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Preface

Permutation groups arguably form the oldest part of group theory. Their
study dates back to the early years of the nineteenth century and, indeed,
for a long time groups were always understood to be permutation groups.
Although, of course, this is no longer true, permutation groups continue
to play an important role in modern group theory through the ubiquity of
group actions and the concrete representations which permutation groups
provide for abstract groups. Today, both finite and infinite permutation
groups are lively topics of research.

In this book we have tried to present something of the sweep of the
development of permutation groups, explaining where the problems have
come from as well as how they have been solved. Where appropriate we deal
with finite and infinite groups together. Some of the theorems we consider
arose in the last century or the earlier parts of this century, but most of
the book deals with work done over the last few decades. In particular, the
kinds of problem in finite permutation groups which can be usefully tackled
has completely changed since the classification of finite simple groups was
announced in 1979 (see Appendix A). One chapter of this book is devoted to
the proof of the pivotal O’Nan-Scott Theorem which links the classification
of finite simple groups directly to problems in finite permutation groups.
We have described some of the applications of the O’Nan-Scott Theorem,
even though in many cases the proofs are too technical for consideration
here.

This book is intended as an introduction to permutation groups. It can
be used as a text for a graduate or advanced undergraduate level course,
or for independent study. The reader should have had a general introduc-
tion to group theory, and know about such things as the Sylow theorems,
composition series and automorphism groups, but we have kept the pre-
requisites modest and recall specific facts as needed. Material in the first
three chapters of the book is basic, but later chapters can be read largely
independently of one another, so the text can be adapted for a variety of
courses. An instructor should first cover Chapters 1 to 3 and then select
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material from further chapters depending on the interests of the class and
the time available.

Our own experiences in learning have led us to take considerable trouble
to include a large number of examples and exercises; there are over 600 of
the latter. Exercises range from simple to moderately difficult, and include
results (often with hints) which are referred to later. As the subject devel-
ops, we encourage the reader to accept the invitation of becoming involved
in the process of discovery by working through these exercises. Keep in
mind Shakespeare’s advice: “Things done without example, in their issue
are to be fear’d” (King Henry the Eighth, 1.ii.90).

Although it has been a very active field during the past 20 to 30 years,
no general introduction to permutation groups has appeared since H.
Wielandt’s influential book Finite Permutation Groups was published in
1964. This is a pity since the area is both interesting and accessible. Our
book makes no attempt to be encyclopedic and some choices have been a
little arbitrary, but we have tried to include topics indicative of the cur-
rent development of the subject. Each chapter ends with a short section of
notes and a selection of references to the extensive literature; again there
has been no attempt to be exhaustive and many important papers have
had to be omitted.

We have personally known a great deal of pleasure as our understanding
of this subject has grown. We hope that some of this pleasure is reflected
in the book, and will be evident to the reader. A book like this owes a clear
debt to the many mathematicians who have contributed to the subject;
especially Camille Jordan (whose Traité de substitutions et des équations
algébriques was the first text book on the subject) and Helmut Wielandst,
but also, more personally, to Peter Neumann and Peter Cameron. We thank
Bill Kantor, Joachim Neubiiser and Laci Pyber who each read parts of an
early version of the manuscript and gave useful advice. Although we have
taken considerable care over the manuscript, we expect that inevitably
some errors will remain; if you find any, we should be grateful to hear from
you.

Finally, we thank our families who have continued to support and
encourage us in this project over a period of more than a decade.

Acknowledgement. The tables in Appendix B were originally published as
Tables 2, 3 and 4 of: John D. Dixon and Brian Mortimer, Primitive per-
mutation groups of degree less than 1000, Math. Proc. Cambridge Phil.
Soc. 103 (1988) 213-238. They are reprinted with permission of Cambridge
University Press.
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Notation

N,7Z
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]Fq
Kd
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Sny An
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C
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affine geometry over K and over [

projective geometry over K and
over F,
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symmetric and alternating groups on )

symmetric and alternating groups
of degree n

finitary symmetric group

cyclic group of order n

linear groups over K

affine groups over K

projective groups over K

symplectic groups over K

unitary groups over K

Suzuki and Ree groups

Mathieu groups

Witt geometries

set of fixed points and support of z

sets of k-subsets and k-tuples from {2

set of orbits of K on A

orbital graph

greatest common divisor of m and n

largest integer < z

cardinality of set S

elements of €2 not in A

symmetric difference of ' and A

set of functions from T' to A
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Aut(X)
Inn(G)
Out(G)
soc(G)

N (H)
Ce(H)
H<GN«G
G x H,G™
G xH

G wrr H
G.H,G.n
G:H

automorphism group of X
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normalizer of H in G
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1

The Basic Ideas

1.1 Symmetry

A cube is highly symmetric: there are many ways to rotate or reflect it so
that it moves onto itself. A cube with labeled vertices is shown in Fig. 1.1.
For example, we can rotate it by 90° about an axis through the centres of
opposite faces, or reflect it in the plane through a pair of opposite
edges. Each of these “symmetries” of the cube permutes the eight vertices
in a particular way, and knowing what happens to the vertices is enough to
tell us what the whole motion is. The symmetries of the cube thus corre-
spond to a subgroup of permutations of the set of vertices, and this group,
an algebraic object, records information about the geometric symmetries.

Turn now to an algebraic example. The polynomial X% — X + 1 is a
real polynomial with five distinct complex roots: one real and four nonreal.
As is well-known, nonreal roots of a real polynomial appear in pairs of
complex conjugates, so the action of complex conjugation leaves the real
root fixed and permutes the nonreal roots in pairs. More generally, any
automorphism of the field of complex numbers induces a permutation on
the set of roots, and the set of all such permutations forms a group which is
called the Galois group of the polynomial. Calculating Galois groups can
be quite difficult, but in the case of X® — X + 1 it can be shown to be the
full symmetric group of all 120 permutations on the roots. On the other

FiGURE 1.1. A labeled cube.
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hand, the polynomial X° — 2 has a group of order 20 as its Galois group.
The algebraic symmetries of the polynomial described by the Galois group
are not at all obvious.

The development of the theory of permutations and permutation groups
over the last two centuries was originally motivated by use of permutation
groups as a tool for exploring geometrical, algebraic and combinatorial sym-
metries. Naturally, the study of permutation groups gave rise to problems
of intrinsic interest beyond this initial focus on concrete symmetries, and
historically this led to the concept of an abstract group at the end of the
nineteenth century.

1.2 Symmetric Groups

Let Q be an arbitrary nonempty set; we shall often refer to its elements as
points. A bijection (a one-to-one, onto mapping) of € onto itself is called
a permutation of Q. The set of all permutations of €2 forms a group, under
composition of mappings, called the symmetric group on 2. We shall denote
this group by Sym(Q) (other common notations are Sq and S%*), and write
Sn, to denote the special group Sym(f2) when n is a positive integer and
Q= {1,2,...,n}. A permutation group is just a subgroup of a symmetric
group. If 2 and ' are two nonempty sets of the same cardinality (that
is, there is a bijection a — ' from Q onto Q') then the group Sym(Q) is
isomorphic to the group Sym(§)’) via the mapping  — z’ defined by:

2’ takes o’ to B’ when z takes a to 3.

In particular, Sym(Q?) 2 S,, whenever || = n.

Exercises

1.2.1 Show in detail that the mapping described above does give an
isomorphism from Sym(2) onto Sym(£Y').

1.2.2 Prove that if 2 is finite and |Q| = n, then |Sym(Q)| = n!.

1.2.3 (For those who know something about infinite cardinalities.) Show
that if Q is infinite, then [Sym(Q)| = 2!/, In particular, Sym(N) has
uncountably many elements when N is the set of natural numbers.

There are two common ways in which permutations are written (at least
for the finite case). First of all, the mapping = : 2 — ) may be written
out explicitly in the form

g [ @ .. an>
Bi B2 ... DBn
where the top row is some enumeration of the points of 2 and §; is the
image of «; under x for each i. The other notation is to write z as a
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product of disjoint cycles. A permutation ¢ € Sym((}) is called an -
cycle (r = 1,2,...) if for r distinct points vy1,72,...,7% of ,c maps v;
onto y;+1{ = 1,...,r — 1), maps -, onto v;, and leaves all other points
fixed; and c is called an infinite cycle if for some doubly infinite sequence
vi(i € Z), c maps -y; onto v;4+1 for each i and leaves all other points fixed.
The second common way to specify a permutation is to write x as a product
of disjoint cycles, where by disjoint we mean that no two cycles move a
common point (this product is only a formal product in the case that
2 is infinite). It is a general result (see Exercise 1.2.5 below) that every
permutation can be written in essentially one way in this form.

ExAMPLE 1.2.1. Let  be the finite field of 7 elements consisting of
{0,1,...,6} with addition and multiplication taken modulo 7. Then the
mapping a — 4a + 1 defines a permutation of £2. This permutation can be

written
0 1 2 3 45 6
15 2 6 3 0 4
or as a product of disjoint cycles

(015)(2)(364) = (2)(015)(643) = ... = (015)(364)

EXAMPLE 1.2.2. Let Q = Q (the rational numbers). Then the mapping
a — 2 is a permutation of Q. This permutation fixes the point 0, and the
remaining points lie in infinite cycles of the form

(...,027%, 027t 0, 02", 02?,...).

Our convention is to consider permutations as functions acting on the
right. This means that a product zy of permutations should be read as:
first apply = and then y (some authors follow the opposite convention). For
example, (142)(356)(4123) = (1)(2)(3564).

Exercises

1.2.4 Show that an r-cycle (a; ... «q,) is equal to an s-cycle (8;...0s)
on the same set 2 if and only if 7 = s and for some h we have
a;an, = Pi for each i where the indices are taken modulo r. Show
that two infinite cycles (...a_jop0;...) and (... B_16p61 ...) on
the same set are equal if and only if for some b, a; 1., = G; for all 4.

1.2.5 Prove that each permutation x € Sym(Q) can be written as a prod-
uct of disjoint cycles. Show that this product is unique up to the
order in which the cycles appear in the product and the inclusion or
exclusion of 1-cycles (corresponding to the points left fixed by z).
[Hint: Two symbols, say « and 8, will lie in the same cycle for z if
and only if some power of z maps « onto §. This latter condition
defines an equivalence relation on 2 and hence a partition of {2 into
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1.2.6

1.2.7

1.2.8

1.2.9

1.2.10

1.2.11

1.2.12

1.2.13

1.2.14

1.2.15

disjoint subsets. Note that when 2 is infinite, £ may have infinite
cycles and may also have infinitely many cycles. In the latter case
the product as disjoint cycles has to be interpreted suitably.]
Suppose that z and y are permutations in Sym(Q2), and that y =
cicy . .. as a product of disjoint cycles. Show that z 'yz = cjcj. ..
where each cycle ¢; of y is replaced by a cycle ¢, of the same length,
and each point in ¢; is replaced in ¢} by its image under z. In
particular, if o is the image of o; under z then we have

z Yo, .., ap)r = (af,. .., k).

Show that two permutations z,y € Sym(Q) are conjugate in
Sym(Q) if and only if they have the same number of cycles of each
type (including 1-cycles). Give an example of two infinite cycles in
Sym(N) which are not conjugate.

If the permutation z is a product of &k disjoint cycles of finite lengths
mi, ..., Mk, show that the order of z as a group element is the least
common multiple of these lengths. What is the largest order of an
element in Sap?

Find the cycle decomposition of the permutation induced by the
action of complex conjugation on the set of roots of X — X + 1.
Which permutations of the set = {X;, Xs, X3, X4} leave the
polynomial X; + X5 — X3 — X4 invariant? Find a polynomial in
these variables which is left invariant under all permutations in the
group (X1 X2X3X4), (X2X4)) but not by all of Sym(Q).

For each i, 2 < i < m, let L, = {(1,4),(2,%),..., (@ — 1,4),I}
where I is the identity element of S,. Show that each x € S, can
be written uniquely as a product x = zx3...x, with z; € L,.
(This is the basis for a technique to generate random elements of
Sy, with uniform distribution.)

Let s(n, k) denote the number of permutations in S, which have
exactly k cycles (including 1-cycles). Show that

D s, k)XF = X(X+1)...(X+n-1).
k=1
(The s(n, k) are known as “Stirling numbers of the first kind”.)

Let a(n, m) denote the number of permutations x € S, such that
z™ = 1 (with a(0, m) = 1). Show that

o0 , . Xd
5o {5

n=0 djm

Find necessary and sufficient conditions on the pair ¢, j in order that

(12...n), (ij)) = Sn.
Show that for all i, 1 < i < m, {((23...n), (12)) = S,.
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1.2.16 Let n > 2, and let T be the set of all permutations in S, of the
form

te= || G k—i) fork=3,4,...,n+1
1<i<k/2

(i) Show that T generates S, and that each x € S, can be written
as a product of 2n — 3 or fewer elements from 7.

(i) (Unsolved problem) Find the least integer f, such that every
xz € S, can be written as a product of at most f,, elements from
T.

1.3 Group Actions

The examples described in Sect. 1.1 show how permutation groups are
induced by the action of groups of geometrical symmetries and field auto-
morphisms on specified sets. This idea of a group acting on a set can be
formalized as follows.

Let G be a group and €2 be a nonempty set, and suppose that for each
a € Q and each x € G we have defined an element of {2 denoted by o (in
other words, (o, ) — o is a function of  x G into ). Then we say that
this defines an action of G on Q (or G acts on ) if we have:

(i) o = afor all @ € Q (where 1 denotes the identity element of G); and
(ii) (a®)¥ =a*¥ foralla € Qand all z,y € G.

Whenever we speak about a group acting on a set we shall implicitly
assume that the set is nonempty.

EXAMPLE 1.3.1. The group of symmetries of the cube acts on a variety of
sets including: the set of eight vertices, the set of six faces, the set of twelve
edges, and the set of four principal diagonals. In each case properties (i)
and (ii) are readily verified.

EXAMPLE 1.3.2. Every subgroup G of Sym(Q2) acts naturally on €} where
o® is simply the image of & under the permutation z. Except when explic-
itly stated otherwise, we shall assume that this is the action we are dealing
with whenever we have a group of permutations.

If a group G acts on a (nonempty) set §2, then to each element z € G we
can associate a mapping Z of {2 into itself, namely, o v+ . The mapping
7 is a bijection since it has x—! as its inverse (using properties (i) and
(ii)); hence we have a mapping p : G — Sym(Q) given by p(z) = 7.
Moreover, using (i) and (ii) again, we see that p is a group homomorphism
since for all @ € Q and all z,y € G, the image of o under 7y is the same
as its image under the product Z 7. In general, any homomorphism of G
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into Sym(Q) is called a (permutation) representation of G on . Hence,
we see that each action of G on €2 gives rise to a representation of G on .
Conversely, representations correspond to actions (see Exercise 1.3.1), so
we may think of group actions and permutation representations as different
ways of describing the same situation.

The following concepts related to a group action will be referred to re-
peatedly. The degree of an action (or a representation) is the size of Q.
The kernel of the action is the kernel (ker p) of the representation p; and
an action (or representation) is faithful when ker p = 1. The “first homo-
morphism theorem” shows that, when the action is faithful, the image Im p
is isomorphic to G.

In some applications the relevant action is of the group acting on a set
directly related to the group itself, as the following examples illustrate.

ExAMPLE 1.3.3. (Cayley representation) For any group G we can take
Q := G and define an action by right multiplication: o* := ax with
a,ax € Q and x € G. (Check that this is an action!). The corresponding
representation of G into Sym(G) is called the (right) regular representation.
It is faithful since the kernel

{reG|a®=aforalac}

equals 1. This shows that every group is isomorphic to a permutation group.

EXAMPLE 1.3.4. (Action on right cosets) For any group G and any sub-
group H of G we can take 'y := {Ha | a € G} as the set of right
cosets of H in G, and define an action of G on I'gy by right multiplication:
(Ha)* := Hax with Ha, Hax € Ty and z € G. We denote the correspond-
ing representation of G on I'y by pg. Since Hax = Ha <= x € a”'Ha,
we have

ker pg = m a 'Ha.
a€G

In general, py is not faithful (see Exercise 1.3.3).
EXAMPLE 1.3.5. Suppose that G and H are both subgroups of a group
K and that G normalizes H. Then we can define an action of G on H by

congjugation: a® := r~lax with a,z 'az € H and x € G. In this case the
kernel of the corresponding representation is the centralizer of H in G:

Co(H) ={z € G|ax =zxaforalla € H}.

The most common situation where this action occurs is when H = G or
H < G (that is, H is a normal subgroup of G).
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Exercises

1.3.1 Let p : G — Sym(Q) be a representation of the group G on the set
Q). Show that this defines an action of G on £ by setting o® := a?®
for all @ € Q and z € G, and that p is the representation which
corresponds to this action.

1.3.2 Explain why we do not usually get an action of a group G on itself
by defining a® := za. Show, however, that a® := z !a does give
an action of G on itself (called the left regular representation of G.
Similarly, show how to define an action of a group on the set of left
cosets aH (a € G) of a subgroup H.

1.3.3 Show that the kernel of ppy in Example 1.3.4 is equal to the largest
normal subgroup of G contained in the subgroup H.

1.3.4 Use the previous exercise to prove that if G is a group with a subgroup
H of finite index n, then G has a normal subgroup K contained in
H whose index in G is finite and divides n!. In particular, if H has
index 2 then H is normal in G.

1.3.5 Let G be a finite group, and let p be the smallest prime which divides
the order of G. If G has a subgroup H of index p, show that H must
be normal in G. In particular, in a finite p-group (that is, a group of
order p* for some prime p) any subgroup of index p is normal. [Hint:
Use the previous exercise.)

1.3.6 (Number theory application) Let p be a prime congruent to 1( mod 4),
and consider the set

Q= {(5,9,2) € N | 2 + 4yz = p}.
Show that the mapping
(z+ 22,2,y —z—2) fe<y-—=z
(z,y,2) = Qu-—z,y,z—y+2) fy—2<z<2y
(x—2y,x —y+2y) ifz>2

is a permutation of order 2 on Q with exactly one fixed point. Con-
clude that the permutation (z,y, z) + (z,z,y) must also have at
least one fixed point, and so 22 + 4y? = p for some z,y € N.

1.4 Orbits and Stabilizers

When a group G acts on a set 2, a typical point « is moved by elements
of G to various other points. The set of these images is called the orbit of
a under G, and we denote it by

o :={o® |z € G}.
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A kind of dual role is played by the set of elements in G which fix a specified
point «. This is called the stabilizer of « in G and is denoted

Gy :={z e G| ” =a}.

The important properties of these objects are summarized in the following
theorem.

Theorem 1.4A. Suppose that G is a group acting on a set Q and that
z,y € Ganda,B € Q. Then:
(i) Two orbits o and BC are either equal (as sets) or disjoint, so the set

of all orbits is a partition of 0 into mutually disjoint subsets.

(ii) The stabilizer G, is a subgroup of G and Gg = x G,z whenever
8 = o®. Moreover, o = oY < Gaz = Guy.

(iii) (The orbit-stabilizer property) |a%| = |G : Gq| for all @ € Q. In
particular, if G is finite then |a®| |Go| = |G|.

PROOF. If § € a® then § = a* for some u € G. Since uz runs over
the elements of G as x runs over G, 6¢ = {6 | z € G} = {a*® | z €
G} = af. Hence, if o and B¢ have any element § in common, then
af = 6% = B%. Since every element a € ( lies in at least one orbit
(namely, o), this proves (i).

Clearly 1 € G4, and whenever z,y € G, then zy~! € G,. Thus G, is
a subgroup. If 8 = o” then we also have:

yeGg <= o =0o" = zyz~! € G,

and so £ 1G,z = G 3. Finally,
=¥ = oW =aq = 2yt € Gy = Goz = Gay
and so (ii) is proved. Now (iii) follows immediately since (ii) shows that the

distinct points in a“ are in bijective correspondence with the right cosets
of G, in G, and for finite groups |G : Go| = |G|/ |Gal. 0

A group G acting on a set  is said to be transitive on  if it has only
one orbit, and so a® = Q for all o € Q. Equivalently, G is transitive if
for every pair of points a, 3 €  there exists £ € G such that o® = .
A group which is not transitive is called intransitive. A group G acting
transitively on a set § is said to act regularly if G, = 1 for each oo € Q
(equivalently, only the identity fixes any point). The previous theorem then
has the following immediate corollary.

Corollary 1.4A. Suppose that G is transitive in its action on the set 2.
Then:
(i) The stabilizers Go (a € Q) form a single conjugacy class of subgroups
of G.
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(il) The index |G : Go| = |Q] for each o
(ili) If G is finite then the action of G is reqular <= |G| = |€)].

ExAMPLE 1.4.1. We illustrate these concepts by calculating the order of
the group G of symmetries of the cube (Sect.1.1). Consider the action of
G on the set € of vertices labelled as in Fig. 1.1. If  denotes the rotation
of the cube through an angle of 90° around an axis through the midpoints
of the front and back faces, then the corresponding permutation Z induced
on 2 is (1342)(5786). A similar rotation y through a vertical axis induces
the permutation § = (1265)(3487). Thus the orbits of the subgroup (z)
are 14®) = {1,3,4,2) and 5 = {5,7, 8,6} and, similarly, (y) has orbits
{1,2,6,5} and {3, 4,8, 7}. Since G > (z,y), the group G itself has a single
orbit and so is transitive on (). The orbit-stabilizer property now shows
that |G : G| = |©2| = 8.

Next consider the action of the subgroup G1. Any symmetry of the cube
which fixes vertex 1 must also fix the opposite vertex 8, and map the vertices
2, 3 and 5 amongst themselves. The rotation z of 120° about the axis
through vertices 1 and 8 induces the permutation Z = (1)(253)(467)(8) =
(253)(467) on £ and lies in G1, so {2,5,3} is an orbit for G;. Thus the
stabilizer G12 of 2 in Gy satisfies |Gy : G12| = 3 by the orbit-stabilizer
property.

Finally, consider the stabilizer of two points G15. Each symmetry which
fixes vertices 1 and 2 must also fix vertices 7 and 8, and so G5 has a single
nontrivial element, namely a reflection w in the plane through vertices 1,
2, 7 and 8 which induces the permutation @ = (35)(46). Thus we conclude
that

|G| = |G : G1||G1 : G12| |G12| = 8-3 -2 = 48.

EXAMPLE 1.4.2. Let G be a group and consider the conjugation action
of G on itself defined in Example 1.3.5. The orbits in this action are the
conjugacy classes where two elements a,b € G lie in the same conjugacy
class <= 1z laz = b for some z € G. The stabilizer of an element @ € G
is equal to the centralizer Cz(a) = {z € G | ax = za}. The orbit-stabilizer
property shows that the size of the conjugacy class containing a is equal to
|G : Cg(a)|. In particular, if G is finite then every conjugacy class has size
dividing |G|.

Exercises

1.4.1 Let G be a group acting transitively on a set 2, H be a subgroup
of G and G, be a point stabilizer of G. Show that G = G, H
G = HG, <= H is transitive. In particular, the only transitive
subgroup of G containing G, is G itself. (This fact is frequently
useful.)
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1.4.2

1.4.3

1.4.4

1.4.5

1.4.6

1.4.7

1. The Basic Ideas

Show that the action of the group of symmetries of the cube on the
set of six faces of the cube is transitive, and deduce that the group
of symmetries has a subgroup of index 6.

Let H = G be the group of symmetries of the cube which fix vertex
1. What are the orbits of H on the set of 12 edges of the cube?
Calculate the order of the symmetry group of the regular dodecahe-
dron.

Let K be a group. Show that we can define an action of the direct
product K x K on the set K by: at*¥) := g~ lay for all a € K
and (z,y) € K x K. Show that this action is transitive and find the
stabilizer K. When is the action faithful?

Suppose that G is a group acting on the set Q and H is a subgroup of
G, and let A be an orbit for H. Show that A is an orbit for z 1 Hz
for each x € G. If G is transitive on 2 and H < G, show that every
orbit of H has the form A” for some z € G.

Let G be a group acting on a set €2 and let p be a prime. Suppose
that for each a € Q there is a p-element z € G such that « is the
only point fixed by z. If € is finite, show that G is transitive on ;
and if Q is infinite, show that G has no finite orbit on €. Find an
example of a group G with an intransitive action on a set §2 such that
for each a € Q there is an element € G of order 6 which has « as
its unique fixed point. [Hint: Take G = S5 x S3.]

Exercises

The following exercises illustrate how permutation actions can be used to

prove

some well-known theorems in the theory of abstract groups. Even if

you already know the results, you may find the techniques of interest.

1.4.8

If G is a finite p-group and G # 1, then its centre Z(G) # 1.
[Hint: Use Example 1.4.2 and note that the size of each nontrivial
conjugacy class is a multiple of p.]

1.4.9 Generalize Exercise 1.4.8 to show that if G is a finite p-group and

1+# H<G,then HN Z(G) # 1.

1.4.10 If G is a finite p-group and H is a proper subgroup, show that the

1.4.11

normalizer Ng(H) of H in G properly contains H. In particular,
every maximal subgroup of G is normal in G and has index p. [Hint:
Use Exercise 1.4.8.]

Let p be a prime, and let G be a finite group of order p*m where
p | m. Show that G has a subgroup of order p* (a Sylow p-subgroup).
[Hint: Consider the action by right multiplication of G on the set Q2
of all subsets of G of p* elements. Show that p does not divide | €2 |,
and so some orbit has length > 1 and not divisible by p. If T lies
in this orbit, then the stabilizer Gr < G and has order divisible by
p*, so we can apply induction.]

1.4.12 Let G be a finite group with a Sylow p-subgroup P. If @ is any

p-subgroup of G, show that for some z € G we have Q < z~!Pz.



1.4.13

1.4.14

1.4.15

1.4.16

1.4.17

1.4.18
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In particular, any two Sylow p-subgroups of G are conjugate in G.
[Hint: Consider the action of G on the set of right cosets of P in
G (Example 1.3.4). Since p does not divide |G : P|, @ must have
some orbit of length not divisible by p, and so ¢ has an orbit of
length 1. Thus for some z € G, PzQ = Pz.]

The number of Sylow p-subgroups of a finite group G is congruent
to 1 modulo p. [Hint: Let Q be the set of all Sylow p-subgroups, and
let P be one of these. Then P acts on {2 by conjugation, and its
nontrivial orbits have lengths which are multiples of p because P is
a p-group. Show that the only orbit of length 1 is {P}.]

(The “Frattini argument”) Let G be a group with a finite normal
subgroup K and let P be a Sylow p-subgroup of K. Show that
KNg(P) = G. [Hint: G acts by conjugation on the set of Sylow
p-subgroups of K, and K is transitive in this action (Why?).]

Let G be a finite group and K < G. If there is no proper subgroup
H of G such that G = KH, then show that K is nilpotent. [Hint:
Recall that a finite group is nilpotent when it is a direct product of
Sylow subgroups. Use the previous exercise.|

Let € be the set of all n x n matrices over a field F and let G =
GL,(F)x GL,(F) where GL,(F) is the group of all n x n invertible
matrices over F.

(i) Show that there is an action of G on Q defined by a(®¥) :=
zTay (a,zTay € Q and (z,y) € G) where T denotes the
transpose of x.

(ii) Show that G has exactly n + 1 orbits on §2 and describe these.

(iii) For a suitably chosen point a from each orbit, describe G,.
[Hint: This exercise is related to well known facts in elementary
linear algebra.]
If G is a transitive permutation group of degree p*m (p prime), and
P is a Sylow p-subgroup of G, then each orbit of P has length at
least p*.
Let G be a permutation group of degree n, and suppose that each
z # 1 in G has at most k cycles. If n > k2, show that G acts
faithfully on each of its orbits, and that these orbits all have prime
lengths. Hence show that G is either cyclic of prime order or non-
abelian of order pg for distinct primes p and q. [Hin¢: Show that
p? > n for each prime p dividing |G| .]

1.5 Blocks and Primitivity

Consider again the symmetry group G of the cube (Fig. 1.1) acting on the
set of eight vertices. Since each symmetry preserves distances, the pairs

{1,8},

{2,7}, {3,6}, and {4,5} which correspond to the long diagonals

must be permuted amongst themselves by the elements of GG; in other words,
G acts on the set ¥ of these four pairs. For example, if x is the rotation
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through 90° around the axis through the centres of the faces at the front
and the back of the cube, then {1, 8}* = {3,6}, {2, 7}* = {1,8}, {3,6}" =
{4,5} and {4, 5}* = {2, 7}. Since reflection in the centre of the cube leaves
each of these pairs fixed, the action of G on X is not faithful.

Ezercise

1.5.1 Show that the image of the corresponding representation of G is the
full symmetric group Sjy.

The phenomenon described above for the symmetries of the cube plays
an important role in analysis of group actions and permutation groups. We
shall formalize this idea below. In what follows we shall extend the action
of G on Q to subsets of Q by defining I'* := {y* | vy € T'} for each T C Q.

Let G be a group acting transitively on a set (2. A nonempty subset A of
Q is called a block for G if for each z € G either AT = A or AN A = 0.

ExAMPLE 1.5.1. Every group acting transitively on Q has 2 and the sin-
gletons {a} (@ € Q) as blocks; these are called the trivial blocks. Any other
block is called nontrivial. A block which is minimal in the set of all blocks
of size > 1 is called a minimal block.

ExaMPLE 1.5.2. In the example at the beginning of this section, the group
of symmetries of the cube acting on the set of vertices has the blocks
{1,8},{2,7},{3,6} and {4,5} which are clearly minimal blocks. The sets
{1,4,6,7} and {2, 3, 5, 8} are also (non-minimal) blocks. Can you find other
nontrivial blocks?

ExaMpPLE 1.5.3. If G acts transitively on Q, and A and T" are blocks for
G containing a common point, then A N I is also a block for G. More,
generally, any intersection of blocks containing a common point is again a
block.

FExercise

1.5.2 Show that the cyclic group ((123456)) acting on {1, 2, 3,4, 5,6} has
exactly five nontrivial blocks.

The importance of blocks arises from the following observation. Suppose
that G acts transitively on Q and that A is a block for G. Put ¥ := {A? |
x € G}. Then the sets in ¥ form a partition of 2 and each element of ¥ is
a block for G (see Exercise 1.5.3); we call X the system of blocks containing
A. Now G acts on X in an obvious way, and this new action may give useful
information about G provided A is not a trivial block.

Let G be a group which acts transitively on a set 2. We say that the
group is primitive if G has no nontrivial blocks on 2; otherwise G is called
imprimitive. Note that we only use the terms “primitive” and “imprimitive”
with reference to a transitive group.
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FEzercises

1.5.3 Show that the system of blocks ¥ defined above forms a partition of
Q and that each of its elements is a block for G. Describe the action
of G on ¥ in the cases where A is a trivial block.

1.5.4 If G is a group acting on a set  then a G-congruence on €} is an
equivalence relation ~ on (2 with the property that

ar~fB <= o~ forallzecdG.

Show that if G acts transitively on 2 and = is a G-congruence, then
the equivalence classes of ~ form a system of blocks for G. Conversely,
if 3 is a system of blocks for GG, then the elements of ¥ are the equiv-
alence classes for a G-congruence on {2. What are the G-congruences
which correspond to the trivial blocks?

1.5.5 (Separation property) Suppose that G is a group acting transitively
on a set ) with at least two points, and that A is a nonempty subset
of 2. Show that A is not a block < for each pair of distinct points
a, B € Q there exists £ € G such that exactly one of « and S lies
in A%, In the case that G is finite, show that the condition can be
strengthened to: o € A” but 8 ¢ A” for some z € G.

To describe the relation between blocks and subgroups we shall require
the following notation which extends the notation for a point-stabilizer.
Suppose G is a group acting on a set Q, and A C Q. Then the pointwise
stabilizer of A in G is

Giay={r€G |6 =6 foralld € A}
and the setwise stabilizer of A in G is
G{A} = {l‘ e i A% = A}

It is readily seen that Gya} and G(a) are both subgroups of G and that
G(a)<4Gay- Note that G,y = G(o) = G, for each a € 2. More generally,
for a finite set A = {a1,..., ar} we shall often write G,, ... «, in place of
G (ay- (You should be warned that many authors use different notations for
these subgroups.)

Fzxercises

1.5.6 If G acts transitively on 2, and A is a block for G, show that G}
acts transitively on A.

1.5.7 Let G < Sym(2) be a transitive group and let T and A be finite
subsets of (2. Suppose that G(r) and Ga) act primitively on Q \ T’
and Q\ A, respectively, and G = (G(r), G(a)). Show that the group
G is primitive.

Theorem 1.5A. Let G be a group which acts transitively on a set Q, and
let o € Q. Let B be the set of all blocks A for G with a € A, and let
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S denote the set of all subgroups H of G with G, < H. Then there is a
bijection ¥ of B onto S given by ¥(A) := Ga} whose inverse mapping o
is given by ®(H) := . The mapping ¥ is order-preserving in the sense
that if A\T € Bthen A CT <= ¥(A) < ¥(T).

Remark. Briefly: the partially ordered set (B, C) is order-isomorphic with
the partially ordered set (S, <).

PrROOF. We first show that ¥ maps B into S. Let A € B. Then z € G,
implies that o € AN A”, and so A = A because A is a block. This shows
that each z € G, lies in G{a}. Hence Ga} 2 G, for all A € B and so ¥
maps B into S.

We next show that ® maps S into 5. Let H be a subgroup of G with
Go < H.Put A := of, and let £ € G. Clearly A* = Aif z € H,
and we claim that A® N A = () otherwise. Indeed if A” N A # {}, then
there exist u,v € H such that a® = . Then uav™! € G, and so
z € u'Guv C H. Thus A*N A = () whenever ¢ H, and so A is a block
which contains «, and therefore lies in B. Thus ® maps S into B. Moreover,
since A is an orbit for Gy, (see Exercise 1.5.6), the composite mapping of
U followed by @ is the identity on 5.

To prove that ® and ¥ are inverses it remains to show that the composite
of ® followed by ¥ is the identity on S. Let H € S, and put A := ®(H) =
off . The previous paragraph shows that if z € G, then A = A <= =z €
H. Thus H = Gy as required. This completes the proof that ® is the
inverse of .

The statement that ¥ is order-preserving now follows at once. Indeed
Gia} < Gry implies that the orbits of o under these groups (namely, A
and I') satisfy A C I'. Conversely, if A C T', then 2 € G} implies that
I'* NT # 0 and hence z € Gyr} because I' is a block. Thus A C T implies
that G{a} < Gyry. This shows that W is order-preserving, and the theorem
is proved. O

This theorem leads immediately to the following important result.

Corollary 1.5A. Let G be a group acting transitively on a set Q with at
least two points. Then G is primitive <= each point stabilizer G, is a
mazimal subgroup of G.

Since the point stabilizers of a transitive group are all conjugate (see
Corollary 1.4A), one of the point stabilizers is maximal only when all of the
point stabilizers are maximal. In particular, a regular permutation group
is primitive if and only if it has prime degree.
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FExercises

1.5.8 Find all blocks containing 1 for the group
G = ((123456), (26)(35)) < Ss.

Identify the corresponding subgroups of G containing Gj.
1.5.9 If A is a block for a group G and o € A, show that A is a union of
orbits for G,. (This is often useful in looking for blocks.)

1.5.10 Let A be a nontrivial block for a group G acting on (2. If Gy} acts
imprimitively on A (see Exercise 1.5.6), and has a block T', show
that T is also a block for G. In particular, A is a minimal block (see
Example 1.5.1) for G <= Gy is primitive on A.

1.5.11 Let z € Sym(Z) be the translation defined by i* := ¢ + 1 for all
1 € Z, the integers. Show that the blocks for (z) containing 0 are
precisely the sets of the form kZ where k € Z. In particular, (z) has
no minimal blocks.

1.5.12 Suppose that G is a group acting on a set {} with the property that
for any two ordered pairs («, ) and (v, ) with @ # B and v # 6
there exists z € G such that o® = vy and % = 6 (such a group is
called 2-transitive). Show that G is primitive.

1.5.13 Let F be a field and let G < Sym(F) consist of all permutations
of the form £ — af + 8 with o, 8 € F and a # 0. Show that G
is 2-transitive on F. (We shall give more examples of 2-transitive
groups in the next chapter and look at them in detail in Chap. 7.)

1.5.14 Let G < S,,. If G has r orbits, show that G can be generated by a
set of at most n —r elements. In particular, every permutation group
of degree n can be generated by a set of at most n — 1 elements.
Give examples of permutation groups of degree 2m which cannot be
generated by fewer than m elements (m = 1,2,...).

ExXAMPLE 1.5.4. Let 7 be the infinite trivalent tree. By this we mean that
7 is a graph with a countably infinite set of vertices, each vertex is joined
by an edge to exactly three other vertices, and the graph has no cycles. (If
you are unfamiliar with graphs, you might like to look in Chap. 2 for the
appropriate definitions.)

If you start at any vertex of 7 then the tree grows out along three edges
each of which splits into two and so on. A fragment of the tree is displayed
in Fig. 1.2. Any two trees constructed in this way will be isomorphic.

Let A denote the set of all permutations of the vertex set  of 7 which
preserve the structure of the tree in the sense that if z € Sym(f2), then
x € A <= two vertices o, 8 are joined by an edge in 7 if and only if o®
and (% are joined by an edge; A is called the automorphism group of 7.
Since the graph looks the same from each vertex, A acts transitively on 2.
This action is not primitive because €2 can be partitioned into two nontrivial
blocks A and A’ (see Exercise 1.5.15). However, these are minimal blocks
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FIGURE 1.2. A fragment of the trivalent tree.

for A, and so G := Aa; acts primitively on A. (See Exercises 1.5.16 and
1.5.17 for further details.)

Exercises

1.5.15 Define the distance d(«, ) between two vertices in the trivalent tree
7T to be the number of edges in the shortest path from « to 3. Show
that:

(i) ifd(a, B) = d(o/, ') then there exists € A such that o* = o’
and 3% =
(ii) the vertex set 2 can be partitioned into two subsets A and A’
such that the distance between any pair of vertices in the same
subset is even;
(iii) the sets A and A’ are blocks for A.

1.5.16 Using the notation of the previous exercise show that A and A’
are the only nontrivial blocks for A, and hence that G := Ajay
acts primitively on A by Exercise 1.5.10. [Hint: For any pair of
distinct vertices (a, B) there exists € A such that o = o and
d(B, B*) = 2, thus every nontrivial block contains a pair of points
with distance 2.]

1.5.17 With the notation of the previous exercise show that if & € A then
the orbits of G, on A are finite with lengths 1,6, 24, .. ..

1.5.18 Let F be a field, let {2 be the set of all nonzero vectors in the vector
space F3, and let G = GL3(F) be the group of all invertible 3 x 3
matrices over F. Consider the action of G on by right (matrix)
multiplication: u* := uz (u € Q,z € G). Show that:

(i) the action is transitive and faithful;
(i) the set A consisting of those vectors in © whose first two entries
are 0 is a block; and
(iii) G{ay has exactly two orbits on the system of blocks containing

(This example will be generalized in Sect. 2.8.)
1.5.19 Suppose that the group G acts transitively on Q and that I' and
A are finite subsets of Q with |I'] < |A|. If Gy and G(a) act



1.6. Permutation Representations and Normal Subgroups 17

transitively on @\ T" and Q \ A, respectively, show that I'® C A for
some x € G. Does the result remain true if I' and A are infinite?

1.5.20 Let G be a solvable transitive subgroup of S,,, and suppose that n
can be written as a product of d prime factors. Then G contains
a transitive subgroup with at most d generators. [Hint: If G is im-
primitive, then G > H > G, for some subgroup H. By induction
there exist subgroups L1, Ly with d; and d; := d — d; generators,
respectively, such that G = HL; and H = G4L2. Now {Lq, Lo)
requires at most d generators.]

1.5.21 Use the preceding exercise to show that every transitive permutation
group of prime power degree p* contains a k-generator transitive
p-subgroup.

1.5.22 Let G < Sym() be a finite primitive group and suppose that G,
has a nontrivial orbit of length d. Show that each subgroup H with
1 < H < G, also has a nontrivial orbit of length < d.

1.6 Permutation Representations and Normal
Subgroups

Let G be a group acting on a set Q. A subset I" of Q is invariant (or more
specifically G-invariant) if T'* = T for all x € G. Clearly T is G-invariant
<= T is a union of orbits of G. In the case that I" is G-invariant we can
consider the restriction of the action of G to I' and obtain an action of G on
I'. We use the notation x — z!' to denote the representation corresponding
to this action on T (so zT € Sym(T') is the permutation of I" associated with
the group element z), and write GT := {z' | z € G}. The representation
x — z' is a homomorphism of G onto G' with kernel G(r, and so by the
“first isomorphism theorem” we have G/G ) = G'.

The first theorem of this section describes the relation between the orbits
of a group and the orbits of a normal subgroup. To state the result we need
one further definition. Two permutation groups, say G < Sym(Q) and
H < Sym(Y) are called permutation isomorphic if there exists a bijection
A:Q — Q and a group isomorphism v : G — H such that

Mea®) = Ma)¥@® foralla € Qand z € G.

Essentially, this means that the groups are “the same” except for the
labelling of the points.

EXAMPLE 1.6.1. Suppose that G is a group acting imprimitively on a set
Q, that H is a normal subgroup of G and that X is a system of blocks
for G. If A, A’ € %, then H® < Sym(A) and HA < Sym(A') are per-
mutation isomorphic. Indeed, since 3 is a system of blocks we know that
A’ = A° for some ¢ € G, and then we can define a bijection A of A
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onto A’ by A(6) := §°. Now we claim that we can define an isomorphism
Y HA — HA by (z?) := (¢ 'zc)? . First, ¥ is well-defined and injec-
tive since for all z,y € H we have z° = y® <= ay ! € Hpy
cHay e € Hay < (clze)® = (clyc)® because A’ = A°.
Second, 9 is surjective since ¢c"'Hc = H. Finally, since ¥(z2y?®) =
D((@y)t) = (cHay)o? = (cT'z)? (YA = P(@P)P(y?) for all
z,y € H, we conclude that v is an isomorphism as claimed. It is now easy
to verify that A and v define the required permutation isomorphism.

FExercises

1.6.1 If G and H are both subgroups of Sym({), show that they are
permutation isomorphic if and only if they are conjugate in Sym(Q).

1.6.2 In Example 1.6.1, show that it is possible that the kernels of the
actions of H on A and on A’ are different.

The theorem is stated for the case of a transitive group G, but if G is
not transitive then the result can be applied to the restriction of the action
of G to each of the orbits of G.

Theorem 1.6A. Let G be a group acting transitively on a set ), and
H <« G. Then:
(i) the orbits of H form a system of blocks for G;
(ii) if A and A’ are two H-orbits then H® and H®' are permutation
isomorphic;
(iii) if any point in Q is fized by all elements of H, then H lies in the
kernel of the action on €);
(iv) the group H has at most |G : H| orbits, and if the index |G : H| is
finite then the number of orbits of H divides |G : H|;
(v) if G acts primitively on Q then either H is transitive or H lies in the
kernel of the action.

PRrROOF. (i) Let A be an orbit for H, and put
L= {A% |z € G}.

Since H is normal, each A” is an orbit for H (by Exercise 1.4.6), and
because G is transitive the union of these orbits is the whole of (2. Thus
every orbit of H appears in ¥, and ¥ is a system of blocks for G.

(i) This follows from (i) and Example 1.6.1.

(iii) If H fixes a point, then it has an orbit of length 1 and so by (i) all
of its orbits have length 1; hence H lies in the kernel of the action.

(iv) This follows at once from (i) since all blocks in a system of blocks
have the same size.

(v) This also follows at once from (i) since primitivity implies that the
blocks must be trivial. |
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In reference to (iii) just mentioned, it is useful to introduce the following
notation. Suppose that the group G acts on a set 2 and let T be a subset
of G. Then we define the support and set of fized points of T' by

supp(T) = {a € Q| &® # a for at least one z € T'}

and
fix(T) :={a € Q|a®=a forallzeT}.

In cases where there may be ambiguity we use suppg(T) and fixq(T) to
emphasize the set involved. Note that Q is the disjoint union of these two
sets. The most important cases are when T is a singleton (and we write
supp(z) and fix(z) in place of supp(7") and fix(T)), and when T is a sub-
group of G. When I C , it is often convenient to identify Sym(I") with
the subgroup of Sym(2) consisting of all z € Sym(?) with supp(z) C T.

FExercises

1.6.3 If G acts transitively on 2 and « € Q, show that |[Ng(G,) : G4 =
(G

1.6.4 Suppose that G is a transitive subgroup of S,, and that H < G has
k conjugates in G. If GCD(k,n) = 1, show that Ng(H) is transitive
and that hence all orbits of H have the same length. [Hint: If A and
B are subgroups of relatively prime index in a finite group C, then
C = AB = BA]

1.6.5 Let G be a transitive subgroup of Sym(Q) and let a € Q. Show that
fix(G,) is a block for G. In particular, if G is primitive, then either
fix(G,) = {a} or else G, = 1 and G has finite prime degree.

1.6.6 Let F'Sym(f2) be the set of elements in Sym(§2) which have finite sup-
port. Show that F'Sym(f2) is a primitive normal subgroup of Sym(§1),
and is a proper subgroup whenever  is infinite. (FSym(Q) is called
the finitary symmetric group on Q. Of course, F'Sym(Q?) = Sym(Q)
when {2 is finite).

1.6.7 Ifz,y € Sym(Q) and I' := supp(z) Nsupp(y), show that supp[z, y] C
' uT* U 'Y In particular, if |I'| = 1, show that [z,y] is a 3-cycle.
([, y] :== z7 'y lzy is the commutator of 2 and y.)

One important normal subgroup in every symmetric group is the alter-
nating subgroup Alt(Q?) (or A, if Q = {1,2,...,n}). Indeed as we shall
see later, when n # 4, the only normal subgroups of S,, are 1, 4,, and S,,.
In order to define Alt(Q2) we first have to define what we mean by odd and
even permutations.

Let x be an element of the finitary symmetric group FSym(Q) (see
Exercise 1.6.6 above). Then z has finite support, and so it has only a finite
number of nontrivial cycles of finite length and none of infinite length. Let
myq, ..., mg be the lengths of the nontrivial cycles, and define

Az) == (m1 — 1)+ ...+ (mg — 1) = |supp(z)| — &
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If A(z) is even we call  an even permutation, and if A\(z) is odd, we call
 an odd permutation. When ( is infinite only permutations with finite
support are classified in this way.

Lemma 1.6A. The mapping z — (—1)*®) is a group homomorphism
of FSym(Q) into the multiplicative group {1, —1}. It is surjective when
Q] > 2.

Proor. From the identities
(12...7)(12...8)11) = (12...71'2 ... §)
and
(12...712' ... &A1) = (12...7)(1'2" ... &)
we see that for any x € FSym(Q) and any 2-cycle (a3) we have
AMz(aB)) = AM(z) —1or A(z) + 1

depending on whether or not « and f lie in the same cycle of z. (In checking
this, note that o or 8 may possibly lie in 1-cycles of x.)

Since A(y) = 0 only when y is the identity element I, we deduce:

(i) there exist 2-cycles (a;0;) (i = 1,...,m) with m = A(z) such that
z(a1f1) ... (emPm) = I and so z can be written as a product of \(z) 2-
cycles: (@mfBm) - - . (c11) (which are usually not disjoint);

(ii) if x can be written as a product (y161) ... (7.6r) of n 2-cycles, then
Z(Ynbp) ... (m161) = I and so we have A(z) = ¢, +...+ €61 =n  (mod 2)
for some ¢; = +1.

These two observations show that every x € FSym(2) can be written as
a product of 2-cycles, and that however this is done the number of 2-cycles
required is either always odd or always even, depending on whether A(z)
is odd or even. In particular, for all z,y € FSym(Q) we have

AMzy) = Mz) + A(y) (mod 2)

and so z — (—1)*®) is a homomorphism into {1, —1} as required. This
homomorphism is surjective whenever F'Sym({2) contains a 2-cycle. g

We define Alt(Q)) to be the kernel of the homomorphism defined in
Lemma 1.6A. Thus Alt(Q) <« FSym(§) and Alt(f2) is a proper subgroup
of index 2 in F'Sym(f) except in the case where [Q2] = 1. In particular,
A, < S, for all n.

Exercises

1.6.8 Show that F.Sym(Q) can be generated by the set of all 2-cycles in
Sym(€) and that Alt(Q) can be generated by the set of all 3-cycles.
1.6.9 Show that S, is generated by the set of (n — 1) 2-cycles: (12),
(13),..., (1n). Give a similar set of (n — 2) 3-cycles which generates

ne
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1.6.10 Consider the action of S, on the set of all polynomials with integer

coefficients in the variables Xy, ..., X, given by

1 ... n
fX1, ..., X)) = f(Xv,...,Xn) whenz = <1, n’) .
Define

O(X1,...,Xn) = [ - X5).
1<j
Show that that A, is the stabilizer of the point ®.

1.6.11 Let G be a finite group of order 2!m where ¢ > 1 and m is odd.
If G contains an element of order 2¢, show that G has a normal
subgroup of order m. [Hint: First show that the image of the regular
representation of G contains a odd permutation, and hence G has a
normal subgroup of index 2.]

1.6.12 If G is a primitive subgroup of Sz, where m is odd, show that G
contains a subgroup of order 4.

In comparing actions (and representations) of a group G, we find that
some are “essentially the same” and differ only in the labelling of the points
of the sets involved. In other cases the actions are clearly different. For
example, the automorphism group A of the trivalent tree 7 (Example 1.5.4)
acts in a natural way on the set of edges of the tree as well as on the set
of vertices, but these actions are distinct since the stabilizer of a vertex
has orbits of lengths 1, 3,6, 12, ... on the vertices while the stabilizer of an
edge has orbits of lengths 1,4, 8,16, ... on the edges. On the other hand,
it is not at all clear whether the representations of a group G on the set
of left cosets and on the set of right cosets of a subgroup H (see Example
1.3.4 and Exercise 1.3.2) are really different or not.

Let p: G — Sym(Q) and o : G — Sym(T") be two permutation repre-
sentations of a group G. These representations are equivalent if 2 and T’
have the same cardinality and there is a bijection A :  — T such that

Ma”®) = Ma))°@ foralla € Qand z € G.

We say that two actions of G are equivalent when the corresponding rep-
resentations are equivalent. This definition should be compared with the
definition of permutation isomorphism given above (see Exercise 1.6.17).

In the case that €2 = T" the bijection A will be a permutation of  and
so for some ¢ € Sym(£?) we have A(a) = . Thus in this case the two
representations are equivalent if and only if for some ¢ € Sym(Q) we have
o(z) = c lp(z)cforall z € G.

When the two actions are transitive there is a simple criterion for deciding
whether or not they are equivalent.

Lemma 1.6B. Suppose that the group G acts transitively on the two sets
Q and T, and let H be a stabilizer of a point in the first action. Then the
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actions are equivalent <= H is the stabilizer of some point in the second
action.

PrOOF. Let p : G — Sym(Q2) and 0 : G — Sym(T") be the represen-
tations of G which correspond to the given actions. Then, for some point
a € Q, the subgroup H = {z € G | o*® = q}. If there is an equiv-
alence of the two representations given by a bijection A : Q — T, then
@ = o = Aa) = Aa”®) = (Ma))°@), and so H is also the
stabilizer of the point A(e) in the second action.

Conversely, suppose that H is also the stabilizer of a point § in the
second action, so z € H <= o’®) = o <— p°® = 3. We claim that
we can define a bijection A : Q — T by

Mar®) := 7@ for all ¢ € G.

To do this we first have to show that X is well-defined, namely, if a#(®) =
a”®) then the value defined for A must be the same. This is true because
af®) = V) —= gyl e H — p°® = °0, Second, X is
defined for all points in 2 because the representation p is transitive, and
similarly ) is surjective because o is transitive. Finally, A is injective because
af®) = oP¥) «— [ = 3°0); and so X is a bijection from Q onto I'.
Now for each v € € there exists a € G such that v = (@, and so for
each z € G we have

)\(79(90)) = )\(ap(M)) = golen) — (gv(a))a(w) - (,\(ap(w)))o(m) = )\(7)0(36)

which proves that the two representations are equivalent. O

Lemma 1.6B enables us — at least in theory — to describe up to equiva-
lence all transitive permutation representations of a given group G. Indeed,
if H is a subgroup of G, then Example 1.3.4 shows that the action of G on
the set I'g of right cosets of H gives a representation py of G in which the
point stabilizers are just the conjugates of H in G (z~!Hz is the stabilizer
of the point Hz € I'y). Thus Lemma 1.6A shows that every transitive
representation of G is equivalent to py for some H < G, and that py and
pK are equivalent exactly when H and K are conjugate in G. Hence the
transitive representations of G are given up to equivalence by the represen-
tations py as H runs over a set of representatives of the conjugacy classes
of subgroups of G.

ExXAMPLE 1.6.2. Let G = S3. Then a complete set of representatives
of the conjugacy classes of subgroups of G is given by: 1, ((12)), ((123))
and S3. These give transitive representations of G of degrees 6,3,2 and 1,
respectively, where the first two are faithful. This shows, for example, that
if S acts faithfully on a set of size 8 then it must have either an orbit of
size 6, or one or two orbits of size 3, and the remaining orbits are of sizes
1 or 2.
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FEzxercises

1.6.13 Show that if H is a subgroup of a group G, then the action of G on
the set of right cosets of H and the action of G on the set of left
cosets of H (see Exercise 1.3.2) are equivalent.

1.6.14 The group of symmetries of the cube acts on the set of 12 edges of
the cube and on the set of 12 diagonals in the faces of the cube. Are
these two actions equivalent?

1.6.15 Find up to equivalence all the transitive representations of Sy.

1.6.16 Let G be a group acting on a set 2, and let o € G. Suppose that K
is a transitive normal subgroup K of G and that K, = 1. Show that
the action of G, on £ and the action of G, on K by conjugation
(Example 1.3.5) are equivalent.

1.6.17 Show that Sg has two inequivalent transitive representations of
degree 6 but the images of the representations are permutation
isomorphic.

An intransitive group G < Sym(€2) may have different actions on dif-
ferent orbits and the groups induced on these orbits may be interrelated
in intricate ways. In certain situations, however, we can reconstruct G in a
simple way, from the groups G induces on its orbits on .

Recall that when A C Q we may identify Sym(A) with the sub-
group of Sym(f2) consisting of the elements whose support lies in A. If
{A1,...,An} is a partition of , and each A; is G-invariant for some
G < Sym((Q), then this identification enables us to write x = 221 - .. zA=
forallz € G. Thus G < GA1 ... GA» = GA x - .- x G?m, The following
theorem gives a useful criterion for equality to hold when m = 2.

Theorem 1.6C. Suppose that G < Sym(Q2) and that A # §,Q is a G-
invariant subset of Q. Put T := Q\ A. If G® and GT have no nontrivial
homomorphic image in common then G = G x GF.

PROOF. The homomorphism z — z® of G into Sym(A) has kernel H; :=
G(a) and image H := GA. Similarly, z — z' has kernel K| := G(r) and
image K := G'. Since H = G/H; and K = (G/K; have the common
homomorphic image G/H; K, the hypothesis implies that G = H Kj.
But then H = G = (H;K;)® = Ky and K = GF = (H,K))" = H;.
Therefore G = HK = H x K as asserted. [l

Exercises

1.6.18 Suppose that the group G acts transitively on two sets I' and A of
size n. Show that these actions are equivalent if and only if G has
an orbit of length n in its induced action on I'" x A.

1.6.19 Show that no transitive subgroup of S5 has an elementary abelian
2-group as a point stabilizer.
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1.6.20 Let A = [a(3, 7)] be an invertible n x n matrix over a field, and sup-
pose that group G has two actions p and o on the set {1,2,...,n}
such that for each z € G : a(i?®, j°(®)) = a(i, §) for all 4, j. Show
that the two actions have the same number of orbits. If G is cyclic,
show that they also have the same number of fixed points. However,
show that in general the two actions are not equivalent.

1.6.21 Show that every transitive group of degree p? (p prime) contains a
regular subgroup.

1.7 Orbits and Fixed Points

There is a simple relationship between the number of orbits of a finite group
acting on a finite set and the number of fixed points of its elements. A wide
range of applications in counting problems and combinatorics is based on
elaborations of this relationship. The theorem itself has a long history and
is often referred to (inaccurately) as the “Burnside Lemma”; the simplest
version is the following result.

Theorem 1.7A (Cauchy-Frobenius Lemma). Let G be a finite group
acting on a finite set Q. Then G has m orbits on §) where

m |G| = Y |fix(z)|
zeG

Proor. Consider the set F = {(a,z) € @ x G | &® = a}; we shall count
the number of elements of F in two ways. First, suppose that the orbits of
G are €y, ..., 8,. Then, using the orbit-stabilizer property, we have

EED S IAED DB i< e =3161=m]al.
i=1 a€); i=1 «€;
Second,
\Fl = [fix(z)l
zeG
The result follows. 0

Since |fix(z)| remains constant on each conjugacy class of G, the relation
in Theorem 1.7A can be rewritten as

k
m|G| = Z |Cil |fix ()]

where C1, Cs, ..., Ck are the conjugacy classes of G and z; is a represen-
tative of C;. This form is often simpler in calculations.
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FExercises

1.7.1 If G is a transitive subgroup of S,, show that

> |fix(z)| = |G| and Y |fix(2)[* =r|G]

z€G zE€EG

when the point stabilizers of G have r orbits.

1.7.2 If G is a transitive subgroup of S,, show that G has at least n — 1
elements each of which fixes no point. Conclude that if G is any finite
group, and H is a subgroup of index n in G, then G has at least n — 1
elements which are not conjugate to elements in H.

1.7.3 Give an example of a transitive permutation group of infinite degree
in which every element has infinitely many fixed points.

1.7.4 Show that the average number of k-cycles for an element in S,, is
equal to 1/k.

1.7.5 Suppose that G is a finite group with k& conjugacy classes. Show that
the number of ordered pairs (z,y) of elements from G such that
zy = yz is equal to k |G|. [Hint: Let G act on itself by conjugation.]

1.7.6 Let C denote a conjugacy class on a finite group G. If G acts transi-
tively on Q, show that fix(z)||C| = |Ga NC| Q| foralla € Q, z €
C.

A common instance of Theorem 1.7A arises when {2 is a set of functions
and the group acts on one or both of the underlying sets. Let I' and A be
two finite nonempty sets, and let 2 := Fun(A, I') be the set of all functions
of A into I'. We may think of the elements of I as colours and each function
¢ in Fun{A, T') as a colouring of the points of A; specifically, ¢ colours the
point & with colour ¢(a).

For example, consider the case where A is the set of six faces of a cube and
I’ = {red, white, blue}. Then Fun(A, I") represents the set of all colourings
of the faces of the cube by the three colours. Two such colourings may be
considered indistinguishable if the cube with one of these colourings can
be mapped into the cube with the other colouring via a rotation of the
cube; this is equivalent to saying that the two colourings lie in the same
orbit of Fun(A,T') under the action of the group of rotations on A. In
general, whenever a group G acts on the set A, then G has a corresponding
action on Fun(A,T) with ¢ defined by ¢%(a) := ¢(a® ') for all ¢ €
Fun(A,T'), z € G and o € A. We shall see this action again in Sect. 2.6
when we discuss wreath products.

FExercise

1.7.7 Show that the definition of ¢ just given does define an action of G
on Fun(A, T') and explain why z~! rather than z must be introduced
on the right hand side.

The proof of the following result is left as an exercise (Exercise 1.7.8).
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Corollary 1.7A. Let A andT be finite nonempty sets and let G be a finite
group acting on A. For each x € G, let ¢(x) denote the number of cycles
(including cycles of length 1) which x has in its action on A. Then the
number of orbits of G acting on Fun(A,T') is

5 .

z€G

ExaMpLE 1.7.1. (Counting Unlabeled Graphs.) How many graphs are
there with n vertices and a single edge? If the vertices are distinguish-
able, or labeled, there are (g) choices for the position of the edge giving
(Z) distinct graphs. If, on the other hand, the vertices are indistinguishable
or unlabeled then there is only one such graph, an edge and n — 2 iso-
lated vertices. This distinction between labeled and unlabeled graphs has
a dramatic impact on the complexity of counting the graphs on n vertices.

A graph on a set A of n vertices is completely determined by its set X of

edges where an edge is a subset of size 2 from A. Since A has (7) subsets

of size 2, there are 2(3) possible choices for ¥; this gives the number of
labeled graphs on n vertices. The corresponding problem of counting the
unlabeled graphs on n vertices is more subtle.

Let A2} denote the set of all subsets of size 2 from A and let T' := {0, 1}.
Then the set of labeled graphs on the vertex set A may be identified with
the set Fun(A{? T') where ¢ € Fun(Af?} T') corresponds to the graph
whose set of edges consists of the elements of A2} which ¢ maps onto
1. The symmetric group G := Sym(A) acts on A2} in a natural way
and hence acts on Fun(A{2} T) as described above. Two graphs on A
are indistinguishable as unlabeled graphs precisely when the corresponding
functions lie in the same orbit of G. Thus, if we take A = {1,2,...,n}, then
Corollary 1.7A shows that the number of unlabeled graphs on n vertices is
precisely

ll 3 @

n.
zeSym(A)

where ¢(z) is the number of cycles of z acting on A2},

FEzxercises

1.7.8 Prove Corollary 1.7A.

1.7.9 State and prove the corresponding theorem when, as well as the
group GG acting on A, we have a group H acting on the set I' making
some sets of colours indistinguishable. (For example, in cases where
we are only interested in using the mapping ¢ to partition A, but do
not wish to label the partitions, H will be the full symmetric group
Sym(T)).
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1.7.10

1.7.11

1.7.12

1.7.13

1.7.14

Show that k(k? + 1)(k% + 4)/10 indistinguishable circular necklaces
can be made from five beads if beads of k different colours are avail-
able. Assume that two necklaces are indistinguishable if one can
be obtained from the other using a cyclic permutation or a flip.
Generalize to the case of necklaces with n beads.
Declare two colourings of a cube to be indistinguishable if one can
be obtained from the other by a rotation of the cube. How may
indistinguishable ways are there to colour a cube in k colours? What
is the answer to the corresponding problem if we permit arbitrary
symmetries (including reflections) of the cube?
Let G be a finite group acting on a finite nonempty set €, and
suppose that G has m orbits: Q1,Qs, ..., Q,,. The following algo-
rithm can be used to select a random element « from  in such
a way that the probability that o lies in ; is 1/m (independent
of the orbit). For example, it can be used to choose an unlabeled
graph uniformly at random from the set of all unlabeled graphs on
n vertices.
Step 0: For each conjugacy class C of G, pick an element xo, and
compute

. [Cllfix(zc)|

p(C) = e Te
Since Y p(C) = 1 by Theorem 1.7A, this gives a probability
distribution defined on the set of conjugacy classes of G.
Clearly p(C) is independent of the choice of z¢, and p(C) =
0 if elements of C have no fixed points.

Step 1: Choose a conjugacy class C according to the probability
distribution given by Step 0.

Step 2: Choose o uniformly at random from fix(z¢).

Show that, for each orbit 2; of G, the probability that o lies in

2; is equal to 1/m.

Let G be a finite group acting on a set Q2 of size n, andlet f : G — C

be a class function (that is, f(z) = f(y) whenever z and y lie in the

same conjugacy class of G). Show that for each a € £ we have:

S @ lix@) =n 3 f@).

zeG ye€Ga

(Since [fix(z)| and the constant functions are class functions this
exercise generalizes Exercise 1.7.1.)

Let G be a finite transitive group of order g and degree n. Suppose
the point stabilizers of G have r orbits. Show that the number of
elements of G which fix at least one point lies between g/r and
(n—-r)g/(n—1)+1.
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1.8 Some Examples from the Early History of
Permutation Groups

The original development of groups began with the study of permutation
groups, and even before that permutations had arisen in work of Lagrange
in 1770 on the algebraic solution of polynomial equations. By the middle
of the 19th century there was a well-developed theory of groups of per-
mutations due in a large part to Camille Jordan and his book “Traité
des Substitutions et des Equations Algébriques”(1870) which in turn was
based on the papers left by Evariste Galois in 1832. Again, the primary
motivation of Jordan was what is now called “Galois theory”.

The classical problem in the algebraic study of polynomial equations
was to determine the roots of a polynomial in terms of an algebraic for-
mula involving the coefficients. Early mathematicians sought a formula or
algorithm which constructed these roots explicitly using rational opera-
tions (addition, subtraction, multiplication and division) and extraction of
kth roots. The paradigm for this “solution by radicals” was the familiar
formula for quadratic equations which had been known to the Babyloni-
ans, and by the end of the 16th century similar formulae had been derived
for cubic and quartic equations. Joseph Louis Lagrange in his 1770 paper
also showed how particular polynomials of higher degree had solutions by
radicals, but the question of whether all polynomials of the 5th degree had
solutions of this form remained open until the beginning of the 19th cen-
tury. At that point it was shown by Paolo Ruffini in 1802 and Niels Abel in
1826 that no such general solution could be found. The final achievement of
this period was due to Galois who associated a permutation group to each
polynomial and showed that the structure of the group indicated whether
or not the polynomial could be solved by radicals.

Galois’ results were based on Lagrange’s 1770 paper. In that paper La-
grange had made a thorough analysis of the known algorithms for solving
polynomials of degree up to 4, and showed how they relied in various ways
on finding “resolvent” polynomials. These latter polynomials can be con-
structed effectively from the original polynomials and have the property
that the roots of the original polynomials can be determined from the
roots of the resolvent. To be useful, the resolvent must either be easy to
solve itself, or be amenable to further reduction. In the case of cubic and
quartic polynomials the resolvents are of degrees 2 and 3, respectively, but
Lagrange noted that, for polynomials of degree greater than 4, the degrees
of the resolvents are larger than the degrees of the original polynomials.
The process of constructing resolvents described below is essentially the
method using permutations which Lagrange introduced.

Consider a set of n variables {X, ..., X, }. The symmetric group S,
acts on this set by permuting the subscripts, and we can extend this action
of S, to an action on the set of polynomials in the variables in a natural
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way. For example, if z = (12)(34) € S4 and & = X, X3 — X3Xy, then
®? = XX, — X1 X3 = —®. The orbit of ® under the full symmetric group
S4 consists of the six polynomials:

(X1 X5 — X2X4), (X1 X2 — X3X4), (X1X4 — X2X3).

Lagrange referred to these six polynomials as the values of ®. The orbit-
stabilizer property tells us that the stabilizer of ® in S4 has order 4.

FEzxercises

1.8.1 Find the “values” of the following polynomials in X, ..., X5:
(i) X1+ X2+ X3+ X4 + X5;
(i) Xi;
(111) X1 +2X5 +3X3 +4X,4 + 5X5;
(i) Tlic; (Xi = X5);
(V) X1+ Xo +3X3 +4X, + 5X5.
1.8.2 Show that no polynomial in 5 variables has exactly 3, 4 or 8 values.

In general, let ® be a polynomial in X1,..., X, with k values, (1) =
®, ..., ®") Then the resolvent is a polynomial in X7, ..., X, and Z given
by

k k

hZ2) :=[[(Zz - oY) => hi(X1,...,Xn)Z.

i=1 J=0

Since the ®® form an orbit under S,, the polynomial h is invariant
under an arbitrary permutation of Xi,...,X,. Thus each polynomial
hj(X1,..., Xy) is symmetric in X1,..., X, and so can be written as a
polynomial in the elementary symmetric functions of these variables (the
“symmetric function theorem”). If f(X) is a polynomial of degree n with
roots 71, ..., 7y, then the elementary symmetric functions of these roots
can be expressed in simple terms in the coefficients of f(X). Hence, if we
substitute ry,...,7, for X1,..., X, in the expression for h(Z) we obtain
a polynomial in Z whose coefficients can be effectively calculated from the
coefficients of f(X). Moreover, if ® has been chosen carefully, then it may
happen that we can solve the polynomial h(Z) and be able to compute
the roots ry,..., 7, from the roots ®M(ry, ..., )y, ®E (e o)
of h(Z).

It was using these methods of resolvents that Ruffini and Abel were
able to give proofs that there is no solution by radicals for equations of
degree greater than 4 (Ruffini’s proof was not complete). The subsidiary
problem of determining what number of values were possible for suitable
polynomials of n variables, and finding such polynomials, continued to play
an important role in the development of permutation groups in the 19th
century.
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FEzxercises

1.8.3 If n is a multiple of an odd prime p, show that a polynomial in n
variables has at least p values.

1.8.4 (Solution of the cubic) Let f(X) be a real cubic polynomial with
roots 71, 79, 3, and consider the polynomial

b = (X1 + wXs + w2X3)3

where w is a complex cube root of 1 with w # 1. Show:

(i) @ lies in an orbit of length 2 under S3, say {®, ®*}; and

(ii) the roots of f(X) can be calculated from the coefficients of f(X)
and the numbers ®(ry, ro,73) and ®*(ry, re, r3) using rational
operations and extraction of cube roots.

After the work of Ruffini and Abel there remained the question of decid-
ing whether a particular polynomial could be solved using radicals. This
problem was solved — at least in principal — by Galois in 1830. To each
polynomial f(X) with distinct roots 7y, . .., r, Galois associated a permu-
tation group on the set of roots (now called the “Galois group” of f(X)),
and the structure of this group determines whether or not f(X) can be
solved by radicals. In modern terms we begin with a field K containing the
coefficients of f(X) and adjoin the roots to obtain a splitting field L. The
field automorphisms of L which fix every element of K form a finite group
G which acts on the set of roots. The permutations of {r1, ..., r,} induced
by the elements of G constitute the Galois group of f(X). Of course Galois
worked without the language of fields and automorphisms so his original
definition has quite a different ring to it.

The relation between the Galois group and the Lagrange resolvent is as
follows. Suppose we can find a polynomial ® over K such that each of the

roots r; can be written as a polynomial (over K) in t := ®(r,...,7n).
In modern terms this means that K(rq,...,r,) = K(t). Then for each
z € S, we define t* := ®(ry/,...7r, ) where ¢/ := * for each . We can

then construct the resolvent (a polynomial of degree n! over K):

92) = [] (Z-).

£ESy

Now factor g(Z) over K and determine an irreducible factor g1(Z) which
has t as a root. Suppose that G is the Galois group for f(X). Then g:(Z)
has degree |G|, and the roots of g;(Z) are precisely t* for x € G.

It is interesting to note that permutations were used in the study of
algebraic equations long before there was a clear definition of a group. The
point is that the basic concepts of transitivity, primitivity and closure under
conjugation are meaningful for sets of permutations whether or not these
sets are closed under multiplication.

Many of the basic concepts introduced in this chapter can be traced back
to work of Augustin-Louis Cauchy in the first half of the 19th century.
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Galois’ work remained unread for many years after his tragic death in 1832
at the age of 21. His seminal papers were eventually published by Joseph
Liouville in 1846, and then in the 1860s Jordan wrote his influential book
which developed Galois’ ideas on permutation groups and fields in a form
which was easily available to his contemporaries. At that point there was
a clear concept of permutation group, a well-developed theory, a rich and
growing supply of examples, and applications of the theory in a number of
different branches of mathematics. Jordan’s name will appear frequently in
the chapters which follow.

1.9 Notes

Many books on general group theory contain useful sections dealing with
basic results from permutation groups, or chapters on special topics in this
area. Books which we have found useful include: Biggs and White (1979),
Burnside (1911), Carmichael (1937), Hall (1957), Huppert (1967), W.R.
Scott (1964), and Tsuzuku (1982). In addition, there are more special-
ized texts which deal with specific topics in permutation groups such as:
Cameron (1990), Huppert and Blackburn (1982b), Neumann et al. (1994),
Passman (1968) and Wielandt (1964). We shall refer to these later.

The earliest text on permutation groups is C. Jordan’s Traité de substi-
tutions et des équations algébraiques [Jordan (1870)] which was reprinted
in 1957 and so is available in many libraries. Another classical book of
more than historic interest, with several chapters on permutation groups,
is Burnside (1911); this has also been reprinted. With a few notable ex-
ceptions, group theory was largely ignored during much of the first half
of this century (Burnside’s contributions to group theory are hardly men-
tioned in his mathematical obituary), but interest was rejuvenated in the
1950s. The Wielandt book (1964) (originally appearing as a set of notes in
German in 1955) presented classical results on finite permutation groups
in modern language as well as Wielandt’s own work. This book has since
remained the standard reference to finite permutation groups; notation in-
troduced by Wielandt is now commonly used, and the book has strongly
influenced the development of the area. Later lecture notes by Wielandt on
infinite permutation groups [Wielandt (1960b)], permutation groups and
invariant relations [Wielandt (1969)] and permutation groups and subnor-
mal subgroups [Wielandt (1971a) and (1971b)] circulated informally, but
were not so widely available. Fortunately, these lecture notes have now been
reprinted in Wielandt (1994).

The material of Chapter 1 is classical, with the exception of some of the
exercises.

® Exercise 1.2.16: There is an extensive literature on the “pancake flipping
problem”. See, for example, Gates and Papadimitriou (1979).
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Sect. 1.3 The problem of faithful representations is discussed in Easdown
and Praeger (1988).

Exercise 1.3.6: See Zagier (1990).

Exercise 1.4.11: See Wielandt (1959).

Exercise 1.4.18: See Shalev (1994).

Exercises 1.5.20-21: See Sheppard and Wiegold (1963), Neumann and
Vaughan-Lee (1977) and Kovacs and Newman (1988) for related work.

® Exercise 1.6.20: See Brauer (1941).

Theorem 1.7A: The provenance of this result is discussed in Neumann
(1979). Expositions of the generalized version introduced in Pélya (1937)
appear in many books on combinatorics. See also Foulkes (1963), Read
(1968), and Kerber (1986).

Exercise 1.7.2: Using the classification of finite simple groups, it has been
shown that each nontrivial finite transitive group contains a fixed point
free element of prime power order [see Fein et al (1981)].

* Exercise 1.7.12: See Dixon and Wilf (1983).
® Exercise 1.7.14: See Cameron and Cohen (1992).
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Examples and Constructions

In order to understand the development of a subject it is helpful to have
available a wide range of examples. The aim of the present chapter is to pro-
vide such examples and to give some general constructions of permutation
groups which we shall use in later chapters.

2.1 Actions on k-tuples and Subsets

We begin with some easy constructions which allow us to generate new
examples of group actions from old ones. Let G be a group acting on a set
Q, and let Q* (k > 1) denote the k-th cartesian power of Q. Then G acts on
QF in a natural way, namely: (o, ..., ax)" = (af,...,af) forall z € G.
Moreover, the subset of QF consisting of k-tuples of distinct points is clearly
G-invariant for every choice of G and k; we shall denote this subset by Q(*).

Note that when ( is finite with |Q2] = n, we have ‘Q(k)‘ =nl/(n — k).

EXAMPLE 2.1.1. Consider the action of Sy on Q) where Q := {1,2,3,4}.
This action has degree 4!/2! = 12. In the corresponding representation the
only nontrivial elements of S, which fix a point in Q2 are the 2-cycles.
For example, using the notation o3 to denote an element (c, 8) € Q? we
have

(12) — (12,21)(13, 23)(31, 32)(14, 24)(41, 42).

If G is a group acting on a set Q and k is an integer with 1 < k < €|,
then we say G is k-transitive if G is transitive on Q*), We say that G is
highly transitive if  is infinite and G is k-transitive for all integers & > 1.

FEzxercises

2.1.1 If G is a group acting on §2, show that G is transitive if and only if G
is 1-transitive. Moreover, if £ > 1, show that G is (k — 1)-transitive
whenever G is k-transitive.

33
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2.1.2 If G is a finite k-transitive group of degree n, show that |G| is divisible
by n(n—1)...(n — k+1).

2.1.3 Show that G acts k-transitively on Q (where k < |Q]) < G is
(k — 1)-transitive and, for any (k — 1)-subset A C , the group G(a)
acts transitively on Q \ A.

2.1.4 Show that Sym() is k-transitive for all positive integers k < [Q]. If
G < S, , show that G is (n — 2)-transitive <— A, < G.

2.1.5 Show that Al¢(Q?) is highly transitive whenever () is infinite.

2.1.6 Suppose G is k-transitive for some k > 2, and N is a nontrivial
normal subgroup of G. Show that N is (k—1)-transitive. In particular,
if G is highly transitive, then so is N.

It is interesting to observe that finite multiply transitive groups arose
very early in the history of permutation groups. In particular, Evariste
Galois constructed a family of 3-transitive groups in 1830 (see Sect. 2.8). In
18611873 Emile Mathieu discovered a series of multiply transitive groups
which are now named after him, including 5-transitive groups of degrees 12
and 24; we shall describe these in Chap. 6. Mathieu’s remarkable groups
are now known to be quite exceptional, and their discovery led to what has
turned out to be a dead-end in permutation groups — the study of finite
multiply transitive groups of high transitivity. In fact the classification of
finite simple groups shows that except for the Mathieu groups (and the
trivial examples of A, and S,) no finite permutation groups are more
than 3-transitive. We shall not prove this, but we shall prove some slightly
weaker results in the chapters to follow. For an infinite class of finite 3-
transitive groups see Sect. 2.8. In contrast to the finite case there seems to
be a rich class of highly transitive groups of infinite degree. See Chap. 7 for
more details on multiply transitive groups and Chap. 9 for further infinite
examples.

A second kind of easily constructed action of G is its action on the set of
all subsets of Q viaI'* := {4* | y € '} for each I C Q and =z € G. Again
it is easy to see that all subsets of a given size constitute a G-invariant
set in this action. We shall use the notation Q{*} to denote the set of all
k-subsets (that is, subsets of size k) of Q for & = 1,2,.... If Q is finite of
size n, then |Q1%}| = (7) for 1 < k < n. A group G acting on a set Q is
called k-homogeneous if it is transitive on the set Q*} (1 < k < |Q|). We
call G highly homogeneous if € is infinite and G is k-homogeneous for each
integer k > 1. A few results on k-homogeneous groups are presented here;
a more complete discussion is deferred to Sect. 9.5.

Clearly k-transitive implies k-homogeneous; we can be a little more pre-
cise. If A = {61,...,6;} is a k-subset of 2, then the stabilizer of the
“point” A in the action of G on Q¥ is the setwise stabilizer Giay- The
pointwise stabilizer G(a) is the stabilizer of the “point” (1, ..., 6i) in the
action of G on Q). As we saw in Sect. 1.6, the representation of Giay
associated with its action on A defines a homomorphism z — z2 of Ga}
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into Sym(A) = S with kernel Ga) , and so the factor group G(a1/G(a)
is isomorphic to a subgroup of Sk. See Sect. 9.5 for further discussion of
homogeneous groups.

EXAMPLE 2.1.2. Consider the action of S, on Q{2} where Q@ :=
{1,2,...,n} and n > 3. Since S, is n-transitive on {2, this action is tran-
sitive. Consider the stabilizer H in S, of the subset {1,2} ¢ Q{?}. The
group H has 3 orbits comsisting of {1,2}; {1, a}, {2,a} for all o # 1,2;
and {a, 8} for all o, 8 # 1, 2. These orbits have lengths 1,2(n — 2) and
(n — 2)(n — 3)/2, respectively. Now any nontrivial block for the action of
S, on Q12} which contains the point {1,2} must also contain one of the
other orbits of H (see Exercise 1.5.9). However, a simple argument shows
that for n # 4 such a block must also contain the other orbit (see Exercise
2.1.8), and so the action of S, on 012} is primitive. By the orbit-stabilizer
property, H is a subgroup of index n(n — 1)/2 in S, and H is maximal by
Corollary 1.5A.

FExercises

2.1.7 In the example above show that 2(n — 2) +1 < (n — 2}(n — 3)/2
for n > 8, and that the left hand side never divides the right hand
side in this range. Deduce that, except in the case n = 4, any block
which contains two of the orbits of H must also contain the third.
Hence show G acts primitively on {2} for all n > 3 except n = 4.

2.1.8 For which values of n is the action of S, on Q{3} primitive?

2.1.9 If G acts on a set € of size n, show that G is k-homogeneous <= G
is (n — k)-homogeneous.

2.1.10 Show that if G is a 2-homogeneous group of degree > 2 then G is
primitive. Give an example where G is not 2-transitive.

2.1.11 Suppose that G is a 2-homogeneous subgroup of S, with n > 3.
Show that a point stabilizer of G has at most three orbits, and that
G is 2-transitive if G has even order.

2.2 Automorphism Groups of Algebraic Structures

Permutation groups frequently arise “in nature” as groups of permutations
of various kinds of mathematical objects which preserve the underlying
structure of the object in a suitable sense. We mentioned some geometrical
examples in Chap. 1, and now turn to some classes of algebraic structures.

ExaMPLE 2.2.1. (Automorphisms of common algebraic structures). Let G
be a group and consider the set of all permutations x of G which preserve
the group operation in the sense that

(ab)® = a®b® foralla,be G



36 2. Examples and Constructions

(the product of the images equals the image of the product). This set is
obviously a subgroup of Sym(G) and is denoted by Aut(G); its elements
are called automorphisms (or more specifically group automorphisms) of G.
Similarly, if V' is a vector space over some field F', then the automorphisms
of V are the permutations z of V which preserve the vector space operations
on V in the sense that

(u+v)® =v® +0* and (Mu)® ="

for all u,v € V, and A € F. In this case the term “invertible linear trans-
formation” is commonly used in place of “automorphism” and the group
Aut(V) of all automorphisms is usually denoted by GL(V), the general lin-
ear group on V. Another example of this type is the automorphism group
of a ring R with unity 1; this consists of all permutations x of R which pre-
serve both addition and multiplication in R and also map the distinguished
element 1 onto itself:

(a4 b)* =a® +b", (ab)® =a®b* and 1° =1

for all a,b € R. In general, when a group acts on an algebraic structure,
we shall say that the action preserves the structure if the elements of the
group act as automorphisms.

ExAMPLE 2.2.2. Let K be a normal subgroup of the group G and consider
the conjugation action of G on K given by u® := 7 luz (v € K,z € G);
the kernel is the centralizer Cq(K). This action preserves the group struc-
ture of K, and so the image of the corresponding representation lies in
Aut(K). Hence by the “first isomorphism theorem” G/C¢(K) is isomor-
phic to a subgroup of Aut(K). In the particular case where K = G then
Ce(G) = Z(G), the centre of G, and the automorphisms induced by con-
jugation by elements of G are called inner automorphisms. Thus the group
Inn(G) of inner automorphisms of G is isomorphic to G/Z(G).

FExercises

2.2.1 If a group G acts on an algebraic structure A (such as a group, vector
space or a ring) so as to preserve the structure, and 7' is any subset
of G, show that fix(T) is a substructure of A (such as a subgroup,
subspace or subring).

2.2.2 If (x) is a finite cyclic group of order n show that

Aut({(z)) = {or | 1 <k < nand GCD(k,n) = 1}

where oy, : ¢ + z* for each ¢. What is the automorphism group in
the case that (z) is infinite? [Note: GCD(k, n) denotes the greatest
common divisor of k& and n.]
2.2.3 Let R := Z/nZ be the ring of integers modulo n. Calculate Aut(R).
2.2.4 Show that for each of the rings Z, Q and R the automorphism group
is trivial, but the automorphism group of C is not. [Hint: If o, 8 € R,
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then a < 8 <= a+ & = 3 for some £ € R; use this to show that
each automorphism of R preserves the ordering of R. In the case of C
it can be shown that Aut(C) is uncountably infinite, but this is quite
difficult.]

2.2.5 If G is a finite p-group which acts on another finite p-group H # 1
preserving the group structure, show that fix(G) # 1. In particular,
if G is a finite p-group acts on a finite-dimensional vector space V
over a finite field of characteristic p, then there exists v % 0 in V
which is fixed by every x € G.

ExXAMPLE 2.2.3. (Automorphisms of ordered sets) If Q is a set with a
partial (or total) ordering <, then the order-automorphisms of (Q, <) are
the permutations z of  which preserve the ordering in the sense:

o < B <= a<p

for all o, 8 € Q. We shall denote the group of all order-automorphisms of
(Q, <) by Aut(Q, <).

FExercises

2.2.6 If (Q, <) is a finite totally ordered set, show that Aut(f2, <) is trivial.

2.2.7 Show that Aut(Z, <) (with the usual ordering) is an infinite cyclic
group. What is Aut(Z, | ) in the case that | is the partial ordering
defined by: m | n <= m divides n?

2.2.8 Show that G = Aut(Q, <) (with the usual ordering) is a highly
homogeneous subgroup of Sym(Q), but G is not 2-transitive. Prove
that G, = G x G for each a € €. (See also Exercise 7.1.2.)

2.2.9 (For those who know some topology) Let T be a topological space.
We define a permutation f of the underlying set of T' to be an au-
tomorphism of T if it preserves the topology of T' in the sense that
whenever U is a subset of T

Uf is open <= U is open.

Show that f is an automorphism <= f is a homeomorphism
(that is, a bijection of T onto itself such that both f and f~! are
continuous).

2.3 Graphs

Graphs come in two principal types: directed graphs and nondirected
graphs. We shall refer to directed graphs as digraphs and use the term graph
to refer to nondirected graphs. The following is a list of formal definitions.

A digraph G is a pair (V, E) of sets V (of vertices or “nodes”) and E (of
edges) where E C V x V; the digraph G is said to be finite if V is finite,
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and otherwise is infinite. An edge (a, 8) € E is said to join o to 3, and
B is adjacent to «; note that edges of the form (o, a) are permitted. The
out-degree of a is the number of vertices 8 which are adjacent to ¢, and
the in-degree of « is the number of vertices 3 to which « is adjacent. If «
and (3 are vertices of a digraph G, then a directed path in G from o to 3 of
length d is a list of d + 1 vertices

a():ayal;"'aad:/g

such that (a;—1,0;) € E for 4 = 1,...,d. If we only assume that either
(ai—1, ;) or (o4, ;1) lies in E, then the path is called undirected. The
path is called simple if the vertices ag, as,...,aq are distinct with the
possible exception that oy may equal ag. A circuit in G is a path of length
d > 1 in which the first and last vertices are equal: a9 = ayq.

A graph is a digraph with no edges of the form (o, a) and with the
property that (o, 3) € E implies (8,a) € E. In a graph the in-degree
and out-degree of a given vertex are equal and are referred to as the de-
gree. A graph is connected if for all o, 8 € V there is a path from o to
B. (In a graph we clearly do not have to distinguish between directed and
nondirected paths, but for digraphs there are two corresponding notions:
strongly connected and weakly connected. See Sect. 3.2). A tree is a con-
nected graph with no simple circuits of length greater than 2 (no graph has
a circuit of length 1, but every edge (a, 8) gives rise to a circuit «, 8, o of
length 2).

It is often convenient to use simple diagrams to represent graphs: vertices
are represented as points, and edges are represented by lines joining the
points. In the case of a digraph which is not a graph, an edge («a, §) is
represented by a line with an arrow from the point representing « to the
point representing 3.

Ezercises

2.3.1 If G is a connected graph with uncountably many vertices, show that
at least one vertex has infinite degree.

232 If G = (V,E) is a finite connected graph, show that |V| < |E| + 1,
and that equality holds exactly when G is a tree.

Now suppose that G is a group acting on the vertex set V of a digraph
G = (V, E). Then we can define an action of G on V x V by (a, 8)* :=
(a”, %) for all (o, B) € V x V and z € G. We shall say that G preserves
the adjacency structure of G if E* = E for all z € G (and so G also acts on
Eif E # (). The set of all permutations of V which preserve the adjacency
structure of G forms a group called the automorphism group of G; it is
denoted by Aut(G).

FEzercises

2.3.3 Show that the automorphism group of the graph in Fig. 2.1(a) has
order 20. Is its action on the vertex set primitive? [Hint: First show
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2.3.5

2.3.6

2.3.7
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FiGure 2.1.

that the automorphism group is transitive on the vertex set and
then examine the stabilizer of a point.]

The graph in Fig. 2.1(b), known as the Petersen graph, has many
interesting properties. Show that its automorphism group A has
order 120 and that A acts primitively on the set of vertices. Show
that the stabilizer of a vertex has 3 orbits, of lengths 1, 3 and 6,
respectively. Is the action of A on the set of edges primitive?
Consider the automorphism group of the graph in Fig. 2.2. What
can you say about the actions of this group on the set of 14 vertices
and on the set of 21 edges?

Consider the digraph with vertex set Z and edge set {(i,i+1) | i €
Z}. Is the automorphism group primitive?

Let n > 3. Consider the graph G whose vertex set V is the set of
all 2-cycles (af) in S, and where two distinct vertices are adjacent
exactly when they commute. Show that Aut{G) is a primitive but

13 14

12

11

10

FIGURE 2.2.
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FIGURE 2.3. The Cayley graph for the free group on generators s, t.

not 2-transitive group on V if n # 4, and that Aut(g) =
n > 2. [Hint: Compare with Example 2.1.2.]

2.3.8 Is the graph constructed in the previous exercise for n
isomorphic to the Petersen graph [Fig. 2.1(b)]?

Sy, if

= b

2.3.9 If 7 is a finite tree, show that either Aut(7) fixes some vertex a,
or there is an edge (8, 7) such that each z € Aut(7) fixes (8, ) or

maps (3, ~) onto its reverse (v, 3).

2.3.10 Let G be a group and R be a subset of G. Consider the graph
with vertex set G whose edge set consists of all pairs (a,ra) (a €
G,r € RU R™); we call this the Cayley graph and denote it by
Cayley(G, R). Fig. 2.3 displays a fragment of a particular Cayley
graph. Prove that Cayley(G, R) is connected <= R generates G.
Show that Aut(Cayley(G, R)) contains the right regular represen-
tation of G in Sym(G). Sketch Cayley(G, R) where G = S3 and

R = {(12), (123)}.

2.3.11 Let R be a subset of a group G and suppose that R N R~!

Show that Cayley(G, R) is a tree <= G is a free group and R is

a set of free generators for G.

2.4 Relations

You will be familiar with a variety of relations, such as: congruence mod-
ulo m on the set Z; linear dependence between k vectors in R™; a partial
ordering such as containment (C) on the set of subsets of a fixed set; and
numerous others. We can describe all such relations set-theoretically in a
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rather bland way as follows. For each integer r > 1, an r-ary relation on a
set ) is a subset A C 7 where Q" = Q x .. x {2 (r times). Strictly speaking,
the relations just defined are finitary relations. It is also possible to define
infinitary relations in an analogous way, but in what follows “relation” will
always refer to the finitary relations defined above. It is common to use
the terms unary, binary and ternary to refer to the cases 1-ary, 2-ary and
3-ary, respectively.

EXAMPLE 2.4.1. The usual ordering on R is a binary relation given by
A={(e,8) €R* [ < f}.

EXAMPLE 2.4.2. The relation “linearly dependent for k vectors” on a vec-
tor space V is a k-ary relation given by a set which consists simply of
k-tuples of linearly dependent vectors.

EXAMPLE 2.4.3. If ¢ : ' — Q is a function “in k variables” from a subset
I' C QF into €, then there is a canonical (k + 1)-ary relation (the “graph”
of ¢) associated with ¢, namely,

{(ag, ...,k ¢(a1,...,0x)) | (0a,...,08) € T}

Clearly this relation completely defines ¢ (including its domain I' ). Do not
confuse this meaning of “graph” with the graphs considered in the previous
section.

EXAMPLE 2.4.4. A special case of the last relation is where ¢ is the binary
operation on a group G; the associated ternary relation on G is

{(z,y,2y) | x,y € G}.
We also have the binary relation
{(w,a7") |z € G}

corresponding to inversion, and the unary relation {1} which specifies the
identity of the group.

Exercise

2.4.1 Specify all the operations in a vector space V over a field F' in terms
of relations on V. [Hint: To express scalar multiplication you will
need one relation for each scalar.]

We can use relations to define permutation groups. Let R be a set of
relations on a nonempty set . Now Sym(Q) acts (componentwise) on Q¥
for each k, so we can consider the set G of all permutations of Q which
map each of the relations in R onto itself. It is easily seen that G is a
subgroup of Sym(); G is called the group of R-preserving permutations
of Q, or the automorphism group of the relational structure ({; R), and is
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denoted by Aut(€2; R). For instance, in Example 2.2.3 and Exercises 2.2.7
and 2.2.8 we looked at the automorphism groups of various order relations.
The automorphism group of a graph is just the automorphism group of a
relational structure on the set of vertices where we have a single binary
relation p with (o, ) € p < {a, S} is an edge. Similarly a group G
preserves various operations on {2 if it preserves the associated relations; for
an algebraic structure such as a group, the permutations of the underlying
set which preserve the relations are the usual automorphisms discussed in
Sect. 2.2. There is a more detailed discussion of relational structures in
Sect. 9.5 and 9.6.

ExXAMPLE 2.4.5. Let H be a group, and let I" be the ternary relation on H
associated with the group operation (see Example 2.4.4). If G is the group
of permutations of H which preserve I', then

z2€G < z € Sym(H)and I =T.

However I'” = T implies that (u®, v*, (uww)®) € T for all u,v € H, and
so u*v® = (uww)” for all u,v € H. Hence each z € G is an automorphism
of the group H. The converse is easy to verify, and so G cousists of exactly
the group automorphisms of H.

Fxercise

2.4.2 The Fano plane F is represented in Fig. 2.4. The plane consists of
seven “points” (labelled 1 to 7 in the figure) and seven “lines” each
of which is a triple of points (in the diagram these correspond to the
triples which lie on straight lines and the triple {2, 4, 6} on the circle).
Three points are collinear if they lie on the same line. The automor-
phism group Aut(F) of the Fano plane consists of all permutations
of the points which preserve the relation of collinearity. Find a set of
generators for Aut(F) and show that |Aut(F)| = 168. Is the action

FIGURE 2.4. The Fano plane
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of Aut(F) on the set of points equivalent to its action on the set of
lines?

Conversely, if a group G acts on a set 2, each of its orbits on Q* defines
a relation preserved by . Thus every permutation group is contained in
the automorphism group of a relational structure; in general it is not the
full automorphism group of this structure. A subgroup G of Sym(£2) is
called closed if it is the automorphism group of some set of relations on €2;
and it is called k-closed (k = 1,2,...) if it is the automorphism group of
some set of k-ary relations. In many situations these groups possess useful
properties which are not shared by all permutation groups.

Ezxercises

2.4.3 If Q is finite, show that every subgroup of Sym{Q) is closed.

2.4.4 Describe all 1-closed permutation groups.

2.4.5 Let G be a subgroup of Sym(Q2) and let Go denote the intersection
of all 2-closed subgroups of Sym{) which contain G (we call the
subgroup Gy the 2-closure of G). Show that Gy is a subgroup of
Sym(Q) and that:

(i) if G is finite then so is Gy;
(if) if each element in G has finite odd order, then so does each
element of Gp;
(iii) if G is abelian, then so is Go;
(iv) if G is a p-group, then so is Gy.

2.4.6 If G is a closed subgroup of Sym(Q)) and H < G, show that the cen-
tralizer Cq(H) is closed, but that, in general, the normalizer Ng(H)
is not closed. Is Ng(H) closed when H is closed?

The idea of closure defined above can be related to a topological con-
struction as follows. Consider the symmetric group S := Sym(N). Let S(z)
denote the pointwise stabilizer of the set {0,1,...,4 — 1} for i = 0,1,....
We define the distance d(z, y) between two distinct permutations z, y in §
to be 2% where k is the greatest integer such that 2y~ ! and yz~! both lie
in S(k) and we put d(z,z) = 0.

FEzercises

2.4.7 Show that for all z,y,2z € S:
(i) d(z,y) =0 <= z=y;
(ii) d(z,y) = d(y, z);
(iil) d(=,y) < max{d(z, z), d(y, 2)}.

Thus (S, d) is a metric space; indeed, (iii) is a strong form of the
triangle inequality and shows that we have an ultrametric. Show
that the functions (z,y) — zy and x — z~! are continuous, with
respect to this metric, on § x S and S, respectively.

2.4.8 Show that any Cauchy convergent sequence in (5, d) converges, and
so (S, d) is a complete metric space.
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2.4.9 Show that a subgroup G of Sym(N) is closed in the sense described
earlier in this section if and only if it is closed as a subset of the
metric space (S, d).

2.4.10 (For those who know some topology.) Let S := Sym(f) for an
arbitrary set {2, and consider the topology on S obtained by taking
as a basis of open sets all sets of the form S5y N Sayz (z € S and
A a finite subset of 2 ). When Q = N, show that this is the same
topology as that induced by the metric in Exercise 2.4.7, and prove
that the analogues of Exercises 2.4.7 and 2.4.9 hold in the general
case. (If Q is uncountably infinite, then it can be shown that the
topology on this space is not induced by any metric.)

2.5 Semidirect Products

The wreath product constructions which we shall consider in the next
two sections are of fundamental importance in the study of permutation
groups. However, to understand those constructions we must first look at
the simpler construction of semidirect products.

The notion of a semidirect product of two groups generalizes the idea of
a direct product. Let H and K be groups and suppose that we have an
action of H on K which respects the group structure on K; so for each
z € H the mapping u +— u” is an automorphism of K. Put

G:={(u,z) |ue K,z e H}
and define a product on G by

1

, TY)

=

(u, z)(v,y) = (wv
for all (u, z), (v,y) € G.

Exercise

2.5.1 Check that this product is associative, and hence show that G is
a group under this operation with identity element (1,1) and with

(w,2)™! = ((u) ™", 271).

It is readily seen that G contains subgroups H* := {(1,z) | ¢ € H} and
K* := {(u,1) | v € K} which are isomorphic to H and K, respectively,
and that G = K*H* and K* N H* = 1. Moreover, K* is normal in G and
the way that H* acts on K* by conjugation reflects the original action of
H on K, namely,

1,2) M u, D1, 2) = (v, 1)

forallz € Hand u € K.
We call G the semidirect product of K by H and shall use the notation
K x H to denote G. Of course the semidirect product depends implicitly
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on the action of H on K even though the action is not specified in the
notation. Clearly |G| = |H| |K]|.

FEzxercises

2.5.2

2.5.3

2.5.4

2.5.5

2.5.6

2.5.7

2.5.8

2.5.9

Show that the direct product K x H is a particular case of the
semidirect product.

Suppose that G is a group and K and H are subgroups with K «
G, G = KH and K N H = 1. Show that G is isomorphic to K x H
where the implied action of H on K is the conjugation action in G.
(G is called a split extension of K by H, so every split extension is
isomorphic to a corresponding semidirect product.)

Let G be a split extension of a subgroup H and normal subgroup
K. Consider the action of G (by right multiplication) on the set of
right cosets of H. Show that the image of K in this representation is
a regular permutation group.

Suppose that G < Sym(2) and let o € Q. If G has a regular normal
subgroup K, show that G is a split extension of K and G,. (The
natural action of G, on € is equivalent to the conjugation action of
G, on K by Exercise 1.6.16.)

Let K be a regular subgroup of Sym(2), and let C and N, respec-
tively, denote the centralizer and normalizer of K in Sym(2) (N is
called the holomorph of K). Show that C is a regular subgroup iso-
morphic to K and that N/C = Aut(K). (In principle, one way in
which we could compute the automorphism group is to construct the
regular representation of the group in question and then apply this
result. In practice, this does not seem to be very useful.)

Calculate the holomorphs for the cyclic group of order 4, for the
noncyclic group of order 4 and for Ss.

Let G < Sym(Q) have a regular normal subgroup R and let o € Q.
Show that G is primitive <= no proper nontrivial subgroup of R
is normalized by G,,.

Let K be a nonabelian group and put G = K x K. Consider the
action of G on K given by u®¥ = z7luy (u € K, (x,y) € G).
Show that the normal subgroups K x 1 and 1 x K both act regularly,
and that the action of G is primitive exactly when K is simple.

2.6 Wreath Products and Imprimitive Groups

The notion of a wreath product arises very naturally in the study of
imprimitive groups. For example, let X be a partition of a set 2 into equal-

sized

subsets. Then the group G of automorphisms of ¥ consists of all

z € Sym(f2) with the property that if A C Q then

AeY <— A" cX.
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Clearly, G also acts on X. If we define B to be the kernel of this latter
action, then it is easy to see that B is isomorphic to the direct product
of |X| copies of Sym(A) where A € ¥, and that G = B x Sym(X)
where Sym(X) acts on B by permuting the components of the elements
of B in a natural way. This gives a fairly simple description of G. More
generally, if H is an imprimitive group which has ¥ as a system of blocks,
then H < G, and so H will also decompose, although the details of the
decomposition are generally much more complicated for H than those for
G. The wreath product construction which we now consider is a refinement
of the construction we have just made for G.

IfT" and A are nonempty sets then we write Fun(T, A) to denote the set
of all functions from I into A. In the case that K is a group, we can turn
Fun(T', K) into a group by defining a product “pointwise”:

(f9)(v) = f(7)g(v) forall f,g € Fun(l’, K) and y € T

where the product on the right is in K. In the case that T" is finite of
size m, say I' = {v1,...,Ym}, then the group Fun(T', K) is isomorphic
to K™ (a direct product of m copies of K) via the isomorphism f
(f(’YI)’ st f(me))

Let K and H be groups and suppose H acts on the nonempty set I'.
Then the wreath product of K by H with respect to this action is defined
to be the semidirect product Fun(I', K) x H where H acts on the group
Fun(T, K) via

() = f(+*") forall f € Fun(T,K),v € T and z € H.
We denote this group by K wrr H, and call the subgroup
B:={(f,1) | f € Fun(', K)} = Fun(I', K)

the base group of the wreath product.

Again, it is helpful to look at the case where T is finite, say ' =
{1,2,...,m}. In this case we can identify the base group B with the direct
product K x ... x K (m factors), and the action of H on B corresponds
to permuting the components:

. 1 ... m
(’u,l’...,um) =(U1/,--.um’) Whenx:(ll N m,>

for all (u1,...,un) € B and z € H. Clearly, |K wrr H| = |K|™ |H|.

FExercises

2.6.1 Verify that the definition of f* does give an action of H on Fun(T', K)
which respects the group structure. (Why has it been necessary to
introduce ! into the definition rather than z?)

2.6.2 Let G < Sym(Q) be an imprimitive group and let £ = {I'; | ¢ € I}
be a system of blocks for G. Let H denote the kernel of the action
of G on X, and let K be the subgroup of Sym(f) consisting of all
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z € Sym(f) such that I'Y € ¥ for each ¢ € I. Show that K =
Sym(T) wr; Sym(I) where |I'| = |I';| for each i € I, and so G can
be embedded in Sym(T) wry Sym(I) in such a way that H consists
of the set of elements of G which are mapped into the base group.

263 If G < Sym(Q) is an imprimitive subgroup which is maximal
in the sense that it is not contained in any larger imprimitive
group, show that G is isomorphic to a wreath product of the form
Sym(T) wry Sym(I) where G has a system of blocks indexed by [
and each block has size |T'|.

2.6.4 Show that the group G considered in the preceding exercise is actually
a maximal subgroup of Sym () in the case Q is {inite and |I| and |T'|
are at least 2. Is this also true when € is infinite?

In the special case of a wreath product where the group H acts regularly
on itself, we write K wr H in place of K wrgy H; this is called the stan-
dard wreath product. This particular wreath product has a useful property
described in the following theorem.

Theorem 2.6A (Universal embedding theorem). Let G be an arbitrary
group with a normal subgroup N, and put K := G/N. Then there is an
embedding ¢ : G — N wr K such that ¢ maps N onto Im ¢ N B where B
is the base group of N wr K. (Thus N wr K contains an isomorphic copy
of every extension G of N by K.)

ProoOF. Let 9 : G — K be a homomorphism of G onto K with kernel N.
Let T := {t, | v € K} be a set of right coset representatives of N in G
such that ¢¥(t,) = wforeach u € K. If z € G, then ¥(t,z) = Y. )¥(z) =
wtp(z) and so tuxt;}) (z) € N. Thus for each 2 € G we can define a function
fz: K — N by

fo(u) == tu:vt;;(z) forallu € K
and put

¢(x) = (fz,¥(z)) € N wr K.

We claim that this defines an embedding ¢ of G into N wr K with the
required properties.
First, ¢ is a homomorphism. Indeed, if z,y € G, then

(@)(y) = (fuf,*@ 9 (ay))

because 1 is a homomorphism. On the other hand, for all v € K, we have

fzy(u)tmp(my) = tyay = {f:c(u)tuw(z)}y
= fo(u) fy (W (@Ntuy () m)
= fz (U)fyw(g"r1 () urp (ay)
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-1
and 50 foy = fofd'™ . Hence

3(x)o(y) = (fay, ¥(zy)) = d(zy)

as required. Second, ker ¢ = 1 because ¢(z) = 1 implies that f, = 1 and
Y(x) = 1, and so z = tl“lfm(l)th/,(z) = 1. Finally, ¢(z) lies in B when
¥(z) = 1, and this happens exactly when z € N. O

FExercise

2.6.5 Suppose that G is any extension of a normal subgroup N by a group
K # 1, and that N can be embedded as a transitive subgroup in
Sym(A). Show that G can be embedded as an imprimitive subgroup
in Sym(f) where Q@ = A x K.

Exercises 2.6.2 and 2.6.5 show how wreath products arise in the study of
imprimitive groups. They can also be used to construct groups with specific
properties as we now show.

Consider the wreath product G := K wrr H. If K acts on a set A, then
we can define an action of G on A x I' by

(6, )W = (65 4*) for all (6,7) € A x T
where (f,u) € Fun(T', K) x H = K wrr H.

FExercises

2.6.6 Verify that this is an action of G on A x I', and that it is faithful
<= the action of K on A is faithful.

2.6.7 Prove the associativity property: if we also have a group L acting on
A, then

(K wrr H) wra L &2 K wrrxa (H wrp L)

with the appropriate action of H wry L on T x A.

EXAMPLE 2.6.1. (The Sylow p-subgroups of a finite symmetric group)
Fix a prime p, and let C be a cyclic group of order p acting regularly on
a set A of size p. Define recursively: P, = C acting on A; and P, =
P, wra C acting on A™ for m > 2. Thus P,, has order p/‘(m) where
u(l) = 1 and p(m) = pu(m — 1) + 1; so simple induction shows that
u(m) = (p™ — 1)/(p — 1). Since P, acts faithfully on A™ this shows that
Sym(p™)(= Sym(A™)) contains a subgroup isomorphic to this iterated
wreath product F,,.

On the other hand, suppose that n is a positive integer, and write n to
the base p:

n=mng+mp+...+nep® where 0 < n; < p for each i.
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Then it follows from Exercise 2.6.8 below that the Sylow p-subgroups of
S, have order p*(™) where

v(n) =n1 +n2(p® — 1)/ - 1)+ ... + mx(* -~ 1)/(p - 1).

Thus we can construct a Sylow p-subgroup for S, as follows. Partition
the set {1,2,...,n} into ng subsets of size 1, n; subsets of size p, ..., ng
subsets of size p*. For each of the subsets of size p™ (m = 1,..., k) apply
the iterated wreath product construction above to obtain a subgroup of
order p*(™) in S,, whose support is this subset of size p™. Then the direct
product of all the subgroups obtained in this way is a group of order p"
where

h=3 tmu(m) = na@™ - 1)/(p 1) = v(n)

and so we have a Sylow p-subgroup of S,.

We illustrate this construction in the case where n = 15 and p = 3. Since
n =23+ 132 we partition the points into the subsets {1, 2, 3}, {4, 5, 6}
and {7,8,...,15}. For the first two of these subsets we can construct sub-
groups of order 3, for example, {(1 2 3)) and ((4 5 6)). For the last set we
construct a wreath product of a group of order 3 by a group of order 3, for
example, the split extension

{(7 8 9), (10 11 12), (13 14 15)){(7 10 13)(8 11 14)(9 12 15))
which has order 3*. Since these three subgroups have mutually disjoint
supports, the subgroup which they generate is their direct product. It is a
Sylow 3-subgroup (of order 3°) for ;5.
Ezercises
2.6.8 Let n be a positive integer and p a prime. Suppose that

n = n0+n1p+...—|—nkpk where 0 < n; < p for each i.
Show that the largest power of p which divides n! is p*(™ where
k 2 k
n ' -1) (" -1) n
vin) = —=|=ni+np-——+...+n < .
(=) ;[pJ ) o1 S poi

2.6.9 Construct a Sylow 2-subgroup for Si4.
2.6.10 Show that the iterated wreath product P, defined above can be
generated by m elements.

2.7 Primitive Wreath Products

The construction in the previous section showed how wreath products arise
as imprimitive groups. Wreath products also play an important role in the
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study of primitive permutation groups. They will be central to our work in
Chap. 4.

We first outline the general idea. Let H and K be groups acting on sets
I’ and A, respectively. Then Fun(T', K) is isomorphic to the direct product
of |I'| copies of K and as such acts in a natural way on the Cartesian
product © of |I'| copies of A. We also have H acting on {2 in a natural
way (by permuting the components). These two actions can be combined
to give an action of K wrr H = Fun(T', K) x H on 2, but we have to
be careful to make the two actions compatible. As we shall see, the action
is primitive under certain mild conditions. The details of the construction
are as follows.

Put @ := Fun(T',A) and W := K wrr H = Fun(T', K) x H; we want
to define an action of W on Q. For each ¢ € Q and each (f,z) € W we
define ¢(/*) by putting

6D (y) == ¢(v® )TO° ) for each y € I.
Clearly 6D = ¢, and (£, z)(g,y) = (fg° ,zy) in W. Thus to prove that

we have an action it remains to show that ¢(/>*)(@¥) = ¢(f o 2v) for all
¢ € Qand all (f,z),(g,y) € W. However, on one hand, we have

¢(f,m)(y,y) (,ywy) — ¢(f,1)(,yw)g(ﬂ/°”) — ¢(7)f(7)g(v””)

while on the other
¢(fgfl,wy)(,ymy) _ ¢(,y)f(7)g"71(7) — ¢(7)f(7)y(7’”)

and so replacing v by fy(“”y)_1 gives the required identity. This action of
K wrr H on 2 is called the product action of the wreath product.

Tt is easily verified that the product action of W := K wrp H is faithful
exactly when the given actions of H and K are both faithful. The degree
2] of W equals |A|m; this is clear if A and T" are finite, and it can also
be proved in the infinite cases. The next lemma gives a simple criterion for
this action to be primitive. Recall that a group K is both primitive and
regular only when K is a cyclic group of prime order.

Lemma 2.7TA. Suppose that H and K are nontrivial groups acting on the
sets T' and A, respectively. Then the wreath product W = K wrp H 1s
primitive in the product action on € := Fun(T', A) if and only if:
(1) K acts primitively but not regularly on A; and
(ii) T s finite and H acts transitively on T'.
PROOF. Let B be the base group of W and put
Hy:={(l,z) e W |z € H}

so W is the split extension BHy. Fix § € A, and define ¢5 € Q by ¢s(7) =
6 for all v. Then

L:={(f,z) e W| f(y) € Ks for all v}
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is the stabilizer in W of the point ¢;s. It follows from Corollary 1.5A that
W is primitive if and only if W is transitive and L is a maximal subgroup
of W.

We first prove the necessity of conditions (i) and (ii). First, if H is not
transitive and ¥ is an orbit of H in T, then

M ={(f,1) e B| f(y) € Ks forally e ¥}

is a subgroup of B which is normalized by H, and L < M Hy < W; thus
W is not primitive. On the other hand, if I is infinite, and we define

By := {(f,1) € B| f has finite support on I'}

then By < W and L < LBy < W, so W is not primitive. Similarly, if K is
intransitive with an orbit IT then

{(f,z) e W | f(v) € Ks forally € II}

is a subgroup of W lying strictly between L and W, and so again W is not
primitive. In the case where K is transitive but imprimitive there exists R
such that K5 < R < K, and then the subgroup

{(f,z) e W[ f(y) € R forall~v}

lies strictly between L and W. Finally, in the case where K is regular the
subgroup

D :={(f,1) € B| f(v) = f(v) forallv,~'}

is normalized by Hy and then L < DHy < W. Thus in all these cases W
is not primitive. This proves the necessity of conditions (i) and (ii).

Conversely, suppose that (i) and (ii) hold; we want to show that W is
primitive. Clearly B, and hence W, is transitive. Thus it is enough to show
that L < M < W implies that M = W. Since W = BHy; = BL we
have M = (M N B)L. Therefore M N B > L N B and so, for some 7,
there exists (f,1) € M N B with f(v) ¢ Ks. Since K is primitive and not
regular, K5 = Nk (Ks) (see Exercise 2.7.1) and so for some u € K; we have
f(v0)"tuf(v0) ¢ Ks. Define g € Fun(T, H) by g(70) := u and g(y) := 1
for all ¥ # ~. Then h := [f,g] € ML where h(y) = [f(v0),u] € KKs
and h(y) = 1 for all v # . Since K is primitive, K5 is maximal, and so
K = (K, h(0)); therefore M contains the subgroup

B(v) ={(f;1) € B| f(v) =1 forally # }.

However, it is readily seen that (1, z)B(v)(1,z)"! = B(v). Since Hy <
M and H is transitive on I we conclude that B(y) < L for all y¥ € T'. Since
T is finite we conclude that

B=][Bw <M
~yerl
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and so M = BHy = W as required. This shows that conditions (i) and (ii)
are also sufficient. O

FExercises

2.7.1 Show that a primitive group G is not regular if and only if a point
stabilizer G, equals its normalizer Ng(Gy).

2.7.2 Find (up to equivalence) all primitive representations of S3 wr Ss.
Note that not all of them are of the form described in Lemma 2.7A.

2.7.3 Let H < Sym(I') and K < Sym(A) where A is finite, and consider
the product action of G := H wra K on Q := Fun(T', A). Suppose
that H has m orbits on I'. Show that G has ﬁ > e M*@ orbits
on {2 where £(z) denotes the number of cycles of z. (See also Exercise
1.7.9.)

2.8 Affine and Projective Groups

The affine and projective groups constitute two interrelated infinite families
of permutation groups. The groups arise naturally from affine and projec-
tive geometries and can also be defined algebraically. Since the geometry
does not enter strongly into the smallest members of each family we shall
begin with an algebraic introduction to these 1-dimensional groups.

If the underlying set on which we are acting is a field, then sets of per-
mutations of certain natural types form subgroups of the symmetric group.
Historically, these examples of permutation groups arose quite early in the
subject; the first examples were given by Evariste Galois in 1830.

Let F be a field. Then it is straightforward to verify that the set A of all
permutations of F' of the form

tap: & af+ 0 (o,0 € F and o # 0)

constitutes a subgroup of Sym(F) (check this!) which is called the 1-
dimensional affine group over F and is denoted by AGL;(F'). In the special
case where F is a finite field of order g, say, we have |AGL1(F)| = q(g—1).
In this case, the notation AGL4(q) is often used in place of AGL;(F); there
is no real ambiguity since all finite fields of the same order are isomorphic
(see for example Lang (1993) Chap. V, Sect. 5).

FExercises

2.8.1 Verify the claims made above for AGL,(F). Show that the set of
translations t15 (8 € F) forms a transitive normal abelian subgroup
T of AGLy(F), and that AGL.(F) is a split extension of T by an
abelian subgroup. Show that AGL,(F) itself is 2-transitive.

2.8.2 We may generalize the construction of AGL;(F') by replacing the
field F by a general (possibly noncommutative) ring R with unity.
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We define AGL;(R) to consist of all permutations of Sym(R) of the
form £ +— af + B with a, 8 € R where « is a unit in B. What results
from the previous exercise remain valid for AGL1(R)?

We now adjoin a new element (which we shall denote by oo ) to F to
obtain a set Q := F U {oo} , and identify Sym(F) with the stabilizer of
oo in Sym(€). Then we can define a transitive extension G of AGL,(F) in
Sym(f) in the sense that G is transitive on Q and Goo = AGL1(F). The
group G consists of all fractional linear mappings of the form

tagys 1 & — ?‘éi? with , 8,v,6 € Fand a6 — By # 0

1

with the convention that tagys(00) = eyt and tagys(—6771) = oo.

FEzxercises

2.8.3 Show that with these rules for dealing with co the fractional linear
mappings are well-defined permutations of Q.

2.8.4 Show that G is indeed a transitive subgroup of Sym(Q) with G, =
AGL,(F), and Gooo = T (the group of translations). Conclude that
G is 3-transitive and that the stabilizer of every three points is trivial.

2.8.5 What is the order of G when F is a finite field of order ¢?

2.8.6 If F' is a finite field and 7 is a primitive element for F', show that
AGL{(F) = (t11,ty0) and G = (t11,t40, to110). (Recall that every fi-
nite field has a primitive element, namely, an element which generates
the multiplicative group of nonzero elements of F'; see for example
Lang (1993) Chap. V, Sect. 5.)

2.8.7 Show that the mapping

(0%
|:,B :)S‘/:I s taﬂ'}'&

defines a homomorphism of the general linear group GLy(F) onto
G whose kernel Z consists of the scalar matrices (& = § # 0 and
B =~ =0). Hence G & GL2(F)/Z. (The latter group is called the
projective general linear group of degree 2 over F' and is denoted by
PGL,(F).)

2.8.8 The group PG Ly (F) has a normal subgroup PSLo(F) = SLo(F)Z/Z
(the projective special linear group) where SLy(F) is the group of
all matrices in GL2(F) with determinant 1. For which fields is it
true that PGLo(F) = PSLo(F)? (The groups PSLa(F), which are
sometimes denoted Lq(F'), are especially interesting because they are
nonabelian simple groups except for the cases where |F| = 2 or 3.)

2.8.9 Define A to be the set of all permutations of F' of the form & —
&° where o0 € Aut(F), the group of all field automorphisms of F.
Show that A is a subgroup of Sym(F') isomorphic to Aut(F') which
normalizes both AGL, (F') and G, and that the subgroups AGL; (F)A
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and G A are both split extensions. (In the case when F is finite of
characteristic p and order p¥, it is known that Aut(F) is a cyclic group
of order k generated by the “Frobenius automorphism” ¢ s £P, see
for example Lang (1993) Chap. V, Sect. 5.)

The higher dimensional affine and projective groups are automorphism
groups of affine and projective geometries. The affine geometry AGy(F)
consists of points and affine subspaces constructed from the vector space F'¢
of row vectors of dimension d over the field F'. The points of the geometry
are simply the vectors of F¢. The affine subspaces are the translates of the
vector subspaces of F'¢. Thus if S is a k-dimensional subspace of F¢ then

S+p:={a+B|lacs}

is an affine subspace of dimension k for every 8 € F?. Of course, if
B € (S+ ) then S + 8 = S + 3. For example, AG3(R) consists of all
points of R? together with the straight lines in R? as affine subspaces. What
we have done, in fact, is neglect all metric considerations from R? and re-
tain only the incidence structure, that is, the information concerning which
points are on which lines. An automorphism of the affine space AG4(F)
is a permutation of the set of points which maps each affine subspace to
an affine subspace (of the same dimension). In other words, an affine au-
tomorphism is a permutation of the points that preserves, or respects, the
affine geometry:.

An affine transformation is an affine automorphism of an especially sim-
ple form. For each linear transformation a € GL4(F) and vector v € F¢
we define the affine transformation t,, : F¢ — F? by

tow 1 U — ua + v.

Each of these mappings ¢, , is an automorphism of the affine geometry
AGq4(F). The set of all t,, (a € GL4(F), v € F?) forms the affine group
AGL4(F) of dimension d > 1 over F. It is easy to verify that AGL4(F) is a
2-transitive subgroup of Sym(F<¢). The group AGL4(F) is a split extension
of a regular normal subgroup T, consisting of the translations t; , (v € F%),
by a subgroup isomorphic to GL4(F).

Further affine automorphisms are derived from the automorphisms of the
field F. For each field automorphism o € Aut(F') there is a permutation of
F? defined by t, : u — u’ where ¢ acts componentwise on the vector wu.
The mappings t, (¢ € Aut(F)) form a subgroup of Sym(F?) isomorphic
to Aut(F). This subgroup together with AGL4(F) generates the group
AT'Ly(F) of affine semilinear transformations. The elements of AT Lg4(F)
are precisely the permutations of F¢ of the form:

tawo iU — u’a+v

where a € GL4(F), v € F¢ and o0 € Aut(F). When d > 2, it turns
out that the group AT'L4(F) is the full automorphism group of the affine
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geometry AG4(F) (see Exercises 2.8.10 and 2.8.12 below). In the cases
where Aut(F) = 1 (for example if |F| is a prime or if FF = R or Q), we
have ATL4(F) = AGL4(F).

Ezxercises

2.8.10 Let S be a k-dimensional affine subspace in F%¢. Show that 5% is an
affine subspace of dimension k for each ¢ € AT L4(F).

2.8.11 An affine basis for AGy4(F'} is aset B = {a, ..., aq} of d+1 points
with the property that B is not contained in any (d — 1)-dimensional
affine subspace. Show that the affine group AGL4(F) acts regularly
on the set of affine bases of AG4(F).

2.8.12 Let d > 2 and let € Sym(F?), so that z is a permutation of the
points of AG4(F'). Suppose that there is an integer k with 1 < &k <
d, such that, for every k-dimensional affine subspace S of F?, the
image S* is an affine subspace of dimension k.

(i) Show that for every £ with 1 < ¢ < d, x maps every ¢-
dimensional affine subspace of F'¢ onto an ¢/-dimensional affine
subspace.

(ii) Show that for some a and v the permutation x¢, , fixes the ori-
gin and the d standard basis vectors (1,...,0),---,(0,...,1).

(iii) Show that the permutation zt, . of part (ii) equals t, for some
o € Aut(F). Deduce that x € AT'L,(F). (Note: this last part
is somewhat more involved than the others. See Snapper and
Troyer (1989) Prop. 84.1.)

The group AGL4(F) has several important classes of subgroups. A
typical element t,, € AGL4(F) is defined by a linear transformation
a € GLy4(F) and a vector v. By insisting that the determinant of a be
1 we get the affine special linear group:

ASLy(F) := {to, € AGLy(F) | deta = 1}.

Thus ASL4(F) contains the translations T as a regular normal subgroup
and the stabilizer of a point is isomorphic to the special linear group
SLy(F). If d > 2 then ASLy(F) acts 2-transitively on the set of points

Another family of subgroups of the affine group is determined by the
subfields of F'. Let K be a subfield of F' with finite index k = [F : K].
Then F is a k-dimensional vector space over K. Thus every F-vector space
is also a K-vector space and any F-linear transformation is also K-linear.
Specifically this means that F'¢ is isomorphic to K*¢ as a K-vector space
and that GL4(F) is isomorphic to a subgroup of GLy4(K). The trans-
lation group of an affine space is isomorphic to the additive group of the
underlying vector space. Thus the identification of F'¢ and K*¢ as K-vector
spaces leads to an identification of the translation groups on AG4(F') and
AG1q(K). Therefore points of the affine spaces AG4(F) and AGq(K) can
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be identified in such a way that the group AGL4(F) is identified with a
subgroup of the affine group AGLy4(K). In the finite case, AGL,,(q) con-
tains a subgroup isomorphic to AGL,(¢®) whenever m = rs. In particular,
the general linear group GL,,(g) contains a subgroup isomorphic to the
group GL;{g™) which is just the (cyclic) multiplicitive group of a finite
field. These subgroups are explored further in Exercises 4.6.6 and 4.6.7.

The finite affine groups AGL,4(g) occupy an important position in the
classification of finite primitive groups. As we shall see in Chap. 4, if G
is a finite primitive group containing a regular normal abelian subgroup,
then G is a subgroup of an affine group, and the regular normal subgroup
of G acts as translations of the affine space. For example, if G is primitive
and solvable, then it is of this form. Sect. 4.6 is devoted to the study of
primitive groups with an abelian regular normal subgroup.

FEzxercises

2.8.13 Suppose that F' is a field and that d > 2. Show that:
(i) ASLy(F) is 2-transitive on the set of points of AG4(F).
(if) ASL4(2) = AGL4(2) is 3-~transitive on the set of points of
AG4(2).

2.8.14 Show that for any d > 1 and any field F', the affine group AGL4(F)
contains a sharply 2-transitive subgroup (that is, a subgroup H
which is 2-transitive and such that H,g = 1 for any two points
a, B).

2.8.15 Calculate the orders and indices and sketch the subgroup lattice for
subgroups of the form AGL,,(F) (with F' a field of characteristic
p) that are contained in the group AGLq2(p) for an odd prime p.
Add to your lattice the groups ASL,,(F) and AT'L,,(F') that are
contained in the group AGL12(p).

The projective general linear group PGL4(F') and projective special linear
group PSL4(F) of dimension d over a field F' are defined to be the quo-
tient groups GL4(F)/Z and SL4(F)Z/Z, respectively, where Z consists of
all scalar matrices al in GL4(F). When d = 2, the group PGLy(F) is
isomorphic to the group of linear fractional mappings (see Exercise 2.8.7).
These definitions specify the projective groups as abstract groups but do
not indicate a natural permutation action. For d > 3 such a natural action
for the groups PG Lg4(F) is provided by the projective geometry PGgq_1(F’)
of dimension d — 1 over the field F' which we describe below. We construct
this geometry by using the linear action of the general linear group GLq4(F).

The group GL4(F) acts on the set F'¢ of row vectors by right multiplica-
tion and has two orbits, namely {0}, and the set Q@ = F'¢\ {0} of nonzero
vectors. Its action on € is not primitive. There is a system A of blocks, for
GL4(F), where two vectors of  lie in the same block if and only if each is
a scalar multiple of the other. A typical block in A consists of all nonzero
scalar multiples of a given vector in §2; we shall call this block a (projec-
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tive) “point”, and we shall use [, .. ., aq4] to denote the point containing
the nonzero vector (a1, ..., aq). We define A to be the set of the points
of the projective geometry PGg4-1(F). Since A is a system of blocks for
GL4(F), the general linear group has a permutation action on the set of
projective points. The kernel of this action is the group of scalars Z, and
so the image of the action on A is GL4(F)/Z = PGLy4(F). Thus PGL4(F')
acts faithfully as a permutation group on A.

Define A := {[a1,...,aq) € A | ag = 0} (the set of “points at infinity”).
Then the setwise stabilizer G;a) consists of the images of those elements
in GLy4(F) having block matrix form

{Z ((J)é} where a € GLg—1(F),v € F¥ and o € F with a # 0.

If we identify the vectors in F¢~! with points in PG4_1(F) via the mapping
(041, e ,ad_l) — [al, vy Old—1, 1]

then it may be verified that the setwise stabilizer Gay in its action on
A\ A is permutation isomorphic to the affine group AGLg_1(F) acting
on the set of points of AG4_1(F). Morover, the action induced by G(a}
on A is equivalent to the action of PGL4_1(F) on the the set of points of
projective space PGy_o(F').

Exercises

2.8.16 Verify the statements of the preceding paragraph.

2.8.17 If d > 2, show that PGL4(F') is 2-transitive but not 3-transitive on
the set of projective points points A.

2.8.18 Describe a typical element of the pointwise stabilizer G(a) of the
set A of points at infinity. Describe the action of this group on the
complement of A.

So far we have specified the points of the projective geometry PGy4_1(F)
as the 1-dimensional vector subspaces of F'¢. To complete the geometry we
define the projective subspaces to be the nonzero vector subspaces of F¢. If
¥ is a vector subspace of F'¢, then ¥ contains the 1-dimensional subspace
spanned by any of its elements so ¥ determines a set of projective points
(by containment). The projective dimension of a projective subspace ¥ is
defined to be one less than its vector space dimension.

Consider, for example, the lowest dimension subspaces. Let II denote the
set of 2-dimensional subspaces of F'. Then the elements of II determine
lines in our geometry (note how we have dropped down a dimension). A
point P € PGy_1(F") lies on a line £ € Il when P C ¢, and a set of points
is said to be “collinear” if the points are all on the same line. The automor-
phism group Aut(PG4_1(F)) of this geometry is the group of permutations
of the points of PGy4_1(F) which preserve the relation of collinearity. This
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automorphism group acts in a natural way on the set IT of lines and also
on the set of k-dimensional subspaces for any k.

In the action of GL4(F') described above it is clear that each element
of GLq(F) induces an automorphism of PG4_1(F), and so PGL4(F) is
embedded in Aut(PGg_1(F)). It is also clear that any field automorphism
o of F induces an automorphism of PG4 _1(F) via

o1, .. aq] =[], ..., 0]

The group generated by these two types of automorphisms is called the
projective semilinear group and is denoted PT'L4(F'). One can show that
PT'Ly(F) is the full automorphism group of PGy_1(F) for d > 3 (see for
example Artin (1988) Theorem 2.26 or Samuel (1988) Theorem 7).

FExercises

2.8.19 A set of d + 1 points in PG4_1(F) is a basis if no subset of d of
the points is contained in a projective subspace of dimension d — 2.
Show that the group PGL4(F) acts regularly on the set of bases of
PGg4-_1. (This is one modern form of the “Fundamental Theorem of
Projective Geometry”.)

2.8.20 Let x be a permutation of the set of points of PG4(F). If z preserves
collinearity, show it must also map each projective subspace to a
projective subspace of the same dimension.

2.8.21 Show that SL4(F') acts transitively on the set IT of projective lines
and also on the set of all triangles (that is, triples of non-collinear
points) in PG4_1(F) (for d > 3). In particular the group PSL4(F)
is 2-transitive on the points of PGg4_1(F).

2.8.22 Show how to identify the Fano plane (Exercise 2.4.2) with PG2(2).
Hence show that the automorphism group of the Fano plane is
isomorphic to PGL3(2) = PSL3(2).

2.8.23 Suppose that F' is a finite field of order q.

(i) Show that PG4—(q) has (¢* — 1)/(q — 1) points.
(ii) Show that PG4 1(q) has |TI| = (¢¢—1)(¢?"1—1)/(¢?—1)(g—1)
lines.
(iii) Deduce that PGL3(g) has two subgroups of index ¢* + ¢ + 1
which are not conjugate.

2.8.24 Consider the projective plane PG3(F). Show that any two points
lie on a unique line and any two lines intersect in a unique point.
In particular, the theory of projective planes lacks any concept of
parallel lines.

2.9 The Transitive Groups of Degree at Most 7

In the preceding sections we have discussed a variety of constructions for
permutation groups. We shall now apply these ideas to give a census of
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transitive groups of small degrees up to permutation isomorphism. In each
case we leave aside the alternating and symmetric groups of the given degree
as “improper” groups.

There are no proper transitive subgroups of S, for n < 3, and forn = 4
it is a simple exercise to show that up to permutation isomorphism (that is,
conjugacy in S, ) there are only three: the cyclic group ((1234)), the non-
cyclic group ((12)(34), (13)(24)) and the Sylow 2-subgroup ((1234), (13)).
In discussing the case n = 5 we shall find the following lemma useful.

Lemma 2.9A. Letn > 5. IfG < S, and G # A, or S,, then |S,, : G| >
n.

PRrROOF. The proof depends on a result which we shall prove in Chap. 3 (see
Corollary 3.3A) namely, that when n > 5 the only normal subgroups of S,
are 1, A,, and S,,. Now, Example 1.3.4 shows that there is a representation
of S, as a transitive group of degree d := |S,, : G| acting on the set of right
cosets of G in S,,, and that the kernel of the representation is contained
in G. Since G does not contain A,, we conclude that the representation
is faithful, and so S,, is isomorphic to a subgroup of Sy. Hence d > n as
asserted. 0

Now consider a “proper” transitive subgroup G of Ss. Then the index of
a point stabilizer of G in G is 5, so |G| = 5k for some integer k. By Lemma
2.9A, 5k < 120/5 and so k < 4. Thus by the Sylow theorems (see Exercise
1.4.13) we conclude that there is a unique (normal) Sylow 5-subgroup P of
G of order 5. Without loss in generality we may take P = ((12345)). It is
now easy to show that the normalizer of P in S5 is N := (P, (2354)) which
has order 20, and so there are just three possible choices for G (of orders
5,10 and 20, respectively).

Ezxercises

2.9.1 Check that every proper transitive subgroup of Sy is conjugate to one
of the three groups listed above.

2.9.2 Show that the normalizer N of the cyclic subgroup C := {(12...n))
in S, is a split extension of C by

H:={ur € S, |1 <k<nand GCD(k,n) = 1}

where ug : % — ki mod n. (GCD(k, n) denotes the greatest common
divisor of k and n.)

2.9.3 Verify that each proper transitive subgroup of S5 is conjugate to one
of the three groups just described.

We now turn to the transitive groups of degree 6. In this case the enumer-
ation is considerably more challenging since up to permutation isomorphism
there are 14 proper transitive groups of this degree (given in Table 2.1) in
addition to the two improper groups Ag and Sg. We shall describe each of
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TaBLE 2.1. The Proper Transitive Groups of Degrees 4, 5, 6

and 7

Order Description Generators
Degree 4
T4.1 4 Cy (1234)
T4.2 4 Oy xCy (12)(34), (13)(24)
T4.3 8 Cz wry Cz (1234), (12)
Degree 5
T5.1 5 Cs (12345)
T5.2 10  ASL4(5) (12345), (25)(34)
T5.3 20 AGL4(5) (12345), (2354)
Degree 6
T6.1 6 Cs (123456)
T6.2 6 Ss (12)(34)(56), (135)(246)
T6.3 12 Dy (123456), (16)(25)(34)
T6.4 48 Sy wrs S (123)(456), (12)(45)(14)
T6.5 24 AgN'T6.4 (123)(456), (12)(45), (14)(25)
T6.6 24 Sa (123)(456), (1542)
T6.7 12 Ag N T6.6 (123)(456), (14)(25)
T6.9 72 S5 wry Co (123), (12), (14)(25)(36)
T6.10 36 AgNT6.9 (123), (1542)(36)
T6.11 36 32 . 22 (123), (12)(45), (14)(25)(36)
T6.12 18 Cs wry Co (123), (14)(25)(36)
T6.13 120 PGLs(5) (01234), (000)(14)(1243)
T6.14 60 PSLy(5) (01234), (000)(14)
Degree 7
T7.1 7 Cr (1234567)
T7.2 14 Cr-2 (1234567), (27)(36)(45)
T7.3 21 ASLy(T) (1234567), (235)(476)
T74 42 AGILL(7) (1234567), (243756)
T7.5 168 PGL3(2) (1234567), (23)(47)

these groups and then at the end give some indication how to check that
we have a full list.

First of all there are the regular groups. These correspond to the regular
representations of the groups of order 6, so there are two of them: a cyclic
group and a group isomorphic to S5 (T6.1 and T6.2 in the table). Next there
is a variety of groups which we can obtain by the constructions described
earlier in this chapter.

Since the binomial coefficient (3) = 6, the action of S; on 2-sets has
degree 6 (see Example 2.1.2). Relabelling the points gives an imprimitive
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subgroup of order 24 in Sg (T6.6). It can be seen that this group has
blocks of size 2, and its action on a system of these blocks is like the
symmetric group of degree 3. The even permutations in the subgroup T6.6
form another transitive group T6.7 of order 12.

Transitive groups of degree 6 also arise as automorphism groups of suf-
ficiently symmetric structures, in particular, of suitable graphs. In order
that the automorphism group of a graph should be transitive (on the set of
vertices) it is certainly necessary for each vertex to have the same degree.
It can be verified that the automorphism groups of each of the graphs in
Fig. 2.5 is indeed transitive.

Exercise

2.9.4 Show that these are the only graphs with six vertices and transitive
automorphism groups in which each vertex has degree 1 or 2. Ex-
plain why, for our purposes, it is enough to look at graphs where the
common degree of the vertices is at most half the number of vertices.

In the case of the first graph we find that the automorphism group is
the dihedral group (z, y) of order 12 where z = (123456), y = (16)(25)(34)
and y~lzy = 27! (T6.3); it contains T6.1 and has blocks both of size 2
and size 3. The automorphism group of the second graph is generated by
(123)(456), (12)(45) and (14) (T6.4). The stabilizer of 1 is easily seen to
be of order 8 and so the group has order 6 - 8 = 48 by the orbit-stabilizer
property. The sets {1,4},{2,5} and {3,6} form a system of blocks and
since |S2 wrs S3| = 236 = 48 (with the natural action of S3), we conclude
that T6.4 is permutation isomorphic to Sy wrs S; (see Exercise 2.6.2).
The even permutations in the group T6.4 constitute a proper transitive
subgroup T6.5. The group T6.4 also contains another transitive subgroup,
T6.8, of order 23 - 3 = 24 obtained by replacing the group S3 in S, wrs S5
by its cyclic subgroup of order 3; T'6.8 can be generated by (123)(456) and
(14).

(a) (b) ()

FIGURE 2.5.
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FEzxercise

2.9.5 All the groups T6.5, T6.6 and T6.8 are imprimitive groups of order
24 and degree 6 with blocks of size 2. However, show that they are
not permutation isomorphic.

The automorphism group of the third graph is generated by (123),
(12) and (14)(25)(36), and can be seen to be permutation isomorphic
to Sz wry Sy with the natural action of Sy (T6.9). It therefore has or-
der 62 - 2 = 72. Moreover, group T6.9 has two nonisomorphic transitive
subgroups of index 2 and order 36, namely, the group T6.10 of all even per-
mutations in T6.9, and the group T6.11 generated by the elements (123),
(12)(45) and (14)(25)(36). The latter subgroup also contains a transitive
subgroup T6.12 generated by (123) and (14)(25)(36) which is isomorphic
to a subgroup of the wreath product S3 wry Sz where S3 is replaced by a
cyclic group of order 3. This latter group is also the automorphism group of
the digraph obtained by modifying the graph so that each of the triangles
is a directed cycle.

The remaining proper transitive groups of degree 6 are primitive groups,
namely the projective linear groups PGLs(5) and PSLy(5) of orders 120
and 60 respectively (see Sect. 2.8). These groups appear as T6.13 and T6.14
in the table, and in terms of their natural symbols 0,1,2,3,4 and oo these
groups can be generated by the functions: £ — £+ 1,€ — 1/€ and £ — 2¢;
and € — £+ 1,& +— 1/€ and € — —¢, respectively.

This completes the list of the 14 proper transitive groups of degree 6.
We shall not prove that these are indeed the only groups, but in Exercise
2.9.8 we shall give an indication how one might try to do this. While this
case study is an illuminating exercise, it should be realized that degree 6 is
too small to be generic, and the list is rather atypical. For example, in our
list the largest imprimitive group T6.9 is small compared with primitive
group T6.13. As we shall see later (Chap. 5), this can only happen for
small degrees; for larger degrees, the proper primitive groups have very
small orders compared to the largest imprimitive groups.

Table 2.1 also lists the five proper transitive groups of degree 7. These
are simpler to obtain and are left as an exercise.

FExercises

2.9.6 Identify the transitive groups from the table which are isomorphic
to the images of the following actions of the symmetry group G of
the cube:

(i) The action of G on the set of six faces of the cube;
(ii) The action of G on the set of six pairs of opposite edges (this
action is not faithful);
(iif) The action of the subgroup of the rotations in G on the faces.
2.9.7 Identify the following transitive groups among those in the table:
(i) The automorphism group of the graph in Fig. 2.6.
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FIGURE 2.6.

(ii) The permutation group induced by the symmetry group of the
icosahedron on the set of six pairs of opposite vertices.
2.9.8 Let G be a proper transitive subgroup of Sg. Prove:
(i) If G contains a 5-cycle, then G is 2-transitive and has order 60
or 120;
(ii) If G contains a 3-cycle but no 5-cycle, then the support of the
3-cycle is a block for G;
(iii) If G contains no 3- or 5-cycle, then its point stabilizer is a
2-group and G has a block of size 2.
(This exercise is a first step in showing that the groups in our
table form a complete list. In particular, it shows that either G
is primitive of order 60 or 120, or G is imprimitive. In the latter
case G is permutation isomorphic to a subgroup of S3 wry Sz or
of Sy wrs S3, so this case requires an analysis of the transitive
subgroups of these latter groups.)
2.9.9 Prove that PSL2(5) & As. [Hint: Find a permutation representa-
tion of degree 5 of the former group.]
2.9.10 Show that PGL3(5) 2 Ss.
2.9.11 Verify that Table 2.1 gives all the proper transitive permutation
groups of degree 7.

2.10 Notes

e Exercise 2.2.8: A lot is known about automorphism groups of ordered
sets; see, for example, Droste (1985) and references there. For related
results see Lauchli and Neumann (1988).

e Exercise 2.3.10: Cayley graphs were introduced as “colour graphs” by A.
Cayley in 1878; see Burnside (1911) §304 for further historical details.

® Exercise 2.3.11: See Sect. 9.2 for related results.

¢ Exercise 2.4.5: See Wielandt (1969). See also Liebeck et al. (1988b).

® Exercises 2.4.7-10: See Maurer (1955) and Karrass and Solitar (1956).
Completeness of (9, d) as a metric space permits use of the Baire category
theorem; see, for example, Cameron (1990) Sect. 2.4 and Dixon (1990).

® Sects. 2.6 and 2.7: Various forms of the wreath product construction are
quite old, going back at least to G. Frobenius at the end of the 19th
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century (as groups of “monomial matrices”). The name appears to have
been introduced by G. Pélya in the 1930s and became standard termi-
nology in the 1950s. A general wreath product construction (called the
“complete product”) was introduced in a series of papers by L. Kalouj-
nine and M. Krasner around 1948; see below for specific references. See
also P. Hall (1962).

® Theorem 2.6A: See Kaloujnine and Krasner (1948).

¢ Example 2.6.1: See Kaloujnine (1948); P.M. Neumann informs us that a
similar construction appears in a paper of Cauchy. For related results,
see Berkovic (1989).

® Lemma 2.7TA: Part of the “folk-lore”, and stated without proof in
Cameron (1981a). According to P.M. Neumann, a special case was proved
by W. Manning at the beginning of this century.

® Exercise 2.7.3: See Seager (1988).

¢ Sect. 2.8: For general reference to the affine and projective groups see,
for example, Artin (1957) or Snapper and Troyer (1971).

¢ Sect. 2.9: At the end of the 19th century many papers were published,
notably by F.N. Cole and G.A. Miller, enumerating the permutation
groups of small degrees. These include a not quite correct list of Miller
listing over 300 transitive groups of degree 12. See also Burnside (1911)
§166 (which mistakenly includes some groups of degree 8 which are not
primitive). More reliable lists of primitive and transitive groups (giving
generators and structural information) have appeared since, including
Sims (1970) (primitive groups of degree < 20), Butler and McKay (1983)
(transitive groups of degree < 11), and Short (1992) (solvable primitive
groups of degree less than 256). Although these lists have been extended
[for example, Royle (1987)], they soon become quite unwieldy to use by
hand; the libraries of primitive and transitive groups in the computer
algebra systems MAGMA and GAP now provide the most reliable and
extensive sources. In Appendix B we give a summary list of the primitive
groups of degree < 1000.
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The Action of a Permutation
Group

3.1 Introduction

The next three chapters are primarily devoted to studying primitive groups.
Primitive groups play an important role as building blocks, particularly in
the study of finite permutation groups. Frequently, we can carry out a series
of reductions: from the general case to the transitive case by examining the
action of the group on its orbits and its point stabilizers, and then from the
transitive imprimitive case to the primitive case by studying the action of
the group on sets of blocks and the block stabilizers. Eventually, at least for
finite permutation groups, this reduces the original question to one about
primitive groups. Of course, this is rarely the whole problem; generally we
must then retrace the process, fitting the information back together as we
reconstruct the original group, and often this is very complicated. Still, the
crux of many problems in finite permutation groups lies in the study of the
primitive case.

A large part of this chapter develops combinatorial methods to study
the action of the point stabilizer of a transitive group, methods which
are especially effective for primitive groups. In Chap. 4 we apply more
direct group theoretic methods which enable us to describe the subgroup
structure of finite primitive groups in greater detail. These latter methods
have turned out to be very powerful when combined with the classification
of finite simple groups. In Chap. 5, combinatorial techniques are used to
give bounds on the orders of primitive groups.

Any subgroup of Sym({) which contains Alt(€?) is primitive (provided
(] > 2), but such a subgroup is quite atypical as a primitive group; we
call such subgroups improper primitive groups. The remaining primitive
subgroups of Sym((2) are called proper, and it is these in which we are
interested. Typically, as we shall see in Theorem 3.3B and Chap. 5, the
proper primitive groups have very small orders compared with the order of
the symmetric group. They are also quite rare. As Table 3.1 suggests, the
number P(n) of proper permutation groups of degree n (up to permutation
isomorphism) grows slowly and irregularly. Indeed, it is a consequence of the

65
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TABLE 3.1. Number of Proper Primitive Groups of Degree n

n= 56 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Pm)= 3 2559 7 6 4 7 2 4 2 8 2 6 2

classification of finite simple groups that there are infinitely many values of
n (namely, n = 3,4, 34, 39,46, . ..) for which P(n) = 0; for these degrees,
only the alternating and symmetric groups are primitive [see Cameron et
al. (1982)]. A complete list of primitive groups of degree less than 1000 is
given in Appendix B.

The following example is a typical illustration of the relative sizes of the
intransitive, imprimitive and proper primitive subgroups of the symmetric
group (see Sect. 5.2). In Sy, the largest intransitive subgroup has index
16, and the next largest has index 120. On the other hand, the largest im-
primitive subgroup of Sj¢ has index 6435, and the largest proper primitive
subgroup has index 64864800.

Exercise

3.1.1 Construct the subgroups of Sig referred to in the last paragraph.
[Hint: The first two are stabilizers of a point and of a 2-element
subset. The largest imprimitive subgroup has blocks of size 8, and
the primitive subgroup is permutation isomorphic to AGL2(4).]

3.2 Orbits of the Stabilizer

As we saw earlier (see Sect. 2.3), graphs and digraphs can often be used to
define interesting groups. As a first step in our analysis of primitive groups
we shall show how an arbitrary transitive permutation group can be seen
to act as a group of automorphisms of a digraph.

Throughout this section G will denote a group acting transitively on a
set . For such a group we can construct a natural family of digraphs on
which G acts (preserving the incidence structures). We begin with the usual
action of G on the cartesian product 2 x €. The orbits of G on this set are
called the orbitals of G on (). The least interesting of these is the orbital
Ay = {(a,a) | @ € Q}; the other orbitals are called . For each orbital A
there is an orbital, denoted A*, where (o, 3) € A* if and only (4, @) € A.
Clearly, (A*)* = A. An orbital is self-paired if A* = A; for example, the
diagonal orbital is self-paired.

Now for each orbital A of G we define the digraph Graph(A) with vertex
set Q and edge set A. For the diagonal orbital A, the Graph(A;) is just
a digraph with a loop at each vertex, but for the other orbitals Graph(A)
is a digraph without loops. The digraph Graph(A*) for the paired orbital
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is obtained from Graph(A) by reversing the directions of the edges, and A
is self-paired if and only if the digraph Graph(A) is a graph. Because A is
G-invariant, G acts on Graph(A) preserving the adjacency structure. The
simple exercises below illustrate these concepts.

FEzercises

3.2.1 Consider the two groups H = ((12345)) and K = ((12345), (25)(34)).
Sketch the digraphs for the four nondiagonal orbitals of H and for
the two nondiagonal orbitals of K.

3.2.2 The symmetry group of the cube acting on the set of 8 vertices
(see Example 1.4.1) has three nondiagonal orbitals. Sketch the
corresponding digraphs.

3.2.3 Consider the group A of automorphisms of the infinite trivalent
tree 7 described in Example 1.5.4. Let d(a, 3) denote the distance
in 7 between two vertices a and (. Show that the set A, :=
{(a, B) | d(c, B) = k} is an orbital for each k& > 0.

3.2.4 Consider the action of degree 10 of S5 on the set of 2-subsets of
{1,2,3,4,5}. Show that there are three orbitals and sketch the di-
graphs for the two nondiagonal orbitals. Do these digraphs look
familiar?

3.2.5 Show that an orbital A for a transitive group G is seif-paired if and
only if there exists (o, 8) € A and z € G such that z interchanges «
and 8. If G is finite, show that every nondiagonal self-paired orbital
has even length, and show that G has odd order if and only if no
nondiagonal orbital is self-paired.

There is a close relationship between the orbitals of G and the orbits
of the point stabilizers of G. Recall that, since we are assuming that G
acts transitively on {2, the point stabilizers are conjugate in G by Corollary
1.4A. For each orbital A of G and each « € , we define

Afla) = {8 € Q| (ap) € A}

which is the set of vertices in Graph(A) which lie on an edge from o. It
is now easy to verify that the mapping A — A(a) is a bijection from the
set of orbitals of G onto the set of orbits of G, with the diagonal orbital
mapping onto the trivial orbit {a}. In particular, the number of orbitals is
equal to the number of orbits of G,; this number is called the rank of G.
An orbit of G, for any « € Q is called a suborbit of G, and if A and A*
are paired orbitals, then A(a) and A*(«) are called paired suborbits. Note
that if £ € G and o® = (3, then A(a)* = A(8B), which gives a canonical
mapping from the set of orbits of G, onto the set of orbits for Gg, that is,
A(p) is independent of the choice of z.

Ezercises

3.2.6 Verify the statements in the preceding paragraph.
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3.2.7 Assuming that G is transitive on Q, show that |A(«a)| |Q] = |A] for
each orbital A. In particular, |A(a)| = |A*(a)| if Q is finite.

3.2.8 Let 2 = I, be the finite field with ¢ elements and suppose that g is
odd. Let G be the group of all permutations of the form & — a& + 3
with «, 8 € Fy where « is a nonzero square in F,;. Show that G has
two nondiagonal orbitals of the same size. Are they paired?

3.2.9 Let G = AGL1(Q) and t € G be defined by t : £ — £+ 1. Consider
the action of G by right multiplication on the set I'y of right cosets
of H := (T) in G. Show that G has paired suborbits of different
sizes (contrast with Exercise 3.2.7).

3.2.10 Consider the action of SLy(Q) by right multiplication on the set
of right cosets of the subgroup SL2(Z) in SL3(Q). Show that each
suborbit in this action is finite. Is the action primitive?

3.2.11 Let G be a transitive permutation group of degree n where n is odd.
Show that G has odd order if and only if each suborbit has odd
length.

We now show how to characterize primitivity in terms of the digraphs
Graph(A). In general, let G be a digraph. A sequence vg, V1, . .., Uy of
vertices is called a directed path of length m from vy to vy, if there is an
edge in G from v; to v;41 for ¢ = 0,...,m — 1. The sequence is called an
undirected path if, for each i, there is an edge from v; to v;4+1 or an edge
from v; ;1 to v;. We say that G is connected if for every pair of vertices u
and v there is an undirected path from u to v, and G is strongly connected
if this path can always be chosen to be directed.

ExAMPLE 3.2.1. Let G = (z) be an infinite cyclic group acting on Z by
o® == a+ 1. Then A := {(a,a + 1) | @ € Z} is an orbital for G, and
Graph(A) has the form:

-1 0 1 2

This digraph is connected, but not strongly connected.
The following theorem gives another characterization of primitivity.

Theorem 3.2A. Let G be a group acting transitively on a set Q. Then G
acts primitively if and only if Graph(A) is connected for each nondiagonal
orbital A.

PROOF. First suppose that Graph(A) is connected for each nondiagonal
orbital of G. Let I' C Q be a block for G containing at least two points, say
o and 3. Let A be the orbital for G containing (a, 3). We want to show
that v € T for each v € . Indeed, since Graph(A) is connected, there is
an undirected path o = ag, ..., = v in Graph(A), and we shall show
by induction that o; € T for ¢ = 0,1,...k. This is true for ¢ = 0, so
suppose i > 0 and that a;; € T'. Since (a;—1, ;) € A U A*, there exists
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z € G such that (a®, 8%) = (a1, ;) or (o4, a;—1). Because I' is a block
and contains either a® or 3%, therefore I' = I'* and so «; € I'. This proves
the induction step, and we conclude that v € T for each v in 2. Hence G
has no proper blocks and so is primitive.

Conversely, suppose that there is a nondiagonal orbital A such that
Graph(A) is not connected. Consider the relation = defined on Q by:
a = 8 <= there exists an undirected path from « to § in Graph(A).
This is easily seen to be a G-congruence (see Exercise 1.5.4), which is proper
since Graph(A) is not connected. Hence G is not primitive. 0

In general, the graphs Graph(A) in Theorem 3.2A are not strongly con-
nected. We shall say that a group acting transitively on Q is strongly
primitive if the orbital graphs Graph(A) are strongly connected for each
nondiagonal orbital A. Theorem 3.2A shows that a strongly primitive group
is certainly primitive, but the following example shows that the converse is
not true.

EXAMPLE 3.2.2. Let G := Aut(Q, <) be the group of permutations of Q
which preserve the usual ordering < (see Exercise 2.2.8). Then G has two
nondiagonal orbitals, namely, A := {(a, 8) € Q® | a < 8} and its paired
orbital A*, Clearly, Graph(A) and Graph(A*) are both connected, but are
not strongly connected. Hence G is primitive, but not strongly primitive.

The following lemma, gives criteria for a primitive group to be strongly
primitive. In particular, it shows that for finite groups ” primitivity” and
“strong primitivity” are equivalent. Another criterion for strong primitivity
is given in Exercise 3.2.12.

Lemma 3.2A. Let G be a group acting primitively on Q.

(i) Graph(A) is strongly connected for a nondiagonal orbit A of G <=
Graph(A) contains a nontrivial directed cycle (that is, o directed path
0, 01, - -« Oy, 11 Graph(A) with ag = a and m > 1).

(i1) If for each pair of distinct points a and (3 there exists z € G with
a cycle of finite length containing both o and 3, then G is strongly
primitive.

(iii) If G is periodic (in particular, if G is finite), then G is strongly
primitive.

Remark. Part (i) of the lemma can also be interpreted as saying that
Graph(A) is not strongly connected if and only if the (G-invariant) relation
p on €} given by:

apf < there is a directed path in Graph(A) from « to 8

is a partial ordering.
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Proor. (i) It is clear that Graph(A) is strongly connected if and only if
every pair of distinct points lie on a directed cycle, so one implication is
trivial. On the other hand, suppose that Graph(A) contains at least one
nontrivial cycle. Consider the binary relation = on Q2 given by: o = § <—
a = B or o and S lie on a nontrivial directed circuit in Graph(A). This is
easily seen to be a G-congruence on 2 and, because G acts primitively, the
congruence classes must be either singletons or €2 itself (see Exercise 1.5.4).
Since Graph(A) contains a nontrivial directed cycle, the congruence classes
cannot all be singletons, and so & = 3 for all & and 8. Hence Graph(A) is
strongly connected as required.

(if) We have to show that Graph(A) is strongly connected for each non-
diagonal orbit A. Choose (, §) € A, and z € G such that z has a cycle
of finite length containing o and (. Then some power y of z maps « onto
B, and y™ fixes a for some m > 1. Thus o, = ay,ayz, ool =«
is a nontrivial directed cycle in Graph(A), and so Graph(A) is strongly
connected by (i).

(iii) Follows immediately from (ii) (we can choose z so that o* = f
because G is transitive). O

Exercises

3.2.12 Suppose that the group G acts transitively on € and let G, be a
point stabilizer. Show that G is strongly primitive if and only if
there is no subset T" with the properties G, CT C Gand TT C T
(in other words, G, is a maximal subsemigroup of G). (Compare
with Lemma 1.5A.)

3.2.13 Let G be a finite primitive group with a suborbit of length 2. Show
that G is finite, that each point stabilizer has order 2, and that G
has prime degree. Hence show that G is a dihedral group. [Hint:
Look at the digraph for the corresponding orbital.]

3.2.14 Use Theorem 3.2A and Lemma 3.2A to describe an algorithm which
you could use to decide whether a finite permutation group is
primitive (assume that the group is defined by a set of generating
permutations). What information can you get about blocks in the
case that Graph(A) is not connected for some nondiagonal orbital
A? (See Sect. 3.6.)

Theorem 3.2A uses each of the orbitals separately, but we can ob-
tain more powerful results by combining the orbitals and the digraphs
Graph(A). We define the colour graph G of the transitive group G to be
a labeled digraph with vertex set Q and full edge set Q@ x Q where each
edge (o, 8) is labeled with a “colour” identifying the orbital from which
it comes. Clearly G acts on the set of vertices of G in such a way as to
preserve the colours of all the edges. This leads us to introduce a binary
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operation o on the set of all sets of edges of G. Let X, T" C Q x €2, then
Yol :={(a,8) ]| (a,7) € X and (v, B) € T for some v € Q}.

Thus ¥ o I" is the set of all edges («, ) in G such that there is a path
of length 2 from « to 3 whose edges are from X and T, respectively. The
operation o is associative, and we can define “powers” by

O = A, (the diagonal orbital) and ¥ = nontkY for k> 1.
Also, for any set X of edges and any a € (), we shall write

Y(a) ={8€Q](a,p) € T}

and so X(a) consists of all heads of directed edges in ¥ with their tails at
a. These constructions are applied in the next theorem.

Theorem 3.2B. Let G be a group acting transitively on the set Q.
(i) Let ¥ and A be subsets of Q x Q, and suppose that A is G-invariant.
Then |Z o A(e)| < 12(a)| |[A(e)] for all o € Q.
(ii) Suppose that G is primitive and A is a nondiagonal orbital for G, and
put T := AUA*. Then U, T® = Q x Q; and, if G has finite rank
r, then it is sufficient to take the union over all k < r—1. Moreover, if
Graph(A) is strongly connected, then the same conclusion holds with
T replaced by A.
(iii) If G is primitive with finite rank r and some suborbit has finite length
m > 1, then Q is finite and [ < 1+m+--- +m" 1,

Proor. (i) Clearly, (S0 A)(a) = U, ex(a) A(7). On the other hand, for all
z € G,A(a)” = A{a®) because A is G-invariant, and so |A(%)| = |A(a)]
for all v € Q2 by the transitivity of G. The result now follows.

(ii) Since (o, ) € T'®) <= there is a nondirected path of length k
from « to @ in Graph(A), the first assertion of (ii) follows at once from
Theorem 3.2A. Now define ®(s) := Jy< <, I'® and consider the chain of
subsets ®(0) C ®(1) C &(2) C....If &(t) = ®(t—1) forsome t > 1, then
T+ C @t —1) o C ®(t), and so ®(t + 1) = ®(t). Hence, by induction,
we have ®(s) = ®(t — 1) for all s > ¢ and so Pt — 1) = Q x Q. On the
other hand, each orbital of G is contained in some A®*) because the latter
are G-invariant sets whose union is {2 x 2 and the former is an orbit for G
on this set. Thus, if G has rank r, then at most r of the sets ®(s) can differ
from one another. In particular, ®(r — 1) = Q x Q as asserted. A similar
argument applies (with I" replaced by A) in the case where Graph(A) is
strongly connected.

(iii) Let A be an orbital for G with |A(a)} = m; since m > 1, A is non-
diagonal. We shall first show that Graph(A) must be strongly connected.
Indeed, for each o € , define Q[a] to be the set of all v € Q for which there
is a directed path in Graph(A) from « to . The argument in (ii) above
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shows that Q[a] = Uy<r<,. A® (a), and so Q[q] is finite by the finiteness
of A(a). Since Q[a]® = Q[a”], the transitivity of G shows that |Q[c]| is
independent of «, while |[Q2[a]| > 1 because |A(a)| > 1. Choose 8 # a in
Q[a], and note that Q[3] C Q[a] by the definition of [a]. Since the two
sets have the same finite size, therefore Qa] = Q[F]. Thus « € Q[F] and
B € Qla], so there is a directed cycle in Graph(A) passing through o and
8. Hence Graph(A) is strongly connected by Lemma 3.2A(3).

Finally (ii) applies to conclude that Qa] = €, and so |9 <

> o<ker A(k)(oz)‘ <l+4+m+--+m"!by (). O

In the case of a finite transitive permutation group G of degree n, the list
of subdegrees (the lengths of the orbits of one of the point stabilizers) is an
invariant of G. We shall denote them in increasing order: n; = 1,ns, ..., n,
where r is the rank of G. Note that, if G is primitive and not regular of
prime degree, then n; > 1 for all ¢ > 1 (see Exercise 1.6.5).

Fxercises

3.2.15 Show that S; acting on the set of 3-subsets of {1,2,...,7} has
degree 35 and rank 4 with subdegrees 1,4,12,18.

3.2.16 Using the notation above, show that if either n; > n/2, or n; > n/4
and the corresponding orbital A; is not self-paired, then any two
vertices in Graph(A;) can be joined by a nondirected path of length
< 2.

Lemma 3.2B. Let G be a finite primitive permutation subgroup of

Sym(QY) of degree n and rank r > 2 with subdegrees ny = 1 < ng <

... < n,. Assume that G is not regular. Then

(1) nip1 < mi(ng — 1) foralli > 2;

(ii) the largest subdegree n, has a nontrivial factor in common with n; for
eacht=2,...r —1;

(iii) if k of the subdegrees na, . ..,n._1 are pairwise relatively prime then
r > 2k,

Proor. (i) When G is a finite we can refine the arguments of Theorem
3.2B (iii) as follows. Fix a € €, and order the orbitals Ay, ..., A, such
that |A;(a)| = n; for each 4. To simplify notation, set A := Ay and let A*
be its paired orbital. The set A o A* is G-invariant and consists of all pairs
(a, B) such that (o, %), (8,7v) € A for some y. Moreover, A o A* contains
a nondiagonal orbital because ny > 1.

Now consider paths in the colour graph of G which start at a and have
the form: o = ag, aq,...,ar with each edge (a;, ;1) in either A or
A* depending on whether i is even or odd. We shall call such a path an
“alternating path” of length k. Since A o A* contains a nondiagonal orbit,
Theorem 3.2B (ii) shows that for each § € 2 there is an alternating path
from «a to (3.
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Suppose that 2 < i < r; we want to show that 7,11 < n;(ng — 1). Let &
be the shortest length of a minimal alternating path from « to some vertex
3 for which (o, f) € A and j > 4. Fix such a path, o = ag,0q,..., 04 =
3, and note that k& > 2 because j 5 i. By the choice of k, (o, ag—1) € As
for some t < i. Now suppose that k is odd (the case where k is even is
analogous with A replaced by A*}. In the colour graph, there are n edges
out of agx_; from A, and one of these goes to ak_o. Hence there are at
most ny — 1 points v € Aj(a) such that (ag—1,7) € A. On the other
hand, A;(«a) is a G-orbit containing 3, and there is an alternating path
of length k from « to each point 4% € A;(a) with ¢ € G, given by:
a=co%af,...,af_;,0% Now of_; € Ay(a) for all z € Ga, and so can
only take |As(a)| = ny values. Hence 8% can take at most n;(ng — 1) values.
Thus n;11 < n; < ny(ng —1) < ny(ng — 1) as required. The proofs of parts
(ii) and (iii) are left to Exercises 3.2.18, 3.2.19 and 3.2.20. The first two of
these exercises are actually quite general and apply to infinite groups as
well. O

Exercises

3.2.17 Calculate the rank and subdegrees for the following groups:
(i) The wreath product S,, wr S2 with the product action of
degree m?;
(it) Sy, acting on the set of 2-sets of degree m(m — 1)/2;
(iii) Sm wr Sy, acting imprimitively of degree m?;
{(iv) The subgroup of the group in (iii) given by Da,, wr Sy, where
Dy, is a dihedral group of order 2m acting transitively.

3.2.18 If the group G acts transitively on two finite sets I' and A whose
sizes are relatively prime, show that the natural action of G onI' x A
is also transitive.

3.2.19 Let G be a transitive group on a set Q2 and « a point in . Let A
and I" be orbitals of G for which m := |A(a)| and n = |[[(«)| are
finite and relatively prime with m < n. Show that A oI is an orbital
for G, that k := |A o I'(a)| is also finite and divides mn, and that
k> n.If m > 1 and G is primitive, show that & > n.

3.2.20 Use the previous exercise to show that, for a finite, nonregular,
primitive permutation group, the largest subdegree has a nontrivial
factor in common with each of the other nontrivial subdegrees. In
particular, if the group has k relatively prime nontrivial subdegrees,
then its rank is at least 2%.

3.2.21 Let p be an odd prime. Show that there is no primitive group of
degree p + 1 and rank 3.

3.2.22 Show that a primitive group of degree 6, 8 or 12 must be 2-transitive.

The previous results are basically combinatorial. The following result
gives a group theoretic restriction on the structure of a point stabilizer of a
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primitive group acting on a suborbit. Recall that S is a section of a group
G if for some subgroups H and K of G we have K < H and H/K = S.

Theorem 3.2C. Suppose that G is a finite primitive subgroup of Sym(Q).
Let o € Q and let T’ be a nontrivial orbit of G,. Then every simple section
of Gq is isomorphic to a section of the group G, which G induces on T
In particular, each composition factor of G, is isomorphic to a section of
GL.

PRrROOF. We first show that if 1 < H < G, and 8 € T then, for some
z € G,z Hz fixes o but does not fix 3. Indeed, put A := fix(H) and
note that A s € because H # 1. If 8 ¢ A we can take x = 1, so assume
B € A. Now because G is primitive, A is not a block for G and so for some
x € G we have a € A® = fix(z~'Hz) and B ¢ A® (see Exercise 1.5.5).
Now suppose that S is a simple group which is isomorphic to a section
of G. Choose H < G, which is minimal with respect to the condition
that S & H/K for some K < H. Since S is simple, K is a maximal nor-
mal subgroup of H, and so if N <« H and N is not contained in K, then
S = H/K =NK/K = N/(N N K). Thus, by the choice of H we conclude
that K contains all proper normal subgroups of H, and so every nontriv-
ial homomorphic image of H contains a section isomorphic to S. On the
other hand, from what we showed at the beginning of this proof, there
exists € G such that z7'Hz < G, and (z 1Hz)' # 1. The restric-
tion G, of G, to I contains (z~*Hz)T and so has a section isomorphic to
(z7'Hz)/(z 'Kz) = S, and the theorem is proved. 0

Corollary 3.2A. IfG is a finite, nonregular, primitive group and T # {a}
is an orbit of a point stabilizer G, then:

(i) each prime dividing |Gq| also divides |GL|;

(ii) G is solvable whenever GY, is solvable.

For further results along these lines see Sect. 4.4. This section concludes
with an application of Corollary 3.2A on the support of a Sylow p-subgroup.
It is an interesting example of how reduction to the primitive case is used.

Theorem 3.2D. Let G < Sym(Q) be a transitive group of degree n, and
let P be a Sylow p-subgroup of G. If P # 1 then |fix(P)| < n/2.

PROOF. The result is true for n < 3, so we can proceed by induction.
Assume n > 3 and P # 1. We consider two cases.

First, suppose that G is primitive. We may assume that P fixes at
least one point, say «, since otherwise the assertion is trivially true. Let
Q; = {a},Qq,...,Q, be the orbits of G, of lengths ny = 1,ng,...,n,,
respectively. Since 1 # P < G4, Corollary 3.2A (i) shows that P acts
nontrivially on each of the orbits €; (i > 1), and hence by induction
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|fix(P) N Q| < (n; — 1)/2 for each i > 1. Hence

n—r+2) <
5 <

|3

Py < 1430 Tt =
=2

We claim that equality cannot hold in this inequality. Indeed, p | n =
|G : Go| because P is a Sylow p-subgroup of G and P < G,. However, p
does divide [supp(P)| = n — |fix(P)| because each orbit of P has p-power
length, and so |fix(P)| # n/2. Thus [fix(P)| < n/2 when G is primitive.
Now suppose that G is imprimitive, and let ¥ := {A,..., A} be a
system of m blocks each of size d, say, where n = md and 1 < d < n. Let
K be the kernel of the action of G on X. Since A, is a block, P < Gya,3
whenever A; N fix(P) # (), and therefore P must fix (setwise) at least
[fix(P)| /d of the blocks in X. If P is not contained in K, then P acts
nontrivially on ¥ and induction shows that [fix(P)| /d < m/2, and hence
|fix(P)| < n/2 as required. On the other hand, suppose that P < K. Since
the induced groups K?¢ (i = 1,...,m) are isomorphic, each must have
order divisible by p. If A; C fix(P), then A; C fix(u™'Pu) for all u € K,
and so all the Sylow p-subgroups of K would act trivially on A; which is
impossible. Thus P acts nontrivially on each of the m blocks A;, and so
induction shows that |fix(P)| < md/2 = n/2 as required. This proves the
theorem. O

FExercises

3.2.23 Let G be the image of the (primitive) action of Sg on the set of
3-sets of {1,2,...,8}. Using the fact that A5 is simple, show that
As is a composition factor for a point stabilizer G, of G, but not a
composition factor of GL, for some nontrivial orbit of T of G. (This
shows that we cannot replace “section” by “composition factor” in
Theorem 3.2C.)

3.2.24 If G is a finite primitive group with subdegrees 1 = n; < ne < ... <
n,, show that p < ng for each prime p dividing n; (¢ = 3,...,r).

3.2.25 Let G be a finite primitive group with a subdegree equal to a prime
p. Show that p divides |G| but p? does not. [Hint: choose an orbital
A of G such that |A(a)| = p, and let 8 € A(e). Use induction to
show that each of the sets A{a), A o A*(a), Ao A* o A(a),... s
fixed pointwise by any p-subgroup of Gag.|

3.2.26 Let G be a primitive, but not 2-transitive, group of degree 10.

(i) Show that G has rank 3 and subdegrees 1, 3 and 6.
(if) If A is the orbital corresponding to the subdegree 3, show that
Graph(A) is isomorphic to the Petersen graph (Exercise 2.3.4).
(iii) Conclude that G is permutation isomorphic to As or S5 acting
on 2-sets of {1,2,3,4,5}.

3.2.27 Suppose that G acts as a transitive group with point stabilizer H.

Show that G has rank r in this action if and only if there are elements
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y; € G for i = 1,...,r such that G is the disjoint union of the
double cosets

G =|J Hy:H.
i=1

In particular, G is 2-transitive if and only if G = H U HyH for some
y €G.

3.2.28 Let F' be a finite field with an odd number of elements. Let G be
the digraph with vertex set F' where (o, 8) is an edge <= o —
is a nonzero square in F. Show that Aut(G) acts transitively on F,
and find its rank and order.

3.2.29 Show that every primitive group of degree 20 is 2-transitive.

3.3 Minimal Degree and Bases

A basis is a very important and useful tool in studying vector spaces and
linear transformations. In particular, every linear transformation is com-
pletely determined by how it acts on a basis. An analogous idea is useful in
the study of permutation groups. Let G be a group acting on the set 2. A
subset X of Q is called a base for G if G(x) = 1; in other words the identity
is the only element of G which fixes every element in 3.

Ezxercises

3.3.1 Suppose G is a group acting on £ and ¥ C 2. Show that the following
are equivalent:
(i) X is a base for G;
(ii) X* is a base for G for all z € G;
(iii) for all z,y € G, (a® = ¥ for all @ € X) implies (z = y);
(iv) X N supp(z) # 0 for all z # 1in G.
3.3.2 If G is a finite permutation group of degree n and a smallest base for
G has size b, show that 2° < |G| < n(n—1)...(n —b+1) < n’.

If a group G acting on a set {2 has nontrivial elements with finite support,
we define the minimal degree of G to be the minimum of |supp(x)| for all
z € G,z # 1. Exercise 3.3.1 suggests that in cases where the minimal
degree is small, the bases of G must be large. An extreme case is S, which
has minimal degree 2 and whose smallest base has size n — 1.

Exercises

3.3.3 Consider the affine group AGL4(F) acting on F¢ where F' = F, is
the finite field with q elements (see Sect. 2.8). The degree of this
action is g% Show that the minimal degree is ¢ *(g — 1), and the
size of the smallest base is d + 1.
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3.3.4 Find the minimal degrees and minimum base sizes for the following

groups:

(1) An;

(ii) the wreath product Sy wr S, with the imprimitive action of
degree dr;

(iii) the wreath product Sq wr S, with the product action of degree
d;

(iv) the 3-transitive action of PGL2(F') on PGy (F), the set of “lines”
of FZ, where F' = F,, is the finite field with g elements (see Sect.
2.8).

3.3.5 Let m > 5 and consider the action of S,, on the set of 2-sets of
{1,2,...,m}. This action is primitive of degree n := m(m — 1)/2.
Show that the minimal degree is 2m — 4 and that there is a base of
size |2m/3]|. (The latter is less than /n if m > 10.)

3.3.6 Suppose that G is a (possibly infinite) primitive group. If G contains
an element x with |supp(z)] = m and z has s nontrivial disjoint
cycles, show that G has rank at most m — s+ 1. In particular, if G has
minimal degree m then G has rank at most m. Give examples to show
that this is not necessarily true for transitive groups. [Hint: Choose
o € supp(z), and note that G = (z, G) because G is primitive.]

Exercises 3.3.4 (i) and (ii) gives examples of transitive groups of arbitrar-
ily large degree with small minimal degree. Notice however that in none
of these cases are the groups properly primitive (that is, primitive and
distinct from the alternating and symmetric groups of same degree). This
is no accident, as Theorem 3.3C shows. In fact one of the main results of
Chap. 5 will give a lower bound on the minimal degree of a proper primitive
group in terms of the degree of the group. As a first modest step we exam-
ine groups with minimal degree 2 or 3. Recall that the finitary symmetric
group F'Sym(2) consists of all permutations of £ with finite support (see
Exercise 1.6.6). In the arguments below we shall be frequently calculating
expressions of the type y~'zy and z 'y lzy (recall Exercise 1.2.6).

Theorem 3.3A. Let G be a primitive subgroup of Sym(Q).

(i) If G contains a 3-cycle, then G > Alt(f).

(i) If G contains a 2-cycle, then G > FSym(Q). In particular, if Q is
finite, then G = Sym().

Proor. (i) If A C Q, then we shall identify Alt(A) with the subgroup
of Alt(?) consisting of all elements which fix  \ A pointwise. Let A be
a maximal subset of Q) with the property that G > Alt(A) (the proof
that such a subset exists when € is infinite requires Zorn’s Lemma or an
equivalent transfinite argument). By hypothesis |A| > 3, and we want to
show that A = Q. Suppose that A # Q.

Since @ is primitive, A is not a block for G, and so there exists z € G
such that A N A% # @ or A. First suppose that A N A® contains only one
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element, say a. Since z 1 Alt(A)x = Alt(A%), and G > Alt(A), therefore
there are 3-cycles of the form y := (afy) and z := (adn) in G with
B,7 € A and 6,7 € A®. Then G contains z~ 'y~ 12y = (a36) with exactly
two points in A. On the other hand, if A N A” contains at least two points,
say a and (3, then choose § € A% \ A. Since a, § and 6 all lie in A*, again
G contains a 3-cycle (a86) with exactly two points in A.

Thus let w := (aB8) € G with o, 8 € A and § ¢ A, and put I' :=
A U {6}. We claim that G > Alt(T). Since G > Alt(A), it is enough to
show that u € G for all ©u € Al¢(I") with 6* # 4. Since € := 6" € A, there
exists v € Alt(A) such that €V = 3, and then wv(aB6) € Alt(I') and fixes
6. This implies that uv(a36) and v(@B6) both lie in G and so u € G. Hence
G > Alt(T') contrary to the maximality of A. This shows that A =  as
required.

(ii) Clearly we may assume that |2] > 3. Suppose G contains the 2-cycle
(af). Then {a, } is not a block for G, and so there exists ¢ € G such that
{a, B} N {a, B}* has size 1. Relabelling if necessary we can assume that
{a, B8}* = {a,v} with v # B. Now (af)z~ (af)z = (aB)(ay) = (aBy)
lies in G, so G > Alt(Q2) by (i). But («f) is an odd permutation and so
G > ((af), Alt(Q)) = FSym(Q). 0

As an immediate application of this theorem we show that Alt(Q) is
a (nonabelian) simple group when |2] > 5. We remark that Alt(Q2) is a
simple (cyclic) group when |Q| = 2 or 3, and that Alt(Q2) is not simple
- when |Q| = 4.

Corollary 3.3A. If |Q| > 5, then Alt(Q) is simple.

ProOF. Put A := Alt(Q) with |Q2] > 5. Suppose we have N<A and N # 1;

then N is transitive by Theorem 1.6A and the primitivity of Al¢(£2). Since

N < A, the minimal degree m of N is at least 3. Our first step is to

prove that m = 3. Every element of finite support has finite order, and

so we can choose an element u € N of prime order, say p, and all of

the nontrivial cycles of u have length p. We observe that if x € A, then

the commutator y := [u 'z 'u,z] = v Y (zuz )u"}(z luz) € N. In

particular, if |supp(u_1x"1u) N supp(x)] = 1, then N contains a 3-cycle

by Exercise 1.6.7. Consider three special cases:

(i) If p > 3, then u has a cycle (afvée...) of length at least 5. Take

z = (aff), and then y = (B6v) € N.

(ii) If p = 3, and u is not a 3-cycle, then u has at least two 3-cycles
(aB7)(8€8) . ... Take z = (af5), and then y = (B6y) € N.

(iii) If p = 2, then u has at least two 2-cycles (a8)(79) . . .. Take z = (aB7y),
and then y = (af)(v6) € N.

It follows from (i) and (ii) that m = 3 if p > 2. In the case p = 2, (iii)
shows that u can be chosen in the form (a8)(v6)(€) . . .; taking z = (arye)
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in this case gives y = (afe) € N. Thus in all cases m = 3 as asserted, and
N contains a 3-cycle z.

Finally, since A is 3-transitive, 27" zz runs over the set of all 3-cycles
of A as x runs over A; hence N contains all 3-cycles. This implies that N
has no nontrivial blocks, and so N is primitive (see Exercise 1.5.5). Thus
N = A by the theorem. This shows that A has no proper nontrivial normal
subgroups, and so A is simple. 0

1

As another application of the theorem we shall prove a classical result on
the size of a base for a primitive group due to Bochert (1889). The bound
is crude but frequently useful. See Chapter 5 for better bounds.

Theorem 3.3B. Let G < Sym(S) be a proper primitive group of finite
degree n. Then G has a base of size at most n/2, and so |G| < n(n —
1) (n—[n/2] +1).

PrROOF. It is enough to prove the first statement; the bound on the order
of GG then follows from Exercise 3.3.2.

Let G be a primitive subgroup of Sym(f2), and let X be a base for G
of minimal size. Suppose that |¥| > n/2; we shall show that G > Al¢(D).
Indeed, || > n/2 implies that A := 2\ X is not a base by the minimality
of ¥. Thus there exists x # 1 in G with support disjoint from A (see
Exercise 3.3.1), and so supp(z) € ¥. Choose a € supp(z). Since X \ {a}
is not a base for G by the choice of ¥, there exists y # 1 in G such that

supp(y) C 2\ (X \ {a}) = AU {a}.

Since ¥ is a base, supp(y)NX # 0, and so & € supp(y). Therefore supp(z)N
supp(y) = {a}, and so G contains a 3-cycle by Exercise 1.6.7. Hence G >
Alt(Q) by Theorem 3.3A. Thus we conclude that if G is a proper primitive
group then |Z| < n/2 as asserted. O

Table 3.2 compares the maximal order M(n) of a proper primitive group
of degree n with the Bochert bound B(n) given by the last theorem.

Our next immediate objective is to prove a relationship between de-
gree, minimum base size and minimal degree which holds for any transitive

TaBLE 3.2. The Orders of Primitive Groups and Bochert’s
Bound

n= 5 6 7 8 9 10 11 12

M(n) = 20 120 168 1344 1512 1440 7920 95040
B(n) = 20 120 210 1680 3024 30240 55440 665280
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group. If the group involved is finite, then there is a simple counting argu-
ment to prove this result (see Exercise 3.3.7), but the general case needs a
different approach.

Exercise

3.3.7 Let G be transitive subgroup of Sym(Q) where Q is finite, and sup-
pose that the minimal base size of G is b and the minimal degree
is m. Show that |}] < bm. [Hint: Let ¥ be a base of minimal size
and let A be the support of an element of minimal degree. Show
that [E* N A| > 1 for all x € G and that, for each a € , there
are exactly |X| |G| /n values of £ € G such that o € X*. Hence
ARG /n = Tee 195 N Al > |G

To deal with the general case we begin with a result due to B.H. Neumann
(1954).

Lemma 3.3A. Let G be an arbitrary group and let H; (i = 1,...,m) be
subgroups of G. If G is a union of left cosets

i=1
for some elements z; € G, then |G : H;| < m for at least one 4.

PRrROOF. Without loss in generality we may suppose that the union in (3.1)
is “irredundant”, that is, no proper subset of the set of cosets H;z; (i =
1,...,m) has its union equal to G. We shall first show that under this
assumption all H; have finite index in G.

We proceed by induction on the number of distinct H;. If all H; are equal
then the assertion is clearly true, so suppose that at least two are different,
and let one of these subgroups be denoted by K. Since we are assuming the
union in (3.1) is irredundant, some coset Ku of K in G does not appear in
(3.1). Then

Ku C | J{Hiw: | H; # K}

and using this we can replace each term Hjz; in (3.1) which has H; = K
by a union of a finite number of cosets in the H; which are different from
K. The inductive hypothesis then shows that all H; distinct from K have
finite index in G. Since K was chosen arbitrarily from among the H;, this
shows that |G : H;| is finite for all 4.

Since all H; have finite index in G, there exists IV < G of finite index in
G with N < H; for all i (see Exercise 3.3.8 below). If we write T; := Nz,
then (3.1) shows that

&/N = /Ny,

i=1
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and so

|G: N[ <> |Hi:NJ|.

i=1

Hence for the value of j for which |H; : N| is largest we have |G : H;| =
|G/N : H;/N| < m as required. 0

FExercises

3.3.8 Let H; (i = 1,...,m) be subgroups of finite index in a group G. Show
that G has a normal subgroup of finite index which is contained in
every H,;. [Hint: Consider the action of G by right multiplication on
the set of all right cosets of the H;.]

3.3.9 Under the hypothesis of Lemma 3.3.A and assuming that the union
in (3.1) is irredundant, show that |G : NH;| < ml.

Exercise 3.3.1 shows that a base 3 for a group G has a nonempty inter-
section with the support of every nontrivial element. The following theorem
is concerned with this sort of situation in a general setting.

Theorem 3.3C. Let G < Sym(Q2) and suppose that I' and A are finite
subsets of Q) of sizes m and n, respectively. If T* N A # @ for all z € G,
then at least one point of ' lies in an orbit of G of length < mn.

ProOOF. For eachy € I' and each § € AN ~+“ we choose z.,s € G mapping
v to 8. Then the hypothesis shows that every x € G lies in at least one of
the cosets G, zs. Since there are at most mn of these cosets, Lemma 3.3A
now shows that for some v € T" we have 1G : G7| < mn, and so the orbit
7% has length < mn as required. 0

FExercises

3.3.10 For any positive integers m, n find a transitive group G of degree
mn on a set {2 and subsets A and T of sizes m and n, respectively,
such that I'* N A # § for all x € G. [Hint: Choose I' and A as
blocks for G|

3.3.11 Show that the following natural analogue of Theorem 3.3C is false:
“If G < Sym(2) and A, T are countably infinite subsets of Q such
that T* N A # 0 for all z € G, then G has an orbit which is
of at most countable length.” [Hint: Let G = Alt(Q) where Q is
uncountable.]

3.3.12 Give an example of a group G which is a union of a countable number
of proper subgroups but which does not have any proper subgroup
of countable index.

Corollary 3.3B. Let G be a transitive subgroup of Sym(2). If G has finite
minimal degree m and a finite base of size b, then 2 is finite and || < bm.
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PROOF. Let A := supp(z) for some z € G with |A| = m, and let ¥ be a
base of size b. Then X* N A # ) for all z € G by Exercise 3.3.1. The result
now follows from Theorem 3.3C and the transitivity of G. O

FExercise

3.3.13 Give an example to show that the conclusion of Corollary 3.3B may
be false if G is not assumed to be transitive.

We are now in a position to prove a theorem due to Jordan (1871) on
the minimal degree of proper primitive permutation groups. The case where
the minimal degree is 2 or 3 has been dealt with in Theorem 3.3A.

Theorem 3.3D. For each integer m > 4 there exists a constant B,, such
that if G is a proper primitive subgroup of Sym(Q2) and G contains an
element z with |supp(z)| = m, then |Q| < Bm; and if G is 2-transitive,
then Q] < 1+ (m ~ 1)2. In particular, if Q is infinite, then every primitive
subgroup of Sym(Q) containing a nontrivial element of FSym(Q) must
contain Alt(£2).

PROOF. Choose a € supp(z) and put A := supp(z) \ {a}. We first note
that A N A # 0 for all z € G,. Indeed, otherwise supp(z~'zz) and
supp(z) have exactly one point in common and G contains a 3-cycle (see
Exercise 1.6.7); this is impossible by Theorem 3.3A because G does not
contain Alt(2). Theorem 3.3C now shows that G, has an orbit I' # {a}
of length £ < (m — 1)2. On the other hand the rank r of G is at most m
by Exercise 3.3.6. Thus Theorem 3.2B (iii) shows that

Q] <1+L+2+ ...+ <t < (m—1)2™

This proves the first statement with 3, := (m — 1)?™.
In the case where G is 2-transitive, then r = 2, and so the estimate above
gives |2] < 1+ (m — 1)? as asserted. O

The proof above shows that we can take 3, = (m — 1)?™, but this is a
very crude estimate. Similarly the estimate for the 2-transitive case is quite
crude. Much better bounds are obtained later in Chap. 5.

The following example due to Jordan (1875) shows how it is possible to
strengthen these estimates in the case where m = 4.

ExXAMPLE 3.3.1. We shall show that if G < S, is a primitive group with
minimal degree 4, then n < 8. We shall leave the cases n = 9,10 and
11 as an exercise (Exercise 3.3.14), and obtain a contradiction under the
assumption that n > 12. Since the square of a 4-cycle is of type 22 (that
is, a product of two 2-cycles), the group G contains an element of type 22,
and so we may suppose that u := (12)(34) € G. Since 4 is the minimal
degree, GG is proper primitive and Exercise 3.3.6 shows that G has rank 2
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or 3. Theorem 3.3D shows that G cannot be 2-transitive because n > 10,
and so G has rank 3. Let the orbits of G; be {1}, T and A, of lengths 1, ¢
and d, respectively. Again the condition on n and Lemma 3.2B (i) show
that ¢ and d are both at least 4.

Since G = (G1, u) by the primitivity of G, neither I' nor A can contain
a nontrivial orbit of u. Hence, relabeling the points and orbits if necessary,
we may assume 2,3 € I' and 4 € A. Put & := |G4| and define

By i={r € G| a® =8} fora,f e {234}

For each pair (o, 3), either B,g is empty or it is a coset of the point
stabilizer G, in G1. Hence the orbit-stabilizer theorem shows that 'Baﬁl =
h/cif o, 8 € {2,3},|Bsa| = h/d, and the other B,s are empty.

We claim that the union of the B,g is equal to G;. Indeed, suppose that
y is an element of G not lying in any B,s. Then supp(u) Nsupp(y = uy) =
{1}, and so G contains a 3-cycle by Exercise 1.6.7, contradicting the as-
sumption that G has minimal degree 4. In particular, since ¢ > 4,d > 4
and ¢ + d > 11, the inequality

4h  h
h=|UBag| <) |Bas| = — + 5
shows that ¢ = 4.

Finally, we show that the case ¢ = 4 is impossible. In this case G} <
Sym(T') is transitive of degree 4, and so is either Sym(T"), Alt(T), a dihe-
dral group of order 8, or an elementary abelian 2-group of order 4. In the
respective cases, we can verify that |Baa N Bss| = |G123] = h/24,h/12,h/8
or h/4, and that |Bgs N Bsa| = 2h/24,h/12,2h/8 or h/4. Thus, since
|B22 n B44| Z 1, we have

h = ’UBQB|

IA

> |Bap| = |B22 N Bss| — | Baa N Bas| — 1
4h h 3h
<
T ¢ + d 24
Since ¢ = 4, this implies that d < 8. Since ¢ + d > 11, this means that

d = 7, but then Lemma 3.2B (ii) shows that this is impossible because 4
and 7 are relatively prime.

FExercises

3.3.14 Suppose that G < S, is a primitive group of rank 3 with a subdegree
3. If G contains an element of type 22, show that n = 7 or 10. Is the
group uniquely determined in each case? (See also Exercise 3.2.26.)

3.3.15 Let G be a primitive group of degree n and of minimal degree 4.
Show that n is not equal to 9, 10 or 11. Find all examples of such
groups when n < 8.
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We conclude this section with one further theorem of Jordan which is
often useful in discussing finite primitive groups. It is a special case of a
general class of results which will be discussed later in Sect. 7.4.

Theorem 3.3E. Let G < Sym(Q) be a primitive group which contains a
cycle x of prime length p. Then either G > Alt(Q) or |Q| < p + 2.

PrOOF. Theorems 3.3D and 3.3A show that the result holds if either Q2
is infinite or p = 2 or 3. So suppose that € is finite of size n and p > 5,
and assume that n > p + 3; we must show that G > Alt(Q2). As a first
step we shall show that (G is 2-transitive and that, for each o € Q, G, acts
primitively on  \ {a}.

Consider the set S consisting of all ' C 2 such that T # Q and G(q\r)
acts primitively on I'. Then & # () because supp(z) € S, and Exercise
3.3.16 shows that: if A,T € S with ANT # ) and AUT # Q, then
AUT € S. Let A be a maximal element of S containing supp(z); we
claim that |A| = n — 1. Indeed, since G is primitive, then there exists
y € G such that AY N A # @ or A. Clearly, AY € S, so the observation
above shows that AY U A = Q by the maximality of A. This implies that
n < 2|A|. Now, suppose that § € \ A. Then for all z € G5, ANA* # )
because |A| > n/2, and § € A U A?, so the observation above shows that
AUA? € 8. Thus the maximality of A shows that A = A? for all z € G.
Since G is primitive, G5 is a maximal subgroup of G, and so G5 = Ga}-
Since this is true for all points § € Q\ A, and the point stabilizers of G are
distinct maximal subgroups (G is clearly not regular), therefore Q\ A = {§}
as claimed.

This shows that G is 2-transitive, and that G, and hence every one-
point stabilizer of G, acts primitively on its support. We can now proceed
by induction on n. If n > p + 4 then the induction hypothesis applied
to G and z shows that Gs > Alt(Q2\ {6}); hence Gs contains a 3-cycle,
and so G > Alt(Q) by Theorem 3.3A. Thus consider the one remaining
base case where n = p + 3. Since p > 3, P := (z) is a Sylow p-subgroup
of G. Put N := Ng(P), and note that ¥ := fix(P) is N-invariant since
¥ = fix(P*) = fix(P) for all u € N.

We claim that N¥ = Sym(Z) = S;. Indeed otherwise, N, = N,g for
two distinct points «, 8 € X. However N, and N,g are the normalizers
of P in G, and Gog, respectively. Hence the Sylow theorems (Exercises
1.4.12 and 1.4.13) and the 2-transitivity of G give the contradiction:

1=|Gy : Ny = IGa : G’ag} iGag : Naﬂ‘ =n—1 (mod p).

This shows that N¥ = Sym(Z ) as claimed.

Finally, N acts by conjugation on P; the kernel of this action is C' :=
Cg(P) and the image of this action lies in Aut(P). Because P is cyclic,
Aut(P) is abelian (Exercise 2.2.2), and so N’ < C. Now a simple calcu-
lation shows that C\* = (x), and C* > (N')® contains a 2-cycle from
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above. Choose y € C such that y* is a 2-cycle. Then y™\¥ ¢ (z) and
p # 2, 80 yP is a 2-cycle in C. This shows that G contains a 2-cycle, and
so G > Alt(2) by Theorem 3.3A. O

Exercises

3.3.16 Let H and K be subgroups of Sym(() with supports A and T,
respectively. If each of H and K acts primitively on its support, and
ANT # 0, show that (H, K) acts primitively on A UT.

3.3.17 Let C be the centralizer of a cycle z in Sym(Q2). If = has support
A, show that C* = (). [Hint: Use Exercise 1.2.6.]

3.3.18 Show that the order of a proper primitive group of degree 19 cannot
be divisible by 7. [Hint: If the Sylow 7-subgroup is nontrivial, show
that its centralizer contains a 5-cycle.]

3.4 Frobenius Groups

A Frobenius group is a transitive permutation group which is not regular,
but in which only the identity has more than one fixed point. Historically,
finite Frobenius groups have played an important role in many areas in
finite group theory, including the analysis of 2-transitive groups and finite
simple groups. The present section gives a survey of some of the properties
of these groups. Unfortunately, proofs of the basic structure theorems of
finite Frobenius groups must be omitted because they require techniques
such as character theory which would require a major diversion from our
central theme.

ExXAMPLE 3.4.1. Let U denote a subgroup of the group of units of a field
F. Then the set G consisting of all permutations of F of the form

tap:E—af+ [ withaeUGeF
is a Frobenius group where the point stabilizer of 0 is
Goz{ta0|aEU}%U.

The elements of G which fix no points, together with the identity, are
the translations t;5 : £ — & 4+ B. These translations constitute a normal
subgroup K 2 (F,+) of G.

Let G < Sym(2) be a Frobenius group. Then G, N Gg = 1 for any two
distinct points a, 8 in €2, and so we say that the conjugacy class of stabiliz-
ers is a trivial intersection set (TI-set). The stabilizer G, acts regularly on
each of its orbits on Q\ {a}. When Q is finite, this implies that |G, | divides
Q] — 1 and so G is quite a small subgroup of Sym (). An important role
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in the analysis of a Frobenius group is played by the set
(3.2) K:={zecG|z=1or fix(z) = 0}

consisting of the identity and the elements of G not in any point stabilizer
(the fized point free elements). In the example above K is a normal subgroup
of G, and as we shall see later this is always true when G is finite but not
when G is infinite.

Ezercises
Let G < Sym(QQ) be a Frobenius group with the set K defined as in (3.2).

3.4.1 Show that for each u # 1 in K, Cg(u) C K; and for each  # 1 in
Go, Co(z) < G,
3.4.2 Show that the following are equivalent:
(i) K is a subgroup of G;
(ii) for some a € €, distinct elements of K lie in distinct right

G ,-cosets;

(iii) for all & € Q, distinct elements of K lie in distinct right Gq-
cosets.

(iv) for all o, 8 € Q there is at most one element z € K such that
a® = (.

3.4.3 Suppose that n := || < co. Show that each element in K has order
dividing n, and that |K| = n.

3.4.4 Suppose that K is a subgroup of G. Show that K must be a normal
subgroup. If Q is finite, show that K is regular.

The structure of finite Frobenius groups has been described in major
theorems of G. Frobenius, H. Zassenhaus and J.G. Thompson. However,
since the proofs of these theorems would lead us too far away from the main
theme of this book, they will be omitted. The interested reader will find
expositions in the books of Huppert (1967), Passman (1968), and Tsuzuku
(1982). The key result, part (i) below, is due to Frobenius (1902) and was
an early triumph for techniques using character theory from the theory of
linear representations. There is still no more elementary proof known. Part
(ii) is from Zassenhaus (1936) while part (iii) is from Thompson (1959).

Structure Theorem for Finite Frobenius Groups. Let G be a finite
Frobenius group, G, be a point stabilizer, and let

K={zecG|z=1or fix(z) =0}

(i) K is a subgroup of G (and so normal and regular by Exercise 3.4.4).
(ii) For each odd prime p, the Sylow p-subgroups of G4 are cyclic, and
the Sylow 2-subgroups are either cyclic or quaternion. If G, is not
solvable, then it has exactly one nonabelian composition factor, namely
As.
(iii) K is a nilpotent group.



3.4. Frobenius Groups 87

FExercises

3.4.5 Show that a primitive permutation group with abelian point stabi-
lizers is either regular of prime degree or a Frobenius group.

3.4.6 Let G be a finite primitive permutation group with abelian point
stabilizers. Use part (i) of the Structure Theorem to show that G
has a regular normal elementary abelian p-subgroup for some prime
p. [Hint: Exercise 1.4.14 may be helpful.] (It is also known that a
finite primitive group with a nilpotent point stabilizer is solvable if
the Sylow 2-subgroup of the stabilizer is nilpotent of class at most 2.
See Janko (1964).)

3.4.7 If G is a finite group which contains a maximal subgroup M which
is abelian, show that G is solvable and that G® (the third term in
the derived series) equals 1.

The following two theorems give elementary proofs of parts of the Struc-
ture Theorem stated above in some special cases. Other special cases are
considered in Burnside (1911, Sect. 134), Griin (1945) and Shaw (1952).
Frobenius’ theorem has been generalized in Wielandt (1958).

Theorem 3.4A. Let G < Sym(RQ) be a finite Frobenius group of degree
n, and let K be the set defined by (3.2). If G, has even order, then K is
a regular normal abelian subgroup of G and G, has exactly one element of
order 2.

PROOF. Since GG, has even order it contains an element of order 2. Let T
be the G-conjugacy class containing this element. Since the point stabilizers
of G are conjugate and disjoint, each of the n point stabilizers contains at
least one element from T" and |T'| > n. Consider the cycle decomposition
of an element ¢t € T: ¢ has one cycle of length 1 and (n — 1)/2 cycles of
length 2. Since no nontrivial element of G has more than one fixed point,
no two elements from G can contain the same 2-cycle. There are exactly
n(n — 1)/2 2-cycles in Sym(Q?), and so we conclude that [T| (n — 1)/2 <
n(n — 1)/2 and hence |T| < n. But [T| > n from above, so |T| = n, and
every 2-cycle occurs in one of the elements of T. In particular, each point
stabilizer contains exactly one element from T, and T contains all elements
of order 2 in G.

We now claim that st € K whenever s,t € T. Suppose the contrary.
Then fix(st) = {8} for some B € 2 and some distinct elements s and ¢
from K. Then 8¢ = (Y = 3% and so either (358°) = (88") is a 2-cycle
appearing in both s and ¢, or §° = 8* = 8 (and so s,t € Gg). However,
as we have seen above, neither of these cases is possible, and so we have a
contradiction. Thus we conclude that st € K as claimed.

Fix t € T. Then Tt C K, and since both sets have size n we conclude
that Tt = K. In particular, 1 € K and KK' C 7T C K,s0 K is a
subgroup; by Exercise 3.4.4 it is therefore a regular normal subgroup of G.
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Finally, because each v € K has the form u = st (s € T), we therefore
have t~lut = st = u~! for each v € K. But this means that for all
u,v € K, wv = t Y (uw) 't = t (v"lu"1)t = vu. Hence K is abelian,
and the proof is completed. O

Theorem 3.4B. Let G < Sym(Q) be a 2-transitive Frobenius group, and
let K be the set defined by (3.2). Suppose that either: (i) G is finite; or (i)
the point stabilizers G, are abelian. Then K is a regular normal abelian
subgroup of G in which each nontrivial element has the same order.

Remark. A 2-transitive Frobenius group is also known as a sharply 2-
transitive group; further information about these groups is presented in
Sect. 7.6. With respect to hypothesis (ii), we recall that Exercise 3.4.5
shows that a 2-transitive group with abelian point stabilizers is necessarily
a Frobenius group.

Proor. (i) Put n := |Q]. Then |K| = n and |G| divides n — 1, and hence
|G| = n—1because G is 2-transitive. Suppose that « # 1 lies in K. Then
Cg(u) C K (see Exercise 3.4.1) and so |G : Cg(u)| > n — 1. Hence u has
at least n — 1 conjugates in G. On the other hand, each conjugate of u is
clearly a nontrivial element from K, so we conclude that: Co(u) = K; u
has n — 1 conjugates in G; and these conjugates are precisely the nontrivial
elements of K. Thus we have shown that K is a subgroup, each element
of K lies in the centre of K, and all elements of K are conjugate. This
can only happen when K is an elementary abelian p-group. Finally K is
regular and normal by Exercise 3.4.4.

(ii) Let T" be the set of all elements of order 2 in G. We claim that for
every pair «, 3 of distinct points there is a unique ¢t € T which maps
o onto (. Indeed, 2-transitivity implies that there exists ¢ € G such
that (o, 8)! = (8, a). Since G is a Frobenius group and t* fixes both
a and B, we conclude that 2 = 1 (and ¢t # 1); thus ¢ € T. On the
other hand, if s € T and a® = (3, then 3° = a and so st™! fixes two
points and so must equal 1. Thus ¢ is the unique element of T" mapping o
onto .

Next note that if s,# € T and neither fixes «, then there exists € G,
such that z lsz = t. Indeed, by 2-transitivity we can choose z € G,
such that (o, @®)® = (@, at). Then z 'sz € T and maps « onto of; hence
2~ lsz = t by the uniqueness proved above.

Also, there is at most one element of T' in each G,. For suppose that
s,t € TN G,. Then from above there exists x € G with 8 # «a such that
z lsx = t, and so a® = a®® = a®’. Since t only fixes one point, & = o*,
and hence z fixes both « and 8. Thus z = 1, and s = t as claimed.

Suppose now that z is any element of K and let § := o”. From what
we have proved, there is a unique t € T such that o** = a. Then zt € G,
so B # B7. We claim that either z = ¢ or #t € T. Suppose that xt # 1.
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There is a unique element s € T such that (3, 3%%)* = (8%, 3). Then
xts € Gg and if s € G, then xts fixes 2 points and hence 7t = s € T.
So suppose that s € G,. As we have shown above, there is an element
z € G, such that 27 'sz = ¢. But 2t and z are in G, which is abelian,
by hypothesis. Thus ztsz = xtzt = zz. So $*® = %% = 37 and the
element x € K has the fixed point 37, a contradiction. Therefore s € G,
and 2t = s € T.

Suppose that K is not a subgroup. Then Exercise 3.4.2 shows that there
must exist distinct nontrivial z,y € K such that zy~! € G,. Then, with

B := o = oY there is a unique element ¢ € T such that 8¢ = «a. The
argument above shows that either x = y = ¢t or else zt and yt are each
elements of T'N G, contrary to what we have shown above. !

If G is a 2-transitive Frobenius group with abelian stabilizers G, as
considered in part (ii) of Theorem 3.4B, then G is a one-dimensional affine
group AGL,(F) over some (commutative) field F' (see Corollary 7.6A).

FEzxercises

The object of this set of exercises is the construction of a finite Frobenius
group with a nonabelian regular normal subgroup; part (iii) of the Structure
Theorem for Finite Frobenius Groups, shows that the subgroup must be
nilpotent. Let ¢ be a prime power and n be an odd integer, and let F' be
a field of order ¢". Put © := F x F. Since the group of units of I is
cyclic of order ¢™ — 1, it contains a unique (cyclic) subgroup U of order

(q?n:l)/lZ) /(g — 1). Let o be the automorphism of F defined by o(¢) =
5 ~

3.4.8 Forall a, 8 € F, define gog : (§,n) — (£ + o, 1+ B+ &o(a)). Show
that each g, is a permutation of €2, and that the set K of all such
permutations is a regular subgroup of Sym(Q).

3.4.9 For each v € U, define h, : (§,n) — (v, vo(y)n). Show that each
h. is a permutation of (2, and the set H of all such permutations is
a subgroup of Sym{Q) which normalizes K.

3.4.10 Show that G := K H is a Frobenius group with a nonabelian regular
normal subgroup K. (The case ¢ = 2 gives a Frobenius group of
degree 22" and order 22*(2" — 1) which occurs as the point stabilizer
of a 2-transitive group called the Suzuki group Sz(2"); this group
is discussed further in Sect. 7.7.)

FExercises

The object of this set of exercises is to give a construction of a finite Frobe-
nius group with a nonsolvable point stabilizer; part (ii) of the Structure
Theorem for Finite Frobenius Groups shows that As is the only nonabelian
composition factor which can arise. Let ' be a finite field whose charac-
teristic is not 2, 3 or 5 and such that for some a, 3 € F we have a® = —1
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and 82 + 8 = 1. Consider the subgroup H of SLo(F) generated by

oo {—1 1} y = [0 a} and 7 = [—1 0 ]
Tl-1 0T o B “lo -1
3.4.11 Show that a field of size 29 has the required properties.
3.4.12 Show that 22 = y5 = 1, and that (zy)? = 2. Hence prove that
3.4.13 Let G be the group of all permutations of F2 of the form

Tuns * (57 77) = (57 77)” + (’77 6)

where v € H and v, § € F. Show that G is a Frobenius group whose
point stabilizers are isomorphic to H.

The structure theorem for finite Frobenius groups which is stated above
does not carry over to infinite Frobenius groups. The following examples
show how badly it fails. Let G < Sym(Q2) be an infinite Frobenius group
and let K := {z € G | z = 1 or fix(z) = 0}.

EXAMPLE 3.4.2. (An example where K is not a subgroup) Let F' be the
free group on generators z,y and put z := [z,y]. f w € F, then w™l2w €
H = (2) occurs only if w € H (see Exercise 3.4.14). Let Q be the set of
subgroups conjugate to H in F'. Then F acts faithfully (and transitively) on
Q by conjugation; let G = F' be the image of this action. By the observation
above, each w # 1 in the point stabilizer Fy lies in H and so cannot fix any
other point of Q. Thus G is a Frobenius group. On the other hand, every
conjugate of H is contained in the derived group F”, and so K contains all
elements in G \ G'. Since K # G, this shows that K is not a subgroup of
G.

EXAMPLE 3.4.3. (An example where K = 1) For sufficiently large primes
p, the Burnside groups B(m, p) with m > 2 are infinite simple groups in
which every proper nontrivial subgroup has order p, and all subgroups of
order p are conjugate [see Adian (1979)]. Let G be the image of such a
group acting by conjugation on the set €2 of its subgroups of order p. Then
G is a Frobenius group in which there are no fixed-point-free elements.

EXAMPLE 3.4.4. (An example where K is a regular normal subgroup, but
K is not nilpotent) Let S be a group and consider the set T of all doubly
infinite sequences {s;}icz with s; € S with all but a finite number of s;
equal to 1. This is a group under componentwise multiplication. Let K be
the image of the regular representation of 7" in Sym(Q2) where Q = T.
Since z : {s;} — {s;+1} defines an automorphism of T', the element z
lies in the normalizer of K in Sym(f2) (compare with Exercise 2.5.6); we
define G := (K, z). The point stabilizer G equals (z), and it is clear that
each nonidentity element of (2) has 1 as its unique fixed point. Thus G is
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a Frobenius group. The nontrivial elements of K are precisely the fixed-
point-free elements of G. Moreover K is a regular normal subgroup which
is not nilpotent provided S is not nilpotent.

Ezxercises

3.4.14 Let F be a free group on generators z and y. If w # 1 is in F,
show that the normalizer N of (w) in F' is equal to the centralizer
of (w). If w := [z,y], show that N = (w). (Note that if w = z2
then N # (w).)

3.4.15 Show that the group G in Example 3.4.3 is not 2-transitive. Is it
primitive?

3.4.16 Show that the group G in Example 3.4.4 is not primitive. Does it
have minimal blocks of imprimitivity?

3.5 Permutation Groups Which Contain a Regular
Subgroup

A permutation group which contains a regular subgroup is clearly transi-
tive. Conversely, a subgroup R of a transitive group G is regular if and only
if G = GoR = RG, and RN G, = 1 for each point stabilizer G,,. Thus
the existence of a regular subgroup for G implies a group structure on a
particular set R of coset representatives for a point stabilizer. This extra
structure can be used to derive some useful theorems about such groups.
The earliest of these theorems was due to W. Burnside who considered
transitive groups of prime degree. If G is a transitive group of prime degree
p, then G necessarily contains a p-cycle, and this p-cycle generates a regular
subgroup which is a Sylow p-subgroup of G. Burnside proved that either
G is 2-transitive or G has a normal Sylow p-subgroup. Burnside’s original
proof used character theory, but a number of other proofs have since been
discovered. At the end of this section we shall give a proof, due to I. Schur,
of Burnside’s result.

FExercise

3.5.1 Let G be a transitive permutation group of prime degree p. Show
that the following are equivalent:
(i) G is solvable;
(ii) G has a normal Sylow p-subgroup; and
(iii) G is permutation isomorphic to a subgroup of the affine group
AGL;(p) (see Sect. 2.8).

If G is a permutation group containing a normal regular subgroup R,
then G is contained in the holomorph of R (see Exercise 2.5.6) and in some
sense is “known”. The more interesting case is where R is not normal. A
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striking example where G is infinite is given by the automorphism group
of the countable universal graph (see Chap. 9) which has 2% conjugacy
classes of regular subgroups. The following construction gives examples of
finite groups with nonnormal regular cyclic subgroups.

EXAMPLE 3.5.1. Let E be field with ¢¢ elements where q is a prime power
and d > 1. The group of units of F is a cyclic group generated by some
element v, say. The field E contains a subfield F' of size ¢, and F is a vector
space of dimension d over F. Consider the group G := GLp(E) = GL4(F)
of all invertible F-linear transformations of E into itself. Then G acts on
the set Q := F \ {0}, and the element u : £ — &y of order ¢¢ — 1 in G
generates a subgroup R which acts regularly on 2. It is readily seen that
R is not normal in G. The action of G on € is not primitive. The set Q of
lines is a system of blocks, and the image G of the action of G on (1 is the
projective group PGLr(E) & PGL4(q) (see Sect. 2.8). The image R of R
in this action is again a regular cyclic subgroup (sometimes called a Singer
cycle). In this case G is a 2-transitive group.

In Example 3.5.1 we gave two types of groups containing a nonnormal
regular cyclic subgroup: an imprimitive group and a 2-transitive group. As
we shall see (Theorems 3.5A and Corollary 3.5B), these are essentially the
only two possibilities; any finite primitive group containing a nonnormal
regular cyclic subgroup must be 2-transitive.

Our study of groups with regular subgroups begins with the following
observation. Suppose that G < Sym(Q) has a regular subgroup R, and let
G, be a point stabilizer of G. Then R is a set of right coset representatives
of G, in G, and so there exists a uniquely determined function ¢ : G —
Sym(R) such that Gou?® = Gauz for all u € R and ¢ € G. A simple
calculation shows that ¢ defines a permutation isomorphism of G onto a
subgroup of Sym(R).

Exercise

3.5.2 Show that ¢ defines a permutation isomorphism of G onto Im(g).
Moreover, u®(*) = uz whenever both v and z lie in R, so ¢(R) is the
image of the regular representation of R in Sym(R).

A consequence of the observation above is that, in studying permutation
groups with regular subgroups, it is enough to look at subgroups of Sym(R)
which contain the image of the regular representation of R. We can exploit
this extra group structure on the underlying set R by using a group ring.
Let H be a finite group and F be an arbitrary field, and consider the set
F[H] of all formal sums ), . Ayu with coefficients A, € F. Addition and
multiplication are defined on F[H] by

Z At + Z Pt = Z(/\u + U

uEH ueH ucH
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and

(Z /\uu> <Z ,uuu> = v where vy i= Y Ayhty-ty

ueH uEH ueH veH

Under these operations F[H| is a ring (see Exercise 3.5.3 below) whose
group of units contains a copy of H; we identify the element v in H with
the ring element > .., Ayu where A\, = 1 when v = v and A, = 0
otherwise. Since F[H| contains a copy {A1 | A € F} of F, the ring F[H] is
also a vector space of dimension |H| over F; indeed it is an F-algebra. We
call F{H] the group ring of H over F.

Exercise

3.5.3 Show that F[H] is indeed a ring with these operations, and that F[H]
is a vector space over F' with the set of elements of H as a basis.

In the case that R is a finite group and the group G acts on R, we can
extend the action of G on R to an action on the group ring F[R] via:

(Z Auu>z = M(u®).

uER ueR

This action of G is linear in the sense that it respects the vector space prop-~
erties of F[R] although it does not, in general, respect the multiplication
in F[R).

We define the support of ¢ := ), .r Au € F[R] by

supp{c) := {u € R| A, # 0} C R.

Clearly, supp(c) is invariant under z € G whenever c is fixed by z (the
converse is not usually true).

In our computations below we shall frequently use the following ele-
mentary fact. Suppose that S is a ring with unity 1 with characteristic
p for some prime p (so 1 + 1 + ... + 1(p summands) = pl equals
0 in S). Then, whenever a;,...,ax € S commute pairwise, we have
(a1+...+ak)p=a1+...+ak.

FEzxercise

3.5.4 Prove the previous statement. [Hint: First prove that p divides each
of the binomial coefficients (£) for i = 1,...,p — 1]

Suppose that R is a finite group and that the group G < Sym(R) con-
tains the regular representation of R. Let F' be an arbitrary field and let
C(G1) denote the set of fixed points of Gy in F[R)]. The next lemma shows
that this subset of the group ring is actually a subring. The ring C(Gy),
sometimes called a Schur ring, plays a central role in the analysis to follow.
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Lemma 3.5A. Suppose that R is a finite group and that G < Sym(R).

Let Ay = {1}, Ag,..., A, be the orbits in R of the point stabilizer G.

Then:

(i) C(G1) is a vector subspace of F[R], and the elements ¢; := Y ca, u
fori=1,...,7 form an F-basis for C(G1);

(i) C(G1) is a subring (and hence a subalgebra) of F[R).

PROOF. (i) Let ¢ := ), .p Ayt Then ¢ € C(G1) <= c¢ = ¢ for all
z € Gy < A\, = A\, whenever u and v lie in the same G; -orbit <= ¢
is an F-linear combination of ¢y, ..., c,. Since the ¢; are clearly linearly
independent, the result follows.

(ii) We begin by proving the following identity:

(3.3) If I' C R is Gy-invariant, then (T'u)* = T'u® forall u € R, = € G1.

Indeed, Giuz = G1u* and so, for some y € Gy, we have ux = yu”. Hence
for all v € T we have G (vu)* = Giv(uz) = Ghoyu”® = G1vYu®, and hence
(vu)® = vYu®. Since I' is G;-invariant, v¥ runs over I' as v runs over I,
and therefore (T'u)* = I'u® as claimed.

Now C(G1) is a vector space with a basis ¢1, ..., ¢ by (i), so to prove
that C(G1) is a ring it is enough to show that ¢;c; € C(Gy) for all i and j.
Fix z € G1. Then (3.3) shows that (A;u)* = A;u® for all u € Aj; hence
summing over A; gives (c;u)* = ¢;u”. Now summing over all u € A; gives
(cicj)* = cic; since u” runs over A; as u runs over A;. This is true for
each € G and so ¢;c; is fixed by G as required. O

FExercise

3.5.5 Show that for any two Gi-invariant subsets I', A of R, the subset
T'A is also GG{-invariant.

Lemma 3.5B. Under the hypothesis of Lemma 3.5A suppose that R has

order n, and that G contains the image of the regular representation of R.
For each integer k, define A;(k) = {u* |uv e A;} fori=1,...,r

(i) G is a primitive group <> for each ¢ € C(Gi1) the subgroup
(supp(c)) of R generated by the support of c is either 1 or R.

(ii) If R is abelian, and k is relatively prime to n, then the mapping A; —
A; (k) defines o permutation of the set of G1-orbits in R.

(iii) Suppose that G is primitive, R is abelian, and p is a prime dividing
n. Let T be a Gy-invariant subset of R, and put ¢ :== Y, .ru € F[R]
where F is a field of characteristic p. Then ¢ = m1 where m is the
number of elements u € T' with uP = 1.

PRroOOF. (i) The blocks containing 1 for the regular representation of R
(acting on R) are just the subgroups of R. Hence I' C R is a block contain-
ing 1 for G if and only if I' is a subgroup of R and is G;-invariant. Thus, if
G is imprimitive, then there exists a subgroup I' such that 1 < T' < R
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and that I' is Gi-invariant. In this case, ¢ := }  ru € C(G1) and
(supp(c)) = I' # 1 or R. Conversely, suppose there exists ¢ € C(G1)
with support A such that I' := (A) # 1 or R; then I' = U? A%, and so T’
is Gi-invariant by Exercise 3.5.5. Thus I is a Gy-invariant subgroup of R,
and so G is imprimitive.

(ii) We shall first prove the result when k = p is a prime with p | n.
Choose F' = F, as the field with p elements. Then the remarks preceding
Lemma 3.5A show that ¢ = Y, . P for each i because R is abelian,
and no two terms in the sum are equal because p | |R|. Now A;(p) =
supp(c?) € C(G1) by Lemma 3.5A(ii). Since p | n, the mapping u — u?
is a bijection of R onto itself, so A;(p) (¢ = 1,...,r) is a partition of R
into r (nonempty) Gi-invariant subsets. Since G has r orbits on R, these
subsets must be precisely the orbits of G;. This proves the result in the
special case where k = p is prime.

For the general case, choose m > 0 with m = k mod n. Then successive
applications of the special case above to the prime factors of m shows that
A; — Ai(m)(= A;(k)) is a permutation of the orbits of Gj.

(iii) Since I' is Gq-invariant, ¢ € C(G;). Also, by the remark preceding
Lemma 3.5A, ¢ = ) . uP. Since p divides |R| and R is abelian, the
index of {(supp(c?)) in R is divisible by p. Now (i) and the primitivity of G
show that supp(c?) C {1}, and ¢ = m1 as asserted. O

Theorem 3.5A. Let G be a permutation group of degree n containing a
regular subgroup R. Suppose that R is abelian and has o cyclic Sylow p-
subgroup for some prime p with p < n. Then G is either imprimitive or
2-transitive.

PRrROOF. As we noted at the beginning of this section, it is enough to con-
sider the case where G is a subgroup of Sym(R) containing the image of the
regular representation of R. By hypothesis, R is abelian and has a unique
subgroup P of order p. We shall assume that G is primitive, and prove that
the orbits of G; on R are {1} and R\ {1} (so G is 2-transitive). We do this
by a series of calculations in the group ring F,[R].

We first show that each Gi-orbit I' € R contains at least one element
from P, and that the subset I \ P of remaining elements is a union of
complete cosets of P. To prove this, consider ¢ := >, . v € Fy[R]. Then
¢ € C(G1) and Lemma 3.5B (iii) shows that ¢® = > . w? = [N P|1.
This shows that, if u € T'\ P (so u? # 1), then the number of elements
v € T such that v» = uP must be a multiple of p. Since R is abelian,
P =uP <= (vu)P =1 <= ovu! € P; hence u € T'\ P implies
that the whole coset Pu C I'. This shows that T' \ P is a union of complete
cosets of P. We now show that I' N P # (). Indeed, otherwise, I itself is
a complete union of cosets of P, and so P C H := {u € R | Tu = T'}.
Clearly H is a (nontrivial) subgroup of R, and H is G;-invariant by (3.3).
Now Lemma 3.5B (i) shows that H = R because we are assuming G is
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primitive. But this implies that R = 'R = I" which is impossible because
there are at least two Gi-orbits in R. Hence I' N P # () as asserted.

Now suppose that G is not 2-transitive. Then there exists a Gy-orbit
I' not containing 1 such that m := TN P| < (p — 1)/2, and m > 0 by
what we have just proved. Define a := > rnpu, b := 3 pu, and
¢ := ) ,cru in Fp[R]. Then, from what we have just proved, ¢ = a + bd
where d € F,[R] is a sum of certain coset representatives for P in R.
Moreover, if v € P, then Pv = P, and so bv = b; hence ab = mb and
b%? = |P|b = 0. Since ¢ — m1 € C(G1), therefore e := (c — m1)? € C(Gy)
by Lemma 3.5A (ii). On the other hand

e = (a—ml+bd)? = (a —ml1)? +2(a — ml)bd + b?d® = (a — m1)?

which shows that supp(e) C P. Since P # R by hypothesis, and G is
primitive, Lemma 3.5B (i) shows that supp(e) C {1}; hence (a—m1)? = Al
for some A € Fp,. But the condition m = |I' N P| < (p — 1)/2 shows that
the coefficient in (a — m1)? = a? — 2ma + m21 of each u # 1 from T' N P
must be nonzero. Thus we conclude that I' N P C {1}. Since 1 ¢ T" by the
choice of ', we arrive at a contradiction to the fact that m = |T'N P| > 0.
This contradiction shows that G must be 2-transitive as claimed. O

Ezxercise

3.5.6 Show that every finite elementary abelian p-group is isomorphic to a
regular subgroup of some primitive group which is not 2-transitive.

A group B is called a B-group (after Burnside) if a primitive group
containing a regular subgroup isomorphic to B is necessarily 2-transitive;
Theorem 3.5A describes one class of B-groups. In fact B-groups are quite
common. It was shown by Cameron et al. (1982) that for “most” values of
n the only primitive subgroups of S,, are A,, and S,,; for these values of n,
any group of order n is trivially a B-group. On the other hand, Exercise
3.5.6 shows that finite elementary abelian p-groups are not B-groups, and
Exercise 4.7.11 will show that the direct product of six copies of Aj is not
a B-group. For infinite groups, Cameron and Johnson (1987) have given
quite general constructions of primitive groups which contain a prescribed
countable regular subgroup and which are not 2-transitive.

We now turn to the original case considered by Burnside where the group
has prime degree p. In this case it is more convenient to take the set on
which G acts as the field F,,: G < Sym(F,p) and R < G is the image of the
regular representation of the additive group (Fp, +).

Now permutations of F,, are just functions with domain and range equal
to Fp, so consider the set F of all functions of IF;, into itself. Since each of the
p points in F,, has p potential images, |F| = p?. One way to construct ele-
ments of F is to use polynomial functions. Each polynomial f(X) € F,[X]
defines a function £ — f(£) in F, and two polynomials f(X) and g(X)
define the same function if and only if f(X) = ¢(X) mod X? — X (see
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Exercise 3.5.7). In particular, each polynomial function is represented by
a unique polynomial of degree < p. This means that there are exactly pP
different polynomial functions, and so each element of F is, in fact, a poly-
nomial function (see also Exercise 3.5.8). In particular, each permutation
in Sym(F,) can be represented by exactly one polynomial of degree < p.
Group multiplication is represented by composition followed by reduction
modulo X? — X (take care with the order of composition).

Exercises
Let F' be a finite field with g elements.

3.5.7 Show that X9 — X = [],.p(X — o). Use this to show that two
polynomials f(X) and g(X) over F define the same polynomial
function of F into itself if and only if f(X) = ¢(X)(modX? — X).
[Hint: Every unit in F' has order dividing g — 1.]

3.5.8 (Lagrange interpolation) Let ¢ be an arbitrary function from F

into itself. Show that f(X) := —>_ .y é(a) ((XX 5) is the unique

polynomial of degree < ¢ such that f(a) = ¢(a) for all € F.
3.5.9 (L.E. Dickson’s criterion) Show that a polynomial f(X) € F[X]

represents a permutation of F' if and only if f(X) has a unique root
in F and, for each integer m with 1 < m < ¢—1 and GCD{(m, ¢) =
1, the polynomial f(X)™ is congruent mod X? — X to a polynomial
of degree < g—1. (There is a considerable literature on “permutation
polynomials”.)

3.5.10 (Taylor expansion) Suppose that f(X) € F[X] has degree d < p :=
char F'. Show that

v2 Y
FX+Y)=f(X)+YFO(X) + o FAOX) 4+ ...+ — FO(X)

where f(¥(X) denotes the formal ith derivative of f(X). (If d > p,
the formula needs modification since then we cannot divide by d! in
F)

With these ideas in hand, we are in a position to prove Burnside’s
theorem.

Theorem 3.5B. Let G be a subgroup of Sym(FF,) containing the p-cycle
uy : £ &+ 1. Then G is either 2-transitive or G < AGL(p).

ProoF. The hypothesis is equivalent to the condition that G contains the
regular representation R = {u, | a € Fp} of (Fp,+) where u, : & —
£ + a. As we have seen above, each element of G can be represented by a
polynomial of degree < p, and the elements of AGL;(p) are precisely the
permutations represented by polynomials of degree < 1. Thus, assuming
that G is not 2-transitive, we have to show that each element of G is
represented by a polynomial of degree at most 1.
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Let T be the orbit containing 1 for the point stabilizer Gg (recall that G
is acting on the additive group (F,, -+)). Translating to additive notation,
Lemma 3.5B (ii) shows that kI is also an orbit for Gy for each integer k
relatively prime to p; hence ol is an orbit for all @ # 0 in F,,. In particular,
this shows that I' is closed under multiplication, and so I is a subgroup of
the group of units of I, and the other orbits of G are just the cosets of
I in this group of units. Because G is not 2-transitive, h := |I'| is a proper
divisor of p — 1, and so h < p/2. On the other hand, because G contains a
p-cycle, it is primitive. If G is regular, then certainly G < AGL;(p), so we
may assume G is not regular and hence h > 1 (Exercise 1.6.5).

We next note two simple facts which we shall need. Firstly, let z € Gy
and a € Fp,. Suppose that a® = 3, and put y := uawugl. Then y maps

fmétam ((+a)" = (+a) —F=(E+a)" —a”

Thus 0¥ = 0; s0 y € Gy and permutes the elements of I' among themselves.
Secondly, since the group of units of a finite field is cyclic, I is also a cyclic
group, generated by <, say. Hence, for each integer r, we have

h—1 (v"h-1) 0 fh/l/
3.4 T _ ir o = 1 r
34) 2 =21 { % if Alr

ger i=0

Now consider a fixed z € Gy, and let f(X) € Fy[X] be the polynomial
of degree d < p such that £* = f(§) for all £ € F,. We shall show that
d=1.

The element y above permutes the elements of I', so for each a € F, and
each r >0

STHE+ ) =D {fE+a) - fl@) + f@)} =) _{£+ F@)}

el el el

This relationship between polynomial functions gives an identity between
polynomials when the degrees are small enough. Specifically

STHE+X) =D {&+ f(X)} whenever dr = deg f(X)" < p.

ger ey

Now applying the binomial theorem and using (3.4) gives

(35) > f(6+X)" =hf(X)" provided 1 <7 < hand dr < p.
£er

On the other hand, we can expand any polynomial g(X) of degree k < p
over F,, in a Taylor series:

g+ X) = gO(X) + &gV (X) + ... + & gP(X)/R!
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where ¢(¥(X)/i! is a polynomial of degree k — i (see Exercise 3.5.10).
Therefore, putting g.(X) := f(X)", equations (3.5) and (3.4) yield

h Z gM) (X)/(hi)! = hg.(X) provided dr < pand1 < r < h.
0<i<dr/h

Since the polynomials gﬁhi) (X) are linearly independent over F, for i =

0,...,|dr/h], we deduce from this last equation that
(3.6) dr <pand1l <r < h together imply that dr/h < 1.

Finally, taking r = 1 in (3.6) we see that d < h. Then, choosing r > 1
such that d(r — 1) < h < dr, we have dr < h + d < p because h < p/2.
Since dr/h > 1, (3.6) shows that r > h. This implies that d(h — 1) < h.
Since h > 1, d = 1 as required. O

Since a transitive permutation group of prime degree p contains a p-cycle,
we get the following immediate corollary (see Exercise 3.5.1).

Corollary 3.5B. FEvery transitive permutation group of prime degree p is
either 2-transitive or is solvable with a regular normal Sylow p-subgroup.

As early as 1832, E. Galois showed that the groups PSLy(p) have per-
mutation representations of degree p when p = 5,7 and 11, and in 1861 E.
Mathieu discovered his important multiply transitive groups which include
two groups of prime degree. Using the classification of finite simple groups,
it is possible to obtain a complete list of the finite 2-transitive permutation
groups (see Sect. 7.7), and hence the transitive groups of prime degree. The
classification implies that any transitive group of prime degree p must be
one of the following:

(i) the symmetric group S, or the alternating group A;
(ii) a subgroup of AGL(p);
(iii) a permutation representation of PSLy(11) of degree 11;
(iv) one of the Mathieu groups M1; or M3 of degree 11 or 23, respectively;
(v) a projective group G with PSL4(q) < G < PT'L4(q) of degree p =
(¢* —1)/(g ~ 1)

Two of the examples of Galois (PSLy(p) with p = 5 and 7) are concealed
in this list: PSLy(5) & As, and PSLo(7) & PSL3(2). The Mathieu groups
are discussed in Chap. 6. The action in (iii) is described in Example 7.5.2. It
is conjectured that there are infinitely many primes p of the form described
in (v) (for example, every Mersenne prime has this form), but this has not
been proved.

Ezxercises

3.5.11 Let ¢ = r™ be a power of a prime r. Show that necessary conditions
for (¢* — 1)/(g — 1) to be prime are: d is prime, d | ¢ — 1, and m is
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a power of d. Use this to find all the primes p < 100 for which there
are groups of the type (v) just described.

3.5.12 Let G < S, have odd order. If G contains an n-cycle, show that G
is solvable.

3.6 Computing in Permutation Groups

The object of this section is to give a short outline of some techniques which
are used in computing with permutation groups. Most of these techniques
have been developed over the past 30 years, and are used, for example,
by systems such as GAP, MAGMA (which incorporates the earlier system
CAYLEY), MAPLE and MATHEMATICA to carry out computations in
group theory. We shall outline the mathematical ideas behind these pro-
grams, but not give details of their implementation. Although the latter
details are essential for efficient implementation and are often of interest in
themselves, they lie outside the objectives of this book. Anyone seriously
interested in carrying out computations with permutation groups should
investigate the availability of one of the systems referred to above, partic-
ularly one of GAP or MAGMA which are dedicated to computations in
group theory and related areas.

Given a permutation group G < Sym(2) on a finite set §2, some natural
questions which arise are:

® Order Problem: what is the order of G?

¢ Membership Problem: given z € Sym(Q), decide whether z € G.

® Orbit Problem: what are the orbits of G?7

Block Problem: is G primitive? If not, find a nontrivial block for G.

A brief thought about these problems immediately raises the question as
to how the group G is to be described. In mathematical problems, permuta-
tion groups may be described in many different ways, but in computational
work it turns out that it is important to have a uniform description, and
this is frequently chosen to be a set W of permutations generating G. In
cases where an alternative description is given, for example, a definition of
G as the automorphism group of a geometric structure, a preliminary step
is carried out to construct a set of permutations generating G.

From here on we assume that G < Sym(Q) and that W is a set of
generators of G. Of the questions posed above, the easiest to deal with
turn out to be those dealing with orbits and blocks.

(A) Computing Orbits

Consider the digraph G whose vertex set is €2 and whose edges are precisely
the pairs (o, @®) for all o € Q and all z € W with a # o®. The orbits
of G are the sets of vertices of the (weakly) connected components of this
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graph. In computing the orbits, one starts with the partition of the vertex
set into subsets of size 1. Edges are then calculated one by one, and at each
step two parts of the partition are merged into a single part if they are
joined by the edge which has been generated. The final partition gives the
partition of ) into orbits.

For later purposes we note that, with very little extra computation, it
is possible, while computing the orbits, to generate for each orbit a repre-
sentative v and a subset U C @ such that each element in the orbit has a
unique representation in the form v (v € U).

(B) Computing Blocks

In order to check for primitivity and to calculate blocks, we proceed as
follows. Let «, 8 be distinct points in 2. Consider the digraph G with
vertex set 2 and with edges consisting of pairs («, 8)® (z € G). Note that
this edge set is the smallest set of pairs which contains (o, 8) and is closed
under the action of the elements of W (since G is finite, every element
in G is a product of elements from W). The calculation of the (weakly)
connected components of G is similar to the corresponding calculation for
orbits. The set of vertices in the connected component of G which contains
the vertex « is the smallest block for G containing « and 3 (Exercise 3.6.1).
In particular, if this calculation is carried out for fixed & and all 8 # «a, we
shall either determine that G is primitive (the graph is connected for each
8 ), or else find the minimal nontrivial blocks containing a.

(C) Bases and Strong Generating Sets

Many computations dealing with permutations groups use bases and a
special type of generating set called a strong generating set. We shall first
describe what a strong generating set is, and how a base and strong gener-
ating set can be used to solve problems such as the Order Problem and the
Membership Problem. Later we shall explain how they can be computed.
Recall that a base for G is a subset A C  such that G(a) = 1. For
computational purposes we shall assume that the points of the base are
ordered, say, 61,02, ..., 84. We then define a chain of subgroups of G:

G=G0)>G1) >...>Gd) =1

where G(i) = G(i — 1)s, for i = 1,...,d. A strong generating set U for G
with respect to this ordered basis is a subset of G such that UNG(4) is a set
of generators for G(¢) (i = 0,1,...,d). In the present discussion we shall
only be interested in a special form of strong generating set where U =
U¢_,U; and U, is a set of right coset representatives for G(i) in G(i — 1) for
i=1,2,...d—1. In addition to the sets U; we shall assume that, for each i,
we also know the orbit A; of §; in G(¢ — 1) and the bijective correspondence
A; — Uj given by o — u;(a) where a = 6’ @) If we have this information
then clearly the Order Problem is solved since |G| = H;i:l [AG].



102 3. The Action of a Permutation Group

The Membership Problem is solved as follows. Let x € Sym(2). We
recursively define z; by

o=z and =z;:=mz1u (6 ) P € G(H) fori=1,2,...

as long as 4 < d and §;""" € A;. This process is called stripping. If the
stripping process stops before i reaches d, then clearly x ¢ G. On the other

hand, if ¢ reaches d then
= ud(ézdfl)“lud,l(égi‘f o (8)T e G

Thus the Membership Problem is solved, and if z € G we have expressed
z as a product of elements from our strong generating set U. We also note
that if the stripping process stops at index ¢ < d (and so z ¢ G), we
obtain an element z; which fixes é1,...,8; and is contained in the group
< G,z >.

(D) Schreier Generating Sets

The construction of a generating set U of the kind described above is based
on a theorem due to O. Schreier.

Theorem 3.6A. Let H be a subgroup of a finite group G and let T be a
set of right coset representatives for H in G. Assume that 1 € T and define
the mapping ¥ : G — T by Hx = Hy(x) (so ¢ chooses the correct coset
representative of Hx from T). If W is a set of generators of G, then

V= {twy(tw)™ |z € W,t € T}
is a set of generators for H.

PRrOOF. Since Htw = Hy(tw) by the definition of 1, we have V' C H.
Thus it is enough to show that each y € H can be written as a product of
elements from V. Since W generates G, and G is finite, we can write y =
WiWs - - - Wy, for some w; € W and some m > 0. Then, taking to =1 € T,
we have

Y = LgWiWs * * * Wy = (t0w1t1'1)(t1’wzt2vl) s (tmflwmtfnl)tm

where t; := ¥(t;—1w;) for i = 1,2,..., m. Each factor tiflwiti"l €V, and
tmm € HNT since V C H and y € H. Hence t,, = ty = 1, and so y has
been expressed as a product of elements from V as required. O

(E) Constructing a Base and Strong Generating Set for G

The process proceeds recursively. At a general step we have computed
a partial base 61,...,8;_1, and for the corresponding subgroups G(0) >
G(1)... > G(i — 1) we have the orbits Ay, ..., A;_1 and the sets of right
coset representatives Uy, . .., U;_1 with bijective correspondences between
A;and Uj (j =1,...,4—1). We shall also have a generating set W;_; for
G(i — 1). If W;_; = () then we are finished, so assume that W;_; # 0; we
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want to calculate 6;, A;, U; and W;. Choose 6; to lie in the support of some
element of W;_1, and use the technique for computing orbits described in
(A) to calculate the orbit A; of §; under G(i — 1), a set U; of right coset
representatives for G(i) := G(i — 1)s,, and the bijective correspondence
between A; and U; described there. Now use W;_; and U; and the Schreier
Theorem to compute a set W; of generators for G(¢). In practice, this is the
trickiest part, since if care is not taken the sizes of the generating sets grow
very quickly (Schreier’s Theorem gives a set of |W;_1| |U;| generators). This
problem is alleviated by calculating the Schreier generators one by one, and
discarding those which already lie in the group generated by the previously
calculated generators. This requires solution of the membership problem
for this smaller group and is done (recursively!) by working with a base
and strong generating set for the subgroup of G(¢) which is generated up
to that point.

Ezxercises

3.6.1 Prove that the algorithm in (B) does indeed produce the smallest
blocks containing the point «.

3.6.2 Suppose that you are given two transitive permutation representa-
tions of a finite group G, specified by giving the images of a set of
generators of G. Describe an algorithm to determine whether the two
representations are equivalent.

3.6.3 Carry out the construction described in (E) for the group G =
((12), (123), (14)(25)(36)) and hence find its order.

3.6.4 Given a strong generating set U for G of the form described in
(E), explain how to generate random elements of G with a uniform
distribution. (Compare with Exercise 1.2.11).

3.6.5 (Computing coset representatives for G in Sym(Q))

(i) If A C T, describe an explicit set V of right coset representatives
for Sym(A) x Sym(T' \ A) in Sym(T).

(ii) In general, suppose that G < Sym(Q) and that we have a base
{61,...,84} and strong generating set for G. Assume the no-
tation of (E), and define partitions Ilp,...,II; of Q as follows,
starting with IIy := {Q}. For¢ =1,2,...,d — 1:

(a) show that each part of II;_; is G(¢ — 1)-invariant, so there
is one part, say I';, which contains A,;

(b) define II; as the refinement of IT;_; obtained by replacing
the part I'; by the three parts: {6;}, A; \ {6;} and T'; \ A;
(excluding empty subsets);

(c) use (i) to construct a set V; of right coset representatives
for Sym(A;) x Sym(T; \ A;) in Sym(T;).

(iii) With the notation of (ii), show that G has a set of right coset
representatives in Sym(Q) of the form V*V;V; 1 ...V] where
V* = [lrem, Sym(D).
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3.6.6 (Selecting conjugacy classes of S,, at random) Consider the following

process of choosing a list (ny, ne, . ..) of positive integers whose sum
is m: first ny is chosen so that it is equally likely to be any integer
in the interval [1,n]; then mg is chosen so that it is equally likely
to be any integer in the interval [1,n — n,]; and, in general, n; is
chosen so that it is equally likely to be any integer in the interval
[1,n—ng —- - —m;_1]. This process is continued until n; +ng+- - -+
ng = n, and we then stop. We associate the final list (n1, ne, ..., ng)
with the conjugacy class of S, consisting of elements of S,, whose
disjoint cycles have lengths ny, no, .. ., ng. Prove that the probability
of obtaining a specific conjugacy class is proportional to the size of
the class.

3.7 Notes

Sect. 3.2: An early use of graphs to analyze permutation groups ap-
pears in Higman (1964) and Sims (1967). We have used the exposition
of Neumann (1977) in this section.

Theorem 3.2A: See Higman (1967).

Exercise 3.2.12: The distinction between primitive and strongly primitive
groups (which applies only to infinite groups) was introduced in Wielandt
(1960b).

Theorem 3.2B and Lemma 3.2B: These are classical; the proofs follow
Neumann (1977).

Exercises 3.2.19-20: See Weiss (1935).

Theorem 3.2C: See Wielandt (1964).

Theorem 3.2D: See Praeger (1977) and (1979).

Exercise 3.2.29: See Neumann (1977).

Sect. 3.3: The concept of minimal degree is classical, but the explicit idea
of a base seems to have introduced in Sims (1970). Most results in this
section are classical and were known to Jordan.

Theorem 3.3B: See Bochert (1889).

Lemma 3.3A: See Neumann (1954) and Tomkinson (1987).

Theorem 3.3C: See Birch et al. (1976) and Neumann (1976).

Theorems 3.3D and 3.3E: Also theorems of Jordan. Since “many” permu-
tations in S,, have a power which is a prime cycle or has small support,
these theorems help to explain why “most” elements do not lie in proper
primitive subgroups. This idea is exploited in Dixon (1969), Bovey and
Williamson (1978), Bovey (1980) and Babai (1989). See Liebeck and Saxl
(1985a) for a far-reaching generalization of Theorem 3.3E.

Sect. 3.4: The theorem of Frobenius (1902) showing that a finite Frobe-
nius group has a regular normal subgroup was one of the earliest successes
of the theory of linear representations, and still no more elementary proof
available. Special cases of the result were known before then (see Burn-
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side (1911) §134), and “elementary” cases have been found since then
(see the remarks before Theorem 3.4A). The structure of the stabilizer
of a finite Frobenius group was determined by Zassenhaus (1936) in the
context of finite groups which act fixed point free. Finally, Thompson
(1959) showed that every finite group with a fixed point free automor-
phism of prime order is nilpotent, and so showed that the Frobenius
kernel is nilpotent. These results are developed in full in Passman (1968)
(see also Huppert (1967) V §7-§8).

Exercise 3.4.6-7: See Janko (1964) and Herstein (1958).

Theorem 3.4A: See Burnside (1911) §134.

Theorem 3.4B: Part (i) is due to Jordan (1872). For (ii) see Tits (1952).
Examples 3.4.2-4: See Collins (1990).

Sect. 3.5: These are classical results. We have used the method of Schur
(1933) (“S-rings”) as developed by Wielandt (1964) in this section.

® Lemmas 3.5A: and 3.5B See Wielandt (1964) and (1969).
® Theorem 3.5A: This is a generalization by Wielandt (1935) of earlier

theorems of Burnside and Schur. See also Wielandt (1964).

Exercise 3.5.9: Lidl and Muller (1993) gives a survey of results on
permutation polynomials.

Theorem 3.5B: This is the original theorem of W. Burnside. Its many
proofs include: a proof using representation theory (see Burnside (1911)
§251 and many books dealing with representation theory), a proof using
module theory (see Wielandt (1969) Chap. 3 or Passman (1968) Theorem
7.3), and a proof using finite geometries (see Dress et al. (1992)). We have
chosen a proof due to Schur (1908) since it is quite direct. For related
results, see Bercov (1965), Neumann (1972) and (1974), Klemm (1975)
and (1977) and Levingston (1978).

e Exercise 3.5.12: See It6 (1992).
® Sect. 3.6: Computational methods in permutation groups have developed

over the last 25-30 years beginning with early work of C. C. Sims who
introduced the concept of base and strong generating set around 1970.
Part of the discussion in this section is based on an unpublished report
by Atkinson (1989). There is now a considerable literature on this topic,
of which the following is a random sample: Bannai and Iwasaki (1974),
Blaha (1992), Butler and Cannon (1982), Ivanov et al. (1983), Jerrum
(1986), Knuth (1991), Leon (1980) and (1984),Luks (1987), Neumann
(1987), Sims (1970) and (1978). Hoffmann (1982) contains an analysis of
some of the theoretical problems of such computations, and conference
proceedings of Atkinson (1984) and Finkelstein and Kantor (1993) in-
clude several papers of interest in this area. The book of Sims (1994) is
of related interest.

Exercise 3.6.5: See Dixon and Majeed (1988).
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The Structure of a Primitive
Group

4.1 Introduction

In this chapter our focus changes from the combinatorial and ring theo-
retic representations of permutation groups considered in the last chapter
to more direct group theoretic analysis of the groups involved. The point
stabilizers of a primitive group form a conjugacy class of maximal sub-
groups, so classification of primitive groups is closely related to a study of
maximal subgroups. Although some of the results in this chapter are valid
for infinite groups, the central theorems will apply only to finite groups.

It turns out that the key to analyzing finite primitive groups is to study
the socle, which is the subgroup generated by the minimal normal sub-
groups (see Sect. 4.3). In general, the socle of a finite group has fairly
transparent structure: it is a nontrivial direct product of simple groups.
When G is a finite primitive group, these simple groups are all isomor-
phic, and we can describe in some detail how the socle is embedded into
G. The O’Nan—Scott Theorem (Theorem 4.1A) summarizes these results.
Combined with the classification of finite simple groups, this theorem has
proved to be a very powerful tool in answering some long-standing questions
about finite permutation groups (see Sect. 4.8).

In studying this chapter there is a danger of being overcome by the
technicalities necessary even to give precise statements of the main results.
It may be useful, therefore, to keep in mind the following summary of the
principal theorem (see also Sect. 4.8).

Theorem 4.1A (O’Nan-Scott Theorem). Let G be a finite primitive group

of degree n, and let H be the socle of G. Then either

(a) H is a regular elementary abelian p-group for some prime p, n = p™ :=
|H|, and G is isomorphic to a subgroup of the affine group AGLy,(p);
or

(b) H is isomorphic to a direct power T™ of a nonabelian simple group T
and one of the following holds:

(i) m = 1 and G is isomorphic to a subgroup of Aut(T);

106
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(ii) m > 2 and G is a group of “diagonal type” with n = |T|m‘1;

(iii) m > 2 and for some proper divisor d of m and some primitive
group U with a socle isomorphic to T, G is isomorphic to a
subgroup of the wreath product U wr Sym(m/d) with the “product
action”, and n = €™/ where £ is the degree of U;

(iv) m > 6, H s regular, and n = |T'|™.

Groups of “diagonal type” and wreath products with the “product ac-
tion” are discussed in Sect. 4.5. More detailed statements and proofs of the
various parts of Theorem 4.1A are found in Sect. 4.6 and 4.7 (the nonreg-
ular and regular socles, respectively). The earlier sections of this chapter
give a careful description of the centralizer and normalizer of a transitive
subgroup in the symmetric group, the basic facts about socles, and a little
about subnormal subgroups and composition factors.

In the special case of a 2-transitive group, Theorem 4.1A has a much
simpler form.

Theorem 4.1B. The socle of a finite 2-transitive group is either a reqular
elementary abelian p-group, or a nonregular nonabelian simple group.

This result was originally proved by W. Burnside (see Burnside (1911)
§154, Th. XIII), and was an early forerunner of the O’Nan—Scott Theo-
rem. In Sect. 4.8 we will see that a primitive group coming under parts
(b)(ii),(b)(iii} or (b)(iv) of Theorem 4.1A must have rank at least 3, thus
proving Theorem 4.1B.

4.2 Centralizers and Normalizers in the Symmetric
Group

Suppose that G is a transitive subgroup of Sym(£2) (we are not restricting
Q to be finite). In this section we shall look at the centralizer and normalizer
of G in Sym(). The results are basic, and will be used repeatedly in the
subsequent analysis of primitive groups. We begin with two exercises which
illustrate some of the important ideas.

Exercises

4.2.1 Let C be the centralizer in Sym(f2) of the subgroup G < Sym(Q).
Show that for each point o € €2 the orbit a® is contained in fix(G,).
4.2.2 Let G be a nontrivial group and consider two ways in which G can
act on itself:
(i) (Right multiplication) p : G — Sym(G) defined by a?®) := az;
and
(ii) (Left multiplication) A : G — Sym(G) defined by aM®) := z~1a
(see Example 1.3.4 and Exercise 1.3.2).
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Show that the images of p and ) centralize each other, and that for
some t of order 2 in Sym(G) we have t 1p(G)t = A(G).

We can generalize the last exercise as follows. Fix a subgroup H of the
group G. Then G acts by right multiplication on the set Iy of right cosets of
H. Earlier we denoted this permutation representation by pg (see Example
1.3.4), but here we shall simply denote it by p. If we restrict our attention
to the normalizer K := Ng(H), then there is a second action A of K on
T'y given by left multiplication; namely, (Ha)*® := 2~ 1(Ha) = Hz 'a.
The lemma below examines the relationship between the images p(G) and
AMK).

We say that a group G acts semiregularly on a set Q if G acts on € in
such a way that the identity is the only element with any fixed points; in
other words, G, = 1 for all a € ). In particular, a group is regular if and
only if it is both semiregular and transitive.

Lemma 4.2A. Let G be a group with a subgroup H, and put K := Ng(H).
Let Ty denote the set of right cosets of H in G, and let p and X denote
the right and left actions of G and K, respectively, on 'z as defined above.
Then:

(i) ker A\ = H and M\(K) is semiregular;

(ii) The centralizer C of p(G) in Sym(Ty) equals A(K);

(iii) H € 'y has the same orbit under A(K) as under p(K);

(iv) If M(K) is transitive, then K = G, and AM(G) and p(G) are conjugate

in Sym(Ty).

PrOOF. (i) Clearly 2 'Ha = Haforalla € G <— z € H <
2 'Ha = Ha for some a € G. Thus ker A = H, and the point stabilizer of
each point Ha € I'y under the action \ is H.

(ii) First, note that if z € G and y € K, then for each a € G:

(Ha)?@AW) = Hy lag = (Ha)*®r@)

and so p(z)A(y) = AMy)p(x). Thus A(K) < C.
Conversely, suppose that z € C and that H®> = Hc, say. Then for each
a € G:

(Ha)? = HP@* = H**(9) = Heca.

In particular, for each a € H, we have Hc = (Ha)®* = Hca. Thus ¢ €
Ng(H) = K, and z = A(c™!). This shows that C < A(K) and completes
the proof of (ii).

(iii) In both cases the orbit of H is the set of right cosets of H in K.

(iv) If A(K) is transitive, then (iii) shows that each coset Hz (x € G)
has the form HP®) = Hy for some y € K. Hence G = K = Ng(H) and so
H<G. Thus we can define a permutation t € Sym(Tx) by (Ha)? := Ha™};
the point is that when H < G this mapping is well-defined. Now verify that
t71A(z)t = p(z) for all z € G. m
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Using this lemma we can analyze the centralizer of a transitive group.

Theorem 4.2A. Let G be a transitive subgroup of Sym(Q), and o a point
in Q. Let C be the centralizer of G in Sym(Q2). Then:
(i) C is semiregular, and C = Ng(Ga)/Go (so |C| = |fix(G4)| by
Ezercise 1.6.3);
(ii) C is transitive if and only if G is regular;
(iif) if C 1is transitive, then it is conjugate to G in Sym(Q) and hence C
is regular;
(iv) C =1 if and only if G, is self-normalizing in G (that is, No(G,) =
Ga);
(v) if G is abelian, then C = G;
(vi) if G is primitive and nonabelian, then C = 1.

PrROOF. We apply the preceding lemma with H = G,. Since G and p(G)
are then permutation isomorphic, the lemma shows that C is permutation
isomorphic to A(K) where K = Ng(G,). Thus (i) follows from Lemma
4.2A (i), and (iv) follows from (i).

Using Lemma 4.2A (iii) and (iv) we now observe that C is transitive if
and only if p(K) is transitive, and that in the latter case C is conjugate to
G in Sym(§2). Since p(K) is permutation isomorphic to K, and K > G,
this shows that C' is transitive if and only if K = G. But K = G holds
exactly when G, <G, and this is equivalent to G, = 1 and G being regular.
Hence (ii) and (iii) follow.

If G is abelian, then C > @, and so (iii) shows that C = Gj this proves
(v). Finally, in the case that G is primitive, G, is a maximal subgroup of
G. Hence, if G is also nonabelian, then G, must be its own normalizer in
G. Thus (vi) follows from (iv). a

Fxercises

4.2.3 Find the centralizer of G = ((123456), (26)(35)) in S.

4.2.4 Let C be the centralizer of an intransitive group G in Sym(£2). Show
that the orbits of G on ) are equivalence classes for a C-congruence.
Moreover, if A and I' are G-orbits, then there exists ¢ € C such that
A¢ = T if and only if the actions of G on A and T" are equivalent.
In particular, the union of all G-orbits of a fixed size is a C-invariant
subset of 2.

4.2.5 (Continuation) Let X be the set of orbits of G and suppose that the
action of G on each of its orbits is equivalent to its action on a set
A. Show that C = Cy wrp Sym(I") where Cy is the centralizer in
Sym(A) of the subgroup G2.

4.2.6 Let T C Sym(Q?) and let C be the centralizer of T. If & € 2, show
that (T') is regular if and only if, for each t € T there exists ¢ € C
with o = af.
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4.2.7 Show that the centralizer in Sym(2) of a semiregular subgroup of
Sym(Q) is transitive.

4.2.8 Suppose that H is a nontrivial and nonregular normal subgroup of
a primitive group G. Show that each point stabilizer of H is its own
normalizer in G, and that H has a trivial centralizer in G.

We shall now consider the normalizers of transitive groups. Let G be a
transitive subgroup of Sym(2). Then the normalizer N of G in Sym(Q)
acts naturally on the set G by conjugation; this gives a homomorphism

U: N — Aut(G) where ¥(z):u— 2 tuz.

Since ker ¥ is the centralizer of G in Sym(Q), the previous theorem shows
that U is injective exactly when Ng(G,) = G, for each o € . The
following characterization of the automorphisms of G which lie in Im ¥
will be useful in the classification theorems developed later in this chapter.

Theorem 4.2B. Let G be a transitive subgroup of Sym(Q2) and let a € .
If U is the homomorphism defined above, and o € Aut(G), then

ceImU <= (Go)? isa point stabilizer for G.

PRrROOF. Let 0 € Im ¥, so 0 = ¥(z) for some 2 € N. Then (G,)? =
z71Gaz = G where B = a”. Conversely, suppose that (G,)? = G for
some 3 € €. Then the two transitive permutation representations of G
into Sym(Q) given by x — z and z — z° are equivalent because Gg is a
point stabilizer for each of them. This means that for some t € Sym()
we have xt = tz° for all z € G. Clearly t € N. Hence 0 = U(t) € Im ¥
as required. O

In the special case when G is regular, N is the holomorph of G (see
Exercise 2.5.6). We then have the following result.

Corollary 4.2B. IfG is regular, then Im ¥ = Aut(G). In this case Ny =
Aut(G), and N is isomorphic to the semidirect product G x Aut(G) with
the natural action of Aut(G) on G.

PROOF. Since G is regular, therefore G, = 1, and so Im ¥ = Aut(G) by
the theorem. The centralizer C of G in Sym (<) is regular and isomorphic to
G by Theorem 4.2A, and therefore N = CN, with C<aN and CN N, = 1.
Hence Aut(G) = Im¥ = N/ker ¥ = N/C = N,. Finally, because G is
regular and normal in N, therefore GN N, = 1 and N = GN, = G %
Aut(G). |

FExercises

4.2.9 In the context of Theorem 4.2B give an example of a transitive group
G for which Im ¥ is not all of Aut(G).
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4.2.10 Calculate the normalizer of a Sylow p-subgroup in Sp.

4211 Let n > 1 and let 2 = Z/nZ (the ring of integers modulo n). Let
H be the set of all mappings of €2 into itself of the form: £ — r{ + s
where 7,5 € Z/nZ and the integers in the congruence class r are
relatively prime to n. Show that H is a subgroup of Sym(Q2), and
that H is the holomorph of a cyclic group of order n.

4.2.12 (Continuation) Enumerate all the transitive subgroups of H.

4.2.13 Show that the holomorph of a group G is primitive if and only if G
has no characteristic subgroups apart from 1 and G.

4.2.14 1If the holomorph of a group G is 2-transitive, show that all nontriv-
ial elements of G have the same order. In particular, if G is finite,
show that G is an elementary abelian p-group for some prime p
(each nontrivial element has order p). (The case for infinite groups
is more complicated since it is known that there exist infinite non-
abelian simple groups in which every pair of nontrivial elements are
conjugate. See Higman et al. (1949).)

4.2.15 Show that the affine group AGL4(p) is the holomorph of the
elementary abelian p-group of order p<.

4.2.16 Give an example of two nonisomorphic finite groups which have
isomorphic holomorphs.

4.2.17 Let G be a finite permutation group containing a regular normal
subgroup K. If H < @ and A = fix(H) # 0, show that (Cg(H) N
K)A is regular in Sym(A).

4.3 The Socle

The major theme of this chapter is the analysis of a finite primitive group
in terms of its socle. This section defines the socle and describes the form
that it can take in a finite primitive group.

A minimal normal subgroup of a nontrivial group G is a normal subgroup
K # 1 of G which does not contain properly any other nontrivial normal
subgroup of G. For example, a simple group has itself as its only minimal
normal subgroup, while an infinite cyclic group has no minimal normal
subgroup. The socle of a group G is the subgroup generated by the set of
all minimal normal subgroups of G; it is denoted by soc(G). By the usual
convention, so¢(G) = 1 if G has no minimal normal subgroups.

Since the set of all minimal normal subgroups of G is mapped into itself
by every automorphism of G, the socle soc(G) is a characteristic subgroup of
G. Every nontrivial finite group has at least one minimal normal subgroup
so has a nontrivial socle.

Ezercises

4.3.1 Find the socle of S,.
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4.3.2 Let G be the multiplicative group consisting of all complex numbers
z which are roots of unity (so 2™ = 1 for some n > 0 depending on
z). Find soc(G).

4.3.3 If G is a finite p-group, show that soc(G) is contained in the centre
Z(G).

4.3.4 If G is a direct product of a finite number of simple groups, show
that G = soc(G). Is this still true for a direct product of an infinite
number of simple groups?

4.3.5 If F is the free group on two generators, show that soc(F) = 1.

‘We now turn to our analysis of the socle for a finite group. Although the
socle of a group is defined simply as the subgroup generated by the set of
minimal normal subgroups, the following theorem shows that it is actually
a direct product of some or all of these normal subgroups.

Theorem 4.3A. Let G be a nontrivial finite group.
(1) If K is a minimal normal subgroup of G, and L is any normal subgroup

of G, then either K < L or (K,L) = K x L.

(ii) There exist minimal normal subgroups K1, ..., Ky, of G such that
soc(G) = K1 X ... x Kp,.

(iii) Every minimal normal subgroup K of G is a direct product K =
T x -+ x Ty where the T; are simple normal subgroups of K which
are conjugate under G.

(iv) If the subgroups K; in (ii) are all nonabelian, then K1, ..., Ky, are
the only minimal normal subgroups of G. Similarly, if the T; in (i)
are nonabelian, then these are the only minimal normal subgroups of

K.

PRrROOF. (i) Since K N L <« G the minimality of K shows that either K < L
or K N L = 1. In the latter case (K, L) = KL = K x L because both K
and L are normal.

(ii) Because G is finite we can find a set S = {K73, ..., K;;,} of minimal
normal subgroups of G which is maximal with respect to the property that
the subgroup H generated by S is a direct product K; x -+ x Kp,. It
remains to show that H = soc(G); this will follow if we show that H
contains all minimal normal subgroups of G. Let K be a minimal normal
subgroup of G. Then (i) shows that either K’ < H or (K, H) = K x H. The
latter is impossible by the choice of S. Hence H contains every minimal
normal subgroup of GG as required.

(iii) Let T be a minimal normal subgroup of K. Then the conjugates
2 1Tz of T under elements x € G are also minimal normal subgroups

of K. Choose a set {T1,...,Tx} of these conjugates which is maximal
with respect to the property that L := (Ti,...,Tk) is a direct product
Ty x --- x Ty. Then using an argument analogous to that in (ii) we see

that L contains all of the conjugates of 7" under G, and so L < G. Since
1# L < K and K is a minimal normal subgroup of G of K, we conclude
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that K = L = Ty x --- x Tj. Finally, for each T}, the normal subgroups
of T; are clearly normal in K, so the minimality of 7; shows that it must
be a simple group.

(iv) Suppose that G has a minimal normal subgroup K which is distinct
from the K; (i = 1,...,m). Then (i} shows that K centralizes each of
the K; and so K < Z{soc(G)). However, if each K; is nonabelian, then
Z(K;) = 1 by (iii). This implies that Z(soc(G)) = 1 and so K = 1
contrary to the choice of K. 0

Corollary 4.3A. Fvery minimal normal subgroup of a finite group is ei-
ther an elementary abelian p-group for some prime p, or its centre is equal
to 1.

PRrROOF. This follows at once from part (iii). O

We shall use the following technical lemma in applications of Theorem
4.3A.

Lemma 4.3A. Let Ty, ...,T,, be simple nonabelian groups. Suppose that
H is a group with distinct normal subgroups K, . . ., Ky, such that H/K; =
T; foreachi and NK; = 1. Then H 211 x -+ x T,.

PRrROOF. Proceed by induction on m. The result is clear for m = 1, so
suppose that m > 1. Put
m—1
K*:= () Ki, H := H/K" and K; :== K; /| K* fori=1,...,m— L
=1
Since H*/K} = H/K; = T;, induction shows that H* 2 T} x -+« X Tp, 1.
In particular, it follows from Exercise 4.3.6 below that H* has only m — 1
maximal normal subgroups, and so H ¢ H* by the hypothesis on H. Thus
K* # 1 but K* N K,,, = 1 by hypothesis. Since H/K,, is simple, K,,, is a
maximal normal subgroup of H, and so H = K*K,, = K* x K,,. Since
K*>2 H/K,, 2 T, and K,,, 2 H/K* = H*, therefore H 2 Ty x - - - x Tj,
as required. o

Ezxercises

4.3.6 Suppose that G = Ty x --- x T, is a direct product of a finite
number of nonabelian simple groups 7T;. Show that these are the only
minimal normal subgroups of G, and that G has exactly m maximal
normal subgroups, namely, the centralizers C¢(T;) (i = 1,...,m).

4.3.7 (Continuation) What can you say if exactly one of the T;’s is an
abelian simple group?

4.3.8 Show that there are exactly (p™ — 1)/(p — 1) minimal normal sub-
groups in an elementary abelian p-group of order p™. How many
maximal normal subgroups does this group have?
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4.3.9 Suppose that T' is a nonabelian simple group. Show that for each

integer k > 1, Aut(T*) = Aut(T) wrr Sym(T') where |T'| = k.

4.3.10 Determine the minimal normal subgroups of the group AGL4(p™)
and express each of them as a direct product of simple groups. Use
this to show that the condition that 7" be nonabelian in the preceding
exercise cannot be omitted.

4.3.11 Let G and H be nontrivial finite groups. Is it always true that the
socle of the wreath product W := G wr H is contained in the base
group of W7

We now apply these general results on socles to the special case of a finite
primitive group. As we know from Theorem 1.6A, every nontrivial normal
subgroup of a primitive group is transitive. This imposes severe conditions
on the minimal normal subgroups of a primitive group.

Theorem 4.3B. If G is a finite primitive subgroup of Sym(S2), and K is

a minimal normal subgroup of G, then exactly one of the following holds:

(i) for some prime p and some integer d, K is a regular elementary
abelian group of order p?, and soc(G) = K = Cg(K);

(ii) K is a regular nonabelian group, Cg(K) is a minimal normal sub-
group of G which is permutation isomorphic to K, and soc(G) =
K x Cg(G),'

(i) K s nonabelian, Cg(K) = 1 and soc(G) = K.

Remark. Note that in case (iii) K may or may not be regular. In cases
(1) and (iii) the socle is the unique minimal normal subgroup of G, and in
case (ii) G has exactly two (isomorphic) minimal normal subgroups (see
Theorem 4.3A (iv)). Affine groups give examples of case (i), and Theorem
4.7A shows that these (and their subgroups) are the only examples. An
instance of case (ii) is given in Exercise 2.5.9, and any simple nonabelian
primitive group gives an example of case (iii).

ProoOF. Put C := Cg(K). Since C < G, either C = 1 or C is transitive.
Since K is transitive, Theorem 4.2A shows that C is semiregular, and hence
either C = 1 or C is regular; in the latter case C is the full centralizer of
K in Sym(), and so is permutation isomorphic to K. If C' is regular, then
it must be a minimal normal subgroup of G since any proper subgroup
of C is intransitive. Theorem 4.3A (i) shows that every minimal normal
subgroup of G distinct from K is contained in C. Thus in all cases we have
soc(G) = KC which equals K or K x C depending on whether C' < K or
not.

If C = 1, then we have case (iii); and, if C = K, then K is abelian and we
have case (i) by the Corollary 4.3A. In the remaining case soc(G) = K x C
and we have case (ii). O
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Corollary 4.3B. If G is a finite primitive group, then H := soc(G) is a
direct product of isomorphic simple groups. If N denotes the normalizer of
H in the symmetric group, then H is a minimal normal subgroup of N.
Moreover, if H is not reqular, then it is the only minimal normal subgroup
of N.

ProoF. The first statement follows immediately in case (i), and follows
from Theorem 4.3A in cases (ii) and (iii). Consider the second statement.
Since G < N, we know that N is primitive, and H <« N. In cases (i) and
(iii) H = K is minimal normal in G and hence also minimal normal in
N. In the case (ii) C = Cg(K) is permutation isomorphic to K, and so
C = t 1Kt for some t € Sym(Q2). Then t~'Kt centralizes K, and so
t71Ct = t72Kt? is contained in K because it centralizes t"'Kt = C;
thus comparing orders gives t 1Ct = K. This shows that K and C are
interchanged under conjugation by ¢. Since H = K x C in case (ii), we
conclude that t € N and H is a minimal normal subgroup of N as asserted.

Finally, suppose that H is not regular, and apply the theorem to the
primitive group N and its minimal normal subgroup H. Clearly, only case
(iii) can apply, and so H = soc(N) is the unique minimal normal subgroup
of N. 0

FExercises

4.3.12 Show that each maximal primitive subgroup of S,, has a unique
minimal normal subgroup.

4.3.13 Let H be the socle of a primitive subgroup of S,,, and let N denote
the normalizer of H in S,,. If H is not regular, and G is a primitive
subgroup of S, such that H < G < N, show that soc(G) = H.
Give an example to show that this need not be true if H is regular.

4.3.14 Show that a permutation group of degree m with k orbits has at
most 4(n — k)/3 factors in its composition series. Moreover, this

bound can be attained by a transitive group when n is a power of
4,

4.4 Subnormal Subgroups and Primitive Groups

The present section digresses from the main theme of this chapter to discuss
the subnormal structure of the point stabilizers of a finite primitive group.
This material will not be needed in the proof of the O’Nan—Scott Theorem,
but it will be used in later chapters.

Recall that a subgroup H of a group G is subnormal in G if there is a
finite chain of subgroups H = Hy< Hy <... < Hy; = G from H to G where
each H; is normal in H;,{ (but not necessarily in G). In a finite group,
a subgroup is subnormal exactly when it appears in some composition
series, so it is natural that subnormal subgroups arise in the study of the
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composition factors of a finite group.. It is easily seen that a subnormal
subgroup of G is also subnormal in every subgroup L of G in which it
is contained. Clearly, every normal subgroup of G is subnormal, but, in
general, a subnormal subgroup need not be normal (see Exercise 4.4.1).

Lemma 4.4A. If G is a finite group, then soc(G) < Ng(H) for each
subnormal subgroup H of G.

PRroOF. The result is certainly true if G = H, so we proceed by induction
on |G : H| and assume H < G. We have to show that each minimal normal
subgroup K of G is contained in Ng(H).

Since H is subnormal, there exists L <G with H < L < G. By Theorem
4.3A (i) we know that either K < L or (K, L) = K x L. In the latter case
K < Cg(H) < Ng(H) and the result is true; so suppose K < L. Then
there exists a minimal normal subgroup 7" of L with T' < K. For each
z € G,z Tz is a minimal normal subgroup of z~ 'Lz = L, so induction
shows that z7'Tz < N, (H) < Ng(H). Since K is a minimal normal
subgroup of G, K = (z 1Tz | x € G), and so K < Ng(H). This proves
the lemma. O

The proof of the following lemma uses the elementary fact that if A and
B are subgroups of any group G, then: AB = BA <= AB is a subgroup.

Lemma 4.4B. Let H be a subgroup of finite index in a group G. If
Hz 'Hz =z 'HzH for allz € G, then H is subnormal in G.

PROOF. Proceed by induction on |G : H|. If H <« G, then the conclusion
certainly holds, so suppose that H # z 'Hz for some z € G and put
K := Hx 'Hz. Now |G : K| < |G : H|, and the hypothesis on H clearly
implies that Ky 'Ky = y 'KyK for all y € G. Therefore, by the in-
duction hypothesis, K is subnormal in G. Moreover, x ¢ K; otherwise,
1 € Hz 'H, and that implies £ € H contrary to the choice of z. Thus
|K : H| < |G : H|, and so we can apply the inductive hypothesis to the
pair K, H to conclude that H is subnormal in K. Since K is subnormal in
G, this shows H is subnormal in G as asserted. O

Lemma 4.4C. Let H be a subnormal subgroup of a finite group G, and
consider the smallest normal subgroup M := (z7'Hz | x € G) of G
containing H.

(i) Fach composition factor of M is isomorphic to a composition factor
of H, and each simple homomorphic image of M is isomorphic to a
homomorphic image of H.

(ii) If K is a subnormal subgroup of G with no homomorphic image
isomorphic to a composition factor of H, then H < Ng(K).

PRrROOF. (i) We proceed by induction on |M : H|. The result is trivial when
M = H, so suppose that M > H. Then H is not normal in G, and we
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have a chain H = Hy < H; <... < Hy = G of distinct subgroups of G
with d > 2. Let k be the smallest index for which Hy is not contained in
Ng(H), and choose z € Hy\ Ng(H). Then H and z~! Hz are both normal
subgroups of Hy_;, and so L := Hx 'Hxr < Hy_;. Now L < M and is a
subnormal subgroup of G properly containing H. Since M is the smallest
normal subgroup of G containing L, the inductive hypothesis shows that
each composition factor of M is a composition factor of L, and each simple
homomorphic image of M is a homomorphic image of L. On the other hand,
Hy_1 < Ng(H) by the choice of k, so H < L and L/H = z 'Hz/(H N
x~'Hz). Thus, by the Jordan-Holder Theorem, every composition factor
of L is a composition factor of H. Similarly, if N « L and L/N is simple,
then not both H and z~!Hz are contained in N; hence, either H/(H N N)
or 7 'Hz/(z7'Hx N N) is isomorphic to L/N. This proves (i).

(it) It is enough to consider the case where G = MK and show that in
this case K 4 G. Suppose that K is not normal in G. Then an argument
similar to that given in (i) shows that for some x € G, L := Kz 'Kz
is subnormal in G and K is a proper normal subgroup of L. Then L =
LNMK = (LN M)K, and so

(4.1) s 'Kz/(KNz *Kz) = L/K = (LN M)/(LNMnNK).

Since L is subnormal in G, L N M is subnormal in M, and so (4.1) shows
that 271Kz (and hence K) has a simple homomorphic image isomorphic
to some composition factor of M. But then (i) shows that K has a simple
homomorphic image isomorphic to some composition factor of H contrary
to the hypothesis on K. Thus K < G and (ii) is proved. 0

‘We now come to the main theorem of this section. If G is a finite primitive
subgroup of Sym(f2) and T is a nontrivial orbit of G, then Theorem 3.2C
shows that each composition factor of GG, is isomorphic to a section of
the induced group GY. Part (iii) of the theorem that follows extends this
analysis to the stabilizer of two points a, 8 € ). Let A be the orbital for
G containing the pair (o, ), and let A* be its paired orbital (see Section
3.2). Then T' = A(a) = 8% and A = A*(8) = a©? are Gug-invariant
sets. Moreover, I" and A have the same length.

Theorem 4.4A. Let G < Sym(Q) be a finite primitive group, and let
a € Q.
(i) G contains no nontrivial subnormal subgroup of G.
(ii) If ¥ C Q is a union of orbits for G, which contains one orbit from
each pair of paired orbits (including the self-paired orbits), then G,
acts faithfully on 3.
(iii) Let a and 3 be distinct points in Q, and put I’ := 3% and A = oCs.
Then each composition factor of Gag is isomorphic to a composition
factor of either (Gap)T or (Gop)®.
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PrOOF. (i) Let H be a subnormal subgroup of G contained in G, and let
K be any minimal normal subgroup of G. Then G = KG, because G is
primitive, and K normalizes H by Lemma 4.4A. Hence

M:=(z'Hz |z € G,) = (y 'Hy |y € G)<G.

Since M < G4, M = 1 by the transitivity of G. Hence H = 1 as asserted.
(ii) Let K := G(x) < G. be the kernel of the action of G, on X. First
note that if A and A* are paired orbitals for G, and z € G then:

a® € Ala) = (a,0") €A
= (@ ,a)eA
e o € A*(a).

Thus the Illypothesis on X implies that, for each x € G, at least one of
o”® or o® lies in X. Since K fixes each point in X, this shows that for
each z € G at least one of xKz~! or £ 'Kz is contained in G,. However
K 4Gy and o Y (KeKz Yz = 27 'KzK, so Kz 'Kz = z ' KzK for all
2 € G. Now Lemma 4.4B shows that K is subnormal in G, and so K =1
by (i).

(iii) The result is trivial if G is regular, so suppose that G is not regular.
Put H := G4, K := Gg and L := HN K = G,g, and note that L # 1
and G = (H, K). Consider the condition:

(4.2) some simple homomorphic image of U is a composition factor
of L' or L

for subnormal subgroups U of L. If (4.2) holds for all nontrivial subnormal
subgroups of L, then we can choose successive terms L = Lo, L1, ..., Lg =
1 in a composition series for L such that L;_1/L; is isomorphic to a com-
position factor of LT or L? for each i. The Jordan-Holder Theorem then
shows that every composition factor of L is isomorphic to a composition
factor of L or L2 as required. On the other hand, suppose that (4.2) does
not hold for some nontrivial subnormal subgroup of L, and choose U # 1
as a counterexample of maximal order; we shall show that this leads to a
contradiction.

Since (4.2) fails to hold for U, U must lie in the kernel of the homomor-
phism z — 2" of L onto L. Therefore U < Ly = Hry<Hiry = H, and
so Lemma 4.4C (i) and the maximality of U show that U < H. A similar
argument shows that U < K. Hence we conclude that 1 # U <« (H,K) = G
which is impossible because G is transitive and U < H = G,. Thus (4.2)
holds for all nontrivial subnormal subgroups U of L, and the theorem is
proved. O

FEzxercises

4.4.1 Find a subnormal subgroup of S; which is not normal.
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Let H be a subnormal subgroup of a finite group G.

(i) If soc(G) < H, show that soc(G) < soc(H).

(ii) Show that soc(H) < soc(G)’.
(i) Give an example to show that soc(H) need not be contained

in soc(G).

Show that the conclusion of Lemma 4.4C (i) need not be true if H
is not subnormal.
With the notation of Theorem 4.4A give an example where (G,)"
and (Gg)2 are not isomorphic.
Under the hypothesis of Theorem 4.4A show that G5 = 1 if (Ga)"
and (Gg)2 are both regular.
Under the hypothesis of Theorem 4.4A show that, if I’ (and hence
A) has length d, then each prime p dividing ;Gag; satisfies p < d.
(This gives an alternative solution to Exercise 3.2.25.)
If G is a finite primitive group whose point stabilizer G,, has an orbit
A such that (G,)® has prime order p, show that G is a Frobenius
group of order pq” for some prime ¢ # p and some r > 1.
If G is a finite primitive group with a regular normal subgroup, show
that the point stabilizers act faithfully on each of their nontrivial
orbits.
Suppose that a point stabilizer G, of a finite primitive group G
has a nontrivial centre Z(G,,). Show that G acts faithfully on a%»
whenever 8 € supp(Z(G,)). [Hint: The kernel of the action of Gg
on this orbit is normalized by Z(G,).]
Let G be a finite primitive group with point stabilizer G,. If there
is an orbit A of G, for which (G, ) has order 4, show that G is a
Frobenius group.
Show that, for any finite primitive group with a suborbit of length
3, the point stabilizers have order dividing 3 - 2.
If G < Sym(Q) is an infinite primitive group with a finite nontriv-
ial suborbit, show that all suborbits of G are finite and that Q is
countable.
Show that part (ii) of Theorem 4.4A fails for infinite groups.
[Hint: Let G = Aut(Q, <).] (Part (i) also fails, but this is more
complicated.)

4.5 Constructions of Primitive Groups with
Nonregular Socles

We continue to analyze the structure of a finite primitive group G in terms
of its socle H. As we saw in Corollary 4.3B the socle of a finite primitive
group is a direct product of isomorphic simple groups. When H is regu-
lar, G is contained in the holomorph of H, and we shall deal with this
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situation later (see Sect. 4.7). In the present section we shall look at the
case where H is not regular. Because G is primitive, we know that H is
necessarily transitive, and in particular H cannot be abelian. This section
deals with two general constructions of finite primitive permutation groups
whose socles are nonregular.

Let H = Ty x --- x T, be a direct product of m isomorphic copies
of a finite nonabelian simple group 7. Our objective is to embed H as a
nonregular transitive subgroup in some symmetric group Sym(2) in such
a way that the normalizer N of H in the symmetric group is primitive.
Then N and certain subgroups G with H < G < N will give examples of
primitive groups which have H as a nonregular socle. We shall see in the
next section that the constructions which we describe below give essentially
all the primitive groups which have H as a nonregular socle when m > 1.

One of these constructions is already available directly from the product
action of a wreath product (Sect. 2.7). Start with any transitive, nonreg-
ular representation of T'; without loss in generality we may assume 7T is
a transitive, nonregular subgroup of Sym(A), say. Let M be the normal-
izer of T' in Sym(A), and put ' := {1,..., m}. Then the wreath product
W = M wrp Sym(T) acts faithfully on the set Fun(T', A) of all functions
of I into A with the product action. According to Theorem 2.7A, the image
of this action is primitive exactly when M is primitive.

To simplify the notation we identify Fun(T', A) with the Cartesian power
A™via f — (f(1),..., f(m)), and identify W with its image in Sym(A™).
We also identify H with the natural subgroup 77 x - -- x Ty, of the base
group My X - - - X M,, of W where the T; are permutation isomorphic and
T =2 T; < M; for each i. Note that all orbits of M; have size |A| and are of
the form

{61} X X {(5,'_1} x A x {5i+1} X e X {6m}

and that these are also orbits for T;. Moreover, the actions of M; (and
of T;) on these different orbits are all equivalent. In general, if we fix
(61,-..,6m) € A™, then the stabilizer of this point in H has the form
Ry x -+ x R, where, for each i, R; < T; is the stabilizer of §; in the action
of T; on A. Since H acts transitively on A™, its point stabilizers are all
conjugate, and so every point stabilizer of H has the form

uy'Riug X - X u Ry, withu; € Ty fori=1,...,m.

Lemma 4.5A. With the notation above, suppose that the normalizer N
of H in Sym(A™) is primitive. Then N is equal to the wreath product W.

Proor. Clearly W < N, so it is enough to show that for each z € N
we have z € W. Let ¥ := {T},...,T}. Since T is a nonabelian simple
group, Theorem 4.3A (iv) shows that X is the set of all minimal normal
subgroups of H, and hence W and N both act on ¥ by conjugation. It is
also clear that W induces the full symmetric group on X, and so for some
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y € W we have z := zy~! € N acting trivially on Z. In particular, each
T; is normalized by z.

Since z normalizes H, conjugation by z must permute the point stabiliz-
ers of H amongst themselves. Since z acts trivially on %, this shows that
conjugation by z must map each R; onto a Tj-conjugate of itself. But the
T;-conjugates of R; are the point stabilizers of T; in its action on each of
the orbits of T;. Therefore Theorem 4.2B shows that the automorphism
of T; induced by conjugation under z is also induced by some element of
M;. Hence for some element ¢ € My X - -+ X M,, < W, the element zt~!

centralizes H = T} X - - X T,,. Since N is primitive and H is not regular,
Theorem 4.3B shows that Cy(H) = 1. Therefore x = zy = ty € W as
required. .

The second general construction of a primitive group with nonregular
socle also comes from the product action of a wreath product, but rather
more indirectly. In this construction, take the simple nonabelian group T
as a regular subgroup of Sym(A) and again put I" := {1, ..., m}. Consider
the wreath product W := T wrr Sy, in its product action on A™. Theorem
2.7A shows that W does not act primitively on A™ because T is regular,
and indeed there is a fairly obvious W-congruence on A™ defined as follows.
Let C be the centralizer of T in Sym(A); so C is also regular, and C = T
by Theorem 4.2A. Now C acts on A™ by (61,...,6m)° = (6%,...,685).
This action commutes with the action of the base group of W since C
centralizes T and commutes with the top group S, since the same element
of C acts on each component. Hence (61, . .., 6,,) = (61,. .., 6y) ¢ for all
ce C,we Wand (61,...,86,) € A™. Thus the set 2 of all C-orbits in A™
is a set of blocks for W (see Exercise 4.5.1). We shall write [61,...,6,] € ©
to denote the block containing (61, ..., 6,,). The corresponding action of
the base group T™ on (2 is called the diagonal action of T™.

Since T is regular on A, we can identify A with T, so that the action
of T is right multiplication: 6* = éx for all x € T and § € A = T. The
action of the centralizer C is then left multiplication by the inverse: §¢ =
¢ 8. The C-orbit [61, .. ., ,,] consists of all points (¢~ 161, ...,c 18,,) for
¢ € C. These m-tuples are identified to a single point in Q; the m-tuples
(61,...,6m_1,1) may be taken as representatives, for example. With this
identification, the base group 7" of W acts by right multiplication while
the top group S, permutes the components. It may be helpful to think of
the construction of 2 “geometrically” as the analogue of the construction of

a projective space from a vector space. The block [61, . . ., 6,,] corresponds
to the “1-dimensional subspace” through the “point” (61, ..., &) (see Sect.
2.8).

Ezercises

4.5.1 Suppose that G is a transitive subgroup of Sym(I') and that C <
Sym(T") centralizes G. Show that the C-orbits form a set of blocks
for G.
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4.5.2 With the notation above, show that W acts faithfully on Q.

4.5.3 Show that the point stabilizer of [6,...,8] in W consists of all
elements of W of the form (u, ..., u)s where u € Ts and s € Sp,.

4.5.4 Show that the diagonal action of W contains regular (but not normal)
subgroups.

The product group Aut(Z7)™ acts on A™ = T™ with the ele-
ment (71,...,7,) taking (61,...,6n) to (61%,...,67). If this per-
mutation induces an action on 2 then for any ¢ € T we have

[(c7t6)™, ..., (¢ t6m)™] = [6]",...,87m]. This requires that all 7; be
equal. On the other hand, each automorphism 7 € Aut(T) acts as a per-
mutation of Q by [61,...,6m]” = [6],...,67]. In fact, the action of the

base group T™ already induces all of the inner automorphisms. Indeed, if
7 € Aut(T) is conjugation by z € T then

[61,...,6m) = [z 612, . .., 27 6]
= [612, ..., Oma]
= [61a ety 6m]m

Note also that this action of Aut(T") commutes with the action of Sy,. The
next lemma shows that W can be extended by Out(T') = Aut(7T")/ Inn(T’)
to obtain the full normalizer of the diagonal action of T™ in Sym(§). We
shall write S as the image of S, and H as the image of the base group of the
wreath product W in the action of W on § described above (Exercise 4.5.2
above shows that this action is faithful). In particular, H = T} x - -- X T,
where each T; is isomorphic to T'.

Lemma 4.5B (Diagonal type). With the notation above, let N be the
normalizer of H in Sym(Q), so W =2 HS < N. Then N/HS = Out(T).

PROOF. Since T is a nonabelian simple group, the diagonal subgroup
D:={{,...,t)|teT}=T

of T™ is self-normalizing in T™. Therefore the point stabilizers of the (per-
mutation isomorphic) group H (see Exercise 4.5.3) are also self-normalizing.
In particular, H has a trivial centralizer in Sym(?) by Theorem 4.2A
(iv). By Theorem 4.2B, the automorphisms of H induced by conjugation
by elements of N are precisely those which permute the point stabiliz-
ers of H among themselves. Thus N is isomorphic to the group A of
automorphisms of T™ which map D onto one of its conjugates in 7.
Since T is a nonabelian simple group, Aut(T™) = Aut(T") wrp Sy, where
T := {1,...,m} (Exercise 4.3.9). Using this representation of Aut(T™),
we see that if 74,...,7, € Aut(T) and s € Sy, then

o:=(m,...,7m)s € A < for some c € T™, D’ = ¢ 'De.



4.5. Constructions of Primitive Groups with Nonregular Socles 123

Thus o € A exactly when there are elements ¢(1), ..., c(m) € T such that
for each € T there exists y € T, satisfying

™ = ¢(i*) tyc(i®) for each i.

But this implies that for all 7 and j, nT{l € Inn(7T), and so all the 7;
lie in the same coset of Inn(T"). Thus we can define a mapping ¥ : A —
Aut(T)/ Inn(T) = Out(T) such that (o) is the coset of Inn(T) which
contains all 7;. It is easy to verify that ¥ is a homomorphism of A onto
Out(T), and its kernel is K := Inn(T) wrr Sy,. Moreover, K is isomor-
phic to T wrp Sy, because Inn(7") 2 T for a simple nonabelian group T
Finally, N acting by conjugation on H = 7™ induces the subgroup A of
automorphisms of 7™ and in this correspondence HS induces K. Hence
N/HS =2 A/K = Out(T) as asserted. i

We shall say that G is a group of diagonal type if G is a subgroup of
the normalizer N of H in Sym(Q) such that G contains the base group
H =T, x---xT,, (so, by Lemma 4.5B, G is contained in an extension of the
wreath product T' wrr Sy, by Out(T) where 1" is a finite nonabelian simple
group). The analysis above shows that the point stabilizer G, is isomorphic
to a subgroup of Aut(T') x Sy, containing the group Inn(7") = 7. The groups
T1, ..., Ty are the only minimal normal subgroups of H by Theorem 4.3A
and H <« G, and so G acts by conjugation on the set {T1,...,T,,}. The
following theorem characterizes those groups of diagonal type which are
primitive.

Theorem 4.5A. With the notation above, G is a primitive subgroup of

Sym(Q) exactly when either

(i) m = 2; or

(ii) m > 3, and the action of G by conjugation on the set {Ty,...,Tn} of
minimal normal subgroups of H is primitive.

In particular, the full normalizer N of the base group B is primitive for all
m > 2.

PROOF. As before put I' := {1,...,m}, and let V = Aut(T) wrp S,.
The proof of Lemma 4.5B shows that N is isomorphic to

A:={(r1,...,7m)s € V | s € Sy, and all 7; lie in same Inn(T)-coset}
and that under this isomorphism H maps onto
B:={(r1,...,Tm)l € V| each 7; € Inn(T)}
and one of the point stabilizers of N maps onto
C:={(r,...,7)seV |7 € Aut(T) and s € Sp,} .

Let L be the corresponding image of G. Then L N C corresponds to a point
stabilizer of G. Therefore Exercise 4.5.5 shows that G is primitive if and
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only if there is no subgroup M of B such that
(4.3) BNC <M < B and M isnormalized by L N C.
Finally, let

S:={seSn|(r,...,7m)s € L}.

It is easy to verify that S is permutation isomorphic to the image of the
action of G on {T1,...,T,,}. Thus to prove the theorem it is enough to
show that no subgroup M of B satisfies conditions (4.3) if and only if either
(i) m = 2, or (ii) m > 3 and S is a primitive subgroup of S,,.

First, suppose that m > 3 and that S is not primitive. Then there is a
nontrivial S-congruence, say =, on I'. Define

M := {(r1,...,7m)1 € B | 7, = 7; whenever i = j} .

Then it is straightforward to verify that M is a subgroup of B satisfying
conditions (4.3). Therefore conditions (i) and (ii) are necessary.

Second, suppose that M is a subgroup which satisfies conditions (4.3).
Consider the projections m; : M — Inn(T') defined by (r1,...,7m) — 7.
Each 7; is a homomorphism, and Im m; = Inn(7') = T since BN C < M.
Let M; := ker ;. If all the subgroups M; were distinct, then Lemma 4.3A
would show that |M| = |T|™ contrary to the hypothesis that M < B. On
the other hand, if all the M; were equal, then |M| = |{Inn(T")| contrary to
the hypothesis that B N C < M. Hence we have a nontrivial equivalence
relation = defined on I' by

We claim that this is an S-congruence. Indeed, A = BC and so L =
B(L N C). Thus, if s € S, then there exists z := (,...,0)s € LN C for
some o € Aut(T). Then (4.3) shows that for each z := (11,...,7n) € M
we have
72z = (0" rpo,. .., 0 o) € M where i = i°.

Therefore 2 € My <= z lzz € M; and, in particular, M; = M; <+
M; = Mj:. Thus each s € S preserves the relation =. Since = is nontrivial,
this shows that £k > 3 and S is not primitive. Hence the existence of a
subgroup M satisfying (4.3) implies that neither (i) nor (ii) holds.

The last statement of the theorem now follows from Lemma 4.5B. This
completes the proof of the theorem. O

FEzxercises

4.5.5 Suppose that G < Sym(Q2) and that H is a transitive subgroup of
G. Let a € Q. Show that G is primitive if and only if there is no
subgroup M of H such that H, < M < H and M is normalized by
Gq. (This generalizes Exercise 2.5.8.)
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4.5.6 Let T be a finite nonabelian simple group acting regularly on a
set A, and let U := ((1234)) < Sym(T") where I' := {1,2,3,4}.
With the notation of Theorem 4.5A we know that the group G :=
T wrp U acts imprimitively on Q (where || = |A[°). Find an
explicit nontrivial G-congruence on 2.

4.5.7 Show that a finite group of diagonal type is never 2-transitive.

4.5.8 Suppose T is a nonabelian simple group, and let N* denote the set
of all permutations of T of the form a — z~'a®y where z,y € T
and o € Aut(T). Show that N* is a group which is permutation
isomorphic to the group N defined in Lemma 4.5B in the case m =
2.

4.5.9 It is known that there exist infinite simple groups in which every
two nonidentity elements are conjugate [see Higman et al. (1949)].
Suppose that T is such a group, and consider the group N* defined
in Exercise 4.5.8. Show that N* is 2-transitive. (This shows that the
condition “finite” cannot be dropped in Exercise 4.5.7.)

4.5.10 Let H = T™ where T is a finite nonabelian simple group, and let ;
denote the projection of H onto the ith factor. Suppose that H acts
transitively on a set X such that a point stabilizer H, = T and, for
each i, m;(Hq) # 1. Show that the action of H on ¥ is equivalent to
the diagonal action of H. [Hint: m;(H,) = T because H, is simple.]

4.6 Finite Primitive Groups with Nonregular Socles

The socle H of a finite primitive group G is, according to Theorem 4.3C,
either regular or else is the unique minimal normal subgroup of G. Section
4.7 deals with the case of a regular socle, while this section is devoted to the
nonregular case. The main result is Theorem 4.6A which is the nonregular
case of the O’Nan—Scott Theorem. In essence this theorem says that if the
socle H is nonregular, then the primitive group G is either contained in
the normalizer of a nonabelian simple group or else G is obtained from a
primitive group of smaller degree via the product or diagonal constructions
described in Sect. 4.3.

Corollary 4.3B shows that the socle H is always a direct product of copies
of some simple group T'; this group T will be called the socle type of G (so
the socle type is determined up to isomorphism). As we observed before,
since H < G and G is primitive, H is transitive, so G has nonabelian socle
type whenever H is not regular.

Theorem 4.6A. Let G be a finite primitive group with a nonregular socle
and socle type T'. Then G is permutation isomorphic to one of the following
kinds of groups:

(i) a primitive group U with soc(U) & T;
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(ii) o primitive group U of diagonal type as described in Lemma 4.5B with
soc(U) = T™ for some m > 2 (and degree |T|™");

(iii) a primitive subgroup of a wreath product U wrr Sym(T) with the
product action and |T'| > 1, where U is a primitive nonregular group
of one of the types (i) or (ii).

Since H := soc(G) is nonregular, the centralizer Cg(H) = 1 in all
cases (Theorem 4.3B), and so the conjugation action of G on H gives an
embedding of G into Aut(H). In particular, classification of groups of type
(i) reduces to the study of primitive permutation representations of groups
G with T = Inn(T) < G < Aut(T) for a finite simple group T'; a group G
of this kind is called almost simple. This reduces in turn to the classification
of almost simple groups and their maximal subgroups. Groups of types (ii)
and (iii) have nonsimple socles and are generally distinguished as having
small orders with respect to their degrees.

PROOF OF THEOREM 4.6A. Let 2 be the set on which G acts, and
consider the normalizer N of H in Sym(2). Since G < N, therefore N is
also primitive. Since G has socle type T', we know that H & T} X - -+ x Tp,
for some m > 1 where each T; = T'. If m = 1, then we have case (i). Thus
we can suppose that m > 2, and proceed by induction on m.

Let m; : H — T; denote the projection of H onto the direct factor T;.
Let H, be a point stabilizer of H, and put R; := m;(H,) < T;. Since
H is a normal subgroup of a primitive group, it is transitive on  and
so N = N,H. Moreover, N acts transitively on the set {T1,..., T} by
conjugation (Theorem 4.3A), and therefore N, also acts transitively on
this set. Since H, = H N N, < N, the definition of 7; shows that, for all
u € H, and x € N,, we have

44 z 'm(wz = m;(x tuz) whenever z Tz = T;.
J J

In particular, if z € N,, then 7 'T;z = T; implies that z7*R;z = R;.
Thus the subgroups Ry, ..., R,, are conjugate under N,, and so the
subgroup K := Ry X ... x Ry, is normalized by N, (see Fig. 4.1). By the
definition of R; we have H, < K < H. We consider two cases according
to whether R; is or is not a proper subgroup of 77.

Case 1: Ry < T}

In this case H, < K < H. Since K is normalized by N,, and N is
primitive, therefore N, K = N, or N. But N,K = N implies that K is a
normal subgroup of N; since H is minimal normal in N by Corollary 4.3C
and K < H, this is impossible. Hence N,K = N,, and so H, = K =
Ry X -+ X R

Fix an isomorphism of T3 onto T" and let R be the corresponding image
of Ry. It follows from condition (4.4) that there is an isomorphism of each
T; onto T such that R; maps onto R. Choose a transitive permutation
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Sym (£2)

FIGURE 4.1. Subgroup lattice

representation of T' on a set A, say, for which R is the stabilizer of a point 6,
say. Then T™ acts transitively and faithfully on A™ via the product action;
we shall identify 7™ with its image in Sym(A™). The point stabilizer in 7™
of (8,...,8) is R™, and it is clear that there is an isomorphism of H onto
T™ such that H, maps onto R™. Hence T™ < Sym(A™) is permutation
isomorphic to H < Sym(2). Lemma 4.5A now shows that the normalizer
N of H in Sym(f) is permutation isomorphic to a wreath product of the
form M wrr S,, where T' := {1,...,m} and M is the normalizer of T' in
Sym(A). Because N is primitive, Lemma 2.7A shows that M must also be
primitive. Since B # 1,T is not regular and T' < soc(M). Since soc(M)
is not regular, it is the unique minimal normal subgroup of M (Corollary
4.3B), so T = soc(M). This shows that M is a primitive group of the type
described in (i), and hence G is permutation isomorphic to a group of the
kind described in (iii). This completes the proof of the theorem in this case.

Case 2: Ry = T

In this case the (conjugate) R; equal T; for all 3. Thus H, is a subdirect
product of H = T7 X - - - X T}, but not equal to H. Put K; := H, N kerm;
for each %, and note that H,/K; = n;(H,) = T;. Reindexing, if necessary,
we may suppose that Ky, ..., Ky, say, are distinct, and every other K is
equal to one of these. In particular, K3 N --- N Ky = 1. Lemma 4.3A now
shows that H, = Vi x --- x V3 where each V; 2 T, and d < m because
H, < H. We divide the remaining argument into two subcases.

Subcase 2': Ry =T, andd =1

In this case there is an isomorphism ¥ : T — H, and the compos-
ite mappings ¥; = m; o W : T — T, are also isomorphisms. Hence
(t1, .. stm) — W1{t1) - - - Uy () is an isomorphism of 7™ onto H which
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maps the diagonal group
D:={(#...,t)|teT}

of ™ onto H, (compare with Exercise 4.5.10). Hence H is permuta-
tion isomorphic to the base group of the wreath product considered in
Lemma 4.5B. Since G normalizes H, the group G is therefore permutation
isomorphic to a group of diagonal type (ii).

Subcase 2"": Ry =T andd > 1

In this final case we shall show that G is a group of type (iii). We have
H=Tx---xThand H, =V x---xVgwithT; = V; = T for all ¢ and
7. We shall first show how the set of m factors of H can be partitioned into
d blocks such that, for some group U having diagonal action, the direct
product of the subgroups in each of the d blocks is isomorphic to soc(U).

We begin by noting that the subgroups V; are the unique minimal normal
subgroups of H,, and

L= Co(V;) =[[Vi forj=1,...,d
1#]
are the unique maximal normal subgroups of H, (see Exercise 4.3.6). On
the other hand, since m;(H,) = T; is a simple group, therefore K; =

H, N ker 7; is a maximal normal subgroup of H, for each i. Thus we can
define a partition {Ay,...,Ag} of & :={T1,...,Tn} by

T‘ieAj — K7:Ly

Note that each A; is nonempty since N K; = 1 while the intersection of
any proper subfamily of the L;’s is not 1. Define U; as the product of the
subgroups in A; for j = 1,...,d. Clearly H = U; x --- x Ug. Moreover
U; N H, = Vj since, if x € H,, then

2 €U; < mx)=1forall T ¢ A; <= zc () Lp=V,.
k#j

As we just noted, N, acts transitively by conjugation on ¥. On the other
hand, it follows from condition (4.4) that, if x € N,, then 27 'K,z = Ky
whenever ™ 1Tjx = Ty. Thus {Ay,...,Aq} is a set of blocks for this ac-
tion. In particular, this shows that: {Ui, ..., Uy} is a class of subgroups
conjugate under N,, each set A; has size s := m/d, and |U;| = |T".
Let A; be the orbit of U; which contains « for ¢ = 1,...,d. Since the
U; are conjugate under N,, there exist elements z; € N, such that
U, = w;lUlsci and A; = A% for each ¢ where A = A;. Thus the
groups U; are all permutation isomorphic to U := U; < Sym(A), and
Al = Uy : Uy NHy| = Uy : V4| = TP

Since V := V; is equal to Uy, and m;(V) = T; for each T; € A;, Exercise
4.5.10 shows that the action of U on A is equivalent to the diagonal action.
Let M be the normalizer of U in Sym(A); then Theorem 4.5A shows that
M is a primitive group of the type described in (ii). Finally, define W :=
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Sym (2)
W=M wr Sym (%)
NQ—
GO—>

H=U;x...xUgQ— Ud:soc(W)

Hoy=Vx...xVyq

FIGURE 4.2. Subgroup lattice: subcase 2

M wry, Sym(X) (see Fig. 4.2). Since the normalizer N of H = Uy x - - - x Uy
in Sym(Q) contains G, it is primitive; therefore Lemma 4.5A shows that
W is permutation isomorphic to N. Thus we conclude that G has the form
described in part (iii), and the proof of the theorem is complete. O

The classification for the case of a nonregular socle which we have just
completed can be summarized in a different way. We have shown that when
the socle of a primitive group G is nonregular, then we can build the action
of soc(G) by first taking a direct power U = T* of a simple group T' with a
transitive action (s = 1) or a diagonal action (s > 2), and then combining
d copies of U with a product action. More precisely,

soc(G) = T** <« G < [(T wr Ss) ... Out(T)] wr Sq.
The case of a regular socle is addressed in the next section.

Exercises

4.6.1 Under what conditions is soc(G) primitive in Theorem 4.6A?

4.6.2 The Feit-Thompson Theorem [Feit and Thompson (1963)] states that
every group of odd order is solvable. Using this theorem, show that
if G is a finite primitive group of odd degree, then soc(G) is either
simple or regular.

One natural question which arises is: when is the socle of a finite prim-
itive group primitive? The question is easily answered when the socle is
regular. The following example shows what may happen when the socle is
nonregular and nonprimitive.

ExAMPLE 4.6.1. We introduced the Fano plane and its automorphism
group PSL3(2) in Exercises 2.4.2 and 2.8.12. PSL3(2) is a simple group
of order 168 which acts 2-transitively on the set of 7 points of the Fano
plane and also on the set of 7 lines. Thus P.SL3(2) acts transitively on the
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(1.00) [0,1,0]
L [0,0,1]
[0,1,1] \ -~
(1,0,1) (1,1,0)  [1,1,0] [1,0,1]
(1,1,1)
©.0.1) (0,1,1) (0.1.0) T[1,0,0] [1,1,1]

FIGURE 4.3. The Fano plane: point and line coordinates

set A of 21 incident point-line pairs (called “flags”) and on the set T' of 28
nonincident point-line pairs (called “antiflags”). Both of these actions are
imprimitive (see Exercise 4.6.3).

Let Fa be the field of 2 elements. Then the points of the Fano plane can
be labelled, as in Fig. 4.3, with the seven triples of coordinates from [,
which are not all zero. The lines can be similarly labelled with triples
[#, y, 2] in such a way that the point (a, b, c) is incident with [z, y, 2] exactly
when az + by + cz = 0. (These are just the homogeneous coordinates for
this projective plane.) Define a mapping 7 (a “correlation”) on the set of
all points and all lines of the Fano plane by requiring 7 to interchange
each point (a, b, ¢) with the corresponding line [a, b, ¢|. Because T preserves
incidence, it acts as a permutation on each of the sets A and T', and so
the group L := (PSL3(2), ) acts transitively on both A and T'. As the
exercises below show, L acts primitively on both A and I', but its socle is
nonregular and nonprimitive.

FExercises

4.6.3 Show that PSL3(2) acts imprimitively on each of A and T', and that
in each case there are exactly two nontrivial congruences.

4.6.4 Show that PSL3(2) is the socle of L, and that L acts primitively and
faithfully on both A and T'.

4.6.5 (Continuation) Show that L has rank 4 on A, and rank 5 on T

4.7 Primitive Groups with Regular Socles

In the preceding section we characterized finite primitive groups with non-
regular socles. Here we will consider the case of a primitive group with a
regular socle.
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Let G be a finite primitive subgroup of Sym(Q)) whose socle H is regular,
and let N be the normalizer of H in Sym(Q). As before, we have H = T™
for some simple group T and some integer m > 1, and H < G < N. Since
N is the holomorph of H, Corollary 4.2B shows that N & H x Aut(H);
more precisely, a point stabilizer N, of N acting on € is permutation
isomorphic to Aut(H) acting naturally on H, and N = HN, with H N
N, = 1. Similarly, G = HG,. We also note that G, acts irreducibly on H
in the sense that the only subgroups of H which are mapped into themselves
under conjugation by G, are 1 and H; indeed, if 1 < K < H and K is
normalized by G, then G, < KG, < G contrary to the maximality of
Gy

There are two quite distinct cases which have to be handled separately
depending on whether H is abelian or nonabelian. If H is abelian, then
Theorem 4.3B shows that H is an elementary abelian p-group for some
prime p, the centralizer C < N of H is equal to H and soc(N) = H =
C = soc(G). As we shall see below, in this case our characterization reduces
to a problem in linear algebra.

On the other hand, if H is nonabelian, then C is also regular with C = H,
but soc(N) = H x C # soc(G) and G N C =1 (see Theorem 4.3B). The
normalizer N is primitive of diagonal type. Consider the homomorphism
¥ : N — Aut(H) induced by the conjugation action of N on H. Clearly
W (N,) = Aut(H) because N is the holomorph of H, ker ¥ = C, and HC
is the preimage of Inn(H) under ¥. Since HC NG = H({C N G) = H, we
conclude that ¥(G,) N Inn(H) = 1. Thus G, is isomorphic to a subgroup
of Out(H) = Aut(H)/ Inn(H). Writing H = T™ where T is a nonabelian
simple group, Exercise 4.3.9 shows that

Ouwt(H) = (Aut(T) wrp Sp) /Inn(T)™ = Out(T') wrp S,

where T = {1,...,m}. As we shall see in Theorem 4.7B, this condition
on (G, is quite severe, and for some choices of T and m there are no
corresponding primitive groups.

FExercises

4.7.1 Let K and H be arbitrary groups, and suppose that K acts faith-
fully and irreducibly as a group of automorphisms of H, and that no
nontrivial element of K acts as an inner automorphism of H. Show
that G acts faithfully and primitively by right multiplication on the
set of right cosets of K and that H is the socle of G := H x K. (Of
course, in the finite case, this can only happen when H is a direct
product of simple groups.)

4.7.2 (Continuation) Suppose K and L are subgroups of Aut(H) and both
act irreducibly on H. Show that the corresponding groups H x K
and H x L are permutation isomorphic exactly when K and L are
conjugate in Aut(H).
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4.7.3 (Continuation) Show that the action of G on the set of right cosets of
K is equivalent to the action of G on H defined by: a(*?) := (au)®
where a € H and (u,z) € H x K.

4.7.4 Let H be an elementary abelian p-group of order p* for some prime
p. Show that Aut(H) = GLg(p), the general linear group of all in-
vertible k x k matrices over the field Iy, of p elements. [Hint: H is
isomorphic to the additive group of a k-dimensional vector space V
over F,. Show that Aut(V,+) is equal to the group GL(V) of all
invertible linear transformations on V']

The next result follows immediately from the discussion above and
Exercises 4.7.1 and 4.7.4.

Theorem 4.7TA. Let G be a finite primitive group with an abelian socle
(which is necessarily regular). Then G has degree p* for some prime p and
some k > 1. If V is a vector space of dimension k over the field F, with
p elements, then there is a subgroup K < GL(V) acting irreducibly on V
and an isomorphism of G onto V. x K in which a point stabilizer of G
maps onto K.

In particular, it follows that (up to permutation isomorphism) the affine
group AGL(p) described in Sect. 2.8 is the unique maximal primitive
group of degree p* with abelian socle. Since quite a lot is known about the
irreducible subgroups of GL(V'), Theorem 4.7A and Exercises 4.7.2 and
4.7.3 give a recipe for constructing the corresponding primitive groups for
small degrees. Some references at given at the end of the chapter.

FExzxercises

4.7.5 Find all irreducible subgroups of GL2(3) and GLy(5) up to conjugacy,
and use this information to find all primitive groups of degrees 3% and
52 with abelian socles.

4.7.6 Let E and F be finite fields with |E| = |F|™. Show that GL,(F)
is isomorphic to an irreducible subgroup of GL,(F). In partic-
ular, GL,,(F) contains an irreducible subgroup isomorphic to the
multiplicative group of E.

4.7.7 Let ¢ = p™ be a power of the prime p. Since the multiplicative group
of any finite field is cyclic, the preceding exercise shows that GLz(q)
has an irreducible cyclic subgroup A of order g2 — 1. Show that the
subgroup of order ¢ + 1 in A is also irreducible.

4.7.8 Suppose that m > 1 is an integer, and p and r are primes such that r
divides p™ — 1 but r does not divide p* — 1 for 1 < k < m. Show that
GL,,(p) has an irreducible cyclic subgroup of order 7. (A theorem of
K. Zsigmondy shows that a prime r satisfying these conditions exists
for all p and m except for p = 3 and m = 2; see for example Liineburg
(1981).)
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We finally turn to the case where the primitive group has a nonabelian
regular socle. To obtain more precise results here we shall appeal to the
“Schreier Conjecture” made by O. Schreier in 1926:

for every finite simple group 7,
Out(T) = Aut(T)/ Inn(T) is solvable.

To date this conjecture has only been proved using the classification of
finite simple groups (see Appendix A) and a case-by-case examination of
the various classes of simple groups. Actually, the classfication shows that
much more is true: in many cases the group of outer automorphisms of
a finite simple group is cyclic or even trivial, and in all cases it has a
normal series of the form: A < B <« C where A is abelian, B/A is cyclic and
C/B =1,85; or Ss.

Theorem 4.7B (Assuming the Schreier Conjecture for T). Let G <
Sym(Q) be a finite primitive group with a regular nonabelian socle H =
T x --- x Ty, where each of the factors T; is isomorphic to a finite non-
abelian simple group T and m > 1. Let G,, be a point stabilizer of G. Then
the following hold.

(i) Go has no nontrivial solvable normal subgroup.

(ii) The action of Gy by conjugation on the set {11,...,Ty} (see Theo-
rem 4.3A) is transitive and faithful, so G, is isomorphic to a transitive
subgroup of Sp,.

(iii) In the action of G, defined in (ii), the stabilizer Ng (Tv) of Th
contains a composition factor isomorphic to T'.

(iv) The integer m must be large enough so that T is isomorphic to a
section of Spy—1. In particular, m > 6 for all T.

PRroOF. (i) Suppose that G, had a nontrivial normal solvable subgroup.
Then Theorem 4.3A shows that GG, has a minimal normal subgroup P
which is an elementary abelian p-subgroup for some prime p. Because G
is maximal in G, therefore Ng(P) = G, and so, in particular, Cy(P) = 1.
Thus, in the action of P by conjugation on H, {1} is the only orbit of length
1. Since every nontrivial orbit of P has length divisible by p, we conclude
that p divides |H| — 1, and p does not divide |H]|.

On the other hand, if ¢ is a prime dividing |H|, then the number n, of
Sylow g-subgroups of H divides |H| and so p does not divide ny. Now P
acts on the set of Sylow g-subgroups of H by conjugation; since p does not
divide ng, at least one of the orbits in this action has length 1. Thus we
conclude that some Sylow g-subgroup @Q of H is normalized by P. We claim
that @ is the only Sylow ¢-subgroup normalized of H by P. Indeed, suppose
that P also normalizes v *Qu for some v € H. Then P and uPu ! are
both Sylow p-subgroups in Ngp(Q). Thus, for some v € H N Nyp(Q), we
have vuPu~lv™! = P, and so vu € G, N H = 1. Hence u € Ngp(Q), and
so v 'Qu = @. This shows that Q is the unique Sylow g-subgroup of H
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normalized by P. Therefore z~ 1Pz = P implies 27 'Qz = @, and so Q is
normalized by G,. Hence H = @) because G, acts irreducibily on H. This
contradicts the hypothesis that H is a product of nonabelian simple groups.
Thus G, has no nontrivial normal abelian subgroup, and (i) is proved.

(ii) G, acts by conjugation on the set {17, ..., T, } because these are
the only minimal normal subgroups of H by Theorem 4.3A. Let K be
the kernel of this action. As we noted at the beginning of this section,
the action of conjugation of G, on H defines an embedding ¥ of G, into
Aut(H) such that ¥(G,) NInn(H) = 1. Then K = ¥(K) < Aut(Ty) x
- x Aut(Ty,) with (K) N (Inn(Ty) x - - - x Inn(Ty,)) = 1. Since Out(T3) =
Aut(T;)/ Inn(T;) is solvable by the Schreier Conjecture for T, K must also
be solvable, and so K = 1 by (i). This shows that the given action of G,
on {T4,..., Ty} is faithful, and it is transitive because G, acts irreducibly
on H. Thus G, is isomorphic to a transitive subgroup of Sp,.

(i) Put L := Ng(T1) and C := Cg(T1). Since Ty X - -+ x T, < C we
have H < T1C and L = HL, = T1L,C. Note that L, is the stabilizer in
G, of the point T; in the action described in (ii).

Put K == L,C.If K = L, then T &2 HC/C aL/C = L,C/C =
L./(L, N C) and the conclusion of (iii) follows. It remains to consider the
case where K < L.

Suppose that K < L, and choose M maximal in L such that K <
M < L. Put U; := M N Ty and note that L, normalizes Uy; we claim
that U; = 1. Indeed, since L,, is the stabilizer of T} in the action in (ii),
Go = U <j<m Laxi where x;lle,- = T; fori = 1,...,m. Hence, putting
U, =z, LU z;, we see that Uy x - - x Uy, is a subgroup of H which is
normalized by G,. Since G is primitive, G, acts irreducibly on H, and so
Ui x-++xUy, =1or H. Hence U; = 1 or T;. The latter alternative cannot
hold because if Ty < M then H < T'C < M so HL, =L < M < L. So
U = MNT, =1 as claimed.

Now, since K < M, wehave M = M NT1K = (M NTh)K = K, and
so M = K. Thus K is maximal in L, L = T'K, Ty «Land 1 N K = 1.
Consider the action of L by right multiplication on the set of right cosets
of K in L, and let L denote the image of this action. Since C < K and
is normal in L, the point stabilizer K of L is a homomorphic image of
K/C = L,C/C = L,/(Ls N C). Moreover, L is primitive because K
is maximal in L, and the image T, of T} is a regular normal subgroup
isomorphic to T. Now Theorem 4.3B shows that soc(L) is either T or
Ty x C; where C; =2 T;. In the former case we are in the situation of the
present theorem with m = 1; (ii) shows that this is impossible because a
primitive nonabelian group cannot be regular. In the latter case, the point
stabilizer K of L must contain a normal subgroup isomorphic to C; because
T} is regular. Since K is a homomorphic image of L, this implies that L
contains a composition factor isomorphic to T" as required. This completes
the second case.
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(iv) This follows immediately from (iii) and the fact that S, has no simple
nonabelian sections. a

An alternative approach to describing finite primitive groups with non-
abelian regular socles is through the construction of the twisted wreath
product first introduced in Neumann (1963). The construction of the twisted
wreath product in general may be explained as follows.

.Let T and K be arbitrary groups and let L be a subgroup of K together
with a specified homomorphism ¢ : L — Aut(T). Let R be a set of left coset
representatives for L in K. Recall that the set Fun(K, T') of all functions
f: K — T is a group under pointwise multiplication (see Sect. 2.6). We
can define an action of K on Fun(K, T') preserving this group operation via
f2(z) := f(zz) (f € Fun(K,T),z,z € K). Now define H C Fun(X,T)
to consist of all f € Fun(K,T) such that f(zy) = f(2)*® for all z € K
and y € L. It is readily verified that H is a subgroup of Fun(XK,T) which
is invariant under the action of K and, moreover, the restriction mapping
f — f |r is an isomorphism of H onto Fun(R, T) (see Exercises 4.7.9 and
4.7.10 below). In particular, if |R| = |K : L| = m, say, this shows that
H = T™. Thus we can define the semidirect product G = H x K. This is
called the twisted wreath product with respect to the data (T, K, ¢), and
may be compared with the wreath product defined in Sect. 2.6.

Ezercises

4.7.9 With the notation above show that H is a subgroup of Fun(K,T)
and that there is an action of K on H preserving the group operation
given by f*(z) = f(zz) (z,2 € K and f, f* € H).
4.7.10 (Continuation) Show that the restriction mapping f — f |g is an
isomorphism of H onto Fun(R, T') and that Fun(R,T") & T™ when
|R| = m.

It can be shown that any finite primitive group with a regular nonabelian
socle of the form T™ (T simple) is isomorphic to a twisted wreath product
(T, K, p) where |[K : L| = m and ¢ : L — Aut(T) has Im ¢ > Inn(T)
(see Liebeck et al. 1988a). However, there seems to be no known simple
necessary and sufficient conditions on 7', K and ¢ for this twisted wreath
product to satisfy the criteria of Exercise 4.7.1 and hence represent a fi-
nite primitive group. The following lemma gives a useful, easily applicable
sufficient condition.

Lemma 4.7A. Let T be a finite nonabelian simple group, and K < S,
be a primitive permutation group with point stabilizer L. Suppose that ¢ :
L — Aut(T) is a homomorphism such that Im ¢ > Inn(T), but Im ¢ is not
a homomorphic image of K. Then the twisted wreath product G = H 1 K
defined above using the data (T, K, ) satisfies the conditions of Exercise
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4.7.1. Thus G is isomorphic to a primitive group with regular socle T™ and
point stabilizer isomorphic to K.

Proor. Let R be a set of left coset representatives of L in K with
1 € R. We shall first show that no nontrivial z € K induces an inner
automorphism of H. Indeed, since L is a point stabilizer of K, therefore
NyerrLlr™ =1, and so ¢ & rLr~! for some r € R. This implies that
zr = sy for some y € L and s € R with s # r. Now, since the restric-
tion f + f |g is an isomorphism of H onto Fun(R,T), we can choose
f € H such that f(r) = 1 and f(s) # 1. Then for each g € H we have
g (r)f(r)g(r) = 1 while f(zr) = f(sy) = f(s)?® # 1, which shows
that the action of z on H is not an inner automorphism. Thus no nontriv-
ial element of K induces an inner automorphism on H and, in particular,
K acts faithfully on H.

It remains to show that K acts irreducibly on H. Let M be a minimal K-
invariant subgroup of H with M > 1; we have to show that M = H. For
each 7 € R we have the homomorphism 7, : M — T given by f — f(r).
Taking z = rs~! we have f(r) = f*(s) forany f € M and r, s € R. Since
M is K-invariant, this shows that Im 7, = Im 7, for all » and s. Let Ty
denote this common image, and note that Ty # 1 because M # 1. Taking
z = ryr~1, we have f(r)?W) = f(ry) = f(zr) = f*(r) € Ty forally € L
and r € R. Since Im ¢ > Inn(T), this shows that 1 # Ty<T andso Ty = T
by the simplicity of T'. To prove that M = T™ (and hence M = H), it is
enough to show that the kernels of the 7, are distinct (see Lemma 4.3A).

Suppose on the contrary that ker 7, = ker 7, = My, say for some r # s
where My < M. Let f € My. Then taking 2 = ryr~! with y € L, we
have f*(r) = f(ry) = f(r)*® = 1. Similarly, taking z = sr~! we find
that f®(r) = f(s) = 1. Thus My is invariant under (rLr—', sr~1), and the
latter equals K because L is maximal in K. Now the choice of M shows
that My = 1, and so kerm; = 1 and M = Ima; = T. The image of
the action 1 of K on M is contained in Aut(M) because K preserves the
group operation. Since f¥(1) = f(1)¢® for all f € M and y € L, the
image of v restricted to L is isomorphic to Im ¢ and contains Inn(M).
Because L contains no nontrivial normal subgroup of K, we conclude that
1 is not faithful, and so the maximality of L in K shows that K = (ker ¢)L.
But then K/kert = Im1 = (L) = Im ¢ which contradicts one of the
hypotheses of the lemma. Thus the mappings 7, have distinct kernels, and
H is irreducible as claimed. This completes the proof of the lemma. a

Exercises

4.7.11 Show that there exist primitive groups which have regular socles
isomorphic to (A4s)™ for m = 6, 21 and 56. Does there exist one
when m = 77

4.7.12 Show that for any finite simple group T there is a primitive group
with a regular socle isomorphic to 771,
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4.7.13 Let K be a simple normal subgroup of a finite group G with G’ = G.
Assuming the Schreier Conjecture, show that G = K x Cg(K).

4.8 Applications of the O’Nan—Scott Theorem

The main focus of this chapter has been the proof of the O’Nan—Scott
Theorem, Theorem 4.1A. Since the argument was spread over several sec-
tions, the overall picture may have been obscured. In this final section we
shall summarize this important result and describe a few of its significant
applications.

A finite primitive group G has a socle H = T™ which is the direct
product of m copies of some simple group T' (Corollary 4.3B). The analysis
then divides into two cases depending on whether or not H is regular. Let
n denote the degree of G.

If the socle H is regular then one of the following cases holds.

(i) Affine type: H is an elementary abelian p-group, n = p™, and G is
a subgroup of the affine group AGL,,{p) containing the translations.
The stabilizer G, is an irreducible subgroup of GL,,(p) (Theorem
4.7A).

(i) Regular nonabelian type: H and T are nonabelian, n = [T|™, m > 6
and the group G can be constructed as a twisted wreath product. The
stabilizer G, is tightly constrained and in particular is isomorphic to a
transitive subgroup of S,, whose point stabilizers have a composition
factor isomorphic to 7' (Theorem 4.7B).

If the socle H is not regular then H is nonabelian and one of the following
cases holds (Theorem 4.6A).

(ii) Almost simple type: H is simple and G < Aut(H); G/H is solvable
by the Schreier Conjecture.

(iv) Diagonal type: H = T™ withm > 2, n = \T|m—]L and G is a subgroup
of a wreath product with the diagonal action. The stabilizer satisfies
Inn(T) < G, < Aut(T) x Sy, and has a primitive action of degree m.
(See Lemma 4.5B.)

(v) Product type: H = T™ with m = rs and s > 1. There is a primitive,
nonregular group U with socle T” and of type (iii) or (iv) such that G
is isomorphic to a subgroup of the wreath product U wr S, with the
product action. The degree of G is n = (d)® where d is the degeee of
U.

With the O’'Nan—Scott Theorem available, a problem about a finite prim-
itive group G can be broken up into these five cases. In a typical situation,
we can deal with the case of a regular normal subgroup in a straightfor-
ward way. If G is of diagonal type we have a detailed description of the
action, while if G is of product type a strong inductive setup is available.
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So often a problem can be reduced to the case of a group G of almost
simple type. At this point we turn to the large body of detailed knowledge
available about finite simple groups. In particular, using the classification
of finite simple groups, we can consider the separate types of finite simple
group as possible socles for G. Of course, in a particular problem any or
all of these steps may be nontrivial, but the O’Nan—Scott Theorem does
provide an effective framework for using detailed information about finite
simple groups to answer significant questions about finite primitve groups.
The rest of this section sketches a few of the results obtained by using the
O’Nan—Scott Theorem. For further discussion see, for example, Cameron
(1981a) and Praeger (1990).

(A) Listing Primitive Groups

The analysis of primitive groups in terms of their socles provides a natural
approach to listing the primitive groups. For example, Appendix B con-
tains a list of all the primitive groups of degree less than 1000. Taking a
more general approach, Liebeck and Saxl (1985b) list all primitive groups
of odd degree. These lists were constructed in the following way. If G is
primitive on  then the socle H is transitive and H < G < Sym(Q2). Each
list item is essentially a transitive action for a particular socle H along
with information about the structure of G, and the normalizer of H in
Sym(). In Dixon and Mortimer (1988) such a list item is called a cohort
of groups. The permutation groups in one cohort all have the same socle
with a specified action. There are 762 cohorts of proper prlmltlve groups
of degree less than 1000.

A primitive group G has a socle H = T™ for some simple group 7. If
H is abelian then G, is an irreducible subgroup of GL,,(p) and we do not
explore this case any further. In the case of a nonabelian regular socle,
the degree of G is |T|™ where m > 6. Since the order of a nonabelian
simple group is even and at least 60, the degree of G is even and at least
60° > 1000. Thus neither of the lists includes any primitive groups of this
type. The degree of a group G of diagonal type is also a power |T|m_1 of
the order of a nonabelian simple group and hence is even. The primitive
groups of this type with degrees less than 1000 have m = 2 and T =
A5, AG, PSL2(7), PSL2(8), or PSLg(ll)

If G is of product type then the degree of G is a power d*, with k > 2,
where d is the degree of some other primitive group U. The group G has
odd degree when U has odd degree. The condition d* < 1000 requires
k=3andd < 10, or k = 2 and d < 32. Thus the groups of product
type give an inductive class of examples in each list. There are 74 cohorts
of groups with socles of this type and degree less than 1000.

The largest class of examples on both lists consists of the groups with
a simple nonabelian socle. For these groups, we need information about
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the maximal subgroups of the almost simple groups. Concerted efforts by
a number of mathematicians over the past century have provided enough
information to deal with this case.

(B) Degree and Rank

The O’Nan-Scott Theorem shows that a primitive group which is not of
almost simple type has a degree which is a power of the order of a finite
simple group or a nontrivial power d* of the degree d of some other primitive
group. Thus the degrees that actually occur for proper primitive groups are
a relatively sparse set of natural numbers. There are 486 degrees n < 1000
such that the only primitive groups of degree n are A, and S,. Let E be
the set of all n for which there is a proper primitive group of degree n.
Then E is the union of the following sets:

Ey == {p | p prime,p > 5};

Ey:={m* |m>2k>2m;>4};

E; := {n | there is a nonabelian simple group of order n};

E, := {d | there is a proper primitive group G of degree d whose socle is
simple and nonabelian }.

The density of each of these sets can be estimated. The sets F1 and Fo
involve only properties of the integers and we only need the orders of the
finite simple groups to deal with set £3. On the other hand, many detailed
facts about finite simple groups are required to estimate the density of the
set F4. Calculating these densities, Cameron et al. (1982) obtained the
following asymptotic estimate for the density of E. Let n(x) denote the
number of prime numbers p < z.

Theorem 4.8A. If e(x) is the number of degrees n < x such that there is
a proper primitive group of degree n then

e(z) = 2n(z) + (1 + V2)z 2 +O< ik ) 22

log z ~ logz

As another example of the reduction of a problem to the almost simple
case, consider the question of rank. Suppose that G is a primitive permu-
tation group with a nonabelian socle H = T™ with T simple. Then the
rank r of G satisfies r > m + 1. This follows from the bound in Exercise
4.8.1 if G has product type or from Exercise 4.8.2 if H is regular. A similar
bound for groups of diagonal type is proved in Cameron (1981a).

When studying a 2-transitive group G, these lower bounds on the rank
show that either G is almost simple, or else G is an affine group; this proves
Theorem 4.1B. (See also Exercise 4.5.7.) The analysis then shifts, on the
one hand, to examining the 2-transitive actions of the almost simple groups
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and, on the other hand, to determining the subgroups of GL,,(p) that act
transitively on the set of nonzero vectors in the underlying vector space. In
this way, the finite 2-transitive groups have been completely determined;
see Sect. 7.7 for a more detailed discussion.

(C) The Sims Conjecture

Suppose that G is a primitive group of degree n acting on a set Q. The
subdegrees of G are the lengths of the orbits of the stabilizer G,. Consider
the primitive groups with a given subdegree d > 1. For a fixed d there is no
immediate bound on the degree n of G. For example, for any prime p the
dihedral group D», has a representation as a primitive permutation group
of degree p with a subdegree d = 2. On the other hand, as we saw, for
example, in Sect. 3.2 and 4.4, a small subdegree does strongly restrict the
structure of G. Following his investigation of the cases d = 3 and d = 4,
C. Sims was lead to conjecture the following theorem (see Exercise 4.4.11).
It was finally proved using the O’Nan—Scott Theorem and the classification
of finite simple groups [see Cameron et al. (1983)].

Theorem 4.8B. There is a function f such that if G is a finite primitive
group with a suborbit of length d > 1 then the pointwise stabilizers have
order at most f(d).

The simplest case in proving the Sims Conjecture is when G is a primitive
group with a regular socle H. We can identify 2 with the elements of H
in such a way that G, acts on H by conjugation in the same way it acts
on ). Since G is primitive there are no nontrivial G,-invariant subgroups
of H. Thus the group generated by the elements of H in any nontrivial
orbit of G, is H itself. In particular, G, acts faithfully on each of its orbits
and hence has order at most d!. This establishes the result in the case of a
regular socle.

If G is of diagonal type then an analysis of the action itself, without
using specfic properties of the simple group T, shows that |G| < (d!)?t!
in this case. If G is a primitive group of product type then G is permutation
isomorphic to a subgroup of a wreath product of the form U wr S, where
U is primitive on a set A and is of almost simple or diagonal type. Suppose
§ € A. Then it can be shown that |Go| < |Us|*d!. Thus if we assume
that there is an increasing function h(d) making Theorem 4.8B true for all
groups G with a simple socle then we can define a function f(d) that will
work for all primitive groups. The proof of Theorem 4.8B is then completed
by dealing with the almost simple case and using key results of Thompson
(1970) and Wielandt (1971a) about the subgroup structure of G,. This
is the most complicated part of the proof and uses specific information
about various simple groups. The function f(d) can be taken of the form
exp(d®o(d)) though this is not best possible.
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FEzxercises

4.8.1 Suppose that G is a primitive subgroup of the wreath product

U wr Sy where U is a primtive group with rank rq. Show that the
rank of G is at least (T°+bb_1) > b+ 1.

4.8.2 Suppose that G is primitive with a nonabelian regular socle H = T™.

Show that G has rank at least m + 1.

4.9 Notes

Theorem 4.1B: This result is an early precursor of the O’Nan—Scott The-
orem which appears in Burnside (1911) §154 with a proof based on the
Frobenius Theorem (see Sect. 7.2). The O’Nan—Scott Theorem (Theo-
rem 4.1A) itself was announced at the Santa Cruz Conference on Finite
Groups in 1979 by M. O'Nan and L.L. Scott [see Scott (1980)] in a
slightly incomplete form which is repeated in Cameron (1981a). A proof
of part of this theorem appears in Hoffmann (1982), but the first com-
plete published proofs appear in Buekenhout (1988) and Liebeck et al.
(1988a). For related papers, see Aschbacher and Scott (1985), Kovécs
(1986) and (1989), and Baddeley (1993).

® Sect. 4.2: This material is classical.
¢ Exercise 4.2.14: The construction of an infinite group with two con-

jugacy classes (the group is necessarily torsion-free) is based on the
HNN-construction of Higman et al. (1949). This construction is also given
in Rotman (1995), Exercise 12.63 and in Cohen (1989) Prop. 38 (and the
following comment there).

Exercise 4.2.16: See Mills (1953).

Corollary 4.2B: See Wielandt (1967a) for a related result.

Exercise 4.2.17: See Neumann (1987).

Sect. 4.3: The word “socle” is an architectural term which refers to a
support beneath the base of a column. Material of this section is classical.
Exercise 4.3.14: See Fisher (1975).

Sect. 4.4: The theory of subnormal subgroups is extensive [see Lennox
and Stonehewer (1986)]; and many of the basic results are due to
Wielandt [see Wielandt (1971a), (1971b) and (1994)]. Some of the ex-
ercises at the end of this section deal with special cases of “Sim’s
Conjecture”; see Sect. 4.8 for further details.

Lemma 4.4B: See Szep (1953).

Theorem 4.4A: See Wielandt (1962), (1971a).

Exercise 4.4.4: See Goldschmidt and Scott (1978).

Exercise 4.4.9: See Knapp (1981).

Exercise 4.4.11: See Sims (1967) and Wong (1967).

Sect. 4.5: See Kovdcs (1989) for further details about primitive wreath
products.
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® Theorem 4.7A: Abelian socles seem to be quite different from nonabelian
socles, and different techniques are required to analyze them. Short
(1992) describes very clearly a general method of constructing the prim-
itive groups with abelian socles; the general ideas go back to Jordan.
Dornhoff (1969), Foulser (1969), and Seager (1987) and (1988) deal with
finite solvable primitive groups of low rank, following the classification
by Huppert (1957) of finite 2-transitive solvable groups. Liebeck (1986)
classifies the primitive affine groups of rank 3.

® Exercise 4.7.8: Zsigmondy’s Theorem is a useful theorem worth knowing.
Proofs can be found in Liineberg (1981) and in Liineberg (1980) Theorem
6.2. See also Huppert and Blackburn (1982a).

e Sect. 4.8: Much has been done to compute primitive groups of small de-
gree. See for example, Cooperstein (1978), Kantor (1979), and Pogorelov
(1980). The list of primitive groups in Dixon and Mortimer (1988) is
reprinted as Appendix B to this book [see also I'in and Takmakov
(1986)].

For other applications of the classification of finite simple groups to
permutation groups, see Kantor (1985a), (1985b) and (1987); Kantor and
Liebler (1982); Liebeck (1984b); Liebeck and Saxl (1985a), (1986) and
(1991); and Liebeck et al. (1987) and (1988b).
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Bounds on Orders of Permutation
Groups

The theme of the present chapter is use of combinatorial methods to bound
the order of various classes of subgroups of the finite symmetric groups.
Typically we find that, excluding A,, and S,, themselves, the larger sub-
groups of S, are either intransitive or imprimitive (Theorem 5.2B). On the
other hand, the proper primitive groups are all quite small; we shall show
that a proper primitive group of degree n that is not 2-transitive has order
at most exp(4+/(n)(logn)?) (Theorem 5.3A) while a proper 2-transitive
group of degree n has order at most exp(72(logn)3) (Theorem 5.6A). To
obtain these results we are naturally led to a study of the orders of elements
and properties of bases and minimal degrees.

5.1 Orders of Elements

We begin by looking at the orders of the simplest subgroups: the cyclic
subgroups. Our object in this section is to give a lower bound to the largest
order of an element in the alternating group A, . It might seem more natural
to look instead at the orders of elements in the symmetric group. Actually
the results for the two groups are very closely linked (see Exercise 5.1.5),
but for technical reasons we are more interested in the alternating group.
The result is essentially a theorem in elementary number theory, and it
begins with an estimate, made by P.L. Chebyshev in 1852, of the number
theoretic function

0*(z) := Z logp

2<p<z

for real positive z. Here, and for the rest of this section, p runs over the
primes and log denotes the natural logarithm.

Lemma 5.1A. 6*(z) > z/2 for all z > 11.

143
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PRrROOF. The result can be verified directly for small values of z (see Exer-
cise 5.1.1 below), so we suppose that z > 1270. It is enough to show that
0*(2n) > n + 1 for all integers n > 635, since then

0" (2) > 0"(22/2)) > |2/2) + 1 > 2/2.

We shall proceed by induction on n. Put m = (2:) with n > 635. Then
m is the value of the largest of the 2n + 1 binomial coeflicients in the
expansion of (1 + 1)2", and is also larger than the sum of the first and
last coefficients. Hence we get the lower bound 22" /2n < m. On the other
hand, we can obtain an upper bound for m as follows. The largest power
of a prime p which divides n! is p® where e = > oo, |n/p’| (see Exercise
2.6.8). Therefore

logm = Z 6(p)logp

p<2n

o= S{ ] 2[5}

It is readily verified that for any real number £ > 0 we have |2§] = 2 |€] or
2 [£] + 1, so each of the terms in the sum for §(p) is either 0 or 1. Since all
the terms are 0 when p’ > 2n, there are at most |(log 2n)/(log p) | nonzero
terms. Therefore

where

8(p) <1 when v2n < p < 2n,
8(p)logp < log2n when p < v2n.
Using these estimates and the inequality m > 22"/2n obtained above:
2nlog 2 — log 2n < logm < 6*(2n) — 6*(v/2n) + v2nlog 2n
which shows that
0*(2n) —n — 1> (2log2 — 1)n — (1 + V2n) log 2n + 6*(v2n) — 1.

Now 6*(v/2n) > v/2n/2 by induction, and so elementary estimates show
that the right hand side of the inequality above is greater than 0 (see
Exercise 5.1.2 below). Thus 6*(2n) > n + 1 and the induction step is
proved. This proves the theorem. -

FEzxercises

5.1.1 Verify the values of 8* in Table 5.1 and use it to prove that 6*(z) >
z/2 for 11 < z < 1270.

5.1.2 Prove that the right hand side in the last displayed inequality in
the proof above is greater than 0 for all n > 635. [Hint: Replace
6*(v/2n) by the lower bound \/n/2, and show that the derivative of
the resulting expression with respect to n is positive for n > 635.]
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TaBLE 5.1.  Selected Values of 6% (p)

11 13 19 29 43 71 113 211 383 709

p:
0*(p)= 71 9.6 154 219 364 609 1064 1932 358.1 678.9

It is known that 6*(z)/z — 1 as z — oo. This fact is one form of the
“Prime Number Theorem”. A better known form of this theorem is that
the number of primes less than z is asymptotic to z/ log z [see for example,
Apostol (1976)].

Theorem 5.1A. Ifn > 7, then A, contains an element of order greater

than exp 4/ %lnlog n.

PRrOOF. Suppose that ps,...,p, are distinct odd primes such that p; +
<+ + p, < n. Then A, contains an element whose nontrivial cycles have
lengths py, . .., p, and whose order is therefore p; - - - p,.. Thus it is enough
to show (with the notation above) that there exists a real number z such
that

1
Z p<n and 0*(2)* > anogn.
2<p<Lz

The small cases are easily verified (see Exercise 5.1.3 below) so we shall
assume that n > 22. Put F'(z) := 2/ log z. Elementary calculus shows that
F is an increasing function for z > e, and so

Y. p= > F(p)logp < F(2)6"(2).

2<p<Lz 2<p<z

Hence we shall choose z so that F(2)0*(z) = n. If z < 11, then F(2)6*(z) <
11 log(3-5-7)/log 11 < 22; thus our assumption on n implies that z > 11.
By Lemma 5.1A we know that z < 20*(z), and so:

n = 20%(2)/ log z < 20%(2)?/ log 20*(z) = F(46*(2)?).
However, we also have
F(nlogn) = (nlogn)/(logn + loglog n) < n.

Since F' is an increasing function this shows that nlogn < 4 6*(2)? as
required. This proves the theorem. N

FEzxercises

5.1.3 Use the values in Table 5.2 to show that Theorem 5.1A holds when
7<n<26.
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TABLE 5.2.

n= 7 11 17 26

expy/inlogn = 6.33 13.04 32.14 99.68

5.1.4 Show that if h,, is the maximum order of an element in S,,, then there
is an element with this order such that the lengths of its nontrivial
cycles are prime powers for distinct primes.

5.1.5 Show that the maximum order of an element in A,, lies between h,,
and h,/2.

5.1.6 Calculate h, for all n < 30. Can you find a general algorithm for
computing h.,,?

In contrast to the last theorem, the next result gives an upper bound on
the order of an element in the case where the group has relatively large
minimal degree.

Theorem 5.1B. Let G < Sym(Q) be a permutation group of degree n
and minimal degree m. Then each element of G has order at most n™/™.

PROOF. Let £ € G have order h. Suppose that p is a prime and that
p¢ (e > 1) is the largest power of p dividing h. Then z"/? is a product of
p-cycles, and a € supp(z"/?) if and only if the cycle of z which contains
o has length divisible by p¢. Thus the sum of the lengths of the cycles of
z whose lengths are divisible by p° is at least m by the hypothesis on G.
This is the crucial observation which leads to the proof of the theorem.

Factor h = q1 - - - g5 where the g; are nontrivial powers of distinct primes,
and let hq,... ,ht denote the lengths of the disjoint cycles of x. For ¢ =
1,...,sand j = ,t, we shall write ¢ || § <= ¢; | h;j. Then from
the observatlon above we have m < 3. illj h; for each 1, and evidently we
also have ), i log g; < log h; for each j. Hence

mlogh < Zlong Zh = Zh Zlong

Jeilld il
and so
t t
mlogh < Zhj logh; < Zhj logn =nlogn
7j=1 j=1

Thus A < n™'™ as asserted. |
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5.2 Subgroups of Small Index in Finite Alternating
and Symmetric Groups

An early observation in the theory of permutation groups was that, apart
from A,, each proper subgroup of S, has index at least n. When n £ 6 the
subgroups of index n in S,, are exactly the stabilizers of a point (Sg also
has a second conjugacy class of subgroups of index 6). More generally, for
each k with 1 < k < %, S, has intransitive maximal subgroups of index
(Z) isomorphic to Sx x S,_k. The intersections of these subgroups with
A, are subgroups of index (}) in A,. In fact, with a few well described
exceptions, any subgroup of A,, with an index less than (Lf J) must be

2
intransitive and contain a substantial portion of one of the subgroups just
described. This is the content of the following theorem.

Theorem 5.2A. Let A := Alt(Q) where n .= |Q] > 5,, and let r be an
integer with 1 < r < n/2. Suppose that G < A has index |A : G| < (7).
Then one of the following holds:
(i) for some A C Q with |A] < r we have Ap) < G < Ajay;
(ii) n = 2m is even, G is imprimitive with two blocks of size m, and
[A: G| = 3(2); or
(iil) one of siz exceptional cases hold where:
(a) G is imprimitive on Q and (n,r,|A: G|) = (6,3,15) ;
(b) G is primitive on Q and (n,r,|A: G|,G) = (5,2,6,5:2),
(6,2,6,PSLy(5)), (7,2,15,PSL3(2)), (8,2,15,AGLs(2)),
or (9,4,120,PT Ly(8)).

Remark. In case (i) G contains the alternating group Aa) = Alt(Q\ A)
of degree n — r + 1, and in case (ii) G contains two alternating groups of
degree n/2 = n — r. In part (iii) of the theorem, the groups are listed only
with the minimum ¢ for which they satisfy the hypotheses of the theorem.

The proof uses the following elementary combinatorial lemma.

Lemma 5.2A. Letn > 6 and put m := |n/2|. Then:
(i) For each divisor t of n with 3 <t < n/2 we have

{(n/)1} ! < mi(n — m);

(ii) For each integert > 3 and any integers ny, ..., n; such that0 < ny <
o< ny < 1/2 and S n; = n we have

nl‘nt‘ 1

<

S

<
mlln -m)! — n—m
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PROOF. (i) Fix ¢t > 3 and put n = kt > 6. Define

m!(n — m)!

k) = — Gy

We shall show, using induction on k, that (k) > 1forallk > 2ift > 3 and
for all k > 3ift = 3. Since t! > 2 for t > 3, we have 3(2) = (¢)2/2%! > 1
for t > 3 and B(3) = 4!5!/(3")33! > 1 for t = 3. Now consider how B(k)
changes as k is increased by 1 and t is left fixed. There will be ¢t new factors
introduced in the numerator, each greater than or equal to m + 1, and
t new factors equal to k& + 1 introduced into the denominator. Hence for
k>2

Bk+1) (m + 1)t
Bk C (krD)f o

because k = n/t < n/3. Thus induction shows that B(k) > 1 for all
required values of k.

(i) For any integers r and s greater than 0 we have ("F*) > ("T*), and
so rls! < 11(r + s — 1)!. Using this latter inequality it is easy to see that
the numerator of the expression on the left hand side of the inequality in
(ii) attains its maximum value (for fixed n and t) when

m=...=ng.o=1n_1=n-m-t+2 and n,=m.
Since t > 3
mi(n —m)!/m!(n—-m—-t+2)! >n-m2>4

and so the required inequality follows. O

PROOF OF THEOREM 5.2A. Suppose that G is a group satisfying the
hypotheses of the theorem, and that case (ii) does not hold. Put h :=
|A : G|and m := |n/2|, and note that (") > (*) holds forr = 0,1,...,n.

First, if G is primitive, and G # A, then by Bochert’s Theorem (Theorem
3.3B) we have h > 1 |(n + 1)/2]!. When n > 15 or n = 13, this implies
that b > () (see Exercise 5.2.1) which is contrary to hypothesis. Hence,
if G is primitive, then either n < 12, n = 14 or G = A (and so (i) holds
with A = (). An examination of the primitive groups of degrees up to 12
and of degree 14 yields the list of exceptional primitive groups given in part
(iii) of the theorem (Exercise 5.2.3-5.2.6).

Now suppose that G is not primitive (and (ii) does not hold). Then
we claim that either n < 6, or G is intransitive. Indeed, suppose that
G is transitive, and that G has t blocks of imprimitivity of size n/t with
2 <t < n/2. Then G is isomorphic to a subgroup of even permutations in
a wreath product of order {(n/t)!}*t! (see Exercise 2.6.2). Thus

nl/2
(:) >hZ Ty e
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If t = 2 (and so n is even), this inequality implies that h = (") which
is the case listed in (ii) of the theorem. On the other hand, if ¢ > 3, then
Lemma 5.2A (i) shows that n < 6, and an examination of Table 2.1 gives
the imprimitive exception listed in (iii). In particular, we have proved that if
a transitive group G of degree n has index less than 1 () in the alternating
group, then either G = A (case (i)) or G is one of the exceptional groups
in case (iii).

There remains the case where G is intransitive. Again we leave the case
n < 6 as an exercise (Exercise 5.2.5) and assume that n > 6. We first show
that G has an orbit of length greater than m. Suppose the contrary. If G has
an orbit T' of length exactly m, G < A(ry, andso |A: G| > |[A: Airy| =
(::L) contrary to hypothesis. On the other hand, suppose the orbits of G
have lengths n,, ..., n; which are all less than m (so ¢ > 3). Then using
Lemma, 5.2A (ii) we conclude that |G| < ny!---ny! < ml(n—m)!, which
again contradicts the condition that [A : G| < (). Thus G has an orbit
I, say, of length s > m > 3.

Define A := Q\ T and H := Ga) < Aay = Alt(T); our object is
to show that H = A(ay. Put b/ := |A(a : Hf Since |[A: G||G : H| =
|A Ay |Aay : H|, and G/H = G* < Sym(A), we have h(n — s)! >
(n!/s!)h’. Thus, if we put ¢t := |s/2], then the hypothesis on A shows that

, _ (n—s)ls! (n—3s)ls!  (n—s)ltls—t)! (s
< n! h< (n—m)m! ~ (n—m)m! (t)

Hence Lemma 5.2A (ii) yields

B < 1 s<ls.
n—m\t/ ~ 4\t

Now induction applied to H acting on I' shows that one of three things
can happen: (i) there exists an H-invariant subset ¥ C T with || <
$/2 such that Aausy < H; (i) b/ = 3 (5); or (il)) s < 9, and H' is
one of the exceptional groups listed in the theorem. The second of these
possibilities cannot hold because of the bound on A’ given above. Also, since
n—m > |[(n+1)/2] > |(s+2)/2], the bounds for &’ given above also
show that h' is at most 3, 5, 8, 14 and 25 for s = 5, 6, 7, 8 and 9, respectively.
Thus H"is not one of the exceptional cases in (iii). Therefore we conclude
that (i) holds, and so HT\® > AT\¥; and since |['\ Z| > s/2 > 2, this
shows that I' \ X is an orbit of H. However, G acts transitively on I, and
H = G(a) 9 G, so the lengths of the orbits of H on I divide s = |T|
(Theorem 1.6B). Therefore ¥ = (), and T itself is an orbit for H. Thus
Ay = H < G < A(ay and the proof of the theorem is complete. O

Corollary 5.2A. Let Q be a finite set of sizen > 9, and s be an inte-
ger satisfying n/2 < s < n. If G < A := Alt(QQ) has indez |A: G| <
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min {(Z), z (LJ/LzJ)} then G has a unique orbit T' such that |T| > n/2 and
G (r) induces either the alternating or symmetric group on T'.

PRrROOF. The hypotheses of the Theorem 5.2A hold and the cases (ii) and
(iii) have been excluded. Thus G satisfies (i) with r = n — s. We take
I'=Q\ A; then [I| > s + 1 and G(ry contains Aa) which acts as the
alternating group on I'. O

Ezxercises

5.2.1 Show that 3 |(n+1)/2]! > (Lr:}zj) for all n > 15 and for n = 13.

5.2.2 Show that the intransitive subgroups S x S,_r < S, are maximal
for1<k<|[Z]

5.2.3 Use the list of groups of degree 7 given in Table 2.1 to show that
the only primitive groups of degree 8 or 9 which are exceptional in
Theorems 5.2A or 5.2B are those listed. ‘

5.2.4 (Continuation) Using Theorems 3.3B and 3.3E show that there is no
exceptional primitive group of degree 14.

5.2.5 (Continuation) Show that there is no exceptional primitive group of
degree 10. | Hint: It is enough to show that there is no proper primitive
group G < Sym(R) of degree 10 and order g > 3 (5!)% = 7200.
Suppose the contrary. Note that Theorem 3.3E implies that neither 7
nor 52 divides g. Since 7 | 210 = lQ{4} I, G does not act transitively
on Q{4 and so there exists A € 014} such that b := ’G : G{A}l <
210/2. Since h | g, this implies that A < 96, and so H := Ga,
has order at least 7200/96 = 75. Put I := Q \ A. Since G has no
nontrivial element whose support has size < 4 (see Sect. 3.3), Hr) =
1, and so H = H'. Now Table 2.1 shows that HT = PGLs(5), 4s
or Sg; and in each case H' contains a 5-cycle. If z € H is chosen so
that #' is a 5-cycle, then some power of z is a 5-cycle in H because
5 does not divide the order of z®. This contradicts Theorem 3.3E.]

5.2.6 (Continuation) Give similar proofs to show that there are no
exceptional primitive groups of degree 11 or 12.

A result similar to Theorem 5.2A holds for the finite symmetric groups.
If G is a subgroup of S, for some n and |S, : G| < () for some r < n/2
then |4, : GN A,| < (?) and Theorem 5.2A applies to G N A,. However
some new exceptional cases arise. We leave the proof as an exercise.

Theorem 5.2B. Let S := Sym(Q) and A := Alt(Q?) where n := || > 5,
and let v be an integer with 1 < r < n/2. Suppose that G < S has index
IS : G| < (7). Then one of the following holds:
(i) for some A C Q with |A| < r we have Aa) < G < S(ay;
(ii) n = 2m is even, G is imprimitive with two blocks of size m, and
1S:Gl=3(1); or
(iii) one of siz exceptional cases hold where:
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(a) G is imprimitive with blocks of size 2 on Q and (n,r,|S : G|) =
(6,3,15) ;

(b) G s primitive on Q and (n,r, 1S : G|, G) = (5,2,6,5:4),
(61276:PGL2(5))7 (6727127PSL2(5))’ (7’3730fPSL3(2))7
or (8,3,30,AGL3(2)).

Remark. In part (iii) of the theorem, the groups are listed only with the
minimum r for which they satisfy the hypotheses of the theorem.

FEzxercise

5.2.7 Starting with the remarks preceeding Theorem 5.2B, complete the
proof of the theorem.
5.2.8 Show that each maximal subgroup of the symmetric group S :=
Sym(Q) of finite degree n is either primitive or one of the following:
(i) (intransitive) the set stabilizer S;a)for some subset A C © with
1 < |A] < n/2; or
(ii) (imprimitive) the subgroup S[II] consisting of all permutations
which preserve a partition IT = {A4,..., A} of Q into parts of
size n/m with 1 < m < n.

Conversely, show that each of the subgroups in (i) and (ii) is max-
imal in S. (The case where S is an infinite symmetric group is much
more complicated; some information is given in Chapter 8.)

5.2.9 (Continuation) State and prove the analogous result for the alternat-
ing group.

5.3 The Order of a Simply Primitive Group

Among the main theorems of this chapter are bounds due to Babai (1981)
and (1982) (and refined by L. Pyber) on the order of a proper primitive
group. We deal separately with the case where the group is 2-transitive
and where it is simply primitive (that is, primitive, but not 2-transitive).
In this section we focus on the simply primitive case.

The following notation will be fixed for the rest of this section. Let G <
Sym(€2) be a transitive group of finite degree n. Let Ag,..., A, be the
orbitals of G where A; is the diagonal orbital, and A} denotes the orbital
paired with the orbital A; (see Section 3.2).

Since G is transitive on {2, the length n; of the suborbit A;(e) is in-
dependent of the choice of @ € Q. We shall assume that the orbitals are
ordered so that 1 = n; < ng < ... < n,. If a, 8 and ~ lie in 2, then we
shall say that v discriminates between o and S if (o, ) and (3, v) lie in
different orbitals; in this case we shall use the notation («, v) # (8, 7). We
shall write

\I]aﬂ = {’Y €0 l (a’ 7) # (ﬂa 7)}
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and call this the discriminating set for oo and 3. Clearly Vo3 = Vg4, and
Voo = 0. If @ # B then ¥, contains at least two elements, namely o and

Exercises

531 IfX C Qand XN Pup # 0 for all pairs of distinct points o and S,
show that X is a base for G.

5.3.2 Show that the value of I‘I/ag| only depends on the orbital A; to which
(a, B) belongs.

5.3.3 If G is regular of degree n, show that each discriminating set ¥,z
with o # 3 has size n.

We define d(G) to be the minimum of I\Ilag‘ taken over all pairs of
distinct points « and 8. If G is 2-transitive (r = 2), then |\Ifa5] = 2 for all
pairs of distinct & and 8, and hence d(G) = 2; the discriminating sets are
not very interesting in this case. If G is regular, then d(G) = n. Our first
result shows how the invariant d(G) is related to the minimal degree and
the size of a base for G.

Lemma 5.3A. Let G be a transitive group of degree n, and put d := d(G).
Then:

(i) The minimal degree of G is at least d; and

(ii) G has a base of size at most n(2logn — log2)/d.

PrOOF. (i) Let z # 1 and choose a, 8 € Q such that o® = 8 # a. Then
no v € ¥, is fixed by z, and so |supp(z)| > |¥ags| > d.

(ii) It is enough to show that if s is an integer such that 0 < s < n and
no s-subset of  is a base for G, then s < n(2logn — log2)/d. Consider
the set Q{%} of all subsets of size s, and for each ordered pair («, 3) define
Xap on Q1) by putting xas(X) = 1if TN Tup = 0, and xap(T) := 0
otherwise.

Now define m := ¥ xos(X) where the sum is over all & € Q{s} and
all (o, ) € Q@) . We shall estimate m in two different ways under the
assumption that no element of Q{} is a base for G.

First, if we sum xag(X) over & € Qf*} for a fixed pair (a, 3), we see
that this sum is equal to the number of ways of choosing an s-subset from
Q\ ¥,p. Since | Uop |> d whenever o # (3, this shows that

m < n(n—l)(n;d)

Second, we fix ¥ and sum over (o, 3) € Q). Since ¥ is not a base for G
by hypothesis, there is at least one pair (, 3) such that £ N Wag = 0 (see
Exercise 5.3.1 above). For this pair we have xa3(2) = xga(2) = 1. Since
this is true for each ¥ € Q{*} we have
)
s

m > 2 \Q{S}
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Combining these two inequalities for m we get

oy [ (1) =Dy

k=n—s+1 s

Hence n?(1 — d/n)* > 2, and so
d d
2logn — §n~ > 2logn + slog (1 - E) > log 2.

Thus, if there is no base of size s for G, then s < n(2logn —log2)/d. This
proves (ii). o

We now turn to estimating d(G) for a primitive group G of rank r > 2.
This will lead to the main theorem on the size of a base and the minimal
degree of a simply primitive permutation group. Before stating the lemma
we introduce some further notation. Let G; = Graph(4;) be the digraph
for the orbital A;, and recall that, for a finite primitive group G, the graph
G; is strongly connected when i > 1 (see Lemma 3.2A). We also define G;
to be the (nondirected) graph on the vertex set 2 with an edge between
a and 8 <= either (o, 8) or (B, &) lies in A;. When G is primitive and
i > 1, the graph G, is connected, and we can define diam(i) to be the
diameter of G; (that is, the greatest distance between any pair of vertices
in G;). We shall use d; to denote |¥og| when (a, 8) € A;; by Exercise 5.3.2
this is independent of the choice of (a, §).

Lemma 5.3B. Suppose that G is a finite primitive group of degree n and
rank v > 2. Then d(G) > /n/2.

PROOF. We use the notation established above. We first show that, for
all a, 8 € Q and each ¢ > 1, there exists at least one v € ) such that
(6,7) € A; and (o, B) # (@, ). Indeed, let " be the orbit of 5 under G,.
Since G is a finite primitive group and i > 1, the graph G, is strongly
connected and so there is a directed path in G; from any point in T to a
point not in I'. Somewhere along such a path there will exist consecutive
vertices, say 8" and v/, such that 5’ € T, v/ € T and (8,4') € A;. Since
T is a G4-orbit, there exists z € G, such that 8 = (8)*. If we define
Y= (,yl)ac7 then (/87 ’Y) € A; and (Oé, ﬁ) # (CM,’)’) because (aa ﬂ/) # (Ol,"}//),
which gives what we required.
We shall now prove that

(5.1) nyd; >n foralli>1.

Indeed, count the number m of triples (o, 8,v) with (8,7) € A; and
(a, B) # (@, ) in two ways. First, summing over (3,v) € A; we get m =
|A;| d; = nind;. Second, summing over (o, 8) € Q x Q, and using the result
established above, gives m > n?. Now (5.1) follows.
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We next show that
(5.2) if (o, B) € Aj, and « and S are distance ¢ in G;, then d; < td;.

To show this, consider the sequence of vertices & = ap, a1,...,a; =  on
a path from « to 8 of length ¢t in G;. If v € Q, then (o, ) # (8,~) implies
(ak,y) # (ag+1,y) for some k with 0 < k < ¢. Hence

t—1

‘I[aﬁ C U ‘Ijaka;ﬁq-

k=0

Thus d; < td; and (5.2) is proved.
As our last preliminary result we show that

(5.3) there exists k > 1 such that d, > /n .

Suppose the contrary. Then (5.1) shows that n; > n/d; > /n for all
i > 1. Now for each v € Q, the number of pairs (o, 8) € Q x Q such that
(a,7) # (B, 7) is equal to

T
m:=n2—Enf:2§ninj.
i=1 i<y

Thus

m= inz(n —n;) > i\/ﬁ(n —n;) > (r — 2)nv/n > ny/n.
i=1 =2

Since there is a total of nm points lying in the sets U o5 (o, 8) € Q?)), we
conclude that for some (e, 8) we have |¥og| > nm/n(n — 1) > /n. This
contradicts our assumption that all d; < y/n, and (5.3) is proved.

Finally, to prove the lemma we must show that d; > /n/2 for all > 1.
In the case that diam(i) = 2, this follows at once from (5.3) and (5.2).
On the other hand, if diam(f) > 3, then choose o and 3 at distance 3
in G;. Then, for each v € Q lying at distance exactly 1 from « or 3,
exactly one of (a,7) and (8, 7) lies in A; U A}, and so v € ¥qg. Thus, if
(o, B) € A;, say, then d; > 2n;. Now applying (5.2) and (5.1) we obtain
d? > d;d;/3 > 2d;n;/3 > 2n/3, and so d; > \/n/2 in this case as well. [J

Combining these results gives the desired bound on the index of a simply
primitive permutation group.

Theorem 5.3A. Let G be a permutation group of degree m which is
primitive but not 2-transitive. Then

(i) The minimal degree of G is greater than \/n/2;

(i) G has a base & with || < 4y/nlogn;

(iii) |G| < exp(4+/n(logn)?).

PROOF. (i) Immediate from the last two lemmas.



5.4. The Minimal Degree of a 2-transitive Group 155

(ii) The last two lemmas show that G has a base X with |X| < n(2logn—
log 2)/{(v/n/2) < 4y/nlogn.
(iii) For any base X of G we have
Gl < n(n—1) -+ (n — [/ +1) < exp(|=| logn)

and so (iii) follows from (ii). O

FExercise

5.3.4 Consider the action of Sym(f2) on Q{?} where || = m > 4. Show
that the image G of this action is a primitive group of degree n := (g’)
which is not 2-transitive, that G has minimal degree < 2v/2n, that
the smallest base of G has size greater than

1
5 {\/n/2 - 1/logn}
and that

|G| > exp(v2nlog v2n — v/2n).

5.4 The Minimal Degree of a 2-transitive Group

We have already seen that a finite 2-transitive group of degree n which does
not contain the alternating group has minimal degree at least vn — 1+ 1
(Theorem 3.3D). Our object in the present section is to present better
bounds due to Bochert (1897).

Theorem 5.4A. Let G be a 2-transitive group of degree n which does not
contain the alternating group, and suppose that G has minimal degree m.
Then we have the following lower bounds for m:

(i) m>+vn—1+12>/n foralln;

(if) m > n/8 for all n;

(iii) m > n/4 for all n > 216.

Part (i) follows from the comment above. The proof of parts (ii) and
(iii) will proceed from a series of lemmas. In these lemmas we shall assume
that G < Sym(§}) is 2-transitive with || = n, and that G has minimal
degree m > 3 since a 2-transitive group with minimal degree 2 or 3 is the
symmetric or the alternating group, respectively (see Theorem 3.3A). Fix
an element u € G with support I of size m, and define

T:={z<cqG]|uz uxr] #1}
where, as usual, [y, 2] := y~1z7lyz. Put t := |T| and g := |G].

Lemma 5.4A. With the notation above:
1) 'nT* > m/3 forallz € T;
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(i) if 2 'uz & G(ry thenz € T;
(iii) t/g > 2m(n — m)/n(n — 1).

PROOF. (i) Since A := I' N I'®* = supp(u) N supp(z~'uz), Exercise 1.6.7
shows that

supp([u, 2 'uz]) C AU A* U AT U2

Since all the sets on the right hand side have the same size, [u, z ™ uz] # 1
implies that [A| > m/3 by the definition of m.

(ii) If z ¢ T, then 2 'uz centralizes u, and hence the support I of u is
mapped into itself by z~'uz.

(i) Fix o € T and put 8 := o* € I Since G is 2-transitive, there
are exactly g/n(n — 1) elements in G which map (e, 3) € Q? onto any
specified pair in Q). In particular, there is a total of 2gm(n —m)/n(n — 1)
elements © € G such that exactly one of the points a®, 5% lies in I'. Since
(a®)= 'u= = g= it follows from (ii) that each such z lies in T, and so we
get the required lower bound on t/g. |

Lemma 5.4B. For each ¢ € G we put ¢, := |I' N T'*|. Then:
(i) ;1]— Y ozecCe = %2— (the “mean value” of cy);
(i) 15 peqenles — 1) = Togmel,
(i) 1Y eqles — ™0)% = L (the “variance” of c).
ProoF. (i) Clearly, 3 ¢, = |A1| where
A ={(o,z) eT x G| a” €T}.

Transitivity of G shows that for fixed o, 8 € T', there are exactly |Gqo| =
g/mn elements of z € G such that o® = . Since |I'| = m, this shows that
|A;] = m2g/n and so (i) follows.

(ii) Similarly, 3" ¢z (c; — 1) = |A2| where

As == {(a,8,2) e T xI'x G| &*, 3" € T and a # G}.

Since G acts transitively on Q3 for any two pairs (a, 8), (7, 6) € I'® there
exist exactly |Gap| = g/n(n—1) elements x € G such that (o, ) = (7, 6).
Because |[?)| = m(m — 1), this shows that |Az| = m?(m — 1)2g/n(n — 1)
as required. .

(iii) Put ¢ := m?/n. Then using (i) and (ii) we have:

2:(%—0)2 =Z:ci—gc2
(ritmoap a2 nt)

Il

n(n - 1) n n?
gm?(n — m)?
n?(n — 1)

and the lemma is proved. O
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PrROOF OF THEOREM 5.4A. It remains to establish parts (ii) and (iii).
We shall use the notation just introduced. If m > n/3 then there is nothing
to prove, so suppose that m < n/3. By Lemma 5.4A we know that when
z € T then ¢, > m/3 and so ¢, — m?/n > m/3 — m?/n > 0. Thus by
Lemma 5.4B (iii)

2 2
lez<%_ﬁ) zz(g_mj> |
. n?(n—1) 9 = n g n
Then using Lemma 5.4A (iii) and simplifying we get

(5.4) n(n—m)22m(g —m>2.

Now substitute m = An/3, and note that A > 3/y/n by part (i) of the
theorem. The inequality (5.4) becomes

(5.5) n < fO) with % <a<l
where
98-
flu) = 2p(1 — p)?

Elementary calculus shows that f has a unique minimum value in the
interval (0,1) at the point po := (9 — v/57)/4 = 0.3625 . ... We claim that
A > po for all n. In fact, (i) implies that, for all n < 78:
3m _ 3(vn—1+1) _ 3(V77+1)

- n - 78

A= —
n

=0.3759... > 3/8 > po

so consider the case where n > 78. We can rewrite inequality (5.5) as

9(3 — N
(1-2)

and note that the two functions p — p(1 — u) and g+ (3 — p)/(1 — p)
are both increasing on the interval [3/v/n, pg]. Hence A < pg implies

3 3 9(3 — o)
-~ SR I G S o 7 A

() (1-35) < T
This shows that 6,/n — 18 < 37.237... and so n < 84. Thus the only
possible cases for which A < g can occur satisfy 79 < n < 84. However
(i) shows that if 79 < n < 81, then m > 9 and so A = 3m/n > 30/81 =
0.3703... > pp. Similarly, if 82 < n < 84, then m > 10 and so A >

33/84 = 0.3928... > pg. This proves that A > g in all cases.

The proofs of (ii) and (iii) now follow easily. To prove (ii), we must show
that A > 3/8 for all n. However, since the function f in the inequality
(5.5) is increasing on (ug, 1), and since A > pg from above, it follows from

(1 - A) <
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inequality (5.5) that A < 3/8 implies that n < f(3/8) = 80.64. We saw
above that A > 3/8 for all n < 78, and so the only remaining cases to
consider are n = 79 and 80. But (i) again shows that m > 9 for all n > 66,
and so A = 3m/n > 30/80 = 3/8 for n = 79 or 80. This proves (ii).

The proof of (iii) is similar. We have to show that A > 3/4 for alln > 2186,
and this follows from inequality (5.5) since f(3/4) = 216. O

FEzxercises

5.4.1 Prove, under the hypothesis of Theorem 5.4A, that for each § > 1
there exists ng such that m > n/3 — 6/n whenever n > nyg.

5.4.2 Show that there exists a constant ¢y > 0 such that, if G is a proper
2-transitive permutation group of degree n, then every element of G
has order < con®. [Hint: Use Theorem 5.1B.]

5.4.3 Show that there exists a constant ¢; > 0 such that, if G is a
proper 2-transitive permutation group of degree n, then the largest
k for which Ay is isomorphic to a section of G is bounded by
k < ci1(logn)?/(loglogn). In particular, if G is k-transitive of de-
gree n then k must satisfy this inequality. [Hint: Use Theorem 5.1A
and the preceding exercise. A stronger result will be proved in Sect.
5.5.]

ExXAMPLE 5.4.1. The affine group AGL4(q) acts as a permutation group
on the affine space of dimension d over a field of ¢ elements. The fixed points
of each x € AGLy4(q) form an affine subspace. Thus the maximum number
of fixed points of a nonidentity element of AGL4(q) is ¢?~!. Since there
are nonidentity transformations fixing a hyperplane pointwise, the minimal
degree of AGL4(g) is m = ¢¢ — ¢4 = (1 - é—)n where n := ¢% is the
degree. In particular if ¢ = 2 then m = n/2. Some transitive subgroups of
GLy(q), such as the symplectic groups Spq(q), also contain elements fixing
a hyperplane pointwise and so give further examples of 2-transitive groups
with m = n/2.

EXAMPLE 5.4.2. The groups AT'L,4(q) and PT'L4(g) may contain permu-
tations, induced by field automorphisms, with fixed point sets that are not
subspaces over F, but rather subgeometries defined over a subfield. Usu-
ally these fixed point sets are smaller than a hyperplane, but there are
interesting exceptional cases. For example, the group PGLy(q) is sharply
3-transitive of degree ¢ + 1 and so has minimum degree ¢ — 1. If ¢ = p?
where p is prime, then there is a permutation in PT'Ls(q) fixing p® + 1
points. The group PGL3(4) has degree 21 in its action on the projective
plane PG2(4); the maximum number of fixed points of a nontrivial element
is 5 but the field automorphism induces a permutation that fixes a Fano
subplane of 7 points. These permutations will resurface in Chap. 6.
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EXAMPLE 5.4.3. The symplectic groups Sp24(2), for d > 2, have two
distinct 2-transitive permutation representations with degrees n=™ = 2 -
49-1 _24-1 and nt = 2- 491 4 2971 respectively (see Sect. 7.7). In each
case there are involutions that fix 4~ points and the minimal degrees
of the two representations of Spsg(2) are m~ = 491 — 2¢-1 and m* =

49-1 4 9d-1 Gince
+ 1 1
mo_ (1 2
n* 2 2d + 1

the minimal degree is slightly less than half the points in the action of
degree n~ and slightly more than half the points in the other case.

5.5 The Alternating Group as a Section of a
Permutation Group

The theorems of the present section give further lower bounds for the
minimal degree of a permutation group. Theorem 5.5A shows that any
permutation group which has a section isomorphic to A for a large value
of k must have a relatively large degree or a small minimal degree. The-
orem 5.5B applies this result to 2-transitive groups. The argument of this
section originated with work of Wielandt (1934) on k-transitive groups.
Since a k-transitive group has a section isomorphic to Ay, Theorem 5.5B
shows that a proper k-transitive group of degree n has k < 6log n. (In fact
the classification of finite simple groups shows that £ < 6; see Sect. 7.3).
In Theorem 5.6B, we will use Theorem 5.5B to bound the order of a finite
multiply transitive group.

We begin by looking at a special class of groups which have specified
sections. Let G and U be arbitrary groups. We say that G is a preimage
of U with kernel K, if K « G and G/K = U; and say that G is a minimal
preimage of U if G is a preimage but no proper subgroup of G is a preimage
of U.

Lemma 5.5A. IfU and G are finite groups, and G is a minimal preimage
of U with kernel K then the following hold.
(i) If H <G and HK = G, then H = G.
(ii) K 1is nilpotent.
(iii) IfU is simple, then each proper normal subgroup M of G is contained
in K, and G/M is also a minimal preimage of U.
(iv) Suppose G < H and N < H. If U is simple and H/N has no section
isomorphic to U, then G < N.

PRrROOF. (i) Since H/(H N K) = G/K = U, the minimality of G shows
that H = G.
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(ii) A finite group is nilpotent if and only if each of its Sylow subgroups
is normal. Let P be a Sylow subgroup of K. Then the Frattini argument
(see Exercise 1.4.14) shows that G = Ng(P)K, and so G = Ng(P) by (i).
Hence P < K, and the result follows.

(iii) Suppose that M < G and M is not contained in K. Since U = G/K
is simple, M K/K must equal G/K, and so M = G by (i). This proves the
first statement, and the second follows easily.

(iv) If G is not contained in N, then G/(GN N) =2 GN/N is a preimage
of U by (iii) contrary to the hypothesis on H/N. m|

In the following lemma we use the notation A(k) to denote the minimum
positive integer d such that for some field F' the group GL4(F) has a
finite subgroup with Ay as a quotient. Using methods concerned with linear
groups, we shall show in Sect. 5.7 that (2k — 4)/3 < A(k) < k—-1.In
anticipation, we use these bounds in the proofs below.

Lemma 5.5B. Lett > 5 and consider a group H with a subgroup M
which is a minimal preimage of A;. Suppose that H acts on a set §) such
that Q is an orbit for some solvable normal subgroup K of H. If |Q] < 27 ()
then M lies in the kernel of this action.

PRrOOF. First consider the special case where |Q2] > 1 and H acts primi-
tively on . Let H and K denote the images of H and K, respectively, in
this action, and let N denote the kernel of the action. Since K acts tran-
sitively on €, the primitive group H < Sym(Q) has a nontrivial solvable
normal subgroup K. Thus, by Corollary 4.3B and Theorem 4.6A, soc(H)
is a regular elementary abelian p-subgroup for some prime p, || = p? for
some d > 1, and each point stabilizer H, is isomorphic to a subgroup
of GL4(p). Since H = H,K, we have a normal series H > KN > N > 1
where H/KN is isomorphic to a section of GL(d,p) and KN/N is solv-
able. However, 2¢ < p? = | < 2M® by hypothesis, so by the definition
of A(t) there is no section of GL4(p) which is isomorphic to A;. Hence
M < N by Lemma 5.5A (iv). This proves the result in the case where H
acts primitively.

Now consider the general case. The result is trivial if |Q] = 1, so
we shall assume || > 1 and proceed by induction on [€2. Choose
Y = {A1,...,An} as a system of minimal blocks for H (m > 1). Since

K acts transitively on ¥ and |X| < ||, induction shows that M lies in
the kernel of the action of H on X; hence M < H; := Hya,y for each i.
Consider a fixed 7, and choose o € A,;. Then H = H, K by the transitivity
of K, and H, < H; because A, is a block, so H; = H,(K N H;). Now H;
acts primitively on A; because A; is a minimal block (see Exercise 1.5.10),
H; has a solvable normal subgroup K N H; acting transitively on A;, and
M < H;. Therefore, applying the special case proved above, we conclude
that M lies in the kernel of this action, namely, M < Ha,). Since this is
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true for each i, we have shown that M fixes every point in {2 and so lies in
the kernel of the action on 2 as asserted. m

The next lemma gives a crucial step in the proof of our main theorem.

Lemma 5.5C. Let G be a minimal preimage of A, and fix a surjective
homomorphism ¢ : G — Ag with K := kervy. Choose M < G minimal
such that (M) = As < Ag. Now suppose that k > 10 and s is an integer

such that k/2 < s < k, and define c(k, s) = (°}' (’;)_1. Then, whenever
G acts transitively on a set Q of size n < min{ I;), %(L’;?J)’ 2)‘(S+1)},

each element of M fizes at least c(k, s)n points in Q.

PrOOF. Let X := {A4,..., A} be the set of orbits for K on . Since
K < G and G is transitive on 2, X is a system of blocks for G and |A;| =
n/m for each i. Put H; := Gya,;. Then, by Lemma 5.5A (ii), K is a
transitive solvable subgroup of H;. Since & > 9 and

A s p(H)| = |G : Hi| =m < n < min{(i)’ % (Lk%)}

Corollary 5.2A shows that there exists ¢ > s 4+ 1 such that (H;) has a
unique orbit J; € {1,2,...,k} of length ¢ and Alt(J;) < ¢(H;). Choose
M,; < H; minimal with respect to the condition that ¢(M;) = Alt(J;); so
M, is a minimal preimage of A;. Since |A;| < n < 27+ < 228 Lemma
5.5B applied to H; in its action on A; shows that M; < G(Ai)'

Now consider the set I :={i | 1 <i < m and {1,2,3,4,5} C J;}. The
definition of M as a minimal preimage of A5 shows that M < M;K <
GayK for all i € I, and because Ga,)K/Ga,) is nilpotent by Lemma
5.5A (ii), this shows that M < G(a,) by Lemma 5.5A (iv). Hence we
conclude that A; C fix(M) for each ¢ € I, and so each element in M fixes
at least ), .; |Ai| = (n/m)|I| points in Q.

To complete the proof it remains to show that |I| > c(k, s)m. How-
ever, transitivity of G on ¥ and of ¢(G) = Ag on the set of t-subsets of
{1,2,...,k} shows that each t-subset J of {1,2,...,k} occurs the same

number of times, say d times, as a J;. Hence m = [ = d(¥) while
— _ —1 _

= d0). Thus 1 fm = ()0 = () = elh,t-1) > el )

as required. O

To obtain the bounds we are after, we need some elementary estimates
of some binomial coefficients.

Lemma 5.5D. Let k and s be positive integers with k > 2 and s < k.
Suppose that s is chosen so that s/(k+ 1) < pu < (s + 1)/(k+ 1). Then

p(1—p) k kt1 1
< < h = .
kr1 7 = \s) =7 where p (1 = p)(t=m)
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PROOF. Let ¢t > 0 and consider the binomial expansion of (1 + t)*. For
two successive terms in this expansion we have

]?t"ﬁ ,k e Z+1,§t
7 i+ 1 k—1

and so (¥)¢* is the largest term whenever s/(k—s+1) <t < (s+1)/(k—s).
The hypothesis on p shows that these latter inequalities hold if we put
t = p/(1 — p). Now the sum of the terms is (1 + ¢t)¥ = (1 — p)~*, and
there are k£ + 1 terms altogether, so we conclude that

_\—k
—(1k Jf)l < (’z)mu SO (D

Since p(1 — p)pFtt < p=°(1 — p)=*=9) < pktl the stated inequalities

follow. O

Theorem 5.5A. Let G be a permutation group of degree n which contains
a section isomorphic to Ay for some k > 10. Suppose that G has minimal
degree at least wn where w < 0.4. Thenn > (’;) for any s < k such that

(s+1)s(s—1)(s —2)(s—3)
k(k — 1)(k — 2)(k — 3)(k — 4)

c(k,s) == >1-—

In particular, if we define s := |u(k + 1)] where p == V1 — w, then n >
(’:) for this value of s.

ProOF. Let Q be the set on which G is acting. The hypothesis on G shows
that G contains a minimal preimage H of Ay, and Lemma 5.5A (iii) shows
that the image of the action of H on each of its nontrivial orbits is also a
minimal preimage of Ag. Since G has minimal degree at least w Q] on €,
the same must be true for H, so we conclude that the image of H on some
nontrivial orbit I' has minimal degree at least w |I'|. Thus, since n > |I'|,
it is enough to prove the theorem in the special case where GG is a minimal
preimage of A; and G is a transitive permutation group.

Next note that c(k,s) < {(s + 1)/k}®, and so the condition on c(k, s)
implies that s + 1 > (V1 — w)k: = pk. The hypothesm that w < 0.4
shows that p > /0.6 = 0.9028... and so min{(¥), (Lk/zj) 2)‘(5"‘1)} =
( ) by Exercises 5.5.1 and 5.5.2. We can now apply Lemma 5.5C and the
hypothesis on c¢(k, s) to conclude that n cannot be less than ( ). This proves
the main assertion.

Finally, if s := [u(k+1)], then s + 1 — ¢ > p(k + 1) — 4 > p(k — 9)
for 0 < i < 4, because u > 0.8; hence c(k,s) > p® = 1 — w. Thus the
hypotheses are satisfied for this choice of s. O
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FEzercises

5.5.1 Show that (¥) < %(Lkljﬂ) whenever 2(k + 1)/3 < s < k. [Hint:

Compare (’;) with the preceding binomial coefficient.]

5.5.2 Using the fact that A(s + 1) > (2s — 2)/3 (see Theorem 5.7A), show
that (];) < 22641 whenever k > 10 and 0.9k < s < k. [Hint: Use
Lemma 5.5D and the fact that p is decreasing as p increases in the
range 0.5 < p < 1]

Theorem 5.5B. Let G be a proper 2-transitive permutation group of
degree n > 216. If G contains a section isomorphic to Ay, then k < 6logn.

PROOF. First note that the result is trivial if £ < 32 since log n > 5.37 for
all n > 216, so we can suppose that k > 33. Since G is 2-transitive and n >
216, Theorem 5.4A shows that the minimal degree is at least n/4. Applying
Theorem 5.5A then shows that n > (k) where p = {/—3/_4 = 0.9440. .. and

3

s = |u(k + 1)}. Now Lemma 5.5D shows that (¥) > %"—)p’““ where
p = 1.2405 . ... Hence

1—
logn > (k+1)log p+log H(le'ul

> {0.2155 3 log(k + 1) 2726 } .

k k

This shows that logn > k/6 for all ¥ > 160. The remaining cases are
settled by applying Theorem 5.5A to various ranges of k with s chosen so
that ¢(k,s) > 1 — 1/4 (see Table 5.3). This completes the proof of the

theorem. O
TABLE 5.3.
Range of k S Minimum value Minimum value
of c(k, s) of 1 log (¥)
3B3<Ek<3 k-2 0.8484 . .. 0.1694 . ..
40<k<63 k-3 0.7628.. .. 0.1680. ..
64 < k<87 k-4 0.7802. .. 0.1679 . ..
8 <Ek<112 k-5 0.7880. .. 0.1670. ..
113 <k <136 k-6 0.7941 . .. 0.1675. ..

1B7< k<161 k-7 0.7966 . .. 0.1671 ...
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FEzxercise

5.5.3 Verify the information in Table 5.3. [Hint: For a fixed value of 1,
c(k,k — i) is an increasing function of k, and log (k’iz) — k/6 is a
decreasing function of k provided &k > 7i.]

5.6 Bases and Orders of 2-transitive Groups
The following general combinatorial result is useful in a variety of contexts.

Lemma 5.6A. Letn, d andt be positive integers. Let ) be a set of size
n, and suppose that F is a family of subsets of ) such that each v € Q lies
in exactly t subsets from F. Then
(i) for each T' C Q there exists A € F such that [T N A| < |T||A| /n;
(ii) if each A € F has at least d elements, then for each real ¢ > 1 there
exists a subfamily F. C F such that |F;| < (nlogc)/d + 1 and

ALJTLA (1 —~ E)n

PROOF. (i) Let F(y) denote the set of A € F with v € A, and note that
|F(v)| = t by hypothesis. Then

dMPnA=) [Fly)l =

AEF yel

In particular, substituting Q for T" gives

3 Al =

AEeF

Hence, for general I', we have

= Y Bt jar BR21 S 14

AcF AcF

for some A* € F, and (i) follows.
(i) Define subsets Ty, T'y,... of  as follows. Put 'y := 0. For each
i > 0 we use (i) to choose A; € F such that

T N Al < [Ts] |As] /n
and put I';4; = I';UA; and g; := |[}|. Clearly g;+1 > ¢; aslongasT'; # Q.
We claim that if we stop at the index k where g > (1 — 1/¢)n > gx—1

then & < (nlogc)/d+ 1. Since the latter inequality is trivial for k = 1, we
can suppose that k > 2. The choice of A; shows that for each ¢

i d
n—git1 < n—gi — |A <1“ %) <(n—g) (1— E)'
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Since go = 0 and k > 2, this shows that

(1-5) <nen {62}
<n—gg1<n{l— - < nexpy —= ¢

o3

n n

Therefore — log ¢ = log(1/¢) < —d(k — 1)/n and the result is proved. [J

Lemma 5.6B. Suppose that G < Sym(Q) has degree n > 2 and that
k > 5. If G does not have a section isomorphic to Ay, then there exists
A C Q with |A] < 2k such that every orbit of G(ay has length less than
0.63n.

PROOF. Suppose that no such set A exists. To simplify notation, put b :=
0.63. Then we can define a sequence of subgroups G(i) (i = 0,...,2k)
of G such that G(0) = G and, for each ¢ > 1, the group G(i) is a point
stabilizer of G(i — 1) with |G(i — 1) : G(¢)| > bn (choose the point to lie
in the largest orbit of G(i — 1)). Then G(2k) = G(a) for some subset A
of size 2k, and |G : G(Afl > (bn)?*. On the other hand, considering the
action of G on the set Q12%} of 2k-subsets, we have

B {2k}] _ n
|G : G{A}’ < ‘Q ‘ = (2k>
and so

1 k 12k

n ok (2k)! n?* b ok
G : G > = 1 y=*,
Giay : Gl 2 <2k> (o) nn—1)- - (n—2k+1) (B0t

Now the restriction map gives a homomorphism of
G{A} — Sym(A) =~ Sok

with kernel G(a) and image H := G{AA} = G{a}/G(a)- By the hypothesis
on G, the group H cannot contain a subgroup isomorphic to Ag. Since
k > 4, this implies that the index of H in Sym(A) is at least (%) by
Theorem 5.2B. Therefore

(2k)!
G

As we saw in the proof of Lemma 5.1A, (2kk) > 22k /2k. Using this together
with the last two inequalities for |G(a} : G(a)| we conclude that (2b)%* <
2k. Since (2k)1/2¢ < 10Y/10 < 1.26 = 2b for all k& > 5, this gives a
contradiction. Thus there exists a set A for which G} has all its orbits
of size < bn, and the lemma, is proved. J

|H| = [Giay : Gayl <




166 5. Bounds on Orders of Permutation Groups

Lemma 5.6C. Let G < Sym(Q) be 2-transitive of degree n > 6, and let

b be a constant with 0 < b < 1.

(i) If there exists a set ¥ C §) such that G(x) has no orbit of length > bn,
then G has a base of size at most

2
{l_blogn+1}|2|.

(ii) Ifk > 5 and G does not have a section isomorphic to Ay, then G has
a base of size at most 12k logn.

PROOF. (i) Let
A= {(a, B) € Q@ | @, 8 lie in distinct G (x-orbits }.
Then the hypothesis on G(5) shows that
Al > Y (1 -bn=(1- b’
ach

Consider the family F of sets A® indexed by z € G. Because G is 2-
transitive, each pair (a, 3) € Q® lies in the same number of sets in F and
so we can apply Lemma 5.6A (ii) with ¢ = n?. We conclude that there is
a subset T' C G with

n(n — 1) logc 2
A s - e 1
1= b2 +1<1_b10gn+

such that (J,.p A% = Q). Since

T <

(o, B) € A" <= a, (3 lie in distinct G(z=)-orbits

we conclude that I' := J, . £ is a base for G with

2
1 .
|I‘|<{1_blogn+ }|E|

This proves (i).
(ii) Lemma 5.6B shows that the hypotheses of part (i) hold with |X| = 2k
and b = 0.63. Hence we can find a base of size at most

2
2’“{@ logn+1} < 12klogn

since logn > log6 > 1.79. 0

Theorem 5.6A. If G is a proper 2-transitive subgroup of degree n, then
G has a base of size at most 72(logn)?. Hence the order of G is at most

exp{72 (logn)3}.

PROOF. The result is trivially true for n < 216, so we can suppose
n > 216. Then from Theorem 5.5B, G does not have Ay as a section if
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k > 6logn. Hence part (ii) of the preceeding lemma gives the desired
conclusion. O

Since (logn)? grows more slowly than /n we can combine Theorems
5.6A and 5.3A to get the following bound valid for any proper primitive

group.

Theorem 5.6B. There exists a constant ¢ > 0 such that every proper
primitive group of degree n has order at most exp{c'\/n(logn)?}.

It is possible, but not very enlightening, to make an estimate of the value
of ¢’. It is certainly much too large to be useful for moderate degrees, say
less than a million. There is an alternative bound known for the order
of a proper primitive group of degree n, namely 4™. This is poorer as an
asymptotic bound but has the advantage of being valid for all degrees. The
proof of this result which is due to Wielandt (1969) and Praeger and Saxl
(1980) is quite different from the proofs given above; it is less combinatorial
and uses more of the group structure.

However neither of these results really describes the true picture, and
Liebeck (1984b) has used the classification of finite simple groups to prove
the following.

Theorem 5.6C (Assuming the classification of finite simple groups). Let
G be a primitive group of degree n. Then there is a constant b > 0 (which

can be taken to be 9/(log 2)) such that at least one of the following holds:
(i) there are positive integers d, k and m such that G has a socle which
is permutation isomorphic to A%, where the action of A, is equivalent

to its action on k-element subsets of {1,...,m} and n = (Ts)d; or
(ii) G has a base of size less than blog n and so has minimal degree greater

than n/(blogn) and order less than exp(b(log n)?).

Exercises

5.6.1 Show that AGL4(2) has a base of size approximately (logn)/(log 2)
so the bounds in part (ii) of the theorem above are within a constant
factor of being best-possible.

5.6.2 Let G be a finite group acting transitively on a finite set  of size
n > 3, and fix a € Q. Show that for some integer t < (logn +
loglogn)/log2 + 1 there exist elements z1,...,x; € G such that
each point in 2 has the form o* where z = z$* ... z;* with¢; € {0,1}
for each i. In particular (taking the action as right multiplication on
G), there is a set of ¢ generators zi,...,x; of G such that each
element z € G has the form described. [Hint: Apply Lemma 5.6A.]
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5.7 The Alternating Group as a Section of a Linear
Group

The present section is devoted to obtaining a lower bound on the dimension
d of the general linear groups G L4(F') which contain finite preimages of Ag.
This is necessary to complete the proofs of Sect. 5.5. We begin with some
general results. Recall that a group is locally finite if every finitely generated
subgroup is finite. In particular, finite groups and infinite abelian p-groups
are locally finite.

Lemma 5.7A. If G is a finite p-group which acts as a group of
automorphisms on a locally finite p-group H # 1, then fixy(G) # {1}.

Proor. Take any v # 1 in H, and define K := (u* | x € G). Then
K is a finite nontrivial p-subgroup of H by the hypotheses and K is G-
invariant. Since the nontrivial orbits of G all have lengths divisible by p,
the set fixx (G) of fixed points on K satisfies

lfixg(G)| = |K| =0 (mod p).
Since 1 € fixg (G), we conclude that |fixg(G)| > |fixx (G)| > p. O

Suppose that G acts as a group of automorphisms of H and that H has
a finite chain of subgroups

(5.6) H=Hy>H >...>H, = 1.

Then we say that G stabilizes the chain (5.6) if for each 4, 1 < ¢ < 7, we
have: (i) H; is G-invariant, and (ii) for all w € H; 4, H;u = H;u* for all
z € G.

Lemma 5.7B.

(i) Suppose that 6 is a p-element in Aut(H) for some prime p, and (6)
stabilizes the chain (5.6). If H contains no nontrivial p-element, then
6 =1.

(ii) Let G be a minimal preimage of Ay (k > 5), and suppose that H is
a group in which every nontrivial element either has infinite order or
has q-power order for some fixed prime q. If G acts on H as a group of
automorphisms and G stabilizes the chain (5.6), then G acts trivially
on H.

PROOF. (i) The result is clearly true if 7 < 1, so proceed by induction on
r, and assume r > 1. Since H; is invariant under 6, the group (6) acts
as a group of automorphisms on H; and hence 6 acts trivially on H; by
induction. Now for each u € H, there exists z € H;j such that v = zu,
and hence u?* = z%u fori = 1,2, ... .If § has order m, then this shows that
u = z™u, and so z™ = 1. Since m is a power of p, z must be a p-element,
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and so z = 1 by the hypothesis on H. Hence u¢ = u for all u € H, and so
0 =1.

(ii) Choose any prime p < k with p # ¢. Let € G be a p-element which
maps onto a nontrivial p-element of Aj;. Now (i) shows that the kernel of
the action of G on H contains x, hence the kernel is G by Lemma 5.5A. O

We shall require some elementary results from linear algebra. Let F' be
an algebraically closed field and let V' be a d-dimensional vector space over
F. Let End(V) denote the ring of all F-linear transformations (or endomor-
phisms) of V into itself; recall that this is also a vector space of dimension
d? over F. The invertible linear transformations in End(V') form the group
GL(V). A linear transformation ¢ € End(V) is called diagonalizable if ¢
has a diagonal matrix relative to some basis for V. The following results
are well known (see, for example, Hoffman and Kunze (1971) Sect. 6.4 and
6.5).

Lemma 5.7C.

(i) t € End(V) is diagonalizable <= the minimal polynomial m(X) for
t has distinct roots. In particular, if t* = 1, then m(X) | X™ — 1.
If char F = 0 or char F = g > 0 but q [ n, then GCD(X"™ —
1,nX" 1) =1, and so X™ — 1 has distinct roots. Thus in this case
t" = 1 implies that t is diagonalizable.

(il If T is a set of diagonalizable linear transformations which commute
with one another, then there is a basis for V' over which allt € T have
diagonal matrices stmultaneously.

FEzxercises

5.7.1 Let G be a subgroup of GL(V) over the field F.
(i) If ¢ € End(V) commutes with every element of G, then ker t and
Im ¢ are G-invariant subspaces of V.
(ii) If the only G-invariant subspaces are V and 0, and F is alge-
braically closed, then Z(G) consists of scalar matrices of the
form (1.
(iii) If char F' = p # 0, then 1 is the only p-element in GL(V) which
is a scalar.
[Hint: In the second part, if z € Z(G), consider z — (1 where ( is
an eigenvalue ( for z. For the third part use the fact that (X —1)?" =
X?" — 1 over any field of characteristic p.]
5.7.2 Let G be any group, and for each z € G define

Ci(z) =={y € G| [z,y] € Z(G)}.

Prove that C¢(x) is a subgroup of G and that y — [z, y| is a homo-
morphism from C%(x) into Z(G) with kernel Cg(z). In particular,
Cg(x)/Ce(z) is abelian.
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5.7.3 Show that there is no field for which SLs(F') contains a finite preim-
age G of Ag. [Hint: If char F # 3 then every finite 3-subgroup of
SLy(F) is cyclic, while if char F' = 3 then the elements of order 2 lie
in the centre, and so G would have an element of order 12.]

5.7.4 Show that there is no field for which SL3(F) contains a finite
preimage G of As.

We define A(k) to be the smallest positive integer d for which there exists
a fleld F' such that GL4(F) contains a finite preimage G of Aj. Simple
arguments show that A(k) < k—1for all k > 2, and that A(2) = A\(3) =1
and A(4) = A(5) = 2. Obviously there is no restriction in assuming that
F is algebraically closed. Our object is to obtain a general lower bound on
A(k).

Theorem 5.7A. For allk > 2, \(k) > (2k — 4)/3.

A major part of the proof of this theorem is the proof of the following
lemma.

Lemma 5.7D. Let k > 5, and let d = Ak). Then there exists an
algebraically closed field F' and a finite subgroup G of SLq(F) such that:
(i) G is irreducible as a linear group;
(ii) Z(Q) is a group of scalars (1 (with ¢ € F') and its order divides d;
(iil) if char F =p > 0, then p | |Z(G)|;
(iv) G/Z(G) = Ay.

PRrOOF. The definition of d shows that there exists an algebraically closed
field F such that GL4(F) contains a finite preimage G of Ay. We choose
F and G so that G has smallest possible order; let K be the kernel of
this preimage. Note that G must be a minimal preimage of Ay and hence
G’ = G because k > 5. Since det(z 'y lxy) = 1 for all 2,y € G, this
shows that G < SL4(F).

Let V = F? denote the underlying vector space. Since GL(V) =
GL4(F), we can identify G with its image in GL(V'). We shall now show
that G satisfies the conditions (i)—(iv).

(i) Suppose that W is a G-invariant subspace. Then G stabilizes the
subgroup chain V2 W 2 0 of (V,+). Since G does not act trivially on
V, Lemma 5.7B (ii) shows that G does not act trivially on both W and
V/W, and so, by Lemma 5.5A (iii) and the choice of G, must act faithfully
on one of these. Now the minimality of d shows that either W or V/W has
dimension d, and so W = 0 or V. This proves (i).

(ii) Since G acts irreducibly on V, Exercise 5.7.1 shows that Z(G) is a
group of scalars. Thus Z(G) < {¢1 | ¢? = 1} because G < SL4(F). In
particular, |Z(G)| divides d.

(iii) Suppose that char F = p > 0, and let P be a Sylow p-subgroup of
K. Since P acts on the locally finite p-group (V, +) as a group of automor-
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phisms, Lemma 5.7A shows that W := fixy (P) # 0. Since P is the unique
Sylow p-subgroup of K by Lemma 5.5A (ii), therefore P < G. Hence W is
a G-invariant subspace, and so W = V by the irreducibility of G. Hence
fixy (P) = V, and so P = 1. This shows that p / |K|. Since Z(G) < K,
(iii) follows.

(iv) We have to show that K = Z(G). Suppose that this is false. Since
K is nilpotent by Lemma 5.5A (ii), there exists a subgroup M of K
such that M/Z(G) is a minimal normal subgroup of G/Z(G) contained
in Z(K/Z(@)). Then M/Z(G) is an elementary abelian group of order ¢",
say, for some prime g. We claim that r < d.

First, if M < Z(K), then M is abelian and, as we saw in the proof of
(iii) above, the order of K is relatively prime to the characteristic of F if
the latter is nonzero. Since F' is algebraically closed and M is abelian, we
can find a basis of V' over which all elements of M correspond to diagonal
matrices by Lemma 5.7C (ii). Each finite subgroup of the multiplicative
group of any field is cyclic (see, for example Lang (1993) IV §1), so we
have an embedding of M into a direct product of (at most) d cyclic groups.
Hence M itself is generated by at most d elements, and so the same is true
for the homomorphic image M/Z(G). Hence r < d in this case.

Second, if M is not contained in Z(K), then M N Z(K) = Z(G) by the
minimality of M. Choose elements 1, . .., Z,, from M to form an F-basis
of the subspace of End(V) spanned by M (so m < d?). The elements of
this basis lie in different cosets of Z(G) because Z(G) consists of scalars; we
shall show that in fact they form a set of coset representatives for Z(G) in
M. Indeed, if this were not true then we could choose y € M such that no
x; les in the coset Z(G)y. Then y = > \;z; for some unique X; € F, and
sol =3 \zy~'. Since z;y ! does not lie in Z(G), it is not contained in
Z(K) and so we can choose z; € K which does not commute with z;y~".
Since M/Z(G) < Z(K/Z(G)) and Z(G) consists of scalars, this shows that
there exist (;; € F such that

[wiywl,zj] = Cij]- and C“' 75 1 for Z,] = 1, ey T
Thus, for each j, we have
1= zj-'llzj = Z )\izj"lmiy“lzj = Z NiGiimsy ™t
The linear independence of the x; now shows that A\;(;; = A, for each
J, and so A; = 0 because (;; # 1. This implies y = 0, and we have a

contradiction. Hence 1, ..., Z,, is a set of coset representatives for Z(G)
in M and so

d>m=|M:ZG) =q >2

which shows that » < d in this case as well.

Thus we have shown that M/Z(G) is a vector space of dimension < d
over the field with q elements. Since the kernel of G acting on this space (by
conjugation) contains M, Lemma 5.5A (iil) and the minimality of |G| in
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the choice of G shows that G must act trivially on this space. Now, Lemma,
5.7B (ii) shows that G acts trivially on the Sylow g-subgroup of M, and so
M < Z(G) contrary to hypothesis. This shows that Z(G) must be all of
K as claimed. O

PrOOF OF THEOREM 5.7TA. We proceed by induction on k. The cases
where k < 7 are dealt with in Exercises 5.7.3 and 5.7.4, so suppose k > 8.
Let d := A(k), and let G < SL4(F) be a group satisfying the conditions
(i)—(iv) of Lemma 5.7D for a suitable field F. Since k¥ > 8, we have d > 4
by Exercise 5.7.4. Let ¢ denote a homomorphism of G onto Ay, and choose
z in a Sylow 3-subgroup of G such that ¢(z) = (123) € Ay. With the
notation of Exercise 5.7.2

C5(2)/Z(C) = O, ((123)) = ((123)) x As_s

and C&(z)/Cq(z) is abelian, so C := Cg(x) has a section isomorphic to
the simple group Ax_3 (recall that k — 3 > 5 because k > 8). Let H be a
minimal preimage of A;_3 in C.

Put V:i=F.LIfV =V, >V, > Va... >V, = 0 is any chain of
C-invariant subspaces, then H must act nontrivially on at least one of the
factor spaces V;_1/V;, since otherwise H would not act faithfully on V by
Lemma 5.7B (ii). Thus, if we can prove that there exists a chain of C-
invariant subspaces in which successive quotient spaces all have dimension
< d — 2, then induction shows that d — 2 > {2(k — 3) — 4}/3 and hence
d > (2k — 4)/3 as required. To complete the proof we consider two cases.

First, suppose that char F' # 3. In this case z is diagonalizable. Since
each eigenspace of z is C-invariant (Exercise 5.7.1), it is enough to show
that z does not have an eigenspace of dimension d—1. Suppose the contrary;
then z corresponds to a diagonal matrix of the form diag(a, g,..., ).
Choose y € G such that ¢(y) = (12)(45) € Ai. Then the conjugate
y~lzy of z has the form 22(¢ because ¢(y~'zy) = ¢(z)?> and the ele-
ments of Z(G) are scalars. Thus the diagonal matrix for z is similar to
diag(a?¢, #%¢, ..., 8%¢) and so the diagonal entries of the two matrices
must match after possible reordering. Since d > 2, this can only happen if
a = o?C and B = $%¢. Hence a = (! = 3, which is impossible because z
does not lie in Z(G). Hence every eigenspace for  has dimension < d — 2
and the proof is completed in this case.

Second, suppose that char F' = 3. In this case 3 / |Z(G)| by Lemma
5.7D, and so z is an element of order 3 in G. Thus the minimal polynomial
for z divides X2 — 1 = (X — 1)3 (compare with Exercise 5.7.1). Hence all
the eigenvalues of x equal 1, and the blocks in the Jordan canonical form
for x have one of the three forms:

0
1.
1

EHERT

O = =
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A simple calculation shows that the dimension of W := ker(z — 1) is equal
to the number of Jordan blocks, and so is at least 2 (since d > 4) and at
most d — 1. Since W is C-invariant the only case we have to consider is
when dim W = d — 1, and this occurs only when z has one block of size
2 and all other blocks of size 1. In this case we see that U := Im(z — 1)
is a C-invariant subspace of dimension 1 contained in W, and so the chain
V > W > U > 0 fulfills our requirements.

Thus we have proved the induction step in all cases, and hence completed
the proof of the theorem. O

5.8 Small Subgroups of S,

The following theorem is an application of some of the results obtained in
this chapter to show that many interesting classes of groups always appear
as small subgroups of Sy,

Theorem 5.8A. Let C be a nonempty class of finite groups with the prop-
erty that whenever G € C then every subgroup and homomorphic image of
G lies in C. (Briefly: C is closed under taking subgroups and homomorphic
images.) Suppose that C does not contain every finite group. Then there
exists ¢ > 1 such that for alln > 1:

(5.7) ifG < S, and G € C, then |G| < " L.

PRrROOF. Since C does not contain every finite group and is closed under
taking isomorphisms and subgroups, there exists m such that A,, ¢ C.
Choose ¢y > 1 such that (5.7) holds with ¢ = ¢g for all n < m. Now
choose ng > m such that (5.7) holds with ¢ = ¢o whenever G is primitive
and n > ng. This is possible because the choice of m and the hypothesis on
C ensures that G must be a proper primitive subgroup of S,, when n > ng,
and so Theorem 5.6B applies. Finally choose ¢ > ¢g so that (5.7) holds for
all n < ng. We claim (5.7) now holds for all values of n.

Indeed, (5.7) holds when G is primitive by the choice of ¢, and also for
small values of n, so we can proceed by induction on n assuming that G
is either imprimitive or intransitive. If G < S, is imprimitive, then there
exists d | n with 1 < d < n such that G can be embedded in a wreath
product of the form H wr K where H < S,, /4 is isomorphic to a subgroup
of G and K < S; is isomorphic to a factor group of G (Exercise 2.6.2).
Thus the hypothesis on C together with the induction hypothesis implies
that

|G| < |H'd |K| < C(n/d~1)dcd~1 — cn~1

as required. On the other hand, if G < S, is intransitive, a similar argu-
ment shows that G can be embedded in a direct product H x K where
H<Sjand K < S, for somedwith1 < d <n—1, and H and K are
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homomorphic images of G. Then the hypothesis on C and the induction hy-
pothesis show that |G| < |H||K| < ¢? 1" 471 < "1, so the induction
step is proved in this case too. This proves the theorem. O

Ezxercises

5.8.1 Suppose that in addition to the hypothesis of the theorem, we assume
that C is closed under taking direct products, and that C contains a
nontrivial group. Show that in this case there exists ¢’ > 1 such that,
for infinitely many values of n, there exists G < S, with G € C such
that |G| > (¢/)" . Hence there exists some ¢ > 1 such that (5.7)
holds for all n > 1 and such that, for each ¢ with 1 < ¢ < ¢, there
exists infinitely many n for which (5.7) fails to hold if ¢ is replaced
by c.

5.8.2 Show that every abelian subgroup of S, has order at most ¢™ where
¢ = 31/3 =1.44225 . .. and that this bound is reached whenever n is
a multiple of 3.

5.8.3 Find a similar bound for the nilpotent subgroups of S,.

5.8.4 Suppose that in addition to the hypothesis of the theorem we assume
that C is closed under forming extensions (that is, if N « G with
N € C and G/N € C, then G € C). Prove that there exist ¢ > 1
such that (5.7) holds for all n > 1, with the bound exact for infinitely
many n.

5.8.5 Prove that every subgroup G < S, of odd order has its order bounded
by 3("~1/2 and that this bound is exact whenever n is a power of 3.
[Hint: If G is primitive, the point stabilizer G, acts faithfully on a
set of size (n — 1)/2 (see Theorem 4.4A (ii)).]

In the special case where C is the class of solvable groups, we can make
the conclusion of Theorem 5.8A more precise.

Theorem 5.8B. Let ¢ := 241/3 = 2.8845.... Then, for every permuta-
tion group G of degree n, the product of the orders of the abelian factors
in a composition series for G is at most ¢"~'. In particular, the solvable
subgroups of Sy, have order at most c"™ 1.

PROOF. We shall first prove the result in the special case where G is solv-
able. It is easy to check that the result is true for n < 4 (the bound is exact
for n = 1 and n = 4), so we shall proceed by induction on n, and assume
n > 4. We consider three cases.

(i) If G is intransitive with an orbit of length d, say, with 1 < d < n,
then @G is isomorphic to a subgroup of Sy X Sp_4. Thus, by induction,
|Gl < cd~lcn—d~1 < cn~1_

(ii) If G is imprimitive, then there exists d | n with 1 < d < n and
m := n/d such that G is isomorphic to a subgroup of the wreath product
Sq wr S, with the natural action of S,,. Then induction shows that |G| <

d—lym m—1 _ ,n—1
(= H)™e =c" 1
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(iii) If G is primitive, then n = p*, say is a power of some prime p, G
has an abelian socle of order p*, and G, is isomorphic to some subgroup
of GLy(p) (see Theorem 4.6A). Hence

Gl =" |Gal < P*(* - 1)(@* —p)-- (P - p*1) <P
Now
(k+ 1) logn = log pnlogn/logp < log 2nlogn/ log 2.

A simple calculus argument shows that the last expression is less than
(n—1) log c whenever n > 16; so n**! < ¢! for n > 16 and the required
bound is proved for these values of n. Direct verification shows that the
latter inequality also holds for each prime power n = p* with 5 < n < 13
except for n = 8. Finally, for n = 8, |G| < 8 |GL3(2)| = 1344 < ¢’, and so
the bound holds for all degrees. This completes the proof of the theorem
in the special case where G is solvable.

Now consider the case where G < S, is a general permutation group
of degree n. It is enough to consider the case where G is chosen so that
the product of the orders of its abelian composition factors is as large as
possible for a group of this degree while the order of G is as small as possible.
We claim that in this case G is solvable. Indeed, if G is not solvable, then
there exist normal subgroups H and K of G such that: K < H,G/H is
solvable, and H/K is a nonabelian chief factor of G (and hence a direct
product of nonabelian simple groups). Let P/K be a nontrivial Sylow p-
subgroup of H/K. Then the Frattini argument (Exercise 1.4.14) shows
that G = NH where N/K := Ng/x(P/K). Now K < N and N/K has
a quotient N/(N N H) = G/H. Hence the product of the orders of the
abelian composition factors of N is as great as the corresponding product
for G while |[N| < |G|. Since this contradicts the choice of G, we conclude
that G' must be solvable. Thus the bounds for the special case apply in the
general case, and the theorem is proved. O

Ezxercises

5.8.6 Show that the bound in the theorem above is attained for groups of
degree 4*.

5.8.7 Show that every solvable subgroup of S, has its derived length £(G)
bounded by |blogn| where b = 5/(21log 3) = 2.27559 .. ., and that
this bound is best possible whenever n is a power of 9.

5.9 Notes

® Theorem 5.1A and Exercises 5.1.4-6: It is shown in Landau (1909) §61
that log hy, is asymptotic to v/nlogn as n — oo. See also Nicolas (1967),
Miller (1987) and Massias et al. (1989).

® Theorem 5.1B: See Babai and Seress (1987).



176 5. Bounds on Orders of Permutation Groups

Theorems 5.2A and 5.2B: See Liebeck (1983b) and Jordan (1870) 68-75.
Exercise 5.2.8: See also Sect. 8.5.

Lemmas 5.3A and 5.3B: See Babai (1980) and (1981).

Theorem 5.3A: See Babai (1981).

Theorem 5.4A and Lemma 5.4B: See Bochert (1897).

Exercise 5.4.3: Known to Jordan. See also Babai and Seress (1987).
Sect. 5.5: This section is based on Wielandt (1934). Theorem 5.5B gives
a logarithmic bound on the degree of transitivity of a finite permutation
group; this was the original aim of Wielandt (1934). All significantly
better bounds on degree of transitivity use (directly or indirectly) the
classification of finite simple groups; see Sect. 7.3.

¢ Lemma 5.6A and Exercise 5.6.2: See Babai and Erdés (1982).
® Lemma 5.6B, Lemma 5.6C and Theorem 5.6A: See Pyber (1993a) and

(1995) which are based on Babai (1982). Babai gives a weaker version of
Theorem 5.6B. For related results see Pyber (1993b).

Wielandt (1969) proves that the order of a simply primitive group of
degree n is at most 24™. Praeger and Saxl (1980) improved this bound
to 4™, and showed that it holds for all proper primitive groups of <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>