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PREFACE TO THE SECOND EDITION

With the first edition out of print, we decided to arrange for republi-
cation of Denumerable Markov Chains with additional bibliographic
material. The new edition contains a section Additional Notes that
indicates some of the developments in Markov chain theory over the
last ten years. Asin the first edition and for the same reasons, we have
resisted the temptation to follow the theory in directions that deal with
uncountable state spaces or continuous time. A section entitled
Additional References complements the Additional Notes.

J. W. Pitman pointed out an error in Theorem 9-53 of the first
edition, which we have corrected. More detail about the correction
appears in the Additional Notes. Aside from this change, we have left
intact the text of the first eleven chapters.

The second edition contains a twelfth chapter, written by David
Griffeath, on Markov random fields. We are grateful to Ted Cox for
his help in preparing this material. Notes for the chapter appear in the
section Additional Notes.

J.GK., J.LS, AWK,
March, 1976



PREFACE TO THE FIRST EDITION

Our purpose in writing this monograph has been to provide a syste-
matic treatment of denumerable Markov chains, covering both the
foundations of the subject and some topics in potential theory and
boundary theory. Much of the material included is now available only
in recent research papers. The book’s theme is a discussion of relations
among what might be called the descriptive quantities associated with
Markov chains—probabilities of events and means of random variables
that give insight into the behavior of the chains.

We make no pretense of being complete. Indeed, we have omitted
many results which we feel are not directly related to the main theme,
especially when they are available in easily accessible sources. Thus,
for example, we have only touched on independent trials processes,
sums of independent random variables, and limit theorems. On the other
hand, we have made an attempt to see that the book is self-contained,
in order that a mathematician can read it without continually referring
to outside sources. It may therefore prove useful in graduate seminars.

Denumerable Markov chains are in a peculiar position in that the
methods of functional analysis which are used in handling more general
chains apply only to a relatively small class of denumerable chains. In-
stead, another approach has been necessary, and we have chosen to use
infinite matrices. They simplify the notation, shorten statements and
proofs of theorems, and often suggest new results. They also enable one
to exploit the duality between measures and functions to the fullest.

The monograph divides naturally into four parts, the first three con-
sisting of three chapters each and the fourth containing the last two
chapters.

Part I provides background material for the theory of Markov chains.
It is included to help make the book self-contained and should facilitate
the use of the book in advanced seminars. Part II contains basic results
on denumerable Markov chains, and Part III deals with discrete poten-
tial theory. Part IV treats boundary theory for both transient and re-
current chains. The analytical prerequisites for the two chapters in this
last part exceed those for the earlier parts of the book and are not all
included in Part I. Primarily, Part IV presumes that the reader is
familiar with the topology and measure theory of compact metric
spaces, in addition to the contents of Part I.

vi



vii Preface

Two chapters—Chapters 1 and 7—require special comments. Chap-
ter 1 contains prerequisites from the theory of infinite matrices and
some other topics in analysis. In it Sections 1 and 5 are the most impor-
tant for an understanding of the later chapters. Chapter 7, entitled
“Introduction to Potential Theory,” is a chapter of motivation and should
be read as such. Its intent is to point out why classical potential theory
and Markov chains should be at all related.

The book contains 239 problems, some at the end of each chapter
except Chapters 1 and 7.

For the most part, historical references do not appear in the text
but are collected in one segment at the end of the book.

Some remarks about notation may be helpful. We use sparingly
the word “Theorem” to indicate the most significant results of the
monograph; other results are labeled “Lemma,” “Proposition,” and
“Corollary” in accordance with common usage. The end of each proof
is indicated by a blank line. Several examples of Markov chains are
worked out in detail and recur at intervals; although there is normally
little interdependence between distinct examples, different instances of
the same example may be expected to build on one another.

A complete list of symbols used in the book appears in a list separate
from the index.

We wish to thank Susan Knapp for typing and proof-reading the
manuscript.

We are doubly indebted to the National Science Foundation: First,
a number of original results and simplified proofs of known results were
developed as part of a research project supported by the Foundation.
And second, we are grateful for the support provided toward the
preparation of this manuscript.
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Dartmouth College
Massachusetts Institute of Technology
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CHAPTER 1

PREREQUISITES FROM ANALYSIS

1. Denumerable matrices

The word denumerable in the sequel means finite or countably
infinite. Let M and N be two non-empty denumerable sets. A
matrix is a function with domain the set of ordered pairs (m, n), where
m e M and n € N, and with range a subset of the extended real number
system—the reals with +oc0 and —oo adjoined. We call the sets M
and N index sets. The matrix is called a finite matrix if both M and N
are finite sets.

To say that the m-nth entry of the matrix is z or is equal to x, we
mean that the value of the function on the pair (m, n) is . A matrix
is said to be non-negative if all of its entries are non-negative, and it is
said to be positive if all of its entries are positive. We agree to use
upper-case italic letters to stand for matrices. If A4 is a matrix, we
denote the m-nth entry of A by A,,. Some examples of matrices are
as follows:

(1) If all entries of a matrix are equal to zero, we say that the matrix
is the zero matrix, denoted by 0.

(2) A matrix for which M and N are the same set is called a square
matrix. The entries corresponding to m = n are diagonal entries; other
entries are off-diagonal entries.

(3) A square matrix whose off-diagonal entries all equal zero is a
diagonal matrix. The diagonal matrix obtained from a square matrix
A by setting all of its off-diagonal entries equal to zero is denoted 4 ,,.

(4) A diagonal matrix whose diagonal entries are all equal to one is
called the identity matrix, denoted by I.

(5) A matrix whose second index set contains only one element is
called a column vector. If we wish to distinguish a column vector from
an arbitrary matrix, we shall denote the former by a lower-case italic

letter.
1



2 Prereguisites from analysis

(6) A matrix whose first index set contains only one element is called
a row vector. If we wish to distinguish a row vector from an arbitrary
matrix, we shall denote the former by a lower-case Greek letter.

(7) If A is a matrix defined on index sets M and N, define a matrix
AT, called the transpose of 4, to have index sets N and M and to have
entries given by (47),, = An,. The transpose of the transpose of 4 is
simply 4.

(8) The column vector all of whose entries are equal to one is denoted
1; the row vector with all entries one is 17. A matrix other than a row
or column vector which has all entries equal to one is denoted by .

(9) If 4 is an arbitrary matrix and ¢ is a real number, c4 is the
matrix whose entries are given by (c4),, = c¢A,.

(10) The matrix — 4 is defined to be the matrix (—1)A4.

(11) A constant (column) vector is a vector of the form ¢1 for some
extended real number c.

(12) A bounded vector is a vector all of whose entries are less than or
equal in absolute value to some finite real number c.

Two matrices 4 and B are equal, written 4 = B, if they have the
same index sets and if 4,,, = B, for every m and n. Inequalities are
defined similarly. For example, 4 > B if 4 and B have the same
index sets and if 4,, > B,, for every m and n. In particular, non-
negative matrices are those for which 4 = 0, and positive matrices are
those for which 4 > 0.

Addition of matrices is defined for matrices 4 and B having the same
index sets M and N. Their sum C = 4 + B has the same index sets,
and addition is defined entry-by-entry:

C’mn = Amn + an'

The sum C = A + Bis well defined if no entry of C is given by co —
orby —oo + oo. We leave the verification of the following properties
of matrices with index sets M and N to the reader:

(1) 4 + 0 = A4 for every A.
(2) For every A having all entries finite, 4 + (—4) = 0.
(8) For any matrices 4, B, and C,

A+ B+C)=A+B)+C

if the indicated sums on at least one side of the equality are
well defined.

Up to now, we have imposed no orderings on our index sets, and in
fact nothing we have done so far necessitates doing so. We shall define
even matrix multiplication shortly in a way that requires no ordering.



1-1 Denumerable matrices 3

There is, however, a standard way of representing matrices as rec-
tangular arrays, and for this purpose one normally orders the index
sets with the usual ordering on the non-negative integers. The
elements of the index sets are thus numbered 0, 1, 2, ... either up to
some integer r if the index set is finite or indefinitely if the index set is
infinite. Under such orderings of its index sets, a matrix A4 is repre-
sented as

AOO AOl AOZ
A = AlO All A12

A20 A21 A22

We note that other representations are possible if at least one of the
index sets is infinite; such representations come from ordering the
index sets with an order type other than that of the non-negative
integers. We shall meet another order type with its corresponding
representation at the end of this section. We point out, however, that
orderings are completely irrelevant as far as the fundamental properties
of matrices are concerned, and we shall have little occasion to refer to
them again.
For any real number a,, define a,* and a,,~ by

a,* = max (a,, 0)

a,” = —min (a,, 0).

The sum of denumerably many non-negative terms >,.ya,* or
Smem Am~ always exists independently of any ordering on M. There-
fore, we say that >,y @m = Dmem Ot — Dmem @~ is well defined if
not both of 3, . ¢, " and >, .y @, are infinite.

Definition 1-1: Let A be a matrix with index sets K and M, and let

B be a matrix with index sets M and N. Suppose the sums

z Akman

meM
are well defined for every k and every n. Then the matrix product
C = AB is said to be well defined; its index sets are K and N, and its
entries are given by Cy, = ey AxmBmn- Matrix multiplication is not
defined unless all of these properties hold.

Most of the propositions and theorems about matrices that we shall
deal with are statements of equality of matrices A = B. Such state-
ments are really just assertions about the equality of corresponding
entries of 4 and B, and a proof that 4 equals B need only contain an
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argument that an arbitrary entry of 4 equals the corresponding entry
of B. With this understanding, we see that the proof of the additive
properties of matrices is reduced to a trivial repetition of the properties
of real numbers. Propositions about multiplication, however, when
looked at entry-by-entry involve a new idea.

Let 4 be a matrix with index sets M and N and let m and = be fixed
elements of M and N, respectively. The mth row of 4 is defined to be
the restriction of the function 4 to the domain of pairs (m, s), where s
runs through the set N. Similarly the nth column of A4 is defined to
be the restriction of the function 4 to the domain of pairs (£, »), where
¢t runs through the elements of the set M. We note that the mth row of
a matrix is a row vector and that the nth column is a column vector.
With these conventions matrices can be thought of as sets of rows or as
sets of columns, and addition of matrices is simply addition of corre-
sponding rows or columns of the matrices involved. Furthermore, the
k-nth entry in the matrix product of 4 and B is the product of the kth
row of 4 by the nth column of B and is of the form .4 7 fm, Where 7
is a row vector and f is a column vector. That is, propositions about
matrix multiplication, when proved entry-by-entry, may sometimes be
proved by considering only the product of a row vector and a column
vector.

Because of the correspondence of row vectors to rows and column
vectors to columns, we shall agree to call the domain of a row vector or
a column vector the elements of a single index set.

Connected with any definition of multiplication are five properties
which may or may not be valid for the structure being considered. All
five of the properties do hold for the real numbers, and we state them
in this context:

(1) Existence and uniqueness of a multiplicative identity. The real
number 1 satisfies c1 = 1l¢ = ¢ for every c.

(2) Commutativity: ab = ba

(3) Distributivity: adb + ¢) = ab + ac

(@ + b)c = ac + be

(4) Associativity: a(be) = (ab)c

(5) Existence and uniqueness of multiplicative inverses of all
non-zero elements.

We can easily settle whether the first two properties hold for matrix
multiplication. First, the identity matrix I plays the role of the
multiplicative identity, and the identity is clearly unique. Second,
commutativity can be expected to fail except in special cases because it
is not even necessary for the index sets of two matrices to agree properly
after the order of multiplication has been reversed.



1-2 Denumerable matrices 5

The validity of the third property, that of distributivity, is the
content of the next proposition.

Proposition 1-2: If A, B, and C are matrices and if AB, AC, and
AB + AC are well defined, then A(B + C) = AB + AC. Similarly
(D + EYF = DF + EF if DF, EF, and DF + EF are all well
defined.

Proor: We prove only the first assertion. We may assume that 4 is
a row vector 7w and that B and C are column vectors f and g. Then

af + ng = z Tmfm + z TmIm

meM meM
= ZM (”mfm + TnGm)
= Z 77"m(.fm + In)
meM
=7(f + 9

The fourth and fifth properties are related and nontrivial. Associa-
tivity does not always hold, but useful sufficient criteria for its validity
are known. For an example of how associativity may fail, let 4 be a
matrix whose index sets are the non-negative integers and whose entries
are given by

1 -1 0 0
0 1 -1
0 0 1 -1
A =
0 0 —
0 0 0 1
Then
17(41) = 0,
whereas
(17A)1 = 1.

All the products involved are well defined, but the multiplications do
not associate.

We shall not consider the problem of existence of inverses, but
uniqueness rests upon associativity. For suppose 4B = B4 = AC =
CA = 1. Since AC = I, we have B(AC) = B, and since BA = I, we
have (BA)C = C. Therefore, B = C if and only if B(40) = (BA)C.
With this note we proceed with some sufficient conditions for
associativity.
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Lemma 1-3: Let b; be a sequence of real numbers nondecreasing
with ¢ and with j. Then lim, lim; b; = lim, lim, b;;, both possibly
infinite.

Proor: In the extended sense lim,b,; = L; exists and so does
lim, b,; = L*. Now {L,}is nondecreasing, for if L; > L;_, then for ¢
sufficiently large b,; > L;,, = b, ;,,, which is impossible. Similarly
{L*}is nondecreasing, so that lim; L, = Land lim; L;* = L* exist in the
extended sense. If L # L*, we may assume L* > L and hence L is
finite. Then there exists an i such that L,* > L. Hence

L*> L
> L; forall j
= b; forall j.

\

Thus b;; is bounded away from its limit on j, a contradiction.

Following the example of Lemma 1-3, we agree that all limits referred
to in the future are on the extended real line.

Proposition 1-4: Non-negative matrices associate under multi-
plication.

ProoF: Since we are interested in each entry separately of a triple
product, we may assume that we are to show that n(Af) = (w4)f,
where w = 0, A > 0,f = 0, wis a row vector, f is a column vector, and
the index sets are subsets of the non-negative integers. Then

w(4f) = Z Z TmAmntn
and "

(mA)f = Z Z T A mn -

Set by; = >h-0 2h=0 TmAmnfn = 2h=0 2h=0 TmAmnfs and apply Lemma
1-3 to complete the proof.

If A is an arbitrary matrix we define A* and 4~ by the equations
(A% )y = max {Amn’ 0}
(47 )pn = —min {4,,, 0}.

Then 4 = A+ — A, A" > 0, and A~ > 0. For row and column
vectors, the matrices 7%, ==, f*, and f~ are defined analogously.
We note that if Af is well defined, then so are Af* and Af~. Powers
of matrices are defined inductively by A4° = I, A™ = A(A"1!). The
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absolute value of a matrix 4is |4| = A* + A~. Proposition 1-4 now
gives us five corollaries.

Corollary 1-5: Matrices associate if the product of their absolute
values has all finite entries.

Proor: We are again to prove that n(4f) = (#4)f, and we do so by
setting m =7t — 7, A =A4A* — 4, and f=f* — f~, applying
distributivity, and using Proposition 1-4 on the resulting non-negative
matrices.

Corollary 1-6: Finite matrices with finite entries associate.
Proor: The result follows from Corollary 1-5.

Corollary 1-7: If 4 and B are non-negative matrices and fis a column
vector such that A(Bf) and (4 B)f are both well defined, then 4(Bf) =
(AB)f. In particular, if C is a non-negative matrix, if » > 0, and if
C*f and C(C"~1f) are well defined, then C"f = C(C™~1f).

Proor: Consider f* and f~ separately and apply Proposition 1-4.
For the second assertion, set 4 = C and B = C* 1,

Similarly one proves two final corollaries.
Corollary 1-8: If 4, B, C, and D are non-negative matrices such that

either

(1) ABD, AB, and BD, or
(2) ACD, AC, and CD

are finite-valued, then (4A(B — C))D = A((B — C)D).

Corollary 1-9: If 4, B, and C are matrices such that either

(1) A has only finitely many non-zero entries in each row,
(2) C has only finitely many non-zero entries in each column, or
(3) B has only finitely many non-zero entries,

and if (4 B)C and A(BC) are well defined, then
(AB)C = A(BC).
Some of these conditions are cumbersome to check, but there is a

simple sufficient condition. Suppose that we write a general product
as[ [, (4; — B)), with 4; > 0and B; > 0. If all the 2" products

A,A,... A, B,A,... A, ..., B,B,...B,
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are finite, then we see from Proposition 1-2 and Corollary 1-5 that we
may freely use distributivity and associativity.

The effect of matrix multiplication on matrix inequalities is sum-
marized by the next proposition, whose proof is left to the reader.

Proposition 1-10: Matrix inequalities of the form 4 > Bor B < 4
are preserved when both sides of the inequality are multiplied by a non-
negative matrix. Inequalities of the form 4 > B or B < A are
preserved when both sides are multiplied by a positive matrix, provided
the products have all entries finite.

Next we consider the problem of “block multiplication” of matrices.
The picture we have in mind is the following decomposition of the
matrices involved in a product:

<A1 Az)(Bl Bz) (01 C’z)
4, 4,)\B, B \oi o,
More specifically, let K, M, and N be index sets and let K', M’, and N’,
respectively, be non-empty subsets of the index sets. Impose orderings
on K, M, and N so that the elements of X', M’, and N’ precede the

other elements, which comprise the complementary sets K’, J’, and
N’. Let A4, B, and C be matrices such that

(1) 4 is defined on K and M,
(2) B is defined on M and N, and
(3) AB = C is well defined.

Let matrices 4,, 4,, Az, and A, be defined as the restriction of the
function 4 to the sets

(1) K’ and M’ for 4,
(2) K’ and M’ for A,
(3) K’ and M’ for A,
(4) K’ and M’ for A,.

Pictorially what we are doing is writing 4 as four submatrices with
4 (A 1 Az).
4; A,
We perform the same kind of decomposition for B and C and obtain
A, A,\/B, B, Cc, C,
<A3 A4) 2, 34) ) (03 04)'

The proposition to follow asserts that the submatrices of 4, B, and C
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multiply as if they were entries themselves. Its proof depends on the
fact that matrix multiplication is defined independently of any ordering
on the index sets.

Proposition 1-11: AB, + 4,B; = C,
A,B, + A,B, = C,
AzB, + A,B; = C,
AzB, + A,B, = C,.

Proor: We prove only the first identity since the others are similar.

(C1)y = Cy = Z AipBp; = z AimBy; + Z Ay Bp;

meM meM’ meM’

= (41B;);; + (42B3),;-

Notice that if the submatrix 4, has at least one infinite index set,
then the representation of 4 by

- \4, 4,
Aoy 4oy
4 = A1o A11

is not the standard one

The ordering on the index sets of A4 is not of the same type as that of
the non-negative integers. We recall once more, however, that the
fundamental properties of matrices are independent of any orderings on
the index sets. It is only the representation of a matrix as an array
which requires these orderings.

Limits of matrices play an important part in the study of denumer-
able Markov chains. We shall touch only briefly at this time on the
problems involved.

Definition 1-12: Let {4®} be a sequence of matrices. We say that
A = lim,_, , A® exists if 4,,, = lim,_, , (49),,, exists for every m and
n.

Notice that limits of matrices are defined entry-by-entry. No
uniformity of convergence to the limiting matrix is assumed.

The type of problem that arises is as follows. Let 7= be a row vector
and let {f*} be a sequence of column vectors converging to a column
vector f. Is it true that {nf*} necessarily converges to =nf? The
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answer to this question is in the negative unless some additional
hypothesis is added. What is being attempted is an interchange of the
order of two limit operations—one from the series which defines
{mf®} and the other from the limit as k tends to co. Such an inter-
change can be justified only under special circumstances, and we shall
obtain later in this chapter some sufficient conditions as special cases of
theorems of measure theory.

2. Measure theory

Let X be an arbitrary non-empty set of points and let % be a family
of subsets of X. We say that Z is a field of sets if

(1) the empty set @ is in F,

(2) whenever 4 is a set of %, the complement of 4, denoted A4, isin
ZF, and

(3) whenever 4 and B are sets of &, so is their union, denoted
A vV B.

A field of sets # is called a Borel field if it has the additional property
that whenever 4, € % forn = 1,2,3,...,s0is U2, 4,.

The intersection of sets A and B is indicated by 4 N B, and the
difference 4 N B is denoted 4 — B. From the above definitions the
reader can easily establish the following result.

Proposition 1-13: If % is a field of sets, then % contains @ and X
and is closed under complementation, finite unions, finite intersections,
and differences. If % is a Borel field, then % is closed under de-
numerable intersections.

Proposition 1-14: For any class of sets € of the points of a set X,
there exists a unique smallest Borel field containing €.

Proor: The family of all subsets of X forms a Borel field containing
€. Form the intersection of all Borel fields which contain € and call
the resulting family of sets #. Let 4 be in & ; then 4 is in all Borel
fields containing ¥ and sois 4. Hence 4 isin #. A similar argument
applies to intersections and denumerable unions. Thus &% is the
smallest Borel field containing %.

Definition 1-15: A function p from a field of sets & to the extended
real number system is called a set function. If p(4) = 0 for every A
in #, p is said to be non-negative. If p(4 U B) = p(4) + p(B) when-
ever 4 and B are in % and AN B = @, p is said to be additive,
Supposc 4, is in F for n = 1,2,3,..., and suppose 4, N 4; = &
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wheneveri: # 5. If p(U2-1 4,) = >7-1 p(4,) holds whenever ( ., 4
is a set of %, then p is said to be completely additive. In discussing
set functions, we shall assume that there are no two sets 4 and B in
& such that p(4) = +o0 and p(B) = —o0, and we shall assume that p
is not identically infinite.

An additive set function p has the properties that

(1) p(@) =
e(UY_, n) = >N_, p(4,) for disjoint sets {4,}, and

(3) p(A4V B) + p(AN B) = p(A) + p(B).

If p is non-negative and additive and if 4 is contained in B, then
p(A) < p(B). To see this, set C = B N A so that 4 and C are disjoint
and A UC = B. Then p(4) + p(C) = p(B) by additivity, and the
result follows at once. We shall now establish two facts about
completely additive set functions.

Proposition 1-16: Let p be an additive set function defined on a field
of sets #. Let{A,}be asequence of sets in % such that 4, C 4, C-- -,
and suppose A = | Jr.; A, isin &. If pis completely additive, then
lim, ,, p(4,) = p(4). Conversely, if lim,_ ., p(4,) = p(4) for all
such sequences, p is completely additive.

Proor: Set B, = 4, and B = A NA,_,. Then 4, = Ji_, By
disjointly, and by additivity p(4 Zk 1p(By). But 4 = U2, By
and by complete additivity p A) = >, p(By). The proof of the
converse is left to the reader.

A consequence of this proposition is the following:

Corollary 1-17: Let p be an additive set function defined on a field
of sets & in such a way that p(4) < oo for every 4. Let {4,} be a
sequence of setsin % suchthat 4, D 4, D 43D - and .. 4, = &.
If p is completely additive, then lim,_ ., p(4,) = 0. Conversely, if
lim, ., p(4,) = 0 for all such sequences, then p is completely additive.

A non-negative completely additive set function on a field of sets %
is called a measure. The set of points X with a measure defined on its
field # is called a measure space. We shall usually denote measures by
w or v. If there is no ambiguity about what measure is involved, we
shall frequently refer to X by itself as the measure space.

If X is a measure space with field of sets # and measure u, then X
is a set in &, and we define u(X) to be the total measure of the space.
A probability space is a measure space of total measure one.
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We give four examples of measure spaces.

(1) Let X be any set, let & = {@, X}, and define u(2) = 0 and
w{X) = a = 0. Then X is the trivial measure space.

(2) Let X be Euclidean n-space, let &# be the Lebesgue measurable
sets, and let u be Lebesgue measure (the natural generalization of
length, area, or volume).

(3) Let X be the set of six possible outcomes for tossing a die.
Assign weight } to each of the six points in the space, and for any subset
of X assign as a measure the sum of the weights of the points in the
set. Then & is the family of all subsets of X, and X is a probability
space.

(4) Let X be a denumerable index set, and let 7 be a non-negative
row vector with X as its index set. Assign as a weight to each point
of X the value of the corresponding entry of 7. For any subset of X
assign as a measure the sum of the weights of the points in the set.
Then & is the family of all subsets of X, and X is a measure space
with total measure =1.

The sets of a field on which a measure p is defined are called the
p-measurable or simply the measurable subsets of X. In the construc-
tion of a measure on a field, it is possible for a non-empty set 4 to be
assigned measure zero. In example (2) above, for instance, every
denumerable set and even certain uncountable sets are sets of measure
zero. Suppose B is a subset of such a set 4. If B is measurable, then
w(B) = 0 since u is a measure. But

since B C 4 and A4 is of measure zero. Thus, a measurable subset of a
set of measure zero is of measure zero. But there is no reason why such
a set B has to be measurable. However, one can agree to add all
subsets of sets of measure zero to a field and extend the resulting family
of sets to the smallest field containing the family. Such an extended
field is called an augmented field. It consists precisely of all sets of the
form (C — D) U E, where C is a set in the original field and D and F
are subsets of a set of measure zero. Therefore the augmented field of
a Borel field is again a Borel field. Note that in any augmented field
every subset of a set of measure zero is measurable and has measure
zero. In later chapters of this book all fieids will be augmented.

If a statement about the points of a measure space X fails to be true
only for a set of points which is a subset of a set of measure zero, we
say that the statement holds for almost all points of X or that it is true
almost everywhere (abbreviated a.e.).
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Proposition 1-18: Let pu be a measure defined on a field of sets .
If {4,} is a sequence of sets in &, if A isin #,andif 4 C |, 4,, then

wA) < D uA,).

n

Proor: Write B, = 4, — ((JrZ} 4,). The sets B, are disjoint in
pairs, and consequently the sets 4 N B, are also disjoint. Further-
more, | J, B, = (U, 4, so that

A=Aﬁ(UAn)
=Am(UBn)
=U(Aan)

By hypothesis x is a measure. It is therefore completely additive and
wA) = > (4N B,
< z w(B,) since 4 N B, C B,

< > w(4,) since B, C 4,.

n

To conclude this section we shall establish a result known as the
Extension Theorem. The proof follows the proof of Rudin [1953].

Theorem 1-19: Let % be a field of sets in a space X and let v be a
measure defined on %#. Suppose X can be written as the denumerable
union of sets in & of finite measure. If ¢ is the smallest Borel field
containing &, then v can be extended in one and only one way to a
measure defined on all of ¢ which agrees with v on sets of #.

Before proving the theorem, we need some preliminary lemmas and
definitions. The property in the statement of the theorem that X is
the denumerable union of sets of finite measure is summarized by saying
that v is sigma-finite.

Let v be a measure defined on a field of sets & in a space X, and
suppose X = (J®_, 4, with 4, & and v(4,) < . For each subset
Bof X, define u(B) = inf {3 v(B,)}, where the infimum is taken over all
denumerable coverings of B by sets {B,} of #.

Lemma 1-20: The set function p is non-negative. If 4 and B are
subsets of X such that A C B, then pu(4) < p(B). IfCis a set in F,
then u(C) = v(C).
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Proor: We see that u is non-negative because p is the limit of non-
negative quantities. If 4 C B, then u(4) < u(B) because every
covering of B is a covering of A. Let C bein #. Then {C}is a cover-
ing of C and p(C) < »(C). And for any covering {C,},

vC) < > ¥(C,)

n

by Proposition 1-18. Therefore,
¥C) < inf > ¥(C,) = p(0).

Lemma 1-21: If {4,} is an arbitrary sequence of subsets of X and if
A4 = U, 4,, then p(4) < 3, u(4,).

Proor: Let € > 0 be given. Let {B,™} with £ =1,2,3,... be a
denumerable covering of A4, such that B,™ is in & and 3, »(B,™) <
w(d,) + €/2". This choice is possible by the definition of u. Then
since all the B’s form a covering of A, we have

MMS;;wmm

< D md,) + e

and the assertion follows.

We define a set theoretic operation @ for subsets of X by
A® B = (4An B)u (Bn 4).

The set 4 @ B is called the symmetric difference of 4 and B. A point
isin 4 @ Bifitisin 4 or B but not both. We leave the details of the
proof of the next lemma to the reader.

Lemma 1-22: The subsets of a space X form a ring under the opera-
tions @ and N with additive identity @ and multiplicative identity X.
Every set is its own additive inverse.

Define a distance d between subsets of X by d(4, B) = u(4 @ B).
We note that d has the properties

d(4,4) = p(2) =0

and

d(4, B) = p(A @ B) = d(B, 4).
Since

AUB=(4% B)uV B,
we have

ACA®BYUB
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and by Lemmas 1-20 and 1-21
() < d(4, B) + p(B).

Replacing 4 by A @ B and B by C @ B, we obtain the triangle
inequality
d(4, B) < d(4,C) + d(C, B).

Lemma 1-23: For any subsets 4,, 4,, B;, By, 4, and B, of X,
d((4, Y 4,), (By Y By)) < d(4,, By) + d(4,, By)
d((4; N 4,), (By N By)) < d(4,, By) + d(4,, By)
d(B, A) = d(B, 4).

Proor: We prove only the first and third assertions. First we
observe that (4, U 4,) ® (B, VU B,) C (4, ® B,)V (4, ® B,). For
suppose x € (4, U 4,) D (B; U B,). We may assume without loss
of generality that ze 4, U 4, but z¢ B, U B,. If xe€ 4,, then
x¢ B, so that z€ A, @ B,. Similarly if x € 4,, then x € 4, ® B,
and the containment is established. The first assertion of the lemma
now follows by applying Lemmas 1-20 and 1-21. For the third part,
we have

B@A=UAnBudnB
and

BpAd=UAnBuAdnbB

so that
BpA=BpA

Definition 1-24: Convergence of sets in measure is defined by saying
that A, — 4 if lim,_, d(4,, A) = 0. Let %* be the collection of all
subsets A of X for which there exists a sequence {4,} of sets in F#
having the property that A, —~ A. Let ¥* be the family of denumer-
able unions of sets in F *.

Lemma 1-25: If {4,} and {B,} are sequences of sets in # such that
A,—~ A and B,— B, then A,vB,—-~AUB, A,NnB,— AN B,
and A — 4. Therefore F* is a ﬁeld of sets. For any C, —C,
lim, M(C ) = p(0).

Proor: Since by Lemma 1-23

d((4, Y B,), (AU B)) < d(4,, 4) + d(B,, B)
d((4, n B,), (A n B)) < d(4,, A) + d(B,, B)
d(4,, 4) = d(4,, 4),

I
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we have A, UB,—~AUB, A,NnB,—~ANB, and 4,—~A. The
limit of u(C,) is established by the inequalities

p(C,) < d(C,, ) + u(0)
and
p(C) < d(C,, C) + p(Cy).

Lemma 1-26: p is additive on F#*.

Proor: Let 4 and B be disjoint sets in #* and pick {4,} and {B,}
in & such that 4, — A4 and B, — B. Then since v is additive on &#
and since p agrees with v on sets of %, we have

p(d, U B,) + u(d, N B,) = p(4,) + p(By).
By Lemma 1-25,

m(A U B) + w(d N B) = u(4) + p(B)
or
w4 U B) = u(4) + w(B).

Lemma 1-27: If A = |J, 4, with A in ¥* and {4,} a sequence of
disjoint sets in F*, then u(4) = 5, n(4,).

Proor: Since 4 D (4; U 4, U A;U---U 4,), we have, by Lemma

1-20, w(d) = (4, U 4, U---U 4,), and by Lemma 1-26 the right
side equals >*_, u(4,) for each k. Hence

wd) 2 2, p(dy),
and equality holds by Lemma 1-21.
Lemma 1-28: If 4 is in @* and if p(A4) is finite, then 4 is in F*.
ReMARK: If A4 is in F*, then u(4) is not necessarily finite.

Proor oF LEMMA: Write 4 = |, 4, with {4,} in #*, 4, disjoint

sets, and set B, = |J%i_, A,. Then
d(4, B,) = p[A N BJud n B,
= (U ).
k=n+1

which by Lemma 1-27
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Since the last expression on the right is the tail of a convergent series,
we have B, — A. Since B,e %*, we can find L, in & such that
d(L,, B,) < 1/n. Thend(L,, A) < 1/n + d(B,, A), and hence L, — 4.
Thus 4 is in F*.

ReMARK: If 4 € ¥* with u(A) finite, then 4 is in % *; hence for every
€ > Othereisa Bin & such that u(4 @ B) < e. Conversely, if there
exists such a B, for any ¢, then B;;,, > A so that 4 € ¥ and, a
fortiori, A € ¥*. These observations give a characterization of the sets
A in * for which p(4) is finite.

Lemma 1-29: 4 is completely additive on ¥*, and ¥* is a Borel field.
ProoF: Suppose
A=1JA4,

is the union of disjoint sets {4,} in ¥*. Then u(4) > u(4,) for every n
by Lemma 1-20, so that we may assume p(4,) < oo for every n. The
complete additivity of u now follows from Lemmas 1-28 and 1-27. For
the proof that @* is a Borel field, we see clearly that &* is closed under
denumerable unions. It remains to be proved that ¥* is closed under
complementation. Since v is sigma-finite, let

X=U4,
with 4, in & and p(4,) = v(4,) < c©. Let B in %* be given and
suppose B = | J, B, with B, in #*. Since
4, N B =) (4,N By)
%

and since 4, N B, isin #* A, N Bisin ¥*. But by Lemma 1-20,
wd, N B) < p(d,)

and we have assumed that wu(4,) < 0. Thus by Lemma 1-28,
A, N Be%*, and since F* is a field,

4,NX - (4,nB)=4,nB
is in #*. Therefore
B=XnB=y@4,n B
is in ¢*, and the proof is complete. "

We are now in a position to prove the Extension Theorem.

Proor or THEOREM 1-19: Existence of the extension of v to a measure
p defined on %* is proved by Lemmas 1-20 and 1-29. Since, by



18 Prerequisites from analysis

Lemma 1-29, 4* is a Borel field containing &, #* contains ¥. The
extended measure restricted to sets of ¥ has the desired properties.
For uniqueness, suppose p’ is another measure on ¢ that agrees with v
on #. Since, by sigma-finiteness, X is the union of sets 4, in & of
finite v-measure, we may assume that X is a disjoint union of sets of
finite measure by letting B, = 4, — J,<, 4x. Let C be any set in
%; we want to show p'(C) = u(C). By definition,

w(C) = inf {5 v(Cy)}

n

with the infimum taken over covers {C,}, where C, is in #. For any
fixed cover {C,}, we have

w(0) < w(JCu) < 3 p(Ch) = 2, ¥(C).
Therefore

W(0) < inf {3 v(Cy)} = w(C).
Writing
#'(0) = > uw(C N B,
n
we see that it is sufficient to show that

p'(C N B,) =2 w(CnN B,).
But

F',(O N Bn) + l"’l(g N Bn) = V(Bn) = V’(C N Bn) + :“'(6 N Bn)
Now we know that p’ is dominated by w:

#'(Cn B,) < pCn B, < uB,) < .
If
w'(C N B, < p(CnN By,

we obtain the contradiction

W(C N B,) + W€ N B,) < uCn B, +pl N B,.

3. Measurable functions and Lebesgue integration

Let % be a Borel field of sets in a set X. The measurable sets of X
are the sets of %.

Definition 1-30: Let f be a function with domain X and with range
the extended real number system. The function f is said to be a
measurable function if for each real number ¢ the set {z | f(z) < ¢} is
measurable.
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The content of the next proposition is that the property f(r) < ¢ may
be replaced by any of the conditions f(z) < ¢, f(x) > ¢, or f(z) = c.
Therefore, if f is a measurable function, then the set

{z|c < flx) < d}
is measurable; either or both of the signs < may be replaced by <,
and the set is still measurable.
Proposition 1-31: The following four conditions are equivalent:

() < ¢} is measurable for every c.
(x) < ¢} is measurable for every c.
() > c} is measurable for every c.
() = ¢} is measurable for every c.

elfesd= A {elfe@ <o
) f@) > & = X — x| f@) < o},
@] f2) = c}=nél{x|f(x) > c—%},

and

fz|f@) < =X - {z]f(@) = e}
we see that (1) implies (2), that (2) implies (3), that (3) implies (4), and
that (4) implies (1).

Proposition 1-32: Every constant function is measurable.

Proor: If f(x) = a identically, then {zx e X | f(x) < ¢} is either &
or X.

In analogy with our procedure for matrices in Section 1, we define
J*Tand f~ by
f*(@) = max {f(z), 0}

[~ (@) = —min {f(z), 0}.

Proposition 1-33: If f is measurable, then so are f*, f,and |f].

={&|fzcadu{z|0=c}
¢ ={x|fs-ctu{r|0=c}

Proor: x| f*

=] /-

v

v
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The set {x | 0 > ¢} is either @ or X and is therefore measurable. For
|f| we have

Zllfl<d={]-c<fl)=<c

Proposition 1-34: Let f and g be measurable functions whose values
are finite at all points. Then f + g and f-g are measurable.

Proor: We prove only the assertion about f + g. Order the
rational numbers and call the nth one r,. Then

G| (F+9@ > =U (@] f@>c+r}ne]gr) > —r)

n=1

so that f + ¢ is measurable.
Corollary 1-35: If f is measurable, then so is ¢f for every constant c.

Proposition 1-36: Let {f,} be a sequence of measurable functions.
Then the functions

(1) sup fal)
(2) inf f,(@)
(3) lim sup f,(x)
(4) lim:inf ()

are all measurable.

Proor: The assertions follow from the observations that
{Z | Supfn(x) > C} = nL=)1 {x | fn(x) > C},

fwlinffu@) < o = U | fule) < ),

lim sup f,(z) = inf sup f,(x)
and
lim inf f,(x) = sup inf f,(x).
n n m>n
The supremum of finitely many functions is their pointwise maxi-
mum. Therefore the maximum and minimum of finitely many

measurable functions are both measurable.

Corollary 1-37: If {f,} is a sequence of measurable functions and if
f = lim, f, exists at all points, then f is measurable.
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We shall give three examples of measurable functions.

(1) Let & be the family of sets on the real line which are either finite
unions of open and closed intervals or complements of such sets.
Then & is a field of sets. Let & be the smallest Borel field containing
& . All continuous real-valued functions are measurable with respect
to the Borel field 4.

(2) Let X be a space for which & is the family of all subsets of X.
Then every function f defined on X is measurable.

(3) Let X be the union of a sequence of disjoint sets {4,}, and let #
be the family of all sets which are unions of sets in the sequence.
Then a function f is measurable if and only if its restriction to the
domain 4, is a constant function for each n. In particular, if Z =
{X, @}, then the measurable functions are the constant functions.

Let A be any subset of X. The characteristic function of 4, denoted

x4(%), is defined by
1 ifzxed
() =
Xa 0 otherwise.

A function that takes on only a finite number of values is called a
simple function. It may be represented, uniquely, in the form

N
(*) § = Z CnX 4,
n=1
where the c, are the distinct values the function takes on and the sets
A, are disjoint. The simple function is measurable if and only if all
of the sets 4,, 4,,..., Ay are measurable.

Proposition 1-38: For any non-negative function f defined on X,
there exists a sequence of non-negative simple functions {s,} with the
property that for each ze X, {s,(x)} is a monotonically increasing
sequence converging to f(x). If fis measurable, the {s,} may be taken
to be measurable.

Proor: For every n and for 1 < j < n2" set

= {ef 15t < s < 4}

and

B, = {z| f(x) 2 n}.

Then

n2"j -1
Sn = Z r X4,y T X5,
j=1
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increases monotonically with n to f. If f is measurable, then so are
{4,,;} and B, ; thus s, is measurable.

If p is a measure defined on a Borel field # of subsets of X, we denote
the measure space by the ordered triple (X, %, p). In (X, %, pn) let B
be a set of the family &, and suppose s is a non-negative, measurable
simple function, represented as in (*) above. Since s is measurable,
A, is measurable and u(4, N E) is defined for every n. Set

N

Ig(s) = z copi(dy N E).

n=1
For any non-negative measurable function f, define the Lebesgue
integral of f on the set £ with respect to the measure u by

fE fdys = sup Iy(s),

where the supremum is taken over all simple functions s satisfying
0 < s < f. We note that the value of the integral is non-negative
and possibly infinite. It can be verified that if s is a non-negative
measurable simple function, then

f sdp = Ig(s).
E

If f is an arbitrary measurable function, then by Proposition 1-33,
f zJ Tdu and f z J “du are both defined. If the integrals of f* and f~
are not both infinite, we define the integral of f by f g fAdp = f gSdp —
fE fdu. The function f is said to be integrable on the set E if
fE f*du and jE f ~du are both finite.

Following our examples of measure spaces and measurable functions,

we give three examples of integration. A fourth example will arise in
Chapter 2.

(1) Let # = {@, X} and suppose u(X) = 1. Only the constant
functions are measurable and

fcd,u=0; fcd;;:c.
4 X

(2) Let X be the real line, let 4 be the Borel field of sets constructed
in the first example of measurable functions, and let u be Lebesgue
measure. Continuous functions are measurable, and it can be shown
that the value of the Lebesgue integral of a continuous function on a
closed interval agrees with the value of the Riemann integral. More
generally one finds that every Riemann integrable function is Lebesgue
integrable, but not conversely.
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(3) Let X be the denumerable set of points described in Example 4
of measure spaces, and let = be a non-negative row vector defined on X.
Then = defines a measure on X. If fis an arbitrary column vector
defined on X, then f is a function on the points of X. Furthermore, f
is measurable since all subsets of X are measurable sets. The reader
should verify that the integral of f over the whole space X with respect
to the measure = is the matrix product nf and that the condition for the
integral to be defined is precisely the condition for the matrix product
to be well defined. Because of this application of Lebesgue integra-
tion, we often speak of column vectors as functions and non-negative
row vectors as measures. We shall return to this example in Section 5
of this chapter. The proof of the next proposition is left to the reader.

Proposition 1-39: The Lebesgue integral satisfies these seven
properties:

(1) If ¢ is a constant function,

L cdp = cu(E).

(2) If f and g are measurable functions whose integrals are defined
on E and if f(z) < g(x) for all x € E, then

e e

(3) If fisintegrable on E and if ¢ is a real number, then c¢f is integrable
and fE efdp = ¢ J'E fau.

(4) If f is measurable and u(E) = 0, then fE fdu = 0.

(5) If £’ and E are measurable sets with £’ C K and if f is a function
for which f ¢ Jdu is defined, then f & Jap is defined. In particular,

f fdp < f Fdp.
E’ E
(6) If |f(x)] < c for all zx € E, if u(E) < oo, and if f is measurable,

then f is integra:i)le on k.
(7) If f is measurable on E and if |f| < g for a function g integrable

on E, then fis integrable on E.

and

Corollary 1-40: If f is a non-negative measurable function with
Jg fdn = 0, then f = 0 a.e. on E.
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ProorF: The subset of £ where f(z) > 1/n must have measure zero
since otherwise f would have positive integral by (1) and (2) of Prop-
osition 1-39. The set where f # 0 on Z is the countable union on n of
these sets.

4. Integration theorems

We shall make frequent use of four important facts about the
Lebesgue integral. We develop these results as the four theorems of
this section.

Theorem 1-41: Let f be a fixed measurable function and suppose that
f x f@p is defined. Then the set function p(E) = fE fdu is completely
additive.

Proor: If we can prove the theorem for non-negative functions, we
can write f = f* — f~ and apply our result separately to f* and f-.
We therefore assume that f is non-negative. We must show that if
E = \Jp.1 E, disjointly, then p(E) = 32, p(E,). If fis a character-
istic function x,, then p(&) = fE x40 = w4 N E) and the complete
additivity of p is a consequence of the complete additivity of u. If
fis a simple function, the complete additivity of p is a consequence of
the result for characteristic functions and of the fact that the limit of a
sum is the sum of the limits. Thus, for general f we have for every
simple function s satisfying 0 < s < f,

f sdp = i f sdp < i p(Ey,)
E n=1JE, n=1

by property (2) of Proposition 1-39. Hence

pE) = sup [ sdus 3 o)

E n=1
We now prove the inequality in the other direction. By property (5)
of Proposition 1-39, p(K) > p(E,) for every n since f = f*. Thus if
p(E,) = +oo for any n, the desired result is proved. We therefore
assume p(E,) < co for every n. Let ¢ > 0 be given and choose a
measurable simple function s satisfying 0 < s < f,

fs@zj'ﬂ#—g
B E,

f muzf fi 5
Eg Es

and
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This choice is possible by the definition of the integral as a limit. Then

p(EL U E,) = f fip = f 8dp.=f sdu +f sdy
Ey Eg

EiVE;> EyVE2

du — €
LI fdp + Lz fau
p(Ey) + p(By) — e

v

Hence
p(By U Ey) 2 p(Ey) + p(By).

By induction, we obtain

P(El UEZ U UEn) = P(El) + e+ P(En)
and
p(E) =2 p(Ey) + -+ p(#,) forevery n.
Hence

pUE) = 3. plE).

The proofs of two corollaries of Theorem 1-41 are left as exercises.
These results use only the additivity of the integral and not the
complete additivity.

Corollary 1-42: If f is measurable, if f 5 Jdp is defined, and if

HwE @ F) =0,
then fF fdp is defined and f g fap = f » fap.

Corollary 1-43: If fE fdu is defined, then

UE fdu| < L |f|dpe.

If f is integrable on E, then so is |f].

Let f and g be two functions whose integrals on E are defined.
Suppose the set 4 = {x € E | f(x) # g(x)} is of measure zero; that is,
suppose f and g are equal almost everywhere on E. Writing ¥ =
A U (E n A), we find by applying Corollary 1-42 twice,

[ s | S = [ ot = [ o

ENA ENnG
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Functions which differ on a set of measure zero thus have equal
integrals. Therefore, when we are thinking of a function f defined on X
in terms of integration, it is sufficient that f be defined at almost all
points of X. And, if we agree to augment Borel fields of sets by adjoin-
ing subsets of sets of measure zero, we see that if f and ¢ differ on a
set of measure zero and if f is measurable, then g is measurable. With
the convention of augmenting the field, we obtain from Corollary 1-37,
for example, the result that if {f,} is a sequence of measurable functions
such that

f@) = lim f,(@)

almost everywhere, then f is measurable. Similarly the theorems to
follow would be valid with convergence almost everywhere if the
underlying Borel field were augmented; the necessary modifications in
the proofs are easy.

We now state and prove the Monotone Convergence Theorem, which
is due to B. Levi.

Theorem 1-44: Let £ be a measurable set, and suppose {f,} is a
sequence of measurable functions such that

0<fisfas---
and

f&) = lim f,(@)
Then

f Jdp = lim Sfdu.
E E

n—+ o

Proor: Since the {f,} increase with n, so do the {fE fndy.}. Therefore

k= lim | fdu
E

n— o

exists. Since fis non-negative and is the limit of measurable functions,
we know that f 5 JAp exists, and since f, < f, we have

[ gt < | s

for every n. Therefore, k < fE fdp. Let ¢ be a real number satisfying
0 <c< 1, and let s be a measurable simple function such that
0<s< f Set

E,={xek| f(r) = cs(x)}
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so that ¥, CE, C E;C---. Then £ = 7., E,. For any n we

have
szfndpzf f,,d,Lsz sdp.
E E, E,

Since the integral is a completely additive set function (Theorem 1-41),
we have by Proposition 1-16

lim cf sdp = cf sdp.
n—- o Eq E

kZCdep..
E

Thus, as n — oo,

Letting ¢ — 1, we have k > f ¢z Sdu, and taking the supremum over all
s, we find k > fE Sfau.

Proposition 1-45: Suppose 2 = f + g with f and ¢ integrable on E.
Then & is integrable on E and

fhdp:ffd/u+J-gd,u..
E E E

Proor: We first prove the assertion for f and g non-negative. For
simple functions the assertion is trivial. If fand g are not both simple,
apply Proposition 1-38 to find monotone sequences of non-negative
measurable simple functions {¢,} and {,} converging to f and g. Then
{s, = t, + u,} converges to k, and since

f 'gnd.“' = f tndf"' + f und,“:
E E E

the result follows from Theorem 1-44. Next, if f > 0, ¢ < 0, and
h=f+g=0,wehave f=h + (—g) with . = 0 and (—g) = 0, so

that
L Jap = L hdp + L (—g)dp

fhdp.=ffd,u+f gdu.
E E E

Since the right side is finite and since 2 > 0, % is integrable. For an
arbitrary b > 0, decompose E into the disjoint union of three sets, one
where f > 0 and ¢ > 0, one where f > 0 and ¢ < 0, and one where

or
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f < Oandg > 0. Theorem 1-41 then gives the desired result. Finally,
for general k, write h = h* — A~ and consider A* and h~ separately.

Corollary 1-46: Let £ be a measurable set, and suppose {f,} is a
sequence of non-negative measurable functions with

1@ = 3, o)

fo- 5 ]

Proor: The result follows from Proposition 1-45 and Theorem 1-44.

Then

Proposition 1-47: If f is a non-negative integrable function, then for
every € > 0 there is a 8 > 0 such that, if u(¥) < §, then

L fau < e

Proor: Set f, = min (f, n). By Theorem 1-44,

i 1~ [

Since f is integrable, we may find an N such that
€
J = st < 5
X
by Proposition 1-45. Let § = ¢/(2N). If u(E) < 3§, then
f fdp = f (f — fyv)du + f fvdp by Proposition 1-45
E E E
< f (f — fy)dp + Nu(E) by Proposition 1-39
X
< e
Our third theorem for this section is known as Fatou’s Theorem.

Theorem 1-48: Let E be a measurable set, and let {f,} be a sequence
of non-negative measurable functions. Then

f lim inf f,dyu < lim inff fadn.
E n n E
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In particular, if f(x) = lim, f,(x),

f fdp < lim inf f fudps.
E n E

IA

ProOF: Set g,(x) = inf,., fi.(x). Then 0 < g,(x) < g,(x) .., and

¢, is measurable on E. We have ¢,(x) < f,(x) and
lim g,(z) = lim inf f,(z).

By Theorem 1-44,
f lim inf f,du = f lim g, du = limf g
E n E n n E
The result now follows from the inequality fE gndp < _fE Sfadu.

The fourth basic integration theorem is the Lebesgue Dominated
Convergence Theorem.

Theorem 1-49: Let E be a measurable set, and suppose {f,} is a
sequence of measurable functions such that for some integrable g,

Ifa] < g for all . If f(x) = lim, f,(x), then lim, fE Sfndp exists and

fE fip = Tim L Fdu.

Proor: By property (7) of Proposition 1-39, f is integrable and so is
fr for every n. Apply Fatou’s Theorem first to f, + ¢ = 0 to obtain

[ (f + g)dp < liminf [, (f, + g)du or
f fdp < lim inf f Jndp.
E n E
Apply the theorem once more to g — f, = 0 to obtain

[ to = pau < timind [ (g -
E n E

or

- L fiu < lim inf L (=S

or
f fdp = lim sup f Jndp.
E n E

Therefore lim, f ¢ Jodp exists and has the value asserted.
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Corollary 1-50: Let E be a set of finite measure and suppose {f,} is a
sequence of measurable functions such that |f,| < ¢ for all n. If

f(x) = lim, f,(x), then fE fdp = lim,, fz Jndp.

Much of the discussion of this section has dealt with the following
problem: A sequence of integrable functions f, converges a.e. to a func-
tion f; we want to be able to conclude that f Sfndp tends to f fdp. First
we should note that at almost all points f,* — f* and f,” — f~, and
hence it is sufficient to check the convergence of the integral separately
for these two sequences. Thus we may consider the case f, = 0 alone.
For non-negative functions Fatou’s inequality is the only general
result; one cannot conclude equality without a further hypothesis.
Two sufficient conditions are given by monotone and dominated
convergence.

But if we restrict our attention to a space of finite total measure, then
we can give a necessary and sufficient condition.

Definition 1-51: A sequence {f,} of non-negative integrable functions
is said to be uniformly integrable if for each ¢ > 0 there is a number &
such that

fadp < €

{XI/n () > K}

holds for every =.

Equivalently we may require that the inequality holds for all suffi-
ciently large ». For suppose it holds for » > N and for the number ¢.
Then since each f, is integrable, there is a k, depending on n (and, of
course, €) such that

fnd,u, < €
{x|fnlx)>kp}

and we may choose k£ = sup {k;, k,, .. ., ky, c}.

Proposition 1-52: If {f,} is a sequence of non-negative integrable
functions tending to f and if u(E) < oo, then [, fudu — [, fdu if and
only if the {f,} are uniformly integrable.

REMARK: The sequence {f,} need converge to f only almost every-
where for the proposition to be valid, provided f is assumed measurable.
This measurability condition is always satisfied if the underlying Borel
field is augmented.
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ProoF: We shall use the notation f® for the function truncated at k;
that is, f®(x) = inf (f(x), k). Let

f fdp — f [rdp

Onk — f f(k')d# _ [ fn(k)dﬂ-
E vE
= [ - | siod - [ = e
E E {xlfn >k}

We have
A, =B+ CJ* — D/}

Clearly f® increases monotonically to f, so that B¥ tends to 0 by
monotone convergence. Since f, — f, [, — f®.  But f,* is bounded
by k. Thus, on the totally finite measure space E, lim, C,* = 0 by
Corollary 1-50. Hence by choosing a large k and then a sufficiently
large n (depending on k), we can make the first two terms on the right
side as small as desired. If the functions are uniformly integrable,
then we can find a large k (perhaps larger than the one already chosen)
for which D,* will be small for all n. Hence, for all sufficiently large n,
the left side is small. Thus the integrals converge.

Conversely, suppose that 4, — 0. Then there is a k such that for
all sufficiently large n, D,* < ¢/2. Thus for all n sufficiently large,
we have

o2 > f (fo — k)

{(xifn >k}

v

(fo — k)dp

{x|fn > 2k}

1
= 5 f fndp,

{x|fn > 2k}

since f, — k > 1f, on the set in the last two integrals. Taking 2k as
the number in the equivalent definition, we see that we have uniform
integrability.

5. Limit theorems for matrices

We have already said that if = is a row vector and if { f®} is a sequence
of column vectors converging to f, then it is not necessarily true that
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#f® converges to mf. Our object in this section is to obtain sufficient
criteria to justify saying that nf = lim,_ o =f®.

In the examples of Lebesgue integration, we noted that non-negative
row vectors are measures and column vectors are functions. Functions
are integrated by forming the matrix product of the measure and the
function. Thus, the theorems of Section 4 immediately give us the
following four results. In each of them it should be borne in mind
that:

(1) There is a corresponding result if row vectors are thought of as
functions and column vectors are thought of as measures.

(2) These results imply corresponding results about matrices which
are not just row or column vectors. (Recall the discussion in
Section 1 about proving matrix equalities entry-by-entry.)

Proposition 1-53: Let = > 0 be a row vector and suppose {f*} is a
sequence of column vectors converging entry-by-entry to f and
satisfying

0<fV<f@P<.. ..

Then nf = lim, of®.

Proor: This result is a restatement of the Monotone Convergence
Theorem as it applies to matrices.

Corollary 1-54: Let = > 0 be a row vector and suppose {f®} is a
sequence of non-negative column vectors such that

— )
f ;Zlf
Then

af = é af®.

Proor: This corollary is immediate from Corollary 1-46.
Proposition 1-55: Let = > 0 be a row vector and suppose {f®} is a
sequence of non-negative column vectors. Then

w(lim inf f%) < lim inf (zf®).
k k

If f = lim, f® exists, then #f < lim inf) (7f®).

Proor: This is Fatou’s Theorem.
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Proposition 1-56: Let = > 0 be a row vector such that =1 is finite.
If {f®} is a sequence of column vectors such that |f*®| < ¢1 and
[ = lim, f® exists, then

af = lim mf®,
k

Proo¥: The result follows from Corollary 1-50.

A harder problem arises with a sequence of non-negative row vectors
7* converging to a row vector m. It is not sufficient for #®1 < M
and |f| < ¢1 in order for nf = lim, #%f. For set

AD=(1 00 0 ...)
A2 =0 1 0 0 ...)
A =0 01 0 ...)

and take f = 1. Then = = 0 so that nf = 0, while lim, »®f = 1.
We give two sufficient conditions for

af = lim #®f;
k

our integration theorems do not provide us with quick proofs, however.
The second proposition is closely related to the Silverman-Toeplitz
Theorem on summability methods.

Proposition 1-57: If {z®} is a sequence of non-negative row vectors
converging to m, if f is a column vector such that 0 < f < ¢1 for some
¢, and if 71 = lim, #®1 with #1 finite, then

af = likm 7 ®f.

Proor: Take f as a measure and {7} as a sequence of non-negative
functions and apply Fatou’s Theorem. We have

#f < lim inf #®f,

With ¢1 — f as a measure and {z®} as a sequence of functions, Fatou’s
Theorem gives
m(c1 — f) < lim inf #®(c1 — f).

Since #1 is finite and lim #®1 = =1, we find

—af < lim inf (—7®f)
or
af > lim sup =®f.
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Proposition 1-58: Let {7‘*’} be a sequence of row vectors converging
to 7 and satisfying |7*®|1 < M. Suppose f is a column vector with
the property that for any & > 0 only finitely many entries of f have
absolute value greater than 6. Then

nf = lim 7.

Proor: The entries of f are clearly bounded, say by ¢. Numbering
the entries, we have for every N

N
|nf — = f| < Zl 7 = =PUAL+ 2 (m] + [=PDIfL-
j= i>N
Let € > 0 be given. Choose N sufficiently large that |f;| < e/4M for
J > N. Choose k sufficiently large that |m; — 7{®| < ¢/2¢N for

J < N. Then |nf — 7#®f| < ¢, and the result is established.

As we noted in Section 1, results about general denumerable matrices
can be reduced to results about row and column vectors. In particular,
the propositions of the present section apply equally well to sequences
of the forms {A®f} and {7A®}.

6. Some general theorems from analysis

In this section we collect a variety of results from analysis which we
shall need in later chapters. We prove only some of them. At first
reading the reader may find it wise to skip this section, returning to it
later as the material is required.

a. Stirling’s formula. Stirling’s formula gives an asymptotic
expression for m! The approximation is

mn  ——
m! ~ — vV 2mm,
em

where the symbol ~ indicates that the ratio of the two quantities tends
to one as m increases. For a proof, see Courant and Hilbert [1953],
pPp. 522-524. Stirling’s formula immediately gives an approximation

for the binomial coefficient (7‘:) for large n. The coefficient (Z) is

defined as — %
efined as e =B

Lemma 1-59: Forr > 1,

()~ o5 (=)

where ¢ is a constant depending on 7 but not on n.
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!

) is defined to be Iwa—d'

. . . a
The multinomial coefficient
b,e,...,d
b. Difference equations. An nth order linear difference equation
with constant coefficients is an expression of the form
Ye+n T Cnoa¥kan-1 T -+ C¥Yrs1 + ColYx = T

where y, and r, are functions defined on the integers and where the
Cn_1s-- -5 Co are complex numbers. The equation is homogeneous if
r. = 0 and nonhomogeneous otherwise. For a nonhomogeneous
solution, we refer to any single function y, satisfying the equation as a
particular solution, and we call the set of functions satisfying the same
equation with r, = 0 the homogeneous solution. The totality of solu-
tions to any difference equation is known as the general solution.

Proposition 1-60: Every solution of the difference equation

Yeen * CnoaYksn-1 + -+ CYpe =0

is a linear combination of n fixed functions, obtained as follows: If a
is a root of multiplicity ¢ of the characteristic equation

I + Cp_ @+ + ¢ =0,
then ¢ of the functions are
ak, ka¥*, k2a®, ..., k7" 1a¥,

Conversely, each of these functions is a solution of the difference
equation. Furthermore, each solution of the equation

Ye+n + Cno1Yk+n-1 -+ ColYp = 7T

is the sum of a fixed particular solution and some solution of

Yesn + Cnc1Yksn-1 + -+ ¥ = 0.

Conversely, every such sum is a solution of the nonhomogeneous
equation.

For a proof of this proposition, see Hildebrand [1956], pp. 202-203.

c. Cesaro summability and Abel summability. Let {a,} be a sequence
of real numbers. Define b, to be the arithmetic mean of the first n
terms of the sequence {a,}. The sequence {b,} is called the sequence of
Cesaro averages of the sequence {a,}. The sequence {a,} is said to be
Cesaro summable if its sequence, {b,}, of Cesaro averages has a limit.
If A™ is a sequence of matrices, the sequence of Cesaro averages B™
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is defined entry-by-entry: B{P is the Cesaro average of AP, A2, ...,
A{P. The basic fact about Cesaro summability is the following
proposition.

Proposition 1-61: If a sequence {a,} converges to a limit L, then the
sequence of Cesaro averages {b,} converges and its limit is L.

Proor: Let f be the column vector whose nth entry is a, — L, and
let 7™ be the row vector defined by

o Iln forl1<j<n
7 0 for n > j.
Then
b, = »"™f + L.

Now |#™|1 = 1, lim, 7™ = 0, and f is a column vector with entries
tending to 0. Hence by Proposition 1-58, lim, »®f = 0. Therefore
lim, b, = L.

The converse of Proposition 1-61 is false. The sequence {a,} defined
by ay, = 0, ay,,, = 1 does not converge, but it is Cesaro summable.
Let {c,} be a sequence of real numbers. (In most applications the
partial sums ¢, + - - - + ¢, are assumed bounded.) If the limit
lim ct™
ttl 7,,20 "
exists, the limit is called the Abel sum of the series 3 ¢, and the series
is said to be Abel summable. Abel’s Theorem is the following result.

Proposition 1-62: If the series > ¢, converges to a finite limit L, then
it is Abel summable and its Abel sum is L.

Proor: Since the partial sums converge to a finite limit, the c, are
bounded and > c,t" converges absolutely for ¢ < 1. Let {{,} be any
sequence of positive reals less than one and increasing to one. Let f
be the column vector whose nth entry is (¢ +---+ ¢,) — L, and let
7® be the row vector defined by

P = (1 — t)t.

wOf = S eotn — L.

Now |[#®|1 = 1, lim, #® = 0, and f is a column vector with entries
tending to 0. Hence by Proposition 1-58, lim #*}f = 0. That is,

lim > ¢t = L.

k=

Then
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This equality for every such sequence {t,} implies that

lim Z ct® = L.

trl

d. Convergent subsequences of matrices. A bounded sequence of
real numbers has a subsequence which converges to a finite limit. We
shall obtain a generalization of this result to matrices.

Proposition 1-63: Let {4™} be a sequence of matrices with the
property that for some pair of real numbers ¢ and d, cE < A™ < dE
for all n. Then there exists a subsequence of matrices {4’} which
converges in every entry.

Proor: Since there are only denumerably many entries in each
matrix, they can be numbered by a subset of the positive integers.
Select a subsequence {A{¥} which converges in the first entry. Let

AP, AP, AP, ... be a subsequence of A, AP, ... which converges
in the second entry. In general, let 4™, A™*V . . be a subsequence
of A™ . A™m*L . which converges in the mth entry. Finally set

A®) = Asv).

Then {A™} converges in every entry.

Corollary 1-64: Let {A™} be a sequence of matrices with the property
that cE < A™ < dE for all n. Then lim, 4™ = 4 exists if and only
if lim, A™ = A for every convergent subsequence {4™}.

Proor: The necessity of the condition is trivial. For the sufficiency
suppose lim A{P does not exist. Then lim inf A{P < lim sup 4.
Pick a subsequence of {L™} that converges in the i-jth entry to
lim sup 4{», and do the same for lim inf A{P. Apply Proposition 1-63
to extract subsequences convergent in all entries from these sequences,
and the result follows at once.

e. Sets of positive integers closed under addition. The greatest
common divisor of a non-empty set of positive integers is the largest
integer which divides all of them. If the set consists of {n,, n,, ...},
its greatest common divisor is denoted (ny, ng, .. .).

Lemma 1-65: If T is a set of positive integers with greatest common
divisor d, then there exists a finite subset of 7' for which d is the
greatest common divisor.
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Proor: Let n, = k,d be an element of 7. If k, = 1, {n,} is the
required set. If not, choose n, such that n,{n,. Then (n,, n,) =
kod with ky, < k. If ky = 1, {ny, ny} is the required set. Otherwise,
find ng such that k.d{ns; and set (n,, ny, ng) = ksd with ky < k,.
Continuing in this way, we obtain a decreasing sequence of integers
ky, k,, . .. bounded below by 1. It must terminate, and then we have
constructed the finite set.

Lemma 1-66: Let 7' be a non-empty set of positive integers which is
closed under addition and which has the greatest common divisor d.
Then all sufficiently large multiples of d are in the set 7.

Proor: If d # 1, divide all the elements in 7' by d and reduce the
problem to the case d = 1. By Lemma 1-65 there is a finite subset
{ny,...,ng} of T with greatest common divisor 1. Then there exist
integers c,, . . ., ¢, with the property

CiMy + -+ ¢eng = 1.

If we collect the positive terms and the negative terms and note that 7'
is closed under addition, we find that 7’ contains non-negative integers
mand n withm — n = 1. Supposeq = n(n — 1). Theng =an + b
witha>2n ~1land 0 < b <n — 1. Thus

qg=(a—0bn+ bm
and ¢ isin 7'

f. Renewal theorem. The Renewal Theorem, one of the important
results in the elementary theory of probability, can be stated purely
in terms of analysis.

Theorem 1-67: Let {f,} be a sequence of non-negative real numbers
such that 5 f, = 1 and f, = 0, and suppose the greatest common
divisor of those indices k for which f, > 0is 1. Setu = 3 nf,, uy = 1,
and u, = >33 u,.f, . If p is infinite, then lim, w, = 0, and if u is
finite, then lim, u, = 1/u.

For a proof, see Feller [1957], pp. 306-307.

g. Central Limit Theorem. Identically distributed independent
random variables are defined in Sections 3-2 and 6-4. The mean of a
random variable is its integral over its domain, and its variance is the
integral of its square minus the square of its integral, a quantity which
is always non-negative.
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Theorem 1-68: Let {y,} be a sequence of identically distributed
independent random variables with common mean p and with common
finite variance o2 > 0. Set s, = y; +---+ y,. Then for all real «
and B with « < B,

. Sm - mp" _ - o
tim Prle < 22T < g| = 0(p) — @),

where

D(x —u?i2dy,

IR

For a proof, see Doob [1953], p. 140.



CHAPTER 2

STOCHASTIC PROCESSES

1. Sequence spaces

We shall introduce the concept of a stochastic process in this chapter
and develop the basic tools needed to treat the processes. Before the
formal development, we shall indicate the intuitive ideas underlying
the formal definitions.

We imagine that a sequence of experiments is performed. The
outcomes may be arbitrary elements of a specified set, such as the set
{“yes,” “no,” “no opinion”}, the set {heads, tails}, the set {fair,
cloudy, rainy, snowy}, or a set of numbers. The experiments may be
quite general in nature, but we impose some natural restrictions:

(I) The set of possible outcomes is denumerable. (This restriction
is natural for the present book. It would be removed in a more
general treatment of stochastic processes.)

(2) The probability of an outcome for the nth experiment is com-
pletely determined by a knowledge of the outcomes of earlier experi-
ments. Here “probability’ is used heuristically, to motivate the
later precise definition.

(3) The experimenter is, at each stage, aware of the outcomes of
earlier experiments.

We shall first consider a sequence of n experiments, where n is
specified at the beginning. Later we shall consider a denumerably
infinite sequence of experiments. In each case we assume that the
experiments do not stop earlier. However, this is an unimportant
restriction; a process that terminates may be represented in our
framework by allowing the outcome “stopped.” The following are
examples of such sequences of experiments:

(1) A sociologist wishes to find out whether people feel that television
is turning us into a nation of illiterates. He asks a carefully selected

3 <« ’ 113

sample of subjects and receives the answer ‘“yes, no,” or ‘“no

opinion’’ in each case.
40
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(2) A gambler flips a coin repeatedly, recording ‘“heads’’ or “tails.”

(3) A meteorologist records the daily weather for 23 years, classifying
each day as “fair,” “cloudy,” ‘“rainy,” or “snowy.”

(4) A physicist tries to determine the speed of light by making a
series of measurements. (Since each measurement is recorded only to
a certain number of decimal places, the possible outcomes are rational
numbers, and hence the set is denumerable.)

(5) A physicist makes a count of the number of radioactive particles
given off by an ounce of uranium. A measurement is made every
second, and the outcome of the nth measurement is the total number of
particles given off until then.

The exact way in which probabilities are determined from an experi-
ment is a deep problem in the philosophy of science, and it will not
concern us here. We will assume that the nature of the experiment
yields us certain probabilities, namely the probability that the nth
experiment results in an outcome ¢, given that the previous experiments
resulted in outcomes ¢, ¢, ..., ¢,_;. We then design a probability
space in which one can compute the probability of a wide variety of
statements concerning the experiments and in which the specified
(conditional) probabilities turn out as given.

The elements of our probability space 2 are sequences of possible
outcomes for the experiments (either sequences of length =, for a finite
series of experiments, or infinite sequences). The elements of the Borel
field # of measurable sets will be the truth sets of statements to which
probabilities are to be assigned. (The truth set of a statement about
the experiments is the set of all those sequences in £2 for which the
statement is true.) A measure p is constructed, and the probability
of a statement is the measure of its truth set. In particular, u(£2) = 1
in a probability space, and hence the probability of a logically true
statement is 1.

Let us first consider the case where n experiments are performed.
The possible outcomes are conveniently represented by a tree, with
each path through the tree representing a sequence of possible out-
comes. In the diagram n equals 3, 22 has 8 elements, and # consists
of all subsets of 2.

The numbers on the branches, known as branch weights, represent
the conditional probabilities mentioned above. For example, p, is the
probability of heads, given that the first toss came up heads, while
1 — p; is the probability that tails is the outcome that follows two
heads. The weight assigned to the path HHT is taken to be the
product of the branch weights, p, p,(1 — p;). The measure u(4) of a
set of paths A is the sum of the weights of the pathsin 4. In the usual



42 Stochastic processes
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setup for coin tossing, each p is %, and the weights of the paths are
each }.

The branch weights may be arbitrary non-negative numbers, but the
sum of the weights of branches starting from a given branch-point must
be one.

After we define conditional probabilities, it will be easy to verify
that the numbers written on the branches do indeed turn out to be the
desired conditional probabilities (see Kemeny, Mirkil, et al. {1959],
Chapter 3).

Let us suppose that we have constructed a tree 2, for a series of n
experiments. We consider &£ additional experiments, obtaining a tree
£, ... We wish our probabilities to be consistent in the sense that a
statement p about {2, has the same probability when computed in
either measure space. Our method of computing measures has this
consistency property. This assertion is easily verified for £ = 1, and
the result follows by induction.

In constructing an infinite tree £2 for a sequence of experiments, our
measure is required to have the property that a statement about the
first » outcomes has the same probability as if computed with respect
to the finite tree 2,. (Of course, the same probability may be com-
puted with respect to £2, ., but the result is the same by consistency.)
This convention assigns probabilities to many simple statements. We
can then show that the probability of a much larger class of statements
is uniquely determined. We will now consider the problem abstractly.

Let 8 be a denumerable set; S is called the state space. Let 2 be the
set of all infinite sequences of elements of §. A typical element w of
£ is represented as

w = (Cy, €1, Cgy . - ),

where ¢, ¢y, ¢g, ... are elements of S. The points w of 2 are called
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paths, the whole space 2 is called a sequence space, and the value c,
on a path w is called the nth outcome on w. The function z,(w),
defined from £ to S by

Zn(Cgy €15 Cay e v ey Cpye o) = Cy

is called the nth outcome funection, and the nth outcome is said to occur
at time n.
Let &, be the family of all unions of sets in 2 of the form

{w | 2o(w) €8y A zy(w) €S A -+ A z,(w) €S,},

where S, 8, . .., S, are subsets of the state space §. (Notice that the
sets of &, arise from the class of all subsets of the tree 2, described
above.) It is clear that for each n, &, is a Borel field. Let & be the
family of sets defined by

F=U F,
n=0

Each set in % is a set of paths for which a finite number of outcomes
are restricted to lie in certain subsets of S. All other outcomes are
unrestricted. The reader should verify that & is a field of sets. In
Section 3 we shall see that % is not a Borel field; in the meantime, we
let ¥ be the smallest Borel field containing &# (Proposition 1-14).
After we have defined a measure on ¢, the Borel field Z which we are
seeking will be the augmented field obtained from % by adding subsets
of sets of measure zero.

The sets of & are known as cylinder sets. If a cylinder set C is a
set in &, we note that C may be written as the denumerable union

C = U Bi(n)

of (disjoint) basic cylinder sets
B® = {w | xy(w) = ¢y A Ty(w) = ¢; A - A Zy(w) = Cy}

A basic cylinder set in &, is the set of all possible continuations of a
single path in £2,. We let v(B,) equal the product of the branch
weights on this path in Q,.

Recalling that the probability measures we assigned to Q, were
defined consistently, we can show that v is uniquely defined on the sets
of #. It has the properties that v(£2) = 1 and that the restriction of
v to F, is a measure for every n.

We will next show that v can be extended to a measure p on the
smallest Borel field containing #. This result will be a consequence of
Theorem 2-4. First we prove a series of lemmas. In each case %,
&, and v are as defined above.
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Lemma 2-1: Let v be a set function defined on # = | &, in such a
way that the restriction of v to %, is a measure for every n. Then
v is non-negative and additive.

Proor: Non-negativity is trivial. For additivity, let A and B be
disjoint sets in #. Then 4 € &, and B e #,, say. Since the & are
nested, A and B are both in &, where r = sup (m, n). Since v is a
measure when restricted to %,

v(4 U B) = v(4) + v(B).

We shall in fact establish that » is completely additive, a result due
to Kolmogorov.

Lemma 2-2: Suppose C, O €, O C, D - - is a sequence of sets in %
such that C, e #, and lim v(C,) > 0. Then for every m there is a
basic cylinder set B M in %, such that

(1) lim v»(C, N B/™) > 0
(2) BM™ C C,,.
PROOF By complete additivity of v on %, where r = sup (m, n), we

have v(C,) = >;v(C, N B/™) with »(C, N B™) monotonically de-
creasmg in n. Then

0 < lim »(C,) = lim > »(C, N B™) = 3 lim »(C, N B™).
n n 7 j n
The interchange of limit and sum is justified by dominated convergence
as follows: The functions of j, namely v(C, N B,'™), satisfy
v(C, N B™) < v(Cy N B™),

and we know that >, »(Cy N B ™) = y(C,) is finite since »(2) = 1.
Thus, since a denumerable sum cannot be positive unless one of the
terms is positive, we have for some j = ¢

lim v(C, N B{™) > 0.
n
Hence (1) is satisfied. But the terms in the sequence v(C, N B™)
monotonically decrease to a positive limit, so that
v(C,, N B™) > 0.

Now C,, € #,, and is thus the union of basic cylinder sets. Since
C, N B{™ cannot be empty, we must have B/™ C C,.
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Lemma 2-3: Suppose 4, O A, ... is a sequence of sets in & such
that 4, € &%, and lim, v(4,) = L > 0. Then there exists a sequence
{B™} of basic cylinder sets such that

'}y B™ is a basic cylinder set of % .
) lim »(4,, N B™) > 0.
m

(1
(2
(3') Forn > 0, B™ C B™-D,
(4) B™ C 4,.

REmARK: Property (3’) indicates that we are actually constructing a
single path by adjoining branches one at a time.

Proor oF LEmMMA: The construction is by induction. For n = 0
apply Lemma 2-2 to the sequence {4,} and the integer m = 0. The
B/ that the lemma gives is B‘®. Property (2') follows from (1),
(3') is vacuous, and (4') follows from (2). Suppose that we have

constructed B©, ..., B™; we want B"+D. Let
C. — A, for k < n
L7 4, B™ for k > n.

The sequence of sets {C,} is decreasing and C, € & ; we have
lim »(C) > 0
k
by (2’) of the inductive hypothesis. Applying Lemma 2-2 to {C,} and

the number m = » + 1, we obtain a basic cylinder set B+, which
we take as B™®*1. By (2),

Be+D CC,,, = A,,, N B™
Hence (1), (3'), and (4) hold. By (1),
0 < li;n v(C, N B+D) = li;n v(4, N B™ N Br+1)
= lim v(4, N B™*D) by (3').
Hence (2') holds. ’
Theorem 2-4: Let 2 be a sequence space, let %, be the Borel field
of sets generated by all statements
Ty =Co A AT, = Cp,

and let & = J, %, Suppose for every n there is a probability
measure v, defined on &%, with the property that the restriction of
Va1 b0 Fis v,. Let v be the set function on £ whose restriction to
F,is v, for all n. Then v is a measure.
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Proor: By Lemma 2-1 and the contrapositive of the second half of
Corollary 1-17, it is sufficient to show that if 45 O 4, O 4, D ... is
a decreasing sequence of sets in % with lim, v(4,) = L > 0, then
N. 4, # @. Since every set in &, is a set in &, ,,, we may assume
that 4, € #, by repeating the same set several times in the sequence
and by adding, if necessary, the set £ a finite number of times at the
beginning of the sequence. The hypotheses of Lemma 2-3 are satisfied.
We then have (M), B™ = {w}, where w is a single path of 2. For every
n, we B™ C A4,; hence we (N, 4,and N, 4, # &.

Applying Theorem 1-19 we extend the measure v defined on &
uniquely to a measure pu defined on the Borel field 4. Augmenting
the field ¢, we obtain the Borel field £ with which we shall work.
The extended measure p is called tree measure and satisfies p(2) = 1.
This completes our construction of the sequence space (2, %, pn).
From now on when we refer to a sequence space we shall mean (£2, #, u)
constructed in the indicated manner.

2. Denumerable stochastic processes

We turn now to the definition of a denumerable stochastic process.
After the definition we shall show that every sequence space defines in
a natural way a stochastic process and that every denumerable sto-
chastic process can, in a way to be described shortly, be considered as a
sequence space.

Let S be a denumerable set, which will be called the state space, and
let (2, %, 1) be a probability space. Points of {2 will be denoted w.

Definition 2-5: Let {f,} be a sequence of functions with domain £
and range in S, and let {#,} be a sequence of Borel fields. The pair
(fn» &) is called a denumerable stochastic process on £ if these two
conditions are satisfied:

(1) 8, C #, C B, C---; and for every n, #, C #.
(2) For every fixed n and for each s €S, the set {w | f,(w) = s} is a
set in 4,,.

The second condition in the definition is a measurability requirement
on f,. If we were to think of the family . of all subsets of S as a Borel
field, our condition would be equivalent to the demand that the
inverse image under f, of any set in . be a set in #,.

First we shall show that every sequence space defines a stochastic
process in a natural way. Let (2, %, u) be a sequence space. We
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take the outcome functions z, as the sequence of functions and {%#,}
as the sequence of Borel fields. It is clear that

{w | Z,(w) = ¢}

is a set of #, and that #, C #, C-.-CF C % C #. The pair
(x,, F,) therefore is a stochastic process and is referred to simply as
{z,}. We have thus shown that the outcomes of a sequence of
experiments with a denumerable range form a denumerable stochastic
process.

When we begin to discuss Markov chains, we shall wish to confine
ourselves to stochastic processes defined on a sequence space. There-
fore, our second task is to show that the restriction to sequence space is
actually no restriction at all; this will indicate that our treatment of
denumerable Markov chains is completely general.

Let (f,, #,) be a denumerable stochastic process on £’ with state
space S. Let ¢’ be a measure on £’. We shall construct a sequence
space (2, %, u) in such a way that the behavior of the process (f,, #,)
on £’ may be studied completely by studying the stochastic process
{z,} on Q.

Define £2 to be the space of all sequences of elements of S, and let ¥
be the Borel field obtained by the construction in Section 2-1. We
shall establish a correspondence between paths of 2 and subsets of ',
and we define a measure p on %.

The correspondence we choose is

w > {0’ | fol') = 2o(w) ‘A fal@) = 2u(w) A e

To assign a measure to £2, we must assign a measure to cylinder sets,

such as
A = {w]|zy(w) €Sy A+ A Zz(w) €8,}.

Noticing that the set 4’, defined by
= {0’ | fow) €85 A -+ A fr(w') €84},

is a set in #, and is therefore 1'-measurable, we define
u(d) = w(d).

The measure u can then be extended to a measure defined on all of 4,
and the construction of the space (2, #, u) is complete. We thus see
that an arbitrary stochastic process defined on £’ may be considered
as a process on a suitable sequence space £ in which the f, are out-
come functions. The probability of any statement concerning the f,
can be computed in the sequence space.
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3. Borel fields in stochastic processes

Probabilities are numbers assigned to statements about stochastic
processes. We may now formally define the probability of a statement
to be the measure of the statement’s truth set. In symbols Pr[p] =
u(P), where P = {w | p}. If the set P is not a set in the Borel field
on which u is defined, then Pr{p] is undefined. Statements for which
Pr[p] is defined are called measurable statements.

In a stochastic process we see that a Borel field of sets represents a
state of knowledge. The more sets there are in the Borel field, the more
statements there are that we know how to assign probabilities to. Let
us analyze briefly what this fact implies about Definition 2-5.

In a denumerable stochastic process we are given an increasing
sequence of Borel fields &, such that #, C # for every n. The field
4%, represents the state of knowledge of the process up to time n. The
fact that the Borel fields are increasing means that our knowledge of
the process never decreases as time goes on, and the fact that all &,
are contained in & means that our total knowledge of the process
necessarily includes knowledge of what happens in a finite number of
steps.

Similarly, condition (2) in the definition is an abstract formulation
of the requirement that in a stochastic process the present does not
depend upon the future. We conclude, therefore, that our definition
satisfies the conditions imposed at the beginning of Section 1.

We shall apply this insight about the role of Borel fields to a specific
example to show that the field & in Section 1 is not the same as the
Borel field 4. Let Q be the sequence space constructed when § is taken
as a two-element set. Measures 2~ *1 are assigned to each set B of
paths of the form

B={w|xg=1co A" A Zy = Cy}.

This measure is eventually extended to a measure . on the Borel field
2, and we obtain u(2) = 1. The state space for this example is often
taken as S = {heads, tails}, and the model for the stochastic process is
the tossing of a balanced coin.

For the coin-tossing process a well-known example of a statement
whose truth set is not in the field & but is in the Borel field ¥ is involved
in the Strong Law of Large Numbers (which we shall consider in more
detail in Chapter 3). Let k and » be integers and let 7, be the fraction
of the first n outcomes which are heads. Let p be the statement about
r, that
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Consider the statement ¢ about £ > 0 that
(VEYAN)(Vn)(n > N — p).

We write the statement in this form to demonstrate that its truth set
is in . In words, the statement g asserts that for any £ > 0 there
exists an N such that if » > N, then |r, — }| < 1/k. That is, ¢ says
that lim,_, 7, = 1. The truth set of the statement ¢ isin 4 but not #,
because the notion of limit cannot be expressed in terms of finitely
many of the r,. The Strong Law of Large Numbers asserts that

Priq] = 1.

4. Statements of probability zero or one

In a probability space (2, #, u) a statement with truth set £ is
logically true, whereas a statement with truth set @ is logically false.
However, the Strong Law of Large Numbers asserts not that a certain
set is £2 but that it has measure one. A statement whose truth set
has measure one is said to be almost always, almost everywhere, almost
surely true, or true a.e. Correspondingly, a statement with truth set
of measure zero is almost surely false, and the negation ~p of a
statement p which is almost surely false is almost surely true.

Two useful propositions are related to the subject of almost sure
statements.

Proposition 2-6: Let {p,} be a denumerable set of statements and let
q be the statement that p, holds for all n. If Pr{p,] = 1 for all =,
then Pr[q] = 1.

Proor: Let {P,} be the truth sets of the statements {p,}. Applying
Proposition 1-18, we have

L - Prgl = p(X = (V Py = p(J Po) < 2 u(Pr) = 0
so that
Priq] = 1.

The second result is one of the Borel-Cantelli Lemmas.

Proposition 2-7: If {p,} is a sequence of statements for which
> Pr[p,] is finite, then with probability one only finitely many of the
p, are true.
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ProoF: Let g, be the statement that all of the statements p,,, p,, 1, . .
are false. Let ¢ > 0 be given. Choose N large enough so that
> _n Pr[p,] < e. Then

1 — Pr[gy] = Pr[at least one of py, py.1,... Occurs]
= Pr{py V Pys1 V---]
By Proposition 1-18 the right-side is

< Z Pr[p,] < e
n=N
Hence,

Pr[finitely many p, are true] = Pr[ G qn]
n=1

> Prigy]
> 1 —e

Since this inequality holds for every ¢ > 0, the probability must be 1.

5. Conditional probabilities

Let (2, #, n) be a probability space. If p and ¢ are statements
such that Pr[¢q] # 0, the conditional probability of p given ¢, written
Pr[p | ¢], is defined by

Prip | q] = Pr{p A q]/Pr{q].
If Pr{q] = 0, we shall normally agree that Pr[p |¢] = 0. (Alterna-
tively, we might leave Pr[p | ¢] undefined if Pr[¢q] = 0. Such a con-
vention would be adopted in a more general context.)

The case Pr[g] = 0 is not very interesting. Suppose Prg] # 0, and
let @ C £ be the truth set of ¢. If @ is taken as a space of points, then
# = {B'| B =QnN B, Be%}is a Borel field of sets in . For any
set B’ in #' we define a set function v by

w(B’)
(@)

The reader should verify that v is a measure on %’. Furthermore,
(@) = p(@)/u(@) = 1. Therefore, (Q, #’,v) is a probability space.
We may thus speak of the probabilities of statements relative to @,
and we see that their values coincide with conditional probabilities
given ¢ and relative to 2. That is, conditional probabilities possess
the same properties as ordinary probabilities.

We shall apply this notion of conditional probability to the sequence
space considered in the preceding sections. In this space the sets of #,,
are denumerable disjoint unions of sets of the form

v(B') =

an{w‘xoeSO/\"'A anSn}.
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Since the state space S is denumerable, each of the sets S, S;,...,S,
is denumerable and B, is the denumerable union of disjoint sets of the
form {w|x, =c¢o A---A z, =¢,}. By definition of conditional
probability,
Pr[xo =C A ATy =Crig AT, = Cp
=Pr[xn =Cnlx0= Co A+ A Zp_y =Cp_q]
x Prleg =¢co A A xy_1 = ¢p4]

By induction, we find
Prlzg = co A -+ A 2, = ¢,] = Prxy = ¢]-Prz; = ¢, | %y = ¢,

X Pr[zy = ¢y | 25 = ¢o A 2, = ¢4]

X Prlag =c5 |29 =¢co A 2, = ¢; A 25 = €3]

Xooox Prle, =c, | @y =¢Co A A yoy = Cosyl

We have established the following result.

Proposition 2-8: The measure on a sequence space is completely
determined by

(1) the starting probabilities, Pr[z, = ¢,], and
(2) the transition probabilities,

Prle, =c,|xg=¢Co A~ A Zh_1 = Ch_y]

Conditional probabilities, as we anticipated, have their place in tree
diagrams. To each branch we may assign a conditional probability.
We see now the abstract formulation of the fact that the probabilities
of statements like xo = cy A @, =¢; A+--A , = ¢, are computed
simply by multiplying together the appropriate branch weights.

Q

S={H, T}

X0 X X2
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Two statements p and ¢ are said to be probabilistically independent
if Pr[p A q] = Pr{p]Pr[¢q]l. A stochastic process defined on sequence
space is called an independent process if the statements

x, = C,
and
o =C A-""NZTp_; =Cpy
are independent for all » > 1 and for all ¢y, ¢y, ..., ¢,. Coin tossing is

an example. We shall see that an independent process is a special
kind of Markov process. If, in addition, for each ¢ the probability
that z, = ¢ does not depend on =, then the process is called an
independent trials process.

6. Random variables and means

Let (£2, 4, 1) be a probability space. A measurable function f with
domain £ and range in the extended real-valued number system is
called a random variable. We may apply all the properties of the
measurable functions in Section 3 of Chapter 1.

If f(w) is an extended-real-valued function defined on the space £
of a stochastic process and if £ has the property that for some 2, f(w)
is measurable with respect to the Borel field 4,, then f is a random
variable because #, C #. Such a function is said to be #,-measurable.
For the special case in which £ is sequence space, a function f is Z,-
measurable for some # if its values depend only on a bounded number
of outcomes.

In terms of sequence space, we give two examples of random
variables.

(1) Define a function u,™ by

o 1 if z, =.j
J 0 otherwise.

Since the value of u™ depends only on outcome n, the function u,™
is #,-measurable and is therefore a random variable. Letting n; =
S o u™ and noting that the limit of a sequence of random variables
is a random variable, we see that n; is a random variable. The func-
tion n,(w) counts the number of times that the outcome j occurs on the
path w; it will appear again after we introduce Markov chains.

(2) Let t; be the time to reach j. That is, define t,(w) to be the first
time n along path w such that z,(w) = j. If j is never reached, set
t; = +oo. Then t;is a random variable because it is the limit on »n of
the function t™ = inf (t;, »), which is #,-measurable.
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Definition 2-9: A random time t is a random variable satisfying these
two properties:

(1) Its range is in the non-negative integers with {+ 0o} adjoined.
(2) For each integer n the set {w | t(w) = n} is a set of &,.

The random variable t; defined in the second example above is an

example of a random time.
The mean of a random variable f, denoted M[f], is defined by

Mif] = fn fdy, where M[f] exists if and only if j o fdu exists and where p
is the measure associated with the probability space. Since means are
Lebesgue integrals, they satisfy all the properties of Lebesgue integrals.
In particular, if {f,} is a sequence of non-negative random variables,
then by Corollary 1-46,

M[i0 f,,] = 120 M, ].

In addition, if g, is a sequence of random variables with the properties
that |g,| < ¢ for every n and that g, converges to g, then

M[g] = ji}; Mg.]

by Corollary 1-50. An important application of these facts is the
following result.

Proposition 2-10: In a sequence space,
Mn,] = > Prfz, = jl.
n=0

PRrooOF:

Mn,] = M[Z u,‘"’]
= z M[u,™]

= Zf u, "y
n JQ

= Z f ldp
n

{wlxp ()= j}

= Z Pr[xn = .7]

7. Means conditional on statements

Suppose (£2, #, u) is a probability space on which a denumerable
stochastic process is defined. We say that a denumerable family of
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subsets Z = {R,, R,,...}is a partition of £ if the sets R; are disjoint,
exhaustive, and measurable. Each such subset R, is called a cell of the
partition; we allow the possibility that a cell may have measure zero.
The reader should notice that the sets {@, R,, R,, ...} together with
all possible denumerable unions form a Borel field which we shall call
R*. Since the sets in # are measurable, we see that #* C 4.

Two examples of partitions are typical.

(1) Let the process be coin tossing, and define a partition by
R, = {w | %y(w) is a head}, R, = {w | zo(w) is a tail}.

More generally, let # consist of disjoint exhaustive measurable sets
which are in 4, for some fixed n.

(2) Suppose f is a random variable whose range is denumerable.
If the range is {a;}, define R; = {w |f(w) = a;}. Then {R} is a
partition.

A denumerable set of statements {g;} about a stochastic process is
said to be a set of alternatives if the truth sets @, of the statements form
a partition. Since the integral is a completely additive set function,
we obtain, for every random variable f whose mean exists, the relation

Mif] = > | fdp.
i Q;
Let p be a statement with measurable truth set P. If fis a random

variable and if Pr[p] # 0, then the conditional mean of f given p,
written M[f | p], is defined by

1

If Pr{p] = 0, then M[f | p] is defined to be zero. (In a more general
setting, M[f | p] is not defined when Pr[p] = 0.)

Proposition 2-11: If M[f] exists and {g,} is a set of alternatives with
truth sets {¢;}, then

M[f] = >, Prig,]-M[f | g1

Proor: By definition of conditional mean, we have

J;; fdu = Prlg,]-M[f | ¢.].

Summing both sides of the equation on 7 gives the result immediately.
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Corollary 2-12: Let p be a statement with measurable truth set P,

and let {g;} be a set of alternatives with truth sets ¢;. Then

Pr{p] = > Prig)-Prip | ¢.] = > Prlp A g

Proor: Let f be the characteristic function of the set P and apply

Proposition 2-11.

8.

1.

Problems

For coin tossing, show that
(a) the probability of getting only finitely many “heads” is 0;
(b) there will be infinitely many “heads” a.e.

. Consider the experiment of selecting ““1’’ with probability %, “2”’ with
probability 4, or ““3” with probability 3. If this experiment is repeated
infinitely often, show that the probability of selecting ““1°’ only finitely
often is 0.

. In Problem 2, let #, = &,. Which of the following f, form a denumer-
able stochastic process (f,, #,)?
(a) f, = the nth outcome.
(b) f, = time at which nth “3” is selected.
(¢) f» = s, = sum of the first » numbers selected.
s, —a

(d) fn = 7}\/% H

where a and ¢ are constants.

Show that the following converse of the Borel-Cantelli Lemma is false:
If > Pr[p,] = +o0, then the probability that only finitely many p, are
true is less than 1.

Start with 4 jacks and 4 queens from a bridge deck. Find the prob-
ability of drawing two cards, both of which are jacks. Then compute
the conditional probability of the same on each of the following
conditions:

(a) One card drawn is a jack.

(b) One card drawn is a red jack.

(¢) One card drawn is the jack of hearts.

(d) The first card drawn is the jack of hearts.

For coin tossing, define three random variables which are not measurable
with respect to any finite tree £,.

Let 'n;(w) be the number of times on path w that a j occurs before the
first ¢ occurs (if ¢ = j, take 'nj(w) = 0). Prove that n, is a random
variable, and develop an infinite series representation for M(t;] in terms
of it.

In coin tossing, let t be the first time that “heads’ comes up.
(a) Is t a random time?

(b) Find M[t].

(c) Find M[t | first outcome is “tails”’].
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10.

11.

12.

. In a randomly selected two-child family, let f = the number of boys.

Find

(a) M[f].

(b) MI[f | first child is a boy].

(c) MIf | there is at least one boy].

For coin tossing, let f = the number of “heads” in the first three tosses.
Let g; be the statement that there were exactly ¢ ‘“heads” in the first
two tosses (i = 0,1,2). Find M[f], M[f| ¢,], M[f]¢,], and M[f | g.].
Verify that the first of these is a linear combination of the last three with
appropriate probabilities as weights.

Let {g;} be a set of alternatives and let f be a non-negative random
variable. Prove that if M[f | ¢,] > M[f], then there is an alternative ¢,
such that M[f | ¢,] < M[f].

Let X be the unit interval. Let & consist of all finite unions of finite

intervals (with or without endpoints). We classify a point as an interval

of length 0. The measure to be constructed in this problem is called

Lebesgue measure, and the Borel field is the class of all Borel sets.

(a) Show that & is a field.

(b) Show that every set 4 in & can be written as a finite disjoint union
of intervals 4,, 4,,..., 4,.

(c) If A is decomposed as in part (b), we define

= Z UAy),
k=1

where [ denotes length. Show that v is consistently defined and that
v is a non-negative additive set function.

(d) Show that if A4 is a finite union of intervals and if € > 0 is given,
then there is a finite union K of closed intervals and a finite union G
of open intervals such that K C 4, 4 C G, and

v(iK) + € = v(Ad) = v(G) — e

[Note: An open interval here means a set which is the intersection of
X with an open interval of the real line.]

(e) Let Aand 4,,n = 1,2,..., be finite unions of intervals with the 4,
disjoint and with U 4, = 4. Use parts (c) and (d) and the Heine—
Borel Theorem to prove that, for any ¢ > 0,

W) < D v(d,) + e

(f) Deduce from part (e) that v is completely additive on %

(g) Apply Theorem 1-19 and describe the resulting measure space.

(h) Using complete additivity, prove that a denumerable set of points
has measure 0.

(i) Why does the proof of (h) not show that every set has measure 0?

(j) Show directly from the definition

B) = inf [> v(4,)]

that every denumerable set of points has measure 0.
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13. Let (82, #, 1) be the unit interval with Lebesgue measure. If x € 2, let
f(x) = 2. Let p be the statement “z < §.”
(a) Show that f is a random variable.
(b) Find M[f].
(o) Find M{f | p] and M[f | ~p].
(d) Relate your answer in (b) to the solution of (c).



CHAPTER 3

MARTINGALES

1. Means conditional on partitions and functions

In this chapter we consider a natural abstraction of the idea of a
fair game in gambling. We shall give several applications of the basic
result, the Martingale Convergence Theorem.

We begin by defining what we mean by the conditional mean of f
given a partition #Z of the domain. Let (£, #, u) be a measure space.
We shall normally assume p(2) < 1, but such an assumption is not
necessary as long as p is finite.

Definition 3-1: Let w € £2 and let r; be the statement that w is in a
cell B, of Z. If fis a random variable, then the conditional mean of
f given Z#, written M[f | %], is defined to be a function of w whose value
at every point in the celi R; is the constant M[f | r,].

Next, we observe that if M[f] exists and is finite, then M[f | %]
exists and is finite. For, on cells of measure zero, the conditional mean
is defined to be zero. If u(R;) > 0, then

1
M|f| | 2] = M[[f] | B,] = mL If]du < l%Rj)MHf]] < .

The next proposition provides an equivalent definition of the mean
of f given Z.

Proposition 3-2: M[f | #] is characterized almost everywhere by
these two properties:

(1) M[f | #] is constant on each cell of #.

(2) jﬂj fdp = ij M[f | Z)dp.

Proor: We must show that M[f | #Z] has these two properties and
that any random variable satisfying these properties is equal to the
58



3-3 Means conditional on partitions and functions 59

conditional mean of f given # a.e. Set g = M[f| %], and suppose
first that g is known to be a conditional mean. Then g satisfies (1) by
definition. If p(R;) = 0, both sides of (2), are 0. If not, equality
again follows from the definition of M[f | Z].

Conversely, if a function g satisfies (1) and (2), then it agrees with
MI[f | #] on all paths in cells of positive measure; that is, it agrees with
Mif | Z] a.e.

We give two examples of conditional means.
(1) Let the stochastic process be coin tossing and let
R, = {w | 4(w) is a head}
R, = {w | zo(w) is a tail}.
Let f be the total number of heads on the zeroth and first tosses. Then

on R,

3
_Jz
Mif | ] = {; on R,
and
Mif] = B)E) + H@) = L.
(2) For any stochastic process and for any denumerable-valued
random variable f, let % be the trivial partition {£}. Then

M[f | 2] = M[f]
on every path w.
A partition Z is said to be contained in &, written Z C ., if every

cell of Z is a union of cells of . If # C &, then 2 is the “coarser”’
subdivision, and & is called a refinement of #.

Proposition 3-3: Conditional means satisfy these properties:

(1) MIM[f | 1| 2] = M[f | #]if Z C &.

(2) MIM[f | 1] = M[f] for any &.

(3) If g is constant on each cell of #, then M[g | Z] = g a.e., and if
M[fg] exists and is finite, then M[fg | #] = gM[f | Z].

(4) If f and g assume only finite range values and if M[f | #] and
M[g | #] both exist and are finite, then M[f + g | %] exists, is
finite, and is given by

M(f + g | 2] = M[f | %] + Mg | Z].
Proor: For (1) it is sufficient to show that

| moaie | 7y vyt = [ e |
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since both functions are constant on cells of Z. Applying property (2)
of Proposition 3-2 three times, we have

[ vire| 1| s = [ ie | 100
Ry B,

=S f M(f | #1dp
bR,

=3 ffdy

SiCRy

= fdu

By
= M[f | Zldp.
By
The proofs of (3) and (4) use the same technique and are left to the

reader. Property (2) follows from (1) with &# taken as the trivial
partition {£}.

Definition 3-4: The cross partition Z @ & of two partitions # and
& is the family of sets defined by

2QYF ={RiNS;|ReX,8,e6S, RNS; # T}

For example,

> o (D

R s RX)S

Since the intersection of measurable sets is measurable and since the
sets { B; N §,} are disjoint and exhaustive, a cross partition is a partition.

In Example 2 of Section 2-7 we noted that every denumerable-
valued random variable determines a natural partition of 2. We
call the partition associated with the denumerable-valued random
variable g, #°. In terms of the natural partition induced by g, we
define the conditional mean of f given g, by

M[f | g] = M[f | %°].
Then M[f | g] is constant on sets where g is constant, and on the set
where g = ¢ for some constant ¢, M[f | g] has the value M[f | g = c].
Observing that the operation of forming the cross partition of two

partitions is both associative and commutative, we define more
generally

M[fn+1|f0 A A fn] = M[fn+1|%’fo ®® ‘@f"].
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If p is a statement with truth set P, we define
Pl‘[plfo Ao ] =M[XP|fO A-on g
where y;, is the characteristic function of the set P.

A sequence of random variables {f,} is said to be independent if, for
every n and for every 4,

Prif,,,ed|fo An---Af,] = Prlf,,, € 4]

almost everywhere. The reader should show that if {f,} is a sequence
of independent random variables, then

M[fn+1 I f0 AN fn] = M[fn+1]'

In the special case in which, for each 4, Pr[f, € A] does not depend on
n, the random variables are said to be idenfically distributed.

2. Properties of martingales

With the background of Section 3-1, we proceed to define martingales
and to give several examples of them. We still work with the prob-
ability space (£2,4%,pn) and a denumerable set of states S. We
assume, however, that the set S is a subset of ti, -~ xtended real number
system.

Definition 3-5: Let {f,} be a sequence of denumerable-valued random
variables, and suppose #, C #, C--- is an increasing sequence of
partitions of Q. The pair (f,, #,) is called a martingale if three
conditions are satisfied:

(1) M[|f,|] is finite for each n.
(2) f, is constant on cells of Z,.
(3) fn = M[fn+1 ‘ ‘@n]

If (1) and (2) are satisfied and (3) is replaced by f, > M[f,,, | %Z,), then
(£, Z#,) is a supermartingale. If (1) and (2) are satisfied and (3) is
replaced by f, < M[f,,, | #Z,], then (f,, #,) is a submartingale.

For a martingale, condition (3) in Definition 3-5 implies condition
(2), but for a supermartingale or a submartingale it does not.

When we defined partitions in Section 2-7, we noted that every
partition %, determines a Borel field #,* and that the Borel field
satisfied #,* C #. Since %, C #,., implies Z,* C %, ,,*, we see
that a martingale is a stochastic process. The reader should notice
that the condition that f, is constant on cells of %, is equivalent to the
condition that f, is measurahle with respect to Z,*.

Throughout the discussion of martingales, it is convenient to keep in
mind the idea of a fair game, which we shall introduce as our first
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example below. We shall see that the fair game is a special case of
the following situation. Let f;, f,,... be a sequence of denumerable-
valued random variables defined on a probability space such that
M[|f;]] is finite. Setting #, = B0 Q@ ---Q H#’'», we see that the
sequence {#,} is clearly increasing. Therefore, only condition (3) of
Definition 3-5 need be satisfied for (f,, #,) to be a martingale. In
particular, we see that such a sequence of random variables forms a
martingale if and only if

Mf,,,|foAfpA---Af] =1,

When the partitions £, are obtained from the #/» in the way we have
just described, we agree to refer to the pair (f,, #,) simply as {f,}.

We shall give three examples of martingales at this time. More
examples will appear after we introduce Markov chains.

(1) Let {y,} be a sequence of independent random variables with
denumerable range and let s, =y, +---+ y, represent the nth
partial sum. Then {s,} with its partition obtained from the %% in the
natural way is a martingale if and only if M[y,] = 0 for every k. We
have

MiS, s | S0 A A S0 = Mlypps + 5, Ao A 5]
= M[Yns1]S0 A A s,
+M[Sn|SO Ao A s

=M[Yn+1|so/\"'/\sn]+s

:M[yn+1|y0 ASMAN yn] +S
= M[y,.,] + s, by independence

= s, if and only if M[y,,,] = 0.

A special case in which the y, have identical distributions is the
sequence of plays of a game of chance. A fair game is one in which the
expected fortune M[s,,,] at any time n + 1 is equal to the actual
fortune s, at time n. Matching pennies is a fair game, whereas roulette
is unfair. A game like roulette that is favorable to the house is a
supermartingale. From the calculation above, we see that a game is
fair if and only if the mean amount won in each round is zero.

(2) A particle moves on a line stopping at points whose coordinates
are integers. At each step it moves n units to the right with prob-
ability {p,}, where n = ..., —2, —1,0,1,2,..., only finitely many of
the p, are different from zero, p, # 0 for some negative value and some
positive value of n, and 3 p, = 1. The particle’s position after j
steps is x;.  Set f(s) = >, p.s*, and consider the positive roots of the
equation f(s) = 1. Since f"(s) > 0 for s > 0, there are at most two
roots of the equation, and since f(1) = 1, either one or two roots exist.
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Ass— 0or oo, f(s) — 0. Hence either 1 is a minimum point or there
are two positive roots. If 1 is a minimum point, then f'(1) = 0, and
hence {x,} is a martingale, and if 7 is a root other than 1, then {r*s} is a
martingale. The details of verifying these assertions are left to the
reader. We shall need to use these results later.

(3) Let 2 be the closed unit interval [0, 1] on the real line, let the
measure of an interval be its length, and let %, be the partition
{[0,27"], (2™, 2-27"],...,((2" — 1)27", 1]}. Let f be a monotone
increasing function on [0, 1] and let f, be a function which is constant
on the interval (c27", (¢ + 1)2~"] and whose value at any point in the
interval is

2'(f(lc + 127" — f(e27™)).

Thus f, is an approximation to the derivative f’, if it exists. The
reader should verify that (f,, %,) is a martingale.

3. A first martingale systems theorem

In the first example in the preceding section, we saw that martingales
bear some relation to gambling. A fair game is a martingale, a game
favorable to the house is a supermartingale, and a game favorable to
the player is a submartingale. A gambling system is a device to take
advantage of the nature of a game of chance in order to increase the
player’s expected fortune. Systems theorems are theorems which
prove that certain classes of gambling systems do not work. For our
first systems theorem, which we shall need in the proof in the next
section, we require a lemma.

Lemma 3-6: Let {#,} be an increasing sequence of partitions and
let {f,} be a sequence of random variables. Suppose B, is a set in the
Borel field £, *.

If (f,, #,) is a submartingale, then fkk £, dp > fnk f.du.
If (f,, #,) is a martingale, then ka £, .du = ka f.du.
If (f,, #,) is a supermartingale, then fE, f..dp < fnk f.du.

Proor: We shall prove only the first assertion. By Proposition 3-2,
ka £, dp = f r, Mlfic+1 | Z]dp, and since {f,, #,} is a submartingale,
we know that

Mife. | 2] = £,

The result follows immediately from integrating this inequality.

Proposition 3-7: Let (f,, #Z,) be a submartingale, and suppose that
{e,} is a sequence of random variables such that €,(w) = 1 or 0 for every
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o and such that the set {w | €,(w) = 1} is a set in #,*, the Borel field
generated by #Z,. Define

fo=1, + efy — fo) + e(f, — £,) +-- -+ €,_,(f, — f,_1).
Then (f,, #,) is a submartingale and M[f,] < M([f,].

REMARK: Analogous results hold for martingales and for super-
martingales, but we need only what is proved here.

PROOF OF PROPOSITION: We first show that M[f,,, | #,] = f,. We
have

M[fn+1 I gn] = M[fn + En(fn+1 - fn) | '%n]
= M[fn I '@n] + M[en(fn+1 - fn) ‘ '%n]
= f‘n + M[en(fn+1 - fn) l *%n]
Since {w | €,(w) = 1} is the union of cells of #,, €, is constant on cells
of Z,. Thus by Proposition 3-3, the above expression
= f}n + enN[[(fn+1 - fn) I *%n]
= fn + en(l\l[frwl I'@n] - fn):
which is
> f,
because (f,, #,) is a submartingale and €, is non-negative. It remains

to be shown that M[f, — f,] > 0; we prove the result by induction on n.
Forn = 0, f, = f, and M[f, — f,] = 0. Suppose we have proved that

.[n (f, — f,)du = 0. Then we have f,,, = f. + €.(f..; — f,), and
when we subtract both sides from f, , ,, we get

fi: — fk+1 =fe - fk — € fer1 — £)
= (1 — e)(fess — fi) + (i — £,).
Thus

[ "

\%

f (1 — €,)(f.1 — fo)dp by hypothesis
Q

(fk +1 — fk)dl"

{ex(w) =0}

0 by Lemma 3-6.

v

To see the connection of Proposition 3-7 to gambling systems, we
again consider Example 1 of Section 3-2. We take the partial sums
s, as the f,, and we observe that the differences s, — s,_; in the

definition of §, are simply the random variables y,. The §, become
modified fortunes, fortunes changed by not playing in every round of
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the game. When ¢, = 1, the player participates in the k + 1st game;
and when ¢, = 0, he does not. The whole set of €’s, therefore,
represents a gambling system; the condition that the set of paths for
which €,(w) = 1 be the union of cells of £, is the condition that the
system not depend on any knowledge of the future. For the special
case in which the process is a submartingale, the expected fortune after
time » + 1 is greater than or equal to the fortune at time n and the
game is favorable for the player. The content of Proposition 3-7 is
that the player’s expected fortune after time » + 1 would not have
been increased by a system which caused him not to play in certain
rounds.

4. Martingale convergence and a second systems theorem

In this section we shall prove two theorems which will be of great use
in our treatment of Markov chains. The two results will indicate the
value of recognizing martingales when they appear in our later work.

Definition 3-8: Let {f,} be a sequence of random variables defined on
points w, and let r and s be numbers with r < s. An upecrossing of
[, s] is said to occur between » — k and = for the point « if these
conditions are satisfied:

(1) £, plw) < r

2)r<f_jinw)<s for0<m<k

(3) f,(w) = s.

The reader should notice that no two upcrossings overlap.

4
Z s

7

Ta-x

After three preliminary results, we proceed with a proof of the
Martingale Convergence Theorem. Proposition 3-11 is known as the
Upcrossing Lemma.

Lemma 3-9: If (f,, #,) and (g,, #,) are submartingales, then so is
(sup (fa, 8n), Z,).
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Proor:
M [sup (f,, ga)|]

IA

M[sup (|f,], |g])]

|faldu + J |galdp < 0.
fnl218al ARSI} 1Y

The function sup (f,, g,) is clearly constant on cells of 4%, if f, and g,
each are. Furthermore,

M[SuP (fn+1: gn+1) | '%n] = M[fn+1 | gn] 2z fn
and

M[suP (fn+1’ gn+1) l e@n] 2 M[gn+1.l '%n] = gn
so that

M[SUP (fn+1’ gn+1) | '@n] Z sup (fm gn)

Lemma 3-10: If (f,, %,) is a martingale, M[f,] = M[f, _,]. If
(f,, #,) is a supermartingale, M[f,] < M[f,_,]. If (f,, #,) is a sub-
martingale, M[f,] = M[f, _,].

Proovr: The result is immediate from Lemma 3-6 when R, is taken
as .

Proposition 3-11: Let (f;, #;) be a submartingale, and let B(w) be
the number of upcrossings of [r, s] between times 0 and n. Then

(£, — 1*] _ MIE[) + |r]

s =7 s — 7

Mg < 2

Proor: Consider first the special case f, > 0 for 0 < k < »n and
r = 0. Let f, be defined as in Proposition 3-7 with the €'s to be
specified. For a given path w, define, by induction on m, €,(w) = 1
whenever f,(w) = 0, and let €, (w) = 1 as long as f, , (w) < s. As
soon as f,(w) > s, require that €,(w) = 0 until m is large enough so
that f,(w) = 0 again. Then f,, measures the increase in the sequence
fy(w), . . ., f,(w) during upcrossings (plus a possible *“ partial upcrossing”’
at the end) and is greater than or equal to the minimum increase in
each upcrossing multiplied by the number of upcrossings. That is,

5-Blw) < fy(w).

s-M[B] < M[f,].
which by Proposition 3-7 is

Hence

IA

IA

M[f,].
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Therefore,
M[B] < (1/s)MIf,]

and the special case is proved. For a general sequence {f,} and general
r, consider the function (f, — r)*, which is the supremum of the zero
function and the function f, — ». It is readily verified that constant
functions are martingales and that the difference of a submartingale and
a martingale is a submartingale. Thus (f, — r, #,) is a submartingale
and by Lemma 3-9 ((f, — 7)*, #,) is a submartingale. Applying the
special case proved above to (f, — r)* and upcrossings of [0, s — 7], we
find

(s — nM[B] < M[(f, — r)*]
< M[|f, — r|]
< M[|f;| + ||
= M[|f,|] + |r|

and the proof of the Upcrossing Lemma is complete.

Theorem 3-12: If (f,, #,) is a submartingale with the property that
M[|f,|]] < K < oo for all n, then

lim f,(w)

n— o

exists and is finite for almost all points w.

Proor: Failure of almost-everywhere convergence means that there
exists a set of points w of positive measure for which the sequence
diverges. At least one of two things must happen. Either f, (w) for
each fixed w in a set of positive measure oscillates infinitely often
above.and below rationals r(w) and s(w) with r(w) < s(w), or else
|f,(w)| diverges to +co on a set of positive measure. We consider the
cases separately.

(1) Suppose |f,(w)| diverges to + 00 on a set E of positive measure m.
Then by Fatou’s Theorem

f lim inf |f, (w)|dp < lim inff £, (w)|dpe
E n n E
< lim inff | (w)|dp
n  Ja

= lim inf M[|f,|]
< K.
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But lim inf |f,(w)] = +0c0 on E, and E has positive measure m. Thus
the left side of the inequality is infinite, and we have arrived at a
contradiction.

(2) Suppose f,(w) oscillates infinitely often above and below rationals
r{w) and s(w) on a set of positive measure m. Order the set of all pairs
of rationals (which is a denumerable set) and call the kth pair ¢,.
Consider the denumerable family of sets 4, defined by 4, = {w | f,(w)
oscillates infinitely often above and below the rationals of the pair g¢,}.
It is possible for more than one set to have the same point in it, but, on
the other hand, every point w for which f,(w) oscillates infinitely often
is in some 4,. Therefore,

O ) = (U 4) =m >0

and there must exist a ¢ for which u(4,) > 0. That is, for every win a
set. 4, of positive measure, f,(w) oscillates infinitely often above and
below fixed rationals r and s with r < s. Let B,(w) be the number of
upcrossings of [r, s] by fy(w), ..., f,(w). By Proposition 3-11,

M{|f.|] + |7|
M[g,] < s —7

SK+|r|
s —r

= ¢ for every =.

Furthermore, the B, are non-negative and increasing with » to a func-
tion B, so that M[B] = lim M[B,] < ¢ by the Monotone Convergence
Theorem. But M[B] = + oo since there are infinitely many upcrossings
on a set of positive measure. This contradiction establishes the
Martingale Convergence Theorem.

Corollary 3-13: Every non-negative supermartingale converges to a
finite-valued function almost everywhere. In particular, every non-
negative martingale converges almost everywhere.

Proor: If (f,, #Z,) is a non-negative supermartingale, then (—f,, %,)
is a submartingale. Since f, > 0, | ~f,| = f, and hence M[|—f,|] <
M[f,] by Lemma 3-10. Therefore, {—f,} converges almost everywhere
by Theorem 3-12, and so does {f,}.

We postpone a discussion of applications of Theorem 3-12 and
Corollary 3-13 to the next section. We shall find that the corollary is
used more frequently than the theorem itself.
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A random time which is finite almost everywhere is called a random
stopping time or simply a stopping time. If t is a stopping time, then
the set (N*-; {w | t(w) = n} has measure zero. If {f} is a sequence of
random variables, we define a function f, almost everywhere by

f(w) = f(w) if tw) = n

Since
I < ¢ = U (o]t =1 o] e <d),

f, is a random variable.

Lemma 3-14: If (f,, #,) is a martingale and if t is a stopping time for
which f ., fidu exists, then for any n

f fdu = f £,du + f fdu.
° {t<n}

{t>n}

Proor: We have

f fdu = Z fdu + f fdu
Q

I
M=
&
y
=
+
9
F

which by Lemma 3-6

Il
—
Y
B
+
=
=

Theorem 3-15: If (f,, #,) is a martingale and if t is a stopping time,
then M[f;] = M[f,] if

(1) M[|f,|] < oo, and
(2) lim f f.du = 0.

{t>n}

REMARK: Analogous results hold for submartingales and for super-
martingales. Inequalities replace the equality in the conclusion.
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PrOOF OF THEOREM: By (1), [, fidu exists, so that Lemma 3-14
applies. Thus, for any =,

f £du
9]

il

f.du + f fdu
{t=n} {t>n}

ffndy - f f.du + f fdu,
o

{t>n} {t>n}

which by Lemma 3-10

= f fodp — f fdu + f £dpu.
Q

{t>n} {t>n)

Using condition (1) together with Corollary 1-17 and the complete
additivity of the integral as a set function, we see that

lim J fdu = 0.
" {t>n)

Since [, ., f.dr — 0 by hypothesis, we have [, fdu = Jo fodpe.

Corollary 3-16: Suppose (f,, #,) is a martingale defined on a space 2
of finite total measure and t is a stopping time. If |f,| < K for all n,
then M[f,] = M[f,].

Proor: We must show the two conditions of Theorem 3-15 are
satisfied. For (1) we have |f;| < K by definition, and hence f, is
integrable. For (2) we have

‘ f fndf“s f || dpe

{t>n} {t>n)

IA

Kdu
{t>n)
Ku({w | t(w) > n})

— 0.

i

In terms of gambling systems, the result of Lemma 3-10, namely that
for martingales M[f,] = M[f,], states that the expected fortune at any
fixed stopping time is equal to the initial fortune if the game is fair.
That is, the fairness of a game is not altered by deciding in advance to
stop playing at some fixed time. But what about a system where the
player stops according to how the game is going? The system he
adopts is represented by the random time t, and Theorem 3-15 and
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Corollary 3-16 give sufficient criteria for the game still to be fair.
Corollary 3-16 by itself is a general result; it covers the situation, for
example, where the game stops if either the player or the house goes
bankrupt. If the game does stop under such circumstances, the
corollary states that the fairness of the game is not altered by any
gambling system whatsoever. Similar remarks apply to super-
martingales. If the amount of money that a player has is limited, no
system that he adopts for stopping according to how the game is going
will make an unfair game favorable.

The following proposition is useful in proving that certain random
times are stopping times.

Proposition 3-17: Let (f,, #,) be a martingale, let t be a random
time, and let f, be the stopped process with
fan(‘”) = fninm.tn(@)-
Then (f,, #,) is a martingale.
Proor: We first note that M[|f,|] < co since |f,| < S7_, |f;| and

each f; is integrable. Next, let R be a cell in #, with u(R) # 0. In R
we have

1 a
Mify oo | ) = s [ B

1 [ J‘ ?
—_ du +
n+ 10
,LL( ) RN{t<n} RN{t>n}

ﬂ%m[[ fdu + f and,u]

RN{t<n} RN{t>n}

I

f\n + ldf"']

by definition of f,. Since (f,, %,) is a martingale and {t > n} is in
A,, the above expression by Lemma 3-6 is

1
= — fdu + f fd
w( [ f K nH
RO{t<n) RN{t>n}

1

L fdu + f £

<R)[ f # a
RN{i<n} RN{t>n}

1
- ),

The last expression equals f, since f, is constant on R.

~—

I

&

The application of Proposition 3-17 is this: Let (f,, #£,) be an integer-
valued martingale, and let S be a set of integers. Let the martingale
almost surely have the property that it can be constant from some time
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on only for values in § (and possibly for no values). We stop f, the
first time it takes on a value in 8. That is, we let t be the first time
that f, is in S, and we introduce the stopped process f,. If the values of
f, are bounded from below or from above, then the *“stopped process,”
is almost sure to stop. The proof proceeds as follows.

First, assume that f, > 0. Then (f,, #,) is a non-negative martin-
gale, by Proposition 3-17, which must converge a.e. to a finite value
depending on w. Since by hypothesis these values must be in § for
a.e. w, the process {f,} almost surely stops. Next, if {f,} is bounded
below, apply the result for non-negative martingales to f, plus a
suitable constant. Finally, if f, < ¢, apply the result for {f,} bounded
below to {—f,}.

These results are used in the next section in Examples 1 and 4. In
Example 1 a fair game is stopped when it leaves a certain finite set,
whereas in Example 4 it is stopped when a positive value is reached for
the first time. By the above argument these random times are
stopping times.

Proposition 3-18: Let £, C #, C -.- be an increasing sequence of
partitions and let £* be the smallest augmented Borel field containing
the field | £,*. Let f be a random variable measurable with respect
to #£* and having finite mean, and set g, = M[f | #,). Then (g,, Z,)
is a martingale, and

lim g, =f
almost everywhere.

Proor: We may assume that f > 0 since the general case follows by
considering f* and f- separately. Then g, > 0 and M[|g,|] =
M[f] < oo by conclusion (2) of Proposition 3-3. Since, in addition,

M[gn+1 t e%n] = M[M[fl ,@"+1] l ‘%n]
M[f| #,] by (1) of Proposition 3-3
= gn’
we see that (g,, #,) is a non-negative martingale. By Corollary
3-13, g = lim g, exists a.e. We shall prove that g = f a.e.

First we prove that the g, are uniformly integrable. Let ¢ > 0 be
given. Choose, by Proposition 1-47, 6 > 0 small enough so that

w(E) < 8 implies fE fdp < e. Now
Nu({g, = N}) < M[g,] = M[f]

ullg, = Ny = 1L

%

or
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Choose NV large enough so that the right side is less than 8. Then for
all n we have

fdp < e.

{€, =N}
Since

g.dp = f fdu
{8, =N} {8n =N}

by Lemma 3-6, we conclude the g, are uniformly integrable.
Let E be any subset of #,*. For m > =,

f Endp = f fdp.
E E

By uniform integrability and Proposition 1-52,

limf g.du = f gdu.
m E E

[ tw= [ et
E E

for all £ in | #,*. The two sides of this last equation, considered as
set functions, are equal on | j #,*. By the uniqueness half of Theorem
1-19 they must be equal on #£*. That is, f and g are measurable with

respect to #£* and satisfy
f fdu = f gdu.
E E

Taking E successively to be the set where f > g and the set where
f < g and applying Corollary 1-40, we find that f = g a.e.

Therefore

5. Examples of convergent martingales

Four examples will serve at present to illustrate Theorems 3-12 and
3-15. Each of the first three refers to the correspondingly numbered
example in Section 2.

ExampLE 1: The sequence {s,} of nth partial sums of the independent
random variables y, forms a martingale if M[y,] = 0. Suppose the y,
have identical distributions and mean zero, suppose they assume only
the values 0, 1, and - 1, and suppose that the process is stopped when-
evers,(w) = Mors,(w) = —N. (Mean zero implies that the outcomes
+1 and —1 are equally likely.) The player of the fair game is ruined
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if s,(w) ever equals — N and he breaks the bank if s,(w) = M. Set

p = Pr[player breaks the bank]
and
g = Pr{player is eventually ruined].

By the remarks following Proposition 3-17, p + ¢ = 1. In this
situation, Corollary 3-16 applies and
0 = M[so] = M[s;] = p-M + q(—N)
=pM + (1 — p)(—N)

or
_ N
P=¥nN
and
_ M
CA 7 A

ExampLE 2: With the particle moving on the line, suppose there is an
r > 0 which is a root of the equation f(s) = 1. We shall assume that
r < 1. Then {r*} is a non-negative martingale, and by Corollary 3-13,
{r*s} converges to a limiting function a.e. Since z, is integer-valued,
this convergence means either

(1) for almost all w, there is an N such thatif n > N, thenz, = xy, or
(2) lim z, = +o0.

Now zy = 2y, = Zy,o =+ = Zy,, means that the particle fails to
move for k consecutive steps. Since such a thing happens with
probability p,* < 1, the probability that x, = xy for all » > N is
zero. Thus case 1 is eliminated, and we have established that lim z, =
+o0 a.e. That is, for any k and for almost all w, x,(w) = k for only
finitely many n.

ExampLE 3: When the f,’s are the difference quotients of a monotone
function f, the pair (f,, #,) forms a non-negative martingale. By
Corollary 3-13, f, converges to a limiting function at almost all points.
The limiting function will turn out to be the derivative of f. However,
our argument considered only nested partitions, and hence it provides
only part of the proof of the existence of f” a.e.

Next we consider an example where Theorem 3-15 is not applicable.
ExampLE 4: Suppose that a player plays the fair game of Example 1

and that he stops the first time that he is ahead. The process is
stopped when s, (w) = 1. We have already seen that this is a stopping
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time. Then s, = 0, and s, = 1 a.e. Hence M[s;] = 0 # 1 = M[s,].
Why is the theorem not applicable? Condition (1) is clearly satisfied.
However,

0= fsndy = j s du + f s du.

{t=n} {t>n}

The first term equals the probability that 1 has been reached and tends
to 1. Hence the second term tends to —1, not to 0. Thus condition
(2) is violated.

In practice this gambling strategy cannot be implemented, since the
gambler would need infinite capital to be able to absorb arbitrarily
large losses.

6. Law of Large Numbers

The Strong Law of Large Numbers, which may be derived from the
Martingale Convergence Theorem, is formulated as follows.

Theorem 3-19: Let {y,} be a sequence of independent identically
distributed random variables with finite mean ¢ = M[y,]. If s, =
Yy + -4 Y and s* = Sn/’n, then

Pr[lim s,* = a] = 1.

We shall prove the theorem for the special case where the random
variables have finite range; say, Pr(y, = j] = p, for a finite number of
j’s.  For more generally applicable proofs the reader is referred to the
bibliography. (See Feller [1957], pp. 244-245, for an elementary proof
in the case y, is denumerable-valued; and see Doob [1953], pp. 334-342,
for a general proof using the Martingale Convergence Theorem.)

We introduce a useful tool, the generating function

= ZP:"”-
7

It is a well-behaved function.satisfying ¢(1) = 1 and ¢'(1) = a. Let
tk
"0k

for some ¢ > 0 to be specified. ~We shall show that {f(s,, n)} is a mar-
tingale. The conditional mean of f(s,,,,» + 1) givens, = k is

ij'tk+j zpz 44
j

O T flk,n)--2

f(k,n) =

"‘f fsn’n)
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Since M[f(sy, 0)] = 1 < 0, {f(s,, »)} is a martingale, and it is clearly
non-negative. Thus, by the Martingale Convergence Theorem,
f(sn, n) converges to a finite limit a.e., where

f (80, m) = t[p(t)" = [t%°/p(t)]"

Fixe > 0,let b = a + ¢, and form the function g(¢) = t°/p(t). Since
g(1) = land g’'(1) = b — a > 0, we have g(t,) > 1 for some sufficiently
small £, greater than 1. If s,*(w) > b, we have

[£o™*/p(t)] = g(to) > 1,

and hence if s, *(w) > b for infinitely many =, then f(s,(w), n) has a
subsequence tending to +oc0. By the convergence of f, we conclude
that

limsup s,*(w) < b =a + ¢

a.e. Similarly, by choosing a suitable ¢ < 1 we would find that
lim inf s, *(w) = @ —~ ¢

a.e. Since e is arbitrary, s,* converges to a with probability one.

7. Problems

1. Show that if {f,} are denumerable-valued independent random variables,
then
M[fn+1 l f0 Ao A fn] = M[fn+1]~
Show also that
Prife Ay A fied; A---Af,ed,] = Pr[fye 4] - - - -Pr[f, e 4,].

2. Let {f,} be a sequence of denumerable-valued independent random
variables and let {g,} be a sequence of Borel-measurable functions
defined on the real line. Show that {g,(f,)} is a sequence of independent
random variables. If the f, are identically distributed and all the g,’s
are equal to g, show that the g(f,)’s are identically distributed.

3. Verify that Examples 2 and 3 of Section 2 are martingales.

4. Prove thatif (f,, Z,) and (g,, #,) are martingales, then sois (f, + g,, Z,).
Does the same hold for (f,g,, Z,)?

5. Prove that if (f,, #,) and (g,, #,) are non-negative supermartingales,
then so is (min (f,, g,), Z.).

6. Prove that if (f,, #,) is a martingale, then (|f,|, #,) is a submartingale.
If the f, form a martingale on their cross partitions, do the |f,| form a
submartingale on their own cross partitions?

7. Let (f,, #,) be a submartingale. Prove that, for any ¢ > 0,
¢Pr [max f, > c] < M[|f,|1.

i<n

[Hint: Take as stopping time the first time ¢ is surpassed, or n, whichever
comes first.]
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8. Prove that every submartingale can be written as the sum of a martingale
and an increasing submartingale. [Hint: If (x,, #,) is given, put
fO = 0’ fn = M[xn | gn—l] —Xp-1 2y = fO +- 4+ fm and Yn = xn_zn']

9. Consider the following stochastic process: A white and a black ball are
placed in an urn. One ball is drawn, and this ball is replaced by two of
the same color. Let f, be the fraction of white balls after n experiments.
(a) Prove that {f,} is a martingale.

(b) Prove that it converges.

(c¢) Prove that the limiting distribution has mean 1.

(d) Prove that the probability of ever reaching a fraction $ of white
balls is at most 2. [Hint: Use Problem 7.]

10. We consider an experiment with each outcome one of two possible out-
comes HorT. We have two different hypotheses 4 and B as to how the
underlying measure for a stochastic process should be assigned. For a
given sequence HHT...H we denote by p,(HHT...H) the assignment
under hypothesis 4 and by r,(HHT...H) the assignment under
hypothesis B. Let f, be defined by

pa(HHT. . .H)
r.(HHT...H)

(a) Show that if the measure is defined by hypothesis B, then {f,} is a
martingale and hence converges a.e.

(b) Specialize to the case of tossing a biased coin. Let hypotheses 4
and B be that the probability of heads is, respectively, p and r.
Show that if the measure is defined by hypothesis B, then {f,}
converges to 0 a.e. if p # 7.

f(HHT.. H) =

Problems 11 to 13 concern a type of stochastic process employed by psychol-
ogists in learning theory. The state space consists of the rational points on
the unit interval, and we are given two rational parameters, 0 < b < a < 1.
From a point z the process moves to bx + (1 — a) with probability z, or to
bz with probability 1 — z. It isstarted at an interior point z,.

11. Show that if b = a, then {z,} is a martingale.

12. Prove that the process converges either to 0 or to 1, and compute the
probability of going to 1 as a function of the starting position «,.

13. Show that if b < a, then {z,} is a supermartingale and the process
converges to 0 a.e.

Problems 14 to 18 concern the notion of conditional mean given a Borel
field and show how it generalizes the notion of conditional mean given a
partition. It will be necessary to know the Radon-Nikodym Theorem to
solve Problem 14. Let (2, %, u) be a probability space in which every
subset of a set of measure zero is measurable.

14. If f is a random variable such that M[|f|] < oo and if & is a Borel field
contained in &, show that there exists a function M[f | ] defined on £
satisfying

(i) M[f| 4] is measurable with respect to ¥’, the augmented field
obtained from %.

(ii) If G'is a set in &, then [ fdp = [ M[f | F]dp.
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15.

16.

17.

18.

Show that M[f | 4] is unique in this sense: Any two functions satisfying
(i) and (ii) differ only on a set of u-measure zero. We can therefore
define any determination of M[f | ¢] to be the conditional mean of f
given 9.

Show that if ¢ is the Borel field generated by a partition %, then
M[f| 4] = M[f| #] a.e. Show that if ¥ = &, then M[f | ¥] = fa.e.
State and prove a result for these conditional means in analogy with
Proposition 3-3. [Hint: In (3), the condition that g be constant on cells
of # should be replaced with the condition that g be measurable with
respect to ¢.]

Generalize the definition of martingale in Definition 3-5, using these
conditional means. Verify that the statements and proofs of Lemma 3-6,
Proposition 3-7, Lemmas 3-9 and 3-10, Proposition 3-11, Theorem 3-12,
and Corollary 3-13 apply with only minor changes to this generalized
notion of martingale. Perform the same verification for Lemma 3-14,
Theorem 3-15, Corollary 3-16, and Proposition 3-17.

Prove the following generalization of Proposition 3-18: Let ¥, C ¢, C ...
be an increasing sequence of Borel fields in %, let ¥ be the least Borel
field containing | J %, and let f be a random variable with M[|f|] < co.
Then (M[f | %,], ¢,) is a martingale, and

lim M[f| ¢,] = M[f | 9]

n— o



CHAPTER 4

PROPERTIES OF MARKOV CHAINS

1. Markov chains

During all of our discussion of Markov chains, we shall wish to
confine ourselves to stochastic processes defined on a sequence space.
We have shown that an arbitrary stochastic process may be considered
as a process on a suitable £ in which the outcome functions f, are
coordinate functions. We see, therefore, that in a sense no generality
is lost by discussing Markov chains in terms of sequence space.

Definition 4-1: Let (2, 4, u) be a sequence space with a denumerable
stochastic process {z,} defined from 2 to a denumerable state space S
of more than one element. The process is called a denumerable
Markov process if

Prla,,1 = Cp1 | @0 =Co Ao ATy g =Cuiy AT, = )
= Pr[xn+1 = Cpy1 | Ty, = Cn]
for any » and for any ¢, . . ., ¢, ., such that
Pr{zy =co A+ Az, =¢,] > O.

The condition that defines a Markov process is known as the Markov
property. If a denumerable Markov process has the property that for
any m and n and for any ¢,, ¢,,,; such that Pr[zx, = c,] > 0 and
Pr[z, = ¢,}] > 0,

PII[xn+1 = Cp41 | x, = cn] = PI'[xm+1 = Cpt1 | Ty = cn]

holds, then the process is called a denumerable Markov chain. The
condition that defines a Markov chain is called the Markov chain

property.

All Markov chains that we shall discuss will be denumerable. From
Proposition 2-8 we immediately have the following result.
79



80 Properties of Markov chains

Proposition 4-2: The measure on the space for a Markov chain is
completely determined by

(1) the starting probabilities, Pr[z, = ¢], and
(2) the one-step transition probabilities, the common value of
Pr(z,,, = j |z, = ] for all » such that Pr[z, = ¢] > 0.

If S is the set of states for a Markov chain, we customarily denote
representative elements of § by i, 4, k, ..., and 0. For any Markov
chain we define on the set § a row vector = and a square matrix P by

m = PI‘[CEO = i],
P, =Prlx,,qy =j|x, =1), where Prlz, =1] > 0.

The vector = is the starting distribution, and the matrix P is the
transition matrix for the chain. They satisfy the properties = > 0,
71 =1,and P > 0. If Pr[z, = 7] = O for all n, then the sth row of
P is not covered by the above definition, and we shall agree to take
P;; = 0 for all j in this case.

The definition of P implies that, for each i, (P1); = 1 or 0. It will
be convenient, however, to think of Markov chains from a point of view
which allows P to be any matrix with P > 0 and P1 < 1. To do so,
we shall admit the possibility that some of the paths in the sequence
space are of finite length. Intuitively a path of finite length is one
along which the Markov chain can ““disappear’; the process disappears
from state ¢ with probability 1 — (P1),. Mathematically paths of
finite length can be introduced as follows: Suppose a Markov chain with
state space S has a distinguished state 0 for which =, = 0 and Py, = 1.
We shall sometimes identify entry to state 0 with the act of disappearing
in a process with state space § — {0} which also will be called a Markov
chain. The transition matrix for the new Markov chain is the same as
the original one except that the Oth row and column are omitted. Any
path in the original process which has 0 as an outcome is now thought of
as a path of finite length which terminates before the first occurrence of
0. The original process can be recovered from the new process by
re-introducing state 0 to the state space and by requiring that the
transition probabilities to state 0 in the original process be the same as
the probabilities of disappearing in the new process. With these con-
ventions a Markov chain determines a vector = and a matrix P with
720,71 =1 P > 0,and P1 < 1.

Conversely, if = is a row vector defined on 8 for which = > 0 and
71 = 1 and if P is a square matrix defined on S for which P > 0 and
P1 < 1, then m and P define a unique Markov chain with state space 8
by Theorem 2-4. If (P1); < 1, then the process has positive probability
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equal to 1 — (P1); of disappearing each time it is in state j. Whenever
convenient, the act of disappearing may be thought of as entry to an
ideal state adjoined to S.

Any state ¢ of a Markov chain P for which P; = 1 is said to be an
absorbing state. If outcome 7 occurs at some time, the process is said
to enter the absorbing state and to become absorbed. It is easily seen
that once the process has been absorbed, it is impossible for it to leave
the absorbing state.

If P is a Markov chain with starting distribution = and if ¢ is a state-
ment about the process, we denote the probability of ¢ by Pr [¢]. If

_ (1 when k =1
Tk =10 otherwise,

we may alternatively write Pr[g]. Similarly if f is a random variable,
we write M_[f] or M|[f], depending on the starting distribution. With
this notational convention, we are free to discuss a whole class of
Markov chains at once. The class contains all chains whose transition
matrices are some fixed matrix P, and two chains of the class differ
only in their starting distributions. Most of our treatment of Markov
chains will be on this more natural level, where a matrix P, but no
distribution =, is specified.

We conclude this section with a simple but useful proposition. Its
proof is left to the reader.

Proposition 4-3: If P is a Markov chain, then for n > 0,

Prjfx, = j] = (P")y
and
Pr,[z, = j] = (=« P"),

We shall use the notation P{P for (P"),;, the n-step probability from
¢ to 7.

2. Examples of Markov chains

We give ten examples of Markov chains; we shall refer to all of them
from time to time.

ExampLE 1: Weather in the Land of Oz.

The Land of Oz is blessed by many things, but good weather is not
one of them. They never have two nice days in a row. If they have a
nice day, they are just as likely to have snow as rain the next day.
If they have snow (or rain), they have an even chance of having the
same the next day. If there is a change from snow or rain, only half of
the time is this a change to a nice day.
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The weather is conveniently represented as a Markov chain with the
three states § = {Rain, Nice, Snow}. The transition matrix becomes

R N S

R /¢4 t 1
P=N {1 o %
s \F & 3

ExampLE 2: Chain with a set of states £ made absorbing.

Let P be an arbitrary Markov chain with S the set of states. Let a
subset E of S be specified. We modify the original process by requiring
that if the process is ever in a state j of £, it does not leave that state.
The new process is also a Markov chain; its transition matrix P’ differs
from the P-matrix in that P); = 1 and Pj; = 0 for every j € K and for
every 7 # j. The new process is called the chain with E made
absorbing.

ExampLE 3: Finite drunkard’s walk.

A drunkard walks randomly on a street between his house and a
lake, starting at a bar in the middle. He has some idea of which way
is home. The steps along the way are labeled by the integers from 0
to n; the bar, some integer 7 between 0 and =, is the starting state, and
the drunkard moves one step toward home (state n) with probability p
and one step toward the lake (state 0) with probability ¢ = 1 — p.
States 0 and n are absorbing. We assume that p # 0 and p # 1.
The transition matrix is

01 2 3 n—1 n

0 1 0 0 0 0 0

q 0 p O 0 0

P= 2 0 g 0 » 0 0
n—1%}%Y0 0 0 O 0 P

n 0O 0 0 0 1

The reader should verify that if p = }, then {z,} is a martingale and
that if p # 1, then {(¢/p)*} is a martingale.

ExampLE 4: Infinite drunkard’s walk.

For this process, which is an extension of the one in Example 3, the
states are the non-negative integers, and state 0 is absorbing. For
each 7 > 0, we have

Piiwi=p Py1=¢ and p+gqg=1
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We assume p # 0 and ¢ # 0. The transition matrix is

01 2 3
0,1 0 0 O
P= 1[q 0 p O
210 ¢ 0 p

If p = }, then {z,} is a martingale, and if p # }, then {(¢/p)*} is a
martingale.

ExampLE 5: Basic example.

A sequence of tasks is to be performed in a certain order, each with
its own probability of success. Success means that the process goes
to the next state; failure means that the process must start over at state
0. Thus the states are the non-negative integers, and with each
positive integer ¢ we associate two probabilities p; and ¢; such that
p; + ¢; = 1. The value p; is the transition probability from state
¢ — 1 to state 4, and g; is the transition probability from state ¢ — 1 to
0. Thus p; is the probability of succeeding in the ¢th task. We
assume that p; < 1 for infinitely many ¢, and we normally assume that
p; > 0 for every ¢. The transition matrix is

o 1 2 3

0 s¢s p 0 O

P= 1[q 0 p, O
219 0 0 pg

In connection with this example, we define a row vector 8 by

Bo=1
Bi=k1ilpk'

Then B, is the probability of ¢ successes in a row after the process starts
at 0. The reader should verify that a necessary and sufficient condition
for B = BP is that lim,,, B, = 0. This Markov chain will be referred
to hereafter as ‘“the basic example.”

ExampLE 6: Sums of independent random variables.
The states of a Markov chain P are the elements of an index set I on
which an operation of addition is defined in such a way that I becomes
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an abelian group. A probability distribution {p;} defined on I satisfies
p; = 0and 3 p, = 1. The Markov chain P is defined by p;; = p,_,.
The name of this Markov chain is derived from thinking of per-
forming independent experiments which have probability p; of outcome
t. The states of the chain are the partial sums of these results, and
the sum changes from ¢ to j with probability P, ;,, = p. if j = ¢ + k.
For the case in which the index set I is the set of integers with the
usual concept of addition defined on them, martingales arise as in
Example 1 of Section 3-2. We shall apply these ideas in Chapter 5.

ExampLE 7: Two classes of random walks.

We shall be concerned especially with two kinds of random walks.
The symmetric random walk in n-dimensions is defined to be a sums of
independent random variables process on the lattice of integer points
in m-dimensional Euclidean space. The transition probability from
one lattice point to another is (2r)~?! if the two points are a Euclidean
distance of one unit apart; the transition probability is zero otherwise.
Thus, from each point the process moves to one of 2n neighboring
points with probability (2n)~1.

A second kind of random walk with which we shall be concerned is a
sums of independent random variables process on the integers with
P,;,, =pand P,; ; = qfor every :. We shall call this process the
p-q random walk. If p = q = }, then {z,} is a martingale, and if
p # 3}, then {(¢/p)*~} is a martingale.

ExamMPLE 8: General random walks on the line.

The state space for a random walk on the line is the set of integers,
and for each integer ¢, three probabilities p,, ¢;, and r; with p; + ¢; +
r, = 1 are specified. A Markov chain is defined by

Piivi=m
P, ,=q
Py =r.

The drunkard’s walk and the p-¢ random walk are both special cases.

An important case of random walks on the line which we have not
discussed yet is the reflecting random walk. For this chain the process
is started at a state which is a non-negative integer, and the assumption
is made that ¢, = 0. The process never reaches the negative integers,
and the state space may just as well be taken as {0, 1, 2,...}.

ExampLE 9: Branching process.
The state space is the set of non-negative integers, and a fixed
probability distribution p = {p,, P, ps, . . .} is specified. Suppose the
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mean > kp, of pis m. Let {y,} be a sequence of non-negative integer-
valued independent random variables with common distribution p, and
set s, =y; +---+ ¥,. Let p;” = Pr[s, = j]. Then the branching
process is defined to be a Markov chain with transition probabilities
P, = p®.

The usual model is the following. A species of bacteria has the
distribution p representative of the number of offspring one such
bacterium has before it dies. The value of y, represents the number of
offspring the kth bacterium has while it is alive, and s, represents the
total number of bacteria produced by n bacteria in one generation of
the colony. The rth position, a,, of the stochastic process is the
number of bacteria in the rth offspring generation.

As we have noted, the branching process is a Markov chain. Let
{x,} be the outcome functions for the chain started in state 1 (that is,
with one bacterium in the colony initially), and suppose the mean m is
finite. Then {x,/m"} with its natural partition forms a martingale.
The reader should verify that M[|x,/m"|] is finite; we shall show that
Mz, /m™* Y | 2y fm A - A 2,/m™] = z,/m". First we note that

M[s,] = > Mly;] = nm,
so that if we know that the process is in state r, then the mean state
that it is in after the next step is rm. Then
1\{‘:xn+1/'m’n+1 | xl/m A A xn/mn]
= M[x,,,/m"*! | x,/m"] by the Markov property
= M[xn+1/mn+1 | ]
(l/m"“)M[an l xn]

= (1/m"*z,m by the remarks above

Il

= x,/m"

ExampLE 10: Tree process.

Let {x,} be a denumerable stochastic process defined on sequence
space, and let S be the set of states. Define a set T to be the set of all
finite sequences of elements in §. Define a new stochastic process as
follows: If ¢t and u are elements of T' for which

t = (Cgy €1y Cgy -+ -5 Cy)
and

% = (Cy, C1»Cas -3 Cny Crr1)s
define

Pr{yniy = | Yo = ] = PrfZsy = oy | @ = Co A+ A Ty = €],
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The process {y,} defined from the same space to the set T is a Markov
chain; the entire history of the original process up to time 7 is con-
tained in the knowledge of the value of the nth outcome function y, for
the new process.

An example of a tree process is obtained by considering anindividual’s
voting history in successive years. Letting D and R represent the
political parties, we see that his possible histories can be conveniently
represented as a tree:

RR

R/ RDR
RD/
Start< \ \

RDD
DR
D/
D

The chain is in each state—D, R, DD, DRR, etc.—at most once.

3. Applications of martingale ideas

Let P be the transition matrix for a Markov chain. A column vector
J is said to be a P-regular function, or simply a regular function, if
f = Pf. The function is superregular if f > Pf; it is subregular if
f =< Pf.

The reader should convince himself that the regularity of a function
is a condition of the following form: At each point of the domain, the
value of the function is equal to the average value of the function at
neighboring points. By neighboring points we mean those states that
it is possible for the process to reach in one step, and by average value
we mean the average obtained by weighting the function values at
neighboring points by the transition probabilities to those states. A
function f is said to be regular at a point j if f; = (Pf),.

Regular measures may be defined analogously with regular functions.
A non-negative row vector = is a regular measure if 7 = #P; it is
superregular if = > 7P and subregular if » < 7 P.

Let » be a P-regular function and let A(x,) denote A, if x, = j.
Suppose M[|A(x,)|] is finite. We shall show that (k(z,), #,) is a
martingale, where %, is the cross partition £% @ Z* Q- - Q A=
determined by the outcome functions z,, z,,..., x, for the Markov
chain. It is sufficient to show that

M[k(xn+l) ] Zo A A xn] = h(@n)
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On the cell of the cross-partition where x, = ¢,..., z, = j and where
Prlzg =4 A---ANz, =3]>0,

M[h(xn+1)lx0 A A xn] = M[h(xn+1)|x0 =t A A £2% =J]
=2Pr[xn+1=k|x0:i/\'”/\ xn=j]'hlc
k

= Z Pk, by the Markov chain property
P

= h; since A is regular
= h(z,).

Thus (k(x,), #,) is a martingale. Similarly, superregular functions are
associated naturally with supermartingales and subregular functions
correspond to submartingales. The proofs differ from the above proof
only by insertion of the appropriate inequality sign in the next to the
last step.

Most of our applications of martingale ideas we shall leave to the
next few chapters. We shall, however, settle some things about
branching processes at this time. Let {x,} be the outcome functions
for a branching process started in state 1, and suppose the mean
m = > kp, is finite. As we noted in Section 2, {x,/m"} forms a non-
negative martingale, which by Corollary 3-13 converges almost every-
where to a finite limiting function g. One can show that ¢ is not a
constant function; that is, the value of the limit of {x,(w)/m"} very
much depends upon the early history of the path. The exact distri-
bution of g, however, is an unsolved problem.

On the other hand, information about whether the process dies out
(by being absorbed at state 0) is not hard to obtain. Let ¢(s) =
>, p;8 and suppose r = ¢(r), r = 0, and r # 1. Then {r*} is a non-
negative martingale. First suppose r > 1. Since {r*»} is a non-
negative martingale, it converges to a finite limit almost everywhere,
and since r > 1, z, itself converges with probability one. Since x, is
integer-valued, z, is constant on almost all paths from some point on.
It is left as an exercise to show that the constant must be zero and that
the process therefore dies out with probability one. Next suppose
r < 1. Then {r*:} is bounded and converges almost everywhere to a
limiting function r*=, which must be 0 or 1 (that is, z, = oo or 0)
almost everywhere. By dominated convergence we have

r = M[r%] = M[r*=] = 1-Pr[process dies out]
+ 0-Pr[process does not die out],

so that r is the probability that the process dies out in the long run.
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Finally, suppose r = 1 is the only non-negative root of s = ¢(s).
Then m = 1 and {z,} is a non-negative martingale. Once again we
must have x, — 0 with probability one, and the process is almost
certain to die out.

The reader should notice that the case r = 1 has the property that
M[x,] = 1 for all », whereas M[lim z,] = 0. The process in this case is
an example of a fair game whose final expected fortune is strictly less
than the starting fortune.

4. Strong Markov property

The strong Markov property is a rigorous formulation of the following
assertion about a Markov chain: If the present is known, then the
probability of any statement depending on the future is independent
of what additional information about the past is known. In this
section we shall state and prove this result; our procedure will be first
to prove a conceptually simpler special case and then to obtain the
general theorem as an easy consequence. In the special case the time
of the present will be a fixed time n, whereas in the general case the time
of the present will be allowed to depend on the past history of the
process. That is, the time of the present will be a random time.
Knowledge of the present, then, means knowledge of the outcome at the
time of the present.

If w=1(cp€1,€0--.,Cn_1,CpCrys1,--.) I8 & point in a sequence
space, we agree to call the path

(cm Crns1s-- )
by the name w,.

Lemma 4-4: Let {p,} be a sequence of statements whose truth sets
are disjoint in pairs, let \/ p, be their disjunction, and suppose
Pr(V p,] > 0. If pis a statement for which Pr(p | p,] = ¢ whenever
Prp,] > 0, then Pr(p |V p,] = c.

Proor: For each £k,
¢-Pr(p,] = Pr[p A pi].
Thus
Cz Pr(p.] = z Pr{p A pl.
% P

Since the p, are disjoint statements, it follows from complete additivity

that 3 Pr[p,] = Pr[V p.] and that 3 Pr[p A pc] = Pr(p A (V pJ)]
Thus ¢ = Pr[p A (\V pi)1/Pr[V pi] and the lemma follows.
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Throughout the remainder of this section let (2, #, u) be a fixed
sequence space and {z,} a fixed denumerable Markov chain defined on
2. The field of cylinder sets will be denoted by %, as in Section 2-1,
and the smallest Borel field containing # will be called %.

Definition 4-5: The tail-field 7, is the smallest augmented Borel
field containing all truth sets of statements x, = c, A -+ A 2, = ¢y,
m>=mn [ThusS,=Hands, CT,_,]

A statement relative to the field %, defined in Section 2-1 is one whose
truth set depends only on outcomes x, ..., x,, whereas a statement
relative to 7, is one whose truth set does not depend on outcomes
Xy, - -+ Xn_1- Specifically, aset Rin £ isinJ , if and only if, whenever
w € B and v’ is such that v, = w,, then o’ € R.

We note that the class of sets 7, N #, being the intersection of
fields, is again a field. Moreover, .7, is the smallest augmented Borel
field containing I, N &, so that the uniqueness statement of Theorem
1-19 applies: A probability measure on .S, is completely determined by
its values on I, N %.

Lemma 4-6: Let {,} be a Markov chain with starting distribution =,
let ¢ be a statement relative to % ,_;, let » be a statement relative to
T n+1 N Z,and suppose Pr [¢g A x, = ¢] > 0. Then

Prfr|q A x, = i] = Pr,[r |z, = i] = Pr,[r'],
where 7’ is so chosen that w € R if and only if w, € R’.
REMARK: Such an ' exists (and is unique), since r is a statement
relative to 7, ., N F.
Proor:

Case 1:risof theformz,,, = j. Write q as a disjunctiong = V ¢,
where
Im: %o = c:)'") AN Ny = Cg;m-)l-

For each m such that Pr,[g, A x, = ¢] > 0,
Prr|gn A2, =0 =Prfa,,; =j|qn A 2, =1] = Py
by Definition 4-1. Hence, since Pr (¢ A x, = i] > 0,
Prjr|q A 2, = i] = Py = Prjlr |z, = 1]
by Lemma 4-4. Taking »" as x; = j, we have

P;; = Prz, =j] = Prjr]
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Case 2: r is of the form z,,, = ¢y 1 A" A Ty = Cp, m > n. We
have

Pr,[r|q A x, = 1]
= Prjfz,,, = ¢hi | q Az, =1]
X Prof#y o = Cosa | g A Ty =0 A Zpyy = Crail
XX Pryjfag =cp|lgAT, =0 A AZp_y=Cp_ql

The general factor on the right is

Prn[xn+k+1 = Cntk+1 | qANx, = tA---A Lot = cn+k:]'

First, suppose that none of these factors is zero. Then we may apply
Case 1 with » + k in place of n and ¢ A &, =T A - A Zpyp_{ =
€n+x—1inplace of ¢. The ¢’s drop out of the conditions, and the product
of the new conditional probabilities is Pr,[r | z, = {].

Next, suppose that at least one of the factors is zero; let the first
such factor from the left be

Prn[xn+k+1 = Cnsk+1 | q N Z, = TA A Lotk = Cn+k]'
We must show that Pr,[r |z, = i] = 0. If k£ = 0, then by Case 1
0= Prn[xn+1 = Crt1 [ qnx,= /‘] = Prn[zn+1 = Cpy1 1 Ly = @]’
and hence Pr,[r |z, = i] = 0. Ifk > 0, then
Profg An =0 A A Zpypoy = Cryr-1] > 0,

and Case 1 gives

0 = Pr[2, 041 = Crsrsa l GqAZy=10N"" A Tpip = Cpyyl
= Profx, ki1 = Crirrr | Ty =0V A- N Tyyg = Copgl
Hence Pr,[r | , = i] = 0.
Finally 7’ is the statement x;, = ¢,y A -+ A Zp_, = ¢, and, since

Pr [x, = i] = Prylg A z, = 7] > 0, we have

Prfr|xz, =i =P P = Pr,[r'].

1.Ch 41 Cn+1:Cn+2 Cm - 1:Cm

Case 3: r is arbitrary in Z , ., N %. A general statement r reduces
to the denumerable union of the type statements in Case 2, and the
result follows from the complete additivity of the probability measure.

The lemma to follow is the strong Markov property for the case in
which the time of the present is a fixed time ».



4-7 Strong Markov property 91

Lemma 4-7: Let {z,} be a Markov chain with starting distribution 7,
let ¢ be a statement relative to %, let r be a statement relative to 7,
and suppose Pr[q A =, = ¢] > 0. Then

Prr|q A z, = 1] = Pr,[r |z, = ¢{] = Prfr],
where w € R if and only if w, € R'.

Proor: Write

¢=V@ =0 A ATy =y AT, =)
m
If we set ¢* =V, (®o =c™ A---A x,_; = c{™,), where the dis-
junction is taken over just those m such that ¢{™ = i, then

(q*Axn=i)E(qAxn=i)
and ¢* is a statement relative to &#,_,. In the special case where r is

relative to 7, N %, we may write

r=V@,=c™ A Axy=c) (IV fixed)
m
and

r* =V(xn+1 = Cp_1 A A Ty 20%"))
m

with the second disjunction taken over only those m such that ¢™ = .
Then
Prfr|q A @, = i] = Prir* | ¢* A , = il,

Pr,[r | x, = ] = Pr[r* | z, = 1],

and
Pr[r'] = Prj[r¥].
By Lemma 4-6,
Pr,[r* | ¢* A @, = 1] = Pr,[r* |z, = ] = Pr[r*].
Hence

Pr[r | q A x, = i] = Pr,[r |z, = i] = Prr'].

We have thus established the lemma for every r measurable with
respect to I, N F. But J, is the smallest augmented Borel field
containing J , N %, and by Theorem 1-19 any two measures on J,
which agree on 7, N % must agree on all of 7,. Thus

Pr[r|g A2, =3], Prjfr|z, =14, and Prfr],
which define such measures as r varies, are equal for every r measurable

with respect to 7 ,,.

Turning to the general case of the strong Markov property, let t be a
random time. We define w, pointwise to be w, at all points where
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t(w) = n. We do not define w, if t(w) = co0. Similarly the outcome
function z, is defined to be x,(w) if t(w) = =, and it is not defined for
t(w) = 0.

Definition 4-8: The field %, is the Borel field of all sets A such that,
for each n, 4 N{w | t(w) = n} is in F,. The tail-field J, is the
smallest augmented Borel field containing all truth sets of statements

Ty =C A A Xyip = Crp k> 0.

A statement ¢ relative to &, is one such that, for each n, the state-
ment ¢ A t = n depends only on outcomes z,,...,x,. A statement r
relative to .7, is one whose truth set does not depend on outcomes
before time t. Specifically, a set R in #isin.J, if and only if whenever
w € R and w’ is such that w; = w,, then v’ € R.

We state the strong Markov property as the next theorem.

Theorem 4-9: Let {x,} be a Markov chain with starting distribution
m, let t be a random time, let ¢ be a statement relative to &, let r be a
statement relative to J,, and suppose Pr g A «, = 7] > 0. Then

Pr,[r l q A (x, =1)] = Prr | x, = t] = Prr'],

where w € R if and only if w, € R'.

Proor: We shall prove the theorem for any statement » measurable
with respect to I, N %#. The theorem for general r will then follow,
as in the proof of Lemma 4-7, from the uniqueness half of Theorem 1-19.
Since x, # ¢ when t = o0, we have

GAra, =)=V @Az, =1At=n)
n=0

We are going to apply Lemma 4-4 with p the statement r, with p,, the
statement ¢ A xz, = 1 A t = n, and with ¢ the constant Pr,[»']. To do
80, we must show that

Prr|gAnx, =19At=mn]=Prr]
whenever Pr g A z, = ¢ A t = n] > 0, and we will have proved that
Pr,fr| g A x, =1] = Pr[r].

The fact that Pr,[r | #, = 7] equals both of these quantities will follow
by taking ¢ to be a tautology.

Thus we first note that ¢ A t = n is measurable with respect to % .
In addition there exists a statement 7 measurable with respect to 7,
such that

rAt=n)=(FAt=mn);
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this is so because r is the denumerable union of statements
Ty =C A A&y = Cups
and we may take 7 to be the same union over the statements
Tn =C A-- AN Zpyeny = Cap.
In this notation the statement ' is the union of the statements
g =C A"+ NZy=Cp,
and we have that w is in the truth set of # if and only if w, is in the
truth set of »'. Hence
PrrigAna,=tAt=n]=PrfrAat=n|qgAz,=1At=n]
=Pr[fAat=n|gAz,=0¢At=n]
= PrJf | (g A t =n) A 2, = 1]
= Pr,[f | z, = 1]
= PI"[T'],

the last two equalities following from Lemma 4-7.

An equivalent way of stating the first equality of the conclusion of
the preceding theorem is

Prg A r|x, =] = Pr,fg |z, = 3] Pr,fr |z, = 3].

This is the form in which the theorem asserts that if the present is
known, then the past and future are independent.

5. Systems theorems for Markov chains

As immediate consequences of the strong Markov property, we can
prove two systems theorems for Markov chains. The first states that
if p is a statement depending on outcomes only beyond some random
time t, then one may compute Pr,[p] as if the chain were started with
the initial distribution Pr [z, = j].

Theorem 4-10: Let {z,} be a Markov chain, and let p be a measurable
statement with truth set P satisfying

(1) Pr[p A (t = )] = 0, and
(2) there exists a statement p’ with truth set P’ such that if t(w) <
+00, then w € P if and only if w, € P’.
Then

Pr,[p] = D Pr,z, = k] Pr,[p’].

keS



94 Properties of Markov chains

Proor: By (1) we have
Pr.[p] = Z Prfjwe P A o, = k]
k

= > Prfw,e P’ A , = k]
k

= > Pra, = k] Pr,Jw, € P' |z, = k]
k

= z Pr [z, = k] Pr,[p’] by Theorem 4-9.
k

Theorem 4-10, which is a result about probabilities of statements, can
also be thought of as a result about means of characteristic functions.
Then Theorem 4-11 to follow becomes a straightforward generalization
to arbitrary functions.

Theorem 4-11: Let {x,} be a Markov chain, and let f be a random
variable satisfying

(1) Pr[f # 0 At =00] =0, and
(2) there exists a random variable f’ such that if t{w) < oo, then
f(w) = {'(w,).
Then
M,[f] = 2, Profe, = K] M,[F')

Proor: If f assumes negative values, we may prove the result for f+
and f- separately. We therefore assume f > 0. Let p,™ be the
statement j/2™ < f < (j + 1)/2™, for 1 < j < m-2™, let p,'™ be the
statement 0 < £ < 1/2™, and let p{™n be the statement m < f. Define
statements p;" similarly for f’. Then p,/ and p,™ satisfy the
hypotheses of Theorem 4-10, so that

Prp™] = > Prile, = k) Prp, "]
k

Hence
m2m .
Aﬂ—lm1Z:mPHWNﬂ
m =

m2m

= hm Z Pr [z, = k] z L Prpm™
“~o

mam

= Z Pr [z, = k]lim Z I — Pr,[p;'] by monotone convergence
k

m J 0
=;Pm@ k] M,[f'].

Il
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6. Applications of systems theorems

The theorems of Section 5 will play an important role in our study of
denumerable Markov chains. At this time we shall not illustrate the
full power of the theorems but shall be content instead to use them in
developing some of the machinery needed for the classification of states
in Section 7.

We begin by introducing some notation. Define

s [l ifi=]
%7 10 otherwise.

Let k; be the statement about a Markov chain that state j is eventually
reached. We have already defined the random variables n; and t; for
general stochastic processes (see Section 2-6); n; is the number of times
in state j, and t; is the time to reach state j. Let f{* be the statement
that t,(w) = k.

Confining ourselves to Markov chains, we associate the quantities
h,, 0, §;, and f{ with &), n;, t;, and f{. They are defined as follows:

hj: h, is true for w,
n;(w) = n(w,)
t(w) = tj(w;) + 1

_;-"): tj(w) = k.

In terms of these quantities, we define a collection of matrices. We
note that, in general, an expression of the form {M,[g,]} stands for a

matrix.
H i = Pr[h;]

Ny = Mjnj]

F{p = Prf{]

Hij = Pr,[ﬁj]

Ny = M@;]

Fp = Prf{].
It is trivial to verify that H; = 1, that F® = I, that F® = P — P,,,
and that N = I + N.

Proposition 4-12: If P is a Markov chain, then
N = > P

k=0

Proor: The result follows immediately from Propositions 2-10 and 4-3.
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Proposition 4-13: If P is a Markov chain, then N = PN and
N =1+ PN.

Proor: The second identity follows from the first by adding I to
both sides. To obtain the first one, we apply Theorem 4-11 with
f =mn; and the random time identically one. Then f’ = n; since
n;(w) = n;(w,) by definition, and thus

Mjn,] = kz Prjz; = k] My[n,]
= Z Py My[n,]

or _
N = PN.
Proposition 4-14: If P is a Markov chain, then

H= 3% F® H= kzl F®, and H = PH.

k=0

Proor: The first two assertions follow from the complete additivity
of u; we have h; = \/ f% and k; = \V/ f%® disjointly. For the third
assertion we apply Theorem 4-10 with p = A; and the random time
identically one. Then p’ is the statement %; and

H,; = Prp] = Z Prz, = k] Pr,[p’]

= z P ikH kj*
k
Proposition 4-15: If P is a Markov chain, then
Ny = H;N,
N i = HUN i

Ny=1+ H,N,.

Proor: The third assertion follows from the second and the identity
N =1 + Nwithj = 4. For the first assertion we apply Theorem 4-11
with f = n; and the random time equal to t;. It is clear that nj(w) =
n;(w,) if tj(w) < oo. Therefore f* = n;, and

Ny = Mn] = Z Pri[xt, = k] My[n,]
k
= Pri[xt, = j1 M[n,]
= Prift; < co] M;[n,]
=H u‘N IZE
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Similarly, for the second assertion we apply Theorem 4-11 with f = 1,
f' = n;, and the random time equal to t;. By the same kind of
argument, we find

Mn,] = H,; Mj[n;].

Proposition 4-16: Let p be the statement that a Markov chain reaches
state j and then state k with j # k. Then Prp] = H;H,,.

Proo¥r: In the notation of Theorem 4-10, if t, is taken as the random
time, then p’ is the statement A,. The theorem applies and

Prp] = > Prjx, = m] Pr,[p']

= Pri[xt, = J] Pr,[h]
= H;H,,.

In our discussion of Markov chains, we shall make frequent use of
the following notational devices. Let k and j be states of a Markov
chain. By *n;(w) is meant the number of times on the path w that
the process is in state j before (and not including) the first time
that the process is in k. We define *ni; as the number of visits to j
before the process reaches k after time 0. Notice that ‘n;(w) = 0, but
M (w)is 1if wstarts with j. For fixed k we introduce the corresponding
matrices *N and N by

Ny = M*n;(w)],
“Nyi; = M[*h(w)].
They are related as follows:
Ny = 8; + M{*n(w,)].
We further define *H,; to be the probability of hitting j before £,
having started in ¢; ¥H,; is the probability of hitting j before hitting k
after time 0, having started in 4.

We will later want a more general notation than *n,(w). By
En;(w) we shall mean the number of times on the path w that the
process is in j before it is in any state of the set E. It is sometimes
convenient, in this connection, to think in terms of the modified chain
in which the states of E have been made absorbing. Again we have
matrices N, and we also introduce the matrices ZH and £H analogously.

If E is a subset of the set of states S for which neither E nor £ is
empty, we shall decompose the P matrix into

E E

E (T U
P =
sln o
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according to the method discussed at the end of Section 1-1. If 4
is an arbitrary matrix indexed by the set S, we write 4. for the restric-

tion of A to a matrix indexed only by E. As an example, we note
that P, = T.

7. Classification of states

We introduce a partial ordering on the states S of a Markov chain P.
Two states ¢ and j are said to be R-related, written R(s, j) if H,; > 0,
that is, if it is possible to reach j from ¢. If R(s, j) and R(j, ¢), we say
that ¢ and j communicate and write ¢ ~ j. To see that R is a partial
ordering, we note that

(1) H; = 1 > 0so that R(3, 7).
(2) If R(s,j) and R(j, k), then R(i, k) because H,, > H,H, > 0
by Proposition 4-16.

The reader should verify that ~ is an equivalence relation.

The relation ~ therefore partitions the states of S into equivalence
classes within the ordering, and movement from state to state is within
a class or upward through the ordering. We do not assert the existence
of maximal classes; we shall see an example later where no maximal
classes are present. (The reader should then be able to exhibit an
example of a chain having no minimal classes.)

MAXIMAL CLASSES

MINIMAL CLASSES

FLOW IN A MARKOV CHAIN

Proposition 4-17: States ¢ and j are R-related if and only if there
exists an n > 0 for which (P"); > 0.

Proor: Suppose n = 0 is the smallest exponent for which (P?),; > 0.

Then F{’ = (P");; > 0,andsince H;; = >, F{® we have R(,j). Con-
versely, if R(i, j), then H;; > 0 and it must be true that F{® > 0 for
some n. Thus (P"); > 0.
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Definition 4-18: A state 7 is said to be recurrent if ,, = 1; it is said to
be transient if H;; < 1.

The lemma to follow contains some identities connecting H and H
which will be used in the next few propositions. The reader should
study these examples of the use of the strong Markov property in order
to develop his intuition.

Lemma 4-19: The following statements hold:
(1) The probability starting in ¢ of returning to state ¢ at least k

times is (H,)*. (Use the convention 0° = 1.)

(2) The probability starting in ¢ of returning at least k£ times to ¢
before hitting j is ({H)*, provided ¢ # j.

(3) The probability starting in ¢ of returning to ¢ via j is ‘H H,
provided ¢ # j.

(4) The probability starting in ¢ of reaching j for the first time after
n returns to 7 is (H,)* ‘H,;, provided ¢ # j.

(5) The probability starting in ¢ of being in state j at least n times
is Hy(Hj)"

Proor: The proofs are all by Theorem 4-10.

(1) Use induction on k. TFor k = 0 the result is trivial; assume that
it holds for k£ — 1. Let p be the statement that the process returns to ¢
at least k times, and let t = §,. Then p’ is the statement that the
process returns to ¢ at least £ — 1 times.

Prp] = 2, Prfx, = j]1Pr[p’]
7
= Prjz; = ] Prp']
= Prt; < oo] Pr,[p’]
= Hy(H,;)*~* by inductive hypothesis.
(2) If ¢ # j, the result is the same as (1) for the chain in which the
single state j has been made absorbing (see Example 2, Section 4-2).
(3) Let p be the statement that the process returns to ¢ via j, and let
t be the time that j is reached if j is reached before a return to ¢, or +oo

if j is not reached before 7. Then p’ is the statement that ¢ is reached,
and

Pr,[p] = Z Pri[z, = k] Pr, [P']
P
= Pri [z, = j]H;
= Pr,- [t < OO] H]'i
= iﬁinji.
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(4) The argument is the same as in (3). Use the systems theorem
with t equal to the time of the nth return to 7 if the return occurs before
j is reached, or + oo otherwise.

(5) The proof is by induction on »n and is the same as in (1) except
that the random time becomes t = ,.

Proposition 4-20: State ¢ is transient if and only if N;; < +0c0. Then
Ny = 1/(1 — Hy).

Proor:
Ny = Z k Prfn; = k],
k=1

which upon rearrangement of terms becomes

= 5 S prm = m,

k=1m=k

which by complete additivity is

Prin;, > k]

N8 E[\/]s

(Hy)*~! by conclusion (1) of Lemma 4-19.
K1

The right side is finite if and only if H;; < 1.

Corollary 4-21: If j is a transient state, then N;; < oo for all states ¢
in the chain, and N;; = H;;N;.
Proor: From Proposition 4-15 we have
Ny =H,;N; <N

The result now follows from Proposition 4-20.

jie

We are now in a position to put together the ideas of recurrence and
transience with the partial ordering R and the equivalence relation ~ .
We need two lemmas before we can prove our fundamental result—
that all states in an equivalence class are of the same type, recurrent or

transient.

Lemma 4-22: If ¢ # j and R(s, j), then 'H; < 1 and 'N,, < +c0.

Proor: Suppose ‘H; = 1. By conclusion (2) of Lemma 4-19 the
probability of returning » times before hitting j is (H;;)" = 1. Hence,
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by Proposition 2-6, there is probability one for returning infinitely often
before hitting j, in contradiction to the relation R(i, j). For the second
half of the lemma, we have, as in Proposition 4-20,

o
it = Z (jHii)n < +0.
n=0

Lemma 4-23: If ¢ is recurrent and R(¢, j), then H;; = 1and H;; = 1

Proor: The result is obvious if 7 = j. If7 # j, consider returning to
¢ with and without first reaching j. By conclusion (3) of Lemma 4-19,

1= H, ='H,H, + 'H,

Since ‘H,; + 'H; < 1, this equation is a contradiction unless 'H;; = 1
or H; = 1. The first alternative is ruled out by Lemma 4-22. Thus
H,=1 and ‘H; =1 — 'H;. Next, since 7 is recurrent, one may
compute H;; by summing the probabilities of reaching j for the first
time after n returns to 7, where n = 0,1,2,.... By conclusion (4) of
Lemma 4-19,

o

Hij = Z (jﬁii)n iﬁ (- JHu i

n=0

The last equality holds, since ‘H;; < 1 by Lemma 4-22.

Proposition 4-24: All states in an equivalence class are of the same
type, recurrent or transient.

Proor: It is sufficient to show that if one state in an equivalence
class is recurrent, so are all others. Let 7 be a recurrent state, and
suppose j ~ 4, j # i. Then H,; > H,H,, since the probability of
returning is at least as great as the probability of returning via ¢.
(We have used an argument familiar from Proposition 4-16 to compute
the latter.) Hence H,; = 1 by Lemma 4-23.

Corollary 4-25: If 7 is recurrent and ¢ ~ j, then H;; = Hj; = 1.
Proor: The corollary follows from Lemma 4-23.

Because of Proposition 4-24 we are free to speak of transient and
recurrent classes of states. We shall mention a few simple results
about classes of states. By a closed class we mean one that it is
impossible to leave. A process cannot disappear when it is in a closed
class.



102 Properties of Markov chains

Proposition 4-26: Recurrent classes are closed and maximal with
respect to the partial ordering E.

Proor: It is sufficient to prove that a recurrent class S’ is closed,
since closed classes are clearly maximal. Suppose the class can be left,
say from a state je8’. If k is a state outside S’ for which P;, > 0,
then it is not true that R(k, j) because j and k do not communicate.
Thus H;; < 1 — P, < 1, and j is not recurrent.

Proposition 4-27: If a Markov chain is started in a recurrent class §’,
then the chain is in every state of 8’ infinitely often with probability
one. In particular, if ¢ and j are in §’, then N;; = +o0.

Proor: Suppose the chain is started in state . Then, by conclusion
(5) of Lemma 4-19, the probability of being in state j at least » times is
H,(H,;)"~! = 1. By Proposition 2-6 the chain is in state j infinitely
often with probability one. Again by Proposition 2-6 it is in every
state infinitely often with probability one.

Proposition 4-28: A Markov chain is in a finite subset of transient
states only finitely often, with probability one.

Proor: If the chain were in a finite set 8’ infinitely often with positive
probability, it would be in one state j of 8’ infinitely often with positive
probability. Such an occurrence would imply that N;; is infinite for
some ¢, in contradiction to Corollary 4-21 if j is transient.

We single out two kinds of Markov chains for special attention. We
note that every absorbing state forms a one-element recurrent class, and
conversely.

Definition 4-29: A Markov chain is said to be a recurrent chain if its
states comprise a single equivalence class and if that class is recurrent.
A chain is called a transient chain if all of its recurrent states are
absorbing.

If P is an arbitrary Markov chain with r recurrent classes, then all
properties of P can be deduced from the properties of one transient and
r recurrent chains. This assertion follows from the observations:

(1) If the process P starts in a recurrent state j, movement from state
to state is confined to the single equivalence class to which j belongs.
The properties of the chain started in j are the properties of a chain
while it is in one recurrent class; they are thus the properties of a
recurrent chain.
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(2) If the process P starts in a transient state, its behavior while in
transient states is the same as the behavior of the transient chain P’
obtained from P by making all recurrent states absorbing. If P enters
a recurrent state, then P’ becomes absorbed. And after P has entered
a recurrent state, its properties are those of a recurrent chain. Thus the
properties of P may be studied by considering the one transient chain
P’ and the r separate recurrent chains.

Because of these observations, we shall restrict our discussion in
subsequent chapters to Markov chains which are either transient or
recurrent.

The reader should notice that every chain whose states form only one
equivalence class is either a transient chain or a recurrent chain.
Shortly we shall examine the basic example, in which all pairs of states
communicate, to determine when it is transient and when it is recurrent.

First we discuss some properties of maximal classes for a moment,
Not every chain has maximal classes; a tree process, for example,
consists of infinitely many transient classes of one state each. None
of the classes is maximal. Even if a chain does have a maximal class,
that class does not have to be closed. The process may have a positive
probability of disappearing from some state in the maximal class.

Nor is it true that all closed classes are recurrent. An additional
condition is needed.

Proposition 4-30: All closed equivalence classes consisting of finitely
many states are recurrent.

Proor: Let the states be the first n positive integers, and suppose the
class is transient. Then N;; is finite for every ¢ and j in the class.

Therefore

j=1

is finite. But ¢ is the mean total number of steps taken in the class,
and ¢ is infinite because the class is closed. This contradiction
establishes the proposition.

To see that infinite closed equivalence classes need not be recurrent,
we consider the basic example, whose states form a single equivalence
class. Let H{Y be the probability that the chain, started in state 0,
returns to 0 at some time up to and including time n. Then

Hy, = lim H.
But _ "
1_Hgb)=./p1p2"'pn.=ﬁm
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since a single step other than away from zero returns the process to
zero at once. Now in order for the process to be recurrent it is neces-
sary and sufficient that H,, = 1 or that

lim B, = lim (1 — H{Y) = 0.
n n

The reader should be able to construct examples where lim, 8, = 0 and
where lim, B, # 0. Thus the basic example may be either transient or
recurrent.

8. Problems

1. Find an expression analogous to that in Proposition 4-3 for Pr[x, = j]
in a Markov process.

2. Let p,, be the Poisson distribution with mean m on the non-negative
integers. A game is played as follows: A random integer =, is selected
with probabilities determined by p,. A second random integer n, is
selected with probabilities determined by p, . The ith random integer
is selected with probabilities determined by p, _,. Prove that with
probability one the integer 0 is eventually selected.

3. Show that if 2 > 0 is a column vector for which P"k converges, then the
limit function is non-negative superregular.

4. Let j be an absorbing state. Prove that the probability starting at ¢ of
ever reaching j is a regular function.

5. Show that an independent trials process is a Markov chain in which Py;
is independent of 7. Let 0 be any fixed state and let t be any stopping
time. Show that Pr,[z,,, = j] = P,;, and give an example to show that
Pr,[z, = j] does not have to equal P,.

6. If the symmetric random walk in 3 dimensions is started at the origin,
the probability of being at the origin after n steps is 0 if # is odd and is of
the order of magnitude of n~32 for n even. Prove that the probability
of returning to the origin is less than 1.

7. Consider the following random walk in the plane. If the process is not
on an axis, it is equally likely to move to any of the four neighboring
states. If it is at the origin, it stays at the origin. Otherwise, on the
z-axis it takes a step away from the origin, whereas on the y-axis it takes
a step toward the origin. Give a complete classification of the states.

8. Let j be a transient state in a closed class. Prove that there must be a
state ¢ in the class such that H;; < 1.

9. Prove that every tree-process is a transient chain and that each equiv-
alence class of states is a unit-set.

10. Prove or disprove: In a chain with a minimal class and with no closed
class, there is no non-zero non-negative regular measure.

Problems 11 to 14 refer to a reflecting random walk, that is, a random walk
on the non-negative integers with ¢, = 0.

11. Prove that the only regular functions are constants.
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12. Let
Bi = PoP1---Pi-1> Yi = 092 --- 9 o = cBify:
Show that, for any choice of the constant c, o is a regular measure.

13. Show that all regular measures are of the form given in the previous
problem.

14. Show that o;P;/o; = Pj; for all ¢ and j.

Problems 15 to 18 refer to a branching process and use the notation of
Sections 2 and 3 of the text.

15. Show that the roots of the equation ¢(r) = r satisfy the following
conditions:
(a) Thereisanr < 1ifm > 1.
(b) Thereisanr > 1if m < 1.
(e) r = 1 is the only root if m = 1.
16. Show that {r*} is a martingale if and only if ¢(r) = r.
17. Show that {z,} is a martingale if and only if m = 1.

18. What condition on m will assure that the branching process has positive
probability of survival (of not dying out)?

Problems 19 to 24 concern space-time processes and martingales. If Pisa
Markov chain with state space S, we define the space-time process to be a
Markov chain whose states are pairs (i, n), where ¢ is in S and » is a non-
negative integer, and which moves from (i, n) to (j, n + 1) with probability
ije
19. Prove that any space-time process is transient. What can be said about
classification of states?

20. Prove that if f(i, n) is a finite-valued non-negative regular function for
the space-time process, then f(z,, n) is a martingale for the process P
started at a given state 0.

21. Specialize to the case of sums of independent random variables on the
integers with p, = 0 for £ < 0. Define ¢(t) = >, p,t* for all t > 0 for
which the right side is finite. Show that ¢(t) is defined at least for
0 <t < 1. Fixat for which ¢(¢) is defined and put

R t
f(’ﬁ n) = W

Prove that f(i, n) is regular for the space-time process.

22. In Problem 21 show that f(x,, n) converges a.e. if the process is started
at 0.

23. Specialize further to the case where p, = p, = 3, and define, for
0<t<l,
g(s, n) = 2M4(1 — )" L

Show by change of variable in Problem 22 that g(z,, n) converges almost
everywhere in the process started at 0.

24. Using only the result of Problem 23, prove that if p is any number
between 0 and 1, not equal to }, then the probability that z, = [np] for
infinitely many n is 0. Here [np] is the nearest integer to np.



CHAPTER 5

TRANSIENT CHAINS

1. Properties of transient chains

Recall that a transient Markov chain is a Markov chain all of whose
recurrent states are absorbing. Its transition matrix satisfies
P1 < 1. For any transient state j in the chain, we have seen that
H;, < 1and N;; < +oo for every i. If E is any set of states, we can
put the transition matrix in the canonical form

E E

E /T U
P = .
ple o

In the special case in which P is a transient chain and £ is the set of
absorbing states, we find that 7 = I and U = 0. (If there are no
absorbing states, we agree to write P = . We shall assume that not
all states are absorbing, however.) Thus, for a transient chain,

“= (s of

The matrices R and @ for a transient chain will always be associated
with this standard decomposition. We observe that @ itself is the
transition matrix for a transient chain and that this chain has only
transient states. Some authors actually define a transient chain to be
one with all states transient. However, in the study of these chains,
it is often convenient to add absorbing states to ensure P1 = 1, And
as we saw in Chapter 4, the decomposition of general Markov chains
into transient and recurrent chains depends on allowing absorbing
states in transient chains. For these reasons we have adopted the
slightly more general definition of transient chain which permits
absorbing states.

Let P be the transition matrix of a transient chain, and consider the
quantity N;;, the mean number of times in state j when the process is

106
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started in state ¢. If j is an absorbing state, then this quantity is
infinite if j can be reached from ¢ with positive probability and 0 other-
wise. If ¢ is absorbing, it is 0 unless ¢ = j, and then it is infinite.
Hence N, is of interest only when ¢ and j are transient. Thus we shall
agree to restrict N to these entries: The matrix so restricted is called
the fundamental matrix for the chain. We shall show that the re-
stricted matrix is the matrix {¥,} for the chain determined by @. In
what follows, IV always denotes the restricted matrix associated with P.

Lemma 5-1: If P is a transient chain and if £ is the set of transient
states, then (P¥); = QF.

Proor: We readily verify by induction that
E E

. E( I 0)
T2\I+ Q4+ @R @

and the result follows at once.
Proposition 5-2:
N=> @~
K=0
Proor: For transient states ¢ and j, we have in the P-process

Ny = Z (Pk)ii = Z (Qk)ij,
P> K
by Proposition 4-12 and Lemma 5-1.

Proposition 5-3: NV is finite-valued, and lim, @* = 0.

ProoF: N;; in the P-process is finite when j is transient; hence N is
finite-valued. Therefore lim, (@*) = 0 by Proposition 5-2.

We recall that N;; = Mj[n;],and N = I + N. Hence N = >_, @~

Proposition 5-4: If P is a transient chain, then

N =@N
N=1+@N
Ny = H;Ny

Ni]' = ﬁijNﬁ
Ny=1+ H;Ny
Ny = 1/(1 - ﬁii)'
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Proor: The first two assertions are restatements of Propesition 4-13
for the case where @ is our transition matrix. The last four results are
a restatement of Proposition 4-15.

Note that the conclusions of Proposition 5-4 show how to compute
N from H and H. Our next result establishes a method of finding N
without using the H-matrix: For finite matrices the knowledge that N
is a (two-sided) inverse of I — @ is sufficient to determine N uniquely,
but for infinite matrices it is not. For if r is a @-regular column vector
and B is a Q-regular row vector, then N + 7B is a second two-sided
inverse of I — ). We shall see that such regular vectors r and B often
exist.

In Section 2 we shall obtain a refinement of Proposition 5-5 by prov-
ing that N is the unique minimum non-negative inverse of I — @ on
each side.

Proposition 5-5: NI — Q)= (I — Q)N =1 and QN = N@Q < N.
In particular, every row of N is a -superregular measure, and every
column of N is a @-superregular function.

Proor: The second and third assertions follow from the first, and
@N = N — I by Proposition 5-4. Also NQ = N — I by Proposition
5-2 and monotone convergence. Since N has finite entries, the first
assertion follows.

If P is a transient chain with a non-empty set £ of absorbing states,
we define the absorption matrix B to have index sets £ and E and to
have entries

B;; = Prjprocess is absorbed at j].

The B-matrix is not square; it has the same index sets as the R-matrix.

Proposition 5-6: If P is a transient chain with a non-empty set of
absorbing states, then B = NR.

Proor: Let ¢ be transient and let j be absorbing. By Theorem 4-10
with the random time equal to the constant » and with the statement
p taken as the assertion that the process is absorbed at j on the n + Ist
step, we have

Prp] = Z (P™)ic By

k

= Z (Qn)ikRk;‘-

k
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Summing on %, we find
B = > (@R),
n=0

which by monotone convergence

- (29)

= NR.

As a result, we see from the proof of Lemma 5-1 that if P is a transient

chain, then
I 0
lim P¥ = .
k B 0

Let P be an arbitrary Markov chain, let £ be a subset of the set of
states, and let s; be the statement that the process is in states of £
infinitely often. Define s¥ by sf = Prs;].

Proposition 5-7: For any subset E of states in a Markov chain P,
sf is a P-regular function.

Proor: Letting p be the statement s; and taking the random time
to be identically one, we see that p” in Theorem 4-10 is also sz and that

Prsg] = z Py, Pry[sg]
%

or
s = PsE.

For any Markov chain P we define a hitting vector 2% and an escape
vector ¢f by
hf = Pr[process eventually reaches E]
and
ef = Pr[process goes on first step from E to £ and then
never returns to EJ.

We notice that if 5 € E, then AF = 1, and that if j € £ then f = 0.
The absorption matrix BE for the set £ is defined to be a square
matrix with index set the set of all states and with entries defined by

BE = Prj[process at some time enters K and first entry is
at state j].
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We see that the BE-matrix is computed by finding the entries of the
B-matrix for the process with states of £ made absorbing. Specifically,
if E is the set of all absorbing states, then

E E
E (I 0
BE = .
o5 ol
The matrices s%, k%, ef, and BF are interrelated as in the following

proposition, whose proof is left to the reader.

Proposition 5-8: Let P be an arbitrary Markov chain. Then

(1) A% = BE1.

(2) BE = eF + PhF and hence ¢f = (I — P)h~.
(3) s® = 1if and only if A¥ = 1 and P1 = 1.
(4) If E C F, then Af < AF and sF < sF.

(5) s¥ = BEsE,

(6) If £ C F, then BFBF = BE,

(7) 8% = lim P"hE.

2. Superregular functions

Superregular measures and functions were defined in Section 4-3; a
vector is P-superregular if » > Ph. Let P be a transient chain, and
let ¢ be the restriction of P to transient states. As we have seen
before, ¢ is a transition matrix. Our object in this section is to obtain
a standard decomposition of non-negative @-superregular functions
and to use it in a consideration of the solutions to the equation
(I — @Q)x = f. Our results will hold equally well for @-superregular
measures, but we shall not supply the proofs. A way of transforming
rigorously theorems and proofs about functions into theorems and proofs
about measures will emerge later when we discuss duality. Generaliza-
tions of the present results will arise in the study of potential theory.

The transformation later of theorems about functions into theorems
about measures by duality will require the existence of a positive finite-
valued (J)-superregular measure.  Any row of N will suffice if all pairs of
transient states communicate, but if not, we proceed as follows: Number
the states, beginning with 1, and take

B =2 27N,

where NV is the ith row of N. It is clear that S is superregular because
it is the sum of non-negative superregular measures; B is positive
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because B; = >;27'N;; = 27/N;; > 277/ > 0. Finally B is finite-
valued because

B = Z 27'N; = Z 27'H,Nj; < 22“"ij S Ny < .

The lemma and theorem to follow hold for arbitrary Markov chains.
In the transient case they will most often be applied to the chain @.
The theorem has an analog in classical potential theory, but we
postpone a discussion of this point until the end of Section 8-1 after
we have introduced Markov chain potentials.

Lemma 5-9: Let P be any Markov chain and let N = > P". If Nf
is well defined and finite-valued, then (I — P)(Nf) = f.

Proor: Write f = f* — f~. Then Nf* and Nf~ are both finite-
valued by hypothesis. Since PN + I = N, we have PN < N and
hence PNf* < Nf* and PNf- < Nf~. Therefore, by Corollary 1-5,

(I — P)Nf) = Nf — P(Nf) = Nf — (PN)f
- Nf— (V- I)f
= f.

Theorem 5-10: Let P be any Markov chain and let N = > P
Any non-negative P-superregular finite-valued function A has a unique
representation # = Nf + r, where r is regular. In the representation
f and r are both non-negative, and f = (I — P)h.

Proor: Since k is P-superregular,

h>Ph=>=Ph=>.-..>0.

Thus P"h converges to a non-negative function r. By the Dominated
Convergence Theorem,

Pr = P(lim P*h) = lim P"*1h = r.
Hence r is regular. Also
h=Ptp 4 (I +P+---+ PY)h — Ph).

Since » — Ph > 0, we may apply monotone convergence in passing to
the limit on n; we obtain

h =r + N(h — Ph).
Set f = A — Ph, and existence follows.
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For uniqueness, suppose that » =  + Nf’ with »’ regular. Then
Nf and Nf’ are finite-valued since % is. Multiplying the equation

r+ Nf=r + Nf’
through by I — P and applying Lemma 5-9, we obtain
f=r.

Hence also r = 7.

We return now to the special case of transient chains, where N =
>@". A solution ¢ to an equation is the minimum non-negative
solution if whenever % is a non-negative solution, we have b > g > 0.

Proposition 5-11: If f > 0 and if Nf is finite, then Nfis the minimum
non-negative solution of (I — @)z = f.

Proor: By Lemma 5-9, Nf is a solution. Let x be any non-negative
solution. Then z is finite-valued and superregular. By Theorem
5-10, x = Nf + r where r = 0. Hence x = Nf.

It follows that N is the minimum non-negative right inverse of
(I — @). To prove that the jth column of NV is minimum, define f by
fi = 8,; and then apply Proposition 5-11. After the analog of Prop-
osition 5-11 for measures has been established, we find similarly that
N is the minimum non-negative left inverse of (I - Q).

3. Absorbing chains

A class of Markov chains of special interest is the class of absorbing
chains. We shall use the material developed in the two preceding
sections to establish the basic facts about absorbing chains.

Definition 5-12: A Markov chain P is said to be absorbing if, for every
starting state, the probability of ending in an absorbing state is one.

If P is a Markov chain containing a recurrent nonabsorbing state 1,
then the process cannot be absorbed if it is started in state ¢. That is,
all absorbing chains are transient chains. It is not true, however, that
all transient chains are absorbing. The property P1 = 1 is a neces-
sary condition. But even it is not sufficient, since the basic example
can be transient but is never absorbing.

The proposition to follow is the special case of the identity B¥1 = A
in which ¥ is the set of all absorbing states.
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Proposition 5-13: If P is a transient chain, then P is absorbing if and
only if B1 = 1.

The next two propositions give two ways in which absorbing chains
arise.

Proposition 5-14: If P is a finite transient chain such that P1 = 1,
then P is absorbing.

Proor:
B1 = (NR)1 = N(R1)
= N[(I — @)1] since (R1 + @1), = (P1), =1
= [N — @)]1 by Corollary 1-6
=1.

Let a(w) be the time on the path w of a chain P that absorption takes
place. If the process is not absorbed along w, define a(w) = +o0.
Since a(w) = Y; nj(w), where the sum is taken over the transient states,
we see that a is measurable and we conclude that a is a random time.
Define the column vector a by a; = M[a]. The vector a is indexed
by the transient states. It is clear that the chain P is absorbing if and
only if a is finite a.e.

Proposition 5-15: If P is a recurrent chain and if £P is the Markov
chain obtained by making a non-empty set E of states absorbing, then
EP is absorbing.

Proor: Let je E. Since H;; = 1 for every i, t;(w) is finite almost
everywhere. But a(w) < t;(w), and EP is thus absorbing.

The notation £P will be used in later sections to refer either to the
chain P with the states made absorbing or to the chain P made so that
it disappears instead of entering £. If

T U
P = ;
(R Q)

then these two chains are, respectively,

(oo = o)

It will be clear from the context which one is meant.
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There is one more important way in which absorbing chains arise.
Suppose that P1 # 1. If we add an absorbing state 0, the state
“stopped,” to the state space S and define P by

Poi=301
Po=1- > P, if i #0,

keS

then P, called the enlarged chain, may be absorbing. If P is a finite
transient chain, then P necessarily will be absorbing by Proposition 5-14.

With this set of propositions to indicate how absorbing chains arise,
we conclude with an investigation of the properties of the vector a.

Proposition 5-16: If P is a transient chain, then ¢ = N1.

PRrOOF:

(N1), = z N;; summed over the transient states
7
= z M[n;]
i
= Mi[ Z n,.] by monotone convergence.
i

But a = 3, n;, where the sum is taken over transient states j. Thus

(N1); = Mj[a] = a,

Corollary 5-17: If P is a transient chain for which P1 =1 and ifa
has only finite entries, then = a is the unique minimum non-negative
solution of the equation (I — Q)x = 1.

Proor: It is the unique minimum non-negative solution by Proposi-
tion 5-16 and Proposition 5-11.

4. Finite drunkard’s walk

The finite drunkard’s walk is a Markov chain defined on the integers

{0,1,...,n} with states 0 and n absorbing and with transition
probabilities

Piijvi=p
and

P, ,=q=1—-p for 0 <i<n.

If weset r = ¢/p, two cases arise. [Either r = 1 and {x,} is a martingale
or r # 1 and {r*} is a martingale.
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We shall use the second martingale systems theorem (Theorem 3-15)
to compute the entries of B, H, N, and a for the case r = 1.

To compute the entries of the B matrix when » = 1, we note that
B1 = 1 by Proposition 5-14; therefore B;, = 1 — B,, for each transient
state 1. Since {r,} is a bounded martingale, Corollary 3-16 applies
with the time taken as the time of absorption (which is a stopping time
because P is absorbing if and only if a is finite a.e.). Then

1 = 0B, + nB,,
so that
B, = i/n
and

By =1 — ifn.

To find the entry H;; of the H-matrix, we make state j absorbing and
consider the resulting process. If ¢ < j, the modified process is the
drunkard’s walk on the integers {0, ..., j} with j absorbing. Hence
H, = i[j. If ¢ > j, the modified process is the drunkard’s walk on
{j,....n}. Renumbering the states, we can consider the process as
starting at ¢ — j and taking place on the states {0,...,n — j}. Thus,
t—j n—t

R

To get H,;, where ¢ is transient, we use the fact that H = PH, so that

Hy=pH ,+qH;_,,

n .
=1—m since p = ¢q = 1.
The N-matrix is determined as a function of H and H by
1
Nj; = —
=T a,
and
N” = H“N]J.
We find
2
;L(i)(n —j) fori <y
N =

2
a(j)(n — 1) for i = j.
Finally, we have

n—-1
a, = Mja] = (N1), = z Ny = i(n — ).
i=1
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The case r # 1 proceeds in the same way. By the systems theorem
ri = TOBio + rnB‘n.
From this equation one easily deduces that

rt_rn
1 —

After first computing H and N, we find

“i=Mf[a}=qip[i“"'l——r]'

BIO =

When r > 1, this process is sometimes known as ‘“gambler’s ruin”
because of the following interpretation. A gambler walks into a
gambling house with ¢ dollars in his pocket, and the house has n — ¢
dollars to bet against him. In a given game the gambler has prob-
ability p of winning. Since the house fixes the odds, we have p < 1
and therefore » > 1. If the game is played repeatedly, x, in the above
Markov chain represents the gambler’s cash after k games, and B, is
the probability of his eventual ruin. Since r > 1,

—(n-1)
B, = %— >1 —~p-(n-D
is nearly 1 when n — ¢ (the house’s capital) is large. Thus the gambler
is nearly sure to be ruined, no matter how rich he is. However, a; is
approximately ¢/(¢ — p), which is very large if ¢ is substantial and p
is near to . Thus the gambler is likely to have a long run for his
money.

5. Infinite drunkard’s walk

Extending the finite drunkard’s walk to a process P defined on all
of the non-negative integers, we set

POiZSOi
Pi,i+1=p for 0 <7 < o0
P, ,=q=1~p for 0 <1t < o0,

Again we take r = ¢/p.
Our first problem is to establish the sense in which the infinite
drunkard’s walk P is the limiting case of the finite drunkard’s walk.
Let "B, "N, and "a denote, respectively, the absorption matrix, the
fundamental matrix, and the mean time to absorption vector for the
finite drunkard’s walk on the integers {0, ..., n}. Define in connection
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with the infinite drunkard’s walk the random variable *n; to be the
number of times the process is in state j up to the first time it is in state
k. Let p be the statement that the process is not absorbed at state 0,
and let p, be the statement that the process is not absorbed at state 0
at any time up to the time it reaches state k.

Proposition 5-18: In the infinite drunkard’s walk

By, = lim "By,
n
Nii = llm nN”',
n
and
a; = lim "a,.
n

Proor: We have Pr[p] =1 — By, and Pr{p,] = 1 —~ "B,,. Since
the union of the truth sets of the p, is the truth set of p, we have, by
Proposition 1-16,

1 — B,y = lim (1 — "By,).
n

For the N-matrix we note that

"N;; = My[™n,]
and
n; = li7rln "n; monotonically.

The result for N therefore follows from the Monotone Convergence
Theorem. Since a; = Mj[a] = >; N,;, the assertion about a, is also a
consequence of monotone convergence.

Taking the limits of some of the quantities computed for the finite
drunkard’s walk we find that

1 ifr>1
Bi0= , .
rt ifr<i1
and
) .
ifr>1
ai= q_p

400 if r < 1.

The value of B, shows that the chain is absorbing when p < ¢;
that is, a is finite almost everywhere when p < q. However, M;[a] is
finite only when p < q.
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If we have calculated B,, and have seen that a is a stopping time
when p < ¢, we may compute M;[a] directly from martingales without
any knowledge of the N-matrix. Let p < ¢, and for 0 < s < 1 define

Sk

e = ey

where n represents time and k represents position. Now
flk,n) = s5(ps + gs™)" < (ps + gs™1)~",

which is maximized when s = V/g/p. Thus

f(k,n) < (plg)"'?

<1 since p < q.

A

Hence f is bounded. It is easily seen that {f(x,, »)} is a martingale:
Since f is bounded, M[f] is finite; the reader may verify the regularity
property by showing that

pf(xn + l’n + 1) +Q'f(xn—' 1»n+ 1) =f(xn’n)'

Let a be the stopping time of Corollary 3-16. Taking ¢ as the starting
state, we have
0

S
(ps + qS‘l = 3 Pila = (ps + gs )"

Set 1/u = ps + gs~'. Then

1 — V1 — 4pqu?
2pu

and

1= VT iy
ZPr[a = nju" = ( Spu L ) .
Defining

= Z Prla = n]u®,
we note that

= ZnPr[a = nlur~1!
and that

=ZnPr[a= n] = Mj[a] = a,.

Using the fact that V1 — 4pg = ¢ — p to calculate ¢'(1), we find that
a; = if/(¢g — p), in agreement with the result obtained by the longer
method.
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The present method further allows us to find the probability distri-
bution of Pr{a = n] by expanding [(1 — V1 — 4pqu?)/(2pu)]’ as a
power series in . We thus find that

Prla=n] =0 forn <1

Prla =i] = ¢

Prla=2+1]=0

Pr{a = i + 2] = ipg'*!?
and so on.

6. A zero-one law for sums of independent random variables

Historically, the first infinite Markov chain that was studied was the
sums of independent random variables process. We gather some of the
results in the next few sections, beginning with two propositions and a
corollary of rather general applicability.

Proposition 5-19: If P is a Markov chain for which the only bounded
P-regular functions are constant vectors, then, for each subset of states
E, Prs;] = 0 or 1, independently of the starting state s.

Proor: By Proposition 5-7, s€ is regular and it is clearly bounded;
therefore s = ¢1. On the other hand, by Proposition 5-8,
sF — BEGE
so that
¢l = ¢BE1 = ch®.

Therefore, either ¢ = 0 or Af = 1. In the latter case, s* =1 by
Proposition 5-8.

As in Example 6 of Section 4-6, we let p, = P;,,,, which, by
assumption, is independent of 1.

Proposition 5-20: Let P be the transition matrix of a Markov chain
obtained from sums of independent random variables. If, for each pair
of states ¢ and r, there is a state s such that ¢ can be reached from s or s
can be reached from g and such that r can be reached from s or s can be
reached from 7, then the only bounded regular functions are constant
functions. In particular, the hypothesis is satisfied if all pairs of states
communicate.

Proor: Let f be non-constant regular and suppose f, # f,. We
shall assume that s can be reached from both ¢ and r; the proof in the
other cases is completely analogous. Let ¢,q + a;,¢ + a; + a,, ...,
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g+a, +---+a, and r,7 +b,,...,7r + b, +---+ b, be respective

paths of positive probability leading from ¢ to s and from r to s. Then
fq+a1 tetay fs = fr+b1 4t byr

so that at least one of the equalities in the two chains

fq = fq+a1 = f4+<11 +ap — T T fq+a1 +e g
and

fr =f7'+b1 =f'+b1+bz = =fr+b1+'-~+b,,

must be false, since otherwise f, = f,. Without loss of generality, let
Soroovay_ o # fevva, and let @ =a,. Then p, > 0. Let g, =
fiva — fi- Then g is not identically 0. Further, g is regular because

; Pyg, = ; Pi(fiva — )
= JZ_Pufm - z P.f;
=2 Piiajrafiva = 2 Puly
—frea 1 ’

= ¢;
Suppose that for all 4, |f;] < ¢. Then |g,| is bounded by 2¢c. Since

multiplying g by — 1 affects neither its regularity nor its boundedness,
we may assume b = sup; ¢; is positive and finite. For any ¢ and any

m > 0,
m—1
z Gitka| = 'fi+ma. _fil < 2.
k=0

Choose N so that N:b/2 > 2¢c. Let p™ = P{®, ., = (p,)" > 0, let
p = min, .y p™, and let ¢ be a state such that g, > b(1 — p/2). A
choice for ¢ exists since b is finite and since p > 0. Then forn < N,

n)
=) o9 <o

= Z PRy,
3
= P(tttt)+ nagt+na + Z sz)gk
k#t+na
< p(n)gt+na + (1 - P("))b-
Thus
Giing > b/2 for n < N.
Hence
N-1
z Je+xa > 2€,
K=0

a contradiction.
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Corollary 5-21: If P is a sums of independent random variables
Markov chain in which all pairs of states communicate, then for each
subset of states E, Pr,[sz] = 0or 1, independently of the starting state <.

7. Sums of independent random variables on the line

Let P be a sums of independent random variables Markov chain
indexed by the integers and defined by the probability distribution
{p}. The set of integers k for which p, > 0 we shall call the set of
k-values associated with the chain. We shall assume that the greatest
common divisor of the k-values is one. Thus, if both positive and
negative k-values exist, we see (from Lemma 1-66, for example) that all
pairs of states communicate.

The mean m for the process is defined by m = >, kp, and is said to
exist if and only if the positive and negative parts of the sum are not
both infinite. In this section we shall establish the following result.

Proposition 5-22: If P is a Markov chain representing sums of
independent random variables on the line, if there are finitely many
k-values and if they have greatest common divisor one, if > p, = 1,
and if m = > kp,, then in order for the chain to be recurrent it is
necessary and sufficient that m = 0.

Before we come to the proof, two comments are in order. The first
is that the proposition can be generalized to the case where there are
infinitely many k-values as long as the mean m still exists and the k-
values still have greatest common divisor one. The same condition
m = 0 is necessary and sufficient for P to be recurrent. The second
comment is that the necessity of the condition m = 0 is an immediate
consequence of the Strong Law of Large Numbers (Theorem 3-19) and
that the special added assumption we used in the proof of that theorem
translates exactly into the condition that there are only finitely many
k-values. Nevertheless, we give a different proof.

For the proof we may assume that both positive and negative
k-values exist. Otherwise, the chain is obviously transient. Recalling
our discussion in Example 2 of Section 3-2, we observe that if both
positive and negative k-values exist, then there are either two distinct
real roots or one double real root of the equation

fls) = Z pis* = L.

If there is a root r other than s = 1, then {r*} is a non-negative martin-
gale. Andifs = 1is a double root, then {z,} is a martingale.
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But f'(1) = S kpys*)s=1 = 2 kp, = m, and f(s) = 1 has a double
root at s = 1ifand only if m = 0. In the case m # 0, {r*»} converges
a.e. and must converge to the zero function. Thus, according as
r < lorr > 1, we have limz, = +oo or limz, = —c0. Hence, the
process returns to each state only finitely often with probability one.
But if the chain were recurrent, each state would be reached infinitely
often with probability one. Therefore, if m # 0, the chain is transient.

In the case in which m = 0, let —u be the smallest k-value and let v
be the largest k-value. Let E be the set of states {—wu,..., —2, —1}
and let E’ be the set of states {j,j + 1,...,j + v — 1} for some fixed
j- Start the process in state ¢ with 0 < ¢ < j, and let t be the time to
reach the set £ U E’. The chain stopped at time t is absorbing by
Proposition 5-14, and t is therefore a stopping time. Since {x,} is a
bounded martingale before time t, Corollary 3-16 applies. Therefore,
M[z,] = M[x,], and for 0 < ¢ < j, we have

i = Mzo] = Mlz,] = > BEk + > BEk

keE keE’
E . £’
z —u Z Bi +J Z B
keE keE’
= _uh? + th:’

which, by Proposition 5-13,
= —uhf + j(1 — hf).
Then
G+ wh = j—i
and

RE > I "
Jt+u
Letting j — oo, we find that k¥ = 1 for all ¢ > 0.

Reversing the argument for ¢ < 0 and F = {1,...,v}, we find
similarly that A = 1 for all + < 0. Thus, for any state 4, AFF = 1.
By Proposition 5-8, s£¥¥ = 1. Since £ U F is a finite set, Proposition
4-28 applies, and the chain is recurrent.

8. Examples of sums of independent random variables

Calculations with sums of independent random variables on the line
normally involve either martingales or difference equations. We shall
illustrate in this section each of these methods with an example.

ExampLE 1: Let the defining distribution for a Markov chain P
representing sums of independent random variables on the integers be
g o

{p; = ¢, p2 = p}. The process is obviously transient since H;
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and N;; =1 for all j. Since N;; = H;N;; = H;; = H,;_;, we will
have determined the H-matrix and the N-matrix completely by finding
the value of H,, for all k. We note first. that H,, = 0 if k is negative.
For the case k > 0, {r*s} is a nonconstant martingale if » is a nonzero
root other than one of the equation > p,s* = ¢gs + ps2 = 1. Thus
{(—1/p)*=»} is a martingale. Taking the stopping time t as the time
when the process reaches or passes state k, we find from Corollary 3-16
that for the process started at state 0

(—=1/p)° = Ho(—1/p)* + (1 — Hy)(—1/p)F+2.

Therefore,
1
- — (—p)etl
o = 75 (1 = (=2)*).
It is interesting to note that
1
lim Hy, = .
- © Ok ]. + p

This result can also be obtained from the Renewal Theorem of Section
1-6 if we observe that

m=2kpy=qg+2p=1+p
so that

and the process is transient by Proposition 5-22. Let the transition
matrix be called P.
If g is a P-regular vector at state ¢, then g, = (Pg), and
9 =391 + 341 + G142
We shall need a characterization of such vectors in the calculation of the
H-matrix. The difference equation we have just formed may be
rewritten as
492 + 39141 — 99: + 29,-, = 0.

Its characteristic equation (see Section 1-6b) is
4k3 + 3k2 — 9k + 2 = 0,
whose solutions are k£ = 1, }, and —2. Thus,

g =4 + B) + O(-2)"
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In finding the entries of the H-matrix, we know that H,; = H, ;,;
therefore, it is sufficient to consider only the entries H,,. We shall
look at the cases ¢+ > 0 and ¢ < 0 separately.

Suppose ¢ = 0. Since the only negative k-value is — 1, it is impos-
sible for the process to start in state ¢ + 1 and reach state 0 without

first passing through state i. Thus, for ¢ > 0,
Hiy10=Hy,H
= H, oH,,

with Hyy = 1. The result is a first-order difference equation whose
solution is H,;, = ¢(H,,). Setting ¢ = 0 shows that ¢ = 1. Thus
H, , is exponential.

But H = PH, so that H,, = (PH),, for all ¢ > 0. Thus H,,
satisfies the difference equation

9 =501+ 3041 + §9i42

for 7 > 0. It therefore satisfies

Jivr = 59 + 3iv2 + §0i4s

for 4 = 0. Hence H;, = A4 + B(})' + C(—2) for all ¢ = 0. Since
H, , is known to be exponential, two of the coefficients 4, B, and C are
zero and the other is one. The alternatives C = 1 and 4 = 1 are
eliminated, respectively, by the facts that — 2 is not a probability and
that P drifts to the right a.e. Thus,

H., = (}) for i > 0.

It

For i < 0 we again use the fact that A
is a solution of the equation

PH, and we find that H, ,

Ji—e = 5013 + 39i-1 + §0:

for all # < 1. Therefore,

Hio =4 + B@d) + C(-2)

for all ¢ < 1. Known values for H;,, when ¢ = 0 and ¢ = 1 give us

two conditions on the three unknowns 4, B, and C. The fact that
H,, < last— —oo tells us that B = 0. We have as a result

(1) for ¢
Hi.O = 3 . .
2+ 3(—-2) fori

0

\%

1.

A
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From a knowledge of the H-matrix, we can compute H by H = PH.
The entries of the N-matrix follow from

N, = 11 - Ay

ji
and

Nii = HiJ'NJ'J"

9. Ladder process for sums of independent random variables

For a sums of independent random variables Markov chain defined
on the integers, we define a sequence s;(w) of positive step times induc-
tively as follows: sy(w) is the least » such that zy(w) > 0, and s;(w) is
the least n such that x,(w) > x;_ ) (w). If we construct a stochastic
process by watching the old Markov chain only at the positive step
times—that is, by calling the nth outcome in the new process the s,th
outcome in the old process—then the strong Markov property as
formulated in Theorem 4-9 implies that the new process is a Markov
chain. We shall go through this implication in detail.

Proposition 5-23: If P is a sums of independent random variables
Markov chain defined on the integers, then the stochastic process whose
nth outcome is the s,th outcome in P is a Markov chain P*. Moreover,
Pj = Pg,;_,

Proor: The times s, are random times. Applying Theorem 4-9 to
the time s, and the statement r = (z, ,, = ¢,,,), we find that, if
Prjz,, =co A Az, =c,] > 0, then

Prn[xs,,+1 = Cns1 l Ls, =C A AN &g = cn]

= Prn[xs,”l =Cpt1 ‘ X, = cn]'
And if Pr,[z, = c,] > 0, then
Prn[xsn 1 = Cns1 |xs,, = Cn] = Prc,,[xsl = cn+1]'

Thus the process is a Markov chain P*. The fact that P} = P¢;_;
follows from the fact that P represents sums of independent random
variables.

The chain P* is called the ladder process for P. The ladder process
moves from ¢ to j if j is the first state greater than ¢ that is reached in
the original process. If the mean step m in P is positive, then the
process reaches or passes any given positive state with probability one,
so that the s; are finite a.e. Hence P*1 = 1, and the ladder process
represents sums of independent random variables.
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As an example, we shall compute explicitly the ladder process
associated with Example 2 of the preceding section. For the given
chain we have p_, = £, p, = §, and p, = 4. The ladder process has
two k-values, namely 1 and 2, and thus has a distribution {p{, pJ}.
Since the positive step times are finite a.e., we have > py = 1 or

pf +p3 =L
To find the values of p; and pJ, we note that
P = 'Hy,

= Py, + Py _10{ 5
=po + P_1P1 P

Putting in the known values for p_, and p,, we find

|
Py = P2 = 3

The ladder process for our Example 2 is therefore an instance of
Example 1 in the same section.

10. The basic example

The basic example is a Markov chain with state space the non-
negative integers and with transition probabilities

P,_1i=p, t>0
P _,1o=q¢=1-np.

We normally assume that none of the p;’s is 0. A row vector B is
defined by
Bo =1

Bi = pfi-, for i > 0;

it is regular if and only if lim; ,,, B; = 0, and the process is recurrent or
transient according as the limit is or is not 0.

In this seetion we shall compute the H and N matrices for the basic
example when it is transient, and we shall show that a transient basic
example has no non-zero regular row vector.

The process cannot leave the set {0,1,...,j} without hitting j.
Hence H; = 1ifi < j. Ifi > j, then j can be reached only via 0, so
that

H; = HoHy; = Hy

by Proposition 4-16. Thus we need only find H,;. The only way the
process can fail to reach 0 is to continue moving to the right from 3.
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Let B, = lim;_, B; = [[>1 »- Then
I—Hi0=l_1pi=&’
B;

i>i

and we find
1 ifi<y
H,; = B
— =2 ifi >3
B, 7
Then _
ii = Pis1iHie1; + @o1Ho;
= Pj+1(1 - ﬁm) t %41
Bi+1
_1-PB=,
Bi

Suppose now that the process is transient—that is, that 8, > 0.
Then

1 B
Nj]' = —— ——j,

B
Ba
B _ B if 2 > j.
Bo B
If B, > 0, we know that B is not regular. Indeed, a transient basic
example has no non-zero regular row vector. For if « is regular, then

so that
ifi<yj

Ni} = HU‘NH =

Z ofiv1 = %
1

and
o;_1p; = a; forj > 0.

From the second condition we find by induction that «; = «y8;. Then
the first condition yields

Xy = “oZBt%n = “oZ(Bt = Bi+1) = a(l — By).
1 1
Thus ey = 0 and & = 0.

11. Problems
1. Consider the finite Markov chain with states

| Il | | |
I i J I 1

0 1 2 3 4
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10.

11.

States 0 and 4 are absorbing. At each of the other states the process
takes a step to the right with probability %, or a step to the left with
probability §. Compute P, N, and B by means of Propositions 5-5 and
5-6.

. If the states of a transient chain form a single closed set, show that each

column of N is a non-constant positive superregular function. [Note:
We shall see later that there are no such functions for recurrent chains;
hence their existence is a necessary and sufficient condition for a closed
set to be transient.]

. Prove Proposition 5-8. Prove also that Af = Nef + sE. Interpret

each result.

. In the basic example, let £ = {0, 1,2}. Compute BE, hE, ¢F, and sE.

Check formulas (1), (2), and (3) in Proposition 5-8.

. Prove an analog of Theorem 5-10 for row vectors. Use it to show that

if # > 7P > 0 in a transient basic example, then there is a measure p
such that 7 = uN.

. For a transient chain let

T, = Mi[nE]:

where ng is the number of times the chain is in the finite set of states E.
Use a systems theorem to find an equation of the form

and prove that x is the minimum non-negative solution.

. Find the probability in the p-¢ random walk started at 0 of reaching +n

before —n. [Hint: Use the results obtained for the finite drunkard’s
walk.] If p > ¢, what happens to this probability as » increases ?

. The one-dimensional symmetric random walk is a process to which

Corollary 5-21 applies. If E is the set of primes, is s¥ equal to 1 or is it
equal to 0?

. Let x4, 21, %5, ... be the outcome functions for the symmetric random

walk on the integers started at 0. Show that there is no non-constant
non-negative function f(n) defined on the integers such that f(z,),
f(xy), ... is a martingale.

Show by direct computation that the sums of independent random
variables process on the integers with p, = 4 and p_, = % is recurrent.

Find H and N for sums of independent random variables on the integers
withp_; =p, = §.

Problems 12 to 19 refer to sums of independent random variables on the
integers with p_, = 1 and p, = %.

12.
13.
14.

15.

Find H and N.
Describe the long-range behavior of the chain.

Give two examples of infinite sets £ to illustrate the two possibilities
sf =1and sF = 0.

Find all non-negative regular functions.



16.

17.

18.

19.
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Give a necessary and sufficient condition on a non-negative function f
that Nf be finite-valued.

In the previous problem, let g = Nf. Choose an f satisfying your
condition, and show that (I — P)g = f.

Let
_ 2 + (1) ift1<0
B + @) ifi = 0.
Show that & is superregular, and decompose % as in Theorem 5-10.

Use the function of Problem 18 together with the Martingale Convergence
Theorem to prove that the process is to the left of 0 only finitely often a.e.

Problems 20 to 22 refer to the game of tennis. It will be necessary to know
how one keeps score in tennis. A match is being played between 4 and B,
and A4 has probability p of winning any one point.

20.

21.

22,

Set up a single game as a transient chain with the two absorbing states
“4 wins” and ““ B wins.”” [Minimize the number of states, e.g., identify
“30-30" with “deuce.”] Compute the probability that A wins the
game as a function of p.

Suppose that 4 has probability p’ of winning a game. What is the
probability that he wins a set? What of winning the match (if he is
required to win three sets)?

What is the probability that 4 wins the match if p = 0.6? What if
p = 0517



CHAPTER 6

RECURRENT CHAINS

1. Mean ergodic theorem for Markov chains

Recurrent chains are Markov chains such that the set of states is a
single recurrent class. They have the properties that P1 = 1, H = E,
and Mj[n;,] = co. The study of recurrent chains begins with a charac-
terization of finite-valued non-negative superregular measures and
functions; the reader should turn back to Sections 1-6¢ and 1-6d for the
terms referred to in what follows.

We shall apply Proposition 1-63 and Corollary 1-64 to the sequence
of matrices obtained as the Cesaro sums of the powers of a recurrent
chain P. Define

L 1 nil P
=
Then
0< L™ < E foralln.

Theorem 6-1: If P is the matrix of a recurrent chain, then the sequence
of powers of P is Cesaro summable to a limiting matrix L with the
properties L > O and LP = L = PL = L2

Proor: We shall show that every convergent subsequence converges
to the same limit L. The proof proceeds in four steps.
(1) Since

L(n)= (I+ P+“'+ Pn—l)’

1
n
we have

PLM™ — (P+ P2 4+ P") = IJmp

1
n
1
= L™ + —(P* — I).
n

130
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Let {L"™} be a convergent subsequence; such a sequence exists by
Proposition 1-63. Set L = lim, L. Then L > 0. Since

liml(P" - I) =0,
n B
we have lim, PL™) = L = lim, L™ P,
(2) By Proposition 1-56 (dominated convergence), we have
lim PL™ = Plim L™ = PL
and thus
PL = L.
By Proposition 1-55 (Fatou’s Theorem), we may further conclude
(lim L™ P < lim (L™P) = L
and
LP < L.

(3) Suppose LP is not equal to L. Then for some ¢ and j, (LP);; <
L;;.  Summing the inequalities (LP),, < L,;, an k, we obtain

Z (LP)y < zk: Ly,

since strict inequality holds in the jth entry. Thus [(LP)1];, < (I1),.
Since L, P, and 1 are non-negative, associativity holds and (LP)1 =
L(P1) = L1. Therefore, [(LP)1], = (L1),, and we have a contradic-
tion. Hence LP = L = PL. By induction, we readily see that
LP" = L = P"L for every n. Adding these results, we obtain finally

LL® = L[ = LWL,

(4) Let {L"™} be a convergent subsequence with limit L. It is
sufficient to show that L = L. From step (3) we have L = LL™
for any p, and by Fatou’s Theorem L1 < 1 and L1 < 1. Thus, by
dominated convergence,

L = lim (LL") = LEL.
u
Interchanging the roles of L and L, we find L = LL. But by Fatou’s
Theorem LL < Land LL < L. Therefore,
L=LL<L and L=LL < L.
Hence L = Land L = 2.
Definition 6-2: If P is a recurrent chain, P is said to be a null chain

if L =0. If L #0, P is said to be an ergodic chain and the limit
matrix L is called 4.
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Proposition 6-3: If P is a recurrent chain, every constant function is
regular and the only non-negative (finite-valued) superregular functions
are constants.

Proor: Constant functions are trivially regular since P1 = 1. Let
h be a finite-valued non-negative superregular function, and let the
chain be started in any fixed state i. Since M[|A(%o)]] = &, < 0,
(h(z,), Z#,) is a non-negative supermartingale (see Section 4-3). Thus
lim, A(x,) exists and is finite with probability one by Corollary 3-13.
If & is not a constant function, then &; # k, for some jand k. Since the
chain is in states j and k infinitely often a.e., h(x,) = h,; and h(x,) = &,
for infinitely many » with probability one. Thus A(z,) diverges a.e., a
contradiction.

To prove the corresponding result for measures, we introduce the
dual matrix P, defined whenever a positive finite-valued P-super-
regular measure « exists. The entries of P are P;; = o, P;/e;. Al-
though we shall investigate P more fully in the next section, we mention
some of its properties here. Suppose P is recurrent. Since P;; > 0
and since

- 1 1

P..:—— .P..<—-=l
P is a transition matrix. Since all pairs of states communicate in P,
they do in P. Now, using induction on n, we note that if

n—1y
(Pr-1),; = (P ) for all ¢ and j,
%
then
F=y ~ ~ . .Pn it
(£ = Z Py(Pr 1)y = 4 Z (P"*I)jkPki = o (£ .
i a; oy

Summing on %, we see that M[fi;] = +o0 because M;[n,] = c0. Hence
P is recurrent.

Proposition 6-4: If P is a recurrent chain, all (finite-valued) non-
negative superregular measures are regular and are uniquely deter-
mined up to multiplication by a constant. A non-zero non-negative
superregular measure is positive.

Proor: We prove the second assertion first. Suppose o = «P.
Then « > «P" for every n. If «; = 0 and «; > 0, find » such that

(P™) >—O. We have

o 2 zam(Pn)mi = aj(Pn)ji > 0’

m

Ji
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a contradiction. Hence « > 0. For the first assertion of the prop-
osition, let « and B be non-zero non-negative finite-valued super-
regular measures. Then « and B are positive. Use « to form the
recurrent chain P. Then P1 = 1 since P is recurrent. Therefore,

. P, 1
oS B o SEP LS

i 7% & 77
Thus «; = 3, «;P; and o is regular. If we can show that {§;/e} is a
superregular function for P, we will have shown that 8 = ca, and the
proof will be complete. We have

. B, , o .
EP”%:ZO&P]&—] = —Z,BijiSE’.

7 % ] % 7 %
Proposition 6-5: If P is ergodic, then 4 = 1a, o1 = 1, and « is
regular.

Proor: We have P4 = A. Thus every column of 4 is regular and
must be constant by Proposition 6-3. Hence 4 = 1«. Since AP = 4,
every row of 4 is regular and o« must be regular. It therefore remains to
be shown that o1 = 1. Now 42 = 4 so that (1e)(1e) = (1a). By
associativity 1(e(1a)) = 1a so that a(la) = a. But «(la) = («1)a so
that (e1)ae = «. If o; # 0, then from (al)a; = «; we may conclude
al = 1.

The existence of a positive regular measure for ergodic chains is thus
an easy matter to prove. For null chains, however, the proof is harder
since the limiting matrix L = 0is no help. The technique we shall use
is to watch the recurrent chain P only while it is in a subset £ of the set
of states.

Let F be a subset of states and let PE be the stochastic process whose
nth outcome is the outcome of P the nth time the process P is in the
set . We shall see in Lemma, 6-6 that P? is a Markov chain. From its
interpretation it is clear that PF is recurrent if P is recurrent. More-
over, if E C F, then (PF)* = PE.

The index set for the matrix P£ is taken to be E. Writing P as

E E

E (T U
P = ,
oo d

we have the following relationship between P and P.
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Lemma 6-6: For an arbitrary Markov chain P, PF is a Markov chain
and
PE =T + UNR,
where N = >2_, Q~.

REMARK: The lemma holds even if N has infinite entries, provided we
agree as usual that 0.0 = 0.

Proor: Let y, be the nth outcome in the PZ-process. If
Pri[yo =co A" A Yooy = Cn1] > 0,
let t be the random time of outcome n — 1 and apply Theorem 4-9.
Then
Prn[yn = Cy ! Yo=Co A" A Yn_1 = Cp_4]
= Pr,[y, = cn' Yo=Co A" ANYp1 = Cy ATy = Cn-1]
= Prc,,_l[yl = cn]’
and it follows that P% is a Markov chain. Now let 7 and j be in E.

Applying Theorem 4-10 with the random time identically one and with
the statement that E is hit after time 0 first at state j, we have

PE = > P, B
k

= z Py Bj; + Z P B

kek KkeE
= P; + Z Py B,

KEE
The result then follows from Proposition 5-6.

Lemma 6-7: For an arbitrary Markov chain P, if E is a subset of
states and B is a finite-valued non-negative P-superregular measure,
then B is PE-superregular.

Proor: Since B8 > BP, multiplication of the submatrices of 8 by the
submatrices of P gives the two relations

Be = BT + B:R
Be = BsU + B:@.

We may rewrite the second relation as
Bel — Q) = BgU = 0.

The proof of Theorem 5-10 translates directly into a proof for row
vectors. From it we find

and

Bz = yN + p,
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where y = Bs(I — @), N = > @", and p is non-negative and @-regular.
Hence
Bz =z yN = (BsU)N.

Thus B, PF = ;T + BzUNR < B;T + ByR < By
Lemma 6-8: No finite null chains exist.

Proor: We have L™1 =1 or 3, L{P = 1 for every n. Since the
limit of a finite sum is the sum of the limits,

(L), = D Ly = > lim LP = lim > LP = 1.
j j n n g

Theorem 6-9: Every recurrent chain P has a positive finite-valued
regular measure « which is unique up to multiplication by a scalar.
Furthermore, o1 < oo if and only if P is ergodic.

Proor: Order the states by the positive integers, let E be the first
n of the states, and let F be the first n + 1. Then PZ and PF are
ergodic chains and have regular measures of and of.  Also (PF)f = PE.
Thus of is PZ-regular by LLemma 6-7, and we may choose «” such that
af = of by the uniqueness part of Proposition 6-4. The procedure of
adding a single state to ¥ may be continued by induction, and we set
o = limg_ g («f 0). Now for any of these sets & we have

el < apT + agfUNR = o PE = «f
or
agT < ag.

Thus,

T 0
a( ):(aET 0) < (¢ 0) < c.
0 0

T 0
As E — 8§, the entries of ( ) increase monotonically from zero to

the entries of P. Hence, by monotone convergence, «P < o and, by
Proposition 6-4, « is regular. Clearly « > 0, and we know that if P is
ergodic then ol < co. Conversely, suppose ol < co. Then, by
dominated convergence,

al = lim « L™

= lim}la(I +.-- 4 Pr7Y)
=«
#0

and L # 0.
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2. Duality

The proof of Proposition 6-4 is somewhat artificial without further
explanation. What was used was a standard method of converting
proofs about functions into proofs about measures. We had proved
uniqueness for non-negative finite-valued superregular functions, and
the idea was to take advantage of this fact in the result for measures.

The isomorphism that exists between row vectors and column
vectors is known as duality. Not only does duality make rigorous the
correspondence between row and column vectors, but also it provides
easy proofs of some new results.

Definition 6-10: Let P be an arbitrary Markov chain transition
matrix and suppose there exists a positive finite-valued P-superregular
measure «. The «¢-dual matrix of P is a matrix P defined by

P = o P i,

ij

;

Let D be a diagonal matrix with diagonal entries 1/o;.

We note that P = DPTD-1,

We cannot define duality in general, because we are not always
assured of the existence of a positive superregular measure. However,
there are only two important special cases, and we know that a
superregular measure « exists for each of them:

(1) Pisrecurrent. Then there exists a unique a-dual of P. We call
P the dual of P or the reverse chain. We shall investigate the prop-
erties of the reverse chain in some detail in Section 8.

(2) P has only transient states. Then, as we saw in Section 5-2, a
positive superregular « exists. All duality statements are relative to
such a vector «, but there is no assurance that « is unique.

Proposition 6-11: If P is a transition matrix, then so is P. If all
pairs of states in P communicate, then all pairs of states in P com-
municate.

Proor: It is clear that P > 0. For P1 < 1 we have

- o, P 1 1
2by=2 "= el o
> - .

I i iy i

If 7 and j communicate in P by the routes

2, ml: mz’ v mry]
and
.7’ nl’ nZ’ ] ns} 1,
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then they communicate in P by

Uy Ngy o« vy Ny, ),

JsMyy ooy My, 0.

Proposition 6-12: If P is a transition matrix, then
Pr = D(PY'D~' and {M{#,]} = D{Mn,]}"D*.

If P is either (1) recurrent or (2) transient with only transient states,
then P is of the same type. If P is of the second type, then

N = DNTD-1,

Proor: The proof of the first assertion is by induction on n. The
case n = 1 is Definition 6-10. Suppose that
Pr-1 — D(Pk—l)TD—l.
Then
Pk = PPk-1 — (DPTD-)(D(P*~)TD-1) = D(P¥)"D",
Associativity holds because all the matrices are non-negative. Now

{M[4,]} = Zﬁk =D Z (P5)T)D-! = D{Mn,}}TD-1.

In particular, if M,[n,] is infinite, then so is M,[f;]. Hence, by
Proposition 6-11, if P is recurrent, so is P.

Definition 6-13: Let P be a transition matrix, and let « be a positive
finite-valued superregular measure. Let Y be any square matrix, let
B be any row vector, and let f be any column vector all indexed by the
set of states. Define D to be a diagonal matrix whose diagonal entries
are 1/e;. The duals of Y, B, and f are defined by

dual Y = DYTD-!
dual B = D"
dual f = fTD-1

The dual of a number is that number.

We see that the dual of a row vector is a column vector and that the
dual of a column vector is a row vector. The reader should note that P
is identical with dual P and that part of the content of Proposition
6-12 is that M,[n,] transforms to the P chain in the same way that P,
does:

{M{[fi;]} = dual {M;[n;]}.

The fundamental properties of duals are listed in the next proposition.
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Proposition 6-14: Let X and Y be square matrices, row vectors, or
column vectors indexed by the set of states for a Markov chain P.
Suppose P is the a-dual of P. Then

(1) dual dual X = X.
(2) dual (X + Y) = dual X + dual Y.
(3) dual (¢X) = ¢ dual X.
(4) dual (XY) = dual Y dual X.
(5) dual I = I and dual 0 = 0.
(6) If X > 0, then dual X > 0; and if X > 0, then dual X > 0.
(7) If X > Y, then dval X > dual ¥; and if X > Y, then
dual X > dual Y.
(8) If f is a P-superregular (or subregular) column vector, then
dual f is a P-superregular (or subregular) row vector; and if B
is a P-superregular (or subregular) row vector, then dual 8 is a
P-superregular (or subregular) column vector.
(9) dual1 = o« and dual @ = 1. The measure « is P-superregular.
(10) If lim, X™ = X, then lim, dual X = dual X.

Proor: We shall prove only (1) and (4); the rest of the proof is left
to the reader. For (1) we have

dual dual X = dual (DXTD™1)
D(DXTD-*)TD~1
DD-1XTTDD-1
= X.

I

Associativity holds because D and D! are diagonal matrices.
For (4) we have

dual XY

DXY)'D-1
DYTXTD-1

= (DYTDY)(DXTD™1)
= dual Y dual X.

We may summarize Proposition 6-14 by saying that the operation
dual is its own inverse, it reverses products, and it preserves sums,
equalities, inequalities, regularity, and limits. We know, for example,
that the dual of a recurrent chain is recurrent, and since dual is one-one,
a dual recurrent chain is the most general recurrent chain. Hence a
proof ““for all recurrent chains P’ is a proof for all recurrent chains.

The essential feature of duality lies in this last statement; we shall
apply it to the proof of Proposition 6-4. We start with a recurrent chain
P and two positive superregular measures « and . Forming P, the
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a-dual of P, we observe that since P is the most general recurrent chain
and since 1 is P-regular, the dual of 1 must be P-regular. Thus o is
regular. Now since 8 is P-superregular and non-negative, dual g is P-
superregular and non-negative. Hence dual 8 is a constant vector, and
the proof that B is a constant multiple of « is complete.

To form the o-dual of the restriction of a matrix, we use the appro-
priate restrictions of D and D-! which make the matrix products
defined. For example, write

E E
E /T U
p- ( )
E\R @
dual T = D,TTD;"?,

dual U = DUTD, 1,
dual B = D R™D; 1,

By definition,

and
dual @ = DQTD;~*.
Note that
T U )
(ﬂ ,) =P = DPTD-?
R
(DE 0 )(TT RT>(DE‘1 0
“\o pJ\ur @)\ o Dg—l)
(DETTDE‘1 D RT™D;?!
\p,uTD, DEQTDE*)’
so that
dual 7 = 7,
dual U = R,
dual R = U,
and
dual @ = Q.

To make effective use of duality, it is convenient to know what
interpretation, if any, the duals of the matrices associated with P have
in terms of the P-process. At this time we shall calculate the duals of
EP, PE and BE.
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If we let £P be the process P watched until it enters £, then £P has
transition matrix
0 0
Ep _
o
and fundamental matrix
0 0
EN = .
o so

Hence dual P = EP and dual EN = EN.
The duals of PE and BF are not so trivial to settle, and we shall
state what they are as the next two propositions.

Proposition 6-15: The dual of PF is PE.

Proor: By Lemma 6-6,
PE=T + U3 Q"R
Hence
dual P¥ = dual T + (dual R)(D (dual @)*)(dual U)

=T+ U3 Q"R
- ps.
Proposition 6-16:

EN, ificE
(dual BE); =

0 if 1 ¢ K,
where EN i; 1s the number of times that the «-dual process started at ¢
is in j before returning to E.

Proor: Let N = > @". Then

I 0
BE = ,
(v o

I ﬁN)

so that

0 o0
Thus if ¢ ¢ E, then (dual BE),; = 0, and if ¢ and j are in E, then
(dual BE), = 8, = £N,,.
If i€ E and j ¢ E, then the result that
(01’“1‘1 = EA%

' ij

dual BE = (

follows from Theorem 4-11 with the random time identically one.
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If we define N to be a matrix indexed by £ and S whose i-jth entry
is the mean number of times starting in ¢ that the process is in j before
returning to £, then we may rewrite the result of Proposition 6-16 as

EN
dual Bf = ( )
0

The rest of this section contains applications of Propositions 6-15
and 6-16. We begin by deriving two identities relating Bf to other
matrices, and we shall then dualize the first identity to obtain a result
which will be used in Chapters 8 and 9. Finally we shall apply
Proposition 6-16 in a different way to get a probabilistic interpretation
for o;/c;.

Proposition 6-17: For any set £,

I - PE 0
(I — P)BE = .
0 0
HN™ =14+ P +...4 P" then
BEN(n) — N(n) + EN(Pn+1 _ I)

Proor: Set N = > Q". For the first identity we have

I-T7T -U I 0 I - (T+ UNR) O
(O
—R I-Q/\NR 0 -R+ (I —-QNRE 0

I - PE 0
= ( ) since (I — Q)N =1
0 0
For the second identity, we have
0 0
EN —
0 N
and hence
0 0
ENP = (
NR N -1
and
0 0
EN(P — I) = =B - I
NR -1

Therefore EN(P*+1 — I) = [EN(P — I)]JN™ = (BE — J)N™,
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Proposition 6-18: For any set £

EN I — PE 0
(Dm0
0 0 0

Proor: Apply duality to the first identity of Proposition 6-17, using
Propositions 6-15 and 6-16. Then

EN i I—PE ¢
(o)=m=(7 o)
0 0o 0

Since this identity holds for all reverse processes P, it holds for all
processes.

Using Proposition 6-16, we can obtain a simple interpretation for the
ratio a;/e;. The case in which P is recurrent is of special importance
because « is unique up to multiplication by a constant. But first we
prove a more general result.

Proposition 6-19: Let « be a positive finite-valued superregular
measure for P, and let P be the «-dual for P. Then for any set E,

i€k

Proor: By Proposition 6-16,

) EN,, for ieE
(dual BF);; =
0 for ¢ ¢ K.
Therefore
dual A% = dual (BF1) = «(dual BF)
= Z o EN—ij'
ieE

Corollary 6-20: Let « be a positive finite-valued superregular measure
for P, and let P be the a-dual of P. Then

— o
iNiJ' = jgji'

1

ProoF: Set E = {¢} in Proposition 6-19.

In particular, 'N,; < «;/«; for any such a.
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Corollary 6-21: Let o be a positive finite-valued regular measure for
a recurrent chain P. Then

iN—ii = “j/“r

Proor: Since P is recurrent, so is P. Thus A;; = 1, and we may
apply Corollary 6-20.

Corollary 6-22: Let « be a positive finite-valued regular measure for
a recurrent chain P. Then

Z o EN;; = a; for all j.

ieE
Proor: Apply Proposition 6-19. Then ﬁf = 1.

Definition 6-23: Let P be a recurrent chain. Set

M ij = Mi[tj]
and

Mij = Mi[ij]'

The matrix M is called the mean first passage time matrix. Similarly
M. is the mean time from ¢ until E is reached, and M,; is the mean
time from ¢ to return to E.

Proposition 6-24: If P is a recurrent chain with positive regular
measure c, then

Z aiM,»E = «afl.

i€k
Proor: We have

DMy =2>a N, => > «*N,

ieE i€k j j i€E
= z o = al,
7
the next to last equality following from Corollary 6-22.

Proposition 6-25: If P is a recurrent chain with positive regular
measure o, then

1
i = if P is ergodic and o1 =1

+o0 if Pis null.

Proor: Set £ = {i} in Proposition 6-24.
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3. Cyclicity

Let P be a recurrent Markov chain and let 7 be a fixed state of the
chain. Define a set of positive integers T' by

T ={k| Py >0,k > 0}

Let d be the greatest common divisor of the integers in 7'.
Lemma 6-26: 7' is non-empty and is closed under addition.

Proor: T is clearly non-empty since P is recurrent. Suppose m and
n are integers in 7. Then (P™); > 0 and (P"); > 0, so that
(P = 2 (P™)e P
k
2 (Pm)u(P™)y
> 0.
Hence m + nisin T.

Noting the discussion in Section 1-6e, we arrive at the following
result, using Lemma 1-66.

Lemma 6-27: T contains all sufficiently large multiples of its greatest
common divisor d.

The integer d we shall call the period of the chain for the state ¢.

Proposition 6-28: The period of a recurrent chain for the state ¢ is a
constant independent of the state <.

Proor: Let 7 and j be any two states in the chain. Since the chain
is recurrent, ¢ and j communicate. Let d be the period associated with
state ¢ and let d be the period associated with state j. Suppose the
minimum possible time for the process to go from state ¢ to state j is s,
and suppose the minimum time for the process to go from j to ¢ is ¢.
By Lemma 6-27 let NV be large enough so that the process can return to
j in nd steps for all n > N. Then the process can go from 7 to j in s
steps, return to j in Nd steps, and go back to ¢ in ¢ steps. Hence
d| (s + Nd + ¢t). Similarly, d| (s + (N + 1)d + ¢). Thus d divides
the difference, or d | d. Reversing the roles of 7 and j, we find that
d|d. Therefore,d = d.

We may thus speak of the period of a recurrent chain without
ambiguity. Every recurrent chain has a period, and that period is
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finite. If, for example, P is a recurrent chain in which P; > 0 for
some ¢, then P has period one.

Definition 6-29: A recurrent chain is said to be non-cyelic if its period
is one and cyeclic if its period is greater than one.

Let P be a recurrent chain of period d. Define a relation R on the
states of P by the following: We say that ¢ R j if and only if, starting at
t, the process can reach j in md steps for some m. From the definition
of the period d, it follows that ¢ R <. The symmetry of R follows from
the fact md plus the time to return from j to + must be a multiple of d.
To see that R is transitive, we note that if j can be reached from ¢ in md
steps and if k£ can be reached from j in »nd steps, then k can be reached
from 4 in (m + n)d steps.

Thus R partitions the states into cyclic subclasses. The reader may
verify that there are d distinct subclasses and that the nth class contains
all those states which it is possible to reach from the starting state only
at times which are congruent to n» modulo d. The process moves
cyclically through the classes in the specified order. Furthermore, if
the chain is watched after every dth step, the resulting process is again
a Markov chain (by the strong Markov property), and its behavior will
be noncyclic. The transition matrix for the new process is P¢, and its
form is that of d separate recurrent chains:

P9 = . , d blocks.

L

The entries in each block are the entries of a recurrent noncyelic chain,
and the entries which are not in any block are all zeros.

The observation that P? is really d separate recurrent noncyclic
chains enables us to study representatively the properties of all re-
current chains by considering only noncyclic chains. Thus, it is to
noncyclic chains that we now turn our attention. The main tool
in their study will be chains representing sums of independent random
variables.
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4. Sums of independent random variables

We have already investigated some of the properties of sums of
independent random variables Markov chains. Such processes are
especially important because of how they arise from general recurrent
chains (see Proposition 6-32), and it is for this reason that we now
discuss their origin.

For concreteness we shall confine ourselves to sums of independent
random variables chains defined on the integers. Before recalling the
definition of independent random variables, we remark that if y is a
real-valued function defined on a probability space and having a
denumerable range, then a necessary and sufficient condition for y to
be measurable (and hence to be a random variable) is that the inverse
image under y of every one-point set be measurable. The condition is
necessary because {w | y(w) = ¢} = {w | ¢ < y(w) < ¢} must be measur-
able, and it is sufficient because {w | y(w) < c} is a countable union of
such sets. Therefore, if y is a denumerable-valued random variable
and if £ is an arbitrary set of real numbers, the set {w | y(w) € E} is
measurable.

Definition 6-30: The denumerable-valued random variables y,, y,,
Ya, - . . defined on £2 are independent if, for every finite collection of sets
EE,,...,E,ofreals, it is true that

Prly, (w)e E fork = 1,...,m] = [ | Prly,, (w) € E;].
k=1

The random variables are identically distributed if. for any m and » and
for any set E of reals, it is true that

Pr[ym(w) € E] = Pr[yn(w) € E]

An independent process {y,} was defined in Section 2-5 as one in
which the statements y, = ¢y A -+ A y,_; =¢,_, and y, = ¢, are
probabilistically independent for every n > 0 and for every choice of
the ¢’s. We see that an independent process is that special case of a
Markov process in which Pr,[y,,, = j| y, = ¢] is independent of s.
Moreover, an independent process is a Markov chain if and only if it is
an independent trials process.

Proposition 6-31: Let {y,} be a stochastic process defined from a
sequence space {2 to a denumerable set of real numbers S. The
stochastic process is an independent process if and only if the {y,}
are independent random variables. It is an independent trials process
if and only if the {y,} are independent and identically distributed.
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PrOOF: We are to prove first that the {y,} are independent if and only
if the statements y, =¢o A A Yp.1 =€, and Yy, =c, are
probabilistically independent for any n > 1 and for any choice of the
¢’s. Independence of the y’s means

Prlyo =co A+ A Yy =¢] = n Prly, = ¢l
k=1

and
n—1
Prlyo =¢Co A+ A Yooy = Cry] = H Prly, = ¢]
k=1

for all n. This statement holds if and only if
Prlyo =¢co A+ A Yo = ¢4]
= Pry, = Co A" NYn1 = Cn-11Pry, = ¢,]

for all n. Second, we are to prove that the {y,} are also identically
distributed if and only if

Pr[yn = cn] = Pr[ym = cm]

for any n» and m. But this assertion is clear from Definition 6-30.

Let {y,} for n > 0 be a sequence of independent random variables
which are identically distributed for n > 1 and which have range in the
union of the integers and {—oco, +00}, and define inductively

Zo = Yo
and
Tpy1 = Yn+1 T Ty for n > 0.

If the y, are finite-valued a.e., we claim that the random variables x,
are the outcome functions for a sums of independent random variables
process on the integers with starting distribution =, = Prly, = ¢].
Setting

P = Pr[yn = k]’ n > 0,

which is a constant not depending on any other function in the sequence
(by independence) and not depending on n (by identical distributions),
we see that > p, = 1 since y, is finite-valued a.e. Moreover, if
Prlzg =a A---Az,_; =1] >0 with n > 0, then
Priz, =jlao=anaz, =bA---Ax,_y =1]
=Pry,=j—-i|lyo=ary,=b—a A - -AYi1=1—h]
= Pr[yn =j - 7/]
= Pj-i-
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Hence the process is a Markov chain representing sums of independent
random variables.

Conversely, let P be the transition matrix for a sums of independent
random variables Markov chain with state space the integers and with
outcome functions z,. Lety, = z, — z,_; forn > 0. We shall show
that x, and the y, are independent and that the y, are identically
distributed; it is clear that x, and the y, are finite-valued a.e. In fact,
we have

Prfrg =co A (ye = cfor 1 < k < n)]
= "coPco.co +cg 'Pc0+-~~+c,._ 1.Co + 0 +Cy
= oy P, Do, )
= Prjlz, = ¢]: kIjl Pr [y, = ¢l

and independence follows by taking countable disjoint unions of such
statements; since

Pr.ly, = Jj] = ps,

the y, are identically distributed.

Sums of independent random variables appear in a natural way in
the study of recurrent chains. The result to follow associates to every
recurrent chain P a sums of independent random variables chain P*
with state space the integers.

Proposition 6-32: Let P be a recurrent chain with outcome functions
xz,. For a fixed state s let t,(w) be the (n + 1)st time on the path w
that state s is reached. Then the random times t, for n > 0 are the
outcome functions for a sums of independent random variables ladder
process P* with state space the integers.

Proor: If Pr [ty = ¢cg A -+ A b,y = c,_1] > 0, then
Prft, =c,|to=co A+ Aty =cpy]
=Prfr, i FSA AT, FESANL, =S|xy £ S
Ao AN Xy FSANTy =8 A Xegyq 8
Ao N = 8]
= Prjx; #sA--Ax, ., =8] by Theorem 4-9
= Prt, = ¢, — ¢,1],
where tg is the time to return to state s. Hence

Prft, =jlto=an--atyy =il = F§.
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Set Pt = FY~". Since by recurrence of P
(P*1), 2 Pt =>Fiw=H, =1,
7

P* is a sums of independent random variables Markov chain.

The following is a converse to the preceding result.

Proposition 6-33: Let P’ be a sums of independent random variables
ladder process on the integers. There exists a recurrent chain P and a

state s such that the times to return to s are the outcome functions
for P’.

Proor: Let p;, = Py, for k = 1; then >, p;, = 1. We take P to
be a basic example and s to be state 0; the values of p;, and ¢, in the
basic example are yet to be specified. Define recursively the ¢,’s by the
relations

Pr=0=PB — B
and

p;l, =P1:Prn-19n = Bn—IQn = Bn—l - ,Bn‘

In P we have Prt; — t, = k] = p;, as required; it remains to be proved
that P is recurrent. We have

kélp gﬁkl" _BO—Bn=1_Bn’

and since >, p;, = 1, we must have lim, B3, = 0. Hence P is
recurrent.

We close this section with two remarks about sums of independent
random variables and their relation to recurrence. First, we have seen
in Proposition 5-22 that a sums of independent random variables
process on the integers with finitely many k-values is a recurrent chain
if and only if the k-values have mean zero and their greatest common
divisor is one. Second, we note that an infinite recurrent chain
representing sums of independent random variables must be null, since
o = 1T isregular and 171 = 0.

5. Convergence theorem for noncyclic chains

By restricting our attention to noncyclic recurrent chains, we can
prove a stronger result than the Mean Ergodic Theorem, namely that
P itself converges with n to a limiting matrix. We shall give two
proofs of this convergence theorem—the first a matrix proof using sums
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of independent random variables and the second the classical proof
using the Renewal Theorem of Section 1-6f. We shall further show
that, conversely, the truth of the convergence theorem just when P is
the basic example implies the full validity of the Renewal Theorem.

We begin by proving two lemmas needed in both proofs of the
convergence theorem; their effect is to formulate noncyeclicity in a
number-theoretic way.

Lemma 6-34: For any Markov chain and any states ¢ and j,
PP =3,
Fo - o,

and

n n-1
PP = > FPPp-» = % PRF?-® for n > 0.
k=1 k=0

Proor: The first two statements are obvious; for the third we first
note that if Pr,[§; = k] > 0, then for n > £,
Prfz, =j |8 =kl =Prfz, =@ =J A2y #J A A2y # ]
= Prfz, = j|x, =j] by Lemma 4-6
= Prfz,_, = j] by Lemma 4-6
- Py,

Hence no matter what the value of Prt, = k], it is true that, for
n =k,

Prt; = k] Prj[z,
Usinge, =jAt;, =k 1<k
we have

k| T = K] = FRPy-o,

A

n, as a set of alternatives for x, = j,

P%}’) = Prt; = k]-Pryfz, = j ’ i, = k]

>
k=1
n —
— (k) p(n— k)
= Z Fi]’ PJ'J'
k=1
n-1
> P
k=0

JOF-k by a change of variable.

Lemma 6-35: A recurrent chain is noncyclic if and only if the set
Z = {k| F¥ > 0} has greatest common divisor one.

Proor: If Z has greatest common divisor one, then the period for the
state ¢ is one. Conversely, suppose that the greatest common divisor
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is c. We shall show that ¢ divides d, the period of the chain. Hence,
if ¢ > 1, the chain is cyclic. Let n be the smallest integer for which
PP >0 and ctn, and write » =¢qc +r with 0 <r <c¢. By

Lemma 6-34,

(n) — F) pn—i)
P = Fp Py

[\%E

k

1

q
- F(io) pia~fe+r
- Z Fgopga=ne+n,
i=1

Then the right side is zero since every term P{2~/¢+" g zero, a contra-
diction. Thus P{P > 0 only if ¢ | n.

The next two lemmas lead to the convergence theorem; the first one
is a consequence of Proposition 6-32 and the zero-one law for sums of
independent random variables.

Lemma 6-36: Let P be a noncyclic recurrent chain, and for a fixed
state s let £ and F be any two sets of integers whose union is the set of
all non-negative integers. Then either

Pr [z, = s for infinjtely many ne E] =1
or

Pr [z, = s for infinitely many n e F] = 1 (or both),

and whichever alternative holds is independent of the starting
distribution .

Proor: Form the process P* of Proposition 6-32. We shall first
show that for any two states ¢ and j there is a state k¥ which it is possible
to reach from both ¢ and j; for this purpose it is sufficient to show that
from state 0 it is possible to reach all sufficiently large states, since P*
represents sums of independent random variables. Now the set of
states which can be reached from 0 is non-empty and is closed under
addition (since P* represents sums of independent random variables);
its greatest common divisor is one by Lemma 6-35. Hence by Lemma
1-66 all sufficiently large states can be reached.

By the zero-one law, which is Propositions 5-19 and 5-20,

Prt, € E infinitely often] = Pra, = s for infinitely many » € K]
is zero or one and is independent of z. Thus

Pr [z, = s for infinitely many n € K]
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is zero or one and is independent of =. If

Pr [z, = s for infinitely many » € £] = 0
and

Pr, [z, = s for infinitely many n € F] = 0,
then

Pr [z, = s infinitely often] = 0,

in contradiction to the recurrence of P.
The following lemma uses the notation ||| = >, |8,|.

Lemma 6-37: Let P be a noncyclic recurrent chain, and let 8 and y be
probability vectors. Then lim,_ [|(B — y)P"| = 0.

Proor: Let B = {n | (BP"), < (yP")Jand F = {n | (BP"), = (yP"),}.
By Lemma 6-36, either

Pry[z, = s for infinitely many ne E] = 1
or
Pr,[z, = s for infinitely many ne F] = 1,

and by symmetry we may assume that the former alternative holds.
Let 2™ be the statement that x,, = s for some m € E with m < =,
and let
B = Prgla, =k A ~h™].
Then
18%]) = BT = Pry{~A»] >0
by the above assumption. Also

O =B

Z BWPy ifn¢kE

Bgcrwl) = ’

> BMP, if nek.

j#s

and

We may represent this last identity conveniently by using e, a row
vector such that ¢, = 6;, and by defining

50 — {B‘s")e if nek

0 otherwise.
Then

B(n+1) = (B(n) — 8(n))P.
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Next, we define

y® = BV + (v — P
From this relation,
y-DP = pn-DP 4 (y — B)P"
and
PO =
and hence
YD = WP g Al _ WP — () _ §®@)P,

We shall show by induction that y™ > §™. First, @ =y > 0.
If 0¢ E, then 8© = 0 < . If 0€E, then y{® = y, > B, = B by
the definition of E, and B® = 8. Thus y@ > 8§ in either case.
Suppose y™~V > §®*-1, Then

Y™ = (yn=D _ §n-D)P > 0,

If n ¢ E, then 8 = 0and y™ > §™. Ifne K, then [(y — B)P"]; = 0
by the definition of £, and hence

( (n) — K¢
YSn) = :3s) - Ssn)

by the definition of y™. Thus y™ > &™ for every n.
In particular, we have y™ > 0. Thus

Iyl = y®1

=™ + [(y - B)P"1
= ™M + (y — BI(PM)
= ™ + (y — BN
= g™
= [IB™)| — o.
Finally
I8 — Y P = IB™ — »™II
by the definition of ™, and the right side is

< 8™l + ly™II — 0.

Theorem 6-38: If P is a noncyclic recurrent chain, then lim,_, , P"
exists. If Pisergodic, thenlim P* = A = 1candlim, [[7P" — «|| = 0
for every probability vector #. If P is null, then lim, (zP") = 0 for
every probability vector 7.
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Proor: Every recurrent chain is either ergodic or null; taking = to
be a vector with 1 in the ith entry and zeros elsewhere, we see that the
existence of lim P follows from the other assertions of the theorem.

Let P be ergodic and let A = 1a be the Cesaro limit of the powers of
P. We have aP™ == « for every n. Letting 8 =7 and y = « in
Lemma 6-37, we obtain the desired result.

Let P be null and suppose the assertion of the theorem is false.
Then by Corollary 1-64, for some probability vector =, there is an
increasing sequence {n,} of positive integers and there is a row vector
p # 0such that

lim (#P™), = p, for every state 3.
k

Certainly p, = 0. Summing on ¢, we obtain

pl = 2 pi = 2 lim @Pr); < lim 3 (mPme); = 1,

i

the inequality following from Fatou’s Theorem. Applying Lemma
6-37 with B = 7 and y = 7P, we see that

lim (wP™*1), = p, for each 3.
k

By Fatou’s Theorem,
pP = (lim nP™)P < lim wP™*1 = p.

Hence p is non-negative superregular and satisfies p1 < o0; p must be
regular by Proposition 6-4, and the fact that P is null then contradicts
Theorem 6-9.

Corollary 6-39: If P is a null chain (not necessarily noncyclic), then
lim P" = 0.

Proor: Let P have period d. By Theorem 6-38

lim P* = 0.

By dominated convergence, lim, P**" = 0 for each r = 0,1, 2,...,
d — 1. Hence,

lim P* = 0.

The classical proof of Theorem 6-38 that follows proves only that
lim P exists.
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SECOND PROOF OF THEOREM 6-38: We first prove the theorem for the
tth diagonal entry. Set f, = F{, u, = (P"),, and

,u.=2'nf,,=2nF(”)—ZnPr[t =n] = M{t] = M,

Lemmas 6-34 and 6-35 establish all the hypotheses of Theorem 1-67
except for the fact that >, f, = 1:

an Z F(n) -

Therefore u, — 1/u or 0 according as u is finite or infinite, and the
value of the limit for the diagonal entries follows from Proposition 6-25.
For the off-diagonal entries, let ¢ and j be any two distinct states.
Define a row vector 8 and a sequence of column vectors {g™} by

ﬂm = FET)
/o~ (Pr=m)y; i n=m
" 0 if n < m.

Then lim, g = L, exists since we have proved the theorem for diag-
onal entries. Furthermore, by Lemma 6-34,

(P = Z Bn(P™ ™)

— ﬂg(n).

Since 1 =1 and g™ < 1, the Dominated Convergence Theorem
applies and
lim (P");; = lim Bg‘™

= Blim g™
n

= B(L;1)
= Ly

As a converse to the second proof of Theorem 6-38, we shall show that
the convergence of P" for every noncyclic recurrent chain implies the
truth of the Renewal Theorem. This result is of particular interest
because all that is needed is convergence of the diagonal entries of P",
when P is a noncyclic recurrent case of the basic example.
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Proposition 6-40: If every noncyclic recurrent chain converges to a
limiting matrix, then the Renewal Theorem holds.

Proor: Let the sequence {f,} be given. Define r; = >,.; fi; the
r; tend to 0 because >, f, = 1. Aslong as r; > 0, define

p,+1=%’f—1 for i =0,1,2,....

i
If r, = 0 for some ¢, then p, = 0 and the p, for k > 7 are irrelevant.
Set ¢; = 1 — p; and let the p, and the ¢, represent the transition
probabilities associated with the basic example. We have

Ty 7. r
172 i
:Bi=p1p2"'pi=__".—=ri'

That is, B; = r;. Since 7, >0, B, — 0 and the chain is recurrent.
Now

= Bn-1— Bn
= Z Jie = z Jr
k>n-1 k>n
Thus u = 3, nf, = My. By Lemma 6-34 we see that u, = P§y.

The Markov chain is noncyclic by Lemma 6-35 because the greatest
common divisor of the k’s for which f,, > 0is 1. Therefore lim u, =
lim P{y exists. On the other hand, by Proposition 6-25 the Cesaro
limit of P§is 1/ My, = 1/pif My, < c0oor 0if My, = +o0. Hence by
Proposition 1-61

p if p <o

lim %, =
0 if u = +oo.

6. Mean first passage time matrix
The matrices M and M have already been defined by
]% i = Mt;]
M; = M§].
In Proposition 6-25 we saw that
_ 1/e; if P is ergodic and o1 =
M = {

oo if P is null.

Proposition 6-41: In any recurrent chain, M = £ + PM.
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Proor: Apply Theorem 4-11 with the random time equal to one.
Then

M%) = Z PyM,[t; + 1]
*
= Z Pik(Mkj + 1)
3
= ZPikMkj + ZPik
3 %
= (PM)U + 1.

For an ergodic chain P we define D to be the diagonal matrix whose
diagonal entries are 1/a;, where o1 = 1. From Proposition 6-25 we
see that

M=D+ M.

Proposition 6-42: If P is an ergodic chain, the mean first passage
time matrix M satisfies these properties:

(1) My, =0and M = 0.
(2) M is finite-valued.
3) I - PM=E-D.

Proor: The first statement is obvious, and the third follows im-
mediately from Proposition 6-41 and the identity M = D + M if we
can show that M is finite-valued. The problem thus reduces to proving
(2). We know that M, = 0; therefore let ¢ and j be distinct states.
We shall show that M, is finite. Let t = min (§,%;). Then

ai = M:‘:‘ = M,-[_t,-]
Pr,fx, = z]MJ['—’; |z, = 1]
Prx, = ¢{]M;; by Theorem 4-11
= jﬁﬁM ij°
If we can show that 'H,; > 0, we will have
M,
M; < ; i, < 0.

%

v

But 0 < o;/a; = 'N; = 'H;;’N;; by Corollary 6-21 and Proposition
4-15, so that 'H; > 0.

The remarkable fact about the mean first passage time matrix M for
ergodic chains is that the converse of Proposition 6-42—namely
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Theorem 6-43—is also true. Thus once a candidate for M has been
found, even by guessing, we need check only that it satisfies (1), (2),
and (3).

Theorem 6-43: If P is an ergodic chain, the mean first passage time
matrix M is characterized by these properties:

(1) My, = 0Oand M > 0.
(2) M is finite valued.
3) { — P\M = E — D.

Proor: Proposition 6-42 shows that M satisfies these properties.
Let Y be any matrix for which (1), (2), and (3) hold. Let 0 be an
arbitrary fixed state of the chain. It is sufficient to show that y, the
zeroth column of Y, is equal to m, the zeroth column of M. Forming
the chain °P, in which state 0 has been made absorbing, and writing

1. 0 0 ...
°pP = ( ) and y = (yo) and m = (m0>
s Q 7 i

we see that m = {M,[a]} and by Corollary 5-17 that # is the minimum
finite-valued non-negative solution of the equation (I — Q)% = 1.
We first show that 7 is another finite-valued non-negative solution.
We know that 7 is finite-valued and non-negative by hypothesis. The
identity (I — P)Y = E — D yields in the zeroth column

(1 — Py ... ) yo) 1 - 1/a0)
: I-0/\y 1/
But y, = 0 so that {I — Q)7 = 1. We conclude that 7 > #. Since
Yo = my = 0, we have y > m. Hence
d-P(y-m)=(I—-Py—UI—-Pm=0

and y — m is a finite-valued non-negative P-regular function. Thus
y — m = c¢1 by Proposition 6-3. Looking at the zeroth entries, we see
that 0 = y, — my, = ¢. Therefore, y = m.

7. Examples of the mean first passage time matrix

In this section we shall compute the mean first passage time matrix
associated with two infinite recurrent chains. The first example is a
reflecting random walk, and the second is the basic example.

ExampLE 1: Reflecting random walk.
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A random walk on the non-negative integers is defined by the transi-
tion probabilities

Py = q, wheregqg # Oand q # 1,
P,y ,=p=1—q fort=0
P, ,=gqg for 7 > 0.

We note that the process P with 0 made absorbing is the infinite
drunkard’s walk P’. For the present chain we have

Hy, = pHio + qgHoo = pHyio + g

But H,, is the absorption probability B,, for the infinite drunkard’s
walk. And By, = 1ifp < q,and B,y < 1if p > q. Therefore

_ (=1 ifp<yg
0 .
<1 if p > ¢,

and P is recurrent if and only if p < ¢.
A similar relation holds for M ,,; we have

Moo =1+ pMyy + qMoo = 1 + pMy,.

Since M, is the mean time to absorption M,[a] in the P’ chain, we see
that M, is finite if and only if p < ¢. That is,

transient if p > ¢
P is {null if p=y
ergodic if p <q.

The chain is never cyclic, since Py, > 0.
We shall compute M for the ergodic case. Let r = ¢/p > 1. A
P-regular measure o must satisfy « = P, or

g = 0of + 0yq
o =o_1p + a;,.,q for i > 0.

From the first equation we obtain «; = o,/r, and from the second, which
is a second-order difference equation, we obtain

o =A + Br~t for ¢ = 0.

From the two equations we find ey = A + Band ay/r = a; = 4 + BJr.
Therefore, Ajr = A, and since r > 1, we must have 4 = 0. Choosing
B so that a1 = 1, we arrive at the result

o = (1 — 1ry "t
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The entries M, of the mean first passage time matrix are easily
found once the value of «, is known. Letting m be the zeroth column
of the M matrix, we see from Proposition 6-42 that

(I = Pym =1 — {§/0}
or that
mo — gmo — pmy =1 — /e,
and
m; —qgm;_; — pmy,, =1 for i > 0.
Since ¢y = 1 — p/q, we have 1 — 1/ag = —p/(g — p). The fact that
mgy = 0 then reduces the first relation to

—pm; = —p[(q@ — p),

so that
my; = 1/(¢ ~ p).
The difference equation for m; has as a general solution
m; = A + B(g/p) + t/(g — p) for ¢ = 0.
The boundary conditions on m, and m, imply that 4 = B = 0 and
that
My, =il(g — p).
The computation of M; uses the same general methods. First, we
note that if i+ < j, then the process must pass through 7 from 0 to get

toj. Hence
My + My; = My,

or

Mu‘ = MOi — M,
Now

My, =p + q(l + My,)
so that

My = 1/p.
For 0 < i < j,
M;=pQ+ M,,,)+ql +M_,,
or
Moy, — Mo, =1 + p(Mo; — Moyiy) + q(My; — Mo ;).
Thus for 7 > 0,
pPMyyi1 — My + qMy -, = 1,
and for 7 > 0,

|
=

PMo h0 — Moyiy + qMy =
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Solving this equation and using the relations My, = 0 and M,, = 1/p,
we find

q ) 7
My=—2 _(F—1)—
0 @—m“ ) q-p

Algebraic manipulation yields the alternate formula

Z k(i — k).

Since M, = M,; + M;, when ¢ > j and since My + M; = M;
when ¢ < j, we may summarize our results as follows:

J;:; if © 2 j
M, = _

q ;o J s

—t (! - 7)) — if 7 < 3.

L(q—p)z( ) q J

ExampLE 2: Basic Example.

The vector B defined for the basic example has the property that
BP = B if and only if lim,,, B; = 0. Furthermore, P is recurrent if
and only if lim;_, B; = 0. When P is recurrent, it is null if >, B; is
infinite and ergodic if >, B, is finite. In the ergodic case the regular
measure « for which «1 = 1 has entries

azﬁ'

Entries M;; of the mean first passage time matrix for the basic
example satisfy the equations

My + M; = My, for 4 <j
and

M;=My,+ My; for i >j.
Since

Mi0+MOi=M”=ZE& for ¢ > 0,

it is sufficient to compute M,; for the chain. Taking the statements
{the process moves from 0 to £ < ¢ — 1 and then to zero, the process
moves directly to ¢} as a set of alternatives, we find that

i-1
My = Ba + Z Bidr+1(k + 1 + My,).
k=0
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Solving this equation with the aid of the relation 8,9, .1 = Br — Br+1,
we obtain

1
Mm‘ =7 Z Bk'
Bi k<i
Therefore, for ¢ > 0,
1
M, == .
i0 Bl kZi ng

The general entries may be computed from
M;,=M, — My ifi<j
Mij=MiO+‘Moj if?; >j.

8. Reverse Markov chains

Let {z,} be the outcome functions for a denumerable Markov process
defined on a space £2 and with range in 8. The outcome functions
appear in a certain order and represent the forward passage of time.
One may well wonder, however, if, when the functions are looked at in
reverse order, the process is in any sense still Markovian. It is the
purpose of this section to discuss this question; as a by-product of the
discussion, we shall gain an interpretation for the dual of an ergodic
Markov chain.

The sense in which a Markov process reversed in time is still a Markov
process is the following.

Proposition 6-44: Let {x,} be a denumerable Markov process and let
N be a fixed positive integer. Define y, = xy_, for 0 < n < N and
Y, = “‘stop” for n > N. Then the functions y, are the outcome
functions for a denumerable Markov process with the same state space
with “stop”’ adjoined.

Proor: We shall show that the functions y, satisfy the Markov
property. Clearly, this needs to be checked only for n < N. If
Priyo =co A~ A Ypoy = 1] > 0, then

Pr[yn=0n|y0=co /\"‘/\yn—lzcn—l]

= Pr[xN—-n = Cq l Ty =C N " ANZy_pny1 = Cn-1]
_ Prizy n =6 ATy _ni1 =Chy Ao Aoy = co]_
Prizy nyy = Cooy Ao A Ty = ¢o]

The numerator is
Pr[xN—n =Cp A &yenti1 = Gn—l]
X Pr[xN—n+2 =Cp_g I IN_p =Cp A Ty_py1 = cn—l]

x"'xPr[xN=COIxN—n=Cn/\"'AxN—lzcl]y
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which by the Markov property is
Pr{zy n =Cy A Zy_ns1 = Co1l" P, e o " Pojey-
The denominator similarly reduces to
Priry _ni1 = Coe1l" Pe, e, " Peyey
Dividing, we obtain

Prly, = cnl Yo =Co AN ANYp_1 = Cn-1]

Prlzy n = Co A Ty _ny1 = Cn_1l
Pr{zy_n+1 = Cn-1l

= Prlzy_n = ¢y | Ty ns1 = €uoid

= Prly, = ¢, ! Yn-1 = Cp_1]

It is not true in general that, if the original process is a Markov chain
P, then the new process is also a Markov chain. Let P be started with
distribution 7. We then have, if Pr{y,_, = ¢] > 0,

Pr[yn =J | Yno1 = 1] = Prn[xN—n =] ’ ZTy_ne1 = 1]
_ Prjfey_n=J ATy ns1 = 1]
Prjfey ni1 = 1]
_ (ePN-1),. P
(wPV-n+1 )1_ ’

The last quantity on the right need not be independent of n. Neverthe-
less, if P is ergodic, there is a case where we can state a positive result—
a result which gives us an interpretation for the dual of P.

Proposition 6-45: Let {x,} be the outcome functions for an ergodic
chain P, let N be a fixed positive integer, and let « be the unique P-
regular probability measure. If P is started with distribution e, then
the process {y, = @y_,, 0 < » < N} is an initial segment of the

Markov chain with transition matrix P and with starting distribution «.

Proor: If Pr(y,_, = 7] > O, then ¢ = «P¥ = o and
. . («PY~™);- P;
Profy, =j| yo-1 =1l = —(gﬁl)—:i
_ %Pu
©;
= Pij
independently of n for n < M.

The motivation for calling P the reverse chain when P is recurrent
now becomes clear.
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9. Problems

1.

10.

11.

Compute for the Land of Oz example P2, P* and P®. What is 4 =
lim P*? Show that each row of A4 is a regular measure and that each
column is a regular function.

Let

1 2 3 4 5 6

1 31 00 } } O
2401 0 0 0 O

P=3 002 0% 0

4341 0 0 0 0 %

5\0 0 2 0 % 0O

6 0 } i 1 %1 O

The process is started in state 1. Find the probability of being in the
various states in the long run.

7 2
(e

Is the chain transient, null, or ergodic?

Prove that « = 17 is regular for any sums of independent random
variables process. Give a careful statement as to the existence of
transient, null, and ergodic examples.

. In the basic example, let

. Establish the following relationships between a chain with transition

matrix P and one with matrix PE:

(a) If P is transient, then PE is transient.

(b) If P is recurrent, then PF is recurrent and of = cej.

(¢) If Pisergodic, then PE is ergodic, but the converse is not always true.

. Prove that if a recurrent P has column-sums equal to 1, then P = PT.
. Consider sums of independent random variables on the integers with

p_, = }and p, = 3. Choose two essentially different positive regular

measures «, and show that each gives a correct expression for 'N;; in
Corollary 6-20.

. Show that if P; > 0 for a single state in a recurrent chain, then the chain

is noncyclic.

. Show by an example that MU = a,;M /o, need not be true.

Show that in an ergodic chain « M may be either finite-valued or infinite-
valued.

Determine whether the following chain is transient or recurrent:

NN
P=0100
1 1 1 1
4 4 4 1
0 0 01



12.

13.

14.

15.
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If transient: Put into standard form, and find N, B, and a.
If recurrent: Is it cyclic? Find «, M, P, M.

Do the same for

1 —
P=( “C), 0<cx<l1.
10

Find « and M for an independent trials process by the methods of this
chapter, and check your answers by a direct computation. [See Problem
5 in Chapter 4.]

(a) Complete the work of finding M for the basic example.
(b) Find the reverse of the basic example (when recurrent), and compute
M for this chain.

A light bulb in a fixture lasts j time units with probability f;,. It is
replaced with a similar bulb when it burns out. Assume that > f; = 1,
fo =0,and f; > 0. Let z, be the length of time that the bulb in use at
time n has lasted (taken to be O if there is a replacement at time ).
Show that {x,} is the set of outcome functions for a Markov chain and
discuss the connection with the basic example. Show that the prob-
ability that a bulb is replaced at time n tends to a limit as n — co.

Problems 16 to 26 refer to sums of indepenrdent random variables on the
circle. Mark n (»n > 3) points on a circle, labeled ¢ = 0,1, ..., n — 1 clock-
wise. The process either moves one step clockwise with probability £, or it
moves one step counterclockwise with probability 3.

16.
17.
18.
19.
20.

21.

22.

23.

24.
25.
26.

Prove that the chain is ergodic. Is it cyeclic?
Find a positive regular measure o« with «1 = 1. Interpret it.
Construct the reverse chain.
Compute M by means of Theorem 6-43. [It is sufficient to find M,,.]
Show that for large n,

My ~ 3(n — v — n(})}).
Compare this result with the absorption times of a drunkard’s walk on
{0,1,...,n} withp = %.
Show that the approximation in the previous problem is excellent for
n = 50.

Use the approximation of Problem 20 to show that the maximum value
of M;, occurs approximately at

. _logn

log 2

Check this conclusion for n = 50.
%(Zt n be even, and let E be the set of even-numbered states. Compute
For n = 3, compute P?, P*, P8 and P°. What is the limit of P"?
Repeat Problem 24 for n = 4.
Show that « M = c,17, and find an asymptotic expression for c,.




CHAPTER 7

INTRODUCTION TO POTENTIAL THEORY

1. Brownian motion

One of the fruitful achievements of probability theory in recent years
has been the recognition that two seemingly unrelated theories in
physics—one for Brownian motion and one for potentials—are mathe-
matically equivalent. That is, the results of the two theories are in
one-to-one correspondence and any proof of a result in one theory can
be translated directly into a proof of the corresponding result in the
other theory. In this chapter we shall sketch how this equivalence
comes about, and we shall see that Brownian motion is a process which
is like a Markov chain except that it does not have a denumerable state
space and time does not proceed in discrete steps. The details of this
equivalence can be found in Knapp [1965]. The important thing to
notice will be that the definitions of potential-theoretic concepts in
terms of Brownian motion do not depend on isolated specific properties
of the process but depend only on the Markovian character of Brownian
motion. In other words, there is reasonable hope of defining for an
arbitrary Markov chain a potential theory in which analogs of the
classical theorems hold.

We begin by describing Brownian motion. In 1826 the botanist
Robert Brown observed that microscopic particles, when left alone in a
liquid, are seen to move constantly in the fluid along erratic paths.
Much later Albert Einstein investigated this movement of particles
from a theoretical point of view. Kinstein was able to derive statistical
laws which estimate how a large number of particles spread over a
period of time, and his predictions were verified.

In setting up a probabilistic model for this so-called Brownian motion,
we simply replace Einstein’s estimate of what happens to a large
number of particles by a probability for what happens to one particle.
We are then to require that

1
Prparticle started at w is in E at time t] = | =——y e 14 7VI*/2dy,
g (2at)3!

166
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where E is a Borel set in three-dimensional (Euclidean) space R® and
|u — y| denotes the Euclidean distance from u to y. If we use the
notation Pr [z, € E] for the left side and the notation p'(u, E) for the
right side, we have

Pr [z, € E] = p'(u, E).

By Theorem 1-41, pi(u, F) is a measure depending on ¢ and u and
defined on the smallest Borel field containing the open sets of RS.
Therefore, we may write

Pr,c, € B] = f P(u, dy).

The physical theory also makes us require that if t; < t, <--- < t,,
then {z,,, — x,,...,2, — x, |} should behave like a set of
independent random variables with x,,; — x, having the same distri-
bution as x,. That is, we require that

Prfz, e By A A (2, — 2, _,) € E,]
= Prfx, € E,]---- -PrJx, — =z, ,€k,]
= Pru[xtl € El] T 'Pru[x(tn—tn- € En]
This identity implies that we must have

Prx,e E Az, e FA---ANz,eG Az, € H

- L P(u, dw) L P~ Yw, dx) f . -fH P73y, dz).

We note that with these various requirements we have given more than
one definition for Pr [z, € £] and that we must check, for example,
that

Prjz; e R® A 2,€ E] = Pr [z, € E]
and

Prz,e F A z,€ R3] = Prfx, € F].
Such identities can be verified by direct calculation. It should not be
too surprising that such consistency conditions arise since they arose
with denumerable stochastic processes earlier: In the proof of the
Kolmogorov Extension Theorem in Chapter 2 we required that the
measures on cylinder sets all be consistent.

Now for any denumerable Markov chain P we have
(1) 0 < P, = Prjz, =j],

(2) Prfz, e8] => P, <1,
)

(3a) Prfr; =jAxg=kA---ANxy_y=7rAZx,=235]
=PijP;‘k"'Prs'
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The last equality (3a) implies and is implied by
3b) Prjx,€cE ANxy€eF AN---ANx, €GN z,€ H]

= Z Pii z ij"' Z P,
JjeE keF seH
It is easy to prove both the Markov property and the Markov chain
property from (3a), and hence (1), (2), and (3b) give an equivalent
definition of Markov chain. The analogous statements for Brownian
motion are

(1) 05f¢WJw=PM@em,
@) Prfr e B = | | pludy) =
and

(3") Prjax,eE Ax,eF A---Ax,€H]

= L P(u, dw) L P Yw, dx) f X L Py, dz).

As expected, these statements imply that the position of a particle at
time ¢ + s depends only on s and the particle’s position at time ¢, and
not on the value of ¢ or what happened to the particle before time ¢.
(This assertion can be formulated precisely in terms of means of
functions given a Borel field, which are a technical generalization of
conditional means of functions given a partition.)

As with denumerable Markov chains we need not require that a
Brownian motion particle be started deterministically at a state u.
If we start the particle according to probabilities assigned by a measure
w1 on R3, then we have

Pr [z, c E] = f J- G2 ~lu-vi®2tdydy (u)

= [ | # doytuco.

A similar expression holds for the probability of being in a finite
sequence of sets at specified times.

In Section 3 we shall need a formal definition of Brownian motion,
and we use the formula for Pr [z, € E] to motivate it. We define a
transformation P' of the measures p on R® with p(R®) =1 into
themselves by

1 >
(WPYE) = Pr [z, e E] = L U;f* m e 12—yl ’2‘d,u(x)]dy.
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Later we shall replace the expression in brackets by f(y, ¢) for simplicity
of notation. That p P! is a measure follows from Theorem 1-41, and
that (uP?)(R3) = 1 follows from the identity

(nP*)(R?) = La [J;e“ We-'r—y"/zfdy}dp(x)

after a change of variable.

Definition 7-1: The totality of theorems about the operators P*, the
measures p on B3 with u(R%) = 1, and quantities definable in terms of
them and properties of R? is called Brownian motion theory.

We immediately extend P! by linearity to be defined on all finite
measures on B3 and all differences of two finite measures.

2. Potential theory

Classical potential theory begins as a study of Coulomb’s law of
attraction of electrical charges in physics. This law states that every
two charges in the universe attract (or repel) each other with a force
whose direction is the line connecting them and whose magnitude is
proportional to the magnitude of each of them and inversely propor-
tional to the square of the distance between them. That is,

Q
F = Eor—zqs

where ¢, is a constant depending on the units. As an aid in the study,
one introduces the notion of potential: The potential at a point x due
to a charge ¢ is the work (or energy) required to bring a unit charge
from infinity to the point . It can be shown that this potential is
independent of the path along which the charge is brought to the point
x and that its value is

L q

2 & — x|
where z, is the position of the charge and where the constant 1/27 has
been fixed after a certain choice of units.

More generally one defines a charge distribution to be the difference
of any two finite measures defined on the Borel sets of R3, that is, the
smallest Borel field in R® containing all open sets. The potential at
due to the charge distribution is again the work required to bring-a
unit charge from infinity to the point . Since force (and hence work)
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are additive, the potential due to a charge distribution consisting of
charges ¢,, ..., ¢, at points z,,..., x, is

l n
Z—Z x—xl

Passing to the limit in an appropriate sense, we would expect the
potential due to an arbitrary charge distribution u to be

1 du(y)
2 Jpo |z — y|

After checking that such an expression is always well defined, we shall
define a potential to be any function of this form.

Lemma 7-2: If u is a charge distribution, then

1 1
g(x) = Py fRs |T — yl du(y)

is finite a.e. with respect to Lebesgue measure.

Proor: It suffices to prove the lemma for the case where u is a
measure, since the general case follows by taking differences. Let &,
denote the closed ball about the origin of radius », and form

[ owar =5 | | gy e

By Fubini’s Theorem we may interchange the order of integration to

get,
1 - 1
Jo, e = 55 o, = e

The inside integral on the right is bounded by its value at the origin,
which is some finite number ¢. Thus the right side does not exceed

1
— cu(R?) < oo,
27

and g must be finite a.e. on K,. Since the countable union of the sets
K, is R® we conclude that g is finite a.e.

Definition 7-3: The function

1 1
— —d
. f}e” lx — y‘ w(y)

for u a charge distribution will be called the potential of u.
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The class of theorems relating charges and potentials and quantities
definable in terms of them and properties of R® is called classical
potential theory. The operator transforming a charge into its potential
is called the potential operator. The kernel of the potential operator
is called the Green’s function.

As we have defined it, potential theory contains the subject known in
physics as electrostatics. Our definition includes the notions of
distance, charge, and potential, and all the quantities commonly arising
in electrostatics are definable in terms of these three notions. As an
illustration, Table 7-1 shows how some of the quantities arising in
electrostatics are related dimensionally to distance, charge, and
potential. The table uses the notation

distance = x distance = x
time =t and charge =g¢q
mass =m potential = V
charge =g¢

TaBLE 7-1. DIMENSIONS OF ELECTROSTATIC CONCEPTS

Concept Dimensions Potential-Theoretic Dimensions
Capacity q%t%/ma® q/V

Charge q q

Energy ma2[t? Vq

Field mx[t3q Vix

Force mx[t? Vqlx

Potential mx?[t3q |4

We give four examples to illustrate how concepts may be defined
explicitly in terms of distance, charge, and potential.

(1) We can reasonably ask what the total amount of work required
to assemble a charge distribution is if only an ““infinitesimal”’ amount
of charge is brought into position at one time. The way to compute
this amount of work is to integrate the potential function against the
charge distribution, provided the integral exists. Thus we define the
energy of a charge distribution to be the integral of its potential with
respect to the charge, provided the integral exists.

(2) The total charge of a charge distribution u is u(R?2).

(3) Ifa total amount of charge g is put on a piece of conducting metal
in R®, the charge will redistribute itself in such a way that the potential
is a constant on the set where the metal is. The situation where the
potential is constant on the metal is the one which minimizes energy
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among all charges p with total charge ¢ and with p vanishing away from
the set where the metal is, and this situation is referred to as equilibrium.
We define an equilibrium potential for a closed set E to be a potential
which is 1 on E and which comes from a charge distribution which has
all its charge on E. An equilibrium set is a set which has an equilibrium
potential.

(4) The capacity of a conductor in R® is defined as the total amount
of charge needed to produce a unit potential on the set where the
conductor is. We thus define the capacity of any equilibrium set to be
the total charge of a charge distribution producing an equilibrium
potential.

To indicate the directions in which classical potential theory leads,
we shall state without proof some of the theorems in the subject. The
support of a charge is defined to be the complement of the union of all
open sets U with the property that the charge vanishes on U and every
measurable subset of U.

(1) Uniqueness of charge: A potential uniquely determines its charge.

(2) Determination of potential: A potential is completely determined
by its values on the support of its charge.

(3) Untqueness of equilibrium potential: A set E has at most one
equilibrium potential. (This assertion is a corollary of (2).)

(4) Characterization of equilibrium potential : The equilibrium potential
for an equilibrium set ¥ is equivalent to the pointwise infimum of all
potentials which have non-negative charges and which dominate the
constant function 1 on E.

(5) Principle of domination: Let h and g be potentials arising from
non-negative charges & and u, respectively. If 2 dominates g on the
support of u, then b dominates g everywhere and (R3) = u(R3).

(6) Principle of balayage: If g is a potential with a non-negative
charge and if ¥ is a closed set in R3, then there is a unique potential g
with a non-negative charge with support in £ such that § = g on K.
The potential § (called the balayage potential) satisfies § < g every-
where, and its total charge does not exceed the total charge of g.
The balayage potential is equivalent to the pointwise infimum of all
potentials which have non-negative charges and which dominate g on
E. 1t is equivalent to the supremum of all potentials which are
dominated by g on E and whose charges have support in E.

(7) Principle of lower envelope: The pointwise infimum of potentials
with non-negative charges is equivalent to a potential with a non-
negative charge.

(8) Non-negative potentials: The charge distribution of a non-negative
potential has non-negative total charge.
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(9) Energy of equilibrium potential: If E is an equilibrium set of finite
energy, then the equilibrium potential minimizes energy among all
potentials whose charges have support in £ and whose total charge is
equal to the capacity of E.

3. Equivalence of Brownian motion and potential theory

Kakutani [1944] observed that several of the basic quantities of
potential theory, like equilibrium potential, had simple probabilistic
interpretations in terms of Brownian motion. If E is an equilibrium
set, the value of the equilibrium potential at x is the probability that a
Brownian motion process started at x ever hits the set £. Doob and
Hunt extended Kakutani’s work, and it gradually became clear that in
a certain sense Brownian motion and potential theory were really the
same subject.

To say that they are exactly the same would be to say that every
theorem about Brownian motion should interest a person studying
potential theory, and conversely. Although it is doubtful that this
situation is the case at present, it is certainly true that modern develop-
ments in the two subjects are moving more and more in this direction.

We shall now show that there is a natural way in terms of Brownian
motion of obtaining the operator mapping charges into potentials, and
that, conversely, from the potential operator it is possible to recover the
family {P'} of transition operators for Brownian motion. These facts
make it clear that in a technical sense the two theories are identical.

The proof in the first direction is easy and is completed by Proposition
7-4. We recall from the definition of uP*! that

(wP)(E) = f f(z, tde
E

for a certain function f(z, t).

Proposition 7-4: Every theorem about potentials can be formulated
as a theorem about Brownian motion. Specifically, if u is a charge,
then the potential g of u satisfies

g(z) = lim Tf(x, t)dt,

T— o 0
where

(WP!)(E) = f f (&, bda.
E

Proor: We may assume that u > 0 without loss of generality. Then

J«OT Pt — J;T (2”_:)3/_2 [La - |z—y|2/2td#(y):|dt-
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By Fubini’s Theorem we may interchange the order of integration.
The above expression is

We make the change of variable on ¢ which sends |z — |2/t into u2.
The expression becomes

©

O - SR P

Iz - yilvT
By the Monotone Convergence Theorem,

T © 2
: _ _ ~1,-u2/2
71‘1-{130 R f(.”L‘, t)dt - fRa l:fo (27_‘,)3/2 Il‘ yl e du]d/“'(y)

= Lol [ gz e

1 1
T 2 fn" o=y )
= g(x).

Proposition 7-4 is a precise statement of the connection between
Brownian motion and potential theory in one direction. We see that
formally the potential operator is

T

lim Pidt.

T-x Jo
Thus to complete the proof of the equivalence of the two theories, what
we need to do essentially is recover a sequence from its limit. Of
course, we cannot do so unless we know some other properties of the
sequence, and it is the isolation of these properties that makes this half
of the equivalence difficult. We shall not go into the details here, but
we can indicate the general approach to the problem.

Let C, denote the set of continuous real-valued functions f on R3
which vanish at infinity; that is, which are such that for any ¢ > 0 there
is a ball of finite radius in R® outside of which f is everywhere less than ¢
in absolute value. We define @‘ on C,, by

1 2
@f)(y) = f G ¢ e

The following facts can be checked:
) If fis in C,, then so is @Yf.
(2 sup, [@F)(y)| < sup, |/(y)]-
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(3) Qt+s — Qth_
(4) (@Y) (y) converges uniformly to f(y) as ¢ decreases to 0.
(5) (@f)(y) converges uniformly to 0 as ¢ increases to co.

Now any set function in the class M of differences of finite measures is
completely determined by its effect on all the functions in C,, and a
direct calculation shows that

[ 2wy = [ @rriu

for every pne M and feC, It follows that @' and this equation
completely determine P!. Therefore, it is enough to recover @' from
the potential operator in order to prove our result.

For every f € Cy such that (1/¢)[(@f)(y) — f(y)] converges uniformly
as t decreases to 0, we define

Af = lim 1 [Qf - f1.
ti0 ¢

It turns out that if 4 is known on its entire domain of definition, then
@' is completely determined by the definition of 4 and by the first four
properties of @* listed above. Thus if 4 could be defined within
potential theory, then so could each of the operators @‘: They are the
unique family of operators such that the definition of 4 and properties
(1), (2), (3), and (4) hold. The actual proof of this existence and
uniqueness consists in writing down a concrete formula for ¢* in terms
of 4 and ¢; we reproduce it in order to show that nothing appears in the
formula except 4, £, and the identity operator I:

@

Qf =lim > 7cl-|tk[A2(/\I — A)~1 — M.
A= ® p=g 0:

For every f in C, such that J'OT (QY)(y)dt converges uniformly as
T — o0, we define

T
6f = lim f (@f)dt.

It can be shown readily from the five properties of ¢‘ that ¢ and — 4
are inverse operators on their respective domains. Thus each uniquely
determines the other. Finally (and here is where some work is required)
G looks sufficiently like the potential operator when its definition is
compared with the formulas of Proposition 7-4 that the potential
operator determines G. Thus the potential operator determines G,
G determines 4, 4 determines ¢, and @* determines P*. Hence every
theorem of Brownian motion theory is a theorem of potential theory.
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4. Brownian motion and potential theory in n dimensions

In the mathematical formulation of Brownian motion and potential
theory there is no need to restrict the underlying space to be three-
dimensional. We can define an #=n-dimensional Brownian motion
operator P! by

1
t = - -lz-yl2/2¢ .
P8 = [ [ [ e duy)|da
The potential operator differs in appearance from dimension to dimen-
sion more than the Brownian motion operator does, but its kernel is
still a constant multiple of the integral of |x|~™-D. The potential
g(x) of u, the difference of two finite measures, is defined by

.
_f |z — y|du(y) in dimension 1
Rl

g(x) = { 2f log | — y|du(y) in dimension 2
RZ

c[ !
" Je | -y

¢n = 3m M2 (R(n — 2)).

dp(y) in dimension n > 3,

where

In dimension n > 3, g(x) is necessarily finite a.e., but in dimensions 1
and 2 we shall need to assume that g is finite a.e.

The fact that the kernel 1/|x|"~2 tends to zero at infinity in dimension
n > 3 but the kernels [ — y| and log | — y| do not tend to zero in
dimensions 1 and 2 gives us a clue that the potential theory or dimen-
sions 1 and 2 will differ sharply from that in higher dimensions. We
shall discuss the reason for this difference shortly.

In dimension » > 3, Brownian motion theory and potential theory

are again equivalent. The formula

- 1 T 1 ~lx-yl?/2t
o) = fim | s [ o

generalized from Proposition 7-4 is still valid, and the discussion of

Section 3 goes over with little change to establish the equivalence.
But in dimensions 1 and 2, it does not. The above formula is not
true for these dimensions, and the argument in Section 3 fails after the
operator G is introduced. The reason for this failure is the following.
We recall that in dimension » > 3 the potential operator is formally

limg_ (OT Pidt. In dimensions greater than or equal to 3, this
quantity is finite, whereas in dimensions 1 and 2 it is infinite. Now
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limg, fg' Ptdt plays much the same role for Brownian motion that
>w_o P" plays for denumerable Markov chains. It is finite if the
process is transient, and infinite if the process is recurrent. In fact, the
distinction between transience and recurrence is what is relevant for
Brownian motion here: In dimensions 3 and greater a Brownian motion
particle after leaving the unit ball of R" returns to it with probability
less than one, whereas in dimensions 1 and 2 it returns with probability
equal to one.

The potential operator in dimensions 1 and 2 arises in a different way.
Specifically, the formula generalized from Proposition 7-4 is not valid in
general, but it is valid if x4 has total charge zero and if a mild additional
condition is satisfied. The exact formulation of this result will interest
us later, and we give it as the next proposition.

Proposition 7-5: In R" for n = 1 or 2, let p = u* — pu~ be the
difference of two finite measures, and suppose that

f |z — yldu*(y) < oo and f |z — yldu=(y) < 0 ae.ifn =1
R! R!

or

fz |log |z — y||du*(y) < o0 and [
R

JR

, llog |z = yl]du=(y) < o

a.e. ifn = 2.
If u(R™) # 0, then

T 1
lm | ———p | e l=-¥*2du(y)dt = +0 or —oco a.e.
o (2at)* 2 Jpn (4

T— o

If w(R™) = 0, then
T

g@) =1lim | o

[ e=vrmaugyar
Rﬂ
exists, is finite a.e., and satisfies

[ e - yldutn)  ifn=1
g(x) =

[
1

2f log |z — yldu(y) if n
RZ

Proor: We prove the result for » = 1; the ideas in the proof for
n = 2 are similar. The same calculation as at the beginning of the
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proof of Proposition 7-4 shows that for n = 1

T ©

= f_: |z — y| [ f \/i%u‘ze‘“zlzdu]dp.(y).

1z - y|Iv¥T

If we use integration by parts on the terms in the brackets, differentiat-
ing the exponential and integrating »~2, we find that the right side is

Y gl 2| 1o _ if ~u?g
= f_w |z — y] T [ u”le - e du |du(y)
T |z~ ylI¥T
=" - yl[ | v‘”;_ﬂe-"*’fzdu}dmw
" lx = ylINT

N

We let T tend to oo and consider each term separately. In the first
term the expression in brackets increases to 1. If we write the integral
as the difference of one with respect to u* and one with respect to u~
and use the fact that

f |l — yldu*(y) < o0 and f lz — yldu=(y) < a.e.,

we see by the Dominated Convergence Theorem that the first term tends
a.e. to

—J_w |z — y|du(y).

Next we consider the second term. Suppose first that u(R') # 0.
The second term tends, as 7 — o0, to

lim VT lim L_ e 1E-VIPI2Tq 4y,

T— ® 77— 277 -

and the integral and the second limit may be interchanged by dominated
convergence to become

(tm V7 (5 [ 2e0)

= 400.

I1
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To complete the proof we shall show that if u(R') = 0, then
f Ve~ 1==41*2Tdu(y)
tends to zero a.e. as T — c0. Since u(R!) = 0, we have

[* VT = [T VTt )
We shall prove that the right side even tends to zero when p is replaced
by u* oru~ Let us do so for u*. First we show that

[V T(e121%12T — 1)| < k2]

for a fixed constant k and for all 7. By differential calculus methods,
we find that
e-l212/2T _

B
assumes its maximum value as a function of |z| when |z| satisfies

||

= el2l?i2T _ g,

The unique positive solution occurs for 2 < [2|2/T < 3. Let b =
|z]2/T with 2 < b < 3 be the point at which the solution occurs. Then
— -1 _

VT E Ve

e~ lz12/2T -b2 _

vVbT

1 — e-b/z

Vb

|2
and
|V T (e~ 121127 — 1)| < klz|.

Put |z| = |z — y|. Since

f klx — yldu*(y) < © a.e.,

-~

we have by dominated convergence

o0

lim V(e 1=-v1*2T _ D)du*(y)

T— © —

- fw lim [v7(e™12= 01127 — 1)} (y)

oo T—o

for almost every z. The integrand on the right side is identically zero.

The hypotheses of Propositions 7-4 and 7-5 are worth reviewing and
comparing. In the transient case, Proposition 7-4, we started with
any element u of M and we were able to conclude both that the potential
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operator was defined on p and that its value was the Brownian motion
limit. In the recurrent case, Proposition 7-5, we started with any
element p of M and we had to assume that the potential operator was
defined on u; we then concluded that the potential of u was equal to
the Brownian motion limit if and only if u had total charge zero. We
shall see that the same thing happens in potential theory defined for
denumerable Markov chains.

5. Potential theory for denumerable Markov chains

We turn our attention now to those properties of Brownian motion
which relate it to potential theory. In this section we shall answer
the following questions:

(1) How can the connection between Brownian motion and classical
potential theory be used to define a potential theory for denumerable
Markov chains?

(2) How does potential theory differ in the transient and recurrent
cases, and what form does the potential operator take?

(3) What is the nature of the inverse operator that transforms
potentials into charges?

(4) What other Markov chain concepts play a role in potential
theory?

For definiteness, let P be a denumerable Markov chain which either is
recurrent or is transient with no absorbing states, and let « be a positive
finite-valued P-superregular measure.

Before defining a potential theory for denumerable Markov chains,
we should discuss some properties of the operators P* and @!. The
operators P! and @' act respectively on differences of finite measures
and on functions in €, according to the equations

wPB) = [ [[ g ey dute)

and
1 2
@y = Ln @ e~ 1= vI*I2f (q)d,

and they are related by the identity
[ @nau = | i,
R R

The linearity properties

(0 + V)Pt = uPt + VP!
and
(cu) Pt = c(uP"),
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together with a certain property of continuity, imply that the action of
Pt on differences of finite measures is analogous to the action of a matrix
on row vectors. Similarly, the corresponding properties for @ imply
that the action of @ on functions in C, is like that of a matrix on column
vectors. But the real insight into P* and @' comes in realizing that
these matrices are identical. To be more specific, we must reformulate
the assertion for a countable space.

Let P* be a continuous linear operator on row vectors p which have a
finite sum, and let @* be a continuous linear operator on column vectors
f whose components tend to 0. Suppose that P* and @* are related by

the identity
@*f) = (wP*)-f

for all u and f of the type spemﬁed, where - stands for vector multiplica-
tion. Let 8" and d” be the row and column vectors having ¢th
component equal to 1 and all other components equal to 0. The vector
8D is in the domain of P*, and d® is in the domain of @*. If we define
a square matrix {P}} by

P;'; = (§DP*).dP = (§DP*),
then
(pP*); Z pi(8OP*); Z pi PRy

Hence the operator P* may be represented by the matrix {P}}. But
by the identity relating P* and @*,

Pt = 5. (Q*dY).

Hence by a similar argument, the operator @* is also representable by
the same matrix {P}}.

Thus the denumerable Markov chain analog of the pair of operators
Pt and @ can be expected to be a single matrix depending on ¢. For
t = 1, this matrix can be taken to be the transition matrix P of the
Markov chain. Then the relations Pt*s = P!Ps and @ *° = Q'Q° for
integers ¢ and s imply that the analog of P‘ and @' for any other
integer value of ¢ is a power of the matrix P.

Lebesgue measure has a special property with respect to Brownian
motion which is summed up in the equation

1
— - p=lx- 12/2¢
L de Ln Up. e d"’] da.

If we call Lebesgue measure o and use notation that earlier was re-
served for finite measures, this equation becomes

o = oPt.
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That is, o is regular for P'. Thus the analog of o for the Markov chain
P should be a P-regular measure. But if P is transient, then P need
not have a regular measure. We therefore relax our requirement and
ask only that the analog of ¢ be a P-superregular measure. We can
then decree that the specified measure « is to be the analog of o.

The problem of defining potentials for Markov chains becomes a
problem of translating notions about Brownian motion into notions
about Markov chains. Following Propositions 7-4 and 7-5, we recall
that a potential g(x) is obtained from a charge p in this way: If we
abbreviate the equation

(WPY(E) = f fiz, tyde,
E

as

then
T
g(x) = lim Sz, tydt.

T—o o Jo

Translating the relation for (uP!)(£) into notions about Markov chains,

we write
Z (nPr); = Z [iPey.

ick i€k
If E is the one-point set {i}, we find that

1
fgn) = - (f"’Pn)i

o

or
f™ = dual (uP").

The equation defining g(x) translates into

g = lim [f(O) +f(1) 4o +f(n)]
n— o

or

g = dual lim [pu(d + P +---+ P")]

n— o

Classically, potentials are left as point functions and are never trans-
formed into set functions because such a transformation is frequently
impossible. In Markov chain potential theory, however, every column
vector can be transformed into a row vector by the duality mapping.
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If we take the dual of both sides of the boxed equation, we get
dualg = lim [u(f + P +---+ P")].

n— o

For simplicity in notation we shall adopt the convention that dual g,
and not g, is the potential of u. We can at last formulate a definition.

Definition 7-6: Any row vector u with u1 well defined and finite for
which the limit
v = lim [ul + P +---+ P")]

n— o

exists and is finite-valued is called a left charge with potential measure v.

The condition that u1 be well defined and finite is the analog of the
condition that a charge in R" be the difference of two finite measures.
The boxed equation for g yields an alternate possibility, namely
g = lim [(/ + P +---+ P)(dual )]
with o(dual u) = u1 finite. If we had gone through the same argument
for the process P, we would have obtained the same equation with the
carets removed. We therefore complement Definition 7-6 as follows.

Definition 7-7: Any column vector f with «f well defined and finite
for which the limit
g=lim [(I + P+ -+ Pf]

n— o

exists and is finite-valued is called a right charge with potential functiong.

From our knowledge of what happens with Brownian motion, we
should expect that the Markov chain potential operators will arise in
different ways in the transient and recurrent cases. Consequently, we
shall treat the different kinds of processes separately, handling the
transient case in Chapter 8 and the recurrent case in Chapter 9.

In the transient case of Brownian motion the operator was formally

T @
lim f Pidt = f Ptdt,
0 0

and it is no surprise that for Markov chains it is the matrix N =
>w_o P* which turns out to be the potential operator both for left
charges and right charges (see Theorem 8-3). Once we have the
potential operator, it will not be difficult to develop a full theory in
analogy with classical potential theory.

In the recurrent case, however, the problem of finding the potential
operator is not so easy. The information that we will find, just as in
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Proposition 7-5, is that for any charge of total charge zero on which the
potential operator is defined the potential operator should agree with
the operator which is formally

T
lim f Pidt.
0

It will turn out that there are many possible potential operators for left
charges and many others for right charges. Of these the matrices
—C and — G, respectively, will be representative (see Definition 9-24).
But if we ask that the same matrix work for both left and right charges,
then we shall see that there is a matrix K such that all such potential
operators are of the form — K + cla, where ¢ is a constant (see Theorem
9-84). With — K as our operator, we have some hope of imitating
classical potential theory if we redefine charge and potential in terms of
K: The column vector f is a charge, for instance, with potential g if

g = —Kf.
From this new definition of charges and potentials, we shall be able, just
as in the transient case, to prove theorems which are analogs of some of
the main results of classical potential theory.
In discussing the relation of Brownian motion to potential theory in
Section 3, we mentioned that the operator inverse to — A, where

Af = lim 7 @ — /),
t10

was of the same form as the potential operator. It is thus quite
believable that — A should be essentially the inverse operator that
transforms potentials into charges. Now the definition of 4 involves a
derivative, and when concepts in Brownian motion are translated into
concepts in Markov chains, derivatives transform into differences.
Therefore, the proper analog of Af for Markov chains is Pf — f =
(P — I)f. That is, I — P plays the role of —A. In Theorems 8-4
and 9-15 we shall see that I — P is indeed the operator that transforms
potentials in the sense of Definitions 7-6 and 7-7 into charges.

With Brownian motion the operator 4 is a constant multiple of the
Laplacian operator 4 for smooth enough functions, where

02 0?
4 = (g 0+ )t
If a function f satisfies the equation 4f = 0 in a neighborhood of a
point z, then f is said to be harmonic in a neighborhood of x. The
analog in the case of denumerable Markov chains is that if a column
vector f satisfies (P — I)f = 0 at the point ¢, then f is regular at i.
Thus we can expect that regular functions will have some of the same
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behavior for Markov chains that harmonic functions have classically.
As an example, a function harmonic on a connected open set in R*
cannot assume its maximum value inside that open set unless the
function is constant. We shall see in Corollary 8-44 that an analogous
result holds for Markov chains.

A twice continuously differentiable function f is said to be super-
harmonic if 4f < 0. The analog of this property is the condition that
(P — I)f < 0orf = Pf. Thus the analog of a superharmonic function
is a superregular function.

TaBLE 7-2. MARKOV CHAIN ANALOGS OF PoTENTIAL THEORY

CoNcCEPTS
Classical Notion Markov Chain Analog
R" State space S
Pt and @* pr
Lebesgue measure o
Potential limul + P+..-4+ P
orlim (I + P +---+ PYf
Total charge pl or of
Potential operator Transient: N
Recurrent: — K
Inverse operator I - P
Harmonic function Regular function
Superharmonic function Superregular function
Connected set Communicating set

6. Brownian motion as a limit of the symmetric random walk

The symmetric random walk in n dimensions was defined in Chapter 4
as a Markov chain obtained from sums of independent random variables
on the integer lattice in B™ with the probability of going from any state
to any of the 2n neighboring states equal to 1/(2r). In potential
theory for Markov chains this process assumes the role of the ‘“ classical
case,”” exhibiting in its potential theory much of the special behavior of
the theory in Section 2. For instance, the matrix of the potential
operator for this process has the same asymptotic behavior at infinity
as the potential kernel has classically: log |x| in two dimensions,
1/|z| in three dimensions, and so on.

The reason for this coincidence is that Brownian motion is in a
precise sense the limit of the symmetric random walk. Specifically if
the random walk is considered first on the integer lattice, then on the
half-integer lattice, then on the quarter-integer lattice, and so on, then
the probabilities in the kth process of being in a fixed ball in R" after
time 4% converge to the probability in Brownian motion of being in
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that ball after time . We shall prove this result only in the one-
dimensional case, and we make use of the Central Limit Theorem
(Theorem 1-68).

Consider for fixed k the random walk on the line having as states the
points of the form j2~*, for j any integer, and having transition prob-
abilities 4 from any state to each of its two neighbors. This process is
the symmetric random walk with a change in scale. Let z{® be the
nth outcome function, and let z§? = 0. As in Section 1, we let z,
denote the position in Brownian motion.

Proposition 7-8: Brownian motion in one dimension is a limit of the
symmetric random walk in this sense: If ¢ is a diadic rational and if «
and B are real numbers, then

lim Pro[z4; € (@, B)] = Pro[z, € («, B)].

k— oo

Proor: The random variables 2., — ¥ are independent and
identically distributed and have mean 0 and variance

s L(1)? 1 142 1
“ =3 +:(-5) =&

Let m = 4%t be an integer. Since

m
(k) _— (k) k
xm) - z [xn - .’I:( )1]’
n=1

z” has mean 0 and variance m/4* = t. Hence, by the Central Limit

Theorem,
o)~ o

lim Profa < o < ] = @(%) - q)(_\"/‘_z).

tm el 7 < T <l -

or

On the other hand, by definition,

51
Pry[z, € (c, = J‘ — ¢ v22Yg
ol € (e, B)] v Vot Y
BIVE 2124
= — e~ “idy
J;/JZ Vor

o) - of2)

lim Pro[zif, € (@, B)] = Pro[x, € (o, B)].

k— o

Therefore,
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7. Symmetric random walk in n dimensions

As was mentioned in Section 6, the n-dimensional symmetric random
walk and n-dimensional Brownian motion share a number of properties
because the second process is the limit of the first. Of these we shall
prove for the random walk just two—that the process is recurrent in
dimensions 1 and 2 and transient in dimension n > 3 and that in the
transient case the columns of the N-matrix tend to zero. The second
result is in analogy with the behavior of the potential kernel 1/|x|"~2
in Brownian motion.

For the first problem we note immediately that all states communi-
cate in the random walks of all dimensions; hence each of them is
either transient or recurrent. In one dimension the state space is the
integers, and

Pi.i+1 = Pi.i—l = %

Since the mean step in zero, the process is recurrent by Proposition
5-22. A more direct proof of the recurrence proceeds as follows. It is
impossible to get from state 2 to state 0 without going through 1.
This fact, together with the translation invariance of the hitting
probabilities, implies that

Hzo = H21H10 = (H1o)2-
But _
Hyo = 3H,o + §H_, o = $H,o + §Hy = Hyp
since Hy,, = H,,. Therefore, the identity
Hyy = §Hyo + 3Hyo = § + $(Hyo)?

implies that H,, = 1 and hence Hy, = 1. Consequently, the process
is recurrent. Still a third proof can be based on a calculation of N,.

In fact, we have
2n
PEm = 2—2n(n)

because in order for the process to return in 2n steps to 0, it must make
n steps to the right and » to the left; each such possibility has prob-
ability 272", By Lemma 1-59,

(2n) ~ 221 _1._.
n Vn
Hence the tail of the series Noq = > PEM dominates a constant multiple

of the tail of the series 3 1/v/n. Therefore, N, is infinite and the
process is recurrent.
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In the two-dimensional case there are two simultaneous processes
going on in perpendicular directions, and for the process to return to
the origin, both of them must return to their zero positions at the same
time. Letting £ be the number of steps to the right and n — & the
number of steps up in 2n steps, we have

n 2n
(2n) _— -2n .
Pog” = 4 ,Zo(k,k,n-k,n—k)

If we multiply numerator and denominator of the multinomial co-

2n\ (n\?
efficient by (n!)2, we see that it equals ( n ) ( k) . Thus
2n\ & (n)\?
pen — 4—2n( ) ( ) .
00 n kZo k

The identity

26 -6)

shows that
2
Pg)%n) = 4—2n(2;) .
Since
(277/) ~ 022"' L_’
\ vV
we have
1
PEM o 2 =

Thus the series Ny, = > PZY dominates a multiple of 5 1/n, N,
must be infinite, and the process is recurrent.

An alternate proof that the process is recurrent in two dimensions
proceeds as follows. If we introduce the new coordinates

u=2x+y
v=2x—y,
then the two-dimensional symmetric random walk described in the
coordinates (u,v) executes two one-dimensional symmetric random
walks independently of each other. Hence P4, ,, is the probability
that = 0 and v = 0 after 2n steps, which is (P@P)2 ~ c?/n.
In three dimensions we calculate N,,. We have

2n
pPen — g-2n o : ‘
° JZIC: (],],k,k,n—j—k’n_'?_k)

jtk=<n

n n 2
-2n -2n .
? (n)23 (j,k,n—j—k)

ik

Il
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n

The coefficients (j, kom —j — k

) are dominated by the central term

n
n/3, n/3, n/3)
where the gamma function may be used for (n/3)! if 3 does not divide =.
This fact and the observation that the coefficients ( " )
Jok,n —j5 — k
sum to 3" implies that

2n n
(2n) -2n -n .
A 4 o IR

Summing on » and using the approximations of Section 1-6a, we see
that the series Ny, = > P& is dominated by a multiple of 5 1/n%2.
Therefore N, is finite, and the process is transient.

If any higher-dimensional random walk were recurrent, then the
process projected to a three-dimensional set would be recurrent, and
the latter process watched only when it changes state would also be
recurrent. But this last process is exactly the three-dimensional
symmetric walk. We conclude therefore that the random walk in all
dimensions greater than three is transient, and we have completed the
proof of the following proposition.

Proposition 7-9: The symmetric random walk is recurrent in dimen-
sions one and two and is transient in all dimensions greater than or
equal to three.

In the transient case of dimension » > 3, the jth entry in the Oth
column of the N-matrix is of the order of a constant times |j|~®~2.
We conclude this chapter by proving the weaker result that the entries
of that column tend to zero, but our proof will be for a more general
situation.

Proposition 7-10: Let P be a Markov chain with an infinite state
space such that

(1) P is transient,
(2) P = PT.
(3) P has only finitely many non-zero entries in each row.
Then
lim H,; = 0.

j— o
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If, in addition, P represents sums of independent random variables,

then

lim NO] = 0.

j—o o
In particular, the conclusions apply to the symmetric random walk in
any dimension n > 3.

Proor: We note that hypothesis (3) is equivalent to

(3') For any state 0 and for any given m, there exist only finitely
many states j for which F§? # 0 for some k < m.

If the conclusion about H,; is false, then for some ¢ > 0 and for
infinitely many j we have H,; > e. By (1), N is finite-valued.
Therefore,
lim PN =lim [N — (I +---+ P 1)] =0
k— o k—
and
lim P*H = 0

k- o

since I < H < N. Choose m large enough so that (P™H),, < €2

Since there are infinitely many j such that H,; > €, we can find by (3)
such a j with F§Y = 0 for all ¥k < m. Then

Pr[hit 0 after time m] > Prg[ever hit j and return to 0]
= H o;'Hjo
= HoHy; by (2)

> €.

But
Pr,[hit 0 after time m] = (P™"H)y, < €2,

a contradiction. Therefore Hy; — 0.
Finally if P represents sums of independent random variables,

No;’ = HOJ'NJ'J‘ = HOJ'NOO'
Hence Ny; — 0. (Note that we really need only that N, is bounded.)

As Markov chains the symmetric random walks have some special
properties, reflecting corresponding special properties of Brownian
motion. For instance, o is a constant for the random walk, and
P = PT. Consequently P = P. We shall see that although many
results of classical potential theory generalize to all transient and most
recurrent chains, some will require further assumptions which happen
to be true for symmetric random walks.



CHAPTER 8

TRANSIENT POTENTIAL THEORY

1. Potentials

In this chapter P denotes a Markov chain all of whose states are
transient—that is, a transient chain with no absorbing states. Every
such chain has at least one (strictly) positive superregular measure, as
we saw in Chapter 5; for example, the sum of 2~* times the ith row of
N is such a measure.

We select one such positive superregular measure, to be fixed
throughout the chapter, and call it .  All of transient potential theory
will be relative to the distinguished vector «.

Let P be the a-dual of P. Since all states are transient in P and
since P = P, we see that P is the most general chain of the type we
consider. The distinguished measure for P is taken to be the same «.

As an example, let P be a transient Markov chain whose states
communicate. Then P1 <1 and 0 < N = 37_, P¥ < 0. Every
non-negative non-zero superregular row vector § is positive, for if
B; # 0, then for every state ¢ and integer &

B; = (BP¥), ZBmP(k) > P(k).

The right side must be positive for some k, since j communicates with ¢.
Thus in this special case any non-negative superregular row vector may
be taken as «; in particular, « may be taken as a row of N.

In the general case, if P1 # 1, we have defined the enlarged chain P
by adding an absorbing state a to P and by setting

P, = P, if i #aandj # a
Pia.:l_zpik

k
Paj':aaj'

If P1 = 1, we shall agree that P is its own enlarged chain.
191
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It will be convenient to say that the product of a row vector and a
column vector is finite when we mean that it is well defined and finite.
We recall the terminology function for column vector and signed
measure for row vector.

Definition 8-1: If y is a signed measure with u1 finite and if
v=1lm[pl + P +--.+ P1)]

exists and is finite-valued, then p is called a left eharge with potential
measure v. If fis a function with «f finite and if

g=lm[I + P +...+ P Y)f]

exists and is finite-valued, then f is called a right charge with potential
function g. In either case a pure potential is a potential of a non-
negative charge.

The condition that of be finite is the natural analog of the classical
theory as described in Chapter 7. It states that f is integrable with
respect to the distinguished superregular measure «. Similarly, the
condition on p is that the distinguished superregular function 1 be
integrable with respect to .

Potential functions have a simple probabilistic interpretation in terms
of games. If f denotes a payment function in which f; is the payment
a player receives each time he is in state j, then P"f denotes the expected
payment on the nth step. Thus (I + P +---+4 P""1)f is the total
payment before time n, and the potential g is the expected total pay-
ment in the long run. It is clear intuitively that g, should equal
>; Nyf;» and we now prove this result.

Lemma 8-2: If u1 is finite, then uN is finite-valued. If «f is finite,
then Nf is finite-valued.

Proor: We have
Ny;=H,N;; < Ny

ij*'ji = ji*

Thus
[(uV);| < Z || Ny < Z || N5 = (||1)N;; < oo.

For the second half let u = dual f and apply the first result to P,
noting that u1 = of. Then

0 > ‘P'N|j = liZfiai(aiji/ai)l =

Since «; # 0, Nf is finite-valued.

= “1‘|Nf1f-

O‘ijﬁfi
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Theorem 8-3: If «f is finite, then f is a charge and its potential is
g = Nf.

Proor: By Lemma 8-2, Nf is well defined and finite-valued. Hence
so are both Nf* and Nf~. By monotone convergence,

hm[(I + P+ 4 Pn—l)f+] — Nf+

and
im[(I + P +---+ P 1)f~] = Nf-.

Thus
im[ + P +---+ P""))f] = Nf* — Nf- = Nf.

Thus f is a charge if and only if it is integrable with respect to «, and
N is the potential operator that transforms a charge into its potential.
In particular, f is a charge for P if and only if it is a charge for P.
We shall now show that I — P is the inverse operator.

Theorem 8-4: If g is a potential, then (I — P)g is its charge.

Proor: Let f be a charge with potential g. By Theorem 8-3,g9 = Nf.
Hence, by Lemma 5-9, (I — P)g = f.

Therefore, there is a one-to-one correspondence between charges and
potentials. Note that Theorem 8-4 implies that a potential is regular
at all states where the charge is zero.

The method used to derive the second half of Lemma 8-2 is of general
importance. We prove a result for all our P’s for signed measures
(or functions). We apply the result to P and obtain a corresponding
result for functions (or signed measures). Then since P is the form of
the most general transient chain being considered, the new result holds
for all P’s. Such results will loosely be described as duals.

The duals of Theorems 8-3 and 8-4 state that a signed measure u is a
charge if and only if pl is finite. Its potential is v = uXN, and
w=uvl — P)

From now on we shall prove theorems only for functions; the dual
results for signed measures can always be proved by the indicated
method. The key to the success of the method is that the dual of a
right charge for P is a left charge for P, and the dual of a potential
function for P is a potential measure for P.

From Theorem 8-3 we see immediately that the class of potentials is
quite extensive. We can even prove that there exists a strictly positive
pure potential, a result we shall need later on.
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Proposition 8-5: There exists a strictly positive pure potential.

Proor: Number the states and let f; = 277/a;. Then
af = Zaj(2”j/aj) =1,
7

so that fis the charge of a pure potential g, by Theorem 8-3. Further-
more,

g = ZNufj > Nufi 2 f; > 0,
7
so that g is strictly positive.

For many purposes it is sufficient in studying potentials to consider
only pure potentials. The reason for this simplification is the following.

Proposition 8-6: Any potential may be represented as the difference
of two pure potentials.

Proor: Write g = Nf = Nf+ — Nf~.

Note by Theorem 8-4 that a potential is superregular if and only if
it is a pure potential.

We recall from Theorem 5-10 that a non-negative superregular
function % is uniquely representable as A = Nf + r with r regular.
In the representation, r = lim, P"» > 0 and f= (I — P)h = 0.
(The dual of this result allows the unique representation of a non-
negative superregular measure = as w = ulN + p with p regular. In
this representation, p = lim, #P* > Oandu = #(I — P).) Thisresult
is the analog of a classical theorem due to F. Riesz: In any open set of
Euclidean space which corresponds to a transient version of Brownian
motion, any non-negative superharmonic function is uniquely the sum
of a pure potential for the region and a non-negative harmonic function.
The pure potential may have infinite total charge. We now generalize
the Markov chain result, and in so doing we obtain a useful necessary
condition that potentials must satisfy.

Proposition 8-7: If (I — P)h = f, if & is finite-valued, and if Nf is
finite-valued, then A has a representation in the form

h=Nf+r

with r regular. The vector r satisfies r = lim, P"h.
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Proor: Set r = b — Nf. Then
(I — P)h — Nf) = (I = P)bh — (I — P)(Nf)
= ({ — P)» — f by Lemma 5-9
—f-f=o.
Hence r is regular. Now

f=U—-Ph=h—Ph
or
h = Ph +f.

Since Nf is finite-valued and since P'f* < Nf* and P*f- < Nf-,
Pf is finite-valued for every n. By induction we see that
Pr-1p = Pkp + PE-Lf
and that P*h is finite-valued. Summing for k¥ = 1, ..., n, we obtain
h=Ph+ I+ P+---4+ P 1)f.
By dominated convergence the second term tends to Nf. Hence

h = lim P*h + Nf.

Corollary 8-8: If (I — P)h = f, if b is finite-valued, and if «f is finite,
then k is a potential if and only if lim, P"h = 0.

Proor: By Theorem 8-3, f is a charge and Nf is its potential. Apply
Proposition 8-7 and write

h = Nf + lim Ph.

Iflim P"h = 0, then his the potential of f. Conversely, if lim P"h # 0,
then A cannot be a potential because, by Theorem 8-4, it would have to
have f as its charge.

Corollary 8-9: If ¢ is a potential, then lim, P"g = 0.
Proor: Take & = ¢ in Corollary 8-8.

In the discrete analog of the classical case—three-dimensional
symmetric random walk—every potential g is bounded and satisfies
lim; g; = 0. In our theory we obtain only the weaker result, Corollary
8-9; that g may be unbounded will be shown in Section 7.

The stronger results of the classical theory are due to special features,
as the next proposition shows. In the classical case « is chosen as 17
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and N, is independent of i. Hence, « > kN, for some positive
constant k. Furthermore, lim, ¥;; = 0 by Proposition 7-10.

Proposition 8-10: If « is chosen so that o; > kN, for all ¢ with £ a
positive constant, then all potentials are bounded. If, in addition,
lim; N;; = 0, then lim; ¢g; = 0.

Proor: The dual of N; < N,., is Ni; < (Ny/o)aj. If oy = kN, then

lg:| =< ZNiilfj = alf)| < ,cZajlff

Thus ¢ is bounded. Now suppose hm, N, = 0. By Proposition 8-6
we may assume that ¢ is a pure potential. Define a sequence of func-
tions A{? = N/, and a measure p; = a,f;, Then p is a finite measure,

and

N.
Ny 1

o

is bounded independently of ¢ and j. Hence, by dominated con-
vergence,

[

)
K <

=

lifn g = liim ]Z hPu,; = Z (litm Nj)f; = 0.

j

Both conditions of Proposition 8-10 hold for the basic example with «
chosen as 8. However, only the first condition holds for the reverse of
the basic example (see Section 6). In Section 7 we shall see an example
where both conditions fail.

2. The h-process and some applications

Duality is a transformation which interchanges the roles of row and
column vectors. Our purpose now is to describe a useful transformation
of transient chains into new transient chains in which row and column
vectors are transformed into vectors of the same type.

Definition 8-11: Let % be a positive finite-valued superregular
function for a transient chain P. The h-process is a Markov chain P*
with transition probabilities
Pk

by

It is left to the reader to verify that P* is a transition matrix, that all
states are transient, and that if the states of P communicate, the same
is true for P*. Let U be a diagonal matrix with diagonal entries
1/h,. Then P* = UPU .

o —
Py =
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Definition 8-12: The h-process transformation is a transformation
defined on square matrices Y, row vectors 7, and column vectors f by

Y*=UYU !
m* = qgU"?
f*=Uf.

The h-process transformation yields results similar to those with
duality. If P is a transient chain, then P* also is transient. More-
over, powers of P transform to the P* process the same way that P
does, and the fundamental matrix for P* is N*. Sums and products
are preserved in their given order; and equalities, inequalities, and
limits are preserved entry-by-entry. Any superregular function (or
signed measure) for P transforms into a superregular function (or signed
measure) for P*.

If « is the distinguished superregular measure for P, we select «* as
the distinguished superregular measure for P*. Then a*f* = «f and
N*f* = (Nf)*. Hence if fis a right charge with potential g in P, then
f* is a right charge for P* with potential g*.

If we decompose P as

E E
E (T U
P = ,
E’(RQ)

then

(ens
BE = .
2ZeHWR 0

From this decomposition we see that (BF)* is the Bf-matrix of the P*-
chain because ) and R transform into @* and R*, because products are
preserved, and because I* = I.

We shall now give some applications of the k-process.

Definition 8-13: The support of a charge is the set on which the charge
is not 0; the support of a potential is the support of its charge. A

charge or potential is said to have support in E if its support is a subset
of E.

The function 1 is always superregular, and hence by the representa-
tion theorem 1 = Nf + r, where f = (I — P)1 and r is regular. That
is,

fi=1"‘(P1)i=Pia
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in the enlarged chain. Moreover,
(Nf), = Z N,.jl_’,a = By,
7

Thus r; = 1 — B,, is the probability that the P-process, started at 7,

continues indefinitely. The enlarged chain is absorbing if and only if
1 = Nf.

Proposition 8-14: Let g > 0 be a pure potential with support in E,

and let P* be the h-process for h = g. Then g* = 1 is a potential, P*
is absorbing, and (B®)*1 = 1.

Proor: Potentials transform into potentials; hence g* =1 is a

potential. Since 1 is then of the form N*f* P* is absorbing. The
absorbing state a can be reached only from a state ¢ such that (P*1), < 1;
for such a state 1,

0 < [(I — P} = [(I — P*)g*], = f*.

Hence f; > 0and ¢ must bein £. Thus the P*-process with probability
one reaches £ from all states, and (Bf)*1 = 1.

What underlies Proposition 8-14 is this: The A-process tends to
follow paths along which 4 is large. But since potentials tend to zero
on the average (P"h — 0 for a potential), if 4 is a potential, then the
paths in the A-process disappear. See Chapter 10 for details.

Proposition 8-15: If & is a non-negative finite-valued superregular
function, then BEh < h for any set E.

Proor: First suppose that A > 0. Form the A-process; then
h* = 1. Since (B¥)*1 < 1, we have B¥h < h. (The conclusion that
an inequality for the A-process implies an inequality for the original
process is one we shall draw frequently. If it were false, then the
inequality BER < h would fail in some entry. But the hA-process
transformation preserves inequalities entry-by-entry.)

Now suppose that A has some zero entries. Apply the special case
above to the function 2 + ¢1. Then

BE(h + €1) < h + €.
Letting € tend to zero, we obtain Bfh < h.
Proposition 8-16: If 4 is a non-negative superregular function and if

E is any set of states, then b = BFh satisfies the following:
(1) A < hand hy = hy.
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(2) & is the pointwise infimum of all non-negative superregular
functions which dominate » on E.
(3) If f = (I — P)h, then
fe = = PEhy > 0
and ~
fe=o.
Therefore, % is regular on £ and is superregular everywhere.
(4) If E C F, then BEh < BFh.

Proor: Statement (1) follows from Proposition 8-15 and the fact that
BE = §,; for v in E. For (2) let x be a non-negative superregular
function such that x; > k. Since the £ columns of BE are zero,

x > BExr > BEh = h,

and (2) holds provided we show in (3) that A is superregular. For (3),
since Ph < Ph < his finite-valued,

i I — PE 0\ [k
f=( - P)(Bfh) = [(I — P)BFh = ( )( )
0 0/\h;

But Ag is PZ-superregular by the dual of Lemma 6-7, and (3) follows.
Finally for (4), if £ C F, then by conclusion (6) of Proposition 5-8,

BEh = BF(BEh) < BFh.

We now prove two lemmas and a proposition which conclude that a
charge and its potential may both be computed from a knowledge of
the values of the potential on the support. The first lemma is interest-
ing in itself because of its game interpretation, which we shall discuss
after proving the result.

Lemma 8-17: For any set of states E,

N = BEN + EN.
If g is a potential with charge f, then
g = Bfg + “Nf.
Proor: In Theorem 4-11, let f; be the number of times in § when and

after F is reached (or 0 if £ is not reached), and let t be the time when
E is reached (or + co if ¥ is not reached). Then Theorem 4-11 yields

M(f;] = > Prjxz, = k] My[n,]

= kz BﬁcNkr
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But f; is the difference of the total number of times the process is in j
and the number of times it is in j before reaching £. Hence

M{f;] = N,; — ENy;,

and the first equation follows. To get the second equation we multiply
through by f; associativity in BENf holds because BEN|f| is finite-
valued.

In the game interpretation of potentials, f; is a payment received
each time the process is in state j, and g is the expected total gain if the
process is started in 5. The second equation of Lemma 8-17 states that
g is the expected gain when and after E is entered plus the expected
gain before E is entered. If all the payments are non-negative, then it
is obvious from this interpretation that ¢ > BFg. If the support of f
is in E, then all non-zero payments occur in E, and the expected gain
before reaching E is zero. Hence, as we shall see formally in Proposition
8-19, g = Bfg.

Lemma 8-18: The fundamental matrix for Pfis N.

Proor: The assertion is probabilistically clear because the number of
times the process P is in a state of £ when watched only in states of £
is the same as the number of times the process P is in a state of E.

Proposition 8-19: If g is a potential with support in E, then gg
determines g, g = B¥g, fz = (I — P®)gg, and gz = Ngfs.

Proor: The fact that g = B®g is immediate from Lemma 8-17.
Hence g, determines g. Since g = Bfg, we have f; = (I — PE)g, by
conclusion (3) of Proposition 8-16. Finally gz = Nfy either by Lemma
8-18 or by direct calculation:

(9’5) _ (NE Nz)(fE) _ (NEfE)
9z N N,\O Nsfe
Next we shall prove that the columns of Bf are always potentials.

Proposition 8-20: For any set of states £ the columns of B are
potentials with support in E, and
o o

I - PE O
w0
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Proor: Since

I - PE 0
{
0 0

)= (ag(I — PF) 0)
I - PE 0

0 0
support in £. Thus by Proposition 8-19,

I - PE O I - PE 0
[ e )

is finite-valued, each column of N ( ) is a potential with

0 0 0 0
Ny (I — PE) 0 N, N
=BE(E ) )wi’chN=(E 2)
Ny — PE) 0 N; N,
I 0
= BE< ) by Lemma 8-18
Ny — PE) 0

= BE,
Corollary 8-21: For any set E, lim, P*"BE = (.
Proor: Apply Proposition 8-20 and Corollary 8-9.

Finally we work toward a proof that a non-negative superregular
function dominated by a potential is a potential, a result we state as
Proposition 8-25.

Lemma 8-22: If £ is a finite set and if 4 is non-negative superregular,
then BFh is a pure potential of finite support.

Proor: BFh is a finite linear combination of columns of BE and is
therefore by Proposition 8-20 a potential with support in the finite set
E. Since & is non-negative superregular, BZh is non-negative super-
regular by conclusion (3) of Proposition 8-16. Hence, BFh is a pure
potential.

Proposition 8-23: Every non-negative superregular function is the
limit of an increasing sequence of pure potentials of finite support.

Proor: Let £, C E, C E; C--- be an increasing sequence of finite
sets with union the set of all states S, and let A™ = BEs.h. Then
k™ is an increasing sequence of pure potentials of finite support by
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Lemma 8-22 and conclusion (4) of Proposition 8-16. If ¢ is in K,
then A™ = h;, so that lim 2™ = h.

If g is a potential with charge f, then the total charge of g (or f) is
defined to be of (see Section 7-5).

Lemma 8-24: If Nf < Nf with f > 0 and of finite, then

0 < of < of < o0.

Proor: By the dual of Proposition 8-23, we may find a sequence of
finite measures =™ such that « is the monotone limit of #™N. Since
Nf < Nf, we have #™(Nf) < ™ (Nf) and

lim #™(Nf) < lim #™(Nf).
Since f > 0,
-rr(")(Nf) = (w(")N)f_,
and
hm 7™(Nf) = (hm 7™N)f = of

by monotone convergence with f as the measure. And since #™Nf* <
of* < oo and ?WNf~ < of ~ < o0,

,n,(n)(Nf) = 1T(n)Nf+ _ 77.(n)]\]f—_
Hence

lim 7P(Nf) = af ¥ — af = = af

by monotone convergence for each term. Thus of < af; of > 0 since
f = 0, and af < oo by hypothesis.

Proposition 8-25: If % is a non-negative superregular function
dominated by a potential g, then h is a potential and its total charge is
no greater than the total charge of g.

Proor: Let g = Nf. Write » = Nf 4 lim P*h with f > 0. Since
0 <h<g wehave 0 < P"h < P%. But P'g — 0 by Corollary 8-9,
so that P"h— 0 and h = Nf. Since «|f| < oo, we have, by Lemma
8-24; 0 < of < of < c0. Hence & is a potential and of < «f.

Corollary 8-26: A non-negative potential ¢ = Nf has non-negative
total charge.

Proor: Letg = Nf > 0,andsetf = 0. Since «fis finite, of > af = 0
by Lemma 8-24.
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Proposition 8-25 has an interesting interpretation in terms of the
enlarged chain. The jth column of N is a potential with charge
{8;;3. If the infimum of the column is positive, then the column
dominates a constant function k1, so that 1 is a potential by Proposition
8-25. Hence, the infimum of every column of N is zero unless the
extended chain is absorbing. In particular, if P1 = 1, then the
infimum of every column of N is 0.

In the case of the symmetric random walk in three dimensions,
P1 = 1. Thus the infimum of every column of N is zero, and since P
is symmetric, the infimum of every row is zero. This fact, although
not providing a proof of Proposition 7-10, does give us more insight into
that result.

3. Equilibrium sets and capacities

In proving analogs in the next section to the classical potential
principles, we shall need to restrict the supports of the charges involved.
The notion we shall need is that of an equilibrium set.

Definition 8-27: A set £ is an equilibrium set for P if there is a pure
potential which assumes the value 1 at every point of £ and which has
support in . Such a potential is called an equilibrium potential for E.
A set E is a dual equilibrium set for P if there is a pure potential measure
with support in £ which equals « on E.

We proceed to give two characterizations of equilibrium potentials.

Proposition 8-28: A set E is an equilibrium set if and only if both

(1) «ef < oo and
(2) for any starting distribution the set E is entered only finitely
often a.e.

When E is an equilibrium set, the hitting vector Af is the wunique
equilibrium potential and its charge is the escape vector eF.

Proor: Suppose E is an equilibrium set. If z is an equilibrium
potential for E, then BEx = x by Proposition 8-19 and z; = 1 by
definition. Since x; does not affect the value of BEx, we have

x = Bfz = B = hE,
and A* must be the equilibrium potential. Its charge is

(I — P)hE = ¢F
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by Theorem 8-4 and Proposition 5-8. Thus E is an equilibrium set if
and only if AF is a potential or if and only if «ef < 00 and lim P"h¥ = 0.
But s = lim P"h® by conclusion (7) of Proposition 5-8.

Corollary 8-29: All finite sets are equilibrium sets.
Proor: Apply Propositions 4-28 and 8-28.

Proposition 8-30: If £ is an equilibrium set, then the equilibrium
potential is the pointwise infimum of all pure potentials which dominate
1Ton k.

Proor: Since Af = BEF1, the result follows from conclusion (2) of
Proposition 8-186.

We shall use the notation %® for dual e*.

Definition 8-31: If £ is an equilibrium set, the capacity of £ is defined
by C(E) = aef = nF1.

In terms of total charge, Definition 8-31 states that the capacity of
an equilibrium set is to be the total charge of the equilibrium potential.

Lemma 8-32: A set F is an equilibrium set if and only if both
(PEY — 0 and ag[(/ — P*)1] < co. If E is an equilibrium set, then
C(E) = agl(I — PF)1] = [ag(I — PE)I1.

Proor: We shall apply Proposition 8-28. [(PE)*1], is the probability
starting in ¢ € E of returning to E at least n times. Thus (P*)"1 — 0
is a necessary and sufficient condition for being in £ only finitely often
a.e. for any starting distribution. Secondly (I — P£)1 = ef and
agel = aef. Hence «ef is finite if and only if «f[(/ — P®)1] < co.
And if E is an equilibrium set, then

C(E) = ag[(I — PE)].
Under duality a number is transformed into itsélf. Hence
C(E) = [(dual 1)(dual (/ — PE))](dual «f)
= [og({ - PRI
Proposition 8-33: E is an equilibrium set if and only if 1 is a potential

for PE with «y as the distinguished measure. Also C(E) is the same
computed for P as for PE.
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Proor: 1 is always superregular for PE. The two conditions given
by Lemma 8-32 are precisely the conditions that 1 be a potential. Also
ag[(I — PF)1]is the capacity of £ in PE.

Proposition 8-34: E is an equilibrium set for P if and only if it is a
dual equilibrium set for P. When £ is such a set, ay = HEN.

Proo¥: E is an equilibrium set for P if and only if 1 is a potential for
PE with 1 = N éE. By duality, this condition is equivalent to the
assertion that oy is a potential measure for P? with oy = #EN;. The
result then follows from the dual of Proposition 8-33.

We would like the result that C(E) = C(E). _However, an equilibrium
set for P need not be an equilibrium set for P (see Section 6). There-
fore, the following is the best possible result:

Proposition 8-35: If £ is an equilibrium set for both P and P, then
C(E) = C(E).

Proor: By Proposition 8-34, we have oy = #ENj, so that 4% =
ag(I — PE) by Lemma 8-18. By Lemma 8-32 applied to P,
C(E) = agef = (AENg)ei = M5(NgeF) = fghi
= 7§l = [ex(I — P = O(&).

Proposition 8-36: If F is a dual equilibrium set and £ C F, then E is
a dual equilibrium set and C(E) = #Fh~.

Proor: We shall use Proposition 8-28 to prove that £ is a dual
equilibrium set. By Proposition 8-34, op = (4*N)y and C(F) =
%1 < 0. Hence ag = (4*N)g and

I - PE O
w-m o )
0 0/|;
= (i"B")g
by Proposition 8-20. Then
af = ag(I = PPYI] = [og(I — PR = (37 BF)51 = 7°B1 = 47h".

Since #FhE < #F1 < oo, we have just verified the first condition of
Proposition 8-28—that «é? < oo. The second condition is trivial for a
subset of an equilibrium set. Hence Z is a dual equilibrium set and
C(E) = aé® = #FhE,
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The dual of this result states that any subset E of an equilibrium set
F is an equilibrium set, and C(E) = nFh~.

Proposition 8-87: The union of a finite number of equilibrium sets is
an equilibrium set.

Proor: Let E,,..., E, be equilibrium sets and let £ = | Ji_, E,.

Then
Z aieiE < aief:
i€k k=1 ieEy
n
E
< D 2, e
k=1 i€k

> C(B,) < oo,
k=1

and if the process is in each E, only finitely often a.e., then it is in £
only finitely often a.e. Hence, by Proposition 8-28, E is an equilibrium
set.

Some of the classical results hold only if the support of a potential is
a reasonably small set. It will always be satisfactory to have a finite
set as support. A more general assumption is that the support is an
equilibrium set. Since equilibrium sets include all finite sets, since a
subset of an equilibrium set is an equilibrium set, and since finite
unions of equilibrium sets are equilibrium sets, we may think of
equilibrium sets as a class of “reasonably small’’ sets.

Choquet has introduced a generalized notion of capacity. In our
case his definition takes the following form.

Definition 8-38: A Choquet capacity is a non-negative monotone

increasing set function such that, for any sets 4,, 4,,..., 4,,
CA, NAy,n- N 4,) <>0A) - D 04U 4,
i i#J
+ D C4,U4d;uUdy
i#j#k

— = (=1)"C(4, U U A).

A simple way of constructing one of these capacities is to let = be a
fixed starting distribution and to take C(E) to be the probability of ever
entering K. That is, C(E) = »h%. This set function is monotone
because h¥ is. The right side of the inequality in the definition of
capacity is the probability that all sets are entered. The left side is the
probability that the intersection of the sets is entered, which is one way
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of entering all sets, though in general not the only way. Hence
Choquet’s definition is satisfied. Since we may clearly also replace
C(E) by kC(E) with k > 0, = may be any non-negative finite measure.

We shall show from this construction that our Definition 8-31 yields
a Choquet capacity on equilibrium sets. For convenience, we will give
a proof for P. For any fixed equilibrium set F of P, Proposition 8-36
tells us that the capacity of any subset E is 47h%. Hence the above
argument applies with # = #*. Thus the Choquet conditions hold for
all subsets of F and, since F is any equilibrium set, they hold for all
equilibrium sets.

A more general method of obtaining a Choquet capacity within our
framework is as follows. Let = be a measure, and let » be a strictly
positive superregular function such that =k < co. Define C(E) =
7 BEh. Forming the h-process, we see that C(E) = #*(BE)¥1 = #*(hF)*
with 7#%1 = 7k < co. Thus by the special case C(E) is a Choquet
capacity for the h-process and hence satisfies the same axioms in the
original chain. Moreover, we see that the situation in the earlier case
is just the present case with 2 = 1. On the other hand, this more
general method includes a second interesting case: If g is a pure
potential for which =g is finite, then by Lemma 8-17,

wBEg = mg — = ENf,

7 BEg is a Choquet capacity which assumes its maximum value 7g on all
sets K containing the support of f. If #1 = 1, then 7 BZg in the game
interpretation is the expected gain when and after £ is reached.
Definition 8-31 is reasonable only for equilibrium sets, since otherwise
it is possible to have ¢f = 0. We could instead restrict the definition
to finite sets and define the capacity of an infinite set as the supremum
of the capacities of its finite subsets. We will show, under an additional
assumption, that this new approach agrees with Definition 8-31 on
equilibrium sets and assigns infinite capacity to all other sets.

Proposition 8-39: If N has columns which tend to zero, then a set £
for which the supremum of the capacities of its finite subsets is finite is
an equilibrium set, and the supremum is the capacity of the set.

Proor: Let E; C E, C... be an increasing sequence of finite sets
whose union is . We must prove that if sup C(£,) is finite, then A%
is a potential and C(E) = sup C(¥,). First we note that A® is the
monotone limit of A%, 1If ¢ € E,, then the ith component of ef» de-
creases for » > m. Thus lim ef» = € exists. Since N has columns
that tend to zero and since n%1 = C(&,) < sup C(E,) < oo,

nE N — (dual e)§
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by Proposition 1-58. By duality,
hEx = Nefas — Ne,
and

oe = (dual &)1 = Zlim nEn,

which by Fatou’s Theorem is

< lim (¢%1) = lim C(E,) = sup C(E,).

Hence hf = Ne and «& < 0. Thus F is an equilibrium set. Also
C(E) = ae < sup C(E,).
But C(E,) < C(E) for every n, so that sup C(E,) < C(E). Thus
C(E) = sup C(E,).

The converse, that an equilibrium set has the property that the
supremum of the capacities of its finite subsets is finite, follows trivially
from the monotonicity and the finiteness of capacity on equilibrium
sets.

4. Potential principles

We shall now derive analogs of several of the fundamental theorems
of classical potential theory. The first is the solution to the Dirichlet
problem; in the uniqueness statement we shall need a lemma, for which
we shall give two proofs. '

Lemma 8-40: If P is an absorbing chain, then P has no bounded
non-zero regular function.

Proor 1: Suppose Ph = h with |h| < ¢1. Since b, = 3, P h;, we
have |k;| < 3; P;|h,| or |ht < P|k|. Therefore, |h| < P*h| < P*c1).
But P™ is the probability that the process continues at least until time
n, which tends to zero as n tends to infinity because P is absorbing.
Hence & = 0.

Proor 2: Let a be the absorbing state of_l6 and let t = a be the time
to absorption; t is a stopping time since P is absorbing. If h = Ph,

set
a (0
h = .
S \h
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Then %'(z,(w)) in the P-process forms a bounded martingale. By
Corollary 3-16 to the second martingale systems theorem,

0 = hy = MF'(z(w))] = M[A'(2o(w))].
But z,(w) is arbitrary, so that ’ = 0 and A = 0.

The method in the second proof is of some importance, and we shall
meet it again later.

Theorem 8-41: Let £ be an arbitrary set of states, and suppose that
EP, the chain P with £ made absorbing, is an absorbing chain. If Ay
is any bounded function defined on E, then there exists a unique
bounded function % whose restriction to E is kg and which is regular

on E. The function is
- hg
h = BE( )
0

7= BE(hE).
0

The product is defined, since 4 is bounded and B* has row sums one.
Then the restriction of 4 to E is hy because (BF),; = §;; for ¢ and j in E.
Moreover,

e I i (o B s

Proor: For existence, set

0 0 0/\0 0

so that % is regular outside of E; associativity is justified in the triple
ke

0

()

be another such bounded function. Then 2 — k is a bounded function
which is zero on E and regular outside E. If @ is the transition matrix
for the transient states of £P, then (b — k);z is a non-zero bounded Q-
regular function, in contradiction to Lemma 8-40, since @ is absorbing.

product because (I + P)BE< I) is finite-valued.

For uniqueness, let

Next we prove the Maximum Principle.
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Theorem 8-42: Let E be an arbitrary set of states and suppose that &
is a finite-valued function such that A = BFh. Then the supremum of
the values of % is equal to the supremum of the values of . on E. If
the states of £ communicate in EP, if £P is absorbing, and if 4 assumes
its maximum on E, then % is constant on E.

REMARK: Corresponding results hold for infima by replacing b by — h.

Proor:
hi = z Bf,-h,-
jeE
< BE h) < h;.
2, Bl (sup hi) < sup by

Suppose that h assumes its maximum on £, that £P is absorbing, and
that the states of £ communicate in £P. Let ¢ be a state where the
maximum is assumed, and let k& be any state of E that can be reached
in EP from £. Since the transient states of £P communicate, we have
BE. > 0. Moreover,

h, = BEh, + > BEh,

ij'Y5
i#tk

Bfh, + kb Z BE since h; < My

itk
= ‘Bgchk + hz(]- - Bf;k) since BF1 = 1
=h — Bﬁc(hi — hy).

Therefore, h, = h, for all such k. Then for any me E, BE, > 0
precisely for those j for which BE > 0, and h; = h; for those j. Thus

hm= 2 BEh; = > BEh =h,.

JjeE jeE

IA

Corollary 8-43: If ¢ is a potential with support in a finite set, then g
is bounded.

Proor: Since g = BEFg for any potential, we may apply Theorem
8-42. The supremum in £ is over a finite number of values.

Corollary 8-44: Let E be an arbitrary set of states, and suppose that

(1) EP is an absorbing chain.
(2) the states of £ communicate in P,
(3) every state of E can be reached in £P from £.
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If & is a bounded function regular outside of E, then h cannot assume its
maximum on & unless 4 is constant everywhere.

Proor: By Theorem 8-41, k is the unique solution to the Dirichlet
problem for the function h;. Hence

b= BE(hE).
0

Multiplying through by BF and applying Proposition 5-8, we have

hg b
BFh = BEBE( ) = BE( ) = h.
0 0

By Theorem 8-42,  is constant on E. As shown in the proof of that
theorem, h assumes the same constant value at every state of £ which
can be reached in £P from K.

The result that follows is the Principle of Domination.

Theorem 8-45: Let h be a finite-valued non-negative superregular
function, and let g = Nf be a potential. If & dominates g on the
support of f*, then A dominates g everywhere. If, in addition, % is a
potential Nf, then of < «of.

Proor: If g is a pure potential supported in E, then g = BFg by
Proposition 8-19. But by Proposition 8-16, BEg is the pointwise
infimum of all non-negative superregular functions which dominate ¢
on . Thus the first half is proved if ¢ is a pure potential. For arbi-
trary g, write ¢ = Nf* — Nf-. We have Nf* — Nf~ < h on the
support of f*, so that

Nf* < h + Nf-

on the support of f*. Applying the special case to the superregular
function 2 + Nf~ and the potential Nf+*, we have

Nf* <h+ Nf~ or g<bh
everywhere. Finally, if » = Nf, then
Nft < N(f+f7)
implies
of * < off + f7)
by Lemma 8-24. Hence of < «f.
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Next we prove the Principle of Balayage.

Theorem 8-46: If g is a pure potential and if ¥ is any set of states,
then there is a unique pure potential § with support in ¥ such that
g = gon E. The potential § satisfies § < g everywhere, and its total
charge does not exceed the total charge of g.

Proor: For existence, let § = B¥g. Then § < ¢, §e = gg, and §
is superregular by conclusions (1) and (3) of Proposition 8-16. By
Proposition 8-25, 7 is a potential, and the total charge of § is less than or
equal to that of g.

For uniqueness, if h were another such potential, we would have
g = BEj = BEh = h
by Proposition 8-15 and the fact that §; = gz = hg.

If E is any set and if g is a pure potential, we refer to the potential §
of Theorem 8-46 as the balayage potential of g on E.

Corollary 8-47: The balayage potential § = BEg of ¢ on E is the
pointwise infimum of all pure potentials which dominate g on E.

Proor: Apply conclusion (2) of Proposition 8-16.

Corollary 8-48: The balayage potential of g on ¥ is the supremum of
all pure potentials with support in £ which are dominated by g on E.

Proor: Certainly the balayage potential does have the stated
property. Thus let § = BFg and let & be a potential with support in
E and with Az < gz. Then by Proposition 8-19, h = Bfh and

g = BEg > BEh = h.
If g has support in E, then g itself is the balayage potential of g on E.
In particular, 2% is the balayage potential of A€ on E for E an equilibrium

set.
Next we prove the Principle of Lower Envelope.

Lemma 8-49: The pointwise infimum of non-negative superregular
functions is non-negative superregular.

Proor: It is clearly non-negative., If

hg = Phy
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for all B, then

P(inf hy) < Phy < hy

for all B, so that
P(inf hy) < inf h,.

Theorem 8-50: The pointwise infimum of pure potentials is a pure
potential.

Proor: Apply Lemma 8-49 and Proposition 8-25.

Finally we prove the Principle of Condensers. We are to think of
two sets E and F as the two plates of a condenser with a positive charge
placed on E and a negative charge placed on F in such a way as to
produce a unit voltage drop. Since in equilibrium there should be a
uniform voltage on each plate and since the 0-value of voltage is
arbitrary, we will require that the potential be 1 on £ and 0 on F.
The theorem is proved for an equilibrium set E with finite boundary Z,
that is, a set £ that can be entered or left only through the finite
set K.

Theorem 8-51: Let £ be an equilibrium set with finite boundary, and
let F be any disjoint set of states. Then there is a potential g = Nf
which is 1 on £ and 0 on F and which is such that f* has support in E,
f~ has support in ¥, and «f = 0.

Proor: Let g; = “H,g, the probability starting at ¢ that E is reached
before F. Clearly,gis 1 on £ and 0 on F. Furthermore, 0 < g < AE.
Since P"h® — 0 for the equilibrium set E, we have P'g — 0.

Let f = (I — P)g. We are going to apply Corollary 8-8 to conclude
that g is a potential with charge f, but to do so we must show that of
is finite. If ¢ is in the complement of £ U F, then g; = (Pg);; hence f
has support in £ U F. Write

E F

E (X Y
PEuF - .
F (z W)

Noting that if e E U F, then (Pg), is the probability that the next
entry to £ U F is in E, we have

g9 — (Pg)i=1—-(Pg)y=1~(X1),; ifieck
{0 - (Pg); = —(Z1), ifieF.

i



214 Transient potential theory

1- X1 on K.
foor = A on F.

Thus f* has support in £ and f~ has support in F. Furthermore
X1 = 1 except for the boundary of E; hence f* has finite support and
af* < oo. Moreover
of = opZ1 = Z (xpZ); < 0
jeE
since Z;; = 0 except when j is on the boundary of E. Thus «|f| < .
Hence ¢ is a potential. Finally af > 0 by Corollary 8-26.

Hence

5. Energy

Classically, energy is the integral of the potential with respect to the
charge, and we shall adopt the obvious analog of this definition.
Throughout this section we shall write

p = dual f
v = dual g.
Definition 8-52: If g = Nf is a potential and |u] N |f| < oo, then

its energy is defined to be I(g) = pug = vf, and ¢ is said to have finite
energy.

If all potentials are bounded, then all of them have finite energy.
For if § = N|f|, then

Ii‘| N |f| = Zailfilgt

1
< sup gi(elf|)
< 0.
In any case a potential of finite support has finite energy.
We can write energy either purely in terms of the charge or purely in
terms of the potential:

I(g) = w(Nf) = v[(I — P)yg].
Since the dual of a number is the same number, we also have

I(g) = wN)f = DI - Py
If f is a charge for P, then, as noted after Theorem 8-3, f is also a
charge for P. In the two processes we have

I(Nf) = w(Nf) = (uN)f
I(Nf) = (uN)f = w(8f),

and the energies are equal since the matrices associate by Corollary 1-5.

and



8-54 Energy 215

The expression for I(g) in Definition 8-52 disguises the fact that energy
depends only on the values of the potential on the support E. We
shall derive a simple dependence of I(g) on PE.

Proposition 8-53: If g is a potential of finite energy with support in £,
then

L(g) = vil(I — PE)ggl = [vg(I — PE)lgs.
Proor: Since f has support in E,

(I — PP)gy = fu
by Proposition 8-19, and

vgl(I — PF)gg] = vefe = of = I(g).
The other half of the proposition is the dual of the first half.

Classically energy is non-negative. We shall prove shortly that the
energy of a potential is non-negative provided it is finite. To do so,
we first introduce a definition. If ¢ = Nf and § = Nf are potentials
of finite energy, we define

(9,9) = ¥ug + 29),

provided the matrix products are well defined. (We shall show soon
that this condition is always satisfied.)

Note that (g,g) = I(g). We wish to show that (g, §) is an inner
product. The reader should verify that (g, §) satisfies (1), (2), and (4)
in general and (3) when all the potentials have finite support. We
shall prove (5) and the general case of (3) below.

(1) (9.9) = (3, 9)-
(2) For every real number ¢, (cg, §) = ¢(9, 7).

3 (g+9,9) =(9.9 + (9,9

(4) If g is a pure potential for which (g, g) = 0, then g = 0.
(5) (g,9) = 0forallg.
Lemma 8-54: If g has support in a finite set F, then
Kg) = 4 3 [(em + mg? + 3 «Phie — 0] = 0,
icE JjE€E
where

jeE keE
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Proor: We shall apply Proposition 8-53. The matrices involved are
finite matrices so that distributivity and associativity hold. Hence

I(9) = vgge — veP%gx
Z [aigi2 + og7 + Z (—2“1P1Ejgigj)]

i€k jeE

Z [ (1 - Z Pu)gi ( z akpgi)giz

i€k JjEE keE

+ Z (wPfg? — 20,Piig,g9; + “iPiEjgjz)]

jEE

!
(S

il
ok

i
(X

=1 Z [(“tmi + )97 + Z o, Pi(g; — 97‘)2]-

i€k jeE

Since P¥ is a transition matrix and oy is PE-superregular, m and = are
non-negative. Hence I(g) > 0.

From properties (1), (2), and (3), we can prove that Schwarz’s
inequality holds for g and § whenever they have finite support.

Lemma 8-55: If ¢ = Nf and § = Nf are two potentials of finite
support, then

(9,9)* < KgI(@).
Proor: By Lemma 8-54 we have
Izg —g) = (g — §o2g — ) 2 0
for all real x. Hence by properties (1), (2), and (3), we find that

x%(g,9) — 2x(g9,9) + (§.§) = 0

for all real . If (g,g) = 0, then, for —2x(g, 7) + (g, §) to be non-
negative for all z, it must be true that (g, §) = 0, and the lemma is
trivial. Otherwise, the discriminant of the quadratic equation in x
must be non-positive, so that

4(9,9)* — 4(9,9)(9,3) < 0
or

(9, 9% < (9,947, 9)
= I(g)X(g)
Lemma 8-56: Let ¢ = Nf and § = Nf be pure potentials of finite

energy, let
E,CE,CE;--.
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be an increasing sequence of finite sets with union the set of all states S,

and let )
o (fE) o (f)
0 0

g™ = Nf®_  and g™ = Nf'(n)'
Then (g, §) = lim, .. (9, §).

Proor: We have (g, §) = 1(ug + i9), and by symmetry it is enough
to show that g™g™ converges to ig. By monotone convergence, we

have lim g™ = g, since 0 < fP < f@ <.... Let
B = { m ifie K,
0 otherwise.
Then
'a(n)g(n) — ﬁh(n)
and

lim A™ = lim ¢ = g.

The functions A™ are non-negative and increasing; also i is non-
negative. Thus by monotone convergence,

lim ﬁ(")g("’ = lim ﬁh(n) =i lim A™ = P«g-
Lemma 8-57: If g and § are pure potentials of finite energy, then
(9.9 < (9, 9)(g; 9)-
Consequently (g, §) < oo.

Proor: Form the approximations to g and § as in the statement of
Lemma 8-56. By Lemmas 8-54 and 8-55,

(g™, F™)2 < (g™, gm)(G™, G™).
Applying Lemma 8-56 to each factor, we obtain
(9, 9? =< (9, 9)(F, §)-
If g and § are any potentials of finite energy, then
. 9) < (V| £1, N| ) = VIQ[FDIN|F]) < eo.

Therefore (g, §) is always well defined. We can now prove (3) in
general by breaking charges into positive and negative parts.

Proposition 8-58: If g has finite energy, then I(g) = 0.
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Proor: Write g = Nf = Nf+ — Nf~, where Nf* and Nf-~ are
pure potentials. Then

I(g) = (9,9) = (Nf* — Nf~,Nf* — Nf~)
= I(Nf*) — 2(Nf*,Nf~) + INf~)
> I(Nf+) - 2VI(NfOI(Nf-) + I(Nf-) by Lemma 8-57
= (VI(Nf*) — VI(Nf~))?

> 0.

We can finally prove Schwarz’s inequality for all potentials of finite
energy by proceeding just as in the proof of Lemma 8-55.

We now begin the proof of the fundamental result about energy, the
theorem that justifies the name ‘‘equilibrium potential.” Unfor-
tunately the result fails for the most general transient chain, so that
some extra hypothesis is needed. We shall prove the theorem—
Theorem 8-61—under the hypothesis P = P, a condition that is
satisfied in the classical case of the three-dimensional symmetric random
walk with « = 17.

Lemma 8-59: The energy of the equilibrium potential on £ is the
capacity C(E).

ProOF: I(hF) = 7"hE = nEhE = E1 = nF1 = C(E).

Lemma 8-60: If £ is an equilibrium set, if g = Nf is a potential with
support in K, and if P = P, then (g, %) = of.

Proor:

2(g, h¥) = ph® + 7%
= ph® + nENf
= phf + uNefF by duality

= whf 4+ uNeEf since N = N

= 2uhf since A = NeF
= 2ul since f has support in £
= 2af.

Theorem 8-61: Suppose that P is a chain in which P = P. If E is
an equilibrium set, then the equilibrium potential for £ minimizes
energy among all potentials of finite energy whose support is in E and
whose total charge is C(E).
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Proor: Let ¢ = Nf be a potential with of = C(¥) and with support
in E. By Lemma 8-60, (g, hf) = C(E), and by Lemma 8-59, I(h¥) =
C(E). Furthermore, I(hE) # 0 by property (4). Therefore, by
Schwarz’s inequality, we have

(g’ hE)2 C(E)z _

We shall see in the next section that the theorem need not be true if
P £ P.

6. The basic example

In this section we shall work out what the results of the preceding
five sections mean in terms of the basic example.
First we compute P, the B-dual of P.

Bi—1mi/B = 1 ifj=1~1
Pi~=Biji= B
i B, f%iﬂ:ﬁj_ﬁjﬂ if 7 =0,
o

Thus the reverse process proceeds deterministically a step at a time to
the left until it reaches 0. From 0 it may step into any state and does
so with probability

Po; = Bj = Bj+1-
Since 3; Py; = 1 — B, < 1 and since 0 is reached from all states with
probability one, the extended chain for P is absorbing. We saw in

Section 5-10 that P has no non-zero regular measure; on the other hand,
B is regular for P since

Z:Bipii = Bo(B; — Bi+1) + Bi+1l = B;.

From Section 5-10 we know that

B; o e
=L if 1 <
[ J
R P
L8 >,
Bw Bl J
Hence
% ifixj
PO BilV ©
VOB
By i<



220 Transient potential theory

We note that N has columns tending to 0, but & has columns bounded
away from 0. The latter fact by itself implies that the extended chain
for P is absorbing.

Next we find the general form of potentials. In Pif g = Nf, then

© i-1
(1) 5= Nfi= 7 S B -2 S B
Bw i=0 Bij=o
In Pif g = Nf, then
@) 0= 2Bl >

In either case, g is finite-valued if B|f| < oo, in agreement with Lemma
8-2. (For the reverse chain we have

0 > ;/3]'|ij > B Z | fils

and hence 3; |f;| < o0.)
Let u = dual fand v = dualg. Then as required by duality

DN VEDNY)
L > ow - _Z)m = (ui)

© ;=0
Thus u is a left charge with potential measure v for P.

Theorem 8-4 demands that f = (I — P)g when g is a potential with
charge f. We have from (1)

(Pg)i = Pis1Gi+1 + G190
_ pi+1 Pi+a
Ao ! Bm,z Bifs +

- Bi B) - = > B,

ij=0
Hence g, — (Pg); = fiand (I — P)g = f.
For both P and P, we have
Nu = Nil = F’Bt"

©

= (Bf)

and thus the condition B; = kN,; of Proposition 8-10 is satisfied with
k = B,. Hence all potentials in both P and P are bounded. We can
see directly the boundedness from (1) and (2). In (1) and (2) we have

lg:| < %{{I
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The estimate
Blf]
lgi| < B

of Proposition 8-10 is better; it takes into account the cancellation of
the first and second terms in each expression. If f > 0in (2), then the
¢; increase monotonically to B|f|/B., so that the proposition gives
the best possible bound. In (1) we have lim; ¢; = 0, in agreement with
the second half of Proposition 8-10 since the columns of N tend to zero.
However, N does not have columns tending to zero, and lim, g; in (2)
is not necessarily 0.

We determine the regular functions and signed measures for P and
P as follows. If r is a P-regular function, then

= (Pr); = Dis1Tiv1 + Q1o
Thus
To = P17y + Q170 P1To = P17y,
and
ro = 1.

Hence only the constant functions are P-regular. Dually only multiples
of B are regular signed measures for P. Since P has no regular signed
measures, P has no regular functions. (Recall that P1 # 1.) There-
fore, the non-negative superregular functions of P are pure potentials
plus non-negative constants, whereas only pure potentials are non-
negative superregular functions for P.

Next, we determine the equilibrium sets for P and P. Tt is clear
that P will be in any infinite set infinitely often a.e. Hence only finite
sets are equilibrium sets. Let us verify this fact in terms of equilibrium

potentials.
Let E be a finite set with m as last element. Then
E"—" ifi=m
eiE = IBm
0 otherwise
and
Bef = Buen = Bo-
By (1),
E 1 & E
hE = ef) — — e
~ (B B ,-:Zo Bje}
or
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It is clear probabilistically that these are the correct values for AE;
when ¢ > m the only way to avoid hitting E from ¢ is to march straight
out to the right. The probability of doingsois 8,/8;. Thus we see that
h® satisfies the conditions of an equilibrium potential: All non-empty
finite sets have capacity B,.

If E is an infinite set, then A = 1 and ¢ = (I — P)h¥* = 0. Hence
hE is not a potential, and E is not an equilibrium set. The fact that the
supremum of the capacities of finite subsets of an infinite set £ is 8,
does not contradict Proposition 8-39, since N does not have columns
tending to zero.

For the reverse chain P let E be any set (finite or infinite) with least

element m. Then Af = 1 for i > m. For i < m,

B -N mm - Bm/:B [ B .Eﬂ—l.
The next to last equality follows from the fact that m = 0 is incom-
patible with ¢ < m. The process can escape from E only via m, and
form > 0

ﬁiz::ﬁg:Hom_NOm_(Bm/Bw)_l_l_ﬁw

& = (I — Py, = 5 — #5, = 2
Ifm =0, "
JE _ 2 = B;"’
=1 ;Poj—ﬁw—ﬁo
Hence, in either case,
BeE = Bmerﬁ = Bo.
Thus all sets are equilibrium sets, and every set has capacity 8,. We
note that only the finite sets are equilibrium sets for both P and P, and
their capacity B, is the same in both, as predicted by Proposition 8-35.
The dual of Proposition 8-23 is that every non-negative superregular
measure is the increasing limit of pure potential measures of finite
support. We shall produce the charges for P which give rise to the
potential measures which increase to 8. Let E,, be the set {0, ..., m}.
The functions A®» = Nefn are the functions which Proposition 8-23
gives as increasing to 1. Therefore, by duality the measures 7% N
should increase to 8, and the charges we seek in P are the nf=. From
our above calculations we have

B ift=m
m"m={

0 otherwise,
and
B; ifi<m

EmNi-___
) {ﬁi—ﬁw if i > m.
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Next suppose as in Lemma 8-24 that Nf < Nf with f > 0 and gf
finite. Since by (1)

(Nf)o Bw (Bf)
and

(Nf)o = Ei: @),

we must have Bf < Bf. The proof for the reverse chain is not so simple,
however. If N f < Nf with f > 0 and Bf finite, then

@ _ 1 [+ ]
Bw (Bf) — j ;lfj < g (Bf) —MZHL-

for all 2. According to the proof of Lemma 8-24, we multiply through
by n®» and take the limit on m. We have

IBf_Bw z fJ‘SBf—:Boo Z f;
j=m+1 j=m+1
As m — o0, we obtain 8f < Bf.

Turning to the potential principles, we shall first illustrate the
Principle of Domination (Theorem 8-45). We do soin P. Let f > 0
and f > 0 be given, let E be the support of f, and suppose that g, >
for i e £. For convenience, suppose 0e E. From (2) we have

- > fizg - 2 f forick.

°° i>i >t

Let k be in £, and let ¢ be the largest state of E for which i < k ( exists
since 0 € E). Then

o= 528 552855
® i>k i>i ® i>i
= '_3: - j;c f] = gk:

the next to last equality holding since f; = 0 for ¢ < j < k. Hence
g=4.

Next we examine the Principle of Balayage (Theorem 8-46) for P.
Let f = 0 be given, and for convenience let £ be an infinite set con-
taining 0. We wish to choose f with support in E so that §; = g;.
For 7 € £, we must have

fo——_z.f]

ji>i °° i>i
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Let k be the next element of E greater than ¢.

ZL=—

oo i>k

Subtracting, we find that f, = 3% ., f;,, Th
Adding the relations for f, with k > 0, we obtain

all of f except for f.
Zj>0fi = zj>0fi'

Since for g, = g, we need

We must also have

-2

i>k
This equation determines

ZL———Z@

w j>0 oo

we must choose Bf = Bf. Thus set
Jo=1ro+ Z Bi(f;

i>0
k

i>0

fe = Z f; fori,keFandj¢ E wheni < j < k.

j=i+1l

To see that we have actually chosen f, =

0, we note that S, decreases

with j, so that if 4, k € £ withnoj € E for v < j < k, then

Biv1(fisr — fis1) + Bivalfisz

= (131+1
> 0.

~ fire) +
= Bisafis1 + Bivafiva + -+
= Bisafirs + -
= Bfivs + -

+ Bifie —

o+ Bilfe = fio)

+ Befie — Bife
Bulfive +- -+ fi)
+ Br-1 — Bilfre-1

We shall illustrate the Principle of Condensers (Theorem 8-51) for

Pinthecase E = {0, 1, ...,
We have
1
Be
= FH. =1 —
gl iE ﬁi
0
Then
fi=0 — Dis19i+1 — G+190 =

atand F' = {b,b + 1,...

}with0 < a < b.
for i < a

for a <1< b

for ¢ > b.
g’-’ ifz=a
—@+1 if2 =20

0 otherwise.
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Hence

Bf =By — Z Bidi+1 = Bw-

izb

We can verify from (1) that g is the potential of f, and we see that f+
has support in E, f~ has support in F, and that 8f > 0.

We can show by example that the Principle of Condensers does not
hold for all equilibrium sets E. In P let E be the set of even states
and let F be the set of odd states. All sets are equilibrium sets for P,
but E does not have a finite boundary. If

1 for tel
gi =
0 forzeF,

the theorem requires that g be a potential. Butifie F,
fi=0~— (Pg)i= -1

Hence
Frm - S Hym S (Eo
(B = jodd 7 jodd (/300 )

The expression on the right side may be infinite if the 8’s are chosen
properly. Let

Bi = = +§
Boo:

The B’s determine the transition probabilities uniquely, and for this

choice (Nf ), is infinite, a contradiction.
Equation (1) gives us the following relation for energy in the

P-process.

o=

9 = g (B = 2 i 3 By

It is not difficult to see that (2) yields the same value for the same f.
But it is not easy to see that I(g) = 0 if g is not a pure potential. We
shall now show that Theorem 8-61 fails if the assumption P = P is
dropped. In Plet E = {0,1,...,m}. We have seen that C(E) = 8.
Thus any potential with total charge Bf = B, equal to that of the
equilibrium potential has energy

b= 343 B
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The equilibrium potential has energy B, which is a maxzimum (not a
minimum) among pure potentials. For example, let

o ifi=0

1 P
fi= QEBOO ifi=1

0 otherwise.
Then Bf = B, and

1(g) = B — folBofs) = B — %B < Bo.

7. An unbounded potential

In Proposition 8-10 we saw that a sufficient condition for all potentials
to be bounded is that o be chosen so that o, > kN, for all 7. The
purpose of this section is to show that unbounded potentials may exist
when this hypothesis is not satisfied ; the potential we exhibit will have a
bounded charge whose support is at the same time an equilibrium set
and a dual equilibrium set.

The chain P will be a modification of sums of independent random
variables on the line with p, = }and p_, = %. Let

P - ——3
bt %} fori <0

Pi.t+1 =§‘
and

1

Py=1- 7
2 .

P, , = 50 for 7 > 0.
1

Py = QJ

If the process is watched only when it changes states, it becomes the
P, = %, p_; = % process, so that we may compute H from the latter

chain.
1 if i >
Hﬁ: ip s .
Fy-t if i <.
Therefore,
Hy=P ;- 1+ P, -} +Pyl=1-1LP,
and
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Hence
3 ifj<0 i1>j
N — 33yt fj<0, 1<j
Y )8 ifj>0, >

(Y-t ifj>0, <.
Let £ ={1,2,3,...}. Since the process goes toward —oo with
probability one, it can be in E only finitely often a.e. Moreover,
ef = Ounless ¢ = 1, so that «e¥ < oo for any choice of «. Thus £ is an

equilibrium set.
We shall take « to be the zeroth row of N. Then

v 3 ifj<o0
o, = =
TTY T 86y iG> o

If we calculate P, we find that
Pif=Pij fOl‘i>0,

P =
A“H %} for ¢ < 0,
Pt.i—l = .;f

and X
Po1=Po.—1=%~

With probability one the P process reaches 0 from all states, and from
there it can disappear. Hence the extended chain for P is absorbing,
and P is in any set only finitely often a.e. As before, «éf < o, and
E is therefore an equilibrium set for P.

Thus E is both an equilibrium set and a dual equilibrium set. We
shall choose a bounded charge with support in £. Let

1 ifiek
‘f‘=

0 otherwise.

Then
. 3(3)
= 33y = ~—53 = 6.
af j>zo J(%) (1 — %)2
Thus f is a charge. Its potential is
> 3yt ifi<o

i>0

‘ :Zo R DT S 3yt if i > 0.
i=1

i>i



228 Transient potential theory

Summing these expressions, we find that

6(3)'! for ¢ < 0
g =
"\36G2 + 30 + 4) for > 0.

Thus lim,_, ,, ¢, = +00, and ¢ is unbounded.

We note that Png for large n is a weighted sum of ¢ values along paths
that the process is likely to take. Thus the fact thatlim,_, ,, ¢; = +0
does not contradict P"g — 0 since the process moves toward 400 with
probability zero. On the other hand, in the direction that the process
does go, namely —oo, we do have lim; , _,, g; = 0.

8. Applications of potential-theoretic methods

Many useful quantities for transient chains arise as means of non-
negative random variables: b, = M[z]. To compute ~ we can often use
a systems theorem argument (Theorem 4-11 with the random time
identically one) to obtain an expression of the form A = Ph + f.
Under appropriate circumstances we may write (I — P)h = f, and if A
can be shown to be a potential, we conclude » = Nf. The purpose of
this section is to give some sufficient conditions under which all these
steps are valid and to apply the results.

We first restrict our attention to the case of a bounded non-negative
random variable z. Later in this section we extend our results to
obtain Theorem 8-67, which is a powerful tool applicable even if the
vector & is not necessarily finite-valued.

To maximize the number of potentials, we choose a row of N as «.
Then all finite-valued functions of the form Nf are potentials, and a set
E is an equilibrium set if and only if the process is in £ only finitely
often a.e. Let z be a bounded non-negative random variable, and let
zM(w) = z{w,). We shall assume that z < z. Then M,[z] is finite
for all 7, and M,[z'V’] < M,[z]. Define

by = Mj[z]
and
fi = Mj[z — zV] = 0.

Lemma 8-62: The column vector kb is superregular and satisfies
(I — P)h = f. Furthermore, z®’ = lim, ,, z'™ exists and is finite.

Proor: By Theorem 4-11 with the random time taken to be
identically one, we have

M[zV] = ; PyM[z] = (Ph);.
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Therefore,
(I = P)h); = My[z] — Mj[z] = Mz — zV]

= ‘f‘i.
Since f > 0, & is superregular; and since z'¥ < z, we have

ZZZ(1)>Z(2)>"'Z 0.

Therefore z¢® exists and is finite.

Lemma 8-63: The function & satisfies b = Nf if and only if 2™ = 0
almost everywhere.

Proor: By dominated convergence,
M,;[z*] = lim M,[z™],
and by Theorem 4-11 with the random time =,
{M[z™]} = P{M,[z]} = P"h.

Hence
M;[z**’] = lim P"h.

By Theorem 5-10,
hi = (Nf)i + Mz},

Thus A = Nf if and only if M;[z®] = 0 for every 7. Since z'®> > 0,
M,[z*] = 0 for all ¢ if and only if 2 = 0 a.e.

Lemma 8-64: If either of these conditions is satisfied, then & = Nf:

(1) There exists an equilibrium set ¥ such that z(w) = 0 for every
path w which does not go through E.

(2) The enlarged chain is absorbing and z(w) = 0 for every path w
which begins in the absorbing state.

Proor: The second condition is just the first for E, the set of all
transient states. For the first condition, on every path which does not
pass through E, z(w) = 0, so that z™(w) = 0 for every n > 1 on such
paths. On almost all paths which do pass through E, there is an n
which is a funection of the path and which denotes the last time the
process passes through £ on that path. Therefore, on almost all paths
there is an n depending on the path such that z™(w) = 0. Hence
z® = 0 a.e., and the result follows by Lemma 8-63.
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We shall now generalize our considerations. Let z(w) be a non-
negative random variable with A, = M|[z] not necessarily finite. Sup-
pose z > z¥, and define "z(w) = min (m, z(w)). We agree to set
z — z = 0 at all points where z* i infinite. Then

z(w) = lim "z(w).
m-» o0
The crucial property of the functions ™z is that
(mz)(l) —_ m(z(l))'

We denote the common value of ("z)® and ™(z) by ™z, and we
define ™z™ analogously.

Lemma 8-65: If z > z® > 0, thenz — 2V > mz — ™z > 0,

Proor:
z —zV ifz<m

my _ mgl) — /) if z > m

m —zV if z > m > zW,

Define vectors ™k and ™f by

"hy, = Mj["z]
and
"y = M{"z — "z].

Lemma 8-66: "*1f > ™f and lim,, "f = f.

Proor: We note that ™(™*1z) = ™z. Applying Lemma 8-65 to
m+ly we find that m*lz — m+izg®) > mg _ mg)  Then ™+1f, > mf,
Since lim ("z — mzW) =z — zV ace., lim™f = f by the Monotone
Convergence Theorem.

Theorem 8-67: Let z be a non-negative random variable. Define

2M(w) = z(w;)
z(w) — 2P (w) = 0 when zP(w) = +00
by = M,[z]
fi =Mz — 2V,

and suppose that z > z®). If z satisfies either one of the following
conditions, then A = Nf:

(1) There exists an equilibrium set £ such that z(w) = 0 for every
path « which does not go through E.
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(2) The extended chain is absorbing and z(w) = 0 for every path w
which begins in the absorbing state.

Proor: For each m, ™z is bounded. If one of the conditions applies
to z, then it applies to ™z because 0 < ™z < z. Hence by Lemma
8-64,

mp = N ™f.
By Lemma 8-66, ™f increases to f, and by monotone convergence ™h

increases to h. Therefore » = Nf by the Monotone Convergence
Theorem.

We now apply Theorem 8-67 in four special cases.

First let P be an absorbing chain with fundamental matrix N. We
define a{” = M|[a(w)"], where a(w) is the absorption time defined in
Chapter 5. The column vector a™ is indexed by the transient states
of P.

Proposition 8-68: If P is an absorbing chain, then

a® = Z (;L)NQa("‘) + M.

m=1

Proor: Start the process in a transient state 7, and let a be the
absorption time. Since ¢ is transient,

a'(w) = (a + 1)(w,)
so that
a"(w) — a’(w;) = (& + 1)(w;) — a"(wy)
or
(a” — (a)V)(w) = ((a + 1) ~ a")(wy).

By Theorem 4-11 with the random time identically one,

Mja" — (a")®] = Z P, MJ(a + 1)" — a]

- g 3, oon| ()

kabs. k trans.
r-1
r
= Z (m) ZQikascM) +1
m=1 k

since > Ry + > @y = 1. In Theorem 8-67 let z = a’. Then z
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satisfies z = z*), and condition (2) of the theorem holds for z. As we
have just shown,

r—1 7‘)
— Qa(m) + 1,
! m§=:1 (m
and we also have A = a™. Hence h = Nf by the theorem.

Corollary 8-69: Let P be an absorbing chain. Then there exist real
numbers ¢ and d such that

a® < ¢cNa™ P < da®.

In particular, a® is finite-valued if and only if Na" -1 is finite-valued.
Proor: By Proposition 8-68,
r—1 r
a™ = N z ( )Qa“") + N1,
m=1 m

even if both sides are infinite. Hence

a® < (27 — 2)NQa"" Y + N1 since a™ < a"~ D)
= (20 = 2N — I)a" "V + N1 since N — I = NQ
< (2 — 2)Na®~» + N1
< (2" — 1)Nat—-D since 1 < a@~ 1),

For the other inequality,
NQaT-D
= NaqU—V _ go-D

> Na(r—l) — a(f) since a(r—l) < a/(r)‘

a®

%

Hence Na" 1V < 2aq™,

As a second example, let P be a transient chain, and for any two

transient states ¢ and j define
Wy = Mn2].
The reader may verify with the aid of Theorem 4-11 that if z = n;?,
then
Mz — 2] = 2Ny — 1I);;.

Now {j}is an equilibrium set, and n,2 = 0 for all paths not going through
this set. Hence, for fixed j, the column vector A with A, = W
satisfies condition (1) of Theorem 8-67. Therefore,

W = N@2N,, — I).

ij
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We note that W is finite-valued; similarly one shows that M;[n,"] < oo
forr > 2.

Next let £ be an equilibrium set and let z be the time at which the
process is in E for the last time (or 0 if £ is never reached). Set
v® = Mj[z]. Then

{l if £ is ever reached after time 0
z — 7z =

0 otherwise.

Hence Mz — z¥’] = RF, the probability that, from ¢, E is reached
after time 0. The random variable z satisfies condition (1) of the

theorem. Hence _
vE = NAE,

Finally, let £ be an equilibrium set and let j be any state. Let z;
be the number of times in j before ¥ is left for the last time (or 0 if &
is never reached). Define

NE = Mj[z,].

Then z; satisfies condition (1) of the theorem, and we have

1 if z4(w) = j and E is ever reached
z —z%) =
0 otherwise.

Hence
Mjz — z®] = §; A%,
and
Ntb; = N{Buhf} = thhf-

9. General denumerable stochastic processes

We shall show that any denumerable stochastic process can be
represented within a transient Markov chain in such a manner that
potential theory applied to the chain yields corresponding results for
the stochastic process.

Throughout this section we shall deal with a probability space {2
with measure u, and a fixed sequence {#%;} of partitions of £2. Each
A, has a denumerable number of cells, and #;, C #,,,. For con-
venience, we assume that %, = {@2}. We recall that (f,, %,) is a
stochastic process if f, is constant on each cell of #,. (This condition
is Definition 2-5 expressed in terms of partitions.) If U e #,, define
Jfn(U) to be this constant value.

Definition 8-70: If {#,} is a sequence of partitions, the space-time
Markov chain for {#;} is defined to be a Markov chain whose states are
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all ordered pairs (U, n), where Ue %, and p(U) > 0, and whose
transition probabilities are

'Lg)ifm=n+landVCU
Pymscvamy = {HU)
0 otherwise.

The chain is started in the state (£, 0>, which will be called state 0.

Proposition 8-71: The space-time chain is transient, and if 1 = (U, n),
then

No¢ = HO( = P{,’?= F-(U)-

Proor: State ¢ can be entered only on the nth step, as is clear from
Definition 8-70. Hence the chain is in 7 at most once, and Ny, =
H, = P{’. Along the path from 0 to ¢ there is a unique sequence of
cells

vCcuv,.,CU,,C-.-CU, CQ with U,eX,.
Then
ng) = PO(Ul.l)P(UI.l).(U2.2) fee P(U,.- 1. —=1>U,n)

WU wUs)  w(U)  _
W@ a0y wOy - MY

For example, let £ be a sequence space with some probability
measure p, and let %, be the partition such that #Z,* = &#,. As
usual, we may think of a cell of &, as a path {¢y, ¢,, ..., 1,> of length
nin . A state of the space-time chain may also be thought of as such
a path, and the chain moves from <i;,45,...,1,> to {Jy, o, - s Jns1p
only if j, = ¢, for 1 < k < n. The probability of such a transition is

Pr(z, 1 = Jns1 | Ty =1 A ATy = 1)

The starting state 0 may be thought of as the empty sequence.

Definition 8-72: If (f,, #,) is a stochastic process, then the function
f defined on the states of a space-time chain by

fKU,n)) = fu(U)

is said to correspond to the process (f,, Z,).

We write f ~ (f,, #Z,) when f corresponds to (f,, #,). If we identify
two stochastic processes (f,, #,) and (g,, #,) when f, = g, a.e. for
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every n, then the correspondence between all stochastie processes on
{#,} and all functions on the states of the space-time chain is one-one.
We now restrict ourselves to the case where the f, are real-valued
functions. Under the following definition the correspondence preserves
inequalities, linear combinations, and limits.

Definition 8-78: Operations on stochastic processes are defined by

f,,, (gn> Z,) iff, < g, a.e. for all n.
fm + b gn’ ﬂ = (afn + bgn’ '%n)
( hmk fn ) R.) f", R,) iflim f,% = f, a.e. for all n.

Lemma 8-74: If (f,, #,) ~ [, then

(M[fn+k I '@n]’ ‘%n) ~ Pkf

in the sense that if either quantity is well defined, then so is the other;
and if they are both well-defined, then they correspond.

Proor: We shall proceed by induction on k. If k& = 0, the result is
trivial. Suppose that both quantities exist for some k and that they
correspond. Then

(PE*1f), = D Py(P¥f)

or
()
k+ 1 —
(P f)(U.n) - VCZU F"(U) Pf (V.n+1)
VERn + 1

By inductive hypothesis, (M[f, . | %], %) ~ P*f. Hence, by def-
inition of the correspondence,

(Pkf)<v.n+1> = M[fn+1+k | ,92"+1](V)

- S wWfrnd W),

w(¥) WeVv
WeRn+1+k
and
V) wW)
(Pk+1f)<u.n> = L z fn+1+k(W)
R
1
= ,U-_(m WZU pW)for1 (W)

WeRn+1+k

= M[fn+1+k l '%n](U)



236 Transient potential theory

That is, P**1f exists if and only if M[f,, 4.1, | #,] does, and if they
exist, then they correspond.

Proposition 8-75: If (h,, #,) ~ h, then (h,, #,) is a supermartingale
(martingale) if and only if 4 is superregular (regular) and P*h is finite-
valued for all k.

Proor: If A4 is superregular, then Ph < h. Hence, by Lemma 8-74,
Mk, ., | #,] < h, a.e. for all n. If (P*h) is finite-valued, then

(Pth)y = 2 w(U)hy(U) = Mky]

Uedky

is finite. Since 4, is constant on cells of £, Definition 3-5 is satisfied.

Conversely, if (h,, #,) is a supermartingale, then M(h, ,, | #,] < h,,
and hence Ph < h by Lemma 8-74. Moreover, M[A,,,] = (P¥*"h),
is finite. If 4 = (U, n), then Py = p(U) > 0. From

(Pk+nh Z‘ P(n) th)

we see that (P*h), must be finite. The proof for martingales simply
replaces Ph < h by Ph = h.

Deﬁmtlon 8-76: (f,, #,) is a stochastic process charge with potential

(gm n if Zn M[{fnl] < oo and if (gm Zk M[fn+k | '%n] 4 )
If, in addition, f, > 0 then the potential is called a pure potential.

We shall make use of potential theory results for the space-time chain
P. As the distinguished measure «, we select «; = Ny; > 0. As
usual, if «f is finite, then fis a charge.

Proposition 8-77: Charge functions correspond to charge stochastic
processes, and their potentials also correspond.

Proor: If (f,, Z,) ~ f, then by Proposition 8-71
lfl = 2. wU)- ML 20U

U.nd

—Z 2, 1)U

n Uedk,

= 2 Mlf.1
n
Since sums and limits are preserved, we have by Proposition 8-74

g = Nf = Z th ~ % (M[fn+k ‘ '%n]’ '@n)
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Thus g is the potential of f if and only if the two conditions of Definition
8-76 are fulfilled by (f,, %,) and (g, %,).

We give two applications of the correspondence. The first is a
decomposition of non-negative supermartingales.

Proposition 8-78: If (k,, Z,) is a non-negative supermartingale, then
there is a unique representation
(hns B) = (1, Ry) + (gns #2)
of (h,, #,) as the sum of a martingale and a potential. In the repre-
sentation the martingale is a non-negative martingale, the potential is a
pure potential, and r, satisfies r, = lim, M{h,,, | #,]. Moreover,

(gn> &) is the difference between a martingale and a process consisting
of an increasing sequence of random variables.

Proor: Existence and uniqueness of the representation follows
immediately from Theorem 5-10 and Propositions 8-75 and 8-77. Then
r, = lim, M[h, ., | #,] by Lemma 8-74. For the last part, let
(fn» Z,) be the charge of (g,, #Z,). Set

Sn =f0 +"'+fn—1
and
s = lim s,.

Then s, increases monotonically to s, and
M[s] < 2 M(f, | #,] < oo
by monotone convergence. Since f, > 0,
In = Z M[fn+k | R,] = M[Z fn+k | '%n]
k k

=Ms — s, | %,] = M[s| Z,] — s,

Hence {g,} is the difference between the martingale {M[s | #,]} and the
increasing sequence s,,.

As the second application, we give a proof of the Upcrossing Lemma,
Proposition 3-11, as it applies to non-negative supermartingales. The
present estimate is better than the one in Chapter 3.

Proposition 8-79: Let r and s be real numbers with 0 < r < 5. Let
B(w) be the number of upcrossings on w of [r, s] by the non-negative
supermartingale (f,, #,) up to time ». Then

,
M[B] < ——.
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ProoF: Let f ~ (fi, #,); f is non-negative superregular. Let E and
F be the sets of states in the space-time chain defined by

E={Um)|m<n and f,(U)<r}
F={U,my|lm<n and f,(U) = s}
Hence f, < r for i€ E and f; > s for je F. For any other state,

i =U,m) with m < n, r < f, <s. Now hf = (BF1), is the prob-
ability that the random variables f,, . . ., f, ever take on a value greater
than or equal to s. Similarly, (B¥BF1), is the probability of at least
one upcrossing, and in general [(BEBF)¥1], is the probability of at
least k upcrossings by f,, f;,...,f,. Hence

MIp] = 3 Prp = i = 5 (BB

Since the chain cannot be in F after time n, ¥ is an equilibrium set,
and A = BF1 is a potential. Forie F

(B*) = 151 f,
By the Principle of Domination (Theorem 8-45),
(BF1) f

everywhere. Hence BEBF1 < (1/s)BEf. Forie E,
(Bf) < r
Since f is superregular and since 71 is superregular,
BEf <

everywhere by conclusion (2) of Proposition 8-16. Thus
BFB™M < ©1.

By induction,

and hence




10.

. If P is a transient chain whose states communicate and if « > 0 is

Problems 239

Problems

superregular, show that

(a) P stops (disappears) a.e. if and only if « is a potential measure.

(b) The mean stopping time is finite if and only if « is a charge. [Hint:
Adjoin an absorbing state to P

. Let P be a recurrent chain, and let E be a finite set. Show that for any

specified values of hy there is a unique bounded function h with the
specified values which is regular on E. Show that A takes on its
maximum on E.

. Illustrate the result of the previous problem for the symmetric random

walk on the integers with the specified values b, = 0 and A, = 1.

. Let P have only transient states, let 7 be a specified probability vector,

and let « = #N. Letf = O be a charge, and define the random variable

s =2 f(@).

Show that s is finite a.e. and that M,[s] = of. What is the value of
M,[s]? Give a game-interpretation.

. In the framework of Problem 4, introduce a second charge f, its potential

g, and §. Prove that if p = dual f, then
(9, §) = IM,[ss] + dpf.

Find the corresponding expression for I(g).

. If P is a chain with only transient states, let Var;; be the variance of n;

for the process started at <. Show that .
Var;; = Ny(2N;; — Ny — 1)

. In the framework of Problem 6, if P1 = 1, prove that for each j there is

an ¢ such that Var;; > N,

Problems 8 to 19 refer to the following Markov chain: The states are the
non-negative integers. From state ¢ either the process moves one step to the
right with probability p; > 0, or it remains at 2.

8.
9.

10.
11.

12.

Find H and N.

Give a stmple characterization of

(a) the regular functions,

(b) the non-negative superregular functions,

(¢) the pure potentials, where «; = Ny,

(d) the potentials, where o; = N,.

What does Theorem 5-10 say about this chain?

If g is a potential with charge f, give a simple characterization in terms
of g of the support of f. Of the support of f*.

Use Problems 9 and 11 to verify that Theorem 8-45 holds for this chain.
[Hint: Distinguish the cases where the support of f* is finite and where
it is infinite.]
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13. Use Problems 9 and 11 to construct a counterexample to Theorem 8-45
if the assumption » > 0 is omitted.
14. If o; = N, form P and compute N.

15. For £ = {0,1,2}, find 2. [See the end of Section 8.] Show that
vE = NAE has the desired interpretation. [Remember that the chain
starts at time 0, not at time 1.]

16. Show that C(E) = 1 for all equilibrium sets. Show that both the
hypothesis and the conclusion of Proposition 8-39 are false for P.

17. Show that C(E) = 1 for all sets E. Show that both the hypothesis and
the conclusion of Proposition 8-39 hold for P.

18. Let £ = {0,1,...,n}. Find BE. 1If g is a potential, what is the form
of its balayage potential on £? Show that Theorem 8-46 is satisfied.

19. Show that if 4 = dual f, then

) =5 (Sw) +32m

Problems 20 to 30 refer to sums of independent random variables on the
integers with p_; = 3 and p, = 4. Use the results of Problems 12 to 19 in
Chapter 5.

20. Show that there are two essentially different positive regular measures
and that all regular measures are linear combinations of the two basic
measures.

21. Show that if f > 0 and of < + o0 for either «, then g = Nf is finite-
valued. Show also that lim P*g = 0.

22. Let E ={0,1,...,n}. Compute BE. Choose a non-negative super-
regular function A (not a constant), and verify the various parts of
Proposition 8-16.

23. For E as above, compute e, and verify that Ne® = A,

24. For E as above, compute C(E) = «e® for each of the two basic measures.
What happens as » increases ?

25. Form P and compute N for each of the two basic measures. In each case,
does N have columns tending to 0?

26. Use the results of the last two problems to show that each assignment of
capacities is consistent with Proposition 8-39, even though lim, C(E)
is finite in one case and not in the other.

27. Show that there are infinite equilibrium sets for this chain.

28. Choose « = 17. Prove that if lim,_, , o A, = O and > [k — &, _4| < o0,
then % is a potential.

29. Choose a function k satisfying the conditions of Problem 28, compute its
charge f, and check that b = Nf.

30. Let £ = {0,1,2}. Compute P¥ and the fundamental matrix of this
finite chain. Verify that the latter is Ny.



CHAPTER 9

RECURRENT POTENTIAL THEORY

1. Potentials

Throughout this chapter P is a recurrent chain which is either null or
noncyclic ergodic. For such a chain, lim, P" always exists; we let
L = lim P".

In a recurrent chain the non-negative finite-valued superregular
measures are uniquely determined up to multiplication by a constant,
and the non-zero ones are positive and regular. We choose one such
non-zero regular measure and call it o.

If P is noncyclic ergodic, then L;; = o;/>, o,; whereas if P is null,
then L;; = 0. In either case, L;, — Lja,/a; = 0.

Duality for P is defined with respect to the regular measure «. The
dual P of a null chain is null, and the dual of a noncyelic ergodic chain
is noncyclic ergodic. In general, if two results are duals, we shall prove
only one of the pair. As usual, the key to the proof by duality of the
second result is that P is the most general chain of the type we consider
in this chapter.

As Definition 9-1 suggests, we define charges and potentials in the
same way as in transient potential theory.

Definition 9-1: If 4 is a signed measure with u1 finite and if

v=Ilim{u + P +.--+ P 1)]

exists and is finite-valued, then p is called a left charge with potential
measure v and total charge u1. If fis a function with of finite and if
g =1lim,[(I + P +---+4+ P ')f] exists and is finite-valued, then f
is called a right charge with potential function g and total charge «f.
The support of a charge is the set on which the charge is not zero; the
support of a potential is the support of its charge.

241
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The definition of the support of a potential is not justified until we
prove a uniqueness theorem for the charge of a potential, but such a
result will follow directly from conclusion (2) of Theorem 9-15.

We note that the dual of a left (right) charge for P is a right (left)
charge for P and that their total charges are the same (since the dual of a
number is the same number).

Although we adopt the same definitions as with transient chains, the
results are sometimes significantly different. For example, the only
pure potential is the zero potential: If f > 0, then by monotone
convergence lim,[(I + P +---+ P*"Y)f]; = 5; N,f;, where N,; =
+o0 for every ¢ and j. Thus the limit is finite-valued only if f = 0.

On the other hand, every row (or column) of I — P is a charge, and
the potential of the ith row (column) of I — P is the ¢th row (column)
of I — L. For if p is the ith row of I — P, then |u|1 < 2 < o and

vi = li;n[p,(l + P+ 4+ PY)); = li:n(I - Pr),
= (I = L)y;

the assertion for columns is dual.

Our first potential theory result will be that every charge has total
charge zero. To prove this fact, we require the Doeblin Ratio Limit
Theorem, Theorem 9-4. We recall that H{P is the probability starting
in 7 of reaching j before or at time n and that N{» is the mean number
of times the process started at ¢ is in j up to and including time n.
Hence H{P = >7_, F¥ and N{P = >i_, (P¥);; from the latter
relation we see that N{» = (o,;/e)N{. In terms of this notation the
Doeblin Ratio Limit Theorem states that in any Markov chain with a

positive superregular measure
)
lim =4
()
)

1

exists and is finite for any states ¢, j, ¢, and j° which communicate.
We shall give a simple proof of this important result.

Lemma 9-2: Let P be any Markov chain with a positive superregular
measure «. If ¢ and j communicate, then the quantities
N - N
and

Nm% _ ym
o {3
1

are non-negative and bounded. In particular, |[N{?® — N{P| < N,
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Proor: If ¢ and j communicate, then ‘H;; < 1, so that 'N,; =

1/(1 — 'H;;) < oo. It is clear that
Ny — N = 0
and that
NP < 'Ny; + NP,

and hence the first expression is non-negative and bounded by ‘N ,; < co.
By duality, NP — N{P(e,/e;) is non-negative and bounded; if we
multiply by «;/«; and interchange j and 7, we obtain the second result.

Lemma 9-3: Let P be any Markov chain with a positive super-
regular measure «. If ¢ and j communicate, then for all n

(n) ()
<1 and MDY,
N < P S &
and
m N® =
- NP _spg oy
hm N(”) H;; and 1111'11 ¥p = o A, =N,

Proor: By Lemma 9-2,

< NP — NP < ¢ for all n.
Hence
Ny o
0 1= N(n) = N(n)
Therefore N{P/N{P < 1 for all n. If j is recurrent, then Ny — +o0,
J

and the ratio N ‘")/N (") must tend to 1; we have H;; = 1 since ¢ must be
recurrent if ¢ and j communicate. Hence

If j is transient, then
Ny Ny _ HyNy
Np W, N
The other results are duals, and the assertion about ‘N, follows from
Corollary 6-20.

=H

ij*
ii

The following is the Ratio Limit Theorem.

Theorem 9-4: Let P be any Markov chain with a positive superregular
measure o, and let 7, j, ¢, and j° be any states which communicate.
Then

Nm
lim -
n N(,j.
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exists. If all four states are recurrent, the limit is «;/c;. If the states
are transient, the limit is

H,H ;.0

Ho H. o

REeEMARK: Since the states in question communicate, they must be
either all recurrent or all transient.

ProoF: Write

(n) m7-1 (n) n)] -1 (n)
Np [Ni,,.,] [Nj,,.][zv,.,j] [Nij ]
(n) — (n) (n) (n) (n)

N N, N[ [ NG N

and apply Lemma 9-3 to each factor.

Proposition 9-5: Every charge has total charge zero.

Proor: If u is a left charge, then > |u,| < oo and

= lim > pu,N@
n ok

is finite. Therefore
N
Z e ( Nﬁf)) — 0.
Since by Lemma 9-3, N{¥/N{¥ < 1, dominated convergence gives

N(n)

0 = lim Z f"k(AT(n)) Z e lim (N(n)) Z pe = pl.

The result for functions is dual.

The condition that a function f satisfy of = 0 is a strong necessary
condition for it to be a charge, but it is by no means sufficient. In
fact, it is not even sufficient in general if f also has finite support. We
shall return to discuss this point at length in Section 2.

We now establish as Theorem 9-7 an identity which will play a
fundamental role when we develop an operator which transforms
charges into potentials.

Lemma 9-6: Let {a,} and {b,} be two sequences of real numbers
such that a, > 0, Ya, =a < o, |b,| < B, and |b, — b,_,| — 0.
Then

m > (b, — by_y) = 0.

nN—=>® =0
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ProoF: Let ¢ > 0 be given. Choose N sufficiently large that
Sk>n ¥ < €/(4B) and pick N’ large enough so that for all n > N’

€

[ba = bn-s] < 2aN

Then for n = N + N’, we have

n N n
z e(bn = bp_p)| < Z Uelby — by + Z @([bn] + [0n-kl)
E=0 k=0 E=N+1
N k-1 n
= Z @y Z |br—y = bo_j 1| + 2B Z .
k=0 =0 k=N+1
N k-1 ¢ € _ _ )
< Zak 2aN+:1§'2B’ since n — j > N
k=0 i=0
€ N €
= §‘;kg:o Yt 3
< e

Theorem 9-7: Let ¢, j, and k be arbitrary states in a recurrent Markov
chain which is either null or noncyclic ergodic. Then

lim [(Ni} — NiP)ejlop + NP — NPl = *N,;.

n— o

Proor: We may assume that neither ¢ nor j equals k, since otherwise
both sides are clearly zero. We begin by establishing four equations:

(1) Ng = 2 FRNE
v=0
n
(2) Np = 2 FRNR™
v=0
(3) Ny = 2 FRNG
v=0
n
4) Np = D FRNG™ + kN,

[¢

<
It

Equations (1) and (3) follow from the fact that > F}) = H,,. = 1.
Equation (2) comes from Theorem 4-11 with the random time t =
min (t,, »), and equation (4) is a similar result, except that the sum has
been broken into two parts representing what happens after and before
state k is reached for the first time.
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Multiply (1) by o;/e, (2) by —a,/a, (3) by —1, and (4) by 1, and add.
We obtain

(VR — N@)eylee + (NP — N
_ N 4 z FQb, = b,_) + > Fpb,,

v=n+1l
where b, = N{®a,/e;, — N, and {b,} is a bounded sequence by Lemma
9-2. The first term *N{? on the right side tends to *N;, and the third
term tends to zero since {b,,} is bounded and > F{? is finite. It is thus
sufficient to show that

i ay(b, — bn—v) =0,
v=0

where a, = F{. Since a, > 0, Y a, = 1, and {b,} is bounded, we
need show only that (b, — b,_;) — 0 to apply Lemma 9-6. But

o
— (n) -1 ] -1)
by = bpoy = (N — NG~ ) = — (Vi) — Nig™P)
k
o
— pm
= Pp - Py
e

o

— Ly, =~ ij
e

= 0.

If in the recurrent chain P we make a set of states E absorbing, then
EP is an absorbing chain and results about transient chains may be
applied to it. For example, the result N,; = H;N,; yields EN,;, =
EH,;EN;;. We shall also make frequent use of the fact noted in Section
6-2 that EN,; = (a,/e;) EN ;.

At this point we begin developing the machinery needed for the
main result of this section, Theorem 9-15. We first need two pre-

liminary identities, which we establish as Propositions 9-12 and 9-13.

Lemma 9-8: For any pair of states ¢ and j,

Ny Wy
oy aj

Proor 1: If ¢ = j, both sides are zero. If ¢ # j, then from H,; = 1
and (3) of Lemma 4-19, we find
‘Hy; + 'H;H,; = Hj; = 1,

so that _ _

1 —'Hj; = H,.
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Hence
‘N, =11 = Hy) = 1/Hy,
Therefore, by Proposition 5-4 and Corollary 6-21,
jNii_j_j _ i _ %
i_N; = HJ'i Nii = Nji —;j'
Proor 2: Set ¢ = j in Theorem 9-7. Then
lim (VR — NPy + (VP — NiP)oy] = o *N,.

Interchange 7 and k, and the left side stays the same. The right side
becomes o; ‘N

Lemma 9-9: For any states i, j, k with ¢ # j,

. o
i i
INg + Ny, o= IN,.
7

Proor:

; o . o
N iN i H N i i i

"Ny + kig, ! ki’ Ny + ij Nﬁ o
) )

= ({Hy; + ‘Hy;)’N; by Lemma 9-8
= INy.

Lemma 9-10:

o

(n) (n) 1
‘Nki — N

%o

< °Ny.

Proor: If ¢ = 0, both sides are zero. Otherwise we have
N < °Ny + 8§
If we multiply through by «;/«;, we obtain

o; [ o
0 i 0 Ay} - o i A7)
NWsNM+—FNM—1%+—Mm
g \O %o
Hence

o

(n) i ATy 0
N — p N@ < ON,,.
0

Interchanging 7 and 0 and multiplying by «;/«, gives

ZN® — N < iNo =
k0 ki k0
o o
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Therefore,

[+4
n)y _ 1 AT
Nt N
0]

< ON,, + ‘N, &"2 = °N, by Lemma 9-9.
(1]

As usual, we agree that N, and in particular °/, is a square matrix
indexed by the set of all states; the entries of ¥N on the rows or
columns indexed by E are all zeros.

Lemma 9-11: If u1 is finite, then u °N is finite-valued. Dually, if of
is finite, then °Nf is finite-valued.

Proor: If u1 is finite, then

zi: ] ONy; = Z || °Hy; ON 5 < ON;‘J‘Z |m| < 0.

i

Proposition 9-12: If u1 = 0, then

. [
l