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Preface

This is the sequel to my book Functions of One Complex Variable I, and
probably a good opportunity to express my appreciation to the mathemat-
ical community for its reception of that work. In retrospect, writing that
book was a crazy venture.

As a graduate student I had had one of the worst learning experiences
of my career when I took complex analysis; a truly bad teacher. As a
non-tenured assistant professor, the department allowed me to teach the
graduate course in complex analysis. They thought I knew the material; I
wanted to learn it. I adopted a standard text and shortly after beginning
to prepare my lectures I became dissatisfied. All the books in print had
virtues; but I was educated as a modern analyst, not a classical one, and
they failed to satisfy me.

This set a pattern for me in learning new mathematics after I had become
a mathematician. Some topics I found satisfactorily treated in some sources;
some I read in many books and then recast in my own style. There is also the
matter of philosophy and point of view. Going from a certain mathematical
vantage point to another is thought by many as being independent of the
path; certainly true if your only objective is getting there. But getting there
is often half the fun and often there is twice the value in the journey if the
path is properly chosen.

One thing led to another and I started to put notes together that formed
chapters and these evolved into a book. This now impresses me as crazy
partly because I would never advise any non-tenured faculty member to
begin such a project; I have, in fact, discouraged some from doing it. On
the other hand writing that book gave me immense satisfaction and its re-
ception, which has exceeded my grandest expectations, makes that decision
to write a book seem like the wisest I ever made. Perhaps I lucked out by
being born when I was and finding myself without tenure in a time (and
possibly a place) when junior faculty were given a lot of leeway and allowed
to develop at a slower pace—something that someone with my background
and temperament needed. It saddens me that such opportunities to develop
are not so abundant today.

The topics in this volume are some of the parts of analytic function
theory that I have found either useful for my work in operator theory or
enjoyable in themselves; usually both. Many also fall into the category of
topics that I have found difficult to dig out of the literature.

I have some difficulties with the presentation of certain topics in the
literature. This last statement may reveal more about me than about the
state of the literature, but certain notions have always disturbed me even
though experts in classical function theory take them in stride. The best
example of this is the concept of a multiple-valued function. I know there
are ways to make the idea rigorous, but I usually find that with a little
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work it isn’t necessary to even bring it up. Also the term multiple-valued
function violates primordial instincts acquired in childhood where I was
sternly taught that functions, by definition, cannot be multiple-valued.

The first volume was not written with the prospect of a second volume
to follow. The reader will discover some topics that are redone here with
more generality and originally could have been done at the same level of
sophistication if the second volume had been envisioned at that time. But
I have always thought that introductions should be kept unsophisticated.
The first white wine would best be a Vouvray rather than a Chassagne-
Montrachet.

This volume is divided into two parts. The first part, consisting of Chap-
ters 13 through 17, requires only what was learned in the first twelve chap-
ters that make up Volume I. The reader of this material will notice, how-
ever, that this is not strictly true. Some basic parts of analysis, such as
the Cauchy-Schwarz Inequality, are used without apology. Sometimes re-
sults whose proofs require more sophisticated analysis are stated and their
proofs are postponed to the second half. Occasionally a proof is given that
requires a bit more than Volume I and its advanced calculus prerequisite.
The rest of the book assumes a complete understanding of measure and
integration theory and a rather strong background in functional analysis.

Chapter 13 gathers together a few ideas that are needed later. Chapter
14, “Conformal Equivalence for Simply Connected Regions,” begins with a
study of prime ends and uses this to discuss boundary values of Riemann
maps from the disk to a simply connected region. There are more direct
ways to get to boundary values, but I find the theory of prime ends rich in
mathematics. The chapter concludes with the Area Theorem and a study
of the set S of schlicht functions.

Chapter 15 studies conformal equivalence for finitely connected regions.
I have avoided the usual extremal arguments and relied instead on the
method of finding the mapping functions by solving systems of linear equa-
tions. Chapter 16 treats analytic covering maps. This is an elegant topic
that deserves wider understanding. It is also important for a study of Hardy
spaces of arbitrary regions, a topic I originally intended to include in this
volume but one that will have to await the advent of an additional volume.

Chapter 17, the last in the first part, gives a relatively self contained
treatment of de Branges’s proof of the Bieberbach conjecture. I follow the
approach given by Fitzgerald and Pommerenke [1985]. It is self contained
except for some facts about Legendre polynomials, which are stated and
explained but not proved. Special thanks are owed to Steve Wright and
Dov Aharonov for sharing their unpublished notes on de Branges’s proof
of the Bieberbach conjecture.

Chapter 18 begins the material that assumes a knowledge of measure
theory and functional analysis. More information about Banach spaces is
used here than the reader usually sees in a course that supplements the
standard measure and integration course given in the first year of graduate



Preface ix

study in an American university. When necessary, a reference will be given
to Conway [1990]. This chapter covers a variety of topics that are used in
the remainder of the book. It starts with the basics of Bergman spaces, some
material about distributions, and a discourse on the Cauchy transform and
an application of this to get another proof of Runge’s Theorem. It concludes
with an introduction to Fourier series.

Chapter 19 contains a rather complete exposition of harmonic functions
on the plane. It covers about all you can do without discussing capacity,
which is taken up in Chapter 21. The material on harmonic functions from
Chapter 10 in Volume I is assumed, though there is a built-in review.

Chapter 20 is a rather standard treatment of Hardy spaces on the disk,
though there are a few surprising nuggets here even for some experts.

Chapter 21 discusses some topics from potential theory in the plane. It
explores logarithmic capacity and its relationship with harmonic measure
and removable singularities for various spaces of harmonic and analytic
functions. The fine topology and thinness are discussed and Wiener’s cri-
terion for regularity of boundary points in the solution of the Dirichlet
problem is proved.

This book has taken a long time to write. I've received a lot of assistance
along the way. Parts of this book were first presented in a pubescent stage
to a seminar I presented at Indiana University in 1981-82. In the sem-
inar were Greg Adams, Kevin Clancey, Sandy Grabiner, Paul McGuire,
Marc Raphael, and Bhushan Wadhwa, who made many suggestions as the
year progressed. With such an audience, how could the material help but
improve. Parts were also used in a course and a summer seminar at the
University of Tennessee in 1992, where Jim Dudziak, Michael Gilbert, Beth
Long, Jeff Nichols, and Jeff vanEeuwen pointed out several corrections and
improvements. Nathan Feldman was also part of that seminar and besides
corrections gave me several good exercises. Toward the end of the writing
process I mailed the penultimate draft to some friends who read several
chapters. Here Paul McGuire, Bill Ross, and Liming Yang were of great
help. Finally, special thanks go to David Minda for a very careful read-
ing of several chapters with many suggestions for additional references and
exercises.

On the technical side, Stephanie Stacy and Shona Wolfenbarger worked
diligently to convert the manuscript to TEX. Jinshui Qin drew the figures in
the book. My son, Bligh, gave me help with the index and the bibliography.

In the final analysis the responsibility for the book is mine.

A list of corrections is also available from my WWW page (http: //
www.math.utk.edu/~conway/).

Thanks to R. B. Burckel.

I would appreciate any further corrections or comments you
wish to make.

John B Conway
University of Tennessee
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Chapter 13

Return to Basics

In this chapter a few results of a somewhat elementary nature are collected.
These will be used quite often in the remainder of this volume.

§1 Regions and Curves

In this first section a few definitions and facts about regions and curves in
the plane are given. Some of these may be familiar to the reader. Indeed,
some will be recollections from the first volume.

Begin by recalling that a region is an open connected set and a simply
connected region is one for which every closed curve is contractible to a
point (see 4.6.14). In Theorem 8.2.2 numerous statements equivalent to
simple connectedness were given. We begin by recalling one of these equiv-
alent statements and giving another. Do not forget that C,, denotes the
extended complex numbers and 9, G denotes the boundary of the set GG in
Cs. That is, 9,,G = G when G is bounded and 9,,G = G U {oc} when
G is unbounded.

It is often convenient to give results about subsets of the extended plane
rather than about C. If something was proved in the first volume for a
subset of C, but it holds for subsets of C,, with little change in the proof,
we will not hesitate to quote the appropriate reference from the first twelve
chapters as though the result for C, was proved there.

1.1 Proposition. If G is a region in C, the following statements are
equivalent.

(a) G is simply connected.
(b) Co \ G is connected

(¢) OxG is connected.

Proof. The equivalence of (a) and (b) has already been established in
(8.2.2). In fact, the equivalence of (a) and (b) was established without
assuming that G is connected. That is, it was only assumed that G was
a simply connected open set; an open set with every component simply
connected. The reader must also pay attention to the fact that the con-
nectedness of G will not be used when it is shown that (c) implies (b). This
will be used when it is shown that (b) implies (c).
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So assume (c) and let us prove (b). Let ¥ be a component of C, \ G; so
F is closed. It follows that F'Ncl G # 0 (cl denotes the closure operation in
C while cl,, denotes the closure in the extended plane.) Indeed, if it were
the case that FNcl G = 0, then for every z in F there is an € > 0 such that
B(z;6)NG = 0. Thus FUB(z;¢) C Co \ G. But F U B(z;¢) is connected.
Since F' is a component of C \ G, B(z;¢) C F. Since z was an arbitrary
point, this implies that F' is an open set, giving a contradiction. Therefore
FncG#0.

Let zp € FFNcl G; 80 29 € 06G. By (¢) 05G is connected, so F'U 0xG
is a connected set that is disjoint from G. Therefore 0,,G C F since F is a
component of C,, \ G. What we have just shown is that every component
of C, \ G must contain d,,G. Hence there can be only one component and
50 Co \ G is connected.

Now assume that condition (b) holds. So far we have not used the fact
that G is connected; now we will. Let U = C \ clooG. Now Coo \ U =
cleoG and ¢l G is connected. Since we already have that (a) and (b) are
equivalent (even for non-connected open sets), U is simply connected. Thus
Cw \ 0G = GUU is the union of two disjoint simply connected sets and
hence must be simply connected. Since (a) implies (b), 0,G = Co, \ (GUU)
is connected. O

1.2 Corollary. If G is a region in C, then the map F — F N 305G defines
a bijection between the components of Co, \ G and the components of 0G.

Proof. 1f F is a component of Cy, \ G, then an argument that appeared in
the preceding proof shows that F N 0xG # 0. Also, since 9,,G C C, \ G,
any component C of 0,,G that meets F' must be contained in F. It must
be shown that two distinct components of d.,G cannot be contained in F.

To this end, let G; = Co \ F. Since G; is the union of G and the
components of Co, \ G that are distinct from F, G; is connected. Since
Cs \ G1 = F, a connected set, G; is simply connected. By the preceding
proposition, d,,G1 is connected. Now 0,G1 C 95, G- In fact for any point z
in 05oG1, 0 # B(2;8)N(Coo \G1) C B(2;6)N(Coo \G). Also if B(z;)NG =
{0, then B(z;¢) C Coo \ G and B(z;e)NF # §; thus z € int F, contradicting
the fact that 2 € 05.G1. Thus 9,,G1 C 05 G. Therefore any component of
0o G that meets F must contain 0,.G:. Hence there can be only one such
component of J,,G. That is, F' N .G is a component of J,.G.

This establishes that the map F — F N 0, G defines a map from the
components of Co, \ G to the components of 9,,G. The proof that this
correspondence is a bijection is left to the reader. O

Recall that a simple closed curve in C is a path 7 : [a,b] — C such that
~(t) = y(s) if and only if ¢t = s or |s — t| = b — a. Equivalently, a simple
closed curve is the homeomorphic image of 9D. Another term for a simple
closed curve is a Jordan curve. The Jordan Curve Theorem is given here,
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but a proof is beyond the purpose of this book. See Whyburn {1964].

1.3 Jordan Curve Theorem. If v is a simple closed curve in C, then
C\ v has two components, each of which has v as its boundary.

Clearly one of the two components of C \ « is bounded and the other is
unbounded. Call the bounded component of C \ «y the inside of v and call
the unbounded component of C\ v the outside of . Denote these two sets
by ins v and out 7, respectively.

Note that if v is a rectifiable Jordan curve, so that the winding number
n(v;a) is defined for all a in C \ v, then n(y;a) = %1 for a in ins v while
n(v;a) =0 for a in out v. Say v is positively oriented if n(vy;a) =1 for all
a in ins . A curve v is smooth if 7 is a continuously differentiable function
and 4/(t) # O for all t. Say that v is a loop if v is a positively oriented
smooth Jordan curve.

Here is a corollary of the Jordan Curve Theorem

1.4 Corollary. If v is a Jordan curve, ins v and {outy) U {oc} are simply
connected regions.

Proof. In fact, Cy \ ins v = cl(out v) and this is connected by the
Jordan Curve Theorem. Thus ins = is simply connected by Proposition 1.1.
Similarly, out v U {oo} is simply connected. O

A positive Jordan system is a collection I' = {v;,...,7vm} of pairwise
disjoint rectifiable Jordan curves such that for all points @ not on any +;,
n(T;a) =37 n(y;;a) =0 or 1. Let out T = {a € C: n(T';a) = 0} = the
outside of I" and let ins T" = {a € C: n(I';a) = 1} = the inside of I". Thus
C\T = out I'Uins I'. Say that I is smooth if each curve v; in I is smooth.

Note that it is not assumed that ins I' is connected and if I' has more
than one curve, out I is never connected. The boundary of an annulus is
an example of a positive Jordan system if the curves on the boundary are
given appropriate orientation. The boundary of the union of two disjoint
closed annuli is also a positive Jordan system, as is the boundary of the
union of two disjoint closed disks.

If X is any set in the plane and A and B are two non-empty sets, say that
X separates A from B if A and B are contained in distinct components of
the complement of X. The proof of the next result can be found on page
34 of Whyburn {1964].

1.5 Separation Theorem. If K is a compact subset of the open set U,
a€ K, andb € Cu \U, then there is a Jordan curve v in U such that v is
disjoint from K and -y separates a from b.

In the preceding theorem it is not possible to get that the point a lies
in ins <. Consider the situation where U is the open annulus ann(0;1, 3),
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K ={z;|2| =3/2},a=3/2, and b= 0.

1.6 Corollary. The curve v in the Separation Theorem can be chosen to
be smooth.

Proof. Let £ = ins v and for the moment assume that a € Q. The other
case is left to the reader. Let Ko = K N Q. Since v N K = §, it follows that
K is a compact subset of € that contains a. Since € is simply connected,
there is a Riemann map 7 : D — €. By a compactness argument there is
a radius v, 0 < r < 1, such that 7(rD) 2 Kp. Since U is open and v C U,
r can be chosen so that 7(rdD) C U. Let o be a parameterization of the
circle 78D and consider the curve 7o . Clearly 7o o separates a from b, is
disjoint from K, and lies inside U. O

Note that the proof of the preceding corollary actually shows that v can
be chosen to be an analytic curve. That is, v can be chosen such that
it is the image of the unit circle under a mapping that is analytic in a
neighborhood of the circle. (See §4 below.)

1.7 Proposition. If K is a compact connected subset of the open set U
and b is a point in the complement of U, then there is a loop v in U that
separates K and b.

Proof. Let a € K and use (1.6) to get a loop 7 that separates a and b.
Let © be the component of the complement of v that contains a. Since
KNnQ#0, KNy =0, and K is connected, it must be that K C Q. O

The next result is used often. A proof of this proposition can be given
starting from Proposition 8.1.1. Actually Proposition 8.1.1 was not com-
pletely proved there since the statement that the line segments obtained in
the proof form a finite number of closed polygons was never proved in de-
tail. The details of this argument are combinatorially complicated. Basing
the argument on the Separation Theorem obviates these complications.

1.8 Proposition. If E is a compact subset of an open set G, then there
s a smooth positively oriented Jordan system I' contained in G such that
E CinsT' CG.

Proof. Now G can be written as the increasing union on open sets G,
such that each G, is bounded and C \ G, has only a finite number of
components (7.1.2). Thus it suffices to assume that G is bounded and C\ G
has only a finite number of components, say Ko, K, ..., K, where Kj is
the unbounded component.

It is also sufficient to assume that G is connected. In fact if Uy, Us,. ..
are the components of G, then {U,,} is an open cover of E. Hence there
is a finite subcover. Thus for some integer m there are compact subsets
Ep of Ug, 1 < k < m, such that F = UT Ey. If the proposition is proved
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under the additional assumption that G is connected, this implies there
is a smooth positively oriented Jordan system 'y in U such that Ej C
ins I' C Uy; let I' = 7' I'x. Note that since ¢l (ins T'y) = Iy Uins I'y, C U,
cl (ins T'x) Ncl (ins T;) = @ for k # i. Thus I is also a positively oriented
smooth Jordan system in G and E Cins I' = J"ins T, C G.

Let € > 0 such that for 0 < j < n, (Kj). = {2z : dist(z,K;) < ¢}
is disjoint from E as well as the remainder of these inflated sets. Also
pick a point ag in intKy. By Proposition 1.7 for 1 < j < n there is a
smooth Jordan curve v; in {z : dist(z, K;) < e} that separates ap from Kj;.
Note that ag belongs to the unbounded component of the complement of
{z : dist(2, K;) < €}. Thus K; C ins +y; and ag € out ;. Give y; a negative
orientation so that n(vy; : z) = —1 for all z in Kj.

Note that U = C\ K is a simply connected region since its complement
in the extended plane, Ky, is connected. Let 7 : D — U be a Riemann map.
For some r, 0 < r < 1, V = 7(rD) contains EUJ] K; and 0V C int(Kp)..
Let yo = OV with positive orientation. Clearly E U (J} K; C ins v, and
ap € out .

It is not difficult to see that I' = {v9,7v1,...,7n} is & smooth Jordan
system contained in G. If z € K; for 1 < j < n, then n(T, 2) = n(y;, 2) +
n{v0,2) = =1+ 1= 0. Now ag € out I'; but the fact that I' C G and Kj is
connected implies that Kg C out I'. It follows that ins I C G.

On the other hand, if z € E, then z € out ; for 1 < j < nand 2z € ins 7.
Thus ECinsT'. O

1.9 Corollary. Suppose G is a bounded region and Ky,...,K, are the
components of Coo \ G with 0o in K. If € > 0, then there is a smooth
Jordan system I' = {yo,...,vn} in G such that:

(a) for1<j<n, Kj Cinsv,;
(b) KO C out Yos
(c) for0<j <,y C{z:dist(z,K;) < e}

Proof. Exercise. O

1.10 Proposition. An open set G in C is simply connected if and only if
for every Jordan curve v contained in G, insy C G.

Proof. Assume that G is simply connected and v is a Jordan curve in G.
So C \ G is connected, contains oo, and is contained in C \ . Therefore
the Jordan Curve Theorem implies that C\ G C out 7. Hence, ¢l (ins v) =
C\outvCG.

Now assume that G contains the inside of any Jordan curve that lies in
G. Let 0 be any closed curve in G; it must be shown that ¢ is homotopic
to 0 in G. Let € > 0 be chosen so that (). C G and pick a point & in the
unbounded component of the complement of ().. By Proposition 1.7 there
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is a Jordan curve 7 in {z : dist(z,0) < £} that separates the compact set
o and the point b. The unbounded component of the complement of (o)
must be contained in the outside of -y so that b € out +; thus ¢ C ins 7.
But ins « is simply connected (1.4) so that ¢ is homotopic to 0 in ins +.
But by assumption G contains ins 7 so that ¢ is homotopic to 0 in G and
G is simply connected. O

1.11 Corollary. If v and o are Jordan curves with ¢ C cl(insvy), then
ins o C ins 7.

A good reference for the particular properties of planar sets is Newman
[1964].

Exercises

1. Give a direct proof of Corollary 1.11 that does not depend on Propo-
sition 1.10.

2. For any compact set E, show that E. has a finite number of compo-
nents. If E is connected, show that E. is connected.

3. Show that a region G is simply connected if and only if every Jordan
curve in G is homotopic to 0.

4. Prove Corollary 1.9.

5. This exercise seems appropriate at this point, even though it does
not use the results from this section. The proof of this is similar to
the proof of the Laurent expansion of a function with an isolated
singularity. Using the notation of Corollary 1.9, show that if f is
analytic in G, then f = fo + fi + -+ + fn, where f; is analytic on
Coo \K; (0 <j <n)and fj(o0) =0 for 1 < j < n. Show that the
functions are unique. Also show that if f is a bounded function, then
each f; is bounded.

§2 Derivatives and Other Recollections

In this section some notation is introduced that will be used in this book
and some facts about derivatives and other matters will be recalled.

For any metric space X, let C(X) denote the algebra of continuous
functions from X into C. If n is a natural number and G is an open
subset of C, let C™(G) denote the functions f : G — C such that f
has continuous partial derivatives up to and including the n-th order.
C%G) = C(G) and C*(G) = the infinitely differentiable functions on
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G.If 0 < n < 00, C%(G) denotes those functions f in C™(G) with suppf =
support of f =cl {2z € G: f(z) # 0} compact.

It is convenient to think of functions f defined on C as functions of the
complex variables z and Z rather than the real variables z and y. These
two sets of variables are related by the formulas

z =z+1y zZ =x—1y
z _z+2 _z+E
= Y =7

Thus for a differentiable function f on an open set G, it is possible to
discuss the derivatives of f with respect to z and Z. Namely, define

8f 1/8f of
5 of _1(of  .of
of = 8z (Bx-Hay)'

These formulas can be justified by an application of the chain rule. A
derivation of the formulas can be obtained by considering dz = dx + idy
and dZ = dx — idy as a module basis for the complex differentials on G,
expanding the differential of f, df, in terms of the basis, and observing that
the formulas for f and 8f given above are the coefficients of dz and dz,
respectively.

The origin of this notation is the theory of functions of several complex
variables, but it is very convenient even here. In particular, as an easy
consequence of the Cauchy-Riemann equations, or rather a reformulation
of the result that a function is analytic if and only if its real and imaginary
parts satisfy the Cauchy-Riemann equations, we have the following.

2.1 Proposition. A function f : G — C is analytic if and only if 0f = 0.

So the preceding proposition says that a function is analytic precisely
when it is a function of z alone and not of Z.

With some effort (not to be done here) it can be shown that all the
laws for calculating derivatives apply to 8 and 8 as well. In particular, the
rules for differentiating sums, products, and quotients as well as the chain
rule are valid. The last is explicitly stated here and the proof is left to the
reader.

2.2 Chain Rule. Let G be an open subset of C and let f € CY(G). If Q is
an open subset of C such that f(G) C Q and g € C1(Q), then go f € C1(G)
and

d(gof)
d(go f)

[(Bg)o f10f + [(Bg) o f] OF
((Bg) o £18f + [(Bg) o f] BF.

I
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So if a formula for a function f can be written in terms of elementary
functions of z and Z, then the rules of calculus can be applied to calculate
the derivatives of f to any order. The next result contains such a calcula-
tion.

2.3 Proposition.
(a) 9(log|z|) = 1{22} and 8 (log |2|) = 1{2z}.
(b) 9f =9 f.

»*? 9 o\ [0\
I 3 ] -5 —_— = - —_ =

(c) f_A 18 tﬁe Laplacian, 522 + o5 <3w> + <6y) , then A

400 = 400.

Proof. For part (a), write log|z| = 3log|z|> = }log(2Zz) and apply the
chain rule. The remaining parts are left to the reader. O

Hence a function u : G — C is harmonic if and only if 30u = 0 on G.
Therefore, v is harmonic if and only if du is analytic. (Note that we are
considering complex valued functions to be harmonic; in the first volume
only real-valued functions were harmonic.)

For any function v defined on an open set, the n-th order derivatives of
u are all the derivatives of the form 876%u, where j + k = n.

A polynomial in z and Z is a function p(z,z) of the form Zajkzﬂfk,
where a;i is a complex number and the summation is over some finite set
of non-negative integers. The n-th degree term of p(z,%) is the sum of all
the terms a;;272* with j + k = n. The polynomial p(z,%) has degree n if
it has no terms of degree larger that n.

It is advantageous to rewrite several results from advanced calculus with
this new notation.

2.4 Taylor’s Formula. If f € C*(G), n > 1, and B(a; R) C G, then there
is a unique polynomial p(z,Z) in z and Z of degree < n — 1 and there is a
function g in C™(G) such that the following hold:

(@) f=p+y;
(b) each derivative of g of order < n — 1 vanishes at a;

(¢c) for each z in B(a; R) there is an s, 0 < s < 1, (s depends on z) such
that

g(z)z% S [8485] (0t sz~ @) (: ~ )t (z —a)

. k+j=n
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Thus for each z in B(a; R)

|z —al"

l9()| < > max{|0¥87(w)|: lw —al <[z~ al}

n!
k+j=n

2.5 Green’s Theorem. If I' is a smooth positive Jordan system with
G=insT, ue C(cl G), u € CYG), and du is integrable over G, then

/uz?i/ du.
r G

While here, let us note that integrals with respect to area measure on C
will be denoted in a variety of ways. [/ ¢ 1s one way (if the variable of inte-
gration can be suppressed) and [, fdA = [, f(z)dA(z) is another. Which
form of expression is used will depend on the context and our purpose at
the time. The notation [ f d.A will mean that integration is to be taken
over all of C. Finally, xx denotes the characteristic function of the set K;
the function whose value at points in K is 1 and whose value is 0 at points
of the complement of K.

Using Green’s Theorem, a version of Cauchy’s Theorem that is valid for
non-analytic functions can be obtained. But first a lemma is needed. This
lemma will also be used later in this book. As stated, the proof of this lemma
requires knowledge of the Lebesgue integral in the plane, a violation of the
ground rules established in the Preface. This can be overcome by replacing
the compact set K below by a bounded rectangle. This modified version
only uses the Riemann integral, can be proved with the same techniques
as the proof given, and will suffice in the proof of the succeeding theorem.

2.6 Lemma. If K is a compact subset of C, then for every z

/ |z — ¢ dA(C) < oo.
K

Proof. If h(¢) = |¢|7!, then using a change of variables shows that

B

/Wz—a-wA«> /xK«mw—<MA«>
K
/xKu—chMA@>

- /' h(C)AA(Q).
z—K

i
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If R is sufficiently large that 2z — K C B(0; R), then

/u%mwos/ ¢~ L dAQ)
K B(0;R

/ / dédr
o Jo
27 R.

I

O

2.7 The Cauchy-Green Formula. If " is a smooth positive Jordan sys-
tem, G =ins [, u € C(cl G), u € CY(G), and Gu is integrable on G, then
for every z in G

u) = g [w@C= 27~ 1 [ (€= 27 Fu dA(o)

Proof. Fix w in G and choose ¢ > 0 such that B(w;e) C G. Put B, =
B(w;e) and G. = G\ cl B.. Now apply Green’s Theorem to the function
(z — w)~u(z) and the open set G.. (Note that G, = I' U 8B, and, with
proper orientation, G, becomes a positive Jordan system.) On G,

d[(z—w)'u] = (2 —w) '0u

since (z — w)~! is an analytic function on G.. Hence

1 -
2.8 / ) g, / ) g, 22’/ du dA(z).
TR—W aBEZ'—'LU GEZ_'U}
But 9
lim —y—(f)—dz = limz‘/ u(w + e€'?)df
e—0 8B, zZ—w e—0 0
= 2miu(w).

Because (z — w)~ ! is locally integrable (Lemma 2.6) and bounded away
from w and du is bounded near w and integrable away from w, the limit
of the right hand side of (2.8) exists. So letting ¢ — 0 in (2.8) gives

zZ—w

/F —;—E-Z)Edz — 2miu(w) = 2z'/G ! Ou dA(z).
O

_ Note that if, in the preceding theorem, u is an analytic function, then
du = 0 and this become Cauchy’s Integral Formula.
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2.9 Corollary. If u € C:(C) and w € C, then

™ Z—w

u(w) = —l/ ! Ou dA(z).

There are results analogous to the preceding ones where the Laplacian
replaces 0.

2.10 Lemma. If K is a compact subset of the plane, then
/ [log |z]| dA(2) < oo.
K

Proof. 1If polar coordinates are used, then it is left to the reader to show
that for any R > 1

/MSR llog |2|| dA(z) = 7 R? (logR - %) 4

This proves the lemma. O

2.11 Theorem. If u € C? on the plane and w € C, then

1

u(w) = — /log |z — w|Au dA(2).
27

Proof. Let R be positive such that supp(u) € B(w;R) and for ¢ > 0

let G = {z:e<|z—w| < R} and 7. = {2: |z — w| = ¢} with suitable

orientation. Green’s Theorem implies

fI

/ dulog |z — w|dz 2i/ 8 [log |z — w|Ou] dA(2)
Ye Ge
= 22'/ (00u) log |z — w|dA(2)
G,
1
o 2w M
= 3/ (Au)log|z — w|dA(z)
2 Je.
+i / 9 Az,
G, zZ—Ww
Now ‘ f% (Ou) log |z — wldz’ < Meloge for some constant M independent

of £. Hence the integral converges to 0 as € — 0. Since (z — w) ™! is locally
integrable and du has compact support, [f, [0u/(Z —W)] converges as
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€ — 0. By Corollary 2.9 and Proposition 2.3(b) this limit must be —7a(w).
Since Aw is continuous and has compact support, combining this latest
information with the above equations, the theorem follows. O

We end this section with some results that connect areas with analytic
functions. The first result is a consequence of the change of variables for-
mula for double integrals and the fact that if f is an analytic function, then
the Jacobian of f considered as a mapping from R? into R? is |f’|? (see
Exercise 2).

2.12 Theorem. If f is a conformal equivalence between the open sets G
and 2, then
Area(Q):// Fidie
G

2.13 Corollary. If Q) is a simply connected region, 7 : D — Q is a Riemann
map, and 7(z) =) ap2™ in D, then

Area(Q) = //D |2 :w;manﬁ.

Proof. The first equality is a restatement of the preceding theorem for
this special case. For the second equality, note that 7/(z) = > na,z""'.
So for r < 1,

lTI (7"6"‘9)|2 = (Z nanr"_lei("_l)") <Z mamrm—lei(m—1)9>

— E mnﬁanrm+n—2ez(n—m)9

m,n

and this series converges uniformly in 8. Using polar coordinates to calcu-
late [f;, |7'|? and the fact that fo% et n=m)04h = ( for n # m, we get

7_12 — n2an2 T 17,211—1 r
[[ > |<2>/f d
(QW)anlanF%
ﬂanan|2.

0

If f fails to be a conformal equivalence, a version of this result remains
valid. Namely, [, |f'|* is the area of f(G) “counting multiplicities.” This
is made specific in the next theorem. The proof of this result uses some
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measure theory; in particular, the reader must know the Vitali Covering
Theorem.

2.14 Theorem. If f : G — 1 is a surjective analytic function and for each
¢ in Q,n(C) is the number of points in f~1({), then

| ireaa= [ noaae).

Proof. Since f is analytic, {2z : f'(z) = 0} is countable and its complement
in G is an open set with the same measure. Thus without loss of generality
we may assume that f’' never vanishes; that is, f is locally one-to-one.
Thus for each z in G there are arbitraily small disks centered at z on
which f is one-to-one. The collection of all such disks forms a Vitali cover
of G. By the Vitali Covering Theorem there are a countable number of
pairwise disjoint open disks {D,} such that f is one-to-one on each D,
and Area(G\ U,D,) =0.

Put A = U,f(D,) = f(U,D,). The set G \ U, D, can be written as
the countable union of compact sets U; K; (Why?). Since f is analytic, it
is locally Lipschitz. Thus Area f(K;) = O for each j > 1. Thus Area(f2)
= Area(A). For 1 < k < oo, let Ay = {¢ € A : n({) = k}; so Area(A) =
S-iArea(Ag). If Gk = f~1(Ag), then Theorem 2.12 implies

’dA = / '’dA
/lefl 3 A

= Z Area(f(Dy) N Ag)
n=1
= kArea(Ag)

since f is one-to-one on each D,,. Thus

/Glf’lsz = Y /lef’|2dA

1<k<0
= ) k Area(Az)
1<k<o00
= [ nl¢) 440
Q
[m]
Exercises

1. Show that if K and L are compact subsets of C, then there is a
constant M > 0 such that f;, |z — ¢|7'dA({) < M for all z in L.



14 13. Return to Basics

2. Show that if f: G — C is an analytic function and we consider f as
a function from the region G in R? into R2, then the Jacobian of f

is | /]2
3. Let f be defined on D by f(z) = exp [(2 + 1) /(z — 1) )] and show that
I/ |f'(z)° = co. Discuss.

4. If G is a region and u is a real-valued harmonic function on G such
that {z : u(z) = 0} has positive area, then u is identically 0.

§3 Harmonic Conjugates and Primitives

In Theorem 8.2.2 it was shown that a region G in the plane has the property
that every harmonic function on G has a harmonic conjugate if and only
if G is simply connected. It was also shown that the simple connectivity
of G is equivalent to the property that every analytic function on G has a
primitive.

The above mentioned results neglect the question of when an individual
harmonic function has a conjugate or an individual analytic function has
a primitive. In this section these questions will be answered and it will be
seen that even on an individual basis these properties are related.

We begin with an elementary result that has been used in the first volume
without being made explicit. The proof is left to the reader.

3.1 Proposition. If f : G — C is an analytic function, then f has a
primitive if and only if f7 f =0 for every closed rectifiable curve v in G.

Another result, an easy exercise in the use of the Cauchy-Riemann equa-
tions, is the following.

3.2 Proposition. If u : G — C is a C? function, then u is a harmonic
function on G if and only if f = (uy — iuy)/ 2 = Ou is an analytic function
on G.

It turns out that there is a close relation between the harmonic function u
and the analytic function f = Ju. Indeed, one function often can be studied
with the help of the other. A key to this is the following computation. If
is any closed rectifiable curve in G, then

3.3 /8u _ /(uwdy — uydx).
¥ 2Jy

In fact, f,y f=3 f7 (ug —tuy)(dz +idy) = 3 [, (uedz +uydy) + i S (uzdy —
uydz) and fw(uzdw + uydy) = 0 since this is the integral of an exact differ-
ential.
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We are now ready to present a direct relation between the existence of a
harmonic conjugate and the existence of a primitive.

3.4 Theorem. If G is a region in C and u : G — R is a harmonic function,
then the following statements are equivalent.

(a) The function u has a harmonic conjugate.
(b) The analytic function f = Ou has a primitive in G.
(c) For every closed rectifiable curve v in G, [ 7(uzdy — uydz) = 0.

Proof. By Proposition 3.1, (3.3) shows that (b) and (c) are equivalent.

(a) implies (b). If g is an analytic function on G such that g = u + iv,
then the fact that the Cauchy-Riemann equations hold implies that ¢' =
Ugp + 1V = Uy — Guy = 2f.

(b) implies (a). Suppose g is an analytic function on G such that ¢’ = 2f
and let U and V be the real and imaginary parts of g. Thus ¢’ = U, +iV, =
2f = ug — tuy. It is now an easy computation to show that u and V' satisfy
the Cauchy-Riemann equations, and so V is a harmonic conjugate of u. O

For a function u the differential u,dy—u,dz is called the conjugate differ-
ential of u and is denoted *du. Why? Suppose u is a harmonic function with
a harmonic conjugate v. Using the Cauchy-Riemann equations the differ-
ential of v is dv = vydz + vydy = —uydz + u,dy = *du. So Theorem 3.4(c)
says that a harmonic function u has a harmonic conjugate if and only if its
conjugate differential *du is exact. (See any book on differential forms for
the definition of an exact form.)

The reader might question whether Theorem 3.4 actually characterizes
the harmonic functions that have a conjugate, since it merely states that
this problem is equivalent to another problem of equal difficulty: whether
a given analytic function has a primitive. There is some validity in this
criticism, though this does not diminish the value of (3.4); it is a criticism
of the result as it relates to the originally stated objective rather than any
internal defect.

Condition (c) of the theorem says that to check whether a function has
a conjugate you must still check an infinite number of conditions. In §15.1
below the reader will see that in the case of a finitely connected region this
can be reduced to checking a finite number of conditions.

Here is a fact concerning the conjugate differential that will be used in
the sequel. Recall that du /On denotes the normal derivative of u with
respect to the outwardly pointed normal to a given curve ~.

3.5 Proposition. If u is a continuously differentiable function on the re-
gion G and v is a closed rectifiable curve in G, then

1 1 1
v 2m J, mi J, On

Tt
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Proof. The first equality is a rephrasing of (3.3) using the latest edition
of the notation. The proof of the second equality is a matter of using the
definitions of the relevant terms. This will not be used here and so the
details are left to the reader. O

Exercises

1. If G is a region and u : G — R is a continuous function, then u is
harmonic if and only if for every a in G there is an § > 0 such that
u(a) = (2m) 7! [u(a + re?)dd for r < 6. (A slight weakening of the
fact that functions with the Mean Value Property are harmonic.)

2. If u is a real-valued function on G, show that du dz = Ou dz =
3(du + i*du). Hence du dz + Ou dz = du + i*du.

3. Prove that a region G is simply connected if and only if every complex
valued harmonic function u : G — C can be written as u = g + h for
analytic functions g and A on G.

4. Let G be a region and f : G — C an analytic function that never
vanishes. Show that the following statements are equivalent. (a) There
is an analytic branch of log f(z) on G (that is, an analytic function
g : G — C such that exp[g(z)] = f(2) for all z in G). (b) The
function f’/ f has a primitive. (c) For every closed rectifiable path -

inG, [, '/ f=0.

5. Let 7 = p/q be a rational function, where p and ¢ are polynomials
without a common divisor. Let ay,...,a, be the distinct zeros of p
with multiplicities aq, ..., a, and let by, ..., b, be the distinct zeros
of g with multiplicities B1,...,8m. If G is an open set in C that
contains none of the points ai,...,a,, b1,..., by, show that there is
an analytic branch of log (z) if and only if for every closed rectifiable
path v in G,

0= an(via;) —Y_Binly:b).
i=1 i=1

84 Analytic Arcs and the Reflection Principle

If Q is a region and f : D — € is an analytic function, under what circum-
stances can f be analytically continued to a neighborhood of ¢l D? This
question is addressed in this section. But first, recall the Schwarz Reflection
Principle (9.1.1) where an analytic function is extended across the real line
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provided it is real-valued on the line. It is probably no surprise that this
can be generalized by extending functions across a circle; the details are
given below. In this section more extensive formulations of the Reflection
Principle are formulated. The relevant concept is that of an analytic arc.
Before addressing this issue, we will concentrate on circles.

Suppose G is any region that does not include 0. If G¥# = {1 /z : z € G},
then G# is the reflection of G across the unit circle 9D. If f is an analytic

function on G, then f#(¢) = f (F) defines an analytic function on G¥.

Similarly if G is any region and a is a point not in G, then for some radius
r>0

M r2 r2
41 G :{a—i—_ _:zEG}:{C:a—i—Z EG}

zZ—Qa —a

is the reflection of G across the circle 3B(a;r). Note that a ¢ G# and
G##_ = G. If f is an analytic function on G and G¥ is as above, then

12 @ =1 (ar2=)

is analytic on G#. Here is one extension of the Reflection Principle.

4.3 Proposition. If G is a region in C, a ¢ G, and G = G#, let G, =
GNB(a;r), Go =GnNoB(a;r), and G_ = GN[C\ B(a;7)]. If f: G4 U
Gy — C is a continuous function that is analytic on G4, f(Go) C R, and
f# : G — C is defined by letting f#(z) = f(2) for z in G UGq and letting
F#(2) be defined as in (4.2) for z in G_, then f# is an analytic function on
G. If f is one-to-one and Im f has constant sign, then f# is a conformal
equivalence.

Proof. Exercise O

The restraint in the preceding proposition that f is real-valued on Gq
can also be relaxed.

4.4 Proposition. If G is a region in C, a ¢ G, and G = G#, let G, G_,
Gy be as in the preceding proposition. If f : G UGy — C is a continuous
function that is analytic on G4 and there is a point a not in f(G4) and
a p > 0 such that f(Go) C 0B(a;p) less one point and if f# : G — C is
defined by letting f#(z) = f(z) on G+ UGy and

) =at ——2

Jaxar
Z—a

for z in G_, then f# is analytic. If f is one-to-one and f(G,) is contained
entirely in either the inside or the outside of B(c; p), then f# is a conformal
equivalence.
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Proof. Let T be a Mobius transformation that maps 0B(«¢;p) onto RU
{o0} and takes the missing point to oo; so T o f satisfies the hypothesis of
the preceding proposition. The rest of the proof is an exercise. O

Let Dy = {z € D:Imz > 0}.

4.5 Definition. If Q is a region and L is a connected subset of 92, then L is
a free analytic boundary arc of Q if for every w in L there is a neighborhood
A of w and a conformal equivalence h : D — A such that:

(a) h(0) =w;
(b) A(-1,1) = LN A;
(c) h(Dy) =QNA.

Note that the above definition implies that 2 N A is a simply connected
region. The first result about free analytic boundary arcs is that every arc
in JD is a free analytic boundary arc of I, a welcome relief. Most of the
proof is left to the reader. The symbol H, is used to denote the upper half
plane, {z : Imz > 0}.

4.6 Lemma. If w € 0D and € > 0, then there is a neighborhood V of w
such that V C B(w;e) and there is conformal equivalence h : D — V such
that h(0) = w, h(—1,1) =V NOD, and h(D;) =V ND.

Proof. It may be assumed that w = 1. Choose a on 0D such that Ima > 0
and the circle orthogonal to 0D that passes through o and @ lies inside
B(1;¢). Let h be the Mobius transformation that takes 0 to 1, 1 to «,
and oo to —1. It is not hard to see that h(Ry) = 0D and A(H,) = D. If
h(8D) = C and V is the inside circle C, then these fulfill the properties
stated in the conclusion of the lemma. The details are left to the reader.
O

The next lemma is useful, though its proof is elementary. It says that
about each point in a free analytic boundary arc there is a neighborhood
basis consisting of sets such as appear in the definition.

4.7 Lemma. If L is a free boundary arc of , w € L, and U is any
neighborhood of w, then there is a neighborhood A of w with A C U and a
conformal equivalence h : D — A such that:

(a) h(0) = w;

(b) h(-1,1) =LNA;

(c) h(D+) =N A,

Proof. According to the definition there is a neighborhood A of w and a
conformal equivalence k : D — A with k£(0) = w, k(—1,1) = AN L, and
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k(D) = @ N A. The continuity of k implies the existence of r, 0 < r < 1,
such that k(rD) C U. Let A = k(rD) and define h : D — A by h(z) = k(rz).
It is left to the reader to check that A and A have the desired properties.
O

4.8 Theorem. Let G and Q be regions and let J and L be free analytic
boundary arcs in 8G and 99, respectively. If f is a continuous function
on G U J that is analytic on G, f(G) C Q, and f(J) C L, then for any
compact set K contained in J, f has an analytic continuation to an open
set containing GU K.

Proof. Let z € J and put w = f(z); so w € L. By definition there is a
neighborhood A, of w and a conformal equivalence h,, : D — A,, such that
ho(0) = w, hy(—1,1) = A,NL, and h,(D;) = QNA,,. By continuity, there
is a neighborhood U, about z such that f (U, Ncl G) = f (U, N(GU J)) C
A,Nc 2 =A,N(QUL). Since J is a free analytic boundary arc, the
preceding lemma implies this neighborhood can be chosen so that there is
a conformal equivalence k, : D — U, with k,(0) = 2, k,(—-1,1) = U, N J,
and k.(Dy) =U,NG.

Thus g, = h;! o f ok, is a continuous function on D} U (—1,1) that is
analytic on D, and real valued on (-1, 1). In fact, g.(~1,1) C (—1,1) and
g-(D4) € D,. According to Proposition 4.3, g, has an analytic continuation
g¥ to D. From the formula for g7 we have that g# (D) C D. Thus f# = h,0
g¥ ok ! is a well defined analytic function on U, that extends f [(U, N G).
Extend f to a function f on GUU, by letting f = f on G and f = f# on
U.. It is easy to see that these two definitions of f agree on the overlap so
that f is an analytic function on G U U,.

Now consider the compact subset K of J and from the open cover {U, :
z € K} extract a finite subcover {U; : 1 < j < n} with corresponding
analytic functions f; : GUU; — C such that f; extends f. Write K as the
union K U- - UK,, where each K; is a compact subset of U;. (The easiest
way to do this is to consider a partition of unity {¢;} on K subordinate to
{U;} (see Proposition 18.2.4 below) and put K; = {2z € K : ¢;(z) > 1/n}.)
Note that if it occurs that U;NU; # @ but U;NU;NG = @, then K;NK; = 0.
Indeed, if there is a point z in K;N K, then z belongs to the open set U;NU;
and so U;NU; NG # 0. Thus replacing U; and U; by smaller open sets that
still contain the corresponding compact sets K; and K;, we may assume
that whenever U; N U; # 0 we have that U; NU; NG # 0.

Soif U; NU; # 0, f; and f; agree on U; N U; NG with f; thus the two
extensions must agree on U; N U;. Thus we can obtain an extension f# of
f to GUUJS_, U;, which is an open set containing GU K. O

We close this section with a reflection principle for harmonic functions.
First we attack the disk.

4.9 Lemma. Let u be a continuous real-valued function on clD that is
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harmonic on D. If there is an open arc J in D such that u is constant on
J, then there is a region W containing DU J and a harmonic function u;
on W such that u; = u on DU J.

Proof. It suffices to assume that u = 0 on J. Suppose J = {e?* : a < t <
B}, where —7 < a < 3 < 7. By using the Poisson kernel we know that

uz) = = [ PO tuEta

= %{/ /}P(G—tu(e”)

for z = re* in D (10.2.9). Moreover on D, u = Re f where f is the analytic
function on W = C\ [0D\ J] defined by

o[ [zt

Thus u; = Re f is the sought for harmonic extension. O

4.10 Theorem. Suppose G is a region and J is a free analytic boundary
arc of G. If u: GU J — R is a continuous function that is harmonic in G
and constant on J, then for any compact subset K of J, u has a harmonic
extension u; on a region W that contains GU K.

Proof. The proof is similar to that of Theorem 4.8; the details are left to
the reader. O

Here is a special type of finitely connected region.

4.11 Definition. A region G is a Jordan region or Jordan domain if it
is bounded and the boundary of G consists of a finite number of pairwise
disjoint closed Jordan curves. If there are n + 1 curves 9,71, --.,7¥n that
make up the boundary of G, then G is called an n-Jordan region.

Since G is assumed connected, it follows that one of these curves forms
the boundary of the polynomial convex hull of ¢l G; denote this curve by =g
and refer to it as the outer boundary of G. It then follows that the insides of
the remaining curves are pairwise disjoint. Thus the curves can be suitably
oriented so that I' = {~9,...,7.} is a positive Jordan system.

4.12 Definition. Say that a Jordan curve v is an analytic curve if there
is a function f analytic in a neighborhood of D such that v = f(9D).
Say that a Jordan region is an analytic Jordan region if each of the curves
forming the boundary of G is an analytic curve.

It is easy to see that for an analytic Jordan region every arc in its bound-
ary is a free analytic boundary arc. An application of Theorem 4.10 (and
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Proposition 1.8) proves the following two results. The details are left to the
reader.

4.13 Corollary. Let G be an analytic Jordan region with boundary curves
Y0, Vi, Yn- If U 15 a continuous real-valued function on G U~y; that is
harmonic on G and u is a constant on vy;, then there is an analytic Jordan
region G containing GU-y; and a harmonic function u; on Gy such that
uy =u on G.

4.14 Corollary. If G is an analytic Jordan region and u: ¢l G — R is a
continuous function that is harmonic on G and constant on each component
of the boundary of G, then u has a harmonic extension to an analytic
Jordan region containing clG.

As was pointed out above, if G is an analytic Jordan region and z € 0G,
then there is a neighborhood U of 2z such that U N G is a free analytic
boundary arc. The converse is also true. If G is a Jordan region and every
point of the boundary has a neighborhood that intersects G in an analytic
Jordan boundary arc, then G is an analytic Jordan region. This is another
of those results about subsets of the plane that seem obvious but require a
surprising amount of work to properly prove. See Minda [1977] and Jenkins
[1991].

Exercises

1. Let G, A, and {2 be simply connected regions and let f : G — A be a
conformal equivalence satisfying the following: (a) G O D and G # Dy
(b) ADQand A #; (c) f(D) = Q. If J is any open arc of G N JD,
then f(J) is a free analytic boundary arc of €.

2. Prove Theorem 4.10.
3. Give the details of the proof of Corollaries 4.13 and 4.14.

85 Boundary Values for Bounded Analytic Functions

In this section we will state three theorems about bounded analytic func-
tions on ) whose proofs will be postponed. Both the statements and the
proofs of these results involve measure theory, though the statements only
require a knowledge of a set of measure 0, which will be explained here.
Let U be a (relatively) open subset of the unit circle, ). Hence U is
the union of a countable number of pairwise disjoint open arcs {Ji}. Let
Je={e? 1ar <0< br}, 0 < by — ar < 2m. Define the length of Jy by

qU) = " 6(J).
k
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5.1 Definition. A subset E of 3D has measure zero if for every € > 0 there
is an open set U containing E with £(U) < e.

There are some exercises at the end of this section designed to help the
neophyte feel more comfortable with the concept of a set of measure 0. In
particular you are asked to show that countable sets have measure 0. There
are, however, some uncountable sets with measure 0. For example, if C is
the usual Cantor ternary set in [0,1] and E = {€*" : t € C}, then E is an
uncountable closed perfect set having measure 0.

A statement will be said to hold almost everywhere on 9D if it holds
for all @ in a subset X of 8D and D \ X has measure 0; alternately, it
is said that the statement holds for almost every a in JD. For example, if
f : 0D — C is some function, then the statement that f is differentiable
almost everywhere means that there is a subset X of 8D such that 6D\ X
has measure 0 and f'(a) exists for all a in X; alternately, f'(a) exists for
almost every a in 8D. The words “almost everywhere” are abbreviated by
a.e..

If f: D — C is any function and e*® € OD, then f has a radial limit at
e if, as 7 — 1—, the limit of f(re®) exists and is finite. The next three
theorems will be proved later in this book. Immediately after the statement
of each result the location of the proof will be given.

5.2 Theorem. If f : D — C is a bounded analytic function, then f has
radial limits almost everywhere on OD.

This is a special case of Theorem 19.2.12 below.

If f is a bounded analytic function defined on D, then the values of the
radial limits of f, when they exist, will also be denoted by f(e*) unless it is
felt that it is necessary to make a distinction between the analytic function
defined on D and its radial limits. Notice that f becomes a function defined
a.e.on JD.

5.3 Theorem. If f : D — C is a bounded analytic function and the radial
limits of f erist and are zero on a set of positive measure, then f = 0.

This result is true for a class of analytic functions that is larger than the
bounded ones. This more general result is stated and proved in Corollary
20.2.12.

So, in particular, the preceding theorem says that it is impossible for
an non-constant analytic function f defined on D to have a continuous
extension f : cI D — C such that f vanishes on some arc of 0D. This
special case will be used in some of the proofs preceding §20.2, so it is
worth noting that this is a direct consequence of the Schwarz Reflection
Principle. It turns out that such a function that is continuous on cl D and
analytic inside can have more than a countable set of zeros without being
constantly 0. That, however, is another story.
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Figure 13.1.

‘We now consider a more general type of convergence for a function as the
variable approaches a boundary point. Fix 8, 0 < § < 27, and consider the
portion of the open unit disk D contained in an angle with vertex e? = a,
symmetric about the radius z = ra, 0 < r < 1, and having opening 2a,
where 0 < a < 7. See Figure 13.1.

Call such a region a Stolz angle with vertex a and opening «. The variable
z is said to approach a non-tangentially if z — a through some Stolz angle.

This will be abbreviated z — a (n.t.). Say that f has a non-tangential
limit at a if there is a complex number ¢ such that f(z) —» ( as z > a

through any Stolz angle with vertex a.

5.4 Theorem. Let v : [0,1] — C be an arc with v([0,1)) C D and suppose
~ ends at the point v(1) = a in dD. If f : D — C is a bounded analytic
function such that f(y(t)) —» a ast — 1—, then f has non-tangential limit
a at a.

5.5 Corollary. If a bounded analytic function f has radial limit ¢ at a in
0D, then f has non-tangential limit ¢ at a.

Theorem 5.4 will be proved here, but two results (Exercises 6 and 7) are
needed that have not yet been proved. These will be proved later in more
generality, but the special cases needed are within the grasp of the reader
using the methods of the first volume. For the proof a lemma is needed. In
this lemma and the proof of (5.4), the Stolz angle at z = 1 of opening 26
is denoted by Ss.

5.6 Lemma. Suppose 0 <r <1, B=B(l;7r), Q=BND, and I ={z €
OQ : Imz < 0 and |z| = 1}. If w is the solution of the Dirichlet problem
with boundary values xp, then for everye > 0, there is a p, 0 < p < 1, such
that if |z — 1| < p, 0< 6 < 7/2, and z € S, then w(z) > (1/2) ~ /7 — €.

Proof. For w in Q, let ¢(w) € (0,1) such that 7¢(w) is the angle from the
vertical line Rez = 1 counterclockwise to the line passing through 1 and
w. It can be verified that ¢(w) = 7! arg(—i(w — 1)). Thus ¢ is harmonic
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for Rew < 1 and continuous on cl D \ {1}. Let ¢ be the end point of the
arc I different from 1.

Claim. If we define (¢ —w)(1) = 0, then (¢ — w) : cl  — R is continuous
except at (.

Since (¢—w) is harmonic on € and is the solution of the Dirichlet problem
for its boundary values, we need only verify that (¢ —w) : 0D — R is
continuous except for the point (; by Exercise 6 the only point in doubt
here is w = 1. Suppose w — 1 with Imw < 0. Here ¢(w) — 1 and w(w)
is constantly 1. Now suppose w — 1 with Imw > 0. Here ¢(w) — 0 and
w(w) is constantly 0. Thus the claim.

To finish the proof of the lemma, let p > 0 such that |w(z) — ¢(z)| < ¢
for zincl Q and |z — 1| < p. If z € S§, then ¢(z) > (1/2) — §/n. Thus
w(z) = w(z) — ¢(2) + ¢(2) 2 (1/2) = é/m —€. O

Proof of Theorem 5.4. Without loss of generality we may assume that
a=1 a=0,and |f(2)] <1 for |z]| < 1. If 0 < r < 1 there is a number
t, < 1 such that |y(¢t) — 1| < r for t, <t <1 and |[y(¢,) — 1| = r. Let 7,
denote the curve ~ restricted to [t,,1]. If € > 0, then r can be chosen so
that |f(y(¢))| < € for ¢, £t < 1. Fix this value of r and let @ = DN B(1;7).
As in the preceding lemma, let I; = {2 € 0Q : Im2z < 0 and |z| = 1} and
I, ={2€092:Imz > 0 and |z| = 1}. For k = 1,2 let w be the solution
of the Dirichlet problem with boundary values xj,; so by Exercise 6, wy, is
continuous on cl Q except at the end points of the arc Ij.

Claim. For z in Q, —log|f(2)| > —(loge) min{w; (z),w2(z)}.

Once this claim is proved, the theorem follows. Indeed, the preceding
lemma implies that there is a p, 0 < p < r, such that if |z — 1| < p, 0 <
6 < 7/2,and z € S, then for k =1, 2, wi(2) > (1/2) — §/m —e. (Observe
that we(w) = w;i(w).) Hence —log|f(2)| > —(loge)[(1/2) — 6/7 — €] for
|z—1] < p and z € Ss. Therefore for such z, |f(2)| < € exp[(1/2) —6/7—¢],
which can be made arbitrarily small.

To prove the claim, let v(z) = (log|f(z)|)/loge; so v is a superharmonic
function on Q, v(2) > 0 for all z in Q, and v(y(t)) > 1 for t, < t < 1. So
if z € yNN, then v(z) > 1 > wk(z). Suppose that z € O\ v and let U
be the component of Q \ v that contains z. Let { be the end point of the
arc I different from 1. Let o; be the path that starts at 1, goes along 0D
in the positive direction to the point (2, then continues along B until it
meets 7y(t,). Similarly let o2 be the path that starts at vy(t.), goes along
OB in the positive direction to the point (3, then continues along dD in
the positive direction to the point 1. Note that o; and o3 together form
the entirety of the boundary of Q. Let I'y = 01 + 7, and I'; = 03 — 7,. So
n(Ty; 2) + n(Tg; 2) = n(09Q; z) = 1. Thus n(yx; z) # 0 for at least one value
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of k=1,2.

Suppose n(I'1;z) # 0. We now show that U C T';. In fact, general
topology says that U C 9(Q\y,) = v-Uo1 Uoe =T'1 Uo,. But if W is the
unbounded component of C\ I';, the assumption that n(T';;2) # 0 implies
that UNW = 0. Also o2 \ {1,7(¢t,)} € W. Thus 8U CTI';.

This enables us to show that v > w; on U, and so, in particular, v(z) >
w1(z). Indeed to show this we need only show that limsup,,_,,[w:{w) —
v(w)] < 0 for all but a finite number of points on U (Exercise 7). Suppose
a € U and a # 1 or ~(t.). By the preceding paragraph this implies
that a € v, or a € 0;. If a € v, and a # 1 or ¥(¢,.), then a € D and
v(a) > 1> wi(a). If a € 07 and a # 1 or 4(¢,), then w; is continuous at a
and so w; (w) — 0 as w — a. Since v(w) > 0, limsup,,_,, (w1 (w)—v(w)] > 0.

In a similar way, if n(I'1; z) # 0, then v(z) > wq(z). This covers all the
cases and so the claim is verified and the theorem is proved. O

Theorem 5.4 is called by some the Sectorial Limit Theorem.

Be careful not to think that this last theorem says more than it does. In
particular, it does not say that the converse is true. The existence of a radial
limit does not imply the existence of the limit along any arc approaching
the same point of dD. For example, if f(z) = exp[(z+ 1) /(2 — 1)], then
f is analytic, |f(2)| < 1 for all z in D, and f(t) — 0 as ¢t — 1—. So the
radial limit of f at z =1 is 0. There are several ways of approaching 1 by
a sequence of points (not along an arc) such that the values of f on this
sequence approach any point in cl D.

We wish now to extend this notation of a non-tangential limit to regions
other than the disk. To avoid being tedious, in the discussion below most of
the details are missing and can be easily provided by the interested reader.
For example if g : D, — C is a bounded analytic function, it is clear what
is meant by non-tangential limits at points in (—1, 1); and that the results
about the disk given earlier can be generalized to conclude that g has non-
tangential limit a.e. on (—1,1) and that if these limits are zero a.e. on a
proper interval in (—1,1), then g = 0 on D,..

If J is a free analytic boundary arc of G and f : G — C is a bounded
analytic function, it is possible to discuss the non-tangential limits of f(z)
as z approaches a point of J. Indeed, it is possible to do this under less
stringent requirements than analyticity for J, but this is all we require
and the discussion becomes somewhat simplified with this restriction. Re-
call (4.5) that if a € J, there is a neighborhood U of a and a confor-
mal equivalence h : D — U such that h(0) = @, h(-1,1) = UN J, and
h(Dy ) =GNU.For 0 < a < w/2 and ¢t in (—1,1), let C be the partial
cone {z € Dy : /2 — a < arg(z — t) < w/2 + a} with vertex t. Since ana-
lytic functions preserve angles, h(C) is a subset of U bounded by two arcs
that approach h(t) on the arc J at an angle with the tangent to J at h(t).
Say that z — h(t) non-tangentially if z converges to h(t) while remaining
in h(C) for some angle a.
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Since the M&bius transformation (z — @)(1 — @z) maps D to D, Dy to
D, and a to 0, it is not hard to see that the definition of non-tangential
convergence to a point on J is independent of the choice of neighborhood
U and conformal equivalence h. The details are left to the reader.

When we talk about subsets of the arc J having measure zero and the
corresponding notion of almost everywhere occurrence, this refers to the
arc length measure on J.

5.7 Theorem. Let G be a region with J a free analytic boundary arc of G
and let f : G — C be a bounded analytic function.

(a) The function f has a non-tangential limit at a.e. point of J.

(b) If the non-tangential limit of f is 0 a.e. on a subarc of J, then f =0
on G.

Proof. Let U and h be as in the discussion of the definition of non-
tangential convergence above. Thus f o h is a bounded analytic function
on D, and thus has non-tangential limits a.e. on (—1,1). Clearly this im-
plies that f has non-tangential limits a.e. on J NU. By covering U with a
countable number of such neighborhoods, we have a proof of part (a). The
proof of (b) is similar. O

5.8 Corollary. If G is a analytic Jordan region and f : G — C is a
bounded analytic function, then f has non-tangential limits a.e. on 0G.

Exercises

1. If E is a closed subset of 8D having measure 0, then 9D \ E is an
open set having length 27.

2. If {Ex} is a countable number of subsets of 0D having measure 0,
then (J, Ex has measure 0.

3. Every countable subset of D has measure 0.

4. Let f: D — C be defined by f(z) = exp[(z + 1) /(2 — 1)]. Show that
f is analytic, |f(2)] < 1for all zin D, and f(t) > 0 ast — 1—. If
[¢] € 1, find a sequence {z,} in D such that z, — 1 and f(z,) — ¢.

5. Let f1 and fa be bounded analytic functions on ID and suppose f;
has a radial limit at each point of E;, where 0D \ E; has measure 0.
Show (by example) that fi; + fo and f; fo may have radial limits at a
set of points that properly contains F; N Es.

6. (See Proposition 19.10.4) Let I be a rectifiable Jordan curve and let
Q be its inside. If v : I' — R is a bounded function that is continuous
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except for a finite number of points, then there is a function % : ¢l Q@ —
R that is harmonic on € and continuous at every point of I' at which
the boundary function u is continuous.

7. (See Theorem 21.5.1.b) Let T' be a rectifiable Jordan curve and let
Q be its inside. (Maximum Principle) If v : € — R is a subhar-
monic function that is bounded above and M is a constant such that

limsup,_,, u(z) < M for all but a finite number of points a in I, then
u<Mon



Chapter 14

Conformal Equivalence for
Simply Connected Regions

In this chapter a number of results on conformal equivalence for simply
connected regions are presented. The first section discusses elementary in-
formation and examples. The next three sections present the basics of the
theory of prime ends for the study of the boundary behavior of Riemann
maps. This will be used in §5 to show that the Riemann map from the unit
disk onto the inside of a Jordan curve can be extended to a homeomorphism
on the closure of the disk. The chapter then closes with a discussion of the
family of all functions that are one-to-one on a simply connected region.

§1 Elementary Properties and Examples

Recall that a conformal equivalence between two regions G and €2 in the
complex plane is a one-to-one analytic function f defined on G with f(G) =
). From the first volume we know that this implies that f'(z) # 0 for
all zin G. If f : G — C is an analytic function whose derivative never
vanishes, then we know that f is not necessarily a conformal equivalence
(the exponential function being the prime example). If f'(z) # 0 on G, it
does follow, however, that f is locally one-to-one and f is conformal.

In this section the conformal equivalences of some of the standard regions
will be characterized and some particular examples will be examined. A
slightly weaker version of the first result appeared as Exercise 12.4.2.

1.1 Proposition. If f is a conformal equivalence from C onto a subset
of C, then f(2) = az + b with a # 0. In particular, the only conformal
equivalences of C onto itself are the Mébius transformations of the form
f(z) =az+b witha #0.

Proof. Clearly every such Mobius transformation is a conformal equiva-
lence of C onto itself. So assume that f : C — C is a conformal equivalence
onto f(C). Since f(C) is simply connected, f(C) = C. First it will be shown
that f(z) — oo as z — oo. Note that this says that f has a pole at infinity
and hence f must be a polynomial (Exercise 5.1.13). Since f is a conformal
equivalence, it follows that f has degree 1 and thus has the desired form.
If either lim, o, f(2) does not exist or if the limit exists and is finite,
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then there is a sequence {z,} in C such that 2z, — oo and f(z,) — @, an
element of C. But f~! : C — C is continuous and so z, = f~! (f (2,)) —
f71(e) # oo, a contradiction. O

To say that a function is analytic in a neighborhood of infinity means
that there is an R > 0 such that f is analytic in {z : |2{ > R}. For such
a function f, f(27!) has an isolated singularity at 0. Thus the nature of
the singularity of f at co can be discussed in terms of the nature of the
singularity of f(z7!) at 0. In particular, f has a removable singularity at
oo if f is bounded near co and f(o0) = lim,_,o f(2). If f has a removable
singularity at infinity, we will say that f is analytic at co. Similarly f has
a pole at oo if lim,_,o, f(2) = co. In the case of a pole we might say that
f(00) = oo and think of f as a mapping of a neighborhood of oo in the
extended plane to a neighborhood of oco. The order of a pole at oo is the
same as the order of the pole of f(z7!) at 0.

1.2 Corollary. If f : Co, — C is a homeomorphism that is analytic on
Coo \ {f7(c0)}, then f is a Mébius transformation.

Proof. 1If f(oco) = oo, then this result is immediate from the preceding
proposition. If f(c0) = a # oo, then g(z) = (f(z) —a)™" is a homeo-
morphism of Cy onto itself and g(oo) = oco. Thus the corollary follows.
O

1.3 Example. If Q = C\ (—oo, —r] for some r > 0, then

drz

f(z):m

is a conformal equivalence of D onto €2, f(0) = 0, and f'(0) = 4r. Thus f
is the unique conformal equivalence having these properties.

The uniqueness is, of course, a consequence of the uniqueness statement
in the Riemann Mapping Theorem. To show that f has the stated mapping
properties, let’s go through the process of finding the Riemann map.

Note that the Mébius transformation f1(z) = (1 + 2)(1 — z)~! maps D
onto Q; = {z:Rez>0}, f1(0) = 1, fi(1) = oo, and fi(—1) = 0. Now
f2(2) = 22 maps Q; onto Q22 = C\ (—00,0]; f3(z) = r(z — 1) maps 2> onto
Q. The map f above is the composition of these three maps.

Note that the function f in Example 1.3 has a pole of order 2 at z =1
and f has a removable singularity at infinity. In fact f(oo) = 0. Moreover,
f'(00) = lim, . 2f(2) = 4r > 0. Since f'(z) = 0 if and only if z = —1, we
see that f is conformal on C\ {£1}.

The next example is more than that.
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1.4 Example. For |a| = 1 define

f(z) =

(1-az?

for z in . To facilitate the discussion, denote this map by f, to emphasize
its dependence on the parameter a. The function f; is a special case of the
preceding example and thus maps D onto C\ (—oo, —1/4]. For an arbitrary
@, fo is the composition of the rotation of the disk by «, followed by
f1, followed by a rotation of C by @. Explicitly, fo(z) = @fi(az). Thus
fo(D) =C\ {-ta/4:0 <t < o0}

The power series representation of this function is given by

o
(T%&?)E =2z+202%2 4+ 32228+ = nz_:lna"'lz".
This will be of significance when we discuss the Bieberbach Conjecture in
Chapter 17. Also see (7.5) in this chapter.
The function in Example 1.4 for a = 1 is called the Koebe function and
the other functions for arbitrary a are called the rotations of the Koebe
function.

The next example was first seen as Exercise 3.3.13. The details are left
to the reader.

1.5 Example. If @ = C,, \ [-2,2],

1

is a conformal equivalence of I onto Q with f(0) = oc. If g is any other
such mapping, then g(z) = f(e*z) for some real constant 6.

Also note that f(z) = f(27!) so that f maps the exterior (in C,) of the
closed disk onto €.

The next collection of concepts and results applies to arbitrary regions,
not just those that are simply connected. They are gathered here because
they will be used in this chapter, but they will resurface in later chapters
as well.

1.6 Definition. If G is an open subset of C and f : G — C is any function,
then for every point a in 0,,G the cluster set of f at a is defined by

Clu(f;a) =n{cl « [f (B(a;e) NG)] : € > 0}.

1.7 Proposition. For every function f, Clu{f;a) is a non-empty compact
subset of Coo. If f is a bounded function, Clu(f;a) is a compact subset of
C.
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Proof. In fact, the sets cl « [f (B(a;€) N G)] form a decreasing collection
of compact subsets of C,, and must have non-empty intersection. The
statement about bounded functions is clear. O

1.8 Proposition. If a € 0,,G such that there is a p > 0 for which G N
B(a;r) is connected for all v < p and f is continuous, then Clu(f;a) is a
compact connected subset of Coo.

Proof. In this situation the sets cly [f (B(a;€) N G)] form a decreasing
collection of compact connected subsets of C when £ < p. The result is now
immediate from an elementary result of point set topology. O

The proof of the next proposition is left to the reader (Exercise 5).

1.9 Proposition. If a € 05G, then { € Clu(f;a) if and only if there is a
sequence {an} in G such that a, — a and f(a,) — ¢.

1.10 Corollary. If a € 0,,G, then the limit of f(z) ezists as z — a with z
in G if and only if Clu(f;a) is a single point.

1.11 Proposition. If f : G — 0 is a homeomorphism and a € 8,.G, then
Clu(f;a) C 9%2.

Proof. 1If ¢ € Clu(f;a), let {a,} be a sequence in G such that a, — a
and f(a,) — (. Clearly ¢ € cl £ and if ¢ € £, then the fact that f~! is
continuous at ¢ implies that @ = lim,, a, = lim, f~! (f(a,)) = f71({) € G,
a contradiction. O

We end this section with some widely used terminology.

1.12 Definition. A function on an open set is univalent if it is analytic
and one-to-one.

Exercises

1. In Example 1.3, what is f(C\ D)? f(Cw \ {£1})?
Discuss the image of D under the map f(z) = z + 2z~ 1.
Find a conformal equivalence of C \ [—2, 2] onto D.
Give the details of the proof of Proposition 1.8.

Prove Proposition 1.9.

A A S

What is the cluster set of f(z) = exp{(z+1)/(z — 1)} at 17
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7. Characterize the conformal equivalences of the upper half plane H =
{z : Im z > 0} onto itself.

8. Characterize the conformal equivalences of the punctured disk onto
itself.

9. Characterize the conformal equivalences of the punctured plane onto
itself.

§2 Crosscuts

With this section we begin the study of the boundary behavior of a con-
formal equivalence 7 : D — . Much of the discussion here is based on the
book of Pommerenke [1975], which has additional material.

We will limit ourselves to the case of a bounded region (or bounded
Riemann map) as this facilitates the proofs. The reader can consult the
literature for the general case.

2.1 Definition. If G is a bounded simply connected region in C, and C}
is a closed Jordan arc whose end points lie on G and such that C = C;
with its end points deleted lies in G, then C is called a crosscut of G.

Usually no distinction will be made between a crosscut C as a curve or
its trace. In other words, C may be considered as a set of points or as
a parameterized curve C : (0,1) — G. Recall that C is a Jordan arc if
C(s) # C(t) for 0 < s <t < 1. It is possible, however, that C1(0) = C1(1)
so that C is a Jordan curve. At the risk of confusing the reader, we will
not make a distinction between a crosscut C and the corresponding closed
Jordan arc C;. This will have some notational advantages that the reader
may notice in the exposition.

Note that if C is a crosscut of G and f : G — C is a continuous function,
then clo [f(C)]\ F(C) C Clu(f;a1) U Clu(f;az), where a; and ay are the
end points of C.

2.2 Lemma. If G is a bounded simply connected region in C and C is
a crosscut of G, then G \ C has two components and the portion of the
boundary of each of these components that lies in G is C.

Proof. If ¢ : G — D is a Riemann map, then f(z) = ¢(z)/(1 — |¢(2)|)
is a homeomorphism of G onto C. Hence f(C) is a Jordan arc in C. By
Proposition 1.11, Clu(f;a) C 8.,C = {o0} for every point a in G. Hence,
by the remark preceding this proposition, cle f(C) is a Jordan curve in Cy,
passing through co. If ; and €25 are the components of C\ clw f(C) =
C\ f(C), then f~1(£2;) and f~!(Q3) are the components of G\ C. O
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It is now necessary to choose a distinguished point in G. In the following
definitions and results, this distinguished point is lurking in the background
as part of the scenery and we must forever be aware of its existence. Indeed,
the definitions depend on the choice of some distinguished point. It seems
wise, however, not to make this point part of the foreground by including it
in the notation. We do this by always assuming that 0 € G. The assumption
that G is bounded will also cease to be made explicit.

The preceding lemma justifies the next definition.

2.3 Definition. If G is a simply connected region containing 0, then for
any crosscut C of G that does not pass through 0, let out C denote the com-
ponent of G\ C that contains 0 and let ins C' denote the other component.
Call out C the outside of C and ins C the inside of C.

This definition and notation is, of course, in conflict with previous con-
cepts concerning Jordan curves (§13.1). We'll try to maintain peace here by
reserving small Greek letters, like o and 7y, for Jordan curves, and capital
Roman letters, like X and C, for crosscuts.

From now on we will only consider crosscuts of G that do not pass
through the distinguished point 0.

2.4 Definition. A zero-chain (or 0-chain) of G is a sequence of crosscuts
of G, {C,}, having the following properties:

(a) ins Cpq1 Cins Cy;
() el Cpnel Cp, =0 for n # m;

(c) diam C,, — 0 as n — oo.

Note that the condition in the definition of a 0-chain {C,} that ¢l C, N
¢l Cpy1 =W andins C,,11 C ins C,, precludes the possibility that cl C,NIG
is a single point. It is not hard to construct a zero-chain {C,} such that
inf,, [diam(ins Cy,)] > 0. See the examples below.

Why make this definition? Let Q2 be a bounded simply connected re-
gion and let 7 : D — Q be a conformal equivalence with 7(0) = 0.
We are interested in studying the behavior of 7(z) as z approaches a
point of 8D. Let a € 9D and construct a O-chain {X,} in D such that
Npel (ins X,) = {a}. Clearly 7(X,,) is an open Jordan arc in Q. By Propo-
sition 1.11 [cl 7(X,,)]\ 7(Xr) C 09Q. Unfortunately it is not necessarily true
that C,, = 7(X,,) is a crosscut in 2 since cl C, \ C,, may be an infinite set.
We can and will, however, choose the 0-chain {X,} in D so that not only
is each C,, a crosscut in €2, but {C,} is actually a 0-chain in Q.

In this way we associate with each point a of 0D a 0-chain {Cy,} in . In
fact, we will see in the next section that after we introduce an equivalence
relation on the set of 0-chains, there is a way of topologizing 2, the set Q
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D

Figure 14.1

together with these equivalence classes, so that 7 extends to a homeomor-
phism 7 of ¢] D onto ). This will pave the way for us to study the boundary
behavior of 7 in future sections when more stringent restrictions are placed
on 01.

The following are some examples of O-chains. Figure 14.1 has & = D and
shows an example of a 0-chain. Some special 0-chains of this type will be
constructed below (see Proposition 2.9).

In Figure 14.2, Q is a slit disk and the sequence of crosscuts is not a
0-chain since it fails to satisfy property (a) of the definition. Again for Q2 a
slit disk, Figure 14.3 illustrates a 0O-chain.

In Figures 14.4, 14.5, and 14.6, Q) is an open rectangle less an infinite
sequence of vertical slits of the same height that converge to the segment
[2,2 + 4]. The sequence of crosscuts {C,} in Figure 14.4 is not a 0-chain
since it violates part (a) of the definition; the crosscuts in Figure 14.5 do
not form a 0-chain since their diameters do not converge to 0. The crosscuts
in Figure 14.6 do form a 0-chain.

Figures 14.7, 14.8, and 14.9 illustrate examples of 0-chains.

We begin with a result on 0-chains of D that may seem intuitively obvi-
ous, but which requires proof. It might be pointed out that the sequence of

crosscuts in Figure 14.6 does not satisfy the conclusion of the next propo-
sition.

[0

Figure 14.2 Figure 14.3
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2.5 Proposition. If {X,} is a sequence of crosscuts of D with ins X,,11 C
ins X,, and diam X,, — 0, then diam (ins X,,) — 0.

Proof. Since cl [ins X,41] C cl [ins X,,] for every n, K =), cl [ins X,]
is a non-empty compact connected subset of cl D. Since X, is a crosscut,
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Oins X,] = X,, Uy, for the closed arc in 9D, v, = cl [ins X,;] N ID. In
fact, yp41 = cl [ins X,,41] NOD C 7y, and so y = (), ¥» is a closed arc in
OD. Tt is easy to see that v = K NJD. Also, since X,, and 7, have the same
end points, diam ~,, — 0. Therefore, «, and hence K, is a single point 2
in OD. A straightforward argument now finishes the proof. O

The remainder of this section is devoted to the construction of 0-chains
{X.} in D such that {r(X,)} is a O-chain in Q. The process involves the
proof of a sequence of lemmas. The first of these necessitates a return to
the notion of a set of measure 0. The proof will not be given of the complete
statement, but only of the statement that can be obtained by the deletion
of any reference to a set of measure 0. The proof of the general statement
can be easily obtained from this proof and is left to the reader.

2.6 Lemma. Let 7 be a bounded univalent function defined on D with
|7 < M on D. If E is a subset of 0D having measure 0, 1/2 < p < 1, and
0 < a < (< 2m, then there is a 6 with a < 0 < 3 such that €'® ¢ E and

/1 |7 (re')|dr < MV2r 1=/
A < M/B—a'

Proof. 1In fact an application of the Cauchy-Schwarz Inequality shows that

/j [/p1|'r'(7‘ei9)|dr]2 < /j [/pldr] [/pllr'(reio)|2dr] df

0%(1 —p) [/pl |T'(ref9)|"’dr] do

27 1
< 2(1- p)/ / |7"(1°e“9)|2 rdrdf
o Ji2

A

IA

since, with p > 1/2, we have 1 < 2r for p < r. But by Theorem 13.2.12
this last integral equals Area(7({z € D:1/2 < |2| < 1})) < nM?2. But

(8—a)inf { [/1 |T’(rei9)|dr]2 ra<ld< ﬂ} < /ﬂ [/1 |‘r'(rei9)|drrd0.
2 a LJ/p

Hence there is at least one value of § with
2

[/pl ,T'(reie)ld?”] < —2(155)21\42,

whence the lemma. O

Note that the preceding lemma gives a value 8 such that r — 7(re®),
p <7 <1, is a half open rectifiable Jordan arc (and also gives an estimate
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on the length of this curve). But a rectifiable open arc cannot wiggle too
much, and so the next result is quite intuitive.

2.7 Proposition. If v : [0,1) — G is a half open rectifiable arc and f :
G — C is an analytic function such that f o~y is also a rectifiable arc, then
lim;—1- f(7(t)) exists and is finite.

Proof. Let L = the length of f o+. Since the shortest distance between
two points is a straight line, it follows that {f oy} C B (f (v(1/2));L). In
particular, there is a constant M such that |f (y(t))] < M for 0 < t < 1.
If lim;—,1— f (7(t)) does not exist, then there are sequences {r,} and {s,}
in (0, 1) such that r, < 8, < rpy1, 7 — land s, — 1, f(y(r,)) — p and
f(v(sp)) = o,and p # 0. If 0 < 36 < |p— o], then there is an ng such
that |f (v(rn)) — f (7(sn))| > & for all n > ng. But the length of the path
{7 (4(t)) : 7n <t < sn} is greater than or equal to |f ((rs)) — f (v(sa))| >
6. This contradicts the rectifiability of fo~. O

A combination of the last two results can be used to give a proof that the
set of points in 0D at which a bounded conformal equivalence 7 has radial
limits is dense in D). Unfortunately this will not suffice for our purposes
and we need more.

2.8 Lemma. If 7 : D — C is a bounded univalent function, then (1 —
rymax {|7'(2)|: |z]=r} —» 0 as r — 1. Hence (1—1z|)|7'(2)] — O as
|z] — 1.

Proof. Let7(z) =Y, a,2™; hence, using the fact that |z + y|° < 2 <[a:|2 +
|y|2), we get that

2

m—1 [e%s]
A= 12D [P @ = 1= [2D)*| Y nana™' + Y nanz"?
n=1 n=m

2

2

<2(1 = |2|)? +2(1—2))?

m~1 o)
E nap,z" ! E nanz""!
n=1 n=m

Applying the Cauchy-Schwartz Inequality to the second sum gives
2

Z na,z" | = Z: (Vnay) (Vnz"1)
< |i§: n|an|2] l:i n|z|2n_2} .

But

e}

o
Z n‘zl2n—2 < Zn‘zIZn—Z
n=1

n=m
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-2
= (1-1F)
Combining these inequalities gives

m—1

n—1
> nlag|lz|

n=1

+2(1 = [2)? [2 nlanf] !

2
— (1-12%)

2

Q-’17 < 2(1-l2])?

m—1
= 2(1—12D)*|>_ nlanllz""}
n=1
2 IS er
Ay {;"' " ]
But if |z| > 1/2, then
m—1 2
A—12D* 17 @ < 20-12D?*| Y nlaal 2"
+2 Z n|an]2} .

By Corollary 13.2.13, m can be chosen such that the last summand is
smaller than £2/2. Thus for 1 — |z| sufficiently small, (1 — |z])? |7 (2)|? can
be made arbitrarily small. O

2.9 Proposition. Let Q be a bounded simply connected region and let
7:D — Q be the Riemann map with 7(0) =0 and 7'(0) > 0. If0 < 6 < 27
and {r,} is a sequence of positive numbers that converges monotonically to
1, then for every n there are o, and B3, with o, < 0 < 3,, a, — 0, and
Br, — 6 such that if Y,, = the crosscut of D defined by

Yo = (e, rne ™| U {rne t an <t < B} U [rre etn)
then {7 (Y,)} is a O-chain in Q.

Proof. Let M be an upper bound for |7|. By Lemma, 2.8, positive numbers
{en} can be chosen such that £, — 0 and

2.10 (1—r,) max |7/ (rne™)| < €2.

Now apply Lemma 2.6 witha =60-2(1—r,) /e2 and B =0 (1 —r,) /€2
to obtain an a, with § —2(1 —r,) /e2 < a, <6 — (1 —Tp) /€2 and

/ IT (re“‘")|dr < MV2rn = e, MV2nr.

(1- n)/2
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Similarly, there is a G, with § < 3, and
1
/ |T’ (rew”) l dr < e, M/ 2.

Actually we want to modify the choice of the points «,, and 3,, so that the
values of 7 (¢’*») and 7 (¢??), the radial limits of T at the designated points,
are all different. This is done as follows. Suppose a3,...,an_1, 81, -+, On-1
have been chosen and let E = {a:0—2(1 —1,) /e2 <a <0—(1 —1,) /e
and 7 (e*) exists and equals one of 7 (e'1), ..., 7 (! @/Phan—1) 7 ("),

o T (e’ﬂ"—l)}. By Theorem 13.5.3, F has measure 0. By Lemma 2.6, o,
can be chosen in the prescribed interval with a, ¢ E. By Proposition
2.7, 7 (') exists and differs from 7 (e?®1) ..., 7 (e!*-1), 7 (e"), ...,
7 (e*#-1). Similarly choose S,.

Define Y,, as in the statement of the proposition. Clearly {Y,} is a 0-
chain in D. Let C,, = 7 (Y,,). Since C, is rectifiable, each C,, is a crosscut
of Q. Since ins Y41 C ins Y, for every n, ins Cp41 C ins C, for every n.
Since the values 7 (e?™1), 7 (e**2), .. ; 7 (eP1), 7 (e#2), ... are all distinct
and cl Y, Ncl Yqu1 =0, cl C,Necl Cpyy = 0. It remains to prove that
diam C,, — 0.

Now (2.10) implies that ff: |7/ (rne') | dt < (Bn — o) Té: and 3, —
an < 4(1-1,) /2. Hence ff: |7/ (rne')| dt < 4en,. This, combined with
the preceding estimates, implies that the length of 7 (Y,,) < 4e,+2e, M (27r)%
and thus converges to 0. It is left as an exercise to show that o, and 3, — 0
asn —o00. U

Exercise

1. If {X,} is a O-chain in D, show that (), cl (ins X,) is a single point
in OD.

83 Prime Ends

Maintain the notion of the preceding section. Let €2 be a bounded simply
connected region and let 7 : D —  be the conformal equivalence with
7(0) =0 and 7'(0) > 0.

3.1 Definition. If {C,,} and {C},} are two zero-chains in €, say that they
are equivalent if for every n there is an m such that ins Cp,, C ins C}, and,
conversely, for every i there is a j with ins C} C ins C;.

It is easy to see that this concept of equivalence for zero-chains in
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is indeed an equivalence relation. A prime end is an equivalence class of
zero-chains.

An examination of the 0O-chain in Figure 14.1 will easily produce other
O-chains that are equivalent to the one given. In Figure 14.2 if the crosscuts
that are above the slit constitute one 0-chain and the crosscuts below the
slit constitute another, then these two O-chains belong to different prime
ends. It can also be seen that the 0-chains appearing in Figures 14.7 and
14.8 are equivalent. The reader is invited to examine the 0-chains appearing
in the figures in §2 and to find equivalent ones.

Let © denote Q together with the collection of prime ends. We now
want to put a topology on Q. (Apologies to the reader for this notation,
which is rather standard but opens up the possibility of confusion with the
polynomially convex hull.)

3.2 Definition. Say that a subset U of (1 is open if UNQ is open in 2
and for every p in U \ € there exists a zero-chain {C,,} in p such that there
is an integer n with ins C,, C U N Q.

Note that from the definition of equivalence and the definition of a 0-
chain, if U is an open subset of  and p € U, then for every {C.} in p,
ins Cp, C U NQ for all sufficiently large n.

The proof of the next proposition is an exercise.

3.3 Proposition. The collection of open subsets of (! is a topology.

The main result of the section is the following.

3.4 Theorem. If Q is a bounded simply connected region in C and 7 : D —
¥ is a conformal equivalence, then T extends to a homeomorphism of cl D
onto Q.

Actually, we will want to make specific the definition of 7(z) for every
z in 0D as well as spell out the meaning of the statement that 7 is a
homeomorphism. If z € D, then Proposition 2.9 implies there is a 0-chain
{Y..} in D such that (), cl (ins Y,)) = {2} and {7 (Y,,)} is a O-chain in Q2. We
will define 7(2) to be the equivalence class of {7 (¥,,)}. We must show that 7
is well defined. Thus if {X,,} is a second 0-chain in D with (), ¢l (ins X,) =
{z} and {7 (X,)} a O-chain in €2, we must show that {7 (X,)} and {7 (¥,,)}
are equivalent. This is not difficult. Fix n; we want to show that ins 7 (Y;,,) C
ins 7(X,,) for some m. But just examine ins X,,: 8 (ins X,,) = X,, U vy,
where 7y, is an arc 8D with z as an interior point. Thus there is a § > 0
such that D N B(z;6) C ins X,,. Since diam (ins Y;,,}) — 0 (why?), there is
an m with ins Yy, C DN B (z;6) C ins X,;; thus ins 7 (Y,,) = 7 (ins Y,,,) C
7 (ins X,,) = ins 7 (X,,). Similarly, for every j there is an 7 with ins 7 (X;) C
ins 7 (Y3).

The proof that 7 is well defined also reveals a little something about
the disk. Namely, the prime ends of I are in one-to-one correspondence



42 14. Simply Connected Regions

with the points of O (something that better be true if the theorem is
true). In fact, if {X,} is a O-chain in D, then Proposition 2.5 implies that
diam (cl (ins X)) — 0. By Cantor’s Theorem, [, ¢l (ins X,,) = {20} for
some point zg in cl D. It follows that zg € D (why?). The preceding
paragraph shows that whenever {X,,} and {Y,,} are equivalent 0-chains in
D, N, ¢l (ins X,) =, cl (ins Yy).

We now proceed to the proof that 7 is a homeomorphism. Some prepara-
tory work is required.

3.5 Lemma. If vy :[0,1) — D 4s an arc such that |y(t)] - 1 ast — 1,
then the set Z = {z : there exists tx, — 1 with v(tx) — z} is a closed arc in
OD. If f : D — C is a bounded analytic function and lim;_,q f (7(t)) exists,
then either Z is a single point or f is constant.

Proof. Observe that the set Z = Clu(v; 1) (1.6). Thus Z is a closed con-
nected subset of D (1.7 and 1.8); that is, Z is a closed arc.

Now assume that f : D — C is a bounded analytic function such that
lim;,; f (7(t)) = w exists and Z is not a single point. It will be shown
that f must be constant. In fact, let z be an interior point of Z such that
the radial limit of f exists at z. It is easy to see (draw a picture) that the
radial segment [0, z) must meet the curve 7 infinitely often. Hence there is a
sequence {t;} in [0, 1) such that tx — 1, y(tx) — 2z, and arg (vy(tx)) = arg 2
for all k. Thus lim,_,; f(rz) = limg_e f (y(tk)) = w. By Theorem 13.5.3,
f=w. O

3.6 Lemma. Let 7 : D — Q be a conformal equivalence with 7(0) = 0. If
C is a crosscut of 2, then X = 7=1(C) is a crosscut of D.

Proof. Let C : (0,1) — Q be a parameterization of C' and, for ¢ = 0 or
1, let ag = limy—,q C(t). So a, € ON. Clearly X(t) = 77 (C(¢)) is an open
Jordan arc and |X(t)] = 1ast — 0or 1. For ¢ =0, 1, let Z; = {z: there
exists tx — ¢ with X(tx) — z}. But lim;_,, 7 (X(¢)) = a4 and 7 is not
constant. By Lemma 3.5, Z; is a single point and so X is a crosscut. O

Now suppose {C,} is a 0-chain in Q and let X,, = 771(C,,). So each X,
is a crosscut of D by the preceding proposition. We will see that it is almost
true that {X,} is a O-chain in D. The part of the definition of a 0-chain
that will not be fulfilled is that clX, NclX,,; need not be empty.

Begin by noting that 7(ins X,) = ins Cy; hence ins X,4+1 C ins X,.

3.7 Proposition. If 7 : D — Q is a conformal equivalence with 7(0) =0
and {X,} is a sequence of crosscuts of D such that C, = 7(X,) defines a
0-chain of crosscuts in , then diam X,, — 0.

Proof. First assume that there is an r, 0 < r < 1, such that X, N {z :
|z| = r} # 0 for an infinite number of values of n. Let 2z, € X,, with
|zx| = 7 such that 7(2x) — (o380 o € T({z: ]2 =7r}) T Q. Butif 6 > 0
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such that B ({o;6) C (, there is a kg such that |[7(zx) — (o] < & for k > kq.
But 7(z;) € Cyp, N B ({p;6) and diam C,, — 0. Hence there is a k; > kg
such that C,, C B((o;6) for k > k;. This implies that cl Cp,, NN = 0.
Since C,, is a crosscut, this is a contradiction. Thus for every r < 1,
Xn N {z:]z| =r} =40 for all but a finite number of indices n.

Let r,, = inf{|z| : 2z € X,.}; by the preceding paragraph, r, — 1. Since
X, is a crosscut, 9ins X,,] = X, Uy, for some closed arc -, of 9D. It
follows that K = (1, cl [ins X,,] is a non-empty closed connected subset
of D and hence is a closed arc in . Moreover, K = [, v, (why?). It
suffices to show that K is a single point.

Suppose K is a proper closed arc in 8D. Then by Theorem 13.5.2 there
are distinct interior points z and w of the arc K such that the radial limits
of 7 exist at both z and w; denote these radial limits by 7(z) and #(w).
Since 0 belongs to the outside of each X,,, for each n there are points z,
and w, on X, that lie on the rays through z and w, respectively. Thus
T(2n) — 7(2) and 7(w,) — F(w). But 7(2,) and 7(w,) € 7(X,,) = C,, and
diam C, — 0. Hence 7(z) = 7(w). Since z and w were arbitrary interior
points of K, Theorem 13.5.3 implies that 7 is constant, a contradiction.
Therefore it must be that K is a single point and so diam X,, — 0. O

3.8 Lemma. If 7 : D — Q is a conformal equivalence with 7(0) = 0, {Cy,}
is a 0-chain in Q, and X, = the crosscut 771(C,,), then there is a point
zg on 0D and there are positive numbers 6,, and e, with 0 < §,, < &, and
€n — 0 such that

3.9 ﬂ cl(ins X,,) = {20}

n

and

3.10 DN B(zg;6,) Cins X,, C DN B(zg;€n).

Proof. By Propositions 3.7 and 2.5, diam[cl (ins X,)] — 0. Therefore
there is a zg in cl D such that (3.9) holds. By Proposition 1.11, zg € 8 D.

It is clear that since diam X,, — 0, the number ¢, can be found. Suppose
the number 6,, cannot be found. That is, suppose there is an n (which will
remain fixed) such that for every § > 0, D N B(zp;8) is not contained
in ins X,,. Thus for every § > 0 there are points in D N B(zp;§) that
belong to both ins X, and out X,; by connectedness, this implies that
X, NB(zp;8) # 0 for every § > 0. Hence 25 € cl X,,. Since ins X,,, C ins X,,
for m > n, the same argument implies that zg € cl X,,, for m > n.

Now construct crosscuts {Y;} as in Proposition 2.9 so that {1, ¢l (ins ¥;) =
{z0}, diam Y; — 0, and {7(Y};)} is a O-chain of . It is claimed that
XnNY; # 0 for all sufficiently large values of j. In fact, if this were not
the case, then, by connectedness and the fact that zy € ¢l X,,, X, Cins Y
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for all j. But diam[ins Y;] — 0 and so this implies that X, is a single-
ton, a contradiction. Hence there must be a jo such that X, NY; # 0 for
J 2 jo. Similarly, jo can be chosen so that we also have X, 1 NY; # 0 for
J > jo. But this implies that C, N 7(Y;) # 0 # Cry1 N7(Y;) for j > jo.
Therefore, dist(Cp,Crt1) < diam 7(Y;), and this converges to 0. Thus
cl Cp Nl Cpyy # 0, contradicting the definition of a 0-chain. This implies
that (3.10) holds. O

Proof of Theorem 38.4. Define # : ¢l D — Q by letting 7(z) = 7(2) for
|z| < 1and 7(z) = the prime end of Q corresponding to the 0-chain {7(Y;)},
where {Y;} is any O-chain in D such that (; cl (ins Y;) = {2} and {r(Y;)}
is a O-chain in Q2. We have already seen that 7 is well defined.

To show that 7 is subjective, let p € 2\ Q and let {C,,} be a 0-chain in p.
If X, = 771(C,), then (3.10) and Proposition 2.9 imply we can construct
a 0-chain {Y;} in D with (", cl (ins Y;) = {2z}, {r(Y;)} a O-chain in Q, and
ins Y,, C ins X,, for every n. Moreover, for each n, the form of Y,,, (3.9),
and the fact that diamlins X,,] — 0 imply that ins X,, C Y,, for sufficiently
large m. This implies that {7(Y;)} and {C,} are equivalent O-chains in Q
and so 7(z) = p.

The proof that 7 is one-to-one is left to the reader (Exercise 2).

It remains to show that 7 is a homeomorphism. Let U be an open subset
of Q; it must be shown that #~1(U) is (relatively) open in cl D. Clearly
#F=HU)ND = 771U NQ), and so this set is open. If zp € 771 (U)NID, it
must be shown that there is a § > 0 with D N B(z0;6) C #~1(U) N D. Put
p = 7(z0); so p € U\ Q. Let {C,} € p; by definition, there is an integer
n such that ins C,, CUNQ. If X, = 771(C,), then X, is a crosscut and
ins X, = 7 (ins C,) € #71(U) N D. By (3.10), there is a § > 0 with
D N B(zp;6) C ins X,, and so 7 is continuous.

Finally, to show that 7 is an open map it suffices to fix a 25 in 9D
and a § > 0 and show that 7(cI D N B(z;6)) contains an open neigh-
borhood of p = 7(zy). Construct a O-chain {Y,} as in Proposition 2.9
with (), cl [ins Y] = {2} and cl [ins Y] C B(zp;6) for all n. Thus
{r(Yn)} € p and ins 7(Y,) = 7(ins Y¥,) C QN 7(cl DN B(z;6)). By
definition, 7(cl D N B(zg; 6)) is a neighborhood of p. O

Some additional material on prime ends will appear in the following two
sections. Additional results can be found in Collingwood and Lohwater
[1966] and Ohtsuka [1967].

Exercises

1. Prove that the collection of open sets in € forms a topology on Q.

2. Supply the details of the proof that the map 7 is one-to-one.
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3. Can you give a direct proof (that is, without using Theorem 3.4) that
Q is compact?

4. If Q is the slit disk, describe the topology on Q.

84 Impressions of a Prime End

We already have seen in §1 the definition of the cluster set of a function
f: G — C at a point a in JG. Here we specialize to a bounded function
f : D — C and define the radial cluster set of f at a point e in OD.
The preliminary results as well as their proofs are similar to the analogous
results about the cluster set of a function.

4.1 Definition. If f : D — C is a bounded function and a € 8D, the radial
cluster set of f at a is the set

Clu,(f;a) = ﬂcl {f(ra): 1 —e <r<1}.

e>0

The following results are clear.

4.2 Proposition.

(a) If f: DD — C is a bounded function and a € 9D, then € € Clu,-(f;a) if
and only if there is a sequence {r,} increasing to 1 such that f(r,a) —
¢.

(b) If f is continuous, then Clu.(f;a) is a non-empty compact connected
set.

(¢) If f is a homeomorphism of D onto its image, then Clu,.(f;a) is a
subset of Af (D).

4.3 Proposition. If f : D — C is a bounded function and a € 8D, then f
has a radial limit at a equal to ¢ if and only if Clu,.(f;a) = {¢}.

Now let’s introduce another pair of sets associated with a prime end of
a bounded simply connected region €2 containing 0. The connection with
the cluster sets will be discussed shortly.

4.4 Definition. If p is a prime end of a bounded simply connected region
Q, the impression of p is the set

I(p) = ﬂ cl [ins Cy,]

where {C,} € p.
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It is routine to show that the definition of the impression does not depend
on the choice of the 0-chain {C,} in p so that I(p) is well defined.

4.5 Proposition. For each prime end p of Q, the impression I(p) is a
non-empty compact connected subset of .

4.6 Definition. If p is a prime end of ), a complex number ( is called a
principal point of p if there is a {C,,} in p such that C,, — ( in the sense
that for every € > 0 there is an integer ng such that dist(¢, C,,) < € for all
n > ng. Let II(p) denote the set of principal points of p.

It might be expected that at this point it would be demonstrated that
I1(p) is a non-empty compact and possibly even connected subset of 9€2.
This will in fact follow from the next theorem, so we content ourselves with
the observation that II(p) C I(p).

4.7 Theorem. If 7 : D — Q is the Riemann map with 7(0) = 0 and
7'(0) > 0, a € OD, and p is the prime end for Q corresponding to a (that
s, p = 7(a)), then

Clu(r;a) = I(p) and Clu.(7;a) =II(p).

Proof. Let ¢ € Clu(r;a) and let {zx} be a sequence in D such that 7(z) —
¢. Let {Cy} € p. By Lemma 3.8 there are positive numbers &, and §,, such
that D N B(a;6,) C ins 771(C,) € DN B(a;e,) for all n. This implies
that for every n > 1 there is an integer k, such that z; € ins 771(C,,) for
k > ky. Thus 7(2x) € ins C,, for k > k,, and so ¢ € cl (ins C,). Therefore
¢ € I(p).

Now assume that ¢ € I(p). If {C,} € p, then ¢ € cl (ins C,) for all
n > 1. Hence for each n > 1 there is a point z, in ins 771(C,) with
|7(2n) — €] < 1/n. But an application of Lemma 3.8 shows that z, — a
and so ¢ € Clu(r;a).

Let ¢ € Clu.(7;a) and let 7, T 1 such that 7(r,a) — (; define the
crosscuts {Y,} as in Proposition 2.9 so that {r(Y,)} is a O-chain in Q
and 7(rpa) € 7(Y,) for each n. Note that of necessity {r(Y,)} € p. Thus
¢ € I(p).

Finally assume that ¢ € II(p) and let {C,,} be a O-chain in p such that
C, — (. An application of Lemma 3.8 implies that { € Clu,(7;a). The
details are left to the reader. O

An immediate corollary of the preceding theorem can be obtained by
assuming that the two cluster sets are singletons. Before stating this ex-
plicitly, an additional type of prime end is introduced that is equivalent to
such an assumption. Say that a prime end p of 2 is accessible if there is a
Jordan arc v : [0,1] — ¢l Q with ¥(¢) in Q for 0 <t < 1 and (1) in 09
such that for some {C,,} in p, v N C,, # @ for all sufficiently large n. Note
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that if p is an accessible prime end, then for every {Cp,} inp, yNC, £ 0
for sufficiently large n.

4.8 Corollary. Let 7 : D — Q be the Riemann map with 7(0) = 0 and
7'(0) > 0 and let a € 8D with p = 7(a).

(a) lim, ., 7(2) exists if and only if I(p) is a singleton.

(b) The following statements are equivalent.

(i) lim,_,; 7(ra) exists.
(ii) I(p) is a singleton.
(iii) p s an accessible prime end.

Proof. The proof of (a) is clear in light of the theorem and Proposition 4.3.
(b) The equivalence of (i} and (ii) is also immediate from the theorem
and Proposition 4.3. Assume (i) and let { = lim,_,; 7(ra). So ¢ € 8Q and
~4(r) = 7(ra) is the requisite arc to demonstrate that p is an accessible
prime end. This proves (iii).

Now assume that (iii) holds and let v : [0,1] — C be the Jordan arc
as in the definition of an accessible prime end; let { = y(1). Thus o(t) =
771(y(t)) for 0 < t < 1 is a Jordan arc in D. Let {C,} € p and put
X, = 77 YC,). According to Lemma 3.8 there are sequences of positive
numbers {¢,} and {é,} that converge to 0 such that for every n > 1,
DN Ba;6,) C ins X,, C DN B(a;e,), where

{a} = () d lins X,].

If ¢ > 0 is arbitrary, choose ng such that €, < € and y N C,, # 0 for
n > ng. Fix n > ng and let to be such that v{(¢) € ins C,, for o <t < 1.
Thus o(¢) € ins X,, and hence |o(t) — a| < € when #; < . This says that
o(t) » aast — 1; define (1) = a. By Theorem 13.5.4, 7 has a radial limit
ata. O

Exercises

1. Prove that the definition of I(p) (4.4) does not depend on the choice
of 0-chain {C,}.

2. Let K be a non-empty compact connected subset of C such that K
has no interior and C \ K is connected. Show that there is a simply
connected region 2 for which K = I(p) for some prime end p of .
(The converse of this is not true as the next exercise shows.)

3. Let v(t) = et '+ for 0 < t < oo and put @ = D\ {7}. Show that
Q has a prime end p such that I(p) = D.
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§5 Boundary Values of Riemann Maps

In this section we address the problem of continuously extending a Riemann
map 7 from D onto a simply connected region ) to a continuous map from
the closure of D to the closure of §2. First note that Proposition 1.11 implies
that if 7 : D — Q has a continuous extension, 7 : ¢l D — cl Q, then
T(0D) C 0. Thus 7 maps cl D onto cl Q and so 7(dD) = dQ. This also
shows that 02 is a curve. If 7 extends to a homeomorphism, then 9% is a
Jordan curve. The principal results of this section state that the converse
of these observations is also true. If 0 is a curve, 7 has a continuous
extension to cl D; if 9N is a Jordan curve, T extends to a homeomorphism
of ¢l D onto cl Q.

This is a remarkable result and makes heavy use of the fact that 7 is
analytic. It is not difficult to show that ¢(z) = z exp(i/(1 —|z|)) is a home-
omorphism of D onto itself. However each radial segment in D is mapped
onto a spiral and so Clu(¢;a) = dD for every a in OD. So ¢ cannot be
continuously extended to any point of the circle.

Why suspect that conformal equivalences behave differently from home-
omorphisms? Of course we have seen that the conformal equivalences of D
onto itself have homeomorphic extensions to the closure. Also imagine the
curves 7.(0) = 7(re®), r > 0; the images of the circles of radius r. 7 maps
the radial segments onto Jordan arcs that are orthogonal to this family of
curves. If 01 is a Jordan curve, then the curves {7, : r > 0} approach 9
in some sense. You might be led to believe that 7 has a nice radial limit at
each point of 9 D.

We begin with some topological considerations.

5.1 Definition. A compact metric space X is locally connected if for every
€ > 0 there is a 6 > 0 such that whenever x and y are points in X with
|z —y| < 6, there is a connected subset A of X containing = and y and
satisfying diam A < ¢.

The proofs of the following topology facts concerning local connectedness
are left to the reader. An alternative is to consult Hocking and Young [1961].

5.2 Proposition. If X is a compact metric space, the following statements
are equivalent.

(a) X is locally connected.

(b) For every € > 0 there are compact connected sets Ai,..., A with
diam A; <€ for 1 <j <m and such that X = A, U...UA4,,.

(c) For every e > 0 and for every = in X, there is a connected open set
U such that x € U C B(z;¢).
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Part (c) of the preceding proposition is the usual definition of local con-
nectedness. Indeed it can be easily extended to a definition that can be
made for arbitrary topological spaces. Definition 5.1 was chosen for the
definition here because it is the property that will be used most often in
subsequent proofs.

The next topological fact is easier to prove.

5.3 Proposition. If X and Y are compact metric spaces, f : X — Y
is a continuous surjection, and X is locally connected, then Y is locally
connected.

Note that as a result of this proposition it follows that every path is
locally connected. We need one final topological lemma that will be used
in the proof of the main results of this section.

5.4 Lemma. If A; and A are compact connected subsets of C with A;N A,
connected and non-empty and © and y are points such that neither Ay nor
Ay separates x from y, then Ay U Ag does not separate x and y.

Proof. Without loss of generality it can be assumed that z = 0 and y = occ.
For j = 1,2 let v; : [0,1] — C \ A; be a path with ~;(0) = 0 and
v;(1) = oo. Since A; N Ay is a connected subset of C\ (v; Uz) there is a
component G of C\ (y; U~2) containing A; N As. Thus A; \ G and A3\ G
are disjoint compact subsets of C\ 7y, and C\ 72; therefore there are disjoint
open sets V1 and V3 such that for j =1,2,4; \G C V; CC\ ;.

Let U = GUV; UV, so that A1 U Ay C U. Proposition 13.1.7 implies
there is a smooth Jordan curve o in U that separates A; U Ay from oo;
thus A; U A C ins o. It will be shown that 0 is in the outside of o so that
Ay U Az does not separate 0 from oc.

Note that each component C\+y; is simply connected and does not contain
0. Thus there is a branch of the logarithm f : C\ v; — C. Moreover these
functions can be chosen so that fy(z) = f2(z) on G. Therefore

Ji(2) ifzeW;
f(z) =14 fal2) ifzeV;
fi(z) = fa(2) ifze&

is a well defined branch of the logarithm on U. Since f'(z) = z=! on U, the
winding number of ¢ about 0 is 0. Therefore 0 is in the outside of . O

Pommerenke [1975] calls the preceding lemma Janiszewski’s Theorem.
Now for one of the main theorems in this section.

5.5 Theorem. Let 2 be a bounded simply connected region and let T :
D — Q be the Riemann map with 7(0) = 0 and 7'(0) > 0. The following
statements are equivalent.
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(a) 7 has a continuous extension to the closure of D.
(b) 99 is a continuous path.

(c) O is locally connected.

(d) Coo \ ©Q is locally connected.

Proof. It has already been pointed out that (a) implies (b) implies (c).
Assume that (c) holds. To prove (d), let € > 0 and choose 6§ > 0 so that
for z and y in 9Q and |z — y| < § there is a connected subset B of 9 that
contains z and y and satisfies diam B < ¢/3. Choose 6 so that § < ¢/3. It
suffices to show that if z and w € X = C\ Q such that |z — w| < §, then
there is a connected subset A of C \ 2 that contains z and w and satisfies
diam Z < e. (Why?) Examine [z, w] N 9 and let  and y be the points in
this set that are nearest z and w, respectively; thus |z — y| < §. Let B be
the subset of 90 as above and put A = [z,2] U B U [y, w]. So diam A < ¢
and z, w € A.

Now assume that (d) holds. To prove (a) it suffices to show that for every
prime end p of Q the impression I(p) is a singleton. Fix the prime end p
and let {Cp} € p. Let 0 < & < dist(0,09Q) and let § > 0 be chosen as
in the definition of locally connected; also choose § < ¢. Find an integer
ng such that diam C,, < 8§ for n > ng. Thus if a,, and b,, are the end
points of Cy, |a, — by| < 6. Since X = C\ Q is locally connected there is
a compact connected subset B, of X that contains a,, and b,, and satisfies
diam B,, < e. Observe that B, UC), is a connected subset of B(ay;¢).

Thus if | — ap| > €, then 0 and { are not separated by B, U C,. If in
addition ¢ € Q, then 0 and ¢ are not separated by X. But (B,UC,)NX =
B,, is connected. Thus the preceding lemma implies that for ¢ in Q with
|¢ —an| > €, 0 and ¢ are not separated by (B,UC,)UX = C,UX. That is,
both 0 and ¢ belong to the same component of C\ (C,,UX) = Q\C,,. Hence
¢ €out Cy if ¢ € G and |( — a,| > €. But this says that ins C,, C B(an;¢)
and so diam C,, < € for n > ng. Thus I(p) is a singleton. O

It is now a rather easy matter to characterize those Riemann maps that
extend to a homeomorphism on cl D,

5.6 Theorem. If Q is a bounded simply connected region and 7 : D — 2
is the Riemann map with 7(0) = 0 and 7/(0) > 0, then T extends to be a
homeomorphism of clD onto clQ if and only if O is a Jordan curve.

Proof. If T extends to a homeomorphism of cl D onto cl €2, then, as men-
tioned before, 7(0 D) = 952 and so 012 is a Jordan curve. Conversely, assume
that 02 is a Jordan curve. By Theorem 5.5, 7 has a continuous extension
to 7:cl D — cl . It remains to prove that 7 is one-to-one on 9f2.
Suppose wi, we € D and 7(w;y) = T(w2); let oy = {r(rw;) : 0 <r < 1}
So 01 and o2 are two Jordan arcs with end points 7(0) = 0 and wo =
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7(w,) = 7(ws) that lie inside Q except for the final point. Taken together,
these arcs form a (closed) Jordan curve o; let A = ins o. (In fact, o is
a crosscut.) By Corollary 13.1.11, A C Q. Put A\ = (out o) N YA, is
connected (verify). Also AU A; U (0 NN) = Q. Observe that (cl A)NoQ is
the singleton {wp}.

Let V and V; be the two components of D\ {rw; : 0 <r <1, ¢ =1,2}.
Since 7(V U Vi) = AU A, a connectedness argument shows that either
7(V) = A or 7(V) = A;. Assume that 7(V) = A; hence 7(V1) = A;.

The proof now proceeds to show that if w belongs to the arc 9D N JV,
then 7(w) = wp. Fix w in this arc; so A = {r(rw) : 0 < r < 1} is a path in
A except for the points 0 and 7(w). But 7(w) € (cl A) N0 = {wp}. Since
w was an arbitrary point in the arc 81D N 8V, this shows that the bounded
analytic function 7 is constant along an arc of 8. By Theorem 13.5.3, 7
is a constant function, a contradiction. O

A simple Jordan region is a simply connected region whose boundary is
a Jordan curve.

5.7 Corollary. If G and Q are two simple Jordan regions and f : G — 2
is a conformal equivalence, then f has an extension to a homeomorphism
of clG onto clQ2.

Recall that a curve v : 3D — C is rectifiable if § — (&) is a function
of bounded variation and the length of the curve v is given by [ d|v|(¢?) =
V(7), the total variation of . If the boundary of a simply connected region
Q is a rectifiable curve, Theorem 5.5 can be refined.

In Chapter 20 the class of analytic functions H! will be investigated.
Here this class will be used only as a notational device though one result
from the future will have to be used. In fact H! consists of those analytic
functions f on D such that

27
sup{/ |f(7‘€i0)|d020<1‘<1}<00.
0

Note that if f is an analytic function on D and 0 < r < 1, then 7,(9) =
f(ret?) defines a rectifiable curve. The length of this curve is given by

7'/021r | £/ (re®®)| db.

Thus the condition that f’ € H! is precisely the condition that the curves
{7-} have uniformly bounded lengths. This leads to the next result.

5.8 Theorem. Assume that  is a simple Jordan region and let 7 : D —
be the Riemann map with 7(0) = 0 and 7/(0) > 0. The following statements
are equivalent.

(a) 0N is a rectifiable Jordan curve.
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(b) 7 € H.
(c) The function 8 — 7(e¥) is a function of bounded variation.

(d) The function 0 — 7(e*%) is absolutely continuous.

Proof. Using Theorem 5.6, extend 7 to a homeomorphism of cl D onto cl Q.
Assume that 1 is a rectifiable parameterization of 92 and let a(f) = 7(e*).
Since both « and «y are one-to-one, there is a homeomorphism o : [0, 27] —
[0, 27] such that a(8) = v(c(0)) for all . So o is either increasing or de-
creasing. If 0 = 6y < 6; < --- < 6, = 27, then ) |a(0k) — a(r—1)| =
5 17(0(88)) = 7 (0(6-1))| < V() since {0(8p), .., (8x)} is also a parti-
tion of [0,2x]. Thus « is a bounded variation. This shows that (a) implies
(c). Clearly (c) implies (a).

Now let’s show that (b) implies (c). Assume that 7/ € H! and let 0 <
r<l.If0=6y<--- <8, =2r, then

n

Sl ) —r(re-)| = Y

9.
/J rr'(re®)ie?® do

j=1 j=1[Y0i-1
27 )
< / |7’ (re')| db
0
< G,

where C is the constant whose existence is guaranteed by the assumption
that 7/ belongs to H!. Letting r — 1 we get that

Z I‘r(ewf — T(e"gj_l)l <C
j=1

and so 7 is a function of bounded variation of 9D.
The fact that (¢) and (d) are equivalent and imply (b) will be shown in
Theorem 20.4.8 below. O

Now for an application of Theorem 5.6 to a characterization of the simply
connected regions whose boundaries are Jordan curves.

5.9 Definition. For any region 2 a boundary point w is a simple boundary
point if whenever {w,} is a sequence in ) converging to w there is a path
a : [0,1] — C having the following properties:
(a) a(t)eQfor0<t<1;
(b) a(l) =w;
(c) there is a sequence {t,} in [0, 1) such that ¢, — 1 and a(t,) = w, for
alln > 1.
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It is not hard to see that each point of 3D is a simple boundary point
(Exercise 4). The region in Figure 14.4 furnishes examples of boundary
points of a simply connected region that are not simple boundary points.
Exercise 4 also states that not every point in the boundary of a slit disk is
a simple boundary point. Here is one way of getting some examples and a
precursor of the main result to come.

5.10 Proposition. If Q is a simply connected region, g : @ — D is a
conformal equivalence, and w € O such that g has an exrtension to a
continuous map from QU {w} onto DU {a} for some a in 8D, then w is a
simple boundary point of €.

Proof. Exercise. O

5.11 Corollary. If Q is a simple Jordan region, then every point of OS2 is
a simple boundary point.

The preceding corollary is a geometric fact that was derived from a the-
orem of analysis (5.6). Giving a purely geometric proof seems quite hard.

5.12 Theorem.

(a) Let Q be a bounded simply connected region and let g : Q@ — D be a
conformal equivalence. If w is a simple boundary point of (2, then g
has a continuous extension to QU {w}.

(b) If R is the collection of simple boundary points of 0, then g has a
continuous one-to-one extension to QU R.

Proof. (a) If g does not have such an extension, then there is a sequence
{wn} in Q that converges to w such that g(wz,) — wa, glwant1) — wy,
and w; # wq. It is easy to see that wy and wo belong to 0D (1.11). Let
@ :[0,1] —» QU{w} be a path such that (1) = w, a(t,) = wn, and t, — 1.
Put p(t) = g(a(t)). It follows that |p(t)] — 1 as t — 1 (why?). Let J; and
Jo be the two open arcs in 9D with end points w; and ws. By drawing
a picture it can be seen that one of these arcs, say Ji, has the property
that for every w on J; and for 0 < s < 1, there is a t with s <t < 1 and
p(t) lying on the radius [0, w] (exercise). If 7 = ¢! : D — 2, then 7 is a
bounded analytic function since €2 is bounded. So for almost every w in Ji,
lim,_,; 7(rw) exists; temporarily fix such a w. But the property of J; just
discussed implies there is a sequence {s,} in (0, 1) such that s,, — 1 and
p(sn) — w radially. Thus 7 (p(sn)) — 7(w). But 7 (p(s,)) = as,) — w; so
7(w) = w for every point of J; at which 7 has a radial limit. By Theorem
13.5.3, 7 is constant, a contradiction.

(b) Let g denote its own extension to Q U R. Suppose w; and w, are
distinct points in R and g{w;) = g(w2); we may assume that g(w;) =
g(w2) = —1. Since w; and w, are simple boundary points, for j = 1,2 there
is a path a; : [0,1] - QU {w;} such that o;(1) = w; and a;(t) € Q for
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t < 1. Put p;(t) = g(;(t)); so p; ([0,1)) € D and p;(1) = —1. Let ¢, < 1
such that for tg < s,t <1

1
5.13 lai(s) — az(t)| > 3 w1 — wa|.
Choose 6 > 0 sufficiently small that
p; ([0,20]) N B(-1;6) =0

for j = 1,2 and put As; = DN B(—1;6). Since each of the curves p; termi-
nates at —1, whenever 0 < r < §, there is a t; > to so that p;(t;) = w;
satisfies |1 + w;| = r. Again letting 7 = g~! we have that (5.13) implies
that

1
3 lwn —we| < |T(wy) — T(w2)|

0 .
< / (=1 + rei®)|r df.
0,

For each value of r, let 6, be the largest angle less than 7/2 such that
—1+re®® € D for || < 6,. The above inequalities remain valid if the
integral is taken from —6, to .. Do this and then apply the Cauchy-
Schwarz Inequality for integrals to get

_ 2 0 . 6
Jor — wal” [/ |7'(-1+ T'e“")l2 dOJ [/ r2d9]
4 —6. 9,

0,
71'1'2/ |T'(—1 +re’a)l2d0.
—0,

IA

INA

Thus, performing the necessary algebraic manipulations and integrating
with respect to r from 0 to §, we get

_ 2 46 8 6, )
|W1 UJ2| ld’f' / 7‘/ |T’(—1 + ,’,619|2 dOdr
47T 0 r 0 —6,
= Area (7(A4s))
< Area (.

IA

Since Q is bounded, the right hand side of this inequality is finite. The
only way the left hand side can be finite is if w; = ws, contradicting the
assumption that they are distinct.

The proof that g is continuous on Q U R is left to the reader. O

5.14 Corollary. If Q is a bounded simply connected region in the plane
and every boundary point is a simple boundary point, then OS2 is a Jordan
curve.
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Finally, the results of this section can be combined with the results on
reflection across an analytic arc.

5.15 Proposition. Let Q be a simply connected region and let g : Q — D
be a conformal equivalence. If L is a free analytic boundary arc of Q! and K
is a compact subset of L, then g has an analytic continuation to a region
A containing QU K.

Proof. Use Exercise 7 and Theorem 13.4.8. O

Note that even though the function g in Proposition 5.15 is one-to-one,
its extension need not be.

5.16 Example. Let @ = D, and define g : 2 — D as the composition
of the function h(z) = z + z~! and the Mébius transformation 7'(z) =
(z—i)(z+19)h

22 —iz+1

22+iz+1"

The function h maps D, onto the upper half plane and T maps this half
plane onto . The upper half circle L is a free analytic boundary arc of
so that g has an analytic continuation across L. In fact it is easy to see that
h#(z) = h(z) on Q and so g¥#(z) = g(z). Thus even though g is univalent
on Q, g# is not.

9(z) =T oh(z) =

The following question arises. If 2 is a simple Jordan region and the
curve that forms the boundary of 2 has additional smoothness properties,
does the boundary function of the Riemann map 7 : D — Q have similar
smoothness properties? If (1 is an analytic curve, we have that 7 has an
analytic continuation to a neighborhood of ¢l D by the Schwarz Reflection
Principle. But what if 8 is just C*; or C'? A discussion of this question
is in Bell and Krantz [1987]. In particular, they show that if 8Q is C>,
then so is the boundary function of 7.

Exercises

1. Prove Proposition 5.2.

2. This exercise will obviate the need for Theorem 13.5.3 in the proof
of Theorem 5.6. Let 7 be a bounded analytic function on D and let
J be an open arc of 8 D. Show, without using Theorem 13.5.3, that
if 7 has a radial limit at each point of J and this limit is 0, then
7 = 0. (Hint: For a judicious choice of wy,...,w, in 8D, consider
the function h{z) = T7(wi12)7(w2z) ... 7(wWnz).)

3. Let G be a region and suppose that {; € G such that there is a
6 > 0 with the property that B(a;6) N G is simply connected and
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B(a; 6) N JG is a Jordan arc v. Let 2 be a finitely connected region
whose boundary consists of pairwise disjoint Jordan curves. Show
that if f : G —  is a conformal equivalence, then f has a continuous
one-to-one extension to G U .

Show that every point of D is a simple boundary point. If  is the
slit disk D \ (-1, 0], show that points of the interval (—1,0) are not
simple boundary points while all the remaining points are.

. Show that if w is a simple boundary point of €2, then there isa 6 > 0

such that B(w;6) N Q is connected.

. Show that the conclusion of Theorem 5.12 remains valid if €2 is not

assumed to be bounded but C \ ¢l 2 has interior. Is the conclusion
always valid?

. Show that if J is a free analytic boundary arc of 2, then every point

of J is a simple boundary point.

(a) If g : c1 D — C is a continuous function that is analytic in D, show
that there is a sequence of polynomials {p, } that converges uniformly
on cl D to g. (Hint: For 0 < r < 1, consider the function g, : c1D — C
defined by g.(z) = g(rz).) (b) If «y is a Jordan curve, Q is the inside
of v, and f : cl Q@ — C is a continuous function that is analytic on
Q, show that there is a sequence of polynomials {p,} that converges
uniformly on cl @ to f.

If 2 is any bounded region in the plane and f : ¢l @ — C is a
continuous function that is analytic on Q and if there is a sequence of
polynomials {p,} that converges uniformly on ¢l Q to f, show that f
has an analytic continuation to int [(2], where { is the polynomially
convex hull of .

Suppose that G and 2 are simply connected Jordan regions and f
is a continuous function on cl G such that f is analytic on G and
f(G) C Q. Show that if f maps d G homeomorphically onto 912,
then f is univalent on G and f(G) = Q.

§6 The Area Theorem

If f is analytic near infinity, then it is analytic on a set of the form G =
{z : |z| > R} = ann(0; R, 00), and thus f has a Laurent expansion in G
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this series converges absolutely and uniformly on compact subsets of G.
With this notion, f has a pole at oo of order p if a,, = 0 for n > p. Note
that this is the opposite of the discussion of poles at finite points. The
residue of f at oo is the coefficient a; and f has a removable singularity at
oo if this expansion has the form

ay a2
fe)=aot+ —+F+-.

Here ag = f(o0), a1 = f'(00) = lim, 00 2 (f(2) — ap) .- .
Consider the collection U of functions f that are univalent in D* = {z :
|z| > 1} and have the form

«
6.1 f(z):z—{-ao—{—?l—{—---.

In other words, U consists of all univalent functions on D* with a simple pole
at oo and residue 1. This class of functions can be characterized without
reference to the Laurent expansion. The easy proof is left to the reader.

6.2 Proposition. A function f belongs to the class U if and only if f is
a univalent analytic function on D* such that f(oo) = o0 and f — z has a
removable singularity at co.

6.3 Area Theorem. If f € U and f has the expansion (6.1), then

o}

nanz_ .
Z lom|? < 1

n=1
Proof. For r > 1, let I',. be the curve that is the image under f of the

circle |z| = r. Because f is univalent, I'; is a smooth Jordan curve; let €,
be the inside of I',.. Applying Green’s Theorem to the function u = z we

get that
Area(Q),) = // ()
Q.
1

- zZ
21 T,

27
%/0 L. (O (t)dt.

Since I';.(t) = f(re), this means that

2

Area().) = g Fret) f' (reft)eitdt.
0
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Using (6.1) we can calculate that

[ SR
_ . a .
flre®t) = re ™™ +@ + Z et
Tn
n=1
> «
! it m —1 1)t
f(re’) = I—Zmr—m—ﬁe z(m+).
m=1

Using the fact that foz" e’dt = 0 unless n = 0, in which case the integral
is 27, the uniform convergence of the above series implies that

r 2. nlan|?
0 < Area(Q2,) = 3 2mr — Z 1 (2m)
n=1
6.4 — 2 - TL|C¥nl2
. = 7r — 71'2_;[ —’—"—2?—.

Therefore

o~ nfanf?
n
12 Z p2n+2
n=1
for all r > 1. If the inequality is not valid for r = 1, then there is an
integer N such that 1 < Zf/ n|ay|?. But since r > 1 this also gives that

1 < 3>V njay,[2/r?2, a contradiction. O

Part of the proof of the preceding theorem, namely Equation 6.4, in-
dicates why this result has its name. What happens to (6.4) when r is
allowed to approach 1?7 Technically we must appeal to measure theory but
the result is intuitively clear.

If X, =f({z:|2] >27}) for r > 1, then Q, = C\ X,. Thus (), 2, =C\
U, X» = C\({z]z| > 1}) = E, aclosed set. Asr — 1, Area({2,) — Area(FE).
Thus the following corollary.

6.5 Corollary. If f € U, f has the Laurent expansion (6.1), and E =
C\ f(D*), then

Area(E)=7m—7 Z nlan|*.
n=1

Thus Area(E) = 0 if and only if equality occurs in the Area Theorem.

The next proposition provides a uniqueness statement about the map-
pings in the class Y. Note that if f € U and f is considered as a mapping
on the extended plane C,, then f(co0) = co.

6.6 Proposition. If f € U and f(D*) = D*, then f(z) = z for all z.

Proof. If f is as in the statement of the proposition, then Corollary 6.5
implies that 7 = m — 7Y, nla,|?, so that e, = 0 for all n > 1. Thus
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f(2) = z+ayp. On the other hand, the hypothesis on the mapping properties
of f also implies that |f(2)] — 1 as |z| — 1. Letting z — 1, this implies that
|f(2)|? = |2+ap|? = |2]?+2Re (pZ) +|ao|?> — 1+2Re (o) +|ag|? = 1. Thus
Re (ap)+|ao|? = 0. Similarly, letting z — —1 show that —Re (ag) +|ag|? =
0. We now conclude that ap = 0 and so f(z) =2. O

The preceding proposition can also be proved using Schwarz’s Lemma
(Exercise 3).

6.7 Proposition. If f € U and f has the ezpansion (6.1), then |a;| < 1.
Moreover |a1| = 1 if and only if the set E = C\ f(D*) is a straight
line segment of length 4. In this case f(z) = z+ ap + a1z~ ! and E =
[=2X + ap, 2X\ + ao], where A2 = a;.

Proof. Since |ay] is one of the terms in the sum appearing in the Area
Theorem, it is clear that |a1] < 1. If oy} = 1, then a, = 0 for n > 2. Thus
f(2) = 2+ ag + a1z~ L. It can be seen by using Exercise 2 that in this case
E = [-2X + ap, 2) + ap], where A2 = ;. In particular, E is a straight line
segment of length 4.

Conversely assume that F is a straight line segment of length 4; so F has
the form E = [—2u + 8o, 21 + Bo], where By and u are complex numbers
and |p| = 1.If g(2) = z+Bo+u2271, then g € U and g(D*) = C\E = f(D*).
Therefore f o g~! € U and maps D* onto itself. By Proposition 6.6, f = g
and a; = p?, so that |a;| = 1. O

The next proposition is a useful estimate of the derivative of a function
inl.
6.8 Proposition. If f € U, then

: |22

whenever |z| > 1. Equality occurs at some number a with |a| > 1 if and
only if f is given by the formula

_ lal* —1
fz) =240 - 23y
Proof. Since f(z) = 1=z 2 —apz 3 —--- =1 =Y, nomz~""}, an

application of the Cauchy-Schwarz Inequality as well as the Area Theorem
shows that

£ -1 =

IN

oo Il 3
n|an|2:| ':Z nlz‘—2n—2]
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It now follows that |f'(2)| < |f'(z) = 1| +1<(|]z]2-1)"t +1
— [2[2(J2f2 — 1)1,

Now suppose that there is a complex number a, |a| > 1, such that the
inequality becomes an equality when z = a. Thus |f'(a)| < |f'(a)—1|+1 <
la|®(Ja]> — 1)7! = |f'(a)|. This implies that the two inequalities in the
above display become equalities when z = a. The fact that the first of
these becomes an equality means there is equality in the Cauchy-Schwarz
Inequality. Therefore there is a complex number b such that a,, = ba—""!
for all n > 1. The fact that the second inequality becomes an equality

means that
o0

1 = Zn|04n|2
n=1
D
n=1
1
_ 2
= M=o

Thus |b] = |a|? — 1. Substituting these relations in the Laurent expansion
for f gives

e b—n—l
flz) = z+a0+z a"

z
n=1

b=/ 1\"
= z+ao+gngl(a_—z)

b —1
= Z+ao+:|:(1—_i) —-1j|
a az

b 1
= z+oa— = |= -
a|az—1

Now use this formula for f(z) to compute f'(a):

flla) = 1- %(Ea -1)"?%a
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= 1—b(|a|2—1)_2
(la]®> - 1)2 - b

~ (laZ-a)?

_ bb-b

T b

_b-1

e

By assumption

rer = (o)

(Ib] - 1)
b2

Equating the two expressions for |f'(a)|? we get that Re b= Re b = —|b)|.
It follows that b= —|b| = 1 — |a|? and so f has the desired form.

If f is given by the stated formula it is routine to check that equality
occurs when z =a. O

Exercises

1. Show that for 7 and 3 any complex numbers, f(z) = 4rBz(8 — z)~2
is the composition f = f3 o fa o f1, where f1(z) = (8 + 2)/(8 — z),
f2(2) = 22, and f3(z) = r(z—1). Use this to show that f is a conformal
equivalence of {z : |z| < |G|} as well as {z : |2| > |B|} onto the split
plane C\ {z = —rt: ¢t > 1}.

2. For a complex number A, show that f(z) = z + A2z7! is the compo-
sition fy o f;, where f1(2) = z(A — 2)~2 and fo(z) = (1 +2Az)/z. Use
this to show that f is a conformal equivalence of both {z : |z| < |A|}
and {z: |z| > |A|} onto C\ [—2A,2]].

3. Prove Proposition 6.6 using Schwarz’s Lemma.

§7 Disk Mappings: The Class S

In this section attention is focused on a class of univalent functions on
the open unit disk, D). Since each simply connected region is the image
of D under a conformal equivalence, the study of univalent functions on
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D is equivalent to the study of univalent functions on arbitrary simply
connected regions. If oo is adjoined to the region D*, the resulting region
(also denoted by D*) is also simply connected, so that it is equivalent
to consider univalent functions on D*. After suitable normalization this
amounts to a consideration of functions in the class ¢. The class of univalent
functions S on D defined below is in one-to-one correspondence with a
subset of the class U. The study of § is classical and whether to study S or
U depends on your perspective, though one class sometimes offers certain
technical advantages over the other.

7.1 Definition. The class S consists of all univalent functions f on D such
that f(0) =0 and f'(0) = 1.

The reason for the use of the letter S to denote this class of functions is
that they are called Schlicht functions.

If h is any univalent function on D, then f = [h — h(0)] /h'(0) belongs
to S, so that information about the functions in S gives information about
all univalent functions on . If f € S, then the power series expansion of
f about zero has the form

7.2 f(z)=z+a2® +azz®+---.

As mentioned the class S and the class U from the preceding section are
related. This relation is given in the next proposition.

7.3 Proposition.

(a) Ifg € U and g never vanishes, then f(z) = [g(z'l)}—1 € S and, con-
versely, if f € S, then g(z) = [f(z_l)]_1 € U and g never vanishes.

(b) 1f § €S with power series given by (7.2) and [f(w™)] " = g(w) =
wl+ EE° anz™ " for w in D*, then oy = —as.

Proof. (a) Suppose g € U and f(z) = [g(z_j‘)]_1 for z in D. Since g(o0) =
00, it is clear that f is univalent on D and f(0) = 0. Moreover g(z)/z — 1
as z — oo and so it follows that f/(0) =lim,_o f(2)/z=1and f € S. The
proof of the converse is similar.

(b) Just use the fact that for |z| < 1, g(27!)f(z) = 1, perform the
required multiplication of the corresponding series, and set equal to 0 all
the coefficients of the non-constant terms. O

7.4 Proposition.

(a) If f € S and n 1s any positive integer, then there is a unique function
g in S such that g(z)™ = f(z™). For such a function g, g(wz) = wg(z)
for any n-th root of unity w and all z in D. Conversely, if g € S and
g(wz) = wg(z) for any n-th root of unity w and all z in D, then there
is a function f in S such that g(z)™ = f(2").
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(b) Simalarly, if f € U, then there is a unique function g in U such that
g(z)™ = f(2™). For such a function g, g(wz) = wg(z) for any n-
th root of unity w and all z in D. Conversely, if g € U such that
g(wz) = wg(z) for any n-th root of unity w and all z in D, then there
is a function f in U such that g(2)"™ = f(z™).

Proof. (a) Assume that f € S and let h(z) = f(2") for |z| < 1. The
only zero of h in D is the one at z = 0 and this has order n. Thus h(z) =
z™h1(z) and h, is analytic on D and does not vanish. Moreover the fact that
f'(0) = 1 implies that h;(0) = 1. Thus there is a unique analytic function
g1 on D such that g7 = h; and ¢1(0) = 1. Put g(z) = zg1(z); clearly
g(z)™ = f(2"), g(0) = 0, and ¢'(0) = lim, . g(2)/2 = g1(0) = 1. Notice
that these properties uniquely determine g. Indeed, if k£ is any analytic
function on D such that k(z)™ = f(z™) and k’(0) = 1, then [g/k]" = 1 and
g/k is analytic, whence the conclusion that k = g.

If the power series of f is given by (7.2), then a calculation shows that
hi(z) = 1+ a2z™ + a32®™ + - -+, so that h(wz) = h(z) whenever w™ = 1.
Thus for an n-th root of unity w, k(z) = zg;(wz) has the property that
k(z)* = f(z™) and k'(0) = 1. By the uniqueness statement above, k = g.
Thus g1(wz) = ¢1(2). From here it follows that g(wz) = wg(z) whenever
w™ =1

To complete the proof that g € S it remains to show that g is univalent.
If g(=2) = g(w), then f(z") = f(w™) and so 2™ = w™; thus there is an n-th
root of unity such that w = wz. So ¢g(z) = g(wz) = wg(z). Clearly we can
assume that z # 0 so that g(z) # 0 and hence w = 1; that is, w = z.

For the converse, if g € S and g(wz) = wg(z) for any n-th root of unity
w and all z in D, then g has a power series representation of the form

g(Z) =z+ bn+1z"+1 + b2n+122n+1 + e

Thus
9(2)" = 2" + o 4

Let
ORI W r

The radius of convergence of this power series is at least 1, f(0) = 0, and
f'(0)=1.1f 2 and w € D and f(z) = f(w), let 23 and w; be points in D
with 2f = z and w} = w. So g(z1)" = g(w1)™. It is left to the reader to
show that this implies there is an n-th root of unity w such that z; = ww.
Hence z = w and so f is univalent. That is, f € S.

(b) This proof is similar. O

The celebrated Bieberbach Conjecture concerns the class S. Precisely,
this says that if f € S and its power series is given by ( 7.2), then

7.5 lan] < n
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for all n > 2. Moreover, equality occurs if and only if f is the Koebe
function or one of its rotations (1.4).

We will prove the Bieberbach conjecture now for n = 2. The proof of
the general case is due to L deBranges [1985]. This material is presented
in Chapter 17. We start with a corresponding inequality for the class U,
which is stated separately.

7.6 Theorem. If g € U with Laurent series g(z) = z+ag+ai 2~ +- -, then
lag| < 2. Equality occurs if and only if g(z) = z+2X+ 22271 = 271 (2+N)2,
where |A| = 1. In this case g maps D* onto C\ [0,4)].

Proof. Let h € U such that h(z)? = g(2?) for z in D* and let the expansion
of h be given by h(z) = z+ By + B2~ +---. Thus

h(z)? = z242-2;60z+(ﬁ§+251)+--~
= g(2°)
= Z2+OL()+C¥12—2+"'

Hence B9 = 0 and ap = 28;. But according to Proposition 6.7, |G1| < 1
s0 |ap| < 2. The equality |ag| = 2 holds if and only if |8;| = 1, in which
case h(z) = z + Az7!, where A> = 8; (so |A| = 1). But in this case,
9(2?) = h(2)? = (z+2271)% = 22420+ A2272 so that g(2) = 2+2XA+A%z 7L
The mapping properties of this function are left for the reader to verify.
(See Exercise 6.2) O

7.7 Theorem. If f € S with power series given by (7.2), then |as| < 2.
Equality occurs if and only if f is a rotation of the Koebe function.

Proof. Let g be the corresponding function in the class U : g(z) = [f(z_l)] -
for z in D*. It follows that g has the Laurent series

g2)=z—az+ (a3 —az)z"  +---

The fact that |as| < 2 now follows the preceding theorem. Moreover equal-
ity occurs if and only if there is a A, |A| = 1, such that g(z) = 27 !(z + A)%.
This is equivalent to having f be a rotation of the Koebe function. O

As an application this theorem is used to demonstrate the Koebe “1/4-
theorem.”

7.8 Theorem. If f € S, then f(D) D {¢: |¢| < 1/4}.

Proof. Fix f in § and let {y be a complex number that does not belong
to f(D); it must be shown that |¢| > 1/4. Since 0 € f(D), o # 0 and so
9(z) = f(z) 1 = 1 F(2)] ~! is an analytic function on D. In fact g € S. To
see this first observe that g(0) = 0 and ¢’(0) = lim,_,0 [g(2)/2] = f'(0) = 1.
Finally g is the composition of f and a Md&bius transformation and hence
must be univalent.
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Since f(0) = 0, there is a small value of 7 such that |f(z)| < |¢o| for
|z| < 7. In this neighborhood of 0 we get

M= )] =1+ () + 62 (2) +

Substituting the power series expansion (7.2) of f and collecting terms we
get that for |z| < r

g(z) =2+ (' +ax) 22+ -,

(In fact this power series converges throughout the unit disk.) By Theo-
rem 7.7 this implies that |¢5 ! 4 az| < 2. But |az| < 2 so that |{;!| < 4, or
Il > 1/4. O

Consideration of the Koebe function shows that the constant 1/4 is sharp.
The next result is often called the Koebe Distortion Theorem.

7.9 Theorem. If f € S and |z| < 1, then:

1] L+ 2]
. Wy == Ty
el g
) a2 == e

Equality holds for one of these four inequalities at some point z # 0 if and
only if f is a rotation of the Koebe function.

Proof. For each complex number a in D define the function

F(#2) - fa)

(1= lal)f'(a) -
It is easy to see that f, is univalent on D since it is the composition of
univalent functions. Also f,(0) = 0 and a routine calculation shows that

f2(0) = 1. Therefore f, € S. Let f,(2) = 2+ b222 + - in D.
Another computation reveals that

o o]

Since by = f/(0)/2 and |by| < 2 by Theorem 7.7, this shows that

fa(z) =

‘(1—| 2) ((Z))—m;gzl.

Thus
4

1—laf*

/'a) 2
@) ~ 1=
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Multiply both sides of this inequality by |a| and substitute z = a to get

/) 2P | 4]

7.10 .
P T 1-P| T I[P

Now f’ does not vanish on D, so there is an analytic branch of log f’(z)
with log f/(0) = 0. Using the chain rule,

o ! % 0 ’ 0 0 / 0 —
2 g rere®)] = 2 pog £ 21+ 2 fog £(2)] 2
_ f"(mw)eie
G
Now for any function g, Re[0@g/01] = ORe[g]/dT, so
a , i "
7.11 "5 [log | f'(re 9)” = Re [zj;,((zz))] .
Thus (7.10) implies
3 o or? 4
5 [log |f'(re®)]] — 1—_T73 < TjTT'—Q

Dividing by r and performing some algebraic manipulation gives that

2r—4 _ 0 i
m S E [logif'(re 9)” <

for all re* in D. Thus, for p < 1,

4 —_4 4 . 4
7.12 / 2r dr < / 9 [log | f'(re®)|] dr < / 2r +4dr
0 1 0 67' 0 1

—r2 2

or

l—p 1( 0,10 I+p
o8 || < o0 < o 17 25 .
Now take the exponential of both sides of these inequalities to obtain the
inequality in (a) for z = pe®.

Suppose for some z = pe'? one of the inequalities in (a) is an equality; for
specificity, assume that equality occurs in the lower bound. It follows that
the first inequality in (7.12) is an equality. Thus the integrands are equal
for 0 < r < p. Using (7.11) for 0 < 7 < p and letting r — 0 we get that
—4 = Rele? f(0)], so that |f”(0)| > 4. By Theorem 7.7, |f”(0)| = 4 and
f is a rotation of the Koebe function. The proof of the case for equality in
the upper bound is similar.

To prove part (b) note that [£(2)] = |fio., F/(Q)dC| < fio ; 1£/(O)lId]
Parameterize the line segment by ¢ = tz, 0 < ¢ < 1, and use part (a) to get



14.7. Disk Mappings: The Class & 67

an upper estimate for |f'(¢)|. After performing the required calculations

this shows that 2
z

If(2)] < A=

the right hand side of part (b).

To get the left hand side of part (b), first note that an elementary ar-
gument using calculus shows that (1 +¢)2 < 1/4 for 0 < ¢ < 1; so it
suffices to establish the inequality under the assumption that |f(2)| < 1/4.
But here Koebe’s 1/4-theorem implies that {¢ : |{| > 1/4} C f(D). So
fix z in D with |f(2)| < 1/4 and let v be the path in D from 0 to z such
that f o« is the straight line segment [0, f(2)]. That is, f(v(t)) = tf(2)
for 0 < ¢ < 1 Thus |£(2)] = | [, f(w)dw| = | [ F/(x(E) (t)dt]. Now
PO @) = () = £(2) for all t. Thus |£(2)] = [, |f'(w)ldw|. Using
the appropriate part of (a) we get that |f'(w)| > (1 — |w|)(1 + |w[)7%. On
the other hand if we take 0 > s <t > 1, [y(t) —v(s)| > ||¥(¢)| — |v(s)|| and
so (symbolically), |dw| > d|w|. Combining these inequalities gives that

EE-
sl = [ g

Ed
1+ 2

This proves (b). It is left to the reader to show that f is a rotation of the
Koebe function if one of these two inequalities is an equality. O

Before giving an important corollary of this theorem, here is a lemma
that appeared as Exercise 7.2.10.

7.13 Lemma. If {f.} is a sequence of univalent functions on a region G
and f, — f in H(G), then either f is univalent or f is constant.

7.14 Corollary. The set S of univalent functions is compact in H(D).

Proof. By Montel’s Theorem (7.2.9) and Theorem 7.9, S is a normal fam-
ily. It remains to show that S is closed (8.1.15). But if {f,} C Sand f, — f
in H(D), then the preceding lemma implies that either f is univalent or f
is constant. But f},(0) = 1 for all n so that f/(0) = 1 and f is not constant.
Clearly f(0)=0andso feS. O

The next result is almost a corollary of the preceding corollary, but it
requires a little more proof than one usually associates with such an ap-
pelation.

7.15 Proposition. If G is a region, a € G, and b is any complex number,
then S(G,a,b) = {f € H(G) : f is univalent, f(a) = b, and f'(a) = 1} is
compact in H(G).
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Proof. By a simple translation argument it may be assumed that a = b =
0; let S(G) = 8(G,0,0). Let R > 0 such that B(O;R) C G. If f € S(G)
and fr(z) = R™!f(Rz) for z in D, then fr € S = S(D). Thus fr(D) D {¢:
[¢| < 1/4} and so |fr(e*®)| > 1/4 for all @ (7.8). Hence |f(Re®)| > R/4
for all § and B(0; R/4) C f(B(0; R)). So f maps G \ B(0; R) into f(G) \
B(0; R/4); that is, | f| > R/4 for z in G\ B(0; R). Therefore ¢¢(2) = z/f(z)
is an analytic function on G, |¢¢(z)| < 4 for |z| < R and |¢f(2)| < 4]z|R™?
for z in G\ B(0; R). Thus ® = {¢; : f € S(G)} is a locally bounded family
of analytic functions on G and hence must be normal.

By an argument similar to that used to prove Corollary 7.14, S(G) is
closed. So to prove the proposition, it suffices to show that S(G) is a normal
family. Let {f.} be a sequence in S(G) and let {¢,} be the corresponding
sequence in ®. By passing to a subsequence if necessary, it may be assumed
that ¢, — ¢ for some analytic function ¢ on G. Clearly the functions ¢,
have no zero in G so either ¢ = 0 or ¢ does not vanish in G (7.2.6). Also
for each n, ¢,(0) = f.(0) = 1 and so ¢(0) = 1 and hence ¢ has no zeros
on G. Let f(z) = z/¢(z). Now f'(0) = 1, so f is not constant. Clearly
fa(2) = f(z) for,all zin G. If K is a compact subset of G, let € > 0 such
that |¢| > 2¢ on K. It follows that |¢,| > € on K for all n sufficiently
large (see Exercise 4). This implies that {f,} is locally bounded on G and,
hence, a normal family. O

We close with an extension of the Distortion Theorem; you might call
this the Generalized Distortion Theorem.

7.16 Theorem. If K is a compact subset of the region G, then there is a
constant M (dependent on K ) such that for every univalent function f on
G and every pair of points z and w in K,

Proof. By interchanging the roles of z and w, it suffices to prove the
second of these inequalities. Let 0 < 2d < dist(K,dG) and cover K by
a finite collection B of open disks of radius d/8. Suppose B; and Bs are
two of the disks from B such that By N By # 0. Let z; € B;, i = 1,2. So
|21 — 22| < d/2 and B(z;;d) C G. Consider the function

flz1 +dz) — f(=1)
df’(z1) '

This function belongs to the class §. According to Theorem 7.9,

9(z) =

1 + |z|
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for |z| < 1. Making the appropriate substitutions we get
f'(z1 +dz) 1+ 2|

fllz) |7 (==
Take z = (21 — 23)/d so that |z| < 1/2 and we get that
f'(22) 1+3

' - 113
f (21) (1 - 5)

If 2 and w are arbitrary points of K, then there are points z; = z, z3,.. ., 2
= w such that each consecutive pair of points is in a disk from B, n < N,

the total number of disks in B, and these disks are pairwise intersecting.
Therefore

0-

f'(z) | _ | fi(z)||f'(22) f(2n-1) n—-1 N-1_
7| =7 [P | | Pl | M <M =M
0O
Exercises

1. Let f and g be as in part (b) of Proposition 7.3 and show that a; =
2 3

a3 — az. Show that ay = —as + 2a2a3 — aj.

2. Let f be the function given in (1.4) and show that f € S and if the
power series of f is given by (7.2), then |a,| = n for all n > 2. Show
that the image of D under f is the plane minus the radial slit from
A/4 to oo that does not pass through the origin.

3. Let f,.(2) = z + nz? and show that even though f,(0) = 0 and
fh(0)=1for all n > 1, {f,} is not a normal sequence.

4. Let {gn} be a normal sequence of analytic functions on a region G
such that each g, has no zeros in G and g, — g, where g is not
identically 0. Show that if K is a compact subset of G, then there is
an € > 0 such that |g,| > e on K for alln > 1.

5. Let G be a region and fix a point a in G. For a choice of positive con-
stants C', m, and M show that 7 = {f € H(G) : f is univalent, |f(a)]
< C,and m < |f'(a)| £ M} is a compact subset of H(G).

6. For the set U of univalent functions on D* = {cc} U {z : |2| > 1},
show that U U {00} is compact in the space C(D*,Cy).

7. Show that for each integer n > 2 there is a function f in & such that
if f has the power series expansion (7.2), then |a,| > |g(™ (0)|/n! for
allgin S.
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Show that if K is a compact subset of a region G, then there is a
constant M such that for every pair of points z and w in K and for
every univalent function f on G, |f(2)| < |f(w)]| + M|f'(w)].

If G is a simply connected region, a € G, and f : G — D is the
conformal equivalence with f(0) = a and f'(0) > 0, show that
[4 dist(a,0G)]™! < f'(a) < [dist(a, 0 G)]~ .

Show that if 7 is a bounded univalent function on D with G = 7(D),
then |7/(2)| < 4(1 — |2]?)~dist(7(z), d G). (Hint: Use Exercise 9 and
Schwarz’s Lemma.)



Chapter 15

Conformal Equivalence for
Finitely Connected Regions

In this chapter it will be shown that each finitely connected region is con-
formally equivalent to a variety of canonical regions. Subject to certain
normalizations, such conformal equivalences are unique. We begin with
some basic facts about complex analysis on finitely connected regions.

§1 Analysis on a Finitely Connected Region

Say that a region G in C is n-connected if Co,\G has n+1 components. Thus
a 0-connected region is simply connected. Say that G is a non-degenerate
n-connected region if it is an an n-connected region and no component of
its complement in C, is a singleton. A region G is finitely connected if it is
n-connected for some non-negative integer n. Note that if G is any region
in C» and K is any component of C,, \ G that does not contain oo, then
K must be a compact subset of C; in fact, such components of C,, \ G are
precisely the bounded components of C \ G.

Throughout this section the following notation will be fixed: G is an
n-connected region in C and Kjy,..., K, are the bounded components of
C\ G; Ky will be the component of C,, \ G that contains co. Note that for
any j, 1 < j <n, GUKj is an (n — 1)-connected region.

If F is any compact subset of GG, then by Proposition 13.1.5 there is
a positive Jordan system I' = {40,71,.-.,9n} in G having the following
properties:

(i) FE CinsT C G;
11 (i1) for 1 <j<mn, K; Cinsv;;
(iit) cl(ins~v;) Ncl(insyx) = @ for j # k.

The idea here is that for 1 < j < n and a in Kj, n(y;;a) = —1 while
n(y0; @) = L.

A positive Jordan system I' satisfying (1.1) with £ = @ will be called a
curve generating system for G. In fact, the curves v,...,v, are a set of
generators for the first homology group of G as well as the fundamental
group of G.
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In the case of a finitely connected region the condition that a harmonic
function has a conjugate can be greatly simplified. In fact, the infinite
number of conditions in part (c) of Theorem 13.3.4 can be replaced by a
finite number of conditions.

1.2 Theorem. If G is an n-connected region and I' = {vo,71,-..,n} i5 @
curve generating system for G, then a harmonic function u: G — R has a
harmonic conjugate if and only if f7(u$ dy —uydz) =0 for1 <j<n.

J

Proof. From Theorem 13.3.4 it is easy to see that it suffices to assume that
fw f=0for1 <j <n,where f = Ju, and prove that f has a primitive. Fix
a point a; in K for 1 < j < n. If v is any closed rectifiable curve in G, put
mj = n(v;a;). It follows that the system of curves {v, —miv1,..., —Mn¥n}
is homologous to 0 in G. By Cauchy’s Theorem,

0=[1-3mi | 5

But this implies that f7 f =0 by assumption. Hence f has a primitive. O

What is going on in the preceding theorem is that the first homology
group of G is a free abelian group on n generators and the curves {v;}
form a system of generators for this group. Morever, if I" is an element of
the first homology group, then I corresponds to a system of closed curves
in G and the map I' — [ f is a homomorphism of this group into the
additive group C. Thus the condition of the preceding theorem is that this
homomorphism vanishes on the generators, and hence vanishes identically.

Let G be an n-connected region and let I' = {v9,71,-..,7n} be a curve
generating system in G. For a harmonic function u : G — R with conjugate
differential *du, the numbers

1 *
c; = — du
T o Lj ’

1 < j < n, are called the periods of u. Note that the periods of u are real
numbers since u is real-valued. So a rephrasing of Theorem 1.2 is that a
real-valued harmonic function # on G has a harmonic conjugate if and only
if all its periods are 0.

Theorem 1.2 can be used to describe exactly how a harmonic function
differs from one that has a harmonic conjugate.

1.3 Theorem. Let G be an n-connected region with K1, ..., K, the bounded
components of its complement; for 1 < j < n, let a; € K;. If u is a real-
valued harmonic function on G and ¢y, ..., c, are its periods, then there is
an analytic function h on G such that

u=Reh+ch log |z — a;] .

=1
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Proof. Consider the harmonic function

UZU—ZC]' log |z — a;].
7

Now £(z) = log|z| is harmonic on the punctured plane Co = C\ {0} and
an elementary computation shows that £, - if, = Z/ |z)> = 271, Thus for
any closed rectifiable curve v not passing through 0,

/ (€ dy — £, dx) = —i/ 27 dz = 27 n(v;0).

¥ v

So if Li(z) = log|z—ak|,f7j (Lkedy — Lyydz) = 2r if k = j and O
otherwise. It is straightforward to see that the choice of ¢; gives that
f%_ (Ugdy — Uy dz) = 0for 1 < j < n. By Theorem 1.2, there is an analytic
function h on G such that U = Reh. O

This theorem has several interesting consequences. Here are a few.

1.4 Corollary. If u is a real-valued harmonic function in the punctured
disk Bo(a; R) = B(a; R) \ {a}, then there are real constants b and ¢ such
that .

/ u(a-f—rew) df =blogr + c.

-

Proof. By Theorem 1.3 there is a real constant b and an analytic function
h on By(a; R) such that v = Re h + blog |z — a|. Thus,

Il

/ u(a + re'?)dd b/ log |re| d§ +/ Re h(a + re'®)dd

- — —T
o

2mb log r + / Reh(a + re?)dd

—T

But it is easy to see that [ Reh(a + re*)df is the imaginary part of the
integral

/ h(z)(z — a) tdz,
~
where 7(6) = a + re*, and hence is a constant. O

The next result might have been expected.

1.5 Corollary. If u is a bounded harmonic function in the punctured disk
By(a; R), then u has a harmonic extension to B(a; R).

Proof. It suffices to assume that v is real-valued. Suppose |u| < M on
By(a; R). According to Theorem 1.3, there is a real constant b and an
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analytic function h on Bg(ae; R) such that u = blog |z — a| + Re h(z). Also
there is a real constant ¢ such that for r < R

/ u (a+1e') df = 27b logr + c.

-7

On the other hand, |u| < M so |27 logr + ¢| < 2rM for r < R. But this
is impossible if b # 0 so it must be that b = 0.

Hence u = Re h in By(a; R). This implies that h is an analytic function
on By(a; R) whose real part is bounded. Consider g = exp(h); g is bounded
in By(a; R) since |g| = exp (Re h). Therefore a is a removable singularity
for g. This implies that a is a removable singularily for ¢’ = h g and thus
also for h = ¢’/g. This provides the required harmonic extension of u. O

Most of the preceding material is taken from Axler [1986).

1.6 Definition. If none of the components Ky, Ki,..., K, of Cox \ G is a
point, then the harmonic basis for G is the collection of continuous functions
w1, w2, . ..,wn on cloG that are harmonic on G and satisfy w;|0K; = 1 and
w;|0K; =0 for ¢ # j.

Note that these functions exist since the hypothesis guarantees that we
can solve the Dirichlet problem for G (10.4.17). Also the function wg that
is 1 on 8Ky and 0 on the boundary of the bounded components is not
included here since this function can be obtained from the others by means
of the formula wy =1 - Y ] wj.

In the literature these functions in the harmonic basis are often called
the harmonic measures for G. This terminology originated before the full
blossoming of measure theory. Later a harmonic measure for G will be in-
troduced that is indeed a measure. In order to avoid confusion, the classical
terminology has been abandoned.

The next lemma will be used in the proof of some conformal mapping
results for finitely connected regions.

1.7 Proposition. If G is a non-degenerate n-connected region, ' = {~q, ...,
Yo} 18 a curve generating system for G, and for 1 <j, k<n

1
Cik = 5= [ Tdwg,
27 Jy,
where {wy,...,wn} s the harmonic basis for G, then the n x n matriz

[cjk] is invertible.

Proof. It suffices to show that this matrix is an injective linear transfor-
mation of R™ into R™. So suppose there are real scalars Aq,..., A, such
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that
ciidr +epAa+ ...+ 1A, =0
CriAl +Cr2A2 + ...+ CupnAn = 0.
We want to show that Ay =--- = A, =

Put u = 37 Akws. So u is continuous on cloG and harmonic on G. Also
u=MA; on 8Ky for 1 <k <n and u =0 on 8Kgy. Moreover for 1 < j < n,

n

/*duzzn:)\k/ *dwk=ZCjk)\k=O.
.

i k=1 Vi k=1

Therefore Theorem 1.2 implies there is an analytic function f on G such
that u = Re f.

Put A\g = 0 and let {5 € C such that Re (g # Ag, A1,..-, An. For 0 < k <
n, pick constants € > 0 such that if O, = {{ € C: |Re{ — M\g| < &}, then
Co & Ur—o c1Q%. Now u = Ref is continuous on clo G s0 {z € clG :
|u(2) — Ax| < ex} is a relatively open subset of clooG and contains OKj.
Therefore if Uy equals the union of K} and the component of {z € clG :
ju(z) — k| < ex} that contains 0K}, then Uy is open in C and contains K.
(The fact that some of the constants Ay may coincide forces some of this
awkward language. If it were the case that Ay # X; for k # 7, then the g,
could have been chosen so that the sets {; have pairwise disjoint closures
and the language would be simpler.) By Proposition 13.1.5, for 1 < k <n
there is a Jordan curve oy contained in Uy such that K, C insoyx and
n(ok; z) = —1 for all z in K. Similarly, there is a Jordan curve o in Uy such
that Ko C out g¢ and n(op; z) = +1forall zin K;U---UK,Uo1U---Uoy,.
Hence ¥ = {09,01,...,0,} is a Jordan system in G; in fact, T is a curve
generating system for G.

Now
n

2271-2 f % =Y " n(f o ok; o)-

k=0

But f o oy is a rectifiable closed curve lying inside the vertical strip
and (o lies outside this strip. Thus n(f o o;{y) = 0 for 0 < k < n. By
the Argument Priniciple this implies that the equation f(z) = (o has no
solutions in ins X. But f(Ux) C Q4 and so f(z) = (o has no solution in

%_o Ur. Therefore (o ¢ f(G). Since {3 was an arbitrary point with Re {p #
Aoy ALy, Ap we get that f(G) C the union of the lines {¢ : Re{ = A}
for k = 0 ,n. By the Open Mapping Theorem, f, and hence u, must be
constant. But u = 0 on 0Ky so u = 0. In particular Ay =---= A, =0. O
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Exercises

1. If G is an (n + 1)-connected region in C, Har(G) is the vector space
of harmonic functions on G, and Har.(G) is the subspace of Har(G)
consisting of all those harmonic functions with a harmonic conjugate,
then the quotient space Har(G)/Har.(G) is an n-dimensional vector
space over R. Find a basis for this space.

2. Find the harmonic basis for the annulus.

3. (The n + 1 Constants Theorem) Let G be an n-Jordan region with
boundary curves vg,7v1,...,7, and let Ag,A1,..., A, be real con-
stants. Show that if u is a subharmonic function on G such that
for ain v;, 0 < j < m,

lim supu(z) < Aj,

z—a
then "
uw(z) <Y Ajw;(2),
3=0
where {wy,...,wy} is the harmonic basis for G and wyp = 1 — (w; +

4. Let G be an annulus and f : G — C an analytic function. Use the
preceeding exercise with u = | f| to deduce Hadamard’s Three Circles
Theorem (6.3.13).

§2 Conformal Equivalence with an Analytic Jordan Region

Recall the definition of an analytic Jordan region (13.4.11). The main result
of this section is the following.

2.1 Theorem. If G is a non-degenerate n-connected region, then G is
conformally equivalent to an analytic n-Jordan region Q. Moreover, 2 can
be chosen so that its outer boundary is 01D and 0 ¢ Q.

Proof. The proof consists of an iterative application of the Riemann Map-
ping Theorem. Let Koy, K1, ..., K, be the components of C, \ G with Ky
containing oo. Consider Gy = C \ K, and note that Gy is simply con-
nected since its complement in C,, Ky, is connected. Let ¢o : Go — D be
a Riemann map and put Qo = ¢o(G).

So €2 is a finitely connected region and Co\Qp = (Coo \D)Udo (K1 )U- - -U
do(Kr) = KogUKo1U- - -UKpy,. Now let G; = Coo \ Ko1; again G is a simply
connected region in C,, containing co and the region Q. Let ¢1 : G; — D
be the Riemann map with ¢1(c0) = 0 and put Q; = ¢1(Qp). Again
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is an n-connected region. The components of its complement in C, are
K11 = Co \ D, Kio = ¢1(Kwo), Kiz = $1(Koz2),--., Kin = ¢1(Kon).
Note that the components of the boundary of Q; are 9D, ¢:(0D) =
¢1(0Koo), 0K12,...,0Kp.

So at this stage we have that G is conformally equivalent to a region
contained in D, two of whose boundary components are analytic Jordan
curves, one of them being the unit circle. Continue the process to get that
G is conformal equivalent to an n-Jordan region §2,,_; contained in ) and
having 8D as its outer boundary. Now pick a in D\ ¢l Q,_1, let ¢, be the
Schwarz map (z — a)(1 —@z)~!, and put Q = ¢, (Qp_1). O

The preceding proposition has value for problems that involve properties
that are invariant under conformal equivalence, but its value diminishes
when this is not the case.

The next result is the analogue of the classical Green Identities using the
conjugate differential and the d-derivative. For the remainder of the section
it is assumed that G is an analytic Jordan region with oriented boundary
I' = {yo,.-.,7n}, With 7o as the outer boundary.

2.2 Proposition. Let G be an analytic Jordan region with oriented bound-
ary [. (a) If u and v are functions that are C on clG, then

/F(vdu—udv) = 4i//0(5v6u—5u6v)

= 2//G(uyvm—u,,.vy).

(b) If u and v are functions that are C* on clG and C? on G, then

/I:(v *du — u*dv) = 4//G(v65u — udov).

Proof. (a) Using the definition of du and dv, applying Green’s Theorem,
and then simplifying we get

/(vdu—udv) = /[(vu,c — uvz)dr + (vuy — uvy)dy]
r r

= 2//G(uyv$ — UgVy).

Again using the definitions of the expressions and simplifying, we also have

/L(Ev du — Ou Ov) = —%//0(% Uy — Ugly),
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proving part (a).
(b) Using Exercise 13.3.2 we have

/v*du = —2i/v8u+i/vdu,
r r r
/u*dv = —2i/u81}+i/udv.
r T T

Performing the required algebra yields

/(v*du—u*dv) =—Zi/(vau—uav)-f—z'/(vdu—udv).
r r r

Now apply Green’s Theorem to the first integral and part (a) to the second
in order to get

/P(v*du—u*dv) = -2 [22//G @(v@u—u@v)]]
+i(44) //G(gvau—guafu)

= 4// [Evau—f-v—@_au—guav—ugav]
G

—4//61[5(1)811—1181))]
= 4//G(v65u—u35'u).

Recall (13.2.3) that the Laplacian of a function u is 490u.

O

2.3 Corollary. If u and v are functions that are C* on clG and harmonic
on G, then frv*du = fru*dv.

Recall (§10.5) that there is a Green function g(z,a) for G. If a is fixed,
ga(2) = —log|z — a| + R,(2), where R, is harmonic on G. Now g, is har-
monic on G \ {a} and identically 0 on I'. By Corollary 13.4.12, g, can be
extended to a harmonic function defined in a neighborhood of I'. We will
always assume that g, has been so extended. Since log |z — a| is also har-
monic in a neighborhood of T, it follows that the same holds for R,. In
particular it is legitimate to discuss the integrals of the functions g, and
R, as well as their derivatives and conjugate differentials on I'.

The first application of these notions is a formula for the solution of the
Dirichlet Problem, but first a lemma.
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2.4 Lemma. Let r > 0 such that B(a;r) C G and put B, = B(a;7). Ifu
is a C! function on cl G that is harmonic inside G, then

/ (go Tdu — u*dg,) = 2w u(a) + n(r),
8B,

where n(r) — 0 asr — 0.

Proof. Put £({) = log |¢ —a|. Using the definition of *df and parametrizing
the circle 8B, by v(0) = a + re*’, we get that *df = df on &B,. Thus

2r
/ u*dl = / u(a + re®®)dd = 27 u(a)
8B, 0

by the Mean Value Property for harmonic functions. Also there is a constant
M such that UBBT u*dRa‘ < Mr. Hence faB, u*dg, — —2mu(a). On the
other hand, there are constants C; and Cj such that for all r,

/ Ga *du
0B,

This completes the proof of the lemma. O

- £ du + /Ra *du
8B,

< Cirlogr+Csr.

2.5 Theorem. If G is an analytic Jordan region, I is the positively oriented
boundary of G, h is a continuous function on T', and h is the solution of
the Dirichlet Problem with boundary values h, then

. 1 .
h(z):—g‘/rh dg.,

where g, is Green’s function for G with singularity at z.

Proof. Both sides of the above equation behave properly if a sequence of
functions {h,} converges uniformly to a function h on I'. Thus, it suffices
to prove this under the extra assumption that A is a smooth function on I'.
Let r > 0 such that B(a; r) C G. Put G, = G\ B(a; r) and I, = G, with
positive orientation. Let B, = B(q; ) and always consider 0B, as having
positive orientation. Put u = h. According to Corollary 2.3

/ga*du:/ u*dg,.
- r

r

Now g, is identically 0 on I'" so that

/ utdg, = / (u*dge — go *du)
r dB,
—27 u(a) + n(r)
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by the preceding lemma. Therefore taking the limit as » — 0 we get that

/ h*dg, = —27h(a).
r

This proves the theorem. O

The reader might note that the converse of Theorem 2.5 is valid. If A is a
continuous function on I, then the formula in (2.5) gives the solution of the
Dirichlet problem. Thus (2.5) is a generalization of the Poisson Formula for
D. See Exercise 3. We will see more of these matters in Chapters 19 and
21.

Using the definition of normal derivative, the formula for the solution of
the Dirichlet Problem in the preceding theorem can be rewritten as

h(z) = /F h(w) % (w) |dw].

2.6 Corollary. If {w1,...,ws} is the harmonic basis for G, then for 0 <
Jj<n
1 .
% N dga = ‘—UJ]((I)
Proof. Take h in the preceding theorem to be the characteristic function
of Yj- 0O

Exercises

1. If G is an m-connected region and n of the components of its com-
plement in C., are not trivial, then G is conformally equivalent to an
analytic n-Jordan region with m — n points removed.

2. Show that the matrix [c;x] from Proposition 1.7 is positive definite.

3. Prove that with the hypothesis of Theorem 2.5, if h : I' —» R is a
continuous function, then the solution of the Dirichlet Problem is
given by the formula there. If G = D, show that the formula in (2.5)
is precisely the Poisson Integral Formula.

4. Show that the matrix [c;x] from Proposition 1.7 is a conformal in-
variant for analytic Jordan regions.
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€3 Boundary Values for a Conformal Equivalence Between
Finitely Connected Jordan Regions

The results from §14.5 on boundary values for a conformal equivalence be-
tween two simply connected Jordan regions can be extended to a conformal
equivalence between two finitely connected Jordan regions. To do this it is
not necessary to start from the beginning, but rather the results from the
simply connected case can be used to carry out the extension.

We begin by showing that if G and € are finitely connected regions and
¢ : G — Q is a conformal equivalence, then ¢ defines a correspondence
between the components of the boundaries of the two sets. Recall (13.1.2)
that the map F' — F N0, G defines a bijection between the components of
Cs \ G and the components of 8,,G. For our discussion fix an n-connected
region G and let Ky,..., K, be the components of Co, \ G with co in Ky
and let Cy,...,C, be the corresponding boundary components. Let €2 be
another n-connected region and assume there is a conformal equivalence
¢:G—- Q. For0<j<nande>0,let ®;(c) =cllp({z € G : dist(z, K;) <
e})] = cl¢({z € G : dist(z,C;) < €})] and put ®; = (|, ®;(¢). Here the
distance involved is the metric of the extended plane, though the usual
metric for the plane can be employed if 2 is bounded. It will be shown that
the sets @, ..., P, are precisely the components of 9,02, 75y .-+, Vn-

3.1 Lemma.
(a) ‘I>j(€1) - ‘I)j(Ez) if€1 < €3.
(b) If {ex} monotonically decreases to 0, then ®; = Nk ®;(ex).

(c) If U is an open set containing ®;, then there is an € > 0 such that
@j (6) g U.

(d) ®; is a connected subset of OuoQ2.

Proof. The proofs of parts (a),(b), and (c) are left to the reader. It is
also left to the reader to show that ®; C J,,€2. Suppose that U and V are
disjoint open sets and ®; C U U V. By part (c) there is an £ > 0 such that
®;(e) CUUV. But ®;(e) is clearly a connected set as it is the closure of
a connected set. This contradiction establishes part (d). O

3.2 Proposition. The sets ®g, Py, ..., P, are precisely the components of
Ooo 2.

Proof. By part (d) of the preceding lemma, each set ®; is contained in
one of the components 7; of 9,,2. On the other hand, similar arguments
involving ¢! show that each point of 9,2 must belong to one of the sets
®;. Thus a simple counting argument shows that {®q, ®1,...,P,} are the
components {Yo,V1,-.-,Yn}. O
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If ®; = v;, then we will say that ¢ associates C; with ;. To maintain
some flexibility we might also say in this situation that ¢ associates K; with
v;. The idea here is that even though ¢ may not extend as a function to
the boundary of G, it is possible to think of ¢ as mapping the components
of 0,,G onto the components of 9,.52.

The next result is just a restatement of Theorem 2.1 with the added
piece of information that any component of the complement of G' can be
made to be associated with 0 D.

3.3 Theorem. If G is a non-degenerate n-connected region and C is any
component of its extended boundary, then there is a conformal equivalence
¢ of G onto an analytic n-Jordan region Q0 such that the outer boundary of
Q is 0D,0 ¢ 2, and ¢ associates C with O D.

Proof. Refer to the proof of Theorem 2.1. Using the notation there it
follows that the map ¢ constructed there associates 8K, with dD. If C =
0K for 1 < j < n, then a simple relabelling proves the present theorem. If
C = dKy, then look at the image G; of G under the M6bius transformation
(z—a)~! for an appropriate choice of a. Here C corresponds to the boundary
of a component of the complement of G; that does not contain oo and the
previous argument applies. O

3.4 Theorem. If G and 2 are two finitely connected Jordan regions and
¢ : G — Q is a conformal equivalence, then ¢ extends to a homeomorphism
of c1G onto cl Q.

Proof. Using the above notation and letting C; = 0K, we can assume
that ¢ associates the boundary curve C; of G with the boundary curve ~;
of 2, 0 < j < n. It suffices to assume that G is an analytic Jordan region.
In fact if this case is done, then for the general case apply Theorem 2.1 to
find two analytic Jordan regions G; and ; and conformal equivalences f :
G—-Girand7:Q — Q. Let ¢; : G; — Q1 be defined by ¢; = Togo f1L.
Now observe that if the theorem is established for the special case where the
domain is an analytic Jordan region, then by taking inverses the theorem
also holds when the range is an analytic Jordan region. Thus each of the
maps f,7, and ¢; as well as their inverses extends to a homeomorphism.
Hence ¢ extends to a homeomorphism.

So we assume that each of the curves Cy,...,C), is an analytic Jordan
curve. Let 0 < 7 < dist(y;,v) for j # k. Let 0 < e < dist(Cj,Cy) for
j # k; by Proposition 3.2 and Lemma 3.1, € can be chosen such that
o({z € G : dist(2,C;) < €}) C {¢ € Q : dist(¢,v;) < r}. By Corollary
13.5.7, ¢ has non-tangential limits a.e. on each Cj.

Fix j, 0 < j < n, and let a; and az be any two points on C; at which ¢
has a non-tangential limit. Since C} is an analytic curve, there are Jordan
arcs 7; : [0,1) — G, i = 1,2, such that n;(t) — a; as t — 1, n1(0) #
12(0), |m:(t) — a;| < €, and lim;_,1 ¢(n;(t)) = a;, a point in ~y;. Note that
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a; # ag because if they were equal, then the non-tangential limit of ¢
would be this common value at a.e. point on one of the two subarcs of
C; that joins a; and ay. (See the proof of Theorem 14.5.6.) Let 79 be
one of the two arcs in C; that joins a; and a2 and let n3 be a Jordan
arc in G joining 17,(0) to 7,(0). Thus C = nymnan; * is a Jordan curve and
C C{z€G:dist(z2,C;) < e},s0ins C C G. Let A; = ¢pon; fori = 1,2, 3; so
each ); is a Jordan arc in Q and \; /\3/\2_1 is a Jordan arc joining as to a;. If
Ao is either of the two subarcs of ; joining a; to ag, then v = A;AzAy IXo
is a Jordan curve that is disjoint from ¢(ins C); choose the arc Ay such
that ¢(ins C) C ins ~. Since ins v C Q and ¢ is surjective, it follows that
¢(ins C) = ins v. By Corollary 14.5.7, ¢ extends to a homeomorphism of
cl(ins C) onto cl(insv). Thus ¢ maps 79 homeomorphically onto Ag.

By examining the other subarc of C; that joins a; to a2, we see that ¢
extends to a homeomorphism of G U C; onto Q U «y;. The details of this
argument as well as the remainder of the proof are left to the reader. O

The proofs of the next results are similar to the preceding proof and will
not be given. The following extends Theorem 14.5.5.

3.5 Theorem. If G is a finitely connected Jordan region and ¢ : G — 2
18 a conformal equivalence, then the following are equivalent.

(a) ¢ has a continuous extension to the closure of G.

(b) Each component of 05 is a continuous path.

(c) O is locally connected.

(d) Coo \ Q is locally connected.

Recall the definition of a simple boundary point (14.5.9). The next the-
orem extends Theorem 14.5.12.

3.6 Theorem. Let Q2 be a bounded finitely connected region, G a finitely
connected Jordan region, and let g : @ — G be a conformal equivalence.

(a) If w is a simple boundary point of 2, then g has a continuous exten-
sion to QU {w}.

(b) If R is the collection of simple boundary points of Q, then g has a
continuous one-to-one extension to QU R.

These results on conformal equivalences between finitely connected re-
gions can be used to extend some of the results of §14.5 to unbounded
simply connected regions. Rather than listing all the possibilities, we ex-
amine a couple that will be of use later.

3.7 Proposition. Let vy : [0,00) — C be a Jordan arc such that v(t) — oo
ast — oo and let @ = C\~. If 7 : D — Q is the Riemann map with
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7(0) = a and 7(0) > 0, then T ezxtends to a continuous map of c1D onto

Coo-

Proof. Consider the Mobius transformation T'(z) = (z — @)~! and put
o =T or. So o is a conformal equivalence of D onto A = the complement
in the extended plane of the arc A = T o and 0(0) = oo. Thus the cluster
values of o at points of 0D all lie on the arc A. Put A = {2:1/2 < |2| <
1}; thus o(A) is the region bounded by the arc A and the Jordan curve
o({|z| = 1/2}). According to Theorem 3.5, o has a continuous extension
to cl A. From here it easily follows that 7 = (1 — ao)/o has a continuous
extension to c1D. O

Such regions as 2 in the preceding proposition are called slit domains
and will play an important role in Chapter 17 below. Another fact about
mappings between a slit domain and the disk that will be used later is the
following.

3.8 Proposition. If (2 is a slit domain as in the preceding proposition and
g: Q — D is a conformal equivalence, then g can be continuously extended

to QU {~(0)}.

Proof. Of course wg = ¥(0) is a simple boundary point of 2, but € is
not bounded so that Theorem 3.6 is not immediately available. However if
w=g¢g"%0),T¢)=(¢—-w) l,and A=T(Q) CCx, then h=goT lisa
conformal equivalence of A onto D with h(co) =0. If A={2:1/2 < |2| <
1} and A; = h™1(A), then A; is a bounded region and T'(wp) is a simple
boundary point. It is left to the reader to apply Theorem 3.6 to A; and A
and then unravel the regions and maps to conclude the proof. O

Exercises

1. Give the details in the proof of Theorem 3.5.

2. In Proposition 3.7 show that the extension of 7 to clD has the prop-
erty that there are unique points a and b on 8D that map to «(0)
and oo and that every other point of v has exactly two points in its
preimage.

3. A continuous map f : G — € is proper if for every compact set K
contained in Q, f~!(K) is compact in G. (a) Show that a continuous
function f is proper if and only if for each a in G, Clu(f,a) C 09Q.
(b) If f : G — Q is analytic, show that f is proper if and only if there
is an integer n such that for each ¢ in , the equation f(z) = ¢ has
exactly n solutions, counting multiplicities.
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4. If in Exercise 3, G =Q =D and f : D — D is a proper analytic map,
show that f is a finite Blaschke product. (See Exercise 7.5.4 for the
definition.)

§4 Convergence of Univalent Functions

It is desirable to extend the concept of convergence of analytic functions
as discussed in Chapter 7. (In this section the regions will be assumed to
be arbitrary; it is not assumed that they are finitely connected.) To begin,
assume that for every positive integer n there is a region G,, that contains
the origin and an analytic function f, : G, — C. How can we give meaning
to the statement that {f,} converges to a function f : G — C? Without
some restriction on the behavior of the regions G,, there is no hope of a
meaningful concept.

4.1 Definition. If {G,} is a sequence of regions each of which contains 0,
define the kernel of {G,} (with respect to 0) to be the component of the
set

{z : there is an r > 0 such that B(z;r) C Gy,

for all but a finite number of integers n}

that contains 0, provided that this set contains 0. If the above set is empty,
then {G,} does not have a kernel. When {G,} has a kernel it is denoted
by ker{G,}. Say that {G,} converges to G if G is the kernel of every
subsequence of {G,}; this is denoted by G, — G.

Note that if {G,} is an increasing sequence of regions and G is their
union, then G, — G. Also if {G,,} is defined by letting G,, = D when n is
even and G, = the unit square with vertices +1 £ ¢ when n is odd, then
D = ker{G,} but {G,} does not converge to D. Also notice that there is
nothing special about 0. If there is any point common to all the regions
G, it is possible to define the kernel of {G,} with respect to this point.
This quasigenerality will not be pursued here.

We also note that the kernel of {G,} is the largest region G containing
0 such that if K is a compact subset of &, then there is an ng such that
K C G, for n > ng.

With the notion of a kernel, the extended idea of convergence of functions
can be defined.

4.2 Definition. Suppose that {G,} is a sequence of regions each of which
contains 0 and such that G = ker{G,} exists. If f,, : G,, — C is a function
for all n > 1, say that {f,.} converges uniformly on compactato f : G — C
if for every compact subset K of G and for every € > 0 there is an ng
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such that |f,(2) — f(2)| < € for all z in K and all n > ng. This will be
abbreviated to f, — f (uc).

When the notation “f, — f (uc)” is used, it will be assumed that all the
notation preceding the definition is in force. The following notation will be
used often in this section.

For each n > 1, G, is a region containing 0 and f, : G, — C is
4.3 an analytic function with f,(0) =0, f/,(0) > 0, and
Q, = fu(Gr).

The reader is invited to revisit Chapter 7 and verify that most of the results
about convergence of analytic functions there carry over to the present
setting. In particular, if each f, is analytic and f, — f (uc), then f is
analytic and f], — f'(uc). We also have the following.

4.4 Proposition. Assume (4.8). If each f, : G, — C is a univalent
function and f, — f (uc), then either f is univalent or f is identically 0.

4.5 Lemma. Assume (4.9). If each f, is a univalent function, f, — f (uc),
and f is not constant, then the sequence of regions {Q,} has a kernel that
contains f(G).

Proof. Let Q, = fo(Gn) and Q = f(G); so Q is a region containing 0.
Let K be a compact subset of Q. Now G can be written as the union of
the open sets {Hy}, where cl Hy, is compact and contained in Hyy1. Thus
Q = Ui f(Hg) and so there is a & > 1 such that K C f(H). By the
definition of a kernel, there is an ng such that ¢l Hy C G, for n > ng. Thus
KCQ,foralln>ng O

The reader might want to compare the next result with Proposition
14.7.15, whose proof is similar.

4.6 Lemma. Assume (4.3). If G = ker{G,} exists, each f, is univalent,
and f}(0) =1 for all n, then there is a subsequence {fn,} such that G =
ker{G,, } ezists and {fn,} converges (uc) to a univalent function f : G —

Proof. Let R > 0 such that B(0; R) C G; let Ny be an integer such that
B(0;R) C G, for all n > Ny. Put g,(2) = 2z/f.(2). As in the proof of
Proposition 14.7.15, |gn(2)| < 4 for |2| < R and |gn(2)| < 4|2|R™* for z in
G, \ B(0; R).

Write G = U;‘;1 D;, where each D; is a region containing B(0; R) and
cl D; is a compact set that is included in Djii. Let Ng < N; < --- such
that clD; C G, for n > N;. From the preceding observations, {gn :n >
N;} is uniformly bounded on D;. Let {g, : n € A1} be a subsequence
that converges uniformly on compact subsets of D; to an analytic function
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hy : D1 — C. There is a subsequence {g, : n € Az} of {g, : n € A;}
that converges in H(D3) to a function hy. Continue to obtain infinite sets
of integers {A;} with A;1; € A;, n > N; for all n in A;, and such that
{gn : n € A;} converges in H(D;) to an analytic function h; defined on
Dj. From the nature of subsequences it is clear that h; = h;1 for all j.
Hence there is an analytic function g : G — C such that g|D; = h; for all
j.
Let n; be the j-th integer in Aj;. Since Dy C Gn, for j > kG =
ker{Gn,}. Also {gs,} is a subsequence of each {g, : n € Ax} and so
gn, — g (uc). Since g, never vanishes on G, and gn(0) = 1 for all n,
g(0) = 1 and hence g does not vanish on G (why?). It is easy to check (as
in the proof of Proposition 14.7.15) that f,, — f = 2/g (uc). O

The next result can be considered the principal result of this section.

4.7 Theorem. Assume (4.3). If G, — G, each f, is univalent, and
fL(0) = 1 for all n, then there is a univalent function f on G such that
fa — f (ue) if and only if Q,, — Q for some region ). When this happens,
Q= f(G) and ¢, = f;1 — fH(uc).

Proof. Let us first assume that f, — f (uc) for a univalent function f
defined on Gj; put Q = f(G). According to Lemma 4.5, A = ker{(Q2,} exists
and Q C A. Let ¢, = f;!: Q, — G,. According to Lemma 4.6 there
is a subsequence {¢,, } such that A = ker{(2,, } and a univalent function
¢ : A — C such that ¢,, — ¢ (uc).

Fix € > 0. Since ¢(0) = 0, there is a p > 0 such that B(0;p) C Q and
|$(¢) — #(¢')] < £/2 whenever ¢ and ¢’ are in B(0; p). Let k; be chosen so
that B(0; p) C Q,, when k > k;. Pick r > 0 such that f(B(0;7)) C B(0;p)
and choose k2 > ki such that f,, (B(0;r)) C B(0;p) for k > ko. Finally
pick k3 > ks such that |¢y, (¢) — ¢(¢)| < /2 for k > k3 and |{| < p. Thus
for k > k3 and |2| < r we have

|ns (fri (2)) — 8(f(2))] |n (frx(2)) = B(fri (2))]

<
+  16(fni(2)) — ¢(£(2))]

< €.

But for each k, ¢p, (fn, (2)) = z and so ¢(f(z)) = z for all z in B(0;r). But
f(G) =2 C A so we get that ¢(f(z)) = z for all z in G.

Now Lemma 4.5 applied to the sequence {¢,, } implies that G C ¢(A) C
ker{dn, (n,)} = ker{G,, }, which equals G since G, — G. From here it
follows that A = Q and ¢ = f~1.

Note that the preceding argument can be applied to any subsequence of
{fn}. That is, for any subsequence {f, } there is a further subsequence
{fmkj} such that Q = ker{kaj} and ¢m, — ¢ = L

Now to prove that 2,, — Q. If not, then there is a subsequence {Q,,,}
that either has no kernel or does not have 2 as its kernel. In either case
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there is a compact subset K of Q such that K \ Q,, # () for infinitely many
n. Thus there is a subsequence {{,,, } such that K \ Q,,, # 0 for all k.
But then the reasoning of the preceding paragraph is applied, and we get
a subsequence of {Q,,,, } that has  as its kernel, giving a contradiction.

Now for the converse. Assume that Q, — Q and put ¢, = f; 1. So
¢n(0) = 0 and ¢),(0) = 1. If {f,} is not convergent, then there is an
€ > 0, a compact subset K of G, and a subsequence {f,,} such that
sup{|fn, (2) — fn,;(2)| > € : z € K} for all ny # n;. Once again Lemma 4.6
implies there is a subsequence {¢n, } of {¢n,} such that O = ker{Q, }
and bn, — & (uc), a univalent function on 2. But we already know that
anj — 2. Now we can apply the first half of the proof to this sequence
to obtain the fact that G, — G = #(2) and fru, = = ¢~ (uc). This
contradicts the fact that sup{|fn, (2) — fn, (2)| : 2 € K} > € for all ny # n;.
Thus there is a function f on G such that f, — f (uc). Since f'(0) =1, it
must be that f is univalent. O

Before proving an extension of the preceding theorem, here is a result
that will be useful in this proof and holds interest in itself. This proposition
is true for all regions (as it is stated), but the proof given here will only be
valid for a smaller class of regions. The complete proof will have to await
the proof of the Uniformization Theorem; see Corollary 16.5.6 below.

4.8 Proposition. Let G be a region in C that contains zero and is not
equal to C. If f is a conformal equivalence of G onto itself with f(0) =0
and f'(0) > 0, then f(z) =z for all z in G.

Proof. Let C be a non-trivial component of the complement of G in C.
Put © = Cx \ C; so  is a simply connected region containing G. Let
¢ : @ — D be the Riemann map with ¢(0) = 0 and ¢'(0) > 0. Put
Gi = ¢(G), ¢ = ¢|G, and f; = ¢ o f o #7'. So f1 is a conformal
equivalence of G, onto itself with f;(0) = 0 and f{(0) > 0. If it is shown
that f; is the identity map, it follows that f is the identity. Thus it can be
assumed that the region G is bounded.

Let M be a constant with |z| < M for all z in G and pick R > 0 such
that B(0O; R) C G. Forn > 1, put f, = fo fo.--o f, the composition of
f with itself n times. So f,(0) = 0 and f},(0) = [f/(0)]". Using Cauchy’s
Estimate it follows that 0 < [f/(0)]™ = f,(0) < M/R. Thus f’(0) < 1. But
applying the same reasoning to the inverse of f implies that [f/(0)]~! < 1.
Hence f'(0) = 1.

Let a,, be the first non-zero coefficient in the power series expansion of f
about 0 with m > 2. So f(2) = z+amz™ + - - -. By an induction argument,
fn(2) = z+nanmz™+- - -. Once again Cauchy’s estimate gives that nla,,| =
n| £ (0)|/n! £ M/R™. But this implies that a,, = 0, a contradiction.
Hence the only non-zero coefficient in the power series expansion for f is
the first. Thus f(z) = 2. O
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4.9 Corollary. If G is a region not equal to C, and if f and g are conformal
equivalences of G onto a region 2 such that for some point a in G, f(a) =
gla), f'(a) >0, and g'(a) > 0, then f =g.

The next result is a variation on Theorem 4.7.

4.10 Theorem. Assume (4.3) and suppose that G # C. If G, — G, each
fn is univalent, and f},(0) > 0 for each n, then there is a univalent function
f on G such that f, — f (uc) if and only if Q, — Q for some region Q.
When this happens, f(G) = Q.

Proof. First assume that f, — f (uc) for some univalent function f. Thus
£/(0) > 0 and £1,(0) — f/(0). Thus if gn = fa/£,(0) and g = £/'(0), gn —
g (uc) on G.

According to the preceding theorem, ¢,(G,) — ¢(G). But g,(G,) =
[fn(0)]~1Q,, which converges to [f'(0)] 712 (see Exercise 2). Thus €2, — 1.

Now assume that Q, — Q for some region Q containing 0. To avoid
multiple subscripts, observe that anything demonstrated for the sequence
{f~} applies as well to any of its subsequences. Put g, = f,/f}(0) and
assume that f}(0) — 0. By Lemma 4.6 there is a subsequence {gn,}
that converges (uc) to a univalent function g on G. By Theorem 4.7,
[fr. O], = gn.(Gr,) — 9(G). According to Exercise 2, g(G) = C.
Since g is univalent, this implies that G = C, a contradiction. Now assume
that f (0) — oc. The same argument shows that there is a subsequence and
a univalent function g on G such that [f] (0)]7'Qy, = gn, (Gn,) — 9(Q).
Again Exercise 2 applies and we conclude that {g,,(G,,)} can have no
kernel, a contradiction.

Thus it follows that there are constants ¢ and C such that ¢ < f},(0) <
C. Suppose that f](0) — «a for some non-zero scalar c. Maintaining the
notation of the preceding paragraph, there is a subsequence {g,, } such that
9ni, — g (uc) for some univalent function g on G. Thus fn, = f,, (0)gn, —
ag = f. Since « # 0, f is univalent and, by Theorem 4.7, f maps G onto
Q. Note that f'(0) = a.

Now suppose that the sequence of scalars {f},(0)} has two distinct limit
points, « and (3. The preceding paragraph implies there are conformal
equivalences f and h mapping G onto 2 with f(0) = k(0) =0, f(0) = a,
and h'(0) = (8. By Corollary 4.9, f = h and o = §. It therefore follows
that the sequence {f(0)} has a unique limit point a and so f/(0) — «.
As above, this implies that {f,} converges (uc) to a univalent function f
on G that has f(G)=Q. O

This concept of the kernel of regions was introduced by Carathéodory,
who proved the following.

4.11 Corollary. (The Cathéodory Kernel Theorem) If for eachn > 1, f,
is a univalent function on D with f,(0) = 0, f.(0) > 0, and f,(D) =
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Q,., then {fn} converges uniformly on compact subsets of D to a univalent
function if and only if {Q,} has a kernel Q # C and Q,, — Q.

Theorem 4.10 is false when G = C. Indeed, if G, = C = Q,, for all n
and f,(z) = n~ !z, then G,, —» C, Q, — C, but {f,} does not converge to
a univalent function.

Note that the general purpose of the main results of this section is to
provide a geometrically equivalent formulation of the convergence of a se-
quence of univalent functions.

Much of this section is based on §V.5 of Goluzin [1969].

Exercises

1. If G = ker{G,} and T is a Mobius transformation, then T(G) =
ker{T(G)}; similarly, if G, — G, then T(G,,) — T(G). Give condi-
tions on an analytic function f so that f(G) = ker{f(G,)} whenever
G = ker{G,}.

2. Assume (4.3) and let {c,} be a sequence of complex scalars. (a) If
G, — G and ¢, — ¢, then ¢,G, — ¢G. (b) If {G,,} has a kernel and
¢n — 00, then ¢,G,, — C. (c) If {G,.} has a kernel and ¢, — 0, then
{¢,Gn} has no kernel.

3. Give the details in the proof of Corollary 4.11.

4. Let G be the region obtained by deleting a finite number of non-zero
points from C and show that the conclusion of Proposition 4.8 holds
for G.

5. Assume (4.3). If {G,} has a kernel G and G,, — G, then for every a
in AG there is a sequence {a,} with a, € G, such that a, — a.

6. Give an example of a sequence of regions {G,} such that for each
n > 1, C\ G, has an infinite number of components and G, — D.

7. Assume that G is a finitely connected Jordan region and ¢ : G —» G
is a conformal equivalence; so ¢ extends to clG. If G is not simply
connected and there is a point a in G such that p(a) = a, then ¢ is
the identity.

§5 Conformal Equivalence with a Circularly Slit Annulus

This section begins the presentation of some results concerning regions that
are conformally equivalent to a finitely connected region. The reader might
consider these as extensions of the Riemann Mapping Theorem. We know
that each simply connected region is conformally equivalent to either the



15.5. Circularly Slit Annulus 91

unit disk or the whole plane, this latter case only occurring when the region
in question is the plane itself. The picture for finitely connected regions is
more complicated but still manageable.

For our discussion fix an n-connected region G and let Kj,..., K, be
the components of C, \ G with co in Kjp. Let us agree to call a region 2
a circularly slit annulus if it has the following form:

Q={CeC:r<|{|<land (¢ Cjfor 2<j<n}

where C; is a closed proper arc of the circle |{| = rj,7; <r; <1, and these
arcs are pairwise disjoint. For notational convenience set 7g = 1. Note
that this slit annulus in an n-connected region. Of course there is nothing
in what follows that requires having the outer radius of the associated
annulus equal to 1; this is done for normalization purposes (see Exercise
1}. For notational convenience Cp will be the unit circle D and C; will
be the circle {z : |z| = r1}, and these will be referred to as the outer circle
and the inner circle of 2. The main result of this section is the following.

5.1 Theorem. If G is a non-degenerate n-connected region in C, A and B
are two components of 0,G, and a € G, then there is a unique circularly slit
annulus Q and a conformal equivalence ¢ : G — §) such that ¢ associates
A with the outer circle and B with the inner circle and ¢'(a) > 0.

The uniqueness statement will follow from the next lemma. Also the proof
of this lemma will provide some motivation for the proof of existence.

Note that if 2 and A are two circularly slit annuli and f: @ —> Ais a
conformal equivalence such that f associates the outer circle of 2 with the
outer circle of A, then f extends continuously to the outer circle of 2 and
maps this onto the outer circle of A. (In fact, f extends analytically across
the outer circle.) Similar statements apply to the inner circle.

5.2 Lemma. If Q and A are two circularly slit annuli and f : Q — A is a
conformal equivalence such that f associates the outer and inner circles of
Q with the outer and inner circles of A, respectively, then there is a complex
number o with |a| = 1 such that A = aQ and f(2) = az for all 2z in Q.

Proof. Let GG be an analytic n-Jordan region such that there is a conformal
equivalence ¢ : G — . We can assume that G C D, the outer boundary
of G is 0D, and that ¢ associates 3D with 8D. Let ~1,...,v, be the
remaining Jordan curves in the boundary of G and put v = 8D. Number
these curves so that ¢ associates «y; with the inner circle of £2 and orient v,
so that n(¢(y1);0) = —1. Let wy, . ..,w, be the harmonic basis for G. Note
that each wy extends to a harmonic function in a neighborhood of clG.

Adopt the notation in the paragraph before the statement of the theorem
andlet A={(:p1 <|{|<1land( ¢ U?:z D;}, where Dj is a closed proper
arc in the circle {¢ : |{| = p;}. Let Dy and Dy be the inner and outer circles
of A. Let ¢ : G — A be the conformal equivalence ¢y = f o ¢. It follows that
¢ and 1 extend continuously to clG (3.5).
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Since ¢ does not vanish on G, u = log |¢| is a continuous function on cl G
that is harmonic on G. Because of the behavior of ¢ on G, u is constant on
each component of 9G; let u = Aj on ;. Thus u— Y Agwy, is harmonic and
vanishes on v;,...,Y,. But u =0 on v = 90D and sou—z:;’/\kwk =0on
OG. Therefore u — ) | Agwy = 0. Defining c;i as in Proposition 1.7 we get

n n

chk)\k = Z% /*dwk

k=1 k=1

2ri - ¢
= n(¢(%),0)
if j=1
0 if 2<j<n.

Now carry out the analogous argument with . Since f is a confor-
mal equivalence we have n(¥(v1);0) = n(f(¢(11));0) = —1. So log |¢)| =
ST mkwi and Yp_; cikMk = Y pe; CikAk for 1 < j < n. But Proposition
1.7 says that the matrix [c;¢] is invertible and so n; = A for 1 < j < n.
Thus log |¢| = log|y|.- Hence |¢| = |¢| on G and this implies the exis-
tence of a constant a with |a| = 1 such that ¥ = a¢. Thus A = a2 and
f@d(2))=ad(z)forall zin G. O

It is easy to construct an example of a circularly slit annulus Q for which
no rotation takes {2 onto itself. So in this case if f is a conformal equivalence
of  onto itself that maps the outer and inner circles onto themselves, the
conclusion of the lemma is that f is the identity function.

Proof of Theorem 5.1.  According to Theorem 3.3 we may assume that G
is an analytic n-Jordan region such that the component A of 9G is yo = 9D,
the outer boundary of G. The component B of 3G is another curve. Let
b be a point inside this curve; so b ¢ G. If T is a Mdbius transformation
that maps D onto D and T(b) = 0, then replacing G by T(G) we may
assume that 0 belongs to the inside of B. Denote this boundary curve B
by v: and let 72, ...,vn be the remaining boundary curves. So n(v;;0) =0
for 2 < j < n and we can orient vy and 7; such that n(y;;0) = —1 and
n(¢p;0) = 1. For 1 < j,k <nlet

1
Cik = —/ *dwk.
27 v
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According to Proposition 1.7 the matrix [c;x] is invertible.

Corollary 13.4.14 implies there is an analytic n-Jordan region W contain-
ing ¢l G such that each harmonic function wg, 1 < k < n, has an extension
to a function harmonic in W, also denote this extension by wy. Let a3 =0

and pick points ag,...,a, in the inside of s, ..., 7, so that they lie in the
complement of clW.

Since [cji] is invertible, there are (unique) real numbers A, ..., A, such
that

( n
chk/\k =-1
k=1

53 4

chk)\k =0 for2<j<n.
\ k=1

Let u be the harmonic function on W given by

n
U= Z ApWk-
k=1

By Theorem 1.3 there is an analytic function A on W such that
u(z) = Reh(z) + ch log |z — ag|,
k=1

where ¢y,...,c, are the periods of u. Let’s calculate these periods.

For1<j<n,
1
CJ' = ——'/ *du
27 -
n
1
= ZAk2—-/ *d(dk
k=1 T Yi
n
= 2 ke
k=1

-1 j=1
0 2<j<n.

Thus u = Re h — log |2|.

Put ¢ = z~1e". So ¢ is an analytic function on W that does not vanish
there. Note that |¢| = |2|"'eR®* = expu. Thus |¢| is constant on each of
the boundary curves of G, ~v1,...,7,. In fact on v;, |¢| = r; = ed. It
is claimed that ¢ is the desired conformal equivalence. To establish this,
many things must be checked.
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For any complex number ¢, let N({) be the number of solutions, counting
multiplicities, of the equation ¢(z) = ¢ that lie in the region G. From the
Argument Principle, if { ¢ ¢(v;) for 0 < j < n, then

R N AN
5.4 N@)_E;%”[;¢_C > n(6(7);€)-

n
j=0
Now ¢(v;) is a closed curve (possibly not a Jordan curve) and, since |¢| = r;
on v;, this closed curve must be contained in the circle A; = {¢ : |[¢| = r;}.

Thus n(¢(7;);¢) = 0 for |¢] > r; and n(8(v;);¢) = n(4(y;);0) for |¢| <
r;. Using Proposition 13.3.5 we get that for 0 < j < n,

1 ¢
n(¢(v;);0) = wil @
¥i
2mi v \Z
1
LEW
= i *du.
21 Jy,

For 1 < j < n this last integral is c;, which was calculated previously. For
j = 0 first observe that Ou is an analytic function on W so that

n(6(0);0) = — [ u

T Yo

1
= -y — [0
= -3¢

j=1

= 1.
Therefore we obtain
1 if j=0
5.5 n(p(y;);0)=¢ -1 if j=1
0 if 2<j<n.

Substituting in (5.4) this implies that if |{| # ro(= 1),71,...,7n, then
N(¢) = n(¢d(70);¢) +n(é(71);¢) and so a consideration of all the possible
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cases (save one) gives that

0 if |¢|>1and [¢|>m
5.6 N{)=4¢ 0 if |{]<1land [{| <™
1 if m<|¢] <1

The one possibility that is left out is to have N({) = —1for 1 < |{| < ry.
But this is nonsense; the equation ¢(z) = ¢ cannot have -1 solutions in G.
Thus r; < 1. But ¢(G) is open so that ¢(¢) = ¢ must have some solutions.
Thus we have that

ry < 1.

Equation 5.6 also shows that ¢ is a one-to-one map of G onto its image
and ¢(G) € R = {¢ : r1 < |[¢|] < 1}. Let C; = ¢(7;) € Aj. Again (5.6)
shows that N({) = 1 for ( in R and [{| # r;(2 < j < n). So ¢(G) 2
{¢ € R: || # ra2,...,7n}. Because ¢ is a homeomorphism of G onto
#(G),09(G) = ¢(0G) = UF_,C; U{C : [¢| = 1 or r1}. This implies two
things. First it must be that ry <r; <1 for 2 < j < n. Second

s(@)=9=R\|JC;.

Jj=2

Now ¢(G) and hence €, must be a connected set and so each C; is a
proper closed arc in the circle A;. That is, Q is a slit annulus.

What about ¢/(0)? It may be that ¢'(0) is not positive. However by
replacing ¢ by e¥¢ for a suitable # and replacing Q by €, this property
is insured.

The proof of uniqueness is an easy consequence of Lemma 5.2 and is left
to the reader. O

Consider the annulus G = {z : R < |z| < 1}. The map ¢(z) = AR/z for
a scalar A with |A] = 1 is a conformal equivalence of G onto itself. Thus
the uniqueness of the conformal equivalence obtained in Theorem 5.1 is
dependent on the assignment of two of the boundary components. The use
of a rotation shows that in addition to assigning two boundary components
it is also necessary to specify the sign of the derivative at a point.

What happens if some of the components of C,, \ G are singletons?
Suppose that C, \ G has n + 1 non-trivial components Ky, ..., K, and m
components ay, ..., a,, that are singletons. By the application of a simple
Mobius transformation, it can be assumed that co € Ky. Let H = G U
{ai,...,am}. According to Theorem 5.1 there is a conformal equivalence
¢ : H — § for some circularly slit annulus Q. Let a; = ¢(a;). This leads to
the following.
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5.7 Theorem. Ifn > 1 and G is an (n + m)-connected region with only
(n+ 1) of the components of its complement in Co, non-trivial, then G is
conformally equivalent to a circularly slit annulus with m points removed.

The above thereoms have an appealing form in the case that n = 1 and
it is worth stating this separately.

5.8 Theorem. If G is a 1-connected region in C, then the following state-
ments hold.

(a) If each component of Co, \ G is a point, then G is conformally equiv-
alent to the punctured plane Cq.

(b) If one component of Co, \ G is a point and the other is not, then G
is conformally equivalent to {z: 1 < |z| < oo}.

(¢) If neither component of Coo\G is a point, then there is a finite number
r such that G is conformally equivalent to {z:1 < |z| < r}.

IfA, = {z:1< |zl <7} forl < r < oo, then A, and A,, are
conformally equivalent if and only if r1 = rs.

Proof. The proofs of (a), (b), and (c) are straightforward. The proof that
A,, and A,, are conformally equivalent if and only if r; = r2 follows from
the uniqueness part of Theorem 5.1. O

Exercises

1. Show that every proper annulus is conformally equivalent to one of
the form {z:r < |2| < 1}.

2. Assume G is an analytic Jordan region and 2 is a circularly slit
annulus as in the proof of Theorem 5.1; adopt the notation of that
proof. If ¢ : c1G — ¢l 2 is the continuous extension of the conformal
equivalence of G onto €2, show that for 2 < j < n, ¢ is two-to-one on
;. (Hint: Let o, be a Jordan curve in G that contains «; in its inside
and has the remaining boundary curves of G in its outside. Note that
¢(o.) is a Jordan curve in €2 that contains precisely one boundary
arc of Q in its inside. What happens as ¢ — 07)

3. If0 <r; < Rj <00, j = 1,2, show that ann(0; 7, R;) and ann(0; 2, R2)
are conformally equivalent if and only if Ry/ry = Ra/rs.

4. Let A = ann(0;7, R),0 < r < R < 00, and characterize all the ana-
lytic functions f : A — A that are bijective.
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5. (a) Let G be a non-degenerate n-connected region with boundary
components Cy, C4,...,C, and let ¢ : G — G be a conformal equiv-
alence. Show that if n > 2 and for three values of k, ¢ associates Cj,
with itself in the sense of §3, then ¢ is the identity mapping. (b) If
n > 2, show that the group of all conformal equivalences of G onto
itself is finite. Give a bound on the order of the group. (See Heins
[1946].)

§6 Conformal Equivalence with a Circularly Slit Disk

In this section we will see another collection of canonical n-connected re-
gions that completely model the set of all n-connected regions.

6.1 Definition. A circularly slit disk is a region §2 of the form

Q:D\Ocjv

=1

where for 1 < j < n, C; is a proper closed arc in the circle |z| = 7, 0 <
T < 1.

Note that as defined a circularly slit disk contains 0. The point 0 will
be used to give the uniqueness statement in Theorem 6.2 below. The main
result of this section is the following.

6.2 Theorem. If G is a non-degenerate n-connected region, a € G, and A
s any component of 8 G, then there is a unique circularly slit disk Q and
a unique conformal equivalence ¢ : G — S such that ¢ associates A with
oD, ¢(a) =0, and ¢'(a) > 0.

As in the preceding section, we will prove a lemma that will imply the
uniqueness part of the theorem and also motivate the existence proof.

6.3 Lemma. If Q and A are slit disks and f : & — A is a conformal
equivalence such that f(0) = 0 and f(8D) = AD, then there is a complex
number a with |a| = 1 such that A = o) and f(2) = az for all z in Q.

Proof. Some details will be omitted as this proof is similar to that of
Lemma 5.2. Let G be an analytic Jordan region with outer boundary vg =
0D such that there is a conformal equivalence ¢ : G — Q and ¢(0D) = dD.
Let a € G such that ¢(a) = 0. Denote the remaining boundary curves of G
by ¥1,---,¥n- Adopt the notation in Definition 6.1.

Let u = log |¢|. So u is a negative harmonic function on G \ {a} and, for
0 <j <n, u=pj;, where exp(p;) = r;. Now ¢ = (z — a)h, where h is an
analytic function that never vanishes on G. So u = log |z — a| + log |h| and
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log |h| is harmonic on G. If wy,...,w, is the harmonic basis for G, [u —
>_; Pjwj] —log|z —a| is harmonic on G and u — Y, p; w; vanishes on 9G.
Thus

u(z) = —g(z,a) + Y pjw;(2),

j=1
where g(z,a) = g,(z) is the Green function for G with singularity at a.
Thus
1 1 = Pk
2m J,, du = 2r /7 dga+;27r [75 e
n
= wj(a)+ chkpk,
k=1

where cjj, is one of the periods of wg. On the other hand,

1 1
-_ *du = — 6u
21 Jy, T Jy;
I S
Co2mi ), ¢
=0
for 1 < j < n. Therefore py, .. ., p, are the unique solutions of the equations
6.4 > ek o = —wj(a).
k=1

Arguing as in the proof of Lemma 5.2, if ¢y = f o @, then |¢| = |¢| and so
1 = a¢ for some scalar a with |¢| =1. O

Proof of Theorem 6.2. Without loss of generality we may assume that
G is an analytic Jordan region with outer boundary A = 79 = 0D; let
1,--.,7n be the remaining boundary curves. Let g, = —log|z — a| + R,
be the Green function for G and let w,...,w, be the harmonic basis for
G. If {c;x} are the periods for the harmonic basis, let p1,...,pn be the
unique scalars such that (6.4) is satisfied. Put v = —g, + >, prwi and put
v = u — log |z — a|. So v is harmonic on G and a computation shows that
for1<j<n

1 1 1 =
— *dv = ——/ *d log]z——a|——/ *dgae + Cjk Pk
27 v 27 v 2T s ;
1
= *d 1 -
3 | "ol ~al
n(vj;a)

0.
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Therefore there is an analytic function s on G such that v = Re h. Moreover
h can be chosen so that h(a) is real. So u = log|z — a| + Re h.

Let ¢ = (2 — a)e” so that log|p| = u. It follows that |¢| = ro = 1 on
v and |¢| = 7; = e on y; for 1 < j < n. For any complex number ¢
let N(¢) be the number of solutions of the equation ¢(z) = ¢, counting
multiplicities. As in the proof of Theorem 5.1,

n

N(Q) =Y n(¢(13); -

Jj=0

Now ¢(7;) € {¢ : |¢] = r;} so that to calculate N(() it suffices to calculate
n($(7;); 0). But

n6s)s0) = 5 [ &

2mi J,, ¢
1 1
= — ( +h/)
2m1 v \Z—a
= n(v;;a)
1 if 7=0

0 if 1<j<n.

Collating the various pieces of information we get that if |{| # r; for 0 <
7 £ n, then
0 iff¢)>1

1 ifj¢ <1

N(¢) =

From here it follows that Q@ = ¢(G) is a slit disk and ¢ is a conformal
equivalence of G onto  with ¢(a) = 0. Since h(a) is a real number, a
calculation shows that ¢'(a) > 0.

The uniqueness follows from Lemma 6.3 and is left to the reader. O

Exercises

1. Denote the conformal equivalence obtained in Theorem 6.2 by ¢(z, a);
so ¢(a,a) = 0 and 81¢(a,a) > 0. Show that if [d;;] is the inverse of
the matrix [c;¢]), then

log [¢(2,a)] = —g(z,a) + Y djkw;(2) wi(a).
d k=1

Thus ¢(z,a) = ¢(a, z).
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2. Show that if G is an n-connected region and a,b € G, then there
is a conformal equivalence ¥ on G that maps G onto the extended
plane with circular slits and ¥(a) = 0 and ¥(b) = oo. (Hint: Let
Y(z) = ¢(z,a)/¢(z,b) (notation from Exercise 1); use the Argument
Principle to show that ¢ is one-to-one.)

3. How must Theorgm 6.2 be changed if some of the components of the
complement of G are trivial?

§7 Conformal Equivalence with a Circular Region

A region §Q is a circular region if its boundary consists of a finite number of
disjoint non-degenerate circles. In this section it will be shown that every
n~-connected region is conformally equivalent to a circular region bounded
by n + 1 circles. This proof will be accomplished by the use of Brouwer’s
Invariance of Domain Theorem combined with previously proved conformal
mapping results. But first the uniqueness question for such regions will
be addressed. Recall that the oscillation of a function f on a set E is
osc(f; E) = sup{|f(z) — f(y)| : =, y € E}. For a curve v, £(~y) denotes its
length.

7.1 Lemma. Let K be a compact subset of the region G and let f be a
bounded analytic function on G\ K. If, for every € > 0 and every open
set U containing K and contained in G, there are smooth Jordan curves
{71,---s¥n} in U that contain K in the union of their insides such that

n

2":5(71)2 <e and ) fosc(f, )]’ <,

then f has an analytic continuation to G.

Proof. Let 7o be a smooth positively oriented Jordan curve in G \ K that
contains K in its inside. Fix a point z in G\ K and inside 7. For € > 0 let
Y1,.-+,7¥n be as in the statement of the lemma arranged so that they lie
inside 7o and the point 2 is outside each of them. Give the curves v1,...,vn
negative orientation. So I’ = {0, 71, - --,Vn} is a positively oriented Jordan
system in G. Let d = dist(z,T"). Hence

f@):ﬁ d +ZQ71”/ f(“’)

Fix a point w; on ;. Since z is in the outside of v;,

1 f(w) _ o fwy) dw 1 f(w)
%/ D gy = L2 24— g

21 v W— 2 27t b W2
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Hence if §; = osc(f,7;),

L [ fw) 1 [ |fw) = fwy)
j;m/ww—zdw < 2_71'];/7, — 2 = |du|
= £(1;)8
< Y ond
J=1
1/2 1/2

I
‘:‘n”H
U
M:
i?
“’v
Ng
D>

IA

Since € was arbitrary,

_ 1 f(w)
f(z)—m[’0 p—

for all z inside v and lying in G \ K. Thus this formula gives a means of
defining f on the set K that furnishes the required analytic continuation.
O

For the following discussion, let’s fix some notation. Let Q be a circular
region whose outer boundary is v9 = 8D. Let v,...,~, be the remaining
circles that form the boundary of §; put v; = 9B(a;;7;). Now look at the
region that is the reflection of {2 across the circle v;. Recall (§3.3) that the
reflection of a point z across the circle +y; is the point w given by

r2

7.2 w=a; +—1—.
Z = aj

Note that this formula is the conjugate of a Mébius transformation. Thus
the image of 2 under this transformation is another circular region; call
it Q;; for the moment. Note that the outer boundary of ;; is the circle
vi- Thus Q(1) = QU U---U Qi Uy U--- U+, is also a circular
region, though its complement has more components (how many more?).
Now for each §2;; and for each of its boundary circles v, look at the image
of Q;; under the reflection across . Denote the resulting circular regions
by {€2; : 1 < j < N,}. Note that each of these is the image of {2 under two
successive reflections and hence is the image of 2 under the composition of
two transformations of the type given in (7.2). It is easy to check that the
composition of two such transformations is a M6bius transformation. Let
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Q(2) be the union of (1), the regions {§; : 1 < j < N3}, together with
the circles forming the inner boundary of Q(1).

Continue. This produces for each integer k a collection of circular regions
{Q%; : 1 < j < Ny} and an increasing sequence of circular regions {Q(k)},
where Q(k) is the union of Q(k — 1), the regions {Q; : 1 < j < Ni},
together with the circles that form the inner boundary of Q(k — 1). Put
Q(00) = Upf2(k). So

2(o0) =9UU{CIij 1k >1landl < j < Ng}

For k > 1 and 1 < j < Ny, Q; = Ti;(2), where Ty; is a Mobius trans-
formation if k is even and the conjugate of a Mo6bius transformation if k is
odd. Let 7xji, 1 < i < n, be the circles that are the components of 9€;
exclusive of its outer boundary. So the components of 8Q(k) are the unit
circle together with the circles {ykj; : 1 < j < Ni,1 < i < n}. Put rgj =
the radius of xj;.

7.3 Lemma. With the preceding notation,

[o o]
ZZ{T%ji:ISjSNM 1<i<n}<oo.
k=1

Proof. First note that the regions {Q; : £ > 1, 1 < j < Ny} are pairwise
disjoint. Let Dy, be the derivative of Tx; when k is even and the derivative
of the conjugate of Tj; when k is odd. Let B = B(a;r) be a disk contained in
Q and consider the disks T;(B). By Koebe’s 1/4-Theorem, T};(B) contains

a disk of radius r | Dy;(a)| /4. Thus Area(Q4;) > 72 |Dy;(a)|? /16. Thus
74 3D AIDkj(@)* 11 < 5 < Ny} < 0.
k=1

According to the Distortion Theorem (14.7.16), for 1 < ¢ < n there is a
constant M; such that for k> 1 and 1 < j < Ng,

sup{|Dy;(2)| : z € i} < M;|Dy;(a)] .

Now ~kji = Tij(v:) for 1 < i < n. Thus
2777"5]'1: = / |Dk](z)| ‘dZI < Mi |ij(a)|27'l'1"i.
-

Combining this with (7.4) gives the proof of the lemma. O

7.5 Proposition. If Q and A are circular regions and f : @ — A is a
conformal equivalence, then f is a Mébius transformation.
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Proof. By Theorem 3.4 it follows that f maps each circle in the bound-
ary of €2 homeomorphically onto a circle in the boundary of A. By using
appropriate Mobius transformations, it suffices to consider the case that
the outer boundaries of 2 and A are the unit circle and f maps 8D onto
itself. If 1, ..., 7, are the other boundary circles of A, the numbering can
be arranged so that f(v;) =n; for 1 <i < n.

Adopt the notation of Lemma 7.3 and the analogous notation for the
circular region A. By using the Reflection Principle there is for each k > 1
a conformal equivalence f : (k) — A(k) that continues f. Hence we get
a conformal equivalence fo, : 2(c0) — A(oo). Note that K =D \ Q(o0) is
compact.

Now apply Lemma 7.1 to show that fo, has a continuation to D. Once
this is done the proof will be complete. Indeed, if g = f~! : A — , the
same argument shows that g has a continuation to D that is a conformal
equivalence on A(c0). In fact goo = f;l. Since 2 = goo © foo = foo © goos it
must be that the continuation of f to D is a conformal equivalence whose
inverse is the continuation of g to D. Thus f is a conformal equivalence of
DD onto itself. According to Theorem 6.2.5, f is a Mdbius transformation.

To see that Lemma 7.1 is applicable to f., let U be an open subset of
D that contains K and let € > 0. By Lemma 7.3 and an easy topological
argument, there is an integer m such that for k£ > m each of the circles ~yx;;
is contained in U and

o0
SN {rdi1<i< Ny, 1<i<n}<e
k=m

If pij; is the radius of #i;;, m can also be chosen so that

o0
S S ek 1<i< N, 1<i<n}<e.

k=m

But fx maps the circle vx;; onto the circle nx;;. So if éxj; = osc(f, Vxji),
this last inequality implies that

DD {6 1<ji< N, 1<i<n}<e.

k=m

Thus the curves {ym;; : 1 < i <n, 1 < j < Np,} are those required by
Lemma 7.1. O

The topological lemma that follows will be used in the existence proof.

7.6 Lemma. (a) Let {Q4} be circularly slit disks such that 8D is the outer
boundary of each and each Q) is n-connected. If Q is a non-degenerate
n-connected region with outer boundary 8D and Q) — Q in the sense of
(4.1), then Q is a circularly slit disk.



104 15. Finitely Connected Regions

(b) Let {Gk} be circular regions such that O is the outer boundary of
each and each Gy is n-connected. If G is a non-degenerate n-connected
region with outer boundary 0D and Gy — G in the sense of (4.1), then G
is a circular region.

Proof. (a) Let 41, ...,7, be the bounded components of the complement
of ; put vo = OD. Let 0 < 6 < dist(y;,7;) for ¢ # j and 0 < 4,5 < n.
Choose an integer k; such that for k > k;, K = {z € D;dist(z,09) > 6} C
Q. If 0 < j <n and a; € v;, then Exercise 4.5 implies there is an integer
ka > k; such that for k > ko, dist(aj;,08) < 6/2. Fix k > kg for the
moment and let aj, € 0Q with |a;x — a;| < §/2. If 7, is the component
of 0, that contains a;, then it must be that vy, C {z : dist(z,v;) < 6}.
Indeed the fact that K C Q and Q C D implies that v;; € D\ K. Since
7Yk is connected, the choice of § implies that v C {z : dist(z,7;) < 6}.
Thus we have that for k > ko, the proper arcs that form the bounded

components of the complement of {2, can be numbered ~ix,. .., Ynx SO as
to satisfy
7.7 ik € (75)s = {z : dist(z, ;) < 6}

Now fix j, 1 < j < n. For each ¢ in v;, Exercise 4.5 implies there is
a sequence {(x} with (x in 0 such that ¢ — ¢. By (7.7), {x € ;i for
k > ky. If v;x is contained in the circle {¢ : |¢| = pjx}, this implies that
pik = |Cik| — |¢|. Since ¢ was an arbitrary point of +;, this shows that ;
is contained in the circle {7 : |y| = p;}, where p;jx — p; as k — co. But
is connected and no component of the complement of € is trivial. Thus ;
is a proper closed arc in this circle and hence 2 is a circularly slit disk.

The proof of part (b) is similar. O

7.8 Lemma.

(a) Let {Gx} and G be circular regions such that 0D is the outer boundary
of each and each is n-connected; for each k > 1 let fi : Gy — S be a
conformal equivalence onto a circularly slit disk Q. with outer boundary
0D such that fi,(0) = 0, f(0) > 0, and f,(OD) = dD. If Gx — G in the
sense of (4.1), then fr — f (uc), where f is a conformal equivalence of G
onto a circularly slit region 2 with outer boundary 8D, and 2 — Q.

(b) Let {Q} and Q be circularly slit disks such that D is the outer bound-
ary of each and each is n-connected; for each k > 1 let ¢ : Qi — Gy, be a
conformal equivalence onto a circular region Gy with outer boundary 0D
such that ¢r(0) = 0, ¢, (0) > 0, and ¢ (OD) = OD. If Qi — Q in the
sense of (4.1), then ¢ — ¢ (uc), where ¢ is a conformal equivalence of 2
onto a circularly slit region G with outer boundary 0D, and Gy, — G.

Proof. As with the preceding lemma, the proofs of (a) and (b) are similar,
so only the proof of (a) will be presented.

First we show that {f,(0)} is bounded away from 0. Let Cy,...,C, be
the circles in the boundary of G that are different from 9 D and choose € > 0
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such that the closure of V = {z : dist(z, D) < €} is disjoint from each C;.
Since G — G, there is a k1 such that for k > ky,clV N OG, = 8D. Thus
each fr with k > k; admits a univalent analytic continuation to Gx UV,
which will also be denoted by fx (Proposition 13.4.4). It is straightforward
to check that G, UV - GUV.

We now want to construct certain paths from 0 to points on the unit
circle. Let z € 8D and consider the radius [0, z]. This radius may meet
some of the circles C;. Enlarge these circles to circles Dy, ..., D, so that
they remain pairwise disjoint, do not meet D, and do not surround O.
Whenever [0, z] meets D, replace the segment of [0, 2] by half of this circle.
Each circle D; has radius less than 1 so that we arrive at a path from 0
to z that lies entirely in G, stays well away from the circles Ch,...,C,,
and has length less than 1 + nw. Thus we can find an open subset U of
G such that 0D C clU € GUYV, 0 € U, and for each 2z in 8D there
is a path in U from 0 to z having length < 1+ nw. Let k2 > k; such
that clU € G UV for k > ks. According to Theorem 14.7.14 there is a
constant M such that |f}(z)] < M |f;(0)] for all k& > ke and z in clU. If
|z| = 1, let v be a path in U for 0 to z with length (y) < 1 4+ nmr. Thus
1=|fe(2)] £ f7 Ifi] ldw| < M |f{(0)|(1 + nx). Hence {f;(0)} is bounded
below.

Now we will show that {f;(0)} is bounded above. Let ¢, = [f;(0)]~*
and put g = ¢ fr. If {f;(0)} is unbounded, there is a subsequence {cx, }
that converges to 0. But according to Lemma 4.6, by passing to a further
subsequence if necessary, there is a univalent function g : G — C such that
gk, — g(uc). Theorem 4.7 implies that cx,Q%, = gx,(Gr;) — g(G). But
the sets (2, are all contained in D and since cx, — 0, {ck,;{2%;} can have
no kernel, a contradiction. Thus {f},(0)} must be bounded.

Remember that anything proved about the sequences {fx} or {f,(0)}
is also true about any of their subsequences. Suppose that f;.(0) — a, a
non-zero scalar. Using the notation of the preceding paragraph, there is a
subsequence {g, } and a univalent function g on G such that gy, — g (uc).
Thus Qi; = fi,;(Gk;) — ag(G).

Thus f = a g is a conformal equivalence of G onto a region 2 and Q, —
. Since the outer boundary of 2 is 8D, Lemma 7.6 implies that Q is a
circularly slit disk.

Now suppose that {fi;} and {fn,} are two subsequences of {fi} such
that fr, — f and f,,, — h, where f and h are conformal equivalences
of G onto circularly slit disks €2 and A, respectively, with f(0) = h(0) =
0, f(0) > 0, and A'(0) > 0. Thus ¢ = f o h~! is a conformal equivalence
of A onto Q with ¢(0) = 0,¢'(0) > 0, and ¢(6D) = OD. By Lemma 6.3,
A=Qand ¢(¢) = ¢ for all ( in A. Thus h = f.

To recapitulate, each subsequence of {fr} has a subsequence that con-
verges to a conformal equivalence of G onto a circularly slit disk, and each
convergent subsequence of {fx} has the same limit point. This implies that
{fr} converges to a conformal equivalence f of G onto the circularly slit
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disk Q. Hence Q; — € by Theorem 4.10. O

7.9 Theorem. If G is a non-degenerate finitely connected region, A is
a component of the extended boundary of G, and a € G, then there is a
unique circular region QQ and a unique conformal equivalence f : G — §
such that f associates A with 8D, f(a) =0, and f’'(a) > 0.

Proof. Once existence is established, uniqueness follows from Proposition
7.5 as follows. Suppose that for j = 1,2, f; : G — §}; is a conformal
equivalence that associates A with 0D such that f;(a) = 0 and f}(a) > 0.
Then g = fo 0 fi! is a conformal equivalence of £; onto Q, g(dD) =
0D, g(0) = 0, and ¢'(0) > 0. It follows from Proposition 7.5 that g is
a Mobius transformation. The remaining information about g shows that
g(z) = 2 for all 2.

Now for the proof of existence. Let G be the collection of all circular
regions G that are n-connected such that 0 € G and 9D is the outer
boundary of G. Let H be the collection of all circularly slit disks Q that
are n-connected such that 8D is the outer boundary of Q. According to
Theorem 6.2, for every G in G there is a unique © in H and a conformal
equivalence f : G —  such that f(0) =0, f’(0) > 0, and f associates 0D
with 8. This defines a map F : G — H by F(G) = Q whenever G and
are conformally equivalent. To prove the theorem it suffices to show that
F is surjective.

We now topologize G and H. If G € G, let Cy,...C, be the circles
that form the boundaries of the bounded components of the complement
of G. Each circle C; is determined by its center z; = a; + i¢b; and its
radius r;. Thus G can be identified with the point in R3™ with coordinates
(@1,b1,71,- .+, 8n,bn,Ts); let G’ be the set of such points in R3™ that are so
obtained. Note that G’ is a subset of

{(a1,b1,71,---1Qn,br, ) : 0<¢z]2-+b;‘7 <land0<r; <1}

G' is a proper subset of this set since we must have that the circles compris-
ing the boundary of G do not intersect. If G € G, let G’ be the corresponding
point in G'.

If Q € H, let ~1,...,7, be the closed arcs that constitute the bounded
components of the complement of 2. Each +; is determined by its beginning
point {; = a; + ¢f; and its length 6; as measured in a counterclockwise
direction. Thus we also have that each Q in H can be identified with a
point ' in R3"; let H' = {Q' : @ € H}. The function F : G — H gives rise
to a function F' : G’ — H'.

Give G’ and H’ their relative topologies from R3". It is left to the reader
to show that a sequence {G} in G converges to G in G (in the sense
of Definition 4.1) if and only if G}, — G’ in G’. Similarly for convergent
sequences in H and H’. We will show that F is surjective by showing that
F’ is a homeomorphism.
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7.10 Claim. Both G’ and H’ are connected open subsets of R3".

The proof of this claim is left to the readers so that they might more
thoroughly familiarize themselves with the notation and the identifications.
At this point it seems safe to abandon the distinction between the regions
and the corresponding points in R3* and we do so.

Note that F is injective by the uniqueness statement of Theorem 6.2.
Let Gy — G in G and put Q = F(Gi) and @ = F(G). According to
Lemma 7.8, Q; — Q and so F' is continuous. By the Invariance of Domain
Theorem, F : G — H is an open map. Suppose F' is not surjective; let
Q; € H\ F(G) and let Qp = F(Gy) € F(G). Since H is an open connected
subset of R3", there is a path 2 : [0, 1] — H with Q(0) = Qp and (1) = Q.
Since F(G) is open, there is a 7 with 0 < 7 < 1 such that Q(r) ¢ F(G) and
Q(t) = F(G(¢)) € F(G) for 0 <t < 1. Let 0 < tx < 7 such that ¢x — 7; so
Q(tx) — Q7). If Gy, = F~1[(tx)], then Lemma 7.8 implies that Gx — G,
a circular region, and it must be that F(G) = Q(7), contradicting the fact
that Q(7) ¢ F(G). Thus F is surjective, proving the theorem. O

Exercises

1. Give an example of a sequence of circularly slit disks that converges
to D in the sense of (4.1).

2. What happens in Theorem 7.9 if some of the components of the com-
plement of G are trivial?

3. Refer to Exercise 3.3 for the definitions of a proper map. Let G be
a non-degenerate n-connected region and let Aut(G) be the group of
all conformal equivalences of G onto itself. Show that if f : G — G is
a proper map, then f € Aut(G) (Radé [1922]) (Hint: Take G to be
a circular region with outer boundary 8D. Use the hypothesis that
f is proper to show that f extends to clG. Now extend f by the
Schwarz Reflection Principle. Now f defines a permutation of the
boundary circles 7y, ...,7, of G. Show that for some integer m > 1,
the m-th iterate of f, f™, defines the identity permutation. Thus,
without loss of generality, we may assume that f defines the identity
permutation of the boundary circles. Now use the method of the proof
of Proposition 7.5 to extend f to a proper map of D onto D and use
Exercise 3.4. Also show that f fixes the points of D \ G(00).)

4. If G is a non-degenerate n-connected region and f : G — G is a
conformal equivalence such that f(z) = z for three distinct points z
in G, then f is the identity.



Chapter 16

Analytic Covering Maps

In this chapter it will be shown that for every region 2 in the plane such that
C\ Q has at least two points, there is an analytic covering map 7: D — 2.
This is the essential part of what is called the Uniformization Theorem. The
reader might want to review §9.7 before going much further. The reader will
be assumed to be familiar with some basic topological notions such as the
fundamental group and its properties. Some topological facts will be proved
(especially in the first section) even though they may seem elementary and
assumable to many.

§1 Results for Abstract Covering Spaces

Recall that if Q is a topological space, a covering space of (2 is a pair
(G, T) where G is also a connected topological space and 7 : G — Q is a
surjective continuous function with the property that for every ¢ in €2 there
is a neighborhood A of ¢ such that each component of 771(A) is mapped
by 7 homeomorphically onto A. Such a neighborhood A of ¢ is called a
fundamental neighborhood of (.

We will be concerned in this book with covering spaces (G, 7) of regions
Q in C where G is also a region in C and 7 is an analytic function. Such
a covering space will be called an analytic covering space. It is not dif-
ficult to check that (C,exp) and (C\ {0}, 2"), for n a non-zero integer,
are both analytic covering spaces of the punctured plane. Of course any
homeomorphism yields a covering space and a conformal equivalence gives
rise to an analytic covering space. In fact our main concern will be analytic
covering spaces (G, 1) of regions 2 in C where G = D. But for the moment
in this section we remain in the abstract situation where G and 2 are met-
ric spaces. In fact the following assumption will remain in force until it is
supplanted with an even more restrictive one.

Assumption. Both G and Q are arcwise connected and locally arcwise
connected metric spaces, (G, T) is a covering space of Q, ag € G, and
ap = T(ag) € Q.

Recall that a topological space is said to be locally arcwise connected if
for each point in the space and each neighborhood of the point there is a
smaller neighborhood that is arcwise connected. A good reference for the
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general theory of covering spaces is Massey [1967]. Because certain notions
will be so frequently used and to fix the notation, we recall a few facts from
§9.7.

If v : [0,1] — Q is a path with 4(0) = ag, then there is a unique path
7 :[0,1] — G with ¥(0) = ap and 705 = 7 (9.7.5). Such a path 7 is called
an ag-lifting (or ag-lift) of v. Moreover if o : [0,1] — Q is another path
with initial point ap and & is its ap-lifting,then 4 and & have the same final
point in G if v and o are fixed end point (FEP) homotopic in Q (9.7.6).
Indeed 4 and & are FEP homotopic under this hypothesis. A loop in € is
a closed path. If v : [0,1] — Q is a loop with v(0) = (1) = ao, say that
is a loop with base point ap.

We begin with some basic results about “liftable” continuous functions.

1.1 Lemma. Suppose (G, T) is a covering space of Q, X is a locally con-
nected space, f : X — Q is a continuous function, and T : X — G 1is
a continuous function such that ToT = f. If z € X, A is a fundamen-
tal neighborhood of ¢ = f(z), U is the component of T~ 1(A) containing
z =T(z), and W is a connected neighborhood of x such that f(W) C A,
then T\W = (r|U) Y o (f|W).

Proof. Using the above notation, T'(W) is connected and contained in
771(A), and z € T(W); therefore T(W) C U. Since f(w) = 7(T(w)) for
all w in W, the lemma follows. O

1.2 Proposition. Suppose (G, T) is a covering space of Q, X is a connected
locally connected space, f : X — Q is a continuous function, and S and T
are continuous functions from X into G such that f = 70T =710 §. If
there is a point xg in X for which T(z¢) = S(xo), then T = S.

Proof. Set Y = {x € X : T(z) = S(z)}. By hypothesis Y # 0 and
clearly Y is closed. It suffices to show that Y is also open. If z € Y/, let
z=T(z) = S(z), £ = f(z), A a fundamental neighborhood of £, and let
U be the component of 77(A) that contains z. If W is a neighborhood
of z such that f(W) C A, then the preceding lemma implies that T'|W =
(r|U)"Y o (f|W) and also S|W = (7|U)~ ! o (f]W). Thus W CY and Y is
open. O

1.3 Theorem. Suppose (G, T) is a covering space of Q, X is a connected
locally connected space, and f : X — Q is a continuous function with
f(zo) = ap = 7(ao). If X is simply connected, then there is a unique
continuous function T : X — G such that f = 10T and T(zo) = ao.

Proof. If x € X, let o be a path in X from zg to . So f oo is a path in
Q from ag to f(z). Let 4 be the ag-lift to G. Define T(z) = %(1); it must
be shown that T'(z) is well defined. So suppose that oy is another path in
X from z¢ to z. Since X is simply connected, o7 ~ o (FEP) in X. Thus
fooy ~ foo (FEP) in . By the Abstract Monodromy Theorem, the
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ag-lift of f o o; has the same final point as 4. Therefore the definition of
T(z) does not depend on the choice of the curve o and is well defined.

To prove contimuity let £ € X and let z = T(z). Let ¢ be a path in X
from zg to =, v = f o o, and let ¥ be the ag-lift to G. So z = 4(1). Let A
be a fundamental neighborhood of { = f(z) and let U be the component
of 771(A) that contains z. Choose A so that it is arcwise connected. Let
W be an arcwise connected neighborhood of z in X such that f(W) C A.
If w is any point in W, let A be a path in W from z to w. So fo ) is a path
in A from ¢ = f(z) to f(w). Thus the z-lift of foXis A= (r]U) 1o fo A
But Ao is a path in X from zo to w and this leads to the fact that T'(w) =
A1) = (7|U)"(f(w)). Thus T|W = (7|{U)~! o f|[W and T is continuous.

It is easy to check from the definition that 7 o T = f and T(zp) = ao.
Uniqueness is a consequence of Proposition 1.2. O

1.4 Definition. If (G1,71) and (G2, 72) are covering spaces of 2, a ho-
momorphism from G to G is a continuous map T : G; — G5 such that
19 0T = 7,. If T is a homeomorphism as well, then T is called an isomor-
phism between the covering spaces.

If (G, 7) is a covering space of {2, an automorphism of the covering space
is a covering space isomorphism of G onto itself. Let Aut(G,7) denote the
collection of all automorphisms of (G, 7).

Note that the inverse of an isomorphism is an isomorphism and Aut(G, 7)
is a group under composition. The next result collects some facts about
homomorphisms of covering spaces that are direct consequences of the pre-
ceding results.

1.5 Proposition. Suppose that (Gy,71) and (G2, 72) are covering spaces
of Q with 7(a;1) = T(a2) = ap.

(a) IfT:G1 — Gg is a homomorphism of the covering spaces, then T is
a surjective local homeomorphism.

(b) If G, is simply connected, there is a unique homomorphism T : Gy —
G2 with T(al) = as.

(¢) Any two covering spaces of Q that are simply connected are isomor-
phic.

Proof. (a) Without loss of generality we may asume that T(a;) = a2. To
see that T is surjective, let z; be an arbitrary point in G2 and let 33 be
a path in G5 from az to z3. Let v = 75 0 43 and let 4; be the a;-lift of ~.
Now T o4, is a path in G5 with initial point a; and 7,07 0%; = . By the
uniqueness of path lifts, T'o 4; = 42. Thus 22 = H2(1) = T(51(1)) and T
is surjective. Since 77 is a local homeomorphism, the fact that T is a local
homeomorphism is immediate from Lemma 1.1.
(b) This follows from Theorem 1.3.
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(¢c) Let T : G; — G2 be a homomorphism with T'(a;) = a2 and let
S : Ga — G; be a homomorphism with S(az) = a;. Thus SoT is a
homorphism of GG; into itself that fixes the point a;. From Proposition 1.2
it follows that S o T is the identity homorphism of G; and so T' must be a
isomorphism (with S as its inverse). O

Thus we say that a simply connected covering space of ) is the universal
covering space of 2. The reason for the word “universal” here is contained
in (b) of the preceding proposition. The reason for the use of the word
“the” is contained in (c). Of course this uniqueness statement does not
imply existence. The existence of a universal covering space for subsets
of the plane will be established before the end of this chapter. Existence
results for more general spaces can be found in any standard reference.

1.6 Corollary. If (G, ) is the universal covering space of Q@ and a; and
as are two points in G with 7(a1) = 7(az), then there is a unique T in
Aut(G, 1) with T(a1) = as.

Proof. Apply Theorem 1.3 and, as in the proof of the preceding proposi-
tion, show that the resulting homomorphism is an automorphism. O

1.7 Corollary. If (G, T) is the universal covering space of  and z € G,
then 77 1(1(2)) = {T(2) : T € Aut(G,7)}.

1.8 Theorem. If (G, 1) is the universal covering space of 2, then Aut(G, 1)
is isomorphic to the fundamental group of 1, ().

Proof. Let T € Aut(G,7) and let 4 be any path in G from ag to T'(ag).
Since T € Aut(G,7), ¥ = 707 is a loop in £ with base point ay. If &
is another path in G from ap to T'(ap), then the simple connectedness of
G implies that 6 and 4 are FEP homotopic in G. Thus 7 o & and ~ are
homotopic in 2. This says that for each T in Aut(G,7) there is a well
defined element 7 in «(Q2). It will be shown that the map T" — ~r is
an anti-isomorphism of Aut(G,t) onto 7(€2). (The prefix “anti” is used
to denote that the order of multiplication is reversed.) This implies that
T — vp ! defines an isomorphism between the two groups, proving the
theorem.

Let S and T be two automorphisms of the covering space; it will be
shown that ysr = y7vs- To this end let 4 and & be paths in G from ag to
T(ag) and S(ag), respectively. So yr = 704 and vg = 705. Now So7yis a
path in G from S(ag) to S(T(ag)) so that (S o 4)é is a path in G from ag
to S(T (ao)). Therefore ysr = 0 [(S 07)] = [r o (S 0 3)] [r 0] = 77 7s.

To show that the map is surjective, let v € 7(2,a9) and let 7 be the
ag-lift of . According to Corollary 1.6 there is a unique automorphism T°
such that T'(ag) = 5(1). It follows from the definition that vy = .

Finally let’s show that the map is injective. Suppose T € Aut(G, 1) and
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y=~r ~ 0in . Let ¥ be the ap-lift of 7; so T(ap) = 4(1). Now v ~ 0
implies that -+ is homotopic to the constant path ag. But the Abstract
Monodromy Theorem implies that the ag-lifts of ag and v have the same
end point. Since the ap-lift of the constant path o is the constant path
ag, this says that T'(ag) = ag. By Proposition 1.2 this implies that T is the
identity automorphism. O

Exercises

1. Suppose (G, T) is a covering space of {2 and A is a subset of §2 that
is both arcwise connected and locally arcwise connected. Show that
if H is a component of 771(A), then (H,7) is a covering space of A.

If 7(t) = e, show that (R, 7) is a covering space of D. Find Aut(R, 7).
For the covering space (C,exp) of C\ {0}, find Aut(C, exp).
For the covering space (C\ {0}, z™) of C\ {0}, find Aut(C\ {0}, 2™).

For any z in G, show that {T'(z) : T € Aut(G, 1)} is a closed discrete
subset of G.

6. f G ={z:0 < Re z < r} and 7(z) = e*, show that (G,7) is a
covering space of ann(0; 1,e") and find Aut(G, 7).

A

7. If G = {z: 0 < Re z} and 7(z) = €%, show that (G, 7) is a covering
space of {z: 1 < |2| < oo} and find Aut(G, ).

8. Prove that for the universal covering space, the cardinality of {T'(z) :
T € Aut(G, 1)} is independent of the choice of z.

§2 Analytic Covering Spaces

In this section we restrict our attention to analytic covering spaces and
derive a few results that are pertinent to this situation. Assume that Q2 and
G are regions in the plane and 7 : G — Q is an analytic function that is
also a covering map.

2.1 Proposition. If (G, 7) is an analytic covering space of 2, H is an open
subset of the plane, f : H — §Q is an analytic function, and T : H — G 1is
a continuous function such that 7o T = f, then T is analytic.

Proof. This is an immediate consequence of Lemma 1.1. O

2.2 Corollary. If (G1,71) and (G2,72) are analytic covering spaces of Q
and T : Gy — G2 is a homomorphism, then T is analytic.
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2.3 Corollary. If (G,7) is an analytic covering space of Q, then every
function in Aut(G, 1) is a conformal equivalence of G.

2.4 Corollary. If (G1,71) and (G2, 72) are analytic covering spaces of Q
and T : G; — Gs is an isomorphism, then T is a conformal equivalence.

2.5 Corollary. If 7 : D — Q is an analytic covering map, 7(0) = ap, and
7'(0) > 0, then T is unique.

Proof. Suppose that p: D — Q is another such map. By Proposition 1.5
there is an isomorphism f : (D,7) — (D, ) of the covering spaces with
f(0) = 0. By the preceding corollary, f is a conformal equivalence of the
disk onto itself and thus must be a M&bius transformation. But f(0) = 0
and f’(0) > 0; therefore f(2) = z for all z. O

2.6 Corollary. Suppose (G,T) is an analytic covering space of Q, X
is a region in the plane, and f : X — € is an analytic function with
f(zo) = ap = 7(ap). If X is simply connected, then there is a unique
analytic function T : X — G such that f = 70T and T(xo) = ao.

Proof. Just combine the preceding proposition with Theorem 1.3. O

It will be shown later (4.1) that if Q is any region in the plane such
that its complement in C has at least two points, then there is an analytic
covering map from the unit disk D) onto Q. The next result establishes that
for this to be the case it must be that the complement has at least two
points. Recall that Cy denotes the punctured plane.

2.7 Proposition. The pair (G, T) is a universal analytic covering space of
Co if and only if G = C and 7(2) = exp(az + b) for some pair of complex
numbers a and b with a # 0.

Proof. If a,b € C with a # 0, then az + b is a M6bius transformation of
C onto itself. It is easy to see that if 7(z) = exp(az + b), then (C,7) is a
covering map of Cy.

For the converse assume that G is a simply connected region in C and
(G,7) is a covering space of Co. We have already seen that (C,exp) is a
covering space for Cy so Proposition 1.5 and Corollary 2.4 imply there is a
conformal equivalence h : C — G such that exp 2z = 7(h(2)) for all z in C.
But according to Proposition 14.1.1, G = C and h(z) = az + b for complex
numbers a and b with a #20. O

2.8 Example. Let Q be the annulus {z : 1 < |z| < p}, where p = e7. If

7(z) = exp {z log (itz) + 22‘:}’
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then (D, 7) is the universal analytic covering space for 2. The maps in the
group Aut(D, 7) are the Mobius transformations

z— /371
To(z) = 7—p,
(2) = 1= Bz
where
e27r'n . e—-27rn
Br = tanh(27n).

= e21rn + e—27r'n,

To see this first observe that the map 7 above can be expressed as a
composition of two maps: the first is a conformal equivalence of D onto
a vertical strip; the second is the exponential map, which wraps the strip
around the annulus an infinite number of times. To show that the auto-
morphisms of this covering space have the requisite form uses some algebra
and the following observation. (Another verification of the statements in
this example can be obtained by using Exercise 1.6 and the form of the
conformal equivalence of D onto the relevant vertical strip.)

If (D, 7) is the universal analytic covering space for (2, then every T in
Aut(D, 7) is necessarily a conformal equivalence of D onto itself. Hence T
is a Schwarz map,

z2—p

1-36z2
for some choice of # and 3, |3] < 1. For convenience, whenever (D, 7) is the
universal analytic covering space for a region 2 in C, we will let

T(z) = '

g-r = Aut(D, T)‘

By Theorem 1.8, G, ~ 7w(Q). It is known that for regions Q in C, 7()
is a free group (see Exercise 3). If Co \ Q has n + 1 components, then
() is the free group with n generators. If C \ © has an infinite num-
ber of components, then 7(Q) is the free group on a countable number of
generators.

Exercises

1. For |z| < 1, define 7(2) = exp[z(1 — |z|)!] and show that (D, 7) is a
covering space of C\ {0}.

2. Show that for an n-connected region 2, m(Q) is a free group on n
generators.

3. Let K be a compact subset of C and put @ = C\ K. If 11,...,v,
are paths in 2, let § > 0 such that dist(y;, K) > 6 for 1 < j < n. Let
Q(8) = {w € 0 : dist(w, K) > 6}. Show that Q(6) is finitely connected
and contains the paths 7, ...,7v,. Show that the fundamental group
of €2 is a countably generated free group.
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4. Let @ ={z:1 < |z|} and let 7(z) = exp [ﬁ'—i] . Explicitly determine
Aut(D, 7).

§3 The Modular Function

Here we examine a special analytic function called the modular function.
This is a special analytic covering map from the upper half plane onto the
plane with the points 0 and 1 deleted.

3.1 Definition. A modular transformation is a Mobius transformation

az+b
3.2 M(z):cz+d

such that the coefficients a, b, ¢, d are integers and ad — bc = 1. The set
of all modular transformations is called the modular group and is denoted

by M.

The designation of M as a group is justified by the following proposition.
The proof is left as an exercise.

3.3 Proposition. M is a group under composition with identity the iden-
tity transformation I(z) = z. If M(z) is given by (3.2), then

dz—b
—cz+a’

M7 (z) =
Let H denote the upper half plane, {z: Im z > 0}.

3.4 Proposition. If M € M, then M(Ry) = Ry and M(H) = H.

Proof. The first equality follows because the coefficients of M are real
numbers. Thus the Orientation Principle implies that M (H) is either the
upper or lower half plane. Using the fact that M € M and consequently
has determinant 1, it follows that

1

This concludes the proof. O

Let G denote the subgroup of M generated by the modular transforma-
tions

3.6 S(z) = and T(z)=z+2.

Let
3.7 G={zeH:-1<Rez<1,|22+1|>1,|22—-1| > 1}.
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Figure 16.2.

This set G is illustrated in Figure 16.1. Note that G N R = (. The reason
for defining G in this way and excluding portions of its boundary while
including other parts of G will become clear as we proceed. For now,
gentle reader, please accept the definition of GG as it is.

3.8 Example. If S is as in (3.6) and G is as above, then S(G) = {¢ :
Im¢ >0, [20—-1] <1, [4C—3] >1, [6¢— 1| > 1,and |12¢ — 5 > 1}.
Consequently, S(G) NG = 0.

The region described as S(G) is depicted in Figure 16.2. To see that
the assertation of this example is true, first let L_ and L, be the rays
{z: Im z > 0 and Re z = +1} and let C_ and C; be the half circles
{z :Im z > 0 and |2z ¥ 1| = 1}. Observe that S(L.) and S(C+) must be
circles that are perpendicular to the real line. Since S(0) = 0, S(-1) =
1, 8(1) = 1/3, and S(o0) = 1/2, applications of the Orientation Principle
show that S(G) has the desired form.

3.9 Lemma. Let G and G be as in (5.6) and (3.7).

(a) If My and My € G and My # My, then M;(G) N M2(G) = 0.

(b) H=|J{M(G): M € G}.

(¢) G consists of all modular transformations M having the form (3.2)

such that the coefficients a and d are odd and b and c are even inte-
gers.
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Proof. Let Gy be the collection of all modular transformations described
in part (c) and note that if S and T are defined as in (3.6), then they belong
to G;. The reader can verify directly that G; is a group under composition,
and so it follows that G C G;.

3.10 Claim. If M;, M, € G; and M, # My, then MI(G) n MQ(G) = 0.

Because G; is a group, to prove this claim it suffices to show that if
M € Gy and M # I, then M(G) NG = 0. This will be done by considering
two possible cases. The first case is that ¢ = 0in (3.2); so M(z) = (az+b)/d,
where a and d are odd integers and b is even. Since 1 = ad — bc = ad, a =
d = £1. Thus M(z) = z+ 2n, with n in Z and n # 0 since M # [. It is
now clear that M(G)NG = 0.

Now assume that M has the form (3.2), M € G;, and ¢ # 0. Notice that
the closed disk B(—1/2;1/2) meets G without containing in its interior any
of the points -1, 0, or 1, while any other closed disk whose center lies on the
real axis and that meets G must have one of these points in its interior. This
leads us to conclude that if M(z) # S(z)+b, where S is the transformation
in (3.6) and b is an even integer, then |cz + d| > 1 for all z in G. Indeed,
if there is a point z in G with |cz + d| < 1, then B(—d/c; 1/|c|) N G # 0.
For the moment, assume this closed disk is not the disk B(—1/2;1/2). As
observed, this implies that 0, +1, or —1 € B(—d/c; 1/|c|); let k be this
integer. So |k + d/c| < 1/|c| and hence |kc + d| < 1. But c is even and d is
odd, so that kc + d is odd, and this furnishes a contradiction. Thus

3.11 |ez 4+ d| > 1forall z in G,

provided —d/c # —1/2 or 1/|c| # 1/2. On the other hand, if —d/c =
—1/2 and 1/|c|] = 1/2, then ¢ = +2 and d = +1. All the entries in a
Mobius transformation can be multiplied by a constant without changing
the transformation, so we can assume that ¢ = 2 and d = 1. But the
condition that the determinant of M is 1 implies that a — 2b = 1, so

a =1+ 2b. Thus
az+b

2z+1

M(z) =

z+2bz+b
22+ 1

= S(z)+b.

So (3.11) holds whenever M is not the transformation S(z) + b.
Note that (3.5) implies that if M # S+ b for S as in (3.6) and b is even,
then
Im M(z) < Im z for all z in G.



16.3. The Modular Function 119

Figure 16.3.

The definition of G and (3.5) show that when M equals S(z) + b, we still
have that
Im M(z) <Im z for all zin G.

Now let M be an arbitrary element of the group G;. It is left to the
reader to show that either M or M~ is not of the form § + b, with S as
in (3.6) and b an even integer. Thus either Im M(z) < Im =z for all z in
G or Im M~1(2) < Im z for all z in G; assume for the moment that the
former is the case. If there is a z in GNM(G), then Im z = Im MM ~}(z) <
Im M~!(z) < Im z, a contradiction. Thus GNM(G) = 0. f M~1(2) <Im z
for all z in G, a similar argument also shows that G N M(G) = 0. This
establishes Claim 3.10.

Now let L = U{M(G) : M € G}, a subset of H. If T is as in (3.6), then
T™(z) = z+2n. So for each n in Z, L contains T"(G), which is the translate
of G by 2n. As discovered in Example 3.8, S maps the circle |2z + 1} =1
onto the circle |2z — 1| = 1. Combining these last two facts {and looking at
Figure 16.3) we get that

3.12 L containsevery z in H thatsatisfies|2z — k| > 1

foralloddintegers k.

Fix a ¢ in H. Because {¢{ +d: ¢, d € Z and ¢, d occur in some M
in G} has no limit point in the plane, there is an element of this set hav-
ing minimum modulus. Thus there is a transformation My(z) = (apz +
bo)/(coz + do) in G such that |co¢ + dp| < |e¢ + d| for all M(2) = (az +
b)/(cz+d) in G. By virtue of (3.5) we get that Im My(¢) > Im M(() for all
M in G. Putting z = My(() and realizing that M My € G whenever M € G,
this shows that

3.13 Im 2 > Im M(z) for z = Mp(¢) and for all M in G.

Let n € Z and continue to have z = My(¢) for a fixed ¢ in H. Applying
(3.13) to M = ST~™ and using (3.5) as well as a little algebra shows that

n Im z
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Now apply (3.13) to M = S~1T~™ and perform similar calculations to get

that
Im 2

22 .
T | =2z24+4n+1)2

But Im z > 0 so these inequalities become

Im

|2z ~4n+ 1| >1and 2z —4n—1| > 1 for alln in Z.

But {4n — 1, 4n+1:n € Z} is the collection of all odd integers, so (3.12)
implies that z = My(¢) € L. Thus ¢ = M;'(2) € My '(L) = L. Since ¢
was arbitrary, this proves (b).

Remember that we have already proved that G C G;. Let M; € G;. By
part (b) there is a transformation M in G such that M(G) N M1(G) # 0.
But both M and M; are in G;, so Claim 3.10 implies that M; = M € G.
This proves (c). By (3.10), part (a) also holds. O

Now the stage is set for the principal result of this section. It is convenient
to let Co1 = C\ {0,1}. The reader might want to carry out Exercise 1
simultaneously with this proof.

3.14 Theorem. If G and G are as in (3.6) and (3.7), then there is an
analytic function A : HH — C having the following
properties.

(a) Ao M = X for every M in G.

(b) A is univalent on G.

(c) AMH) =Co,1-

(d) X is not analytic on any region that properly contains H.

(e) (H, ) is a covering space of Cop 1.

Proof. Let
Go={2:Im2>0, 0<Rez<1, and |2z — 1| > 1};

so Gy C G. Let fg : Go — H be any conformal equivalence and extend
fo to a homeomorphism of clo,Go onto clooH (14.5.7). Let A be a Mobius
transformation that maps fo(0) to 0, fo(1) to 1, fo(oo) to oo, and takes H
onto itself. Hence f = A o fy is a homeomorphism of cl,,Ggy onto cloH, a
conformal equivalence of Go onto H, and fixes the points 0, 1, and oo.
Since f is real-valued on 8Gy, f can be extended to int G by reflecting
across Re z = 0. This extended version of f satisfies f(z+iy) = f(—z + iy)
for z+iy in Go. (Note that f is also real-valued on the portions of [2z—1| = 1
and |2z + 1| = 1 that lie in cl G, so that by successively reflecting in these
circles and the circles and vertical lines of the various reflected images of G
it is possible to extend f to all of H. The argument that follows does just
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this but with a little more finesse and accuracy by using the action of the

group G.)
Define the following sets:

Ly = {z:Imz>0, Re z2=0}U{oo};
Ly, = {2:Im22>0, |2z2—-1|=1}
Ly = {z:Im22>0, Rez=1}U {oo}.

So Ly U Ly U Ly = 805Gy For j =1,2,3, L; is connected and so the same
holds for f(L;). By an orientation argument (supply the details)

f(L1) = {z:z2=Rez<0}U{oo};
f(Ls) = {2:2=Rezand0<z<1}
f(L3) = {z:z2=Rez>1}U{oo}.

Thus
f(int G) = C\[0,00);

f(G) = Cop=8.
Extend f to a function A : H — C by letting

3.15 Mz) = f(M™(2))

whenever M € G and 2 € M(G). According to Lemma 3.9 this function A
is well defined.

Why is A analytic? Observe that if S and T are defined as in (3.6), then
) is analytic on V = int[G UT~}(G) U S~1(G)] and V is an open set that
contains G. Thus for every M in G, X is analytic on a neighborhood of
M(G). Thus A is analytic on all of H.

Clearly condition (a) of the theorem holds because of the definition of
A. Because f is defined on G by reflecting a conformal equivalence, it is
one-to-one on G, so (b) holds. Since f(G) = Q, (c) is also true. Part (d) is
a consequence of the following.

3.16 Claim. {M(0) : M € G} is dense in R.

In fact if this claim is established and A has an analytic continuation to
a region A that contains H, then A must contain a non-trivial open interval
(a,b) of R. But (3.16) implies that for every a in (a, b) there is a sequence
{My} in G such that My (0) — a. Let y — 0 through positive values. Then
A(M(0)) = limy_o A(My(iy)) = lim,_0 A(dy) = A(0) = 0. Thus « is an
accumulation point of zeros of ), a contradiction.
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To prove Claim 3.16 let M € G and suppose M is given by (3.2). So
M (0) = b/d. Now b and c are even integers, a and d are odd, and ad—bc = 1.
It suffices to show that for every even integer b and odd integer d such that
b and d have no common divisor, there is an odd integer @ and an even
integer ¢ with ad — bc = 1. Equivalently, show that given integers m and n
such that 2m + 1 and 2n have no common divisor, there are integers p and
q such that

[y
Il

2p+1)(2m+1) — (2n)(29)
= 4pm+2m+2p+1—4ng.

This happens if and only if p and g can be found so that —m = p(2m +
1) — (2n)q. But {p(2m + 1) — (2n)q : p, ¢ € Z} is the ideal in the ring
Z generated by 2m + 1 and 2n. Since these two integers have no common
divisors, this ideal is all of Z.

It remains to prove (e). If { € C\ [0, 00) and é > 0 is chosen sufficiently
small that B = B((;8) C C\ [0,00), let Uy = f~1(B) C int G. It is easy to
verify that A=1(B) = U{M(Up) : M € G} and so {M(Up) : M € G} are the
components of A~!(B). Now assume that ¢{ =t € (0,1) and choose § > 0
sufficiently small that B = B(t; §) C Co,1. An examination of the definition
of f as the reflection of a homeomorphism of ¢l Gg onto ¢l H, shows that
f71(t) = {z4,2_} C OG, where |22 ¥ 1| = 1. Also f~!(B) consists of
two components, Uy and U_, where z4 € Uy. Thus f(Uy) = BNecl (£H).
If S is the Mobius transformation defined in (3.6), then it can be verified
that S maps the circle |2z + 1] = 1 onto the circle |2z — 1| = 1. (The
reader has probably already done this in Example 3.8.) Since t = f(z1) =
A(z+) = A(S(24)), it follows that S(z_) = 2. Hence Uy = UL US(U_) is
an open neighborhood of z; (Verify!) and A(Up) = f(Uy) UA(S(UZ)) =
F(UL) U f(U-) = B. Therefore {M(Uy) : M € G} are the components of
A~1(B) and clearly A maps each of these homeomorphically onto B. The
final case for consideration, where { =t € (1, 00), is similar to the preceding
one and is left to the reader. O

3.17 Example. If 7(z) = A(i(1 — 2)/(1 + 2)), then (D, 7) is an analytic
covering space of Co 1.

3.18 Definition. The function X obtained in Theorem 3.14 is called the
modular function.

Calling A the modular function is somewhat misleading and the reader
should be aware of this when perusing the literature. First, A is not unique,
as can be seen from the proof, since its definition is based on taking a
conformal equivalence fy of Gg onto H. Given fj, A is unique. It is possible
to so construct the function A that A(0) = 1, A(1) = oo, and A(co) = 0.
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Having done this the function is unique and is the classical modular function
of complex analysis.

Remarks.

1. The material at the beginning of this section has connections with
the study of the group SL2(R), modular forms, and number theory.
The interested reader should see Lang [1985]. Also see Ford [1972] for
the classical theory.

2. A nice reference for the Uniformization Theorem for Riemann sur-
faces is Abikoff [1981]. Also see Ahlfors [1973].

Exercises

1. This exercise constructs the exponential function by a process similar
to that used to construct the modular function and is meant to help
the student feel more comfortable with the proof of Theorem 3.14.
(Thanks to David Minda for the suggestion.) Let Gy be the strip
{z:0 < Im z < 7} and let ¢y be the conformal equivalence of Gy
onto H with ¢g(—00) = 0, ¢o(+00) = 00, and ¢¢(0) = 1. Now extend
¢o to an analytic function ¢ defined on G = {z : -7 < Im z < 7}
by reflection. If T,,(z) = z + 2w in for n in Z, extend ¢ to a function
E on C by letting E(z) = ¢(Tn(z)) for an appropriate choice of n.
Show that F is a well defined entire function that is a covering map
of Cy and prove that E is the exponential function.

2. If X is the modular function, what is Aut(H, A)? (By Theorem 1.8,
Aut(H, A) =~ 7(Cyp,1), which is a free group on two generators. So the
question asked here can be answered by finding the two generators of
Aut(H, A).)

3. Let {a, b} be any two points in C and find a formula for an analytic
covering (D, 1) of C\ {a,b}. If ap € C\ {a,b}, show that 7 can be
chosen with 7(0) = ao and 7/(0) > 0.

§¢4 Applications of the Modular Function

In this section the Picard theorems are proved as applications of the mod-
ular function and the material on analytic covering spaces. Proofs of these
results have already been seen in (12.2.3) and (12.4.2), where the proofs
were “elementary.”



124 16. Analytic Covering Maps

4.1 Little Picard Theorem. If f is an entire function that omits two
values, then f is constant.

Proof. Suppose f is an entire function and there are two complex numbers
a and b such that a,b ¢ f(C). By composing with a Mobius transformation,
we may assume that f(C) C Cg ;. Let 7: D — Cp ;1 be a universal covering
map. According to Theorem 1.3 and Proposition 2.1, there is an analytic
function T : C — D such that 7o T = f. But the T is a bounded entire
function and hence constant. Thus f is constant. O

As we know from §14.4, the key to the proof of the Great Picard Theorem
is to prove the Montel-Carathéodory Theorem.

4.2 Montel-Carathéodory Theorem. If X is any region in the plane
and F = {f : f is an analytic function on X with f(X) C Co1}, then F
is a normal family in C(X,Cx).

Proof. To prove that F is normal, it suffices to show that for every disk
B = B(2p; R) contained in X, F|B is normal in C(B,Cy,). To prove this,
it suffices to show that for any sequence {f,} in F, there is either a subse-
quence that is uniformly bounded on compact subsets of B or a subsequence
that converges to oo uniformly on compact subsets of B (why?). So fix such
a sequence {f,}. By passing to a subsequence if necessary, we may assume
that there is a point a in Cu such that f,(29) — a. We consider some
cases.

Claim. If @« € C and @ # 0,1, then {f,} has a subsequence that is
uniformly bounded on compact subsets of B.

Let 7 : D — Cp,1 be a universal analytic covering map and let A =
B(a; p) be a fundamental neighborhood of a. Fix a component U of 771(A).
Since f,(z0) — «, we may assume that f,,(20) € A for all n > 1. According
to Theorem 1.3 and Proposition 2.1, for each n > 1 there is an analytic
function T,, : B — D such that T,,(29) € U and 7o T, = f, on B. But
{T,} is a uniformly bounded sequence of analytic functions and so there
is a subsequence {T,, } that converges in H(B) to an analytic function T.
Clearly |T'(z)| <1 for all z in B. If there is a 2z in B such that |T(z)| = 1,
then T is constantly equal to the number A with |A| = 1. In particular,
T (20) — A But (7|U) 71 (@) = limg(7|U) 71 (fu, (20)) = limg Ty, (20) = A,
a contradiction. Thus it must be that |T(z)| < 1 for all z in B.

Let K be an arbitrary compact subset of B. From the discussion just
concluded, there is a number r such that M = max{|T'(z)|: z€ K} <r <
1. Let ko be an integer such that |T,, (2) — T(z)| < r— M for all z in K
and k > ko. Hence |T,,, (z)] < r for all z in K and k > ko. But 7 is bounded
on B(0;r). It follows that {f,. } = {7 ¢ T,,, } is uniformly bounded on K.
Since K was arbitrary, this proves the claim.
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Now assume that a = 1. Since each function f,, never vanishes, there
is an analytic function g, : B — C with g2 = f,. Since f,(z0) — 1, we
can choose the branch of the square root so that g,(z9) — —1. But once
again, gn(B) C Cg,1. So the claim implies there is a subsequence {g,, } that
is uniformly bounded on compact subsets of B. Clearly this implies that
{fn,} is uniformly bounded on compact subsets of B.

Assume that a = 0. Here let g, = 1 — f,,. So gn(20) — 1 and g,, never
assumes the values 0 and 1. The preceding case, when applied to {gn},
shows that {f,} has a subsequence that is uniformly bounded on compact
subsets of B.

Finally assume that a@ = oo. Let g, = 1/f,. Again g, is analytic,
gn(B) C Co,1, and gn(20) — 0. Therefore the preceding case implies there
is a subsequence {g,, } that converges uniformly on compact subsets of B
to an analytic function g. But the functions {g,,} have no zeros while
g{z0) = 0. By Hurwitz’s Theorem (7.2.5), ¢ = 0. It now follows that
fn, (2) — oo uniformly on compact subsets of B. O

4.3 The Great Picard Theorem. If f has an essential singularity at
z = a, then there is a complex number a such that for { # a the equation
f(2) = ¢ has an infinite number of solutions in any punctured neighborhood

of a.

For a proof the reader can consult Theorem 7.4.2.

Exercises

1. Prove Landau’s Theorem: If a9 and a; are complex numbers with
a9 # 0,1 and a; # 1, then there is a constant L(ag,a1) such that
whenever r > 0 and there is an analytic function f on D with f(0) =
ag, f'(0) = a;, and f omits the values 0 and 1,then r < L(aqg, a1).
(Hint: Let 7 : D — Cp 1 with 7(0) = a¢ and 7/(0) > 0. Use Corollary
2.6 to find an analytic function T : rD — D such that 7o T = f and
T(0) = 0. Now apply Schwarz’s Lemma.)

2. Prove Schottky’s Theorem: For a in Cg; and 0 < 8 < 1, there is
a constant C(q, ) such that if f is an analytic function on D that
omits the values 0 and 1 and f(0) = a, then |f(2)| < C(a,3) for
|z} < 8. (See 12.3.3.)

§5 The Existence of the Universal Analytic Covering Map

The purpose of this section is to prove the following theorem.

5.1 Theorem. If Q is any region in C whose complement in C has at
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least two points and oy € §2, then there is a unique analytic covering map
7: D — Q with 7(0) = ag and 7'(0) > 0.

The proof requires some preliminary material. The first lemma is a re-
statement of Exercise 3.3.

5.2 Lemma. If a,b, and oy € C with ag # a,b, then there is an analytic
covering map 7 : D — C\ {a, b} with 7(0) = ap and 7/(0) > 0.

The next lemma is technical but it contains the vital construction needed
in the proof.

5.3 Lemma. Suppose Q is a region in C and (G, T) is an analytic covering
of Q with 7(a) = ap for some point a in G. If Ag = B(ap;To) is a funda-
mental neighborhood of ap and go is the local inverse of T defined on Ag
such that go(ag) = a, then the following statements hold:

(a) go(ao) >0 1f 7'(a) > 0.

(b) If~:1[0,1] — Q is a path with v(0) = ayp, then there is an analytic
continuation along v {(gt,At) : 0 < t < 1} of (go,Ao) such that
9:(At) C G for all t.

(c) If (91,A1) and (g2, A2) are obtained from (go,Ao) by analytic contin-
uation, ¢;(A;) C G, and g1(w1) = g2(ws) for some points wy in A,
and wy in Ay, then wy = we and g, (w) = g2(w) for allw in A1 NA,.

(d) If (g,A) is obtained by analytic continuation of (go, Ao) and g(A) C
G, then 7(g(w)) = w for allw in A.

Proof. Part (a) is trivial. To prove (b), use Lebesgue’s Covering Lemma,
to find a 6 > 0 with 6 < rg and such that for each ¢, 0 <t < 1, B(v(t);4)
is a fundamental neighborhood. Let 0 = tg < ¢; < --- < t, = 1 be such
that y(t) € B(7(t;);6) fort;_, <t <t;, 1<j<n

In particular, v(0) = ap € A; = B(y(t1);6); let g1 : Ay — G be the
local inverse of T such that g;(ag) = a. Clearly g; = go on Ag N A;. Hence
(91, A1) is a continuation of (go,Ao). Similarly, let Ay = B(v(¢2);6) and
let g2 : A2 — G be the local inverse of 7 such that ga(v(t1)) = g1(v(t1));
50 g2 = g1 on A; N A,. Continuing this establishes (b).

Let {(g¢, At) : 0 <t < 1} be any continuation of (g9, Ag) along a path v
such that g,(A;) € G for all t and put F = {t € [0,1] : 7(g:(2)) =
z for all z in A,}. Since 0 € F, F # {. It is left as an exercise for the reader
to show that F is closed and relatively open in [0,1] and so F = [0, 1]. This
proves (d).

Using the notation from (c), the fact that g; and g, are local inverses of
7 (by (d)) implies that wq = 7(g1(w1)) = 7(g2(w2)) = wa. The rest of (c)
follows by the uniqueness of the local inverse. O

Proof of Theorem 5.1. Let a and b be two distinct points in the com-
plement of Q and put Qy = C\{a,b}. By Lemma 5.2 there is an analytic
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covering map 19 : D — Qp with 79(0) = g and 7{(0) > 0. Let Ag be a
fundamental neighborhood of o that is contained in  and let hg : Ag — D
be the local inverse of 7o with ho(cg) = 0 and h{(0) > 0. Define F to be
the collection of all analytic functions g : Ay — D having the following
properties:
{
(a) g(ao) =0 and g'(ao) > 0;

(b) Ify:[0,1] — Q is a path with v(0) = ag, then

there is an analytic continuation {(g:,A¢) : 0 <t < 1}

of (g, Ag) along  such that A; C 2 and g:(A;) C D for all ¢;
5.4< (c) If (g1,4A1) and (go, A2) are obtained from (g, Ag)
by analytic continuation with A; € Q and g (w1) = g2(ws)
for some points w; in A; and wy in Ag, then
w1 = wsp and g1(w) = g2(w) for all w in

Al ﬂAQ.

\

Note that conditions (b) and (c) are the conditions (b) and (c) of Lemma
5.3 with G replaced by D. Hence hg € F and so F # @. Since each function
in F is bounded by 1, F is a normal family. The strategy here, reminiscent
of the proof of the Riemann Mapping Theorem, is to show that the function
in F with the largest derivative at g will lead to the proof of the theorem.

Put k = sup{g’(ap) : g € F}; 50 0 < k < oo. Let {hg} C F such that
h}(ap) — k. Because F is a normal family, we can assume that there is an
analytic function A on Ay such that hy — h uniformly on compact subsets
of Ag. So h{ag) = 0 and h'(ag) = & > 0. Thus (5.4.a) is satisfied; it will
be shown that (b) and (c) of (5.4) also are satisfied so that h € F.

Let -y be a path in © with v(0) = ap and choose § > 0 so that B(ag;§) C
Agand B(y(t);6) CQfor0<t<1.Let0=ty <t; <--- <t, =1besuch
that v(t) € A; = B(vy(t;);6) for t;_; <t < t;. By hypothesis each function
hi admits unrestricted analytic continuation throughout A;, and so the
Monodromy Theorem implies there is an analytic function Az : Ay — D
with hyx = hx on A; N Ay. Continuing, for 1 < j < n we get an analytic
function hji : A; — D such that hjx = h;j_1x on A; N A;_;. Fix j for
the moment. So {h;x : £ > 1} is a uniformly bounded sequence of analytic
functions on A; and must therefore have a subsequence that converges
uniformly on compact subsets of A; to an analytic function g; : A; — D.
By successively applying this argument we see that the functions g; can be
obtained so that g; = g;_; on A; N A;_;. Thus {(g;,4;):1 < j < n}is
an analytic continuation of (h, Ag) and (5.4.b) is satisfied.

Now adopt the notation of (5.4.c) with h replacing the function g. Argu-
ing as in the preceding paragraph, there are sequences of analytic functions
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{(h1x, A1)} and {(hak, Az)} such that for j = 1,2, (hjk, A;) is a continu-
ation of (hx,Ao) and hjx — g; uniformly on compact subsets of A; as
k — oo. Now Hurwitz’s Theorem (and Exercise 7.2.11) implies that for
J = 1,2 and all sufficiently large k there are points wj;x in A; such that
hik(wik) = g1(w1) = ga(wa) = hog(wak); these points also can be chosen so
that wjx — w; as k — o0o. But hy € F and so (5.4.c) implies that for each
k, wix = wor and hyx = hgx on A; N A,y. Thus w; = wy and g; = g2 on
Aj; N A,. That is, h satisfies (5.4.c). Therefore h € F.
Fix the notation that h is a function in F for which A'(ag) = k.

5.4 Claim. For every z in D there is an analytic continuation (g1, A;) of
(h,Ap) such that z € g1(Ay).

Suppose the (5.5) is false and there is a complex number ¢ in D such that
no continuation of h in G with values in D ever assumes the value c. Since
h(ag) =0, 0 < |¢| < 1. Let T be the Mébius transformation (c—z)/(1—¢z);
so T is a conformal equivalence of D\{0} onto D\{c} with T'(0) = c. Thus
if p(z) = T(22), ((D\{0}), u) is an analytic covering space of D\{c}.

Let a be a square root of c; so u(a) =0 and p'(a) = —2a/(1 — |c|?). Let
g be a local inverse of u defined in a neighborhood of 0 with ¢g(0) = a and
apply Lemma 5.3 to ((D\{0}), p). Thus g satisfies properties (b), (c), and
(d) of Lemma 5.3 (with ag = 0, G = D\{0}, 7 = p, and Q = D\{c}).
Now g o h is defined and analytic near ap and g(h(aop)) = a. If (hy,4,)
is any analytic continuation of (h,Ag) with h1(A;) C D, then h;(A;) C
D\{c}. Since, by Lemma 5.3.b, g admits unrestricted analytic continuation
in D\{c}, it follows that g o h admits unrestricted analytic continuation in
Q.

We want to have that g o h € F, but two things are lacking: g(h(ag)) =
a # 0 and (g o h)'(ap) may not be positive. These are easily corrected as
follows. Let M be the Mébius transformation M(z) = b(a — 2)/(1 — az),
where b = a/|a| = a/y/|c|. Put f = M o goh. Thus f(ap) = 0 and f
satisfies (5.4.b) and (5.4.c) since g o h does. Also

M’(g(h(c))g' (h(c))s
= M'(a)g'(0)x.

f'(a0)

Now z = u(g(2)), so 1 = 1'(9(0))g’(0) = —2a(1—|c[*)~*¢’(0). Thus ¢'(0) =
—(1 — |¢|?)/2a. A computation of M’(a) shows that the above equation

becomes
’ _ b 1- |Cl2
1+|c|

2/l

> 0.

K
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Therefore f € F. But this also shows that f'(ap) > k, contradicting the
definition of k. Thus Claim 5.5 must hold.

Now to define 7, the covering map of D onto 2; this is the easy part.
As above, let A be a function in F with h'(ap) = &. If z € D, Claim 5.5
implies there is an analytic continuation (h;,A;) of A with 2z in hq(A;);
say 2z = hi(wy) for wy in Aj. If (hg, Az) is another continuation of h with
z = hg(ws) for some wy in Ay, then (5.4.c) implies that wy; = wp and hy = hy
on A; N A,. Since (5.4.c) also implies that h; is univalent on A;, we can
safely define 7 on U = hy(A;) by 7 = (h1|A;)7!. Since z was arbitrary, 7
is defined on D. From the definition it is clear that 7 is analytic; it is just
as clear that 7(D) = Q. Since 7 is locally univalent, 7/(2) # 0 for all z in D.

The only remaining part of the existence proof is to show that 7 is a
covering map. To do this fix a point w in {2; we must find a neighborhood A
of w such that each component of 7~1(A) is mapped by 7 homeomorphically
onto A. To find A just take any analytic continuation (h;, A) of h, where A
is a disk about w. Suppose (hz, Az) is another continuation of h with w in
A,. According to (5.4.b), hy has a continuation to every point of A. Thus
(there is something extra to do here) the Monodromy Theorem implies that
hs extends to an analytic function on A; U A. So we may assume that ho
is defined on A. That is, we may assume that every continuation (ha, Az)
of (h,A¢) with w in Ay has A C A,. Let H,, = {(h;,A) : ¢ € I} be the
collection of all the distinct analytic continuations of (h, Ag) to A. (At this
time we do not know that H,, is countable, though this will turn out to be
the case.) From the definition of 7,

TH4) = ().

i€l

But (5.4.c) implies that h;(A) N h;j(A) =0 for i # j. Thus {h;(A):i € I}
are the components of 77! (A) (and so [ is countable). Clearly 7 maps each
hi(A) homeomorphically onto A since 7 |h;(A) = (h;| A)~!. This completes
the proof of existence.

The uniqueness statement follows by Corollary 2.5. O

Theorem 5.1 is the essential part of what is called the Uniformization
Theorem. The treatment here is from Pfluger [1969] but with considerable
modification. The reader can also see Fisher [1983], Fisher, Hubbard, and
Wittner [1988], and Veech [1967] as well as the survey article Abikoff [1981)
for different approaches and additional information.

We can now furnish the proof of Proposition 15.4.8 in its entirety. Recall
that the proof given there was only valid for the case that the complement
of the region G had a component that was not trivial.

5.5 Corollary. Let G be a proper region in C that contains zero. If f is a
conformal equivalence of G onto itself with f(0) = 0 and f'(0) > 0, then
f(z) =2z forall z in G.
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Proof. 1If G is the entire plane less a single point, the proof is left to the
reader. If the complement of G has at least two points, let 7 : D — G be
the universal analytic covering map with 7(0) = 0 and 7/(0) > 0. It follows
that for : D — G is also an analytic covering map with (fo7)(0) = 0 and
(fo7)(0) > 0. Thus f o7 = 7. That is, f(7(z)) = 7(2) for all z in D and
the corollary follows. O

Exercises

1.

Show that if € is simply connected and 7 is the covering map obtained
in Theorem 5.1, then 7 is the Riemann map.

Let Q be a region in C whose complement has at least two points
and let 7: D — Q be the analytic covering map with 7(0) = ap and
7/(0) > 0. If f: Q@ — C is an analytic function, show that g = for
is an analytic function on D such that goT = g for all T in G,.
Conversely, if g : D — C is an analytic function with goT = g for all
T in G,, then there is an analytic function f on 2 such that g = foT.

. Suppose  is an n-Jordan region and 7 is as in Theorem 5.1. (a) Show

that for any point @ in D, {T'(0) : T € G, } and {T'(a) : T € G} have
the same set of limit points and these limit points are contained in
OD. Let K denote this set of limit points. (b) Show that if w € OD\ K,
then there is a neighborhood U of w such that 7 is univalent on UND
and 7 has a continuous extension to D U (OD\ K).

. Prove a variation of Corollary 5.6 by assuming that C\ G has at least

two points but only requiring F' to be a covering map of G onto itself.

Ezercises 5 through 8 give a generalization of Schwarz’s Lemma. The
author thanks David Minda for supplying these.

If G is a proper simply connected region, a € G, and f is an analytic
function on G such that f(G) C G and f(a) = a, then |f'(a)| < 1. The
equality |f'(a)| = 1 occurs if and only if f is a conformal equivalence
of G onto itself that fixes a.

Let G be a region such that its complement has at least two points, let
a € G, and let 7 : D — G be the analytic covering map with 7(0) = a
and 7/(0) > 0. If f is an analytic function on G with f(G) € G and
f(a) = a, show that there is an analytic function F : D — D with
F(0) =0 and f o7 = 7o F. Also show that F(171(a)) C 77!(a).

Let f and G be as in Exercise 6. (a) Show that |f'(a)] < 1. (b) If f
is a conformal equivalence of G onto itself, show that |f’'(a)| =1 and
f'(a) =1 if and only if f(z) = z for all z. (c) Let Aut(G, a) be all the
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10.

11.

12.

13.

conformal equivalences of G onto itself that fix the point a and prove
that the map f — f’(a) is a group monomorphism of Aut(G, a) into
the circle group, 8D, and hence Aut(G, a) is abelian. (d) If G is not
simply connected, show that G is a finite cyclic group. What happens
when G is simply connected?

Let G, f, 7, and F be as in Exercise 6. This exercise will show that if
|f'(a)] = 1, then f € Aut(G, a). For this purpose we can assume that
G is not simply connected or, equivalently, that 771(a) is infinite.
(a) Show that if |f’(a)| = 1, then there is a constant ¢ such that
F(2) = cz for all z in D. (b) Examine the action of F on 771(a) and
conclude that ¢ is an n-th root of unity for some positive integer n.
(c) Conclude that f € Aut(G, a).

Let f and G be as in Exercise 6. For n > 1 let f, be the composition
of f with itself n times. Prove that if f ¢ Aut(G, a), then f,(2) —» a
uniformly on compact subsets of G.

In this exercise let G be a proper region in the plane, let a and b
be distinct points in G, and let f be an analytic function on G with
f(G) C G, f(a) = a, and f(b) =b. (a) If G is simply connected and
f(a) = a and f(b) = b, show that f(z) = z for all z in G. (b) Give
an example to show that (a) fails if G is not assumed to be simply
connected. (c) If G is not simply connected but the complement of G
has at least two points, show that f is a conformal equivalence of G
onto itself and there is a positive integer n such that the composition
of f with itself n times is the identity. (d) What happens when G = C
or Cy?

Suppose f is an analytic function on D such that |f(z)] < 1 and
f(0) = 0. Prove that if 2; is a point in D different from 0 and f(z) =
0, then |f'(0}| < |z1|. (Hint: Consider f(z)/2T(z) for an appropriate
Mgbius transformation T'.)

The Aumann-Carathéodory Rigidity Theorem. Let G be a region that
is not simply connected and whose complement has at least two
points; let a € G. Show that there is a constant o depending only on
G and a with 0 < a < 1 such that if f is an analytic function on G
with f(G) C G and f(a) = a, and if f is not a conformal equivalence
of G onto itself, then |f'(a)| < a. (Hint: Let 7 be the analytic cover-
ing map of D onto G with 7(0) = a and 7/(0) > 0 and let F be as in
Exercise 6. Write 771(a) = {0, 21, 22,...} with 0 < [2;] < |2z2] < ---.
Observe that F(771(a)) C 77 !(a) and try to apply Exercise 11.)

Show that if G is simply connected, no such constant o as that ob-
tained in the preceding exercise can be found.



Chapter 17

De Branges’s Proof of the
Bieberbach Conjecture

In this chapter we will see a proof of the famous Bieberbach conjecture.
Bieberbach formulated his conjecture in 1916 and in 1984 Louis de Branges
announced his proof of the conjecture. In March of 1985 a symposium on
the Bieberbach conjecture was held at Purdue University and the proceed-
ings were published in Baernstein et al. [1986]. This reference contains a
number of research papers as well as some personal accounts of the history
surrounding the conjecture and its proof. The history will not be recounted
here.

The original ideas of de Branges for the proof come from operator theory
considerations. The proof presented here (in §6) is based on the proof given
in Fitzgerald and Pommerenke [1985]. This avoids the operator theory,
though some additional preliminaries are needed. Another proof can be
found in Weinstein [1991]. Though this is shorter in the published form
than the Fitzgerald-Pommerenke proof, it actually becomes longer if the
same level of detail is provided.

The strategy for the proof, as it evolves in the course of this chapter, is
well motivated and clear from both a mathematical and a historical point of
view. The tactics for the proof of the final crucial lemma (Lemma 6.8) are
far from intuitive. Perhaps this is part of the nature of the problem and con-
nected with the conjecture lying unproved for so many decades. The tools
needed in the proof have existed for quite some time: Loewner chains and
Loewner’s differential equation (1923); Lebediv-Millin inequalities (1965).
In fact, de Branges brought a new source of intuition to the problem. This
insight was rooted in operator theory and is lost in the shorter proofs of
Fitzgerald-Pommerenke and Weinstein. The serious student who wishes to
pursue this topic should look at de Branges’s paper (de Branges [1985]) and
the operator theory that has been done in an effort to more fully explicate
his original ideas.

§1 Subordination

In this section we will see an elementary part of function theory that could
have been presented at a much earlier stage of the reader’s education.
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1.1 Definition. If G is a region including the origin and f and g are two
analytic functions on G, then f is subordinate to g if there is an analytic
function ¢ : G — G such that ¢(0) =0 and f =go ¢.

It follows from the definition that if f is subordinate to g, then f(0) =
g(0). Also note that if f is subordinate to g, then f(G) C g(G). In Corollary
16.2.6 it was shown that if g : D — 2 is the universal analytic covering map
for 2 with g(0) = a and f is any analytic function on I with f(0) = a and
f(D) C Q = g(D), then f is subordinate to g. In this section we will use
this result for the case that € is simply connected and g is the Riemann
map. The proof for this case is easy and so it is presented here so as to
make this section independent of Chapter 16.

The fact that subordination is valid in a more general setting should be
a clue for the reader that this is a more comprehensive subject than it will
appear from this section. In fact, it has always impressed the author as a
favorite topic for true function theorists as it yields interesting estimates
and inequalities. For a further discussion of subordination, see Goluzin
[1969] and Nehari [1975].

1.2 Proposition. If g is a univalent function on D, then an analytic func-
tion f on D is subordinate to g if and only if f(0) = g(0) and f(D) C g(D).
If f is subordinate to g and ¢ is the function such that f = go ¢, then ¢ is
UnLque.

Proof. If f(D) C g(D), let¢ : D — D be defined by ¢ = g~! o f; this
shows that f is subordinate to g. The converse was observed prior to the
statement of this proposition. O

1.3 Proposition. If f and g are analytic functions on D, f is subordinate
to g, and ¢ is the function satisfying f = go ¢ and ¢(0) = 0, then for each
r>1:

(@) {f(z):lzl <r} CS{g(2): ]2l <},
(b) max {[f(2)|:[2] <} < max{|g(z)]: |2] <r};
(© A=z ()] < (1= (2)P)lg'(e(2)];

(d) 1f(0)] < 19'(0)] with equality if and only if there is a constant c with
le] =1 such that f(z) = g(cz) for all .

Proof. Let ¢ : D — D be the analytic function such that f = g o ¢.
Since ¢(0) = 0, Schwarz’s Lemma implies that |¢(z)| < |z| on D. This
immediately yields (a) and part (b) is a consequence of (a).

To prove part (c), first recall from (6.2.3) that

(1= [z (2)] < 1—le(2)?
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for all z in D. Thus

(1= 12)|f'(2)| (1 =126/ (2)llg'(¢(2))]

(1= 1e(2)*)lg' (8(2))],

1.4

IA

establishing (c).

Since f'(0) = ¢'(0)¢’(0) and Schwarz’s Lemma implies that |¢'(0)] < 1,
we have that |f'(0)] < |¢’(0)]. If |f/(0)] = |¢’(0)|, then |¢'(0)] = 1 and so
there is a constant ¢ with |¢| = 1 such that ¢(z) =cz for all z. O

We now apply these results to a particular class of functions on D. Let P
be the set of all analytic functions p on D such that Re p(z) > 0 on I and
p(0) = 1. The first part of next result is a restatement of Exercise 6.2.3.

1.5 Proposition. If p € P and z € D, then

1 — 2|
1+ |z

1+ 2|
1— 2|

< Ip(2)] <

and 5
/
P (2) € —3.
e
These inequalities are sharp for p(z) = (1+ 2)/(1 — z).

Proof. The Moébius transformation T'(z) = (1 + 2)/(1 — 2z) maps to D
onto the right half plane and T(0) = 1. Thus Proposition 1.2 implies p is
subordinate to T'. Let ¢ : D — D be the analytic function with ¢(0) = 0
and 1+ 6(2)

z
for all z in D. But for any ¢ in D,

1-|¢l <|1+< < 1+

T+1¢ S |T=¢| S 11
> 1-16(2)] _|1+6(2)| _ 1+p(2)]
T3 160 = |T=(2)| = 1-16(2)]

But |¢(2)}] < |z|, whence the first inequality.
For the second inequality, apply (1.3.c) to obtain that

/ 1- |¢(z)|2 1
P& < 2R T
1= g2 1
= 20D 1= 2P
14 16(z)] 1

1—|g(2)] 1—12
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1+ |z 1
T 1 |z] 122
2
(1—lz))*

O

1.6 Corollary. P is a compact subset of H(D).

Exercises

1. Show that for p in P and 2] < 1: (a) % 1+| | < Re p(z) < %};
(b) lm p(2)| < 2y () larg p(2)| < sin~! [2e 5 () gEEL <

. € p(z) —
122"

2. (a) Show that if f is an analytic function on D with f(0) = 0 and
f(0) = 1, then the convex hull of f(D) contains B(0;1/2). (Hint:
Show that if this is not the case, then f is subordinate to a rotation
of the map g(z) = z/(1 — z).) (b) Show that if f € S (14.7.1) and
f(D) is convex, then f(D) contains B(0;1/2).

3. (a) Let f, be the rotation of the Koebe function (Example 14.1.4).
Show that if f is an analytic function on D with f(0) = 0 and f(0) =
1, then f(D) meets the ray {r@: r > 1/4} unless f # f,. (b) Suppose
f €8 (14.7.1) and f(D) is a star like region; show that f(D) contains
B(0;1/4). (This is a special case of the Koebe 1/4-Theorem (14.7.8).)

4. Show that if f is an analytic function on D with 0 < |f(2)| < 1 for
all z, then |f’(0)| < 2/e and this bound is sharp.

§2 Loewner Chains

If f: D x[0,00) = C, then f’(2,t) is defined to be the partial derivative
of f with respect to the complex variable z, provided this derivative exists.
The derivative of f with respect to the real variable t is denoted by f(z,1).

2.1 Definition. A Loewner chain is a continuous function f : D x [0, 00) —
C having the following properties:

(a) for all ¢ in [0, 00), the function z — f(z,t) is analytic and univalent;
(b) f(Ovt) =0 and f/(Ort) zet;

(¢) for0<s<t<oo, f(D,s)C f(D,t).
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Let £ denote the collection of all Loewner chains.

The first question is the existence of Loewner chains. If g is the Koebe
function (14.1.4) and f(z,t) = etg(z) = e*z(1 — 2)72, then it is easy to
check that f is a Loewner chain with f(ID,t) = C\ (—oo, —€t/4]. If g is any
function from the class S, then f(z,t) = e’g(z) satisfies conditions (a) and
(b) of the definition of a Loewner chain, but it may not satisfy condition
(c). An amplification of this existence question appears in Theorem 2.16
below.

The first result gives some properties of the parametrized family of simply
connected regions (t) = f(D, t) associated with a Loewner chain that will
be used in the construction of the examples just alluded to.

2.2 Proposition. If f is a Loewner chain and for each t > 0, Q(t) =
f(D,t), then:

4

(a) for0<s<t<oo, s)C Q)
and Q(s) # Q(t);

2.3 S (b)) ift, —ot, then Q(t,) — Qi) in the
sense of Definition 15.4.1,

(¢) iftn — o0, then Q(t,) — C.

\

Proof. The proof that Q(s) C Q(t) when s < t is iimmediate from the
definition. Since f'(0,s) # f'(0,t), the uniqueness part of the Riemann
Mapping Theorem implies that Q(s) # Q(¢). Part (b) is clear from Theorem
15.4.10. Note that the Koebe 1/4-Theorem (14.7.8) implies that f(D,t) 2
(e*/4)D so that f(D,t) > Cast — oo, O

We now prove what is essentially a converse of the preceding proposition.

2.4 Proposition. Let {Q(t): 0 <t < oo} be a family of simply connected
regions satisfying (2.3) and for eacht > 0 let hy : D — Q(t) be the Riemann
map with hy(0) = 0 and hy(0) = B(t) > 0. If h(2,t) = hs(z) and By = B(0),
then the following hold.

(a) The function (3 is continuous, strictly increasing, and () — oo ast —
00

(b) If AMt) = log[B(t)/Bo] and f(z,t) = ﬁo_lh(z,/\‘l(t)), then f defines a
Loewner chain with f(D,t) = 85 1Q(A"1(t)).

Proof. Let
h(z,t) = B(t)[z + ba(t)2® + - -]
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By (2.3.b), if {¢t,} is a sequence in [0, c0) such that ¢, — ¢, then Q(¢,) —
Q(t) and so hy, — h; in H(D) (15.4.10). In particular, h: D x [0,00) — C
is a continuous function that satisfies conditions (a) and (c) of Definition
2.1 as well as h(0,t) = 0 for all ¢. So h fails to be a Loewner chain only
because it lacks the property that h/(0,t) = e'. Indeed, there is no reason
to think that 3(t) = et. However it is easy enough to reparametrize.

Note that if t, — ¢, hy, — h; in H(D) and so G(t,) — B(t). Hence S is
continuous.

Fix s < t; so Q(s) C Q(t). By Proposition 1.2 there is an analytic func-
tion ¢ : D — D with ¢(0) = 0 and such that h(z, s) = h(é(z),t) for all z in
D. By Schwarz’s Lemma |¢(2)| < |z| and |¢'(0)| < 1, where the strict in-
equality occurs because Q(s) # (t). Thus 3(s) = h'(0,s) = A'(0,t)¢'(0) =
B(t)¢'(0). But ¢'(0) > 0 and we have that 3 is a strictly increasing function
from [0, 00) into (0, c0). Moreover Q(t) — C as ¢ — oo so that it must be
that B(t) — oo as t — oo. This proves (a).

So we have 8 : [0,00) — [Bp,00) is strictly increasing, continuous,
and surjective. Thus A(¢) = log[3(t)/B] is a strictly increasing contin-
uous function from [0,00) onto itself. Define f(z,t) as in part (b). So
f : D x[0,00) — C is a continuous function that is easily seen to sat-
isfy conditions (a) and (c) in (2.1) and f(0,¢) = 0. If 7 = A~!(¢), then
t = A(7) so that et = B(1)/Bo. So f'(0,t) = B;'B(7) = et. Thus f is a
Loewner chain and it is clear that f(D,t) = G5 'Q(A71(¢)). O

Of course the constant 3 ! must appear in (b) of the preceding result.
The function fy in a Loewner chain belongs to the class S, and for an
arbitrary region €(0) there is no reason to think that the Riemann map of
D onto ©(0) comes from the class S.

The following example will prove to be of more value than merely to
demonstrate the existence of a Loewner chain.

2.5 Example. Let v : [0,00) — C be a Jordan arc that does not pass
through 0 and is such that v(f) — oo as t — oo and v(0) = aq. For
0 <t < o0, let v; be the restriction of 7 to [t,00) and put Q(t) = C\ . It
is easy to see that (2.3) is satisfied. By means of Proposition 2.4 we have
an example of a Loewner chain.

For a Loewner chain f, let f; denote the univalent function on D defined
by fi(z) = f(z,t). Think of a Loewner chain as a parametrized family of
univalent functions on D, {f:}, indexed by time, where f is the starting
point, and as time approaches oo the functions expand to fill out the plane.

2.6 Proposition. If f € L and 0 < s <t < oo, then there is a unique
analytic function z — ¢(z, s,t) defined on D having the following properties.

(a) &(z,s,t) €D and f(z,3) = f(¢P(z,s,t),t) for all z in D.
(b) z — ¢(z,s,t) is univalent, $(0,s,t) =0, |(z,s,t)| < |2| for all z in
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D, and ¢'(0, s, t) = 57t
(c) ¢(z,8,8) =z for all z in D.
(d) If s <t <u, then ¢(z,s,u) = d(&(z,s,t),t,u) for all z in D.

Proof. Because f;(D) C f:(D), there is a unique analytic function ¢(z, s,t)
defined on D) with values in D and such that ¢(0, s,t) = 0 and f;(¢(z, s,t)) =
fs(2) (Proposition 1.2). Since both f;(2) and fs(z) are univalent on D, ¢ is
also. This shows (a). The fact that |¢(z, s,t)| < |z| for all z in D follows by
Schwarz’s Lemma. Taking the derivative of both sides of the equation in
(a) at z = 0 gives that e® = f/(0,s) = f(#(0.s.t),t)¢'(0.5.t) = e'¢'(0.5.t).
This proves part (b).

Part (c) follows by the equation in (a) and the fact that the function
@(z, s.t) is unique. Finally, to show (d) observe that the properties of the
functions imply that for w = ¢(z, s,t), f(¢(w,t,u),u) = f(w,t) = f(z,s),
so that (d) follows by the uniqueness of ¢. O

2.7 Definition. The function ¢(z, s,t) defined for zinDand 0 < s <t <
oo and satisfying

2.8 f(zy S) = f(¢(z7 Svt)a t)

for a Loewner chain f is called the transition function for the Loewner
chain.

Note that the transition function is given by the equation ¢(z,s,t) =

foH(fs(2)-
2.9 Lemma. If f € L, then for all z in D and 0 <t < oo,

t 1- |Z| / t 1+ |Z|
0 e E R A e
|2| ¢l
2.11 et____(l = |_z|)_2 <I|f(z,t)] <e ————(1 e

Proof. In fact, the function et f(z,t) € S, the class of univalent functions
defined in §14.7. Thus this lemma is an immediate consequence of the Koebe
Distortion Theorem (14.7.9). O

The preceding lemma quickly implies that for any T > 0, {f(z,t):0 <
t < T} is a normal family in H(D). However we will prove much more than
this in Proposition 2.15 below.
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2.12 Lemma. If f is a Loewner chain with transition function ¢, then the
function p is defined for z inD and 0 < s <t < 0o by
1 s—t 1— -1 t
past) = pio [T dand
1—es—t |14 2z71¢(z,s,t)
L+t [2—(z,5,1)
1—est |24+ ¢(z,s,t)
belongs to the class P and p(0, s,t) = 1.

Proof. Let ¢(z) = ¢(z,s,t) for s and ¢ fixed. The fact that p belongs to
P is a consequence of the fact that |¢(z)| < |z| and hence belongs to D for
all zinD. O

2.13 Lemma. If f € £, |2| <1, and 0 < s <t < u, 00, then the following
inequality holds:

£218) = F2. 0] < o (et = ),
Proof. For the moment, fix s and ¢, s < t, and put ¢(z) = ¢(z,s,t).
According to (2.10), if || < |z| < 1, then |f'(¢,t)] < 2et(1 — |¢))~2 <
2e?(1 — |z])~3. Since |¢(2)| < || this implies

/ (6 t)de
d(2)

2¢t
< (—1‘_‘7)3[05(2) - zl.

|f(Z,t) - f(Z, S)| =

Now to estimate |¢(z) — z|. Applying Proposition 1.5 to the function p
defined in Lemma 2.12, we get

1+e M |z2-9(2)| s
[l—es—t] z+é(z)| [p(z,5,2)]
1+ ||
1=z
Hence
sl < | am]| [T+ o
2.14 < 2] [113] (1—et).
Therefore
f(2,8) = f(z,9)] < (1—26|z|)3 22| Ef;zu(l_es-t)
8|Z! et_es
S T
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proving the lemma. O

2.15 Proposition. The set L of all Loewner chains is a compact subset of
the metric space C{D x [0, 00),C).

Proof. The inequality (2.11) implies that for every (z,t) in D x [0, 00),
sup{|f(z,t)| : f € L} < co. Also Lemma 2.13 shows that £ is equicontin-
uous at each point of D x [0, 00). Thus the Arzela-Ascoli Theorem implies
that £ is normal in C(ID x [0, 00)). It remains to show that £ is closed.

If {f.} is a sequence in £ and f, — f in C(D x [0,00))}, then for each ¢,
fn(z,t) — f(2,t) in H(D). Hence for each t, z — f(z,t) is analytic. Clearly
f(0,t) = 0 and f’(0,t) = e'. Since each f,(z,t) is univalent, Hurwitz’s
Theorem implies that z — f(z,t) is also univalent. Finally, f 0 < s <t <
00, fn(D,s) C fn(D,t) for all n, so f(D, s) C f(D,t). Therefore, f € £ and
L is closed. O

Note that if f is a Loewner chain, then z — f(z,0) is a function in the
class S defined in §14.7. A further amplification of the fact that Loewner
chains exist is the next theorem, which asserts that any function in the
class § can occur as the starting point of a Loewner chain.

2.16 Theorem. For every function fo in S there is a Loewner chain f
such that f(z,0) = fo(z) on D.

Proof. First assume that f is analytic in a neighborhood of ¢l D. Thus
v = f(OD) is a closed Jordan curve. Let g : Coo\ ¢l D — Cyo\ ¢l [ out 4] be
the conformal equivalence with g(co) = oo and ¢'(o0) > 0. For 0 < ¢ < o0,
put Q(¢) = the inside of the Jordan curve g({z : |2| = €e'}). Note that
Q(0) = fo(D) and {Q(t)} satisfies the condition (2.3).

Letting h be as in Proposition 2.4, the uniqueness of the Riemann map
implies that h(z,0) = fo(2z) and so Sy = 1 (in the notation of (2.4)). An
application of Proposition 2.4 now proves the theorem for this case.

For the general case, let f be an arbitrary function in S, for each positive
integer n put 7, = 1 — n™!, and let fn(2) = ;' f(rn,2). So each f, € S
and is analytic in a neighborhood of cl D. By the first part of the proof
there is a Loewner chain F,, with F,(z,0) = f,(z). By Proposition 2.15
some subsequence of {F},} converges to a Loewner chain F. It is routine to
check that F'(2,0) = f(z)in D. O

Note that if fo maps D onto the complement of a Jordan arc reaching
out to infinity, then the preceding theorem is just Example 2.5. It is this
particular form of the theorem that will be used in the proof of de Branges’s
Theorem.

The study of Loewner chains continues in the next section, where we
examine Loewner’s differential equation.
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Exercises

1. Let f: D x [0,00) — C be a function such that for each z in D, —
f(z,t) is continuous and for each t in [0,00),z — f(z,t) is analytic.
Assume that properties (a), (b), and (c) of Definition 2.1 are satisfied.
Show that Lemma 2.9 is satisfied for this function and consequently
that f is a Loewner chain.

2. Let 2 be a simply connected region containing 0 such that Cu \
Q consists of two Jordan arcs that meet only at co. Let hy be the
Riemann map of D onto 2 with hy(0) = 0 and Gy = ho(0) > 0. Show
that there are two Loewner chains f and g with f(z,0) = g(z,0) =
By tho(2) (see Proposition 2.4).

3. Let f € £ and let ¢ be the transition function for f. Fix v > 0 and
define g : D x [0,00) — C by g(z,t) = e*¢(z,t,u) for t < u and
g(z,t) = e*z for t > u. Show that g € L.

4. If g is the Koebe function and f is the Loewner chain defined by
f(z,t) = etg(z) = e*z(1 — 2)~2, find the transition function for f.

5. In Lemma 2.9, what can be said about the Loewner chain f if one of
the inequalities is an equality?

6. If f is a Loewner chain with transition function ¢, prove that, anal-
ogous to (2.13),

8|z +
16(2,t,u) — $(z,5,)| < (1—_'#0 et

for0<s<t<u<ooandall zin D.

83 Loewner’s Differential Equation

In this section Loewner’s differential equation and the concommitant char-
acterization of Loewner chains is studied. There is a version of Loewner’s
differential equation valid for all Loewner chains, but we will only see here
the version for a chain as in Example 2.5. This is all that is needed for the
proof of de Branges’s Theorem.

To set notation, let 7 : [0,00) — C be a Jordan arc with v(0) = ag such
that « does not pass through 0 and «(t) — o0 as t — oo. For 0 <t < oo,
let ; be the restriction of v to [t,00) and put Q(¢) = C\ ;. Assume there
is a Loewner chain f such that f;(D) = £(=) for all ¢t > 0. (The reason for
the word “assume” here is that otherwise we would have to multiply the
regions 2(t) by a constant. See Proposition 2.4.b.) Let ¢ be the transition
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function for the chain f and let g, = £, : Q(t) — D with g(¢,t) = g¢(¢).
For s < t let ¢4(2) = ¢(2, s,t). Recall that ¢, = f; ' o fs.

Now Proposition 15.3.7 implies that f; and f; have continuous extensions
to cl . Moreover Proposition 15.3.8 g; has a continuous extension to ((¢)U
{7(t)}. Let A(¢) be the unique point on the unit circle such that fi(A(t)) =
~(t). Let Cs; be the closed arc on dD defined by Csy = {z € ID : fi(z) €
v([s,t])} and let Jsx = g:(7v([s,t])). So Js is a Jordan arc that lies in D
except for its end point A(t). (The reader must draw a picture here.) Thus
¢4+ maps D conformally onto D \ Jg;. Also ¢, has a continuous extension
to cl D that maps C, onto Jy; and the complement of Cy; in the circle
onto A\ {A(t)}.

Observe that A(s) is an interior point of the arc Cy; and C,; decreases
to A(s) as t | s. Similarly, if ¢ is fixed and s T ¢, then J, decreases to A(t).

3.1 Proposition. With the preceding notation, the function X : [0,00) —
0D is continuous.

Proof. An application of the Schwarz Reflection Principle gives an analytic
continuation of ¢s to C\ Cs. This continuation, still denoted by ¢, is
a conformal equivalence of C\ Cs; onto C\ {Js; U J%}, where J7, is the
reflection of J,; across the unit circle.

Claim. |27 ¢4 (z)| < 4et~2 for all z in C \ C.

This is shown by applying the Maximum Modulus Theorem. In fact

. d(z,8,1) . z 1 i
=1 = = s
A TG PO

Also the Koebe 1/4-Theorem (14.7.8) implies that since Jy; is contained in
the complement of ¢4 (D), Jot € C\ {¢ : [¢| < e**/4}. Thus J3, C {¢ :
|¢] < 4e*~*}. This proves the claim.

The claim shows that for any 7' > s, {27 1¢s : s <t < T} is a normal
family. If ¢, | s and {¢s:,} converges to an analytic function %, then ¢
is analytic on C\ {)\(s)} and bounded there. Hence A(s) is a removable
singularity and ¢ is constant. But ¢(0) = lim;_, ¢’(0, s,¢) = 1. Since every
convergent sequence from this normal family must converge to the constant
function 1, we have that 27 1¢4(z) — 1 (uc) on C\ {\(s)} as ¢ | s. Thus
ost(z) = z (uc) on C\ {A(s)} ast ] s.

Fix s > 0. We now show that A is right continuous at s. The proof
that A is left continuous is similar and left to the reader. If £ > 0, choose
6 > 0 such that for s <t < s+ 6, Csy C B(A(s);€e). Let C be the circle
OB(\(s);€) and put x = ¢5(C), a Jordan curve. Note that the inside of x
contains the arcs Js; and J3; so in particular A(¢) € ins x. Now 6 can be
chosen sufficiently small that for s < ¢t < s + 6, |pst(2) — 2| < € for all 2
in C. From here it follows that diam x < 3e. So if we take any point z on
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CIA(8) = A@)] < |A(8) — 2| + |25t (2)] + |@st(2) — A(t)] < € + & + 3¢ = Be.
This proves right continuity. O

For a Loewner chain f, recall that f(z,t) = 8f /0t and f'(2,t) = 8f/0z;
similarly define ¢(z,s,t), ¢'(2,s,t), §(¢,t), and ¢'((,t).

3.2 Proposition. Fiz the notation as above. The function g has continuous

partial derivatives and if z(t) = A(t), then for t > 0 and ¢ in Q(t)

: 1+2z(t)g(¢,t)
3.3 (6.0 = ~g(c.t) [ E09ED).
Proof. 1t is left for the reader to verify that g is a continuous function.
To prove that ¢’ exists and is continuous is the easy part. In fact because
f is a Loewner chain, g’(¢,t) exists and equals [f'(g((,t),t)]~!. Since the
convergence of a sequence of analytic functions implies the convergence of
its derivatives, f': D x [0,00) — C is continuous. Hence ¢’ is continuous.
Note that if we can show that g exists and (3.3) holds, then the continuity
of g follows from the continuity of g. To prove existence, we will show that
the right partial derivative of g exists and satisfies (3.3). The proof that
the left derivative exists and also satisfies (3.3) is similar and left to the
reader. Return to the transition function ¢. Remember that for s <t, ¢4
has a continuous extension to cl D and ¢s;(Cs) = Jsi. Now 27 g does
not vanish on D and so it is possible to define the analytic function

®(z) =log [—¢St (z)] ,
z
where the branch of the logarithm is chosen so that ®(0) = s —¢.
Thus ® is continuous on cl D and analytic on D. If z € 8D \ Cj, then
#st(z) € D\ {\(t)} and so Re ®(z) = log|z1¢s(2)] = 0. Thus the
Poisson formula gives that

Re ®(z) = % / ﬂ[Re (")) P, (") do,

where a and 3 are chosen so that e** and e*? are the end points of Cy;. By
the choice of the branch of the logarithm,

1 B i eie +z
34 ®(z) = o / [Re ®(e*)] 5, -

‘We also have that

8 .
s—t=2%o(0) = %/ Re ®(e%) db.

(o4
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Now f; 0 ¢st = fs and so g; = ¢st © gs. Thus letting z = g,(¢) in (3.4)
implies that

-a |, e [

Now apply the Mean Value Theorem for integrals to the real and imaginary
parts of this integrand to obtain numbers v and v with a < u, v < 8 and
such that

log [gt(C)]

1 ﬁ
— | Re ®(e*)dd

2w

{56}

+“m{if—3—:%}]

=(s—1) [Re{%i“Z:—Eg} +iIm {Uf—zgg}]

Now divide both sides of this equation by ¢ — s and let t | s. When this is
done, e** and e® both converge to A(s). Thus

log [gt(C)] _ _Ae)+e.(Q)
9s(¢) A(s) — gs(¢)
_1+2(s)gs(¢)
1—2(s)gs(¢)
But the left hand side is precisely the right derivative of log[g:(¢)/gs({)]
with respect to ¢, evaluated as t = s. By taking exponentials and multi-

plying by gs(¢), it follows that ¢ — g;({) has a right derivative at t = s.
Elementary calculus manipulations then give that

1+ z(s)g (C,s)]
z(s)g(¢, s)

where this is actually the right derivative. As was said, the similar proof
for the left derivative is in the reader’s hands. O

lim
tls t — s

9(473) _g(c’ )l:

3.5 Theorem. If f is a Loewner chain such that fy is a mapping onto a
slit region, then there is a continuous function x : [0,00) — 8D such that
f(z,t) ezists and satisfies

1+ z(s)z

3.6 f(z,t) = [1 o 60)z

] z2f'(z,t).

Proof. The existence and continuity of f’ was already shown at the be-
ginning of the proof of Proposition 3.2. Since f; and g; are inverses of each
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other, the differentiability of f with respect to ¢ will follow from the Inverse
Function Theorem of Advanced Calculus, but this must be set up properly.

Define F : D x [0,00) — C x R by F(z,t) = (f(2,t),t). It is not hard to
see that F'(D x (0, 00)) is the open set A = Usso(C\ 1) x (¢, 00) and that F
is a one-to-one mapping with inverse given by F~1((,t) = (g((,t),t). Thus
F~! is a continuously differentiable function and its Jacobian is

aet | 70 e,
96 1

which never vanishes. Thus F' is continuously differentiable, from which it
follows that f(z,t) exists and is continuous.

Now let x be as in Proposition 3.2. Note that { = f(g:(¢, ), so differen-
tiating with respect to t gives that 0 = f'(g:(¢),t)3(¢,t) + f(g:(¢), t).
Putting z = g,({), this shows that 0 = f'(z,t)g({,t) + f(z,t) for all z in D.
Therefore applying (3.3),

fz) = —f'(z1)3(¢,0)
1+ z(t)g(S, t)]

= f'(z,t)g(¢t) [1 —z(t)g(¢, )
1+ z(t)z }

- Seoe |10

This finishes the proof. O

Equation (3.6) is Loewner’s differential equation. There is a differential
equation satisfied by all Loewner chains, not just those that begin with a
mapping onto a slit region. For an exposition of this see Duren [1983] and
Pommerenke [1975], two sources used in the preparation of this section and
the preceding one.

This section concludes with a result valid for all Loewner chains, not
just those that begin with a mapping onto a slit region. In many ways this
illustrates the importance of Loewner chains in the study of the univalent
functions in the class S.

3.7 Proposition. Let f be a Loewner chain with g, the inverse of fi. Then
fo(z) = lim e*g(fo(2),t)
—00
uniformly on compact subsets of D.
Proof. According to (2.11),

.l el
T S Vel s e g
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Substituting z = g((, ) this becomes

S
Ao =S

Algebraic manipulation gives that

-1, ))*

3.8 [1—1g(¢, O < et < [1+g(¢ 0P

)
¢

Since |g(¢,t)| < 1 for all ¢ and ¢, |g(¢,t)] < 4e*|¢|. This implies that
{etg:/(t > 0} is a normal family. But (3.8) implies that if tx — oo and
e'*g;. /¢ — h, then h is an analytic function with |h| = 1. Hence h is
constant. But for any t, e'g;(0) = €'/f{(0) = 1. Thus hA(0) = 1 and so
h = 1. That is, any limit point of this normal family as ¢ — oo must be
the constant function 1. Therefore as t — 0o, €*g;(¢)/¢ — 1 uniformly on
compact subsets of C. Thus eg((,t) — ¢ uniformly on compact subsets
of C, so that e*g(fo(z),t) — fo(z) uniformly on compact subsets of D as
t—o0. O

3.9 Corollary. If f € S and g is the inverse of the Loewner chain starting
at f, then t — etg(f(2),t) for 0 < t < co is a path of functions in S
starting at z and ending at f.

3.10 Corollary. The family S of univalent functions with the relative topol-
ogy of H(D) is arcwise connected.

Exercises

1. Let f € £ with g; the inverse of f; and put h(z,t) = g(fo(z),t). Show
that h satisfies the equation

h(z,t) = K(z, 1) [1 + x(t)h(z,t)] ,

1 — z(t)h(z,1)
where z is as in Proposition 3.2.

2. If f € L and ¢ is its transition function, show that for all s >
0, f(z,8) = limy_.o €'@(2, s,t) uniformly on compact subsets of D.
Compare with Proposition 3.7.

3. If g is the Koebe function and the Loewner chain f is defined by
f(z,t) = e*g(z) = etz(1 — z)~2, find the function z that appears in
Loewner’s differential equation for f.
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§4 The Milin Conjecture

What will be proved in the next section is not the Bieberbach conjecture
but the Milin conjecture, which is stronger than Bieberbach’s conjecture. In
this section the Milin conjecture will be stated and it will be shown that it
implies the Bieberbach conjecture. But first the Robertson conjecture will
be stated and it will be shown that it implies the Bieberbach conjecture
and is implied by the Milin conjecture.

For reasons of specificity and completeness, let’s restate the Bieberbach
conjecture. First, as standard notation, if f is a function in S, let

4.1 f(z) =24+ a2 +az2®>+---.

4.2 Bierberbach’s Conjecture. If f belongs to the class S and has the
power series representation (4.1), then |a,| < n. If there is some integer n
such that |a,| = n, then f is a rotation of the Koebe function.

If f is a rotation of the Koebe function, then (14.1.4) shows that |a,| =n
for all the coeflicients.

Recall (Proposition 14.7.4) that a function g in the class S is odd if and
only if there is a function f in S such that g(z)? = f(2?) for all z in D. Let
S_ be the collection of odd functions in S and if g € S_ let

4.3 g(z) =z +c32® +c52° +---

be its power series. The Robertson conjecture can now be stated.

4.4 Robertson’s Conjecture. If g € S_ has the power series represen-
tation (4.8), then for eachn > 1

1+|cs> + -+ + |eznaf?* < m.

If there is an integer n such that equality occurs, then g(2)? = f(2?), where
f is a rotation of the Koebe function.

4.5 Theorem. Robertson’s conjecture implies Bieberbach’s conjecture.

Proof. Let g € S_ satisfy (4.3) and let f be the corresponding function
in S with g(z)? = f(22) in D. Suppose f satisfies (4.1). Thus

2 4at+ o =(24+c+--0)2

Expanding and identifying coefficients of the corresponding powers of z we
get that for alln > 1

an = Ci1C2p—1 +C3C2p—3 + -+ + C2pn-1C1.
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An application of the Cauchy-Schwarz Inequality shows that

n
lan] < leak—1?,
k=1

whence the first part of theorem.

If equality occurs in Bieberbach’s conjecture, then the preceding inequal-
ity shows that equality occurs in Robertson’s conjecture. This completes
the proof. O

To state the Milin conjecture is not difficult; it only requires some no-
tation. To see that this implies the Robertson conjecture is more involved
and will occupy us for most of the remainder of the section.

Let f € S and let g be the corresponding function in S_ with g(z)? =
f(2?) on D. Assume (4.1) and (4.3) hold. It is easy to see that z71f is an
analytic function on D and has no zeros there. Thus there is an analytic
branch of (1/2) log[2~!f(z)] defined on D; denote this function by h and
let

4.6 h(z) = Z Y 2"
n=1

be its power series representation on ID. Note that we have chosen the
branch of (1/2) log[z~!f(2)] that satisfies h(0) = 0 and with this stipula-
tion, h is unique.

4.7 Milin’s Conjecture. If f € S, h is the branch of (1/2) log[z~! f(z)]
with h(0) = 0, and h satisfies (4.6), then

n m 1
S (klwl* - 7 <0
m=1k=1
If equality holds for some integer n, then f is a rotation of the Koebe
Sfunction.

To show that Milin’s conjecture implies the Robertson conjecture {and
hence the Bieberbach conjecture), it is necessary to prove the Second
Lebedev-Milin Inequality. This is the second in a collection of three in-
equalities that relate the power series coefficients of an analytic function
with those of its exponential. All three inequalities will be stated and then it
will be shown that Milin’s conjecture implies Robertson’s conjecture. Then
the second inequality will be proved. After this the remaining inequalities
will be derived for the interested reader.

Let ¢ be an analytic function in a neighborhood of 0 with ¢(0) = 0 and
let

48 B(z) = i apz*
k=1
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be its power series. Let

49 P(z) = e??) = Z,Bkzk.

k=0

4.10 First Lebedev-Milin Inequality. If ¢ and v are as above, then

D 1B <exp {E klaklz} -
k=0 k=1

If the right hand side is finite, then equality occurs if and only if there is
a complex number y with |y| < 1 and oy, = v*/k for all k > 1.

4.11 Second Lebedev-Milin Inequality. If ¢ and ¥ are as above, then
foralln>1

3 I < (n+ Dexp {n—i—l 33 (ke - %)}.

k=0 m=1 k=1

Egquality holds for a given integer n if and only if there is a complex
number v with |y| =1 and o = v*/k for 1 <k < n.

4.12 Third Lebedev-Milin Inequality. If ¢ and ¢ are as above and

n#l,
Bul? < exp {Z(klakﬁ’ - %)} .

k=1
Equality holds for some integer n if and only if there is a complex number
v with |y| =1 and oy =¥ /k for 1 <k <n.

4.13 Theorem. Milin’s conjecture implies Robertson’s conjecture.

Proof. Let g € S_ and let f € S such that g(z)? = f(2%) on D; as-
sume that (4.1) and (4.3) hold. Let h(z) = (1/2) log[2~! f(z)] satisfy (4.6).
Note that if z € D\ (—1,0], [9(v/2)/vZ]> = f(z)/z. On the other hand,
9(v2)/v/z=1+caz+cs2%+---, so that g(y/z)/+/Z is analytic on D. Thus
h is a branch of log[g(+/z)/+/2] and so taking ¢; = 1 we get

(o o] o0
Z Cont12" = €xp {Z ’7nzn} .

n=0 n=1

According to the Second Lebedev-Milin Inequality, for each n > 1

> leakial® < (n+ Dexp {n_j-_l 33 (kiwl® - %)} .

k=0 m=1k=1
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Thus if Milin’s conjecture is true, this implies that for every n > 1

> leakqal> < (n+ 1),

k=0

which we recognize as Robertson’s conjecture.
Suppose n > 1 and equality holds in Robertson’s conjecture. Again as-
suming the Milin conjecture, this implies

n+l = Zlc2k+1|2
k=0
1 - 1
2
< (n+1)exp{n+1 ZZ(’VIWJ _-k;)}
m=1k=1
< n+1l.

But this implies equality in Milin’s conjecture and so f must be a rotation
of the Koebe function. O

Now to prove the inequalities. A few preliminary observations are valid

for each of the proofs. Since ¥ = e?, ¢/ = ¢'e® = ¢'1. Using the power
series expansions of these functions we get

ikb’kzk_l = (ikakzk_l) (iﬁkzk)
k=1 k=1 k=0

= a1fo + (0181 + 20200)2 + (0182 + 202081 + 3a3fo) 7’
+---+(alﬂm+---+mamﬂo)zm+-~~ .

Equating corresponding coefficients gives
m
4.14 mBy, = Zkak,@m_k.

Proof of the Second Lebedev-Milin Inequality. Apply the Cauchy-Schwarz
Inequality to (4.14) to get

mziﬁmlz < (Zkzlak|2> (ilﬁm kl2>
- part
4.15 = (Zk2lak|2> (mz: lﬁk|2>
Put

4.16 A =" ko |? Bm = |8l
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So (4.15) becomes m?|B,|? < ApBm—1 for all m > 1. Now fix n > 1 and
let’s prove (4.11). Thus

Bn = Bn—1+|,6n|2
< Bnoa [1 + %An]
n

_ n+1 A, —n B

N n n(n+1) ol
n+1 A,—n

< B, _

= n exP{n(n+1)} n=b

where the elementary inequality 1+ z < e* has been used. Now apply this
latest inequality to B,_; and combine the two; so we have

n+1 Ap—-n  Ap1—-(n-1)
B, < B,_,.
n—lexP{n(n+1)+ (n—1)n 2

Continuing and noting that By = |Bo|2 = 1 we get that

B, < (n+1)exp{21:(1;:;1)}
n ‘ n+11
4.17 = (n+1)eXP{Zk(k+l)+1—ZE}'
k=1

Now use the summation by parts formula (Exercise 2) with = = [k(k +
1)]7! and y = Ax. Here X, = 3 p_;[k(k+1)]7! =1 — (n+ 1)"'. This
gives

3
|
-

n Ak

_ Ok A — A XA,
k(k+1) X(A = Aerr) +

k=1

S >
Il
-

- > [1 - 7521&_1] (—=(k + 1)?|apq])

1 n
1— 2 2
O e P
k=1
n 1 n
_ 2 2 2
= Y kloxl —nHZk ok |2
k=1 k=1
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n 1 n n+11
= Mol - g SR 13
k=1 n+1k=l k:lk
1 n n
= __1{Z(n+1)k|ak|2—Zk2|ak|2+n+1
n+ k=1 k=1
_’fn__ﬂ
k
k=1
1 i 2 2 2 n+1
= L3 e ko - Rl 1 - 2

k=1

1l

f
3
+ | =
—
M=

ES
a i

l(n +1—k) (kIaK|2 - %)

1 = s 1
= vl (Kool 1),

m=1 k=1

3

where we have used Exercise 3. If this is combined with (4.17), we have the
Second Inequality.

Now for the case when we have equality in (4.11). (At this point the
reader can go directly to the next section and begin to read the proof of
the Milin conjecture and, hence, the Bieberbach conjecture. The remainder
of this section is not required for that enterprise.) There were two factors
that contributed to inequality in the above argument: the Cauchy-Schwarz
Inequality and the inequality 1 + z < e*. So if equality occurs, it must be
that equality occurred whenever these two facts were used. The first such
instance was when the Cauchy-Schwarz Inequality was applied to (4.14) in
order to obtain (4.15). Note that for equality in (4.11) for an integer n, we
need equality in (4.15) for 1 < m < n. Thus there must exist constants
Al,..., Ap such that for each m, 1 <m < n,

4.18 Brm—k = Ak

for 1 < k < m. Since 1 + z = €* only when z = 0, an examination of
the occurrence of this equality in the argument yields that A,, = m for
1<m<n.

Substitution of (4.18) into (4.14) gives that mBm, = A Y pe; K2 lakl® =
AmAm = MMy, Thus B, = Ay, for 1 < m < n. Since Gy = 1, (4.18) for
k = m says that Apym@,, = 1 for 1 < m < n. Thus for m > 2, A\ =
81 = Am(m — 1)@m—1 = Am/Am—1. Hence A\, = A1 Apm—1, from which we
derive that 8, = A, = AT* = v™, where v = A;. Equation 4.18 for k =m
implies that ma,, =y™. But for 1 < k < n, k= Ay = anzl m2lom|? =
Efn:l |v|>™. In particular it holds for k = 1 so that |y| = 1. Hence (4.18)
implies that for 1 < k < n, v"~% = 8,_ = Y™k, so that ar = v*/k for
1<k<n.
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The proof that this condition suffices for equality is left to the reader. O

Proof of the First Inequality. Without loss of generality it can be assumed
that the right hand side of (4.10) is finite. Apply the Cauchy-Schwarz In-
equality to (4.14) in a different way than was done in the proof of the
second inequality to get that m?|8y,|2 < m (X, m2|am|?|Bm—k|?), or

2o 1Xm 2 2
419 |Bml? < m,;m lvm | B .
Let a,, = m|a,,|? and inductively define by = 1 and
Lo
4.20 bm = — ; kaxbm_k.

An induction argument using (4.19) shows that |8m,|? < by, for all m > 1.
If we examine how (4.14) was derived and look closely at (4.20), we see

that
o0 (o ]
3 bt = exp {Zakzk} ,
k=0 k=1

where the hypothesis guarantees that these power series have radii of con-
vergence at least 1. But since ag, b > 0 we get

S < D b
k=0 k=0

= exp{Zak}
k=1

= exp’{2k|ak|2},
k=1

which is the sought for inequality.
Now assume that Y o, k|ax|? < oo and equality occurs. Clearly

DB =D b
k=0 k=0

Since |Bx|? < by for all k > 0, it follows that |3x|? = by for all k. But this
can only happen if for each m > 1 equality holds in (4.19). But this is
an instance of equality holding in the Cauchy-Schwarz Inequality. Thus for
every m > 1 there is a complex number A, such that

4.21 kagBm_k = Am for 1 <k <m.
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Letting £k = m here shows that ma,, = A, for all m > 1. Also if we
substitute (4.21) into (4.14), we get that B, =m '(Am+ -+ Am) = Am
With these two identities,(4.21) becomes Ay, = Ajm—xAe. In particular,
Am = Am—_1A1. From here we get that A,, = AT* for all m > 1. Thus
putting v = A; we have that a = v*/k and B; = v* for all n. Because the
right hand side of (4.10) is finite, it must be that |y| < 1.

The proof that the condition suffices for equality is left to the reader. O

Proof of the Third Lebedev-Milin Inequality. Using the notation from the
proof of the Second Lebedev-Milin Inequality, (4.15) states that

n2|ﬁ"|2

IA

A Bn—l

n—1

IA
S|~

Hence

A 1 1
3 2 n } : E : 2
| "" ¢ m=1k=1 (kl kl k)}

IA

1 A 1 -1
klow|® — E) - 7" + ;nzlanlz + nT}

n
Aﬂ A'n. n 2 1
= e~ exp{——n—+kz_:_l(k]ak| E)}

Now apply the inequality ze™* < 1/e with z = A, /n and (4.12) appears.
The proof of the necessary and sufficient condition for equality in (4.12)
is left to the reader. O

Exercises

1. Show that if f is a rotation of the Koebe function and g(z)? = f(22),
then we have equality in the Robertson and Milin conjectures for all
n.

2. (The summation by parts formula) Show that if {z;x} and {y;} are
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two sequences of complex numbers and X, = Y p_, zx, then

n n—1
Sakye = Y Xi(yk — Yer1) + Xn¥n
k=1 k=1

= ZXk(yk = Yk+1) + XnYn41.
k=1

3. If {xx} is a sequence of complex numbers, show that Y p_,(n+1—
k)ak =3 o1 21 Th-

4. What are the functions ¢ and v for which equality holds in the First
Lebedev-Milin Inequality?

5. Prove the necessary and sufficient condition for equality in (4.12).

85 Some Special Functions

In this section certain special functions are introduced that were invented
by de Branges for the proof of the Bieberbach conjecture. The properties
of these functions are essential for the proof. This section will not be self-
contained. Indeed, in order to deduce some of their crucial properties, we
will also need to examine another collection of special functions, the Jacobi
polynomials (defined below). Many of the properties of these functions can
be found in Szeg6 [1959] and it will be left to the reader to ferret them
out. One crucial property is a positivity result of Askey and Gasper [1976]
that will not be proved here. The general attitude here will be that results
about Jacobi polynomials will be quoted while the needed properties of the
special functions introduced by de Branges will be proved.

The only self-contained exposition of these special functions of de Branges
that I am aware of are some unpublished notes of Dov Aharonov [1984] that
I used to prepare this section and for which I would like to publicly thank
him.

5.1 Definition. For any choice of parameters a and 8 > —1, the Jacob:

8 )}°° are the unique polynomials having the following

polynomials {p;a >0

properties.

(a) p&a’ﬂ) is a polynomial of degree n.

(b) For w(z) = (1 — z)*(a+ z)? and n # m,

1
[ et @t @uia)de = o.
1
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(c) psla’ﬂ)(O) = ("',';") = ("‘%ﬁ, where for any number z and a non-
negative integer n,

(Zp=2(24+1)---(z+n-1).

The fact that the Jacobi polynomials exist and are unique can be found
in any standard reference. See, for example, Szeg6 [1959]. The proof of the
next result can be found on pages 29 and 59 of that reference.

5.2 Proposition. For all admissible o and § and -1 <z <1,
PP (z) = (-1)"pP (—a)

for allm > 0.

5.3 Corollary. p"? (1) = (-1)"pP* (1) = (-1)»("1#).

The next identity appears in the proof of Theorem 3 in Askey and Gasper
[1976] (see page 717); its proof involves hypergeometric functions and won’t
be given here. The result following that is part of the statement of Theorem
3 in that reference.

5.4 Proposition. If a > —1 and —1 < z < 1, then for every m >0
[ﬂi] [ ] (a+2j+2 m—j

5.5 Theorem. (Askey and Gasper [1976]) If a« > —1 and m > 0, then

Z p(a 0)

for -1 <z <1.

Now for the functions of de Branges. If n > 1 and 1 < k < n, define for
allt >0

n—k
~ o (2k+v+1), (2k+2v+2)n k=v —(v+k)t
56 n(t)=k Z(_l) (k+v)vi(n —k—v)!

v=0

and 7,41 = 0.
The relation between the Jacobi polynomials and the functions of de
Branges is as follows.

5.7 Proposition. For1 <k <n,

n—k
Ti(t) = —ke ¥t Y~ pERO (1 — 2¢7).

v=0
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Proof. From the definition of 7, we compute

B o S B B Bt

Hence

Tk(t) kt Z( 1)0 (2k+v+s')(t;f2kl:'_21;;_ 2)n k—v e vt

Now use (5.4) with @« = 2k and m = n — k to get

n—k

3 P01 - 207) =
v=0

—k [241] [2642] (2K +20+2)n ko
= WI(2k + 1)y(n — k — v)!

[2(~2e7t)]".

But 22 [2642] ' (k+1), = (2k+1)2, and (2k+1)2,/(2k+1), = (2k+v+1),.
Therefore

n—k

n—k
(2k.,0) —t v E+v+1)y(2k+ 204+ 2)p_k—v _ye
Dy 1—2e = (-1 e
; ( ) 1;0 ) vl(n—k —v)!
_ _Tklgt) ekt
O

The next result contains all the information about these functions that
will be used in the proof of de Branges’s Theorem.

5.8 Theorem. For the functions T4, ...,7, defined in (5.6) and 7,41 =0,
the following hold;

. _ T TRaa |
5.9 Tk — Th41 {k + E+ 1] ;
5.10 %(0)=n+1—k;

5.11 Te(t) = 0 as t — oo;

5.12 T <0.
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Proof. To prove (5.9) readers might increase their comfort level by first
verifying the equality in the case that k =n (and 7,41 =0). For 1 < k < n
it must be shown that 7% + k= 7 = Tx41 — (k + 1) 7x41. To facilitate the
proof, define gy = k'€’ and hy = k= e~ for 1 < k < n + 1. These
functions enter the picture by observing that

gr = [% + Tk] et hy = [% - Tk:| ek,
so to show (5.9) it suffices to show that
5.13 gkekt = —ilk+16(k+1)t
for1<k<n.

From the definitions of 7%, gx, and hy we get that

n—k

_ w2k +v+1)y(2k+20 4+ 2)pk—v  _y
Gk = 1;)( 1 (k +v)vli(n—k —ov)! ¢
n—k
2k+v+1)y(2k+ 20+ n-k—v  —yi2kt
h = — v v A
k vz:%( 1 6+ v)ol(n—k—0)! ¢
Thus
ey (2k + v + 1) (2k + 20 + 2)p_k
—kt ; — -1 v+1 v n—k—v _—(k4+v)t
c o ;( ) ktv)w-Dln—k—v)! * !
n—k
: +2k)(2k + v+ 1)o(2k + 20 + Dnekov  _
ktj,  — _1)v+l (v (k+v)t
e 1;( ) (k+v)vl(n—k —v)! ¢

Now (2k + v)(2k + v + 1), = (2k + v)y41. Incorporating this in the last
equation and changing the index k to k + 1, we get

B+,

n—k—1
_ Z (—1)r+1 2k +2+v)p41(2k + 20+ 4)p—p—1-0 o~ (k+1+0)t

(k+14+v)vli(n—k—1-—0v)!

v=0

n—k
— Z(_l)v (2k + 1 + U)U(Zk + 2U + 2)n—k—v e_(k+v)t
= (k+v)(v = 1)(n—-k—v)!

5.14 =e g,

thus demonstrating (5.13), and hence (5.9).
To prove (5.10), first apply Corollary 5.3 and (c) of Definition 5.1 to

obtain that p{™? (=1) = (—1)*. Combine this with Proposition 5.7 to get

n—k
#%(0) = —k y_ pP*O(-1).
=0
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Thus

Tk(o { if n — k is even
0 ifn—k is odd.
Now substitute this informa.tlon into (5.9) to get that 7%(0) — 7%41(0) = 1.
Summing up yields (5.10).
The property (5.11) is clear from the definition of the functions and
(5.12) is immediate from Theorem 5.5 and Proposition 5.7. O

§6 The Proof of de Branges’s Theorem

The aim of this section is to prove the following, which is the culmination
of this chapter. This approach is based on the paper of Fitzgerald and
Pommerenke [1985].

6.1 Theorem. The Milin conjecture is true. That is, if f € S, h is the
branch of (1/2) log[z~! f(z)] with h(0) = 0, and

6.2 h(z) = Z’ynz",
n=1

then for allm > 2

6.3 Xn: f: (k|fyk|2 - —) <0.

=1k=1

To accomplish this we first show that it suffices to prove the theorem for
functions in S that map onto a slit region.

6.4 Proposition. If f € S, then there is a sequence {f,} in S such that
each f, maps onto a slit region and f, — f in H(D).

Proof. First we assume that Q@ = f(D) is a Jordan region with its bound-
ary parametrized by v : [0,1] — 9Q, v(0) = ¥(1) = wo. Replacing f by
e~ f(e*) for a suitable 6, if necessary, we may assume that |wg| > |w| for
all w in cl Q. Thus the ray n = {rwp : 1 <r < 0o} in Cy, meets cl 2 only
at wg. Let Q, = Coo \ [nU {7(t) : n~! <t < 1}] and let g,, be the Riemann
map of D onto ,, with ¢,(0) = 0 and g/,(0) > 0.

Note that Q,, — Q in the sense of Definition 15.4.1. Thus Theorem
15.4.10 implies that g, — f. Thus g,(0) — f(0) = 1. Soif f, = [g(0)] "1gn,
then f, € S, f,(D) is a slit region, and f, — f.

Now assume that f is arbitrary. Put r, = 1 — n~! and let f,(2) =
o f(rnz). So fn €S, fn — f, and f,(D) is a Jordan region. The proof of
the special case implies that each f, can be approximated by slit mappings
in § and, thus, so can f. O
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6.5 Corollary. If Milin’s conjecture is true for slit mappings in S, it is
true.

Proof. If f € S, let {f,} be a sequence of slit mappings in S such that
fn — f. For each n let h,(2) = (1/2)log[f.(2)/2] and let h be as in
the statement of de Branges’s Theorem. It is left to the reader to show
that h,, — h. Therefore the sequence of the k-th coeflicients of the power
series expansion of h,, converges to the k-th coefficient of the power series
expansion of h, . Milin’s conjecture now follows. O

Now to begin the path to the proof of de Branges’s Theorem. To do this
let us set the notation. For the remainder of the section, f is a slit mapping
in § and F is the Loewner chain with Fy = f. Thus Loewner’s differential
equation (3.6) holds for F. Observe that e *F; € S for all ¢ > 0. Thus we
can define

1

h(z,t) = —log[

2 etz

")

oo
6.6 = ’Yk(t)zk:
k=1

where the branch of the logarithm is chosen with k(0,¢) = 0.
The strategy of the proof is to introduce the function

6.7 Zn: [km ()2 - %] (t)

k=1

for ¢ > 0, where 71,..., 7, are the special functions introduced in the pre-
ceding section. Given the function ¢, we will prove the following.

6.8 Lemma. If ¢ is the function defined in (6.7), then ¢(t) > 0 for all
t>0.

The proof of this lemma is the heart of the proof of the theorem. Indeed,
the proof of de Branges’s Theorem, except for the equality statement, easily
follows once Lemma 6.8 is assumed.

Proof of (6.3). According to (5.10), 7x(0) =n+ 1 — & and so

M- I

(n+ 1 k) (klwl? - %)

Z(kl7k|2

1k=1

$(0)

3
I

by Exercise 4.3. Also from (5.11) we know that 7(t) — 0 as t — oo and so
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¢(t) — 0 as t — oo. Therefore

6.9 S Y kbl - p) == [ dwe <o

m=1 k=1

by Lemma 6.8. O

The proof of the equality statement needs additional information about
the function ¢.

So now return to our assumptions for this section and the definition of
the function h in (6.6).

6.10 Lemma. (a) If 0 < r < 1, then sup{|h(z,t)| : |2| <7 and 0 < t <
oo} < oo.
(b) For each k > 1,sup{|v(t)| : 0 <t < o0} < 00.

Proof. (a) It suffices to get the bound for |z| = r. Using (2.11) we have
for some integer N independent of r

1r F(z,t)
< = il St A2
h(z,t)] < 5| log|— |+27rN]
1r F(z,t)
= 5_271'N—10gr+10g Tl]
17 r
< =|27N -1 log —
< 2’71'N ogr + log (1-r)2]

Il
B

The Maximum Principle now gives the result.
(b) f 0 < r < 1, then

1 h(z,t)
W) = g )L,
1 0 1\ ik6
= — h(re*,t)e*"dl.
27rr’°/0 (re*,t)e

Thus |y ()| < r~%M, by part (a). O

6.11 Lemma. For each k > 1 the function v : [0,00) — C is continuously
differentiable and

27
6.12 Ar(t) = / h(re®, t)e*%dg.
0

2nrk

Proof. 1In fact this is an immediate consequence of the formula for ()
obtained in the preceding proof and Leibniz’s rule for differentiating under
the integral sign. O
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6.13 Lemma. If T < oo and 0 < r < 1, then the series Y po, Y(t)z*
converges absolutely and uniformly for |z| <r and 0 <t <T.

Proof. Let r < p < 1. Equation (6.12) implies that if |h(w,t)] < M for
0 <t < T and |[w] = p, then for all |2z| < r, |3x(t)z¥| < M(r/p)*. The
result follows from the Weierstrass M-test. O

Proof of Lemma 6.8. The preceding lemma allows us to differentiate the
series (6.6) for h(z,t) term-by-term with respect to ¢. Thus, using Loewner’s
differential equation (3.6),

> . k . 12 F(Z,t)
Z’Yk(t)z N 26t10g zet

[ (1) _ ]

F(z,t)

[ 1+ z(t)z F'(2,t) 1]
1—z(t)z F(z,t) ’

1
2
6.14 _ 1

2

But |z(t)z| = |z] < 1 and so

% —1+23 a()ket.

Now we also have that
S k@2 = K(z0)
k=1

_ 1 [F’(z, t) 1]

F(z,t) =z

Thus

Flz,t) 1 k-1
F(Z, t) - ; + 2Icz_:k’yk(t)z

Substituting into (6.14) we get

i‘rk(t)zk = % {z [l + 2§:x(t)’°z’=l [% + 2§:k7k(t)zk_l} - 1} _
k=1 b—1 ot

Therefore

1 +2Z7k(t)z = [1 + 2Zx(t)k k] [1 +2ik’7k(t)zk} .

k=1 k=1
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Equating coefficients gives
k-1
W (t) = kw(t) + z(®)F + 2 jz(t)*~9;(0).
j=1
Suppressing the dependence on t, this implies that
k
P = aF —kpe+2) gty
j=1
= ¥ — ky + 22%%;,
where b (t) = Ele Jx7I(t)v;(t) for k > 1 (and by = 0). Now the fact that
kyrx® = by — by_, implies

6.15 Y = xF[1 + bg + bg_1].
It is not hard to check that
d 2 d e
Ek (@) = ak’m(t)%(t)
= 2Re k%7

2Re kz*[1 + by, + b_1]7;,
Using the fact that by — bg—1 = kz ™%y, we get that kz*5, = (bx — bg_1).

Hence we can express the derivative entirely in terms of the functions by
by

d 9 - -
6.16 Ekh/k(t)' = 2Re [(bk_bk—l)(1+bk+bk—1)]-

Now consider the function ¢ defined in (6.7). Suppressing the dependence
ont,

N ~ 1
6.17 ¢= Zﬂc;ﬁ[kl’ml?] + > Alkl @) - 7
k=1 k=1
From (6.16) we get that

Z"'k [klvel?]
k=1

> "2Re [(b — bg—1)(1 + bk + be—1)] 7%
k=1

i

(

Now apply the summation by parts formula (Exercise 4.2 with yx = 7 and
zr = 2Re [(bk - bkfl)(l + by + bk—l)]) to obtain that

6.18 b= Xi(re — Ths1),
k=1
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where
Xm = > 2Re[(Bk — be—1)(1+bg + br—1)]
k=1
= 2Re Z(T)k — Bk—l) + 2Re Z(Ek - Ek_l)(bk + bk—l)-
k=1 k=1

The first of the summands telescopes and for any complex numbers z and
w, (Z—0)(z + w) = |2]? — |w|? — 2 Im (2w). Hence

Xm = 2Rebm+2> (b’ - |bp_1]?)
k=1
= 2[Re by, + |bm]?].

From (6.18) we get

P = ZZ[RG b + |bk‘2](7'k — Tk+1).
k—1

Using (6.17) we now have

n

. n . 1
6.19 ¢ = 2Z[Re bi + b |?](Th — Tht1) + ZTk[kl’Yk(t)lz - E]'
k=1 k=1

Focusing on the second summand, note that

. 2 _ k.2 2
> delklve )] - = Z—k‘[k Ivel® — 1]
k=1 k=1
Ny
= Zf[]bk—bk_ﬂz—l].
k=1

For the first summand of (6.19) we use the property (5.9) of the functions
T to get

P

[Re b+ 10k P)( — 7is) = —[Re b+ el + 7EL)
- LR
[(Re bk)k + |k A

Th+1 2 Th+1

+(Re bk)k+1+|bk| k+1]-

Now sum these terms for 1 < & < n and remember that 0 = by = 7,41-
Thus

n

n .
+
E [Re by + |b|*)(T% — Th41) = — E f[Re br + |bk|* + Re b1
k=1 k=1

+|bk—1|2]-
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Thus

n -
. T
6 = -3 73[21“ bi + 2|bk|? + 2Re br_1 + 2|bx_1 |2
k=1
— bk —bk—a|® +1]

= -3 %[|bk|2+2Re b + 2Re bg_1 + 2|bg_|?
k=1
+ 2Re bbr_1 + 1]

n .
Tk 2
6.20 = — — _ .
Z k|bk+bk 1+1]
k=1
a

Proof of de Branges’s Theorem. We already saw how to deduce (6.3)
from Lemma 6.8. It only remaids to treat the case of equality.

We show that if f € S and f is not the Koebe function, then strict
inequality must hold in (6.3) for all n > 2. If this is the case and f(z) =
z+az? +---, then |az| < a < 2 (14.7.7). Now also assume that f is a slit
mapping and adopt the notation used to prove Lemma 6.8. In particular,
define the function h as in (6.6) and the functions by, as in (6.15). Let Fy(z)
have power series expansion e'(z + ax(t)z% + ---). So |ax(t)| < 2 for all
t > 0. A calculation shows that 71(t) = ax(t)/2 and bi(t) = z(t) 1y (2)-
Thus (6.15) implies that

. 1 _
l")‘ll = ll + EZ 102’ S 2
and so
t o
O =+ [ (sl < G+
0
Equation 6.20 and (5.12) imply that

B(t) > (—H)lby +1

= (Rl n + 1P
> (—h)(1 -3 -2

for 0 <t <471(2 — a). From (6.9) we have
n m 1 oo
2 — —
St -p = - [ dwa

m=1 k=1
(2-a)/8
- b
0

IA
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(2-a)/8 o
—/ (—1)(1 — = —2t)2%dt
0 2

9 (2—a)/8
[—4 O‘] / 1dt.
0

Since 71 < 0 everywhere, we get strict inequality in (6.3).

Now let f be an arbitrary function in the class S and let {f;} be a
sequence of slit mappings in § that converge to f. Because |az| < o < 2,
it can be assumed that |a;2| < o for all j > 1. Thus the inequality in
(6.21) holds for each function f; (with - replaced by the corresponding
coefficient 7; ). This uniform bound on the sum (6.3) for the functions f;
implies the strict inequality for the limit function, f. O

IN

6.21



Chapter 18

Some Fundamental Concepts
from Analysis

Starting with this chapter it will be assumed that the reader is familiar with
measure theory and something more than the basics of functional analysis.
This particular chapter is an eclectic potpourri of results in analysis. Some
topics fall into the category of background material and some can be labeled
as material every budding analyst should know. Some of these subjects may
be familiar to the reader, but we will usually proceed as though the material
is new to all.
When needed, reference will be made to Conway [1990].

§1 Bergman Spaces of Analytic and Harmonic Functions

For an open subset G in C and 1 < p < 00, define LP(G) to be the L? space
of Lebesgue measure on G. That is, LP(G) = L?(A|G). In this section G
will always denote an open subset of C.

1.1 Definition. For 1 < p < oo and an open subset G of C, L2(G) is the
collection of functions in LP(G) that are equal a.e. [Area] to an analytic
function on G. Denote by L} (G) those elements of LP(G) that are equal
a.e. [Area] to a harmonic function. These spaces are called the Bergman
spaces of G because of the work of Bergman [1947], [1950].

Note that L} (G) contains L2(G) so anything proved about functions in
L} (G) applies to the analytic Bergman space.

1.2 Lemma. If f is a harmonic function in a neighborhood of the closed
disk B(a;r), then
1
fla) = fdA.

2
7% J B(asr)

This is, of course, a variation on the Mean Value Property of harmonic
functions and can be proved by converting the integral to polar coordinates
and applying that property.

1.3 Proposition. If 1 < p < oo, f € LY(G), a € G, and 0 <71 <
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dist(a, 0G), then
1
F@] < gz 1l

Proof. Let g be the index that is conjugate to p: 1/p+ 1/q¢ = 1. By the
preceding lemma and Hélder’s Inequality, | f(a)| = (7r?)~! l /| Blair) fd.A‘ <

/q
02 (S 1F174A) "7 (fury 1 )" < r) 1 ] )10 =
(xr2)=2/2| || ©

1.4 Proposition. For 1 < p < oo, L} (G) and L2(G) are Banach spaces
and L2(G) and L2(G) are Hilbert spaces. If a € G, the linear functional
f — f(a) is bounded on LY (G) and LE(G).

Proof. The last statement in the proposition is an immediate consequence
of Proposition 1.3 for the case p < oo, and it is a consequence of the
definition for the case p = oo. For the first statement, it must be shown that
L?(G) and LE(G) are complete; equivalently, L} (G) and LE(G) are closed
in LP(G). In the case that p = oo, this is clear; so assume that 1 < p < co.
Only the space LY (G) will be treated; the analytic case will be left to the
reader as it is analogous. Let {f,} C L} (G) and suppose f, — f in LP(G);
without loss of generality we can assume that f,(z) — f(z) a.e. Let K be a
compact subset of G and let 0 < r < dist(K, dG). By Proposition 1.3 there
is a constant C such that |h(z)| < C||h||, for every h in L} (G) and every
z in K. In particular, |f,(2) — fm(2)| < C||fn — fmllp for all m,n. Thus
{f=} is a uniformly Cauchy sequence of harmonic functions on K. Since K
is arbitrary, there is a harmonic function g on G such that f,(z) — g(z)
uniformly on compact subsets of G. It must be that f(z) = g(z) a.e. and
so fe LY(G). O

The space L>®(G) is the dual of the Banach space L'(G) and as such it
has a weak-star (abbreviated weak* or wk*) topology. It can also be shown
that L (G) and L (G) are weak* closed in L>(G). See Exercise 1.

This section concludes by proving some theorems on approximation by
polynomials and rational functions in Bergman spaces of analytic functions.

1.5 Definition. For a bounded open set G and 1 < p < oo, let PP(G) be
the closure of the polynomials in LP(G). RP(G) is the closure of the set of
rational functions with poles off G that belong to L?(G).

It follows that PP(G) C RP(G) C L2(G). Note that if r is a rational
function with poles off cl G, then r € LP(G). However in the definition of
R?(G), the rational functions are allowed to have poles on G as long as
the functions belong to LP(G). If G = the punctured unit disk, then 27!
has its poles off G but does not belong to L?(G) even though it does belong
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to L'(G). I, on the other hand, G = {z =z +iy:0 < z < 1and |y| <
exp(—z~2)}, then 27! € L%(G).

It is not difficult to construct an example of a set G for which PP(G) #
L?(G). This is the case for an annulus since z~! € L2(G) but cannot be
approximated by polynomials. Finding a G with RP(G) # L2(G) is a little
more difficult. Indeed if 1 < p < 2, then RP(G) = LE(G), while there are
regions G such that for 2 < p < 0o equality does not hold (Hedberg [1972
a]). See the remarks at the end of this section for more information.

If K is a compact subset of C, then the open set C \ K has at most
a countable number of components, exactly one of which is unbounded.
Call the boundary of this unique unbounded component of C\ K the outer
boundary of K. Note that the outer boundary of K is a subset of 9K.
In fact, the outer boundary of K is precisely @K, the boundary of the
polynomially convex hull of K. For a small amount of literary economy,
let’s agree that for a bounded open set G the outer boundary ,ﬁf G is that
of its closure and the polynomially convex hull of G is G=daG.

1.6 Definition. A Carathéodory region is a bounded open connected subset
of C whose boundary equals its outer boundary.

1.7 Proposition. If G is a Carathéodory region, then G is a component
of int{G} and hence is simply connected.

Proof. Let K = G and let H be the component of int K that contains G;
it must be shown that H = G. Suppose there is a point z; in H \ G and
fix a point 2z in G. Let « : [0,1] — H be a path such that (0) = zp and
Y(1) = 2. Put a = inf{t: y(t) € H\G}. Thus0 < a < 1and y(t) ¢ H\G
for 0 <t < a. Since H \ G is relatively closed in H, w = vy(a) ¢ G. Thus
w € JG. But since G is a Carathéodory region, G = K. Hence w € K.
But w € H C int K, a contradiction.

It is left as an exercise for the reader to show that the components of
the interior of any polynomially convex subset of C are simply connected.
(See Proposition 13.1.1.) D

There are simply connected regions that are not Carathéodory regions;
for example, the slit disk. Carathéodory regions tend to be well behaved
simply connected regions, however there can be some rather bizarre ones.

1.8 Example. A cornucopia is an open ribbon G that winds about the
unit circle so that each point of 8D belongs to 9G. (See Figure 18.1.)

If G is the cornucopia, then cl G consists of the closed ribbon together
with 0D. Hence C \ cl G has two components: the unbounded component
and D. Nevertheless G is a Carathéodory region.

1.9 Proposition. If G is a Carathéodory region, then G = int{cl G}. If
G is a simply connected region such that G = int{cl G} and C\ cl G is
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Figure 18.1.

connected, then G is a Carathéodory region.

Proof. Exercise. O

1.10 Lemma. If1 < p < oo and {f,} is a sequence in LE(G), then {fn}
converges weakly to f if and only if sup,, || fnl|lp < 00 and fn(z) — f(2) for
all z in G.

Proof. If f, — f weakly, then sup, ||fn||, < 0o by the Principle of Uni-
form Boundedness. In light of Proposition 1.4, for each z in G there is a
function k, in L(G) such that g(z) = (g,k.) for all g in LP(G). (Here q is
the index that is conjugate to p: 1/p+ 1/q = 1.) Thus fr(2) = (fn, k) —
(f k) = f(2). If T is the topology of pointwise convergence on L2(G), then
we have just seen that the identity map ¢ : (L2(G), weak) — (L2(G), ) is
continuous. Since (ball LP(G), weak) is compact and 7 is a Hausdorff topol-
ogy, ¢ must be a homeomorphism. O

1.11 Theorem. (Farrell [1934] and Markusevic [1934]) If G is a bounded
Carathéodory region and 1 < p < oo, then PP(G) = LE(G).

Proof Let K = G and let 7 : D — Coo \ K be a Riemann map with
7(0) = 00. Put G, = C\ 7({z : |2|] < 1 —1/n}). It is left to the reader
to show that the sequence {G,} converges to G in the sense of Definition
15.4.1. So fix a in G and let ¢, be the Riemann map of G onto G,, with
¢n(a) = a and ¢),(a) > 0. By Theorem 15.4.10, ¢,,(2) — z uniformly on
compact subsets of G. Let ¢, = ¢,;} : G,, — G. Fix f in LE(G) and put
fn = (f oY )t0n. Thus f, is analytic in a neighborhood of K and so, by
Runge’s Theorem, f, can be approximated uniformly on K by polynomials.
Thus f,|G € P?(G).

AISO || Jall? < Ji, |FnlPdA = [ |fmbmPl05PdA = [, |FPdA = ||fI?
by the change of variables formula for area integrals. If z € G, (2) — 2
and 1/ (z) — 1. Therefore f,(z) — f(z) as n — oo. By Lemma 1.10,
fn — f weakly and so f € PP(G). O
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Rubel and Shields [1964] prove that if G is a bounded open set whose
boundary coincides with the boundary of its polynomially convex hull and
if f € L(G), then there exists a sequence of polynomials {p,} such that
lenlle < |iflle and pn(z) — f(z) uniformly on compact subsets of G.
(Note that this condition on G is the same as the condition for a region
to be a Carathéodory region, but G is not assumed to be connected here.)
In particular, one can approximate with polynomials the bounded analytic
function that is 1 on the open unit disk and 0 on the cornucopia. This says
that Theorem 1.11 is true for p = oo if the weak* topology is used instead
of the norm topology. The theorem also holds when p = 1 but a different
proof is needed. See Bers [1965] and Lindberg [1982].

Some hypothesis is needed in Theorem 1.11 besides the simple connected-
ness of G. For example, if G = D\(—1,0], then 21/2 € L2 but 2'/2 ¢ P%(G).
In fact it is not difficult to see that the functions in P?(G) are precisely
those functions in L?(G) that have an analytic continuation to D.

An exact description of the functions in PP(G) is difficult, though many
properties of these functions can be given. Exercise 4 shows that if G is
an annulus, then every f in PP(G) has an analytic extension to the open
disk. In general, if U is a bounded component of C\ [c] G] such that 8U is
disjoint from the outer boundary of G, then every function in PP(G) has
an analytic extension to G U [cl U] that belongs to PP(G U [cl U]), though
the norm of the extension is larger.

What happens if U is a bounded component of C\ [cl G] and 9U meets
the outer boundary of G? The answer to this question is quite complex and
the continuing subject of research. See Mergeljan [1953], Brennan [1977],
and Cima and Matheson [1985].

The next theorem can be proved by reasoning similar to that used to
prove Theorem 1.11. See Mergeljan [1953] for details.

1.12 Theorem. Let G be a bounded region in C such that C\ [cl G| has
bounded components Uy,...,Un. Let K; = OU; and let Ky be the outer
boundary; assume K; N K; = 0 for i # j and fix a point z; in Uj, 1 <
Jj <m. If f € LE(G), then there is a sequence {fn} of rational functions
with poles in {00, z1,...,2m} such that f, — f in LE(G). In particular,
RP(G) = LE(G).

We return to the subject of Bergman spaces in §21.9.

Remarks. There is a substantial literature on the subjects covered in this
section. Indeed, we have only skimmed the surface of the theory. Bers [1965]
shows that R'(G) = L1(G). Mergeljan [1953] has the results of this section
and more. Brennan [1977] discusses polynomial approximation when the
underlying region is not a Carathéodory region. The interested reader can
also consult Bagby [1972], Cima and Matheson [1985], Hedberg [1972a],
[1972b], {1993], and Lindberg {1982].
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Exercises

1.

This exercise will show that Li°(G) is weak™ closed in L>*°(G). A
similar proof works for L?(G). (a) If a € G, let 0 < 2r < dist(a, 8G).
For |w—a| < r put gy, = (77%) "X g(w;r). Show that the map w — g,,
is a continuous map from B(a;7) into L!(G). (b) Let X be the weak*
closure of L{°(G); so X is the Banach space dual of L!(G)/L(G)* .
Show that if {f,} is a sequence in L{°(G) and f, — f weak® in
X, then {f,} is a uniformly Cauchy sequence on compact subsets
of G and hence f € L(G). Now use the Krein-Smulian Theorem
(Conway [1990], V.12.7) to conclude that Ly°(G) is weak* closed.

. If f is analytic in the punctured disk G = {z : 0 < |z| < 1}, for which

values of p does the condition [ |f|PdA < co imply that f has a
removable singularity at 07

Give an example of a simply connected region G that is not a Carathé-
odory region but satisfies G = int{cl G}.

If G is a bounded open set in C and K is a compact subset of G, then
every function f in PP(G\ K) has an analytic continuation to G that
belongs to PP(G). Show that if G is connected, then the restriction
map f — f|(G\ K) is a bijection of PP(G) onto PP(G \ K).

Let {a,} be an increasing sequence of positive numbers such that 1 =
lim,, a,,. Choose 7,73, ..., such that the closed balls B,, = B(an;,)
are pairwise disjoint and contamed in D; put G = D\ U, B,,. Show
that each f in PP(G) has an analytic continuation to I). Must this
continuation belong to LE(D)?

. Let {a,} be a decreasing sequence of positive numbers such that 0 =

lim,, a,,. Choose 11,73, ..., such that the closed balls B,, = E(an; Tn)
are pairwise disjoint and contained in D; put G = D \ U, B,,. Show
that R%(G) = L2(G).

§2 Partitions of Unity

In this section (X, d) is a metric space that will shortly be restricted. We
are most interested in the case where X is an open subset of C, but we will
also be interested when X is a subset of R or @ D. In the next section we will
examine the abstract results of this section for the case of an open subset
of C and add some differentiable properties to the functions obtained for
metric spaces.

The idea here is to use the fact that metric spaces are paracompact,
terminology that will not be used here but is mentioned for the circum-
spective.
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2.1 Definition. If I/ is an open cover of X, a refinement of U is an open
cover V such that for each set V in V there is an open set U in U with
VCUu.

Notice that this extends the notion of a subcover. Also note that the
relation of being a refinement is transitive, and that every open cover of
a metric space has a refinement consisting of open balls. The typical ap-
plication of this idea is to manufacture an open cover of the metric space
that has certain desirable features. Because of a lack of compactness it is
impossible to obtain a finite subcover, but we can always pass to a locally
finite refinement (now defined).

2.2 Definition. An open cover Y of X is said to be locally finite if for each
B(a;r) contained in X, U N B(a;r) = @ for all but a finite number of sets
Uinl.

It is a standard fact from topology that every open cover of a metric space
has a locally finite refinement (that is, every metric space is paracompact).
This will be proved for metric spaces that satisfy an additional hypothesis
that will facilitate the proof and be satisfied by all the examples that will
occupy us in this book. See Exercise 1.

2.3 Theorem. If X is the union of a sequence of compact sets { K, } such
that K, Cint K, for alln > 1, then every open cover of X has a locally
finite refinement consisting of a countable number of open balls.

Proof. Let U be the given open cover of X . For each n let R,, = dist(K,, X\
int K, +1). For each integer n we will manufacture a finite collection of balls
B,, that will cover K,, and have some additional properties. These extra
properties don’t come into play until we reach n = 3.

For each point @ in K; choose a radius r with r < R; such that B(a;r)
is contained in some open set from . By compactness we can find a finite
collection B; of these balls that cover K;. Similarly let By be a finite col-
lection of balls that cover K5 \ int K;, with centers in K> \ int K, and
with radii less than Ry and sufficiently small that the ball is contained in
some set from U. For n > 3 let B,, be a finite collection of balls that cover
K, \ int K,4; and such that each ball in B, has the form B(a;r) with
a in K, \ int K41 and r chosen so that B(a;r) is contained in some set
from U and r < min{R,_2, R,}. Note that V = U, B, is a refinement of
U. Tt is left to the reader to verify that if B € B,, and BN K,, # 0, then
m =n—1,n,or n+ 1. Since X is the union of {int K, }, this shows that V
is locally finite. O

2.4 Proposition. If K is a closed subset of the metric space X, {Ui,}.
.., Un} is an open cover of K, and W is an open set containing K, then
there are continuous functions f1,..., fm such that:
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(a) for1<j<m, 0<f; <1 and support f; CU; NW;
(b) 0L, fi(z)=1forallz in K.

Proof. We may assume that {Us,...,U,} is a minimal cover of K; that
is, no proper collection is a cover. The proof proceeds by induction. The
case m = 1 is just Urysohn’s Lemma. For m = 2, Urysohn’s Lemma implies
there are continuous functions f and g on X such that each takes its values
in [0,1], f(z) =1for z in K\Us, f(z)=0for zin K\ Uy, g(z) =1for z
in K, and g(z) =0 for z in X \W. Put f; = fgand fo = (1— f)g. It is left
to the reader to verify that these functions satisfy (a) and (b) for m = 2.
Now suppose the proposition holds for some m > 2 and all metric spaces,

and assume {U1,...,Un+1} is @ minimal open cover of K. Put F = K \
U,n+1 and pick an open set G in X suchthat FCGCcl GCU = U7, Uj.
By the induction hypothesis there are continuous functions h;, ..., hy, such

that for 1 < j <m, 0 < h; <1, support h; C U;NW, and ET:l hi(z) =1
for all z in cl G. Also since we know the proposition holds for m = 2,
we can find continuous functions g; and g, with 0 < g1, g2 < 1, support
91 € GNW , support g C U,y 1 NW, and g3(x) + g2(z) =1 for all z in K.
Put f; = gih; for 1 < j < m and fimy1 = go. The reader can check that
these functions satisfy conditions (a) and (b). O

2.5 Definition. A collection of continuous functions {¢;} on X is a par-
tition of unity if:

(a) foreach j, 0<¢; <1,
(b) the collection of sets {{z : ¢;(x) > 0}}; is a locally finite cover of X;
(c) >;¢i(z)=1forall zin X.

If U is a given open cover of X, then the partition of unity {¢;} is said to
be subordinate to U provided the cover {{z : ¢;(z) > 0}}, is a refinement
of U.

Two observations should be made. The first is that the collection of
functions in the definition is not assumed to be countable, let alone finite,
though in the applications that we will see in this book it will be at most
countably infinite. The second observation is that condition (b) of the def-
inition implies that the sum that appears in (c) has only a finite number
of non-zero terms, and so no questions about convergence are necessary.

Like Theorem 2.3, the next result is valid for all metric spaces (except
for the restriction that the partition of unity be countable), but we prove
it here only for the metric spaces we will encounter in this book.

2.6 Theorem. If X is the union of a sequence of compact sets {K,} such
that K, Cint K,+1 for alln > 1 and U is an open cover of X, then there
is a countable partition of unity {¢;} subordinate to U.
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Proof. According to Theorem 2.3 there is a countable cover B of X by
open balls that is subordinate to U. Set Ky = 0 and for n > 1 let B, be
a finite subcollection of B that covers K, \ int K,,_;. Arrange matters so
that B, NB,, =0 forn #m. Let B, = {Unr : 1 <k < ppn}.

According to Proposition 2.4 for each n > 1 there are continuous func-
tions {fux : 1 < k < p,} such that:

(i) for 1 <k < pn, 0< fok <1 and support frx C Ung Nint Kpya;
(i) Yhr fae(z) =1for all z in Ky \ int K, ;.

If the set where f,; is not zero is denoted by Nk, then it is apparent
that {Nnx : 1 < k < p, and n > 1} is a locally finite cover of X that is
subordinate to B (and hence to ¢). Thus f(z) = > oo > %", fuk(z) is a
well defined continuous function on X and f(z) > 1 for all z in X.

Define ¢pi(z) = fur(z)/f(z) for z in X. Clearly ¢, is continuous,
0 < i < 1, SUDPOTt Gk = SUPPOTt fri, and 30, 307 ) fri(z) = 1
for all z in X. That is, {¢nr} is a partition of unity. Since {Npx} forms a
locally finite cover of X, {¢nt} is locally finite. O

Exercises

1. Show that a metric space that satisfies the hypothesis of Theorem 2.3
is locally compact. Conversely, a locally compact, o-compact metric
space satisfies the hypothesis of Theorem 2.3.

2. If X is a locally compact metric space and U is an open cover of X,
then there is a countable partition of unity {¢;} subordinate to U
such that each function ¢; has compact support.

3. Suppose Z is an arbitrary Hausdorff space that is locally metrizable;
that is, for each z in Z there is an open neighborhood U of z such
that the relative topology on U is metrizable. Show that if every open
cover of Z has a locally finite refinement, then Z is metrizable.

§3 Convolution in Euclidean Space

In this section a few basic facts about convolution in Euclidean space are
presented. In the course of this book convolution on the circle also will be
encountered. At the end of this section the definitions and results for the
circle are presented without proof. Of course these both come under the
general subject of convolution on a locally compact group, but this level of
generality is inappropriate here.

Recall that an extended real-valued regular Borel measure p is defined
on all the Borel sets, is finite on compact sets, and its variation satisfies
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the usual regularity conditions: for any Borel set E, |u|(E) = inf{{p|(U) :
U isopen and E C U} = sup{|u|(K) is compact and K C E}. If p is
such a measure, then it admits a Jordan decomposition p = py — p_,
where p; and p_ are positive regular Borel measures that are carried by
disjoint sets. If y is finite valued, then it is bounded with total variation
|lull = |#|(R) < oo. Our principal interest will be when d is 1 or 2, but
specialization to these dimensions does not make the discussion simpler. If
p is extended real-valued, then either p4 or p_ is bounded. An extended
complex-valued regular Borel measure is one such that both its real and
imaginary parts are extended real-valued regular Borel measures.

For any open subset G of R, C.(G) denotes the linear space of continuous
functions on G with compact support. Note that this is norm dense in
the Banach space Cp(G) of continuous functions that vanish at infinity.
The space C.(R) will be abbreviated C,. The extended complex-valued
measures correspond to the linear functionals L : C. — C that satisfy
the condition that for every compact subset K of R there is a constant
M = Mk such that |L(¢)| < M||¢|| for all continuous functions ¢ with
support contained in K.

In the future the term “measure” will always refer to an extended complex-
valued regular Borel measure. A bounded or finite measure is a measure with
finite total variation and a positive measure is one for which 0 < p(F) < 0o
for all Borel sets. Bounded measures correspond to bounded linear func-
tionals on Cy = Cp(R) and positive measures correspond to positive linear
functionals on C..

3.1 Proposition. If u is a measure on R, ¢ is a continuous function with
compact support, and F : R — C is defined by

F(z) = / $(z — y)du(y),

then F is a continuous function. If u is bounded, then F vanishes at infinity.
If p has compact support, then F has compact support.

Proof. First note that since ¢ has compact support, F' is defined. If z,, — =
and ¢,(y) = ¢(z, — y), then there is a compact set K that contains the
supports of all the functions ¢,. The Lebesgue Dominated Convergence
Theorem implies that F(z,) — F(z) and so F is continuous. If p is a
bounded measure, then the constant functions are integrable. So if z,, — oo,
the fact that ¢ has compact support implies that ¢(z, —y) — 0 for all y
in R. Once again the Lebesgue Dominated Convergence Theorem implies
F(z,) — 0. The statement involving compact support is left to the reader.
0O

3.2 Proposition. Let u, A, o, and 1 be measures and assume that A and o
are bounded and 1 has compact support.
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(a) There is a measure denoted by p x 1 such that for every continuous
Sfunction ¢ with compact support

/ [ / $(z —y) du(y)} dn()
/ [ / o(z — y) dn(y)] du(z).

(b) There is a bounded measure denoted by A x o such that ||\ * o <
[IAl] lle|| and for every continuous function ¢ with compact support,

[eaosa) = [|[s6-narw]aw
=[] #a- v dati] o

Proof. (a) If F is defined as in (3.1), then the fact that # has compact
support implies that the first double integral in (a) makes sense; denote
this first integral by L(#). Clearly L is a linear functional on C,. If K is
any compact set, F is the support of 7, and ¢ has its support in K, then
forzin E, ¢(x —y) #0onlyifye E—K={z—-z;z€ FE and z € K}.
Since E — K is a compact set, M = |p|(E — K) < oo. It follows that
|L(¢)| € M||¢||so ||nl], assuring the existence of the measure u * 1. The
fact that the first integral equals the second is an exercise in the use of
Fubini’s Theorem.

(b) Now if L(¢) denotes the first double integral in (b), then |L{¢)] <
[IAl] {le]] 1i¢)loo, thus implying the existence of the measure A * o and the
fact that ||A = o|| < ||A|| |lo]|- Again the first integral equals the second by
Fubini’s Theorem. O

/¢d(u *1)

The measures p* 7 and A * o are called the convolution of the measures.
Whenever we discuss the convolution of two measures it will be assumed
that both measures are bounded or that one has compact support. The
proof of the next proposition is left to the reader.

3.3 Proposition. With the notation of the preceding theorem, if a is an-
other measure with compact support and 8 is another bounded measure,
then the following hold.

(a) p*xn=nxpand A*xoc=0x*A.

(b) If all the measures are positive, then so are u* 7 and A * 0.

(c) The measure n* a has compact support and (u*n) * @ = p* (N * a)
and (Ax o) * 3.

(d) px(n+a)=prn+p*rxaand Ax(n+06)=Axn+Axp.
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(e) If 6o is the unit point mass at the origin, pu* 8y = p.

Now to specialize convolution to functions.

3.4 Definition. A Borel function f defined on some Borel subset E of
R is said to be locally integrable if, for every compact subset K of E,
Jx |fldA < 0o. The set of locally integrable functions on E is denoted by
Il{c( E); we set L1 = L! (R). Similarly, define LY (E) to be the linear

space of all Borel functions f such that |f|? is locally integrable on FE;
LY. =LY (R).

Note that if f € L}, then u(A) = [, fdA is a measure. (A is used to
denote Lebesgue measure on R.) This measure is bounded if and only if f
is integrable on R. Similarly, p is positive or has compact support if and
only if f > 0 or f has compact support. This relation will be denoted by

p=fA.
Suppose f and g are locally integrable functions, p = fA, and n =
gA. Assume that either both f and g are integrable or one of them has

compact support. If ¢ € C, then [ ¢(z—y) du(y) = [ d(z—y)f(y) dA(y) =
J ¢(2)f(z — z) dA(2) by a change of variables. Thus

[ #a - aut] anco

= [|[ ¢ - w1t a4 o) aa@)
_ / / ¢(z)f(:c-—z)dA(z)] 9(z) dA(z)
~ [oa)| [ 1o~ 20t0) a4(0)] anca).

/¢d(u *1)

This leads to the following proposition.

3.5 Proposition. If f and g are locally integrable functions and one of
them has compact support (respectively, both are integrable), then the func-
tion f * g defined by

(f*9)() = / f(z - )o(y) dAW)

is locally integrable (respectively, integrable). If p = fA and n = gA, then
pxn=(f*g)A.

The function f * g is called the convolution of f and g. The proposition
for the convolution of functions corresponding to Proposition 3.3 will not
be stated but used in the sequel.

Note that for any constant c, if ¢ : R — R is defined by letting ¢(z) =
c exp[—(1—|z|?)7}] for |z| < 1 and ¢(z) = O for |z| > 1, then ¢ is infinitely
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differentiable and non-negative. (Here |z| is the usual Euclidean norm, |z| =
[3+---+22]'/2.) Choose the constant ¢ such that [ ¢dA = 1.Fore > 0, let
¢e(z) = e~ %¢(x /). Note that ¢ is still infinitely differentiable, ¢c(z) =0
for |z| > ¢, and [ ¢.d.A = 1. This net {¢.} is called a mollifier or regularizer
and for f in Ll

(e * N(y) = / be(y — 2)f(z) dA(z)

is called the mollification or regularization of f. The reason for these terms
will surface in part (a) of the next result.

It is important to realize, however, that the mollifier has the property
that it is rotationally invariant; that is, ¢c(z) = ¢.(|z|). This will be used
at times in the future.

3.6 Proposition. Let f € L!_and let K be a compact subset of R.

loc
(a) For everye >0, ¢.* f € C™.
(b) If f =0 off K and U is an open set containing K, then ¢. * f €
C(U) for 0 < e < dist(K, OU).
(c) If f is continuous on an open set that contains K, then ¢. x f — f
uniformly on K.

(d) Iffell., 1<p<oo, then

tim [ [goxf - sPdA=0.

Proof. (a) Since ¢ is infinitely differentiable, the fact that ¢ * f is in-
finitely differentiable follows by applying Leibniz’s rule for differentiating
under the integral sign.

(b) Let 0 < & < dist(K, R\U). If dist(y, K) > ¢, then ¢.(z—y) = 0 for all
z in K. Hence if dist(y, K) > €, then (¢ *f)(y) = [ ¢e(y—x)f(x)dA(z) =
0.

(c) Only consider ¢ < dist(K, C\U). Because [ ¢.dA =1 and ¢. = 0 off
B(0;¢), for y in K we have that (¢ * )(y) — f(y)| = | [ ¢e(y — 2)[f(z)-
F(W)]dA(z)| < sup{|f(z) — f(¥)| : ly — | < €}. But since f must be
uniformly continuous in a neighborhood of K, the right hand side of this
inequality can be made arbitrarily small uniformly for y in K.

(d) Let U be a bounded open set containing K and let a: > 0. Let g be a
continuous function with support contained in U such that [, |f —g|PdA <
aoP. If 0 < e < dist(K,C\ U), then

/ lbe % f — b % g? dA
K

= [ [ sa-56.@- 97150 - (o) )] 2Aw)
K |JU
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< /K ( /U be(z — 1) d.A(x))p/q .
(/U be(x — y)|f(x) — g(z)P d./-l(w)) dA(y)
N /U e} ~ sl [ fK dele —y) dA(y)] dA(z)
Theref:re "

1/p

1/p
[/ l¢s*f—f|"dA] <2a+[/ l«zse*g—glPdA}
K K

By part (c), the right hand side of this inequality can be smaller than 3«
if € is chosen sufficiently small. O

The reader might profit by now looking at Exercise 1 in the next section.
Here is an application of the preceding proposition that will prove useful
later.

3.7 Proposition. If y is a measure on C and U is an open subset of the
plane such that [ ¢dp =0 for all ¢ in CX(U), then |p|(U) =0.

Proof. Let f be an arbitrary function in C.(U); it suffices to show that
J fdp = 0. Let K be the support of f and put d = 2~ !dist(K, 8U). If {¢ } is
a mollifier, then ¢ xf € C(U) for € < 2d. Hence [ ¢ fdp = 0 for e < 2d.
But if L = {z : dist(z, K) < d}, then ¢, * f — f uniformly on L (3.6.c)
and so [ fdp = [, fdu=1lim._o [, e * fdp=1lim._o [ * fdu=0. O

3.8 Theorem. If G is an open subset of R and U is an open cover of G,
then there is a partition of unity on G that is subordinate to U and consists
of infinitely differentiable functions.

Proof. 1t is easy to see that G can be written as the union of a sequence
of compact sets {K,,} with K, C int K, (see 7.1.2). Thus according to
Theorem 2.3 there is a countable locally finite refinement B of U such
that B consists of balls. Let B = U,B,, where B, is a finite cover of
K, \int K,,_1(Ko = 0); put B, = {Bnk : 1 < k < p,}. Arrange matters
so that B, N B, = @ for n # m. For each n > 1 let L,, be a compact set
with K, \int K,,_; Cint L, C L,, C UgBk. According to Proposition 2.4
there are continuous functions {fn,x : 1 < k < p,} such that 0 < fpr < 1,
support fox C Bnk, and Zi';l fak(z) =1for all z in L,.

Now choose €, > 0 so that it is simultaneously less than dist(K,, \
int K,—1,R\ Ly) and dist(support frnk,0Bnk); DUt Yk = Pe, * frk,
where ¢., is a regularizer. The function ),k is infinitely differentiable
by the preceding proposition and it is clearly positive. Also the defini-
tion of ¥nx shows that for any point z, ¥ni(z) < [¢, = 1. Since
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€n < dist(support fnx,0B,k), the preceding proposition implies that sup-
port Y,k C By Finally, if z € K, \ int Ky,

Pn Pn
> k(@) = [ benle =) Y furlw) dAGw)
k=1 k=1

But ¢, (x —y) = 0 unless |z — y| < €,. By the choice of z this implies
that y € L,, and so Y v~ fax(y) = 1. Thus 357 ni(z) = 1 for all z in
K, \ int K,_;. Hence ¢(z) = > o0 S on lzpnk (z) > 1 for all z in G. If
Ok = Unk/v, it is easy to check that {@dnx : 1 < k < p, and n > 1} is the
sought after partition of unity. O

We now state a somewhat abstract form of Leibniz’s rule for differenti-
ating under the integral sign.

3.9 Theorem. Let (Y,3, u) be a measure space, let G be an open subset
of R, and let e; be the j-th basis vector in R. Suppose f : G XY — Cisa
measurable function that satisfies the following conditions:

(a) for each = in G the function y — f(z,y) belongs to L'(u);
(b) 5‘2—]}(:8, y) exists for a.e. [ply inY and all ¢ in G;

(c) for each x in G there is a function g in L'(u) and a function 6 defined
for small real numbers such that 6(t) — 0 ast — 0 and

flo+teny) - f@y) _ gmi(z y) = 9()6(t)

a.e. [u]. Then F(z) = [ f(x,y)du(y) exists and is differentiable with
respect to x; with

)= /g—é(w,y) du(y)-

3.10 Corollary. If ¢ is a continuously differentiable function with compact
support and f € L'(A), then ¢ x f is continuously differentiable and 8(¢ *
f)/0z; = (9¢/0z;) » f for 1 < j <d.

Now to reset the definitions and results for convolution on the circle.
Since 0D is compact, all regular Borel measures on the circle are finite and
so the discussion of convolution is simplified. It is no longer necessary to
consider locally integrable functions. Let M (D) be the space of complex-
valued regular Borel measures on OD. If i1 and v € M(8D), define L :
C(0D) — C by

3.11 L(f) = / / fzw) du(z) dv(w)
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for all f in C(0D). If L : C(0D) — C is defined as in (3.11), then L is a
bounded linear functional and ||L|| < [|u||||v||- Since this linear functional
L is bounded, the Riesz Representation Theorem implies there is a unique
measure on dD corresponding to it.

3.12 Definition. If p and » € M(3D), then p * v is the unique measure
in M(9D) such that

[ rawsn) = L[t du@ dvte)

for all f in C. The measure u * v is called the convolution of u and v.

3.13 Proposition. If u, v, and n € M(9D), the following hold.

(a) prv=vepond luxl <|lull V]l

(b) If u and v are positive, then pxv > 0.

(€) (m*v)*xn=px(vxn).

(d) px(v+n) =pxv+pxn.

(e) If 61 is the unit point mass at 1, then &1 * u = p = p* 6;.

There is an equivalent way to define p * v as a function defined on the
Borel subsets of 9. See Exercise 3.

3.14 Proposition. If f and g € L*(OD), p= fm, v =gm, andh : D —
C is defined by
hz) = [ 1) g(w) dm(u)

for z in 8D, then h € L*(0D) and p* v = hm.

3.15 Definition. If f and g € L?, then the convolution of f and g is the
function

(f*9)(e) = / 1(2®) g(w) dm(w).

Note that the preceding proposition shows that the definitions of convo-
lution for measures and functions are consistent. Also the basic algebraic
properties for the convolution of two functions can be read off from Propo-
sition 3.13. In particular, it follows from part (a) of Proposition 3.13 that

ILf = gllx < lIf1l1llgll1-
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Exercises

1. Is Proposition 3.1 valid if it is not assumed that ¢ is continuous?

2. If f € LY(u=v), show that [ fduxv = [[ f(z—y)du(z) dv(y). State
and prove the analogous fact for convolution on the circle.

3. If E is a Borel subset of R?, show that (u*v)(E) = (u x v){({(z,y) €
R? x R4 : z+y € E}). State and prove the analogous fact for convo-
lution on the circle.

4. If 4 and v are finite measures on R% and v << A, then p*v << A.
State and prove the analogous fact for convolution on the circle.

§4 Distributions

In this section we will concentrate on distributions on an open subset of
the complex plane. The definitions and results carry over to distributions
on open sets in R, and we will need some of these facts for distributions
on R. However we will need to see some of the relationships involving
functions and distributions of a complex variable and obtain information
about analytic and harmonic functions. Thus the specialization. It will be
left to the reader to carry out the extension to R.

We make the convention, in line with the mathematical community, that
for any region G in C, D(G) = C°(G). The reader should regain acquain-
tance with the notation d¢ and d¢ from §13.2.

4.1 Definition. If G is an open subset of C, a distribution on G is a linear
functional L : D(G) — C with the property that if K is any compact subset
of G and {¢x} is a sequence in D(G) with support ¢ C K for every k > 1,
and if for all m,n > 1, Bngmqﬁk(z) — 0 uniformly for z in K as k& — oo,
then L(#r) — 0. The functions in D(G) are referred to as test functions.

It is possible to define a topology on D(G) such that D(G) becomes a
locally convex topological vector space and the distributions are precisely
the continuous linear functionals on this space. See §4.5 in Conway [1990].
This observation has more than psychological merit, as it means that results
from functional analysis (like the Hahn-Banach Theorem) apply.

4.2 Example.

(a) Hu e Llloc(G), then u defines a distribution L, via the formula
L,(¢) = [ugpdA.

(b) If p is a measure on G, then u defines a distribution L, via the
formula L,(¢) = [ ¢dp.
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The verification of these statements are left to the reader. Also note that
if L is a distribution on G, then ¢ — L(8¢) and ¢ — L(0¢) also define
distributions on G. This justifies the following definition.

4.3 Definition. If L is a distribution on G, let L and 0L be the distri-
butions defined by 0L(¢) = —L(0¢) and OL(¢) = —L(0¢).

The minus signs are placed here in the definition so that if w is a contin-
uously differentiable function on G, then 8L, = L, and 8L, = Ly, as
can be verified by an application of integration by parts.

For the most part we will be concerned with distributions that are de-
fined by locally integrable functions, measures, and the derivatives of such
distributions. Be aware, however, that the derivative of a distribution de-
fined by a function is not necessarily a distribution defined by a function.
If u € L (G), we will often consider Ju as the distributional derivative of
u. That is, du is the distribution 0L, and the caution just expressed is the
reminder that du is not necessarily a function. Similar statements hold for
Ou and all higher derivatives.

In Lemma 13.2.6 and Lemma 13.2.10 it was shown that for any w in C
the functions z — (z —w)~! and z — log |z — w| are locally integrable. The
derivatives in the sense of distributions of these functions are calculated
below. These will see special service later in this book. For the sake of
completeness, however, some additional distributions are introduced.

4.4 Lemma. Ifn > 1 and ¢ € C7, then

lim 9(2) dA(2)

€0 Jiz2e 2"

ezists and is finite.

Proof. Let R be sufficiently large that support ¢ C B(0; R). By Taylor’s
Formula (13.2.4) ¢ = p(z,Z) + g, where p is a polynomial in z and Z of
degree < n — 1, each derivative of g of order < n — 1 vanishes at 0, and
1g(z)| < C|z|™ for some constant C. Thus

() Az = P(2:2) 5 92) 442,
/IZIZE w M) /Rz|z|zs " ( )+/RZIzIZE w A

z z z

Now the first of these two integrals is a linear combination of integrals of
quotients of the form z*¥z™ /2" for k,m > 0 and k + m < n. But

kS R 27
/ 28 am dA(z) / |:/ ez‘(k—m—n)edo] T'k+m_n_1d7'
R>|z|>e 2" 0 0
= 0

Il
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since k —m — n # 0. On the other hand g/2™ is bounded so that

lim (=) dA(z) = / Md.A(z)
=0 jzze 2" lsi<r 2"

a finite number. O

’

4.5 Proposition. For n > 1 define PV,, : D — C by

PV,(¢) = lim (=) dA(z).

e=0 21> 2"
Then PV, defines a distribution and
_ F) — (_1\" ™ n—1
0PV, = —nPV,41, OPV, =(-1) —(n — 1)!8 bo,
where 8 is the unit point mass at the origin.

Proof. The preceding lemma shows that PV, (¢) is defined and finite. It
must be shown that it is a distribution. So let R be a positive number,
let {¢;} be a sequence of test functions with supports all contained in
B = B(0;R), and assume that for all k,m > 0 8¥8" ¢; — 0 uniformly
on B. Again use Taylor’s Formula to write ¢; = p; + g;, where p; is a
polynomial in z and Z of degree < n — 1 and each derivative of g; of order
< n — 1 vanishes at 0. From the proof of the preceding lemma, it is known

that
/ ) ) = / 94 4 4(2)
|z|>e R2>|z|2e

P = [ 28 aa0),

n
|zI<R #

and

But Taylor’s Formula also implies that for each 7 > 1,

lgi(2) _ 1 k7 :

SFiy < ~ Z ma,x{la 8]¢j(w)‘ Dw| € R}.
k+j=n

Thus |g;(2)|/|2|™ — 0 uniformly on B. Therefore PV,(¢;) — 0 and PV, is

a distribution.

To find OPV,, fix a test function ¢ with support contained in B =
B(0; R) and write ¢ = p+ g as in Taylor’s Formula. Using the definition of
the derivative of a distribution

PV, (¢) = -—lim / 6¢—ff) dA(2)
|z|2e

e—0 z

- i [ [nM + a(¢>z—")] dA(2)

£—0 Zn+1

= —nPVoi(9) - lim /MZE B(dz—") dA().
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So we must show this last limit is 0. To do this it suffices to show that
the complex conjugate goes to 0 as € — 0. This permits the application of
Green’s Theorem and so

/| | o) dAE)

Il

/ B(3/77 dA(2)
R>|z|>e

1
- _i_dz
21 |z|=¢ P4

. 27 i0
L p(ce®) . o
5 A ng—ind 1€ do

_ 1 2 o (ee)
= /0 dé

T 9en-1 e—i(n+1)0

1 o i(n+1)0
J— 1 Hn
= —5om /0 g(ee®)e de.

But there is a constant C such that |g(z)| < C|z|" for |z| < R. Therefore

/ (62 ™)]" dA(z)
|z|>e

< oy max|g(ee™)|

< Cre,

which converges to 0 as ¢ — 0.

Now to find OPV,,. Let ¢,p, g, and B(0; R) be as above. Once again an
application of the definition of the derivative of a distribution and Green’s
Theorem show that

BPVa(4) = -nml,/H 2 i
z|=¢

) 2m 6
L1 ce?) .
im — g(—.—o)zeewdﬁ
5_,02 0 enezn

1 o 0y —i(n—1)0
— P i —i(n—
= 31_1}(1) 2enT |, d(ee*%)e de.
Now substitute p+g for ¢ in this integral. It is left to the reader to show that
the limit of the integral for g is 0. For the integral involving the polynomial
p, note that the integral of all the terms involved are 0 save possibly for
the term with 2" 1. Here we have that

1 27

2en—1
Now the coefficient of 2”~! in the expression for p is " ~1¢(0)/(n — 1)

Assembling these pieces produces
m
1

(eeia)n-—le—i(n—l)ode —

0PV, (¢) = man’lqﬁ(O)
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= (—1)"-1ﬁ<an-lao)<¢>.

]

Two special cases of this are worth underlining. Note that in the preced-
ing proposition when n = 1 the functions z~! and z—1 are locally integrable
and thus define a distribution. Combining this with Exercise 3 we get the
following.

4.6 Corollary. For any point w in C,
A(z —w)~] = 76y 0[(z —w)~'] = —PV;
dz-w) ' =-(PVp)* 8(z-w)"| = nébs,
where é,, is the unit point mass at w.
4.7 Proposition. If w € G, then, in the sense of distributions on G:
(a) OBlog|z —w| = [2(z —w)]"! and dlog |z — w| = [2(Z — W)]~;

(b) Alog|z — w| = 2xné,,, where b,, is the unit point mass at w.

Proof. (a) If ¢ € D(G), let T be a smooth positive Jordan system in G
such that support ¢ C U =ins I' C G and w € U. Let ¢ be a positive
number such that B, = B(w;€) C U and let U, = U\ B,. So using Green’s
Theorem

Plogle —wll(9) = - / (39) log |z ~ w| dA(2)

= —lim | (9¢)log|z — w|dA(2)
e—0 U.

= —tim [ {36 10glz -l
— ¢(2)dlog |z — w|} dA(z)
) 1
= lim {Z /aUe ¢(2)log |z — w|dz

e—0
[ 2B dA(z)}.

2Jy.z2—w
But

¢(z)log|z —w|dz = _/{')B #(z)log |z — w|dz

27
= —cloge d(w + ee*)ie® dg
0

U,
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and this converges to 0 as € — 0. This proves the second half of (a). To get
the first half, just apply Exercise 3.

(b) This is a consequence of (a), the preceding corollary, and the fact
that A = 488. O

Note that it is not possible to define the product of two distributions, but
if L is a distribution on G and ¢ is a test function, then ¢L(¢)) = L(¢9)
defines another distribution on G. This produces a product rule.

4.8 Proposition. If L is a distribution on G and ¢ is a test function, then

d($L) = (04)L + $(OL) and B(4L) = (3g)L + $(3L).

The proof is left as an exercise.

Say that a distribution L on G is positive if L(¢) > 0 whenever ¢ is
a non-negative test function. An example of a positive distribution is one
defined by a positive measure. The next proposition provides a converse.

4.9 Proposition. The distribution L on G is positive if and only if there
is a positive measure p on G such that L(¢) = [ ¢dp.

Proof. To prove this proposition it must be shown that for any compact
subset K of G there is a constant C = Ck such that |L(¢)| < C||¢||e for
every real-valued test function ¢ with support contained in K. Indeed, if
this is done, then the fact that the infinitely differentiable functions with
support contained in K are dense in Cy(int K) allows us to extend L to a
bounded linear functional on Cy(int K). From here we produce the measure
on G (details?).

Let 1) be a test function with compact support in GG such that 0 < ¢ <1
and 1 = 1 on K. (See Exercise 1.) If ¢ is a real-valued test function with
support included in K and ||¢||eo < 1, then —p < ¢ < 7. Because L is
positive, this implies that —L(v)) < L(¢) < L(v). That is, |L(¢)| < C,
where C = L(v)). Thus |L(¢)| < C||¢|| for any real-valued test function
with support included in K. O

4.10 Weyl’s Lemma. Ifu € LL_(G) and d0u = 0 as a distribution, then

loc

there is a harmonic function f on G such that u = f a.e. [Area].

Proof. Let {¢.} be a mollifier. Fix § with 0 < ¢ < 6 and put G5 = {z €
G : dist(z,0G) > 6}. Note that Z(¢.(w—2)) = — 2 (¢e(w — 2)). Hence if
¥ € D(Gs), then

/ $OB( e * u) dA / 8T (w) (g * u)(w) dA(w)

= /u(z) [/ 00Y(w)de (w — z) dA(w) | dA(z)
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= [u) [ [ v0) o el - 2)] dAw)] dA2

[t [ [rr 2 Z 6.0 2) dAw)| a4z
= [uerg g | [ vtwis.tw -2 dAw)| aae
= [ w2086, + ¥)(2) dAG)

= O0Lu(e * )

= 0.

That is, (¢, *u) = 0 on Gs. Since ¢, xu € C®, ¢, xu is harmonic on Gs
when 0 < € < §. By part (d) of Proposition 3.6, [} |¢c *u —u|dA — 0 as
€ — 0 for any compact subset K of G;. Since Bergman spaces are complete,
u € L}(U) for any open set U with cl U C Gs. Since § was arbitrary, the
result follows a

4.11 Corollary. If u is a locally integrable function on G and Ou = 0 in
the sense of distributions, then there is an analytic function f on G such
that w = f a.e. [Area].

Proof. Since u = 0, 80u = 0. But Weyl’s Lemma implies that u is
harmonic on G. In particular, u is infinitely differentiable. It now follows
that u is analytic (13.2.1). O

This corollary is also referred to as Weyl’s Lemma. Indeed there is the
mother of all Weyl Lemmas, which states that if L is a distribution on G
and D is an elliptic differential operator such that D(L) = 0, then L is
given by an infinitely differential function u that satisfies Du = 0. Both &
and 80 are examples of elliptic differential operators.

Exercises

1. If K is a compact subset of the open set U in C, this exercise shows
how to construct an infinitely differentiable function that is 1 on K
and has compact support inside U. (a) Define g; on R by g1(x) =
exp(—z72) for £ > 0 and g;(z) = 0 for z < 0. Show that g; is a
C® function. (b) Put g(z) = g1(x)g1(1 — z) for all z in R and show
that g is a C° functlon g > 0, and g(z) =0 for z ¢ (0,1). (c) If
M = [ g(z)dz and h(z ~1 [5 g(t) dt, then h is a C> function,
0<h<1, h(:c)—Ofora:<0 andh(:z:)—lfora:zl (d) Define



192 18. Fundamental Concepts

k(x) =1 — h(2zx — 1) for z > 0 and extend k to the negative real
axis by letting k(z) = k(—z) for x < 0. Show k is a C* function,
0<k<1, k(z) =1 for |z| <1/2, and k(z) = 0 for |z| > 1. (e) Now
define f : C — R by f(z) = k(|z]) and show that f is a C* function,
0<f<1, f(z)=1for 2| <1/2, and f(z) =0 for |2| > 1. Ife > O,
define f.(z) = f(z/e) and put C = [ f(z)dA(z). Check by using
the change of variables formula that [ f.(z)dA(z) = Ce2. If ¢(2) =
[Ce?]7! fe(2), then @ is a C* function, ¢. > 0, [ ¢.(2)dA(z) = 1,
and ¢.(z) = 0 for |z] > €. So {¢.} is a mollifier as in (3.6). (f) Let
K be a compact set, let U be open, and suppose that K C U. Let
1 be any continuous function with 0 < ¢ < 1, ¥(2) =1 for z in K,
and ¥(z) = 0 for 2 ¢ U. Show that for an appropriate choice of ¢,
¢ = ¢ x 9 is a C* function with compact support contained in U,
0<¢<1,and ¢(z) =1 for all z in K.

2. Show that if u is locally integrable such that Qu exists a.e. [Area] on
G and Ou is locally integrable, then 8L, = Lg,,.

3. Show that for any distribution L, L*(¢) = L(¢) defines a distribution
and (OL)* = 0L*, (OL)* = 8L*.

§5 The Cauchy Transform

In this section we introduce and give the elementary properties of the
Cauchy transform of a compactly supported measure on the plane. This
is a basic tool in the study of rational approximation, a fact we will illus-
trate by using it to give an independent proof of Runge’s Theorem.

If p is any compactly supported measure on C, let

pw) = [ 2 dlul(z)
o 7]

when the integral converges, and let ji(w) = co when the integral diverges.
It follows from Proposition 3.2 that i is locally integrable with respect to
area measure. Thus [ is finite a.e. [Area]. (Also see Lemma 13.2.6.) Since
o€ Llloc’ the following definition makes sense.

5.1 Definition. If p is a compactly supported measure on the plane, the
Cauchy transform of p is the function ji defined a.e. [Area] by the equation

iw) = [ 2 dua).

In fact the Cauchy transform is the convolution of the locally integrable
function z~! and the compactly supported measure .



18.5. The Cauchy Transform 193

5.2 Proposition. If u is a compactly supported measure, the following
statements hold.

(a) [ is locally integrable.
(b) 4 is analytic on Co \ support(u).
(¢) Forw in C\ support(p) and n > 0,

" p(w) = (-1)"n! /(z —w) " tdu(z).

(d) fi(oco) = 0 and the power series of [i near oo is given by

i) =3 ([ an(a)) o

n=0

Proof. The proof of (a) follows the lines of the discussion preceding the
definition. Part (c), and hence the proof that [ is analytic on C\support(u),
follows by differentiating under the integral sign. Note that as w — oo, (2—
w)~! = w™(z/w — 1)~! — 0 uniformly for z in any compact set. Hence fi
has a removable singularity at oo and ji{oo) = 0.
It remains to establish (d). This is done by choosing R so that support(u) C

B(0; R), expanding (z —w)~! = ~w™1(1 - 2z/w) ! in a geometric series for
|w| > R, and integrating term-by-term. O

A particular Cauchy transform deserves special consideration.

5.3 Proposition. If K is a compact set having positive area and

flz) = /K((——z)_ld.A(C)

for all z in C and f(oc) =0, then f: Co — C is a continuous function
that is analytic on Co, \ K with f'(c0) = —Area K. In addition,

If(2)] < [m Area(K)]l/Q.

Proof. The fact that f is analytic on C\ K and f(oo) = 0 follows from
the preceding proposition. That f is a continuous function on C, is left as
an exercise for the reader (see Exercise 1). Since f is continuous at co, oo
is a removable singularity; because f(oo) = 0, f'(oco) is the limit of zf(z)
as z — 00. But z2f(z) = [ ((/z—1)"'dA(¢) — —Area K as z — oo since
{/z — 0 uniformly for ¢ in K.

It remains to prove the inequality for |f(z)|. This inequality is due to
Ahlfors and Beurling [1950], though the proof here is from Gamelin and
Khavinson [1989]. From the properties we have already established and the
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Maximum Modulus Theorem, f attains its maximum value at some point
of K. By translating the set K, we may assume that 0 € K and f attains
its maximun at 0. In addition, if K is replaced by a suitable unimodular
multiple of itself, we may assume that f(0) > 0. Thus

£(2)| < £(0) = /K Re %dA(o.

1/2
Let ¢ = % [Ega—K] and let @ = 1/2c. It is elementary to see that

the closed disk D = B(a;a) is {z : Re(1/z) > c} and that D and K
have the same area. Thus A(DNK) + A(D\ K) = A(D) = A(K) =
A(DNK)+ A(K \ D); hence A(D\ K) = A(K \ D). On the other hand,
Re(1/¢) < cfor ¢ in K\ D and Re(1/¢) > ¢ for ¢ in D\ K. Therefore

f0) < Re 2
KnD C

Re %dA+ cA(D\ K)

dA + cA(K \ D)

KnD

IA

Re 1dA-i—/ Re l
knp G bk €

1
= Re = dA.
/D s

We leave it to the reader to show that for 0 < r < a,

2w
1 2
/ 9=
o a+reb a

by converting this to an integral around the circle z = a + re®. Hence
converting to polar coordinates, we get that

1 a 27 1
/Re—dA = / Re ———7d0rdr
D ¢ o Jo a+re*
a 27 1
= /Re/ ——dirdr
0 o a-+ret
a
= / 2—7rrdr
0o a
= T7a

[Area K] /2
s
T

= [rAreaK]'/2.
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Note that if u = 6,, then i(z) = (e — z)~1. So in general the Cauchy
transform of a compactly supported measure is not continuous.

Since 1 is locally integrable, it defines a distribution on C and so it can
be differentiated.

5.4 Theorem. If i is a compactly supported measure on C, then
O = —mp.

Moreover, [ is the unique solution to this differential equation in the sense
that if h € Llloc such that 8h = —mu, h is analytic in a neighborhood of oo,
and h(occ) = 0, then h = i a.e. [Area].

Proof. If ¢ € C°, then

Bu() =~ [wBsaa = - [3a02 [ Jow- Z)'ldu(w)] dA(2)

f [ s

By Corollary 13.2.9 this becomes 9fi(¢) = — [ ¢ du, whence the first part
of the theorem.

For the uniqueness statement, suppose h is such a function. It follows
that 6(t — h) = 0. By Weyl’s Lemma (4.11), & — h is almost everywhere
equal to an entire function f. But f = i — h has a removable singularity
at oo and is 0 there. Hence f =0. O

5.5 Corollary. If G is an open set, i is a compactly supported measure
on the plane, and i = 0 a.e. [Area] on G, then |u|(G) =0.

Proof. 1f ¢ € C°(G), then [ ¢pdu = —n~1 8j(¢) = 0. It follows by Propo-
sition 3.7 that |p|(G) =0. O

5.6 Corollary. If G is an open set, p is a compactly supported measure
on the plane, and i is analytic on G, then |u|(G) = 0.

The Cauchy transform is the premier tool in uniform rational approxi-
mation and in the next section this statement will be borne out.

Exercises

1. If f is a function that is integrable with respect to Lebesque measure
and has compact support, show that the Cauchy transform of y = f A
is a continuous function on C.

2. When does equality occur in the inequality in Proposition 5.37
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3. Using the method used in proving Proposition 5.3, show that for any

compact set K, [, |z — w|7dA(w) < 2[rArea(K)]*/2. When does
equality occur?

. Let p be a measure with compact support and suppose g is a con-

tinuously differentiable function with compact support. If v = gy —
7~ 1(8g)ii - A, then © = gji.

. (a) If 4 and v are measures with compact support such that i and

U are continuous functions, show that i is the Cauchy transform of
bp+ .
(b) Show that if K is a compact set, then {h : h is a bounded}.

Borel function with compact support and h = 0 a.e. on K} is a dense
subalgebra of R(K).

(c) If K is compact and E is a Borel subset of K, define R(K, E) to
be the closure in C(K) of {h : h is a bounded Borel}. function with
compact support and h = 0 a.e. on E}. Show that R(K, E) is a sub-
algebra of C(K) with the following properties: (i) R(K) C R(K, E);
(ii) a measure p supported on K is orthogonal to R(K, E) if and only
if i =0 a.e. on C\ E; (iii) if Area(E) =0, R(K, E) = C(K); and if
Area(K \ E) =0, R(K,E) = R(K).

§6 An Application: Rational Approximation

In this section the Cauchy transform will be applied to prove two theorems
in rational approximation: the Hartogs-Rosenthal Theorem and Runge’s
Theorem. But first a detour into some general material is required. The
next result shows that by means of the Hahn-Banach Theorem questions of
rational approximation in the supremun norm can be reduced to questions
of weak approximation.

6.1 Definition. If K is a compact set in the plane, R(K) is the uniform
closure in C(K) of Rat(K).

Note that R(K) is a Banach algebra.

6.2 Theorem. If K is a compact subset of C and p is a measure on K,
then uL R(K) if and only if i(w) =0 a.e. [Area] on C\ K.

Proof. Assume pl R(K) and note that for w ¢ K, (z — w)~! € R(K).
Hence ji(w) = 0 off K. Conversely, assume that 4 = 0 a.e. [Area] off K;
since [ is analytic off K, [ is identically 0 off K. This implies that all the
derivatives of i vanish on Cy, \ K. From (5.2.c) and (5.2.d) we get that
p annihilates all polynomials and all rational functions with poles off K.
Hence p L R(K). O
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Here is a classical theorem on rational approximation obtained before the
introduction of the Cauchy transform. Note that it extends the Weierstrass
Approximation Theorem.

6.3 Hartogs-Rosenthal Theorem. If Area(K) = 0, then R(K) = C(K).

Proof. Let u € M(K)such that u1 R(K);so i = 0off K. Since Area(K) =
0, this implies that i = 0 a.e. [Area] on C. By Corollary 5.5, 4 = 0. By the
Hahn-Banach Theorem R(K) = C(K). O

One of the main ways in which Cauchy transforms are used is the fol-
lowing device. Assume pu is supported on the compact set K and let f
be analytic on an open set G with K C G. Let I" be a positively ori-
ented smooth Jordan system in G such that K C insI'. Thus for every
zin K, f(z) = (2mi)7! Jn f(w)(w — z)"'dw. An application of Fubini’s
Theorem now implies that

6.4 [ 1@ dute) = ~5 [ 1) ) o

6.5 Runge’s Theorem. Let K be a compact subset of C and let E be a
subset of Co \ K that meets each component of Coo \ K. If f is analytic
in a neighborhood of K, then there are rational functions {f,} whose only
poles are in the set E such that f, — f uniformly on K.

Proof. Let p1 be a measure on K such that [ gdy = 0 for every rational
function g with poles contained in E. It suffices to show that [ fdu =0
for every function f that is analytic in a neighborhood of K.

Fix a component U of C \ K and let w € UNE; assume for the moment
that w # oo. Using (5.2.c) we get that every derivative of ji at w is 0. Thus
f(z) =0on U. If w = oo, then the assumption on x implies that [pdy =0
for all polynomials. Thus using (5.2.d) we get that i(2z) = 0 on U. Hence
vanishes on the complement of K (and so pL R(K)). If G and I are chosen
as in the discussion prior to the statement of the theorem, (6.4) shows that

Jfdu=0. O

Uniform rational approximation is a subject unto itself; Conway [1991],
Gamelin [1969], Stout [1971] are a few references.

Exercises

1. Let K be a compact subset of C and let u € M(K). If ¢ is any smooth
function with compact support, put ps = ¢u— 711 9¢ A. Prove the
following. (a) fig = ¢ft. (b) pLR(K) if and only if py L R(K) for all
smooth function ¢ with compact support. (¢) R(K) = C(K) if and
only if for every closed disk D, R(K N D)= C(K N D).
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2. If K is a closed disk or an annulus, show that R(K) = A(K), the
algebra of continuous functions on K that are analytic on its interior.

3. Show that there are open disks {A;} of radius r; having the following
properties: (i) ¢l A; € D and cl AjNel A; = 0 for ¢ # j; (ii)
275 < oo; (i) K = c1 D\|J; A; has no interior. The set K is called
a Swiss cheese. For j > 1, let y; be the boundary of A; with positive
orientation and let v; be the measure on K such that [ fdv; =
—f,yj f for every f in C(K). Note that ||v;|| = r;. Let v be the
positively oriented boundary of D and let vy be the measure on K
such that [ fdyy = f% f for every f in C(K). Let u =19 + 3, v,
a measure in M (K). Show that y! R(K) and, since u # 0, R(K) #
C(K) even though K has no interior.

87 Fourier Series and Cesaro Sums

Throughout this section, normalized Lebesgue measure on D will be de-
noted by m, and the Lebesgue spaces of this measure will be denoted by
L?(OD) or simply LP. Note that since m is a finite measure, LP(0D) C
L(8D) for 1 < p < oo. So results obtained for functions that belong to
L' are valid for functions in LP. We also will be concerned with the space
of continuous functions on 9D, C = C(8D), and its dual, the space of
complex-valued regular Borel measures on 0D, M = M(9D).

7.1 Definition. If 4 € M(9D), then the Fourier transform of pu is the
function fi : Z — C defined by

fi(n) = /a T

(First our apologies for using the same notation for the Fourier transform
of u as for the Cauchy transform, but here is an instance where tradition
is best followed.) Now if f € L', then du = f dm is a measure and so its
Fourier transform can also be defined. Here the notation used is f = .
For any measure p we call {{i(n) : n € Z} the Fourier coefficients of p.
The series ) .- ___ ji(n)z" is called the Fourier series for the measure p.
The idea here is that we would like to know if the measure or function
can be recaptured from its Fourier series. That we should have any right
to have such a hope stems from the density of a certain set of functions. A

trigonometric polynomial is a function in C(0D) of the form 3", __  axz*.

7.2 Proposition. The trigonometric polynomials are uniformly dense in
C(OD) and hence dense in LP(OD) for 1 < p < oo; they are weak* dense
in L®(8D). Thus {z" : n € Z} is an orthonormal basis for L*(0D).
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Proof. The first part is an easy consequence of the Stone-Weierstrass The-
orem. The last statement only needs the calculation necessary to show that
the functions 2" are orthonormal. O

7.3 Corollary. If u € M and ji(n) = 0 for all n in Z, then p is the zero
measure.

The preceding corollary says that a measure is completely determined
by its Fourier coefficients. Thus we have the hope that the measure can be
recaptured from its Fourier series. At least in the case of functions in the
space L? this hope is borne out.

7.4 Theorem. If f € L2(8D), then f € £2(Z). If V : L?(8Z) — (2(Z) is
defined by V f = f, then V is an isomorphism of the Hilbert spaces.

Proof. The first part, that f € (%(Z), as well as the statement that V is
an isometry, is a direct consequence of Parseval’s Identity and the fact that
{z"} is a basis for L2(8D). If f = 2™, then it is straightforward to check
that f(n) = 0if n # m and f(m) = 1. Thus the range of V is dense and
so V must be an isomorphism. O

Theorem 7.4 says that, at least in the case of an L? function, the Fourier
series converges to the function in the L? norm. This is not the case for
other functions and measures, but the intricacies of this theory are more
appropriately handled by themselves. Instead we will concentrate on what
is true and will have value for later in this book.

The reader interested in pursuing convergence of Fourier series can see
Chapter II of Katznelson [1976]. In particular it is proved there that the
Fourier series of a function in L?, 1 < p < 0o, converges to the function in
norm and that this is false for L. He also gives an example of a continuous
function whose Fourier series diverges at a point and thus cannot converge
uniformly to the function. The story for pointwise convergence is much
more complicated. It was proved in Carleson [1966] that the Fourier series
of a function in L? converges a.e. This was extended in Hunt [1967] to
LP, p > 1. An exposition of the Carleson and Hunt work can be found in
Mozzochi [1971]. In Katznelson [1976] is the proof of a result of Kolmogorov
that there is a function in L' whose Fourier series diverges everywhere.

For any formal Fourier series > o ¢,2™, z in 8D, let s,(2) be the n-
th partial sum of the series, sn(2) = Y p__,, cx2*. The n-th Cesiro means
of the series is defined for z in 8D by

on(2) = % 3 s(2).
k=0

It is worth noting that a Cesaro mean is a trigonometric polynomial. By
the n-th partial sum and the n-th Cesaro mean for the measure pu, we



200 18. Fundamental Concepts

mean the corresponding quantity for the associated series. To indicate the
dependence on y, these sums are denoted by s,(u,2) and o,(y, 2); if f €
L?, s,(f,z) and 0,(f, z) are the corresponding sums.

Recall that M = C*, and hence M has a natural weak* topology.

Here is the main result of this section.

7.5 Theorem.

(a) IffelLP, 1<p< oo, then op(f,2) — f in the LP norm.
(b) If feC, on(f,z) — f uniformly on OD.
(c) If f € L™, a,(f,z) — f in the weak* topology of L™.

(d) Ifue M, on(p,2) — p in the weak* topology of M. (Here we think
of the Cesdro mean o,(p, z) as the measure o, (u, z) - m.)

The proof will be obtained by a recourse to operator theory on a Banach
space. If X is one of the Banach spaces under consideration (that is, X =
L?, C, or M), define o, : X — X by letting o,(x) = the n-th Cesaro
sum of z. If X = M and p € M, then o,(u) is the measure that is
absolutely continuous with respect to m whose Radon-Nikodym derivative
is the trigonometric polynomial o,,(xt).) To prove the theorem, it must be
shown that if ¥ = LP, 1 < p < o0, or C, then ||o,(2) — z|| — 0, and if
X = L or M, then o,(z) — = weak* for every z in X. Actually we will
see that the last part follows from the first part and a duality argument.
But first we will see that o, is actually an integral operator.

If f € L' with Fourier series 3 o cn 2™, then

n=—oo0 M

(i) = 30 |/ swiam)]
_ / f(w) L:Z_:n(mz)k] dm(w).
Therefore
7.6 oulfy2) = [ ) Kn(w2) dm(w),

where K, is the n-th Cesaro mean of the formal series Y .. (™. This

kernel K, is called Fejer’s kernel. The same type of formula holds for a
measure p:

7.7 on(p,2) = /Kn(wz) du(w).

To properly study o,,, we need to get a better hold on the kernel K,,. To
do this, let’s first look at the n-th partial sum of the series > - ¢™. So

n=—oo
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if ¢ =e,

Sn (C) = Z Ck

k=—n

= Y+ ¢k
k=0 k=1

1— <n+1 1— Cn+1

1-¢ " 1-¢
Re(™ — Re(™t!

1—-Re(
_ cosnf —cos(n +1)0
N 1-—cosf '

From here it follows that

7.8 Kn(C) = © [

n

1——Re§"} 1 [l—cosnG]

1—-Re( " n|1-cosf

7.9 Lemma. For eachn > 1, K, >0, K,(¢) = K»(C), and [ Kndm = 1.

Proof. Applying the half angle formulas from trigonometry to (7.8), it
follows that K, (¢) = n=![(sin(n8/2))/sin(6/2)]? > 0. It is also clear from
(7.8) that the second part is valid. For the last part, use (7.6) with f = 1.
]

7.10 Lemma.

(a) If 1 < p < oo and q is the index dual to p, then the adjoint of the
operator o, : LP — LP 4s the operator o, : LY — L1.

(b) The adjoint of the operator ¢, : C — C is the operator o, : M — M.
Proof. Only part (a) will be proved. Let f € LP and g € L9. By inter-

changing the order of integration and using the preceding lemma, it follows
that

oig) = [ o) | [ 1K@ dm(w)] dm(z)

[ 10| [ a8 ) d(a)] o

[ ) [ [ oK) dm(z)] dm(w)
= (fon9))-

Il
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We can now state a general Banach space result that, when combined
with the preceding lemma, will show how parts (c) and (d) of Theorem 7.5
follow from parts (a) and (b).

7.11 Proposition. Let X be a Banach space and let {T,} be a sequence
of bounded operators from X into X.

(a) If supn||Tn|| < o0, D is a dense subset of X, and |[T,xz — z|| — 0 for
all z in D, then ||Thz — z|| — 0 for all z in X.

(b) If|Tn(z)—2|| — O for all x in X, then for every z* in X*, Trz* — z*
weak™ in X*.

Proof. (a) If x € X and € is a positive number, let y € D such that
||z —y|| < min(e/2¢c,€/2), where ¢ = sup,,||T,,||- Then ||T,z—z|| < ||To(z—
I+ Thy — yl| + ||y — z|| < 2¢/3+||Tny —y||- This can be made less than
€ for all sufficiently large n.

(b) This is easy: |(z,Tiz* — z*)| = [(Tnz — z,2*)| < ||Thz — z|]||z*|| — 0.
O

We can now prove the main theorem.

Proof of Theorem 7.5. (a) Let f € L? and let g € L, where q is dual to p.
First note that, by a change of variables, o,,(f,2) = [ f(w)K (wWz)dm(w) =

ff(CZ n(¢) dm(¢). Hence

ool = | [ 90| [ 1)o@ dmw)| dmiz
— |[ 92| [ 920 dmic)| e

A
—
a3
o
—
s
N
X
&
3
X
&
3

Applying Holder’s inequality and using the fact that [ f(Cz)dm(z) =
J fdm, we get

[(on(f); 9|

AN

/ Kn(Olgllal Fllpdm(C)
lgllall£llp

IA

since [ Knpdm =1.

Hence ||on|] < 1 for all n. It is easy to check that for any integer k,
on(2*) — 2* uniformly as n — co. Thus for a trigonometric polynomial
fy 0n(f) — f uniformly as n — oo. Since the trigonometric polynomials
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are dense in L? for all finite p, part (a) follows from part (a) of the preceding
proposition.

(b) This is easier than part (a). If f € C, then |o,(f, 2)| < [ |f(w)| K, (wz)
dm(w) < ||flloo and so ||o|| < 1. Since convergence holds for the trigono-
metric polynomials, part (b) follows.

As mentioned before, parts (c¢) and (d) follow from parts (a) and (b) via
the second part of the preceding proposition. O

Exercises
1. Compute the Cesaro means of §;, the unit point mass at 1.
2. If p and v € M, show that g *v(n) = i(n)d(n) for all n in Z.

3. In this and succeeding exercises a concept is presented that can be
used to give some of the results of this section a unifying treatment.
For details see Katznelson [1976], p. 14. For any function f on JD
and z in OD, define f,(w) = f(wZ). A linear manifold X in L! is
a homogeneous space if: (i) X has a norm || - || such that ||f|] >
[|fll1 for all f in X and with this norm X is a Banach space; (ii)
f2 € X whenever f € X; (iii) ||f}] = ||f.]] for all f in X and all
z in D; (iv) for each f in X, the map z — f, is a continuous
function from A D into X. (a) Show that C(dD) and LP, 1 < p < oo,
are homogeneous spaces. (b) Show that L satisfies properties (i)
through (iii) in the definition, but is not a homogeneous space. (c) If
X is a linear manifold in L' that satisfies conditions (i) through (iii)
in the definition of a homogeneous space and &, is defined as the set
of all f in X such that the function z — f, is a continuous function
from JD into X', show that A, is a closed subspace of X (and hence
a homogeneous space). If X = L>°, show that X, = C.

4. This exercise continues the preceding one; X’ denotes a homogeneous
space. (a) If f € X and g € L, show that f xg € X. (b) If 0,(f) is
as in (7.6), show that |lo,(f) — f|| — O for every f in X. (c) Show
that the trigonometric polynomials are dense in X.

5. If & and X, are as in part (c) of Exercise 3, show that o,(f) € X,
for all f in A. Prove that &, is the closure in X of the trigonometric
polynomials.

6. This exercise continues Exercise 4 and maintains its notation. If z* €
X* and z € D, define z%(f) = z*(f.) for all f in X. (a) Show that
llzxll = ||z*|| and z — =z is a continuous function from 8D into
(X*, wk*). (b) If o, is as in (7.6) and o : X* — X* is its dual map,
show that o} (z*) — z*(wk*) in X* for all * in X'*.
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Harmonic Functions Redux

In this chapter a treatment of the Dirichlet problem for sets in the plane is
presented. This topic will be continued in Chapter 21 when harmonic mea-
sure and logarithmic capacity are introduced and applied. Some material
from Chapter 10 must be restated in the more general setting needed for
the more extensive study of harmonic functions. In Chapter 10 all functions
considered were continuous; here measure theory will be used to broaden
the class of functions. The attitude taken will be that usually results from
Chapter 10 will be restated in the more inclusive context, but proofs will be
furnished only if there is a significant difference between the proof needed
at present and the one given for continuous functions.

The chapter begins by returning to a closer examination of functions
defined on the unit disk, D.

§1 Harmonic Functions on the Disk

The notation from §18.7 remains in force. Recall the definition of the Pois-
son kernel: for w in 8D and |2| < 1,

P(w) = Ro(2E2)

w—z

= Re (11;:@@)
- ;czw)" + gjl(zw)"-

The reader should review the properties of the Poisson kernel from Propo-
sition 10.2.3.

If 4 € M and |z| < 1, define ji(z) = [ P,(w)dp(w). Similarly, if f € L!,
define f (2) = [ f P, dm. These definitions are consistent since fm=fTt
is not difficult to prove the following.

1.1 Proposition. If y € M(8D), then fi is a harmonic function in D.

Note that we are dealing with complex valued harmonic functions here.
If f € C(OD), then we know that f is the solution of the Dirichlet problem
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with boundary values f (see Theorem 10.2.4). Indeed, this is given another
proof in Theorem 1.4.a below.

Ifu:D— Cand 0 <7 <1, define u, : 9D — C by u,(w) = u(rw) for w
in &D. We will sometimes want to consider the function u, as defined on
D or cl D by the same formula, but no separate notation will be employed.

If u € M and 0 < r < 1, then ji, is an element of C(8 D) by the preceding
proposition. Thus if 1 <p < oo and f € L?, fr € L? and so we can define
the operator T;. : LP — LP by T f = f.; similarly, we can define T, : C' — C
by T.f = fr and Tou: M — M by Trp = fi - m.

1.2 Proposition.

(a) ForX =1LP, C,or M, T, : X — X is a bounded linear operator with
|IT-]| <1 for all r.

(b) If1<p< oo and q is conjugate to p, the dual of the map T, : L? —
L? is the map T, : LY — L9.

(¢) The dual of the map T, : C — C is the map T, : M — M.

Proof. (a) This will only be proved for X = LP. Let f € LP? and let h € L9,
where ¢ is the index that is conjugate to p. Thus

/ Fr(Q) h(¢) dm(Q)
/[/ f(w) Pre(w) dm(w)] h(¢) dm(C).

Substitute w¢ for w in this equation and use the following two facts: this
change of variables does not change the value of the integral and P,¢(w({) =
P,.(w). This gives

(T.f,h)

I

1.3

(TofR)| = ' / [ / f(woPT(w)dm(w)] h(odm(c)]
< [rw [ [ 150 (@) dm(0)] dmw)
< 11fllp 1Al

since [ P.(w)dm(w) = 1. This shows that ||T|| < 1 for all 7. It is easy to
see that T, is linear.

(b) If f € L? and h € L9, then use the fact that P..(w) = Pw({) =
P,,(¢) for |jw| = |¢| =1 to obtain

@sn = [ [ [ 1) Pra(@ am) | 1(6) dm()

|

/ [ / h(¢) Prw(¢) dm(¢ )] £ (w) dm(w)
= (£, Th).
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The proof of (c) is similar. O

1.4 Theorem.

(a) If f € C(OD), then ||f — frllop — 0 asr — 1—.

(b) If1<p<ooand f € LP(OD), then ||f — f|l, — 0.

(c) If p € M(OD) and if p, is the element of M(OD) defined by p, =
(i) - m, then p, — p weak* in M(6D).

(d) If f € L°(OD), then f, — f weak* in L°(dD).

Proof. 1t is easy to check that T,.2" = r™2™ for all n in Z. Hence for a
trigonometric polynomial f, T,.f — f uniformly on D as r — 1. Since
||T7]| €1 for all r, Proposition 18.7.2 implies that (a) and (b) hold. Parts
(c) and (d) follow by applying Proposition 18.7.11.b and Proposition 1.2.c.
a

As was said before, part (a) of the preceding theorem shows that, for f
in C(@D), f has a continuous extension to cl D, thus solving the Dirich-
let problem with boundary values f. For f in LP(0D) we can legitimately
consider f as the solution of the Dirichlet problem with the non-continuous
boundary values f. Indeed, such a perspective is justified by the last the-
orem. Further justification is furnished in the next section when we show
that f can be recaptured as the radial limit of f.

Now suppose that u : D — C is a harmonic function. What are necessary
and sufficient conditions that w = i for some measure p? Before providing
an answer to this question, it is helpful to observe the consequences of a few
elementary manipulations with the basic properties of a harmonic function.

If u is harmonic and real valued, there is an analytic function f : D — C
with u = Re f. Let f(z) = }_, an,2"™ be the power series expansion of
finD. So for w in D and 0 < r < 1 the series Y, a,r"w" converges
absolutely and thus

[f(rw) + f(rw)*]

o0 oo
E apr"w" + E Anr"wn
n=0

n=0

up(w) =

N N =

o0

= Z c,ﬂ""'w",
n=-00
where ¢ = Re ag, ¢, = %an for n positive, and ¢, = %ﬁ for n < 0. For
a complex valued harmonic function u : D — C, a consideration of its real
and imaginary parts shows that for jw| =1 and r < 1,
o0
1.5 up(w) = Z cnr™yw™

n=—oo
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for some choice of constants c,. Moreover the series (1.5) converges uni-
formly and absolutely for w in 8D. It follows that (1.5) is the Fourier
series of the function u,. The next lemma formally states this and gives
the analogous fact for measures.

1.6 Lemma.

(a) Ifu:D — C is a harmonic function and 0 < r < 1, the Fourier
series for u, is gwen by the formula (1.5).

(b) If p € M(OD), then the Fourier series of the function [i, is given by

oo

Z ™ p(n)w™

n=—oo

and the convergence is uniform and absolute for w on 0 D.

The next theorem is the principal result of this section and characterizes
the harmonic functions that can arise as the Poisson transform of a measure
or a function from one of the various classes.

1.7 Theorem. Suppose u : D — C is a harmonic function.

(a) There is a p in M(OD) with u = i if and only if sup, ||u.||1 < co.

(b) If1 < p< oo, there is a function f in LP(OD) with u = f if and only
if sup, ||ur||p < 00.

(c) There is a function f in L'(D) with u = f if and only if {u,} is L'
convergent.

(d) There is a function f in C(OD) with w = f if and only if {u,} is
uniformly convergent.

Proof. (a)Ifu = fi, then||u,||; = [|ur|dm < [|[ Pr.(w) du(w)|dm(z) <
I Pra(w) dlul(w) dm(z) = 1 Prs(w) dm(z)]d]ul(w) = |||

Now assume that v is a harmonic function on D and L is a constant such
that ||u.||; < L for all r < 1. Put v, = the measure u, - m in M(9D). So
{v+-} is a uniformly bounded net of measures on 0 D. By Alaoglu’s Theorem
there exists a measure p in M (D) that is a weak® cluster point of this
net. Hence

p(n) = /Wdur = /urmdm —q A(n).

But Lemma 1.6 implies that 0.(n) = fir(n) = ri*le, — ¢, as 7 — 1.
Hence ji(n) = ¢,. This implies that the weak* cluster point of {v,} is
unique. Hencer, — p weak* in M(0D). An examination of the series in
Lemma 1.6 shows that u = f.
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(b) This proof is like that of part (a). For 1 < p < oo, the weak com-
pactness of bounded sets in L?(9 D) is used instead of weak* compactness.
The weak* topology on L*°(8D) is used when p = o.

The proofs of (c) and (d) are left as exercises. O

Part of the proof of this theorem needs to be made explicit.

1.8 Corollary. Suppose u : D — C is a harmonic function.

(a) If sup, [lurf|l1 < oo, then the measures u, - m — pu weak* in M(9D),
where p is the measure such that u = fi.

(b) If1 <p< oo andsup, ||urllp < oo, then u, — f weakly in LP (weak®
in L™ if p = oo), where f is the function in LP(OD) with v = f.

If the proof of Theorem 10.2.4 is examined closely, a “point” theorem
results. This next result not only improves (10.2.4) but provides a means
of obtaining various estimates for harmonic functions as the subsequent
corollary illustrates.

1.9 Theorem. If f € L! and f is continuous at the point a, then the
function that is defined to be f on D and f on 0D is continuous at a.

1.10 Corollary. If f € L' and a € D, then

limsup f(z) < limsup £(¢).

z—a ¢{—a

¢edD

Proof. Let o be the right hand side of this inequality. If & = oo, there
is nothing to prove; thus it may be assumed that o < co. By definition,
for every € > 0 there is a § > 0 such that for { in 8D and |[{ — a| <
6, f(¢) < a+e. Define f; on 8D by letting f1(¢) = f(¢) for |z —a] > 6
and fi({) =a+efor | —a| <6 So f € L! and f < f; thus f < f;.
Using the preceding theorem,

limsup f(z) < limsup fi(z) = a +¢.

z—a z—a

Since ¢ was arbitrary, the proof is complete. O

The final result can be taken as a corollary of Theorem 1.7.

1.11 Herglotz’s Theorem. If u is a harmonic function on D, then u = [i
for a positive measure p on 0D if and only if u > 0 on D.

Proof. It is easy to see that since the Poisson kernel is positive, for any
positive measure p, u = i > 0 on . Conversely, assume that u(z) > 0 for
|z| < 1. Then ||ur||1 = [ ur(w)dm(w) = u(0) by the Mean Value Theorem.



210 19. Harmonic Functions Redux

By Corollary 1.8, there is a p in M (D) such that v = i and u, -m — p
weak*. Since u, > 0, it must be that 4 > 0. O

Exercises

1. Let p(z,%) be a polynomial in z and Z and find a formula for the
function u that is harmonic on D, continuous on cl D, and equal to
p(2,%) on OD.

2. If 4 € M(0D) has Fourier coefficients {i(n)}, show that for |z| <
1, @(z) = Yo oi(n)z™ + 3 oo i(—n)z™. Examine Exercise 1 in
light of this.

3. Let u be a real-valued harmonic function on D and show that there
is a real-valued measure p on 8D such that u = i if and only if u is
the difference of two positive harmonic functions.

4. Prove the following equivalent formulation of Herglotz’s Theorem. If
f is an analytic function on D, then f takes its values in the right half
plane and satisfies f(0) > 0 if and only if there is a positive measure
p on 9D such that

f(z) = /6 W2 gw).

pwW—=2

5. Let C be the set of analytic functions on D such that Re f > 0
and f(0) = 1. Show that C is a compact convex subset of H(D) and
characterize its extreme points. (Hint: Use Exercise 4.)

§2 Fatou’s Theorem

We have seen in the preceding section that for a measure 1 in M = M(9D),
the measure p can be recaptured from [, the solution of the Dirichlet
problem with boundary values u, by examining the weak* limit of the
measures (f), - m (1.4). In this section we will look at the radial limit of
the function fi(z). For an arbitrary measure we recapture p if and only if
is absolutely continuous with respect to m. This will essentially prove the
results stated in §13.5.

There is a standard temptation for all who first see Fatou’s Theorem.
If f € L*, then we know that f, — f in the L' norm. Thus there is a
sequence {r,} that converges to 1 such that f, ({) — f(¢) a.e. on OD.
That is,f(r.{) — f(¢) a.e. This is sufficiently close to the existence of
radial limits a.e. on @D that it seems that a proof of their existence is
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just ahead of us. Unfortunately no one has ever been able to parlay this
into a proof. It remains only an intuitive argument that makes the result
believable.

Recall some measure theory, or rather a part of measure theory that is
not universally exposed in courses on measure theory. If 4 € M(3D), there
is a corresponding measure on [0, 27], which will also be denoted by u,
such that [ fdu = [ f(e®*)du(t) for every f in C(8D). The corresponding
measure on [0, 2x] is not unique. For example, if p = §; in M(8D), then
either 8y or 82, can be chosen as the corresponding measure on [0, 2x]. This
is, however, essentially the only way in which uniqueness fails. (What does
this mean?)

For a measure p on [0,2n] there is a function of bounded variation
on [0,2n] such that [ fdu = [ f(t)du(t) for every continuous function
f, where this second integral is a Lebesgue-Stieltjes integral. It might be
worthwhile to recall how this correspondence is established, though no
proofs will be given here. The proofs can be found in many of the treat-
ments of integration theory.

If i is a positive measure on [0, 27, define a function u : [0,27] — R
by letting «w(0) = 0 and u(t) = p([0,t)) for ¢ > 0. The function  is
left continuous, increasing, and [ fdu = [ f(f)du(t) for all continuous
functions f on [0, 2x]. If ¢ is an arbitrary complex-valued Borel measure on
[0, 27], let g = p3 — p2 +i(13 — pa) be the Jordan decomposition and let « =
uy —ug+1i(uz —uq), where u; is the increasing function corresponding to the
positive measure u;. This establishes a bijective correspondence between
complex-valued measures p on [0, 2] and left continuous functions w of
bounded variation that are normalized by requiring that u(0) = 0.

The next proposition gives the basic properties of this correspondence
between measures and functions of bounded variation.

2.1 Proposition. Let p € M|0,2n] and let u be the corresponding normal-
tzed function of bounded variation.

(a) The function u is continuous at to if and only if u({te}) = 0.

(b) The measure u is absolutely continuous with respect to Lebesgue mea-
sure if and only if u is an absolutely continuous function, in which
case [ fdu = [ f(t)u'(t)dt for every continuous function f.

(c) IfE = {t:u'(t) exists and is not 0}, then E is measurable, u|E is ab-
solutely continuous with respect to Lebesque measure, and p|([0, 2n] \
E) is singular with respect to Lebesgue measure.

In §13.5 the concept of non-tangential limit was introduced; namely for
wo in 8D, z — wp (n.t.) if 2 approaches wg through a Stolz angle with
vertex wp and opening o, 0 < o < /2.

2.2 Lemma. Given a Stolz angle with vertex wy = €% and opening a,
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Figure 19.1.

there is a constant C and a 6 > 0 such that if z = re*® belongs to the Stolz
angle and |z — wo| < 8, then |0 — 6| < C(1 —1).

Proof. It suffices to assume that 8y = 0 so that wg = 1. If L is the straight
line that forms an edge of the Stolz angle, then a reference to Figure 19.1
will show that for z = re” on L, sin(a + 6) = S22 Hence as § — 0+

1-7r 1 sin(e + 0) —sina cot
= — cota.
0 sin(a + 6) 0 ©
Thus l—f; — tana as § — 0+. Since the tangent function is increasing, the
lemma now follows. O

2.3 Fatou’s Theorem. Let u € M[0,2n] and let u be the corresponding
function of bounded variation; extend u to be defined on R by making u
periodic with period 2. If u is differentiable at 6y, then fi(z) — 27 u'(6p)
as z — e (n.t.).

(Note: We are identifying M(9D) and M|0,2x]. Also the only reason for
extending u to be defined on R is to facilitate the discussion at 0 and 27.)

Proof. 1Tt suffices to only consider the case where 6y = 0, so we are as-
suming that u/(0) exists. We may also assume that u'(0) = 0. In fact, if
u'(0) # 0, let v = p — 27 u/(0)m. The function of bounded variation cor-
responding to v is v(6) = u(0) — v’'(0)8, since m is normalized Lebesgue
measure. So v'(0) exists and v'(0) = 0. If we know that ¥(z) - 0asz — 1
(n.t.), then fi(2) = #(z) + v/(0) — «'(0) as z — 1 (n.t.).

So assume that u'(0) = 0. We want to show that

4 1—r2
24 /_,r 1—2rcos(t—0)+r2 du(t) = 0

as z = re'® — 1 (n.t.). Using the preceding lemma, it suffices to show that
(2.4) holds if, for some fixed positive constant C, § — 0 and r — 1 while
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Figure 19.2.

satisfying
2.5 8] < C(1—r).

Let T be the set of z = re® satisfying (2.5).

Recall that if the Poisson kernel is considered as a function of § with r
fixed, then P,.(8) = (1 — r2)/(1 — 2r cos 0 + r?) and so differentiation with
respect to 6 gives that

2r(1 —r?)sinf

Pl(0) = .
() (1 — 2rcos 8 + r2)?

Fix € > 0. Since v/(0) exists and equals 0, there is a § > 0 such that
|u(t)| < €|t| for |¢t| < 6. Thus if z =re® € T,

T &
i) = [ Pt~ 0)dute) = [ [+ "

Examining Figure 19.2 we see that if 0 < §; < ¢, there is a neighborhood U;
of 1 such that if z € TNU; and |¢| > §, then |t — 8| > §;,. Thus Proposition
10.2.3.d implies é; and U; can be chosen so that P,.(t — 8) < ¢ for [¢t| > é
and z € T' N U;. Therefore

Py (t — 0) dyu(t).

&
2.6 (=) < ellul| + / Pt = 6)du(t)

Using integration by parts, for z = re® in I' N Uy,

')
< W@ Pt =00 s+| [ ut) Pt 0)a

-6
= [u(6)Pr(6 —0) — uw(—6)Pr(—6 — 0)]|

/6 u(t) P.(t — 6) dt
-6

/ " Pt - 6)du(t)
-5

+
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1)
< 2552+/ u(t) P.(t — 8) dt| .

-6

From (2.6) we infer that

2.7 |a(2)| < ellpll + 26¢* +

/ " () Pt — 0) de
_5

Now fix z and assume that & > 0. The case where 8 < 0 is treated
similarly and will be left to the reader. Also assume that U; is sufficiently
small that § < §/2 for z = re® in U;. Hence

/_Zu(t)Pl(t—a)dt = (/_Z+/020+/2:)P,’(t—0)u(t)dt

2.8 = X+Y+Z

Now since |u(?)| < €lt| for |¢| < 6,

v =

26 2r(1 — r2) sin(t — @)u(t) dt
/0 (1 —2rcos(t — 8) +12)2

< 21 1"2)/29 | sin(t — 6)|et
- (1 — 2r cos(t — 0) + r2)?

But (1—2r cos(t—6)+7r2) > 1-2r+7r2 = (1-r)? and |sin(t—0)| < |t—6| < @
for 0 <t < 26. Hence

260
v < 26(1(1—7' 0/ tdt

er(1+r)0(46%)
(1—r)3
863
- A-n)3

By (2.5) we get
Y] < 8eC3.

Now for the term Z in (2.8). If 20 <t < §,then 0 <t —20 =2(t —6) —t
and so t < 2(¢ — ). Hence |u(t)| < 2¢(¢t — 0). Thus

1)
|z = /29 Pl(t—6)u(t)dt

IN

1)
25L0(—PT(t —0))(t—0)dt
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- 25/6_9(—Pr’(t))tdt
[’}
< 2s/w(—Pr'(t))tdt
0
= 2e(—tP.(t))|5 + 2 /7r P.(t)dt
0

1—72
2em (m) + 2em

< Ame,

IA

provided U; is chosen sufficiently small. (That is, we force 7 to be very
close to 1.)
For the term X in (2.8), observe that

0 6+6
/ Pl(t —0)u(t)dt = Pl(t)u(6 —t)dt.
—6 6

Nowfor@0<t<60+60<t—8<6andso

8+6
X|<e /e (=PL(t)) (¢t - ) dt.

Using the preceding methods we obtain the fact that for some constant M,
| X| < Me.

Referring to (2.7) and (2.8), we get that there is a constant C’ that
is independent of € such that for all z in " and in a sufficiently small
neighborhood U; of 1, |i(z)| < C’e. O

2.9 Corollary. If 4 € M(0D), then ji has non-tangential limits a.e. jm]
on OD.

Proof. Functions of bounded variation have finite derivatives a.e. O

The reader might wonder if it could be concluded that i can have a
limit at points of the circle. In other words, is it really necessary to impose
the restriction in the preceding corollary and its ancestors that the limits
be non-tangential? The answer is emphatically no; only the non-tangential
limits are guaranteed. This is sketched in Exercise 1.

2.10 Corollary. If u is a non-negative harmonic function on D, then
lim,_,;_ u(re®) exists and is finite a.e. on [0, 27].

Proof. According to Herglotz’s Theorem, u = i for some positive measure.
O

2.11 Corollary. If i1 is a measure on 0D that is singular with respect to
Lebesgue measure, then the non-tangential limits of i are 0 a.e. on OD.
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Why doesn’t this contradict the Maximum Principle for harmonic func-
tions?

The next result is also a corollary of Fatou’s Theorem but it is sufficiently
important to merit a more proclamatory label.

2.12 Theorem. If 1 < p < oo and u: D — C is a harmonic function such
that sup, ., ||ur||p < oo, then

f(w) = lim u(rw)

ezists and is finite a.e. [m] on OD. If 1 < p < oo, then f € LP(m) and
u=f. Ifp=1, then u = i for some measure p in M|[0,2x] and f is the
Radon-Nikodym derivative of the absolutely continuous part of p.

Proof. This proof is actually a collage of several preceding results. First
assume that 1 < p < oo. By Theorem 1.7 there is a function g in L? such
that u = §. By Fatou’s Theorem, g = f a.e. [m]. Now suppose p = 1. Again
Theorem 3.8 implies that v = ji for some p in M0, 27]. Let p1 = po + ps be
the Lebesgue decomposition of y with respect to m. Let g be the Radon-
Nikodym derivative of p, with respect to m. Thus if w is the function of
bounded variation on [0, 2] corresponding to u, then w’ = g a.e. It follows
by Fatou’s Theorem that g = f a.e. O

Note that the preceding theorem contains Theorem 13.5.2 as a special
case.

2.13 Example. If 4 = é;, the unit point mass at 1on 9D, ji(z) = [ P,dp =

P,(1) =Re (}—ff) Here the conclusion of Fatou’s Theorem can be directly

verified.

Exercises

1. Let f € L' and put g(2) = f(z) for |z| < 1 and g(e®) = lim,_,,_ f(re®)
when this limit exists; so g and f agree a.e. on 0D. Let E be the set
of points on 8D where g is defined. (a) Show that if f(z) — g(e*)
as z — €% with z in D (tangential approach allowed), then g, as a
function defined on DU E, is continuous at e®®. Let E. be the set of
points in 9D where g is continuous. (b) Show that F, has measure
zero if and only if f is not equivalent to any function whose points
of continuity have positive measure. (Two functions are equivalent if
they agree on a set of full measure and thus define the same element
of L'.) The rest of this exercise produces a function f in L! that is not
equivalent to any function whose points of continuity have positive
measure. (Note that the characteristic function of the irrational num-
bers is equivalent to the constantly 1 function.) Once this is done, the
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harmonic function f will fail to have a limit a.e. on &) even though
it has a non-tangential limit a.e. (c) Let K be a Cantor subset of 9D
with positive measure and show that the set of points of continuity of
xk is 9D\ K. (d) Construct a sequence {K,} of Cantor sets in 8D
that are pairwise disjoint and such that 8 D\ U, K, has zero measure.
Show that U, K,, contains no interval. (e) Define f on 8D by letting
f(z) =1/2" for z in K,, and f(z) = 0 for z in 0D\ U, K,,. Show
that if g is any function equivalent to f, then the set of points of
continuity of g has measure zero.

2. Give an example of an analytic function on D that fails to have a
non-tangential limit at almost every point of 0 D.

3. Suppose f € L' and f is real-valued. Show that if a € &I and
lim,_,, f(2) = 400, then lim,,; f(ra) = +oo.

83 Semicontinuous Functions

In this section we will prove some basic facts about semicontinuous func-
tions (lower and upper). Most readers will have learned at least some of this
material, but we will see here a rather complete development as it seems
to be a topic that most modern topology books judge too specialized for
inclusion and most analysis books take for granted as known by the reader.
We will, of course, assume that the reader has mathematical maturity and
omit many details from the proofs.

3.1 Definition. If X is a metric space and u : X — [—00,4+00), then u is
upper semicontinuous (usc) if, for every ¢ in [—o0,+00), the set {z € X :
u(z) < c} is an open subset of X. Similarly, u : X — (—o0,+00] is lower
semicontinuous (Isc) if, for every c in (—oo, 400}, the set {z € X : u(z) > ¢}
is open.

Note that the constantly —oo and +oo functions are upper and lower
semicontinuous, respectively. This is not standard in the literature. Also a
function u is upper semicontinuous if and only if —u is lower semicontinu-
ous. In the sequel, results will be stated and proved for upper semicontinu-
ous functions. The correct statements and proofs for lower semicontinuous
functions are left to the reader. Throughout the section (X,d) will be a
metric space.

The reason for using the words “upper” and “lower” here comes from
considerations on the real line. If X = R and « is a continuous function
except for jump discontinuities, u will be upper semicontinuous if and only
if at each discontinuity zg, u(zg) is the upper value.

3.2 Proposition. If X is a metric space and u : X — [—00,00), then the
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following statements are equivalent.

(a) wu is usc.
(b) For every c in [—o00,00) the set {x € X : u(x) > ¢} is closed.

(¢) Ifzo € X and u(zg) > —oo, then for every e > 0 there is a § > 0
such that u(z) < u(zo)+e whenever d(zx, o) < 6; if u(xp) = —00 and
M <0, then there is a § > 0 such that u(z) < M for d(z, o) < 6.

(d) Ifzo € X, then u(xg) > limsup,_,, u(x).

3.3 Proposition. If K is a compact subset of X, u is an usc function
on X, and u(z) < oo for all z in K, then there is an xo in K such that
u(zg) > u(z) for all z in K.

Proof. First let U, = {z € X : u(z) < n}. Then K C U,U, and each U,
is open. By the compactness of K, there is an n such that K C U,,. Thus
a = sup{u(z) : z € K} < co. Now put K, = {r € K : u(z) > a —n"1}.
Each K, is a compact and non-empty subset of K and K,,;; C K,. So
there is an z that belongs to each K,, and it must be that u(zg) > u(z)
forall z in K. O

3.4 Proposition.

(a) Ifu; and uz are usc functions, then u;+uy and uy Vug = max{uy,uz}
are usc functions.

(b) If {ui} is a collection of usc functions, then Au; = inf; u; is usc.

Proof. (a) Let u = uj+usz, fixcin [—o0,00),and let U = {z : u(z) < c}. If
zo € U, then u1 (o) < ¢ and us(zo) < ¢ —u1(zo). Hence Uy = {z : u1(z) <
¢} and Uz = {z : uz2(z) < ¢ — u1(zo)} are both open neighborhoods of x
and U; NU; C U. Since x¢ was arbitrary, U must be open.

Now if u = u; Vug and ¢ € [—00,0), then {z : u(z) < ¢} = {z : w1(z) <
¢} N{z : ua(z) < ¢}, and so u is usc.

(b) If u = Au; and ¢ € [—00,00), then {z : u(z) < ¢} = U{z : u;(z) < c}.
a

3.5 Corollary. If {u,} is a sequence of usc functions on X such that for
every T, {u,(x)} is decreasing, then u(x) = limu,(z) is usc.

A sequence of functions satisfying the hypothesis of this corollary is called

a decreasing sequence of functions.

3.6 Theorem. If u: X — [—00,00) is usc and u < M < 400 on X, then
there is a decreasing sequence of uniformly continuous functions {fn} on
X such that f, < M and for every x in X, f.(x) | u(z).
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Proof. If u is constantly equal to —oo, then the result is trivial. So assume
that this is not the case. If d is the metric on X, define f, : X — R by

fn(x) = sup{u(y) — nd(z,y) : y € X}.

For any @ and y in X, fa(2) 2 u(y) — nd(z,y) > u(y) - (n + )d(z,y); so
fu(z) 2 fny1(x) > u(z) for all z in X. Also f, < M for all n.

Let £ be a positive number, let £ € X, and fix n > 1. By definition,
there is a y in X such that f,(z) < u(y) — nd(z,y) +¢. If d(z,x) < ¢, then
d(z,y) < d(z,y)+e. Thus fn(2) = uly) —nd(z,y) > u(y) —nd(z,y) —ne >
fn(z) — (n + 1)e whenever d(z,z) < e. That is, fr(2) > fo(z) — (n+ 1)e
whenever d(z, z) < €. Now interchange the roles of z and z in the preceding
argument to get that f,,(z) > fn(2) — (n+ 1)e when d(z, z) < &. Therefore
|fn(z) — fo(2)] < (n+ 1l)e when d(z,z) < e. That is, f, is uniformly
continuous.

It remains to show that f,(z) — u(zx) for all z in X. So fix zp in X and
let € be a positive number. Assume that u{xg) > —oo. (The case in which
u(zg) = —oo is left as an exercise.) Since u is usc, there is a § > 0 such that
uw(y) < u{zo)+e for d(y, zo) < 6. Thus u(y)—nd(y, o) < u(zs)+e whenever
d(y,z9) < 6. Now suppose that d{y,zo) > §6; here u(y) — nd(y,zo) <
u(y) —né < M — nb. Choose ng such that M — né < u(zg) + ¢ for n > ng.
Thus for n > ng and for all y in X, u(y) —nd(y, o) < u(zo) +e&. Therefore
w(Zo) < fnlzo) < u(zo) +€forn>ny. O

Exercises

1. Give an example of a family I/ of usc functions such that sup U is
not usc.

2. If u is a monotone function on an interval (a,b) in R, show that u is
usc if and only if for each discontinuity z of u, u(x) = lims_, 4 u(t).

3. Show that the uniform limit of a sequence of usc functions is usc.

4. If X is a metric space, E is a subset of X, and u is the characteristic
function of the set E, show that u is upper semicontinuous if and
only if F is closed.

5. Let X be a metric space. Show that u is an upper semicontinuous
function on X if and only if A = {(z,t) € X xR : t < u(z)} is a
closed subset of X x R.

6. Suppose A is any closed subset of X x R such that for each z in
X the set A, = {t € R : (z,t) € A} is either empty or bounded
above. Define v : X — [—00,00) by u(z) = —oo if A, = 0 and
u(z) = sup A, otherwise, and show that u is upper semicontinuous.
Show that A = {(z,t) € X x R: ¢t < u(z)}.
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7. Let f: X — [—00,00) be any function and let I' = {(z, f(z)) : = €
X and f(z) > —oo} € X xR.If A = cl T, show that if u(z) is defined
as in the preceding exercise, then u(z) = limsup,,_,, f(y) for all z in
X.

8. Suppose G is an open subset of a metric space X and f : G —
[—00, 00) is any function such that for each ¢ in G, u(¢) = limsup{ f(z) :
z € G and £ — (} < co. Show that u is upper semicontinuous.

§4 Subharmonic Functions

Subharmonic and superharmonic functions were already defined in 10.3.1,
but it was assumed there that these functions were continuous. This was
done to avoid assuming that the reader’s background included anything
other than basic analysis. In particular, it was assumed that the reader
did not know the Lebesgue integral and thus could not discuss the integral
of a semicontinuous function. It is desirable to go beyond this and extend
the definition to semicontinuous functions. Propositions for semicontinu-
ous subharmonic functions that were stated for the continuous version in
Chapter 10 will sometimes be restated here. If the proof given in Chapter
10 extends naturally to the present situation, it will not be repeated and
the reader will be referred to the appropriate result from the first volume
of this work.

4.1 Definition. If G is an open subset of C, a function u : G — [—00, ) is
subharmonic if u is upper semicontinuous and, for every closed disk B(a;r)
contained in G, we have the inequality

1 27 .
. < — #)de.
4.2 u(a) < 27‘_/0 u(a + re*?)do

A function u : G — R U {400} is superharmonic if —u is subharmonic.

Some remarks are in order here. Since u is upper semicontinuous, the
fact that u(a+re®) < oo for all § implies u is uniformly bounded above on
this circle. Thus it is not being assumed that the integral in the definition
is finite, but the integral is defined with the possibility that it is —oo.
In fact it may be that the function is constantly equal to —oco on some
or all of the components of G. We will see below (Proposition 4.11) that
this is the only way that a subharmonic function can fail to be integrable
on such circles. There is a slight difference between this definition of a
subharmonic function and that given by many authors in that the function
that is identically equal to —oo is allowed to be subharmonic. In fact, since
G is not assumed to be connected, © may be constantly equal to —oo on
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some components and finite valued on others. This is also usually excluded
as a possibility in the definition of a subharmonic function.

Results will usually be stated and proved only for subharmonic functions.
The statements and proofs for superharmonic functions will be left to the
reader.

4.3 Example. If f : G — C is an analytic function, then log|f| is a
subharmonic function on G. In fact this is an immediate consequence of
Jensen’s Formula (11.1.2).

For a compact subset K of C, let Cj,(K) denote the continuous functions
on K that are harmonic on int K.

4.4 Definition. Say that a function v : G — [—00,00) satisfies the Mazi-
mum Principle if, for every compact set K contained in G and every h in
Ch(K), u < h on K whenever u < h on 9 K.

4.5 Theorem. If u: G — [—00,0) is an upper semicontinuous function,
then the following statements are equivalent.

(a) wu is subharmonic.
(b) u satisfies the Mazimum Principle.

(¢) If D is a closed disk contained in G and h € Cp(D) with u < h on
oD, then u < h on D.

(d) If D= B(a;r) C G, then

1
u(a) < m/DudA.

Proof. (a) implies (b). (This part of the proof is like the proof of Theorem
10.3.3.) Let K be a compact subset of G and assume that h € Cp(K)
with v < h on § K. By replacing v with u — h, it is seen that it must be
shown that u < 0 on K whenever u is subharmonic and satisfies © < 0
on 0 K. Suppose there is a point 2y in int K such that u(zp) > 0 and
let 0 < € < u(z). Put A = {z € K : u(z) > €}. Because u is usc, A4 is
compact. Also, if b € d K, 0 > u(b). By standard compactness arguments,
this implies there is a neighborhood V of 8 K with V C G and u(z) < ¢ for
all zin V. Hence, A C intK. Again the fact that u is usc implies that there
is a point a in A with u(a) > u(z) for all z in A. It follows that u(a) > u(z)
for all z in K. Let H be the component of intK that contains a and put
B={z€ H:u(z) =u(a)}.

Clearly B is a relatively closed non-empty subset of H. If w € B, let
B(w;r) C G. So B(w;r) C H and, for 0 < p < r, 2nu(w) < f027r u(w +
pe®)df < 2mu(w) since u(w + pe®) < u(a) = u(w) for all §. That is,
the integral of the non-negative function u(a) — u(w + pe*) is 0 and so
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B(w,r) C B. Thus B is open and so B = H. But this implies that if<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>