not 
isomorphic. (*) 

Projective Tangent Spaces 

181 

x 

y 

We have associated to a point p on an affine variety X c An both a Zariski tangent 
space TpX, which is an abstract vector space, and an affine tangent space, which is 
an affine linear subspace of the ambient An. Consider now a projective variety 
Xc pn. We may also associate to it a projective tangent space at each point p E X, 
denoted lr p(X), which is actually a projective subspace of the ambient pn. One way 
to describe this is to choose an affine open subset U ~ An c pn containing p and 
define the projective tangent space to X at p to be the closure in pn of the 
affine tangent space at p of the affine variety X (\ U C U ~ An. 

This may seem a fairly cumbersome description, and it is; fortunately, there is 
a more direct one. To begin with, suppose that X is the hypersurface given by 
the homogeneous polynomial F(Z); let U ~ An be the affine open (Zo #- 0) with 
Euclidean coordinates Zi = ZJZo and set 

f(ZI' ... , zn) = F(l, ZI' ... , zn) 

so that X (\ U is the zero locus of f Now, at a point p E X with coordinates 
(WI' ... , wn ), the affine tangent space is given as the locus 

By our definition, then, the projective tangent space is given as the locus of homo­
geneous vectors 
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But the partial derivatives of a homogeneous polynomial of degree d satisfy the 
Euler relation 

n of L -·Z;=d·F 
;=OOZi 

and since F(l, W 1 , ... , wn ) = 0, it follows that 

We may rewrite the preceding by saying that the projective tangent space to the 
hypersurface X given by the homogeneous polynomial F(Zo, ... , Zn) at the point 
P = CWo, ... , w,.] E X is the locus 

{ 
n of } [Zo, ... , Zn]:.L ~(P)'Zi = 0 . 

,=1 UZi 

In other words, if all the partial derivatives of F vanish at P, then X is singular 
at P with projective tangent space all of [pn; if not, then X is smooth at P and 
the projective tangent space is the hyperplane corresponding to the point of [pn* 

with coordinates the partial derivatives of Fat P. Note in particular that, in view 
of the Euler relation, if the characteristic of the field K is 0 (or just prime to d) then 
the singular locus of the hypersurface X is exactly the common zero locus in [pn of 
the partial derivatives of F. 

Having thus described the projective tangent space to a hypersurface in lPn, we 
may now describe the projective tangent space to an arbitrary subvariety X c [pn 

as the intersection of the projective tangent spaces to all the hypersurfaces con­
taining it. In particular, if {F1' ... , Fm} is a collection of homogeneous polynomials 
generating the ideal of X then the projective tangent space will be just the subspace 
of [pn given by the kernel ofthe matrix (oF;/oZ), viewed as a map from K n+1 onto Km. 

In case X is smooth at p and our ground field K = C, we may also describe the 
projective tangent space 1r pX to a variety X c [pn in terms of a parametric repre­
sentation of a neighborhood of p in X (in the analytic topology). Simply, say that 
an analytic neighborhood U of p is given as the image of a map 

<p: ~ --+ [pn 

defined on an open set ~ c Ck by a vector-valued function v(z): 

<p: (Zl' ... , Zk) ~ [v(z)] = [vo(z), ... , vn(z)]. 

Then the projective tangent space to X at p = [v(O)] is given as the subspace 
[pk C [pn associated to the multivector 

that is, the row space of the matrix 
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vo(O) 

avo (0) 
aZ1 

avo (0) 
aZk 
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Exercise 14.12. Verify that the row space of this matrix is the projective tangent 
space to X at p. 

It will often be helpful to describe projective tangent spaces in this way, 
especially in dealing with curves and surfaces. In particular, it allows us to describe 
the tangent space to a variety in terms of arcs; the projective tangent space T pX to 
X c !P" at a smooth point p E X is the union of the lines [v(O) /\ v'(O)] E G(l, n) 
where v(t) is any analytic arc on X with v(O) = p. 

This may seem tied down to the analytic topology, but in fact the same idea can 
be carried out in a purely algebraic setting (at least in characteristic zero) by 
introducing and working with power series rings. One thing this approach is not 
(in general) useful for, however, is describing the Zariski tangent spaces to singular 
varieties. 

Needless to say, there is an enormous potential for confusion between the 
Zariski tangent space to a variety X c !pn at a point p and the projective tangent 
space, the more so as each is referred to in different sources as "the tangent space 
to X at p" and denoted by the same symbol J;,(X). Linguistically, we will try to deal 
with this by using the modifiers "Zariski" and "projective" whenever confusion 
seems likely. Notationally the problem is worse (we can't, for example, use the 
symbol!PTp(X) for the projective tangent space, since it a priori signifies the projec­
tive space of one-dimensional subspaces of the Zariski tangent space Tp(X), a space 
we will want to use as well on occasion). For want of a better solution, we have 
chosen to denote the projective tangent space as T p(X). 

There is one more way to describe the projective tangent space to a variety 
X c !pn at a point p E X. Let X c K n+1 be the cone over X (i.e., the closure of the 
set of all v E K"+l with [v] E X, or equivalently the zero locus in K n+1 of the ideal 
J(X) c K[Zo,"" Zn]), and let v E X be any nonzero vector v E K n+1 lying over p. 
Then the projective tangent space T pX is just the subspace of !pn corresponding to 
the Zariski tangent space T"X c T,,(Kn+l) = Kn+l. This characterization is readily 
seen to be equivalent to each of the ones above, in particular to the description of 
T pX in terms of the partials of homogeneous polynomials Fa generating J(X). 

This description also clarifies the relation between the projective and Zariski 
tangent spaces. Specifically, let X c !pn be any variety and p E X any point; and 
suppose that A c K"+l is the subspace corresponding to the projective tangent 
space T pX. Then by the above, A contains the one-dimensional subspace K· v, and 
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up to scalars we have a natural identification of the Zariski tangent space to X at 
p with A/K· v. In particular, the normal space Np(X/lPn) (or just Np(X)) to X at p, 
defined a priori to be the quotient 

Np(X) = ~(lPn)!~(x), 

may also be realized as the quotient space Kn+1 / A. 
(To be more precise, and to explain the "up to scalars," we will see in Lecture 16 

that we have natural identifications 

and correspondingly 

Tp(lPn) = (Kn+1/K' v) ® (K' v)*, 

~(X) = (A/K' v) ® (K' v)*, 

Np(X) = (Kn+1 / A) ® (K' v)*.) 

In the following exercises, we verify the condition of smoothness (or singularity) 
for some of the varieties introduced in I. 

Exercise 14.13. Use Corollary 14.10 to show that the Veronese and Segre varieties 
are smooth and verify this directly by looking at their defining equations. (Alterna­
tively, given Exercise 14.3 this follows without calculation from their homogeneity.) 

Exercise 14.14. Show that the rational normal scroll Xa" .... ak C IPn is smooth if and 
only if all ai > O. 

Exercise 14.15. Let X c IPn be any irreducible nondegenerate variety i.e., such that 
X is not contained in any hyperplane in lPn, and let S(X) be its secant variety. Show 
that the projective tangent space to S(X) at a point of X is all of IPn (and in 
particular S(X) is singular along X if it is not equal to IPn). 

Example 14.16. Determinantal Varieties 

Recall first the definition of the generic determinantal varieties Mk from Lecture 9: 
we let M denote the projective space IPmn - 1 of m x n matrices, up to scalars, and we 
let Mk c M be the locus of matrices of rank k or less. In Example 12.1, we saw that 
Mk is an irreducible variety of co dimension (m - k)(n - k) in M; here we will 
determine its smooth and singular loci and describe its Zariski tangent space at 
both. We will do this explicitly, by introducing coordinates on M and examining 
the equations defining M k ; later, in Example 16.18, we will see a more intrinsic 
version. 

Let us start by choosing a point A E Mk corresponding to a matrix of rank 
exactly k, i.e., A E Mk - Mk- 1 • (Note that since the group PGLmK x PGLnK acts 
on M with orbits Ml - M 1- 1 , the smoothness or singularity of a point A E Mk can 
depend only on its rank.) We can choose bases for K m and K n so that A is 
represented by the matrix 
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1 0 0 .......... 0 
o 1 0 .......... 0 

o 1 0 0 
o 0 0 ... 0 

o o 
and then, in the affine neighborhood U of A given by (X11 #- 0), we may take as 
Euclidean coordinates thefunctions x i• j = X ijX1 , 1; in terms of these we may write 
a general element of U as 

1 X 1,2 X 1,3 

X 2 ,1 1 + X 2 ,2 X 2 ,3 

1 + Xl,l X I,l+l 

X I+1,1 Xl+ 1,1+1 

X n,l ..•.•............................•......... xn,m 

with A of course corresponding to the origin in this coordinate system. 
Consider first the case 1 = k. What are the linear terms of the (k + 1) x (k + 1) 

minors of this matrix? The answer is that the only such minors with nonzero 
differential at the origin A are those involving the first k rows and columns, so 
their linear terms are exactly the coordinates Xi,j with i, j > k. Since there are 
exactly (m - k)(n - k) of these, we may conclude that Mk is smooth at a point of 
Mk - M k- 1 • Next, we see that if 1 < k, then in fact no (k + 1) x (k + 1) minors have 
any linear terms. Invoking the fact that these minors generate the ideal of Mk (stated 
but not proved earlier), we conclude that the projective tangent space to Mk at a 
point A E M k - 1 is all of M. 

We can give an intrinsic interpretation to the tangent space to Mk at a smooth 
point A E Mk - M k- 1 • To do this, note that we have, in terms of the coordinates 
Xi,j' identified the tangent space to Mk at A with the space of matrices whose lower 
right (m - k) x (n - k) submatrix is zero. But the bases {e;}, {fj} for K n and K m are 
chosen so that the kernel of A is exactly the span of ek+l' ... , en and the image of A 
exactly the span of fl"'" k We have thus 

lrA(Mk ) = 1P{<p E Hom(Kn, Km): <p(Ker(A)) c Im(A)}; 

i.e., we may say, without invoking coordinates, that the projective tangent space to 
Mk at a point A corresponding to a map A: Kn --+ Km of rank exactly k is the linear 
space of maps <p: K n --+ K m carrying the kernel of A into the image of A. 



LECTURE 15 

Gauss Maps, Tangential 
and Dual Varieties 

In the preceding lecture, we associated to each point of a projective variety X c IPH 
a linear subspace of IPH. We investigate here how those planes vary on X, that is, 
the geometry of the Gauss map. Before we launch into this, however, we should take 
a moment to discuss a question that will be increasingly relevant to our analysis; 
the choice of our ground field K and in particular its characteristic. 

A Note About Characteristic 

Through Lecture 13, most of the statements we made were valid over an arbitrary 
(algebraically closed) ground field K. When we start talking about tangent spaces, 
however-and especially how the projective tangent spaces to a variety X c IPH 
vary-the situation depends very much on the characteristic of the field K. The 
reason is simple: in characteristic p > ° a function can have all derivatives identi­
cally zero and not be constant. Thus, for example, the statement that not all 
tangent lines to a plane curve C c 1P2 can contain a given point p E 1P2, self-evident 
if we trust our IR- or C-based intuition and in any event easy to prove in characteris­
tic 0, is in fact false in characteristic p. (Take, for example, C given by XY - Z2, 
P = [0,0,1] and char(K) = 2.) 

This is not to say that the subjects we will discuss in the next few lectures 
cannot be dealt with in finite characteristic. To do so, though, requires more 
advanced techniques than we have at our disposal. For our present purposes, 
then, we will go ahead and use the techniques of calculus, accepting the fact 
that this limits us, for the most part, to proofs valid only in characteristic zero. 
We will try to indicate in each statement whether it does in fact hold in arbitrary 



A Note About Characteristic 187 

characteristic. (We should also say that starting in Lecture 18 we will go back to an 
essentially characteristic-free approach.) 

There is a further restriction that will be extremely useful: if we assume that 
our ground field is actually C, we can use the techniques of complex manifold 
theory and the theory of functions of several complex variables. We will not 
do this in any deep way, but it will be very handy, most notably in allowing 
us to parametrize varieties locally; if X c IPn is a k-dimensional variety and P E X 
a general point, we can describe a neighborhood U of p in X as the image of the 
analytic map 

cp: A ~ Xc IPn 

: (Zl' ... , Zk) H [fo(z), ···,fn(z)] 

where A c Ck is a polydisc and fo, ... , In are holomorphic functions. Clearly, 
no such parametrization exists in the category of algebraic varieties unless X is 
unirational. 3 

It may seem like a much more restrictive assumption to take K = C than 
merely to assume char(K) = O. This, as it turns out, is not the case. That it is 
not is known as the Lefschetz principle; it is, roughly, the following. 

Lefschetz Principle 15.1. A theorem in algebraic geometry involving a finite collection 
of algebraic varieties and maps that holds over C holds over an arbitrary algebraically 
closed field K of characteristic zero. 

To see why this is so, observe that any finite collection of varieties and maps is 
specified by a finite collection of polynomials; these are in turn given by their 
coefficients, which form a finite subset {ca } of K. As far as the truth of a given 
statement goes, then, it makes no difference if we replace the field K with the 
algebraic closure L = iQ(ca ) c K of the subfield iQ(ca ) generated by the ca over iQ. 
At the same time, since the trancendence degree of Cover iQ is infinite, this subfield 
of K can also be embedded in C; if we know the theorem to hold over C, it follows 
that it holds over L and hence over K. 

This argument should clarify what is meant by the phrase "theorem in algebraic 
geometry": essentially any theorem that asserts the existence of a solution of a 
system of polynomial equations or the existence of a variety or map with properties 
expressible in terms of solutions to systems of polynomial equations qualifies. This 
includes every theorem stated so far in this book; for example, Proposition 14.4, 
which as we observed is simply a case of Sard's theorem in case K = C, may be 
deduced for arbitrary algebraically closed K of characteristic O. 

We have avoided using complex analytic techniques so far for two reasons: 
they were not necessary and they would require us to restrict to characteristic 

3 One way to make an analogous construction algebraically is to introduce the completion of the local 
ring of X at p. 
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O. Now that we are making the latter restriction anyway, however, we will invoke 
the complex numbers when it is useful to do so. 

Example 15.2. Gauss Maps 

The description of the projective tangent space lrp(X) of a variety X c pn at a 
smooth point p as a linear subspace of pn allows us to define the Gauss map 
associated to a smooth variety. If X is smooth of pure dimension k, this is just the 
map 

t§ = t§x: X -+ G(k, n) 

sending a point p E X to its tangent plane lrp(X). That this is a regular map 
is clear from the description of the projective tangent space as the kernel of the 
linear map given by the matrix of partial derivatives (oFa/oZ;), where {Fa} is a 
collection of generators of the ideal of X. Note that if X is singular then t§ is still 
defined and regular on the open set of smooth points of X (which is dense by 
Exercise 14.3) and so gives a rational map 

t§: X ---+ G(k, n). 

In general, if we refer to the Gauss map of a variety X c pn without specifying 
that X is smooth, we will be referring to this rational map. We will call the image 
t§(X) the variety of tangent planes to X, or the Gauss image of X, and denote it 
:TX. Note that there is some potential for confusion here if X is singular, since the 
projective tangent spaces to X at singular points, being subspaces of dimension 
strictly greater than k, will not appear in :YX and conversely :YX will contain 
k-planes that are limits of tangent planes to X but not tangent planes themselves. 

The simplest example of a Gauss map is the one associated to a hypersurface 
X c pn; if X is given by the homogeneous polynomial F(Zo, ... , Zn), then the 
Gauss map t§x: X -+ G(n - 1, n) = pn* is given simply by 

[ oF of ] 
t§x(p) = oZo (p), ... , oZn (p) . 

Note that in case the degree of F is 2, this is a linear map. Indeed, as we 
have seen a smooth quadric hypersurface Xc PV = pn may be given by a symmet­
ric bilinear form 

Q: V x V-+K, 

and the Gauss map is then just the restriction to X of the linear map pn -+ pn* 
associated to the induced isomorphism 

(1: V -+ V*. 

It is elementary to see from the preceding description that if X c pn is a smooth 
hypersurface of degree d ;?: 2, then the fibers of the Gauss map t§x: X -+ pn* are 
finite: since the partial derivatives of F with respect to the Zi do not vanish 
simultaneously at any point of X, the map t§x cannot be constant along a curve. It 
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follows that the image f/X of the Gauss map is again a hypersurface. It is a theorem 
of F. L. Zak, which we will not prove here, that for any smooth irreducible 
k-dimensional variety X c [p" other than a linear space, the Gauss map is finite, 
and in particular the dimension of the variety f/X c G(k, n) of tangent planes to 
X is again k ([FL]). This is in fact true in all characteristics. For curves, we have a 
much stronger statement, but one that holds in characteristic zero only. 

Proposition 15.3. Let C c [P" be an irreducible curve other than a line. Then the 
Gauss map ~c: C -+ G(1, n) is birational onto its image. 

PROOF. We will give a proof over the field K = IC using the analytic topology. 
Suppose that ~c is not birational. We may then find a positive-dimensional 

component r of the locus 

{(p, q): lfpC = lfqC} c Csm x Csm 

other than the diagonal. Let (p, q) be a smooth point of r not on the diagonal, and 
let t be a local analytic parameter on r around (p, q). The points p and q on C c [P" 

may then be given by vector-valued functions [v(t)], [w(t)], respectively, with 
[v(o)] -# [w(O)]. In these terms, the statements that q E lfpC and pElf qC translate 
into the identities 

v(t) A w(t) A v'(t) == 0 and v(t) A w(t) A w'(t) == O. 

(Indeed, any triple wedge product of the vectors v(t), w(t), v'(t), and w'(t) is zero.) 
Taking the derivatives of these equations, we have 

v(t) A w(t) A v"(t) == 0 and v(t) A w(t) A w"(t) == O. 

Continuing in this way, we may deduce that all the derivatives v(n)(o) and w(n)(o) lie 
in the subspace of K n +1 spanned by v(O) and w(O), and hence that C is the line pq. 

o 
We will see as a consequence of Theorem 15.24 that there are lots of hyper­

surfaces X c [pn of higher dimension (necessarily singular ones) whose Gauss 
images f/X c [P"* have lower dimension. 

Example 15.4. Tangential Varieties 

Let X c [pn be an irreducible variety of dimension k. The union 

TX= U A 
AE :YX 

of the k-planes corresponding to points of the image f/(X) of the Gauss map is then 
also an algebraic subvariety, called the tangential variety of X. Of course, if X is 
smooth, this is just the union of its tangent planes; if X is singular, the description 
is not as clear (though we can describe it as the closure of the union of the tangent 
planes to X at smooth points). 
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What is the dimension of TX? We can answer this for the most part simply, as 
we did, for example, in the case of the chordal variety (Example 11.22). Precisely, 
we look at the incidence correspondence 

L = {(A, p): pEA} c f7X x pn, 

(or, alternatively, when X is smooth, 

'I' = {(p, q): q E If p(X)} c X X pn). 

The image 7r2 (L) c pn ofL is the tangential variety TX. The projection map 7rl on 
the first factor is surjective, with all fibers irreducible of dimension k; thus L is 
irreducible of dimension at most 2k. It follows then that the tangential variety TX 
of a k-dimensional variety has dimension at most 2k, with equality holding if and 
only if a general point q on a general tangent plane lfp(X) lies on lfr(X) for only 
finitely many points rEX. 

Exercise 15.5. Describe the tangential surface to the twisted cubic curve C c p3. In 
particular, show that it is a quartic surface. What is its singular locus? (*) 

Exercise 15.6. Let X c p3 be any irreducible nonplanar curve, and let L be the 
incidence correspondence introduced in Example 15.4. Show that the projection 
7r2: L --+ TX is birational (i.e., generically one to one). (*) 

It may well happen that the tangential variety of a k-dimensional variety X c pn 
has dimension strictly less than min(2k, n). The situation is very similar to that 
involving the secant variety, as described in Proposition 11.24 and the discussion 
following it: if we definite the deficiency of a variety X c pn such that TX #- pn 
to be the difference 2· dim (X) - dim(TX), there are examples of varieties with 
arbitrarily large deficiency, though it is not known whether the deficiency of 
smooth varieties may be bounded above in general. 

Example 15.7. The Variety of Tangent Lines 

Having defined the projective tangent space to a variety X c pn, we can also talk 
about such things as tangent lines. If X is smooth, there is no ambiguity about how 
to define this notion; tangent lines are defined to be lines in pn that contain a point 
p E X and lie in the corresponding tangent plane lfp(X). If X is singUlar, we will 
define the variety of tangent lines to X, denoted f71 (X), to be the closure, in the 
Grassmannian G(l, n), of the locus of lines containing a smooth point p E X and 
lying in lfp(X); equivalently, this is the set of lines L such that pEL c A for some 
pair (p, A) in the graph of the Gauss map rrix ' 

(We should mention here that there are three other notions of a "tangent line" 
to a variety X c pn, all of which agree with the given one for X smooth and all of 
which may differ in general. We will discuss these other notions at the end of this 
section.) 
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Exercise 15.8. Show that if X c IPn is a smooth irreducible variety, then !/l (X) c 
G(1, n) is indeed a variety. 

The dimension of the locus of tangent lines to a k-dimensional variety X c IPn 

is fairly easy to find. We simply set up an incidence correspondence 

L = {(L, p): pEL c lfp(X)} c G(l, n) x Xsm 

and consider the fibers ofL over X and over its image in G(l, n). The projection 1t2 
is surjective, with fibers isomorphic to IPk-l, so that the dimension of L is 2k - 1; 
unless X contains a general (and hence every) tangent line to itself-that is, unless 
X is a linear subspace of lPn-the map 1tl will be finite to one. It follows that unless 
X is a linear space, the image 1tl (L), and correspondingly its closure !/(X), has 
dimension 2k - 1. 

Having introduced the variety of tangent lines, we are now in a position to 
answer one of the questions raised in Lecture 8: what exactly is a secant line to a 
variety X c iP'n. We start with the relatively straightforward part, which we give as 
an exercise. 

Exercise 15.9. Let X c iP'n be any variety. Show that any tangent line to X is a 
secant line to X -that is, a point in the image g(X) of the rational map 

s: X x X ---+ G(l, n) 

sending (p, q) E X X X to the line pq E G(l, n). (Note that it is enough to do this for 
a tangent line to X at a smooth point.) 

In fact the converse of this exercise is also true, at least when X is smooth. 

Proposition 15.10. If X c IPn is a smooth variety, then every point of g(X) is either 
an honest secant line pq with p "# q E X or a tangent line; in other words, 

g(X) = s(X x X - d) U!/l (x) 

where d c X x X is as usual the diagonal. 

PROOF. To see this, we will actually write down a set of equations for g(X) as 
follows. First, choose Fl , ... , Fl E K[Zo, ... , Zn] a collection of polynomials 
generating the ideal I(X) of X locally; we can take all the Fa to have the same degree 
d. Now, we can represent all lines L c IPn in an open subset V of the Grassmannian 
G(l, n) by matrices of the form 

( 1 0 a2 a3 • • • an) 
o 1 b2 b3 .•• bn 

or, parametrically, as 
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We can write the restriction of each polynomial Fa to the line La,b as 

FalLa.b = Pa,Aa, b)Sd + Pa,d-l (a, b)Sd-l T + .. , + Pa,o(a, b) Td, 

where the coefficients Pa.; are polynomials in a and b. Now, let m be an arbitrary 
large integer, Sm-d the space of homogeneous polynomials of degree m - d in Zo, 
... , Zn and V the space of polynomials of degree m in Sand T. For any value of m 
and any a and b we can define a map 

({)a,b: (Sm_d)l --+ V 

by sending an I-tuple of homogeneous polynomials G1 , ... , Gl of degree m - d 
into the sum 

(G1 , ... , Gl ) f--+ L (FaGa)ILa.b· 

This is a linear map whose matrix entries are polynomials in the coordinates a 
and b on U c G(1, n). Moreover, if La,b is an honest secant pq of the variety X, then 
since all the polynomials Fa have two common zeros p, q E L, the image of this map 
will lie in the subspace of V consisting of polynomials vanishing at these two points. 
In particular, it follows that for (a, b) such that La,b E 9"(X), the map ({)a,b will have 
rank at most m - 1; or, in other words, the m x m minors of a matrix representative 
of ({)a,b' viewed as regular functions on the open subset U c G(1, n), all vanish on 
the variety 9"(X). 

Conversely, let 9'" denote the locus oflines L such that the image of the map ({)a,b 

has co dimension 2 for all m. It is not hard to see that for La,b E 9'" the image of ({)a,b 

will consist either of all polynomials vanishing at two points p, q E La,b or of all 
polynomials vanishing to order 2 at some point P E La,b' In the former case, L = pq 
is an honest secant of X; while in the latter case (as long as X is smooth) it follows 
that La,b c lfpX, so that La,b E 5;. (X). We deduce that 

9'" = s(X x X - d) u 5;. (X), 

and by comparing dimensions we may deduce as well that 9'" = 9"(X). 0 

Exercise 15.11. An alternative argument for the proposition is as follows: Show that 
the secant line map 

s: X x X ----+ G(1, n) 

extends to a regular map 

s: BI,1(X x X) --+ G(l, n) 

on the blow-up of X x X along the diagonal. Then show that the map s carries the 
fiber of BI,1(X x X) --+ X x X over a point (p, p) E d to the projective space of lines 
through P in If px. 

Exercise 15.12. Show by example that Proposition 15.10 is false if we do not assume 
X smooth. 
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Note that since by Exercise 15.9 the tangential variety TX of a variety X c [p>n 

is contained in its secant variety, the examples given in Exercises 11.26 and 11.27 
of varieties with deficient secant varieties also furnish examples of varities with 
deficient tangential varieties. 

The fact that the tangential variety TX of a variety X c [p>n is contained in its 
secant variety has one other significant consequence: combining this with Theorem 
14.8, we have a classical embedding theorem for smooth varieties Xc [p>n. Specifi­
cally, we observe that the projection map 1tp: X ~ [p>n-i of X from a point p E [p>n is 
one to one if and only if p lies on no proper chord to X (that is, a line qr with q, 

rEX distinct); and by Exercise 14.16 it induces injections from the Zariski tangent 
spaces to X to those of the image X = 1tp(X) c [p>n-i if and only if p lies in no 
projective tangent plane to X. It follows then from Corollary 14.10 that 1tp: X ~ X 
is an isomorphism if and only if p does not lie on the chordal variety SeX) of X. 
Since, finally, the dimension of SeX) is at most twice the dimension of X plus one, 
we conclude that whenever n > 2· dim (X) + 1, X admits a biregular projection to 
[p>n-i. In particular, we have the following theorem. 

Theorem 15.13. Any smooth variety X of dimension k admits an embedding in 
projective space [p>2k+i. 

Note that this may be false if X is singular; the Zariski tangent spaces to a variety 
of dimension k may be of any dimension. For example, the Zariski tangent space 
to the curve C c [p>n given as the image of the map 

p: [p>i ~ [p>n 

at the point p(o) = [1,0, ... ,0] is all of [p>n, so that it cannot be projected iso­
morphically into any hyperplane. The point here is that for a singular variety 
X c [p>n of dimension k, the projective tangent space to X at a singular point p may 
be much larger than the union of the planes A ~ [p>k C [p>n such that (p, A) is in the 
graph of the Gauss map. 

We should also point out that Theorem 15.13 is in general not at all useful; the 
varieties that come to us naturally embedded in large projective spaces (Veronese 
varieties, Segre varieties, Grassmannians, etc.) are almost always best left there, 
since once we project we lose the large groups of projective automorphisms that 
act on them. 

Example 15.14. Joins oflntersecting Varieties 

In Example 6.17 we defined the variety J(X, Y) c G(l, n) of lines meeting each of 
two disjoint subvarieties X, Y c [p>n. In Example 8.1 we extended the definition to 
possibly intersecting pairs of varieties X, Y c [p>n, but did not say what additional 
lines, besides those containing distinct points p E X, q E Y, would be included in 
J(X, Y). We can now give a partial answer to this question. 
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Exercise 15.15. Let X and Y c pn be subvarieties intersecting at a point p that is a 
smooth point of both X and Y with TpX n Tp Y = {p}. Show that a line L c pn 
through p that meets X and Y only at p will lie in the variety f(X, Y) c 1G(1, n) of 
lines joining X to Y if and only if L lies in the span of T pX and T p Y. 

Exercise 15.16. Show by example that the conclusion of Exercise 15.15 is false if we 
do not assume TpX n Tp Y = {p}. 

We mentioned earlier that there are three other notions of "a tangent line to a 
variety X at a point p"; we will discuss these now. The first approach would be to 
take limits of secant lines pq to X as q E X approached p; specifically, we consider 
the map 

Sp: X ---+ 1G(1, n) 

defined by sending q E X to pq E 1G(1, n) and take the set of tangent lines to X at p 
to be the image of {p} under this map, that is, the image in 1G(1, n) of the fiber of 
the graph of sp over p. In fact, we will see in Lecture 20 (Exercise 2004 in particular) 
that the locus of tangent lines to X at p in this sense is what we call the tangent cone 
to X at p. 

A second approach would be to define a tangent line to X at p to be any limiting 
position of a secant line qr as q and rEX approached p; that is, the image of the 
point (p, p) under the rational map 

s: X x X ---+ 1G(1, n) 

Finally, the third and most naive approach is simply to define a tangent line to 
X at p to be any line L containing p and contained in the projective tangent 
space TpX. 

We will denote the union over all p E X of the set of tangent lines to X at p with 
respect to these three definitions as ff"'(X), ff""(X), and ff""'(X), respectively. The 
relationships among them are summed up in the following exercises. 

Exercise 15.18. Show that ff""(X), and ff""'(X) are closed subvarieties of 1G(1, n), but 
that ff"'(X) need not be; and that they are equal for X smooth. 

Exercise 15.19. Show that in general 

ff"'(X) c ff"l(X) c ff""(X) c ff""'(X). 

Give examples where strict inclusion holds in each of these inclusions. (*) 

One important instance where the second notion of tangent line is relevant is in 
a beautiful theorem of Fulton and Hansen. Let tan(X) denote the union of all 
tangent lines to X in the second sense, i.e., 
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tan (X) = U L 
Le Y"(X) 

and let S(X) be the secant variety to X, as before. Then we have the following 
theorem. 

Theorem 15.20. For any irreducible variety X c IPn of dimension k, either 

(i) dim(S(X)) = 2k + 1 and dim(tan(X)) = 2k 

or 

(ii) S(X) = tan (X). 

For a discussion of this and related theorems, see [FL]. 

Example 15.21. The Locus of Bitangent Lines 

In a similar fashion, we can introduce the variety of bitangent lines to a variety 
X c IPn. To start, we set up an incidence correspondence 

r = {(L, p, q): p -=1= q and pq = L c lrp(X) n lrq(X)} c G(1, n) x Xsm X X sm. 

This is just the double point locus associated to the projection 1!1: L -+ G(1, n), 
where 

L = {(L, p): pEL c lrpX} c G(1, n) x Xsm 

is the incidence correspondence introduced in Example 15.7, that is, the union of 
the irreducible components of the fiber product L x G L other than the diagonal. 
We then define the locus of bitangent lines to X, denoted P4(X), to be the closure of 
the image of r in G(1, n). 

From the preceding example and the basic Theorem 11.12 (as applied, for 
example, in Exercise 11.15), we may conclude that the dimension of any component 
of the incidence correspondence r whose general member (L, p, q) does not satisfy 
pq c X is at least 4k - 2n; correspondingly that any component of the locus ~(X) 
of bitangent lines to X not consisting of lines lying on X has dimension at least 
4k - 2n . .?8(X) may indeed have smaller dimension if every bitangent line to X is 
contained in X, as will be the case, for example, when X is a quadric or cubic surface 
in 1P3 (in the former case, dim(r) = 3 and dim(.?8(X)) = 1; in the latter, dim(r) = 2 
while dim(~(X)) = 0). 

We should remark that just as the definition of double point locus given in 
Example 5.16 was not optimal, so the current definition of bitangent lines is not: it 
should more properly be defined as the image in G(1, n) of the double point locus 
of the projection L -+ G(l, n), where double point locus is as defined in [F1] or [K] 
rather than as it is defined here. One problem with our definition is that it does not 
behave well with respect to families. For example, observe that by our definition 
the line (Y = 0) c 1P2 is not a bitangent line to the plane curve Co given by 
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(y4 + YZ3 = X4), even though it is a bitangent line to the curves C;. given by 
(y4 + YZ3 = (X2 - AZ2)2) for A =F O. Thus, if we let jp14 be the projective space 
parametrizing plane quartics, U c jp14 the open subset corresponding to smooth 
quartics and 

<I> = {(C, L): L E .?J(C)} c U X jp2* 

the incidence correspondence whose fiber over C E U is the set of bitangent lines to 
the curve C, under the terms of our definition <I> will not be closed in U x jp2*; with 
the correct definition it will be. 

Example 15.22. Dual Varieties 

We can similarly define the notion of tangent hyperplane to a variety X c jpn. As in 
the case of tangent lines, there is no ambiguity about what this should be if X is 
smooth: in this case a hyperplane H c jpn is called a tangent hyperplane if it 
contains a tangent plane to X. Again, as before, in case X is singular, we will simply 
define the locus of tangent hyperplanes to X to be the closure, in the dual space 
jpn*, of the locus of hyperplanes containing the tangent plane to X at a smooth 
point. This is called the dual variety of X and is usually denoted X* c jpn*. 

There is another characterization of the dual variety: in most cases if X is 
smooth we may say that it is the set of hyperplanes H c jpn such that the intersec­
tion H n X is singular. The reason we cannot always say that X* is the set of 
hyperplanes such that X n H is singular is that, while the intersection of X with a 
hyperplane H having an isolated point p of tangency with X is necessarily singular 
at p, some hyperplanes may be tangent to X everywhere along their (smooth) inter­
section. For example, the hyperplane sections of the Veronese surface S ~ jp2 C jps 
correspond to conic plane curves; the hyperplane corresponding to a double line 
will be of this type. (In the language of schemes, it would be completely accurate to 
characterize the dual variety of a smooth variety X by the singularity of X n H). 
What is true is that such hyperplanes never form an irreducible component of the 
locus of tangent hyperplanes, so that for X smooth we can describe X* as the 
closure of the locus of H such that H n X is singular. 

What is the dimension of the dual variety X*? As usual, we may try to estimate 
this first by introducing an incidence correspondence, in this case the closure <I> of 
the set <i> of pairs of point and tangent hyperplanes: 

<i> = {(p, H): p E Xsm and H :::J lrp(X)}. 

The dimension of <I> is readily calculated from the projection map 'It 1: <I> --+ X on the 
first factor. The fiber of this map over a smooth point p E X is just the subspace 
Ann(lrp(X)) ~ jpn-k-l C jpn* of hyperplanes containing the k-plane lriX). Thus the 
inverse image in <I> of the smooth locus of X is irreducible of dimension n - 1; and 
it follows that <I> is irreducible of dimension n - 1 in general. (We leave it as an 
exercise to check that the image 'lt2(<I» c jpn* is indeed the dual variety X*.) 
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We conclude from this, of course, that the dual variety X* is irreducible of 
dimension at most n - 1 and will in fact have dimension n - I-that is, be a 
hypersurface-exactly when the general tangent hyperplane to X is tangent at only 
a finite number of points. We might naively expect that for most varieties a general 
tangent hyperplane is tangent at exactly one point, and indeed this is the case in a 
large number of examples; for example, the general hypersurface or complete 
intersection will have this property. This is reflected in the terminology: if the dual 
variety of a variety X fails to be a hypersurface, we say that it is deficient. There are, 
however, a number of examples where the dual variety fails to be a hypersurface 
(and, indeed, Theorem 15.24 will say that in some sense there are at least as many 
such examples as varieties whose duals are hypersurfaces). 

Of course, one way in which the dual of a variety X may fail to be a hypersurface 
is if the tangent planes to X are constant along subvarieties of X -for example, a 
cone will have this property (as can easily be checked, the dual of the cone p,Y c IPn 

with vertex p over a variety Y c IPn-l is just the dual of Y, lying in the hyperplane 
p* c IPn of hyperplanes through p). This does not have to be the case, however; 
there are also examples of smooth varieties X c IPn whose Gauss maps are one to 
one, but whose dual varieties are deficient. 

Probably the simplest examples of this are the rational normal scrolls 
X = X a .. .•. • ak of dimension k ~ 3. To see this, recall from the definition in Lecture 
8 that the scroll X is swept out by a one-parameter family (a "ruling") of (k - 1)­
planes. The tangent plane to X at any point p E X will contain the (k - I)-plane 
A c X of the ruling through p; so that if a hyperplane section Y = H n X is 
singular at p it must contain A. But now H must still tneet the general plane of the 
ruling in a (k - 2)-plane, and it follows from this that the closure Yo of H n X - A 
will intersect A in a (k - 2)-plane r. This means that Y will be singular along r, so 
that the general fiber of the projection map 11:2 : <I> --+ IPn* will have dimension k - 2, 
and the image X* correspondingly dimension n - k + 1 < n - 1. 

There is another way to see that the dual of a scroll is deficient in the special case 
of the variety Xl, ... ,l' This comes from the alternate description of Xl, ... ,l as the 
Segre variety a(lPl x IPk - 1) C 1P2k-1, or, in intrinsic terms, the locus 

IPV x IPW c IP(V® W) 

of reducible (i.e., rank 1) tensors v ® w in the projective space associated to the 
tensor product of a two-dimensional vector space V and a k-dimensional vector 
space W Now, the group PGL(V) x PGL(W) acts on the space IP(V ® W), 
preserving the scroll X = IPV x 1Pw, and likewise acts on the dual space preserving 
the dual X*. But by easy linear algebra, there are only two orbits of the action of 
PGL(V) x PGL(W) on IP(V ® W)* = IP(V* ® W*): the tensors of rank 1 and the 
rest. It follows from this alone that the dual variety X* can only be the locus of 
reducible tensors; in particular, it is isomorphic to X itself. 

Note that we can see directly in this example what we claimed in the discussion 
of general scrolls: the singular hyperplane sections of the Segre variety X = 

IPV x IPW come from decomposable tensors I ® m E IP(V* ® W*), and they corre-
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spondingly consist simply of the union (l = 0) x pWu PV x (m = 0) of the inverse 
images of hyperplanes in PV and PW; in particular, they will be singular exactly 
along a (k - 2)-plane. 

Exercise 15.23. Identify the dual of the Segre variety u(pn x pm) C [?nm+n+m in 
general; in particular, show that it is deficient except in the case m = n. 

Before moving on, we should mention two theorems about dual varieties. One 
is completely fundamental and elementary (though it involves one idea that will not 
be introduced until the following lecture, where its proof will be given). It is simply 
stated as follows. 

Theorem 15.24. Let X c [?n be an irreducible variety and X* c [?n* its dual; let 
<Dx c [?n x [?n* and <Dx. c [?n* x [?n = [?n x [?n* be the incidence varieties asso­
ciated to X and X*. Then 

<Dx = <Dx.· 

In particular, the dual of the dual of a variety is the variety itself. 

Note that, as promised, this theorem suggests that there are just about as many 
varieties with deficient dual as otherwise, since every variety is the dual of some 
variety. 

Exercise 15.25. Prove directly that the dual of the dual of a plane curve X c [?2 is 
X again by considering a parametric arc y: t f-+ [v(t)] E p2, writing down the dual 
map y* from the disc to [?2* sending a point to its tangent line and iterating this 
process. 

Classically, this case of Theorem 
15.24 would have been argued just by 
drawing a picture to illustrate the 
statement "the limiting position of the 
intersection If q(X) n If r(X) of the tan­
gent lines to a smooth curve X c [?2 at 
points q and r tending to a point p E X 
is p." More generally, Theorem 15.24 
could be phrased, in classical language, 
as "the limit of the intersection of 
hyperplanes HI' ... , Hn tangent to 
a smooth variety X c [?n at points 
ql' ... , qn tending to a point p E X 
contains p." 

x 

The other theorem is even more remarkable, and less elementary. It deals 
with smooth varieties X c [?n whose duals are deficient; for such a variety we 
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may call the difference n - 1 - dim(X*) the deficiency of the dual of X, called c5(X*). 
We then have the following theorem. 

Theorem 15.26. Let X c IPn be any smooth variety with deficient dual. Then 

c5(X*) == dim (X) (mod 2). 

This theorem is due to A. Landman; a second proof was given by L. Ein [Ein]. 



LECTURE 16 

Tangent Spaces to Grassmannians 

Example 16.1. Tangent Spaces to Grassmannians 

We have seen that the Grassmannian G(k, n) is a smooth variety of dimension 
(k + l)(n - k). This follows initially from our explicit description of the covering of 
G(k, n) by open sets VA ~ A(k+l)(n-k), though we could also deduce this from the 
fact that it is a homogeneous space for the algebraic group PGLn+1 K. The Zariski 
tangent spaces to G are thus all vector spaces ofthis dimension. For many reasons, 
however, it is important to have a more intrinsic description of the space TA(G) in 
terms of the linear algebra of A c Kn+l. We will derive such an expression here and 
then use it to describe the tangent spaces of the various varieties constructed in Part 
I with the use of the Grassmannians. 

To begin with, let us reexamine the basic open sets covering the Grassman­
nian. Recall from Lecture 6 that for any (n - k)-plane r c K n +1 the open set 
Vr eGis defined to be the subset of planes A c K n+1 complementary to r, i.e., 
such that A n r = (0). These open sets were seen to be isomorphic to affine spaces 
A(k+l)(n-k) as follows. Fixing any subspace A E Ur , a subspace A' E Ur is the graph 
of a homomorphism 0/: A -+ r, so that 

Vr = Hom(A, r). 

In particular, this isomorphism of spaces induces an isomorphism of tangent spaces 

Now suppose we start with a subspace A and do not specify the subspace r. 
To what extent is this identification independent of the choice of r? The answer is 
straightforward: any subspace r complementary to A may naturally be identified 
with the quotient vector space Kn+1 / A, and if we view the isomorphism of tangent 
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spaces in this light, it is independent of r. We thus have a natural identification 

TA(G) = Hom(A, Kn+ljA). 

In order to see this better, and because it will be extremely useful in applications, 
we will also describe this identification in terms of tangent vectors to arcs in G. (As 
usual, when calculating with arcs, we will assume our ground field K = IC and use 
the language of complex manifolds; but the techniques and results apply to maps 
of smooth curves over any field of characteristic 0.) Specifically, suppose that 
{A(t)} eGis a holomorphic arc in G-that is, a family of planes parametrized 
by t in a disc (or in a smooth curve) with A(O) = A-and let v E A be any vector. We 
can measure the extent to which A is moving away from the vector v as follows. 
Choose any holomorphic arc {v(t)} E Kn+1 with v(t) E A(t) for all t, and associate to 
v the vector 

q>(v) = v'(O) = dd I v(t). 
t 1=0 

This measures the movement of A away 
from v in the sense that the only thing 
preventing us from choosing v(t) == v is 
this movement. Of course, it is not 
unique; but if w(t) is any other choice of 
holomorphic arc with w(t) E A(t) for all 
t and w(O) = v, then since w(O) = v(O) we 
can write 

w(t) - v(t) = t· u(t) 

with u{t) E A{t) for all t. It follows that 
cp(v) is well-defined as an element of the 
quotient Kn+1 j A. The arc {A{t)} thus 
determines a linear map cp: A --+ Kn+1 j A, which is just its tangent vector in terms of 
the preceding identification. 

There are numerous other ways to view the identification. For example, the 
Grassmannian G(k, n) = G(k + 1, n + 1) is a homogeneous space for the group 
GLn+l K, so that its tangent space at a point A E G will be naturally identified with 
the quotient of the Lie algebra of GLn+l K by the Lie algebra of the stabilizer of A. 
The first of these is just the vector space of endomorphisms of Kn+1, the second just 
the subspace of endomorphisms carrying A into itself, so that we have 

TAG = Hom(Kn+l, Kn+l)/{cp: q>(A) c A} 

= Hom(A, Kn+ljA). 

As we said earlier, however, the identification via tangent vectors to arcs is the one 
we will find most useful for our purposes. 

Before going on, we should raise one point of notation. We would like, for 
many reasons, to put Grassmannians and projective spaces on the same footing, at 
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least notationally. For example, we have been using the symbol A to denote, 
simultaneously, a vector subspace Kk+l of K"+l and a projective subspace IPk c IP". 
To be consistent, then, we should also use the same symbol p that we have been 
using to denote a point in projective space to denote a line in K"+1 at the same time. 
This leads to some funny-looking statements-e.g., J;,(IP") = Hom(p, K"+l/p)-but 
will be easier in the long run than keeping separate systems of symbols for IP" and 
G(k, n), as the next series of examples will bear out. 

Example 16.2. Tangent Spaces to Incidence Correspondences 

We consider here the basic incidence correspondence introduced in Lecture 6, that 
is, we let G = G(k, n) and set 

:E = {(p,A):PEA} c IP" x G. 

It is not hard to see that :E is smooth, either by homogeneity or by direct 
examination of its equations. We want to identify the tangent space to :E as a 
subspace of the tangent space to the product IPn x G. To do this, let (p, A) E :E 
be any point of :E and suppose u(t) = (p(t), A(t)) is an arc in :E passing through 
(p, A) at time t = O. The tangent vector to the arc u at t = 0, viewed as an element 
of the tangent space T(p,A)(lPn x G) = J;,(lPn) x TA(G), is (", cp) where" E J;,(IP") is 
the tangent vector to the arc {p(t)} in IPn at t = 0 and cP E TA is the tangent vector 
to the arc {A(t)} in G at t = O. What can we say about the pair (", cp)? 

The answer is clear from our description of the tangent space to G: if p(t) = [v(t)] 
with v(t) E A(t) for all t, then by definition cp(v) = ,,(v) modulo A. Since this relation 
represents n - k linear conditions on the pair (", cp) and since the co dimension of 
:E in IP" x G is exactly n - k, it follows that this determines the tangent space to :E 
at (p, A) completely. In sum, then, :E is smooth and the tangent space to :E at (p, A) 
is the space of pairs 

{ 
" E Hom(p, K n+1/p) } 

1(P,A)(:E) = (", cp): cp E Hom(A, Kn+l/A) and cplp ==" (mod A) . 

Exercise 16.3. Consider one generalization of this. For each k < I we consider 
the flag manifold IF(k, I, n) of Example 11.40, i.e., the incidence correspondence 

Q = {(A, r): A c r} c G(k, n) x G(I, n). 

Show that Q is smooth and that at a pair (A, r) the tangent space is given by 

{ "E Hom(A, K"+l/A) } 
1(A,r)(Q) = (", cp): cp E Hom(r, K"+l/r) and CPIA == " (mod r) . 

Exercise 16.4. Consider another generalization of the basic example: the incidence 
correspondence of pairs of incident planes, given by 

Q = {(A, r): An r -=f 0} c G(k, n) x G(I, n). 
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(We assume here that k + 1 < n so that n # G(k, n) x G(I, n).) Show that n is 
smooth at a point (A, r) if and only if A and r intersect in exactly one point; 
and that at such a pair the tangent space is given by 

{ 11 E Hom(A, Kn+ljA) } 
1(A.rln) = (11, cp): cP E Hom(r, Kn+ljr) and cplAnr == 111Anr (mod A + r) . 

Exercise 16.5. Generalize the preceding two exercises to the incidence correspon­
dence S of pairs (A, r) meeting in a subspace of dimension at least m. 

Example 16.6. Varieties of Incident Planes 

We will now identify the tangent spaces to the variety ~k(X) c G(k, n) of k-planes 
meeting a variety Xc [P>", introduced in Example 6.14. Recall from Example 11.18 
that if X has dimension m, then ~k(X) is a subvariety of codimension n - m - k in 
G(k, n) (we assume throughout that k < n - m, so that ~k(X) ~ G(k, n». 

Suppose now that A E ~k(X) is a plane meeting X at exactly one point p, 
that p is a smooth point of X, and that An lrp(X) = {p}. We claim first that 
under these conditions, ~k(X) is smooth at A. To see this, we go back to the 
description of~k(X) that was useful before: we have 

~k(X) = 1t2(~ n 1tl1(X» 

where ~ c [P>" x G(k, n) is the incidence correspondence described in Example 16.2. 
Now, we have already shown that ~ is smooth at a point (p, A), with tangent space 

{ 11 E Hom(p, K n+1 jp) } 
1(P.A)(~) = (11, cp): cP E Hom(A, Kn+1jA) and cplp == 11 (mod A) 

and if X is smooth at p then of course 
1tl1(X) is smooth at (p, A) with tangent 
space {(I1, cp): I1(P) c lr p(X)}. If A has no 
nontrivial intersection with lr p(X), then 
these two tangent spaces intersect 
transversely, and so ~ n 1tl1(X) will be 
smooth at (p, A). Note moreover that in 
this case the tangent space to ~ n 1tl1(X) 
will not intersect the tangent space to 
the fibers of [P>" x G(k, n) over G(k, n). 
If we assume in addition that A meets X 
at only the one point p-i.e., 1t2 : 

~ n 1tl1(X) ~ ~k(X) is one to one over 
A-then it follows (using Corollary 14.10) that ~k(X) is smooth at A with tangent 
space 
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Exercise 16.7. Let A E ~k(X) and assume that A n X is finite; assume further that 
k + dim (X) < n so that ~k(X) =1= G(k, n). Show that ~k(X) is smooth at A ifand only 
if A n X = {p}, P E Xsm and A n lr pX = {pl. Note: you may need to use the follow­
ing weak form of what is called Zariski's Main Theorem. 

Proposition 16.8. Let f: X --+ Y be a regular birational map of projective varieties, 
q E Y a point. If the fiber f-l(q) is disconnected, then q is a singular point of Y. 

This is immediate over C (and hence over any field of characteristic 0 by the 
Lefschetz Principle 15.1) but is tricky to prove algebraically; we won't do it here. 

Exercise 16.9. (a) Let Xl' X 2 , and 
X 3 C p3 be smooth curves, and let 
Ie p3 be a line meeting each curve Xi 
in a unique point Pi; assume the Pi are 
distinct, that 1 =1= lr Pi(Xi ) for each i, and 
that the lines lr Pi (X;) are not all X2 

coplanar. Show that the subvarieties 
~l (Xi) intersect transversely at the point X3 

1 E G(I, 3). (b) Now say we have four 
curves Xi c p3 and a line 1 meeting each Xi in a single point Pi' with the same hypo­
theses as in the first part. Let l' c p3 be a line skew to 1, and set qi = l' n 1, lr pJX). 
Assuming that the points {p;} and {q;} are distinct, show that the cycles ~l (X;) 
intersect transversely at 1 if and only if the cross-ratio of the points Pi E 1 is not equal 
to the cross-ratio of the points qi E 1'. 

Example 16.10. The Variety of Secant Lines 

In exactly the same way as earlier, we can describe the tangent space to the variety 
Y'(X) of secant lines to a variety X c pn at a point corresponding to a line 1 = pq 
meeting X at exactly two distinct smooth points, with 1 not contained in either 
lr p(X) or lr q(X); it is exactly the space of homomorphisms from 1 to K n+l /l carrying 
pinto 1 + lr p(X) and q into 1 + lr q(X). An analogous statement can be made for the 
variety ~(X) c G(k, n) of (k + I)-secant k-planes to X. 

Exercise 16.11. As we saw in Exercise 15.9, the locus 5"1 (X) of tangent lines to 
a variety X is contained in the locus Y'(X) of secant lines to X. Suppose now 
that X is a curve. When is the variety Y'(X) singular at a point of 5"1 (X), and 
what is its tangent space at such a point in general? What is the situation for 
higher-dimensional X? (*) 

Example 16.12. Varieties Swept out by Linear Spaces 

We have looked at some examples of subvarieties of the Grassmannian. We now 
turn our attention to some varieties expressed as the unions of families of linear 
spaces. 
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We start with the general question: suppose r c G(k, n) is any subvariety, 
and we form the union 

X= U A. 
Aer 

When is X smooth and what is its tangent space? 

We will restrict ourselves here to the "general" case, where the dimension of X 
is the expected dim(r) + k. We will also assume that the variety X is swept out just 
once by the family of planes, i.e., that a general p E X lies on a unique A E r. To 
put it differently, let L c [pln X G(k, n) be the incidence correspondence discussed in 
Example 16.2, and let qt = n2"l(r) c L. Then our two assumptions together are 
equivalent to the statement that the projection map n 1: qt -+ X is generically one 
to one, i.e., birational. 

In this case, we simply have to identify the tangent space to the incidence 
correspondence qt and say when it intersects the tangent space to the fiber of 
[pln x G(k, n) over [pln. Since we have already identified the tangent space to L, 
this is easy; the tangent space to qt at a point (p, A) is given by 

{ 
1] E Hom(p, Kn+ljp) } 

1(p.A)(<l» = (1], cp): cP E TA(r) c Hom(A, Kn+ljA) and cplp == 1] (mod A) . 

When does this contain a nonzero pair (1], cp) with 1] = O? Exactly when p E Ker(cp) 
for some nonzero tangent vector cp E TA (r); if this is not the case then the image of 
this tangent space in Ti[pln) will be just the span of the images cp(p) over all 
cp E TA(r). 

To put it another way, we may view the inclusion 

i: TA(r) -+ TA(G(k, n)) = Hom(A, K n+1jA) 

as a linear map 

or, equivalently, as a map 

j: A -+ Hom(TA(r), Kn+1jA). 

In these terms, we have the following theorem. 

Theorem 16.13. Let r E G(k, n) be any subvariety of dimension 1, let X c [p>n be the 
union of all A E r, and let p E X be a point. Suppose that p lies on a unique plane 
A E r, that r is smooth at A, and that the map 

j(p) E Hom(TA(r), Kn+1/A) 

is injective. Then X is smooth of dimension k + 1 at p, with tangent space 
A + Im(j(p)). 

Exercise 16.14. Let [p>k and [p>1 C [p>n be two disjoint linear subspaces of [pln, and 
X c [plk and Y c [pll any smooth subvarieties other than linear subspaces. Let 
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J = J(X, Y) be the join of X and Y, as described in Examples 6.17, 8.1, and 
11.36. Show that J is singular exactly along X u Y, and that at a point r E pq c J 
other than P and q the tangent space lr r(J) is the span of the spaces lr p(X) and lr q( Y). 

Exercise 16.15. Let IP\ 1P', X and Y be as above, but say X and Yare curves, 
and let cp: X --+ Y be an isomorphism. Let K = K(cp) be the surface formed by 
the joins of corresponding points, as in Example 8.14. Show that K is smooth and 
that the tangent spaces to K at points r E pq are exactly the 2-planes contain­
ing the line pq and lying in the 3-plane spanned by lr p(X) and lr q(Y). 

Finally, we can use the preceding description of tangent spaces to varieties 
swept out by linear spaces to prove an assertion made in connection with Example 
11.30: the secant variety S,(X) of a curve X c IPn has dimension 21 + 1 whenever 
n ~ 21 + 1. We do this in two steps. 

Exercise 16.16. Let X c IPn be an irreducible nondegenerate curve and PI' ... , 

P,+l E X general points. Show that if 21 + 1 :::; n, the tangent lines lr PiX span 
a linear space 1P 21 +1, while if 21 + 1 ~ n, they span all of IPn. (Note: this is false 
in characteristic P > 0.) (*) 

Exercise 16.17. Let Xc IPn be any irreducible variety and suppose that PI' ... , 

Pl+l E X are general points. Show that the dimension of the secant variety S,(X) is 
exactly the dimension of the span of the tangent planes lr PiX. Show also that if this 
span is a plane /\ of dimension (l + 1)' dim (X) + 1, and q E S,(X) is a point lying on 
the span of the Pi and on no other secant I-plane, then S,(X) is smooth at q with 
tangent plane /\. 

Example 16.18. The Resolution of the Generic Determinantal Variety 

As promised, we will now go back and discuss tangent spaces to determinantal 
varieties, this time in the spirit of the preceding examples. To begin with, let 
Mk C IPmn-l be the variety of m x n matrices of rank k or less, in the projective 
space IPmn-l of all nonzero m x n matrices modulo scalars. Recall the definition of 
the fundamental variety 'I' associated to Mk in Example 12.1; this is the incidence 
correspondence consisting of pairs (A, /\) where A is an m x n matrix up to scalars 
and A ~ K"-k is a plane contained in the kernel of A, i.e., 

'I' = {(A, /\): AlA == O} eM x G(n - k, n). 

As we saw in the computation of the dimension of Mk> it is relatively easy 
to describe 'I' in terms of the projection on the second factor G(n - k, n): if 
we fix /\ the space of maps A: K" --+ K m such that /\ c Ker(A) is just the space 
Hom(K"jA, Km), so that the fibers of the projection n2: 'I' --+ G(n - k, n) are just 
projective spaces of dimension km - 1. We concluded in Example 12.1 that the 
variety 'I' is irreducible of dimension dim(G(n - k, n» + km - 1 = k(m + n - k) 
- 1 (and since the map n2 : 'I' --+ M is generically one to one onto M k , the same is 
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true of M k ); we may now deduce as well that 'P is smooth and will here determine 
its tangent space. 

We do this in much the same way as Example 16.2. Let (A, A) E 'P be any 
point of 'P, and suppose I/J(t) = (A(t), A(t» is an arc in 'P passing through (A, A) at 
time t = O. We will write the tangent vector to the arc I/J at t = 0 as (IX, cp) where 

IX E Tp(M) = Hom(Kn, Km)/K' A 4 

is the tangent vector to the arc {A(t)} at t = 0 and 

cp E TA(G(n - k, n» = Hom(A, KnjA) 

is the tangent vector to the arc {A(t)} in G(n - k, n) at t = O. As before, we ask what 
we can say about the pair (IX, cp) on the basis of the relation A(t)IA(t) == 0 "It. 

The answer is clear from the product rule. If {v(t)} is any arc with vet) E A(t) 
for all t, then we have 

A(t)· vet) == 0; 

taking the derivative with respect to t and setting t = 0 we have 

A'(O)' v(O) + A (0) . v'(O) = 0, 

i.e., 

IX(V(O» + A(cp(v(O))) = O. 

(Note that this is well-defined, since IX is well-defined modulo multiples of A, 
which kills v(O) E A, and cp(v(O» is well-defined modulo A c Ker(A).) Since v(O) is an 
arbitrary element of A, we may write this condition in general as 

in Hom(A, Km).5 

Now, this represents exactly dim(Hom(A, Km» = men - k) linear conditions on 
the pair (IX, cp) E Hom(Kn, Km)jK' A x Hom(A, KnjA). Since this is, as observed, 
the co dimension of'P c M x G(n - k, n), to say that any tangent vector (IX, cp) E 

1(A,A)('P) satisfies this condition immediately implies that 'P is smooth at (A, A), 
with tangent space given by 

{
IX E Hom(Kn, Km)jK . A) } 

1(A,A)('P) = (IX, cp): cp E Hom(A, KnjA) and IXIA = -A 0 cp: A -+ Km . 

As promised, this statement also yields the description of the tangent spaces to 
Mk found earlier in Example 14.16. At a point A E Mk corresponding to a map 
A: K n -+ K m of rank exactly k, the map 1r 1 : 'P -+ Mk is one to one (the unique point 
of'P over A is (A, A) with A = Ker(A», and the tangent space 1(A,A)('P) does not 

4 To be precise, Tp(M) is identified with Hom(K' A, Hom(K", Km)jK' A). In the interests of reasonable 
notation we will work for the most part modulo scalars, identify Tp(M) with Hom(K", Km)jK' A, and 
indicate the precise form of the final results (see, for example, the next footnote). 

5 More precisely, if ex E Hom(K' A, Hom(K", Km)/K' A), the condition is: ex(A)IA + A 0 q> = O. 
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meet the tangent space to the fiber of n l' Thus, Mk is smooth at such a point; the 
tangent space ~(Mk) = (n 1)*(1(A,A)('P)) is the space of maps a: K n -+ K m such that 
alA = -A 0 q> for some q> E Hom(A, Kn/A)-i.e., the space of maps a carrying A 
into Im(A). 

Exercise 16.19. The entire analysis of the determinantal variety Mk carried out 
in the preceding example could be done by introducing not the auxiliary variety 'P 
given but the analogously defined 

3 = {(A, r): Im(A) c r} c M x G(k, m). 

Do this. Also, describe the fiber product 'P x Mk 3-in particular, is this smooth? 

Example 16.20. Tangent Spaces to Dual Varieties 

Of course, the identification of the tangent space to the dual variety X* of a variety 
Xc [Illn is the content of Theorem 15.24, which we will now prove (assuming as 
before that char(K) = 0). 

We do this by first identifying the tangent space to the incidence correspondence 
<I> introduced in Example 15.22. Recall that <I> is defined to be the closure of the set 
of pairs 

<I> = {(p, H): p E Xsm and H ::::l lr p(X)}, 

and that <I> is irreducible of dimension n - 1. Suppose now that X is of dimension 
k and that the dual variety X*, to which <I> maps, is of dimension I; let p E X 
and H E X* be smooth points such that (p, H) is a general point of <I> (so that 
in particular by Proposition 14.4 the tangent space 1(p,H)(<I» surjects onto J;,(X) and 
TH(X*)) and let a E J;,(X) and f3 E TH(X*) be tangent vectors. To describe the 
tangent space to <I> at the point (p, H), note first that since <I> is contained in both 
X x X* and the incidence correspondence 

~ = {(p, H): p E H} 

we have from Example 16.2 

1(p,q)(<I» c {(a, f3): ;: ~~*) and f3l p == a (mod H)}, 
where we view a as a homomorphism from p to Kn+1/p and f3 E Hom(H, K n+1/H). 
If we think of [Illn* as one-dimensional subspaces q of the dual space (Kn+1)* instead 
of n-dimensional subspaces H of K n +1 and the tangent vector f3 correspondingly as 
a homomorphism from q to (Kn+1)* /q, then we can write this more symmetrically as 

1(p q)(<I» c {(a, f3): a E J;,«X~ and <a(v), w) + <v, f3(w) = 0 for v E p, W E q}. 
, f3 E YqX) 

Now use the fact that (p, q) E <1>, i.e., that the hyperplane q contains the tangent 
plane lrp(X). This amounts to the statement that 
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<O((v), w) = 0 for all 0( E 7;,(X), V E p, WEq. 

The symmetry in the statement of Theorem 15.4 now emerges. We have already 
established that <O((v), w) = - <v, {3(w) for (0(, {3) E 1(P,Q)(Cl», and since by hypo­
thesis 1(p,q)(Cl» surjects onto ~(X*), the condition <O((v), w) = 0 implies the oppo­
site condition 

<v, {3(w) = 0 for all {3 E ~(X*), V E p, WEq. 

This condition in turn says that p, viewed as a hyperplane in IPn*, contains the 
tangent space to X*. Thus an open subset of, and hence all of Cl> is contained 
in the incidence correspondence Cl>x*; since both are irreducible of dimension n - 1, 
we deduce that 

o 
Example 16.21. Tangent Spaces to Fano Varieties 

Consider finally the Fano variety Fk(X) of k-planes lying on a variety X c IPn. In 
example 12.5 we estimated the "expected" dimension ofthe variety Fk(X) associated 
to a general hypersurface X c IPn of degree d; here we will describe the tangent 
space to Fk(X) and, in so doing, complete the proof of Theorem 12.8. 

This is actually completely straightforward. Suppose first that X is the hyper­
surface given by the single homogeneous polynomial F = F(Zo, ... , Zn), and let 
{A(t)} be an arc in the Fano variety Fk(X), that is, a family of k-planes lying on X. 
For each point p E Ao, then, we can draw an arc {p(t) = [Zo(t), ... , Zn(t)]} with 
p(t) E A(t) for all t; since A(t) c X for all t we have 

F(p(t)) == O. 

Taking the derivative with respect to t, we find that 

or, in other words, the tangent vector to the arc {p(t)} lies in the tangent plane 
to X at po. It follows that the tangent plane to the Fano variety Fk(X) at A = Ao is 
contained in the space Yf of homomorphisms cp: A -+ Kn+1jA defined by 

Yf = {cp: cp(p) E lrp(X)jA for all pEA}. 

Since the Fano variety of an arbitrary variety X c IPn is just the intersection 
of the Fano varieties of the hypersurfaces containing X, it follows that the same is 
true in general. In particular, when the subspace Yf c Hom(A, Kn+1 j A) determined 
by this condition has dimension equal to the dimension of Fk(X), we may deduce 
that Fk(X) is smooth at A, with tangent space Yf. 

In fact, this condition, morally speaking, determines the tangent space to the 
Fano variety, in a sense made precise in Exercise 16.23. Note in particular that the 
"expected" dimension of the space Yf coincides, in the case of a hypersurface 
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x c lPn, with the expected dimension 
<p(n, d, k) of the Fano variety Fk(X) 
as described in Example 12.5: given 
X: (F = 0) and a plane A c X, to any 
homomorphism <p: A ~ K n+1 / A we may 
associate a polynomial 

( oF OF) 
G",(p) = oZo (p), ... , oZn (p) . <p(p). 

16. Tangent Spaces to Grassmannians 

Note that this is well-defined-<p(p) is only defined modulo A, but A is in the 
kernel of the linear form given by the partials of F -and defines a linear map from 
Hom(A, K n+1 / A) to the space of polynomials of degree d on A whose kernel 
is exactly yeo We may thus expect that the codimension of ye in Hom(A, K n+1/ A) is 

C : d) and hence that the dimension of ye is (k + 1)(n _ k) _ (k : d) = 

<p(n, d, k). 

Exercise 16.22. For each d, n, and k such that the expected dimentsion <p(n, d, k) of 
the Fano variety Fk(X) of k-planes on a hypersurface X c IPn of degree d (as 
determined in Example 12.5) is nonnegative, exhibit a hypersurface X c IPn of 
degree d in IPn and a k-plane A c X such that the tangent space to Fk(X) at A has 
dimension at most <p(n, d, k), and deduce the statement of Theorem 12.8. 

Exercise 16.23. The word "morally" in the preceding paragraph means, as usual, 
"scheme-theoretically": the tangent space to the Fano scheme-defined to be the 
subscheme of the Grassmannian G(k, n) determined by the equations described in 
Example 6.l9-is always equal to the space {<p: <p(p) E Tp(X)/A 'v'p}). Verify this by 
explicit calculations, i.e., show that the gradients of the functions introduced in 
Example 6.19 describe exactly this space. (Suggestion: do this for a hypersurface X 
and the case k = 1.) 



LECTURE 17 

Further Topics Involving Smoothness 
and Tangent Spaces 

Example 17.1. Gauss Maps on Curves 

Let Xc IPn be a smooth curve. In Example 15.2 we introduced the Gauss map 

<§: X -+ G(I, n) 

sending a point P E X to the tangent line lrp(X). We will now investigate this map 
further, and in particular characterize, among all maps of curves to Grassmannians 
G(I, n), those that arise in this way. 

To begin with, we will restrict to the case char(K) = 0, and will work with a 
parametric form of X; that is, we will consider an arc 

y: t ~ [v(t)] = [vo(t), ... , vn(t)] E IPn. 

We will assume that v(to) =I- 0 (we can always divide v by a power of (t - to) if 
v(to) = 0). 

Now let <§: X -+ G(l, n) be the Gauss map associated to X and let <p(t): <§(t)-+ 
K n+1/<§(t) be a tangent vector to <§(X) at the point <§(t). Then <§(t) is spanned by v(t) 
and v'(t), and by definition 

<p(t)(v(t» = v'(t) ;;: 0 (mod <§(t» 

and 

<p(t)(v'(t» = v"(t) (mod <§(t». 

In particular, <p(t) has rank at most 1; what we are saying in effect is that, to 
first order, the motion of the tangent line 7;,(X) to a curve is the same as a 
rotation around the point p. Note also that <p(t) is zero exactly when the wedge 
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product v(t) /\ v'(t) /\ v"(t) = 0 (such a 
point is called a flex point of the curve; 
we will see in Example 18.4 that­
except in case C is a line-not every 
point can be a flex). Note that the kernel 
of cp(t) is the vector v(t) itself, while the 
image is the plane spanned by v(t), v'(t), 
and v"(t) (modulo ~(t), of course). In 
fact, we have the following converse. 

Theorem 17.2. Let ~: X --+ G(1, n) be any map of a smooth curve X to a Grass­
mannian of lines and suppose that the tangent vectors cp(t) to ~(X) have rank at 
most 1 for all t. Then either ~ is the Gauss map associated to some map v: X --+ [pln or 
all the lines ~(t) pass through a fixed point p E [pln. 

PROOF. The way to prove this is to recover the map v from the map!'§, and the 
way to do this was suggested earlier: v(t) should be the kernel of the tangent 
vector to ~(X) at ~(t). So assume that ~: X --+ G(1, n) is a map with tangent 
vectors cp(t) of rank at most 1; since the rank cannot be zero everywhere (if it 
is, ~ is constant, and so is the Gauss map associated to a map v of X to a line 
in [pln) we may assume it has rank exactly 1 outside a finite set of points in X. 
Away from these points, define 

v: X --+ [pln 

by 

v: t 1--+ Ker(cp(t)). 

This then extends to a regular map on all of X: if we write 

with vi(t) merom orphic functions, after multiplying through by a suitable power 
of t we may assume that the Vi are all holomorphic and not all vi(t) are O. 

We claim now that either v is constant or ~(t) is spanned by v(t) and v'(t) for 
general t. In the former case, all the lines ~(t) contain the point v. On the other hand, 
to say that v(t) E Ker(cp(t)) for all t is equivalent to saying that v'(t) E ~(t) for all t; 
since v'(t) will be independent from v(t) for all but a finite set of values of t, it follows 
that ~(t) coincides with the span of v(t) and v'(t) for all but a finite set S of t. Thus 
~ = ~v for all t ¢ S, and hence for all t. 0 

Exercise 17.3. Let X c [pln be a smooth curve and 

be its tangential surface. Let q E TX be a point lying on a unique tangent line lrp(X) 
to X, q # p. Show that q is a smooth point of the surface TX if and only if p is not 
a flex point of X, and that in this case the tangent plane to TX at q is constant along 



17. Further Topics Involving Smoothness and Tangent Spaces 213 

the lines lrp(X) c TX (the tangent plane to TX along this line is the osculating 
plane to X at p-see Example 17.5). 

Exercise 17.4. Observe that by the preceding exercise if S c ~n is the tangential 
surface of a curve then the image of the Gauss map <§s: S -4 G(2, n) will be one­
dimensional. Classify all ruled surfaces S with the property that <§s is constant along 
the lines of the ruling; if you're feeling reasonably energetic after that, classify all 
surfaces S such that the variety ff(S) of tangent planes to S has dimension 1. (*) 

Example 17.5. Osculating Planes and Associated Maps 

As is suggested by the preceding, we can generalize the definition of the tangent line 
to a curve by introducing its osculating planes. To do this, suppose first that C c ~n 

is a smooth curve, given parametrically as the image of a vector-valued function 

y: t H [v(t)] = [vo(t), ... , vn(t)] E ~n 

(if C is singular, we can still by Theorem 17.23 (proved in Lecture 20 for curves) 
view C as the image of a smooth curve under a generically one-to-one map, and so 
proceed). As we have seen, the Gauss map <§ on C may be described by 

<§: t H [v(t) /\ v'(t)], 

which cannot vanish identically. More generally, if C is irreducible and non­
degenerate, we see that the multivector v(t) /\ ... /\ V(k)(t) cannot vanish identically 
for any k < n: if it did, we could choose k to be the smallest such integer and take 
the derivative with respect to t to obtain 

d 
0== -(v(t) /\ ... /\ V(k)(t)) 

dt 

= v(t) /\ ... /\ V(k-l)(t) /\ V(k+l)(t), 

i.e., at all times t the (k + 1)st derivative of v will be linearly dependent on v(t) and 
the first k derivatives v'(t), ... , V(kl(t). Differentiating again, we see that the same is 
true of V(k+2) and so on, so that the entire curve C must lie in the k-plane spanned 
by v(t), ... , V(kl(t). 

Since the vectors v(t), ... , V(k)(t) are not everywhere dependent, we can for each 
k = 1, ... , n define a rational map 

<§(k): C ---4 G(k, n) 

: p H [v(t) /\ ... /\ V(k)(t)]. 

As in the proof of Theorem 17.2, this will extend to a regular map on all of C: 
writing 

for some merom orphic functions wo, ... , WN, we can multiply through by a power 
of t to make all Wi hoi om orphic, not all wi(t) = O. For k = 1, this is of course the 
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Gauss map; in general, we call <§(k) the kth associated map, its image the kth 
associated curve, and its image point A = <§(k)(p) at pEe the osculating k-plane to 
Cat p. 

Exercise 17.6. Show that the kth associated map as defined earlier is independent 
of the parametrization of C chosen. 

Exercise 17.7. There is another way to characterize the osculating k-plane to a curve 
at a point. We say that a hyperplane He pn has contact of order m with a smooth 
curve C c pn at a point p if the restriction to C of a linear form vanishing on H 
vanishes to order m at p (again, we can still make sense of this if C is singular by 
parametrizing it by a smooth curve). More generally, we define the order of contact 
of a linear space A c pn with C at P to be the minimum order of contact with 
C at p of any hyperplane containing A. In these terms, show that the osculating 
k-plane to Cat p is simply the (unique) k-plane having maximal order of contact 
with Cat p. (*) 

In general, we say a point p on a curve C C pn is an inj7ectionary point iffor some 
k < n the osculating k-plane to C at p has contact of order strictly greater than 
k + 1 (equivalently, if the osculating hyperplane has contact of order greater than 
n). This is equivalent to saying that for some parametrization of C by a vector 
valued function v(t) with p = [v(O)], the wedge product v(O) /\ v'(O) /\ ... /\ v(n)(o) = 
O. By the analysis above, a curve cah have at most finitely many inflectionary 
points; on the other hand, it is a fact (which we will not prove here) that the only 
curve with no inflectionary points is the rational normal curve. 

By analogy with the preceding description of the tangent lines to the Gauss 
image <§(C) c G(1, n) of a curve C C pn, we can say what the tangent line to the 
kth associated curve of C is at a general point A = <§(k)(p): it is the homomorphism 
of A into K n+1 lA, unique up to scalars, with kernel containing <§(k-l)(p) and image 
contained in <§(k+1)(p). We likewise have a converse, analogous to Theorem 17.2. 

Theorem 17.8. Let <§: X ~ G(k, n) be any map of a smooth curve X to a Grass­
mannian and suppose that the tangent vectors cp(t) to <§(X) have rank at most 1 for 
all t. Then either <§ is the kth associated map of some curve C C pn or all the planes 
<§(t) pass through a fixed point p E pn. 

Exercise 17.9. Prove this. 

Exercise 17.10. Just as we can form the tangential surface of a curve, we can more 
generally define the osculating (k + 1)-fold T(k)(C) of a smooth curve C c pn to be 
the union of the osculating k-planes to C. Say when a point of T(k)(C) is smooth, 
and describe its tangent space at such a point. (*) 

Example 17.11. The Second Fundamental Form 

While we will not be able to go into it as deeply as in the case of curves, we will 
consider here the differential of the Gauss map on a smooth variety X c pn of 
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general dimension k. Such a Gauss map q) induces a differential map on tangent 
spaces: for any p E X with tangent space lrp(X) c [pln, we have 

(dq))p: J;,(X) ~ Hom(lr pX, K n +1 /lr pX). 

The first thing to observe is that, just as in the curve case, every homomorphism 
({J: lr pX ~ K n+1 /lr pX in the image of (dq))p has p in its kernel. (dq))p thus induces a 
map 

(dq))p: J;,(X) ~ Hom(lrpX/p, K n +1 /lrpX), 

and using the identifications of the tangent space 

J;,(X) = Hom(p, lrpX/p) 

and normal space 

Np(X) = J;,([pln)/J;,(X) = Hom(p, K n+1 /lrp(X)), 

we see that this is equivalent to a map 

Equivalently, we can view this as a map 

In these terms, the basic fact about (dq))p is that it is symmetric in its two arguments; 
i.e., it factors through the symmetric square of J;,(X) to give a map 

IIp: Sym1 (J;,(X)) ~ Np(X), 

or, dualizing, a map 

II;: Np(X)* ~ Sym2{7;,*(X». 

This map is called the second fundamental form. It is, unlike the first fundamental 
form of a submanifold of [pln, invariant under the action of PGLn+1 K. For a further 
discussion, see [GHl]. 

Exercise 17.12. Verify that the map (dq))p defined earlier is symmetric. (Use a 
parametrization of X by a vector-valued function v = (vo, .... , vn ) of k variables 
Zl,···,Zk·) 

Exercise 17.13. Now let Xc [pln be a smooth k-dimensional variety, TX its tangen­
tial variety, and q E TX a point lying on a unique tangent plane lrp(X). Under what 
circumstances is TX smooth at q, and what is its tangent plane? 

Example 17.14. The Locus of Tangent Lines to a Variety 

Let Xc [pln be a smooth variety once more and let .9";. (X) c G(I, n) be the variety 
of tangent lines to X, as introduced in Example 15.7. As one application of the 
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construction of the second fundamental form, we will give a condition for the 
smoothness of the variety f71 (X) at a point L. 

To do this, we first set up the incidence correspondence ~ c 1G(1, n) x X con­
sisting of pairs (L, p) such ·that pEL c lfp(X) and ask for the tangent space to ~ at 
(L, p). The answer is as follows: if (cp, v) is the tangent vector to an arc {(L(t), p(t))} 
in ~ at (L(O), p(O)) = (L, p), with cp: L -+ K n+1 /L and v E 7;,(X), then 

(i) the condition that p(t) E L(t) for all t says, as in Example 16.6, that cplp = 
v mod L (where v E 7;,(X) c 7;,([p>n) = Hom(p, K n+1 /p)); and 

(ii) the condition that L(t) c lfp(t)(X) for all t says that the homomorphism 

(d~Mv): lfp(X) -+ K n+1/lfp(X), 

when restricted to L, coincides with the homomorphism cp modulo lfp(X) (of course, 
since both are zero on p, this need only be checked for one other point q =f. pEL). 

Now (i) represents n - 1 linear conditions on the pair (cp, v), while (ii) gives 
n - k, so that together they describe a subspace of codimension 2n - k - 1 in 
TdlG(l, n)) x 7;,(X), i.e., a space of dimension 2k - 1. Since we have seen that ~ is 
of pure dimension 2k - 1, it follows that for any L, ~ is smooth at (L, p) with 
tangent space specified by (i) and (ii). 

Finally, we consider the projection of ~ to 1G(1, n) and ask when this is injective 
on tangent spaces. The answer is clear: if (v, 0) E 1(L.P)(~)' then by condition (i) we 
must have vEL, i.e., v belongs to the one-dimensional subspace of 7;,(X) corre­
sponding to L c lfp(X), and by (ii) we must have (d~Mv)(L) == 0, or in other words 
IIp(v, v) = 0 where Ip is the second fundamental form of X at p. In sum, then, the 
point L E f71 (X) will be a smooth point if L is tangent to X at a unique point p and 
IIp(v, v) =f. 0, where v E 7;,(X) is any nonzero vector in the direction of L. 

Exercise 17.15. A line L tangent to a variety X at a smooth point p and such that 
IIp(v, v) = 0, where v E 7;,(X) is in the direction of L, is called a flex line of X. 

(a) Estimate the dimension of the variety of flex lines to a variety X c [p>n of 
dimension k. 

(b) Show that L is a flex line of X if and only if the polynomials FE I(X) have 
a common triple zero on L. 

Bertini's Theorem 

In closing this lecture, we should mention a few topics of interest in connection 
with the notion of smoothness and singularity. The first is a very fundamental and 
classical result. 

Theorem 17.16. Bertini's Theorem. If X is any quasi-projective variety, f: X -+ [p>n 

a regular map, H c [p>n a general hyperplane, and Y = f-l(H), then 
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This theorem is usually expressed by saying that "the general member of a linear 
system on X is smooth outside the singular locus of X and the base locus of the 
linear system," meaning that if fo, ... , fn are functions on X, then for a general 
choice of a = [ao, ... , anJ, the locus L aJ; = ° is smooth away from Xsing and the 
locus fo = ... = fn = 0. 

On important warning: Bertini's theorem is false in general for varieties in 
characteristic p. For example, in characteristic 2 every tangent line to the hyper­
surface Xc [p>4 given by UV + wy + Z2 passes through the point p = 
[0,0,0,0, 1J, and conversely every hyperplane through p is tangent to X some­
where, contradicting the statement of Bertini's theorem as applied to the projection 
map f = ltp from p. Given that it's a theorem valid in characteristic zero only, it's 
not surprising that the proof invokes the complex numbers in an essential way, in 
the form of Sard's theorem. 

PROOF. Consider the incidence correspondence 

r = {(p, H):f(p) E H} c X x [p>n*. 

If X is k-dimensional, r will have dimension k + n - 1. Now, let p E X be any 
smooth point and H c [p>n a hyperplane containing f(p); we can choose coordinates 
so that f{p) = [0, ... ,0, 1J and H is the hyperplane Zo = 0. Then in a neighbor­
hood U of p E X we can write the map f by 

f(q) = [fo(q), ... ,fn-l (q), 1J; 

if we let Ha be the hyperplane 

a1 , ••• , an will give Euclidean coordinates on [p>n* in a neighborhood V of H. 
In terms of these coordinates, r will be given in U x V by the single equation 

Since the partial derivative of this with respect to an is nonzero, we conclude 
that 

in particular, the singular locus of r is exactly the inverse image ltl1(Xsing) of 
the singular locus of X. 

Now look at the restricted map ft 2 : rsm -+ [p>n*. Bertini's theorem follows from 
applying Proposition 14.4 to ft 2 ; or, more directly, by Exercise 14.6 the locus 
U c [p>n* of hyperplanes H such that the fiber (ftd- 1(H) = Xsm n H is smooth is 
either contained in a proper subvariety of [p>n* or contains an open subset of [p>n*, 

and we can simply apply Sard's theorem to ft2 deduce that the former must be the 
case. [] 
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Note that it is not always the case 
that Xsing n H c (X n H)sing; for exam­
ple, consider the cone X c A 3 given by 
(xy - Z2) and the plane H given by (x). 
(This is one more argument for the 
language of schemes, where this inclu­
sion does hold in general.) 

Exercise 17.17. Use Bertini's theorem to 
show that (a) the general hypersurface of 
degree d in iP'n is smooth, and more 
generally that (b) for k < n, if Fl , ... , Fk 
are general homogeneous polynomials 
of degrees dl , ••• , dk in n + 1 variables, 
the corresponding hypersurfaces in iP'n intersect transversely in a smooth, (n - k)­
dimensional variety X c iP'n. 

Note that by part (b) of Exercise 17.17 the polynomials Fl , ... , Fk generate the 
ideal of X locally, i.e., the ideal (Fl , •.• , Fk ) c K[Zo, .. " ZnJ is radical. It is also the 
case that it is saturated; this follows from the fact that (Fl' ... , Fk ) has no associated 
primes (see [EJ). We conclude that they in fact generate the homogeneous ideal of 
X; we have thus the following. 

Proposition 17.18. For k < n, if Yu .. " ~ c iP'n are hypersurfaces intersecting trans­
versely, then their intersection X = Y1 n ... n 1;. is a complete intersection in /P'n; in 
particular, the intersection of k general hypersurfaces in iP'n is a complete intersection. 

Exercise 17.19. Let X c iP'n be a k-dimensional variety, let L l , ... , Lk be general 
linear forms on iP'n, and let A ~ iP'n-k c /P'n the linear subspace they define. Show 
that the ideal of X, together with the forms L;, generate the ideal of the intersection 
Y = X n A locally, thereby completing the proof of Proposition 13.2. (Note: the 
fact that the general (n - k)-plane A is transverse to X follows immediately from 
Bertini's theorem. It may also be seen in arbitrary characteristic by using the 
irreducibility of the universal (n - k)-plane section 

g(k)(X) = {(A, p): pEA} c G(n - k, n) x X 

(Exercise 11.44) and arguing that the locus of pairs (A, p) such that A n lr pX ~ {p} 
is a proper subvariety of g(k) (X).) 

One warning: Bertini's theorem tells us, for example, that if X c iP'n is projective 
and smooth, and V c K [Zo, ... , ZnJd is any vector space of homogeneous poly­
nomials of degree d, then the zero locus on X of the general F E V is smooth outside 
the common zero locus of all F E V. It does not say, however, that this singular 
locus is constant. For example, we have the following. 

Exercise 17.20. Let A c /P'4 be a 2-plane. Show that the general hypersurface 
Y c iP'4 of degree m > 1 containing A has singular locus a finite (nonempty) set of 
points in A, and that these points all vary with Y. 
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This exercise suggests (correctly) that the following one is nontrivial. 

Exercise 17.21. Let C c 1P3 be a smooth curve. Show that for all sufficiently large 
m there exists a smooth surface S c 1P3 of degree m containing C. (*) 

In fact, the techniques of Exercise 17.21 allow us to prove a stronger statement: 
if C is any curve such that for all points p E C the Zariski tangent space I;,C has 
dimension at most 2, then C lies on a smooth surface. It is not so clear whether any 
k-dimensional variety X with dim(I;,X) ~ k + 1 Vp E X lies on a smooth (k + 1)­
dimensional variety (it is certainly not the case, given examples like that of Exercise 
17.20, that any such k-dimensional Xc 1Pk+2 lies on a smooth hypersurface). 

There is a nice generalization of Bertini's theorem, due to Kleiman ([K1]). It is 
as follows. 

Theorem 17.22. Let X be any variety on which an algebraic group G acts transitively, 
Y c X any smooth subvariety, and f: Z --. X any map. For any g E G let 
l¥g = (g of)-l(y) c Z-that is, the inverse image of the translate g(Y). Then for 
general g E G, 

In particular, if f is an inclusion, this says that a general translate of one smooth 
subvariety of a homogeneous space meets any other given smooth subvariety 
transversely. 

Blow-ups, Nash Blow-ups, and 
the Resolution of Singularities 

There are numerous respects in which it is easier to deal with smooth varieties 
than with singular ones; to mention just the most important, in analyzing smooth 
varieties in characteristic zero we can use the tools and techniques of complex 
manifold theory. 

Clearly we cannot restrict our attention exclusively to smooth varieties, since 
singular ones arise all the time in the course of the standard constructions of 
algebraic geometry. To the extent that we are interested in properties of varieties 
that are invariant under birational isomorphism, however, this does raise a funda­
mentally important question: given an arbitrary variety X, does there exist a 
smooth variety Y birational to it? In practice, this is equivalent to the statement of 
the following theorem. 

Theorem 17.23. Resolution of Singularities. Let X be any variety. Then there exists 
a smooth variety Y and a regular birational map n: Y --. X. 

Such a map n: Y --. X is called a resolution of singularities of X. This theorem 
was proved by Heisuke Hironaka [Hi] for varieties X in characteristic zero; in 
characteristic p it is known for curves and surfaces but is unknown in general. We 
will give a proof of this theorem for curves later. 
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In fact, the proof says something more specific than what was stated earlier: it 
says that the singularities of any variety may be resolved by a sequence of blow­
ups-that is, given any X there is a sequence of varieties Xi' regular maps 

Y~X -+X -+···.':;X ~X=X n n-l 2 1 

and subvarieties Zi C Xi for i = 1, ... , n such that the map ni: Xi+l -+ Xi is the 
blow-up of Xi at Zi' 

To see why it is reasonable to expect that blowing up might resolve singularities, 
consider the simplest of all singular varieties, the nodal cubic C C !p2 given by 
y 2Z = X 3 + X 2Z (or, in Euclidean coordinates x = X/Z, y = Y/Z on A2 C !p2, by 
the equation y2 = x2(x + 1)). The singularity of this curve at the point p = [0,0, 1] 
is called a node; in case our ground field K = IC it may be characterized by saying 
that a neighborhood of p in C in the analytic topology consists of the union of two 
smooth arcs meeting with distinct tangents at p. 

What happens if we blow up the curve C at the point p? To see this, we 
can first of all just write everything out in coordinates; the blow-up is the graph of 
the rational map 

n: C -+ !p 1 

given by 

[X, Y, Z] 1-+ [U, V] = [X, Y], 

or, in terms of Euclidean coordinates (x, y) on C = en A 2 and v = V/U on 
Al c !p\ by 

(x, y) 1-+ y/x. 

In the open subset of A 2 X A 1 where 
x i= 0, then, the graph is defined by the 
equations y2 = x2(x + 1) and v = y/x, 
or, equivalently, v2 = x + 1 and vx = y. 
The portion f of the graph lying in 
A 2 X Al thus has local equation 

r = {(x, y, u): v2 - (x + 1) 

= vx - y = O}; 

in particular, we see that there are two 
points of r -(0,0,1) and (0,0, -1)­
lying over the point pEe, and that 
these are both smooth points of r. 

It is perhaps easiest to visualize this 
blow-up by looking at the blow-up 
n: p2 -+!p2 of 1P'2 at p. Recall from 
Lecture 7 the basic picture of p2, which 
is the disjoint union of lines LV' with Lv 
mapping to the line through p in 1P'2 
with slope v. (We may thus think of p2 
as the lines in !p2 through p made 
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/ 

./ 

""'" "" :-....., 
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disjoint, and lying over the corresponding lines in ~2 at "heights" corresponding to 
their slope.) Each point of C - {p} is thus "lifted" to a height equal to the ratio 
v = y/x of its coordinates; in particular, as we approach the point p the limiting 
value ofthis slope will be either 1 or -1 depending on which branch of C we are on. 

A similar picture applies when we 
look at slightly more complicated singu­
larities. For example, if a plane curve C 
has a tacnode-that is, a singular point 
p whose analytic neighborhood consists 
of two smooth arcs simply tangent to 
one another, such as the origin on the 
curve y2 = X4 - x 5-then the blow-up 
of C at p will not be smooth, but will 
have an ordinary node, so that a further 
blow-up will resolve its singularities. 
Likewise, if C has a cusp (like the curve 
y2 = x 3 encountered in Lecture 1) the 
blow-up will be smooth. 

There is one problem with resolving 
singularities by blowing up. If the singu­
larities of a variety X are sufficiently 
complicated-for example, if the singu­
lar locus is positive-dimensional, as 
indeed it may be after blowing up even 
a variety with isolated singularities-it 
is not clear what subvarieties of X we 
should blow up in what order to achieve 
the desired resolution. There is an 
alternate approach that is more canoni­
cal, though it is not known to work in 
every case; this is called the Nash blow­
up of X. 
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Very simply, the Nash blow-up of a k-dimensional variety X c ~n is the graph 
r of the Gauss map '!Jx: X ---+ G(k, n). (In particular, it does not depend on any 
choice of subvariety of X.) Of course, the map '!Jx is regular on the smooth locus of 
X, so that the projection n: r -+ X will 
be an isomorphism over X sm • At the 
same time, we may think of our inability 
to extend this map to a regular 
map on all of X as a measure of the 
singularity of X. For example, if X = C 
is the nodal cubic given earlier, the map 
'!Jc will clearly not be well-defined at p; 
both the lines Land M will be limits of 
tangent lines to p, so that there will be 
two points (p, L) and (p, M) E r lying 
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over p E C. Even in cases where there is apparently a unique limiting position of 
the tangent plane, the Nash blow-up effects a change. For example, if X is the 
cuspidal curve above it is less obvious (but straightforward to check) that r is 
smooth; while if X has a tacnode, again it may be checked that r will have an 
ordinary node. It may thus be hoped that the singularities of an arbitrary variety 
could be resolved by a succession of Nash blow-ups; but while this is known to be 
true for curves, it is not known in general. 

Sub additivity of Codimension of Intersections 

We should state here a basic theorem on the dimension of intersections of varieties. 
This should probably have been stated in Lecture 11, but because of a necessary 
hypothesis of smoothness had to wait until now. It is as follows. 

Theorem 17.24. Let Y be a subvariety of a smooth variety X, f: Z --+ X a regular map. 
If Y and Z have pure dimension and Y and f(Z) are not disjoint, then 

dim(f-1(y)) ~ dim(Z) + dim(Y) - dim (X); 

or, in other words, the codimension of the inverse image is at most the codimension of 
Y in X (in fact, this is true of every component of f-1(y)). In particular, iff is an 
inclusion, so that Y and Z are both subvarieties of X, then the codimension of their 
intersection (if nonempty) is at most the sum of their codimensions. 

PROOF. Consider the map f x i: Z x Y --+ X x X, where i: Y --+ X is the inclusion. 
The inverse image f-1(y) is just the inverse image (f x 0-1 (Llx ), where Llx c 
X x X is the diagonal. Now, since X is smooth, Llx is a local complete intersection 
on X x X, that is, it is locally the zero locus of dim (X) regular functions. By 
Exercise 11.6, the dimension estimate on f-1(y) follows. 0 

One remark to make here is that the 
statement is false if we allow X 
arbitrary; for example, take Q c 1P'3 
a smooth quadric surface, X c 1P'4 the 
cone pQ over Q with vertex p, L1 and L2 
lines of the same family on Q (so that in 
particular L1 (I L2 = 0), and Ai = p,Li 

the plane spanned by p and L i • Then X 
is of course three-dimensional and the 
Ai c X a pair of two-dimensional 
subvarieties intersecting only at the 

Q 

point p E X. A second remark is that the theorem is true locally; if p E f-1(y) is any 
point, then the local dimension dimp(f-1(y)) ~ dim(Z) + dim(Y) - dim (X). This 
follows from the theorem as stated simply by replacing Z by a neighborhood of p 
inZ. 
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The last remark is that we can combine this theorem with dimension calcula­
tions made in Lecture 11 to derive more general dimension estimates. For example, 
we have the following. 

Proposition 17.25. Let X be any variety, (/;) an n x m matrix of regular functions 
on X, and Z c X the locus defined by 

Z = {p E X: rank(/;,ip)) ::; k}. 

Then either Z is empty or 

dim(Z) 2 dim(X) - (m - k)(n - k). 

PROOF. This is straightforward: the functions define a map f from X to the vector 
space M of matrices, and Z is just the inverse image of the subvariety Mk c M of 
matrices of rank at most k; combining Theorem 17.24 and Example 12.1 we arrive 
at the statement. 0 

Note that we could also apply this to a matrix of homogeneous polynomials On 
a projective variety X c 1P1, just applying the result as stated locally. 

Given this statement, we may introduce a notion analogous to the notion of 
complete intersections: if Z c IPI is a subvariety whose ideal is generated by the 
(k + 1) x (k + 1) minors of an m x n matrix of homogeneous polynomials Fi,j' we 
will say that Z is a proper determinantal variety if 

dim(Z) = I - (m - k)(n - k). 

Such proper determinantal varieties are like complete intersections in the sense that 
their numerical invariants (e.g., their Hilbert polynomials) may be completely 
described in terms of the degrees of the polynomials Fi,j' (In fact, complete inter­
sections may be viewed as special cases of proper determinantal varieties; by 
definition, a complete intersection X c IPn of codimension I is the proper deter­
min an tal variety associated to a 1 x I matrix). One word of warning: in some texts, 
the term "determinantal variety" is used to mean what we here call "proper deter­
minantal variety." 



LECTURE 18 

Degree 

Our next fundamental notion, that of the degree of a projective variety X c lPn, may 
be defined in ways for the most part exactly analogous to the notion of dimension. 
As in the case of the various definitions of dimension, the fact that these definitions 
are equivalent (or, in some cases, that they are well-defined at all) will not be 
established until we have introduced them all. 

To start with, we defined dimension by saying that the dimension of [pn was n. 
We then said that a projective variety Xc [pn admits a finite surjective map to some 
projective space [pk, which may be given as the projection nA from a general linear 
subspace A ~ [pn-k-1 disjoint from X, and we defined the dimension of X to be 
that k. 

To define degree, we may again start with a case where we have an a priori 
notion of what degree should be: if X c [pH1 is a hypersurface, given as the 
zero locus of an irreducible polynomial F(Z), then the degree of X is the degree of 
the polynomial F. Now start with an arbitrary irreducible X c [pn. As we have seen, 
unless X is already a hypersurface, the projection map np: X --+ [pn-1 from a general 
point P E [pn is birational onto its image; in fact, if we choose q E X any point, it's 
enough for p to lie outside the cone q, X. Thus, projecting successively from general 
points, we see that the projection map nr: X --+ [pH1 from a general (n - k - 2)­
plane is birational onto its image X, which is a hypersurface in [pH1; and we may 
take the degree of X to be the degree of this hypersurface. Of course, to define the 
degree of X to be the degree of the "general" projection X is illegal unless we know 
that in fact the function d(r) = deg(nr(X)) is constant on an open subset of the 
Grassmannian G(n - k - 2, n); this will be established in Exercise 18.2. 

Another way to express this is in terms of the projection nA : X --+ [pk. This 
is just the composition of the projection nr: X --+ [pH1 with the projection map 
np: X --+ [pk from a general point p E [pH1, so that a general fiber of this map consists 
of the intersection of X with a general line. But if X is the zero locus of a homoge-
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neous polynomial of degree d in iP'k+! a general line in iP'k+! will meet it in d points; 
so we can also take the degree of X to be the degree of the map nA as defined in 
Lecture 7, that is, the number of points in a general fiber. Equivalently, another 
characterization of the dimension of X is that number k such that the general 
(n - k)-plane 0 c iP'n meets X in a finite collection of points; since for 0 ~ A the 
intersection 0 (\ X is the fiber of the map nA: X -+ iP'k over the point 0 (\ iP'k, we see 
that the degree can further be defined to be the number of points of intersection of 
X with a general (n - k)-plane 0 c iP'n. In sum, then, we have the following. 

Definition 18.1. Let X c iP'n be an irreducible k-dimensional variety. If r, A, and 0 
are a general (n - k - 2)-plane, (n - k - I)-plane, and (n - k)-plane, respectively, 
then the degree of X, denoted deg(X), is either 

(i) the degree of the hypersurface X = nr(X) c iP'k+!; 
(ii) the degree of the finite surjective map nA: X -+ iP'k; or 

(iii) the number of points of intersection of 0 with X. 

Exercise 18.2. Assuming char(K) = 0, use Exercises 7.16 and 11.44 to show that 
part (iii) of Definition 18.1 is well-defined (part (iii) amounts to saying that the 
degree of X is the degree of the projection O(k)(X) -+ G(n - k, n), where O(k)(X) c 

G(n - k, n) x X is the universal k-fold hyperplane section of X), and use this to 
deduce that parts (i) and (ii) are also well-defined. 

In fact, following Bezout's theorem we will be able to say exactly which 
(n - k - 2)-planes, (n - k - I)-planes, and (n - k)-planes are general in the sense 
of giving the correct degree of X. 

Of course, we can restate part (ii) of Definition 18.1 in terms of the function 
field K(X) (though, since degree is, unlike dimension, very much dependent on 
choice of embedding, it cannot be in terms of K(X) alone). Recall that the projec­
tion nA induced an inclusion of function fields 

K(iP'k) = K(Zb"" zd ~ K(X), 

expressing K(X) as an algebraic extension of K(z!, ... , zn); the degree of X will then 
be the degree of this field extension. 

To complete the analogy between the definitions of dimension and degree, there 
is a definition of degree in terms of the Hilbert polynomial. We have already laid 
the groundwork for this: as we saw in Lecture 13, if hx is the Hilbert function of a 
variety X c iP'n of dimension k, then the kth difference function-that is, the 
function h(k) defined inductively by setting h(O) = hx and 

h(l+1)(m) = h(l)(m) - h(l)(m - 1) 

is for large m the Hilbert function hXno. of the intersection X (\ 0 of X with a 
general (n - k)-plane 0 c iP'n. (Recall that this is true for any plane 0 such that the 
sum (1(0), I (X)) of the ideals of X and 0 generates the ideal I(X (\ 0) of the 
intersection locally.) The fact that the Hilbert polynomial of X (\ 0 is a constant 
led us to the conclusion that the Hilbert polynomial px of X was a polynomial of 
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degree k. Similarly, the fact that the constant Px nn in question is equal to the 
number d of points of X n 0 tells us now that the leading term of px(m) is d· mkjk!; 
i.e., the degree d of X is k! times the leading coefficient of the Hilbert polynomial Px' 

Note that this description of the degree allows us to deduce the statement of 
Exercise 18.2 in arbitrary characteristic, inasmuch as by Exercise 17.19 the general 
(n - k)-plane 0 has the property that the saturation of (/(0), J(X)) is J(X nO). 

We should mention a couple of other interpretations of the degree of a variety 
X c pft that are special to the case of complex varieties. To begin with, suppose 
that X is smooth, that is, that it is a complex submanifold of pft. Then, being a 
compact, orientable reaI2k-manifold, X carries a fundamental class [X], which we 
may view as being a class in the homology HZk(Pft, Z). Now, the homology of 
complex projective space in even dimensions is just Z, with generator [<1>] the class 
of a linear subspace of pft; so we can write 

[X] = d· [cD] 

where cD is a k-plane in pft. The coefficient d is then the degree of X. 

The same definition in fact makes sense when X is not a complex submanifold 
of pft, though it's less easy to see this. What will be the case in general is that X 
admits a triangulation in which the nonmanifold points of X form a subcomplex 
([Hil]). By Exercise 14.3 the nonmanifold points of X form a proper subvariety of 
X, so that they will contain only simplices of dimension 2k - 2 and less. It is thus 
still true that X carries a fundamental class [X] E HZk(X, Z) ~ HZk(Pft, Z) (and, 
though it is not a consequence of this, that [X] is independent of the triangulation). 
We may accordingly define the degree of X the same way as before. 

That a singular projective variety has a fundamental class also follows immedi­
ately from the resolution of singularities (Theorem 17.23), but to invoke this would 
truly be overkill. As a simpler alternative to actually triangulating X, to define 
[X] E HZk(X, IC) it is enough to show that X behaves like a manifold as far as inte­
gration is concerned, i.e., that the integral over X of any exact 2k-form on pft is zero; 
we then get a class '1x in the deRham cohomology group HZk(Pft)* = HZk(Pft, IC). 
That the homological definition of degree agrees with the earlier ones follows from 
the fact that the maps 

H*(Pft, Z) +- H*(Pft - {p}, Z) ~ H*(Pft-\ Z) 

induced by the inclusion pft - {p} C pft and the projection 7rp: pft _ {p} ~ pft-l 
from a point are isomorphisms in degree < 2n. 

Yet another interpretation of degree is truly peculiar. It is a special feature of a 
Kahler metric on a complex manifold that the area, or volume, of a complex 
submanifold X is given as the integral over X of the appropriate power of the 
associated (1, I)-form of the metric. In the case of pft, the associated (1, I)-form of 
the standard Fubini-Study metric (that is, the Hermitian metric on complex pro­
jective space invariant under the unitary group Un+1) represents a generator of 
HZ(Pft, IC) in DeRham cohomology. Its powers correspondingly represent the 



Bezout's Theorem 227 

generators of H2k(lPn, IC); so that if X is a k-dimensional subvariety of degree d in 
IPn we have 

for A ~ IPk C IPn a k-plane. We can multiply the metric by a scalar to make the 
volume of a k-plane 1, so that the degree of a subvariety X c IPn is simply its area. 
In fact, complex subvarieties of IP n have minimal area among cycles in their homo­
logy class. 

Finally, we define the degree of a reducible variety of dimension k to be, in 
general, the sum of the degrees of its k-dimensional irreducible components. 

Bezout's Theorem 

The basic fact about degree that we will want to know in order to compute 
examples is a simple one. First, to express Bezout's theorem in its simplest form, we 
need to introduce one bit of terminology. Suppose that X and Y c IPn are two 
subvarieties and that their intersection has irreducible components Zi. We say that 
X and Y intersect generically transversely if, for each i, X and Y intersect trans­
versely at a general point Pi E Zi' i.e., are smooth at Pi with tangent spaces spanning 
lr p,(1P n). Of course, if dim (X) + dim( Y) = n, saying that X and Y intersect generi­
cally transversely is the same as saying X and Y intersect transversely. We then 
have the following. 

Theorem 18.3. Let X and Y c IPn be subvarieties of pure dimensions k and I with 
k + I ~ n, and suppose they intersect generically transversely. Then 

deg(X n Y) = deg(X)· deg(Y). 

In particular, if k + 1= n, this says that X n Y will consist of deg(X)· deg(Y) points. 

We will give a proof of this theorem immediately following Example 18.17. 
We will be concerned in the meantime just with refinements and examples of these 
notions, so that the reader may skip directly to Example 18.17 and the proof. 

We can strengthen the statement of Bezout substantially. Briefly, we say that a 
pair of pure-dimensional varieties X and Y c IPn intersect properly if their inter­
section has the expected dimension, i.e., 

dim (X n Y) = dim (X) + dim(Y) - n. 

Now, to any pair of varieties X, Y c IP n intersecting properly, and any irreducible 
variety Z c IPn of dimension dim(X) + dim(Y) - n, we can associate a nonnegative 
integer mz(X, Y) called the intersection multiplicity of X and Y along Z, with the 
following properties: 

(i) mz(X, y) ~ 1 if Z c X n Y (for formal reasons we set mz(X, Y) = 0 otherwise); 
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(ii) mz(X, Y) = 1 if and only if X and Y intersect transversely at a general point 
PEZ; 

(iii) mz(X, Y) is additive, i.e., mz(X u X', Y) = mz(X, Y) + mz(X', Y) for any X and 
X' as long as all three are defined and X and X' have no common components. 

In terms of this multiplicity, we have the following. 

Theorem 18.4. Let X and Y c pn be subvarieties of pure dimension, intersecting 
properly. Then 

deg(X)' deg(Y) = L mz(X, y). deg(Z) 

where the sum is over all irreducible subvarieties Z of the appropriate dimension (in 
effect, over all irreducible components Z of X n Y). 

In case dim (X) + dim(Y) = n and X and Yare local complete intersections 
intersecting properly, mz(X, Y) has a straightforward description: for any isolated 
point p of intersection of X and Y it is the dimension (as vector space over K) of 
the quotient (!)pn,p/(Ix + Iy), where (!)pn,p is the local ring of pn at the point p and Ix 
and Iy are the ideals of X and Y. Slightly more generally, if X and Yare local 
complete intersections of any dimensions intersecting properly, mz(X, Y) may be 
defined by taking a normal slice; that is, choosing a general linear space r of 
codimension dim (X) + dim(Y) - n in pn intersecting Z transversely at a general 
point p E Z, and taking the intersection multiplicity of X and Y along Z to be 
mp(Xo, Yo), where Xo = X n r and Yo = Y n r. Eq~valently, we_can choose an 
affine open subset U c pn not missing Z, setting X = X (\ U, Y = Y (\ U, and 
Z = Z (\ U, and defining mz(X, Y) to be the rank of the A(Z)-module A(U)/(Ix + ly). 

To give a more explicit description of mz(X, Y) in general would take us too far 
afield at present. Even so, from just the rudimentary properties listed here we may 
deduce a number of corollaries of the refined Bezout theorem. For example, we 
have the following. 

Corollary 18.5. Let X and Y be subvarieties of pure dimension in pn intersecting 
properly. Then 

deg(X n Y) ~ deg(X)' deg(Y). 

Corollary 18.6. Let X and Y be subvarieties of pure dimension intersecting properly, 
and suppose that 

deg(X n Y) = deg(X)' deg(Y). 

Then X and Yare both smooth at a general point of any component of X (\ Y. In 
particular, if X and Y have complementary dimension, they must be smooth at all 
points of X (\ Y. 

Exercise 18.7. Let X c pn be any subvariety of degree 1. Show that X is a linear 
subspace of pn. 

As one immediate consequence of the Bezout theorem, we are able to prove a 
statement made much earlier: that every automorphism of projective space pn 
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is linear, that is, induced by an automorphism A E GLn+1K of Kn+l. The key 
ingredient supplied by Bezout is the observation that if Hand L c IPn are sub­
varieties of dimensions n - 1 and 1, respectively, meeting transversely at one point, 
then H must be a hyperplane and L a line. It follows that any automorphism of IPn 

carries hyperplanes into hyperplanes, and this is essentially all we need to know. 
We can write any such automorphism <p: IPn -+ IPn in terms of Euclidean coordi­
nates (z 1, ... , zn) and (Wl' ... , wn) on source and target as 

J;(Zl'···' zn) w· = ---,----c-
, gi(Zl,···,Zn) 

and then to say that a linear relation among the Wi implies a linear relation among 
the Zi amounts to saying that the degrees of all the;; and gi are at most 1, with all 
the gi scalar multiples of one another. D 

Note that in case K = C the fact that hyperplanes are carried into hyperplanes 
under any automorphism of IPn also follows directly from the topological character­
ization of hyperplanes as subvarieties whose fundamental classes are generators of 
H2(lPn, Z). 

Example 18.8. The Rational Normal Curve 

Consider first the rational normal curve C = vA1P1) C IPd, that is, the image of the 
map 

Vi [Xo, Xl]f-+[X~, X~-lXl' ... , xU 
The intersection of C with a general hyperplane (aoZo + ... + adZd = 0) is just the 
image of the zero locus of the general polynomial aoX~ + a1 X~-l X 1 + ... + adXt, 
which of course is d points; thus the degree of C is d. 

A numbet of the facts established directly in Part I become clear from this 
and Bezout's theorem. For example, the fact that the intersection of any two 
quadrics containing a twisted cubic curve C c 1P3 consists of the union of C 
and a line follows immediately; if two quadrics both contain a twisted cubic, 
they must intersect generically transversely, and so their intersection will have 
degree 4. We will point out other such applications as we go along. 

Note that Corollaries 18.5 and 18.6 immediately imply a sort of converse to this 
degree computation; we have the following. Note: we say that a variety X c IPn is 
nondegenerate if it does not lie in any hyperplane. 

Proposition 18.9. Let C c IPd be any irreducible nondegenerate curve. Then 
deg( C) ~ d, and if deg( C) = d then C is the rational normal curve. 

PROOF. To see the first part, suppose just that C is irreducible of degree strictly less 
than d and choose any d points Pl' ... , Pd E C. Any d points in IPd lie in a hyperplane 
H ~ IPd - 1 ; but then by Corollary 18.5 dim(H n C) = 1 and hence C c H. As for the 
second, if C is irreducible of degree d and lies in no hyperplane, observe first that 
by the preceding any d + 1 points of C must be linearly independent; and by 
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Corollary 18.6, C must be smooth. Now choose any points PI' "., Pd-I E C; they 
span a plane A ~ IJl>d-2 C IJl>d. For any hyperplane H containing A, then, the inter­
section H n C will consist of PI' ... , P d-I and one further point p(H) (or just PI' ... , 
Pd-l if H is tangent to C at one of the pJ In the other direction, for any point P E C, 
let H(p) be the hyperplane spanned by p and the points PI' .'" Pd-l (or the 
hyperplane spanned by PI' ... , Pd-l and the tangent line to C at Pi if P = pJ This 
gives an isomorphism between C and the line A* = {H: H;:) A} ~ 1Jl>1 C IJl>d*, and 
it follows from the description of rational curves in general given in Lecture 1 that 
C is a rational normal curve. 0 

We can extend the basic lower bound of Proposition 18.9 to varieties of higher 
dimension. The basic fact we need to do this is the following. 

Proposition 18.10. Let X c IJl>n be an irreducible nondegenerate variety of dimension 
k ~ 1, and let Y = X n H c H ~ IJl>n-l be a general hyperplane section of X. Then 
Y is nondegenerate in IJl>n-l, and if k ~ 2 then Y is irreducible as well. 

PROOF. To begin, the nondegeneracy statement is relatively elementary; we will 
prove it for any H intersecting X generically transversely. Suppose that Y is 
contained in a subspace A ~ IJl>n-2, and let {H.d be the family of hyperplanes in IJl>n 
containing A. Since X is not contained in any finite union of hyperplanes, it will 
intersect a general member H), of this pencil in at least one point P not lying on Y; 
the point P will lie on an irreducible component 2), of X n H), not contained in Y. 
By Bezout, then, we will have 

deg(X n H;.) ~ deg(Y) + deg(2;.) > deg(Y) = d, 

a contradiction. 
As for the irreducibility of X n H, this is more subtle; we will only sketch 

a proof here, and that over the complex numbers. For more details (and a much 
stronger theorem), see [FL]. 

To begin, just to make things easier to visualize, observe that it will suffice 
to prove the theorem in case X is a surface. Likewise, it is enough to prove it 
for a general hyperplane H containing a given (n - 3)-planeA; so we might as well 
look at the projection map f = TeA: X ~ 1Jl>2 and prove that the inverse image Te- 1 (L) 
of a general line L c 1Jl>2 is irreducible. 

Now consider the locus 2 of points P E X that are singular or such that the 
differential dfp is singular-i.e., such that Ker(dfp) oF O. This is a proper closed 
subset of X; let B = f(2) be its image in 1Jl>2. B will a priori be the union of a 
plane curve of some degree b and a finite collection of points (in fact, there will 
be no O-dimensional components of B, but we don't need to know this). Let 
U = 1Jl>2 - B be the complement of B and V = f- 1(U) c X the inverse image of U 
in X. 

Choose a general point q E U. Let {L;'}),E 1>1 be the pencil of lines in 1Jl>2 contain­
ing q and AI' "., Am the values of A such that LA fails to meet B transversely in b 
points. Consider the incidence correspondence 

~ = {(A, p): f(p) E LA} C 1Jl>1 x V; 
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we may recognize this as simply the blow-up of V at the points PI> ... , Pd lying 
over q. As a final grooming step, throwaway the points Ai E [p>1 and their inverse 
images in ~; that is, set 

w = [p>1 - {AI' ..• , Am} 

t = (nd- 1(W). 

After all this, the map n 1 : t -4 W is a topological fiber bundle, with each fiber 
(nd- 1 (A) a d-sheet covering space of the open set LA - (LA n B) c LA; the points Pi 
give sections of this bundle. Since X is irreducible, t will be connected; since a fiber 
bundle with connected total space that admits a section must have connected fibers, 
we conclude that (nd- 1 (A) is connected for all A E W But (nd- 1 (A) is an open dense 
subset of the curve f -1 (L A) c X, so this curve must be irreducible. 0 

Exercise 18.11. Give a proof of the nondegeneracy of the general hyperplane 
section of the variety X without invoking the notion of degree (or Bezout's theo­
rem), as follows. First, show that if the general hyperplane section of X spans a 
k-plane, we have a rational map 

<p: [p>n* ---4 G(k, n) 

defined by sending a general H E [p>n* to the span of H n X. Next, use the fact 
that the universal hyperplane section of X is irreducible to deduce that for any 
HE [p>n* and any point A E <p(H) (that is, any point in the image of the fiber of the 
graph r", over H), the hyperplane section H n X lies on the k-plane A. It follows 
that if the general hyperplane section of X is degenerate, then all are-but any n 
independent points of X will span a hyperplane H with X n H nondegenerate. 

Corollary 18.12. If X c [p>d is any irreducible nondegenerate variety of dimension k, 
then the degree of X is at least d - k + 1. 

PROOF. This is simply the amalgam of Propositions 18.9 and 18.10; by the latter, 
the intersection of X with a general plane of dimension d - k + 1 will be an 
irreducible nondegenerate curve in [p>d-k+1. 0 

We will give in Theorem 19.9 a complete list of varieties of this minimal degree. 

More Examples of Degrees 

Example 18.13. Veronese Varieties 

Consider now Veronese varieties in general, that is, the image X of the Veronese 
map Vd: [p>n -4 [p>N. Its degree is the number of points of intersection of the image with 
a general linear subspace of codimension n in [p>N, or equivalently with n general 
hyperplanes Hi c [p>N. But now the inverse image ViI (Hi) of a general hyperplane 
in [p>N is a general hypersurface Yi of degree d in [p>n; the intersection of n of 
these consists of dn points by Bezout's theorem (by Bertini, the Yi will intersect 
transversely). Thus the degree of the Veronese variety is dn• 
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Note that we can avoid the use of Bezout's theorem in this computation if we 
use the fact that every hypersurface of degree d in [P>" is the pullback v;;l(H;) 
of some hyperplane from [p>N. We let Yi c [P>" be the hypersurface consisting of the 
union of d general hyperplanes Ai,j C [P>", so that the intersection Y1 n ' .. n y" will 
consist of the d" points 

Pj = A 1,j(1) n ." n A",j(") 

where j ranges over all functions j: {1, .. " n} --+ {1, ... , d}. Of course, we have 
to verify in this case that the intersection of the Veronese variety X with the 
n hyperplanes Hi is transverse at each point vApJ 

Another way of arriving at this conclusion would be to use the character­
ization of degree in terms of topological cohomology. Explicitly, since the inverse 
image of a hyperplane in [p>N is a hypersurface of degree d in [P>", the pullback map 

vI: H2([P>N, Z) --+ H2([P>", Z) 

sends 

vI: (PN 1-+ d . ( p" 

where (P" is the generator of H2([P>", Z). It follows that 

vI: (( pN)" 1-+ d"' (( P")" 

and so we have 

deg(X) = «(pN)", [X]) 

= «(pH)", VdJiP'"J> 

= <vI((pN)", [[P>"]) 

= <d"' (( P")", [[P>"]) 

Yet another way to find the degree of the Veronese variety is via its Hilbert 
polynomial. Recall from Example 13.4 that the Hilbert polynomial of X = vA[P>") is 

px(m) = (m'dn + n) 
(dm + n)(dm + n -l)· ... ·(dm + 1) 

n! 

so that the degree of X is d". 

Exercise 18.14. Let Y c [P>" be a variety of dimension k and degree e, and Z = vAY) 
its image in [p>N under the Veronese map. Use each of the techniques in turn to 
compute the degree of Z. 
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Observe that the degree of the Veronese surface S = V2(1P2) C IPs is 4; in particu­
lar, it follows (using Propositions 18.9 and 18.10) that the general hyperplane 
section of S is a rational normal curve in 1P4 (this can also be seen directly). Note 
also, however, that this is the only case in which the general hyperplane section of 
a Veronese variety is again a Veronese variety. 

Example 18.15. Segre Varieties 

We consider next the degrees of the Segre varieties L m•n = O'(lPm X IPn) c IPN = 
IPmn+m+n. We can determine this by calculations analogous to three of the four given 
earlier (the one thing we cannot readily do is describe the intersection of L m•n with 
m + n general hyperplanes in IPN ). 

To begin with, we observe that among the hyperplane sections of L m•n is one 
consisting of the union of the pullback of a given hyperplane from each factor-if 
we think of the Segre variety as IPV x IPW c IP(V ® W), these correspond to the 
reducible elements I ® m E V* ® W*. We can thus let AI, ... , Am+n c IPm and r l , 

... , rm+n c IPn be general hyperplanes and Hi c IPN the hyperplane whose pullback 

O'-I(Hi ) = 7rll(AJ U 7r21(rJ 

Now, since the intersection of any m of the hyperplanes Ai will be a point and 
the intersection of any m + 1 of them empty, and similarly for the r i , we see that 
the intersection 

HI n'" n Hm+n n Lm.n = {O'(PI)} 

where I = {iI' ... , im } ranges over all subsets of order m in {I, ... , m + n}, 
J = UI' ... , jn} is the complement of I, and 

PI = (Ai, n ... n AiJ x (Ij, n ... n IjJ 
As before, we have to check that the intersection of L m•n with the hyperplanes 
Hi is transverse at each point; assuming this, we deduce that the degree of the 

. . (m + n) Segre varIety L m•n IS n . 

A second approach is co homological. If (I'N is the generator of H2(IPN, Z) as 
earlier, and if we denote by IX and 13 the pullbacks to IPm x IPn of the classes 
(I'~ and ( 1'" respectively, then the pullback map 

It follows that 

0'*: (I'NHIX + p. 

deg(Lm.n) = «( I'N)m+n, [Lm.n]) 

= «(I'Nr+n, O'*[lPm X IPn]) 

= <0'*(( I'N)m+n, [lPm x IPn]) 

= «IX + p)m+n, [lPm x IPn]). 
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Now, am+1 = n!(((pmr+1) = 0, and similarly for pn+l; while by Kunneth we have 
<am. pn, [lPm X IPnJ) = 1. We may thus evaluate the last expression to give 

(m + n) deg(I:m,n) = n . 

As a final approach, we can write down the Hilbert polynomial of I:m,n as 
in Exercise 13.6: since the homogeneous polynomials of degree 1 in IPN restrict 
to I:m,n to give all bihomogeneous polynomials of bidegree (1, I) on IPm x lPn, we 
have that the dimension of the Ith graded piece of the ring S(I:m,n) is 

(I + m)(1 + m - 1)· ... ·(1 + 1)(1 + n)· ... ·(1 + 1) 

m!n! 

1 = __ Im+n + .... 
m!n! 

We conclude that the degree of I:m,n is (m + n)! times the leading coefficient of this 

polynomial, or in other words (m : n). 
Note that in case n = 1 the Segre variety I:m,1 is a variety of degree m + 1 

in IP Zm +1, and in particular the degree of the Segre threefold I: z, I C IPS is 3. This 
tells us yet again that the general intersection of I: z, I with a three-plane 1P3 C IPs 
is a twisted cubic curve. In general, observe that the varieties I:m. I are varieties of 
minimal degree, in the sense of Corollary 18.12; we will see later that this is because 
they are special cases of rational normal scrolls. 

Example 18.16. Degrees of Cones and Projections 

We start with the simplest case. Let Xc IPn- 1 c IPn be a variety of dimension k and 
degree d, P E IPn any point not lying on lPn-I, and Y = pX the cone with vertex p 
over X. Then, inasmuch as the general hyperplane section of Y is projectively 
equivalent to X, we see that the degree of Y is equal to the degree d of X. 

Next, suppose that X c lPn, p ¢ X, and let X = np(X) c IPn-1 be the projection 
of X from p. Assume char(K) = O. Now, since hyperplanes in the tangent space IPn- 1 
correspond to hyperplanes in IPn through the point p, a general k-tuple of hyper­
planes Hi C IPn- 1 will come from a general k-tuple of hyperplanes Hi in IPn through 
p, which will by Bertini's theorem intersect X transversely; by Bezout they will 
intersect X in exactly d points p~. The intersection of X with the hyperplanes Hi 
will thus consist of the images Pi = np(Pi) E lPn-I. If we assume, then, that these are 
distinct-that is, that the general line joining p to a point of X meets X only once, 
or equivalently that the projection map is birational onto its image-it will follow 
that the degree of X will be equal to the degree d of X. 

How is this argument affected if p E X? If p is a smooth point of X, it's not 
hard to see how to amend it: it's immediate that a general k-tuple of hyperplanes Hi 
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through P will intersect X transversely at p. We can still apply Bertini to conclude 
that the hyperplanes Hi will intersect X transversely away from p. Still assuming 
that the general line pq joining p to another point q E X meets X only at p and q, 
we see that the points of intersection of X with the Iii correspond to the points of 
intersection of X with the Hi other than p, so that 

deg(X) = deg(X) - 1. 

We will see in Lecture 20 how to deal with the case of p E X.ing• Observe that in 
either case p rt. X or p rt. X sm ' the calculation works in arbitrary characteristic as 
long as there exists an (n - k)-plane through p transverse to X (a non-trivial 
assumption in case char(K) > 0, but one that can be verified in the following 
applications). 

Note that, in view of the characterization of the rational normal scroll X2 I C 1P4 
as a projection of the Veronese surface S c IP 5 from a point of S, this tells' us that 
the degree of X2 • 1 is 3. 

Example IS.17. Joins of Varieties 

Recall the definition of the join of two disjoint varieties from Example 6.17: we have 
a pair of disjoint varieties X, Y c lPn, and define the join of X and Y to be the union 

J(X, Y) = U x, y 
XEX,YEY 

of the lines joining points of X to points of Y. As we saw in Example 11.36, 
the dimension of the join is 1 plus the sum of the dimensions k = dim (X) and 
I = dim(Y) of X and Y; we will now describe its degree. 

We do this first in the apparently special case where X and Y live in complemen­
tary linear subspaces IPm and IPn- m- 1 c IPn; this is the important case, since as we 
have seen any join may be realized as the regular projection of such a join. We will 
give three ways of calculating the degree in this case. 

Calculation I. Our first approach is to 
intersect with a somewhat special plane. 
We take A ~ IPn-k-1 to be the sub-
space spanned by a general plane 
A' ~ IPm- k c IPm and a general plane 
A" ~ IP n- m- I - 1 c IPn- m- l . A' will then 
intersect X in exactly deg(X) points PI' 
... , Pd and A" will intersect Yin deg(Y) 
points q I' ... , qe; the intersection of A 
with the join J(X, Y) will be the union 
of the d· e lines L i.i spanned by Pi and %. 
Moreover, if A' and A" intersect X and 
Y transversely, then by the description 
of the tangent planes to J(X, Y) given in Exercise 16.14, the intersection of A with 
J(X, Y) is generically transverse; so the degree of J(X, Y) is d· e = deg(X)' deg(Y). 
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Calculation II. This is the least satisfactory proof; it works only in characteristic 0 
and uses Bezout (since we are going to use the calculation of the degree of J(X, Y) 
to prove Bezout later, this is not desirable). I include it mainly because I like 
Exercise 18.18. 

Suppose that r c IPn is a general plane of complementary dimension n - k -
1- 1 to the join J(X, Y). We may describe the intersection r n J(X, Y) by consid­
ering the projection nr from IPn to IPHI. If the line pq joining X to Y intersects r 
(since r is disjoint from X and Y, it cannot lie in it), then the span r, p = r, q, i.e., 
nr(P) = nr(q), and conversely. The intersection r n J(X, Y) thus corresponds to 
the intersection nr(X) n nr(Y); this intersection, if it is transverse, will consist of 
deg(X)' deg(Y) points. The result then follows from the following. 

Exercise 18.18. (Characteristic 0 only). Let X, Y c IPn be disjoint subvarieties 
of dimensions k and I, and r c IPn a general plane of dimension n - k - I - 1. 
Show that the projections nr(X) and nr(y) intersect transversely. 

Calculation III. Finally, note that the calculation for the degree of the join J(X, Y) 
of two varieties in disjoint linear subspaces follows from the characterization of 
degree in terms of Hilbert polynomials, without any intersection; very simply, 
if X, Y c IPn lies in disjoint linear spaces, then the homogeneous coordinate ring 
S(J(X, Y)) of the join J(X, Y) will be the tensor product S(X) ® S(Y) of the homo­
geneous coordinate rings of X and Y, as graded ring. We thus have 

S(J(X, Y))m = EB (S(X)j ® S(Y)m-j) 

so 

hJ(x,y)(m) = L hxU)' hy(m - j) 

= Jo (deg(X)' e: k) + OUk - i )} (deg(y)(m -! + I) 
+ O((m _ j)l-i)) 

m ('+k) ( '+/) =deg(X)'deg(Y)'j~O ) k . m-( +O(mHI) 

( m + k + 1+1) 
= deg(X)' deg( y). k + I + 1 + O(mHI) 

_ deg(X)' deg( Y) Hl+i O( k+l) 

- (k + I + I)! m + m 

from which we deduce that deg(J(X, Y)) = deg(X) deg(Y). 

As for the case of a join of two general varieties X, Y c lPn, what we may 
conclude from either of the preceding arguments is simply that if the general 
point of a general line joining points of X and Y lies on exactly ex lines joining 
X and Y, then the degree of the join J(X, Y) is deg(X)' deg(Y)/ex. 
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PROOF OF BEZOUT'S THEOREM. We can use the calculation of the degree of a 
join to prove the initial statement of Bezout's theorem (Theorem 18.3). First, 
observe that it is enough to prove it in case the varieties X, Y c IPn have comple­
mentary dimension, i.e., intersect transversely in points. The trick now is to view X 
and Y as subvarieties of two different ambient spaces lPn, and embed these IPns into 
1P2n +1 via the maps i, j: IPn -+ 1P2n+1 given by 

i: [Zo, ... , Zn] H [Zo, ... , Zn, 0, ... ,0] 

and 

j: [Zo, ... , Zn] H [0, ... , 0, Zo, ... , Zn]. 

Let X, Y C 1P2n+1 be the images of X and Y under these embeddings and 
J = J(X, Y) their join. 

Now let L ~ IPn c 1P2n +1 be the linear subspace given by 

L = (Zo - Zn+1' Zl - Zn+2,···, Zn - Z2n+d· 

Observe the intersection of L with J consists exactly of the points 
[Zo, ... , Zn' Zo, ... , Zn] for p = [Zo, ... , Zn] EX n Y, and that by the description 
of the tangent space to J given in Exercise 16.14 (and the hypothesis that X and Y 
intersect transversely) this intersection will be transverse. We thus have 

card(X n Y) = deg(J) = deg(X)' deg(Y). o 
In fact, we can use this trick to prove the stronger form of Bezout as well, once 

we have defined the intersection multiplicity; we just have to check that for any 
p E X n Y the intersection multiplicity of Land J at a point on the line i(p), j(p) is 
the same as the intersection multiplicity of X and Y at p. 

Example 18.19. Unirationality of Cubic Hypersurfaces 

To conclude this lecture, we will combine some of the ideas introduced in the last 
few lectures-specifically, tangent lines, order of contact and Bezout's theorem-to 
establish a statement made in Lecture 7. 

Proposition 18.20. A smooth cubic threefold X c 1P4 is unirational. 

PROOF. We have already seen (Theorem 12.8) that X contains lines (in fact, the lines 
on X cover X); let L be a general one. Consider the subvariety L c fll (X) of lines 
tangent to X at a point PEL. We claim first of all that L is rational. 

To see this, fix a general point q E 1P4 and 2-plane A ~ 1P2 C 1P4, and consider 
the rational map 

cp:L x A---+L 

given, for general pEL and rEA, by 

cp: (p, r) H If p(X) n pqr. 
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To see that this is birational, note that for a general tangent line M to X at 
p, the plane M, q will intersect A in a point r; (p, r) will be the unique point 
of cp-l(M). 

Now, as will be established in Exercise 18.21, a general tangent line to X 
will have order of contact 2 with X at its point of tangency, and therefore will 
intersect X in exactly one other point. We thus have a rational map 

n: ~ ----+ X. 

To see that this is dominant, note that for any point q E X not on L, the plane 
L, q will intersect X in a plane cubic curve; this curve will contain L, and hence will 
be singular somewhere along L (in fact, generically it will consist of the union of L 
and a smooth conic curve meeting L in two distinct points). The plane L, q will thus 
lie in the tangent plane If p(X) for at least one pEL (again, generically two); the 
point q will correspondingly lie on at least one tangent line qp to X with PEL. 0 

Exercise 18.21. Show that a general tangent line to X at a general point pEL 
has contact of order 2 with X at p. 

Exercise 18.22. Show by the same argument that a smooth cubic hypersurface 
in IPn is unirational for all n ~ 3. 

Exercise 18.23. Show that for any fixed d there exists an no = no(d) such that 
for all n ~ no a smooth hypersurface of degree d in IPn is unirational. (This requires 
showing (or assuming) that the total space of a family of unirational varieties 
parametrized by 1P1 is unirational.) 



LECTURE 19 

Further Examples and Applications 
of Degree 

Example 19.1. Multidegree of a Subvariety of a Product 

Since finding out that a quadric surface Q c p3 is abstractly isomorphic to the 
product pI x pI we have observed a number of times that, in describing a curve 
CeQ, it is much more useful to give its bidegree (a, b) in pI x pI (that is, 
the bidegree of the bihomogeneous polynomial F defining it as a subvariety of 
pI x pI) than to give just its degree as a curve in p3 (the reader can check this is 
just a + b). We ask now what are the analogous numerical invariants of a k­
dimensional subvariety X c pm X P" in general. 

The answer to this is perhaps best suggested by the cohomological interpretation 
of the degree of a variety in P". According to this definition, the degree of a variety 
Xc P" is simply the coefficient in the expression of the fundamental class [X] of 
X as a multiple of a standard generator [Pk] of H2k(P", Z). Now, by the Kunneth 
formula, the homology of the product pm X P" will be torsion-free, and generated 
by the fundamental classes of products [Pk X pi] E H2H21(pm x P", Z). Thus, for 
any subvariety X c pm X P" of dimension k, we can write its fundamental class as 

[X] = L d/· [Pi X pk-i]. 

This uniquely determines the integers di , which we will refer to as the multidegree 
of X c pm X P". 

Equivalently, let "Ix be the fundamental class of X in the de Rham cohomology 
group H2k(pm X P", Z)* = H 2"+2m-2k(pm X P", Z). Then in terms of the classes ex, 
13 E H2(1P>m X P", Z) introduced in Example 18.15, we can write 

"Ix = L di · ex m - i p"-Hi. 

A more geometric way to characterize the integers di is to say that di is the 
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number of points of intersection of X with the product r x A c: IPm x lPn, where 
r c: IPm and A c: IPn are a general (m - i)-plane and a general (n - k + i)-plane, 
respecti vel y. 

Exercise 19.2. Let X c: IPm x IPn be any variety of dimension k. Show that the 
degree of X, as embedded in projective space via the Segre embedding of IPm x lPn, 
is 

Exercise 19.3. Use the preceding exercise to conclude that any linear space 
A c: a(lPm x IPn) c: IPmn+m+n lying on a Segre variety is contained in a fiber of 
a projection IPm x IPn --+ IPm or IPm x IPn --+ IPn. Compare this with the proof of 
Theorem 9.22. 

Example 19.4. Projective Degree of a Map 

As a natural extension of the notion of the degree of a variety, we have the 
projective degree of a map cp: X --+ Y between two projective varieties Xc: IPn and 
Y c: IPm. This is easy enough to define: just as we define the degree of a variety to 
be the number of points of intersection with a plane of complementary dimension, 
the projective degree do(cp) of a map cp: X --+ IPm is the number of points in the 
inverse image of a plane IPm-dim(X) c: IPm. (It is called the projective degree to 
distinguish it from the degree of a map as defined in Lecture 7.) Equivalently, do(cp) 
is zero if the dimension of the image cp(X) is strictly less than the dimension of X 
(i.e., if the general fiber of the map has positive dimension) and otherwise is the 
degree of the image times the degree of the map (where the degree deg(cp) of the map 
is the number of points in the inverse image of a general point of cp(X». Needless 
to say, watch out for the confusing terminology of degree versus projective degree. 
Note in particular that do(cp) does not depend on the projective embedding X c: IPn. 

In fact, the projective degree of a map is just the first (or Oth) of a series of 
degrees di(cp), which we may call in general the projective degrees of the map 
cpo These are defined simply as the multidegree of the graph rq> c: IPn x IPm; equiva­
lently, if X has dimension k, di ( cp) may be defined simply as the number of points 

di(cp) = card(cp-l(lPm-Hi) n lPn-i), 

where IPm-Hi c: IPm and IPn- i c: IPn are general planes6 . Note that this is the same 
thing as either the projective degree of the restriction of the map cp to the inter­
section of X with a plane IPn-i c: IPn; or, equivalently, as the degree of the inverse 
image cp-l(lPm- k+ i ) times the degree of cp restricted to this inverse image. In particu-

6 Note that the graph r" is here taken to lie in P" x pm, i.e., the order of the factors is the reverse of 
the usual. 
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lar, of course, the projective degree of <P is do(<p), while the degree of X itself is 
deg(X) = dk(<p) (independently of <pl. 

Example 19.5. Joins of Corresponding Points 

Recall the situation of Example 8.14: we let X and Y be subvarieties of !pn, and 
suppose we are given a regular map <p: X --t Y such that <p(x) =f. x for all x E X. We 
may then consider the union 

K(<p) = U x, <p(x) 
xeX 

and ask for the degree of this variety. 

We start with the case where X is a curve. As in the discussion of general joins 
in Example 18.17, we will assume for the moment that X and Y lie in complemen­
tary subspaces !p\ !pI C !Pn• 

Now, to find the degree of K(<p), we intersect with a particular hyperplane, 
namely, the plane A spanned by all of !pk and a general hyperplane Ao in !pl. It is 
easy enough to say what the intersection of A with K(<p) is as a set, and in particular 
to see that it is proper: clearly, A contains Xc K(<p), and so An K(<p) will consist 
of X itself and the union of the do(<p) lines x, <p(x) for all x such that <p(x) E Ao. We 
can now use the analysis in Lecture 16 to see that this intersection is generically 
transverse (we leave this as an exercise for the reader). It follows that 

deg(K(<p)) = deg(K(<p) n A) = deg(X) + do(<p). 

Observe finally that we can now answer the original question without the 
hypothesis that X and <p(X) lie in disjoint subs paces, since any join K(<p) may be 
obtained from one of this type by a regular projection: if a general point of a general 
line of the form x, <p(x) lies on exactly 0: lines of this form, then the degree of K(<p) 
will be just (deg(X) + do(<p))/O:. 

Note, as a primary example of this, that the degree of a rational normal surface 
scroll X a"a2 C !po is a1 + a2 = n - 1. 

Exercise 19.6. What happens in the preceding analysis if x = <p(x) for some value 
of x? 

Exercise 19.7. Let C1 , ••• , Ck be curves in !pn and <Pi: C1 --t Ci a map for i = 2, ... , k. 
Let 

X = U p, <P2(P), ... , <Pk(P) 
pee, 

be the union of the joins of corresponding points and assume that for each P E C1 

the points p, <P2(P), •.. , <Pk(P) are independent. Determine the degree of X and 
deduce in particular that the degree of a rational normal k-fold scroll X c !po is 
n-k+l.(*) 
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To return to our discussion of the degree of the variety K(qJ) in general, consider 
next the case of a map qJ: X --+ Y where X is a surface. If we are to use a technique 
analogous to the one used earlier, that is, intersect K(qJ) with a linear subspace A 
such that X itself is a component of the intersection An K(qJ), then the plane in 
question should be the hyperplane spanned by all of pk and a general hyperplane 
Ao in jpll. The intersection of A with K(qJ) will then consist of X itself and the union 
K' of the lines x, qJ(x) for all x such that qJ(x) E Ao. But K' itself is just the variety 
K(qJ'), where qJ' is the restriction of the map qJ to the inverse image of the hyperplane 
Ao c pl. The degree do(qJ') is of course just the projective degree of qJ, and the 
degree of the inverse image deg(qJ-1(Ao» is the intermediate degree d1 (qJ). By the 
preceding analysis, we have 

deg(K(qJ» = deg(qJ') + deg(qJ-1(Ao» + deg(X) 

= do(qJ) + d1 (qJ) + d2 (qJ)· 

The general pattern follows this. For a map qJ: X --+ Y on a variety X of any 
dimension k, assuming qJ(x) #- x Vx E X and a general point of K(qJ) lies on a unique 
line x, qJ(x) the degree of the join K(qJ) will be the sum Id,,(qJ) of the degrees 
d,,( qJ) of the map qJ. As in the general case, if a general point of a general line of the 
form x, qJ(x) lies on exactly a lines of this form, then the degree of K(qJ) will be just 
(I die qJ )))/a. 

Example 19.8. Varieties of Minimal Degree 

One consequence of Exercise 19.7 is that rational normal scrolls have minimal 
degree, as identified in Corollary 18.12. Indeed, we have now seen all varieties of 
minimal degree. We state this as the following. 

Theorem 19.9. Let X c jpln be any irreducible nondegenerate variety of dimension k 
having degree n - k + 1. Then X is 

(i) a quadric hypersurface; 
(ii) a cone over the Veronese surface V2(jpl2) c jpl5; or 

(iii) a rational normal scroll. 

Note that a quadric hypersurface is also a scroll if and only if it has rank 3 
or 4, and that a Veronese surface may be distinguished from scrolls by the fact that 
it contains no lines. 

We will not prove Theorem 19.9 here. We note, however, that many of the 
statements made earlier about scrolls (and some other varieties as well) follow from 
this theorem. For example, 

(a) it follows that the general hyperplane section of a rational normal k-fold scroll 
in jpln is a rational normal (k - l)-fold scroll in jpln-1. 

(b) it follows that the projection of a rational normal scroll X c jpln from a point 
p E X is a rational normal scroll in pn-1. 

(c) it follows that the projection of the Veronese surface S c jpl5 from a point PES 
is the cubic scroll X 2,1 C jpl4. 
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Example 19.10. Degrees of Determinantal Varieties 

We will determine here the degrees of some more determinantal varieties, described 
initially in Lecture 9 and again in Examples 12.1 and 14.15. To recall the notation, 
we let M be the projective space \pmn-l associated to the vector space of m x n 
matrices and for each k let Mk c M be the subset of matrices of rank k or less. As 
we observed at the time, the variety MI isjust the Segre variety \pn-l x \pm-l whose 
degree we have already computed; we will now consider the other "extremal" case, 
where k is one less than the maximal rank min(m, n). To fix notation, we will 
say m ~ n = k + 1 for the following. Also, recall from Example 12.1 that the 
codimension of Mn - l is m - n + 1. 

We will compute the degree of Mn- l by intersecting it with a linear subspace 
A ~ \pm-I. Doing this is equivalent to specifying an m x n matrix of linear forms 
on \pm-I. To specify such a matrix, let (ai) be any m x n matrix of scalars all of 
whose n x n minors are nonzero, and take our matrix of linear forms to be the 
matrix (a i •j • X j ), i.e., 

[ 

al.IXI 

a2, IXI 

an,IXI 

... al,mXm] 

... a2 ,mX m 

an,mXm 

The n x n minors of this matrix are exactly nonzero scalar multiples of the n-fold 
products of distinct coordinates X I, ... , Xm; explicitly, the minor involving the i l st 
through inth columns is just Xi, ..... Xin times the corresponding minor of (ai). 
These will all vanish at a point [Xl"'" Xm] if and only if m - n + 1 or more of 
the XiS are zero; so the intersection of A with the determinantal variety Mn- 1 is 
thus the union of the coordinate (n - 2)-planes in \pm-I. Moreover, at a point of 
An M n- l at which exactly n - 1 of the coordinates Xi are nonzero-say Xi, ..... 

X in_, #- O-we see that the minors Xi, ..... X in_, . Xj for j = n, ... , m have inde­
pendent differentials, so that the intersection An Mn- l is generically transverse. It 
follows that the degree of the determinantal variety Mn - l is given by 

Note that this agrees with the case n = 2 of the rational normal scroll discussed 
in Example 19.5 and Exercise 19.7, as well as with the "obvious" case m = n. Indeed, 
in the former case, combined with Theorem 19.9 it implies the statement (Example 
9.10) that the rank 1 locus of a 2 x m matrix oflinear forms, if it is irreducible and 
has the expected codimension m - 1, is a rational normal scroll. 

The degree of the determinantal variety Mk in the space of all m x n matrices 
may be worked out for all values of k, though I don't know of any way as simple 
as the one in the case k = n - 1. For reference (see [Fl], example 14.4.11), the 
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answer is 

n-k-l (m + i)! . i! 
deg(Mk ) = II (k + i)! . (m - k + i)! 

( m + i) 
n-k-l k 

= n .. 
;=0 (k t ,) 

Example 19.11. Degrees of Varieties Swept out by Linear Spaces 

As another example of the computation of degree, we will consider a variety 
X c [p>n given as the union of a one-parameter family of linear spaces; that is, we let 
Z c G(k, n) be a curve and consider 

X= U A. 
AeZ 

Assume for the moment that the planes A sweep out X once, that is, that a 
general point P E X lies on a unique plane A E Z. It follows in particular that 
the dimension of X is k + 1, and hence that the degree of X is the cardinality 
of its intersection with a general plane r ~ [p>n-k-l C [p>n. Since each of the points 
of X n r will lie on a unique plane A E Z, this in turn will be equal to the number 
of planes A E Z that meet r. 

Now, we have seen that the locus of k-planes A E G(k, n) that meet a given 
(n - k - I)-plane r c [p>n is a hyperplane section Hr n G of the Grassmannian 
G = G(k, n) under the Plucker embedding. We may therefore expect that the 
intersection of this locus with a curve Z eGis the degree of the curve Z under the 
Plucker embedding. We cannot deduce this immediately, however, since even if r 
is general, Hr is not a general hyperplane section of G (the space of hyperplanes in 
[p>N = [P>(N+! Kn+l) is the projective space [P>(N+l(Kn+l )*), in which the set of 
hyperplanes of the form Hr sits as the subset of totally decomposable vectors 
G(n - k, n + 1». We can, however, invoke the strong form of Bertini given in 
Theorem 17.22; since the group PGLn+1 K acts transitively on the space G and on 
the set of hyperplane sections Hr n G, for general r it follows that Hr intersects a 
given curve Z transversely. We conclude, therefore, that the degree of a variety 
X c [p>n swept out once by a one-parameter family of k-planes Z c G(k, n) is equal 
to the degree of Z under the Plucker embedding. 

Exercise 19.12. Eliminate the need for any form of Bertini in the preceding argu­
ment by using the description of tangent spaces given in Example 16.12 to show 
directly that if P E X lies on a unique plane A E Z, then a plane r will intersect the 
variety X c [p>n transversely at the point p if and only if the hyperplane Hr intersects 
the curve Z transversely at A, and deducing that for general r the intersection 
Hr n Z is transverse. 
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One application of this result would be another computation of the degree 
of a rational normal scroll: as we can see directly by writing down their equations, 
the (k - I)-planes of a rational normal k-fold scroll X c iP'" correspond to the 
points of a rational normal curve Z c IG (k - 1, n) of degree n - k + 1, and we may 
deduce from this that the degree of X is n - k + 1. 

Another example would be the tangential surface of a rational normal curve 
C c iP'". Since C is given parametrically as 

tl--+v(t) = [1, t, t2 , ••• , t"], 

the Gauss map on C sends t to the vector [v(t) 1\ v'(t)] E iP'(N K"+1), that is, 
the vector whose corrdinates are the 2 x 2 minors of the matrix 

( 1 t t2 ••• t") 
o 1 2t ... nt"-I 

These minors visibly span the space of polynomials of degree 2n - 2 in t, so that 
the image of f§c will be a rational normal curve of degree 2n - 2 in 1G(l, n) c 

iP'(i\ 2 K"+1); we conclude that the degree of the tangential surface of the rational 
normal curve is 2n - 2. 

Exercise 19.13. Find the degree of the family Z c 1G(1, 5) of lines on the Segre 
threefold X 2 , I = a(iP'2 x iP'1) C iP'5 not lying on a 2-plane of X. Use this to show 
that the degree of a variety X c iP'" swept out once by a higher-dimensional family 
of k-planes Z c lG(k, n) is not in general equal to the degree of Z. 

Example 19.14. Degrees of Some Grassmannians 

We will give an old-fashioned approach to the computation of the degrees of some 
Grassmannians lG(k, n) c IPN = 1P(i\k+1 Kn+l). To start, we make an observation 
analogous to that of the preceding example: among the hyperplane sections of the 
Grassmannian lG(k, n) c iP'N are the special hyperplane sections Hr , defined for 
each (n - k - I)-plane r c iP'" by 

Hr = {A E IG : A n r #- 0}; 

while these are not general hyperplane sections of IG, by the strong form of Bertini 
(Theorem 17.22), for a general collection {ra} of(n - k - I)-planes the correspond­
ing hyperplane sections Hr will intersect transversely. In particular, we have the 
interpretation: the degree of the Grassmannian lG(k, n) c iP'N is the number of 
k-planes in iP'" meeting each of (k + l)(n - k) general (n - k - I)-planes. 

Note that we can verify this directly in the first nontrivial case, that of the 
Grassmannian of lines 1G(1, 3) in iP'3. We have seen already that the family of 
lines meeting each of three mutually skew lines L 1, L 2 , L3 C iP'3 constitutes one 
ruling {M;j of a quadric surface Q. A general fourth line L4 will then meet Q at two 
distinct points p and q, through each of which will pass a single line of the ruling 
{M,d; these two lines are then the only lines meeting all four given lines L i • This 
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simply confirms what we knew already, since we remarked in the original discus­
sion of Grassmannians in Lecture 6 that G(1, 3) was a quadric hypersurface in 1P5. 

Another way of arriving at the statement that there are two lines meeting 
each of four given lines Li in 1P3 would be to specialize the position of the lines 
Li. For example, suppose we choose the lines so that L1 and L2 meet at a point P 
(and so span a plane He 1P 3 ), and likewise L3 and L4 meet at q and span a plane 
K. If P ¢ K and q ¢ H, it is easy to see that any line meeting all four must be either 
the line pq or the line H 11 K. 

This count does not in itself prove anything, since the observation depends on 
the assumption that the lines Li are general. We can, however, verify directly in this 
case that the intersection of the hyperplane sections HLi is transverse. In Example 
16.6 we showed that the tangent space to H = HLi at a point L corresponding to a 
line meeting Li in one point p consisted of the space of homomorphisms 

TL(H) = {ep: L ---+ K4jL: ep(p) c L + LJ. 
Thus, for example, at the point corresponding to the line L = pq, since (L + L 1) 11 

(L + L 2) = L, the tangent spaces 

TL(HL,) 11 TdHL,) = {ep: ep(p) = O} 

and similarly 

TL(HL3 ) 11 TdHL.) = {ep: ep(q) = O}; 

so the intersection of all four tangent spaces is zero, and the intersection is trans­
verse. A similar argument applies at the point L = H 11 K. 

Exercise 19.15. Let L 1, ... , L4 be skew lines in 1P3 , L a line meeting all four. 
Say LilLi = {pJ, and 1 + Li is the plane Hi c \p 3 . Recall from Exercise 16.9 
that the hyperplene sections HL intersect transversely at L if and only if the 
cross-ratio of the four points Pi ~ L is not equal to the cross-ratio of the four 
planes Hi E \p(K4jL). Verify this directly using the description of the lines meeting 
each of the three lines L 1, L 2, and L 3. Apply it to the preceding example (bear in 
mind that the cross-ratio of four points is still defined (if we allow 00 as a value) in 
case no three coincide). 

How do we calculate the degrees of other Grassmannians? In general, it is 
much less clear how to use the interpretation of deg(G), since we cannot determine 
directly the number of k-planes meeting each of (k + l)(n - k) general (n - k - 1)­
planes. We can, however, use a specialization similar to the one used in the case of 
G(1, 3). Consider, for example, the case of the Grassmannian G(1, 4) of lines in \P 4 . 

We want to know how many lines in \p4 meet each of six two-planes r i c \p4 ; to 
answer this, suppose that we choose the r i so that each pair r 2i - 1 , r 2i meet in a line 
Li and span a three-plane Hi' Every line meeting all six will then either meet the 
line Li or lie in the hyperplane Hi' for i = 1, 2, and 3. 

Now, the line of intersection of the hyperplanes Hi is the unique line lying in all 
three, and there is a unique line meeting Li and Lj and lying in Hk (it is the line 
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spanned by the points Li (\ Hk and L j (\ Hk)' In addition, there is a unique line 
meeting all three lines Li (it may be characterized as the intersection of the three­
planes Hi.j = LiLJ; but there will in general be no lines meeting Li and lying in Hj 

and Hk • We conclude that there are exactly five lines meeting each of the r i ; upon 
checking the transversality of the intersection of the Hr" 

deg(G(I, 4)) = 5. 

Exercise 19.16. Using the description of tangent spaces in Example 16.6, verify 
that the hyperplane sections Hr , do in fact intersect transversely. 

This is a fairly generally applicable technique. Indeed, in the 19th century a 
whole science (some might say art form) developed of such specializations. In 
particular, it is possible to use these techniques to find the degrees of Grass­
mannians in general. We will not do this here, but will give the general answer: the 
degree of the Grassmannian G(k, n) is 

k ., 

deg(G(k, n)) = ((k + l)(n - k))!' n ( ~ . 
i=O n - + I)! 

Example 19.17. Harnack's Theorem 

As one application of Bezout's theorem in its simplest case-as it applies to the 
intersection of plane curves-we will prove the classical theorem of Harnack about 
the topology of real plane curves. 

To begin, let us pose the problem. Suppose that F(Zo, Zl' Z2) is a homogeneous 
polynomial of degree d with real coefficients and such that the corresponding plane 
curve X c i!=D2 is smooth. Consider now the locus X(IR) of real zeroes of Fin 1Ri!=D2 

(we will use the topological notation 1Ri!=D 2 since we want to consider it not as a 
variety but as a real manifold). This is a one-dimensional real submanifold of 
1Ri!=D2, and so consists of a disjoint union of a number () of connected components, 
each homeomorphic to Sl (these were called circuits or ovals in the classical 
language). A natural first question to ask, then, is how many circuits X may have. 

Before answering this, we note one distinction between components of X(IR). 
Since the first homology H 1 (1Ri!=D2, Z) = Z/2, we may naturally distinguish between 
those ovals homologous to zero ("even circuits") and those not ("odd circuits"). One 
difference is that the complement in i!=D1R2 of an even oval has two connected 
components, with one component homeomorphic to a disc (this is called the 
interior of the oval) and the other homeomorphic to a Mobius strip; the comple­
ment of an odd oval, by contrast, is homeomorphic to a disc. Note in particular 
that any two odd ovals will necessarily intersect (a loop in the complement of an 
odd oval is necessarily homologous to zero in 1Ri!=D2), so that a smooth curve can 
possess at most one odd oval. It follows then that if the degree d of X is even, then 
X(IR) can possess only even ovals; while if d is odd then X(IR) will have exactly one 
odd oval. 
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With this said, the basic theorem concerning the number of ovals of a plane 
curve is the following. 

Theorem 19.18 (Harnack's Theorem). The maximum number of ovals a smooth plane 
curve of degree d can have is (d - l)(d - 2)/2 + 1. 

PROOF. We will prove only one direction, that a smooth curve X of degree d cannot 
have more than (d - l)(d - 2)/2 + 1 ovals. Even in that direction the proof will not 
be complete; we will use the fact that a plane curve Y defined by a polynomial with 
real coefficients and containing a point P of an even oval of X must intersect that 
oval at least twice, be tangent to it, or be singular at p. This is pretty clear 
topologically in case Y is smooth but less so if, for example, Y has singularities in 
the interior of the oval. It is also clear in case all of the oval can be included in an 
affine open IRz c lR[p>z; in that case, we simply represent Y(IR) as the zeros of a real 
polynomial f(x, y) on IRz and argue that f must have an even number of zeros on 
the oval, counting multiplicity. The latter argument can be extended to the general 
case, but we will not go through the details here. 

In any event, to use this observation, suppose that X(IR) has m = (d - 1)(d - 2)/ 
2 + 2 ovals Vl , ... , Vm' of which we can assume that Vl , ... , Vm - l are even. Pick 
out points Pl' ... , Pm-l with Pi on Vi' and choose points ql' ... , qd-4 on the oval 
Vm. Now recall that the homogeneous polynomials of degree d - 2 on [p>z form a 
vector space of dimension d(d - 1)/2. Since 

d(d - 1)/2 > m + d - 4 

this means that we can find a nonzero 
polynomial G of degree d - 2 on [p>z 

vanishing at all the points Pl' ... , Pm-l 
and q l' ... , qd-4; or, equivalently, a 
plane curve Y of degree d - 2 contain­
ing all these points. But now by our 
observation, Y must intersect each of 
the ovals Vl , ... , Vm - l of X (IR) at least 
twice, and of course must meet the oval 
Vm at least d - 4 times. The curve Y 
thus has at least 

2(m - 1) + d - 4 

= (d - 1)(d - 2) + 4 + d - 4 

= d(d - 2) + 2 

points of intersection with X, contradicting Bezout's theorem. o 

In fact, it is possible to exhibit plane curves of any degree d having the maximum 
number of ovals. This is usually done by starting with a reducible curve and 
deforming it slightly; for example, if f(zl' zz) and g(Zl' zz) are quadratic poly-
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nomials whose loci are conics inter-
secting at four points, then the curves X 
given by f· g + 8 for 8 a suitable small 
constant is a quartic curve with the 
maximum number four of ovals. The 
construction of such maximal curves is 
in general fairly complicated, and we 
will not discuss it further here; see for 
example [C] for further discussion and 
references. 

Of course, once we have settled the 
question of the number of connected 
components of the real locus X (IR) of a 
real plane curve X, many others follow. 
For example, the most natural follow-

Cl 
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D 
up is to ask about the isotopy class of the embedding X(IR) c... 1R1P2. This amounts 
to the question of nesting: we say that two even ovals of a plane curve are nested if 
one lies in the interior of the other as defined earlier, and we may ask what 
configuration the ovals of a real plane curve may form with regard to nesting. For 
example, consider the first case in which 
there is any ambiguity at all, that of 
plane quartics. Note first that if a plane 
quartic has any nested pair of ovals, it 
cannot have no other ovals, since a line 
joining a point interior to the nested 
pair to any point of a third oval would 
have to meet the curve six times. Thus a 
quartic with three or four ovals has no 
nesting. On the other hand, a quartic 
with exactly two ovals mayor may not 
be nested, as we can see by construction 
(just take two disjoint ellipses, either 
nested or not, and deform the equation 
as we did earlier). In general, however, 
the question of what configurations 
occur is far from completely solved; a 
summary of recent work may be found 
in [W]. 

Beyond the question of nesting, there 
are questions about convexity of ovals, 
and so on; for example, we can see by 
construction that if a quartic has two 

o 
Ca) Cb) 

00 @J 
CC) Cd) 

Ce) 

nested ovals, both ovals may be convex, or the interior one may be convex and 
the exterior nonconvex (it is clear that the interior must be convex, since otherwise 
we could find a line meeting it in four points, and hence meeting the whole curve 
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in six). On the other hand, it is less clear (but true) that if a quartic with two ovals 
is not nested, both ovals must be convex. 

Exercise 19.19. Show that a real smooth quintic curve may have any number 
of ovals from one to seven, and find all configurations (with respect to nesting) 
of these ovals. 



LECTURE 20 

Singular Points and Tangent Cones 

Tangent Cones 

The Zariski tangent space to a variety X c An at a point p is described by taking 
the linear part of the expansion around p of all the functions on An vanishing on 
X. In case p is a singular point of X, however, this does not give us a very refined 
picture of the local geometry of X; for example, if X c A 2 is a plane curve, the 
Zariski tangent space to X at any singular point p will be all of Tp(A2) = K2. We 
will describe here the tangent cone, an object that, while it certainly does not give 
a complete description of the local structure of a variety at a singular point, is at 
least a partial refinement of the notion of tangent space. 

The definition of the tangent cone is simple enough. In the definition of the 
tangent space of a variety X c An at a point p we took all f E I(X), expanded 
around p and took their linear parts; we defined Tp(X) to be the zero locus of 
these homogeneous linear forms. The diffetence in the definition of the tangent cone 
TCp(X) to X at p is this: we take all f E I(X), expand around p, and look not at 
their linear terms but at their leading terms (that is, their terms of lowest degree), 
whatever the degree of those terms might be. We then define the tangent cone 
TCp(X) to be the subvariety of An defined by these leading terms. As we have 
defined it, the tangent cone is a subvariety of the ambient space An; but since the 
linear forms defining Tp(X) are among the leading terms of FE I(X), it will turn out 
to be a subvariety of the Zariski tangent space Tp(X), via the inclusion of Tp(X) 
in the tangent space Tp(An) = An. 

In the simplest case, that of a hyper surface X c An given by one polynomial 
f(xl> ... , xn) and p = (0, ... ,0), we write 

f(x) = fm(x) + fm+1 (x) + ... 
where fk(X) is homogeneous of degree k in Xl' ... , Xn; the tangent cone will be 
the cone of degree m given by the homogeneous polynomial fm. Thus, for example, 
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the tangent cone TCiX) to a plane curve X c A 2 with a node at p will be the union 
of the two lines tangent to its branches at p, while the tangent cone to a curve with 
a cusp will be a single line. 

/ 

(Note that since the linear term of the sum of two power series is the sum 
of their linear terms, in defining the Zariski tangent space to a variety X c An 
we needed to look only at the linear parts of a set of generators of the ideal 
J(X). By contrast, the leading term of a sum will not always be in the ideal 
generated by their leading terms; to describe the tangent cone in general we will 
have to take the leading terms of all f E J(X).) 

After giving the initial definition of the Zariski tangent space to an embedded 
variety X c An, we gave a more visibly intrinsic definition in terms of the ring of 
regular functions on X; we can do likewise for the tangent cone. Specifically, let 
(!) = (!)x.P be the ring of germs of regular functions on X at p and m c (!) the maximal 
ideal in this local ring. (!) has a filtration by powers of the ideal m: 

(!) :::> m :::> m2 :::> m3 :::> ••• 

and we define the ring B to be the associated graded ring, that is, 

00 

B = EB ma/ma+1. 
a=O 

This is by definition generated by its first graded piece 

Bl = m/m2 

and so B is a quotient ring A/ J of the symmetric algebra 

00 

A = EB Syma(m/m2) 
a=O 

00 

= EB Syma((TpX)*). 
a=O 

Now, A is naturally the ring of regular functions on the Zariski tangent space 
Tp(X) = m/m2; we may define the tangent cone TCp(X) to be the subvariety of 
Tp(X) defined by this quotient, that is, the common zero locus of the polynomials 
9 E J c A. 
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Exercise 20.1. Show that these two definitions of the tangent cone in fact agree. 

Note that in either version, the polynomials that cut out the tangent cone 
to X at p-either the leading terms of f E J(X) at p, or the elements of the kernel 
ofthe ring homomorphism A -+ B-need not generate the ideal of TCp(X) c Tp(X). 
In other words, the tangent cone TCp(X) comes to us not just as a subvariety of 
J;,(X) but as a homogeneous ideal in the ring of polynomials on J;,(X), which 
represents more data than its zero locus. While our definition of TCp(X) ignores 
this additional structure, as we will see later it is important, e.g., in the definition of 
the muftiplicity of a singularity. (To put in one more plug for scheme theory, what 
we are saying here is that the tangent cone is naturally a subs cherne of TiX).) 

The various constructions made earlier for the Zariski tangent space also apply 
to tangent cones. As in the case of tangent spaces, if X c IPn is a projective variety, 
we sometimes choose An c IPn the complement of a hyperplane not containing p 
and take the closure in IPn of the affine tangent cone Tp(X n An) (viewed as a 
subvariety of An). This projective variety will, by abuse of language, also be referred 
to as the projective tangent cone to X at p; it will be denoted, by analogy with the 
corresponding construction of the projective tangent space, If Cp(X). Also, since the 
tangent cone is defined by homogeneous polynomials on J;,(X), there is associated 
to it a projective variety IPTCp(X) c IPTp(X), called the projectivized tangent cone. 

We can also realize the projective tangent cone lfCp(X) c IPn as the union 
of the tangent lines to X at p, in the first sense of Example 15.17, and the pro­
jectivized tangent cone IP'TCp(X) c IPTp(X) as the set of these lines; this will be 
established in Exercise 20.4. 

The most important fact about the tangent cone is that its dimension is always 
the local dimension of X at p. This follows from standard commutative algebra (cf. 
[AM], [E]), given that the coordinate ring of the tangent cone is the associated 
graded ring of the local ring of X at p with respect to the filtration given by the 
powers of the maximal ideal. It may seem less obvious from a naive geometric 
viewpoint (we will see a more geometric proof of it later). Certainly it does not jibe 
with the real picture of varieties; for 
example, it is hard to imagine from 
the picture alone what would be the 
tangent cone to the surface Z2 + x2 = 

y4 obtained by rotating the parabola 
y2 _ x around its tangent line x = 0 at 
(0, 0), though it's easy enough to look at 
the equation and see what it is. 

There are a number of geometric 
interpretations of the tangent cone, and 
especially of the projectivized tangent 
cone. Perhaps the central one involves 
the notion of the blow-up of a variety, 
introduced in Lecture 7; we will now 
discuss this. 
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To begin, recall the definition of the blow-up An of An at the origin; it is 
the graph of the projection map An --+ IPn- 1, which is to say the locus 

An = {((Zl' ... , Zn), [Wl' ... , l¥,,]): Zi»j = zjWi Vi,j} 

c An X IPn-l. 

In this context, we think of An primarily in terms of the projection map n: An --+ An, 
which is one to one except over the origin in An, where the fiber is all of IPn-l (note 
that this fiber is naturally the projective space oflines through the origin in An itself, 
which may be identified with the projective space associated to the tangent space 
To(An)). This fiber E = n-l(O) is called the exceptional divisor of the blow-up. 

Now, for any subvariety X c An, we define the proper transform of X in An to 
be the closure in An of the inverse image of X n (An - {O}); equivalently, the closure 
of n-l(X) n U, where U is the complement of the exceptional divisor in An. In fact, 
this is isomorphic to the blow-up of X at the origin, as defined in Lecture 7; if we 
think of the blow-up as the graph of projection n from 0, it is just the graph of nix. 

We can write down the equations of the proper transform in An of a variety 
X c An, assuming we know them for X itself. To begin, let Ui C An be the open set 
given by (Wi =F 0); in terms of Euclidean coordinates Wj = »j/Wi we can write 

Ui = {((Zl' ... , zn), (Wl' ... , Wi' ... , Wn): Zj = ZiWj Vj =F i} 
c An X An-l. 

We see from this description that Ui ~ An, with coordinates Zi and W1 , ... , Wi' ... , 
Wn ; the map n: Ui --+ An is given by 

Note that the part Ei = En Ui of the exceptional divisor in Ui is given as the 
coordinate hyperplane Zi = 0; i.e., the open cover {UJ of An restricts to E to 
give the standard open cover of IPn-l by affine spaces An- 1, with {wj}Ni the 
Euclidean coordinates on E i . 

Now suppose that f E J(X) is any polynomial vanishing on X. Write f as 
the sum of its homogeneous parts 

f = fm + fm+1 + fm+2 + '" 

with fm =F O. When we pull back f to An and restrict to Ui' we see that the term 
n*(h)lu, is divisible by Zi exactly k times; so that the pullback n*(f)lu, will be 
divisible by Zi exactly m times. We can thus write 

n*(f)lu, = z'('· j, 

where J does not vanish identically on Ei ; J will be called the proper trans­
form of f 

We see from this that the part X n Ui of the proper transform X of X in 
Ui is contained in the zero locus of the proper transforms J of the polynomials 
f E J(X). To see the opposite inclusion, suppose P E Ei is any point not lying 
on X n Ui' Then we can find a hypersurface in Ui containing X but not p; taking 
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the defining equation of this hypersurface and multiplying by a sufficiently high 
power of Zi yields a polynomial IE J(X) whose proper transform vanishes on 
X (\ Vi but not at p. 

Now restrict to E. Since n*(fk)lu; is divisible by Zi m + 1 times for k > m, 
we see that 

ilE; = (n*(fm)/Z;")IE;; 

i.e., the zero locus of i in Ei is just the intersection with Ei of the zero locus of the 
leading term 1m of I, viewed as a homogeneous polynomial on E = pn-I. In sum, 
then, we find that the projectivized tangent cone PTCp(X) to X at p is simply the 
intersection X (\ E of the proper transform of X with the exceptional divisor­
equivalently, the exceptional divisor of the blow-up of X at the point p. 

One immediate consequence of this 
description of the projectivized tangent 
cone is the observation that it does 
indeed have dimension one less than X 
itself: on one hand, since it is in the 
closure of X - (X (\ E), it must have 
dimension strictly less than X; on the 
other hand, since E is locally defined by 
one equation, it can be at most one less. 
Likewise, it follows that the tangent 
cone has, as indicated, the same 
dimension as X. It also gives rise to 
other interpretations, which we will now 
discuss. 

The most direct new interpretation of 
the tangent cone comes (for varieties 
over the complex numbers, at least) 

x 

from the description, in Examples 17.1 and 17.5, of the tangent line to an arbitrary 
holomorphic arc. Recall specifically from Example 17.5 that if we have any arc 
y: L1- Xc pn, the associated Gauss map rg sending t E L1 to the tangent line to the 
arc at t, which is defined a priori only for smooth points of the arc, in fact extends 
uniquely to all of L1. Explicitly, if y is written locally as 

y: tf--+[v(t)] = [vo + vit + V2 t2 + ... J 
with v(O) =I 0, then rg may be extended to t = 0 by taking rg(O) to be the span 
of Vo and the first coefficient vector Vk independent of vo. This line will be called the 
tangent line to y at y(O). Equivalently, if we choose local Euclidean coordinates 
(z I' ... , Zn) on an affine neighborhood An c pn such that v(O) = Vo = (0, 0, ... , 0) 
and write 

y: tf--+UIt + u 2t 2 + ... 
then the tangent line to y at t = 0 is just the line through the origin (0, 0, ... , 0) E An 
in the direction of the first nonzero coefficient vector Uk' 
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Now, suppose that the arc y: Ll --+ IPn has image in the variety X, and that 
f(z 1, ... , zn) is any polynomial vanishing on X. Write f as 

f = fm + fm+! + fm+2 + ... 
and the arc y as 

From the fact that f(y(t)) == 0 it follows that the leading term of f must vanish 
on the first nonzero coefficient vector Uk of u; in other words, the tangent line 
to the arc y at p = y(O) lies in the tangent cone to X at p. We have thus established 
one half of the following. 

Proposition 20.2. Let X c IPn be any variety and p E X any point. The projectivized 
tangent cone IPTCp(X), viewed as a set of lines through p, is the set of tangent lines 
at p to arcs lying on X and the projective tangent cone TCp(X) correspondingly the 
union of these tangent lines. 

Exercise 20.3. Establish the other half of Proposition 20.2 by showing that for 
any point p of X II E the image in X of an arc y: Ll--+ X with y(O) = 0 will have 
tangent line corresponding to p. 

To express Proposition 20.2 another way, recall from Example 15.17 that one 
way to define a tangent to a variety X at a possibly singular point p is as the limiting 
position of a secant line pq as q E X approaches p-that is, as the image of {p} 
under the rational map X ----+ G(I, n) sending q to pq. From Proposition 20.2 we 
have the following. 

Exercise 20.4. With p E X C IPft as in the preceding, show that the projectivized 
tangent cone is the set of limiting positions of lines pq as q E X approaches p. 

Example 20.5. Tangent Cones to Determinantal Varieties 

We will describe here the tangent cones to the determinantal varieties Mk of m x n 
matrices of rank k, in a manner completely analogous with the discussion of their 
tangent spaces in Example 14.15. We start by choosing a point A E Mk corre­
sponding to a matrix of rank exactly I, i.e., A E M, - M,- 1. We can choose bases for 
K m and Kft so that A is represented by the matrix 

100 
010 

o 
o 

o 

1 0 

o 0 

o 
o 

o 
o 

o 
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and then, in the affine neighborhood V of A given by (Xl! # 0), we may take 
as Euclidean coordinates the functions X;,j = X;j XI, 1; in terms of these we may 
write a general element of V as 

1 X 1,2 X 1,3 

X 2 ,1 1 + X 2 ,2 X 2,3 

1 + Xl,l X I ,I+1 

Xl+1,1 Xl+ 1,l+1 

with A of course corresponding to the origin in this coordinate system, 

What are the leading terms of the (k + 1) x (k + 1) minors of this matrix? The 
answer is that they are the terms in the expansions of these minors involving 
the diagonal entries from the first 1 x 1 block of this matrix; they are thus the 
(k + 1 - 1) x (k + 1 - /) minors of the lower right (m - 1) x (n - 1) block. The 
tangent cone to Mk at A is thus contained in the space of matrices ep whose lower 
right (m - 1) x (n - 1) block has rank at most k - 1. On the other hand, this locus 
is irreducible of the right dimension, so in fact that tangent cone must be equal to it. 

As before, we can give an intrinsic interpretation to this tangent cone. To 
do this, note that the bases {eJ and {jj} for K m and K n are chosen so that the 
kernel of A is exactly the span of el+ 1 ' .•• , em and the image of A exactly the 
span of II, ... , !to The lower right (m - 1) x (n - 1) block of ep thus represents 
the composition 

We thus have 

lrA(Mk ) = {ep E Hom(Km, Kn): rank(ep': Ker(A) -+ Coker(A» ~ k - I}; 

i.e., we may say, without invoking coordinates, that the tangent cone to Mk at a 
point A corresponding to a map A: K m -+ K n of rank exactly 1 is the variety of maps 
ep E Hom(Km, Kn) whose image ep' E Hom(Ker(A), Coker(A» has rank at most 
k -1. 

Exercise 20.6. Let X and Y c [pln be any pair of varieties lying in disjoint subspaces 
of [pln, and let J = J(X, Y) be their join. Show that the tangent cone to J at a point 
p E X is the join of Y and the projective tangent cone lr Cp(X) to X at p. What can 
happen if X and Yare disjoint but do not lie in disjoint linear spaces (so that, for 
example, lrCp(X) may intersect Y)? What happens if X actually meets Y? 

Exercise 20.7. Let C c [pl3 be the twisted cubic curve and TC its tangential variety. 
What is the tangent cone to TC at a point p E C? Is the same true if C is an arbitrary 
space curve, if we assume that the point p lies on no tangent line to C other than 
lrpC? 
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Multiplicity 

As we have remarked already, the tangent cone to a variety X at a point p E X 
comes to us, not just as a variety TCp(X) c Tp(X), but as a variety together with a 
homogeneous ideal I c Sym*(J;,(X)*) in the ring of polynomials on Tp(X). By 
definition, the tangent cone TCp(X) = V(I) is the common zero locus of this ideal; 
but I need not be the ideal of all functions vanishing on TCp(X)-in cases like the 
cusp y2 - x 3 or the tacnode y2 - X4, the tangent cone is equal to the tangent line 
y = 0, but the ideal associated to it is the ideal (y2). For the following, we will 
actually have to use this extra information. 

We need to invoke the ideal in particular in order to define the multiplicity 
of a singular point in general. Multiplicity is easy to define in the case of a 
hypersurface X c Aft, that is, the zero locus of a single polynomial I(z 1, ... , zn): the 
multiplicity of X at p is just the order of vanishing of I at p. Thus, if we write 

I = 1m + Im+l + ... 
with fa homogeneous of degree IX and 1m "# 0, we say that the multiplicity of 
X at the origin is m. 

How do we generalize this to an arbitrary variety X c An? The example of 
hypersurfaces suggests an answer: the multiplicity should be the degree of the 
tangent cone. The problem is that the multiplicity m of the hypersurface need not 
be the degree of its tangent cone if the polynomial 1m contains repeated factors, as 
it does in the cases of a cusp or a tacnode, for example. 

The solution is to define the multiplicity in terms of the ideal I c Sym*(J;,(X)*) 
rather than in terms of the tangent cone. In other words, referring back to the 
definition of degree via the Hilbert polynomial, we define the multiplicity of a point 
p on a k-dimensional variety X c An to be (k - 1)! times the leading coefficient of 
the Hilbert polynomial of the ring Sym*(Tp(X)*)/I, where I is the ideal generated 
by the leading terms of the expansions aroood p of polynomials vanishing on X. 

(As we have suggested, this definition is an argument for the introduction of 
schemes; in that language, we simply define the tangent cone lr p(X) of a variety 
X c An at p to be the subscheme of Tp(X) defined by the ideal I, and the multiplic­
ity of X at p to be the degree of this scheme.) 

Exercise 20.8. Let Mk c M be the variety of matrices of rank at most k in the 
space M of all m x n matrices and let A E Mk be a point corresponding to a 
matrix of rank exactly I. What is the multiplicity of Mk at A? 

Another way of describing the multiplicity of a point p on a variety X of 
dimension k over the complex numbers C is analogous to the definition of the 
degree of a variety via its fundamental class. Suppose that X is embedded in affine 
space An and let X be the blow-up of X at the point p. This is naturally a subvariety 
of the blow-up .an of An at the origin. Now .an lives inside An X [p>n-l as the graph 
of the projection map n: An -+ [p>n-l and the projection map n2 : .an -+ [p>n-l is there­
by a topological fiber bundle with fiber A 1 ~ C. It follows that the cohomology 
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with compact support 

H;'(An, Z) ~ H;,+2(lPn-1, Z). 

Now X, being a closed subvariety of real dimension 2k of An, defines a linear 
form '1x on H;k(An, Z); we can write 

'1x = m·cp 

where cp is a generator of the group H;k(An, Z)* ~ Z and m ~ O. The integer 
m is then the multiplicity of X at p. 

(For those familiar with the language, Yfx is just the fundamental class of X 
in the Borel-Moore homology of An. This is the homology theory dual to cohomo­
logy with compact supports; in it, we require chains to be locally finite, but not 
necessarily finite, linear combinations of simplices; see [BM].) 

Suppose now that X c IPn is a projective variety of dimension k and degree 
d, p E X a point of multiplicity m, X the blow-up of X at p, and iPn the blow-up 
of IPn at p. From the preceding, it follows that the fundamental class 

[XJ = d· [AJ - m· [r] 

where A ~ IPk is a k-plane in IPn not passing through p, and r is a k-plane contained 
in the exceptional divisor E ~ IPn-l c iPn of the blow-up. From this follows another 
characterization of the multiplicity of the point p E X: if we assume that the projec­
tion map 7rp: X -+ IPn - 1 is birational onto its image X c lPn-I, then the degree of X 
is the degree of X minus the multiplicity of X at p. More generally, if X is the 
blow-up of X at p, then 7rp: X -+ IPn- 1 is regular and the multiplicity of X at p is the 
difference of the degree of X and the projective degree of 7rp (see Example 19.4). 

Exercise 20.9. Using the homological characterization of multiplicity, prove this. 

Exercise 20.10. Let X and Y c IPn be varieties, X and Y c An+l the cones over 
them. Show that X and Yare isomorphic if and only if X and Yare projectively 
equivalent. 

Exercise 20.11. Let Xc IPn be a hypersurface, p E X a smooth point of X, and 

IIp: Np(X)* -+ Sym2 (J;,*(X» 

the second fundamental form, as described in Example 17.11. Show that the inter­
section Y = X n lr p(X) of X with its tangent hyperplane at p has a double point if 
and only if IIp i= 0, and that in this case the tangent cone to Y at p is given by the 
image of IIp. 

Exercise 20.12. Recall the circumstances of Exercise 20.6: we let X and Y c IPn 
be any pair of varieties lying in disjoint subspaces of lPn, and let J = J(X, Y) 
be their join. Show that the multiplicity of J at a point p E X is just the degree 
of Y times the multiplicity of p on X. As in Exercise 20.6, what can happen if X and 
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Yare disjoint but do not lie in disjoint linear spaces (so that, for example, lrCp(X) 
may intersect Y); and what happens if X actually meets Y? 

Exercise 20.13. This time we will revisit Exercise 20.7. Let C c 1P3 be the twisted 
cubic curve and TC its tangential variety. What is the multiplicity of TC at a point 
p E C? Is the same true if C is an arbitrary space curve, if we assume that the point 
p lies on no tangent line to C other than lr pC? 

Examples of Singularities 

Ideally, one would like to be able to classify singular points of varieties, up to 
a reasonable equivalence relation. To this end, we can introduce invariants of 
the singularity; we have already introduced the Zariski tangent space, the tangent 
cone, and the multiplicity, and there are many others. We can likewise define classes 
of singularities with special properties and study these; for example, we can look 
at normal singularities, Gorenstein singularities, Cohen-Macaulay singularities, 
local complete intersection singularities, and so on. For that matter, which equiva­
lence relation is appropriate to apply depends on context; people have studied singu­
larities up to topological equivalence, corresponding (in case K = C) to saying 
that two singularities p E X, p' E X' are equivalent if there are balls B, B' in the 
analytic topology on An around p and p' such that the triples (p, X (\ B, B) and 
(p', X' (\ B', B') are homeomorphic, while others look at singularities up to analytic 
equivalence (i.e., saying that two singularities p E X, p' E X' are equivalent if they 
have isomorphic neighborhoods in the analytic topology; equivalently, if the 
completions of the local rings (!Jx.P and (!JX',p' are isomorphic). 

With all this, the whole subject of singularities of algebraic varieties remains 
almost completely mysterious. This is not surprising: for example, since among 
singularities of varieties X cAn are cones over varieties Y c IPn- 1, we could not 
ever achieve a classification of germs of singularities without having, as a very 
special and relatively simple subcase, a classification of all varieties in projective 
space. Rather than get enmeshed in the subject, we will here try to give a very 
rough idea of it by discussing some examples of the simplest case, dim (X) = 1 and 
dim I;,(X) = 2. Throughout, when we use the word "equivalent" without modifica­
tion we will mean analytically equivalent, in the preceding sense. 

To begin, the simplest of all curve 
singularities is the node. A node is a 
singularity analytically equivalent to 
the origin in the curves xy = 0 or 
y2 _ x 2 = 0 in A2, that is, it consists of 
the union of two ~mooth arcs meeting 
transversely. Such a singularity is 
characterized by saying that it is a 
double point (i.e., has multiplicity two) with tangent cone the union of two distinct 
lines. 
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A cusp is a singularity analytically 
equivalent to the origin in the curve C 
given by y2 - x3 = ° in p:"2. By contrast 
with the node, it is locally irreducible 
in the analytic topology (unibranch, in 
the terminology of singularities); that is, 
it is not the union of two or more dis-
tinct analytic arcs. 
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A cusp is easy to draw over the real numbers, but this may obscure some of the 
intricacy of even this relatively simple singularity. To get a better idea of the 
geometry of a cusp over 1[, we may look at the link of the singularity, as follows. 
For any curve in p:"2 containing the origin, we may intersect the curve with the 
boundary of a ball of radius e around the origin in p:"2 = 1[2. We have 

aB.((O, O)) = {(x, y): Ixl2 + lyl2 = e} ~ S3, 

and for small values of e this should intersect the curve in a smooth real 1-
manifold-that is, a disjoint union of copies of S1 in S3. For small values of e the 
isotopy class of this submanifold of S3 will be independent of e and is called the link 
associated to the singularity of the curve at the origin. 

To see what the link of the cuspidal curve C c 1[2 looks like, note that the 
absolute values of the coordinates x and y of any point pEe naB. are c and C3/2, 
respectively, where c is the unique real solution of the equation c2 + c3 = e. We can 
thus write 

X naB. = {(ce2i9, c3/2e3i .9)} c {(x, y): Ixl = c, Iyl = C3/2 } 

~ S1 X S1 C S3. 

In other words, the link of the cusp lies on a torus in the sphere aBe ~ S3, winding 
twice around the torus in one direction and three times in the other; in particular, 
we see that the link of an ordinary cusp is a trefoil knot. 

Note that the link of a smooth point is simply an unknotted S1 c S3; conversely, 
any point with such a link is smooth. In general, the connected components of the 
link of a singular point p of a curve correspond to the branches of the curve at p, 
with the intersection number of two such branches at p given by the linking number 
of the corresponding loops. In particular, note that the union of two unlinked 
simple closed curves cannot be the link of an algebraic curve singularity. 

We can carry out the same analysis as earlier to deduce that the link of any 
singularity of the form x P + yP = 0, with p and q relatively prime, is a torus 
knot of type (p, q). More generally, the knot associated to any unibranch plane 
curve singularity is what is called an iterated torus knot; it is obtained by starting 
with a torus, drawing a torus knot on it, taking the boundary of a tubular neighbor­
hood of this knot, which is again a torus, and repeating this procedure a finite 
number of times. 

Exercise 20.14. Describe the link of the curve x P - yq = ° at the origin in case 
p and q are not relatively prime. Verify (at least in case qlp, but preferably in 
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general) that this agrees with the description of the linking number of the connected 
components of the link. 

A tacnode is defined to be a singu-
larity equivalent to the origin in the / 
curve y2 - X4 = 0, that is, the union of 
two smooth arcs meeting with contact 
of order two. Similarly, an oscnode is a 
singularity equivalent to y2 - x6 = 0, 
i.e., consisting of two smooth branched 
with contact of order three, and so on. 
Note that the branches of an oscnode do not have to have contact of order 
three with their affine tangent line, as they do in this example; for example, the 
automorphism of A 2 given by (x, y) 1--+ (x, y + x 2) destroys this property. In partic­
ular, a curve does not have to have degree six or greater to have an oscnode; an 
irreducible quartic curve, for example, can have one. 

Exercise 20.15. Find the equation of an irreducible quartic plane curve C c \p2 with 
an oscnode (*). 

We should mention, however, that it is not known in general for what values of 
d and n an irreducible plane curve of degree d may have a singular point analytically 
equivalent to the origin in y2 - x2n. 

A ramphoid cusp is a singularity 
equivalent to the origin in the curve 
y2 _ x5 = O. Like a cusp, it is uni­
branch. Unlike a cusp it is not resolved 
by blowing it up once; the blow-up of a 
curve with a ramphoid cusp has an 
ordinary cusp. As in the case of the oscnode, the standard form of the equation may 
give a false impression; a ramphoid cusp does not have to have contact or order 
five with its tangent line (the curve pictured is a quartic). 

In fact, we have now listed all double points of curves. We will state the following 
theorem without proof; a reference is [BK]. 

Theorem 20.16. Any singular point of multiplicity 2 on a curve C is equivalent 
to a singularity of the form y2 - xn = ° for some n. 

After double points come triple points, and so on. As you might expect, things 
are more complicated here. One major difference is the possibility of continuously 
varying families of singularities, even in simple cases. For example, an ordinary 
m-fold point of a curve C is defined to be a singularity equivalent to a union of m 
concurrent distinct lines, that is, a point of multiplicity m with tangent cone consist­
ing of m distinct lines. There is a unique ordinary triple point, but a continuous 
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family of nonequivalent quadruple 
points; the singularities given by 
xy(x - y)(x - A.y) and xy(x - y) x 
(x - A.'y) will be equivalent if and only if 
the projectivized tangent cones, viewed 
in each case as subsets of the projec­
tivized tangent space Pi, are projec­
tively equivalent, that is, if and only if 
j(A.) = j(A.'), where j is the j-function 
introduced in Lecture 10. Thus, with 
singular points of higher multiplicity 
the topology of the singularity does not 
determine its equivalence class. 

This phenomenon, it should be 
mentioned, occurs among unibranch 
singularities as well; for large values of p £3 
and q, the singularity x P - yq = 0 
admits deformations that are topologi­
cally trivial but analytically nontrivial. 

Nonetheless, we can specify at least 
the topological type of a singularity by 
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specifying, in effect, the sequence of blow-ups needed to resolve it, together with the 
number of branches meeting (and their orders of contact with) each of the excep­
tional divisors. For example, a singularity as picture at right could be resolved by 
a sequence of three blow-ups, resulting in a union of disjoint smooth arcs as shown; 
specifying the latter diagram specifies the topological type of the singularity. 

In classical terminology, a point of the exceptional divisor of the blow-up 
of a surface at a point p was called an "infinitely near point" to p, so that, for 
example, a tacnode could be described as a node with an infinitely near node. 
Similarly, the two singularities pictured 
to the right-consisting of a union of ~ 
three smooth arcs with pairwise contact 
of order two (called a triple tacnode), 
and a union of three arcs of which two 
have contact of order two and the third 
is transverse-would be described in 
classical language as "a triple point with 
an infinitely near triple point," and "a 
triple point with an infinitely near node," 
respectively. 

Exercise 20.17. Show that the following plane curves are algebraic, find their 
degrees and describe their singularities: (*) 

(a) the cardioid, given in polar coordinates as r = 1 + cos(.9). 
(b) the limacon, given by the equation r = 1 + 2 cos(.9). 
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(c) the lemniscate, given by r2 = cos(29). 
(d) the "four-leafed rose" r = cos(29). 

cardioid limacon 

Resolution of Singularities for Curves 

CXJ 
lemniscate 

To finish this lecture, we will use the calculation in this lecture of the degree 
of a projection to prove the resolution of singularities (Theorem 17.23) for curves. 
Specifically, we will prove the following. 

Theorem. Let C c IPn be any irreducible projective curve. Then there exists a smooth 
projective curve C birational to C. 

PROOF. To begin, recall that the projection 7th : C --+ C C 1P2 of C from a general 
(n - 3)-plane 1\ c [p>n is birational, so we can start with C c 1P2. Say the degree of 
Cis d. Choose n large, and consider the image of C under the nth Veronese map. 
The dimension of the vector space of homogeneous polynomials of degree n on 1P2 

is (n ; 2) = (n + 2)(n + 1)/2, and the subspace of those vanishing on C of dimen-

sion C -~ + 2) = (n - d + 2)(n - d + 1)/2, so that the dimension of the span of 

the image Co of C is 

N = dim(Co) = dn - d(d - 3)/2 

and the degree of Co is Do = n· d. Assume n is chosen large enough that 
N > Do/2 + 1. 

Now, let Po E Co be any singular point, and let CI = 7tpo (Co) C IPN- I be the 
projection of Co from Po to a hyperplane. Let 

DI ~ Do - 2 < 2N - 4 

the projective degree of the map 7tpo . Note that CI is nondegenerate in IPN - I 
and DI is strictly less than 2(N - 1), so that by Proposition 18.9 on the minimal 
degree of nondegenerate curves we see that 7tpo must be birational (and in particular 
we have DI = deg(Cd)· 

Now suppose CI has a singular point Pl. We can then repeat this process, 
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projecting from Pl to obtain a birational map from C1 to a curve C2 nondegenerate 
in a projective space of dimension N - 2 and having degree D2 < 2N - 6. 
We continue doing this, generating a sequence of curves Ci c [p>N-i of degrees 
Di < 2(N - i) - 2 as long as Ci continues to have singular points. But this has to 
stop; we cannot arrive at a nondegenerate curve of degree 1 in [p>2. D 

Exercise 20.18. Show that we can choose n = d - 2 in the preceding argument. Use 
this to show that a plane curve of degree d can have at most (d - l)(d - 2)/2 
singular points. 

It is worth remarking that we do not know the maximum number of isolated 
singular points a surface of degree d in [p>3 may have. 



LECTURE 21 

Parameter Spaces and Moduli Spaces 

Parameter Spaces 

We can now give a slightly expanded introduction to the notion of parameter space, 
introduced in Lecture 4 and discussed occasionally since. This is a fairly delicate 
subject, and one that is clearly best understood from the point of view of scheme 
theory, so that in some sense this discussion violates our basic principle of dealing 
only with topics that can be reasonably well understood on an elementary level. 
Nevertheless, since it is one of the fundamental constructions of algebraic geometry, 
and since the constructions can at least be described in an elementary fashion, we 
will proceed. One unfortunate consequence of this sort of overreaching, however, 
is that the density of unproved assertions, high enough in the rest of the text, will 
reach truly appalling levels in this lecture. 

With this understood, let us first say what we should mean by a parameter 
space. The basic situation is that we are given a collection of subvarieties Xa 
of a projective space [P>n-for example, the set of all varieties of a given dimension 
and degree or the subset of those with a given Hilbert polynomial. The problem is 
then to give a bijection between this set {Xa} and the points of an algebraic variety 
:Yf'. Of course, not just any bijection will do; we want to choose a correspondence 
that is reasonably natural, in the sense that as the point X varies continuously in 
:Yf', the coefficients of the defining equations of the varieties X c [p>n should likewise 
vary continuously, in whatever topology. Clearly, the first thing to do is to make 
precise this requirement. 

One way to do this comes from the construction of the universal hypersurface: 
for example, we saw that if we associated to each hypersurface Xc [p>n of degree d 
a point X E [p>N, then the subset of the product 

{(X, p): P E X} C [p>N X [p>n 



Parameter Spaces 267 

is in fact a subvariety. In general, we can take the analogous statement as the 
definition of a parameter space: our first requirement in order that a bijection 
between a collection of subvarieties {XIX C [p>n} and the points of an algebraic 
variety Yf be an algebraic parametrization is that the subset 

;1( = {(X, p): P E X} c Yf x [p>n 

is a subvariety. To put it another way, in terms of the notion of family of varieties 
introduced in Lecture 4 we require that the varieties parametrized form a family 
with base Yf. Note that if this condition is satisfied, then in affine open sets U c Yf 
the defining equations of ;1( n n-1 U c U X [p>n will be homogeneous polynomials 
Fi(Zo, ... , Zn) whose coefficients are regular functions on U. 

This condition, however, is not enough to characterize Yf uniquely; for that, we 
need something more. To express this, note first that if we have a closed family 
1/ c B x [p>n of subvarieties of [p>n in the given set {XIX}' we have a set-theoretic map 

CPr: B -+ Yf, 

defined by sending each point b E B to the point of Yf corresponding to the 
fiber v" = n-1(b) of the projection n: 1/ -+ Be [p>n. We would like to require that, 
for any such family with base B, the associated map CPr be a regular map of 
varieties. 

Unfortunately, this is asking too much; we have to impose a condition on the 
family 1/ before we can expect that it induces a regular map B -+ Yf. To see in a 
simple case why, let B be the cuspidal cubic curve (y2 - x 3) C A2 and consider the 
graph reB x A1 c B X [p>1 of the map f: A1 -+ B given by t~(t2, t3). We can 
think of the projection r -+ B as a family of points in [P>i, but the map it induces 
from B to the parameter space of points in [P>l-that is, [P>l-is just f- 1, which is 
not regular. 

To express a condition that will preclude this, given any family 
n: 1/ c B x [p>n -+ B let b E B be any point and P E v" c 1/ any point of the fiber 
over b. The map n then gives a pullback map (!)B,b -+ (!)v,p' We then say that the fiber 
of n is reduced at p if the maximal ideal mb of b E B generates the ideal of v" in 
(!)v,p-that is, if the pullbacks to V of regular functions on neighborhoods of bin 
B vanishing at b generate the ideal of v" in some neighborhood of p in V. We will 
say that the family is reduced if this condition is satisfied for all b E Band p E v,,; 
we will say that it is generically reduced if for all b E B the condition is satisfied at 
general points p E v". 

To relate this to the more standard terminology used in scheme theory, we say 
that a family of schemes n: 1/ -+ B is flat it for every point p E 1/ the local ring (!)r,p 

is a flat (!)B,1t(p)-module. If B is a connected variety, 1/ c B x [p>n a closed subvariety 
and n: 1/ -+ B the projection, this is equivalent to saying that the Hilbert poly­
nomials of the scheme-theoretic fibers of n are all the same (see [EH], for example). 
Now, the condition that the family n: 1/ -+ B is reduced says that the scheme­
theoretic fibers are the same as the fibers of n as varieties, so that for such a family 
flatness is equivalent to constancy of Hilbert polynomial of the set-theoretic fibers; 
and this is in turn implied by the constancy of the dimension and degree of the 
fibers. Thus a reduced family of varieties of the same dimension and degree is flat. 



268 21. Parameter Spaces and Moduli Spaces 

In general, the notion of flatness is absolutely central in the construction of the 
Hilbert scheme.) 

Once we restrict ourselves to families satisfying one of these two conditions, it 
becomes reasonable to require that the map B -+ Jf associated to a family be 
regular. In fact we can combine the two requirements neatly into one statement. 
Given that a universal family f[ exists over Jf and is reduced (resp., generically 
reduced), every map <P: B -+ Jf will be the map <Pi' associated to a reduced (resp., 
generically reduced) family 1/' c B x IPn: just take 1/' the fiber product 1/' = B x Jf fl. 
Conversely, if every map <P: B -+ Jf comes from a family 1/' c B x lPn, the family 
f[ c Jf x IPn associated to the identity map i: Jf -+ Jf will be the universal family. 
In sum, then, we can make the following definition. 

Definition 21.1. We say that a variety Jf, together with a bijection between the 
points of Jf and a collection of varieties {Xa c IPn}, is a parameter space for the 
collection {Xa} if, for any variety B, the association to each family 1/' c B x IPn of 
varieties belonging to the collection {Xa} of the map <Pi': B -+ Jf induces a bijection 

{
reduced closed families} 

with base B, whose 
fib b f -+ {regularmapsB-+Jf}. 
1 ers are mem ers 0 

the collection {Xa} 

We can similarly define a cycle parameter space to be a space satisfying this 
condition with respect to generically reduced families. 

Most of the remainder of this lecture will be devoted to descriptions of two 
classical constructions, one showing the existence of a cycle parameter space for the 
collection of varieties X c IPn of given dimension and degree, and the other creating 
a parameter space for the set of varieties having given Hilbert polynomial. The 
varieties constructed are called the open Chow variety and the open Hilbert variety; 
in each case, we will sketch the construction, and say a word or two about what 
sort of objects are parametrized by their closures, the Chow variety and the Hilbert 
variety. We will also describe in more detail (although without proof) one elemen­
tary example of the two different approaches, the parametrization of curves of 
degree 2 in 1P3. Finally, at the end of the lecture we will give a very brief discussion 
of the related notion of moduli space. 

Chow Varieties 

The first construction of the parameter space for varieties of a given degree and 
dimension is called the Chow construction. The basic idea behind it is simply that 
the problem in parametrizing varieties X c IPn in general is that X is not generally 
given by a single polynomial, whose coefficients we can vary freely as in the example 
of hypersurfaces. The point of the construction is thus to associate to any such 
variety X a hypersurface <l>x, albeit not one in a projective space. 
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There are two essentially equivalent ways of doing this. The one we will work 
with uses a product of projective spaces; as we will remark at the end of the section 
we can simply replace this product with a Grassmannian without altering the 
construction. Suppose first of all that X has pure dimension k, and consider the 
incidence correspondence consisting of points P E X together with (k + l)-tuples of 
hyperplanes containing P; that is, 

r = {(p, Hi' ... , Hk+1): p E Hi Vi} 

c X x IP'n* x ... x IP'n*. 

The standard calculation yields the dimension of r readily enough: for each point 
p E X, the set of hyperplanes containing p is a hyperplane IP'n-l c IP'n*, so that the 
set of (k + I)-tuples of hyperplanes is irreducible of dimension (k + 1)' (n - 1). We 
deduce that r is of pure dimension k + (k + 1)' (n - 1) = (k + 1)· n - 1, with one 
irreducible component corresponding to each irreducible component of X. At the 
same time, for a general choice of point p E X and Hi' ... , Hk+i containing p the 
intersection of the Hi with X will consist only of the point p, so that the projection 
map n: r -+ IP'n* x ... x IP'n* will be birational. It follows that the image of r under 
this projection is a hypersurface in IP'n* x ... x IP'n* (this is where we need X to have 
pure dimension); we will call this hypersurface <l>x. 

Now, just as in the case of a product of two projective spaces, any hyper­
surface in IP'n* x ... x IP'n* will be the zero locus of a single multihomogeneous 
polynomial F; F will be unique up to multiplication by scalars if we require as well 
that it have no repeated factors. We accordingly let Fx be the polynomial defining 
the hypersurface <l>x c IP'n* x ... x IP'n*. It is relatively easy to see what the multi­
degree of Fx is (of course, since <l>x is symmetric with respect to permutation of the 
factors of IP'n* x ... x IP'n*, Fx must have the same degree with respect to each set 
of variables). If we fix k general hyperplanes H 1, ... , Hk C IP'n, the intersection of X 
with H 1, ... , Hk will consist of exactly d points Pi' where d is the degree of X; and 
we will have (H1 , ••• , Hk+d E <l>x if and only if Hk+l contains one of the Pi- The 
intersection of <l>x with the fiber {(H l' ... , Hk )} x IP'n* will thus be the union ofthe d 
hyperplanes pt c IP'n*, where pt is the set of hyperplanes in IP'n containing Pi- In 
particular, it has degree d, so that Fx must have degree d = deg(X) in each set of 
variables. 

Now let V be the vector space of multihomogeneous polynomials of multidegree 
(d, d, ... , d) in k + 1 sets of n + 1 variables. We have associated to a variety X c IP'n 
of dimension k and degree d a well-defined element [<I>x] E IP'V in the associated 
projective space; we thus have a set-theoretic map 

{varieties of pure dimension} ~ IP'V 
k and degree d in IP'n -+ . 

The point ~(X) = [Fx] in IP'V corresponding to a given variety Xc IP'n is called the 
Chow point of X. 

We claim next the map ~ is an injection, i.e., that the variety X is deter­
mined by its Chow point [Fx] E IP'V To do this, we introduce another incidence 
correspondence 'I' in IP'n x (IP'n* x ... x IP'n*), defined by 
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c IPn x IPn* x ... x IPn*; 

we let n: 'I' -+ IPn and 11: 'I' -+ IPn* x ... x IPn* be the projection maps. Note that 'I' 
is just the fiber product of the standard incidence correspondence r c IPn x IPn* 
with itself k + 1 times over IPn; in particular, the fiber n-1(q) of 'I' over any point 
q E IPn is just the product q* x ... x q* ~ IPn- 1 x ... x IPn-1 of the hyperplane 
q* c IPn* with itself k + 1 times (where again q* c IPn* is the set of hyperplanes 
passing through q). 

Now consider the inverse image 11-1(<I>x)' For any point q E X c lPn, this will 
contain the fiber n-1(q) of 'I' over q. By contrast, if q ¢ X, 11-1 (<I>x) will intersect the 
fiber n-1(q) ~ IPn-1 x ... x IPn-1 of 'I' over q in a proper hypersurface; if we think 
of q* ~ (IPn-1)* as the dual of the projective space of lines through q in lPn, the 
intersection 11-1 (<I>x) n n-1(q) will be the hypersurface <I>:x in the product (IPn- 1)* x 
... x (IPn-1)* associated to the image X = nq(X) of X under projection from q. We 
may thus characterize 

X = {q E IPn: n-1(q) c 11-1(<I>x)}; 

equivalently, we can say that X is the set of points q such that the fiber of 11-1 (<I>x) 
over q has dimension (k + l)(n - 1). 

The next claim in regard to the map ~ is that the image is a quasi-projective 
variety. This image is then called the open Chow variety of subvarieties of dimension 
k and degree d in IPn and is denoted ~k,d = ~k,AlPn) (the closure i6'k,d of ~k,d is called 
simply the Chow variety; we will discuss later to what the extra points in the closure 
correspond). 

This claim is almost elementary. We will prove it first for the image under 
~ of the subset of irreducible varieties X c IPn of dimension k and degree d; the 
general case is handled similarly. We first have to observe that we can use the 
preceding construction to associate to any hypersurface <I> c IPn* x ... x IPn* a 
subvariety Zcp c IPn: we set 

Zcp ={q E IPn : n-1(q) c 11-1 (<I»} 

= {q E IPn: dim(n-1(q) n 11-1 (<1>)) ~ (k + l)(n - I)}; 

this is a subvariety of IP'n since the fiber 
dimension of the map n: 11-1 (<1» -+ IPn 
is upper-semicontinuous. Indeed, the 
key point is that the association of Zcp to 
<I> defines a subvariety :=: of the product 
space IP'V x IP'n, i.e., the set of pairs (<I>, q) 
such that q E Zcp' is a subvariety of 
IPV x IPn. To see this, we set up a 
diagram of incidence correspondences 
as indicated at left. To begin with, the 
subset 
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e = {(<I>, Hi> ... , Hk+l): (Hi' ... , Hk+d E <I>} 

c IP'V x IP'n* x ... x IP'n* 

is clearly a subvariety, and hence so is the subset 

n = {(<I>, Hi"'" Hk +1 , q): (Hi"'" Hk+d E <I> and q E Hi n'" n Hk+d 

c IP'V x IP'n* x '" x IP'n* x IP'n 
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(this is just the fiber product of e c IP'V x IP'n* x ... x IP'n* and 'P c IP'n* x ... x 
IP'n* x IP'n over IP'n* x ... x IP'n*). We can then write 

S = {(<I>, q): q E ZcJJ} 

= {(<I>, q): dim(y-l(<I>, q)) ~ (k + l)(n - 1)} 

where y: n ---+ IP'V x IP'n is projection on the first and last factor; from the latter 
description it follows that S is a subvariety of IP'V x IP'n. 

Finally, we can check that the dimension of ZcJJ can never exceed k, and that 
among those irreducible <I> such that dim(ZcJJ) = k the degree of ZcJJ will always equal 
d. Thus, if we restrict our attention to irreducible X, we are done; the image, under 
the Chow map, of the set of irreducible X will lie in the open subset U c IP'V of 
irreducible hypersurfaces of multidegree (d, ... , d), and will be the locus of <I> E U 
such that the fiber S over <I> has dimension at least k. 

If we want to include reducible varieties X as well (we do), we have to work a 
little harder, since for reducible <I> it is possible that dim(ZcJJ) = k but deg(ZcJJ) = 

d' < d (this will happen, for example, if <I> = <1>1 U <1>2' with <1>1 = <l>y for some 
variety Y c IP'n of dimension k and degree d', and <1>2 a general hypersurface of 
multi degree (d - d', ... , d - d'). At this point, it would make sense to read one of 
the explicit descriptions of the equations defining the Chow variety, e.g., in [GM]. 

Note also that the variety S c IP'V x IP'n intersected with the inverse image 
tik,d X IP'n is the universal variety of dimension k and degree d over the open 
Chow variety. (This family is only generically reduced, as we will see in Exercise 
21.6) What this all leads up to is the following theorem, which we will state without 
proof. 

Theorem 21.2. The open Chow variety is a cycle parameter space for the set of 
varieties of pure dimension k and degree d in IP'n. 

The existence of a universal family over the open Chow variety allows to 
us deduce a number of natural attributes of the Chow parametrization. 

Exercise 21.3. Let Z c IP'n be a fixed variety. Use the existence of a universal 
family over the open Chow variety tik,d to deduce that the subset 

tik,AZ) = {X E tik,d: X n Z -# 0} 

is a subvariety of tik,d' 
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Exercise 21.4. As in the preceding exercise, let Z c IPn be a fixed variety. Use 
the existence of a universal family over the Chow variety rg;k,d to deduce that 
the subset 

rg;k,AZ) = {X E rg;k,d: Xc Z} 

is a subvariety of rg;k d; this is called the Chow variety of cycles on Z. (Warning: 
you may want to do this only for the open subset ofrg;k,d parameterizing irreducible 
subvarieties X c IPn.) 

One question that comes up naturally, given that the open Chow variety rg;k,d is 
a quasi-projective variety, is what its closure in the space IPV is. The answer, as it 
turns out, is very straightforward, though we will have to state it here without 
proof. It is that if a polynomial F E V lies on the closure of rg;k,d and we factor it into 
prime factors 

then each factor Fi is itself the Chow point of a subvariety Xi c IPn. We must 
have, of course, that 

L ai . deg(Xi) = L ai' deg(Fi) = deg(F) = d. 

We may thus say that the closure of rg;k,d parameterizes effective cycles on lPn, 
where an effective cycle of dimension k and degree d is defined to be a formal 
linear combination L ai ' Xi with Xi irreducible of dimension k, ai positive integers, 
and L ai . deg(Xi) = d. As we indicated, this closure is called simply the Chow 
variety and is denoted ~k,d' 

Exercise 21.5. Show that the Chow variety ~k,d is connected, since every component 
of ~k,d will contain the locus of points corresponding to cycles d· r where 
r ~ IPk c IPn is a linear subspace. Find the number of irreducible components 
of the Chow varieties ~l,2(1P3), ~l,3(1P3), and ~l,4(1P3) parameterizing curves of 
degrees 2, 3, and 4 in 1P3. 

It is not known in general how many irreducible components the Chow variety 
has, even for curves in 1P3. As for the higher connectivity of~k,d' there has been some 
fascinating work by Lawson [L] on the homotopy groups of the "infinite" Chow 
variety ~k, 00 = U ~k,d (where the inclusions are defined by adding a fixed k-plane r 
to each cycle L ai ' Xi E ~k,d)' 

We mentioned at the outset that there are two equivalent approaches to the 
Chow construction. The second simply replaces the product IPn* x ... x IPn* with 
the Grassmannian IG = lG(n - k - 1, n) of codimension k + 1 planes in lPn, and 
associates to a subvariety X c IPn of dimension k and degree d the corresponding 
hypersurface 

<Ilx = {A: A n X # 0}. 

This is of course simpler than the previous; the only additional step is that we 
have to remark that the hypersurface <Ilx is the intersection of the Grassmannian IG 
with a hypersurface of degree d in lPN, where IPN is the ambient space of the Plucker 
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embedding. This hypersurface is given as the zeros of a homogeneous polynomial 
Fx of degree d on lPN, defined modulo the dth graded piece J(G)d of the ideal of 
G c IPN and modulo scalars. We may in this way associate to X the point [Fx] in 
the projective space IP(S(G)d) of the dth graded piece of the homogeneous coordi­
nate ring of G; this is also called the Chow map and [Fx] the Chow point of X. 

Exercise 21.6. Consider the family of irreducible curves Ct c 1P3 where Ct is the 
image of the map 

given by 

qJt: [Xo, Xl] f---+ [X8, xJXl + (1 - t)Xoxf, tXoxf, xi]. 

Ct is just the image of the "standard" twisted cubic Cl under the linear map 
At: 1P3 --+ 1P3 given by 

[ ~ ~ ~ ~l o (1 - t) t 0 

o 0 0 1 

so that Ct is a twisted cubic for t =I 0 and a plane nodal cubic for t = O. Show 
that the curves Ct form a closed family in A 1 X 1P3. Show that this family is 
generically reduced, but is not reduced. (In fact, no family whose general member 
is a twisted cubic specializing to the curve Co can be reduced.) Deduce that the 
universal family over the open Chow variety is only generically reduced and that 
the Chow variety is a cycle parameter space rather than a parameter space. 

Hil bert Varieties 

The second construction of a parameter space for subvarieties of lPn, that of Hilbert, 
presents a nice contrast to the Chow construction. While the Chow variety can be 
defined in very elementary ways, its properties are harder to derive. By contrast, 
the Hilbert construction is in some sense much more naive, and the properties of 
the resulting varieties much easier to see, but in order to define it we will need to 
at least state a technical lemma whose proof is well beyond the scope of this book. 

The Hilbert variety parametrizes varieties not just of fixed dimension and 
degree, but with a fixed Hilbert polynomial P (it also does not require the varieties 
in question to have pure dimension). We do need the following statement. 

Lemma 21.7. Given any polynomial p, there exists an integer mo such that for 
any variety X with Hilbert polynomial Px = p, 

(i) the Hilbert function hx(m) = p(m) for all m ~ mo and 
(ii) the ideal J(X) is generated in degree mo. 
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The second statement means that for any m ~ mo the elements of the mth graded 
piece of the ideaII(X) generate the truncated ideal EEh",m I(X)I; in particular, this 
implies that I(X)m generates the ideal of X locally and a fortiori that the common 
zero locus of I(X)m is X. 

Given this, the idea behind the construction is simplicity itself. The difficulty 
with parametrizing varieties X c pn other than hypersurfaces is that their ideals 
Ix are generated not by single polynomials but by collections or vector spaces of 
them; the solution to associate to such a varety not a point in a projective space 
parametrizing single polynomials up to scalars, but a point in the Grassmannian 
parametrizing such vector spaces of polynomials. Thus, suppose X c pn is a variety 
with Hilbert polynomial Px = p. By Lemma 21.7 we know that for m ~ mo the ideal 
I(X)m has co dimension exactly p(m) in the vector space Sm of homogeneous poly-

nomials of degree m on pn. Thus, setting N(m) = (m : n) and q(m) = N(m) - p(m), 

we have a set-theoretic map 

{su.bVarieties Xc. pn with } -+ G = G( (m) N(m)) 
Htlbert polynomIal Px = P q , 

called the Hilbert map; the point in the Grassmannian G associated to a variety 
Xc pn will be called its Hilbert point. The second part of Lemma 21.7 then says 
that this map is one to one; the image will be called the open Hilbert variety and 
denoted £;,. 

In fact, the open Hilbert variety is a quasi-projective subset of the Grass­
mannian G. To see this, observe that for any vector subspace A c Sm and any 
positive integer k, we have a multiplication map 

if we have a subspace A c Sm of codimension p(m) it will be the mth graded 
piece of the ideal I(X) of a variety X c pn with Hilbert polynomial p if and 
only if for every k the rank of 'Pk is what it should be, that is, q(m + k). Now, 
in open sets U c G we can represent A E G as spanned by polynomials F1, ... , 

Fq(m) E Sm, with the coefficients of Fi regular functions on G. The map 'P k may then 
be viewed as a linear map between the fixed vector spaces (Sk)E9Q(m) and Sk+m, whose 
matrix entries are regular functions on U. The intersection £;, Il U is correspond­
ingly expressed in a neighborhood of a given point I(x) E £;, as the locus in U where 
this map has rank exactly q(k + m) for each k, showing that if;, Il U is locally closed 
in U. 

One apparent problem with this argument is that there are a priori infinitely 
many determinantal conditions associated to maps 'Pk and an infinite intersection 
of locally closed subsets need not be locally closed. In fact, this is not serious, since 
only a finite number of Hilbert polynomials are possible in a small neighborhood 
of any point A E G. More serious is the issue of whether the variety if;, constructed 
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in this way is dependent on the choice of m. To show that in fact it is not requires 
techniques well beyond the scope ofthis book; a good reference for the construction 
of Yl' in general, and this in particular, is [M 1]. 

It is now immediate that a universal family q: c: ~ X jp>n exists: as we observed, 
in open sets U c: G we can represent A E G as spanned by polynomials FI , ... , 

Fq(m) E Sm' with the coefficients of F; regular functions on G, and these F; are just the 
defining equations of q: (\ (U x jp>n). Likewise, it's a good exercise to establish, on 
the basis of what we have said so far, the following. 

Theorem 21.S. The open Hilbert variety is a parameter space for the set of sub­
varieties X c: jp>n of given Hilbert polynomial. 

Finally we may ask, as we did in the case of the Chow variety, to what the 
points in the closure ~ of ~ correspond. The answer is that they correspond 
to subschemes of jp>n with Hilbert polynomial p. In our (limited) language, we 
can take this to mean saturated ideals with Hilbert polynomial p, that is, ideals 
I c: S = K[Zo, ... , Zn] with quotient A = SjI satisfying dimK(Am) = p(m) for m 
large. To see what this means in practice, it is probably best to refer to an example, 
which we will do now. 

Curves of Degree 2 

As an example of both Chow and Hilbert varieties, consider the case of curves of 
degree 2 in jp>3. Such a curve, if it is of pure dimension 1, will consist of either 
a plane conic or the union of two lines. There are thus two components C(j, C(j' of the 
Chow variety C(jI,2, which intersect along the locus of pairs of incident lines. The 
latter component is isomorphic to the symmetric product of the Grassmannian 
1G(1, 3) with itself (see Example 10.23), with the diagonal corresponding to cycles of 
the form 2· L. Note in particular that it has dimension 8 and, as the reader can 
verify, is singular exactly along its diagonal. The first component, the closure of the 
locus of plane conics, is slightly trickier. Probably the best way to see what it looks 
like is to introduce the incidence correspondence 

r = {(C, H): C c: H} c: C(j' X jp>3*; 

r maps to the second factor jp>3* with fibers isomorphic to the space jp>s of conics 
in a plane. In fact, it's not hard to see that even in the Zariski topology it is a 
jp>s-bundle over jp>3; in particular, it is smooth of dimension 8. The map from r to 
C(j' is birational, since a general plane conic C E C(j' lies on a unique plane H, but 
does collapse the locus where C = 2· L is a line with multiplicity 2; specifically, for 
each L E 1G(1, 3) the subvariety {(2L, H): H :::J L} ~ jp>1 is mapped to a single point 
in C(j'. We can see from this that C(j' is singular exactly along the locus of double lines 
(if f: X ~ Y is a regular birational map with X and Y both smooth, the locus in X 
where the differential df fails to have maximal rank will be either empty or of pure 
codimension 1). The picture, diagrammatically, is 
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C = {line pairs} C' = {plane conics} 

C n C' 
= {pairs of incident lines} { double lines} 

(= Csing = C'sing) 

By way of contrast, consider the Hilbert varieties parametrizing curves of 
degree 2. To begin with, there are many varieties Jt;" corresponding to various 
polynomials p(m) = 2m + c. Of these, the smallest value of c for which Jt;, #- 0 is 
c = 1; the corresponding component Hilbert variety J'f2m+1 parametrizes plane 
conics. Like the component '?J' of the Chow variety '?J1 ,2' J'f2m+1 has an open subset 
parametrizing smooth plane conics and pairs of distinct incident lines; indeed, this 
open subset is isomorphic to the corresponding one in '?J'• The rest of J'f2m+1 , 

however, is different; we can check that any saturated ideal I c K [Zo, ... , Z3] with 
Hilbert polynomial 2m + 1 is a complete intersection, that is, is generated by a 
linear and a quadratic polynomial with no common factor. It follows that the 
points of the Hilbert variety .1t2m+1 correspond to pairs consisting of a plane 
H c 1P'3 and a conic curve in H-that is, a point of the incidence correspondence 
r. In fact, J'f2m+1 is isomorphic to r. 

Next comes the Hilbert variety .1t2m+2' This contains a component J'f whose 
general member is a pair of skew lines, similar to the component '?J of the Chow 
variety '?J1 , 2' In fact, J'f2m+ 2 has an open subset isomorphic to the open subset of '?J 
parametrizing pairs of distinct lines, though in the case of a point of .1t2m+2 

corresponding to two incident lines L v M the ideal corresponding is not the ideal 
of the union; if {Lt } and {Mt } are families of lines, with Lt disjoint from Mt for t#-O 
and Lo n Mo = {p}, then the limit of the ideals It = IL,vM, is not ILovMo' but rather 
the ideal of polynomials vanishing on Lo v Mo and vanishing to order 2 at p. 

Exercise 21.9. Verify this last statement, 
for example, in case L t is given by 
(Zo = Zl = 0) for all t and M t is given by 
(Zo - tZ3 = Z2 = 0). Check also that 
the ideal described is saturated and has 
Hilbert polynomial p(m) = 2m + 2. 

The really interesting part of .1t2m+2, 

however, is what happens to the variety 
L t v M t when the two lines approach 
the same line Lo = Mo. We arrive in this 
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case at an ideal contained in the ideal ILo and containing the square (ILo)2, but not 
equal to either. Rather, it will consist, for some choice oflinear map <p: Lo -+ K4/Lo, 
of the ideal of polynomials F vanishing on Lo and whose normal derivative at each 
point p E Lo in the direction of <p(p) is equal to zero-for example, if Lo is given as 
Zo = Z1 = 0, it will be given as 

I = (Z5, ZOZ1' Zf, o:(Zo, Zd· Z2 + P(Zo, Zd· Z3) 

where 0: and P are homogeneous linear polynomials. (If <p fails to be an iso­
morphism, we require that F vanish to order 2 at the point p = Ker(<p), so that 
the ideal will have codimension one in an ideal generated by a linear and a 
quadratic polynomial.) In particular, the limiting ideal I of the family IL,uM, will not 
depend only on the limiting position 
Lo = Mo. One way to describe the limit 
is to think of L t and M t as points on the 
Grassmannian G(1, 3); as they ap­
proach their common limit they deter­
mine not only the point Lo E G(1, 3) but 
a tangent vector <p: Lo -+ K4/Lo at 
G(1, 3) at Lo as well, and it is this 
tangent vector <p that determines the 
limit of the ideals. 

Exercise 21.10. Verify this last state­
ment, for example, in case L t is given by 
(Zo = Z1 = 0) for all t and M t is given by 

QJ(1,3) 

(Zo - tZ3 = Z1 - tZ2 = 0). Check again that the ideal described is saturated and 
has Hilbert polynomial p(m) = 2m + 2. 

The conclusion we may draw is that, at least set-theoretically, the compo­
nent Yf of .n'2m+2 maps to '(5 isomorphically away from the diagonal of '(5, and 
with fiber over a point 2· LE '(5 the projectivized tangent space IPTL(G(1, 3» to the 
Grassmannian at L. In fact, this map is regular, and Yf is just the blow-up of '(5 

along the diagonal. Another way of constructing Yf is to say that it is the quotient 
ofthe blow-up of G(1, 3) x G(1, 3) along the diagonal by the involution I exchang­
ing factors. 

We are still not done with Yf2m+2 , however: there is another irreducible compo­
nent Yf' of .n'2m+2 to go. This is the component whose general member consists of 
the union of a plane conic C with a point p E 1P3 not on C; as may be readily checked, 
this is also a subvariety of 1P3 with Hilbert polynomial p(m) = 2m + 2. We will not 
say much about this component except to remark on its existence and to observe 
that it intersects the component Yf along the union of the loci of pairs on incident 
planes, and of "double lines" 2· L whose associated linear map <p: L -+ K4/L has 
rank one. 

Exercise 21.11. Describe the possible limits in Yf' of a union C v Pt where Pt 
approaches a point Po E C. 
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See [EH] for a discussion of limits of projective varieties, including a more 
detailed analysis of these examples. 

Similarly, there is for every c ;;::: 3 a nonempty Hilbert variety ~m+c. It will 
have one irreducible component whose general member consists of a plane conic 
plus c - 1 points, and one component whose general member is the union of two 
skew lines and c - 2 points. (The Hilbert scheme will contain other components, 
whose general points correspond to saturated ideals] c S whose quotients Sf] 
have Hilbert polynomial 2m + c but that are not radical; these can get quite 
complicated.) 

Moduli Spaces 

The notion of a parameter space, a variety whose points parametrize the set 
of subvarieties of a projective space lPn, is only the first half of the story. An 
even more fundamental object in many respects is a moduli space, whose points 
parametrize a set of varieties up to isomorphism. In a sense, the shift in emphasis 
corresponds to the change in point of view between the last century and this one: 
in the 19th century, a variety was a priori a subset of projective space, with 
isomorphism between vareties X c IPn and Y c IPm an equivalence relation on 
these. The 20th-century point of view is that the primary object is the abstract 
variety and a projective variety is an abstract variety with the extra data of a map 
to projective space. Thus, it becomes equally important to describe the families of 
abstract varieties. 

The basic situation, then, is that we are given a collection of varieties {X,,} and 
ask whether the set of such varieties up to isomorphism may be given the structure 
of an algebraic variety in a natural way. Clearly, the first thing we have to do is say 
what we mean by "natural." In the case of parameter spaces, we had two answers 
to this. We first of all said that a bijection between a collection of subvarieties 
X" c IPn and the points of a variety Jf was an algebraic parametrization if the 
subset f!{ of the product Jf x IPn defined by the relation f!( = {(IX, p): p E X,,} is a 
subvariety. In our present circumstances, since the objects we are parametrizing 
are isomorphism classes of varieties, and not in any canonical way subvarieties of 
a fixed projective space, this does not make sense. 

On the other hand, the requirement in basic Definition 21.1 of parameter spaces 
-that a family of varieties induces a map from the base of the family to the 
parameter space, and that this gives a bijection between such families and such 
maps-does have an analog in this setting. To begin with, we define a family of 
varieties of the collection {X,,} with base B to be a variety "f/ and map n: "f/ -+ B 
such that for each point b E B the fiber v" = n-1(b) is isomorphic to X" for some IX. 
Now, given a bijection between the set of isomorphism classes of X" and the points 
of a variety .$I, we may define a set-theoretic map 
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by sending each point b E B to the point of .A representing the isomorphism 
class [Xb] of the fiber Xb over b. We will then say that the bijection is an algebraic 
parametrization of the set of isomorphism classes of Xa-or that .A is a coarse 
moduli space for the varieties {Xa}-iffor any reduced family n: 1/ -+ B the induced 
map ((In is a regular map of varieties and .A is the maximal variety with these 
properties, i.e., if .Af -+ .A is any bijective morphism through which every ((J" factors, 
than .Af ~ .A. 

We can ask for more. For example, by analogy with our definition of parameter 
space, we could ask that there exist a tautological family over .A-that is, a variety 
:![ and map n: :![ -+.A such that for any p E .A the fiber Xp is in the isomorphism 
class specified by p. We could require moreover that for any variety B the set map 

{families with base B} -+ {regular maps B -+.A} 

sending a family n: 1/ -+ B to the map ((In is in fact a bijection. If this addition­
al condition is satisfied, the family n::![ -+.A is called universal.7 In this case, 
.A is called a fine moduli space for the varities {Xa }. 

Fine moduli spaces are substantially rarer than coarse ones, as we will see 
in the following example. 

Example 21.12. Plane Cubics 

The fundamental example of a moduli space is one we encountered before in 
Example 10.16, that of plane cubics. Based on our previous discussion, we see that 
even a coarse moduli space does not exist for plane cubics. This is due to the various 
inclusions among closures of orbits of the action of PGL3 K on the space [p9 of 
plane cubics. For example, if .A is the set of isomorphism classes of plane cubics, 
.A will have one point p corresponding to irreducible plane cubics with a node, and 
another point q corresponding to cuspidal cubics. But by what we saw in Example 
10.16, the point q would have to lie in the closure of the point p! 

For another example, consider for any fixed value of A the family 1/ -+ A 1 

of plane cubics with base A 1 given by the equation 

y2 = x' (x - t)· (x - At). 

The fibers It; of this family are all projectively equivalent for t =I- 0 but not iso­
morphic to the fiber Vo. If a moduli space .A existed, then, the induced map 
A 1 -+.A would be constant on A 1 - {O}, but not constant. Indeed, based on our 
description of the action of PGL3 K on the space [p9 of plane cubics in Example 
10.16, we can see that in order to have a moduli space, we have to restrict to the 
open set consisting of smooth cubics and irreducible cubics with a node. Having 

7 In the case of parameter spaces Jt' of subvarieties of po there was no distinction; the existence 
of a family f![ c Jt' x po of subvarieties of po whose fiber over p E Jt' was the subvariety corresponding 
to the point p implied the universal condition. Here, however, it does not, which is why we use the term 
"tautological" rather than "universal." 
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done this, a coarse moduli space does exist; it is the line p1 with Euclidean 
coordinate j. 

Note that even after this restriction, a fine moduli space does not exist: for 
example, you can check that if n: "f/ -+ B is any family of curves isomorphic to 
smooth plane cubics, then the induced map B -+ p1 will be ramified over the point 
j = 0, i.e., thej-function associated to the family cannot have simple zeros. For the 
same reason, no universal family exists over the j-line. If we exclude the two points 
j = 0 and j = 1728, a tautological family does exist over the complement, but even 
then it is not universal. 

While this example is too simple to incorporate many of the subtleties of the 
theory in general, it does illustrate two aspects of one basic paradigm for the 
construction of a moduli space for a family of algebraic varieties {Xa}. The first 
point is to realize the varieties in question as projective varieties, even if the 
embedding of the members of the family in pn is only determined up to the action 
ofPGLn+1 K. 

To express this, we may define a polarization of a variety X to be a projective 
equivalence class of embeddings of X in pn (in general, the definition of polarization 
may be somewhat broader), and say that the first step in constructing a moduli 
space is to find a canonical choice of polarization for each object in our family. For 
example, in the case of the family of smooth curves of genus g we could take the 
canonical embedding, which is to say, for each curve C choose a basis W 1 , ••. , Wg for 
the space of holomorphic 1-forms on C, write Wa locally as Ja(z) dz, and map 

Equivalently, if we let V be the vector space of holomorphic differentials, we map C 
to the projective space PV* by sending p to the hyperplane {w E V: w(p) = O} c V. 
This determines an embedding C y pg-1 for any nonhyperelliptic curve of genus 
g; if we want to include hyperelliptic curves as well, we can use quadratic differen­
tials instead of one-forms (or, in the case of genus 2, triple differentials). 

If no canonical polarization of the objects in our family can be found, it may not 
be possible to construct a moduli space (at least in this manner). One possibility is 
to construct a moduli space for pairs (Xa, L) where Xa is a member of our family 
and L is a choice of polarization (with specified numerical invariants, such as 
degree) of Xa. 

Having chosen an embedding Xa y pn up to PGLn+1 K for each X a, the prob­
lem is now converted from one of isomorphism to one of projective equivalence. 
Thus, the set of images of these embeddings will be a locally closed subset .Yf of the 
Chow/Hilbert variety parametrizing such subvarieties of pn, and the moduli space 
we desire should then be the quotient of this quasi-projective variety .Yf by the 
group PGLn+1 K, if indeed this quotient exists. At this point, geometric invariant 
theory intervenes to give us in general the information we obtained by hand in the 
case of plane cubics, that is, whether such a quotient exists and, more generally, 
what is the largest open subset U c.Yf of the closure of .Yf whose quotient 
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U /PGLn+1 K exists. Thus, for example, in the case of curves of genus g, if we choose 
the m-canonical embedding (that is, the polarization given by m-fold differentials) 
we find that for m large the quotient of the space :If of m-canonically embedded 
curves does exist; indeed we can also include the locus of points in the closure of 
:If corresponding to curves C c pm(2g-2)-g whose only singularities are nodes 
and whose automorphism groups are finite (which amounts to saying that every 
rational component of C passes as least three times through the nodes of C). We 
arrive, ultimately, at what is a model of the success of this theory. 

Definition. For g ~ 2, a stable curve of genus g is a connected curve of arithmetic 
genus g having only nodes as singularities and finite automorphism group. 

(Given that a curve C is connected with only nodes as singularities, its arithmetic 
genus is given simply as the sum of the geometric genera of its components (that is, 
the genera oftheir desingularizations), plus the number of nodes, minus the number 
of components, plus one.) We then have the following. 

Theorem 21.13. There is a coarse moduli space .Hg for stable curves of genus 
g ~ 2; .Hg is an irreducible projective variety of dimension 3g - 3. 

Of course, there is much more to the story. We can say that a universal family 
exists over the open subset .H~ c .Hg of curves with no automorphisms and that 
this open subset is smooth, what the singularities of .Hg look like, and so on. An 
excellent discussion of this construction is given in [MM], which includes refer­
ences to other examples of the applications of geometric invariant theory as well. 



LECTURE 22 

Quadrics 

In this final lecture, we will study in more detail what are perhaps the simplest and 
most fundamental of all varieties: quadric hypersurfaces. The idea is partly to 
become familiar with these basic objects and partly to see some of the ideas we have 
studied in the preceding lectures applied. In the course of this (somewhat lengthy) 
lecture, we will involve the notions of dimensions, degree, rational maps, smooth­
ness and singularity, tangent spaces and tangent cones, Fano varieties, and families 
-all in the context of the analysis of one class of objects. This is a much less 
technically demanding lecture than the last; we are not pushing the boundaries of 
what we can do with available techniques here, but carrying out a classical and 
elementary investigation. 

Needless to say, the geometry of individual quadrics does not provide that many 
surprises. Indeed, there are numerous overlaps with earlier material, as well as some 
topics that could have (and perhaps should have) been treated in earlier lectures. 
Things get more interesting when, toward the end of the lecture, we begin to 
investigate the geometry of families of quadrics; this is a much more subtle subject, 
and one that is still the object of study today. 

One note: all our results and our techniques in this lecture are independent 
of characteristic, except for one thing: in case our ground field K has charac­
teristic 2 the basic correspondence between quadrics and bilinear forms needs 
to be redefined. For the remainder of this lecture, accordingly, we will assume 
that the field K is of characteristic other than 2. 

Generalities about Quadrics 

To begin, we recall some of the notation and terminology initially introduced 
in Example 3.3. A quadric hypersurface Q c PV = pn is given as the zero locus of 
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a homogeneous quadratic polynomial Q: V --+ K, which may be thought of as the 
quadratic form associated to a bilinear form 

Qo: V x V --+ K, 

or to the corresponding linear map 

Q: V --+ V*. 

In case Q is an isomorphism, it induces an isomorphism from IPV to IPV*, which 
we also denote by Q. In general, the rank of the map Q is called the rank of the 
quadric Q; we recall from Example 3.3 that a quadric Q c IPn of rank k may be 
described as the cone, with vertex A ~ IPn-\ over a smooth quadric hypersurface in 
IPk - 1• 

Tangent Spaces to Quadrics 

Inasmuch as the quadratic form Q(v) is defined by restricting the bilinear form 
Qo(v, v) to the diagonal, the differential dQ at any point v is just the linear form 
2Qo(v, .), that is, twice Q(v). Thus, for any point [v] E Q 

(i) if Q(v) # 0 E V*, then the quadric hypersurface Q c IPV is smooth at [v], with 
tangent plane [Q(v)] E IPV*; and 

(ii) if Q(v) = 0, then Q is singular at [V].8 

In other words, the Gauss map '§: Q --+ IP V* is the restriction to Q of the linear 
isomorphism Q: IPV --+ IPV*. In particular, the locus of points P E Q whose tangent 
planes contain a given point R E IPV is the intersection of Q with the hyperplane 
given by Q(R); this is called the polar of R with respect to Q. Note also that if Q is 
singular with vertex A, the tangent planes to Q are constant along the lines of Q 
meeting A and all contain A. 

One of the things we will be doing often in what follows is considering the inter­
section of a quadric Q with its projective tangent plane lr xQ at a smooth point 
x E Q. Let 

Q' = Q ("\ lrxQ c lrxQ ~ IPn- 1 . 

We claim that the rank of Q' is the rank of Q minus 2. (Note that if rank(Q) = 1, Q 
has no smooth points.) Indeed, the singular locus of Q' is the span of the vertex A 
of Q with the point x; the codimension of the singular locus in the quadric goes 
down by 2. 

Exercise 22.1. Show that if He IPV is any hyperplane and Q' = Q ("\ H, then 

rank(Q) - 2 ::; rank(Q') ::; rank(Q) 

8 If we are going to include "double planes" (L 2 = 0) among quadrics, then for the sake of consistency­
for example, if we want it to be the case that a quadric Q is singular at a point p if all partials of 
its defining equations vanish at p-we have to adopt the convention that a quadric of rank 1 is 
singular everywhere 
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with equality holding if and only if H is tangent to Q. More generally, show that if 
A ~ pn-k and Q' = A n Q, then 

rank(Q) - 2k ~ rank(Q') ~ rank(Q). 

We can see this in the case of these plane sections of a smooth quadric in 
p3: 

rank 2 

and these plane sections of a quadric cone: 

rank 1 rank 2 

Plane Conics 

We have already seen that the image of 
the quadratic Veronese map V2: pi -+ 

p2 is a smooth conic in the plane; by 
what we have said any smooth conic is 
projectively equivalent to this one. 
More directly, we can see that a conic 
Q c p2 is isomorphic to pi by projec­
tion from a point x E Q; the map 7rx, 
defined a priori only outside x, extends 
to an isomorphism by sending the point 
x to the intersection of the tangent line 
lr xQ with the line pl. 

rank 3 

rank 3 
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Quadric Surfaces 

In similar fashion, we have already seen that the image of the Segre map 0'1,1: \pI x 
\pI --+ \p3 is a smooth quadric Q in \p3; it follows that every smooth quadric may be 
obtained in this way. We see, moreover, that the fibers of the two projection maps 
ni : Q ~ \pI X \pI --+ \pI are lines in \p3, so that the quadric has two rulings by lines 
with a unique line of each ruling passing through each point x E Q. 

It is fun, however to locate the rulings 
and the isomorphism Q ~ \pI X \pI 

directly. The presence of the rulings can 
be deduced from the general remark 
that the intersection of a quadric with 
its tangent plane at any (smooth) point 
is a quadric of rank 2 less. In the present 
case, this means that for each x E Q, 
the intersection Q n If xQ is a union of 
two distinct lines. Since any line lying 
on Q and containing the point x must lie in this intersection, we see again that 
through each point of Q there pass exactly two lines. 

Now fix a point Xo E Q, and let Lo and Mo be the two lines of Q through Xo' 
Through every point A E Lo there will pass one other line of Q, which we will call 
MA; likewise through every point J-L E Mo there will be one other line L/J c Q. Thus 
we see that Q has two rulings by lines, each ruling parametrized by \pl. Note that 
(i) the lines of {LA} are disjoint, since Q cannot contain three pairwise incident (and 
hence coplanar, since Q is smooth) lines; (ii) no line can be a line of both families 
for the same reason; and (iii) each line LA must meet each line MJJ' since the line 
If AQ n If /JQ will intersect Q in two points, Xo and a point of LA n M}J' 

To finish, we claim that every point x 
of Q lies on exactly one line of each 
ruling. But this is clear: since the two 
lines Land M through x comprise the 
intersection of Q with a plane, one of 
them must meet Lo and so be of the 
form M/J' and one must meet Mo and so 
be LA for some A. Thus we arrive at an 
isomorphism of Q with Lo x Mo ~ 
\pI X \pl. 

Recall also from Examples 7.11 and 7.22 our analysis of the projection map 
nx: Q -+ H ~ \p2 to a plane H from a point x E Q. Two things are different here from 
the case of a plane conic. First, the map nx is only a rational map and cannot be 
extended to a regular map; as a point y E Q approaches x, the limiting position of 
the line xy may be any line in the tangent plane If xQ, and the limiting position of 
the image point nAy) any point of the line If xQ n H. Also, whereas in the case of 
the conic every line Ie \p 2 through the point x (with the exception of the tangent 
line) met Q in exactly one other point, there are as we have seen two lines L, M 
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through x entirely contained in Q. Thus, 
in terms of the graph r of 1I:x , the map 11: 1 

from r to Q is an isomorphism except 
over the point x, where the fiber E ~ [pll. 

The map 11:2: r --+ [pl2 is an isomorphism 
except over the points p, q of intersec­
tion of the lines Land M with the plane 

22. Quadrics 

r = graph of TIx 

/\ 
[pl2, and carries the curve E to the line lr xQ n [pl2 = pq. As we expressed in Example 
7.22, the quadric Q is obtained from [pl2 by blowing up the two points p and q and 
blowing down the line joining them. 

Note that since the line L is carried to the point p E [pl2, the lines of the ruling 
{Mil} are projected onto lines through p, and the lines LA-likewise onto the pencil 
of lines through q. The inverse map from [pl2 to Q may thus be realized as the map 
sending a point r E [pl2 to the pair (slope of pr, slope of 0/). 

As the reader can also verify, the inverse to the map 7rx may be given as the 
composition of the quadratic Veronese map v2 : [pl2 --+ [pl5 with the projection of the 
image from the two points V2(P) and v2(q) (compare this with Exercise 22.3). 

Finally, another way of representing 
a smooth quadric Q c [pl3 comes from 
projecting Q to a plane from a point x 
not on Q. Of course, most lines through 
x will meet Q twice, so this map 
expresses Q as a two-sheeted cover of 
[pl2. Indeed, the locus of points p E Q 
such that the line px is tangent to Q at 
p-that is, the locus of p such that 
x E lrpQ-is, as we have seen, a plane 
section C = Q n H of Q; so 1I:x expresses 
Q as a double cover of the plane [pl2, 

branched along a conic curve C c [pl2. 

The rulings of Q are once more 
visible in this form: every line lying on Q 
will meet the plane section C of Q 
exactly once, so its image on the plane 
will be a line meeting C exactly 
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once-that is, a tangent line to C. Indeed, the inverse image of the tangent line to 
C at a point nAp) will be the intersection lr pQ (\ Q, which will consist of one line of 
each of the two rulings. 

Actually, we have seen this map before in another guise: the map nx: Q ~ 
[pli X [pli ~ [plz is the map from the product of [pli with itself to its symmetric 
product, which we have seen (Example 10.23) is isomorphic to [plz, taking an 
ordered pair (p, q) of points of [pli to the unordered pair p + q. 

Quadrics in [pn 

Thus far, the smooth quadrics we have dealt with have been varieties encountered in 
other contexts. In fact, the isomorphisms of a plane conic with [pli and of a quadric 
surface in [pl3 with [pli x [pli are reflections of the coincidences of complex Lie 
groups S03K ~ PSLzK and S04K/{ ±I} ~ PSLzK x PSLzK, respectively (of 
course, the latter isomorphism is not valid for real Lie groups, corresponding to 
the fact that a real quadric need not have real rulings). The further coincidence 
SOsK ~ SP4K and S06K/{ ±I} ~ PSL4K will, as we will see in due course, 
provide alternate descriptions of quadrics in [pl4 and [pls. From that point on, 
however, the coincidences stop, and so do the isomorphisms of quadrics with other 
varieties naturally encountered (there is in a sense one more, corresponding to 
triality on SOsK; see Exercise 22.20). The two representations of a smooth quadric 
Q via projection, however, still have analogs; we will describe them here. 

We start with the simpler of the two representations, that given by projection 
from a point x not in Q. Again, any line through such a point x will meet Q in either 
one or two points, so that nx expresses Q as a two-sheeted branched cover of a 
hyperplane H ~ [pln-I. As in the case of a quadric surface, the fibers of nx consisting 
of only one point correspond to the locus of points p E Q such that the line xp is 
tangent to Q at p. This is the same thing as saying that x E lrpQ, or equivalently, 
that p lies in the hyperplane A given by Q(x) E [plV*. Since x rj; Q, the hyperplane 
Q(x) is not tangent to Q, and so intersects Q in a smooth quadric C c A ~ [pln-I, 
which in turn projects isomophically to a smooth quadric C c H. We may say, 
then, that a smooth quadric Q c [pln is a double cover of [pln-I branched over a 
smooth quadric C C [pln-I. 

All this can of course be seen directly from the equation of Q: if the point 
x = [0, ... ,0,1] rj; Q, we can write 

Q(Zo, ... , Zn) = Z; + a(Zo, ... , Zn-d' Zn + b(Zo, ... , Zn-d 

where a and b are homogeneous of degrees 1 and 2; Q is then the double cover of 
[pln-I branched over the hypersurface given by a Z - 4b = 0. 

Note that, as in the case of the quadric surface, lines on Q will map under the 
projection nx to lines in H either tangent to, or contained in, the quadric C. For a 
line I c H tangent to C, n;I(l) will consist of exactly two lines of Q, while if lee 
there will of course be one. 
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Exercise 22.2. Use this representation of a smooth quadric Q c IPn to find the 
dimension of the Fano variety Fl (Q) of lines on Q and to show that this family is 
irreducible if n ~ 4. 

The projection of a smooth quadric 
Q c IPn to a hyperplane H ~ IPn- l from 
a point x E Q gives a very different 
picture. As before, this is a rational map, 
not a regular one; the limiting position 
of nAp) as p approaches x on Q could be 
any point of H n If xQ. The graph r of 
the map is thus the blow-up of the 
quadric Q at the point x, with the 

r = graph of TIx 

/\ 
Q ----.- IP n - 1 

projection carrying the exceptional divisor E of this blow-up to the hyperplane 
lfxQnH. 

At the same time, n2 will collapse all lines on Q through the point x. Now, any 
such line will lie in the tangent plane If xQ, and so in the intersection If xQ n Q. This 
intersection, by what we have said before, is of rank n - 1; that is, it is a cone over 
a smooth quadric hypersurface C inside the plane If xQ n H ~ IPn-2 c H ~ lPn-I. 
In the graph, then, all these lines correspond to disjoint curves, which are then 
collapsed to the points of the quadric C; in fact r is the blow-up of the hyperplane 
IPn-l along the quadric C. In sum, then, a smooth quadric Q c IPn may be obtained 
by blowing up IPn- l along a smooth quadric C in a hyperplane IPn- 2 c IPn- l and 
then blowing down to a point the proper transform of the plane IPn-2 containing C. 

Exercise 22.3. Verify the last statement by showing that Q is the image of IPn-l 
under the rational map 

q>: IPn-l -+ IPn 

: [Zo, ... , Zn-l] 1--+ [Fo(Z), ... , Fn(Z)] 

where {Fo, ... , Fn} is a basis for the vector space of quadrics in IPn-l vanishing 
on a quadric hypersurface C c IPn- 2 c IPn- l (equivalently, Q is the image of the 
Veronese variety V2 (lPn- 1 ) c IPN under projection from the plane A c IPN spanned 
by C). 

The following diagram is an attempt to represent the map nx in the case of a 
quadric Q c 1P4. 
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Exercise 22.4 Show that the lines of Q not passing through the point X correspond, 
via this projection, to the lines of IFDn-l meeting the quadric C. Use this to derive 
once more the dimension of the family of lines on Q and to show that it is 
irreducible in case n ;;::: 4. 

Linear Spaces on Quadrics 

We next want to undertake in general a description of the linear spaces contained 
in a smooth quadric, that is, to describe the Fano variety 

Fk(Q) = {A: A c: Q} c: G(k, n) 

of k-planes contained in Q (since all smooth quadrics in IFDn are isomorphic, we will 
often omit the Q and write Fk,m for the variety of k-planes in a smooth m-dimen­
sional quadric Q). We then ask when Fk,m is nonempty, what its dimension is and 
whether it is irreducible, etc. 

The question of existence can be answered easily. To say that a plane A = IFDW 
lies in a quadric Q c: IFDVis to say that the corresponding linear subspace W c: Vis 
isotropic for the form Q, that is, that Q Iw == 0, or equivalently that Q(W) c: Ann(W). 
If Q is smooth, however, Q is an isomorphism, so we must have 

dim(W) ~ dim(Ann(W» = dim (V) - dim(W); 

i.e., 
2· dim(W) ~ dim(V). 

Since the dimension of the quadric Q is the dimension of the vector space V 
minus 2 and the dimension of A one less than the dimension of W, we can express 
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this by saying that a smooth quadric contains no linear spaces of greater than 
half its dimension. We will see shortly that the converse is also true: for any 
k ::; dim(Q)/2, Q does contain k-planes. 

We remark here that while the argument seems peculiar to quadrics, it general­
izes immediately (in a slightly altered form) to hypersurfaces of any degree. Basi­
cally, if X c !pn is any smooth hypersurface, the Gauss map '§: X ~ !pn* is a regular 
map. If A c X is any linear space, then for any point x E A the tangent plane to X 
at x will certainly contain A. The Guass map thus carries A into the linear subspace 
Ann(A) c !pn* consisting of planes containing A, which is a plane of dimension 
n - dim (A) - 1. But we have seen in Exercise 11.39 that there does not exist a 
regular map from !pk to !pI for k > I; so we have 

dim (A) ::; dim(Ann(A» 

= n - dim (A) - 1 

= dim (X) - dim (A). 

Thus, X contains no linear subspace of greater than half its dimension. 

Example 22.5. Lines on Quadrics 

We have already done one example; as we have seen a number of times, the variety 
FI • 2 oflines on a quadric surface is isomorphic to two disjoint copies of !Pl. We next 
consider the case of the variety r = FI •3 of lines on a smooth quadric threefold Q 
in !P4. Of course, the industrious reader will already have computed the dimension 
of r and determined its irreducibility in two ways in Exercises 22.2 and 22.4; we 
will do it a different way here. 

Our approach will be to consider the incidence correspondence 'I' of pairs of 
points x E Q and lines 1 through them; that is, we set 

'I' = {(x, I): x E 1 c Q} c Q x r. 
What is the fiber of 'I' over a point x? Since every line on Q through x must lie in 
the tangent hyperplane If xQ, and since the intersection Q (l If xQ is a quadric cone 
in If xQ ~ !p3, we see that the fibers of 'I' over Q are all isomorphic to !pl. It follows 
then that 'I' is irreducible of dimension dim(Q) + 1 = 4. Finally, since the fiber of 
'I' over a point 1 E r is just a copy of the line I, it follows that r is irreducible of 
dimension dim ('I') - 1 = 3. 

In fact, r turns out to be a very familiar variety; it is nothing other than 
projective three-space. The following exercise outlines a proof of this fact. 

Exercise 22.6. Let V be a four-dimensional vector space over K and n: V x V ~ K 
a nondegenerate skew-symmetric bilinear pairing. Show that the set Q of two­
dimensional isotropic linear subspaces of V is a subvariety of the Grassmannian 
G(2,4) = G(1, 3), and that it is isomorphic to a smooth quadric hypersurface in !P4. 
Show that for every point P E !p V ~ !p3 the variety of isotropic subspaces contain-
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ing p is a line in Q, and that conversely every line in Q is of this form for a unique 
point p. Conclude that F1,3 ~ 1P3. 

Note that we can use an incidence correspondence like'll to describe the family 
oflines in a quadric Q in IP" for any n: we let F = FI (Q) be the Fano variety oflines 
on Q, and as before set 

'II = {(x, 1): x E 1 c Q} c Q x F. 

Then the fibers of 'II over Q are, by the same analysis, isomorphic to smooth 
quadrics Q' in 1P"-2, so that'll must be irreducible of dimension 2n - 4 and F 
irreducible of dimension 2n - 5. 

Example 22.7. Planes on Four-Dimensional Quadrics 

Next, we look at a smooth quadric hypersurface Q in IPs and ask about the variety 
F = F2 (Q) of 2-planes on Q. Once again, we use the incidence correspondence'll 
between points and planes containing them; that is, we set 

'II = {(x, A): x E A c Q} c Q x F. 

To describe the fiber of'll over a point x E Q, observe that any two-plane in Q 
passing through x will lie in the intersection lr xQ (\ Q, which is a cone over a 
smooth quadric surface Q'. The 2-planes in Q through x yhus correspond to lines 
on the quadric Q', which we have seen 
are parametrized by r1,2 ~ IPI JlIPI. 
It follows that 'II has dimension 
dim(Q) + 1 = 5, and hence that F has 
dimension 3. 

What about the irreducibility of F? 
Here the situation is very different; since Q' 

every fiber of'll over Q has exactly two 
connected components, the components 
of the fibers of 'II-that is, the set of 
rulings of tangent hyperplane sections 
of Q- form a two-sheeted covering space of Q. There are thus two possibilities: F 
could be irreducible or it could have exactly two irreducible connected compo­
nents, with the two rulings of lr xQ (\ Q lying in those two components. In fact, the 
latter turns out to be the case; there are two distinct rulings of Q by 2-planes. We 
will proceed on that assumption, and then at the end of this discussion indicate 
three ways of proving this. 

In the case of the lines on a quadric surface in 1P 3, we saw that two lines of the 
same ruling were either disjoint or coincident, while lines of opposite rulings always 
intersected in a point. We ask the analogous question for Q c IPs: how may the 
various 2-planes on Q intersect each other? The answer, in fact, comes from the 
answer for the quadric surface, via the correspondence given earlier. 
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Specifically, suppose that two planes A, A' c Q have at least one point x in 
common. Then they both lie in the intersection T xQ n Q and so are cones over lines 
I, I' of the quadric surface Q'; A and A' will belong to the same ruling of Q if and 
only if I and I' belong to the same ruling of Q'. Since the intersection A n A' has 
dimension 1 greater than I n I', we see that if A and A' belong to the same family, 
A n A' will be either a point or a two-plane; while ifthey belong to opposite families 
(always assuming they are incident) it will be a line. 

What if A and A' are disjoint? In this 
case, let «II be any 3-plane containing 
A. The intersection «lin Q, since it 
contains a two-plane, can have rank at 
most 2; so by Exercise 22.1 it must have 
rank exactly 2, i.e., it must consist of A 
plus another 2-plane A". Of course, A" 
meets A in a line, so by what we have 
said, they must belong to opposite 
families. On the other hand, «II must 
meet the plane A', and since that 
intersection is contained in A u A" and disjoint from A, it can only be a single point 
of A". It follows that A' and A" lie in the same ruling, and so A and A' belong to 
opposite families. In sum, then we have the following. 

Proposition 22.8. Two 2-planes of the same ruling in Q either coincide or intersect 
in a single point; two 2-planes of opposite ruling either intersect in a line or are 
disjoint. 

What do the components of F actually look like? The answer turns out to be 
easy. To see it, consider first a line I c Q. As we have observed, the Gauss map on 
Q is the restriction of a linear isomorphism [pl5 --. [pl5*, so that the tangent hyper­
planes T xQ to Q at the points x E I form a line in [pl5*. Their intersection is thus a 
3-plane «II, whose intersection with Q is singular at every point of I. «II, n Q must 
thus be a quadric of rank 2, i.e., it must consist of two distinct 2-planes; con­
versely any 2-plane A c Q containing I will lie in T xQ for each x E I and hence 
in «II, n Q. We have thus shown that every line Ie Q lies on exactly two 2-planes 
of Q. Of course, since these two 2-planes intersect in a line, they must belong to 
opposite rulings. 

Now, let H be a general hyperplane of Q, or indeed any hyperplane whose 
intersection Q' = H n Q with Q is smooth. Since Q' will contain no 2-planes, 
every 2-plane A of Q will intersect H exactly in a line IA • Conversely, by the 
preceding we see that there is a unique 2-plane of each ruling containing a given 
line I; so that the association A 1-+ IA gives an isomorphism between each connected 
component of F and the variety Fl (Q') = F1,3 of lines on Q'. Given the fact estab­
lished in Exercise 22.6 that this variety is isomorphic to [pl3, we conclude that the 
variety F of 2-planes on a smooth quadric Q c [pl5 is isomorphic to two disjoint 
copies of [pl3. 
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The promised three proofs of the fact that Q has two rulings by planes are 
suggested in the following three exercises. 

Exercise 22.9. Show that the variety F of 2-planes on Q has two components by 
showing that the subfamily of planes meeting a given 2-plane Ao in a single point 
or equal to Ao is an irreducible component of F. 

Exercise 22.10. Show that the group 0(6) = O(V, Q) acts transitively on the set of 
maximal isotropic 2-planes for Q and that the stabilizer of a given isotropic plane 
lies in SO(6). Deduce that F2,4 has two components. 

Exercise 22.11. Show that F2 ,4 has two components by using the isomorphism of 
Q with the Grassmannian G(1, 3) and applying Exercise 6.5. 

Example 22.12. Fano Varieties of Quadrics in General 

We have spent a fair amount of time on the case of quadrics in p5, but in fact the 
general case will now come pretty readily. To understand the variety Fk(Q) = Fk,n-l 
of k-planes lying on a quadric in pn (from our present point of view, at any rate), 
the key is the incidence correspondence 'I' between points and k-planes on Q 
introduced earlier, that is, 

'I' = {(x, A): x E A c Q} c Q X Fk,n-l' 

As before, the fiber of 'I' over x E Q is simply the variety of k-planes A c Q 
containing x, which is the same as the variety of k-planes in the intersection 
If xQ II Q through x. But If xQ II Q is a cone, with vertex x, over a smooth quadric 
Q' c pn-2, and so the k-planes in If xQ II Q through x correspond exactly to (k - 1)­
planes on Q', In other words, the fibers of 'I' over Q are isomorphic to the variety 
Fk - 1 (Q') = Fk - 1 ,n-3 of (k - 1)-planes on a smooth quadric of dimension 2 less. We 
thus have 

dim ('I') = dim(Fk- 1,n-3) + n - 1 

and hence 

dim(Fk,n-d = dim(Fk- 1 ,n-3) + n - k - 1. 

Moreover, whenever the variety Fk - 1 ,n-3 is irreducible, we may deduce that '1', and 
hence Fk,n-l' is too. This covers all cases except the case of maximal-dimensional 
linear spaces on quadrics of even dimension, that is, Fk,2k' Summing up, we have 
the following. 

Theorem 22.13. The variety Fk,m of k-planes on a smooth m-dimensional quadric 
hypersurface is smooth of dimension 

dim(rk,m) = (k + 1)( m _ 3:) 
when k ::s; ml2 and empty otherwise; when k < ml2 it is irreducible. 
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The situation in the special case m = 2k is-again as might be expected from the 
examples-richer. Here we have the following. 

Theorem 22.14. Let Q c p2k+l be a smooth quadric. Then 

(i) the variety Fk(Q) = Fk,2k has two connected components; 
(ii) for any two k-planes A, N c Q we have 

dim(A n N) = k (mod 2) 

if and only if A and N belong to the same connected component of Fk(Q); 
and 

(iii) for every (k - I)-plane contained in Q there are exactly two k-planes in Q 
containing it, and these belong to opposite families; so that 

(iv) each connected component of Fk, 2k is isomorphic to the variety Fk- 1 , 2k-l' 

Exercise 22.15. Prove Theorem 22.14. 

Exercise 22.16. Let Q c pn be a smooth quadric and consider the variety Fk,/{Q) c 
G{k, n) defined by 

Fk,/{Q) = {A c pn: rank{A n Q) ~ I}. 

Find the dimension of Fk,/{Q) and its irreducible components. Is it smooth? 

Exercise 22.17. Establish Theorem 22.13 by representing the quadric Q as a double 
cover of pn-l branched along a quadric. Can you prove Theorem 22.14 the same 
way? 

Exercise 22.18. Same as Exercise 22.17, but use the representation of Q obtained by 
projection from a point x E Q. 

Exercise 22.19. Denote by fl the projective space of all quadrics in pn. Estab­
lish the dimension counts of Theorems 22.13 and 22.14 by considering the incidence 
correspondence:=: c fl x G{k, n) defined by 

:=: = {(Q, A): A c Q}, 

estimating the dimension of the fibers of:=: over G{k, n) to arrive at the dimension 
of :=: and hence at the dimension of the general fiber Fk,n-l of:=: over fl. What goes 
wrong when k > (n - 1)/2? 

Exercise 22.20. Here is one more coincidence. Show that either component of 
the variety F3 ,6 of 3-planes on a smooth quadric Q c p7 is isomorphic to the 
quadric Q itself. (This is a reflection of triality, the automorphism of order three of 
the Dynkin diagram of SOaK; cf. [FH]). 
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Families of Quadrics 

As we indicated at the beginning of this lecture, things get even more interest­
ing when we consider not individual quadrics but families of them. This will 
be the focus of the remainder of the lecture; we will start by considering the 
family of all quadrics in [pln, starting with n = 1 and 2. 

Example 22.21. The Variety of Quadrics in IP 1 

We consider the variety parametrizing all quadrics in [pll. As we have seen, writing 
the equation of an arbitrary quadric C c [pll as 

C = (aX2 + bXY + cy2) 

we see that the space 'I' of all quadrics is just the projective plane [pl2, with 
homogeneous coordinates a, b, and c. Note that this is a special case of the 
isomorphism mentioned in Example 10.23 between the nth symmetric product of 
[pl 1 and [pln. 

As suggested in Lecture 4, a natural question to ask is to describe the locus 
of points in this plane corresponding to each of the two types of quadrics. The 
answer in this case is immediate; the locus L c 'I' of singular quadrics is given 
by the discriminant 

L = (b2 - 4ac), 

which we may observe is a smooth plane conic in 'I' ~ [pl2. Alternatively, observe 
that the map 

v: [pll -+ 'I' ~ [pl2 

given by sending a point P E [pll to the quadric 2P E 'I' is algebraic; it takes the 
point [oc, /3], which is the locus of the linear polynomial /3X - ocY, to the quadric 
(/3X - oc Yf = /32 X 2 - 2oc/3X Y + oc2 y2, so that in coordinates we have 

v: [oc, /3] f-+ [/32, 2oc/3, oc2]. 

Next, we may ask, for example, to describe the locus Lp of quadrics C c [pll 
containing a given point P E [pll-that is, the locus of quadrics of the form P + Q, 
with P fixed. It's not hard to see that this must be a line in 'I' ~ [pl2; for one thing, 
for a given P = [oc, /3] the condition 

aoc 2 + boc/3 + c/32 

that the quadric C vanish at P is clearly a linear condition on the coefficients a, b, 
and c of C, so the locus of such C will be a line. Alternatively, we can write down 
the locus of such C parametrically. We have 

Lp = {(/3X - ocY)'(bX - YY)}[r,t5]dDl, 

so parametrically Lp is given as the line 

Lp = {[b/3, -boc - y/3, yoc]}(r,t5]E 1'" 
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What relation does this line bear to the 
conic curve ~ c 'P? The answer is clear: 
since the line Lp can meet the conic ~ at 
only one point-the quadric 2P-the 
line Lp must be the tangent line to ~ at 
2P. We can arrive at the same 
conclusion directly via analytic, rather 
than synthetic, means: the tangent line 
to the conic 

~ = (b 2 - 4ac) 

at the point [U, V, W] is 

-4W·a + 2V·b - 4U·c = 0; 

so at the point 

it is the line 

If 2P(~) = (-4ct2. a - 4ctp· b - 4p2. c), 

which coincides with the line Lp as 
given earlier. 

Note finally that the two tangent 
lines to ~ at the points 2P and 2Q 
necessarily meet at the point of 'P 
corresponding to the quadric P + Q; 
conversely, any point P + Q of'P not on 
~ will lie on exactly two tangent lines to 
~, corresponding to the fact that the 
dual of ~ is again a quadric hyper­
surface. 

Example 22.22. The Variety of Quadrics in [p>2 

22. Quadrics 

The geometry of the space p5 of plane conics is a fascinating one. We have already 
dealt with it on several occasions; here we will summarize what we have said and 
give some further statements as exercises. 

To begin, there are two distinguished subvarieties of the p5 of quadrics: the locus 
<I> of double lines (quadrics of rank 1) and the locus ~ of singular conics. The first 
of these is just the Veronese surface-it is the image of the map p2* -+ p5 sending 
a line L E p2* to the corresponding double line, which is the Veronese map v2. The 
second may be realized as either the secant variety to <I> or the tangent variety to 
<1>; it is a cubic hypersurface. If we realize p5 as the space of nonzero 3 x 3 
symmetric matrices up to scalars, <I> and ~ are the loci of matrices of ranks 1 and 
::; 2, respectively. 
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Exercise 22.23. Show that L is singular exactly along the surface ell. 

Exercise 22.24. Let Land M be distinct lines in [p>2. Show that the projective 
tangent space to ell at the point 2L is the space of conics containing L. Show 
that the projective tangent space to L at L + M is the space of conics contain­
ing the point p = L n M. Deduce from this that the dual variety of ell is isomorphic 
to L and the dual variety to L is isomorphic to ell. 

Exercise 22.25. Let L c [p>2 be any line and let rL c [p>5 be the space of conics 
tangent to or containing L. Show that rL is a quadric hypersurface of rank 3, 
with vertex the linear space AL of conics containing L. 

Exercise 22.26. Let L c [p>2 be a line as earlier. Show that the projective tangent 
cone lr C2L(L) to L at the point 2L is the variety of conics tangent to or containing 
L and that the multiplicity of L at 2L is 2. 

Example 22.27. Complete Conics 

We can see some very interesting phenomena associated to the dual of a variety in 
the simplest possible case, that of a plane conic. As we have remarked in the case 
of a quadric hypersurface X c [p>n in general, the Gauss map r'§x: X --+ [p>n* is the 
restriction of a linear map from [p>n to [p>n*, so that the dual of a smooth conic curve 
C c [p>2 will again be a smooth conic C* in [p>2*. We now consider what happens 
when the conic C varies, and in particular when C becomes singular. 

We can actually see a lot of what goes on just from pictures. For example, 
consider first what happens when the smooth conic C;. approaches a conic Co of 
rank 1, that is, the union of two distinct lines L, M c 1P'2: 

L 

What this picture suggests is that all limiting positions of tangent lines to C;. 
as A --> 0 pass through the point p = L n M. If this is the case, the limit as A --> 0 of 
the dual conic must be simply the double line 2p* in [p>2*. 
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Next, suppose we have a suitably 
general family of conics CI. approaching 
a double line Co = 2L. ("General" here 
should mean that the conics C;. intersect 
Co transversely in two points p;., q;. that 
approach distinct points p, q E L as 
A. -> 0.) Again, the picture is suggestive: 
the limiting positions as A. -> 0 of the 
tangent lines to C;. should be the locus 
of lines through p or q, and the limit of 
the dual of C;. accordingly the sum of 
the two lines p*, q* c 1P2*. 

In fact, we can make this precise. To 
set it up, we identify as before the set 

22. Quadrics 

of all conics in IPV ~ 1P2 with IP(Sym 2 V*) ~ 1P5; we will simultaneously iden­
tify the space of conics in the dual plane IPV* = 1P2* with the dual projective 
space IP(Sym 2 V) = 1P5*. Let U c 1P5 and U* c 1P5* be the open subsets corre­
sponding to smooth conics. We consider the bijection 

{jJ: U -> U* 

given by sending a conic C to its dual C*. This extends to a rational map 

we let r c 1P5 x 1P 5 * be the graph of this map. r is called the variety of complete 
conics, and the questions suggested earlier about the behavior of duals of conics in 
families can all be expressed in terms of r and its projection maps. The answers, 
bearing out the pictures, are expressed as follows. 

Proposition 22.28. A pair (C, C*) E 1P 5 x 1P5* of conics lies in r if and only if 
it is one of the following four types: 

(i) C and C* are smooth and dual to one another; 
(ii) for some pair of distinct lines L, M c 1P2 we have C = L u M and 

C* = 2p*, where p = L n M; 
(iii) for some pair of distinct points p, q E 1P2 we have C* = p* u q* and 

C = 2L, where L = pq; or 
(iv) for some point p E 1P2 and line L c 1P2 with pEL we have C = 2L and C* = 2p*. 

Exercise 22.29. Prove Proposition 22.28. 

Exercise 22.30. Note that by Proposition 22.28, the projection r -> 1P 5 is one 
to one except over the subvariety <1> of double lines, where the fibers are isomorphic 
to 1P2. Show that in fact r is the blow-up of 1P5 along the Veronese surface <1>. 
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Example 22.31. Quadrics in IP'n 

In general, the space of quadric hypersurfaces in pn is a projective space of dimen­
sion N = n(n + 1)/2 - 1; we may think of this as the projective space associated to 
the vector space of symmetric (n + 1) x (n + 1) matrices M. Inside pN we will let 
<l>k denote the variety of all quadrics of rank at most k, that is, the subvariety given 
by the vanishing ofthe (k + 1) x (k + 1) minors of M. Equivalently, <l>k is the set of 
quadrics Q expressible as cones, with vertex A ~ pn-k, over a quadric Q in pk-1. 
Note that the points of <l>k - <l>k-1 correspond to such cones where the quadric Q 
is smooth, or equivalently, where the vertex A is unique. 

This characterization gives us a way of determining the dimension of the <l>k 
via an incidence correspondence; as usual, we let G = G(n - k, n) be the Grass­
mannian of k-planes in pn and we let 'l'k c G X pN be the locus 

'l'k = {(A, Q): A C Qsing}. 

For any given A = PW c pn, the fiber of'l'k over A is just the space of quadrics 
in the projective space associated to the quotient en +1 /w, which has dimension 
k(k + 1)/2 - 1; thus 

dim'l'k = dim G + k(k + 1)/2 - 1 

= kn - (k - 1)(k - 2)/2. 

Since 'l'k maps one to one onto <l>k except over <l>k-1' this is also the dimension 
of <l>k; the easiest way to remember this is by observing that 

codim(<I>n+1_1 c IPN) = l(l + 1)/2, 

or in other words the codimension of the locus of quadrics whose rank is lless than 
the maximum is the binomial coefficient /(1 + 1 )/2. The most visible examples of this 
are 

(i) The locus of singular quadrics is of course the hypersurface given by the 
vanishing of the determinant of M. Note that since the determinant of M 
is an irreducible polynomial of degree n + 1 in the entries of M, this hyper­
surface has degree n + 1. 

(ii) At the other extreme, the locus of rank 1 quadrics is just the Veronese variety; 
in intrinsic language, if we view pn as the projectivization PV and pN as the 
projective space P(Sym2 V*), then <1>1 isjust the image of the map 

v2 : PV* ~ P(Sym2 V*) 

given by sending a linear form to its square. As we have seen, this is just 
the Veronese map on PV*. Note in particular that the degree of <1>1 is thus 2n. 

(iii) One more case where we can describe <l>k directly is the case k = 2. Here 
<1>2 is the locus of pairs of hyperplanes in pn, that is, the image of the map 

s: PV* x Pv* ~ P(Sym2 V*) 
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given by sending a pair of linear forms to their product. Observing that 
this is just the Segre map IP'V* x IP'V* --+ IP'(V* ® V*) followed by the projec­
tion V* ® V* --+ Sym 2 V*; since the latter map is generically two to one on the 
image of the former, the degree ofcI>2 is half the degree ofthe Segre variety; i.e., 

1 (2n) deg(cI>k) = 2 n . 

The first example of a variety cI>k not described in one of these ways is the 
variety cI>3 of quadrics of rank at most 3 in 1P'4. Its degree, as it turns out, is 
10; I don't know of any simpler way of determining this than deriving the following 
general proposition. 

Proposition 22.32. The degree of the variety cI>k of quadrics of rank at most k 
in the space IP'N of all quadrics in IP'n is 

( n + IX + 1) 
n-k n - k - IX 

deg(cI>k) = TI ( ). 
~=o 21X + 1 

IX 

We won't describe the derivation of this formula; see [F1] example 14.4.11 or 
[JLP]. 

The next question to ask about the varieties cI>k, after dimension and degree, is 
about their smooth and singular loci and about their tangent spaces and tangent 
cones. The answers are exactly analogous to those for the determinantal sub­
varieties of the space of general m x n matrices. 

Theorem 22.33. Let Qo E cI>m - cI>m-l, i.e., let Qo be a cone with vertex 
A ~ IP'n-m over a smooth quadric Q c IP'm-l. Then cI>m is smooth at Qo, with tangent 
space 

More generally, if Qo E cI>m-k - cI>m-k-l-i.e., Qo is a cone with vertex 
A ~ IP'n-m+k over a smooth quadric-then the tangent cone to cI>m at Qo is given 
by 

TCQo(cI>m) = {Q: rank(QIA) ~ k} 

and the multiplicity of cI>m at Qo is correspondingly the degree of the variety cI>k 
in the space of quadrics in IP'n-m+k, as given by Proposition 22.32. 

As we indicated, the proof is identical in form to that given in Examples 14.15 
and 20.5 in the case of general determinantal varieties, and we will not go through 
it again. We should remark that, as in the previous case, in order to deduce the 
multiplicity from the description of the tangent cone given in the statement of the 
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theorem and the formula for the degrees of symmetric determinantal varieties we 
need to know that the ideals of the varieties <Ilk really are generated locally by 
(k + 1) x (k + 1) minors. 

Pencils of Quadrics 

In a sense, the study of the geometry of the space IPN of all quadrics in IPn is 
just the prelude to the study of more general families of quadrics, which correspond 
to subvarieties B of IPN (or, more accurately, varieties B with maps B --+ IPN ). We 
will illustrate this with a discussion of the simplest such families, namely, those 
corresponding to a line L in IPN. These are called pencils of quadrics. The set of all 
pencils is parametrized by the Grassmannian G(I, N), and for the time being we 
will focus on the behavior of a general pencil. 

Of course, there is a unique line through two points in a projective space, 
and if Qo and QI E IPN are two quadrics, the corresponding pencil is the family 
of quadrics L = {Q;.: A E IPI}, where 

Q;. = AO'Qo + AI'QI 

for each A = [Ao, AI] E IPI. We introduce their intersection, called the base locus of 
the pencil 

Since the pencil is assumed general, Qo and QI will intersect transversely in X, that 
is, X will be empty if n < 2 and a smooth variety of degree 4 and dimension n - 2 
if n ~ 2. In case n ~ 2, we will have, by Proposition 17.18, 

L = {Q: Q::::> X}. 

The first thing to ask about a family 
of quadrics is about its singular 
members: what they look like, and how 
many there are. In the present case, 
since L c IPN has been taken to be a 
general line, it will miss the subvarieties 
<Ilk for k.::; n - 1, since they all have 
codimension of at least three, and will 
intersect the hypersurface <Iln of singular 
quadrics transversely in n + 1 points. 

In the case n = 1, this says that a 

L 

general pencil of quadrics inlP I will have two members consisting of a double point. 
Note that the only way a pencil L could fail to have exactly two singular members 
is to be tangent to the conic of singular quadrics-that is, to have a nonempty base 
locus. 
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In case n = 2, the singular elements 
of a general pencil of conics are even 
more visible. The base locus X of the 
pencil will be four points A, B, C, and D, 
no three of which may be collinear; if X 
is to be contained in a union of two 
lines, each of the lines will have to 
contain exactly two of these points. The 
three singular conics in the pencil L are 
thus the line-pairs AB + CD, AC + BD, 
and AD + Be. 

Note in particular that whenever the 
base locus X consists of four distinct 
points, the pencil will have exactly three 
singular elements. There are many ways 
to see the converse; for example, if the 
quadrics Qo and Ql are tangent at a 
point C in addition to meeting trans­
versely at points A and B, the pencil L 
will consist of all quadrics containing A, 
B, and C, and either singular at C or 

22. Quadrics 

tangent to Qo and Q1 at e. The singular quadrics in L are then just the sum Q of 
the lines AB and AC, and the sum Q' of the line AB with the line through C 
tangent to Qo and Q1. 

c 
\ / 

Q' 

Indeed, in this case we can use Exercise 22.24 (or more generally Theorem 22.33) 
to see that since all the quadrics of the pencil contain the singular point of Q', the 
line L is tangent to the locus <1>2 of singular quadrics at Q', and so Q' is a double 
point of intersection of L with <1>2 (that is, the polynomial det(M) on the space of 
quadrics restricted to L, vanishes to order at least 2 at Q'). 

The preceding are examples of a general statement, namely, the following. 

Proposition 22.34. The pencil L spanned by Qo and Q1 contains exactly n + 1 
singular elements if and only if Qo and Q1 intersect transversely. 
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PROOF. We observe first that the condition that Qo and Q1 intersect transversely is 
independent of the choice of generators Qo and Ql; it is equivalent in any case to 
the condition that the differentials dQ;.. of the polynomials Q;.. E L are independent 
at each P E X. 

This said, suppose first that L contains other than n + 1 singular elements, 
i.e., L fails to intersect <l>n transversely. This can happen in one of two ways; 
either L can contain a point Q of the singular locus of <l>n' which we know by 
Theorem 22.33 to be <l>n-1, or L may be tangent to <l>n at a smooth point Q. 
In the former case, since the singular locus of Q is positive dimensional, any 
other Q' E L will meet it, and so will fail to meet Q transversely. In the latter 
case, by Theorem 22.33 all quadrics Q' E L will contain the singular point of 
Q, and so again will fail to meet Q transversely. 

Conversely, if two generators of the pencil fail to meet transversely at a point p, 
then some element Q of the pencil will be singular at p, i.e., for some pair Q, Q' E L, 
Q' meets the singular locus of Q; then either Q' E <l>n-1 = (<I>n)sing or L is tangent to 
<l>n at Q. 0 

Exercise 22.35. Find a pencil of conics in [p>2 that contains only one singular 
element but does not include a double line. In general, does there exist a pencil 
of quadrics in [p>n having only one singular element, but not meeting <l>n-1? (*) 

In view of Proposition 22.34 we will say that a pencil of quadrics is simple 
if the equivalent conditions of the proposition are satisfied, and we will restrict our 
attention for the time being to such pencils. The main problem we will set ourselves 
is the classification of simple pencils-that is, we ask whether all simple pencils are 
projectively equivalent to one another, and if not what distinguishes them? 

Consider first the case n = 2, that is, pencils of conics in the plane. Here we 
have seen that a simple pencil consists of all conics passing through four points in 
the plane, no three of which are collinear; since any such set of points can be carried 
into any other, it follows that all simple pencils in the plane can likewise be carried 
into each other by an automorphism of [p>2. 

The situation in [p>3 is different. For one thing, we observe that not all base 
loci X are isomorphic; as we will see in the next two Exercises, if we project 
X from a point P E X into a plane, X is mapped isomorphic ally onto a smooth 
plane cubic curve X, which has a j-invariant, and any plane cubic may arise in this 
way. 

Exercise 22.36. Let X be the smooth intersection of two quadrics in [p>3 and P E X 
any point. Show that the projection 1tp from P to a plane gives an isomorphism of 
X with a plane cubic. 

Exercise 22.37. Now let E c [p>2 be a plane cubic, with equation 

y2 = x 3 + ax + b. 

Show that the map E --+ [p>3 given by sending (x, y) to [1, x, x 2 , y] maps E iso-
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morphically to the intersection of the two quadrics 

ZOZ2 - Zf = 0 and Z~ = Z l Z2 + aZoZl + bZ5. 

At the same time, a pencil of quadrics in !p3 has a directly observable invariant. 
If L = {Q . .J is a simple pencil of quadrics, there will be four values of A E !p l for 
which the quadric Q;. is singular. These four points on !p l have a nontrivial 
invariant; specifically, if A is the cross-ratio of these four numbers in any order, then 
the j-invariant 

. (A 2 -A+1)3 
] = 256· A2(A _ 1)2 

(first introduced in Lecture 10) is independent of the ordering and preserved by any 
automorphism of !pl. Two simple pencils can thus be carried into one another only 
if their j-invariants coincide. The fact is that the converse is also true; the j-invariant 
is a complete invariant of the pencil, as we will see later. 

It will not be a surprise to find that this invariant of a simple pencil may 
also be read off of its base locus X. Specifically, we have the following. 

Proposition 22.38. The base locus X of a simple pencil of quadrics in !p 3 with 
singular elements Q;." i = 0, 1, 2, 3, is isomorphic to the curve E with equation 

y2 = n (x - Ai); 

in other words, the j-invariant of the pencil is the j-invariant of X. 

PROOF. We could, of course, do this by examining the explicit equations given in 
the last exercise. Instead, we will argue geometrically; in fact, we will show that both 
X and E coincide with an a priori distinct third object. We fix a point P E Xc !p3 

and introduce the curve of lines through P lying in some quadric of the pencil; 
precisely, we set 

Y = {(A, I): PEl c Q;.} c !p l x G(1, 3). 

Observe first that Y is smooth, since projection of Y into the second factor maps 
Y onto the plane curve X viewed as a subvariety of~p = {I: PEl} ~ !p2 c G(1, 3). 

Now, to see that Y is isomorphic to X, observe that any line I lying on a quadric 
Q E L will meet X at two points (that is, the two points of intersection of I with any 
Q' E L other than Q); we can thus define a map <p: Y --+ X by sending (A, 1) to the 
point of intersection of I with X other than P (and to P if I is tangent to X at P). 
On the other hand, for any point REX there is a unique quadric Q;. E L containing 
the line 1= PR. For any point S E 1 other than P and R, a quadric Q E L will 
contain 1 if and only if it contains S; but the set of quadrics containing S is a 
hyperplane H in the space !pN = !p9 of all quadrics, and since the line L is not 
contained in H, it must meet it at one point Q;.. Thus we may invert <p by sending 
R to (A, I), where I = PR and Q;. is the unique quadric in L containing I. 
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Finally, to see that Y ~ E, any smooth quadric Q E L will contain two lines 
through the point P, while a singular one will contain one. Since Y is smooth 
it follows that the projection on the first factor expresses Y as a double cover 
of !pi ramified over the four points Ai E !pi and hence that Y is isomorphic to E. 0 

Exercise 22.39. Show that projection of the curve X c !p3 to a plane from a point 
P not in X either maps X birationally to a plane quartic with two nodes, a node 
and a cusp, two cusps or a tacnode, or two to one onto a conic curve. (*) 

Exercise 22.40. Let Q be any of the four singular quadrics of the pencil containing 
X. Show that four tangent lines TpX to X lie in Q, and that the four points P of 
tangency are coplanar. Show that the 16 points obtained in this way are exactly the 
inflectionary points of X. 

The answer to the general question about when two simple pencils are equivalent 
is pretty much what you might hope for on the basis of this example; we have the 
following. 

Theorem 22.41. Let L = {Q.d and M = {R,.} be pencils of quadrics in !pn, with 
singular elements QAi and R lti , i = 1, ... , n + 1. Then Land M are projectively 
equivalent if and only the two subsets {AJ, {JlJ c !pi are congruent, i.e., if there 
is an automorphism of !pi carrying {AJ to {JlJ 

This will follow in turn from the following. 

Lemma 22.42 (Normal Form for Simple Pencils). Let L be a simple pencil of quadrics 
in !Pn • Then there exists a set of homogeneous coordinates on !pn in terms of which all 
Q E L are diagonal; i.e., L is generated by quadrics Q and R where 

Q(X) = LX? 

and 

R(X) = L Ai' xl. 

PROOF. Write !pn = !PV for Va vector space, let Q and R be a pair of generators of 
L corresponding to smooth quadrics and consider the corresponding maps 

Q, R: V -+ V*. 

The basis for V we seek will be one consisting of eigenvectors for the composition 

A = R-i 0 Q: V -+ V. 

Note that rechoosing Q and R will have the effect of replacing A by a linear 
combination of A and the identity; in particular, it will not change the eigenvectors 
of A. Note also that A cannot have two independent eigenvectors with the same 
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eigenvalue A, since then the linear combination Q - AR of Q and R would have 
rank n - 1 or less. 

To see that the eigenvectors of A have the properties we want, we invoke 
the standard calculation: if v, w E V are eigenvectors for A with eigenvalues A 
and J1 -# A, respectively, we have 

but at the same time 

Q(v, w) = (Qv, w) 

= (RAv, w) 

= kR(v, w) 

Q(v, w) = (v, QW) 

= (v, RAw) 

= J1" R(v, w) 

and we conclude that Q(v, w) = R(v, w) = O. 
It remains to be seen that A is indeed diagonalizable. Suppose it is not; this 

means we have a pair of vectors v, w E V with (A - AI)v = 0 and (A - AI)w = v. 
Replacing Q by Q - AR we may take A = 0, so that Qv = O-i.e., the point [v] E PV 
is a singular point of the quadric Q-and R-1Qw = v. But then we have 

R(v, v) = <Rv, v) 

= (RR-1Qw, v) 

= (Qw, v) 

= Q(w, v) 

= (w, Qv) 

=0 

so that the quadric R c PV contains the point [v] of Q, contradicting the hypo­
thesis that the pencil L = QR is simple. 0 

Note that if we wanted to be pedantic we could refine this last lemma; specifi­
cally, in view of the fact that the locus <l>n of singular quadrics in pn has multiplicity 
k along <l>n-k+l' for any pencil L = {Q;.} of quadrics, not all singular, we have 

L (n + 1 - rank(Q;.)) ::; n + 1 

and the preceding argument shows that the pencil is simultaneously diagonalizable 
if and only if equality holds in this expression. 

PROOF OF THEOREM 22.41. Having written the two quadrics Q and R E L in the form 

Q(X) = LX? 
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and 

R(X) = L Ai· Xi2 

we see that the set of ). for which the linear combination Q;. = Q - AR is singular 
is just {Ai' ... , An+l }. Replacing Q and R by linear combinations R' = aR + bQ and 
Q' = cR + dQ thus has the effect of replacing each Ai by (a Ai + b)/(di + d) so the 
pencil is determined up to projective equivalence by the subset {Ai' ... , An+d c pi 
up to linear fractional transformations of pl. 0 



Hints for Selected Exercises 

Exercise 1.3. It has to be shown that given any q ¢ r there exists a polynomial of 
degree d - 1 vanishing on r but nonzero at q. There are many ways to do this, the 
fastest being perhaps induction on d. 

Exercise 1.11 (b). For what it's worth, the line Lp., v is given by the equations 

(/10 Vl - /11 Vo)Zo + (/10 V2 - /12 VO)Zl + (/11 V2 - /12 Vl )Z2 = 0 
and 

Exercise 1.13. To get started, observe that a homogeneous quadratic polynomial 
on [p3 pulls back to a homogeneous sex tic polynomial on [pl. 

Exercise 1.27. Show that the line IXZl - PZ2 meets the curve defined by zozi = Z~ 
exactly in the points [1,0, OJ and /1([P, IXJ); similarly for v. 

Exercise 1.28. Observe that homogeneous polynomials of degree 3 on [p2 pull back 
via v to homogeneous polynomials of degree 9 on [pi, and that this pullback map 
cannot be an isomorphism. 

Exercise 1.29. Observe that for [ZO, ... , Z3J = v([Xo, X1J), we have ZdZo = 
Z3/Z2 = XdXo, giving us a quadratic polynomial vanishing on the image. Now 
express Z2/Z0 and Z3/Zl in terms of these ratios to find two cubic polynomials 
cutting out ell • p' 

Exercise 2.12. First, show that for a suitable choice of homogeneous coordinates 
[Zl' ... , Z2kJ, any three mutually disjoint (k - I)-planes in [p2k-l can be taken 
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to be the planes (Xl = ... = Xk = 0), (Xk+1 = ... = X 2k = 0) and (Xl = Xk+1 = ... = 
Xk = X 2k ). For part (ii), use the fact that the Segre variaty is the zero locus of 
quadratic polynomials. 

Exercise 2.14. Probably the most efficient way to do this is simply to take P, 
P' E pl, Q, Q' E p2 and show that any linear combination of a(P, Q) and a(P', Q') 
lies in 1:2, 1 only if P = P' or Q = Q'. 

Exercise 2.19. Again, there are many ways to do this. One would be to observe that 
of the two families of lines on the surface S, the members of one meet the curve C 
exactly once each, while all but a finite number of the lines of the other family meet 
C three times. This finite subset of the lines of one family generally consists of four 
lines (if C is given by a bihomogeneous polynomial of bidegree (1, 3), this is the zero 
locus of the discriminant of F with respect to the second variable), and so has a 
cross-ratio. 

Exercise 2.29 (last part). Observe that if the map qJ were so given, the inverse image 
of most hyperplanes in p5 would be the zero locus of a bihomogeneous polynomial 
of balanced bidegree, which is not the case. 

Exercise 4.12 (parts (b) and (c)). The key fact is that the rank of a skew-symmetric 
matrix is always even. 

Exercise 4.13. One possible (and relatively elementary) way: first argue that it 
is sufficient to do this for the family of conics {X2 + a y2 + bZ2} parametrized 
by A,2. To see that this family cannot have a rational section, show that this 
would entail a pair of rational functions Y(a, b), Z(a, b) satisfying the equation 
ay2 + bZ2 + 1 == 0, or equivalently four polynomials P, Q, R, S in a and b sat­
isfying (QS)2 + a' (PS)2 + b· (RQf == O. (There are other approaches that involve 
more machinery but may provide more insight; for example, you can argue that 
any five-dimensional subvariety of f!{ will meet the general fiber of f!{ ~ p5 in an 
even number of points.) 

Exercise 4.14. One possible way: choose points p and q E p3 such that the line pq 
does not meet every member of the family. For any member Xb c: p3 of the family, 
let Q be the (unique) quadric surface containing Xb , p and q, 1 c: Q the line of the 
ruling of Q whose members meet Xb once passing through p and r(b) = 1 n Xb E X b. 

Exercise 5.13. Use induction on d. For the second part, show that d ~ 2n + 1 
points in p2 will fail to impose independent conditions on curves of degree n if and 
only if n + 2 of them are collinear. 

Exercise 6.16. It may be helpful to know that a line 1 c: p3 will meet the twisted 
cubic C only if the restriction to 1 of the three quadrics cutting out Care 
dependent; in this way we can write the equation of~l(C) as a 3 x 3 determinant. 
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Exercise 7.8. This can be done in exactly the same fashion as the proof of Proposi­
tion 7.16. 

Exercise 8.2. Probably the most instructive way to do this is to use the construction 
suggested in Exercise 6.18. 

Exercise 8.4. One way to do this is to use Exercise 1.11. 

Exercise 8.6. This can be done directly by calculation; alternately, look at the 
quadrics containing C U {p}. 

Exercise 8.7. One way to crank this out would be to project from a point on the 
rational normal curve C; the image of a point r E 1P4 will lie on a unique chord to 
the image of C, and we can write out the condition that r itself lie on the corre­
sponding chord to C. A slicker way to do it would be to use the determinantal 
description of C suggested in Example 1.16 (with k = 2), bearing in mind that a sum 
of two rank 1 matrices can have rank at most 2. 

Exercise 8.8. As in Exercise 8.7, this can be done by hand; but it is easier to 
use the determinantal description of the Veronese surface given in Example 2.6. 

Exercise 8.12. Try for example k = 4, 1 = 2, and X the projection of a rational 
normal curve C c IPn from a point p E IPn lying in a trisecant plane to C but 
not on a secant line. 

Exercise 8.13. The union of the trisecant lines to Ca..fl is just the (unique) quadric 
containing Ca.,fl' 

Exercise 9.18. Count parameters; that is, compare the number of coefficients in a 
polynomial of degree d to the number in a d x d matrix of linear forms. 

Exercise 10.7. One place to look is at a projection of a rational normal curve. 

Exercise 10.11. This can be done directly, but one approach is to use the determi­
nantal description of the rational normal curve described in Example 9.3. 

Exercise 10.14. The answer is C and ~; the key ingredient in the solution is the 
j-function. 

Exercise 10.22. One way is to look at the discussion of Zariski tangent spaces in 
Lecture 14. 

Exercise 11.11. One answer is 

Q(Z) = I~: Zll 
Zo Zl Z2 

P(Z) = Zl Z2 Z3 
Z2 

Z2 Z3 ZOo 
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(Note that the Zo in the lower right corner of the second determinant could be any 
linear form.) 

Exercise 11.19. To shvw the isomorphism of'll with the scroll X2 ,2,l fix distinct 
points q, r E 10 and a line M c [p3 disjoint from 10 and consider the images under 
the Segre embedding of G(1, 3) x 10 of the three curves 

{(lo, p)}PE1o 

{(qs, q)}sEM 

{(rs, r)}sEM' 

Exercise 11.35. m = n is the smallest number; this is required for polynomials of 
the form xn + x n- l (e.g., corresponding to points on a tangent line to the rational 
normal curve). 

Exercise 12.11. The key is to observe that the plane A in the construction is a 
general (n - 2)-secant plane to the rational normal curve. 

Exercise 12.13. You would expect a general cubic surface S to contain a one­
dimensional family of conics; it does because every conic on S is coplanar with a 
line contained in S. 

Exercise 12.23. See [0]. 

Exercise 12.25. Three of the skew lines will lie on a unique smooth quadric 
Q ~ [pl X [pI C [p3; the fourth line will in general meet this quadric in two distinct 
points q, r and be determined by them. Check that the automorphism group of Q 
fixing the three lines and the points q and r is one-dimensionaL 

Exercise 12.26. The trick to look at the hyperplanes spanned by the lines pairwise. 
The answer to the general question is "no", but I don't know an elementary proof. 

Exercise 13.S. The genera are, respectively, -1,0,0, and 1. The interesting point 
here is that the genera of three coplanar concurrent lines is different from that of 
three noncoplanar concurrent lines; indeed, we will see in Lecture 14 that they are 
not isomorphic varieties. 

Exercise 13.13. For this (and the two following) use your knowledge of the Hilbert 
function; e.g., if you want to show Fl , ... , Fk E I (X) generate, show that 
dim ((Sj(FI , ... , Fk))m) = hx(m). 

Exercise 14.9. The fastest way to see that Y and Z are not isomorphic is by 
comparing the codimension of the conductor ideals in their local rings at the 
origin; alternatively, see the discussion of multiplicity in Lecture 20. 

Exercise 15.5. This can be ground out directly; one shortcut might be to realize [p3 

as the space of homogeneous cubic polynomials in two variables mod scalars, the 
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twisted cubic as the locus of cubes (as in Lecture 10) and show that the tangential 
surface TC is the zero locus of the discriminant. 

Exercise 15.6. If a general point of a general tangent line lrpX to X lay on more 
than one tangent line, every tangent line to X would meet lrpX. 

Exercise 15.18. Observe that fffll(X) is the locus oflines L such that the restriction 
FIL of F to L has a multiple root for every polynomial F E J(X) in the ideal of X. 

Exercise 15.19. The cone over an irreducible nondegenerate curve C c [plr for 
r ~ 4 will in general have all strict inequalities. 

Exercise 16.11. A tangent line L to a curve X at a smooth point p will be a 
singular point of 9'(X) if it meets X again elsewhere (this is clear) or if it has 
order of contact> 2 with X at p-that is, every polynomial vanishing on X 
vanishes to order at least 3 on L at p (this is less clear). See Lecture 17 (up 
through Example 17.14) for further discussion. 

Exercise 16.16. Consider the projection from the plane spanned by lrPl X, ... , lrp,X. 

Exercise 17.4. See [GH1]. 

Exercise 17.7. Use the power series expansion of the parametrization. 

Exercise 17.10. q E T(k)( C) will be a smooth point if it lies on a unique osculating 
k-plane '§(k)(p) to C, it does not lie in the (k - I)-plane '§(k-l)(p), and the osculating 
plane '§(k)(p) has contact of order exactly k + 1 with Cat p. In this case, the tangent 
plane to T(k)(C) at q will be simply '§(k+1)(p). 

Exercise 17.21. This has to be done in two stages. Show that a general surface 
containing C is smooth away from C (Bertini) and that it is smooth along C 
(Bertini applied to the blow-up of [pl3 along C, plus other considerations). 

Exercise 19.7. Do this inductively with respect to k, or equivalently, apply the 
basic formula repeatedly. 

Exercise 20.7. Yes. 

Exercise 20.13. No. 

Exercise 20.15. One way to do this (not the only way) is to deform the union of two 
conic curves having a point of contact of order 3. 

Exercise 20.17. (a), (b) and (c) are all quartic curves; (d) is a sex tic. 
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Exercise 22.1. If A = 0:» W for some W c V, show that Q' is given by the composi­
tion 

W -4 V -4 V* -4 W* 

where the middle map is Q. 

Exercise 22.35. For the first part, observe that a general two-plane in o:»N = 0:»5 will 
meet <1>2 in a smooth cubic curve and miss <1>1 altogether; take L a flex line to this 
cubic in such a plane. What does the corresponding family of plane conics look 
like? 

Exercise 22.39. The quartic with a tacnode occurs when P is a smooth point of one 
of the four singular quadrics in the pencil containing X; the double conic when P 
is a vertex of one of those quadrics. 
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Note: Where there are several entries under a given heading, the ones giving the definition 
of an object or the statement of a theorem are indicated by italic numbers 

A 
action (of a group), 116 

examples of, 100, 116-123, 125-129, 161, 
280 

affine 
coordinates, 4 
space, 3 
tangent space, 175 
variety, 3 

algebraic group, 114 
dimensions of, 138 
examples of, 114, 115, 116 

analytic 
coordinates, 187 
topology, 17 
variety, 8, 77, 175 

area of a variety, 227 
arithmetic genus, 167, 173 
associated curve, 214 

tangent line to, 214 
associated map, 214 
automorphism group, 116 

of Grassmannians, 122 
of projective space, 228 

B 
base (of a family), 41 
base locus (of a pencil), 301 
Bertini's theorem, 216, 218, 231, 234, 244 
Betti numbers, 173 
Bezouttheorem,173,227,228,237,248 
bidegree, 27 
bihomogeneous polynomial, 27 
binary quantic, 120 
birational, 77 

isomorphism, 77 
isomorphism with hypersurface, 79 
isomorphism with smooth variety, 219, 

264 
map, 77 

examples, 157, 288; see also rational 
maps 

bitangent lines, 195 
blowing down, 84; see also blowing down 
blowing up, 81,82 

examples of, 84, 85, 86, 92,192, 220-221, 
254,259,277,288,298 

Nash,221 
resolving rational maps by, 84 
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blowing up (cant.) 
resolving singularities by, 219 

Borel-Moore homology, 259 

C 
canonical embedding, 280 
cardioid, 263 
catalecticant matrix, 108 
categorical product, 28, 30 
characteristic (of ground field), 186 
chordal variety, see secant variety 
Chow point of a variety, 269, 272 
Chow's theorem, 8, 77 
Chow variety, 268, 270, 271, 272 

is connected, 272 
of curves of degree 2, 276 

circuits (of real plane curves), 247 
maximum number of, 248 

classical topology, 17 
coarse moduli space, 278 

of plane cubics, 279 
of stable curves, 281 

codimension 
subadditivity in intersections, 222 

cohomology, 226, 232, 233,239,259 
complementary section (of a scroll), 93 
complete conics, 297 
complete intersection, 136 

dimension of family, 157 
general hypersurfaces cut out, 218 
local,138 
resolution of, 172 
set-theoretic, 137 

complex 
analytic varietyjsubmanifold, 8, 77, 174, 

175,226 
numbers, 3,187 

cone, 32, 37, 259 
degree of, 234 
dimension of, 138 
dual variety of, 197 

conics, 12, 13, 34, 117, 284 
complete conics, 297 
on a general surface, 157 
pencils of, 302 
universal family of, 12, 45, 46, 120 
universal hyerplane section of, 43 

Index 

variety of incident planes of, 70; see also 
rational normal curve 

conjugate (matrices oflinear forms), 100, 
102,106 

constructible sets, 39 
contact of order m, 214, 238 
coordinates 

affine, 4 
euclidean, 4 
homogeneous, 4 
local analytic, 187 

coordinate ring, 18, 49 
coordinate ring, homogeneous, 20 
cross-ratio, 7, 12, 119, 304 
cubic hypersurfaces, 238 
cubic plane curves, 121, 279; see also nodal 

plane cubic; cuspidal plane cubic 
cubic scroll, 85, 92; see also rational normal 

scroll 
cubic surface 

contains a twisted cubic, 157 
Fano variety of, 153 
is rational, 157 

cubic threefold, 237 
cubic, twisted, see twisted cubic 
cubic, cuspidal, see cuspidal cubic 
cubic, nodal, 15 
curves 

arithmetic genus of, 167, 173 
associated curves of, 214 
Gauss map on, 189, 211 
in Grassmannians, 212 
inflectionary points of, 214 
plane, see plane curve 
real plane, 247 
resolution of singularities of, 264 
secant variety of, 144,206 
tangential surface of, 118, 119, 212 

cusp, 221,261 
cuspidal cubic, 15,36-37,54-55,122,221, 

222 
cut out a variety, 48 

ideal-theoretically, 49 
locally, 50 
set-theoretically, 49, 51 
scheme-theoretically, 49, 51 

cycle parameter space, 268 
cycles, 272 
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D 
decomposable multi vectors, 64 
deficient dual variety, 197, 199 
deficient secant variety, 145, 195 
deficient tangent variety, 190, 195 
degenerate variety, 144 
degree, 16, 166,225,226 

of cones, 234 
of determinantal varieties, 243 
of a finite set, 6 
of a general projection, 225 
of some Grassmannians, 245 
of a hypersurface, 8 
of images under Segre maps, 240 
of images under Veronese maps, 232 
of a join, 235-236 
of joins of corresponding points, 241 
minimal, 229, 231 
of projections, 234-235, 259 
projective degree of a map, 240 
of a rational map, 79 
of rational normal curves, 229 
of rational normal scrolls, 241, 245 
of Segre varieties, 232 
of tangential surfaces, 245 
of unions of planes, 244 
of Veronese varieties, 231 

determinantal varieties, 98, 99, 111, 112 
degrees of, 243 
dimension of, 151,223 
examples of, 11, 14,24,26,98,99, 111, 

159-160,192,274 
dimension offamily of, 159 
Fano varieties of, 112 
general quartic surface is not, 160 
projective tangent space to, 184 
proper, 223 
resolution of, 206 
tangent spaces to, 184,207 

differential of a map, 175, 176 
is generically surjective, 176 

dimension, 16, 133, 134, 135 
of determinantal varieties, 151,223 
of dual varieties, 197 
of Fano varieties of hypersurfaces, 152 
of fiber products, 140 
of fibers of maps, 138 
of flag manifolds, 148 

of a hypersurface section, 136 
of intersections is subadditive, 222 
of a join of varieties, 148 
local, 136 
of parameter spaces 

of complete intersections, 157 
of curves on a quadric, 158 
of determinantal varieties, 159 
of rational normal curves, 156 
of twisted cubics, 155 
of twisted cubics on a surface, 156 

pure, 136 
of secant varieties, 144, 146 
of some Schubert cycles, 149 
of tangential variety, 190 
of variety of secant lines, 144 
of variety of secant planes, 146 
of variety of tangent lines, 191 
of variety of tangent planes, 189 

directrix, 86, 92 
distinguished open sets, 17,19 
dominant map, 77 
double plane, 33 
double point locus of a map, 56 
dual projective space, 6 
dual variety, 196 

E 

of plane conics, 297 
deficiency of, 199 
dimension of, 197 
dual variety of, 198, 208 
tangent spaces to, 208 

effective cycles, 272 
elements (of a family), 41 
elimination theory, 35 
embedding theorem, 193 
equivalence, projective, 4, 22 

examples of, 7, 10, 15,92, 121,161,162, 
259,279,303-307 

euclidean coordinates, 4 
exceptional divisor, 81, 82, 254 

is projectivized tangent cone, 255 

F 
families, 41 

of conics, 45, 46, 296, 296 

319 
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families (cont.) 
generically reduced, 267 
of hyperplanes, 42, 46 
of hyperplane sections, 43 
of hypersurfaces, 45 
oflines,47 
of quadrics, 295 

subvarieties of singular quadrics, 299 
singular elements of pencils, 301-303 

of rational normal curves, 46 
reduced, 267 
of twisted cubics, 46 
of varieties, 41 
sections of, 43, 46 
tautological, 278, 279; see also universal 

family 
Fano varieties, 70 

of determinantal varieties, 112 
of hypersurfaces, 152,210 
of a Grassmannian, 67-68,123 
of a quadric hypersurface, 288, 289-294 
of a quadric surface, 26, 67, 71 
of a Segre variety, 27, 67 
tangent spaces to, 209 

fibers of maps 
closures of general, 56, 141 
dimension of, 138 

fiber products, 30 
field, ground, see ground field 
fine moduli space, 279 

of plane cubics (does not exist), 279 
finite map, 177, 178 
finite sets, 6 

are not complete intersections, 137 
impose independent conditions, 56 
Hilbert functions of, 163-164 
resolutions of, 170-171 

flag manifolds, 95 
dimension of, 148 
tangent spaces to, 202 

flat map, 43, 267 
free resolution, 169 

of a complete intersection, 172 
offour points, 171 
of three points, 170 

flex line, 216 
Fulton-Hansen theorem, 195 
function field, 72, 78, 80, 135, 225 

function, regular, see regular function 
fundamental class, 226, 239, 259 

G 
Gauss map, 188 

of a curve, 189,211 
graph of (Nash blow-up), 221 
of a hypersurface, 188 
of a tangential surface, 213 

general, 53 
conic, 54 

Index 

fibers of maps, closure of, 56, 141 
hyperplane section is irreducible, 230 
hypersurfaces 

cut out complete intersections, 218 
Fano variety of, 152,210 
are smooth, 218 

line, 54, 56 
point, 54 
projections intersect transversely, 236 
projection of twisted cubic, 54 
set of points 

impose independent conditions, 56 
are not complete intersections, 137 

polynomial as sum of powers, 147 
surface contains twisted cubics?, 156 
twisted cubic, 55 

generalized row/column of a matrix, 102 
general linear group, 114 

dimension of, 138 
general position, 7 
generic, 54 
generic determinantal variety, 98 
generically finite map, 54, 80 
generically reduced family, 267 

examples, 273, 276, 277 
generically transverse intersection, 227 
generate an ideal locally, 50, 51, 165 
genus, arithmetic, 166 
geometric invariant theory, 117, 124,280 
graph 

of a rational map, 75 
of a regular map, 29 

Grassmannians, 63 
affine coordinates on, 65-66 
automorphisms of, 122 
degree of some, 245 
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as determinantal variety, 112 
dimension of, 138 
Fano variety of, 123 
G(2, n), 65 
G(2, 4),67, 142 
linear spaces on, 67-68, 123 
secant variety of, 112, 145 
tangent spaces to, 200 

ground field, 3, 16 
group action, see action 
group, algebraic, see algebraic group 
group of projective motions, 116 

examples of, 118, 119, 122 

H 
Hilbert function, 163, 169-170, 225, 273 

of a hypersurface, 166 
of a plane curve, 164 
of points, 163 
of a rational normal curve, 166 
of a Segre variety, 166 
of a Veronese variety, 166 

Hilbert point of a variety, 274 
Hilbert polynomial, 165, 177, 225, 258, 267, 

273 
of a curve, 166 
of a hypersurface, 166 
of a join, 236 
of a rational normal curve, 166 
of a Segre variety, 166,234 
of three lines, 177 
of a Veronese variety, 166 

Hilbert variety, 269, 274 
of curves of degree 2, 276 

Hilbert syzygy theorem, 169 
homogeneous 

coordinates, 4 
coordinate ring, 20 
map of graded modules, 168 

homology, 226, 247, 259; see also 
cohomology; fundamental class 

hyperplane, 5 
section, 43 

is irreducible and nondegenerate, 230 
of quadrics, 283; see also universal 

hyerplane, universal hyperplane 
section 

hypersurfaces, 8, 136 
characterization by dimension, 136 
every variety birational to, 79 
Fano varieties of, 152, 154,210 
Gauss map of, 188 
general 

cut out complete intersections, 218 
Fano variety of, 152,210 
are smooth, 218 

Hilbert function of, 166 

321 

intersection with tangent hyperplane, 259 
linear spaces on, 290 

I 

are unirational, 238 
up to projective equivalence, 161; see also 

universal hypersurface 

ideal, 18, 20, 48 
images 

of projective varieties, 38 
of quasiprojective varieties, 39 
of a rational map, 75 

impose independent conditions, 12,56, 
164 

incidence correspondences, 68, 69, 91, 94, 
142, 143, 144, 148, 149, 151, 152, 
156, 159, 190, 191, 192, 195, 196, 
198,203,205,206,208,216,217, 
269,270,290,291,294 

tangent spaces to, 202, 216 
incident planes, see variety of incident 

planes 
independent 

points, 6 
conditions imposed, 12 

infinitely near point, 263 
inflectionary points, 214 
intersect 

generically transversely, 227 
properly, 227 
residual, 109, 156 

intersection 
degree of, see Bezout's theorem 
generically transverse, 227 
multiplicity, 227 
subadditivity of codimension of, 222 

inverse function theorem, 179 
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irreducibility 
characterization of, 139 
of dual variety, 197 
of general hyperplane section, 231 
of secant variety, 144 
of tangent variety, 190 
of universal hyperplane section, 53 
of variety of tangent lines, 191 

irreducible 
components, 52 
decomposition, 52 
variety, 51 

isomorphism, 20, 22 
birational, 77 
local criterion for, 177, 179 

iterated torus knot, 261 

J 
j-function, 119, 121, 125,279, 304 
join 

K 

of corresponding planes, 95 
of corresponding points, 91 

degree of, 241 
tangent spaces to, 206 

of two varieties, 33, 70, 89, 193 
degree of, 235~236 
dimension of, 148 
Hilbert polynomial of, 236 
multiplicity of, 259 
tangent cones to, 257 
tangentspacesto,205~206 

Kleiman's transversality theorem, 219 
Koszul complex, 173 

L 
Lefschetz principle, 176, 187, 204 
lemniscate, 264 
I-generic matrix, 102 
lima~on, 263 
lines, 5, 9 

families of, 47,63 
on a general surface, 152 
incident, 69 
meeting four lines, 245~246 

on a quadric, 288, 290 
on a quadric surface, 26, 67, 85, 285 
on a quartic surface, 160 
secant, 89, 90, 91, 143, 191 
on a Segre variety, 27, 67, 112 
tangent, 190, 194 

linear action (of a group), 116 
linear determinantal variety, 99 
linear subspaces, 5 

characterization by degree, 228 
on a hypersurface, 152,210,290 
on a quadric, 289, 291 

Index 

up to projective equivalence, 162; see also 
lines 

link (associated to a singular point), 261 
local complete intersection, 138 
locally closed subset, 18 
local ring, 20, 21, 135, 175, 252, 260 

M 
maps, regular, see regular maps 
maximal ideal, 175, 179,252 

characterization of, 58 
members (of a family), 41 
minimal degree, 229, 231, 242 
minimal free resolution, 169; see also free 

resolution 
moduli space, 268, 278, 279 

of plane cubics, 279 
of stable curves, 281 

multidegree, 239 
multiplicity 

N 

of intersection, 227, 228 
of a point, 258, 259 

on a determinantal variety, 258 
on a join, 259 
on a tangential surface, 260 

Nakayama'a lemma, 179 
Nash blow-up, 221 
nodal plane cubic, 15, 36~37, 54~55, 79, 

220,221 
node, 220, 260 
Noetherian 

ring, 57, 58 
topology, 18 
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nondegenerate, 144,229,230 
normal form (for pencils of quadrics), 305 
normal space, 183-184,215,259 
Nullstellensatz, 8, 20, 49, 57 

o 
I-generic matrix, 102 
open Chow variety, 268, 270 
open Hilbert variety, 268, 274 
open set, 17, 52 
order of contact, 214, 238 
orthogonal group, 115 

dimension of, 138 
oscnode, 262 
osculating (k + 1)-fold,214 

tangent space to, 214 
osculating planes, 214 

examples of, 119,213 
ovals (of real plane curves), 247 

maximum number of, 248 

p 

parameter space, 266, 268, 271, 274 
of conics, 13, 44, 45 
of hypersurfaces, 44 
of plane conics in space, 157 
of rational normal curves dimension of, 

156 
of twisted cubics, 55, 155, 156, 159 

dimension of, 155, 156, 159 
parametrized, 41 
pencils of quadrics, 301 
plane, 5 
plane curves 

arithmetic genus of, 167 
dual of dual of, 198 
Hilbert function of, 164 
real,247 
tangent lines to, 186; see also curves 

plane conic, see conic 
Pllicker 

coordinates, 64 
embedding, 64 
relations, 65, 66 

points, 6 
Hilbert functions of, 164 

323 

impose independent conditions, 12,56, 
164 

independent, 6 
in general position, 7 
of a variety over a field, 16 

polar, 283 
polarization, 280 
position, general, 7 
primary 

decomposition of ideals, 52, 61 
ideal,52 

product of varieties, 28, 30 
is irreducible, 53 
of projective spaces is rational, 79, 86 
dimension of, 138 
subvarieties of, 27 

degree of, 240 
multidegree of, 239 

projection, 34, 37 
degree of, 234-235, 259 
dimension of, 138 
examples of, 21, 38, 93, 94, 148, 177, 193, 

265,285-289 
intersect transversely, 236 

projective 
action (of a group), 116 
degree of a map, 240 
equivalence, see equivalence, projective 
motions, 116 
space, 3 

dual,6 
regular maps between, 148 

tangent cone, 253 
dimension of, 253, 255 
via holomorphic arcs, 256 
to determinantal varieties, 256 
of joins, 257 
of tangential surfaces, 257 

tangent space, 181, 182, 183, 188 
to secant varieties, 184 
to determinantal varieties, 184 
to dual varieties, 208 
to join of corresponding points, 206 
to join of varieties, 206 
to osculating (k + I)-fold, 214 
to quadrics, 283 
to secant varieties, 206 
to tangential surfaces, 213 
to tangential varieties, 215 
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tangent space (cont.) 
to union of planes, 205 
to varieties of singular quadrics, 296, 

297,300; see also Zariski tangent 
space 

projective variety, 4 
image of is projective, 38 
linear space must intersect, 135 
regular functions on, 38 
two must meet, 148 

projectively equivalent, see equivalence, 
projective 

projectivized tangent cone, 253 
to determinantal varieties, 256 
dimension of, 253, 255 
is exceptional divisor, 255 
via holomorphic arcs, 256 
of joins, 257 
of tangential surfaces, 257 

proper determinantal variety, 223 
proper transform, 76,82 

Q 
quadrics, 7, 9, 12, 23, 26, 30, 33, 65, 67, 71, 

79,86,122,242,282-307 
as double cover of projective space, 287, 

294 
family of, 299 

singular elements of pencils, 301-303 
subvariety of singular quadrics, 299 

tangent spaces to, 300 
linear spaces on, 289 
pencils of, 301-307 
plane sections of, 283-284 
projections of, 21, 78, 84, 86, 288, 294 
rank of, 33 
rank 3 and 4, 96 
are rational, 79, 86, 288 
smooth, 34 
tangent spaces to, 283 

quadric surface, 26, 84, 95,122, 285 
curves on, 111, 239 

family of, 158, 160 
as double cover of the plane, 286 
lines on, 26, 67, 85, 285 
pencils of, 303 
projection of, 78, 84, 286 
is rational, 78, 84 

quotient, 123 

R 

of Chow /Hilbert variety, 280 
of affine space, 125 
by finite groups, 124, 126 
of a product, 126 
of projective space, 128 

Rabinowitsch, trick of, 59 
radical (ideal; of an iqeal), 48 
ramphoid cusp, 262 
rank of a quadric, 33 

of a hyperplane section, 283 

Index 

rational function field, see function field 
rational functions, 72 
rational maps, 73, 74 

composition of, 74 
degree of, 80 
domain ofregularity, 77 
examples of, 29, 88, 89, 157, 188, 191, 

194,213,237-238,288,298,299, 
304 

first point of view on, 74 
fourth point of view, 84 
image of, 75 
indeterminacy locus, 77 
inverse image of a subvariety, 75 
projection is a, 75 
resolution by blowing up, 84 
restriction of, 74 
second point of view, 76 
third point of view, 78 
variety, 78 

rational normal curve, 10 
characterization by degree, 229 
of degree 4, 119 

canonical quadric containing, 120 
as determinantal variety, 11, 14, 100 
degree of, 229 
dimension of parameter space for, 156 
generators for ideal of, 51 
Hilbert function of, 166 
parametrization of, 11 
projections of, 76 
quadrics containing, 10, 11,97, 156 
secant varieties of, 90, 103 
sections of families of, 46 
synthetic construction of, 14 



Index 

tangential surface of, 118, 119 
degree of, 118,245 

through n + 3 points, 12, 14; see also 
rational normal scroll; Veronese 
varieties 

rational quartic curves, 14,28,37, 137 
trisecant lines to, 91 

rational normal scroll, 92, 93, 97, 105, 109, 
242 

degree of, 241, 245 
as determinantal variety, 105-109,243 
dual variety of, 197 
examples of, 26, 30, 85, 94, 97 
hyperplane sections of, 92, 93, 94, 242 
projections of, 92-93, 94, 242 
is smooth, 184 

rational section (of a family), 43, 46 
rational variety, 78, 87 

examples, 84-87,157, 237-238, 288 
reduced family, 267 

examples, 273, 276, 277 
regular functions, 18, 20, 61 

on projective varieties, 38 
regular maps, 21 

degree of, 80 
graphs of, 29 

residual intersection, 109, 156 
resolution 

of a module, 169; see also free resolution 
of singularities, 206, 219, 220-222 

of curves, 264 
of determinantal varieties, 206 

resultant, 35, 38, 40 
ring, coordinate, see coordinate ring 
ring, local, see local ring 
ruling 

of a scroll, 92 
of a Segre variety, 113 

S 
Sard's theorem, 176,217 
saturation (of an ideal), 50, 165 
scheme, 49,57,196,210,218,253,258,267, 

275,277 
Schubert cycles, 66 

dimensions of, 149 
secant line/plane map, 89, 192 
secant lines/planes, 89, 90, 91, 143, 191 

secant varieties, 90 
of cones, 145 
of curves, 206 
deficient, 145 
of generic determinantal varieties, 

145-6 
dimension of, 144, 146 
ofGrassmannians, 112, 145 
of hyperplane sections, 145 
projective tangent space to, 184 
of rational normal curves, 103 

dimension of, 146 
of a rational normal quartic, 120 
relation to tangential variety, 195 
of Segre varieties, 99, 145 
smoothness of, 206 
tangent spaces to, 206 
of Veronese surface, 144 
of Veronese varieties, 112 

second fundamental form, 214, 216, 259 
section (of a family), 43, 46 
Segre map, 25, 30 

coordinate-free description of, 31 
Segre threefold, 26, 94, 99 
Segre variety, 25 

coordinate-free description of, 31 
degrees of, 233 
as determinantal varieties, 94 
diagonal is Veronese variety, 27 
dual variety of, 197 
generators for ideal of, 51 
Hilbert function of, 166,234 
linear spaces on, 27, 67, 112 
secant variety of, 99, 145 
is smooth, 184 
subvarieties of, 27 

simple (pencil of quadrics), 303 
singular points, 175 

equivalence relations, 260 
examples, 260 
form a proper subvariety, 176 
links, 261 
multiplicity of, 258, 259 
number on a plane curve, 265 
resolution of, 206, 219, 220-222, 264 
tangent cones at, 251,252,259 

skew-symmetric determinantal varieties, 
112 

dimension of, 151 

325 
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skew-symmetric multilinear forms, 161 
smooth, 16, 174 

conic, 12 
point, 174 
quadric, 34 
variety birational to given one, 219, 264 

smoothness 
of general hypersurfaces, 218 
of join of corresponding points, 206 
of join of two varieties, 206 
of scrolls, 184,205 
of secant varieties, 206 
of tangential varieties, 215 
of union of planes, 205 
of variety of tangent lines, 216 

space 
affine, 3 
linear, 5 
parameter, 13 
projective, 3 
weighted projective, 127 

span, 5 
special linear group, 114 
stable curve, 280 
subadditivity of codimension, 222 
subGrassmannians, 66 
subvariety, 18 

of Grassmannians, 66 
of Segre varieties, 27 
of Veronese varieties, 24 

symmetric determinantal varieties, 112 
dimension of, 151 

symmetric products, 126, 127, 275 
symplectic group, 116 

dimension of, 138 
syzygies, 168 

T 
tacnode, 221,222,262 
tangentcones,251,252,259 

of determinantal varieties, 256 
dimension of, 253, 255 
via holomorphic arcs, 256 
of joins, 257 
of tangential surfaces, 257 
to varieties of singular quadrics, 296, 297, 

300 
tangent hyperplane, 196 

tangential variety, 189 
degree of, 245 
dimension of, 190 
examples of, 118, 119, 190,245 
multiplicities of, 260 
relation to secant variety, 191, 195 
smoothness of, 215 
tangent cones to, 257 
tangent spaces to, 212-213 

Index 

tangent lines, 190, 194 
to a cubic hypersurface, 237 

tangent space, 174, 175 
projective, 181,182,183,188 
to determinantal variety, 184 
to dual varieties, 208 
to join of corresponding points, 206 
to join of varieties, 206 
to osculating (k + l)-fold, 214 
to quadrics, 188, 283 
to secant varieties, 206 
to secant variety, 184 
to tangential surfaces, 213 
to tangential varieties, 215 
to union of planes, 205 
to varieties of singular quadrics, 296, 297, 

300; see also Zariski tangent space 
tautological family, 278, 279 

of plane cubics, 279 
topology 

analytic, 17 
classical, 17 
Noetherian, 18 
Zariski, 17; see also Zariski topology 

torus knot, 261 
total space (of a family), 41 
total transform, 75 
transverse intersection, 227 

examples, 232, 246 
of general projections, 236 
of general translates, 219 

triali ty, 294 
triangles, 122 
triangulation, 226 
trilinear algebra, 100 
triple tacnode, 263 
trisecant lines, 90 
twist (of a graded module), 168 
twisted cubic, 9, 28, 43, 118 

is not complete intersection, 137 
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U 

on a general surface, 156 
on a quartic surface, 156, 160 
parameter space of, 55, 155, 156, 159 

dimension of, 155, 159 
projections of, 36-37, 54-55, 79, 118 
quadrics containing, 9, 110, 118, 156 
secant lines, 90 
sections of families of, 46 
is set-theoretic complete intersection, 137 
tangential surface of, 118, 190,257,260 
through 6 points, 12, 14 
variety of incident planes of, 70; see also 

rational normal curve 

unibranch, 261 
unions of planes 

degrees of, 244 
tangent spaces to, 205 
are varieties, 69 

unirational, 87 
cubic hypersurfaces are, 237-238 
hypersurfaces are, 238 

universal family 

V 

over the Chow variety, 271 
of conics, 46, 298 
over the Hilbert variety, 274 
of hyperplanes, 42, 45, 46 
of hyperplane sections, 43 

is irreducible, 53 
of hypersurfaces, 45, 46, 266 
over a moduli space, 279 
of quadrics, 299 
of plane cubics (does not exist), 279 
of planes, 69, 95 

dimension of, 142 
tangent space to, 202 

of plane sections, 150,225 

variety 
affine, 3 
birational to hypersurface, 79 
coordinate ring of, 18 
defined over a field, 16 
fiber products of, 30 
ideal of, 18 

of minimal degree, 231, 242 
projective, 4 
products of, 28 
quasi-projective, 18 
rational, 78 
sub-,18 

variety of bitangent lines, 195 
dimension of, 195 

variety of flex lines, 216 
dimension of, 216 

variety of incident planes, 69 
dimension of, 142 
examples, 70,142 
tangent spaces to, 203 

variety of lines joining two varieties, 89 
variety of secant lines, 89, 191 

dimension of, 143 
irreducibility of, 143 
tangent space to, 204 

variety of secant planes, 90, 91 
dimension of, 143 

variety of tangent lines, 190, 194 
dimension of, 191 
smoothness of, 216 

variety of tangent planes, 188 
dimension of, 189 

Veronese map, 23, 30 
analog for Grassmannians, 68 
coordinate-free description of, 25, 101 
degrees of images, 232 

Veronese surface, 23, 24, 45-46, 90,120, 
242 

chordal variety of, 46, 90, 121 
projections of, 92, 121, 242; see also 

Veronese variety 
Veronese variety, 23 

coordinate-free description of, 25 
degree of, 231 
as determinantal variety, 24, 112 
generators for ideal of, 51 
Hilbert function of, 166 
secant variety of, 90, 112 
is smooth, 184 
subvarieties of, 24 

vertex of a cone, 32 

W 
weighted projective spaces, 127 
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Z 
Zariski cotangent space, 175 
Zariski's Main Theorem, 204 
Zariski tangent space, 174, 175; see also 

tangent space; projective tangent 
space 

to an associated curve, 214 
to determinantal varieties, 184,207 
dimension is upper-semicontinuous, 175 
to Fano varieties, 209 

to flag manifolds, 202 
to Grassmannians, 200 
to incidence correspondences, 202 
may have any dimension, 193 
to variety of incident planes, 203 

Index 

to varieties of singular quadrics, 296, 297, 
300 

Zariski topology, 17 
on a product, 29 
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