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To Phil Griffiths
and David Mumford



Preface

Aims

The aim of this book is to provide a guide to arich and fascinating sub-
ject: algebraic curves, and how they vary in families. The revolution
that the field of algebraic geometry has undergone with the introduc-
tion of schemes, together with new ideas, techniques and viewpoints
introduced by Mumford and others, have made it possible for us to
understand the behavior of curves in ways that simply were not possi-
ble a half-century ago. This in turn has led, over the last few decades,
to a burst of activity in the area, resolving long-standing problems
and generating new and unforeseen results and questions. We hope
to acquaint you both with these results and with the ideas that have
made them possible.

The book isn’t intended to be a definitive reference: the subject is
developing too rapidly for that to be a feasible goal, even if we had
the expertise necessary for the task. Our preference has been to fo-
cus on examples and applications rather than on foundations. When
discussing techniques we’ve chosen to sacrifice proofs of some, even
basic, results — particularly where we can provide a good reference —
in order to show how the methods are used to study moduli of curves.
Likewise, we often prove results in special cases which we feel bring
out the important ideas with a minimum of technical complication.

Chapters 1 and 2 provide a synopsis of basic theorems and conjec-
tures about Hilbert schemes and moduli spaces of curves, with few
or no details about techniques or proofs. Use them more as a guide
to the literature than as a working manual. Chapters 3 through 6 are,
by contrast, considerably more self-contained and approachable. Ul-
timately, if you want to investigate fully any of the topics we discuss,
you’ll have to go beyond the material here; but you will learn the tech-
niques fully enough, and see enough complete proofs, that when you
finish a section here you'll be equipped to go exploring on your own.

If your goal is to work with families of curves, we’d therefore suggest
that you begin by skimming the first two chapters and then tackle the
later chapters in detail, referring back to the first two as necessary.
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As for the contents of the book: Chapters 1 and 2 are largely exposi-
tory: for the most part, we discuss in general terms the problems as-
sociated with moduli and parameter spaces of curves, what’s known
about them, and what sort of behavior we've come to expect from
them. In Chapters 3 through 5 we develop the techniques that have
allowed us to analyze moduli spaces: deformations, specializations
(of curves, of maps between them and of linear series on them), tools
for making a variety of global enumerative calculations, geometric in-
variant theory, and so on. Finally, in Chapter 6, we use the ideas and
techniques introduced in preceding chapters to prove a number of
basic results about the geometry of the moduli space of curves and
about various related spaces.

Prerequisites

What sort of background do we expect you to have before you start
reading? That depends on what you want to get out of the book. We’d
hope that even if you have only a basic grounding in modern algebraic
geometry and a slightly greater familiarity with the theory of a fixed
algebraic curve, you could read through most of this book and get a
sense of what the subject is about: what sort of questions we ask, and
some of the ways we go about answering them. If your ambition is
to work in this area, of course, you'll need to know more; a working
knowledge with many of the topics covered in Geometry of algebraic
curves, I [7] first and foremost. We could compile a lengthy list of other
subjects with which some acquaintance would be helpful. But, instead,
we encourage you to just plunge ahead and fill in the background as
needed; again, we've tried to write the book in a style that makes such
an approach feasible.

Navigation

In keeping with the informal aims of the book, we have used only
two levels of numbering with arabic for chapters and capital letters
for sections within each chapter. All labelled items in the book are
numbered consecutively within each chapter: thus, the orderings of
such items by label and by position in the book agree.

There is a single index. However, its first page consists of a list
of symbols, giving for each a single defining occurrence. These, and
other, references to symbols also appear in the main body of the index
where they are alphabetized “as read”: for example, references to M
will be found under Mgbar; to k; under kappai. Bold face entries in the
main body index point to the defining occurrence of the cited term.
References to all the main results stated in the book can be found
under the heading theorems.
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Chapter 1

Parameter spaces:
constructions and examples

A Parameters and moduli

Before we take up any of the constructions that will occupy us in
this chapter, we want to make a few general remarks about moduli
problems in general.

What is a moduli problem? Typically, it consists of two things. First
of all, we specify a class of objects (which could be schemes, sheaves,
morphisms or combinations of these), together with a notion of what
it means to have a family of these objects over a scheme B. Second, we
choose a (possibly trivial) equivalence relation ~ on the set S(B) of all
such families over each B. We use the rather vague term “object” de-
liberately because the possibilities we have in mind are wide-ranging.
For example, we might take our families to be

1. smooth flat morphisms C— B whose fibers are smooth curves
of genus g, or

2. subschemes C in P" x B, flat over B, whose fibers over B are
curves of fixed genus g and degree d,

and so on. We can loosely consider the elements of S(Spec(C)) as the
objects of our moduli problem and the elements of S(B) over other
bases as families of such objects parameterized by the complex points
of B.!

The equivalence relations we will wish to consider will vary consid-
erably even for a fixed class of objects: in the second case cited above,
we might wish to consider two families equivalent if

IMore generally, we may consider elements of S(Spec(k)) for any field k as objects
of our moduli problem defined over k.
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1. the two subschemes of P x B are equal,
2. the two subcurves are projectively equivalent over B, or
3. the two curves are (biregularly) isomorphic over B.

In any case, we build a functor F from the category of schemes to that
of sets by the rule
F(B) =S(B)/ ~

and call F the moduli functor of our moduli problem.

The fundamental first question to answer in studying a given moduli
problem is: to what extent is the functor F representable? Recall that
F is representable in the category of schemes if there is a scheme ‘M
and an isomorphism ¥ (of functors from schemes to sets) between F
and the functor of points of ‘M. This last is the functor Mory, whose
value on B is the set Morgc, (B, M) of all morphisms of schemes from
B to M.

DEFINITION (1.1) If F is representable by M, then we say that the
scheme M is a fine moduli space for the moduli problem F.

Representability has a number of happy consequences for the study
of F. If ¢ : D—B is any family in (i.e., any element of) S(B), then
X = ¥(@) is a morphism from B to M. Intuitively, (closed) points of
M classify the objects of our moduli problem and the map x sends
a (closed) point b of B to the moduli point in /M determined by the
fiber D;, of D over b. Going the other way, pulling back the identity
map of M itself via ¥ constructs a family 1 : C— M in S (M) called the
universal family. The reason for this name is that, given any morphism
X : B—2M defined as above, there is a commutative fiber-product
diagram

D T
(1.2) Q@ 1
B—X . m

with @ : D—B in S(B) and ¥(@) = x. In sum, every family over B is
the pullback of C via a unique map of B to M and we have a perfect
dictionary enabling us to translate between information about the ge-
ometry of families of our moduli problem and information about the
geometry of the moduli space M itself. One of the main themes of
moduli theory is to bring information about the objects of our moduli
problem to bear on the study of families and vice versa: the dictionary
above is a powerful tool for relating these two types of information.
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Unfortunately, few natural moduli functors are representable by
schemes: we’ll look at the reasons for this failure in the next chap-
ter. One response to this failure is to look for a larger category (e.g.,
algebraic spaces, algebraic stacks, ...) in which F can be represented:
the investigation of this avenue will also be postponed until the next
chapter. Here we wish to glance briefly at a second strategy: to find a
scheme M that captures enough of the information in the functor F
to provide us with a “concise edition” of the dictionary above.

The standard way to do this is to ask only for a natural transfor-
mation of functors ¥ = ¥y, from F to Mor(-, /M) rather than an iso-
morphism. Then, for each family ¢ : D— B in S(B), we still have a
morphism x = ¥Y(@) : B— M as above. Moreover, these maps are still
natural in that, if @’ : D" = D xp B'—B’ is the base change by a
map & : B'—B, then ¥’ = ¥Y(p’) = Y() o &. This requirement, how-
ever, is far from determining M. Indeed, given any solution (M, Y¥)
and any morphism 1 : M— M’, we get another solution (M', 1T o ¥).
For example, we could always take M’ to equal Spec(C) and ¥ () to
be the unique morphism B— Spec(C) and then our dictionary would
have only blank pages; or, we could take the disjoint union of the
“right” M with any other scheme. We can rule such cases out by re-
quiring that the complex points of ‘M correspond bijectively to the
objects of our moduli problem. This still doesn’t fix the scheme struc-
ture on M: it leaves us the freedom to compose, as above, with a map
T M— M’ as long as 1 itself is bijective on complex points. For ex-
ample, we would certainly want the moduli space M of lines through
the origin in C? to be P! but our requirements so far don’t exclude
the possibility of taking instead the cuspidal rational curve M’ with
equation y?z = x3 in P2 which is the image of P! under the map
[a, b]—[a?b, a?, b3]. This pathology can be eliminated by requir-
ing that M be universal with respect to the existence of the natural
transformation ¥: cf. the first exercise below. When all this holds, we
say that (M, ¥), or more frequently ‘M, is a coarse moduli space for
the functor F. Formally,

DEFINITION (1.3) A scheme M and a natural transformation Y, from
the functor F to the functor of points Mory; of M are a coarse moduli
space for the functor F if

1) The map ¥spec(c) : F(Spec(C)) —M(C) = Mor(Spec(C), M) is a
set bijection.?

2) Given another scheme M’ and a natural transformation Yy
fromF—Mor 4y, there is a unique morphism 1t : M— M’ such that

20r more generally require this with C replaced by any algebraically closed field.
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the associated natural transformation I1 : Mora— Moryy satisfies
Yoy =110 ¥y,

EXERCISE (1.4) Show that, if one exists, a coarse moduli scheme
(M,Y) for F is determined up to canonical isomorphism by condi-
tion 2) above.

EXERCISE (1.5) Show that the cuspidal curve M’ defined above is not
a coarse moduli space for lines in C2. Show that P! is a fine moduli
space for this moduli problem. What is the universal family of lines
over P1?

EXERCISE (1.6) 1) Show that the j-line M, is a coarse moduli space
for curves of genus 1.

2) Show that a j-function J on a scheme B arises as the j-function
associated to a family of curves of genus 1 only if all the multiplicities
of the zero-divisor of J are divisible by 3, and all multiplicities of
(J —1728) are even. Using this fact, show that M, is not a fine moduli
space for curves of genus 1.

3) Show that the family y2 — x3 — t over the punctured affine line
Al — {0} with coordinate t has constant j, but is not trivial. Use this
fact to give a second proof that /M; is not a fine moduli space.

The next exercise gives a very simple example which serves two
purposes. First, it shows that the second condition on a coarse mod-
uli space above doesn’t imply the first. Second, it shows that even a
coarse moduli space may fail to exist for some moduli problems. All
the steps in this exercise are trivial; its point is to give some down-to-
earth content to the rather abstract conditions above and working it
involves principally translating these conditions into English.

EXERCISE (1.7) Consider the moduli problem F posed by “flat fami-
lies of reduced plane curves of degree 2 up to isomorphism”. The set
F(Spec(C)) has two elements: a smooth conic and a pair of distinct
lines.

1) Show (trivially) that there is a natural transformation ¥ from F to
Mor(-, Spec(Q)).

Now fix any pair (X, ¥’) where X is a scheme and ¥’ is a natural
transformation from F to Mor(-, X).

2) Show that, if @ : C—B is any family of smooth conics, then
there is a unique C-valued point 7 : Spec(C)— X of X such that
V' (p) =mo¥ ().

3) Let @ :C— A} be the family defined by the (affine) equation xy —t
and @’ be its restriction to A! — {0}. Use the fact that ¢’ is a family
of smooth conics to show that ¥’ (@) = 1T o ¥ ().
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4) Show that the pair (Spec(C), ¥) has the universal property in 2)
above but does not satisfy 1). Use Exercise (1.4) to conclude that there
is no coarse moduli space for the functor F.

We conclude by introducing one somewhat vague terminological
dichotomy which is nonetheless quite useful in practice. We would
like to distinguish between problems that focus on purely intrinsic
data and those that involve, to a greater or lesser degree, extrinsic
data. We will reserve the term moduli space principally for problems
of the former type and refer to the classifying spaces for the latter
(which until now we’ve also been calling moduli spaces) as parameter
spaces. In this sense, the space M, of smooth curves of genus g is a
moduli space while the space H, 4, of subcurves of P” of degree d
and (arithmetic) genus g is a parameter space. The extrinsic element
in the second case is the g; that maps the abstract curve to P” and
the choice of basis of this linear system that fixes the embedding.
Of course, this distinction depends heavily on our point of view. The
space G classifying the data of a curve plus a g}; (without the choice of
a basis) might be viewed as either a moduli space or a parameter space
depending on whether we wish to focus primarily on the underlying
curve or on the curve plus the gj;. One sign that we’re dealing with a
parameter space is usually that the equivalence relation by which we
quotient the geometric data of the problem is trivial; e.g., for M this
relation is “biregular isomorphism” while for #g 4, it is trivial.

Heuristically, parameter spaces are easier to construct and more
likely to be fine moduli spaces because the extrinsic extra structure in-
volved tends to rigidify the geometric data they classify. On the other
hand, complete parameter spaces can usually only be formed at the
price of allowing the data of the problem to degenerate rather wildly
while complete — even compact — moduli spaces can often be found
for fairly nice classes of objects. In the next sections, we’ll look at
the Hilbert scheme, a fine parameter space, which provides the best
illustration of the parameter space side of this philosophy.

B Construction of the Hilbert scheme

The Hilbert scheme is an answer to the problem of parameterizing
subschemes of a fixed projective space P". In the language of the pre-
ceding section, we might initially look for a scheme F{ which is a fine
parameter space for the functor whose “data” for a scheme B consists
of all proper, connected, families of subschemes of P" defined over
B. This functor, however, has two drawbacks. First, it’s too large to
give us a parameter space of finite type since it allows hypersurfaces
of all degrees. Second, it allows families whose fibers vary so wildly



6 1. Parameter spaces: constructions and examples

that, like the example in Exercise (1.7), it cannot even be coarsely rep-
resented. To solve the first problem, we would like to fix the principal
numerical invariants of the subschemes. We can solve the second by
restricting our attention to flat families which, loosely, means requir-
ing that the fibers vary “continuously”. Both problems can thus be
resolved simultaneously by considering only families with constant
Hilbert polynomial.

Recall that the Hilbert polynomial of a subscheme X of
P” is a numerical polynomial characterized by the equations
Px(m) = h%(X,0x(m)) for all sufficiently large m. If X has degree
d and dimension s, then the leading term of Px(m) is dm?/s!: cf. Ex-
ercise (1.13). This shows both that Px captures the main numerical
invariants of X, and that fixing it yields a set of subschemes of rea-
sonable size. Moreover, if a proper connected family X — B of such
subschemes is flat, then the Hilbert polynomials of all fibers of X are
equal, and, if B is reduced, then the converse also holds. Thus, fix-
ing Py also forces the fibers of the families we're considering to vary
nicely.

Intuitively, the Hilbert scheme #p, parameterizes subschemes X
of P with fixed Hilbert polynomial Px equal to P: More formally, it’s
a fine moduli space for the functor Hilbp ;; whose value on B is the set
of proper flat families

X Lo prxp T, pr
(1.8) P mp
B
with X having Hilbert polynomial P. The basic fact about it is:

THEOREM (1.9) (GROTHENDIECK [67]) The functor Hilbp, is repre-
sentable by a projective scheme Hp .

The idea of the proof is essentially very simple. We’ll sketch it,
but we’ll only give statements of the two key technical lemmas
whose proofs are both somewhat nontrivial. For more details we refer
you to the recent book of Viehweg [148], Mumford’s notes [120] or
Grothendieck’s original Seminaire Bourbaki talk [67]. First some no-
tation: it'll be convenient to let S = C[xo,...,X,] and to let O, (m)
denote the Hilbert polynomial of P" itself (i.e.,

(1.10) 0, (m) = <T * m) = dim(S,,)
m
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is the number of homogeneous polynomials of degree m in (r + 1)
variables) and to let Q(m) = O,(m) — P(m). For large m, Q (m) is
then the dimension of the degree m piece I(X);, of the ideal of X
in P".

The subscheme X is determined by its ideal I(X) which in turn is
determined by its degree m piece I(X),, for any sufficiently large m.
The first lemma asserts that we can choose a single m that has this
property uniformly for every subscheme X with Hilbert polynomial P.

LEMMA (1.11) (UNIFORM m LEMMA) For every P, there is an mg such
that if m = mg and X is a subscheme of P" with Hilbert polynomial P,
then:

1) I(X), is generated by global sections and 1(X)> is generated
by I1(X),, as an S-module.

2) hi(X,Ix(m)) = hi(X,0x(m)) =0 foralli > 0.

3) dim(I(X)m) = Q(m), h°(X,Ox(m)) = P(m) and the restriction
map rxm : Sm—H%(X, Ox(m)) is surjective.

The key idea of the construction is that the lemma allows us to as-
sociate to every subscheme X with Hilbert polynomial P the point [X]
of the Grassmannian G = G(P(m), O, (m)) determined by ¥y ,,,.*More
formally again, if @ : X— B is any family as in (1.8), then from the
sheafification of the restriction maps

(1p) *(Opr (M)) —— (1) *(Opr (M) Q@Ox) —— 0

we get a second surjective restriction map

(118) 5 (1p) *(Opr (M)) ——— (TT8)  (1p) *(Opr (M) @O x) — 0.

OB ®Sm

The middle factor is a locally free sheaf of rank P(m) on B and there-
fore yields a map ¥ (@) : B—@G. Since these maps are functorial in B,
we have a natural transformation ¥ to the functor of points of some
subscheme H = Hp, of G.

It remains to identify /4 and to show it represents the functor
Hilbp ;. The key to doing so is provided by the universal subbundle F
whose fiber over [X] is I(X);, and the multiplication maps

Xk : FQRSk— Sk+m-

30r, equivalently, for those who prefer their Grassmannians to parameterize sub-
spaces of the ambient space, the pointin G = G(Q(m), Oy (m)) determined by I (X) .
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LEMMA (1.12) The conditions that rank(Xy) < Q(m + k) forallk = 0
define a determinantal subscheme H of G and a morphism ¢ : B—G
arises by applying the construction above to a family ¢ : X—B
(ie., @ =Y (@)) if and only if @ factors through this subscheme 3 .

Grothendieck’s theorem follows immediately. By definition,  is a
closed subscheme of G (and hence in particular projective). The sec-
ond sentence of the lemma is just another way of expressing the condi-
tion that the transformation ¥ is an isomorphism of functors between
Hilbp , and the functor of points of #.

A few additional remarks about the lemmas are nonetheless in or-
der. When we feel that no confusion will result, we’ll often elide the
words “the Hilbert point of”. Most commonly this allows us to say that
“the variety X lies in” a subscheme of a Hilbert scheme when we mean
that “the Hilbert point [X] of the variety X lies in” this locus. More
generally, we’ll use the analogous elision when discussing loci in other
parameter and moduli spaces. In our experience, everyone who works
a lot with such spaces soon acquires this lazy but harmless vice.

For a fixed X, the existence of an mg with the properties of the Uni-
form m lemma is a standard consequence of Serre’s FAC theorems
[138]. The same ideas, when applied with somewhat greater care, yield
the uniform bound of the lemma. A natural question is: what is the
minimal value of m that can be taken for a given P and r? The answer
is that the worst possible behavior is exhibited by the combinatorially
defined subscheme Xj,, defined by the lexicographical ideal. With re-
spect to a choice of an ordered system of homogeneous coordinates
(x0,...,Xxy) on P7, this is the ideal whose degree m piece is spanned
by the Q (m) monomials that are greatest in the lexicographic order.
This ideal exhibits many forms of extreme behavior. For example, its
Hilbert function h° (X, Ox (m)) attains the maximum possible value in
every (and not just in every sufficiently large) degree. For more details,
see [13].

Second, we may also ask what values of k it is necessary to consider
in the second lemma. A priori, it’s not even clear that the infinite set
of conditions rank(xy) < Q(m + k) define a scheme. A key step in
the proof of the lemma is to show that the supports of the ideals Ix
generated by the conditions rank (xy) < Q (m + k) for k < K stabilize
for large K. This is done by using the first lemma to show that, if
enough of these equalities hold, then rank(xy) is itself represented
by a polynomial of degree + which can only be Q (m+k). It then follows
by noetherianity that for some possibly larger K the ideals I stabilize
and hence that # is a scheme. A more careful analysis shows that if m
is at least the mg of the first lemma and J is any Q (m)-dimensional
subspace of S, then the dimension of the subspace x;(J&®Sk) of
Sk+m 18 at least Q (k + m). Moreover, equality can hold for any k > 0
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only if J is actually the degree m piece of the ideal of a variety X
with Hilbert polynomial P. So #{ is actually defined by the equations
rank(x;) < Q(m + 1). For details, see [63].

The next three exercises show that Hilbert schemes of hypersur-
faces and of linear subspaces are exactly the familiar parameter
spaces for these objects. For concreteness, the exercises treat special
cases but the arguments generalize in both cases.

EXERCISE (1.13) 1) Use Riemann-Roch to show that, if X c P" has
degree d and dimension s, then the leading term of Px(m) is (%)ms.
2) Fix a subscheme X C P". Show, by taking cohomology of the exact
sequence of X C P", that X is a hypersurface of degree d if and only

if
+ +m-—-d
Pym) = (r m) B (1’ m )
m m-—d
3) Show that X is a linear space of dimension s if and only if

Py(m) = <S jnm)

EXERCISE (1.14) Show that the Hilbert scheme of lines in P3 (that
is, the Hilbert scheme of subschemes of P3 with Hilbert polynomial
P(m) = m + 1) is indeed the Grassmannian G = G(1, 3). Hint: Recall
that G comes equipped with a universal rank 2 subbundle Sg C (946'
The universal line over G is the projectivization of Sg. Conversely,
given any family @ : X— B of lines in P3, we get an analogous sub-
bundle Sz € O3 by Sp = @« (Ox(1))Y c HO(P3,0p3 (1)) Q05 = Of.
Check, on the one hand, that the projectivization of this inclusion
yields the original family @ : X — B in P3 and, on the other, that the
standard universal property of G realizes this subbundle as the pull-
back of the universal subbundle by a unique morphism y : B—G.
Then apply Exercise (1.4).

EXERCISE (1.15) This exercise checks that the Hilbert scheme of plane
curves of degree d is just the familiar projective space of dimension
N = d(d + 3)/2 whose elements correspond to polynomials f of de-
gree d up to scalars.

1) Show that the incidence correspondence
T = {(f,P)|f(P) =0} c PN x P?

is flat over PN,

The plan of attack is clear: to show that the projection 1 : C— P~ is
the universal curve. To this end, let ¢ : X — B be a flat family of plane
curves over B and 7 be the ideal sheaf of X in P? x B.
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2) Show that 7 is flat over B. Hint: Apply the fact that a coherent sheaf
F on P" x B is flat over B if and only if, for large m, (1) « (F (m)) is
locally free to the twists of the exact sheaf sequence of X in P? x B.

3) Show that (113) « (7(d)) is a line bundle on B and that the associated
linear system gives a morphism x : B— PV,

4) Show that @ : X — B is the pullback via x of the universal family
1 : C—PN. Then use the universal property of projective space to
show that x is the unique map with this property.

We should warn you that these two examples are rather mislead-
ing: in both cases, the Hilbert schemes parameterize only the “in-
tended” subschemes (linear spaces in the first case, and hypersurfaces
in the second). Most Hilbert schemes largely parameterize projective
schemes that you would prefer to avoid. The reason is that, in con-
trast to the conclusions in Exercise (1.13), the Hilbert polynomial of a
“nice” (e.g., smooth, irreducible) subscheme of P” is usually also the
Hilbert polynomial of many nasty (nonreduced, disconnected) sub-
schemes too. The twisted cubics — rational normal curves in P3 that
have Hilbert polynomial Px (m) = 3m+1 — give the simplest example:
a plane cubic plus an isolated point has the same Hilbert polynomial.
We will look, in more detail, at this example and many others in the
next few sections.

A natural question is: what is the relationship between the Hilbert
scheme and the more elementary Chow variety which parameterizes
cycles of fixed degree and dimension in P"? The answer is that they
are generally very different. The most important difference is that the
Hilbert scheme has a natural scheme structure whereas the Chow va-
riety does not.* This generally makes the Hilbert scheme more useful.
It is the source of the universal properties on which we’ll rely heavily
later in this book and one reflection is that the Hilbert scheme cap-
tures much finer structure. Here is a first example.

EXERCISE (1.16) Let C C P3 be the union of a plane quartic and a
noncoplanar line meeting it at one point. Show that C is not the flat
specialization of a smooth curve of degree 5. What if C is the union
of the quartic and a noncoplanar conic meeting it at two points?

4We should note that several authors have produced scheme structures on the
Chow variety: the most complete treatment is in Sections 1.3-5 of [100] which gives an
overview of alternate approaches. However, the most natural scheme structures don’t
represent functors in positive characteristics. This means many aspects of Hilbert
schemes have no analogue for Chow schemes, most significantly, the characterization
of the tangent space in Section C and the resulting ability to work infinitesimally on it.
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There are a number of useful variants of the Hilbert scheme whose
existence can be shown by similar arguments.>

DEFINITION (1.17) (Hilbert schemes of subschemes) Given a sub-
scheme Z of P, we can define a closed subscheme 5—[PZ’, of Hp, pa-
rameterizing subschemes of Z that are closed in P and have Hilbert
polynomial P.

DEFINITION (1.18) (Hilbert schemes of maps) If X ¢ P" and Y C P¥,
there is a Hilbert scheme Hxy 4 parameterizing polynomial maps
f 1 X—Y of degree at most d. This variant is most easily constructed
as a subscheme of the Hilbert scheme of subschemes of X XY in P" x P$
using the Hilbert points of the graphs of the maps f.

DEFINITION (1.19) (Hilbert schemes of projective bundles) From a P"
bundle P over Z, we can construct a Hilbert scheme Hp p,;; parame-
terizing subschemes of P whose fibers over Z all have Hilbert polyno-
mial P.

DEFINITION (1.20) (Relative Hilbert schemes) Given a projective mor-
phism 1T : X —Z x P"— Z, we have a relative Hilbert scheme H pa-
rameterizing subschemes of the fibers of 1. Explicitly, H represents
the functor that associates to B the set of subschemes Y C B x P" and
morphisms « : B— Z such that is flat over B with Hilbert polynomial
Pandy Cc Bxz X.

The following is an application of the fact that Hilbert schemes of
morphisms exist and are quasiprojective.

EXERCISE (1.21) Show that for any g > 3 there is a number @ (g) such
that any smooth curve C of genus g has at most @ (g) nonconstant
maps to curves B of genus h > 2.

One warning about these variants is in order: the notion of scheme
“of type X” needs to be handled with caution. For example, look at the
following types of subschemes of P?:

1. Plane curves of degree d;
2. Reduced and irreducible plane curves of degree d;

3. Reduced and irreducible plane curves of degree d and geometric
genus g; and,

>Perhaps, more accurately, in view of our omissions, by citing similar arguments.
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4. Reduced and irreducible plane curves of degree d and geometric
genus g having only nodes as singularities.

The first family is parameterized by the Hilbert scheme 7, which we
have seen in the second exercise above is simply a projective space
PN. The second is parameterized by an open subset W; ¢ PN. The last
one also may be interpreted in such a way that it has a fine moduli
space, which is a closed subscheme Ug 4 C Wy.

The third, however, does not admit a nice quasiprojective moduli
space at all. It is possible to define the notion of a family of curves
with 6 nodes over an arbitrary base — so that, for example, the family
x7y — & has no nodes over Spec(C[&]/£%) — but it’s harder to make
sense of the notion of geometric genus over nonreduced bases. For
families of nodal curves, we can get around this by using the relation
g+6=(d-1)(d-2)/2. One way out is to first define the moduli
space V4 to be the reduced subscheme of W; whose support is the
set of reduced and irreducible plane curves of degree d and geometric
genus g, and to then consider only families of such curves with base
B that come equipped with a map B— V4. In other words, we could
let the moduli space define the moduli problem rather than the other
way around. Unfortunately, this approach is generally unsatisfactory
because we’ll almost always want to consider families that don’t meet
this condition.

C Tangent space to the Hilbert scheme

Let HH be the Hilbert scheme parameterizing subschemes of P” with
Hilbert polynomial P. One significant virtue of the fact that H repre-
sents a naturally defined functor is that it’s relatively easy to describe
the tangent space to J{. Before we do this, we want to set up a few
general notions. Recall that the tangent space to any scheme X at a
closed point p is just the set of maps Spec(C[&]/&?)— X centered
at p (that is, mapping the unique closed point 0 of Spec(C[£]/&?)
to p). We will write [ for Spec(C[e]/€2). More generally, we let
Ix = Spec(C[£]/(e**1)) and more generally still

(1.22) 1" = Spec(Cley, ..., &1/ (e1,..., D)%),

with the convention, already used above, that k and [ are suppressed
when they are equal to 1.

If you're unused to this scheme-theoretic formalism, you may won-
der: if a tangent vector to a scheme X corresponds to a morphism
1— X, how do we add them? The answer is that two morphisms I— X
that agree on the subscheme Spec(C) C [ (i.e.,, both map it to the
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same point p) give a morphism from the fibered sum of [ with it-
self over Spec(C) to X. But this fibered sum is just 1¥), and we have
a sort of “diagonal” inclusion A of 1 in 1) induced by the map of
rings C[&1, &1/ (g1, &2)2—C[e]/(£2) sending both &; and & to &; the
composition 1T o A shown in diagram (1.23) is the sum of the tangent
vectors.

1@

(1.23) [
IxXx 0 — 1

[ X

We're now ready to unwind these definitions for Hilbert schemes. Most
directly, if # is a Hilbert scheme and [X] € H corresponds to the
subscheme X C P”, then by the universal property of H a map from
I to H centered at [X] corresponds to a flat family X —1 of sub-
schemes of P x | whose fiber over 0 € Spec(C[e]/€2) is X. Such a
family is called a first-order deformation of X. We will look at such
deformations in more detail in Chapter 3.

For the time being, however, there is another way to view its tangent
space that is much more convenient for computations. This approach
is based on the fact that #{ is naturally a subscheme of the Grassman-
nian G of codimension P (m)-dimensional quotients of S;,. Recall that
any tangent vector to G at the point [Q ] corresponding to the quotient
Q of S, by a subspace L of codimension P (m) in S,, can be identified
with a C-linear map @ : L—Sy, /L. If  : L—S,, is any lifting of @,
then the collection {f + € - $(f)} fer(x),, vields the map from [ to G
associated to @. Suppose that L = I(X), or, in other words, that the
point [Q] is the Hilbert point [ X] of a subscheme of P with Hilbert
polynomial P and @ is given by a map I(X)y—(S/I1(X)). Then we
may view the collection {f +¢&- ®(f)} rei(x),, as polynomials defining
a subscheme X C [ X P". The universal property of the Hilbert scheme
implies that such a tangent vector to G will lie in the Zariski tangent
space to the subscheme 7{ if and only if X is flat over I.

What does the condition of flatness mean in terms of the linear
map @? This is also easy to describe and verify: X will be flat over
[ if and only if the map ¢ extends to an S-module homomorphism
I(X)ism—(S/I(X))1>m (Which we will also denote @). For example,
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if this condition is not satisfied, we claim that the exact sequence of
S®C[e]/&2 modules

00— I(X) — SQC[e]/e? — A(X) — 0

will fail to be exact after we tensor with the C[£]/&2-module C. Indeed,
given any S-linear dependence > «;f; = 0 with «; € S and f; € I(X)
for which > a;@(f;) is not 0, the element > o; - (fi + e@(fi)) will
be nonzero in I(X)&Spec(C), but will go to zero in S. The converse
implication is left to the exercises.

The map @ : I(X)j>m—(S/I1(X))i1>m of S-modules determines a
map 7— Opn /7 of coherent sheaves (still denoted by @) where 7 is
the ideal sheaf of X in P™. By S-linearity, the kernel of such a map
must contain 72. Putting all this together, we see that a tangent vector
to H at [X] corresponds to an element of Hom(7/72, Ox) (where we
write Homg,. (/f, G) for the space of sheaf morphisms F— G, that is,
the space of global sections of the sheaf Hom .(F,G)). Note that if
X is smooth, the sheaf Hom(7/7%, ©) is just the normal bundle Ny pr
to X. By extension, we’ll call this sheaf the normal sheaf to X when X
is singular (or even nonreduced). With this convention, the upshot is
that the Zariski tangent space to the Hilbert scheme at a point X is the
space of global sections of the normal sheaf of X:

(1.24) TixyH = H°(X, Nx,pr).

EXERCISE (1.25) Verify that the family X ¢ P" x Spec(C[&]/&2) in-
duced by an S-linear map @ : I(X)>m—(S/I1(X));>m is indeed flat as
claimed.

EXERCISE (1.26) Determine the normal bundle to the rational normal
curve C C P" and show, by computing its h°, that the Hilbert scheme
parameterizing such curves is smooth at any point corresponding to
a rational normal curve.

EXERCISE (1.27) Similarly, show that the Hilbert scheme parameteriz-
ing elliptic normal curves is smooth at any point corresponding to an
elliptic normal curve.

Warning. As we remarked in the last section, the Hilbert scheme, by
definition, parameterizes a lot of things you weren't particularly eager
to have parameterized. The examples that we’ll look at in the next sec-
tions will make this point painfully clear. For now, let’s return to the
example of twisted cubics. These form a twelve-dimensional family
parameterized by a component D of the Hilbert scheme #3413 of
curves in P3 with Hilbert polynomial 3m + 1. But H also has a second
irreducible component E, whose general member is the union of a
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plane cubic and an isolated point: this component has dimension 15.
A general point of the intersection corresponds to a nodal plane cubic
with an embedded point at the node, and at such a point the dimen-
sion of the Zariski tangent space to # is necessarily larger than 15.
In particular, it’s hard to tell whether the component D c H whose
general member is a twisted cubic — the component we’re most likely
to be interested in — is smooth at such a point. That both compo-
nents are, in fact, smooth, has only recently been established by Piene
and Schlessinger [130]. We will return to this point in Chapter 3. The
exercises that follow establish some easier facts which will be needed
then.

EXERCISE (1.28) Verify that the tangent space to { at a general point
[X] of intersection of the two components of H has dimension 16.
Hint: In this example, the minimum degree m that has the proper-
ties needed in the construction of #{ is 4 and it’s probably easiest to
explicitly calculate the space of C-linear maps @ : I(X)4—(S/I(X))4
that kill I(X)2.

A theme that will be important in later chapters is the use of the
natural PGL(7 + 1)-action on Hilbert schemes of subschemes of P". In
the Hilbert scheme J{ of twisted cubics, this can be used to consider-
able effect because each component has a single open orbit, namely,
that of the generic element. Hence there are only finitely many orbits.
Since, by construction, the Hilbert scheme is invariant for the natural
PGL(7 + 1)-action on G, its singular loci are also invariant (i.e., unions
of orbits) and can be analyzed completely.

EXERCISE (1.29) 1) Use the Borel-fixed point theorem to show that
every subscheme of P" has a flat specialization that is fixed by the
standard Borel subgroup of upper triangular matrices. Conclude that
every component of a Hilbert scheme 7{ contains a point parameter-
izing a Borel-fixed subscheme.

2) Show that there are exactly three Borel-fixed orbits in
H = 5‘[3m+1,31
e a spatial double line in P3 (that is, the scheme C defined by the
square of the ideal of a line in P3 );
e a planar triple line plus an embedded point lying in the same
plane as the line;

e a planar triple line plus an embedded point not lying in the same
plane as the line.

3) Show also that these orbits lie in D only, in Z only and in D n E
respectively. Conclude that #{ has exactly two components.
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4) Show that the tangent space to J{ at points of each of the three
orbits in 2) is of dimension 12, 15 and 16 respectively and that in each
case the normal sheaf has vanishing h'.

5) Show that the Hilbert scheme 7 of twisted cubics contains finitely
many PGL(4)-orbits. How many lie in D alone? in Z alone? in D N E?

A few remarks about this example are in order. First, the lexi-
cographic ideal of HH (whose degree m piece consists of the first
dim(S;,) — P(m) monomials in the lexicographic order) defines a pla-
nar triple line plus a coplanar embedded point. Note that this scheme
isn’t a specialization of the twisted cubic and that the minimal 1 sat-
isfying the hypotheses of the Uniform 7 lemma (1.11) for this scheme
is 4. On the other hand, an inspection of the ideals of curves in the list
from 2) of the preceding exercise shows that m = 3 works for every
orbit in the “good” component of D. In general, the least m that can
be used in the construction will be much greater than the least my
that works for ideals of smooth (or even reduced) subschemes with
the given Hilbert polynomial.

This annoying discrepancy is unfortunately just about the only way
in which #{ is a typical Hilbert scheme. The existence of any smooth
component of a Hilbert scheme (even those parameterizing complete
intersections) is extremely rare.

EXERCISE (1.30) Generalize the scheme C in the preceding exercise to
a multiple line which is a flat specialization of a rational normal curve
in P and show that for v > 3 the corresponding Hilbert scheme is
not smooth at [C].

How else is the twisted cubic example misleadingly simple? Com-
ponents of the Hilbert scheme whose general member isn’t connected
(Iet alone irreducible) are in fact the rule rather than the exception.
For example, in the Hilbert scheme %, 4, of curves of degree d and
genus g in P”, there will be component(s) Cg,4» Whose general ele-
ment C consists of a curve of geometric genus g’ > g plus (g’ — g9)
points (so that p,;(C) = g and C has the “correct” Hilbert polynomial
P(m) = md—g+1). Worse yet, for large enough d the Hilbert scheme
of zero-dimensional subschemes of P3 of degree d will have, in addi-
tion to the “standard” component whose general member consists of d
distinct points, components whose general member is nonreduced —
though no one knows how many such components the Hilbert scheme
will have, or what their dimensions might be. So, for large d, there will
be component(s) C4, 4 whose general element C consists of a curve of
geometric genus g’ > g plus a subscheme of dimension 0 and degree
(g’ — g) lying on one of these “exotic” components. As in the twisted
cubic example, such components will often (always?) have dimension
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greater than that of the components that parameterize honest curves
of genus g.

To avoid having to rule out such components repeatedly, it'll be
convenient to make the

DEFINITION (1.31) The restricted Hilbert scheme R is the open sub-
scheme of HH consisting of those points [ X] such that every component
D of H on which [ X] lies has smooth, nondegenerate, irreducible gen-
eral element. In other words, the restricted Hilbert scheme is the com-
plement of those irreducible components of H every point of which cor-
responds to a curve that is singular, degenerate or reducible.

What we would really like to do is to take the (closed) union R of all
the components D so as to have a projective scheme but unfortunately
there is no natural scheme structure on D at points where it meets
components outside of R. We can, of course, speak of the restricted
Hilbert variety R by giving this set its reduced structure but then
maps to R will no longer correspond to families of subschemes of P”.

One further warning: it’s almost never possible to analyze all Borel-
fixed subschemes explicitly. As a result, even when it is possible to list
the components of a Hilbert scheme — restricted or not — it usually
requires considerable effort to verify that no others exist. The dis-
cussion of Mumford’s example in the next section will illustrate this
point.

One of the very few positive results about the global geometry of
Hilbert scheme is Hartshorne’s

THEOREM (1.32) (CONNECTEDNESS THEOREM [83]) For any P and v,
the Hilbert scheme Hp , is connected.

Hartshorne’s proof involves first showing that every X specializes
flatly to a union Y of linear subspaces that he calls a fan. In fact,
there is an explicit procedure for translating between the coefficients
of P and the number of subspaces of each dimension in Y. Next,
Hartshorne characterizes those Y whose ideals have maximal Hilbert
function: these are the tight fans for which the i-dimensional sub-
spaces lie in a common (i + 1)-dimensional subspace. He then shows
that all tight fans lie on a common component of #{ . Finally, he shows
that, if Y is a fan that isn’t tight, then there is a fan Y’ whose Hilbert
function majorizes that of Y and a sequence of generalizations and
specializations connecting Y and Y.

The next exercise uses Hartshorne’s theorem to characterize Hilbert
polynomials of projective schemes; we should point out that this char-
acterization, due to Macaulay [111] (see also, [144]), came first and is
a key element of Hartshorne’s proof.
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EXERCISE (1.33) 1) Calculate the Hilbert polynomial Py n,,...n,) (M)
of a generic (reduced) union ULO(LH U - -+ ULjy,) where each L;; is
an i-plane in P”.

2) Define
S (m+i m+i-a;
Q(ao,a1 ..... as) = Z |:<l+ 1) B ( i+1 t .

i=0

Show that any rational numerical polynomial P(m) — i.e., an element
of Q[m] that takes integer values for integer m — can be expressed
as

Q(ag,al ..... as)(m)

for unique nonnegative integers a; with as + 0.

3) Define a mapping (ng,ni,...,n,)—(agp,a,...,as) by requiring
that

P(no,nl ..... n,)(m) = Q(ao,m ..... as)(m)-
Show that the image of this map is exactly the set of (ag, ai,...,as)
for whichag = a; = - -+ = as.

4) Use the first step of Hartshorne’s proof to deduce Macaulay’s The-
orem [111]: anumerical polynomial is the Hilbert polynomial of a pro-
jective variety if and only if the sequence (ag, ai,...,as) of 2) is non-
increasing.

There is little convincing evidence either for or against the con-
nectedness of the restricted Hilbert variety or its closure R: known
examples have so far provided neither a counterexample nor a plausi-
ble replacement for the class of fans used in Hartshorne’s proof. See,
however, Exercise (1.41) on Hg 103 in Section D.

D Extrinsic pathologies

The difficulties we’ve discussed above are relatively minor annoy-
ances. We will see much nastier behavior in the examples that follow.
The gist of these examples can be summed in:

LAW (1.34) (MURPHY’S LAW FOR HILBERT SCHEMES) There is no ge-
ometric possibility so horrible that it cannot be found generically on
some component of some Hilbert scheme.

To illustrate the application of this law, and as an example of a
tangent-space-to-the-Hilbert-scheme calculation, we now wish to re-
call Mumford’s famous example [118] of a component 7 of the (re-
stricted) Hilbert scheme of space curves that is everywhere nonre-
duced. This example also serves to justify the somewhat technical
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construction of the Hilbert scheme. Most of the work there was de-
voted to producing, not the underlying subvariety of the Grassman-
nian G = G(P(m), S,,), but a natural scheme structure on this sub-
variety. Mumford’s example shows that this scheme structure can be
far from reduced. Moreover, since the general point of 7 is a perfectly
innocent-looking (i.e., smooth, irreducible, reduced, nondegenerate)
curve in P3, it shows that we cannot hope to avoid these complica-
tions simply by restricting ourselves to subschemes of P” that are
sufficiently geometrically nice. The point is that the behavior of fam-
ilies X of subschemes of P" can exhibit many pathologies even when
the individual members X of the family exhibit none. These phenom-
ena are usually caused by constraints imposed by the particular mod-
els of the fibers that the Hilbert scheme in question parameterizes.
In the examples dealing with space curves that follow, this constraint
typically takes the form of a condition that the curve C corresponding
to any point on some component of the relevant Hilbert scheme
lies on a surface of some small fixed degree. One of the motivations
for the study of intrinsic moduli space is the possibility of eliminating
such extrinsic pathologies.

Mumford’s example

The curves we want to look at are those lying on smooth cubic sur-
faces S, having class 4H + 2L where H is the divisor class of a plane
section of S and L that of a line on S. (Recall that, on S, H? = 3, that
H-L = -1% = 1, and that Ks = —H.) We immediately see that the
degree of such a curveis d = H - (4H + 2L) = 14 and that its arith-
metic genus is g = %C - (C + Ks) +1 = 24. We are therefore going to
be working with the Hilbert scheme #1443 or, in practice, with the
restricted Hilbert scheme R4 24 3.

Note that the linear series |H + L| is base point free since it’s cut
out by quadrics containing a conic curve C C S coplanar with L. Hence
|[4H + 2L] is also base point free and its general member is indeed a
smooth curve (even, as we leave you to verify, irreducible). Finally,
the dimension of the family of such curves isn’t hard to compute.
On a particular cubic S, the linear system |4H + 2L| has dimension
predicted by Riemann-Roch on S as h?(Os(C)) = %C - (C —Kg) = 37.
Since the family of cubic surfaces has dimension 19 and each curve
C of this type lies on a unique cubic (d = 14), the dimension of the
sublocus 73 of #4243 cut out by such C’s is 37 + 19 = 56.

The family 73 of curves C that arises in this way is irreducible. This
can be proved in two ways. The first is via the monodromy of the
family of all cubic surfaces in P3. In this approach, one first shows
that the monodromy group of this family is Fg and in particular acts
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transitively on the set of lines on a given S. For details, we refer you
to [77]. The second, more elementary, approach is to construct this
family as a tower of projective bundles imitating the argument for
the irreducibility of the family 7; given preceding Exercise (1.37). We
leave the details to you, as in that exercise.

The key question is: is 73 (open and) dense in a component of the
Hilbert scheme? To answer this, let C now be any curve of degree 14
and genus 24 in P3. We ask first: does C have to lie on a cubic? Now,
the dimension of the vector space of cubics in P3 is 20. On the other
hand, by Riemann-Roch on C, the dimension of HY(C, ©¢(3)) is

ho(OcB3)=d—-g+1+h'(0c3)) =19 + h°(Kc(-3)),

and since deg(K¢(—3)) = 2G — 2 — 3D = 4, this last term could very
well be positive. Indeed, it is for the curves C constructed above: for
those, K¢ = O¢c(Ks +C) = Oc(C — H) so Kc(—3) = O¢(2L) which has
h0 = 1. Thus, dimensional considerations alone don’t force C to lie
on a cubic.

Suppose C doesn’t lie on a cubic. We have h0(Ops3 (4)) = 35, while
h%(Oc(4)) = 56 — 24 + 1 = 33, so C must lie on at least a pencil of
quartics. Moreover, an element T of such a pencil must intersect the
other elements in the union of C and a curve D of degree 2. Since Kt
is trivial, (C - C)t = 2(gc — 1) = 46. From the linear equivalence of
C + D and 4H, we firstobtain C - D = C- (4H — C) = 56 — 46 = 10,
then D? = (4H — C)? = 64 — 112 + 46 = -2, and finally gp = 0.
This is only possible if C is a plane conic. To count the dimension of
the family of such curves, then, we reverse this analysis, starting with
a conic D, which moves with 8 degrees of freedom. The projective
space A of quartics containing D has dimension 25. An open subset
of the 48-dimensional Grassmannian G(1, 25) of pencils in A will have
base locus the union of D and a curve C not lying on any cubic. The
dimension of the family 74 of all such C is thus 56. Since the loci 73 and
J4 have the same dimension, we deduce that a general curve of class
4H + 2L on a smooth cubic surface is not the specialization of a curve
not lying on a cubic. This assertion together with the irreducibility of
J3 imply that 73 is dense in a component of the Hilbert scheme.

We return to the examination of a curve C ~ 4H + 2L in 73 lying on
a smooth cubic S. It’s easy to calculate the dimension of the space of
sections of the normal bundle of C: the standard sequence

OHNC/SANC/WB 4>N5/|p3®(9cg>0

reads
0—Kc(1)—>N—>0Oc(3)—0,

and since K¢ (1) is nonspecial, it follows that:

hO(N) = h®(Kc (1)) + h%(Oc(3))
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=37+ 20
=57.

Thus the Hilbert scheme is singular at C, and, since C is generic in 73,
even nonreduced.

What is going on here? It’s not hard to see where the extra dimen-
sion of h?(N) is coming from: if h®(O¢(3)) really is 20 for curves near
C, then, at least infinitesimally, deformations of C don’t have to lie on
cubics. Naively, you might expect that near C the locus in the Hilbert
scheme of curves Cy lying on cubics was the divisor in the Hilbert
scheme given by the determinant of the 20 x 20 matrix associated
to the restriction map H°(P3,0(3))—H°(C, ©(Z)); thus the local di-
mension of H near C should be 57. Of course, it doesn’t turn out this
way, but this analysis is nonetheless correct to first order. There do,
in fact, exist first-order deformations of C that don’t lie on any cubic,
and these account for the extra dimension in the tangent space to 7 .
If you've seen some deformation theory before you may attempt:

EXERCISE (1.35) Make the analysis above precise. What does it mean
to say that a first-order deformation of C doesn’t lie on a cubic? Find
such a deformation.

Deformation theory is discussed in Chapter 3. Until then, even if
you're unfamiliar with the subject, you should be able to understand
our occasional references to deformations by viewing them as alge-
braic analogues of perturbations which themselves are parameterized
by various schemes.

We’ve shown above that there is a unique component 74 of R whose
general member doesn’t lie on a cubic surface. Are there other com-
ponents besides 73 whose general member does lie on a cubic surface
S? The answer is yes: there is exactly one other. Suppose that C is a
curve in R lying on a smooth cubic surface S. The key observation
is that C must lie on a sextic surface T not containing S: we have
ho(P3,0(6)) = 84, while h°(C,0(6)) = 61 and the space of sextics
containing S has vector space dimension 20. We can thus describe C
as residual to a curve B or degree 4 in the intersection of S with a
sextic.% (Note that the curves in Mumford’s example are residual to a
disjoint union of two conics in such a complete intersection.)

What does B look like? First off, we can tell its arithmetic genus
from the liaison formula’: if two curves C and D, of degrees d and e

6Similar dimension counting shows that the generic C lies on no surface of degree
less than 6 not containing S.

7To see this formula, use adjunction on S to write
20-2=(Ks+C)-C=((m—-4)H+C)-C=(m-4)d+C?
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and genera g and h respectively, together comprise a complete inter-
section of surfaces S and T of degrees m and n, then

_(m+n-4)(e-d)
= 5 .

In the present case, this says that B has arithmetic genus (—1) and
self-intersection 0 on S; in particular B is reducible. One possibility
is that B consists of two disjoint conics; in this case the two conics
must be residual to the same line in plane sections of S and we get the
Mumford component. Otherwise, B must contain a line. For example,
B might consist of the disjoint union of a line L and a twisted cubic E
and, unless B has a multiple line, any other configuration must be a
specialization of this. In this case, the class of C in the Neron-Severi
group of NS(S) will not equal 4H + 2L. Since NS(S) is discrete, the
class of C in it must be constant on any component of R. We therefore
conclude that B’s of this type give rise to component(s) of R distinct
from 7Js.

To see that just one component 7; arises in this way, it’s simplest to
use a liaison-theoretic approach.® We will simply list the steps, leaving
the verifications as an exercise. First, the set of all pairs (L, E) is irre-
ducible since the locus of E’s and L’s are PGL(4)-orbits in their respec-
tive Hilbert schemes. Second, over a dense open set in this base, the
set of triples (S, L, E) such that S is a cubic surface containing L U E
forms a projective bundle, hence is again irreducible. Third, over a
dense set of these triples, the set of quadruples, (T, S, L, E) such that
T is a sextic surface containing L U E but not S is a dense open set in
the fiber of a second projective bundle. Finally, these quadruples map
onto a dense subset of 7.

(1.36) h-g

EXERCISE (1.37) Verify the four assertions in the preceding para-
graph.

It remains to deal with the case when B has a multiple line. If B has
amultiple line L, then it must have the form 2L + D, where D is a conic
meeting L once.

EXERCISE (1.38) Let C be a curve in Rq4,24,3 that lies on the intersec-
tion of a cubic surface S and a sextic surface T. Suppose, further, that

and conclude that C2 = g — 2 — (m — 4)d. Then plug this into the equation
nd =C-(C+D)=C>+C-D,toobtain C-D = (m+n—4)d — (2g — 2). By
symmetry, C - D = (m + n — 4)e — (2h — 2), from which the formula as stated is
immediate.

8The same result can also be obtained by showing that the monodromy group Eg of

the family of smooth cubic surfaces acts transitively on the 432 pairs (E,L) as above
on a fixed S.
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C is residual in this intersection to a quartic B of the form 2L + D
with L a line and D a conic meeting L once. Show that L + D is the
specialization of a twisted cubic disjoint from L and hence that C is
a specialization of the generic element of 7;.

A few additional remarks about this third component are in order.
The first is that calculations like those carried out for J3 show that
the dimension of 7; is again 56 and that for general [C] in 73, Oc(3)
is nonspecial. We therefore conclude that this component of R is at
least generically reduced.

The analysis above shows that R14243 has three 56-dimensional
components: the generic elements of 73 and 7J; lie on smooth cubic
surfaces, and any curve C not lying on any cubic surface is param-
eterized by a point of J4. In principle, there might exist other com-
ponents 75 of Ri4.243 whose general elements lie only on a singular
cubic surface.

EXERCISE (1.39) Complete the analysis of R 14,243 by showing that, in
fact, no such 75 exists.

Here are a few more exercises dealing with ideas that arise in Mum-
ford’s example.

EXERCISE (1.40) Make up your own examples of components of the
Hilbert scheme of space curves that are everywhere nonreduced.
Hartshorne feels that, in some sense, “most” components of the
Hilbert scheme are of this type. Do you agree?

EXERCISE (1.41) 1) Use an analysis like that above to show that the re-
stricted Hilbert scheme Rg 10,3 of space curves of degree 9 and genus
10 has exactly two components 7, and Js.

2) Show further that the general element of 7, is a curve of type (3, 6)
on a quadric surface while the general element of 75 is the complete
intersection of two cubic surfaces, and that both components have
dimension 36.

3) Let C be any smooth curve. Show that if the Hilbert point [C] of
C lies in 73, then K¢ = O¢(2) and hence C is not trigonal while if
[C] € 7o, then K¢ + O¢(2) and hence C is trigonal.

4) Conclude that any curve in the intersection of these components
is necessarily singular. Find such a curve.

In particular, this last exercise shows that the locus of smooth
curves in a Hilbert scheme can form a disconnected subvariety, and
shows that there are, in general, limits to how nice we can make the el-
ements of arestricted Hilbert scheme before it becomes disconnected.
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Other examples

Exercise (1.39) might tempt you to suppose that if every curve on a
component of R lies on a hypersurface S of degree d then, for general
C, we can choose S to be smooth. This, heuristically, should not be
true since it would violate Murphy’s Law of Hilbert Schemes (1.34). We
would like to exhibit next an explicit counterexample.

Our example uses double lines in P3. A double line supported on
the reduced line with equations z = w = 0 is a scheme X whose ideal
has the form

Ix = (zz,zw,wz,F(x,y)z + G(x,y)w)

where F and G are homogeneous of degree m. If F and G have no com-
mon zeros, then X has degree 2 and arithmetic genus p, (X) = —m. If
T is a smooth surface of degree (m+1) and L is a line lying on T, then
the class 2L on T will define a double line of arithmetic genus —m.

In our example, we want to take m = 2 so X is twice the class of a
line L on a smooth cubic. Such an X lies on many quartic surfaces S.
Indeed, the general such S will have equation

f=oax(Fz+Gw)-By(Fz+Gw)+h

with h € (z,w)? and « and S suitable constants. A short calculation
shows that this S has a double point at the point (S, «, 0, 0). Geometri-
cally, X is a ribbon: i.e., a line L with a second-order thickening along a
normal direction at each point. Because these normal directions wind
twice around L, X cannot lie on any smooth surface of degree greater
than 3.

Let C be the curve residual to X in a complete intersection S N T,
where T is a surface of degree n. Then C has degree 4n — 2 and the
liaison formula (1.36) shows that its genus is 2n? — 2n — 2. Now a
theorem of Halphen [71] asserts that whenever the degree d and genus
g of a smooth space curve satisfy g > (d? + 5d + 10)/10, then the
curve lies on a quartic surface. A little arithmetic shows that our C
(and hence any flat deformation of it) satisfy these hypotheses for
all n > 7. Thus, any deformation C’ of our C still lies on a quartic
surface S’.

We next claim that: such a C' remains residual to a double line in a
complete intersection of S’ with a surface T’ of degree n not containing
S’. By the argument above, S" must also be singular, and we conclude
that for n > 7, the generic curve in the component of H,,_5 22253
containing C lies on a quartic but that this quartic is always singular.

To see the claim, first note that K¢ = O¢ (n)(—X) and hence, since
X meets C’ positively, that O¢(n) is nonspecial. By Riemann-Roch,
ho(C',0c(n)) = ndn -2) — 2n2 —=2n-2) + 1 = 2n3 + 3. The



D. Extrinsic pathologies 25

dimension of the space of surfaces of degree n in P3 containing C’ is

thus at least
n+3 > _(n-1
() - (751 .

Since the binomial coefficient on the right is the dimension of the
space of degree n surfaces containing the quartic S’, C’ continues to
lie in the complete intersection of S” and a surface T’ of degree n.
Reversing the liaison formula, the curve X’ residual to C' in ' n T’
again has degree 2 and genus (—2). Since the curve X has no embed-
ded points and is a specialization of X', X’ can have no embedded
points itself. This next exercise asks you to show that X’ must then
be a double line and completes the proof of the claim above.

EXERCISE (1.42) Check that the only X’ with no embedded points,
degree 2 and genus (—2) is a double line.

We will cite only one more pathological example. But to really grasp
the force of Murphy’s Law, we suggest that you make up for yourself
examples of curves exhibiting other bizarre forms of behavior.

Modulo a number of verifications left to the exercises, we’ll con-
struct a smooth, reduced and irreducible curve C lying in the intersec-
tion of two components of the Hilbert scheme — so that, in particular,
its deformation space (as a subscheme of P") is reducible. To do this,
let S be a cone over arational normal curvein P* !, letLy,...,L,>» C S
be lines on S, let T C P" be a general hypersurface of degree m con-
taining Lq,...,L,_» and let C be the residual intersection of T with S.
Assuming m is sufficiently large, C will then be a smooth curve (it’'ll
pass once through the vertex of S).

Such a C is a Castelnuovo curve, that is, a curve of maximum
genus among irreducible and nondegenerate curves of its degree
mr—-1)-r-2)=(m-1)(r —1) +1 in P". Now, Castelnuovo
theory [21] tells us that a Castelnuovo curve of that degree in P” must
lie on a rational normal scroll X on which it must have class either
mH — (v —2)F or (m—1)H + F. On the singular scroll S, H ~ (» —1)F
and these coincide, but in general they are distinct; it follows (at least
as long as r > 4) that there are two components of the Hilbert scheme
of curves of the given degree and genus whose general members are
Castelnuovo curves.

EXERCISE (1.43) 1) Show that the curve C discussed above can be de-
formed to a curve on a smooth scroll having either of the classes
mH — (r —2)F or (m — 1)H + F and hence that [C] lies on both com-
ponents of the Hilbert scheme of Castelnuovo curves.
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2) Find the dimension of the component of the Hilbert scheme param-
eterizing curves of each type and the dimension of their intersection.
3) Find the dimension of the Zariski tangent space to the Hilbert
scheme at the point [C].

E Dimension of the Hilbert scheme

We will be returning to the Hilbert scheme later on in the book, and
will do more with it then. We should mention here, though, some of
the principal open questions with regard to J{. With an eye to our
intended applications, in the remainder of this chapter we’ll deal only
with Hilbert schemes of curves.

The first issue is dimension. To begin with, the description of the
tangent space to the Hilbert scheme of curves in P" at a point [C] as
the space of global sections of the normal bundle to C gives us an a
priori guess as to its dimension: we may naively expect that

dimH = h°(C,N¢) = x(N¢).
This number is readily calculated from the sequence

0—Tc—TpsQOc—Nc—0.
We see that the degree of the normal bundle is

deg(Nc) = (¥ + 1)d + 2g — 2;
and then by Riemann-Roch we have

X(Nc) =deg(N¢c) —(r —1)(g - 1)
=(r+1)d-(r-3)(g-1).

This number we’ll call the Hilbert number hg gy .

Of course, neither of the equalities above necessarily holds al-
ways — nor even, unfortunately, that often. Even worse, the naive
inequalities associated to these estimates (dim(H) < h%(N¢) and
h%(N¢) = x(N¢)) go in opposite directions. It is nonetheless the case
that the dimension inequality

(1.44) dim(H) = hagy:=r+1)d-(r-3)g-1)

always holds at points of { parameterizing smooth curves, or more
generally curves that are locally complete intersections. This follows
from a less elementary fact of deformation theory, which we will dis-
cuss in Chapter 3. We can also see it from an alternate derivation of
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the Hilbert number based on a study of tangent spaces to W)’s. This
topic belongs to the theory of special linear series which we’ll take up
in Chapter 5. For now, we recall from [7, IV.4.2.i] that, in any family
of line bundles of degree d on curves of genus g, the locus of those
line bundles having  + 1 or more sections has codimension at most
(r+1)(g—d+7r)=g - p in the neighborhood of a line bundle with
exactly 7 + 1 sections.? Applying this to the family of all line bundles
of degree d on all curves of genus g, we conclude that the family of
linear series of degree d and dimension v on curves of genus g has
local dimension at least (3g —3) +g — (¥ +1) (g — d +7)'0 everywhere.
Since such a linear series determines a map of a curve to P” up to the
(r2 + 2r)-dimensional family PGL(7 + 1) of automorphisms of P", we
may conclude that

dim(H) =4g -3 - (r+1)(g—d+7r)+r*+2r
=r+1)d—-(r-3)(g-1).

so the dimension of #{ is at least the Hilbert number. By way of termi-
nology, we'll call a component of H general if its dimension is equal to
the Hilbert number, and exceptional if its dimension is strictly greater.
Note one aspect of the Hilbert number: when » = 3, hg 43 = 4d is in-
dependent of the genus, while for v > 4 it decreases with g.

There is another approach to this estimate which is worth mention-
ing since in some cases it yields additional local information. Assume
for the moment that C is smooth, nondegenerate and irreducible and
that O¢(1) is nonspecial. Then v < d — g. (We don’t necessarily have
equality since we aren’t assuming that C is linearly normal in P”.) We
can count parameters: the curve C depends on 3g — 3 and the line bun-
dle £ € Pic?(C) determined by O¢(1) on g. Moreover, close to our ini-
tial choices we continue to have the inequality h°(C, Oc(1)) < d—g+1.
Hence the choice of the linear subsystem of H?(C, £) of dimension
(r + 1) determines a point in a Grassmannian G(r,d — g) whose di-
mension is (r + 1)(d — g + r). Finally, we must add (2 + 2r) pa-
rameters coming from the PGL(r + 1)-orbit of each linear system. The
total is exactly hg4,. Note that this argument actually proves that
X (Ncypr) = hO(N¢pr) = dim(Hy,4,) and hence leads to the:

COROLLARY (1.45) If C is a smooth, irreducible, nondegenerate curve
of degree d and genus g in P" with O¢c(1) nonspecial, then

9Here p is the Brill-Noether number p = pgra:=g—(r+1)(g-d+7).

101n this sum the first term expresses the moduli of the curve C, the second the
moduli of the line bundle L of degree d and the third the codimension of the set
of pairs (C,L) with at least (» + 1) sections. Note that this postulation also equals
3g-3+p.
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HI(C,NC/[p)V) =0 and
dimjc; Hd,g,y = dim T[C]}[d’g"r

:hd,g,r
=(r+1)d-r-3)(g-1).

EXERCISE (1.46) Give an alternate proof that the basic estimate
dim(H) = hgg, for the dimension of Hy 4, holds without the as-
sumption that £ = O¢(1) is nonspecial as follows:

1) Let C be smooth and irreducible of genus g, let {w1,...,wy} be a
basis of the holomorphic differentials on C and let £ be a line bundle
onC.If D =p; +---+pgis an effective divisor on C with line bundle
Oc(D) = L, we may define a map of @p : H*(C, £)— C% by taking
principal parts of sections at the points of the support of D. Show
that the image of this map is the annihilator in C4 of the g x d matrix
Mp whose ij" entry is ,
J wi

po
2) Let &€ = {(A,M)|A C ker(M) } where A is an r-dimensional sub-
space of C% and M is a g x d matrix. The space of quadruples
F =(C,D,V, L) with D an effective divisor on C such that £ = O¢(D)
and V an (» + 1)-dimensional subspace of H°(C, £) maps onto & by
taking A to be the image of V under the map @p and M = Mp. Show
that this map is dominant and, by calculating dim(&), conclude that
dim(F) =z hagr +7.
3) Show also that the map from F to Hg4 4, given by forgetting the
choice of D is onto with fiber of dimension » and conclude that
dim(}[d,g,r) = hd,g,r.

If we start to compute dimensions of components of H , we see, in
the low-degree examples, only general components. For example, in P3
the lines form a four-dimensional family, conics an eight-dimensional
family, twisted cubics a twelve-dimensional family, etc. It becomes
clear fairly soon, however, that this state of affairs is temporary. For
example, we find only exceptional components when we look at the
following: complete intersections of high degree; curves of high de-
gree on quadric or cubic surfaces; determinantal varieties associated
to n X (n + 1) matrices with entries of high degree, etc. The general
question of what the dimensions of the components of #{ may be
remains very much open. Four questions in particular may be asked:

QUESTION (1.47) 1) For fixed d and 7, but possibly varying g, what is
the largest dimension of a component of the restricted Hilbert scheme
Ra,g,» Whose general elements are smooth, irreducible and nondegen-
erate?
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2) For any d, g and v, what is the smallest dimension of a component
of Hay,? Of course, for » = 3 the answer is 4d, but for » > 4, the
Hilbert number will be negative for many values of d, g and 7, and it’s
very much unknown what the smallest dimension may be. In particu-
lar, it’s conjectured that the only rigid curves — that is, curves that
admit no deformations other than projectivities of P"— are rational
normal curves; but this remains open.

3) Can we find a function o(g) such that the basic estimate
dim(H) = hg,4, holds for any component of H whose image in M,
has codimension less than o (g)? This last question is motivated by
the empirical evidence that the expected dimension is correct when
this codimension is small. It's even possible that o (g) could be taken
to be roughly equal to g.

4) Does the inequality dim(Ha,4,) = ha4, hold for any component
of a Hilbert scheme of curves? Our motivation for suggesting this
question is the empirical observation that families of singular curves,
which might provide counterexamples, seem to have dimension equal
to the Hilbert number exactly when the curves do not smooth in the
ambient projective space. Consider, for example, the union in P3 of a
line and a plane curve of degree d meeting at a point. If d = 3, the fam-
ily of such curves has dimension 15 (4 for the line plus 2 for the plane
plus 10 for the cubic minus 1 so that the line and cubic meet) which
is less than the Hilbert number 16; however, such curves smooth in
P3 to elliptic normal curves. If d = 4, the family has dimension 20
(4 + 2 +15 — 1) which equals the Hilbert number: such curves are
classic examples of curves that do not smooth in P3.

F Severi varieties

If we stick to Hilbert schemes parameterizing subcurves of P” then,
as we've seen in Exercise (1.15), the case » = 2 is trivial: the Hilbert
point of a plane curve of degree d is just given by the equation of the
curve. In this case, we can hope to understand much more precisely
the subloci of curves with various geometrically significant properties.
In this section, we’ll take some first steps in this direction.

We've seen that the space of all plane curves of a given degree is
simply a projective space PN where N = (w). What we wish to do
here is to look at the locally closed subvariety of this PV consisting of
curves of degree d and geometric genus g. We introduce three loci:

DEFINITION (1.48) In the space of plane curves of degree d, define:

1) Va4 to be the locus of reduced and irreducible curves of degree
d and genus g;
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2) Uga,g to be the locus of reduced and irreducible curves of degree
d and genus g having only nodes as singularities;

3) Va4 to be the closure of Vg4 in PN.

These are often referred to as Severi varieties. Note that, as with the
restricted Hilbert scheme, V;4 and V44 don’t have a natural “para-
metric” scheme structure: that is, there is no known way to define a
scheme structure on them so that they represent the functor of fam-
ilies of plane curves with the appropriate geometric properties.

On the other hand, the underlying spaces of these varieties are much
better behaved than the Hilbert schemes # 4, for + > 3. To sum up
the state of our knowledge, we have the:

THEOREM (1.49) (ZARISKI; HARRIS [80]) For alld and g,
1) Ua,g4 is smooth of dimension3d + g —1 = hg42;
2) Ugy isdenseinV4;
3) Va4 is irreducible.

With the tools we have available at this point, we can’t prove the
irreducibility now or even the fact that the nodal curves are dense in
the curves of genus g, but we can at least verify that the locus of nodal
curves is smooth of the expected dimension (the proof of the second
part will be given in Section 3.B as Corollary (3.46) and of the third
part in Section 6.E). To do this, we look first at the variety

S ={(C,p1,-.-,P5)|Pi € Csing} C PN x (P?)°,

If we_ﬁx_ (affine) coordinates (x, y) on P2, let a; i denote the coefficient
of x'y/ in the equation of C and let (x4, Y«) be the coordinates of
the node p, then X is given by the « triples of equations

th(aij,xa,ytx) = Zaij(xa)i(ya)f =0,
Galaij, X, Ya) = >i- aij(xo()i—l(ya)j =0, and
Fo(@ij, Xoo o) = 3 j - @ij(xo) (vt =0 forall e,

(The first equation just says py is on C and the last two that it's a
singular point. Just the ability to write down such a simple set of
explicit equations already distinguishes the analysis of Severi varieties
from that of Hilbert schemes in higher dimensions.)

From these equations, we might expect naively that
dim(Z) = N + 26 — 36 = N — 6. In fact, we’ll show that in a
neighborhood of a nodal curve C with nodes pq,..., ps, the variety X



F. Severi varieties 31

maps one-to-one to Vg 4 by showing that the differential of this map
is injective at C.

Consider, for example, the case 6 = 1. Suppose we're at a
point (C,p) € X normalized so that p = (0,0). The matrix of
partials of F, G and H with respect to x, ¥ and ago looks like

F G H

0 az an

0 ann ap

‘m g‘m g‘m

1 0 0

D

ao

S

TABLE (1.50)

The corresponding minor (asoao2 — a112) is nonzero exactly when
C has an ordinary node at p. Note also that all the missing entries
in the first column of this matrix are 0 at (C, p). We deduce that at
(C,p), =1 is smooth of codimension 3 in PN x P2. Moreover we see
that the projection map 7 : &— PV is an immersion at (C, p), with
the tangent space to >, at (C, p) mapping isomorphically to the space
of polynomials of degree d vanishing at p (i.e., having ayo=0).

Now, in the general case, if C is a curve with exactly 6 nodes
P1,---,Ps as singularities, the map from X to P" factors through X;
in 6 ways by distinguishing each of the p,’s in turn. We can there-
fore represent the locus V; 4 in an analytic neighborhood of C as the
intersection of the images of analytic neighborhoods of the points
(C,pi) € Z1. The tangent space to V4 at C is thus the linear space
of polynomials of degree d vanishing at the points p;. But we know
that the p; impose independent conditions on curves of any degree
m >d — 3 (cf. [7, p. 54, Exercise 11]); it follows that

(1.51) dim(T;c1Vag) =N -0

and hence that V4 is smooth of this dimension. For emphasis, we
again note that

N (d(d2+3))_ ((d—l)z(d—Z) —g)
=3d+g-1
=hd,g‘2.

While we have much better control over Severi varieties than over
more general Hilbert schemes, there are many open problems. We
might ask for a description of the tangent space Tjc|Va4,4 Dear a curve
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C having other than nodal singularities. As an example, consider the
variety V = V3 of cubics of geometric genus 0 which is a hypersur-
face in the P? of plane cubics. In the affine plane slice A given by
y2 = x3 + ax + b, the equation of V is A = 4a3 + 27b? = 0. For
(a,b) # (0,0), the cubic C(4,) corresponding to a point of A is nodal
and ANV is smooth at [C(g,p) . But C(o,0) is a cuspidal cubicand AnV
itself has a cusp at [C0,0)]-

The upshot is that, while the locus Ug,4 of nodal curves can be com-
pactified in a natural way to V3,4, most of its desirable geometric prop-
erties are lost in the process. This leads to the problem: find a better
(partial) compactification of Uy, 4. We would like, at least, a parametric
compactification whose tangent space at a point [C] has some natural
description as a linear space of curves of degree d.

There is one known way to improve V4 somewhat. Define T, to
be the space of pairs (C, 7t) where C is a smooth curve of genus g and
m : C—P? is a birational map of degree d. This change of point-of-
view from subvarieties of P? to maps to P2 may seem to be a somewhat
irrelevant one since T 4 and V; 4 are bijective and both contain Uy 4
as a dense open subvariety. However, these two spaces are not iso-
morphic as varieties. Essentially, Ty 4 normalizes V; 4 at points [C]
corresponding to curves with cusps. All these observations general-
ize: if you're interested you’ll find a longer discussion in [33].

EXERCISE (1.52) In the example above show that for (a,b) in A but
different from (0,0) the curve C,p has a node at the double root
(x,y) = (%, 0) and that the composition of the normalization map
m C‘a,bﬂCa,b C P? with the projection to the x-axis is simply
branched over (x,y) = (0,%). Show further that the normalization
Cap = P! has equation y? = x — % and is the fiber of a family of P!’s
over A—{(0,0)} which does not extend to all of A but which does have
an extension over the normalization A of A.

G Hurwitz schemes

The last parameter spaces we wish to discuss are perhaps the most
classical ones: the Hurwitz schemes H 4,4, which are parameter spaces
for “maps of curves to P!”, i.e., for branched covers of P!. There are
many variations on their construction in a fairly tight analogy to the
Severi varieties. We could simply try to parameterize pairs (C, 17) con-
sisting of a smooth curve C of genus g and a finite map m : C— P!.
Alternately, we can associate to a branched cover its branch divi-
sor B, which, by the Riemann-Hurwitz formula, is a divisor of degree
b = 2d+2g-2in P!. Since the set of such divisors is canonically a pro-
jective space P? by associating to B the equation of degree b, unique



G. Hurwitz schemes 33

up torescaling, that has B as its cycle of zeros, this might seem almost
trivial. Of course, divisors with points of multiplicity greater than d
cannot correspond to any cover so we cannot hope to get a complete
parameter space in this way. A more essential difficulty stems from
the fact that the cover C depends on B and the 5;-conjugacy class of
the monodromy homomorphism from 7, (P! — B) into the symmetric
group 5, on a general fiber of T: the number of covers with a given
branch locus B and combinatorics of the description of their mon-
odromies thus both depend on the multiplicities of the points in B
itself.

The intersection of all these approaches is the case when all the
branch points of 1 are simple, that is, when B consists of b distinct
points and hence corresponds to a point in the dense open subset
@d,g of P? isomorphic to the quotient by $; of the complement of
all diagonals in (P!)?. (Such covers thus form a locus analogous to
the locus Uy of nodal curves in the case of the Severi variety.) A
straightforward local analysis then yields:

THEOREM (1.53) Let A, d,g be the set of branched covers of P! of degree
d and genus g having b = 2d + 2g — 2 simple branch points. Then,

1) Ha,y is an unramified cover of Ba,y and, hence, is naturally a
smooth quasiprojective variety of dimension

b=2d+29-2=hag,.

2) There is a smooth universal family of curvesTCg 4: i.e., a diagram

er,g

|

P! x ﬁd,g

|

Hd‘g

whose fiber over a point [1t] of 5—~[d‘g is the covering 1t : C— P!
parameterized by [11].

The key point is that ﬁd,g is a covering space of fﬁd,g. We will re-
turn to the topic of branched covers in G, and give only a precis here.
First, for any B, we can choose small loops y; around the points b;
in B that generate 1, (P! — B) modulo the single relation []; y; = 1.
Since each branch point is simple, the y; must map to simple trans-
positions T; in 5, satisfying [[; T; = 1. Since the cover is connected,
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the subgroup generated by the T; must be transitive. Conversely, any
choice, up to simultaneous 54 conjugacy, of T;’s meeting these condi-
tions determines a unique connected cover simply branched over B.
The rest follows easily. The Hurwitz variety has one other property
that lies somewhat deeper and that we have therefore set off.

THEOREM (1.54) ﬁd,g is connected. Equivalently, in view of (1.53).1,
Ha,g is irreducible.

The connectedness depends on an analysis (first carried out by
Klein, Clebsch Liiroth and Hurwitz) of the braid monodromy of 5—[d g
over Bd s Essentially, this involves calculating the action of certain
loops in Ba .9 on the combinatorial description of the monodromy of
a cover [17] in A, 4,¢ and then building a loop that takes a given com-
binatorial description to a standard one. The classic reference is [26];
a good modern one is Moishezon’s paper [115].

Clearly, 5—[d ,g 1s too small for many purposes. When we try to en-
large it naively, however, we run into trouble. When the map C— P!
has nonstandard ramification (i.e., the branch divisor B has multiple
points), then the number of possible combinatorial forms for the mon-
odromy drops. Hence the most we can hope for is to extend 5—[,1 gloa
ramified cover H 4,4 of some compactification of By 4 of Bd g I What-
ever B we choose, the existence of a universal family of curves C and
maps 1 becomes a much more subtle question. All that is clear is that
Hy g Will be a dense open subset in the space ;4 no matter how we
define the latter.

When we return to this subject in more depth in Section 3.G, we’ll
study a very pretty and useful resolution of this difficulty, due to
Knudsen and Mumford. The key idea is to find a compactification B, 4
of B4 in which branch points always remain distinct: this definition
then leads one naturally to the compactification of A, d,g by the space
Ha,y of admissible covers; this has virtually all of the properties we
might desire.

11The obvious compactification P? is ruled out by degree considerations as noted
above



Chapter 2

Basic facts about moduli
spaces of curves

This chapter is an essentially expository one which summarizes the
major approaches to the construction of moduli spaces of curves and
states some of the most important results and open problems about
their local and global geometry.

We have two principal reasons for inserting this summary. The first
is to introduce the topics that will occupy the remainder of the book.
The second is to state a number of important results that do not reap-
pear. Indeed, a careful treatment of all the results stated in this chap-
ter would be impossible in a single volume. Rather than simply passing
such results by, we've chosen to record their statements and provide
references for them here.

Even with this proviso, this chapter is far from complete. Our choice
of results reflects our tastes and interests and we ask your indulgence
if your own preferences differ from ours.

A Why do fine moduli spaces of curves
not exist?

Most of the moduli spaces of curves that we’ll be studying are only
coarse moduli spaces. The obstructions to representing the corre-
sponding moduli functors (equivalently, to constructing fine moduli
spaces) come from automorphisms of the data of the problems.

In this section, we wish first to give some elementary examples
which illustrate the phenomena involved and then to take a look at
the various approaches which have been developed to work around
them. We begin by looking again at moduli of curves of genus 1.
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Recall that in Exercise (1.6), we constructed an algebraic family
X={y'=x(x-1(x-2)}cCPi,xA;
Q
Al —1{0,1}

of smooth curves of genus 1 in which every such curve appears. More-
over,

, 1 1 A-1 A
X=Xy =N e M 1-A 3 o)
and there is a j-map j : A}\AA} whose fibers are these $°-orbits. In
other words, the j-line is a coarse moduli space for curves of genus 1.
Exercise (1.6) gave two ways of seeing that the j-line was not a fine
moduli space. Here, we want to see this from yet a third point of view.

If the j-line were a fine moduli space, there would be a universal
curve 1:TC AA} and a fiber-product diagram

X C
@ 1
AL —L— al

Thus the $°-action on A} would have to lift to X. What could the
lifting of the involution A1 — A be? Since X) is the curve ramified
over 0, 1, A and oo, this lift would have to look like

(x, v, (1 —-x,*iy,1-A).

Either of these choices acts nontrivially on the fiber X;,» and the quo-
tient of X by this involution would have a rational fiber over 1/2. (In
fact, X1,» is the curve corresponding to the lattice C?/(Z1 + Z+/—1)
which has j-invariant 1728 and the involution above is the extra au-
tomorphism of order 2 of this lattice.)

There is also a more global obstruction to lifting A due to the fact
that multiplication by (—1) is an automorphism of any elliptic curve.
Either of the potential choices for the lifting above has order 4 on X:

(x, v, )1 —x,xiy,1 — A)—=(x,—y,A).

In other words, while the square of such a candidate lifting would
give an automorphism of X, this automorphism would have to be
nontrivial.
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There are a number of approaches to dealing with the obstructions
to the existence of fine moduli spaces due to automorphisms. To sim-
plify, we'll restrict our discussion to moduli problems of curves but
all these techniques are more generally applicable.

The simplest is to eliminate the locus of varieties with automor-
phisms.! If ‘M is the coarse moduli space for a moduli problem F in
which we’re interested, we’ll denote by M the locus of curves C in ‘M
such that Aut(C) = {id¢}. This will, in general, be a fine moduli space
for the open subfunctor of F of “curves without automorphisms”. This
solution is often extremely unnatural since our interest in the objects
of M may be completely unrelated to their automorphisms. Moreover,
we can almost never hope to find complete moduli spaces without al-
lowing some varieties with automorphisms. On the other hand, the
complement of MO is often of high codimension in M — for example,
in the moduli space M, of smooth curves of genus g, .7\/12 has codi-
mension g — 2 for g > 2 — so this approach does allow us to use a
fine moduli space to deal with many low-codimension questions.

The second approach is to find some extra structure that can be
added to the moduli problem that is sufficiently fine that no auto-
morphisms of an underlying curve can fix the extra structure. This ap-
proach is called rigidifying the problem. For curves, the most common
extra structures to use are sets of marked or distinguished smooth
points on the curve and level structures.

The existence of the bound 84(g — 1) for the order of the automor-
phism group of a smooth curve C of genus g > 2 in terms of g alone
ensures that no nontrivial automorphism of such a curve can fix n
distinct points of C for any sufficiently large n: thus we get a fine
moduli space, denoted My ;, for such marked curves. The defect of
this approach is that each marked point increases the dimension of
the moduli space by 1. This makes it unclear how much of the geome-
try of the original moduli space of unmarked curves can be captured
from that of the marked curves. On the other hand, there are a num-
ber of interesting geometric questions that deal directly with marked
curves so these spaces often arise naturally.

Level structures are a second method of rigidifying moduli prob-
lems that avoid changing the dimension of the moduli space. A full
level n structure on a curve C of genus g is a symplectic basis
{a1,...,04,B1,...,B4} for Hi(C,Z/nZ): here symplectic means that,
in terms of the basis, the intersection pairing on H; (C,Z/nZ) has ma-

1Here, and in the rest of this chapter, we've allowed ourselves to use the phrases
“with/without automorphisms” as an admittedly slightly abusive shorthand for
“with/without automorphisms other than the identity”.
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trix of the form
0 Iy

This data is equivalent to the choice of a basis (L1,...,L24) of the
space Jac(C), of n-torsion points in the Jacobian of C that is symplec-
tic with respect to the Weil pairing on this space. The moduh space of
curves of genus g with full level n structure is denoted Mg . Since the
spaces HY(C,Z/nZ) (or Jac(C)y) are isomorphic as symplectic spaces
for every curve C, we have a finite Galois covering map .qu")aﬂvlg
with Galois group Sp(2g,7/wZ) that is unramified exactly over _7\/12.
Monodromy arguments — see [77] — show that these covers are all
connected.

Another way to rigidify moduli spaces of curves so as to obtain
finite coverings is to use ordered sets of Weierstrass points on the
curve. This isn’t enough to get a fine moduli space over the locus of
hyperelliptic curves (why?) so sets of higher-order Weierstrass points
are also sometimes used. The covers obtained by these methods have
somewhat larger ramification loci: using ordinary Weierstrass points
yields a cover that is ramified over curves without automorphisms
but having Weierstrass points of weight greater than 1. When such
coverings are connected is very much an open question that has only
been settled by ad hoc methods in a few cases.

EXERCISE (2.1) 1) Show that, for n > 3, no curve of genus g > 1 with
level n structure has any automorphisms — i.e., there does not exist
a curve C and an automorphism @ of C fixing all points of order n on
Jac(C).

2) Show that this is false for n = 2.

3) Show that the map j : Al A Al discussed above is the covering map
3\/11 )aﬂ\/ll associated to level two structures of curves of genus 1.
4) Show that, although the fiber of family @ : X— A} over A is the
curve with level two structure whose moduli point is A, the space Ai
is not a fine moduli space for curves of genus 1 with level 2 structure.

This example shows the need to use the notion of a “universal fam-
ily” with care: the existence of a family over a coarse moduli space
with the correct fibers need not imply the universal functorial prop-
erty that characterizes the universal family over a fine moduli space.

EXERCISE (2.2) Consider the family of curves x3 +y3 +z3 + m-xyz,
parameterized by the affine line A! with coordinate m.

1) Find the open set U in A! over which the fibers in this family are
smooth, and compute the j-function j = j(m) on U.
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2) Show that j expresses U as a Galois cover of the j-line, with Galois
group SL»>(Z/37).
3) Show that U is a fine moduli space for curves of genus 1 with full
level 3 structure.

Hint: The curves in this family are the plane cubics whose flexes are
located at [0, 1, —w], [-w,0,1] and [1, —w, 0] where w is a primitive
cube root of unity.

EXERCISE (2.3) Show that there does not exist a universal family of
curves of genus 2 over any open subset U C M>. In general, if
Hy C My is the locus of hyperelliptic curves, for which g does there
exist a universal family over some open subset U C H;? Answer: For
g odd.

EXERCISE (2.4) Construct examples of:

1) A nontrivial family of smooth curves of genus 3 over a smooth,
one-dimensional base B, all of whose fibers over closed points are
isomorphic.

2) Amap @ : B— Mj3 from a smooth curve B to M3 that doesn’t come
from any family of curves of genus 3 over B.

3) A map @ : B—Mj3 from a smooth surface B to M3 that doesn’t
come from any family of curves of genus 3, but whose restriction to
each open set Uy of a cover of B does.

To say that a moduli functor doesn’t admit a fine moduli space sim-
ply means that it cannot be represented in the category of schemes.
The third approach to this failure is to look for a larger category
in which the functor can be represented. In order to make such an
approach worthwhile, we must understand the larger category well
enough to be able to carry out geometric investigations in it. If this
can be achieved, it becomes a matter of taste whether the advantages
of having a moduli space with good universal properties are sufficient
compensation for the additional technical difficulties of working with
these more general objects. The mildest generalization of schemes
that has proven useful is Artin’s category of algebraic spaces [10]. An
algebraic space looks locally like the quotient of a scheme by an étale
equivalence relation. Unfortunately, this category is still too small to
provide representing spaces for most moduli problems.

A larger category is that of functors from schemes to sets. This
category has the advantage that moduli functors are, by definition,
objects in it. What isn’t so clear is how we are to interpret geometric
notions in this category. Here we shall simply state that this can be
done fairly satisfactorily for moduli functors and refer you to Mum-
ford’s seminal article [119] if you want to get a sense of the flavor of
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the arguments needed. In that paper, Mumford shows how to extend
the notions of invertible sheaf and Picard group to such functors and,
as evidence that it’s possible to work with such notions, calculates the
Picard group of the moduli space of elliptic curves as 7/127!

Categories of algebraic stacks are other enlargements of the cate-
gory of schemes that have been widely used to study moduli problems.
Very roughly, a stack — say, the moduli stack of curves of genus g
for concreteness — is itself a category. In our example, typical objects
would be families C— A and D— B of such curves and a morphism
between two such objects would be a morphism of schemes from B
to A plus an isomorphism of D with the fiber product

D=Bx4C—TCT

B A

of B and C over A. In essence, twisting by automorphisms is prohib-
ited by definition. We leave it to you to formulate or find the correct
definition of a morphism between stacks (a task that starts to bring
out the flavor of the subject).

The stack approach has the advantage of being somewhat closer to
geometric intuition: for example, a line bundle on a stack is simply a
system of line bundles on the base of each family, together with, for
each morphism of families as above, an isomorphism of the line bun-
dle associated to the family D— B with the pullback to B of the line
bundle associated to C— A. We won’t work with stacks here, but we’ll
be working with related notions (see the discussion in Section 3.D). If
you're interested, you can look at [29] for a first discussion of stacks
in the present context; or, if you're prepared for a considerable effort,
go to [106] for a full treatment. There is also a forthcoming book [14]
that may finally clear up what has traditionally been a murky area.

The approaches to extending the category of schemes via “cate-
gories of functors” and via “algebraic stack” are not comparable: that
is, neither category faithfully contains the other. There is a com-
mon extension, “fibered categories” due (naturally, as it were) to
Grothendieck [68] which we shall pass by in complete silence.

B Moduli spaces we’ll be concerned with

We've already mentioned the moduli space M, (though we have yet
to prove its existence). It is the coarse moduli space for smooth, com-
plete, connected curves C of genus g over C. For the rest of this sec-
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tion, we use “curve” to abbreviate this package. The space C,; is sim-
ply the coarse moduli space of pairs (C,p) where C is a curve and
p a point of C. Note that C,4 naturally maps to M, by forgetting the
point p. In fact, C4y may look at first glance like a universal curve over
My, but on closer examination we see that this is true only over the
open set MY: the set-theoretic fiber of C, over a point [C] € My is
the quotient C/Aut(C). Thus, for example, over an open subset of M,
C» is a P'-bundle (in the analytic topology; in the Zariski topology it’s
a conic bundle). This is even true scheme-theoretically in this exam-
ple. You may wish to consider the question: what, in general, are the
scheme-theoretic fibers of the map from T, to My? Despite this, we’ll
occasionally abuse language in order to honor custom by calling Cy
the universal curve over moduli.

The space My, is a direct generalization of Cy: it is the coarse
moduli space for (n + 1)-tuples (C, p1,..., pn) where C is a curve and
p1,...,pn € C are distinct points. Thus C, equals Mg ;. (Because the
justification for requiring the points to be distinct comes from the way
in which the compactifications of these spaces are constructed, we’ll
postpone discussion of it until we come to consider these spaces. One
can also construct moduli spaces involving marked sets of unordered
points (distinct or otherwise); in practice, working with these involves
the additional aggravation of keeping track of the $;-action without
any compensating advantages so M, is the space most commonly
dealt with.) Once again, it’s tempting to view My ,, as the open subset
of the fiber product Cg X, Cg X, - - - X, Cg Obtained by removing
all diagonals; but automorphisms, as for Cg4, make this correct only
over a sublocus.

The next space we wish to mention is P4 42, the coarse moduli space
of pairs (C, L) where C is a curve and L a line bundle of degree d on
C. Again, the fiber of P44 over a point [C] € My correspondmg to a
curve C without automorphisms is the connected component Pic? (C)
of the Picard variety of C; in particular, Py 4 is sometimes called the Ja-
cobian bundle over moduli. Despite the fact that all the fibers Pic?(C)
of the varieties P, 4 for various values d are isomorphic over MY, Py 4
will not in general be isomorphic to Py 4 even over j\/lg see the ex-
ercises below. For example, it follows from the Harer-Mestrano proof
of the Franchetta conjecture (discussed later in this chapter; or see
[112]) that Poy = Pay if and only if (2g — 2)|d. We may, however,
note that

Pag = Parog-2yg

and
’Pd’g =~ ’P,d,g,

2Also denoted Jacg in some references.
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the isomorphisms being provided by the maps (C,L)+(C,LQKc¢)
and (C,L)(C,L™!) respectively. Thus, for each g there can be at
most g of these objects — P g4, ..., Py-1,4 — that are distinct up to iso-
morphism. Note also that in the special case d = g—1 there is anatural
theta-divisor 0 in P,_1 4, restricting on each fiber to the correspond-
ing class: it’s the locus of pairs (C,L) in P44 with H°(C,L) # 0.
Beware, however, that we cannot, as for individual curves, define such
a class in every degree.

EXERCISE (2.5) Show that for d = 0,...,g — 2 there does not exist
any line bundle on 7, ,; whose restriction to the fiber Pic4(C) of Pig
over a general point [C] € My is the line bundle associated to some
translate of the @-divisor on Pic(C) = J(C).

EXERCISE (2.6) Show thatno two of the moduli spaces Po g, ..., Py-1,9
are isomorphic.

For a general curve C of genus g > 1, the Jacobian J(C) has Picard
number (i.e., rank of Neron-Severi group) equal to 1 and the Neron-
Severi group is generated by a translate of the ® divisor. It follows
that for each d and g, the Picard group of P4 has rank 1 over the
Picard group Pic(My), with the generator restricting to some multiple
m(d, g) - © of the general fiber of Py 4 over My, and we may ask what
the coefficient m(d, g) is for each d and g. For example, the existence
of the natural theta-divisor 8 c P,_1,4 shows that m(g—-1,g) = 1 for
all g. But, m(d,g) = 1 only rarely. The following exercise suggests
some of the naive ways of approaching the problem; following it, we’ll
give the general formula for m(d, g) found by Kouvidakis.

EXERCISE (2.7) 1) Show that m(0,g) + 1.

2) Show that the locus of pairs (C, L) where L is a line bundle on C of
the form Oc(p1 + - - - + pg-1 — (g — 1)p) with p a Weierstrass point
on C forms a divisor in Py 4. Use this to deduce that m(d, g)|(g> — g)
for any d and g.

3) Show that there exists a divisor on C4 whose fiber over a gen-
eral point [C] € M, is a canonical divisor on C, and deduce that
m(d,g)l(2g — 2) for any d and g.

4) Find an example where m(d, g) = 5.

THEOREM (2.8) (KOUVIDAKIS [105]) For alld and g,
2g —2
gcd(2g-2,9+d-1)"

m(d,g) =
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C Constructions of M,

As we indicated earlier, every construction of the moduli space M,
amounts to looking a priori at curves with some additional structure,
so that a parameter space can be described, and then taking the quo-
tient of this space by the relation that identifies these additional struc-
tures. In this section, we look at the three most common approaches.

The Teichmiiller approach

Here we consider the space of pairs (C; y1,..., y2g) where C is a curve
and {y1,...,y24} is a normalized set of generators for 1 (C) — that
is, one that may be drawn (in genus 2) as shown in Figure (2.9). This

FIGURE (2.9)

is equivalent to choosing a homeomorphism of the underlying topo-
logical manifold of C with the National Bureau of Standards’ compact
orientable surface Xy of genus g, up to isotopy. The basic theorem
here, due to Bers [15], then says that: the space of such data is natu-
rally an open subset T ; in C39=3 homeomorphic to a ball. This open set
is called Teichmiiller space. The group I; of diffeomorphisms of Xy
modulo isotopy then acts on Teichmiiller space, and we may realize
the moduli space M, as the quotient of this action. Note that since
the stabilizer of any point is finite (it’s simply the group of automor-
phisms of the underlying curve C), this quotient exists as an analytic
variety.

Probably the most important thing about this approach is that it
gives us a handle on the topology of My: since M, is a quotient of
a contractible space by the group Iy, we see that for small k, the co-
homology groups H k(.’Mg, Q) are just the cohomology groups of the
group Iy tensored with Q. We may then try to calculate these by ex-
amining an action of I;; on another contractible space N 3 By using a
more tractable N° that is combinatorially defined, this approach has

3We only get information about the rational cohomology because Iy has finite iso-
topy subgroups at points of T4 corresponding to curves with automorphisms. There
is, however, an analogue Ty, of T4 parameterizing marked surfaces of genus g with
n marked points (or to use the indigenous terminology, with n punctures) from which
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been fruitfully exploited by Harer (whose results we’ll describe later)
and, more recently, by Kontsevich.

We should also mention that this approach provides M  with a nat-
ural metric, called the Weil-Petersson metric whose positivity proper-
ties have been used by Wolpert ([153], [154]) to construct an embed-
ding of M, in a projective variety with many of the nice properties of
the Deligne-Mumford stable compactification which we will introduce
later in this section. An excellent survey of what is known along these
lines can be found in the paper of Hain and Looijenga [70].

The Hodge theory approach

The idea here is to associate to a curve C the data of its polarized Jaco-
bian: this amounts to giving a complex vector space V of dimension g
with lattice A = 729 and skew-symmetric form Q. Respectively, these
ingredients are naturally obtained from C as: the dual of H°(C,K¢);
the first homology group H; (C, Z); and the intersection pairing. If we
choose a symplectic basis = {a1,...,a4,b1,...,bg} for H1 (C,Z) and
a complex basis wj1,...,wy of H(C,Kc) whose period matrix with
respect to the a-cycles is I;, we may in turn associate to these data
the period matrix P € C9° given by integrating the w’s around the
b-cycles. The Riemann bilinear relations then say that P is symmet-
ric with positive definite imaginary part. These last two conditions
define, respectively, a subspace and an open subset of the space of
g X g complex matrices whose intersection is called the Siegel upper
halfspace of dimension g and is denoted ﬁg. The group Sp(2g, Z) of
symplectic changes of basis acts on Bg and this action corresponds
exactly to the choice of symplectic basis made above.

Here the main facts are that: period matrices of curves form a lo-
cally closed subset ¢4 of h,; the quotient A4 of h, by Sp(2g,2) is a
coarse moduli space for abelian varieties of dimension g; and, My can
be constructed by restricting this quotient map to the locus ¢4. Again,
this construction yields M, only as an analytic space but it has the
important advantage over the Teichmiiller approach that the group
Sp(2g,7) by which we’re quotienting is more approachable than I}.
We pay for this, however, because we can say much less about the
space ¢4 that we’re quotienting. Describing the locus M, in A, (or
¢y In Bg) is the Schottky problem. Formally, a number of solutions
have recently been obtained ([8], [117], [125], [142]) but for practical

the moduli space Mg, can be constructed by forming a quotient by a suitable group
Iy n. For n large enough that such marked curves have no automorphisms, we can
obtain information about H* (Mg n,Z) by this method.
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purposes — such as determining whether a given period matrix P in
h, lies in ¢, — they are little help.

This construction has one other important consequence. Since A,
is a hermitian symmetric domain, it has by [12] a natural Baily-Borel
compactification A . (We will discuss compactifications at length be-
low: for the present, when we say that M is a compactification of M,
we’ll mean that M is a compact analytic variety that contains M as
an analytic open subset.) The compactification A4 was historically
the first such compactification to be constructed [136] and it remains
known as the Satake compactification in honor of its discoverer.

Taking the closure of M, in A, yields a compactification of M,
which we’ll denote by JVIg and also refer to as the Satake compactifi-
cation. Unfortunately, the Satake compactification isn’t modular. Re-
call that this means that M, is not a moduli space for any moduli
functor of curves that contains the moduli functor of smooth curves
as an open subfunctor. (In fact, the points of My \ M, do correspond
to isomorphism classes of smooth curves of lower genus, but these
don’t naturally fit into families with curves of genus g. Thus while we
can associate to families of curves with some singular fibers a moduli
map to Mg, we can’t go back and interpret subvarieties of ﬂ\/lg not
contained in My in terms of families of curves.) This greatly lessens
the usefulness of Mg for the study of most questions about families
of curves or about M, itself.

There is one important exception to this last statement. It depends
on the following two properties of Mgy: ﬁrsrt\,J My is projective; and
second, the codimension of the complement My \ My in My is equal
to 2 for g > 3. By intersecting My with generic divisors in some large
multiple O(n) of a very ample invertible sheaf on .’Mg through any
point, we see that through any point of My there passes a complete
curve lying entirely in M. In fact, there is a complete curve through
any finite collection of points of Mg: see the exercise below. Using a
curve through two points, on which any holomorphic function must
be constant, we see that there are no nonconstant functions on My.

EXERCISE (2.10) Assuming the facts cited above about the Satake
compactification Mg, show that through any finite collection of points
of M, there passes a complete curve lying in M,. Hint: blowup the
points and use the fact that the pullback to this blowup of a suffi-
ciently large multiple of an ample linear series on M, minus the sum
of the exceptional divisors of the blowup is very ample.

Together these facts show that M is neither projective nor affine.
In the next section, we will look at some more refined results about
complete subvarieties of M, which shed light on where in the range
between these extremes M, lies.
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The geometric invariant theory (G.I.T.) approach

This attack is quite distinct in flavor from the previous two. Simply
put, in each of the last two cases, the extra data attached to a curve
C was essentially analytic. Correspondingly, the parameter space of
curves with this extra data was not an algebraic but a complex analytic
variety, and the group acting on this space with quotient M, was
not an algebraic group. In the G.I.T. approach, however, everything is
algebraic.

The idea is straightforward: for any integer n > 3, any curve C
may be embedded as a curve of degree 2(g — 1)n in projective space
PN = p@n-D(g-D-1 by the complete linear series |[nKc|. We may ac-
cordingly attach to a curve C the data of such an embedding — i.e., we
consider pairs consisting of a curve C and an n-canonical embedding
@ : C—PN. Now, we’ve already seen how to parameterize such pairs:
the family of all such corresponds to a locally closed subset K of the
Hilbert scheme H = H>(g-1)n,g,(2n-1)(g-1)-1 Of smooth curves of de-
gree 2(g—1)n and genus g in PV. (Over the open set of smooth curves
in 7{, the universal curve C carries two natural invertible sheaves,
the hyperplane sheaf, O¢(1), and the relative dualizing sheaf, wc,ss;
X is simply the locus where O¢(1) and (we/47)®™ are isomorphic.)
Moreover, the ambiguity in choosing the map @ is simply a matter of
choosing a basis for the space HO(C, K&™) of n-canonical differentials
on C — in other words, the group PGL(N + 1,C) acts on X, and the
quotient (if one exists) should be M,.

One problem with this approach is that, since the group
PGL(N + 1,C) is continuous rather than discrete, the existence of a
nice quotient is by no means assured. This is shown by using the tech-
niques of geometric invariant theory, which we’ll discuss later. Assum-
ing, for the moment, that we’ve constructed this quotient, however,
the approach has two signal advantages:

o It exhibits the M, as a quasiprojective algebraic variety.

e It leads to an explicit, modular projective compactification of
Mg-

Briefly, we've indicated that it requires some nontrivial work to show
that the quotient X by PGL(N + 1, C) exists. Having undertaken this
work, however, it’s tempting to try to compactify M, by taking a quo-
tient of the closure X of K in . However, this is only possible for an
open subset K of K containing XK. To get an idea of why some such
restriction is necessary, consider the family C,, ) of smooth cubics
over the affine t-line whose fibers C; are given by
3 _ 42

(2.11) yz2 =X axz? —t3bz3.
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The curves C; for t + 0 are all isomorphic to the smooth curve C;
of genus 1 but the curve Cy is a rational cuspidal curve. Clearly, this
sort of jump discontinuity rules out the existence of any kind of good
moduli space containing both C; and Cy. By varying the choice of a
and b, we can arrange for C; to have any desired j-invariant so the
blame for this pathology clearly belongs with Cy. We’re thus faced with
the problem of determining what abstract curves to admit into the
enlarged parameter space K. The right curves, which emerge naturally
from studying this quotienting problem (and, as we’ll see later, from
several other points of view), are stable curves.

DEFINITION (2.12) A stable curve is a complete connected curve that
has only nodes as singularities and has only finitely many automor-
phisms.

In view of the connectedness of C, its automorphism group can fail
to be finite only if C contains rational components. Thus, the finite-
ness condition can be equivalently reformulated as:

e every smooth rational component C meets the other compo-
nents of C in at least 3 points; or,

e every rational component of the normalization of C has at least
3 points lying over singular points of C.

If we weaken either of these conditions by replacing the number
3 by 2, the resulting curves are called semistable. Geometrically, this
amounts to allowing chains Cy,...,Cy of smooth rational curves as
subcurves of C. More precisely, saying that we have a chain means
that: C; and Cy each meet the complement of the chain in C in a single
node; the other C; are disjoint from this complement; and, each C; for
i between 2 and (k — 1) meets each of C;_; and Cj;; in a single node
and meets no other components of the chain. Later on, we’ll introduce
other notions of stability for curves connected with the quotienting
process and, to distinguish the curves described above, will call them
moduli stable curves or Deligne-Mumford stable curves .

Stable curves with marked points are defined analogously:

DEFINITION (2.13) A stable n-pointed curve is a complete connected
curve C that has only nodes as singularities, together with an ordered
collection p1,...,pn € C of distinct smooth points of C, such that the
(n + 1)-tuple (C; p1, ..., pn) has only finitely many automorphisms.

As in the definition of stable curve, the finiteness condition can be
equivalently reformulated as saying that every rational component
of the normalization of C has at least 3 points lying over singular
and/or marked points of C. Also as before, if we weaken either of
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these conditions by replacing the number 3 by 2, the resulting pointed
curves are called semistable.

As for smooth curves, the arithmetic genus g = h!(C, O¢) of a sta-
ble curve C is a primary invariant. As will be verified in Exercise (3.2),
we can reexpress the genus more geometrically as follows: if C has 6
nodes and v irreducible components Ci,...,C, of geometric genera
di,..-,3gv, then

v
g=2(gi—1)+5+1
i=1

=(igi>+6—v+1.

i=1

(2.14)

The fact that stable curves of genus g are the right class of curves
to consider is expressed in:

THEOREM (2.15) (DELIGNE-MUMFORD-KNUDSEN) There exist coarse
moduli spaces My and Mgy, of stable curves and n-pointed stable
curves; and these spaces are projective varieties.

The spaces Wg and Wg,n are called the stable compactifications of
Mgy and Mg .

It’s hard to overestimate the importance of having such a modular
compactification: i.e., one that is actually a moduli space for a well-
behaved class of (possibly singular) curves. Clearly, being able to deal
with a projective variety like M, rather than just a quasiprojective
one like M, allows us to bring to bear many of the tools of projective
algebraic geometry in the study of these spaces; this is what will allow
us, for example, to answer in Section 6.F the classical question about
the unirationality of M,.

Beyond that, and perhaps even more significantly, the existence of a
compact moduli space for curves has changed the way we view them.
Now, anytime we have a one-parameter family of curves {C;} in pro-
jective space, or simply mapping to projective space — a family of
plane curves acquiring a nasty singularity, or becoming reducible or
nonreduced, or a family of branched covers of P! in which a large
number of branch points coalesce at once — we know that however
wild the singularities of the flat limit Cy of these curves, there is also a
well-defined limit of the arc {[C;]} C Wg; in other words, a canonical
limit Y, of the abstract curves C; that has only nodes as singularities
and whose geometry will illuminate that of the curve Cy. This notion,
expressed formally in Proposition (3.47), underlies almost all of the
constructions and applications in this book. It would not be an exag-
geration to say that Theorem (2.15) has played as fundamental a role
in the theory of algebraic curves in the last thirty years as the notion
of abstract curve did in the preceding sixty.
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As suggested above, My may be realized by geometric invariant
theory: if we define X to be the locus of stable curves C embedded
by the nth power of their dualizing sheaves w¢ and define M, to be
the quotient K /PGL(N + 1,Q), then .Mg is the coarse moduli space
of stable curves. While this will be carried out in detail in Chapter 4,
we’d like now to introduce a few problems related to this construction.
If you haven’t seen the basics of the geometric invariant theory of
Hilbert points, you may want to skip the next few paragraphs until
after you've read Chapter 4.

The first problem is to show that the orbits that the G.LT. quotient
of K “throws away” are exactly those that are not pluricanonically em-
bedded stable curves. The analysis of this and related questions that
arise in the G.I.T. construction of Wg is quite intricate. Having carried
out this analysis, it’s natural to ask what sort of compact quotient we
can build by considering not just pluricanonically embedded curves
but all embedded curves with semistable Hilbert points. This amounts
to trying to find moduli for pairs (C,A) where C is a curve of genus g
and A is a linear system of degree d and dimension ¥ on C. For smooth
C, the answer is both easy to state and relatively straightforward to
verify. If d > g, then the orbit of such a pair produces a point in the
quotient whenever A is complete. The resulting quotient is a univer-
sal Picard bundle P4 4. The full quotient again yields a modular com-
pactification P44 of P44. Using the isomorphism Py gy = Pai2g-2,9
discussed in Section B, this gives a stable compactification of the Ja-
cobian bundle. Determining which orbits, or, more generally, which fi-
nite sets of orbits, determine points of this quotient involves a lengthy
and delicate combinatorial analysis that has only recently been carried
out by Caporaso [16]: see the discussion following Theorem (4.45) for
more details.

We will discuss Wg in more detail later. For the time being, we want
only to make some elementary observations. Fix a curve C with 6
nodes and v irreducible components Cy,...,C, of geometric genera
Ji,---,9v. Now, to specify such a stable curve we have to specify the
normalizations C; of the C;, and then specify the points on each that
will be identified to form the nodes of C — there will be 26 such points
in all. The family of such curves thus has dimension

v
>.(3gi —3) +25,*

i=1

4You may be worried about this parameter count when g; equals 0 or 1. In the
rational case, the correct contribution should be 0 not —3. Fortunately, this is exactly
compensated for by the fact that the §; > 3 marked points on such a component
actually depend on only §; — 3 parameters because of the automorphisms of the
rational curve C;. The number (3g; — 3) actually counts moduli of C; minus moduli
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which, in view of the genus formula (2.14) equals,
3g-3-9.

In other words, the locus in M of curves with exactly § nodes has pure
codimension & in My. Moreover, a local computation in deformation
theory which we’ll carry out in the next chapter shows that the locus of
curves with more than 6 nodes lies in the closure of the locus of those
with exactly §. In particular, the boundary A = M, — M, is a divisor,
with each component the closure of a locus of curves with 1 node.
In this case, the combinatorics are easy to work out: a stable curve
with one node is either irreducible, or the union of smooth curves of
genera i and g — i meeting at one point. These give rise to divisors Ag
and A;,i=1,...,1g/2].

Parenthetically, we should say that it’s at this point that one in gen-
eral stops drawing curves as two-dimensional objects and starts using
the less suggestive but more efficient one-dimensional representation.
Thus, instead of drawing general curves in the boundary components
Ao and A in M3 as in Figure (2.16), we would draw them simply as

FIGURE (2.16)

in Figure (2.17). The surface pictures are actually rather misleading:

(D me

FIGURE (2.17)

locally, a node looks like a pair of (real) two-manifolds meeting trans-
versely in a point; this can and does occur in real fourspace, but not
in threespace. In order to fit our pictures in a two-dimensional repre-
sentation of threespace, we’re obliged to either pinch these planes, as
on the left, or show them as tangent as on the right, either of which
is incorrect.

The boundary components of Mg , may be listed analogously; here
is the statement for n = 1: the space ﬂgJ is often denoted fg, and
called (misleadingly; see the discussion in Section B) the universal
curve over M.

of its automorphisms and this makes all parameter counts like that above come out
right. We leave you to check that the count is also correct in the genus 1 case.
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EXERCISE (2.18) Show that the boundary Cy \ ‘C4 consists of exactly
g divisors: the closure 3, of the locus of pairs (C, p) where C is an
irreducible curve with a single node; and the closures X; of the locus
of pairs (C, p) where C is the union of smooth curves of genera i and
g —1meeting at a single point, and p lies on the component of genus i.

EXERCISE (2.19) Even rational curves can have moduli when marked
points are added. Show that M 3 and M 3 are both simply a point by
using an automorphism to fix the 3 marked points. Likewise, show that
Mop4 = P\ {0, 1, o}. Show that any singular stable curve in M 4 must
consist of a pair of smooth rational curves meeting in a point with each
carrying two of the four marked points and that two such are isomor-
phic if and only if the induced decompositions of {1, 2, 3,4} into two
pairs agree. For more moduli spaces of rational curves, see [91].

Here are some exercises on the stable compactification of M.

EXERCISE (2.20) As a consequence of the dimension computation
above, we may deduce that no stable curve can have more than 3g — 3
nodes. Prove this directly.

EXERCISE (2.21) How many stable curves of genera 2, 3 and 4 are there
up to homeomorphism (in the analytic topology)? For each homeo-
morphism type, find the dimension of the locus of the corresponding
curves in M, and say which of these loci are in the closure of which
others.

EXERCISE (2.22) Show that the normalization C of a stable curve C
with 3g — 3 nodes is a union of rational curves, each having 3 marked
points. Up to isomorphism, how many such curves C are there for
g = 2, 3,4 and 57 Harder: for general g?

EXERCISE (2.23) How many components are there in the locus of sta-
ble curves with 2 or more nodes? Which lie in the closure of each
boundary component A;?

Let B be a smooth curve, p € B any point, and let X—B- {p} be
any family of stable curves. Let @ : B — {p}— M, be the correspond-
ing map to moduli. Since M, is projective, the valuative criterion for
properness implies that there is a unique extension of @ to a map
@ : B—~M,. In this circumstance, the curve corresponding to @ (p)
is called the stable limit of the curves {X;};ep-(p; as q approaches
p. The determination of such limits by the process of semistable re-
duction will be discussed in considerable detail in the next chapter.
Here is a warm-up exercise for those of you already familiar with this
process.
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EXERCISE (2.24) Let B be a smooth curve of genus g — 1, p € B any
point, and for any g € B\ {p} let X, be the stable curve obtained by
identifying p and g on B. What is the stable limit of the family {X4}
as q approaches p?

EXERCISE (2.25) [posed by Jean-Francois Burnol] Let A®¥ ¢ M, be
the locus of stable curves with & or more nodes. For which o is A(®
connected?

EXERCISE (2.26) It's a classical fact that the automorphism group of
a smooth curve of genus g can have order at most 84(g —1). Does the
same statement hold for stable curves?

D Geometric and topological properties

Basic properties

We've already said that My is irreducible of dimension 3g — 3. Any of
the standard ways of establishing the dimension amounts to making
the computation of the Hilbert number in reverse: we used the dimen-
sion of M, in computing the dimension (v + 1)d — (r — 3)(g — 1) of
any component of the Hilbert scheme #; 4, whose general member
was nonspecial. Conversely, if we exhibit such a component having
dimension exactly hg 4, and dominating M, we will have verified its
dimension. This is straightforward either using Hurwitz schemes (this
is the more usual, since the dimension of any component of # 4 is
visibly b = 2d + 2g — 2) or Severi varieties.

Irreducibility comes a little harder. Again, the standard approaches
invoke the parameter spaces Hg,4 or V4 4. Thus, for example, Clebsch
analyzed the Hurwitz scheme H, 4 as a covering space of an open
subset of P?, and showed that the monodromy acted transitively on
the sheets; he deduced that H 4 was irreducible for any d and g and
hence that M, was. Likewise, the fact that the Severi variety Vg 4 is
irreducible for any d and g implies that M is (although historically,
the irreducibility of M, was known long before the irreducibility of
Va,g)- Although we’ll only prove the irreducibility of M in Section 6.A,
we’ll make free use of it in the interim. You can easily check that we
introduce no circular dependencies in doing so.

Local properties

The local structure of the moduli space M is very well understood.
The basic facts, which we’ll state here, are all consequences of the
deformation theory we’ll describe in detail in Chapter 3.
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