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Preface 

Functional analysis has become a sufficiently large area of mathematics that 
it is possible to find two research mathematicians, both of whom call 
themselves functional analysts, who have great difficulty understanding the 
work of the other. The common thread is the existence of a linear space with 
a topology or two (or more). Here the paths diverge in the choice of how 
that topology is defined and in whether to study the geometry of the linear 
space, or the linear operators on the space, or both. 

In this book I have tried to follow the common thread rather than any 
special topic. I have included some topics that a few years ago might have 
been thought of as specialized but which impress me as interesting and 
basic. Near the end of this work I gave into my natural temptation and 
included some operator theory that, though basic for operator theory, might 
be considered specialized by some functional analysts. 

The word "course" in the title of this book has two meanings. The first is 
obvious. This book was meant as a text for a graduate course in functional 
analysis. The second meaning is that the book attempts to take an excursion 
through many of the territories that comprise functional analysis. For this 
purpose, a choice of several tours is offered the reader-whether he is a 
tourist or a student looking for a place of residence. The sections marked 
with an asterisk are not (strictly speaking) necessary for the rest of the book, 
but will offer the reader an opportunity to get more deeply involved in the 
subject at hand, or to see some applications to other parts of mathematics, 
or, perhaps, just to see some local color. Unlike many tours, it is possible to 
retrace your steps and cover a starred section after the chapter has been left. 

There are some parts of functional analysis that are not on the tour. Most 
authors have to make choices due to time and space limitations, to say 
nothing of the financial resources of our graduate students. Two areas that 
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are only briefly touched here, but which constitute entire areas by them­
selves, are topological vector spaces and ordered linear spaces. Both are 
beautiful theories and both have books which do them justice. 

The prerequisites for this book are a thoroughly good course in measure 
and integration-together with some knowledge of point set topology. The 
appendices contain some of this material, including a discussion of nets in 
Appendix A. In addition, the reader should at least be taking a course in 
analytic function theory at the same time that he is reading this book. From 
the beginning, analytic functions are used to furnish some examples, but it 
is only in the last half of this text that analytic functions are used in the 
proofs of the results. 

It has been traditional that a mathematics book begin with the most 
general set of axioms and develop the theory, with additional axioms added 
as the exposition progresses. To a large extent I have abandoned tradition. 
Thus the first two chapters are on Hilbert space, the third is on Banach 
spaces, and the fourth is on locally convex spaces. To be sure, this causes 
some repetition (though not as much as I first thought it would) and the 
phrase" the proof is just like the proof of ... " appears several times. But I 
firmly believe that this order of things develops a better intuition in the 
student. Historically, mathematics has gone from the particular to the 
general-not the reverse. There are many reasons for this, but certainly one 
reason is that the human mind resists abstraction unless it first sees the need 
to abstract. 

I have tried to include as many examples as possible, even if this means 
introducing without explanation some other branches of mathematics (like 
analytic functions, Fourier series, or topological groups). There are, at the 
end of every section, several exercises of varying degrees of difficulty with 
different purposes in mind. Some exercises just remind the reader that he is 
to supply a proof of a result in the text; others are routine, and seek to fix 
some of the ideas in the reader's mind; yet others develop more examples; 
and some extend the theory. Examples emphasize my idea about the nature 
of mathematics and exercises stress my belief that doing mathematics is the 
way to learn mathematics. 

Chapter I discusses the geometry of Hilbert spaces and Chapter II begins 
the theory of operators on a Hilbert space. In Sections 5-8 of Chapter II, 
the complete spectral theory of normal compact operators, together with a 
discussion of multiplicity, is worked out. This material is presented again in 
Chapter IX, when the Spectral Theorem for bounded normal operators is 
proved. The reason for this repetition is twofold. First, I wanted to design 
the book to be usable as a text for a one-semester course. Second, if the 
reader understands the Spectral Theorem for compact operators, there will 
be less difficulty in understanding the general case and, perhaps, this will 
lead to a greater appreciation of the complete theorem. 

Chapter III is on Banach spaces. It has become standard to do some of 
this material in courses on Real Variables. In particular, the three basic 
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principles, the Hahn-Banach Theorem, the Open Mapping Theorem, and 
the Principle of Uniform Boundedness, are proved. For this reason I 
contemplated not proving these results here, but in the end decided that 
they should be proved. I did bring myself to relegate to the appendices the 
proofs of the representation of the dual of LP (Appendix B) and the dual of 
Co( X) (Appendix C). 

Chapter IV hits the bare essentials of the theory of locally convex spaces 
-enough to rationally discuss weak topologies. It is shown in Section 5 that 
the distributions are the dual of a locally convex space. 

Chapter V treats the weak and weak-star topologies. This is one of my 
favorite topics because of the numerous uses these ideas have. 

Chapter VI looks at bounded linear operators on a Banach space. 
Chapter VII introduces the reader to Banach algebras and spectral theory 
and applies this to the study of operators on a Banach space. It is in 
Chapter VII that the reader needs to know the elements of analytic function 
theory, including Liouville's Theorem and Runge's Theorem. (The latter is 
proved using the Hahn-Banach Theorem in Section IlLS.) 

When in Chapter VIII the notion of a C*-algebra is explored, the 
emphasis of the book becomes the theory of operators on a Hilbert space. 

Chapter IX presents the Spectral Theorem and its ramifications. This is 
done in the framework of a C*-algebra. Classically, the Spectral Theorem 
has been thought of as a theorem about a single normal operator. This it is, 
but it is more. This theorem really tells us about the functional calculus for 
a normal operator and, hence, about the weakly closed C*-algebra gener­
ated by the normal operator. In Section IX.S this approach culminates in 
the complete description of the functional calculus for a normal operator. In 
Section IX.lO the multiplicity theory (a complete set of unitary invariants) 
for normal operators is worked out. This topic is too often ignored in books 
on operator theory. The ultimate goal of any branch of mathematics is to 
classify and characterize, and multiplicity theory achieves this goal for 
normal operators. 

In Chapter X unbounded operators on Hilbert space are examined. The 
distinction between symmetric and self-adjoint operators is carefully delin­
eated and the Spectral Theorem for unbounded normal operators is ob­
tained as a consequence of the bounded case. Stone's Theorem on one 
parameter unitary groups is proved and the role of the Fourier transform in 
relating differentiation and multiplication is exhibited. 

Chapter XI, which does not depend on Chapter X, proves the basic 
properties of the Fredholm index. Though it is possible to do this in the 
context of unbounded operators between two Banach spaces, this material is 
presented for bounded operators on a Hilbert space. 

There are a few notational oddities. The empty set is denoted by D. A 
reference number such as (S.lO) means item number 10 in Section S of the 
present chapter. The reference (IX.S.lO) is to (S.lO) in Chapter IX. The 
reference (A.1.l) is to the first item in the first section of Appendix A. 



x Preface 

There are many people who deserve my gratitude in connection with 
writing this book. In three separate years I gave a course based on an 
evolving set of notes that eventually became transfigured into this book. The 
students in those courses were a big help. My colleague Grahame Bennett 
gave me several pointers in Banach spaces. My ex-student Marc Raphael 
read final versions of the manuscript, pointing out mistakes and making 
suggestions for improvement. Two current students, Alp Eden and Paul 
McGuire, read the galley proofs and were extremely helpful. Elena Fraboschi 
typed the final manuscript. 

John B. Conway 
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CHAPTER I 

Hilbert Spaces 

A Hilbert space is the abstraction of the finite-dimensional Euclidean spaces 
of geometry. Its properties are very regular and contain few surprises, 
though the presence of an infinity of dimensions guarantees a certain 
amount of surprise. Historically, it was the properties of Hilbert spaces that 
guided mathematicians when they began to generalize. Some of the proper­
ties and results seen in this chapter and the next will be encountered in more 
general settings later in this book, or we shall see results that come close to 
these but fail to achieve the full power possible in the setting of Hilbert 
space. 

§1. Elementary Properties and Examples 

Throughout this book IF will denote either the real field, ~, or the complex 
field, c. 

1.1. Definition. If !'£ is a vector space over IF, a semi-inner product on !'£ is 
a function u: !'£ X !'£ ~ IF such that for all a, j3 in IF and x, y, z in !'£, the 
following are satisfied: 

(a) u(ax + j3y, z) = au(x, z) + j3u(y, z), 
(b) u(x, ay + j3z) = iiu(x, y) + jJu(x, z), 
( c ) u ( x, x) ~ 0-,,-;------;-
(d) u(x, y) = u(y, x). 

Here, for a in IF, ii = a if IF = ~ and ii is the complex conjugate of a if 
IF = c. If a E C, the statement that a ~ 0 means that a E ~ and a is 
non-negative. 
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Note that if a = 0, then property (a) implies that u(O, y) = u(a . 0, y) = 

au(O, y) = ° for all y in !'f. This and similar reasoning shows that for a 
semi-inner product u, 

(e) u(x,O) = u(O, y) = ° for all x, y in !'f. 

In particular, u(O, 0) = 0. 
An inner product on !'f is a semi-inner product that also satisfies the 

following: 

(f) If u(x, x) = 0, then x = 0. 

An inner product in this book will be denoted by 

(x, y) = u(x, y). 

There is no universally accepted notation for an inner product and the 
reader will often see (x, y) and (xly) used in the literature. 

1.2. Example. Let !'f be the collection of all sequences {an: n ~ I} of 
scalars an from IF such that an = ° for all but a finite number of values of 
n. If addition and scalar multiplication are defined on !'f by 

{ an} + { Pn} == {an + Pn}, 

a { an} == {aan}, 

then !'f is a vector space over IF. 
If u({an},{Pn})==L'::=la2n"P2n' then u is a semi-inner product that is 

not an inner product. On the other hand, 
00 

( { an}, {Pn}) = L an lin , 
n=1 

00 1 _ 
({an}, {Pn}) = L ;anPn, 

n=1 
00 

({an}, {Pn }) = L n 5an lin , 

n=1 
all define inner products on !'f. 

1.3. Example. Let (X,!J, p.) be a measure space consisting of a set X, a 
a-algebra !J of subsets of X, and a countably additive IR U {oo} valued 
measure p. defined on !J. If f and gEL 2(p.) == L 2( X, !J, p.), then Holder's 
inequality implies ft E L 1(p.). If 

(j, g) = jftdp., 

then this defines an inner product on L 2(p.). 
Note that Holder's inequality also states that Ifftdp.1 s [flN dp.jl/2 . 

[flgl 2 dp.j1/2. This is, in fact, a consequence of the following result on 
semi-inner products. 
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1.4. The Cauchy-Bunyakowsky-Schwarz Inequality. If (. .) is a semi­
inner product on :Y, then 

I(x, y)1 2 ~ (x, x)(y, y) 

for all x and y in :Y. 

PROOF. If a E IF and x and y E :Y, then 

o ~ (x - ay, x - ay) 

= (x, x) - a(y, x) - a(x, y) + laI 2(y, y). 

Suppose (y, x) = be iO, b ~ 0, and let a = e-iOt, t in IR. The above 
inequality becomes 

o ~ (x, x) - e-iOtbe iO - eiOtbe- iO + t2(y, y) 

= (x, x) - 2bt + t\y, y) 

= c - 2bt + at 2 == q( t), 

where c = (x, x) and a = (y, y). Thus q( t) is a quadratic polynomial in 
the real variable t and q(t) ~ 0 for all t. This implies that the equation 
q(t) = 0 has at most one real solution t. From the quadratic formula we 
find that the discriminant is not positive; that is, 0 ~ 4b 2 - 4ac. Hence 

o ~ b2 - ac = I(x, y)1 2 - (x, x)(y, y), 

proving the inequality. • 

The inequality in (1.4) will be referred to as the CBS inequality. 

1.5. Corollary. If ( . , .) is a semi-inner product on :Y and Ilxll == (x, X )1/2 
for all x in :Y, then 

(a) Ilx + yll ~ Ilxll + Ilyll for x, yin :Y, 
(b) Ilaxll = lalllxli for a in IF and x in :Y. 

If ( . , .) is an inner product, then 

(c) Ilxll = 0 implies x = o. 
PROOF. The proofs of (b) and (c) are left as an exercise. To see (a), note that 
for x and y in :Y, 

Ilx + yll2 = (x + y, x + y) 

= IIxl12 + (y, x) + (x, y) + IIyl12 

= IIxl12 + 2 Re(x, y) + Ily112. 

By the CBS inequality, Re(x, y) ~ I(x, y)1 ~ IIxIIIIYII. Hence, 

Ilx + yl12 ~ IIxl12 + 211xlillyll + IIyl12 

= (jlxll + Ilyilf. 

The inequality now follows by taking square roots. • 
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If ( . , .) is a semi-inner product on :r and if x, y E:r, then as was 
shown in the preceding proof, 

Ilx + yl12 = IIxl12 + 2Re(x,y) + Ily112. 
This identity is often called the polar identity. 

The quantity Ilxll = (x, X /12 for an inner product ( . , .) is called the 
norm of x. If :r = IFd (IR d or C d) and ({ an), {,Bn}) == L~~la)3n' then the 
corresponding norm is II {an} II = [L~~danI2]1/2. 

The virtue of the norm on a vector space :r is that d(x, y) = Ilx - yll 
defines a metric on :r [by (1.5)] so that :r becomes a metric space. In fact, 
d(x, y) = Ilx - yll = II(x - z) + (z - y)11 ::;; Ilx - zll + liz - yll = 
d(x, z) + d(z, y). The other properties of a metric follow similarly. If 
!!( = IF d and the norm is defined as above, this distance function is the usual 
Euclidean metric. 

1.6. Definition. A Hilbert space is a vector space .Y1' over IF together with 
an inner product ( . , .) such that relative to the metric d(x, y) = Ilx - yll 
induced by the norm, .Y1' is a complete metric space. 

If .Y1'= L 2(fL) and (I, g) = fft dfL, then the associated norm is Illll = 
[flfl2dfLP / 2. It is a standard result of measure theory that L2(fL) is a 
Hilbert space. It is also easy to see that IF d is a Hilbert space. 

REMARK. The inner products defined on L 2(fL) and IF d are the" usual" ones. 
Whenever these spaces are discussed these are the inner products referred 
to. The same is true of the next space. 

1.7. Example. Let I be any set and let [2(1) denote the set of all functions 
x: I ~ IF such that xU) = 0 for all but a countable number of i and 
L j E Tlx(i)1 2 < 00. For x and y in [2(1) define 

(x, y) = Lx(i)y(i). 

Then [2(1) is a Hilbert space (Exercise 2). 
If 1= N, [2(1) is usually denoted by [2. Note that if D = the set of all 

subsets of I and for E in D, fL(E) == 00 if E is infinite and fL(E) = the 
cardinality of E if E is finite, then [2(1) and L2(1, D, fL) are equaL 

Recall that an absolutely continuous function on the unit interval [0,1] 
has a derivative a.e. on [0, 1]. 

1.8. Example. Let .Y1'= the collection of all absolutely continuous func­
tions I: [0,1] ~ IF such that 1(0) = 0 and f' E L 2(0,1). If (I, g) = 

Mf'( t)g '( t ) dt for I and g in .Y1', then .Y1' is a Hilbert space (Exercise 3). 

Suppose !!( is a vector space with an inner product ( . , . ) and the norm 
is defined by the inner product. What happens if (:r, d)(d(x, y) == Ilx - YID 
is not complete? 
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1.9. Proposition. If !!{ is a vector space and ( . , . ).'1" is an inner product on 
!!{ and if ,;tt' is the completion of !!{ with respect to the metric induced by the 
norm on !!{, then there is an inner product (.,.).)/" on ,;tt' such that 
(x, y)£,= (x, Y).'1" for x and yin !!{ and the metric on ,;tt' is induced by this 
inner product. That is, the completion of !!{ is a Hilbert space. 

The preceding result says that an incomplete inner product space can be 
completed to a Hilbert space. It is also true that a Hilbert space over IR can 
be imbedded in a complex Hilbert space (see Exercise 7). 

This section closes with an example of a Hilbert space from analytic 
function theory. 

1.10. Definition. If G is an open subset of the complex plane C, then 
L~( G) denotes the collection of all analytic functions f: G ~ C such that 

I I If(x + iy)1 2dxdy < 00. 
G 

L~(G) is called the Bergman space for G. 

Several alternatives for the integral with respect to two-dimensional 
Lebesgue measure will be used. In addition to f fef(x + iy) dx dy we will 
also see 

I If and IfdArea. 
G G 

Note that L~(G) ~ L2(p,), where p, = ArealG, so that L~(G) has a 
natural inner product and norm from L 2(p,). 

1.11. Lemma. Iff is analytic in a neighborhood of B( a; r), then 

1 If f(a) = -2 f· 
17r B(a; r) 

[Here B(a; r) == {z: Iz - al < r} and B(a; r) == {z: Iz - al :::; r}.] 

PROOF. By the mean value property, if 0 < t :::; r, f(a) = (1/217)J""-,J(a + 
te iO ) dO. Hence 

(17r 2)-lI ~(a;r/= (17r 2)-1{t[I:!(a + teiO)dO]dt 

= (2/r2) {tf(a) dt = f(a). • 
o 

1.12. Corollary. Iff E L~(G), a E G, and 0 < r < dist(a, BG), then 

1 
If(a)l:::; c1lfl12· 

rY17 
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PROOF. Since B(a; r) ~ G, the preceding lemma and the CBS inequality 
imply 

If(a)1 = ~If f 1. 11 
7Tr B(a; r) 

1 [ ]1/2[ ] 112 
:S 7Tr2 f ~(a; r) lfl2 f ~(a; r)1 2 

1 
:S -llflI2rj.;. • 

7Tr2 

1.13. Proposition. L~(G) is a Hilbert space. 

PROOF. If P. = area measure on G, then L 2(p.) is a Hilbert space and 
L~(G) ~ L 2(p.). So it suffices to show that L~(G) is closed in L 2(p.). Let 
{In} be a sequence in L~( G) and let IE L 2(p.) such that fl/n - 112 dp. ~ ° 
as n ~ 00. 

Suppose B(a; r) ~ G and let ° < p < dist(B(a; r), JG). By the preced­
ing corollary there is a constant C such that lfn(z) - 1",(z)1 ~ Cli/n - Imllz 
for all n, m and for Iz - al :s p. Thus {In} is a uniformly Cauchy sequence 
on any closed disk in G. By standard results from analytic function theory 
(Montel's Theorem or Morera's Theorem, for example), there is an analytic 
function g on G such that In(z) ---+ g(z) uniformly on compact subsets of 
G. But since flfn - /1 2 dp. ~ 0, a result of Riesz implies there is a subse­
quence {In.} such that Ink(z) ~ I(z) a.e. [Ill· Thus 1= g a.e. [Ill and so 
I E L~(Il). • 

EXERCISES 

1. Verify the statements made in Example 1.2. 

2. Verify that [2(1) (Example 1.7) is a Hilbert space. 

3. Show that the space Yi' in Example 1.8 is a Hilbert space. 

4. Describe the Hilbert spaces obtained by completing the space :r in Example 1.2 
with respect to the norm defined by each of the inner products given there. 

5. (A variation on Example 1.8) Let n:?: 2 and let Yi'= the collection of all 
functions I: [0,1]-> f such that (a) 1(0) = 0; (b) for 1 ~ k ~ n - 1, l(k)(t) 
exists for all t in [0,1] and I(k) is continuous on [0,1]; (c) I(n -1) is absolutely 
continuous and I(n) E L2(0, 1). For I and g in Yi', define 

<f,g) = f f/(k)(t)g(k)(t)dt. 
k~l 0 

Show that Yi' is a Hilbert space. 

6. Let u be a semi-inner product on :r and put JV= {x E:r: u(x, x) = O}. 

(a) Show that JV is a linear subspace of :r. 
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(b) Show that if 

(x + A"',y + A"') == u(x,y) 

for all x + A'" and y + A'" in the quotient space .?r/A"', then ( . , .) is a 
well-defined inner product on .?r/ A"'. 

7. Let Yt' be a Hilbert space over IR and show that there is a Hilbert space :£ over 
C and a map U: Yt'~:£ such that (a) U is linear; (b) (Uhl' Uh 2) = (hi' h 2 ) 

for all hi' h2 in Yt'; (c) for any kin :£ there are unique hi' h2 in Yt' such that 
k = Uh l + iUh 2. (:£ is called the complexification of Yt'.) 

8. If G = {z E C: 0 < Izl < I} show that every J in L~(G) has a removable 
singularity at z = O. 

9. Which functions are in L;(C)? 

10. Let G be an open subset of C and show that if a E G, then {IE L~(G): 
J(a) = O} is closed in L~(G). 

11. If {h n } is a sequence in a Hilbert space Yt' such that Lnllhnll < 00, then show 
that L':~lhn converges in Yt'. 

§2. Orthogonality 

The greatest advantage of a Hilbert space is its underlying concept of 
orthogonality. 

2.1. Definition. If .Yt' is a Hilbert space and I, g E.Yt', then I and g are 
orthogonal if U, g) = O. In symbols, 1.1 g. If A, B ~.Yt', then A .1 B if 
1..1 g for every I in A and g in B. 

If .Yt'= IR 2, this is the correct concept. Two non-zero vectors in IR 2 are 
orthogonal precisely when the angle between them is 7T /2. 

2.2. The Pythagorean Theorem. II 11,/2"'" In are pairwise orthogonal 
vectors in .Yt', then 

Ilf1 + 12 + ... + Inl1 2 = 11/1112 + Ilf2112 + ... + Il/nl1 2. 

PROOF. If 11 .1 12' then 

Ilf1 + 12112 = U1 + 12'/1 + 12) = Ilfl112 + 2 ReU1'/2) + 11/2112 

by the polar identity. Since 11 .1 12' this implies the result for n = 2. The 
remainder of the proof proceeds by induction and is left to the reader. • 

Note that if I .1 g, then I .1 - g, so Ilf - gl12 = 11.1112 + Ilg112. The next 
result is an easy consequence of the Pythagorean Theorem if I and g are 
orthogonal, but this assumption is not needed for its conclusion. 
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2.3. Parallelogram Law. If.Yt' is a Hilbert space and f and g EO.Yt', then 

Ilf + gl12 + Ilf - gl12 = 2(llfl1 2 + IIgI12). 

PROOF. For any f and g in .Yt' the polar identity implies 

Now add. P: 

Ilf + gl12 = Ilfll2 + 2 Re(j, g) + Ilg11 2, 

Ilf - gl12 = Ilfll2 - 2 Re(j, g) + Ilgll 2. 

The next property of a Hilbert space is truly pivotal. But first we need a 
geometric concept valid for any vector space over IF. 

2.4. Definition. If !r is any vector space over IF and A s:;; !r, then A is a 
convex set if for any x and y in A and ° :$ t :$ 1, tx + (1 - t)y EO A. 

Note that {tx + (1 - t) y: ° :$ t :$ I} is the straight-line segment joining 
x and y. So a convex set is a set A such that if x and y EO A, the entire line 
segment joining x and y is contained in A. 

If !r is a vector space, then any linear subspace in !r is a convex set. A 
singleton set is convex. The intersection of any collection of convex sets is 
convex. If .Yt' is a Hilbert space, then every open ball B(f; r) = {g EO .Yt': 
Ilf - gil < r} is convex, as is every closed ball. 

2.5. Theorem. If .Yt' is a Hilbert space, K is a closed convex nonempty 
subset of .Yt', and h EO.Yt', then there is a unique point ko in K such that 

Ilh - koll = dist(h,K) == inf{lIh - kll: k EO K}. 

PROOF. By considering K - h == {k - h: k E K} instead of K, it suffices 
to assume that h = 0. (Verify!) So we want to show that there is a unique 
vector ko in K such that 

Ilkoll = dist(O, K) == inf{lIkll: k EO K}. 

Let d = dist(O, K). By definition, there is a sequence {k n} in K such that 
Ilknll ~ d. Now the Parallelogram Law implies that 

Since K is convex, ~(kn + k m) EO K. Hence, 1I~(kn + k m)112 ~ d 2 . If e > 0, 
choose N such that for n ~ N, IIknl1 2 < d 2 + te2. By the equation above, if 
n, m ~ N, then 

II k n ; kmll2 < H2d 2 + ~e2) - d 2 = te2 . 

Thus, Ilk n - kmll < e for n, m ~ Nand {k n } is a Cauchy sequence. Since 
.Yt' is complete and K is closed, there is a ko in K such that Ilk n - koll ~ 0. 
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Also for all k n , 

d.$;llkoll = Ilko - k n + knll 

.$; Ilko - knll + IIknll ~ d. 

Thus IIkoll = d. 
To prove that ko is unique, suppose ho E K such that Ilholl = d. By 

convexity, Hko + ho) E K. Hence, 

d.$; IIHho + ko)11 .$; Hllholl + Ilkoll) .$; d. 

So 111(ho + ko)11 = d. The Parallelogram Law implies 

hence ho = k o· • 

If the convex set in the preceding theorem is in fact a closed linear 
subspace of .Yf', more can be said. 

2.6. Theorem. If vIt is a closed linear subspace of .Yf', h E.Yf', and fa is the 
unique element of vIt such that Ilh - fall = dist(h, vIt), then h - fa J.. vIt. 
Conversely, if fa E vIt such that h - fa J.. vIt, then Ilh - fall = dist(h, vIt). 

PROOF. Suppose fa E vIt and Ilh - fall = dist(h, vIt). If f E vIt, then fa + f 
E vIt and so Ilh - fol12 .$; Ilh - (fa + 1)11 2 = II(h - fa) - 1112 = Ilh - fol12 
- 2 Re(h - fo'/) + Ilfl12. Thus 

2 Re(h - fo'/) .$; Ilfll2 

for any f in vIt. Fix f in vIt and substitute teiOf for f in the preceding 
inequality, where (h - fo'/) = reiO, r ~ O. This yields 2 Re{te-iOre iO } .$; 
t 21lfl1 2, or 2tr.$; t 211111. Letting t ~ 0, we see that r = 0; that is, h - fa J..j. 

For the converse, suppose fa E vIt such that h - fa J.. vIt. If f E vIt, then 
h - fa J.. fa - f so that 

Ilh - 1112 = II(h - fa) + (fa - f)1I 2 

= Ilh - fol12 + lifo - 1112 

~ Ilh - fo112. 

Thus Ilh - fall = dist(h, vIt). • 

If A ~.Yt', let A .L = {f E.Yf': f J.. g for all g in A}. It is easy to see that 
A.L is a closed linear subspace of .Yf'. 

Note that Theorem 2.6, together with the uniqueness statement in Theo­
rem 2.5, shows that if vIt is a closed linear subspace of .Yf' and h E .Yf', then 
there is a unique element fa in vIt such that h - fa E vIt .L • Thus a function 
P: .Yf'~ vIt can be defined by Ph = fa. 
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2.7. Theorem. If vIt is a closed linear subspace of Yl' and h E Yl', let Ph be 
the unique point in vIt such that h - Ph 1. vIt. Then 

(a) P is a linear transformation on Yl', 
(b) liPhll ::; Ilhll for every h in Yl', 
(c) pZ = P (here pZ means the composition of P with itself), 
(d) ker P = vIt 1- and ran P = vIt. 

PROOF. Keep in mind that for every h in Yl', h - Ph E vIt 1- and Ilh - Phil 
= dist(h, vIt). 

(a) Let h1' h z E Yl' and a1, a z E IF. If f E vIt, then ([a1h1 + azh z] -
[a1Ph 1 + azPh z], f) = a1(h 1 - Ph 1, f) + a 2(h z - Ph 2 , f) = O. By 
the uniqueness statement of (2.6), P(ah 1 + a 2h z) = a1Ph 1 + a zPh 2• 

(b) If h E Yl', then h = (h - Ph) + Ph, Ph E vIt, and h - Ph E vIt 1-. 

Thus Ilhllz = Ilh - Phll z + IIPhl1 2 :2: IIPhI1 2. 

(c) If f E vIt, then Pf = f. For any h in Yl', Ph E vIt; hence P2h == P(Ph) 
= Ph. That is, pZ = P. 

(d) If Ph = 0, then h = h - Ph E vIt 1- • Conversely, if h E vIt 1- , then 0 is 
the unique vector in vIt such that h - 0 = h 1. vIt. Therefore Ph = O. 
That ran P = vIt is clear. • 

2.8. Definition. If vIt is a closed linear subspace of Yl' and P is the linear 
map defined in the preceding theorem, then P is called the orthogonal 
projection of Yl' onto vIt. If we wish to show this dependence of P on vIt, we 
will denote the orthogonal projection of Yl' onto vIt by P.4(. 

It also seems appropriate to introduce the notation vIt::; Yl' to signify 
that vIt is a closed linear subspace of Yl'. We will use the term linear 
manifold to designate a linear subspace of Yl' that is not necessarily closed. 
A linear subspace of Yl' will always mean a closed linear subspace. 

2.9. Corollary. If vIt::; Yl', then (vIt 1-) 1- = vIt. 

PROOF. If I is used to designate the identity operator on Yl' (viz., Ih = h) 
and P = P.4(' then I - P is the orthogonal projection of Yl' onto vIt 1-

(Exercise 2). By part (d) of the preceding theorem, (vIt 1-) 1- = ker(I - P). 
But 0 = (I - P)h iff h = Ph. Thus (vIt 1-) 1- = ker(I - P) = ran P = vIt . 

• 
2.10. Corollary. If A ~ Yl', then (A 1-) 1- is the closed linear span of A in Yl'. 

The proof is left to the reader; see Exercise 4 for a discussion of the term 
"closed linear span." 

2.11. Corollary. If qy is a linear manifold in Yl', then qy is dense in Yl' iff 
qy 1- = (0). 

PROOF. Exercise. 
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EXERCISES 

1. Let.Yt' be a Hilbert space and suppose I, g E.Yt' with 11fI1 = Ilgll = 1. Show that 
Iltl+ (1 - t)gll < 1 forO < t < 1. What does this say about {h E.Yt': Ilhll s 1}? 

2. If vii s.Yt' and P = P J(, show that I - P is the orthogonal projection of .Yt' 
onto vII~ . 

3. If vii s .Yt', show that vii n vii ~ = (0) and every h in .Yt' can be written as 
h = 1 + g where 1 E vii and g E vii ~ . If vii + vii ~ == {(f, g): 1 Evil, g E vii ~ } 
and T: vii + vii ~ --+.Yt' is defined by T(f, g) = 1 + g, show that T is a linear 
bijection and a homeomorphism if vii + vii ~ is given the product topology. 
(This is usually phrased by stating that vii and vii ~ are topologically complemen­
tary in .Yt'.) 

4. If A ~.Yt', let VA == the intersection of all closed linear subspaces of .Yt' that 
contain A. VA is called the closed linear span of A. Prove the following: 

(a) V A s.Yt' and VA is the smallest closed linear subspace of .Yt' that con­
tains A. 

(b) VA = the closure of {L;;~ladk: n z 1, ak E 0=, Ik E A}. 

5. Prove Corollary 2.10. 

6. Prove Corollary 2.11. 

§3. The Riesz Representation Theorem 

The title of this section is somewhat ambiguous as there are at least two 
Riesz Representation Theorems. There is one so-called theorem that repre­
sents bounded linear functionals on the space of continuous functions on a 
compact Hausdorff space. That theorem will be discussed later in this book. 
The present section deals with the representation of certain linear function­
als on Hilbert space. But first we have a few preliminaries to dispose of. 

3.1. Proposition. Let Yf' be a Hilbert space and L: Yf'--> IF a linear 
functional. The following statements are equivalent. 

(a) L is continuous. 
(b) L is continuous at O. 
(c) L is continuous at some point. 
(d) There is a constant c > 0 such that IL(h)1 ~ cllhll for every h in Yf'. 

PROOF. It is clear that (a) ~ (b) ~ (c) and (d) ~ (b). Let's show that 
(c) ~ (a) and (b) ~ (d). 

(c) = (a): Suppose L is continuous at ho and h is any point in .Ye. If 
h n -> h in Yf', then h n - h + ho --> h o. By assumption, L(h o) = lim[L(h n 

- h + h o)] = lim[L(h n ) - L(h) + L(h o)] = lim L(h n ) - L(h) + L(h o). 
Hence L(h) = limL(h n ). 
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(b) = (d): The definition of continuity at 0 implies that L -I( {a ElF: 
lal < 1}) contains an open ball about O. So there is a 8 > 0 such that 
B(O; 8) ~ L -I( {a ElF: lal < 1}). That is, Ilhll < 8 implies IL(h)1 < 1. If h 
is an arbitrary element of X and f > 0, then 118(lIhll + f)-Ihll < 8. Hence 

1 >/L[lIhl~h+ f]/ = IIh1l8+ fIL(h)l; 

thus, 
1 

IL(h)1 < 8(/lhll + f). 

Letting f ~ 0 we see that (d) holds with c = 1/8. • 

3.2. Definition. A bounded linear functional L on X is a linear functional 
for which there is a constant c > 0 such that IL(h)1 s cllhll for all h in X. 
In light of the preceding proposition, a linear functional is bounded if and 
only if it is continuous. 

For a bounded linear functional L: X~ IF, define 

IILII = sup{IL(h)l: IIhll s 1}. 

Note that by definition, IILII < 00; IILII is called the norm of L. 

3.3. Proposition. If L is a linear functional, then 

IILII = sup{IL(h)l: IIhll = 1} 

= sup{IL(h)l/lIhll: h EX,h -4= O} 

= inf{c > 0: IL(h)1 s cllhll,h in X}. 

Also, IL(h)1 s IILllllhll for every h in X. 

PROOF. Let a = inf{ c > 0: IIL(h)1I s cllhll, h in X}. It will be shown that 
IILII = a; the remaining equalities are left as an exercise. If f > 0, then the 
definition of IILII shows that IL«lIhll + f)-lh)1 s IILII. Hence IL(h)1 s 
IILII(lIhll + f). Letting f ~ 0 shows that IL(h)1 s IILllllhll for all h. So the 
definition of a shows that a s IILII. On the other hand, if IL( h)1 s cllh II 
for all h, then IILII s c. Hence IILII s a. • 

Fix an ho in X and define L: X~ IF by L(h) = (h, ho>. It is easy to 
see that L is linear. Also, the CBS inequality gives that IL(h)1 = I(h, ho>1 
s IIhllllholi. So L is bounded and IILII s IIholl. In fact, L(ho/liholl) = 
(ho/liholl, ho> = IIholl, so that IILII = IIholi. The main result of this section 
provides a converse to these observations. 

3.4. The Riesz Representation Theorem. If L: X~ IF is a bounded linear 
functional, then there is a unique vector ho in X such that L(h) = (h, ho> 
for every h in X. Moreover, IILII = IIhali. 
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PROOF. Let ,A = ker L. Because L is continuous, ,A is a closed linear 
subspace of .:It'. Since we may assume that ,A * .:It', ,A 1. * (0). Hence there 
is a vector fo in ,A 1. such that L(fo) = 1. Now if h E.:It' and a = L( h), 
then L(h - afo) = L(h) - a = 0; so h - L(h)fo E,A. Thus 

0= (h - L{h)fo,Jo> 

= (h,Jo> - L{h)llfoIl 2. 

So if ho = Ilfoll-%, L(h) = (h, h o> for all h in .:It'. 
If h~ E.:It' such that (h, h o> = (h, h o> for all h, then ho - h~ ..l.:lt'. In 

particular, ho - h~ ..1 ho - h~ and so ho = h o. The fact that IILII = IIh oll 
was shown in the discussion preceding the theorem. • 

3.5. Corollary. If (X, D, p.) is a measure space and F: L2(p.) -> IF is a 
bounded linear functional, then there is a unique h 0 in L \ p.) such that 

for every h in L 2(p.). 

Of course the preceding corollary is a special case of the theorem on 
representing bounded linear functionals on LP(p.), 1 :::; p < 00. But it is 
interesting to note that it is a consequence of the result for Hilbert space 
[and the result that L2(p.) is a Hilbert space]. 

EXERCISES 

l. Prove Proposition 3.3. 

2. Let .Jf'= [2(1\1). If N z 1 and L: .Jf'-'> IF is defined by L({ an}) = aN' find the 
vector h 0 in .Jf' such that L ( h) = (h, h 0> for every h in .Jf'. 

3. Let.Jf'= [2(1\1 U {O}). (a) Show that if {a,,} E [2, then thepowerseriesL~~oa"z" 
has radius of convergence z l. (b) If IAI < 1 and L: .Jf'-'> C is defined by 
L({a"D = L~~oanAn, find the vector ho in .Jf' such that L(h) = (h,h o> for 
every h in .Jf'. (c) What is the norm of the linear functional L defined in (b)? 

4. With the notation as in Exercise 3, define L: .Jf'-'> C by L({ a,,}) = L~~lna"An-l, 
where IAI < l. Find a vector ho in .Jf' such that L(h) = (h,h o> for every h 
in .Jf'. 

5. Let .Jf' be the Hilbert space described in Example l.8. If 0 < t s 1, define L: 
.Jf'-'> IF by L(h) = h(t). Show that L is a bounded linear functional, find liLli, 
and find the vector ho in .Jf' such that L( h) = (h, ho > for all h in .Jf'. 

6. Let .Jf'= L2(0, 1) and let e(l) be the set of all continuous functions on [0,1] that 
have a continuous derivative. Let t E [0,1] and define L: e(l) -'> IF by L(h) = 

h'(t). Show that there is no bounded linear functional on .Jf' that agrees with L 
on eel). 
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§4. Orthonormal Sets of Vectors and Bases 

It will be shown in this section that, as in Euclidean space, each Hilbert 
space can be coordinatized. The vehicle for introducing the coordinates is 
an orthonormal basis. The corresponding vectors in IF d are the vectors 
{el,eZ, ... ,ed }, where ek is the d-tuple having a 1 in the kth place and 
zeros elsewhere. 

4.1. Definition. An orthonormal subset of a Hilbert space X is a subset Iff 
having the properties: (a) for e in Iff, Ilell = 1; (b) if e l , e2 E Iff and e 1 =1= e 2 , 

then e l ..1 e2 • 

A basis for X is a maximal orthonormal set. 

Every vector space has a Hamel basis (a maximal linearly independent 
set). The term "basis" for a Hilbert space is defined as above and it relates 
to the inner product on X. For an infinite-dimensional Hilbert space, a 
basis is never a Hamel basis. This is not obvious, but the reader will be able 
to see this after understanding several facts about bases. 

4.2. Proposition. If Iff is an orthonormal set in X, then there is a basis for X 
that contains Iff. 

The proof of this proposition is a straightforward application of Zorn's 
Lemma and is left to the reader. 

4.3. Example. Let X= L~ [0,2'17] and for n in 71.. define en in X by 
en(t) = (2'17)-I/Zexp(int). Then {en: n E 7I..} is an orthonormal set in X. 
(Here L~ [0, 2'17] is the space of complex-valued square integrable functions.) 

It is also true that the set in (4.3) is a basis, but this is best proved after a 
bit of theory. 

4.4. Example. If X= IFd and for 1 ~ k ~ d, ek = the d-tuple with 1 in the 
kth place and zeros elsewhere, then {e l , ... , ed } is a basis for X. 

4.5. Example. Let X= 12(1) as in Example 1.7. For each i in I define ei 

in X by ei(i) = 1 and ei(J) = ° for j =1= i. Then {ei: i E I} is a basis. 

The proof of the next result is left as an exercise (see Exercise 5). It is very 
useful but the proof is not difficult. 

4.6. The Gram-Schmidt Orthogonalization Process. If X is a Hilbert 
space and {h n : n E N} is a linearly independent subset of X, then there is 
an orthonormal set {en: n EN} such that for every n, the linear span of 
{e l ,··., en} equals the linear span of {hi"'" h n }· 
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Remember that VA is the closed linear span of A (Exercise 2.4). 

4.7. Proposition. Let {e1, ... ,en} be an orthonormal set in £ and let 
A = V { e l' ... , en}. If P is the orthogonal projection of £ onto A, then 

for all h in £. 

n 

Ph = ~ (h,ek)ek 
k~l 

PROOF. Let Qh = r,Z=l(h, ek)ek. If 1:s; j :s; n, then (Qh, ej ) = 

r,Z=/h,ek)(ek,e) = (h,e) since ek.L ej for k =F j. Thus (h - Qh,e) 
= 0 for 1 :s; j :s; n. That is, h - Qh .L A for every h in £. Since Qh is 
clearly a vector in A, Qh is the unique vector h 0 in A such that 
h - ho .LA (2.6). Hence Qh = Ph for every h in £. • 

4.8. Bessel's Inequality. If { en: n EN} is an orthonormal set and h E £, 
then 

00 

~ I(h, en)12 :s; IIhll 2. 
n=l 

PROOF. Let h n = h - r,Z=l(h,ek)ek. Then hn.L ek for 1 :s; k:s; n (Why?). 
By the Pythagorean Theorem, 

IIhll 2 = IIh n ll 2 + t~l (h, en)ekr 

n 

n 

;:::: ~ I(h, ek )1 2 • 

k=l 

Since n was arbitrary, the result is proved. • 

4.9. Corollary. If C is an orthonormal set in £ and hE £, then (h, e) =F 0 
for at most a countable number of vectors e in C. 

PROOF. For each n;:::: 1 let Cn = {e E C: I(h, e)1 ;:::: lin}. By Bessel's 
Inequality, Cn is finite. But U::'=lCn = {e E C: (h,e n ) =F O}. • 

4.10. Corollary. If C is an orthonormal set and h E £, then 

~ l(h,e)1 2 :s; IIhll 2. 
ef",f 

This last corollary is just Bessel's Inequality together with the fact (4.9) 
that at most a countable number of the terms in the sum differ from zero. 

Actually, the sum that appears in (4.10) can be given a better interpreta­
tion-a mathematically precise one that will be useful later. The question is, 
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what is meant by I:{ hi: i E I} if hi E.Yf' and I is an infinite, possibly 
uncountable, set? Let :7 be the collection of all finite subsets of I and order 
:7 by inclusion, so :7 becomes a directed set. For each F in :7, define 

hF= L{h i: i E F}. 

Since this is a finite sum, h F is a well-defined element of .Yf'. Now {h F: 

FE:7} is a net in .Yf'. 

4.11. Definition. With the notation above, the sum I:{ hi: i E I} converges 
if the net {h F: F E :7} converges; the value of the sum is the limit of the 
net. 

If .Yf'= IF, the definition above gives meaning to an uncountable sum of 
scalars. Now Corollary 4.10 can be given its precise meaning; namely, 
I:{I(h,e)1 2: e E 6"} converges and the value::; IIhl1 2 (Exercise 9). 

If the set I in Definition 4.11 is countable, then this definition of 
convergent sum is not the usual one. That is, if {h n} is a sequence in .Yf', 
then the convergence of I:{ h n: n EN} is not equivalent to the convergence 
of I:r:~l h n • The former concept of convergence is that defined in (4.11) while 
the latter means that the sequence {I:k~lhdr:~l converges. Even if .Yf'= IF, 
these concepts do not coincide (see Exercise 12). If, however, I:{ h n: n EN} 
converges, then I:r:~lhn converges (Exercise 10). Also see Exercise 11. 

4.12. Lemma. If C is an orthonormal set and h E.Yf', then 

L{(h,e)e: eEC} 

converges in .Yf'. 

PROOF. By (4.9), there are vectors e1, e2, ... in C such that {e E C: 
(h,e) *" O} = {e 1,e2, ... }. WealsoknowthatI:r:~11(h,en)12::; IIhl1 2 < 00. 

So if ,,> 0, there is an N such that I:r:~NI(h,en)12 < ,,2. Let Fa = 
{e1 , ... , eN-d and let :7= all the finite subsets of C. For F in :7 define 
h F == L{ (h, e)e: e E F}. If F and G E:7 and both contain Fa, then 

IIh F - hGII2 = L{I(h,e)1 2: e E (F\G) U(G\F)} 
00 

< e2 . 

So {h F: F E :7} is a Cauchy net in .Yf'. Because .Yf' is complete, this net 
converges. In fact, it converges to I:r:~l(h, en)en • • 

4.13. Theorem. If C is an orthonormal set in .Yf', then the following 
statements are equivalent. 

(a) C is a basis for .Yf'. 
(b) If h E.Yf' and h .1 C, then h = 0. 
(c) V C = .Yf'. 
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(d) If h E.Yl', then h = L{ (h, e)e: e E O"}. 
(e) If g and h E.Yl', then 

(g,h) = L{(g,e)(e,h): eEO"}. 

17 

(f) If h E.Yl', then IIhl1 2 = L{I(h, e)12: e E O"} (Parseval's Identity). 

PROOF. (a) =* (b): Suppose h .1. 0" and h =f- 0; then O"U{ h/llhll} IS an 
orthonormal set that properly contains 0", contradicting maximality. 

(b) = (c): By Corollary 2.11, VO"=.Yl' if and only if 0".1 = (0). 
(b) =* (d): If h E.Yl', then f= h - L{(h,e)e: e E O"} is a well-defined 

vector by Lemma 4.12. If e1 E 0", then (I, e1 ) = (h, e1 ) - E{ (h, e)( e, e1): 

e EO"} = (h, e 1) - (h, e1) = O. That is, f EO".1 . Hence f = O. (Is every­
thing legitimate in that string of equalities? We don't want any illegitimate 
equalities.) 

(d) =* (e): This is left as an exercise for the reader. 
(e) =* (f): Since IIhl1 2 = (h, h), this is immediate. 
(f) =* (a): If 0" is not a basis, then there is a unit vector eo (Ileoll = 1) in 

.Yl' such that eo.l.. 0". Hence, 0 = E{I(eo,e)1 2: e E O"}, contradicting (f) . 

• 
Just as in finite-dimensional spaces, a basis in Hilbert space can be used 

to define a concept of dimension. For this purpose the next result is pivotal. 

4.14. Proposition. If .Yf' is a Hilbert space, any two bases have the same 
cardinality. 

PROOF. Let 0" and .f7 be two bases for .Yf' and put e = the cardinality of 0", 
TJ = the cardinality of .f7. If e or TJ is finite, then e = TJ (Exercise 15). 
Suppose both e and TJ are infinite. For e in 0", let ~ = {f E.f7: (e, f) =f­

O}; so ~ is countable. By (4.13b), each f in .f7 belongs to at least one set 
~, e in 0". That is, .f7= U{~: e E O"}. Hence TJ ~ e . ~o = e. Similarly, 
e ~ TJ. • 

4.15. Definition. The dimension of a Hilbert space is the cardinality of a 
basis and is denoted by dim.Yf'. 

If (X, d) is a metric space that is separable and {B; = B(x i ; e;): i E I} is 
a collection of pairwise disjoint open balls in X, then I must be countable. 
Indeed, if D is a countable dense subset of X, Bi () D =f- 0 for each i in I. 
Thus there is a point Xi in Bi () D. So {Xi: i E I} is a subset of D having 
the cardinality of I; thus I must be countable. 

4.16. Proposition. If.Yf' is an infinite-dimensional Hilbert space, then .Yl' is 
separable if and only if dim.Yf'= ~ o' 
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PROOF. Let g be a basis for .Yf'. If el , e2 E g, then lie l - e211 2 = IIedl2 + 
IIe211 2 = 2. Hence {B(e; 1/v1): e E g} is a collection of pairwise disjoint 
open balls in .Yf'. From the discussion preceding this proposition, the 
assumption that .Yf' is separable implies g is countable. The converse is an 
exercise. • 

EXERCISES 

1. Verify the statements in Example 4.3. 

2. Verify the statements in Example 4.4. 

3. Verify the statements in Example 4.5. 

4. Find an infinite orthonormal set in the Hilbert space of Example 1.8. 

5. Using the notation of the Gram-Schmidt Orthogonalization Process, show that 
up to scalar multiple el = hl/llhdl and for n ~ 2, en = Ilh n - Inll-l(h n - /,,), 
where In is the vector defined formally by 

-1 l (hl~hl) 
In = det· 

det[ (hi' h)rj~l (hI' h n - l ) 

hI 

In the next three exercises, the reader is asked to apply the Gram-Schmidt 
Orthogonalization Process to a given sequence in a Hilbert space. A reference for 
this material is pp. 82-96 of Courant and Hilbert [1953]. 

6. If the sequence 1, x, X 2, . .. is orthogonalized in L 2 ( - 1, 1), the sequence 
en(x) = [t(2n + 1)]1/2Pn(x) is obtained, where 

P (x) = _l_(~)n (x 2 - 1)" 
n 2nn! dx . 

The functions Pn (x) are called Legendre polynomials. 

7. If the sequence e- x ' /2, xe- x2 /2, x 2e- x2 /2, ... is orthogonalized in 
L2( - 00, (0), the sequence en (x) = [2n n!y'; ]-1/2 H" (x )e- X2 /2 is obtained, 
where 

Hn(x) = (-1)" ex2( ~) n e-x2. 

The functions Hn are Hermite polynomials and satisfy H;(x) = 2nH,,_ 1 (x). 

8. If the sequence e- x / 2, xe- x / 2, x 2e- x/ 2, ... is orthogonalized in L2(O, (0), the 
sequence en(x) = e- x / 2 Ln(x)/n! is obtained, where 

Ln(x) = e x ( ~r (xne<). 

The functions Ln are called Laguerre polynomials. 

9. Prove Corollary 4.10 using Definition 4.1l. 

10. If {h n} is a sequence in Hilbert space and L { h n: n EN} converges to h 
(Definition 4.11), then limnLZ~lhk = h. Show that the converse is false. 
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11. If {h n} is a sequence in a Hilbert space and L~~Jilhnll < 00, show that L{ hn: 
n EN} converges in the sense of Definition 4.11. 

12. Let {an} be a sequence in f and prove that the following statements are 
equivalent: (a) L{ an: n E N} converges in the sense of Definition 4.11. (b) If 'IT 

is any permutation of N, then L~~la,,(n) converges (unconditional convergence). 
(c) L~~llanl < 00. 

13. Let tff be an orthonormal subset of JIt' and let vIt = Vtff. If P is the orthogonal 
projection of JIt' onto vIt, show that Ph=L{(h,e)e: eEtff} for every h 
in JIt'. 

14. Let "A = Area measure on 0} and show that 1, z, Z 2, . .. are orthogonal vectors 
in L2("A). Find Ilznll, n ~ O. If en = Ilznll-1z n, n ~ 0, is {eO,e1, ... } a basis 
for L2("A)? 

15. In the proof of (4.14), show that if either f or 1/ is finite, then f = 1/. 

16. If £ is an infinite-dimensional Hilbert space, show that no orthonormal basis 
for JIt' is a Hamel basis. Show that a Hamel basis is uncountable. 

17. Let d ~ 1 and let JL be a regular Borel measure on !Rd. Show that L 2 (JL) is 
separable. 

18. Suppose L 2 (X, a, JL) is separable and {Ej: i E I} is a collection of pairwise 
disjoint subsets of X, Ej E a, and 0 < JL(E;) < 00 for all i. Show that I is 
countable. Can you allow JL(E;) = oo? 

19. If {h E £: Ilhll ~ I} is compact, show that dimJlt'< 00. 

20. What is the cardinality of a Hamel basis for P? 

§s. Isomorphic Hilbert Spaces and the Fourier 
Transform for the Circle 

Every mathematical theory has its concept of isomorphism. In topology 
there is homeomorphism and homotopy equivalence; algebra calls them 
isomorphisms. The basic idea is to define a map which preserves the basic 
structure of the spaces in the category. 

5.1. Definition. If Yf' and :£ are Hilbert spaces, an isomorphism between 
Yf' and :£ is a linear surjection U: Yf'-'>:£ such that 

(Uh, Ug) = (h, g) 

for all h, g in Yf'. In this case Yf' and :£ are said to be isomorphic. 

It is easy to see that if U: Yf' -'>:£ is an isomorphism, then so is U- 1: 
:£ -'> Yf'. Similar such arguments show that the concept of "isomorphic" is 
an equivalence relation on Hilbert spaces. It is also certain that this is the 
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correct equivalence relation since an inner product is the essential ingredient 
for a Hilbert space and isomorphic Hilbert spaces have the "same" inner 
product. One might object that completeness is another essential ingredient 
in the definition of a Hilbert space. So it is! However, this too is preserved 
by an isomorphism. An isometry between metric spaces is a map that 
preserves distance. 

5.2. Proposition. If V: £~ X is a linear map between Hilbert spaces, then 
V is an isometry if and only if (Vh, Vg) = (h, g) for all h, g in £. 

PROOF. Assume (Vh, Vg) = (h, g) for all h, g in £. Then II Vhl1 2 = 
(Vh, Vh) = (h, h) = IIhl1 2 and V is an isometry. 

Now assume that V is an isometry. If h, g E £ and ;\. E IF, then 
Ilh + ;\.g112 = II Vh + ;\.VgI1 2. Using the polar identity on both sides of this 
equation gives 

IIhl1 2 + 2ReX(h,g) + 1;\.1 211g11 2 = IIVhl1 2 + 2ReX(Vh,Vg) + 1;\.1 21IVgI1 2. 

But II Vhll = Ilhll and II Vgll = Ilgll, so this equation becomes 

ReX(h, g) = ReX(Vh, Vg) 

for any ;\. in IF. If IF = IR, take ;\. = 1. If IF = C, first take ;\. = 1 and then 
take ;\. = i to find that (h, g) and (Vh, Vg) have the same real and 
imaginary parts. • 

Note that an isometry between metric spaces maps Cauchy sequences into 
Cauchy sequences. Thus an isomorphism also preserves completeness. That 
is, if an inner product space is isomorphic to a Hilbert space, then it must be 
complete. 

5.3. Example. Define S: 12 ~ 12 by S( 0'1,0'2' ... ) = (0,0'1,0'2' ... ). Then 
S is an isometry that is not surjective. 

The preceding example shows that isometries need not be isomorphisms. 
A word about terminology. Many call what we call an isomorphism a 

unitary operator. We shall define a unitary operator as a linear transforma­
tion U: Yl'~ Yl' that is a surjective isometry. That is, a unitary operator is 
an isomorphism whose range coincides with its domain. This may seem to 
be a minor distinction, and in many ways it is. But experience has taught me 
that there is some benefit in making such a distinction, or at least in being 
aware of it. 

5.4. Theorem. Two Hilbert spaces are isomorphic if and only if they have the 
same dimension. 

PROOF. If U: Yl'~ X is an isomorphism and I! is a basis for £, then it is 
easy to see that UI! == {Ue: eEl!} is a basis for X. Hence, dim £= dim X. 
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Let Yt' be a Hilbert space and let g be a basis for Yt'. Consider the 
Hilbert space l2(g). If h EYt', define h: g~ IF by h(e) = (h,e). By 
Parseval's Identity h E 12( g) and Ilhll = IIhll. Define U: Yt'~ 12( g) by 
Uh = h. Thus U is linear and an isometry. It is easy to see that ranU 
contains all the functions f in l2( g) such that f( e) = ° for all but a finite 
number of e; that is, ranU is dense. But U, being an isometry, must have 
closed range. Hence U: Yt'~ 12( g) is an isomorphism. 

If f is a Hilbert space with a basis %, f is isomorphic to 12(%). If 
dim Yt'= dim f, g and % have the same cardinality; it is easy to see that 
12( g) and 12( %) must be isomorphic. Therefore Yt' and f are isomorphic . 

• 
5.5. Corollary. All separable infinite dimensional Hilbert spaces are isomor­
phic. 

This section concludes with a rather important example of an isomor­
phism, the Fourier transform on the circle. 

The proof of the next result can be found as an Exercise on p. 263 of 
Conway [1978]. Another proof will be given later in this book after the 
Stone-Weierstrass Theorem is proved. So the reader can choose to assume 
this for the moment. Let U} = {z E C: Izi < I}. 

5.6. Theorem. If f: aU} ~ C is a continuous function, then there is a 
sequence {Pn(z, i)} of polynomials in z and z such that Pn(z, z) ~ fez) 
uniformly on aU}. 

Note that if z E aU}, z = z-l. Thus a polynomial in z and z on aU} 

becomes a function of the form 

If we put z = e iO, this becomes a function of the form 

Such functions are called trigonometric polynomials. 
We can now show that the orthonormal set in Example 4.3 is a basis for 

L~[O, 27T]. This is a rather important result. 

5.7. Theorem. If for each n in 71.., en(t) == (27T)-1/2exp(int), then {en: 
nElL} is a basis for L~[O, 27T]. 

PROOF. Let .07= O:::Z~-n<Xkek: <Xk E C, n ~ O}. Then .07 is a subalgebra of 
CdO, 27T], the algebra of all continuous C-valued functions on [0, 27T]. Note 
that if f E .07, f(O) = f(27T). We want to show that the uniform closure of .07 



22 I. Hilbert Spaces 

is '??= {IE Cdo, 277"): f(O) = f(277")}. To do this, let fE Cf/ and define F: 
o[)) ~ C by F(e it ) = f(t). F is continuous. (Why?) By (5.6) there is a 
sequence of polynomials in z and z, {Pn(z, Z)}, such that Pn(z, z) ~ F(z) 
uniformly on O[)). Thus Pn(eil,e- it ) --> f(t) uniformly on [0,2'1T]. But 
Pn( e it, e- it ) E:Y. 

Now the closure of Cf/ in L~ [0,277") is all of L~ [0,277") (Exercise 6). Hence 
V{e n: n E Z} = L~[0,277") and {en} is thus a basis (4.13). • 

Actually, it is usually preferred to normalize the measure on [0,277"). That 
is, replace dt by (277") -1 dt, so that the total measure of [0,277") is 1. Now 
define en(t) = exp(int). Hence {en: n E Z} is a basis for .Yl'= 
L~([0,277"),(277")-ldt). If fE.Yl', then 

5.S 

is called the nth Fourier coefficient of f, n in Z. By (5.7) and (4.13d), 

00 

5.9 
n= - 00 

where this infinite series converges to f in the metric defined by the norm of 
.Yl'. This is called the Fourier series of f. This terminology is classical and 
has been adopted for a general Hilbert space. 

If .Yl' is any Hilbert space and iff is a basis, the scalars {< h, e); e E iff} 
are called the Fourier coefficients of h (relative to iff) and the series in 
(4.13d) is called the Fourier expansion of h (relative to iff). 

Note that Parseval's Identity applied to (5.9) gives that L:;'~ _ool/(n)1 2 < 
00. This proves a classical result. 

5.10. The Riemann-Lebesgue Lemma. If f E L 2[0, 277"), then 
f{TTf(t)eintdt --> 0 as n --> ± 00. 

If f E L~[O, 277"), then the Fourier series of f converges to f in L 2-norm. 
It was conjectured by Lusin that the series converges to f almost every­
where. This was proved in Carleson [1966). Hunt [1967) showed that if 
f E Lt[O, 277"), 1 < P ::; 00, then the Fourier series also converges to f a.e. 
Long before that, Kolmogoroff had furnished an example of a function f in 
L~[O, 277") whose Fourier series does not converge to f a.e. 

For f in L~[O, 277"), the function l: Z ~ C is called the Fourier transform 
of f; the map U: L~[O, 277" 1 ~ 12(Z) defined by Uf = j is the Fourier 
transform. The results obtained so far can be applied to this situation to 
yield the following. 

5.11. Theorem. The Fourier transform is a linear isometry from L~[0,277") 
onto 12(Z). 
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PROOF. Let U: L~[O, 217 1 ~ [2(lL) be the Fourier transform. That U maps 
L 2 == L~ [0,217 1 into [2(lL) and satisfies II Uill = IIflI is a consequence of 
Parseval's Identity. That U is linear is an exercise. If {an} E [2(lL) and 
an = 0 for all but a finite number of n, then f= L~~~ooanen E L2. It is 
easy to check that /( n) = an for all n, so Uf = {an}. Thus ran U is dense in 
[2. But U is an isometry, so ranU is closed; hence U is surjective. • 

Note that functions in L~[O, 217 1 can be defined on aU) by letting 
f(e iO ) = f(O). The ambiguity for 0 = ° and 217 (or eiO = 1) might cause us 
to pause, but remember that elements of L~ [0,217 1 are equivalence classes 
of functions-not really functions. Since {a, 217} has zero measure, there is 
really no ambiguity. In this way L~[O, 217 1 can be identified with L~( aU), 
where the measure on aU) is normalized arc-length measure (normalized so 
that the total measure of aU) is 1). So L~[O,2171 and L~(aU) are (naturally) 
isomorphic). Thus, Theorem 5.11 is a theorem about the Fourier transform 
of the circle. 

The importance of Theorem 5.11 is not the fact that L 2[0,217 1 and [2(lL) 
are isomorphic, but that the Fourier transform is an isomorphism. The fact 
that these two spaces are isomorphic follows from the abstract result that all 
separable infinite dimensional Hilbert spaces are isomorphic (5.5). 

EXERCISES 

1. Verify the statements in Example 5.3. 

2. Define V: L2(0, 00) -4 L2(0, 00) by (Vf)(t) = f(t + 1). Show that V is an 
isometry that is not surjective. 

3. Define V: L2(1R) -4 L2(1R) by (Vf)(t) = f(t + 1) and show that V is an isomor­
phism (a unitary operator). 

4. Let J{' be the Hilbert space of Example 1.8 and define V: J{' -4 L 2 (0,1) by 
Vf = /'. Show that V is an isomorphism and find a formula for V-I. 

5. Let (X, a, jL) be a a-finite measure space and let u: X -4 f be an a-measurable 
function such that sup{lu(x)l: x E X} < 00. Show that V: L2(X,Q,jL)-4 
L2(X, Q, jL) defined by Vf = uf is an isometry if and only if lu(x)1 = 1 a.e. [/L], 
in which case V is surjective. 

6. Let '6'= {f E C[0,2w]: f(O) = f(2w)} and show that '6' is dense in L 2 [O,2w]. 

7. Show that {(l/&),(l/y';)cosnt,(l/y';)sinnt: 1:s: n < oo} is a basis for 
L2[ -w, w]. 

8. Let (X, Q) be a measurable space and let /L, /I be two measures defined on 
(X, Q). Suppose /I «/L and cJ> is the Radon~Nikodym derivative of /I with 
respect to /L (cJ> = d/l/d/L). Define V: L2(/I) -4 L 2(/L) by Vf= fifo Show that V 
is a well-defined linear isometry and V is an isomorphism if and only if /L « /I 
(that is, jL and /I are mutually absolutely continuous). 
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§6. The Direct Sum of Hilbert Spaces 

Suppose YE and f are Hilbert spaces. We want to define YEEB f so that it 
becomes a Hilbert space. This is not a difficult assignment. For any vector 
spaces f![ and qIJ, f![ EB qIJ is defined as the Cartesian product f![ X qIJ where 
the operations are defined on f![ X qIJ coordinatewise. That is, if elements of 
f![ffi qIJ are defined as {x EB y: x E f![, Y E qIJ}, then (Xl EB Yl) + (X2 EB Y2) 
== (Xl + X2) EB (Yl + Y2)' and so on. 

6.1. Definition. If YE and f are Hilbert spaces, YEEB f = {h EB k: h EYE, 
kEf} and 

It must be shown that this defines an inner product on YEEB f and that 
YEEB f is complete (Exercise). 

Now what happens if we want to define YEl EB YE2 EB ... for a sequence 
of Hilbert spaces YEl , YE2 , ••• ? There is a problem about the completeness 
of this infinite direct sum, but this can be overcome as follows. 

6.2. Proposition. If YEl , £2' ... are Hilbert spaces, let £= {(hn)~~l: 
h n E.YE" for all n and I:~~11IhnI12 < oo}. For h = (h n) and g = (gn) in £, 
define 

00 

6.3 (h, g) = L (hn' gn)· 
n~l 

Then ( . , .) is an inner product on £ and the norm relative to this inner 
product is Ilhll = [I:~~1IlhnI1211/2. With this inner product £ is a Hilbert 
space. 

PROOF. If h = (h n ) and g = (gn) E £, then the CBS inequality implies 
I:1(h n, gn)1 ::; I:llhnllllgnll ::; (I:llhnI1 2)1/2(I:llgnI1 2)1/2 < 00. Hence the series 
in (6.3) converges absolutely. The remainder of the proof is left to the 
reader. • 

6.4. Definition. If £1' £2' ... are Hilbert spaces, the space £ of Proposi­
tion 6.2 is called the direct sum of £1' £2' ... and is denoted by £== £1 
ffi YE2 EB .... 

This is part of a more general process. If {£;: i E I} is a collection of 
Hilbert spaces, £== EB {£;: i E I} is defined as the collection of functions 
h: I ~ U{~: i E I} such that h(i) E £; for all i and I:{llh(i)112: 
i E I} < 00. If h, g E £, (h, g) == I:{ (h(i), g(i): i E I}; £ is a Hilbert 
space. 
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The main reason for considering direct sums is that they provide a way of 
manufacturing operators on Hilbert space. In fact, Hilbert space is a rather 
dull subject, except for the fact that there are numerous interesting ques­
tions about the linear operators on them that are as yet unresolved. This 
subject is introduced in the next chapter. 

EXERCISES 

1. Let {( x" ai'''''i): i E I} be a collection of measure spaces and define X, a, and 
,." as follows. Let X = the disjoint union of {X,: i E I} and let a = {Ll ~ X: 
Ll n X, E ai for all i}. For Ll in a put ,.,,(Ll) = L;""i(Ll n X,). Show that 
(X, fJ,,.,,) is a measure space and L 2( X, a,,.,,) is isomorphic to EB {L2( x" ai'''''i): 
i E I}. 

2. Let ( X, a) be a measurable space, let ""1,""2 be measures defined on (X, a), and 
put ,." = ""1 + ""2' Show that the map V: L2(X, a,,.,,) -> L2(X, a, ""1) EB 
L 2 ( X, a, lL2) defined by VI = 11 EB 12' where fj is the equivalence class of 
L 2 (X, a,,.,,) corresponding to I, is well defined, linear, and injective. Show that 
U is an isomorphism iff ""1 and ""2 are mutually singular. 



CHAPTER II 

Operators on Hilbert Space 

A large area of current research interest is centered around the theory of 
operators on Hilbert space. Several other chapters in this book will be 
devoted to this topic. 

There is a marked contrast here between Hilbert spaces and the Banach 
spaces that are studied in the next chapter. Essentially all of the information 
about the geometry of Hilbert space is contained in the preceding chapter. 
The geometry of Banach space lies in darkness and has attracted the 
attention of many talented research mathematicians. However, the theory of 
linear operators (linear transformations) on a Banach space has very few 
general results, whereas Hilbert space operators have an elegant and well­
developed general theory. Indeed, the reason for this dichotomy is related to 
the opposite status of the geometric considerations. Questions concerning 
operators on Hilbert space don't necessitate or imply any geometric difficul­
ties. 

In addition to the fundamentals of operators, this chapter will also 
present an interesting application to differential equations in Section 6. 

§1. Elementary Properties and Examples 

The proof of the next proposition is similar to that of Proposition 1.3.1 and 
is left to the reader. 

1.1. Proposition. Let yt> and f be Hilbert spaces and A: yt> ~ f a linear 
transformation. The following statements are equivalent. 

(a) A is continuous. 
(b) A is continuous at O. 
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(c) A is continuous at some point. 
(d) There is a constant c > 0 such that IIAhl1 ~ cllhll for all h in .Yf'. 

As in (1.3.3), if 

IIA II = sup{IIAhll: h E .Yf', Ilhll ~ I}, 

then 

IIAII = sup{IIAhll: IIhll = I} 

= sup{IIAhll/llhll: h "* O} 

= inf{ c > 0: IIAhl1 ~ cllhll, h in .Yf'}. 

Also, IIAhl1 ~ IIAllllhll. IIAII is called the norm of A and a linear transfor­
mation with finite norm is called bounded. Let !Jj(.Yf', g) be the set of 
bounded linear transformations from .Yf' into g. For.Yf'= g, !Jj(.Yf',.Yf') 
== !Jj(.Yf'). Note that !Jj(.Yf', 0=) = all the bounded linear functionals on .Yf'. 

1.2. Proposition. (a) If A and BE !Jj(.Yf', g), then A + B E !Jj(.Yf', g), 

and IIA + BII ~ IIAII + IIBII· 
(b) If a E 0= and A E !Jj(.Yf', g), then aA E !Jj(.Yf', g) and IlaA11 = 

lalllAII· 
(c) If A E !Jj(.Yf', g) and BE !Jj(g, !l'), then BA E !Jj(.Yf',!l') and IIBAII 

~ IIBIIIIAII· 

PROOF. Only (c) will be proved; the rest of the proof is left to the reader. If 
kEf, then IIBkl1 ~ IIBllllkll. Hence, if h E.Yf', k = Ah E f and so 
IIBAhl1 ~ IIBllllAhl1 ~ IIBIIIIAllllhll· • 

By virtue of the preceding proposition, dCA, B) = IIA - BII defines a 
metric on !Jj(.Yf', g). So it makes sense to consider !Jj(.Yf', g) as a metric 
space. This will not be examined closely until later in the book, but later in 
this chapter the idea of the convergence of a sequence of operators will be 
used. 

1.3. Example.Ifdim.Yf'=n< ooanddimg=m< oo,let{el, ... ,en}be 
an orthonormal basis for .Yf' and let {fl, ... , fm } be an orthonormal basis 
for f. It can be shown that every linear transformation from .Yf' into g is 
bounded (Exercise 3). If 1 ~j ~ n, 1 ~ i ~ m, let aij = (Ae i , f i ). Then the 
m X n matrix (a i) represents A and every such matrix represents an 
element of !Jj(.Yf', g). 

1.4. Example. Let [2 == [2(1\1) and let e l , e2 , ... be its usual basis. If 
A E !Jj(l2), form aij = (Aej , e i ). The infinite matrix (a i ) represents A as 
finite matrices represent operators on finite dimensional spaces. However, 
this representation has limited value unless the matrix has a special form. 
One difficulty is that it is unknown how to find the norm of A in terms of 
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the entries in the matrix. In fact, if 2 < n < 00, there is no known formula 
for the norm of a matrix in terms of its entries. A sufficient condition that is 
useful is known, however (see Exercise 11). 

1.5. Theorem. Let (X, D, JL) be a a-finite measure space and put :if'= 

L 2( X, D, JL) == L 2(JL). If <P E L OO(JL), define M",: L 2(JL) ~ L 2{J..t) by M",f = 
<Pf. Then M", E ~(L2(JL» and IIM",II = 11<p1100' 

PROOF. Here 11<p1I 00 is the JL-essential supremum norm. That is, 

11<p1100 == inf{sup{I<p(x)l: x$. N}: NED, JL(N) = O} 

= inf{c > 0: JL({x E X: 1<p(x)1 > c}) = o}. 

Thus 11<p1100 is the infimum of all c> 0 such that 1<p(x)1 s c a.e. [JLl and, 
moreover, 1<p(x)1 s 1I<p1100 a.e. [JL1. Thus we can, and do, assume that <p is a 
bounded measurable function and 1<p(x)1 s 1I<p1l00 for all x. So if f E L 2(JL), 
then fl<pfI2dp. s 1I<pllooflfI2dp.. That is, M", E ~(L2(p.» and IIM",II ::; 
11<p1I 00' If E > 0, the a-finiteness of the measure space implies that there is a 
set .::1 in D, 0 < p.(.::1) < 00, such that 1<p(x)1 ~ 11<p1100 - E on .::1. (Why?) If 
f= (JL(.::1»-1/2 XLl , then fE L2(p.) and IIfll2 = 1. SO IIM",11 2 ~ II<pfll~ = 

(JL(.::1»-lfLlI<p1 2 dp. ~ (1I<p1100 - E)2. Letting E ~ 0, we get that IIM",II ~ 11<p1100' 

• 
The operator M", is called a multiplication operator. The function <p is its 

symbol. 
If the measure space (X, D, JL) is not a-finite, then the conclusion of 

Theorem 1.5 is not necessarily valid. Indeed, let D = the Borel subsets of 
[0,11 and define JL on D by JL(.::1) = the Lebesgue measure of .::1 if 0 $. .::1 and 
JL(.::1) = 00 if 0 E .::1. This measure has an infinite atom at 0 and, therefore, is 
not a-finite. Let <p = X{O}, Then <p E LOO(p.) and 11<p1100 = 1. If f E L2(p.), 
then 00 > flif dp. ~ If(0)1 2JL({0}). Hence every function in L2(p.) vanishes 
at O. Therefore M", = 0 and IIM",II < 11<p1100' 

There are more general measure spaces for which (1.5) is valid-the 
decomposable measure spaces (see Kelley [1966]). 

1.6. Theorem. Let (X, D, JL) be a measure space and suppose k: X X X ~ IF 
is an D X D-measurable function for which there are constants eland c 2 such 
that 

f Ik(x, Y)I dJL(Y) ::; c1 
X 

f Ik(x, Y)I dJL(x) ::; c2 
X 

a.e. [p.], 

a.e. [JL]. 
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(Kf){x) = j k{x, y )f{y) dJL{y), 

then K is a bounded linear operator and IIKII ::5: (ClC2)1/2. 

PROOF. Actually it must be shown that Kf E L 2(JL), but this will follow 
from the argument that demonstrates the boundedness of K. If f E L 2(JL), 

IKf{x)1 ::5: jlk{x, y )llf{y)1 dJL{Y) 

Hence 

= jlk{x, y )I I / 2Ik{x, y )ll/2lf(Y)1 dJL(Y) 

::5: [jlk{X, Y)I dJL{Y) r/2[ jlk{ x, Y )Ilf{y )1 2 dJL{Y) r/2 

flKf(x )1 2 dJL{x) ::5: Clj jlk{x, Y )llf{Y )1 2 dJL{Y) dJL{X) 

= Clj If(y )1 2 jlk(x, Y)I dJL{x) dJL{Y) 

::5: clc211J11 2. 
Now this shows that the formula used to define Kf IS finite a.e. [p,], 
Kf E L2(p,), and IIKJ112 ::5: CIc2111l1 2. • 

The operator described above is called an integral operator and the 
function k is called its kernel. There are conditions on the kernel other than 
the one in (1.6) that will imply that K is bounded. 

A particular example of an integral operator is the Volterra operator 
defined below. 

1.7. Example. Let k: [0,1] X [0,1] --+ ~ be the characteristic function of 
{(x, y): Y < x}. The corresponding operator V: L 2(0,1) --+ L 2(0.1) defined 
by Vf(x) = folk(x, y)f(y) dy is called the Volterra operator. Note that 

Vf{x) = l xf(y) dy. 
o 

Another example of an operator was defined in Example 1.5.3. The 
nonsurjective isometry defined there is called the unilateral shift. It will be 
studied in more detail later in this book. Note that any isometry is a 
bounded operator with norm 1. 
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EXERCISES 

1. Prove Proposition 1.1. 

2. Prove Proposition 1.2. 

3. Suppose {en} is an orthonormal basis for Ji' and A: Ji'-> f is a linear 
transformation such that L:IIAenll < 00. Show that A is bounded. 

4. Proposition 1.2 says that d(A,B) = IIA - BII is a metric on !?I(Ji',f). Show 
that !?I ( Ji', f) is complete relative to this metric. 

S. Show that a multiplication operator M.p (1.S) satisfies M; = M.p if and only if <p 
is a characteristic function. 

6. Let (X, Q, J-L) be a measure space and let k], k2 be two kernels satisfying the 
hypothesis of (1.6). Define 

(a) Show that k also satisfies the hypothesis of (1.6). (b) If K, K], K2 are the 
integral operators with kernels k, k], k 2, show that K = K]K2. What does this 
remind you of? Is more going on than an analogy? 

7. If (X,Q,J-L) is a measure space and k E L 2 (J-L X J-L), show that k defines a 
bounded integral operator. 

8. Let {en} be the usual basis for F and let {an} be a sequence of scalars. Show 
that there is a bounded operator A on 12 such that Aen = ane" for all n if and 
only if {an} is uniformly bounded, in which case IIA II = sup{lanl: n ~ I}. This 
type of operator is called a diagonal operator or is said to be diagonalizable. 

9. (Schur test) Let {aij}rj~] be an infinite matrix such that a'j ~ 0 for all i,j 
and such that there are scalars Pi > 0 and {3, Y > 0 with 

00 

L aijPi ~ (3Pj, 
i~l 

00 

L aUPj ~ YPi 
j~l 

for all i, j ~ 1. Show that there is an operator A on 12(N) with < Aej , ei ) = a j I 

and IIA 112 ~ {3y. 

10. (Hilbert matrix) Show that < Aej , ei ) = (i + j + 1) -[ for 0 ~ i, j < 00 defines 
a bounded operator on F(N U {O}) with IIA II ~ 'fT. (See also Choi [1983].) 

11. Find the operator norm of a 2 X 2 matrix in terms of its entries. 

12. (Direct sum of operators) Let {£;} be a collection of Hilbert spaces and let 
Ji'= $,£;. Suppose Ai E !?I(£;) for all i. Show that there is a bounded 
operator A on Ji' such that A I£; = Ai for all i if and only if sUPillA,l1 < 00. In 
this case, IIA II = supiliAill· 
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§2. The Adjoint of an Operator 

2.1. Definition. If X and :f are Hilbert spaces, a function u: Xx:f ~ IF 
is a sesquilinear form if for h, g in X, k, f in :f, and a, f3 in IF, 

(a) u(ah + f3g, k) = au(h, k) + f3u(g, k); 
(b) u(h,ak + f3f) = au(h, k) + 13u(h,f). 

The prefix "sesqui" is used because the function is linear in one variable 
but (for IF = C) only conjugate linear in the other. ("Sesqui" means 
" one-and-a-half.") 

A sesquilinear form is bounded if there is a constant M such that 
lu(h, k)1 .::;; Mllhllllkil for all h in X and k in :f. The constant M is 
called a bound for u. 

Sesquilinear forms are used to study operators. If A E !!l( X, X"), then 
u(h, k) == (Ah, k) is a bounded sesquilinear form. Also, if BE !!leX", X), 
u( h, k) == (h, Bk) is a bounded sesquilinear form. Are there any more? Are 
these two forms related? 

2.2. Theorem. If u: Xx:f ~ IF is a bounded sesquilinear form with bound 
M, then there are unique operators A in !!l( X, X") and B in !!l( X", X) such 
that 

2.3 u(h,k) = (Ah,k) = (h,Bk) 

for all h in X and k in :f and IIA II, IIBII .::;; M. 

PROOF. Only the existence of A will be shown. For each h in X, define L h : 

% ~ IF by Lh(k) = u(h, k). Then Lh is linear and ILh(k)1 .::;; Mllhllllkil. 
By the Riesz Representation Theorem there is a unique vector f in X" such 
that (k,j) = Lh(k) = u(h,k) and 11Il1.::;; Mllhll. Let Ah =f. It is left as 
an exercise to show that A is linear (use the uniqueness part of the Riesz 
Theorem). Also, (Ah, k) = (k, Ah) = (k, f) = u(h, k). 

If Al E !!leX, %) and u(h, k) = (AIh, k), then (Ah - AIh, k) = 0 for 
all k; thus Ah - AIh = 0 for all h. Thus, A is unique. • 

2.4. Definition. If A E !!l( X, X"), then the unique operator B in 
!!leX", X) satisfying (2.3) is called the adjoint of A and is denoted by 
B = A*. 

The adjoint of an operator will usually be used for operators in !!l( X), 
rather than !!l( X, X"). There is one notable exception. 

2.5. Proposition. If U E !!l( X, :f), then U is an isomorphism if and only if 
U is invertible and U- I = U *. 

PROOF. Exercise. 
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From now on we will examine and prove results for the adjoint of 
operators in !!d( £"). Often, as in the next proposition, there are analogous 
results for the adjoint of operators in !!d( £", .Jf"). This simplification is 
justified, however, by the cleaner statements that result. Also, the interested 
reader will have no trouble formulating the more general statement when it 
is needed. 

2.6. Proposition. If A, BE !!d(£") and a E IF, then: 

(a) (aA + B)* = aA* + B*. 
(b) (AB)* = B*A*. 
(c) A** == (A*)* = A. 
(d) If A is invertible in !!d(£") and A -1 is its inverse, then A* is invertible 

and (A*) -1 = (A -1)*. 

The proof of the preceding proposition is left as an exercise, but a word 
about part (d) might be helpful. The hypothesis that A is invertible in 
!!d( £") means that there is an operator A -1 in !!d( £") such that AA -1 = 
A -lA = I. It is a remarkable fact that if A is only assumed to be bijective, 
then A is invertible in !!d( £"). This is a consequence of the Open Mapping 
Theorem, which will be proved later. 

2.7. Proposition. If A E !!d(£"), IIAII = IIA*II = IIA*Alll/2. 

PROOF. For h in £", Ilhll:s;; 1, IIAhl1 2 = (Ah, Ah) = (A*Ah, h) :s;; 
IIA*Ahllllhll :s;; IIA*AII :s;; IIA*llllAII· Hence IIAI12:s;; IIA*AII :s;; IIA*IIIIAII· 
Using the two ends of this string of inequalities gives IIAII :s;; IIA*II when 
IIAII is cancelled. But A = A** and so if A* is substituted for A, we get 
IIA*II :s;; IIA**II = IIAII· Hence IIAII = IIA*II. Thus the string of inequalities 
becomes a string of equalities and the proof is complete. • 

2.8. Example. Let (X, g, Jl) be a a-finite measure space and let M</> be the 
multiplication operator with ~mbol cp (1.5). Then M</>* is M;p, the multipli­
cation operator with symbol cpo 

If an operator on IF d is represented by a matrix, then its adjoint IS 

represented by the conjugate transpose of the matrix. 

2.9. Example. If K is the integral operator with kernel k as in (1.6), then 
K * is the integral operator with kernel k *( x, y) == k (y, x). 

2.10. Proposition. If S: /2 ---> /2 is defined by S(a1, a 2 , ••• ) = 

(0,a1,a2 , •• • ), then S is an isometry and S*(a1,a2 ,···) = (a 2 ,a3 , .. . ). 

PROOF. It has already been mentioned that S is an isometry (1.5.3). For (a,,) 

and (/3n) in /2, (S*(a n),(/3n» = «an,S(/3n» = «a1,a2 , ... ),(0,/31,/32' 
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... » = a 2Pl + a 3P2 + ... = «a2,a3 , ••• ),(f3l,/32 , ••• ». Since this holds 
for every (f3n ), the result is proved. • 

The operator S in (2.10) is called the unilateral shift and the operator S * 
is called the backward shift. 

The operation of taking the adjoint of an operator is, as the reader may 
have seen from the examples above, analogous to taking the conjugate of a 
complex number. It is good to keep the analogy in mind, but do not become 
too religious about it. 

2.11. Definition. If A E !JB( .Yt'), then: (a) A is hermitian or self-adjoint if 
A* = A; (b) A is normal if AA* = A*A. 

In the analogy between the adjoint and the complex conjugate, hermitian 
operators become the analogues of real numbers and, by (2.5), unitaries are 
the analogues of complex numbers of modulus 1. Normal operators, as we 
shall see, are the true analogues of complex numbers. Notice that hermitian 
and unitary operators are normal. 

In light of (2.8), every multiplication operator M</> is normal; M</> is 
hermitian if and only if cf> is real-valued; M</> is unitary if and only if 
1cf>1 == 1 a.e. [ILl. By (2.9), an integral operator K with kernel k is hermitian 
if and only if k(x, y) = key, x) a.e. [IL X ILl. The unilateral shift is not 
normal (Exercise 6). 

2.12. Proposition. If .Yt' is a C-Hilbert space and A E !JB(.Yt'), then A is 
hermitian if and only if (Ah, h) E R for all h in .Yt'. 

PROOF. If A = A*, then (Ah, h) = (h, Ah) = (Ah, h); hence (Ah, h) E 
R. 

For the converse, assume (Ah, h) is real for every h in .Yt'. If a E C and 
h, g E.Yt', then (A(h + ag), h + ag) = (Ah, h) + ii(Ah, g) + a(Ag, h) 
+ laI 2(Ag, g) E R. So this expression equals its complex conjugate. Using 
the fact that (Ah, h) and (Ag, g) E R yields 

a(Ag, h) + ii(Ah, g) = ii(h, Ag) + a(g, Ah) 

= ii(A*h, g) + a(A*g, h). 

By first taking a = 1 and then a = i, we obtain the two equations 

(Ag, h) + (Ah, g) = (A*h, g) + (A*g, h), 

i(Ag, h) - i(Ah, g) = -i(A*h, g) + i(A*g, h). 

A little arithmetic implies (Ag, h) = (A*g, h), so A = A*. • 

The preceding proposition is false if it is only assumed that .Yt' is an 

R-Hilbert space. For example, if A = [ _ ~ ~] on R 2, then (Ah, h) = 0 
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for all h in 1R2. However, A* is the transpose of A and so A* =1= A. Indeed, 
for any operator A on an IR-Hilbert space, (Ah, g) E IR. 

2.13. Proposition. If A = A*, then 

IIAII = sup{I(Ah, h)l: Ilhll = I}. 

PROOF. Put M = sup{I(Ah, h)l: Ilhll = I}. If Ilhll = 1, then I(Ah, h)1 ::::; 
IIAII; hence M::::; IIAII. On the other hand, if Ilhll = Ilgll = 1, then 

( A (h ± g), h ± g) = (Ah, h) ± (Ah, g) ± (Ag, h) + (Ag, g) 

= (Ah, h) ± (Ah, g) ± (g, A*h) + (Ag, g). 

Since A = A *, this implies 

(A{h ± g),h ± g) = (Ah,h) ± 2Re(Ah,g) + (Ag,g). 

Subtracting one of these two equations from the other gives 

4Re(Ah, g) = (A{h + g), h + g) - (A(h - g), h - g). 

Now it is easy to verify that I(Af,f)1 ::::; MIlf112 for any f in £. Hence 
using the parallelogram law we get 

4Re(Ah, g) ::::; M(llh + gl12 + Ilh _ g112) 

= 2M(llh112 + Ilg11 2) 

=4M 

since hand g are unit vectors. Now suppose (Ah, g) = eiol(Ah, g)l. 
Replacing h in the inequality above with e-ioh gives I(Ah, g)1 ::::; M if 
Ilhll = Ilgll = 1. Taking the supremum over all g gives IIAhl1 ::::; M when 
Ilhll = 1. Thus IIAII ::::; M. • 

2.14. Corollary. If A = A* and (Ah, h) = 0 for all h, then A = o. 

The preceding corollary is not true unless A = A *, as the example given 
after Proposition 2.12 shows. However, if a complex Hilbert space is 
present, this hypothesis can be deleted. 

2.15. Proposition. If £ is a C-Hilbert space and A E .'14(£) such that 
(Ah, h) = 0 for all h in £, then A = o. 

The proof of (2.15) is left to the reader. 
If £ is a C-Hilbert space and A E ~(£), then B = (A + A*)j2 and 

C = (A - A*)j2i are self-adjoint and A = B + iC. The operators Band 
C are called, respectively, the real and imaginary parts of A. 
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2.16. Proposition. If A E 88( £), the following statements are equivalent. 

(a) A is normal. 
(b) JJAhJJ = IIA*hll for all h. 

If £ is a C-Hilbert space, then these statements are also equivalent to: 

(c) The real and imaginary parts of A commute. 

PROOF. If h E £, then JJAhJJ2 - JJA*hJJ2 = (Ah, Ah) - (A*h, A*h) = 
«A*A - AA*)h, h). Since A*A - AA* is hermitian, the equivalence of (a) 
and (b) follows from Corollary 2.14. 

If B, C are the real and imaginary parts of A, then a calculation yields 

A*A = B2 - iCB + iBC + C 2, 

AA* = B2 + iCB - iBC + C 2. 
Hence A*A = AA* if and only if CB = BC, and so (a) and (c) are 
equivalent. • 

2.17. Proposition. If A E 88( £), the following statements are equivalent. 

(a) A is an isometry. 
(b) A*A = I. 
(c) (Ah, Ag) = (h, g) for all h, gin £. 

PROOF. The proof that (a) and (c) are equivalent was seen in Proposition 
1.5.2. Note that if h, g E £, then (A*Ah, g) = (Ah, Ag). Hence (b) and 
( c) are easily seen to be equivalent. • 

2.1S. Proposition. If A E 88(£), then the following statements are equiv­
alent. 

(a) A is unitary. 
(b) A is a surjective isometry. 
(c) A is a normal isometry. 

PROOF. (a) = (b): Proposition 1.5.2. 
(b) = (c): By (2.17), A*A = I. But it is easy to see that the fact that A is 

a surjective isometry implies that A -1 is also. Hence by (2.17) 1= 
(A -l)*A -1 = (A*)-lA -1 = (AA*)-\ this implies that A*A = AA* = I. 

(c) = (a): By (2.17), A*A = I. Since A is also normal, AA* = A*A = I 
and so A is surjective. • 

We conclude with a very important, though easily proved, result. 

2.19. Theorem. If A E 88(£), then kerA = (ranA*)-L. 

PROOF. If h E kerA and g E £, then (h, A*g) = (Ah, g) = 0, so kerA c:::;; 

(ran A*) -L . On the other hand, if h ..1 ran A* and g E £, then (Ah, g) = 
(h, A*g) = 0; so (ran A*) -L c:::;; ker A. • 
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Two facts should be noted. Since A * * = A, it also holds that ker A * = 
(ran A) 1- • Second, it is not true that (ker A) 1- = ran A * since ran A * may 
not be closed. All that can be said is that (kerA)1-= cl(ranA*) and 
(ker A*) 1- = cl(ran A). 

EXERCISES 

1. Prove Proposition 2.5. 

2. Prove Proposition 2.6. 

3. Verify the statement in Example 2.8. 

4. Verify the statement in Example 2.9. 

5. Find the adjoint of a diagonal operator (Exercise 1.8). 

6. Let S be the unilateral shift and compute SS* and S*S. Also compute S"S*" 
and S*"S". 

7. Compute the adjoint of the Volterra operator V (1.7) and V + V*. What is 
ran(V + V*)? 

8. Where was the hypothesis that£' is a Hilbert space over C used in the proof of 
Proposition 2.12? 

9. Suppose A = B + iC, where B and C are hermitian and prove that B = (A + 
A*)/2, C = (A - A*)/2i. 

10. Prove Proposition 2.15. 

11. If A and B are self-adjoint, show that A B IS self-adjoint if and only if 
AB = BA. 

12. Let L~~oa"z" be a power series with radius of convergence R, 0 < R :0:; 00. If 
A E 8l( £') and IIA II < R, show that there is an operator Tin 8l( £') such that 
for any h, g in £', (Th, g) = L~~oa,,( A"h, g). [If f(z) = La,,z", the operator 
T is usually denoted by f(A).) 

13. Let A and T be as in Exercise 12 and show that liT - LZ~oakAkll ---> 0 as 
n ---> 00. If BA = AB, show that BT = TB. 

14. If fez) = expz = L~~oz"/n! and A is hermitian, show that f(iA) is unitary. 

15. If A is a normal operator on £', show that A is injective if and only if A has 
dense range. Give an example of an operator B such that ker B = (0) but ran B 
is not dense. Give an example of an operator C such that C is sUIjective but 
kerC * (0). 

16. Let Mq, be a multiplication operator (1.5) and show that ker Mq, = (0) if and 
only if /L({x: CP(x) = OJ) = O. Give necessary and sufficient conditions on cp 
that ran Mq, is closed. 
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3.1. Definition. An idempotent on £ is a bounded linear operator E on £ 
such that E2 = E. A projection is an idempotent P such that ker P = 

(ran P) -L • 

If .A :s; £, then P JI is a projection (Theorem 1.2.7). It is not difficult to 
construct an idempotent that is not a projection (Exercise 1). 

Let E be any idempotent and set .A = ran E and JV= ker E. Since E is 
continuous, JV is a closed subspace of £. Notice that (I - E)2 = 1- 2E 
+ E2 = 1- 2E + E = I - E; thus 1- E is also an idempotent. Also, 
o = (I - E)h = h - Eh, if and only if Eh = h. So ran E ;;2 ker(I - E). 
On the other hand, if h E ran E, h = Eg and so Eh = E2g = Eg = h; 
hence ran E = ker(/ - E). Similarly, ran(/ - E) = ker E. These facts are 
recorded here. 

3.2. Proposition. (a) E is an idempotent if and only if 1- E is an idempo­
tent. (b) ran E = ker(I - E), ker E = ran(I - E), and both ran E and 
ker E are closed linear subs paces of £. (c) If .A = ran E and JV= ker E, 
then .A n JV= (0) and .A + JV= £. 

The proof of part (c) is left as an exercise. There is also a converse to (c). 
If .A, JV:s; £, .A n JV= (0), and .$1+ JV= £, then there is an idempo­
tent E such that A = ran E and JV= ker E; moreover, E is unique. The 
difficult part in proving this converse is to show that E is bounded. The 
same fact is true in more generality (for Banach spaces) and so this proof 
will be postponed. 

Now we turn our attention to projections, which are peculiar to Hilbert 
space. 

3.3. Proposition. If E is an idempotent on £ and E *" 0, the following 
statements are equivalent. 

(a) E is a projection. 
(b) E is the orthogonal projection of £ onto ran E. 
(c) IIEII = l. 
(d) E is hermitian. 
(e) E is normal. 
(f) (Eh, h) ;;::: 0 for all h in £. 

PROOF. (a) = (b): Let A = ran E and P = P JI. If h E £, Ph = the unique 
vector in .A such that h - Ph E A -L = (ran E) -L = ker E by (a). But 
h - Eh = (/ - E)h E ker E. Hence Eh = Ph by uniqueness. 

(b) = (c): By (1.2.7), IIEII :s; l. But Eh = h for h in ran E, so IIEII = l. 
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(c) = (a): Let h E (ker E) 1-. Now ran(I - E) = ker E, so h - Eh E 

kerE. Hence 0 = (h - Eh,h) = IIhl1 2 - (Eh,h). Hence IIhl12 = (Eh,h) 

~ IIEhllllhl1 ~ Ilh11 2. So for h in (ker E) 1-, IIEhl1 = Ilhll = (Eh, h i12. But 
then for h in (ker E) 1- , 

Ilh - Ehl12 = IIhll 2 - 2 Re(Eh, h) + IIEhl12 = O. 

That is, (ker E) 1- ~ ker(I - E) = ran E. On the other hand, if g E ran E, 
g = gI + g2' where gI E ker E and g2 E (ker E) 1- . Thus g = Eg = Eg2 = 

g2; that is, ran E ~ (ker E) 1-. Therefore ran E = (ker E) 1- and E is a 
projection. 

(b) = (f): If hEX, write h = hI + h2' hI E ran E, h2 E ker E = 

(ran E)1-. Hence (Eh, h) = (E(hl + h 2), hI + h 2) = (EhI' hI) = 
(hI' hI) = IIhII12 ~ O. 

(f) = (a): Let hI E ran E and h2 E ker E. Then by (f), 0 ~ (E(hl + 
h 2), hI + h 2) = (hI' hI) + (hI' h 2)· Hence -llh I l1 2 ~ (hI' h 2 ) for all hI 
inranE and h2 inkerE.lftherearesuch hI and h2 with (hI' h 2) = ii -=1= 0, 
then substituting k2 = -2a- I llh I I1 2h 2 for h2 in this inequality, we obtain 
-llhI l1 2 ~ -21IhrlI2, a contradiction. Hence (hI' h 2 ) = 0 whenever hI E 

ran E and h 2 E ker E. That is, E is a projection. 
(a) = (d): Let h, g E X and put h = hI + h2 and g = gI + g2' where 

hI,gl E ranE and h 2,g2 E kerE = (ranE)1-. Hence (Eh,g) = (hI,gl)' 
Also, (E*h,g) = (h,Eg) = (hI,gI) = (Eh,g). Thus E = E*. 

(d) = (e): clear. 
(e) = (a): By (2.16), IIEhl1 = IIE*hll for every h. Hence kef E = kef E*. 

But by (2.19), ker E * = (ran E) 1- , so E is a projection. • 

Note that by part (b) of the preceding proposition, if E is a projection 
and vi{ = ran E, then E = PJ(. 

Let P be a projection with ran P = vi{ and ker P = %. So both vi{ and 
% are closed subspaces of X and, hence, are also Hilbert spaces. As in 
(1.6.1), we can form vl{EB%. If U: vl{EB%-->X is defined by U(h EB g) 
= h + g for h in vi{ and g in %, then it is easy to see that U is an 
isomorphism. Making this identification, we will often write X= vi{ EB %. 

More generally, the following will be used. 

3.4. Definition. If { vi{ i} is a collection of pairwise orthogonal subspaces of 
X, then 

If vi{ and % are two closed linear subspaces of X, then 

vi{ e %= vi{ n % 1- . 

This is called the orthogonal difference of vi{ and %. 
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Note that if ...#,.AI' ~ £ and ...# 1-.AI', then ...# +.AI' is closed. (Why?) 
Hence ...# (!) .AI'=...# +.AI'. The same is true, of course, for any finite 
collection of pairwise orthogonal subspaces but not for infinite collections. 

3.5. Definition. If A E 88( £) and ...# ~ £, say that ...# is an invariant 
subspace for A if Ah E...# whenever h E...#. In other words, if A...# ~...#. 
Say that ...# is a reducing subspace for A if A...# ~...# and A...# -1 ~ ...# -1 . 

If ...# ~ .Yt', then £=...# (!) ...# -1 . If A E 88( £), then A can be written as 
a 2 X 2 matrix with operator entries, 

3.6 A = [~ 1}, 
where WE 88(...#), X E 88(...# -1, ...#), Y E 88(...#,...# -1), and Z E 88(...# -1). 

3.7. Proposition. If A E 88( £), ...# ~ £, and P = P J(, then statements (a) 
through (c) are equivalent. 

(a) ...# is invariant for A. 
(b) PAP = AP. 
(c) In (3.6), Y = O. 

Also, statements (d) through (g) are equivalent. 

(d) ...# reduces A. 
(e) PA = AP. 
(f) In (3.6), Y and X are O. 
(g) ...# is invariant for both A and A *. 

PROOF. (a) = (b): If hE £, Ph E...#. SO APh E...#. Hence, P(APh) = 
APh. That is, PAP = AP. 

(b) = (c): If P is represented as a 2 X 2 operator matrix relative to 
£= ...# (!) ...# -1, then 

P= [~ ~]. 
Hence, 

PAP = [~ ~] = AP = [~ ~ ] . 
So Y = O. 

(c) = (a): If Y = 0 and h E...#, then 

Ah = [~ 1][ ~] = [~ } E...#. 

(d) = (e): Since both ...# and ...# -1 are invariant for A, (b) implies that 
AP = PAP and A(l- P) = (l- P)A(l- P). Multiplying this second 
equation gives A - AP = A - AP - PA + PAP. Thus PA = PAP = AP. 
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(e) = (f): Exercise. 
(f) = (g): If X = Y = 0, then 

A = [~ ~] and A*=[W* 0]. 
a Z* 

By (c), A is invariant for both A and A*. 
(g) = (d): If h E AJ. and g E A, then (g, Ah) = (A*g, h) = a since 

A*g E A. Since g was an arbitrary vector in A, Ah E A J.. That IS, 

AA J. ~ A J.. • 

If A reduces A, then X = Y = a in (3.6). This says that a study of A is 
reduced to the study of the smaller operators Wand Z. This is the reason 
for the terminology. 

If A E !J8(:Ie) and A is an invariant subspace for A, then A IA is used 
to denote the restriction of A to A. That is, A IA is the operator on A 
defined by (AIA)h = Ah whenever h E A. Note that AlA E !J8(A) and 
IIA 1.Al1 .:::; IIA II· Also, if A is invariant for A and A has the representation 
(3.6) with Y = 0, then W = AlA. 

EXERCISES 

1. Let .Yf' be the two-dimensional real Hilbert space IR 2, let A = {( x, 0) E IR 2: 

x E IR} and let 5= {(x,xtan8): x E IR}, where 0 < 8 < tw. Find a formula 
for the idempotent Eo with ran Eo = A and ker Eo = 5. Show that II Eo II = 
(sin 8)-1. 

2. Prove Proposition 3.2 (c). 

3. Let {Ai: i E I} be a collection of closed subspaces of .Yf' and show that 
n{A/: i E I} = [V{Ai: i E I}]J. and [n{Ai: i E I}]J.= V{A/: i E I}. 

4. Let P and Q be projections. Show: (a) P + Q is a projection if and only if 
ran P .1 ran Q. If P + Q is a projection, then ran( P + Q) = ran P + ran Q and 
ker(P + Q) = ker P n kerQ. (b) PQ is a projection if and only if PQ = QP. If 
PQ is a projection, then ran PQ = ran P n ran Q and ker PQ = c1(ker P + 
kerQ). 

5. Generalize Exercise 4 as follows. Suppose {Ai: i E I} is a collection of 
subspaces of .Yf' such that Ai .1 A} if i '* j. Let Pi be the projection of .Yf' 
onto Ai and show that for all h in .Yf', L { Pi h: i E I} converges to Ph, where 
P is the projection of .Yf' onto V{ Ai: i E I}. 

6. If P and Q are projections, then the following statements are equivalent. (a) 
P - Q is a projection. (b) ranQ ~ ran P. (c) PQ = Q. (d) QP = Q. If P - Q 
is a projection, then ran(P - Q) = (ranP) e (ranQ) and ker(P - Q) = ranQ 
+ ker P. 

7. Let P and Q be projections. Show that PQ = QP if and only if P + Q - PQ 
is a projection. If this is the case, then ran( P + Q - PQ) = c1( ran P + ran Q) 
and ker(P + Q - PQ) = ker P n kerQ. 
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8. Give an example of two noncommuting projections. 

9. Let A E &3'(£') and let JV= graph A c:;;; £'$ £'. That is, JV= {h $ Ah: 
hE£'}. Because A is continuous and linear, JV ~ £'$ £'. Let vi{ = £'$ (0) ~ 
£'$ £'. Prove the following statements. (a) vi{ n JV= (0) if and only if ker A = 
(0). (b) vi{ + JV is dense in £'$ £' if and only if ran A is dense in £'. (c) 
vi{ + JV = £'$ £' if and only if A is surjective. 

lO. Find two closed linear subspaces vI{, JV of an infinite-dimensional Hilbert space 
£' such that vi{ n JV= (0) and vi{ + JV is dense in £', but vi{ + JV* £'. 

11. Define A: p(l.) --> [2(1.) by A( ... ,a_l,aO,al , ... ) = ( ... ,a-l,aO,al , ... ), 
where - sits above the coefficient in the O-place. Find an invariant subspace of A 
that does not reduce A. 

12. Let JL = Area measure on [) == {z E C: Izl < I} and define A: L2 (JL) --> L2 (JL) 
by (Af)(z) = zj(z) for Izl < 1 and j in L 2 (JL). Find a nontrivial reducing 
subspace for A and an invariant subspace that does not reduce A. 

§4. Compact Operators 

It turns out that most of the statements about linear transformations on 
finite-dimensional spaces have nice generalizations to a certain class of 
operators on infinite-dimensional spaces-namely, to the compact oper­
ators. 

4.1. Definition. A linear transformation T: £'~.% is compact if T(ball 
£') has compact closure in .%. The set of compact operators from£' into 
.% is denoted by PJo(£', .%), and PJo(£') = PJo(£', £'). 

4.2. Proposition. (a) PJo(£',.%) c:;;; PJ(£', .%). 
(b) PJo(£',.%) isa linear space and if {Tn} c:;;; PJo(H, K) andT E PJ(H, K) 

such that II Tn - Til ~ 0, then T E PJo(£', .%). 
(c) If A E PJ(£'), BE PJ(.%), and T E PJo(£', .%), then TA and BT E 

PJo(£', .%). 

PROOF. (a) If T E PJo( £', .%), then cl[T(ball£,)] is compact in .%. Hence 
there is a constant C > ° such that T(ball£') c:;;; {k E.%: Ilkll ::; C}. Thus 
II Til ::; C. 

(b) It is left to the reader to show that PJo( £', .%) is a linear space. For 
the second part of (b), it will be shown that T(ball£') is totally bounded. 
Since .% is a complete metric space, this is equivalent to showing that 
T(ball£,) has compact closure. Let E > ° and choose n such that II T - Tnll 
< e/3. Since Tn is compact, there are vectors hi"'" h m in ball£' such 
that Tn(ball£') c:;;; Uj~IB(Tnhj; e/3). So if Ilhll ::; 1, there is an h j with 
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II Tn h} - Tnhll < e/3. Thus 

11Th} - Thll :S 11Th} - Tnh)1 + IIT"h} - T"hll + IITnh - Thll 

< 211T - T"II + e/3 
< e. 

Hence T(ball Yt') ~ Uj~lB(Th}; e). 
The proof of (c) is left to the reader. • 

4.3. Definition. An operator T on Yt' has finite rank if ran T is finite 
dimensional. The set of finite-rank operators is denoted by .c?4l'()()( Yt', X); 
.c?4l'()()( Yt') = .c?4l'oo( Yt', Yt'). 

It is easy to see that .c?4l'()()(Yt', X) is a linear space and .c?4l'()()(Yt', X) ~ 
.c?4l'o( Yt', X) (Exercise 2). Before giving other examples of compact oper­
ators, however, the next result should be proved. 

4.4. Theorem. If T E .c?4l'(Yt', X), the following statements are equivalent. 

(a) T is compact. 
(b) T * is compact. 
(c) There is a sequence {Tn} of operators of finite rank such that liT - Tnll 

~o. 

PROOF. (c) = (a): This is immediate from (4.2b) and the fact that 
.c?4l'oo(Yt', f) ~ .c?4l'o(Yt', X). 

(a) = (c): Since cl[T(ball Yt')] is compact, it is separable. Therefore 
cl(ran T) = 2 is a separable subspace of X. Let {e i , e 2 , ••. } be a basis for 
2 and let Pn be the orthogonal projection of X onto V{ e/ 1 :S j :S n}. Put 
Tn = PnT; note that each Tn has finite rank. It will be shown that II Tn - Til 
~ 0, but first we prove the following: 

Claim. If h E Yt', II Tnh - Thll ~ o. 

In fact, k = Th E 2, so IIPnk - kll ~ 0 by (I.4.13d) and (1.4.7). That is, 
IlPnTh - Thll ~ 0 and thp. claim is proved. 

Since T is compact, if e > 0, there are vectors hi' ... ' hm in ball Yt' such 
that T(ballYt') ~ Uj~lB(Thj; e/3). So if IIhil :S 1, choose hj with 11Th -
Th)1 < e/3. Thus for any integer n, 

11Th - Tnhll :S 11Th - Th)1 + 11Th} - Tnh)1 + IlPn(Th} - Th)II 

:S 211Th - ThJ + 11Th} - Tnh)1 

:S 2e/3 + 11Th} - Tnh}II. 

Using the claim we can find an integer no such that 11Th} - Tnh)1 < e/3 for 
1 :Sj:S m and n ~ no. So 11Th - Tnhll < e uniformly for h in ballYt'o 
Therefore II T - Tnll < e for n ~ no. 
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(c) = (b): If {Tn} is a sequence in 86'()()(,/f', f) such that II Tn - Til ~ 0, 
then IIT/ - T*II = IITn - Til ~ o. But T/ E 86'()()(./f', f) (Exercise 3). 
Since (c) implies (a), T* is compact. 

(b) = (a): Exercise. • 

A fact emerged in the proof that (a) implies (c) in the preceding theorem 
that is worth recording. 

4.5. Corollary. If T E 86'o(./f', f), then cl(ran T) is separable and if {en} 
is a basis for cl(ran T) and Pn is the projection of f onto V{ ei 1 :s: j s n}, 
then IlPnT - Til ~ o. 

4.6. Proposition. Let .JIt? be a separable Hilbert space with basis {en}; let 
{an} ~ IF withM= sup{lanl: n ~ I} < 00. IfAen = anen foralln, then A 
extends by linearity to a bounded operator on .JIt? with IIA II = M. The operator 
A is compact if and only if an ~ 0 as n ~ 00. 

PROOF. The fact that A is bounded and IIA II = M is an exercise; such an 
operator is said to be diagonalizable (see Exercise 1.8). Let Pn be the 
projection of .JIt? onto V { e l' ... , en}. Then An = A - APn is seen to be 
diagonalizable with Anej = OI.jej if j > nand Anej = 0 if j :s: n. So APn E 

86'()()(.JIt?) and IIAnl1 = sup{ 101.;1: j > n}. If OI.n ~ 0, then IIAnl1 -+ 0 and so A 
is compact since it is the limit of a sequence of finite-rank operators. 
Conversely, if A is compact, then Corollary 4.5 implies IIAnl1 ~ 0; hence 
OI. n ~ o. • 

4.7. Proposition. If (X, fJ, p.) is a measure space and k E L2(X X X, fJ X 

fJ, p. X p.), then 

(Kf)(x) = !k(x,y)f(y)dp.(y) 

is a compact operator and IIKII :s: Ilk112. 

The following lemma is useful for proving this proposition. 

4.8. Lemma. If {ei: i E I} is a basis for L 2( X, fJ, p.) and 

CPi/X, y) = ei(x)e/y) 

for i, j in I and x, y in X, then {CPii i, j E I} is a basis for L 2( X X X, fJ X 

fJ,/L X p.). 

PROOF. Since fflcpildp.dp. = Ileil1211e;ll2 = 1, CPij E L2(p. X p.). If (i, j) =1= 

( 01., f3), then 

(CPa/3'CPi;) = ! !CPa(X)CP/3(y)CPi(x)cpj(y)dp.(x)dp.(y) 

= <CPa' CPi>< CPj, CP/3> = o. 
So { CPij} is an orthonormal family. 
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If 1> E L2(p. X p.), then the fact that ffl1>(x, y)1 2 dp.(x) dp.(y) < 00 im­
plies that fl1>(x, Y)1 2dp.(x) < 00 for almost all y in X. That is, if 1>y(x) = 
1>(x,y), then 1>y EL2(p.) for almost all y. Thus li(y) = (e i:1>y) = 
N(x, y )ei(x) dp.(x) is well defined. Moreover, Ii E L2(p.) (Exercise). But 

Ilfil12 = LI(ej ,!;)12 = Llfli(y)e/ y )dp.(y) ( 
j j 

= Llf f1>(x,y)e;(x)eiy) dp.(x) dp.(y) ( 
j 

j 

So if 1> 1. 1>ij for all i, j, then Ii = 0 for all i. Thus 1>y = 0 in L2(p.) for 
almost all y. That is, 1> = O. Therefore, { 1>ij} is a basis. . • 

PROOF OF PROPOSITION 4.7. Let {ei} and { 1>ij} be as in Lemma 4.8. Since 
k E L2(p. X p.), 

Ilkll~ = LI(k,1>ijW 
i.j 

= Llf fk(x, y)ei(x)e;(y) dp.(x) dp.(y) 12 
I,j 

= L If[f k(x, y )e;(y) dp.(y) ]ei(x) dp.(x) 12 
I,j 

i,j 

Thus, if 1= LfXfj E L2(p.), L;iaf < 00, then 

I(KI, ei)1 2 = / La/Kej , ei) /2 
j 

~ (Lla;i2)(LI(Kej,ei)12). 
j j 

Therefore, 

~ Ilkll~11Il12. 

This shows that K is bounded and IIKII ~ Ilk11 2 . 

Now assume that k is a linear combination of a finite number of the 
{ 1>ij}' It is left to the reader to show that in this case K has finite rank. If k 
is an arbitrary element of L2(p. X p.), then k is in the linear span of a 
countable number of 1>ij' Say that k = L':,m~lanm1>nm' 1>nm(x, y) = 
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en(x)em(y)· If kN = L~ m~lan mcf>n m' then IlkN - kl12 ~ 0 as N ~ 00. If , " 
K N is the integral operator corresponding to k N' K N has finite rank and 
IIKN - KII ~ IlkN - kl12 ~ O. Thus K is compact. • 

In particular, note that the preceding proposition shows that the Volterra 
operator (l.7) is compact. 

One of the dominant tools in the study of linear transformations on 
finite-dimensional spaces is the concept of eigenvalue. 

4.9. Definition. If A E fJd( £'), a scalar a is an eigenvalue of A if ker( A -
a) =f. (0). If h is a nonzero vector in ker( A - a), h is called an eigenvector 
for a; thus Ah = ah. Let ap(A) denote the set of eigenvalues of A. 

4.10. Example. Let A be the diagonalizable operator in Proposition 4.6. 
Then a/A) = {a1,a2, ... }. If a E ap(A), let fa = {j E~: aj = a}. Then 
h is an eigenvector for a if and only if h E V{ e/ j E fa}' 

4.11. Example. The Volterra operator has no eigenvalues. 

4.12. Example. Let hE£'= L~( -7T, 7T) and define K: £'~ £' by 
(Kf)(x) = f'"-7Th(x - y)f(y)dy. If An = (27T)-1/2f'"-7Th(x)exp(-inx)dx = 
hen), the nth Fourier coefficient of h, then Ken = Anen, where en(x) = 
(27T) -1/2exp( inx). 

The way to see this is to extend functions in L~ ( - 7T, 7T) to ~ by 
periodicity and perform a change of variables in the formula for (Ken )( x). 
The details are left to the reader. 

Operators on finite-dimensional spaces always have eigenvalues. As the 
Volterra operator illustrates, the analogy between operators on finite-dimen­
sional spaces and compact operators breaks down here. If, however, a 
compact operator has an eigenvalue, several nice things can be said if the 
eigenvalue is not zero. 

4.13. Proposition. If T E fJdo(£'), A E a/T), and A =f. 0, then the eigen­
space ker( T - A) is finite dimensional. 

PROOF. Suppose there is an infinite orthonormal sequence { en} in ker( T -
A). Since T is compact, there is a subsequence {e nJ such that {Te nJ 
converges. Thus, {Ten.} is a Cauchy sequence. But for n k =f. nj , IITe n , -

Ten 112 = IIAen - Aen l1 2 = 21AI2 > 0 since A =f. O. This contradiction shows 
that ker( T - ~) must be finite dimensional. • 

The next result on the existence of eigenvalues is not a practical way to 
show that a specific example has a nonzero eigenvalue, but it is a good 
theoretical tool that will be used later in this book (in particular, in the next 
section). 
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4.14. Proposition. If Tis a compact operator on Yt', A oF 0, and inf{II(T­
A)hll: Ilhll = I} = 0, then A E a/T)o 

PROOF. By hypothesis, there is a sequence of unit vectors {h ,J such that 
II(T - A)hnll ~ O. Since T is compact, there is a vector f in Yt' and a 
subsequence {h n.} such that 11Th n. - ill -+ O. But h n. = A -1[( A - T)h '" 
+ Th n.] ~ A -If. So 1 = IIA -lill = IAI- 11lt11 and f oF O. Also, it must be 
that Th n ~ A -ITf. Since Th n ~ f, f = A -ITf, or Tf = Af. That is, f E 

k k 

ker(T - A) and f oF 0, so A E a/T)o • 

~.15. Corollary. If T is a compact operator on Yt', A oF 0, A $. ap(T), and 
A$. a/T*), then ran(T - A) = Yt' and (T - A)-1 is a bounded operator 
on Yt'. 

PROOF. Since A $. (Jp(T), the preceding proposition implies that there is a 
constant c > 0 such that !I(T - A)hll z cllhll for all h in Yt'. If f E clran(T 
- A), then there is a sequence {h,,} in Yt' such that (T - A) h" ~ f. Thus 
Ilh n - hmll :::; c- 111(T - A)h" - (T - A)hmll and so {h n } is a Cauchy se­
quence. Hence h n ~ h for some h in Yt'. Thus (T - A)h = f. So ran(T - A) 
is closed and, by (2.19), ran( T - A) = [ker( T - A) *] -L = Yt', by hypothesis. 

So for f in Yt' let Af = the unique vector h such that (T - A)h = f. 
Thus (T - A)Af = f for all f in Yt'. From the inequality above, cllAill :::; 
II(T - A)Aill = 1lt11· So IIAill :::; c- 11lt11 and A is bounded. Also, (T­
A)A(T - A)h = (T - A)h, so 0 = (T - A)[A(T - A)h - h]. Since A$. 
(Jp(T), A(T - A)h = h. That is, A = (T - A)-I. • 

_ It will be proved in a later chapter that if A $. ap(T) and A oF 0, then 
A$. (Jp(T*). 

More will be shown about arbitrary compact operators in Chapter VI. In 
the next section the theory of compact self-adjoint operators will be 
explored. 

EXERCISES 

1. Prove Proposition 4.2(c). 

2. Show that every operator of finite rank is compact. 

3. If T E .'1l'oo(£, Jt"), show that T* E .'1l'oo(Jt", £) and dim (ran T) = 

dim(ran T*). 

4. Show that an idempotent is compact if and only if it has finite rank. 

5. Show that no nonzero multiplication operator on [}(O, 1) is compact. 

6. Show that if T: £ -> Jt" is a compact operator and {e,,} is any orthonormal 
sequence in £, then IITe,,1I -> O. Is the converse true? 
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7. If T is compact and .A is an invariant subspace for T, show that TI.A is 
compact. 

8. If h, g E £', define T: £' -+ £' by Tf = (j, h) g. Show that T has rank 1 [that 
is, dim(ran T) = 1]. Moreover, every rank 1 operator can be so represented. 
Show that if T is a finite-rank operator, then there are orthonormal vectors 
e l , . .. , e" and vectors gl,' .. , g" such that Th = L'J~ I (h, e) g, for all h in .Jf'. 
In this case show that T is normal if and only if g/ = Aj e/ for some scalars 
AI, ... ,A". Find (Jp(T). 

9. Show that a diagonalizable operator is normal. 

10. Verify the statements in Example 4.10. 

11. Verify the statement in Example 4.11. 

12. Verify the statement in Example 4.12. (Note that the operator K in this example 
is diagonalizable.) 

13. If T" E ~(~), n ~ 1, with sup"IIT,,1I < 00 and T = EB:~lT" on.Jf'= EB':I~' 
show that T is compact if and only if each T" is compact and II T"II -+ O. 

§5 *. The Diagonalization of Compact 
Self-Adjoint Operators 

This section and the remaining ones in this chapter may be omitted if the 
reader intends to continue through to the end of this book, as the material 
in these sections (save for Section 6) will be obtained in greater generality in 
Chapter IX. It is worthwhile, however, to examine this material even if 
Chapter IX is to be read, since the intuition provided by this special case is 
valuable. 

The main result of this section is the following. 

5.1. Theorem. If T is a compact self-adjoint operator on J'l', {AI' A2 , •.• } 

are the distinct nonzero eigenvalues of T, and Pn is the projection of J'l' onto 
ker(T - An)' then PnPm = PmPn = 0 if n '* m, each An is real, and 

00 

5.2 

where the series converges to T in the metric defined by the norm of !J4( J'l'). 
[ Of course, (5.2) may be only a finite sum.] 

The proof of Theorem 5.1 requires a few preliminary results. Before 
beginning this process, let's look at a few consequences. 
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5.3. Corollary. With the notation of (5.1): 

(a) kerT=[V{Pn£: n~l}]-L=(ranT)-L; 
(b) each Pn has finite rank; 
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(c) IITII = suP{IAnl: n ~ I} and An -> 0 as n -> 00. 

PROOF. Since Pn J. Pm for n =f. m, if h E£, then (5.2) implies IIThl12 = 
L::"~11IAnPnhIl2 = L::"~1IAnI21IPnhIl2. Hence Th = 0 if and only if Pnh = 0 for 
all n. That is, h E ker T if and only if h J. Pn£ for all n, whence (a). 

Part (b) follows by Proposition 4.13. 
For part (c), if £1= cl[ranT], £1 is invariant for T. Since T = T*, 

£1= (ker T) -L and £1 reduces T. So we can consider the restriction of T to 
£1, TI£1. Now £1= V{ Pn£: n ~ I} by (a). Let {et): 1 s j s Nn} be a 
basis for P £= ker(T - A ) so Te(n) = A e(n) for 1 < J' < N Thus {e(n). n n , J n J - - n" J . 

1 s j s Nn, n ~ I} is a basis for £1 and TI£1 is diagonalizable with respect 
to this basis. Part (c) now follows by (4.6). • 

The proof of (c) in the preceding corollary revealed an interesting fact 
that deserves a statement of its own. 

5.4. Corollary. If T is a compact self-adjoint operator, then there is a 
sequence {Il n} of real numbers and an orthonormal basis {en} for (ker T) -L 
such that for all h, 

00 

Th = L Iln(h, en)en· 
n~l 

Note that there may be repetitions in the sequence {Iln} in (5.4). How 
many repetitions? 

5.5. Corollary. If T E 86'0(£)' T = T*, and kerT = (0), then £ is 
separable. 

Also note that by (4.6), if (5.2) holds, T E 86'0(£)' 
To begin the proof of Theorem 5.1, we prove a few results about not 

necessarily compact operators. 

5.6. Proposition. If A is a normal operator and A ElF, then ker( A - A) = 
ker(A - A)* and ker(A - A) is a reducing subspace for A. 

PROOF. Since A is normal, so is A - A. Hence II(A - A)hll = II(A - A)*hll 
(2.16). Thus ker(A - A) = ker(A - A)*. If h E ker(A - A), Ah = Ah E 
ker(A - A). Also A*h = Xh E ker(A - A). Therefore ker(A - A) reduces 
A. • 

5.7. Proposition. If A is a normal operator and A, Il are distinct eigenvalues 
of A, then ker(A - A) J. ker(A - Il). 
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PROOF. If h E ker(A - A) and g E ker(A - }L), then the fact (5.6) that 
A*g = Jig implies that A(h, g) = (Ah, g) = (h, A*g) = (h, Jig) 
}L(h, g). Thus (A - }L)(h, g) = O. Since A - }L =1= 0, h ..1 g. • 

5.8. Proposition. If A = A* and A E O"p(A), then A is a real number. 

PROOF. If Ah = Ah, then Ah = A*h = Xh by (5.6). So (A - X)h = O. Since 
h can be chosen different from 0, A = X. • 

The main result prior to entering the proof of Theorem 5.1 is to show that 
a compact self-adjoint operator has nonzero eigenvalues. If (5.3c) is ex­
amined, we see that there is a An in O"p(T) with IAnl = II Til. Since the 
preceding proposition says that An E ~, it must be that An = ± IITII. That 
is, either ± II Til E O"p(T). This is the key to showing that O"p(T) is nonvoid. 

5.9. Lemma. If T is a compact self-adjoint operator, then either ± II Til is an 
eigenvalue of T. 

PROOF. If T = 0, the result is clear. So suppose T =1= O. By Proposition 2.13 
there is a sequence {h n} of unit vectors such that I(Th n, hn)1 ~ IITII. By 
passing to a subsequence if necessary, we may assume that (Thn' hn) ~ A, 
where IAI = II Til. It will be show that A E O"/T). Since IAI = II Til, 0 .::;; 
II(T - A)h n11 2 = IITh nl1 2 - 2A(Thn' hn) + A2 .::;; 2,\2 - 2A(Thn' hn) ~ O. 
Hence II(T - A)hnll ~ O. By (4.14), A E O"/T). • 

PROOF OF THEOREM 5.1. By Lemma 5.9 there is a real number Al in O"/T) 
with lAd = II Til· Let C1 = ker(T - AI)' PI = the projection onto C1, £'2 = 
C/ . By (5.6) C1 reduces T, so £'2 reduces T. Let T2 = TI£'2; then T2 is a 
self-adjoint compact operator on £'2' (Why?) 

By (5.9) there is an eigenvalue A2 for T2 such that IA21 = IIT211. Let 
C2 = ker(T2 - A2). It is easy to check that C2 = ker(T - A2) and so A2 =1= AI' 
Let P2 = the projection of £' onto C2 and put £'3 = (C1 EB C2).l. Note 
that II T211 .::;; II Til so that IA21 .::;; lAd· 

U sing induction (give the details) we obtain a sequence {A n} of real 
eigenvalues of T such that 

(i) IA11 ~ IA21 ~ ... ; 

(ii) If Cn = ker(T- An), IAn+11 = IITI(C1 EB ... EBCn).lII. 

By (i) there is a nonnegative number a such that IAnl ~ a. 

Claim. a = 0; that is, lim An = O. 

In fact, let en E Cn' Ilenll = 1. Since T is compact, there is an h in £' and 
a subsequence { en} such that II Te n - h II -> o. But en ..1 em for n =1= m and 

J J 
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Ten = A"e". Hence liTe" - Te,,11 2 = A2" + A2" ~ 20: 2. Since {Ten} is a 
J JJ } I ) I , 

Cauchy sequence, 0: = O. 
Now put Pn = the projection of YC' onto iff" and examine T - L'J~lAjPj" 

If h E iffk , 1 ::::;; k ::::;; n, then (T - L'J~lAjlj)h = Th - Akh = O. Hence iffl 
EEl ..• EEliff" ~ ker(T - L'J~lAjlj). If hE (iffl EEl ... EEliff,,).l, then Pjh = 0 
for 1 ::::;; j ::::;; n; so (T - L'J~lAjlj)h = Th. These two statements, together 
with the fact that (iffl EEl ... EEliffn).l reduces T, imply that 

IIT- j~lAjPjll= IITI(iffl EEl •.. EEliffn).l1l 

= IA"+11 -4 O. 
Therefore the series L'::~ 1 A "P" converges in the metric of 86'( YC') to T. • 

Theorem 5.1 is called the Spectral Theorem for compact self-adjoint 
operators. Using it, one can answer virtually every question about compact 
hermitian operators, as will be seen before the end of this chapter. 

If in Theorem 5.1 it is assumed that T is normal and compact, then the 
same conclusion, except for the statement that each An is real, is true 
provided that YC' is a (>Hilbert space. The proof of this will be given in 
Section 7. 

EXERCISES 

1. Prove Corollary 5.4. 

2. Prove Corollary 5.5 

3. Let K and k be as in Proposition 4.7 and suppose that k (x, y) = k ( y, x). Show 
that K is self-adjoint and if {Il-n} are the eigenvalues of K, each repeated 
dim(K - Il-n) times, then Ifill-nl2 < 00. 

4. If T is a compact self-adjoint operator and {en} and {Il-"} are as in (5.4) and if h 
is a given vector in Jf', show that there is a vector 1 in Jf' such that TI = h if 
and only if h .1 kerT and Inll-~21<h, en)12 < 00. Find the form of the general 
vector 1 such that TI = h. 

5. Let T, {Il-n}, and {en} be as in (5.4). If A"* 0 and A"* Il-n for any Il-", then for 
every h in Jf' there is a unique 1 in Jf' such that (T - A)I = h. Moreover, 
1 = A -I [h + L~~I An (A - An) - \ h, en) en]. Interpret this when T is an integral 
operator. 

§6*. An Application: Sturm-Liouville Systems 

In this section, [a, b] will be a proper interval with - 00 < a < b < 00. 

C[a,b] denotes the continuous functions f: [a, b]-4 IR and for n ~ 1, 
C<n)[a, b] denotes those functions in era, b] that have n continuous deriva-
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tives. c~n)[ a, b] denotes the corresponding spaces of complex-valued func­
tions. We want to consider the differential equation 

6.1 - h" + qh - Ah = f, 

where A is a given complex number, q E qa, b], and f E L2[a, b], to­
gether with the boundary conditions 

6.2 { (a) ah(a) + alh'(a) = ° 
(b) /3h(b) + /3lh'(b) = 0' 

where a, a l, /3, and /31 are real numbers and a 2 + a? > 0, /3 2 + /3? > 0. 
Equation (6.1) together with the boundary conditions (6.2) is called a 

(regular) Sturm-Liouville system. Such systems arise in a number of physi­
cal problems, including the description of the motion of a vibrating string. 
In this section we will discuss solutions of the Sturm-Liouville system by 
relating the system to a certain compact self-adjoint integral operator. 

Recall that an absolutely continuous function h on [a, b] has a derivative 
a.e. and h(x) = f:h'(t) dt + h(a) for all x. 

Define 

:»a = {h E C(l)C[a,b]: h'isabsolutelycontinuous, 

h" E L 2 [a, b], and h satisfies (6 .2a) } . 

:»b is defined similarly but each h in :»b satisfies (6.2b) instead of (6.2a). 
The space:» = :»a n :»b. 

Define L: :» ~ L2[a, b] by 

6.3 Lh = -h" + qh. 

L is called a Sturm-Liouville operator. 
Note that :» is a linear space and L is a linear transformation. The 

Sturm-Liouville problem thus becomes: if A E C and f E L2[a, b], is there 
an h in :» with (L - A)h = f. Equivalently, for which A is f in ran( L - A)? 

By placing a suitable norm on :», L can be made into a bounded 
operator. This does not help much. The best procedure is to consider 
(L - A)-l. Integration is the inverse of differentiation, and it turns out that 
(L - A)-l (when we can define it) is an integral operator. 

Begin by considering the case when A = 0. (Equivalently, replace q by 
q - A.) To define L -1 (even if only on its range), we need that L is 
injective. Thus we make an assumption: 

6.4 If hE:» and Lh = 0, then h = 0. 

The first lemma is from ordinary differential equations and says that 
certain initial-value problems have nontrivial (nonzero) solutions. 

6.5. Lemma. If a, a l, /3, /31 E~, a 2 + ai > 0, and /3 2 + /3'f > 0, then 
there are functions ha' hb in :»a' :»b' respectively, such that L(h a) = ° and 
L(hb) = ° and ha' hb are real-valued and not identically zero. 
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The Wronskian of h a and h b is the function 

[ha hb] 
W = det h~ hI, = ha h ;' - h~hb· 

Note that W' = hah~ - h~hb = ha(qhb) - (qha)hb = 0. Hence W(x) == 
W(a) for all x. 

6.6. Lemma. Assuming (6.4), W(a)"* ° and so ha and hb are linearly 
independent. 

PROOF. If W(a) = 0, then linear algebra tells us that the column vectors in 
the matrix used to define W( a) are linearly dependent. Thus there is a A in 
~ such that hb(a) = Aha(a) and h;'(a) = Ah~(a). Thus hb E ~ and L(hb) 
= 0. By (6.4), hb == 0, a contradiction. • 

Put c = W(a) and define g: [a, bj X [a, bj -4 ~ by 

( ) (
C-lha(X)hb(y) ifaS;xs;ys;b 

6.7 gx,y = 

c-1ha(y )hb(x) if as; y S; x S; b. 

The function g is the Green function for L. 

6.S. Lemma. The function g defined in (6.7) is real-valued, continuous, and 
g(x, y) = g(y, x). 

PROOF. Exercise. 

6.9. Theorem. Assume (6.4). If g is the Green function for L defined in (6.7) 
and G: L2[a, bj-4 L2[a, bj is the integral operator defined by 

(Gf)(x) = fbg(x, y )f(y) dy, 
a 

then G is a compact self-adjoint operator, ranG =~, LGf = f for all f in 
L2[a, bj, and GLh = hfor all h in ~. 

PROOF. That G is self-adjoint follows from the fact that g is real-valued and 
g(x, y) = g(y, x); G is compact by (4.7). Fix f inL2[a, bj and put h = Gf. 
It must be shown that h E ~. 

Put 

Ha(x) = c- 1 f\a(Y )f(y) dy 
a 

and Hb(X) = c- 1 fhhb(Y )f(y) dy. 
x 

Then 

h(x) = fbg(x, Y )f(y) dy 
a 

= c- 1 f\a(Y )hb(x )f(y) dy + c- 1 f\Jx )hh(Y )f(y) dy. 
a X 
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That is, h = Hahb + haHb' Differentiating this equation gives h' = 
(C-1hal)hb + Hahb + h~Hb + hA-c-1hbf) = Hahb + h~Hb a.e. Since 
Hah b + h' aHb is absolutely continuous, as part of showing that h E !!fl we 
want to show the following. 

Put cp = Hahb + h~Hb and put I/;(x) = h(a) + J:cp(y) dy. So h and I/; 
are absolutely continuous, h(a) = Ha), and h' = 1/;' a.e. Thus h = I/; 
everywhere. But I/; has a continuous derivative cp, so h does too. That is, the 
claim is proved. 

Differentiating h' = Hahb + h~Hb gives that a.e., h" = (c-1haf)hb + 
Hah;; + h~Hb + h~( -c-1hbf); since each of these summands belongs to 
L2[a, bj, h" E L2[a, bj. 

Because Ha(a) = 0 and ha E !!fla, ah(a) + a1h'(a) = aha(a)Hb(a) + 
aIh~(a)Hb(a) = [aha(a) + aIh~(a)jHb(a) = O. Hence h E !!fla. Similarly, 
h E ~b' Thus h E~. Hence ranG ~~. 

Now to show that LGf = f. If h = Gf, L(h) = -h" + qh = 
-[c-Ihahbf + Hah'b + h~Hb - c-lh~hbfl + q(Hahb + haHb) = (-h'b + 
qhb)Ha + (-h~ + qha)Hb + c-I(h~hb - hahb)f = f since L(h a) = 

L(hb) = 0 and h~hb - hahb = W = c. 
If h E!!fl, then Lh E L2[a, bj. So by the first part of the proof, LGLh = 

Lh. Thus 0 = L(GLh - h). Since ker L = (0), h = GLh and so h E ranG . 

• 
6.10. Corollary. Assume (6.4). If h E!!fl, A E C, and Lh = Ah, then 
Gh = A -Ih. If h E L2[a, bj and Gh = A -Ih, then h E!!fl and Lh = Ah. 

PROOF. This is immediate from the theorem. • 

6.11. Lemma. Assume (6.4). If a E O"p(G), then dimker(G - a) = l. 

PROOF. Suppose there are linearly independent functions hI' h2 in ker(G -
a). By (6.10), hI' h2 are solutions of the equation 

-h" +(q - a-I)h = O. 

Since this is a second-order linear differential equation, every solution of it 
must be a linear combination of hI and h 2. But hI' h2 E !!fl so they satisfy 
(6.2). But a solution can be found to this equation satisfying any initial 
conditions at a-and thus not satisfying (6.2). This contradiction shows 
that linearly independent hI' h2 in ker(G - a) cannot be found. • 

6.12. Theorem. Assume (6.4). Then there is a sequence {AI' A2 , ••• } of real 
numbers and a basis {e I , e2, . .. } for L 2[a, b j such that 

(a) 0 < lAd < IA21 < ... and An ----> 00. 

(b) en E ~ and Len = Anen for all n. 
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(c) If A '* An for any An andf E L2[a, b], then there is a unique h in ~ with 
Lh - Ah = f. 

(d) If A = An for some nand f E L2[a, b], then there is an h in ~ with 
Lh - Ah = f if and only if (j, en) = O. If (j, en) = 0, any two solutions 
of Lh - Ah = f differ by a multiple of en' 

PROOF. Parts (a) and (b) follow by Theorem 5.1, Corollary 6.10, and Lemma 
6.11. For parts (c) and (d), first note that 

6.13 Lh - Ah = f if and only if h - AGh = Gf. 

This is, in fact, a straightforward consequence of Theorem 6.9. 
(c) If A '* An for any n, A-I $. O'p(G). Since G = G*, Corollary 4.15 

implies G - A -1 is bijective. So if f E L 2[ a, b], there is a unique h in 
L2[a, b] with Gf = (A -1 - G)h. Thus h E ~ and (6.13) implies L(h/A) -
A(h/A) = f. 

(d) Suppose A = An for some n. If Lh - Anh = f, then h - AnGh = Gf. 
Hence (Gf, en) = (h,en) - AiGh,en) = (h,en> - An(h, Gen> = (h,en) 
- AnA;;I(h, en) = O. So 0 = (Gf, en) = (j,Gen) = An(j,en). Hence f..l 
en' 

Since Cen = ker(G - A;;I), [en] -L == JV' reduces G. Let G1 = GIJV'. So GI 
is a compact self-adjoint operator on JV' and An $. O'p(G1). By (4.15), 
ran(G l - An) = JV'. As in the proof of (c), if f..l en' there is a unique h in 
JV' such that Lh - Anh = f. Note that h + aen is also a solution. If hI' h2 
are two solutions, hI - h2 E ker(L - An)' so hI - h2 = aen. • 

What happens if ker L '* (O)? In this case it is possible to find a real 
number p. such that ker( L - p.) = (0) (Exercise 6). Replacing q by q - p., 
Theorem 6.12 now applies. More information on this problem can be found 
in Exercises 2 through 5. 

EXERCISES 

1. Consider the Sturm-Liouville operator Lh = -h" with a = 0, b = 1, and for 
each of the following boundary conditions find the eigenvalues {An}, the 
eigenvectors {en}' and the Green function g(x, y): (a) h(O) = h(l) = 0; (b) 
h'(O) = h'(l) = 0; (c) h(O) = 0 and h'(l) = 0; (d)h(O) = h'(O) and h(l) = - h'(l). 

2. In Theorem 6.12 show that L~~1'\;;-2 < 00 (see Exercise 5.3). 

3. In Theorem 6.12 show that h EP) if and only if hE L 2 [a,b] and 
L~~lA2nl< h, en )12 < 00. If h E P), show that h(x) = L~~l (h, en)en(x), where 
this series converges uniformly and absolutely on [a, b ]. 

4. In Theorem 6.12(c), show that h(x) = E~~l(An - A)-lU, en)e,,(x) and this 
series converges uniformly and absolutely on [a, b ]. 

5. In Theorem 6.12(d), show that if j.l en and Lh - Anh = j, then h(x) = 

Lj*n(Aj - An)-l(j,e)ej(x) + aen(x) for some a, where the series converges 
uniformly and absolutely on [a, b ]. 
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6. This exercise demonstrates how to handle the case in which ker L '* (0). (a) If 
h,g E C(l)[a,b] with h',g' absolutely continuous and h",g" E L2[a,bJ, show 
that 

t(h"g - hg") = [h'(b)g(b) - h(b)g'(b)] -[h'(a)g(a) - h(a)g'(a)]. 
a 

(b) If h, g E f2, show that (Lh, g) = (h, Lg). (The inner product is in L 2 [a, b ].) 
(c) If h, g E f2 and J\., p. E IR, J\. '* p., and if hE ker(L - J\.), g E ker(L - p.), 
then h 1.. g. (d) Show that there is a real number p. with ker( L - p.) = (0). 

§7 *. The Spectral Theorem and Functional Calculus 
for Compact Normal Operators 

We begin by characterizing the operators that commute with a diagonaliz­
able operator. If one considers the definition of a diagonalizable operator 
(4.6), it is possible to reformulate it in a way that is more tractable for the 
present purpose and closer to the form of a compact self-adjoint operator 
given in (5.2). Unlike (4.6), it will not be assumed that the underlying 
Hilbert space is separable. 

7.1. Proposition. Let {P;: i E I} be a family of pairwise orthogonal pro­
jections in ~(Yf'). (That is, P;Pj = PjPi = 0 for i 0/= j.) If h E Yf', then 
Li {Pih: i E I} converges in Yf' to Ph, where P is the projection of Yf' onto 
V{ P;Yf': i E I}. 

This appeared as Exercise 3.5 and its proof is left to the reader. 
If {P;: i E I} is as in the preceding proposition and .A; = PiYf', then 

with the notation of Definition 3.4, P is the projection of Yf' onto EEl i.A;. 
Write P = L;P;. A word of caution here: Ph = L;P;h, where the conver­
gence is in the norm of Yf'. However, LiPi does not converge to P in the 
norm of ~(Yf'). In fact, it never does unless I is finite (Exercise 1). 

7.2. Definition. A partition of the identity on Yf' is a family {Pi: i E I} of 
pairwise orthogonal projections on Ye such that V;P;Yf'= Yf'. This might be 
indicated by 1 = LiP; or 1 = EEl iPi' [Note that 1 is often used to denote the 
operator on Yf' defined by 1(h) = h for all h. Similarly if 0: E IF, 0: is the 
operator defined by o:(h) = o:h for all h.] 

7.3. Definition. An operator A on Ye is diagonalizable if there is a 
partition of the identity on Ye, {P;: i E I}, and a family of scalars {O:i: 
i E I} such that supilo:;1 < 00 and Ah = o:;h whenever h E ran Pi' 

It is easy to see that this is equivalent to the definition given in (4.6) when 
Yf' is separable (Exercise 2). Also, IIA II = sup;lo:J 
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To denote a diagonalizable operator satisfying the conditions of (7.3), 
write 

or 

Note that it was not assumed that the scalars a i in (7.3) are distinct. 
There is no loss in generality in assuming this, however. In fact, if a i = ai' 
then we can replace Pi and Pj with Pi + Pj. 

7.4. Proposition. An operator A on Yf' is diagonalizable if and only if there 
is an orthonormal basis for Yf' consisting of eigenvectors for A. 

PROOF. Exercise. 

Also note that if A = EEl iaiPi' then A* = EEl /XiPi and A IS normal 
(Exercise 5). 

7.5. Theorem. If A = EEl iaiPi is diagonalizable and all the a, are distinct, 
then an operator B in g$( Yf') satisfies AB = BA if and only if for each i, 
ran Pi reduces B. 

PROOF. If all the ai are distinct, then ran P, = ker(A - aJ. If AB = BA 
and Ah = aih, then ABh = BAh = B(aih) = aiBh; hence Bh E ran P, 
whenever h E ran Pi. Thus ran Pi is left invariant by B. Therefore B leaves 
V {ran p/ j * i} = f; invariant. But since EEl iPi = 1, fi, = (ran Pi) ~ . 
Thus ran Pi reduces B. 

Now assume that B is reduced by each ran Pi. Thus BPi = PiB for all i. 
If h E Yf', then Ah = LiaiPih. Hence BAh = LiaiBPh = L,a,PBh = ABh. 
(Why is the first equality valid?) • 

Using the notation of the preceding theorem, if AB = BA, let Bi = 

Blran Pi. Then it is appropriate to write B = EEl iBi on Yf'= EEl i( PiYf'). One 
might paraphrase Theorem 7.5 by saying that B commutes with a diagonal­
izable operator if and only if B can be "diagonalized with operator entries." 

7.6. Spectral Theorem for Compact Normal Operators. If T is a compact 
normal operator on the complex Hilbert space yf', {AI' A2 , ... } are the 
distinct nonzero eigenvalues of T, and Pn is the projection of yf' onto 
ker(T - An), then PnPm = PmPn = 0 if n * m and 

00 

7.7 

where this series converges to T in the metric defined by the norm on g$( yf'). 

PROOF. Let A = (T + T*)/2, B = (T - T*)/2i. So A, B are compact 
self-adjoint operators, T = A + iB, and AB = BA since T is normal. The 
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idea of the proof is rather simple. We'll get started in this proof together but 
the reader will have to complete the details. 

By Theorem 5.1, A = EfanEn, where an E R, an *- am if n *- m, and En 
is the projection of .Jft' onto ker(A - an). Since AB = BA, the idea is to 
use Theorem 7.5 and Theorem 5.1 applied to B to diagonalize A and B 
simultaneously; that is, to find an orthonormal basis for .Jft' consisting of 
vectors that are simultaneously eigenvectors of A and B. 

Since BA = AB, En.Jft'=!I!n reduces B for every n (7.5). Let Bn = BI!I!n; 
then Bn = Bn* and dim!l!n < 00. Applying (5.1) to Bn (or, rather, the 
corresponding theorem from linear algebra) there is a basis {e;n): 1 ~ j ~ 
d n} for!l!n and real numbers {f3P): 1 ~ j ~ d n} such that Bne;n) = f3p)e;n). 
Thus Te(n) = Ae(n) + iBe(n) = (a + i{J(n»e(n) 

) ) ) n p) ). 

Therefore {e;n): 1 ~ j ~ dn, n ~ 1} is a basis for cl(ran A) consisting of 
eigenvectors for T. It may be that cl(ran A) *- cl(ran T). Since B is reduced 
by ker A = (ran A).L and Bo = Biker A is a compact self-adjoint operator, 
there is an orthonormal basis {e;O>: j ~ 1} for cl(ran Bo) and scalars {f3}O): 
j . > 1} such that Be(O) = (J(O)e(O) It follows that Te(O) = i{J(O)e(O) Moreover 

- ) p)). ) p) J. , 

ker T <:::; ker Anker B, so cl(ran T) <:::; cl(ran A) $ cl(ran Bo). 
The remainder of the proof now consists in a certain amount of book­

keeping to gather together the eigenvectors belonging to the same eigenval­
ues of T and the performing of some light housekeeping chores to obtain 
the convergence of the series (7.7) • 

7.8. Corollary. With the notation of (7.6): 

(a) kerT= [V{Pn.Jft': n ~ 1}].L; 
(b) each Pn has finite rank; 
(c) IITII = suP{IAnl: n ~ 1} and An ~ 0 as n ~ 00. 

The proof of (7.8) is similar to the proof of (5.3). 

7.9. Corollary. If T is a compact operator, then T is normal if and only if T 
is diagonalizable. 

If T is a normal operator which is not necessarily compact, there is a 
spectral theorem for T which has a somewhat different form. This theorem 
states that T can be represented as an integral with respect to a measure 
whose values are not numbers but projections on a Hilbert space. Theorem 
7.6 will be a consequence of this more general theorem and correspond to 
the case in which this projection valued measure is "atomic." 

The approach to this more general spectral theorem will be to develop a 
functional calculus for normal operators T. That is, an operator cf>(T) will 
be defined for every bounded Borel function cf> on C and certain properties 
of the map cf> ~ cf>(T) will be deduced. The projection valued measure will 
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then be obtained by letting p.(Ll) = Xil(T). These matters are taken up in 
Chapter IX. 

At this point, Theorem 7.6 will be used to develop a functional calculus 
for compact normal operators. For the remainder of this section £ is a 
complex Hilbert space. 

7.10. Definition. Denote by loo(C) all the bounded functions cf>: C ~ C. If 
T is a compact normal operator satisfying (7.7), define cf>(T): £~ £ by 

00 

cf>(T) = L cf>(An}Pn + cf>(O}po, 
n~l 

where Po = the projection of £ onto ker T. 

Note that cf>(T) is a diagonalizable operator and 11cf>(T)11 
sup{Icf>(O)I, 1cf>(A1)1, ... } (4.6). Much more can be said. 

7.11. Functional Calculus for Compact Normal Operators. If T is a compact 
normal operator on a C-Hilbert space £, then the map cf> ~ cf>(T) of 
loo(C) ~ [$( £) has the following properties: 

(a) cf> ~ cf>(T) is a multiplicative linear map of loo(C) into [$(£). If cf> == 1, 
<p(T) = 1; if cf>(z) = z, then cf>(T) = T. 

(b) 11cf>(T)11 = sUp{Icf>(A)I: A E a/T)}. _ 
(c) cf>(T)* = cf>*(T), where cf>* is the function defined by cf>*(z) = cf>(z}. 
(d) If A E [$(£) and AT = TA, then Acf>(T) = cf>(T)A for all cf> in loo(C). 

PROOF. Adopt the notation of Theorem 7.6 and (7.10). 
(a) If cf>, l} E loo(C), then (cf>l})(z) = cf>(z)l}(z) for z in C. Also. 

cf>(T)l/;(T)h = [cf>(O)Po + Lcf>(An)PnUl}(O)Po + Ll}(Am)Pm]h = [cf>(O)Po + 
Lncf>(An)Pn][ l}(O)Poh + Lml}(Am)Pmh]. Since PnPm = 0 when n =1= m, this 
gives that cf>(T)l/;(T)h = cf>(O)l}(O)Poh + Lncf>(An)l}(An)Pnh = (cf>l})(T)h. 
Thus cf> ~ cf>(T) is multiplicative. The linearity of the map is left to the 
reader. If cf>(z) == 1, then cf>(T) = l(T) = Po + L'::~IP" = 1 since 
{Po, PI"" } is a partition of the identity. If cf>(z) = z, cf>(An) = A" and so 
cf>(T) = T. 

Parts (b) and (c) follow from Exercise 5. 
(d) If AT= TA, Theorem 7.5 implies that PO£,PI£"" all reduce A. 

Fix h n in Pn£, n ~ O. If cf> E loo(C), then Ah n E Pn£ and so cf>(T)Ah" = 
cf>(An)Ah n = A(cf>(An)h n) = Acf>(T)h n. If h E £, then h = L'::~oh", where 
hn E Pn. Hence cf>(T)Ah = L'::~ocf>(T)Ahn = L'::~oAcf>(T)h" = Acf>(T)h. 
(Justify the first equality.) • 

Which operators on £ can be expressed as cf>(T) for some cf> in IOC(C)? 
Part (d) of the preceding theorem provides the answer. 
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7.12. Theorem. If T is a compact normal operator on a C-Hilbert space, 
then {cp(T): cp E lOO(C)} is equal to 

{B E 8il'( £'): BA = AB whenever AT = TA}. 

PROOF. Half of the desired equality is obtained from (7.11d). So let 
BE 8il'(£') and assume that BA = AB whenever AT = TA. Thus, B must 
commute with T itself. By (7.5), B is reduced by each Pn£,= Yi';., n ~ 0; 
put Bn = BIYi';.. Fix n ~ 0 for the moment and let An be any bounded 
operator in 8il'(Yi';.). Define Ah = Anh if h E Yi';. and Ah = 0 if h E £'m' 
m =1= n, and extend A to £' by linearity; so A = EB :::~oAm where Am = 0 if 
m =1= n. By (7.5), AT = TA; hence BA = AB. This implies that BnAn = 

AnBn' Since An was arbitrarily chosen from 8il'(Yi';.), Bn = f3n for some f3n 
(Exercise 7). If cp: C -> C is defined by cp(O) = 130 and cp( An) = f3n for 
n ~ 1, then B = cp(T). • 

7.13. Definition. If A E 8il'(£'), then A is positive if (Ah, h) ~ 0 for all h 
in £'. In symbols this is denoted by A ~ O. 

Note that by Proposition 2.12 every positive operator is self-adjoint. 

7.14. Proposition. If T is a compact normal operator, then T is positive if 
and only if all its eigenvalues are positive real numbers. 

PROOF. Let T = If'AnPn. If T ~ 0 and h E Pn£' with IIhil = 1, then 
Th = Anh. Hence An = (Th, h) ~ O. Conversely, assume each An ~ O. If 
hE£', h = ho + '£':~lhn' where ho E ker T and hn E Pn£' for n ~ l. 
Then Th = Lf'Anhn' Hence (Th, h) = (L'::~lAnhn' ho + L~~lhm) = 

I'::~lI~~OAn<hn' hm) = L'::~lAnllhnll2 ~ 0 since (hn' hm) = 0 when n =1= m . 

• 
7.15. Theorem. If T is a compact self-adjoint operator, then there are unique 
positive compact operators A, B such that T = A - Band AB = BA = O. 

PROOF. Let T = L'::~lAnPn as in (7.6). Define cp,1/;: C -> C by CP(An) = An 
if An> 0, cp(z) = 0 otherwise; 1/;(An) = -An if An < 0, 1/;(z) = 0 other­
wise. Put A = cp(T) and B = 1/;(T). Then A = I{ AnPn: An > O} and 
B = I{ -AnPn: An < OJ. Thus T = A-B. Since cp1/; = 0, AB = BA = 0 
by (7.11a). Since cp, 1/; ~ 0, A, B ~ 0 by the preceding proposition. It 
remains to show that A, B are unique. 

Suppose T = C - D where C, D are compact positive operators and 
CD = DC = O. It is easy to check that C and D commute with T. Put 
A 0 = 0 and Po = the projection of £' onto ker T. Thus C and Dare 
reduced by Pn£,= Yi';. for all n ~ O. Let Cn = ClYi';. and Dn = DIYi';.. SO 
CnDn = DnCn = 0, AnPn = TIYi';. = Cn - Dn, and Cn' Dn are positive. Sup­
pose An > 0 and let h E Yi';.. Since CnDn = 0, kerCn ~ cl[ran Dnl = 
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(ker Dn) 1-. So if h E (ker Dn) 1-, then Anh = - Dnh. Hence Anllhl12 = 
-(Dnh,h).::; O. Thus h = 0 since An> O. That is, kerDn =£;,. Thus 
Dn = 0 = BI£;, and Cn = AnPn = AI£;,. Similarly, if An < 0, Cn = 0 = 
AI£;, and Dn = -AnPn = BI£;'· On £0' TI£o = 0 = Co - Do· Thus Co 
= Do. But 0 = CoDo = Cg.. Thus 0 = (Cg.h, h) = IICohI12, so Co = 0 = 
A 1£0 and Do = 0 = BI£o. Therefore C = A and D = B. • 

Positive operators are analogous to positive numbers. With this in mind, 
the next result seems reasonable. 

7.16. Theorem. If T is a positive compact operator, then there is a unique 
positive compact operator A such that A 2 = T. 

PROOF. Let T = '['::~lAnPn as in the Spectral Theorem. Since T ~ 0, An > 0 
for all n (7.14). Let </>(An) = A1f2 and </>(z) = 0 otherwise; put A = </>(T). 
It is easy to check that A ~ 0; A = r.rA!f2Pn so that A is compact; and 
A2 = T. 

The proof of uniqueness is left to the reader. • 

EXERCISES 

1. If {Pn } is a sequence of pairwise orthogonal nonzero projections and P = LPn' 

show that liP - Lj~lljll = 1 for all n. 

2. If £' is separable, show that the definitions of a diagonalizable operator in (4.6) 
and (7.3) are equivalent. 

3. If A = La; P; as in (7.3), show that A is compact if and only if: (a) a, = 0 for 
all but a countable number of i; (b) P; has finite rank whenever a; "* 0; (c) if 
{ aI' a 2 , •.• } = {a;: a; "* O}, then an -> 0 as n --> 00. 

4. Prove Proposition 7.4. 

5. If A = ffi,a;P;, show that A* = ffi;a;P;, A is normal, and IIAII = sup{la,l: 
i E I}. 

6. Give the remaining details in the proof of (7.6). 

7. If A E PA(£') and AT = TA for every compact operator T, show that A is a 
multiple of the identity operator. 

8. Suppose T is a compact normal operator on a C-Hilbert space such that 
dimker(T - A) :0;; 1 for all A in C. Show that if A E PA(£') and AT = TA, 
then A = </>(T) for some </> in {OO(C). 

9. Prove a converse to Exercise 8: if T is a compact normal operator such that 
{A E PA(£'): AT = TA} = {</>(T): </> E {OO(C)}, then dimker(T - A) :0;; 1 for 
allAinC. 

10. Let T be a compact normal operator and show that ker(T - A) :0;; 1 for all A in 
C if and only if there is a vector h in £' such that {p(T)h: p i~ a polynomial 
in one variable} is dense in £'. (Such a vector h is called a cyclic vector for T.) 
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11. If A E C, let 8h be the unit point mass at A; that is, 8h is the measure on C 
such that 8h (L1) = 1 if A EL1 and 8h (L1) = 0 if A$. .1. If {A1 ,A 2 , ... } are 
distinct complex numbers and {an} is a sequence of real numbers with an > 0 
and Lnan < 00, let JL = L~~lan8h ; so JL is a finite measure. If cf> E IOC(C), let 
M.p be the multiplication operat~r on L 2(JL). Define T: L2 (JL) -> L2 (JL) by 
(Tf)(An) = Anf(An). Prove: (a) T is a normal operator; (b) T has a cyclic 
vector (see Exercise 10); (c) if A E !J6(Jt') and AT = TA, then A = M.p for 
some cf> in lOO(C); (d) T is compact if and only if An -> O. (e) Find all of the 
cyclic vectors for T. (f) If T is compact, find the decomposition (7.7) for T. 

12. Using the notation of Theorem 7.11, give necessary and sufficient conditions on 
T and cf> that cf>(T) be compact. (Hint: consider separately the cases where ker T 
is finite or infinite dimensional.) 

13. Prove the uniqueness part of Theorem 7.16. 

14. If T E !J6(£), show that T*T ~ O. 

15. Let T be a compact normal operator and show that there is a compact positive 
operator A and a unitary operator U such that T = UA = A U. Discuss the 
uniqueness of A and U. 

16. (Polar decomposition of compact operators.) Let T E !J6o(Jt') and let A be the 
unique positive square root of T*T [(7.16) and Exercise 14]. (a) Show that 
IIAhll = II Thll for all h in Jt'. (b) Show that there is a unique operator U such 
that II Uhll = IIhll when h .1 ker T, Uh = 0 when h E ker T, and UA = T. (c) If 
U and A are as in (a) and (b), show that T = A U if and only if T is normal. 

17. Prove the following uniqueness statement for the functional calculus (7.11). If T 
is a compact normal operator on a C-Hilbert space Jt' and 7': lOO(C) -> !J6(Jt') 

is a multiplicative linear map such that 117'(cf»11 = sUp{Icf>(A)II: A E ap(T)}, 
7'(1) = 1, and 7'(z) = T, then 7'(</» = </>(T) for every cf> in {OO(C). 

§8*. Unitary Equivalence for Compact 
Normal Operators 

In Section 1.5 the concept of an isomorphism between Hilbert spaces was 
defined as the natural equivalence relation on Hilbert spaces. This equiv­
alence relation between the spaces induces a natural equivalence relation 
between the operators on the spaces. 

8.1. Definition. If A, B are bounded operators on Hilbert spaces ..Ye, r, 
then A and B are unitarily eqUivalent if there is an isomorphism U: ..Ye -> r 
such that UAU- 1 = B. In symbols this is denoted by A ~ B. 

Some of the elementary properties of unitary equivalence are contained in 
Exercises 1 and 2. Note that if UAU- 1 = B, then UA = BU. 
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The purpose of this section is to give necessary and sufficient conditions 
that two compact normal operators are unitarily equivalent. Later, in 
Section IX.10, necessary and sufficient conditions that any two normal 
operators be unitarily equivalent are given and the results of this section are 
subsumed by those of that section. 

8.2. Definition. If T is a compact operator, the multiplicity function for T 
is the function m T: C ~ C U {oo} defined by mT(A) = dimker(T - A). 

Hence mT(A) Z 0 for all A and mT(A) > 0 if and only if A is an 
eigenvalue for T. Note that by Proposition 4.13, mT(A) < 00 if A "* O. 

If T, S are compact operators on Hilbert spaces and U: .:It' ~ f is an 
isomorphism with UTU- 1 = S, then U ker(T - A) = kereS - A) for every 
A in C. In fact, if Th = Ah, then SUh = UTh = AUh and so Uh E 

kereS - A). Conversely, if k E kereS - A) and h = U-1k, then Th = 
TU-1k = U-1Sk = Ah. In particular, it must be that m T = ms. If Sand T 
are normal, this condition is also sufficient for unitary equivalence. 

8.3. Theorem. Two compact normal operators are unitarily equivalent if and 
only if they have the same multiplicity function. 

PROOF. Let T, S be compact normal operators on Hilbert spaces .:It', f. If 
T ~ S, then it has already been shown that m T = ms. Suppose now that 
m T = m s' We must manufacture a unitary operator U: .:It' ~ f such that 
UTU- 1 = S. 

Let T = L':~lAnPn and let S = L':~lfLnQn as in the Spectral Theorem 
(7.6). So if n "* m, then An "* Am and fLn "* fL m , and each of the projections 
Pn and Qn has finite rank. Let Po, Qo be the projections of .:It', f onto 
kerT, kerS; so Po = (Lr'Pn)-L and Qo = (Lr'Qn)-L· Put Ao = flo = O. 

Since m T = m s' 0 < mT(A n) = ms(An)' Hence there is a unique fLj such 
that Ilj = An" Define '!T: 1\1 ~ 1\1 by letting fL,,(n) = An' Let '!T(O) = O. Note 
that '!T is one-to-one. Also, since 0 < ms(fLn) = mT(fLn)' for every n there is 
a j such that '!T(j) = n. Thus '!T: 1\1 U {O} ~ 1\1 U {O} is a bijection or 
permutation. Since dim Pn = mT(A n) = ms(Il,,(n) = dim Q,,(n)' there is an 
isomorphism Un: Pn.:lt'~ Q,,(n)f for n z O. Define U: .:It'~ f by letting 
U = Un on Pn.:lt' and extending by linearity. Hence U = EB ::~oUn' It is easy 
to check that U is an isomorphism. Also, if h E Pn.:lt', n z 0, then UTh = 

A"uh = 1l,,(nPh = SUh. Hence UTU- 1 = S. • 

If V is the Volterra operator, then mv == 0 (4.11) and V and the zero 
operator are definitely not unitarily equivalent, so the preceding theorem 
only applies to compact normal operators. There are no known necessary 
and sufficient conditions for two arbitrary compact operators to be unitarily 
equivalent. In fact, there are no known necessray and sufficient conditions 
that two arbitrary operators on a finite-dimensional space be unitarily 
equivalent. 
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EXERCISES 

1. Show that" unitary equivalence" is an equivalence relation on ~(£'). 

2. Let U: £,->:f be an isomorphism and define p: ~(£') -> ~(:f) by peA) = 

UAU- 1• Prove: (a) IIp(A)1I = IIAII, p(A*) = p(A)*, and p is an isomorphism 
between the two algebras ~(£') and ~(:f). (b) peA) E ~o(:f) if and only if 
A E ~o(£'). (c) If T E ~(£'), then AT = TA if and only if p(T)p(A) = 

p(A)p(T). (d) If A E ~(£') and vi{ ~ £', then vi{ is invariant (reducing) for 
A if and only if UvI{ is invariant (reducing) for peA). 

3. Say that an operator A on £' is irreducible if the only reducing subspaces for A 
are (0) and £'. Prove: (a) The Volterra operator is irreducible. (b) The unilateral 
shift is irreducible. 

4. Suppose A = EEl {Ai: i E I} and B = EEl {Bi: i E l} where each Ai and B, is 
irreducible (Exercise 3). Show that A ;;: B if and only if there is a bijection 
'TT: I -> I such that Ai ;;: B.,,(i)' 

5. If T is a compact normal operator and mT = m is its multiplicity function, 
prove: (a) {A: meA) > O} is countable and 0 is its only possible cluster point; 
(b) meA) < 00 if A*' O. Show that if m: C -> N u {O, oo} is any function 
satisfying (a) and (b), then there is a compact normal operator T such that 
m T = m. 

6. Show that two projections P and Q are unitarily equivalent if and only if 
dim(ran P) = dim(ran Q) and dim(ker P) = dim(kerQ). 

7. Let A: L2(0, 1) -> L2(0, 1) be defined by (Af)(x) = x/ex) for / in L2(0,1) and 
x in (0,1). Show that A ;;: A2. 

8. Say that a compact normal operator T is simple if m T ~ 1. (See Exercises 7.10 
and 7.11.) Show that every compact normal operator T on a separable Hilbert 
space is unitarily equivalent to EEl:: 1 T", where each T" is a simple compact 
normal operator and mTn ~ m Tn + 1 for all n. Show that II T"II --> O. (Of course, 
there may only be a finite number of T".) 

9. Using the notation of Exercise 8, suppose also that S is a compact normal 
operator and S;;: EEl:~ 1 Sn' where Sn is a simple compact normal operator and 
mSn ~ m Sn + 1 for all n. Show that T;;: S if and only if T" ;;: Sn for all n. 

lO. If T is a compact normal operator on a separable Hilbert space, show that there 
are simple compact normal operators T1, T2 , • •. such that T ;;: 0 E9 Tl E9 TP) E9 
7;(3) E9 ... , where: (a) for any operator A, A(n):: A E9 ... E9A (n times); (b) 0 
is the zero operator on an infinite-dimensional space; (c) for n *' k, m7~ m Tk :: 0; 
and (d) if ker T is infinite dimensional, then ker T" = (0) for all n. (Of course 
not all of the summands need be present.) Show that IIT"II -> O. 

11. Using the notation of Exercise 10, let S be a compact normal operator and let 
o E9 Sl E9 Sf) E9 ... be the corresponding decomposition. Show that T ;;: S if 
and only if T" ;;: Sn and ker T and ker S have the same dimension. 

12. If T is a compact normal operator, show that T and T E9 T are not unitarily 
equivalent. 



64 II. Operators on Hilbert Space 

l3. Give an example of a nontrivial operator T such that T 2< T E!) T. Show that if 
T 2< T E!) T, then T 2< T E!) T E!) •••. Characterize the diagonalizable normal 
operators T such that T 2< T E!) T. 

14. Let JIll be the space defined in Example 1.1.8 and let U: JIll-> [}(O, 1) be the 
isomorphism defined by U/= f' (Exercise 1.1.4). If (Af)(x) = x/ex) for / in 
JIll, what is UAU- 1? 



CHAPTER III 

Banach Spaces 

The concept of a Banach space is a generalization of Hilbert space. A 
Banach space assumes that there is a norm on the space relative to which 
the space is complete, but it is not assumed that the norm is defined in terms 
of an inner product. There are many examples of Banach spaces that are not 
Hilbert spaces, so that the generalization is quite useful. 

§1. Elementary Properties and Examples 

1.1. Definition. If ?f is a vector space over IF, a seminorm is a function 
p: ?f ~ [0,(0) having the properties: 

(a) p(x + y) .::;; p(x) + p(y) for all x, y in ?f. 
(b) p(ax) = laiJJ(x) for all a in IF and x in ?f. 

It follows from (b) that p(O) = O. A norm is a seminorm p such that 

(c) x = 0 if p(x) = O. 

Usually a norm is denoted by II . II. 
The norm on a Hilbert space is a norm. Also, the norm on ~(£) is a 

norm. 
If ?f has a norm, then d(x, y) = Ilx - yll defines a metric on ?f. 

1.2. Definition. A normed space is a pair (?f, II . II), where ?f is a vector 
space and II . II is a norm on ?f. A Banach space is a normed space that is 
complete with respect to the metric defined by the norm. 
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1.3. Proposition. If 9: is a normed space, then 

(a) the function 9: X 9: ~ 9: defined by (x, y) >-+ x + Y is continuous; 
(b) the function IF X 9: ~ 9: defined by (a, x) >-+ ax is continuous. 

PROOF. If xn ~ x and Yn ~ y, then II(xn + Yn) - (x + y)11 = II(xn - x) + 
(Yn - y)11 :5: Ilxn - xii + llYn - yll ~ 0 as n ~ 00. This proves (a). The 
proof of (b) is left to the reader. • 

The next lemma is quite useful. 

1.4. Lemma. If p and q are seminorms on a vector space 9:, then the 
following statements are equivalent. 

(a) p(x):5: q(x) for all x. (That is, p :5: q.) 
(b) {x E 9:: q(x) < I)} ~ {x E 9:: p(x) < I}. 
(b') p(x) < 1 whenever q(x) < 1. 
(c) {x: q(x):5: I} ~ {x: p(x):5: I}. 
(c') p(x):5: 1 whenever q(x) :5: 1. 
(d) {x: q(x) < I} ~ {x: p(x):5: I}. 
(d') p(x) :5: 1 whenever q(x) < 1. 

PROOF. It is clear that (b) and (b'), (c) and (c'), and (d) and (d') are 
equivalent. It is also clear that (a) implies all of the remaining conditions 
and that (b) implies (d). It will be shown that (d) implies (a). The proof that 
(c) implies ( a) is left as an exercise. 

Assume that (d) holds and put q(x) = a. If e > 0, then q«a + erlx) = 
(0: + e)-Ia < 1. By (d), 1 ~p«a + e)-Ix) = (a + e)-Ip(x), so p(x):5: a 
+ e = q(x) + e. Letting e ~ 0 shows (a). • 

If II . III and II . liz are two norms on 9:, they are said to be equivalent 
norms if they define the same topology on 9:. 

1.5. Proposition. If II . III and II . 112 are two norms on 9:, then these norms 
are equivalent if and only if there are positive constants c and C such that 

for all x in 9:. 

PROOF. Suppose there are constants c and C such that cllxlll :5: IIxl12 :5: 

Cllxlll for all x in 9:. Fix Xo in 9:, e> O. Then 

{x E 9:: Ilx - xoll l < elC} ~ {x E 9:: Ilx - xol12 < e}, 

{x E 9:: Ilx - xol12 < ce} ~ {x E 9:: Ilx - xoI1 1 < e}. 

This shows that the two topologies are the same. Now assume that the two 
norms are equivalent. Hence {x: Ilxlll < I} is an open neighborhood of 0 in 
the topology defined by II . 112. Therefore there is an r> 0 such that {x: 
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IIxl12 < r} ~ {x: Ilxlll < I}. If q(X) = r- I llxll 2 and p(x) = Ilxlli, the pre­
ceding lemma implies Ilxlll S r- I llxll 2 or cllxlli s Ilxlb where c = r. The 
other inequality is left to the reader. • 

There are two types of properties of a Banach space: those that are 
topological and those that are metric. The metric properties depend on the 
precise norm; the topological ones depend only on the equivalence class of 
norms (see Exercise 4). 

1.6. Example. Let X be any Hausdorff space (all spaces in this book are 
assumed to be Hausdorff unless the contrary is specified) and let Cb ( X) = all 
continuous functions I: X ~ IF such that Ilill == sup{l/(x)l: x E X} < 00. 

For I, g in Cb(X), define (f + g): X ~ IF by (f + g)(x) = I(x) + g(x); 
for a in IF define (af)(x) = a/(x). Then Cb(X) is a Banach space. 

The proofs of the statements in (1.6) are all routine except, perhaps, for 
the fact that Cb(X) is complete. To see this, let Un} be a Cauchy sequence 
in Cb(X). So if e> 0, there is an integer N. such that for n, m ~ N" 
e> Il/n - Imll = suP{l/n(x) - Im(x)l: x E X}. In particular, for any x in 
X, I/n(x) - Im(x)1 s IIln - Imll < e when n, m ~ N,. So Un(x)} is a Cauchy 
sequence in IF. Let I(x) = limln(x) if x E X. Now fix x in X. If n, m ~ N" 
then I/(x) - In(x)1 s I/(x) - Im(x)1 + 111m - Inll < I/(x) - Im(x)1 + e. 
Letting m ~ 00 gives that If(x) - In(x)1 s e when n ~ N,. This is indepen­
dent of x. Hence III - Inll s e for n ~ N,. 

What has been just shown is that Ilf - Inll ~ ° as n ~ 00. Note that this 
implies that In(x) -~ I(x) uniformly on X. It is standard that I is continu­
ous. Also, 11/11 s III - Inll + IIlnll < 00. Hence IE Cb(X) and so Ch(X) is 
complete. 

Note that a linear subspace iflI of a Banach space !!{ that is topologically 
closed is also a Banach space if it has the norm of !!(. 

1.7. Proposition. II X is a locally compact space and Co(X) = all continuous 
lunctions I: X ~ IF such that lor all e > 0, {x E X: If(x)1 ~ e} is compact, 
then Co( X) is a closed subspace 01 C b( X) and hence is a Banach space. 

PROOF. That Co (X) is a linear manifold in C b (X) is left as an exercise. It 
will only be shown that Co(X) is closed in Cb(X). Let Un} ~ Co(X) and 
suppose In ~ I in Cb( X). If e > 0, there is an integer N such that 
IIln - III < e/2; that is, I/n(x) - l(x)1 < e/2 for all n ~ N and x in X. If 
I/(x)1 ~ e, then e s I/(x) - In(x) + In(x)1 s e/2 + I/n(x)1 for n ~ N; so 
I/n(x)1 ~ e/2 for n ~ N. Thus, {x E X: I/(x)1 ~ e} ~ {x E X: I/Nex)1 ~ 
e/2} so that IE CoeX). • 

The space Co( X) is the set of continuous functions on X that vanish at 
infinity. If X = ~, then Co(~) = all of the continuous functions I: ~ ~ IF 
such that limx~ ±oo/ex) = 0. If X is compact, CoeX) = Cb(X) == C(X). 
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If I is any set, then give I the discrete topology. Hence I becomes locally 
compact. Also any function on I is continuous. Rather than Ch ( I), the 
customary notation is 100 (1). That is, 100(1) = all bounded functions I: 
I -4 IF with 11111 = sup{I/(i)I: i E I}. Co(1) consists of all functions I: 
I -4 IF such that for every E > 0, {i E I: 1/(i)1 ::?: E} is finite. If I = r\!, the 
usual notation for these spaces is 100 and co. Note that 100 consists of all 
bounded sequences of scalars and Co consists of all sequences that converge 
to 0. 

1.8. Example. If (X, g, J-L) is a measure space and 1.:::; p .:::; 00, then 
L p ( X, g, J-L) is a Banach space. 

The preceding example is usually proved in courses on integration and no 
proof is given here. 

1.9. Example. Let I be a set and 1 .:::; p < 00. Define /P(1) to be the set of 
all functions I: I -4 IF such that E{I/(i)IP: i E I} < 00; and define lIill p = 

(E{I/(i)IP: i E I})l/p. Then IP(1) is a Banach space. If 1= r\!, then 
/P(r\!) = /P. 

If g = all subsets of I and for each.<:l in g, J-L(.<:l) = the number of points 
in .<:l if.<:l is finite and J-L(.<:l) = 00 otherwise, then /P(1) = LP(1,g,J-L). So 
the statement in (1.9) is a consequence of the one in (1.8). 

1.10. Example. Let n ::?: 1 and let c(n)[o, 1] = the collection of functions 
f: [0,1] -4 IF such that I has n continuous derivatives. Define lIill = 
sUPO<k<n{suP{IJ<k)(x)l: 0.:::; x.:::; I}}. Then c(n)[O, I] is a Banach space. 

1.11. Example. Let 1 .:::; P < 00 and n ::?: 1 and let Uj,n[o, 1] = the functions 
I: [0,1]-4 IF such that I has n - 1 continuous derivatives, l(n-1) is 
absolutely continuous, and I(n) E LP[O, 1]. For I in Uj,n[o, 1], define 

11 [ 1 ] lip 
Ilill = kr:o fa I/(k)(x)IP dx . 

Then Uj,1I[0, 1] is a Banach space. 

The following is a useful fact about seminorms. 

1.12. Proposition. lip is a seminorm on !!l", Ip(x) - p(Y)1 .:::; p(x - y) lor 
all x, y in !!l". II II . II is a norm, then Illxll - Ilylll .:::; Ilx - yll lor all x, y 
in !!l". 

PROOF. Of course, the inequality for norms is a consequence of the one for 
seminorms. Note that if x, y E!!l", p(x) = p(x - y + y) .:::; p(x - y) + 
p(y), so p(x) - p(y) .:::; p(x - y). Similarly, p(y) - p(x) .:::; p(x - y) . 

• 
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There is the concept of "isomorphism" for the category of Banach spaces. 

1.13. Definition. If gr and 0/ are normed spaces, gr and 0/ are isometri­
cally isomorphic if there is a surjective linear isometry from gr onto 0/. 

The term isomorphism in Banach space theory is reserved for linear 
bijections T: gr ~ 0/ that are homeomorphisms. 

EXERCISES 

1. Complete the proof of Proposition 1.3. 

2. Complete the proof of Proposition 1.5. 

3. For 1 "5, p < 00 and x = (Xl"'" x d ) in IF d , define Ilxllp = [L1~dxXll/p; 
define IIxlloo = sup{lxjl: 1 "5,j "5, d}. Show that all of these norms are equiv­
alent. For 1 "5, p, q"5, 00, what are the best constants c and C such that 
cllxllp "5, IIxll q "5, Cllxllp for all x in IFd? 

4. If 1 "5, p "5, 00 and II . lip is defined on IR 2 as in Exercise 3, graph {x E IR 2: 

IIxllp = I}. Note that if 1 < P < 00, Ilxlip = lIyllp = 1, and x"* y, then for 
0< t < 1, Iltx + (1 - t)Yllp < 1. The same cannot be said for p = 1,00. 

5. Let c = the set of all sequences {an}!, an in IF, such that lim an exists. Show 
that c is a closed subspace of [00 and hence is a Banach space. 

6. Let X = {n- 1 : n ~ I} U {O}. Show that C(X) and the space of c of Exercise 5 
are isometrically isomorphic. 

(a) Show that if 1 "5, p < 00 and f is an infinite set, then IP(l) has a dense set 
of the same cardinality as f. 

(b) Show that if 1 "5, P < 00, fP(I) and IP(J) are isometrically isomorphic if 
and only if f and J have the same cardinality. 

7. If 100 (1) and lOO(J) are isometrically isomorphic, do f and J have the same 
cardinali ty? 

8. Show that [00 is not separable. 

9. Complete the proof of Proposition 1.7. 

10. Verify the statements in Example 1.10. 

11. Verify the statements in Example 1.11. 

12. Let X be locally compact and let Xoo = xu {oo} be the one-point compactifi­
cation of X. Show that Co(X) and {f E C(Xoo): 1(00) = O}, with the norm it 
inherits as a subspace of C(Xoo ), are isometrically isomorphic Banach spaces. 

13. Let X be locally compact and define Cc(X) to be the continuous functions I: 
X ..... IF such that spt 1 = cl {x E X: 1 (x) "* O} is compact (spt 1 is the support 
of f). Show that Cc(X) is dense in Co(X). 
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14. If X is a metrizable locally compact space that is a-compact, then Co (X) is 
separable. (X is a-compact if X = U~~IKn' where each Kn is compact.) 

15. If W;'[O,l] is defined as in Example 1.11 and fE W;'[O,I], let Illflll == 
[flf(x)IP dX]I/p + [flf(n)(x)IP dX]I/p. Show that III . III is equivalent to the 
norm defined on W;' [0, 1]. 

16. Let :¥ be a normed space and let l' be its completion as a metric space. Show 
that l' is a Banach space. 

§2. Linear Operators on N armed Spaces 

This section gathers together a few pertinent facts and examples concerning 
linear operators on normed spaces. A fuller study of operators on Banach 
spaces will be pursued later. 

The proof of the first result is similar to that of Proposition 1.3.1 and is 
left to the reader [Also see (I1.1.1)]. !J8(:!r, <&") = all continuous linear 
transformations A: :!r -4 <&". 

2.1. Proposition. If :!r and <&" are normed spaces and A: :!r -4 <&" is a linear 
transformation, the following statements are equivalent. 

(a) A E !J8(:!r, <&"). 
(b) A is continuous at O. 
(c) A is continuous at some point. 
(d) There is a positive constant c such that IIAxl1 ::;; cllxll for all x in :!r. 

If A E Ba(:!r,<&") and 

IIAII = sup{IIAxll: Ilxll ::;; 1}, 

then 

IIAII = sup{IIAxll: Ilxll = 1} 

= sup{IIAxll/llxll: x"* O} 

= inf{ c > 0: IIAxll ::;; cllxll for x in :!r}. 

IIA II is called the norm of A and !J8(:!r, <&") becomes a normed space if 
addition and scalar multiplication are defined pointwise. !J8(:!r, <&") is Banach 
space if <&" is a Banach space (Exercise 1). A continuous linear operator is 
also called a bounded linear operator. 

The following examples are reminiscent of those that were given in 
Section 11.1. 

2.2. Example. If (X, a, p.) is a a-finite measure space and cp E LOO(X, a, p.), 
define Mq,: LP(X, a, p.) -4 LP(X, a, p.), 1 ::;; p ::;; 00, by Mq,f = cpf for all f 
in LP(X,a,p.). Then Mq, E !J8(LP(X,a,p.» and IIMq,11 = Ilcplloo' 
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2.3. Example. If (X,!2, fl), k, c1, and C2 are as III Example II.1.6 and 
1 ~ P ~ 00, then K: LP(fl) ~ LP(fl), defined by 

(Kf)(x) = !k(x,y)f(y)dfl(y) 

for all f in LP(fl) and x in X, is a bounded operator on LP(fl) and 
IIKII ~ d/qc~/p, where lip + 11q = 1. 

2.4. Example. If X and Yare compact spaces and r: Y ~ X is a 
continuous map, define A: C(X) ~ C(Y) by (Af)(y) = f( r(y». Then 
A E 86'(C(X), C(Y» and IIAII = 1. 

EXERCISES 

1. Show that !!I(:'£, OJI) is a Banach space if and only if OJI is a Banach space. 

2. Let:'£ be a normed space, let OJI be a Banach space, and let ii be the completion 
of :'£. Show that if p: !!I(ii, OJI) ..... !!I(:'£, OJI) is defined by p(A) = A 1:'£, then p is 
an isometric isomorphism. 

3. If (X, Q, /L) is a a-finite measure space, cj>: X ..... IF is an Q-measurable function, 
1 :-;; p :-;; 00, and cj>f E U(/L) whenever f E LP(/L), then show that cj> E LOO(/L). 

4. Verify the statements in Example 2.2. 

5. Verify the statements in Example 2.3. 

6. Verify the statements in Example 2.4. 

7. Let A and T be as in Example 2.4. (a) Give necessary and sufficient conditions 
on T that A be injective. (b) Give such a condition that A be surjective. (c) Give 
such a condition that A be an isometry. (d) If X = Y, show that A2 = A if and 
only if T is a retraction. 

§3. Finite-Dimensional Normed Spaces 

In functional analysis it it always good to see what significance a concept 
has for finite-dimensional spaces. 

3.1. Theorem. If:!£ is a finite-dimensional vector space over IF, then any two 
norms on :!£ are equivalent. 

PROOF. Let {e 1, _ .. , ed } be a Hamel basis for :!£. For x = L1~lXjej' define 
Ilxlloo == max{ Ix): 1 ~ j ~ d}. It is left to the reader to verify that II . 1100 is 
a norm. Let II . II be any norm on :!£. It will be shown that II . II and II . 1100 
are equivalent. 

If x = LjXjej, then IIxll ~ L)X) Ile)1 ~ Cllxlloo' when C = L)le)l. To 
show the other inequality, let .'T be the topology defined on :!£ by II . 1100 
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and let Ol/ be the topology defined on :!£ by II . II. Put B = {x EO :!£: 
IIxll 00 ~ 1}. The first part of the proof implies 3-;;2 Ol/. Since B is !1-compact 
and 3-;;2 Ol/, B is Ol/-compact and the relativizations of the two topologies to 
B agree. Let A = {x EO :!£: IIx II 00 < 1}. Since A is !1-open, it is open in 
(B, OU). Hence there is a set U in Ol/ such that U Ii B = A. Thus 0 EO U and 
there is an r > 0 such that {x EO:!£: IIxll < r} <:;;; u. Hence 

3.2 IIxll < rand IIxll 00 ~ 1 implies II xII 00 < 1. 

Claim. IIxll < r implies IIxlioo < 1. 

Let IIxll < r and put x = LXjej , a = Ilxlioo' So IIx/ali oo = 1 and x/a EO 
B. If a?: 1, then IIx/all < ria ~ r, and hence Ilx/all oo < 1 by (3.2), a 
contradiction. Thus IIxll 00 = a < 1 and the claim is established. 

By Lemma 1.4, Ilxlioo < r- 1l1xll for all x and so the proof is complete . 

• 
3.3. Proposition. If :!£ is a normed space and vIt is a finite dimensional 
linear manifold in :!£, then vIt is closed. 

PROOF. Let Xo E :!£\ vIt and put vitI = the linear span of vIt and {x 0 }. 
Define a norm II . ilIon vitI by IIx + aoxolll == IIxll + laol, for x in vIt 
and a o in IF. It is left as an exercise to show that II . III is a norm on vIt l' By 
Theorem 3.1 and Proposition 1.5, there are constants c and C such that 
cllx + aoxoll ~ IIxll + laol ~ Cllx + aoxoll for all x in vIt and a o in IF. 
Hence for all x in vIt, IIxo - xII ?: C-1(llxll + 1) ?: C- 1• Thus 0 < C- 1 ~ 
inf{ Ilxo - xII: x EO vIt} == dist(xo, vIt). That is, every point Xo not in vIt is 
at a positive distance from vIt. Hence vIt is closed. • 

3.4. Proposition. Let :!£ be a finite-dimensional normed space and let I!JI be 
any normed space. If T: :!£ ~ I!JI is a linear transformation, then T is 
continuous. 

PROOF. Since all norms on :!£ are equivalent and T: :!£ ~ I!JI is continuous 
with respect to one norm on :!£ precisely when it is continuous with respect 
to any equivalent norm, we may assume that IIL1~1~je)1 = max{ I~): 1 ~ j 
~ d}, where {ej } is a Hamel basis for :!£. Thus, for x = L~jej' II Txll = 
IILj~jTe)1 ~ Ljl~jIIlTe)1 ~ Cllxll, where C = L)ITe)l. By (2.1), T is con-
tinuous. • 

EXERCISES 

1. Show that if f[ is a locally compact normed space, then f[ is finite dimensional. 

2. Show that II . Ill, defined on vitI in the proof of Proposition 3.3, is a norm. 
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§4. Quotients and Products of N ormed Spaces 

Let :!l' be a normed space, let A be a linear manifold in :!l', and let Q: 
:!l' -4 :!l'/A be the natural map Qx = x + A. We want to make :!l'/A into a 
normed space, so define 

4.1 Ilx +.All = inf{lIx + yll: yEA}. 

Note that because A is a linear space, Ilx +.All = inf{ Ilx - yll: yEA} 
= dist(x, A), the distance from x to A. It is left to the reader to show that 
(4.1) defines a seminorm on :!l'/A. But if A is not closed in :!l', (4.1) cannot 
define a norm. (Why?) If, however, A is closed, then (4.1) does define a 
norm. 

4.2. Theorem. If A ~ :!l' and Ilx + All is defined as in (4.1), then II . II is a 
norm on :!l'/A. Also: 

(a) IIQ(x)11 ~ Ilxll for all x in :!l' and hence Q is continuous. 
(b) If :!l' is a Banach space, then so is :!l'/ A. 
(c) A subset Wof :!l'/A is open relative to the norm if and only if Q -leW) is 

open in :!l'. 
(d) If U is open in :!l', then Q(U) is open in :!l'/A. 

PROOF. It is left as an exercise to show that (4.1) defines a norm on :!l'/A. 
To show (a), IIQ(x)11 = Ilx + All ~ Ilxll since 0 E A; Q is therefore 
continuous by (2.1). 

(b) Let {x n + A} be a Cauchy sequence in :!l'/ A. There is a subsequence 
{x nk + A} such that 

lI(x nk +A) -(Xnk + 1 +A)II = Ilx nk - X nk + 1 +AII < 2- k . 

Let Y1 = O. Choose Yl in A such that 

Ilxnl - x n2 + Ylil ~ Ilxnl - x n , + All + 2- 1 < 2.2- 1. 

Choose Y3 in A such that 

II(xn + Yl) -(xn + Y3)11 ~ jlx n - xn +AII + 2- 2 < 2.2- 2 . 
2 3 2 3 

Continuing, there is a sequence {yd in A such that 

II(xnk + Yk) -( xnk+1 + Yk+1)11 < 2· 2- k • 

Thus {xnk + yd is a Cauchy sequence in :!l' (Why?). Since :!l' is complete, 
there is an Xo in :!l' such that x nk + Yk -4 Xo in :!l'. By (a), x nk + A = 
Q(xnk + Yk) -4 Qxo = Xo + A. Since {xn + A} is a Cauchy sequence, 
x n + A -4 X 0 + A and :!l'/ A is complete (Exercise 3). 

(c) If W is open in :!l'/A, then Q-l(W) is open in :!l' because Q is 
continuous. Now assume that W ~ :!l'/A and Q-l(W) is open in :!l'. Let 
r> 0 and put Br == {x E:!l': Ilxll < r}. It will be shown that Q(Br) = {x 
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+.A: Ilx +.AII < r}. In fact, if IIxll < r, then IIx +.AII ~ IIxll < r. On the 
other hand, if IIx + .All < r, then there is a y in .A such that IIx + yll < r. 
Thus x +.A = Q(x + y) E Q(Br). If Xo +.A E W, then Xo E Q-l(W). 
Since Q-l(W) is open, there is an r> 0 such that Xo + Br = {x: IIx - xoll 
< r} ~ Q-l(W). The preceding argument now implies that W = 

QQ-l(W) ~ Q(xo + Br) = {x +.A: IIx - Xo +.AII < r}. Hence W is 
open. 

(d) If U is open in ~, then Q-l(Q(U» = U +.A == {u + y: u E U, 
Y E.A} = U{U + y: y E .A}. Each U + y is open, so Q-l(Q(U» is open 
in f!£. By (c), Q(U) is open in ~/.A. • 

Because Q is an open map [part (d)], it does not follow that Q is a closed 
map (Exercise 4). 

4.3. Proposition. If f!£ is a normed space, .A ~ f!£, and .AI is a finite 
dimensional subspace of f!£, then .A + .AI is a closed subspace of f!£. 

PROOF. Consider f!£/.A and the quotient map Q: f!£ --> f!£/.A. Since 
dimQ(.AI) ~ dim.Al< 00, Q(.AI) is closed in ~/.A. Since Q is continuous 
Q-l(Q(.AI» is closed in ~; but Q-l(Q(.AI» =.A +.AI. • 

Now for the product or direct sum of normed spaces. Here there is a 
difficulty because, unlike Hilbert space, there is no canonical way to 
proceed. Suppose {~;: i E I} is a collection of normed spaces. Then O{ f!£;: 
i E I} is a vector space if the linear operations are defined coordinatewise. 
The idea is to put a norm on a linear subspace of this product. 

Let II . II denote the norm on each ~;. For 1 ~ P < 00, define 

EBpf!£; == {x E l!~;: IIxll == [~IIX(i)IIP riP < oo}. 
Define 

Eaaof!£; == {x E TIf!£;: IIxll == supllx{i)1I < oo}. 
I I 

If {f!£l' f!£2' ... } is a sequence of normed spaces, define 

E9o~n== {XE i}l~n: IIx(n)II-->O}; 

give Ea o~n the norm it has as a subspace of E9 aof!£n. 
The proof of the next proposition is left as an exercise. 

4.4. Proposition. Let {f!£;: i E I} be a collection of normed spaces and let 
f!£ = E9 pf!£;. 1 ~ P ~ 00. 

(a) f!£ is a normed space and the projection Pi: f!£ --> f!£; is a continuous linear 
map with IIP;(x)1I ~ IIxll for each x in ~. 
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(b) !r is a Banach space if and only if each !ri is a Banach space. 
(c) Each projection Pi is an open map of!r onto !ri' 
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A similar result holds for E9 o!rn , but the formulation and proof of this is 
left to the reader. 

EXERCISES 

l. Show that if As !£, then (4.1) defines a norm on !£jA. 

2. Prove that !£ is a Banach space if and only if whenever {x n } is a sequence in !£ 
such that I:llxnll < 00, then I:~~!xn converges in !£. 

3. Show that if (X, d) is a metric space and {xn } is a Cauchy sequence such that 
there is a subsequence {xnk } that converges to x o, then Xn --> xo' 

4. Find a Banach space !£ and a closed subspace A such that the natural map Q: 
!£ --> !£jA is not a closed map. Can the natural map ever be a closed map? 

5. Prove the converse of (4.2b): If !£ is a normed space, As£', and both A and 
!£jA are complete, then !£ is complete. (This is an example of what is called a 
"two-out-of-three" result. If any two of!£, A, and !£jA are complete, so is the 
third.) 

6. Let A = {x E fP: x(2n) = 0 for all n}, 1 s P s 00. Show that [P jA is 
isometrically isomorphic to IP. 

7. Let X be a normal locally compact space and F a closed subset of X. If 
A-= {IE Co(X): f(x) = 0 for all x in F}, then Co(X)jA is isometrically 
isomorphic to Co (F). 

8. Prove Proposition 4.4. 

9. Formulate and prove a version of Proposition 4.4 for E9 o!£n. 

10. If {!£!, ... ,~,} is a finite collection of normed spaces and 1 s P s 00, show 
that the norms on E9 p!£k are all equivalent. 

11. Here is an abstraction of Proposition 4.4. Suppose { !£;: i E I} is a collection of 
normed spaces and Y is a normed space contained in IFf. Define!£-= {x E nj!£;: 
there is a yin Y with Ilx(i)11 s y(i) for all i}. If x E!£, define IIxll -= inf{lIyll: 
IlxCi)11 s y(i) for all i}. Then (!£, II . II) is a normed space. Give necessary and 
sufficient conditions on Y that each of the parts of (4.4) are valid for !£. 

12. Let!£ be a normed space and As !£. (a) If !£ is separable, so is !£jA. (b) If 
!£jA and A are separable, then !£ is separable. (c) Give an example such that 
!£jA is separable but !£ is not. 

13. Let 1 s P < 00 and put!£= E9 p!£;' Show that!£ is separable if and only if I is 
countable and each!£; is separable. Show that E9 oo!£; is separable if and only 
if I is finite and each!£; is separable. 

14. Show that E9 o!£n is separable if and only if each!£n is separable. 
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15. Let J~I, and!£= E9p {3E;: iET}, ~= {xE!£: x(j)=O for j in J}. 
Show that !£/ ~ is isometrically isomorphic to E9 p { ~: j E J}. 

16. Let £' be a Hilbert space and suppose ~ s; £'. Show that if Q: £'-4.Ytj~ is 
the natural map, then Q: ~ ~ -4 £'/~ is an isometric isomorphism. 

§5. Linear Functionals 

Let !!£ be a vector space over F. A hyperplane in !!£ is a linear manifold ..It 
in !!£ such that dim(!!£/..It) = 1. If f: £-7 F is a linear functional and 
f $. 0, then kerf is a hyperplane. In fact, f induces an isomorphism 
between !!£/kerf and F. Conversely, if ..It is a hyperplane, let Q: !!£ -7 !!£/..It 
be the natural map and let T: !!£/..It -7 F be an isomorphism. Then 
f == To Q is a linear functional on !!£ and kerf = ..It. 

Suppose now that f and g are linear functionals on !!£ such that 
kerf = ker g. Let Xo E!!£ such that f(x o) = 1; so g(xo) =f:- O. If x E!!£ and 
a = f(x), then x - axo E kerf = kerg. So 0 = g(x) - ag(xo), or g(x) = 
(g(xo»a = (g(xo»f(x). Thus g = f3f for a scalar f3. This is summarized as 
follows. 

5.1. Proposition. A linear manifold in !!£ is a hyperplane if and only if it is 
the kernel of a linear functional. Two linear functionals have the same kernel if 
and only if one is a nonzero multiple of the other. 

Hyperplanes in a normed space fall into one of two categories. 

5.2. Proposition. If!!£ is a normed space and ..It is a hyperplane in :1£, then 
either..lt is closed or..lt is dense. 

PROOF. Consider cl..lt, the closure of ..It. By Proposition 1.3, cl..lt is a 
linear manifold in :1£. Since ..It ~ cl..lt and dim :1£/..It = 1, either cl..lt = ..It 
or cl..lt = !!£. • 

If !!£= Co and f: !!£ -7 F is defined by f(a 1, a z, ... ) = aI' then kerf = 
{(an) E co: a l = O} is closed in co. To get an example of a dense hyper­
plane, let !!£= Co and let en be the element of Co such that en(k) = 0 if 
k =f:- nand en (n) = 1. (It is best to think of Co as a collection of functions 
on N.) Let xo(n) = l/n for all n; so Xo E Co and {xo, e l , ez, ... } is a 
linearly independent set in co. Let PA = a Hamel basis in Co which contains 
{xo, e 1, ez, ... }. Put PA = {xo, e 1, ez, ... } U {bi: i E I}, bi =f:- Xo or en for 
any i or n. Define f: Co -7 F by f(aox o + L~~lanen + Lif3ibJ = ao. (Re­
member that in the preceding expression at most a finite number of the an 
and f3i are not zero.) Since en E kerf for all n ~ 1, kerf is dense but 
clearly kerf =f:- Co-
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The dichotomy that exists for hyperplanes should be reflected in a 
dichotomy for linear functionals. 

5.3. Theorem. II !!{ is a normed space and I: !!( ~ IF is a linear lunctional, 
then I is continuous il and only il ker I is closed. 

PROOF. If I is continuous, ker 1= r l( {O}) and so ker I must be closed. 
Assume now that ker I is closed and let Q: !!{ ~ !!{Iker I be the natural 
map. By (4.2), Q is continuous. Let T: !!{Ikerl ~ IF be an isomorphism; by 
(3.4), T is continuous. Thus, if g = To Q: !!{ ~ IF, g is continuous and 
ker 1= ker g. Hence (5.1) 1= ag for some a in IF and so I is continuous . 

• 
If I: !!{ ~ IF is a linear functional, then I is a linear transformation and 

so Proposition 2.1 applies. Continuous linear functionals are also called 
bounded linear functionals and 

IIIII == sup{l/(x)l: Ilxll s I}. 

The other formulas for IIIII given in (2.1) are also valid here. Let !!{* == the 
collection of all bounded linear functionals on !!{. If I, g E !!{ * and a E F, 
define (al + g)(x) = al(x) + g(x); !!{* is called the dual space of !!{. 
Note that !!(* = 93'(!!{, IF). 

5.4. Proposition. II !!{ is a normed space, !!{ * is a Banach space. 

PROOF. It is left as an exercise for the reader to show that!!{* is a normed 
space. To show that !!{* is complete, let B = {x E!!{: Ilxll s I}. If 
IE !!(*, define p(f): B ~ IF by p(f)(x) = I(x); that is, p(f) is the 
restriction of I to B. Note that p: !!(* ~ Cb(B) is a linear isometry. Thus 
to show that!!(* is complete, it suffices, since Cb(B) is complete (1.6), to 
show that p(!!( *) is closed. Let {In} ~ !!( * and suppose g E Cb ( B) such 
that IIp(fn) - gil ~ 0 as n ~ 00. Let x E!!(. If a,p E IF, a,p =f. 0, such 
that ax, px E B, then a-1g(ax) = lim a-1/n(ax) = lim fJ-1/n(fJx) = 
fJ-1g(px). Define f: !!( ~ IF by letting I(x) = a-1g(ax) for any a =f. 0 such 
that ax E B. It is left as an exercise for the reader to show that IE !!(* 
and p(f) = g. • 

Compare the preceding result with Exercise 2.1. 
It should be emphasized that it is not assumed in the preceding proposi­

tion that !!{ is complete. In fact, if !!{ is a normed space and ?i is its 
completion (Exercise 1.16), then !!{ * and?i * are isometrically isomorphic 
(Exercise 2.2). 

5.5. Theorem. Let (X, Q, p,) be a measure space and let 1 < P < 00. If 
lip + 11q = 1 and g E U(X, Q, p,), define Fg : LP(p,) ~ IF by 

F/f) = jlgdp,. 
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Then Fg E LP(JL)* and the map g >-> Fg defines an isometric isomorphism of 
U(p,) onto LP(p,)*. 

Since this theorem is often proved in courses in measure and integration, 
the proof of this result, as well as the next two, is contained in the 
Appendix. See Appendix B for the proofs of (5.5) and (5.6). 

5.6. Theorem. If (X, g, p,) is a a-finite measure space and gEL OC( X, g, p,), 
define Fg: L 1(JL) -+ IF by 

F/f) = jfgdJL. 

Then Fg E L 1(JL)* and the map g >-> Fg defines an isometric isomorphism of 
LOO(JL) onto L 1(JL)*. 

Note that when p = 2 in Theorem 5.5, there is a little difference between 
(5.5) and (1.3.5) owing to the absence of a complex conjugate in (5.5). Also, 
note that (5.6) is false if the measure space is not assumed to be a-finite 
(Exercise 3). 

If X is a locally compact space, M(X) denotes the space of all IF-valued 
regular Borel measures on X with the total variation norm. See Appendix C 
for the definitions as well as the proof of the next theorem. 

5.7. Riesz Representation Theorem. If X is a locally compact space and 
p, E M( X), define F;.: Co( X) -+ IF by 

F;.(f) = jfdJL. 

Then F;. E Co(X)* and the map JL -+ F". is an isometric isomorphism of 
M(X) onto Co(X)*. 

There are special cases of these theorems that deserve to be pointed out. 

5.8. Example. The dual of Co is isometrically isomorphic to 11. In fact, 
Co = Co(l\l), if 1\1 is given the discrete topology, and [I = M(I\I). 

5.9. Example. The dual of [I is isometrically isomorphic to 100 • In fact, 
11= L 1(1\I,21'1J,JL), where JL(Ll) = the number of points in .1. Also, [00 = 
LOO(I\I, 21'1J, JL). 

5.10. Example. If 1 < p < 00, the dual of IP is Iq, where 1 = lip + 1/q. 

What is the dual of L OO( X, g, JL)? There are two possible representations. 
One is to identify LOO(X, g, JL)* with the space of finitely additive measures 
defined on g that are" absolutely continuous" with respect to JL and have 
finite total variation (see Dunford and Schwartz [1958], p. 296). Another 
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representation is to obtain a compact space Z such that L OO( X, g, /l) is 
isometrically isomorphic to C(Z) and then use the Riesz Representation 
Theorem. This will be done later in this book (VIII.2.1). 

What is the dual of M( X)? For this, define L OO( M( X» as the set of all F 
in D{LOO(/l): /l E M(X)} such that if /l« v; then F(/l) = F(v) a.e. [Ill. 
This is an inverse limit of the spaces LOO(/l), /l in M(X). 

5.11. Lemma. II FE LOO(M(X», then 

IIFII == supIlF(/l)lIoo < 00. 
Jl 

PROOF. If IIFII = 00, then there is a sequence {/In} in M( X) such that 
11F(/ln)lloo z n. Let /l = L~~12-nl/lnl/ll/lnll· Then /In<< /l for all n, so 
F(/ln) = F(/l) a.e. [/lnl for each n. Hence 11F(/l)lloo Z 11F(/ln)lloo z n for 
each n, a contradiction. • 

5.12. Theorem. II X is locally compact and FE LOO(M(X», define cPF : 

M(X) ~ IF by 

Then cPF E M(X)* and the map F ~ cP F is an isometric isomorphism 01 
LOO(M(X» onto M(X)*. 

PROOF. It is easy to see that cPF is linear. Also, IcPF(/l)1 .:-:; flF(/l)1 dl/ll .:-:; 
11F(/l)llooll/l11 .:-:; 11F1111/l11· Thus cPF E M(X)* and IlcPF11 .:-:; IIFII. 

Now fix cP in M(X)*. If /l E M(X) and IE L1(1/l1), then v = l/l E 

M(X). (That is, v(Ll) = f4ld/l for every Borel set .1.) Also II vII = fill dl/ll. 
In fact, the Radon-Nikodym Theorem can be interpreted as an identifica­
tion (isometrically isomorphic) of L1(1/l1) with {1/ E M( X): 1/ « l/ll}. Thus 
I ~ cP(f/l) is a linear functional on Ll(I/lI) and I cP(f/l) I .:-:; IlcPllfl/l dl/ll. 
Hence there is an F(/l) in L OO(I/ll) such that cP(f/l) = fIF(/l) d/l for every I 
in L1(1/l1) and 11F(/l)lloo .:-:; IlcPll. (We have been a little nonchalant about 
using /l or l/ll, but what was said is perfectly correct. Fill in the details.) In 
particular, taking 1= 1 gives cP(/l) = f F(/l) d/l. It must be shown that 
FE LOO(M(X»; it then follows that cP = cPF and IlcPF11 z 11F11oc' 

To show that FE LOO(M(X», let /l and v be measures such that /l « v. 
By the Radon-Nikodym Theorem, there is an I in Ll(I/lI) such that v = l/l. 
Hence if g E L\lvl), then gf E Ll(I/lI) and fg dv = fgf d/l. Thus, 
fgF(v)dv = cP(gv) = cP(gf/l) = fgfF(/l)d/l = fgF(/l)dv. So F(v) = F(/l) 
a.e. [vl and FE LOO(M(X». • 

EXERCISES 

1. Complete the proof of Proposition 5.4. 

2. Show that!!{* is a normed space. 
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3. Give an example of a measure space (X, D, JL) that is not a-finite for which the 
conclusion of Theorem 5.6 is false. 

4. Let {!£,: i E I} be a collection of normed spaces. If 1 :::; P < 00, show that the 
dual space of E9 ~ is isometrically isomorphic to E9 !£, * , where 1/ P + 1/ q = 1. p q 

5. If!£I'!£Z' . .. are normed spaces, show that ( E9 o~,) * is isometrically isomorphic 
to E9 I !£n*' 

6. Let n ~ 1 and let c(n)[O,l] be defined as in Example 1.10. Show that IIIII = 

I:Z:bl/(k)(O)1 + sup{l/(n)(x)l: 0:::; x :::; I} is an equivalent norm on c(n)[o, 1]. 
Show that L E (C(Il) [0,1])* if and only if there are scalars a o, a l , ... ,an _[ and 
a measure JL on [0,1] such that LU) = I:Z:bad(A)(O) + fl(lI) dJL. Is there a 
formula for IILII in terms of laol, lall,···, lan-II, and IIJLII? 

§6. The Hahn-Banach Theorem 

The Hahn-Banach Theorem is one of the most important results in 
mathematics. It is used so often it is rightly considered as a cornerstone of 
functional analysis. It is one of those theorems that when it or one of its 
immediate consequences is used, it is used without quotation or reference 
and the reader is assumed to realize that it is being invoked. 

6.1. Definition. If !!( is a vector space, a sublinear functional is a function 
q: :7£ ~ IIii such that 

(a) q(x + y) .::;; q(x) + q(y) for all x, y in :7£; 
(b) q(ax) = aq(x) for x in !!( and a ~ O. 

Note that every seminorm is a sub linear functional, but not conversely. In 
fact, it should be emphasized that a sub linear functional is allowed to 
assume negative values and that (b) in the definition only holds for a ~ O. 

6.2. The Hahn-Banach Theorem. Let !!{ be a vector space over IIii and let q 
be a sublinear functional on !!(. If A is a linear manifold in :7£ and f: A ~ IIii 
is a linear functional such that f( x) .::;; q( x) for all x in A, then there is a 
linear functional F: :7£ ~ IIii such that FIA = f and F( x) .::;; q( x) for all x in 
:7£. 

Note that the substance of the theorem is not that the extension exists but 
that an extension can be found that remains dominated by q. Just to find an 
extension, let {e i } be a Hamel basis for A and let {Yj} be vectors in :7£ 
such that {e i } U {Yj} is a Hamel basis for :7£. Now define F: :7£ ~ IIii by 
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F(Ljllje j + Li3jYj) = LjllJ(e;) = f(Ljllje j). This extends f. If {Yj} is any 
collection of real numbers, then F(Ljllje j + L/3j y) = f(Ljllje;) + Li3jYj is 
also an extension of f. Moreover, any extension of f has this form. The 
difficulty is that we must find one of these extensions that is dominated 
by q. 

Before proving the theorem, let's see some of its immediate corollaries. 
The first is an extension of the theorem to complex spaces. For this a lemma 
is needed. Note that if !!E is a vector space over C, it is also a vector space 
over R. Also, if f: !!E --+ C is C-linear, then Ref: !!E --+ R is R-linear. The 
following lemma is the converse of this. 

6.3. Lemma. Let !!E be a vector space over C. 

(a) If f: !!E --+ R is an R-linear functional, then f(x) = f(x) - if(ix) is a 
C -linear functional and f = Re 1. 

(b) If g: !!E --+ C is C-linear, f = Re g, and j is defined as in (a), then j = g. 
(c) Ifpisaseminormon !!Eandfandjareasin (a), then If(x)l5,p(x)for 

all x if and only if If(x)1 5, p(x) for all x. 
(d) If!!E is a normed space andf andj are as in (a), then 11.111 = lliil. 

PROOF. The proofs of (a) and (b) are left as an exercise. To prove (c), 
suppose Ij(x)1 5, p(x). Then f(x) = Ref(x) 5, If(x)1 5, p(x). Also, 
- f(x) = Ref( -x) 5, If( -x)1 5, p(x). Hence If(x)1 5, p(x). Now assume 
that If(x)1 5, p(x). Choose 0 such that j(x) = e i6 Ij(x)l. Hence If(x)1 = 
j(e- i6x) = Rej(e- i6x) = f(e- i6x) 5, p(e- i6x) = p(x). 

Part (d) is an easy application of (c). • 

6.4. Corollary. Let !!E be a vector space, let ..,I( be a linear manifold in !!E, 
and let p: !!E --+ [0, 00) be a seminorm. Iff: ..,I( --+ f is a linear functional such 
that If ( x ) I 5, p ( x) for all x in ..,1(, then there is a linear functional F: !!E --+ f 
such that FI..,I( = f and IF(x)1 5, p(x) for all x in !!E. 

PROOF. Case 1: f = R. Note that f(x) 5, If(x)1 5, p(x) for x in ..,1(. By 
(5.2) there is an extension F: !!E --+ R of f such that F(x) 5, p(x) for all x. 
Hence -F(x) = F( -x) 5, p( -x) = p(x). Thus IFI 5, p. 

Case 2: f = C. Let f1 = Ref. By (6.3c), If 1 I 5, p. By Case 1, there is an 
R-linear functional F1: !!E --+ R such that F11..,1( = 11 and 1F11 5, p. Let 
F( x) = F1 (x) - iFl (ix) for all x in !!E. By (6.3c), IFI 5, p. Clearly, FI..,I( = f. 

• 
6.5. Corollary. If!!E is a normed space, ..,I( is a linear manifold in !!E, andf: 
..,I( --+ f is a bounded linear functional, then there is an F in !!E * such that 

FI..,I( = f and IIFII = 11.111· 

PROOF. Use Corollary 6.4 with p(x) = Iltllllxll. • 
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6.6. Corollary. If X is a normed space, {Xl' X2 , ... , x d } is a linearly 
independent subset of X, and 0\, a 2 , ••• , ad are arbitrary scalars, then there 
is anfin X* such thatf(xj ) = aj for 1 ~j ~ d. 

PROOF. Let .,II = the linear span of Xl"'" Xd and define g: .,II --> IF by 
g(Liljx) = Liljaj. So g is linear. Since .,II is finite dimensional, g IS 

continuous. Let f be a continuous extension of g to X. • 

6.7. Corollary. If X is a normed space and X E X, then 

IIXII = sup{lf(x)l: f EX * and 11111 ~ I}. 

Moreover, this supremum is attained. 

PROOF. Let a = sup{ If(x)l: f E X * and 11111 ~ I}. If f EX * and 11111 ~ 1, 
then If(x)1 ~ 1111lllxll ~ Ilxll; hence a ~ IIxll. Now letA = {f3x: f3 E IF} 
define g: .,II --> IF by g(f3x) = f3llxll. Then g E .,11* and Ilgll = l. By 
Corollary 6.5, there is an f in X* such that 11111 = 1 and f(x) = g(x) = 

IIxll· • 

This introduces a certain symmetry in the definitions of the norms in X 
and X* that will be explored later (§ll). 

6.8. Corollary. If X is a normed space, .,II ~ X, Xo E X\A, and d = 
dist(xo, .,II), then there is an f in X * such that f(x o) = 1, f(x) = 0 for all X 
in .,II, and IIfll = d~l. 

PROOF. Let Q: X --> X/A be the natural map. Since Ilxo + All = d, by the 
preceding corollary there is a g in (X/A)* such that g(xo + .,II) = d and 
Ilgll = l. Let f = d~lg 0 Q: X --> IF. Then f is continuous, f(x) = 0 for X in 
.,II, and f(x o) = l. Also, If(x)1 = d~llg(Q(x»1 ~ rlIIQ(x)11 ~ d~lllxll; 
hence 11111 ~ d~l. On the other hand, Ilgll = 1 so there is a sequence {xn} 
such that Ig(xn + .,11)1 --> 1 and Ilxn +../tI1 < 1 for all n. Let Yn EO .,II such 
that Ilxn + Ynll < l. Then If(x n + Yn)1 = d~llg(xn + .,11)1 --> d~l, so 11111 = 
d~l. • 

To prove the Hahn-Banach Theorem, we first show that we can extend 
the functional to a space of one dimension more. 

6.9. Lemma. Suppose the hypothesis of (6.2) is satisfied and, in addition, 
dim X/A = l. Then the conclusion of (6.2) is valid. 

PROOF. Fix Xo in X\A; so X=Av {xo} = {txo + y: t E !R,y EA}. 
For the moment assume that the extension F: X -->!R of f exists with 
F ~ q. Let's see what F must look like. Put a o = F(xo). If t > 0 and 
Yl E .,II, then F(txo + Yl) = tao + f(Yl) ~ q(txo + Yl)' Hence a o ~ 
-t~lf(Yl) + t~lq(txo + Yl) = -f(Yl/t) + q(xo + Yl/t) for every Yl in 
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vIt. Since YIlt E vIt, this gives that 

6.10 ao.:o;; - I(YI) + q(xo + YI) 

for all YI in vIt. Also note that if ao satisfies (6.10), then by reversing the 
inequalities in the preceding argument, it follows that tao + I(Y!) .:0;; q(txo 
+ YI) whenever t ~ O. 

If t ~ 0 and Y2 E vIt and if F exists, then F( - txo + Y2) = - tao + I(Yz) 
.:0;; q( - txo + Y2)' As above, this implies that 

6.11 ao ~ I(Y2) - q( -xo + Y2) 

for all Y2 in vIt. Moreover, (6.11) is sufficient that - tao + I(Y2) .:0;; q( - txo 
+ Y2) for all t ~ 0 and Y2 in vIt. 

Combining (6.10) and (6.11) we see that we must show that ao can be 
chosen satisfying (6.10) and (6.11) simultaneously. Thus we must show that 

6.12 I(Y2) - q( -Xo + Yz) .:0;; - I(Yl) + q(xo + YI) 

for all Yl' Y2 in vIt. But this means we want to show that I(YI + Yz) .:0;; q(xo 
+ Yl) + q( -xo + Y2)' But 

I(YI + Yz).:o;; q(y! + Y2) = q(YI + x o) +( -Xo + Y2)) 

.:0;; q(YI + x o) + q( -xo + Y2)' 

so (6.12) is satisfied. If a o is chosen with SUP{!(Y2) - q( - Xo + Y2): 
Y2 E vIt} .:0;; ao .:0;; inf{ - I(Yl) + q(xo + Yl): Yl E vIt} and F(txo + y) = 
tao + I(Yl)' F satisfies the conclusion of (6.2). • 

PROOF OF THE HAHN-BANACH THEOREM. Let Y' be the collection of all 
pairs (vitI' 11)' where vitI is a linear manifold in fll" such that vitI :2 vIt and 
11: vIt 1 ~ ~ is a linear functional with 111v1t = I and 11 .:0;; q on vitI' If 
(vlt l ,fl) and (vIt 2,f2) E Y', define (vlt1,f1) ::S (vIt 2,f2) to mean that vitI 
~ vIt 2 and 121v1t 1 = 11' So (Y', ::s) is a partially ordered set. Suppose 
C(!= {(viti'/;): i E I} is a chain in Y'. If %= U{vlti: i E I}, then the fact 
that C(! is a chain implies that % is a linear manifold. Define F: % ~ ~ by 
setting F(x) = J;(x) if x E viti' It is easily checked that F is well defined, 
linear, and satisfies F.:o;; q on %. So (%, F) E Y' and (%, F) is an upper 
bound for C(!. By Zorn's Lemma, Y' has a maximal element (&", F). But the 
preceding lemma implies that &" = fll". Hence F is the desired extension . 

• 
This section concludes with one important consequence of the Hahn­

Banach Theorem. It will be generalized later (lV.3.11), but it is used so often 
it is worth singling out for consideration. 

6.13. Theorem. II fll" is a normed space and vIt is a linear manilold in fll", 
then 

cl vIt = n {ker I: I E fll" * and vIt ~ ker I } . 
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PROOF. Let JV= n{kerf: f E fr* and JIt r;;;. kerf}. If f E fr* and JIt r;;;. 
ker f, then the continuity of f implies that cl JIt r;;;. kerf. Hence cl JIt r;;;. JV. 
If Xo $. cl JIt, then d = dist(xo, JIt) > O. By Corollary 6.8 there is an f in 
fr* such that f(xo) = 1 and f(x) = 0 for every x in JIt. Hence Xo $. JV. 
Thus JV r;;;. cl JIt and the proof is complete. • 

6.14. Corollary. If fr is a normed space and JIt is a linear manifold in fr, 
then JIt is dense in fr if and only if the only bounded linear functional on fr 
that annihilates JIt is the zero functional. 

EXERCISES 

1. Complete the proof of Lemma 6.3. 

2. Give the details of the proof of Corollary 6.5. 

3. Show that c* is isometrically isomorphic to /1. Are c and Co isometrically 
isomorphic? 

4. If /L is a measure on [0,1] and fx"d/L(x) = ° for all n:::: 0, show that /L = 0. 

5. If n :::: 1, show that there is a measure /L on [0,1] such that for every polynomial 
p of degree at most n, 

f pdJL = t p(k)(k/n). 
k~l 

6. If n:::: 1, does there exist a measure JL on [0,1] such that p'(o) = fpdJL for every 
polynomial of degree at most n? 

7. Does there exist a measure /L on [0,1] such that fp dJL = p'(o) for every 
polynomial p? 

8. Let K be a compact subset of C and define A(K) to be {f E C(K): f is 
analytic on int K }. (Functions here are complex valued.) Show that if a E K, 
then there is a probability measure JL supported on aK such that f(a) = ffdJL 
for every f in A (K). (A probability measure is a nonnegative measure JL such 
that IIJLII = 1.) 

9. If K = c1 D (D = {Izl < I}) and a E K, find the measure JL whose existence 
was proved in Exercise 8. 

10. Let P = {p I aD: p = an analytic polynomial} and consider P as a manifold in 
C( aD). Show that if JL is a real-valued measure on aD such that fp dJL = ° for 
every p in P, then /L = 0. Give an example of a complex-valued measure JL such 
that JL *" ° but fp dJL = ° for every p in P. 

§7*. An Application: Banach Limits 

If x = {x( n)} E c, define L( x) = lim x( n). Then L is a linear functional, 
IILII = 1, and, if for x in c, x' is defined by x' = (x(2), x(3), ... ), then 
L(x) = L(x'). Also, if x::::: 0 [that is, x(n) ::::: 0 for all n], then L(x) ::::: O. 
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In this section it will be shown that these properties of the limit functional 
can be extended to 100. The proof uses the Hahn-Banach Theorem. 

7.1. Theorem. There is a linear functional L: 100 --+ IF such that 

(a) IILII = 1. 
(b) If x E C, L(x) = limx(n). 
(c) If x E 100 and x(n) ;;:: 0 for all n, then L(x) ;;:: o. 
(d) If x E 100 and x' == (x(2), x(3), ... ), then L(x) = L(x'). 

PROOF. First assume IF = R; that is, 100 = l'tt. If x E 100 , let x' denote the 
element of 100 defined in part (d) above. Put .,I( = {x - x': x E l OO }. Note 
that (x + ay)' = x' + ay' for any x, y in 100 and a in R; hence.,l( is a 
linear manifold in 100 • Let 1 denote the sequence (1,1,1, ... ) in 100 • 

7.2. Claim. dist(l, .,I() = 1. 

Since 0 E.,I(, dist(I,.,I() ~ 1. Let x E 100 ; if (x - x')(n) ~ 0 for any n, 
then III - (x - x')lloo ;;:: 11 - (x(n) - x'(n»1 ;;:: 1. Suppose 0 ~ (x -
x')(n) = x(n) - x'(n) = x(n) - x(n + 1) for all n. Thus x(n + 1) ~ x(n) 
for all n. Since x E 100 , a = limx(n) exists. Thus lim(x - x')(n) = 0 and 
III - (x - x')lloo ;;:: 1. This proves the claim. 

By Corollary 6.8 there is a linear functional L: 100 --+ R such that 
IILII = 1, L(I) = 1, and L(.,I() = o. So this functional satisfies (a) and (d) 
of the theorem. To prove (b), we establish the following. 

7.3. Claim. Co ~ ker L. 

If x E co' let X(l) = x' and let x(n+l) = (x(n», for n ;;:: 1. Note that 
x(n+l) - x = [x(n+l) - x(n)] + ... +[x' - x] E.,I(. Hence L(x) = 

L(x(n» for all n ;;:: 1. If € > 0, then let n be such that Ix(m)1 < € for 
m > n. Hence IL(x)1 = IL(x(n»1 ~ Ilx(n)lloo = sup{lx(m)l: m> n} < €. 

Thus x E ker L. Condition (b) is now clear. 
To show (c), suppose there is an x in 100 such that x(n) ;;:: 0 for all nand 

L(x) < O. If x is replaced by xlllxll oo ' it remains true that L(x) < 0 and it 
is also true that 1 ;;:: x(n) ;;:: 0 for all n. But then III - xll oo ~ 1 and 
L(1 - x) = 1 - L(x) > 1, contradicting (a). Thus (c) holds. 

N ow assume that IF = C. Let Ll be the functional obtained on I'{/.. If 
x E I't!, then x = Xl + iX2 when Xl' x 2 E I~. Define L(x) = LI(x l ) + 
iL l(x 2). It is left as an exercise to show that L is (::-linear. It's clear that (b), 
(c), and (d) hold. It remains to show that IILII = 1. 

Let E l , ... , Em be pairwise disjoint subsets of ~ and let a l , ... , am E C 
with lakl ~ 1 for all k. Put x = L7:~lakXEk; so x E too and Ilxlloo ~ 1. 
Then L(x) = LkakL(XE ) = LkakLl(XE). But LI(XE);;:: 0 and 

k k k 

LkLl(XE) = Ll(XE)' where E = UkEk • Hence LkLI(Xl:) ~ 1. Because 
lakl ~ 1 for all k, IL(x)1 ~ l. (This is a small convexity argument.) If x is 



86 III. Banach Spaces 

an arbitrary element of 100 , Ilxlloo ~ 1, then there is a sequence {XII} if 
elements of 100 such that IlxlI - xlloo ~ 0, Ilxnlloo ~ 1, and each xn is the 
type of element of 100 just discussed that takes on only a finite number of 
values (Exercise 3). Clearly, IILII ~ 2, so L(xn) ~ L(x). Since IL(xlI)1 ~ 1 
for all n, IL(x)1 ~ 1. Hence IILII ~ 1. Since L(1) = 1, IILII = 1. • 

A linear functional of the type described in Theorem 7.1 is called a 
Banach limit. They are useful for a variety of things, among which is the 
construction of representations of the algebra of bounded operators on a 
Hilbert space. 

EXERCISES 

1. If L is a Banach limit, show that there are x and y in [ex; such that L (xy) *­
L(x)L(y). 

2. Let X be a set and Q a a-algebra of subsets of X. Suppose JL is a complex-valued 
countably additive measure defined on Q such that IlJLII = JL( X) < 00. Show that 
JL(.1) ~ 0 for every.1 in Q. (Though it is difficult to see at this moment, this fact 
is related to the proof of (c) in Theorem 7.1 for the complex case.) 

3. Show that if x E [00, Ilxlloo :s; 1, then there is a sequence {x,,}, Xn in [YJ such 
that Ilxnlloo :s; 1, Ilxn - xii - 0, and each x" takes on only a finite number of 
values. 

§8*. An Application: Runge's Theorem 

8.1. Runge's Theorem. Let K be a compact subset of C and let E be a subset 
of Coo \ K that meets each component of Coo \ K. If f is analytic in a 
neighborhood of K, then there are rational functions fn whose only poles lie in 
E such that fn ~ f uniformly on K. 

The main tool in proving Runge'S Theorem is Theorem 6.13. (A proof 
that does not use functional analysis can be found on p. 198 of Conway 
[1978].) To do this, let R(K,E) be the closure in the space C(K) of the 
rational functions with poles in E. By (6.13) and the Riesz Representation 
Theorem, it suffices to show that if p. E M(K) and fgdp. = 0 for each g in 
R(K, E), then ffdp. = O. 

Let R > 0 and let A be area measure. Pick p > 0 such that B(O; R) I:;;;: 

B( z; p) for every z in K. Then for z in K, 

12 'TTIP = drdB = 27Tp. 
o 0 
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If p, E M(K), define il: C ~ [0,00] by 

-(w) = fdlP,l(z) 
p, Iz - wi 
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when the integral is finite, and p.( w) = 00 otherwise. The inequalities above 
imply 

j il(w)dA(W)=j j ~,p,~(zi dA(W) 
8(0: R) 8(0; R) K Z W 

= j j d A ( w) dl p, I ( z ) 
K 8(0; R)lz - wi 

s 2'1Tpllp,ll. 
Thus p.(w) < 00 a.e. [A]. 

8.2. Lemma. If P, E M (K), then 

(t(w) = fdp,(z) 
z - w 

is in Ll(B(O; R), A) for any R > 0, {t is analytic on Coo \K, and (t(oo) = 0. 

PROOF. The first statement follows from what came before the statement of 
this lemma. To show that (t is analytic on Coo \ K, let w, Wo E C \ K and 
note that 

(t(w) - (t(wo) = j dp,(z) . 
w - Wo K (z - w)(z - wo) 

As w ~ wo, [(z - w)(z - wo)r 1 ~ (z - wO)-2 uniformly for z in K, so 
that (t has a derivative at Wo and 

~~(wo) = fK(z - wo)-2 dp,(Z). 

So (t is analytic on C \ K. To show that it is analytic at infinity, note that 
ft(z) ~ ° as z ~ 00, so infinity is a removable singularity. • 

It is not difficult to see that for Wo in C \ K, 

8.3 (:wr{t(wo) = n!f(z - wo)-n-l dp,(z) 

Also, we can easily find the power series expansion of {t at infinity. Indeed, 

1 1 ( )-1 (t(w) = f-- dp,(z) = - -f 1 - ~ dp,(z). 
z - w w w 

Choose w near enough to infinity that Izjwl < 1 for all z in K. Then 

8.4 
1 00 ( n 

(t(w) = - w n~of :) dp,(z) 
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Now assume p, E M(K) and fgdp, = 0 for every rational function g with 
poles in E. Let U be a component of Coo \ K, and let Wo E E Ii U. If 
Wo =1= 00, then the hypothesis and (8.3) implies each derivative of jl at Wo 

vanishes. Hence jl == 0 on U. If Wo = 00, then (8.4) implies jl == 0 on U. Thus 
jl == 0 on Coo \ K. 

If f is analytic on an open set G containing K, let Yl"'" Y" be 
straight-line segments in G \ K such that 

f{z) = £ ~f f{w) dw 
k=12m Yk w - z 

for all z in K. (See p. 195 of Conway [1978].) Thus 

fj{z)dp,(z) = k~l 2~i fK~k ~(~~ dWdp,(z) 

" 1 
= - k~l 2wi ~/( w)p.( w) dw 

by Fubini's Theorem. But jl(w)=O on Yk (<;;;C\K), so ffdp,=O. By 
(6.13), f E R(K, E). This proves Runge's Theorem. • 

8.5. Corollary. If K is compact and C \ K is connected and iff is analytic in 
a neighborhood of K, then there is a sequence of polynomials that converges to 
f uniformly on K. 

EXERCISES 

1. Let fL be a compactly supported measure on C that is absolutely continuous with 
respect to area measure. Show that jl is continuous on COe" 

2. Let m = Lebesgue measure on [0,1]. Show that m is not continuous at any point 
of [0,1]. 

§9 *. An Application: Ordered Vector Spaces 

In this section only vector spaces over IR are considered. 
There are numerous spaces in which there is a notion of ~ in addition to 

the vector space structure. The LP spaces and C( X) are some that spring to 
mind. The concept of an ordered vector space is an attempt to study such 
spaces in an abstract setting. The first step is to abstract the notion of the 
positive elements. 

9.1. Definition. An ordered vector space is a pair (:?[, ~) where :?[ IS a 
vector space over IR and ~ is a relation on :?[ satisfying 

(a) x ~ x for all x; 

(b) if x ~ y and y ~ z, then x ~ z; 
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(c) if X ~ Y and z E fif, then x + z ~ y + z; 
(d) if x ~ y and a E [0, (0), then ax ~ ay. 
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Note that it is not assumed that ~ is antisymmetric. That is, it is not 
assumed that if x ~ y and y ~ x, then x = y. 

9.2. Definition. If fif is a real vector space, a wedge is a nonempty subset P 
of fif such that 

(a) if x, yEP, then x + yEP; 
(b) if x E P and a E [0, (0), then ax E P. 

9.3. Proposition. (a) If (fif, ~) is an ordered vector space and P = {x E fif: 
x ~ O}, then P is a wedge. (b) If P is a wedge in the real vector space fif and 
~ is defined on fif by declaring x ~ y if and only if y - X E P, then (fif, ~) 
is an ordered vector space. 

PROOF. Exercise. 

If (fif, ~) is an ordered vector space, P = {x E fif: x ~ O} is called the 
wedge of positive elements. The next result is also left as an exercise. 

9.4. Proposition. If (fif, ~) is an ordered vector space and P is the wedge of 
positive elements, ~ is antisymmetric if and only if P n (- P) = (0). 

9.5. Definition. A cone in fif is a wedge P such that P n ( - P) = (0). 

9.6. Definition. If (fif, ~) is an ordered vector space, a subset A of fif is 
cofinal if for every x ~ 0 in fif there is an a in A such that a ~ x. An 
element e of fif is an order unit if for every x in fif there is a positive integer 
n such that -ne ~ x ~ ne. 

If X is a compact space and fif = C( X), then any constant function is an 
order unit. (f ~ g if and only if f (x) ~ g( x) for all x). If fif = C(~), all 
real-valued continuous functions on ~, then fif has no order unit (Exercise 
4). If e is an order unit, then {ne: n ~ I} is cofinal. 

9.7. Definition. If (fif, ~) and (C!JI, ~) are ordered vector spaces and T: 
fif ~ qy is a linear map, then T is positive (in symbols T ~ 0) if Tx ~ 0 
whenever x ~ o. 

The principal result of this section is the following. 

9.S. Theorem. Let (fif, ~) be an ordered vector space and let C!JI be a linear 
manifold in fif that is cofinal. Iff: C!JI ~ ~ is a positive linear functional, then 
there is a positive linear functional f: fif ~ ~ such that ilC!JI = f. 
PROOF. Let P = {x E fif: x ~ O} and put fif1 = C!JI + P - P. It is easy to 
see that fif1 is a linear manifold in fifo If there is a positive linear functional 
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g: ~l -4 R that extends f, let j be any linear functional on ~ that extends 
g (use a Hamel basis). If x ~ 0, then x E P ~ ~l so that j(x) = g(x) ~ O. 
Hence j is positive. Thus, we may assume that !!l" = Cf!! + P - P. 

9.9. Claim. ~ = Cf!! + P = Cf!!- P. 

Let x E ~; so X = Y + PI - P2, Y in Cf!!, PI' P2 in P. Since Cf!! is cofinal 
there is a YI in Cf!! such that YI ~ Pl' Hence PI = YI - (YI - PI) E Cf!!- P. 
Thus x = Y - P2 + Pi E (Cf!!- P) + (Cf!!- P) ~ Cf!!- P. So !!l"= Cf!!- P. 
Also, !!l" = -~ = - Cf!! + P = Cf!! + P. 

9.10. Claim. If x E !!l", there are YI' Y2 in Cf!! such that Y2 :::; x :::; y!. 

In fact, Claim 9.9 states that we can write x = YI - PI = Y2 + P2' PI' P2 
E P and YI' Y2 E Cf!!. Thus Y2 :::; x :::; YI' 

By Claim 9.10, it is possible to define for each x in !!l", 

q{x) = inf{f{Y): Y E Cf!! and Y ~ x}. 

9.11. Claim. The function q is a sublinear functional on !!l". 

The proof of (9.11) is left as an exercise. 

For Y in Cf!!, let YI E Cf!! such that YI ~ y. Because f is positive, fey) :::; 
f(YI)' Hence fey) :::; q(y) for all Y in Cf!!. The Hahn-Banach Theorem 
implies that there is a linear functional j: !!l" -4 R such that jlCf!! = f and 
j:::; q on ~. If x E P, then -x:::; 0 (and 0 E Cf!!). Hence q(-x) :::;f(O). 
Thus -j(x) = j( -x):::; q( -x):::; 0, or j(x) ~ 0. Therefore j is positive . 

• 
9.12. Corollary. Let (!!l", :::;) be an ordered vector space with an order unit e. 
If qy is a linear manifold in !!l" and e E Cf!!, then any positive linear functional 
defined on qy has an extension to a positive linear functional defined on !!l". 

EXERCISES 

1. Prove Proposition 9.3. 

2. Prove Proposition 9.4. 

3. Show that e is an order unit for (:r, s) if and only if for every x in :r there is a 
8 > 0 such that e ± tx 2: 0 for 0 s t s 8. 

4. Show that C(IR), the space of all continuous real· valued functions on IR. has no 
order unit. 

5. Prove (9.11). 

6. Characterize the order units of C,,(X). Does Ch(X) always have an order unit? 
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7. Characterize the order units of Co(X) if X is locally compact. Does Co(X) 
always have an order unit? 

8. Let ?{ = M2 (IR), the 2 X 2 matrices over IR. Define A in M2 (IR) to be positive if 
A = A* and <Ax, x> ;:.; 0 for all x in IR 2. Characterize the order units of M2 (IR). 

9. If 1 -<; P < 00 and ?(= U(O,l), define f -<; g to mean that f(x) -<; g(x) a.e. 
Show that ?{ is an ordered vector space that has no order unit. 

§lO. The Dual of a Quotient Space and a Subspace 

Let :!£ be a normed space and A:s;; :!£. If I E :!£*, then IIA, the restriction 
of I to A, belongs to A* and 11/1AlI:s;; 11/11. According to the 
Hahn-Banach Theorem, every bounded linear functional on A is obtain­
able as the restriction of a functional from :!£ *. In fact, more can be said. 

Note that if A -L == {g E :!£*: g(A) = o} (note the analogy with Hilbert 
space notation); then A -L is a closed subspace of the Banach space :!£*. 
Hence :!£ * / A -L is a Banach space. Moreover, if I + A -L E :!£ * / A -L , then 
I + A -L induces a linear functional on A, namely IIA. 

10.1. Theorem. II A:s;;:!£ and A-L== {gE:!£*: g(A)=O}, then the 
map p: :!£* /A -L -+ A* defined by 

p U + A -L) = II A 

is an isometric isomorphism. 

PROOF. It is easy to see that p is linear and injective. If I E :!£ * and 
g E A -L, then II/IAII = 11(f + g)IAII :s;; III + gil. Taking the infimum over 
all g we get that IlflA11 :s;; III + A -LII. Suppose cf> E A*. The Hahn-Banach 
Theorem implies that there is an I in :!£ * such that IIA = cf> and 
11Il1 = 11cf>11· Hence cf> = p(f+A-L) and 11cf>11 = 11/11;:.; II/+A-LII· 

Now consider :!£/A; what is (:!£/A)*? Let Q: :!£ -+ :!£/A be the natural 
map. If IE (:!£/A)*, then 1 0 Q E:!£* and Ilf 0 QII :s;; 11/11. (Why?) This 
gIves a way of mapping (:!£/A)* -+ :!£*. What is its image? Is it an 
isometry? 

10.2. Theorem. II A:s;; :!£ and Q: :!£ -> :!£/A is the natural map, then 
p ( I) = I 0 Q defines an isometric isomorphism 01 (:!£/ A) * onto A -L . 

PROOF. If IE (:!£/A)* and yEA, then 1 0 Q(y) = 0, so 1 0 Q E A -L. 
Again, it is easy to see that p: (:!£/A)* -> A -L is linear and, as was seen 
earlier, IIp(f)II:s;; 11/11. Let {xn +A} be a sequence in :!£/A such that 
Ilx" + All < 1 and I/(xn + A)I -> 11Il1. For each n there is a Yn in A such 
that Ilxn + Ynll < 1. Thus IIp(f)11 ;:.; Ip(f)(x n + Yn)1 = If(xn + A)I -+ 11Il1, 
so p is an isometry. 
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To see that p is surjective, let g E A 1.; then g E f!{* and g(A) = 0. 
Define f: f!{jA ~ IF by f(x + A) = g(x). Because g(A) = 0, f is well 
defined. Also, if x E f!{ and yEA, vex + A)I = Ig(x)1 = Ig(x + y)1 :0; 

Ilgllllx + YII· Taking the infimum over all y gives vex + A)I :0; Ilgllllx + 
vItIl· Hence f E (f!{jA)*, p(f) = g, and 11Il1 :0; IIp(f)II· • 

§11. Reflexive Spaces 

If f!{ is a normed space, then we have seen that f!{* is a Banach space (5.4). 
Because f!{ * is a Banach space, it too has a dual space (f!{ *) * == f!{ * * and 
f!{** is a Banach space. Hence f!{** has a dual. Can this be kept up? 

Before answering this question, let's examine a curious phenomenon. If 
x E f!{, then x defines an element x of f!{**; namely, define x: f!{* ~ IF by 

11.1 x(x*) = x*(x) 

for every x* in f!{*. Note that Corollary 6.7 implies that Ilxll = Ilxll for all 
x in f!{. The map x ~ x of f!{ ~ f!{** is called the natural map of f!{ into 
its second dual. 

11.2. Definition. A normed space f!{ is reflexive if f!{** = {x: x E f!{}, 
where x is defined in (11.1). 

First note that a reflexive space f!{ is isometrically isomorphic to f!{ * *, 

and hence must be a Banach space. It is not true, however, that a Banach 
space f!{ that is isometric to f!{ * * is reflexive. The definition of reflexivity 
stipulates that the isometry be the natural embedding of f!{ into f!{**. In 
fact, James [1951] gives an example of a nonreflexive space f!{ that is 
isometric to f!{ * *. 

11.3. Example. If 1 < p < 00, LP(X, fl, JL) is reflexive. 

11.4. Example. Co is not reflexive. We know that c6' = 1\ so c6'* = (11)* 
= 100. With these identifications, the natural map Co ~ c(j* is precisely the 
inclusion map Co ~ 100. 

A discussion of reflexivity is best pursued after the weak topology 1S 

understood (Chapter V). Until that time, we will say adieu to reflexivity. 

EXERCISES 

1. Show that (,q-*) * * and (,q- * *) * are isometrically isomorphic. 

2. Show that Ch (X) is reflexive if and only if X is finite. 

3. Let A:o; ,q- and let P3£: ,q- ->,q-** and pJ(: A -> A** be the mtural maps. If 
i: A -> ,q- is the inclusion map, show that there is an isometry <1>: A** -> ,q-** 
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such that the diagram 

:1£ P:r ) :1£** 

i r ref> 
,A ) ,A** 

PJI 

commutes. Prove that cp(,A**) = (,A.l).l '" {x** E :1£**: x**(,A.l) = O}. 

4. Use Exercise 3 to show that if !!{ is reflexive, then any closed subspace of !!( is 
also reflexive. 

§12. The Open Mapping and Closed Graph Theorems 

12.1. The Open Mapping Theorem. If !'£, Cf!I are Banach spaces and A: 
!'£ ~ Cf!I is a continuous linear surjection, then A(G) is open in Cf!I whenever G 
is open in fl£. 

PROOF. For r> 0, let B(r) = {x E!'£: IIxll < r}. 

12.2. Claim. ° E intcl A(B(r». 

Note that because A is surjective, Cf!I = Uk~lcl[A(B(kr/2»] = 
Uk~ lk cl[A(B(r /2»]. By the Baire Category Theorem, there is a k ~ 1 such 
that kcl[A(B(r/2»] has nonempty interior. Thus V= int{cl[A(B(r/2»)]} 
=F D. If Yo E V, let s > 0 such that {y E Cf!I: lIy - Yoll < s} <;;; V <;;; 
clA(B(r/2». Let y E Cf!I, Ilyll < s. Since Yo E clA(B(r/2», there is a 
sequence {xn} in B(r/2) such that A(xn) ~ Yo. There is also a sequence 
{zn} in B(r /2) such that A(zn) ~ Yo + y. Thus A(zn - xn) ~ y and 
{zn - xn} <;;; B(r); that is, {y E Cf!I: Ilyll < s} <;;; clA(B(r». This estab­
lishes Claim 12.2. 

It will now be shown that 

12.3 cl A ( B ( r /2)) <;;; A ( B ( r ) ) . 

Note that if (12.3) is proved, then Claim 12.2 implies that 0 E int A(B(r» 
for any r > O. From here the theorem is easily proved. Indeed, if G is an 
open subset of !'£, then for every x in G let rx> 0 such that B(x; rx) <;;; G. 
But 0 E int A(B(rx» and so A(x) E int A(B(x; rx». Thus there is an 
Sx > 0 such that Ux == {y E Cf!I: Ily - A(x)11 < sx} <;;; A(B(x; rx». There­
foreA(G) ~ U{Ux: x E G}. But A(x) E Ux, soA(G) = U{Ux : x E G} and 
hence A(G) is open. 

To prove (12.3), fix Yl in clA(B(r/2». By (12.2), 0 E int[clA(B(2- 2r»]. 
Hence [Yl - clA(B(2- 2r»] nA(B(r/2» =F D. Let Xl E B(r/2) such that 
A(x l ) E [YI - cl A(B(2-2r»]; now A(xl ) = YI - Y2, where Y2 E 

clA(B(r2r». Using induction, we obtain a sequence {xn} in !'£ and a 
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sequence {Yn} in qy such that 

{
(i) 

12.4 (ii) 

(iii) 

xn E B(2- nr), 

Yn E clA(B(2- nr»), 

Yn+1 = Yn - A(xn)· 

III. Banach Spaces 

But Ilxnll < 2- nr, so Er'llxnll < 00; hence x = E:;'~1Xn exists in :r and 
Ilxll < r. Also, 

n n 

L A(xk ) = L (Yk - Yk+1) = Y1 - Yn+1· 
k~l k~l 

But (12.4ii) implies IIYnll:s; IIAI12- nr; hence Yn ~ 0. Therefore y! = 

E~~1A(Xk) = A(x) E A(B(r)), proving (12.3) and completing the proof of 
the theorem. • 

The Open Mapping Theorem has several applications. Here are two 
important ones. 

12.5. The Inverse Mapping Theorem. If :r and qy are Banach spaces and A : 
:r ~ qy is a bounded linear transformation that is bijective, then A -1 is 
bounded. 

PROOF. Because A is continuous, bijective, and open by Theorem 12.1, A is 
a homeomorphism. • 

12.6. The Closed Graph Theorem. If :r and qy are Banach spaces and A: 
:r ~ qy is a linear transformation such that the graph of A, 

gra A == {x EB Ax E :r EB 1 qy: x E :r } 
is closed, then A is continuous. 

PROOF. Let C§ = gra A. Since :r EB 1 qy is a Banach space and '§ is closed, C§ 

is a Banach space. Define P: C§ ~ :r by P(x EB Ax) = x. It is easy to check 
that P is bounded and bijective. (Do it). By the Inverse Mapping Theorem, 
P -1: :r ~ C§ is continuous. Thus A: :r ~ qy is the composition of the 
continuous map p-1: :r ~ '§ and the continuous map of C§ ~ qy defined by 
x EB Ax ~ Ax; A is therefore continuous. • 

Let :r = all functions f: [0, 1] ~ IF such that the derivative f' exists and 
is continuous on [0, 1]. Let qy = qo, 1] and give both :r and qy the 
supremum norm: Ilfll = sup{lf(t)l: t E [0, 1l}. So:r is not a Banach space, 
though qy is. Define A: :r ~ qy by Af = f '. Clearly, A is linear. If {fn} c:;:;: :r 
and Un'/n') ~ U, g) in :rx qy, then fn' ~ g uniformly on [0,1]. Hence 

fn(t) - fn(O) = [fn'(s) ds ~ [g(s) ds. 
o 0 
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But fn(t) - fn(O) -4 f(t) - f(O), so 

f(t)=f(O) + {g(s)ds. 

Thus f' = g and gra A is closed. However, A is not bounded. (Why?) 
The preceding example shows that the domain of the operator in the 

Closed Graph Theorem must be assumed to be complete. The next example 
(due to Alp Eden) shows that the range must also be assumed to be 
complete. 

Let !!£ be a separable infinite-dimensional Banach space and let {e;: 
i E I} be a Hamel basis for !!£ with Ileill = 1 for all i. Note that a Baire 
Category argument shows that I is uncountable. If x E !!£, then x = L;a;e;, 
a; E f, and a; = 0 for all but a finite number of i in!. Define IIxlll == L;laJ 
It is left as an exercise for the reader to show that II . III is a norm on !!£. 
Since Ile;11 = 1 for all i, Ilxll ~ Lilail = IIxll l. Let OJ/ =!!£ with the norm 
II· III and let T: OJ/-4!!£ be defined by T(x) = x. Note that it was just 
shown that T- l: !!£ -4 OJ/ is a contraction. Therefore gra T- l is closed and 
hence so is gra T. But T is not continuous because if it were, then T would 
be a homeomorphism. Since !!£ is separable, it would follow that OJ/ is 
separable. But OJ/ is not separable. To see this, note that Ile i - e)ll = 2 for 
i =1= j and since I is uncountable, OJ/ cannot be separable. 

When applying the Closed Graph Theorem, the following result is useful. 

12.7. Proposition. If!!£ and OJ/ are normed spaces and A: !!£ -4 OJ/ is a linear 
transformation, then gra A is closed if and only if whenever xn -4 0 and 
AXn -4 y, it must be that y = O. 

PROOF. Exercise 3. 

Note that (12.7) underlines the advantage of the Closed Graph Theorem. 
To show that A is continuous, it suffices to show that if xn -4 0, then 
Ax n -4 O. By (12.7) this is eased by allowing us to assume that {Ax n} is 
convergent. 

It is possible to give a measure-theoretic solution to Exercise 2.3, but here 
is one using the Closed Graph Theorem. Let (X, Q, p,) be a a-finite measure 
space, 1 ~ p ~ 00, and cp: X -4 f an Q-measurable function such that 
cpf E LP(p,) whenever f E LP(p,). Define A: LP(p,) -4 LP(p,) by Af = cpf. 
Thus A is linear and well defined. Suppose fn -4 0 and cp fn -4 g in L P (p, ). 
If 1 ~ p < 00, then fn -4 0 in measure. By a theorem of Riesz, there is a 
subsequence {fnJ such that fnJx) -40 a.e. [p,]. Hence cp(x)fnJx) -40 a.e. 
[p,]. This implies g = 0 and so graA is closed. If p = 00, then fn(x) -40 
a.e. [p,] and the same argument implies gra A is closed. By the Closed Graph 
Theorem, A is bounded. Clearly, it may be assumed that IIA II = 1. If S > 0, 
let E = {x: Icp(x)1 ~ 1 + S}. Now IIAnll ~ 1, so Ilcpnfllp ~ Ilfllp for all 
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n ;::: 1. Thus 

1lf11~ ;::: jlcWPlf1P dJl ;::: (1 + S)"P f I/IP dJl. 
E 

But (1 + s)np ~ 00 as n ~ 00. Hence iEl/IP dJl = 0 for each I in LP(Jl), 
and Jl(E) = o. It follows that cf> E LOO(Jl) and 1cf>1 .:::; 1 a.e. [Jll. 

12.8. Definition. If gr, qy are Banach spaces, an isomorphism of gr and qy 
is a linear bijection T: gr ~ qy that is a homeomorphism. Say that gr and qy 
are isomorphic if there is an isomorphism of gr onto qy. 

Note that the Inverse Mapping Theorem says that an isomorphism is a 
continuous bijection. 

The use of the word "isomorphism" is counter to the spirit of category 
theory, but it is traditional in Banach space theory. 

EXERCISES 

1. Suppose !!( and '!!f are Banach spaces. If A E !lI(!!{, '!!f) and ran A is a second 
category space, show that ran A is closed. 

2. Give both C(l) [0,1] and C[O, 1] the supremum norm. If A: CO) [0, 1] -> C[O, 1] is 
defined by Af = /" show that A is not bounded. 

3. Prove Proposition 12.7. 

4. Let!!{ be a vector space and suppose II . III and II . 112 are two norms on !!( and 
that -fl and -f2 are the corresponding topologies. Show that if :1£' is complete in 
both norms and -fl ;;;) -f2' then -fl = -f2 . 

5. Let !!( and '!!f be Banach spaces and let A E !lI(:1£', '!!f). Show that there is a 
constant c > ° such that IIAxll 2: cllxll for all x in :1£' if and only if kcr A = (0) 
and ran A is closed. 

6. Let X be compact and suppose that:1£' is a Banach subspace of C( X). If E is a 
closed subset of X such that for every g in C( E) there is an f in !!( with 
fl E = g, show that there is a constant c > ° such that for each g in C( E) there is 
an f in!!{ with fiE = g and max{lf(x)l: x EX} :S: cmax{lg(x)l: x E E}. 

7. Let 1 :S: P :S: 00 and suppose (a i ) is a matrix such that (Af)(i) = Lj~laii(j) 
defines an element Af of [P for every fin [P. Show that A E !lI(lI'). . 

8. Let (X,Q,p,) be a !1-finite measure space, l:s:p < oc, and suppose that k: 
X X X -> IF is an Q X Q measurable function such that for fin LP(p,) and a.c. 
x, k(x, ·)f(-) E Ll(p,) and (Kf)(x) = Jk(x,y)f(y)dp,(y) defines an element 
Kf of U(p,). Show that K: U(p,) -> U(p,) is a bounded opcrator. 
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§13. Complemented Subspaces of a Banach Space 

If :!£ is a Banach space and ..H ~ :!£, say that ..H is algebraically comple­
mented in :!£ if there is an % ~ :!£ such that ..H n % = (0) and ..H + % = :!£. 
Of course, the definition makes sense in a purely algebraic setting, so the 
requirement that ..H and % be closed seems fatuous. Why is it made? 

If ..H is a linear manifold in a vector space :!£ (a Banach space or not), 
then a Hamel-basis argument can be fashioned to produce a linear manifold 
% such that ..H n %= (0) and ..H + %=:!£. So the requirement in the 
definition that ..H and % be closed subspaces of the Banach space :!£ 
makes the existence problem more interesting. Also, since we are dealing 
with the category of Banach spaces, all definitions should involve only 
objects in that category. 

If ..H and % are algebraically complemented closed subspaces of a 
normed space :!£, then A: ..H EB 1 % -4 :!£ defined by A (m EB n) = m + n is a 
linear bijection. Also, IIA(m EB n)11 = 11m + nil ~ Ilmil + lin II = 11m EB nil· 
Hence A is bounded. Say that ..H and % are topologically complemented if 
A is a homeomorphism; equivalently, if 111m + nlll == Ilmil + Ilnll is an 
equivalent norm. If :!£ is a Banach space, then the Inverse Mapping 
Theorem implies A is a homeomorphism. This proves the following. 

13.1. Theorem. If a pair of subs paces of a Banach space are algebraically 
complementary, then they are topologically complementary. 

This permits us to speak of complementary subspaces of a Banach space 
without modifying the term. The proof of the next result is left to the reader. 

13.2. Theorem. (a) If..H and % are complementary subspaces of a Banach 
space :!£ and E: :!£ -4 :!£ is defined by E (m + n) = m for m in ..H and n in 
%, then E is a continuous linear operator such that E 2 = E, ran E = ..H, and 
ker E = %. (b) If E E !JI(:!£) and E2 = E, then ..H = ran E and %= ker E 
are complemented subspaces of :!£. 

If ..H ~ :!£ and ..H is complemented in :!£, its complementary subspace 
may not be unique. Indeed, finite-dimensional spaces furnish the necessary 
examples. 

A result due to R. S. Phillips [1940] is that Co is not complemented in 100. 

A straightforward proof of this can be found in Whitely [1966]. Murray 
[1937] showed that IP, p =1= 2, p > 1 has uncomplemented subspaces. This 
seems to be the first paper to exhibit uncomplemented subspaces of a 
Banach space. 

Lindenstrauss [1967] showed that if ..H is an infinite-dimensional sub­
space of 100 that is complemented in 100 , then ..H is isomorphic to loc. This 
same result holds if 100 is replaced by IP, 1 ~ P < 00, c, or co. 
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Does there exist a Banach space fiE such that every closed subspace of fiE 
is complemented? Of course, if fiE is a Hilbert space, then this is true. But 
are there any Banach spaces that have this property and are not Hilbert 
spaces? Lindenstrauss [1971] proved that if fiE is a Banach space and every 
subspace of fiE is complemented, then fiE is isomorphic to a Hilbert space. 

EXERCISES 

1. If !£ is a vector space and J( is a linear manifold in !£, show that there is a 
linear manifold .AI" in !£ such that J( n .AI" = (0) and J( + .AI" = :?r. 

2. Let !£ be a Banach space and let E: :?r --> :?r be a linear map such that E2 = E 
and both ran E and ker E are closed. Show that E is continuous. 

3. Prove Theorem 13.2. 

4. Let!£ be a Banach space and show that if J( is a complemented subspace of :?r, 
then every complementary subspace is isomorphic to :?r1J(. 

5. Let X be a compact set and let Y be a closed subset of X. A simultaneous 
extension for Y is a bounded linear map T: C (Y) --> C( X) such that for each g 
in C(Y), T(g)1 Y = g. Let Co(X\ Y) = {f E C(X): fey) = 0 for all y in Y}. 
Show that if there is a simultaneous extension for Y, then Co (X \ Y) is comple­
mented in C(X). 

6. Show that if Y is a closed subset of [0,1], then there is a simultaneous extension 
for Y (see Exercise 5). (Hint: Write [0,1] \ Y as the union of disjoint intervals.) 

7. Using the notation of Exercise 5, show that if Y is a retract of X, then 
Co(X\ Y) is complemented in C(X). 

§14. The Principle of Uniform Boundedness 

There are several results that may be called the Principle of Uniform 
Boundedness (PUB) and all of these are called the PUB by various 
mathematicians. In this book the PUB will refer to any of the results of this 
section, though in a formal way the next result plays the role of the founder 
of the family. 

14.1. Principle of Uniform Boundedness (PUB). Let fiE be a Banach space 
and qlJ a normed space. If d~ 8d(fiE, qlJ) such that for each x in fiE, 
sup{IIAxll: A Ed} < 00, then sup{IIAII: A Ed} < 00. 

PROOF. (Due to William R. Zame) For each x in fiE let M(x) = sup{IIAxll: 
A E..#}, so IIAxl1 :s; M(x) for all x in fiE. Suppose sup{ IIA II: A Ed} = 00. 

Then there is a sequence {A n} ~ d and a sequence {x II} of vectors in fiE 
such that Ilxnll = 1 and IIAnxnll > 4n. Let Yn = 2- nx,,; thus Ily,,1I = 2- n and 
IIAnYnl1 > 2n. 
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14.2. Claim. There is a subsequence {YnJ such that for k ::::: 1: 

(a) IIAn Yn II > 1 + k + LJk_1M(Yn ); 
1<+1 1<+1 j 

(b) llYn II < 2- k - 1[sup{IIA n ll: 1 sj s k}l-l. 
k+ 1 } 

The proof of (14.2) is by induction. Let n1 = 1. The induction step is 
valid since IIYnl1 ~ 0 and IIAnYnl1 ~ 00. The details are left to the reader. 

Since LkllYnJI < 00, LkYnk = Y in :!£ (here is where the completeness of :!£ 
is used). Now for any k ::::: 1, 

k 00 

IIAnk+1YII = L Ank+1Ynj + Ank+1Ynk+l + L Ank+1Ynj 

j-I j-k+2 

Ank+1Ynk+l - [- t Ank+1Ynj - f: Ank+1Ynj ] 

j-I j-k+2 

k 00 

:::::IIAnk+1Ynk+lll- LAnk+Jnj+ L A nk+1Ynj 

j-I j-k+2 

ex; 

:::::l+k- L 2- j - 1 

j-k+2 

::::: k. 
Tha tis, M ( y) ::::: k for all k, a contradiction. • 

14.3. Corollary. If:!£ is a normed space and A ~ :!£, then A is a bounded set 
if and only if for every f in :!£*, sup{[f(a)l: a E A} < 00. 

PROOF. Consider :!£ as a subset of !JB(:!£*, IF) (= :!£**) by letting xU) = 
f(x) for every fin :!£*. Since:!£* is a Banach space and Ilxll = Ilxll for all 
x, the corollary is a special case of the PUB. • 

14.4. Corollary. If:!£ is a Banach space and A ~ :!£*, then A is a bounded 
set if and only if for every x in :!£, sup{[f(x)l: f E A} < 00. 

PROOF. Consider:!£* as !JB(:!£, IF). • 

Using Corollary 14.3, it is possible to prove the following improvement of 
(14.1). 

14.5. Corollary. If :!£ is a Banach space and qy is a normed space and if 
d ~ !JB(:!£, qy) such that for every x in :!£ and g in qy *, 

sup{lg(A(x))I: A Ed} < 00, 

then sup{IIAII: A Ed} < 00. 
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PROOF. Fix X 10 :!£. By the hypothesis and Corollary 14.3, sup{IIA(x)ll: 
A Ed} < 00. By (14.1), sup{IIAII: A Ed} < 00. • 

A special form of the PUB that is quite useful is the following. 

14.6. The Banach-Steinhaus Theorem. If :!£ and I[ij are Banach spaces and 
{ An} is a sequence in 88(:!£, I[ij) with the property that for every x in :!£ there 
is a y in I[ij such that IIAnx - yll --> 0, then there is an A in /J8(:!£, I[ij) such 
that IIAnx - Axil --> ° for every x in :!£ and suPllAnl1 < 00. 

PROOF. If X E :!£, let Ax = lim A nX' By hypothesis A: :!£ -> I[ij is defined 
and it is easy to see that it is linear. To show that A is bounded, note that 
the PUB implies that there is a constant M> ° such that IIAnl1 :::; M for all 
n. If X E:!£ and Ilxll :::; 1, then for any n ;::: 1, IIAxl1 :::; IIAx - Anxil + 
IIAnxl1 :::; IIAx - Anxil + M. Letting n -> 00 shows that IIAxll:::; M 
whenever Ilxll :::; 1. • 

The Banach-Steinhaus Theorem is a result about sequences, not nets. 
Note that if I is the identity operator on :!£ and for each n ;::: 1, An = n-'I 
and for n :::; 0, An = nI, then {An: n E l} is a countable net that converges 
in norm to 0, but the net is not bounded. 

14.7. Proposition. Let X be locally compact and let {fn} be a sequence in 
Co( X). Then ffn dJL --> ff dJL for every JL in M( X) if and only if sUPnllfnl1 < 00 
and fn(x) -> f(x) for every x in X. 

PROOF. Suppose ffn dJL --> ff dJL for every JL in M( X). Since M( X) = 

Co(X)*, (14.3) implies that sUPnl lfnl I < 00. By letting JL = ox' the unit point 
mass at x, we see that ffndox = fn(x) --> f(x). The converse follows by the 
Lebesgue Dominated Convergence Theorem. • 

EXERCISES 

l. Here is another proof of the PUB using the Baire Category Theorem. With the 
notation of (14.1), let Bn == {x E ?E: IIAxl1 <::: n for all A in .s¥}. By hypothesis, 
U~~,Bn = ?E. Now apply the Baire Category Theorem. 

2. If 1 < P < 00 and {xn} s:;: fP, then Lj~, Xn (j) y(j) ---> 0 for every y in lq, 
lip + 1/q = 1, if and only if sUPnllxnllp < 00 and xn(j) ---> 0 for every j ~ 1. 

3. If {xn}s:;:l', then Lj~lXn(j)y(j)->O for every y in Co if and only if 
supn IIxn IiI < 00 and Xn (j) -> 0 for every j ~ l. 

4. If (X,D,}L) is a measure space, 1 <p < 00, and {/,,} s:;: LP(X,D,}L), then 
ffgd}L -> 0 for every g in U(}L), lip + 1/q = 1, if and only if sup{Il/"llp: 
n ~ I} < 00 and for every set E in Q with }L(E) < 00, flo/', d}L -> 0 as n -> 00. 

5. If (X,D,}L) is a a-finite measure space and Un} is a sequence in L'(X,D,}L), 
then ffngd}L -> 0 for every gin LOO(}L) if and only if sup{Il/"II,: n ~ I} < 00 

and fEfn d}L -> 0 for every E in Q. 
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6. Let .Yt' be a Hilbert space and let tff be an orthonormal basis for .Yt'. Show that 
a sequence {h n} in .Yt' satisfies < h n ' h) --> 0 for every h in .Yt' if and only if 
sup{ Ilhnll: n ~ 1} < 00 and < h n , e) --> 0 for every e in tff. 

7. If X is locally compact and {Iln} is a sequence in M(X), then L(lln) --> 0 for 
every L in M(X)* if and only if SUP{lIllnll: n ~ 1} < 00 and Iln(E) --> 0 for 
every Borel set E. 

8. In (14.6), show that IIA II slim suPIIAnll. 

9. If (S, d) is a metric space and !!{ is a normed space, say that a function 
f: S -->!!( is a Lipschitz function if there is a constant M > 0 such that 
Ilf(x) - f(t)11 s Md(s, t) for all s, tin S. Show that if f: S -->!!{ is a function 
such that for all L in !!{*, L 0 f: S -> IF is Lipschitz, then f: S ->!!{ is a 
Lipschitz function. 

10. Let!!{ be a Banach space and suppose {x n } is a sequence in !!{ that is linearly 
independent and such that for each x in !!{ there are scalars {an} such that 
limn~oollx - LZ~lakxkll = o. Such a sequence is called a basis. (a) Prove that 
!!{ is separable. (b) Let '!Y= {{an} E IF N : L~~lanxn converges in!!{} and for 
y = {an} in '!Y define lIyll = SUPnIlLZ~lakxkll. Show that '!Y is a Banach space. 
( c) Show that there is a bounded bijection T: !!( --> '!Y. (d) If n ~ 1 and /,,: 
!!( --> IF is defined by /,,(Lk~lakxk) = an' show that fn E !!{*. (e) Show that 
xn $. the closed linear span of {Xk: k "* n}. 



CHAPTER IV 

Locally Convex Spaces 

A topological vector space is a generalization of the concept of a Banach 
space. The locally convex spaces are encountered repeatedly when discuss­
ing weak topologies on a Banach space, sets of operators on Hilbert space, 
or the theory of distributions. This book will only skim the surface of this 
theory, but it will treat locally convex spaces in sufficient detail as to enable 
the reader to understand the use of these spaces in the three areas of 
analysis just mentioned. For more details on this theory, see Bourbaki 
[1967], Robertson and Robertson [1966], or Schaefer [1971]. 

§1. Elementary Properties and Examples 

A topological vector space is a vector space that is also a topological space 
such that the linear structure and the topological structure are vitally 
connected. 

1.1. Definition. A topological vector space (TVS) is a vector space !!£ 
together with a topology such that with respect to this topology 

(a) the map of !!£x !!£ ~ !!£ defined by (x, y) ~ x + y is continuous; 
(b) the map of IF X !!£ ~ !!£ defined by (a, x) ~ ax is continuous. 

It is easy to see that a normed space is a TVS (Proposition III.l.3). 

Suppose!!£ is a vector space and 9 is a family of seminorms on !!£. Let .'T 
be the topology on !!£ that has as a subbase the sets {x: p(x - x o) < e}, 
where p E 9, Xo E !!£, and e > O. Thus a subset U of !!£ is open if and only 
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if for every Xo in U there are PI"'" Pn in !!J> and el , ... , en > 0 such that 
nj~l{x E:!£: p/x - xo) < Ej } ~ U. It is not difficult to show that:!£ with 
this topology is a TVS (Exercise 2). 

1.2. Definition. A locally convex space (LCS) is a TVS whose topology is 
defined by a family of seminorms!!J> such that n pE 9'{x: p(x) = O} = (0). 

The attitude that has been adopted in this book is that all topological 
spaces are Hausdorff. The condition in Definition 1.2 that n pE 9'{x: p(x) 
= O} = (0) is imposed precisely so that the topology defined by !!J> be 
Hausdorff. In fact, suppose that x *' y. Then there is a p in !!J> such that 
p(x - y) *' 0; let p(x - y) > E > O. If U = {z: p(x - z) < ~E} and V = 
{z: p(y - z) < ~e}, then U Ii V = 0 and U and V are neighborhoods of x 
and y, respectively. 

If :!£ is a TVS and Xo E :!£, then x >-+ x + Xo is a homeomorphism of :!£; 
also, if a E IF and a *' 0, x >-+ ax is a homeomorphism of :!£ (Exercise 4). 
Thus the topology of :!£ looks the same at any point. This might make the 
next statement less surprising. 

1.3. Proposition. Let :!£ be a TVS and let p be a seminorm on :!£. The 
following statements are equivalent. 

(a) p is continuous. 
(b) {x E :!£: p ( x) < I} is open. 
(c) 0 E int{x E:!£: p(x) < I}. 
(d) 0 E int{x E:!£: p(x):o; I}. 
( e) p is continuous at O. 
(f) There is a continuous seminorm q on :!£ such that P :0; q. 

PROOF. It is clear that (a) = (b) = (c) = (d). 
(d) implies (e): Clearly (d) implies that for every E > 0, 0 E int{ x E :!£: 

P (x) :0; E}; so if {Xi} is a net in :!£ that converges to 0 and E > 0, there is 
an io such that Xi E {x: p(x):o; E} for i ~ io; that is, p(xJ:O; E for i ~ io. 
So P is continuous at O. 

(e) implies (a): If Xi ~ x, then Ip(x) - p(xJI :0; p(x - xJ. Since x - Xi 
~ 0, (e) implies that p(x - xJ ~ O. Hence p(xJ ~ p(x). 

Clearly (a) implies (f). So it remains to show that (f) implies (e). If Xi ~ 0 
in :!£, then q(xJ ~ O. But 0:0; p(xJ :0; q(xJ, so p(xJ ~ O. • 

1.4. Proposition. If :!£ is a TVS and PI" .. , Pn are continuous seminorms, 
then PI + ... +Pn and maxi(Pi(x)) arecontinuousseminorms. If {Pi} isa 
family of continuous seminorms such that there is a continuous seminorm q 
with Pi :0; q for all i, then x >-+ SUPi{ Pi(X)} defines a continuous seminorm. 
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PROOF. Exercise. 

If &J is a family of seminorms on !![ that makes !![ into a LCS, it is often 
convenient to enlarge &J by assuming that f!jJ is closed under the formation 
of finite sums and supremums of bounded families [as in (1.4)]. Sometimes it 
is convenient to assume that &J consists of aU continuous seminorms. In 
either case the resulting topology on !![ remains unchanged. 

1.5. Example. Let X be completely regular and let C( X) = all continuous 
functions from X into IF. If K is a compact subset of X, define PK(f) = 
sup{lf(x)l: x E K}. Then {PK: K compact in X} is a family of semi­
norms that makes C( X) into a LCS. 

1.6. Example. Let G be an open subset of C and let H(G) be the subset of 
Cd G) consisting of all analytic functions on G. Define the semi norms of 
(1.5) on H(G). Then H(G) is a LCS. Also, the topology defined on H(G) 
by these seminorms is the topology of uniform convergence on compact 
subsets- the usual topology for discussing analytic functions. 

1.7. Example. Let !![ be a normed space. For each x* in !![*, define 
Px'(x) = Ix*(x)l· Then Px' is a seminorm and if f!jJ = {Px': x* E !![*}, f!jJ 

makes !![ into a LCS. The topology defined on !![ by these seminorms is 
called the weak topology and is often denoted by a(!![, !![*). 

1.8. Example. Let !![ be a normed space and for each x in !![ define Px: 
!![* -+ [0,00) by Px(x*) = Ix*(x)l. Then Px is a seminorm and f!jJ = {Px: 
X E !![} makes !![* into a LCS. The topology defined by these seminorms is 
called the weak-star (or weak* or wk*) topology on !![*. It is often denoted 
by a(!![*, !![). 

The spaces !![ with its weak topology and !![* with its weak* topology are 
very important and will be explored in depth in Chapter V. 

Recall the definition of convex set from (1.2.4). If a, b E !![, then the line 
segment from a to b is defined as [a, b) == {tb + (1 - t)a: 0 s t s I}. So a 
set A is convex if and only if [a, b) ~ A whenever a, b EA. The proof of 
the next result is left to the reader. 

1.9. Proposition. (a) A set A is convex if and only if whenever Xl' ... ' Xn E A 
and t l , ... , tn E [0,1] with Llj = 1, then LljXj Eo A. (b) If {Ai: i E I} is a 
collection of convex sets, then () iAi is convex. 

1.10. Definition. If A ~ !![, the convex hull of A, denoted by co(A), is the 
intersection of all convex sets that contain A. If !![ is a TVS, then the closed 
convex hull of A is the intersection of all closed convex subsets of !![ that 
contain A; it is denoted by co(A). 
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Since a vector space is itself convex, each subset of :!l is contained in a 
convex set. This fa~ and Proposition 1.9(b) imply that co( A) is well defined 
and convex. Also, co( A) is a closed convex set. 

If :!l is a normed space, then {x: Ilxll .::; I} and {x: Ilxll < I} are both 
convex sets. If f E :!l*, {x: If(x)1 .::; I}, {x: Ref(x).::; I}, {x: Ref(x) > I} 
are all convex. In fact, if T: :!l -> CfI/ is a real linear map and C is a convex 
subset of 0/, then T- I ( C) is convex in :!l. 

1.11. Proposition. Let :!l be a TVS and let A be a convex subset of :!l. Then 
(a) cl A is convex; (b) if a E int A and bE cl A, then [a, b) == {tb + (1 -
t)a:O.::;t<I}~intA. 

PROOF. Let a E A, bE clA, and 0.::; t.::; 1. Let {Xi} be a net in A such 
that Xi -> b. Then tXi + (1 - t)a -> tb + (1 - t)a. This shows that 

1.12 b in cl A and a in A imply [a, b] ~ cl A. 

Using (1.12) it is easy to show that clA is convex. To prove (b), fix t, 
0< t < 1, and put c = tb + (l - t)a, where a E intA and b E clA. There 
is an open set V in :!l such that 0 E V and a + V ~ A. (Why?) Hence for 
any d in A 

A ~ td + (1 - t)(a + V) 

= t(d - b) + tb +(1 - t)(a + V) 

= [t(d - b) +(1 - t)V] + c. 

If it can be shown that there is an element d in A such that 0 E t( d - b) + 
(l - t)V = U, then the preceding inclusion shows that c E int A since U is 
open (Exercise 4). Note that the finding of such a d in A is equivalent to 
finding a d such that 0 E t-l(l - t)V + (d - b) or dEb - t-I(I - t)V. 
But 0 E - t-I(l - t)Vand this set is open. Since b E cl A, d can be found 
in A. • 

1.13. Corollary. If A ~ :!l, then coCA) is the closure of coCA). 

A set A ~ :!l is balanced if ax E A whenever x E A and lal .::; 1. A set 
A is absorbing if for each x in :!l there is an e > 0 such that tx E A for 
o < t < e. Note that an absorbing set must contain the origin. If a E A, 
then A is absorbing at a if the set A - a is absorbing. Equivalently, A is 
absorbing at a if for every x in :!l there is an e > 0 such that a + tx E A 
for 0 < t < e. 

If :!l is a vector space and p is a seminorm, then V = {x: p (x) < I} is a 
convex balanced set that is absorbing at each of its points. It is rather 
remarkable that the converse of this is true. This fact will be used to give an 
abstract formulation of a LCS and also to explore some geometric conse­
quences of the Hahn-Banach Theorem. 
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1.14. Proposition. If!!( is a vector space over IF and V is a convex, balanced 
set that is absorbing at each of its points, then there is a unique seminorm p on 
!!( such that V = {x E !!(: p ( x) < I}. 

PROOF. Define p(x) by 

p ( x) = inf { t: t ;::: 0 and x E tV}. 

Since V is absorbing, !!(= U~=lnV, so that the set whose infimum is p(x) is 
nonempty. Clearly p(O) = O. To see that p(ax) = lalp(x), we can suppose 
that a =1= O. Hence, because V is balanced, 

p{ax) = inf{t;::: 0: ax E tV} 

= inf{ t ;::: 0: x E t( ~ V)} 

= inf{t;::: 0: x E tC~1 V)} 

= la1inf{ I~I : x E I~I V} 
= lalP{x). 

To complete the proof that p is a serninorm, note that if a, f3 ;::: 0 and 
a, bE V, then 

aa + f3b = (a + f3) ( a : f3 a + a! f3 b) E (a + f3) V 

by the convexity of V. If x, Y E!!(, p(x) = a, and p(y) = f3, let 8 > O. 
Then x E (a + 8)V and y E (f3 + 8)V. (Why?) Hence x + y E (a + 8)V 
+ (f3 + 8)V = (a + f3 + 28)V (Exercise 11). Letting 8 -> 0 shows that 
p(x + y) :;; a + f3 = p(x) + p(y). 

It remains to show that V= {p(x) < I}. If p(x) = a < 1, then a < f3 
< 1 implies x E f3V ~ V since V is balanced. Thus V;;;:> {x: p(x) < I}. If 
x E V, then p(x) :;; 1. Since V is absorbing at x, there is an f> 0 such 
that for 0 < t < f, X + tx = Y E V. But x = (1 + t) - ly, Y E V. Hence 
p(x) = (1 + t)-lp(y):;; (1 + t)-1 < 1. 

Uniqueness follows by (III.1.4). • 

The seminorm p defined in the preceding proposition is called the 
Minkowski functional of V or the gauge of V. 

Note that if !!( is a TVS space and V is an open set in !!(, then V is 
absorbing at each of its points. 

Using Proposition 1.14, the following characterization of a LCS can be 
obtained. The proof is left to the reader. 

1.15. Proposition. Let !!( be a TVS and let 0/1 be the collection of all open 
convex balanced subsets of !!(. Then !!( is locally convex if and only if 0/1 is a 
basis for the neighborhood system at O. 
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EXERCISES 

1. Let !!£ be a TVS and let iJ// be all the open sets containing 0. Prove the 
following. (a) If U E iJ//, there is a V in iJ// such that V + V ~ U. (b) If U E iJ//, 
there is a V in iJ// such that V ~ U and aV ~ V for allial s 1. (V is balanced.) 
(Hint: If WE iJ// and aW ~ U for lal S f, then fW ~ f3U for 1131 ;::: 1.) 

2. Show that a LCS is a TVS. 

3. Suppose that !!£ is a TVS but do not assume that !!£ is Hausdorff. (a) Show that 
!!£ is Hausdorff if and only if the singleton set {o} is closed. (b) If !!£ is 
Hausdorff, show that !!£ is a regular topological space. 

4. Let !!£ be a TvS. Show: (a) if Xo E !!£, the map x ~ x + Xo is a homeomor­
phism of !!£ onto !!£; (b) if a E 0= and a *- 0, the map x ~ ax is a homeomor­
phism. 

5. Prove Proposition 1.4. 

6. Verify the statements made in Example 1.5. Show that a net {fi} in C(X) 
converges to I if and only if Ii -> I uniformly on compact subsets of X. 

7. Show that the space H( G) defined in (1.6) is complete. (Every Cauchy net 
converges.) 

8. Verify the statements made in Example 1.7. Give a basis for the neighborhood 
system at 0. 

9. Verify the statements made in Example 1.8. 

10. Prove Proposition 1.9. 

11. Show that if A is a convex set and a,f3 > 0, then aA + f3A = (a + f3)A. Give 
an example of a nonconvex set A for which this is untrue. 

12. If !!£ is a TVS and A is closed, show that A is convex if and only if 
hx + y) E A whenever x and yEA. 

13. Let s = the space of all sequences of scalars. Thus s = all functions x: 1'\1 -> 0=. 
Define addition and scalar multiplication in the usual way. If x, yEs, define 

d(x y) = f 2~n Ix(n) - y(n)1 
, n~l l+lx(n)-y(n)I' 

Show that d is a metric on s and that with this topology s is a TVS. Also show 
that s is complete. 

14. Let (X, a, IL) be a finite measure space, let vii be the space of a-measurable 
functions, and identify two functions that agree a.e. [ILl. If I, g E vii, define 

( ) f II - gl 
d I, g = 1 + II _ gl dIL· 

Then d is a metric on vii and (vii, d) is a complete TVS. Is there a relationship 
between this example and the space s of Exercise 13? 

15. If!!£ is a TVS and A ~!!£, then clA = n{A + V: ° E V and Vis open}. 
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16. If :l£ is a TVS and AI is a closed linear space, then :l£jAl with the quotient 
topology is a TVS. If p is a seminorm on:l£, define p on :l£jAl by p(x + AI) = 

inf{ p(x + y): y E AI}. Show that p is a semi norm on :l£jAl. Show that if :l£ is 
a LCS, then so is :l£jAl. 

17. If {~: i E I} is a family of TVS's, then :l£ = n {~: i E I} with the product 
topology is a TVS. If each:l£j is a LCS, then so is :l£. If :l£ is a LCS, must each 
~ be a LCS? 

18. If :l£ is a finite-dimensional vector space and S;, S; are two topologies on :l£ 
that make :l£ into a TVS, then S; = S;. 

19. If :l£ is a TVS and AI is a finite-dimensional linear manifold in :l£, then AI is 
closed and '?Y + AI is closed for any closed subspace '?Y of :l£. 

20. Let :l£ be any infinite-dimensional vector space and let Y be the collection of 
all subsets W of :l£ such that if x E W, then there is a convex balanced set U 
with x + U ~ W and un AI open in AI for every finite-dimensional linear 
manifold AI in :l£. (Each such AI is given its usual topology.) Show: (a) (:l£, Y) 
is a LCS; (b) a set F is closed in :l£ if and only if F n AI is closed for every 
finite-dimensional subspace AI of :l£; (c) if Y is a topological space and f: 
:1£ -> Y (not necessarily linear), then 1 is continuous if and only if IIAI is 
continuous for every finite-dimensional space AI; (d) if '?Y is a TVS and T: 
:1£ -> '?Y is a linear map, then T is continuous. 

21. Let X be a locally compact space and for each <I> in Co(X), define p",U) = 

11<1>/1100 for 1 in Cb(X). Show that P", is a seminorm on Cb(X). Let f3 = the 
topology defined by these seminorms. Show that (Cb (X), f3) is a LCS that is 
complete. f3 is called the strict topology. 

22. For 0 < p < 1, let IP = all sequences x such that E:~llx(n)IP < 00. Define 
d(x, y) = E~~llx(n) - y(nW (no pth root). Then d is a metric and (fP, d) is 
a TVS that is not locally convex. 

23. Let :1£ and '?Y be locally convex spaces and let T: :l£ -> '?Y be a linear 
transformation. Show that T is continuous if and only if for every continuous 
seminorm p on '?Y, poT is a continuous seminorm on :1£. 

24. Let :1£ be a LCS and let G be an open connected subset of :1£. Show that G is 
arcwise connected. 

§2. Metrizable and N ormable Locally Convex Spaces 

Which LCS's are metrizable? That is, which have a topology which is 
defined by a metric? Which LCS's have a topology that is defined by a 
norm? Both are interesting questions and both answers could be useful. 

If 9 is a family of seminorms on :r and :r is a TVS, say that 9 
determines the topology on :r if the topology of :r is the same as the 
topology induced by 9. 
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2.1. Proposition. Let {Pl, Pl, ... } be a sequence of seminorms on !!£ such 
that n~~I{x: Pn(x) = O} = (0). For X andy in!!£, define 

d(x, y) = f 2- n Pn(x - y) . 
n ~ 1 1 + Pn (x - y) 

Then d is a metric on !!£ and the topology on !!£ defined by d is the topology on 
!!£ defined by the seminorms {Pl, P2'" .}. Thus a LCS is metrizable if and 
only if its topology is determined by a countable family of seminorms. 

PROOF. It is left as an exercise for the reader to show that d is a metric and 
induces the same topology as {Pn}' If !!£ is a LCS and its topology is 
determined by a countable family of seminorms, it is immediate that !!£ is 
metrizable. For the converse, assume that !!£ is metrizable and its metric is 
p. Let Un = {x: p(x,O) < lin}. Because !!£ is locally convex, there are 
continuous seminorms ql" .. ,qk and positive numbers 1':1' ... ,I':k such that 
n;~I{x: q/x) < I':j} ~ Un' If Pn = I':llql + '" +1':;;lqk' then x E Un 
whenever Pn(x) < 1. Clearly, Pn is continuous for each n. Thus if Xj -4 0 in 
!!£, then for each n, Pn(x) -4 0 as i -4 00. Conversely, suppose that for 
each n, Pn(x) -4 ° as i -4 00. If I': > 0, let n > 1':-1. Then there is a ia such 
that for i ~ ia, Pn(x) < 1. Thus, for i ~ ia' Xj E Un ~ {X: p(x,O) < I':}. 

That is, p(xj,O) < I': for i ~ia and so Xj -4 0 in !!£. This shows that {Pn} 
determines the topology on !!£. (Why?) • 

2.2. Example. If C( X) is as in Example 1.5, then C( X) is metrizable if and 
only if X = U~~IKn' where each Kn is compact, Kl ~ K2 ~ "', and if K 
is any compact subset of X, then K ~ Kn for some n. 

2.3. Example. If X is locally compact and C( X) is as in Example 1.5, then 
C( X) is metrizable if and only if X is a-compact (that is, X is the union of 
a sequence of compact sets). If H( G) is as in Example 1.6, thenH( G) is 
metrizable. 

If !!£ is a vector space and d is a metric on !!£, say that d is translation 
invariant if d(x + z, y + z) = d(x, y) for all x, y, z in !!£. Note that the 
metric defined by a norm as well as the metric defined in (2.1) are 
translation invariant. 

2.4. Definition. A Frechet space is a TVS !!£ whose topology is defined by 
a translation invariant metric d and such that (!!£, d) is complete. 

It should be pointed out that some authors include in the definition of a 
Frechet space the assumption that !!£ is locally convex. 

2.5. Definition. If !!£ is a TVS and B ~ !!£, then B is bounded if for every 
open set U containing 0, there is an I': > ° such that I':B ~ U. 
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If :!£ is a normed space, then it is easy to see that a set B is bounded if 
and only if sup{llbll: bE B} < 00, so the definition is intuitively correct. 

Also, notice that if II . II is a norm, {x: Ilxll < I} is itself bounded. This is 
not true for seminorms. For example, if C(~) is topologized as in (1.5), let 
p(f) = sup{lf(t)l: 0 ~ t ~ I}. Then p is a continuous seminorm. How­
ever, {f: p(f) < I} is not bounded. In fact, if fo is any function in C(~) 
that vanishes on [0,1], {afo: a E~} ~ {f: p(f) < 1}. The fact that a 
normed space possesses a bounded open set is characteristic. 

2.6. Proposition. If :!£ is a LCS, then :!£ is normable if and only if :!£ has a 
bounded open set. 

PROOF. It has already been shown that a normed space has a bounded open 
set. So assume that :!£ is a LCS that has a bounded open set U. It must be 
shown that there is norm on :!£ that defines the same topology. By 
translation, it may be assumed that 0 E U (see Exercise 4i). By local 
convexity, there is a continuous seminorm p such that {x: p(x) < I} == V 
~ U (Why?). It will be shown that p is a norm and defines the topology 
on :!£. 

To see that p is a norm, suppose that x E:!£, x =1= O. Let Wo, Wx be 
disjoint open sets such that 0 E Wo and x E Wx ' Then there is an e > 0 
such that Wo ~ eU ~ ev' But eV = {y: p(y) < e}. Since x$. Wo, p(x) ~ e. 
Hence p is a norm. 

Because p is continuous on :!£, to show that p defines the topology of :!£ 
it suffices to show that if q is any continuous seminorm on :!£, there is an 
a > 0 such that q ~ ap (Why?). But because q is continuous, there is an 
e> 0 such that {x: q(x) < I} ~ eU ~ ev' That is, p(x) < e implies q(x) 
< 1. By Lemma 111.1.4, q ~ e-1p. • 

EXERCISES 

1. Supply the missing details in the proof of Proposition 2.l. 

2. Verify the statements in Example 2.2. 

3. Verify the statements in Example 2.3. 

4. Let!!l" be a TVS and prove the following: (a) If B is a bounded subset of !!l", then 
so is cl B. (b) The finite union of bounded sets is bounded. (c) Every compact set 
is bounded. (d) If B <:;; !!l", then B is bounded if and only if for every sequence 
{xn } contained in B and for every {an} in Co' anxn --> 0 in !!l". (e) If '!If is a 
TVS, T: !!l" --> '!If is a continuous linear transformation, and B is a bounded 
subset of !!l", then T(B) is a bounded subset of '!If. (f) If !!l" is a LCS and B <:;; !!l", 
then B is bounded if and only if for every continuous semi norm p, sup{ p( b): 
b E B} < 00. (g) If !!l" is a normed space and B <:;; !!l", then B is bounded if and 
only if sup{llbll: bE B} < 00. (h) If !!l" is a Frechet space, then bounded sets 
have finite diameter, but not conversely. (i) The translate of a bounded set is 
bounded. 
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5. If !¥" is a LCS, show that!¥" is metrizable if and only if !¥" is first countable. Is 
this equivalent to saying that {O} is a G8 set? 

6. Let X be a locally compact space and give Ch (X) the strict topology defined in 
Exercise 1.21. Show that a subset of Ch (X) is {l-bounded if and only if it is norm 
bounded. 

7. With the notation of Exercise 6, show that (Cb(X),{l) is metrizable if and only if 
X is compact. 

8. Prove the Open Mapping Theorem for Frechet spaces. 

§3. Some Geometric Consequences of the 
Hahn - Banach Theorem 

In order to exploit the Hahn-Banach Theorem in the setting of a LCS, it is 
necessary to establish some properties of continuous linear functionals. The 
proofs of the relevant propositions are similar to the proofs of the corre­
sponding facts about linear functionals on normed spaces given in §III.S. 
For example, a hyperplane in a TVS is either closed or dense (see 111.5.2). 
The proof of the next fact is similar to the proof of (111.2.1) and (III.S.3) 
and will not be given. 

3.1. Theorem. If f!( is a TVS and f: f!( ~ IF is a linear functional, then the 
following statements are equivalent. 

(a) f is continuous. 
(b) f is continuous at O. 
(c) f is continuous at some point. 
(d) kerf is closed. 
(e) x >-+ If(x)1 is a continuous seminorm. 

If f!( is a LCS and g; is a family of seminorms that defines the topology on 
f!(, then the statements above are equivalent to the following: 

(f) There are PI"'" Pn in g; and positive scalars a l , ... , an such that 
If(x)1 :0; Lk~lakPk(x) for all x. 

The proof of the next proposition is similar to the proof of Proposition 
1.14 and will not be given. 

3.2. Proposition. Let f!( be a TVS and suppose that G is an open convex 
subset of f!( that contains the origin. If 

q{x) = inf{t: t z 0 and x E tG}, 

then q is a non-negative continuous sublinear functional and G = {x: q(x) < 
1 }. 
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Note that the difference between the preceding proposition and (1.14) is 
that here G is not assumed to be balanced and the consequence is a 
sub linear functional (q( ax) = aq( x) if a::2: 0) that is not necessarily a 
seminorm. 

The geometric consequences of the Hahn-Banach Theorem are achieved 
by interpreting that theorem in light of the correspondence between linear 
functionals and hyperplanes and between sub linear functionals and open 
convex neighborhoods of the origin. The next result is typical. 

3.3. Theorem. If?E is a TVS and G is an open convex nonempty subset of ?E 
that does not contain the origin, then there is a closed hyperplane A such that 
An G = D. 

PROOF. Case 1. ?E is an IR-linear space. Pick any Xo in G and let 
H = Xo - G. Then H is an open convex set containing 0. (Verify). By (3.2) 
there is a continuous nonnegative sublinear functional q: ?E ~ IR such that 
H = {x: q(x) < I}. Since Xo $. H, q(xo)::2: 1. 

Let qJf= {axo: a E IR} and define fo: '!!f~ IR by fo(ax o) = aq(xo)' If 
a ::2: 0, then f(ax o) = aq(xo) = q(axo); if a < 0, then f(ax o) = aq(xo):S:; 
a < 0 :s:; q( axo). So fo :s:; q on qJf. Let f: ?E -+ IR be a linear functional such 
that flqJf = fo and f:s:; q on ;J£. Put A = kerf· 

Now if x E G, then Xo - x E H and so f(x o) - f(x) = f(x o - x) :s:; 
q(xo - x) < 1. Therefore f(x) > f(x o) - 1 = q(xo) - 1 ::2: 0 for all x in 
G. Thus A n G = D. 

Case 2. ?E is a C-linear space. Lemma 111.6.3 will be used here. Using 
Case 1 and the fact that ?E is also an IR-linear space, there is a continuous 
IR -linear functional f: ?E -+ IR such that G n ker f = D. If F( x) = f (x) -
if( ix), then F is a C-linear functional and f = Re F (III.6.3). Hence 
F(x)=O if and only if f(x) =f(ix) = 0; that is, A=kerF=kerfn 
[i kerf]. So A is a closed hyperplane and An G = D. • 

An affine hyperplane in ?E is a set A such that for every Xo in A, 
A - Xo is a hyperplane. (See Exercise 3.) An affine manifold in ?E is a set '!!f 
such that for every Xo in '!!f, qJf - Xo is a linear manifold in ?E. An affine 
subspace of a TVS ?E is a closed affine manifold. 

3.4. Corollary. Let ?E be a TVS and let G be an open convex nomempty 
subset of ?E. If qJf is an affine subspace of ?E such that qJf n G = 0, then there 
is a closed affine hyperplane A in ;J£ such that '!!f <;;: A and A n G = D. 

PROOF. By considering G - Xo and '!!f- Xo for any Xo in '!!f, it may be 
assumed that qJf is a linear subspace of ?E. Let Q: ?E -+ ?Ej'!!f be the natural 
map. Since Q-l(Q(G)) = {y + G: y E '!!f}, Q(G) is open in ?EjqJf. It is 
easy to see that Q( G) is also convex. Since qJf n G = 0, 0 $. Q( G). By the 
preceding theorem, there is a closed hyperplane % in ?EjqJf such that 
%n Q(G) = D. Let A = Q-l(%). It is easy to check that A has the 
desired properties. • 
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There is a great advantage inherent in a geometric discussion of real 
TVS's. Namely, if f: :!£ ~ IR is a nonzero continuous IR-linear functional, 
then the hyperplane kerf disconnects the space. That is, :!£\ ker f has two 
components (see Exercises 4 and 5). It thus becomes convenient to make the 
following definitions. 

3.5. Definition. Let :!£ be a real TVS. A subset S of :!£ is called an open 
half-space if there is a continuous linear functional f: :!£ ~ IR such that 
S = {x E :!£: f (x) > a} for some a. S is a closed half-space if there is a 
continuous linear functional f: :!£ ~ IR such that S = {x E:!£: f(x) ~ a} 
for some a. 

Two subsets A and B of :!£ are said to be strictly separated if they are 
contained in disjoint open half-spaces; they are separated if they are 
contained in two closed half-spaces whose intersection is a closed affine 
hyperplane. 

3.6. Proposition. Let :!£ be a real TVS. 

(a) The closure of an open half-space is a closed half-space and the interior of 
a closed half-space is an open half-space. 

(b) If A, B ~ !!£, then A and B are strictly separated (separated) if and only 
if there is a continuous linear functional f: :!£ ~ IR and a real scalar a such 
that f (a) > a for all a in A and f (b) < a for all b in B (f (a) ~ a for all 
a in A andf(b)::; a for all b in B). 

PROOF. Exercise 6. 

In many ways, the next result is the most important "separation" theorem 
as the other separation theorems follow from this one. However, the most 
used separation theorem is Theorem 3.9 below. 

3.7. Theorem. If :!£ is a real TVS and A and B are disjoint open convex 
subsets of !!£, then A and B are strictly separated. 

PROOF. Let G = A - B == {a - b: a E A, bE B}; it is easy to verify that 
G is convex (do it!). Also, G = U{ A - b: b E B}, so G is open. Moreover, 
because A Ii B = 0,0 $. G. By Theorem 3.3 there is a closed hyperplane.A 
in !!£ such that .A Ii G = D. Let f: :!£ ~ IR be a linear functional such that 
.A = kerf. Now f ( G) is a convex subset of IR and 0 $. f ( G). Hence either 
f(x) > 0 for all x in G or f(x) < 0 for all x in G; suppose f(x) > 0 for all 
x in G. Thus if a E A and bE B, 0 < f(a - b) = f(a) - f(b); that is, 
f( a) > f( b). Therefore there is a real number a such that 

sup{f{b): bE B} ::; a::; inf{f{a): a E A}. 

But f(A) and f(B) are open intervals (Exercise 7), so f < a on Band 
f> a on A. • 
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3.8. Lemma. If:!C is a TVS, K is a compact subset of :!C, and V is an open 
subset of:!C such that K ~ V, then there is an open neighborhood of 0, U, such 
that K + U ~ v. 
PROOF. Let 0/10 = all of the open neighborhoods of O. Suppose that for each 
U in 0/10' K + U is not contained in V. Thus, for each U in 0/10 there is a 
vector Xu in K and a Yu in U such that Xu + Yu E :!C\ V. Order 0/10 by 
reverse inclusion; that is, U1 ~ U2 if UI ~ U2 • Then 0/10 is a directed set and 
{xu} and {Yu} are nets. Now Yu ...... 0 in :!C. Because K is compact there is 
an X in K such that xu---clx ({xu) clusters at x). Hence Xu + Yu---clx + 0 
= x. (Why?) Hence x E cl(:!C\ V) = :!C\ V, a contradiction. • 

The condition that K be compact in the preceding lemma is necessary; it 
is not enough to assume that K is closed. (What is counterexample?) 

3.9. Theorem. Let :!C be a real LCS and let A and B be two disjoint closed 
convex subsets of :!C. If B is compact, then A and B are strictly separated. 

PROOF. By hypothesis, B is a compact subset of the open set :!C\A. The 
preceding lemma implies there is an open neighborhood U1 of 0 such that 
B + U1 ~ :!C\ A. Because :!C is locally convex, there is a continuous semi­
norm p on :!C such that {x: p(x) < I} ~ U1• Put U = {x: p(x) < ~}. 
Then (B + U) n (A + U) = 0 (Verify!), and A + U and B + U are open 
convex subsets of :!C that contain A and B, respectively. (Why?) So the 
result follows from Theorem 3.7. • 

The fact that one of the two closed convex sets in the preceding theorem 
is assumed to be compact is necessary. In fact, if :!C = IR 2, A = {( x, y) E IR 2: 

y sO}, and B = {(x,y) E 1R2: y ~ X-I}, then A and B are disjoint 
closed convex subsets of IR 2 that cannot be strictly separated. 

The next result generalizes Corollary 111.6.8, though, of course, the metric 
content of (III.6.8) is missing. 

3.10. Corollary. If :!C is a real LCS, A is a closed convex subset of :!C, and 
x f!; A, then x is strictly separated from A. 

3.11. Corollary. If :!C is a real LCS and A ~:!C, then coCA) is the 
intersection of the closed half-spaces containing A . 

PROOF. Let .)ff' be the collection of all closed half-spaces containing A. 
Since each set in .)ff' is closed and convex, co( A) ~ n{ H: H E .)ff' }. On the 
other hand, if Xo f!; coCA), then (3.10) implies there is a continuous linear 
functional f: :!C ...... IR and an a in IR such that f( x o) > a and f( x) < a for 
all x in coCA). Thus H = {x: f(x) S a} belongs to.)ff' and Xo f!; H. • 

The next result generalizes Theorem III.6.13. 
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3.12. Corollary. If ~ is a real LCS and A ~ ~, then the closed linear span 
of A is the intersection of all closed hyperplanes containing A. 

If ~ is a complex LCS, it is also a real LCS. This can be used to 
formulate and prove versions of the preceding results. As a sample, the 
following complex version of Theorem 3.9 is presented. 

3.13. Theorem. Let ~ be a complex LCS and let A and B be two disjoint 
closed convex subsets of ~. If B is compact, then there is a continuous linear 
functional f: ~ --+ C, an 0: in IR, and an e > ° such that for a in A and b in B, 

Re f( a) .$; 0: < 0: + e .$; Re f( b ). 

3.14. Corollary. If ~ is a LCS and CfJI is a linear manifold in ~, then CfJI is 
dense in ~ if and only if the only continuous linear functional on ~ that 
vanishes on CfJI is the identically zero functional. 

3.15. Corollary. If ~ is a LCS, CfJI is a closed linear subspace of ~, and 
Xo E ~\ CfJI, then there is a continuous linear functional f: ~ --+ IF such that 
f(y) = ° for all y in CfJI and f(x o) = 1. 

These results imply that on a LCS there are many continuous linear 
functionals. Compare the results of this section with those of §III.6. 

The hypothesis that ~ is locally convex does not appear in the results 
prior to Theorem 3.9. The reason for this is that in the preceding results the 
existence of an open convex subset of ~ is assumed. In Theorem 3.9 such a 
set must be manufactured. Without the hypothesis of local convexity it may 
be that the only open convex sets are the whole space itself and the empty 
set. 

3.16. Example. For ° < p < 1, let LP(O, 1) be the collection of equivalence 
classes of measurable functions f: (0,1) --+ IR such that 

((f))p = {If(x)IPdx < 00. 
o 

It will be shown that d(f, g) = «(f - g))p is a metric on LP(O, 1) and that 
with this metric LP(O, 1) is a Frechet space. It will also be shown, however, 
that LP(O, 1) has only one nonempty open convex set, namely itself. So 
LP(O, 1), ° < p < 1, is most emphatically not locally convex. The proof of 
these facts begins with the following inequality. 

3.17 For s, t in [0, (0) and ° < p < 1, (s + t)P .$; sP + t P. 

To see this, let f(t) = sP + t P - (s + t)p for t ~ 0, s fixed. Then 
f'(t) = pt p- 1 - pes + t)p-l. Since p - 1 < ° and s + t ~ t, f'(t) ~ 0. 
Thus 0= f(O).$; f(t). This proves (3.17). 



116 IV. Locally Convex Spaces 

If d(f, g) = «(f - g» P for I, g in LP(O, 1), then (3.17) implies that 
d(f, g) :::; d(f, h) + d(h, g) for all I, g, h in LP(O, 1). It follows that d is a 
metric on LP(O, 1). Clearly d is translation invariant. 

3.18 LP(O, 1), ° < p < 1, is complete. 

The proof of this is left as an exercise. 

3.19 LP(O, 1) is a TVS. 

The continuity of addition is a direct consequence of the translation in­
variance of d. If In --+ I and an --+ a, an in IF, d(anln, a!) = «ani" - a!)p 
:::; « anln - an!) p + «ani - a!) P = lanIP(C(', - !) p + Ian - aIP«(f» P 
:::; C((fn - !)p + Ian - aIP«(f»p' where C is a constant independent of n. 
Hence anln -4 a/. Thus LP(O, 1) is a Frechet space. 
3.20 If G is a nonempty open convex subset of LP(O, l),then 

G = LP(O, 1). 
To see this, first suppose IE LP(O, 1) and «(f»p = r < R. As a function 

of t, f~l/(xW dx is continuous, assumes the value Oat t = 0, and assumes 
the value r at t = 1. Let ° < t < 1 such that f~l/(x)IPdx = r12. Define 
g, h: (0,1) -4 IF by g(x) = I(x) for x:::; t and 0 otherwise; hex) = I(x) for 
x 2: t and ° otherwise. Now 1= g + h = t(2g + 2h) and «2g» p = «2h» p 
= 2 P(rI2) = rI21 - p. Hence IE coB(O; RI21 - P). This implies that 
B(O; R) <;;:; coB(O; RI21 - P), or, equivalently, B(O; 21 - PR) <;;:; coB(O, R). 
Hence B(O; 41 - PR) <;;:; coB(O; 21 - PR) <;;:; coB(O; R). Continuing we see that 
for all n, B(O; 2n(l-p)R) <;;:; coB(O; R). 

So if G is a nonempty open convex subset of LP(O, 1), then by translation 
it may be assumed that ° E G. Thus there is an R > ° with B(O; R) <;;:; G. 
By the preceding paragraph, B(O; 2n(l-p)R) <;;:; coB(O; R) <;;:; G for all n 2: 1. 
Therefore LP(O, 1) <;;:; G. 

Also note that this says that the only continuous linear functional on 
LP(O, 1), ° < p < 1, is the identically zero functional. 

EXERCISES 

1. Prove Theorem 3.l. 

2. Let p be a sub linear functional, G "" {x: p (x) < I}, and define the sub linear 
functional q for the set G as in Proposition 3.2. Show that q( x) = max( p (x), 0) 

for all x in !l'. 

3. Let vi( <;;; !l', a TVS, and show that the following statements are equivalent: (a) 
vi( is an affine hyperplane; (b) there exists an Xo in vi( such that vi( - Xo is a 
hyperplane; (c) there is a linear function f: !l'.-,> IF and an a in IF such that 
vi( = {x E!l': I(x) = a}. 

4. Let!l' be a real TVS. Show: (a) if G is an open connected subset of !l', then G 
is arcwise connected; (b) if f: !l' --> IR is a continuous linear functional, then 
!l'\kerl has two components, {x: I(x) > O} and {x: I(x) < O}. 

5. If !l' is a complex TVS and I: !l' --> C is a nonzero continuous linear function, 
show that !l'\ kerl is connected. 
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6. Prove Proposition 3.6. 

7. If f: :!( -+ IR is a continuous IR-linear functional and A is an open convex subset 
of :!(, then f(A) is an open interval. 

8. Prove Corollary 3.12. 

9. Prove Theorem 3.l3. 

10. State and prove a version of Theorem 3.7 for a complex TVS. 

11. State and prove a version of Corollary 3.11 for a complex LCS. 

12. State and prove a version of Corollary 3.12 for a complex LCS. 

13. Prove (3.18). 

14. Give an example of a TVS :!( that is not locally convex and a subspace '!!J of :!( 

such that there is a continuous linear functional f on '!!J with no continuous 
extension to :!(. 

§4 *. Some Examples of the Dual Space of a Locally 
Convex Space 

As with a normed space, if :1£ is a LCS, :1£* denotes the space of all 
continuous linear functionals f: :1£ -+ IF. :1£* is called the dual space of :1£. 

4.1. Proposition. Let X be completely regular and let C( X) be topologized as 
in Example 1.5. If L: C(X) -+ IF is a continuous linear functional, then there 
is a compact set K and a regular Borel measure JL on K such that L (f) = J K f d JL 
for every f in C( X). Conversely, each such measure defines an element of 
C(X)*. 

PROOF. It is easy to see that each measure JL supported on a compact set K 
defines an element of C(X)*. In fact, if PK(f) = sup{lf(x)l: x E K} and 
L(f) = JKfdJL, then IL(f)1 ::=; IIJLllpK(f), and so L is continuous. 

Now assume L E C(X)*. There are compact sets K l, ... , Kn and posi­
tive numbers a1, •.. , an such that IL(f)1 ::=; Lj~lanPK/f) (3.1f). Let K = 

U7~lKj and a = max{laJ 1 ::=;j::=; n}. Then IL(f)1 ::=; aPK(f). Hence if 
f E C(X) and flK == 0, then L(f) = 0. 

Define F: C( K) -+ IF as follows. If g E C( K), let g be any continuous 
extension of g to X and put F(g) = L(g). To check that F is well defined, 
suppose that gl and g2 are both extensions of g to X. Then gl - it2 = ° on 
K, and hence L(gl) = L(g2)' Thus F is well defined. It is left as an exercise 
for the reader to show that F: C( K) -+ IF is linear. If g E C( K) and it is 
an extension in C(X), then W(g)1 = IL(g)1 ::=; aPK(g) = allgll, where the 
norm is the norm of C(K). By (III.5.7) there is a measure JL in M(K) such 
that F(g) = JKgdJL. If f E C(X), then g = flK E C(K) and so L(f) = 

F(g) = JKfdJL. • 
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Let Coo denote the extended complex plane. Thus Coo = C U {oo} with 
the metric it obtains from its identification with the sphere. If y: [0,1] --> C 
is a rectifiable curve and f is a continuous function defined on the trace of 
y, y([O,I]), then fyf is the line integral of f over y. That is, fJ == 
gf(y(t)) dy(t). (See Conway [1978].) The next result generalizes to arbi­
trary regions in the plane, but for simplicity it is stated only for the disk IG. 
Recall the definition of H(IG) from Example 1.6. 

4.2. Proposition. L E H(IG)* if and only if there is an r < 1 and a unique 
function g analytic on Coo \ li(O; r) with g( 00) = 0 such that 

4.3 L(f) = ~ffg 
27T1 y 

for every f in H(IG), where yet) = pe it, 0 :::; t :::; 27T, and r < p < 1. 

PROOF. Let g be given and define L as in (4.3). If K = {z: Izl = p}, then 

IL(f)1 = 217T If"f(peit)g(peit)iPeit dt I 

1 
:::; 27T PK (f) PK{ g )27Tp. 

So if c = PPK(g), IL(f)1 :::; CPK(f), and L E H(IG)*. 
Now assume that L E H(IG)*. The Hahn-Banach Theorem implies there 

is an F in C(IG)* such that FIH(IG) = L. By Proposition 4.1 there is a 
compact set K contained in IG and a measure Jl on K such that L(f) = 
fKfdp. for every f in H(IG). Define g: Coo \K --> C by g(oo) = 0 and 
g(z) = - fKl/(w - z) dp.(w) for z in C \ K. By Lemma III.8.2, g is 
analytic on Coo \K. Let p < 1 such that K ~ B(O; p). If y(t) = pe it, 
o :::; t :::; 27T, then Cauchy's Integral Formula implies 

f{w) = ~f f{z) dz 
27T1 y Z - w 

for Iwl < p; in particular, this is true for w in K. Thus, 

L(f) = f f{w)dp.{w) 
K 

= 21 . f f( z) g( z) dz. 
7T1 y 

This completes the proof except for the uniqueness of g (Exercise 3). • 
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EXERCISES 

1. Let U(: i E I} be a family of LCS's and give :![ = n { .!(: i E l} the product 
topology. (See Exercise 1.17.) Show that L E :![* if and only if there is a finite 
subset F contained in I and there are xl in ~* for j in F such that 
L(x) = LJ E FXj(X(j» for each x in :![. 

2. Show that the space s (Exercise 1.13) is linearly homeomorphic to C(N) and 
describe s*. 

3. Show that the function g obtained in Proposition 4.2 is unique. 

4. Show that L E H([})* if and only if there are scalars bo, b l , ... in C such that 
lim sup Ibll il / ll < 1 and L(f) = L~~ol/(n!)f(Il)(O)bll' 

5. If G is an annulus, describe H(G)*. 

6. (Buck [1958]). Let X be locally compact and let {3 be the strict topology on 
Ch ( X) defined in Exercise 1.21. (Also see Exercises 2.6 and 2.7.) Prove the 
following statements: (a) If p. E M(X) and En ,1..0, then there are compact sets 
K1 , K2 , .•. such that for each n ~ 1, Kn ~ int Kn+l and 1p.I(X\ Kn) < En' (b) If 
p. E M(X), then there is a ef> in Co(X) such that ef> ~ 0, 1p.I(X\ {x: ef>(x) > O}) 
= 0, 1/ef> E L1(1p.1), and f1/ef> dlp.1 ~ 1. (c) Show that if p. E M(X) and L(f) = 

ffdp. for fin Ch(X), then L E (Ch(X), {3)*. (d) Conversely, if L E (Ch(X),{3)*, 
then there is a p. in M(X) such that L(f) = ffdp. for fin Ch(X). 

7. Let X be completely regular and let At be a linear manifold in C( X). Show that 
if for every compact subset K of X, AtIK == {ilK: fEAt} is dense in C( K), 
then At is dense in C( X). 

§5*. Inductive Limits and the Space of Distributions 

In this section the most general definition of an inductive limit will not be 
presented. Rather one that removes certain technicalities from the argu­
ments and yet covers the most important examples will be given. For the 
more general definition see Kothe [1969], Robertson and Robertson [1966], 
or Schaefer [1971]. 

5.1. Definition. An inductive system is a pair (:![, {:![i: i E I}), where :![ is 
a vector space, :![i is a linear manifold in :![ that has a topology ~ such 
that (:![;, ~) is a LCS, and, moreover: 

(a) I is a directed set and :![; <;;:!!lj if i 5, j; 
(b) if i 5,j and ~ E 5), then ~ n:![; E~; 
(c) :![= U{ :![;: i E I}. 

Note that condition (b) is equivalent to the condition that the inclusion 
map :![; '->!!lj is continuous. 
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5.2. Example. Let d ~ 1 and let Q be an open subset of ~ d. Denote by 
Cc(oo)(Q) all the functions </>: Q ~ IF such that </> is infinitely differentiable 
and has compact support in Q. (The support of </> is defined by spt </> == cl{ x: 
</>(x) =F O}.) If K is a compact subset of Q, define !'fl(K) == {</> E C/'O(Q): 
spt </> ~ K}. Let !'fl(K) have the topology defined by the seminorms 

PK,m( </» = sUp{I</>(k)(x)l: Ikl ~ m, x E K}, 

where k = (kl, ... ,kd)' k j E ~ U {O}, Ikl = kl + ... +kd, and 

A-,(k) = __ J_I_kl __ 
'i' k k • Jx l ' ... JXdd 

Then (CcOO(Q), {!'fl(K): K is compact in Q}) is an inductive system. The 
space CcOO(Q) is often denoted in the literature by !'fl(Q), as it will be in this 
book. 

This example of an inductive system is the most important one as it is 
connected with the theory of distributions (below). In fact, this example was 
the inspiration for the definition of an inductive limit given now. 

5.3. Proposition. If (g(, {g(j, ff;}) is an inductive system, let !!4 = all con­
vex balanced sets V such that V n g(j E ff; for all i. Let :Y = the collection of 
all subsets U of g( such that for every Xo in U there is a V in !!4 with 
Xo + V ~ U. Then (g(,:Y) is a (not necessarily Hausdorff) LCS. 

Before proving this proposition, it seems appropriate to make the follow­
ing definition. 

5.4. Definition. If (g(, { g(j }) is an inductive system and :Y is the topology 
defined in (5.3), :Y is called the inductive limit topology and (g(, .r) is said 
to be the inductive limit of {g(j}. 

5.5. Lemma. With the notation as in (5.3), !!4~:.::Y. 

PROOF. Fix V in !!4. It will be shown that V is absorbing at each of its 
points. Indeed, if Xo E V and x E g(, then there is an g(/ and an g(j such 
that Xo E g(j and x E?lj. Since I is directed. there is a k in 1 with 
k ~ i, j. Hence xo' x E g(k' But V n g(k E :Yk. Thus there is an f > 0 such 
that Xo + ax E V n g(k ~ V for lal < f. 

Since V is convex, balanced, and absorbing at each of its points, there is a 
seminorm p on g( such that V = {x E g(: p(x) < I} (1.14). So if Xo E V, 
p(xo) = ro < 1. Let W = {x E g(: p(x) < hI - ro)}' Then W = HI -
ro)V and so WE !!4. Since Xo + W ~ V, V E!:T. • 

PROOF OF PROPOSITION 5.3. The proof that :Y is a topology is left as an 
exercise. To see that (g(,:y) is a LCS, note that Lemma 5.5 and Theorem 
1.14 imply that :Y is defined by a family of seminorms. • 
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For all we know the inductive limit topology may be trivial. However, the 
fact that this topology has not been shown to be Hausdorff need not 
concern us, since we will concentrate on a particular type of inductive limit 
which will be shown to be Hausdorff. But for the moment we will continue 
at the present level of generality. 

5.6. Proposition. Let (!!£, { !!£; }) be an inductive system and let Y be the 
inductive limit topology. Then 

(a) the relative topology on !!£; induced by Y (viz., .9l!!£;) is smaller than .9";; 
(b) if CI/I is a locally convex topology on !!£ sud/that for every i, CI/II!!£; ~.9";, 

then CI/I ~ Y; 
(c) a seminorm p on !!£ is continuous if and only if p I!!£; is continuous for 

each i. 

PROOF. Exercise 3. 

5.7. Proposition. Let (!!£, Y) be the inductive limit of the spaces {(!!£;, .9";): 
i E I}. If 0/ is a LCS and T: !!£ --+ 0/ is a linear transformation, then T is 
continuous if and only if the restriction of T to each !!£; is .9";-continuous. 

PROOF. Suppose T: !!£ --+ 0/ is continuous. By (5.6a), the inclusion map 
(!!£;, .9";) --+ (!!£, Y) is continuous. Since the restriction of T to!!£; is the 
composition of the inclusion map !!£; --+ !!£ and T, the restriction is continu­
ous. 

Now assume that each restriction is continuous. If p is a continuous 
seminorm on 0/, then po TI!!£; is a .9";-continuous seminorm for every i. By 
(5.6c), poT is continuous on !!£. By Exercise 1.23, T is continuous. • 

It may have occurred to the reader that the definition of the inductive 
limit topology depends on the choice of the spaces!!£; in more than the 
obvious way. That is, if !!£ = U j~ and each ~ has a topology that is 
"compatible" with that of the spaces {!!£i}' perhaps the inductive limit 
topology defined by the spaces {~} will differ from that defined by the 
{ !!£; }. This is not the case. 

5.8. Proposition. Let (!!£, {( !!£;, .9";)}) and (!!£, (~, CI/Ij )}) be two inductive 
systems and let Yand CI/I be the corresponding inductive limit topologies on !!£. 
If for every i there is a j such that !!£; ~ ~ and CI/I)!!£; ~ .9";, then CI/I ~ Y. 

PROOF. Let V be a convex balanced subset of !!£ such that for every j, 
V n ~ E o/ij. If!!£; is given, let j be such that !!£; ~ ~ and CI/I)!!£; ~ .9";. 
Hence V n!!£i = (V n ~) n!!£; E.9";. Thus V E 86 [as defined in (5.3)]. It 
now follows that CI/I ~ Y. • 

5.9. Example. Let !!£ be any vector space and let {!!£;: i E I} be all of the 
finite-dimensional subspaces of !!£. Give each!!£; the unique topology from 
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its identification with a Euclidean space. Then U(, { 3l"j }) is an inductive 
system. Let .r be the inductive limit topology. If Cf!! is a LCS and T: 3l" -4 Cf!! 
is a linear transformation, then T is ff-continuous. 

5.10. Example. Let X be a locally compact space and let {Kj: i E I} be 
the collection of all compact subsets of X. Let 3l"j = all I in C( X) such that 
spt I ~ K j. Then U j3l"; = Cc( X), the continuous functions on X with com­
pact support. Topologize each 3l"; by giving it the supremum norm. Then 
(Cc ( X), { 3l"j }) is an inductive system. 

Let ~ be the open subsets of X such that cl~ is compact. Let Co(~) be 
the continuous functions on ~ vanishing at 00 with the supremum norm. If 
I E Co(~) and I is defined on X by letting it be identically 0 on X\ ~, 
then IE Cc(X). Thus (CcCX), {Co(~)}) is an inductive system. Proposition 
5.8 implies that these two inductive systems define the same inductive limit 
topology on CcC X). 

5.11. Example. Let d ~ 1 and put Kn = {x E ~ d: Ilxll:::; n}. Then 
(~(~d), {~(Kn)}::"~I) is an inductive system. By (5.9), the inductive limit 
topology defined on 2iJ(~d) by this system equals the inductive limit 
topology defined by the system given in Example 5.2. 

If !J is any open subset of ~ d, then !J can be written as the union of a 
sequence of compact subsets {Kn} such that Kn ~ int K n+ 1. It follows by 
(5.9) that {2iJ(Kn)} defines the same topology on 2iJ(!J) as was defined in 
Example 5.2. 

The preceding example inspires the following definition. 

5.12. Definition. A strict inductive system is an inductive system 
(3l", {3l"n' .9;;}::"~ 1) such that for every n ~ 1, 3l"n ~ 3l"n + l' .9;;+ 113l"n = .9;;, and 
3l"n is closed in 3l"n + l' The inductive limit topology defined on :r by such a 
system is called a strict inductive limit topology and 3l" is said to be the strict 
inductive limit of {3l"n}' 

Example 5.11 shows that 2iJ(~ d), indeed 2iJ( !J), is a strict inductive limit. 
The following lemma is useful in the study of strict inductive limits as 

well as in other situations. 

5.13. Proposition. II 3l" is a LCS, Cf!!:::; 3l", and p is a continuous seminorm 
on qy, then there is a continuous seminorm jJ on :r such that jJ I Cf!! = p. 

PROOF. Let U = {y E Cf!!: p(y) < I}. So U is open in Cf!!; hence there is an 
open subset VI of 3l" such that VI n Cf!! = U. Since 0 E VI and :r is a LCS, 
there is an open convex balanced set V in 3l" such that V ~ VI' Let q = the 
gauge of V. So if y E Cf!! and q(y) < 1, then p(y) < L By Lemma III.IA, 
p :::; qlCf!!· 
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Let W = co( U U V); it is easy to see that W is convex and balanced 
since both U and V are. It will be shown that W is open. First observe that 
W = {tu + (1 - t)v: O.$; t.$; 1, u E U, v E V} (verify). Hence W = U{tU 
+ (1 - t)V: O.$; t.$; I}. Put ~ = tU + (1 - t)V. So Wo = V, which is 
open. If 0 < t < 1, ~ = U{ tu + (1 - t)V: u E V}, and hence is open. But 
Wi = U, which is not open. However, if u E U, then there is an e > 0 such 
that eu E V. For 0 < t < 1, let Yt = t- 1[1 - e + telu (E 0/). As t ~ 1, 
Yt ~ u. Since U is open in 0/, there is a t, 0 < t < 1, with Yt in U. Thus 
u = tYt + (1 - t)( eu) E ~. Therefore W = U{~: O.$; t < I} and W is 
open. 

5.14. Claim. W n 0/ = U. 

In fact, U ~ W, so U c W n 0/. If w E W n 0/, then w = tu + (1 - t)v, 
u in U, v in V, 0 .$; t .$; 1; it may be assumed that 0 < t < 1. (Why?) Hence, 
v = (1 - t) - \ w - tu) E 0/. So V E V n 0/ ~ U; hence w E U. 

Let p = the gauge of W. By Claim S.14, {y E 0/: P(y) < I} = {y E 0/: 
p (y) < I}. By the uniqueness of the gauge, P \ 0/ = p. • 

5.15. Corollary. If?l' is the strict inductive limit of {?l'n}' k is fixed, and p k 
is a continuous seminorm on ?l'k' then there is a continuous seminorm p on ?l' 
such that P\?l'k = Pk. In particular, the inductive limit topology is Hausdorff. 

PROOF. By (S.13) and induction, for every integer n > k, there is a continu­
ous seminorm Pn such that Pn\?l'n-l = Pn-l' If x E?l', define p(x) = Pn(x) 
when x E ?l'n' Since?l'n ~ ?l'n+l for all n, the properties of {Pn} insure that 
P is well defined. Clearly P is a seminorm and by (S.6c) P is continuous. 

If x E?l' and x *- 0, there is a k ~ 1 such that x E ?l'k' Thus there is a 
continuous seminorm Pk on ?l'k such that Pk(X) *- O. Using the first part 
of the corollary, we get a continuous seminorm P on ?l' such that p(x) *- O. 
Thus (?l', 3) is Hausdorff. • 

5.16. Proposition. Let ?l' be the strict inductive limit of {?l'n}' A subset B of 
?l' is bounded if and only if there is an n ~ 1 such that B ~?l'n and B is 
bounded in ?l'n' 

The proof will be accomplished only after a few preliminaries are settled. 
Before doing this, here are a few consequences of (S.16). 

5.17. Corollary. If?l' is the strict inductive limit of {?l'n}' then a subset K of 
?l' is compact if and only if there is an n ~ 1 such that K ~?l'n and K is 
compact in ?l'n' 

5.18. Corollary. If ?l' is the strict inductive limit of Frechet spaces {?l',,}, 0/ 
is a LCS, and T: ?l' ~ 0/ is a linear transformation, then T is continuous if 
and only if T is sequentially continuous. .. 
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PROOF. By Proposition 5.7, T is continuous if and only if TI3[n is continu­
ous for every n. Since each 3[n is metrizable, the result follows. • 

Note that using Example 5.11 it follows that for an open subset D of IR d, 

£&(D) is the strict inductive limit of Frechet spaces [each £&(Kn) is a Frechet 
space by Proposition 2.1]. So (5.18) applies. 

5.19. Definition. If D is an open subset of IR d, a distribution on D is a 
continuous linear functional on £&(D). 

Distributions are, in a certain sense, generalizations of the concept of 
function as the following example illustrates. 

5.20. Example. Let f be a Lebesgue measurable function on D that is 
locally integrable (that is, fKlfl d"A < 00 for every compact subset K of 
D-here"A is d-dimensional Lebesgue measure). If L/ £&(D) --> IF is defined 
by Lf ( cp) = ffcp d"A, Lf is a distribution. 

From Corollary 5.18 we arrive at the following. 

5.21. Proposition. A linear functional L: £&( D) --> IF is a distribution if and 
only if for every sequence {CPn} in £&(D) such that cl[U~~lsptCPn] = K is 
compact in D and cp~k)(x) --> 0 uniformly on K as n --> 00 for every k = 

(k1, ... ,kd ), it follows that L(CPn) --> O. 

Proposition 5.21 is usually taken as the definition of a distribution in 
books on differential equations. There is the advantage that (5.21) can be 
understood with no knowledge of locally convex spaces and inductive limits. 
Moreover, most theorems on distributions can be proved by using (5.21). 
However, the realization that a distribution is precisely a continuous linear 
functional on a LCS contributes more than cultural edification. This knowl­
edge brings power as it enables you to apply the theory of LCS's (including 
the Hahn-Banach Theorem). 

The exercises contain more results on distributions, but now we must 
return to the proof of Proposition 5.16. To do this the idea of a topological 
complement is needed. We have seen this idea in Section 111.13. 

5.22. Proposition. If 3[ is a TVS and qy ~ 3[, the following statements are 
equivalent. 

(a) There is a closed linear subspace fl' of 3[ such that qy n fl' = (0), 
qy + fl' = 3[, and the map of qy X fl' --> 3[ given by (y, z) ~ y + Z is a 
homeomorphism. 

(b) There is a continuous linear map P: 3[ -->.0£ such that P3[ = qy and 
p2 = P. 
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PROOF. (a) => (b): Define P: :!E ~ :!E by P(y + z) = y, for y in qJj and Z in 
z. It is easy to verify that P is linear and P:!E= qJj. Also, p2(y + z) = 
PP(y+z)=Py=y=P(y+z); so p 2 =P. If {Yi+Zi} is a net in:!E 
such that Yi + Zi ~ Y + z, then (a) implies that Yi ~ Y (and Zi ~ z). Hence 
P(Yi + z;) ~ P(y + z) and P is continuous. 

(b) => (a): If P is given, let fl'= kerP. So fl's,:!E. Also, x = Px + (x­
Px) and Y = Px E qJj, and z = x - Px has pz = Px - p2X = Px - Px = 
0, so Z E fl'. Thus, qJj + fl'= :!E. If x E qJj f) fl', then Px = ° since x E fl'; 
but also x = Pw for some w in :!E since x E qJj = P:!E. Therefore ° = Px = 
p 2w = Pw = x; that is, qJjf) fl'= (0). Now suppose that {Yi} and {Zi} are 
nets in qJj and fl'. If Yi ~ Y and Zi ~ z, then Yi + Zi ~ Y + Z because 
addition is continuous. If, on the other hand, it is assumed that Yi + Zi ~ Y 
+ z, then Y = P(y + z) = lim P(Yi + z;) = lim Yi and Zi = (Yi + z;) - Yi 
~ z. This proves (a). • 

5.23. Definition. If :!E is a TVS and qJj s, :!E, qJj is topologically comple­
mented in :!E if either (a) or (b) of (5.22) is satisfied. 

5.24. Proposition. II :!E is a LCS and qJj s, :!E such that either dim qJj < 00 or 
dim :!E/qJj < 00, then qJj is topologically complemented in :!E. 

PROOF. The proof will only be sketched. The reader is asked to supply the 
details (Exercise 9). 

(a) Suppose d = dim qJj < 00 and let Yl' ... ' Yd be a basis for qJj. By the 
Hahn-Banach Theorem (III.6.6), there are 11' ... ' Id in :!E* such that 
li(Y) = 1 if i = j and ° otherwise. Define Px = r.1~IJj(X)Yj. 

(b) Suppose d = dim :!E/qJj < 00, Q: :!E ~ :!E/qJj is the natural map, and 
Zl'···' Zd E:!E such that Q(ZI)' ... ' Q(zd) is a basis for :!E/qJj. Let fl'= 
V{ZI,···,zd}· • 

PROOF OF PROPOSITION 5.16. Suppose :!E is the strict inductive limit of 
{ ( :!En' .9;;}) and B is a bounded subset of :!E. It must be shown that there is 
an n such that B ~:!En (the rest of the proof is easy). Suppose this is not 
the case. By replacing {:!En} by a subsequence if necessary, it follows that 
for each n there is an xn in B \ :!En. Let PI be a continuous seminorm on 
:!EI such that PI (Xl) = 1. 

5.25. Claim. For every n ~ 2 there is a continuous seminorm Pn on :!En 
such that Pn(xn) = nand Pnl:!En- 1 = Pn-l. 

The proof of (5.25) is by induction. Suppose Pn is given and let qJj = :!En V 

{xn+d. By (5.24), :!En and V{ xn+d are topologically complementary in qJj. 
Define q: qy ~ [0, (0) by q(x + axn+l ) = Pn(x) + (n + l)lal, where x E :!En 
and a E IF. Then q is a continuous seminorm on (qJj, .9;;+dqJj). (Verify!) By 
Proposition 5.13 there is a continuous seminorm Pn+l on :!En+l such that 
Pn+d qy = q. Thus Pn+d:!En = Pn and Pn+l(xn+l ) = n + 1. This proves the 
claim. 
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Now define p: :!( ~ [0, (0) by p(x) = Pn(x) if x E :!(n. By (5.25), P is 
well defined. It is easy to see that P is a continuous seminorm. However, 
sup{p(x): x E B} = 00, so B is not bounded (Exercise 2.4f). • 

EXERCISES 

1. Verify the statements made in Example 5.2. 

2. Fill in the details of the proof of Proposition 5.3. 

3. Prove Proposition 5.6. 

4. Verify the statements made in Example 5.9. 

5. Verify the statements made in Example 5.10. 

6. Verify the statements made in Example 5.1l. 

7. With the notation of (5.10), show that if X is a-compact, then the dual of C( X) 
is the space of all extended IF-valued measures. 

8. Is the inductive limit topology on C( X) (5.10) different from the topology of 
uniform convergence on compact subsets of X (1.5)? 

9. Prove Proposition 5.24. 

10. Verify the statements made in Example 5.20. 

For the remaining exercises, [2 is always an open subset of IR d , d::>: 1. 

n. If /L is a measure on [2, </> ...... J</> d/L is a distribution [2. 

12. Let f: [2 -> IF be a function with continuous partial derivatives and let Lj be 
defined as in (5.20). Show that for every </> in £&([2) and 1 ~j ~ d, Lj(o</>/ox,) 
= -Lg (</», where g = of/ox). (Hint: Use integration by parts.) 

l3. Exercise 12 motivates the following definition. If L is a distribution on [2, 
define oL/oxi : £&([2) -> IF by oL/oxj (</» = -L(o</>/oxi ) for all </> in £&(Sl). 
Show that oL/ox) is a distribution. 

14. Using Example 5.20 and Exercise 13, one is justified to talk of the derivative of 
any locally integrable function as a distribution. By Exercise n we can differen­
tiate measures. Let f: IR --> IR be the characteristic function of [0, (0) and show 
that its derivative as a distribution is 80 , the unit point mass at O. [That is, 80 is 
the measure such that 80 (Ll) = 1 if 0 E Ll and 80 (Ll) = 0 if 0 ftc Ll.] 

15. Let I be an absolutely continuous function on IR and show that (Lj ), = L f ,. 

16. Let I be a left continuous nondecreasing function on IR and show that (Lj ), is 
the distribution defined by the measure /L such that /L[ a, b) = I( b) - I( a) for 
all a < b. 

17. Let f be a Coo function on [2 and let L be a distribution on £&( [2). Show that 
M( </» == L( </>/), </> in £&( [2), is a distribution. State and prove a product rule for 
finding the derivative of M. 



CHAPTER V 

Weak Topologies 

The principal objects of study in this chapter are the weak topology on a 
Banach space and the weak-star topology on its dual. In order to carry out 
this study efficiently, the first two sections are devoted to the study of the 
weak topology on a locally convex space. 

§1. Duality 

As in §IV.4, for a LCS !!l', let !!l' * denote the space of continuous linear 
functionals on !!l'. If x*, y* E!!l'* and a E IF, then (ax* + y*)(x) == 
ax*(x) + y*(x), x in !!l', defines an element ax* + y* in !!l'*. Thus !!l'* 
has a natural vector-space structure. 

It is convenient and, more importantly, helpful to introduce the notation 

(x, x*) 

to stand for x *( x), for x in !!l' and x * in !!l' *. Also, because of a certain 
symmetry, we will use (x*, x) to stand for x*(x). Thus 

x*(x) = (x, x*) = (x*, x). 

We begin by recalling two definitions (IV.I.7 and IV.I.8). 

1.1. Definition. If !!l' is a LCS, the weak topology on !!l', denoted by "wk" 
or a(!!l', !!l'*), is the topology defined by the family of seminorms {Px.: 
x * E !!l' * }, where 

px.(x) = l(x,x*)I· 
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The weak-star topology on 9:*, denoted by "wk*" or 0(9:*,9:), is the 
topology defined by the seminorms {Px: X E 9:}, where 

pJx*) = I(x, x*)I· 

So a subset U of 9: is weakly open if and only if for every Xo in U there is 
an e > 0 and there are xi, ... , x: in 9:* such that 

n 

n {x E 9:: I(x - xo, xt>1 < e} ~ U. 
k~1 

A net {Xi} in 9: converges weakly to Xo if and only if (Xi' x*) ~ (xu, x*) 
for every x* in 9:*. (What are the analogous statements for the weak-star 
topology?) 

Note that both (9:, wk) and (9:*, wk*) are LCS's. Also, 9: already 
possesses a topology so that wk is a second topology on 9:. However, 9: * 
has no topology to begin with so that wk * is the only topology on 9: *. Of 
course if 9: is a normed space, this last statement is not correct since 9: * is 
a Banach space (III.5A). The reader should also be cautioned that some 
authors make no distinction between the weak and weak-star topologies. 
Finally, pay attention to the positions of 9: and 9: * in the notation 
0(9:,9:*) = wk and 0(9:*,9:) = wk*. 

If {Xi} is a net in 9: and Xi ~ 0 in 9:, then for every x* in 9:*, 
(Xi' x*) ~ O. So if g- is the topology on 9:, wk ~ g- (A.2.9) and each x* 
in 9: * is weakly continuous. The first result gives the converse of this. 

1.2. Theorem. If 9: is a LCS, (9:, wk)* = 9:*. 

PROOF. Let f E (9:, wk)*; that is, f is a wk-continuous linear functional on 
9:. By (IV.3.1f) there are xi, xi, ... , x: in 9:* such that If(x)1 :::; 
LZ~ll(x,xt>1 for all x in 9:. This implies that nZ~lkerxt ~ kerf. By 
(A.IA), there are scalars a l , ... , an such that f = LZ~lakxt; hence f E .0£* . 

• 
There is a similar result for wk*; the proof is left for the reader. 

1.3. Theorem. If 9: is a LCS, (9:*, wk*)* = 9:. 

So !!£ is the dual of a LCS-(9:*, wk*)-and hence has a weak-star 
topology-o«9:, wk*)*, 9:*). As an exercise in notational juggling, note 
that 0«9:, wk*)*, 9:*) = 0(9:,9:*). 

All unmodified topological statements about 9: refer to its original 
topology. So if A ~ 9: and we say that it is closed, we mean that A is closed 
in the original topology of 9:. To say that A is closed in the weak topology 
of 9: we say that A is weakly closed or wk-closed. Also cl A means the 
closure of A in the original topology while wk - c1 A means the closure of 
A in the weak topology. The next result shows that under certain cir­
cumstances this distinction is unnecessary. 
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1.4. Theorem. If !!( is a LCS and A is a convex subset of !!(, then 
cl A = wk - cl A. 

PROOF. If .r is the original topology of !!(, then wk ~.r, hence cl A ~ 
wk - cl A. Conversely, if x E !!(\ cl A, then (IV.3.13) implies that there is 
an x* in !!(*, an a in IR, and an EO > ° such that 

Re(a, x*) ::; a < a + EO ::; Re(x, x*) 

for all a in cl A. Hence cl A ~ B == {y E!!(: Re(y, x*) ::; a}. But B is 
clearly wk-closed since x* is wk-continuous. Thus wk - cl A ~ B. Since 
x $. B, x $. wk - cl A. • 

1.5. Corollary. A convex subset of !!( is closed if and only if it is weakly 
closed. 

There is a useful observation that can be made here. Because of (111.6.3) it 
can be shown that if !!( is a complex linear space, then the weak topology on 
!!( is the same as the weak topology it has if it is considered as a real linear 
space (Exercise 4). This will be used in the future. 

1.6. Definition. If A ~!!(, the polar of A, denoted by AO, is the subset of 
!!( * defined by 

A ° == {x * E !!( *: I (a, x *) I ::; 1 for all a in A}. 

If B ~ !!(*, the pre polar of B, denoted by °B, is the subset of !!( defined by 

°B == {x E!!(: I(x, b*)1 ::; 1 for all b* in B}. 

If A ~ !!( the bipolar of A is the set ° (A 0). If there is no confusion, then it 
is also denoted by °A 0. 

The prototype for this idea is that if A is the unit ball in a normed space, 
A ° is the unit ball in the dual space. 

1.7. Proposition. If A ~ !!(, then 

(a) A ° is convex and balanced. 
(b) If Al ~ A, then AO ~ Af. 
(c) If a E IF and a "* 0, (aA)O = a-lAo. 
(d)A~oAo. 

(e) AO = (OAO)o. 

PROOF. The proofs of parts (a) through (d) are left as an exercise. To prove 
(e) note that A ~ °AO by (d), so (OAO)O ~ AO by (b). But AO ~ O(AO)O 
by an analog of (d) for prepolars. Also, O( A 0) ° = (OA 0) 0. • 
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There is an analogous result for prepolars. In fact, it is more than analogy 
that is at work here. By Theorem 1.3, (.or *, wk *) * = .or. Thus the result for 
prepolars is a consequence of the preceding proposition. 

If A is a linear manifold in .or and x* E A 0, then ta E A for all t > 0 
and a in A. So 1 2 I(ta, x*)1 = tl(a, x*)I. Letting t ~ 00 shows that 
A ° = A .I. , where 

A .I. == {x * in .or *: (a, x *) = 0 for all a in A } . 

Similarly, if B is a linear manifold in .or*, °B = J..B, where 

J..B == {x in.or: (x,b*) = o for all b* in B}. 

The next result is a slight generalization of Corollary IV.3.12. 

1.8. Theorem. If .or is a LCS and A ~.or, then °A ° is the closed convex 
balanced hull of A. 

PROOF. Let Aj be the intersection of all closed convex balanced subsets of .or 
that contain A. It must be shown that Aj =oAo. Since °Ao is closed, 
convex, and balanced and A ~ °A 0, it follows that Al ~ °A 0. 

Now assume that Xo E .or \ AI' Al is a closed convex balanced set so by 
(lV.3.13) there is an x* in .or*, an a in ~, and an f> 0 such that 

Re(a l , x*) < a < a + f < Re(xo, x*) 

for all a l in A j. Since 0 E AI' 0 = (0, x*) < a. By replacing x* with 
a -IX * it follows that there is an f > 0 (not the same as the first f) such that 

Re(al,x*) < 1 < 1 + f < Re(xo'x*) 

for all a l in AI' If al E Al and (aI' x*) = I(a j , x*)lei/J, then e-i/Jaj E Aj 
and so 

l(a l , x*)1 = Re(e-i/Jal , x*) < 1 < Re(xo, x*) 

for all a l in AI' Hence x* E A~, and Xo f/': °AO. That is, .or\A 1 ~.or\ °Ao . 

• 
1.9. Corollary. If .or is a LCS and B ~ .or *, then (0 B) ° is the wk * closed 
convex balanced hull of B. 

Using the weak and weak* topologies and the concept of a bounded 
subset of a LCS (IV.2.S), it is possible to rephrase the results associated with 
the Principle of Uniform Boundedness (§III.14). As an example we offer the 
following reformulation of Corollary 111.14.5 (which is, in fact, the most 
general form of the result). 

1.10. Theorem. If .or is a Banach space, I!!I is a normed space, and 
.!# ~ ~(.or, I!!I) such that for every x in .or, {Ax: A E.!#} is weakly bounded 
in I!!I, then .!# is norm bounded in ~(.or, I!!I). 
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EXERCISES 

1. Show that wk is the smallest topology on !!f such that each x* in!!f* is 
continuous. 

2. Show that wk* is the smallest topology on!!f* such that for each x in !!f, 
x* ...... <x, x*) is continuous. 

3. Prove Theorem 1.3. 

4. Let !!f be a complex LCS and let!!f: denote the collection of all continuous 
real linear functionals on !!f. Use the elements of!!f: to define seminorms on !!f 
and let o(!!f,!!f:) be the corresponding topology. Show that o(!!f,!!f*) = 

o(!!f,!!f:). 

5. Prove the remainder of Proposition 1.7. 

6. If A <;;; !!f, show that A is weakly bounded if and only if A 0 is absorbing in !!f *. 

7. Let !!f be a normed space and let {xn} be a sequence in !!f such that Xn -> x 
weakly. Show that there is a sequence {Yn} such that Yn E co{ XI' x 2 ,· .. , Xn } 
and llYn - xii -> O. (Hint: use Theorem 1A.) 

8. If £' is a Hilbert space and {h n} is a sequence in £' such that h n -> h weakly 
and IIh,,11 -> IIhll, then IIh n - hll -> O. (The same type of result is true for 
LP-spaces if 1 < P < 00.) 

9. If !!f is a normed space show that the norm on !!f is lower semicontinuous for 
the weak topology and the norm on!!f* is lower semicontinuous for the 
weak-star topology. 

10. Suppose!!f is an infinite-dimensional normed space. If S = {x E!!f: Ilxll = I}, 
then the weak closure of S is {x: Ilxll ~ I}. 

§2. The Dual of a Subspace and a Quotient Space 

In §III.4 the quotient of a normed space !!£ by a closed subspace vIt was 
defined and in (111.10.2) it was shown that the dual of a quotient space !!£jvlt 
is isometrically isomorphic to vIt.l. These results are generalized in this 
section to the setting of a LCS and, moreover, it is shown that when 
(!!£jvlt)* and vIt.l are identified, the weak-star topology on (!!£jvlt)* is 
precisely the relative weak-star topology that vIt.l receives as a subspace of 
!!£*. 

The first result was presented in abbreviated form as Exercise IV.1.16. 

2.1. Proposition. Let !!£ be a LCS and let g; be a family of seminorms 
defining the topology of !!£. If vIt::s;!!£ and PEg;, define p: !!£jvlt --> [0,00) 
by 

p(x +vIt) = inf{p(x + y): y EvIt}. 
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~hen p is a seminorm on :!£/..4t, and the topology on :!£/..4t defined by 
9 == {p: p E 9} is the quotient space topology. 

PROOF. Exercise. 

Thus if :!£ is a LCS and ..4t s :!£, then :!£/..4t is a LCS. Let f E (:!£/..4t) *. 
If Q: :!£ ~ :!£/..4t is the natural map, then 1 0 Q E :!£ *. Moreover, 1 0 Q E 

..4t1-. Hence I ~ I 0 Q is a map of (:!£/..4t)* ~..4t1- ~ :!£*. 

2.2. Theorem. II :!£ is a LCS, ..4t s:!£, and Q: :!£ ~ :!£/..4t is the natural 
map, then I ~ I 0 Q defines a linear bijection between (:!£/..4t) * and ..4t 1-. II 
(:!£/..4t)* has its weak-star topology 0«:!£/..4t)*, :!£/..4t) and..4t1- has the 
relative weak-star topology o(:!£*, :!£)I..4t1-, then this bijection is a homeomor­
phism. If :!£ is a normed space, then this bijection is an isometry. 

PROOF. Let p: (:!£/..4t)* ~..4t1- be defined by p(f) = f 0 Q. It was shown 
prior to the statement of the theorem that p is well defined and maps 
(:!£/..4t)* into..4t1-. It is easy to see that p is linear and if 0 = p(f) = I 0 Q, 
then I = 0 since Q is surjective. So p is injective. Now let x * E ..4t 1- and 
define f: :!£/..4t ~ IF by I(x +..4t) = (x, x*). Because ..4t ~ ker x*, I is 
well defined and linear. Also, Q-l{X +..4t: I/(x +..4t)1 < I} = {x E:!£: 
I(x, x*)1 < I} and this is open in:!£ since x* is continuous. Thus {x +..4t: 
I/(x + ..4t)1 < I} is open in :!£/..4t and so I is continuous. Clearly p(f) = x*, 
so p is a bijection. 

If :!£ is a normed space, it was shown in (111.10.2) that p is an isometry. It 
remains to show that p is a weak-star homeomorphism. Let wk* = 

o(:!£*,:!£) and let 0* = 0«:!£/..4t)*, :!£/..4t). If {Ii} is a net in (:!£/..4t)* and 
Ii ~ 0(0*), then for each x in :!£, (x, p(fJ) = li(Q(X» ~ O. Hence p(fJ 
~ 0 (wk*). Conversely, if p(fJ ~ O(wk*), then for each x in :!£, I,(x + 

..4t) = (x, p(J;) ~ 0; hence fi ~ 0(0*). • 

Once again let ..4t s :!£. If x * E :!£ *, then the restriction of x * to ..4t, 
x*I..4t, belongs to ..4t*. Also, the Hahn-Banach Theorem implies that the 
map x* ~ x*l..4t is surjective. If p(x*) = x*I..4t, then p: :!£* ~..4t* is 
clearly linear as well as surjective. It fails, however, to be injective. How 
does it fail? It's easy to see that ker p = ..4t 1-. Thus p induces a linear 
bijection p: :!£* /..4t1- ~ ..4t*. 

2.3. Theorem. II:!£ is a LCS, ..4t s :!£, and p: :!£ * ~ ..4t * is the restriction 
map, then p induces a linear bijection p: :!£* /..4t1- ~ ..4t*. II :!£* /..4t1- has 
the quotient topology induced by o(:!£*,:!£) and ..4t* has its weak-star 
topology 0(..4t*, ..4t), then p is a homeomorphism. II :!£ is a normed space, 
then p is an isometry. 

PROOF. The fact that p is an isometry when :!£ is a normed space was 
shown in (IILlO.I). Let wk* = 0(..4t*,..4t) and let 1/* be the quotient 
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topology on :!{* /.$11- defined by a(:!{*, :!(). Let Q: :!{* ~ :!(* /.$1 be the 
natural map. Therefore the diagram 

p 

Q\. /,p 

commutes. If yEA, then the commutativity of the diagram implies that 

Q-l(p-l{ y* E .$1*: I(y, Y*)I < I}) = Q-l{ x* + .$I: I(y, x*)1 < I} 

= {x* E:!{*: l(y,x*)1 < I}, 

which is weak-star open in :!{*. Hence ,0: (:!{* /.$11-, 1/*) ~ (.$1*, wk*) is 
continuous. 

How is the topology on :!{* /.$11- defined? If x E:!(, pAx*) = I(x, x*)1 
is a typical seminorm on :!{*. By Proposition 2.1, the topology on :!{* /.$11-
is defined by the seminorms {Px: x E :!{}, where 

Px(x* + .$I) = inf{l(x, x* + z*)I: z* E .$I}. 

2.4. Claim. If x $. .$I, then Px = o. 

In fact, let ?l'= {ax: a E IF}. If x $. .$I, then ?l'nA = (0). Since 
dim ?l' < 00, .$I is topologically complemented in ?l' + A. Let x * E :!( * 
and define f: ?l'+ .$I ---> IF by f(ax + y) = (y, x*) for y in .$I and a in IF. 
Because .$I is topologically complemented in ?l' + .$I, if aix + Yi ~ 0, then 
Yi ~ O. Hence f(aix + y;) = (Yi' x*) ~ O. Thus f is continuous. By the 
Hahn-Banach Theorem, there is an xi in :!(* that extends f. Note that 
x* - xi E A.L. Thus Px(x* + .$11-) = Px(xi + .$11-) S pAx:,) = 
I(x, xnl = O. This proves (2.4). 

N ow suppose that {xi + .$I 1-} is a net in :!{ * /A.L such that ,0 (x i + 
A.L) = xilA ~ 0 (wk*) in .$1*. If x E:!( and x $. .$I, then Claim (2.4) 
implies that Px(xi + .$11-) = O. If x E .$I, then pAxi + .$11-) S I(x, x,*) I 
~ O. Thus xi + A.L ---> 0 (1/*) and ,0 is a weak-star homeomorphism. • 

EXERCISES 

1. In relation to Claim 2.4, show that if ~ s !!£, dim ~ < 00, and At s !!£, then 
~ + At is closed. 

2. Show that if At s !!£ and At is topologically complemented in !!£, then At.L is 
topologically complemented in!!£* and that its complement is weak-star and 
linearly homeomorphic to !!£* jAt.L . 
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§3. Alaoglu's Theorem 

If :!f is any normed space, let's agree to denote by ball!E the closed unit 
ball in !E. So ball!E= {x E!E: IIxll ::s; I}. 

3.1. Alaoglu's Theorem. If!E is a normed space, then ball!E* is weak-star 
compact. 

PROOF. For each x in ball!E, let Dx = {a E IF: lal ::s; I} and put D = 
n { D x: x E ball:!f}. By TychonolI's Theorem, D is compact. Define 
T: ball:!f * ~ D by 

T(X*)(X) = (x, x*). 

That is, T(X*) is the element of the product space D whose x coordinate is 
(x, x*). It will be shown that T is a homeomorphism from (ball !E*, wk*) 
onto T(ball:!f*) with the relative topology from D, and that T(ball!E*) is 
closed in D. Thus it will follow that T(bal1!E*), and hence ball!E*, is 
compact. 

To see that T is injective, suppose that T(Xi) = T(Xi). Then for each x 
in ball:!f, (x, xi) = (x, xr). It follows by definition that xt = xi-

Now let {xi} be a net in ball!E* such that xi ~ x*. Then for each x in 
ball:!f, T(Xi)(X) = (x, xi) --+ (x, x*) = T(X*)(X). That is, each coordi­
nate of {T(Xi)} converges to T(X*). Hence T(Xi) ~ T(X*) and T is 
continuous. 

Let xi be a net in ball !E*, let fED, and suppose T(Xi) --+ f in D. So 
f(x) = lim(x, xi) exists for every x in ball !E. If x E!E, let a > 0 such 
that Ilaxll ::s; 1. Then define f(x) = a~lf(ax). If also f3 > 0 such that 
IIf3xll ::s; 1, then a~lf(ax) = a~llim(ax, xi) = f3~llim(f3x, xi) = 
f3 ~ If(f3x). So f( x) is well defined. It is left as an exercise for the reader to 
show that f: :!f ~ IF is a linear functional. Also, if Ilxll ::s; 1, f(x) E Dx so 
If(x)1 ::s; 1. Thus f = x* E ball!E* and T(X*) = f. Thus T(ball !E*) is 
closed in D. This implies that T(ball !E*) is compact and, hence, T is a 
homeomorphism (A.2.8). • 

EXERCISES 

1. Show that the functional f occurring in the proof of Alaoglu's Theorem is linear. 

2. Let :!{ be a LCS and let V be an open neighborhood of O. Show that V 0 is 
weak-star compact in :!{*. 

3. If :!{ is a Banach space, show that there is a compact space X such that :!( is 
isometrically isomorphic to a closed subspace of C( X). 
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§4. Reflexivity Revisited 

In §III.ll a Banach space fIl" was defined to be reflexive if the natural 
embedding of fIl" into its double dual, fIl"**, is surjective. Recall that if 
x E fIl", then the image of x in fIl"**, X, is defined by (using our recent 
notation) 

(x*, x) = (x, x*) 

for all x* in fIl"*. Also recall that the map x ~ x is an isometry. 
To begin, note that fIl"**, being the dual space of fIl"*, has its weak-star 

topology a(fIl"**, fIl"*). Also note that if fIl" is considered as a subspace of 
fIl"**, then the topology a(fIl"**, fIl"*) when relativized to fIl" is a(fIl", fIl"*), 
the weak topology on fIl". This will be important later when it is combined 
with Alaoglu's Theorem applied to fIl"** in the discussion of reflexivity. But 
now the next result must occupy us. 

4.1. Proposition. If fIl" is a normed space, then ball fIl" is a(fIl"**, fIl"*) dense 
in ball fIl" **. 

PROOF. Let B = the a(fIl"**, fIl"*) closure of ball fIl" in fIl"**; clearly, B ~ 
ball fIl" * *. If there is an x ti * in ball fIl" * * \ B, then the Hahn-Banach 
Theorem implies there is an x* in fIl"*, an a in ~, and an E > 0 such that 

Re(x, x*) < a < a + E < Re(x*, xti*) 

for all x in ball fIl". (Exactly how does the Hahn-Banach Theorem imply 
this?) Since 0 E ball fIl", 0 < a. Dividing by a and replacing x* by a-1x*, it 
may be assumed that there is an x* in fIl"* and an E > 0 such that 

Re(x, x*) < 1 < 1 + E < Re(x*, xti*) 

for all x in ball fIl". Since eiOx E ball fIl" whenever x E ball fIl", this implies 
that J(x, x*)J ~ 1 if JJxJJ ~ 1. Hence x* E ballfll"*. But then 1 + E < 
Re(x*, xti*) ~ J(x*, xti*)J ~ JJx6*JJ ~ 1, a contradiction. • 

4.2. Theorem. If fIl" is a Banach space, the following statements are equiv­
alent. 

(a) fIl" is reflexive. 
(b) fIl"* is reflexive. 
(c) a(fIl"*, fIl") = a(fIl"*, fIl"**). 
(d) ball fIl" is weakly compact. 

PROOF. (a) = (c): This is clear since fIl"= fIl"**. 
(d) = (a): Note that a(fIl"**,fIl"*)JfIl"= a(fIl",fIl"*). By (d), ballfll" is 

a( fIl" * *, fIl" *) closed in ball fIl" * *. But the preceding proposition implies 
ball fIl" is a(fIl"**, fIl"*) dense in ball fIl"**. Hence ball fIl"= ball fIl"** and so fIl" 
is reflexive. 
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(c) = (b): By Alaoglu's Theorem, ball:1:* is 0(:1:*, :1:)-compact. By (c), 
ball:1:* is 0(:1:*, :1:**) compact. Since it has already been shown that (d) 
implies (a), this implies that :1:* is reflexive. 

(b) = (a): Now ball:1: is norm closed in :1:**; hence ban:1: is 
0(:1:**, :1:***) closed in :1:** (Corollary 1.5). Since :1:* = :1:*** by (b), 
this says that ball:1: is 0(:1:**, :1:*) closed in :1:**. But, according to (4.1), 
ball:1: is 0(:1:**,:1:*) dense in ball:1:**. Hence ball:1:= ball:1:** and .0£ 
is reflexive. 

(a) = (d): By Alaoglu's Theorem, ball:1:** is 0(:1:**, :1:*) compact. 
Since :1:= :1:**, this says that ball:1: is 0(:1:, :1:*) compact. • 

4.3. Corollary. If :1: is a reflexive Banach space and vi! s:1:, then vi! is 
reflexive. 

PROOF. Note that ball vi! = vi! Ii [ball :1:], so ball vi! is 0(:1:,:1: **) com­
pact. It remains to show that 0(:1:, :1:*)lvI! = o(vI!, vI!*). But this follows 
by (2.3). (How?) • 

Call a sequence {x n} in :1: a weakly Cauchy sequence if for every x * in 
:1:*, {(xn' x*)} is a Cauchy sequence in IF. 

4.4. Corollary. If :1: is reflexive, then every weakly Cauchy sequence in :1: 
converges weakly. That is, :1: is weakly sequentially complete. 

PROOF. Since {(xn' x*)} is a Cauchy sequence in IF for each x* in ?[*, 
{x n } is weakly bounded. By the PUB there is a constant M such that 
Ilxnll s M for all n ~ 1. But {x E :1:: Ilxll s M} is weakly compact since .0£ 
is reflexive. Thus there is an x in :1: such that Xn ~ x weakly. But for 
each x* in :1:*, lim(xn' x*) exists. Hence (xn, x*) ---> (x, x*), so xn ---> x 
weakly. • 

Not all Banach spaces are weakly sequentially complete. 

4.5. Example. qO,l] is not weakly sequentially complete. In fact, let 
fn(t) = (1 - nt)ifO S t s lin andfn(t) = Oiflln s t s 1. Iffl E M[O, 1], 
then ffndfl---> p.({0}) by the Monotone Convergence Theorem. Hence {!,,} 
is a weakly Cauchy sequence. However, {fn} does not converge weakly to 
any continuous function on [0,1]. 

4.6. Corollary. If:1: is reflexive, vi! s :1:, and Xo E :1:\vI!, then there is a 
point Yo in vi! such that Ilxo - Yoll = dist(x o, vI!). 

PROOF. x ~ Ilx - xoll is weakly lower semicontinuous (Exercise 1.9). If 
d = dist(xo, vI!), then vi! Ii {x: Ilx - xoll s 2d} is weakly compact and a 
lower semicontinuous function attains its minimum on a compact set. • 
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It is not generally true that the distance from a point to a linear subspace 
is attained. If .d ~ !!l", call .d proximinal if for every x in !!l" there is a y in 
.d such that Ilx - yll = dist(x, .d). So if !!l" is reflexive, Corollary 4.6 
implies that every closed linear subspace of !!l" is proximinal. If !!l" is any 
Banach space and .d is a finite-dimensional subspace, then it is easy to see 
that .d is proximinal. How about if dim(!!l"/.d) < oo? 

4.7. Lemma. If!!l" is a Banach spaceandx* E!!l"*, then kerx* isproxim­
inal if and only if there is an x in !!l", IIxll = 1, such that (x, x*) = Ilx*ll. 

PROOF. Let .d = ker x* and suppose that .d is proximinal. If f: !!l"/.d ~ IF 
is defined by f(x +.d) = (x, x*), then f is a linear functional and 
Ilfll = Ilx*ll· Since dim !!l"/.d = 1, there is an x in !!l" such that Ilx + .dll = 1 
and f(x +.d) = Ilfll. Because .d is proximinal, there is a y in .d such 
that 1 = IIx + .dll = Ilx + YII. Thus (x + y, x*) = (x, x*) = f(x +.d) 
= Ilfll = Ilx*ll· 

Now assume that there is an Xo in !!l" such that IIxoll = 1 and (xo, x*) = 

Ilx*ll. If x E!!l" and IIx + .dll = a > 0, then Ila-Ix + .dll = 1. But also 
Ilxo + .dll = 1. (Why?) Since dim !!l"/.d = 1, there is a f3 in IF, 1m = 1, such 
that a-Ix +.d = f3(x o + .d). Hence a-Ix - f3xo E.d, or, equivalently, 
x - af3xo E.d. However, Ilx - (x - af3xo)11 = Ilaf3x oll = a = dist(x, .d). 
So the distance from x to.d is attained at x - af3xo. • 

4.8. Example. If L: qo, 1] ~ IF is defined by 

L(f) = f/2f{x) dx - t f{x) dx, 
o 1/2 

then ker L is not proximinal. 

There is a result in James [1964b] that states that a Banach space is 
reflexive if and only if every closed hyperplane is proximinal. This result is 
very deep. 

EXERCISES 

1. Show that if :!E is reflexive and A ~ :!E, then :!EjA is reflexive. 

2. If:!E is a Banach space, A ~ :!E, and both A and :!EjA are reflexive, must :!E be 
reflexive? 

3. If X is compact, show that C( X) is reflexive if and only if X is finite. 

4. If (X,D,J-L) is a a-finite measure space, show that L1(X,D,J-L) is reflexive if and 
only if it is finite dimensional. 

5. Give the details of the proofs of the statements made in Example 4.5. 

6. Verify the statement made in Example 4.8. 
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7. If (X, fl, p.) is a a-finite measure space, show that P' (p.) is weakly sequentially 
complete but is reflexive if and only if it is finite dimensional. 

8. Let X be compact and suppose there is a norm on C( X) that is given by an inner 
product making C( X) into a Hilbert space such that for every x in X the 
functional I ~ I( x) on C( X) is continuous with respect to the Hilbert spacc 
norm. Show that X is finite. 

§S. Separability and Metrizability 

The weak and weak-star topologies on an infinite-dimensional Banach space 
are never metrizable. It is possible, however, to show that under certain 
conditions these topologies are metrizable when restricted to bounded sets. 
In applications this is often sufficient. 

5.1. Theorem. If !!{ is a Banach space, then ball!!{* is weak-star metriz­
able if and only if !!{ is separable. 

PROOF. Assume that !!{ is separable and let {x n } be a countable dense 
subset of ball!!{. For each n let Dn = {a Elf: lal s I}. Put X = n~~ 1 Dn; 
X is a compact metric space. So if (ball!!{ *, wk *) is homeomorphic to a 
subset of X, ball!!( * is weak-star metrizable. 

Define T: ball!!{* ~ X by T(X*) = {(xn'x*)}, If {xi} is a net in 
ball3(* and x;* ~ X* (wk*), then for each n:::: 1, (xn,xn ~ (XIl'X*); 
hence T(Xt) ~ T(X*) and T is continuous. If T(X*) = T(y*), (X'I' X* -
y*) = 0 for all n. Since {xn} is dense, X* - y* = O. Thus T is injective. 
Since ball 3(* is wk* compact, T is a homeomorphism onto its image 
(A.2.8) and ball!!{* is wk* metrizable. 

Now assume that (ball !!(*, wk*) is metrizable. Thus there are open sets 
{Un: n ;::: 1} in (ball !!(*, wk*) such that 0 E L~ and n~~lUn = (0). By the 
definition of the relative weak-star topology on ball!!{ *, for each n there is 
a finite set Fn contained in!!{ such that {x* E ball 3(*: l(x,x*)1 < 1 for 
all x in Fn} ~ Un' Let F = U~~lFn; so F is countable. Also, .l(F.l) is the 
closed linear span of F and this subspace of 3( is separable. But if 
x* E F.l, then for each n ;::: 1 and for each x in Fn, I(x, x* IlIx*II)1 = 0 
< 1. Hence x*/llx*11 E Un for all n;::: 1; thus x* = O. Since F.l= (0), 
.1 (F.l) = 3( and 3( must be separable. • 

Is there a corresponding result for the weak topology? If 3( * is sep­
arable, then the weak topology on ball3( is metrizable. In fact, this follows 
from Theorem 5.1 if the embedding of 3( into 3(** is considered. This 
result is not very useful since there are few examples of Banach spaces 3( 
such that 3( * is separable. Of course if 3( is separable and reflexive, then 
3( * is separable (Exercise 3), but in this case the weak topology on 3( is the 
same as its weak-star topology when 3( is identified with 3(**. Thus (5.1) is 
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adequate for a discussion of the weak topology on the unit ball of a 
separable reflexive space. If :r = co' then :r * = 11 and this is separable but 
not reflexive. This is one of the few nonreflexive spaces with a separable 
dual space. 

If :r is separable, is (ball:r, wk) metrizable? The answer is no, as the 
following result of Schur demonstrates. 

5.2. Proposition. If a sequence in 11 converges weakly, it converges in norm. 

PROOF. Recall that 100 = (11)*. Since 11 is separable, Theorem 5.1 implies 
that ballioo is wk * metrizable. By Alaoglu's Theorem, ball {YO is wk * 
compact. Hence (ball 100 , wk*) is a complete metric space and the Baire 
Category Theorem is applicable. 

Let {fn} be a sequence of elements in 11 such that fn ~ 0 weakly and let 
I' > O. For each positive integer m let 

Fm = {</> E ball 100 : IUn, </»1 =::; 1'/3 for n ~ m}. 
It is easy to see that Fm is wk* closed in ball 100 and, because fn ~ 0 (wk), 
U~~IFm = ball 100. By the theorem of Baire, there is an Fm with nonempty 
weak interior. 

An equivalent metric on (ball 100 , wk) is given by 
00 

d(</>,~) = L 2-i l</>(J) - ~(J)I 
j~l 

(see Exercise 4). Since Fm has a nonempty weak interior, there is a </> in Fm 
and a 8> 0 such that {~E ball 100 : d(</>,~) < 8} ~ Fm' Let J ~ 1 such 
that 2-(J-l) < 8. Fix n ~ m and define ~ in 100 by ~(J) = </>(J) for 
1 =::;j =::; J and ~(J) = signUn(J» for j > J. Thus ~(J)fn(J) = Ifn(J)1 for 
j > J. It is easy to see that ~ E ball 100 • Also, d( </>, ~) = Lj~J + 12 - il</>(J) -
~(j)1 =::; 2· 2-J = 2-(J-l) < 8. So ~ E Fm and hence IN,fm)1 =::; 1'/3. Thus 

5.3 IJt </>(J)fn(J) + j~~+llfn(J)1 =::; t 
for n ~ m. But there is an m 1 ~ m such that for n ~ m 1, L;~dfn(j)1 < 1'/3. 
(Why?) Combining this with (5.3) gives that 

00 

IIfnll = L Ifn(J)1 
j~l 

00 J J 
I' 

<-+ 
3 

L Ifn(J)1 + L </>(J)fn(J) + L </>(J)fn(J) 
j~J+l J~l j~l 

2 J 

< --f + L Ifn(J)1 
j~l 

< E 

whenever n ~ mI' • 
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So if (ball II, wk) were metrizable, the preceding proposition would say 
that the weak and norm topologies on 11 agree. But this is not the case 
(Exercise 1.10). 

Also, note that the preceding result demonstrates in a dramatic way that 
in discussions concerning the weak topology it is essential to consider nets 
and not just sequences. 

A proof of (5.2) that avoids the Baire Category Theorem can be found in 
Banach [1955], p. 218. 

EXERCISES 

1. Let B = balIM[0,1] and for IL,I' in M[0,1] define d(IL,I') = L~~o2-nlfJxndlL 
- 1J x n d 1'1. Show that d is a metric on M [0, 1] that defines the weak-star 
topology on B but not on M[O,I]. 

2. Let X be a compact space and let ~ = {( U, V): U, V are open subsets of X and 
c1 Us: V}. For u = (U, V) in~, let fu: X ~ [0,1] be a continuous function such 
that fu == 1 on c1 U and fu == ° on X\ V. Show: (a) the linear span of {/u: 
u E ~} is dense in C(X); (b) if X is a metric space, then C(X) is separable. 

3. If!!{ is a Banach space and!!(* is separable, show that (a) :!l is separable; (b) if 
K is a weakly compact subset of :!l, then K with the relative weak topology is 
metrizable. 

4. If B = ballloo , show that deep, >f;) = Lj~12-Jlep(j) - >f;(j)1 defines a metric on 
B and that this metric defines the weak-star topology on B. 

§6 *. An Application: The Stone-Cech 
Compactification 

Let X be any topological space and consider the Banach space C h ( X). 
Unless some assumption is made regarding X, it may be that Cb ( X) is 
"very small." If, for example, it is assumed that X is completely regular, 
then Cb(X) has many elements. The next result says that this assumption is 
also necessary in order for Cb(X) to be "large." But first, here is some 
notation. 

If x E X, let 8x : Cb(X) ~ IF be defined by 8An = I(x) for every I in 
Cb( X). It is easy to see that 8x E Cb(X)* and 118x ll = 1. Let .1: X---> 
Cb(X)* be defined by Ll(x) = 8x ' If {Xi} is a net in X and Xi ---> X, then 
I(x i ) ---> I(x) for every I in Cb(X). This says that 8x ---> 8x (wk*) in 
Cb(X)*. Hence .1: X ---> (Cb(X)*, wk*) is continuous. Is'Ll a homeomor­
phism of X onto Ll(X)? 

6.1. Proposition. The map .1: X ---> (Ll(X), wk*) is a homeomorphism il and 
only il X is completely regular. 
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PROOF. Assume X is completely regular. If Xl oF X2' then there is an f in 
Ch(X) such that f(x l ) = 1 and f(x 2 ) = 0; thus 8x Jf) oF 8x2(f). Hence .1 
is injective. To show that .1: X ~ (.1(X), wk*) is an open map, let U be an 
open subset of X and let Xo E U. Since X is completely regular, there is an 
f in Cb(X) such that f(xo) = 1 and f= 0 on X\ U. Let VI = {IL E 

Ch(X)*: (j, IL> > O}. Then VI is wk* open in Cb(X)* and VI n .1(X) = 
{8x : f(x) > O}. So if V = VI n .1(X), V is wk* open in .1(X) and 
8xo E V ~ .1(U). Since Xo was arbitrary, .1(U) is open in .1(X). Therefore 
.1: X ~ (.1(X), wk*) is a homeomorphism. 

Now assume that .1 is a homeomorphism onto its image. Since 
(ballCb(X)*, wk*) is a compact space, it is completely regular. Since 
.1(X) ~ ballCh(X)*, .1(X) is completely regular (Exercise 2). Thus X is 
completely regular. • 

6.2. Stone-tech Compactification. If X is completely regular, then there is a 
compact space {3X such that: 

(a) there is a continuous map .1: X ~ {3X with the property that .1: X ~ .1( X) 
is a homeomorphism; 

(b) .1(X) is dense in {3X; 
(c) if f E Ch( X), then there is a continuous map fP: {3X ~ IF such that 

fP 0 .1 = f. 

Moreover, if g is a compact space having these properties, then g is 
homeomorphic to {3x. 

PROOF. Let .1: X ~ Ch(X)* be the map defined by .1(x) = 8x and let 
{3X = the weak-star closure of .1(X) in Cb(X)*. By Alaoglu's Theorem and 
the fact that 118x11 = 1 for all X, {3X is compact. By the preceding proposi­
tion, (a) holds. Part (b) is true by definition. It remains to show (c). 

Fix f in Cb( X) and define fP: {3X ~ IF by fPC T) = (j, T> for every T in 
{3x. [Remember that {3X ~ Cb(X)*, so this makes sense.] Clearly fP is 
continuous and fP 0 .1(X) = fP(8x ) = (j,8x > = f(x). So fP 0 .1 = f and (c) 
holds. 

To show that {3X is unique, assume that g is a compact space and 7T: 
X ~ g is a continuous map such that: 

(a') 7T: X ~ 7T(X) is a homeomorphism; 
(b') 7T( X) is dense in g; 
(c') if f E Ch(X), there is an ! in C(g) such that! 0 7T = f. 

Define g: .1( X) ~ g by g(.1(x» = 7T(X). In other words, g = 7T 0.1- 1. 

The idea is to extend g to a homeomorphism of {3X onto g. If TO E {3X, 
then (b) implies that there is a net {xJ in X such that .1(x;) ~ TO in {3x. 
Now {7T( x;)} is a net in g and since g is compact, there is an Wo in g such 
that7T(x;) ~ wo.IfFEC(g),letf=Fo7T;sofECb(X)(andF=!). 
Also, f(x;) = (j, 8x ) ~ (j, TO> = fPC TO)' But it is also true that f(x;) = 
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F(7T(X;) ~ F(wo). Hence F(wo)=If3(TO) for any Fin C(Q). This 
implies that wo is the unique cluster point of {7T(XJ}; thus 7T(X;) ~ wo 
(A.2.7). Let g( TO) = woo It must be shown that the definition of g( TO) does 
not depend on the net {xJ in X such that Ll(x/) ~ TO' This is left as an 
exercise. To summarize, it has been shown that 

6.3 There is a function g: {3X ~ Q 

such that if I E Ch ( X), then 1f3 = log. 
To show that g: f3X ~ Q is continuous, let { Ti } be a net in f3X such that 

Ti ~ T. If F ~ C(Q), let 1= Fo 7T; so IE Ch(X) and 1= F. Also, 1 f3 (TJ 
~ 1 f3 (T). But F(g(Ti» = 1f3(T;) ~ 1f3(T) = F(g(T». It follows (6.1) that 
g( Ti ) ~ g( T) in Q. Thus g is continuous. 

It is left as an exercise for the reader to show that g is injective. Since 
g(f3X) :2 g(Ll(X» = 7T(X), g(f3X) is dense in Q. But g(f3X) is compact, 
so g is bijective. By (A.2.8), g is a homeomorphism. • 

The compact set f3X obtained in the preceding theorem is called the 
Stone-Cech compactijication of X. By properties (a) and (b), X can be 
considered as a dense subset of f3X and the map Ll can be taken to be the 
inclusion map. With this convention, (c) can be interpreted as saying that 
every bounded continuous function on X has a continuous extension to f3X. 

The space f3X is usually very much larger than X. In particular, it is 
almost never true that f3X is the one-point compactification of X. For 
example, if X = (0,1], then the one-point compactification of X is [0, 1]. 
However, sin(l/x) E Ch(X) but it has no continuous extension to [0,1], so 
f3X =1= [0,1]. 

To obtain an idea of how large f3X\ X is, see Exercise 6, which indicates 
how to show that if N has the discrete topology, then f3N \ N has 2~o 
pairwise disjoint open sets. The best source of information on the Stone-Cech 
compactification is the book by Gillman and Jerison [1960], though the 
approach to f3X is somewhat different there than here. 

6.4. Corollary. II X is completely regular and J.l E M(f3X), define L{.L: 
Cb(X) ~ IF by 

lor each I in Cb(X). Then the map J.l ~ L/,- is an isometric isomorphism 01 
M(f3X) onto Cb(X)*. 

PROOF. Define V: Cb(X) ~ C(f3X) by VI = Jf3. It is easy to see that V is 
linear. Considering X as a subset of f3X, the fact that f3X = cl X implies 
that V is an isometry. If g E C(f3X) and 1= glX, then g = 1 f3 = VI; hence 
V is surjective. 
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If p. E M(f3X) = C(f3X)*, it is easy to check that L". E Cb(X)* and 
II L".I I = 11p.1I since V is an isometry. Conversely, if L E Cb(X)*, then 
L 0 V-I E C(f3X)* and IlL 0 V-III = IILII. Hence there is a p. in M(f3X) 
such that fgdp. = L 0 V-I(g) for every g in C(f3X). Since V-Ig = glX, it 
follows that L = L".. • 

The next result is from topology. It may be known to the reader, but it is 
presented here for the convenience of those to whom it is not. 

6.5. Partition of Unity. If X is normal and {UI, ... , Un} is an open covering 
of X, then there are continuous functions fI"'" fn from X into [0,1] such that 

(a) LZ_rfk(X) = 1; 
(b) fk(X) = 0 for x in X\ Uk and 1:5: k:5: n. 

PROOF. First observe that it may be assumed that {UI , ... , Un} has no 
proper subcover. The proof now proceeds by induction. 

If n = 1, let fl == 1. Suppose n = 2. Then X\ UI and X\ U2 are disjoint 
closed subsets of X. By Urysohn's Lemma there is a continuous function fI: 
X ~ [0,1] such that fI(X) = 0 for x in X\ UI and fI(X) = 1 for x in 
X\ U2. Let f2 = 1 - fl and the proof of this case is complete. 

N ow suppose the theorem has been proved for some n ~ 2 and 
{UI, ... , Un+d is an open cover of X that is minimal. Let F = X\ Un+I; 
then F is closed, nonempty, and F ~ Uk-Pk' Let V be an open subset of 
X such that F ~ V ~ cl V ~ Uk=Pk' Since cl V is normal and {UI () 
cl V, ... , Un () cl V} is an open cover of cl V, the induction hypothesis 
implies that there are continuous functions gI"'" gn on cl V such that 
Lk-Igk = 1 and for 1 :5: k :5: n, 0:5: gk :5: 1, and gk(cl V\ Uk) = O. By 
Tietze's Extension Theorem there are continuous functions gI"'" gn on X 
such that gk = gk on cl V and 0 :5: gk :5: 1 for 1 :5: k :5: n. 

Also, there is a continuous function h: X ~ [0,1] such that h = 0 on 
X\ V and h = 1 on F. Put fk = gkh for 1 :5: k:5: n and let fn+I = 1 -
Lk-rfk' Clearly 0 :5:fk:5: 1 if 1:5: k:5: n. If x E clV, then fn+I(x) = 1-
(Lk_Igk(x)h(x) = 1 - h(x); so 0:5: fn+I(x) :5: 1 on cl V. If x E X\ V, 
then fn+I(X) = 1 since h(x) = O. Hence 0:5: fn+I :5: 1. 

Clearly (a) holds. Let 1 :5: k :5: n; if x E X\ Uk' then either x E (cl V) \ 
Uk or x E (X\ cl V)\ Uk' If the first alternative is the case, then gk(X) = 0, 
so fk(X) = O. If the second alternative is true, then h(x) = 0 so that 
fk(X) = O. If x E X\ Un +I = F, then h(x) = 1 and so fn+I(x) = 1 -
Lk_Igk(X) = o. • 

Partitions of unity are a standard way to put together local results to 
obtain global results. If {fk} is related to {Uk} as in the statement of (6.5), 
then {fk} is said to be a partition of unity subordinate to the cover {Uk}' 
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6.6. Theorem. If X is completely regular, then Ch ( X) is separable if and 
only if X is a compact metric space. 

PROOF. Suppose X is a compact metric space with metric d. For each n, let 
{U~r.): 1 :-::; k :-::; Nn } be an open cover of X by balls of radius ljn. Let 
{f?): 1 :-::; k :-::; Nn} be a partition of unity subordinate to {uk(n): 1 :-::; k :-::; 
Nn }. Let qy be the rational (or complex-rational) linear span of {f~fl): 

n 2 1, 1 :-::; k :-::; Nn }; thus qy is countable. It will be shown that qy is dense 
in C(X). 

Fix f in C( X) and E > O. Since f is uniformly continuous there is a 
8 > 0 such that If(x l ) - f(x 2 )1 < EI2 whenever d(XI' x 2) < 8. Choose 
n > 218 and consider the cover {u~n): 1:-::; k:-::; Nn}. If X l ,X2 E U~fl), 
d(XI' x 2) < 21n < 8; hence If(x l ) - f(x 2)1 < E12. Pick x k in Ut') and let 
ak E Q + iQ such that lak - f(xk)1 < E12. Let g = Lkad1/l1, so g E qy. 
Therefore for every x in X, 

If(x) - g(x)1 = I ~f(x )f1n)(x) - ~akf~n)(x) I 

:-::; Llf(x) - aklft')(x). 
k 

Examine each of these summands. If x E u~n), then If(x) - akl :-::; If(x) -
f(xk)1 + If(xk) - akl < E. If x$. U?), then f1 n)(x) = O. Hence If(x) -
g( x)1 < Lk Ef1 n )( x) = E. Thus Ilf - gil < E and qy is dense in C( X). This 
shows that C( X) is separable. 

Now assume that Cb(X) is separable. Thus (ballCb(X)*, wk*) is metriz­
able (5.1). Since X is homeomorphic to a subset of ballCb(X)* (6.1), X is 
metrizable. It also follows that f3X is metrizable. It must be shown that 
X = f3X 

Suppose there is a T in 13 X \ X Let {x n} be a sequence in X such that 
xn --+ T. It can be assumed that xn *- xm for n *- m. Let A = {xn: n is 
even} and B = {xn: n is odd}. Then A and B are disjoint closed subsets of 
X (not closed in 13 X, but in X) since A and B contain all of their limit 
points in X Since X is normal, there is a continuous function f: X --+ [0, 1] 
such that f= 0 on A and f= 1 on B. But then ff1(T) = limf(x 2n ) = 0 
and ff1(T) = limf(x 2n + l ) = 1, a contradiction. Thus f3X\X = D. • 

EXERCISES 

1. If x E X and 0xU) = I(x) for all I in Ch(X), show that 110,11 = l. 

2. Prove that a subset of a completely regular space is completely regular. 

3. Fill in the details of the proof of Theorem 6.2. 

4. If X is completely regular, Q is compact, and f: X --> Q is continuous, show that 
there is a continuous map 1!3; {3X --> Q such that 1!3I X = f. 

5. If X is completely regular, show that X is open in {3 X if and only if X is locally 
compact. 
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6. Let I\! have the discrete topology. Let {rn: n E I\!} be an enumeration of the 
rational numbers in [0,1). Let S = the irrational numbers in [0,1) and for each s 

in S let {r,,: n EN,.} be a subsequence of {r,,} such that s = lim{r,,: n EN,}. 
Show: (a) if s, t E S and s"* t, N, n ~ is finite; (b) if for each s in S, 
clN, = the closure of Ns in f31\! and As = (clNs)\N, then {A,: s E S} are 
pairwise disjoint subsets of f3N \ N that are both open and closed. 

7. Show that if X is totally disconnected, then so is f3 x. 

8. Show that if T E f3 X and there is a sequence {xn } in X such that xn -> T in f3 X, 
then T E X. 

9. Let X be the space of all ordinals less than the first uncountable ordinal and give 
X the order topology. Show that f3 X = the one point compactification of X. 
(You can find the pertinent definitions in Kelley [1955).) 

§7. The Krein-Milman Theorem 

7.1. Definition. If K is a convex subset of a vector space !!£, then a point a 
in K is an extreme point of K if there is no proper open line segment that 
contains a and lies entirely in K. Let ext K be the set of extreme points 
of K. 

Recall that an open line segment is a set of the form (Xl' x 2 ) == {tx 2 + 
(1 - t )x l : ° < t < I}, and to say that this line segment is proper is to say 
that Xl oF x 2 . 

7.2. Examples. 

(a) If!!£= ~2 and K = {(x, y) E ~2: x 2 + y2.::;; I}, then extK = {(x, y): 
x 2 +y2=1}. 

(b) If !!£= ~2 and K = {(x, y) E ~2: x.::;; a}, then ext K = O. 
(c) If !!£= ~2 and K = {(x, y) E ~2: x < o} u {(O,O)}, then extK = 

{(O,O)}. 
(d) If K = the closed region in ~ 2 bordered by a regular polygon, then 

ext K = the vertices of the polygon. 
(e) If!!£ is any normed space and K = {x E !!£: Ilxll .::;; I}, then ext K ~ {x: 

Ilxll = I}, though for all we know it may be that ext K = O. 
(f) If!!£= LI[O, 1] and K= {IE LI[O, 1]: 11/111'::;; I}, then extK= O. This 

last statement requires a bit of proof. Let IE LI[O, 1] such that 11/111 = 1. 
Choose x in [0,1] such that gl/(t)1 dt = 1. Let h(t) = 2/(t) if t .::;; x 
and ° otherwise; let get) = 2/(t) if t ~ x and ° otherwise. Then 
Ilhlll = Ilglll = 1 and 1= 1(h + g). So ball LI[O, 1] has no extreme 
points. 

The next proposition is left as an exercise. 
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7.3. Proposition. If K is a convex subset of a vector space !!{ and a EO K, 
then the following statements are equivalent. 

(a) a EO extK. 
(b) If Xl' X2 EO!!{ and a = !(xl + x 2 ), then either Xl $. K or X2 $. K or 

Xl = X 2 = a. 
(c) If Xl' X2 EO!!{, 0 < t < 1, and a = tX l + (1 - t)x 2 , then either Xl $. K, 

X 2 $. K, or Xl = X 2 = a. 
(d) If Xl"'" Xn EO K and a EO co{x l , •.• , x n), then a = Xk for some k. 
(e) K\ {a} is a convex set. 

7.4. The Krein-Milman Theorem. If K is a nonempty compact convex subset 
of a LCS !!(, then ext K *" 0 and K = co(ext K). 

PROOF. (Leger [1968].) Note that (7.3c) says that a point a is an extreme 
point if and only if K\ {a} is a relatively open convex subset. We thus look 
for a maximal proper relatively open convex subset of K. Let '¥f be all the 
proper relatively open convex subsets of K. Since !!{ is a LCS and K *" 0 

(and let's assume that K is not a singleton), '¥f *" D. Let '¥fo be a chain in '¥f 
and put Uo = U{ U: U EO '¥f 0 }. Clearly U is open, and since '¥f 0 is a chain, 
Uo is convex. If Uo = K, then the compactness of K implies that there is a 
U in '¥fo with U = K, a contradiction to the propriety of U. Thus Uo EO '¥f. 
By Zorn's Lemma, '¥f has a maximal element U. 

If X EO K and 0 ~ A ~ 1, let Tx.)..: K ...... K be defined by Tx,)..(Y) = AY + 
(1 - A)X. Note that Tx ,).. is continuous and Tx,)..(r:;~[ajY) = L'j~lajTx,)..(Y) 
whenever Y[, ... , Yn EO K, a l , ... , an ~ 0, and L'j~laj = 1. (This means that 
Tx ,).. is an affine map of K into K.) If X EO U and 0 ~ A < 1, then 
Tx,)..(U) ~ U. Thus U ~ Tx~~(U) and Tx~~(U) is an open convex subset of 
K. If yEO (clU)\ u, Tx,)..(Y) EO [x, y) ~ U by Proposition IY,U1. So 
clU ~ Tx~~(U) and hence the maximality of U implies Tx~~(U) = K. That 
IS, 

7.5 Tx ).. ( K) ~ U if X EO U and 0 ~ A < 1. 

Claim. If V is any open convex subset of K, then either V U U = U or 
VU U= K. 

In fact, (7.5) implies that V U U is convex so that the claim follows from 
the maximality of U. 

It now follows from the claim that K \ lJ is a singleton. In fact, if 
a, b EO K\ U and a *" b, let Va,Vb be disjoint open convex subsets of K 
such that a EO Va and b EO Vb' By the claim Va U U = K since a $. U. But 
b $. Va U U, a contradiction. Thus K \ U = {a} and a EO ext K by (7 .3e). 
Hence ext K *" D. 

Note that we have actually proved the following. 
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7.6 If V is an open convex subset of :!£ and ext K ~ V, then K ~ V. 

In fact, if V is open and convex, V n K E 0/1 and is contained in a 
maximal element U of 0/1. Since K\ U = {a} for some a in ext K, this is a 
contradiction. Thus (7.6) holds. 

Let E = co(ext K). If x* E :!£*, a E IR, and E ~ {x E :!£: Re(x, x*) < 
a} = V, then K ~ V by (7.6). Thus the Hahn-Banach Theorem (IV.3.13) 
implies E = K. • 

The Krein-Milman Theorem seems innocent enough, but it has 
widespread application. Two such applications will be seen in Sections 8 
and 10; another will occur later when C *-algebras are studied. Here a small 
application is given. 

If :!£ is a Banach space, then ball:!£ * is weak* compact by Alaoglu's 
Theorem. By the Krein-Milman Theorem, ball:!£ * has many extreme 
points. Keep this in mind. 

7.7. Example. Co is not the dual of a Banach space. That is, Co is not 
isometrically isomorphic to the dual of a Banach space. In light of the 
preceding comments, in order to prove this statement, it suffices to show 
that ball Co has few extreme points. In fact, ball Co has no extreme points. 
Let x E ball co. It must be that ° = lim x( n). Let N be such that Ix( n)1 < ! 
for n ~ N. Define Yl' Y2 in Co by letting Yl(n) = Yz(n) = x(n) for n ~ N, 
and for n > N let Yl(n) = x(n) + 2- n and Yz(n) = x(n) - 2- n. It is easy 
to check that Yl and Y2 E ball co' HY! + Yz) = x, and Yl =F X. 

In light of Example 7.2(f), LI[O, I] is not the dual of a Banach space. 
The next two results are often useful in applying the Krein-Milman 

Theorem. Indeed, the first is often taken as part of that result. 

7.8. Theorem. If :!£ is a LCS, K is a compact convex subset of :!£, and 
Fe K such that K = co(F), then ext K ~ cl F. 

PROOF. Clearly it suffices to assume that F is closed. Suppose that there is 
an extreme point Xo of K such that Xo $. F. Let p be a continuous 
serninorm on :!£ such that F n {x E :!£: p(x - x o) < I} = D. Let Uo = {x 
E :!£: p(x) < t}. So (xo + Uo) n (F + Uo) = 0; hence Xo $. cl(F + Uo). 

Because F is compact, there are Yl""'Yn in F such that F~ UZ~I(Yk 
+ Uo)· Let Kk = co(F n (Yk + Uo)). Thus Kk ~ Yk + clUo (Why?), and 
Kk ~ K. Now the fact that K 1, ... , Kn are compact and convex implies that 
CO(K1 U ... UKn) = CO(KI U ... UKn) (Exercise 8). Therefore 

K = co(F) = CO(K1 U ... UKn). 

Since Xo E K, Xo = LZ~1akxk' Xk E Kk, ak ~ 0, a l + ... +an = 1. But 
Xo is an extreme point of K. Thus, Xo = Xk E Kk for some k. But this 
implies that Xo E Kk ~ Yk + clUo ~ cl(F + Uo), a contradiction. • 
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You might think that the set of extreme points of a compact convex 
subset would have to be closed. This is untrue even if the LCS is finite 
dimensional, as Figure V-I illustrates. 

Figure V-l 

7.9. Proposition. If K is a compact convex subset of a LCS :r, qy is a LCS, 
and T: K ..... qy is a continuous affine map, then T(K) is a compact convex 
subset of qy and if y is an extreme point of T( K), then there is an extreme 
point x of K such that T(x) = y. 

PROOF. Because T is affine, T( K) is convex and it is compact by the 
continuity of T. Let y be an extreme point of T( K). It is easy to see that 
T- 1( y) is compact and convex. Let x be an extreme point of r l( y). It 
now follows that x E ext K (Exercise 9). • 

Note that it is possible that there are extreme points x of K such that 
T(x) is not an extreme point of T(K). For example, let T be the 
orthogonal projection of ~ 3 onto ~ 2 and let K = ball ~ 3. 

EXERCISES 

1. If (X, Q, /L) is a a-finite measure space and 1 < p < 00, then the set of extreme 
points of ball U(/L) is {f E U(/L): Ilfllp = l}. 

2. If (X, Q, /L) is a a-finite measure space, the set of extreme points of ball L1(/L) is 
{aXE: E is an atom of /L, a E IF, and lal = /L(E)-l}. 

3. If (X, Q, /L) is a a-finite measure space, the set of extreme points of ball Loc (/L) 
is {f E LOC(/L): If(x)1 = 1 a.e. [/Ll}. 

4. If X is completely regular, the set of extreme points of ball C" (X) is { f E C" ( X): 

If(x)1 = 1 for all x}. So ball CR [0, 1] has only two extreme points. 

5. Let X be a totally disconnected compact space. (That is, X is compact and if 
x E X and U is an open neighborhood of x, then there is a subset Vof X that 
is both open and closed and such that x E V ~ U. The Cantor set is an 
example of such a space.) Show that ball C( X) is the norm closure of the convex 
hull of its extreme points. 

6. Show that ball/ l is the norm closure of the convex hull of its extreme points. 

7. Show that if X is locally compact but not compact, then ball Co( X) has no 
extreme points. 
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8. !£!£ is a LCS and K[, ... , K" are compact convex subsets of !£, then 
co(K[ U ... UK,,) = co(K[ U ... UK,,). 

9. Let K be convex and let T: K --> '!!I be an affine map. If y is an extreme point 
of T(K) and x is an extreme point of T-[(y), then x is an extreme point of K. 

10. If £' is a Hilbert space, show that T is an extreme point of ba1l9l'{ £') if and 
only if either Tor T* is an isometry. 

§8. An Application: The Stone-Weierstrass Theorem 

If f: X ~ C is a function, then 1 denotes the function from X into C 
whose value at each x is the complex conjugate of f(x ),J( x). 

8.1. The Stone-Weierstrass Theorem. If X is compact and d is a closed 
subalgebra of C( X) such that: 

(a) 1 Ed; 
(b) if x, y E X and x =1= y, then there is an f in d such that f(x) =1= f(y); 
(c) iff Ed, thenlEd; 

then d = C( X). 

If C(X) is the algebra of continuous functions from X into IR, then 
condition (c) is not needed. Also, an algebra in C( X) that has property (b) 
is said to separate the points of X (see Exercise 1). 

The proof of this result makes use of the Krein-Milman Theorem and is 
due to L. de Branges [1959]. 

PROOF OF THE STONE-WEIERSTRASS THEOREM. To prove the theorem it 
suffices to show that d J. = (0) (111.6.14). Suppose d J. =1= (0). By Alaoglu's 
Theorem, ball d J. is weak* compact. By the Krein-Milman Theorem, 
there is an extreme point t-t of ball d J. . Let K = the support of t-t. Since 
d J. =1= (0), Iit-til = 1 and K =1= D. Fix Xo in K. It will be shown that 
K = {xo}. 

Let x E X, x =1= xo' By (b) there is an fl in d such that fl(X O) =1= fl(X) 
= p. By (a), the function p Ed. Hence f2 = fl - P Ed, f2(X O) =1= 0 = 

f2(X). By (c), f3 = If212 = f212 Ed. Also, f3(X) = 0 < f3(X O) and f3 ~ O. 
Put f = (11f311 + 1)-lf3' Then fEd, f(x) = 0, f(x o) > 0, and 0 ::; f < 1 
on X. Moreover, because d is an algebra, gf and g(1 - f) E d for every 
g in d. Because t-t Ed J., 0 = fgfdt-t = fg(l - f) dt-t for every g in d. 
Therefore ft-t and (1 - f)t-t Ed J.. 

(For any bounded Borel function h on X, ht-t denotes the measure whose 
value at a Borel set .1 is ft;hdt-t. Note that IIht-t11 = flhl dlt-tl.) 

Put a = I Ift-tl I = ffdlt-tl. Since f(x o) > 0, there is an open neighborhood 
U of Xo and an f > 0 such that f(y) > f for y in U. Thus, a = ffdlt-tl ~ 
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fvfdlILI ~ eIILI(U) > 0 since Un K -4= D. Similarly, since f(x o) < 1, a < 1. 
Therefore, 0 < a < 1. Also, 1 - a = 1 - ffdlILI = f(1 - n dlfLl = 11(1 -
nILII. Since 

[ ffL ] [ (1 -- f)fL ] 
fL = a IlffLll + (1 - a) 11(1 _. f)fLll 

and fL is an extreme point of balld.L, fL =ffLllffLll- 1 = a-IffL. But the 
only way that the measures fL and a-IffL can be equal is if a-If = 1 a.e. [fLl. 
Since f is continuous, it must be that f == a on K. Since Xo E K, f(x o) = a. 
But f(x o) > f(x) = O. Hence x $. K. This establishes that K = {xo} and 
so JL = y8x where Iyl = 1. But fL Ed.L and 1 Ed, so 0 = fl dfL = y, a 

o 
contradiction. Therefore d .L = (0) and d = C( X). • 

With an important theorem it is good to ask what happens if part of the 
hypothesis is deleted. If Xo E X and d= {f E C(X): f(x o) = O}, then d 
is a closed sub algebra of C(X) that satisfies (b) and (c) but d-4= C(X). 
This is the worse that can happen. 

8.2. Corollary. If X is compact and d is a closed subalgebra of C( X} that 
separates the points of X and is closed under complex conjugation, then either 
d= C(X) or there is a point Xo in X such that d= {f E C(X): f(x o} = O}. 

PROOF. Identify IF and the one-dimensional subspace of C( X) consisting of 
the constant functions. Since d is closed, d + IF is closed (III.4.3). It is 
easy to see that d + IF is an algebra and satisfies the hypothesis of the 
Stone-Weierstrass Theorem; hence d+ IF = C(X). Suppose d-4= C(X). 
Then C( X)/d is one dimensional; thus d.L is one dimensional (Theorem 
2.2). Let fL Ed.L , IlfLll = 1. If fEd, then ffL Ed.L ; hence there is an a 
in IF such that ffL = afL. This implies that each f in d is constant on the 
support of fl. But the functions in d separate the points of X. Hence the 
support of fL is a single point Xo and so d.L = {li8xo : Ii Elf}. Thus 
d=.L d.L = {f E C(X): f(x o) = O}. • 

There are many examples of sub algebras of C( X) that separate the points 
of X, contain the constants, but are not necessarily closed under complex 
conjugation. Indeed, a sub algebra of C( X) having these properties is called 
a uniform algebra or function algebra and their study forms a separate area 
of mathematics (Gamelin [1969]). One example (the most famous) is ob­
tained by letting X be a subset of C and letting d = R( X) == the uniform 
closure of rational functions with poles off X. 

Let x o, Xl E X, Xo -4= Xl' and let d== {f E C(X): f(x o} = f(x l )}. Then 
d is a uniformly closed sub algebra of C( X), contains the constant func­
tions, and is closed under conjugation. In a certain sense this is the worst 
that can happen if the only hypothesis of the Stone-Weierstrass Theorem 
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that does not hold is that ..# fails to separate the points of X (see 
Exercise 4). 

If X is only assumed to be locally compact, then the story is similar. 

8.3. Corollary. If X is locally compact and ..# is a closed subalgebra of 
Co( X) such that 

(a) for each x in X there is an fin ..# such that f(x) =1= 0; 
(b) ..# separates the points of X; 
(c) j E..# whenever f E..#; 

then ..# = Co( X). 

PROOF. Let Xoo = the one point compactification of X and identify Co( X) 
with {fE ceXoo): f(oo) = O}. So ..# becomes a sub algebra of ceXoo ). 

Now apply Corollary 8.2. The details are left to the reader. • 

What are the extreme points of the unit ball of M(X)? The characteriza­
tion of these extreme points as well as the extreme points of the set P( X) of 
probability measures on X is given in the next theorem. [A probability 
measure is a positive measure Jl such that Jl( X) = 1.] 

8.4. Theorem. If X is compact, then the set of extreme points of ball M(X) 
is 

{aSx : lal = 1 and x EX}. 

The set of extreme points of P( X), the probability measures on X, is 

{Sx: x EX}. 

PROOF. It is left as an exercise for the reader to show that if x E X, Sx is 
an extreme point of P( X) and aSx is an extreme point of ball M( X) 
(Exercise 3). 

It will now be shown that if Jl is an extreme point of P( X), then Jl is an 
extreme point of ball M( X). Thus the first part of the theorem implies the 
second. Suppose Jl is an extreme point of P( X) and VI' v2 E ball M( X) 
such that Jl = 1(vl + v2 )· Then 1 = IIJlII ~ 1(llvl ll + Ilv211) ~ 1; hence IlvI11 
+ IIv211 = 2 and so Ilvlil = IIv211 = 1. Also, 1 = Jl(X) = 1(vl (X) + v2(X». 
Now Ivl(X)I, Iv2 (X)1 ~ 1 and 1 is an extreme point of {a E IF: lal ~ I}. 
Hence for k = 1,2, Ilvkll = vk(X) = 1. By Exercise II1.7.2, V k E P(X) for 
k = 1,2. Since Jl E ext P( X), Jl = VI = v2 . So Jl is an extreme point of 
ball M( X). Thus it suffices to prove the first part of the theorem. 

Suppose that Jl is an extreme point of ball M( X) and let K be the 
support of Jl. That is, 

K = X\ U{ V: V is open and IJlI(V) = O}. 

Hence IJlI(X\ K) = 0 and ffdJl = fKfdJl for every f in C(X). It will be 
shown that K is a singleton set. 
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Fix Xo in K and suppose there is a second point x in K, x "* xo' Let U 
and V be open subsets of X such that Xo E U, X E V, and cI Unci V = D. 

By Urysohn's Lemma there is an f in C(X) such that 0 :::; f:::; 1, fey) = 1 
for y in cl U, and f(y) = 0 for y in cl V. Consider the measures fll and 
(1 - f)1l· Put a = Ilfllll = fill dllli = ff dllll· Then a = ff dllli :::; 111111 = 1 
and a = ffdllli ~ 11l1(U) > 0 since U is open and Un K"* D. Also, 1 - a 
= 1 - ff dllli = f(1 - f) dllli = 11(1 - f)1l11 and so 1 - a ~ f v(1 - f) dllli 
= 11l1(V) > 0 since x E K. Hence 0 < a < 1. 

But fll/a and (1 - f)1l/(1 - a) E ballM(X) and 

p, = a[fll] + (1 _ a)[ (1 -- f)Il]. 
a 1 -- a 

Since Il is an extreme point of ballM(X) and a"* 0, Il = fll/a. This can 
only happen if f == a < 1 a.e. [Ill. But f == 1 on U and 11l1(U) > 0, a 
contradiction. Hence K = {xo}' 

Since the only measures whose support can be the singleton set {xo} have 
the form a8xo' a in IF, the theorem is proved. • 

EXERCISES 

1. Suppose that .91 is a sub algebra of C( X) that separates the points of X and 
1 Ed. Show that if Xl' ... 'Xn are distinct points in X and £1'1' ... ' an ElF, there 
is an 1 in .91 such that I(x) = a j for 1 <;,j <;, n. 

2. Give the details of the proof of Corollary 8.3. 

3. If X is compact, show that for each X in X, 0, is an extreme point of P( X) and 
aox ' 1£1'1 = 1, is an extreme point of ball M(X). 

4. Let X be compact and let .91 be a closed subalgebra of C( X) such that 1 Ed 
and .91 is closed under conjugation. Define an equivalence relation - on X by 
declaring X - Y if and only if I(x) = I(y) for all 1 in d. Let XI - be the 
corresponding quotient space and let 'IT: X -> XI - be thc natural map. Give 
XI - the quotient topology. (a) Show that if 1 E .91, then there is a unique 
function 'IT*(f) in c(XI -) such that 'IT * (f) 0 'IT = f. (b) Show that 'IT * : .91-> 
C(XI -) is an isometry. (c) Show that 'IT* is surjective. (d) Show that .91= (f E 

C( X): I(x) = I(y) whenever X - y}. 

5. (This exercise requires Exercise IV.4.7.) Let X be completely regular and topolo­
gize C( X) as in Example IV.1.5. If .91 is a closed sub algebra of C( X) such that 
1 Ed, .91 separates the points of X, and jEd whenever 1 E .91, then .91 = 

C(X). 

6. Let X, Y be compact spaces and show that if 1 E C( X X Y) and E > 0, then 
there are functions gl, ... ,gn in C(X) and hl, .. ·,h" in C(y) such that 
I/(x,y) - L2~lgk(x)h,,(Y)1 < E for all (x,y) in X X Y. 

7. Let .91 be the uniformly elosed sub algebra of Ch(lR) generated by sin x and 
cosx. Show that .91= {IE C,,(IR): I(t) = I(t + 2'lT) for all t in IR}. 

8. If K is a compact subset of C, 1 E C(K), and E> 0, show that there is a 
polynomial p(z, z) in z and z such that I/(z)- p(z, 2)1 < E for all z in K. 
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§9*. The Schauder Fixed-Point Theorem 

Fixed-point theorems hold a fascination for mathematicians and they are 
very applicable to a variety of mathematical and physical situations. In this 
section and the next two such theorems are presented. 

The results of this section are different from the rest of this book in an 
essential way. Although we will continue to look at convex subsets of 
Banach spaces, the functions will not be assumed to be linear or affine. This 
is a small part of nonlinear functional analysis. 

To begin with, recall the following classical result whose proof can be 
found in any algebraic topology book. (Also see Dugundji [1966].) 

9.1. Brouwer's Fixed-Point Theorem. If 1 :s; d < 00, B = the closed unit 
ball of (R d, and f: B ---. B is a continuous map, then there is a point x in B 
such that f(x) = x. 

9.2. Corollary. If K is a nonempty compact convex subset of a finite-dimen­
sional normed space !!l and f: K ---. K is a continuous function, then there is a 
point x in K such that f(x) = x. 

PROOF. Since !!l is isomorphic to either Cd or (R d, it is homeomorphic to 
either (R2d or (Rd. So it suffices to assume that !!l= (Rd, 1 :s; d < 00. If 
K = {x E (R d: Ilxll:s; r}, then the result is immediate from Brouwer's 
Theorem (Exercise). If K is any compact convex subset of (Rd, let r> 0 
such that K ~ B == {x E (Rd: Ilxll :s; r}. Let cp: B ---. K be the function 
defined by CP(x) = the unique point y in K such that Ilx - yll = dist(x, K) 
(1.2.5). Then cp is continuous (Exercise) and CP(x) = x for each x in K. (In 
topological parlance, K is a retract of B.) Hence f 0 cp: B ---. K ~ B is 
continuous. By Brouwer's Theorem, there is an x in B such that f( CP(x» = 
x. Since f 0 CP(B) ~ K, x E K. Hence CP(x) = x and f(x) = x. • 

Schauder's Fixed-Point Theorem is a generalization of the preceding 
corollary to infinite-dimensional spaces. 

9.3. Definition. If !!l is a normed space and E ~ !!l, a function f: E ---. !!l 
is said to be compact if f is continuous and clf(A) is compact whenever A 
is a bounded subset of E. 

If E is itself a compact subset of !!l, then every continuous function from 
E into !!l is compact. 

The following lemma will be needed in the proof of Schauder's Theorem. 

9.4. Lemma. If K is a compact subset of the normed space !!l, e > 0, and A 
is a finite subset of K such that K ~ U{ B(a; e): a E A}, define CPA: K ---. !!l 
by 
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where mAx) = 0 il IIx - all ~ e and mAx) = e - Ilx - all il Ilx - all ::s; e. 
Then <PAis a continuous lunction and 

II<PA(x) - xii < e 

lor all x in K. 

PROOF. Note that for each a in A, ma(x) ~ 0 and l:{ ma(x): a E A} > 0 
for all x in K. So <PA is well defined on K. The fact that <PA is continuous 
follows from the fact that for each a in A, ma: K --+ [0, e] is continuous. 
(Verify!) 

If x E K, then 

L{ma(x)[a-x]: aEA} 
<PA(X)-X= . 

L{ma(x): a E A} 

If ma(x) > 0, then Ilx - all < e. Hence 

L{ma(x)lla - xII; a E A} 
II<PA{x) - xii ::s; "{ () A} 

'-- ma x ; a E 
< e. 

This concludes the proof. • 

9.5. The Schauder Fixed-Point Theorem. Let E be a closed bounded convex 
subset 01 a normed space !!(. II I: E --+!!( is a compact map such that 
I(E) ~ E, then there is an x in E such that I(x) = x. 

PROOF. Let K = cl/(E), so K ~ E. For each positive integer n let An be a 
finite subset of K such that K ~ U{B(a; lin): a E An}. For each n let 
I/>n = I/>A as in the preceding lemma. Now the definition of I/>n clearly implies 
that I/>/K) ~ co(K) ~ E since E is convex; thus In == <Pn 0 I maps E into 
E. Also, Lemma 9.4 implies 

9.6 Il/n(x) - l(x)1I < lin for x in E. 

Let!!(n be the linear span of the set An and put En = E n !!(". SO!!(n is a 
finite-dimensional normed space, En is a compact convex subset of !!(n' and 
In: En --+ En (Why?) is continuous. By Corollary 9.2, there is a point xn in 
En such that In(xn) = Xn· 

Now {/(x n )} is a sequence in the compact set K, so there is a point Xo 
and a subsequence {f(xn}} such that I(xn} --+ xo· Since In (XII) = xI! , 

• • J J J' J 

(9.6) implies 

IIxn - xoll ::s; Ilfn (x,,) - I(xn )11 + 11/(x" ) - xoll 
J J J J J 

1 
::s; - + Ilf(xn ) - Xoll· 

nj J 

Thus Xn --+ xo· Since I is continuous, I(xo) = lim/(xn ) = Xo. • 
J I 

There is a generalization of Schauder's Theorem where !!( is only assumed 
to be a LCS. See Dunford and Schwartz [1958], p. 456. 
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EXERCISE 

1. Let E = {x E [2(1"\1): IIxll s 1} and for x in E define f(x) = «1 - IIxIl 2 ), 

x(1), x(2), ... ). Show that f( E) ~ E, f is continuous, and f has no fixed points. 

§10*. The Ryll-Nardzewski Fixed-Point Theorem 

This section begins by proving a fixed-point theorem that in addition to 
being used to prove the result in the title of this section has some interest of 
its own. Recall that a map T defined from a convex set K into a vector 
space is said to be affine if T(Lajx) = LajT(x) when Xj E K, aj ~ 0, and 
Laj = 1. 

10.1. The Markov-Kakutani Fixed-Point Theorem. If K is a nonempty 
compact convex subset of a LCS !:£ and ~ is a family of continuous ·affine 
maps of K into itself that is abelian, then there is an Xo in K such that 
T(xo) = Xo for all T in ~. 

PROOF. If T E ~ and n ~ 1, define T(n): K ~ K by 

n-l 
T(n) = .!. L Tk. 

n k=O 

If Sand T E ~ and n, m ~ 1, then it is easy to check that s(n)T(m) = 
T(m)s(n). Let f= {T(n)(K): T E~, n ~ I}. Each set in f is compact 
and convex. If T1, ... , Tp E ~ and n1, ... , np ~ 1, then the commutativity 
of ~ implies that T(nlJ ... T(npJ(K) C np T(n)(K) This says that f 

1 P - J=1 J • 

has the finite intersection property and hence there is an Xo in n{ B: 
B E f}. It is claimed that Xo is the desired common fixed point for the 
maps in .f7. 

If T E.f7 and n ~ 1, then Xo E T(n)(K). Thus there is an x in K such 
that 

1 
Xo = T(n)(x) = -[x + T(x) + ... +Tn-1(x)]. 

n 

Using this equation for x o, it follows that 

T(Xo)-xo=~[T(x)+ ... +T(n)(x)] 

- .!. [x + T( x) + ... + yn -1 (x)] 
n 

= .!.[yn(x) -xl 
n 

1 
E-[K-K]. 

n 
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Now K is compact and so K - K is also. If U is an open neighborhood of 0 
in :1:, there is an integer n ;:0: 1 such that n-I[K - K] ~ U. Therefore 
T(xo) - Xo E U for every open neighborhood U of O. This implies that 
T(x o) - Xo = O. • 

If p is a seminorm on :1: and A ~ :1:, define the p-diameter of A to be 
the number 

p-diam A == sup { p (x - y): x, yEA} . 

10.2. Lemma. If :1: is a LCS, K is a nonempty separable weakly compact 
convex subset of :1:, and p is a continuous seminorm on :1:, then for every 
E > 0 there is a closed convex subset C of K such that: 

(a) C"* K; 
(b) p-diam( K \ C) S E. 

PROOF. Let S = {x E:1:: p(x) S E14} and let D = the weak closure of the 
set of extreme points of K. Note that D ~ K. By hypothesis there is a 
countable subset A of K such that D ~ K ~ U{ a + S: a E A}. Now each 
a + S is weakly closed. (Why?) Since D is weakly compact, there is an a in 
A such that (a + S) n D has interior in the relative weak topology of D 
(Exercise 2). Thus, there is a weakly open subset W of :1: such that 

10.3 (a + S) n D :;2 W n D "* D. 

Let KI = co(D \ W) and K2 = co(D n W). Because KI and K2 are 
compact and convex and KI U K2 contains the extreme points of K, the 
Krein-Milman Theorem and Exercise 7.8 imply K = CO(KI U K 2). 

10.4. Claim. KI "* K. 

In fact, if Kl = K, then K = co(D \ W) so that ext K ~ D \ W (Theo­
rem 7.8). This implies that D ~ D \ w, or that W n D = D, a contradiction 
to (10.3). 

Now (10.3) implies that K2 ~ a + S; so the definition of S implies that 
p-diam K2 S E12. Let 0 < r S 1 and define fr: KI X K2 X [r, 1] ----> K by 
fr(x 1 , x 2, t) = tX I + (1 - t)x 2. So fr is continuous and Cr == fr(K I X K2 X 

[r, 1]) is weakly compact and convex. (Verify!) 

10.5. Claim. Cr "* K for 0 < r S 1. 

In fact, if Cr = K and e E ext K, then e = tX I + (1 - t)X2 for some i, 

r S t s 1, x) in Kj" Because e is an extreme point and i "* 0, e = Xl' Thus 
ext K ~ KI and K = K I , contradicting (1004). 

Let y E K \ Cr' The definition of Cr and the fact that K = c:o( K I U K 2) 

imply y = tX I + (1 - t)x 2 with x) in KJ and ° s t < r. Hence p(y - x 2 ) 
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= P(t(Xl - x 2 » = tp(x1 - X2 ) ~ rd, where d = p-diam K. Therefore, if 
y' = t'x{ + (1 - t')x~ E K\ Cr , then p(y - y') ~ p(y - x 2 ) + P(X2 -
x~) + p(x~ - y') ~ 2rd + p-diam K2 ~ 2rd + e12. Choosing r = el4d 
and putting C = Cr , we have proved the lemma. • 

10.6. Definition. Let !!£ be a LCS and let Q be a nonempty subset of !!£. If 
Y is a family of maps (not necessarily linear) of Q into Q, then Y is said to 
be a noncontracting family of maps if for two distinct points x and y in Q, 

o fE c1 { T( x) - T( y ): T E Y } . 

The next lemma has a straightforward proof whose discovery is left to the 
reader. 

10.7. Lemma. If!!£ is a LCS, Q ~ !!£, and Y is a family of maps of Q into 
Q, then Y is a non contracting family if and only if for every pair of distinct 
points x and y in Q there is a continuous seminorm p such that 

inf { p ( T( x) - T( Y »: T E Y} > O. 

10.S. The Ryll-Nardzewski Fixed-Point Theorem. If !!£ is a LCS, Q is a 
weakly compact convex subset of !!£, and Y is a noncontracting semigroup of 
weakly continuous affine maps of Q into Q, then there is a point Xo in Q such 
that T(x o) = Xo for every Tin Y. 

PROOF. The proof begins by showing that every finite subset of Y has a 
common fixed point. 

10.9. Claim. If {T1, ... ,Tn} ~Y, then there is an Xo m Q such that 
TkXO = Xo for 1 ~ k ~ n. 

Put To = (Tl + ... + Tn)jn; so To: Q ~ Q and To is weakly continuous 
and affine. By (l0.1), there is an Xo in Q such that To(xo) = xo' It will be 
shown that Tk(x O) = Xo for 1 ~ k ~ n. In fact, if Tk(x O) * Xo for some k, 
then by renumbering the Tk , it can be assumed that there is an integer m 
such that Tk(x O) * Xo for 1 ~ k ~ m and Tk(x O) = Xo for m < k ~ n. Let 
Tr! = (Tl + ... + Tm)jm. Then 

Xo = To(xo) 

1 (n-m) = ; [T1(x O) + ... + Tm(xo)] + -n- xo' 

Hence 

To'(xo) = l[T1(xO) + ... +Tm(xo)] 
m 

= : ~[Tl(XO) + ... +Tm(xo)] 

= : [xo - ( n ~ m )xo] 
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Thus it may be assumed that Tk(x O) =F Xo for all k, but To(xo) = xo' Make 
this assumption. 

By Lemma 10.7, there is an E > 0 and there is a continuous seminorm p 
on f!£ such that for every Tin Y and 1 ~ k ~ n, 

10.10 

Let Y 1 = the semigroup generated by {T1, T2 , ••• , Tn}. So Y 1 ~ Y and 
Y 1 = {Til ... Tim: m ~ 11-1 ~ Ij ~ n}. Thus Y 1 is a countable subsemi­
group of Y. Put K = co{T(xo): T E Yd. Therefore K is a weakly 
compact convex subset of Q and K is separable. By Lemma 10.2, there is a 
closed convex subset C of K such that C =F K and p-diam(K\ C) ~ E. 

Since C =F K, there is an Sin Y 1 such that S(xo) E K\ C. Hence 

Since C is convex, there must be a k, 1 ~ k ~ n, such that STk(xO) E K \ c. 
But this implies that p(S(Tk(xO)) - S(xo)) ~ p-diam(K\ C) ~ E, con­
tradicting (10.10). This establishes Claim 10.9. 

Let ~= all finite nonempty subsets of Y. If F E~, let QF = {x E Q: 
T(x) = x for all Tin F}. By Claim 10.9, QF =F 0 for every F in ~. Also, 
since each T in Y is weakly continuous and affine, Q F is convex and 
weakly compact. It is easy to see that {Q F: F E ~} has the finite intersec­
tion property. Therefore, there is an Xo in n{ QF: F E ~}. The point Xo is 
the desired common fixed point for Y. • 

The original reference for this theorem is Ryll-Nardzewski [1967]; the 
treatment here is from Namioka and Asplund [1967]. An application of this 
theorem is given in the next section. 

EXERCISES 

1. Was local convexity used in the proof of Theorem 1O.1? 

2. Show that if X is locally compact and X = U~ ~ 1 F,,, where each F" is closed in 
X, then there is an integer n such that int F" '* D. (Hint: Look at the proof of the 
Baire Category Theorem.) 

§11 *. An Application: Haar Measure on a 
Compact Group 

In this section the operation on all semigroups and groups is denoted by 
multiplication. 
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11.1. Definition. A topological semigroup is a semi group G that also is a 
topological space and such that the map G X G ~ G defined by (x, y) ~ xy 
is continuous. A topological group is a topological semigroup that is also a 
group such that the map G ~ G defined by x ~ X-I is continuous. 

So a topological group is both a group and a topological space with a 
property that ties these two structures together. 

11.2. Examples 

(a) 1\1 and ~ 2: 0 are topological semigroups under addition. 
(b) 7L., ~, and C are topological groups under addition. 
(c) aD is a topological group under multiplication. 
(d) If X is a topological space and G = {IE C(X): f(X) c aD}, define 

(fg)(x) = f(x)g(x) for f, gin G and x in X. Then G is a group. If G is 
given the topology of uniform convergence on X, G is a topological 
group. 

(e) For n ~ 1, let Mn(C) = the n X n matrices with entries in C; O(n) == 
{A E Mn(C): A is invertible and A-I = A*}; SO(n) == {A E O(n): 
detA = I}. If Mn(C) is given the usual topology, O(n) and SO(n) are 
compact topological groups under multiplication. 

There are many more examples and the subject is a self-sustaining area of 
research. Some good references are Hewitt and Ross [1963] and Rudin 
[1962]. 

11.3. Definition. If S is a semigroup and f: S ~ IF, then for every x in S 
define fx: S ~ IF and xf: S ~ IF by fx(s) = f(sx) and xf(s) = f(xs) for all 
s in S. If S is also a group, let f#(s) = f(S-I) for all s in S. 

11.4. Theorem. If G is a compact topological group, then there is a unique 
positive regular Borel measure m on G such that 

(a) m(G) = 1; 
(b) if U is a nonempty open subset of G, then m(U) > 0; 
(c) if Ll is any Borel subset of G and x E G, then m(Ll) = m(Llx) = m(xLl) 

= m(Ll- 1), where Llx == {ax: a ELl}, xLl == {xa: a ELl}, and Ll- 1 == 
{a- 1:aELl}. 

The measure m is called the Haar measure for G. If G is locally compact, 
then it is also true that there is a positive Borel measure m on G satisfying 
(b) and such that m(Llx) = m(Ll) for all x in G and every Borel subset Ll of 
G. It is not necessarily true that m(Ll) = m(xLl), let alone that m(Ll) = 
m(Ll-l) (see Exercise 4). The measure m is necessarily unbounded if G is 
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not compact, so that (a) is not possible. Uniqueness, however, is still true in 
a modified form: if m l , m 2 are two such measures, then m l = am 2 for 
some a > O. 

By using the Riesz Representation Theorem for representing bounded 
linear functionals on C( G), Theorem 11.4 is equivalent to the following. 

n.s. Theorem. If G is a compact topological group, then there exists a 
unique positive linear functional I: C(G) ~ IF such that 

(a) 1(1) = 1; 
(b) iffE C(G), f?:. 0, andf*" 0, then I(f) > 0; 
(c) iff E C(G) and x E G, then I(f) = I(fx) = I(x!) = I(f#). 

Before proving Theorem 11.5, we need the following lemma. For a 
compact topological group G, if x E G, define Lx: M(G) ~ M(G) and R<: 
M(G) ~ M(G) by 

for f in C(G) and JL in M(G). Define So: M(G) ~ M(G) by 

for f in C( G) and JL in M( G). It is easy to check that Lx, R x' and So are 
linear isometries of M( G) onto M( G) (Exercise 5). 

n.6. Lemma. If G is a compact topological group, JL E M(G), and p: 
G X G ~ (M(G), wk*) is defined by p(x, y) = LxRv(JL), then p is continu­
ous. Similarly, if Po: G X G ~ (M(G), wk*) is defined by Po(x, y) = 
SoLxR/JL), then p is continuous. 

PROOF. Let f E C( G) and let 10 > O. Then (Exercise 10) there is a neighbor­
hood U of e (the identity of G) such that If(x) - f(Y)1 < 10 whenever 
xy-I E U or x-Iy E U. Suppose {(x;, y;)} is a net in G X G such that 
(x;, y;) ~ (x, y). Let io be such that for i ?:. i o, x;x- 1 E U and y;-ly E U. 
If x E G, then If(x;zy;) - f(xzy)1 ~ If(x;zyJ - f(xzy;) 1 + If(xzy;) -
f(xzy)l. But if i?:. io and z E G, (x;zy;)(xzy;)-l = x,x- 1 E U and 
(xzy;)-I(xzy) = y;-Iy E U. Hence If(x;zy;) - f(xzy)1 < 210 for i?:. io and 
for all z in G. Thus lim;!f(x;zyJ dJL(z) = ff(xzy) dJL(z). Since f was 
arbitrary, this implies that p(x;, yJ ~ p(x, y)wk* in M(G). The proof for 
Po is similar. • 
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PROOF OF THEOREM 11.5. If e = the identity of G, then 

LxRy = RyLx 

11.7 

LxLy = Lyx 

RxRy = Rxy 

S~ = Le = Re = the identity on M( G) 

SoLxRy = Ly-1Rx-ISO 

for x, y in G. Hence 

= Ly-1Rx-ILuR v 

= Ly-1LuRx-IR v 

Hence if Sl = the identity on M( G), 

y= {SiLxRy: i = 0,1; x,y E G} 
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is a group of surjective linear isometries of M( G). Let Q = the probability 
measures on G; that is, Q = {IL E M(G): IL ~ 0 and IL(G) = I}. So Q is a 
convex subset of M(G) that is wk* compact. Furthermore, T(Q) ~ Q for 
every T in Y. 

11.8. Claim. If IL E M(G) and IL *' 0, then 0 $. the weak* closure of {T(IL): 
T E Y}. 

In fact, Lemma 11.6 implies that {T( IL ): T E Y} is weak * closed. Since 
each T in Y is an isometry, T(IL) *' 0 for every T in Y. 

By Claim 11.8, Y is a noncontracting family of affine maps of Q into 
itself. Moreover, if T= SOLxRy and {lLi} is a net in Q such that lLi-4 
lL(wk*), then for every f in C(G), (/, T(ILJ) = ff(xs-1y) dlLi(S) -4 
ff(xs-Iy) dlL = (/, T(IL). So each Tin Y is wk* continuous on Q. By the 
Ryll-Nardzewski Fixed-Point Theorem, there is a measure m in Q such 
that T(m) = m for all Tin Y. 

By definition, (a) holds. Also, for any x in G and f in C( G), 
ff(xs) dm(s) = (f, LAm) = ffdm. By similar equations, (c) holds. Now 
suppose f E C( G), f ~ 0, and f *' O. Then there is an e > 0 such that 
U = {x E G: f(x) > e} is nonempty. Since U is open, G = U{Ux: x E G}, 
and G is compact, there are Xl' x 2 , ••• , xn in G such that G ~ Uk~IUXk' 
(Why is Ux open?) Define gk(X) = f(XX;I) and put g = Lk~lgk' Then 
g E C(G) and fgdm = Lk~lfgkdm = nffdm by (c). But for any X in G 
there is an Xk such that XX;1 E U; hence g(x) ~ gk(X) = f(XX;I) > e. 
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Thus 

ff dm = ~ fgdm ~ fin> O. 

This proves (b). 
To prove uniqueness, let J.-t be a probability measure on C having 

properties (a), (b), and (c). If fE qC) and x E C, then ffdJ.-t = fxfdJ.-t. 
Hence 

Hence J.-t = m. • 

ffdJ.-t= f[ff(Y)dJ.-t(Y)]dm(x) 

= f [ f f ( xY ) d J.-t ( Y )] dm ( x ) 

= f[ff(xY)dm(x)]dJ.-t(Y) 

= f[ff(X) dm(x)] dJ.-t(Y) 

= ff dm . 

For further information on Haar measure see Nachbin [1965]. 
What happens if C is only a semi group? In this case Lx and R, may not 

be isometries, so {LxR y: x, Y E C} may not be noncontractive. However, 
there are measures for some semigroups that are invariant (see Exercise 7). 
For further reading see Greenleaf [1969]. 

EXERCISES 

l. Let G be a group and a topological space. Show that G is a topological group if 
and only if the map of G X G -> G defined by (x,y) ~ x-ly is continuous. 

2. Verify the statements in (11.2). 

3. Show that Theorems (l1A) and (11.5) are equivalent. 

4. Let G be a locally compact group. If m is a regular Borel measure on G, show 
that any two of the following properties imply the third: (a) m (LI x) = m(LI) for 
every Borel set LI and every x in G; (b) m(xLl) = m(LI) for every Borel set LI 
and every x in G; (c) m (LI) = m (Lll) for every Borel set LI. 

5. Show that the maps So, Lx, R x are linear isometries of M( G) onto M( G). 

6. Prove (11. 7). 

7. Let S be an abelian semigroup and show that there is a posltlve linear 
functional L: !"'(S) -> IF such that (a) L(l) = 1, (b) L(f,) = L(f) for every f 
in !X(S). 
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8. Show that if S and L are as in Exercise 7, and S is infinite, then L(f) = ° 
whenever {s E S: /(s) *- o} is finite. 

9. If S = N, what does Exercise 7 say about Banach limits? 

10. If G is a compact group, f: G -> IF is a continuous function, and E > 0, show 
that there is a neighborhood U of the identity in G such that If(x) - /(y)1 < E 

whenever xy-l E U. (Note that this says that every continuous function on a 
compact group is uniformly continuous.) 

11. If G is a locally compact group and / E Cb(G), let @(f) '= the closure of {r: 
x E G} in Ch(G). Let AP(G) = {f E Cb(G): @(f) is compact}. Functions in 
AP( G) are called almost periodic. (a) Show that every periodic function in 
Cb(lR) belongs to AP(IR). (b) If G is compact, show that AP(G) = C(G). (c) 
Show that if / E Cb(IR), then / E AP(IR) if and only if for every E > ° there is a 
positive number T such that in every interval of length T there is a number p 
such that If(x) - /(x + p)1 < E for all x in IR. (d) If G is not compact, then 
the only function in AP(G) having compact support is the zero function. (e) 
Prove that there is a bounded linear functional L: AP(G) -> IF such that 
L(I) = 1, L(f) ~ ° if / ~ 0, and L(fx) = L(f) for all / in AP(G) and x 
in G. 

§12*. The Krein-Smulian Theorem 

Let A be a convex subset of a Banach space !!l". If A is weakly closed, then 
for every r > 0, A n {x E !!l": Ilxll :s; r} is weakly closed; this is clear since 
each of the sets in the intersection is weakly closed. But the converse of this 
is also true: if A is convex and A n {X E !!l": Ilxll :s; r} is weakly closed for 
every r > 0, then A is weakly closed. In fact, because A is convex it suffices 
to prove that A is norm closed (Corollary 1.5). If {x n } <;;; A and Ilx n - xoll 
-... 0, then there is a constant r such that IIxnll :s; r for all n. By hypothesis, 
A n {x E!!l": Ilxll:S; r} is weakly closed and hence norm closed. Thus 
Xo E A. 

N ow let A be a convex subset of !!l" *, !!l" a Banach space. If A n {x * E 

!!l"*: IIx*11 :s; r} is weak-star closed for every r> 0, is A weak-star closed? 
If !!l" is reflexive, then this is the same question that was asked and answered 
affirmatively in the preceding paragraph. If !!l" is not reflexive, then the 
preceding argument fails since there are norm-closed convex subsets of !!l" * 
that are not weak-star closed. (Example: let x** E !!l"** \!!l" and consider 
A = ker x**.) Nevertheless, even though the argument fails, the statement is 
true. 

12.1. The Krein-Smulian Theorem. If !!l" is a Banach space and A is a 
convex subset of!!l"* such that A n {x* E !!l"*: Ilx*1I :s; r} is weak-star 
closed for every r > 0, then A is weak-star closed. 

To prove this theorem, two lemmas are needed. 



164 v. Weak Topologies 

12.2. Lemma. If!!l" is a Banach space, r > 0, and y;; is the collection of all 
finite subsets of {x E!!l": Ilxll :s; rl}, then 

n{Fo: FEY;;} = {x* E!!l"*: Ilx*ll:S; r}. 

PROOF. Let E = n{ FO: FEY;;}; it is easy to see that r(ball!!l" *) c::; E. If 
x * $ r(ball!!l" *), then there is an x in ball!!l" such that I (x, x *) I > r. 
Hence I(r-Ix, x*)1 > 1 and x* $ E. • 

12.3. Lemma. If A and !!l" satisfy the hypothesis of the Krein-Smulian 
Theorem and, moreover, A Ii ball!!l"* = D, then there is an x in !!l" such that 

Re(x, x*) ;::: 1 

for all x* in A. 

PROOF. The proof begins by showing that there are finite subsets Fo, FI , ... 

of !!l" such that 

12.4 {
(i) nFn c::; ball!!l"; 

(ii) n (ball!!l" *) Ii n~:5Fko Ii A = D. 

To establish (12.4) use induction as follows. Let Fo = (0). Suppose that 
Fo,.'" Fn _ 1 have been chosen satisfying (12.4) and set Q = [(n + 
l)ball !!l"*lli n~:5Fko Ii A. Note that Q is wk* compact. So if Q Ii FO =1= D 
for every finite subset F of n-Iball!!l", then D =1= Q Ii n{Fo: F is a finite 
subset of n - I(ball !!l")} = Q Ii [n (ball !!l" *) 1 by the preceding lemma. This 
contradicts (12.4ii). Therefore there is a finite subset Fn of n -I(ball!!l") such 
that Q Ii Fno = D. This proves (12.4). 

If {Fn}~~1 satisfies (12.4), then A Ii n~~IFno = D. Arrange the elements 
of U~~IFn in a sequence and denote this sequence by {xn}. Note that 
limllxnll = 0. Thus if x* E !!l"*, {(xn' x*)} E Co. Define T: !!l"* --> Co by 
T(x*) = {(xn' x*)}. It is easy to see that T is linear (and bounded, though 
this fact is unnecessary). Hence T(A) is a convex subset of co. Also, from 
the construction of {xn} = U~~IFn' for each x* in A, IIT(x*)11 = 
sUPnl(xn' x*)1 > 1. That is, T(A) Ii ball Co = D. Thus Theorem III.3.7 ap­
plies to the sets T(A) and int[ballcol and there is an f in [I = Cd and an a 

in ~ such that Re( cp, f) < a :s; Re(T(x*), f) for every cp in int[ball col and 
x* in A. That is, 

00 00 

12.5 Re L cp(n)f(n) < a:s; Re L (xn,x*)f(n) 

for every cp in Co with Ilcpll < 1 and for every x* in A. Replacing f by fillfil 
and a by a/llfll, it is clear that it may be assumed that (12.5) holds with 
IIIII = 1. If cp E co' IIcpll < 1, let p, E IF such that 1p,1 = 1 and (p,cp, f) = 

I ( cp, f) I· Applying this to (12.5) and taking the supremum over all cp in 
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int[ball co] gives that 1 :::; ReL~~I(xn' x*)f(n) for all x* in A. But fEll 
so X = L~~d(n)xn E !l£ and 1 :::; Re(x, x*) for all x* in A. • 

Where was the completeness of !l£ used in the preceding proof? 

PROOF OF THE KREIN-SMULIAN THEOREM. Let x(l' E!l£* \A; it will be 
shown that x(l' $. wk* - cl A. It is easy to see that A is norm closed. So 
there is an r> 0 such that {x* E !l£*: Ilx* - x(l'11 :::; r} n A = D. But this 
implies that ball!l£* n [r-l(A - x(l')] = D. With this it is easy to see that 
r-1(A - x(l') satisfies the hypothesis of the preceding lemma. Therefore 
there is an x in !l£ such that Re(x, x*) ~ 1 for all x* in r-1(A - x(l'). In 
particular,O $. wk* - cl[r-l(A - x(l')] and hence x(l' $. wk* - cl A. • 

12.6. Corollary. If!l£ is a Banach space and qy is a linear manifold in !l£*, 
then qy is weak-star closed if and only if qynball!l£ * is weak-star closed. 

12.7. Corollary. If !l£ is a separable Banach space and A is a convex subset 
of !l£ * that is weak-star sequentially closed, then A is weak-star closed. 

PROOF. Because!l£ is separable, r(ball !l£*) is weak-star metrizable for every 
r > 0 (Theorem 5.1). So if A is weak-star sequentially closed, A n 
[r(ball!l£*)] is weak-star closed for every r> O. Hence the Krein-Smulian 
Theorem applies. • 

This last corollary is one of the most useful forms of the Krein-Smulian 
Theorem. To show that a convex subset A of!l£* is weak-star closed it is 
not necessary to show that every weak-star convergent net from A has its 
limit in A; it suffices to prove this for sequences. 

12.8. Corollary. If !l£ is a separable Banach space and F: !l£* ~ IF is a 
linear functional, then F is weak-star continuous if and only if F is weak-star 
sequentially continuous. 

PROOF. By Theorem IV.3.l, F is wk* continuous if and only if ker F is wk* 
closed. This corollary is, therefore, a direct consequence of the preceding 
one. • 

There is a misinterpretation of the Krein-Smulian Theorem that the 
reader should be warned about. If A is a weak-star closed convex subset of 
baU!l£*, let ..,1(= U{rA: r> O}. It is easy to see that ..,I( is a linear 
manifold, but it does not follow that ..,I( is weak-star closed. What is true is 
the following. 

12.9. Theorem. Let !l£ be a Banach space and let A be a weak-star closed 
subset of !l£ *. If qy = the linear span of A, then qy is norm closed in !l£ * if 
and only if qy is weak-star closed. 
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The proof will not be presented here. The interested reader can consult 
Dunford and Schwartz [1958], p. 429. 

There is a method for finding the weak-star closure of a linear manifold 
that is quite useful despite its seemingly bizarre appearance. Let :!£ be a 
Banach space and let vIt be a linear manifold in :!£*. For each ordinal 
number a define a linear manifold vita as follows. Let viti = vIt. Suppose a 

is an ordinal number and vIt fJ has been defined for each ordinal f3 < a. If a 
has an immediate predecessor, a-I, let vita be the weak-star sequential 
closure of vita-I. If a is a limit ordinal and has no immediate predecessor. 
let vita = U{ vIt fJ: f3 < a}. In each case vita is a linear manifold in :!£ * and 
vIt fJ ~ vita if f3 ~ a. 

12.10. Theorem. If :!£ is a separable Banach space, vIt is a linear manifold 
in :!£ *, and vIt a is defined as above for every ordinal number a, then vIt n is 
the weak-star closure of vIt, where D is the first uncountable ordinal. More­
over, there is an ordinal number a < D such that vIt a = vIt n. 

PROOF. By Corollary 12.7 it suffices to show that vIt n is weak-star sequen­
tially closed. Let {x:} be a sequence in vltn such that x: ~ x* (wk*). 
Since vIt n = U{ vita: a < D}, for each n there is an an < D such that 
x: E vita. But a = sUPnan < D. Hence x: E vita for all n; thus x E vital I 

~ vIt nand vIt n is weak-star closed. 
To see that vIt n = vita for some a < D, let {x:} be a countable wk* 

dense subset of ball vIt n. For each n there is an an such that x: E vitO'. Put 
a = sUPnan. So {x:} c ball vita. Put ball vIt n is a compact metric space in 
the weak-star topology, so {x:} is wk* sequentially dense in ballvlt S? 

Therefore ball vIt n ~ ball vIt a + 1 and vIt n = vIt a + I· • 

When is vIt weak-star sequentially dense in :!£ *? The following result of 
Banach answers this question. 

12.11. Theorem. If :!£ is a separable Banach space and vIt is a linear 
manifold in :!£ *, then the following statements are equivalent. 

(a) vIt is weak-star sequentially dense in :!£*. 
(b) There is a positive constant c such that for every x in :!£, 

Ilxll ~ sup{l(x, x*)I: x* E jl, Ilx*11 ~ c}. 

(c) There is a positive constant c such that if x * E ball:!£ *, there is a 
sequence {xl} in vIt, IIx:11 ~ c, such that x: ~ x* (wk*). 

PROOF. It is clear that (c) implies (a). The proof will consist in showing that 
(a) implies (c) and that (b) and (c) are equivalent. 

(a) = (c): For each positive integer n, let An = the wk* closure of 
n (ball vIt). If x * E :!£ *, let {xl} be a sequence in vIt such that x: ~ x * 
(wk*). By the PUB, there is an n such that Ilx:11 ~ n for all k. Hence 
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x* E An. That is, U~~IAn = :!£*. Clearly each An is norm closed, so the 
Baire Category Theorem implies that there is an An that has interior in the 
norm topology. Thus there is an x6 in An and an r > 0 such that 
An;;2 {x* E :!£*: Ilx* - x611 ::s; r}. Let {xk} ~ n(baILIt) such that xt -> 

x6 (wk*). If x* E ball :!£*, then x6 + rx* E An; hence there is a sequence 
{yn in n(baILIt) such that y: -> x6 + rx* (wk*). Thus r-l(y: - xt) 
-> x* (wk*) and r-l(y: - xt) E c(ballA), where c = 2n/r is indepen­
dent of x*. 

(c) = (b): If x E :!£, then Alaoglu's Theorem implies there is an x* in 
ball:!£* such that (x,x*) = Ilxll. By (c), there is a sequence {xk} in 
c(ballA) such that xt -> x* (wk*). Thus (xt, x) -> Ilxll and (b) holds. 

(b) = (c): According to (b), ball:!£;;2 ° [ c(ballA)]. Hence ball:!£ * = 
(ball:!£)O ~ ° [c(ball A)] 0. By (1.8), ° [c(ball A)] ° = the weak-star closure 
of c(ballA). But bounded subsets of:!£* are weak-star metrizable (5.1) 
and hence (c) follows. • 

EXERCISES 

1. Suppose:!( is a normed space and that the only hyperplanes A in:!(* such that 
A n ball:!(* is weak-star closed are those that are weak-star closed. Prove that 
:!( is a Banach space. 

2. (von Neumann) Let A be the subset of [2 consisting of all vectors {xmn: 
1 ::s; m < n < Do} where xmn(m) = 1, xmn(n) = m,and xmn(k) = Oif k"* m, n. 
Show that 0 E wk - cl A but no sequence in A converges weakly to O. 

3. Where were the hypotheses of the separability and completeness of !!£ used in the 
proof of Theorem 12.11? 

4. Let !!£ be a separable Banach space. If A is a linear manifold in!!£* give 
necessary and sufficient conditions that every functional in wk* - cl A be the 
wk* limit of a sequence from A. 

5. Let!!£ be a normed space and let Y be a locally convex topology on !!£ such that 
ball!!£ is .:T-compact. Show that there is a Banach space qy such that !!£ is 
isometrically isomorphic to qy*. (Hint: Let qy = {x* E !!£*: x* I ball !!£ is .:T-con­
tinuous}.) 

§13*. Weak Compactness 

In this section, two results are stated without proof. These results are among 
the deepest in the study of weak topologies. 

13.1. The Eberlein-Smulian Theorem. If :!£ is a Banach space and A ~ :!£, 
then the following statements are equivalent. 

(a) Each sequence of elements of A has a subsequence that is weakly conver­
gent. 
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(b) Each sequence of elements of A has a weak cluster point. 
(c) The weak closure of A is weakly compact. 

v. Weak Topologies 

The proof can be found in Dunford and Schwartz [1958), p. 430. The 
serious student should examine Chapter V of Dunford and Schwartz [1958) 
for several results not presented here as well as for some of the history 
behind the material of this chapter. 

The following is an easy consequence of the Eberlein-Smulian Theorem. 

13.2. Corollary. If :!{ is a Banach space and A ~:!{, then A is weakly 
compact if and only if A n vi{ is weakly compact for every separable subspace 
vi{ of :!{. 

If :!{ is a Banach space and A is a weakly compact subset of :!{, then for 
each x* in:!{* there is an Xo in A such that I(xo, x*)1 = sup{l(x, x*)I: 
x E A}. It is a rather deep fact due to R. C. James [1964a) that the converse 
is true. 

13.3. James's Theorem. If :!{ is a Banach space and A is a closed convex 
subset of :!{ such that for each x * in :!{ * there is an Xo in A with 

l(xo,x*)1 = sup{l(x,x*)I: x E A}, 

then A is weakly compact. 

Another reference for a proof of this theorem as well as a number of 
other equivalent formulations of weak compactness and reflexivity is James 
[1964b). Also, if :!{ is only assumed to be a normed space in Theorem 13.2, 
the conclusion is false (see James [1971)). 

The next result, presented with proof, is also called the Krein-Smulian 
Theorem and must not be confused with the theorem of the preceding 
section. 

13.4. Krein-Smulian Theorem. If :!{ is a Banach space and K is a weakly 
compact subset of :!(, then co(K) is weakly compact. 

PROOF. Case 1: :!( is separable. Endow K with the relative weak topology; 
so M(K) = C(K)*. If !.t E M(K), define F: :!(* ---> IF by 

F/L(x*) = f (x, x*) d!.t(x). 
K 

It is easy to see that F/L is a bounded linear functional on :!{ * and 
II~II :$ 11!.tllsup{llxll: x E K}. 

13.5. Claim. F/L: :!{* ---> IF is weak-star continuous. 
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By (12.8) it suffices to show that F,. is weak* sequentially continuous. Let 
{x:} be a sequence in !!£* such that x: -> x* (wk*). By the PUB, 
M = sUPnllx:11 < 00. Also, (x, x:) -> (x, x*) for every x in K. By the 
Lebesgue Dominated Convergence Theorem, F,.(x:) = J(x, x:) dll(X) -> 
F,.(X*). So (13.5) is established. 

By (1.3), F,. E!!£. That is, there is an x,. in !!£ such that F,.(x*) = 
(X,., x*). Define T: M(K) ->!!£ by T(Il) = x,.. 

13.6. Claim. T: (M(K), wk*) -> (!!£, wk) is continuous. 

In fact, this is clear. If Ili -> 0 weak* in M(K), then for each x* in !!£*, 
x*IK E C(K). Hence (T(Il;), x*) = J(x, x*) dlli(X) -> O. 

Let gJ = the probability measures on K. By Alaoglu's Theorem gJ is 
weak* compact. Thus T(gJ) is weakly compact and convex. However, if 
x E K, (IJ8x )'x*)..::.. (x,x*); that is, T(8x ) = x. So T(gJ) ~ K. Hence 
T( !!J') ~ co( K) and co( K) must be compact. 

Case 2: !!£ is arbitrary. Let {xn} be a sequence in coCK). So for each n 
there is a finite subset Fn of K such that xn E co(Fn). Let F = U~~lFn and 
let Jt = VF. Then Kl = K n Jt is weakly compact and {x n} <;;; coCK]). 
Since Jt is separable, Case 1 implies that co( K 1) is weakly compact. By the 
Eberlein-Smulian Theorem, there is a subsequence {x nk } and an x in 
co(Kl ) <;;; coCK) such that x nk -> x. Thus coCK) is weakly compact. • 

EXERCISES 

l. Prove Corollary 13.2. 

2. If !!( is a Banach space and K is a compact subset of !!(, prove that co( K) is 
compact. 

3. In the proof of (13.4), if 9 = the probability measures on K, show that T(9) 
= coCK). 

4. Prove the Eberlein-Smulian Theorem in the setting of Hilbert space. 



CHAPTER VI 

Linear Operators on a Banach Space 

As has been said before in this book, the theory of bounded linear operators 
on a Banach space has seen relatively little activity owing to the difficult 
geometric problems inherent in the concept of a Banach space. In this 
chapter several of the general concepts of this theory are presented. When 
combined with the few results from the next chapter, they constitute 
essentially the whole of the general theory of these operators. 

We begin with a study of the adjoint of a Banach space operator. Unlike 
the adjoint of an operator on a Hilbert space (Section 11.2), the adjoint of a 
bounded linear operator on a Banach space does not operate on the space 
but on the dual space. 

§1. The Adjoint of a Linear Operator 

Suppose !I and I[Jf are vector spaces and T: !I -> I[Jf is a linear transforma­
tion. Let 1[Jf' = all of the linear functionals of I[Jf -> IF. If y' E 1[Jf', then 
y' 0 T: !I -> IF is easily seen to be a linear functional on !I. That is, 
y' 0 T E !I '. This defines a map 

T': 1[Jf' ->!I' 

by T '( Y ') = y' 0 T. The first result shows that if !I and I[Jf are Banach 
spaces, then the map T' can be used to determine when T is bounded. 
Another equivalent formulation of boundedness is given by means of the 
weak topology. 
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1.1. Theorem. If !!£ and dJI are Banach spaces and T: !!£ -> dJI is a linear 
transformation, then the following statements are equivalent. 

(a) T is bounded. 
(h) T'(dJI*) <;;; !!£*. 
(c) T: (!!£, weak) -> (dJI, weak) is continuous. 

PROOF. (a) = (h): If y* E dJI*, then T'(y*) E !!£'; it must he shown that 
T'(y*) E !!£*. But IT'(y*)(x)1 = Iy* 0 T(x)1 = I(T(x), y*)1 ~ 
IIT(x)IIIIY*11 ~ II Til Ily*11 Ilxll· So T'(y*) E !!£*. 

(b) = (c): If {Xi} is a net in!!£ and Xi -> 0 weakly, then for y* in dJI*, 
(T(x;), y*) = T'(y*)(x;) -> 0 since T'(y*) E !!£*. Hence T(x;) -> 0 
weakly in dJI. 

(c) = (h): If y* E dJI*, then y* 0 T: !!£ -> IF is weakly continuous hy (c). 
Hence T'(y*) = y* 0 T E!!£* hy (V.1.2). 

(h) = (a): Let y* E dJI* and put x* = T'(y*). So x* E!!£* hy (h). So 
if X E hall!!£, I(T(x), y*) I = I (x, x*) I ~ Ilx*ll. That is, sup{ I (T( x), y*) I: 
x E hall!!£} < 00. Hence T(hall!!£) is weakly hounded; hy the PUB, 
T(hall !!£) is norm hounded and so II Til < 00. • 

The preceding result is useful, though strictly speaking it is not necessary 
for the purpose of defining the adjoint of an operator A in !!I ( !!£, dJI), which 
we now turn to. If A E !!I(!!£,dJI) and y* E dJI*, then y*oA = A'(y*) E 
!!£*. This defines a map A*: dJI* -> !!£*, where A* = A'ldJI*. Hence 

1.2 (x,A*(y*) = (A(x),y*) 

for x in !!£ and y * in dJI *. A * is called the adjoint of A. 
Before exploring the concept let's see how this compares with the defini­

tion of the adjoint of an operator on Hilhert space given in § 11.2. There is a 
difference, hut only a small one. When yr is identified with yr*, the dual 
space of yr, the identification is not linear hut conjugate linear (if IF = C). 
The isometry h H Lh of yr onto yr*, where Lh(f) = (I, h), satisfies 
Lah = "iiLh· Thus the definition of A* given in (1.2) above is not the same as 
the adjoint of an operator on Hilhert space, since in (1.2) A* is defined on 
t!!I * and not some conjugate-linear isomorphic image of it. In particular, if 
the definition (1.2) is applied to a matrix A acting on Cd considered as a 
Banach space, its adjoint corresponds to the transpose of A. If Cd is 
considered as a Hilbert space, then the matrix of A * is the conjugate 
transpose of the matrix of A. This difference will not confuse us hut it will 
serve to explain minor differences that will appear in the treatment of the 
two types of adjoints. The first of these occurs in the next result. 

1.3. Proposition. If !!£ and dJI are Banach spaces, A, BE !!I(!!£, t!!I), and 
a, f3 E IF, then (aA + (3B)* = aA* + {3B*. 
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Note the absence of conjugates. The proof is left to the reader. 
If A E f!j(!!{, 1lJJ), then it is easy to see that A * E f!j( IlJJ *, !!( *). In fact, if 

y* E ballllJJ* and x E ball!!{, then I(x, A*y*)1 = I(Ax, Y*)I s IIAxl1 s 
IIAII. Hence IIA*Y*II s IIAII if y* E ball IlJJ *, so that IIA*II s IIAII. This 
implies that (A*)* == A** can be defined, 

A**: !!{** -4 1lJJ**, 

(A**x**, y*) = (x**, A*y*) 

for x** in !!{** and y* in 1lJJ*. 
Suppose x E!!{ and consider x as an element of !!{** via the natural 

embedding of !!( into its double dual. What is A**(x)? For y* in 1lJJ*, 

(A**(x), y*) = (x, A*y*) 

= (Ax, y*). 

That is, A * * I!!{ = A. This is the first part of the next proposition. 

1.4. Proposition. If !!( and IlJJ are Banach spaces and A E f!j(!!{, 1lJJ), then: 

(a) A**I!!{= A; 
(b) IIA*II = IIAII; 
(c) if A is invertible, then A * is invertible and (A *) -1 = (A -1 )*; 
(d) if 1l' is a Banach space and B E f!j(IlJJ, 1l'), then (BA)* = A*B*. 

PROOF. Part (a) was proved above. It was also shown that IIA*II S; IIAII. 
Thus IIA**II s IIA*II. SO if x E ball!!(, then (a) implies that IIAxl1 = 
IIA**xll S; IIA**II s IIA*II· Hence IIAII s IIA*II· 

The remainder of the proof is left to the reader. • 

1.5. Example. Let (X, fl, JL) and M",: LP(JL) -4 LP(JL) be as in Example 
I1I.2.2. If 1 s p < 00 and lip + l/q = 1, then M",*: U(JL) -4 Lq(JL) is 
given by M",*f = q>f. That is, M",* = M",. 

1.6. Example. Let K and k be as in Example 111.2.3. If 1 s P < 00 and 
lip + l/q = 1, then K*: Lq(JL) -4 Lq(JL) is the integral operator with 
kernel k*(x, y) == key, x). 

1.7. Example. Let X, Y, T, and A be as in Example III.2A. Then A*: 
M(Y) -4 M(X) is given by 

( A *JL )( L\) = JL ( T -1( L\ ) ) 

for every Borel subset L\ of X and every JL in M(Y). 

Compare (1.5) and (1.6) with (11.2.8) and (11.2.9) to see the contrast 
between the adjoint of an operator on Banach space with the adjoint of a 
Hilbert space operator. 

1.8. Proposition. If A E f!j(!!{, 1lJJ), then ker A* = (ran A) -L and ker A = 
-L(ranA*). 
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The proof of this useful result is similar to that of Proposition 11.2.19 and 
is left to the reader. 

This enables us to prove the converse of Proposition l.4c. 

1.9. Proposition. If A E ~(:!l", '!!I), then A is invertible if and only if A* is 
invertible. 

PROOF. In light of (l.4c) it suffices to assume that A* is invertible and show 
that A is invertible. By the Open Mapping Theorem, there is a constant 
c > 0 such that A*(ball '!!I *) ;::2 {x* E :!l"*: Ilx*11 :s; c}. So if x E :!l", then 

IIAxl1 = sup{I(Ax, y*)I: y* E ball '!!I * } 

= sup{l(x, A*y*)I: y* E ball '!!I * } 

~ sup{l(x, x*)I: x* E:!l"* and Ilx*ll:s; c} 

= cllxll· 
Thus ker A = (0) and ran A is closed. (Why?) On the other hand, (ran A) .1 

= ker A * = (0) since A * is invertible. Thus ran A is also dense. This implies 
that A is surjective and thus invertible. • 

This section concludes with the following useful result that seems to be 
somewhat unfamiliar to parts of the mathematical community. 

1.10. Theorem. If:!l" and '!!I are Banach spaces and A E ~(:!l", '!!I), then the 
following statements are equivalent. 

(a) ran A is closed. 
(b) ran A * is weak * closed. 
(c) ran A * is norm closed. 

PROOF. It is clear that (b) implies (c), so it will be shown that (a) implies (b) 
and (c) implies (a). Before this is done, it will be shown that it suffices to 
prove the theorem under the additional hypothesis that A is injective and 
has dense range. 

Let ?L = cl(ran A). Thus A: :!l" ~?L induces a bounded linear map B: 
:!l"/ker A ~ ?L defined by B( x + ker A) = Ax. If Q: :!l" ~ :!l"/ker A is the 
natural map, the diagram 

A 

Q~ 7'8 
:!l"/ker A 

commutes. (Why is B bounded?) It is easy to see that B is injective and that 
B has dense range. In fact, ran B = ran A, so ran A is closed if and only if 
ran B is closed. Let's examine B*: ?L* ~ (:!l"/kerA)*. By (V.2.2), 
(:!l"/kerA)* = (kerA).l= wk*cl(ranA*) ~:!l"* by (1.8). Also by (V.2.3), 
since?L:s; '!!I,?L* = '!!I*/?L.l= '!!I*/(ranA).l= '!!I*/kerA* by (1.8). Thus, 

B*: '!!I*/kerA* ~ (kerA).l. 
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1.11. Claim. B*(y* + kerA*) = A*y* for all y* in C!lI*. 

To see this, let x E:J: and y* E C!lI*. Making the appropriate identifica­
tions as in (V.2.2) and (V.2.3) gives (x + ker A, B*(y* + ker A*» 
= (B(x + ker A),y* + ker A*) = (Ax,y* + (ran A)~) = (Ax,y*) 
= (x, A*y*) = (x + ~ (ran A*), A*y*) = (x + ker A, A*y*). Since x was 
arbitrary, (1.11) is established. 

Note that Claim 1.11 implies that ran B* == ran A*. Hence ran A* is 
weak* (resp., norm) closed if and only if ran B* is weak* (resp., norm) 
closed. 

This discussion shows that the theorem is equivalent to the analogous 
theorem in which there is the additional hypothesis that A is injective and 
has dense range. It is assumed, therefore, that ker A = (0) and cl(ran A) = C!lI. 

(a) = (b): Since ran A is closed, the additional hypothesis implies that A 
is bijective. By the Inverse Mapping Theorem, A ~l E !!(J(C!lI, :J:). Hence A* 
is invertible (l.4c). Since A* is invertible, ran A* =:J:* and hence is weak* 
closed. 

(c) = (b): Since ran A is dense in C!lI, ker A* = (ran A) ~ (1.8) = (0). Thus 
A *: CfJI * -+ ran A * is a bijection. Since ran A * is norm closed, it is a Banach 
space. By the Inverse Mapping Theorem, there is a constant c > 0 such that 
IIA*y*11 ~ clly*11 for all y* in C!lI*. 

To show that ran A* is weak* closed, the Krein-Smulian Theorem 
(V.12.6) will be used. Thus suppose {A *y;*} is a net in ran A * with 
IIA*ytll ~ I such that A*Yi* -+ x* a(:J:*,:J:) for some x* in :J:*. Thus 
Ily,*11 ~ C~l for all Yi*' By Alaoglu's Theorem there is a y* in C!lI* such that 
yt ~ y* a(CfJI*, C!lI). Thus (1.lc), A*yt cf+ A*y* a(:J:*, :J:), and so 
x* = A*y* E ran A*. By (V.12.6), ran A* is weak * closed. 

(b) = (a): Since ran A* is weak* closed, ran A* = (ker A) ~ = :J: *. Also. 
ker A * = (ran A) ~ = (0) since A has dense range. Thus A * is a bijection 
and is thus invertible. By Proposition 1.9, A is invertible and thus has 
closed range. • 

EXERCISES 

1. Prove Proposition 1.3. 

2. Complete the proof of Proposition lA. 

3. Verify the statement made in (1.5). 

4. Verify the statement made in (1.6). 

5. Verify the statement made in (1.7). 

6. Let 1 s p < 00 and define S: IP -> IP by Seal' a 2 • ... ) = (0. a l . a 2 • ... ). Com­
pute S*. 
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7. Let A E ~(co) and for n 2: 1, define en in Co by ellen) = 1 and e//(m) = 0 for 
m c:F n. Put a",// = (Aen)(m) for m, n 2: 1. Prove: (a) M = sup",I:~~llam//1 < 00; 

(b) for every n, a",// -> 0 as m -> 00. Conversely, if { a",n: m, n 2: 1} are scalars 
satisfying (a) and (b), then 

00 

(Ax)(m) = L a"'nx(n) 
n~1 

defines a bounded operator A on Co and IIAII = M. Find A*. 

8. Let A E ~(ll) and for n 2: 1 define en in /1 by en(n) = 1, e//(m) = 0 for 
m c:F n. Put a",n = (Aen)(m) for m, n 2: 1. Prove: (a) M = sUPnI:~~llam//1 < 00; 

(b) for every m, sUPnla",//1 < 00. Conversely, if {amn : m,n 2: 1} are scalars 
satisfying (a) and (b), then 

00 

(Aj)(n) = L a",nl(m) 
m~1 

defines a bounded operator A on /1 and IIA II = M. Find A*. 

9. (F. F. Bonsall) Let!!E be a Banach space, Z a nonempty set, and u: Z -> !!E. If 
there are positive constants Ml and M2 such that (i) Ilu(z)1I s Ml for all z in Z 
and (ii) for every x* in !!E, sup {I < u(z), x* > I: z E Z} 2: M21Ix*lI; then for 
every x in!!E there is an 1 in /\Z) such that (*)x = I:{f(z)u(z): z E Z} and 
M2 inf Ilflh s IIxll s MI inf Ilflh, where the infimum is taken over alliin /1 (Z) 
such that (*) holds. (Hint: define T: /1(Z) ->!!E by TI= I:{f(z)u(z): z E Z}.) 

10. (F. F. Bonsall) Let m be normalized Lebesgue measure on aD and for Izl < 1 
and Iwl = 1 let pz(w) = (1 - IZI2)/11 - zwl2. So pz is the Poisson kernel. Show 
that if 1 E LI(m), then there is a sequence {zn} ~ D and a sequence {An} in /1 

such that (*)1 = I:~~oAn Pzn, Moreover, Ilflll = infI:~~ IIA//I, where the infimum 
is taken over all {An} in /1 such that (*) holds. (Hint: use Exercise 9.) 

§2 *. The Banach-Stone Theorem 

As an application of the adjoint of a linear map, the isometries between 
spaces of the form C(X) and C(Y) will be characterized. Note that if X 
and Yare compact spaces, T: Y --> X is continuous map, and Af = f 0 T for 
f in C( X), then (111.2.4) A is a bounded linear map and IIA II = 1. 
Moreover, A is an isometry if and only if T is surjective. If A is a surjective 
isometry, then T must be a homeomorphism. Indeed, suppose A is a 
surjective isometry; it must be shown that T is injective. If Yo, Yl E Y and 
Yo oF YI, then there is a g in C(Y) such that g(yo) = 0 and g(Yl) = 1. Let 
f E C(X) such that Af = g. Thus f( T(YO» = g(yo) = 0 and f( T(YI» = 1. 
Hence T(YO) =1= T(Yl)' 
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So if T: Y ~ X is a homeomorphism and a: Y ~ IF is a continuous 
function, with la(y)1 == 1, then T: C(X) ~ C(Y) defined by (Tf)(y) = 

a( y )f( T( y» is a surjective isometry. The next result gives a converse to this. 

2.1. The Banach-Stone Theorem. If X and Y are compact and T: C(X)---> 
C(Y) is a surjective isometry, then there is a homeomorphism T: Y ~ X and a 
function a in C(Y) such that la(y)1 = 1 for all y and 

( Tf) ( y) = a ( y ) f ( T ( Y ) ) 

for all fin C( X) and y in Y. 

PROOF. Consider T*: M(Y) ~ M( X). Because T is a surjective isometry. 
T* is also. (Verify.) Thus T* is a weak* homeomorphism of ball M(Y) 
onto ball M( X) that distributes over convex combinations. Hence (Why?) 

T*(ext[ball M(Y)]) = ext [ball M(X)]. 

By Theorem V.S.4 this implies that for every y in Y there is a unique T(Y) 
in X and a unique scalar a(y) such that la(y)1 = 1 and 

T*{8J = a(y)ST(Y)' 

By the uniqueness, a: Y ~ IF and T: Y ~ X are well-defined functions. 

2.2. Claim. a: Y ~ IF is continuous. 

If {Yi} is a net in Yand Yi ~ y, then SYi ~ Sy weak* in M(Y). Hence 
a(yJST(Y,) = T*(Sy) ~ T*(Sy) = a(y)ST(Y) weak* in M(X). In particular, 
a(yJ = (1, T*(Sy» ---> (1, T*(Sy» = a(y), proving (2.2). 

2.3. Claim. T: Y ~ X is a homeomorphism. 

As in the proof of (2.2), if Yi ---> y in Y, then a(yJST(y,) ---> a(y)ST(y) 
weak* in M(X). Also, a(yJ ~ a(y) in IF by (2.2). Thus ST(y,) = 
a(yJ~~l[a(yJST(Y) ~ ST(Y)' By (V.6.1) this implies that T(Y;) ~ T(y), so 
that T: Y ~ X is continuous. 

If Yl' Y2 E Yand Yl *- Y2' then a(h)SYI *- a(Y2)SY2' Since T* is injec­
tive, it is easy to see that T(Yl) *- T(Y2) and so T is one-to-one. If x E X, 
then the fact that T * is surjective implies that there is a JL in M( Y) such 
that T *JL = SX' It must be that JL E ext[ball M( X)] (Why?), so that JL = PS, 
for some yin Yand P in IF with IPI = 1. Thus Sx = T*(PSy ) = pa(y)ST(Y)' 
Hence P = a(y) and T(Y) = x. Therefore T: Y ~ X is a continuous 
bijection and hence must be a homeomorphism (A.2.S). This establishes 
(2.3). 

If f E C(X) and y E Y, then T(f)(y) = (Tf, Sy) = (j, T*Sv) = 

(j, a(y)ST(Y» = a(y)f( T(y». • 
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§3. Compact Operators 

The following definition generalizes the concept of a compact operator from 
a Hilbert space to a Banach space. 

3.1. Definition. If :7£ and CfJI are Banach spaces and A: :7£ ~ CfJI is a linear 
transformation, then A is compact if cl A (ball :7£) is compact in CfJI. 

The reader should become reacquainted with Section 11.4. 
It is easy to see that compact operators are bounded. 
For operators on a Hilbert space the following concept is equivalent to 

compactness, as will be seen. 

3.2. Definition. If :7£ and CfJI are Banach spaces and A E !!J(:7£, CfJI), then A 
is completely continuous if for any sequence {xn} in :7£ such that xn ~ x 
weakly it follows that IIAxn - Axil ~ o. 

3.3. Proposition. Let :7£ and CfJI be Banach spaces and let A E !!J(:7£, CfJI). 

(a) If A is a compact operator, then A is completely continuous. 
(b) If:7£ is reflexive and A is completely continuous, then A is compact. 

PROOF. (a) Let {xn} be a sequence in :7£ such that Xn ~ 0 weakly. By the 
PUB, M = sUPnllxnl1 < 00. Without loss of generality, it may be assumed 
that M ~ 1. Hence {Axn} ~ cl A(ball :7£). Since A is compact, there is a 
subsequence {xn.} and a y in CfJI such that IIAxnk - yll ~ O. But x nk ~ 0 
(wk) and A: (:7£, wk) ~ (CfJI, wk) is continuous (1.Ic). Hence AXnk ~ A(O) = 
o (wk). Thus y = O. Since 0 is the unique cluster point of {Axn} and this 
sequence is contained in a compact set, IIAxnl1 ~ O. 

(b) First assume that :7£ is separable; so (ball:7£, wk) is a compact metric 
space. So if {x n} is a sequence in ball :7£ there is an x in :7£ and a 
subsequence {xnk } such that x nk ~ x weakly. Since A is completely con­
tinuous, IIAxn - Axil ~ O. Thus A (ball :7£) is sequentially compact; that is, 

k 

A is a compact operator. 
Now let :7£ be arbitrary and let {xn} ~ ball:7£. If :7£1 = the closed linear 

span of {x n}, then :7£1 is separable and reflexive. If Al = A 1:7£1' then AI: 
:7£1 ~ qy is easily seen to be completely continuous. By the first paragraph, 
Al is compact. Thus {Ax n} = {AI X n} has a convergent subsequence. Since 
{xn} was arbitrary, A is a compact operator. • 

The fact that in the proof of (3.3b), A (ball :7£) was shown to be compact, 
and hence closed, is a consequence of the reflexivity of A. 

By Proposition V.5.2, every operator in !!J(lI) is completely continuous. 
However, there are noncompact operators in !!J(lI) (for example, the 
identity operator). 
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There has been relatively little study of completely continuous operators 
that I am aware of. Most of the effort has been devoted to the study of 
compact operators and this is the direction we now pursue. 

3.4. Schauder's Theorem. If A E !:!I(f1£, 0/), then A is compact if and only if 
A* is compact. 

PROOF. Assume A is a compact operator and let {y,;} be a sequence in 
ball 0/ *. It must be shown that {A *Yn*} has a norm convergent subsequence 
or, equivalently, a cluster point in the norm topology. By Alaoglu's The­
orem, there is a y* in ball 0/* such that Yn* -cr-+ Y* (weak*). It will be 
shown that A*Yn* ---;:r+ A*y* in norm. 

Let 10 > 0 and fix N ~ 1. Because A (ball f1£) has compact closure, there 
are vectors Y1"'" Ym in 0/ such that A (ball f1£) ~ Uk'~ 1 {y E 0/: Ily - Ykll 
< E/3}. Since Yn* ---;:r+ Y* (weak*), there is an n ~ N such that IUk' 
y* - Yn*) I < 10/3 for 1 ::s; k ::s; m. Let x be an arbitrary element in ball f1£ 
and choose Yk such that IIAx - Ykll < 10/3. Then 

I(x, A*y* - A*yn*> I = I(Ax, y* - Yn*) I 

Thus IIA*y - A *Yn* II ::s; E. 

::s; I(Ax - Yk' Y* - Yn*) I + I(Yk. Y* - Yn*) I 

::s; 211Ax - Ykll + 10/3 < E. 

For the converse, assume A* is compact. By the first half of the proof, 
A**: f1£** ~ 0/** is compact. It is easy to check that A = A**If1£ is 
compact. • 

For Banach spaces f1£ and 0/, !:!I 0 ( f1£, 0/) denotes the set of all compact 
operators from f1£ into 0/; !:!Io(f1£) = !:!I(f1£, f1£). 

3.5. Proposition. Let f1£, 0/, and :!Z be Banach spaces. 

(a) !:!Io( f1£, 0/) is a closed linear subspace of !:!I ( f1£, 0/). 
(b) If K E !:!Io(f1£, OJI) and A E !:!I(OJI, :!Z), then AK E !:!Io(f1£, :!Z). 
(c) If K E !:!Io(f1£, 0/) and A E !:!I(:!Z, f1£), then KA E !:!Io(:!Z, OJI). 

The proof of (3.5) is left as an exercise. 

3.6. Corollary. If f1£ is a Banach space, !:!Io(f1£) is a closed two-sided ideal in 
the algebra !:!I ( f1£). 

Let !:!Ioo(f1£, 0/) = the bounded operators T: f1£ ~ 0/ for which ran T is 
finite dimensional. Operators in !:!Ioo (f1£, 0/) are called operators with finite 
rank. It is easy to see that !:!Ioo (f1£, 0/) ~ !:!Io(f1£, 0/) and by (3.5a) the closure 
of !:!Ioo(f1£, 0/) is contained in !:!Io(f1£, OJI). Is !:!Ioo(f1£, 0/) dense in !:!Io(f1£, o/)? 



V1.3. Compact Operators 179 

It was shown in (II.4.4) that if .Yl' is a Hilbert space, then 8to(.Yl') is 
indeed the closure of 8too( .Yl'). Note that the ability to find an orthonormal 
basis in a Hilbert space played a significant role in the proof of this 
theorem. There is a concept of a basis for a Banach space called a Schauder 
basis. Any Banach space !1£ with a Schauder basis has the property that 
8too(!1£) is dense in 8to(!1£). Enflo [1973] gave an example of a separable 
reflexive Banach space !1£ for which 8too(!1£) is not dense in 8to(!1£), and, 
hence, has no Schauder basis. Davie [1973] and [1975] have simplifications 
of Enflo's proof. For the classical Banach spaces, however, every compact 
operator is the limit of a sequence of finite-rank operators. 

The remainder of this section is devoted to proving that for X compact, 
8too( C( X)) is dense in 8to( C( X)). This begins with material that may be 
familiar to many readers but will be presented for those who are un­
acquainted with it. 

3.7. Definition. If X is completely regular and .fFc;;, C( X), then .fF is 
equicontinuous if for every I: > 0 and for every Xo in X there is a neighbor­
hood U of Xo such that If(x) - l(xo)1 < I: for all x in U and for all I 
in .fF. 

Note that for a single function I in C( X), .fF = {f} is equicontinuous. 
The concept of equicontinuity states that one neighborhood works for all I 
in .fF. 

3.8. The Arzela-Ascoli Theorem. II X is compact and .fFc;;, C(X), then .fF is 
totally bounded il and only il.fF is bounded and equicontinuous. 

PROOF. Suppose .fF is totally bounded. It is easy to see that .fF is bounded. 
If I: > 0, then there are Il, ... ,jn in .fF such that .fFc;;, UZ~lUE C(X): 
III - Ikll < 1:/3}. If Xo E X, let U be an open neighborhood of Xo such that 
for 1 :::; k :::; n and x in U, lfk(x) - Ik(xo)1 < 1:/3. If I E.fF, let Ik be such 
that Ilf - fkll < 1:/3. Then for x in U, 

If(x) - l(xo)1 :::; If(x) - Ik(X)1 + lfk(X) - Ik(Xo)1 

+ lfk(X O) - l(xo)1 

< 1:. 

Hence .fF is equicontinuous. 
Now assume that .fF is equicontinuous and .fFc;;, ballC(X). Let I: > O. 

For each x in !1£, let Ux be an open neighborhood of x such that 
If(x) - l(y)1 < 1:/2 for I in .fF and y in UX • Now {Ux : x E X} is an open 
covering of X. Since X is compact, there are points Xl' ... ' xn in X such 
that X = Uj~PxJ. 

Let {al, ... ,am } c;;, 0) such that clo) c;;, UZ'~l{a: la - akl < 1:/2}. Let 
B = all ordered n-tuples of scalars (131' ... ' 13n) such that {13l,···, 13n} c;;, 
{al, ... , am}. (SO B has mn elements.) Let CPl' ... ' CPn be a partition of unity 
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Note that (3.9) implies that ff is totally bounded. 
For fin ff, {/(xl), ... ,f(xn)} ~ cll[). Pick b = (/3l, ... ,/3n) in B such 

that l/3j - f(x)1 < EI2 for 1 ~j ~ n. If x E X, then Ljct>}x) = 1 and so 
n 

If(x) - gb(x)1 = If(x) - L /3jct>/x)1 
j~l 

n 

~ L If(x) - /3)Ict>j(x)l. 
j~l 

Now if ct>/x) > 0, x E ~ and so If(x) - /3) ~ If(x) - f(x)1 + If(x)­
/3) < E. Hence If( x) - gb( x)1 < E for all x in X. That is, Ilf - gbll < E • 

• 
3.10. Corollary. If X is compact and ff~ C(X), then ff is compact if and 
only if ff is closed, bounded, and equicontinuous. 

3.11. Theorem. If X is compact, then 8$oo(C(X)) is dense in 8$o(C(X)). 

PROOF. Let T E 8$o(C(X)). Thus T(ballC(X)) is bounded and equicon­
tinuous by the Arzela-Ascoli Theorem. If E > ° and x E X, let Ux be an 
open neighborhood of x such that I(Tf)(x) - (Tf)(Y)1 < 10 for all f in 
ballC(X) and yin Ux. Let {xl, ... ,xn} ~ X such that X~ U'j~PxJ. Let 
{ ct>l' ... , ct>n} be a partition of unity subordinate to {UXl ' ••• , U'n}. Define T,: 
ceX) --> C(X) by 

n 

TJ = L (Tf)(x,)ct>j" 
j~l 

Since ran T, ~ V { ct>l' ... , ct>n}, T, E 8$00 ( C( X)). 
If f E ball C( X) and x E X, then 

I(TJ)(x) -(Tj)(x)1 =Ij~l [(Tj)(xj ) -(Tj)(x)]ct>j(x)I 
n 

~ L I(Tj)(xj ) - (Tf)(x )Ict>/(x) 
j~l 

<10 

by an argument like the one used to prove (3.9). • 



Vr.3. Compact Operators 181 

If X is locally compact, then the operators on Co( X) of finite rank are 
dense in gjo( Co( X)). See Exercise 18. 

EXERCISES 

1. If !!£ is reflexive and A E 1I(!!£,'!1f), show that A(ball!!£) is closed in OJI. 

2. Prove Proposition 3.5. 

3. If A E 1Io(!!£, OJI), show that cl[ran A] is separable. 

4. If A E 110 (!!£, OJI) and ran A is closed, show that ran A is finite dimensional. 

5. If A E 110 (!!£) and A is invertible, show that dim!!£ < 00. 

6. Let (X, a, /L) be a finite measure space, 1 < P < 00, and lip + II q = 1. If k: 
X X X -> IF is an a X a-measurable function such that sup{ flk(x, yW d/L(Y): 
x E X} < 00, then (Kf)(x) = fk(x, y)f(y) d/L(Y) defines a compact operator 
on U(/L). 

7. Let (X, a, /L) be an arbitrary measure space, 1 < P < 00, and lip + l/q = 1. If 
k: X X X -> IF is an a X a-measurable function such that M = 

[(flk(x, y)IP d/L(x»q/p d/L(y)]I/q < 00 and if (Kf)(x) = fk(x,y)f(y) d/L(Y), 
then K E 1Io(U(/L» and IIKII ::; M. 

8. Let X be a compact space and let /L be a positive Borel measure on X. Let 
T E 1I(LP(/L), C(X» where 1 < P < 00. Show that if A: U(/L) -> U(/L) is 
defined by Af = Tf, then A is compact. 

9. (B. J. Pettis) If !!£ is reflexive and T E 11(!!£, [I), then T is a compact operator. 
Also, if OJI is reflexive and T E 11( Co, OJI), T is compact. 

10. If X is compact and {/I, ... ,j,,,gl, ... ,gn} ~ C(X), define k(x,y) = 

2:.7 ~ I fj (x) gj (y) for x, y E X. Let /L be a regular Borel measure on X and put 
Kf(x) = fk(x, y)f(y) d/L(Y)· Show that K E 1I(C(X» and K has finite rank. 

11. If X is compact, k E C(X X X), and /L is a regular Borel measure on X, show 
that Kf(x) = fk(x, y )f(y) d/L(y) defines a compact operator on C( X). 

12. Let (X,a,/L) be a a-finite measure space and for </> in F"(/L) let M<p: 
L P (/L) -> L P (/L) be the multiplication operator defined in Example III.2.2. Give 
necessary and sufficient conditions on (X, a, /L) and </> for Mq, to be compact. 

l3. Let T: [0,1] -> [0,1] be continuous and define A: qo, 1] -> qo, 1] by Af = f 0 T. 

Give necessary and sufficient conditions on T for A to be compact. 

14. Let A E 1I(co) and let (amn ) be the corresponding matrix as in Exercise 1.7. 
Give necessary and sufficient conditions on (amn ) for A to be compact. 

15. Let A E 11(11) and let (am,,) be the corresponding matrix as in Exercise 1.8. 
Give a necessary and sufficient condition on (am,,) for A to be compact. 

16. If (X, d) is a compact metric space and F ~ C( X), show that § is equicon­
tinuous if and only if for every E > 0 there is a {) > 0 such that If (x) - f (y) I < E 

whenever d(x, y) < {) and f E §. 
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17. If X is locally compact and % <:;; Co (X), show that % is totally bounded if and 
only if (a) % is bounded; (b) % is equicontinuous; (c) for every € > 0 there is a 
compact subset K of X such that I/(x)1 < f for all I in % and x in X\ K. 

18. If X is locally compact and A E ~o ( C( X», then there is a sequence {A,,} of 
finite-rank operators such that IIAn - A II --> O. 

19. Let ?£ be a Banach space and suppose there is a net {~} of finite-rank 
operators on ?£ such that (a) sUPill~11 < 00; (b) lIF;x - xii --> 0 for all x in !t. 
Show that if A E ~o(?£), then II~A - A II --> 0 and hence there is a sequence 
{A,,} of finite-rank operators on ?£ such that IIA" - A II --> O. 

20. Let 1 ::<;; p ::<;; 00 and let (X, D, p,) be a a-finite measure space. If A E ~o(U)(p,», 

show that there is a sequence {An} of finite-rank operators such that IIA" - A II 
--> O. (Hint: Use Exercise 19.) 

21. Let X be compact and let 0If be the collection of all pairs (C, F) where 
C = {UI , ... , Un} is a finite open eover of X and F = {XI' ... ' x,,} <:;; X such 
that Xj E ~ for 1 ::<;;j ::<;; n. If (CI , FI ) and (C2 , F2 ) E 0If, define (C I , FI ) ::<;; 

(C2 , F2 ) to mean: (a) C2 is a refinement of C1; that is, eaeh member of C2 is 
contained in some member of CI . (b) FI <:;; F2 . If a = (C, F) E 0If let 
{<I>I'.·. , <I>,,} be a partition of unity subordinate to C. If F = {XI' . .. , x,,}, 
define To.: C( X) --> C( X) by 

n 

(To./)(x) = I: l(xJ<I>;(x). 
j~l 

Then: (a) To. E ~oo(C(X»; (b) IITo.ll = 1; (c) (0If, ::<;;) is a directed set and {To.: 
a E 0If} is a net; (d) IITo.l - III --> 0 for each f. Now apply Exercise 19 to 
obtain a new proof of Theorem 3.11. 

§4. Invariant Subspaces 

4.1. Definition. If q- is a Banach space and T E fJ8(q-), an invariant 
subspace for T is a closed linear subspace Jt of q- such that Tx E Jt 
whenever x E Jt. Jt is nontrivial if Jt 1= (0) or q-. Lat T = the collection 
of all invariant subspaces for T. If de;;. fJ8(q-), then Lat d= n{Lat T: 
TEd}. 

This generalizes the corresponding concept of invariant subspace for an 
operator on Hilbert space (11.3.5). Note that the idea of a reducing subspace 
for an operator on a Hilbert space has no generalization to Banach spaces 
since there is no concept of an orthogonal complement in Banach spaces. 

4.2. Proposition. 

(a) If Jtl , Jt 2 E Lat T, then Jtl V Jt 2 == cl(Jt I + Jt 2) E Lat T and j{l 

/\ Jt 2 == Jt I n Jt 2 E Lat T. 
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(b) If {Ai: i E I} ~ LatT, then V{Ai: i E I}, the closed linear span of 
UiAi' and I\{Ai: i E I} == niAi belong to LatT. 

The proof of this proposition is left as an exercise. The proposition, 
however, does justify the use of the symbol" Lat" to denote the collection of 
invariant subspaces. With the operations V and 1\, Lat T is a lattice (a) 
that is complete (b). Moreover, Lat T has a largest element, :!l', and a 
smallest element, (0). 

The main question is: does Lat T have any elements besides (0) and :!l'? 
In other words, does T have a nontrivial invariant subspace? C. J. Read 
[1984] has given an example of a bounded operator on 11 that has no 
nontrivial invariant subspaces. This deep work does not completely settle 
the matter. Which Banach spaces :!l' have the property that there is a 
bounded operator on :!l' with no nontrivial invariant subspaces? If :!l' is 
reflexive, is Lat T nontrivial for every T in !!.d( :!l')? The question is un­
answered even if :!l' is a Hilbert space. However, for certain specific 
operators and classes of operators it has been shown that the lattice of 
invariant subspaces is not trivial. In this section it will be shown that any 
compact operator has a nontrivial invariant subspace. This will be obtained 
as a corollary of a more general result of V. Lomonosov. But first some 
examples. 

4.3. Example. If :!l' is a finite-dimensional space over C and T E !!.d(:!l'), 
then Lat T is not trivial. In fact, let :!l' = Cd and let T = a matrix. Then 
p(z) = det(T - zI) is a polynomial of degree d. Hence it has a zero, say a. 
If det(T - aI) = 0, then (T - aI) is not invertible. But in finite-dimen­
sional spaces this means that T - aI is not injective. Thus ker(T - aI) '* 
(0). Let As ker(T - aI) such that A,* (0). If x E A, then Tx = ax E 

A, so AE LatT. 

4.4. Example. If T = [~ - ~] on ~ 2, then Lat T is trivial. Indeed, if 

Lat T is not trivial, there is a one-dimensional space A in Lat T. Let 
A = {ae: a E ~}. Since A E Lat T, Te = Ae for some A in ~. Hence 
T 2e = T(Te) = ATe = A2e. But T2 = -I, so - e = A2e and it must be that 
A2 = -1 if e '* 0. But this cannot be if A is real. 

If d ::::: 3, however, and T E !!.d(~ d), then Lat T is not trivial (Exercise 6). 

4.5. Example. If V: L2[0, 1]---> L2[0, 1] is the Volterra operator, Vf(x) = 
!o'f(t) dt, and 0 s a s 1, put A ex = {f E L2[0, 1]: f(t) = 0 for 0 s t sa}. 
Then A ex E Lat V. Moreover, it can be shown that Lat V = {A ex: 0 S a S 

1}. (See Donoghue [1957], and Radjavi and Rosenthal [1973], p. 68). 

4.6. Example. If S: [P ---> fP is defined by S(a1,a2, ... ) = (0,a 1,a2, ... ), 
and An = {x E IP: x(k) = ° for 1 s k s n}, then An E LatS. 
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4.7. Example. Let (X, Q, p,) be a a-finite measure space and for cJ> in 
LOO(p,) let M.p denote the multiplication operator on LP(p,), 1 ~ p ~ 00. If 
.1 E Q, let Jt Il = {f E LP(p,): f = 0 a.e. [p,l off .1}. Then for each cJ> in 
L OO(p,), Mil E Lat Mrp. 

It is a difficult if not impossible task to determine all the invariant 
subspaces of a specific operator. The Volterra operator and the shift 
operator are examples where all the invariant subspaces have been de­
termined. But there are multiplication operators Mrp for which there is no 
characterization of Lat Mrp as well as some Mrp for which such a characteri­
zation has been achieved. One such example follows: let p, = Lebesgue area 
measure on 0 and let (Af)(z) = zf(z) for fin L 2(p,). There is no known 
characterization of Lat A. 

It is necessary at this point to return to the geometry of Banach spaces to 
prove the following classical theorem. 

4.8. Mazur's Theorem. If !!£ is a Banach space and K is a compact subset of 
!!£, then co( K) is compact. 

PROOF. It suffices to show that co(K) is totally bounded. Let e > 0 and 
choose Xl"'" xn in K such that K ~ Uj_1B(x j ; e/4). Put C = 

co{ Xl"'" x n }. It is easy to see that C is compact. Hence there are vectors 
YI"'" Ym in C such that C ~ U;"_IB(y;; e/4). If W E co(K), there is a z in 
co(K) with Ilw - zll < e/4. Thus z = L~_lapkp, where kp E K, ap ~ 0, 
and Lap = 1. Now for each kp there is an xj(pJ with Ilkp - xj(pJII < e/4. 
Therefore 

I 

L ap(kp - xj(PJ) 
p-l 

I 

~ L apllkp - xj(pJII 
p-l 

< e/4. 

But Lpapxj(pJ E C so there is a...lJ with IILpapxj(pJ - Yill < e/4. The 
triangle inequality now shows that co(K) ~ U;"_lB(Yi; e) and so co(K) is 
totally bounded. • 

The next result is from Lomonosov [1973]. When it appeared it caused 
great excitement, both for the strength of its conclusion and for the 
simplicity of its proof. The proof uses Schauder's Fixed-Point Theorem 
(V.9.S). 

4.9. Lomonosov's Lemma. If d is a subalgebra of !JI(!!£) such that 1 Ed 
and Lat d = {(O),!!£} and if K is a nonzero compact operator on !!£, then 
there is an A in d such that ker(AK - 1) =F O. 
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PROOF. It may be assumed that IIKII = l. Fix Xo in !!l' such that IIKxol1 > 1 
and put S = {x E!!l': Ilx - xoll s I}. It is easy to check that 

4.10 0 $ Sand 0 $ cl K(S). 

Now if x E!!l' and x *' 0, cl{ Tx: T E .#} is an invariant subspace for .# 
(because .# is an algebra) that contains the nonzero vector x (because 
1 E .#). By hypothesis, cl{ Tx: T E .#} =!!l'. By (4.10) this says that for 
every y in cl K(S) there is a T in .# with II Ty - xoll < l. Equivalently, 

clK(S) ~ U {y: IITy - xoll < I}. 
TEd 

Because cl K(S) is compact, there are TI , ... , Tn in .# such that 

4.11 
n 

clK(S) ~ U {y: II1jy - xoll < I}. 
j~l 

For y in cl K(S) and 1 s j s n, let a/y) = max{O,1 - II1jy - xoll}. 
By (4.11), L'J~la/y) > 0 for all y in cl K(S). Define b/ cl K(S) -+ IR by 

a/y) b/ y) = -n-'----

L a;(y) 
i~l 

and define t/;: S -+ !!l' by 
n 

t/;(X) = L b/Kx)1jKx. 
j~l 

It is easy to see that a/ cl K(S) -+ [0,1] is a continuous function. Hence bj 

and t/; are continuous. 
If XES, then Kx E K(S). If b/Kx) > 0, then a/Kx) > 0 and so 

I11jKx - xoll < l. That is, 1jKx E S whenever b/Kx) > O. Since S is a 
convex set and L'J~lb/Kx) = 1 for x in S, 

t/;(S) ~ S. 

Note that 1jK E 88o(!!l') fo~each j so that U'J~I1jK(S) has compact 
closure. By Mazur's Theorem, co(U'J~I1jK(S» is compact. But this convex 
set contains t/;(S) so that cl t/;(S) is compact. That is, t/; is a compact map. 
By the Schauder Fixed-Point Theorem, there is a vector Xl in S such that 
t/;(x l ) = Xl' 

Let Pj = b/Kxl ) and put A = L'J~IPj1j. So A E.# and AKxI = t/;(x l ) 
= Xl' Since Xl *' 0 (Why?), ker(AK - 1) *' (0). • 

4.12. Definition. If T E 88(!!l'), then a hyperinvariant subspace for T is a 
subspace .H of !!l' such that A.H ~.H for every operator A in the 
commutant of T, {T}'; that is, A.H ~.H whenever AT = TA. 

Note that every hyperinvariant subspace for T is invariant. 
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4.13. Lomonosov's Theorem. If T E !lI(:!£), T is not a multiple of the 
identity, and TK = KT for some nonzero compact operator K, then T has a 
nontrivial hyperinvariant subspace. 

PROOF. Let .5#= {T}'. We want to show that Lat.5#4o {(O),:!£}. If this is 
not the case, then Lomonosov's Lemma implies that there is an operator A 
in .5# such that .AI= ker(AK - 1) * (0). But .AlE Lat(AK) and AKI.AI is 
the identity operator. Since AK E !lIo( :!£), AKI.AI E !lIo( .AI). Thus dim.AI 
< 00. Since AK E.5#= {T}', for any x in .AI, AK(Tx) = T(AKx) = Tx; 
hence T.AI ~ .AI. But dim.AI < 00 so that TI.AI must have an eigenvalue A. 
Thus ker(T - A) = A * (0). But A * :!£ since T is not a multiple of the 
identity. It is easy to check that A is hyperinvariant for T. • 

4.14. Corollary. (Aronszajn-Smith [1954].). If K E !lIo(:!£), then Lat K is 
nontrivial. 

The next result appeared in Bernstein and Robinson [1966], where it is 
proved using nonstandard analysis. Halmos [1966] gave a proof using 
standard analysis. Now it is an easy consequence of Lomonosov's Theorem. 

4.15. Corollary. If :!£ is infinite dimensional, A E !lI(:!£), and there is a 
polynomial in one variable, p, such that peA) E !lIo(:!£), then LatA is 
nontrivial. 

PROOF. If p(A) * 0, then Lomonosov's Theorem applies. If p(A) = 0, let 
p(z) = a o + alz + ... +anz n, an * O. For x * 0, let A = 
V{x,Ax, ... ,An-Ix}. Since An = -a,;-l[ao + alA + ... +a,,_IAn-1x], 
A E Lat A. Since x E A, A * (0); since dim A < 00, A * :!£. • 

4.16. Corollary. If K j , K2 E !lIo(:!£) and K j K 2 = K 2K 1, then K j and K2 
have a common nontrivial invariant subspace. 

EXERCISES 

1. Let A, B, T E SI(!£) such that TA = BT. Show that graph (T) E Lat(A 6l B). 

2. Prove that vIt E Lat T if and only if vIt.l E Lat T*. What does the map vIt ...... vltL 
of Lat T into Lat T* do to the lattice operations? 

3. Let {e j , e2, e3 } be the usual basis for f3 and let al' a 2 , a 3 E f. Definc T: 
f3 -> f3 by TeJ = aJel' 1 :5,) :5, 3. (a) If al' a2, a 3 are all distinct, show that 
vIt E Lat T if and only if vIt = VE, where E ~ {e l , e2, e3}' (b) If a l = a 2 *- al' 

show that vIt E Lat T if and only if vIt = ,ff +!i', where .AI:5, V{ e j , e2 } and 
:£:5, {ae3 : a E fl. 
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4. Generalize Exercise 3 by characterizing LatT, where T is defined by Tel = ajej , 
1 5,j 5, d, for any choice of scalars aj, ... ,ad and where {ej, ... ,ed } is the 
usual basis for IF d. 

5. Let{e1, ... ,ed} betheusualbasisforlFd,let{aj, ... ,ad_d <:;:: IF. If Tej = ajej + 1 
for 1 5,j 5, d - 1 and Ted = 0, find Lat T. 

6. If T E 1J'(lRd) and d;::: 3, show that T has a nontrivial invariant subspace. 

7. Show that if T E 1J'(3r) and 3r is not separable, then T has a nontrivial 
invariant subspace. 

8. Give an example of an invertible operator T on a Banach space 3r and an 
invariant subspace J( for T such that J( is not invariant for T- 1• 

9. Let K E 1J'o(3r) and show that if ~ is a maximal chain in Lat K, then ~ is a 
maximal chain in the lattice of all subspaces of 3r. 

§5. Weakly Compact Operators 

5.1. Definition. If 3r and Cf!! are Banach spaces, an operator Tin !!t(3r, Cf!!) 
is weakly compact if the closure of T(ball3r) is weakly compact. 

Weakly compact operators are generalizations of compact operators, but 
the hypothesis is not sufficiently strong to yield good information about 
their structure. 

Recall that in a reflexive Banach space the weak closure of any bounded 
set is weakly compact. Also, a bounded operator T: 3r ~ Cf!! is continuous if 
both 3r and Cf!J have their weak topologies (1.1). With these facts in mind, 
the proof of the next result becomes an easy exercise for the reader. 

5.2. Proposition. 

(a) If either 3r or Cf!! is reflexive, then every operator in !!t(3r, Cf!J) is weakly 
compact. 

(b) If T: 3r ~ Cf!J is weakly compact and A E !!t(Cf!!, .2'), then AT is weakly 
compact. 

(c) If T: 3r ~ Cf!! is weakly compact and BE !!t(.2', 3r), then TB is weakly 
compact. 

This proposition shows that assuming that an operator is weakly compact 
is not that strong an assumption. For example, if 3r is reflexive, every 
operator in !!t( 3r) is weakly compact. In particular, every operator on a 
Hilbert space is weakly compact. So any theorem about weakly compact 
operators is a theorem about all operators on a reflexive space. 

In fact, there is a degree of validity for the converse of this statement. In a 
certain sense, theorems about operators on reflexive spaces are also theo-
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rems about weakly compact operators. The precise meaning of this state­
ment is the content of Theorem 5.4 below. But before we begin to prove 
this, a lemma is needed. 

Let qIj be a Banach space and let W be a bounded convex balanced 
subset of qIj. For n > 1 put Un = 2nW + 2 -nint[ball CZYj. Let Pn = the gauge 
of Un (IV.l.14). Because Un ;;2 2 - nint[ball CZY], it is easy to check that Pn is a 
norm on qIj. In fact, Pn and II . II are equivalent norms. To see this note that 
if Ilyll < 1, then 2- ny E Un so that Pn(Y) < 2n. Hence Pn(Y) ~ 2/lllyll. Also, 
because W is bounded, Un must be bounded; let M > sup{ Ilyll: Y E U,,}. 
So if Pn(Y) < 1, Ilyll < M. Thus Ilyll ~ MPn(Y), and II . II and p" are 
equivalent norms. 

5.3. Lemma. For a Banach space czy let W, Un' and Pn be as above. Let 
fiR = the set of all yin czy such that Illylll := [L~~"1Pn(y)2j1/2 < 00. Then 

(a) W ~ {y: Illylll < I}; 
(b) (fiR, III . III) is a Banach space and the inclusion map A: ~ ----* czy is 

continuous; 
(c) A**: fiR** ----* CZY** is injective and (A**)-l(czy) =~; 
(d) fiR is reflexive If and only if cl W is weakly compact. 

PROOF. (a) If WE W, then 2nw E Un' Hence 1 > Pn(2/lw) = 2np/l(w), so 
Pn(w) < rn. Thus IIIwll12 < L n(2- n)2 < l. 

(b) Let qljn = qIj with the norm Pn and put:!£= $2q1jn (111.4.4). Define <P: 
fiR ----*:!£ by <P( y) = (y, y, ... ). It is easy to see that <P is an isometry, 
though it is clearly not surjective. In fact, ran<P = {(Y/l) E:!£: Yn = Ym for 
all n, m}. Thus fiR is a Banach space. Let P1 = the projection of :!£ onto the 
first coordinate. Then A = P1 0 <P and hence A is continuous. 

(c) With the notation from the proof of (b), it follows that :!£ * * = $ 2Q9'n * * 
and <P**: fiR** ----* :!£** is given by <P**(y**) = (A**y**, A**y**, ... ). 
Now the fact that <P is an isometry implies that <P* is surjective. (This 
follows in two ways. One is by a direct argument (see Exercise 2). Also, 
ran <P* is closed since ran <P is closed (l.IO), and ran <P* is dense since 
-L (ran<P*) = ker <P = (0).) Hence ker <P* * = (ran <P*) -L = (0); that is, <P* * 
is injective. Therefore A * * is injective. 

Now let y** E A**-l(czy). It follows that <P**y** = x E:!£. Let {y,} be 
a net in fiR such that IIYil1 ~ IIY**II for all i and y, ----* y** a(fiR**, ~*) 
(V.4.1). Thus <P**(yJ ----* <P**(y**) a(:!£**, :!£*). But <P**(y,) = <P(yJ E :!£ 
and <P**(y**) = x. Hence <P(yJ ----* x a(:!£, :!£*). Since ran<P is closed, 
x E ran<P; let <P(y) = x. Then 0 = <P**(y** - y). Since <P** is injective, 
y**=yEfiR. 

(d) An argument using Alaoglu's Theorem shows that A**(ball ~**) = 

the a(qIj**, qIj*) closure of A(ball ~). Put C = A (ball fiR). Suppose cJ W is 
weakly compact. Now C ~ 2ncl W + 2-"ball CZY** and this set is 
a(qIj**,czy*) compact. From the preceding paragraph, A**(ballfiR**) ~ 
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00 

A**(ball~**) ~ n [2 nclW+ 2- n ballqy**] 
n=l 

00 

~ n [qy+ 2- n ballqy**] 
n=l 

= qy. 

By (c), ~** = ~ and ~ is reflexive. 
Now assume ~ is reflexive; thus ball ~ is a(~, ~*)-compact. Therefore 

C = A(ball~) is weakly compact in qy. By (a), cl W is weakly compact. 

• 
The next theorem, as well as the preceding lemma, are from Davis, Figel, 

Johnson, and Pelczynski [1974]. 

5.4. Theorem. If fl£, qy are Banach spaces and T E !!8(fl£, qy), then T is 
weakly compact if and only if there is a reflexive space ~ and operators A in 
!!8(~, qy) and Bin !!8(fl£,~) such that T = AB. 

PROOF. If T = AB, where A, B have the described form, then T is weakly 
compact by Proposition 5.2. 

Now assume that T is weakly compact and put W = T(ball fl£). Define ~ 
as in Lemma 5.3. By (5.3d), ~ is reflexive. Let A: ~ --+ qy be the inclusion 
map. Note that if x E ball fl£, then Tx E W. Hence 2nTx E Un and so 
1 > Pn(2nTx) = 2nPn(Tx). Thus Pn(Tx) < 2- n for x in ballfl£. Hence if 
Ilxll ~ 1, III Txll12 = 'f,nPn(Tx)2 < 'f,4 -n = c. So B: fl£ --+ ~ defined by Bx = 

Tx is a bounded operator. Clearly AB = T. • 

The preceding result can be used to prove several standard results from 
antiquity. 

5.5. Theorem. If fl£, qy are Banach spaces and T E !!8(fl£, qy), the following 
statements are equivalent. 

(a) T is weakly compact. 
(b) T**(fl£**) ~ qy. 
(c) T* is weakly compact. 

PROOF. (a) = (b): Let ~ be a reflexive space, A E !!8(~, qy), and BE 

!!8(fl£,~) such that T = AB. So T** = A**B**. But A**: ~ --+ qy** 
since ~** =~. Hence A** = A. Thus T** = AB**, and so ran T** ~ 
ran A ~ qy. 

(b) = (a): T**(ball fl£**) is a(qy**, qv *) compact by Alaoglu's Theorem 
and the weak * continuity of T * *. By (b), T * *(ball fl£ * *) = C is a( qy, qy *) 
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compact in q]/. Hence T(ball~) <;;: C and must have weakly compact 
closure. 

(c) = (a): Let Y be a reflexive space, C E !18(q]/*, Y), DE !18(Y, ~*) 
such that T* = DC. So T** = C*D*, D*: ~** ~ Y*, and C*: y* ~ 
q]/**. Put !!Il = cl D*(~) and B = D*I~; then B: ~ ~!!Il and !!Il is 
reflexive. Let A = C*I!!Il; so A: !!Il ~ q]/**. But if x E~, ABx = C*D*x 
= T**x = Tx E q]/. Thus A: !!Il ~ q]/. Clearly AB = T. 

(a) = (c): Exercise. • 

EXERCISES 

1. Prove Proposition 5.2. 

2. If!Jf and ¥ are Banach spaces and 1[>: !Jf ..... ¥ is an isometry, give an elementary 
proof that 1[>* is surjective. 

3. Let ¥ be a Banach space and recall the definition of a weakly Cauchy sequence 
(V.4.4). (a) Show that every bounded sequence in Co has a weakly Cauchy 
subsequence, but not every weakly Cauchy sequence in Co converges. (b) Show 
that if T E !!de co) and T is weakly compact, then T is compact. 

4. Say that a Banach space ¥ is weakly compactly generated (WCG) if there is a 
weakly compact subset K of ¥ such that :!{ is the closed linear span of K. Prove 
(Davis, Figel, Johnson, and Pelczynski, [1974]) that :!{ is WCG if and only if 
there is a reflexive space and an injective bounded operator T: !Jf ..... :!{ such that 
ran T is dense. (Hint: The Krein-Smulian Theorem (V.13.4) may be usefu1.) 

5. If (X,Q,/L) is a finite-measure space, k E LOC(XX X,Q x Q,/L x /L), and K: 

L\/L) ..... L1(/L) is defined by (Kf)(x) = fk(x, y)/(y) d/L(Y), show that K is 
weakly compact and K2 is compact. 

6. Let '!!f be a weakly sequentially complete Banach space. That is, if {Yn} is a 
sequence in '!!f such that {< Yn' Y * )} is a Cauchy sequence in n= for every y * in 
'!!f*, then there is a y in '!!f such that Yn ..... Y weakly [see (V.4.4)]. (a) If 
T E !!d(¥, '!!f) and x** E :!(** such that x** is the a(:!{**, :!(*) limit of a 
sequence from ¥, show that T**(x**) E '!!f. Let X be a compact space and put 
.fF = all subsets of X that are the union of a countable number of compact Gli 
sets. Let .P = the linear span of {X F: F E .fF} considered as a subset of 
M(X)* = C(X)**. (b) Show that if T E !!d(C(X), '!!f), then T**(.!l') <;;: qIj. (cl 
(Grothendieck [1953].) If T E !!de C( X), '!!f), then T is weakly compact. [Hint 
(Spain [1976]): Use James's Theorem [(V.13.3)]. 



CHAPTER VII 

Banach Algebras and Spectral Theory for 
Operators on a Banach Space 

The theory of Banach algebras is a large area in functional analysis with 
several subdivisions and applications to diverse areas of analysis and the 
rest of mathematics. Some monographs on this subject are by Bonsall and 
Duncan [1973] and C. R. Rickart [1960]. 

A significant change occurs in this chapter that will affect the remainder 
of this book. In order to prove that the spectrum of an element of a Banach 
algebra is nonvoid (Section 3), it is necessary to assume that the underlying 
field of scalars IF is the field of complex numbers C. It will be assumed from 
Section 3 until the end of this book that all vector spaces are over C. This 
will also enable us to apply the theory of analytic functions to the study of 
Banach algebras and linear operators. 

In this chapter only the rudiments of this subject are discussed. Enough, 
however, is presented to allow a treatment of the basics of spectral theory 
for operators on a Banach space. 

§1. Elementary Properties and Examples 

An algebra over IF is a vector space .1# over IF that also has a multiplication 
defined on it that makes .1# into a ring such that if a E IF and a, b E .1#, 
a(ab) = (aa)b = a(ab). 

1.1. Definition. A Banach algebra is an algebra .1# over IF that has a norm 
II . II relative to which .1# is a Banach space and such that for all a, b in .1#, 

1.2 Ilabll :0:; lIall Ilbll· 
If .1# has an identity, e, then it is assumed that Ilell = 1. 
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The fact that (1.2) is satisfied is not essential. If s1' is an algebra and has a 
norm relative to which s1' is a Banach space and is such that the map of 
s1' X s1' -+ s1' defined by (a, b) ~ ab is continuous, then there is an equiv­
alent norm on s1' that satisfies (1.2) (Exercise 1). 

If s1' has an identity e, then the map a ~ ae is an isomorphism of IF into 
s1' and Ilaell = 10:1- So it will be assumed that IF ~ s1' via this identification. 
Thus the identity will be denoted by 1. 

The content of the next proposition is that if s1' does not have an identity, 
it is possible to find a Banach algebra s1'] that contains s1', that has an 
identity, and is such that dim s1']/s1' = 1. 

1.3. Proposition. If s1' is a Banach algebra without an identity, let s1'] = 

s1' X IF. Define algebraic operations on s1'] by 

(i) (a,a) + (b,/3) = (a + b,a + /3); 
(ii) /3(a,a) = (/3a,/3a); 

(iii) (a,a)(b,/3) = (ab + ab + /3a,a/3). 

Define II(a, a)11 = lIall + lal. Then s1'] with this norm and the algebraic 
operations defined in (i), (ii), and (iii) is a Banach algebra with identity (0,1) 
and a ~ (a, 0) is an isometric isomorphism of .# into s1'j. 

PROOF. Only (1.2) will be verified here; the remaining details are left to 
the reader. If (a,a),(b,/3) Es1'j, then II(a,a)(b,/3)11 = II(ab + /3a + ab, 

a/3)11 = Ilab + /3a + abll + laf31 ..s; Ilallllbll + If3IlIall + laillbil + lall/31 = 

II(a, a)llll(b, /3)11· • 

1.4. Example. If X is a compact space, then s1' = C( X) is a Banach 
algebra if (fg)(x) = f(x)g(x) whenever f, g E s1' and x E X. Note that s1' 
is abelian and has an identity (the constantly 1 function). 

If X is completely regular and s1' = Cb( X), then s1' is also a Banach 
algebra. In fact, Cb( X) ~ C(/3X) (V.6) so that this is a special case of 
Example 1.4. Another special case is 100. 

1.5. Example. If X is a locally compact space, s1' = Co( X) is a Banach 
algebra when the multiplication is defined pointwise as in the preceding 
example. s1' is abelian, but if X is not compact, s1' does not have an 
identity. If Xoo is the one-point compactification of X, then C( Xoo) ::2 C()( X) 
and C( Xoo) is a Banach algebra with identity. 

Note that Co is a special case of Example 1.5. 

1.6. Example. If (X, fl, }L) is a a-finite measure space and s1' = L OO( X, fl, }L), 

then s1' is an abelian Banach algebra with identity if the operations are 
defined pointwise. 
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1.7. Example. Let ~ be a Banach space and put .JiI= 8tl'(~). If multipli­
cation is defined by composition, then .JiI is a Banach algebra with identity, 
1. If dim ~ ~ 2, .JiI is not abelian. 

1.8. Example. If ~ is a Banach space and .JiI = 8tl' 0 (~), the compact 
operators on ~, then .JiI is a Banach algebra without identity if dim ~ = 00. 

In fact, 8tl'o(~) is an ideal of 8tl'( ~). 

Note that a special case of Example 1.7 occurs when .JiI= Mn(IF), the 
n X n matrices, where .JiI is given the norm resulting when Mn(lF) is 
identified with 8tl'(1F n). 

1.9. Example. Let G be a locally compact topological group and let 
M(G) = all finite regular Borel measures on G. If p., P E M(G), define L: 
Co( G) -> IF by 

L(f) = j j f(xy) dp.(x) dp(y) = j j f(xy) dp(y) dp.(x). 

Then L is a linear functional on Co(G) and 

IL(f)1 s j jlf(xY)1 dlp.l(x) dlpl(y) 

s Ilfllllp.llllpll. 
So L E Co(G)* = M(G). Define p. * p by L(f) = ffdp. * p for f in Co(G). 
That is, 

1.10 jfdp.*p = j jf(xy) dp.(x) dp(y), 

Note that lip. * pli = IILII s 11p.llllpll· It follows that M(G) is a Banach 
algebra with this definition of multiplication. The product p. * p is called the 
convolution of p. and P. 

Let e = the identity of G and let 8e = the unit point mass at e. If 
f E Co( G), then 

jfdp.*8e = j jf(xy) dp.(x) d8e(y) 

= jf(xe)dp.(x) 

= jfdp.. 

So p. * 8e = p.; similarly, 8e * p. = p.. Hence 8e is the identity for M( G). 
If x, Y E G, then it is easy to check that 8x * 8y = 8xy and M(G) is 

abelian if and only if G is abelian. 

1.11. Example. Let G be a locally compact group and let m = right Haar 
measure on G. That is, m is a non-negative regular Borel measure on G such 
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that m(U) > 0 for every nonempty open subset U of G and ff(xy) dm(x) 
= ff(x) dm(x) for every f in CC< G) (the continuous functions f: G ~ IF 
with compact support). If G is compact, the existence of m was established 
in Section V.lI. If G is not compact, m exists but its existence must be 
established by nonfunctional analytic methods (see Nachbin [1965]). 

If f, g E L1(m), let fL = fm and v = gm as in the proof of (V.S.l). Then 
fL, v E M(G) and IlfLll = Ilflll' Ilvll = Ilglll. In fact, the Radon-Nikodym 
Theorem makes it possible to identify LI(m) with a closed subspace of 
M( G). Is it a closed subalgebra? 

Let cp E CcC G). Then 

f cp dfL * v = f f cp (xy ) f( x) g( y ) dm (x) dm (y ) 

= f g ( y) [ f cp ( xy ) f ( x ) dm ( x ) ] dm ( y ) 

= f g ( y ) [ f cp ( x ) f ( xy - I ) dm ( x ) ] dm ( y ) 

= f cp (x) [f f( xy -I) g( Y ) dm (y ) ] dm (x) 

= f cp ( x ) h ( x ) dm ( x ) , 

where hex) = ff(xy-I)g(y)dm(y), x in G. It follows that h E LI(m) (see 
Exercise 4). Thus fL * v = hm, so LI(m) is a Banach sub algebra of M(G). In 
fact, the preceding discussion enables us to define f * g in L I( m) for f, g in 
LI(m) by 

f * g(x) = f f(xy-I )g(y) dm(y). 

The algebra L\m) is denoted by LI(G). 
It can be shown that L I( G) is abelian if and only if G is abelian and 

LI(G) has an identity if and only if G is discrete (in which case LI(G) = 

M( G)-what is m?). This algebra is examined more closely in Section 9. 
If {d;} is a collection of Banach algebras, let EB od; == {a E D;d;: for 

all E > 0, {i: Ila(i)11 ;::: E} is finite}. 

1.12. Proposition. If {d;} is a collection of Banach algebras, EB od; and 
EB 00 d; are Banach algebras. 

PROOF. Exercise. 

EXERCISES 

1. Let d be an algebra that is also a Banach space and such that if a Ed, the 
maps x ~ ax and x ~ xa of d -> d are continuous. Let d 1 = d X IF as in 
Proposition 1.3. If a Ed, define La: d j -> d j by L,,(x,O = (ax + ~a,O). 
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Show that La E ~(J;1\) and if IlIalil = IILall, then III . III is equivalent to the 
norm of .91 and .91 with III . III is a Banach algebra. 

2. Complete the proof of Proposition 1.3. 

3. Verify the statements made in Examples (1.4) through (1.9) and (1.11). 

4. Let G be a locally compact group. (a) If <I> E Cc ( G) and E > 0, show that there is 
an open neighborhood U of e in G such that Il<I>x - <l>yll < E whenever xy-I E U. 
[Here <l>x(z) = <I>(xz).] (b) Show that if f E U(G), 1 :0:; P < 00, and E > 0, there 
is an open neighborhood U of e in G such that II!x - fvllp < E whenever 
xyl E U. (c) Show that if f E Ll(G) and g E LOO(G), hex) = 

ff(xy-I)g(y)dm(y) defines a bounded continuous function h: G -> IF. (d) If 
f,g E Ll(G) and h is defined as in (c), show that h E LI(G). 

5. Prove Proposition 1.12. 

6. Let {d,: i E I} be a collection of Banach algebras. (a) Show that Ell od, is a 
closed ideal of Ell ood,. (b) Show that Ell ood, has an identity if and only if each 
d, has an identity. (c) Show that Ellod, has an identity if and only if I is finite 
and each d, has an identity. 

7. If X, Y are completely regular, show that Cb(X) EllooCb(Y) is isometrically 
isomorphic to Cb(X Ell y), where X Ell Y is the disjoint union of X and Y. 

8. If X and Yare locally compact, show that Co(X) EllooCo(Y) is isometrically 
isomorphic to Co (X Ell Y). 

9. Let {Xi: i E I} be a collection of locally compact spaces and let X = the 
disjoint union of these spaces furnished with the topology {U ~ X: U () Xi is 
open in ~ for all i}. Show that X is locally compact and Ell oCo (~) is 
isometrically isomorphic to Co (X). 

§2. Ideals and Quotients 

If d is an algebra, a left ideal of d is a sub algebra .$( of d such that 
ax E.$( whenever a Ed, x E.$(. A right ideal of d is a subalgebra .$( 
such that xa E.$( whenever a Ed, x E.$(. A (bilateral) ideal is a 
subalgebra of d that is both a left ideal and a right ideal. 

If a Ed and d has an identity 1, say that a is left invertible if there is 
an x in d with xa = 1. Similarly, define right invertible and invertible 
elements. If a is invertible and x, y Ed such that xa = 1 = ay, then 
y = 1y = (xa)y = x(ay) = xl = x. So if a is invertible, there is a unique 
element a-I such that aa -I = a-1a = 1. 

If .$( is a left ideal in d, a E .$(, and a is left invertible, then.$( = d. 
In fact, if xa = 1, then 1 E.$( since.$( is a left ideal. Thus for y in d, 
y = y1 E.$(. This forms a link between ideals and invertibility. 

In the case of a Banach algebra some bonuses occur due to the interplay 
of the norm and the algebra. The results of this section will be for Banach 
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algebras with an identity. To discuss invertibility this is, of course, the only 
feasible setting. For Banach algebras without an identity some analogous 
results can be obtained, however, by a consideration of the algebra obtained 
by adjoining an identity (1.3). The concept of a modular ideal and a 
modular unit can also be employed (see Exercise 6). 

The next proof is based on the geometric series. 

2.1. Lemma. If d is a Banach algebra with identity and xEd such that 
Ilx - 111 < 1, then x is invertible. 

PROOF. Let y = 1 - x; so Ilyll = r < 1. Since Ilynll ~ IIYlln = rn (Why?), 
L~~ollynll < 00. Hence Z = L~~oyn converges in d. If Zn = 1 + y + y2 
+ ... +yn, 

But Ilyn+111 ~ rn+I, so yn+l ~ 0 as n ~ 00. Hence z(1 - y) = lim zn(l -
y) = 1. Similarly, (1 - y)z = 1. So (1 - y) is invertible and (1 - y)-l = Z 
= LO'yn. But 1 - Y = 1 - (1 - x) = x. • 

Note that completeness was used to show that Lyn converges. 

2.2. Theorem. If d is a Banach algebra with identity, G, = {a Ed: a is 
left invertible}, Gr = {a Ed: a is right invertible}, and G = {a Ed: a is 
invertible}, then G" Gr , and G are open subsets of d. Also, the map 
a ~ a -1 of G ~ G is continuous. 

PROOF. Let ao E G and let bo Ed such that boao = 1. If Iia - aoll < 
Ilboll-I, then Ilboa - 111 = Ilbo(a - ao)11 < 1. By the preceding lemma, x = 
boa is invertible. If b = x-lbo, then ba = 1. Hence G, ;2 {a Ed: Iia - aoll 
< Ilboll- l } and G, must be open. Similarly, Gr is open. Since G = G, n Gr 

(Why?), G is open. 
To prove that a ~ a-I is a continuous map of G ~ G, first assume that 

{an} is a sequence in G such that an ~ 1. Let 0 < 8 < 1 and suppose 
lIan - 111 < 8. From the preceding lemma, a;;l = (l - (1 - an»-l = 

Lk"~o(l - an)k = 1 + Lk"=l(1 - an)k. Hence 

00 

lIa;;l - 111 = II L (1 - aJkl1 
k~l 

00 

~ L 111 - anll k 
k~l 

< 8/(1 - 8). 

If E > 0 is given, then 8 can be chosen such that 8/(1 - 8) < E. SO 
II an - 111 < 8 implies Ila;;1 - 111 < E. Hence lima;;l = 1. 
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N ow let a E G and suppose {a n} is a sequence in G such that an ---+ a. 
Hence a - la n ---+ 1. By the preceding paragraph, a;; la = (a -la n) - 1 ---+ 1. 
Hence a;;l = a;;laa- 1 ---+ a-I. • 

Two facts surfaced in the preceding proofs that are worth recording for 
the future. 

2.3. Corollary. Let .rd be a Banach algebra with identity. 

(a) If Iia - 111 < 1, then a-I = Lk~o(l - a)k. 
(b) If boa o = 1 and Iia - aoll < Ilboll-I, then a is left invertible. 

A maximal ideal is a proper ideal that is contained in no larger proper 
ideal. 

2.4. Corollary. If.rd is a Banach algebra with identity, then 

(a) the closure of a proper left, right, or bilateral ideal is a proper left, right, 
or bilateral ideal; 

(b) a maximal left, right, or bilateral ideal is closed. 

PROOF. (a) Let vii be a proper left ideal and let G, be the set of 
left-invertible elements in .rd. It follows that vii Ii G, = D. (See the intro­
duction to this section.) Thus vii ~ .rd\ G,. By the preceding theorem, 
.rd\ G, is closed. Hence clvll ~ .rd\ G,; and thus clvll *.rd. It is easy to 
check that clvll is an ideal. The proof of the remainder of (a) is similar. 

(b) If vii is a maximal left ideal, clvll is a proper left ideal by (a). Hence 
vii = clvll by maximality. • 

If .rd does not have an identity, then .rd may contain some proper, dense 
ideals. For example, let .rd = Co(~). Then Cc(~), the continuous functions 
with compact support, is a dense ideal in Co(~)' There is something that can 
be said, however (see Exercise 6). 

2.5. Proposition. If.rd is a Banach algebra with identity, then every proper 
left, right, or bilateral ideal is contained in a maximal ideal of the same type. 

The proof of the preceding proposition is an exercise in the application of 
Zorn's Lemma and is left to the reader. Actually, this is a theorem from 
algebra and it is not necessary to assume that .rd is a Banach algebra. 

Let .rd be a Banach algebra and let vii be a proper closed ideal. Note 
that .rdjvll becomes an algebra. Indeed, (x + vII)(y + vii) = xy + vii is a 
well-defined multiplication on .rdjvll. (Why?) 

2.6. Theorem. If .rd is a Banach algebra and vii is a proper closed ideal in 
.rd, then .rdjvll is a Banach algebra. If.rd has an identity, so does .rdjvll. 
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PROOF. We have already seen that d/A is a Banach space and, as was 
mentioned prior to the statement of the theorem, d/A is an algebra. If 
x, y Ed and u, v E A, then (x + u)(y + v) = xy + (xv + uy + uv) E xy 

+ A. Hence II(x + A)(y + .$1)11 = IIxy + All ::S: II(x + u)(y + v)II ::S: IIx 
+ ull IIy + vII. Taking the infimum over all u, v in A gives that II(x + 
A)(y + .$1)11 ::S: IIx +.All IIy + All· The remainder of the proof is left to 
the reader. • 

It may be that d/A has an identity even if d does not. For example, let 
d= Co(lR) and let .$1= {cf> E Co(IR): cf>(x) = 0 when Ixl ::S: I}. If cf>o E 

Co(lR) such that cf>o(x) = 1 for Ixl ::S: 1, then </>0 + A is an identity for 
d/vIt. In fact, if </> E Co(IR), (</></>o - </> )(x) = 0 if Ixl ::S: 1. Hence (</> + 
vIt)( </>0 + vIt) = </> + A (see Exercises 6 through 9). 

EXERCISES 

1. Let d be a Banach algebra and let 2 be all of the closed left ideals in d. If 
1],12 E 2, define I] V 12 "" cl(I, + 12) and I] /\ 12 = I] n 12, Show that with 
these definitions 2 is a complete lattice with a largest and a smallest element. 

2. Let X be locally compact. For every open subset U of X, let I( U) = {cp E 

Co (X): cp = 0 on X \ U}. Show that U ...... I ( U) is a lattice monomorphism of 
the collection of open subsets of X into the lattice of closed ideals of Co (X). (It 
is, in fact, surjective, but the proof of that should wait.) 

3. Let (X, fl, JL) be a a-finite measure space and let I be an ideal in C J ( X, fl, JL) 
that is weak* closed. Show that there is a set L1 in fl such that I = {<P E 

L oc (X, fl, JL): cp = 0 on L1}. 

4. Let d = { [ fi ~]: a, f3 E g:} and let At = { [ ~ ~ ] : f3 E g:}. Show that d 

is a Banach algebra and At is a maximal ideal in d. 

5. Show that for n :2: 1, M" (C) has no nontrivial ideals. How about M" (IR)? 

6. Let d be a Banach algebra but do not assume that d has an identity. If I is a 
left ideal of d, say that I is a modular left ideal if there is a u in d such that 
d(l - u) "" {a - au: a E d} ~ I; call such an element u of d a right 
modular unit for I. Similarly, define right modular ideals and left modular units. 
Prove the following. (a) If u is a right modular unit for the left ideal I and 
u E I, then 1= d. (b) Maximal modular left ideals are maximal left ideals. (c) 
If I is a proper modular left ideal, then I is contained in a maximal left ideal. 
(d) If I is a proper modular left ideal and u is a modular right unit for I, then 
Ilu - xii :2: 1 for all x in I and clI is a proper modular left ideal. (e) Every 
maximal modular left ideal of d is closed. 

7. Using the terminology of Exercise 6, let I be an ideal of d. Show: (a) if u is a 
right modular unit for I and v is a left modular unit for I, then u - v E I. (b) 
If I is closed, d/ I has an identity if and only if there is a right modular unit 
and a left modular unit for I. Call an ideal I such that d/ I has an identity a 
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modular ideal. An element u such that u + I is an identity for Slf/ I is called a 
modular identity for I. 

8. If Slf is a Banach algebra, a net { ei } in Slf is called an approximate identity for 
Slf if sUPill e, II < 00 and for each a in Slf, eia --> a and aei --> a. Show that Slf 
has an approximate identity if and only if there is a bounded subset E of Slf 
such that for every I' > 0 and for every a in Slf there is an e in E with 
Ilae - all + Ilea - all < f. 

9. Show that if X is locally compact, then Co (X) has an approximate identity. 

10. If .Yt' is a Hilbert space, show that £iil'o(.Yt') has an approximate identity. 

11. If G is a locally compact group, show that LI(G) (1.11) has an approximate 
identity. [Hint: Let %' = all neighborhoods U of the identity e of G such that 
cl U is compact. Order %' by reverse inclusion. For U in %', let f v = m (U) - I Xv. 
Then {Iv: U E %'} is an approximate identity for LI(G).] 

12. For 0 < r < 1, let Pr : aD} --> [0,00) be defined by PAz) = L~~_oorl"lzn (the 
Poisson kernel). Show that {Pr } is an approximate identity for LI( aD}) (under 
convolution). 

13. If.Yt' is a Hilbert space and P is a finite-rank projection, show that £iil'o(.Yt')P is 
a closed modular left ideal of £iil'o (.Yt'). What is the associated right modular 
unit? 

14. Find the minimal closed proper left ideals of Mn(O=). 

15. Find the minimal closed proper left ideals of £iil'o(.Yt'), .Yt' a Hilbert space. How 
about for £iil'o(3(), 3( a Banach space? 

16. What are the maximal modular left ideals of £iil'o (.Yt'), .Yt' a Hilbert space? 

§3. The Spectrum 

3.1. Definition. If d is a Banach algebra with identity and a Ed, the 
spectrum of a, denoted by a(a), is defined by 

a ( a) = {IX E 0=: a - IX is not invertible} . 

The left spectrum, al( a), is the set {IX Elf: a - IX is not left invertible}; the 
right spectrum, area), is defined similarly. 

The resolvent set of a is defined by p( a) = IF \ a( a). The left and right 
resolvents of a are PI(a) = IF \ al(a) and Pr(a) = IF \ area). 

3.2. Example. Let X be compact. If f E C(X), then aU) = f(X). In fact, 
if IX = f(x o), then f - IX has a zero and cannot be invertible. So f(X) ~ 
aU). On the other hand, if IX f/'. f(X), f - IX is a nonvanishing continuous 
function on X. Hence U - IX)-I E C(X) and so f - IX is invertible. Thus 
IX f/'. aU). 
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3.3. Example. If f1£ is a Banach space and A E !!l(f1£), then o(A) = {a E 

IF: either ker(A - a) = (0) or ran(A - a)"* f1£}. In fact, this means that 
peA) = IF \ o(A) = {a E IF: A - a is bijective}. If a E peA), there is an 
operator Tin !!l(f1£) such that T(A - a) = (A - a)T = 1; clearly, A - a 
is bijective. On the other hand, if A - a is bijective, (A - a)-I E !!l(f1£) by 
the Inverse Mapping Theorem. 

3.4. Example. If .:If' is a Hilbert and A E !!l(.:If'), then 01(A) = {a E IF: 
inf{II(A - a)hl!: I!hl! = I} = O}. In fact, suppose BE !!l(.:If') such that 
B(A - a) = 1. If IIhl! = 1, then 1 = Ilhil = IIB(A - a)hll ~ IIBII II(A -
a)hll. SO II(A - a)hll ;:::: IIBII -1 whenever IIhil = 1. 

Conversely, suppose II(A - a)hll ;:::: B > 0 whenever IIhil = 1. Note that 
ker(A - a) = (0). It will now be shown that ran(A - a) is closed. In fact, 
assume that (A - a)/n -> g. Then Bllfn - Imll ~ II(A - a)(fn - In,) II = II(A 
- a)ln - (A - a)/mli. Thus {In} is a Cauchy sequence. Let /" -> f. Then 
g = lim(A - a)/n = (A - a)/; hence g E ran(A - a). Let X= ran(A -
a); so (A - a): .:If'-> X is a bijection. Thus (A - a) I: X ->.:If' is 
bounded. Define B: .:If' ->.:If' by letting B (k + h) = (A - a) - 1 k when 
k E X and hEX ~. Thus B E !!l(.:If') and B(A - a) = 1. 

r 0-1] 3.5. Example. If .sd= M2(1R) and A = II 0' then o(A) = D. In fact, 

A - a is not invertible if and only if 0 = det( A - a) = a 2 + 1, which is 
impossible in ~. 

The phenomenon of the last example does not occur if .sd is a Banach 
algebra over C. 

3.6. Theorem. II .sd is a Banach algebra over C with an identity, then lor 
each a in d, o(a) is a nonempty compact subset 01 C. Moreover, il 
lal > IIall, a $ o(a) and z >-4 (z - ar- I is an .s#-valued analytic lunction 
defined on pea). 

Before beginning the proof, a few words on vector-valued analytic func­
tions are in order. If G is a region in C and f1£ is a Banach space, define the 
derivative of I: G -> f1£ at Zo to be limh~oh-1[f(zo + h) - I(zo)] if the 
limit exists. Say that I is analytic if I has a continuous derivative on G. The 
whole theory of analytic functions transfers to this situation. The statements 
and proofs of such theorems as Cauchy's Integral Formula, Liouville's 
Theorem, etc., transfer verbatim. Also, f: G -> f1£ is analytic if for each Zo 

in G there is a sequence Xo, Xl' X 2 , ... in f1£ such that I(z) = L%,,~o(Z -
ZO)kXk whenever z E B(zo; r), where r = dist(zo, JG). Moreover, the con­
vergence is uniform on compact subsets of B( zo; r). 

There is also a way of obtaining the vector-valued case as a consequence 
of the scalar-valued case (see Exercise 4). 
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PROOF OF THEOREM 3.6. If lal > Iiall, then a - a = a(l - a/a) and Ila/all 
< 1. By Corollary 2.3, (1 - a/a) is invertible. Hence a - a is invertible 
and so a r:E. a(a). Thus a(a) ~ {a E C: lal ::; lIall} and a(a) is bounded. 

Let G be the set of invertible elements of d. The map a ~ (a - a) is a 
continuous function of C ~ d. Since G is open and p(a) is the inverse 
image of G under this map, p(a) is open. Thus a(a) = C \ p(a) is 
compact. 

Define F: p(a) ~ d by F(z) = (z - a)-I. In the identity X-I - y-I = 
x-I(y - x)y-l, let x = (a + h - a) and y = (a - a), where a E p(a) 
and h E C such that h =1= ° and a + h E p(a). This gives 

F( a + h) - F( a) 
h 

(a + h - a)-Ie -h)(a - a)-I 

h 

= -(a + h - a)-\a - a)-I. 

Since (a + h - a)-I ~ (a - a)-I as h ~ 0, F'(a) exists and 

F'(a) = -(a - a)-2. 

Clearly F': p(a) ~ d is continuous, so F is analytic on p(a). 
From the first paragraph of the proof and Corollary 2.3, if Izl > Iiall, 

1 -1 1 00 ( k 
F(z) = -(1 -~) = - L ~) . 

z z Z k=O Z 

Hence 

liF( z )11 ::; I~I k~O ( 1\;:1 ) k 

1 1 

Izl 1 - Iiall/lzi 

= (lzi - lIall) -1. 

Thus F(z) ~ ° as z ~ 00. Therefore if p(a) = C, F is an entire function 
that vanishes at 00. By Liouville's Theorem F is constant. Since F' =1= 0, this 
is a contradiction. Thus p( a) =1= C, or a( a) =1= D. • 

Because the spectrum of an element of a complex Banach algebra is not 
empty, the following assumption is made. 

Assumption. Henceforward, all Banach spaces and all Banach algebras are 
over C. 

3.7. Definition. If d is a Banach algebra with identity and a Ed, the 
spectral radius of a, r(a), is defined by 

rea) = sup{lal: a E a(a)}. 
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Because a( a) =F 0 and is bounded, r( a) is well defined and finite; because 
a( a) is compact, this supremum is attained. 

Let d= M 2 (C) and let A = [~ ~]. Then A2 = 0 and a(A) = {O}; so 

r( A) = O. So it is possible to have r( A) = 0 with A =F O. 

3.8. Proposition. If d is a Banach algebra with identity and a Ed, 
limlla nili/n exists and 

r(a) = limllanil i/ n. 

PROOF. Let G = {z E C: z = 0 or Z-I E pea)}. Define f: G --'>d by 
f(O) = 0 and for z =F 0, fez) = (z-I - a)-I. Since (a - 0')-1 ---> 0 as 0' ---> 

00, f is analytic on G, and so f has a power series expansion. In fact, by 
Corollary 2.3, for Izl < Iiall-I, 

co 00 

f(z) = L an/(z-I )"+1 = Z L z"a n. 
n~O 

From complex variable theory, this power series converges for Izl < R == 
dist(O, aG) = dist(O,a(a)-I) (Here a(a)-I = {Z-I: z E a(a)}). Thus R = 
inf{lal: a-I E a(a)} = r(a)-I. Also, from the theory of power series. 
R- I = limsupilanil i/ n • Thus 

rea) = limsupilanil i/ n . 

Now if 0' E C and n;:::: 1, an - an = (0' - a)(an- I + a ll -- 2a 
+ ... +a n- I) = (a n- I + an- 2a + ... +an-I)(a - a). So if an - an is 
invertible, 0' - a is invertible and (0' - a) -I = (an - a") -I( a n- I 

+ ... +a n- I). So for 0' in a(a), an - an is not invertible for every n ;:::: l. 
By Theorem 3.6, lain.::; Ilanli. Hence 10'1 .::; Ilanll l / n for all n ;:::: 1 and 0' in 
a(a). So if 0' E a(a), 10'1 .::; liminfilanil i/ n. Taking the supremum over all 0' 

in a(a) gives that r(a).::; liminfilanil i/ n .::; limsupilanil i/ ll = rea). So rea) 
= limilanil i / n • • 

3.9. Proposition. Let d be a Banach algebra with identity and let a E d. 

(a) If 0' E pea), then dist(a, a(a»;:::: 11(0' - a) -III-I. 
(b) If a,f3 E pea), then 

(0' - a)-I -(f3 - a) -1 = (f3 - 0')(0' - a) -\f3 - a)-I 

= (f3 - a)(f3 - a)-I(a - a)-I. 

PROOF. (a) By Corollary 2.3, if 0' E pea) and Ilx - (0' - a)11 < 11(0' -
a)-III-I, x isinvertible.Soiff3 E C and 1f31 < 11(0' - a)-III-I,(f3 + 0' - a) 
is invertible; that is, 0' + f3 E pea). Hence dist(a, a(a» ;:::: 11(0' - a) III-I. 
(b) This follows by letting x = 0' - a and y = f3 - a in the identity 
X-I _ y-I = X-I(y - X)y-I = y-I(y - x)x- 1• • 
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The identity in part (b) of the preceding proposition is called the resolvent 
identity and the function a ~ (a - a) -1 of p (a) ~ .s# is called the resolvent 
of a. 

EXERCISES 

1. Let S be the unilateral shift on [2 (11.2.10). Show that S is left invertible but not 
right invertible. 

2. If .91 is a Banach algebra with identity and a Ed and is nilpotent (that is, 
a" = 0 for some n), then a(a) = {O}. 

3. Let (X,Q,p.) be a a-finite measure space and let .91= LOO(X,Q,p.) (1.6). If 
cf> Ed, show that the following are equivalent: (a) a E a( cf»; (b) 0 = 

sup{inf{Icf>(x) - al: x E X\,1}: ,1 E Q and p.(,1) = O}; (c) if e > 0, p.({x E X: 
Icf>(x) - al < e}) > 0; (d) if P is the measure defined on the Borel subsets of C 
by p(,1) = p.(cf>-I(,1», then a E the support of P. 

4. If G is an open subset of C and f: G ---> :!{ is a continuous function such that for 
each x* in :!{*, x* 0 f: G ---> C is analytic, then f is analytic. 

5. If .91 is a Banach algebra with identity, {an} <;;;.91, an ---> a, a" E a( a,,), and 
a" -4 a, then a E a( a). 

6. If .91 is a Banach algebra with identity and r: .91-4 [0, 00) is the spectral radius, 
show that r is upper semicontinuous. If a Ed such that r( a) = 0, show that r 
is continuous at a. 

7. If.91 is a Banach algebra with identity, a, bEd, and a is a nonzero scalar such 
that (a - ab) is invertible, show that (a - ba) is invertible and (a - ba) -1 = 

a-I + a- 1b(a - ab)-la . Show that a(ab) U {O} = a(ba) U {O} and give an 
example such that a(ab) '* a(ba). 

§4. The Riesz Functional Calculus 

Before coming to the main course of this section, it is necessary to have an 
appetizer from complex analysis. Many of these topics can be found in 
Conway [1978] with complete proofs. Only a few results are presented here. 

If y is a closed rectifiable curve in C and a$.{ y} == {y( t): 0 ::; t ::; I}, 
then the winding number of y about a is defined to be the number 

1 f 1 n(y;a) = -2 . --dz. 
7TI y z - a 

The number n(y; a) is always an integer and is constant on each component 
of C \ {y} and vanishes on the unbounded component of C \ {y}. 

Let G be an open subset of C and let :!£ be a Banach space. If f: G ~ :!£ 
is analytic and x* E :!£*, then z ~ (f(z),x*) is analytic on G and its 
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derivative is (f'(z), x*). By Exercise 4 of the preceding section, if f: 
G ->!!£ is a continuous function such that z ~ (f( z), x *) is analytic for 
each x * in !!£ *, then f: G ->!!£ is analytic. These facts will help in 
discussing and proving many of the results below. 

If y is a rectifiable curve in G and f is a continuous function defined in a 
neighborhood of {y} with values in !!£, then fJ can be defined as for a 
scalar-valued f as the limit in !!£ of sums of the form 

L:[y(tJ - y(tj-l)]f(tJ, 
j 

where {to, t l , ... , t n} is a partition of [0, 1]. Hence fJ = Mf( y( t» dye t) E 

!!£. It is easy to see that for every x* in !!£*, (fJ, x*) = fy(f('), x*). 

4.1. Cauchy's Theorem. If:!{ is a Banach space, G is an open subset of C, f: 
G -> :!( is an analytic function, and Yl" .. , Ym are closed rectifiable curves in 
G such that L:j~ln(Yj; a) = 0 for all a in C \ G, then L:j~lfy,f = O. 

PROOF. If x* E :!{*, then (L:j~lfy/, x*) = L:j~lfy/f('), x*) = 0 by the 
scalar-valued version of Cauchy'S Theorem. Hence L:j~lfy/ = o. • 

4.2. Cauchy's Integral Formula. If:!{ is a Banach space, G is an open subset 
of C, f: G ->:!( is analytic, y is a closed rectifiable curve in G such that 
n(y; a) = 0 for every a in C \ G, and "A E G\ {r}, then for every integer 
k"2=. 0, 

n(y; "A)j<kl("A) = 2k!. fez - "A)-(k+llf(z) dz. 
'1Tl y 

4.3. Definition. A closed rectifiable curve y is positively oriented if for 
every a in G\ {r}, n(y; a) is either 0 or 1. In this case the inside of y, 
denoted by ins y, is defined by 

ins y == {a E C \ {y }: n ( y; a) = I}. 

The outside of y, denoted by out y, is defined by 

out y == {a E C \ {y }: n ( y; a) = O}. 

Thus C = {y} U insy U outy. 
A curve y: [0,1] -> C is simple if yes) = yet) implies that either s = tor 

s = 0 and t = 1. The Jordan Curve Theorem says that if y is a simple 
closed rectifiable curve, then C \ { y} has two components and {y} is the 
boundary of each. Hence n (y; a) takes on only two values and one of these 
must be 0; the other must be ± 1. 

If r = {Yl"'" Ym} is a collection of closed rectifiable curves, then r is 
positively oriented if: (a) {ri} n {rj} = 0 for i '* j; (b) for a in C \ 
Uj~l {rj}' nCr; a) == L:T=ln( Yj; a) is either 0 or 1. The inside of r, ins r, is 
defined by 

insr== {a: n(r;a) = I}. 
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The outside of r, out r, is defined by 

out r == {a: n (r; a) = O}. 

4.4. Proposition. If G is an open subset of C and K is a compact subset of G, 
then there is a positively oriented system of curves r = {Yl'···' Ym } in G \ K 
such that K ~ insr and C \ G ~ out r. The curves Yl' ... ' Ym can be found 
such that they are infinitely differentiable. 

The proof of this proposition can be found on p. 195 of Conway [1978], 
though some details are missing. 

If r = hI' ... ' Y m} and each Yj is rectifiable, define 

jf=££f 
r j= 1 Yj 

whenever f is continuous in a neighborhood of {r}. 
Let d be a Banach algebra with identity and let a Ed. One of the 

principal uses of Proposition 4.4 in this book will occur when K = (J( a). If 
f: G -+ C is analytic and (J(a) ~ G, we will define an element f(a) in d 
by 

4.5 f(a) = 21 .jf(z)(z - a)-ldz 
7TI r 

where r is as in Proposition 4.4 with K = (J( a). But first it must be shown 
that (4.5) does not depend on the choice of r. That is, it must be shown that 
f(a) is well defined. 

4.6. Proposition. Let d be a Banach algebra with identity, let a Ed, and 
let G be an open subset of C such that (J(a) ~ G. If r = hI' .. ·' Ym } and 
A = {AI' ... ' Ak } are two positively oriented collections of curves in G such 
that (J( a) ~ ins rand (J( a) ~ ins A and iff: G -+ C is analytic, then 

1rf (z)(z - a)-ldz = Lf(z)(z - a)-ldz. 

PROOF. For 1 ~j ~ k, let Ym+j = Ajl; that is, Ym+j(t) = Aj(l - t) for 
o ~ t ~ 1. If z $. G \ (J( a), then either z E C \ G or z E (J( a). If z E C \ G, 
then 'f.i=+(n(Yj; z) = nCr; z) - n(A; z) = 0 - 0 = O. If z E (J(a), then 
'f.i=+(n(Yj; z) = nCr; z) - n(A; z) = 1 - 1 = O. Thus ~ == hi 1 ~j ~ m 
+ k} is a system of closed curves in U = G \ (J( a) such that n (~; z) = 0 
for all z in C \ U. Since z ~ f(z)(z - a)-l is analytic on U, Cauchy's 
Theorem implies 

o =jf(z)(z - a)-ldz =jf(z)(z - a)-ldz -jf(z)(z - a)-l dz . 
x r A 

• 
As was pointed out before, Proposition 4.6 implies that (4.5) gives a 

well-defined element f( a) of d whenever f is analytic in a neighborhood 
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of a( a). Let Hol( a) = all of the functions that are analytic in a neighbor­
hood of a(a). Note that Hol(a) is an algebra where if f, g E Hol(a) and f 
and g have domains D(f) and D(g), then fg and f + g have domain 
D(f) n D(g). Hol(a) is not, however, a Banach algebra. 

4.7. The Riesz Functional Calculus. Let d be a Banach algebra with identity 
and let a Ed. 

(a) The map f >---+ f(a) of Hol(a) ~ d is an algebra homomorphism. 
(b) If fez) = r.'f~oakzk has radius of convergence> rea), then f E Hol(a) 

andf(a) = r.'f~oakak. 
(c) Iff(z) == 1, thenf(a) = l. 
(d) If fez) = z for all z, f(a) = a. 
(e) If f'/I'/2' ... are all analytic on G, a(a) ~ G, and /,,(z) ~ fez) 

uniformly on compact subsets of G, then Ilfn(a) - f(a)11 ~ 0 as n ~ 00. 

PROOF. (a) Let f, g E Hol(a) and let G be an open neighborhood of a(a) 
on which both f and g are analytic. Let r be a positively oriented system of 
closed curves in G such that a( a) ~ ins r. Let !\. be a positively oriented 
system of closed curves in G such that (ins I') u {r} = cl(ins T) ~ ins!\.. 
Then 

[by (3.9b)] 

= __ 1_ f!f(z)g(n(z-a)-\r-a)-ldrdz 
4'172Jr 11 

= __ 1 f!f(z)g(n[(z-afl_(r-a)l]drdZ 
4'172JrA r-z 

= -~ f f(Z)[! fen dr](z - a)-ldz 
4'17 Jr A ~ - Z 

+~fg(n[f [(z) dz]u-af1dr 
4'17 A Jr ~ - z 

But for r on !\., r E outr and hence JrU(z)/(r - z)]dz = 0 (Cauchy's 
Theorem). If z E {T}, then z E ins!\. and so JA[g(n/(r - z)]dr = 
2'17 ig( z). Hence 

f(a)g(a) = 21 . f f(z)g(z)(z - a)-1 dz 
'171 Jr 

= (fg)(a). 

The proof that (af + f3g)(a) = af(a) + f3g(a) is left to the reader. 
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(c) and (d). Let f(z) = zk, k ~ O. Let y(t) = Rexp(21Tit), 0 ~ t ~ 1, 
where R > lIall. So a(a) c insy, and hence 

f(a) = 21 .Jzk(Z - a)-I dz 
1Tl y 

1 (a)-I = -. Jz k -I 1 - - dz 
2m y z 

1 00 

= -. JZk-1 L anjzndz, 
2m y n=O 

since Ilajzll < 1 for Izl = R. Since this infinite series converges uniformly 
for z on y, 

If n =fo k, then z-(n-k+l) has a primitive and hence /yZ-(n-k+I)dz = O. For 
n = k this integral becomes /yz-1dz = 21Ti. Hence f(a) = ak. 

(e) Let r = {Yl"'" Ym } be a positively oriented system of closed curves 
in G such that a(a) ~ insr. Fix 1 ~ k ~ m; then 

11~/n(Z)(Z - a)-I dz - ~/(z)(z - a)-ldzll 

= Ilf[fn( Yk(t)) - f( yJt))][ Yk(t) - ar l dYk(t) II 

~ {lfn(Yk(t)) - f(Yk(t))III[Yk(t) - arlll dIYkl(t). 
o 

Now t ~ II[Yk(t) - a)-III is continuous on [0, I) and hence bounded by 
some constant, say M. Thus 

11~/n(Z)(Z - a)-I dz - ~/(z)(z - a)-ldzll 

~ MIIYkllmax{lfn(z) - f(z)l: z E {Yk}}' 

where IIYkl1 is the total variation (length) of Yk' By hypothesis it follows that 
Ilfn(a) - f(a)11 ~ ° as n ~ 00. 

(b) If p(z) = r.%=O(XkZk is a polynomial, then (a), (c), and (d) combine to 
give that p(a) = r.%=O(Xkak. Now let f(z) = r.'t'=O(Xkzk have radius of 
convergence R > r(a), the spectral radius of a. If Pn(z) = r.%=O(Xkzk, 
Pn(z) ~ f(z) uniformly on compact subsets of {z: Izl < R}. By (e), Pn(a) 
~ f(a). So (b) follows. • 

The Riesz Functional Calculus is used in the study of Banach algebras 
and is especially useful in the study of linear operators on a Banach space 
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(Sections 6 and 7). Now our attention must focus on the basic properties of 
this functional calculus. The first such property is its uniqueness. 

4.8. Proposition. Let ..91 be a Banach algebra with identity and let a E ..91. 
Let T: Hol(a) ~..9I be a homomorphism such that (a) T(I) = 1, (b) T(Z) = a, 
( c) if {!,,} is a sequence of analytic functions on an open set G such that 
a(a) <;;; G andfn(z) ~ fez) uniformly on compact subsets of G, then TUn) ~ 
TU). Then TU) = f(a) for every f in Hol(a). 

PROOF. The proof uses Runge's Theorem (111.8.1), but first it must be shown 
that TU) = f(a) whenever f is a rational function. If n ~ 1, T(Zn) = T(Z)n 
= an; hence T(p) = pea) for any polynomial p. Let q be a polynomial 
such that q never vanishes on a( a), so 1 j q E Hol( a). Also, 1 = T(1) = 
T(q· q-l) = T(q)T(q-l) = q(a)T(q-l). Hence q(a) is invertible and 
q( a) -1 = T( q -1). But using the Riesz Functional Calculus, a similar argu­
ment shows that q(a)-1 = (ljq)(a). Thus T(q-l) = (1jq)(a). Therefore if 
f = p j q, where p and q are polynomials and q never vanishes on a( a), 
TU) = T(p . q-l) = T(p)T(q-l) = p(a)(ljq)(a) = f(a). 

Now let f E Hol(a) and suppose f is analytic on an open set G such that 
a(a) <;;; G. By Runge's Theorem there are rational functions {!,,} in Hol(a) 
such that fn(z) ~ fez) uniformly on compact subsets of G. By (iii) of the 
hypothesis, TUn) ~ TU)· But TUn) = fn(a) and fn(a) ~ f(a) by (4.7e). 
Hence TU) = f(a). • 

A fact that has been implicit in the manipulations involving the func­
tional calculus is that f( a) and g( a) commute for all f and g in Hol( a). In 
fact, if T: Hol(a) ~..9I is defined by T(a) = f(a), then f(a)g(a) = TUg) = 
T(gf) = g(a)f(a). Still more can be said. 

4.9. Proposition. If a, bE..9I, ab = ba, and f E Hol(a), then f(a)b = 

bf(a). 

PROOF. An algebraic exercise demonstrates that f(a)b = bf(a) if f is a 
rational function with poles off a( a). The general result now follows by 
Runge's Theorem. • 

4.10. The Spectral Mapping Theorem. Ifa E..9I andfE Hol(a), then 

a(j{a)) = f{a{a)). 

PROOF. If a E a(a), let g E Hol(a) such that fez) - f(a) = (z - a)g(z). 
If it were the case that f(a) $. aU(a)), then (a - a) would be invertible 
with inverse g(a)[f(a) - f(a)]-I. Hence f(a) E aU(a)); that is, f(a(a») 

<;;; aU(a». 
Conversely, if f3 $.f(a(a», then g(z) = [fez) - f3]-1 E Hol(a) and so 

g(a)[f(a) - f3] = 1. Thus f3 $. aU(a); that is, aU(a») <;;; f(a(a)). • 
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This section closes with an application of the functional calculus that is 
typical. 

4.11. Proposition. Suppose a Ed and a(a) = FI U F2 , where FI and F2 

are disjoint nonempty closed sets. Then there is a nontrivial idempotent e in d 
such that 

(a) if ba = ab, then be = eb; 
(b) if al = ae and a 2 = a(l - e), then a = a l + a 2 and a l a 2 = a 2 al = 0; 
(c) a(a l ) = FI U {O}, a(a 2) = F2 U {O}. 

PROOF. Let Gl' G2 be disjoint open subsets of C such that Fj c Gi , j = 1,2. 
Let T be a positively oriented system of closed curves in G I such that 
Fl ~ ins T, F2 ~ out r. If f = the characteristic function of G I' f E Hol( a); 
let e = f(a). Since P = f, e 2 = e. Part (a) follows from (4.9). 

Note that e(l - e) = 0 = (1 - e)e. Hence (b) is immediate. Let fl(z) = 

zf(z), f2(z) = z(l - f(z». It follows from (4.7a) that aj = fj(a), j = 1,2. 
Hence the Spectral Mapping Theorem implies that a(a) = fj(a(a» = Fj U 

{O}. • 

Part (c) of the preceding proposItIon has the somewhat unattractive 
conclusion that a(a l ) = FI U {O}. It would be much neater if the conclu­
sion were that a(a l ) = Fl' This is, in a sense, the case. Since a l (1 - e) = 0 
and 1 - e =fo 0, a l cannot be invertible. However, consider the algebra 
d 1 == de. It is left to the reader to show that d l is a Banach algebra and e 
is the identity for d l . If a l is considered as an element of the algebra d l , 

then its spectrum as an element of d l is Fl' This is an illustration of how 
the spectrum depends on the Banach algebra (the subject of the next 
section; also see Exercise 9). 

EXERCISES 

1. Let ~= C(X), X compact (see Example 3.2). If g E C(X) and f E Hol(g), 
show that f(g) = fog. 

2. Let a be a nilpotent element of ~. For f, g in Hol(a), give a necessary and 
sufficient condition on f and g that f( a) = g( a). 

3. Let d ~ 1 and let A E Md(C)' Give a necessary and sufficient condition on f in 
Hol(A) such that f(a) = O. (Hint: Consider the Jordan canonical form for A.) 

4. If ~ is a Banach algebra with identity, a E~, f E Hol(a), and g is analytic in 
a neighborhood of f( a( a», then go f E Hol( a) and gU( a» = go f( a). 

5. If :!r is a Banach space, A E 3I( :!r), and At s :!r such that (A - a) -lAt ~ At 
for all a in peA), show that f(A)At ~ At whenever f E Hol(A). 

6. If:!r is a Banach space, A E 3I(:!r), and f E Hol(A), show that f(A)* = f(A*). 
(See (6.1) below.) 
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7. If £' is a Hilbert space, A E .96(£'), and fE Hol(A), show that f(A)* = 

i(A*), where i(z) = fez). (See (6.1) below.) 

8. If £' is a Hilbert space, A is a normal operator on £', and f E Hol( A), show 
that f(A) is normal. 

9. Let :1£ be a Banach space and let A E .96(:1£). Show that if a(A) = F) U F2 
where F1 , F2 are disjoint closed subsets of C, then there are topologically 
complementary subspaces :1£),:1£2 of :1£ such that (a) B3lj ~ 3lj (j = 1,2) 
whenever BA = AB; (b) if Aj = AI3lj, a(A) = F;; (c) there is an invertible 
operatorR: :1£->:1£1 EIl 1:1£2 such that RAR-) =A) EIlA 2. 

10. Let A E Md(C)' a(A) = {a), ... , an}, where at 1= aJ for i 1= j. Show that for 
1 -:5, j -:5, n there is a matrix AI in Md,(C) such that a(A) = {a,} and A is 
similar to A) Ell ... EIlAn' 

§5. Dependence of the Spectrum on the Algebra 

If aU) = {z E c: Izi = I}, let !!d = the uniform closure of the polynomials 
in qaU)). (Here "polynomial" means a polynomial in z.) If d= qall)), 
then the spectrum of z as an element of d is aU) (Example 3.2). That is, 

Now z E !!d and so it has a spectrum as an element of this algebra; 
denote this spectrum by (J!B( z). There is no reason to believe that (J!B( z) = 

(J.,.,( z). In fact, they are not equal. 

5.1. Example. If !!d = the closure in C( aU)) of the polynomials in z, then 
(J9t(z) = cl U). 

To see this first note that Ilzll = 1, so that (J!B( z) ~ cl U) by Theorem 3.6. 
If IAI ~ 1 and A $ (J!B(z), there is an I in !!d such that (z - A)I = 1. Note 
that this implies that IAI < 1. Because IE!!d, there is a sequence of 
polynomials {Pn} such that Pn ~ I uniformly on aU). Thus for every f > 0 
there is a N such that for m, n ~ N, f> IIPn - PmliaD == suP{IPn(z)­
Pn(z)l: z E aU)}. By the Maximum Principle, f> IIPn - Pmllcw for m, n ~ 
N. Thus g( z) = lim Pn( z) is analytic on U) and continuous on cl U); also, 
glaU) = f. By the same argument, since Pn(z)(z - A) ~ 1 uniformly on 
aU), Pn(Z)(Z - A) ~ 1 uniformly on U). Thus g(z)(z - A) = 1 on U). But 
1 = g( A)( A - A) = 0, a contradiction. Thus, cl U) ~ (J!B( z). 

Thus the spectrum not only depends on the element of the algebra, but 
also the algebra. Precisely how this dependence occurs is given below, but it 
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can be said that the example above is typical, both in its statement and its 
proof, of the general situation. To phrase these results it is necessary to 
introduce the polynomially convex hull of a compact subset of C. 

5.2. Definition. If A is a set and f: A -> C, define 

IlfilA == sup{lf(z)l: z E A}. 

If K is a compact subset of C, define the polynomially convex hull of K to 
be the set KA given by 

KA== {z E C: Ip(z)1 ~ IlpliK for every polynomial p}. 

The set K is polynomially convex if K = KA. 

Note that the polynomially convex hull of B[]) is cl []). This is, again, quite 
typical. If K is any compact set, then C \ K has a countable number of 
components, only one of which is unbounded. The bounded components are 
sometimes called the holes of K; a few pictures should convince the reader 
of the appropriateness of this terminology. 

5.3. Proposition. If K is a compact subset of C, then C \ k is the unbounded 
component of C \ K. Hence K is polynomially convex if and only if C \ K is 
connected. 

PROOF. Let Uo, UI, ... be the components of C \ K, where Uo is un­
bounded. Put L = C \ Uo; hence L = K U U::"_Pn. Clearly K ~ K: If 
n ~ 1, then Un is a bounded open set and a topological argument implies 
BUn C K. By the Maximum Principle Un ~ K: Thus, L ~ K: 

If a E Uo, (z - a) -I is analytic in a neighborhood of L. By (1II.8.5), 
there is a sequence of polynomials {Pn} such that IIPn - (z - a)-IIIL -> O. 
If qn = (z - a)Pn, then Ilqn - IIIL -> O. Thus for large n, Ilqn - IIIL < 1/2. 
Since K eLand Iqn(a) - 11 = 1, this implies that a$. K: Thus KA~ L. 

• 
5.4. Theorem. If d and !JI are Banach algebras with identity such that 
!!B ~ d and a E !!B, then 

(a) u",,(a) ~ ugj(a) and Bugj(a) ~ Bu",,(a). 
(b) u",,(a)A= ugj(a)A. 

(c) If G is a hole of u",,(a), then either G ~ ugj(a) or G n ugj(a) = D. 
(d) If!!B is the closure in d of all polynomials in a, then ugj(a) = u",,(a)A. 

PROOF. (a) If a$. ugj(a), then there is a b in !JI such that b(a - a) = 
(a - a)b = 1. Since !JI ~ d, a$. u",,(a). Now assume that A E Bugj(a). 
Since int u",,(a) ~ int ugj(a), it suffices to show that A E u",,(a). Suppose 
A$. u",,(a); there is thus an x in d such that x(a - a) = (a - a)x = 1. 
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Since A E 8 0.9l ( a), there is a sequence {A n} in C \ 0.9l( a) such that A n ~ A. 
Let (a - An)~l be the inverse of (a - An) in f!.B; so (a - An)-1 Ed. Since 
An ~ A, (a - An) ~ (a - A). By Theorem 2.2, (a - An)-1 ~ x. Thus x E 

f!.B since f!.B is complete. This contradicts the fact that A E 0.9l( a). 
(b) This is a consequence of (a) and the Maximum Principle. 
(c) Let G be a hole of o.,.t(a) and put G1 = G n o.9l(a) and G2 = G \ 

0.9l(a). So G = G1 U G2 and G1 n G2 = D. Clearly G2 is open. On the other 
hand, the fact that 8o.9l(a) ~ o.,.t(a) and G n o.,.t(a) = D implies that G1 = 

G n int0.9l(a), so G1 is open. Because G is connected, either G1 or G2 is 
empty. 

(d) Let f!.B be as in (d). From (a) and (b) it is known that o.,.t(a) ~ o.9l(a) 
~ o.,.t(a)A. Fix A in o.,.t(a)A. If A$. 0.9l(a), (a - A)-l E f!.B~d. Hence 
there is a sequence of polynomials {Pn} such that Pn( a) ~ (a - A) ~ 1. Let 
qn(z) = (z - A)Pn(Z), Thus Ilqn(a) - 111 ~ O. By the Spectral Mapping 
Theorem, o.,.t(qn(a» = qn(o.,.t(a». Thus, because A E o.,.t(a)A, 

Ilqn{a) - 111 ~ r(qn{a) -1) 

= sup{lz - 11: Z E o.,.t(qn(a))} 

= suP{lqn(w) -11: WE o.,.t(a)} 

~ Iqn(A) - 11 

=1. 

This is a contradiction. • 

EXERCISES 

1. If K is a compact subset of C, let P( K) be the closure of the polynomials in 
C(K). Show that the identity map on polynomials extends to an isometric 
isomorphism of P(K) onto P(K'). 

2. If K is a compact subset of C, let R(K) be the closure in C(K) of all rational 
functions with poles off K. If f E R(K), show that UR(K)U) = f(K). If f E 

P(K), show that Up(K)U) = f(K'). 

3. Let d, flA be as in Theorem 5.4. If a E flA and ug8(a) ~ IR, show that ug8(a) = 

od(a). 

4. Let d be a Banach algebra with identity and let a Ed. If G], Gz, ... are the 
holes of o..,(a) and 1 s n1 S n 2 ... , show that there is a subalgebra flA of d 
such that a E flA and og8(a) = ud(a) U Ur~lGnk' 

5. If d, flA, and a are as in Theorem 5.4, d is not abelian, and flA is a maximal 
abelian subalgebra of d, show that ud(a) = og8(a). 

6. If K is a nonempty compact subset of C that is polynomially convex, show that 
the components of int K are simply connected. 
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§6. The Spectrum of a Linear Operator 

The proof of the first result is left as an exercise. 

6.1. Proposition. 

(a) If:!£ is a Banach space and A E !1d(:!£), a(A*) = a(A). 
(b) If £ is a Hilbert space and A E !1d(£), a(A*) = a(A)*, where for any 

subset.1 of C, .1* == {Z: Z E .1}. 

In this section only results about operators on Banach spaces will be 
given. For the corresponding results about operators on a Hilbert space 
involving the adjoint, the reader is asked to supply the details. The preced­
ing proposition should be kept in mind as a model of the probable 
differences. 

In this section and the next :!£ always denotes a Banach space over C. 

6.2. Definition. If A E !1d(:!£), the point spectrum of A, ap(A), is defined 
by 

ap (A) == {A E C: ker( A - A) =F (o)}. 

As in the case of operators on a Hilbert space, elements of a/ A) are called 
eigenvalues. If A E ap(A), vectors in ker(A - A) are called eigenvectors; 
ker(A - A) is called the eigenspace of A at A. 

6.3. Definition. If A E !1d( :!£), the approximate point spectrum of A, aa/ A), 
is defined by 

aap(A) == {A E C: there is a sequence {xn} in :!£ 

such that Ilxnll = 1 for all nand II(A - A)xnll ~ a}. 

Note that ap(A) ~ aa/A). 

6.4. Proposition. If A E !1d(:!£) and A E C, the following statements are 
equivalent. 

(a) A f/= aap(A). 
(b) ker( A - A) = (0) and ran( A - A) is closed. 
(c) There is a constant c > 0 such that II(A - A)xll ~ clixil for all x. 

PROOF. Clearly it may be assumed that A = O. 
(a) = (c): Suppose (c) fails to hold; then for every n there is a vector xn 

with IIAxnl1 ::::; Ilxnll/n. If Yn = xn/llxnll, IIYnl1 = 1 and IIAYnl1 ~ O. Hence 
o E aap(A). 

(c) = (b): Suppose IIAxl1 ~ clixil. Clearly ker A = (0). IfAx n ~ y, Ilxn -
xmll ::::; c-11lAxn - Axmll, so {xn} is a Cauchy sequence. Let x = limxn; 
therefore Ax = Y and ran A is closed. 
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(b) = (a): Let qy = ran A; so A: fil' ~ qy is a continuous bijection. By the 
Inverse Mapping Theorem, there is a bounded operator B: '!l/ ~ fil' such 
that BAx = x for all x in fil'. Thus if Ilxll = 1, 1 = IIBAxl1 s IIBIIIIAxll. 
That is, IIAxl1 ~ IIBII- 1 whenever Ilxll = 1. Hence 0 $. aap(A). • 

It may be that a/A) is empty, but it will be shown that aap(A) is never 
empty. The first statement follows from the next result (or from other 
examples that have been presented); the second statement will be proved 
later. 

6.5. Proposition. If 1 s P S 00, define S: IP ~ [P by S(XI' x 2, ... ) = 
(0, Xl' X2"")' Then a(S) = cl D, apeS) = D, and aap(S) = aD. Moreover, 
for IAI < 1, ran(S - A) is closed and dim[IP Iran(S - A)] = 1. 

PROOF. Let Sp be the shift on [P. For 1 s p s 00, define Tp: IP ~ IP by 
Tp(XI' x 2, ... ) = (X2' x3"")' It is easy to check that for 1 s P < 00 and 
lip + 1/q = 1, S/ = Tq. Since IISpll = 1, a(Sp) ~ cl D. 

Suppose X = (Xl' x 2, ... ) E [P, A*' O. If Spx = AX, 0 = Ax l , Xl = 
AX2, ... . Hence 0 = Xl = x 2 = .... Since Sp is an isometry, kerSp = (0). 
Thus a/Sp) = D. 

Let 1 s p s 00 and IAI < 1. Put XI-.. = (1, A, A2, ... ). Then Ilxl-..ll~ = 
L~~oIAPln < 00. Also, y;,XI-.. = (A, A2, ... ) = A XI-..' Hence A E ap(y;,) and 
xI-.. E ker(Tp - A). If 1 s P < 00 and lip + 1/q = 1, Tq = S/; so D ~ 
a(Tq) = a(Sp)' Also, SOC) = Tt, so D ~ a (S,xJ. Thus for all p, D ~ a(Sp) 
~ cl D. Since a(Sp) is necessarily closed, a(Sp) = cl D. 

If IAI < 1 and X E [P, II(Sp - A)xllp = IISpx - Axllp ~ IllSpxllp -
IAlllxllpl = Illxlip - IAlllxllpl = (1 - IADllxllp' By (6.4), A$. aap(Sp)' Hence 
aap(Sp) ~ aD. The fact that aap(Sp) = aD follows from the next proposi­
tion (6.7). 

Fix IAI < 1, so ran(Sp - A) is closed. If 1 s P < 00, then dim[IP Iran(Sp 
- A)] = dim[ran(Sp - A)-L] (Why?) = dim ker(S* - A) (VI.1.8) = 

dim ker( Tq - A). Also, dim[ 100 Iran( SOC) - A)] = dim[ franC SOC) - A)] (Why?) 
= dimker(TI - A). So to complete the proof it suffices to show that 
dimker(Tp - A) = 1 for 1 s P s 00. If X E IP and Tpx = Ax, then 
(x 2, x 3, ... ) = (AXI, AX 2 , ••• ). So xn+l = AXn for all n. Thus x 2 = Ax l ; 

X3 = AX2 = A2x l , .... Hence x n+ l = AnX I. That is, if xI-.. = (1, A, A2, ... ), 

then X = XIXI-..' Since it has already been shown that XI-.. E ker(Tp - A), this 
completes the proof. • 

6.6. Corollary. If 1 s P s 00 and T: IP ~ [P is defined by T(x l , x 2"'·) = 
(X2' x 3 , ..• ), then aCT) = cl D and for IAI < 1, ker(T - A) is the one­
dimensional space spanned by the vector (1, A, A2 , ... ). 

The next result shows that if S is as in (6.5), then aD ~ aa/S), 
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6.7. Proposition. If A E 88(3[), then da(A) ~ aap(A). 

PROOF. Let A E da(A) and let {An} ~ C \ a(A) such that An ~ A. 

6.8. Claim. II(A - An)-III ~ 00 as n ~ 00. 

In fact, if the claim were false, then by passing to a subsequence if 
necessary, it follows that there is a constant M such that II(A - An)-III ::; M 
for all n. Choose n sufficiently large that IAn - AI < M- 1• Then II(A - A) 
- (A - An)11 < II(A - An)-Ill-I. By (2.3b), this implies that (A - A) is 
invertible, a contradiction. This establishes (6.8). 

Let Ilxnll = 1 such that an == II(A - An)-Ixnll > II(A - An)-III - n-l, 
so an ~ 00. Put Yn = a;I(A - An)-Ixn; hence IIYnl1 = 1. Now 

(A - A)yn = (A - An)yn +(A - An)yn 

= a;lxn +(A - An)Yn' 

Thus II(A - A)Ynll ::; a;1 + Ill. - Ani, so that II(A - A)Ynll ~ 0 as n ~ 00. 

That is, A E aa/A). • 

Let A E ge( 3[) and suppose .1 is a clopen subset of a( A); that is, .1 is a 
subset of a(A) that is both closed and relatively open. So a(A) = .1 u 
(a(A)\.1). As in Proposition 4.11 (and Exercise 4.9), 

6.9 E(.1) = E(.1; A) = 21 . [(z - A) -I dz, 
7Tl ir 

where r is a positively oriented Jordan system such that .1 ~ ins T and 
a(A)\.1 ~ outT, is an idempotent. Moreover, E(.1)B = BE(.1) whenever 
AB = BA and if 3[.1 = E(.1)3[, a(AI3[,1) = .1. If .1 = a singleton set {A}, 
let E(A) = E({A}) and 3["A = 3[{"A}' Note that if A is an isolated point of 
a(A), then {A} is a clopen subset of a(A). 

6.10. Example. Let {an} E l oo ,l::;p::; 00, and define A: IP ~ IP by 
(Ax)(n) = anx(n). Then a(A) = cl{an} and a/A) = {an}. Let en(k) = 0 
if k -=1= nand 1 if k = n. For each k, define Nk = {n E f\I; an = a k } and 
define Pk: IP ~ IP by Pkx = XNX, If ak is an isolated point of a(A), then 

k 

{ad is a clopen subset of a(A) and E({ ad; A) = Pk • 

Suppose A E 88(3[) and Ao is an isolated point in a(A). Hence E(Ao) = 

E(Ao; A) is a well-defined idempotent. Also, Ao is an isolated singularity of 
the analytic function z ~ (z - A)-Ion C \ a(A). Perhaps the nature of 
this singularity (pole or essential singularity) will reveal something of the 
nature of A 0 as an element of a( A). First it is helpful to get the precise 
form of the Laurent expansion of (z - A) -I about A o' 

6.11. Lemma. If Ao is an isolated point of a(A), then 
00 

(z - A)-I = L (z - AorAn 
n= - 00 
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for 0 < Iz - Aol < ro = dist(A o, a(A) \ {Ao}), where 

1 f( )-n-I( ),-1 An = -2' Z - Ao Z - A dz 
'TTl y 

for y = any circle centered at Ao with radius < roo 

The proof follows the lines of the usual Laurent series development 
(Conway [1978]). 

6.12. Proposition. If Ao is an isolated point of a(A), then Ao is a pole of 
(z - A)-l of order n if and only if (Ao - A)nE(Ao) = 0 and (Ao­
Ay-1E(A o) =f= 0. 

PROOF. Let (z - A)-I = I::;O~ _oo(z - AO)nAn as in (6.11). Now Ao is a pole 
of order n if and only if A-n =f= 0 and A-k = 0 for k > n. Let r be a 
positively oriented system of curves such that a(A) \ {Ao} ~ insr and 
Ao E out r. Let y be a circle centered at Ao and contained in out r. Let 
e( z) == 1 in a neighborhood of y U ins y and e( z) == 0 in a neighborhood of 
r U insr. So e E Hol(A) and e(A) = E(Ao). If k ;:::: 1, 

1 f )k-l( -I A_ k =-2' (z-Ao z-A) dz 
'TTl y 

= E(Ao)(A - Ao)k-I 

Slllce a( A) ~ ins( y + T) = ins y U ins r. The proposition now follows . 

• 
6.13. Corollary. If Ao is an isolated point of a( A) and is a pole of 
(z - A)-I, then Ao E a/A). 

In fact, the preceding result implies that if n is the order of the pole, then 
(0) =f= (Ao - A)n-lE(Ao)~~ ker(A - Ao). 

6.14. Example. A measurable function k: [0,1] X [0, 1] ~ C is called a 
Volterra kernel if k is bounded and k(x, y) = 0 when x < y. If 1 :0; P :0; 00 

and k is a Volterra kernel, define Vk : LP(O, 1) ~ LP(O, 1) by 

Vkf(x) = {k(x, y )f(y) dy = lxk(x, y )f(y) dy. 
o 0 

Then Vk E !!4(LP) and IlVkll :0; Ilklloo (VI.2.3). 
If k, h are Volterra kernels and 

( hk ) ( x, y) = {h ( x, t ) k ( t, Y ) dt, 
o 
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then hk is a Volterra kernel, IIhklloo :=:; Ilhlloollklloo, and Vhk = VhVk • Note 
that if k(x, y) is the characteristic function of {(x, y) E [0,1] X [0,1]: 
y < x}, then Vk is the Volterra operator (11.1.7). 

If k is a Volterra kernel, then 

a(Vk ) = {O}. 

Indeed, from the preceding paragraph it is known that Vkn = Vkn. This will 
be used to show that the spectral radius of Vk is O. 

615 CI · Ikn( )1 Ilkll;:' ( )n~1 f . . aIm. x, y :=:; (n _ I)! x - y or y < x. 

This is proved by induction. Clearly it holds for n = 1. Suppose (6.15) is 
true for some n ~ 1. Then 

le+ 1(x,y)1 =1~\(x,t)kn(t,Y)dtl 

:=:; jXlk(x, t)llkn(t, Y)I dt 
y 

This establishes the claim. 
From (6.15) it follows that 

II vnll < Ilknll < Ilkll;:' 
k - 00 - (n - 1)! . 

Therefore 

IlVtlll/n:=:; Ilklloo[{n -1)1] ~1/n. 

Since [en - I)!] ~1/n ~ 0 as n --> 00, r(Vk ) = O. Thus D * a(Vk ) ~ {i\ E C: 
1i\1 :=:; OJ; that is, a(Vk ) = {OJ. 

It is possible for ker Vk to be nontrivial. For example, if k( x, y) = 

X (0, 1/2) (y) when y < x and 0 otherwise, then 

{ 
1xf(y) dy 

VJ( x) = 1°1/2 
f(y) dy 

° 

if x:=:; i, 

if x ~ i. 

So if fey) = 0 for 0 :=:; y :=:; i, vkf = O. 
On the other hand, the Volterra operator V [= Vk for k( x, y) = the 

characteristic function of {(x, y): y < x} 1 has ker V = (0). In fact, if 
o = Vf, then for all x, 0 = fof(y) dy. Differentiating gives that f = O. 
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Is there an analogy between Vk for a Volterra kernel k and a lower 
triangular matrix? 

EXERCISES 

1. Prove Proposition 6.1. 

2. Show that for!¥" a Banach space and A in al'(3C), a{(A) = ar(A*). What 
happens in a Hilbert space? 

3. If Jf' is a Hilbert space and K is a compact subset of C, show that there is an A 
in al'(Jf') such that a(A) = K. Can A be found such that a(A) = aap(A) = K? 

4. Let K be a compact subset of C. Does there exist an operator A in al'(C[0, 1)) 
such that a(A) = K? 

5. If !¥" is a Banach space and A E al'(!¥"), show that A is left invertible if and 
only if ker A = (0) and ran A is a closed complemented subspace of !¥". 

6. If 3C is a Banach space and A E al'(!¥"), show that A is right invertible if and 
only if ran A =!¥" and ker A is a complemented subspace of !¥". 

7. If!¥" is a Banach space and T: !¥" -> !¥" is an isometry, then either aCT) I:;; aR) or 
aCT) = cl R). 

8. Verify the statements made in Example 6.10. 

9. Let 1 s; p s; 00 and suppose 0 < a j S; a 2 .•. such that r = lim an < 00. De­
fine A: IP -> IP by A(x j ,x2 , ..• ) = (0,a j x j ,a2 x 2 , ..• ). Show that a(A) = {z 
E C: Izl S; r} and aap(A) = oa(A). If IAI < r, then ran(A ~ A) is closed and 
has codimension 1. Also, ap (A) = D. 

lO. Verify the statements made in Example 6.14. 

11. Let 1 s;p S; 00 and let (X,il,f-L) be a a-finite measure space. For cf> in L"(f-L), 
define Mq, on LP (f-L) as in Example III.2.2. Find a( Mq,), aap (Mq,), and ap (Mq,). 

12. If A E P-/(3C), f E Hol(A), and A E IJp(A), does f(A) E ap(f(A»? If A E 

aap(A), does f(A) E aap(f(A»? Is there a relation between f(aap(A» and 
aap(f(A»? 

13. If A E P-/(3C) say that a complex number A has finite index if there is a positive 
integer k such that ker( A ~ A)k = ker( A ~ A)k + j; the index of A, denoted by 
peA) or PA(A), is the smallest such integer k. (a) Show that if A is an isolated 
point of a(A) and a pole of order n of (z ~ A)-I, then peA) = n. (b) If 
peA) < 00, show that ker(A ~ AY(A) = ker(A ~ AY(A)+k for all k z O. (c) If 

".~ C" =d A ~ [~ ~ . 1 J th~ ,(A) ~ to} =d ,(0) ~ " 

14. If V is the Volterra operator, show that 0 is an essential singularity of 
(z ~ V)-I. 

15. Let .91 be a Banach algebra with identity. If a E.9I, define La' Ra E al'(.9I) by 
La(x) = ax and Ra(x) = xa. Show that a(La) = a(Ra) = a(a). 
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§7. The Spectral Theory of a Compact Operator 

Recall that for a Banach space g{, 93'o(g{) is the algebra of all compact 
operators. This Banach algebra has no identity, so if A E 93'o(g{), then 
a(A) refers to the spectrum of A as an element of 93'(g{). Of course, if 
d = 93'0 ( g{) + C, then d is a Banach algebra with identity (Why?) and we 
could consider aJAA) for A in 93'o(g{). By Theorem 5.4, a(A) I:::;; a...,(A), 
8a...,(A) I:::;; a(A), and a(A)A = a...,(A)A. Below, in Theorem 7.1, it will be 
shown that a(A) is a countable set and hence a(A) = 8a(A) = a(A)A. 
Thus a(A) = a...,(A). 

7.1. Theorem. (F. Riesz) If dim g{ = 00 and A E 93'0 ( g{), then one and only 
one of the following possibilities occurs. 

(a) a(A) = {O}. 
(b) a(A) = {O, AI"'" An}, where for 1 ~ k ~ n, Ak =F 0, each Ak is an 

eigenvalue of A, and dimker(A - Ak ) < 00. 

(c) a(A) = {O, AI' A2 , ..• }, where for each k ~ 1, Ak is an eigenvalue of A, 
dimker(A - Ak ) < 00, and, moreover, limA k = 0. 

The proof will use several lemmas. The first lemma was given in the case 
that g{ is a Hilbert space in Proposition 11.4.14. The proof is identical and 
will not be repeated here. 

7.2. Lemma. If A E 93'0(g{), A =F 0, and ker(A - A) = (0), then ran(A -
A) is closed. 

The proof of the next lemma is like that of Corollary 11.4.15. 

7.3. Lemma. If A E 93'0(g{), A =F 0, and A E a(A), then either A E ap(A) 
or A E ap(A*). 

7.4. Lemma. If vIt ~ JV ~ g{, vIt =F JV, and 10 > 0, then there is a Y in JV 
such that Ilyll = 1 and dist(y, vIt) ~ 1 - e. 

PROOF. Let 8(y) = dist(y, vIt) for every y in JV. Now if Yl E JV, there is 
an Xo in vIt such that 8(Yl) ~ Ilxo - Ylll ~ (1 + e)8(Yl)' Let Y2 = Y1 - xo' 
Then (1 + e)8(Y2) = (1 + e)inf{IIY2 - xii: x E vIt) = (1 + e)inf{IIY1 - Xo 

- xII: x E vIt) = (1 + e)8(Y1) since Xo E vIt. Thus (1 + e)8(Y2) > Ilxo -
YIII = IIY211· Let Y = IIY211- 1h So Ilyll = 1, Y E JV, and if x E vIt, then 

IIY - xii = 1111Y211- 1Y2 - xii 

= IIY211- 1 11Y2 -IIY21I x ll > [(1 + e)8(Y2)]-11IY2 -11Y2llxll 
~ (1 + e) -1 > 1 - E. • 

If vIt and JV are finite dimensional in the preceding lemma, then Y can 
be chosen in JV such that Ilyll = 1 and dist(y, vIt) = 1 (see Exercise 1). 
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7.5. Lemma. If A E ~o(.er) and {An} is a sequence of distinct elements in 
ap(A), then lim An = O. 

PROOF. For each n let xn E ker(A - An) such that xn "* O. It follows that if 
An = V{ Xl"'" x n}, then dim An = n (Exercise). Hence An s An+ I and 
An "* A n+ l' By the preceding lemma there is a vector Yn in An such that 
IIYnl1 = 1 and dist(Yn,An_ I ) > t· Let Yn = alx I + ... +anx/I" Hence 

(A - AJYn = al(AI - An)XI + ... +an-I(A n- I - An)Xn-1 E Ani' 

So if n > m, 

A(A~IYn)-A(A;;/Ym) = A~I(A - AJYn - A;;/(A - Am)ym + Yn - Ym 

= Yn - [ym + A;;/(A - Am)Ym - A~I(A - AJYnl· 

But the bracketed expression belongs to An-I' Hence IIA(A~IYn)­
A(A;;/Ym)11 ~ dist(Yn' An-I) > t. Therefore A(A~IYn) can have no conver­
gent subsequence. But A is a compact operator so that if S is any bounded 
subset of .er, cl A(S) is compact. Thus it must be that {A;,IYn} has no 
bounded subsequence. Since IIYnl1 = 1 for all n, it must be that IIA~IYnll = 
IAIII- I ~ 00. That is, 0= limA n. • 

PROOF OF THEOREM 7.1. The first step is to establish the following. 

7.6. Claim. If A E a(A) and A "* 0, then A is an isolated point of a(A). 

In fact, if {An} ~ a(A) and An ~ A, then each An belongs to either 
ap(A) or ap(A*) (7.3). So either there is a subsequence {A nk } that is 
contained in ap(A) or there is a subsequence contained in a/A*). If 
{An,} ~ ap(A), then Lemma 7.5 implies An, ~ 0, a contradiction. If {An,} 
~ a/A*), then the fact that A* is compact gives the same contradiction. 
Thus A must be isolated if A "* O. 

7.7. Claim. If A E u(A) and A"* 0, then A E up(A) and dimker(A - A) 
< 00. 

By (7.6), A is an isolated point of u(A) so that E(A) can be defined as in 
(6.9). Let .erA = E(A).er and AA = AI.erA. By Exercise 4.9 [also see (4.11)], 
a(AA) = {A}. Thus AA is an invertible compact operator. By Exercise 
VI.3.5, dim.erA < 00. If n = dim .erA' then AA - A is a nilpotent operator on 
an n-dimensional space. Thus (A A - A r = O. Let v = the positive integer 
such that (AA - A)" = ° but (AA - A)"-I "* 0. Let X E.erA such that ° "* (AA - Ay-Ix = Y; then (A - A)Y = 0. Thus A E up(A). 

Also, ker(A - A) E LatA and Alker(A - A) is compact. But Ax = AX 
for all X in ker(A - A), so dimker(A - A) < 00. 

Now for the denouement. If dim.er = 00 and A E ~o( .er), then A cannot 
be invertible (Exercise VI.3.5). Thus 0 E u(A). If A E u(A) and A"* 0, 
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then Claim 7.7 says that A E ap(A) and dimker(A - A) < 00. So if a(A) is 
finite, either (a) or (b) of (7.1) hold. If a(A) is infinite, then Claim 7.6 
implies that a(A) is countable. So let a(A) = {O, AI' A2, ... }. By Lemma 
7.5 and Claim 7.7, (c) holds. • 

Part of the following surfaced in the proof of the theorem. 

7.S. Corollary. If A E 8i3'o(.?E) and A E a( A) with A =1= 0, then A is a pole 
of (z - A)-I, ker(A - A) I:;:; E(A).?E, and dimE(A).?E< 00. 

PROOF. The only part of this corollary that did not appear in the preceding 
proof is the fact that ker(A - A) I:;:; E(A).?E. 

Let .1 = a(A)\ {A}, .?Ed = E(Ll).?E, Ad = AI.?Ed. By Exercise 4.9, a(Ad) 
= .1; so Ad - A is invertible on .?Ed' If x E ker(A - A), then x = E(A)X + 
E(Ll)x. Hence ° = (A - A)X = (A - A)E(A)X + (A - A)E(Ll)x = (AA 
- A)E(A)X + (Ad - A)E(Ll)x. But .?EA and .?Ed E Lat A, so (AA­
A)E(A)X E.?EA and (Ad - A)E(Ll)x E .?Ed; since .?EA (i.?Ed = (0), 0= (AA 
- A)E(A)X = (Ad - A)E(Ll)x. But Ad - A is invertible so E(Ll)x = 0; 
that is, x = E(A)X E .?EA' Hence ker(A - A) I:;:; .?EA' • 

If k is a Volterra kernel (6.14), then Vk is a compact operator (Exercise 
VI.3.6) and a(Vk ) = {O}. So the first possibility of Theorem 7.1 can occur. 
If V is the Volterra operator, then ap(V) = D. 

Let V be the Volterra operator on LP(O, 1),1 < P < 00. If AI"'" An E C, 
let D: en --4 en be defined by D(ZI"'" zn) = (A1Z1, ••• , AnZn)' Then 
A = V E9 D on LP(O, 1) E9 en is compact and a(A) = {O, AI"'" An}. So 
the second possibility of (7.1) occurs. If {An} I:;:; C and lim An = 0, then 
define D: IP --4 IP (1 :s; p :s; 00) by (Dx)(n) = Anx(n). If A = V E9 D on 
LP(O, 1) E9 /P, A is compact and a(A) = {O, AI' A2 , ••• } (see Exercise 3). 

The next result has a number of applications in the theory of integral 
equations. 

7.9. The Fredholm Alternative. If A E 8i3'o(.?E), A E C, and A =1= 0, then 
ran(A - A) is closed and dimker(A - A) = dimker(A - A)* < 00. 

PROOF. It suffices to assume that A E a(A). Put .1 = a(A) \ {A}, .?EA = 
E(A).?E, .?Ed = E(Ll).?E, AA = AI.?EA, and Ad = AI.?Ed. Now A $. .1 = a(Ad)' 
so Ad - A is invertible. Thus ran(Ad - A) = .?Ed' Hence ran(A - A) = (A 
- A).?E A + (A - A ).?Ed = ran( AA - A) + .?Ed' Since dim.?EA < 00, ran( A -
A) is closed (I1IA.3). 

Also note that 

.?E/ran{A - A) = (.?Ed + .?EA)/[ran(AA - A) + .?Ed] 

z .?EA/ran(AA - A). 

Since dim.?EA < 00, dim[.?E/ran(A - A)] = dim.?EA - dimran(AA - A) = 
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dimker(AA - .\) = dimker(A - .\) < 00 since ker(A - .\) <;;::?fA (7.8). But 
[?fjran(A - .\))* = franCA - .\))-L (III.I0.2) = ker(A - .\)*. Hence 
dimker(A - .\) = dimker(A - .\)*. • 

7.10. Corollary. If A E 8i3'o(?f), .\ E C, and .\ *- 0, then for every y in ?f 
there is an x in ?f such that 

7.11 (A-'\)x=y 

if and only if the only vector x such that (A - .\)x = 0 is x = O. If this 
condition is satisfied, then the solution to (7.11) is unique. 

This corollary is a rephrasing of part of the Fredholm Alternative 
together with the fact that an operator has dense range if and only if its 
adjoint has a trivial kernel. 

The applications of the Fredholm Alternative occur by taking the com­
pact operator to be an integral operator. 

EXERCISES 

1. If .A,.AI are finite-dimensional subspaces of !£ and .A s: .AI,.A"*.AI, then 
there is a y in .AI such that Ilyll = 1 and dist(y,.A) = 1. 

2. Let A E PA(!£) and let .\1""'.\" be distinct points in ap(A). If Xk E ker(A -
.\k)' 1 s: k s: n, and Xk "* 0, show that {Xl" .. ,X,,} is a linearly independent set. 

3. Let !£1'!£2'''' be Banach spaces and put !£ = EEl p.'l;,. Let A" E a3'(.'l;,) such 
that sup" IIA" II < 00 and define A: !£ ~!£ by A {x" } = {A" x,,}. Show that 
A E PA(!£) and IIA II = sup" IIA n II· Show that A E a3'o (!£) if and only if each 
A" E PAo(!£) and limllA,,11 = 0. 

4. Suppose A E PA(!£) and there is a polynomial p such that p (A) E a3'o (!£). 
What can be said about a(A)? 

5. Suppose A E a3'(!£) and there is an entire function f such that f(A) E PAo(!£). 
What can be said about a(A)? 

6. With the terminology of Exercise 6.13, if A E PAo(!£), .\ E a(A), and .\"* 0, 
what can be said about the index of .\? 

§8. Abelian Banach Algebras 

Recall that it is assumed that every Banach algebra is over C. Also assume 
that all Banach algebras contain an identity. 

A division algebra is an algebra such that every nonzero element has a 
multiplicative inverse. It may seem incongruous that the first theorem in this 
section allows the algebra to be nonabelian. However, the conclusion is that 
the algebra is abelian-and much more. 



VII.S. Abelian Banach Algebras 223 

8.1. The Gelfand-Mazur Theorem. If.s;l is a Banach algebra that is also a 
division ring, then .s;I = C (== {,\1: A E C}). 

PROOF. If a E.s;I, then o(a) =F D. If A E o(a), then a - A has no inverse. 
But .s;I is a division ring, so a - A = O. That is, a = A. • 

As a corollary of the preceding theorem, the algebra of quaternions, IHI, is 
not a Banach algebra. That is, it is impossible to put a norm on IHI that 
makes it into a Banach algebra. Can you show this directly? 

8.2. Proposition. If .s;I is an abelian Banach algebra and ...It is a maximal 
ideal, then there is a homomorphism h: .s;I ~ C such that ...It = ker h. 
Conversely, if h: .s;I ~ C is a nonzero homomorphism, then ker h is a 
maximal ideal. Moreover, this correspondence h ~ kerh between homomor­
phisms and maximal ideals is bijective. 

PROOF. If ...It is a maximal ideal, then ...It is closed (2.4b). Hence .s;I/...It is a 
Banach algebra with identity. Let 7T: .s;I ~ .s;I/...It be the natural map. If 
a E.s;I and 7T(a) is not invertible in .s;I/...It, then 7T(.s;Ia) = 7T(a)[.s;I/...It] is 
an ideal in .s;I/...It that is proper. Let 1= {b E.s;I: 7T(b) E 7T(.s;Ia)} = 
7T- I (7T(.s;Ia». Then I is a proper ideal of .s;I and ...It c:;;; I. Since ...It is 
maximal, ...It = I. Thus 7T(a.s;l) c:;;; 7T(I) = 7T(...It) = (0). That is, 7T(a) = O. 
This says that .s;I/...It is a field. By the Gelfand-Mazur Theorem .s;I/...It = C 
= {A +...It: A E C}. Define h: .s;I/...It ~ C by h(A +...It) = A and define h: 

.s;I ~ C by h = h 0 7T. Then h is a homomorphism and ker h = ...It. 
Conversely, suppose h: .s;I ~ C is a nonzero homomorphism. Then 

ker h =...It is a nontrivial ideal and .s;I/...It::::: C. (Why?) So ...It is maximal. 
If h, h I are two nonzero homomorphisms and ker h = ker h I, then there is 

an a in C such that h = ah ' (A.1.4). But 1 = h(l) = ah '(l) = a, so h = 
h'. • 

8.3. Corollary. If .s;I is an abelian Banach algebra and h: .s;I ~ C is a 
homomorphism, then h is continuous. 

PROOF. Maximal ideals are closed (2.4b). • 

The next result improves the preceding corollary a little. Remember that 
by (8.3) if h: .s;I ~ C is a homomorphism, then h E.s;I * (the Banach space 
dual of .s;I). 

8.4. Proposition. If .s;I is abelian and h: .s;I ~ C is a homomorphism, then 
Ilhll = 1. 

PROOF. By (8.3), h E.s;I* so that Ilhll < 00. Let a E.s;I and put A = h(a). 
If IAI > Iiall, then Ila/AII < 1. Hence 1 - a/A is invertible. Let b = (1 -
a/A)-I, so 1 = b(1 - a/A) = b - ba/A. Since h(l) = 1, 1 = h(b - ba/A) 
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= h(b) - h(b)h(a)/A = h(b) - h(b) = 0, a contradiction. Hence II all ;::: 
IAI = Ih(a)l; so IIhll :::;; 1. Since h(1) = 1, IIhll = 1. • 

8.5. Definition. If sd is an abelian Banach algebra, let ~ = the collection 
of all nonzero homomorphisms of sd -'> C. Give ~ the relative weak * 
topology that it has as a subset of sd *. ~ with this topology is called the 
maximal ideal space of sd. 

8.6. Theorem. If sd is an abelian Banach algebra, then its maximal ideal 
space ~ is a compact Hausdorff space. Moreover, if a E sd, then a(a) = 
~(a) == {h(a): h E ~}. 

PROOF. Since ~ ~ ballsd*, it suffices for the proof of the first part of the 
theorem to show that ~ is weak * closed. Let { hi} be a net in ~ and suppose 
hE ballsd* such that hi -'> h weak*. If a,b Esd, then h(ab) = 
limihJab) = limihi(a)hi(b) = h(a)h(b). So h is a homomorphism. Since 
h(l) = lim ih i(l) = 1, h E ~. Thus ~ is compact. 

If h E ~ and A = h(a), then a - A E kerh. So a - A is not invertible 
and A E a(a); that is, ~(a) ~ a(a). Now assume that A E a(a); so a - A 
is not invertible and, hence, (a - A) sd is a proper ideal. Let A be a 
maximal ideal in sd such that (a - A)sd~ A. If h E ~ such that A = 
kerh, then 0= h(a - A) = h(a) - A; hence a(a) ~ ~(a). • 

Now it is time for an example. Here is one that is a little more than an 
example. If X is compact and x E X, let 8x : C( X) -'> C be defined by 
8x (f) = f(x). It is easy to see that 8x is a homomorphism on the algebra 
C(X). 

8.7. Theorem. If X is compact and ~ is the maximal ideal space of C(X), 
then the map x ~ 8x is a homeomorphism of X onto ~. 

PROOF. Let .1: X -'> ~ be defined by Ll(x) = 8x ' As was pointed out before, 
Ll(X) ~ ~. It was shown in Proposition V.6.1 that .1: X -'> (Ll(X), weak*) 
is a homeomorphism. Thus it only remains to show that Ll(X) =~. If 
h E~, then there is a measure I-'- in M(X) such that h(f) = ffdl-'- for all f 
in C(X). Also, 111-'-11 = IIhll = 1 and I-'-(X) = f1dJl = h(l) = 1. Hence Jl ;::: 0 
(Exercise 111.7.2). Let x E support (Jl). It will be shown that h = 8x ' 

Let A= {fE C(X): f(x) = O}. So A is a maximal ideal of C(X). 
Note that if it can be shown that ker h ~ A, then it must be that ker h = A 
and so h = 8x ' So let f E ker h. Because ker h is an ideal, Ifl2 = ff E ker h. 
Hence 0 = h(lfI2) = flfl2 dJl. Since Jl ;::: 0 and If12;::: 0, it must be that 
f = 0 a.e. [1-'-]. Since f is continuous, f == 0 on support (Jl). In particular, 
f(x) = 0 and sofEA. • 

It follows from the preceding theorem that the maximal ideals of C( X) 

are all of the form {f E C(X): f(x) = O} for some x in X. 



VII.8. Abelian Banach Algebras 225 

8.8. Definition. Let d be an abelian Banach algebra with maximal ideal 
space 2. If a Ed, then the Gelfand transform of a is the function a: 
2 -> C defined by a(h) = h(a). 

8.9. Theorem. If d is an abelian Banach algebra with maximal ideal space 
2 and a Ed, then the Gelfand transform of a, a, belongs to C(2). The map 
a >--+ a of d into C( 2) is a continuous homomorphism of d into C( 2) of 
norm 1 and its kernel is 

n{ vIt: vIt is a maximal ideal of d } . 

Moreover, for each a in d, 

n ..... 00 

PROOF. If hi -> h in 2, then hi -> h weak* in d*. So if a Ed, a(hJ = 
hi(a) -> h(a) = a(h). Thus a E C(2). 

Define 'I: d-> C(2) by yea) = a. If a, bEd, then y(ab)(h) = ab(h) 
= h(ab) = h(a)h(b) = a(h)h(h). Therefore y(ab) = y(a)y(b). It is easy 
to see that 'I is linear, so 'I is a homomorphism. Also, by (8.4), if a Ed, 
la(h)1 = Ih(a)1 ::s; lIall; thus Ily(a)lloo = Iiall oo ::s; Ilall· So 'I is continuous 
and 11'111 ::s; 1. Since '1(1) = 1, 11'111 = 1. 

Note that a E kery if and only if a == 0; that is, a E kery if and only if 
h (a) = 0 for each h in 2. Thus a E kery if and only if a belongs to every 
maximal ideal of d. 

Finally, by Theorem 8.6, if a Ed, then Iiall oo = sup{ 1,\1: ,\ E a( a)}. The 
last part of this theorem is thus a consequence of this observation and 
Proposition 3.8. • 

The homomorphism a >--+ a of d into C(2) is called the Gelfand trans­
form of d. The kernel of the Gelfand transform is called the radical of 
d,radd. So 

rad d = n{ vIt: vIt is a maximal ideal of d} . 

If X is compact and 2, the maximal ideal space of C( X), is identified 
with X as in Theorem 8.7, then the Gelfand transform C(X) -> C(2) 
becomes the identity map. 

If d is an abelian algebra, say that a in d is a generator of d if {p(a): 
p is a polynomial} is dense in d. 

Recall that if 7: X -> Y is a homeomorphism, then A: C(Y) ---> C(X) 
defined by Af = f 0 7 is an isometric isomorphism (VI.2.1). Denote the 
relationship between A and 7 by A = 7#. 

8.10. Proposition. If d is an abelian Banach algebra with identity and a is a 
generator of d, then there is a homeomorphism 7: 2 ---> a(a) such that if 'I: 
d-> C(2) is the Gelfand transform andp is apolynomia/, then y(p(a)) = 

7#( p). 
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PROOF. Define 'T: 2: -4 a(a) by 'T(h) = h(a). By Theorem S.6 'T is surjec­
tive. It is easy to see that 'T is continuous. To see that 'T is injective, suppose 
'T(h l ) = 'T(h2)' so hl(a) = h2(a). Hence hlCa n ) = h2(a n ) for all n z O. By 
linearity, hl(p(a» = h2(p(a» for every polynomial p. Since a is a genera­
tor for d and hl and h2 are continuous on d, hl = h2, and 'T is injective. 
Since 2: is compact, 'T is a homeomorphism. 

The remainder of the proposition follows from the fact that y and 'T # are 
homomorphisms. Hence y(p(a»(h) = p(y(a»(h) = p(a)(h) = peaCh»~ = 
p('T(h» = 'T#(p)(h). • 

8.11. Corollary. If d has two generators, a l and a2, then a(al) and a(a 2 ) 

are homeomorphic. 

The converse to (S.l1) is not true. If d= C[ -1,1], then f(x) = x 
defines a generator f for d. If g(x) = x 2 , then a(g) = g([ -1,1]) = [0,1]. 
So aU) and a(g) are homeomorphic. However, g is not a generator for d. 
In fact, the Banach algebra generated by g consists of the even functions in 
C[-1,1]. 

8.12. Example. If V: L2(0, 1) -4 L2(0, 1) is the Volterra operator and d is 
the closure in !?j(L2(0, 1» of {p(V): p is a polynomial in z}, then d is an 
abelian Banach algebra and rad d = cl { P (V): p is a polynomial in z and 
p(O) = O}. In other words, d has a unique maximal ideal, rad d. In fact, if 
!?j = !?j(L2(0, 1», Theorem 5.4 implies that aasotCV) ~ a!H(V) ~ asot(V). 
Since a!H(V) = {O} (6.14), asot(V) = {O}. The statement above now follows 
by Proposition S.10. 

8.13. Example. Let d be the closure in C( a[}) of the polynomials in z. If 
2: is the maximal ideal space of d, then 2: is homeomorphic to a",( z). 
(Here z is the function whose value at A in a[) is A.) Now a sot ( z) = cl [} as 
was shown in Example 5.1. If fEd, then the Maximum Modulus Theorem 
shows that f has a continuous extension to cl [} that is analytic in [} [see 
(5.1)]. Also denote this extension by f. The proof of (S.10) shows that the 
continuous homomorphisms on d are of the form f ~ f(A) for some A in 
cl [}. 

In the next section the Banach algebra LI( G) is examined for a locally 
compact abelian group and its maximal ideals are characterized. 

EXERCISES 

l. Let d be a Banach algebra with identity and let J be the smallest closed 
two-sided ideal of d containing {xy - yx: x, y Ed}. J is called the commu­

tator ideal of d. (a) Show that d/J is an abelian Banach algebra. (b) If I is a 
closed ideal of d such that d/l is abelian, then 1:2 J. (c) If 11: sr/-> C is a 
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homomorphism, then J ~ ker h and h induces a homomorphism h: .91/ J --> C 
such that h o'7T = h, where '7T: .91--> d/J is the natural map. Hence Ilhll = 1. (d) 
Let ~ be the set of homomorphisms of .91 --> C and let 1: be the set of 
homomorphisms of d/J. Show that the map h ...... h defined in (c) is a 
homeomorphism of ~ onto 1:. 

2. Using the terminology of Exercises 2.6 and 2.7, let .91 be an abelian Banach 
algebra without identity and show that if vi( is a maximal modular ideal, then 
there is a homomorphism h: .91 --> C such that vi( = ker h. Conversely, if h: 
.91 --> C is a nonzero homomorphism, then ker h is a maximal modular ideal. 
Moreover, the correspondence h ...... ker h is a bijection between homomor­
phisms and maximal modular ideals. 

3. If .91 is an abelian Banach algebra and h: .91 --> C is a homomorphism, then h 
is continuous and Ilhll ~ 1. If .91 has an approximate identity {e i } such that 
Ileill ~ 1 for all i, then Ilhll = 1 (see Exercise 2.8). 

4. Let .91 be an abelian Banach algebra and let ~ be the set of nonzero 
homomorphisms of .91 --> C. Show that ~ is locally compact if it has the relative 
weak* topology from .91* (Exercise 3). 

5. With the notation of Exercise 4, assume that .91 has no identity and let .911 be 
the algebra obtained by adjoining an identity. For a in .91, let cr( a) be the 
spectrum of a as an element of .911 and show that cr(a) = {h(a): h E ~} U {O}. 
Also, show that the maximal ideal space of .911 , ~I' is the one-point compactifi­
cation of ~. 

6. With the notation of Exercise 4, for each a in .91 define u: ~ --> C by 
u(h) = h(a). Show that u E Co(~) and the map a ...... u of .91 into Co(~) is a 
contractive homomorphism with kernel = n{ vI(: vi( is a maximal modular ideal 
of d}. 

7. If X is locally compact, show that x ...... lJx is a homeomorphism of X onto the 
maximal ideal space of Co ( X). 

8. Let X be locally compact and for each open subset U of X let Co (U) = {I E 

Co(X): I(x) = 0 for x in X\ U}. Show that Co(U) is a closed ideal of Co(X) 
and that every closed ideal of Co(X) has this form. Moreover, the map 
U ...... Co (U) is a lattice isomorphism from the lattice of open subsets of X onto 
the lattice of ideals of Co ( X). 

9. With the notation of the preceding exercise, show that Co (U) is a modular ideal 
if and only if X \ U is compact. 

10. If .91 is an abelian Banach algebra and a Ed, say that a is a rational generator 
of .91 if {I( a): I is a rational function with poles off cr( a)} is dense in d. 
Show that if a is a rational generator of .91, then ~ is homeomorphic to cr( a). 

11. Verify the statements made in Example 8.12. 

12. Say that a l , ••. , an are generators of .91 if .91 is the smallest Banach algebra 
with identity that contains {a l , .. . , an}. Show that a l , . .. , an are generators of 
.91 if and only if .91= cl{p(al, ... ,an ): p is a polynomial in n complex 
variables ZI"'" zn}, and if ~ is the maximal ideal space, then there is a 
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homeomorphism T of ~ onto a compact subset K of C II such that if p is a 
polynomial in n variables, then y( p( a l , ... , all» = T# (p). 

13. Verify the statements made in Example 8.13. 

14. (Zelazko [1968].) Let ..91 be a Banach algebra and suppose <1>: ..91 ~ C is a linear 
functional such that <I>(a 2) = <I>(a)2 for all a in ..91. Show that <I> is a 
homomorphism. 

15. Let ..91 be an abelian Banach algebra with identity that is semisimple [that is, 
rad ..91 = (0)]. If II . II is the norm on ..91 and II . Ii! is another norm on ..91 that 
also makes ..91 into a Banach algebra, then these two norms are equivalent. 
(Hint: use the Closed Graph Theorem to show that the identity map i: 
(s¥', II . II) ~ (s¥', II . Ill) is continuous.) 

16. Let ..91 be as in Example 8.13 and let K = {<I> E ..91*: <1>(1) = 11<1>11 = I}. Show 
thatextK= {8z : Izl = I}. (See (V.7).) 

17. Show that f(x) = exp('lTix) is a generator of C([O, 1]) but g(x) = exp(2'lTix) is 
not. 

§9 *. The Group Algebra of a Locally Compact 
Abelian Group 

If G is a locally compact abelian group and m is Haar measure on G, then 
Ll(G) == Ll(m) is a Banach algebra (Example 1.11), where for f, gin Ll(G) 
the product f * g is the convolution of f and g: 

f*g(x) = !f(xy-l)g(y)dy. 
G 

Note that dy is used to designate integration with respect to m rather than 
dm(y). Because G is abelian, Ll(G) is abelian. In fact, g * f(x) = 
fg(xy-l)f(y) dy. If y-1x is substituted for y in this integral, the value of 
the integral does not change because Haar measure is translation invariant. 
Hence g * f(x) = fg(y)f(y-1x) dy = fg(y)f(xy-l) dy = f * g(x). 

Let e denote the identity of G. If G is discrete, then ~e E L\G) and ~e is 
an identity for Ll( G). If G is not discrete, then Ll( G) does not have an 
identity (Exercise 1). 

Some examples of non discrete locally compact abelian groups are IR nand 
11' n, where 11' = the unit circle aD in C with the usual multiplication. Note 
that 11'00 is also a compact abelian group while IR 00 fails to be locally 
compact. The Cantor set can be identified with the product of a countable 
number of copies of 7L 2 and is thus a compact abelian group. Indeed, the 
product of a countable number of finite sets (with the discrete topology) is 
homeomorphic to the Cantor set, so that the Cantor set has infinitely many 
nonisomorphic group structures. 



VII.9. The Group Algebra of a Locally Compact Abelian Group 229 

For a topological group G, LI(G) is called the group algebra for G. If G 
is discrete, the algebraists talk of the group algebra over a field K as the set 
of all f = Lg EGa gg, where agE K and a g i= 0 for at most a finite number 
of g in G. If K = C, this is the set of functions f: G ~ C with finite 
support. Thus in the discrete case the group algebra of the algebraists can be 
identified with a dense manifold in LI(G) = II(G). 

Unlike §V.ll, if f: G ~ C and x E G, define fx: G ~ C by fx(Y) = 

f(yx- I); so fAy) = f(x-Iy) for G abelian. We want to examine the 
function x ~ fx of G ~ LP(G), 1 :::::; p < 00. To do this we first prove the 
following (see Exercise V.11.lO). 

9.1. Proposition. If G is a topological group and f: G ~ C is a continuous 
function with compact support, then for any e > 0 there is a neighborhood Vof 
e such that If(x) - f(Y)1 < e whenever x-Iy E V. 

PROOF. Let '¥t be the collection of open neighborhoods Vof e such that 
V = V-I. Note that if V is any neighborhood of e, then V = V n V-I E '¥t 
and U C;;; V. Order '¥t by reverse inclusion. 

Suppose the result is false. Then there is an e > 0 such that for every V in 
'¥t there are points xu' Yu in G with xulyu in V and If(x u ) - f(Yu)1 ;:::: e. 
Note that either Xu or Yu E K == support f. Since U = v-I, we may 
assume that Xu E K for every V in '¥t. Now {xu: V E '¥t} is a net in K. 
Since K is compact, there is a point x in K such that Xu --.r- x. But 
xu1yu ~ e. Since multiplication is continuous, Yu = xu(xulyu) ~ x. 
Therefore if W is any neighborhood of x, there is a V in '¥t with 
xu, Yu E W. But f is continuous at x so W can be chosen such that 
If(x) - f(w)1 < el2 whenever wE W. With this choice of W, If(x u )-
f(Yu)1 < e, a contradiction. • 

One can rephrase (9.1) by saying that continuous functions on a topologi­
cal group that have compact support are uniformly continuous. 

In the next result it is the case p = 1 which is of principal interest for us 
at this time. The proof of the general theorem is, however, no more difficult 
than this special case. 

9.2. Proposition. If G is a locally compact group, 1 :::::; p < 00, and f E 

L P( G), then the map x ~ fx is a continuous function from G into L P( G). 

PROOF. Fix f in LP(G), x in G, and e > 0; it must be shown that there is a 
neighborhood V of x such that for y in V, Ilfy - fxllp < e. First note that 
there is a continuous function cp: G ~ C having compact support such that 
Ilf - CPllp < e13. Let K = spt cpo Note that because Haar measure is transla­
tion invariant, for any y in G, Ilfy - CPyllp = Ilf - CPllp < e13. Now by 
Proposition 9.1, there is a neighborhood Vof e such that ICP(Y) - CP(w)1 
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< tf[2m(K)]-I/P whenever y-1w E U. Put V = Ux. If y E V, then 

Il<I>y - <l>xll~ = fl<l>(zy-I) - <I>(zx-I)lPdz. 

But y = ux for some u in U, so (zy-l)-I(ZX- I) = yx- 1 = U E U. Thus 

Il<I>v - <l>xII~ = f 1<1> ( zy~l) - <I>{zx I W dz 
KvuKx 

~ (t r[2m(K)] -lm(Ky U Kx) 

Therefore if y E V, Illx - Iyllp ~ Illx - <l>xllp + Il<I>x - <l>yllp + Il<I>y - Ivllp < f . 

• 
The aim of this section is to discuss the homomorphisms on LI(G) when 

G is abelian and to examine the Gelfand transform. There is a bit of a 
difficulty here since LI( G) does not have an identity when G is not discrete. 
If 8e is the unit point mass at e, then 8e is the identity for M(G) and hence 
acts as an identity for Ll(G). Nevertheless 8e $. LI(G) if G is not discrete. 
All is not lost as Ll(G) has an approximate identity (Exercise 2.8) of a nice 
type. 

9.3. Proposition. 111 E LI( G) and f > 0, then there is a neighborhood U 01 
e such that il g is a non-negative Borellunction on G that vanishes off U and 
has Jg(x)dx = 1, then 11/- I*glll < f. 

PROOF. By the preceding proposition, there is a neighborhood U of e such 
that III - Iylll < f whenever y E U. If g satisfies the conditions, then 
I(x) - I * g(x) = f[/(x) - I(xy-I)]g(y) dy for all x. Thus, 

11/- I*glll = flf)l(x) - l(xy-1)]g(y)dyldX 

~ f g(y) fl/(x) - I(xy-I)I dxdy 
u 

= f g(y )111 - Ivlll dy 
U . 

~ f. • 

9.4. Corollary. There is a net {ei } 01 non-negative lunctions in LI( G) such 
that J ei dm = 1 lor all i and Ile i * I - illl ~ 0 lor all I in LI( G). 

PROOF. Let Olt be the collection of all neighborhoods of e and order Olt by 
reverse inclusion. Let Olt = {ll;: i E I} where i ~ j if and only if ll; ~ VI' 
For each i in I put e i = m(ll;)-Ixu" so ei ;:::: 0 and Je i dm = 1. If IE L\G) 
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and E > 0, let ll; be as in the preceding proposition. So if j ~ i, ej satisfies 
the conditions on g in (9.3) and hence III - 1* e)ll < E. • 

9.5. Corollary. II h: Ll(G) -4 C is a nonzero homomorphism, then h is 
bounded and Ilhll = 1. 

PROOF. The fact that h is bounded and Ilhll ::; 1 is Exercise 8.3. In light of 
the preceding corollary if h(f) *' 0, h(f) = lim h(f * eJ = h(f)lim h( eJ. 
Hence h(eJ -4 1. Since Ile;11 = 1 for all i, Ilhll = 1. • 

Even though Haar measure on most of the popular examples is a-finite, 
this is not true in general. For example, if D is an uncountable discrete 
group, the Haar measure on D is counting measure and, hence, not a-finite. 
Similarly, Haar measure on D X ~ is not a-finite. Nevertheless, it is true 
that Ll(G)* = Loo(G) for any locally compact group because (G, m) is an 
example of a decomposable measure space. This fact will be assumed here. 
The interested reader can consult Hewitt and Ross [1963]. 

9.6. Theorem. II G is a locally compact abelian group and y: G -4 lr is a 
continuous homomorphism, define j( y) by 

9.7 

lor every I in Ll( G). Then 1>-+ j( y) is a nonzero homomorphism on Ll( G). 
Conversely, il h: Ll( G) -4 C is a nonzero homomorphism, there is a continu­
ous homomorphism y: G -4 lr such that h(f) = j(y). 

PROOF. First note that if y: G -4 lr is a homomorphism, y(xy) = y(x)y(y) 
and y(x- 1) = Y(X)-1 = y(x), the complex conjugate of y(x). If !, g E 

Ll(G), then 

!*g(y) = !U*g)(x)y(x- 1)dx 

= ! y ( X -1 ) ! I ( xy - 1 ) g (y ) dy dx 

= ! g(y )y(y-l) [! I( xy-l h( (xy-l rl) dX] dy. 

But the invariance of the Haar integral gives that fl(xy-l)y«xy-l)-I) dx 
= f!(x)y(x- 1)dx. Hence 

I * g( y) = ! g ( y ) y ( y - 1 ) [ ! I ( x ) y ( X-I) dx ] dy = j ( y ) g ( y ) . 

So 1>-+ j( y) is a homomorphism. Since y is continuous and y( G) ~ lr, 
y E Loo(G) and lIylloo = 1. Thus 1>-+ j(y) is not identically zero. 

Now assume that h: Ll(G) -4 C is a nonzero homomorphism. Since h is 
a bounded linear functional, there is a <p in L oo( G) such that h (f) = 
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f/(x)</>(x) dx and 11</>1100 = Ilhll = 1. If /, g E LI(G), then h(f * g) = 
f(f * g)(x)</>(x) dx = fg(y)[f/(xy-l)</>(X) dx] dy = fg(y)h(fJ dy. [Note 
that y ~ h(/y) is continuous scalar-valued function by Proposition 9.2.] 
But h(f * g) = h(f)h(g) = fg(y)h(f)</>(y) dy. So 

0= fg(Y)[h(jy) - h(f)</>(y)] dy 

for every gin Ll(G). But y ~ h(fv) - h(f)</>(y) belongs to LOO(G), so for 
any / in L1(G), . 

9.8 h (jJ = h (f)</>(y) 

for almost all y in G. Pick / in LI(G) such that h(f) -=1= O. By (9.8), 
</>(y) = h(fy)/h(f) a.e. But the right-hand side of this equation is continu­
ous. Hence we may assume that </> is a continuous function. Thus for every / 
in L1(G), (9.8) holds everywhere. 

In (9.8), replace y by xy and we obtain h(f)</>(xy) = h(fxv) = h«(fx),)' 
Now replace / in (9.8) by /x to get h(fx)<J>(y) = h(fxy). Thus h(f)<J>(xy) 
= h(fx)</>(y) = [h(f)</>(x)]</>(y). If h(f) -=1= 0, this implies </>(xy) = 

</>(x)</>(y) for all x, y in G. Thus </>: G ~ C is a homomorphism and 
1</>(x)1 ::s; 1 for all x. But 1 = </>(e) = </>(x)<J>(x- 1) = </>(x)</>(X)-I and 
1</>(x)l, I</>(X)-ll ::s; 1. Hence 1</>(x)1 = 1 for all x in G. If "(x) = </>(x- I), 
then "(: G ~ If is a continuous homomorphism and h(f) = ley) for all / 
in Ll(G). • 

Let 1: be the set of nonzero homomorphisms on Ll(G), where G is 
assumed to be abelian (both here and throughout the rest of the chapter). So 
1:~ballLl(G)*. If hEballLl(G)* and {hi} is a net in 1: such that 
hi ~ h weak*, then it is easy to see that h is multiplicative. Thus the weak * 
closure of 1: ~ 1: U {O}. Hence the relative weak* topology on 2 makes 1: 
into a locally compact Hausdorff space (see Exercise 8.4). 

Let r = all the continuous homomorphisms y: G ~ If. By Theorem 9.6, 
1: and r can be identified using formula (9.7). In fact, the map defined in 
(9.7) is the Gelfand transform when this identification is made. (Just look at 
the definitions.) Since 1: and r are identified and 1: has a topology, r can 
be given a topology. Thus r becomes a locally compact space with this 
topology. (For another description of the topology, see Exercise 6.) The 
functions in r are called characters and are sometimes denoted by r = G 
and called the dual group. 

Also notice that in a natural way r is a group. If YI' Y2 E r, then 
("(lY2)(X) == Yl(X)Y2(X) and YIY2 E r. 

9.9. Proposition. r is a locally compact abelian group. 

Clearly r is an abelian group and we know that r is a locally compact 
space. It must be shown that r is a topological group. To do this we first 
prove a lemma. 
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9.10. Lemma. 

(a) The map (x, y) >--) y(x) of G X r ~ T is continuous. 
(b) If {Yi} is a net in rand Yi ~ Y in r, then Yi(X) ~ y(x) uniformly for x 

belonging to any compact subset of G. 

PROOF. First note that if x E G and f E L1( G), then for every Y in r, 

lx(y) = j fx(y )y(y-1) dy 

= jf(yx- 1)y(y-1) dy 

= jf(Z)y(Z-lX-I) dz 

= y(x- I )l( y). 

So if Yi ~ Y in r and x i ~ x in G, 

If(yJYi(XJ - l(y)y(x)1 = Ilxjl(yJ - Ix-I(Y)1 

:$ Ilxjl(yJ - Ix-I(Yi)1 + Ilxl(yJ - Ix-I(Y)I· 

But IJxcl(Yi) - lx-'(YJI :$ Ilfxl - fx-1111 ~ ° by (9.2). Because fx-l E 

L1(G), /x-'(yJ ~ lx-'(Y) sinc~ Yi ~ y. Thus /(Yih(xJ ~ l(y)y(x). If f 
is chosen so that I ( y) "* 0, then because I (yJ ~ I ( y), there is an i 0 such 
that J(yJ "* ° for i ~ io. Therefore Yi(XJ ~ y(x) and (a) is proven. 

Now let K be a compact subset of G and let {Yi} be a net in r such that 
Yi ~ Yo· Suppose { Yi( x)} does not converge uniformly on K to Yo( x). Then 
there is an 10 > ° such that for every i, there is a ii ~ i and an Xi in K such 
that IYj,(xJ - Yo(xJI ~ E. Now {Yj,} is a net and Yj, ~ Yo (Exercise). Since 
K is compact, there is an Xo in K such that Xi ~ xo' Now part (a) 
implies that the map (x, y) >--) (y(x), Yo(x» of G X r into TxT is con­
tinuous. Since (Xi' Yj) ~ (xo, Yo) in G X r, (Yj,(xJ, Yo(xJ) ~ 
(Yo(x o), Yo(x o». So for any io, there is an i ~ io such that IYj,(xJ - Yo(xo)1 
< 10/2 and IYo(xJ - Yo(xo)1 < 10/2. Hence IYj,(xJ - Yo(xi)1 < 10, a con-
tradiction. • 

PROOF OF PROPOSITION 9.9. Let {Yi}' {Ai} be nets in r such that Yi ~ Y 
and Ai ~ A. It must be shown that YiAil ~ YA -1. Let </> E Cc(G) and put 
K = spt </>. Then ~(YiAi1) = fK</>(X)Yi(X- 1)Ai(X) dx. By the preceding 
lemma, yJx- 1) ~ y(x- I ) and Ai(X) ~ A(X) uniformly for x in K. Thus 
~(YiAi1) ~ ~(YA -1). If f E LI(G) and 10 > 0, let </> E CJG) such that 
Ilf - </>111 < 10/3. Then 

IJ(YiAi l ) -1(YA- 1)1 < 2310 + 1~(YiAi1) -~(yA-1)1. 
It follows that I(YiAi1) ~ I(YA -1) for every f in LI(G). Hence YiAii ~ 
YA -1 in r. • 
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Since r is a locally compact abelian group, it too has a dual group. Let t 
be this dual group. If x E G, define p(x): r ~ lr by p(x)(y) = y(x). It is 
easy to see that p is a homomorphism. It is a rather deep fact, entitled the 
Pontryagin Duality Theorem, that p: G ~ t is a homeomorphism and an 
isomorphism. That is, G "is" the dual group of its dual group. The 
interested reader may consult Rudin [1962]. We turn now to some examples. 

9.11. Theorem. If y E ~, then yy(x) = e ixy defines a character on ~ and 
every character on ~ has this form. The map y ~ Yv is a homeomorphism and 
an isomorphism of ~ onto IR. If Y E ~ and f E Li(~), then 

9.12 /( yy) = /(y) = roo f(x )e- ixV dx, 
• - 00 

the Fourier transform of f. 

PROOF. If Y E~, t~en ly/x)1 = 1 for all x and y/x1 + x 2 ) = 

yy(X 1)y/X2 )· So yy E ~. ~lso, Yh +Y2(x) = YVj(x)yY2(x). Hence y ~ yy is a 
homomorphism of ~ into ~. 

Now let y E IR. y(O) = 1 so that there is a {) > 0 such that jgy(x) dx = a 
"4= O. Thus 

ay(x) = y(x) ty(t) dt 
o 

= j\(x + t) dt 
o 

f X+8 
= y(t) dt. 

x 

Hence y(x) = a- 1J:+8 y(t) dt. Because y is continuous, the Fundamental 
Theorem of Calculus implies that y is differentiable. Also, 

y(x+h)-y(x) = ()[Y(h)-lj 
h y x h . 

So y'(x) = y'(O)y(x). Since y(O) = 1 and ly(x)1 = 1 for all x, the elemen­
tary theory of differential equations implies that y = yy for some y in ~. 
This implies that y ~ yy is an isomorphism of ~ onto IR. 

It is clear from (9.7) that (9.12) holds. From here it is easy to see that 
y ~ yy is a homeomorphism of ~ onto IR. • 

So the preceding result says that ~ is its own dual group. Because of 
(9.12), the function / as defined in (9.7) is called the Fourier transform of f. 
The next result lends more weight to the use of this terminology. 

9.13. Theorem. If n E 71., define y,,: lr ~ lr by y,,(z) = z". Then y" E if 
and the map n ~ y" is a homeomorphism and an isomorphism of 71. onto if. If 
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nEll and f E LIeJr), then 

9.14 J(yn) = J(n) == 217T f"'f(eiO)e-inO dO. 

PROOF. It is left to the reader to check that Y nEt and n >-4 Y n is an 
injective homomorphism of lL into t. If yEt, define a: ~ ~ If by 
a(t) = y(e it ); it follows that a E IR. By (9.11), a(l) = e iyt for some y in~. 
But a(t + 27T) = a(t), so e 27riy = 1. Hence y = nEll. Thus y(e iO ) = a(O) 
= e inO, y = Yn' and n >-4 Yn is an isomorphism of lL onto t. Formula (9.14) 
is immediate from (9.7). The fact that n >-4 Yn is a homeomorphism is left as 
an exercise. • 

So t = lL, a discrete group. This can be generalized. 

9.15. Theorem. If G is compact, G is discrete; if G is discrete, G is compact. 

PROOF. Put r = G. If G is discrete, then LI(G) has an identity. Hence its 
maximal ideal space is compact. That is, r is compact. 

Now assume that G is compact. Hence r <:::::: LI(G) since m(G) = 1. 
Suppose y E rand y '* the identity for r, then there is a point Xo in G 
such that y(xo) '* 1. Thus 

jy(x) dx = jY(XXOIXO) dx 

= y(xo) j y( XXO· I ) dx 

= y(xo) jy(x) dx, 

since Haar measure is translation invariant. Since y(xo) '* 1, this implies 
that 

1 y( x) dx = 0 if y '* 1. 
e 

Of course if y = 1, f1dx = m(G) = 1. So if f= 1 on G, JE Ll(G) and 
J(y) = fy(x-I)dx = X(l}(Y). Since J is continuous on r, {I} is an 
open set. By translation, every singleton set in r is open and hence r is 
discrete. • 

9.16. Theorem. If a E If, define Ya: lL ~ If by Ya(n) = an. Then Ya E lL 
and the map a >-4 Ya is a homeomorphism and an isomorphism of If onto lL. If 
a E If and f E LI(lL) = [1(lL), then 

00 

9.17 
n= -00 

PROOF. Again the proof that a >-4 Ya is a monomorphism of If ~ lL is left to 
the reader. If YElL, let y(l) = a E If. Also, y(n) = y(lY = an, so y = Ya. 
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Hence a ~ 'fa is an isomorphism. It is easy to show that this map IS 

continuous and hence, by compactness, a homeomorphism. • 

For additional reading, consult Rudin [1962]. 

EXERCISES 

1. Prove that if LI( G) has an identity, then G is discrete. 

2. If IE L 00 (G), show that x ..... Ix is a continuous function from G into 
(Loo(G), wk*). 

3. Is there a measure /-L on IR different from Lebesgue measure such that for I in 
LI(/-L), x ..... Ix is continuous? Is there a measure for which this map is discon­
tinuous? 

4. If I E Co(G), show that x ..... Ix is a continuous map from G -> Co(G). 

5. If IE Loo(G) and I is uniformly continuous on G, show that x ..... I, IS a 
continuous function from G -> L 00 (G). Is the converse true? 

6. If K is a compact subset of G, Yo E r, and e> 0, let U(K, Yo, e) = {y E r: 
IY(x) - Yo(x)1 < e for all x in K}. Show that the collection of all such sets is a 
base for the topology of r. (This says that the topology on r is the compact-open 
topology.) 

7. Show that there is a discontinuous homomorphism y: IR -> T. If y: IR -> T is a 
homomorphism that is a Borel function, show that y is continuous. 

8. If G is a compact abelian group, show that the linear span of r is dense in 
C(G). 

9. If G is a compact abelian group, show that r forms an orthonormal basis in 
L2(G). 

10. If G is a compact abelian group, show that G is metrizable if and only if r is 
countable. 

11. Let {G,,} be a family of compact abelian groups and G = IIaG". If ra = G", 
show that the character group of G is {{ y,,} E II"r,,: y" = e except for at most 
a finite number of a}. 



CHAPTER VIII 

C*-Algebras 

A C *-algebra is a particular type of Banach algebra that is intimately 
connected with the theory of operators on a Hilbert space. If YC' is a Hilbert 
space, then PJ(YC') is an example of a C*-algebra. Moreover, if d is any 
C *-algebra, then it is isomorphic to a sub algebra of PJ( YC') (see Section 5). 
Some of the general theory developed in this chapter will be used in the next 
chapter to prove the Spectral Theorem, which reveals the structure of 
normal operators. 

A more thorough treatment of C*-algebras is available in Arveson [1976] 
or Sakai [1971]. 

§1. Elementary Properties and Examples 

If d is a Banach algebra, an involution is a map a ~ a * of d into d such 
that the following properties hold for a and b in d and a in c: 
(i) (a*)* = a; 

(ii) (ab)* = b*a*; 
(iii) (aa + b)* = aa* + b*. 

Note that if d has involution and an identity, then 1 * . a = (1* . a) * * 
= (a* . 1)* = (a*)* = a; similarly, a . 1* = a. Since the identity is unique, 
1* = 1. Also, for any a in C, a* = a. 

1.1. Definition. A C *-algebra is a Banach algebra d with an involution 
such that for every a in d, 
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1.2. Example. If £' is a Hilbert space, d= ~(£') is a C*-algebra where 
for each A in ~(£'), A* = the adjoint of A. (See Proposition 11.2.7.) 

1.3. Example. If £' is a Hilbert space, ~o(£') is a C*-subalgebra of 
f!j( £'), though ~o( £') does not have an identity. 

1.4. Example. If X is a compact space, C( X) is a C *-algebra where 
f*(x) = f(x) for fin C(X) and x in X. 

1.5. Example. If (X, g, /l) is a a-finite measure space, L OO( X, g, /l) is a 
C*-algebra where the involution is defined as in (1.4). 

1.6. Example. If X is locally compact but not compact, Co( X) is a 
C*-algebra without identity. 

1.7. Proposition. If d is a C*-algebra and a Ed, then Ila*11 = Iiali. 

PROOF. Note that IIal1 2 = Ila*all .:; Ila*llllall; so Iiall .:; Ila*ll. Since a = a**, 
substituting a* for a in this inequality gives Ila*11 .:; Iiali. • 

1.8. Proposition. If d is a C*-algebra and a Ed, then 

Iiall = sup{llaxll: xEd, Ilxll .:; I} 

= sup{llxall: xEd, Ilxll .:; I}. 

PROOF. Let a = sup{ Ilaxll: xEd, Ilxll .:; I}. Then Ilaxll .:; Ilallllxll for any 
x in d; hence a .:; lIali. If x = a* Illall, then Ilxll = 1 by the preceding 
proposition. For this x, Ilaxll = lIall, so a = Iiali. The proof of the other 
equality is similar. • 

This last proposition has an alternate formulation that is useful. If 
a Ed, define La: d ~ d by LaCx) = ax. By (1.8), La E !J8( d) and 
IILall = Iiali. If p: d~ ~(d) is defined by pea) = La' then p is a 
homomorphism and an isometry. That is, d is isometrically isomorphic to 
a sub algebra of ~(d). The map p is called the left regular representation 
of d. 

The left regular representation can be used to discuss the process of 
adjoining an identity to d. Since d is isomorphic to a sub algebra ~(d) 
and f!j( d) has an identity, why not just look at the sub algebra of ~(d) 
generated by d and the identity operator? Why not, indeed. This is just 
what is done below. 

1.9. Proposition. If d is a C*-algebra, then there is a C*-algebra d\ with 
an identity such that d 1 contains d as an ideal. If d does not have an 
identity, then d 1/d is one dimensional. If '(/ is a C*-algehra with identity, 
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and P: d---> <6' is a *-homomorphism, then PI: d l ---> <6', defined by Plea + 
a) = pea) + a for a in d and a in C, is a *-homomorphism. 

PROOF. It may be assumed that d does not have an identity. Let d l = {a 
+ a: a Ed, a E C} (a + a is just a formal sum). Define multiplication 
and addition in the obvious way. Let (a + a)* = a* + a and define the 
norm on d l by 

Iia + all = sup{lIax + axil: xEd, Ilxll :::;; I}. 

Clearly, this is a norm on d l . It must be shown that Ily*yll = IIyl12 for 
every y in d l . 

Fix a in d and a in c. If e > 0, then there is an x in d such that 
Ilxll = 1 and 

Iia + al1 2 - e < Ilax + axl1 2 = II(x*a* + ax*)(ax + ax)11 

= Ilx*(a + a)*(a + a)xlI :::;; II(a + a)*(a + a)ll· 

Thus Iia + al1 2 :::;; II(a + a)*(a + a)lI· 
It is left to the reader to prove that the norm on d l makes d l a Banach 

algebra. For the other inequality, note that II(a + a)*(a + a)11 :::;; II(a + 
a)*lllla + all. So the proof will be complete if it can be shown that 
II(a + a)*11 :::;; Iia + all. Now if x, y Ed and Ilxll,llyll :::;; 1, then Ily(a + 
a)*xll = Ilya*x + ayxll = Ilx*ay* + ax*Y*11 = Ilx*(a + a)Y*11 :::;; lIa + all. 
Taking the supremum over all such x, y gives the desired inequality. 

It remains to prove the statement concerning the * -homomorphism P. 

Note that being a *-homomorphism means, besides being an algebra 
homomorphism, that p(a*) = p(a)*. The details are left to the reader. 

• 
If d is a C*-algebra with identity and a Ed, then a(a), the spectrum 

of a, is well defined. If d does not have an identity, a( a) is defined as the 
spectrum of a as an element of the C*-algebra d l obtained in Proposition 
1.9. 

1.10. Definition. If d is a C*-algebra and a Ed, then (a) a is hermitian 
if a = a*; (b) a is normal if a*a = aa*; (c) a is unitary if a*a = aa* = 1 
(this only makes sense if d has an identity). 

1.11. Proposition. Let d be a C*-algebra and let a Ed. 

(a) If a is invertible, then a* is invertible and (a*)-l = (a- l )*. 
(b) a = x + iy where x and yare hermitian elements of d. 
(c) If u is a unitary element of d, lIull = l. 
(d) If !!A is a C *-algebra and p: d--->!!A is a * -homomorphism, then 

IIp(a)11 :::;; lIall· 
(e) If a = a*, then lIall = rea). 
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PROOF. The proofs of (a), (b), and (c) are left as exercises. 
(e) Since a* = a, IIa 211 = Ila*all = Ila11 2; by induction, IIa 21l 11 = IIal1 2n for 

n ~ 1. That is, Ila2nlll/2n = Iiall for n ~ 1. Hence rea) = limlla21l111/2n = 
lIall· 

(d) A *-homomorphism p: '#~!1l is an algebra homomorphism such 
that p(a)* = p(a*) for all a in .#. If .# has an identity, it is not assumed 
that pel) = the identity of !1l. However, it is easy to see that p(l) is the 
identity for cl p( .#). If .# does not have an identity, then p can be 
extended to a * -homomorphism PI: .#1 ~!1l1 such that PI (l) = 1 (1.9). 
Thus it suffices to prove the proposition under the additional assumption 
that .# and !1l have identities and pel) = 1. 

If x E.#, then it follows that <r(p(x)) ~ <rex) (Verify!) and hence 
r(p(x)) ~ rex). So, using part (e) and the fact that a*a IS hermitian, 
IIp(a)11 2 = IIp(a*a)11 = r(p(a*a)) ~ r(a*a) = Ila*all = lIall 2. • 

1.12. Proposition. If.# is a C*-algebra and h: .#~ C is a homomorphism, 
then: 

(a) h(a) E ~ whenever a = a*; 
(b) h(a*) = h(a) for all a in .#; 
(c) h(a*a) ~ ° for all a in .#; 
(d) if 1 E.# and u is unitary, then Ih(u)1 = 1. 

PROOF. If .# has no identity, extend h to.#1 by letting h(1) = 1. Thus, we 
may assume that .# has an identity. By Exercise VII.8.1, Ilhll = l. If 
a = a* and t E ~, 

Ih(a + itW ~ Iia + itl12 = II(a + it)*(a + it)11 

= II(a - it)(a + it)11 

= IIa 2 + t 2 11 ~ IIal1 2 + t 2 . 

If h(a) = 0: + i[3, 0:,[3 in~, then this yields 

IIal1 2 + t 2 ~ 10: + i([3 + t)J2 

= 0: 2 + ([3 + t f 
= 0: 2 + [32 + 2[3t + t 2 ; 

hence IIal1 2 ~ 0:2 + [32 + 2[3t for all t in ~. If [3 *- 0, then letting t ~ ± 00, 

depending on the sign of [3, gives a contradiction. Therefore [3 = ° or 
h(a) E ~. This proves (a). 

Let a = x + iy, where x and yare hermitian. Since h (x), h (y) E ~ by 
(a) and a* = x - iy, (b) follows. Also, h(a*a) = h(a*)h(a) = Ih(a)1 2 ~ 0, 
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so (c) holds. Finally, if u is unitary, Ih(u)1 2 = h(u*)h(u) = h(u*u) = h(1) 
= 1. • 

Note that part (b) of the preceding proposition implies that any homo­
morphism h: d ~ C is a * -homomorphism. This, coupled with (VII.8.6), 
gives the following corollary. 

1.13. Corollary. If d is an abelian C*-algebra and a is a hermitian element 
of d, then O"(a) ~ IR. 

This corollary is short-lived as the conclusion remains valid even if d is 
not abelian. 

1.14. Proposition. Let d and !!l be C*-algebras with identities such that 
d~ !!l. If a Ed, then O"$"(a) = O".sw(a). 

PROOF. First assume that a is hermitian and let «j = C *( a), the C *-algebra 
generated by a and 1. So «j is abelian. By Corollary 1.13 O"w( a) ~ IR. By 
Theorem VII.S.4, O"$"(a) ~ 0w(a) = aO"w(a) ~ O"$"(a); so o$"(a) = O"w(a) ~ 
IR. By similar reasoning, O".sw(a) = O"w(a), and hence O"$"(a) = O".sw(a). 

Now let a be arbitrary. It suffices to show that if a is invertible in !!l, a is 
invertible in d. So suppose there is a b in !!l such that ab = ba = 1. Thus, 
(a*a)(bb*) = (bb*)(a*a) = 1. Since a*a is hermitian, the first part of the 
proof implies a*a is invertible in d. But inverses are unique, so bb* = 
(a*a)-l E d. Hence b = b(b*a*) = (bb*)a* Ed. • 

This result must, of course, be contrasted with Theorem VII.S.4. 

EXERCISES 

1. Verify the statements made in Examples 1.2 through 1.6. 

2. Let Sli'=RE C(c1[): I is analytic in [)} and for I in Sli' define 1* by 
1* (z) = 1(Z). Show that Sli' is a Banach algebra, f* E Sli' when IE Sli', and 
11/*11 = 11111, but Sli' is not a C*-algebra. 

3. If {Sli'i: i E l} is a collection of C*-algebras, show that E9 ood; and E9 od; are 
C * -algebras. 

4. Let X be a locally compact space and let Sli' be a C*-algebra. If Cb(X, Sli') = the 
collection of bounded continuous functions from X -> Sli', show that Cb ( X, Sli') is 
a C*-algebra. Let Co(X, Sli') = all of the continuous functions I: X -> Sli' such 
that for every e > 0, {x E X: 11/(x)11 ~ e} is compact. Show that Co(X,Sli') is a 
C*-algebra. 
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§2. Abelian C *-Algebras and the Functional Calculus 
in C*-Algebras 

The next theorem is the basic result of this section. It will be used to develop 
a functional calculus for normal elements that extends the Riesz Functional 
Calculus. 

2.1. Theorem. If .5i1' is an abelian C*-algebra with identity and 2 is its 
maximal ideal space, then the Gelfand transform y: .5i1'-'> C(2) is an 
isometric * -isomorphism of.5i1' onto C(2). 

PROOF. By Theorem VII.8.9, Ilxll"" ~ Ilxll for every x in .5i1'. But Ilxlloo is the 
spectral radius of x, so by (1. 11 e),Jl.::j I = Ilxll"" for every hermitian element 

x of .5i1'. In particular, Ilx*xll = Ilx*xll oo for every x in .5i1'. __ 
_ If a E.5i1' and hE 2, then a*(h) = h(a*) = h(a) = a(h). That is, 

a* = a. Equivalently, y(a*) = y(a)* since the involution on C(2) is de­
fined by c~lex conjugation. Thus, y is a *-homomorphism. Also, IIal1 2 = 

Ila*all = lIa*all oo = III a l2 1100 = Ilall~; therefore Iiall = Iialloo and y is an 
isometry. 

Because y is an isometry, it has closed range. To show that y is surjective, 
therefore, it suffices to show that it has dense range. This is accomplished by 
applying the Stone-Weierstrass Theorem. Note that i = 1, so y(.5i1') is a 
sub algebra of C(.~) containing the constants. Because y preserves the 
involution, y(.5i1') is closed under complex conjugation. It remains to show 
that y(.5i1') separates the points of 2. But if h] and h 2 are distinct 
homomorphisms in 2, they are distinct because there is an a in .5i1' such 
that h](a) '* h2(a). Hence a(h]) '* a(h2). • 

By combining the preceding theorem with Proposition 1.9 and Exercise 
V!I.8.6, the following is obtained. 

2.2. Corollary. If .5i1' is an abelian C *-algebra without identity and 2 is its 
maximal ideal space, then the Gelfand transform y: .5i1' -'> Co(2) is an 
isometric * -isomorphism of.5i1' onto Co(2). 

In order to focus our attention on the key concepts and not be distracted 
by peripheral considerations, we now make the following. 

Assumption. All C*-algebras that are considered have an identity. 

Let !IA be an arbitrary C*-algebra and let a be a normal element of !IA. So 
if .5i1' = C *( a), the C *-algebra generated by a (and 1), .5i1' is abelian. Hence 
.5i1' -:;;. C( 2), where 2 is the maximal ideal space of .5i1'. So by Theorem 2.1 if 
f E C(2), there is a unique element x of .5i1' such that x = f. We want to 
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think of x as f( a) and thus define a functional calculus for normal elements 
of a C *-algebra. To be useful, however, we should have a ready way of 
identifying 2. Moreover, since d= C*(a) and thus depends on a, it should 
be that 2 depends on a in a clear way. The idea embodied in Proposition 
VII.8.1O that 2 and a(a) are homeomorphic via a natural map is the key 
here, although (VII.8.lO) is not directly applicable here since a is not a 
generator of C*(a) as a Banach algebra but only as a C*-algebra. [If 
a = a *, then a is a generator of C *( a) as a Banach algebra.] Nevertheless 
the result is true. 

2.3. Proposition. If d is an abelian C *-algebra with maximal ideal space 2 
and a Ed such that d= C*(a), then the map T: 2 ~ a(a) defined by 
T(h) = h(a) is a homeomorphism. If p(z, z) is a polynomial in z and z and 
y: d~ C(2) is the Gelfand transform, then y(p(a,a*»=pOT. 

The proof of this result follows, with a few variations, along the lines of 
the proof of Proposition VII.8.10 and is left to the reader. 

If T: 2 ~ a(a) is defined as in the preceding proposition, then T#: 
C( a(a» ~ C(2) is defined by T#(f) = f 0 T. Note that T# is a * -isomor­
phism and an isometry, because T is a homeomorphism. Note that d = 

C*(a) is the closure of {p(a, a*): p(z, z) is a polynomial in z and Z}. 
Now such a polynomial p(z, z) is, of course, a function on a(a). [Just 
evaluate the polynomial at any z in a(a).] The last part of (2.3) says that 
y(p(a, a*» = T#(p). We define a map p: C(a(a» ~ C*(a) so that the 
following diagram commutes: 

C*(a) 
y 

C(2) 

2.4 p "", 

C(a(a» 

Note that if Yd is any C*-algebra and a is a normal element of Yd, then 
d = C *( a) is an abelian C *-algebra contained in Yd and so (2.4) applies. 
Moreover, in light of Proposition 1.4, the spectrum of a does not depend on 
whether a is considered as an element of d or Yd. The following definition 
is, therefore, unambiguous. 

2.5. Definition. If Yd is a C*-algebra with identity and a is a normal 
element of Yd, let p: C(a(a» ~ C*(a) ~ Yd be as in (2.4). If f E C(a(a», 
define 

f{a) == p(f). 

The map f ~ f( a) of C( a( a» ~ Yd is called the functional calculus for a. 
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Note that if p(z, z) is a polynomial in z and z, then p(p(z, z» = 
p(a, a*). In particular, p(znzm) = ana*m so that p(z) = a and p(Z) = a*. 
Also, p(l) = 1. 

The properties of this functional calculus can be obtained from the fact 
that p is an isometric *-isomorphism of C(a(a» into .%'-with one excep­
tion. How does this functional calculus compare with the Riesz Functional 
Calculus? If f E Hol( a), fla( a) E C( a( a »; so f( a) has two possible inter­
pretations. Or does it? 

2.6. Theorem. If .%' is a C *-algebra and a is a normal element of .%', then 
the functional calculus has the following properties. 

(a) f >-) f(a) is a *-monomorphism. 

(b) Ilf( a )11 = Ilflloo· 
(c) f >-) f(a) is an extension of the Riesz Functional Calculus. 

Moreover, the functional calculus is unique in the sense that if T: C(a(a» 
~ C*(a) is a *-homomorphism that extends the Riesz Functional Calculus, 
then T(f) = f(a) for every f in C( a(a». 

PROOF. Let p: C(a(a» ~ C*(a) be the map defined by p(f) = f(a). From 
(2.4), (a) and (b) are immediate. 

Let w: Hol(a) ~ de;;, .%' denote the map defined by the Riesz Functional 
Calculus. Since p( z) = w( z) = a, an algebraic manipulation gives that 
p(f) = w(f) for every rational function f with poles off a(a). If f E Hol(a), 
then by Runge's Theorem there is a sequence {fn} of such rational 
functions such that fn(z) ~ f(z) uniformly in a neighborhood of a(a). 
Thus w(fn) ~ w(f). By (b), p(fn) ~ p(f). Thus p(f) = w(f). 

To prove uniqueness, let T: C( a( a» ~ .%' be a *-homomorphism that 
extends the Riesz Functional Calculus. If f E C( a( a », then there is a 
sequence {Pn} of polynomials in z and z such that Pn(z,z)~f(z) 
uniformly on a(a). But T(Pn) = Pn(a, a*), T(Pn) ~ T(f), and Pn(a, a*) ~ 
f(a). Hence T(f) = f(a). • 

Because of the uniqueness statement in the preceding theorem, it is not 
necessary to remember the form of the functional calculus f>-) f( a), but 
only the fact that it is an isometric * -monomorphism that extends the Riesz 
Functional Calculus. Indeed, by the uniqueness of the Riesz Functional 
Calculus, it suffices to have that f>-) f( a) is an isometric * -monomorphism 
such that if f(z) == 1, then f(a) = 1, and if f(z) = z, then f(a) = a. Any 
properties or applications of the functional calculus can be derived or 
justified using only these properties. There may, however, be an occasion 
when the precise form of the functional calculus [viz., (2.4)] facilitates a 
proof. There are also situations in which the definition of the functional 
calculus gets in the way of a proof and the properties in (2.6) give the clean 
way of applying this powerful tool. 
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2.7. Spectral Mapping Theorem. If .91 is a C*-algebra and a is a normal 
element of .91, then for every f in C ( a ( a)), 

a(j{a)) = f{a{a)). 

PROOF. Let p: C(a(a)) ~ C*(a) be defined by p(f) = f(a). So p is a 
*-isomorphism. Hence a(f(a)) = a(p(f)) = a(f). But a(f) = f(a(a» 
(VII.3.2). • 

Once again (1.14) was used implicitly in the preceding proof. 

EXERCISES 

1. Prove a converse to Proposition 2.3. If K is a compact subset of C, C(K) is a 
singly generated C*-algebra. 

2. If $ is an abelian C*-algebra with a finite number of C*-generators a j , ... , an, 
then there is a compact subset X of C" and an isometric * -isomorphism p: 
$--+ C(X) such that peak) = zk, 1.:-;; k.:-;; n, where zk(Aj, ... ,An ) = Ak (see 
Exercise VII.8.12). 

3. A Stonean space is a compact space X such that the closure of every open subset 
of X is open. (a) Show that the Cantor set is a Stonean space. (b) Show that a 
compact space X is a Stonean space if and only if each connected subset of X is 
a singleton set. (c) Show that X is a Stonean space if and only if C( X) is the 
closed linear span of its projections (== hermitian idempotents). 

4. Using the terminology of Exercise 3, show that if (X, Q, JL) is a a-finite measure 
space, the maximal ideal space of L 00 (X, Q, JL) is a Stonean space. 

5. If $ is a C*-algebra with identity and a = a*, show that exp(ia) = u is unitary. 
Is the converse true? 

6. Let X be compact and fix a point Xo in X. Let .9i' = {{ J,J: In E C( X), 
sUPnllJ,,11 < 00, and {f"(xo)} is a convergent sequence}. Show that .9i' is an 
abelian C*-algebra with identity and find its maximal ideal space. 

7. If X is completely regular, then Ch(X) is a C*-algebra and its maximal ideal 
space is the Stone-Cech compactification of X. 

§3. The Positive Elements in a C*-Algebra 

This section is an application of the functional calculus developed in the 
preceding section. The results here are very useful in the study of operators 
on a Hilbert space and they demonstrate the power of the functional 
calculus. 

If .91 is a C * -algebra, let Re..# denote the hermitian elements of .91. 
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3.1. Definition. If .91 is a C*-algebra and a E.91, then a is positive if 
a E Re.91 and a( a) c;::; [0, co). If a is positive, this is denoted by a ~ O. Let 
.91+ be the set of all positive elements of .91. 

3.2. Example. If .91 = C( X), then f is positive ill .91 if and only if 
f(x) ~ 0 for all x in X. 

3.3. Example. If .91 = L ""(Il) and f E L ""(Il), then f ~ 0 if and only if 
f(x) ~ 0 a.e. [Ill. 

3.4. Proposition. If a E Re.91, then there are unique positive elements u, v 
in .91 such that a = u - v and uv = vu = O. 

PROOF. Let f(t) = max(t,O), get) = - min(t, 0). Then f, g E C(~) and 
f(t) - get) = t. Using the functional calculus, let u = f(a) and v = g(a). 
So u and v are hermitian and by the Spectral Mapping Theorem u, v ~ O. 
Also, u - v = f(a) - g(a) = a and uv = vu = (gf)(a) = 0 since fg == O. 

To show uniqueness, let u1, Vj E.91+ such that u j - VI = a and u1v j = 
VjU j = O. Let {Pn} be a sequence of polynomials such that Pn(O) = 0 for all 
nand Pn(t) ~ f(t) uniformly on a(a). Hence Pn(a) ~ u in .91. But 
uja = au j. So ujPn(a) = Pn(a)u j for all n; hence UjU = uU j • Similarly, it 
follows that a, u, v, u j , and VI are pairwise commuting hermitian elements 
of d. Let !J$ = the C*-algebra generated by a, u, v, U j , and VI; so go is 
abelian. Hence !J$ ~ C(2) where 2 is the maximal ideal space of go. The 
uniqueness now follows from the uniqueness statement for C(2) (Exercise 
1). • 

The next result follows in a similar way. 

3.5. Proposition. If a E.91+ and n ~ 1, there is a unique element b in .91+ 
such that a = b n. 

The decomposition a = U - v of a hermitian element a is sometimes 
called the orthogonal decomposition of a. The elements u and v are called 
the positive and negative parts of a and are denoted by U = a+ and v = a. 
Note that a_~ O. 

If a E d+, then the unique b obtained in (3.5) is called the nth root of a 
and is denoted by b = aj/n. Note that if b is not assumed to be positive, it 
is not necessarily unique (see Exercise 5). 

If X is compact and f E C(X)+, then notice that If(x) - tl ~ t for 
every real number t ~ Ilfll. Conversely, if If(x) - tl ~ t for some t ~ Ilfll, 
then f(x) ~ 0 for all x and so f ~ O. These observations are behind some 
of the statements in the next result. 

3.6. Theorem. If .91 is a C*-algebra and a E.91, then the following state­
ments are equivalent. 

(a) a ~ O. 
(b) a = b 2 for some b in Re.91. 
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(c) a = x*x for some x in sd. 

(d) a = a* and lit - all ~ t for all t :2: lIall. 
(e) a = a* and lit - all ~ t for some t :2: Iiali. 
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PROOF. It is clear that (b) implies (c) and (d) implies (e). By (3.5), (a) implies 
(b). 

(e) = (a): Since a = a*, C*(a) is abelian. If X = a(a), X ~ ~ and 
f >--+ f( a) is a * -isomorphism of C( X) onto C *( a). Using this isomorphism 
and (e), It - xl ~ t for some t:2: Iiall = sup{lsl: SEX} and all x in X. 
From the discussions preceding this theorem (with f(x) = x), x :2: 0 for all 
x in X. That is, X = a( a) ~ [0, (0). Hence a :2: O. 

(a) = (d): This proof follows the lines of the preceding paragraph and is 
left to the reader. 

(c) = (a): If a = x*x for some x in sd, then it is clear that a = a*. Let 
a = u - v, where u, v :2: 0 and uv = vu = O. It must be shown that v = O. 

If XVl/2 = b + ic, where b, cERe sd, then (XVI/2 ) *( XV1/2 ) = (b - ic) 
(b + ic) = b2 + c2 + i(bc - cb). But also (XVl/2)*(XVI/2) = v1/2X*XV1/2 = 

V1/2( U - v) Vl/2 = - v2. So the uniqueness of the Cartesian decomposition 
implies that b2 + c2 = -v2 and bc = cb. Thus 3d, the C*-algebra gener­
ated by band c, is abelian. Hence if A E a(b 2 + c2 ), there is a homomor­
phism h: 3d ~ C such that A = h(b2 + c2 ) = h(b)2 + h(C)2. Since 
h(b), h(c) E ~ (1.12), A:2: O. Thus b 2 + c2 E sd+. But -(b2 + c2 ) = v2 

and the same type of argument shows that u2 E sd+. Thus v2 E sd+ Ii ( -sd+). 
By Proposition 3.7 below, v2 = O. Since u :2: 0, v = 0 (3.5). • 

The next result will be proved only using the equivalence of (a), (d), and 
(e) from the preceding theorem. 

3.7. Proposition. If sd is a C*-algebra, then sd+ is a closed cone. 

PROOF. Let {an} ~ _sd+ and suppose an ~ a. Clearly a E Resd. By (3.6d), 
Ila n - Ilanllll :::;; Ilanll. Hence Iia - Ilallll :::;; lIall, so by (3.6e), a :2: O. 

Clearly, Aa ;::: 0 if a :2: 0 and A :2: O. Let a, b E sd+; it must be shown 
that a + b :2: O. It suffices to assume that Iiall, Ilbll ~ 1. But 111 - !( a + b )11 
= !11(1 - a) + (1 - b)11 ~ 1 by (3.6d). So by (3.6e), !(a + b);::: O. 

If a E sd+li( -sd+), then a = a* and a(a) = {O}. But Iiall = r(a)(1.11e) . 

• 
Now to look at one more example-a very important one. 

3.8. Theorem. If Yt' is a Hilbert space and A E 3d(Yt'), then A :2: 0 if and 
only if (Ah, h) :2: 0 for all h in Yt'. 

PROOF. If A :2: 0, then (3.6c) A = T*T for some T in 3d( Yt'). Hence 
(Ah, h) = IIThI12:2: O. Conversely, suppose (Ah, h) :2: 0 for all h in Yt'. By 
(11.2.12), A = A*. It remains to show that a(A) ~ [0, (0). If h E Yt' and 
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A < 0, then 

II(A - A)h11 2 = IIAhl1 2 - 2A(Ah, h) + A211hl1 2 

~ -2A(Ah, h) + A211 h l1 2 ~ A211hll 2 

since A < 0 and (Ah, h) ~ O. By (VII.6.4), Aft. CJap(A). But this implies 
that A - A is left invertible (Exercise VII.6.5). Since A - A is self-adjoint, 
A - A is also right invertible. Thus A ft. CJ(A) and A ~ o. • 

3.9. Definition. If .91 is a C*-algebra and a, b E Red, then a:::; b if 
b - a E .91+. 

This ordering makes a C*-algebra into a partially ordered vector space 
(over C). 

Note that if A and B are hermitian operators on the Hilbert space £', 
then A :::; B if and only if (Ah, h) :::; (Bh, h) for all h in £'. 

This section closes with an application of positivity to obtain the polar 
decomposition of an operator. If A E C, then A = IAle ili for some (); this is 
the polar decomposition of A. Can an analogy be found for operators? To 
answer this question we might first ask what is the analogy of IAI and e ill 

among operators. If A E PA(£,), then the proper definition for IAI would 
seem to be IAI == (A*A)1/2 [see (3.5)]. How about an analogy of e ill? Should 
it be a unitary operator? An isometry? For an arbitrary operator neither of 
these is correct. The following new class of operators is needed. 

3.10. Definition. A partial isometry is an operator W such that for h in 
(ker W).l, II Whll = IIhll. The space (ker W).l is called the initial space of 
Wand the space ran W is called the final space of W. See Exercises 15-20 
for more on partial isometries. 

3.11. Polar Decomposition. If A E P4(£'), then there is a partial isometry W 
with (ker A).l as its initial space and cl(ran A) as its final space such that 
A = WIAI. Moreover, if A = UP where P ~ 0 and U is a partial isometry 
with initial and final spaces (ker A).l and cl(ran A), respectively, then 
P = IA I and U = W. 

PROOF. If hE£', then IIAhIl 2 = (Ah,Ah) = (A*Ah,h) = (IAlh,IAlh). 
Thus 

3.12 

Since (ran A*).l = ker A, ran A* is dense in (ker A).l . If f E ran A*, f = 
A*g for gin (kerA*).l= clranA. Therefore, {A*Ak: k E£'} is dense in 
cl[ranA*] = (kerA).l. But A*Ak = IAI 2k = IAlh, where h = IAlk. That is, 
{IA Ih: hE£'} is dense in (ker A).l. If W: ranlA I ~ ran A is defined by 

3.13 W(IAlh) = Ah, 
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then (3.12) implies that W is a well-defined isometry. Thus Wextends to an 
isometry W: (ker A).L ~ cl(ran A). If Wh = 0 for h in ker A, W is a partial 
isometry. By (3.13), WIAI = A. 

For the uniqueness, note that A*A = PU*UP. Now U*U = E == the 
projection onto the initial space of U (Exercise 16), (ker A).L . But ker A :2 
ker P, so (ker A).L ~ (ker P).L = cl(ran P), since P = P*. Hence EP = P. 
Thus A*A = PEP = p2. By the uniqueness of the positive square root, 
P = IAI. Since A = UIAI, UIAlh = Ah = WIAlh. That is, U and Wagree 
on a dense subset of their common initial space. Hence U = W. • 

EXERCISES 

1. Prove the uniqueness statement in Proposition 3.4 for the case that sI IS 

abelian. 

2. Prove Proposition 3.5. 

3. Let A E PA(L2(0, 1» be defined by (Af)(t) = tf(t). Show that A ~ 0 and find 
AI/". 

4. Let (X,a,IL) be a a-finite measure space, let cJ> E L"'(X,a,IL), and define Mq, 
as in Theorem 11.1.5. Show that Mq, ~ 0 if and only if cJ>(x) ~ 0 a.e. [IL). What 
is M/"? If Mq, E RePA(£), find the positive and negative parts of Mq,. 

5. Find an example of a positive operator on a Hilbert space that has a nonhermi-
tian square root. 

6. If a E Resl, show that lal "" (a 2)1/2 = a+ + a_. 

7. If a E sI+, show that x*ax E sI+ for every x in sI. 

8. If a, bE sI, 0 s a s b, and a is invertible, then b is invertible and b- l sa-I. 

9. If a, bEReA, as b, and ab = ba, then I(a) s feb) for every increasing 
continuous function f on IR. 

10. If a E Resl and lIall s 1, show that a is the sum of two unitaries. (Hint: First 
solve this for sI= C.) 

11. If a> 0, define Ie,: (-a-I,oo) --> IR by f,,(t) = t/(l + at) = a- l [l - (1 + 
at) - I). Show: 
(a) If a s b in sI, fc,(a) sf,,(b) for all a> 0; 
(b) fa(t) < min{t, a-I} for t > 0; 
(c) lim,,~of,,(t) = t uniformly on bounded intervals in [0,00); 
(d) if a s {3, fa S fp; 
(e) fa 0 fp = f,,+p; 
(f) lima ~ ",af,,(t) = 1 uniformly on bounded intervals in [0,00). 

12. If a, bE sI+ and as b, show that aP s bP for 0 s {3 s 1. (a P = f(a) where 
f(t) = {p.) (Hint: Let fa be as in Exercise 11 and show that ffff,,(t)a- p da = 

ytP where y > O. Use the definition of the improper integral and the functional 
calculus.) 
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13. Give an example of a C*-algebra d and positive elements a, b in d such that 
a .::5: b but b2 - a 2 f/:. d+. 

14. Let d= P4(/2), let a = the unilateral shift on [2, and let b = a*. Show that 
a(ab)"* a(ba). 

15. Let WE P4( Jt') and show that the following statements are equivalent: (a) W is 
a partial isometry; (b) W* is a partial isometry; (c) W*W is a projection; (d) 
WW* is a projection; (e) WW*W = W; (f) W*WW* = W*. 

16. If W is a partial isometry, show that W* W is the projection onto the initial 
space of W and WW* is the projection onto the final space of W. 

17. If WI' W2 are partial isometries, define WI ::S W2 to mean that WI* WI :5 wt W2, 
WI Wr :5 W2 W2*' and W2 h = WI h whenever h is in the initial space of WI' 
Show that ::S is a partial ordering on the set of partial isometries and that a 
partial isometry W is a maximal element in this ordering if and only if either W 
or W* is an isometry. 

18. Using the terminology of Exercise 17, show that the extreme points of ball P4(Jt') 
are the maximal partial isometries. 

19. Find the polar decomposition of each of the following operators: (a) M</> as 
defined in (11.1.5); (b) the unilateral shift; (c) the weighted unilateral shift 
[A(XI ,X2, ... ) = (0,aIxI,a2x2' ... ) for x in [2 and sUPnlanl < 00) with non­
zero weights; (d) A Ell a (in terms of the polar decomposition of A). 

20. Let A E P4(Jt') such that kerA = (0) and A ~ 0 and define S on f= £EIl £ 
Ell '" by S(h l ,h2, ... ) = (0,Ah l ,Ah 2, ... ). Find the polar decomposition of 
S, S = WISI, and show that S = lSI W. 

21. Show that the parts of the polar decomposition of a normal operator commute. 

22. If A E P4(Jt'), show that there is a positive operator P and a partial isometry 
W such that A = PW. Discuss the uniqueness of P and W. 

23. If A is normal and a(A) n {reiD: r ~ 0 and a :5 0 :5 fi} = D, where 0 < fi - a 
< 2'fT, show that the parts of the polar decomposition of A belong to C*(A). 

24. Give an example of a normal operator A such that the partial isometry in the 
polar decomposition of A does not belong to C*(A). 

§4*. Ideals and Quotients for C*-Algebras 

We begin with a basic result. 

4.1. Proposition. If I is a closed left or right ideal in the C*-algebra d, 
a E I with a = a*, and iff E C(a(a» with f(O) = 0, then f(a) E I. 

PROOF. Note that if I is proper, then 0 E a(a) since a cannot be invertible. 
Since a(a) ~ IR, the Weierstrass Theorem implies there is a sequence {PIl} 
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of polynomials such that Pn(t) -+ f(t) uniformly for t in a(a). Hence 
Pn(O) -+ f(O) = O. Thus qn(t) = Pn(t) - Pn(O) -+ f(t) uniformly on a(a) and 
qn(O) = 0 for all n. Thus qn(a) E I and by the functional calculus, Ilqn(a) 
- f(a)11 -+ O. Hence f(a) E I. • 

4.2. Corollary. If I is a closed left or right ideal, a E I with a = a*, then 
a+, a_, lal, and la1 1/ 2 E I. 

Note that if I is a left ideal of .JiI, then {a *: a E I} is a right ideal. 
Therefore a left ideal I is an ideal if a* E I whenever a E I. 

4.3. Theorem. If I is a closed ideal in the C*-algebra .JiI, then a* E I 
whenever a E I. 

PROOF. Fix a in I. Thus a*a E I since I is an ideal. The idea is to construct 
a sequence {un} of continuous functions defined on [0, (0) such that 

4.4 
(i) un{O) = 0 and un{t) ::::: 0 for all t; 

(ii) 

Note that if such a sequence {un} can be constructed, then un(a*a)::::: 0 
and un(a*a) E I by Proposition 4.1. Also, un(a*a)a* E I since I is an 
ideal and Ilun(a*a)a* - a*11 = Ilaun(a*a) - all -+ 0 by (ii). Thus a* E I 
whenever a E I. It remains to construct the sequence { un}. 

Note that 

Ilaun{a*a) - al1 2 

= II[aun{a*a) - a]*[aun{a*a) - a]1I 
= Ilun{a*a)a*aun{a*a) - a*aun{a*a) - un{a*a)a*a + a*all· 

If b = a*a, then the fact that bUn(b) = un(b)b implies that Ilaun(a*a) -
al1 2 = Ilfn(b)11 ::;; suP{lfn(t)I: t::::: O}, where fn(t) = tun(t)2 - 2tun(t) + t 
= t[un(t) - 1]2. If un(t) = nt for 0 ::;; t ::;; n- 1 and u(t) = 1 for t ::::: n- 1, 

then it is seen that suP{lfn(t)I: t::::: O} = 4/27n -+ 0 as n -+ 00; so (4.4) is 
satisfied. • 

Notice that the construction of the sequence {un} satisfying (4.4) actually 
proves more. It shows that there is a "local" approximate identity. That is, 
the proof of the preceding theorem shows that the following holds. 

4.5. Proposition. If.Jil is a C *-algebra and I is an ideal of .JiI, then for every 
a in I there is a sequence {en} of positive elements in I such that: 

(a) e 1 ::;; e2 ::;; ... and Ilenll ::;; 1 for all n; 
(b) Ilaen - all -+ 0 as n -+ 00. 

In the preceding proposition the sequence {en} depends on the element 
{a}. It is also true that there is a positive increasing net {ei } in I such that 
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Ileja - all -+ 0 and Ilae j - all -+ 0 for every a in I (see p. 36 of Arveson 
[1976]). 

We turn now to an important consequence of Theorem 4.3. 

4.6. Theorem. If..91 is a C*-algebra and I is a closed ideal of..9l, then for 
each a + I in ..91/1 define (a + /) * = a * + I. Then ..91/1 with its quotient 
norm is a C*-algebra. 

To prove (4.6), a lemma is needed. 

4.7. Lemma. If I is an ideal in a C*-algebra ..91 and a Ed, then Iia + III 
= inf{lla - axil: x E I, x ~ 0, and Ilxll ~ I}. 

PROOF. If (ball/)+= {x E ball I: x ~ O}, then clearly Iia + III::; inf{lla­
axil: x E (ball /) +} since aI ~ I. Let y E I and let {en} be a sequence in 
(ball /)+ such that Ily - yenll -+ 0 as n -+ 00. Now 0::; 1 - en ::; 1, so 
II (a + y)(l - en)11 ~ Iia + YII. Hence 

Iia + yll ~ liminfll(a + y)(l - en)11 

= liminfll(a - aen) +(y - yeJl1 

= liminflla - aenll 

since IIY - yenll -+ O. Thus lIa + yll ~ infnlla - aenll ~ inf{lla - axil: x E 

(ball /) +}. Taking the infimum over all y in I gives the desired remaining 
inequality. • 

PROOF OF THEOREM 4.6. The only difficult part of this proof is to show that 
Iia + 1112 = Ila*a + III for every a in ..91. If x E I, then 

Iia + xl12 = II(a + x)*(a + x)11 

= Ila*a + a*x + x*a + x*xll ~ inf{lla*a + yll: y E I} 

= Ila*a + III 

since a*x + x*a + x*x E I whenever x E I (4.3). On the other hand, the 
preceding lemma gives that 

Iia + 1112 = inf{lla - aX11 2: x E (ball/)+} 

= inf{lla(l - x )112: x E (ball /) + } 

= inf{II(1- x)a*a(l- x)ll: x E (ball/)+} 

::; inf{lla*a(l - x )11: x E (ball /) + } 

= inf{lIa*a - a*axll: x E (ball /) + } 

= Ila*a + III· • 

If ..91, ~ are C *-algebras with ideals I, J, respectively, and ,I): ..91-+ ~ is 
a *-homomorphism such that p(I) ~ J, then p induces a *-homomor-
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phism p: .s#/I -> :?J/J defined by pea + I) = pea) + J. In particular, if 
1= kerp, then p: .s#/kerp ->:?J is a *-homomorphism and po 7T = p, 
where 7T: .s# -> .s#/ker p is the natural map. Keep these facts in mind when 
reading the proof of the next result. 

4.8. Theorem. If .s#,:?J are C * -algebras and p: .s# -> :?J is a * -homomor­
phism, then jjp(a)jj :s; lIajj for all a and ran p is closed in :?J. If p is a 
* -monomorphism, then p is an isometry. 

PROOF. The fact that jjp(a)jj :s; lIajj is a restatement of (1.11d). Now assume 
that p is a * -monomorphism. As in the proof of (1.11d), it suffices to 
assume that .s# and :?J have identities and pel) = 1. (Why?) 

If a E.s# and a = a*, then it is easy to see that pea) = p(a)* and 
a(p(a» ~ a(a). If a(p(a» =1= a(a), there is a continuous function f on 
a(a) such that f(t) = 0 for all t in a(p(a» but f is not identically zero on 
a(a). Thus f(p(a» = 0, but f(a) =1= O. Let {Pn} be polynomials such that 
Pn(t) -> f(t) uniformly on a(a). Thus Pn(a) -> f(a) and Pn(p(a»-> 
f(p(a» = O. But Pn(p(a» = p(Pn(a» -> p(f(a». Thus p(f(a» = f(p(a» 
= O. Since p was assumed injective, f(a) = 0, a contradiction. Hence 
a(a) = a(p(a» if a = a*. Thus by (l.lle), lIajj = rea) = r(p(a» = jjp(a)jj 
if a = a*. But then for arbitrary a, jjalj2 = jja*ajl = jjp(a*a)jj = 
jjp(a)*p(a)jj = jjp(a)jj2 and p is an isometry. 

To complete the proof let p: .s# -> :?J be a * -homomorphism and let p: 
.s#/ker p -> !JI be the induced * -monomorphism. So p is an isometry and 
hence ran p is closed. But ran p = ran p. • 

We turn now to some specific examples of C*-algebras and their ideals. 

4.9. Proposition. If X is compact and I is a closed ideal of C( X), then there 
is a closed subset F of X such that I = {I E C(X): f(x) = 0 for all x in F}. 
Moreover, C( X) / I is isometrically isomorphic to C( F). 

PROOF. Let F = {x E X: f(x) = 0 for all f in I}, so F is a closed subset 
of x. If /l E M( X) and /l ..1 I, then Ijfj2 d/l = 0 for every f in I since 
jfj2 = ff E I whenever f E I. Thus each f must vanish on the support of /l; 
hence j/lj(X\ F) = O. Conversely, if /l E M(X) and the support of /l is 
contained in F, If d/l = 0 for every f in I. Thus I.l. = {/l E M( X): 
j/lj(X\F) = O}. Since I is closed, 1= .l.(I.l.) = {IE C(X): f(x) = 0 for 
all x in F}. The remainder of the proof is left to the reader. • 

4.10. Proposition. If I is a closed ideal of :?J(£'), then 1:2 :?Jo(£') or 
1=(0). 

PROOF. Suppose I =1= (0) and let T be a nonzero operator in I. Thus there 
are vectors fa, f, in £' such that Tfo = f, =1= O. Let go, g, be arbitrary 
nonzero vectors in £'. Define A: £'-> £' by letting Ah = jjgojj-2(h, go)fo' 
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Then Ago = 10 and Ah = 0 if h..i go' Define B: £'-'> £' by letting 
Bh = 11/111- 2(h,/I)gl' SO BII = gl and Bh = 0 if h ..ill' Thus BTAh = 0 
if h ..i go and BTAgo = gl' Hence for any pair of nonzero vectors go, gl in 
£' the rank-one operator that takes go to gl and is zero on [go].l belongs 
to I. From here it easily follows that I contains all finite-rank operators. 
Since I is closed, I ;;2 880 ( £'). • 

It will be shown in (IX.4.2), after we have the spectral theorem, that if I is 
a closed ideal in 88(£') and£' is separable, then 1=(0), 880 (£'), or 
88( £'). 

EXERCISES 

1. Complete the proof of Proposition 4.9. 

2. Show that Mn (C) has no nontrivial ideals. Find all of the left ideals. 

3. If a is an infinite cardinal number, let I = {A E 8B( £): dim cl(ran A) :S a}. 
Show that Ia is a closed ideal in 8B(£). 

4. Let S be the unilateral shift on [2. Show that C * (S) ;2 8B1) (12 ) and 
C*(S)/!1Bo(l2) is abelian. Show that the maximal ideal space of C*(S)/8Bo(l2) 

is homeomorphic to all). 

5. If V is the Volterra operator on L2(O, 1), show that C*( V) = C + 8Bo( L2(O, 1 ». 
6. If d is a C*-algebra, I is a closed ideal of d, and 8B is a C*-subalgebra of d, 

show that the C*-algebra generated by I U 8B is I + 8B. 

7. If d is a C*-algebra and I and J are closed ideals in d, show that 1+ J is a 
closed ideal of d. 

§5*. Representations of C*-Algebras and the 
Gelfand-Naimark-Segal Construction 

5.1. Definition. A representation of a C *-algebra is a pair (1T, £'), where £' 
is a Hilbert space and 1T: .sd -'> 88( £') is a * -homomorphism. If .sd has an 
identity, it is assumed that 1T(I) = 1. (The algebras considered in this book 
are assumed to have an identity. This proviso is given for the reader's 
convenience when consulting the literature.) Often£' is deleted and we say 
that 1T is a representation. 

5.2. Example. If £' is a Hilbert space and .sd is a C *-subalgebra of 
88(£'), then the inclusion map.sd~ 88(£') is a representation. 

5.3. Example. If n is any cardinal number and £' is a Hilbert space, let 
£,(n) denote the direct sum of £' with itself n times. If A E 88(£'), then 
A(n) is the direct sum of A with itself n times; so A(") E 88(£,(11) and 
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IIA(n)11 = IIAII. The operator A(n) is called the inflation of A. If 1T: d~ 
8B(X) is a representation, the inflation of 1T is the map 1T(n): d~ 8B(x(n» 
defined by 1T(n)(a) = 1T(a)(n) for all a in d. 

5.4. Example. If (X, a, p,) is a a-finite measure space and X= L 2(p,), then 
1T: L oo(p,) ~ 8B( X) defined by 1T( <j» = M", is a representation. 

5.5. Example. If X is a compact space and p, is a positive Borel measure 
on X, then 1T: C(X) ~ 8B(L2(p,» defined by 1T(/) = Mf is a representa­
tion. 

5.6. Definition. A representation 1T of a C *-algebra d is cyclic if there is a 
vector e in X such that cl[ 1T( d) e 1 = X; e is said to be a cyclic vector for 
the representation 1T. 

Note that the representations in Examples 5.4 and 5.5 are cyclic (Ex­
ercises 2 and 3). Also, the identity representation i: 8B( X) ~ 8B( X) is 
cyclic and every nonzero vector is a cyclic vector for this representation. If 
d = C + 8Bo( X), then the identity representation is cyclic. On the other 
hand, if n 2 2, then the inflation 1T(n) of a representation of C( X) is never 
cyclic (Exercise 4). 

There is another way to obtain representations. 

5.7. Definition. If {( 1T;, ~): i E I} is a family of representations of d, 
then the direct sum of this family is the representation (1T, X), where 
X= EI3;~ and 1T(a) = {1T;(a)} for every a in d. 

Note that since 111T;(a)11 S lIall for every i (4.8), 1T(a) is a bounded 
operator on X. It is easy to check that 1T is a representation. 

s.s. Example. Let X be a compact space and let {JL n} be a sequence of 
measures on X. For each n let 1Tn: C(X) ~ 8B(L2(P,n» be defined by 
1Tn(f) = Mf on L2(P,n). Then 1T = El3n1Tn is a representation. If the measures 
{p, n} are pairwise mutually singular, then 1T is equivalent (below) to the 
representation f ~ Mf of C(X) ~ 8B(L2(p,», where JL = L~~1P,n/2nllP,nll 
(Exercise 5). 

The concept of equivalence for representations is that of unitary equiv­
alence. That is, two representations of a C*-algebra d, (1T1' Xl) and 
(1T2' X 2), are equivalent if there is an isomorphism U: Xl ~ X 2 such that 
U1T1(a)U- 1 = 1T2(a) for every a in d. The importance of cyclic representa­
tions arises from the fact, given in the next result, that every representation 
is equivalent to the direct sum of cyclic representations. 

5.9. Theorem. If 1T is a representation of the C*-algebra d, then there is a 
family of cyclic representations {1T;} of d such that 1T and EI3 ;1T; are 
equivalent. 
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PROOF. Let Iff = the collection of all subsets E of nonzero vectors in .Yt' 
such that 7T(d')e.1. 7T(d')f for e,f in E with e =1= f. Order Iff by inclusion. 
An application of Zorn's Lemma implies that Iff has a maximal element Eo. 
Let .Yt'o = E9 {cl[7T(d')e]: e E Eo}. If hE.Yt'e .Yt'o, then 0 = (7T(a)e, h) 
for every a in d' and e in Eo. So if a, bEd' and e E Eo, 0 = 
(7T(b*a)e, h) = (7T(b)*7T(a)e, h) = (7T(a)e,7T(b)h). That is, 7T(d')e.1. 
7T( d')h for all e in Eo. Hence Eo U {h} E Iff, contradicting the maximality 
of Eo. Therefore .Yt'= .Yt'o. 

For e in Eo let £;, = cl[ 7T( d') e]. If a Ed', clearly 7T( a)£;, ~ £;,. Since 
a* Ed' and 7T(a)* = 7T(a*), £;, reduces 7T(a). So if 1Te: d' --'> .c?8(£;,) is 
defined by 7Te(a) = 7T(a)I£;" 1Te is a representation of a. Clearly 7T = E9 {1Te: 
e E Eo}. • 

In light of the preceding theorem, it becomes important to understand 
cyclic representations. To do this, let 7T: d' ~ .c?8(.Yt') be a cyclic representa­
tion with cyclic vector e. Define f: d' ~ C by f(a) = (7T(a)e, e). Note that 
f is a bounded linear functional on d' with IIfll ::;; Ile11 2• Since f(l) = Ile11 2 , 

Ilfll = Ile11 2. Moreover, f(a*a) = (7T(a*a)e, e) = (7T(a)*7T(a)e, e) = 
117T( a )e11 2 ~ O. 

5.10. Definition. If d' is a C*-algebra, a linear functional f: d'~ C is 
positive if f( a) ~ 0 whenever a E d'+. A state on d' is a positive linear 
functional on d' of norm 1. 

5.11. Proposition. If f is a positive linear functional on a C*-algebra d'. 
then 

If( y*x)12 ::;; f( y*y )f( x*x) 

for every x, y in d'. 

PROOF. If [x, y) = f(y*x) for x, yin d', then [', .) is a semi-inner product 
on d'. The proposition now follows by the CBS inequality (1.1.4). • 

5.12. Corollary. Iff is a positive linear functional on the C *-algebra d', then 
f is bounded and Ilfll = f(I). 

5.13. Example. If X is a compact space, then the positive linear functionals 
on C( X) correspond to the positive measures on X. The states correspond 
to the probability measures on X. 

As was shown above, each cyclic representation gives rise to a positive 
linear functional. It turns out that each positive linear functional gives rise 
to a cyclic representation. 
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5.14. Gelfand-Naimark-Segal Construction. Let ..91 be a C*-algebra with 
identity. 

(a) Iff is a positive linear functional on ..91, then there is a cyclic representa­
tion (7Tf ,.Ytf) of ..91 with cyclic vector e such that f( a) = (7Tf ( a)e, e) for 
all a in ..91. 

(b) If (7T, £') is a cyclic representation of ..91 with cyclic vector e and 
f ( a) = (7T( a) e, e) and if ( 7Tf , .Ytf) is constructed as in (a), then 7T and 7Tf 
are equivalent. 

Before beginning the proof, it will be helpful if the theorem is examined 
when ..91 is abelian. So let ..91 = C( X) where X is compact. If f is a positive 
linear functional on ..91, then there is a positive measure Jl on X such that 
f( cp) = fcp dJl for all cp in ..91. The representation (7Tf ,.Ytf) is the one 
obtained by letting .Ytf = L 2(Jl) and 7T/ cp) = M"" but let us look a little 
closer. One way to obtain L2(Jl) from C(X) and Jl is to let 2= {cp E C(X): 
flcpl2 dJl = O}. Note that 2 is an ideal in C(X). Define an inner product on 
C(X)/2 by (cp + 2, l/; + 2) = fcp;J dJl. The completion of C(X)/2 with 
respect to this inner product is L 2(Jl). 

To see part (b) in the abelian case, let 7T: C( X) ~ 88( £') be a cyclic 
representation with cyclic vector e. Let Jl be the positive measure on X such 
that fcp dJl = (7T( cp )e, e) = f( cp). Now define Ui : C( X) ~ £' by Ui (cp) = 
7T( cp )e. Note that Ui is linear and has dense range. If 2 is as in the 
preceding paragraph and cp E 2, then IlUi(CP)11 2 = (7T(cp)e,7T(cp)e) = 
(7T(cp*cp)e,e) = flcpl2dJl = O. So U12= O. Thus Ui induces a linear map 
U: C(X)/2~ £' where U(cp + 2) = 7T(cp)e. If (cp + 2, l/; + 2) = 
fcp;JdJl, then (U(cp +2),U(l/; +2» = (7T(cp)e,7T(l/;)e) = (7T(cpl/;*)e,e) 
= fcp;J dJl = (cp + 2, l/; + 2). Thus U extends to an isomorphism U from 
the completion of ..91/2= L 2(Jl) onto £'. So U: L 2(Jl) ~ £' and if 
cp E C( X) and we think of C( X) as a (dense) subset of L 2(Jl), Ucp = 7T( cp )e. 
If cp, l/; E C(X), then UM",l/; = U(cpl/;) = 7T(cpl/;)e = 7T(cp)7T(l/;)e = 
7T( cp )U( l/;); that is, UM", = 7T( cp)U on a dense subset of L 2(Jl) and, hence, 
UM", = 7T( cp)U for every cp in C( X). In other words, 7T is equivalent to the 
representation cp >-+ M",. 

PROOF OF THEOREM 5.14. Let f be a positive linear functional on ..91 and 
put 2= {x E..9I: f(x*x) = O}. It is easy to see that 2 is closed in ..91. 
Also if a E..9I and x E 2, then (5.ll) implies that 

f({ax)*{ax))2 = f{x*{a*ax))2 

=:::; f{x*x )f{x*a*aa*ax) 

= O. 

That is, 2 is a closed left ideal in ..91. Now consider ..91/2 as a vector 
space. (Since 2 is only a left ideal, ..91/2 is not an algebra.) For x, y in ..91, 
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define 

(x + Y, y + Y) = I(Y*x). 

It is left as an exercise for the reader to show that ( . , .) is a well-defined 
inner product on dlY. Let.Yfj be the completion of dlY with respect to 
the norm defined on dl Y by this inner product. 

Because Y is a left ideal of d, x + Y~ ax + Y is a well-defined linear 
transformation on dlY. Also, Ilax + YI1 2 = (ax + Y, ax + Y) = 
I(x*a*ax). Now if Ila*all is considered as an element of d (it is a multiple 
of the identity), then an appeal to the functional calculus for a*a shows that 
Ila*all - a*a 2 0. Hence (Exercise 3.7) ° ~ x*(lla*all - a*a)x = Ilal1 2x*x 
- x*a*ax; that is, x*a*ax ~ IlaI1 2x*x. Therefore Ilax + YI1 2 ~ IlaI1 2/(x*x) 
= IIal1 211x + Y112. Thus if '1T/a): dlY-,> dlY is defined by '1T/a)(x + Y) 
= ax + Y, '1T/a) is a bounded linear operator with 11'1T/a)11 ~ Iiali. Hence 
'1T/ a) extends to an element of ~(.Yfj). It is left to the reader to verify that 
'1Tf : d -'> ~(.Ytf) is a representation. 

Put e = 1 + Y in .Yfj. Then '1Tf ( d)e = {a + Y: a Ed} = dlY which, 
by definition, is dense in .Yfj. Thus e is a cyclic vector for '1Tf . [Also note that 
('1T/a)e,e) = I(a).] This proves (a). 

N ow let ('1T, £), e, and I be as in (b) and let ( '1Tf , .Yfj) be the representa­
tion constructed. Let ef be the cyclic vector for '1Tf so that I(a) = 
('1Tf (a)ef ,ef ) for all a in d. Hence ('1T/a)ef ,ef ) = ('1T(a)e,e) for all a in 
d. Define U on the dense manifold '1Tf (d)ef in.Yfj by U'1Tf (a)ef = '1T(a)e. 
Note that 11'1T(a)eI1 2 = ('1T(a)e,'1T(a)e) = ('1T(a*a)e,e) = ('1T/a*a)ef ,ef ) 
= 11'1T/a)efI12. This implies that U is well defined and an isometry. Thus U 
extends to an isomorphism of .Yfj onto £. If x, a Ed, then U'1Tf (a)'1Tf (x)ef 
= U'1T/ax)ef = '1T(a)'1T(x)e = '1T(a)U'1T/x)ef . Thus '1T(a)U = U'1Tf (a) so 
that '1T and '1Tf are equivalent. • 

The Gelfand-Naimark-Segal construction is often called the GNS con­
struction. 

It is not difficult to show that if I is a positive linear functional on d and 
a > 0, then the representations '1Tf and '1Taf are equivalent (Exercise 8). So it 
is appropriate to only consider the cyclic representations corresponding to 
states. If d is a C *-algebra, let S,sQ' = the collection of all states on d. Note 
that S,sQ'r;;, balld*. S,sQ' is called the state space of d. 

5.15. Proposition. II d is a C*-algebra with identity, then S,sQ' is a weak* 
compact conuexsubset old* andila Ed+, then Iiall = sup{f(a): IE S",} 
and this supremum is attained. 

PROOF. Since S,sQ'r;;, balld*, to show that S,sQ' is weak* compact, it suffices 
to show that S,sQ' is weak* closed. The reader can supply this proof using 
nets. Clearly S,sQ' is convex. 
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If d= C(X) with X compact and f E C(X)+, then there is a point x in 
X such that f(x) = Ilfll. Thus Ilfll = If d8x = sup{ If d/L: /L E 

(ball M( X» +}. If d is arbitrary and a E d+, then Iiall ;::: sup{f( a): 
f E S,y/}' Also, from the argument in the abelian case, there is a state f1 on 
C*(a) such that f1(a) = Iiali. If we can show that f1 extends to a state f on 
d, the proof is complete. That this can be done is a consequence of the next 
result. • 

5.16. Proposition. Let d, 88 be C *-algebras with 88 <:::::: d. If f1 is a state on 
88, then there is a state f on d such that fl88 = fl' 

PROOF. Consider the real linear spaces Red and Re88. If a E d+, then 
a :$ II all in d. Since 1 E Re88, Re88 has an order unit. By Corollary 
III.9.12, if f1 E S~ there is a positive linear functional f on Red such that 
fl Re 88 = fl' Since e E 88, f(l) = f1(1) = 1. Now let f(a) = f«a + a*)/2) 
+ if«a - a*)/2i) for an arbitrary a in d. It follows that f E S,y/ and 
fl 88 = fl' • 

The next result says that every C *-algebra is isomorphic to a C *-algebra 
contained in 88(£') for some £'. Thus each C*-algebra "is" an algebra of 
operators. 

5.17. Theorem. If d is a C*-algebra, then there is a representation (7T, £') 
of d such that 7T is an isometry. If d is separable, then £' can be chosen 
separable. 

PROOF. Let F be a weak* dense subset of S,y/ and let 7T = EEl {7T/ f E F}, 
£'= EEl{£j-: fE F}. Thus Ila11 2 ;::: 117T(a)11 2 = suPj ll7T/a)11 2. If ej is the 
cyclic vector for 7Tj , then lIejl12 = (e j , ej > = (7Tj(l)e j , ej> = f(l) = 1. Hence 
117T/a)11 2 ;::: 117T/a)ejI12 = (7Tj(a*a)ej , ej> = f(a*a), and Ila11 2 ;::: 117T(a)11 2 

;::: sup{f(a*a): fE F}. Since F is weak* dense in S,y/' Proposition 5.15 
implies sup{f(a*a): fE F} = Ila*all = lIall 2• Hence 7T is an isometry. 

If d is separable, (ball d*, wk*) is a compact metric space (V.S.1). 
Hence S,y/ is weak* separable so that the set F of the preceding paragraph 
can be chosen to be countable. Now if f E F, 7T(d)f is a separable dense 
submanifold in £j- since d is separable. Thus £j- is separable. It follows 
that £' is separable. • 

Actually, more can be said if d is separable. In fact, every separable 
C *-algebra has a cyclic representation that is isometric (Exercise 12). 

EXERCISES 

1. Let .91 be a C*-algebra with identity and let 7T: .91-+ !!d(.YI') be a * -homomor­
phism [but don't assume that 7T(I) = 1]. Let Pj = 7T(I). Show that Pj is a 
projection and ~ == Pj.Yl' reduces 7T( .91). If 7Tj (a) = 7T( a) l.YI'j, show that 7T1: 
.91-+ !!d(.YI'1) is a representation. 
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2. Show that the representation in Example 5.4 is a cyclic representation and find 
all of the cyclic vectors. 

3. Show that the representation in Example 5.5 is a cyclic representation and find 
all the cyclic vectors. 

4. If X is compact and JL is a positive measure on X, let 'TTl': C(X) -> .o.d(L2 (JL» 
be the representation defined in Example 5.5. If JL, l' are positive measures on X 
show that 'TTl' $ 'TTp is cyclic if and only if JL .l l'. If JL .l l', then 'TTl' $ 'TTp is 
equivalent to 'TTl'+-' Also, 'TTJn) is not cyclic if n ~ 2. 

5. Verify the statements in Example 5.8. 

6. If .91 = C + .o.do (£) and 'TT: .91 -> .o.d( £) is the identity representation, show 
that 'TT(OO) is a cyclic representation. 

7. Fix a Banach limit LIM on /00(1'1) and let £ be a separable Hilbert space with 
an orthonormal basis {en}' Define f: .o.d( £) -> C by f(T) = LIM{ (Ten, en)}. 

Show that I is a state on .o.d( £). If 'TTl is the corresponding cyclic representa­
tion, show that ker'TTl = .o.do (£). Hence 'TTl induces a cyclic representation of 
.o.d( £)j.o.do (£) that is isometric. Is £f separable? 

8. If I is a positive linear functional on .91 and a E (0, 00), show that 'TTl and 'TTal 

are equivalent representations. 

9. If a Ed, then a ~ 0 if and only if I(a) ~ 0 for every state f. 

10. If a Ed and a "* 0, then there is a state f on .91 such that I(a) "* O. 

11. If I is a state on .91 and 'TTl is the corresponding representation, then 'TTl is 
injective if and only if {x Ed: I(x*x) = O} = (0). 

12. If .91 is a separable C*-algebra and {In} is a countable weak* dense subset of 
Sd' let 1= Ln2-nln· Show that 'TTl is an isometry. 



CHAPTER IX 

Normal Operators on Hilbert Space 

In this chapter the Spectral Theorem for normal operators on a Hilbert 
space is proved. This theorem is then used to answer a number of questions 
concerning normal operators. In fact, the Spectral Theorem can be used to 
answer essentially every question about normal operators. 

§1. Spectral Measures and Representations 
of Abelian C*-Algebras 

Before beginning this section the reader should familiarize himself with the 
definitions and examples in (VIII.5.1) through (VIII.5.8). 

In this section we want to focus our attention on representations of 
abelian C*-algebras. The reason for this is that the Spectral Theorem and its 
generalizations can be obtained as a special case of such a theory. The idea 
is the following. Let N be a normal operator on £. Then C*(N) is an 
abelian C*-algebra and the functional calculus f>--) feN) is a *-iso­
morphism of C( a(N» onto C*(N) (VIII.2.6). Thus f>--) feN) is a repre­
sentation C(a(N» ~ 88(£) of the abelian C*-algebra C(a(N». A diag­
nosis of such representations yields the Spectral Theorem. 

A representation p: C( X) ~ 88( £) is a * -homomorphism with pel) = 1. 
Also, Ilpll = 1 (VIII.l.lld). If f E C(X)+, then f = g2 where g E C(X)-j; 
hence p(f) = p(g)2 = p(g)*p(g) ~ o. So p is a positive map. One might 
expect, by analogy with the Riesz Representation Theorem, that p(f) = 

If dE for some type of measure E whose values are operators rather than 
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scalars. This is indeed the case. We begin by introducing these measures and 
defining the integral of a scalar-valued function with respect to one of them. 

1.1. Definition. If X is a set, D is a a-algebra of subsets of X, and £ is a 
Hilbert space, a spectral measure for (X, D, £) is a function E: D -> 88(£) 
such that: 

(a) for each .1 in D, E(j) is a projection; 
(b) E(D) = 0 and E(X) = 1; 
(c) E(j1 n .1 2) = E(j1)E(j2) for .11 and .12 in D; 
(d) if {j n } ~ ~ 1 are pairwise disjoint sets from D, then 

A word or two concerning condition (d) in the preceding definition. If 
{En} is a sequence of pairwise orthogonal projections on £, then it was 
shown in Exercise 11.3.5 that for each h in £, 'L'::~ 1 En( h) converges in £ 
to E(h), where E is the orthogonal projection of £ onto V{En(£): 
n 2 I}. Thus it is legitimate to write E = 'L'::~lEn' Now if .11 n .12 = D, 
then (b) and (c) above imply that 0 = E(j1)E(j2) = E(j2)E(j1); that is, 
E(j1) and E(j2) have orthogonal ranges. So if {jn}'l" is a sequence of 
pairwise disjoint sets in D, the ranges of {E(jn)} are pairwise orthogonal. 
Thus the equation E(Ufjn) = 'LfE(jn) in (d) has the precise meaning just 
discussed. 

Another way to discuss this is by the introduction of two topologies that 
will also be of value later. 

1.2. Definition. If £ is a Hilbert space, the weak operator topology (WOT) 
on 88(£) is the locally convex topology defined by the semi norms {Ph.k: 
h, k E £} where ph,k(A) = I(Ah, k)l. The strong operator topology (SOT) 
is the topology defined on 88(£) by the family of seminorms {Ph: 
hE £}, where Ph(A) = IIAhli. 

1.3. Proposition. Let £ be a Hilbert space and let {A i} be a net in 88( £). 

(a) Ai -> A (WOT) if and only if (Aih, k) -> (Ah, k) for all h, kin £. 
(b) If supiliAili < 00 and .r is a total subset of £, then Ai --> A (WOT) if 

and only if (Aih, k) -> (Ah, k) for all h, kin .r. 
(c) Ai -> A (SOT) if and only if IIAih - Ahll -> 0 for all h in £. 
(d) If supiliAili < 00 and .r is a total subset of £, then Ai --> A (SOT) if 

and only if IIAih - Ahll -> 0 for all h in .r. 
(e) If £ is separable, then the WOT and SOT are metrizable on bounded 

subsets of 88( £). 
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PROOF. The proofs of (a) through (d) are left as exercises. For (e), let {hn} 
be any countable total subset of ball £'. If A, BE.%'( £'), let 

n=1 

m.n=1 

Then d sand d ware metrics on .%'( £'). It is left as an exercise to show that 
d, and d w define the SOT and WOT on bounded subsets of .%'(£'). • 

1.4. Example. Let (X, D, J-t) be a a-finite measure space. If cp E L OO(J-t), let 
M</> be the multiplication operator on L 2(J-t). Then a net {CPd in L OO(J-t) 
converges weak* to cP if and only if M</>i ~ M</> (WOT). In fact, if f, g E 

L 2(J-t) and CPi ~ cP weak* in LOO(J-t), then (M</>,f, g) = fcpJgdJ-t ~ fcpfgdJ-t 
= (M</>f, g) since fg E L1(J-t). Conversely, if M</>, ~ M</> (WOT) and f E 

L1(J-t), then f = glg2' where gl' g2 E L 2(J-t). (Why?) So fcpJ dJ-t = 

(M</>ig1' g2) ~ (M</>gl' g2) = fcpfdJ-t. 

1.5. Example. If {En} is a sequence of pairwise orthogonal projections on 
£', then ErEn converges (SOT) to the projection of £' onto V{ En(£'): 
n ~ I}. 

In light of (1.5), a spectral measure for (X, D, £') could be defined as a 
SOT-count ably additive projection-valued measure. 

1.6. Example. Let X be a compact set. D = the Borel subsets of X, J-t = a 
measure on D, and £'= L 2(J-t). For.1 in D, let E(.1) = multiplication by 
X.:1' the characteristic function of .1. E is a spectral measure for (X, D, £'). 

1.7. Example. If E is a spectral measure for (X, D, £'), the inflation, E(n), 
of E, defined by E(n)(.1) = E(.1)(n), is a spectral measure for (X, D, £,(n»). 

1.8. Example. Let X be any set, D = all the subsets of X, £'= any sep­
arable Hilbert space, and fix a sequence {xn} in X. If {e l , e2 , •.• } is some 
orthonormal basis for £', define E (.1) = the projection onto V { en: x II E .1 }. 
E is a spectral measure for (X, D, £'). 

The next lemma is useful in studying spectral measures as it allows us to 
prove things about spectral measures from known facts about complex­
valued measures. 

1.9. Lemma. If E is a spectral measure for (X, D, £') and g, hE£', then 

defines a countably additive measure on D with total variation:::; Ilgllllhll. 
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PROOF. That J-t = Eg,h as defined above, is a countably additive measure is 
left for the reader to verify, If .1 1"", Ll n are pairwise disjoint sets in fl, let 
aj E C such that la) = 1 and I(E(Ll)g, h)1 = a/E(Ll)g, h). So 
L)J-t(Ll)1 = Lja/E(Ll)g, h) = (LjE(Ll)ajg, h) .::0;; IILjE(Ll)ajgllllhll. 
Now {E(Ll )ajg: 1 .::0;; j .::0;; n} is a finite sequence of pairwise orthogonal 
vectors so that IIL jE(Ll)ajgI1 2 = L)IE(Ll)gI12 = IIE(U'j~ILl)gI12 .::0;; IL~112; 
hence L)J-t(Ll)1 .::0;; Ilgllllhll· Thus IIJ-tll .::0;; Ilgllllhll· • 

It is possible to use spectral measures to define representations. The next 
result is crucial for this purpose, It tells us how to integrate with respect to a 
spectral measure. 

1.10. Proposition. If E is a spectral measure for (X, fl, £') and <1>: X --> C 
is a bounded fl-measurable function, then there is a unique operator A in 
!Jd( £') such that if e > 0 and {Ll 1" .. , .1 n} is an fl-partition of X with 
sup{I<I>(x) - <I>(x')I: x, x' E Ll k } < e for 1 .::0;; k .::0;; n, then for any x k in Ll k, 

PROOF. Define B(g, h) == f<l>dEg • h for g, h in £'. By the preceding lemma it 
is easy to see that B is a sesquilinear form with IB(g, h)1 .::0;; 1l<I>lloollgllllhll. 
Hence there is a unique operator A such that B(g, h) = (Ag, h) for all g 
and h in £'. 

Let {Ll 1, ... , .1 n} be an fl-partition satisfying the condition in the state­
ment of the proposition. If g and h are arbitrary vectors in £' and X k E Llk 
for 1 .::0;; k .::0;; n, then 

I (Ag, h) - k~l <I>(xk)(E(Llk)g, h) I 

=Ik~l ~k[<I>(X) -<I>(Xk)]d(E(X)g,h)1 

n 

.::0;; L f 1<I>(x) - <I>(xk)ldl(E(x)g, h)1 
k ~ 1 L1k 

.::0;; ejdl(E(x)g,h)1 .::0;; ellgllllhll· • 

The operator A obtained in the preceding proposition is the integral of <I> 
with respect to E and is denoted by 

!<I>dE. 

Therefore if g, hE£' and <I> is a bounded fl-measurable function on X, the 



IX.I. Spectral Measures and Representations of Abelian C*-Algebras 265 

preceding proof implies that 

1.11 

Let B( X, g) denote the set of bounded g-measurable functions </>: 
X -4 C and let II</>II = sup{ 1</>(x)l: x E X}. It is easy to see that B( X, g) is 
a Banach algebra with identity. In fact, if </>*(x) == </>(x), then B(X, g) is 
an abelian C *-algebra. The properties of the integral f<I> dE are summarized 
by the following result. 

1.12. Proposition. If E is a spectral measure for (X, g, Jf') and p: B(X, g) 
-4 !JI( Jf') is defined by p( </» = f<I> dE, then p is a representation of B( X, g). 

PROOF. It will only be shown that p is multiplicative; the remainder is an 
exercise. Let </> and I/; E C( X). Let E > 0 and choose a Borel partition 
{Ll1, ... ,Ll n } of X such that sup{lw(x)-w(x')I: x,x'ELld<E for 
w = </>, I/; or </>1/; and for 1 ::; k ::; n. Hence, if X k E Llk (1 ::; k ::; n), 

111 wdE - k~l w(xk)E(Ll k) II < E 

for w = </>, 1/;, or </>1/;. Thus, using the triangle inequality, 

1\1 </>1/; dE - ( I</> dE ) ( 1 I/; dE ) II 

" ,+ i. $(x,H(x,)E(~,) - [ E. $(x,)E(~,) l[j~' .(x,)E(~J 1 

+ [E. $(X')E(~')] [j~' f(x)E{ ~J]- (J $dE) (J f dE) I 
But E(LlJE(Ll)=E(LlinLl) and {Ll1, ... ,Ll n } is a partition. So the 
middle term in this sum is zero. Hence 

111 </>1/; dE - (1 </>dE )(1 </>dE) II 

", + [E. $(X,)E(~')][,~, f(x,)E{~J - f· dE 1 

+ II [,~. $(x,)E{~,) - f $dE ][ f • dE 111" ,[1 + 11$11 + 11.11]· 

Since E was arbitrary, f</>I/; dE = (f</>I/; dE)(f1/; dE). • 

1.13. Corollary. If X is a compact Hausdorff space and E is a spectral 
measure defined on the Borel subsets of X, then p: C( X) -4 8l( Jf') defined by 
p ( u) = f u dE is a representation of C( X). 
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The next result is the main result of this section and it states that the 
converse to the preceding corollary holds. 

1.14. Theorem. If p: ceX) ~ fJiJ(£') is a representation, there is a unique 
spectral measure E defined on the Borel subsets of X such that 

p(U) = JUdE 

for every U in ce X). 

PROOF. The idea of the proof is similar to the idea of the proof of the Riesz 
Representation Theorem for linear functionals on C( X). We wish to extend 
p to a representation p: B(X) ~ fJiJ(£'), where B(X) is the C*-algebra of 
bounded Borel functions. The measure E of a Borel set L! is then defined by 
letting E(L!) = P{Xll)' In fact, it is possible to give a proof of the theorem 
patterned on the proof of the Riesz Representation Theorem. Here, how­
ever, the proof will use the Riesz Representation Theorem to simplify the 
technical details. 

If g,h E£', then u>--+ (p(u)g,h) is a linear functional on ceX) with 
norm s Ilgllllhll. Hence there is a unique measure, J-!g.h' in M(X) such that 

1.15 (p(u)g, h) = J UdJ-!g.h 

for all u in ce X). It is easy to verify that the map (g, h) >--+ J-! g. h is 
sesquilinear (use uniqueness) and IIJ-! g, hll s Ilgllllhll. Now fix cf> in B( X) and 
define [g,hJ = fcpdJ-!g.h' Then [','J is sesquilinear form and l[g,hJI s 
11cf>llllgllllhll. Hence there is a unique bounded operator A such that [g, h) = 

(Ag, h) and IIA II s 11cf>11 (11.2.2). Denote the operator A by p( cf». So p: 
B(X) ~ fJiJ(£') is a well-defined function, IIp(cf>)11 s 11cf>11, and for all g, h 
in £', 

1.16 

1.17. Claim. p: B(X) ~ fJiJ(£') is a representation and plceX) = p. 

The fact that p(u) = p(u) whenever u E ceX) follows immediately from 
(1.15) and (1.16). If cf> E B( X), consider cf> as an element of M( X)* 
(= ceX)**); that is, cf> corresponds to the linear functional J-! >--+ fcf>dJ-!. By 
Proposition V.4.1, {u E ceX): lIull s 11cf>11} is a(M(X)*,M(X» dense in 
{L E M(X)*: IILII s 11cf>11}. Thus there is a net {ud in ceX) such that 
Iluill s 11cf>11 for all ui and fuidJ-! ~ fcpdJ-! foreveryJ-! in M(X). If l/; E B(X), 
then l/;J-! E M(X) whenever J-! E M(X). Hence fUil/;dJ-! ~ fcpl/;dJ-! for every 
l/; in B( X) and J-! in M( X). By (1.16), p( uil/;) ~ p( cf>l/;) (WOT) for all l/; in 
B(X). In particular, if I/; E ceX), then p(cf>I/;) = WOT - limp(uil/;) = 
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WOT - lim p( u;)p( ~) = p( </J )p( ~). That is, 

P (</J~ ) = P (</J) p ( ~ ) 

whenever </J E B(X) and ~ E C(X). Hence p(u;~) = p(u;)p(~) for any ~ 
in B( X) and for all u;. Since p( u;) -> p( </J) (WOT) and p( u;~) -> P( </J~) 
(WOT), this implies that 

whenever </J, ~ E B( X). 
The proof that p is linear is immediate by (1.16). To see that p( </J)* = 

p (~), let { u; } be the net obtained in the preceding paragraph. 
If p. E M(X), let Ji be the measure defined by Ji(.1) = p.(.1). Then p(u;)----> 
P(</J) (WOT) and so p(u;)* ----> p(</J)* (WOT). But Ju;dp. = Ju;dJi ----> f<Pdji 
= J~dp. for every measure p.. Hence p(u;) ----> p(~). But p(u;)* = p(u;) 
since p is a * -homomorphism. Thus p( </J)* = p(~) and p is a representa­
tion. 

For any Borel subset .1 of X let E(.1) == p(XtJ. We want to show that E 
is a spectral measure. Since X.<l is a hermitian idempotent in B(X), E(.1) is 
a projection by (1.17). Since Xo = 0 and Xx = 1, E(O) = 0 and E(X) = 1. 
Also, E(.1] n .1 2 ) = p(X.<l, n.<l) = p(X.<l,X.<l) = E(.1])E(.1 2 ). Now let 
{ .1 n} be a pairwise disjoint sequence of Borel sets and put An = U k ~ n + 1.1 k. 

It is easy to see that E is finitely additive so if h E .JIe, then 

II{Q,~')h -i, E(~'lhr ~ (E(A.lh, E(A.lh) 

= (E(AJh, h) 

= (p(XA)h, h) 

as n ----> 00. Therefore E is a spectral measure. 
It remains to show that p(u) = JudE. It will be shown that p(</J) = f<PdE 

for every </J in B(X). Fix </J in B(X) and e> O. If {.1], ... ,.1 n } is any 
Borel partition of X such that sup{!</J(x) - </J(x')!: x, x' E.1d < e for 
1 s k s n, then !!</J - Lk~I</J(Xk)X.<lJ!oo < e for any choice of x k in .1k. 
Since lip!! = 1, e> !!p(</J) - Lk~]</J(Xk)E(.1k)!!. This implies that p(</J) = 

f<P dE for any </J in B( X). 
The proof of the uniqueness of E is left to the reader. • 

EXERCISES 

l. Prove Proposition l.3. 

2. Show that ball8d( £) is WOT compact. 
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3. Show that Re86'(£) and 86'(£)+ are WOT and SOT closed. 

4. If L: 86'( £) -+ C is a linear functional, show that the following statements are 
equivalent: (a) L is SOT-continuous; (b) L is WOT-continuous; (c) there are 
vectors hI"'" hn' gl" .. ,gn in £ such that L(A) = L:;~ 1 < Ah J' gJ)' 

S. Show that a convex subset of 86'( £) is WOT closed if and only if it is SOT 
closed. 

6. Verify the statement in Example 1.S. 

7. Verify the statements made in Examples 1.6, 1.7, and 1.8. 

8. For the spectral measures in (1.6), (1.7), and (1.8), give the corresponding 
representations. 

9. If {Ei} is a net of projections and E is a projection, show that L~ -> E (WOT) 
if and only if Ei ...... E (SOT). 

10. For the representation in (VIII.S.S), find the corresponding spectral measure. 

11. In Example VIII.S.4, the representation is not quite covered by Theorem 1.14 
since it is a representation of LOO(/k) and not C(X). Nevertheless, this represen­
tation is given by a spectral measure defined on Q. Find it. 

12. Let X be a compact Hausdorff space and let {xn} be a sequence in X. Let {en} 
be an orthonormal basis for £ and for each u in C(X) define p(u) in 86'(£') 
by p(u)en = u(xn)e". Show that p is a representation and find the correspond­
ing spectral measure. 

13. A representation p: ..91 ...... 86'( £) is irreducible if the only projections in 86'( £') 
that commute with every p(a), a in ..91, are 0 and 1. Prove that if ..91 is abelian 
and p is an irreducible representation of ..91, then dim £= 1. Find the corre­
sponding spectral measure. 

14. Show that a representation p: C( X) -+ 86'( £) is injective if and only if 
E(G) "4= 0 for every open set G, where E is the corresponding spectral measure. 

IS. Let {Ai} be a net of hermitian operators on £ and suppose that there is a 
hermitian operator T such that Ai .::; T for all i. If { < Ai h, h)} is an increasing 
net in IR for every h in £', then there is a hermitian operator A such that 
Ai -+ A (WOT). 

16. Show that there is a contraction T: 86'(£)** -> 86'( £) such that T(T) = T for 
T in f!A( £). If p: C( X) -> 86'( £) is a representation, show that the map p in 
the proof of Theorem 1.14 is given by p( </» = TO p**( </». 

§2. The Spectral Theorem 

The Spectral Theorem is a landmark in the theory of operators on a Hilbert 
space. It provides a complete statement about the nature and structure of 
normal operators. This accolade will be seen to hold when in Section 10 it is 
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used to give a complete set of unitary invariants. Two operators A and B 
are unitarily equivalent if there is a unitary operator U such that UA U * = B; 
in symbols, A == B. Using the Spectral Theorem, a (countable) set of objects 
are attached to a normal operator N on a (separable) Hilbert space. It is 
then shown that two normal operators are unitarily equivalent if and only if 
these objects are equal. 

The Spectral Theorem for a normal operator N on a Hilbert space with 
dim £= d < 00 says that N can be diagonalized. That is, if a l , ... , ad are 
the eigenvalues of N (repeated as often as their multiplicities), then the 
corresponding eigenvectors e l , e 2 , •.. , ed form an orthonormal basis for £. 
In infinite-dimensional spaces a normal operator need not have eigenvalues. 
For example, let N = multiplication by the independent variable on L 2(0,1). 
So an alternate formulation that can be generalized is desired. 

Let N be normal on £, dim £= d < 00. Let AI' ... ' An be the distinct 
eigenvalues of N and let Ek be the orthogonal projection of £ onto 
ker(N - Ak ), 1 ..,;; k ..,;; n. Then the Spectral Theorem says that 

n 

2.1 

In this form a generalization is possible. Rather than discuss orthogonal 
projections on eigenspaces (which may not exist), the concept of a spectral 
measure is used; rather than the sum that appears in (2.1), an integral is 
used. It is worth mentioning that the finite-dimensional version is a corollary 
of the general theorem (see Exercise 4). 

2.2. The Spectral Theorem. If N is a normal operator, there is a unique 
spectral measure E on the Borel subsets of a(N) such that: 

(a) N = Jz dE(z); 
(b) if G is a nonempty relatively open subset of a(N), E(G) '" 0; 
(c) if A E !1d(£), then AN = NA and AN* = N*A if and only if AE(.1) = 

E(.1)A for every.1. 

PROOF. Let ..91= C*(N), the C*-algebra generated by N. So ..91 is the 
closure of all polynomials in Nand N *. By Theorem VIII.2.6, there is an 
isometric isomorphism p: C(a(N)) -+..9Ie;;. !1d(£) given by p(u) = u(N) 
(the functional calculus). By Theorem 1.14 there is a unique spectral 
measure E defined on the Borel subsets of a( N) such that p (u) = JudE for 
all u in C(a(N)). In particular, (a) holds since N = p(z). 

If G is a nonempty relatively open subset of a(N), there is a nonzero 
continuous function u on a(N) such that 0 ..,;; u ..,;; Xc. Using Claim 1.17, 
one obtains that E(G) = p(xd ~ p(u) '" 0; so (b) holds. 

Now let A E !1d(£) such that AN = NA and AN* = N*A. It is not 
hard to see that this implies, by the Stone-Weierstrass Theorem, that 
Ap(u) = p(u)A for every u in C(a(N)); that is, Au(N) = u(N)A for all u 
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in C(a(N». Let Q = {.1: .1 is a Borel set and AE(.1) = E(.1)A}. It is left 
to the reader to show that Q is a a-algebra. If G is an open set in a(N), 
there is a sequence { un} of positive continuous functions on a( N) such that 
un(z)j Xc<z) for all z. Thus 

(AE( G)g, h) = (E( G)g, A*h) 

= Eg,A*h( G) 

= lim(un(N)g, A*h) 

= lim(Aun(N)g, h) 

= lim(un(N)Ag, h) 

= (E( G)Ag, h). 

So Q contains every open set and, hence, it must be the collection of Borel 
sets. The converse is left to the reader. • 

The unique spectral measure E obtained in the Spectral Theorem is called 
the spectral measure for N. An abbreviation for the Spectral Theorem is to 
say, "Let N = JXdE(X) be the spectral decomposition of N." If cJ> is a 
bounded Borel function on a(N), define cJ>(N) by 

cJ>(N) = jcJ>dE, 

where E is the spectral measure for N. 

2.3. Theorem. If N is a normal operator on £ with spectral measure E and 
B(a(N» is the C*-algebra of bounded Borel functions on a(N), then the map 

cp ~ cp(N) 

is a representation of the C*-algebra B(a(N». If {cJ>;} is a net in B(a(N» 
such that !cJ>;dp, -+ 0 for every p, in M(a(N», then cJ>;(N) -+ 0 (WOT). This 
map is unique in the sense that if T: B(a(N» -+ gj(£) is a representation 
such that T( z) = Nand T( cJ>;) -+ 0 (WOT) whenever {cJ>;} is a net in 
B(a(N» such that !cJ>;dp, -+ 0 for every p, in M(a(N», then T(cJ» = cJ>(N) 
for all cJ> in B(a(N». 

PROOF. The fact that cJ> ~ cJ>(N) is a representation is a consequence of 
Proposition 1.12. If {cJ>;} is as in the statement, then the fact that Eg , h E 

M(a(N» implies that cJ>;(N) -+ 0 (WOT). 
To prove uniqueness, let T: B(a(N» -+ gj(£) be a representation with 

the appropriate properties. Then T(U) = u(N) if u E C(a(N» by the 
uniqueness of the functional calculus for normal elements of a C*-algebra 
(VIII.2.6). If cJ> E B( a(N», then Proposition V.4.1 implies that there is a 
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net {ud in C(a(N» such that Iluill ~ 11<1>11 for all ui and fuidJ.t ~ f<l>dJ.t 
for every J.t in M(a(N». Thus ui(N) ~ <I>(N) (WOT). But r(<I» = WOT 
- limr(u,) = WOT - limui(N); therefore r(<I» = <I>(N). • 

It is worthwhile to rewrite (1.11) as 

2.4 < <I> ( N) g, h> = f <I> dE g, h 

for <I> in B( a( N» and g, h in .Yt'. If <I> E B(C), then the restriction of <I> to 
a(N) belongs to B(a(N». Since the support of each measure Eg • h is 
contained in a(N), (2.4) holds for every bounded Borel function <I> on C. 
This has certain technical advantages that will become apparent when we 
begin to apply (2.4). 

Proposition 2.3 thus extends the functional calculus for normal operators. 
This functional calculus or, equivalently, the Spectral Theorem, will be 
exploited in this chapter. But right now we look at some examples. 

2.5. Example. If J.t is a regular Borel measure on C with compact support 
K, define Np. on L 2(J.t) by Np.! = z! for each! in L 2(J.t). It is easy to check 
that N".*! = z!, and, hence, Np. is normal. 

(a) a(Np.) = K = support of p,. (Exercise.) 
(b) If, for a bounded Borel function <1>, we define M.p on L 2 (J.t) by M.p! =!, 

then <I>(Np.) = M.p. 

Indeed, this is an easy application of the uniqueness part of (2.3). 

(c) If E is the spectral measure for Np.' then E(.:1) = Mx~' 

Just note that E(.:1) = XL1(N). 

2.6. Example. Let (X, [2, J.t) be any a-finite measure space and put .Yt'= 
U( X, [2, J.t). For <I> in L OO(J.t) == L OO( X, [2, J.t), define M.p on .Yt' by M.p! = <l>f. 
(a) M.p is normal and M.p* = M;p (11.2.8). 
(b) <I> ~ M.p is a representation of LOO(J.t) (VIII.S.4). 
(c) If <I> E LOO(J.t), 11<1>1100 = IIM</>II (11.1.5). 
(d) Define the essential range of <I> by 

ess-ran( <1» == n { cl( <I> (.:1 )): .:1 E [2 and J.t ( X \ .:1) = o}. 

Then a(M</» = ess-ran(<I». (This appears as Exercise VII.3.3, but a proof 
is given here.) 

First assume that A $. ess-ran( <1». So there is a set .:1 in [2 with J.t( X \.:1) 
= 0 and A not in cl(<I>(.:1»; thus, there is a ~ > 0 with 1<I>(x) - AI ;::: ~ for 
all x in .:1. If l/; = (<I> - A)-l, l/; E LOO(J.t) and M>/> = (M</> - A)-i. 

Conversely, assume A E ess-ran( <1». It follows that for every integer n 
there is a set .:1 n in [2 such that 0 < J.t(.:1 n ) < 00 and 1<I>(x) - AI < lin for 



272 IX. Normal Operators on Hilbert Space 

all x in .In' Put fn = (1l(.1 n»-l/2X,l ; so fn E L 2(1l) and IIfnl12 = 1. How­
ever, II(M.p - A)fn11 2 = (1l(.1n»-lf,lJ~ - AI2dll ~ 1/n2, showing that A E 

aap( M.p). 

(e) If E is the spectral measure for M.p [so E is defined on the Borel subsets 
of a(M.p) = ess-ran(</» ~ C], then for every Borel subset .1 of a(M.p), 
E(.1) = MX;'(,l). 

2.7. Proposition. If for k ;::: 1, Nk is a normal operator on £k with 
sUPk11Nk11 < 00, Ek is the spectral measure for Nk , and if N = E£);:~ 1 Nk on 
£= E£) ':~l£k' then: 

(a) a(N) = cl[Ur~la(Nk)]; 
(b) if E is the spectral measure for N, E (.1) = E£) ':~ 1 E k (.1 n a( Nk » for 

every Borel subset .1 of a(N). 

PROOF. Exercise. 

A historical account of the spectral theorem is an enormous undertaking 
by itself. One such account is Steen [1973]. You might also consult the notes 
in Dunford and Schwartz [1963] and Halmos [1951]. 

EXERCISES 

Throughout these exercises, N is a normal operator on .:J? with spectral measure E. 

1. Show that A E ap(N) if and only if E({A}) * 0. Moreover, if A E a,,(N), 
E ({ A }) is the orthogonal projection onto ker( N - A). 

2. If <1 is a clopen subset of a (N), show that E (<1) is the Riesz idempotent 
associated with <1. 

3. Prove Theorem 11.5.1 and its corollaries by using the Spectral Theorem. 

4. Prove Theorem II.7.6 and its corollaries by using the Spectral Theorem. 

5. Obtain Theorem 11.7.11 as a consequence of (2.3). 

6. Verify the statements in Example 2.5. 

7. Verify (2.6e). 

8. Let A be a hermitian operator with spectral measure E on a separable space. 
For each real number t define a projection pet) = E( - 00, t). Show: 
(a) pes) ~ P(t) for s ~ t; 
(b) if tn ~ tn+ 1 and tn ..... t, P(tn) ..... pet) (SOT); 
(c) for all but a countable number of points t, P(t,J ..... P(t) (SOT) if tn ..... t; 
(d) for I in C(a(A», I(A) = 1"'00/(t) dP(t), where this integral is to be 

defined (by the reader) in the Riemann-Stieltjes sense. 

9. Show that a normal operator N is (a) hermitian if and only if a(N) ~ ~; (b) 
positive if and only if a(N) ~ [0,00); (c) unitary if and only if a(N) ~ aD. 
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10. Show that if .Jf' is separable, there are at most a countable number of points 
{zn} in I1(N) such that E(zn) *- O. By Exercise 1, these are the eigenvalues of 
N. 

11. Show that E(I1(N)\ap (N» = 0 if and only if N is diagonalizable; that is, 
there is a basis for .Jf' consisting of eigenvectors for N. 

12. Show that if N = UINI (INI = (N*N)I/2) is the polar decomposition of N, 

U = </>(N) for some Borel function </> on </>(N). Hence UINI = INI u. 
13. Show that N = WINI for some unitary W that is a function of N. 

14. Prove that if A is hermitian, exp(iA) is unitary. Is the converse true? 

15. Show that there is a normal operator M such that M2 = N and M = </>(N) for 
some Borel function </>. Is there only one such normal operator? 

16. Define N: L2(1R) --> L2(1R) by (Nf)(t) = f(t + 1). Show that N is normal and 
find its spectral decomposition. 

17. Suppose that NI , ... , Nd are normal operators such that 'SNk* = Nk* 'S for 
1 ::s; j, k ::s; d. Show that there is a subset X of Cd and a spectral measure E 
defined on the Borel subsets of X such that Nk = f Z k dE (z) for 1 ::s; k ::s; d 
(Zk = the kth coordinate function)(see Exercise VIII.2.2). 

18. If NI , ... , Nd are as in Exercise 17 and each is compact, show that there is a 
basis for .Jf' consisting of eigenvectors for each Nk . (This is the simultaneous 
diagonalization of NI ,.··, Nd') 

19. This exercise gives the properties of Hilbert-Schmidt operators (defined below). 
(a) If {e;} and {Jj} are two orthonormal bases for .Jf' and A E !:!d( .Jf'), then 

LIIAe,II 2 = LIIAJjl12 = L LI(Ae;,Jj>1 2 . 
j i j 

(b) If A E !:!d(.Jf') and {e;} is a basis for .Jf', define 

[ ]
1/2 

IIAlb = ~IIAe,1I2 

By (a) IIA Ib is independent of the basis chosen and hence is well defined. If 
IIA liz < 00, A is called a Hilbert-Schmidt operator. !:!d2 = !:!d2 (.Jf') denotes the 
set of all Hilbert- Schmidt operators. (c) IIA II ::s; IIA Ib for every A in !:!d(.Jf') and 
II· liz is a norm on !:!d2' (d) If TE!:!d= !:!d(.Jf') and A E !:!d2, then IITAI12::S; 
IITIlIiAlb, IIA*lb = IIAlb, and IIATlb::s; IIAI121ITII· (e) !:!d2 is an ideal of!:!d that 
contains !:!doo , the finite-rank operators. (f) A E!:!d2 if and only if IA I == 
(A*A)I/2 E !:!d2; in this case IIAlb = IIIAllb. (g) !:!d2 c;;; !:!do; moreover, if A is a 
compact operator and AI' A2 , . .. are the eigenvalues of IA I, each repeated as 
often as its multiplicity, then A E !:!d2(.Jf') iff L~~lA2n < 00. In this case, 
IIA 112 = (LA~)1/2. (h) If (X,.f.?, /L) is a measure space and k E L2(/L X /L), let K: 
L 2(/L) --> L 2(/L) be the integral operator with kernel k. Then K E !:!d2(L2 (/L» 
and IIKlb = Ilklb (see Proposition 11.4.7 and Lemma 11.4.8). (i) Interpret part 
(h) for a purely atomic measure space. More information on !:!d2 is contained in 
the next exercise. 
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20. This exercise discusses trace-class operators (defined below) and assumes a 
knowledge of Exercise 19. .£is\ (£') = {A B: A and B E .si3'2 (£')}. Operators 
belonging to .si3'\ (£') are called trace-class operators and .si3'1 (£') =.si3'1 is called 
the trace class. (a) If A E .si3'\(£') and {e j } is a basis, then LI(Ae" ej)1 < 00. 

Moreover, the sum L(Aej , e,) is independent of the choice of basis. (Hint: If 
A = C*B, B, C in .si3'2' show that I(Aej , ej)1 '" 1(IIBej 11 2 + IICe,1I 2).) (b) If 
{e j } is a basis for £', define tr: .si3'1 ..... C by 

By (a) the definition of tr(A) does not depend on the choice of a basis; tr(A) is 
called the trace of A. If dim £' < 00, then tr( A) is precisely the sum of the 
diagonal terms of any matrix representation of A. (c) If A E .si3'(£'), then the 
following are equivalent: (1) A E .si3'\; (2) IAI = (A*A)I/2 E .si3'1: (3) IAI\/2 E 
.si3'2; (4) tr(IA I) < 00. (d) If A E.si3'\ and T E .si3', then AT and TA are in .si3'1 and 
tr( AT) = tr(TA). Moreover, tr: .si3'\ ..... C is a positive linear functional such that 
if A E .si3'\, A 20, and tr(A) = 0, then A = O. (c) If A E .si3'\, define IIAIII '" 
tr(IAI). If A E.si3'1 and TE.si3', show that Itr(TA)I:c; IITIIIIAII I· (f) IIAIII = 
IIA*11t if A E.si3'I' (g) If TE.si3' and A E.si3'\, then IITAII\:c; IITIIIIAII\ and 
IIATIII:C; IITIIIIAIIt. (h) II . III is a norm on .si3'1' It is called the trace norm. (i) 
.si3'1 is an ideal in .si3'( £') that contains .si3'oo. U) If A E.si3'\ and { e, } and {f, } are 
two bases for £', thenLjl(Ae,,J,)1 :c; IIAII\. (d).si3'1 <;;; .si3'a. Also, if A E.si3'o and 
A\ ' A2, ... are the eigenvalues of IA I, each repeated as often as its multiplicity, 
then A E .si3'\ if and only if L~~\ All < 00. In this case, IIA III = L~~ I All' (1) If A 
and BE .si3'2, define (A,B) = tr(B*A). Then (.,.) is an inner product on .si3'2' 
II . liz is the norm defined by this inner product, and .si3'2 is II . Ib complete. In 
other words, .si3'2 is a Hilbert space. (m) (.si3'1' II . lit) is a Banach space. (n) !J8()() 
is dense in both !J8\ and !J82' (For more on these matters, see Ringrose [1971] 
and Schatten [1960].) 

21. This exercise assumes a knowledge of Exercise 20. If g, hE£', let g ® h 
denote the rank-one operator defined by (g ® h )(f) = (f, h) g. (a) If g, hE£' 
and A E .si3'(£'), tr(A(g ® h» = (Ag, h). (b) If T E !J81, then IITlh = 
sup{ltr(CT)I: C E !J8o, IICiI :c; I}. (c) If T E .si3'\, define LT: .si3'o ..... C by LT(C) 
= tr( TC) (= tr( CT». Show that the map T ..... LT is an isometric isomorphism 
of .si3'\ onto .si3'(;. (d) If BE.si3', define FB: .si3'1 ..... C by FB(T) = tr(BT). Show 
that B ..... FB is an isometric isomorphism of !J8 onto .si3't. (e) If L E!J8* show 
that L = Lo + L\ where Lo, Ll E .si3'*, L\ (B) = tr( BT) for some T in !J8\, and 
La(C) = 0 for every compact operator C. Show that IILII = IILoll + IILtJl and 
that La and L\ are unique. 

22. Prove that if U is any unitary operator on £', then there is a continuous 
function u: [0,1] ..... !J8(£') such that u(t) is unitary for all t, u(O) = U, and 
u(l) = 1. 

23. If N is normal, show that there is a sequence of invertible normal operators that 
converges to N. 
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§3. Star-Cyclic Normal Operators 

Recall the definition of a reducing subspace and some of its equivalent 
formulations (Section 11.3). 

3.1. Definition. A vector eo in £ is a star-cyclic vector for A if £ is the 
smallest reducing subspace for A that contains eo. The operator A is star 
cyclic if it has a star-cyclic vector. A vector eo is cyclic for A if £ is the 
smallest invariant subspace for A that contains eo; A is cyclic if it has a 
cyclic vector. 

3.2. Proposition. (a) A vector eo is a star-cyclic vector for A if and only if 
£= cl{Teo: T E C*(A)}, where C*(A) = the C*-algebra generated by A. 
(b) A vector eo is a cyclic vector for A if and only if £= cl{ p(A)eo: p = a 
polynomial} . 

PROOF. Exercise. 

Note that if eo is a star-cyclic vector for A, then it is a cyclic vector for 
the algebra C *( A). 

3.3. Proposition. If A has either a cyclic or a star-cyclic vector, then £ is 
separable. 

PROOF. It is easy to see that C*(A) and {p(A): p = a polynomial} are 
separable sub algebras of !lI( £). Now use (3.2). • 

Let JL be a compactly supported measure on C and let Np. be defined on 
L 2(JL) as in Example 2.5. If K = support JL, then C*(Np.) = {Mu: u E 

C(K)}. Since C(K) is dense in L 2 (JL), it follows that 1 is a star-cyclic 
vector for Np.. The converse of this is also true. 

3.4. Theorem. A normal operator N is star-cyclic if and only if N is unitarily 
equivalent to Np. for some compactly supported measure JL on C. If eo is a 
star-cyclic vector for N, then JL can be chosen such that there is an isomorphism 
V: £-'> L 2 (JL) with Ve o = 1 and VNV- 1 = Np.. Under these conditions, Vis 
unique. 

PROOF. If N ~ Np.' then we have already seen that N is star cyclic. So 
suppose that N has a star-cyclic vector eo. If E is the spectral measure for 
N, put JL(Ll) = IIE(Ll)eoIl 2 = (E(Ll)eo,eo) for every Borel subset Ll of C 
(see Lemma 1.9). Let K = support JL. 
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If ep E B(K), then (2.4) implies 

Ilep(N)eoI1 2 = (ep(N)eo,ep(N)eo> 

= (lepI2(N)eo, eo> 

So if B(K) is considered as a submanifold of L2(p,), Vep = cp(N)eo defines 
an isometry from B(K) onto {cp(N)eo: cp E B(K)}. But eo is a star-cyclic 
vector, so the range of V is dense in .Yt'. Hence V extends to an isomor­
phism V: L2(p,) ~.Yt'. 

If cp E B(K), then VNI'V-1(cp(N)eo) = VNI'(cp) = V(zcp) = Ncp(N)eo. 
Hence VNI'V-1 = N on {cp(N)eo: cp E B(K)}, which is dense in .Yt'. So 
VNV- 1 = N p. • 

The proof of the uniqueness statement is an exercise. • 

Any theorem about the operators NI' is a theorem about star-cyclic 
normal operators. With this in mind, the next theorem gives a complete 
unitary invariant for star-cyclic normal operators. But first, a definition. 

3.5. Definition. Two measures, P,l and P,2' are mutually absolutely continu­
ous if they have the same sets of measure zero; that is, P,1(Ll) = 0 if and 
only if P,2(Ll) = O. This will be denoted by [p,d = [P,2]. (The more standard 
notation in the literature is P,l == P,2' but this seems insufficient.) If [p,d = 
[P,2]' then the Radon-Nikodym derivatives dP,l/dp,2 and dP,2/dP,1 are well 
defined. Say that P,l and P,2 are boundedly mutually absolutely continuous if 
[p,d = [P,2] and the Radon-Nikodym derivatives are essentially bounded 
functions. 

3.6. Theorem. NI'l ~ NI'2 if and only if [p,d = [P,2]· 

PROOF. Suppose [p,d = [P,2] and put ep = dP,l/dp,2. So if g E L1(P,I)' gcp E 

L\P,2) and fgcpdp,2 = fgdp,l. Hence, if fE L 2(P,I)' #fE L 2(P,2) and 
II#f112 = Ilflb that is, U: L 2(P,I) ---+ L 2(P,2) defined by Uf= #f is an 
isometry. If g E L 2(P,2)' then f= cp-I/2g E L 2(P,I) and Uf= g; hence U is 
surjective and U- 1g=cp-l/2g for g in L 2(P,2). If gEL2(P,2)' then 
UN U-lg = UN ... -1/2g = UZ ... - 1/ 2g = zg and so UN U- l = N . 

1'1 1'1't' 't' , 1'1 1'2 

Now assume that V: L 2(P,I) ~ L 2(P,2) is an isomorphism such that 
VNI'IV-1 = N1'2. Put 1f; = V(l); so 1f; E L 2(P,2). For convenience, put Nj = 
NI')' j = 1,2. It is easy to see that VNtV- 1 = N2k and VNtkV-1 = N2*k. 
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Hence Vp(NI , NI*)V- l = p(Nz, Nt) for any polynomial p in z and E. 
Since NI ~ Nz, a(NI) = a(Nz); hence support ILl = support ILz = K. By 
taking uniform limits of polynomials in z and E, Vu( N1)V-l = u( Nz) for u 
in C(K). Hence for u in C(K), V(u) = Vu(NI)l = u(Nz)Vl = u1f;. Be­
cause V is an isometry, this implies that flul z dILl = flul zl1f;1 2 dILz for every 
u in C(K). Hence fvdILI = fvl1f;1 2 dILz for v in C(K), v ~ O. By the 
uniqueness part of the Reisz Representation Theorem, ILl = 11f;1 2ILz, so 

ILl « ILz· 
By using V- I instead of V and reversing the roles of Nl and Nz in the 

preceding argument, it follows that IL2 « ILl' Hence [ILd = [ILz]' • 

EXERCISES 

1. If JL is a compactly supported measure on C and IE L 2(JL), I is a star-cyclic 
vector for N if and only if JL({x: I(x) = On = o. 

2. Prove Proposition 3.2. 

3. If JLI and JL2 are compactly supported measures on C, show that the following 
statements are equivalent: (a) JLI and JL2 are boundedly mutually absolutely 
continuous; (b) there is an isomorphism V: L 2(JLI) -> L 2 (JL2) such that VN,.r- 1 

= N,.2 and VLOO(JLI) = L OO (JL2); (c) there is a bounded bijection R: L2(JLI)-> 
L 2(JL2) such that Rp(z, z) = p(z, Z) for every polynomial in z and z. 

4. Show that if N is a star-cyclic normal operator and A E (Jp (N), then dim ker( N 
- A) = 1. 

5. If N is diagonalizable and star cyclic and if (Jp (N) = {AI' A2 , ... }, show that N 
is unitarily equivalent to NfL' where JL = L~~12-n8An (see Exercise 2.11). 

6. Let N be a diagonalizable normal operator. Show that N ;;; M if and only if M 
is a diagonalizable normal operator, (Jp (N) = (Jp (M), and dim ker( N - A) = 

dimker(M - A) for all A. (Compare this with Theorem 11.8.3.) 

7. Let U be the bilateral shift on {2(Z). If eo is the vector in p(Z) that has 1 in the 
zeroth place and zeros elsewhere, then eo is a star-cyclic vector for U. If JL is the 
compactly supported measure on C and V: {2(Z) -> L2 (JL) is the isomorphism 
such that Veo = 1 and VUV- I = NfL' then 
(a) JL = m = normalized arc length on aD; 
(b) V-I = the Fourier transform on L2(rn) = L 2(aD). 

8. Suppose N}, ... , Nd are normal operators such that Ni N/ = Nk* ~ for 1 S; j, k 
S; d and suppose there is a vector eo in .Yt' such that .Yt' is the only subspace of 

.Yt' containing eo that reduces each of the operators N}, .. . , Nd . Show that there 
is a compactly supported measure JL on Cd and an isomorphism V: .Yt' -> L 2 (JL) 
such that VNk V-II = zd for I in L 2(JL) and 1 S; k S; d (Zk = the k th coordi­
nate function) (see Exercise 2.17). 
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§4. Some Applications of the Spectral Theorem 

In this section a few diverse applications of the Spectral Theorem are 
presented. These will show the power and finesse of the Spectral Theorem as 
well as demonstrate some of the methods used to apply it. One result in this 
section (Theorem 4.6) is more than an application. Indeed, many regard this 
as the optimal statement of the Spectral Theorem. 

If N is a normal operator and N = JzdE(z) is its spectral representation, 
then cp >-4 cp(N) == fcpdE is a *-homomorphism of B(e) into 86'(£). Thus, 
if cp,t/; E B(e), (fcpdE)(ft/;dE) = Jcpt/;dE and IlfcpdEl1 :-s; sup{lcp(z)l: z E 

a(N)}. 

4.1. Proposition. If N is a normal operator and N = JzdE(z), then N is 
compact if and only if for every 10 > 0, E( {z: Izl > e}) has finite rank. 

PROOF. If 10 > 0, let Lle = {z: Izl > e} and Ee = E(Ll.). Then 

= !zXc\t.,(z)dE(z) = cp(N) 

where cp(z) = ZXC\Ll,(Z). Thus liN - NEel1 ::; sup{lzl: z E C \Ll.} :-s; E. If 
Ee has finite rank for every 10 > 0, then so does NEe' Thus N E 86'0(£)' 

Now assume that N is compact and let E > 0. Put cp(z) = Z-IXLl (z); 
so cp E B(e). Since N is compact, so is Ncp(N). But Ncp(N) = 

JZZ-1XLl (z) dE(z) = Ee' Since Ee is a compact projection, it must have 
finite rari.k. (Why?) • 

The preceding result could have been proved by using the fact that 
compact normal operators are diagonalizable and the eigenvalues must 
converge to 0. 

4.2. Theorem. If £ is separable and I is an ideal of 86'( £) that contains a 
noncompact operator, then I = 86'(£). 

PROOF. If A E I and A $. 86'0(£)' consider A*A; let A*A = JtdE(t) 
(a( A *A) ~ [0, 00 ». By the preceding proposition, there is an E > Osuch 
that P = E( 10, 00) has infinite rank. But P = (f t-1X(e. 00)( t) dEC t»A *A E 1. 
Since £ is separable, dim P £= dim £= ~ o' Let U: £ ~ P £ be a 
surjective isometry. It is easy to check that 1 = U*PU. But PEl, so 1 E 1. 
Hence I = 86'( £). • 

In Proposition VIIIA.lO, it was shown that every nonzero ideal of 86'(£) 
contains the finite-rank operators. When combined with the preceding 
result, this yields the following. 
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4.3. Corollary. If .Y{' is separable, then the only nontrivial closed ideal of 
!J8(.Y{') is the ideal of compact operators. 

The next proposition is related to Theorem VIII.5.9. Indeed, it is a 
consequence of it so that the proof will only be sketched. 

Let N be a normal operator on .Y{' and for every vector e in .Y{' let 
.Ye;, == {N*kNJe: k, j ~ O}. So.Ye;, is the smallest subspace of .Y{' that 
contains e and reduces N. Also, N\.Ye;, is a star-cyclic normal operator. 

4.4. Proposition. If N is a normal operator on .Y{', then there are reducing 
subspaces {~: i E I} for N such that.Y{'= EB i.Yt'; and N\.Yt'; is star cyclic. 

PROOF. Using Zorn's Lemma find a maximal set of vectors Iff in .Y{' such 
that if e, f E Iff and e =1= f, then .Ye;, .1 YlJ. It follows that .Y{'= a1 e.Ye;,. • 

4.5. Corollary. Every normal operator is unitarily equivalent to the direct sum 
of star-cyclic normal operators. 

By combining the preceding proposition with Theorem 3.4 on the repre­
sentation of star-cyclic normal operators we can obtain the following 
theorem. 

4.6. Theorem. If N is a normal operator on .Y{', then there is a measure 
space (X, Q, fL) and a function cp in L OO( X, Q, fL) such that N is unitarily 
equivalent to M</> on L 2( X, Q, fL). 

PROOF. If A is a reducing subspace for N then N ~ N\A a1 N\A.L ; thus 
a(NIA) ~ a(N). So if {Ni} is a collection of star-cyclic normal operators 
such that N ~ a1 iN; (4.5), then a(NJ ~ a(N) for every N;. By Theorem 3.4 
there is a measure fLi supported on a(N) such that Ni ~ N,,( Let Xi = the 
support of fLi and let Qi = the Borel subsets of Xi. Let X = the disjoint 
union of {Xi}. Define Q to be the collection of all subsets .1 of X such that 
.1 n Xi E Qi for all i. It is easy to check that Q is a a-algebra. If .1 E Q let 
fL(.1) == LifLi(.1 n XJ; then (X, Q, fL) is a measure space. If f E L2(X, fl, fL) 
then /; = flXi E L 2(fLJ. Moreover, the map U: L2(fL) ~ a1 iL 2(fLJ defined 
by Uf = a1JfIXi) is easily seen to be an isomorphism. Define cp: X ~ C by 
letting cp(z) = z if z E Xi (~C); since Xi ~ a(N) for every i, cp is a 
bounded function. If G is an open subset of C, cp - I( G) n Xi = G n Xl E Q i; 
hence cp is Q-measurable. Therefore cp E L OO( X, Q, fL). It is left to the reader 
to check that UM</>U- I = a1 iN", ~ N. • 

4.7. Proposition. If.Y{' is separable, then the measure space in Theorem 4.6 
is a-finite. 

PROOF. This is true because if L 2( X, fl, fL) is separable, then (X, Q, fL) must 
be a-finite. Indeed, let Iff be a collection of pairwise disjoint sets from Q 
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having nonzero measure. A computation shows that {(ft(Ll»-1/2X2l : Ll E c§"} 
are pairwise orthogonal vectors in L 2(ft). If L 2(ft) is separable. then Iff 
must be countable. Therefore (X, g, ft) is a-finite. • 

Of course if (X, g, ft) is finite it is not necessarily true that L 2(ft) is 
separable. 

The next result will be useful later in this book and it also provides a 
different type of application of the Spectral Theorem. 

4.8. Proposition. If .SiI is an SOT-closed C *-subalgebra of .%'( Yf'), then .SiI 
is the norm closed linear span of the projections in .SiI. 

PROOF. If A E.SiI, A + A* and A - A* E.SiI; hence.Sil is the linear span 
of Re.Sil. Suppose A E Re.Sil and A = ftdE(t). If [a, b] c:::; IR, then there is 
a sequence {un} in C(IR) such that 0:0:; Un:o:; 1, Un(t) = 1 for a:o:; t:o:; b­
n- 1, Un(t) = 0 for t:o:; a - n- 1 and t ~ b. Hence un(t) --> X[a,b)(t) as 
n ~ 00. If h E Yf', then 

by the Lebesgue Dominated Convergence Theorem. That is, un(A)--> 
E[a, b) (SOT). Since.Sil is SOT-closed, E[a, b) E.SiI, Now let (a, /3) be an 
open interval containing a(A). If f > 0, then there is a partition {a = to < 

... < tn = /3} such that It - LZ~ltkX[Ik-1'lk)(t)1 < f for t in a(A); hence 
IIA - L%'~ltkE[tk-l' tk)11 < f. Thus every self-adjoint operator in .SiI be-
longs to the closed linear span of the projections in .SiI. • 

EXERCISES 

1. If N is a normal operator show that ran N is closed if and only if 0 is an isolated 
point of a( N). 

2. Give an example of a non-normal operator A such that 0 is an isolated point of 
a( A) and ran A is closed. Give an example of a non-normal operator B such that 
ran B is closed and 0 is not an isolated point of a( B). 

3. If £ is a nonseparable Hilbert space find an example of a nontrivial closed ideal 
of £2( £) that is different from .'?Bo (£). 

4. Let (X, n, JL) be the measure space obtained in the proof of Theorem 4.6 and 
show that Ll( X, D, JL)* is isometrically isomorphic to L:XC (X, D, JL). 

5. Show that £ is separable if and only if every collection of pairwise orthogonal 
projections in .'?B( £) is countable. 

6. If (X,D,/L) is a measure space, then (X,D,JL) is a-finite if and only if every 
collection of pairwise orthogonal projections in {M.p: <p E r':(JL)} is countahle. 

7. If N = JzdE(z) and E> 0, show that ran E({z: Izl > I'}) r;;; ran N. 
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8. Let .A be a linear manifold in .Yt' and show that .A has the property that .A 
contains no closed infinite-dimensional subspaces if and only if whenever A E 

at ( .Yt') and ran A r;;,.A, then A is compact. 

9. Show that the extreme points of {A E at( .Yt'): 0 .:<=; A .:<=; I} are the projections. 

§5. Topologies on !Jd( £) 

In this section some results on the SOT and WOT on !!$( X) are presented. 
These results are necessary for understanding some of the results that are to 
follow in later sections and also for a proper comprehension of a number of 
other subjects in mathematics. 

The first result appeared as Exercise 1.4. 

5.1. Proposition. If L: !!$( X) ~ C is a linear functional, then the following 
statements are equivalent. 

(a) L is SOT continuous. 
(b) Lis WOT continuous. 
(c) There are vectors gj, ... , gn' h j, ... , hn in X such that L(A) = 

L:k_j(Agk, hk) for every A in !!$(X). 

PROOF. Clearly (c) implies (b) and (b) implies (a). So assume (a). By 
(IV.3.lf) there are vectors gj, ... , gn in X such that 

IL(A)I ::; k~jllAgkll ::; rn[k~jIIAgkI12 r/2 

for every A in !!$( X). Replacing gk by In gk' it may be assumed that 

IL(A)I ::; [k~1"Agk"2 r/2 
== p(A). 

Now p is a seminorm and p(A) = 0 implies L(A) = O. Let f= cl{Agj tB 
Ag2 tB ... tBAgn: A E !!$(£)}; so f~ £tB ... tB£ (n times). Note that 
if Ag] tB ... tBAgn = 0, p(A) = 0, and hence, L(A) = O. Thus F(Ag j 
tB ... tBAgn) = L(A) is a well-defined linear functional on a dense mani­
fold in f. But 

iF(Ag l tB ... tBAgn)1 ::; p(A) = IIAgj tB ... tBAgnli. 

So F can be extended to a bounded linear functional F j on £(n). Hence, 
there are vectors hi' ... ' hn in X such that 

Fl (fl tB ... tB fn) = (fl tB ... tB fn' hi tB ... tB h n ) 
n 

= L Uk' hk)· 
k-l 

In particular, L(A) = F(Ag] tB ... tBAgn) = L:k_](Agk , h k ). • 
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5.2. Corollary. If C(j is a convex subset of 88( £'), the WOT closure of C(j 

equals the SOT closure of C(j. 

PROOF. Combine the preceding proposition with Corollary V.1.4. • 

When discussing the closure (WOT or SOT) of a convex set it is usually 
better to discuss the SOT. Shortly an "algebraic" characterization of the 
SOT closure of a sub algebra of 88( £') will be given. But first recall 
(VIII.5.3) that if 1 ~ n ~ 00, £,(n) denotes the direct sum of £' with itself 
n times (~o times if n = 00). If A E 88(£'), A(n) is the operator on £,(n) 

defined by A(n)(h 1 , ••• , hn) = (Ah l, ... , Ah n). If Yc 88(£'), y(n) == 
{A(n): A E Y}. It is rather interesting that the SOT closure of an algebra 
can be characterized using its lattice of invariant subspaces. 

5.3. Proposition. If sd is a subalgebra of 88( £') containing 1, then the SOT 
closure of sd is 

5.4 { B E 88( £'): for every finite n, Lat sd(n) ~ Lat B(n)}. 

PROOF. It is left as an exercise for the reader to show that if BESOT -
clsd, B belongs to the set (5.4). Now assume that B belongs to the set (5.4). 
Fix fl' f2' ... , fn in £' and e > O. It must be shown that there is an A in sd 
such that II(A - B)fkll < e for 1 ~ k ~ n. 

Let A= V{(Afl, ... ,Afn): A Esd}. Because sd is an algebra, AE 
Lat sd(n); hence A E Lat B(n). Because 1 E sd, (/1"'" fn) E A. Since 
{(Afl"'" Afn); A E sd} is a dense manifold and (Bfl"'" Bj,,) E A, 
there is an A in sd with e2 > LZ~III(A - B)fkI1 2 ; hence BESOT-
clsd. • 

5.5. Proposition. The closed unit ball of 88( £') is WOT compact. 

PROOF. The proof of this proposition follows along the lines of the proof of 
Alaoglu's Theorem. For each h in ball £' let Xh = a copy of ball £' with 
the weak topology. Put X = II{ Xh : Ilhll ~ I}. If A E ball 88(£') let T(A) 
E X defined by T(A)h = Ah. Give X the product topology. Then T: 
(ball 88( £'), WOT) ~ X is a continuous function and a homeomorphism 
onto its image (verify). Now show that T(ball 88( £'» is closed in X. From 
here it follows that ball 88( £') is WOT compact. • 

EXERCISES 

1. Show that if BESOT - cld, then B belongs to the set defined in (5.4). 

2. Show that 8600 is SOT dense in 86. 

3. If {Ad and {Bk} are sequences in 86( £') such that Ak ~ A (WOT) and 
Bk ~ B(SOT), then AkBk ~ AB(WOT). 
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4. With the notation of Exercise 3, show that if Ak --+ A (SOT), then AkBk --+ 

AB(SOT). 

5. Let S be the unilateral shift on PeN) (II.2.10). Examine the sequences {Sk } and 
{S*k} and their relation to Exercises 3 and 4. 

6. (Halmos.) Fix an orthonormal basis {en: n 2: I} for .Yt'. (a) Show that 0 E weak 
closure of {in en: n 2: I} (Halmos [1982], Solution 28). (b) Let {n;} be a net of 
integers such that Fen, --+ 0 weakly. Define AJ = F < f, en,) en, for f in .Yt'. 
Show that A; --+ 0 (SOT) but {A;} does not converge to 0 (SOT). 

§6. Commuting Operators 

If .9'<;;; PJ(£), let .9" == {A E PJ(£): AS = SA for every Sin .9'} . .9" 
is called the commutant of Y'. It is not difficult to see that Y" is always an 
algebra. Similarly, Y''' == (Y")' is called the double commutant of Y'. This 
process can continue, but (thankfully) Y'III = Y" (Exercise 1). In some 
circumstances, .9'= Y'''. 

The problem of determining the commutant or double commutant of a 
single operator or a collection of operators leads to some exciting and 
interesting mathematics. The commutant is an algebraic object and the idea 
is to bring the force of analysis to bear in the characterization of this 
algebra. 

We begin by examining the commutant of a direct sum of operators. 
Recall that if £= £1 EEl £'2 EEl . .. and An E 8i!(£,,) for n;:::: 1, then 
A = Al EEl A2 EEl ... defines a bounded operator on £' if and only if 
sUPn11An11 < 00; in this case IIAII = sUPniIAnll. Also, each operator B on £ 
has a matrix representation [B;j] where B;j E 8i!( £j, ~). 

6.1. Proposition. (a) If A = Al EEl A2 EEl ... is a bounded operator on 
£= £1 EEl £2 EEl ... and B = [B;j] E 8i!(£'), then AB = BA if and only if 
B;jAj = A;B;j for all i, j. 

(b) If B = [B,j ] E 8i!(£(n)), BA(n) = A(n)B if and only if B;jA = AB'J 
for all i, j. 

The proof of this proposition is an easy exercise in matrix manipulation 
and is left to the reader. 

6.2. Proposition. If A E 8i!(£') and 1:::;; n :::;; 00, then {A(nl}" = {B(n 1: 

BE {A}"} = {{A}"}(nl. 

PROOF. The second equality in the statement is a tautology and it is the first 
equality that forms the substance of the proposition. If B E {A }", then the 
preceding proposition implies that B(n) E {A(n 1}". Now let BE {A(nl}". 

To simplify the notation, assume n = 2. So B E {A EEl A} "; let B = [B;). 
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B;j EO ~(£'). Since [~ ~] EO {A EEl A}', matrix multiplication shows that 

Bll = B22 and B2[ = O. Similarly, the fact that [~ ~] commutes with 

A EEl A implies that B12 = O. If C = Bll (= B22 ), B = C EEl C. If T EO {A}', 
then T EEl TEO {A EEl A }', so B(T EEl T) = (T EEl T)B. This shows that CEO 
{A}//. • 

6.3. Corollary. If sP~ ~(£'), {sP(n)}// = {sP//}(n). 

Say that a subspace .A of £' reduces a collection 51' of operators if it 
reduces each operator in 51'. By Proposition 11.3.7, .A reduces 51' if and 
only if the projection of £' onto.A belongs to 51". This is important in the 
next theorem, due to von Neumann [1929]. 

6.4. The Double Commutant Theorem. If.sd is a C*-subalgebra of ~(£') 
containing 1, then SOT - cl.sd = WOT - cl.sd = .sd //. 

PROOF. By Corollary 5.2, WOT - cl.sd= SOT - cl.sd. Also, since.sd// is 
SOT closed (Exercise 2) and .sd~ .sd//, SOT - cl.sd~ .sd". 

It remains to show that .sd// ~ SOT - cl.sd. To do this Proposition 5.3 
will be used. 

Let B EO .sd//, n ~ 1, and let .A EO Lat .sd(n). It must be shown that 
B(n).A ~ 5. Because .sd is a C*-algebra, so is .sd(n). So the fact that 
.A EO Lat d(n) and A*(n) EO .sd(n) whenever A(n) EO .sd(n) implies that j[ 

reduces A(n) for each A in .sd. So if P is the projection of £,(n) onto j[, 
P EO {.sd(n) }'. But B EO .sd//; so by Corollary 6.3, B(n) EO {.sd(n) }". Hence 
B(n)p = PB(n) and .A EO Lat B(n). • 

6.5. Corollary. If .sd is a SOT closed C*-subalgebra of ~(£') and A EO 
~(£') such that A(P£) ~ P£ for every projection P in .sd', then A EO.sd. 

PROOF. This uses, in addition to the Double Commutant Theorem, Proposi­
tion 4.8 as applied to .sd '. Indeed, .sd' is a SOT closed C *-algebra and 
hence it is the norm-closed linear span of its projections. So if A EO ~(£) 
and AP£,~ P£, for every projection P in .sd', then A(l - P)£'~ (l -
P)£, for every projection P in .sd'. Thus P£, reduces A and, hence. 
AP = PA. By (4.8), A EO.sd" =.sd. • 

6.6. Theorem. If (X, D, p.) is a a-finite measure space and <I> EO L OO( p.). 
define M</> on L 2(p.) by M</>f = <l>f. If .sdp. == {M</>: <I> EO U"(p.)}. then S'f,: = 
dp. = d;'. 
PROOF. It is easy to see that if .sd= .sd', then .sd= .sd". Since .sdp. ~ .sd;. it 
suffices to show that .sd; ~ .sdp.. So fix A in .sd;; it must be shown that 
A = M</> for some <I> in L OO(p.). 

Case 1: }L(X) < 00. Here 1 EO L2(p.); put <I> = A(1). Thus ¢ EO L 2(p.). If 
~ EO UC(p.), then ~ EO L2(p.) and A(~) = AM.r1 = M.rAl = M.r<l> = <I>~. 
Also, 11<I>~112 = IIA~112:-::; IIAIIII~lb· 
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Let Ll n = {x E X: 14>(x)1 ;:::: n}. Putting If; = Xd n in the preceding argu­
ment gives 

So if Il(Ll n ) *' 0, IIAII ;:::: n. Since A is bounded, Il(Ll n ) = 0 for some n; 
equivalently, 4> E L 00(11). But A = M", on L 00(11) and L 00(11) is dense in 
L 2(1l), so A = M", on L 2(1l). 

Case 2: Il(X) = 00. If 11(.1) < 00, let L2(IlILl) = {IE £2(11): f= 0 off 
Ll}. For f in L2(IlILl), Af= AXdf= xdAfE L2(IlILl). Let Ad = the 
restriction of A to L 2(111.1). By Case 1, there is a 4>d in L 00(111.1) such that 
Ad = M",,,. Now if 11(.11) < 00 and ,u(Ll 2 ) < 00, 4>d,ILl 1 n .12 = 4>d 2 1.11 n .12 
(Exercise). 

Write X = U~~lLln' where Ll n E Q and Il(Ll n) < 00. From the argument 
above, if 4>(x) = 4>d (x) when x E Lln' 4> is a well-defined measurable 
function on X. Nown II4>dll 00 = IIM",J (11.1.5) = IIAdl1 ~ IIA II; hence 114>1100 
~ IIAII. It is easy to check that A = M",. • 

The next result will enable us to solve a number of problems concerning 
normal operators. It can be considered as a result that removes a technical­
ity, but it is much more than that. 

6.7. The Fuglede-Putnam Theorem. If Nand M are normal operators on Yf' 
and :£, and B: :£~Yf' is an operator such that NB = BM, then N*B = 
BM*. 

PROOF. Note that it follows from the hypothesis that NkB = BMk for all 
k ;:::: O. So if p(z) is a polynomial, p(N)B = Bp(M). Since for a fixed z in 
C, exp(izN) and exp(izM) are limits of polynomials in Nand M, respec­
tively, it follows that exp(izN)B = Bexp(izM) for all z in C. Equivalently, 
B = e-izNBeizM. Because exp(X + Y) = (exp X)(exp Y) when X and Y 
commute, the fact that Nand M are normal implies that 

f( z) == e-izN*BeizM* 

But for every z in C, zN * + zN and zM * + zM are hermitian operators. 
Hence exp[ -i(zN* + zN)] and exp[i(zM* + zM)] are unitary (Exercise 
2.14). Therefore Ilf(z)11 ~ IIBII. But f: C ~ gjJ(:£, Yf') is an entire func­
tion. By Liouville's Theorem, f is constant. 

Thus, 0 = f'(z) = -iN*e-izN*BEizM* + ie-izN*BM*elzM*. Putting z = 

o gives 0 = - iN *B + iBM*, whence the theorem. • 

This theorem was originally proved in Fuglede [1950] under the assump­
tion that N = M. As stated, the theorem was proved in Putnam [1951]. The 
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proof given here is due to Rosenblum [1958]. Another proof is in Radjavi 
and Rosenthal [1973]. Berberian [1959] observed that Putnam's version can 
be derived from Fuglede's original theorem by the following matrix trick. If 

L = [~ ~ ] and A = [~ g ] 
then L is normal on £"€B £" and LA = AL. Hence L*A = AL*, and this 
gives Putnam's version. 

6.8. Corollary. If N = JzdE(z) and BN = NB, then BE(!J.) = E(!J.)B for 
every Borel set !J.. 

PROOF. If BN = NB, then BN* = N*B; the conclusion now follows by The 
Spectral Theorem. • 

The Fuglede-Putnam Theorem can be combined with some other results 
we have obtained to yield the following. 

6.9. Corollary. If!.t is a compactly supported measure on C, then 

PROOF. Clearly .#1' <;:; {NI'}" If A E {NI'}" then Theorem 6.7 implies A N/ 
= N/A. By an easy algebraic argument, AM</> = M</>A whenever cp is a 
polynomial in z and z. By taking weak* limits of such polynomials, it 
follows that A E .#;. By Theorem 6.6 A E .#1" • 

Putnam applied his generalization of Fuglede's Theorem to show that 
similar normal operators must be unitarily equivalent. This has a formal 
generalization which is useful. 

6.10. Proposition. Let N} and N2 be normal operators on £"1 and £"2' If X: 
£"1 ~ £"2 is an operator such that XN1 = N2X, then: 

(a) cl(ran X) reduces N2; 
(b) ker X reduces N 1 ; 

(c) If Ml = Nd(ker X) and M2 = N2lcl(ran X), then M} == M 2· 

PROOF. (a) If fl E £"1' N2Xf} = XNd} E ran X; so cl(ran X) is invariant 
for N2. By the Fuglede-Putnam Theorem, XNl* = N2* X, so d(ran X) is 
invariant for Nt. 

(b) Exercise. 
(c) Since X(ker X) -L <;:; cl(ran X), part (c) will be proved if it can be 

shown that N} == N2 when ker X = (0) and ran X is dense. So make these 
assumptions and consider the polar decomposition of X, X = VA. Because 
ker X = (0) and ran X is dense, A is a positive operator on £"} and V: 
£"1 -> £"2 is an isomorphism. Now X*N2* = N1*X*, so X*N2 = N1X*, A 
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calculation shows that A 2 = X * X E {Nd', so A E {Nd'. (Why?) Hence 
N2UA = N2X = UANl = UN1A; that is, N2U = UNl on the range of A. But 
ker A = (0), so ran A is dense in £'1' Therefore N2U = UNl , or N2 = 
UNp-l. • 

6.11. Corollary. Two similar normal operators are unitarily equivalent. 

The corollary appears in Putnam [1951], while Proposition 6.10 first 
appeared in Douglas [1969]. 

EXERCISES 

l. If 9" ~ !Jj( £'), show that .51" = 9" III • 

2. If 9" ~ !Jj( £'), show that 9'" is always a SOT closed subalgebra of !Jj( £'). 

3. Prove Proposition 6.1. 

4. Let£' be a Hilbert space of dimension a and define s: £'(00) ...... £,(00) by 
S (h l' h 2' ... ) = (0, hi' h 2' ., .). S is called the unilateral shift of multiplicity a. 
(a) Show that A = [Ai)] E {9"}' if and only if Ai) = 0 for j> i and Ai) = 

Ai+l.)+l for i ~j. (b) Show that A = [Ai)] E {9"}" if and only if Ai) = 0 for 
j> i and Ai) = Ai+1,)+1 = a multiple of the identity for i ~j. 

5. What is {N" ED Nil}'? {Nil ED N" }"? 

6. If d is a sub algebra of !?I ( £'), show that d is a maximal abelian sub algebra 
of !?I(£') if and only if d= d'. 

7. Find a non-normal operator that is similar to a normal operator. (Hint: Try 
dim £'= 2.) 

8. Let JL be a compactly supported measure on C and let .:£ be a separable Hilbert 
space. A function f: C ...... .:£ is a Borel function if rl(G) is a Borel set when G 
is weakly open in .:£, Define L2(JL,.:£) to be the equivalence classes of Borel 
functions f: C ...... .:£ such that fllf(x)11 2 dJL(x) < 00. Define (f, g) = 
f(f(x),g(x»dJL(x) for f and gin L 2(JL,.:£). (a) Show that L2(JL,.:£) is a 
Hilbert space. Define Non L 2 (JL, .:£) by (Nf)( z) = zf( z). (b) Show that N is a 
normal operator and a(N) = support JL, Calculate N*. (c) Show that N ~ NJa), 
where a = dim.:£. (d) Find {N}'. (Hint: Use 6.1.) (e) Find {N}". 

9. Let£' be separable with basis {en}. Let A be the diagonal operator on £' 
given by Ae" = A"e", where sUPnlAnl < 00. Determine {A}' and {A}". Give 
necessary and sufficient conditions on {An} such that {A}' = {A}". 

10. Let d be a C*-subalgebra of !?I(£') but do not assume that d contains the 
identity operator. Let .A = V {ran A: A Ed} and let P = the projection of £' 
onto.A. Show that SOT ~ cld=d"P = Pd". 
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§7. Abelian von Neumann Algebras 

7.1. Definition. A von Neumann algebra .sd is a C *-subalgebra of .'?8( £) 
such that .sd = .sd". 

Note that if .sd is a von Neumann algebra, then 1 E.sd and .sd is SOT 
closed. Conversely, if 1 E.sd and .sd is a SOT closed C*-subalgebra of 
86'( £), then .sd is a von Neumann algebra by the Double Commutant 
Theorem. 

7.2. Examples. (a) 86'(£) and C are von Neumann algebras. 
(b) If (X, D, J-t) is a a-finite measure space, then .sdl' == {Mq,: cP E L OO(J-t)} 

~ 86'( L 2(J-t» is an abelian von Neumann algebra by Theorem 6.6. In fact, it 
is a maximal abelian von Neumann algebra. 

It will be shown in this section that .sdl' is the only abelian von Neumann 
algebra up to a * -isomorphism. However, there are many others that are 
not unitarily equivalent to .sdl" 

For .J¥j ~ 86'( JYj), j ;:::: 1, .sdl EB.sd2 EB . .. is used to denote the IX direct 
sum of .sdl , .sd2, .... That is, .sdl EB.sd2 EB ... = {Al EB A2 EB ... : AJ E.J¥j 
for j;:::: 1 and sup)IA)I < oo}. Note that .sdl EB.sd2 EB ... ~ 86'(£[ EB £2 
EB ... ) and IIAl EB A2 EB ... II = sup)IA)I· 

7.3. Proposition. (a) If .sd[, .sd2, ... are von Neumann algebras, then so is 
.sdl EB.sd2 EB .... (b) If.sd is a von Neumann algebra and 1 ::s; n ::s; 00, then 
.sd(n) is a von Neumann algebra. 

PROOF. Exercise. 
The proof of the next result is also an exercise. 

7.4. Proposition. Let .J¥j be a von Neumann algebra on JYj, j = 1,2. If U: 
£1 --> £2 is an isomorphism such that U.sdP- [ =.sd2, then U.sd (U [ =.sd {. 

Now let (X, D, J-t) be a a-finite measure space and define p: .sdl' --> .sd1'(2) 
by peT) = T EB T. Then p is a *-isomorphism. However, .sdl' and .sd1'(2) are 
not spatially isomorphic. That is, there is no Hilbert space isomorphism U: 
L 2(J-t) --> L 2(J-t) EB L 2(J-t) such that U.sdp-l = .sd1'(2). Why? One way to see 
that no such U exists is to note that .sdl' has a cyclic vector (give an 
example). However, .sd1'(2) does not have a cyclic vector as shall be seen 
presently (Theorem 7.8). 

7.5. Definition. If .sd~ 86'(£) and eo E £, then eo is a separating vector 
for .sd if the only operator A in .sd such that Aeo = 0 is the operator 
A = O. 
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If (X, g, Il) is a a-finite measure space and f E L 2(1l) such that Il( {x E X: 
f(x) = o} = ° (Why does such an f exist?), then f is a separating vector for 
d)L as well as a cyclic vector. If d = !?d( Yl'), then no vector in Yl' is 
separating for d while every nonzero vector is a cyclic vector. If d = C 
and dim Yl'> 1, then d has no cyclic vectors but every nonzero vector is 
separating for d. 

7.6. Proposition. If eo is a cyclic vector for d, then eo is a separating vector 
for d'. 

PROOF. If TEd' and Teo = 0, then for every A in d, TAeo = A Teo = 0. 
Since Vdeo = Yl', T = 0. • 

7.7. Corollary. If d is an abelian subalgebra of !?d( Yl'), then every cyclic 
vector for d is a separating vector for d. 

PROOF. Because d is abelian, d <;::; d'. • 

Since !?d(Yl')' = C, Proposition 7.6 explains some of the duality exhibited 
prior to (7.6). Also note that if (X, g, Il) is a finite-measure space, 1 EB 0, ° EB 1, and 1 EB 1 are all separating vectors for d)L(2). Because d)L(2) =1= (d)L(2»', 

the next theorem says that d)L(2) has no cyclic vector. 
Although it is easy to see that conditions (a) and (b) in the next result are 

equivalent, irrespective of any assumption on Yl', the equivalence of the 
remaining parts to (a) and (b) is not true unless some additional assumption 
is made on Yl' or d (see Exercise 5). We are content to assume that Yl' is 
separable. 

7.S. Theorem. Assume that Yl' is separable and d is an abelian C*-subal­
gebra of !?d( Yl'). The following statements are equivalent. 

(a) d is a maximal abelian von Neumann algebra. 
(b) d= d'. 
(c) d has a cyclic vector and is SOT closed. 
(d) There is a compact metric space X, a positive Borel measure Il with 

support X, and an isomorphism U: L 2(1l) --> Yl' such that Udp.U- 1 = d. 

PROOF. The proof that (a) and (b) are equivalent is left as an exercise. 
(b) = (c): By Zorn's Lemma and the separability of Yl', there is a 

maximal sequence of unit vectors {en} such that for n =1= m, cl[denl ..1 

cl[deml. It follows from the maximality of {en} that Yl'= EB::lcl[denl. 
Let eo = 2::;"~len/ ff. Since en..l em for n =1= m, Ileol1 2 = 2:2- n = 1. Let 

P" = the projection of Yl' onto £;. = cl[denl. Clearly d leaves £;. in­
variant and so, since d is a * -algebra, £;. reduces d. Thus Pn Ed' = d 
and cl[deol ;;2 cl[dPneol = cl[denl = £;.. Therefore cl[deol = Yl' and eo 
is a cyclic vector for d. 
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(c) = (d): Since £ is separable, balld is WOT metrizable and compact 
(l.3 and 5.5). By picking a countable WOT dense subset of ball d and 
letting d 1 be the C *-algebra generated by this countable dense subset, it 
follows that d 1 is a separable C*-algebra whose SOT closure is d. Let X 
be the maximal ideal space of d 1 and let p: C( X) ~ d 1 <;::; d <;::; 88( £) be 
the inverse of the Gelfand map. By Theorem l.14 there is a spectral measure 
E defined on the Borel subsets of X such that p( u) = f u dE for u in C( X). 
If cf> E B(X) and {u;} is a net in C(X) such that fu;dv ~ fcpdv for every 
v in M(X), then p(u;) = fu;dE ~ f<PdE (WOT). Thus {fcf>dE: cf> E 

B( X)} <;::; d since d is SOT closed. 
Let eo be a cyclic vector for d and put fL(Ll) = IIE(Ll)eoI1 2 = 

(E(Ll)eo,eo)· Thus «(fcf>dE)eo,eo) = fcf>dll for every cf> in B(X). Con­
sider B( X) as a linear manifold in L 2(1l) by identifying functions that agree 
a.e. [Ill. If cf> E B(X), then 

This says two things. First, if cf> = 0 a.e. [Ill, then (fcf>dE)e o = O. Hence U: 
B(X) ~ £ defined by Ucf> = (fcf>dE)eo is a well-defined map from the 
dense manifold B( X) in L 2(1l) into £. Second, U is an isometry. Since the 
domain and range of U are dense (Why?), U extends to an isomorphism U: 
L 2(1l) ~ £. 

If cf> E B(X) and 1/; E LOO(Il), then UM",cf> = U(1/;cf» = (f1/;cf>dE)e o = 
(f1/;dE)(fcf>dE)eo = (f1/;dE)Ucf>. Hence UMp-l = fcpdE and Udp-l <;::; 

d. On the other hand, Udp-l is a SOT closed C*-subalgebra of 88(£) 
that contains UC(X)U- 1 = d 1. (Why?) So Udp-l = d. 

Because d 1 is separable, X is metrizable. 
(d) = (b): This is a consequence of Theorem 6.6 and Proposition 7.4 . 

• 
7.9. Corollary. If d is an abelian C*-subalgebra of 88(£) and £ is 
separable, then d has a separating vector. 

PROOF. By Zorn's Lemma, d is contained in a maximal abelian C *-alge­
bra, d m . It is easy to see that d m must be SOT closed, so d m is a 
maximal abelian von Neumann algebra. By the preceding theorem, there is 
a cyclic vector eo for d m • But (7.7) eo is separating for d np and hence for 
any subset of d m . • 

The preceding corollary may seem innocent, but it is, in fact, the basis for 
the next section. 
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EXERCISES 

l. Prove Proposition 7.3. 

2. Prove Proposition 7.4. 

3. Why are JO"I' and JO"J 2 ) not spatially isomorphic? 

4. Show that if X is any compact metric space, there is a separable Hilbert space 
£ and a *-monomorphism T: C(X) ..... gj(£). Find the spectral measure for T. 

5. Let JO" be an abelian C*-subalgebra of gj( £) such that JO'" contains no 
uncountable collection of pairwise orthogonal projections. Show that the follow­
ing statements are equivalent: (a) JO" is a maximal abelian von Neumann 
algebra; (b) JO"= JO"'; (c) JO" has a cyclic vector and is SOT closed; (d) there is a 
finite-measure space (X,Q,f.L) and an isomorphism U; L2(f.L) ->£ such that 
UJO"P- 1 = JO". 

6. Let {Pn } be a sequence of commuting projections in gj( £) and put A = 

L~ ~ 13. n (2 Pn - 1). Show that C* (A) is the C* -algebra generated by { Pn }. (Do 
you see a connection between A and the Cantor-Lebesgue function?) 

7. If JO" is an abelian von Neumann algebra on a separable Hilbert space £, show 
that there is a hermitian operator A such that JO" equals the smallest von 
Neumann algebra containing A. (Hint: Let {Pn } be a countable WOT dense 
subset of the set of projections in JO" and use Exercise 6. This proof is due to 
Rickart [1960), pp. 293-294.) 

8. If X is a compact space, show that C( X) is generated as a C*-algebra by its 
characteristic functions if and only if X is totally disconnected. If A is as in 
Exercise 6, show that o(A) is totally disconnected. 

9. If X and Yare compact spaces and T: C(X) ..... C(Y) is a homomorphism with 
T(l) = 1, show that there is a continuous function cp: Y ..... X such that T( u) = 

U 0 cp for every u in C( X). Show that T is injective if and only if cp is surjective, 
and, in this case, T is an isometry. Show that T is smjective if and only if cp is 
injective. 

10. Let X and Z be compact spaces, Y = X X Z, and let cp: Y -> X be the 
projection onto the first coordinate. Define T: C( X) ..... C( Y) by T( u) = u 0 cp. 
Describe the range of T. 

11. Adopt the notation of Exercise 9. Define an equivalence relation - on Y by 
saying Yl - Y2 if and only if cp (Yl) = cp (Y2). Let q: Y -> Y / - be the natural 
map and q *: C( Y / - ) ..... C( Y) the induced homomorphism. Show that there is 
a * -epimorphism p: C( X) ..... C( Y / - ) such that the diagram 

C(X) C(Y) 

/' q* 

C(Y/-) 

commutes. Find the corresponding injection Y / - ..... x. 
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12. If X is any compact metric space, show that there is a totally disconnected 
compact metric space Y and a continuous sUIjection <1>: Y -> X. (Hint: Start by 
embedding C( X) into !lI( £) and use Exercises 7 and 8.) 

13. Show that every totally disconnected compact metric space is the continuous 
image of the Cantor ternary set. (Do this directly; do not try to use C*-algebras.) 
Combine this with Exercise 12 to get that every compact metric space is the 
continuous image of the Cantor set. 

14. If s;/ is an abelian von Neumann algebra and X is its maximal ideal space, then 
X is a Stonean space; that is, if U is open in X, then cl U is open in X. 

15. This exercise assumes Exercise 2.21 where it was proved that !lI{ = !lI. When 
referring to the weak* topology on !lI = !lI( £), we mean the topology !lI has as 
the Banach dual of !lIj • (a) Show that on bounded subsets of !lI the weak* 
topology = WOT. (b) Show that a C*-subalgebra of !lI(£) is a von Neumann 
algebra if and only if s;/ is weak* closed. (c) Show that WOT and the weak* 
topology agree on abelian von Neumann algebras. (d) Give an example of a 
weak* closed subspace of !lI that is not WOT closed. 

§8. The Functional Calculus for Normal Operators: 
The Conclusion of the Saga 

In this section it will always be assumed that 

all Hilbert spaces are separable. 

Indeed, this assumption will remain in force for the rest of the chapter. This 
assumption is necessary for the validity of some of the results and minimizes 
the technical details in others. 

If N is a normal operator on .J'l', let W*(N) be the von Neumann 
algebra generated by N. That is, W*(N) is the intersection of all of the von 
Neumann algebras containing N. Hence W*(N) is the WOT closure of 
{p(N, N*): p(z, z) is a polynomial in z and Z}. 

8.1. Proposition. If N is a normal operator, then W*(N) = {N}" ~ 
{<p(N): <p E B(a(N»}. 

PROOF. The equality results from combining the Double Commutant Theo­
rem and the Fuglede-Putnam Theorem. If <p E B(a(N)), N = jzdE(z), 
and T E {N}', then T E {N, N * }' by the Fuglede-Putnam Theorem and 
TE(,1) = E(,1)T for every Borel set ,1 by the Spectral Theorem. Hence 
T<p( N) = <p( N)T since <p( N) = f<P dE. • 

The purpose of this section is to prove that the containment in the 
preceding proposition is an equality. In fact, more will be proved. A 
measure J.L whose support is a(N) will be found such that <p(N) is well 
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defined if cp E L'X)(}l) and the map cp >-) cp( N) is a * -isomorphism of L OO(}l) 
onto W *( N). To find }l, Corollary 7.9 (which requires the separability of 
£) is used. 

By Corollary 7.9, W*(N), being an abelian von Neumann algebra, has a 
separating vector eo. Define a measure }l on a(N) by 

8.2 

8.3. Proposition. }l(.::l) = 0 if and only if E(.::l) = O. 

PROOF. If }l(.::l) = 0, then E(.::l)eo = O. But E(.::l) = X!J.(N) E W*(N). 
Since eo is a separating vector, E(.::l) = O. The reverse implication is clear. 

• 
8.4. Definition. A scalar-valued spectral measure for N is a positive mea­
sure}l on a(N) such that }l(.::l) = 0 if and only if E(.::l) = 0; that is, }l and 
E are mutually absolutely continuous. 

So Proposition 8.3 says that scalar-valued spectral measures exist. It will 
be shown (8.9) that every scalar-valued spectral measure is defined by (8.2) 
where eo is a separating vector for W*(N). In the process additional 
information is obtained about a normal operator and its functional calculus. 

If h E £, let }lh == Eh.h and let £h == cl[W*(N)h]. Note that £h is the 
smallest reducing subspace for N that contains h. Let Nh == NI£h. Thus Nh 
is a * -cyclic normal operator with * -cyclic vector h. The uniqueness of the 
spectral measure for a normal operator implies that the spectral measure for 
Nh is E(.::l)I£h; that is, X!J.(Nh) = x!J.(N)I£h = E(.::l)I£h. Thus Theorem 
3.4 implies there is a unique isomorphism Uh: £h ~ L 2(}lh) such that 
Uhh = 1 and UhNPh-1f = zf for all f in L 2(}lh). The notation of this 
paragraph is used repeatedly in this section. 

The way to understand what is going on is to consider each Nh as a 
localization of N. Since Nh is unitarily equivalent to M z on L 2(}lh) we can 
agree that we thoroughly understand the local behavior of N. Can we put 
together this local behavior of N to understand the global behavior of N? 
This is precisely what is done in §10. 

In the present section the objective is to show that if h is a separating 
vector for W*(N), then the functional calculus for N is completely de­
termined by the functional calculus for N h • The sense in which this 
"determination" is made is the following. If A E W*(N), then the defini­
tion of £h shows that A£h ~ £h. Since A* E W*(N), £h reduces each 
operator in W*(N); thus AI£h is meaningful. It will be shown that the 
map A ~ AI£h is a *-isomorphism of W*(N) onto W*(Nh) if h is a 
separating vector for W *( N). Since Nh is * -cyclic, Theorem 6.6 and 
Corollary 6.9 show how to determine W*(Nh). 

We begin with a modest lemma. 
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8.5. Lemma. If hE £ and Ph: W*(N) ~ W*(Nh) is defined by Ph(A) = 
AI£h' then Ph is a *-epimorphism that is WOT-continuous. Moreover, if 
I/; E B(a(N», then Ph(!J;(N» = I/;(Nh) and if A E W*(N), then there is a 
cf> in B( a( Nh)) such that Ph(A) = cf>( Nh)· 

PROOF. First let us see that Ph maps W*(N) into W*(Nh). If p(z, i) is a 
polynomial in z and i, then Ph[p(N, N*)] = peNh' Nn as an algebraic 
manipulation shows. If {Pi} is a net of such polynomials such that 
pi(N,N*)--A(WOT), then for f,g in £h' (pi(N,N*)f,g) ~ (Af,g); 
thus Pi(Nh, Nt) -- Ph(A)(WOT) and so Ph(A) E W*(Nh). It is left as an 
exercise for the reader to show that Ph is a * -homomorphism. Also, the 
preceding argument can be used to show that Ph is WOT continuous. 

If I/; E B ( a( N », there is a net {p i( z, i)} of polynomials in z and i such 
that jPidv -- Ndv for every v in M(a(N». (Why?) Since a(Nh) <:;;: a(N) 
(Why?), fpid1/ -- Nd1/ for every 1/ in M(a(Nh». Therefore Pi(N, N*)-­
I/;(N)(WOT) and pJNh, Nn -- I/;(Nh)(WOT). But Ph(Pi(N, N*» = 
Pi(Nh, Nn and Ph(Pi(N, N*» ~ Ph( I/;(N»; hence Ph( I/;(N» = I/;(Nh )· 

Let Uh: £h ~ L 2(/lh) be the isomorphism such that Uhh = 1 and 
UhNhUh- 1 = NP.h If A E W*(N) and Ah = Ph(A), then AhNh = NhA h; 
thus UhAhU;:l E {Np.J'. By Corollary 6.9, there is a cf> in B(a(Nh» such 
that UhAp;:l = M</>. It follows (How?) that Ah = cf>(Nh). 

Finally, to show that Ph is surjective note that if BE W*(Nh), then (use 
the argument in the preceding paragraph) B = !J;( Nh ) for some I/; in 
B(a(Nh)). Extend I/; to a(N) by letting I/; = 0 on a(N)\a(Nh). Then 
I/;(N) E W*(N) and Ph( !J;(N» = I/;(Nh) = B. • 

8.6. Lemma. If e E £ such that /le is a scalar-valued spectral measure for N 
and if v is a positive measure on a(N) such that v « /le' then there is an h in 
£ such that v = /lh. 

PROOF. This proof is just an application of the Radon-Nikodym Theorem 
once certain identifications are made; namely, f= [dvjd/le]I/2 E L2(/le), 
so put h = Ue-1j. Hence h E£;,. For any Borel set .1, v(.1) = Jx4dv = 
fX4ffd/l e = (MxJ,f) = (Ue-1MxJ, Ue- 1!) = (E(.1)h, h) = /lh(.1)· • 

8.7. Lemma. W*(N) = {cf>(N): cf> E B(a(N»}. 

PROOF. Let d= {cf>(N): cf> E B(a(N»}. Hence d is a *-algebra and 
d<:;;: W*(N) by Proposition 8.1. Since NEd it suffices to prove that d is 
WOT closed. Let {cf>i} be a net in B( a(N» such that cf>i(N) ~ A (WOT); 
so A E W*(N). By (8.5) cf>i(Nh) -- AI£h(WOT) for any h in £. Also, by 
Lemma 8.5, for every h in £ there is a cf>h in B(e) such that A 1£17 = 

cf>h(Nh). Fix a separating vector e for W*(N); hence /le is a scalar-valued 
spectral measure for N. 

If h E.Jff', then the fact that cf>i(Nh) -- cf>h(Nh)(WOT) implies cf>i ~ cf>h 
weak* in LOO(/lh). Also, cf>i ~ cf>e weak* in LOO(/le)· But /lh « /le so that 
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d/Lh/d/Le E Ll(/Le); hence for any Borel set .1 

f <PI d/Lh = f <Pi ~~h d/Le ~ f <Pe d/Lh· 
LI LI re LI 

But also 

So 0 = U <Pe - <Ph) d/Lh for every Borel set .1. Therefore <Ph = <Pe a.e. [/Lh]· 
But if g EYf'h' then (<ph(Nh)g, g) = (<ph(N)g,g) = f<Phd/Lg = f<Ped/Lg 
since /L g « /Lh. Thus (<Ph(Nh)g, g) = (<Pe(Nh)g, g); that is, <Ph(Nh) = 

<Pe(Nh). In particular, Ah = <Ph(Nh)h = <Pe(Nh)h = <Pe(N)h. Since h was 
arbitrary, A = <Pe(N). • 

8.8. Corollary. If Ph: W*(N) ~ W*(Nh) is the *-epimorphism of Lemma 
8.5, then kerph = {<p(N): <P = 0 a.e. [/Lhl}. 

8.9. Theorem. If N is a normal operator and e E Yf', the following state­
ments are equivalent. 

(a) e is a separating vector for W*(N). 
(b) J.t e is a scalar-valued spectral measure for N. 
(c) The map Pe: W*(N) ~ W*(Ne ) defined in (8.5) is a *-isomorphism. 
(d) {<p E B(a(N»: <p(N) = O} = {<p E B(a(N»: <P = 0 a.e. [J.tel}. 

PROOF. (a) = (b): Proposition 8.3. 
(b) = (c): By Lemma 8.5, Pe is a *-epimorphism. By Corollary 8.8, 

kerpe = {<p(N): <P = 0 a.e. [J.tel}. But if <P = 0 a.e. [J.te], (b) implies that 
<P = 0 off a set .1 such that E(.:l) = O. Thus <p(N) = ft;<pdE = O. 

(c) = (d): Combine (c) with Corollary 8.8. 
(d) = (a): Suppose A E W*(N) and Ae = O. By Lemma 8.7, there is a <P 

in B(a(N» such that <p(N) = A. Thus, 0 = IIAel1 2 = (A*Ae, e) = 
fl<p12 dJ.te. So <P = 0 a.e. [J.te]. By (d), A = O. • 

These results can now be combined to yield the final statement of the 
functional calculus for normal operators. 

8.10. The Functional Calculus for a Normal Operator. If N is a normal 
operator on the separable Hilbert space Yf' and J.t is a scalar-valued spectral 
measure for N, then there is a well-defined map p: LOO(J.t) ~ W*(N) given 
by the formula P ( <p) = <p( N) such that 

(a) P is a * -isomorphism and an isometry; 
(b) p: (LOO(J.t), weak*) ~ (W*(N), WOT) is a homeomorphism. 

PROOF. Let e be a separating vector such that J.t = J.te [by (8.6) and (8.9)]. If 
<P E B(a(N» and <P = 0 a.e. [J.t], then <p(N) = 0 by (8.9d); so peep) = <p(N) 
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is a well-defined map. It is left to the reader to show that p is a * -homo­
morphism. By Lemma S.7, p is surjective. Also, if peep) = ep(N) = 0, then 
ep = ° a.e. [p, 1 by (S.9d). Thus p is a * -isomorphism. By (VIII.4.S) p is an 
isometry. (A proof avoiding (VIII.4.S) is possible~it is left as an exercise.) 
This proves (a). 

Let {epJ be a net in LOO(p,) and suppose that epl(N) -> O(WOT). If 
f E Ll(p,) and f:?: 0, fp, « p, = P,e' By Lemma 8.6 there is a vector h such 
that fp, = P,h' Thus /cf>Jdp, = /cf>;dP,h = (ep;(N)h, h) -> 0. Thus epl -> ° 
(weak*) in LOO(p,). This proves half of (b); the other half is left as an 
exerCise. • 

8.11. The Spectral Mapping Theorem. If N is a normal operator on a 
separable space and p, is a scalar-valued spectral measure for N and if 
ep E L OO(p,), then a( ep( N» = the p,-essential range of ep. 

PROOF. Use (8.10) and the fact (2.6) that the p,-essential range of ep is the 
spectrum of ep as an element of L OO(p,). • 

8.12. Proposition. Let N, p" ep be as in (8.11). If N = f z dE, then p, 0 ep 1 is 
a scalar-valued spectral measure for ep( N) and Eo ep -1 is its spectral measure. 

PROOF. Exercise. 

EXERCISES 

1. What is a scalar spectral measure for a diagonalizable normal operator? 

2. Let Nl and N2 be normal operators with scalar spectral measures fll and fl2' 
What is a scalar spectral measure for NI Gl N2? 

3. Let {en} be an orthonormal basis for Yt' and put fl(.1) = L~~12 nll£(.1 )e,,11 2 

Show that fl is a scalar spectral measure for N. 

4. Give an example of a normal operator on a nonseparable space which has no 
scalar-valued spectral measure. 

S. Prove that the map p in (8.10) is an isometry without using (VIII.4.8). 

6. Prove Proposition 8.12. 

7. Show that if fl and v are compactly supported measures on C, the following 
statements are equivalent: (a) NIL Gl Nv is *-cydic; (b) W*(NIL Gl N,.) = 

W*(NIL ) Gl W*(Np); (c) fl.l v. 

8. If M and N are normal operators with scalar spectral measures fl and v. 
respectively, show that the following are equivalent: (a) W*( M Gl N) = 

W*(M) Gl W*(N); (b) {M Gl Ny = {My Gl {N y; (c) there is no operator A 
such that MA = AN other than A = 0; (d) fl .1 P. 

9. If M and N are normal operators, show that C*(M Gl N) = C*( M) Gl C*(N) 
if and only if a(M) n a(N) = D. 
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10. Give an example of two normal operators M and N such that W*( M Ell N) = 

W(M) Ell W*(N) but C*(M Ell N) -4= C*(M) Ell C*(N). In fact, find M and 
N such that W*(M Ell N) splits, but a(M) = a(N). 

11. If U is the bilateral shift and V is any unitary operator, show that W*(U Ell V) 
= W*(U) Ell W*(V) if and only if V has a spectral measure that is singular to 
arc length on aD. 

12. If d is an abelian von Neumann algebra on a separable space, show that there 
is a compactly supported measure J.L on IR such that d is * -isomorphic to 
U"(J.L). (Hint: Use Exercise 7.7.) 

13. (This exercise assumes a knowledge of Exercise 2.21). Let N = f z dE (z) be a 
normal operator with scalar-valued spectral measure J.L and define a: f1d1 (£) -+ 

[}(J.L) by a(T)(.1) = tr(TE(.1)). Show that a is a sUijective contraction. What is 
a*? [[}(J.L) is identified, via the Radon-Nikodym Theorem, with the set of 
complex-valued measures that are absolutely continuous with respect to J.L.] 

§9. Invariant Subspaces for Normal Operators 

Remember that we continue to assume that all Hilbert spaces are separable. 
Every normal operator on a Hilbert space of dimension of at least 2 has a 

nontrivial invariant subspace. This is an easy consequence of the Spectral 
Theorem. Indeed, if N = f z dE (z), E (Ll)£" is a reducing subspace for 
every Borel set ,1. 

If A E !!d( £"), vi{ is a linear subspace of £", and P is the orthogonal 
projection of £" onto vI{, then vi{ reduces A if and only if P E {A} '. Also, 
vi{ E Lat A (= the lattice of invariant subspaces for A) if and only if 
AP = PAP. Since the spectral projections of a normal operator belong to 
W *( N), they are even more than reducing. 

9.1. Definition. An operator A is reductive if every invariant subspace for 
A reduces A. Equivalently, A is reductive if and only if Lat A = Lat A*. 

Thus, every self-adjoint operator is reductive. Every normal operator on a 
finite-dimensional space is reductive. More generally, every normal compact 
operator is reductive (Ando [1963]). However, the bilateral shift is not 
reductive. Indeed, if U is the bilateral shift on [2(71.), £"= {f E [2(71.): 
fen) = 0 if n < O} E Lat U, but £"f/:. Lat U*. Wermer [1952] first studied 
reductive normal operators and characterized the reductive unitary oper­
ators. A first step towards characterizing the reductive normal operators will 
be taken here. The final step has been taken but it will not be viewed in this 
book. The result is due to Sarason [1972]. Also see Conway [1981], § VII.5. 

9.2. Definition. If /L is a compactly supported measure on C, r"'(/L) 
denotes the weak* closure of the polynomials in LOO(/L). 
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Because the support of J1 is compact, every polynomial, when restricted to 
that support, belongs to L OO (J1). 

For any operator A, let W(A) denote the WOT closed subalgebra of 
t4(df') generated by A; that is, W(A) is the WOT closure in t4(df') of the 
polynomials in A. The next result is an immediate consequence of The 
Functional Calculus for Normal Operators. 

9.3. Theorem. If N is a normal operator and J1 is a scalar-valued spectral 
measure for N, then the functional calculus, when restricted to P OC (J1), is an 
isometric isomorphism p: P OO (J1) ~ WeN) and a weak*-WOT homeomor­
phism. Also, p(z) = N. 

9.4. Definition. An operator A is reflexive if whenever B E t4( df') and 
LatA ~ Lat B, then BE W(A). 

It is easy to see that if BE W(A), then Lat A ~ Lat B (Exercise). An 
operator is reflexive precisely when it has sufficiently many invariant sub­
spaces to characterize W(A). For a survey of reflexive operators and some 
related topics, see Radjavi and Rosenthal [1973]. 

9.5. Theorem. (Sarason [1966].). Every normal operator is reflexive. 

PROOF. Suppose N is normal and Lat N ~ Lat A. If P is a projection in 
{N}', then pdf' and (Pdf').L E Lat N ~ Lat A, so AP = PA. By Corollary 
6.5, A E W*(N). Let J1 be a scalar-valued spectral measure for N. By 
Theorem 8.10, there is a cp in L OO (J1) such that A = cp(N). By Theorem 9.3, 
it must be shown that cp E P OO (J1). 

Now let's focus our attention on a special case: Assume that N is 
* -cyclic; thus N = Np.. Suppose f E L1(J1) and IN dJ1 = 0 for every 1/; in 
P OO (J1). If it can be shown that JfcpdJ1 = 0, then the Hahn-Banach Theo­
rem implies that cp E P OO (J1). This is the strategy we follow. Let f = gh for 
some g, h in L 2(J1). Put A = V{ Zkg: k;:::: O}. Clearly A E Lat N, so 
AE LatA = Latcp(N) = LatM</>. Hence cpg EA. But 0 = Jz kfdJ1 = 
Jz kghdJ1=(N kg,h) for all k;::::O; hence hi-A. Thus O=(cpg,h)= 
fcpghdJ1 = fcpfdJ1, and cp E P OO (J1). 

Now we return to the general case. By Theorem 8.9 there is a separating 
vector e for W*(N) such that J1(Ll) = IIE(Ll)eIl 2 , where N = JzdE(z). Let 
X"= V{N*kNJe: k,j;:::: O}. Clearly X" reduces N and NIX" is *-cyclic. 
Hence X" reduces A and AIX"= cp(Nlf). By the preceding paragraph 
cp E P OO (J1). • 

An immediate consequence of the preceding theorem is the first step in 
the characterization of reductive normal operators. 
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9.6. Corollary. If N is a normal operator and /l is a scalar spectral measure 
for N, then N is reductive if and only if POO(/l) = LOO(/l). 

PROOF. If vltE LatN, then vltE Lat<t>(N) for every <t> in POO(}l). So if 
POO(/l) = LOC(/l), z E POO(/l) and, hence, vltE LatN* whenever vltE 
LatN. 

N ow suppose N is reductive. This means that Lat N ~ Lat N *. By the 
preceding theorem, this implies N* E W(N); equivalently, z E POO(/l). 
Since POO(/l) is an algebra, every polynomial in z and z belongs to POC(/l). 
By taking weak* limits this implies that POO(/l) = LOO(/l). • 

The preceding corollary fails to be a good characterization of reductive 
normal operators since it only says that one difficult problem is equivalent 
to another. A way is needed to determine when POO(/l) = L OC(/l). This is 
what was done in Sarason [1972]. 

Are there any reductive operators that are not normal? This natural and 
seemingly innocent question has much more to it than meets the eye. Dyer, 
Pedersen, and Porcelli [1972] have shown that this question has an affirma­
tive answer if and only if every operator on a Hilbert space has a nontrivial 
invariant subspace. 

EXERCISES 

1. (Ando [1963).) Use Corollary 9.6 to show that every compact normal operator is 
reductive. 

2. Determine all of the invariant subspaces of a compact normal operator. 

3. (Rosenthal [1968).) Show that every reductive compact operator is normal. 

§10. Multiplicity Theory for Normal Operators: 
A Complete Set of Unitary Invariants 

Throughout this section only separable Hilbert spaces are considered. 
When are two normal operators unitarily equivalent? The answer to this 

question must be given in the following way: to each normal operator we 
must attach a collection of objects such that two normal operators are 
unitarily equivalent if and only if the two collections are equal (or equiv­
alent). Furthermore, it should be easier to verify that these collections are 
equivalent than to verify that the normal operators are equivalent. This is 
contained in the following result due to Hellinger [1907]. Note that it 
generalizes Theorem 3.6. 
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10.1. Theorem. (a) If N is a normal operator, then there is a sequence of 
measures {fL n} (possibly finite) on C such that fL n ~ 1 « fL n for all nand 

10.2 N ~ N EEl N EEl···. 
III 112 

(b) If Nand {fLn} are as in (a) and M ~ NVI EEl NV2 EEl ••• , where vn" I « Vn 
for all n, then N ~ M if and only if [fLnl = [vnl for all n. 

The proof of this theorem requires several lemmas. Before beginning, we 
will examine a couple of false starts for a proof. This will cause us to arrive 
at the correct strategy for a proof and show us the necessity for some of the 
lemmas. 

Let N = JzdE(z). If e E£' and £;, = cl[W*(N)el, then NI£;, is a 
* -cyclic normal operator. An application of Zorn's Lemma and the sep­
arability of £' produces a maximal sequence {en} in £' such that 
£;,n ..1 £;,m' By the maximality of en' £'= EB n£;',,. If Nn = NI£;",' Nn = Nil,,' 
where fLn(.1) = IIE(.1)enll 2; thus N ~ EBnNlln. The trouble here is that fLn+1 
is not necessarily absolutely continuous with respect to fL n . Just using Zorn's 
Lemma to produce the sequence {fL n} eliminates any possibility of having 
{fL n} canonical and producing the unitary invariant desired for normal 
operators. Let's try again. 

Note that if fLn+1 « fLn for all n in (10.2), then fLn « fL1 for all n. This 
in turn implies that fL1 is a scalar-valued spectral measure for N. Using 
Lemma 8.6 we are thus led to choose fL1 as follows. Let e1 be a separating 
vector for W*(N); this exists by Corollary 7.9 and the separability of £'. 
Put fLI(.1) = IIE(.1)e l 112. If £'1 = cl[W*(N)ed, then NI£'l ~ NfLI , Let 
N2 == NI£/; so N2 is normal. A pair of easy exercises shows that the 
spectral measure E2 for N2 is given by E2(.1) = E(.1)I£'lJ. and W*(N2 ) = 
W*(N)I£'/ (== {A E 81(£'1): A = TI£'/ for some T in W*(N)}), 
Let e2 be a separating vector for W*(N2) and put fL2(.1) = IIE2(.1)e2112. By 
the easy exercises above, fL2(.1) = IIE(.1)e2112, so that fL2 « fLI' and £'2 == 
cl[W*(N)e2l = cl[W*(N2)e2l S £'/' Also, NI£'2 ~ Nil,' 

Continuing in this way produces a sequence of vectors {en} such that if 
Yl'" = cl[W*(N)enl and fLn(.1) = IIE(.1)enll 2, then Yl'" ..1 £;" for n "4= m, 
fLn+1 « fLn' and NIYl'" ~ Nlln· The difficulty here is that£' is not neces­
sarily equal to EB n~ so that Nand EB nNlln cannot be proved to be 
unitarily equivalent. (Actually, Nand EB nNlln are unitarily equivalent, but 
to show this we need the force of Theorem 10.1. See Exercise 2.) The 
following provides us with a look at an example to see what can go wrong. 

10.3. Example. For n ~ 1 let fLn = Lebesgue measure on [0,1 + 2 -nl and 
let fL 00 = Lebesgue measure on [0, ll· Put N = EB ,": I Nil" EEl Nlloc ' If the 
process of the preceding paragraph is followed, it might be that vectors { en} 
that are chosen are the vectors with a 1 in the L2(fLn) coordinate and zeros 
elsewhere. Thus the spaces {~} are precisely the spaces {L 2(fL n)} and 
[EB ~Yl'"l 1. = L 2(fLoo). 
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(Nevertheless, N;: $ '{'Nl'n' Indeed, let Vn = JLnl[l, 1 + 2 -n]; so JL" = JL oo 

+ v" and JL oo ...L VII" Thus Nl'n ;: NPn Ell Nl'oo' Therefore 

N = $ '{'Nl'n Ell Nl'oo 

- $'{' Nl'n') 

After an examination of the statement of Theorem 10.1, it becomes clear 
that some procedure like the one outlined in the paragraph preceding 
Example 10.3 should be used. It only becomes necessary to modify this 
procedure so that the vectors {en} can be chosen in such a way that 
Yi'= $ '{'~. For example, let, as above, e l be a separating vector for 
W *( N) and let {In} be an orthonormal basis for Yi' such that 11 = e l' We 
now want to choose the vectors {en} such that {II"'" In} ~ Yi'l 
Ell ... Ell~. In this way we will meet success. The vital link here is the next 
result. 

10.4. Proposition. II N is a normal operator on Yi' and e E Yi', then there is 
a separating vector eo lor W*(N) such that e E cl[W*(N)eo]. 

PROOF. Let 10 be any separating vector for W*(N), let E be the spectral 
measure for N, let JL(,1) = IIE(,1)/oI12, and put rg = cl[W*(N)/o]. Write 
e = gl + hI' where gi E rg and hI E rg J. • 

Let 1](,1) = IIE(,1)h I I1 2 and let 2'= cl[W*(N)hd. Hence 1] « JL, N is 
reduced by both 2' and rg, and 2'...L rg. Moreover, Nlrg;: NI' and NI2';: NTj' 
Now the fact that 1] « JL implies that there is a Borel set A such that 
[1]] = [JLIA]. (Why?) Hence NI2'= Np if v = JLI,1 (Theorem 3.6). Let U: 
rg ffi 2'~ L 2(JL) Ell L2(v) be an isomorphism such that U(Nlrg Ell 2')U- 1 = 
NI' Ell Np. Since e = gl + hI E rg Ell 2', let Ue = g Ell h. Because hI is a 
*-cyclic vector for NI2', h(z) =1= 0 a.e. [v]. 

This reduces the proof of this proposition to proving the next lemma. • 

10.5. Lemma. Let JL be a compactly supported measure on C, ,1 a Borel 
subsetolthesupportolJL, andput v = JLI,1. liN = NI' Ell NponL2(JL) Ell L2(V) 
and g Ell hE L 2(JL) Ell L2(V) such that h(z) =1= 0 a.e. [v], then there is anlin 
L 2(JL) such that I Ell h is a separating vector lor W*(N) and g Ell h E 

cl[W*(N)(f Ell h)]. 

PROOF. Define I(z) = g(z) for z in ,1 and I(z) = 1 for z not in ,1. Put 
Yi'= cl[W*(N)(f Ell h)] = cl{ <pI Ell <ph: <p E LOO(JL)} since JL is a scalar-val­
ued spectral measure for N. If ,1' = the complement of ,1, then note that 
<PXL1' Ell 0 = <PXL1'( I Ell h) E Yi' for all <p in L OO(JL). Hence L 2(JLI,1') Ell 0 ~ Yi'. 
This implies that (1 - g)XL1' Ell 0 E Yi', so g Ell h = I Ell h - (1 - g)xL1' Ell 0 
E Yi'. 
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On the other hand, if cp E L ro(JL) and 0 = cpI ffi cph, then cpI = cph = 0 
a.e. [JL]. Since h(z) *" 0 a.e. [v], cp(z) = 0 a.e. [JL] on .1. But for z in .1', 
I( z) = 1; hence </>( z) = 0 a.e. [JL 1 on .1'. Thus, I ffi h is a separating vector 
for W*(N). • 

PROOF OF THEOREM 1.10 (a): Let e l be a separating vector for W*(N) and 
let {In} be an orthonormal basis for X such that II = e l . Put XI = 
cl[W*(N)ed, JLI(.1) = IIE(.1)edI 2, and N2 = NIX/. Let N = the or­
thogonal projection of 12 onto £'11- . By Proposition 10.4 there is a separat­
ing vector e2 for W*(N2) such that N E cl[W*(N2)e21 == X 2. Note that 
£'2 = cl[W*(N)e21 and {II' 12} ~ £'1 ffi X 2· Put JL2(.1) = IIE(.1 )e2112. Now 
continue by induction. • 

Now for part (b) of Theorem 10.1. If [JLnl = [vnl (the notation is that of 
Theorem 10.1) for every n, then N""n ~ NPn by Theorem 3.6. Therefore 
N ~ M. Thus it is the converse that causes difficulties. So assume that 
N ~ M. If M E ~(r), U: X--+ r is an isomorphism such that UNU~I = 
M, and e l is a separating vector for W*(N), then Ue l = II is easily seen to 
be a separating vector for W*(M). Since JLI and VI are scalar-valued 
spectral measures for Nand M, respectively, it follows that [JLd = [vd; thus 
N,.,., ~ Np , by Theorem 3.6. However, here is the difficulty-the isomor­
phism that shows that N,.,., ~ Np1 may not be related to U; that is, if 
£'= E9n~' f= E9~x;" where NI~ ~ N""n and Mlf" ~ NPn' then NIXI 

~ Mlfl , but we do not know that UX1 = rl' Thus we want to argue that 
because N ~ M and NIXI ~ MIJf"I' then NIXl 1- ~ Mlrl 1- . In this way we 
can prove (lO.lb) by induction. This step is justified by the following. 

10.6. Proposition. II N, A, and B are normal operators, N is *-cyclic, and 
N ffi A ~ N ffi B, then A ~ B. 

PROOF. Let N E ~(r), A E ~(~), B E ~(XB)' and let U: rffi ~ --+ 
fEB X B be an isomorphism such that U(N EB A)U~l = N ffi B. Now U can 
be written as a 2 X 2 matrix, 

where Un: f--+r, Ul2 : ~--+r, UZ1 : r--+£'B' U22 : ~--+XB' Ex­
pressing N ffi A and N ffi B as 

respectively, the equation U(N ffi A) = (N ffi B)U becomes 

10.7 
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Similarly, U(N EB A)* = (N EB B)*U becomes 

10.7* N*U12 ]. 

B*U22 

Parts of the preceding equations will be referred to as (10.7)i) and (10.7n, 
i, j = 1,2. 

An examination of the equations U *U = 1 and UU * = 1, written in 
matrix form, yields the equations 

10.8 {
(a) U1iU12 + U2jU22 = 0 

(b) U1iU1i + U12U1"2 = 1 

(c) U2Pli + U2Pl"2 = 0 

(on ~) 

(on .Jt") 

(on .Jt"). 

Now equation (10.7)22 and Proposition 6.10 imply that (ker U22 ) 1- reduces 
A, cl( ran U22 ) = (ker U2!) 1- reduces B, and 

10.9 

What about A Iker Un and Biker U2~? If they are unitarily equivalent, then 
A ~ B and we are done. If h E ker Un ~ ~, then 

Since U is an isometry, it follows that U12 maps ker U22 isometrically onto a 
closed subspace of .Jt". Put vitI = Ul2(ker Un). Equations (10.7h2 and 
(10.7)t2 and the fact that ker U22 reduces A imply that vitI reduces N. 
Thus, the restriction of U12 to ker A22 is the required isomorphism to show 
that 

10.10 

Similarly, U2i maps ker U2~ = (ran U22 ) 1- isometrically onto vIt 2 = 
U2!(ker U2~)' vIt 2 reduces N, and 

10.11 

Note that if vitI = vIt 2' then (10.9), (10.10), and (10.11) show that A ~ B. 
Could it be that vitI and vIt 2 are equal? 

If h E ker Uw then (10.8a) implies that U1iUl2 h = - U2iU22 h = O. Hence 
vitI = Udker U22 ) ~ kerU1i. On the other hand, if I E kerU1i, then (10.8b) 
implies 1= (UnU1i + U12U1"2)1 = Ul2U;'?/. But by (10.8c), U22U1"2f = 
- U2Plii = 0, so U1"21 E ker U22 . Hence I E Udker U22 ). Thus, 

vitI = kerU1i· 
Similarly, 

vIt 2 = ker Un· 
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Until this point we have not used the fact that N is * -cyclic. Equation 
(10.7)11 implies that U11 E {N }'. By Corollary 6.9 this implies that Ull IS 

normal. Hence, ker Uli = ker Ull , or vitI = vIt 2. • 

If the hypothesis in the preceding proposition that N is * -cyclic is 
deleted, the conclusion is no longer valid. For example, let N and A be the 
identities on separable infinite-dimensional spaces and let B be the identity 
on a finite-dimensional space. Then N EEl A ~ N EEl B, but A and B are not 
equivalent. However, the requirement that N be * -cyclic can be replaced by 
another, even when N, A, and B are not assumed to be normal. For the 
details see Kadison and Singer [1957]. 

The proof of Theorem 10.1(b) is now a straightforward argument as 
outlined before the statement of Proposition 10.6. The details are left to the 
reader. 

If Jl and II are measures and II « Jl, then there is a Borel set .1 such that 
[II] = [JlILl]. Using this fact, Theorem 10.1 can be restated as follows. 

10.12. Corollary. (a) If N is a normal operator with scalar spectral measure 
Jl, then there is a decreasing sequence {Ll n} of Borel subsets of a( N) such 
that .11 = a(N) and 

N ~ N", EEl N",I!J, EEl N"'I!J] EEl •••• 

(b) If M is another normal operator with scalar spectral measure II and if 
{ :2 n} is a decreasing sequence of Borel subsets of a( M) such that M ~ Np EEl 

Npl2, EEl NPl23 EEl •• ', then N ~ M if and only if (i) [Jl] = [II] and (ii) 
Jl(Ll n \ :2n ) = 0 = Jl(:2 n \Ll n ) for all n. 

10.13. Example. Let Jl be Lebesgue measure on [0,1] and let Iln be 
Lebesgue measure on [lin + 1, ljn] for n ~ 1. (So Jl = LJln') Let N = N"'l 
EEl N",~2) EEl N",<;) EEl ••• • The direct sum decomposition of N that appears in 
Corollary 10.12 is obtained by letting Ll n = [0, lin], n ~ 1. Then N ~ N", 

EEl N"'I!J 2 EEl N",I!J] EEl •••• 

What does Theorem 10.1 say for normal operators on a finite-dimensional 
space? If dim.Yt'< 00, there is an orthonormal basis {en} for .Yt' consisting 
of eigenvectors for N. Observe that N is cyclic if and only if each eigenvalue 
has multiplicity 1. So each summand that appears in (10.2) must operate on 
a subspace of .Yt' that contains only one basis element en per eigenvalue. 
Moreover, since Jll is a scalar spectral measure for N, it must be that the 
first summand in (10.2) contains one basis element for each eigenvalue for 
N. Thus, if a(N) = {AI' A2 , ..• , An}, where Ai *- Aj for i *- j, then (10.2) 
becomes 

10.14 

where Dl = diag(Al' A2, ... , An) and, for k ~ 2, Dk IS a diagonalizable 
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operator whose diagonal consists of one, and only one, of each of the 
eigenvalues of N having multiplicity at least k. 

There is another decomposition for normal operators that furnishes a 
complete set of unitary invariants and has a connection with the concept of 
multiplicity. For normal operators on a finite-dimensional space, this de­
composition takes on the following form. 

Let A k = the eigenvalues of N having multiplicity k. So for .\ in A k' 

dimker(N -.\) = k. If Ak = {.\jk): 1 ::;;,j::;;, md, let Nk be the diagonaliz­
able operator on a km k dimensional space whose diagonal contains each 
.\jkl repeated k times. So N == N1 EEl N2 EEl ... EElNp ' if a(N) = Al 
U .,. UAp" Now a(Nk) = Ak and each eigenvalue of Nk has multiplicity 
k. Thus Nk == A~k), where Ak is a diagonalizable operator on an m k 
dimensional space with a(Ak) = A k . Thus 

10.15 

and a(AJ n a(A) = 0 for i i= j. 
Now the big advantage of the decomposition (10.15) is that it permits a 

discussion of {N }'. Because the spectra of the operators Ak are disjoint, 

(Why?) If ~(k) = ker(N - .\(fl), then dim ~(k) = k and EElj,:\~(k) = the 
domain of N Since .\(k) i= .\(k) for i i= J' 

k' I } ' 

and each 8B( .;r;(k» is isomorphic to the k x k matrices. 
The decomposition of an arbitrary normal operator that is analogous to 

decomposition (10.15) for finite-dimensional normal operators is contained 
in the next result. The corresponding discussion of the commutant will 
follow this theorem. 

10.16. Theorem. If N is a normal operator, then there are mutually singular 
measures /Leo' /L1' /L2' ... (some of which may be zero) such that 

If M is another normal operator with corresponding measures "eo' "1' "2' ... , 
then N == M if and only if [/Lnl = ["nl for 1 ::;;, n ::;;, 00. 

PROOF. Let /L be a scalar spectral measure for N and let {Ll n} be the 
sequence of Borel subsets of a(N) obtained in Corollary 10.12. Put 2:00 = 

n~~lLln and 2:n = Ll n \Lln+1 for 1 ::;;, n < 00; let /L n = /L12:n, 1 ::;;, n < 00. 

Put "n = /LILl n, 1 ::;;, n < 00. Now Ll n = 2:eo U (Ll n \Lln+1) U (Lln+1 \.1,,+2) 
U ... = 2:eo U 2:n U 2:"+1 U .... Hence "n = /Leo + /L" + /Ln+1 + ... 
and the measures /LOO' /L n, /L n+ l' ... are pairwise singular. Hence Nv" == N".oc 



306 IX. Normal Operators on Hilbert Space 

EB NI'" EB NI',,+' .... Combining this with Corollary 10.12 gives 

N ~ Nv, EB NV2 EB NV3 EB ... 

~ (N EB N EB NEB·· . ) EB (N EB N EB NEB·· . ) 
Poe ILl iJ.2 fLoc IL2 1.L3 

EB(N EBN EBN EB.··)EB ... 
/.Leo f..L3 J.L4 

The proof of the uniqueness part of the theorem is left to the reader. • 

Note that the form of the normal operator presented in Example 10.l3 is 
the form of the operator given in the conclusion of the preceding theorem. 

N ow to discuss {N} '. Fix a compactly supported measure /l on C and let 
.Yi';, be an n-dimensional Hilbert space, 1 :s;; n :s;; 00. Define a function f: 
C ~ YE" to be a Borel function if z ~ (/(z), g) is a Borel function for 
each g in YE". If I: C ~ YE" is a Borel function and {ej } is an orthonormal 
basis for YE", then 11/(z)11 2 = I)<I(z),e)1 2 , so z ~ 11/(z)11 2 is a Borel 
function. Let L 2(/l; YE,,) be the space of all Borel functions f: C ~ £" 
such that 11Il1 2 ;: fllf(z)11 2 d/l(z) < 00, where two functions agreeing a.e. [Ill 
are identified. If I and g E L 2(/l; YE,,), <I, g) ;: f<l(z), g(z» d/l(z) de­
fines an inner product on L 2(/l; YE,,). It is not difficult to show that 
L 2(/l; YE,,) is a Hilbert space. 

10.17. Proposition. II N is multiplication by z on L 2(/l; YE,,), then N ~ NI'(n). 

PROOF. Let {e/ 1 :s;; j s n} be an orthonormal basis for YE" and define V: 
L 2(/l; YE,,) ~ L 2(/l )(n) by VI = (<1(.), e1), <1(.), e2), ... ). Then V is an 
isomorphism and VN V- 1 = NI'( n). The details are left to the reader. • 

Combining the preceding proposition with Proposition 6.1(b), we can find 
{N}'; namely, {NI'(n)}, = all matrices (7;) on ~(L2(/l)(n» such that 
7; . E {N }' for all i, j. By Corollary 6.9, {N,,(n)}, = all matrices (M", ) that 

J I' ~ "Y'J 

belong to P4(L2(/l)(n», such that </>ij E LOO(/l). Now the idea is to use 
Proposition 10.17 to bring this back to ~(L2(/l; YE,,» and describe {N}'. 

A function </>: C ~ ~(YE,,) is defined to be a Borel function if for each I 
and g in .Yi';" z ~ (</>( z )/, g) is a Borel function. If {.!j} is a countable 
dense subset of the unit ball of YE", 11</>( z )11 = sup{ 1 (</>( z )/;,.!j) I: 1 :s;; i, j < 
oo}, so z ~ 11</>(z)11 is a Borel function. Let LOO(/l; ~(YE,,» be the equivalent 
classes of bounded Borel functions from C into ~(YE,,) furnished with the 
fL-essential supremum norm. 

If </> E LOO(/l; ~(YE,,» and IE L 2(/l; YE,,), let I(z) = L.!j(z)ej , where 
{ ej } is an orthonormal basis for YE" and.!j( z) = <I( z), e), so L~( z )1 2 = 
Ilf(z)11 2 . Thus </>(z)/(z) = Lj.!j(z)</>(z)ej. So for any e in £,,, 
(</>(z)/(z),e) = L!j(Z)(</>(z)eJ,e) is a Borel function. It is easy to check 
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that <pf E L2(p.; £,,) and II<PJlI.:o:; 11<PllooIIJlI. Let Mq,: L2(p.; £,,) -> 

L 2(p.; £,,) be defined by Mq,f = <Pf. Combined with the preceding remarks, 
the following result can be shown to hold. (The proof is left to the reader.) 

10.18. Proposition. If N is multiplication by z on L2(p.; £,,), then 

{N}'= {Mq,: <pELoo(JL;88(£,,))}. 

Also, IIMq,11 = 11<P1100 for every <P in Loo(JL; 88(£,,)). 

The next lemma is a consequence of Proposition 6.10 and the fact that 
unitarily equivalent normal operators have mutually absolutely continuous 
scalar-valued spectral measures. 

10.19. Lemma. If N) and N2 are normal operators with mutually singular 
scalar spectral measures and XN) = N2 X, then X = O. 

Using the observation made prior to Corollary 6.8, the preceding lemma 
implies that {N) $ N2}' = {N)}' $ {N2}' whenever NI and N2 are as in 
the lemma. 

The next theorem of this section can be proved by piecing together 
Theorem 10.16 and the remaining results of this section. The details are left 
to the reader. 

10.20. Theorem. If N is a normal operator on £, there are mutually 
singular measures JL oo ' JLI' JL2' ... and an isomorphism 

such that 

UNU-) = Noo $ NI $ N2 $ ... 

where Nn = multiplication by z on L 2(JLn; £,,). Also, 

{Noo $ NI $ N2 $ ... }' = Loo(JLoo; 88(£00)) $ Loo(JLI) 

$Loo (JL2; 88(£2)) $ 

Using the notation of the preceding theorem, if JL is a scalar-valued 
spectral measure for N, then there are pairwise disjoint Borel sets A 00' AI' ... 
such that [p.n] = [JLIAn]' Define a function m N : C -> {0,1, ... oo} by letting 
m N = ooXL1oo + XL1, + 2XL12 + .... As it stands the definition of m N de­
pends on the choice of the sets {An} as well as N. However, any two choices 
of the sets {A n} differ from one another by sets of JL-measure zero. The 
function m N is called the multiplicity function for N. Note that m N is a 
Borel function. 

If m: C -> {oo, 0,1,2, ... } is a Borel function and JL is a compactly 
supported measure such that JL({z: m(z) = O}) = 0, let An = {z: m(z) = 

n}, n = 00,1,2, .... If Nn = Np.I L1 n' then N = N~OOl $ NI $ NFl $ ... is a 
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normal operator whose spectral measure is JL and whose multiplicity func­
tion agrees with m a.e. [JL]. 

10.21. Theorem. Two normal operators are unitarily equivalent if and only if 
they have the same scalar-valued spectral measure JL and their multiplicity 
functions are equal a.e. [JL]. 

There is some notation that is used by many and we should mention its 
connection with what we have just finished. Suppose m: C -4 {oo, 0,1,2, ... } 
is a Borel function and JL is a compactly supported measure on C such that 
JL({z: m(z) = O}) = O. If z E C let X(z) be a Hilbert space of dimension 
m(z). The direct integral of the spaces X(z), denoted by JX(z) dJL(z), is 
precisely the space 

L2(JLI.1 00 ; Xoo) EI3 L 2(JLI.1 1 ) EI3 L2(JLI.1 2 ; X 2 ) EI3 •.. , 

where.1 n = {z: m(z) = n} and dim£" = n. If </>: C -4 86'(Xoo) U 86'(C) U 

86'(X2 ) U ... such that </>(z) E 86'(£,,) when z E .1 n , </>: .1 n -4 86'(£,,) is a 
Borel function, and there is a constant M such that 1!</>(z)1! :s; M a.e. [JL], 
then f<I>( z) dJL( z) denotes the operator M"'ILloo EI3 M"'ILl l EI3 ••• as in (10.20). 
Although the direct integral notation is quite suggestive, one must revert to 
the notation of (10.20) to produce proofs. 

REMARKS. There are several sources for multiplicity theory. Most begin by 
proving Theorem 10.16. This is done for nonseparable spaces in Halmos 
[1951] and Brown [1974]. Another source is Arveson [1976], where the 
theory is set in the context of C *-algebras which is its proper milieu. Also, 
Arveson shows that the theory can be applied to some non-normal oper­
ators. The details of this more general multiplicity theory are carried out in 
Ernest [1976] as part of a more general classification scheme. Another 
source for multiplicity theory is Dunford and Schwartz [1963]. 

By Theorem 4.6, every normal operator is unitarily equivalent to a 
multiplication operator M", on L 2( X, Q, JL) for some measure space (X, Q, JL). 
The scalar-valued spectral measure for M", is JL 0 </> - 1. What is the multiplic­
ity function for M",? One is tempted to say that m M/ z) = the number of 
points in <p - l( z). This is not quite correct. The answer can be found in 
Abrahamse and Kriete [1973]. Also, Abrahamse [1978] contains a survey of 
spectral multiplicity for normal operators treated from this point of view. 

EXERCISES 

l. Let A and B be operators on .Yf' and S, respectively. Let £0 and Xo be 
reducing subspaces for A and B and suppose that A ~ BI.Jt;) and B ~ A 1£;). 
Show that A ~ B. 

2. Let 1-'1,1-'2' ... be compactly supported measures on C such that 1-'11+ 1 « 1-'11 for 
all n. Show that if M is any normal operator whose spectral measure is 
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absolutely continuous with respect to each P.n' then NJ1.J Ell ~2 Ell ... = (NJ1.J Ell 

NJ1.2 Ell ... ) Ell M. 

3. If p. = Lebesgue measure on [0,1], show that NJ1. = Nt for 0 < P < 00. 

4. Let p. = Lebesgue measure on [0, 1] and characterize the functions cf> in L 00 (p.) 
such that NJ1. = cf>(NJ1.). 

5. Let p. = area measure on D and show that NJ1. and NJ1.2 are not unitarily 
equivalent. 

6. Let p. = Lebesgue measure on [0,1] and let" = Lebesgue measure on [ -1,1]. 
Show that N} = NJ1. Ell NJ1.. How about Nv3? 

7. Let p. be Lebesgue measure on IR and N = multiplication by sin x on L 2 (p.). 
Find the decompositions of N obtained in Theorems 10.1 and 10.16. 

8. If p. is Lebesgue measure on IR and N = multiplication by eix on L2(p.), show 
that N = N~oo) where m = arc length measure on aD. 

9. Define U: L2(1R) --> L2(1R) by (Un(t) = J(t - 1). Show that U is unitary and 
find its scalar-valued spectral measure and multiplicity function. 

10. Represent N as in Theorem 10.1 and find the corresponding representation for 
N Ell N = N(2); for N(3), for N(oo). (Are you surprised by the result for N(oo)?) 

11. Prove the results and solve the exercises from § II.S. 

12. Let N be a normal operator and show that N = N(2) if and only if there is a 
* -cyclic normal operator M such that N = M( oc). What does this say about the 
multiplicity function for N? 

13. Let (X, [2, p.) be a measure space such that L2(p.) is separable, let cf> E Loo(p.), 
and let N = M.p on L2 (p.). Find the decompositions of N obtained in Theorems 
10.1 and 10.16. 

14. Let p. be a compactly supported measure on C, cf> a bounded Borel function on 
C, and suppose {Llll} are pairwise disjoint Borel sets such that cf> is one-to-one 
on each Llll and p.(C \U~~lLlIl) = O. Let cf>n = cf>Xd and P.n = p.ocf>,;l for 
n ~ 1. Prove that M.p on L2(p.) is unitarily equivalent "to E9:~INJ1.". 



CHAPTER X 

Unbounded Operators 

It is unfortunate for the world we live in that all of the operators that arise 
naturally are not bounded. But that is indeed the case. Thus it is important 
to study such operators. 

The idea here is not to study an arbitrary linear transformation on a 
Hilbert space. In fact, such a study is the province of linear algebra rather 
than analysis. The operators that are to be studied do possess certain 
properties that connect them to the underlying Hilbert space. The properties 
that will be isolated are inspired by natural examples. 

All Hilbert spaces in this chapter are assumed separable. 

§1. Basic Properties and Examples 

The first relaxation in the concept of operator is not to assume that the 
operators are defined everywhere on the Hilbert space. 

1.1. Definition. If Yl',:X: are Hilbert spaces, a linear operator A: Yl'~:X: 
is a function whose domain of definition is a linear manifold, dom A, in Yl' 
and such that A(al+ pg) = aAI+ PAg for I,g in domA and a,p in C. 
A is bounded if there is a constant e > 0 such that IIAIII :0:; ellill for all I in 
domA. 

Note that if A is bounded, then A can be extended to a bounded linear 
operator on cl[dom A) and then extended to Yl' by letting A be 0 on 
(dom A).L . So unless it is specified to the contrary, a bounded operator will 
always be assumed to be defined on all of Yl'. 
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If A is a linear operator from Jt' into $", then A is also a linear operator 
from cl[dom A] into $". So we will often only consider those A such that 
dom A is dense in Jt'; such an operator A is said to be densely defined. 
!!j( Jt') still denotes the bounded operators defined on Jt'. 

If A, B are linear operators from Jt' into $", then A + B is defined with 
dom(A + B) = dom A n dom B. If B: Jt'-+ $" and A: $"-+!fl, then AB 
is a linear operator from Jt' into!fl with dom(AB) = B-1(dom A). 

1.2. Definition. If A, B are operators from Jt' into $", then A is an 
extension of B if dom B <;;; dom A and Ah = Bh whenever h E dom B. In 
symbols this is denoted by B <;;; A. 

Note that if A E !!j( Jt'), then the only extension of A is itself. So this 
concept is only of value for unbounded operators. 

If A: Jt' -+ $", the graph of A is the set 

gra A == {h EB Ah E Jt'EB $": h E dom A}. 

It is easy to see that B <;;; A if and only if gra B <;;; gra A. 

1.3. Definition. An operator A: Jt'-+ $" is closed if its graph is closed in 
Jt'EB $". An operator is closable if it has a closed extension. Let '??(Jt', $") 
= the collection of all closed densely defined operators from Jt' into $". 
Let '??(Jt') = '??(Jt', Jt'). (It should be emphasized that the operators in 
'??(Jt', $") are densely defined.) 

When is a subset of Jt'EB $" a graph of an operator from Jt' into $"? If 
'# = gra A for some A: Jt'-+ $", then '# is a submanifold of Jt'EB $" such 
that if k E $" and 0 EB k E '#, then k = O. The converse is also true. That 
is, suppose that '# is a submanifold of Jt'EB $" such that if k E $" and 
o EB k E '#, then k = O. Let !!} = {h E Jt': there exists a k in $" with 
h EB k in '#}. If hE!!} and k 1, k2 E $" such that h EB k 1, h EB k2 E '#, 
then 0 EB (k 1 - k 2) = h EB kl - h EB k2 E '#. Hence kl = k 2. That is, for 
every h in !!} there is a unique k in $" such that h EB k E '#; denote k by 
k = Ah. It is easy to check that A is a linear map and '# = gra A. This gives 
an internal characterization of graphs that will be useful in the next 
proposition. 

1.4. Proposition. An operator A: Jt'-+ $" is closable if and only if cl[gra A] 
is a graph. 

PROOF. Let cl[gra A] be a graph. That is, there is an operator B: Jt'-+ $" 
such that gra B = cl[gra A]. Clearly gra A <;;; gra B, so A is closable. 

Now assume that A is closable; that is, there is a closed operator B: 
Jt'-+ $" with A <;;; B. If 0 EB k E cl[gra A], 0 EB k E gra B and hence k = O. 
By the remarks preceding this proposition, cl[gra A] is a graph. • 

If A is closable, call the operator whose graph is cl[gra A] the closure 
of A. 
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1.5. Definition. If A: Jit' ~ X' is densely defined, let 

dom A* = {k EX': h ~ (Ah, k) is a bounded linear 

functional on dom A } . 

Because dom A is dense in Jit', if k E dom A*, then there is a unique vector 
f in Jit' such that (Ah, k) = (h, f) for all h in dom A. Denote this unique 
vector f by f = A*k. Thus 

(Ah, k) = (h, A*k) 

for h in dom A and k in dom A*. 

1.6. Proposition. If A: Jit'~ X' is a densely defined operator, then: 

(a) A* is a closed operator; 
(b) A * is densely defined if and only if A is closable; 
(c) if A is closable, then its closure is (A*)* == A**. 

Before proving this, a lemma is needed which will also be useful later. 

1.7. Lemma. If A: Jit'~ X' is densely defined and]: .#'$ X' ~ X'$ Jit' is 
defined by J (h $ k) = (- k) $ h, then] is an isomorphism and 

gra A * = [] gra A ] 1-

PROOF. It is clear that ] is an isomorphism. To prove the formula for 
gra A*, note that gra A* = {k $ A*k E X'$ Jit': k E dom A*}. So if k E 
dom A* and h E dom A, 

(k $ A*k, ](h $ Ah) = (k $ A*k, -Ah $ h) 

= -(k,Ah) + (A*k,h) = O. 

Thus gra A * ~ [] gra A] 1-. Conversely, if k $ f E [] gra A]1-, then for 
every h in dom A, 0 = (k $ f, -Ah $ h) = - (k, Ah) + <I, h), so 
(Ah, k) = (h,l). By definition k E domA* and A*k = f. • 

PROOF OF PROPOSITION 1.6. The proof of (a) is clear from Lemma 1.7. For 
the remainder of the proof notice that because the map] in (1.7) is an 
isomorphism, ] * = r 1 and so ] *( k $ h) = h $ (- k). 

(b) Assume A is closable and let ko E (dom A*) 1- • We want to show that 
ko = O. Thus ko $ 0 E [gra A*]1- = [] gra A]1- 1- = cl[] gra A] = 
] [cl(gra A)]. So 0 $ - ko = ]*(ko $ 0) E ]*][cl(graA)] = cl(graA). But 
because A is closable, cl(gra A) is a graph; hence ko = O. For the converse, 
assume dom A* is dense in X'. Thus A** == (A*)* is defined. By (a), A** 
is a closed operator. It is easy to see that A ~ A**, so A has a closed 
extension. 

(c) Note that by Lemma 1.7 gra A * * = [] * gra A *] 1- = [] * [ ] gra A] 1- ] 1- . 

But for any linear manifold A and any isomorphism ], (]A) 1- = ]( A 1-). 



X.I. Basic Properties and Examples 313 

Hence J*[(1...#)-1] =...#-1 and, thus, [J*[J...#]-1]-1=...#-1-1=cl...#. Put-
ting ...# = gra A gives that gra A * * = cl gra A. • 

1.8. Corollary. 1/ A E ~(£, f), then A* is densely defined and A** = A. 

1.9. Example. Let eo, e 1, .•• be an orthonormal basis for £ and let 
ao' aI' ... be complex numbers. Define EC = {h E £: LO'lan(h, en)12 < oo} 
and let Ah = LO'an(h,en)en forh in EC. Then A E ~(£)withdomA = EC. 
Also, dom A* = EC and A*h = LO'an(h, en)en for all h in EC. 

1.10. Example. Let (X, fl, J.L) be a a-finite measure space and let cp: X ~ C 
be an fl-measurable function. Let EC = {I E U(J.L): CPt E L 2(J.L)} and 
define A/= CPt for all / in EC. Then A E ~(L2(J.L», domA* = EC, and 
A*/ = ;PI for / in EC. 

1.11. Example. Let EC = all functions f: [0, 1] ~ C that are absolutely 
continuous with f' E L 2(0,1) and such that /(0) = /(1) = 0. EC includes all 
polynomials p with p(o) = p(l) = 0. So the uniform closure of EC is 
{I E C[0,1]: /(0) = /(1) = O}. Thus EC is dense in L2(0, 1). Define A: 
L 2(0, 1) ~ L 2(0,1) by A/ = i/' for / in EC. To see that A is closed, suppose 
{In} c::;:; EC and /n $ i/n' ~ / $ g in L 2 $ L 2. Let h (x) = - i ftg( t) dt; so h 
is absolutely continuous. Now using the Cauchy-Schwarz inequality we get 
that I!,,(x) - h(x)1 = I!t[fn'(t) + ig(t)] dtl ::;; II/n' + igl1 2 = Ili/n' - g112' 
Thus !,,(x) ~ hex) uniformly on [0,1]. Since /n ~ / in L2(0, 1), lex) = 
hex) a.e. So we may assume that lex) = -i!tg(t) dt for all x. Therefore / 
is absolutely continuous and /n(x) ~ lex) uniformly on [0,1]; thus /(0) = 
/(1) = ° and f' = -ig E L2(0, 1). So / E EC and / $ g = / $ if' E gra A; 
that is, A E ~(L2(0, 1». 

Note that {I': /E EC} = {h E L2(0, 1): Jdh(x)dx = O} = [1]-1. 

Claim. dom A * = {g: g is absolutely continuous on [0, 1], g' E L 2(0, I)} 
and for g in dom A*, A*g = ig'. 

In fact, suppose g E dom A* and let h = A*g. Put H(x) = !th(t) dt. 
Using integration by parts, for every / in EC, iJd /,g = (A/, g) = (f, h) = 
Jd fh = Jd lex) dH(x) = - Jd f'(x)H{x) dx; that is, (f', -ig) = 
(f', - H) for all / in EC. Thus H - ig E {I': / E EC} -1 = [1]-1 -1; hence 
H - ig = c, a constant function. Thus g = ic - iH so that g is absolutely 
continuous and g' = -ih E L2. Also note that A*g = h = ig'. The other 
inclusion is left to the reader. 

1.12. Example. Let If = {I E L 2(0,1): / is absolutely continuous, f' E L 2, 

and /(0) = I(I)}. Define BI = if' for / in If. As in (1.11), B E ~(L2(0, 1» 
and ran B = [1]-1. 

Claim. dom B* = If and B*g = ig' for g in If. 
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Let g E domB*. Put h = B*g and H(x) = Ith(t)dt. As in (1.11), 
H(O) = H(I) = 0 and for every f in g, iIH'g = - Id I'H. Hence 0 = 
Id( il'g + I'H) = Jd il'(g + iH). Thus g + iH .1 ran B and so g + iH = c, 
a constant function. Thus g = c - iH is absolutely continuous, g' = - ih 
E L2, and g(O) = g(l) = c. Thus g E g and B*g = h = ig'. The other 
inclusion is left to the reader. 

The preceding two examples illustrate the fact that the calculation of the 
adjoint depends on the domain of the operator, not just the formal defini­
tion of the operator. Note the fact that the next result generalizes (11.2.19). 

1.13. Proposition. If A: £'-4 f is densely defined, then 

(ran A) 1- = ker A * . 
If A is also closed, then 

(ran A * ) 1- = ker A . 

PROOF. If h .1 ran A, then for every f in dom A, 0 = < Af, h). Hence 
h E dom A * and A *h = O. The other inclusion is clear. By Corollary 1.8, if 
A E rt'(£', f), A** = A. So the second equality follows from the first. 

• 
1.14. Definition. If A: £'-4 f is a linear operator, A is boundedly 
invertible if there is a bounded linear operator B: f -4 £' such that 
AB = 1 and BA ~ 1. 

Note that if BA ~ 1, then BA is bounded on its domain. Call B the 
(bounded) inverse of A. 

1.15. Proposition. Let A: £'-4 f be a linear operator. 

(a) A is boundedly invertible if and only if ker A = (0), ran A = f, and the 
graph of A is closed. 

(b) If A is boundedly invertible, its inverse is unique. 

PROOF. (a) Let B be the bounded inverse of A. So dom B = f. Since 
BA ~ 1, ker A = (0); since AB = 1, ran A = f. Also, gra A = {h EfJ Ah: 
h E dom A} = {Bk EfJ k: kEf}. Since B is bounded, gra A is closed. 
Conversely, if A has the stated properties, Bk = A - lk for k in f is a 
well-defined operator on f. Because gra A is closed, gra B is closed. By the 
Closed Graph Theorem, BE !J4(f, £'). 

(b) This is an exercise. • 

1.16. Definition. If A: £'-4£' is a linear operator, peA), the resolvent set 
for A, is defined by p (A) = p. E c: A - A is boundedly invertible}. The 
spectrum of A is the set a(A) = C \ peA): 

It is easy to see that if A: £'-4 f is a linear operator and A E C, gra A 
is closed if and only if gra( A - A) is closed. So if A does not have closed 
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graph, a(A) = o. Even if A has closed graph, it is possible that a(A) is 
empty (see Exercise 10). However, some of the other properties of the 
spectrum hold. The proof of the next result is left to the reader. 

1.17. Proposition. If A: .Yf'~.Yf' is a linear operator, then a(A) is closed 
and z ~ (z - A)-l is an analytic function on p(A). 

Note that if A is defined as in Example 1.9, then a(A) = cl{ an}. Hence it 
is possible for a( A) to equal any closed subset of C. 

1.18. Proposition. Let A E ~(.Yf'). 

(a) "A E p(A) if and only if ker(A - "A) = (0) and ran(A - "A) =.Yf'. 
(b) a(A*) = {X: "A E a(A)} and for "A in p(A), (A - "A)*-I = [(A -

"A)-l]*. 

PROOF. Exercise. 

EXERCISES 

1. If A, B, and A B are densely defined linear operators, show that (A B) * :2 B * A * . 

2. Verify the statements in Example 1.9. 

3. Verify the statements in Example 1.10. 

4. Define an unbounded weighted shift and determine its adjoint. 

5. Verify the statements in Example 1.11. 

6. If £ is infinite dimensional, show that there is a linear operator A: £ --> £ 
such that graA is dense in £$£. What does this say about domA*? 

7. Let P) be the set of absolutely continuous functions / such that f' E L 2 (O, 1). 
Let D/ = f' for / in p) and let (Af)(x) = x/ex) for / in L2(O,1). Show that 
DA - AD s;; 1. 

8. If sI is a Banach algebra with identity, show that there are no elements a, b in 
sI such that ab - ba = 1. (Hint: compute anb - ban.) 

9. Prove Proposition 1.18. 

10. Define A: L2(1R) --> L2(1R) by (Af)(x) = exp( - x 2 )/(x - 1) for all / in L 2(1R). 
(a) Show that A E 9l'(L2(1R». (b) Find IIAnl1 and show that rCA) = 0 so that 
a(A) = {O}. (c) Show that A is injective. (d) Find A* and show that ran A is 
dense. (e) Define B = A-I with domB = ran A and show that BE 't3'(L2(1R» 
with a(B) = D. 

11. If A E 't3'(£), show that A*A E 't3'(£). Show that -1 rt a(A*A) and that if 
B = (1 + A*A)-l, IIBII S 1. 

12. If B is the bounded operator obtained in Exercise 11, show that C = A B is also 
bounded and IICiI s 1. 
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§2. Symmetric and Self-Adjoint Operators 

A correct introduction to this section consists in a careful examination of 
Examples 1.11 and 1.12 in the preceding section. In (1.11) we saw that the 
operator A seemed to be inclined to be self-adjoint, but dom A* was 
different from dom A so we could not truly say that A = A*. In (1.12), 
B = B* in any sense of the concept of equality. This points out the 
distinction between symmetric and self-adjoint operators that it is necessary 
to make in the theory of unbounded operators. 

2.1. Definition. An operator A: £' ~ £' is symmetric if A IS densely 
defined and (Af, g) = (f, Ag) for all f, gin dom A. 

The proof of the next proposition is left to the reader. 

2.2. Proposition. If A is densely defined, the following statements are 
equivalent. 

(a) A is symmetric. 
(b) (Af, f) E ~ for all fin dom A. 
(c) A ~ A*. 

If A is symmetric, then the fact that A ~ A * implies dom A * is dense. 
Hence A is closable by Proposition 1.6. 

It is easy to check that the operators in Examples 1.11 and 1.12 are 
symmetric. 

2.3. Definition. A densely defined operator A: £'~ £' IS self-adjoint if 
A = A*. 

Let us emphasize that the condition that A = A * in the preceding 
definition carries with it the requirement that dom A = dom A*. Now 
clearly every self-adjoint operator is symmetric, but the operator A in 
Example 1.11 shows that there are symmetric operators that are not 
self-adjoint. If, however, an operator is bounded, then it is self-adjoint if 
and only if it is symmetric. The operator B in Example 1.12 is an 
unbounded self-adjoint operator and Examples 1.9 and 1.10 can be used to 
furnish additional examples of unbounded self-adjoint operators. 

Note that Proposition 1.6 implies that a self-adjoint operator is neces­
sarily closed. 

2.4. Proposition. Suppose A is a symmetric operator on £'. 

(a) If ran A is dense, then A is injective. 
(b) If A = A* and A is injective, then ran A is dense and A -I is self-adjoint. 
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(c) If dom A = Yf', then A = A* and A is bounded. 
(d) If ran A = Yf', then A = A* and A -1 E !!J(Yf'). 

317 

PROOF. The proof of (a) is trivial and (b) is an easy consequence of (1.13) 
and some manipulation. 

(c) We have A ~ A*. If dom A = Yf', then A = A* and so A is closed. By 
the Closed Graph Theorem A E !!J( Yf'). 

(d) If ran A = Yf', then A is injective by (a). Let B = A -1 with dom B = 

ran A = Yf'. If f = Ag and h = Ak, with g, k in domA, then (Bf, h) = 

(g, Ak) = (Ag, k) = (j, k) = (j, Bh). Hence B is symmetric. By (c), 
B = B* E !!J(Yf'). By (b), A = B- 1 is self-adjoint. • 

We now will turn our attention to the spectral properties of symmetric 
and self-adjoint operators. In particular, it will be seen that symmetric 
operators can have nonreal numbers in their spectrum, though the nature of 
the spectrum can be completely diagnosed (2.8). Self-adjoint operators, 
however, must have real spectra. The next result begins this spectral 
discussion. 

2.5. Proposition. Let A be a symmetric operator and let 'A = a + i/3, a and 
/3 real numbers. 

(a) For each fin dom A, II(A - 'A)111 2 = II(A - a)111 2 + /3 21IfI12. 
(b) If /3 "* 0, ker(A - 'A) = (0). 
(c) If A is closed and /3 "* 0, ran(A - 'A) is closed. 

PROOF. Note that 

II(A - 'A)111 2 = II(A - a)f - i/31112 

= II(A - a)111 2 + 2Rei«A - a)f,/3f) + /3 21IfI12. 

But 

«A - a)f,/3f) = /3(Af,f) - a/3llfl1 2 E~, 

so (a) follows. Part (b) is immediate from (a). To prove (c), note that 
II(A - 'A)111 2 ;::: /3 21IfI12. Let Un} ~ domA such that (A - 'A)fn -> g. The 
preceding inequality implies that {fn} is a Cauchy sequence in Yf'; let 
f = limfn· But fn EEl (A - 'A)fn E gra(A - 'A) and fn EEl (A - 'A)fn -> f EEl g. 
Hence fEEl g E gra(A - 'A) and so g = (A - 'A)f E ran(A - 'A). This 
proves (c). • 

2.6. Lemma. If A, % are closed subspaces of Yf' and A n % ~ = (0), then 
dim A ~ dim%. 

PROOF. Let P be the orthogonal projection of Yf' onto % and define T: 
A -> % by Tf = Pf for f in A. Since An %.1 = (0), T is injective. If :£ 
is a finite-dimensional subspace of A, dim:£ = dim T:£ ~ dim %. Since :£ 
was arbitrary, dim A ~ dim %. • 
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2.7. Theorem. If A is a closed symmetric operator, then dimker(A* - .\) is 
constant for Im.\ > 0 and constant for Im.\ < O. 

PROOF. Let .\ = a + i13, a and 13 real numbers and 13 =1= O. 

Claim. If 1.\ - ILl < 1131, ker(A* - IL) n [ker(A* - ,\)]-1 = (0). 

Suppose this is not so. Then there is an f in ker( A * - IL) n [ker( A * -
,\)] 1- with Ilfll = 1. By (2.Sc), ran(A - X) is closed. Hence f E [ker(A* -
,\)]1-= ran(A - X). Let g E domA such that f= (A - X)g. Since fE 
ker(A* - IL), 

0= «(A* - IL)f,g) = (t,(A - Ji}g) 

= (t, (A - X + X - Ji)g) 

= IIfl12 + (,\ - IL )(1, g). 

Hence 1 = IIfl12 = 1'\ - ILl I (t, g) I ~ 1'\ - ILlllgll· But (2.Sa) implies that 
1 = Ilfll = II(A - X)gll ~ 113lllgll; so Ilgll ~ 1/31-1. Hence 1 ~ 1,\ - ILlllgll 
~ 1'\ - ILllf3I- 1 < 1 if 1'\ - ILl < 1131. This contradiction establishes the 
claim. 

Combining the claim with Lemma 2.6 gives that dim ker( A * - IL) ~ 
dimker(A* -,\) if 1'\ - ILl < 1131 = Ilm,\l· Note that if 1'\ - ILl < ~1131, 
then 1'\ - ILl < 11m ILl, so that the other inequality also holds. This shows 
that the function ,\ ~ dimker(A* - ,\) is locally constant on C \ IR. A 
simple topological argument demonstrates the theorem. • 

2.8. Theorem. If A is a closed symmetric operator, then one and only one of 
the following possibilities occurs: 

(a) a(A) = C; 
(b) a(A) = {,\ E C: Im'\ ~ O}; 
(c) a(A) = {.\ E C: Im'\ ~ O}; 
(d) a(A) ~ IR. 

PROOF. Let H ±= {,\ E C: ±Im,\ > O}. By (2.5) for ,\ in H ±' A -,\ is 
injective and has closed range. So if A - ,\ is surjective, ,\ E p( A) (2Ad). 
But [ran(A - ,\)]1- = ker(A* - X). SO the preceding theorem implies that 
either H ± C a(A) or H ±n a(A) = D. Since a(A) is closed, if H J ~ a(A), 
then either a(A)=C or a(A)=clH±. If H±na(A)=D, a(A)~IR . 

• 
2.9. Corollary. If A is a closed symmetric operator, the following statements 
are equivalent. 

(a) A is self-adjoint. 
(b) a(A) ~ IR. 
(c) ker(A* - i) = ker(A* + i) = O. 
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PROOF. If A is symmetric, every eigenvalue of A is real (Exercise 1). So if 
A = A* and Im.\ *- 0, ker(A* - .\) = ker(A - .\) = (0). By Theorem 2.8, 
a(A) ~ ~, so (a) implies (b). 

If a(A) ~ ~, ker(A* ± i) = franCA ± i)].l = £".1 = (0). Hence (b) im­
plies (c). 

If (c) holds, then this, combined with (2.5) and (USa), implies A ± i is 
boundedly invertible. By (1.18), A* ± i is boundedly invertible. Let h E 

dom A*. Then there is an f in dom A such that (A + i)f = (A* + i)h. But 
A* + i ;::;:> A + i, so (A* + i)f = (A* + i)h. But A* + i is injective, so 
h = f E dom A. Thus A = A *. • 

2.10. Corollary. If A is a closed symmetric operator and a(A) does not 
contain ~, then A = A*. 

It may have occurred to the reader that a symmetric operator A fails to be 
self-adjoint because its domain is too small and that this can be rectified by 
merely increasing the size of the domain. Indeed, if A is the symmetric 
operator in Example 1.11, then the operator B of Example 1.12 is a 
self-adjoint extension of A. However, the general situation is not always so 
coopera ti ve. 

Fix a symmetric operator A and suppose B is a symmetric extension of 
A: A ~ B. It is easy to verify that B* ~ A*. Since B ~ B*, we get 
A ~ B ~ B * ~ A *. Thus every symmetric extension of A is a restriction of 
A*. 

2.11. Proposition. (a) A symmetric operator has a maximal symmetric 
extension. (b) Maximal symmetric extensions are closed. (c) A self-adjoint 
operator is a maximal symmetric operator. 

PROOF. Part (a) is an easy application of Zorn's Lemma. If A is symmetric, 
A ~ A * and so A is closable. The closure of a symmetric operator is 
symmetric (Exercise 3), so part (b) is immediate. Part (c) is a consequence of 
the comments preceding this proposition. • 

2.12. Definition. Let A be a closed symmetric operator. The deficiency 
subs paces of A are the spaces 

2+ = ker( A * - i) = [ran (A + i)] .1 , 

.P_ = ker( A * + i) = [ran( A - i)] 1. . 

The deficiency indices of A are the numbers n ± = dim.P ±. 

It is possible for any pair of deficiency indices to occur (see Exercise 6). 
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In order to study the closed symmetric extensions of a symmetric oper­
ator we also introduce the spaces 

~ = {f $ if: f E ff'+ }, 

f_ = {g $ ig: g E ff'_}. 

So f ± ~ £$.Jft'. Notice that f ± are contained in gra A * and are the 
portions of the graph of A* that lie above ff' ±. The next lemma will 
indicate why the deficiency subspaces are so named. 

2.13. Lemma. If A is a closed symmetric operator, 

graA* = graA $ f+$ f_. 

PROOF. Let f E ff'+ and h E dom A. Then 

(h $ Ah,f $ ii) = (h, i) - i(Ah,f) 

= -i«(A + i)h,i) 

=0 
since ff'+ = [ran(A + i)].l. The remainder of the proof that gra A, f+, and 
f_ are pairwise orthogonal is left to the reader. Since it is clear that 
gra A $ ~$ Jf:.~ graA*, it remains to show that this direct sum is dense 
in gra A*. 

Let h E dom A* and assume h $ A*h ..1 gra A $ f+$ f. Since h $ 
A*h..l graA, for every f in domA, 0 = (h $ A*h,f$ Ai) = (h,i) + 
(A*h, Ai). So (A*h,Ai) = -(h,i) for every fin domA. This implies 
that A*h E domA* and A*A*h = -h. Therefore (A* - i)(A* + i)h = 
(A*A* + l)h = O. Thus (A* + i)h E ff'+. Reversing the order of these 
factors also shows that (A* - i)h E ff'_. But if g E ff'+, 0 = (h $ A*h, g $ 

ig) = (h, g) - i(A*h, g) = -i«A* + i)h, g). Since g can be taken equal 
to (A* + i)h, we get that (A* + i)h = 0, or h E ff'_. Similarly, h E ff'+. So 
h E ff'+ Ii ff'_ = (0). • 

2.14. Definition. If A is a closed symmetric operator and A is a linear 
manifold in domA*, then A is A-symmetric if (A*f, g) = (j, A*g) for all 
f, g in A. Call such a manifold A-closed if {f $ A*f: f E A} is closed in 
.Jft' $ .Jft'. 

So A is both A-symmetric and A-closed precisely when A*IA, the 
restriction of A* to A, is a closed symmetric operator; if A:2 dom A, then 
A*IA is a closed symmetric extension of A. 

2.15. Lemma. If A is a closed symmetric operator on .Jft' and B is a closed 
symmetric extension of A, then there is an A-closed, A-symmetric submanifold 
A of ff'+ + ff'_ such that 

2.16 graB = graA + gra(A*IA). 
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Conversely, il vIt is an A-closed, A-symmetric manilold in g;+ + g;_, then 
there is a closed symmetric extension B 01 A such that (2.16) holds. 

PROOF. If the A -closed, A -symmetric manifold vIt in g;+ + g;_ is given, let 
~ = dom A + vIt. Since ~ ~ dom A*, B = A*I~ is well defined. Let 1=/0 
+ 11' g = go + gl' 10' go in dom A and 11' gl in vIt. Then 

(A*I, g) = (A*lo + A *11 , go + gl) 

= (Ala, go) + (Ala, gl) + (A*/l' go) + (A*/l' gl)· 

Using the A-symmetry of vIt, the symmetry of A, and the definition of A* 
we get 

(A*I, g) = (/0' Ago) + (/0' A*gl) + (/1' Ago) + (/1' A*gl) 

= (/' A*g). 

So B = A*I~ is symmetric. Note that gra A ..1 gra(A*lvIt) in ..noEB..no. 
Since both of these spaces are closed, gra B, given by (2.16), is closed. 

Now let B be any closed symmetric extension of A. As discussed before, 
A ~ B ~ A *; so gra A ~ gra B ~ gra A * = gra A EB Jf'+ EB Jf'_. Let r§ = 
gra B n (Jf'+ EB Jf'_) and let vIt = the set of first coordinates of elements in 
r§. Clearly, vIt is a manifold in g;+ + g;_ and vIt ~ dom B. Hence for I, g 
in vIt, (A*I, g) = (BI, g) = (/, Bg) = (/' A*g). So vIt is A-symmetric. 
Clearly, gra(A*lvIt) = r§, so vIt is A-closed. If h EB Bh E gra B, let h EB Bh 
= (f EB AI) + k when IE dom A and k E Jf'+ EB oX::... Since A ~ B, k E 
gra B; so k E r§. This shows that (2.16) holds. • 

2.17. Theorem. Let A be a closed symmetric operator. II W is a partial 
isometry with initial space in g;+ and final subspace in g;_, let 

2.18 ~w = {f + g + Wg: IE domA, g E initialW} 

and define A w on ~ w by 

2.19 Aw(f + g + Wg) = AI + ig - iWg. 

Then Aw is a closed symmetric extension 01 A. Conversely, il B is any closed 
symmetric extension 01 A, then there is a unique partial isometry W such that 
B = Aw as in (2.19). 

II W is such a partial isometry and W has finite rank, then 

n±(Aw) = n±(A) - dim(ranW). 

PROOF. Let W be a partial isometry with initial space 1+ in g;+ and final 
space Lin g;_. Define ~w and Aw as in (2.18) and (2.19). Let vIt = {g + 
Wg: gEl +}; so vIt is a manifold in g;+ + g;_. If g, h E I +, then 
(Wg, Wh) = (g, h). Hence (A*(g + Wg), h + Wh) = (A*g, h) + 
(A*g, Wh) + (A*Wg, h) + (A*Wg, Wh). Since g E ker(A* - i) and Wg 
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E ker(A* + i), 

(A*(g + Wg), h + Wh) = i(g, h) + i(g, Wh) - i(Wg, h) - i(Wg, Wh) 

= i(g, Wh) - i(Wg, h). 

Similarly, (g + Wg, A*(h + Wh) = i(g, Wh) - i(Wg, h), so that A is 
A-symmetric. If {gn} ~ 1+ and (gn + Wgn) EB (ign - iWgn) ~ f EB h in 
£'EB £', then 2ign = i(gn + Wgn) + (ign - iWgn) ~ if + hand 2iWgn = 
i(gn + Wgn ) - (ign - iWgn) ~ if - h. If g = (2i)-1(if + h), then f = g + 
Wg and h = ig - iWg. Hence A is A-closed. By Lemma 2.15, Aw is a 
closed symmetric extension of A. 

To prove that n+(A w ) = n+(A) - dim 1+, let f E dom A, gEl +. Then 

(Aw + i)(f + g + Wg) = (A + i)f + ig - iWg + ig + iWg 

= (A + i)f + 2ig. 

Thus ran(Aw + i) = ran(A + i) EB 1+, and so n+(A w ) = dim[ran(Aw + 
i)] 1- = dim.P+ e 1+= n+(A) - dim 1+. Similarly, n~(Aw) = n~(A) -
dimL= n~(A) - dim 1+. 

Now let B be a closed symmetric extension of A. By Lemma 2.15 there is 
an A-symmetric, A-closed manifold A in .P+ +.P~ such that gra B = 
graA + gra(A*IA). If fEA, let f=r+ r, wheref±E.P+; put 1+= 
{r: fEA}. Since A is A-symmetric, 0 = (A*f,j) - (f,A*j) = 
2i(r, r) - 2i(r, r); hence Ilr II = Ilrll for all f in A. So if Wf+= r 
whenever f = r + f~ E A and if 1+ is closed, W is a partial isometry and 
(2.18) and (2.19) are easily seen to hold. It remains to show that 1+ is 
closed. Suppose {In} ~ A and t: ~ g+ in .P+. Since Ilf: - f:'11 = Ilf: -
f~ll, there is a g~ in .P~ such that f: ~ g~. Clearly fn ~ g++ g~= g. 
Also, A*fn± = ±if/ ~ ±ig±. It follows that g EB A*g E c1gra(A*IA) = 
gra(A*IA); thus g+E r. • 
2.20. Theorem. Let A be a closed symmetric operator with deficiency indices 
n ±. 

(a) A is self-adjoint if and only if n + = n _ = O. 
(b) A has a self-adjoint extension if and only if n + = n ~. In this case the set of 

self-adjoint extensions is in natural correspondence with the set of isomor­
phisms of.P+ onto .P~. 

(c) A is a maximal symmetric operator that is not self-adjoint if and only if 
either n + = 0 and n ~ > 0 or n + > 0 and n ~ = o. 

PROOF. Part ( a) is a rephrasing of Corollary 2.9. For (b), n 4 = n ~ if and 
only if.P+ and .P~ are isomorphic. But this is equivalent to stating that 
there is a partial isometry on £' with initial and final spaces.P+ and .P_, 
respectively. Part (c) follows easily from the preceding theorem. • 

2.21. Example. Let A and f» be as in Example 1.11; so A is symmetric. 
The operator B of Example 1.12 is a self-adjoint extension of A. Let us 
determine all self-adjoint extensions of A. To do this it is necessary to 
determine .P ±. Now f E .P ± if and only if f E dom A * and ± if = A *f = 
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if', so 2 + = {exe ± x: ex E C}. Hence n + = 1. Also, the isomorphisms of 2+ 
onto 2~ -are all of the form W"e x = Ae~~x where IAI = 1. If IAI = 1, let 

D" == {f+ exe x + Aexe~x: ex E C, fE ~}, 

A"U + exe X + Aexe~X) = if' + exie X - iAexe~X, 

if f E~, ex E C. 

According to Theorem 2.17, {(A",~,,): IAI = I} are all of the self-adjoint 
extensions of A. The operator B of Example 1.12 is the extension AI' 

For more information on symmetric operators and the relation of the 
problem of finding self-adjoint extensions to physical problems, see Reed 
and Simon [1975] from which much of the present development is taken. 

EXERCISES 

1. If A is symmetric, show that all of the eigenvalues of A are real. 

2. If A is symmetric and '\, p, are distinct eigenvalues, show that ker( A - ,\) .1 
ker(A - p,). 

3. Show that the closure of a symmetric operator is symmetric. 

4. Let Pfi = {I E L 2 (0,00): for every c > 0, I is absolutely continuous on [0, c], 
1(0) = 0, and f' E L2 (0,00)}. Define AI= if' for I in Pfi. Show that A is a 
densely defined closed operator and find dom A*. Show that A is symmetric with 
deficiency indices n + = ° and n _ = 1. 

5. Let rff= {IE L2 (-00,0): for every c < 0, I is absolutely continuous on [c,O], 
1(0) = 0, and I' E L2( - 00, O)}. Define AI = if' for I in rff. Show that A is a 
densely defined closed operator and find domA*. Show that A is symmetric with 
deficiency indices n+ = 1, n_ = 0. 

6. If k,1 are any nonnegative integers or 00, show that there is a closed symmetric 
operator A with n+ = k and n_ = I. (Hint: Use Exercises 4 and 5.) 

7. Let C}(O,l) be all twice continuously differentiable functions on (0,1) with 
compact support and let AI = -I" for I in C,2(0, 1). Show that the closure of A 
is a densely defined symmetric operator and determine all of its self-adjoint 
extensions. 

8. If A E 'if(£,), show that A*A is self-adjoint (see Exercise 1.11). 

§3. The Cayley Transform 

Consider the Mobius transformation 

z - i 
M(z)=z+i' 

It is immediate that M(O) = -1, M(l) = - i, and M( 00) = 1. Thus M 
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maps the upper half plane onto IT) and M(JR U 00) = a IT) . So if A is 
self-adjoint, M(A) should be unitary. Suppose A is symmetric; does M(A) 
make sense? What is M(A)? 

To answer these questions, we should first investigate the meaning of 
M(A) if A is symmetric. We want to define M(A) as (A - i)(A + i)-I. As 
was seen in the last section, however, ran(A + i) is not necessarily all of .Yf' 
if A is not self-adjoint. In fact, (ran( A + i» 1. =!l'+ and (ran( A - i» 1. = 

!l'_, the deficiency spaces for A. However (2.5), if A is closed and symmetric, 
ran(A ± i) is closed. Also, realize that if w = M(z), then z = M- 1(w) = 

i(l + w)/(l - w). 

3.1. Theorem. (a) II A is a closed densely defined symmetric operator with 
deficiency subspaces !l' ±' and il U: Yf'~ Yf' is defined by letting U = 0 on 
!l'+ and 

3.2 U = (A - i)(A + i)-I 

on !l'+ 1., then U is a partial isometry with initial space !l'+ 1. , final space !l'_ 1. , 

and such that (l - U)(!l'+ 1.) is dense in Yf'. 
(b) II U is a partial isometry with initial and final spaces vii and fi, 

respectively, and such that (1 - U)vII is dense in Yf', then 

3.3 A = i(1 + U)(l - Ur 1 

is a densely defined closed symmetric operator with deficiency subspaces 
!l'+ = vii 1. and!l'_ = fi 1. • 

(c) II A is given as in (a) and U is defined by (3.2), then A and U satisfy 
(3.3). II U is given as in (b) and A is defined by (3.3), then A and U satisfy 
(3.2). 

PROOF. (a) By (2.5e), ran(A ± i) is closed and so !l' ~= ran(A ± i). By 
(2.5b), ker( A + i) = (0), so (A + i) -1 is well defined on !l'+ 1.. Moreover, 
(A + i) -l.P+ 1. ~ dom A so that U defined by (3.2) makes sense and gives a 
well-defined operator. If h E !l'+1., then h = (A + i)1 for a unique I in 
dom A. Hence II Uhl1 2 = II(A - i)/112 = (2.5a) 11A.t112 + 11/112 = II (A + i)/11 2 
= IIh1l 2• Hence U is a partial isometry, (kerU) 1. = !l'/-, and ranU=!l'_1.. 
Once again, if IE dom A and h = (A + i)/, then (1 - U)h = h - (A -
i)1 = (A + i)1 - (A - i)1 = 2if. So (1 - U)!l'+1.= dom A and is dense 
in Yt'. 

(b) Now assume that U is a partial isometry as in (b). It follows that 
ker(l - U) = (0). In fact, if IE ker(l - U), then UI = I; so IIIII = II UIII 
and hence IE initialU. Since U*U is the projection onto initial U, 1= 
U*UI = U*I; so IE ker(1 - U*) = ran(1 - U) 1. ~ [(1 - U)vII] 1. = (0) 
by hypothesis. Thus I = 0 and 1 - U is injective. 

Let !!2 = (1 - U)vII and define (1 - U)-1 on !!2. Because 1 - U is 
bounded, gra(l - U) -1 is closed. If A is defined as in (3.3), it follows that 
A is a closed densely defined operator. If I, g E £0, let 1= (1 - U)h and 
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g = (1 - U)k, h, k E.d. Hence 

(Af, g) = i«l + U)h, (1 - U)k) 

= i [ ( h , k) + (Uh, k) - (h, Uk) - (Uh, Uk) ] . 

Since h, k E.d, (Uh, Uk) = (h, k); hence (Af, g) = i[(Uh, k) -
(h,Uk)]. Similarly, (f,Ag) = -i«l- U)h,(l + U)k) = -i[(h,Uk)­
(Uh, k)] = (Af, g). Hence A is symmetric. 

Finally, if h E.d and f = (1 - U)h, then (A + i)f = Af + if = i(l + 
U)h + i(l - U)h = 2ih. Thus ran(A + i) =.d. Similarly, (A - i)f = i(l 
+ U)h - i(l - U)h = 2Uh, so that ran(A - i) = ranU = JV. 

(c) Suppose A is as in (a) and U is defined as in (3.2). If g E (1 - U)2/, 
put g = (1 - U)h, where h E 2/= ran(A + i). Hence h = (A + i)f for 
some! in domA. Thus g = h - Uh = (A + i)f- (A - i)f= 2if; so f= 
- tig. Also, 

i(l + U)(l - U) -lg = i(l + U)h 

=i[h+Uh] 

Therefore (3.3) holds. 

= i[(A + i)f + (A - i)f] 

= 2iAf 

= Ag. 

The proof of the remainder of (c) is left to the reader. • 

3.4. Definition. If A is a densely defined closed symmetric operator, the 
partial isometry U defined by (3.2) is called the Cayley transform of A. 

3.5. Corollary. If A is a self-adjoint operator and U is its Cayley transform, 
then U is a unitary operator with ker(l - U) = (0). Conversely, if U is a 
unitary with 1 fE aiU), then the operator A defined by (3.3) is self-adjoint. 

PROOF. If A is a densely defined symmetric operator, then A is self-adjoint 
if and only if 2 ± = (0). A partial isometry is a unitary operator if and only 
if its initial and final spaces are all of Yl'. This corollary is now seen to 
follow from Theorem 3.1. • 

One use of the Cayley transform is to study self-adjoint operators by 
using the theory of unitary operators. Indeed, the preceding results say that 
there is a bijective correspondence between self-adjoint operators and the 
set of unitary operators without 1 as an eigenvalue. 

EXERCISES 

1. If U is a partial isometry, show that the following statements are equivalent: (a) 
ker(l - U) = (0); (b) ker(l - U*) = (0); (c) ran(l - U) is dense; (d) ran(l -
U *) is dense. 
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2. Let U be a partial isometry with initial and final spaces At and 5, respectively. 
Show that the following statements are equivalent: (a) (1 - U)At is dense; (b) 
(1 - U*)5 is dense; (c) ker(U* - U*U) = (0); (d) ker(U - UU*) = (0). 

3. Find a partial isometry U such that ker(l - U) = (0) but (1 - U )(ker U) ~ is 
not dense. 

4. If A is a densely defined closed symmetric operator and Band C are the 
operators defined in Exercises 1.11 and 1.12, then the Cayley transform of A is 
(C - iB)(C + iB)-I. 

5. Find the Cayley transform of the operator in Example 1.9 when each a" is real. 

6. Find the Cayley transform of the operator in Example 1.10 when cJ> is real valued. 

7. Let S be the unilateral shift of multiplicity 1 and find the symmetric operator A 
such that S is the Cayley transform of A. 

8. Let U = S*, where S is the unilateral shift of multiplicity 1. Is U the Cayley 
transform of a symmetric operator A? If so, find it. 

§4. Unbounded Normal Operators and the 
Spectral Theorem 

If A is self-adjoint, the classical way to obtain the spectral decomposition of 
A is to let U be the Cayley transform of A, obtain the spectral decomposi­
tion of U, and then use the inverse Cayley transform to translate this back 
to a decomposition for A. There is a spectral theorem for unbounded 
normal operators, however, and the Cayley transform is not applicable here. 

In this section the approach is to prove the spectral theorem for normal 
operators by using that theorem for the bounded case. The spectral theorem 
for self-adjoint operators is then only a special case. 

4.1. Definition. A linear operator N on .Yl' is normal if N IS closed, 
densely defined, and N*N = NN*. 

Note that the equation N*N = NN* that appears in Definition 4.1 
implicitly carries the condition that dom N * N = dom N N *. The operators 
in Examples 1.9 and 1.10 are normal and every self-adjoint operator is 
normal. Examining Example 1.9 it is easy to see that for a normal operator 
it is not necessarily the case that dom N * N = dom N. 

Parts of the next result have appeared in various exercises in this chapter, 
but a complete proof is given here. 

4.2. Proposition. If A E ~ (.Yl'), then 

(a) 1 + A*A has a bounded inverse defined on all of .Yl'. 
(b) If B = (1 + A*A)-l, then IIBII s 1 and B ~ O. 
(c) The operator C = A(1 + A*A)-l is a contraction. 
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(d) A*A is self-adjoint. 
(e) {h EI3 Ah: h E dom A*A} is dense in gra A. 

PROOF. Define J: .Yt'EI3.Yt'~.Yt'EI3.Yt' by J(h EI3 k) = (-k) EI3 h. By Lemma 
1.7, gra A* = [J gra A].l. So if h E.Yt', there are / in dom A and g in 
dom A* such that 0 EI3 h = J(f EI3 Af) + g EI3 A*g = (-Af) EI3 / + g EI3 A*g. 
Hence 0= -A/+g, or g=A/; also, h=/+A*g=/+A*A/=(I+ 
A*A)f. Thus ran(1 + A*A) =.Yt'. 

Also, for / in dom A*A, A/ E dom A* and 11/ + A*Af11 2 = 11/112 + 211Af112 
+ IIA*A/112 ~ 11/112. Hence ker(1 + A*A) = (0). Thus (1 + A*A)-l exists, is 
closed, and is defined on all of .Yt'. It must be that (1 + A*A)-l E 88(.Yt') 
(1.15). This proves (a). 

It was shown that 11(1 + A*A)/II ~ II/II whenever / E dom A*A. If h = (1 
+ A*A)/ and B = (1 + A*A)-l, then this implies that IIBhl1 ::::; Ilhll. Hence 
IIBII ::::; 1. In addition, (Bh, h) = (1,(1 + A*A)f) = 11/112 + IIA/112 ~ 0, so 
(b) holds. 

Put C = A(1 + A*A)-l = AB; if / E dom A*A and (1 + A*A)/ = h, then 
IIChl1 2 = IIA/112 ::::; 11(1 + A*A)/112 = IIhl1 2 by the argument used to prove 
(a). Hence IIClI ::::; 1, so (c) is proved. 

Now to prove (e). Since A is closed, it suffices to show that no nonzero 
vector in gra A is orthogonal to {h EI3 Ah: h E dom A*A}. So let g E dom A 
and suppose that for every h in dom A*A, 

0= (g EI3 Ag, h EI3 Ah) 

= (g, h) + (Ag, Ah) 

= (g, h) + (g, A*Ah) 

= (g, (1 + A*A}h). 

So g ..L ran(1 + A*A) =.Yt'; hence g = o. 
To prove (d), note that (e) implies that dom A*A is dense. Now let 

/, g E dom A*A; so /, g E dom A and A/, Ag E dom A*. Hence (A*A/, g) 
= (AI, Ag) = (I, A*Ag). Thus A*A is symmetric. Also, 1 + A*A has a 
bounded inverse. This implies two things. First, 1 + A *A is closed, and so 
A *A is closed. Also, -1 $. a( A *A) so that by Corollary 2.10, A *A is 
self-adjoint. • 

4.3. Proposition. 1/ N is a normal operator, then dom N = dom N * and 
IINfll = IIN*fll for every / in dom N. 

PROOF. First observe that if h E dom N * N = dom NN *, then Nh E 

dom N* and N*h E domN. Hence IINhl12 = (N*Nh, h) = (NN*h, h) = 
liN*hI12. Now if /E domN, (4.2e) implies that there is a sequence {h n} in 
dom N *N such that hn EI3 Nh n ~ / EI3 N/; so IINh n - Nf11 ~ O. But from 
the first part of this proof, liN*hn - N*hmll = IINh n - Nhmll. So there is a 
g in .Yt' such that N *h n ~ g. Thus h n EI3 N *h n ~ / EI3 g. But N * is closed; 
thus /E domN* and g = N*/. So domN ~ domN* and IINf11 = 
limllNhnl1 = limllN*hnll = IIN*f1I· 

On the other hand, N * is normal (Why?), and so dom N * ~ dom N * * 
= domN. • 
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4.4. Lemma. Let £1' £2' ... be Hilbert spaces and let An E 88(£,,) for all 
n 2 1. If !!fl = {(h n) E EBn£": L:;"~11IAnhnI12 < oo} and A is defined on 
£= EBn£" by A(h n) = (Anhn) whenever (h n) E!!fl, then A E '6'(£). A is 
a normal operator if and only if each A n is normal. 

PROOF. Since £" ~ !!fl for each n, !!fl is dense in £. Clearly A is linear. If 
{h(J)} ~ dom A and h(J) EB Ah(J) ~ h EB g in £EB £, then for each n, 
h~/) EB Anhl"i) ~ h n EB gn' Since An is bounded, Anhn = gn' Hence LnilAhnl12 
= Lllgnl1 2 = IIgl1 2 < 00; so h E domA. Clearly Ah = g, so A E '6'(£). 

It is left to the reader to show that dom A * = {( h n) E £: L:;"~ lilA ~h nl1 2 

< oo} and A*(h n) = (A~hn) when (h n) E dom A*. From this the rest of 
the lemma easily follows. • 

If (X, g) is a measurable space and £ is a Hilbert space, recall the 
definition of a spectral measure E for (X, g, £) (IX.l.1). If h, k E £, let 
Eh,k be the complex-valued measure given by Eh,k(tJ) = (E(tJ)h, k) for 
each ..1 in g. 

Let </>: X ~ C be an g-measurable function and for each n let tJ n = {x 
E X: n - 1 s 1</>(x)1 < n}. So XLl </> is a bounded g-measurable function. 
Put £" = E(tJ n )£. Since U:;"~ltJ: = X and the sets {tJ n} are pairwise 
disjoint, EB:~l£" = £. If En(tJ) = E(tJ (J Ll n), En is a spectral measure 
for (X, g, £"). Also, !</>dEn is a normal operator on £". Define 

By Lemma 4.4, N</>: £~ £ given by 

4.6 N</>h = n~l (!</>dEn)E(tJn)h 

for h in !!fl</> is a normal operator. The operator N</> is also denoted by 

N</> = !</>dE. 

4.7. Theorem. If E is a spectral measure for (X, g, £), </>: X ~ C is an 
g-measurable function, and {2</> and N</> are defined as in (4.5) and (4.6), 
then: 
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PROOF. Using the * -homomorphic properties associated with a spectral 
measure (IX.l.12), one obtains 

From here, (a) is immediate. 
Now let h E {').p, f E.YE. By the Radon-Nikodym Theorem, there is an 

.Q-measurable function U such that lui == 1 and IEh,f1 = uEh,f' where I Eh,fl 
is the variation for Eh./" Let $" = Lk~l Xil k$; so $" is bounded as is u$". 
Thus 

But 

= ((fl$"IUdE )h,J) 

~ IIfllll(fl$"IUdE )hll· 

II(fl$"IUdE )h112 = ((fl$"IUdE )h, (fl$"IUdE)h) 

= ((fl$,, 12 dE )h, h) 

= fl$,,12 dEh,h 

~ fl$12 dEh,h' 

Combining this with the preceding inequality gives that JI$"I dlEh,f1 ~ 
Ilfll( JI$12 dEh,h)1/2 for all n. Letting n -+ 00 gives (4.8). Since $" is bounded, 
« N" dE)h, f) = N" dEh,j' If h E {').p and f E.YE, then (4.8) and the 
Lebesgue Dominated Convergence Theorem imply that N" dEh.j -+ N dEh,f 
as n -+ 00. But 

( f $" dE ) h = (f $ dE ) E C~l L\ j ) h 

= E C~l L\ j ) (f $ dE ) h. 

Since E(Uj~lL\) -4 E(X) = 1 (SOT) as n -+ 00. «(J$" dE)h, f) -+ 

«(J$ dE)h, f) as n -+ 00. This proves (4.9). • 
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Note that as a consequence of (4.7) dom N</> and the definition of N</> do 
not depend on the choice of the sets {.1,,} as would seem to be the case 
from (4.5) and (4.6). 

4.10. Theorem. If (X, D) is a measurable space, £ is a Hilbert space, and 
E is a spectral measure for (X, D, £), let 11>( X, D) be the algebra of all 
D-measurable functions ep: X ~ C and define p: 11>( X, D) --> 'G'( £) by 
p( ep) = Jet> dE. Then for ep, 1/; in 11>( X, D): 

(a) p(ep)* = peep); 
(b) p(ep1/;);;2 p(ep)p(1/;) and dom(p(ep)p(1/;» =!!2", n !!2</>",; 
(c) If1/; is bounded, p( ep )p( 1/;) = p( 1/; )p( ep) = p( ep1/;); 
(d) p(ep)*p(ep) = p(lepI2). 

The proof of this theorem is left as an exercise. 

4.11. The Spectral Theorem. If N is a normal operator on £, then there is a 
unique spectral measure E defined on the Borel subsets of C such that: 

(a) N = JzdE(z); 
(b) E(.1) = 0 if .1 n (](N) = D; 
(c) if U is an open subset of C and Un (](N) =1= D, then E(U) =1= 0; 
(d) if A E .94(£) such that AN ~ NA and AN* ~ N*A, then A(jepdE) ~ 

( Jet> dE) A for every Borel function ep on C. 

Before launching into the proof, a few words motivating the proof are 
appropriate. Suppose a spectral measure E defined on the Borel subsets of 
C is given and let N = J z dE (z). It is not difficult to see that if 0 .:S: a < b 
< 00 and .1 is the annulus {z: a.:S: Izl .:S: b}, then ~ = E(.1)£= {h E 

dom N: h E dom N" for all nand anllhll .:S: IlNnhll .:S: bnllhll}. ~ is a 
closed subspace of £ that reduces N and NI~ is bounded. The idea 
behind the proof is to write C as the disjoint union of annuli {.1 j} such that 
for each .1 j there is a reducing subspace ~. for N with ~ == NI~ 
bounded, and, moreover, such that £= EB .~. Once this is done th~ 

J I 

Spectral Theorem for bounded normal operators can be applied to each Nj 

and direct sums of these can be formed to obtain the spectral measure 
for N. 

So we would like to show that for the annulus {z: a .:S: Izl .:S: b}, {h E 

dom N: h E dom N n for all nand anllhll .:S: IINnhl1 .:S: b"llhll} is a reducing 
subspace for N. To facilitate this, we will use the operator B = (l + N * N)-1 
which is a positive contraction (4.2). To understand what is done below note 
that z ~ (1 + IzI2)-1 maps C onto (0,1] and a.:S: Izi .:S: b if and only if 
(1 + a 2)-1 ~ (1 + IzI2)-1 ~ (1 + b2)-I. 

4.12. Lemma. If N is a normal operator, B = (1 + N*N)-I, and C = N(l 
+ N*N)-l, then BC = CB and (l + N*N)-IN ~ C. 
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PROOF. From (4.2), Band C are contractions and B 2 O. It will first be 
shown that (1 + N*N)-IN ~ C; that is, BN ~ NB. If f E dom BN, then 
fE domN. Let g E domN*N such that f= (1 + N*N)g = Bg. Then 
N*Ng E domN; hence Ng E domNN* = domN*N. Thus Nf= Ng + 
NN*Ng = (1 + N*N)Ng. Therefore BNf= B(1 + N*N)Ng = Ng. But 
NBf= Ng, so BN = NB on domN. Thus BN ~ NB. 

If h EX, let fE domN*N such that h = (1 + N*N)f. So BCh = 
BNBh = BNf = NBf = NBBh = CBh. Hence BC = CB. • 

4.13. Lemma. With the same notation as in Lemma 4.12, if B = ftdP(t) is 
its spectral representation, 1 > 0 > 0, and Ll is a Borel subset of [0, 1], then 
~=P(Ll)X~ domN, ~ is inuariantforboth NandN*, andNI~ isa 
bounded normal operator with IINI~II ::5: [(1 - 0)/0]1/2. 

PROOF. If h E~, then because P(Ll) = X/l(B), IIBhll2 = (B 2p(Ll)h, h) = 
f/lt2dPh h 2 0211hll 2. SO BI~ is invertible and there is a g in ~ such 
that h = Bg. But ranB = dom(l + N*N) ~ domN. Hence hE domN; 
that is, ~ ~ dom N. 

Let h E ~ and again let g E ~ such that h = Bg. Hence Nh = NBg 
= Cg. By Lemma 4.12, BC = CB; so by (IX.2.2), P(Ll)C = CP(Ll). Since 
g E~, Nh = Cg E~. Note that if M = N* and Bl = (1 + M*M)-l, 
then Bl = B. From the preceding argument N*~ = M~ ~~. It easily 
follows that NI~ is normal. 

Finally, if h E~, then 

IINhll2 = (N*Nh, h) 

= ([(N*N + 1) - 1] h, h) 

= 1\t- 1 - 1) dPh h(t) ::5: IIhll 2(I - 0)/0. 
{j • 

Hence IINI~II ::5: [(1 - 0)10]1/2. • 

PROOF OF THE SPECTRAL THEOREM. Let B = (1 + N*N)-l and C = N(1 + 
N*N)-1 as in Lemma 4.12. Let B = fbdP(t) be the spectral decomposi­
tion of B and put Pn = P(I/( n + 1), lin] for n 2 1. Since ker B = CO) = 
P({O}), I"::~IPn = 1. Let £" = PnX, By Lemma 4.13, £" ~ dom N, £:, 
reduces N, and Nn == NI£" is a bounded normal operator with liNn" ::5: n1/ 2• 

Also, if hE£;., (1 + Nn*Nn)Bh = B(1 + Nn*Nn)h = h; that is, 

BI£" = (1 + Nn*Nnrl. 

Thus if A. E a(Nn), (1 + IAI2)-1 E a(BI£,,) ~ [I/(n + 1), lin]. Thus 
a(Nn) ~ {z E C: {n - 1)1/2::5: Izl ::5: n1/2} == Ll n. Let Nn = JzdEn{z) be 
the spectral decomposition of Nn. For any Borel subset Ll of C, let E{Ll) be 
defined by 

00 

4.14 E(Ll) = L En(Ll n Ll n)· 
n~l 
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Note that En(Ll n Ll n) is a projection with range in £". Since .Yi;, .l£'m 
for n "* m, (4.14) defines a projection in 84(£'). (Technically E(Ll) should 
be defined by E(Ll) = E~_IEn(Ll n Lln)Pn. But this technicality does not 
add anything to understanding.) 

To show that E is a spectral measure, it is clear that E(C) = 1 and 
E(O) = O. If Al and A2 are Borel subsets of C, then 

00 

E{A 1 n A 2) = L En{AI n A2 n LlJ 
n-l 

00 

= L En{AI n Ll n)En{A2 n Ll n)· 
n=1 

Again, the fact that the spaces {£,,} are pairwise orthogonal implies 

E{A 1 n A 2) = (n~l En{AI n Lln)) (n~1 En{A 2 n Lln)) 

= E{A1)E{A 2)· 

If hE.Yt', then (E(Ll)h, h) = E~_I(En(Ll n Lln)h, h). So if {Aj}j_l are 
pairwise disjoint Borel sets, 

( {9,Aj )h.h) ~ "~, ( E"( C9/j ) n ~}h) 
00 00 

= L L (En{A j n LlJh, h). 
n=lj-l 

Since each term in this double summation is positive, the order of summa­
tion can be reversed. Thus 

({9, A}.h) ~ j~J, (E"(Aln~")h.h) 
00 

= L (E{Aj)h, h). 
j-I 

So E(Uj_IA) = Ej=IE(A); therefore E is a spectral measure. 
Let M = f z dE (z) be defined as in Theorem 4.7. Thus £" ~ dom M and 

by the Spectral Theorem for bounded operators, Mh = Nnh = Nh if hE£". 
If h is any vector in domM, h = E'fh n, hn E£", and E'fIINhnI12 < 00. 

Thus h E dom Nand Nh = Mh. This proves (a). 

4.15. Claim. 

It is left to the reader to show that U~=la(Nn) ~ a(N). Since a(N) is 
closed, this proves half of (4.15). If A rt:. cl[U~=la(Nn)]' then there is a l) > 0 
such that IA - zl ~ l) for all z in U~_la(Nn)' Thus (Nn - A)-l exists and 
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II(Nn - A)-III:::;; i)-I for all n. Thus A = EB:~I(Nn - A)-1 is a bounded 
operator. It follows that A = (N - A) - \ so A $. a( N). 

By (4.15) if Ll fl a(N) = 0, Ll fl a(Nn) = ° for all n. Thus En(Ll) = 0 
for all n. Hence E (Ll) = 0 and (b) holds. 

If U is open and U fl a(N) *' 0, then (4.15) implies U fl a(Nn) *' 0 for 
some n. Since En(U) *' 0, E(U) *' 0 and (c) is true. 

Now let A E .?J(£') such that AN c;: NA and AN* c;: N*A. Thus A(l + 
N*N) c;: (1 + N*N)A. It follows that AB = BA. By the Spectral Theorem 
for bounded operators, A commutes with the spectral projections of B. In 
particular, each £;, reduces A and if An == AI£;', then AnNn = NnAn· 
Hence Ancp(Nn) = cp(Nn)An for any bounded Borel function cpo The remain-
ing details are left to the reader. • 

The Fuglede-Putnam Theorem holds for unbounded normal operators 
(Exercise 8), so that the hypothesis in part (d) of the Spectral Theorem can 
be weakened to AN c;: NA. 

4.16. Definition. If N is a normal operator on £', then a vector eo is a 
star-cyclic vector for N if for all positive integers k and I, eo E dome N *k N I) 
and £'= V{N*kN1eo: k,1 ~ O}. 

4.17. Example. Let Jl be a finite measure on C such that every polynomial 
in z and z belongs to L 2(Jl). Let !!2/L = {f E L 2(Jl): zf E L 2(Jl)} and define 
N/L f = zf for f in !!2/L. Then N/L is a normal operator and 1 is a star-cyclic 
vector for NIL" 

Note that dJl(z) = e-lzldArea(z) is a measure satisfying the conditions 
of (4.17). 

4.18. Theorem. If N is a normal operator on £' with a star-cyclic vector eo, 
then there is a finite measure Jl on C such that every polynomial in z and z 
belongs to L 2(Jl) and there is an isomorphism W: £'~ L 2(Jl) such that 
Weo = 1 and WNW- 1 = NIL" 

The proof is similar to the proof of Theorem IX.3.4 and is left to the 
reader. 

4.19. Theorem. If N is a normal operator on the separable Hilbert space £', 
then there is a a-finite measure space (X, g, Jl) and an g-measurable function 
cp such that N is unitarily equivalent to Mq, on L 2(Jl). 

The proof of Theorem 4.19 is only sketched. Write N as the (unbounded) 
direct sum of bounded normal operators {Nn }. By Theorem IX.4.6, there is 
a a-finite measure space (X"' gn, Jln) and a bounded gn-measurable func­
tion CPn such that N" ~ Mq,n. Let X = the disjoint union of {Xn} and let 
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a = {L1 C;; X: L1 n Xn E an for every n}. If L1 E a, let f.t(L1) = Eff.t//(L1 n 
X,J. Let 1/>: X ~ C be defined by I/>(x) = I/>n(x) if x E XII' Then I/> is 
a-measurable and N ~ Mq, on L 2( X, a, f.t). 

EXERCISES 

1. Prove Theorem 4.10. 

2. Show that if A is a symmetric operator that is normal, then A is self-adjoint. 

3. Using the notation of Theorem 4.10, what is a(jcp dE)? 

4. If.1" and E// are as in the proof of the Spectral Theorem, show that E" (.1" i I) 

= E,,(.1//_ J) = 0. 

5. Use the Spectral Theorem to show that if 0 < a .s; b < 00, .1 = {z E C: a.s; Izl 
.s; b}, and N = JzdE(z) is the spectral decomposition of the normal operator 
N, then E(.1).Jf'= {h E domN: a"llhll .s; IINnhl1 .s; b"llhll for all n::>: I}. 

6. State and prove a polar decomposition for operators in 'tf(.Jf',r). 

7. If A is self-adjoint, prove that exp( iA) is unitary. 

8. (Fug1ede~Putnam Theorem.) If N, M are normal operators and A is a bounded 
operator such that AN <:;; MA, then AN* <:;; M*A. 

9. Prove Theorem 4.18. 

10. If ILI,iL2 are finite measures on C and N""NIL2 are defined as in Example 4.17, 
show that NIL' ~ NIL2 iff [ILl] = [IL2]' 

11. Fill in the details of the proof of Theorem 4.19. 

§S. Stone's Theorem 

If A is a self-adjoint operator on £', then exp(iA) is a unitary operator 
(Exercise 4.7). Hence U(t) = exp(itA) is unitary for all t in ~. The purpose 
of this section is not to investigate the individual operators exp(itA), but 
rather the entire collection of operators {exp(itA): t E ~}. In fact, as the 
first theorem shows, U: ~ ~ unitaries on £' is a group homomorphism 
with certain properties. Stone's Theorem provides a converse to this; every 
such homomorphism arises in this way. 

5.1. Theorem. If A is self-adjoint and U(t) = exp(itA) for t in ~, then 

(a) U(t) is unitary; 
(b) U(s + t) = U(s)U(t) for all s in ~; 
(c) if hE£', then lims~p(s)h = U(t)h; 
(d) if hE domA, then 

5.2 lim .l[U(t)h - h] = iAh; 
t~O t 

(e) if hE£' and limt~ot-I[U(t)h - h] exists, then h E dom A. 
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PROOF. As was mentioned, part (a) is an exercise. Since exp(itx )exp(isx) = 
exp( i (s + t)x) for all x in IR, (b) is a consequence of the functional calculus 
for normal operators [(4.10) and (4.11)]. Also note that U(O)U(t) = U(t), so 
that U(O) = 1. 

(c) If h E £, then II U(t)h - U(s)hll = II U(t - s + s)h - U(s)hll = [by 
(b)]IIU(s)[U(t - s)h - h]1I = 1!U(t - s)h - hll since U(s) is unitary. Thus 
(c) will be shown if it is proved that II U(t)h - hll ~ 0 as t ~ O. If 
A = J~ooxdE(x) is the spectral decomposition of A, then 

IIU(t)h - hl1 2 = foo le i1x - 112dEh,h(x). 
-00 

Now Eh h is a finite measure on IR; for each x in IR, le i1x - 112 ~ 0 as 
t ~ 0; ~nd le i1x - 112 .:s; 4. So the Lebesgue Dominated Convergence 
Theorem implies that U(t)h ~ h as t ~ O. 

(d) Note that t-I[U(t) - 1]- iA = ft(A), where fl(x) = rl[exp(itx) -
1] - ix. So if h E dom A, 

1 
. 12 00 ellx - 1 

= f - ix dE h,h ( x ) . 
- 00 t 

As t ~ 0, r I[ e i1x - 1] - ix ~ 0 for all x in IR. Also, leis - 11 .:s; lsi for all 
real numbers s (Why?), hence Ifl(x)1 .:s; Itl-Ile i1x - 11 + Ixl .:s; 21xl. But 
Ixl E L 2(Eh ,h) by Theorem 4.7(a). So again the Lebesgue Dominated 
Convergence Theorem implies that (5.2) is true. 

(e) Let!» = {h E £': liml~ ot-I[U(t)h - h] exists in £'}. For h in !», 
let Bh be defined by 

Bh = -dim U(t)h - h . 
I~O t 

It is easy to see that!» is a linear manifold in £ and B is linear on :». 
Also, by (d), B ;;2 A so that B is densely defined. Moreover, if h, g E :», 
then 

(Bh,g) = -ihm ,g . . (U(t)h - h ) 
I~O t 

By (b) and the fact that each U(t) is unitary, it follows that U(t)* = U(t)-l 
= U( - t). Hence 

(Bh, g) = -dim (h' U( -t)g - g) 
1->0 t 

= ~~ \ h, - i [ U( - ~; - g ]) 

= (h, Bg). 
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Hence B is a symmetric extension of A. Since self-adjoint operators are 
maximal symmetric operators (2.11), B = A and !!fl = dom A. • 

Inspired by the preceding theorem, the following definition is made. 

5.3. Definition. A strongly continuous one-parameter unitary group is a 
function U: ~ ~ gj(£1) such that for all sand t in ~ (a) U(t) is a unitary 
operator; (b) U(s + t) = U(s)U(t); (c) if h E £1, then U(t)h ~ U(to)h as 
t ~ to. 

Note that by Theorem 5.1, if A is self-adjoint, then U(t) = exp(itA) 
defines a strongly continuous one-parameter unitary group. 

Also, U(O) = 1 and U(-t) = U(t)-1, so that {U(t): t E~} is indeed a 
group. Property (c) also implies that U: ~ ~ (gj(£1), SOT) is continuous. 
By Exercise 1, if U is only assumed to be WOT-continuous, then U is 
SOT-continuous. However, this condition can be relaxed even further as the 
following result of von Neumann [1932] shows. 

5.4. Theorem. If £ is separable, U: ~ ~ gj(£1) satisfies conditions (a) 
and (b) of Definition 5.3, and if for all h, g in £ the function t ~ (U( t)h, g) 
is Lebesgue measurable, then U is a strongly continuous one-parameter unitary 
group. 

PROOF. If 0 < a < 00 and h, g E £1, then t ~ (U(t)h, g) is a bounded 
measurable function on [0, a] and hence 

fl(U(t)h,g)ldt:::;; allhllllgll· 

Thus 

h ~ f(U(t)h,g)dt 

is a bounded linear function on £1. Therefore there is a ga in £ such that 

5.5 (h, ga) = [(U(t)h, g) dt 
o 

Claim. {go: g E £1, a > O} is total in £1. 

In fact, suppose hE £ and h ..1 {ga: g E £1, a> O}. Then by (5.5), for 
every a > 0 and every g in £1, 

0= l a(U(t)h,g)dt. 
o 

Thus for every g in £1, (U(t)h, g) = 0 a.e. on ~. Because £ is separable 
there is a subset ,1 of IR having measure zero such that if t $. ,1, (U(t)h, g) 
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= 0 whenever g belongs to a preselected countable dense subset of .Jft'. 
Thus U(t)h = 0 if t $. .1. But Ilhll = II U(t)hll, so h = 0 and the claim is 
established. 

Now if s E R, 

(h,U{s)ga) = (U{-s)h,ga) 

= [(U{t-s)h,g)dt 
o 

= r-s(U{t)h,g)dt. 
-s 

Thus (h, U(s)ga) -+ (h, ga) as s -+ O. By the claim and the fact that the 
group is uniformly bounded, U: R -+ (!lI( .Jft'), WOT) is continuous at O. By 
the group property, U: R ~ (!lI( .Jft'), WOT) is continuous. Hence U is 
SOT-continuous (Exercise 1). • 

We now turn our attention to the principal result of this section, Stone's 
Theorem, which states that the converse of Theorem 5.1 is valid. Note that 
if U(t) = exp(itA) for a self-adjoint operator A, then part (d) of Theorem 
5.1 instructs us how to recapture A. This is the route followed in the proof 
of Stone's Theorem, proved in Stone [1932]. 

5.6. Stone's Theorem. If U is a strongly continuous one-parameter unitary 
group, then there is a self-adjoint operator A such that U(t) = exp(itA). 

PROOF. Begin by defining P2 to be the set of all vectors h in .Jft' such that 
limt_ot-l[U(t)h - h] exists; since 0 E~, ~ * D. Clearly ~ is a linear 
manifold in .Jft'. 

5.7. Claim. P2 is dense in .Jft'. 

Let !f?= all continuous functions cp on R such that cp E Ll(O, 00). Hence 
for any h in .Jft', t ~ cp(t)U(t)h is a continuous function of R into .Jft'. 
Because II U(t )hll = IIhll for all t, a Riemann integral, fo"0cp( t )U( t)h dt. can 
be defined and is a vector in .Jft'. Put 

5.8 T",h = 100 cp{t)U{t)hdt. 
o 

It is easy to see that T",: .Jft' -+.Jft' is linear and bounded with II T",II s 
!ooolcp(t)1 dt. Similarly, for each cp in !f? 

5.9 

defines a bounded operator on .Jft'. 
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For any cp in 2 and t in IR, 

U(t)T</>h = U(t) 1OOcp(s)U(s)hds 
o 

= 1OOcp(s)U(t + s)hds 
o 

= joocp(s _ t)U(s)hds. 
1 

Similarly, 

U(t)S</>h = foo cp(s + t)U( -s )hds. 
-I 

Now let 2(l) = all cp in 2 that are continuously differentiable with cp' in 
2. For cp in 2(ll, 

- ~[U(t) -l]T</>h = _~joocp(s - t)U(s)hds + ~lOOcp(s)U(s)hds 
ttl t 0 

= -ifoo[cp(s-t~-cp(s)]U(S)hdS 

+ ~llcp(s)U(s)hds. 
t 0 

Now 

Ilf[ cp(s - t~ - cp(s) ]U(S)hdSII 

s IIhllsup{lcp(s - t) - cp(s)l: 0 s sst} 
~O 

as t ~ O. Hence 

lim f 00 [ cp (s - t) - cp ( s ) ] U ( s ) h ds = -100 cp' ( s ) U ( s ) h ds 
I~O 1 t 0 

= - Tqfh. 

Since s ~ cp(s)U(s)h is continuous and U(O) = 1, the Fundamental Theo­
rem of Calculus implies that 

lim l1Icp(s)U(S)hds = cp(O)h. 
t~O t 0 

Hence for cp in 2(1) and h in Yt', 

5.10 

Similarly, for cp in 2(1) and h in Yt', 

5.11 
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So (5.10) implies that 

fI) ~ {T.ph: cP E 2(1) and h E.Jff'}. 

But for every positive integer n there is a CPn in 2(1) such that CPn ~ 0, 
CPn(t) = 0 for t ~ lin, and !Ooocpn(t) dt = 1 (Exercise 2). Hence 

T.p h - h = 11/ ncpn(t)[U(t) - 1] hdt 
n 0 

and so IIT.pnh - hll:::; sup{llU(t)h - hll: 0:::; t:::; lin}. Therefore IIT'I}­
hll -+ 0 as n -+ 00 since U is strongly continuous. This says that fI) is dense. 

For h in fI), define 

5.12 Ah = -ilim ![U(t) -l]h. 
1--+0 t 

5.13. Claim. A is symmetric. 

The proof of this is left to the reader. 
By (2.2c), A is closable; also denote the closure of A by A. According to 

Corollary 2.9, to prove that A is self-adjoint it suffices to prove that 
ker(A* ± i) = (0). Equivalently, it suffices to show that ran(A ± i) is 
dense. It will be shown that there are operators B ± such that (A ± i)B ± = 1, 
so that A ± i is surjective. 

Notice that according to (5.10), 

(A + i)T.p = AT.p + iT.p = i(T.p' + T.p) + icp(O). 

So taking cp(t) = -ie-I, (A + i)T.p = 1. According to (5.11), 

(A - i)S.y = AS.y - is.y = -i(S.y' + S.y) - iIf;(O). 

Taking !/;(t) = ie-I, (A - i)S.y = 1. Hence A is self-adjoint. 
Put V(t) = exp(iAt). It remains to show that V = U. Let h E fI). By 

Theorem S.l(d), 

s - 1 [ V( t + s) - V( t )] h = S -1 [ V( s) - 1] V( t ) h -+ iA V( t ) h ; 

that is, V'(t)h = iAV(t)h. Similarly, 

S-l[U(t + s) - U(t)]h = S-l[U(s) -l]U(t)h -+ iAU(t)h. 

So if h(t) = U(t)h - V(t)h, then h: R -+.Jff' is differentiable and 

h'(t) = iAU(t)h - iAV(t)h = iAh(t). 

But 

1 (h(t+S)-h(t) ) ~llh(t+s)-h(t)112= s ,h(t+s)-h(t) . 

Thus (dldt)llh(t)112 = 0 and so Ilhll: R -+ R is a constant function. But 
h(O) = 0, so h(t) == O. This says that U(t)h = V(t)h for all h in fI) and all t 
in R. Since fI) is dense, U = v. • 
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5.14. Definition. If U is a strongly continuous one-parameter unitary 
group, then the self-adjoint operator A such that U(t) = exp(itA) is called 
the infinitesimal generator of U. 

By virtue of Stone's Theorem and Theorem 5.1, there is a one-to-one 
correspondence between self-adjoint operators and strongly continuous 
one-parameter unitary groups. Thus, it should be able to characterize 
certain properties of a group in terms of its infinitesimal generator and vice 
versa. For example, suppose the infinitesimal generator is bounded; what 
can be said about the group? 

5.15. Proposition. If U is a strongly continuous one-parameter unitary group 
with infinitesimal generator A, then A is bounded if and only if lim t ~ 011 U( t) 
-111 = o. 
PROOF. First assume that A is bounded. Hence IIU(t) - 111 = lIexp(itA)-
111 = sup{le itx - 11: x E a(A)} --+ 0 as t --+ 0 since a(A) is compact. 

N ow assume that II U(t) - 111 --+ 0 as t --+ O. Let 0 < e < '1T / 4; then there 
is a to> 0 such that IIU(t) - 111 < E for It I < to. Since U(t) - 1 = 

J<J(A)(e ixt - l)dE(t), sup{le ixt - 11: x E a(A)} = IIU(t) -111 < e for It I 
< to. Thus for a small i), tx E U~ __ 00 (2 '1Tn - i),2'1Tn + i» = G whenever 
x E a(A) and It I < to. In fact, if e is chosen sufficiently small, then i) is 
small enough that the intervals {(2'1Tn - i),2'1Tn + i»} are the components 
of G. If x E a(A), {tx: 0::::; t < to} is the interval from 0 to tox and is 
contained in G. Hence tx E (-i), i» for x in a(A) and It I < to. In particu-
lar, toa(A) ~ [-i),i)] so a(A) is compact and A is bounded. • 

Let JL be a positive measure on R and let A,,} = xf for f in f»/L = {f E 

L 2(JL): xfE L 2(JL)}. We have already seen that A is self-adjoint. Clearly 
exp(itA/L) = Me, on L2(R), where et is the function et(x) = exp(itx). This 
can be generalized a bit. 

5.16. Proposition. Let (X, a, JL) be a a-finite measure space and let <j> be a 
real-valued a-measurable function on X. If A = M", on L 2(JL) and U(t) = 
exp(itA), then U(t) = Me" where e,(x) = exp(it<j>(x». 

Since each self-adjoint operator on a separable Hilbert space can be 
represented as a multiplication operator (Theorem 4.19), the preceding 
proposition gives a representation of all strongly continuous one-parameter 
semigroups. 

EXERCISES 

1. If U: IR -4 81(£') is such that U(t) is unitary for all t, U(s + t) = U(s)U(t) for 
all s, t, and U: IR ..... (81(£'), WOT) is continuous, then U is SOT-continuous. 

2. Show that for every integer n there is a continuously differentiable function </>" 
such that both </>" and cJ/" E Ll (0, ()(), </>n (t) = 0 if t 2 1/ n, and 1/('</>n (t) dt = 1. 
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3. Prove Claim 5.13. 

4. Adopt the notation from the proof of Stone's Theorem. Let </>,1ft E!f' and show 
(a) T,p* = S;p; (b) Tq,T.p = Tq,.p, and Sq,S.p = Sq,.p; (c) Tq,A C;;; ATq,. 

5. Let U be a strongly continuous one-parameter unitary group with infinitesimal 
generator A. Suppose e is a nonzero vector in Jft' such that Ae = t..e. What is 
U(t)e? Conversely, suppose there is a nonzero t such that U(t) has an eigenvec­
tor. What can be said about A? U(s)? 

§6. The Fourier Transform and Differentiation 

Perhaps the best way to begin this section is by examining an example. 

6.1. Example. Let!» = {f E L2(1R): I is absolutely continuous on every 
bounded interval in IR and I' E L2(1R)}. For I in !», let AI = if'. Then A 
is self-adjoint. 

First let's show that A is symmetric. If IE!», note that I(x) ~ 0 as 
x ~ ± 00 since IE L2(1R). So if I, g E!», 0 < a < 00, 

if a f'(x)g(x)dx = i(/(a)g(a)- I( -a)g( -a)] - if I(x)g'(x)dx. 
-a -a 

Hence < AI, g) = (I, Ag) and A is symmetric. 
Now let g E domA* and for 0 < a < 00 let!»a = {I E!»: I(x) = 0 for 

Ixl ~ a}. The proof that g E dom A follows the lines of the argument used 
in Example 1.11. In fact, let h =A*g. So if IE!», then f/(x)h(x)dx = 
iff'(x)g{x )dx. Let H(x) = foXh(t) dt. Then using integration by parts we 
get that for I in !»a, 

fa Iii =H(a)/(a) -H( -a)/{ -a) - fa f'll 
-Q -a 

= - f f'll. 
-a 

Therefore f~J'[H - (ig)] = 0 for every I in !»a. As in (1.11), it follows 
that H - ig is constant on [ - a, a] and g is absolutely continuous. More­
over, 0 = H' - ig' = h - ig'; hence A*g = h = ig'. Thus g E !» and A is 
self-adjoint. 

If A is the differentiation operator in Example 6.1, what is the group 
U( t) = exp(itA)? Since A is not represented as a multiplication operator, 
Proposition 5.16 cannot be applied. One could proceed to try and discover 
the spectral measure for A. Since A = fxdE(x), U(t) = fei!XdE(x). Or 
one could be clever. 

Later in this section it will be shown that if y;: L 2(1R) ~ L 2(1R) is the 
Fourier-Plancherel transform, then y; is a unitary operator (6.17) and 
r lAY; = the operator on L 2(1R) of multiplication by the independent 
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variable (6.18). Thus rIU(t).%" is multiplication by e IXI . But it is possible 
to find U( t) directly. 

Recall that if IE dom A, 

AI = - ilim U( t ) I - I. 
1-->0 t 

So 

f'(x) = lim _ (U(t)J)(x) - I(x) . 
1-->0 t 

Being clever, one might guess that (U(t)f)(x) = I(x - t). 

6.2. Theorem. II A and ~ are as in Example 6.1 and U(t) = exp(itA), then 
(U(t)f)(x) = I(x - t) lor all I in L2(1R) and x, tin IR. 

PROOF. Let (V(t)f)(x) = I(x - t). It is easy to see that V is a strongly 
continuous one-parameter unitary group. Let B be the infinitesimal genera­
tor of V. It must be shown that B = A. 

Note that IE domB if and only if liml-->ot-I(V(t)/- f) exists. Let 
IE CY)(IR); that is, I is continuously differentiable and has compact 
support. Thus for t > 0, 

[ V(t)1 - I] (x) = I(x - t) - I(x) = _l fX f'(y) dy 
t t t x-I 

and 

1 V(t)/(x) - I(x) + f'(x) I.,; lfx If'(x) - f'(Y)1 dy 
t t x-I 

.,; sup{lf'(x) - f'(Y)I: Ix - yl .,; t}. 

Because I I is continuous with compact support, I I is uniformly continu­
ous. Let K = {x: dist(x,sptf')"; 2}. So K is compact. For e> 0, let 
S(e) < 1 be such that if Ix - yl < S(e), then If'(x) - f'(y)1 < e. Hence 
Ilt-1[VI - fl + 1'112"; e2 1KI, where IKI = the Lebesgue measure of K. Thus 
C}ll(lR) <;;:: dom Band BI = AI for I in CP)(IR). But if I E dom A, there is a 
sequence {In} <;;:: CY)(IR) such that In Ell Aln ~ I Ell AI in gra A (Exercise 1). 
But In Ell Aln = In Ell Bin E gra B, so I Ell AI E gra B; that is, A <;;:: B. Since 
self-adjoint operators are maximal symmetric operators (2.11), A = B . 

• 
To show that the Fourier transform demonstrates that Mx and i d/ dx are 

unitarily equivalent, we introduce the Schwartz space of rapidly decreasing 
functions. 

6.3. Definition. A function cj>: IR ~ IR is rapidly decreasing if cj> is infinitely 
differentiable and for all integers m, n :? 0, 

6.4 11cj>llm.n == sup{lxmcj>(n)(x)l: x E IR} < 00. 

Let Y= Y(IR) be the set of all rapidly decreasing functions on IR. 
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Note that if <I> E .'1', then for all m, n ;:::: 0 there is a constant Cm • n such 
that 

1<I>(n)(x)1 ~ Cm,nlxl-m. 

Thus if p is any polynomial and n ;:::: 0, Ip(x)<I>(n)(x)1 ~ 0 as Ixl ~ 00. In 
fact, this is equivalent to <I> belonging to .'I' (Exercise 3). Also note that if 
<I> E Y, then xm<l>(n) EY' for all m, n ;:::: O. 

It is not difficult to see that II • Ilm,n is a seminorm on .'1'. Also, .'I' with 
all of these seminorms is a Frechet space (Exercise 2). The space .'I' is 
sometimes called the Schwartz space after Laurent Schwartz. 

6.5. Proposition. II 1 ~ p ~ 00, .'1'<;;;; LP(IR). II 1 ~ p < 00, .'I' is dense in 
LP(IR); .'I' is weak-star dense in LOO(IR). 

PROOF. We already have that .'1'<;;;; LOC(IR). If 1 ~ P < 00 and <I> E .'1', then 

IXl 1<I>IPdx = foo (1 + x 2 )-P(1 + x 2 )PI<I>IPdx 
-00 -00 

~ 11(1 + x2)PI<I>IPlloofoo (1 + x 2 )-P dx. 
-00 

1I<I>IIp ~ 7T 1jPII (1 + x 2) <1>11 00 

~ 7T 1jp [11<1>110,0 + 11<1>112,0]' 

Since C,<oo)(IR) <;;;; .'1', the density statements are immediate. • 

6.6. Definition. If IE Ll(IR), the Fourier translorm of I is the function J 
defined by 

J(x) = -1-11(t)e- iX1 dt. 
{2; ~ 

Because I E L\IR), this integral is well defined. 

The interested reader may want to peruse §VII.9, where the Fourier 
transform is presented in the more general context of locally compact 
abelian groups. That section will not be assumed here. 

Recall that if I, g E L\ then the convolution of I and g, 

belongs to Ll(lR) and III * gill ~ 1l/lhllglll' It is also true that if I E LP(IR), 
1 ~ P ~ 00, then 1* g E LP(IR) and III * gllp ~ 1I/IIpIIgih (see Exercise 4). 
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6.7. Theorem. (a) If f E L\IIl), then 1 is a continuous function on III that 
vanishes at ± 00. Also, lililoo S; IlfliI. 
(b) If cj> E Y, ~ E Y. Also for m, n ~ 0, 

6.8 

(c) Iff,gEL l (IIl), then (f*g)"=jg. 
(Note: [ (= the Fourier transform of the function defined in the brackets.) 

PROOF. (a) The fact that j is continuous is an easy consequence of 
Lebesgue's Dominated Convergence Theorem; it is clear that lililoo S; Ilflll' 
For the other part of (a), let f = the characteristic function of the interval 
(a, b). Then lex) = i(2'1T)-1/2x -l[e- iXh - e-iXaj ~ ° as Ixl ~ 00. So j(x) 
vanishes at ± 00 if f is a linear combination of such characteristic functions. 
The result for a general f follows by approximation. 

(b) It is convenient to introduce the notation Dcj> = cj>'. Thus D"cj> = cj>(Il). 
Also in this proof, as in many others of this section, x will be used to 
denote the function whose value at t is t and it will also be used 
occasionally to denote the independent variable. 

If cj> E Y, then differentiation under the integral SIgn (Why is this 
justified?) gives 

" 1 foo . (Dcj»(y) = F\ (-it)e-'Y1cj>(t)dt 
y2'1T - 00 

= [( - ix) cj> r ( y) . 

By induction we get that for n ~ 0, 

(6.9) 

U sing integration by parts, 

" 1 foo . (Dcj» (y) = F\ e-1Y1cj>'(t) dt 
y2'1T - 00 

= 2foo cj>(t)!!..[e 'Y1 ] dt 
{f; - 00 dt 

= i foo e-1Y1cj>(t) dt. 
{f; -00 

That is, (Dcj»"= (ix)~. By induction, 

6.10 (D"cj>)" = (ixr~ 

for all n ~ 0. Combining (6.9) and (6.10) gives (6.8). 
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By (6.8) if m, n ~ 0, then for </> in Y, 

11~llm,n = sup{lxm(Dn~)(x)l: x E IR} 

= sup{1 ~ {:e-iX1(:r f[( -itr</>(t)] dtl: x E IR} 

~ ~ j_: 1 ( :r f [ t n</> ( t ) 11 dt 

<00 

since Dm(x n</» E Ll(lR) (6.5). 
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(c) This is an easy exercise in integration theory and is left to the reader. 

• 
The fact that j(x) --+ 0 as Ixl --+ 00 is called the Riemann-Lebesgue 
Lemma. 

The process now begins whereby it will be shown that the Fourier 
transform on Ll n L2 extends to a unitary operator on L2(1R). Moreover, 
the adjoint of this unitary will be calculated and it will be shown that if 
i d/ dx is conjugated by this unitary, then the resulting self-adjoint operator 
is Mx' 

Changing notation a little, let Uy [instead of U(y)] denote the translation 
operator. Moreover, think of Uy as operating on all of the LP spaces, not 
just L2, so (UJ)(x) = I(x - y) for I in LP(IR). Also, let ey be the function 
e/x) = exp(ixy). 

6.11. Proposition. II IE Ll(lR) and y E IR, then 

PROOF. If IE Ll(IR), 

[Uyll' = e_J, 

[eyll' = UJ. 

[Uylr(x) = (2'7T)-1/2j[UJ](t)e- iX1 dt 

= (2'7T)-1/2jl(t - y)e-iX1dt 

= (2'7T)-1/2jl(s)e- iX(s+Y)ds 

= e_/x)j(x). 

The proof of the other equation is left as an exercise. • 

In the proof of the next lemma the fact that f"'ooe- 12 dt = ;:;; is needed. 
Those who have never seen this can verify it by putting 1= foooe- x2 dx, 
noting that 12 = foOOfoOOe-(X 2 +y') dx dy, and using polar coordinates. 
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6.12. Lemma. If I': > 0 and p,(t) = e-,2 t 2, then 

p,{x)= ~e-x2/4,2. 
l':y2 

PROOF. Note that P, E Y. By (6.8), Dp, = ( - ixp,) A. Using integration by 
parts, 

= -i j'~ e-,2 t'{-ix)e-;xt dt 
21':2./2; - ~ 
-x 

= -2 p,{x). 
21': 

Let I/;,(x) = e- x2 / 4 ,2. Then both P, and 1/;, satisfy the differential equation 
u'(x) = - (X/21':2)U(X). Hence p, = cl/;, for some constant c. But I/; ,(0) = 1, 
and 

p,{O) = ~ joo e-,2 t 2 dt 
y2'lT - 00 

= _1_jOO e-s2 ds 
I':fi; -00 

= _1_.;:;; = _1_ • 
I':fi; I':fi . 

6.13. Proposition. If I/; E Ll(~) such that (2'lT)-1/2JIRI/;(x)dx = 1 and if 
for I': > 0, I/;,(x) = I':-~(x/I':), then for every f in Co(~), 1/;, * f(x) ~ f(x) 
uniformly on ~. 

PROOF. Note that (2'lT)-1/2N,(x) dx = 1 for all I': > O. Hence for any x 
in ~, 

I/; , * f ( x) - f ( x) = (2'lT) - 1/2 j [j (x - t) - f ( x )] ~ I/; ( ~ ) dt 

= (2'lT)-1/2j[f(x - Sf) - f(x)]I/;(s)ds. 

Put w(y) = sup{lf(x - y) - f(x)l: y E ~}. Now f is uniformly continu­
ous (Why?), so if I': > 0, then there is a 8 > 0 such that w(y) < I': if IYI < 8. 
Thus w(y) ~ 0 as IYI ~ O. Moreover, the inequality above implies 

III/;,*f- 11100:S; (2'lT)-1/2jw(sl':)ll/;(s)lds. 

Since I/; E Ll(~), the Lebesgue Dominated Convergence Theorem implies 
that 111/;,. * f - fllac ~ 0 whenever fk ~ O. This proves the proposition . 

• 
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The next result is often called the Multiplication Formula. Remember that 
if f E Ll(~), J E Co(~). Hence Jg E Ll(~) when both f and g E Ll(~). 

6.14. Theorem. Iff, g E Ll(~), then 

lJ(x)g(x) dx = If(x)g(x) dx. 
IR IR 

PROOF. The proof is an easy consequence of Fubini's Theorem. In fact, if 
f, g E Ll(~), then 

fJ(x)g(x)dx = f[ vb- ff(t)e~ixtdt]g(X)dX 

= ff(t)[vb- fg(x)e~ixtdx]dt 

= f f(t )g(t) dt. • 

6.15. Inversion Formula. If cp E Y, then 

cp(x) = ~foo ~(t )e ixt dt. 
y27T ~OO 

PROOF. Let p,(x) = e~,2x2 and put Hx) = Pl(X). Then by Lemma 6.12 
1/;,(x) = E~~(X/E) = p,(x). Also, 

(27T)~1/2f1/;(x)dx = (27T)~1/2IXJ 2~1/2e~x2/4dx = l. 
~OO 

So 1/;, * hex) ~ hex) uniformly for any h in Co(~). If cp E Y, put f = cp 
and g = e xP, in (6.14). By Proposition 6.11 and Lemma 6.12, g = UxP, = 
Ux1/;,. Thus 

~ foo ~(t)eitxe~f2t2 dt = ~ foo cp(t)1/;,(t - x) dt 
y27T ~ 00 y27T ~ 00 

=cp*1/;,(x) 

~ cp(x) 

as E ~ O. The Lebesgue Dominated Convergence Theorem implies the 
left-hand side converges to (27T)~1/2f~(t)eixtdt and the theorem is proved . 

• 
In many ways the next result is a rephrasing of the preceding theorem. 

6.16. Theorem. If .%: Y--'> Y is defined by.%cp = ~, .% is a bijection with 

1 foo . (.%~lcp)(X) = - cp(t)e1xtdt . 
..j2; ~ 00 
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Moreover, if Y is given the topology induced by the seminorms {II' 11m,,,: 
m, n ;::: O} that were defined in (6.4), :F is a homeomorphism. 

PROOF. By (6.7b), :FYr:;, Y. The preceding theorem says that .'7 is bijective 
and gives the formula for :F- 1. The proof of the topological statement is left 
to the reader. • 

6.17. Plancherel's Theorem. If </> E Y, then II</>Ib = 11~112 and the Fourier 
transform :F extends to a unitary operator on L 2(~). 

PROOF. Let </> E Y and put I/;(x) = </>( -xLSo p = </> * I/; E Ll(~) and 
p = ~~. An easy calculation shows that ~ = ~; hence p = 1~12. Also, the 
Inversion Formula shows that p(O) = (27T)-1/2fp(x) dx = (27Tfl/2 

f I~( X )1 2 dx. Thus 

jl~(x)12dx = (27T)1/2p(0) 

= (27T )1/2</> * 1/;(0) 

= j</>(x) 1/;(0 - x)dx 

So if Y is considered as a subspace of L 2(~), :F, the Fourier transform, is 
an isometry on Y. By Proposition 6.5 and the preceding theorem, ,Y; 

extends to a unitary operator on L 2(~). • 

Warning! The content of the Plancherel Theorem is that the Fourier 
transform extends to an isometry. The formula for this isometry is not given 
by the formula for the Fourier transform. Indeed, this formula does not 
make sense when f is not an Ll function. However, the same symbol, §, 

will be used to denote this unitary operator on L 2(~). For emphasis it is 
called the Plancherel transform. 

6.18. Theorem. Let A be the operator on L 2(~) given by Af = i d/ dx and let 
M be the operator defined by Mf=xf. If:F: L2(~)->L2(~) is the 
Plancherel Transform, then :Fdom M = dom A and 

PROOF. The fact that A:F=:FM on Y is an immediate consequence of 
Theorem 6. 7(b), Since yo is dense in both dom A and dom M, the rest of the 
result follows (with some work-give the details). • 

Fourier analysis is a subject unto itself. One source is Stein and Weiss 
[1971]; another is Reed and Simon [1975]. 
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EXERCISES 

1. If P2 is as in Example 6.1, show that for every I in P2 there is a sequence {f,,} in 
C,<I}(IR) such that f" -> I and I': -> f' in L2(1R). 

2. Show that the Schwartz space y> with the seminorms {II' IIm,n: m, n ~ O} is a 
Frechet space. 

3. If 4> is infinitely differentiable on IR, show that 4> E y> if and only if for every 
integer n ~ 0 and every polynomial p, 4>(n)(x)p(x) -> 0 as Ixl -> 00. 

4. If I E LP(IR), 1 :.,; p :.,; 00, and g E Ll(IR), show that 1* g E LP(IR) and III * gllp 
:.,; 1l/llpllglll' (Hint: See Dunford and Schwartz [1958], p. 530, Exercise 13 for a 
generalization of Minkowski's Inequality.) 

5. If 0/ and 0/ F are as in Proposition 6.13 and I E LP (IR), 1 :.,; P < 00, show that 
II! * 0/, - Illp -> 0 as f; -> O. If I E LOO(IR), show that 1*0/, -> I (weak*). 

6. If I E Ll(lR) and i E Ll(IR), show that I(x) = (2'IT)-1/2f'Ri(t)e ixt dt a.e. 

7. If §: L 2 (IR) -> L 2 (IR) is the Plancherel Transform and I E L 2 (IR), show that 
(:F If)(X) = (§f)( - x). 

8. Show that §4 = 1 but §2 '* 1. What does this say about o( §)? 

9. Find the Fourier transform of the Hermite polynomials. What do you think? 

§7. Moments 

To understand this section, the preceding two sections are unnecessary. 
Let Jl be a positive Borel measure on III such that flW dJl(t) = mn < 00 

for every n ~ O. The numbers { m n} are called the moments of Jl in analogy 
with the corresponding concept from mechanics. The central problem here, 
called the Hamburger moment problem, is to characterize those sequences of 
numbers that are moment sequences. Just as self-adjoint operators are 
connected to measures, the theory of self-adjoint operators is connected to 
the solution of this moment problem. 

7.1. Theorem. If {mn: n ~ O} is a sequence of real numbers, the following 
statements are equivalent. 

(a) There is a positive regular Borel measure Jl on III such that flW dJl(t) < 00 

for all n ~ 0 and mn = ftndJl(t). 

(b) If ao"'" an E C, then E'j.k~omj+ka/ik ~ O. 
(c) There is a self-adjoint operator A and a vector e such that e E dom An for 

all nand m n = < A ne, e> for all n ~ O. 

Before proving this theorem, a preliminary result is needed. This result is 
useful in many other situations and is one of the standard ways to show that 
a symmetric operator has a self-adjoint extension. 
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7.2. Proposition. Let T be a symmetric operator on .fl' and suppose there is a 
junction J: .fl'~.fl' having the jollowing properties: 

(a) J is conjugate linear (that is, J(h + g) = Jh + Jg and J(ah) = aJh); 
(b)J 2 =1; 
(c) J is continuous; 
(d) Jdom T ~ dom T and TJ ~ JT. 

Then T has a self-adjoint extension. 

PROOF. First note that if h E dom T, then Jh E dom T and h = J(Jh). 
Hence J dom T = dom T and JT = TJ. 

Let hE.fl' and define L: .fl'~ C by L(f) = (h, Jf). Since J is con­
jugate linear, L is a linear functional. By (c), L is continuous. Thus there is 
a unique vector h* in .fl' such that L(f) = (j, h*). Let J*h = h*. Thus 
J *: .fl' ~ .fl' and 

7.3 (j, J*h) = (h, Jf). 

It is clear that J* is additive. If a E C, then (j,J*(ah) = (ah,Jf) = 
a(j,J*h) = (j,aJ*h). Thus J* is conjugate linear. Since J2=1, it 
follows that J *2 = 1. 

Let h E dom T* and j E dom T. Then (TJj, h) = (fj, T*h) = 
(f*T*h,f) by (7.3). But also by (d), (TJj,h) = (fTj, h) = (f*h,Tf). 
So (f *T*h, f) = (J*h, Tf) for all h in dom T* and j in dom T. But this 
says that J*h E domT* whenever hE domT* and, furthermore, T*J*h 
= J*T*h. Since J*2 = 1, it follows that J*dom T* = dom T* and J*T* 
= T*J*. 

Now let hE ker(T* ± i). Then T*J*h = J*T*h = J*(±ih) = +-iJ*h. 
Thus J*ker(T* ± i) ~ ker(T* +- i). Since J*2 = 1, J*ker(T* ± i) = 
ker(T* +- i). But J* is injective. Indeed, if J*h = 0, then h = J*(J*h) = 0. 
Thus the deficiency indices of T are equal. By Theorem 2.20, T has a 
self-adjoint extension. • 

PROOF OF THEOREM 7.1. (a) implies (b). If aD, ... , an E C, then 
n n 

L mJ+ka/ik = 1 L a/iktJ+kdp.(t) 
i.k~O j.k~O 

= 11 k~O akt k 12 dp.( t) ~ 0. 

(b) implies (c). Let ~) = the collection of all finitely nonzero sequences 
of complex numbers {all: n ~ O}. That is, {a o' a l , ... } E~) if (XII E C 
for all n ~ 0 and (XII = 0 for all but a finite number of values of n. If 
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00 

7.4 [x, y] == L mj + ka)3k • 

j,k~O 

It is easy to see that £'0 is a vector space and (7.4) defines a semi-inner 
product on £'0' In fact, it is routine that [ " .] is sesquilinear and condition 
(b) implies that [x, x] ~ 0 for all x in £'0' 

Let fo = {x E £'0: [x, x] = O} and let £'1 be the quotient vector space 
£'o/fo' If h = x + fo and f = y + fo E £'1' then 

7.5 ( h ,f) == [x, y] 
can be verified to be a well-defined inner product on £'1' Let £' be the 
Hilbert space obtained by completing £'1 with respect to the norm defined 
by the inner product (7.5). 

Now to define some operators. If x = {an} E £'0' let Tox = 
{O, a o, al' ... }. It is easy to check that To is a linear transformation on £'0' 
Also, if x = {an}, y = {,en} E £'0' let Tax = hn}· So Yo = 0 and Yn = 
an~1 if n ~ l. Hence 

00 

[Tox, y] = L mj+ky)Jk 
j,k~O 

00 

= L mj+kaj~llik 
j~1 

k~O 

00 

= L mj+k+lajlik 
j,k~O 

00 

= L mj+kajlik~1 
j~O 

k~1 

= [x,TaY]. 

In particular, if x E fa, then the preceding equation and the CBS in­
equality imply that 

I[Tax,Tox]1 = I[T02x,x]15 [T02x,Ta2x][x,x] 

= O. 
Hence Tofo ~ fo. Thus To induces a linear transformation T on £'1 
defined by T(x + fa) = Tox + fa. It follows that (Th, f) = (h, Tf) for 
all h, f in £'1' Since £'1 is, by definition, dense in £', T is a densely 
defined symmetric operator on £'. Now to show that T has a self-adjoint 
extension. 

Define Jo: £'0 -4£'0 by JO({a n}) = {an}' It is easy to see that Jo is 
conjugate linear and J02 = l. Also, JoTo = ToJo. An easy calculation shows 
that [lox, JoY] = [x, y] for all x, yin £'0' So Jofo ~ fo and Jo induces a 
conjugate linear function J1: £'1 -4 £'1 defined by J1 (x + fa) = Jox + f o. 

It follows that JIT = TJI, J I2 = 1, and IIJlhl1 = Ilhll for all h in £'1' Thus 
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J1 extends to a conjugate linear J: £'-'> £' such that J2 = 1 and IIJhl1 = Ilhll 
for all h in £'. Hence J is continuous. Also, J dom T = J1£'1 ~ £'1 = 
dom T and TJ ~ JT. By Proposition 7.2, T has a self-adjoint extension A. 

Let eo = {I, 0, 0, ... } E £'0' Hence Toneo has a 1 in the nth place and 
zeros elsewhere. If e = eo + Jf'o, then e E dom Tn ~ dom A" for all n ;::: o. 
Also, 

for n ;::: O. 
( c) implies ( a). Let 2 be the closed linear span of { A "e: n ;::: O}. For h in 

2n dom A, let Bh = Ah. It follows that B is a self-adjoint operator on 2 
and e is a cyclic vector for B. By Theorem 4.18, there is a positive measure Il 
on ~ (because B is self-adjoint) such that fit!" dll(t) < 00 for every n ;::: 0 
and an isomorphism W: 2-'> L 2(1l) such that We = 1 and WBW- I = MI' 
Thus 

EXERCISES 

jtndll(t) = (MInI, 1) 

= (W-1M/,I, W-II) 

= (Aile, e) 

= m n • • 

1. (Stieltjes.) Let {mil: n 2 O} be a sequence of real numbers and show that the 
following statements are equivalent. (a) There is a positive regular Borel measure 
/L on [0,00) such that mil = ft"d/L(t) for all n 2 O. (b) If uo"",ull E C, then 
Lj.k~Omj+ku/ik 20 and L'J.k~Omi+k+luJak 2 O. (c) There is a self-adjoint 
operator A with o( A) ~ [0,(0) and a vector e in dom A" for all n 2 0 such that 
mil = (Aile, e) for n 2 O. 

2. (Bochner.) Let m: IR ..... C be a function and show that the following statements 
are equivalent. (a) There is a finite positive measure /L on IR such that m (t) = 

fe ixl d/L(x) for all t in IR. (b) m is continuous and if U O , ... , Ull E C and 
to, ... , til E IR, then L'J.k~Om(tj - tk)Ujak 2 O. (c) There is a strongly continu­
ous one-parameter unitary group V(t) and a vector e such that m(t) = 
(V(t)e, e) for all t. (Hint: Let ~ = all functions f: IR ..... C that vanish ofr a 
finite set.) 

3. Let {mil: n E Z} ~ C and show that the following statements are equivalent. (a) 
There is a positive measure /L on [p such that mil = fZIl d/L(z) for all n in Z. (b) 
If u_Il"",u_l,uO,ul"",un E C, then Lj.k~llmJ-kulak 2 O. (c) There is a 
unitary operator V and a vector e sueh that mil = (Vile, e) for all n. 

4. Show that the operator A that appears in the proof that (7.lb) implies (7.lc) is 
cyclic. 
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Fredholm Theory 

This chapter is entirely independent of the preceding one and only tangen­
tially dependent on Chapters VIn and IX. 

The purpose of this chapter is to study certain properties of operators on 
a Hilbert space that are invariant under compact perturbations. That is, we 
want to study properties of an operator A in fJI( Yt') that are also possessed 
by A + K for every K in fJlo( Yt'). The correct view here is to consider this 
undertaking as a study of the quotient algebra fJI( Yt')/fJlo( Yt') = 

fJI/fJlo-the Calkin algebra. Any property associated with an element of the 
Calkin algebra is a property associated with a coset of operators and vice 
versa. It is useful-indeed essential-to relate these properties to the way in 
which the operators act on the underlying Hilbert space. 

§1. The Spectrum Revisited 

In Section Vn.6 we saw several properties of the spectrum of an operator on 
a Banach space. In particular, the concepts of point spectrum, a/ A), and 
approximate point spectrum, aap(A), were explored. It was also shown 
(VII.6.7) that Ja(A) c:;:; aap(A). Recall that a[(A) is the left spectrum of A 
and ar(A) is the right spectrum of A. 

1.1. Proposition. If A E fJI( Yt'), the following statements are equivalent. 

(a) l\ $. aa/A); that is, inf{II(A - l\)hll: Ilhll = I} > O. 
(b) ran(A - l\) is closed and dim ker(A - l\) = O. 
(c) l\ $. a,(A). 
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(d) X $. arCA*). 
(e) ran(A* - X) = £'. 

PROOF. By Proposition VII.6.4, (a) and (b) are equivalent. Also, if B EO 

!Jd(£'), then B(A -;\) = 1 if and only if (A* - X)B* = 1 so that (c) and 
(d) are easily seen to be equivalent. 

(b) implies (c). Let .A = ran( A - ;\) and define T: £' --->.A by Th = (A 
- ;\)h; then T is bijective. By the Open Mapping Theorem, T- 1 : .A ---> £' 
is continuous. Define B: £' ---> £' by letting B = T- 1 on .A and B = 0 on 
.A -L. Then B EO !Jd(£') and B(A - ;\) = 1. (Note that we used a property 
of Hilbert spaces here; see Exercise VII.6.S.) 

(d) implies (e). Since X$. ar(A*), there is an operator C in !Jd(£') such 
that (A* - X)C = 1. Hence £'= (A* - X)C£'~ ran(A* - X). 

(e) implies (a). Let %= ker(A* - X) -L and define T: % ---> £' by 
Th = (A* - X)h. Then T is bijective and hence invertible. Let C: £'---> £' 
be defined by Ch = T-1h. Then C£'= % and (A* - X)C = 1. Thus 
C*(A - ;\) = 1 so that if h EO £', Ilhll = IIC*(A - ;\)hll :s; IIC*IIII(A -
;\)hll. Hence inf{II(A - ;\)hll: Ilhll = I} Z IIC*II- 1. • 

If .1 ~ C, .1* == {X: ;\ EO .1}. 

1.2. Corollary. If A EO !Jd(£'), then Ja(A) ~ 01(A) n 0r(A) = aa/A) n 
oap(A*)*. 

PROOF. The equality is immediate from the preceding theorem. In fact, 
01(A) = oap(A) and or(A] = o/A*)* = oapCi*)*. If ;\ EO Jo(A), then 
(VII.6.7) ;\ EO oap(A). But ;\ EO Ja(A*) so that ;\ EO aap(A*). • 

For normal elements there is less variety. The pertinent result is proved 
here in a more general setting than that of operators. 

1.3. Proposition. Let .rd be a C*-algebra with identity. If a is a normal 
element of .rd, then the following statements are equivalent. 

(a) a is invertible. 
(b) a is left invertible. 
(c) a is right invertible. 

PROOF. Assume that a is left invertible, so there is a b in .rd such that 
ba = 1. Thus for any x in .rd, Ilxll = Ilbaxil :s; Ilbllllaxll, and hence Ilaxll z 
Ilbll-11Ixll. In particular, this is true whenever x EO C*(a). Because a is 
normal, C*(a) is isomorphic to C(K) where K = o(a) and where the 
isomorphism takes a into the function z (z(w) = w). The inequality above 
thus becomes: Ilzfll z Ilbll-11lfll for every f in C( K). It must be shown that 
o $. K (= o(a». If 0 EO K, then for every integer n there is a function /" in 
C(K) such that 0 :s; fn :s; 1, /,,(0) = 1 and fn(z) = 0 for z in K and 
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Izl ~ n- 1• Since 0 E K, Ilfnll = 1. But liz/nil::; lin. This contradicts the 
inequality and so 0 $. o( a); that is, a is invertible. 

The argument above shows that (b) implies (a). If a is right invertible, 
then a * is left invertible. By the preceding argument a * is invertible, and 
hence so is a. • 

1.4. Proposition. If N is a normal operator, then o(N) = orCN) = oleN). 
If A. is an isolated point of o(N), then A. E opeN). 

PROOF. The first part of the proposition is immediate from the preceding 
result. If A. is an isolated point of o( N) and N = f z dE (z), then 0 *-
E({A.}) = ker(N - A.) (Exercise IX.2.l). • 

EXERCISES 

1. Let S be the unilateral shift of multiplicity Ion {2(N) and find 0/(S) and 0r(S). 

2. The compression spectrum of A, 0c (A), is defined by 0c (A) = {,\ E C: ran( A - ,\) 
is not dense in £}. Show: (a) ,\ E 0c(A) if and only if X E op(A*). (b) 
0c(A) <:;; 0r(A), but this inclusion may be proper. (c) 0c(A) is not necessarily 
closed. (d) o(A) = 0ap(A) U 0c(A). 

3. If A E !/A(£) and IE Hol(A), then l(oap(A» <:;; oap(f(A» and l(op(A» <:;; 
(Jp (f(A». 

4. If I is a rational function with poles off o(A), show that l(oap(A» = oap(f(A» 

and l(op(A» = op(f(A». Give necessary and sufficient conditions on a function 
I in Hol(A) that these equalities hold. 

§2. The Essential Spectrum and Semi-Fredholm 
Operators 

Let !J8/!J8o be the Calkin algebra and let 7T: !J8 ~ !J8/!J8o be the natural map 
(£ is being suppressed here). Since !J8 0 is an ideal in !J8, !J8 /!J8 0 is a Banach 
algebra with identity. 

2.1. Definition. If A E !J8(£), then the essential spectrum of A, 0e(A), is 
the spectrum of 7T(A) in !J81!J8o; that is, 0e(A) = o(7T(A». Similarly, the left 
and right essential spectrum of A are defined by o'e(A) == 0,( 7T(A» and 
0re(A) == ore 7T(A», respectively. 

2.2. Proposition. Let A E !J8(£). 

(a) 0le(A) U 0re(A) = 0e(A). 
(b) o'e(A) = ore(A*)*. 
(c) a'e(A) <;;; aJA), 0re(A) <;;; orCA), and ae(A) <;;; o(A). 
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(d) a'e(A), areCA), and ae(A) are closed sets. 
(e) If K E 880 (.)f'), a'e(A) = a'e(A + K) and areCA) = areCA + K). 

PROOF. Parts (a), (b), (c), and (e) are trivial, and part (d) is a consequence of 
a general fact about Banach algebras. • 

In order to best appreciate and use the idea of essential spectrum, a better 
understanding of invertibility in 88/880 is needed. The following terminol­
ogy is traditional. 

2.3. Definition. If A E 88( £), A is a left Fredholm operator if ?T( A) is left 
invertible in 88/880 ; A is a right Fredholm operator if ?T(A) is right 
invertible in 88/880 ; A is a Fredholm operator if ?T(A) is invertible in 
88/880 , Let ~,y;;, §'" denote the set of left Fredholm, right Fredholm, and 
Fredholm operators. So §'" = .~ n y;;. Operators in the set Y'§'" = ~ U y;; 
are called semi-Fredholm operators. 

2.4. Proposition. The sets ~, y;;, §'" are all open in 88( £) and A E ~ if 
and only if A * E Y;;. 

PROOF. Each of these sets is the inverse image under ?T of an open subset of 
88/880 , The other statement is trivial. • 

The next result, characterizing left Fredholm operators, is from Wolf 
[1959] and Fillmore, Stampfli, and Williams [1972]. 

2.5. Theorem. If A E 88( £), the following statements are equivalent. 

(a) A is a left Fredholm operator. 
(b) ran A is closed and dim ker A < 00. 

(c) There is no sequence {h n} of unit vectors in £ such that h n --> 0 weakly 
and limllAhnl1 = O. 

(d) There is no orthonormal sequence {en} in £ such that limllAenl1 = O. 
(e) There is a 8 > 0 such that {h E £: IIAhl1 ::::; 811hll} contains no infinite­

dimensional manifold. 
(f) If the positive operator (A*A)1/2 = f,ft dE(t), then there is a 8 > 0 such 

that E[O, 8]£ is finite dimensional. 
(g) If K E 880(£), then dimker(A + K) < 00. 

PROOF. (a) implies (b). According to (a) there is a bounded operator B such 
that ?T(B)?T(A) = 1; that is, ?T(BA - 1) = O. Hence BA = 1 + K for some 
compact operator K. But ker A ~ ker BA = ker(1 + K). Since the eigen­
spaces corresponding to nonzero eigenvalues of compact operators are finite 
dimensional, dimker A < 00. Also, the Fredholm Alternative (VII.7.9) im­
plies ran BA = ran(K + 1) is closed. Hence there is a constant c> 0 such 
that for h ..1 ker(BA), IIBAhll:2: cllhll. Thus if h E [ker BA].l, cllhll::::; 
IIBIIIIAhll, or IIAhl1 :2: (c/IIBII)llhll. This implies that A([ker BA].l) is closed. 
But ran A = A(ker BA].l) + A(ker BA). Since A (ker BA) is finite dimen­
sional, ran A is closed. 
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(b) implies (c). Let P be the projection of £ onto (ker A) 1. • Since ran A 
is closed and A is a bijective map of (ker A) 1. onto ran A, there is a 
bounded operator Bon £ such that B = ° on (ran A) 1. and BAh = h for 
h in (kerA) 1. • Thus BA = P. Now 1 - P has finite rank. So if {h,,} is a 
sequence of unit vectors such that h n -'> ° weakly, then Ilh n - Ph nil -> 0. 
But 1 = IIh nl1 2 = 11(1 - P)h n11 2 + IIPh nl1 2 = 11(1 - P)h n11 2 + IIBAh,,112. 
Hence IIBAh nil -'> 1 so that lim infllAh nil > 0. 

(c) implies (d). Orthonormal sequences converge weakly to zero. 
(d) implies (e). If (e) is false, then for every positive integer n there is an 

infinite-dimensional subspace vft n such that IIAhl1 :::; (lin )llhll for all h in 
vft n' Let e 1 be a unit vector in vft l' Suppose e l' ... , en are orthonormal 
vectors such that ekE vft k' 1 :::; k :::; n. Let E be the projection of £ onto 
V { e1, ... , en}' If vft n+ 1 n [e1,· .. , e n]1. = (0), then E is injective on vft" + l' 

Since dim vft n + 1 = 00 and dim ran E < 00, this is impossible. Thus there is 
a unit vector en+1 in vftn+1 such that en+1 .l {e1, ... ,en}. The orthonor­
mal sequence {en} shows that (d) does not hold. 

(e) implies (f). Let IAI = ftdE(t) and let 8> 0. If h E E[0,8]£, then 

IIAhl1 2 = (A*Ah, h) 

= (IAI 2h,h) 

= tt 2dEh,h(t):::; 82Eh,h[0,8] 
o 

= 8211h11 2. 

So E[O, 8]£<;::; {h: IIAhl1 :::; 81Ihll}. By (e) there is a 8 > ° such that E[O, 8]£ 
is finite dimensional. 

(f) implies (a). Let vft 8 = {E[O, 8]£} 1. • Now IA I maps vft 8 bijectively 
onto vft8. In fact, the inverse of IAI: vft8 ->vft8 is Utt- 1dE(t))lvft8. Let 
A = UIA I be the polar decomposition of A. Since vft 8 <;::; ranlA I = initial U, 
U maps vft 8 isometrically onto some closed subspace 2 of ran A. Let 
V = the inverse of U on 2 and V = ° on 2 1.; that is, VI2 1. = ° and 
V12= (Ulvft 8) -1. Hence V is a partial isometry. Let B1 = ftt- 1 dEC t) and 
put B = B 1V, If h E vft 8, then BAh = B1VUIA Ih = h. If h E vft 81. = 
E[0,8]h, IA Ih E vft l and so UIA Ih .1 2; thus BAh = 0. Hence BA = 
E(8, 00) = 1 - E[0,8]. Since E[0,8] has finite rank, 7T(B)7T(A) = 1. 

(a) implies (g). If K is a compact operator, 7T(A) = 7T(A - K). Thus 
7T(A - K) has a left inverse in the Calkin algebra. Since (a) implies (b), 
dimker(A - K) < 00. 

(g) implies (d). Suppose (d) does not hold. So there is an orthonormal 
sequence {en} such that IIAenl1 -> 0. By passing to a subsequence if 
necessary, it may be assumed that L~~11IAenI12 < 00. Thus for any h in £, 

LI(h, en)IIIAenll :::; [LI(h, en)12]1/2[ LIIAenI1 2f/2 

:::; qhll, 

where C = [LIIAenI1 2]1/2. Thus Kh = L~~1(h, en)Aen defines a bounded 
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operator. Moreover, if Knh = r:;~)<h, e)Aej , it is easy to see that 11K" -
KII ~ o. Thus K is compact. But (A - K)en = 0 for every n, so dimker(A 
- K) = 00. • 

Each of the parts of the preceding theorem can be used to give a 
statement equivalent to the fact that a point belongs to the left essential 
spectrum. Only one of these statements will receive such a translation. 

2.6. Corollary. 

(a) A E a1e(A) if and only if dimker(A - A) = 00 or ran(A - A) is not 
closed. 

(b) A E areCA) if and only if dim[ran(A - A)] ~ = 00 or ran(A - A) is not 
closed. 

PROOF. Part (a) is straightforward. Part (b) follows immediately from the 
facts that areCA) = a1e(A*)* and that ran(A - A) is closed if and only if 
ran(A - A)* is closed (VI.1.l0). • 

In order to prove part (b) of the preceding corollary it is not necessary to 
quote Theorem VI.1.10. For operators on a Hilbert space it is possible to 
give a direct proof that is easier than the Banach space case (see Exercise 2). 

The reader should compare Corollary 2.6 and Proposition 1.1. 

2.7. Proposition. If A E !J8(:If'), then aap(A) = a1e(A) U {A E ap(A): 
dim ker(A - A) < oo}. 

PROOF. If A E aap(A), then (1.1) either ran(A - A) is not closed or ker(A 
- A) =F o. If ran(A - A) is not closed or if dimker(A - A) = 00, then 
A E a1e(A) by (2.6). The other inclusion is left to the reader. • 

2.8. Proposition. If N is a normal operator and A E a( N), then ran( N - A) 
is closed if and only if A is an isolated point of a(N). 

PROOF. Assume A is an isolated point of a(N); thus X = a(N)\ {A} is a 
closed subset of a(N). If N = JzdE(z) and :If') = E(X):If', then :If'1 
reduces Nand a(NI:If') = X. Hence (N - A):If') is closed. Since :If'/ = 

ker(N - A), ran(N - A) = (N - A):If'l; hence N - A has closed range. 
Now assume that A E a(N) but A is not an isolated point. Then there is 

a strictly decreasing sequence {rn} of positive real numbers such that r" --> 0 
and such that each open annulus An = {z: rn+) < Iz - AI < rn} has non­
empty intersection with a(N). Thus E(An):If'=F (0); let en be a unit vector 
in E(An):If'. Then en 1. ker(N - A) (= E({A}):If') and 

II(N - A)en 11 2 = f Iz - AI2dEen.en(z):::; r} --> O. 
An 
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That is, inf{II(N - A)hll: Ilhll = 1, h 1. ker(N - A)} = 0 and so, by the 
Open Mapping Theorem, N - A does not have closed range. • 

2.9. Proposition. 1/ N is a normal operator, then 0e(N) = 0le(N) = 0re(N) 
and o(N)\oe(N) = {A E o(N): A is an isolated eigenvalue 0/ N having 
finite multiplicity}. 

PROOF. The first part follows by applying Proposition 1.3 to the Calkin 
algebra. If A is an isolated point of o( N), then ran( N - A) is closed by the 
preceding proposition. So if dimker(N - A) < 00, Aft. 0le(N) = 0e(N) by 
Corollary 2.6. Conversely, if A E o(N)\oe(N), then ran(N - A) is closed 
and dim ker( N - A) < 00. By the preceding proposition, A is an isolated 
point of o(N). Thus A is an eigenvalue of finite multiplicity. • 

It is also worthwhile, before proceeding, explicitly to reformulate Theo­
rem 2.5 to give a characterization of Fredholm and semi-Fredholm oper­
ators. The proof is left to the reader. 

2.10. Proposition. 

(a) An operator A is a Fredholm operator i/ and only i/ ran A is closed and 
both ker A and ker A* = (ran A) J. are finite dimensional. 

(b) An operator A is a semi-Fredholm operator i/ and only i/ ran A is closed 
and either ker A or (ran A) J. is finite dimensional. 

2.ll. Example. Let G be a bounded region in C and, to avoid pathologies, 
assume aG = a[clG]. Let .Yt'= L~(G) (1.1.10) and define S: .Yt'-'>.Yt' by 
(Sf)(z) = z/(z). Then o(S) = cl G, oe(S) = Ole(S) = 0re(S) = JG = 

oap(S), 0p(S) = 0, and for A in G, ran(S - A) is closed and dim[ran(S -
A)]J.= 1. 

To show that these statements are true, begin by proving: 

2.12 If A E G,ran(S - A) = {/E L~(G): /(A) = o} 
In fact, if h E L~(G), then [(S - A)h](z) = (z - A)h(z) so that / = (z 

- A)h vanishes at A. Conversely, suppose / E L~(G) and /(A) = 0; then 
fez) = (z - A)h(z) for some analytic function h on G. It must be shown 
that h E L~(G). Let r> 0 such that D = {z: Iz - AI :s;; r} ~ G. Then 

f flhl 2 = f f Ih l2 + f 1 Ih1 2. 
D G\D 

Now ffDihl2 < 00 since h is bounded on D. For z in G\D, Ih(z)1 = 
1/(z)l/lz - AI :s;; r- 11/(z)l. Hence 

f 1 I h 12 :s;; r - 2 f 11/12 < 00. 
G\D G 

Thus h E L~(G) and / = (S - A)h. This proves (2.12). 
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Using Corollary 1.1.12, f ~ feA) is a bounded linear functional on 
L~(G) whenever A E G. By (2.12), ran(S - A) is the kernel of this linear 
functional and hence is closed. 

Because G is bounded, the constant functions belong to L ~ ( G). So if 
f E L~(G), f = [f - f(A») + f(A) and f - f(A) E ran(S - A). Thus 
L~(G) = ran(S - A) + C. Therefore dim[ran(S - A») 1- = dim[L;,(G)/ 
ran(S - A») = 1 when A E G. 

If A E G, then S - A is not surjective; hence G <;:: a( S). If A rE cl G, 
then (z - A) -I is a bounded analytic function on G. If A f = (z - A) - 1 f, 
then A is a bounded operator on L~( G) and it is easy to check that 
A(S - A) = (S - A)A = 1. Thus a(S) <;:: clG. Combining these two con­
tainments, we get a(S) = clG. 

From Proposition 2.10 we have that S - A is a Fredholm operator 
whenever.\ E G; thus G () ae(S) = D. SO ae(S) <;:: aG = a[clG). If A E aG, 
then A E aa(S); thus A E aap(S) (1.2). Since kereS - A) = (0), ran(S - A) 
is not closed. Thus aG <;:: ale(S) () are(S). This proves that ae(S) = ale(S) 
= <7re(S) = aG = aap(S). 

EXERCISES 

1. Give a direct proof that (b) implies (a) in Theorem 2.5. 

2. If A E £B( £) and ran A is closed, prove that ran A* is closed without using 
Theorem VL1.lD. [Hint: Show that there is a bounded operator B on £ such 
that BA = the projection of £ onto (ker A) -" .] 

3. (Putnam [1968).) If A E £B(£), A E aa(A), and A is not an isolated point of 
a (A), then ran( A - A) is not closed. Give an example of an operator A such 
that 0 is an isolated point of a(A) but ran A is not closed. 

4. Let G be a bounded region in C such that aG = a[cl G] and let <I> be a function 
that is analytic in a neighborhood of clG. Define A: L~(G) ---> L~(G) by 
Ai = <l>J. Find all of the parts of the spectrum of A. 

5. Let S be the unilateral shift and show that a(S) = areS) = cl[D, al(S) = 
(Jle(S) = (JreCS) = a[D, opeS) = D, and for IAt < I, ran(S - A) is closed with 
dim[ran(S - A)]-" = 1. 

6. Let S be the unilateral shift and put A = S Ell S*. Find the parts of the 
spectrum of A. 

7. Let S be the unilateral shift and put A = S(oo). Show that a(A) = ac(A) = 

areCA) = cl[D and a,eCA) = a[D. 

8. Let A, B, C E £B( £) and define X: £(2) ---> £(2) by the matrix X = [ ~ ~ ] . 

(a) Show that if A E ff, then X E ff if and only if C E ff. (b) If A E Y', show 
that X E Yff if and only if C E Yff. (c) Suppose A, C E Yff with dim ker A 
= 00 and dimkerC* = 00. Show that 0 E ale(X) n are(X). 
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9. (Fillmore, Stampfli, and Williams [1972].) If ).. E (J/e(A), then there is a projec­
tion P, having infinite rank, such that '/T(A - )..)'/T(P) = O. 

10. (Fillmore, Stampfli, and Williams [1972].) Let A E f!B( .YC'). (a) If A has a cyclic 
vector e, show that dim{Ae,A 2e, ... }J.:s; 1. (b) Let).. E (J/e(A*). If £ > 0, let 
f\,f2 be orthonormal vectors such that II(A: - )..)/;11 < E for j = 1,2 and let 
P = the projection onto VU\,f2}' Put B =)..P + (1 - P)A. Show that IIB­
All < 2£. (c) Show that the noncyclic operators are dense in f!B(.YC'). 

§3. The Fredholm Index 

The author would like to acknowledge that James P. Williams made 
available to him a set of unpublished notes on the Fredholm index which 
formed the basis of this section. 

If A is a semi-Fredholm operator, define the (Fredholm) index of A, 
ind A, by 

3.1 ind A = dim ker A - dim(ran A) 1. 

= dimkerA - dimkerA*. 

Note that ind A E lL. U {± oo} and it is necessary for either ker A or 
ker A* to be finite dimensional in order for (3.1) to make sense. For ind A to 
be well defined, it is not necessary that ran A be closed (the other part of the 
characterization of semi-Fredholm operators), but this property will be used 
in a critical way when the properties of the index are established. The main 
result of this section is the following. 

3.2. Theorem. If the set of semi-Fredholm operators, Y.'#', has the relative 
norm topology from Pi( £) and lL. U {± oo} has the discrete topology, then 
ind: Y.'#' ~ lL. u {± oo} is continuous. Moreover, if A E Y.'#' and K E 

Pio(£)' then ind A = ind(A + K). 

One of the uses of Theorem 3.2 is in the study of various integral and 
differential equations. More recently it has been used to study a variety of 
approximation questions in Pi( £) as well as several connections between 
topology and operator theory. 

Before proving Theorem 3.2, which will require a few lemmas, we will 
examine some additional properties of the index and a few examples. 

First observe that the Fredholm Alternative (VII.7.9) is an easy conse­
quence of Theorem 3.2. Indeed, if A. E C, A."* 0, then the operator A. is 
invertible and so ind(A.) = O. If K E Pio(£), then (3.2) implies that ind(A. 
- K) = o. Thus dimker(A. - K) = dim[ran(A. - K)] 1. and we have the 
Fredholm Alternative. 
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3.3. Proposition. 

(a) If A E Yff, then A* E Yff and ind A = - ind A*. 
(b) If N is normal and N E Y.~, then NEff and ind N = O. 

PROOF. (a) is clear. If N is normal and N E Yff, then N E Y;; U :~;. By 
Proposition 1.3, NEff. Also, liN *hll = IINhll, so ker N = ker N *. Hence 
ind N = O. • 

It is a good thing to keep in mind that if A E Yff and ind A is a finite 
number, then A E ff since both ker A and ker A* must be finite dimen­
sional. 

The continuity statement in Theorem 3.2 has an easy interpretation. 
Because Yff is an open set, its components are open. Since 7L U {± 00 } 

has the discrete topology, the continuity of the index is equivalent to the 
statement that the index is constant on the components of y.'F. This is 
quite useful in applications. 

One of the uses of the index is to examine ind( A - A) for all A for which 
this makes sense. When does it make sense? It must be that A - A E Y.'F 
and this is true precisely when A $. alee A) n are ( A). The next result is a 
consequence of (3.2). 

3.4. Proposition. If A E fJd( Yf'), then ind( A - A) is constant on the compo­
nents of C \ ale(A) n areCA). If A is an isolated point of a(A) and A$. 
a'e(A) n areCA), then ind(A - A) = O. 

PROOF. The map A ~ A - A is a continuous map of C \ a'e(A) n areCA) 
into Yff. So the first part of the proposition follows from the preceding 
remarks. If A is an isolated point of a( A) and A $. alee A) n are ( A), then 
there is a sequence {A n} in C \ a( A) such that An -> A. Thus ind( A - A 1/) 
~ ind( A - A). Since ind( A - An) = 0 for all n, the result follows. • 

3.5. Example. Let G be a bounded region in C such that BG = B[eI G] and 
define S: L 2a(G) -> L~(G) by Sf= zj. Then a,eCS) n areCS) = BG and 
ind(S - A) = -1 for A in G. If A$. clG, S - A is invertible. 

In fact, in Example 2.11 it was shown that BG = a'e(S) = are(S) = ae(S), 
apeS) = D, and dim[ran(S - A)] 1. = 1 for A in G. 

3.6. Example. Let S be the unilateral shift on 12. Then a'e(S) n are(S) = 
B[b and ind(S - A) = -1 for IAI < 1. 

In Proposition VII.6.5 it was shown that a(S) = cl [b, apeS) = D, and 
aap(S) = B[b. Thus for IAI = 1, ran(S - A) is not closed and hence B[b c:: 
a'e(S) n are(S). Also, if IAI < 1, it was shown that ran(S - A) is closed and 
dim[ran(S - A)] 1. = 1. This implies that B[b = a'e(S) n are(S) and ind(S 
- A) = -1 for A in [). 
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3.7. Proposition. If A, B E YJ', then A E9 B E YJ' and ind A E9 B = ind A 
+ ind B. 

PROOF. Exercise. 

Using this proposition and the preceding examples, more examples can be 
manufactured. Here is an interesting one. 

3.8. Example. Let S be the unilateral shift on /2 and put A = S * E9 S. 
Then a'e(A) n areCA) = a[]), a(A) = cl[]), and for 1;\1 < 1, ind(A - ;\) = o. 

One of the most important properties of the index is contained in the next 
result. Note that Theorem 3.2 is not used in its proof so it can be used in the 
proof of (3.2). 

3.9. Theorem. If A, B E YJ', then AB E .% and ind AB = ind A + ind B. 

PROOF. Since 7T(YJ') is the group of invertible elements of :18/:180' it is clear 
that AB E YJ' whenever A and B E YJ'. 

Clearly ker B ~ ker AB. Also, if h E ker AB, then Bh E ker A n ran B. 
In fact, B maps ker AB onto ker A n ran B. Thus B induces a bijection of 
ker AB /ker B onto ker A n ran B and so 

3.10 dimkerAB = dimkerB + dim[kerA n ranB]. 

(Note that because A, B E YJ', all of the dimensions that appear in (3.10) are 
finite integers.) 

Since ker A is finite dimensional, there is a finite-dimensional subspace At 
of ker A such that At n [ker A n ran B] = (0) and ker A = At + ker A n 
ran B. Hence 

3.11 dimkerA = dim At + dim[kerA n ranB]. 

It must be that At n ran B = (0). In fact, At n ran B = At n [ker A n 
ran B] = (0) since At:o:; ker A. Because dim At < 00, At + ran B is closed 
(l1I.4.3). Let Q = the projection of £' onto (At + ran B) -L = At -L n ran B -L 
and let T = Qlran B -L; so T is surjective. If h E ker T, then h E ran B-L 
and 0 = Th = Qh; thus h E kerQ = (At + kerB) -L -L = At + ker B. Since 
h E ran B -L , this implies that dim ker T = dim At. Since all of the spaces 
are finite dimensional, we have 

3.12 dim ran B -L = dim At + dim[ At -L n ran B -L ] . 

N ow note that 

A (ran B) n A ( At -L n ran B -L) = (0). 

In fact, if f E A(ran B) n A(At -L n ran B -L), then f = Ah = Ag, where 
h E ran Band g E At -L n ran B -L . Thus A (h - g) = 0, so h - g E ker A 
= At + ker A n ran B. Let h - g = m + k, where mEAt and k E ker A 
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(I ran B. Therefore (h - g, g) = (m + k, g) = (m, g) + (k, g) = o. 
Hence 0 = (h, g) = (g, g) = Ilg11 2, so f = O. 

N ow we show that 

ran A = A (ran B) + A ( .,I( ~ (I ran B ~ ). 

In fact, £= (.,I( + ran B) EB (.,I( + ran B) ~ = (.,I( + ran B) EB (.,I( ~ 

(I ran B ~). Since .,I( s ker A, we get the desired equality. 
Now an argument like that used to obtain (3.12), coupled with the fact 

that A(ran B) = ran AB, gives 

3.13 dim ran AB ~ = dim ran A ~ + dim[.,I( ~ (I ran B ~ ]. 

We can now put the pieces of the puzzle together. Indeed, first using 
(3.13) and (3.10), we get 

ind AB = dim ker AB - dim ran AB ~ 
= dim ker B + dim[ker A (I ran B] 

- {dim ran A ~ +dim[.,I( ~ (Iran B ~]) 

(3.11) = dimkerB + {dimkerA - dim.,l(} 

- dim ran A ~ - dim[ .,I( ~ (I ran B ~ ] 

= ind A + dim ker B - { dim .,I( + dim[.,I( ~ (I ran B ~ ] } 

(3.12) = ind A + ind B. • 

3.14. Corollary. If A E ff;' and R is an invertible operator, then RAR- 1 E ff;' 

and ind RAR -1 = ind A. 

We now begin to prove Theorem 3.2. If A E .9$( £), define 

yeA) == inf{IIAhll: Ilhll = 1,h 1- kerA}. 

3.15. Proposition. If A E .9$(£), then yeA) = sup{y > 0: IIAhl1 ~ yllhll 
for all h 1- ker A} = inf{ IIAhll/llhll: h $. ker A}. 

The proof of this proposition is left as an exercise. 

3.16. Proposition. Let A E .9$( £). 

(a) yeA) > 0 if and only if ran A is closed. 
(b) yeA) = y(A*). 

PROOF. The proof of (a) has appeared several times in this book under 
different guises. The proof here is left to the reader. To see (b), let 
h 1- kerA. Then IIA*Ahll = IIIAllAlhl1 = IIAIAlhll. But IAlh E clranA* 
(Why?) = ker A ~. Hence the definition of yeA) implies that IIA*Ahll ~ 
y(A)IIIAlhll = y(A)IIAhll; that is, IIA*fll ~ y(A)lIfll for every f in ran A. 
Since ran A is dense in (kerA*)~, y(A*) ~ yeA). But A = A**, so yeA) 
~ y(A*). • 
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From here we get the following consequence. 

3.17. Corollary. If A E !:!d(£'), then ran A is closed if and only if ran A* is 
closed. 

3.18. Lemma. If vIt, JV s; £' and dim vIt > dim JV, then there is a vector m 
in vIt such that IImll = dist(m, JV). 

PROOF. Let P be the projection of £' onto vIt, so dimP(JV) s; dimJV< 
dim vIt. Thus P( JV) is a proper subspace of vIt; let m E vIt n P( JV) -L . If 
n E JV, then 0= (Pn, m) = (n, Pm) = (n, m), so m .1 JV. Hence Ilmil 
= dist(m, .AI). • 

3.19. Lemma. If hE£', then y(A)dist(h, ker A) S; IIAhll. 

PROOF. Let P be the projection of £' onto ker A -L; then IIPhl1 = 
dist(h, ker A). Hence IIAhl1 = IIAPhl1 ~ y(A)IIPhll = y(A)dist(h, ker A) . 

• 
The next result has some interest by itself as well as being a major 

stepping stone to the proof of Theorem 3.2. If the role of y( A) in the next 
and subsequent propositions impresses the reader as somewhat mysterious, 
reflect that if A is invertible, then y(A) = IIA -111- 1 (Exercise 7). Now in 
Corollary VU.2.3, it was shown that if sd is a Banach algebra, ao E sd, and 
boa o = 1, then a + b is left invertible whenever Ilbll < Ilboll- l . Of course, a 
similar result holds for right-invertible elements. The number y(A) is trying 
to play the role of the reciprocal of the norm of a one-sided inverse. 

For example, if A is left invertible, then ran A is closed and ker A = (0); 
hence A E Y.'¥'. The next result implies that if IIBII < y(A), then A + B is 
left invertible. 

3.20. Proposition. If A E Yff and BE !:!d(£') such that IIBII < y(A), then 
A + B E Yff and: 

(a) dimker(A + B) S; dimkerA; 
(b) dimran(A + B)-Ls; dimranA-L. 

PROOF. First note that because A E Yff, y(A) > O. 
If h E ker(A + B) and h *" 0, then Ah = - Bh. By Lemma 3.19, 

y(A)dist(h, ker A) S; IIBhl1 S; IIBllllhl1 < y(A)llhll. Thus dist(h, ker A) < 
Ilhll for every nonzero vector h in ker(A + B). By Lemma 3.18, (a) holds. 

Since IIBII = IIB*II and y(A) = y(A*), (a) implies that dimker(A* + 
B*) S; dimker A*. But this inequality is equivalent to (b). 

It remains to prove that ran(A + B) is closed. Since A E Yff, either 
dim ker A < 00 or dim ker A * < 00. Suppose dim ker A < 00. It will be 
shown that A + B E ff, by using Theorem 2.5(e) and showing that if 
S = y(A) - IIBII, then {h: II(A + B)hll < Sllhll} containsnoinfinite-dimen-
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sional manifold. Indeed, if it did, it would contain a finite-dimensional 
subspace vi{ with dim vi{ > dim ker A. By Lemma 3.18 there is a vector h in 
vi{ with Ilhll = dist(h, ker A). Now II(A + B)hll < 811hll, so Lemma 3.19 
implies that y(A)llhll = Y(A)dist(h, ker A) :s; IIAhl1 :s; II(A + B)hll + IIBhl1 
< (8 + IIBII)llhll = y(A)llhil, a contradiction. Thus A + BE.y;; and so 
ran( A + B) is closed. 

If dim ker A = 00, then dim ker A * < 00. The argument of the preceding 
paragraph gives that ran(A * + B*) is closed. By Corollary 3.17, ran( A + B) 
is closed. • 

3.21. Proposition. If A E Y.'F and ind A :s; 0, then there is a finite-rank 
operator F such that ker( A + F) = (0) and ind( A + F) = ind A. 

PROOF. Since 0 ~ ind A = dim ker A - dim ran A 1-, dim ker A < 00 and 
dimkerA:s; dimranA1-. Let {el, ... ,en } be an orthonormal basis for 
ker A and let {fl"'" fn} be orthonormal vectors in ran A 1-. Define F: 
Yf'~ Yf' by Fh = L'j~l( h, ej)Jj. Thus F is a finite-rank partial isometry with 
initial F = ker A and final F:s; ran A. 1-

If hE ker(A + F), then Ah = -Fh, hence Ah E ran A n ran A J. SO 
o = Ah = Fh; that is, h E ker A = initial F. So Ilhll = IIFhl1 = 0, and, 
therefore, ker(A + F) = O. Also, since ran F :s; ran A 1-, and initial F = 
ker A, ran(A + F) = ran A EfJ ran F. Thus ind(A + F) = 
- dim ran(A + F) 1- = - dim Yf'e [ran A Ef) ran F] = - dim ran A 1- + 
dim ran F = ind A. • 

3.22. Corollary. If A is invertible and K E !!Ja, then ind(A + K) = O. 

PROOF. By considering A* + K * if necessary, it suffices to assume that 
ind(A + K) :s; O. By the preceding proposition, there is a finite-rank oper­
ator F such that ker(A + K + F) = (0) and ind(A + K) = ind(A + K + 
F). Let L = K + F. Since A + L = A(l + A -IL), ker(1 + A -lL) = (0); 
thus -1 ft: op(A-1L). But A-1L E !!Ja, so 1 + A lL is invertible. By 
Theorem 3.9, ind(A + K) = ind(A + L) = ind A(l + A .. IL) = ind A + 
ind(l + A -lL) = O. • 

3.23. Corollary. If A E:#P, then the following statements are equivalent. 

(a) indA = O. 
(b) There is a compact operator K such that A + K is invertible. 
(c) There is a finite-rank operator F such that A + F is invertible. 

PROOF. (a) implies (c). By Proposition 3.21 there is a finite-rank operator F 
such that ker(A + F) = (0) and ind(A + F) = ind A = O. Hence 
dimran(A + F)1-= dimker(A + F) = 0 and A + F is invertible. 

(c) implies (b). Clear. 
(b) implies (a). Apply Corollary 3.22 to A + K. • 
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3.24. Proposition. If A E Y§', ker A = (0), and BE .?J'(£) with IIBII < 
yeA), then ker(A + B) = (0) and ind(A + B) = ind A. 

PROOF. By Proposition 3.20, A + BEY§', ker(A + B) = (0), and 
dim ran( A + B).1 ~ dim ran A .i. It remains to show that dim ran( A + 
B) .1 ;::: dim ran A .1 . 

Let n ;::: 1 such that yeA) - IIBII > IIBlln- 1. For 0 ~ k ~ n - 1, 11(1 -
k/n)BII < yeA). So Proposition 3.20 implies that A + (1 - k/n)B E Y§, 
and is injective. So if h E £, Ilhll = 1, then 

II[A +(1- ~)B]hll;:::IIAhll -(1- ~)iIBhll 
;::: yeA) - IIBII > O. 

Thus yeA + (1 - k/n)B) ;::: yeA) - IIBII > II - (l/n)BII. Again, applying 
(3.20) to A + (1 - k/n)B and -(I/n)B, we have that 

( k) 1 (k+l) A + 1 - ~ B - ~ B = A + 1 - -n- BEY§' 

and 

dim ran( A + (1 - k : 1 ) B).1 ~ dim ran( A + (1 _ ~ ) B ) .1 

for 0 ~ k ~ n - 1. Looking at these n inequalities and noticing that the 
left-hand side for k = n - 1 is dim ran A.1 and that the right side for k = 0 
is dim ran( A + B).1 , we get that dim ran A .1 ~ dim ran( A + B).1 . • 

3.25. Lemma. If A E Y§, and F is ajinite-rank operator, then ind(A + F) 
= ind A. 

PROOF. If ind A = ± 00, then either ker A or ran A.1 is infinite dimensional. 
Because F has finite rank, the same is true of A + F. Thus ind A = ind( A 
+ F). Therefore it may be assumed that ind A is finite; that is, it may be 
assumed that A is a Fredholm operator. The proof is by cases. 

Case 1: ker F.1 <;;:: ker A. Hence ker A.1 <;;:: ker F = %. So ran A = 
A(ker A.1) <;;:: A%= (A + F)%<;;:: ran(A + F). This implies that ran A.1;2 
ran( A + F).1 and therefore 

3.26 dimranA.1= dimran(A + F).1 +dim[ran(A + F) e ranA]. 

Also, ran A + ran F = A (ker A .i) + F(ker F .i) = ran( A + F) since ker A 
;2 kerF.1. Since ran A <;;:: ran(A + F), ran(A + F) e ran A and ran(A + 
F)/ran A are isomorphic as vector spaces. Also, the natural map of 
ran(A + F) onto ran(A + F)/ran A when restricted to ran F remains 
surjective. Thus ran F Iran F n ran A and ran(A + F)/ran A are isomor­
phic as vector spaces. Combining these isomorphisms gives 

dim[ran( A + F) e ran A] = dim ran F - dim[ran F n ran A]. 
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If we combine this with (3.26), we obtain 
3.27 dim ran A -L = dim ran{ A + F)-L 

+dimranF- dim[ranFIi ranA]. 

Since we want to show that ind A = ind(A + F), formula (3.27) demon­
strates how dim ran A -L and dim ran(A + F) -L differ. Now we must see 
how dim ker A and dim ker( A + F) differ. 

Note that A -\ran F) = kerA EB [A -Iran F Ii kerA -L]. Hence 

3.28 dim ker A = dim A -l(ran F) - dim[A -Iran F Ii ker A -L]. 

But A is injective on ker A -L and A[ A -Iran F Ii ker A -L] = ran F Ii ran A. 
Thus 

3.29 dim[A -Iran F Ii ker A -L] = dim[ran F Ii ran A]. 

Also, (A + F)[A -Iran F] = ran F. If h E ker(A + F), then Ah = - Fh, 
so that hE [A-1ranF]; that is, ker(A + F) ~ [A-IranF]. Hence ker«A 
+ F)I[A-1ranF]) = ker(A + F) and so 

dim[A-1ranF] = dimker{A + F) + dimranF. 

If we combine this formula and (3.29) with formula (3.28), we obtain 

3.30 dimkerA = dimker{A + F) 

+ dim ran F - dim[ ran F Ii ran A] . 

Combining (3.27) and (3.30), it is clear that ind A = ind(A + F). 
Case 2: ranF~ ranA-L. Hence kerF*-L= ranF~ kerA*. So Case 1 

implies that ind A = -ind A* = -ind(A* + F*) = ind(A + F). 
Case 3: ker F -L ~ ker A.l and ran F ~ ran A. Let A I and FI be the 

operators defined from ker A -L into ran A by letting them be the restrictions 
of A and F to ker A -L. We want to apply Corollary 3.22 to Al and Fl' In 
fact, AI: ker A .1 ~ ran A is invertible, but there is a bit of a difficulty here 
since Al does not map a Hilbert space into itself. But this can be overcome 
since ker A -L and ran A are isomorphic Hilbert spaces. (Why?) The details 
are left to the reader. By Corollary 3.22, ind(AI + F1 ) = O. We now want to 
relate these dimensions to the corresponding dimensions for A and A + F. 

Since ker A ~ ker F, ker A ~ ker(A + F). Thus ker(A I + FI ) = ker(A + 
F) e ker A. Therefore, 

3.31 dimkerA = dimker{A + F) - dimker{AI + Fj). 

Also, since ker(A + F) -L ~ ker A -L , ran(AI + F1) = (AI + F1)ker A -L = 
ran(A + F). Hence ran(AI + Fl ) -L = ran A e ran(A + F). So 
dim ran( A 1 + F j ) -L = dim ran A - dim ran( A + F) = dim ran( A + F)-L 
dim(ran A).l . (Why?) Therefore 

dim{ranA)-L= dimran{A + F)-L -dimran{A I + FI)-L. 

Combining this equation with (3.31) gives that ind A = ind(A + F) -
ind(Al + Fj ) = ind(A + F). 
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Case 4: The general case. Let A E g: and let F be a finite-rank operator. 
Let P be the projection of .Yl' onto ker A 1- and let Q be the projection of .Yl' 
onto ran A. So QFP is a finite-rank operator and kerQFP ~ ker A. Hence 
(kerQFP) 1- ~ ker A 1- and clearly ran QFP ~ ran A. By Case 3, 

ind A = ind(A + QFP). 

Also, (1 - Q)FP is a finite-rank operator and ran(l - Q)FP ~ ran A 1-

~ franCA + QFP)] 1-. So Case 2 implies 

ind(A + QFP) = ind(A + QFP +(1 - Q)FP) 

= ind(A + FP). 

But F(l - P) has finite rank and [ker F(l - P)] 1- ~ ker A ~ ker(A + 
FP). So Case 1 implies that 

ind(A + FP) = ind(A + FP + F(l - P)) 

= ind(A + F). • 

PROOF OF THEOREM 3.2. The continuity of the index is the first order of 
business. Let A E yg: and assume that ind A s O. It must be shown that 
there is a 8 > 0 such that if C E yg: and IIA - CII < 8, then ind A = ind C. 

By Proposition 3.21 there is a finite-rank operator F such that ker(A + 
F) = 0 and ind A = ind(A + F). Let 8 = yeA + F). By Proposition 3.24, 
if IIC - All < 8, then ind(A + F) = ind(C + F). But Lemma 3.25 implies 
that ind C = ind( C + F); thus ind A = ind C if IIA - CII < 8. If ind A ~ 0, 
then the preceding argument shows that the index is continuous at A *. It 
follows that it is continuous at A. 

If K is a compact operator, let {Fn} be a sequence of finite-rank 
operators such that liFn - KII ~ O. By the first part of the proof, ind(A + 
Fn) ~ ind(A + K). But ind(A + Fn) = ind A by Lemma 3.25. Hence ind A 
= iud(A + K). • 

For a more detailed treatment of the index applicable to unbounded 
operators on a Banach space, see pp. 229-244 of Kato [1966]. 

EXERCISES 

l. Prove Proposition 3.7. 

2. Verify the statements made in Example 3.8. 

3. If S is the unilateral shift, show that for every E > 0 there is a rank-one 
operator F with IIFII < E such that a(S* Ell S + F) = alI). 

4. Let G be an open connected subset of a(A)\a1e(A) U areCA) and suppose 
Ao E G such that ind(A - AO) = O. Show that there is a finite-rank operator F 
such that A + F - Ao is invertible. Show that A + F - A is invertible for every 
A in G. 
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5. If A E Sd(£') and ran A is closed, show that ranA(oo) is closed. If A EY'.'F 
and ker A = (0), show that A(oo) E Y.'F and ind A(oo) = ~ 00 or O. 

6. Prove Proposition 3.15. 

7. If A is invertible, show that yeA) = IIA-III 1 

8. Let A E.'F and suppose f is analytic in a neighborhood of o(A) and does not 
vanish on 0e(A). Show that f(A) E.'F and find indf(A). 

9. Let S be the unilateral shift and let f be an analytic function in a neighborhood 
of cm such that fez) =f. 0 if Izl = 1. Let yet) = f(exp(2'1Tit)), 0::; t::; 1. Show 
that 0e (/(S)) = f( aO)) = (y(t): 0 ::; t ::; I} and that if A $ f( aO)), ind(j( S) 
~ A) = ~ n (y; A), where n (y; A) = the winding number of y about A. More­
over, show that if ind(j(S) ~ A) = 0, then A $ o(j(S)). 

lO. Let S be the operator defined in Example 2.11 where G = 0). Show that there is 
a compact operator K such that S + K is unitarily equivalent to the unilateral 
shift. 

11. Does the unilateral shift have a square root? 

12. Show that for every n in l. U {± oo} there is an operator A in Y'.'F such that 
indA = n. 

13. If A E Y.'F, then for every n 2 1, An E Y.'F and ind An = n(ind A). 

§4. The Components of f/!F 

Since the index is continuous on YY; and assumes every possible value 
(Exercise 3.12), YY; cannot be connected. What are its components? 

Note that because YY; is an open subset of a Banach space, its 
components are arcwise connected (Exercise IV.1.24). 

4.1. Theorem. If A, BE YY;, then A and B belong to the same component 
of YY; if and only if ind A = ind B. 

Half of this theorem is easy. For the other half we first prove a lemma. 

4.2. Lemma. If A E Y% and ind A = 0, then there is a path y: [0,1] -+ Y.~ 
such that yeO) = 1 and y(1) = A. 

PROOF. By Corollary 3.23 there is a finite-rank operator F such that A + F 
is invertible. If yet) = A + tF, yeO) = A, y(l) = A + F, and yet) E Y% 
for all t. Thus we may assume that A is invertible. 

Let A = UIA I be the polar decomposition of A. Because A is invertible, 
U is a unitary operator and IA I is invertible. Using the Spectral Theorem, 
U = exp(iB) when B is hermitian. Also, since 0 fiE u(IA I), IA I 
f[8,r]xdE(x), where 0 < 8 < r = IIAII. Define y: [0,1]-+ .1l'(£) by 

y{t) = eitB f xtdE{x) = eitBIAII. 
[8, r] 
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It is easy to check that y is continuous, yeO) = 1, and y(l) = A. Also, each 
y(t) is invertible so yet) E Y''%. • 

PROOF OF THEOREM 4.1. First assume that A, B E.% and ind A = ind B. So 
there is an operator C such that CB = 1 + K for some compact operator K. 
Thus C E ~ and ind C = -ind B = -ind A. Hence AC E.% and ind AC 
= 0. By the preceding lemma there is a path y: [0, 1] ~ Y'.% such that 
yeO) = 1 and y(l) = AC. Put pet) = y(t)B - tAK. Because AK E goo, 
pet) E.% for all t in [0,1]. Also, p(O) = Band p(l) = ACB - AK = 
A(1 + K) - AK = A. 

N ow assume that ind A = - 00; so dime ran A) .1 = 00 and dim ker A < 
00. Let F be a finite-rank operator such that ker(A + tF) = ° for t 1= O. 
(Why does F exist?) This path shows that we may assume that ker A = (0). 
Let V be any isometry such that dim(ran V).l = 00 and consider the polar 
decomposition A = UIA I of A. Since A E Y'.% and ker A = (0), IA I is 
invertible and U is an isometry. Also, ranU = ran A, so (Exercise 4) there is 
a unitary operator W such that WUW* = V. Let y: [0, 1] ~.% such that 
yeO) = IA I and y(l) = 1 and let p: [0, 1] ~.% such that p(O) = 1 and 
p(l) = W. Then aCt) = p(t)Uy(t)p(t)* defines a path a: [0, 1] ~ Y'57 
(Why?) such that a(O) = A and a(l) = V. Similarly, if ind B = - 00, there 
is a path connecting B to V; so A and B belong to the same component of 
Y''%. 

If ind A = ind B = + 00, apply the preceding paragraph to A* and B* . 

• 
4.3. Corollary. The component of the identity in .%, .%0' is a normal sub­
group of.% and '%/'%0 is an infinite cyclic group. 

PROOF. By Theorem 3.9, ind.% ~ 7L is a group homomorphism and it is 
surjective (Exercise 3.12). By Theorem 4.1, ker(ind) = .%0' • 

EXERCISES 

1. Let G be any topological group and let Go be the component of the identity. 
Show that Go is a normal subgroup of G. 

2. What are the components of the set of invertible elements in C( anJ)? 

3. If S = the unilateral shift, what are the components of the set of invertible 
elements of C*(S)? 

4. If V and U are isometries and dim(ran V).L = dim(ranU).L , then there is a 
unitary W such that WUW* = v. 

5. Find the components of the set of partial isometries. Find the unitary equivalence 
classes of the set of partial isometries. 
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§5. A Finer Analysis of the Spectrum 

In this section we will examine the spectrum and the index more closely. For 
example, if A E Y:#", then Theorem 3.2 implies that there is a 8 > 0 such 
that if liB - A II < 8, then BEY:#" and ind B = ind A. How does dim ker B 
differ from dim ker A? In general a lot cannot be said; the next result is the 
best that can be said. 

5.1. Proposition. If A E Y:#" and either ker A = (0) or ran A =:Yt', then 
there is a 8 > 0 such that if liB - A II < 8, then dim ker B = dim ker A and 
dim ran B = dim ran A. 

PROOF. By Proposition 3.20 and Theorem 3.2 there is a 8 > 0 such that if 
liB - A II < 8, then ind A = ind B, dim ker B s dim ker A, and dim ran B 1-

s dim ran A 1- • Since one of these dimensions for A is 0, the proposition is 
proved. • 

If both ker A and ran A are nonzero, then there are semi-Fredholm 
operators B that are arbitrarily close to A such that dim ker B < dim ker A 
(see Exercise 1). In fact, just about anything that can go wrong here does go 
wrong. However, dimker(A - ;\) does behave rather nicely as a function 
of ;\. 

5.2. Theorem. If ;\ $. a'e(A) () areCA), then there is a 8 > 0 such that 
dim ker( A - }L) and dim ran( A - }L) 1- are constant for 0 < I}L - ;\1 < 8. 

PROOF. We may assume that ;\ = 0, so A E Y:#". It follows that An E Yff 
for every n ~ 1 (Exercise 3.13). Hence ran An = An is closed. Let A = 
n~~lAn' Note that An+l ~An and AAn =An+1 ; henceAA~A. Let 
B = AlA. 

Claim. BA = A. 

If h E A, then h E ran A and there is a unique vector f in (ker A) 1- such 
that Af= h. Now h E An+l = AAn = A(An e kerA), so there is a vec­
tor fn in An e ker A such that Afn = h. But the uniqueness of f implies 
that f = fn E An for every n. Hence f E A and h = Af = Bf E BA. 

Thus B E Yff and ind B = dim ker B. By (3.2) and (3.20) there is a 
8> 0 such that if I}LI < 8, then dimker(B -}L) s dimkerB, dimran(B­
}L) 1- = 0, and ind( B - }L) = ind B. Thus dim ker( B - }L) = dim ker B for 
I}LI < 8. Also, choose 8 such that ind( A - }L) = ind A for I}LI < 8. 

On the other hand, if }L of; 0, then ker( A - }L) ~ A. In fact, if h E ker( A 
- }L), then Anh = }Lnh, so that h = An(}L-nh) EAn for every n. Thus for 
0< I}LI < 8, dimker(A -}L) = dimker(B -}L) = dim kerB; that is, 
dim ker( A - }L) is constant for 0 < I}LI < 8. Since ind( A - }L) is constant 
for these values of }L, dim ran( A - }L) 1- is also constant. • 

The next result is from Putnam [1968]. 
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5.3. Theorem. If A E Ja(A), then either A is an isolated point of a(A) or 
A E ale(A) n areCA). 

PROOF. Suppose A E a(A) but A is neither an isolated point of a(A) nor a 
point of ale( A) n are ( A). It must be shown that A E int a( A). In fact, since 
A$. ale(A) n areCA), A - A E Y:F. Let 8 > 0 such that A - Il E Y:F, 
dim ker( A - Il) = dim ker( A - A), and dim ran( A - Il) 1. = dim ran( A -
A) 1. for 0 < III - AI < 8. Since A E a(A), at least one of ker(A - A) and 
ran(A - Il) 1. differs from (0). Hence Il E a(A) for III - AI < 8. • 

What happens if A is an isolated point of a(A)? 

5.4. Proposition. If A is an isolated point of a(A), the following statements 
are equivalent. 

(a) A$. ale(A) n areCA). 
(b) A is a pole of the function z >-) (z - A)-i. 
(c) The Riesz idempotent E(A) has finite rank. 
(d) A - A E :F and ind( A - A) = O. 

PROOF. Exercise 3. 

If nElL U {± oo} and A E 88(X), define 

Pn(A) == {A E a(A): A - A EY:F andind(A - A) = n}. 
So for n "* 0, Pn(A) is an open subset of the plane; the set Po(A) consist of 
an open set together with some isolated points of a(A). In fact, Proposition 
5.4 can be used to show that Po(A) contains precisely the isolated points of 
a(A) for which the Riesz idempotent has finite rank. The proof of the next 
result is easy. 

5.5. Proposition. If A E 88(X), then ae(A) = [ale(A) n areCA)] U 

P + oo(A) U P _ oo(A). 

5.6. Definition. If A E 88(X), then the Weyl spectrum of A, aw(A), is 
defined by 

Note that since ae(A + K) = ae(A) for every compact operator, aw(A) is 
nonempty and ae(A) <;:::; aw(A). The way to think of the Weyl spectrum is 
that it is the largest part of the spectrum of A that remains unchanged 
under compact perturbations. It is clear that aw ( A) = aw ( A + K) for every 
K in 88o, but it is not so clear that aw(A) <;:::; a(A). The following result of 
Schechter (1965] gives this and some more. 

5.7. Theorem. If A E 88(X), then aw(A) = ae(A) U Un,,"OPn(A). 

PROOF. Clearly X == ae(A) U Un,,"OPn(A) <;:::; aw(A). Now suppose A $. X. 
Then A - A E:F and ind(A - A) = O. By Corollary 3.23 there is a finite-
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rank operator F such that A + F - A is invertible. Hence AtE a(A + F) 
so that A$. aw(A). • 

So for every operator A in 8d(.JIt') there is a spectral picture for A (a term 
coined in Pearcy [1978]). There are the open sets {Pn(A): 0 < Inl ::s: oo}, the 
set Po(A) = Go U D where D consists of isolated points A for which 
dim E ( A) = n A < 00, and there is the remainder of a (A), which is the set 
a'e(A) n areCA). The next result is due to Conway [1977]. 

5.8. Proposition. Let K be a compact subset of C, let {G,,: - 00 ::s: n ::s: oo} 
be open subsets of K (some possibly empty), let D be a subset of the set of 
isolated points of K, and for each A in Diet n A E {I, 2, ... }. Then there is an 
operator A on .JIt' such that a(A) = K, Pn(A) = Gn for 0 < Inl ::s: 00, 

Po(A) = Go U D, and dim E(A) = nA for every A in D. 

We prove only a special case of this result; the general case is left to the 
reader. Let K be any compact subset of C and let G be an open subset of 
K. Put H = int[clG]; so G ~ H, but it may be that H"4= G. However, 
IJH = IJ[clH]. Let Tf= zf for f in L~(H), so H = P -leT), aCT) = clH, 
and a'e(T) n are(T) = IJH = IJ[cl G]. Let {Ad be a countable dense subset 
of K\ G and let N be the diagonalizable normal operator with ap(N) = 
{Ak} and such that dimker(N - Ak) = 00 for each Ak. If 0 < n ::s: 00 and 
A = NEB T(n), then a(A) = K, P -n(A) = G, and K\ G = a'e(A) n 
are ( A). 

EXERCISES 

l. Let A E!/ff' and suppose that ker A "4= (0) and ran A ~ "4= (0). Show that for 
every 8 > 0 there is an operator B in ,'/ff' such that liB - A II < 8, dim ker B < 
dim ker A, and dim ran B ~ < dim ran A ~ . 

2. If A E,'/ff', show that there is a {) > 0 such that dim ker( A - /-L) = dim ker A 
and dimran(A - /-L)~= dimranA~ for I/-LI < 8 if and only if kerA <;:: ran A" 
for every n ~ l. 

3. Prove Proposition 5.4. 

4. Prove Proposition 5.5. 

5. If ,\ E a P" (A) and n "* 0, show that ran( A - ,\) is not closed. What happens jf 
n = O? 

6. (Stampfli [1974].) If A E 88( £), then there is a K in 880 (.Jf') such that 
o(A + K) = 0w(A). 

7. Prove Proposition 5.8. 



APPENDIX A 

Preliminaries 

As was stated in the Preface, the prerequisites for understanding this book 
are a good course in measure and integration theory and, as a corequisite, 
analytic function theory. In this and the succeeding appendices an attempt 
is made to fill in some of the gaps and standardize some notation. These 
sections are not meant to be a substitute for serious study of these topics. 

In Section 1 of this appendix some results from infinite-dimensional 
linear algebra are set forth. Most of this is meant as review. Proposition lA, 
however, seems to be a fact that is not stressed or covered in courses but 
that is used often in functional analysis. Section 2 on topology is presented 
mainly to discuss nets. This topic is often not covered in the basic courses 
and it is especially useful in discussing various ideas and proving results in 
functional analysis. 

§ 1. Linear Algebra 

Let :r be a vector space over IF = IR or C. A subset E of :r is linearly 
independent if for any finite subset {e l , ... , en} of E and for any finite set 
of scalars {a l , ... , an}, if Lk~lakek = 0, then a l = ... = an = O. A Hamel 
basis is a maximal linearly independent subset of :r. 

1.1. Proposition. If E is a linearly independent subset of :r, then E is a 
Hamel basis if and only if every vector x in :r can be written as x = Lk~lakek 
for scalars a1, ... ,an and {el, ... ,en} ~ E. 

PROOF. Suppose E is a basis and x E:r, x $. E. Then E U {x} is not 
linearly independent. Thus there are ao, ai' ... , an in IF and el , ... , en in E 
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such that 0 = aox + aiel + ... +ane,,, with a o -=1= O. (Why?) Thus x = 

Lk~l( -akjaO)ek· 
Conversely, if :!t is the linear span of E, then for every x in :!t\ E, 

E U {x} is not linearly independent. Thus E is a basis. • 

1.2. Proposition. If Eo is a linearly independent subset of :!t, then there is a 
basis E that contains Eo. 

PROOF. Use Zorn's Lemma. 

A linear functional on :!t is a function f: :!t ..... IF such that f( ax + /3 y) = 

af(x) + /3f(y) for x, yin :!t and a,/3 in IF. If:!t and qy are vector spaces 
over IF, a linear transformation from :!t into qy is a function T: :!t ..... qy such 
that T(a[xi + a 2x 2) = a[T(xI) + a2T(x 2) for Xl' x 2 in :!t and ai' a 2 in IF. 

If A, B <;;; :!t, then A + B == {a + b: a E A, bE B}; A - B == {a - b: 
a E A, b E B}. For a in IF and A <;;;:!t, aA == {aa: a E A}. If .A is a 
linear manifold in :!t (that is, .A <;;; :!t and .A is also a vector space with the 
same operations defined on :!t), then define :!t/.A to be the collection of all 
the subsets of :!t of the form x + .A. A set of the form X +.A is called a 
coset of .A. Note that (x +.A) + (y +.A) = (x + y) +.A and a(x +.A) 
= ax +.A since .A is a linear manifold. Hence :!t/.A becomes a vector 
space over IF. It is called the quotient space of :!t mod .A. 

Define Q: :!t ..... :!t/.A by Q(x) = x +.A. It is easy to see that Q IS a 
linear transformation. It is called the quotient map. 

If T: :!t ..... qy is a linear transformation, 

ker T == {x E :!t: Tx = O}, 

ran T == {Tx: x E :!t } ; 

ker T is the kernel of T and ran T is the range of T. If ran T = qy, T is 
surjective; if ker T = eO), T is injective. If T is both injective and surjective, 
then T is bijective. It is easy to see that the natural map Q: :!t ..... :!t/.A is 
surjective and kerQ =.A. 

Suppose now that T: :!t ..... qy is a linear transformation and .A is a linear 
manifold in :!t. We want to define a map T: :!t/.A ..... qy by Tex +.A) = Tx. 
But T may not be well defined. To ensure that it is we must have TXI = TX2 
if Xl +.A = X2 +.A. But Xl +.A = x 2 +.A if and only if Xl - X2 E.A, 
and TXI = TX2 if and only if Xl - x 2 E ker T. So T is well defined if 
.A <;;; ker T. It is easy to check that if T is well defined, T is linear. 

1.3. Proposition. If T: :!t ..... qy is a linear transformation and .A is a linear 
manifold in :!t contained in ker T, then there is a linear transformation T: 
:!tj.A ..... qy such that the diagram 

:!t ~ qy 

Q~ /t 
:!t/.A 

commutes. 
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The preceding proposition is especially useful if .H = ker T. In that case 
t is injective. 

The last proposition of this section will be quite helpful in the book. 

1.4. Proposition. Let f, fl"'" fn be linear functionals on :!£. If kerf;;2 
nk~lkerfk' then there are scalars al , ... , an such that f = Lk~lakfk (that is, 
f(x) = Lk~lakfk(x) for every x in :!£). 

PROOF. It may be assumed without loss of generality that for 1 ~ k ~ n, 

n 

n ker~ =1= n ker~. 
}*k }~I 

(Why?). So for 1 ~ k ~ n, there is a Yk in njHker~ such that Yk f/:. 
nj~lker~. So ~(Yk) = 0 for j =1= k, but fk(Yk) =1= O. Let Xk = [fk(Ydl-lYk' 
Hence fk(X k) = 1 and Uxk) = 0 for j =1= k. 

Now let f be as in the statement of the proposition and put ak = f(Xk)' 
If x E:!£, let Y = x - Lk~lfk(X)Xk' Then fj(y) = fj(x) -
Lk~dk(X)~(Xk) = O. By hypothesis, f(y) = O. Thus 

n 

0= f(x) - L fk(X)f(Xk) 
k~1 

n 

= f(x) - L aJk(x); 
k~1 

§2. Topology 

In this book all topological spaces are assumed to be Hausdorff. 
This section will review some of the concepts and results using nets as this 

idea is frequently used in the text. 
A directed set is a partially ordered set (I, ~) such that if iI' i2 E I, then 

there is an i3 in I such that i3 ~ i l and i3 ~ i2. A good example of a 
directed set is to let (X, .r) be a topological space and for a fixed Xo in X 
let ilIt = {U in .r: Xo E U}. If U, V E ilIt, define U ~ V if U ~ V (so 
bigger is smaller). ilIt is said to be ordered by reverse inclusion. Another 
example is found if S is any set and .% is the collection of all finite subsets 
of S. Define Fl ~ F2 in .% if Fl ;;2 F2 (bigger means bigger). Here .% is said 
to be ordered by inclusion. Both of these examples are used frequently in the 
text. 

A net in X is a pair « I, ~), x), where (I, ~) is a directed set and x is a 
function from I into X. Usually we will write Xi instead of x(i) and will use 
the phrase "let {x i} be a net in X. " 
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Note that ~, the natural numbers, is a directed set, so every sequence is a 
net. If (X, 3) is a topological space, Xo E X, and tJIf = {U in 3: Xo E U}, 
then let Xu E U for every U in tJIf. So {xu: U E tJIf} is a net in X 

2.1. Definition. If {Xi} is a net in a topological space X, then {X I } 

converges to Xo (in symbols, Xi --> Xo or Xo = lim xJ if for every open 
subset U of X such that Xo E U, there is an io = io(U) such that Xi E U 
for i ;::: io. The net clusters at Xo (in symbols, Xi ~ xo) if for every io and 
for every open neighborhood U of x o, there exists an i;::: io such that 
xiE U. 

These notions generalize the corresponding concepts for sequences. Also, 
if Xi --> Xo, then Xi ~ xo' Note that the net {xu: U E tJIf} defined just 
prior to the definition converges to xo' This is a very important example of a 
convergent set. 

2.2. Proposition. If X is a topological space and A <;:: X, then X E cl A 
(closure of A) if and only if there is a net {a i} in A such that a I --> X. 

PROOF. Let tJIf = {U: U is open and X E U}. If X E cl A, then for each U 
in tJIf there is a point au in A n U. If Uo E tJIf, then au E Uo for every 
U;;::: Uo; therefore x = lim au. Conversely, if {a , } is a net in A and a, --> x, 
then each U in tJIf contains a point a i and a i E A n U. Thus x E cl A . 

• 
2.3. Proposition. If A <;:: X, {ai } is a net in A, and ai .;y+ x, then 
x E cl A. 

PROOF. Exercise. 

There is a concept of a sub net of a net and with this concept it is possible 
to prove that if a net clusters at a point x, then there is a subnet that 
converges to x. The concept of a subnet is, however, somewhat technical 
and is not what you might at first think it should be. Since this concept is 
not used in this book, the interested reader is referred to Kelley [1955]. It 
might also be appropriate to mention that a topological space is Hausdorff 
if and only if each convergent net has a unique limit point. 

2.4. Proposition. If X and Yare topological spaces and f: X --> Y, then f is 
continuous at Xo if and only if f(xJ --> f(x o) whenever x, --> xo' 

PROOF. First assume that f is continuous at Xo and let {Xi} be a net in X 
such that Xi --> Xo in X If V is open in Yand f(x o) E V, then there is an 
open set U in X such that Xo E U and f(U) <;:: V. Let io be such that 
Xi E U for i ;::: io. Hence f(x,) E V for i ;::: io. This says that f(x,) --> f(x o). 

Let tJIf = {U: U is open in X and Xo E U}. Suppose f is not continuous 
at xo' Then there is an open subset V of Y such that f(x o) E V and 
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f( U) \ V*" 0 for every U in Ok'. Thus for each U in Ok' there is a point Xu in 
U with f(xu) $. v. But {xu} is a net in X with Xu ~ Xo and clearly 
{f(xu)} cannot converge to f(xo)· • 

2.5. Proposition. Iff: X ~ Y, f is continuous at xo, and {Xi} is a net in X 
that clusters at x o, then {j(xi)} clusters at f(xo). 

PROOF. Exercise. 

2.6. Proposition. Let K ~ X. Then K is compact if and only if each net in K 
has a cluster point in K. 

PROOF. Suppose that K is compact and let {Xi: i E I} be a net in K. For 
each i let F; = cl{ x/ j ~ i}, so each F; is a closed subset of K. It will be 
shown that {F;: i E I} has the finite-intersection property. In fact, since I 
is directed, if i I , ... , in E I, then there is an i ~ i l ,···, in" Thus F; ~ nk~lF;k 
and {F;} has the finite-intersection property. Because K is compact, there is 
an Xo in niF;. But if U is open with Xo in U and io E I, the fact that 
Xo E cl{ Xi: i ~ io}, implies there is an i ~ io with Xi in U. Thus Xi 7 xo' 

Now assume that each net in K has a cluster point in K. Let {Ka: 
a E A} be a collection of relatively closed subsets of K having the finite­
intersection property. If ff = the collection of all finite subsets of A, order 
ff by inclusion. By hypothesis, if F E ff, there is a point X F in n{ K a: 
a E F}. Thus {x F } is a net in K. By hypothesis, {x F } has a cluster point 
Xo in K. Let a E A, so {a} E ff. Thus if U is any open set containing Xo 
there is an Fin ff such that a E F and x F E U. Thus X F E Un Ka; that 
is, for each a in A and for every open set U containing x o, Un Ka *" D. 
Since Ka is relatively closed, Xo E Ka for each a in A. Thus Xo E naKa 
and K must be compact. • 

The next result is used repeatedly in this book. 

2.7. Proposition. If X is compact, {Xi} is a net in X, and Xo is the only 
cluster point of {Xi}' then the net {Xi} converges to Xo' 

PROOF. Let U be an open neighborhood of Xo and let J = {j E I: 
x) $. U}. If {Xi} does not converge to xo, then for every i in I there is a j 
in J such that j ~ i. In particular, J is also a directed set. Hence {x/ 
j E J} is a net in the compact set X\ U. Thus it has a cluster point Yo' But 
the property of J mentioned before implies that Yo is also a cluster point of 
{Xi: i E I}, contradicting the assumption. Thus Xi ~ xo' • 

The next result is rather easy, but it will be used so often that it should be 
explicitly stated and proved. 

2.S. Proposition. Iff: X -> Y is bijective and continuous and X is compact, 
then f is a homeomorphism. 
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PROOF. If F is a closed subset of X, then F is compact. Thus f(F) is 
compact in Y and hence closed. Since f maps closed sets to closed sets, r 1 

is continuous. • 

Note that the Hausdorff property was used in the preceding proof when 
we said that a compact subset of Y is closed. 

In the study of functional analysis it is often the case that the mathemati­
cian is presented with a set that has two topologies. It is useful to know how 
properties of one topology relate to the other and when the two topologies 
are, in fact, one. 

If X is a set and 5";,.9; are two topologies on X, say that.9; is larger 
or stronger than 5"; if.9;:::;:> 5";; in this case you may also say that 5"; is 
smaller or weaker. In the literature there is also an unfortunate nomencla­
ture for these concepts; the words" finer" and "coarser" are used. 

The following result is easy to prove (it is an exercise) but it is enormously 
useful in discussing a set with two topologies. 

2.9. Lemma. If 5";,.9; are topologies on X, then.9; is larger than 5"; if 
and only if the identity map i: (X,.9;) ~ (X, 5";) is continuous. 

2.10. Proposition. Let 5";,.9; be topologies on X and assume that.9; is 
larger than 5";. 

(a) If F is 5;-closed, F is .9;-closed. 
(b) Iff: Y ~ (X,.9;) is continuous, then f: Y --> (X, 5;) is continuous. 
(c) Iff: (X, 5;) ~ Y is continuous, then f: (X,.9;) --> Y is continuous. 
(d) If K is .9;-compact, then K is 5";-compact. 
(e) If X is .9;-compact, then 5; =.9;. 

PROOF. (b) Note that f: Y ~ (X, 5";) is the composition of f: Y ~ (X,.9;) 
and i: (X,.9;) ~ (X, 3 1) and use Lemma 2.9. 
(d) Use Lemma 2.9. 
(e) Use Lemma 2.9 and Proposition 2.8. 

The remainder of the proof is an exercise. • 
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The Dual of LP( }-t) 

In this section we will prove the following which appears as 111.5.5 and 
111.5.6 in the text. 

Theorem. Let (X, Q, p,) be a measure space, let 1 ~ P < 00, and let l/p + 
l/q = 1. If g E U(p,), define Fg: LP(p,) ~ IF by 

If 1 < P < 00, the map g ~ Fg defines an isometric isomorphism of Lq(p,) 
onto LP(p,)*. If P = 1 and (X, Q, p,) is a-finite, g ~ Fg is an isometric 
isomorphism of LOO(p,) onto L1(p,)*. 

PROOF. If g E Lq(p,), then Holder's Inequality implies that iFgU)1 ~ 
Ilfllpllgll q for all f in LP(p,). Hence Fg E LP(p,)* and IIFgl1 ~ Ilgll q . There­
fore g ~ Fg is a linear contraction. It must be shown that this map is 
surjective and an isometry. Assume FE LP(p,)*. 

Case 1: p,(Xj < 00. Here Xd E LP(p,) for every ,1 in Q. Define p(,1) = 
F(Xd). It is easy to see that p is finitely additive. If {,1n} ~ Q with 
,11 :2 ,12:2 ... and n~~I,1n = D, then 

Ilxd)lp = [!IXdl dp, riP 
= p,{,1Jllp ~ o. 

Hence p(,1,,) ~ 0 since F is bounded. It follows by standard measure 
theory that p is a countably additive measure. Moreover, if p,(,1) = 0, 
Xd = 0 in LP(p,); hence p(,1) = O. That is, p « p,. By the Radon-Nikodym 
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Theorem there is an g-measurable function g such v(L1) = fL1g dp, for every 
L1 in g; that is, F(XL1) = f XL1g dp, for every L1 in g. It follows that 

B.t F(f) = jlgdp, 

for every simple function f. 

B.2. Claim. g E Lq(p,) and Ilgll q .:s; liFll. 

Note that once this claim is proven, the proof of Case 1 is complete. 
Indeed, (B.2) says that Fg E LP(p,)* and since F and Fg agree on a dense 
subset of LP(p,) (B.l), F = Fg. Also, Ilgll q .:s; liFll = IIFgl1 = Ilgll q . 

To prove (B.2), let I > o and put EI = {x E X: Ig(x)1 .:s; t}. If IE LP(p,) 
such that I = 0 off EI' then there is a sequence {In} of simple functions 
such that for every n, In = 0 off E1, I/nl .:s; III, and In(x) ~ I(x) a.e. [p,j. 
(Why?) Thus IUn - f)gl .:s; 211/1 and fill dp, = fill' 1 dp, .:s; 1I/IIpp,( X)l/q 
< 00. By the Lebesgue Dominated Convergence Theorem, FUn) = flngdp, 
~ flgdp,. Also, lin - liP .:s; 2PI/IP, so Il/n - Illp ~ 0; thus FUn) ~ FU)· 
Combining these results we get that for any I > 0 and any I in LP(p,) that 
vanishes off £1' (B.l) holds. 

Case 1a: 1 < P < 00. So 1 < q < 00. Let 1= XE,lglq/g, where g(x) *- 0, 
and put I(x) = 0 when g(x) = O. If A = {x: g(x) *- O}, then 

ji/iP dp, = r IglPp
q dp, = f Igl q dp, 

E,nA Igl E, 

since pq - p = q. Therefore 

Thus 

liFll ~ [t, Igl q dp, f -l/p ~ [t, Igl q dp, f/ q
· 

Letting I ~ 00 gives that Ilgll q .:s; liFll. 
Case 1b: p = 1. So q = 00. For e> 0 let A = {x: Ig(x)1 > liFll + e}. 

For I > 0 let 1= XE,nAUlgl. Then Ilflll = p,(A n E1 ), and so 

liFllp,(A n EJ ~ jlgdp, = f Igldp, ~ (liFll + e)p,(A nEt)· 
AnE, 

Letting I ~ 00 we get that liFllp,(A) ~ (liFll + e)p,(A), which can only be if 
p,(A) = O. Thus Ilglloo .:s; liFll. 

Case 2: (X, g, p,) is arbitrary. Let g = all of the sets E in g such that 
p,(E) < 00. For E in g let gE = {L1 E g: L1 <;;: E} and define (p,IE)(L1) = 

p,(L1) for L1 in gE' Put LP(p,IE) = LP(E, gr;, p,IE) and notice that LP(p,IE) 
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can be identified in a natural way with the functions in LP(X,SJ,J-L) that 
vanish off E. Make this identification and consider the restriction of F: 
LP(J-L) ~ IF to LP(J-LIE); denote the restriction by FE: LP(J-LIE) ~ IF. Clearly 
FE is bounded and liFEl1 ::; liFll for every E in Iff. 

By Case 1, for every E in Iff there is a gE in Lq(J-LIE) such that for I in 
LP(J-LIE), 

B.3 

If D, E E tff, then LP(J-LID n E) is contained in both LP(J-LID) and LP(J-LIE). 
Moreover, FDILP(J-LID n E) = FEILP(J-LID n E) = FDn E' Hence gD = gE 
= g D n E a.e. [J-L 1 on D n E. Thus, a function g can be defined on U{ E: 
E E tff} by letting g = gE on E; put g = 0 off U{ E: E E Iff}. A difficulty 
arises here in trying to show that g is measurable. 

Case 2a: 1 < P < 00. Put a = SUP{lIgEll q : E E Iff}; so a::; liFll < 00. 

Since IlgDll q ::; IIgEll q if DC;;; E, there is a sequence {En} in Iff such that 
En C;;; En+l for all nand IIgEJl q ~ a. Let G = U~~lEn' If E E Iff and 
EnG = D, then IlgEue.ll~ = IlgEII~ + IlgEJI~ ~ IlgEII~ + a q; thus g", = O. 
Therefore g = 0 off G and clearly g is measurable. Moreover, g E Lq(J-L) 
with Ilgll q = a. 

If IE LP(J-L), then {x: I(x) =1= O} = U~~lDn where Dn E tff and Dn C;;; 

Dn+l for all n. Thus XD I ~ I in LP(J-L) and so F(f) = lim F(XD f) = (B.3) 
limfDngfdJ-L = fgfdJ-L. Thus F = Fg and liFll = liFgll = Ilgll q ::; an::; liFll. 

Case 2b: p = 00 and (X, fl, J-L) is ajinite. This is left to the reader. • 

EXERCISE 

Look at the proof of the theorem and see if you can represent Ll ( X, Q, JL) * for an 
arbitrary measure space. 



APPENDIX C 

The Dual of Co(X) 

The purpose of this section is to show that the dual of Co( X) is the space of 
regular Borel measures on X and to put this result, and the accompanying 
definitions, in the context of complex-valued measures and functions. 

Let X be any set and let Q be a a-algebra of subsets of X; so (X, Q) is a 
measurable space. If fL is a countably additive function defined on Q such 
that fL(D) = 0 and 0::::; fL(Ll) ::::; 00 for all Ll in Q, call fL a positive measure 
on (X, Q); (X, Q, fL) is called a measure space. 

If (X, Q) is a measurable space, a signed measure is a countably additive 
function fL defined on Q such that fL(D) = 0 and fL takes its values in 
~ U {± oo}. (Note: fL can assume only one of the values ± 00.) It is 
assumed that the reader is familiar with the following result. 

c.l. Hahn-Jordan Decomposition. If fL is a signed measure on (X, Q), then 
fL = ILl - fL2' where ILl and fL2 are positive measures, and X = E] U E2, 
where E], E2 E Q, E] Ii E2 = 0, fL](E2) = 0 = fL2(E l ). The measures fLl 
and fL2 are unique and the sets E] and E2 are unique up to sets of fLl + fL2 
measure zero. 

A measure (or complex-valued measure) is a complex-valued function fL 
defined on Q that is countably additive and such that fL(D) = O. Note that fL 
does not assume any infinite values. If fL is a measure, then (Re fL)( Ll) == 
Re(fL(Ll» is a signed measure, as is (ImfL)(Ll) == Im(fL(Ll»; hence fL = RefL 
+ ilmfL. Applying (Cl) to RefL and ImfL we get 

C.2 

where fLj (l::::;j::::; 4) are positive measures, fLl ~ fL2 (fLl and J.Lz are 
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mutually singular) and 113 ..1 114. (C.2) will also be called the Hahn-Jordan 
decomposition of 11. 

C.3. Definition. If 11 is a measure on (X, Q) and .1 E Q, define the 
variation of 11, 1111, by 

1111(.1) = SUPC~lll1(EJI: {Ej }; is a measurable partition of .1 }. 

C.4. Proposition. If 11 is a measure on (X, Q), then 1111 is a positive finite 
measure on (X, Q). If 11 is a signed measure, 1111 is a positive measure. If 
(C.2) is satisfied, then 1111(.1) .::;; Lk-ll1k(.1); if 11 is a signed measure, then 
1111 = 111 + 112· 

PROOF. Clearly 1111(.1) ~ O. Let {.1n} be pairwise disjoint measurable sets 
and let .1 = U~_l.1n. If e > 0, then there is a measurable partition {Ej }j"-1 
of .1 such that 1111(.1) - e < Lj'_lll1(E)I. Hence 

1111(.1)-e.::;; j~Jn~/(Ejll.1n)1 
00 m 

.::;; L L Il1(Ej II .1n)l· 
n=lj-l 

But {Ej II .1n }j-1 is a partition of .1n, so 1111(.1) - e .::;; L~_IiI1I(.1n). There­
fore 1111(.1) .::;; L~_lll1l(.1n). For the reverse inequality we may assume that 
1111(.1) < 00. It follows that 1111(.1n) < 00 for every n. (Why?) Let e > 0 and 
for each n ~ 1 let {Ei n), ... , E~n)} be a partition of .1 n such that 
L)I1(E?»1 > 1111(.1n) - ej2n. Then" 

n~lll1l(.1J < n~l [ ;n + ~111( E?) )1] 

N 

.::;;e+ L LII1(E?»)1 
n-l j 

.::;; e + 1111(.1). 

Letting N -+ 00 and e -+ 0 gives that Lril1l(.1 n) .::;; 1111(.1). 
Clearly 111(.1)1 .::;; Lk_1I1k(.1), so 1111 .::;; Lk-1I1k. It is left to the reader to 

show that 1111 = 111 + 112 if 11 is a signed measure. Since 111,112,113,114 are all 
finite, 1111 is finite if 11 is complex-valued. • 

c.s. Definition. If 11 is a measure on (X, Q) and v is a positive measure on 
(X, Q), say that 11 is absolutely continuous with respect to v (11« v) if 
11(.1) = 0 whenever v( .1) = o. If v is complex-valued, 11 « v means 11 « I vi. 



386 Appendix C. The Dual of Co( Xl 

C.6. Proposition. Let Il be a measure and v a positive measure on (X, a). 
The following statements are equivalent. 

(a) Il « v. 
(b) IIlI « v. 
(c) If (C.2) holds, Ilk « v for 1 ~ k ~ 4. 

PROOF. Exercise. 

The Radon-Nikodym Theorem can now be proved for complex-valued 
measures Il by using (C.6) and applying the usual theorem to the real and 
imaginary parts of Il. The details are left to the reader. 

C.7. Radon-Nikodym Theorem. If (X, a, v) is a a-finite measure space and 
Il is a complex-valued measure on (X, a) such that Il « v, then there is a 
unique complex-valued function f in Ll(X, a, v) such that Il(.:l) = fiJfdv for 
every.:l in a. 

The function f obtained in (C.7) is called the Radon-Nikodym derivative 
of Il with respect to v and is denoted by f = dll/ dv. 

c.s. Theorem. Let (X, a, v) be a a-finite measure space and let Il be a 
complex-valued measure on (X, a) such that Il « v and let f = dll/ dv. 

(a) If g E Ll(X, a, 11l1), then gf E Ll(X, a, v) and fgdll = fgfdv. 
(b) For.:l in a, 11l1(.:l) = fiJlfl dv. 

PROOF. Part (a) follows from the corresponding result for signed measures 
by using (C.2) and a similar decomposition for f. 

To prove (b), let {Ej } be a measurable partition of .1. Then 

IIIl{EJI ~ If Ifldv = f Ifldv. 
j J E; iJ 

For the reverse inequality, let g(x) = f(x)/lf(x)1 if x E.:l and f(x) =1= 0; 
let g(x) = 0 otherwise. Let {g,,} be a sequence of a-measurable simple 
functions such that g,,(x) = 0 off .1, Iglll ~ Igl ~ 1, and g,,(x) ~ g(x) a.e. 
[v]. Thus fg" ~ IflXiJ a.e. [v]. Also, Ifg" I ~ IflXiJ and fXiJ E Ll(V) [see 
(e2)]. By the Lebesgue Dominated Convergence Theorem, ffg" dv ~ 
fiJlfl dv. If g" = LjCi.jXE

j
' where {Ej } is a partition of.:l and 1Ci.) ~ 1, then 

Iffg" dvl = Ifg" dill = ILjCi.jll(E) I ~ 11l1(.:l)· Thus fiJlfl dv ~ 11l1(.:l)· • 

One way of phrasing (C.8b) is that Idll/dvl = dllli/dv. The next result is 
left to the reader. 

C.9. Corollary. If Il is a complex-valued measure on (X, a), then there is an 
Q-measurable function f on X such that If I = 1 a.e. [l1l1] and Il(.:l) = f,Jdllll 
for each .1 in Q. 
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C.IO. Definition. Let X be a locally compact space and let D be the 
smallest a-algebra of subsets of X that contains the open sets. Sets in Dare 
called Borel sets. A positive measure fL on (X, D) is a regular Borel measure 
if (a) fL(K) < 00 for every compact subset K of X; (b) for any E in D, 
fL(E) = SUp{fL(K): K ~ E and K is compact}; (c) for any E in D, 
fL(E) = inf{fL(U): U:2 E and U is open}. If fL is a complex-valued 
measure on (X, D), fL is a regular Borel measure if IfLl is. Let M( X) = all of 
the complex-valued regular Borel measures on X. Note that M(X) is a 
vector space over C. For fL in M( X), let 

c.n IlfLll == IfLl(X). 

C.12. Proposition. (Cll) defines a norm on M(X). 

PROOF. Exercise. 

C.13. Lemma. If fL E M(X), define Fp.: Co(X) ~ C by F/f) = ffdfL. 
Then Fp. E Co(X)* and 11;;'11 = IlfLll. 

PROOF. If fE Co(X), then IFp.U)I::s; fllldlfLl::s; 11Il111fLll. Hence Fp. E 

Co(X)* and 11;;'11 ::s; IlfLll· 
To show equality, let fo be a Borel function such that lfol = 1 a.e. [lfLl] 

and fL(Ll) = fdfodlfLl. By Lusin's Theorem, if E > 0, there is a continuous 
function cp on X with compact support such that f Icp - 101 dlfLl < E and 
Ilcpll ::s; suplfo(x)1 = 1. Thus IlfLll = ffolodlfLl (C.8a) = flodfL = IflodfLl ::s; 
U(lo - cp) dfLl + Ifcp dfLl ::s; E + 1;;'( cp) I ::s; E + 11;;'11· Hence IlfLll ::s; 11Fp.11· 

• 
C.14. Corollary. (a) If U is an open subset of X and fL E M(X), then 
IfLl(U) = sUP{lfcpdfLl: cp E C/X), sptcp ~ U, and IIcpll ::s; I}. (b) If fL ~ 0, 
fL(K) = inf{ fcpdfL: cp E Co(X) and cp ~ XK}. 

PROOF. (a) If U is given the relative topology from X, U is locally compact. 
Let v be the restriction of fL to U. Then (a) becomes a restatement of (C.13) 
for the space U together with the fact that Cc( U) is norm dense in Co( U). 

(b) If cp ~ XK' then because fL is positive, fcpdfL ~ fL(K). Thus fL(K)::S; a 
== inf{ fcp dfL: cp E Co(X) and cp ~ XK}. Using the regularity of fL, for every 
integer n there is an open set Un such that K ~ u" and fL( Un \ K) < n ~ I. 
Let tfn E Cc(X) such that ° ::s; tfn ::s; 1, tfn = 1 on K, and tfn = ° off Un. 
Thus l/;n ~ XK and so a ::s; NndfL::S; fL(Un ) < fL(K) + n~l. • 

The next step in the process of representing bounded linear functionals 
on Co( X) by measures is to associate with each such functional a positive 
functional. If fL E M( X), then the next lemma would associate with the 
functional Fp. the positive functional I = FIp.I. 
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c.ts. Lemma. If F: Co( X) ~ C is a bounded linear functional, then there is 
a unique linear functional I: Co( X) ~ C such that if f E Co( X) and f 2: 0, 
then 

C.t6 l(j) = sup{iF(g)l: g E Co( X) and Igi ~ J}. 

Moreover 11/11 = liFll· 

PROOF. Let Co(X)+ be the positive functions in Co(X) and for fin Co( X)+ 
define 1(/) as in (C.16). If a > 0, then clearly I( af) = al(/) if f E Ca( X) +. 

Also, if g E Co( X) and Igi ~ f, then iF( g)1 ~ liFllllgll ~ liFllllill. Hence 
1(/) ~ liFllllill < 00. 

Now we will show that 1(/1 + f2) = 1(/1) + 1(/2) whenever fl' f2 E 
C(X)+. If E > 0, let gl' g2 E Co(X) such that Ig) ~.0 and iF(g;>1 > 1(.0) 
- 1E for j = 1,2. There are complex numbers f3i , j = 1,2, with 113;1 = 1 
and F(g) = f3)F(g;>l. Thus 

l(jl) + 1(j2) < E + IF(gl)1 + iF(g2)1 

= E + !fIF(gl) + !f2 F (g2) 

= E + iF(!flgl + !f2g2)1· 

But l!flgl + !f2g2)1 ~ Igil + Ig21 ~ fl + f2' Hence 1(/1) + 1(/2) ~ E + 
I(fl + f2)' Since E was arbitrary, we have half of the desired equality. 

For the other half of the equality, let g E Co( X) such that Igi ~ fl + f2 
and 1(/1 + f2) < iF(g)1 + E. Let hi = min(lgl, fl) and h2 = Igl - hi' 
Clearly hi' h2 E Co(X)+, hi ~ fl' h2 ~ f2' and hi + h2 = Igl. Define g/ 
X~ C by 

if g(x) = 0, 

if g(x) -=1= 0. 

It is left to the reader to verify that gj E Co(X) and gl + g2 = Igl. Hence 

l(jl + f2) < iF(gl) + F(g2)1 + E 

~ iF(gl)1 + iF(g2)1 + E 

~ l(jl) + 1(j2) + E. 

Now let E ~ 0. 
If f is a real-valued function in Co( X), then f = fl - f2 where fl' f2 E 

Co( X) +. If also f = gl - g2 for some gl' g2 in Co( X) +, then gl + f2 = fl 
+ g2' By the preceding argument I(gl) + 1(/2) = 1(/1) + l(g2)' Hence if 
we define I: Re Co( X) ~ IR by 1(/) = 1(/1) - 1(/2) where f = fl - f2 
with fl'/2 in Ca(X)+, I is well defined. It is left to the reader to verify that 
I is IR -linear. 

If fE Co(X), then f= fl + if2' where fl'/2 E ReCo(X). Let 1(/) = 
1(/1) + iI(/2)' It is left to the reader to show that I: Co(X) ~ C is a linear 
functional. 
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To prove that 11I11 = IIFII, first let f E Co(X) and put l(f) = al/(f)1 
where lal = 1. Hence iif = f1 + if2' where f1' f2 E ReCo(X). Thus 1/(f)1 
= aI(f) = I(f1) + il(f2)' Since II(f)1 is a positive real number, 1(f2) = 0 
and I(f1) = 1/(f)I· But f1 = Re(iif) :$ liiil = lfl. Hence 

II(f)1 :$ I(lfl)· 

From here we get, as in the beginning of this proof, that 11/11 :$ IIFII. For the 
other half, if f > 0, let f E Co( X) such that lIill :$ 1 and IIFII < IF(f)1 + f. 
Thus IIFII < I(lfl) + f :$ 11/11 + f. • 

C.t7. Theorem. If I: Co(X) -> C is a bounded linear functional such that 
I(f) ~ 0 whenever f E Co(X)+, then there is a positive measure I' in M(X) 
such that I(f) = ffdl' for every f in Co(X) and 11/11 = I'(X). 

The proof of this is an involved construction. Inspired by Corollary C.I4, 
one defines I'(U) for an open set U by 

I'(U) = sup{I(<1»: <1> E Cc(X)+, <1>:$ 1, spt<1> ~ U}. 

Then for any Borel set E, let 

I' ( E) = inf { I' ( U ): E ~ U and U is open} . 

lt now must be shown that I' is a positive measure and I(f) = ffdl'. For 
the details see (12.36) in Hewitt and Stromberg [1975] or §56 in Halmos 
[1974]. Indeed, Theorem C.I7 is often called the Riesz Representation 
Theorem. 

c.ts. Riesz Representation Theorem. If X is a locally compact space and 
p, E M( X), define Fp.: Co( X) -> C by 

Fp.(f) = f fdp,. 

Then ~ E Co( X)* and the map p, ~ Fp. is an isometric isomorphism of 
M(X) onto Co(X)*. 

PROOF. The fact that p, ~ Fp. is an isometry is the content of Lemma C.13. 
lt remains to show that p, ~ Fp. is surjective. Let FE Co( X)* and define I: 
Co(X) -> C as in Lemma C.I5. By Theorem C.17, there is a positive 
measure I' in M(X) such that I(f) = ffdl' for all f in Co(X). If f E Co(X), 
then the definition of I implies that IF(f)1 :$ I(lfl) = flfl dl'. Thus, f ~ 
F(f) defines a bounded linear functional on Co( X) considered as a linear 
manifold in L1( 1'). Now Co( X) is dense in L1( 1') (Why?), so F has a unique 
extension to a bounded linear functional on L 1( 1'). By Theorem B.I there is 
a function <1> in Loo(l') such that F(f) = ff<1>dl' for every fin Co(X) and 
11<1>1100 :$ 1. Let p,(E) = fE<1>dl' for every Borel set E. Then p, E M(X) and 
by Theorem C.8(a), F(f) = ffdp,; that is, F = Fl" • 
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