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Preface

Functional analysis has become a sufficiently large area of mathematics that
it is possible to find two research mathematicians, both of whom call
themselves functional analysts, who have great difficulty understanding the
work of the other. The common thread is the existence of a linear space with
a topology or two (or more). Here the paths diverge in the choice of how
that topology is defined and in whether to study the geometry of the linear
space, or the linear operators on the space, or both.

In this book I have tried to follow the common thread rather than any
special topic. I have included some topics that a few years ago might have
been thought of as specialized but which impress me as interesting and
basic. Near the end of this work I gave into my natural temptation and
included some operator theory that, though basic for operator theory, might
be considered specialized by some functional analysts.

The word “course” in the title of this book has two meanings. The first is
obvious. This book was meant as a text for a graduate course in functional
analysis. The second meaning is that the book attempts to take an excursion
through many of the territories that comprise functional analysis. For this
purpose, a choice of several tours is offered the reader—whether he is a
tourist or a student looking for a place of residence. The sections marked
with an asterisk are not (strictly speaking) necessary for the rest of the book,
but will offer the reader an opportunity to get more deeply involved in the
subject at hand, or to see some applications to other parts of mathematics,
or, perhaps, just to see some local color. Unlike many tours, it is possible to
retrace your steps and cover a starred section after the chapter has been left.

There are some parts of functional analysis that are not on the tour. Most
authors have to make choices due to time and space limitations, to say
nothing of the financial resources of our graduate students. Two areas that
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are only briefly touched here, but which constitute entire areas by them-
selves, are topological vector spaces and ordered linear spaces. Both are
beautiful theories and both have books which do them justice.

The prerequisites for this book are a thoroughly good course in measure
and integration—together with some knowledge of point set topology. The
appendices contain some of this material, including a discussion of nets in
Appendix A. In addition, the reader should at least be taking a course in
analytic function theory at the same time that he is reading this book. From
the beginning, analytic functions are used to furnish some examples, but it
is only in the last half of this text that analytic functions are used in the
proofs of the results.

It has been traditional that a mathematics book begin with the most
general set of axioms and develop the theory, with additional axioms added
as the exposition progresses. To a large extent I have abandoned tradition.
Thus the first two chapters are on Hilbert space, the third is on Banach
spaces, and the fourth is on locally convex spaces. To be sure, this causes
some repetition (though not as much as I first thought it would) and the
phrase “the proof is just like the proof of ...” appears several times. But I
firmly believe that this order of things develops a better intuition in the
student. Historically, mathematics has gone from the particular to the
general—not the reverse. There are many reasons for this, but certainly one
reason is that the human mind resists abstraction unless it first sees the need
to abstract.

I have tried to include as many examples as possible, even if this means
introducing without explanation some other branches of mathematics (like
analytic functions, Fourier series, or topological groups). There are, at the
end of every section, several exercises of varying degrees of difficulty with
different purpecses in mind. Some exercises just remind the reader that he is
to supply a proof of a result in the text; others are routine, and seek to fix
some of the ideas in the reader’s mind; yet others develop more examples;
and some extend the theory. Examples emphasize my idea about the nature
of mathematics and exercises stress my belief that doing mathematics is the
way to learn mathematics.

Chapter I discusses the geometry of Hilbert spaces and Chapter II begins
the theory of operators on a Hilbert space. In Sections 5-8 of Chapter II,
the complete spectral theory of normal compact operators, together with a
discussion of multiplicity, is worked out. This material is presented again in
Chapter IX, when the Spectral Theorem for bounded normal operators is
proved. The reason for this repetition is twofold. First, I wanted to design
the book to be usable as a text for a one-semester course. Second, if the
reader understands the Spectral Theorem for compact operators, there will
be less difficulty in understanding the general case and, perhaps, this will
lead to a greater appreciation of the complete theorem.

Chapter III is on Banach spaces. It has become standard to do some of
this material in courses on Real Variables. In particular, the three basic
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principles, the Hahn-Banach Theorem, the Open Mapping Theorem, and
the Principle of Uniform Boundedness, are proved. For this reason I
contemplated not proving these results here, but in the end decided that
they should be proved. I did bring myself to relegate to the appendices the
proofs of the representation of the dual of L? (Appendix B) and the dual of
Co(X) (Appendix C).

Chapter IV hits the bare essentials of the theory of locally convex spaces
—enough to rationally discuss weak topologies. It is shown in Section 5 that
the distributions are the dual of a locally convex space.

Chapter V treats the weak and weak-star topologies. This is one of my
favorite topics because of the numerous uses these ideas have.

Chapter VI looks at bounded linear operators on a Banach space.
Chapter VII introduces the reader to Banach algebras and spectral theory
and applies this to the study of operators on a Banach space. It is in
Chapter VII that the reader needs to know the elements of analytic function
theory, including Liouville’s Theorem and Runge’s Theorem. (The latter is
proved using the Hahn—Banach Theorem in Section III1.8.)

When in Chapter VIII the notion of a C*-algebra is explored, the
emphasis of the book becomes the theory of operators on a Hilbert space.

Chapter IX presents the Spectral Theorem and its ramifications. This is
done in the framework of a C*-algebra. Classically, the Spectral Theorem
has been thought of as a theorem about a single normal operator. This it is,
but it is more. This theorem really tells us about the functional calculus for
a normal operator and, hence, about the weakly closed C*-algebra gener-
ated by the normal operator. In Section IX.8 this approach culminates in
the complete description of the functional calculus for a normal operator. In
Section IX.10 the multiplicity theory (a complete set of unitary invariants)
for normal operators is worked out. This topic is too often ignored in books
on operator theory. The ultimate goal of any branch of mathematics is to
classify and characterize, and multiplicity theory achieves this goal for
normal operators.

In Chapter X unbounded operators on Hilbert space are examined. The
distinction between symmetric and self-adjoint operators is carefully delin-
eated and the Spectral Theorem for unbounded normal operators is ob-
tained as a consequence of the bounded case. Stone’s Theorem on one
parameter unitary groups is proved and the role of the Fourier transform in
relating differentiation and multiplication is exhibited.

Chapter XI, which does not depend on Chapter X, proves the basic
properties of the Fredholm index. Though it is possible to do this in the
context of unbounded operators between two Banach spaces, this material is
presented for bounded operators on a Hilbert space.

There are a few notational oddities. The empty set is denoted by 0. A
reference number such as (8.10) means item number 10 in Section 8 of the
present chapter. The reference (IX.8.10) is to (8.10) in Chapter IX. The
reference (A.1.1) is to the first item in the first section of Appendix A.
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There are many people who deserve my gratitude in connection with
writing this book. In three separate years I gave a course based on an
evolving set of notes that eventually became transfigured into this book. The
students in those courses were a big help. My colleague Grahame Bennett
gave me several pointers in Banach spaces. My ex-student Marc Raphael
read final versions of the manuscript, pointing out mistakes and making
suggestions for improvement. Two current students, Alp Eden and Paul
McGuire, read the galley proofs and were extremely helpful. Elena Fraboschi
typed the final manuscript.

John B. Conway
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CHAPTER 1

Hilbert Spaces

A Hilbert space is the abstraction of the finite-dimensional Euclidean spaces
of geometry. Its properties are very regular and contain few surprises,
though the presence of an infinity of dimensions guarantees a certain
amount of surprise. Historically, it was the properties of Hilbert spaces that
guided mathematicians when they began to generalize. Some of the proper-
ties and results seen in this chapter and the next will be encountered in more
general settings later in this book, or we shall see results that come close to
these but fail to achieve the full power possible in the setting of Hilbert
space.

§1. Elementary Properties and Examples

Throughout this book F will denote either the real field, R, or the complex
field, C.

1.1. Definition. If Z is a vector space over F, a semi-inner product on % is
a function u: X & — F such that for all @, in F and x, y, z in Z, the
following are satisfied:

(@) u(ax + By, z) = au(x, z) + Bu(y, z),
(b) u(x,ay + Bz) = au(x, y) + Bu(x, z),
(©) u(x,x) =0,

(d) u(x, y)=u(y,x).

Here, for a in F, @ = a if F = R and a is the complex conjugate of « if
F =C. If a € C, the statement that « > 0 means that « € R and « is
non-negative.
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Note that if a = 0, then property (a) implies that (0, y) = u(a - 0, y) =
au(0, y) = 0 for all y in Z. This and similar reasoning shows that for a
semi-inner product u,

(e) u(x,0)=u(0,y)=0 forall x,yin Z.

In particular, u(0,0) = 0.
An inner product on % is a semi-inner product that also satisfies the
following;:

(f) If u(x,x) =0, then x = 0.
An inner product in this book will be denoted by

(x,y) =u(x,y).
There is no universally accepted notation for an inner product and the
reader will often see (x, y) and (x|y) used in the literature.

1.2. Example. Let 2 be the collection of all sequences {«,: n > 1} of
scalars a, from F such that «, = 0 for all but a finite number of values of
n. If addition and scalar multiplication are defined on 2" by

{a,} +{B,} = {a, + B,},
a{a,} = {aq,},
then Z is a vector space over F.
If u({a,},{B,}) =Ly 1a,,B,, then u is a semi-inner product that is

not an inner product. On the other hand,
oo

{en}. (B} = X a,B,,

n=1

I
™8
S | =

{e, ) {B.}) a,B,,

n=1

<{an}’{Bn}>= X_:lnsanﬁn7

all define inner products on %.

1.3. Example. Let (X, 2, ) be a measure space consisting of a set X, a
o-algebra 2 of subsets of X, and a countably additive R U {c0} valued
measure p defined on Q. If f and g € L?(p) = L*(X, 2, p), then Holder’s
inequality implies fg € L'(p). If

(f.8) = [fgan,

then this defines an inner product on L*(p).

Note that Holder’s inequality also states that |[fgdp| < [[|]*dp])"/? -
[/|g|*dp]*/% This is, in fact, a consequence of the following result on
semi-inner products.
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1.4. The Cauchy-Bunyakowsky—Schwarz Inequality. If { - -) is a semi-
inner product on Z, then

I(x P17 < (x, %)y, p)
for all x and y in Z.

PROOF. If a € F and x and y € Z, then
0<{(x—ay,x—ay)
= (x,x) = a{y,x) = &x, p) + |aXy, y).

Suppose (y,x) =be”®, b >0, and let a=e ", ¢t in R. The above
inequality becomes

0 < (x,x) — e he’® — ethe " + t*(y, y)
=(x,x) —2bt + tXy, y)
=c—2bt + at*=q(1),

where ¢ = (x,x) and a = (y, y). Thus ¢(¢) is a quadratic polynomial in
the real variable ¢ and g(¢) > 0 for all ¢. This implies that the equation
q(t) = 0 has at most one real solution ¢. From the quadratic formula we
find that the discriminant is not positive; that is, 0 > 4b> — 4ac. Hence

0> b —ac=[{x, y)I> = (X, x){¥, ¥),
proving the inequality. [ ]

The inequality in (1.4) will be referred to as the CBS inequality.
1.5. Corollary. If { -, -) is a semi-inner product on & and ||x|| = (x, x)'/*

for all x in &, then

@ llx + yll < x|l + Iyl for x, y in Z,
(b) |lax|| = |a| ||x|| for « in F and x in %.

If { -, -) is an inner product, then
©) |ix|| = 0 implies x = 0.

PRrOOF. The proofs of (b) and (c) are left as an exercise. To see (a), note that
for x and y in &,

lx +ylI> = (x+y,x+y)
= [IxI> + (y, x) + {x, ») + IyII?
= [Ix|I* + 2Re(x, y) + III*.
By the CBS inequality, Re(x, y) < |(x, y)| < ||x]| ||lv||. Hence,
llx + yII? < 11Xl + 2lx] 1yl + (vl

2
= (Ixll + wl)".
The inequality now follows by taking square roots. ]
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If (-,-) is a semi-inner product on Z and if x, y € Z, then as was
shown in the preceding proof,

llx + ylI2 = IIxII* + 2Re(x, y) + |yl*.
This identity is often called the polar identity.

The quantity ||x|] = (x, x)'/? for an inner product ( -, -) is called the
norm of x. If Z=F (R or C?) and ({a,},{B,})) = X_,a,B,, then the
corresponding norm is || {a, }|| = [Z9_,]a,|*]"/%

The virtue of the norm on a vector space % is that d(x,y)= |x — ||
defines a metric on Z [by (1.5)] so that 2 becomes a metric space. In fact,
d(x, ) = llx =yl = li(x = 2) + (z = I < lIx = 2| + ||z = yll =
d(x,z) + d(z, y). The other properties of a metric follow similarly. If
Z = F¢ and the norm is defined as above, this distance function is the usual
Euclidean metric.

1.6. Definition. A Hilbert space is a vector space J over F together with
an inner product { -, -) such that relative to the metric d(x, y) = ||x — y||
induced by the norm, S# is a complete metric space.

If = L*(p) and (f, g) = [fgdp, then the associated norm is ||f]| =
[/1A?dr]/% 1t is a standard result of measure theory that L*(p) is a
Hilbert space. It is also easy to see that F¢ is a Hilbert space.

REMARK. The inner products defined on L?(p) and F¢ are the “usual” ones.
Whenever these spaces are discussed these are the inner products referred
to. The same is true of the next space.

1.7. Example. Let I be any set and let /%(7) denote the set of all functions
x: I —> F such that x(i) =0 for all but a countable number of i and
Y, e 1x(i)|* < 0. For x and y in /*(1) define

(x,yy = Ex(i)y(i).

Then [%(I) is a Hilbert space (Exercise 2).

If I =N, I2(I) is usually denoted by /2. Note that if £ = the set of all
subsets of I and for E in £, p(E) = oo if E is infinite and p(E) = the
cardinality of E if E is finite, then /%(I) and L*(I, {2, pn) are equal.

Recall that an absolutely continuous function on the unit interval [0, 1]
has a derivative a.e. on [0, 1].

1.8. Example. Let 5= the collection of all absolutely continuous func-
tions f: [0,1] > F such that f(0)=0 and f’e€ L*0,1). If (f,g) =
Jof ()g’(t)dt for f and g in S, then # is a Hilbert space (Exercise 3).

Suppose & is a vector space with an inner product ( -, -) and the norm
is defined by the inner product. What happens if (Z,d) (d(x, y) = ||x — y|)
is not complete?
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1.9. Proposition. If & is a vector space and { - , - )4 is an inner product on
% and if S is the completion of Z with respect to the metric induced by the
norm on %, then there is an inner product { -,-), on 3 such that
(X, )= {x, y)g for x and y in Z and the metric on 3 is induced by this
inner product. That is, the completion of Z is a Hilbert space.

The preceding result says that an incomplete inner product space can be
completed to a Hilbert space. It is also true that a Hilbert space over R can
be imbedded in a complex Hilbert space (see Exercise 7).

This section closes with an example of a Hilbert space from analytic
function theory.

1.10. Definition. If G is an open subset of the complex plane C, then
L2(G) denotes the collection of all analytic functions f: G — C such that

/'/;;[f(x + iy)|*dxdy < .

L2(G) is called the Bergman space for G.

Several alternatives for the integral with respect to two-dimensional
Lebesgue measure will be used. In addition to [[;f(x + iy)dxdy we will
also see

ffcf and ffdArea.
G

Note that L2(G) < L*(p), where p = Area|G, so that L*(G) has a
natural inner product and norm from L2(p).

1.11. Lemma. If f is analytic in a neighborhood of B(a; r), then

f(a) N ;T%‘;‘[j;?(a;r)f.

[Here B(a;r)= {z: |z—a| <r)} and B(a;r) = {z: |z — a| < r}.]

PrOOF. By the mean value property, if 0 <t < r, f(a) = (1/27) (" . f(a +
te’®) df. Hence

2y~1 = I O i0
(mr?) ffB(a;”f (7r?) j(;l[/_,,f(a+te ) dé | dt
= (2/r2)/rtf(a)dt=f(a). ]
0
1.12. Corollary. If f € Lﬁ(G), a€ G, and 0 <r <dist(a, dG), then

1
[f(a)l < ﬁllﬂlz-
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PROOF. Since B(a;r) C G, the preceding lemma and the CBS inequality

imply
/'/;J(H:r)f‘ IJ

SL e

1
< —lrr. =
Tr

f(a)l

1
ar?

IA

1/2
12}

(a;r)

1.13. Proposition. L2(G) is a Hilbert space.

PROOF. If pu = area measure on G, then L?*(u) is a Hilbert space and
L2(G) € L*(p). So it suffices to show that L2(G) is closed in L*(p). Let
{ f,) be a sequence in L2(G) and let f € L*(p) such that [|f, — f|*dp — 0
as n — oo.

Suppose B(a;r) C G and let 0 < p < dist(B(a; r), 3G). By the preced-
ing corollary there is a constant C such that |f,(z) — f,,(2)| < CIIf, — f..l»
for all n, m and for |z — a| < p. Thus { f,} is a uniformly Cauchy sequence
on any closed disk in G. By standard results from analytic function theory
(Montel’s Theorem or Morera’s Theorem, for example), there is an analytic
function g on G such that f,(z) — g(z) uniformly on compact subsets of
G. But since [|f, — f]*dp — 0, a result of Riesz implies there is a subse-
quence { f, } such that f, (z) = f(z) a.e. [p]. Thus f =g a.e. [p] and so

feLip). =

EXERCISES

Verify the statements made in Example 1.2.

Verify that /(1) (Example 1.7) is a Hilbert space.

Show that the space 5# in Example 1.8 is a Hilbert space.

A wodp o

Describe the Hilbert spaces obtained by completing the space Z in Example 1.2
with respect to the norm defined by each of the inner products given there.

5. (A variation on Example 1.8) Let n > 2 and let = the collection of all
functions f: [0,1] = F such that (a) f(0)=0; (b) for 1l <k <n—1, f*(1)
exists for all ¢ in [0,1] and f*) is continuous on [0,1]; (c) f¢"~ ! is absolutely
continuous and ™ € L2(0,1). For f and g in 5, define

(f.8)= X [r(0g®(2)ar.
k=1"0

Show that 5 is a Hilbert space.
6. Let u be a semi-inner product on & and put A= {x € Z: u(x,x) = 0}.

(a) Show that A" is a linear subspace of Z.
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(b) Show that if
(x+ M,y + ) =u(x,y)

for all x + A" and y + A" in the quotient space Z/A4", then ( -,-) is a
well-defined inner product on Z/A".

7. Let & be a Hilbert space over R and show that there is a Hilbert space " over
C and a map U: s#— X such that (a) U is linear; (b) (Uh,,Uh,) = {(h}, h,)
for all h, h, in #; (c) for any k in X there are unique h,, h, in 5 such that
k = Uhy + iUh,. (X is called the complexification of )

8. If G={z€C: 0<|z] <1} show that every f in L2(G) has a removable
singularity at z = 0.

9. Which functions are in L2(C)?

10. Let G be an open subset of C and show that if a € G, then {f€ L2(G):
f(a) = 0} is closed in L%(G).

11. If {h,} is a sequence in a Hilbert space S such that L, ||A,|| < oo, then show
that X°_, h, converges in .

§2. Orthogonality

The greatest advantage of a Hilbert space is its underlying concept of
orthogonality.

2.1. Definition. If 5# is a Hilbert space and f, g € 5, then f and g are
orthogonal if (f,g) = 0. In symbols, f L g. If A, B C 5, then A 1L B if
fL1 g forevery fin A and g in B.

If s#= R?2, this is the correct concept. Two non-zero vectors in R? are
orthogonal precisely when the angle between them is 7 /2.

2.2. The Pythagorean Theorem. If f, f,,...,f, are pairwise orthogonal
vectors in ¥, then

||f1 + fz + - +fn”2 = “f1||2 + Wz“z + o+ ||fn||2
PRrROOF. If f, L f,, then

Wy + foll> = (fy + fos i + o) = AP+ 2Re(f1, o) + IIALII°

by the polar identity. Since f; L f,, this implies the result for n = 2. The
remainder of the proof proceeds by induction and is left to the reader. ]

Note that if f L g, then f L —g, so |If — glI> = IAI*> + |igl|>. The next
result is an easy consequence of the Pythagorean Theorem if f and g are
orthogonal, but this assumption is not needed for its conclusion.
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2.3. Parallelogram Law. If 5 is a Hilbert space and f and g € 5¢, then

If + gll* + 11f = gli* = 20117 + ligl®)-
PROOF. For any f and g in J# the polar identity implies

If + &lI* = I + 2Re( £, g) + ligll*,

If = &ll> = N> — 2Re(f, g) + lIgll>-
Now add. "

The next property of a Hilbert space is truly pivotal. But first we need a
geometric concept valid for any vector space over F.

2.4. Definition. If Z is any vector space over F and A C %, then A4 is a
convex set if forany x and yin 4and0<¢t<1,tx+ (1 -1)y € 4.

Note that {zx + (1 — #)y: 0 < ¢ < 1} is the straight-line segment joining
x and y. So a convex set is a set A such that if x and y € A, the entire line
segment joining x and y is contained in A.

If & is a vector space, then any linear subspace in & is a convex set. A
singleton set is convex. The intersection of any collection of convex sets is
convex. If 5 is a Hilbert space, then every open ball B(f;r)= {g € #:
IIf — gll < r} is convex, as is every closed ball.

25. Theorem. If 5¥ is a Hilbert space, K is a closed convex nonempty
subset of H#, and h € K, then there is a unique point k in K such that

b — kol = dist(h, K ) = inf{||h — k||: k € K }.

PRrOOF. By considering K — h = {k — h: k € K} instead of K, it suffices
to assume that 4 = 0. (Verify!) So we want to show that there is a unique
vector k, in K such that

llkoll = dist(0, K') = inf{||k||: k € K }.

Let d = dist(0, K'). By definition, there is a sequence {k,} in K such that
llk,l| = d. Now the Parallelogram Law implies that

k, — k| k,+k,
== = 1l + lIk,017) —{ g
Since K is convex, 3(k, + k,,) € K. Hence, ||3(k, + k,)||* = d* If e > 0,
choose N such that for n > N, ||k, ||* < d? + &% By the equation above, if
n,m > N, then

kn - km
2

Thus, ||k, — k,|| <& for n,m > N and {k,} is a Cauchy sequence. Since
M is complete and X is closed, thereis a k, in K such that ||k, — k|| = 0.

2

2
< 1(2d% + 1€?) —d? = L2
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Also for all &,
d<|lkoll = liko — k, + kil
< ko = Kkl + llk,ll = d.

Thus ||kl = d.
To prove that k, is unique, suppose h, € K such that ||k, = d. By
convexity, 5(k, + h,) € K. Hence,

d < |[3(ho + koIl < 3(lholl + llkoll) < d.
So ||5(hg + ko)l = d. The Parallelogram Law implies

hy+ kg hy — k,
2 2

2 2
=d? -

>

;-

hence h, = k. |

If the convex set in the preceding theorem is in fact a closed linear
subspace of 5, more can be said.

2.6. Theorem. If A is a closed linear subspace of 3¢, h € ), and f, is the
unique element of M such that ||h — f|| = dist(h, #), then h — f, L M.
Conversely, if f, € M such that h — f, L M, then ||h — f|| = dist(h, A).

PROOF. Suppose f, € A and ||h — f;|| = dist(h, #). If f € A, then f, + [
€A and so ||h—foll> < |h = (fo + DIP = Ik = fo) = A* = Ilh = fll?
— 2Re(h — fo, /) + II%. Thus

2Re(h = fo, f) < NP

for any f in . Fix f in . and substitute te?f for f in the preceding
inequality, where (h — f,, f) = re’®, r > 0. This yields 2 Re{te "re’’} <
?|IA11%, or 2tr < t|f]|. Letting ¢t — 0, we see that r = 0; thatis, h — f, L f.

For the converse, suppose f, € # such that h — f, L A#.If f € A, then
h — fy L fo — f so that

llh — f“2 = ||(h - fo) +(f0 - f)”2
= Ik = folI* + IIfo — AI?
> Ik = foll >
Thus ||k — fo|| = dist(h, A). |
IfAco,let A*= {fe#: fLgforall gin A}. Itis easy to see that
A+ is a closed linear subspace of 7.
Note that Theorem 2.6, together with the uniqueness statement in Theo-
rem 2.5, shows that if # is a closed linear subspace of 5 and h € 5#, then

there is a unique element f, in . such that » — f, € # * . Thus a function
P: 5#— A can be defined by Ph = f,.
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2.7. Theorem. If # is a closed linear subspace of 3 and h € 3¢, let Ph be
the unique point in M such that h — Ph L M. Then

(a) P is a linear transformation on 3,

(b) ||Ph|| < ||h|| for every h in #,

(c) P%2= P (here P* means the composition of P with itself ),
(d) kerP=#"* and ran P = A.

PRrOOF. Keep in mind that for every h in ¢, h — Ph € A+ and ||h — Ph||
= dist(h, A).

(a) Let hy,h, €5 and aj,a, €F. If fe, then {(a,h; + a,h,] -
la,Phy + a, Ph,), fY = a;(h; — Phy, f) + ay(h, — Ph,,f) = 0. By
the uniqueness statement of (2.6), P(ah; + a,h,) = oy Ph; + a,Ph,.

(b) If hes#, then h=(h— Ph)+ Ph, Phe M, and h— Phe M *.
Thus ||k||> = ||k — Ph||*> + ||Ph||* > ||Ph||*.

(c) If f €, then Pf = f. For any h in 5, Ph € #; hence P*h = P(Ph)
= Ph. That is, P2 = P.

(d) If Ph =0, then h = h — Ph € # * . Conversely, if h € #*, then 0 is
the unique vector in .# such that # — 0 = h L . Therefore Ph = 0.
That ran P = . is clear. [ ]

2.8. Definition. If .# is a closed linear subspace of 5 and P is the linear
map defined in the preceding theorem, then P is called the orthogonal
projection of 3¢ onto . If we wish to show this dependence of P on ./, we
will denote the orthogonal projection of # onto # by P ,.

It also seems appropriate to introduce the notation / < 5 to signify
that . is a closed linear subspace of #. We will use the term linear
manifold to designate a linear subspace of 5# that is not necessarily closed.
A linear subspace of 3¢ will always mean a closed linear subspace.

2.9. Corollary. If # < ¥, then (M *+)'=MA.

PrOOF. If I is used to designate the identity operator on ¢ (viz., Ih = h)
and P =P,, then I — P is the orthogonal projection of 5# onto ./ *
(Exercise 2). By part (d) of the preceding theorem, (# *)* = ker(I — P).
But 0 = (I — P)h iff h = Ph. Thus (A *)*=ker(] — P)=ranP = /.

|

2.10. Corollary. If A C H#, then (A*)* is the closed linear span of A in .

The proof is left to the reader; see Exercise 4 for a discussion of the term
“closed linear span.”

2.11. Corollary. If % is a linear manifold in 3¢, then ¥ is dense in  iff
¥ L= (0).

PRrROOF. Exercise.
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EXERCISES

1. Let 5# be a Hilbert space and suppose f, g € # with ||f]| = ||g|]| = 1. Show that
[lif + 1 — t)g|| < 1for0 <t < 1. What does this say about { h € 5#: ||h|| < 1}?

2. If # <5 and P=P,, show that I — P is the orthogonal projection of #
onto A+ .

3. If M <#, show that #/ N A+ =(0) and every h in S can be written as
h=f+gwherefe#Aandge M- 1M+ M= {(f,8): fEM, gEM")
and T: A + M+ > H is defined by T(f,g) =f+ g, show that T is a linear
bijection and a homeomorphism if # + #* is given the product topology.
(This is usually phrased by stating that # and 4 * are topologically complemen-
tary in J#.)

4. If A c 5, let VA = the intersection of all closed linear subspaces of J# that
contain A4. VA is called the closed linear span of A. Prove the following:

(a) VA <5 and VA is the smallest closed linear subspace of 5 that con-
tains A.
(b) VA = the closure of {L}_,a,f,:n>1, o, €F, f, €A}

5. Prove Corollary 2.10.
6. Prove Corollary 2.11.

§3. The Riesz Representation Theorem

The title of this section is somewhat ambiguous as there are at least two
Riesz Representation Theorems. There is one so-called theorem that repre-
sents bounded linear functionals on the space of continuous functions on a
compact Hausdorff space. That theorem will be discussed later in this book.
The present section deals with the representation of certain linear function-
als on Hilbert space. But first we have a few preliminaries to dispose of.

3.1. Proposition. Let > be a Hilbert space and L: #¥— F a linear
functional. The following statements are equivalent.

(a) L is continuous.

(b) L is continuous at 0.

(c) L is continuous at some point.

(d) There is a constant ¢ > O such that |L(h)| < c||h|| for every h in .

PROOF. It is clear that (a) = (b) = (¢) and (d) = (b). Let’s show that
(c) = (a) and (b) = (d).

(c) = (a): Suppose L is continuous at 4, and 4 is any point in 5. If
h,— hin 5, then h, — h + h, = h,. By assumption, L(h,) = lim[L(A,
—h+ hy)]=1lm[L(h,) — L(h) + L(hy)]=lim L(h,) — L(h) + L(hy).
Hence L(h) = lim L(h,,).
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(b) = (d): The definition of continuity at O implies that L™ '({a € F:
|a| < 1}) contains an open ball about 0. So there is a § > 0 such that
B(0;8) c L ' ({a € F: |a] < 1}). That s, ||A|| < 8 implies |L(h)| < 1.If h
is an arbitrary element of 5 and e > 0, then ||8(||A|| + &)~ 'h|| < 8. Hence

oh 0
L
[llhll + 8}

e SIL(R)I;
1
IL(R) < 5 (Al + ).

1>

thus,

Letting ¢ —» 0 we see that (d) holds with ¢ = 1/8. ]

3.2. Definition. A bounded linear functional L on 5 is a linear functional
for which there is a constant ¢ > 0 such that |L(4)| < c||h]|| for all 4 in 5.
In light of the preceding proposition, a linear functional is bounded if and
only if it is continuous.

For a bounded linear functional L: 5¥— F, define
ILN = sup{IL(h)]: ||| < 1}.
Note that by definition, ||L|| < oo; ||L|| is called the norm of L.

3.3. Proposition. If L is a linear functional, then

LIl = sup{|L(h)|: ||hl| = 1}
sup{|L(n)|/IIh||: h € #, h # 0}
inf{c¢ > 0: |L(h)| < c||hll,hin H#}.
Also, |L(h)| < ||L|| ||h]| for every h in 5.
PROOF. Let a = inf{c > 0: ||L(h)|| < c||h||, h in > }. It will be shown that
||IL|| = a; the remaining equalities are left as an exercise. If ¢ > 0, then the
definition of ||L|| shows that |L((||k|| + &)~ 'h)| < ||L||. Hence |L(h)| <
IL|[(JlA]] + €). Letting ¢ — O shows that |L(k)| < ||L]|| ||4|| for all . So the

definition of a shows that a < ||L||. On the other hand, if |L(h)| < c||h||
for all A, then ||L|| < c¢. Hence ||L|| < a. ]

If

It

Fix an A, in 5 and define L: 5#— F by L(h) = (h, h,). It is easy to
see that L is linear. Also, the CBS inequality gives that [L(4)| = |{h, hy)|
< ||hl| l|Agll- So L is bounded and ||L|| < ||hg|l. In fact, L(hy/|lholl) =
Cho/Bolls hgy = |lhgll, so that ||L|| = ||A||. The main result of this section
provides a converse to these observations.

3.4. The Riesz Representation Theorem. If L: 5#— F is a bounded linear
functional, then there is a unique vector hy in H# such that L(h) = (h, h)
for every h in . Moreover, ||L| = |||l
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PrROOF. Let 4 = ker L. Because L is continuous, .# is a closed linear
subspace of 5. Since we may assume that # # ¢, .# * + (0). Hence there
is a vector f; in A * such that L(f)) = 1. Now if h € 5 and a = L(h),
then L(h — afy) = L(h) —a=0;so h — L(h)f, € #. Thus

0=<(h— L(h)fo,fo>
= (h, fo) — L(B)Ifll*

So if hy = |Ifoll “*fo, L(h) = (h, hy) for all h in .

If h{ € 5 such that (h, hy,) = (h, hy) for all h, then hy — hy L 5#. In
particular, h, — h{ L hy, — hj and so hy = h,. The fact that |L|| = ||h||
was shown in the discussion preceding the theorem. [ ]

3.5. Corollary. If (X,$2,p) is a measure space and F: L*(p) > F is a
bounded linear functional, then there is a unique h in L*(u) such that

F(h) = /hh_odu
for every h in L*(p).

Of course the preceding corollary is a special case of the theorem on
representing bounded linear functionals on L?(p), 1 < p < co. But it is
interesting to note that it is a consequence of the result for Hilbert space
[and the result that L?(p) is a Hilbert space].

EXERCISES
1. Prove Proposition 3.3.

2. Let #=/[*(N). If N> 1 and L: 5#— F is defined by L({«,}) = ay, find the
vector h, in 5 such that L(h) = (h,h,) for every h in .

3. Let 5= [>(N U {0}). (a) Show that if { a,} € /2, then the power series L*_a,, 2"
has radius of convergence > 1. (b) If |A| <1 and L: 5#— C is defined by
L({a,}) =XF_oa,X', find the vector hy in S such that L(h) = (h,h,) for
every h in 5. (c) What is the norm of the linear functional L defined in (b)?

4. With the notation as in Exercise 3, define L: #—> Cby L({a,}) = X2 na,\"" !,
where |A| < 1. Find a vector h, in 5 such that L(h) = (h,h,) for every h
in J#.

5. Let 5 be the Hilbert space described in Example 1.8. If 0 < ¢ < 1, define L:
#— F by L(h) = h(t). Show that L is a bounded linear functional, find ||L]||,
and find the vector h, in 5 such that L(h) = (h,h,) for all h in #.

6. Let 5= L?(0,1) and let C" be the set of all continuous functions on [0, 1] that
have a continuous derivative. Let ¢ € [0,1] and define L: C" > F by L(h) =
h’(t). Show that there is no bounded linear functional on 5 that agrees with L
on CD,
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§4. Orthonormal Sets of Vectors and Bases

It will be shown in this section that, as in Euclidean space, each Hilbert
space can be coordinatized. The vehicle for introducing the coordinates is
an orthonormal basis. The corresponding vectors in F¢ are the vectors
{ey, e,5,...,€,), where e, is the d-tuple having a 1 in the kth place and
zeros elsewhere.

4.1. Definition. An orthonormal subset of a Hilbert space # is a subset &
having the properties: (a) for e in &, |le|| = 1; (b) if e;,e, € & and e, # e,,
then e, L e,.

A basis for 5# is a maximal orthonormal set.

Every vector space has a Hamel basis (a maximal linearly independent
set). The term “basis” for a Hilbert space is defined as above and it relates
to the inner product on . For an infinite-dimensional Hilbert space, a
basis is never a Hamel basis. This is not obvious, but the reader will be able
to see this after understanding several facts about bases.

4.2. Proposition. If & is an orthonormal set in 3¢, then there is a basis for 5
that contains &.

The proof of this proposition is a straightforward application of Zorn’s
Lemma and is left to the reader.

4.3. Example. Let s#= L.[0,27] and for n in Z define e, in # by
e,(t) = (2m) Y %exp(int). Then {e,: n € Z} is an orthonormal set in .
(Here L2[0,27] is the space of complex-valued square integrable functions.)

It is also true that the set in (4.3) is a basis, but this is best proved after a
bit of theory.

4.4. Example. If ##=F“and for 1 < k < d, e, = the d-tuple with 1 in the
k th place and zeros elsewhere, then {e,,...,e,} is a basis for .

4.5. Example. Let 5= [(I) as in Example 1.7. For each i in I define e,
in ) bye;(i)=1and e,(j)=0for j # i. Then {e;: i € I} is a basis.

The proof of the next result is left as an exercise (see Exercise 5). It is very
useful but the proof is not difficult.

4.6. The Gram-Schmidt Orthogonalization Process. If 5 is a Hilbert
space and {h,: n € N} is a linearly independent subset of #, then there is
an orthonormal set {e,: n € N} such that for every n, the linear span of
{ey,...,e,} equals the linear span of {hy,..., h,}.
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Remember that VA is the closed linear span of A (Exercise 2.4).

4.7. Proposition. Let {e,,...,e,} be an orthonormal set in H# and let
M =N{e,,...,e,}. If P is the orthogonal projection of H# onto M, then

Ph= ) (h,e)e,
k=1

for all h in 5.

PrROOF. Let Qh = Yi_(h,e;)e,. If 1 <j <n, then (Qh,e) =
Yi-i(h, e )(ey,e;) = (h,e;) since e, Le; for k #j. Thus (h — Qh,e))
=0 for1<j<n Thatis, h — Qh L A for every h in 5. Since Qh is
clearly a vector in ., Qh is the unique vector A, in 4 such that
h— hy, L A (2.6). Hence Qh = Ph for every h in 7. |

4.8. Bessel’s Inequality. If {e,: n € N} is an orthonormal set and h € H#,
then

Y 1<k e ) < Al

n=1
Proor. Let h, = h — X}_(h,e,)e,. Then h, L e, for1 < k < n (Why?).
By the Pythagorean Theorem,
2

IAI1> = [l )1* +

Z <h’en>ek
k=1

a2+ X 1<k, e,
k=1

v

n
)y 1<y ey
k=1
Since n was arbitrary, the result is proved. ]

4.9. Corollary. If & is an orthonormal set in ¢ and h € 5, then (h,e) # 0
for at most a countable number of vectors e in &.

PROOF. For each n>1 let &, ={e€&: |(h,e)| =1/n}. By Bessel’s
Inequality, &, is finite. But U?_,&, = {e € &: (h,e,) # 0}. u

4.10. Corollary. If & is an orthonormal set and h € ¢, then
X ICh ey < |lA)l.

eeé

This last corollary is just Bessel’s Inequality together with the fact (4.9)
that at most a countable number of the terms in the sum differ from zero.
Actually, the sum that appears in (4.10) can be given a better interpreta-
tion—a mathematically precise one that will be useful later. The question is,
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what is meant by X{h;: i €1} if h; € and [ is an infinite, possibly
uncountable, set? Let % be the collection of all finite subsets of I and order
Z by inclusion, so # becomes a directed set. For each F in %, define

hp=Y{h:i€F}.

Since this is a finite sum, h. is a well-defined element of #. Now {h:
Fe%}isanetin 5.

4.11. Definition. With the notation above, the sum X{s;: i € I} converges
if the net { h: F € %} converges; the value of the sum is the limit of the
net.

If »#= F, the definition above gives meaning to an uncountable sum of
scalars. Now Corollary 4.10 can be given its precise meaning; namely,
L{|(h,e)|*: e € &)} converges and the value < ||h||* (Exercise 9).

If the set I in Definition 4.11 is countable, then this definition of
convergent sum is not the usual one. That is, if {4,} is a sequence in 57,
then the convergence of X.{ h,: n € N} is not equivalent to the convergence
of £%_,h,. The former concept of convergence is that defined in (4.11) while
the latter means that the sequence {¥;_,h,}%_, converges. Even if 5= F,
these concepts do not coincide (see Exercise 12). If, however, X{h,: n € N}
converges, then X.2_, &, converges (Exercise 10). Also see Exercise 11.

4.12. Lemma. If & is an orthonormal set and h € 3¢, then

Y {(h,e)e: e &)
converges in .
PrROOF. By (4.9), there are vectors ej,e,, ... in & such that {e € &:
(h,e) # 0} = {e},e,, ... }. Wealso know that ©2°_[(h, e,)|* < ||A]|* < oo.
So if &> 0, there is an N such that % ,|(h,e,)|* < e’ Let F,=
{e1,...,ey_1} and let F= all the finite subsets of &. For F in & define
hp=YX{(h,e)e: e€ F}. If Fand G € % and both contain F;, then

Ihe = hgll*> = L {ICh, e)*: e € (F\G) U(G\ F)}
; l<h’en>|2

IA

< g%
So {hy: F €%} is a Cauchy net in 5. Because 5 is complete, this net
converges. In fact, it converges to £°_,{(h, e, )e,. ]

4.13. Theorem. If & is an orthonormal set in 3¢, then the following
statements are equivalent.

(a) & is a basis for .
b) Ifhe# andh L &, then h = 0.
(c) V&= ~.
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(d) Ifh € 5#, then h = L{{h,e)e: e € E}.
(e) If gand h € 5#, then

(g.hy = LA{(g.e)e,h): e€&}.
(f) If h € #, then ||h||* = L{|(h,e)|* e € &} (Parseval’s Identity).

PROOF. (a) = (b): Suppose h L & and h # 0; then &£U{h/||h||} is an
orthonormal set that properly contains &, contradicting maximality.

(b) & (¢): By Corollary 2.11, V&= 5 if and only if &* = (0).

(b)y=(d): If h€ s, then f=h —L{(h,e)e: e €} is a well-defined
vector by Lemma 4.12. If e; € &, then (f,e,) = (h,e;) — L{{(h,e){e,e):
e€ &) =<(h,e;) —(h,e;) =0. Thatis, f€ &*. Hence f = 0. (Is every-
thing legitimate in that string of equalities? We don’t want any illegitimate
equalities.)

(d) = (e): This is left as an exercise for the reader.

(e) = (f): Since ||A||?> = (h, h), this is immediate.

(f) = (a): If & is not a basis, then there is a unit vector e; (||ey|| = 1) in
¥ such that e, L & Hence, 0 = {|(ey,e)|%: e € &}, contradicting (f).

|

Just as in finite-dimensional spaces, a basis in Hilbert space can be used
to define a concept of dimension. For this purpose the next result is pivotal.

4.14. Proposition. If 5 is a Hilbert space, any two bases have the same
cardinality.

PROOF. Let & and % be two bases for 5# and put ¢ = the cardinality of &,
1 = the cardinality of #. If ¢ or 7 is finite, then ¢ = n (Exercise 15).
Suppose both ¢ and 7 are infinite. For e in &, let #, = {f€e%: (e, f) #
0}; so %, is countable. By (4.13b), each f in # belongs to at least one set
%, ein & Thatis, F=U{%#: e € &}. Hence 1 < ¢ - N, = ¢. Similarly,
e<nm. |

4.15. Definition. The dimension of a Hilbert space is the cardinality of a
basis and is denoted by dim #.

If (X, d) is a metric space that is separable and { B, = B(x;¢;,): i € [} is
a collection of pairwise disjoint open balls in X, then / must be countable.
Indeed, if D is a countable dense subset of X, B, N D # O for each i in 1.
Thus there is a point x; in B, N D. So {x,: i € I} is a subset of D having
the cardinality of I; thus I must be countable.

4.16. Proposition. If 5¢ is an infinite-dimensional Hilbert space, then 3 is
separable if and only if dim #= N .
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PROOF. Let & be a basis for #. If e;,e, € &, then |le; — e,|> = |le,||* +
lle,||* = 2. Hence { B(e; 1/ V2): e &} is a collection of pairwise disjoint
open balls in 5. From the discussion preceding this proposition, the
assumption that J# is separable implies & is countable. The converse is an
exercise. ]

EXERCISES
. Verify the statements in Example 4.3.

. Verify the statements in Example 4.4.

1

2

3. Verify the statements in Example 4.5.

4. Find an infinite orthonormal set in the Hilbert space of Example 1.8.
5

. Using the notation of the Gram-Schmidt Orthogonalization Process, show that
up to scalar multiple e, = h,/||,|| and for n > 2, e, = ||k, — f,I| ' (h, = £.),
where f, is the vector defined formally by

<hl’h1> <hn—l’hl> <hn’hl>
-1 . : :
f=——————det : : :
det[(h o h)]! oy | (k) () (k)
hy h 0

n—1
In the next three exercises, the reader is asked to apply the Gram-Schmidt

Orthogonalization Process to a given sequence in a Hilbert space. A reference for
this material is pp. 82-96 of Courant and Hilbert [1953].

6. If the sequence 1,x,x2,... is orthogonalized in L?(—1,1), the sequence
e,(x) =[5(2n + 1)]/?P,(x) is obtained, where
1 d " 2 n
- £ - 1"
() = 57( ) (=D

The functions P,(x) are called Legendre polynomials.

7. If the sequence e */2, xe %/ x2 /2 .. s orthogonalized in
L*(—o0,0), the sequence e,(x)=[2"n"m] 2H,(x)e */? is obtained,
where

H,(x) = (—1)"e“2(%)"e~«2.

The functions H, are Hermite polynomials and satisfy H,(x) = 2nH,_(x).

x/2 x/2 L 2,-x/2

8. If the sequence e™*/°, xe */“, x“e . is orthogonalized in L?(0, c0), the
sequence e, (x) = e */2L_(x)/n! is obtained, where

X d ! n_—x
Ln(x)_e (dx) (xe )
The functions L, are called Laguerre polynomials.
9. Prove Corollary 4.10 using Definition 4.11.

10. If {h,} is a sequence in Hilbert space and ¥{h,: n € N} converges to h
(Definition 4.11), then lim, X} _,h, = h. Show that the converse is false.
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11. If {h,} is a sequence in a Hilbert space and X°_,||A,|| < oo, show that X{4,:
n € N} converges in the sense of Definition 4.11.

12. Let {a,} be a sequence in F and prove that the following statements are
equivalent: (a) X{a,: n € N} converges in the sense of Definition 4.11. (b) If =
is any permutation of N, then X%°_,a,,, converges (unconditional convergence).
(©) X-1lay,] < o0.

13. Let & be an orthonormal subset of 5 and let # = V&. If P is the orthogonal
projection of 5 onto #, show that Ph =Y {(h,e)e: e € &} for every h
in .

14. Let A = Area measure on D and show that 1,z,22%, ... are orthogonal vectors
in L?(A). Find ||z"||, n > 0. If e, = ||z"|| ‘2", n > 0, is {ey, e, ...} a basis
for L2(A\)?

15. In the proof of (4.14), show that if either ¢ or 7 is finite, then ¢ = .

16. If 5 is an infinite-dimensional Hilbert space, show that no orthonormal basis
for 5# is a Hamel basis. Show that a Hamel basis is uncountable.

17. Let d > 1 and let p be a regular Borel measure on R“. Show that L?(p) is
separable.

18. Suppose L?(X,2,p) is separable and {E;: i € I'} is a collection of pairwise
disjoint subsets of X, E;, € 2, and 0 < u(E;) < oo for all i. Show that I is
countable. Can you allow p(E;) = c0?

19. If {h € 5#: ||h|| < 1} is compact, show that dim S£< co.
20. What is the cardinality of a Hamel basis for /27

§5. Isomorphic Hilbert Spaces and the Fourier
Transform for the Circle

Every mathematical theory has its concept of isomorphism. In topology
there is homeomorphism and homotopy equivalence; algebra calls them
isomorphisms. The basic idea is to define a map which preserves the basic
structure of the spaces in the category.

5.1. Definition. If 5# and X are Hilbert spaces, an isomorphism between
J and X is a linear surjection U: s#— X" such that

(Uh,Ug) = <h, g)
for all A, g in JZ. In this case »# and X are said to be isomorphic.
It is easy to see that if U: s#— X is an isomorphism, then so is U !

X — 5. Similar such arguments show that the concept of “isomorphic” is
an equivalence relation on Hilbert spaces. It is also certain that this is the
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correct equivalence relation since an inner product is the essential ingredient
for a Hilbert space and isomorphic Hilbert spaces have the “same” inner
product. One might object that completeness is another essential ingredient
in the definition of a Hilbert space. So it is! However, this too is preserved
by an isomorphism. An isometry between metric spaces is a map that
preserves distance.

5.2. Proposition. If V: 5#'— X is a linear map between Hilbert spaces, then
V is an isometry if and only if (Vh,Vg) = (h, g) forall h, g in #.

PROOF. Assume (Vh,Vg) = (h,g) for all h,g in . Then ||Vh|*=
(Vh,Vh) = (h, h) = ||h||* and V is an isometry.

Now assume that V is an isometry. If h,g € ¥ and A €F, then
Ilh + Ag||> = ||Vh + AVg]||>. Using the polar identity on both sides of this
equation gives

171 + 2ReX(h, g) + [APllgll® = [IVAI* + 2ReA(Vh, Vg) + A Vgl*.
But ||VA|| = ||k|| and ||Vg|| = ||gl|, so this equation becomes
ReA(h,g) = ReX(Vh,Vg)

forany A in F. If F = R, take A = 1. If F = C, first take A = 1 and then
take A =i to find that (h,g) and (Vh,Vg) have the same real and
imaginary parts. ]

Note that an isometry between metric spaces maps Cauchy sequences into
Cauchy sequences. Thus an isomorphism also preserves completeness. That
is, if an inner product space is isomorphic to a Hilbert space, then it must be
complete.

5.3. Example. Define S: /2 - [? by S(ay, a,, ...) = (0,a;, a,, ...). Then
S is an isometry that is not surjective.

The preceding example shows that isometries need not be isomorphisms.

A word about terminology. Many call what we call an isomorphism a
unitary operator. We shall define a unitary operator as a linear transforma-
tion U: s#— 5¢ that is a surjective isometry. That is, a unitary operator is
an isomorphism whose range coincides with its domain. This may seem to
be a minor distinction, and in many ways it is. But experience has taught me
that there is some benefit in making such a distinction, or at least in being
aware of it.

5.4. Theorem. Two Hilbert spaces are isomorphic if and only if they have the
same dimension.

PRrROOF. If U: #— X is an isomorphism and & is a basis for J, then it is
easy to see that U6 = {Ue: e € &} is a basis for ). Hence, dim 5= dim /.
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Let 5# be a Hilbert space and let & be a basis for s#. Consider the
Hilbert space [%(&). If h € #, define h: &> F by h(e) = (h,e). By
Parseval’s Identity h € /(&) and ||| = ||h||. Define U: #— [*(&) by
Uh = h. Thus U is linear and an isometry. It is easy to see that ranU
contains all the functions f in /?(&) such that f(e) = 0 for all but a finite
number of e; that is, ranU is dense. But U, being an isometry, must have
closed range. Hence U: #— [*(&) is an isomorphism.

If o is a Hilbert space with a basis %, X" is isomorphic to /*(F). If
dim 5= dim )", & and % have the same cardinality; it is easy to see that
[*(&) and [?(F ) must be isomorphic. Therefore 5# and ¢ are isomorphic.

|

5.5. Corollary. All separable infinite dimensional Hilbert spaces are isomor-
phic.

This section concludes with a rather important example of an isomor-
phism, the Fourier transform on the circle.

The proof of the next result can be found as an Exercise on p. 263 of
Conway [1978]. Another proof will be given later in this book after the
Stone—Weierstrass Theorem is proved. So the reader can choose to assume
this for the moment. Let D = {z € C: |z| < 1}.

5.6. Theorem. If f: dD — C is a continuous function, then there is a
sequence { p,(z,z)} of polynomials in z and z such that p,(z,z) — f(z)
uniformly on dD.

Note that if z € dD, z =z~ !. Thus a polynomial in z and z on ID
becomes a function of the form

n
Y azk
k=-m
If we put z = e, this becomes a function of the form
n
Y aeit
k=-m

Such functions are called trigonometric polynomials.
We can now show that the orthonormal set in Example 4.3 is a basis for
LZ[0,2]. This is a rather important result.

5.7. Theorem. If for each n in Z, e,(t)= (2m) '/%exp(int), then {e,:
n € Z} is a basis for LL[0,2].

PROOF. Let 9= {¥}__,a,e,: o € C, n > 0}. Then J is a subalgebra of
Ccl0, 27], the algebra of all continuous C-valued functions on [0, 27 ]. Note
that if f € 7, f(0) = f(27). We want to show that the uniform closure of 7~
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is €= {fe€ Cc[0,27): f(0)= f(27)}. To do this, let f € € and define F:
dD —» C by F(e)=f(¢t). F is continuous. (Why?) By (5.6) there is a
sequence of polynomials in z and Z, { p,(z, Z)}, such that p,(z,z) — F(z)
uniformly on dD. Thus p,(e”,e ") — f(¢) uniformly on [0,27]. But
Pu(e e ) ET.

Now the closure of € in L[0,27]is all of L[0, 2] (Exercise 6). Hence
V{e, n€ Z} = L{[0,27] and {e,} is thus a basis (4.13). [

Actually, it is usually preferred to normalize the measure on [0, 27 ]. That
is, replace dt by (27) ' dt, so that the total measure of [0,27] is 1. Now
define e,(¢) = exp(int). Hence {e, n € Z} is a basis for #=
LZ([0,27),2m) ' dt). If f € 5#, then

a _ _ _1_ 2 —int
5.8 f(n)=(fre,) = 277/0 f(t)e ™ ar
is called the nth Fourier coefficient of f, n in Z. By (5.7) and (4.13d),
5'9 f= Z f(n)ena

where this infinite series converges to f in the metric defined by the norm of
M. This is called the Fourier series of f. This terminology is classical and
has been adopted for a general Hilbert space.

If 5 is any Hilbert space and & is a basis, the scalars {(h,e);e € &'}
are called the Fourier coefficients of h (relative to &) and the series in
(4.13d) is called the Fourier expansion of h (relative to &).

Note that Parseval’s Identity applied to (5.9) gives that X%°_ w[f(n)lz <
oo. This proves a classical result.

5.10. The Riemann-Lebesgue Lemma. If f € L?[0,2n], then
F7f(t)e ™dt — 0 asn— +oo.

If f € L2[0,27], then the Fourier series of f converges to f in L*-norm.
It was conjectured by Lusin that the series converges to f almost every-
where. This was proved in Carleson [1966]. Hunt [1967] showed that if
fe LE[0,27], 1 < p < oo, then the Fourier series also converges to f a.e.
Long before that, Kolmogoroff had furnished an example of a function f in
LL[0,27] whose Fourier series does not converge to f a.e.

For f in LZ[0, 2], the function f Z — C is called the Fourier transform
of f; the map U: LZ[O, 217] — [%(Z) defined by Uf = f is the Fourier
transform. The results obtained so far can be applied to this situation to
yield the following.

5.11. Theorem. The Fourier transform is a linear isometry from LE[0,2)
onto 1*(Z).
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PROOF. Let U: LE[0,27] — [*(Z) be the Fourier transform. That U maps
L? = L%[0,27] into /%(Z) and satisfies ||Uf]| = ||f] is a consequence of
Parseval’s Identity. That U is linear is an exercise. If {a,} € /*(Z) and
a, = 0 for all but a finite number of n, then f=X* __a,e, € L% It is

easy to check that f(n) = a, for all n, so Uf = {a,}. Thus ranU is dense in
[?. But U is an isometry, so ranU is closed; hence U is surjective. ]

Note that functions in LZ[0,27] can be defined on dD by letting
f(e'®) = f(6). The ambiguity for § = 0 and 27 (or e’ = 1) might cause us
to pause, but remember that elements of L2[0,27] are equivalence classes
of functions—not really functions. Since {0, 27 } has zero measure, there is
really no ambiguity. In this way L[0,2] can be identified with L2(JD),
where the measure on dD is normalized arc-length measure (normalized so
that the total measure of dD is 1). So L&[0,27] and L (ID) are (naturally)
isomorphic). Thus, Theorem 5.11 is a theorem about the Fourier transform
of the circle.

The importance of Theorem 5.11 is not the fact that L%[0,27] and /%(Z)
are isomorphic, but that the Fourier transform is an isomorphism. The fact
that these two spaces are isomorphic follows from the abstract result that all
separable infinite dimensional Hilbert spaces are isomorphic (5.5).

EXERCISES
1. Verify the statements in Example 5.3.

2. Define V: L2(0,00) = L?(0,00) by (Vf)(t) = f(t + 1). Show that V is an
isometry that is not surjective.

3. Define V: L*(R) — L*(R) by (Vf)(¢) = f(¢ + 1) and show that V is an isomor-
phism (a unitary operator).

4. Let 5 be the Hilbert space of Example 1.8 and define U: 5#— L*(0,1) by
Uf = f’. Show that U is an isomorphism and find a formula for U™ !.

5. Let (X, £, p) be a o-finite measure space and let u: X — F be an £2-measurable
function such that sup{|u(x)|: x € X} < co. Show that U: L*(X,Q,p)—
L*(X,Q,p) defined by Uf = uf is an isometry if and only if |u(x)| = 1 a.e. [p],
in which case U is surjective.

6. Let €= {f € C[0,27]: f(0) = f(27))} and show that ¥ is dense in L?[0,27].

7. Show that {(1/ V27),(1/Vm)cosnt,(1/Va)sinnt: 1 < n < oo} is a basis for
L*[—m, x).

8. Let (X,2) be a measurable space and let p,» be two measures defined on
(X,82). Suppose » < p and ¢ is the Radon—Nikodym derivative of » with
respect to p (¢ = dv/du). Define V: L?(v) > L*(p) by Vf = \/af. Show that V
is a well-defined linear isometry and V is an isomorphism if and only if p < »
(that is, p and » are mutually absolutely continuous).
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§6. The Direct Sum of Hilbert Spaces

Suppose s and ¢ are Hilbert spaces. We want to define #°® X so that it
becomes a Hilbert space. This is not a difficult assignment. For any vector
spaces & and ¥, ¥ ® % is defined as the Cartesian product £ X % where
the operations are defined on 2" X % coordinatewise. That is, if elements of
ZX® ¥ are definedas {x ® y: x €Z, y € ¥}, then (x; ® y)) + (x, ® y,)
= (x; + x,) ® (y; + »,), and so on.

6.1. Definition. If 5 and X" are Hilbert spaces, #°'® X'= {h & k: h € K,
k € X} and

(hy ® ky,hy ® ky) = (hyyhy) + (kg k).

It must be shown that this defines an inner product on #'® X" and that
H® X is complete (Exercise).

Now what happens if we want to define ¥, ® 5, & --- for a sequence
of Hilbert spaces ), 5%, ...? There is a problem about the completeness
of this infinite direct sum, but this can be overcome as follows.

6.2. Proposition. If ), #,, ... are Hilbert spaces, let 5= {(h,)7_,:
h, € 5, forallnand L2_,||h,||* < o). For h = (h,) and g = (g,) in K,
define

6.3 (h,gy= % (h,. 8-
n=1

Then ( - ,-) is an inner product on # and the norm relative to this inner
product is ||h|| = [2_,|h,\121/%. With this inner product  is a Hilbert
space.

Proor. If h = (h,) and g = (g,) € #, then the CBS inequality implies
SICh s 801 < ZIAN g < I3 A(Elg,l17)/2 < oo. Hence the series
in (6.3) converges absolutely. The remainder of the proof is left to the
reader. [ ]

6.4. Definition. If 5%, 5%, ... are Hilbert spaces, the space 5 of Proposi-
tion 6.2 is called the direct sum of 5#,, #,, ... and is denoted by = H#
SN, D - .

This is part of a more general process. If {5 i € I} is a collection of
Hilbert spaces, #= & { ¢, i € I} is defined as the collection of functions
h: I —U{X#: i€} such that h(i)€#, for all i and L{||h(i)||*:
i€l}<oo. If hyge#, (h g)=L{(h(i),g(i)): i €1}; # isa Hilbert

space.
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The main reason for considering direct sums is that they provide a way of
manufacturing operators on Hilbert space. In fact, Hilbert space is a rather
dull subject, except for the fact that there are numerous interesting ques-
tions about the linear operators on them that are as yet unresolved. This
subject is introduced in the next chapter.

EXERCISES

1. Let {(X;,$2;,p,): i € I} be a collection of measure spaces and define X, {2, and
p as follows. Let X = the disjoint union of { X;: i € I'} and let 2 = {A C X:
AN X € for all i}. For A in £ put p(4)=X,n,(A N X;). Show that
(X, Q,p) is a measure space and L*(X, 2, p) is isomorphic to & { L*(X;, 2,,1,):
iel}.

2. Let (X, 2) be a measurable space, let u;, 1, be measures defined on (X, £2), and
put p =g, + p, Show that the map V:L*(X,2,p) > L*(X,2,pn) ®
L*(X,8,u,) defined by Vf=f, @ f,, where f; is the equivalence class of
L*(X,Q,p ;) corresponding to f, is well defined, linear, and injective. Show that
U is an isomorphism iff x; and p, are mutually singular.



CHAPTER II

Operators on Hilbert Space

A large area of current research interest is centered around the theory of
operators on Hilbert space. Several other chapters in this book will be
devoted to this topic.

There is a marked contrast here between Hilbert spaces and the Banach
spaces that are studied in the next chapter. Essentially all of the information
about the geometry of Hilbert space is contained in the preceding chapter.
The geometry of Banach space lies in darkness and has attracted the
attention of many talented research mathematicians. However, the theory of
linear operators (linear transformations) on a Banach space has very few
general results, whereas Hilbert space operators have an elegant and well-
developed general theory. Indeed, the reason for this dichotomy is related to
the opposite status of the geometric considerations. Questions concerning
operators on Hilbert space don’t necessitate or imply any geometric difficul-
ties.

In addition to the fundamentals of operators, this chapter will also
present an interesting application to differential equations in Section 6.

§1. Elementary Properties and Examples

The proof of the next proposition is similar to that of Proposition 1.3.1 and
is left to the reader.

1.1. Proposition. Let 3 and A" be Hilbert spaces and A: ' — XA a linear
transformation. The following statements are equivalent.

(a) A is continuous.
(b) A is continuous at 0.
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(c) A is continuous at some point.
(d) There is a constant ¢ > 0 such that ||Ah|| < c||h|| for all h in .

As in (1.3.3), if
4ll = sup{||4h||: h € #, ||h|| <1},
then
41l = sup{||4A]|: ||A]| = 1}
= sup{||4hll/||A||: h # 0}
= inf{c > 0: ||4h|| < c||h||, hin #}.

Also, ||4h|| < [|A]|| ||All- ||A]l is called the norm of A and a linear transfor-
mation with finite norm is called bounded. Let #(5¢,4") be the set of
bounded linear transformations from 5# into . For 5= X", B(H, )
= Z(s¥). Note that #(s#,F) = all the bounded linear functionals on J#.

1.2. Proposition. (a) If A and B € B(¥, X"), then A + B € B(H, X),
and ||A + B|| < ||4]| + || B]|.

®) If a€F and A € B(H, ), then aA € B(H¥,X) and |aA| =
la] [ 4]].

(c) IfA € B(H, X)and B € B(XH ', L), then BA € B(H#, L) and |BA||
< |IBII14]l-

PROOF. Only (c) will be proved; the rest of the proof is left to the reader. If
k €X', then ||Bk| < ||B||||k||. Hence, if h €#, k= Ah € X and so
IBAh|| < ||BI|| l4R|| < |IBI[|l4]l l|All. =

By virtue of the preceding proposition, d(A, B) = ||4 — B|| defines a
metric on Z(J¥, X"). So it makes sense to consider Z( ¢, #) as a metric
space. This will not be examined closely until later in the book, but later in
this chapter the idea of the convergence of a sequence of operators will be
used.

1.3. Example. If dim #= n < o0 and dim "= m < oo, let {e,...,¢e,} be
an orthonormal basis for 5 and let {¢,,...,¢,,} be an orthonormal basis
for 2. It can be shown that every linear transformation from 5 into " is
bounded (Exercise 3). If 1 <j < n,1 <i < m,let a;; = (Ae,, ¢;). Then the
m X n matrix (a,;) represents A and every such matrix represents an
element of Z(#, X).

1.4. Example. Let /> =/?(N) and let e e,, ... be its usual basis. If
A € B(I?), form a;; = (Ae;, e;). The infinite matrix (a;;) represents 4 as
finite matrices represent operators on finite dimensional spaces. However,
this representation has limited value unless the matrix has a special form.
One difficulty is that it is unknown how to find the norm of A4 in terms of
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the entries in the matrix. In fact, if 2 < n < oo, there is no known formula
for the norm of a matrix in terms of its entries. A sufficient condition that is
useful is known, however (see Exercise 11).

1.5. Theorem. Let (X,$,n) be a o-finite measure space and put =
L3(X, 2,p) = L), If ¢ € L=(n), define M: L*(p) — L¥(p) by M,f =
¢f. Then M, € B(L*(p)) and ||M,|| = ||$]l,-

ProoF. Here ||9||,, is the p-essential supremum norm. That is,
lloll, = inf{sup{|p(x)|: x € N}: N€ Q, p(N) = 0}
=inf{c > 0: p({x € X: |¢(x)| > c}) = 0}.

Thus ||¢||,, is the infimum of all ¢ > 0 such that |¢(x)| < ¢ a.e. [u] and,
moreover, |¢(x)| < ||¢||,, a.e. [u]. Thus we can, and do, assume that ¢ is a
bounded measurable function and |¢(x)| < ||¢||,, for all x. Soif f € L*(p),
then [|¢f|*dp < ||l /If1>dp. That is, M, € B(L*(p)) and ||M,] <
|l .- If € > O, the o-finiteness of the measure space implies that there is a
set A in 2, 0 < pu(4) < oo, such that |¢(x)| > ||¢||, — € on A. (Why?) If
/= (1(A)" Vx4 then fe€ L3(p) and |[fll, = 1. So [[M,]> = [|¢f]3 =
((4)) Yyl dpx = (19]l., — &) Letting & — 0, we get that | M,]| > [|g].-
]

The operator M, is called a multiplication operator. The function ¢ is its
symbol.

If the measure space (X, {2, n) is not o-finite, then the conclusion of
Theorem 1.5 is not necessarily valid. Indeed, let {2 = the Borel subsets of
[0,1] and define p on £ by p(A) = the Lebesgue measure of A if 0 ¢ A and
p(4) = oo if 0 € A. This measure has an infinite atom at 0 and, therefore, is
not o-finite. Let ¢ = x ¢,. Then ¢ € L*(u) and ||¢||,, = 1. If f€ L*(p),
then oo > [|f]>dp = |£(0)|°n({0}). Hence every function in L?(p) vanishes
at 0. Therefore M, = 0 and ||M,|| < ||¢||,.

There are more general measure spaces for which (1.5) is valid—the
decomposable measure spaces (see Kelley [1966]).

1.6. Theorem. Let (X, $2, n) be a measure space and suppose k: X X X - F
is an § X §2-measurable function for which there are constants ¢, and c, such
that

fxlk(x,y)ldu(y)scl ae. [p],

[ pdn(x) < ey aeul.
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If K: L?(p) > L*(p) is defined by

(KF)(x) = [k(x, »)f(») du(y),

then K is a bounded linear operator and ||K|| < (c,c,)">.

PROOF. Actually it must be shown that Kf € L?(p), but this will follow
from the argument that demonstrates the boundedness of K. If f € L?(u),

IKF(O) < [k (e, () ()
= [k (e, )21k Cx, ) ()] s ()
< | frkGenann] ] fikGe mivrann]”

< | fiCe R an)]

Hence

JIKFCOPdu(x) < e, f flkCe, ()P dp(y) du(x)

= o [P [Ik(x, y)l du(x) du(y)

2
< 6|17

Now this shows that the formula used to define Kf is finite a.e. [p],
Kf € L*(p), and |IKAI* < ci6,fIA1>. =

The operator described above is called an integral operator and the
function k is called its kernel. There are conditions on the kernel other than
the one in (1.6) that will imply that K is bounded.

A particular example of an integral operator is the Volterra operator
defined below.

1.7. Example. Let k: [0,1] X [0,1] > R be the characteristic function of
{(x, y): y < x}. The corresponding operator V: L?*(0,1) — L*(0.1) defined
by Vf(x) = [gk(x, y) f(y)dy is called the Volterra operator. Note that

Vf(x) = foxf(y)dy-

Another example of an operator was defined in Example 1.5.3. The
nonsurjective isometry defined there is called the unilateral shift. It will be
studied in more detail later in this book. Note that any isometry is a
bounded operator with norm 1.
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EXERCISES
1. Prove Proposition 1.1.
2. Prove Proposition 1.2.

3. Suppose {e,} is an orthonormal basis for s and A: #— X is a linear
transformation such that ¥||4e,|| < co. Show that A is bounded.

4. Proposition 1.2 says that d(A4, B) = ||4 — B|| is a metric on #(5,X"). Show
that B(#, X") is complete relative to this metric.

5. Show that a multiplication operator M, (1.5) satisfies M; = M, if and only if ¢
is a characteristic function.

6. Let (X, 2,) be a measure space and let k, k, be two kernels satisfying the
hypothesis of (1.6). Define

k: XX X->F byk(x,y) =fk1(x,z)k2(z,y) du(z).

(a) Show that k also satisfies the hypothesis of (1.6). (b) If K, K|, K, are the
integral operators with kernels &, ky, k,, show that K = K, K,. What does this
remind you of? Is more going on than an analogy?

7. If (X,Q,p) is a measure space and k € L?(p X p), show that k defines a
bounded integral operator.

8. Let {e,) be the usual basis for /* and let { &, } be a sequence of scalars. Show
that there is a bounded operator 4 on /? such that Ade, = a,e, for all » if and

only if {a, } is uniformly bounded, in which case ||4|| = sup{|a,|: n > 1}. This
type of operator is called a diagonal operator or is said to be diagonalizable.

9. (Schur test) Let {a;;}{°,_, be an infinite matrix such that «,; > 0 for all i, j
and such that there are scalars p; > 0 and B,y > 0 with

o0

Z a;p; < :BP,’
i=1

o0

;D < YP;

j=1
for all i, j > 1. Show that there is an operator 4 on /*(N) with (de,,¢,) = a,;
and ||4]* < By.

10. (Hilbert matrix) Show that (Ade;, e;) = (i +j + 1)7! for 0 < i, j < oo defines
a bounded operator on /(N U {0}) with ||4]| < 7. (See also Choi [1983].)

11. Find the operator norm of a 2 X 2 matrix in terms of its entries.

12. (Direct sum of operators) Let { .} be a collection of Hilbert spaces and let
H#'= @ . Suppose A, € B(,) for all i. Show that there is a bounded
operator 4 on S such that 4|5, = A, for all i if and only if sup,||4,|| < co. In
this case, ||4|| = sup,||4,]|.
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§2. The Adjoint of an Operator

2.1. Definition. If 5# and X" are Hilbert spaces, a function u: #X ¥ — F
is a sesquilinear form if for h,g in ¢, k,f in X", and «,8 in F,

(a) u(ah + Bg, k) = au(h, k) + Bu(g, k);
(b) u(h,ak + Bf) = au(h, k) + Bu(h, f).

The prefix “sesqui” is used because the function is linear in one variable
but (for F = C) only conjugate linear in the other. (“Sesqui” means
“one-and-a-half.”)

A sesquilinear form is bounded if there is a constant M such that
|u(h, k)| < M|\h| ||k|| for all A in 5 and k in . The constant M is
called a bound for u.

Sesquilinear forms are used to study operators. If 4 € Z(5¢, ), then
u(h, k)= (Ah, k) is a bounded sesquilinear form. Also, if B € #(X¢, ),
u(h, k) = (h, Bk) is a bounded sesquilinear form. Are there any more? Are
these two forms related?

2.2. Theorem. If u: 5#°X X' — F is a bounded sesquilinear form with bound
M, then there are unique operators A in B(H, X)) and B in B(KA", ) such
that

23 u(h,k)=(Ah,k) = {(h, Bk)
for all hin 3¢ and k in X" and ||A||, ||B|| < M.

PrOOF. Only the existence of 4 will be shown. For each 4 in 5, define L,:
X — F by L,(k)=wu(h,k). Then L, is linear and |L,(k)| < M|A| k||
By the Riesz Representation Theorem there is a unique vector f in )" such
that (k, f) = L,(k)=wu(h,k) and ||f]] < M||h||. Let Ah = f. It is left as
an exercise to show that A is linear (use the uniqueness part of the Riesz
Theorem). Also, (Ah, k) = (k, Ah) = {k, f) = u(h, k).

If 4, € B(5¢, X )and u(h, k)= (Ah, k), then (4h — Ah, k) = 0 for
all k; thus A4h — A,h = 0 for all A. Thus, A4 is unique. [ |

2.4. Definition. If 4 € (s, "), then the unique operator B in
B(A, H) satisfying (2.3) is called the adjoint of A and is denoted by
B = A*.

The adjoint of an operator will usually be used for operators in B(¥),
rather than Z(5¢, ). There is one notable exception.

2.5. Proposition. If U € B(H, XA"), then U is an isomorphism if and only if
U is invertible and U™! = U *.

Proor. Exercise.
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From now on we will examine and prove results for the adjoint of
operators in #(5¢). Often, as in the next proposition, there are analogous
results for the adjoint of operators in (¢, ¢"). This simplification is
justified, however, by the cleaner statements that result. Also, the interested
reader will have no trouble formulating the more general statement when it
is needed.

2.6. Proposition. If A, B € #(5¢) and o € F, then:

(a) (a4 + B)* = aAd* + B*.

(b) (AB)* = B*4*.

(c) A*¥* = (A*)* = A.

(d) If A is invertible in B(H) and A" is its inverse, then A* is invertible
and (A*)™1 = (4" H*,

The proof of the preceding proposition is left as an exercise, but a word
about part (d) might be helpful. The hypothesis that A is invertible in
%( ) means that there is an operator 4! in #( ) such that 44 ' =
A4 = I Tt is a remarkable fact that if A is only assumed to be bijective,
then A is invertible in #(5¢). This is a consequence of the Open Mapping
Theorem, which will be proved later.

2.7. Proposition. If A € B(H), ||A|| = ||[A*|| = [|4*4|"/>.

Proor. For h in o, |h|| <1, ||Ah||*> = (Ah, Ah) = (A*Ah, h) <
|l A*A4R|| 1] < ||A*A|| < ||[4*| |4]]. Hence |l4]> < [[A*]| < [|[4*] [|4]].
Using the two ends of this string of inequalities gives ||4|| < ||[4*|| when
|l4]] is cancelled. But A = A** and so if A* is substituted for 4, we get
[[A*|| < ||4**|| = ||4]]. Hence ||4|| = ||4*||. Thus the string of inequalities
becomes a string of equalities and the proof is complete. ]

2.8. Example. Let (X, 2, u) be a o-finite measure space and let M, be the
multiplication operator with symbol ¢ (1.5). Then M is M, the multipli-
cation operator with symbol ¢.

If an operator on F? is represented by a matrix, then its adjoint is
represented by the conjugate transpose of the matrix.

2.9. Example. If K is the integral operator with kernel k as in (1.6), then
K * is the integral operator with kernel k*(x, y) = k(y, x).

2.10. Proposition. If S: [*> > [? is defined by S(a;,a,, ...)=
0, ay,ay, ...), then S is an isometry and S*(ay, a,, ...) = (a3, a;, ...).

PROOF. It has already been mentioned that S is an isometry (1.5.3). For («,,)

and (B,) in I?, (§*(a,),(B,)) = {(a,,S(B,)) = {(ar. &y, ... ). (0, ;. B,
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LN =B+ ayB + o = ((ay, a3, ...),(By, Bys - )). Since this holds
for every (8,), the result is proved. ]

The operator S in (2.10) is called the unilateral shift and the operator S *
is called the backward shift.

The operation of taking the adjoint of an operator is, as the reader may
have seen from the examples above, analogous to taking the conjugate of a
complex number. It is good to keep the analogy in mind, but do not become
too religious about it.

2.11. Definition. If 4 € Z(5¢), then: (a) A is hermitian or self-adjoint if
A* = A; (b) A is normal if AA* = A*A.

In the analogy between the adjoint and the complex conjugate, hermitian
operators become the analogues of real numbers and, by (2.5), unitaries are
the analogues of complex numbers of modulus 1. Normal operators, as we
shall see, are the true analogues of complex numbers. Notice that hermitian
and unitary operators are normal.

In light of (2.8), every multiplication operator M, is normal; M, is
hermitian if and only if ¢ is real-valued; M, is unitary if and only if
|¢| = 1 a.e. [u]. By (2.9), an integral operator K with kernel & is hermitian
if and only if k(x, y)=k(y,x) a.e. [p X p]. The unilateral shift is not
normal (Exercise 6).

2.12. Proposition. If 5 is a C-Hilbert space and A € B(¥), then A is
hermitian if and only if (Ah,h) € R for all h in .

PrROOF. If A = A*, then (Ah,h) = (h, Ah) = {(Ah, h); hence (Ah, h) €
R.

For the converse, assume ( Ah, h) is real for every 4 in . If a € C and
h,g €, then (A(h + ag),h + ag) = (Ah,h) + a{Ah,g) + a{Ag, h)
+ |a|*(Ag, g) € R. So this expression equals its complex conjugate. Using
the fact that (4h, h) and (Ag, g) € R yields

a(Ag,h)y + a{Ah,g) = alh, Ag) + a{g, Ah)
= a{A*h,g) + a{A*g, h).
By first taking a = 1 and then a = i, we obtain the two equations
(Ag, h) + (Ah,g) = (A*h,g) + (A*g, h),
i(Ag, h) — i(Ah,g) = —i{A*h,g) + i(A*g, h).
A little arithmetic implies ( Ag, h) = (A*g, h), s0o A = A*. n

The preceding proposition is false if it is only assumed that J# is an

0 1] on R?, then (Ah, h) = 0

R-Hilbert space. For example, if 4 = [ 1 o
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for all 4 in R?. However, A* is the transpose of 4 and so A* # A. Indeed,
for any operator 4 on an R-Hilbert space, (4h, g) € R.
2.13. Proposition. If A = A*, then

41l = sup{[<4h, h)|: || = 1}.

PROOF. Put M = sup{|(A4h, h)|: ||| = 1}. If ||| = 1, then |(A4h, h)| <
Il4]|; hence M < ||4]|. On the other hand, if ||k|| = ||g|| = 1, then

(A(h+ g),h £ g) = (Ah, h) + (Ah,g) + (Ag, h) + (Ag.g)
= (Ah,hYy + (Ah,g) + (g, A*h) + (Ag.g).
Since A = A*, this implies
(A(h +g).h+ gy = (Ah, k) + 2Re(Ah, g) + (Ag. g).
Subtracting one of these two equations from the other gives
4Re(Ah, gy = (A(h+g),h +g) —(A(h—g),h = g).

Now it is easy to verify that [( Af, f)| < M||f)]* for any f in . Hence
using the parallelogram law we get

4Re(Ah, gy < M(|h + g||I* + [|h — glI*)
= 2M( || + |Igl1?)
=4M

since h and g are unit vectors. Now suppose (A4h, g) = e'’|(Ah, g)|.
Replacing / in the inequality above with e~k gives [(A4h,g)| < M if
ll#]] = |lgll = 1. Taking the supremum over all g gives ||4h| < M when
Il = 1. Thus |4 <M. =

2.14. Corollary. If A = A* and {Ah,h) = O for all h, then A = 0.

The preceding corollary is not true unless A = A*, as the example given
after Proposition 2.12 shows. However, if a complex Hilbert space is
present, this hypothesis can be deleted.

2.15. Proposition. If »# is a C-Hilbert space and A € B(H) such that
(Ah,h) =0 for all h in #, then A = 0.

The proof of (2.15) is left to the reader.

If 5# is a C-Hilbert space and 4 € #(5¢), then B = (A4 + A*)/2 and
C = (A — A*)/2i are self-adjoint and 4 = B + iC. The operators B and
C are called, respectively, the real and imaginary parts of A.
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2.16. Proposition. If A € B(¥), the following statements are equivalent.

(a) A is normal.
(b) ||Ah|| = ||4*h|| for all h.

If 5 is a C-Hilbert space, then these statements are also equivalent to:
(c) The real and imaginary parts of A commute.
PROOF. If h €, then ||4h||* — ||A*h||> = (Ah, Ah) — (A*h, A*h) =
{((A*A — AA*)h, h). Since A*4 — AA* is hermitian, the equivalence of (a)
and (b) follows from Corollary 2.14.
If B, C are the real and imaginary parts of A4, then a calculation yields
A*A = B*> — iCB + iBC + C?,
AA* = B® + iCB — iBC + C*.
Hence A*4 = AA* if and only if CB = BC, and so (a) and (c) are
equivalent. ]

2.17. Proposition. If A € B(¥), the following statements are equivalent.

(a) A is an isometry.
(b) 4*4 = I
(c) (Ah, Ag) = (h,g) forall h,gin #.

PrOOF. The proof that (a) and (c) are equivalent was seen in Proposition
1.5.2. Note that if h, g € 5, then (A*4h, g) = (Ah, Ag). Hence (b) and
(c) are easily seen to be equivalent. ]

2.18. Proposition. If A € B(#), then the following statements are equiv-
alent.

(a) A is unitary.
(b) A4 is a surjective isometry.
(c) A is a normal isometry.

PrROOF. (a) = (b): Proposition 1.5.2.
(b) = (c): By (2.17), A*4 = I. But it is easy to see that the fact that 4 is
a surjective isometry implies that 4~! is also. Hence by (2.17) I =
(A" H*47 1 = (4*)""471 = (44*)7; this implies that 4*4 = AA* = I.
(c) = (a): By (2.17), A*4 = I. Since A is also normal, 4A4* = A*4 = I
and so A is surjective. ]

We conclude with a very important, though easily proved, result.

2.19. Theorem. If A € B(¥), then ker A = (ran A*) *.

PROOF. If h € ker4 and g € 5, then (h, A*g) = (Ah,g) = 0,sokerd C
(ran A*)* . On the other hand, if # L ran A* and g € 5#, then (A4h, g) =
(h, A*g) = 0; so (ran A*)* C ker4. =
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Two facts should be noted. Since A** = 4, it also holds that ker 4* =

(ran A)*. Second, it is not true that (ker4)* = ran A* since ran A* may
not be closed. All that can be said is that (kerA4)* = cl(ran 4*) and
(ker 4*) + = cl(ran A).

EXERCISES

1. Prove Proposition 2.5.

2. Prove Proposition 2.6.

3. Verify the statement in Example 2.8.

4. Verify the statement in Example 2.9.

5. Find the adjoint of a diagonal operator (Exercise 1.8).

6. Let S be the unilateral shift and compute SS* and S*S. Also compute S"S*"
and S*"S".

7. Compute the adjoint of the Volterra operator V' (1.7) and V + V*. What is
ran(V + V*)?

8. Where was the hypothesis that ># is a Hilbert space over C used in the proof of
Proposition 2.12?

9. Suppose A = B + iC, where B and C are hermitian and prove that B = (4 +
A*)/2, C= (A — A*)/2i.

10. Prove Proposition 2.15.

11. If A and B are self-adjoint, show that 4B is self-adjoint if and only if
AB = BA.

12. Let X%°_,a,z" be a power series with radius of convergence R, 0 < R < o0. If
A € B(H) and ||A|| < R, show that there is an operator 7" in %(5¢) such that
for any h, g in 5, (Th,g) = X%_,a,(A"h,g). [If f(z) = Xa,z", the operator
T is usually denoted by f(A4).]

13. Let 4 and T be as in Exercise 12 and show that ||T — X} _oa, A*|| > 0 as
n — oo. If BA = AB, show that BT = TB.

14. If f(z) = expz = £¥_yz"/n! and A is hermitian, show that f(iA4) is unitary.

15. If A4 is a normal operator on 5, show that A is injective if and only if 4 has
dense range. Give an example of an operator B such that ker B = (0) but ran B
is not dense. Give an example of an operator C such that C is surjective but
ker C # (0).

16. Let M, be a multiplication operator (1.5) and show that ker M, = (0) if and

only if u({x: ¢(x) = 0}) = 0. Give necessary and sufficient conditions on ¢
that ran M, is closed.
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§3. Projections and Idempotents; Invariant and
Reducing Subspaces

3.1. Definition. An idempotent on ¢ is a bounded linear operator E on 5
such that E? = E. A projection is an idempotent P such that ker P =
(ran P)*.

If # < 5#, then P, is a projection (Theorem 1.2.7). It is not difficult to
construct an idempotent that is not a projection (Exercise 1).

Let E be any idempotent and set .# = ran E and A= kerE. Since E is
continuous, 4" is a closed subspace of . Notice that (I — E)> =1 — 2E
+ E?=1—-2E+ E=1-E; thus I — E is also an idempotent. Also,
0= (I —E)h=h— Eh, if and only if Fh = h. So ran E D ker(/ — E).
On the other hand, if h €ranE, h = Eg and so Eh = E’g = Eg = h;
hence ran E = ker(/ — E). Similarly, ran(/ — E) = ker E. These facts are
recorded here.

3.2. Proposition. (a) E is an idempotent if and only if I — E is an idempo-
tent. (b) ran E = ker(/ — E), kerE = ran(/ — E), and both ran E and
ker E are closed linear subspaces of 5. (c) If # = ran E and N = kerE,
then M N\ N'= (0) and M + N = ¥.

The proof of part (c) is left as an exercise. There is also a converse to (c).
A, N<H, MNAN=(0),and A + A4 =, then there is an idempo-
tent E such that # = ran £ and A4 = ker E; moreover, E is unique. The
difficult part in proving this converse is to show that E is bounded. The
same fact is true in more generality (for Banach spaces) and so this proof
will be postponed.

Now we turn our attention to projections, which are peculiar to Hilbert
space.

3.3. Proposition. If E is an idempotent on ¥ and E # 0, the following
statements are equivalent.

(a) E is a projection.

(b) E is the orthogonal projection of  onto ran E.
© lE] =1

(d) E is hermitian.

(e) E is normal.

(f) (Eh,h) =0 forall hin #.

PROOF. (a) = (b): Let #/ =ran E and P = P ,. If h € 5, Ph = the unique
vector in # such that h — Ph€#+= (ranE)* = kerE by (a). But
h — Eh = (I — E)h € kerE. Hence Eh = Ph by uniqueness.

(b) = (¢): By (1.2.7), ||E|| < 1. But Eh = h for h in ran E, so ||E|| = 1.
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(¢) = (a): Let he(kerE)'. Now ran(/ — E) = kerE, so h — Eh €
ker E. Hence 0 = (h — Eh, h) = ||h||* — (Eh, h). Hence ||h||*> = (Eh, h)
< ||ER|| ||| < ||k]|> So for h in (kerE)*, ||Eh| = ||h|| = { Eh, h)'/?. But
then for 4 in (kerE)*,

Ik — Eh||> = ||h||> = 2Re(Eh, k) + ||Eh||* = 0.

That is, (ker E)* C ker(I — E) = ran E. On the other hand, if g € ran E,
g =g, + &, where g, € kerE and g, € (kerE)*. Thus g = Eg = Eg, =
g,; that is, ran E C (kerE)*. Therefore ran E = (kerE)* and E is a
projection.

®)y=): If hes, write h=h, + h,, hy€ranE, h, € kerE =
(ran E)* . Hence (Eh, h) = (E(h; + h,), hy + hy) = (Eh, h;) =
(hy hyy = Iy = 0.

(f)= (a): Let h, €ran E and h, € kerE. Then by (f), 0 < (E(h, +
hy), hy + hy) = (hy, b)) + (hy, h,). Hence — ||hy||2 < (hy, hy) for all h;
in ran E and A, in ker E. If there are such h, and h, with (hy, h,) = a # 0,
then substituting k, = —2a~!||h,||*h, for h, in this inequality, we obtain
—|A,l1*> < —2||h,||% a contradiction. Hence (h,, h,) = 0 whenever h, €
ran E and h, € kerE. That is, E is a projection.

(a) = (d): Let h,g € and put h =h, + h, and g =g, + g,, where
hy,,g €ranE and h,, g, € kerE = (ran E)* . Hence (Eh, g) = {hy, g,).
Also, (E*h,g) = (h,Eg) = (h,, g) = (Eh,g). Thus E = E*. '

(d) = (e): clear.

(e) = (a): By (2.16), ||Eh|| = ||E*h|| for every h. Hence ker E = ker E*.
But by (2.19), kerE* = (ran E) *, so E is a projection. W

Note that by part (b) of the preceding proposition, if E is a projection
and A4 = ran E, then E = P ,.

Let P be a projection with ran P = # and ker P = A". So both .# and
A" are closed subspaces of »# and, hence, are also Hilbert spaces. As in
(1.6.1), we can form A & A If U: M & N — S is defined by U(h & g)
=h+ g for h in A and g in A, then it is easy to see that U is an
isomorphism. Making this identification, we will often write #'=.# & A",

More generally, the following will be used.

3.4. Definition. If { #,} is a collection of pairwise orthogonal subspaces of
J¥, then
&M =V, M,
If # and A" are two closed linear subspaces of 5, then
MON=MON*.
This is called the orthogonal difference of A and A",
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Note that if #, /< and A L A, then A + A is closed. (Why?)
Hence # & A= .# + 4. The same is true, of course, for any finite
collection of pairwise orthogonal subspaces but not for infinite collections.

3.5. Definition. If 4 € #(5#) and A < ¥, say that A is an invariant
subspace for A if Ah € # whenever h € A . In other words, if A4 C M.
Say that ./ is a reducing subspace for A if A# C M and AM*C M.

If # <5, then #=MSM* . If A € B(H), then A can be written as
a 2 X 2 matrix with operator entries,

w X
Y zr

where W e B( M), X€c B(ML, M), Y € B(M, M), and Z € B(M ).

3.6 A=[

3.7. Proposition. If A € B(¥), # <X, and P = P, then statements (a)
through (c) are equivalent.

(a) A is invariant for A.
(b) PAP = AP.
(c) In (3.6), Y =0.

Also, statements (d) through (g) are equivalent.

(d) A reduces A.

(e) PA = AP.

(f) In (3.6), Y and X are 0.

(g) A is invariant for both A and A*.

PROOF. (a) = (b): If h€ ¥, Phe #. So APh € #. Hence, P(APh) =
APh. That is, PAP = AP.
(b) = (c): If P is represented as a 2 X 2 operator matrix relative to
H=M M, then
_|7 0
P= [0 o]‘

Hence,

_|wW 0|_ _|w o0

PAP‘[O 0] AP [Y ol
So Y =0.

(c)=(a): If Y=0and h € 4, then

_|W X||h|_|Wh
Ah‘[o z”o] [ 0 ]E“”'

(d) = (e): Since both # and # * are invariant for A, (b) implies that
AP = PAP and A(I — P)= (I — P)A(I — P). Multiplying this second
equation gives 4 — AP = A — AP — PA + PAP. Thus PA = PAP = AP.
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(e) = (f): Exercise.
()= (2): If X =Y =0, then

_|w 0 «_|W* 0
A [0 Z] and A [ 0 Z*]'
By (¢), A is invariant for both 4 and A4*.

g =():If he# and g € A, then (g, Ah) = (A*g, h) = 0 since
A*g € #. Since g was an arbitrary vector in A4, Ah € #*. That is,
AM-C M. n

If A reduces A4, then X = Y = 0 in (3.6). This says that a study of 4 is
reduced to the study of the smaller operators W and Z. This is the reason
for the terminology.

If A € #(5¢) and A is an invariant subspace for A, then 4|.# is used
to denote the restriction of A to . That is, A|.# is the operator on ./
defined by (A|#)h = Ah whenever h € /. Note that A|# € B( M) and
|44 < ||4]|. Also, if A is invariant for 4 and A4 has the representation
(3.6) with Y = 0, then W = A|.A.

EXERCISES

1. Let 5 be the two-dimensional real Hilbert space R?, let # = {(x,0) € R*:
x € R) and let /= {(x,xtanf): x € R}, where 0 < § < {=. Find a formula
for the idempotent E, with ran E; = # and ker E; = A". Show that ||Ey|| =
(sinf)~ 1.

2. Prove Proposition 3.2 (c).

3. Let {A,;: i €I} be a collection of closed subspaces of 5# and show that
A+ iely=V{M:icl)]* and[{MA;:i€l}] ' =V(H' i€}

4. Let P and Q be projections. Show: (a) P + Q is a projection if and only if
ran P 1L ran Q. If P + Q is a projection, then ran(P + Q) = ran P + ranQ and
ker(P + Q) = ker P N ker Q. (b) PQ is a projection if and only if PQ = QP. If
PQ is a projection, then ran PQ = ran P NranQ and ker PQ = cl(ker P +
ker Q).

5. Generalize Exercise 4 as follows. Suppose {A;: i € I} is a collection of
subspaces of 5 such that #; L .#  if i # j. Let P, be the projection of ¥
onto #; and show that for all 4 in 5, X{ P;h: i € I} converges to Ph, where
P is the projection of 3 onto V{ A : i € I'}.

6. If P and Q are projections, then the following statements are equivalent. (a)
P — Q is a projection. (b) ranQ CranP. (¢c) PQ=Q.(d) QP=Q.If P - Q
is a projection, then ran(P — Q) = (ran P) © (ranQ) and ker(P — Q) = ranQ
+ ker P.

7. Let P and Q be projections. Show that PQ = QP if and only if P + Q — PQ
is a projection. If this is the case, then ran(P + Q — PQ) = cl(ran P + ran Q)
and ker(P + Q — PQ) = ker P N ker Q.
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8. Give an example of two noncommuting projections.

9. Let A € B(#) and let A= graph A C #® H. That is, /= {h ® Ah:
h € 5 }. Because 4 is continuous and linear, #"< #® . Let #/ = #® (0) <
H® . Prove the following statements. (a) # N A= (0) if and only if ker4 =
(0). (b) A + A is dense in #'® H# if and only if ran 4 is dense in . (c)
M+ N = 5 if and only if A4 is surjective.

10. Find two closed linear subspaces .#, 4" of an infinite-dimensional Hilbert space
2 such that £ N A= (0) and A + A is dense in S, but A + N+ .

11. Define A4: [*(Z) - I*(Z) by A(...,a_1, &g, 0p,...) = (..., & |, 00, ...),
where - sits above the coefficient in the 0-place. Find an invariant subspace of 4
that does not reduce A.

12. Let p = Area measure on D = {z € C: |z| < 1} and define 4: L%(p) > L*(p)
by (Af)(z) = zf(z) for |z| <1 and f in L*(p). Find a nontrivial reducing
subspace for 4 and an invariant subspace that does not reduce A4.

§4. Compact Operators

It turns out that most of the statements about linear transformations on
finite-dimensional spaces have nice generalizations to a certain class of
operators on infinite-dimensional spaces—namely, to the compact oper-
ators.

4.1. Definition. A linear transformation T: 5#— X" is compact if T(ball
) has compact closure in J¢". The set of compact operators from 5 into
X is denoted by B(H#, X), and By(H) = By(H, H).

4.2. Proposition. (a) B,(#, X)) C B(H#, X).

(b) By(#, X) is a linear space and if {T,} C B,(H,K) and T € #(H, K)
such that ||T,, — T|| = 0, then T € B,(H, X).

() If A€ B(HK), Be B(X'), and T € B,(#,X ), then TA and BT €
Bo(H, X).

PROOF. (a) If T € #,(5, ), then cl[T(ball 5#)] is compact in #". Hence
there is a constant C > 0 such that T(ball »#) C {k € X" ||k|| < C}. Thus
IT) < C.

(b) It is left to the reader to show that % (5%, X) is a linear space. For
the second part of (b), it will be shown that T(ball 5#) is totally bounded.
Since " is a complete metric space, this is equivalent to showing that
T(ball 5#°) has compact closure. Let € > 0 and choose n such that ||T — T,||
< g/3. Since T, is compact, there are vectors h,,..., h, in ball 5# such

m

that T,(ball #) € U7, B(T,h; e/3). So if ||h|l <1, there is an h, with
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IT,h, — T,h|| < e/3. Thus
ITh, — Th|| < |Th, = T,h| + | T,h, = T,h|l + | T,h — Th|

<2T-T, +¢/3
< E.

Hence T(ball ) C U, B(Th; ¢).
The proof of (c) is left to the reader. u

4.3. Definition. An operator T on S¥ has finite rank if ranT is finite
dimensional. The set of finite-rank operators is denoted by %,(5#, X');
Boo(H) = Boo(H, H).

It is easy to see that By, (s, ) is a linear space and By, (H, X)) C
By(H, X)) (Exercise 2). Before giving other examples of compact oper-
ators, however, the next result should be proved.

4.4. Theorem. If T € (¥, X"), the following statements are equivalent.

(a) T is compact.

(b) T* is compact.

(¢) There is a sequence {T,} of operators of finite rank such that ||T — T,||
- 0.

PROOF. (¢) = (a): This is immediate from (4.2b) and the fact that
Bo(H, H) S By(H, X).

(a) = (¢): Since cl[T(ball #)] is compact, it is separable. Therefore
cl(ranT) = & is a separable subspace of ). Let { e, e,, ...} be a basis for
& and let P, be the orthogonal projection of " onto V{e;: 1 <j < n}. Put
T, = P,T; note that each 7,, has finite rank. It will be shown that ||T, — T]|
— 0, but first we prove the following;:

Claim. If h € #, ||T,h — Th|| - 0.

In fact, k = Th € &, so ||P,k — k|| — 0 by (1.4.13d) and (1.4.7). That is,
\|P,Th — Th|| — 0 and the claim is proved.

Since T is compact, if ¢ > 0, there are vectors hy, ..., A, in ball  such
that T(ball ') C U7_,B(Th; ¢/3). So if ||| < 1, choose h; with || Th —
Th || < /3. Thus for any integer n,

ITh = T,hll < \Th — ThJ| + | Th, — T,h)|| + |P,(Th, = Th))|
<2||Th = Th|| + |Th, — T,k
<2¢/3 + ||[Th;— T,h .
Using the claim we can find an integer n, such that ||7h; — T,h || < &/3 for

1<j<mand n>n, So |Th — T,h|| <& uniformly for 4 in ball 5.
Therefore ||T — T,|| < & for n > n,,.
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(c) = (b): If {T,,} is a sequence in By,(H, X") such that ||T,, — T|| — 0,
then |T* — T*|| = ||T,— T|| = 0. But T.* € B, (#, X)) (Exercise 3).
Since (¢) implies (a), T * is compact.

(b) = (a): Exercise. [ ]

A fact emerged in the proof that (a) implies (c) in the preceding theorem
that is worth recording.

4.5. Corollary. If T € By(#, X "), then cl(ranT) is separable and if {e,,}
is a basis for cl(ranT) and P, is the projection of X" onto V{e;: 1 <j < n},
then ||P,T — T|| = 0.

4.6. Proposition. Let 5 be a separable Hilbert space with basis {e,}; let
{a,} € F with M = sup{|a,|: n > 1} < 0. If Ae, = a,e, for all n, then A
extends by linearity to a bounded operator on S with ||A|| = M. The operator
A is compact if and only if a,, = 0 as n = co.

ProOOF. The fact that A4 is bounded and ||4|| = M is an exercise; such an
operator is said to be diagonalizable (see Exercise 1.8). Let P, be the
projection of »# onto V{e,,...,e,}. Then 4, =4 — AP, is seen to be
diagonalizable with A,e, = a;e; if j> n and A,e; = 01if j <n.So AP, €
Boyo(H) and ||4,]| = sup{|e|: j > n}. If a, = 0, then [|4,]| - 0 and so 4
is compact since it is the limit of a sequence of finite-rank operators.
Conversely, if A4 is compact, then Corollary 4.5 implies ||4,|| — 0; hence
a, — 0. u

4.77. Proposition. If (X, 2, ) is a measure space and k € L*(X X X, 2 X
Q,p X p), then

(Kf)(x) = [k(x, »)f(y)du(y)

is a compact operator and || K| < |k||,-
The following lemma is useful for proving this proposition.
4.8. Lemma. If {e;: i € I} is a basis for L*(X, 2, p) and

¢ij(x’ y) = ei(x)ngy—)
fori, jinIandx,yin X, then {$,: i, j € I} is a basis for L>(X X X, 2 X
Q,p X p).
PROOF. Since [/|¢, 12 dudp = lle)Plle]|> = 1, ¢, € L2(u X p). I (i, j) #
(a, B), then
(Bops 07 = [ [6:(x)06(7) :(x),(») dn(x) du( )

= (9> $:)($;> 9p) = 0.

So {¢,,} is an orthonormal family.
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If ¢ € L*(p X p), then the fact that [[|¢(x, y)|*dp(x)dp(y) < co im-
plies that [|$(x, y)|>du(x) < oo for almost all y in X. That is, if ¢,(x) =

¢(x,y), then ¢, & L*(p) for almost all y. Thus f(y)= (e,¢,) =
Jo(x, y)e;(x)dp(x) is well defined. Moreover, f; € L*(u) (Exercise). But

2

VIP = Zi<ey S = X

J7(e,(v) du(y)

2

= | [ fol.»)ee,(3) du(x) ()

= Z|<¢’¢U>|2
J

Soif ¢ L ¢,;; for all i, j, then f, =0 for all i. Thus ¢, = 0 in L?*(p) for
almost all y. That is, ¢ = 0. Therefore, {¢,,} is a basis. ]

PROOF OF PROPOSITION 4.7. Let {e;} and {¢,;} be as in Lemma 4.8. Since
k€ L*(p X p),

IklIZ = 21k, ;012
i

2

= X[ [k(x. p)e(x)e, () du(x) du(y)

2

= || frG e ) ) [ )

= Z'(Kej’ei>|2‘
iJj

Thus, if f= X a;e; € L*(p), L |a,|* < oo, then
2

I{Kf, ei>,2 =

Zaj<Kej,ei)
J

< (Z|aj[2)(z|<Kej,ei>|2).
Therefore, ’ ’

KA = LICKS e

< kI3

This shows that K is bounded and ||K|| < ||k||,.

Now assume that k is a linear combination of a finite number of the
{¢,,)- It is left to the reader to show that in this case K’ has finite rank. If &
is an arbitrary element of L2(p X p), then k is in the linear span of a
countable number of ¢,. Say that k=17, _10,,8m Pum(X,y)=
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e (x)e,(y). If ky=2Y, 10, ., . then ||ky — k|, > 0 as N = oo. If
K, 1s the integral operator corresponding to k,, K, has finite rank and
Ky — K|| < |lky — k||, = 0. Thus K is compact. |

In particular, note that the preceding proposition shows that the Volterra
operator (1.7) is compact.

One of the dominant tools in the study of linear transformations on
finite-dimensional spaces is the concept of eigenvalue.

4.9. Definition. If A € #(5¥), a scalar « is an eigenvalue of A if ker(A4 —
a) # (0). If 4 is a nonzero vector in ker(4 — a), h is called an eigenvector
for a; thus Ah = ah. Let 0,(A) denote the set of eigenvalues of 4.

4.10. Example. Let A be the diagonalizable operator in Proposition 4.6.
Then 0,(A) = {a), a5, ... }. lf a € 0,(A),let J, = {j € N: a; = a}. Then
h is an eigenvector for a if and only if # € V{e;: j € J,}.

4.11. Example. The Volterra operator has no eigenvalues.

4.12. Example. Let h € = Li(—m,7) and define K: #—# by
(Kf)(x) = [T.h(x = y)f(y)dy. If A, = 2m)" V%7 _h(x)exp(—inx)dx =
il(n), the nth Fourier coefficient of 4, then Ke, = A ,e,, where e,(x) =
(277)_1/2exp(inx).

The way to see this is to extend functions in Li(—m,7) to R by
periodicity and perform a change of variables in the formula for (Ke,)(x).
The details are left to the reader.

Operators on finite-dimensional spaces always have eigenvalues. As the
Volterra operator illustrates, the analogy between operators on finite-dimen-
sional spaces and compact operators breaks down here. If, however, a
compact operator has an eigenvalue, several nice things can be said if the
eigenvalue is not zero.

4.13. Proposition. If T € (), A € 0,(T), and A # 0, then the eigen-
space ker(T — M) is finite dimensional.

PROOF. Suppose there is an infinite orthonormal sequence { e, } in ker(T —
A). Since T is compact, there is a subsequence {e, } such that {7e, }
converges. Thus, {Te, } is a Cauchy sequence. But for n, # n, ||Te, —
Te,|I> = ||Ae,, — Ae, ||I> = 2]A|* > 0 since A # 0. This contradiction shows
that ker(T — A) must be finite dimensional. |

The next result on the existence of eigenvalues is not a practical way to
show that a specific example has a nonzero eigenvalue, but it is a good
theoretical tool that will be used later in this book (in particular, in the next
section).
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4.14. Proposition. If T is a compact operator on ¢, A # 0, and inf{||(T —
M|z ||kl = 1} = O, then A € o,(T).

PrROOF. By hypothesis, there is a sequence of unit vectors {4,} such that
II(T = A)h,|| = 0. Since T is compact, there is a vector f in J# and a
subsequence {4, } such that ||Th, —fI = 0. But h, =A"'[(A = T)h,,
+ Th,]—> A~ 1180 1= A1) = A" YAl and f=f= 0. Also, it must be
that Th — N 7UTf. Since Th, — f, f=A"'Tf, or Tf = Af. That is, f €
ker(T — )\)andf=#0 so}\EU(T) [ ]

4.15. Corollary. If T is a compact operator on #, X # 0, X & o,(T), and
Aéo ,(T*), then tan(T — A) = # and (T — X))~ Visa bounded operator
on 920

PrOOF. Since A & 0,(T), the preceding proposition implies that there is a
constant ¢ > 0 such that ||(T — A)A|| = c||h|| for all A in SZ. If f € clran(T
— A), then there is a sequence { 4,} in 5 such that (T — A)h, — f. Thus
W, — h,ll <c YT =A)h,— (T —A)h,| and so {h,} is a Cauchy se-
quence. Hence h,, — h for some h in 3. Thus (T — A)h = f. Soran(T — A)
is closed and, by (2.19), ran(T — A) = [ker(T — A)*]* = 5, by hypothesis.

So for f in 5# let Af = the unique vector h such that (T — A)h = f.
Thus (T — A)Af = f for all f in 5. From the inequality above, c||4f]| <
(T — M) Af)| = |IAl- So |4l < ¢ Yl and A4 is bounded. Also, (T —
MA(T — Mh = (T —AN)h, so 0= (T — MN[A(T — AN)h — k]. Since A &
0,(T), A(T — A)h = h. Thatis, 4 =(T — ML [ ]

It will be proved in a later chapter that if A & o0,(T) and A # 0, then
AEo ,(T).

More will be shown about arbitrary compact operators in Chapter VI. In
the next section the theory of compact self-adjoint operators will be
explored.

EXERCISES
1. Prove Proposition 4.2(c).
2. Show that every operator of finite rank is compact.

3.If T e Byy(#,X), show that T* € By (X, #) and dim(ranT) =
dim(ran T%*).

4. Show that an idempotent is compact if and only if it has finite rank.
5. Show that no nonzero multiplication operator on L?(0,1) is compact.

6. Show that if T: s#— X is a compact operator and { e, } is any orthonormal
sequence in SZ, then ||Te,|| — 0. Is the converse true?

n|
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7. If T is compact and  is an invariant subspace for T, show that T|./ is
compact.

8. If h,g € #, define T: #'— # by Tf = (f,h)g. Show that T has rank 1 [that
is, dim(ranT') = 1]. Moreover, every rank 1 operator can be so represented.
Show that if T is a finite-rank operator, then there are orthonormal vectors
ey,...,e, and vectors gi,..., g, such that Th =¥_,(h,e;) g, for all h in .
In this case show that T is normal if and only if g, = A e, for some scalars
Ats--os A, Find o,(T).

9. Show that a diagonalizable operator is normal.
10. Verify the statements in Example 4.10.
11. Verify the statement in Example 4.11.

12. Verify the statement in Example 4.12. (Note that the operator K in this example
is diagonalizable.)

13. If T, € B(K,), n > 1, withsup,||T,|| < 0and T = @ T, on #= @7 %,

n=1""n»

show that 7" is compact if and only if each 7, is compact and ||7,| — O.

§5*. The Diagonalization of Compact
Self-Adjoint Operators

This section and the remaining ones in this chapter may be omitted if the
reader intends to continue through to the end of this book, as the material
in these sections (save for Section 6) will be obtained in greater generality in
Chapter IX. It is worthwhile, however, to examine this material even if
Chapter IX is to be read, since the intuition provided by this special case is
valuable.

The main result of this section is the following.

5.1. Theorem. If T is a compact self-adjoint operator on ', { A, \,,...}
are the distinct nonzero eigenvalues of T, and P, is the projection of 5 onto
ker(T — X,), then P,P,, = P P, =0 if n + m, each A, is real, and

5.2 T= )Y AP,

where the series converges to T in the metric defined by the norm of #B(¥).
[Of course, (5.2) may be only a finite sum.]

The proof of Theorem 5.1 requires a few preliminary results. Before
beginning this process, let’s look at a few consequences.
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5.3. Corollary. With the notation of (5.1):

(a) kerT = [V(P,5¢: n>1}]*= (ranT)*;
(b) each P, has finite rank;
©) |IT|| = sup{|A,|: n>1} and A, > 0 as n — oo.

PROOF. Since P, L P, for n + m, if h € ), then (5.2) implies ||Th||* =
T2 IA, P, A% = X2, A %Pk~ Hence Th = 0 if and only if P,h = 0 for
all n. That is, & € ker T if and only if & L P,5# for all n, whence (a).

Part (b) follows by Proposition 4.13.

For part (c¢), if #=clranT], £ is invariant for 7. Since T = T*,
L= (kerT)* and .Z reduces T. So we can consider the restriction of T to
&L, T|¢. Now &L= V{P,#: n>1)} by (a). Let {e/: 1 <j<N,} bea
basis for P, #'= ker(T — X,), so Te{ = X e for 1 <j < N,. Thus {e":
1<j<N, n=>1}isabasis for £ and T|Z is diagonalizable with respect
to this basis. Part (c) now follows by (4.6). [ ]

The proof of (c) in the preceding corollary revealed an interesting fact
that deserves a statement of its own.

5.4. Corollary. If T is a compact self-adjoint operator, then there is a
sequence {, )} of real numbers and an orthonormal basis {e,} for (kerT)™*
such that for all h,

Th = Z nu'n<h’en>en‘

n=1

Note that there may be repetitions in the sequence {u,} in (5.4). How
many repetitions?

5.5. Corollary. If T€ B,(#), T=T* and kerT = (0), then K s

separable.

Also note that by (4.6), if (5.2) holds, T € %,(¢).
To begin the proof of Theorem 5.1, we prove a few results about not
necessarily compact operators.

5.6. Proposition. If A is a normal operator and \ € F, then ker(A — \) =
ker(A — A)* and ker(A — M) is a reducing subspace for A.

PRrOOF. Since A4 is normal, sois A — A. Hence ||(4 — A)A|| = |[(4 — A)*h||
(2.16). Thus ker(A4 — ) = ker(4 — M)*. If h € ker(4 — ), Ah = Ah €
ker(A — N). Also A*h = Ah € ker(A — \). Therefore ker(4 — A) reduces
A. [ ]

5.7. Proposition. If A is a normal operator and X, u are distinct eigenvalues
of A, then ker(A — X) L ker(A — p).
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PROOF. If h € ker(4 — A) and g € ker(A4 — p), then the fact (5.6) that

A*g = jug implies that A(h, g) = (Ah, g) = (h, A*g) = (h,pg) =
plh, g). Thus (A — p)(h,g) =0.Since A —u+0, h L g ]

5.8. Proposition. If 4 = A* and N € 0,(A), then X is a real number.

PROOF. If Ah = Ah, then Ah = A*h = Ah by (5.6). So (A — A)h = 0. Since
h can be chosen different from 0, A = A. [ |

The main result prior to entering the proof of Theorem 5.1 is to show that
a compact self-adjoint operator has nonzero eigenvalues. If (5.3c) is ex-
amined, we see that there is a A, in 0,(7T) with |A,| = ||T]|. Since the
preceding proposition says that A, € R, it must be that A, = +||7]||. That
is, either +||7| € 0,(T). This is the key to showing that ¢,(T') is nonvoid.

5.9. Lemma. If T is a compact self-adjoint operator, then either +||T)|| is an
eigenvalue of T.

PROOF. If T = 0, the result is clear. So suppose T # 0. By Proposition 2.13
there is a sequence {4,} of unit vectors such that [(Th,, h,)| = ||T]. By
passing to a subsequence if necessary, we may assume that (Th,, h,) — A,
where |A| = ||T]|. It will be show that A € ¢,(T). Since |\| = ||T]|, 0 <
I(T — N, ||1> = |Th,||> — 2A(Th,, h,) + Mg oN - 2XTh,, h,) — 0.
Hence ||[(T — A)h,|]| = 0. By (4.14), A € o ,(T). [ ]

PROOF OF THEOREM 5.1. By Lemma 5.9 there is a real number A, in o,(T)
with |A;| = ||T]|. Let &, = ker(T — A,), P, = the projection onto zf’l, 9?2
&t . By (5.6) &, reduces T, so 5, reduces T. Let T, = T|,; then T, is a
self-adjomt compact operator on 5£,. (Why?)

By (5.9) there is an eigenvalue >\2 for T, such that |A,| = ||T;||. Let
&, = ker(T, — A,). Itis easy to check that &, = ker(T — A,)andso A, # A,.
Let P, = the projection of » onto &, and put 5, = (&, @ &,)*. Note
that [|Ty]| < [IT]| so that [A,] < [X,].

Using induction (give the details) we obtain a sequence {A,} of real
eigenvalues of T such that

(ORVS =N
(i) If &, = ker(T = A,), A, 4] = ITI(&, @ --- &5,) ||

By (i) there is a nonnegative number a such that |A,| = a.
Claim. a = 0; that is, limA, = 0.

In fact, let e, € &,, ||e,|| = 1. Since T is compact, there is an 4 in # and
a subsequence {e, } such that || Te, — k|| — 0. But e, L e, for n # m and
J
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=\, e, Hence ||Te, — Te, I?=N, + X, >2a’ Since (Te, } is a
Cauchy sequence a=0. ’ '
Now put P, = the projection of 5 onto &, and examine 7 — L7_;A P,
If hed, 1 <k <n, then (T —X7_;A;P)h=Th— Ah=0. Hence &,
- @8, Cker(T—X'_\,P).If h€ (6, & -+ ®8,)", then Ph=0
for 1 <j < n; so (T —Xj_,A;P)h = Th. These two statements, together
with the fact that (&, ® --- ®&,) " reduces T, imply that

r- T

= |TI(& @ - @8,)"

= |An+1| - O
Therefore the series X_,A , P, converges in the metric of Z(5¢) to T. [ ]

Theorem 5.1 is called the Spectral Theorem for compact self-adjoint
operators. Using it, one can answer virtually every question about compact
hermitian operators, as will be seen before the end of this chapter.

If in Theorem 5.1 it is assumed that 7 is normal and compact, then the
same conclusion, except for the statement that each A, is real, is true
provided that 5# is a C-Hilbert space. The proof of this will be given in
Section 7.

EXERCISES
1. Prove Corollary 5.4.
2. Prove Corollary 5.5

3. Let K and k be as in Proposition 4.7 and suppose that k(x, y) = k(y, x). Show
that K is self-adjoint and if {p,} are the eigenvalues of K, each repeated
dim(K — p,,) times, then £ |, |*> < c0.

4. If T is a compact self-adjoint operator and {e, } and {p, } are asin (5.4) and if A
is a given vector in J#, show that there is a vector f in 5 such that Tf = h if
and only if # L kerT and ¥, u, 2|{h,e,)|* < . Find the form of the general
vector f such that Tf = h.

5. Let T, {p,}, and {e,} be as in (5.4). If A # 0 and A # p, for any p,, then for
every h in 5% there is a unique f in 5 such that (T — A)f = h. Moreover,
f=A1h+Z2 A, (A=A,) h,e,)e,) Interpret this when T is an integral
operator.

§6*. An Application: Sturm-Liouville Systems

In this section, [a, b] will be a proper interval with —o0 <a < b < o0.
Cla,b] denotes the continuous functions f: [a,b] > R and for n > 1,
C™Ja, b] denotes those functions in C[a, b] that have n continuous deriva-
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tives. C{"[a, b] denotes the corresponding spaces of complex-valued func-
tions. We want to consider the differential equation

6.1 — W +gh—Ah=f,

where A is a given complex number, ¢ € C[a, b], and f € L*[a, b], to-
gether with the boundary conditions

(a) ak(a) + a;h’(a) = 0
(b) Br(b) + By’ (b) =0

where a, «,, 8, and B, are real numbers and a® + of > 0, B2 + B > 0.

Equation (6.1) together with the boundary conditions (6.2) is called a
(regular) Sturm—Liouville system. Such systems arise in a number of physi-
cal problems, including the description of the motion of a vibrating string.
In this section we will discuss solutions of the Sturm-Liouville system by
relating the system to a certain compact self-adjoint integral operator.

Recall that an absolutely continuous function 4 on [a, b] has a derivative
a.e. and h(x) = [Jh'(¢)dt + h(a) for all x.

Define

2,= {h e CVC[a,b]: h'is absolutely continuous,
k" € L*[a,b], and h satisfies (6.2a) } .

2, is defined similarly but each h in @, satisfies (6.2b) instead of (6.2a).
The space 2 = 2, N D,
Define L: 2 — L?*[a, b] by

6.3 Lh= —h" + gh.

L 1is called a Sturm—Liouville operator.

Note that 2 is a linear space and L is a linear transformation. The
Sturm-Liouville problem thus becomes: if A € C and f € L?[a, b], is there
an h in @ with (L — A)h = f. Equivalently, for which A is f in ran(L — A)?

By placing a suitable norm on 2, L can be made into a bounded
operator. This does not help much. The best procedure is to consider
(L — X)L, Integration is the inverse of differentiation, and it turns out that
(L — A)~! (when we can define it) is an integral operator.

Begin by considering the case when A = 0. (Equivalently, replace g by
g — A.) To define L™! (even if only on its range), we need that L is
injective. Thus we make an assumption:

64 Ifhe€ % and Lh =0, then h = 0.

The first lemma is from ordinary differential equations and says that
certain initial-value problems have nontrivial (nonzero) solutions.

6.2

6.5. Lemma. If a,a,,B8,8,€ER, a’+ a} >0, and B>+ B} >0, then
there are functions h,, h, in D,,9,, respectively, such that L(h,)= 0 and
L(h,) =0 and h,, h, are real-valued and not identically zero.
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The Wronskian of h, and h, is the function

ha hb
= hh, — h'h,.
ho  h

Note that W’ = h,h} — h’’h, = h(qh,) — (gh,)h, = 0. Hence W(x)=
W(a) for all x.

W= det[

6.6. Lemma. Assuming (6.4), W(a) # 0 and so h, and h, are linearly
independent.

PRrROOF. If W(a) = 0, then linear algebra tells us that the column vectors in

the matrix used to define W(a) are linearly dependent. Thus there is a A in

R such that h,(a) = Ah(a) and hj(a) = Ah/(a). Thus h, € @ and L(h,)

= 0. By (6.4), h, = 0, a contradiction. ]

Put ¢ = W(a) and define g: [a, b] X [a, b] = R by

¢ty (x)h(y) fa<x<y<b

6.7 glx,y)=1{ | ’ ,
¢ th(y)hy(x) fa<y<x<b.

The function g is the Green function for L.

6.8. Lemma. The function g defined in (6.7) is real-valued, continuous, and
g(x, y) = g(y, x).
PrOOF. Exercise.

6.9. Theorem. Assume (6.4). If g is the Green function for L defined in (6.7)
and G: L*[a, b] > L?[a, b] is the integral operator defined by

() = [ "e(x, »)f(») dy,

then G is a compact self-adjoint operator, ranG = 2, LGf = f for all f in
L*[a, b, and GLh = h for all h in 9.

PRrOOF. That G is self-adjoint follows from the fact that g is real-valued and
g(x, y) = g(y, x); G is compact by (4.7). Fix f inL?*[a, b] and put h = Gf.
It must be shown that h € 9.

Put

Ha<x)=c-1[ha<y)f(y)dy and Hb(X)=C’1fxbhh(y)f(y)dy-
Then
h(x) =fubg(x,y)f(y)dy

= [ h D))y + ()0 () .
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That is, h = H,h, + h H,. Differentiating this equation gives h’ =
(¢ Yh f)h, + H,hy + h'H, + h,(—c *h,f)= H,h}, + h,H, ae. Since
H,h} + h’ H, is absolutely continuous, as part of showing that h € 2 we
want to show the following.

Claim. »" = H,h'y + h H, everywhere.

Put ¢ = H,hj + h’,H, and put §(x) = h(a)+ [;¢(y)dy. So h and ¢
are absolutely continuous, h(a) = {y(a), and h’ =4y’ ae. Thus h=1¢
everywhere. But ¢ has a continuous derivative ¢, so h does too. That is, the
claim is proved.

Differentiating k' = H,h, + h/ H, gives that a.e., h” = (¢ 'h,f)h} +
H_,h7 + h”’H, + h’(—c 'h,f); since each of these summands belongs to
L*[a, b), h”” € L*[a,b].

Because H,(a)=0 and h, € 2,, ah(a)+ a;h’(a) = ah, (a)H,(a) +
a,h(a)H,(a) = [ah (a) + a;h/(a)|H,(a) = 0. Hence h € . Similarly,
he 2, Thus h € 2. Hence ranG C 9.

Now to show that LGf=f If h=Gf, L(h)y= —h" + gh =
—[¢ R hif + Hhy + WH, — ¢ Rk, f1+ q(Hhy + h,Hy) = (—hy +
ghy)H, + (—h} + gh)H, + ¢ \(W,h, — h,hy)f = f since L(h,)=
L(h,)=0and hjh,— h,h,= W=c.

If h € 2, then Lh € L*[a, b]. So by the first part of the proof, LGLh =
Lh. Thus 0 = L(GLh — h). Since ker L = (0), » = GLh and so h € ranG.

]

6.10. Corollary. Assume (6.4). If he 9, A€ C, and Lh = Ah, then
Gh = A"'h. If h € L*[a,b] and Gh = A" 'h, then h € @ and Lh = \h.

ProOF. This is immediate from the theorem. [ ]

6.11. Lemma. Assume (6.4). If a € 0,(G), then dimker(G — a) = 1.

PrROOF. Suppose there are linearly independent functions 4, 4, in ker(G —
a). By (6.10), Ay, h, are solutions of the equation

—h +(qg—a)h=0.
Since this is a second-order linear differential equation, every solution of it
must be a linear combination of A, and h,. But h;, h, € 2 so they satisfy
(6.2). But a solution can be found to this equation satisfying any initial

conditions at a—and thus not satisfying (6.2). This contradiction shows
that linearly independent h,, h, in ker(G — a) cannot be found. [ ]

6.12. Theorem. Assume (6.4). Then there is a sequence { A, \,,...} of real
numbers and a basis {e,,e,,...} for L*[a, b] such that

@ 0 <A <Ay < -+ and N\, = o0.
(b) e, € 2 and Le, = XA e, for all n.

n
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(c) If A\ # \,, forany \,, and f € L*[a, b), then there is a unique h in 2 with
Lh — Ah = f.

(d) If X=X, for some n and f € L*[a,b), then there is an h in D with
Lh — Ah = fifandonly if {f,e,y = 0. If {f,e,) = 0, any two solutions
of Lh — ANh = f differ by a multiple of e,,.

PROOF. Parts (a) and (b) follow by Theorem 5.1, Corollary 6.10, and Lemma
6.11. For parts (c) and (d), first note that

6.13 Lh — \h = f if and only if h — AGh = Gf.

This is, in fact, a straightforward consequence of Theorem 6.9.

(¢) If A# A, for any n, A™! & 0,(G). Since G = G*, Corollary 4.15
implies G — A~ 1 is bijective. So if fe L?[a, b], there is a unique & in
L*[a, b] with Gf = (A"! — G)h. Thus h € 2 and (6.13) implies L(h/\) —
A(h/N) = f.

(d) Suppose A = A, for some n. If Lh — A, h = f, then h — A\ ,Gh = Gf.
Hence (Gf,e,) = (h,e,) — A\ (Gh,e,y = (h,e,y — N\ (h,Ge,) = h,e,)
=N, Xhye,) =0. S0 0={(Gf, e,y =(f Ge,) =\(f e, Hence f L

e

n*

Since Ce, = ker(G — A1), [e,] * = A" reduces G. Let G, = G|4". So G,
is a compact self—adJ01nt operator on A" and A, & op(G ). By (4.15),
ran(G, — A,) = A". As in the proof of (c), if f L e, there is a unique 4 in
A" such that Lh — A ,h = f. Note that h + ae,, is also a solution. If h,, h,
are two solutions, h; — h, € ker(L — A,), so h, — h, = ae,. [ |

What happens if ker L # (0)? In this case it is possible to find a real
number p such that ker(L — p) = (0) (Exercise 6). Replacing g by g — p,
Theorem 6.12 now applies. More information on this problem can be found
in Exercises 2 through 5.

EXERCISES

1. Consider the Sturm-Liouville operator Lh = —h” with ¢ =0, b =1, and for
each of the following boundary conditions find the eigenvalues {A,}, the
eigenvectors {e,}, and the Green function g(x,y): (a) h(0) = h(1) = 0; (b)
h'(0) = h’(1) = 0; (¢) h(0) = O and h’'(1) = 0; (d)h(0) = A’(0) and A (1) = —h'(1).

2. In Theorem 6.12 show that ¥2_, A, % < co (see Exercise 5.3).
3. In Theorem 6.12 show that h € @ if and only if h € L?[a,b] and

T N (h, e, ) < 0. If h €D, show that h(x) =X7_,(h,e,)e,(x), where
thls series converges uniformly and absolutely on [a, b].

4. In Theorem 6.12(c), show that h(x)=X%_,(A, — A) (f,e,)e,(x) and this
series converges uniformly and absolutely on [a, b].

5. In Theorem 6.12(d), show that if f 1 e, and Lh — A, h=f, then h(x)=
Liea(X — NS, e;ye;(x) + ae,(x) for some a, where the series converges
uniformly and absolutely on [a, b].
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6. This exercise demonstrates how to handle the case in which ker L # (0). (a) If
h,g € CV[a,b] with h’, g’ absolutely continuous and h”,g"” € L*[a, b], show
that

[/ (g~ hg”) = [H(B)g(b) = h(b) g ()] ~[W'(a) g(a) ~ h(a) g'(a)].

(b)If h, g € @, show that (Lh, g) = (h, Lg). (The inner product is in L*[a, b].)
©If h,geP and A\,peR, A # pu, and if h € ker(L — A), g € ker(L — p),
then 4 L g. (d) Show that there is a real number p with ker(L — p) = (0).

§7*. The Spectral Theorem and Functional Calculus
for Compact Normal Operators

We begin by characterizing the operators that commute with a diagonaliz-
able operator. If one considers the definition of a diagonalizable operator
(4.6), it is possible to reformulate it in a way that is more tractable for the
present purpose and closer to the form of a compact self-adjoint operator
given in (5.2). Unlike (4.6), it will not be assumed that the underlying
Hilbert space is separable.

7.1.  Proposition. Let {P;: i € I} be a family of pairwise orthogonal pro-
Jections in B(X). (That is, P,P,= P,P,=0 for i #j) If h €, then
Y, {Ph: i € I} converges in ) to Ph, where P is the projection of # onto
V{P¥t:iel}.

This appeared as Exercise 3.5 and its proof is left to the reader.

If {P: i€ I} is as in the preceding proposition and #, = P,5#, then
with the notation of Definition 3.4, P is the projection of # onto & ,.#,.
Write P = ¥, P,. A word of caution here: Ph = ¥,P;h, where the conver-
gence is in the norm of 5. However, L. P, does not converge to P in the
norm of #(5¢). In fact, it never does unless I is finite (Exercise 1).

7.2. Definition. A partition of the identity on 5 is a family { P: i € I} of
pairwise orthogonal projections on S such that V,P,5#= 5. This might be
indicated by 1 = X, P, or 1 = @ P, [Note that 1 is often used to denote the
operator on ¥ defined by 1(h) = & for all A. Similarly if « € F, «a is the
operator defined by a(h) = ah for all A.]

7.3. Definition. An operator A on ¢ is diagonalizable if there is a
partition of the identity on 5, { P: i € I}, and a family of scalars {a;,:
i € I} such that sup,|a;| < 0 and Ah = a;h whenever h € ran P,.

It is easy to see that this is equivalent to the definition given in (4.6) when
M is separable (Exercise 2). Also, ||4|| = sup,|e;|.
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To denote a diagonalizable operator satisfying the conditions of (7.3),
write

A=Y aP, or A= ®.aP.

Note that it was not assumed that the scalars «; in (7.3) are distinct.
There is no loss in generality in assuming this, however. In fact, if «; = a;,
then we can replace P, and P, with P, + P,

7.4. Proposition. An operator A on ¥ is diagonalizable if and only if there
is an orthonormal basis for X consisting of eigenvectors for A.

ProoOF. Exercise.

Also note that if 4 = ®,a,P, then 4* = @ a,P, and A is normal
(Exercise 5).

7.5. Theorem. If A = ® P, is diagonalizable and all the «; are distinct,
then an operator B in () satisfies AB = BA if and only if for each i,
ran P, reduces B.

Proor. If all the «; are distinct, then ran P, = ker(4 — «;). If AB = BA
and A4h = a;h, then ABh = BAh = B(a;h) = a;Bh; hence Bh € ran P,
whenever & € ran P,. Thus ran P, is left invariant by B. Therefore B leaves
V{ran P;: j # i} =, invariant. But since & P, =1, A, = (ranP)"*.
Thus ran P, reduces B.

Now assume that B is reduced by each ran P,. Thus BP, = P,B for all i.
If h € 5, then Ah = ¥,a,P,h. Hence BAh = ¥,a,BPh = . .o, PBh = ABh.
(Why is the first equality valid?) ]

Using the notation of the preceding theorem, if AB = BA, let B, =
Bjran P.. Then it is appropriate to write B = @ B, on #’= @ (P,2¢). One
might paraphrase Theorem 7.5 by saying that B commutes with a diagonal-
izable operator if and only if B can be “diagonalized with operator entries.”

7.6. Spectral Theorem for Compact Normal Operators. If T is a compact
normal operator on the complex Hilbert space #, {A,\,,...} are the
distinct nonzero eigenvalues of T, and P, is the projection of H# onto

n

ker(T — A,), then P,P, = P,P, =0 if n # m and

7.7 T=Y AP,

where this series converges to T in the metric defined by the norm on B(X).

PrROOF. Let A =(T+ T*)/2, B=(T— T*)/2i. So A, B are compact
self-adjoint operators, T = 4 + iB, and AB = BA since T is normal. The
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idea of the proof is rather simple. We’ll get started in this proof together but
the reader will have to complete the details.

By Theorem 5.1, 4 = X{%a, E,, where a, € R, a, # a,, if n # m, and E,
is the projection of 5# onto ker(4 — a,,) Since AB BA, the idea is to
use Theorem 7.5 and Theorem 5.1 applied to B to diagonalize 4 and B
simultaneously; that is, to find an orthonormal basis for J# consisting of
vectors that are simultaneously eigenvectors of 4 and B.

Since BA = AB, E, s= %, reduces B for every n (7.5). Let B, = B|.%,
then B, = B and dim.%, < oo. Applying (5.1) to B, (or, rather, the
corresponding theorem from linear algebra) there is a basis {ej(") 1<j<
d,} for &, and real numbers { 8(":1 </ < d,} such that B,e{” = B("e(™.
Thus Tej(") = Ae(” + iBe{” = (a, + IB(”))e(")

Therefore {e(") 1<y < d,n>1}isa ba51s for cl(ran A) consisting of
eigenvectors for T. It may be that cl(ran A) # cl(ranT'). Since B is reduced
by ker4 = (ran A)* and B, = Blker A4 is a compact self-adjoint operator,
there is an orthonormal ba51s {e©: j = 1} for cl(ran B,) and scalars { 8/*:
J = 1} such that Be(® = B(O)e(o) It follows that Te(® = iB¥e(®. Moreover,
kerT C ker4A N kerB SO cl(ran T) C cl(ran A) @ cl(ran By).

The remainder of the proof now consists in a certain amount of book-
keeping to gather together the eigenvectors belonging to the same eigenval-
ues of 7 and the performing of some light housekeeping chores to obtain
the convergence of the series (7.7) [ ]

7.8. Corollary. With the notation of (7.6):

(a) kerT = [V{P,¢: n>1}]*;
(b) each P, has finite rank;
© |IT)| = sup{|A,|]: n=1} and A\, > 0 as n —» 0.

The proof of (7.8) is similar to the proof of (5.3).

7.9. Corollary. If T is a compact operator, then T is normal if and only if T
is diagonalizable.

If T is a normal operator which is not necessarily compact, there is a
spectral theorem for T" which has a somewhat different form. This theorem
states that T can be represented as an integral with respect to a measure
whose values are not numbers but projections on a Hilbert space. Theorem
7.6 will be a consequence of this more general theorem and correspond to
the case in which this projection valued measure is “atomic.”

The approach to this more general spectral theorem will be to develop a
functional calculus for normal operators 7. That is, an operator ¢(7T') will
be defined for every bounded Borel function ¢ on C and certain properties
of the map ¢ — ¢(T') will be deduced. The projection valued measure will
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then be obtained by letting u(A) = x (7). These matters are taken up in
Chapter IX.

At this point, Theorem 7.6 will be used to develop a functional calculus
for compact normal operators. For the remainder of this section S is a
complex Hilbert space.

7.10. Definition. Denote by /*(C) all the bounded functions ¢: C — C. If
T is a compact normal operator satisfying (7.7), define ¢(T): #— ¥ by

o(T) = 3 6(\)P, + 6(0) By,

n=1

where P, = the projection of 5 onto ker T.

Note that ¢(7) is a diagonalizable operator and |[¢(T)| =
sup{|¢(0)|, |$(A)], ...} (4.6). Much more can be said.

7.11. Functional Calculus for Compact Normal Operators. If T is a compact
normal operator on a C-Hilbert space 3, then the map ¢ — ¢(T) of
I1°(C) = () has the following properties:

(a) ¢ — ¢(T) is a multiplicative linear map of [°(C) into B(X). If ¢ =1,
o(T) = 1; if $(z) = z, then $(T) =

®) lp(T)]l = sup{|$(M)]: A € 0,(T)).

(©) ¢(T)* = ¢*(T), where ¢* is the function defined by ¢*(z) = ¢(z).

(d) If A € B(H#) and AT = TA, then Ap(T) = ¢(T)A for all ¢ in [*(C).

PROOF. Adopt the notation of Theorem 7.6 and (7.10).

(@ If ¢,y €[=®(C), then (¢y¢)(z)=¢(z)Y(z) for z in C. Also,
S(TIY(T)h = [$(0) Py + Zo(A,) P, (0) Py + LY(A,)P,]h = [¢(0)P, +
oA )P Y (O)Pyh + X, ¢ (A,)P,h]. Since PP, =0 when n # m, this
gives that ¢(T)¥(T)h = $(O)Y(0)Ph + TN, )W (N, )P,k = (94 )T)h.
Thus ¢ — ¢(T) is multiplicative. The linearity of the map is left to the
reader. If ¢(z) =1, then ¢(T)= U(T)= P, + *_,P, = 1 since
{ Py, Py,...} is a partition of the identity. If ¢(z) =z, ¢(A,) = A, and so
o(T)=T.

Parts (b) and (c) follow from Exercise 5.

(d) If AT = TA, Theorem 7.5 implies that Pyo¢, P,5, ... all reduce A.
Fix h,in P,5¥, n > 0.If ¢ € I*°(C), then Ah, € P, 5¢ and so ¢(T)Ah, =
o(A)Ah, = A(¢(X,)h,) = A¢(T)h,. If h € 5, then h = L7_,h,, where
h, € P,. Hence ¢(T)Ah = X3_p(T)Ah, = X5 _oAd(T)h, = Ap(T )h.
(Justify the first equality.) u

Which operators on S can be expressed as ¢(7) for some ¢ in /*(C)?
Part (d) of the preceding theorem provides the answer.
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7.12. Theorem. If T is a compact normal operator on a C-Hilbert space,
then {$(T): ¢ € I*(C)} is equal to

{B € #(#): BA = AB whenever AT = TA}.

ProOF. Half of the desired equality is obtained from (7.11d). So let
B € #(5¢) and assume that BA = AB whenever AT = TA. Thus, B must
commute with T itself. By (7.5), B is reduced by each P, 5#'=5¢, n > 0;
put B, = B)5#,. Fix n > 0 for the moment and let 4, be any bounded
operator in #(5¢,). Define Ah = A h if h€ 5, and Ah=0if h € %,
m # n, and extend A to 5 by linearity; so 4 = @ _ A4, where 4,, = 0 if
m # n. By (7.5), AT = TA; hence BA = AB. This implies that B, A4, =
A,B,. Since A, was arbitrarily chosen from %(s%,), B, = B, for some S,
(Exercise 7). If ¢: € - C is defined by ¢(0) = B, and ¢(A,) = B, for
n > 1, then B = ¢(T). |

7.13. Definition. If 4 € #(5¢), then A4 is positive if (Ah, h) > 0 for all h
in 5. In symbols this is denoted by 4 > 0.

Note that by Proposition 2.12 every positive operator is self-adjoint.

7.14. Proposition. If T is a compact normal operator, then T is positive if
and only if all its eigenvalues are positive real numbers.

PROOF. Let T=XYA,P. If T>0 and h € P,o#¥ with ||h|| =1, then
Th = X,h. Hence A, = (Th,h) > 0. Conversely, assume each A, > 0. If
hexX, h=hy+ Ly h,, where hy€ kerT and h, € P,# for n> 1.
Then Th = X°A,h,. Hence (Th,h) = (X2 A,h,, hy + X2_\h,) =
Lo X oA Ay by = X2 N |Ih,|12 > Osince (h,, h,) = 0when n # m.

|

7.15. Theorem. If T is a compact self-adjoint operator, then there are unique
positive compact operators A, B such that T = A — B and AB = BA = 0.

PROOF. Let T = ¥°_ A, P, as in (7.6). Define ¢,¢: C — C by ¢(X,) = A,
if A, >0, ¢(z) =0 otherwise; Y(A,)= —A, if A\, <0, ¢(z) =0 other-
wise. Put 4 = ¢(T) and B = (T). Then 4 = L{A,P,: A, > 0} and
B=Y{-A,P: \,<0}. Thus T=4 — B. Since ¢y =0, AB=BA =0
by (7.11a). Since ¢,y >0, A4, B >0 by the preceding proposition. It
remains to show that A, B are unique.

Suppose T = C — D where C,D are compact positive operators and
CD = DC = 0. It is easy to check that C and D commute with 7. Put
Ao =0 and P, = the projection of # onto ker7. Thus C and D are
reduced by P, 5= 5, for all n > 0. Let C, = C|#, and D, = D|),. So
¢,D,=DC, =0, A\,P,=T|5#,=C,— D,, and C,, D, are positive. Sup-
pose A, >0 and let h €, Since C,D,=0, kerC, 2 clfran D,] =
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(kerD,)*. So if he (kerD,)", then X,h = —D,h. Hence A |h|*=
—{(D,h,hy < 0. Thus h =0 since A, > 0. That is, kerD, = 5, Thus
D,=0=B|#, and C,=\,P,= A|,. Similarly, if A, <0, C,=0=
A|#, and D,= —A P, = B|#, On 5, T|#,=0= C,— D,. Thus C,
= D,. But 0 = C;D,= CZ. Thus 0 = (C¢h, h) = ||Cyh||%, so C,=0=
A|#, and D, = 0 = B|5#,. Therefore C = 4 and D = B. ]

Positive operators are analogous to positive numbers. With this in mind,
the next result seems reasonable.

7.16. Theorem. If T is a positive compact operator, then there is a unique
positive compact operator A such that A*> = T.

PROOF. Let T = X%_;A, P, as in the Spectral Theorem. Since T > 0, A, > 0
for all n (7.14). Let ¢(A,) = N/? and ¢(z) = 0 otherwise; put 4 = ¢(7T).
It is easy to check that 4 > 0; A = LPN/?P, so that A is compact; and
A’ =T.

The proof of uniqueness is left to the reader. ]

EXERCISES

1. If { P,} is a sequence of pairwise orthogonal nonzero projections and P =X P,,
show that ||P — X%_, P|| =1 for all n.

2. If 5# is separable, show that the definitions of a diagonalizable operator in (4.6)
and (7.3) are equivalent.

3. If A =Xa,P, as in (7.3), show that 4 is compact if and only if: (a) a, = 0 for

all but a countable number of i; (b) P, has finite rank whenever a, # 0; (c) if
{ag,0,,...} = {a;: a; # 0}, then a, > 0 as n - 0.

4. Prove Proposition 7.4.

5.1f A= @, q;P, show that A* = @ & P,, A is normal, and ||4|| = sup{|e,]:
iel}.

6. Give the remaining details in the proof of (7.6).

7. 1If A € B(¢) and AT = TA for every compact operator 7, show that 4 is a
multiple of the identity operator.

8. Suppose T is a compact normal operator on a C-Hilbert space such that
dimker(T — A) <1 for all A in C. Show that if 4 € #Z(5) and AT = TA,
then 4 = ¢(T) for some ¢ in /*(C).

9. Prove a converse to Exercise 8: if T is a compact normal operator such that
(A € B(K): AT=TA} = {$(T): ¢ € [*°(C)}, then dimker(T — A) < 1 for
all A in C.

10. Let T be a compact normal operator and show that ker(7 — A) < 1 for all A in

C if and only if there is a vector & in S such that { p(T)h: p is a polynomial
in one variable} is dense in #. (Such a vector 4 is called a cyclic vector for T.)
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11. If A € C, let §, be the unit point mass at A; that is, §, is the measure on C
such that §,(A)=11if A€ A and §,(A)=0if A& A. If {A,A,,...]} are
distinct complex numbers and { a, } is a sequence of real numbers with a,, > 0
and ¥,a, < oo, let p=X7 ja,8, ; so p is a finite measure. If ¢ € /*(C), let
M, be the multiplication operator on L*(p). Define T: L*(p) — L?(p) by
(TfY(N,) = A, f(N\,). Prove: (a) T is a normal operator; (b) 7 has a cyclic
vector (see Exercise 10); (c) if 4 € #(5°) and AT = TA, then 4 = M, for
some ¢ in [®(C); (d) T is compact if and only if A, = 0. (¢) Find all of the
cyclic vectors for T. (f) If T is compact, find the decomposition (7.7) for T.

12. Using the notation of Theorem 7.11, give necessary and sufficient conditions on
T and ¢ that ¢(T') be compact. (Hint: consider separately the cases where ker T
is finite or infinite dimensional.)

13. Prove the uniqueness part of Theorem 7.16.
14. If T € #B(5¢), show that T*T > 0.

15. Let T be a compact normal operator and show that there is a compact positive
operator A and a unitary operator U such that T = U4 = AU. Discuss the
uniqueness of 4 and U.

16. (Polar decomposition of compact operators.) Let T € %,(5¢) and let A4 be the
unique positive square root of T*T [(7.16) and Exercise 14]. (a) Show that
[|[Ah|| = ||Th|| for all h in S#. (b) Show that there is a unique operator U such
that ||Uh|| = ||h|| when h L ker T, Uh = O when h € ker T, and UA = T. (¢) If
U and A are as in (a) and (b), show that T = AU if and only if T is normal.

17. Prove the following uniqueness statement for the functional calculus (7.11). If T
is a compact normal operator on a C-Hilbert space 5 and r: [*(C) —» Z(¥)
is a multiplicative linear map such that ||7(¢)|| = sup{|¢(A)||: A € ¢,(T)},
7(l) =1, and 7(z) = T, then 7(¢) = ¢(T) for every ¢ in [*(C).

§8*. Unitary Equivalence for Compact
Normal Operators

In Section L.5 the concept of an isomorphism between Hilbert spaces was
defined as the natural equivalence relation on Hilbert spaces. This equiv-
alence relation between the spaces induces a natural equivalence relation
between the operators on the spaces.

8.1. Definition. If 4, B are bounded operators on Hilbert spaces 57, ",
then A and B are unitarily equivalent if there is an isomorphism U: 5#— X
such that UAU ! = B. In symbols this is denoted by 4 = B.

Some of the elementary properties of unitary equivalence are contained in
Exercises 1 and 2. Note that if UAU ! = B, then U4 = BU.
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The purpose of this section is to give necessary and sufficient conditions
that two compact normal operators are unitarily equivalent. Later, in
Section IX.10, necessary and sufficient conditions that any two normal
operators be unitarily equivalent are given and the results of this section are
subsumed by those of that section.

8.2. Definition. If T is a compact operator, the multiplicity function for T
is the function m;: C - C U {0} defined by m;(A) = dimker(T — A).

Hence m;(A) >0 for all A and m;(A)> 0 if and only if A is an
eigenvalue for 7. Note that by Proposition 4.13, m(A) < o if A # 0.

If T,S are compact operators on Hilbert spaces and U: J#— X is an
isomorphism with UTU ! = S, then U ker(T — A) = ker(S — A) for every
A in C. In fact, if Th = Ah, then SUh = UTh = AUh and so Uh €
ker(S — A). Conversely, if k € ker(S —A) and h = U 'k, then Th =
TU 'k = U~ 'Sk = Ah. In particular, it must be that m, = mg. If Sand T
are normal, this condition is also sufficient for unitary equivalence.

8.3. Theorem. Two compact normal operators are unitarily equivalent if and
only if they have the same multiplicity function.

PrROOF. Let T, S be compact normal operators on Hilbert spaces 5, ). If
T = S, then it has already been shown that m, = mg. Suppose now that
my = mg. We must manufacture a unitary operator U: 5 — X" such that
Uru—!'=s.

Let T=%X% AP, and let S =X p,0, as in the Spectral Theorem
(7.6). So if n # m, then A, # A, and pn, # u,,, and each of the projections
P, and Q, has finite rank. Let P;, Q, be the projections of ¢, ¥ onto
ker T, kerS; so Py = (XP,)* and Q, = (X°Q,)* . Put Aj = p,=0.

Since m, = mg, 0 <mp(A,) = mg(A,). Hence there is a unique p; such
that u, = A,. Define 7: N — N by letting p,,, = A,. Let 7(0) = 0. Note
that # is one-to-one. Also, since 0 < mg(p,) = mp(u,), for every n there is
a j such that «(j)=n. Thus 7: N U {0} > N U {0} is a bijection or
permutation. Since dim P, = m,(A,) = mg(p,(,y) = dimQ, . there is an
isomorphism U,: P,#’— QX for n > 0. Define U: #'— X" by letting
U = U,on P, and extending by linearity. Hence U = @7 U,. It is easy
to check that U is an isomorphism. Also, if » € P,5#, n > 0, then UTh =
AN Uh = p, Uh=SUh. Hence UTU ' =S. =

If V is the Volterra operator, then m, = 0 (4.11) and V' and the zero
operator are definitely not unitarily equivalent, so the preceding theorem
only applies to compact normal operators. There are no known necessary
and sufficient conditions for two arbitrary compact operators to be unitarily
equivalent. In fact, there are no known necessray and sufficient conditions
that two arbitrary operators on a finite-dimensional space be unitarily
equivalent.
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EXERCISES

1.
2.

10.

11.

12.

Show that “unitary equivalence” is an equivalence relation on #(5¢).

Let U: 5#— X be an isomorphism and define p: Z(#) = Z(X') by p(A) =
UAU . Prove: (a) |lp(A)|| = ||4]l, p(A*) = p(4)*, and p is an isomorphism
between the two algebras #(5#) and Z(X'). (b) p(A4) € B,(X) if and only if
A € B,(H). (c) If T e B(H#), then AT = TA if and only if p(T)p(A) =
p(A)p(T). (d) If A € B(H#) and A < #, then A is invariant (reducing) for
A if and only if UA is invariant (reducing) for p(A4).

. Say that an operator 4 on S is irreducible if the only reducing subspaces for 4

are (0) and 5#. Prove: (a) The Volterra operator is irreducible. (b) The unilateral
shift is irreducible.

Suppose 4 = @ {4,: i€ I} and B= @ (B;: i € I} where each 4, and B, is
irreducible (Exercise 3). Show that 4 = B if and only if there is a bijection
m: I - I such that 4, = B, ;.

If T is a compact normal operator and m, = m is its multiplicity function,
prove: (a) {A: m(A) > 0} is countable and 0 is its only possible cluster point;
(b) m(A) < oo if A # 0. Show that if m: C > N U {0,00} is any function
satisfying (a) and (b), then there is a compact normal operator T such that
my=m.

. Show that two projections P and Q are unitarily equivalent if and only if

dim(ran P) = dim(ran Q) and dim(ker P) = dim(ker Q).

. Let A: L*(0,1) > L*(0,1) be defined by (Af)(x) = xf(x) for f in L?*(0,1) and

x in (0,1). Show that 4 = A2

. Say that a compact normal operator T is simple if m; < 1. (See Exercises 7.10

and 7.11.) Show that every compact normal operator T on a separable Hilbert
space is unitarily equivalent to @ T,, where each T, is a simple compact
normal operator and my > my for all n. Show that IT,|| = 0. (Of course,
there may only be a finite number of T,,.)

. Using the notation of Exercise 8, suppose also that S is a compact normal

operator and S = @7 | S,, where S, is a simple compact normal operator and
mg > mg  forall n. Show that T = § if and only if 7, = S, for all n.

If T is a compact normal operator on a separable Hilbert space, show that there
are simple compact normal operators 7, T;,... suchthat T= 00 T, @ T{® ®
T & - - -, where: (a) for any operator 4, A" = A4 @ --- ®A4 (n times); (b) 0
is the zero operator on an infinite- dlmenswnal space; (c) forn # k, mymy, = 0;
and (d) if ker T is infinite dimensional, then ker 7, = (0) for all n. (Of course
not all of the summands need be present.) Show that ||7,|| — 0.

Using the notation of Exercise 10, let S be a compact normal operator and let
00 S, ® S$Y @ --- be the corresponding decomposition. Show that 7 = S if
and only if T, = S, and ker T and ker S have the same dimension.

If T is a compact normal operator, show that 7 and T & T are not unitarily
equivalent.
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13. Give an example of a nontrivial operator T such that 7= 7 ® T. Show that if
T=T®T, then T=T®T® ---. Characterize the diagonalizable normal
operators 7 such that T= T ® T.

14. Let 5 be the space defined in Example 1.1.8 and let U: s#— L?(0,1) be the
isomorphism defined by Uf = f’ (Exercise 1.1.4). If (Af)(x) = xf(x) for f in
>, what is UAU 17



CHAPTER III

Banach Spaces

The concept of a Banach space is a generalization of Hilbert space. A
Banach space assumes that there is a norm on the space relative to which
the space is complete, but it is not assumed that the norm is defined in terms
of an inner product. There are many examples of Banach spaces that are not
Hilbert spaces, so that the generalization is quite useful.

§1. Elementary Properties and Examples

1.1. Definition. If 2 is a vector space over F, a seminorm is a function
p: ¥ — [0, o) having the properties:

@ p(x+y)<p(x)+p(y)forall x,yin .
() p(ax) = |a|p(x) for all @ in F and x in Z.

It follows from (b) that p(0) = 0. A norm is a seminorm p such that

(©) x=0if p(x)=0.

Usually a norm is denoted by || - ||.

The norm on a Hilbert space is a norm. Also, the norm on Z(J¥) is a
norm.

If £ has a norm, then d(x, y) = ||x — || defines a metric on Z.

1.2. Definition. A normed space is a pair (Z, || - ||), where & is a vector
space and || - || is a norm on Z. A Banach spa